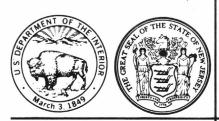


Water Resources Data New Jersey Water Year 1989

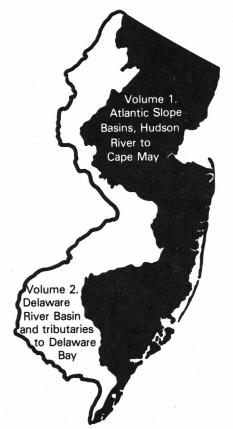
Volume 1. Atlantic Slope Basins, Hudson River to Cape May



U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-89-1 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

CALENDAR FOR WATER YEAR 1989

1988


						1				1988	3									
S 2 9 16 23 30	M 3 10 17 24 31	OCT T 4 11 18 25	OBE W 5 12 19 26	6 13 20 27	F 7 14 21 28	S 1 8 15 22 29	S 6 13 20 27	M 7 14 21 28	NOV T 1 8 15 22 29	W 2 9 16 23 30	BER T 3 10 17 24	F 4 11 18 25	S 5 12 19 26	S 4 11 18 25	M 5 12 19 26	DE0 T 6 13 20 27	7 14 21 28	BER T 1 8 15 22 29	F 2 9 16 23 30	S 3 10 17 24 31
										198	9									
		.14	ANU	ARY					FF	BRU	ΔRV					M	ARC	Н		
S 1 8 15 22 29	M 2 9 16 23 30	T 3 10 17 24 31	W 4 11 18 25	T 5 12 19 26	F 6 13 20 27	S 7 14 21 28	5 12 19 26	M 6 13 20 27	T 7 14 21 28	W 1 8 15 22	T 2 9 16 23	F 3 10 17 24	S 4 11 18 25	5 12 19 26	M 6 13 20 27	7 14 21 28	W 1 8 15 22 29	T 2 9 16 23 30	F 3 10 17 24 31	S 4 11 18 25
			APRI	L						MAY	,						JUNE			
S 2 9 16 23 30	M 3 10 17 24	T 4 11 18 25	W 5 12 19 26	T 6 13 20 27	F 7 14 21 28	S 1 8 15 22 29	S 7 14 21 28	M 1 8 15 22 29	T 2 9 16 23 30	W 3 10 17 24 31	T 4 11 18 25	F 5 12 19 26	S 6 13 20 27	S 4 11 18 25	M 5 12 19 26	T 6 13 20 27	W 7 14 21 28	T 1 8 15 22 29	F 2 9 16 23 30	S 3 10 17 24
S	М		\ JUL,	Y T	F	S	S	М	T	JGU: W	ST T	F	S	S	М	SEP	TEM W	BER T	F	S
2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	3 10 17 24	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30

Water Resources Data New Jersey Water Year 1989

Volume 1. Atlantic Slope Basins, Hudson River to Cape May

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and W.D. Jones

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-89-1 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in New Jersey write to

District Chief, Water Resources Division
U.S. Geological Survey
Mountain View Office Park
810 Bear Tavern Road, Suite 206
West Trenton, New Jersey 08628

PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the completion of the report.

Eugene Dorr

Jacob Gibs

Robert D. Schopp

M.D. Morgan word processed the text of the report, and G.L. Simpson drafted the illustrations.

The data were collected, computed, and processed by the following personnel:

W.F. Calve	tti J.F.	Dudek	D.S.	Kauffman	E. Ro	odgers
G.L. Centi	naro M.D.	Eanes	G.R.	Olshefski	F.L.	Schaefer
R.S. Cole	C.E.	Gurney	T.J.	Reed	A.J.	Velnich
M.J. DeLuc	a J.D.	Joyner	R.G.	Reiser		

This report was prepared in cooperation with the State of New Jersey and with other agencies under the general supervision of Janice R. Ward, Associate District Chief for Hydrologic Data Assessment and Information Management; Donald E. Vaupel, District Chief, New Jersey; and Stanley P. Sauer, Regional Hydrologist, Northeastern Region.

REPORT DOCUMENTATION PAGE 1. REPORT NO. USGS/WRD/HD-90/289	2.	3. Recipient's Accession No.
4. Title and Subtitle	1000	5. Report Date
Water Resources Data - New Jersey, Water Year		May 1990
Volume 1. Atlantic Slope Basins, Hudson River	to Cape May	6.
7. Author(s) W. R. Bauersfeld, E. W. Moshinsky, E. A. Pusta	y, W. D. Jones	8. Performing Organization Rept. No. USGS-WDR-NJ-89-1
9. Performing Organization Name and Address U.S. Geological Survey, Water Resources Divisi	on	10. Project/Task/Work Unit No.
Mountain View Office Park		11. Contract(C) or Grant(G) No.
810 Bear Tavern Road, Suite 206		(C)
West Trenton, New Jersey 08628		(G)
12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Resources Divisi Mountain View Office Park	on	Annual - Oct. 1, 1988 to Sept. 30, 1989
810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628		14.
15. Supplementary Notes Prepared in cooperation with the New Jersey Deand with other agencies.	partment of En	vironmental Protection
16. Abstract (Limit: 200 words)		
Water Resources data for the 1989 water year stage, discharge, and water quality of stream lakes and reservoirs; and water levels and water for the report contains discharge records for station; stage and contents for 15 lakes and water sites and 116 wells; and water levels for data for 39 crest-stage partial-record stations. Additional sites, not part of the systematic data collections.	s; stage, conte ter quality of 73 gaging stati reservoirs; wat or 69 observati ations, 11 tida nal water data	nts, and water quality of ground water. This volume ons; tide summaries for 1 er quality for 61 surface- on wells. Also included 1 crest-stage gages, and were collected at 54

system operated by U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

17. Document Analysis a. Descriptors

*New Jersey, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water Levels, Water Analyses.

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement No restriction on distribution.	19. Security Class (This Report)	21. No. of Pages
This report may be purchased from: National	Unclassified	353
Technical Information Service, Springfield, VA	20. Security Class (This Page) Unclassified	22. Price

CONTENTS

	raye
Preface	iii
List of surface-water stations, in downstream order, for which records are published	V1
List of ground-water wells, by county, for which records are published	···· viii
IntroductionCooperation.	
Summary of hydrologic conditions.	
Streamflow	2
Water qualityGround-water levels	5
Special networks and programs.	12
Explanation of records.	12
Station identification numbers	12
Downstream order systemLatitude-longitude system.	12
Records of stage and water discharge	13
Data collection and computation	13
Data presentation	14
Identifying estimated daily discharge	15
Other records available	15
Records of surface-water quality	15
Classification of records	15
Arrangement of records	15
Water temperature	16
Sediment	16
Laboratory measurements	
Data presentation	16
Records of ground-water levels.	17
Records of ground-water levels	17
Data presentation	18
Records of ground-water quality	18
Data presentation	18
Current water-resources projects in New Jersey. Water-related reports for New Jersey completed during 1987, 1988	19
Access to WATSTORE data	20
Definition of terms	23
Selected references	18 19 20 23 23 32 34 36 46
Publications on Techniques of Water-Resources Investigations	32
List of discontinued gaging stations	34
Station records, surface water	46
Station records, surface water	262
Crest-stage partial-record stations	262 268 274
Miscellaneous sites	274
Tidal crest-stage stations	280
Station records, ground water	282
Ground-water levels. Secondary observation wells.	282
Wuality of ground water	327
Index	341
ILLUSTRATIONS	
Figure 1. Monthly precipitation at three National Weather Service locations	4
2. Monthly streamflow at key gaging stations	5
3. Annual mean discharge at key gaging stations. 4. Combined usable storage in 13 major water-supply reservoirs	6
5. Monthly mean specific conductance at Delaware River at Trenton.	8
Frequency of detection of chlordane, DDT, DDE, DDD and PCB's in stream bottom material	8
7. Map showing locations of sites with concentrations of Chlordane, DDD,	9
 Monthly mean specific conductance at Delaware River at Trenton Frequency of detection of chlordane, DDT, DDE, DDD and PCB's in stream bottom material Map showing locations of sites with concentrations of Chlordane, DDD, DDE, DDT, or PCB's in bottom material greater than 20 μg/kg, 1988. Monthly ground-water levels at key water-table observation wells. 	10
10. System for numbering wells and miscellaneous sites	
 Map showing location of gaging stations and surface-water quality stations. Map showing location of low-flow and crest-stage partial-record stations. 	58
13. Map showing location of ground-water observation wells	42
14. Map showing locations of ground-water quality stations	44
TABLES	
Table 1. Frequency of detection of organochlorine and organophosphorus compounds in bottom materials of New Jersey streams for water years, 1976 to 1988	3
2. Factors for converting Inch-pound units to Metric unitsinsic	le back cover

Note.--Data for partial-record stations and miscellaneous sites for surface-water quantity are published in a separate section of the data report. See references at the end of this list for page numbers for this section.

[Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (s) sediment, (t) water temperature, (e) elevation, gage height or contents]

Station No.	Page
HUDSON RIVER BASIN Rondout Creek:	
Rondout Creek: Wallkill River at Franklin (cm)	46 48 50 52
Hackensack River at West Nyack, NY (d)	54 55 58 59 60 61
PASSAIC RIVER BASIN Passaic River near Millington (dcm)	62 65 68 69 70 71 72 73 75 77 80 82
Passaic River at Two Bridges (cm) 01382000 Pompton River: Dequannock River (head of Pompton River) at Macopin intake dam (d) 01382500 Ringwood Creek near Wanaque (d) 01384500 Wanaque River at Wanaque (dcm) 01387000 Ramapo River near Suffern, NY (d) 01387420 Mahwah River near Suffern, NY (d) 01387450 Ramapo River near Mahwah (dcm) 01387500 Ramapo River at Pompton Lakes (dct) 01388000 Pompton River at Pompton Plains (d) 01388500 Pompton River at Packanack Lake (cm) 01388500 Passaic River below Pompton River, at Two Bridges (ct) 01389005 Passaic River at Little Falls (dcms) 01389500 Saddle River at Ridgewood (d) 01399000 Hohokus Brook at Ho-Ho-Kus (d) 01391000 Saddle River at Lodi (dcm) 01391200 Saddle River at Lodi (dcm) 01391500 Third River at Passaic River basin (e) 01392210 Reservoirs in Passaic River basin (e) 01393450 Elizabeth River at Ursino Lake, at Elizabeth (dcm) 01393450	87 88 89 90 94 95 96 100 112 113 118 119 120 122 126 127 130
RAHWAY RIVER BASIN West Branch Rahway River at West Orange (cm)	135 137 140 143
RARITAN RIVER BASIN South Branch Raritan River at Middle Valley (cm)	144 146 147 148 150 154 157 158 160 163 164 166 167 167 171
Rockaway Creek: South Branch Rockaway Creek at Whitehouse Station (d) 01399670 Rockaway Creek at Whitehouse (cm) 01399700 Lamington (Black) River at Burnt Mills (cm) 01399780 North Branch Raritan River near Raritan (d) 01400000 Raritan River at Raritan (cm) 01400120 Peters Brook near Raritan (d) 01400300 Macs Brook at Somerville (d) 01400350 Raritan River at Manville (dcm) 01400500 Millstone River near Manalapan (cm) 01400540 Millstone River at Grovers Mill (cm) 01400650 Millstone River at Grovers Mill (cm) 01400650 Raritan River at Grovers Mill (cm) 01400650 Millstone River at Grovers M	175 176 178 180 181 183 184 185 189

CONTROL WATER STATISTICS, IN DOWNSTREAM STORY, TON WILLSHIP RESERVED AND TOPICS	
Station No.	Page
PRINTING PROPERTY OF THE PROPE	
RARITAN RIVER BASINContinued Millstone River at Plainsboro (d)	193
Stony Brook at Princeton (dcm)	194
Stony Brook at Princeton (dcm)	197
Millstone River at Kingston (cm)01401440	198
Beden Brook near Rocky Hill (cm)	200
Pike Run at Belle Mead (d)	201 202
Millstone River at Weston (cm)	203
Royce Brook:	200
Royce Brook tributary near Belle Mead (d)	204
Raritan River below Calco Dam, at Bound Brook (d)	205
Middle Brook:	206
West Branch Middle Brook near Martinsville (d)	207
Bound Brook:	201
Green Brook at Seeley Mills (d)	209
Stony Brook:	
East Branch Stony Brook at Best Lake, at Watchung (d)	210
Stony Brook at Watchung (d)01403540	211 212
Lawrence Brook at Farrington Dam (d)	213
South River:	2.13
Matchaponix Brook at Mundy Avenue, at Spotswood (cm)	214
Manalanan Rrook at Federal Road near Manalanan (cm)	216
Manalapan Brook at Spotswood (d)	218 219
Reservoirs in Raritan River basin (e)	221
Diversions in Raritan River basin.	222
NAVESINK RIVER RASIN	
Swimming River (head of Navesink River) near Red Bank (d)	223
SHARK RIVER BASIN	205
Shark River near Neptune City (dcm)	225 228
Jumping Brook near Neptune City (dcm)	220
Manasquan River:	
Marsh Bog Brook at Squankum (cm)01407997	231
Manasquan River at Squankum (d)01408000	233
METEDECONK RIVER BASIN North Branch Metedeconk River near Lakewood (d)01408120	234
TOMS RIVER BASIN	234
Toms River near Toms River (dcms)	235
WESTECUNK CREEK BASIN	
MULLICA RIVER BASIN	
Mullica River at outlet of Atsion Lake, at Atsion (cm)	238
Mullica River near Batsto (d)	240 241
Batsto River at Batsto (dcm)01409500	243
Batsto River at Pleasant Mills (e)	245
West Branch Wading River near Jenkins (d)	246
West Branch Wading River at Maxwell (cms)	247 249
Oswego River at Harrisville (dcm)	249
East Branch Bass River near New Gretna (dcm)01410150	252
GREAT EGG HARBOR RIVER BASIN	LJL
Great Egg Harbor River near Sicklerville (cm)	255
Great Egg Harbor River near Blue Anchor (cm)	256
Great Egg Harbor River at Folsom (d)	258 259
Great Egg Harbor River at Weymouth (cm)01411110 TUCKAHOE RIVER BASIN	239
Tuckahoe River at Head of River (d)01411300	261
Distance of months and another and all the same and all t	0/0
Discharge at partial-record stations and miscellaneous sites	262 262
Low-flow partial-record stations.	268
Miscellaneous sites	274
Elevation at tidal crest-stage partial-record stations	280

			Page
	GRO	UND-WATER LEVEL RECORDS	
ATLANTIC COUNTY	N.	01-0578)	282
ACOU1 (N.I-UPD Well	NO.	01-0378)	283
		01-0834)	284
		01-0037)	285
		01-0180)	286
		01-0703)	287
DUDI THOTON COUNTY		01-0256)	288
BURLINGTON COUNTY	No	05-0683)	289
Rutler Place 2 (N.I-WRD Well	NO.	05-0684)	290
CAMDEN COUNTY		그 사람들은 사람들이 되었다. 그 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 그 사람들은 사람들은 사람들이 되었다.	
New Brooklyn Park 1(NJ-WRD Well	No.	07-0476)	291
New Brooklyn Park 2(NJ-WRD Well	No.	07-0477)	292
		07-0478)	293
	No.	07-0503)	294
CUMBERLAND COUNTY	Ma	11-0137)	295
CLOUCESTED COLINTY			273
Gloucester Co. Water-table Network			296
MIDDLESEY COLINITY			
Forsgate 3(NJ-WRD Well	No.	23-0228)	297
rorsgate 4(NJ-WRD Well	No.	23-0229)	298
Morrell(NJ-WRD Well	No.	23-0104)	299 300
MONMOUTH COUNTY			300
Houel Tup 1 (NI-UP) Uell	No	25-0635)	301
HOWELL TWD. Z(NJ-WRD Well	NO-	25-0636)	302
Howell Twp. 3(NJ-WRD Well	No.	25-0637)	303
Howell Twp. 4(NJ-WRD Well	No.	25-0638)	304
Howell Twp. 5(NJ-WRD Well	No.	25-0639)	305
DOE - Sea Girt(NJ-WRD Well	No.	25-0486)	306
Et Monmouth 1-NCO (NI-UPD Unit	NO.	25-0429) 25-0353)	308
Marlboro 1	No.	25-0373)	309
Keyport Borough WD 4(NJ-WRD Well	No.	25-0272) 25-0206)	310
MORRIS COUNTY			
Briarwood School(NJ-WRD Well	No.	27-0012)	311
Troy Meadows 1(NJ-WRD Well	No.	27-0020)	312
Berkshire Valley IW 9(NJ-WRD Well	No.	27-0027)	313 314
OCEAN COUNTY	. NO.	27-0028)	314
Island Reach 1 (N.I-WPD Well	No	29-0017)	315
Island Beach 3(NJ-WRD Well	No.	29-0019)	316
DOE - Forked River(NJ-WRD Well	l No.	29-0585)	317
Crammer(NJ-WRD Well	No.	29-0486)	318
Toms River Chemical 84(NJ-WRD Well	No.	29-0085)	319
Mantoloking 6(NJ-WRD Well	No.	29-0503)	320
Colliers Mills TW 1(NJ-WKD Well	NO.	29-0138)	320 321 321
Colliers Mills TW 3 (N.I-UPD Well	l No.	29-0139) 29-0140)	32
Colliers Mills TW 4(NJ-WRD Well	No.	29-0141)	323
UNION COUNTY			
		39-0119)	325
Secondary observation wells			320
	QUALI	TY OF GROUND-WATER RECORDS	
Atlantic County			32
Bergen County	• • • • •	•••••••••••	32° 32° 33° 33° 33° 33° 33° 33°
Cape May County			32
Hunterdon County			33
Middlesex County			33
Monmouth County			33
Morris County	• • • • •		33
Passaic County	• • • • •		33
Union County	• • • • •		33

WATER RESOURCES DATA - NEW JERSEY, 1989

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of New Jersey each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - New Jersey."

This report series includes records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 73 gaging stations; tide summaries at 1 gaging station; stage and contents at 15 lakes and reservoirs; water quality at 61 surface-water stations and 116 wells; and water levels at 69 observation wells. Records included for ground-water levels are only a part of those obtained during the year. Also included are data for 39 crest-stage partial-record stations and stage only at 12 tidal crest-stage gages. Locations of these sites are shown on figures 11, 12, 13, and 14. Additional water data were collected at various sites not involved in the systematic data-collection program. Discharge measurements were made at 58 low-flow partial-record stations. Miscellaneous data were collected at 54 discharge measuring sites and 2 water-quality sampling sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

This series of annual reports for New Jersey began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1977 water year, these data were published in two volumes.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for New Jersey were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Part 1B." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Books and Open-file Reports Section, Federal Center, Building 4, Box 25425, Denver, CO, 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NJ-89-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information, Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 771-3900.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Judith A. Yaskin, Commissioner.

Division of Water Resources, Eric J. Evenson, Acting Director.

New Jersey Water Supply Authority, Rocco Ricci, Executive Director.

North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.

Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.

County of Bergen, Edward R. Ranuska, director of Public Works and County Engineer.

County of Camden, Barton Harrison, Chairman of Camden County Planning Board.

County of Gloucester, Robert V. Scolpino, Director of Planning.

County of Somerset, Thomas E. Decker, County Engineer, and Thomas Harris, Administrative Engineer.

Township of West Windsor, Larry Ellery, Chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 17 surface water stations, and by the U.S. Army Armament Research and Development Center for the collection of records at 3 surface-water stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Funding was also supplied by the following Federal Energy Regulatory Commission licensee: Jersey Central Power and Light Company and Independent Hydro Developers Inc. Assistance was provided by the National Weather Service and the National Ocean Service.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Company; Elizabethown Water Company; Ewing-Lawrence Sewerage Authority; Hackensack Water Company; New Jersey-American Water Company (formerly Monmouth Consolidated Water Company and Commonwealth Water Company); and Jersey Central Power and Light Company.

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow

Streamflow for the 1989 water year was about normal. The year began with below-normal streamflow but ended with well above-normal streamflow. Precipitation ranged from 56.40 inches (133 percent of the 1951-80, 30-year mean) at Newark to 48.08 inches (115 percent of the 30-year mean) at Atlantic City. Figure 1 shows monthly precipitation at three National Weather Service sites compared with the 30-year means. Combined contents at 13 major water-supply reservoirs was about average at the beginning of the year and, at most sites, water levels were above spillway elevations from April through July (see figure 2).

Water year 1989 began with below-normal streamflow, ranging from 84 percent of long-term normal (1918-89) in the northern part of the State to 72 percent of long-term normal (1926-89) in the southern part. Streamflow continued to be deficient through March, reflecting below-normal precipitation. Snow cover, which accounts for much of the spring runoff, was light, with snowfall about 20 inches less than normal. A drought warning was issued in January in the Delaware River basin as contents of reservoirs in the upper basin in New York fell to about 50 percent of capacity. Water conservation also was stressed in other areas of the State. Streamflow began to increase significantly in March and April, when precipitation was about normal. In May, precipitation was extremely high, with reports of 12.4 inches at Charlotteburg (8.5 inches above normal) and 12.5 inches at Morris Plains (8.3 inches above normal). Some minor flooding was reported in northern communities. Streamflow increased to more than 200 percent of normal in May, the Delaware River reservoirs were at about 88 percent of capacity, and some reservoirs in the Hackensack and Passaic River basins were spilling. Drought warning in the Delaware River basin was lifted on May 12. Above-normal precipitation was recorded in June, July, August, and September, with September precipitation more than 200 percent of normal (see figure 1). At some sites in September, precipitation was recorded on 11 consecutive days. Long Valley, in northern New Jersey, reported 7.7 inches in the 48-hour period September 20-21. Peak flow for the year was recorded at many stream-gaging sites on September 20. No major flooding was reported during these periods, reflecting the uniform precipitation distribution. At the end of the water year, streamflow was 327 percent of normal in the north and 244 percent of normal in the south.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged 122 ft³/s for the water year; this flow is 100 percent of the 1918-89 average. Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 86.3 ft³/s for the water year; this flow is 100 percent of the 1926-89 average. The observed annual mean discharge of the Delaware River at Trenton was 10,510 ft³/s, which is 90 percent of the 1913-89 average. The Delaware River is highly regulated by reservoirs and diversions. The natural flow at Trenton (adjusted for upstream storage and diversion) was 99 percent of normal for the year. Figure 3 compares monthly mean discharge at each of these index gaging stations during the current water year with the long-term normal (1951-80) monthly discharge. Figure 4 compares annual mean discharge at each of these index gaging stations with the mean annual discharge for the period of record.

Combined usable storage in 13 major water-supply reservoirs in New Jersey increased from 55.4 billion gallons (72 percent of capacity) on October 1, 1988, to 67.9 billion gallons (88 percent of capacity) on September 30, 1989. Storage in Wanaque Reservoir increased from 14.9 billion gallons (54 percent of capacity) on October 1, 1988, to 24.2 billion gallons (82 percent of capacity) on September 30, 1989. Pumped storage in Round Valley Reservoir, the largest capacity reservoir in the State, increased from 53.2 billion gallons (96.7 percent of capacity) on October 1, 1988, to 53.4 billion gallons (97.1 percent of capacity) on September 30, 1989.

Water Quality

Below-normal streamflow during the first half of the water year decreased dilution of dissolved solids in streams throughout the State, and increased dilution during the second half of the year as streamflow increased to normal and above normal. Dilution of dissolved solids generally results in an improvement in water quality because concentrations of undesirable substances, such as trace elements, organic compounds, nutrients, bacteria, and nuisance aquatic organisms, usually also are diluted. The degree of dilution is apparent when monthly mean values of specific conductance, which is related directly to dissolved-solids concentration, for 1989 are compared with mean specific-conductance values for an earlier period. Figure 5 compares specific-conductance values for the Delaware River at Trenton, a large drainage area in central New Jersey as well as parts of New York and Pennsylvania, in 1989 with those for 1988, and with the mean for 1981-88. High specific-conductance values are readily apparent for most of the months from October through March. The values for most of the remaining months are normal or below normal. The month of September is omitted because of insufficient data.

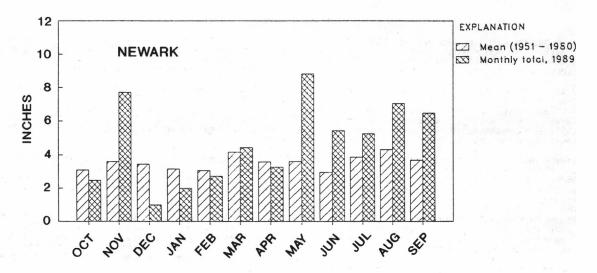
Polychlorinated biphenyls (PCBs) and a number of pesticides commonly are detected in New Jersey streams. Table 1 summarizes the frequency of detection of these compounds in bottom sediments from 1976 through 1989. Detection limits during this period were 1.0 μ g/kg (micrograms per kilogram) for PCN, chlordane, and PCB; 1.0 to 10 μ g/kg for toxaphene, and 0.1 μ g/kg for the other compounds. The number of sites at which samples were collected ranged from 13 to 35 per year, with a median of 27 per year. Sites sampled more than once in a year were counted only once. The organochlorine compounds chlordane, dieldrin, DDT (and its decomposition products DDD and DDE), and PCBs are the most commonly detected organic compounds in stream-bottom sediments in the State. Chlordane and dieldrin have been used widely to control soil pests as well as termites and ants. The production and use of DDT, a common, low-cost, broad-spectrum pesticide, have been banned in the United States since 1972. PCBs were used in many industrial and manufactured items (for example, lubricants, dyes, and hydraulic fluids), but their use has been restricted to environmentally closed systems (for example, electrical capacitors and transformers) since 1971. Common sources of PCBs include industrial and municipal effluents, landfills and other soil-disposal sites, and incineration of material containing PCBs (Natural Resources Council, 1979). All of these organochlorine compounds persist in the environment and still are found in surface and ground waters in the State despite the restriction or prohibition of their use.

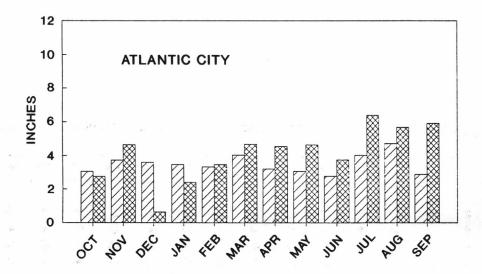
Figure 6 summarizes the frequency of detection of chlordane, DDT, DDD, DDE, and PCBs in New Jersey stream-bottom samples for 1976-89. Only those sites for which water-quality data are presented in either volume of this report are included. Figure 6 shows the percentage of samples collected in which the concentration of at least one compound exceeded 20 μ g/kg-a level selected to include the highest 15 to 20 percent of values measured nationwide (J. S. Cragwall, Jr., U.S. Geological Survey, written commun., 1977). Although it is detected frequently, dieldrin is not included in figure 6 because a concentration greater than 20 μ g/kg was measured only three times during this period. Figure 7 shows the locations of water-quality stations sampled during the 1989 water year at which the concentration of at least one of these compounds exceeded 20 μ g/kg.

The U.S. Geological Survey maintains a network of saltwater-observation wells in the Coastal Plain of New Jersey to document and evaluate the movement of saline water into freshwater aquifers that serve as sources of water supply. During the 1989 water year, 138 samples were collected in eight counties. The results of the sampling of these wells are presented in the ground-water-quality tables in these reports.

Ground-Water Levels

Changes in ground-water levels during the 1989 water year were determined from a statewide network of observation wells. Ground-water levels in many water-table observation wells rose significantly during the year. Water levels in most observation wells that tap the heavily stressed confined aquifers of the Coastal Plain continued to show long-term net declines. Increased withdrawals of ground water contributed to these declines.


Monthly water levels in two water-table observation wells in 1989 are compared with monthly extremes and long-term averages in figure 8. The wells are the Bird well (NJ-WRD well number 19-0002) in Hunterdon County and the Crammer well (NJ-WRD well number 29-0486) in Ocean County. For further comparison, 20-year water-level hydrographs of two Coastal Plain wells, one water-table well (NJ-WRD well number 05-0689) and one artesian well (NJ-WRD well number 07-0413), are presented in figure 9. In addition, multi-year hydrographs are provided with the 1989 water year water-level data for most of the wells included in this report.


Water levels in the water-table aquifers of the Coastal Plain were declining slowly at the beginning of the 1989 water year. This decline continued through February, when some water levels were near record lows. Water levels rose significantly through the remainder of the water year. One of the greatest increases occurred in the Lebanon State Forest 23-D well (NJ-WRD well number 05-0689), where the water level rose by 6.1 feet during the last 7 months of the water year.

Observation wells that tap the heavily stressed confined Coastal Plain aquifers continued to show long-term net declines in many areas. New lows of record were set in nine Coastal Plain artesian observation wells. The greatest water-level decline in the 1989 water year occurred in the Wenonah-Mount Laurel aquifer at the New Brooklyn Park 3 observation well (NJ-WRD well number 07-0478), where the previous record low was exceeded by 4.18 feet. Other aquifers in which previous lows of record were exceeded include the Potomac-Raritan-Magothy aquifer system, the Englishtown aquifer system, and the Piney Point aquifer.

Table 1.--Frequency of detection of organochlorine and organophosphorus compounds in bottom materials of New Jersey streams, for water years, 1976-89

COMPOUND	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Organochlorine compounds					i di					3 11	1 , a		44	
Chlordane	•	Θ	θ	•	•	•	a	•	•			Θ	•	•
DDD	•	θ	•	•		•	•	•	•	•	•	•	•	•
DDE	•		Θ	Θ	•	•	• •	Θ	•	•		•	Θ	
DDT	•	θ	Θ		•	•	Θ	•	•	•	θ	•	Θ	Θ
PCB	Θ	Θ	Θ	•	•	Θ	•	•	•	Θ	Θ		•	Θ
Dieldrin	•	Θ	θ	Θ	•	•	•	θ	Θ	θ	•	θ	Θ	•
Endosul fane		0		0	0	0	0	0	0	0	0	Θ	0	0
Heptachlor Epoxide	0	0	0	0	0	0	0	0	0	0	Θ	Θ	Θ	Θ
Aldrin, Lindane, Endrin Toxaphene, Heptachlor	0	0	0	0	0	0	0	0	0	0	0	0	Θ	0
Perthane														0
PCN			0	0	0	0	0	0	0	0	0	0	0	0
Mirex					0	0	0	0	0	0	0	0	0	0
Organophosphorus compounds														
Methoxychlor, Malathion, Parathion, Diazanon, Methyl Parathion, Ethyl Trithion, Methyl Trithion, Ethion			0	0	0	0	0	0	0	0	0	0	Θ	Θ

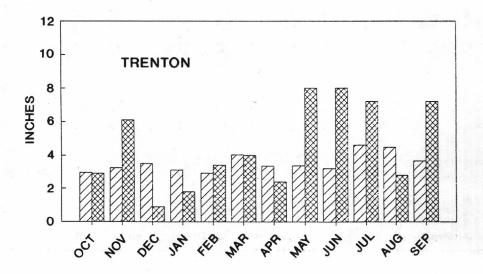
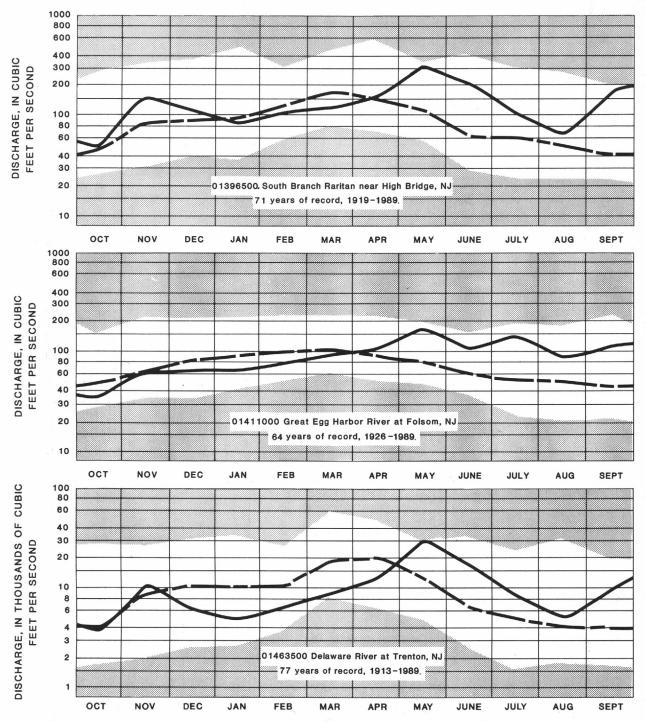



Figure 1.--Monthly precipitation at three National Weather Service locations.

Unshaded area.--Indicates range between highest and lowest mean recorded for the month, prior to 1989 water year.

Broken line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

Solid line.--Indicates observed monthly mean flow for the 1989 water year.

Figure 2.--Monthly mean discharge at index gaging station.

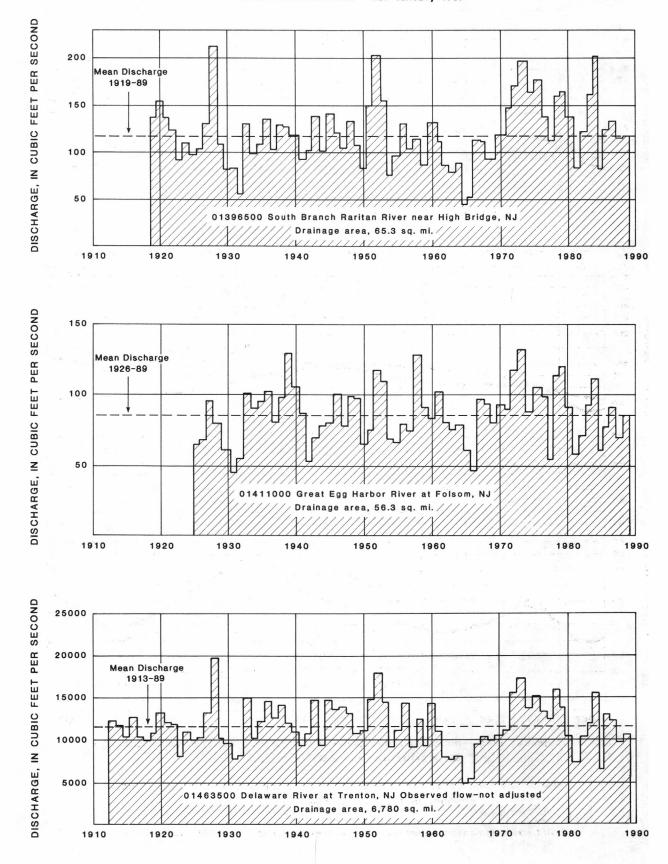


Figure 3.--Annual mean discharge at index gaging stations.

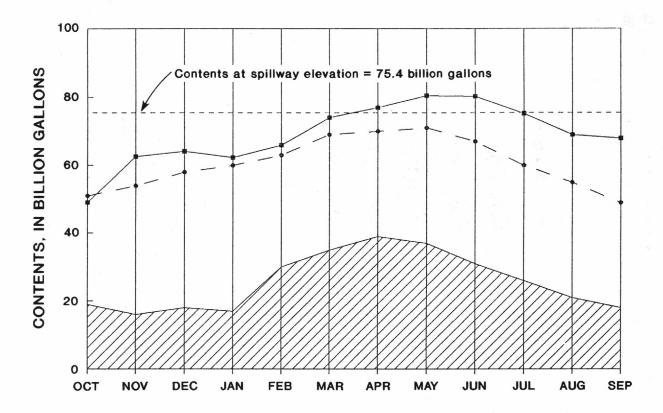


Figure 4.--Combined usable storage in 13 major water-supply reservoirs.

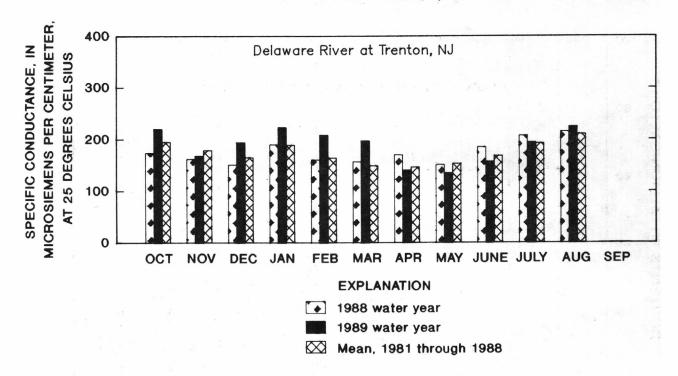
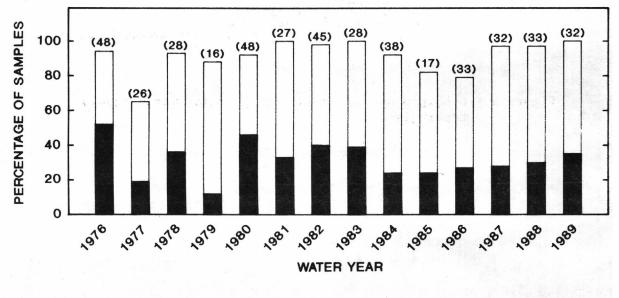



Figure 5.--Monthly mean specific conductance at Delaware River at Trenton.

EXPLANATION

- (48) Number of samples collected
 - Concentration of one or more compounds exceeded 20 micrograms per kilogram
- One or more compounds detected

Figure 6.--Frequency of detection of chlordane, DDT, DDE, DDD and PCBs in stream bottom material.

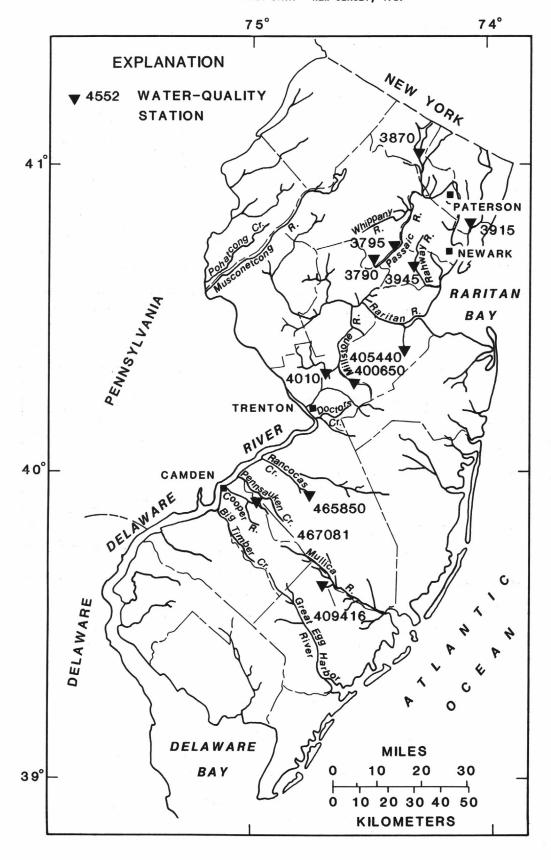
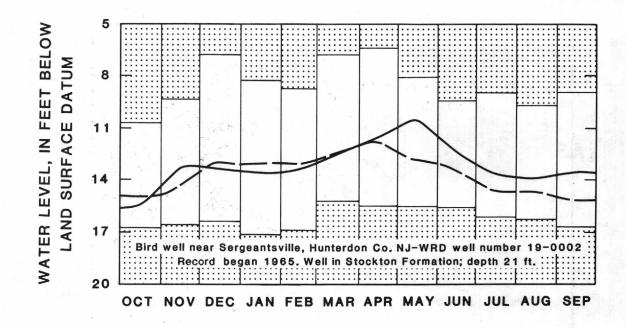
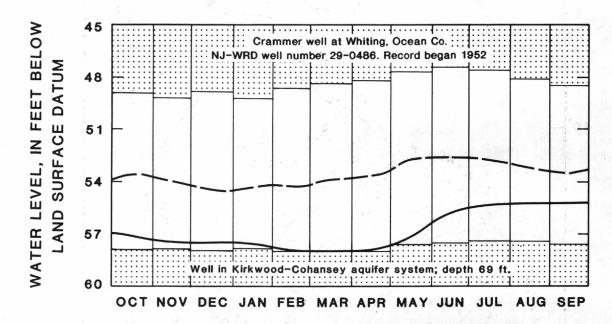
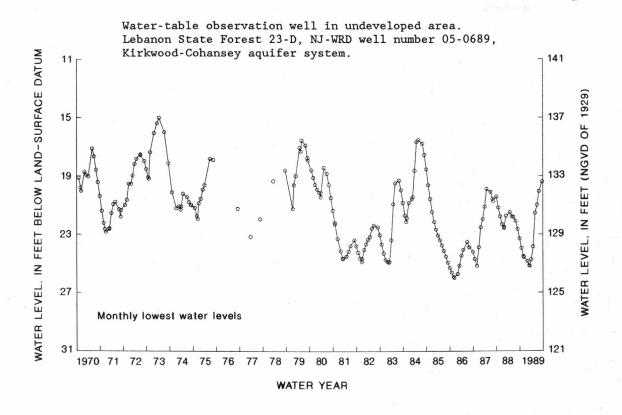




Figure 7.--Locations of water-quality stations with concentrations of chlordane, DDD, DDE, DDT, or PCBs in bottom material greater than 20 micrograms per kilogram, water year 1989.



Unshaded area -- Indicates range between highest and lowest recorded monthly water levels, prior to current year.

Dashed line -- Indicates average of monthly water levels, prior to current year.

Solid line -- Indicates monthly mean water level for the current year.

Figure 8.--Monthly ground-water levels at key water-table observation wells.

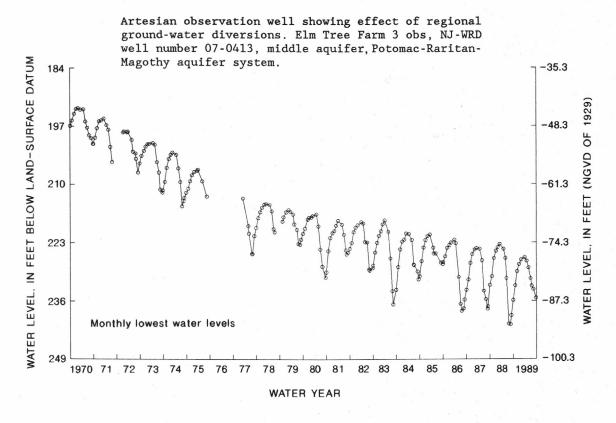


Figure 9.--Twenty-year water-level hydrographs of one artesian and one water-table observation well.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. The Bench-mark Network station published in this report is McDonalds Branch in Lebanon State Forest, NJ (01466500).

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. NASQAN stations published in this report are: Passaic River at Little Falls, NJ (01389500), Raritan River, at Queens Bridge, at Bound Brook, NJ (01403300), Toms River near Toms River, NJ (01408500), West Branch Wading River at Maxwell, NJ (01409815), Maurice River at Norma, NJ (01411500), and Delaware River at Trenton, NJ (01463500).

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). No NTN stations are published in this report.

<u>Radiochemical Program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. The Radiochemical Program station published in this report is Delaware River at Trenton, NJ (01463500).

Tritium Network is a network of stations which has been established to provide baseline information or the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. No Tritium Network stations are published in this report.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1989 water year that began October 1, 1988, and ended September 30, 1989. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 11, 12, 13, and 14. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. Generally the "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 01396500, which appears just to the left of the station name, includes the two-digit Part number "01" plus the 6-digit downstream-order number "396500". The Part number designates the major drainage basin; for example, Part "01" covers the North Atlantic slope basins.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

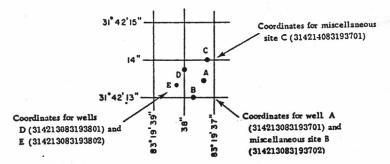


Figure 10.--System for numbering wells and miscellaneous sites (latitude and longitude).

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 11 and 12.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage, with digital recorders that punch stage values on paper tapes at selected time intervals, or with Data Collection Platforms (DCP) that electronically record and then transmit the data via satellite to ground receiving stations. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or

nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflowoutflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of three parts, the manuscript or station description, the data table for the current water year, and tables of monthly, annual, and other statistics. The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers or the Delaware River Basin Commission.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly summaries. In the monthly summary below the daily table, the line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month for some stations can also be expressed in inches (line headed "IN"). Figures for runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Beginning with the 1988 water year, below the monthly summary, statistical figures are listed for current water year and period of record. The first heading is the average monthly flow data for the period of record. The line headed "MEAN" gives the average flow in cubic feet per second for that month for the period of record. The lines headed "MAX" and "MIN" give the highest and lowest mean for that month and the water year (WY) in which it occurred. Below the monthly flow statistics, summary statistics for the current water year and period of record are listed. The line headed "AVERAGE FLOW" is the average for the current year and period of record. The following lines list the extremes and date of each for the current year and period of record. The line headed "ANNUAL RUNOFF (INCHES)" is the annual total discharge in inches. The following lines list the discharges for the 10, 50, and 95 percentiles.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated" or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 $\rm ft^3/s$; to the nearest tenth between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures for more than 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge- measurement notes, gage-height records, temperature measurements, and rating tables is on file in the New Jersey District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 10.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites which are not at a surface-water daily record station appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

Water-quality data must represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made onsite when the samples are collected. In addition, specific procedures must be used in collecting, treating, and shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. These references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey, New Jersey District office.

In streams, concentrations of various constituents may vary within the cross section depending on variables such as flow rate, the sources of the constituents, and mixing. Generally, constituents in solid phases are more variable in the cross section than are dissolved constituents. In many cases, samples must integrate several parts of the stream cross section to be representative, especially if loads will be calculated. One sample may be representative of the cross section when the distribution of constituents is homogeneous. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from several verticals.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. In some instances, apparent inconsistencies may exist in the data. For example, the orthophosphate-phosphorus concentration may exceed total phosphorus concentration. However, the difference in the inconsistent values normally is smaller than the precision of the analytical techniques. Inconsistencies between pH and carbonate and bicarbonate concentrations are commonly caused by intake or loss of carbon dioxide by the sample before it can be analyzed.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Geological Survey, New Jersey District Office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, maximum, minimum and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the New Jersey District Office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspenced-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical-oxygen demand and for fecal coliform and fecal streptococcal bacteria are analyzed at the District laboratory or at the New Jersey Department of Health, Division of Laboratories and Epidemiology. Samples for nutrients are analyzed at the New Jersey Department of Health or at the Geological Survey Laboratory in Arvada, Colorado. Sediment samples are analyzed in the Geological Survey Laboratory in Harrisburg, Pennsylvania. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

In March 1989 the National Water-Quality Laboratory discovered a bias in the turbidimetric method for sulfate analysis, indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989. Sulfate values in this report have not been corrected for this bias.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceeding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION...See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites which are not at a surface-water daily record station are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The	following remark codes may ap PRINTED OUTPUT	opear with the water-quality data in this report: REMARK
	E	Estimated value
	>	Actual value is known to be greater than the value shown
	, «	Actual value is known to be less than the value shown
	K	Results based on colony count outside the acceptance range (non-ideal colony count)
	L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
	D	Biological organism count equal to or greater than 15 percent (dominant)
	&	Biological organism estimated as dominant

Records of Ground-Water Levels

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in New Jersey are shown in figure 13.

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the NJ-WRD well number, a hyphenated 6 digit identification number assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. The first two digits are a code for the county in which the well is located and the last four digits are a sequence number. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water quality analyses, and on the corresponding location maps in these reports.

Water-level records are obtained from direct measurments with a steel tape, from the punched tape of a water-level recorder, or from water-level extremes recorder. Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of these extremes (highest and lowest water levels) are unknown. In these reports, the water-level extremes are given together with the manually measured water levels.

Most water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

Data Presentation

Each well record consists of three parts, the station description, the data table of water levels observed during the water year, and a multi-year hydrograph. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; (a landline location designation); the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER. -- This entry designates by name and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of record and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum or elevation of water level. For wells equipped with recorders, only abbreviated tables are published. Mean daily water-levels are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Records of Ground-Water Quality

Records of ground-water quality in this report consist of only one set of measurements for the water year. Because ground-water movement is normally slow compared to surface water, frequent measurements are not necessary for monitoring purposes. More frequent measurements may be necessary for studying ground-water problems, trends, or processes. Locations of wells for which water-quality data are published are shown in figure 13.

Laboratory Measurements

In March 1989 the National Water-Quality Laboratory discovered a bias in the turbidimetric method for sulfate analysis, indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989. Sulfate values in this report have not been corrected for this bias.

Data Collection and Computation

The records of ground-water quality in this report were obtained from water-quality monitoring studies in specific areas. Consequently, chemical analyses are presented for some counties but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

In ground-water observation wells, water in the casing may not be representative of aquifer water quality. To collect samples representative of aquifer water, samples are collected only after at least three casing volumes of water have been pumped from the well and measurements of temperature, specific conductance, and pH have stabilized during the pumping.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County and are identified by NJ-WRD well number. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

CURRENT WATER RESOURCES PROJECTS IN NEW JERSEY

The Geological Survey is currently involved in a number of hydrologic investigations in the State of New Jersey. The following is a list of these investigations. Results are published at the conclusion of short-term projects or periodically in the case of long-term projects. Hydrologic data from these projects are entered into the WATSTORE data base. Subsequent sections contain information on recent publications and on WATSTORE.

Agricultural Water Demand Model for the State of New Jersey

An Assessment of Impacts of Rolling Knoll Landfill on Nearby Water Resources

Assessement of Ground-Water Resources in the Vicinity of Ground-Water Contamination Sites in Greenwich Township, Gloucester County, New Jersey

Assessment of the Water Resources of Logan Township, Gloucester County, New Jersey

Compositional Modeling of Organic Transport and Biodegradation in the Unsaturated Zone and Ground Water

Effects of Streamflow Diversions on the Water-Quality of Selected New Jersey Estuaries

Evaluation of Field Sampling Techniques and Analytical Methods for Organic Compounds in Ground-Water

Flood Characteristics of New Jersey Streams

Flood Insurance Studies for Federal Insurance Administration, HUD

Geochemical Effects on the Corrosivity of Ground Water in the Kirkwood-Cohansey Aquifer in the New Jersey Coastal Plain

Geochemical Processes Controlling Aluminum and Sulfate Transport in Acidic Surface, Ground and Soil Waters In a Watershed In the New Jersey Coastal Plain

Geohydrology of Picatinny Arsenal in Morris County, New Jersey

Geophysical and Water-Quality Reconnaissance of the Ciba-Geigy Superfund Site, Toms River, Ocean County, New Jersey
Geophysical Characteristics of Aquifers in New Jersey

Ground Water Data Collection Network

Ground-Water Contamination by Light Chlorinated Hydrocarbons at Picatinny Arsenal, Morris County, New Jersey

Ground-Water Flow and Water Quality, Newark Basin, New Jersey

Ground-Water Quality and its Relationship to Geohydrology and Land Use in the Outcrop Area of the Potomac-Raritan-Magothy Aquifer System, Mercer and Middlesex Counties, New Jersey

Ground-Water Quality of the Central Passaic River Basin, Northeastern, New Jersey

Ground-Water Resources Investigation of the Rockaway River Buried Valley

Ground-Water Resources of the Buried Valley and Carbonate Rock Systems of the Lamington River and the South Branch Raritan River Drainage Areas in Northern New Jersey

Hydrologic Conditions in the Jacobs Creek, Stony Brook and Beden Brook Drainage Basins in West Central New Jersey,

Hydrologic Conditions of the Upper Rockaway River Basin, New Jersey, 1984-1986

Hydrologic Processes With Special Emphasis on Ground-Water Quality near Camden, New Jersey

Hydrologic Processes With Special Emphasis on Ground-Water Quality near South River, New Jersey

Hydrology of the Kirkwood-Cohansey Aquifer System in Metedeconk and Toms River Basin

Interpretation of Water Quality Trends in New Jersey Streams, 1976-85

Investigation of Naturally Occurring Radioactive Substances in Ground Water of the Triassic Formations in New Jersey Land Subsidence Related to Ground-Water Withdrawls in the Coastal Plain Aquifer of New Jersey

Mobility, Transport and Fate of Naturally Occurring Radionuclides in Ground-Water Newark Basin, New Jersey

Modeling and Experimental Investigation of Hydrocarbon Transport and Biodegradation in the Unsaturated Zone Natural Radioactivity in Ground-Water of the Kirkwood-Cohansey Aquifer System, Southern Coastal Plain, New Jersey

Optimal Withdrawls from a Coastal Aquifer Subject to Salt-Water Encroachment: Numerical Analysis and Case Study Potential Effects of Climate Change on the Water Resources of the Delaware River Basin

Preliminary Natural Resource Surveys of Superfund Sites in New Jersey

Quality of Water Data Collection Network

Regionalization of Low Flows for New Jersey Streams

Removing Volatile Ground-Water Contaminants by Inducing Air-Phase Transport

Somerset County Flood-Monitoring Network

Spatial Analysis of Statewide Water-Quality Data

Surface Water Data Collection Network

Surfactant Sorption to Soil and its Effect on the Distribution of Anthropogenic Organic Compounds

Water Levels in Major Artesian Aquifers of the New Jersey Coastal Plain and Surrounding Areas, 1989

Water Resources and Saltwater Intrusion of the Holly Beach-Cohansey, Rio Grande, Atlantic City 800-Foot Sand, and Piney Point Aquifers, Cape May County

Water Table, Hydrologic Properties and Ground-Water Quality of the Kirkwood-Cohansey Aquifer System, Gloucester County and Maurice River Basin North of Norma, New Jersey

Water Use

WATER-RELATED REPORTS FOR NEW JERSEY COMPLETED BY THE GEOLOGICAL SURVEY IN RECENT YEARS

- Ayers, M.A. and Leavesley, G. H., 1989, Assessment of the potential effects of climate change on water resources of the Delaware River basin: Work plan for 1988-90: U.S. Geological Survey Open-File Report 88-478.
- Ayers, M.A., and Pustay, E.A., 1988, New Jersey ground-water quality: National Water Summary 1986, U.S. Geological Survey Water Supply Paper 2325, p. 369-376.
- Baehr, A. L., and Bruell, C. J., 1989, Application of the Stefan-Maxwell equations to determine limitations of Fick's law when modeling organic vapor transport in sand columns: Water Resources Research.
- Baehr, A. L., Hoag, G. E., and Marley, M. C., 1988, Removal of volatile contaminants from the unsaturated zone by inducing advective air-phase transport: Contamination Hydrology.
- Baehr, A. L. and Hult, M. F., 1988, Determination of the air-phase permeability tensor of an unsaturated zone at the Bemidji, Minnesota, Research Site: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Barringer, J. L. and Johnsson, P. A., 1989, Theoretical considerations and a simple method for measuring alkalinity and acidity in low-pH waters: U.S. Geological Survey Water-Resources Investigations Report 89-4029.
- Barringer, J. L., Ulery, R. L., and Kish, G. R., 1987, A methodology for relating regions of corrosive ground water to hydrogeologic variables in the New Jersey Coastal Plain: Proceedings of International Geographic Information Systems Symposium.
- Barringer, T. H., Dunn, Dennis, Battaglin, W. A., and Vowinkel, E. F., 1988, Relating land use to ground-water quality: Methods and problems: Water Resources Bulletin.
- Barringer, T. H., Dunn, Dennis, Ulery, R. L., Declercq, E. P., 1987, Two-dimensional display of geographically referenced three-dimensional hydrologic vector fields: Proceedings of International Geographic Information Systems Symposium.
- Barton, Cynthia, Vowinkel, E. F., and Nawyn, J. P., 1987, Preliminary assessment of water quality and its relation to hydrogeology and land use: Potomac-Raritan-Magothy aquifer system, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4023.
- Barton, G. J., and Krebs, Martha, 1989, Hydrogeologic reconnaissance of the Swope Oil Superfund site and vicinity, Camden and Burlington Counties, New Jersey: U.S. Geological Survey Open-File Report 89-402.
- Battaglin, W. A. and Hill, M. C., 1988, Simulated effects of future withdrawals on water levels in the northeastern Coastal Plain aquifers of New Jersey: U. S. Geological Survey Water-Resources Investigations Report 88-4199.
- Battaglin, W. A., Ulery, R. L., and Vowinkel, Eric, 1988, Method for simulating water-table altitudes from stream and drainage-basin locations by use of a geographic information system: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Clark, J. S. and Paulachok, G. N., 1987, Water levels in the principal aquifers of Atlantic County and vicinity, New Jersey, 1985-86: New Jersey Department of Environmental Protection.
- Ehlke, T. A., 1988, Microbiological transformation of trichloroethylene in soil at Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-10, 1988.
- Fulton, J. L., 1989, Application of a distributed-routing rainfall-runoff model to flood-frequency estimation in Somerset County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 89-4210.
- Fusillo, T. V. and Ehlke, T. A., 1987, Movement and fate of chlorinated solvents in ground water: Research activities at Picatinny Arsenal, New Jersey: U.S. Geological Survey Open-File Report 87-395.
- Gibs, Jacob and Imbrigiotta, T. E., 1988, Evaluation of well-purging criteria for sampling purgeable organic compounds: Proceedings of the Second National Outdoor Action Conference on Aquifer Restoration.
- Gibs, Jacob and Imbrigiotta, T. E., 1988, Comparison of well-purging criteria for sampling purgeable organic compounds: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Gronberg, J. M., Birkelo, B. A., and Pucci, A. A., Jr., 1987, Selected borehole geophysical logs and drillers' logs northern Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 87-243.
- Harriman, D. A., Gordon, A. D., and Pope, D. A., 1988, Water-quality data for the Potomac-Raritan-Magothy aquifer system in the northern Coastal Plain of New Jersey, 1923-86: New Jersey Department of Environmental Protection.
- Hay, L. E., and Battaglin, W. A., 1989, Effects of land-use buffer size on Spearman's partial correlations of land-use and shallow ground-water quality: U.S. Geological Survey Water-Resources Investigations Report 89-4163.
- Hay, L. E., McCabe, G. J., Jr., Wolock, D. M., and Ayers, M. A., 1989, Simulation of precipitation by weather-type analysis: Water Resources Research.
- Hill, M. C., 1988, Analysis of accuracy of approximate, simultaneous, nonlinear confidence intervals on hydraulic heads in analytical and numerical test cases: Journal of Water Resources.
- Hill, M. C., and Battaglin, W. A., 1989, Simulated effects of ground-water pumpage in New Jersey's Coastal Plan: Journal of Hydraulic Engineering.
- Imbrigiotta, T. E. and Martin, Mary, 1988, Site description and summary of research activities on the movement and fate of chlorinated solvents in ground water at Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 15-30, 1988.
- Imbrigiotta, T. E., Martin, Mary, Sargent, B. P., and Voronin, L. M., 1988, Preliminary results of a study of the chemistry of ground water at the Building 24 research site, Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.

- Kammer, J. A. and Gibs, Jacob, 1989, An analytical technique for screening purgeable volatile organic compounds in water: U.S. Geological Survey Open-File Report 89-53.
- Kammer, J. A. and Smith, J. A., 1988, Collection and analysis of unsaturated zone soil gas for volatile organic compounds: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Kish, G. R., Barringer, J. L., and Ulery, R. L., 1987, Corrosive ground water in the Kirkwood-Cohansey aquifer system in the vicinity of Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4181
- Lacombe, P. J., and Duran, P.B., 1988, Map of bedrock-surface topography in parts of the Paterson and Pompton Plains Quadrangles, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 88-4061, 1 p.
- Lacombe, P. J., Sargent, B,P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Lacombe, P. J. and Duran, P. B., 1988, Map of bedrock surface topography in parts of Paterson and Pompton Plains quadrangles, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 88-4061.
- Leahy, P. P., Paulachok, G. N., Navoy, A. S., and Pucci, A. A., Jr., 1987, Plan of study for the New Jersey bond issue ground-water-supply investigations: New Jersey Geological Survey Open-File Report 87-1.
- Lord, D. G., Barringer, J. L., Johnsson, P. A., Schuster, P. F., Walker, R. L., Fairchild, J. E., Sroka, B. N., and Jacobsen, E., 1988, Hydrogeochemical data from an acidic deposition study at McDonalds Branch basin in the New Jersey Pinelands: U.S. Geological Survey Open-File Report 88-500.
- Louis, J. B., and Vowinkel, E. F., 1989, Effect of agricultural chemicals on ground-water quality in the New Jersey Coastal Plain: Proceedings of the 1989 National Research Conference, Pesticides in Terrestrial and Aquatic Environments.
- Martin, Mary, 1987, Methodology and use of interfacing regional and subregional ground-water flow models: Proceedings of the National Water Well Association Conference.
- Martin, Mary, 1987, Ground-water flow in the New Jersey Coastal Plain aquifers: U.S. Geological Survey Open-File Report 87-528.
- Martin, Mary, 1988, Preliminary results of a study to simulate trichloroethylene movement in ground water at Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- McCabe, G. J., Jr., 1989, A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area: U.S. Geological Survey Water-Resources Investigations Report 89-4183.
- McCabe, G. J., Jr., and Ayers, M.A., 1989, Effect of global warming on soil moisture and runoff in the Delaware River basin: Water Resources Bulletin.
- McCabe, G. J., Jr., Hay, L. E., Kalkstein, L. S., Ayers, M. A., and Wolock, D. M., 1989, Simulation of precipitation by weather-type analysis: Proceedings of the American Society of Civil Engineers Meeting.
- McCabe, G. J., Jr., and Wolock, D. M., 1989, Effects of climatic change in the Delaware River basin on the Thornthwaite moisture index: Climatic Change.
- Price, C. V., Wolock, D. M., Ayers, M. A., 1989, Extraction of terrain features from digital elevation models: Proceedings of the American Society of Civil Engineers.
- Pucci, A. A., Jr., Harriman, D. A., Ervin, E. M., Bratton, Lisa, and Gordon, Alison, 1989, Lead and cadmium contamination associated with saltwater intrusion in a ground-water basin of New Jersey: Science.
- Pucci, A. A., Jr., Murashige, J. E., and Pope, D. A., 1987, Hydraulic properties of the middle and upper aquifers of the Potomac-Raritan-Magothy aquifer system in the northern Coastal Plain of New Jersey: New Jersey Department of Environmental Protection.
- Pucci, A. A., Jr. and Owens, J. P., 1988, Geochemical variations in a core of Coastal Plain aquifers and confining units near Freehold, New Jersey: Groundwater.
- Smith, J. A., Chiou, C. T., Kammer, J. A., Kile, D. E., 1989, Effect of soil moisture on the sorption of trichloroethene vapor to vadose-zone soil at Picatinny Arsenal, New Jersey: Environmental Science and Technology.
- Smith, J. A., Harte, P. T., and Hardy, M. A., 1987, Trace-metal and organochlorine residues in sediments of the upper Rockaway River, New Jersey: Bulletin of Environmental Contamination and Toxicology.
- Smith, J. A., Kammer, J. A., Chiou, C. T., and Kile, D. E., 1988, Distribution of trichloroethene in soil gas above contaminated ground water at Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Smith, J. A. and Witkowski, P. J., 1987, Partition of nonionic organic compounds in aquatic systems: Reviews of Environmental Contamination and Toxicology.
- Smith, J. A., Witkowski, P. J., and Fusillo, T. V., 1987, Manmade organic compounds in the surface waters of the United States: A review of current understanding: U.S. Geological Survey Circular 1007.
- Spitz, F. J. and Barringer, T. H., 1989, Simulation of ground-water flow in coastal southern New Jersey: Proceedings of the Sixth Symposium on Coastal and Ocean Management.
- U.S. Geological Survey, 1989, Water Resources data for New Jersey, 1988--part 1: U.S. Geological Survey Water-Data Report NJ-88-1, 359 p.

- U.S. Geological Survey, 1989, Water Resources data for New Jersey, 1988--part 2: U.S. Geological Survey Water-Data Report NJ-88-2, 217 p.
- Vowinkel, E. F. and Battaglin, W. A., 1988, Methods of evaluating the relation of ground-water quality to land use in a New Jersey Coastal Plain aquifer system: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Vowinkel, E. F. and Battaglin, W. A., 1988, Evaluation of ground-water quality and its relation to hydrogeology and land use in a New Jersey Coastal Plain aquifer system using a geographic information system: U.S. Environmental Protection Agency Conference on Wellhead Protection.
- Vowinkel, E. F. and Battaglin, W. A., 1988, Effects of hydrogeology, well construction, and land use on the evaluation of regional ground-water quality: Proceedings of the International Association of Hydrological Sciences.
- Wolock, D. M., Ayers, M. A., and McCabe, G. J., Jr., 1989, Prediction of the effects of climate change on watershed runoff in the Delaware River basin: Proceedings of the American Society of Civil Engineers Meeting.
- Wolock, D. M., and Hornberger, G. M., 1989, Hydrological effects of changes in levels of atmospheric carbon dioxide: Journal of Forecasting.
- Zapecza, O. S., Brickey, D. W., and Ulery, R. L., 1988, Delineation of lineaments by radar and photographic imagery in the northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 88-4121.

ACCESS TO WATSTORE DATA

The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey. A variety of useful products ranging from data tables to complex statistical analyses such as Log Pearson Type III statistics can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia and consists of related files and data bases.

- Station Header File Contains descriptive information on over 440,000 sites throughout the United States and it's territories where the U.S. Geological Survey collects or has collected data.
- Daily Values File Contains over 220 million daily values of stream flows, stages, reservoir contents, water temperatures, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
- Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage height values at surfce-water sites.
- Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radiochemical characteristics of both surface and ground water.
- Ground-Water Site Inventory Data Base Contains inventory data for over 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, wellconstruction history, and one-time field measurements such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requestor will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092

In addition to providing direct access to WATSTORE, the National Water Data Exchange (NAWDEX) services include datasearch assistance, data dissemination, and data referrals. Data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk. The request for water-data should be forwarded to the local Geological Survey District office:

> District Chief U.S. Geological Survey Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628

If the district office does not have the facility to fulfill the request, it will be referred to the National Water Data Exchange (NAWDEX) office in Reston, Virginia.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

<u>Aquifer</u> is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer unit codes and geologic names of the formations in which the sampled wells are finished. The aquifer unit codes also appear in the ground-water quality and ground-water level tables.

```
Stratified drift
                         Holly Beach water-bearing zone
Cape May Formation, undifferentiated
Cape May Formation, estuarine sand facies
112HLBC
112CPMY
112ESRNS
                         Cohansey Sand
Kirkwood-Cohansey aquifer system
Rio Grande water-bearing zone of the Kirkwood Formation
Atlantic City 800-foot sand of the Kirkwood Formation
121CNSY
121CKKD
122KRKDU
122KRKDL
124PNPN
125VNCN
                         Piney Point aquifer
                         Vincentown Formation
211MLRW
211EGLS
                         Wenonah-Mount Laurel aquifer
                         Englishtown aquifer system
                         Englishtown aquirer system
Potomac-Raritan-Magothy aquifer system, undifferentiated
Upper aquifer, Potomac-Raritan-Magothy aquifer system
Middle aquifer, Potomac-Raritan-Magothy aquifer system
Lower aquifer, Potomac-Raritan-Magothy aquifer system
Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system
Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex,
Monmouth Counties)
211MRPA
211MRPAU
211MRPAM
211MRPAL
2110DBG
                         Farrington aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex, Monmouth Counties)
Brunswick Group, undifferentiated
Hook Mountain Basalt of Olsen (1980)
Passaic Formation of Olsen (1980)
211FRNG
227BRCK
227HKMN
227PSSC
230TRSC
                          Triassic System
231LCKG
                          Lockatong Formation
Stockton Formation
231SCKN
340DVNN
374LSVL
                          Devonian System
                          Leithsville Formation
400PCMR
                          Precambrian Erathem
```

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal streptococcal bacteria</u> are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bedload is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Benthic invertebrates</u> are invertebrate animals inhabiting the bottoms of lakes, streams, and other water bodies. They are useful as indicators of water quality.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m 3), and periphyton and benthic organisms in grams per square mile (g/m 2).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

 $\underline{\text{Cfs-day}}$ is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

 $\frac{\text{Chlorophyll}}{\text{plants.}} \text{ refers to the green pigments of plants.} \text{ Chlorophyll } \underline{a} \text{ and } \underline{b} \text{ are the two most common green pigments in plants.}$

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing-record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> (ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Data Collection Platform</u> (DCP) is an electronic instrument which collects, processes, stores, and transmits data from various sensors to an earth-orbiting Geostationary Operational Environmental Satellite (GOES) and/or through landline telemetry.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

 $\underline{\text{Hardness}}$ of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCo).

High tide is the maximum height reached by each rising tide.

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Low-tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram $(\mu g/g)$ is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

 $\underline{\underline{\text{Micrograms per liter}}}$ (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass $\underline{\underline{\text{(micrograms)}}}$ of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

<u>Multiple-plate samplers</u> are artificial substrates of known surface area used for obtaining benthic-invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

<u>National Trends Network</u> (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Deposition Program (NADP).

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m^2) , acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004062	Sedimentation
Sand	.062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The partial-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10 12) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and ar commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(m^2 /time)] for periphyton and macrophytes and [mg C/(m^3 /time)] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg 0 /(m²/time)] for periphyton and macrophytes and [mg 0 /(m³ / time)] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Return period</u> is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

<u>River mile</u> as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

<u>Runoff in inches</u> (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Screened interval is the length of well screen through which water enters a well, in feet below land surface.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

 $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended-sediment discharge (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft 3 /s) x 0.0027.

<u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

<u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

 $\frac{7\text{-day }10\text{-year low flow}}{10\text{-year low flow}}$ (MA7CD10) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

 $\frac{\text{Sodium-adsorption-ratio}}{\text{and is an index of sodium or alkali hazard to the soil.}} \text{ Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.}$

Solute is any substance that is dissolved in water.

<u>Specific conductance</u> is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artifical substrate is a device which is purposely placed in a stream or lake for colonization or organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

<u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. all areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent.

<u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia</u> <u>limbata</u>, is the following:

 Kingdom.
 Animal

 Phylum.
 Arthropoda

 Class.
 Insecta

 Order.
 Ephemeroptera

 Family.
 Ephemeridae

 Genus.
 Hexagenia

 Species.
 Hexagenia

<u>Thermograph</u> is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

<u>Tons per acre-foot</u> indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

 $\underline{\text{Tons per day}}$ (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does doubte duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

<u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water table is that surface in an unconfined ground-water body at which the pressure is atmospheric.

<u>Water year</u> in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

SELECTED REFERENCES

- Anderson, P.W., 1970, Occurrence and distribution of trace elements in New Jersey streams; New Jersey Division of Water Policy and Supply, Water-Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S.D., 1973 Characteristics of water quality and stream flow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- _____ 1974, Water-quality and stream flow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water-Resources Investigations 14-74, 82 p.
- Anderson, P.W., and George, J.R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Ayers, M.A., and Pustay, E.A., 1988, New Jersey ground-water quality: National Water Summary 1986, U.S. Geological Survey Water Supply Paper 2325, p. 369-376.
- Barton, C., Vowinkel, E.F., and Nawyn, J.P., 1987, Preliminary assessment of water quality and its relation to hydrogeology and land use: Potomac-Raritan-Magothy aquifer system, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4023, 79 p.
- Campbell, J.B., 1987, Rainfall-runoff data for Somerset County, New Jersey, U.S. Geological Survey Open-File Report 87-384, 161 p.
- Eckel, J.A., and Walker, R.L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations 86-4028, 62 p.
- Fusillo, T.V., 1982, Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.
- Fusillo, T.V., Hochreiter, J.J., Jr., and Lord, D.G., 1984, Water-quality data for the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey, 1923-83: U.S. Geological Survey Open-File Report 84-737, 127 p, 1 plate.
- Fusillo, T.V., and Voronin, L.M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 plates.
- Fusillo, T.V., Schornick, J.C., Jr., Koester, H.E., and Harriman, D.A., 1980, Investigation of acidity and other water-quality characteristics of upper Oyster Creek, Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.
- Gillespie, B.D., and Schopp, R.D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.
- Harriman, D.A., and Velnich, A.J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report 82-434, 22 p.

- Harriman, D.A., and Voronin, L.M., 1984, Water-quality data for aquifers in east-central New Jersey, 1981-82: U.S. Geological Survey Open-File Report 84-821, 39 p.
- Harte, P.T., Sargent, B.P., and Vowinkel, E.F., 1986, Description and results of test-drilling program at Picatinny Arsenal, new Jersey, 1982-84: U.S. Geological Survey Open-File Report 86-316, 54 p.
- Heath, R.C., 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3d ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hindall, S.M., and Jungblut, D.W., 1980, Sediment yields of New Jersey streams: U.S. Geological Survey Open-File Report 80-432, 1 sheet.
- Hochreiter, J.J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.
- Hochreiter, J.J., Jr., Kozinski, J., and Lewis, J.C., 1986, Characterization of organic ground-water contamination at a waste-oil disposal site, Bridgeport, N.J.: EOS, v. 67, no. 44, p. 945.
- Keith, L.H., and Telliard, W.A., 1979, Priority Pollutants I a perspective view: Environmental Science and Technology, v. 13, no. 4, p. 416-423.
- Kish, G.R., Macy, J.A., and Mueller, R.T., 1987, Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4146, 19 p.
- Lacombe, P., Sargent, B.P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Langbein, W.B., and Iseri, K.T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S.L., 1970, Statistical summaries of New Jersey stream flow records: New Jersey Division of Water Policy and Supply, Water-Resources Circular 23, 264 p.
- Leahy, P.P., Paulachok, G.N., Navoy, A.S., and Pucci, A.A., Jr., 1987, Plan of study for the New Jersey Bond Issue ground-water supply investigations: New Jersey Geological Survey Open-File Report 87-1, 53 p.
- Lewis, J.C., and Spitz, F.J., 1987, Hydrogeology, ground-water quality, and the possible effects of a hypothetical radioactive-water spill, Plainsboro Township, New Jersey: U.S. Geological Survey Water-Resources Investigation Report 87-4092, 45 p.
- Lohman, S.W., and others, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Lord, D.G., Barringer, J., Johnsson, P., and Schuster, P., Effects of Acid precipitation on surface and ground waters in the New Jersey Pinelands [abs]: EOS, Transactions, American Geophysical Union, v. 67, no. 16., April 22, 1986, p. 282.
- Lord, D.G., Johnsson, P.A., Barringer, J.L., and Schuster, P.F., 1987, Results of an acidic deposition study in McDonalds Branch watershed, New Jersey Pinelands [abs]: New Jersey Academy of Science Bulletin, v. 32, no. 1, p. 45.
- Luzier, J.E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L.J., and Anderson, P.W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- National Research Council, 1979, Polychlorinated biphenyls: Washington D.C., National Academy of Sciences, 182 p.
- Olsen, P.E., 1980, The latest Triassic and Early Jurassic Formations of the Newark Basin (eastern North America, Newark Supergroup)--Stratigraphy, structure and correlation: New Jersey Academy of Science, The Bulletin, V. 25, p. 25-51.
- Paulachok, G.N., Walker, R.L., Barton, G.J., Clark, J.S., Duran, P.B., and Hochreiter, J.J., Jr., 1985, Marine well-drilling program for estimation the seaward extent of fresh ground water and evaluating the likelihood of seawater intrusion near Atlantic City, New Jersey [abs.]: EOS, Transactions, American Geophysical Union, v. 66, no. 46, Nov. 12, 1985, p. 889-890.
- Philips, M.O., and Schopp, R.D., Flood of April 5-7, 1984, in northeastern New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-423W, 112 p.
- Rantz, S.E., and others, 1982, Measurement and computation of streamflow; Volume 1. Measurement of stage and discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Sargent, B.P., Green, J.W., Harte, P.T., and Vowinkel, E.F., 1986, Ground-water-quality data for Picatinny Arsenal, new Jersey, 1958-85: U.S. Geological Survey Open-File Report 86-58, 66 p.
- Schaefer, F.L., and Walker, R.L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Schaefer, F.L., 1983, Distribution of chloride concentrations in the principal aguifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.
- Schaefer, F.L., 1987, Selected literature on the water resources of New Jersey by the U.S. Geological Survey, through 1986: U.S. Geological Survey Open-File Report 87-767, 45 p.

- Schornick, J.C., and Ram, N.M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schornick, J.C., and Fishel, D.K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin,
 Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.
- Schopp, R.D., and Gillespie, B.D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R.D., and Ulery, R.L., 1984, Cost-effectiveness of the stream-gaging program in New Jersey: U.S. Geological Survey Water-Resources Investigations Report 84-4108, 97 p.
- Schopp, R.D., and Velnich, A.J., 1979, Flood of November 8-10, 1977 in northeastern and central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P.R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Stankowski, S.J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S.J., and Velnich, A.J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S.J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S.J., Schopp, R.D., and Velnich, A.J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- Szabo, Z., and Zapecza, O.S., 1987, Relation between radionuclide concentrations and other chemical constituents in ground water in the Newark Basin, New Jersey in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium, and other radioactivity in ground water-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers Inc., p. 283-308.
- U.S. Environmental Protection Agency, 1976, National interim primary drinking water regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- _____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E.G., 1973, Water resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Velnich, A.J., 1982, Drainage areas in New Jersey: Delaware River basin and streams tributary to Delaware Bay: U.S. Geological Survey Open-File Report 82-572, 48 p.
- Velnich, A.J., 1984, Drainage areas in New Jersey: Atlantic Coastal basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.
- Vickers, A.A., and McCall, J.E., 1968, Surface water supply of New Jersey, stream flow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A.A., 1982, Flood of August 31 September 1, 1978, in Crosswicks Creek basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115, 20 p.
- Vickers, A.A., Farsett, H.A., and Green, J.W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.
- Vowinkel, E.F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R.L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.
- Witkowski, P.J., Smith, J.A., Fusillo, T.V., and Chiou, C.T., 1987, A review of surface-water sediment fractions and their interactions with persistent anthropogenic organic compounds: U.S. Geological Survey Circular 993, 39 p.
- Zapecza, O.S., and Szabo, Z., 1987, Source and distribution of natural radioactivity in ground water in the Newark Basin, New Jersey, in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium and other radioactivity-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers., p. 31-46.
- Zapecza, O.S., Voronin, L.M., and Martin, M., 1987, Ground-water-withdrawal and water-level data used to simulate regional flow in the major Coastal Plain aquifers of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4038, 120 p.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS-TWRI Book 3, Chapter Al. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-A10. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS-TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-Al2. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS-TWRI Book 3, Chapter Al2. 1986. 41 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-Al5. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter Al5. 1984.
- 3-A16. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-Al7. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI Book 3, Chapter Al7. 1985. 38 pages.
- 3-Al8. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathbun, N. Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter Al8. 1989. 52 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 3-Bl. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS-TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS-TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-Bl. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter Bl. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M. J. Fishman and L. C. Friedman: USGS-TWRI Book 5, Chapter Al. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS-TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-Cl. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58
- 6-Al. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter Al. 1988. 586 pages.
- 7-Cl. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

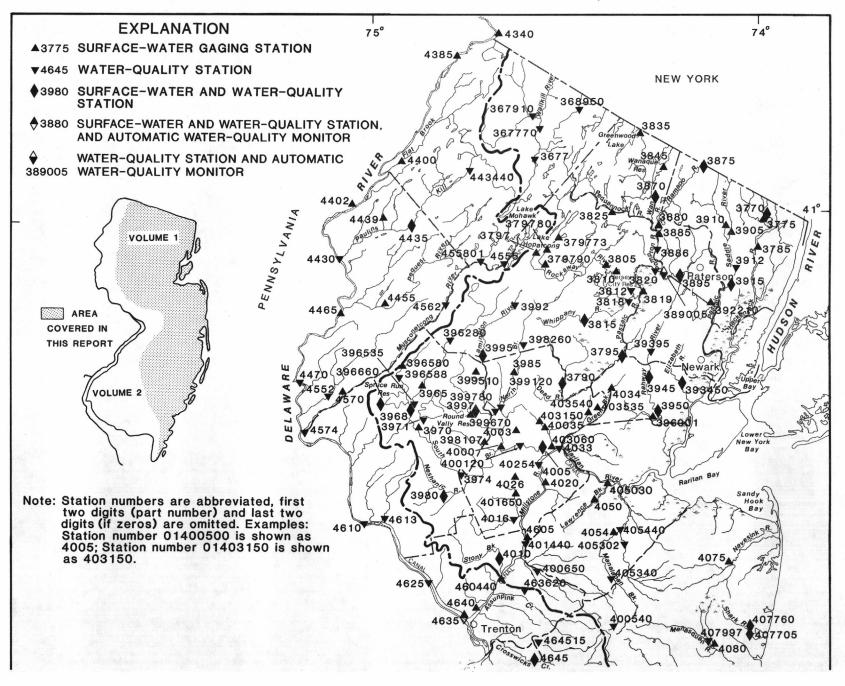
DISCONTINUED GAGING STATIONS

The following continuous-record streamflow stations in New Jersey have been discontinued or converted to partial-record stations. Daily streamflow records were collected and published for the period of record shown for each station.

Station number	Station name	Drainage area (sq mi)	Period of record (water years)
01368000 01368720 01378690 01379630 01384000	Wallkill River near Unionville, NY Auxiliary outlet of Upper Greenwood Lake at Moe, NJ Passaic River near Bernardsville, NJ Russia Brook tributary at Milton, NJ Wanaque River at Monks, NJ	140 8.83 2.51 40.4	1938-81 1968-80a 1968-77 1969-71 1935-85
01385000	Cupsaw Brook near Wanaque, NJ	4.37	1935-58
01385500	Erskine Brook near Wanaque, NJ	1.14	1934-38
01386000	West Brook near Wanaque, NJ	11.8	1935-78
01386500	Blue Mine Brook near Wanaque, NJ	1.01	1935-58
01389800	Passaic River at Paterson, NJ	785	1897-1955
01392000	Weasel Brook at Clifton, NJ	4.45	1937-62
01392500	Second River at Belleville, NJ	11.6	1938-64
01393000	Elizabeth River at Irvington, NJ	2.90	1931-38
01393500	Elizabeth River at Elizabeth, NJ	20.2	1922-73
01393800	East Fork East Branch Rahway River at West Orange, NJ	.83	1972-74
01394000 01395500 01397500 01398045 01399000	West Branch Rahway River at Millburn, NJ Robinsons Branch Rahway River at Goodmans, NJ Walnut Brook near Flemington, NJ Back Brook tributary near Ringoes, NJ North Branch Raritan River at Pluckimen, NJ	7.10 12.7 2.24 52.0	1940-50 1921-24 1936-61 1977-88 1903-06
01399190 01399200 01399525 01399690 01399830	Lamington (Black) River at Succasunna, NJ Lamington (Black) River near Ironia, NJ Axle Brook near Pottersville, NJ South Branch Rockaway Creek at Whitehouse, NJ North Branch Raritan River at North Branch, NJ	7.37 10.9 13.2 174	1976-87 1975-87 1977-88 1964-67 1977-81
01400932 01400953 01401500 01402590 01403000	Baldwin Creek at Baldwin Lake, near Pennington, NJ Honey Branch near Pennington, NJ Millstone River near Kingston, NJ Royce Brook tributary at Frankfort, NJ Raritan River at Bound Brook, NJ	2.52 .70 171 .29	1963-70 1967-75 1934-49 1969-74 1903-09, 1945-66
01403500	Green Brook at Plainfield, NJ	9.75	1938-84
01403900	Bound Brook at Middlesex, NJ	48.4	1972-77
01404000	Bound Brook at Bound Brook, NJ	49.0	1923-30
01404500	Lawrence Brook at Patricks Corner, NJ	29.0	1922-26
01405300	Matchaponix Brook at Spotswood, NJ	43.9	1957-67
01405500 01406000 01406500 01407000 01408140	South River at Old Bridge, NJ Deep Run near Browntown, NJ Tennent Brook near Browntown, NJ Matawan Creek at Matawan, NJ South Branch Metedeconk River at Lakewood, NJ	8.07 5.25 6.11 26.0	1939-88 1932-40 1932-41 1932-55 1973-76
01409000 01409095 01409280 01410500 01410787	Cedar Creek at Lanoka Harbor, NJ Oyster Creek near Brookville, NJ Westecunk Creek at Stafford Forge, NJ Absecon Creek at Absecon, NJ Great Egg Harbor River tributary at Sicklerville, NJ	55.3 7.43 17.9 1.64	1933-58, 1971 1965-84 1939-88 1946-85 1972-79
01410810	Fourmile Branch at New Brooklyn, NJ	7.74	1973-79
01410820	Great Egg Harbor River near Blue Anchor, NJ	37.3	1972-79
01412000	Menantico Creek near Millville, NJ	23.2	1931-57, 1978-85
01412500	WB Cohansey River at Seeley, NJ	2.58	1951-67
01413000	Loper Run near Bridgeton, NJ	2.34	1937-59
01444000	Paulins Kill at Columbia, NJ	179	1908-09
01445000	Pequest River at Huntsville, NJ	31.0	1940-62
01445430	Pequest River at Townsbury, NJ	92.5	1977-80
01446000	Beaver Brook near Belvidere, NJ	36.7	1923-61
01455160	Brass Castle Creek near Washington, NJ	2.34	1970-83
01455200	Pohatcong Creek at New Village, NJ Beaver Brook near Weldon, NJ Musconetcong River at outlet of Lake Hopatcong, NJ Musconetcong River near Hackettstown, NJ Delaware River at Riegelsville, NJ	33.3	1960-70
01455355		1.72	1969-71
01455500		25.3	1961-75
01456000		68.9	1922-74
01457500		6328	1906-71
01462000	Delaware River at Lambertville, NJ	6680	1898-1906
01463587	New Sharon Run at Carsons Mills, NJ	6.63	1976-77
01463620	Assunpink Creek near Clarksville, NJ	34.3	1972-82
01463657	Shipetaukin Creek tributary at Lawrenceville, NJ	.78	1976-77
01463690	Little Shabakunk Creek at Bakersville, NJ	3.98	1976-77
01464525	Thornton Creek at Bordentown, NJ	.84	1976-77
01465850	South Branch Rancocas Creek at Vincentown, NJ	64.5	1961-75
01466000	Middle Branch Mount Misery Brook in Lebanon State Forest	, NJ 2.82	1953-65, 1977
01467019	Mill Creek near Willingboro, NJ	4.12	1975-78
01467021	Mill Creek at Levitt Parkway, at Willingboro, NJ	9.12	1975-77

WATER RESOURCES DATA - NEW JERSEY, 1989 DISCONTINUED GAGING STATIONS--Continued

Station number	Station name	Drainage area (sq mi)	Period of record (water years)
01476600	Still Run near Mickleton, NJ	3.98	1957-66
01477500	Oldmans Creek near Woodstown, NJ	18.5	1932-40
01482500	Salem River at Woodstown, NJ	14.6	1940, 1941-85
01483000	Alloway Creek at Alloway, NJ	20.3	1953-72


a Not published, on file at U.S. Geological Survey, West Trenton, NJ

DISCONTINUED CONTINUOUS WATER-QUALITY STATIONS

The following stations were discontinued as continuous water-quality stations prior to the 1987 water year. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station.

Station number	Station name	Drainage area (sq mi)		od of record ater years)
01379500	Passaic River near Chatham, NJ	100	Sed.	1964-68
01379773	Green Pond Brook at Picatinny Arsenal, NJ		Temp., S.C., pH, D.O.	1984-86
01382000	Passaic River at Two Bridges, NJ	361	Temp., S.C., pH, D.O.	1969-74
01387500	Ramapo River near Mahwah, NJ	118	Sed.	1964-65
01389000	Pompton River near Two Bridges, NJ	372	Temp., S.C., pH, D.O.	1969-74
01389500	Passaic River at Little Falls, NJ	762	Sed.	1964-65
			Temp., S.C.	1981-86
01396500	South Branch Raritan River near High Bridge, NJ	65.3	Temp.	1961-79
			S.C.	1969-79
01397000	South Branch Raritan River at Stanton, NJ	147	Temp., S.C.	1969-79
	and the second s		Sed.	1960-63
01399690	South Branch Rockaway Creek at Whitehouse, NJ	13.2	Temp., S.C.	1977-78
	the second secon		Sed.	1977
01399700	Rockaway Creek at Whitehouse, NJ	37.1	Temp., S.C.	1977-78
01400510	Raritan River near Manville, NJ	497	Temp., S.C., pH, D.O.	
01400932	Baldwin Creek at Baldwin Lake, near Pennington, N		Temp.	1963-66
01400/32	batawiii creek at batawiii Lake, ilear Fellilligtoli, k	2.72	Sed.	1963-69
01401000	Stony Brook at Princeton, NJ	44.5	Sed.	1959-70
01402900	Millstone River near Manville, NJ	287	Temp., S.C., pH, D.O.	1968-74
01404100	Raritan River near South Bound Brook, NJ	862	Temp., S.C., pH, D.O.	1969-77
01408000	Manasquan River at Squankum, NJ	44	Tomp S.C., pit, D.O.	1969-74
01408500		123	Temp., S.C., pH, D.O.	1964-66, 1975-8
01400300	Toms River near Toms River, NJ	123	Temp., S.C.	1975-81
01409095	Outton Charle man Danalust La NI	7 /7	S.C.	
01409093	Oyster Creek near Brookville, NJ	7.43	Temp., D.O.	1975 - 76
01409810	Heat Boomsh Hadison Biron war broken Hil	0/ 4	S.C., pH	1975 - 77
	West Branch Wading River near Jenkins, NJ	84.1	Temp., S.C.	1978-81
01410787	Great Egg Harbor River trib. at Sicklerville, NJ	1.64	Sed.	1974-78
01410810	Fourmile Branch at New Brooklyn, NJ	7.74	Sed.	1974-78
01411000	Great Egg Harbor River at Folsom, NJ	57.1	Temp.	1961-80
01411500	Maurice River at Norma, NJ	112	Temp., S.C.	1980-86
01440200	Delaware River near Delaware Water Gap, Pa.	3850	Sed.	1964-65, 1972
01442750	Delaware River at Dunnfield, NJ	4150	Sed.	1966-76
01463500	Delaware River at Trenton, NJ	6780	Sed.	1949-82
01464040	Delaware River at Marine Terminal, at Trenton, N.	6870	Temp., S.C.	1973-76
01464500	Crosswicks Creek near Extonville, NJ	81.5	Sed.	1965-70
01467016	Rancocas Creek at Willingboro, NJ	315	Temp., S.C., pH	1969-74
	and the same and t		D.O.	1970-72
			рН	1970-74
01467150	Cooper River at Haddonfield, NJ	17.0	Sed.	1968-69
01477120	Raccoon Creek near Swedesboro, NJ	26.9	Temp.	1966-73
			Sed.	1966-69

Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment).

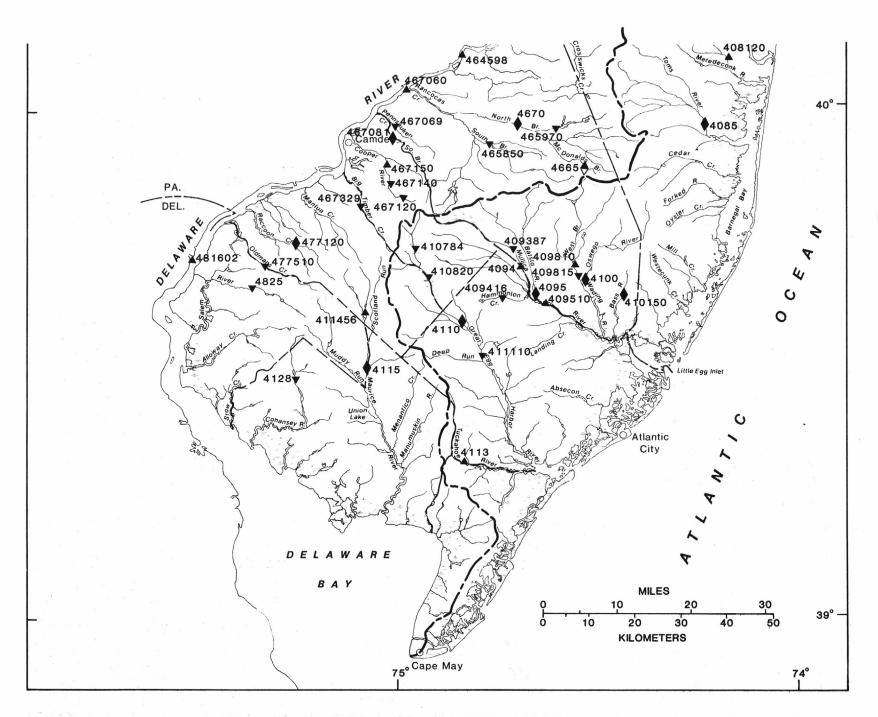
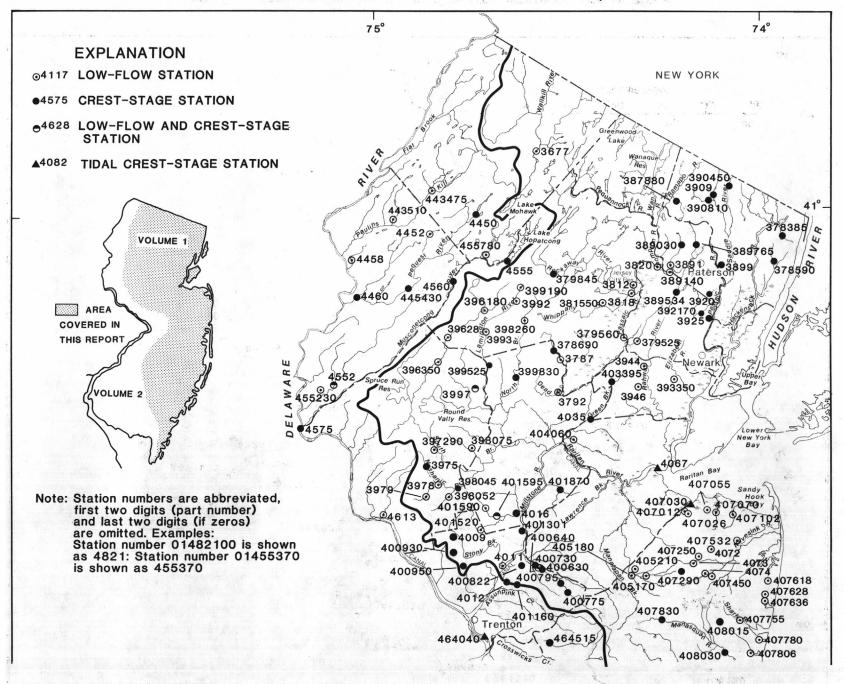



Figure 11.--Map showing location of gaging stations and surfacewater quality stations.

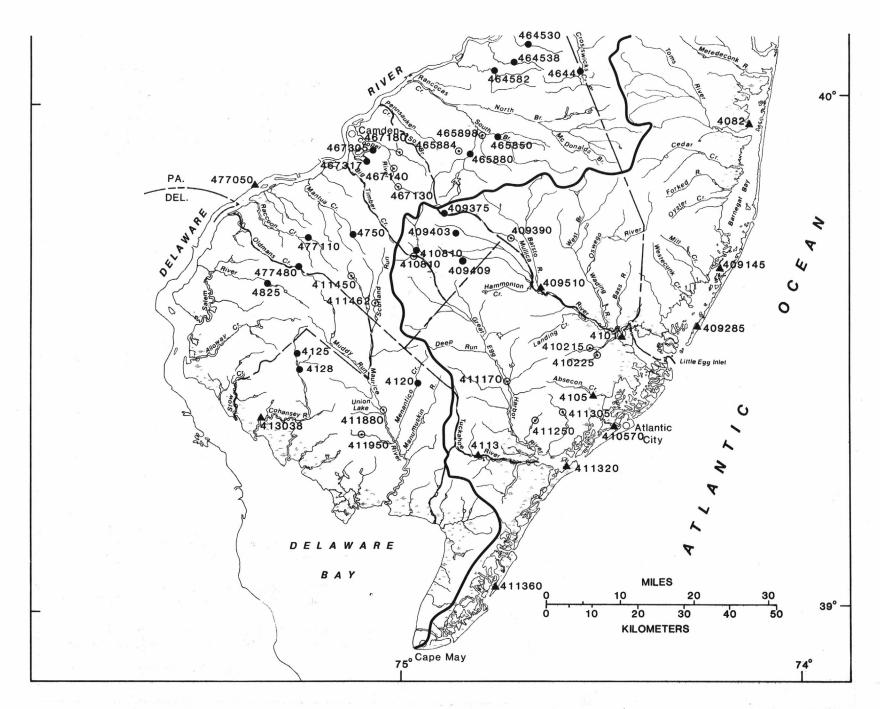
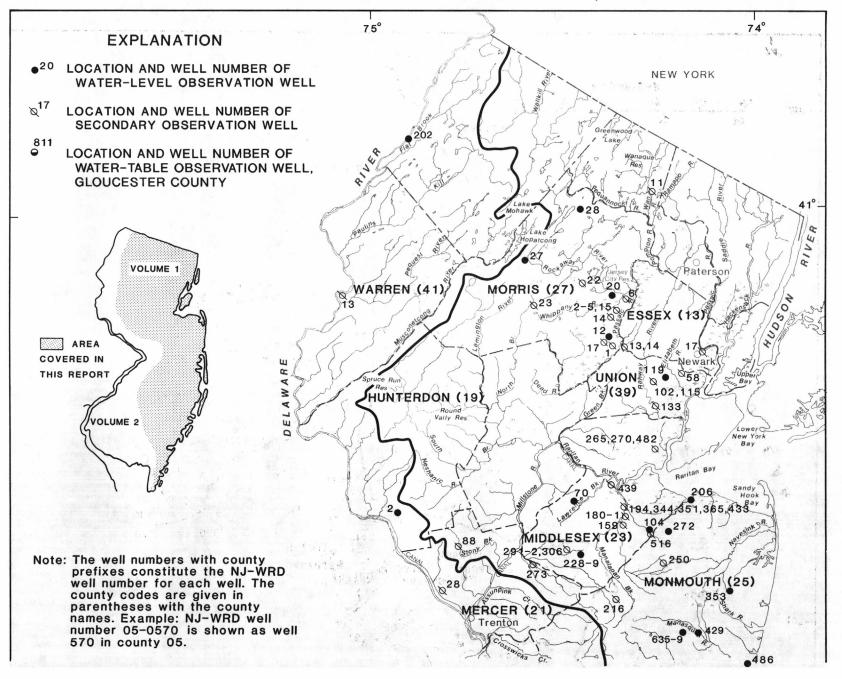



Figure 12.--Map showing location of low-flow and crest-stage partial-record stations.

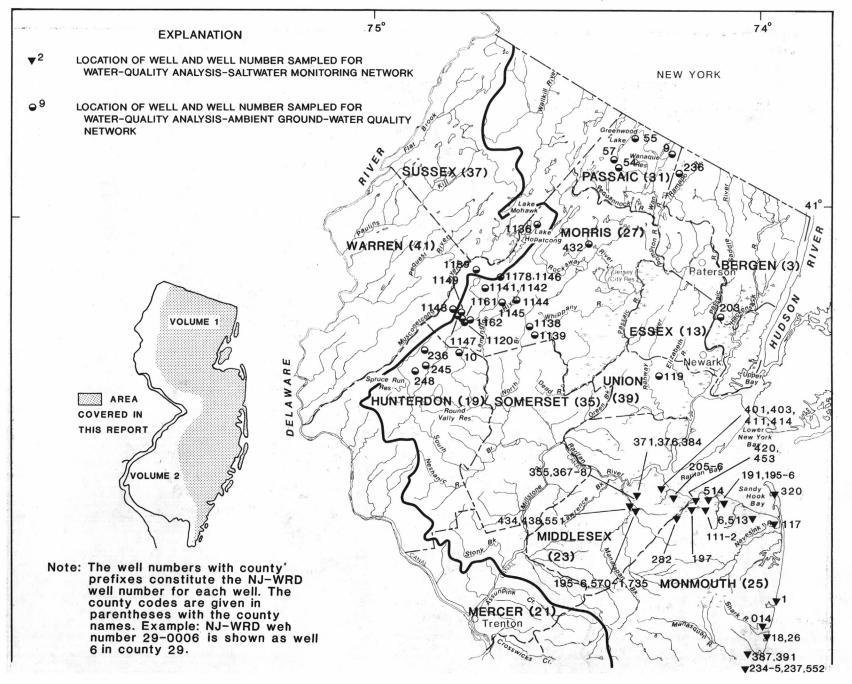



Figure 13. -- Map showing location of ground-water observation well.

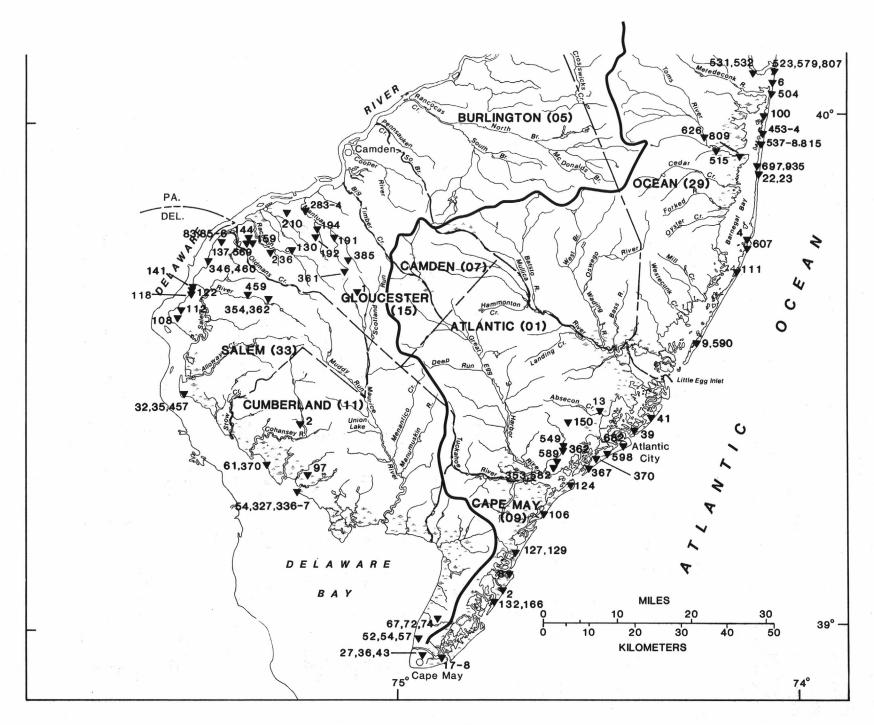


Figure 14.--Map showing location of ground-water quality stations.

HYDROLOGIC-DATA STATION RECORDS

HUDSON RIVER BASIN

01367700 WALLKILL RIVER AT FRANKLIN, NJ

LOCATION.--Lat 41°06'43", long 74°35'21", Sussex County, Hydrologic Unit 02020007, at bridge 120 ft downstream from dam at outlet of Franklin Pond in Franklin, and 0.8 mi upstream from Wildcat Brook.

DRAINAGE AREA .- - 29.4 mi 2.

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPM method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH/ II CI TIME	UBIC COL FEET DUC PER AND	FIC N- CT- (S CE	PH TAND- ARD ITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- DEI SOLVED B (PER- CI CENT II SATUR- 5	IO- FOI HEM- FEI CAL, EI DAY BRI	LI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)
OCT 1988	1300	4.7E	574	8.0	10.0	11.0	100	<0.8 <2	0 49
FEB 1989 28	0930	34E	160	8.0	2.0	12.6		E2.0 4	1 5 7 47
APR 12	1230	53E	340	7.9	8.0	13.1		E1.3 <2	
JUN 20	1200	84E	410	8.1	16.0	7.8	80	2.4 33	
JUL 31	1330	13E	410	7.3	21.5	8.3		E2.2 2	
AUG 14	1200	37E	504	7.8	19.5	8.6		E1.3 79	
DATE OCT 1988 12 FEB 1989 28 APR 12	HARD-NESS TOTAL (MG/L AS/L CACO3)	12	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG)	DI ED SOL /L (MG NA) AS	UM, LINIT S- LAB VED (MG/ /L AS	Y SULFATE DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 0.1
JUN 20	110		10	25		.1 87	14	40	0.1
JUL 31	160		16	30		.3 132	2.0	57	0.1
AUG 14	160	39	16	29		.4 135	15	53	0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITI GEI NO2+I	RO- NIT N, GE NO3 AMMO AL TOT /L (MG	NITR RO- GEN,A N, MONIA ONIA ORGAN AL TOTA G/L (MG/	O- M- + NITRO- IC GEN, L TOTAL L (MG/L	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 12	4.8	289	0.014	0.:	30 0.0	7 0.49	0.79		4.2
FEB 1989 28	4.3	82	0.014				2.1	0.23	5.2
APR 12	5.2	175	0.00		54.		N 191	0.10	3.6
JUN 20	6.3	178	0.00				1.5		5.8
JUL 31	5.2	227	0.03					0.07	4.8
AUG 14	7.9	242	0.01		37 0.0			0.04	5.1

01367700 WALLKILL RIVER AT FRANKLIN, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)
OCT 1988 12	1300	250	33	39	17	2	10	<50	10	6300
DATE	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 12	100	1600	0.02	10	<1	780	13	<1.0	<0.1	5.0
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)
OCT 1988 12	0.1	<0.1	0.3	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	0.3
DATE	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 12	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1

01367770 WALLKILL RIVER NEAR SUSSEX, NJ

LOCATION.--41°11'38", long 74°34'32", Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.8 mi upstream of Papakating Creek, 1.7 mi southwest of Independence Corner, 2.0 mi southeast of Sussex, and 2.1 mi northwest of McAfee.

DRAINAGE AREA. -- 60.8 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DIS-OXYGEN, CHARGE SPE-DIS-DEMAND, COLI-FORM, FECAL, INST. CIFIC SOLVED BIO-STREP-CUBIC CON-DUCT-PH TEMPER-OXYGEN, (PER-CHEM-EC CENT TOCOCCI FEET (STAND-ATURE DIS-ICAL, 5 DAY SATUR-BROTH FECAL DATE TIME PFR ANCE ARD ATION) (MPN) (MPN) SECOND (US/CM) UNITS) (MG/L) (MG/L) (DEG C) **OCT 1988** 12... FEB 1989 1140 16E 547 7.8 8.0 11.3 97 E1.2 490 130 28... 1100 120 90 E1.2 20 <2 **60E** 8.0 1.5 12.4 APR 12... 13 1030 94E 420 7.0 7.0 13.0 107 E1.7 20 JUN 20... 1020 130E 510 7.6 15.5 8.5 86 3.6 2400 350 JUL 31... 1200 1600 E1.8 1700 380 19.0 7.8 85 34E 7.5 AUG 29... 350 1200 580 19.5 8.0 89 E1.7 1100 26E 7.8 HARD -POTAS-CHLO-FLUO-MAGNE ALKA-RIDE, DIS-SIUM, SOD IUM, SIUM, DIS-LINITY RIDE, NESS CALCIUM SULFATE TOTAL DIS-DIS-LAB DIS-DIS-(MG/L SOLVED SOLVED SOLVED SOLVED (MG/L SOLVED SOLVED SOLVED DATE (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L CACO3) AS CA) AS MG) AS NA) CACO3) AS SO4) AS CL) AS F) AS K) **OCT 1988** 12... FEB 1989 250 59 0.1 52 28 32 2.8 199 27 28... 0.1 34 9.0 2.8 19 15 11 7.4 1.4 APR 12... 150 36 15 23 117 22 43 0.1 1.3 JUN 20... 170 15 34 0.1 42 17 21 1.5 147 JUL 31... 220 50 24 27 190 21 50 0.1 2.4 AUG 29... 240 54 26 34 3.6 196 23 63 0.2 SOLIDS, NITRO-SILICA, NITRO-NITRO-NITRO-GEN, AM-MONIA + DIS-CONSTI-GEN, NITRITE GEN, AMMONIA NITRO-PHOS-CARBON GEN SOLVED TUENTS, NO2+NO3 ORGANIC GEN, TOTAL **PHOROUS** ORGANIC (MG/L DIS-TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL DATE AS SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L SI02) AS P) (MG/L) AS N) AS N) AS N) AS N) AS C) **OCT 1988** 12... FEB 1989 7.0 327 0.011 <0.05 3.8 1.49 0.54 2.0 28... 3.2 61 0.010 0.84 0.36 0.68 1.5 0.17 3.6 APR 12... 5.4 216 0.009 0.72 0.47 1.2 0.11 3.3 0.06 JUN 20... 7.9 227 0.014 0.66 1.4 2.1 7.7 0.18 JUL 31... 7.9 296 0.025 2.34 0.16 0.43 2.8 0.10 3.4 AUG 29... 8.0 329 0.014 3.75 0.10 0.82 0.10 3.5 4.6

01367770 WALLKILL RIVER NEAR SUSSEX, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 ING RG. GAI IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN . IN D MAT SO /KG (U	LVED TO	TO IN ENIC TOM TAL TE G/L (U	TAL LI BOT- TO MA- RE RIAL ER G/G (U	TAL TO COV- RE ABLE ER IG/L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM RE TAL FM COV- TOM ABLE TE G/L (U	DMIUM ECOV. BOT- M MA- ERIAL JG/G S CD)
OCT 1988 12	1140	2	50	0.8	5.5		,	5				<10
JUN 1989 20	1020	<0.5		••	••	20	3		:10	60	1	••
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 12		6	<50		3		4600	٠.,	10		380	
JUN 1989 20	<1			9	•	720		7		130		
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 12		0.03		10		<1		260		7	<1.0	
JUN 1989 20			11		<1	'	210		8			
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 12	<0.1	1.0	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
JUN 1989 20												
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 12 JUN 1989	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1	
20		••	••			••	••	••	•			

01367910 PAPAKATING CREEK AT SUSSEX, NJ

LOCATION.--41°12'02", long 74°35'59", Sussex County, Hydrologic Unit 02020007, at bridge on State Route 23 in Sussex, 0.7 mi downstream from Clove Brook, 2.6 mi southwest of Independence Corner, and 3.4 mi northwest of McAfee.

DRAINAGE AREA. -- 59.4 mi².

PERIOD OF RECORD .-- Water years 1976 to current year.

COOPERATION. -- Field data and samples for Laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		TIME	PE	GE, T. IC ET R	SPE CIF CON DUC ANC	IC T- E	(ST	H AND RD TS)	- 1	EMPE ATUR JATE DEG	R	SOL	GEN, IS- LVED G/L)	SO (P	GEN, IS- LVED ER- ENT TUR- ION)	OXYO DEMA BIO CHE ICA 5 C	ND, - M- L,	COL FOR FEC EC BRO (MP	M, AL, TH	STRE TOCOC FECA (MPN	AL
OCT 1988 25		1315	1	8E		351		7.4		7.	.5		9.8		84	E'	1.9	16000		130	
FEB 1989 16	•	1100	3	0E		240		7.5		0.			4.0		97		4	1300		920	
APR 03		1300		5E		240		7.0			.0		9.4		79		1.6	3500		79	
JUN 14		1300		0E		255		7.5		15.			5.4		54		2.4	490		>2400	
JUL 06		1330	5	7E		260		7.6		20.			7.8		87	E	2.3	>24000	64	>2400	
AUG 16		1200	2	0E		319		7.3		22.			6.5		76	E	1.9	1700	24	540	
	DATE	(MC	SS TAL G/L	CALCI DIS- SOLV (MG/ AS C	ED L	MAG SI DI SOL (MG AS	UM, S- VED /L	SOI (I	DIUM IS- LVED MG/L S NA		POTA SIL DIS SOLV (MG/ AS K	JM, S- /ED /L	ALK LINI LA (MC AS CAC	TY AB G/L	SULF DIS SOL (MG AS S	VED /L	RI DI SO (M	LO- DE, S- LVED G/L CL)		E, S- VED /L	
25	1988		120	38		6	.2		18		3.	.5	73		37	•	3	7	c	.1	
16	1989		88	28		4	.5		19		3.	.0	47		29		3	6	C	.1	40-
APR 03			71	22		3	.8		15		1.	.6	39		25		2	6	<0	1.1	
	,		83	26		4	.4		12		1.	.5°	52		14	in .	2	4	(1.1	
	·		82	26		4	.1		13		2.	.2	63		15		2	0	(1.1	
AUG 16	· · ·		110	36		5	.3		17		2.	.1	79		21		2	6	(1.1	
78 (0)	DATE	SOI (M	LVED G/L	SOLID SUM O CONST TUENT DIS SOLV (MG/	F I- S, ED	NIT GE NITR TOT (MG AS	N, ITE AL /L	NO T	ITRO GEN, 2+NO OTAL MG/L S N)	3	NITE GEN AMMON TOTA (MG,	NÍA AL /L	GEN MON ORG/ TO (MC	TRO- ,AM- IA + ANIC TAL G/L N)	NIT GE TOT (MG	AL /L	PHO TO (M	OS- ROUS ITAL IG/L P)	CARE ORGA TOT (MC	NIC AL AL	
OCT 25	1988		7.1	1	91	0.	025		0.48		0.3	1	0.8	35	1.3		••		5.5		
	5		5.4	- 1	53	0.	013		1.18		0.33	3	0.9	91	2.1		0.1	0	6.3		
	3		4.8	1	22	0.	007		0.70		0.09	9	0.	50	1.2	2	0.0	16	9.2		
	4		7.8	1	21	0.	016		2.41		0.09	9	0.	76	3.2	2	0.1	4	8.4		
	5		8.1	1	26	0.	035		0.80		0.19	5	1.	2	2.0)	0.1	4	7.2		
	5		7.2	1	62	0.	070		1.10		0.1	7	0.	71	1.8	3	0.1	4	5.5		

01367910 PAPAKATING CREEK AT SUSSEX, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	(UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 25	1315	<0.5	20	<1	<10	60	<1	1	5
DA	T R E TE (OTAL T ECOV- R RABLE E UG/L (EAD, NE OTAL TO ECOV- RE RABLE EF UG/L (U	DTAL TO ECOV- RI RABLE EI JG/L (I	OTAL T ECOV- R RABLE E UG/L (ECOV- NI RABLE TO UG/L (U	LE- TO LUM, REI DTAL ER JG/L (U	G/L TO	ENOLS DTAL G/L)
OCT 198		370	<5	80	<0.10	<1	<1	10	<1

01368950 BLACK CREEK NEAR VERNON, NJ

LOCATION.--Lat 41°13'21", long 74°28'33", Sussex County, Hydrologic Unit 02020007, at bridge on Maple Grange road, 0.6 mi upstream of confluence with Wawayanda Creek, 0.7 mi northwest of Maple Grange, and 1.7 mi northeast of Vernon.

DRAINAGE AREA. -- 17.3 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for Laboratory analyses provided by New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	SC	GEN, (I SIS- (I SIS- (I	DIS- DE DLVED B PER- C CENT I ATUR- 5	YGEN MAND, IO- HEM- CAL, DAY MG/L)	COLI- FORM, FECAL EC BROTH (MPN)	STREP- TOCOCCI FECAL
OCT	1988	1115	7.45	/F 0:	7.4	7.		0.5	90	F4 0	1700	920
FEB	1989		7.6E	650	7.6	7.5		0.5		E1.9	1700	
APR	6	1330	12E	650	7.8	3.0		3.9	103	2.4	170	540
JUN		1130	32E	404	7.6	7.5	5 1	8.01	92	E1.3	110	13
JUL	4	1100	43E	500	7.3	15.5	5	5.2	53	5.0	490	350
	6	1115	31E	520	7.4	19.5	5	4.6	51	E1.6	16000	>2400
2	2	1200	9.0E	482	7.7	21.0)	6.6	75	<0.5	490	920
	DATE	HARD NESS TOTA (MG/ AS CACO	CALCI L DIS- L SOLV (MG/	UM SI DI ED SOL L (MG	S- DI VED SOL S/L (M	IUM, S- VED S G/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS SOL (MG	E, F VED S	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
	OCT 1988 25	2	260 59	28	3 3	5	2.4	205	32	72		0.1
	FEB 1989 16	2	250 56	26	5 3	6	2.0	197	25	74		0.1
	APR 03		200 46	21		5	1.3	165	22	47		0.1
	JUN 14		200 49	20		5	1.5	183	13	47		0.2
	JUL		200 47	2								
	06 AUG					.6	1.9	178	14	44		0.1
	22	•	210 52	20	, 1	4	1.2	193	14	26	•	0.2
	DATE	SILIO DIS- SOLV (MG, AS SIO	CONST VED TUENT VL DIS SOLV	OF NIT	EN, G RITE NOZ TAL TO G/L (M	EN, 2+NÓ3 A DTAL IG/L	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO	PHOR TOT (MG	ROUS O	ARBON, RGANIC TOTAL (MG/L AS C)
	OCT_1988		, ,		040			0.50	4.0	0.07		
	25 FEB 1989						0.05	0.59	1.2	0.03		.3
	16 APR					1.14	0.21	0.59	1.7	0.04	4	.8
	03 JUN	6.	.9 2	268 0	.008	.68 <	0.05	0.44	1.1	0.04	4	.0
	14 JUL	7.	.9 2	273 0	.021	.59	0.13	0.87	1.5	0.09	7	.5
	06	9	.3 2	270 0	.023	.49	0.13	0.99	1.5	0.09	7	.1
	22	11		254 0	.024	0.41	0.07	0.78	1.2	0.10) 6	.8

HUDSON RIVER BASIN

01368950 BLACK CREEK NEAR VERNON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		TIME	SULFI TOTA (MG/ AS S	L SOL	JM, IS- LVED	ARSE TOT (UG AS	AL	BERY LIUM TOTA RECO ERAI (UG) AS I	M, BAL TOV- RBLE E	ORON, OTAL ECOV- RABLE UG/L S B)	CADM TOTA RECO ERAI (UG,	AL TOT DV- REC BLE ERA /L (UG	M, AL OV- BLE	COPP TOT REC ERA (UG AS	AL OV- BLE /L
OCT 1988 25		1115	<0	1.5	<10		<1	<10	0	30		<1	1		3
JUN 1989 14		1100	<0	.5	10		1	<10		<10		<1	<1	*	2
DA	NTE		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	NE TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN)	ER/		NICKEL TOTAL RECOV ERABL (UG/L AS NI	SE TO	ELE- IUM, DTAL JG/L S SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	TO	NOLS TAL	
OCT 19 25 JUN 19			300	<5		70	<(0.10	•	:1	<1	10		1	
14			750	1		160	<(0.10		1	<1	<10		2	

01376800 HACKENSACK RIVER AT WEST NYACK, NY

LOCATION.--Lat 41°05'44", long 73°57'52", Rockland County, Hydrologic Unit 02030103, on right bank 20 ft downstream from Penn Central Transportation Co. railroad bridge at West Nyack, 1,000 ft upstream from State Highway 59, and 1.0 mi downstream from DeForest Lake.

DRAINAGE AREA .-- 29.4 mi 2.

PERIOD OF RECORD. -- December 1958 to current year.

GAGE.--Water-stage recorder, stop-log control, and crest-stage gage. Datum of gage is 53.50 ft above National Geodetic Vertical Datum of 1929 (levels by Hackensack Water Co.).

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by DeForest Lake (see Reservoirs in Hackensack River Basin). Diversion from gaging station pool for municipal supply for village of Nyack (see Diversions in Hackensack River Basin). Discharge given for this station represents the flow of Hackensack River downstream from this diversion. Several measurements of water temperature were made during the year.

	DISCHARGE	E, CUBIC I	FEET PER	SECOND, W	ATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, MEA	N DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	34 26 27 25 28	34 26 19 20 32	88 88 83 81 59	19 19 18 19 18	16 16 17 17	16 17 17 17 17	24 16 18 19 32	22 99 116 83 75	48 45 39 33 29	25 18 17 19 46	21 19 19 17 17	18 19 19 19 19
6 7 8 9	33 34 39 35 35	31 24 21 19 19	28 22 17 19 16	18 18 20 19 18	17 17 17 17 17	22 18 17 18 17	40 25 21 19	436 170 101 87 136	30 46 79 92 217	71 55 43 28 22	17 18 17 17 17	19 19 19 17 18
11 12 13 14 15	34 34 34 34 38	19 19 30 24 18	17 16 17 18 18	18 22 23 17 26	16 17 17 20 21	17 17 17 17 17	17 18 19 20 25	419 152 107 94 86	102 72 89 86 107	25 19 19 19 17	24 47 88 74 68	19 19 18 22 22
16 17 18 19 20	39 38 37 37 37	21 33 25 22 98	17 16 16 17 16	19 16 16 17 17	23 18 17 17 17	18 18 20 20 18	57 51 59 62 52	317 897 290 136 111	194 198 102 82 67	18 24 19 18 21	72 70 49 38 39	19 20 18 35 119
21 22 23 24 25	37 48 38 36 37	61 23 23 23 23	16 16 17 25 22	16 16 17 16 16	53 33 19 16 16	24 19 18 36 43	46 46 34 28 26	105 99 89 207 146	70 66 54 66 57	22 28 25 20 18	30 24 20 19 17	93 80 105 120 77
26 27 28 29 30 31	37 38 35 21 19	22 22 103 104 91	17 18 21 21 20 19	17 19 17 16 18 17	17 17 17 	19 18 20 19 23 33	20 21 19 16 26	99 92 84 67 56 52	53 83 65 52 34	18 17 19 18 18 23	17 17 18 18 18	90 84 60 43 33
MEAN MAX MIN	33.6 48 19	35.0 104 18	28.4 88 16	18.1 26 16	19.2 53 16	20.2 43 16	29.8 62 16	162 897 22	78.6 217 29	24.8 71 17	31.1 88 17	42.7 120 17
STATIST	ICS OF MON		DATA FO	R PERIOD O	F RECORD,		R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	30.9 81.4 1976 7.27 1967	31.4 88.6 1976 7.59 1967	37.9 121 1973 5.63 1967	41.8 125 1978 8.95 1967	52.1 152 1973 10.3 1967	68.1 151 1961 6.95 1981	75.6 204 1983 9.61 1966	55.0 162 1989 7.04 1965	36.2 162 1972 12.7 1981	35.0 127 1984 11.6 1977	27.7 83.3 1966 12.3 1981	36.4 100 1975 9.34 1962
SUMMARY	STATISTIC	s		FOR	1989 WATE	R YEAR			FOR PE	RIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT	FLOW ANNUAL MEA ANNUAL MEA DAILY MEA DAILY MEAN ANEOUS PEA ANEOUS PEA	N N K FLOW			897 16 1130 9.69	May 17 Dec 10 May 17 May 17			43.9 74.1 13.4 1320 2.6 1550	Feb Jun a Feb o May	1984 1981 3 1973 1 12 1965 3 1973 3 30 1984	

a From rating curve extended above 840 ${\rm ft}^3/{\rm s}$ b From floodmarks

01377000 HACKENSACK RIVER AT RIVERVALE, NJ

LOCATION.--Lat 40°59'55", long 73°59'27", Bergen County, Hydrologic Unit 02030103, on upstream right bank at bridge on Westwood Avenue in Rivervale, 1.5 mi upstream from Pascack Brook, 4.6 mi upstream from Oradell Dam, and 27.2 mi upstream from mouth.

DRAINAGE AREA. -- 58.0 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1941 to current year.

REVISED RECORDS. -- WDR-NJ-80-1: 1968-79(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 22.51 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Flow regulated by De Forest Lake (since Feb. 1956) and Lake Tappan (since 1965), see Hackensack River basin, reservoirs in. Diversions from De Forest Lake and West Nyack, NY, for municipal water supply (see Hackensack River basin, diversions). Water occasionally diverted from Oradell Reservoir to Lake Tappan. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with Hackensack Water Co.

	DISCHARGE	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	46	51	33	76	87	37	54	49	85	61	89	103
2	58	53	31	76	86	37	40	179	79	50	87	124
3	63	38	31	77	87	37	41	234	71	45	92	125
4	59	38	31	90	86	37	41	148	62	42	87	123
5	58	40	31	103	86	38	53	133	55	109	87	123
6	60	48	31	107	86	41	69	475	53	146	85	130
7	81	33	31	101	86	38	46	562	60	113	85	138
8	90	32	31	104	89	38	44	186	105	89	86	137
9	83	30	31	98	94	38	42	145	152	66	84	136
10	77	30	31	82	82	38	40	184	471	62	84	136
11	69	30	31	80	66	37	39	484	233	81	93	136
12	68	29	30	88	59	37	39	423	136	55	126	134
13	68	43	30	91	45	37	39	207	213	48	133	137
14	68	37	30	82	50	37	40	161	179	45	85	147
15	69	31	31	95	51	37	47	143	218	42	115	98
16	78	30	30	85	51	36	133	e310	451	41	160	89
17	90	51	30	65	38	36	113	e2030	372	55	180	91
18	80	35	30	39	38	47	102	1130	229	45	124	86
19	66	32	51	39	37	42	97	317	149	43	92	109
20	66	123	90	39	37	37	86	193	119	56	80	190
21	64	86	100	37	87	44	77	171	128	68	70	91
22	71	36	97	60	59	38	73	155	118	52	64	45
23	38	32	94	88	44	37	62	143	102	53	53	53
24	38	31	93	88	40	64	55	318	115	48	48	44
25	38	30	83	88	38	69	49	350	102	44	43	40
26 27 28 29 30 31	38 37 35 34 34 35	30 30 85 38 34	60 39 41 42 39 52	88 89 88 88 89 88	38 38 37 	39 37 37 36 59 80	46 44 42 40 56	190 159 144 114 97 91	92 116 110 97 76	41 39 40 38 37 59	41 40 40 41 41 69	58 44 53 57 54
MEAN	60.0	42.2	46.3	80.9	61.5	42.0	58.3	310	152	58.5	84.0	101
MAX	90	123	100	107	94	80	133	2030	471	146	180	190
MIN	34	29	30	37	37	36	39	49	53	37	40	40
STATIST	ICS OF MON	THLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN	57.4	73.7	80.2	88.9	94.1	137	142	104	74.3	78.3	70.2	63.2
MAX	312	239	202	251	221	379	438	310	319	339	197	177
(WY)	1956	1956	1973	1949	1951	1953	1983	1989	1972	1945	1955	1975
MIN	12.1	17.7	12.6	22.6	23.0	11.2	14.5	20.4	13.4	11.6	11.3	7.87
(WY)	1942	1950	1981	1982	1967	1981	1981	1981	1957	1954	1944	1953
SUMMARY	STATISTIC	S		FC	R 1989 WATE	R YEAR			FOR F	PERIOD OF	RECORD	
LOWEST / HIGHEST LOWEST I INSTANT/ INSTANT/	ANNUAL MEA ANNUAL MEA DAILY MEA DAILY MEAN ANEOUS PEA ANEOUS LOW ENTILE ENTILE	N N K FLOW K STAGE		. '	91.7 2030 29 2530 8.08 22 147 63 31	May 17 Nov 12 May 17 May 17 Feb 25			17	56 .9 .0 May .8 Sep 30 May 08 May	1952 1981 7 31 1984 9 1 1953 9 17 1989 9 17 1989 9 16 1970	

e Estimated

01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1964 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	CHA I N CU F	IS- RGE, ST. BIC EET ER COND	DU(FIC N- CT-	(ST	H AND- RD TS)	A	MPER TURE ATER EG C	5	XYGI DIS SOLV	S- VED	SOL (PE CE SAT	S-	DEN BI CI II	YGEN MAND IO- HEM- CAL, DAY MG/L	, CO FE E BR	CAL, COTH	STREP TOCOCC FECAL (MPN)			
OCT 1988	1300	3	6		402		7.9		8.5		9	.8		83		3.9	92	20	130			
JAN 1989 19	1130	4	0		380		7.9		4.0		11	.8		90		4.5	. 7	0	350			1.15
APR 05	1230	4	1 5		420	a.	8.1		11.0		11	.3		104	10	3.0	gen i	• 100	160-190		10	
MAY 31	1100	9	2		320		7.9		18.5		7	.5	1,10	80		3.0	2	20	230			
JUL 05	1045	4	3				7.9	فرن	21.0		5	.7				3.3		0	3500			
AUG 09	1200	8	34		350		8.0		23.0			.3	96 (2 14)	73		3.9	13	0	130			
	Š			3															1.0			4
DATE	N T (ARD- ESS OTAL MG/L AS ACO3)	CALC DIS SOL (MG AS	VED	DI SOL (MG	UM, S- VED	SOL (N	IUM, S- VED MG/L S NA)	S	OTAS SIUM DIS- OLVEI MG/L S K)	, I	ALK LINI LA (MG AS CAC	TY B /L	SO (M	FATE S- LVED G/L SO4)	RDS	HLO- IDE, IS- OLVED MG/L S CL)	SOI (MC				
OCT_1988	3	400		1.4		p ju							4.4	_					15	100		
27 JAN 1989	•	120	36			.3		31		2.2		88	¥.,	2	7.		57		0.1	84		
19 APR	v i	120	37		7	.1	2	28		2.1		86	2 22		2		52		0.1	p of		
05		120	35) 2001	6	.8	3	37		1.8		80		2	2		64	(0.1			
31 JUL	Vi.	100	31	* 1	5	.9	. 2	27		1.8	ř	71		1	7 🚼		45	(0.1			
05		110	32		6	.2		25		2.0	1	80		, 1	6		42	(0.1			
AUG 09		98	30)	5	.7	7	27		1.8		78		1	4		39		0.1			
	3.	3		1.61		1				na Co					6.0							
DAT	D S (LICA, IS- OLVED MG/L AS IO2)	SOL	OF	NIT GE NITR TOT (MG	AL /L	NO.	TRO- GEN, 2+NO3 DTAL MG/L S N)	3 AN	IITRO GEN, MONI OTAL (MG/L	A	MIT GEN, MONI ORGA TOT (MG AS	A + NIC AL S/L	TC (M	TRO- SEN, STAL IG/L S N)	PI	PHOS- HOROUS TOTAL (MG/L AS P)	TO (M	BON, ANIC TAL G/L C)			
OCT 198	В	Sk.						1		*												
27 JAN 198	9	2.1		209	0.	021		0.45	(35		0.9		1.	4 4	0.	.05	6.3				8
19 APR		3.3		203	0.	010		0.77	(25	et.	0.8	39	1.	7	0.	.04	5.6				48
05 MAY		4.3		219	0.	015	-	0.91	(0.09		0.5	6	1.	.5	0	.07	5.8				*
31		2.4		173	0.	061	- (1	0.58	- (13		0.9	90	ୁ 1.	.5	0	.06	6.0	1.501.70			
JUL 05		5.7	V	177	0.	055		0.70	(0.19		0.9	7	1.	7	0	.08	6.3				
AUG 09	75	4.7		169	0.	010		0.28		0.09		0.6	57	0.	95	0	.10	6.5		33		

01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 27	1300	<0.5	<10	2	<10	70	<1	2	8
DA	T R E Ate (OTAL TO ECOV- RE RABLE ER UG/L (L	AD, NE DTAL TO CCOV- RE RABLE ER JG/L (L	TAL TO COV- RE RABLE ER IG/L (U	TAL TO COV- REG ABLE ERA G/L (U	COV- NI ABLE TO G/L (U	ZING LE- TOT/ UM, RECO TAL ERAG G/L (UG SE) AS 7	AĹ OV- BLE PHEI /L TO	NOLS TAL /L)
OCT 19 27		560	<5	110	0.10	5	<1	10	1

01377500 PASCACK BROOK AT WESTWOOD, NJ

LOCATION.--Lat 40°59'33", long 74°01'19", Bergen County, Hydrologic Unit 02030103, on right bank 75 ft upstream from Harrington Avenue in Westwood, 500 ft downstream from Musquapsink Brook, and 2.3 mi upstream from mouth.

DRAINAGE AREA. -- 29.6 mi 2.

PERIOD OF RECORD. -- October 1934 to current year.

REVISED RECORDS. -- WDR NJ-87-1: 1984 (P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 28.62 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Woodcliff Lake 3.0 mi above station (see Hackensack River basin, reservoirs in). Water diverted for municipal supply by Spring Valley Water Co., by pumpage from well fields in headwater area of Pascack Brook in vicinity of Spring Valley, NY, and by Park Ridge Water Department by pumping from wells above Woodcliff Lake probably reduces flow past this station. Several measurements of water temperature were made during the year.

COOPERATION.--Gage-height record collected in cooperation with Hackensack Water Co.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	47 34 45 32 19	56 82 30 21 47	77 39 34 27 32	23 23 23 22 22	23 23 25 23 23	29 28 28 27 29	106 55 55 57 95	31 102 44 34 46	58 53 40 44 42	32 32 32 32 32 259	49 79 81 76 74	21 20 20 20 19
6 7 8 9	17 19 38 28 23	111 33 24 21 47	29 27 23 23 22	23 22 27 26 24	23 23 22 22 22 22	32 29 27 26 26	169 90 70 61 54	350 68 66 54 210	45 74 123 222 247	87 52 41 34 62	73 71 70 69 68	20 20 19 19
11 12 13 14 15	22 21 20 19 19	79 78 100 86 52	22 22 23 23 23	23 34 33 26 39	22 23 22 26 28	26 26 26 25 26	46 42 42 48 62	351 102 73 58 58	59 55 154 61 156	85 33 32 32 30	85 135 147 165 137	18 18 20 29 30
16 17 18 19 20	18 18 18 17 17	22 77 70 28 229	23 23 22 22 22	29 26 25 25 25	32 27 22 22 22	25 25 41 38 28	189 77 60 49 43	598 1040 194 133 108	250 122 61 55 50	29 51 33 29 82	82 78 74 73 71	25 29 20 75 326
21 22 23 24 25	19 64 25 20 19	316 103 95 91 85	23 23 27 35 31	24 23 23 23 23 23	85 91 78 46 34	35 40 32 85 213	40 40 35 34 33	95 78 87 298 107	126 48 57 136 42	61 59 28 40 69	70 56 27 26 25	293 108 103 91 84
26 27 28 29 30 31	19 18 18 18 18	49 44 199 97 90	25 24 30 27 24 24	24 24 23 23 26 24	38 38 37 	60 41 38 36 80 186	33 36 34 29 46	84 86 78 60 59	56 88 50 43 32	82 81 83 80 78 55	25 24 24 23 22 21	103 88 84 78 42
MEAN MAX MIN	24.1 64 17	82.1 316 21	27.5 77 22	25.2 39 22	32.9 91 22	45.6 213 25	61.0 189 29	155 1040 31	88.3 250 32	58.5 259 28	67.7 165 21	62.0 326 18
STATIST	TICS OF MO	NTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	37.3 143 1956 10.1 1942	48.9 131 1978 9.83 1950	52.3 129 1984 15.8 1940	53.8 151 1979 10.8 1954	60.6 135 1973 15.7 1954	80.9 197 1953 34.8 1965	81.4 198 1983 30.1 1986	64.4 155 1989 23.3 1935	50.3 175 1972 18.2 1939	46.4 180 1945 14.2 1944	42.8 127 1971 9.99 1935	40.0 157 1971 9.45 1939
SUMMARY	STATISTI	cs		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
HIGHEST LOWEST INSTANT INSTANT 10 PERC 50 PERC	F FLOW I ANNUAL ME ANNUAL ME DAILY MEA TANEOUS PE TANEOUS PE TANEOUS LO CENTILE CENTILE CENTILE	AN N AK FLOW			1040 17 1650 5.51 15 105 36 20	May 17 Oct 6 May 17 May 17 Oct 5			88 27 17	3.6 7.6 7.6 6.1 Oct 6.1 Sep 5.57 Sep 5.6 Jun 98 41	1952 1965 28 1971 21 1949 12 1971 12 1971 29 1965	

01378500 HACKENSACK RIVER AT NEW MILFORD, NJ

LOCATION.--Lat 40°56'52", long 74°01'34", Bergen County, Hydrologic Unit 02030103, on right bank upstream from two masonry dams and two lift gates at pumping plant of Hackensack Water Co., New Milford, 4.0 mi downstream from Pascack Brook, and 21.8 mi upstream from mouth.

DRAINAGE AREA. -- 113 mi 2.

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302.

REVISED RECORDS: WSP 601: Drainage area. WSP 711: 1927-28(M). WRD-NJ 1970: 1969. WDR-NJ 1977: 1975(M). WDR-NJ 1984: 1983.

GAGE.--Water-stage recorder and crest-stage gage above south dam. Datum of gage is 6.25 ft above National Geodetic Vertical Datum of 1929. October 1921 to November 23, 1923, nonrecording gage and Nov. 23, 1923, to Sept. 25, 1934, water-stage recorder at same site at datum 0.05 ft lower.

REMARKS.--Records poor. Records given herein do not include diversion at gage. Flow regulated by DeForest Lake, Lake Tappan, Woodcliff Lake 9.0 mi upstream from station, and Oradell Reservoir 0.6 mi upstream from station (see Hackensack River basin, reservoirs in). Water pumped into basin above gage from Sparkill Creek (Hudson River basin) and Saddle River (Passaic River basin) by Hackensack Water Company for municipal supply (see Hacksensack River basin, diversions). Water diverted at gage, De Forest Lake, and West Nyack, NY, for municipal supply (see Hackensack River basin, diversions). Several measurements of water temperature were made during the year.

DISCHARGE CHRIC EET DER CECOND HATER VEAR OCTORER 1000 TO CERTEMBER 1000 MEAN DATIV VALUES

COOPERATION. -- Gage-height record collected in cooperation with Hackensack Water Co.

	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.4 4.2 1.8 2.0 1.2	1.2 1.1 .83 .97 1.3	28 362 14 16 13	.55 .50 .51 .52	1.1 1.3 .88 1.1 .89	1.8 1.3 .92 2.0	173 55 42 40 65	18 169 230 91 229	37 53 16 22 20	27 29 33 27 54	.63 .64 .68 .62 .66	21 20 17 20 16
6 7 8 9 10	.68 .77 .70 .91 .98	1.2 1.8 1.5 1.5	16 17 15 15	.45 .50 .46 .69	1.1 .90 .95 .96 1.0	2.8 1.0 1.1 7.2 2.8	345 107 60 54 33	1190 573 128 230 601	16 15 17 463 1030	147 33 24 22 32	.52 1.1 .64 .68 .81	6.4 .56 .75 .70 2.0
11 12 13 14 15	1.0 .92 .82 .86 .78	2.2 1.2 2.7 1.4 2.7	14 15 18 12 .68	.73 .75 1.1 .94 .88	1.1 1.4 1.3 1.1	1.2 1.3 1.1 1.2 1.4	13 15 13 13 13	961 514 200 143 119	181 117 441 95 405	28 28 28 25 23	.54 .66 135 82 323	3.0 2.3 2.3 3.0 5.8
16 17 18 19 20	.81 .77 .87 .98	1.9 1.8 2.4 2.1 6.9	.60 .48 .46 .50	1.2 1.1 1.5 1.4 1.2	.94 1.0 .85 1.1 1.2	1.4 1.1 1.4 1.4	348 146 90 67 42	1420 e4200 2200 478 242	723 411 250 106 62	20 19 19 21 18	141 129 90 63 46	2.3 4.7 3.1 3.7 150
21 22 23 24 25	.94 .99 1.3 1.1	4.4 4.6 4.5 6.3 2.9	.62 .54 .46 .54	.84 .83 .80 .88		2.0 1.0 1.4 18 369	32 19 17 11 12	195 142 173 783 440	171 58 50 100 48	21	31 16 18 17 18	1320 180 19 20 22
26 27 28 29 30 31	1.2 1.1 1.1 1.1 1.1	2.8 4.3 338 110 43	.53 .44 .48 .61 .49	.81 .89 .94 .99 1.1 1.3	1.2	68 29 19 18 36	16 14 15 17 14	193 188 154 62 22 79	52 102 69 53 36	.61 .73 .65	17 18 18 19 20 20	17 24 23 22 22
MEAN MAX MIN	1.27 5.4 .68	18.6 338 .83	18.7 362 .44	.85 1.5 .45	1.22 2.9 .85	35.1 493 .92	63.4 348 11	528 4200 18	174 1030 15	147	39.7 323 .52	65.1 1320 .56
STATIST	ICS OF M	ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	34.7 480 1956 .00 1922	69.3 356 1928 .00 1924	90.1 329 1973 .00 1932	107 359 1937 .00 1971	134 396 1939 .00 1977	218 650 1936 .00 1981	206 774 1983 .00 1981	128 528 1989 .39 1985	64.8 612 1972 .00 1977	543 1945	40.2 372 1927 .00 1924	45.6 385 1927 .00 1923
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT	ANNUAL M DAILY ME ANEOUS P ANEOUS P ENTILE	IFAN			4200 .44 4630 8.23 184 5.0	May 17 Dec 27 May 17 May 17			4	8.7 263 .40 230 May .00 Oct 630 May .23 May 19	1928 1981 7 31 1984 7 1 1921 7 17 1989 9 17 1989	

e Estimated

RESERVOIRS IN HACKENSACK RIVER BASIN

- 01376700 DE FOREST LAKE.--Lat 41°06'23", long 73°58'01, Rockland County, NY, Hydrologic Unit 02030103, at dam on Hackensack River, 0.8 mi north of West Nyack, NY. DRAINAGE AREA, 27.5 mi². PERIOD OF RECORD, February 1956 to current year. REVISED RECORDS.--WDR NJ-84-1: Drainage area. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by earthfill dam with sheet piling cutoff and concrete spillway; dam completed and storage began in February 1956. Crest of dam topped by two 50 ft Bascule Gates, 5 ft high. Capacity 5,670,500 gal, elevation, 85.00 ft, top of Bascule gates. Flow regulated by 12-inch Howell-Bunger valve at elevation, 59.25 ft and 24-inch Howell-Bunger valve at elevation, 61.25 ft. Reservoir used for storage and water released by Hackensack Water Co., for municipal water supply.

 COOPERATION.--Records provided by Hackensack Water Company.
- 01376950 LAKE TAPPAN.--Lat 41°01'05", long 74°00'05", Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River, 0.5 mi north of Old Tappan. DRAINAGE AREA, about 49.0 mi². PERIOD OF RECORD, October 1966 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by earthfill dam, completed in 1966. Capacity, 3,853,000,000 gal, revised, elevation, 55.00 ft at top of Bascule gates. Flow regulated by four Bascule gates and one sluice gate. Water is released by Hackensack Water Co., for municipal water supply.

 COOPERATION.--Records provided by Hackensack Water Company.
- 01377450 WOODCLIFF LAKE.--Lat 41°01', long 74°03', Bergen County, Hydrologic Unit 02030103, at dam on Pascack Brook, 0.7 mi north of Hillsdale. DRAINAGE AREA, 19.4 mi². PERIOD OF RECORD, December 1929 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by earthfill dam, completed about 1905. Capacity, 871,000,000 gal, elevation, 95.00 ft at top of Bascule gates, revised. Flow is regulated by two Bascule gates and one 36-inch gate in center of dam. Water is released for diversion at New Milford by Hackensack Water Co., for municipal supply. COOPERATION.--Records provided by Hackensack Water Company.
- 01378480 ORADELL RESERVOIR.--Lat 40°57', long 74°02', Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River at Oradell. DRAINAGE AREA, 113 mi². PERIOD OF RECORD, December 1922 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. REVISED RECORDS.--WDR NJ-84·1: Spillway elevation. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by hollow concrete dam, completed in 1922. Capacity at spillway level, 3,507,000,000 gal, revised, elevation, 23.16 ft. Flow regulated by seven sluice gates (7 by 9 ft). Water is released for diversion by Hackensack Water Co., 1 mi downstream from dam for municipal supply. COOPERATION.--Records provided by Hackensack Water Company.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 Change in Change in contents Contents Contents contents (equivalent in ft³/s) (million Elevation (million (equivalent in ft 3/s) Elevation Date (feet)+ gallons) (feet)+ gallons 01376700 01376950 LAKE TAPPAN DE FOREST LAKE 2,095 2,066 3,634 Sept. 30..... 80.06 31.... 30.... 77.19 80.29 3,296 4,204 49.52 54.39 +80.9 Oct. -41.9 Nov. +46.8 +1.8 -8.5 3.670 Dec. **CAL YR 1988** -7.0 +.4 4,201 4,523 5,055 5,696 5,739 5,726 5,604 5,585 2,915 2,831 3,438 3,892 +8.3 +17.8 52.28 52.02 53.83 55.11 80.28 -37.7 Jan. -4.6 +30.3 28..... Feb. 83.08 Mar. +26.5 30..... 85.08 Apr. 85.21 55.20 ,924 +5.0 May +2.1 30..... 85.17 55.18 ,823 ,798 31..... 84.80 July -6.1 84.74 Aug. Sept. 30..... 85.13 55.12 895 +5.0 +6.6 WTR YR 1989 +6.7 +7.6

Date	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	013774	50 WOODCLIFF	LAKE	013784	80 ORADELL RES	ERVOIR
Sept. 30	91.63 90.32 88.71 88.53	685 617 536 527	-3.4 -4.2 5	18.66 19.05 23.22 18.69	2,387 2,477 3,523 2,394	+4.5 +53.9 -56.3
CAL YR 1988			+.7			-4.3
Jan. 31	95.07 94.99 90.92	556 640 667 665 875 870 648 312 460	+1.5 +4.6 +1.3 1 +10.5 -3 -11.1 -16.8 +7.6	18.65 21.62 23.37 22.52 23.05 22.83 20.64 20.89 21.01	2,384 3,100 3,564 3,334 3,476 3,417 2,855 2,917 2,947	5 +39.6 +23.2 -11.9 +7.1 -3.0 -28.0 +3.1 +1.5
WR YR 1989			-1.0			+2.4

[†] Elevation at 2400 of the last day of each month.

DIVERSIONS INTO AND FROM HACKENSACK RIVER BASIN

- 01376272 Hackensack Water Co., diverts water from Sparkill Creek (Hudson River basin) at foot of Danny Lane in Northvale, 300 ft south of New York-New Jersey state line and 0.6 mi upstream of Sparkill Brook. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.
- 01376699 Spring Valley Water Co., diverts water at De Forest Lake for municipal supply in Rockland County, NY. Records provided by Spring Valley Water Co.
- 01376810 Village of Nyack, NY, diverts water from Hackensack River 100 ft downstream from gaging station on Hackensack River at West Nyack, NY (station 01376800, measured flow includes diversions) for municipal supply. Records provided by Board of Water Commissioners of Nyack, NY.
- 01378490 Hackensack Water Co., diverts water for municipal supply from Oradell Reservoir at Haworth pumping station 2.0 mi upstream from gaging station on Hackensack River at New Milford and from Hackensack River, at New Milford pumping station about 50 ft above gaging station on Hackensack River at New Milford, NJ (station 01378500). Records provided by Hackensack Water Co.
- 01378520 Hackensack Water Co., diverts water from Hirshfeld Brook, a tributary of the Hackensack River, below the gaging station on Hackensack River at New Milford, NJ, for municipal supply. Records provided by Hackensack Water Co.
- 01388981 Hackensack Water Co., diverts water from the Wanaque South pumping station on the Pompton River at Two Bridges, 750 ft upstream from the Passaic River, to Oradell Reservoir. Water can also be diverted from Wanaque Reservoir to Oradell Reservoir in the Hackensack River basin. Figures given herein include diversion from both sources. Formerly diversion was from the Ramapo River (see station 01387991). Records provided by Hackensack Water Company.
- 01391210 Hackensack Water Co., diverts water from Saddle River (Passaic River basin) just north of bridge on State Route 4 at Arcola. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply.

 Records provided by Hackensack Water Co.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MONTH	SPRING	01376699 VALLEY WATER	co.		1376810 NYACK, NY	1378490 ISACK WATE	R CO.	**************************************
October		12.3 7.7 4.9			2.65 2.13 2.63	153 145 142		
CAL YR 1988		7.5			2.70	160		
January February March April May June July August September		0 0 0 2.2 6.1 7.2 10.1 9.0 9.4			2.47 2.49 2.48 2.48 2.66 2.92 2.91 2.92 2.76	145 144 146 146 153 166 171 177 175		
WTR YR 1989		5.8		44.	2.88	155		25

The following are diversions by pumpage from sources other than the Hackensack River into Oradell Reservoir. These figures are included in diversions from Hackensack River as noted above (station 01378490).

MONTH	01376272 SPARKILL CREEK (HUDSON RIVER BASIN)			HIRSHFE (HACKENS	78520 ELD BROOK SACK RIVER SIN)	PO	01388981 MPTON RIVER SSAIC RIVER BASIN)	SAI	01391210 DDLE RIVER SSAIC RIVER BASIN)	WELLS TO SURFACE SUPPLY		
October November December		0 0				: 3; 6 a m	63.4 6.0 0		0.20 .04 0	P.)	0.35 .24 .04	76 A 15
CAL YR 1988		0			.23		25.3		.93	A PRINCIPLE	.35	15.74.0
January February March April May June July August September		000000000000000000000000000000000000000			0 0 0 0 0 0 0 0 0		0 43.0 46.4 0 .44 2.2 2.7 4.4 10.1		.29 .50 0 0 0		.01 .02 .14 .11 .41 .37 .37 .47	
WTR YR 1989		0		:-(0		14.8		.003	19.4 PM 19.4 PM 19.4 B	.24	

PASSAIC RIVER BASIN

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ

LOCATION.--Lat 40°40'48", long 74°31'45", Somerset County, Hydrologic Unit 02030103, on right bank 200 ft downstream from Davis Bridge on Maple Avenue, 0.7 mi northwest of Millington, and 1.8 mi downstream from Black Brook.

DRAINAGE AREA. -- 55.4 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1903 to June 1906 (published as "at Millington"), October 1921 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1905(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete-block control. Datum of gage is 215.60 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Nov. 25, 1903 to July 15, 1906, nonrecording gage at bridge 0.8 mi downstream at different datum. Nov. 10, 1921 to Sept. 1, 1923, nonrecording gage at site 200 ft downstream at present datum. Oct. 31, 1923 to July 3, 1925, nonrecording gage and concrete control at present site and datum.

REMARKS.--No estimated daily discharges. Records good. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, was discontinued in April 1979 and the installation dismantled. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

. R.T. 1	5 (8) A /	1976-1	25 26 28	Maria de					4000 4		1411150	
1 M	MAR. 320 JULY	You have been		the reality	WATER YEAR							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15 15 22 19 18	39 71 58 55 58	243 173 131 104 82	45 42 42 38 30	81 77 78 73 61	71 64 61 59 58	404 324 242 209 190	78 305 445 310 243	70 61 53 48 45	38 35 32 31 52	23 22 24 23 22	19 18 16 16 15
6 7 8 9	17 17 21 22 21	95 85 73 67 57	70 65 58 52 44	24 23 29 52 49	55 52 44 38 31	69 65 55 55 60	232 238 205 173 148	564 643 508 362 368	48 71 157 147 264	113 79 128 109 76	21 22 21 18 17	15 14 14 14
11 12 13 14 15	20 19 19 18 18	52 45 50 91 73	40 30 23 23 26	48 54 93 77 117	30 30 29 41 62	63 72 69 67 68	121 101 91 95 97	703 640 551 397 274	241 183 217 231 202	67 53 51 51 40	23 43 48 35 35	13 14 14 17 35
16 17 18 19 20	17 17 17 17 17	65 112 159 118 296	26 23 21 20 19	142 116 72 110 80	97 80 65 55 50	68 65 70 103 92	253 238 192 154 126	351 752 790 674 473	208 196 149 115 89	42 85 68 54 52	35 31 26 25 27	25 33 33 99 698
21 22 23 24 25	20 65 64 52 53	714 593 459 311 198	25 30 30 51 96	63 43 40 39 40	112 334 317 235 174	128 147 118 139 311	106 91 79 72 67	309 210 161 249 228	75 76 145 158 128	67 49 43 38 34	25 25 26 33 25	954 806 644 461 294
26 27 28 29 30	42 36 32 29 26 24	139 111 336 371 308	79 69 64 74 59 53	41 57 56 55 67 85	129 100 82	271 226 171 134 127 330	64 60 56 54 80	177 148 133 105 88 79	90 71 58 51 43	32 30 29 26 23 22	21 19 18 19 28 22	238 217 155 120 93
MEAN MAX MIN IN.	26.1 65 15 .54	175 714 39 3.53	61.4 243 19 1.28	60.3 142 23 1.25	93.3 334 29 1.75	111 330 55 2.32	152 404 54 3.06	365 790 78 7.60	123 264 43 2.48	53.2 128 22 1.11	25.9 48 17 .54	171 954 13 3.44
STATISTIC	CS OF MON		W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)			1971	
(WY) MIN	42.3 170 1956 3.56 1964	86.1 340 1933 7.47 1966	103 335 1984 8.18 1966	111 463 1905 6.78 1981	131 380 1904 26.1 1934	187 430 1936 64.2 1981	146 420 1983 25.9 1985	93.4 365 1989 20.3 1965	56.5 292 1972 3.95 1965	45.9 307 1975 1.25 1965	51.1 397 1942 1.37 1966	53.5 380 1971 .73 1964
SUMMARY S	STATISTIC	s	0	FC	R 1989 WATE	R YEAR			FOR P	ERIOD OF	RECORD	
LOWEST AN HIGHEST D LOWEST DA INSTANTAN INSTANTAN INSTANTAN	ANNUAL MEA NUAL MEA AILY MEAN NEOUS PEA NEOUS LOW UNOFF (IN NTILE NTILE	N N K FLOW K STAGE FLOW	ξου.		954 13 989 7.78 13 28.90 298 64 18	Sep 21 Sep 11 Sep 21 Sep 21 Sep 8			22.2	3 3 0 Jan 00 Sep 00a Jan 73 Aug 22 Sep 26	1984 1965 1 13 1966 1 13 1966 1 9 1905 1 29 1971 1 12 1966	

a From rating curve extended above 1,400 ft³/s on basis of velocity-area study

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1988 18	1200	17	298	7.6	11.5	8.2	76	3.0	49	49
FEB 1989 13	1430	30	308	7.4	0.5	15.3	105	0.3	1	
APR 04	1030	213	189	7.2	9.0	8.4	73	3.6	49	33
JUN 12	1200	184	161	6.9	19.0	4.3	47	1.8	230	3500
JUL 06	1030	127	160	7.0	21.0	4.6	51	2.1	3500	16000
AUG 01	1030	23	245	7.2	20.5	4.9	55	1.8	110	<200
DATE	HARD NESS TOTA (MG/ AS CACO	CALCI L DIS- L SOLV (MG/	ED SOL	UM, SODI S- DIS VED SOLV /L (MG	UM, SI S- DI /ED SOL		TY SULF, B DIS /L SOL' (MG)	- DIS- VED SOLV /L (MG/	/ED SOL	
OCT 1988		85 20	8	.4 24	. 2	2.0 60	27	32	,	0.1
FEB 1989 13 APR		93 22	9	.2 25	5 2	2.0 53	29	43	(0.1
04 JUN		53 13	4	.9 16	5 1	.4 32	21	26	· ·	0.1
12 JUL		54 13	5	.2 - 11	1 1	1.1 44	11	15	(0.1
06 AUG		56 14	5	.2 11	1 1	1.4 40	12	16		0.1
01		79 20	7	.0 18	3 1	1.0 69	13	22		0.2
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONST ZED TUENT ZL DIS SOLV	OF NIT TI- GE TS, NITR S- TOT /ED (MG	N, GE ITE NO2- AL TOT /L (MC	EN, GE HNO3 AMMO	TAL TOT	AM- A + NIT NIC GE AL TOT /L (MG	N, PHORO	OUS ORG/ AL TO /L (M	BON, ANIC TAL G/L C)
OCT 1988	14		163 0.	008 0	.52 <0.0	0.4	5 0.9	7 0.08	4.9	
13	7.	5	170 0.		.33 0.0			3 0.03	4.4	
APR 04	4.	9	106 0.	003 0	.30 <0.0	0.4	0 0.7	0 0.09	7.7	
JUN 12	12		95 0.	010 0	.20 0.1	12 0.9	9 1.2	0.21	12	
JUL 06	17	á	101 0.	016 0	.38 0.1	12 0.7	9 1.2	0.15	9.6	
AUG 01	20		143 0.	013 0	.58 <0.0	0.4	8 1.1	0.13	6.0	

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 1988	1200		240	0.9	20			11			
JUN 1989				0.7	20						
12	1200	<0.5	••	•		20	<1	••	<10	50	<1
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
OCT 1988 18	<10		20	10		90		17000		190	
JUN 1989	110		20	10		70	4700	17000	44.10kg	170	00
12	••	2			4		1300		2		90
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988											
18 JUN 1989	1200	••	0.02	••		<1	••	970	••	<1	<1.0
12		<0.10	••	3	<1	••	<10	••	<1		••
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 18		62	20	•	-						
JUN 1989	1.1	02	28	24	55	3.1	2.3	<0.1	<1.0	<0.1	0.3
12	••	••	••		•	•••	••	••		• • •	••
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 18	0.4	<0.1	<0.1	<10	-0.1	-0.1	-0.1	-0.1	~1.00	<10	<0.1
JUN 1989 12	0.4	VU. 1	VU. 1	10	<0.1	<0.1	<0.1	<0.1	<1.00	110	ν.ι
12	•	•	. P = • • 9,	••	••	••					

01379500 PASSAIC RIVER NEAR CHATHAM, NJ

LOCATION.--Lat 40°43'31", long 74°23'23", Morris County, Hydrologic Unit 02030103, on left bank 150 ft downstream from Stanley Avenue bridge in Chatham, and 3.0 mi upstream from Canoe Brook.

DRAINAGE AREA. -- 100 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1903 to December 1911, October 1937 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS .-- WDR NJ-86-1: 1984 (M).

GAGE.--Water-stage recorder. Concrete control since Sept. 19, 1938. Datum of gage is 193.51 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1911, nonrecording gage at bridge 150 ft upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, during water years 1903-79. Several measurements of water-temperature, other than those published, were made during the year. Satellite telemeter at station.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27	90	495	81	145	131	607	161	114	68	41	38
2	32	142	380	74	127	116	590	524	102	61	41	33
3	47	109	249	74	125	105	511	689	88	56	50	30
4	42	83	176	e70	129	99	428	662	78	53	47	27
5	35	103	140	e60	106	97	355	547	73	231	42	27
6	31	156	117	53	92	117	422	829	87	308	39	28
7	30	137	104	44	88	123	438	905	137	187	38	28
8	48	107	95	64	78	102	404	861	329	228	40	27
9	40	93	85	105	e67	103	338	730	365	189	37	26
10	36	84	74	100	e54	103	275	804	626	135	34	25
11	34	76	74	86	e51	113	221	1010	554	115	61	25
12	31	67	88	119	e50	132	182	1030	410	94	131	25
13	31	91	50	216	48	132	165	936	531	96	136	25
14	30	147	44	172	72	118	169	801	472	98	94	50
15	28	127	43	268	108	117	196	644	434	80	80	86
16	28	98	44	294	184	116	451	795	385	84	82	74
17	28	236	42	221	157	107	454	1050	335	182	61	82
18	28	295	38	170	112	111	374	1110	261	152	51	62
19	27	213	37	126	95	164	284	1020	196	105	50	315
20	26	554	39	157	86	150	221	882	153	96	48	840
21	50	809	42	e107	307	231	179	716	135	100	50	1150
22	193	897	51	e75	555	267	152	532	115	95	62	1110
23	144	816	58	e70	585	205	130	391	229	77	57	1050
24	93	682	90	70	505	279	115	425	307	69	77	886
25	82	525	175	70	371	511	104	425	253	62	60	716
26 27 28 29 30 31	71 57 50 46 42 39	357 211 591 654 606	160 118 114 145 119 95	69 90 97 88 119 175	247 186 157	500 422 324 240 228 494	96 89 83 79 199	338 258 221 175 143 126	174 134 104 91 79	56 53 52 49 43 41	44 36 34 44 53 46	629 491 354 214 154
MEAN		305	116	116	175	195	277	637	245	107	57.0	288
MAX		897	495	294	585	511	607	1110	626	308	136	1150
MIN		67	37	44	48	97	79	126	73	41	34	25
IN.		3.41	1.33	1.33	1.82	2.25	3. 09	7.34	2.73	1.23	.66	3.21
					OF RECORD,							
MEAN	8.05	157	200	223	242	342	267	175	114	84.3	96.8	97.7
MAX		590	655	734	493	700	711	637	533	539	664	713
(WY)		1973	1984	1979	1908	1907	1983	1989	1972	1975	1942	1971
MIN		13.6	32.3	21.5	63.2	94.5	54.3	7.52	13.6	7.74	7.35	4.70
(WY)		1950	1940	1981	1980	1911	1985	1903	1965	1966	1957	1906
SUMMARY	STATISTICS			FO	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST D INSTANTA INSTANTA INSTANTA ANNUAL F	ANNUAL MEAN DAILY MEAN DAILY MEAN ANEOUS PEAK ANEOUS LOW RUNOFF (INC ENTILE ENTILE	FLOW STAGE FLOW			213 1150 25 1330 6-26 24 28-98 554 112 30	Sep 21 Sep 10 Sep 20 Sep 20 Sep 10			33 29 33 9 23	72 605 7 90 Jan 80 Aug 80 Aug 36a Aug 1.0 M 333 663 82	1984 1965 9 1905 15 1903 2 1973 2 1973 any days	

a From floodmark

e Estimated

01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURES: October 1966 to September 1968. SUSPENDED-SEDIMENT DISCHARGE: July 1963 to September 1968.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT ANCE (US/CI	(\$	PH TAND- ARD ITS)	TEMP ATU WAT (DEG	IRE ER S	YGEN, DIS- OLVED MG/L)	SO (P C SA	IS- DE LVED B ER- C ENT I TUR- 5	YGEN MAND, IO- HEM- CAL, DAY MG/L)	COLI FORM FECA EC BROY (MP)	AL, STREP TOCOCO TH FECAL	I
	T 1988 04	1030	43	7	70	7.8	16	5.5	5.6		58	3.6	3500	1700	
FE	B 1989 13	1130	41		38	8.1).5	18.2		125	1.3			
AP	R 04	1300	427		56	7.4		2.5	9.8		87	5.1	330	790	
JU	IN 07	1030	116		98	7.5		0.0	4.4		49	6.0	14000	24000	
JU		1230	306		71	7.3		1.0	5.9		66	3.5	92000	92000	
AU	JG .	7									\$				
	01	1300	40	3	70	7.7	20	2.5	8.3		96	2.7	200	800	
	DATE	HARD NESS TOTA (MG/ AS CACO	CALC L DIS L SOI	YED	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOD: DIS SOLV	S-	POTAS SIUM, DIS- SOLVEI (MG/L AS K)	LIN L (M	AB G/L	SULFATE DIS- SOLVED (MG/L AS SO4)	RI DI SO (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	OCT 1988 04 FEB 1989	1	20 28	3	13	110	0	3.8	80		89	12	0	0.1	
	13 APR	1	10 27	,	11	43	3	2.9	65		37	6	9	0.1	
	04		63 1	5	6.2	26	5	1.4	37		25	4	0	0.1	
	JUN 07		83 20)	8.1	20	6	2.1	60		25	3	5	0.1	
	JUL 06		51 13	3	4.5	14	4	1.9	36		14	1	7	0.1	
	AUG 01	1	00 2	5	9.2	32	2	2.6	78		23	4	2	0.2	
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	ZONS ZED TUEI ZL DS	OF STI- ITS, N IS- VED	NITRO- GEN, ITRITE TOTAL (MG/L AS N)	NO2-	TRO- EN, +NÓ3 TAL G/L N)	NITRO GEN, AMMONÍ/ TOTAL (MG/L AS N)	GEN MON A ORG TO (M	TRO- ,AM- IA + ANIC TAL G/L N)	NITRO- GEN, TOTAL (MG/L AS N)	PHO TO (M	OS- ROUS TAL G/L P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	OCT 1988 04	12		424	0.199		75	0.4/		,	E 1	0.7	4	6.4	
	FEB 1989	9.	2	238	0.199		.75 .90	0.64	1.		5.1 3.5	0.7		4.9	
	APR		10	- 1	703			0.87	1.					7.0	
	04 JUN	8.		145	0.026		.63	0.12	0.		1.3	0.1			
	07 JUL	14		166	0.106		.16	0.39	1.		2.2	0.4		7.8	
	06	10		96	0.058		.93	0.22	1.		2.2	0.6		8.4	
	01	.17		198	0.152	1.	.59	0.31	1.	0	2.6	0.5	5	6.4	

01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + OI FIDE TOT TAL BOT G/L (M	,NH4 ING RG. GAI IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN . IN D MAT SC /KG (L	OLVED TO	TO' IN I ENIC TOM TAL TEI G/L (U	TAL LII BOT- TO MA- RE RIAL ER G/G (U	TAL TO COV- RE ABLE ER G/L (U	ABLE ERA		OV. OT- MA- MAL VG
OCT 1988 04						<10	1		10	220	<1	
04 JUN_1989				<0.1	8.6		•	7	••			<10
07	1030	<0.5	••			10	<1	<	10	110	1	v.
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 04 04	2	 10	 <50	11	20	830	5600	<5		130	190	
JUN 1989 07	2			10		2000		6		190		
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 04 04 JUN 1989	0.20	0.07	10	10	<1	··· <1	10	60	2	' <1	 <1.0	
07	<0.10		4		<1	••	20	•• \	1		••	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL- IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT_1988												
04 04 JUN 1989	<0.1	58	6.7	0.3	1.0	0.4	0.1	<0.1	<0.1	<1.0	<0.1	
07		•			,		•••	••	:		••	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 04 04 JUN 1989	0.6	<0.1	<1.0	 <0.1	 <1.0	 <1.0	<0.1	 <1.0	<1.00	<10	 <1.0	
07						••		••	••	••	••	

01379700 ROCKAWAY RIVER AT BERKSHIRE VALLEY, NJ

LOCATION.--Lat 40°55'51", long 74°35'42", Morris County, Hydrologic Unit 02030103, on left bank 60 ft downstream from bridge on Berkshire Valley Road in Berkshire Valley, 2.7 mi upstream from Stephens Brook, and 3.8 mi northwest of Dover.

DRAINAGE AREA. -- 24.4 mi 2.

PERIOD OF RECORD.--Low-flow partial-record station water years 1960-72. May 1985 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 682.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair except from October 1 to March 12, which are poor. Some regulation from lakes and reservoirs upstream. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 11, 1936, reached a stage of 6.7 ft, present datum, discharge not determined. Flood of April 5, 1984, reached a stage of 9.05 ft, from floodmarks, discharge 1,290 ft³/s.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN I	DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN		JUL	AUG	SEP
1 2 3 4 5	12 15 18 13	13 16 15 16 32	56 49 44 41 37	27 26 25 23 25	48 42 29 22 21	40 38 37 35 37	102 90 82 83 84	35 71 85 75 70	63 59 49 39 40		51 43 40 39 50	15 15 16 15 15	14 13 12 11 13
6 7 8 9	12 11 12 13	67 67 56 48 44	34 32 33 30 27	23 24 26 27 25	20 20 20 19 18	44 39 40 35 33	93 96 93 87 83	234 291 207 155 154	43 51 70 72 93		52 59 64 42 37	14 16 18 20 17	22 22 19 14 11
11 12 13 14 15	13 16 8.7 5.9 7.3	46 40 38 36 36	26 28 24 23 22	24 27 32 28 36	18 17 16 18 22	32 34 38 32 33	72 66 63 65 66	238 234 190 157 136	80 63 63 74		34 35 35 33 28	17 21 20 19 18	9.5 9.4 10 9.4 9.8
16 17 18 19 20	7.4 7.7 7.4 9.2 12	33 43 39 34 85	21 20 22 18 17	41 38 33 31 30	26 22 20 19 18	33 30 35 37 33	88 90 80 72 65	164 424 472 322 230	83 87 72 61 53		27 27 26 25 26	18 16 15 17 18	9.8 16 12 24 119
21 22 23 24 25	18 31 21 20 13	199 178 120 98 78	17 16 14 16 20	29 24 23 22 22	46 55 45 47 46	39 38 36 48 87	60 56 52 51 55	182 137 120 163 162	54 61 66 163 186		25 24 22 20 19	16 15 15 14 14	163 124 90 70 49
26 27 28 29 30 31	7.9 7.8 7.6 8.2 8.6 8.5	63 57 82 80 67	17 16 18 23 20 21	22 25 23 22 37 50	42 43 41 	90 81 77 71 69 89	53 48 45 39 38	135 113 97 80 72 69	139 102 77 68 58		19 18 18 17 13	12 11 12 13 15	60 59 50 44 41
MEAN MAX MIN IN.	12.2 31 5.9 .58	60.9 199 13 2.78	25.9 56 14 1.22	28.1 50 22 1.33	29.3 55 16 1.25	46.5 90 30 2.20	70.6 102 38 3.23	170 472 35 8.04	75.0 186 39 3.43	3 1	1.7 64 13 .50	15.9 21 11 .75	37.7 163 9.4 1.72
STATISTI		THLY FLO			OF RECORD,	BY WATE	R YEAR (WY)					
MEAN MAX (WY) MIN (WY)	29.6 51.3 1988 12.2 1989	60.6 73.0 1986 50.5 1987	63.2 97.0 1987 25.9 1989	40.7 53.4 1986 28.1 1989	48.1 74.7 1986 26.4 1987	72.1 96.6 1986 46.5 1989	92.0 152 1987 39.1 1988	82.7 170 1989 43.7 1987	39.9 75.0 1989 19.4 1987	1	5.9 1.7 989 5.8 986	19.0 25.8 1986 15.9 1989	42.7 100 1987 15.1 1986
SUMMARY	STATISTICS	S		FC	OR 1989 WATE	R YEAR			FOR	PERIC	D OF	RECORD	
LOWEST A HIGHEST LOWEST D INSTANTA INSTANTA INSTANTA ANNUAL R 10 PERCE 50 PERCE	ANNUAL MEA NAUAL MEAN DAILY MEAN NEOUS PEAN NEOUS PEAN NEOUS LOW RUNOFF (IN	N K FLOW K STAGE FLOW			50.4 472 5.9 534 6.72 4.4 28.05 98 35	May 18 Oct 14 May 17 May 17 Oct 13			5 4 7 **	*** 6.0 4.3 630 5.9 744 .23 4.4 *** 101 38	Sep	1987 1988 14 1987 14 1988 14 1987 14 1987 13 1988	

***** Indicates not enough data, therefore statistic is not computed

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°57'34", long 74°32'24", Morris County, Hydrologic Unit 02030103, on left bank at Picatinny Arsenal, 500 ft upstream from Picatinny Lake, and 0.55 mi downstream from Burnt Meadow Brook.

DRAINAGE AREA. -- 7.65 mi².

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 712.54 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--No estimated daily discharges. Records good. Some regulation by Lake Denmark and Green Pond. Several measurements of water temperature were made during the year. Satellite telemeter at station.

ilicaso	DISCHAR		•		WATER YEAR		1988 TO			AN DAILY	VALUES	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.0 3.3 3.7 3.2 3.0	3.2 3.5 2.9 2.7 6.5	11 10 10 9.8 9.2	6.1 6.1 6.0 5.3 4.8	5.6 5.7 5.6 5.4 5.1	9.8 8.8 8.1 7.7 7.8	27 23 21 21 22	7.8 21 22 22 24	16 14 12 11 9.6	8.1 7.4 6.9 6.6 9.9	5.0 4.9 5.0 4.8 4.7	4.0 3.9 3.7 3.7 3.6
6 7 8 9	3.0 2.9 3.3 3.1 3.2	9.0 6.5 5.6 5.1 4.9	8.8 8.5 8.2 7.9 7.5	4.9 5.3 6.5 6.9 6.4	5.0 4.7 4.3 3.8 3.3	10 10 9.0 8.4 8.0	26 25 23 22 20	72 72 66 58 63	9.8 13 18 19 28	11 11 15 11 8.9	4.6 4.8 4.8 4.5 4.3	2.9 2.5 2.4 2.4 2.3
11 12 13 14 15	3.4 3.2 3.2 3.2 3.2	4.6 4.4 5.9 6.3 5.4	6.9 5.8 5.3 5.4	6.1 6.7 7.9 7.2 9.5	3.0 2.8 2.7 3.1 4.0	7.8 7.8 7.4 7.4 8.6	18 16 16 15 17	75 70 63 54 44	23 20 24 22 25	7.8 6.7 6.3 6.0 5.5	4.7 5.9 5.4 5.1 5.1	2.3 2.3 2.1 2.4 2.7
16 17 18 19 20	3.2 3.1 3.0 3.0 2.9	5.1 7.3 6.7 6.1 22	5.3 4.8 4.5 4.6 4.8	9.4 9.2 9.0 9.0	5.1 4.2 3.8 3.6 3.4	9.2 8.9 11 14 12	24 22 21 20 17	58 121 107 90 74	29 27 24 21 18	5.5 5.6 5.2 4.9 5.3	5.0 4.8 4.5 5.0 5.0	2.5 3.1 2.6 7.1 25
21 22 23 24 25	3.2 4.6 3.5 3.1 2.9	28 17 14 13 11	5.1 5.1 4.9 6.0 6.9	8.2 7.4 6.2 5.4 5.2	12 20 22 20 16	15 14 13 18 27	15 13 12 12 12	58 46 40 47 41	17 17 16 29 20	5.5 5.1 4.9 4.8 4.7	4.8 4.6 4.5 4.4 4.3	20 14 14 14 12
26 27 28 29 30 31	2.7 2.6 2.5 2.4 2.4	10 9.9 15 13 12	6.1 5.6 6.5 7.2 6.5 6.2	5.2 6.2 5.5 5.7 5.7	14 13 11	26 25 23 22 22 26	12 11 9.6 8.9 8.6	36 32 27 22 19 17	17 15 13 11 9.3	4.7 4.6 4.6 4.8 5.0	4.2 4.2 4.3 4.2 4.0	16 15 14 12 11
MEAN MAX MIN IN.	3.08 4.6 2.4 .46	8.89 28 2.7 1.30	6.76 11 4.5 1.02	6.69 9.5 4.8 1.01	7.58 22 2.7 1.03	13.3 27 7.4 2.01	17.7 27 8.6 2.58	50.6 121 7.8 7.63	18.3 29 9.3 2.66	6.71 15 4.6 1.01	4.70 5.9 4.0 .71	7.52 25 2.1 1.10
STATIS	TICS OF MO				OF RECORD,		R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	6.44 18.1 1988 2.31 1985	11.3 19.0 1986 2.07 1985	18.6 40.8 1984 5.46 1985	12.0 17.5 1987 6.69 1989	15.7 22.6 1984 7.58 1989	23.4 49.5 1983 10.5 1985	30.9 64.1 1983 3.84 1985	20.5 50.6 1989 9.28 1985	11.4 18.3 1989 3.54 1987	8.91 32.6 1984 3.80 1988	5.90 12.3 1986 3.62 1983	7.74 24.7 1987 2.63 1983
SUMMAR	Y STATISTI	cs		FO	R 1989 WATE	R YEAR			FOR PE	RIOD OF F	ECORD	
LOWEST HIGHES' LOWEST INSTAN' INSTAN' ANNUAL 10 PERI 50 PERI	E FLOW T ANNUAL ME ANNUAL ME T DAILY ME DAILY MEA TANEOUS PE TANEOUS LO RUNOFF (I CENTILE CENTILE	AN AN N AK FLOW AK STAGE			12.7 121 2.1 135 2.79 2.1 22.54 2.9 2.7	May 17 Sep 13 May 17 May 17 Sep 10			14.4 21.4 6.65 244 1.3 333 3.5 1.4 25.55 3.8 8.2	Apr Jun Apr Apr Jul	1984 1985 5 1984 26 1987 5 1984 5 1984 1 1988	

01379780 GREEN POND BROOK BELOW PICATINNY LAKE, AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°56'56", long 74°33'29", Morris County, Hydrologic Unit 02030103, on left bank 100 ft upstream from bridge on Whitmore Avenue at Picatinny Arsenal, and 200 ft downstream from dam on Picatinny Lake.

DRAINAGE AREA. -- 9.16 mi 2.

PERIOD OF RECORD. -- October 1984 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 694.91 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, benchmark).

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 5, 1984 reached an elevation of 699.0 ft above NGVD, 200 ft upstream of bridge on Whitmore Avenue.

	DISCHAR	GE, CUBIC	FEET PE	R SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
AY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.4 2.7 2.8 2.8 2.6	1.1 1.2 1.3 1.4 1.5	16 15 15 14 14	7.8 7.8 7.8 7.8 3.5	5.3 4.9 4.5 4.3	14 13 12 12 14	35 32 29 29 30	13 14 19 24 28	18 16 14 12 10	11 9.5 8.9 7.9	5.1 5.0 5.0 5.0 5.0	4.8 4.4 3.8 3.0 2.6
6 7 8 9	2.8 2.7 2.6 2.3 2.2	2.1 2.6 3.7 4.8 5.9	14 13 13 12 12	.63 .65 .71 .87	4.3 3.3 2.6 2.5 2.1	15 15 13 14 14	32 32 30 29 27	100 102 92 79 83	10 14 20 22 33	14 13 21 15 12	4.9 4.7 4.6 4.4 4.6	2.6 2.6 2.6 2.6 2.6
11 12 13 14 15	2.0 1.8 1.7 1.7	6.3 5.7 7.8 18 16	12 12 11 11 10	1.1 1.2 1.4 1.5 2.2	1.6 1.5 2.0 2.6 2.7	12 11 10 10 10	25 23 22 19 17	102 97 85 72 61	28 24 29 27 30	10 8.7 8.0 7.6 6.5	4.3 4.4 4.6 4.8 5.0	2.6 2.6 2.4 2.2 2.0
16 17 18 19 20	1.7 1.7 1.8 1.9	15 14 14 13 14	10 9.9 9.5 9.3 8.8	11 14 14 14 14	2.8 3.1 3.1 3.2 3.4	10 10 12 14 14	21 25 26 25 22	73 157 153 124 103	36 33 30 26 22	5.4 6.0 5.7 5.6 5.9	5.3 5.3 5.2 5.0	1.1 .89 .90 .95
21 22 23 24 25	1.7 .89 1.0 1.1	36 30 23 20 17	8.8 8.3 8.3 8.3	13 13 12 12 11	5.5 18 26 26 22	14 14 14 19 31	20 19 17 16 15	79 48 53 64 55	21 22 23 50 32	6.1 5.9 6.1 5.9 6.1	5.0 4.9 4.7 4.6 4.6	40 33 22 24 21
26 27 28 29 30 31	1.1 1.1 1.1 1.2 1.1	16 15 18 18 17	8.3 8.3 8.0 7.8 7.8	11 10 10 9.9 9.4 7.2	19 17 16 	33 32 32 30 28 32	15 14 14 14 13	48 40 35 32 17 15	25 20 18 15 12	5.8 5.7 5.7 5.4 5.3	4.6 5.1 5.3 5.3	22 22 21 20 19
IEAN IAX IIN N.	1.82 2.8 .89 .23	12.0 36 1.1 1.46	10.7 16 7.8 1.35	7.47 14 .63 .94	7.63 26 1.5 .87	17.0 33 10 2.14	22.9 35 13 2.79	66.7 157 13 8.39	23.1 50 10 2.81	8.23 21 5.3 1.04	4.88 5.3 4.3 .61	10.3 40 .89 1.26
STATIST	ICS OF MO			OR PERIOD	OF RECORD,	BY WATE		WY)				
IEAN IAX (WY) IIN (WY)	6.69 17.1 1988 .71 1985	15.3 22.3 1987 .27 1985	20.5 43.1 1987 5.28 1985	12.4 20.5 1987 6.98 1985	14.4 24.7 1986 7.63 1989	19.4 28.6 1986 10.6 1985	23.4 50.2 1987 2.48 1985	23.6 66.7 1989 9.64 1985	11.0 23.1 1989 2.23 1987	4.99 8.23 1989 2.02 1988	6.40 11.7 1986 4.65 1988	12.6 36.7 1987 3.48 1988
SUMMARY	STATIST	cs		FC	OR 1989 WATE	R YEAR			FOR I	PERIOD OF	RECORD	
LOWEST / HIGHEST LOWEST INSTANT/ INSTANT/ ANNUAL	ANNUAL ME ANNUAL ME DAILY ME ANEOUS PE ANEOUS PE ANEOUS LO RUNOFF ()	AN AN AN EAK FLOW EAK STAGE DW FLOW			16.1 157 .63 180 3.49 .57 23.87	May 17 Jan 6 May 17 May 17 Jan 5	100		3. 3. 21.	73 Sep 20 Nov 09 Sep 70 Sep	1987 1985 14 1987 20 1984 13 1987 13 1987	
10 PERC 50 PERC 95 PERC	ENTILE				32 11 1.0				8	32 .5 .0		

01379790 GREEN POND BROOK AT WHARTON, NJ

LOCATION.--Lat 40°55'04", long 74°35'02", Morris County, Hydrologic Unit 02030103, on left bank 600 ft upstream from bridge on northbound lane of State Route 15, 0.2 mi northwest of Wharton, and 1.7 mi upstream from mouth.

DRAINAGE AREA. -- 12.6 mi 2.

PERIOD OF RECORD. -- October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 680.26 ft above National Geodetic Vertical Datum of 1929 (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--No estimated daily discharges. Records good. Some regulation from Lake Picatinny, Picatinny Arsenal sewage treatment plant, and flood gates located about 800 ft upstream of gage. Several measurements of water temperature were made during the year.

remper	atule wel	e made do	in ing the	year.								
	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.3 6.1 7.7 6.2 5.9	5.8 5.7 4.4 4.0 14	23 21 19 19	11 11 11 11 8.4	10 9.7 9.6 8.7 8.1	18 18 18 18	51 44 42 41 44	21 52 35 33 45	26 24 19 18 17	19 15 16 15 28	8.9 8.6 9.0 8.4 8.3	7.6 6.8 6.3 5.5 4.9
6 7 8 9 10	5.9 5.8 6.1 5.7 5.5	16 8.7 7.9 8.4 10	18 18 17 17 16	4.3 4.0 6.7 6.4 5.4	8.3 7.8 6.5 6.0 5.7	23 22 19 20 20	50 46 42 40 38	147 125 104 90 108	19 27 34 36 52	25 20 37 23 19	8.1 9.2 8.9 8.1 7.6	4.8 4.7 4.6 4.5 4.4
11 12 13 14 15	5.1 5.0 4.8 4.7 4.7	10 9.5 16 22 21	16 15 15 14 14	4.9 7.7 8.6 6.4 12	5.2 4.8 4.8 6.7 7.9	19 18 17 17 18	35 33 34 32 33	130 111 97 84 73	38 29 43 37 45	17 15 14 14 12	8.2 11 9.4 8.7 9.2	4.4 4.4 4.6 5.9
16 17 18 19 20	4.7 4.5 4.4 4.3 4.1	19 27 21 20 57	13 13 13 12 12	14 18 18 18	9.3 7.9 7.2 7.1 7.1	17 17 21 23 21	39 38 36 33	110 207 198 151 121	55 44 38 33 30	11 13 11 11	10 9.2 8.6 8.7 9.0	4.7 5.1 3.8 20 91
21 22 23 24 25	4.7 13 5.5 5.2 4.9	72 47 36 30 26	12 11 12 15 16	17 16 16 16 15	33 35 36 34 29	27 24 22 36 51	30 28 27 22 23	95 66 67 99 73	28 35 42 117 56	12 11 11 10 10	8.5 8.2 9.3 9.1 7.8	76 54 47 42 34
26 27 28 29 30 31	4.0 3.7 3.6 3.5 3.3 3.2	23 22 38 29 25	13 12 14 14 12 11	15 15 14 14 14 13	26 25 22	45 42 41 42 41 52	23 22 21 21 20	60 54 47 42 30 23	42 34 30 27 22	10 9.9 9.8 9.0 8.7 8.7	7.4 7.3 7.3 7.8 8.1 7.7	43 35 30 28 26
MEAN MAX MIN IN.	5.20 13 3.2 .48	21.8 72 4.0 1.93	15.0 23 11 1.37	11.9 18 4.0 1.09	13.9 36 4.8 1.15	26.0 52 17 2.38	34.4 51 20 3.05	87.0 207 21 7.97	36.6 117 17 3.24	14.7 37 8.7 1.35	8.57 11 7.3 .78	20.6 91 3.8 1.82
STATIST	ICS OF MO	NTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATER	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	10.1 24.7 1988 4.54 1985	21.2 34.3 1986 4.23 1985	33.1 71.2 1984 11.7 1985	21.6 29.9 1987 11.3 1985	28.4 41.9 1984 13.9 1989	42.2 89.2 1983 17.8 1985	57.0 112 1983 8.96 1985	38.2 87.0 1989 16.9 1986	21.9 36.6 1989 6.65 1987	17.6 61.4 1984 7.72 1983	11.1 20.1 1986 7.68 1983	16.6 54.0 1987 4.73 1983
SUMMARY	STATISTI	cs		FC	R 1989 WATE	R YEAR			FOR F	PERIOD OF	RECORD	
LOWEST ALIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL	ANNUAL ME ANNUAL ME DAILY MEA ANEOUS PE ANEOUS LO RUNOFF (I ENTILE ENTILE	AN AN N AK FLOW AK STAGE W FLOW			24.7 207 3.2 229 3.89 2.8 26.62 50 17 4.1	May 17 Oct 31 May 17 May 17 Oct 30			5 5 2 28.	.6 .5 12 Apr .8 Nov 72 Apr 11 Apr .4 Sep	1984 1985 6 1984 7 25 1984 5 5 1984 5 5 1984 2 29 1983	

01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°54'06", long 74°24'40", Morris County, Hydrologic Unit 02030103, on right bank, under CONRAIL railroad bridge, just downstream of bridge on Morris Avenue in Boonton, 1.8 mi upstream from dam at Boonton Reservoir.

DRAINAGE AREA .-- 116 mi 2.

Ice jam upstream Estimated

PERIOD OF RECORD. -- October 1937 to current year. Monthly discharge only for October 1937, published in WSP 1302.

REVISED RECORDS.--WRD-NJ 1974: 1938(M). WDR NJ-78-1: 1949(M), 1952(M), 1968(M), 1971(M), 1973(P), 1974(M), 1977(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 364.47 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated by Splitrock Reservoir on Beaver Brook, 14.5 mi above station (see Passaic River basin, reservoirs in). Town of Boonton diverts water for municipal supply from Taylortown Reservoir on Stony Brook, capacity, 75,000,000 gal and by pumping from wells in vicinity of Boonton. The mean diversion during the water year from Taylortown Reservoir was 0.93 ft³/s. Rockaway Valley trunk sewer bypasses the station (see station 01381000). Several measurements of water temperature were made during the year. Satellite telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with Jersey City, Bureau of Water.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	39 41 72 56 46	92 148 97 74 155	279 243 215 197 182	111 114 112 e107 e102	141 134 131 122 102	168 155 151 152 152	655 453 390 384 438	167 639 715 412 373	279 254 223 192 176	191 169 152 144 263	73 72 89 76 72	54 50 46 43 41
6 7 8 9	40 40 56 53 45	385 228 159 131 117	178 169 164 157 149	e97 92 120 154 119	99 97 90 80 73	202 188 156 156 154	499 478 409 379 354	1600 1470 1020 789 827	190 294 522 388 572	399 251 322 241 169	65 71 77 68 67	60 66 63 56 48
11 12 13 14 15	43 43 36 35 33	111 102 152 219 166	144 115 129 130 129	113 166 236 175 238	78 75 71 96 115	154 164 157 147 157	310 280 270 308 296	1330 1070 869 729 633	443 299 447 387 416	148 128 128 126 114	83 173 158 110 92	48 43 49 55 109
16 17 18 19 20	34 33 33 32 33	141 258 243 170 499	122 111 102 103 98	216 176 151 146 143	154 118 101 95 88	159 143 161 232 173	565 463 369 325 287	877 2080 1820 1320 998	557 462 358 290 246	109 157 124 112 157	93 100 78 85 102	68 103 73 154 1210
21 22 23 24 25	34 220 113 79 70	1200 684 474 377 318	105 109 113 155 239	124 110 118 112 120	303 601 387 272 215	228 229 178 253 587	262 242 221 205 196	806 644 533 887 782	237 333 702 740 621	171 134 118 102 93	83 101 87 126 75	1250 657 468 368 260
26 27 28 29 30 31	56 50 45 47 46 48	276 241 469 424 318	157 126 129 165 132 118	117 143 129 119 126 147	193 188 180	428 340 301 283 301 534	196 188 175 170 174	574 501 456 379 326 289	459 370 298 259 222	88 83 81 73 69 68	64 54 51 54 59 57	333 330 241 196 170
MEAN MAX MIN	53.3 220 32	281 1200 74	150 279 98	137 238 92	157 601 71	224 587 143	331 655 170	836 2080 167	375 740 176	151 399 68	84.4 173 51	224 1250 41
STATIS	STICS OF MON				OF RECORD							
MEAN MAX (WY) MIN (WY)	120 522 1956 23.7 1965	223 694 1973 63.7 1962	274 706 1974 67.2 1940	257 855 1979 74.8 1981	277 590 1973 107 1940	394 798 1977 151 1985	396 979 1983 87.0 1985	278 836 1989 90.5 1965	183 847 1972 35.3 1965	132 553 1975 18.1 1966	119 447 1955 16.6 1957	125 484 1971 16.8 1964
SUMMAI	RY STATISTIC	cs		FC	OR 1989 WATE	ER YEAR			FOR F	ERIOD OF	RECORD	
HIGHE: LOWES' HIGHE: LOWES' INSTAI INSTAI 10 PEI	GE FLOW ST ANNUAL ME T ANNUAL ME T ANNUAL ME T DAILY ME T DAILY ME T TANEOUS PE TANEOUS PE TANEOUS PE RCENTILE RCENTILE	AN AN AK FLOW AK STAGE			250 2080 32 2350 5.59 1.7a 531 157 45	May 17 Oct 19 May 17 May 17 Jan 4			559 7.2 50	.3 20 Jan 10 Aug		

01381000 ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, NJ
LOCATION.--Lat 40°53'47", long 74°23'36", Morris County, Hydrologic Unit 02030103, on right bank 2,000 ft downstream from Boonton Reservoir Dam at Boonton, and 0.4 mi upstream at bridge on Greenback Road.

DRAINAGE AREA. -- 119 mi 2.

PERIOD OF RECORD.--March to December 1903; January, February 1904 (gage height only); January 1906 to September 1950 (monthly discharge only, published in WSP 1302) October 1950 to current year (figures of daily discharge for October 1950 to September 1954 published in Special Report 16 of New Jersey Department of Environmental Protection). Published as "near Boonton" 1903-4, and as "at Boonton" 1906-37.

REVISED RECORDS.--WSP 1902: 1951-54. WDR NJ-79-1: 1949(M), 1952(M), 1968(M), 1970-74(M), 1977(M).

GAGE.--Water-stage recorder. Concrete control since Nov. 5, 1936. Datum of gage is 195.68 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Mar. 15, 1903 to Feb. 2, 1904, nonrecording gage at site 1.9 mi downstream at different datum. Jan. 1, 1906 to Mar. 3, 1918, nonrecording gage on Boonton Reservoir Dam 2,000 ft upstream at datum 305.25 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Records represent flow in river only. Sewage effluent enters river about 600 ft below station (records given herein). Flow regulated by Boonton Reservoir (see Passaic River basin, reservoirs in) 2,000 ft upstream of station, and by Splitrock Reservoir (see Passaic River basin, reservoirs in) 16.5 mi above station. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. Satellite telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with and record of sewage effluent furnished by Jersey City, Bureau of Water.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989, MEAN DAILY VALUES DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL **AUG** SEP 31 393 23 421 12 11 187 52 9.9 9.4 9.8 13 137 82 179 316 9.9 9.9 15 17 79 73 439 316 249 420 305 50 119 45 33 25 17 2310 34 39 12 9.9 76 34 39 23 24 25 131 43 27 87 659 323 231 180 12 10 57 54 47 92 79 75 80 187 74 29 10 - - -605 75 71.7 324 MEAN 10.9 59.1 85.7 10.8 MAX 9.9 9.4 MIN 9.9 (†) 11.0 12.7 11.8 11.6 11.5 12.4 14.1 19.7 15.9 13.2 11.9 13.1 STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD. BY WATER YEAR (WY) 50.7 346 1960 MEAN 39.4 91.6 98.2 53.2 40.7 1972 1967 .29 MAX (WY) 1.49 MIN .39 13.9 18.6 (WY)

01381000 ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, NJ--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW	181 13.2	133
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN		296a 1952 7.19a 1965
HIGHEST DAILY MEAN LOWEST DAILY MEAN	2380 May 17 9.4 Feb 9	3850 Apr 6 1984 .00 Jan 19 1959
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	2790 May 17 6.61 May 17	7560b Oct 10 1903
INSTANTANEOUS LOW FLOW 10 PERCENTILE	7.4 Feb 8 451	.00 Many days 365
50 PERCENTILE 95 PERCENTILE	75 9.9	.33 .35

Since 1950
Maximum daily
Sewage effluent, in cubic feet per second, from plant at Rockaway Valley Regional Sewage Authority

01381200 ROCKAWAY RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'29", long 74°20'53", Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at intersection with New Road in Pine Brook, and 1.1 mi upstream of mouth.

DRAINAGE AREA. -- 136 mi 2.

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

ı	DATE	TIME	INST. C CUBIC CO FEET DO PER A	JCT- (S	TAND- A	MPER- C TURE ATER EG C)	DXYGEN, O	DIS- DEM SOLVED BI CPER- CH CENT IC SATUR- 5	DAY BRO	RM, CAL, STREP-
OCT 17		1030	29E	500	8.0	14.0	9.7	93	0.5 790	0 80
FEB 08	1989	1000	41E	416	7.7	1.5	12.7	90	4.5 350	0 8
APR		1100	230E	246	7.7	8.0	13.3	- 111	0.5 50	0 <20
JUN 01		1230	190E	202	7.5	21.0	7.8	88	2.4 79	0 2400
JUL 27		0930	30E	448	7.9	23.5	5.9	70	1.2 170	0 500
AUG	•••	1030	27E	435	7.9	21.5	6.3	72	0.6 140	0 800
	DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG/L	DIS- SOLVE (MG/I	I, LINITY LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L) AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
	17 FEB 1989	13	30 32	13	40	5.4	4 83	30	64	0.2
	08 APR	12	20 28	11	36	3.	7 63	32	60	0.4
	12 JUN	6	8 17	6.1	20	1.5	5 40	17	36	0.1
	01 JUL	-5	8 15	5.1	15	1.3	2 35	14	25	0.2
	27 AUG	13	30 32	11	35	4.	3 73	28	53	0.2
	22	13	30 32	11	34	4.	2 80	28	55	0.2
	DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- ED TUENTS, DIS- SOLVED		GEN,	GEN	, MONÎA ÎA ORGANI L TOTAL L (MG/L	+ NITRO- C GEN, TOTAL (MG/L	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT 1988 17 FEB 1989	13	247	0.160	2.67	0.75	1.4	4.1	0.79	4.7
	08 APR	12	221	0.014	4.68	0.06	0.50	5.2	0.52	3.9
	12 JUN	7.1	1 129	0.006	0.86	<0.05	0.38	1.2	0.10	3.5
	01 JUL	8.0	105	0.021	0.89	0.13	0.62	1.5	0.16	4.9
	27 AUG	12	219	0.037	4.90	0.06	0.50	5.4	0.87	4.5
	22	12	224	0.030	5.55	0.05	0.79	6.3	0.88	4.3

01381200 ROCKAWAY RIVER AT PINE BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVEI (UG/L AS AL	(UG/	AL ERA	M, BOR AL TOT OV- REC BLE ERA /L (UG	AL TOT. OV- REC BLE ERA /L (UG	AL TOT. OV- REC BLE ERA /L (UG	M, COPP AL TOT OV- REC BLE ERA /L (UG	OV-
JUN 1989 01	1230	<0.5	2	0	<1 <1	0	30	<1	2	8
DATE	T R E	OTAL 1 ECOV- F RABLE E UG/L (EAD, OTAL ECOV- RABLE UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
JUN 1989 01	s.	650	17	100	<0.10	9	<1	20	1	

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ

LOCATION.--Lat 40°48'26", long 74°27'22", Morris County, Hydrologic Unit 02030103, on left bank at Morristown sewagedisposal plant, 0.8 mi downstream from Morristown, and 9.0 mi upstream from mouth.

DRAINAGE AREA. -- 29.4 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1925-27(M) 1928-29, 1930-32(M), 1933-34. WRD-NJ 1974: 1965. WDR NJ-84-1: 1971(M). WDR NJ-88-1: Longitude.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since July 1, 1936. Datum of gage is 260.01 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 16, 1930, nonrecording gage at same site and datum.

REMARKS.--Records good. Flow occasionally regulated by operation of gates in Pocahontas Dam, 2.5 mi above station.

Diurnal fluctuations from unknown source at low flow. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

-				-								
	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	53	52	32	37	42	283	55	73	52	32	23
2	28	46	47	33	35	40	122	406	68	48	31	22
3	34	28	45	33	38	39	108	204	61	46	38	21
4	24	24	42	30	34	39	113	83	60	45	30	20
5	22	62	41	26	32	41	156	119	57	137	32	21
6	21	94	40	29	33	54	160	753	65	125	28	22
7	21	32	39	30	32	44	126	271	142	70	45	21
8	36	27	38	51	31	39	98	171	187	123	30	21
9	25	25	36	54	29	40	87	143	124	54	28	21
10	23	24	36	38	27	41	78	290	221	47	27	20
11	22	24	35	35	28	43	73	447	80	49	52	20
12	21	22	30	57	28	46	70	231	62	42	98	19
13	20	55	30	67	28	42	75	194	196	48	52	19
14	20	51	32	42	46	40	81	161	91	43	36	47
15	20	30	33	94	49	42	109	146	134	38	33	45
16	20	27	31	56	55	41	225	453	207	56	32	35
17	21	108	30	42	37	38	117	888	95	77	37	45
18	21	58	29	38	32	63	83	352	71	44	28	26
19	20	35	30	38	31	72	75	251	64	40	34	241
20	20	370	30	37	31	45	69	203	60	87	34	757
21	43	376	34	33	192	83	65	149	65	60	30	349
22	108	92	34	31	216	61	63	e138	97	45	34	80
23	35	58	40	32	81	46	60	e165	241	41	29	70
24	31	51	68	32	55	120	58	309	151	37	35	50
25	27	45	84	32	46	197	56	170	86	35	25	44
26 27 28 29 30 31	23 22 22 22 21 20	42 45 228 101 59	42 36 47 55 38 34	35 42 36 34 45 41	45 46 44 	83 64 60 57 101 244	56 54 51 52 58	121 125 107 84 79 77	71 64 63 60 55	34 33 36 31 30 31	24 22 23 31 28 23	104 59 45 37 34
MEAN	26.9	76.4	39.9	40.5	50.6	64.7	96.0	237	102	54.3	34.2	77.9
MAX	108	376	84	94	216	244	283	888	241	137	98	757
MIN	20	22	29	26	27	38	51	55	55	30	22	19
IN.	1.06	2.90	1.57	1.59	1.79	2.54	3.65	9.29	3.89	2.13	1.34	2.96
STATISTI	CS OF MONT	THLY FLO	W DATA FO		OF RECORD,	BY WATE	R YEAR (MY)				
MEAN	30.2	44.5	53.1	56.5	64.4	85.7	87.1	66.0	45.8	38.3	35.0	34.5
MAX	89.7	132	157	211	147	215	231	237	214	185	158	123
(WY)	1956	1933	1984	1979	1973	1936	1983	1989	1972	1975	1942	1971
MIN	8.72	13.3	14.2	16.9	23.5	28.1	30.2	24.4	14.6	10.3	8.02	7.25
(WY)	1931	1937	1940	1922	1940	1981	1985	1941	1965	1965	1932	1932
SUMMARY	STATISTICS	S		FC	OR 1989 WATE	R YEAR			FOR I	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST I INSTANTA INSTANTA ANNUAL I 10 PERCI	ANNUAL MEA ANNUAL MEAL DAILY MEAN ANEOUS PEAL ANEOUS PEAL ANEOUS LOW RENTILE ENTILE	N K FLOW K STAGE FLOW			75.1 888 19 1380 6.07 18 34.68 158 44 22	May 17 Sep 12 May 6 May 6 Sep 12			280 8 2 24.0	.5 .3 10 Aug .2 Sep 00 Aug .6 Aug	28 1971	

e Estimated

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1926, 1962 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	INST. C CUBIC C FEET DI PER A	JCT- (S	TAND- ARD	EMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL EC BROTH (MPN)	STREP- TOCOCCI FECAL
24	1988	1130	34	237	7.5	11.0	8.9	82	13	7000	>24000
	1989	1230	51	321	7.8	5.0	13.0	104	7.8	5400	9200
APR	3	1100	66	297	8.2	9.5	14.5	126	1.5	490	20
MAY	3	1230	130	251	7.8	16.0	9.7	99	2.1	460	170
JUL	7	1100	33	344	8.1	25.0	9.5	116	2.1	2400	790
AUG		1200	36	323	8.1	24.0	9.3	111	3.3	<200	400
		1200	30	323	0.1	24.0	7.3		3.3	-200	
	DATE	HARD - NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG/I	DI SOL (MG	UM, LINI S- LA VED (MO /L AS	TY SULF	- DIS VED SOL /L (MG	VED S	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
	OCT 1988 24 JAN 1989	7	4 19	6.5	15	2	.6 47	19	27		0.1
	30 APR	7	5 19	6.7	29	2	.0 46	23	53		0.2
	13	7	9 20	7.1	21	1	.8 43	15	42	?	0.1
	MAY 23	7	4 19	6.5	17	1	.7 39	17	34	•	0.1
	JUL 27	11	0 27	9.4	23	2	.5 64	18	45		0.1
	AUG 17	11	0 27	9.2	23	2	.5 66	17	41		0.1
	DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRIŤE TOTAL (MG/L	GEN	63 AMM0 L TOT L (M0	RO- GEN N, MON NIA ORGA AL TO G/L (MO	ÍA + NIT ANIC GE	AL TOT	ROUS OF	ARBON, RGANIC TOTAL (MG/L AS C)
	OCT 1988 24 JAN 1989	12	129	0.041	0.5	5 0.	.09 0	.88 1.	4 0.2	24 8	8.7
	30 APR	11	171	0.043	1.4	0 0.	.31 0	.95 2.	4 0.3	30	4.9
	13 MAY	14	147	E0.037	1.2	5 0.	15 0	.44 1.	7 0.2	25	2.4
	23 JUL	16	135	0.033	1.1	8 0.	.18 0	.59 1.	.8 0.1	14	2.8
	27	18	181	0.090	1.8	8 <0.	.05 0	.37 2.	.3 0.2	24	3.1
	AUG 17	19	178	0.104	2.0	2 0.	.07 0	.53 2.	.6 0.2	25	3.2

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDI TOTAL (MG/L AS S)	ALUM- INUM, E DIS- SOLVE (UG/L AS AL	ARSEI D TOTA	LIL TOT NIC REC AL ERA /L (UG	AL TOT COV- REC BLE ERA	OV- REC BLE ERA JL (UG	AL TOT. OV- REC BLE ERA /L (UG	M, COPP AL TOT OV- REC BLE ERA /L (UG	AL OV- BLE
OCT 1988 24	1130	<0.	5 3	30	1 <1	0	40	<1	2	12
DA	TE (TOTAL RECOV- ERABLE (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT 19 24		1000	<5	110	<0.10	1	<1	40	3	

01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ

LOCATION.--Lat 40°50'42", long 74°20'51", Morris County, Hydrologic Unit 02030103, at bridge on New Road, 0.3 mi southwest of overpass of Interstate 280, 0.4 mi upstream of Rockaway River, and 1.4 mi southwest of Pine Brook.

DRAINAGE AREA. -- 68.5 mi 2.

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	CH/ CU TIME	JBIC COL FEET DUE PER AN	FIC N- P CT- (ST CE A	AND - A	TURE ATER S	YGEN, () DIS- OLVED S	DIS- DEN OLVED B1 PER- CH CENT IC ATUR- 5	GEN AAND, COL IO- FOR HEM- FEC CAL, EC DAY BRC IG/L) (MF	RM, CAL, STREP- C TOCOCCI OTH FECAL
00	T 1988 17	1300	43E	515	7.9	13.5	8.6	82	3.3 230	490
FE	B 1989 08	1300	60E	549	7.7		13.3	97	3.9 <20	
AP	PR 10		132E	325	7.5	9.0	9.0	78	3.0 20	
	JN 01		124E	328		19.5	5.3	58	5.7 330	
JL	JL 27	0830	63E	463		25.0	4.5	55	4.8 500	500
AL	JG 22	1230	65E	350		23.0	5.8	68	2.7 790	0 1300
	DATE 0CT_1988	HARD- NESS TOTAL (MG/L AS CACO3)	•	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	a posta oraș	LINITY LAB (MG/L AS CACO3)		CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)
	17 FEB 1989	160		15	35	3.1	102	37	60	0.1
	08 APR	140		13	50	2.9	96	32	93	0.1
	10 JUN	94		8.2	27	1.9	60	25	46	0.1
	01 JUL_	100		8.8	22	2.2	64	19	41	0.1
	27 AUG	140		12	33	3.3	83	30	58	0.1
	22	110	28	9.4	25	2.5	74	22	41	0.1
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	MONIA +	NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT_1988	15	2/5	0.005		-0.05	0.04	7.0	4.00	. 7
	17 FEB 1989	15 14	265	0.025		<0.05	0.81	7.8	1.00	5.3
	08 APR	-	299	0.045		1.85	2.2	3.8	0.42	4.0
	10 JUN	11	179	0.030		0.56	1.2	2.2	0.22	5.5
	01 JUL_	14	171	0.162		0.73		3.1	0.41	10
	27	17	238	0.216		0.59	1.2	4.0	0.81	6.0
	22	14	186	0.111	1.86	0.29	0.95	2.8	0.40	6.8

01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFID TOTAL (MG/L AS S)	SOL (UC	JM, IS- AR: LVED TO G/L (I	SENIC OTAL UG/L S AS)	BERY LIUM TOTA RECO ERAB (UG/ AS B	, BOR L TOT V- REC LE ERA L (UG	OV- REC	AL TOTON RECORD FOR ALL TOTON	IM, (TAL COV- ABLE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 17	1300	<0.	5	<10	1	<10		100	1	6	10
DATE	TI RI EI	RABLE UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA NESE, TOTAL RECOV ERABLI (UG/L AS MN	MER(TO' - RE(E ER/	CURY TAL COV- ABLE G/L HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENO TOTA (UG/I	AL
OCT 1988 17		560	<5	6	0 <	0.10	6	<1	20		3

01381900 PASSAIC RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'45", long 74°19'18", Morris County, Hydrologic Unit 02030103, on downstream left wingwall of bridge on U.S. Route 46, 0.5 mi east of Pine Brook, and 1.3 mi downstream from Rockaway River.

DRAINAGE AREA .-- 349 mi 2.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1963-69, 1973, and annual maximum, water years 1966-75, 1978-79. October 1979 to current year. Feb. 19 to Aug. 24, 1939 in files of U.S. Army Corps of Engineers, New York District.

REVISED RECORDS .-- WDR NJ-77-1: 1967(M).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 149.26 ft above National Geodetic Vertical Datum of 1929. December 1965 to September 1979, crest-stage gage at same site at datum 10.00 ft higher. Feb. 19 to Aug. 24, 1939, water-stage recorder at present NJ Route 506 bridge, 1,600 ft upstream from gage, operated by U.S. Army Corps of Engineers, New York District at datum 13.05 ft higher.

REMARKS.--No estimated daily discharges. Records fair except those above 1,000 ft³/s, which are poor. Flow regulated by Boonton and Splitrock Reservoirs (see Passaic River basin, reservoirs in) and many small lakes. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1810, according to State Geologist's report for 1904, 23.2 ft, Oct. 10, 1903, present datum, from King Survey of highwater marks at present NJ Route 506 bridge, 1,600 ft upstream from gage. Floods of Mar. 13, 1936 and Sept. 24, 1938 reached stages of 20.8 ft and 19.4 ft respectively, at present NJ Route 506 bridge and present datum. Flood of July 23, 1945 reached a stage of 22.3 ft at present site and datum according to U.S. Army Corps of Engineers; minimum observed, 41.1 ft /s, Sept. 22, 1964.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 T	O SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	130 131 183 162 147	224 456 352 278 279	1360 1200 1040 858 680	233 210 213 207 205	344 337 335 333 288	596 490 415 375 365	1440 1660 1630 1520 1420	453 776 1330 1690 1660	693 584 498 436 388	420 356 311 278 419	175 175 217 203 188	141 128 116 108 108
6 7 8 9 10	138 134 181 178 152	548 494 344 280 248	495 388 353 359 352	205 205 196 327 315	243 215 195 172 146	408 471 472 455 398	1430 1470 1440 1360 1260	2080 3130 3310 3010 2810	378 454 739 961 1240	849 930 840 752 605	171 182 183 161 153	112 113 112 109 106
11 12 13 14 15	143 138 136 134 133	230 218 235 383 335	330 322 322 322 276	266 262 489 494 545	140 140 140 188 247	397 415 430 420 406	1130 957 796 717 685	3190 3420 3270 2970 2640	1460 1450 1430 1500 1510	473 370 314 316 285	213 482 578 426 292	105 105 103 120 398
16 17 18 19 20	132 132 134 134 133	288 406 622 606 796	260 253 253 237 219	650 608 514 416 350	358 366 296 232 199	389 371 375 538 522	947 1240 1330 1240 1070	2620 3790 4870 4920 4250	1590 1630 1490 1260 996	257 425 429 357 321	247 295 216 202 245	307 378 298 368 1200
21 22 23 24 25	140 449 444 314 264	1580 2330 2190 2040 1810	227 249 267 322 497	319 241 212 207 204	364 876 1230 1490 1330	565 591 526 538 904	886 731 609 508 441	3570 2990 2500 2310 2270	793 668 751 1030 1210	361 310 265	192 201 191 214 188	2060 2660 2750 2640 2360
26 27 28 29 30 31	218 195 182 176 170 165	1540 1290 1340 1520 1530	488 384 329 397 344 276	211 251 262 242 251 331	1110 901 731	1130 1230 1150 1010 900 1140	403 386 363 335 435	2110 1840 1580 1330 1100 866	1210 1050 846 663 513	207 196	164 143 127 135 176 161	2160 1980 1730 1440 1160
MEAN MAX MIN	181 449 130	826 2330 218	441 1360 219	311 650 196	462 1490 140	593 1230 365	995 1660 335	2537 4920 453	981 1630 378	389 930 171	222 578 127	849 2750 103
STATIS	TICS OF MC	NTHLY FLOW	DATA FO	R PERIOD	OF RECORD,	BY WATER	YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	267 531 1980 134 1981	525 922 1986 161 1981	743 2286 1984 107 1981	504 797 1987 105 1981	766 1221 1984 211 1980	916 2067 1983 272 1981	1332 2842 1983 161 1985	908 2537 1989 380 1986	554 1482 1984 188 1981	1485 1984 168	226 474 1986 117 1981	282 849 1989 91.0 1980

01381900 PASSAIC RIVER AT PINE BROOK, NJ--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE	733 4920 May 19 103 Sep 13 5100 May 18 20.50 May 18 101 Sep 13 1660 388	618 1125 1984 276 1981 7910 Apr 7 1984 72 Sep 29 1980 8000 Apr 7 1984 22.90a Apr 7 1984 70 Sep 29 1980 1520 336
95 PERCENTILE	133	102

a Affected by backwater

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'40", long 74°16'23", Passaic County, Hydrologic Unit 02030103, at bridge on Two Bridges Road in Two Bridges, 50 ft upstream from Pompton River.

DRAINAGE AREA. -- 361 mi².

PERIOD OF RECORD. -- Water years 1962 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: June 1969 to September 1974. pH: June 1969 to September 1974. WATER TEMPERATURES: October 1962 to September 1974. DISSOLVED OXYGEN: June 1969 to September 1974.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 1988 20	1015	E130	664	7.8	13.0	3.9	37	19	20	<20	170	40
NOV 22	0900	E2600	167	6.8	6.5	7.5	60	6.0			52	13
DEC 14	1120	E340	415	7.4	0.5	11.2	78	5.7		2021	110	27
JAN 1989 18	1200	E550	376	7.5	2.0	12.2	88	4.8	40	27	88	22
FEB 16	1145	E390	630	7.8	4.0	10.7	80	3.6			130	32
MAR 21	1330	E630	580	7.6	6.5	10.1	83	3.3	20	20	110	27
APR 14	1100	E780	336	7.5	10.0	10.0	88	6.6			83	21
MAY 25	1000	E2600	184	7.2	17.5	3.3	35	4.2			61	16
JUN 13 26	1030 1400	E1600 E1350	195 235	7.2 7.3	20.0 24.5	5.3 5.8	59 70	2.6	::	::	61 70	16 18
JUL 19	1300	E370	320	7.6	21.5	4.7	54	6.0	<200	<200	89	23
AUG 14	1100	E460	290	7.3	21.5	4.7	53	2.3	330	330	76	20
15 28	1300 1300	E470 E1900	735 190	7.8 7.2	23.0 13.5	4.0 5.4	47 51	7.2 4.2		::	160	39
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRIŤE TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
OCT 1988 20	16	75	6.2	112	50	100	0.1	16	400	0.220	0.220	5.20
NOV 22	4.7	13	2.5	29	29	17	0.1	7.5	109	0.040	0.060	0.800
14	10	34	3.4	77	32	53	0.1	14	233	0.030	0.020	2.00
JAN 1989 18	8.1	38	2.9	52	28	65	0.1	12	215	0.030	<0.010	1.40
FEB 16	11	64	4.0	74	37	110	0.1	10	325	0.050	0.060	1.80
MAR 21	9.8	68	2.7	58	34	110	0.1	9.0	304	0.030	0.030	1.30
APR 14	7.5	29	2.4	48	24	46	0.1	8.2	174	0.030	0.030	1.10
MAY 25	5.1	15	1.0	40	15	23	0.1	7.3	109	0.040	0.040	0.500
JUN 13 26	5.2 6.0	16 18	2.0 1.9	41 45	14 16	24 27	0.1	10 9.9	116 128	0.060 0.050	0.050 0.060	0.700 0.800
JUL 19	7.7	25	2.8	62	22	37	0.1	13	178	0.140	0.140	2.00
AUG 14 SEP	6.4	26	2.4	48	24	35	0.1	9.9	160	0.090	0.080	1.30
15	14	65	6.8	97 39	52 15	93 20	0.2	16	370	0.270 0.050	0.260 0.050	5.20 0.600

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)
OCT 1988 20	5.00	2.70	2.70	3.5	3.2	8.7	1.40	1.30	1.20	1.20	9.2	0.6
NOV 22	0.810	0.160	0.150	1.1	0.70	1.9	0.300	0.200	0.180	0.180	6.6	1.1
DEC 14	2.10	1.90	1.80	2.5	2.5	4.5	0.600	0.490	0.520	0.450	3.8	0.3
JAN 1989 18	1.40	0.870	0.870	1.3	1.1	2.7	0.380	0.310	0.300	0.270	5.1	0.9
FEB 16 MAR	1.90	2.90	2.40	3.5	3.2	5.3	0.610	0.500	0.510	0.360	4.8	0.6
21 APR	1.50	1.10	1.00	1.7	1.6	3.0	0.500	0.310	0.320	0.280	4.7	0.7
14 MAY	1.20	0.530	0.530	1.3	1.0	2.4	0.270	0.200	0.200	0.180	5.2	0.8
25 JUN	0.400	0.110	0.110	0.80	0.60	1.3	0.220	0.180	0.160	0.160	6.3	0.6
13 26 JUL	0.750 0.750	0.190 0.190	0.210 0.190	1.1 0.60	0.70 0.50	1.8 1.4	0.320 0.190	0.180 0.130	0.220 0.190	0.160 0.130	7.3 5.8	0.7
19 AUG	1.90	0.640	0.630	1.4	1.6	3.4	0.490	0.250	0.290	0.190	5.2	0.3
14 SEP	1.40	0.470	0.440	1.2	1.1	2.5	0.480	0.230	0.290	0.240	5.5	1.0
15	4.60 0.620	1.90 0.130	1.90 0.110	2.6 0.90	2.4 0.70	7.8 1.5	1.60 0.210	1.00 0.140	1.10 0.200	1.00 0.160	4.6 9.4	0.1 0.6

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (GE + JLFIDE TO TOTAL BO (MG/L	EN,NH4 IN ORG. GA OT IN TOT OT MAT BOT (MG/KG (6)	NOR- INC NNIC, ORG IN TOT MAT BOT G/KG (GM	ANIC I IN MAT S	OLVED TO	SENIC TO OTAL UG/L	RSENIC TOTAL N BOT- OM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	FM BOT- TOM MA- TERIAL (UG/G
OCT 1988												
20 MAY 1989	1015		200	0.1	1.8	••		2	••	••	•••	<10
25	1000	<0.5		••		20	<1		<10	80	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLI (UG/L AS CR	TERIAL	TOM MA- TERIAL L (UG/G	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	TOTAL RECOV- ERABLE (UG/L	IRON, RECOV FM BOT TOM MA TERIA (UG/G AS FE	- LEAD - TOTAI - RECOV L ERABI (UG/I	V- TOM M/ LE TERI/ L (UG/0	7. NES 7- TOT A- REC AL ERA G (UG	E, NE AL RE OV- FM BLE TOM	ANGA- ESE, ECOV. BOT- 1 MA- ERIAL JG/G)
OCT 1988												901
20 MAY 1989			6 <60		6		730	0	<10	00 -	•179 A	81
25		1	••	5		570		AL.	10		60	•• 4
DATE	MERCUR TOTAL RECOV ERABLI (UG/L AS HG	FM BOT TOM MA E TERIA (UG/G	NICKEL, TOTAL RECOV- LERABLE (UG/L	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)		- TOM M/ E TERI/	V. T- A- Al Phenoi G Total	L TER	OT- IN MA- TON MAL TE	PCN, DTAL BOT- MA- ERIAL G/KG)
OCT 1988											U.S. 3 (4)	
20		0.0	3	<100	••	<1	••		40	3		<1.0
MAY 1989 25	<0.1	0	2		<1		<1	0		1 .	•	••
DATE	ALDRIN TOTAL IN BOT TOM MA TERIA (UG/KG	TOTAL - IN BOT - TOM MA L TERIA	DDD, TOTAL - IN BOT- - TOM MA- L TERIAL	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	IN BOT TOM MA TERIA	TOTAL IN BO TOM M TERI	N, ENDRII L TOTAI T- IN BO A- TOM M AL TERI	TOT T- IN E A- TOM AL TER	ON, CHAL TO BOT- IN MA- TOP RIAL TE	EPTA- HLOR, DTAL BOT- M MA- ERIAL G/KG)
OCT 1988												
20 MAY 1989	<0.	1 5.0	0.3	<0.1	<0.1	0.1	0.	2 <0	.1 <0	.1 •	<0.1	<0.1
25		••									140	
DATE	HEPTA CHLOR EPOXID TOT. I BOTTO MATL (UG/KG	LINDAN E TOTAL N IN BOT M TOM MA TERIA	TOTAL - IN BOT TOM MA- L TERIAL		METHYL PARA- THION, TOT. IN BOTTON MATL (UG/KG)	MATL.	MIREX TOTAL IN BOT TOM MA TERIA	TOTA I IN BO TOM M TERI	N, PER- L THAN T- IN BO A- TOM M AL TERIA	E TOT T- IN E A- TOM L TEI	ENE, TO FAL TO BOT- IN MA- TO RIAL T	TRI- HION, OTAL BOT- M MA- ERIAL G/KG)
OCT 1988												
20 MAY 1989	<0.	1 <0.	1 0.6	<0.1	<0.	<0.1	<0.	.1 <0	.1 <1.	00 <10	0	<0.1
25												••

01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, NJ

LOCATION.--Lat 41°01'10", long 74°24'11", revised, Morris County, Hydrologic Unit 02030103, on left bank at Macopin intake dam of Newark waterworks, 0.4 mi downstream from Macopin River, and 3.0 mi northwest of Butler.

DRAINAGE AREA. -- 63.7 mi².

PERIOD OF RECORD.--January 1898 to current year. Monthly discharge only for some periods, published in WSP 1302.

Records for January 1892 to December 1897, published in WSP 541, have been found to be unreliable and should not be used.

GAGE.--Water-stage recorder above hewn-rock dam. Datum of gage is 570.00 ft above National Geodetic Vertical Datum of 1929 (levels by New Jersey Geological Survey). Prior to May 22, 1970, at datum 13.55 ft higher.

REMARKS.--No estimated daily discharges. Records good above 10 ft³/s, and poor below. Records given herein represent flow over intake dam only. Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg Reservoirs, and Echo Lake (see Passaic River basin, reservoirs in). Water diverted at Charlotteburg Reservoir for municipal supply of city of Newark (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. Satellite telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with the Department of Public Affairs, Division of Water Supply, city of Newark. Prior to May 22, 1970, discharge figures provided by city of Newark.

•••	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 2.1 3.2 5.1 .55	3.6 3.6 .97 .99	6.8 6.1 5.5 5.3 4.0	4.7 5.1 5.7 4.9 4.6	4.7 5.5 5.9 4.8 4.7	4.7 4.8 4.7 4.7 4.8	6.7 6.1 6.1 6.4	4.8 36 12 6.6 12	23 21 20 19 17	12 10 9.9 9.9 22	7.6 9.6 11 8.5 7.8	5.6 1.8 2.1 2.2 6.0
6 7 8 9	.53 .54 .66 .55	18 4.5 6.0 3.0 1.5	3.4 3.8 4.2 3.4 3.2	4.7 4.7 5.9 7.4 6.1	4.8 6.2 4.2 2.9 3.4	6.8 5.5 6.3 5.1 4.9	12 10 7.1 6.9 6.1	135 46 25 18 53	48 108 241 191 240	16 10 7.2 6.1 5.7	7.9 9.5 9.5 9.0 8.8	7.9 7.2 7.8 7.9 8.2
11 12 13 14 15	.51 .50 .50 .50	1.3 1.7 5.9 6.9 4.6	3.6 3.4 2.8 2.5 2.9	5.2 4.7 7.2 4.8 7.5	3.3 2.9 2.4 3.0 3.8	5.0 5.0 5.3 6.1 6.9	4.7 4.7 4.7 4.7 6.7	456 432 317 261 229	191 111 114 105 105	10 19 17 14 4.7	9.6 14 18 17 14	6.1 5.2 6.1 7.8 7.8
16 17 18 19 20	.51 .52 .53 .54 .82	4.7 6.7 4.3 3.4	3.2 3.4 3.4 3.4 3.4	7.4 5.9 6.1 5.5 5.6	4.9 3.6 3.7 3.4 3.4	6.6 6.0 6.5 5.4 5.4	19 10 8.3 7.4 6.7	430 1360 1130 658 422	178 152 89 41 21	4.7 8.3 6.3 18 34	12 11 10 12 13	5.3 6.1 5.6 18 76
21 22 23 24 25	1.9 5.8 .90 .56 1.0	37 13 11 8.4 6.3	3.7 4.7 4.7 6.1 8.7	4.1 4.6 4.7 4.7 4.7	20 18 8.3 5.7 5.4	6.4 5.5 4.7 18 36	6.2 4.5 3.3 3.1 3.3	318 255 204 313 302	18 17 17 65 295	29 27 26 25 23	9.6 8.8 8.2 9.3 7.7	59 77 22 16 11
26 27 28 29 30 31	.75 .60 .55 .64 .56	6.1 6.1 15 8.9 7.9	5.4 4.7 6.2 7.0 5.1 4.7	4.8 5.8 4.7 4.7 4.9 4.7	6.1 5.1 4.7 	20 19 15 14 15 25	3.4 3.3 3.5 3.4 4.1	209 160 130 122 62 24	136 57 23 16 12	23 23 22 22 23 14	7.1 7.9 7.6 7.8 7.4 7.4	23 136 239 81 9.9
MEAN MAX MIN	1.12 5.8 .50	8.55 41 .97	4.47 8.7 2.5	5.36 7.5 4.1	5.53 20 2.4	9.33 36 4.7	6.55 19 3.1	263 1360 4.8	89.7 295 12	16.2 34 4.7	9.95 18 7.1	29.2 239 1.8
STATIST	ICS OF M	ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	15.6 288 1956 .00 1929	31.2 309 1928 .00 1929	39.0 236 1973 .00 1929	37.3 208 1953 .00 1931	47.6 270 1939 .00 1930	94.5 572 1936 .00 1965	127 506 1983 .00 1950	66.3 263 1989 .00 1954	32.9 360 1972 .00 1944	19.1 238 1938 .00 1923	15.2 228 1955 .00 1923	19.8 211 1960 .00 1929
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT	ANNUAL MANNUAL MANNUAL MAILY ME DAILY ME TANEOUS PANEOUS LENTILE	EAN EAN EAK FLOW EAK STAGE			37.7 1360 .50 1710 15.25 .49 83 6.2 .50	May 17 Oct 12 May 17 May 17 Oct 13			3 6 1	7.4 Oct		

a Since 1923

01383500 WANAQUE RIVER AT AWOSTING, NJ

LOCATION.--Lat 41°09'31", long 74°20'00", Passaic County, Hydrologic Unit 02030103, on right bank 700 ft downstream from dam at outlet of Greenwood Lake at Awosting.

DRAINAGE AREA .-- 27.1 mi2.

PERIOD OF RECORD. -- May 1919 to current year. Prior to October 1940, published as "at Greenwood Lake".

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922(M), 1928(M), 1936. WDR NJ-79-1: 1933(M), 1936(M), 1945(M), 1948(P), 1951(P), 1952(P), 1953(M), 1955(P), 1956(M), 1957(M), 1958(M), 1960(P), 1961(M), 1968(P), 1969(P). WDR NJ-80-1: 1960(P).

GAGE.--Water-stage recorder. Concrete control since Oct. 31, 1938. Datum of gage is 601.32 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Apr. 1, 1926, nonrecording gage and Apr. 1, 1926, to Oct. 31, 1938, water-stage recorder at site 100 ft upstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow completely regulated by Greenwood Lake (see Passaic River basin, reservoirs in). Water diverted into basin above gage from Upper Greenwood Lake (Hudson River basin) by North Jersey District Water Supply Commission since 1968. Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.5 3.5 3.5 3.5 3.5	24 44 40 35 50	90 80 71 68 58	32 34 35 35 29	29 29 31 31 29	e49 e44 e40 e38 e37	119 107 101 98 95	28 70 102 92 86	53 53 46 40 34	23 19 16 13 36	7.1 7.1 7.0 6.9 6.9	e7.3 e6.9 e6.6 e6.4 e6.1
6 7 8 9	3.6 3.5 3.5 3.5 3.5	110 108 90 80 66	54 51 49 44 41	29 32 33 35 32	27 e22 e20 e19 e17	e41 e38 e34 e33 e31	109 114 111 104 95	361 475 351 250 228	33 46 76 76 105	64 59 49 37 31	6.8 6.6 6.4 e8.9 e8.2	e5.8 e6.1 e5.9 e6.0 e5.9
11 12 13 14	3.5 3.5 3.5 3.5 3.3	62 55 62 76 74	40 16 17 16 16	31 32 37 35 39	e16 e16 e16 e17 e20	e30 e29 e30 e27 e27	83 72 66 65 64	346 331 262 209 171	97 75 73 69 81	31 23 18 16 13	e11 e30 e37 e32 e31	e5.6 e5.2 4.9 5.0 5.2
16 17 18 19 20	3.3 3.3 3.4 3.6 2.9	70 82 82 75 142	22 22 22 22 15	40 38 36 35 35	e23 e22 e20 e20 e20	e29 e28 e29 e32 e33	93 91 88 83 72	232 709 707 483 332	112 114 101 85 70	10 11 8.2 7.2	e32 e32 e26 e21 e20	5.2 5.6 5.8 13 151
21 22 23 24 25	3.0 7.2 7.8 7.9 7.8	327 261 207 165 134	14 14 14 18 25	33 28 26 25 23	e41 e73 e71 e68 e63	e36 e41 e37 e45 e73	64 60 51 44 38	238 175 138 166 151	64 59 54 62 57	14 16 18 14 12	e18 e15 e14 e13 e12	304 252 205 156 114
26 27 28 29 30 31	7.4 7.2 7.4 8.5 12	113 99 121 112 100	24 21 23 29 28 30	23 27 25 26 28 28	e67 e62 e54	e80 e72 e72 e71 76 101	36 34 30 27 29	125 111 92 71 61 56	52 54 46 39 28	8.7 7.3 6.6 7.8 7.0 7.0	e10 e8.9 e8.3 e8.9 e8.2 e7.8	126 128 103 85 73
MEAN MAX MIN	5.10 13 2.9	102 327 24	34.0 90 14	31.5 40 23	33.7 73 16	44.6 101 27	74.8 119 27	233 709 28	65.1 114 28	19.8 64 6.6	15.1 37 6.4	60.5 304 4.9
STATIST	TICS OF MONT	THLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (NY)				
MEAN MAX (WY) MIN (WY)	24.7 210 1956 .20 1932	55.2 210 1984 .18 1932	64.8 197 1974 1.88 1985	65.4 221 1979 6.98 1981	66.2 168 1981 16.3 1980	105 271 1980 43.5 1938	99.7 333 1984 24.7 1985	63.1 232 1989 13.4 1941	37.4 178 1972 4.37 1957	25.5 132 1938 2.76 1981	24.7 208 1955 .01 1929	26.8 161 1979 .06 1929
SUMMARY	Y STATISTICS	3		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHES' LOWEST INSTAN' INSTAN' INSTAN' 10 PER	E FLOW T ANNUAL ME/ ANNUAL MEA/ ANNUAL MEA/ DAILY MEAN TANEOUS PEA/ TANEOUS PEA/ TANEOUS LOW CENTILE CENTILE CENTILE	N C FLOW C STAGE			709 2.9 825 4.32 1.4 121 34 3.4	May 17 Oct 20 May 17 May 17 Jul 28			1 2 2 6	4.8 105 9.9 9.9 .00 Oct 800 Apr .65 Apr 129 33	1984 1965 6 1984 15 1928 5 1984 5 1984 At times	

e Estimated

89

01384500 RINGWOOD CREEK NEAR WANAQUE, NJ

LOCATION.--Lat 41°07'36", long 74°15'52", Passaic County, Hydrologic Unit 02030103, on right bank 500 ft upstream from Wanaque Reservoir, 0.7 mi downstream from Ringwood Mill Pond dam, and 6.5 mi north of Wanaque.

DRAINAGE AREA. -- 19.1 mi².

PERIOD OF RECORD.--October 1934 to September 1978, October 1985 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS. -- WDR NJ-82-1: 1935-77(P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 292.67 ft above National Geodetic Vertical Datum of 1929 (levels by New Jersey Geological Survey). Prior to Sept. 30, 1978, at datum 10.0 ft higher.

REMARKS.--Records good except for estimated daily discharges, which are fair. Records given herein include flow over spillway and through ports in dam when open or through waste gate in dam. No flow through ports or waste gates this year. Flow slightly regulated by Ringwood Mill Pond, Sterling, and Sterling Forest Lakes, and several smaller lakes above station. Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 то	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.8 2.0 3.0 3.1 2.2	7.2 17 9.8 7.5 31	51 45 41 35 32	15 15 15 13 14	18 18 18 17 16	29 26 25 24 24	91 70 67 65 67	22 87 68 52 59	29 27 24 21 19	22 19 17 16 70	6.7 6.2 6.6 e5.3 e4.8	e2.5 e2.0 e1.5 e2.0 e2.4
6 7 8 9	1.8 1.6 2.9 3.6 3.3	69 32 21 17 15	30 28 25 23 22	12 13 16 18 16	15 15 14 12	30 23 31 21 21	99 88 77 71 64	316 247 185 148 172	20 37 59 42 61	79 50 35 27 25	e4.3 e4.6 e4.4 e3.8 e3.3	e2.3 e2.0 e1.8 e1.7 e1.6
11 12 13 14 15	2.7 2.3 2.0 1.9	18 16 23 31 23	20 16 14 15 16	15 17 23 19 26	11 11 11 14 16	20 20 19 18 20	56 50 46 45 47	223 178 145 120 100	42 33 37 37 57	26 20 18 16 15	e5.6 e25 e31 e22 e18	e1.5 e1.3 1.9 2.2 2.9
16 17 18 19 20	1.7 1.7 1.6 1.4 1.3	20 31 30 25 124	14 13 13 12 12	27 23 22 23 23	18 15 13 13	20 19 20 22 19	77 60 52 48 44	185 356 258 196 155	86 66 53 43 36	14 15 14 12 13	e17 e16 e13 e11 e10	4.2 6.1 5.3 15 119
21 22 23 24 25	1.7 9.8 7.5 4.6 3.8	212 143 107 87 71	12 12 13 18 23	19 20 17 18 17	64 81 61 47 44	26 26 22 36 72	39 35 31 29 27	125 98 82 109 84	64 48 40 70 46	17 22 17 13	e8.2 e6.2 e5.6 e5.2 e4.3	93 48 37 31 25
26 27 28 29 30 31	3.4 2.9 2.6 2.3 2.3	61 54 92 69 57	17 15 17 21 17 16	18 21 19 18 18	36 34 31	53 47 45 43 47 84	26 24 23 21 22	65 59 50 40 34 32	39 50 35 30 25	10 9.6 8.2 7.5 7.0 6.6	e3.8 e3.0 e4.1 e3.5 e3.0	51 47 35 30 26
MEAN MAX MIN IN.	2.80 9.8 1.3 .17	50.7 212 7.2 2.96	21.2 51 12 1.28	18.3 27 12 1.11	24.5 81 11 1.34	30.7 84 18 1.85	52.0 99 21 3.04	131 356 22 7.89	42.5 86 19 2.49	21.1 79 6.6 1.27	8.67 31 3.0 .52	20.1 119 1.3 1.17
					OF RECORD,	BY WATER						
MEAN MAX (WY) MIN (WY)	15.3 131 1956 1.07 1945	32.6 88.8 1973 2.27 1950	42.5 103 1974 4.06 1940	40.4 149 1979 12.5 1940	41.6 109 1970 14.0 1940	66.6 157 1936 28.5 1938	59.4 123 1940 18.3 1966	40.4 131 1989 10.9 1941	22.8 121 1972 3.78 1957	15.1 86.1 1945 1.31 1966	13.5 107 1955 .70 1966	12.6 59.0 1960 .28 1964
SUMMARY	STATISTI	CS		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST I INSTANTA INSTANTA INSTANTA	ANNUAL ME ANNUAL ME DAILY MEA ANEOUS PE ANEOUS PE ANEOUS LO RUNOFF (I ENTILE ENTILE	AN AN N AK FLOW AK STAGE DW FLOW			35.3 356 1.3 393 12.49 1.3 25.09 78 21 1.8	May 17 Oct 20 May 17 May 17 Oct 19			54 13 7 11 13.	.00 Sep 150 Mar .74 Mar .00 Part	1952 1965 19 1955 11 1963 30 1951 30 1951 of days	

e Estimated

01387000 WANAQUE RIVER AT WANAQUE, NJ

LOCATION.--Lat 41°02'39", long 74°17'36", revised, Passaic County, Hydrologic Unit 02030103, on left bank 750 ft downstream from Raymond Dam in Wanaque, and 50 ft upstream from bridge on State Highway 511.

DRAINAGE AREA.--90.4 mi 2 , considered as 94 mi 2 Oct. 1, 1928 to Sept. 30, 1934.

WATER DISCHARGE RECORDS

PERIOD OF RECORD.--December 1903 to December 1905 (gage heights only), September 1912 to April 1915, May 1919 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 210.00 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Dec. 16, 1903, to Dec. 31, 1905, nonrecording gage on highway bridge at site 50 ft downstream at different datum. Sept. 15, 1912, to Apr. 1, 1922, nonrecording gage at site 200 ft downstream from present concrete control at different datum. Apr. 1, 1922 to Mar. 14, 1931, water-stage recorder at site 400 ft downstream from present concrete control at present datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Greenwood Lake 11 mi above station, since October 1987 by Monksville Reservoir just upstream of Wanaque Reservoir, and since 1928 by Wanaque Reservoir (see Passaic River basin, reservoirs in). North Jersey District Water Supply Commission diverts water for municipal supply from Wanaque Reservoir. Water is diverted to Wanaque Reservoir from Posts Brook at Wanaque and from Ramapo River at Pompton Lakes (see Passaic River basin, diversions). Water diverted into basin above gage from Upper Greenwood Lake (Hudson River basin) by North Jersey District Water Supply Commission since 1968. Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and USGS satellite gage-height telemeters at station.

SEP

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

1 2 3 4 5	17 17 18 18 18	19 19 19 19 21	18 18 18 18	19 19 18 17 18	17 18 18 17 17	17 17 17 17 18	26 18 24 77 123	24 21 29 22 60	33 25 18 19 18	19 19 19 19 20	17 17 18 19 21	17 17 17 17 17
6 7 8 9	18 18 18 18 18	19 19 19 18 17	18 18 18 18 18	18 17 18 17 17	17 17 17 17	18 17 18 18 18	206 232 213 187 166	1330 1420 903 614 604	17 19 18 18 27	19 21 24 19	21 21 19 18 18	17 17 18 17 17
11 12 13 14 15	17 17 18 17 17	17 17 18 18 18	18 18 18 18 18	18 18 17 17 18	17 17 17 18 18	17 17 17 17 17	128 96 75 63 69	1020 868 661 502 393	79 24 36 45 104	21 19 19 18 18	18 20 19 18 18	17 17 17 17 17
16 17 18 19 20	17 17 17 17 18	18 18 18 18 23	18 18 18 18 18	17 17 17 17 17	17 17 17 17	18 17 18 17	174 164 141 119 89	618 1880 1560 1020 705	177 189 153 114 69	19 19 19 19	39 36 17 18 18	18 18 17 20 22
21 22 23 24 25	19 19 18 18 18	20 19 19 19	18 18 18 19 18	17 17 17 17 17	19 18 18 17 17	17 17 17 18 17	53 105 52 34 22	517 366 264 351 316	95 105 70 80 72	18 18 18 18	18 18 18 17 18	19 18 18 18 18
26 27 28 29 30 31	18 18 18 18 18	19 19 19 18 18	18 18 19 19 19	18 17 17 17 17	17 17 17 	17 17 17 17 18 18	19 20 19 18 20	231 198 169 114 80 50	59 105 63 67 21	17 18 17 17 17	19 19 18 18 18	19 18 18 18 18
MEAN MAX MIN	17.7 19 17	18.7 23 17	18.2 19 18	17.4 19 17	17.3 19 17	17.4 19 17	91.7 232 18	545 1880 21	64.6 189 17	18.7 24 17	19.6 39 17	17.8 22 17
STATIS	TICS OF MO	NTHLY FLO		R PERIOD	OF RECORD	(a), BY	WATER YE	AR (WY)				
MEAN MAX (WY) MIN (WY)	26.5 258 1956 1.82 1966	26.4 272 1956 1.70 1966	37.5 233 1946 1.50 1950	47.7 360 1978 .76 1950	54.6 412 1973 2.05 1966	130 599 1929 1.91 1966	170 806 1984 1.54 1966	91.5 545 1989 1.72 1966	56.8 416 1972 2.17 1966	32.1 221 1945 1.73 1965	20.4 87.5 1929 1.53 1965	24.3 263 1933 1.51 1965

01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

WATER DISCHARGE RECORDS -- Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	72.8	59.9a 170a 1984 1.93a 1966
HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	1880 May 17 17 Oct 1 2160 May 17 6.69 May 17 9.7 Oct 12 119 19	5470a Apr 6 1984 .06a Oct 11 1984 10500 Apr 5 1984 10.82 Apr 5 1984 131a .19a 3.4a

a Since 1929

01387000 WANAQUE RIVER AT WANAQUE, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: October 1963 to September 1980.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	CH I	NST. C UBIC C FEET D PER A	UCT- (ST	ARD	EMPER- ATURE WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- D SOLVED (PER-	BIO- I CHEM- I ICAL, 5 DAY I	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1	1988	1200	17	178	7.2	9.5	3.7	32	2.0	9	2
FEB	1989	1145	17	269	7.6	2.5	14.4	105	1.1	>2	>2
APR	3	1100	74	238	7.5	7.5	12.4	104	1.6	13	<2
MAY			50	172	7.7	14.5	10.3	101	2.4		
JUL	7		18	160	7.6	21.5	9.3	106	1.2	5	720
AUG		1130	17	155	7.6	19.0	9.4	102	0.9		
•		1130	17	155	7.0	19.0	9.4	102	0.9		
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L AS NA	SOL' (MG	UM, LINI S- LA VED (MG /L AS	TY SULFAT B DIS- G/L SOLVE	DIS- D SOLVE (MG/L	(MG	E, S- VED
	OCT 1988	45	5 12	3.6	12	1	.2 40	16	19	-0	.1
	FEB 1989 15	75		6.1	23			22	42		.1
	APR 13										
	MAY	59		4.7	19		.3 36	16	34		0.1
	18 JUL_	45		3.7	14		.1 26	14	22		0.1
	27 AUG	44		3.5	13		.0 26	13	20		0.1
	21	4	11	3.3	13	1	.0 26	12	20	C	0.1
	DATE	SILICA DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	GE 3 AMMO TOT (MG	RO- GEN, N, MONI NIA ORGA AL TO	ANIC GEN TAL TOTAL G/L (MG/	, PHOROU L TOTAL L (MG/L	JS ORGA TOT	NIČ FAL G/L
	OCT 1988 19 FEB 1989	6.3	94				2 0.8	33	0.06	4.4	
	15 APR	5.6	148	0.010	1.16	0.3	5 0.	75 1.9	0.15	4.0	
	13 MAY	1.5	114	E0.011	0.68	0.0	8 0.5	54 1.2	0.06	3.5	
	18 JUL	0.2	3 83	• ••	••			••		3.7	
	27 AUG	1.8	80	0.017	0.28	3 <0.0	5 0.:	38 0.66	0.03	3.3	
	21	1.8	78	3 <0.003	0.24	4 <0.0	5 0.	28 0.52	0.04	3.1	

01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

		NITRO- GEN,NH4 + ORG. TOT IN	CARBON, INOR- GANIC, TOT IN	CARBON, INORG + ORGANIC TOT. IN	ARSENIC TOTAL IN BOT- TOM MA-	CADMIUM RECOV. FM BOT- TOM MA-	CHRO- MIUM, RECOV. FM BOT-	COBALT, RECOV. FM BOT- TOM MA-	COPPER, RECOV. FM BOT- TOM MA-	IRON, RECOV. FM BOT- TOM MA- TERIAL
DATE	TIME	BOT MAT (MG/KG AS N)	BOT MAT (G/KG AS C)	BOT MAT (GM/KG AS C)	TERIAL (UG/G AS AS)	TERIAL (UG/G AS CD)	TOM MA- TERIAL (UG/G)	TERIAL (UG/G AS CO)	TERIAL (UG/G AS CU)	(UG/G AS FE)
OCT 1988 19	1200	360	1.7	5.2	2	<10	30	10	40	1300
DATE	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 19	80	560	0.34	<1	110	120	<1.0	0.4	12	1.3
DATE	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 19	<1.0	<1.0	0.1	0.6	<0.1	<0.1	<0.1	<0.1	0.2	<0.1
DA	TOT IN E TOM TE TER (UG/	ON, OXY AL CHL OT - TOT. MA - BOT	C- PAR LOR, THI LIN TOT. TTOM BOT ATL. MA	A- TR ON, THI IN TOT. TOM BOT	ON, TOT IN IN E TOM TOM IL. TER	AL TOT SOT- IN E MA- TOM LIAL TER	ON, PER AL THA BOT- IN B MA- TOM RIAL TERI	NE TOT OT- IN B MA- TOM AL TER	NE, THI AL TOT OT- IN B MA- TOM IAL TER	OT- MA- LIAL
OCT 198		0.4	<0.1	×0.1 <	0.1	0.1	×0.1 <1	.00 <10	•	0.1

01387420 RAMAPO RIVER AT SUFFERN, NY

LOCATION.--Lat 41°07'06", long 74°09'38", Rockland County, Hydrologic Unit 02030103, on left bank, 145 ft downstream from highway bridge on New York State Thruway at Suffern, and 1.1 mi upstream from Mahwah River.

DRAINAGE AREA. -- 93.0 mi 2.

PERIOD OF RECORD. -- June 1979 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 264.44 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Flow affected by diversion from Spring Valley Water Company well field upstream from station and by occasional regulation by Lake Sebago.

COOPERATION. -- Figures of pumpage from well field provided by Spring Valley Water Company.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 11 14 15 12	42 128 95 70 144	252 224 203 183 157	57 55 54 47 e45	68 67 69 69	120 107 100 92 92	500 356 328 307 323	86 296 374 244 250	129 143 116 92 80	90 76 64 57 230	29 26 29 26 23	16 14 13 14 14
6 7 8 9	11 11 15 18 18	598 343 214 160 127	141 130 120 108 100	e43 e46 e56 e74 65	59 57 53 e48 e45	118 100 90 80 72	476 449 358 318 274	2330 1930 924 594 654	77 139 318 341 474	417 245 164 111 90	18 17 19 15 13	14 14 13 13
11 12 13 14 15	14 12 12 14 13	109 93 129 227 185	90 78 70 66 64	59 64 95 82 102	e43 e42 e41 47 57	69 71 70 67 69	233 208 199 193 225	1570 1140 714 509 392	351 225 209 217 305	103 77 63 55 48	17 165 294 185 109	13 12 13 15 28
16 17 18 19 20	13 13 13 12	147 204 228 188 704	e60 e54 e50 e47 46	111 95 85 86 86	73 62 56 52 50	77 75 83 91 83	315 279 237 213 187	816 3720 2190 1070 702	468 398 287 221 176	43 45 42 37 41	83 68 51 42 45	30 32 29 56 559
21 22 23 24 25	13 60 63 47 41	1840 948 530 379 299	48 48 48 61 97	78 69 64 61 61	209 510 371 252 196	121 117 98 194 375	167 149 130 117 110	518 398 316 468 494	211 200 195 521 381	59 75 66 49 52	39 33 29 27 23	715 e350 231 167 122
26 27 28 29 30 31	36 32 29 27 26 23	256 231 387 382 293	80 65 65 86 73 63	61 80 76 69 69 71	165 151 132	289 234 211 200 251 446	103 95 89 84 86	340 278 243 196 169 151	272 250 189 146 111		19 16 16 17 19	225 288 215 154 122
MEAN MAX MIN (†)	21.3 63 11 6.4	323 1840 42 11	96.0 252 46 12	69.9 111 43 14	111 510 41 14	137 446 67 14	237 500 84 14	777 3720 86 14	241 521 77 14	83.5 417 24 13	49.4 294 13 10	117 715 12 6.3
STATIST	ICS OF MO	NTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	76.3 218 1988 11.0 1985	171 323 1989 17.1 1985	197 693 1984 29.6 1981	133 290 1982 6.84 1981	228 475 1981 49.7 1980	306 816 1983 128 1981	410 862 1984 77.1 1985	261 777 1989 98.5 1987	119 269 1982 23.4 1987	234 1984 19.6	40.4 133 1986 10.1 1981	70.1 219 1987 12.3 1981
SUMMARY	STATISTI	cs		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
AVERAGE	FLOW				189 12					171		
HIGHEST LOWEST INSTANT INSTANT	ANNUAL ME ANNUAL ME DAILY MEA ANEOUS PE ANEOUS PE ANEOUS LO	AN N AK FLOW AK STAGE			3720 11 4500 10.60	May 17 Oct 1 May 17 May 17 Oct 6			7 7 12 15	300a Apr .38 Apr	30 1981 5 1984	

a From rating curve extended above 5,400 ft³/s

e Estimated

[†] Diversion, in cubic feet per second, by pumpage from well field upstream of gage

01387450 MAHWAH RIVER NEAR SUFFERN, NY

LOCATION.--Lat 41°08'27", long 74°07'01", Rockland County, Hydrologic Unit 02030103, on left bank, 13 ft upstream from bridge on U.S. Highway 202, 2.5 mi northeast of Suffern, and 4.8 mi upstream from mouth.

DRAINAGE AREA. -- 12.3 mi².

PERIOD OF RECORD. -- August 1958 to current year.

REVISED RECORDS. -- WDR NY-79-1: 1977(P). WDR NY-87-1: 1986.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 321.57 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 18, 1976, water-stage recorder at site on right bank 13 ft downstream, at present datum.

REMARKS.--No estimated daily discharges. Records fair. Occasional regulation from unknown source. Telephone gageheight telemeter at station.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.6 4.2 2.3 1.6	10 21 13 10 29	27 24 22 20 19	8.6 8.8 8.8 8.2 6.9	11 11 11 10 9.4	16 15 14 14	49 37 35 33 34	12 61 42 29 36	23 21 18 16 14	11 9.5 8.6 8.0 35	6.1 4.3 5.0 4.1 3.9	2.9 2.8 2.6 2.3 2.3
6 7 8 9 10	1.4 1.2 3.0 2.8 1.9	58 33 24 18 15	17 16 15 14 13	6.5 6.5 8.0 11 9.2	9.1 8.9 8.5 7.8 6.9	17 14 11 11	48 44 37 34 31	323 153 81 56 97	15 22 31 41 69	26 17 13 9.6 8.4	3.5 3.7 4.9 3.3 2.8	2.2 2.1 2.0 1.8 1.8
11 12 13 14 15	1.7 1.6 1.5 1.3	13 11 23 27 22	12 10 9.2 9.1 9.1	8.4 10 19 13 20	6.6 6.7 6.4 8.2	11 11 10 9.8 10	27 24 22 22 24	249 129 82 62 51	40 28 30 27 42	11 7.6 7.1 6.7 5.7	4.4 39 25 14 9.9	1.7 1.5 1.5 1.8 6.9
16 17 18 19 20	1.3 1.5 1.5 1.5 1.5	18 34 29 24 137	8.7 8.0 7.5 7.1 7.0	19 15 13 14 14	13 10 8.4 7.8 7.5	11 10 11 12 10	50 36 29 26 23	211 618 240 116 79	65 46 35 27 22	5.3 6.9 5.8 5.1 8.9	9.8 10 6.8 6.9 8.6	3.0 5.7 3.0 12 55
21 22 23 24 25	1.8 18 6.5 5.1 4.3	216 93 57 42 34	7.5 7.8 7.8 11	9.8 9.7 9.8 9.8	53 60 42 30 24	14 15 12 22 58	22 19 18 17 15	64 52 44 96 69	27 23 22 45 29	12 21 11 7.4 6.1	6.3 5.5 5.1 4.7 4.1	64 31 23 17 12
26 27 28 29 30 31	3.5 2.9 2.7 2.7 2.5 2.5	29 27 57 39 31	12 9.8 11 15 11 9.2	10 14 12 11 11	21 20 18 	37 29 26 24 27 51	15 14 13 13	50 45 37 31 27 25	23 20 17 14 12	8.5 8.4 5.4 5.7 4.5 4.4	3.7 3.5 3.5 3.5 3.5 3.5	31 24 17 13 11
MEAN MAX MIN IN.	2.86 18 1.2 .27	39.8 216 10 3.61	12.7 27 7.0 1.19	11.2 20 6.5 1.05	15.9 60 6.4 1.35	18.0 58 9.8 1.69	27.5 50 13 2.49	105 618 12 9.88	28.8 69 12 2.61	10.0 35 4.4 .94	7.18 39 2.8 .67	11.9 64 1.5 1.08
STATISTI	CS OF MONT	THLY FLO		R PERIOD	OF RECORD,	BY WATER	R YEAR (
MEAN MAX (WY) MIN (WY)	13.2 37.4 1976 1.94 1981	26.4 100 1978 2.31 1965	29.6 88.8 1984 5.72 1981	27.0 103 1979 2.02 1981	33.6 76.2 1970 7.68 1980	45.1 113 1983 15.0 1985	42.9 115 1983 8.14 1985	31.7 105 1989 12.5 1965	17.8 82.7 1972 4.22 1965	10.4 45.4 1984 1.31 1977	8.44 31.8 1960 1.16 1981	10.3 57.3 1971 .68 1980
SUMMARY	STATISTICS	8		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST D INSTANTA INSTANTA	FLOW ANNUAL MEA ANNUAL MEA DAILY MEAN DAILY MEAN ANEOUS PEAN ANEOUS PEAN ANEOUS LOW RUNOFF (INC	TENTON C FLOW C STAGE FLOW			24.3 618 1.2 818 5.91 1.20 26.82	May 17 Oct 7 May 17 May 17 Oct 17			41 11 10 18 9.	.12 Oct 340a Nov .91 Nov .05b Oct		t 4 9

a From rating curve extended above 850 $\rm ft^3/s$ on basis of contracted-opening measurement at gage height 9.91 ft b Result of tempoary pumping from gage pool

01387500 RAMAPO RIVER NEAR MAHWAH, NJ

LOCATION.--Lat 41°05'51", long 74°09'48", Bergen County, Hydrologic Unit 02030103, on left bank 350 ft downstream from State Highway 17, 0.6 mi downstream from Mahwah River, and 1.0 mi west of Mahwah. Water-quality samples collected at bridge, 350 ft upstream from gage, at high flows.

DRAINAGE AREA. -- 120 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1902 to December 1906, September 1922 to current year. October 1902 to February 1905 monthly discharge only, published in WSP 1302. Figures of daily discharge Feb. 10, 1903, to Dec. 31, 1904, published in WSP 97, 125, are unreliable and should not be used. Gage-height records for 1903-14 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 781: 1904(M). WSP 1031: 1938, 1940. WSP 1552: 1923(M), 1924, 1925-26(M), 1927-28, 1933, 1937. WRD-NJ 1971: 1968(M). WDR NJ-82-1: Drainage area. WDR-NJ-87-1: 1986.

GAGE.--Water-stage recorder. Datum of gage is 253.10 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 31, 1906, nonrecording gage on former bridge at site 250 ft downstream at different datum. Sept. 1, 1922 to Dec. 23, 1936, water-stage recorder just below former bridge at present datum.

REMARKS.--No estimated daily discharges. Records fair. Flow affected by diversion from Spring Valley (NY) Water Company well field upstream from station (see station 01387420). Occasional regulation from lakes and ponds upstream from the station. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

	DISCH	HARGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	O SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	84	305	84	97	161	640	122	208	142	59	24
2	30	179	265	80	95	144	488	457	215	122	50	23
3	36	127	235	80	99	134	419	495	187	106	58	21
4	26	91	211	71	98	128	399	318	156	94	48	22
5	22	186	189	74	88	129	390	335	143	361	42	22
6	20	578	174	59	84	163	551	2770	138	535	36	22
7	20	369	163	65	81	136	591	2360	225	306	40	22
8	31	247	152	90	75	112	485	1090	436	206	39	21
9	29	186	140	111	67	107	415	717	471	158	32	21
10	26	147	129	94	60	102	367	847	637	157	29	20
11	23	123	119	84	58	98	311	2010	470	93	54	20
12	21	103	98	103	57	99	272	1410	316		308	18
13	20	166	92	141	61	96	249	876	324		376	19
14	21	270	92	117	71	92	246	645	307		226	31
15	21	214	91	152	86	96	261	528	437		148	54
16	21	173	86	157	105	104	429	1140	632	77	140	58
17	21	264	80	132	87	100	385	4450	520	87	111	56
18	27	275	73	118	74	108	321	2770	387	76	81	38
19	20	221	71	120	69	125	283	1370	301	71	68	140
20	19	827	69	119	71	115	245	905	245	93	70	745
21	26	2220	72	107	307	143	218	686	288	118	58	900
22	119	1120	72	92	657	160	198	553	286		46	450
23	81	622	75	89	478	134	178	468	287		42	300
24	56	455	107	87	324	196	162	711	661		41	224
25	47	362	149	91	247	488	150	689	477		34	164
26 27 28 29 30 31	41 36 34 33 31 30	279 512 459 353	117 96 100 126 107 93	89 110 105 98 98 100	211 196 177	406 318 276 257 281 496	143 131 123 115 120	486 426 373 300 261 235	372 354 249 207 170	77	31 28 27 34 30 27	303 361 245 191 156
MEAN	32.5		127	101	149	178	309	994	337	131	77.8	156
MAX	119		305	157	657	496	640	4450	661	535	376	900
MIN	19		69	59	57	92	115	122	138	48	27	18
IN.	.31		1.22	.97	1.30	1.71	2.88	9.55	3.13	1.26	.75	1.45
STATIS	STICS OF	MONTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	141 954 1904 13.8 1942	223 736 1978 24.4 1965	272 873 1984 43.4 1981	260 877 1979 16.5 1981	283 701 1970 70.8 1980	445 1151 1936 144 1985	408 1055 1984 88.4 1985	262 994 1989 79.5 1905	154 735 1972 37.0 1957	602 1945 21.9	102 755 1955 13.5 1981	113 478 1927 11.1 1964

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN	248	230 461 1903 99.5 1985
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	4450 May 17 18 Sep 12	8920 Oct 9 1903 6.1b Sep 30 1981
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	5230 May 17 9.36 May 17 17 Sep 12	15500a Apr 5 1984 13.35 Apr 5 1984 4.6b Sep 30 1981
ANNUAL RUNOFF (INCHES) 10 PERCENTILE 50 PERCENTILE	28.10 510 125	26.01 517 138
95 PERCENTILE	23	22

a From rating curve extended above 1,400 \mbox{ft}^3/\mbox{s} b Possible regulation

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT DISCHARGE: February 1964 to June 1965.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM	(S	PH TAND- ARD ITS)	TEMP ATU WAT (DEC	JRE Ter s	YGEN, DIS- OLVED MG/L)	OXYGE DIS SOLV (PER CEN SATU	ED BE-CIT I	YGEN MAND, IO- HEM- CAL, DAY MG/L)	FORM FEC/ EC BROT (MP)	1, AL, S TH I	STREP- DCOCCI FECAL (MPN)
OCT 1	1988 7	1030	22	57	8	7.7	13	3.0	8.1	7	7	3.0	2200		490
FEB	1989 7	1100	82	35		8.0		2.0	14.0	10		6.6	49		5
APR	2	1230	270	25	0	8.2	8	3.5	13.8	11	8	2.4	170		40
JUN 1	2	1130	324	23	5	7.9		7.0	9.5	9	9	1.8	490		170
JUL 2	6	1200	76	34	5	7.9	23	3.0	9.3	11	0	5.7	2400	>2	400
AUG	0	1100	30	46	0	7.7	20	0.5	7.7	8	37	1.2	500	!	500
	DATE	HARI NESS TOT/ (MG/ AS CACO	S CALC AL DIS /L SOL (MG	IUM ;- VED S	AGNE- SIUM, DIS- OLVED MG/L S MG)	(MG	ED /L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINI	TY S B /L	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS SOL (MG	E, VED	FLUO- RIDE, DIS- SOLVEI (MG/L AS F))
	OCT 1988 17	,	140 37		11	55		3.3	93		28	94		0.1	
	FEB 1989 07		88 24		6.9	33		1.4	60		20	57	,	0.1	
	APR 12		63 17	•	4.9	22		1.0	40		15	38	3	0.1	
	JUN 12		66 18	3	5.1	19		1.1	47		14	33	3	0.1	
	JUL 26		99 27	,	7.6	29		1.7	71		18	49		0.1	
	AUG 30		130 36	•	10	44		2.2	94		22	67	7	0.1	
	DATE	SILIO DIS SOLV (MG, AS SIO	CONS VED TUEN VL DI SOL	OF NOTI- ITS, NI S- I	ITRO- GEN, TRITE OTAL MG/L S N)	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONI	AM- A + NIC AL	NITRO- GEN, TOTAL (MG/L AS N)	PHO PHOF TOT (MC	ROUS (FAL G/L	CARBON ORGANI TOTAL (MG/L AS C)	
	OCT_1988		•	202	0 047	_		0.40		•				7.0	
	17 FEB 1989		.0	292	0.213	-	40	0.12		84	4.2	0.5		3.9	
	07 APR		.8	185	0.020		19	0.79	1.		2.2	0.1		2.4	
	12 JUN 12		.7	127	0.009		70	0.16		47 50	0.91	0.0		2.7	
	JUL 26		.1	126	0.031		79 57	0.15		58 47	1.4	0.1		4.4	
	AUG 30		.8 .4	183 247	0.047		54 75	0.13		63 50	2.2	0.1		4.3 3.2	
	30	,	• •	C41	0.030	١.	13	0.12	0.	50	2.5	0.2		٦.٢	

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

DATE	TIME (GEI + (LFIDE TO DTAL BO MG/L (I	N,NH4 IN ORG. G/ T IN TO T MAT BO MG/KG ((NOR- IN ANIC, OR I IN TO I MAT BO G/KG (G	RBON, ORG + GANIC T. IN T MAT M/KG S C)	SOLVED T	ī	RSENIC TOTAL N BOT- OM MA- TERIAL (UG/G AS AS)	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	ADMIUM TOTAL F	ADMIUM RECOV. M BOT- OM MA- TERIAL (UG/G AS CD)
OCT 1988	1030	'	500	0.1	37		••	4				<10
JUN 1989 12	1130	<0.5			·	20	<1	••	<10	30	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	TOTAL RECOV RECOV REABLI (UG/L	E TERIAL (UG/G	TOTAL RECOV- ERABLE (UG/L	NESE, RECOV. FM BOT- TOM MA- TERIAL	
OCT 1988 17		7	<50		10)	3700		20		160)
JUN 1989 12	1			4		460	••		3	70) ,	~
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOVERABLE (UG/L AS ZN)	TERIA (UG/G	- L PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA	
OCT 1988 17		0.06		10	tv ti bi	<1		6	n	20	<1.0	1
JUN 1989 12	0.10		3		<		<10		· <1			ė.
							14.1		34	8 # b	Ĺž.	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT TOM MA TERIA (UG/KG	TOM MA-	DI- ELDRIN TOTAL IN BOT TOM MA TERIAI (UG/KG	TOTAL IN BOT TOM MA TERIA	TOTAL - IN BOT TOM MA- L TERIAL	IN BOT TOM MA	TOTAL IN BOT TOM MA	
OCT 1988 17	<0.1	9.0	<0.1	<1.0	<0.	1 0.1	0.	2 <0.	1 <0.1	ا <0.'	· <0.	1
JUN 1989 12							f		2.5			
						* 1						
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION TOT. II BOTTO MATL (UG/KG	Ń TOT. IŃ M BOTTOM . MATL.	MIREX TOTAL IN BOT TOM MA TERIA (UG/KG	TOTAL - IN BOT - TOM MA L TERIA	THANE IN BOT TOM MA L TERIAL	TOM MA	TOTAL IN BOT TOM MA TERIA	
OCT 1988 17	0.1	<0.1	<0.1	<0.1	<0.	1 <0.1	<0.	1 <0.	1 <1.00	<10	<0.	1
JUN 1989 12	,			•••			PS ••				• • •	

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ

LOCATION.--Lat 40°59'33", long 74°16'44", Passaic County, Hydrologic Unit 02030103, on right end of dam at pumping station in Pompton Lakes, 700 ft upstream of bridge on Paterson-Hamburg Turnpike, and 2.0 mi upstream from mouth. Water samples collected upstream of dam at water supply intake, on right bank. Water-quality monitor is 300 ft downstream of dam.

DRAINAGE AREA. -- 160 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year.

REVISED RECORDS.--WSP 1552: 1922(M), 1924-25, 1929-31(M), 1934-35(M). WRD-NJ 1970: 1968-69. WRD-NJ 1988: 1984(M).

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 190.96 ft above National Geodetic Vertical Datum of 1929. Prior to October 1, 1981, at datum 10.00 ft higher.

REMARKS.--Records good. Diversion by North Jersey District Water Supply Commission to Wanaque Reservoir since December 1953 (see Passaic River basin, diversions) and to Oradell Reservoir by Hackensack Water Company since February 1985 (see Hackensack River basin, diversions) for municipal supply. Slight regulation by Pompton Lake, capacity, 300,000,000 gal. Several measurements of water temperature were made during the year. Satellite telemeter at station.

		DIS	SCHARGE,	IN	CUBIC	FEET	PER	SECOND,	WATER	YEAR	ОСТОВ	ER 1	1988	то	SEPTEMBER	1989	, MEAN	VALUES	
DAY		OCT	NOV		DEC		JAN	FE	В	MAR	A	PR		MAY	JUN		JUL	AUG	SEP
1 2 3 4 5		34 37 55 48 39	87 219 184 136 195		408 346 310 279 249		115 111 108 106 71	14 13 14 14 12	6	222 197 182 169 175	6	95 60 51 27 32		172 533 709 477 396	298 281 270 230 202		224 193 169 148 323	78 76 98 77 68	44 42 39 38 36
6 7 8 9 10		36 33 46 48 46	529 348 262 214	4.	230 214 206 196 188		91 87 109 153 137	12 11 11 10 9	8	212 188 140 144 136	65	76 61 41 47 88	2	240 2910 1530 993 970	201 252 481 539 782		728 454 313 241 202	59 55 56 53 49	38 38 38 36 34
11 12 13 14 15		41 34 33 32 33	186 161 185 325 281	,	171 140 126 127 126		124 135 215 189 223	8	0 88 85 95 22	131 138 122 117 118	3	18 68 38 35 47	1	2130 1870 1210 919 749	471		236 184 152 134 119	57 298 569 365 264	32 31 30 31 60
16 17 18 19 20		31 32 31 36 32	233 330 372 302 822		115 110 99 97 86		245 209 186 182 182	15 13 11 10	8 6 7	125 122 131 164 149	5 4 4	07 53 62 00 57	3	1140 4420 3770 1870 1210	739 552 430		110 124 112 101 111	185 212 140 121 108	63 96 64 114 940
21 22 23 24 25		35 154 131 95 79	2300 1490 847 604 475		87 90 94 127 210	l	167 141 140 133 129	31 82 66 46 35	27 55 57	183 204 182 226 619	2	20 92 64 46 57		908 712 606 866 901	412		159 143 165 127 107	98 81 70 69 59	1320 731 458 347 253
26 27 28 29 30 31		65 60 54 50 48 47	403 360 642 610 474		165 132 128 167 150 129	- 1	135 152 155 144 142 144	30 27 25	50	569 446 386 350 361 620	2 1 1 1	35 08 86 73 74		665 559 508 410 358 337	613 402 323 264		109 93 90 75 70 70	53 49 48 48 52 48	325 479 346 270 223
MEAN MAX MIN		50.8 154 31	476 2300 87)	171 408 86	3	147 245 71	82		233 620 117	4 7 1	24 95 73		1195 4420 172	862	1.75	180 728 70	118 569 48	220 1320 30
STATIS	TIC	S OF	MONTHLY	FLC	W DATA	FOR	PERI	OD OF RE	CORD,	BY WA	TER YE	AR	(WY)						
MEAN MAX (WY) MIN (WY)		145 1154 1956 13.6 1981	266 956 1933 22.1	3	318 1135 1984 12.8 1981		314 1035 1979 27.5 1981	197 83	38 70	553 1670 1936 67.8 1985	19 24	65 83 .8		353 1195 1989 72.0 1965	1972		138 895 1945 5.89 1985	136 889 1955 6.17 1985	148 725 1927 10.8 1964
SUMMAR	RY S	STATIS	TICS					FOR 1989	WATER	YEAR					FOR	PERI	OD OF	RECORD	
INSTAN	T AN T DA T DA T DA T DA T DA T DA T DA T DA	ANNUAL INUAL DAILY AILY M IEOUS IEOUS IEOUS ITILE ITILE	MEAN MEAN MEAN IEAN PEAK FL PEAK ST. LOW FLO	AGE				5! 12	420 30 510 .77 27 686 180 36	May Sep May May Oct	13 17				10	287 512 73.1 0400 .00 6400 6.21a .00 679 164 28	Mar Oct Apr Apr	5 1984	

a From gage well, outside high-water marks at 15.33 ft

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923, 1962-67, 1982, 1987 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: April to September 1989. WATER TEMPERATURE: April to September 1989. DISSOLVED OXYGEN: April to September 1989.

INSTRUMENTATION. -- Water-quality monitor since April 1989. Data recorded at hourly intervals.

REMARKS.--Discrete water-quality samples were collected upstream of dam at water supply intake, on right bank.

Water-quality monitor is 300 ft downstream of dam. Interruptions in the daily record were due to malfunctions of the instrument.

EXTREMES FOR CURRENT YEAR...
WATER TEMPERATURE: Maximum, 29.5°C, July 26; minimum, 7.0°C, Apr. 2.
DISSOLVED OXYGEN: Maximum, 11.9 mg/L, Apr. 2; minimum, 6.0 mg/L, Aug. 7.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L	NESS TOTAL (MG/L AS	CALC DIS SOL' (MG)	- DIS VED SOLV /L (MG/	M, SODIUM, - DIS- ED SOLVED L (MG/L
OCT 1988 20	1430	31	401	8.8	13.0	9.6	91	4.2	130	35	10	37
NOV 17	1130	308	251	7.6	9.0	10.8	94	3.6		19	5.6	
DEC 14	1415	126	299	7.6	2.0	12.8	93	3.0		23	6.6	
JAN 1989	1330	182	369		2.5	12.2	89	2.8		23	6.7	39
16	1300	165	345	8.1	2.5	12.6	91	3.9	100	27	7.9	29
MAR 22	1130	209	350	8.4	8.0	12.7	107	5.3	90	25	6.8	31
APR 14	1300	329	245	8.0	9.0	12.7	110	6.0	66	18	5.0	20
MAY 25	1330	916	250	7.7	16.0	7.7	79	3.9	69	19	5.3	19
JUN 13 27 JUL	1300 1330	531 571	210 205	7.8 7.6	20.0 25.0	8.9 11.4	101 140	3.0 1.5	64 61	18 17	4.7	
20 AUG	1430	118	306	8.0	24.0	9.2	111	1.9	91	25	6.9	23
15 SEP	1000	276	280	7.7	21.5	7.1	81	1.2	81	22	6.3	22
15	1130 1200	66 266	358 245		23.5 15.0	13.2 8.6	157 86	6.6 2.1	100 62		8.5 4.7	30 7 18
DATE	SI DI SOL (MO	IUM, LIN IS- L LVED (M G/L A	AB DI G/L SO S (M	FATE RI S- DI LVED SC G/L (1	IDE, RI IS- E DLVED SC IG/L (N	IDE, DI DIS- SC DLVED (M MG/L A	ICA, SUM S- CON DLVED TUE IG/L D IS_ SC	ISTI- ENTS, NI DIS- T DLVED (IITRO- GEN, NI TRITE TOTAL S MG/L (ITRO- GEN, TRITE DIS- OLVED MG/L S N)	NITRO- GEN, N NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT 1988 20	•	1.8 86	2	4	51	0.1 3	8.8	228 0	0.030 0	.030	0.800	0.820
NOV 17	(0.6 44	1	8 :	33	0.1 7	. .3	132	0.010 0	.010	0.700	0.720
DEC 14 JAN 1989	•	1.2 55	1	9 :	39	0.1 8	3.8	156	0.050 0	.040	1.00	0.860
18 FEB	•	1.7 53	1	8	71	0.1	.5	203 0	0.030 0	.020	1.00	1.10
16 MAR	•	1.6 63	2	0 !	56	0.1 5	.4	191 (0.020 0	.040	1.40	1.40
22 APR		1.5 55	2	0 !	59	0.1 3	8.8	184 (0.030 0	.040	1.00	0.960
14 MAY	(0.9 40	1	4	36	0.1 4	.9	126	0.010 0	.010	0.500	0.570
25 JUN	•	1.1 45	1	5	31	0.1 7	7.6	128 (0.020 0	.020	0.600	0.660
13 27 JUL		1.1 44 1.1 41	1	3	29 25	0.1 6 0.1 7		119 (112 (0.030 0 0.030 0	.030	0.600 0.600	0.660 0.620
20 AUG		1.4 64		5	41	0.1 7	7.2	161 (0.020 0	.020	0.600	0.560
15 SEP	,	1.6 57	1	5 :	36	0.1	5.3			.020	0.900	0.850
15 29		1.6 71 1.3 43	2 1	0 4	53 27	0.1 5 0.1 8	3.2	189 <0 119 (0.010 <0 0.020 0	.010 .020	<0.100 0.800	<0.100 0.740

PASSAIC RIVER BASIN
01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)
OCT 1988 20	0.030	0.020	0.50	0.30	1.3	0.030	0.020	0.030	0.020	2.3	1.0
NOV 17	0.090	0.090	0.60	0.50	1.3	0.120	0.070	0.070	0.060	2.6	0.6
DEC 14	0.100	0.070	0.50	0.50	1.5	0.070	0.050	0.060	0.040	2.0	0.5
JAN 1989 18	0.180	0.200	0.70	0.70	1.7	0.090	0.060	0.070	0.050	2.7	0.5
FEB 16 MAR	0.080	0.040	0.40	0.40	1.8	0.110	0.070	0.080	0.050	2.3	0.4
22 APR	0.040	0.030	0.80	0.20	1.8	0.100	0.020	0.030	0.010		••
14 MAY	0.040	0.030	0.50	<0.20	1.0	0.040	0.040	0.020	0.020	2.3	0.3
25 JUN	0.100	0.110	0.50	0.40	1.1	0.070	0.030	0.030	0.030	2.5	0.1
13 27	0.020 0.060	0.030	0.60	0.70 0.40	1.2	0.050 0.060	0.030	0.040	0.030 0.040	3.7 4.0	0.5
JUL 20 AUG	0.060	0.060	0.70	0.40	1.3	0.060	0.020	0.020	<0.010	3.8	0.9
15 SEP	0.130	0.120	1.0	0.60	1.9	0.130	0.040	0.070	0.050	3.3	1.0
15	0.020 0.050	<0.010 0.060	1.5 0.50	0.40 0.40	1.3	0.070 0.120	<0.010 0.030	0.020 0.070	<0.010 0.020	3.6 3.8	4.0 0.8

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER				JANUARY	
1												• • •	
2 3 4 5	•••	•••						•••	• • •			•••	
5								•••				•••	
3		•••	•••	•••		•••		•••	•••				•••
6													
	• • •	•••			•••	• • •	•••	•••					
8 9								•••					
1Ó					•••			•••				•••	
11								•••					
12			• • • •			• • •					• • •		
13 14													
15									•••				
16													
17					• • •								1
18 19			• • •								•••		
20						•••						•••	
		•••	•••	•••	•••		•••					•••	
21 22 23 24 25			•••		• • • •								
22					•••	•••							•••
23													
25			•••		•••				• • •				•••
26					•••	•••		•••				•••	
26 27 28 29 30			•••	• • •	•••								•••
28					•••							•••	
30					•••								383
31		•••		•••	•••							•••	
MONTH	•••		•••			•••							•••
										43-50			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN	MEAN	MAX	MIN APRIL			MAX	MIN	MEAN
	MAX							APRIL	MEAN			MAY	
1		FEBRUAR	r	MAX	MARCH	MEAN	271	APRIL 244	MEAN			MAY 302	318
1		FEBRUAR	::: ::::		MARCH		271 241 222	APRIL 244 217 214	MEAN 255 228 218		337 333 282	MAY	318 298 267
1	, ,,	FEBRUAR'	·		MARCH		271 241 222 220	APRIL 244 217 214 214	255 228 218 216		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5		FEBRUAR	::: ::::		MARCH		271 241 222 220 223	244 217 214 214 209	255 228 218 216 216		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5	·	FEBRUAR'			MARCH	:::	271 241 222 220 223	244 217 214 214 209	255 228 218 216 216		337 333 282	MAY 302 283 244	318 298 267
123345		FEBRUAR	:::		MARCH	:::	271 241 222 220 223 234 229	APRIL 244 217 214 214 209 221 218	255 228 218 216 216 216		337 333 282	MAY 302 283 244	318 298 267
12345 6789		FEBRUAR			MARCH	:::	271 241 222 220 223 234 229 232	APRIL 244 217 214 214 209 221 218 218	255 228 218 216 216 226 223 225		337 333 282	MAY 302 283 244	318 298 267
123345		FEBRUAR*			MARCH		271 241 222 220 223 234 229	APRIL 244 217 214 214 209 221 218	255 228 218 216 216 216		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10		FEBRUAR			MARCH	:::	271 241 222 220 223 234 229 232 237 238	244 217 214 219 221 218 218 220 226	255 228 218 216 216 223 225 227 231		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10		FEBRUAR*			MARCH	:::	271 241 222 220 223 234 229 232 237 238 241 241	244 217 214 219 221 218 218 220 226	255 228 218 216 216 223 225 227 231 232 237		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10		FEBRUAR*			MARCH		271 241 222 220 223 234 229 237 238 241 241 242	244 217 214 219 221 218 218 220 226	255 228 218 216 216 223 225 227 231 232 237 237 238		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9		FEBRUAR*			MARCH		271 241 222 220 223 234 229 232 237 238 241 241	244 217 214 219 221 218 218 220 226	255 228 218 216 216 223 225 227 231 232 237		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUAR			MARCH		271 241 222 220 223 234 229 232 237 238 241 241 242 262 253	244 217 214 219 221 218 218 220 226 227 232 234 239 237	255 228 218 216 216 223 225 227 231 232 237 238 245 245		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUAR*			MARCH		271 241 222 220 223 234 229 232 237 238 241 242 262 253	244 217 214 219 221 218 218 220 226 227 232 234 239 237	255 228 218 216 216 223 225 227 231 232 237 238 245 245		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 13 4 15 16 17		FEBRUAR			MARCH		271 241 222 220 223 234 229 232 237 238 241 241 242 262 253	244 217 214 219 221 218 218 220 226 227 232 234 239 237	MEAN 255 228 218 216 216 226 223 225 227 231 232 237 238 245 245 245		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 7 18 19		FEBRUAR*			MARCH		271 241 222 220 223 234 239 232 237 238 241 242 262 253 261 260 261	APRIL 244 217 214 219 221 218 218 220 226 227 232 234 239 237 245 234 222 250	255 228 218 216 216 223 225 227 231 232 237 237 245 245 245 245 243 253		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 19 20		FEBRUAR*			MARCH		271 241 222 223 234 229 232 237 238 241 241 242 262 253 261 260 261 254	244 217 214 219 221 218 218 218 220 226 227 232 234 239 237 245 245 247	MEAN 255 228 218 216 216 226 223 225 227 231 232 237 238 245 245 245		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 19 20		FEBRUAR'			MARCH		271 241 222 223 234 229 232 237 238 241 241 242 262 253 261 260 261 254	244 217 214 219 221 218 218 218 220 226 227 232 234 239 237 245 245 247	255 228 218 216 216 223 225 227 231 232 237 238 245 245 252 247 243 253 251		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 19 20		FEBRUAR*			MARCH		271 241 222 220 223 234 232 237 238 241 242 262 253 261 260 261 254 257	APRIL 244 217 214 219 221 218 218 220 226 227 232 234 239 237 245 2250 2247	255 228 216 216 225 227 231 232 237 232 247 243 245 247 243 253 251 247 247 243 253 251		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 19 20		FEBRUAR'			MARCH		271 241 222 220 223 234 229 232 237 238 241 241 242 262 253 261 261 254 257 273 283	APRIL 244 217 214 219 221 218 218 220 226 227 232 234 239 237 245 2250 2247	255 228 216 216 223 225 227 231 232 237 238 245 245 252 247 253 251 247 260 266 266		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 7 18 19		FEBRUAR'			MARCH		271 241 222 220 223 234 232 237 238 241 242 262 253 261 260 261 254 257	244 217 214 219 221 218 218 218 220 226 227 232 234 239 237 245 245 247	255 228 216 216 225 227 231 232 237 232 247 243 245 247 243 253 251 247 247 247 247 247 247 247 247 247		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 3 4 5 16 17 8 9 20 21 22 3 4 5 25		FEBRUAR'			MARCH		271 241 222 220 223 234 229 232 237 238 241 242 262 253 261 260 261 254 257 273 283 282 292	APRIL 244 217 214 219 221 218 218 220 226 227 232 234 239 237 245 234 2250 247 241 250 249 235 247	255 228 218 216 216 225 227 231 232 237 238 245 245 247 243 253 251 247 243 253 251 247 243 251 251 260 262 264		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 3 4 5 16 17 8 9 20 21 22 3 4 5 25		FEBRUAR'			MARCH		271 241 222 220 233 234 229 232 237 238 241 242 262 253 261 254 257 273 283 282 292 287 302	APRIL 244 217 214 219 221 218 218 220 226 227 232 234 239 237 245 241 250 247 241 250 247 241 250 247 264	255 228 216 216 226 227 237 237 237 237 245 245 252 247 260 262 264 275 264 275 275 275 275 275 275 275 275 275 275		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 3 4 5 16 17 8 9 20 21 22 3 4 5 25		FEBRUAR'			MARCH		271 241 222 220 223 234 232 237 238 241 242 262 253 261 261 254 257 283 282 292 287 283 282 292 292 293 203 203 203 203 203 203 203 203 203 20	APRIL 244 217 214 219 221 218 218 220 226 227 232 234 239 237 245 2250 247 241 250 249 235 247 264 288	255 228 216 216 225 227 231 232 237 238 245 245 252 247 243 253 251 247 260 262 254 264 275 264 275 264 275 266 275 275 275 276 276 276 276 276 276 276 276 276 276		337 333 282	MAY 302 283 244	318 298 267
123345 678910 1123345 1678920 2122345 2678920		FEBRUAR'			MARCH		271 241 222 220 223 234 229 232 237 238 241 242 262 253 261 260 261 254 257 273 283 282 292 287 302 317	APRIL 244 217 214 219 221 218 218 220 226 227 232 234 239 237 245 234 2250 247 241 250 247 264 288 302	MEAN 255 228 218 216 226 225 227 231 232 237 238 245 245 252 247 243 253 251 247 260 262 256 264 275 290 309		337 333 282	MAY 302 283 244	318 298 267
1 2 3 4 5 6 7 8 9 10 11 23 3 4 5 16 17 8 9 20 21 22 3 4 5 25		FEBRUAR'			MARCH		271 241 222 220 223 234 232 237 238 241 242 262 253 261 261 254 257 283 282 292 287 283 282 292 292 293 203 203 203 203 203 203 203 203 203 20	APRIL 244 217 214 219 221 218 218 220 226 227 232 234 239 237 245 2250 247 241 250 249 235 247 264 288	255 228 216 216 225 227 231 232 237 238 245 245 252 247 243 253 251 247 260 262 254 264 275 264 275 264 275 266 275 275 275 276 276 276 276 276 276 276 276 276 276		337 333 282	MAY 302 283 244	318 298 267

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE				JULY			AUGUST			SEPTEMBER	1
1								364		353	354	344	349
1 2 3 4	•••	•••						360	339 342	353 354	354 369	344 346	349 357
3					290 310	255 271	270 288	374 369	350 355	362 362	368 361	355 355 353	362 358 359
5		•••	•••		322	255	274	369 374	360	367	365	353	359
6	•••	•••	•••		282 259 239	251 239 227 231 239	271 248	383 367 375 376	354 355 356 358	369 361	372 367 372 395 403	355 361 362 367	361 363 366 378 391
6 7 8 9					259	239	248 232	367 375	355	361 363	367 372	361 362	365
9		• • •			263	231	244	376	358	367	395	367	378
10					275	239	251	396	365	380	403	382	391
11		• • •			263 275	243 251 259 255 255	254 263	381 379	366	373 367	414 416 412 399 419	390 400	400
12					306	251	263	379 360	354	367 351	416 412	305	406 400
11 12 13 14 15					306 298 286	255	272 274 272	369 329 291	366 354 325 278 263	306 279	399	395 389 394	396 406
												394	406
16 17	239 239 255 239 278	220 216	229 226 233 230 243		325 275 282 306 318	267 263 267 278	281 269	300 309 299 283 294	276 275 273 268 268	286 288	421 436	413 416	417
18	255	216	233		282	263 267	269 274	309 299	273	288	436	430	441
18 19 20	239	224 220 231	230		306	278	292 310	283	268	287 273	447 450 428	430 407 279	426 441 428 384
						306				280			
21 22 23 24 25	271 286 282 275 259	235 231	258 264 267 258 225		315 335 362 361 355	298 315	306 327	305 293 303	273 276	279 284 292	283 210 222 221 216	211 203	241 207
23	282	259	267		362	325	339	303	275	292	222	208	213
24	275	259 227 204	258		361	325 335 335	348 347	302 307	275 287 292	294 299	221	208 209 208	213 215 212
26 27 28 29 30	247	196	211 212		371 361	340	355 353	308	297	302	225 226 228 233	214 222 219	218 224 224 226 231
28	224 247	204 212	230		368 375	349	361	307	302 304	305	228	219	224
29	• • • •	• • • •			375	357	366	329	304	316	233	223	226
31	259	220	234		356 361	340 348 349 357 347 341	351 347	346 356	311 337	333 345	236	227	231
MONTH					375	227	298	396	263	326	450	203	332
			TEMPER	ATURE,	WATER	(DEG. C)	WATER	YEAR OCTOBER	1988 TO	SEPTEMBEI	R 1989		
DAY	MAX	MIN		ATURE,								MIN	MEAN
DAY	MAX		MEAN	ATURE,	MAX	MIN	MEAN	YEAR OCTOBER	MIN	MEAN	R 1989 MAX	MIN	MEAN
		OCTOBER	MEAN	ATURE,		MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1	MAX			ATURE,		MIN	MEAN		MIN	MEAN			
1		OCTOBER	MEAN	ATURE,		MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	:::
1 2 3 4 5		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	:::
12345		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
12345 6789		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	:::
1 2 3 4 5 6 7 8 9		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 10		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13 14		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 13		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 23 45 67 8 90 11 123 134 15 16 17		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 16 7 8 9 10 11 12 3 4 5 16 7 8 9 10 11 12 3 4 5 16 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
12345 678910 112345 16718 190		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
12345 678910 112345 16718 190		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
12345 678910 112345 16718 190		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
12345 678910 112345 1678920 212234		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 16 7 8 9 10 11 12 3 4 5 16 7 8 9 10 11 12 3 4 5 16 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
12345 678910 112345 1678920 2122345 26		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 10 11 21 3 4 5 16 7 8 9 10 11 21 3 4 5 16 7 8 9 20 21 22 3 4 2 5 2 6 7		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 17 8 9 0 2 2 2 3 4 5 2 6 7 8 9 0 12 3 4 5 2 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 2 3 4 5 1 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
12345 67890 112345 167890 112345 167890 122345 267890		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 17 8 9 0 2 2 2 3 4 5 2 6 7 8 9 0 12 3 4 5 2 6 7 8 9 0 12 3 4 5 1 6 7 8 9 0 12 3 4 7 8 9 0 12		OCTOBER	MEAN	ATURE,	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	JANUARY	

> 01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	•		MARCH			APRIL			MAY	
1							9.0	7.5	8.0	15.0	14.5	15.0
2 3							7.5 8.0	7.0 7.5	7.5 7.5	14.5 13.5	13.5 13.0	14.0 13.0
4	• • •	• • •	• • •	• • •			8.0	7.5	8.0	14.0	12.5 13.5	13.0
5							9.5	8.0	9.0	14.0		13.5
6				• • •			9.5	9.5	9.5	14.0	13.0 13.5	13.5 14.0
7							9.5 9.5	9.0 8.5	9.0	14.0 13.5	12.0	12.5
9			• • •				9.5 9.5	9.0	9.5	12.0 12.0	11.5 11.0	12.0 11.5
10	•••		•••	•••		•••		9.0	9.0			
11			•••				9.0 9.0	8.0 8.5	8.5 8.5	11.0 11.0	10.0 10.0	10.5
12 13			•••	•••	•••	•••	9.0	8.5	9.0	12.0	11.0	10.5 11.5 12.5
14 15	•••		• • •	•••	•••		9.5	8.5	8.5	13.0	12.0 12.5	12.5 13.0
15	•••		•••	•••			9.5	9.0	9.0	14.0		
16					•••		9.0	8.5	8.5 9.0	14.0 14.5	13.5 13.0	14.0 14.0
17 18				•••	•••		10.0 12.0	8.0 10.0	11.0	16.0	14.0	15.0
19		•••	•••	• • •			12.5	11.5	12.0	17.0	15.5	15.0 16.5 17.0
20			•••		•••	•••	13.5	12.0	12.5	18.0	16.5	
21		• • •	• • •	•••	•••		13.5	12.5 11.5	13.0	19.0	17.5	18.0
22			•••	•••			13.0 12.0	11.5 11.0	12.5 11.5	19.5 18.5	17.5 17.5	18.5 18.0
21 22 23 24 25					•••		12.0	10.5	11.5	17.5 17.5	16.0	16.5
25	•••	•••	•••	•••	•••	•••	12.0	11.5	11.5	17.5	15.5	16.5
26 27	•••	• • •					13.5	11.5	12.5	18.5	17.5	18.0
27 28							14.5	12.5	13.5	18.5 18.0	18.0 17.0	18.5 17.5
29	•••						15.5 14.5	13.0 13.5	14.0 14.0	18.5	17.5	18.0
30	•••	•••	• • •	•••	•••	•••	16.0	13.5	14.5	18.5	18.0	18.5
31				•••	•••	•••	• • •	•••	•••	20.0	18.0	18.5
MONTH			•••	•••			16.0	7.0	10.5	20.0	10.0	15.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
1			MEAN	MAX		MEAN	25.5	AUGUST	24.5	24.0	SEPTEMBE	R
1		JUNE			JULY	:::	25.5 24.0	AUGUST 23.5 23.5	24.5 24.0	24.0 24.5	23.0 23.0	R
1	23.5	JUNE 21.5	22.5	27.0	JULY	25.5	25.5 24.0 27.0	AUGUST 23.5 23.5 24.0	24.5 24.0 25.0	24.0 24.5 24.0	23.0 23.0 23.0 23.0	R
		JUNE			JULY	:::	25.5 24.0	AUGUST 23.5 23.5	24.5 24.0	24.0 24.5	23.0 23.0	
1 2 3 4 5	23.5 24.5 24.0	JUNE 21.5 21.5 22.5	22.5 23.0 23.0	27.0 26.0 24.5	JULY 24.5 24.5 23.5	25.5 25.0 24.5	25.5 24.0 27.0 26.5 28.5	23.5 23.5 24.0 25.5 25.5	24.5 24.0 25.0 25.5 27.0	24.0 24.5 24.0 23.5 23.0	23.0 23.0 23.0 23.0 22.5 21.5	23.5 23.5 23.5 23.0 22.5
12345	23.5 24.5 24.0 22.5 22.0	JUNE 21.5 21.5 22.5 22.0 20.0	22.5 23.0 23.0 22.5 21.0	27.0 26.0 24.5 23.5 25.0	JULY 24.5 24.5 23.5 22.0 22.0	25.5 25.0 24.5 22.5 23.0	25.5 24.0 27.0 26.5 28.5 28.0	23.5 23.5 24.0 25.5 25.5 27.5	24.5 24.0 25.0 25.5 27.0 27.5	24.0 24.5 24.0 23.5 23.0	23.0 23.0 23.0 23.0 22.5 21.5 21.0 21.0	23.5 23.5 23.5 23.0 22.5
1 2 3 4 5 6 7 8	23.5 24.5 24.0 22.5 22.0 20.0	JUNE 21.5 21.5 22.5 22.0 20.0 19.0	22.5 23.0 23.0 22.5 21.0	27.0 26.0 24.5 23.5 25.5	JULY 24.5 24.5 23.5 22.0 22.0 23.5	25.5 25.0 24.5 22.5 23.0 24.5	25.5 24.0 27.0 26.5 28.5 28.0 28.0	23.5 23.5 24.0 25.5 25.5 27.5 27.0 25.5	24.5 24.0 25.0 25.5 27.0 27.5 27.5	24.0 24.5 24.0 23.5 23.0 23.0 22.5	23.0 23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.0	23.5 23.5 23.5 23.0 22.5
12345	23.5 24.5 24.0 22.5 22.0	JUNE 21.5 21.5 22.5 22.0 20.0	22.5 23.0 23.0 22.5 21.0	27.0 26.0 24.5 23.5 25.0	JULY 24.5 24.5 23.5 22.0 22.0	25.5 25.0 24.5 22.5 23.0	25.5 24.0 27.0 26.5 28.5 28.0	23.5 23.5 24.0 25.5 25.5 27.5	24.5 24.0 25.0 25.5 27.0 27.5	24.0 24.5 24.0 23.5 23.0	23.0 23.0 23.0 23.0 22.5 21.5 21.0 21.0	R
123345 67899	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5	22.5 23.0 23.0 22.5 21.0 19.5 19.5	27.0 26.0 24.5 23.5 25.0 25.5 25.0	JULY 24.5 24.5 23.5 22.0 22.0 23.5 24.0 24.0	25.5 25.0 24.5 22.5 23.0 24.5 24.5 25.0	25.5 24.0 27.0 26.5 28.5 28.0 27.0 26.0 25.5	23.5 23.5 24.0 25.5 25.5 27.5 27.0 25.5 24.5 24.0	24.5 24.0 25.5 27.0 27.5 27.5 26.0 25.5 25.0	24.0 24.5 24.0 23.5 23.0 23.0 22.5 22.5 22.5	23.0 23.0 23.0 23.5 21.5 21.0 21.0 21.0 21.5 23.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 21.5 22.5 24.0
1 2 3 4 5 6 7 8 9 10	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5	22.5 23.0 23.0 21.0 19.5 19.5 19.0	27.0 26.0 24.5 23.5 25.0 25.0 26.0	JULY 24.5 24.5 23.5 22.0 22.0 23.5 24.0 24.0	25.5 25.0 24.5 22.5 23.0 24.5 24.5 25.0	25.5 24.0 27.0 26.5 28.5 28.0 27.0 26.0 25.5	23.5 23.5 24.0 25.5 25.5 27.5 27.0 25.5 24.5 24.0	24.5 24.0 25.5 27.0 27.5 27.5 26.0 25.5 25.0	24.0 24.5 24.0 23.0 23.0 23.0 22.5 22.5 23.5 25.0	23.0 23.0 23.0 23.5 21.5 21.0 21.0 21.0 21.5 23.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 21.5 22.5 24.0
1 2 3 4 5 6 7 8 9 10	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5 19.5 19.5	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0	27.0 26.0 24.5 23.5 25.0 25.5 26.0 28.0 28.0 26.5	JULY 24.5 24.5 22.0 22.0 23.5 24.0 25.5 24.0	25.5 25.0 24.5 22.5 24.5 24.5 25.0 26.5 26.0	25.5 24.0 27.0 26.5 28.0 27.0 26.0 25.5 24.5 23.0	23.5 23.5 24.5 25.5 27.5 27.5 27.5 24.5 24.0 23.0 22.0	24.5 24.0 25.5 27.0 27.5 26.0 25.5 25.0 23.5 22.5	24.0 24.5 24.0 23.5 23.0 23.0 22.5 22.5 22.5 25.0 26.5 26.0	23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.0 21.5 23.0 24.5 25.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 21.5 22.5 24.0 25.5 25.5
1 2 3 4 5 6 7 8 9 10	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 19.5 20.0 20.0	27.0 26.0 24.5 23.5 25.0 25.5 25.0 26.0 28.0 26.5 25.0	JULY 24.5 24.5 22.0 22.0 23.5 24.0 25.5 24.0	25.5 25.0 24.5 22.5 24.5 24.5 25.0 26.5 26.0	25.5 24.0 27.0 26.5 28.0 27.0 26.0 25.5 24.5 23.0	23.5 23.5 24.5 25.5 27.5 27.5 27.5 24.5 24.0 23.0 22.0	24.5 24.0 25.5 27.0 27.5 26.0 25.5 25.0 23.5 22.5 21.5	24.0 24.5 24.0 23.5 23.0 23.0 22.5 22.5 22.5 25.0 26.5 26.0	23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.0 21.5 23.0 24.5 25.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 21.5 22.5 24.0 25.5 25.5
123345 678910 1123345	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5 20.0 18.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5 19.5 19.5 19.6 17.0	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0 19.5 18.0	27.0 26.0 24.5 25.0 25.5 25.0 26.0 28.0 26.5 25.0 26.0	JULY 24.5 24.5 23.5 22.0 23.5 24.0 25.5 24.0 23.5 24.0 23.5	25.5 25.0 24.5 22.5 23.0 24.5 25.0 26.0 24.5 26.0 24.5	25.5 24.0 27.0 26.5 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.0	23.5 23.5 24.5 25.5 27.5 27.0 25.5 24.5 24.0 23.0 22.0 21.5 21.5	24.5 24.0 25.5 27.0 27.5 26.0 25.5 25.5 25.0 23.5 21.5 21.5 22.0	24.0 24.5 24.5 23.5 23.0 23.0 22.5 22.5 23.5 25.0 26.5 26.0 24.5 24.5	23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.0 21.5 23.0 24.0 24.0 23.5	23.5 23.5 23.5 23.0 22.5 22.0 21.5 21.5 22.5 24.0 25.5 25.0 24.0 23.5
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5 20.0 18.5	JUNE 21.5 21.5 22.5 22.0 29.0 19.0 18.5 18.5 19.0 19.5 19.0 17.0	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0 20.0 20.0 19.5	27.0 26.0 24.5 25.0 25.5 25.0 26.0 28.0 26.5 25.0 26.0	JULY 24.5 24.5 23.5 22.0 23.5 24.0 24.0 25.5 24.0 23.5 24.0	25.5 25.0 24.5 22.5 24.5 24.5 26.0 24.5 25.0 24.5 25.0	25.5 24.0 27.0 26.5 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.0	23.5 23.5 24.5 25.5 27.5 27.0 25.5 24.5 24.0 23.0 22.0 21.5 21.5	24.5 24.0 25.5 27.0 27.5 27.5 26.0 25.5 25.5 21.5 21.5 22.0 24.0	24.0 24.5 24.5 23.5 23.0 23.0 22.5 22.5 23.5 25.0 26.5 26.0 24.5 24.5	23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.0 21.5 23.0 24.0 24.0 23.5	23.5 23.5 23.5 23.0 22.5 22.0 21.5 21.5 22.5 24.0 25.5 25.0 24.0 23.5
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5 20.0 18.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5 19.0 17.0 17.0 17.0	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0 20.0 20.0 19.5	27.0 26.0 24.5 25.0 25.5 25.0 26.0 28.0 26.5 25.0 26.0	JULY 24.5 24.5 23.5 22.0 23.5 24.0 24.0 25.5 24.0 23.5 24.0	25.5 25.0 24.5 22.5 24.5 24.5 26.0 24.5 25.0 24.5 25.0	25.5 24.0 27.0 26.5 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.0	23.5 23.5 24.5 25.5 27.5 27.0 25.5 24.5 24.0 23.0 22.0 21.5 21.5	24.5 24.0 25.5 27.0 27.5 27.5 26.0 25.5 25.5 21.5 21.5 22.0 24.0	24.0 24.5 24.5 23.5 23.0 23.0 22.5 22.5 23.5 25.0 26.5 26.0 24.5 24.5	23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.0 21.5 23.0 24.0 24.0 23.5	23.5 23.5 23.5 23.0 22.5 22.0 21.5 21.5 22.5 24.0 25.5 25.0 24.0 23.5
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5 20.0 18.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5 19.0 17.0 17.0 17.0	22.5 23.0 22.5 21.0 19.5 19.5 19.0 20.0 19.5 18.0 17.0 18.5 20.0 21.0	27.0 26.0 24.5 25.0 25.5 26.0 28.0 26.5 25.0 26.0	JULY 24.5 24.5 23.5 22.0 23.5 24.0 24.0 25.5 24.0 23.5 24.0	25.5 25.0 24.5 22.5 24.5 24.5 26.0 24.5 25.0 24.5 25.0	25.5 24.0 27.0 26.5 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.0	23.5 23.5 24.5 25.5 27.5 27.0 25.5 24.5 24.0 23.0 22.0 21.5 21.5	24.5 24.0 25.5 27.0 27.5 27.5 26.0 25.5 25.5 21.5 21.5 22.0 24.0	24.0 24.5 24.5 23.5 23.0 23.0 22.5 22.5 23.5 26.0 24.5 24.0 23.5 22.5 22.5 22.5	23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.0 21.5 23.0 24.0 24.0 23.5	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.0 24.0 23.5
1 23 45 67 8 90 11 12 13 14 15 16 17 18 19 20	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5 20.5 20.0 18.5 18.0 21.0 22.0 22.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5 19.0 17.0 17.0 17.5 19.0 20.5 21.5	22.5 23.0 23.0 22.5 21.0 19.5 19.0 19.5 19.0 19.5 18.0 17.0 18.5 20.0 21.0 22.0	27.0 26.0 24.5 23.5 25.0 26.0 26.5 26.0 26.0 24.5 24.0 23.5 24.0	24.5 24.5 24.5 23.5 22.0 23.5 24.0 25.5 24.0 23.5 24.0 23.5 24.0 23.5 23.5 23.5	25.5 25.0 24.5 22.5 23.0 24.5 24.5 25.0 24.5 24.5 25.0 24.0 23.0 23.0 24.0	25.5 24.0 27.0 26.5 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.5 26.5 24.5 23.5 23.0	23.5 23.5 23.5 25.5 25.5 27.0 25.5 24.0 23.0 21.0 21.5 21.5 22.5 22.5 22.5	24.5 24.0 25.5 27.5 27.5 26.0 25.5 27.5 26.5 25.0 23.5 21.5 21.5 22.0 24.0 24.0 23.5 24.0 23.5	24.0 24.5 24.0 23.5 23.0 23.0 22.5 23.5 25.0 26.5 26.0 24.5 24.0 23.5 22.5 22.5	23.0 23.0 23.0 23.0 21.5 21.5 21.0 21.0 21.0 21.5 23.0 24.5 25.0 24.0 23.5 22.0 21.0 21.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.5 25.0 24.0 23.5
1 23 45 67 8 90 11 12 13 14 15 16 17 18 19 20	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5 20.5 20.0 18.5 18.0 21.0 22.0 22.5	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 18.5 19.0 17.0 17.0 17.5 19.0 20.5 21.5	22.5 23.0 23.0 22.5 21.0 19.5 19.0 19.5 19.0 19.5 18.0 17.0 18.5 20.0 21.0 22.0	27.0 26.0 24.5 23.5 25.0 26.0 26.5 26.0 26.0 24.5 24.0 23.5 24.0	24.5 24.5 24.5 23.5 22.0 23.5 24.0 25.5 24.0 23.5 24.0 23.5 24.0 23.5 23.5 23.5	25.5 25.0 24.5 22.5 23.0 24.5 24.5 25.0 24.5 24.5 25.0 24.0 23.0 23.0 24.0	25.5 24.0 27.0 26.5 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.5 26.5 24.5 23.5 23.0	23.5 23.5 23.5 25.5 25.5 27.0 25.5 24.0 23.0 21.0 21.5 21.5 22.5 22.5 22.5	24.5 24.0 25.5 27.5 27.5 26.0 25.5 27.5 26.5 25.0 23.5 21.5 21.5 22.0 24.0 24.0 23.5 24.0 23.5	24.0 24.5 24.5 23.0 23.5 23.0 22.5 22.5 25.0 26.0 24.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	23.0 23.0 23.0 23.0 21.5 21.5 21.0 21.0 21.0 21.5 23.0 24.5 25.0 24.0 23.5 22.0 21.0 21.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.5 25.0 24.0 23.5
1 23 45 67 8 90 11 12 13 14 15 16 17 18 19 20	23.5 24.5 24.5 22.0 22.0 20.0 19.5 20.5 20.5 20.0 18.5 18.0 22.5 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 19.0 17.0 17.0 17.0 17.5 19.0 20.5 21.5 22.6	22.5 23.0 23.0 22.5 21.0 19.5 19.0 19.5 19.0 19.5 18.0 17.0 18.5 20.0 21.0 22.0	27.0 26.0 24.5 23.5 25.0 26.0 26.5 26.0 26.0 24.5 24.0 23.5 24.0	24.5 24.5 24.5 23.5 22.0 23.5 24.0 25.5 24.0 23.5 24.0 23.5 24.0 23.5 23.5 23.5	25.5 25.0 24.5 22.5 23.0 24.5 25.0 26.5 24.5 25.0 24.0 23.0 24.0 23.0 24.0	25.5 24.0 27.0 26.5 28.0 28.0 27.0 26.0 25.5 24.5 22.0 22.0 22.5 24.5 23.5 23.5 23.5 23.6	23.5 23.5 23.5 25.5 25.5 27.0 25.5 24.0 23.0 21.0 21.5 21.5 22.5 22.5 22.5	24.5 24.0 25.5 27.5 27.5 26.0 25.5 27.5 26.5 25.0 23.5 21.5 21.5 22.0 24.0 24.0 23.5 24.0 23.5	24.0 24.5 24.5 23.5 23.0 23.0 22.5 23.5 25.0 26.5 26.0 26.5 24.0 21.0 20.0	23.0 23.0 23.0 23.0 21.5 21.5 21.0 21.0 21.0 21.5 23.0 24.5 25.0 24.0 23.5 22.0 21.0 21.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.5 25.0 21.5 20.0 21.5 20.0 21.5 20.0
1 23 45 67 8 90 11 12 13 14 15 16 17 18 19 20	23.5 24.5 24.5 22.0 22.0 20.0 19.5 20.5 20.5 20.0 18.5 18.0 22.5 22.5 23.0 22.5 23.0 22.5 23.0 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 19.0 17.0 17.0 17.0 17.5 19.0 20.5 21.5 22.0	22.5 23.0 23.0 22.5 21.0 19.5 19.0 19.5 19.0 19.5 18.0 17.0 18.5 20.0 21.0 22.0	27.0 26.0 24.5 23.5 25.0 26.0 26.5 26.0 26.0 24.5 24.0 23.5 24.0	24.5 24.5 24.5 23.5 22.0 23.5 24.0 25.5 24.0 23.5 24.0 23.5 24.0 23.5 23.5 23.5	25.5 25.0 24.5 22.5 23.0 24.5 25.0 26.5 24.5 25.0 24.0 23.0 24.0 23.0 24.0	25.5 24.0 27.0 26.5 28.0 28.0 27.0 26.0 25.5 24.5 22.0 22.0 22.5 24.5 23.5 23.5 23.5 23.6	23.5 23.5 23.5 25.5 25.5 27.0 25.5 24.0 23.0 21.0 21.5 21.5 22.5 22.5 22.5	24.5 24.0 25.5 27.5 27.5 26.0 25.5 27.5 26.5 25.0 23.5 21.5 21.5 22.0 24.0 24.0 23.5 24.0 23.5	24.0 24.5 24.5 23.5 23.0 23.0 22.5 23.5 25.0 26.5 26.0 26.5 24.0 21.0 20.0	23.0 23.0 23.0 23.0 21.5 21.5 21.0 21.0 21.0 21.5 23.0 24.5 25.0 24.0 23.5 22.0 21.0 21.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.5 25.0 21.5 20.0 21.5 20.0 21.5 20.0
1 2 3 4 5 6 7 8 9 10 11 21 3 14 5 16 17 8 9 20 21 22 3 4 4 5	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.0 20.5 20.0 18.5 18.0 21.0 22.5 22.5 23.5 22.5 22.5 22.5 22.5 22.5	JUNE 21.5 21.5 22.5 22.0 29.0 19.0 18.5 19.0 17.0 17.5 19.0 20.5 21.5 22.0 22.0 21.5	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0 20.0 21.0 22.0 22.0 22.5 22.5 22.5 22.5 22.5	27.0 26.0 24.5 23.5 25.5 25.0 26.0 26.5 25.0 26.0 24.0 24.0 23.5 24.0 23.5 25.5 27.0	JULY 24.5 24.5 24.5 22.0 22.0 23.5 24.0 25.5 24.0 23.5 22.5 22.5 22.5 22.5 22.5 22.5	25.5 22.5 22.5 22.5 22.5 22.5 24.5 25.0 26.5 24.5 25.0 23.0 24.0 23.0 24.0 22.5 24.0 22.5 24.0	25.5 24.0 27.0 26.5 28.0 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.5 24.5 24.5 23.5 24.5 24.5 26.5 26.5 26.0 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	23.5 23.5 24.5 25.5 27.5 27.5 27.5 24.5 24.5 22.0 21.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	24.5 24.0 25.5 27.0 27.5 26.0 25.5 22.5 21.5 22.5 21.5 22.0 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 25.5	24.0 24.5 24.5 23.5 23.0 23.0 22.5 23.5 25.0 26.5 24.0 24.5 22.5 22.5 22.0 21.0 20.0	23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.5 23.0 24.0 24.0 24.0 23.5 22.0 21.0 21.0 24.0 21.5 22.0 21.0 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.5 21.0 21.0 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.0 24.0 23.5 23.0 22.0 21.5 20.0 21.5 20.0 21.5 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 21.5 21.5 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5
1 2 3 4 5 6 7 8 9 10 11 21 3 14 5 16 17 8 9 20 21 22 3 4 4 5	23.5 24.5 24.5 22.0 22.0 20.0 19.5 20.0 20.5 20.0 18.5 18.0 21.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 19.0 17.0 17.0 17.0 17.5 22.0 22.0 22.0 21.5 22.5	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0 20.0 21.0 22.0 22.0 22.5 22.5 22.5 22.5 22.5	27.0 26.0 24.5 23.5 25.5 25.0 26.0 26.5 25.0 26.0 24.0 24.0 23.5 24.0 23.5 25.5 27.0	JULY 24.5 24.5 24.5 22.0 22.0 23.5 24.0 25.5 24.0 23.5 22.5 22.5 22.5 22.5 22.5 22.5	25.5 25.0 24.5 22.5 23.0 24.5 25.0 26.5 24.5 25.0 24.0 23.0 24.0 23.0 24.0 25.5 24.0 25.5 26.0 27.5	25.5 24.0 27.0 26.5 28.0 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.5 24.5 24.5 23.5 24.5 24.5 26.5 26.5 26.0 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	23.5 23.5 24.5 25.5 27.5 27.5 27.5 24.5 24.5 22.0 21.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	24.5 24.0 25.5 27.0 27.5 26.0 25.5 22.5 21.5 22.5 21.5 22.0 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 25.5	24.0 24.5 24.5 23.5 23.0 23.0 22.5 23.5 25.0 26.5 24.0 24.5 22.5 22.5 22.0 21.0 20.0	23.0 23.0 23.0 23.5 21.5 21.0 21.0 21.5 23.0 24.5 22.0 24.0 23.5 22.0 21.0 21.0 21.5 23.5	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.0 24.0 23.5 23.0 22.0 21.5 20.0 21.5 20.0 21.5 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 21.5 21.5 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5
1 2 3 4 5 6 7 8 9 10 11 21 3 14 5 16 17 8 9 20 21 22 3 4 4 5	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.0 20.5 20.0 18.5 18.0 20.0 21.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	JUNE 21.5 21.5 22.5 22.0 19.0 19.5 19.5 19.5 19.0 17.0 17.0 17.0 20.5 21.5 22.0 22.0 22.5 22.5	22.5 23.0 23.0 22.5 21.0 19.5 19.0 19.5 20.0 19.5 18.0 17.0 18.5 20.0 21.0 22.5 22.5 22.5 22.5 22.5 22.5	27.0 26.0 24.5 25.5 25.0 26.0 28.0 26.5 26.0 24.0 24.0 24.0 24.0 23.5 27.0 27.0	JULY 24.5 24.5 24.5 22.0 22.0 23.5 24.0 25.5 24.0 23.5 22.5 22.5 22.5 22.5 22.5 22.5	25.5 24.5 22.5 24.5 24.5 25.0 26.5 24.5 25.0 24.5 22.5 24.0 23.0 24.0 23.0 24.0 25.5 26.0 27.5 27.0	25.5 24.0 27.0 26.5 28.0 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.5 24.5 24.5 23.5 24.5 24.5 26.5 26.5 26.0 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	23.5 23.5 24.5 25.5 27.5 27.5 27.5 24.5 24.5 22.0 21.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	24.5 24.0 25.5 27.0 27.5 26.0 25.5 22.5 21.5 22.5 21.5 22.0 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 25.5	24.0 24.5 24.5 23.5 23.0 23.0 22.5 23.5 25.0 26.5 24.0 24.5 22.5 22.5 22.0 21.0 20.0	23.0 23.0 23.0 23.5 21.5 21.0 21.0 21.5 23.0 24.5 22.0 24.0 23.5 22.0 21.0 21.0 21.5 23.5	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.0 24.0 23.5 23.0 22.0 21.5 20.0 21.5 20.0 21.5 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 21.5 21.5 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5
1 2 3 4 5 6 7 8 9 10 11 21 3 14 5 16 17 8 9 20 21 22 3 4 4 5	23.5 24.5 24.0 22.5 22.0 19.5 20.0 19.5 20.0 18.5 20.0 21.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	JUNE 21.5 21.5 22.5 22.0 29.0 19.0 18.5 19.0 17.0 17.5 19.0 20.5 21.5 22.0 22.0 21.5 22.5 22.0 22.0	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0 20.0 21.0 22.0 22.5 22.5 22.5 22.5 22.5 22.5 22	27.0 26.0 24.5 25.5 25.0 26.0 28.0 26.5 26.0 24.0 24.0 24.0 24.0 23.5 27.0 27.0	JULY 24.5 24.5 24.5 22.0 22.0 23.5 24.0 25.5 24.0 23.5 22.5 22.5 22.5 22.5 22.5 22.5	25.5 24.5 22.5 24.5 24.5 25.0 26.5 24.5 25.0 24.5 22.5 24.0 23.0 24.0 23.0 24.0 25.5 26.0 27.5 27.0	25.5 24.0 27.0 26.5 28.0 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.5 24.5 24.5 23.5 24.5 24.5 26.5 26.5 26.0 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	23.5 23.5 24.5 25.5 27.5 27.5 27.5 24.5 24.5 22.0 21.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	24.5 24.0 25.5 27.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27	24.0 24.5 24.5 23.0 23.0 23.0 22.5 23.5 25.0 26.5 24.0 24.5 22.5 22.5 22.5 21.0 21.0 21.0 19.5 18.5 17.5 15.5	23.0 23.0 23.0 23.5 21.5 21.0 21.0 21.5 23.0 24.5 22.0 24.0 23.5 22.0 21.0 21.0 21.5 23.5	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.0 24.0 23.5 23.0 22.0 21.5 20.0 21.5 20.0 21.5 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 21.5 21.5 22.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5
1 2 3 4 5 6 7 8 9 10 11 21 3 14 5 16 17 8 9 20 21 22 3 4 4 5	23.5 24.5 24.0 22.5 22.0 20.0 19.5 20.5 20.5 20.0 18.5 18.0 21.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	JUNE 21.5 21.5 22.5 22.0 20.0 19.0 18.5 19.0 17.0 17.5 19.0 20.5 21.5 22.0 22.0 21.5 22.0 23.0	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0 20.0 21.0 22.0 22.5 22.5 22.5 22.5 22.5 22.5 22	27.0 26.0 24.5 25.5 25.0 26.5 26.0 26.5 26.0 24.0 24.0 23.5 27.0 29.5 27.5 27.5	JULY 24.5 24.5 24.5 22.0 22.0 23.5 24.0 25.5 24.0 23.5 22.5 22.5 22.5 22.5 22.5 22.5	25.5 24.5 22.5 24.5 24.5 25.0 26.5 24.5 25.0 24.5 22.5 24.0 23.0 24.0 23.0 24.0 25.5 26.0 27.5 27.0	25.5 24.0 27.0 26.0 28.0 28.0 27.0 26.0 22.0 22.0 22.5 24.5 23.5 24.5 23.5 24.5 26.0 27.0 26.5 26.5 26.5 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	23.5 23.5 24.5 25.5 27.5 27.5 27.5 24.5 24.5 22.0 21.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	24.5 24.0 25.5 27.0 27.5 26.5 27.5 22.5 23.5 22.5 22.5 23.5 24.0 24.5 24.0 24.5 25.5 25.5 26.5 26.5 27.0 26.5 27.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	24.0 24.5 24.5 23.5 23.0 23.0 22.5 23.5 25.0 26.5 24.0 26.5 24.0 20.5 21.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0	23.0 23.0 23.0 22.5 21.5 21.0 21.0 21.5 23.0 24.5 25.0 24.0 23.5 22.0 21.0 21.0 21.5 22.0 24.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	23.5 23.5 23.5 23.0 22.5 22.0 21.5 22.5 24.0 25.5 25.5 25.0 21.5 20.0 21.5 20.0 21.5 20.0
1 23 45 67 8 90 11 12 13 14 15 16 17 18 19 20	23.5 24.5 24.0 22.5 22.0 19.5 20.0 19.5 20.0 18.0 21.0 22.5 22.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	JUNE 21.5 21.5 22.5 22.0 29.0 19.0 18.5 19.0 17.0 17.5 19.0 20.5 21.5 22.0 22.0 21.5 22.5 22.0 22.0	22.5 23.0 23.0 22.5 21.0 19.5 19.5 19.0 20.0 20.0 21.0 22.0 22.5 22.5 22.5 22.5 22.5 22.5 22	27.0 26.0 24.5 25.5 25.0 26.0 28.0 26.5 26.0 24.0 24.0 24.0 24.0 23.5 27.0 27.0	24.5 24.5 24.5 23.5 22.0 23.5 24.0 25.5 24.0 23.5 24.0 23.5 24.0 23.5 23.5 23.5	25.5 25.0 24.5 22.5 23.0 24.5 25.0 26.5 24.5 25.0 24.0 23.0 24.0 23.0 24.0 25.5 24.0 25.5 26.0 27.5	25.5 24.0 27.0 26.5 28.0 28.0 27.0 26.0 25.5 24.5 23.0 22.0 22.5 24.5 24.5 23.5 24.5 24.5 26.5 26.5 26.0 27.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26	23.5 23.5 23.5 25.5 25.5 27.0 25.5 24.0 23.0 21.0 21.5 21.5 22.5 22.5 22.5	24.5 24.0 25.5 27.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 26.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27	24.0 24.5 24.5 23.0 23.0 23.0 22.5 23.5 25.0 26.5 24.0 24.5 22.5 22.5 22.5 21.0 21.0 21.0 19.5 18.5 17.5 15.5	23.0 23.0 23.0 23.5 21.5 21.0 21.0 21.5 23.0 24.5 22.0 24.0 23.5 22.0 21.0 21.0 21.5 23.5	23.5 23.5 23.5 23.5 22.5 22.5 22.5 22.5

PASSAIC RIVER BASIN

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
4												
1 2						:::			:::			
3		•••						•••	•••			•••
2 3 4 5						:::	:::	:::	:::	:::	:::	
6		· · · · ·										
7	• • • •					•••		•••		• • •	•••	•••
6 7 8 9									:::			
1Ó	• • •									•••	•••	
11												
12		• • •		• • • • • • • • • • • • • • • • • • • •					•••			
13 14									•••			
15		•••		•••			•••	•••			•••	
16				• • • •		•	•••				•••	
17 18						•••	•••	:::	:::	:::	X.	
19										:::		
20				• • • •							•••	•••
21		• • • •										
22		• • • •	•••		•••				• • •		•••	• • • •
23						• • • •			• • • •	• • • •		
21 22 23 24 25									:::			
26												
26 27 28 29 30	•••	•••	•••						•••	• • •	•••	•••
20						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •
30		•••										
31					• • • • • • • • • • • • • • • • • • • •	• • • •	•••	•••	•••	•••	• • • •	
MONTH			•••				•••			• • •	•••	•••
DAY	MAX	MIN	MEAN	MAX	C MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX		MEAN	MAX		MEAN	MAX		MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1	MAX			MA3	MARCH		11.7	APRIL	11.3	10.2	MAY 10.0	10.1
1		FEBRUAR	Υ		MARCH		11.7 11.9 11.6	APRIL 10.9 11.6 11.5			MAY 10.0 10.1 10.4	10.1 10.2 10.5
1	:::	FEBRUAR	Y		MARCH	:::	11.7 11.9 11.6	APRIL 10.9 11.6 11.5	11.3 11.7 11.6 11.4	10.2 10.4 10.6 10.8	MAY 10.0 10.1 10.4 10.1	10.1 10.2 10.5 10.5
1 2 3 4 5	:::	FEBRUAR	Y	::	MARCH	:::	11.7 11.9	APRIL 10.9 11.6 11.5	11.3 11.7 11.6	10.2 10.4 10.6 10.8 10.2	MAY 10.0 10.1 10.4	10.1 10.2 10.5 10.5
1 2 3 4 5		FEBRUAR	Y		MARCH	:::	11.7 11.9 11.6 11.5 11.3	10.9 11.6 11.5 11.3 11.0	11.3 11.7 11.6 11.4 11.1	10.2 10.4 10.6 10.8 10.2	MAY 10.0 10.1 10.4 10.1 10.0	10.1 10.2 10.5 10.5 10.1
1 2 3 4 5 6 7	:::	FEBRUAR	Y		MARCH	:::	11.7 11.9 11.6 11.5 11.3	10.9 11.6 11.5 11.3 11.0	11.3 11.7 11.6 11.4 11.1	10.2 10.4 10.6 10.8 10.2	MAY 10.0 10.1 10.4 10.1 10.0	10.1 10.2 10.5 10.5 10.1
123345 6789		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.5 11.3	10.9 11.6 11.5 11.3 11.0	11.3 11.7 11.6 11.4 11.1	10.2 10.4 10.6 10.8 10.2 10.3 10.3	MAY 10.0 10.1 10.4 10.1 10.0	10.1 10.2 10.5 10.5 10.1 10.1 10.2 10.5 10.8
1 2 3 4 5 6 7 8 9		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.5 11.3 11.0	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0	11.3 11.7 11.6 11.4 11.1	10.2 10.4 10.6 10.8 10.2 10.3 10.3 10.9 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0	10.1 10.2 10.5 10.5 10.1 10.1 10.2 10.5 10.8
1 2 3 4 5 6 7 8 9 10		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.5 11.3 11.0 11.1 11.2 11.2	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0	11.3 11.7 11.6 11.4 11.1 11.0 11.0 11.1 11.1 11.3	10.2 10.4 10.6 10.8 10.2 10.3 10.3 10.9 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.3 10.7 10.7	10.1 10.2 10.5 10.5 10.1 10.1 10.2 10.5 10.8
1 2 3 4 5 6 7 8 9 10		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.5 11.3 11.0 11.1 11.2 11.2 11.4	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0 11.2	11.3 11.7 11.6 11.4 11.1 11.0 11.0 11.1 11.1 11.3	10.2 10.4 10.6 10.8 10.2 10.3 10.3 10.9 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.3 10.7 10.7	10.1 10.2 10.5 10.5 10.1 10.1 10.2 10.8 10.8
1 2 3 4 5 6 7 8 9 10		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.5 11.3 11.0 11.1 11.2 11.2 11.4 11.5	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0 11.2	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.1 11.3 11.4	10.2 10.4 10.6 10.8 10.2 10.3 10.9 10.9 11.0	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.3 10.7 10.7	10.1 10.2 10.5 10.1 10.1 10.2 10.8 10.8 11.2 11.2 11.2
1 2 3 4 5 6 7 8 9		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.5 11.3 11.0 11.1 11.2 11.2 11.4	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0	11.3 11.7 11.6 11.4 11.1 11.0 11.0 11.1 11.1 11.3	10.2 10.4 10.6 10.8 10.2 10.3 10.3 10.9 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.3 10.7 10.7	10.1 10.2 10.5 10.5 10.1 10.1 10.2 10.8 10.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.5 11.3 11.0 11.1 11.2 11.2 11.4 11.5 11.6 11.5	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.3 11.4	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3	10.2 10.4 10.6 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.3 11.2	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.1 10.7	10.1 10.2 10.5 10.5 10.1 10.2 10.5 10.8 10.8 11.2 11.0 10.9
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.2 11.4 11.5 11.6 11.5	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.4 11.3 11.2	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3	10.2 10.4 10.6 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.3 11.2	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.1 10.7	10.1 10.2 10.5 10.1 10.1 10.2 10.5 10.8 10.8 11.2 11.2 11.0 10.7
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.4 11.5 11.6 11.4	10.9 11.6 11.3 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.4 11.3 11.2	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.3 11.4 11.4 11.5 11.3	10.2 10.4 10.6 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.2 11.0 10.8	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.1 10.7	10.1 10.2 10.5 10.1 10.1 10.2 10.5 10.8 10.8 11.2 11.0 10.7 10.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.2 11.4 11.5 11.6 11.5	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.4 11.3 11.2	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3	10.2 10.4 10.6 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.3 11.2	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 10.7 11.0 11.1 10.9 10.7	10.1 10.2 10.5 10.1 10.1 10.2 10.5 10.8 10.8 11.2 11.2 11.0 10.7
1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 2 0		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.2 11.4 11.5 11.6 11.5 11.6 11.5 11.6	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.4 11.4 11.4 11.4 11.5 10.6 10.5	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.3 11.4 11.4 11.5 11.3	10.2 10.4 10.6 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.2 10.8	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.1 10.9 10.7 10.5 10.5 10.6 10.2 10.0 9.7	10.1 10.2 10.5 10.1 10.1 10.2 10.8 10.8 11.2 11.0 10.7 10.7 10.5 10.7
1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 2 0		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.2 11.4 11.5 11.6 11.5 11.6 11.4	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.2 11.3 11.4 11.4 11.3 11.2 11.4 11.1 10.5 10.5	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3 11.4 11.4 11.5 11.3	10.2 10.4 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.0 10.8 10.7 10.9 10.7 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.1 10.7 11.0 10.7 10.7	10.1 10.2 10.5 10.1 10.1 10.2 10.8 10.8 11.2 11.0 10.9 10.7 10.5 10.1 9.9
1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 2 0		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.2 11.4 11.5 11.6 11.4 11.5 11.6 11.6 11.2	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.4 11.4 11.3 11.2 11.4 11.1 10.6 10.5 10.4	11.3 11.7 11.6 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3 11.4 11.4 10.9 10.7 10.6	10.2 10.4 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.0 10.8 10.7 10.9 10.7 10.9 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.1 10.7 11.0 10.7 10.7	10.1 10.2 10.5 10.1 10.1 10.2 10.8 10.8 11.2 11.0 10.7 10.7 10.5 10.7 10.5 10.9 10.7
12345 678910 112345 167819		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.2 11.4 11.5 11.6 11.5 11.6 11.4	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.2 11.3 11.4 11.4 11.3 11.2 11.4 11.1 10.5 10.5	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3 11.4 11.4 11.5 11.3	10.2 10.4 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.0 10.8 10.7 10.9 10.7 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.1 10.9 10.7 10.5 10.5 10.6 10.2 10.0 9.7	10.1 10.2 10.5 10.1 10.1 10.2 10.8 10.8 11.2 11.0 10.9 10.7 10.5 10.1 9.9
12345 67890 112345 1678920 212345		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.4 11.5 11.6 11.4 11.5 11.6 11.6 11.2 10.8 10.7	10.9 11.6 11.5 11.3 11.0 10.9 11.0 11.0 11.2 11.3 11.4 11.3 11.4 11.3 11.2 11.4 11.3 11.2	11.3 11.7 11.6 11.4 11.1 11.0 11.1 11.3 11.4 11.4 11.4 11.5 11.3 11.4 11.4 10.9 10.7	10.2 10.4 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.0 10.8 10.7 10.9 10.7 10.9 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.0 10.7 10.7	10.1 10.2 10.5 10.1 10.1 10.5 10.8 11.2 11.2 11.2 11.2 10.5 10.7 10.5 10.7 10.5 10.1 10.5 10.5 10.7 10.5 10.7 10.5 10.7 10.5 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7
12345 67890 112345 1678920 212345		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.4 11.5 11.6 11.6 11.6 11.8 10.7	10.9 11.6 11.3 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.4 11.3 11.2 11.4 11.4 11.1 10.5 10.5 10.5	11.3 11.7 11.6 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3 11.4 11.5 11.3 11.4 11.9 10.7 10.9 10.9	10.2 10.4 10.8 10.2 10.3 10.9 11.0 11.3 11.2 11.0 10.8 10.7 10.9 11.0 10.8 10.7 10.9 10.9 11.0 10.8 10.9 10.9 11.0 10.8 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 11.0 10.7 10.7	10.1 10.25 10.55 10.1 10.25 10.58 11.20 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.
12345 67890 112345 1678920 212345		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.4 11.5 11.6 11.6 11.6 11.6 11.6 11.6 11.6	10.9 11.6 11.5 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.4 11.4 11.4 11.5 10.5 10.5 10.5 10.4 10.8 10.7	11.3 11.7 11.6 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3 11.4 11.4 10.7 10.7 10.9 10.9 10.9	10.2 10.4 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.3 11.0 10.7 10.7 10.7 10.0 9.8 9.7 10.1 9.8 9.7	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 10.7 11.0 10.7 10.5 10.5 10.6 10.2 10.7 9.5 9.7 9.5 9.7	10.1 10.2 10.5 10.1 10.5 10.8 11.2 10.9 10.7 10.7 10.7 10.7 10.7 10.9 9.7 9.7 9.8 10.9 9.7 9.8
12345 678910 112345 1678920 2122345 2678920		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.4 11.5 11.6 11.6 11.6 11.8 10.7	10.9 11.6 11.5 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.7 10.6 10.5 10.7 10.7	11.3 11.7 11.6 11.1 11.0 11.1 11.3 11.4 11.4 11.5 11.3 11.4 10.7 10.7 10.6 10.7 10.9 10.9 10.9 10.3 10.3	10.2 10.4 10.8 10.2 10.3 10.9 11.0 11.3 11.2 11.0 10.8 11.3 11.2 10.9 11.0 10.9 11.0 10.9 11.0 10.9 11.0 10.9 11.0 10.9 11.0 10.9 10.9	MAY 10.0 10.1 10.0 10.0 10.0 10.0 10.7 11.0 10.7 11.0 10.7 10.7	10.1 10.2 10.5 10.1 10.1 10.5 10.8 11.2 11.0 10.7 10.7 10.7 10.5 10.9 10.7 10.5 10.9 10.7 10.9 10.7 10.9 10.7 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9
12345 67890 112345 1678920 212345		FEBRUAR	Y		MARCH		11.7 11.9 11.6 11.3 11.0 11.1 11.2 11.4 11.5 11.6 11.4 11.5 11.6 11.6 11.2 10.8 10.7	10.9 11.6 11.5 11.0 10.9 11.0 11.0 11.0 11.2 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.4 11.3 11.7 10.6 10.5 10.7 10.7	11.3 11.7 11.6 11.1 11.0 11.1 11.1 11.3 11.4 11.4 11.5 11.3 11.4 11.4 10.7 10.7 10.9 10.9 10.9	10.2 10.4 10.8 10.2 10.3 10.9 10.9 11.0 11.3 11.3 11.3 11.0 10.7 10.7 10.7 10.0 9.8 9.7 10.1 9.8 9.7	MAY 10.0 10.1 10.4 10.1 10.0 10.0 10.0 10.7 11.0 10.7 11.0 10.7 10.5 10.5 10.6 10.2 10.7 9.5 9.7 9.5 9.7	10.1 10.2 10.5 10.1 10.5 10.8 11.2 10.9 10.7 10.7 10.7 10.7 10.7 10.9 9.7 9.7 9.8 10.9 9.7 9.8

PASSAIC RIVER BASIN

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	9.2 9.0 8.8	8.7 8.5 8.5	9.0 8.7 8.6	7.8 7.7 7.9	7.5 7.3 7.4	7.6 7.5 7.6	7.5 7.6 7.6 7.6 7.4	7.1 7.2 7.0 6.9 6.2	7.3 7.3 7.4 7.2 6.9	7.4 7.6 8.0 8.2 8.4	6.8 6.9 7.0 7.2 7.4	7.0 7.2 7.4 7.7 7.8
6 7 8 9 10	8.6 9.0 9.1 9.2 9.4	8.5 8.6 9.0 9.1 9.1	8.6 8.8 9.1 9.1 9.3	8.1 8.0 7.8 7.8 7.6	8.0 7.5 7.5 7.5 7.1	8.0 7.8 7.7 7.7	7.4 7.2 7.4 7.6 7.6	6.1 6.0 6.3 6.6 6.6	6.6 6.4 6.8 7.0 7.1	8.5 8.7 8.7 8.5 8.3	7.7 7.7 7.7 7.6 7.2	8.0 8.1 8.2 8.1 7.8
11 12 13 14 15	9.5 9.4 9.1 9.2 9.5	9.2 9.0 8.9 9.1 9.3	9.3 9.2 9.0 9.2 9.3	7.5 7.4 7.3 7.5 7.5	7.1 7.0 7.0 7.1 6.9	7.3 7.2 7.1 7.2 7.2	7.6 8.1 8.5 8.4 8.3	6.7 7.2 8.1 8.2 8.0	7.1 7.8 8.4 8.3 8.1	8.2 8.0 8.2 8.1	7.0 6.9 6.9 7.4	7.5 7.4 7.5 7.7
16 17 18 19 20	9.5 9.3 9.0 8.9 8.6	9.3 8.9 8.7 8.5 8.4	9.4 9.2 8.9 8.7 8.5	7.4 7.5 7.6 7.6 7.5	6.9 7.2 7.2 7.1 7.0	7.1 7.4 7.4 7.5 7.3	8.1 8.1 8.1 7.9 8.0	7.6 7.6 7.7 7.7	7.8 7.9 7.9 7.8 7.8		:::	
21 22 23 24 25	8.4 8.3 8.2 8.3	8.3 8.2 8.2 8.2 8.1	8.4 8.3 8.2 8.2 8.2	7.6 7.9 7.8 7.5 7.5	7.4 7.7 7.3 7.1 6.9	7.6 7.8 7.6 7.3 7.2	8.0 7.8 7.6 7.8 7.8	7.5 7.1 7.0 7.0 6.9	7.7 7.5 7.2 7.3 7.3			
26 27 28 29 30 31	8.1 7.9 7.8 8.0	7.8 7.7 7.7 7.8	8.0 7.8 7.8 7.9	7.4 7.1 7.1 7.2 7.4 7.3	6.7 6.6 6.6 6.9 7.0	7.0 6.9 6.8 6.9 7.1 7.1	7.7 7.6 7.6 7.4 7.3 7.4	6.8 6.9 7.0 6.8 6.8	7.2 7.3 7.3 7.1 7.0 7.1			:::
MONTH	9.5	7.7	8.7	8.1	6.6	7.3	8.5	6.0	7.4			•••

01388500 POMPTON RIVER AT POMPTON PLAINS, NJ

LOCATION.--Lat 40°58'09", long 74°16'56", Passaic County, Hydrologic Unit 02030103, on left bank in Passaic Valley Water Commission pumping station, 800 ft below confluence of Pequannock and Ramapo Rivers, 100 ft upstream from bridge on Jackson Avenue (Pompton Plains Cross Road), and 0.7 mi east of Pompton Plains.

DRAINAGE AREA. -- 355 mi².

PERIOD OF RECORD.--March 1903 to December 1904, May 1940 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS. -- WSP 1202: 1945(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 160.00 ft above National Geodetic Vertical Datum of 1929. March 1903 to December 1904, nonrecording gage on main spillway of dam 2,000 ft upstream at different datum. May 1940 to September 1964 two water-stage recorders, each above a concrete dam about 2,000 ft upstream at datum 14.46 ft higher.

REMARKS.--No estimated daily discharges. Records fair. Water diverted from reservoirs on Pequannock and Wanaque Rivers, from Pompton River to Point View Reservoir, and from Ramapo River to Wanaque Reservoir and Oradell Reservoir (from February 1985) for municipal supply (see Hackensack River basin, diversions into and from and Passaic River basin, diversions). Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg and Echo Lake Reservoirs on Pequannock River and by Greenwood Lake, Monksville and Wanaque Reserviors on Wanaque River (see Passaic River basin, reservoirs in). Several measurements of water temperature were made during the year. Satellite telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with Passaic Valley Water Commission.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	71 76 100 92 79	160 307 245 176 304	574 486 429 389 336	177 170 167 159 123	192 186 190 193 176	321 293 274 259 261	1310 1050 869 890 987	256 990 1170 760 679	441 398 368 310 279	311 273 252 225 547	128 126 188 133 122	95 88 82 78 77
6 7 8 9	73 70 96 86 81	979 692 441 326 276	320 307 292 276 265	146 145 175 232 200	168 163 154 143 129	332 306 235 240 223	1320 1420 1270 1100 961	4720 6530 3520 2170 2130	305 513 1010 1020 1440	1050 632 436 323 275	110 107 111 100 93	84 85 84 82 81
11 12 13 14 15	76 66 66 62 63	240 204 253 420 342	242 197 184 188 186	178 201 302 261 319	131 128 124 147 170	214 222 212 200 206	774 646 565 545 571	4780 4560 2910 2130 1760	1230 753 904 790 1110	323 269 224 204 175	113 464 839 543 363	79 71 70 85 138
16 17 18 19 20	63 62 62 67 62	285 450 493 376 1300	171 167 153 150 148	341 291 262 256 252	216 183 158 148 142	218 207 229 279 242	1210 1070 870 738 619	2650 9830 10100 5700 3370	1620 1470 1130 794 584	162 183 169 159 242	269 307 192 179 172	118 160 118 294 1770
21 22 23 24 25	69 257 178 138 118	3300 2050 1210 886 699	149 150 157 211 311	228 193 191 182 179	531 1250 985 677 494	302 323 285 402 1130	505 513 415 361 355	2290 1770 1470 1980 1930	689 718 712 1110 1310	265 221 241 190 171	157 140 128 130 113	2020 1270 773 564 406
26 27 28 29 30 31	102 94 87 84 80 77	583 510 988 885 678	249 201 204 259 223 193	184 206 205 196 192 195	427 390 352	911 688 581 520 558 1040	322 294 270 248 252	1490 1280 1140 858 674 527	931 1070 652 521 372	171 157 154 139 132 135	103 98 97 102 106 99	564 793 775 528 323
MEAN MAX MIN	88.9 257 62	669 3300 160	251 574 148	210 341 123	298 1250 124	378 1130 200	744 1420 248	2778 10100 256	818 1620 279	271 1050 132	191 839 93	392 2020 70
STATIST			W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	286 2369 1904 40.2 1981	409 1417 1956 52.3 1981	517 1543 1984 34.8 1981	488 1562 1979 39.2 1981	566 1654 1973 149 1969	924 2477 1983 118 1981	958 2995 1983 62.7 1985	623 2778 1989 110 1965	380 2177 1972 62.9 1965	1945 34.2	220 1520 1955 34.2 1966	233 1057 1971 46.7 1980

01388500 POMPTON RIVER AT POMPTON PLAINS, NJ--Continued

SUMMARY STATISTICS	FOR 1989 WATER	YEAR	FOR PERIOD	OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	592 10100 62 12500 18.89 59 1220 265 76	May 18 Oct 14 May 17 May 17 Oct 18	485 906 117 28300 .00 28340a 14.3b .00 1140 245 58	1952 1965 Oct 10 1903 Aug 18 1904 Oct 10 1903 Oct 10 1903 Aug 18 1904

a By computation of peak flow over dam, maximum observed b Site and datum then in use

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ

LOCATION.--Lat 40°56'36", long 74°16'47", Morris County, Hydrologic Unit 02030103, at bridge on State Highway 504 in Packanack Lake, and 2.2 mi downstream from confluence of Pequannock and Wanaque Rivers.

DRAINAGE AREA .-- 361 mi 2 .

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT 1988	1230	E63	345	7.8	12.0	10.1	93	6.6	••		100	28
17	1440	E497	244	7.7	9.5	11.6	102	3.6			71	19
14	1315	E187	299	7.6	2.0	13.5	98	3.0	••	••	82	22
JAN 1989 18	1100	E266	325	7.4	2.5	14.9	109	3.9	200	<200	85	23
16	1130	E233	338	8.0	3.5	13.8	103	3.3		••	93	25
MAR 21	1200	E308	365	8.0	7.0	13.6	114	3.0	320	170	82	22
APR 14	1100	E569	250	7.9	8.5	12.0	103	6.9			67	18
MAY 25	1130	E2020	202	7.7	19.0	9.7	106	1.8	5400	170	56	15
JUN 13 27	1130 1300	E987 E1110	190 190	7.8 7.9	19.0 23.0	9.2 9.3	102 110	1.9 1.8	::	::	58 58	16 16
19	1100	E159	290	7.7	22.0	7.5	87	3.0	200	200	84	23
AUG 14	1300	E488	287	7.8	22.0	8.9	102	0.9	130	130	84	23
15 28	1000 1145	E130 E795	310 218	7.9 7.8	21.0 14.5	7.1 11.3	81 110	6.9 5.1	::	::	83 56	22 15
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
OCT 1988	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS_	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED	GEN, NITRITE TOTAL (MG/L	GEN, NITRITE DIS- SOLVED (MG/L	GEN, NO2+NO3 TOTAL (MG/L
OCT 1988 20 NOV 17	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)
OCT 1988 20 NOV 17 DEC 14	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)
OCT 1988 20 NOV 17 DEC 14 JAN 1989 18	SIUM, DIS- SOLVED (MG/L AS MG) 8.5 5.8	DIS- SOLVED (MG/L AS NA) 27	SIUM, DIS- SOLVED (MG/L AS K) 2.0	LINITY LAB (MG/L AS CACO3) 71	DIS- SOLVED (MG/L AS SO4) 23	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2) 5.8 7.5	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N) 0.060 0.030	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.060 0.030	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.00
OCT 1988 20 NOV 17 DEC 14 JAN 1989 18 FEB 16	SIUM, DIS- SOLVED (MG/L AS MG) 8.5 5.8 6.6	DIS- SOLVED (MG/L AS NA) 27 19 22	SIUM, DIS- SOLVED (MG/L AS K) 2.0 1.4	LINITY LAB (Mg/L AS CACO3) 71 43	DIS- SOLVED (MG/L AS SO4) 23 21 22	RIDE, DIS- SOLVED (MG/L AS CL) 48 32 38	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1	DIS- SOLVED (Mg/ AS SIO2) 5.8 7.5 9.0	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 190 135	GEN, NITRITE TOTAL (MG/L AS N) 0.060 0.030	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.060 0.030 0.040	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.00 0.700 1.00
OCT 1988 20 NOV 17 DEC 14 JAN 1989 18 FEB 16 MAR 21	SIUM, DIS- SOLVED (MG/L AS MG) 8.5 5.8 6.6 6.7	DIS- SOLVED (MG/L AS NA) 27 19 22 36	SIUM, DIS- SOLVED (MG/L AS K) 2.0 1.4 1.4	LINITY LAB (Mg/L AS CACO3) 71 43 53	DIS- SOLVED (MG/L AS SO4) 23 21 22 20	RIDE, DIS- SOLVED (MG/L AS CL) 48 32 38 63	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1	DIS- SOLVED (MG/L AS SI02) 5.8 7.5 9.0 6.8	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 190 135 157	GEN, NITRITE TOTAL (MG/L AS N) 0.060 0.030 0.050	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.060 0.030 0.040 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.00 0.700 1.00
OCT 1988 20 NOV 17 DEC 14 JAN 1989 18 FEB 16 MAR 21 APR	SIUM, DIS- SOLVED (MG/L AS MG) 8.5 5.8 6.6 6.7 7.4	DIS- SOLVED (MG/L AS NA) 27 19 22 36 29	SIUM, DIS- SOLVED (MG/L AS K) 2.0 1.4 1.7	LINITY LAB (Mg/L AS CACO3) 71 43 53 53	DIS- SOLVED (MG/L AS SO4) 23 21 22 20 22	RIDE, DIS- SOLVED (MG/L AS CL) 48 32 38 63 54	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1	DIS- SOLVED (MG/L AS SIO2) 5.8 7.5 9.0 6.8 5.7	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 190 135 157 194 185	GEN, NITRITE TOTAL (MG/L AS N) 0.060 0.030 0.050 0.030	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.060 0.030 0.040 0.010 0.040	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.00 0.700 1.00 1.00
OCT 1988 20 NOV 17 DEC 14 JAN 1989 18 FEB 16 MAR 21 APR 14 MAY 25	SIUM, DIS- SOLVED (MG/L AS MG) 8.5 5.8 6.6 6.7 7.4 6.6	DIS- SOLVED (MG/L AS NA) 27 19 22 36 29 34	SIUM, DIS- SOLVED (MG/L AS K) 2.0 1.4 1.4 1.7	LINITY LAB (Mg/L AS CACO3) 71 43 53 53 57 52	DIS- SOLVED (MG/L AS SO4) 23 21 22 20 22 23	RIDE, DIS- SOLVED (MG/L AS CL) 48 32 38 63 54	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.1	DIS- SOLVED (MG/L AS SIO2) 5.8 7.5 9.0 6.8 5.7 4.4	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 190 135 157 194 185	GEN, NITRITE TOTAL (MG/L AS N) 0.060 0.030 0.050 0.030 0.020	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.060 0.030 0.040 0.010 0.040 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.00 0.700 1.00 1.00 1.20
OCT 1988 20 NOV 17 DEC 14 JAN 1989 18 FEB 16 MAR 21 APR 14 MAY 25 JUN 13 27	SIUM, DIS- SOLVED (MG/L AS MG) 8.5 5.8 6.6 6.7 7.4 6.6 5.3	DIS- SOLVED (MG/L AS NA) 27 19 22 36 29 34 21	SIUM, DIS- SOLVED (MG/L AS K) 2.0 1.4 1.7 1.6 1.6	LINITY LAB (MG/L AS CACO3) 71 43 53 53 57 52	DIS- SOLVED (MG/L AS SO4) 23 21 22 20 22 23 16	RIDE, DIS- SOLVED (MG/L AS CL) 48 32 38 63 54 63 37	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.1 0.1	DIS- SOLVED (MG/L AS SIO2) 5.8 7.5 9.0 6.8 5.7 4.4	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 190 135 157 194 185 190	GEN, NITRITE TOTAL (MG/L AS N) 0.060 0.030 0.050 0.030 0.020 0.010	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.060 0.030 0.040 0.010 0.040 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.00 0.700 1.00 1.20 1.10 0.600
OCT 1988 20 NOV 17 DEC 14 JAN 1989 18 FEB 16 MAR 21 APR 14 MAY 25 JUN 13 27 JUL 19	SIUM, DIS- SOLVED (MG/L AS MG) 8.5 5.8 6.6 6.7 7.4 6.6 5.3 4.4	DIS- SOLVED (MG/L AS NA) 27 19 22 36 29 34 21 16	SIUM, DIS- SOLVED (MG/L AS K) 2.0 1.4 1.7 1.6 1.6 1.1	LINITY LAB (Mg/L AS CACO3) 71 43 53 53 57 52 39	DIS- SOLVED (MG/L AS SO4) 23 21 22 20 22 23 16 14	RIDE, DIS- SOLVED (MG/L AS CL) 48 32 38 63 54 63 37 25	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.1 0.1 0.1	DIS- SOLVED (MG/L AS SIO2) 5.8 7.5 9.0 6.8 5.7 4.4 5.0 5.8	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 190 135 157 194 185 190 130 104 108	GEN, NITRITE TOTAL (MG/L AS N) 0.060 0.030 0.050 0.030 0.020 0.010 0.010 0.020	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.060 0.030 0.040 0.010 0.020 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.00 0.700 1.00 1.20 1.10 0.600 0.400
OCT 1988 20 NOV 17 DEC 14 JAN 1989 18 FEB 16 MAR 21 APR 14 MAY 25 JUN 13 27	SIUM, DIS- SOLVED (MG/L AS MG) 8.5 5.8 6.6 6.7 7.4 6.6 5.3 4.4 4.3 4.3	DIS- SOLVED (MG/L AS NA) 27 19 22 36 29 34 21 16 16 15	SIUM, DIS- SOLVED (MG/L AS K) 2.0 1.4 1.7 1.6 1.1 1.0	LINITY LAB (Mg/L AS CACO3) 71 43 53 53 57 52 39 34 37 27	DIS- SOLVED (MG/L AS SO4) 23 21 22 20 22 23 16 14 14	RIDE, DIS- SOLVED (MG/L AS CL) 48 32 38 63 54 63 37 25 25 22	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.1 0.1 0.1 0.1	DIS- SOLVED (MG/L AS SIO2) 5.8 7.5 9.0 6.8 5.7 4.4 5.0 5.8 6.1 6.6	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 190 135 157 194 185 190 130 104 108 99	GEN, NITRITE TOTAL (MG/L AS N) 0.060 0.030 0.050 0.030 0.020 0.010 0.010 0.020	GEN, NITRITE DIS- SOLVED (MG/L AS N) 0.060 0.030 0.040 0.010 0.020 0.010 0.010 0.030 0.030	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.00 0.700 1.00 1.00 1.00 1.00 0.600 0.600

, 1

2

10

<10

PASSAIC RIVER BASIN

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	NITRO- GEN,	NITRO-	NITRO- GEN, (NITRO- GEN,AM- (NITRO- GEN,AM-			PHOS-	PHOS-	PHOS- PHOROUS	CARBON,	CARBON, ORGANIC
	NO2+NO3 DIS-		AMMONÍA N	MONIA + N	ONIA + ORGANIC	NITRO- GEN,	PHOS- PHOROUS	PHOROUS DIS-	PHORUS, ORTHO,	ORTHO, DIS-	ORGANIC DIS-	SUS- PENDED
DATE	SOLVED (MG/L AS N)	TOTAL (MG/L AS N)	SOLVED (MG/L AS N)	TOTAL (MG/L AS N)	DIS. (MG/L AS N)	TOTAL (MG/L	TOTAL (MG/L AS P)	SOLVED (MG/L AS P)	(MG/L AS P)	SOLVED (MG/L AS P)	SOLVED (MG/L AS C)	TOTAL (MG/L AS C)
OCT 1988	AS N)	A3 N)	AS N)	AS N)	AS N)	AS N)	AS P)	NS P)	AS P)	AS F)	N3 C)	AS C)
20 NOV	0.960	0.370	0.380	0.90	0.70	1.9	0.140	0.090	0.130	0.100	2.7	0.5
17 DEC	0.760	0.180	0.190	0.80	0.70	1.5	0.160	0.090	0.090	0.080	2.6	0.5
14 JAN 1989	0.900	0.270	0.230	0.80	0.50	1.8	0.090	0.060	0.070	0.050	2.5	0.5
18	1.00	0.310	0.350	0.70	0.60	1.7	0.100	0.070	0.080	0.060	2.9	0.4
FEB 16	1.20	0.290	0.230	0.80	0.80	2.0	0.140	0.070	0.080	0.050	2.6	0.4
MAR 21 APR	0.950	0.230	0.180	0.80	0.40	1.9	0.110	0.040	0.060	0.040	2.6	0.4
14 MAY	0.690	0.120	0.100	1.0	1.0	1.6	0.050	0.040	0.030	0.020	2.5	0.4
25 JUN	0.460	0.100	0.080	0.60	0.20	1.0	0.050	0.020	0.020	<0.010	2.9	0.6
13 27 JUL	0.630 0.690	0.110 0.100	0.110 0.100	0.70 0.40	0.70 0.40	1.3	0.090	0.040 0.050	0.050 0.030	0.030 0.040	3.6 3.6	0.6
19	0.880	0.240	0.240	0.90	0.70	1.8	0.110	••	0.070	0.060	3.0	0.7
AUG 14 SEP	0.810	0.150	0.140	1.4	0.80	2.2	0.100	0.070	0.050	0.040	4.0	0.8
15 28	0.710 0.560	0.100 0.110	0.100 0.130	1.2 0.50	1.0 0.50	2.0 1.1	0.140 0.070	0.060 0.030	0.090 0.050	0.050 0.010	3.4	0.1 0.5
						BER	YL-		CHR	:O-		
				ALUM I NUM		LIU	M. BOR		IIUM MIL AL TOT			
			SULFI	DE DIS	- ARSEN	IIC REC	OV- REC	OV- REC			BLE	
	DATE	TIM	E (MG/ AS S				BE) AS				CU)	
	OCT 1988										Ž.	
	20 MAY 1989	123			10	<1 <1		60		1 1 2	6	
	25	113	so <0	.5	30	<1 <1	0	40	<1	1	3	1 1/2
		5			MANGA-							
			IRON, TOTAL	LEAD, TOTAL	NESE, TOTAL	MERCURY TOTAL	NICKEL, TOTAL	SELE-	ZINC,			
			RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	NIUM, TOTAL	RECOV- ERABLE	PHENOLS		
		DATE	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L	TOTAL (UG/L)		

OCT 1988

300

420

<5

8

150

80

0.10

<0.10

6

1

<1

<1

20... MAY 1989 25...

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'47", long 74°16'10", Passaic County, Hydrologic Unit 02030103, on right bank, in Two Bridges and 400 ft downstream from the Pompton River.

DRAINAGE AREA .- - 734 mi 2 .

PERIOD OF RECORD. -- June, 1987 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	COI DUI ANI	FIC N- P CT- (ST	AND - RD	TEMPER- ATURE WATER (DEG C)	SOL		OXYGE DIS SOLV (PER CEN SATU	6- DEN /ED B1 t- CH IT IC JR- 5	(GEN MAND, 10- HEM- CAL, DAY	HARD- NESS TOTAL (MG/L AS CACO3	SOI (M	CIUM S- LVED G/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOD IUM DIS- SOLVED (MG/L
OCT 1988	1130	E200		653	7.3	13.0		4.3	4	1 1	15	160	38		15	71
DEC 14	0930	E560			7.4	0.5		1.3	7	79	4.2	110	27		10	34
JAN 1989 27	0930	E480		433	7.8	3.5	12	2.3	9	94	8.1	96	25		8.2	34
MAR 21	1030	E920		595	7.5	6.5		9.9	8	31	3.3	110	27		9.5	70
16 26		E4300 E2600		219 225	7.3 7.2	17.5 23.5		6.7 7.0		70 33	2.9 1.9	63 64	17 17		5.1 5.3	17 17
JUL 20	1400	E600			7.3	23.0		5.2				95	25		8.0	27
AUG 14	0930	E1150		295	7.5	21.5		6.6	7	75	2.2	82	22		6.6	24
SEP 15 28	1415 1430	E510 E3100		560 200	7.7 7.2	23.5 15.0		4.8 6.6		57 55	7.2 5.1	130	34		12	52
DATE	POTA SIL DIS SOL (MG,	UM, LIN S- L VED (N /L /	LKA- NITY LAB NG/L NS NCO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	, R1 ED SC L (N	LUO- IDE, DIS- DLVED MG/L S F)	SILIC DIS- SOLV (MG/ AS SIO2	ED 1	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN NITRI TOTAI (MG/I AS N	D- TE L S L (ITRO- GEN, TRITE DIS- OLVED MG/L S N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N))- 02 NO2 03 0 . S0	TRO- GEN, 2+NO3 DIS- DLVED MG/L S N)
OCT 1988 20	5	.7 93		46	94		0.1	14		367	0.20	n n	.200	5.20	4	.90
DEC 14		.4 78		33	54		0.1	14		236	0.03		.040	2.30		.20
JAN 1989 27		.6 64		30	60		0.2	8.4		209	0.03		.030			
MAR 21		.7 60		35	120		0.1	9.0		318	0.03		.030	1.30	1.	.50
JUN 16 26	1	.7 47	1	14 15	25 25		0.1	8.7 8.5	,	118 118	0.05	0 0	.060	1.00		.840 .710
JUL 20		.4 6		23	41		0.1	11		183	0.10		.080	1.90		.70
AUG 14	1	.9 56	6	18	37		0.1	8.0)	156	0.04		.050	1.10	1.	.00
15 28	5	.5 83	3	43 15	75 21		0.1 0.1	13		304	0.19	0 0	.180 .040	4.20		.60 .660
DATE	NIT GE AMMO TOT (MG AS	RO- (N, AMI NIA (AL S(/L ()	ITRO- GEN, MONIA DIS- OLVED MG/L S N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITR GEN, A MONIA ORGAN DIS. (MG/	M- + N IIC T	ITRO- GEN, OTAL MG/L S N)	PHOS PHORO TOTA (MG/ AS F	DUS AL /L	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	ORTH	- PH S, O O, D L SO L (M	HOS- OROUS RTHO, IS- LVED G/L P)	CARBOI ORGANI DIS- SOLVEI (MG/I	IC SI PEI D TO	RBON, GANIC JS- NDED OTAL MG/L S C)
OCT 1988	2.	40	2.40	2.8	2.	7	8.0	1.3	K O	1.10	1.1	n	1.00	7.3	,	0.5
DEC 14			1.90	2.7	2.		5.0	0.6		0.510			0.450	4.		0.5
JAN 1989 27			1.10	1.9		9		0.3		0.260			0.210	3.		0.7
MAR 21			1.00	1.7	1.		3.0		430	0.280			0.260	4.		0.8
JUN 16 26	0.	210	0.200 0.140	0.70	0.	.70 .30	1.7		190 130	0.120	0.1	50	0.120	5	2	0.7
JUL 20			0.310	2.0	1.		3.9		300	0.180			0.160	5.		0.9
AUG 14	0.		0.220	1.0		.80	2.1		240	0.100			0.120	5.		1.2
SEP 15 28		30 100	1.20 0.110	2.2	1:	.7	6.4		950 220	0.800	0.8	10 80	0.740 0.120	4.	6	1.5

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ (National stream quality accounting network station)

LOCATION.--Lat 40°53'05", long 74°13'35", Passaic County, Hydrologic Unit 02030103, on left bank 0.6 mi downstream from Beattie's Dam in Little Falls, and 1.0 mi upstream from Peckman River.

DRAINAGE AREA.--762 mi^2 . Area at site used prior to Oct. 1, 1955, 799 mi^2 .

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1897 to current year. Monthly discharge only for September 1897, published in WSP 1302. Published as "at Paterson", September 1897 to September 1955.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 120.00 ft above National Geodetic Vertical Datum of 1929 (levels by Passaic Valley Water Commission). Prior to Jan. 8, 1933, nonrecording gage and Jan. 8, 1933, to Sept. 30, 1955, water-stage recorder, at site 3.7 mi downstream at National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Diurnal fluctuation at medium and low flow caused by hydroelectric plant at Beattie's Dam. Flow regulated by reservoirs in Rockaway, Pequannock, Wanaque, and Ramapo River subbasins (see Passaic River basin, reservoirs in). Large diversions for municipal supply from Passaic River above Beattie's Dam, and from Rockaway, Pequannock, Ramapo, and Wanaque Rivers (see Passaic River basin, diversions and Hackensack River basin, diversions). In addition, the New Jersey American Water Company (formerly Commonwealth Water Co.) diverts from Canoe Brook near Summit and from Passaic River (see Passaic River basin, diversions); that company and the city of East Orange also divert water for municipal supply by pumping wells. Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and gage-height and USGS satellite telemeters at station.

COOPERATION. -- Gage-height record collected in cooperation with the Passaic Valley Water Commission.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	137	243	1730	410	566	615	2250	687	1240	724	280	217
2	151	501	1550	163	553	437	2260	1510	1000	610	273	202
3	249	325	1330	89	553	325	2250	2010	849	534	447	179
4	229	164	1140	151	557	253	2270	1950	735	480	328	166
5	187	257	918	299	509	231	2310	1970	648	808	264	166
6	160	948	670	305	333	346	2490	3710	619	1570	237	166
7	145	887	465	310	111	434	2590	5800	752	1550	233	170
8	261	620	384	383	86	408	2500	6210	1330	1380	263	171
9	260	336	563	553	82	372	2320	5420	1670	1130	228	159
10	204	222	359	566	78	283	2110	4920	2190	923	200	153
11	161	335	293	496	94	231	1860	5740	2210	811	292	146
12	73	112	410	508	87	242	1610	6380	1980	640	873	133
13	70	172	317	759	78	283	1400	6010	2120	530	1290	131
14	68	427	154	810	121	239	1230	5240	2020	496	1060	159
15	80	410	143	892	134	222	1210	4470	2180	445	753	432
16	131	292	143	1020	273	293	1830	4580	2720	396	564	444
17	114	492	93	971	237	197	1930	7230	2740	535	587	507
18	77	737	70	855	152	242	1890	9870	2490	576	466	417
19	72	668	87	743	72	406	1800	10200	2110	497	420	687
20	83	1590	85	653	75	410	1640	8520	1710	517	447	2670
21	90	3310	101	597	463	493	1440	6730	1490	630	383	3360
22	508	3260	116	501	1450	551	1240	5360	1360	568	341	3080
23	340	2850	122	432	1600	466	1050	4300	1370	522	356	3200
24	260	2610	227	426	1510	637	859	3970	1760	444	358	3090
25	145	2320	754	414	1320	1490	764	3730	2030	388	309	2840
26 27 28 29 30 31	77 84 94 94 89 96	2010 1700 2270 2020 1850	512 328 281 367 325 220	418 468 496 475 479 539	1180 1000 830	1480 1420 1450 1380 1470 2010	705 667 616 573 663	3350 2980 2670 2250 1880 1530	1950 2020 1620 1250 922	348 313 304 277 256 249	260 229 214 232 269 249	2800 2680 2500 2160 1700
MEAN	154	1131	460	522	504	623	1611	4554	1636	627	410	1163
MAX	508	3310	1730	1020	1600	2010	2590	10200	2740	1570	1290	3360
MIN	68	112	70	89	72	197	573	687	619	249	200	131
STATIST	ICS OF MO		W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN	615	949	1263	1342	1426	2410	2105	1329	777	539	549	543
MAX	5613	4757	4497	4039	3787	6755	5760	4554	4290	3124	2859	3561
(WY)	1904	1908	1903	1979	1973	1936	1983	1989	1972	1945	1942	1971
MIN	44.5	79.2	111	104	178	423	228	227	84.6	60.3	30.4	28.9
(WY)	1931	1932	1981	1981	1901	1981	1985	1965	1965	1954	1923	1964

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	10200 May 19 68 Oct 14 10700 May 19 9.44 May 19 58 Dec 18 2600 531 88	1156 2394 269 28000 Oct 10 1903 .00 Jul 3 1904 31700a Oct 10 1903 .00 Jul 3 1904 2860 639 83

a Present site e Estimated

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to November 1986 (discontinued).
WATER TEMPERATURE: Water years 1963 to 1980 (once daily), September 1980 to November 1986 (discontinued).
DISSOLVED OXYGEN: October 1970 to September 1980 (once daily).
SUSPENDED-SEDIMENT DISCHARGE: August 1963 to July 1965.

INSTRUMENTATION. -- Water-quality monitor since October 1980.

REMARKS. -- Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum, 965 microsiemens, Feb. 4, 1985; minimum, 99 microsiemens, April 6, 1984.
WATER TEMPERATURE: Maximum, 29.5°C, July 12, 1981; minimum, 0.0°C on many days during winter months.
DISSOLVED OXYGEN: Maximum daily, 14.4 mg/L, Jan. 7, 1973; minimum daily, 1.7 mg/L, June 23, 1976.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
OCT 1988 21	1145	61	595	8.0	12.0		8.0	74			
NOV 18	1040	737	375	7.7	9.0	14	11.1	95	6.9	550	580
DEC 15	1100	140	411	8.2	1.0		14.5	102	5.1		••
JAN 1989 27	1500	480	469	7.9	4.0	4.5	13.6	105	8.4		82
FEB 22	1130	1480	380	7.2	4.5		12.6	99	4.1		
MAR 22	1200	550	600	7.5	6.5	9.6	12.5	101	2.8	K16	67
APR 14	1230	1230	310	7.5	10.0		12.1	107	5.7		••
MAY 26	1230	3330	213	7.5	18.5	4.0	9.0	98	1.7	K360	900
JUN 13 26	1230 1030	2170 1920	225 227	7.8 7.5	19.5 23.0	::	8.8 8.2	97 97	3.0 2.1	: :	••
JUL 20	1630	585	328	7.7	23.0	12	8.1	95			2200
AUG 15	1400	703	303	7.9	23.0		8.5	99	1.6		••
18 28	1230 1200	411 2520	398 208	7.9 7.2	20.0 14.5	5.0	8.5 12.2	93 118	2.8	340	330
							AL KA	AL VA	1.5		
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
OCT 1988	160	39	14	53	5.6				94	44	84
NOV 18	100	26	9.4	30	1.6	70	57	57	59	39	46
DEC 15	120	31	11	33	3.3	••	••	••	87	43	55
JAN 1989 27	120	30	10	38	3.2	81	66	68	74	33	65
FEB 22 MAR	92	24	7.7	33	2.4				54	25	59
22 APR	110	29	9.8	71	2.8	95	78	81	63	32	120
14 MAY	80	21	6.8	25	1.9	••	••		47	22	43
26 JUN_	61	16	5.0	16	1.5	66	54	63		14	25
13 26	63 68	17 18	5.0 5.6	16 17	1.7 1.6	::	::	:: 7	42 42	14 16	24 26
JUL 20	100	26	8.5	28	2.6	82	67	66	65	22	42
AUG 15	86	23	7.0	24	2.1				59	21	36
SEP 18 28	100 61	27 16	8.7 5.1	34 16	3.6 2.3	::	::	::	65 41	27 15	53 21

PASSAIC RIVER BASIN
01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT 1988 21	0.2	13	336				0.190	0.190	5.20	5.10
NOV 18	0.1	12	210	36	72	92	0.060	0.060	2.00	2.00
DEC 15 JAN 1989	0.2	14	254				0.020	<0.010	2.60	2.50
27	0.2	10	241				0.040	0.030	1.90	2.00
FEB 22	0.1	7.9	200			÷	0.030	0.030	1.50	1.50
MAR 22	0.2	9.9	330	16	24	84	0.030	0.040	1.50	1.40
APR 14	0.1	7.0	160	• • •			0.020	0.020	1.00	1.00
MAY 26	0.1	6.9	120	15	135	92	0.030	0.020	0.600	0.580
JUN 13 26	0.1 0.1	8.7 8.8	116 122	::	::	::	0.050 0.040	0.040 0.040	0.800 0.800	0.820 0.730
JUL 20	0.1	13	192	26	41	86	0.110	0.110	2.00	1.90
AUG 15	0.1	9.2	165				0.080	0.080	1.50	1.50
18 28	0.1 0.1	10 10	213 113	20	136	83	0.110 0.040	0.110 0.040	2.20 0.700	2.10 0.530
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)
OCT 1988	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONÍA + ORGANIC DIS. (MG/L AS N)	PHOROUS TOTAL (MG/L AS P)	PHOROUS DIS- SOLVED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)
OCT 1988 21	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONÍA + ORGANIC DIS. (MG/L AS N)	PHOROUS TOTAL (MG/L AS P)	PHOROUS DIS- SOLVED (MG/L AS P)	PHORUS, ORTHO, TOTAL (MG/L AS P)	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)
OCT 1988 21 NOV 18 DEC	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910	GEN, AMMON IA DIS- SOLVED (MG/L AS N) 1.20 0.960	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 2.0	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOROUS TOTAL (MG/L AS P) 0.930 0.630	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9
OCT 1988 21 NOV 18 DEC 15 JAN 1989	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010	GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N) 2.0 1.9 2.1	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420 0.450	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8
OCT 1988 21 NOV 18 DEC 15 JAN 1989 27	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40 1.50	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010 1.40	GEN, AM- MONTA + ORGANIC TOTAL (MG/L AS N) 2.0 1.9 2.1 2.1	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0 2.0	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650 0.440	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430 0.430 0.340	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420 0.450 0.360	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010 0.280	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0 2.9	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8 0.5
OCT 1988 21 NOV 18 DEC 15 JAN 1989 27 FEB 22	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40 1.50 0.800	GEN, AMMON IA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010 1.40 0.800	GEN, AM- MONTA + ORGAN IC TOTAL (MG/L AS N) 2.0 1.9 2.1 2.1	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0 2.0	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650 0.440 0.390	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430 0.430 0.340 0.220	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420 0.450 0.360 0.230	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010 0.280 0.180	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0 2.9 4.0	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8 0.5
OCT 1988 21 NOV 18 DEC 15 JAN 1989 27 FEB 22 MAR 22	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40 1.50 0.800 0.880	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010 1.40 0.800 0.880	GEN, AM- MONTA + ORGANIC TOTAL (MG/L AS N) 2.0 1.9 2.1 2.1 1.1	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0 2.0 1.0	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650 0.440 0.390 0.460	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430 0.430 0.340 0.220 0.280	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420 0.450 0.360 0.230	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010 0.280 0.180 0.230	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0 2.9 4.0 4.8	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8 0.5 0.7
OCT 1988 21 NOV 18 DEC 15 JAN 1989 27 FEB 22 MAR 22 APR 14 MAY	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40 1.50 0.800 0.880 0.320	GEN, AMMON IA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010 1.40 0.800 0.880	GEN, AM- MONTA + ORGANIC TOTAL (MG/L AS N) 2.0 1.9 2.1 2.1 1.1	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0 2.0 1.0	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650 0.440 0.390 0.460 0.180	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430 0.430 0.340 0.220 0.280 0.130	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420 0.450 0.360 0.230	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010 0.280 0.180 0.230 0.110	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0 2.9 4.0 4.8 4.2	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8 0.5 0.7
OCT 1988 21 NOV 18 DEC 15 JAN 1989 27 FEB 22 MAR 22 APR 14 MAY 26 JUN	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40 1.50 0.800 0.880 0.320 0.080	GEN, AMMON IA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010 1.40 0.800 0.880 0.310	GEN, AM- MONTA + ORGANIC TOTAL (MG/L AS N) 2.0 1.9 2.1 2.1 1.1 1.9 1.0 0.50	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0 2.0 1.0 1.4 0.80 0.30	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650 0.440 0.390 0.460 0.180	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430 0.340 0.220 0.280 0.130 0.100	PHORUS, ORTHO, TOTAL, MG/L AS P) 0.830 0.420 0.450 0.360 0.230 0.130	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010 0.280 0.180 0.230 0.110	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0 2.9 4.0 4.8 4.2 5.0	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8 0.5 0.7
OCT 1988 21 NOV 18 DEC 15 JAN 1989 27 FEB 22 MAR 22 APR 14 APR 14 JUN 13 26	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40 1.50 0.800 0.880 0.320	GEN, AMMON IA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010 1.40 0.800 0.880	GEN, AM- MONTA + ORGANIC TOTAL (MG/L AS N) 2.0 1.9 2.1 2.1 1.1	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0 2.0 1.0	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650 0.440 0.390 0.460 0.180	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430 0.430 0.340 0.220 0.280 0.130	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420 0.450 0.360 0.230	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010 0.280 0.180 0.230 0.110	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0 2.9 4.0 4.8 4.2	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8 0.5 0.7
OCT 1988 21 NOV 18 DEC 15 JAN 1989 27 FEB 22 MAR 22 APR 14 MAY 26 JUN 13 26 JUL 20	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40 1.50 0.800 0.880 0.320 0.080	GEN, AMMON IA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010 1.40 0.800 0.880 0.310 0.080	GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N) 2.0 1.9 2.1 2.1 1.1 1.9 1.0 0.50	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0 2.0 1.0 1.4 0.80 0.30	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650 0.440 0.390 0.460 0.180	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430 0.430 0.220 0.280 0.130 0.100	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420 0.450 0.360 0.230 0.130 0.100	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010 0.280 0.180 0.230 0.110	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0 2.9 4.0 4.8 4.2 5.0 6.0 4.8	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8 0.5 0.7
OCT 1988 21 NOV 18 Jan 1989 27 FEB 22 MAR 22 APR 14 MAY 26 JUN 13 26	GEN, AMMONIA TOTAL (MG/L AS N) 1.30 0.910 1.40 1.50 0.800 0.880 0.320 0.080 0.150 0.150	GEN, AMMONIA DIS- SOLVED (MG/L AS N) 1.20 0.960 <0.010 1.40 0.880 0.310 0.080 0.150 0.150	GEN, AM- MONTA + ORGANIC TOTTAL (MG/L AS N) 2.0 1.9 2.1 2.1 1.1 1.9 1.0 0.50 0.60 0.40	GEN, AM- MONTA + ORGANIC DIS. (MG/L AS N) 1.9 1.8 2.0 2.0 1.0 1.4 0.80 0.30	PHOROUS TOTAL (MG/L AS P) 0.930 0.630 0.650 0.440 0.390 0.460 0.180 0.150 0.200 0.140	PHOROUS DIS- SOLVED (MG/L AS P) 0.880 0.430 0.340 0.220 0.280 0.130 0.100 0.140 0.090	PHORUS, ORTHO, TOTAL (MG/L AS P) 0.830 0.420 0.450 0.360 0.230 0.130 0.100 0.150 0.130	PHOROUS ORTHO, DIS- SOLVED (MG/L AS P) 0.790 0.360 0.010 0.280 0.180 0.230 0.110 0.080 0.110	ORGANIC DIS- SOLVED (MG/L AS C) 4.1 4.8 4.0 2.9 4.0 4.8 4.2 5.0 6.0 4.8	ORGANIC SUS- PENDED TOTAL (MG/L AS C) 0.9 0.8 0.5 0.7

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL LIUM, DIS- SOLVEI (UG/L AS BE)	CADMII DIS SOLVI (UG/I	DIS- ED SOLV	DIS- VED SOLVE	DIS- D SOLVE L (UG/I	DIS ED SOLV L (UG/	ED SOLVED L (UG/L
OCT 1988 21	1145		•••						,	7° 11	
NOV 18	1040										
DEC 15	1100										
JAN 1989 27	1500	<10	<1	17	<1		<1	<1	<3	3	65
FEB 22	1130										
MAR 22	1200	20	<1	25	<0.	5	<1	<1	<3	3	56 <5
APR 14	1230										
MAY 26	1230	••				••					•••
JUN 13 26 JUL	1230 1030	::	. I	::	::	::	::	: ::	::	::	
20 AUG	1630	20	. 1	18	<0.	5	<1	<1	<3	3	67 <1
15 SEP	1400			••	••						••
18	1230 1200	20	<1 <1	15	<0.	5	<1	<1	<₃	5 2	220 2
		м.	ANCA-		OLVD-		CEL E		CTDON-	VANA -	
DATE	SO (U	HIUM NI IS: I LVED SI G/L (I	DIS- OLVED S UG/L (RCURY DIS- OLVED S UG/L (DIS- OLVED UG/L	ICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT 1988		<u>.</u>									
21 NOV		• •	••,			••		••	••		••
18 DEC		••	••		••	••	••	••	•	••	••
15 JAN 1989	10,	••	••	•••		••		••	••	••	•• 5 - gov
27 FEB		<4	94	<0.1	<10	4	<1	<1.0	110	<6	. 18
22 MAR			••	• • •				••	** , *		••,
22 APR		<4	120	<0.1	<10	5	<1	<1.0	120	<6	11
14 MAY			••		••			••	••	••	••
26 JUN			••	•••				••		••	••
13 26			::	::				::		::	::
JUL 20		<4	110	<0.1	<10	1	<1	<1.0	100	<6	3
AUG 15		••									••
SEP 18 28		<4	49	<0.1	 <10	3	 <1	 <1.0	64	·· <6	∢3

01390500 SADDLE RIVER AT RIDGEWOOD, NJ

LOCATION.--Lat 40°59'05", long 74°05'30", Bergen County, Hydrologic Unit 02030103, on left bank 15 ft upstream from bridge on State Highway 17 in Ridgewood and 2.8 mi upstream from Hohokus Brook.

DRAINAGE AREA --- 21 6 mi 2

PERIOD OF RECORD. -- October 1954 to September 1974, October 1977 to current year. Operated as a maximum-stage gage water years 1975-77.

REVISED RECORDS. -- WRD-NJ 1974: 1971.

GAGE.--Water-stage recorder. Datum of gage is 71.74 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records fair. The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others. Several measurements of water temperature were made during the year. Satellite telemeter at station.

EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of July 23, 1945, reached a discharge of $6,400 \text{ ft}^3/\text{s}$, at site 1.6 mi upstream, drainage area, 19.1 mi 2 , by slope-area measurement.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.1 8.1 14 7.6 6.6	47 43 15 12 59	25 22 20 18 17	12 12 12 17 19	13 12 14 13	17 16 15 15	57 34 37 41 70	25 167 51 35 60	42 38 35 33 32	25 23 22 20 172	19 14 18 13 12	7.1 6.7 6.1 5.9 6.8
6 7 8 9 10	7.3 7.1 22 10 7.8	64 19 15 13	16 16 15 14 13	12 13 17 20 13	12 11 10 13 20	28 20 19 16 17	93 53 44 40 36	287 82 60 48 165	34 47 66 104 113	67 39 32 27 48	11 9.9 10 9.0 8.5	6.9 5.6 5.1 4.9 4.5
11 12 13 14 15	8.2 6.8 6.5 6.4 7.1	12 9.5 44 31 18	13 18 12 12 11	12 27 40 20 45	11 8.7 8.0 15 21	17 17 16 15	32 29 30 32 51	232 81 60 51 50	45 38 108 52 101	52 28 26 25 22	22 109 49 24 18	4.1 3.8 3.9 9.7 24
16 17 18 19 20	6.4 6.3 6.6 6.5 5.8	16 60 28 18 305	11 15 18 9.1 9.0	29 20 17 19 17	30 15 12 11	15 14 30 26 19	109 45 36 32 29	349 611 159 114 94	133 82 47 41 35	22 35 23 21 50	31 32 16 14 14	12 20 8.8 69 319
21 22 23 24 25	7.5 77 21 13 9.1	194 59 38 29 22	10 9.6 13 30 37	16 26 13 13	125 76 38 25 22	35 25 19 73 106	28 26 24 25 23	85 76 83 199 98	77 61 52 91 44	38 25 24 20 18	13 12 11 11 9.1	110 35 111 47 26
26 27 28 29 30 31	6.3 4.6 6.7 7.6 7.0 7.0	18 15 194 46 30	17 14 20 24 15	13 20 14 13 14	20 19 18 	37 28 26 24 40 88	23 21 20 20 31	71 74 61 52 47 45	47 60 37 32 27	18 19 15 15 13	8.4 8.6 8.1 9.2 11 8.0	68 31 22 20 18
MEAN MAX MIN IN.	10.6 77 4.6 .57	49.5 305 9.5 2.56	16.4 37 9.0 .87	18.1 45 12 .97	22.0 125 8.0 1.06	27.9 106 14 1.49	39.0 109 20 2.02	118 611 25 6.32	58.5 133 27 3.02	32.2 172 13 1.72	18.2 109 8.0 .97	34.1 319 3.8 1.76
					OF RECORD	, BY WATER	R YEAR (
MEAN MAX (WY) MIN (WY)	21.7 104 1956 5.80 1983	35.6 109 1978 8.41 1982	37.6 109 1973 7.49 1981	35.9 115 1979 6.43 1981	43.1 86.9 1961 11.8 1980	55.4 104 1983 15.6 1985	61.0 152 1983 11.0 1985	44.3 118 1989 14.8 1965	28.1 121 1972 7.46 1965	21.1 87.6 1984 3.23 1966	19.8 77.1 1955 3.30 1980	19.0 70.6 1971 2.34 1980
SUMMAR	Y STATIST	ICS		F	OR 1989 WAT	ER YEAR			FOR I	PERIOD OF	RECORD	
HIGHES LOWEST HIGHES LOWEST INSTAN INSTAN AND PER 50 PER	SE FLOW ST ANNUAL T ANNUAL T ANNUAL T ANIVE ME T DAILY ME STANEOUS P STANEOUS P STANEOUS F STANEOUS	EAN AN EAK FLOW EAK STAGE			37.1 611 3.8 971 5.58 3.6 23.32 78 21 6.6	May 17 Sep 12 May 17 May 17 Sep 11			12. 22.	.6 50 Nov 20 Sep 50 Nov 25 Nov	8 1977	

01391000 HOHOKUS BROOK AT HO-HO-KUS, NJ

LOCATION.--Lat 40°59'52", long 74°06'48", Bergen County, Hydrologic Unit 02030103, on left bank 500 ft upstream from bridge on Maple Avenue in Ho-Ho-Kus, and 3.5 mi upstream from mouth.

DRAINAGE AREA. -- 16.4 mi 2.

PERIOD OF RECORD.--April 1954 to September 1973, October 1977 to current year. Operated as a crest-stage partial-record station, water years 1974-77.

REVISED RECORDS.--WDR NJ-77-1: 1955(M), 1968(M), 1976(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 120.09 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good below 300 ft³/s and fair above. Some regulation and diurnal fluctuation at low and medium flows caused by unknown sources, possibly sewage treatment plant upstream of gage. Several measurements of water temperature were made during the year. Satellite telemeter at station.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	59	37	25	22	25	66	31	46	35	27	19
2	18	48	35	25	22	24	42	146	43	33	23	19
3	26	24	33	25	24	24	43	63	40	32	29	18
4	19	21	31	24	23	24	47	38	38	30	24	17
5	19	69	29	22	21	26	75	64	36	150	22	19
6	17	72	29	20	21	37	91	250	39	88	20	20
7	17	31	28	23	21	30	62	80	50	52	20	20
8	29	25	28	34	20	27	51	56	67	42	20	20
9	22	22	28	34	20	24	47	49	92	36	20	19
10	19	21	28	26	18	25	43	165	114	39	19	18
11	17	20	27	25	19	27	38	209	52	51	39	19
12	16	19	25	40	19	27	37	87	42	31	157	19
13	16	49	25	44	19	26	36	66	109	31	70	19
14	16	39	26	29	27	25	41	57	63	31	37	29
15	16	25	26	51	33	25	51	53	112	28	38	36
16	16	22	25	36	38	25	118	296	128	28	33	37
17	16	66	25	28	26	24	59	514	76	40	35	42
18	16	37	24	26	22	40	47	137	54	31	26	23
19	16	26	23	27	21	36	42	94	46	28	24	107
20	16	274	24	26	21	27	38	79	42	56	25	359
21	19	176	25	24	104	43	36	70	55	45	24	153
22	82	58	24	21	82	32	33	63	94	32	23	56
23	27	43	30	21	47	26	32	77	79	29	23	109
24	21	38	48	21	34	59	31	170	88	27	26	64
25	19	33	47	22	29	125	30	95	53	26	21	39
26 27 28 29 30 31	18 17 17 17 17 17	31 31 178 61 42	31 27 34 37 28 27	23 27 23 22 24 23	26 28 26 	51 39 36 34 40 92	30 30 28 28 36	68 72 61 51 49 48	69 102 52 45 38	25 24 24 23 21 25	20 19 20 20 22 20	80 47 34 31 29
MEAN	20.4	55.3	29.5	27.1	29.7	36.3	46.3	108	65.5	38.5	30.5	50.7
MAX	82	274	48	51	104	125	118	514	128	150	157	359
MIN	15	19	23	20	18	24	28	31	36	21	19	17
IN.	1.44	3.77	2.07	1.91	1.89	2.55	3.15	7.62	4.45	2.71	2.15	3.45
					OF RECORD,		R YEAR (
MEAN	23.0	34.6	35.0	32.6	41.3	48.9	52.4	39.8	29.1	24.1	24.3	22.5
MAX	82.4	102	91.7	80.9	90.0	89.6	129	108	101	85.5	84.9	96.5
(WY)	1956	1978	1984	1979	1973	1983	1983	1989	1972	1984	1955	1971
MIN	6.21	7.10	12.3	9.07	15.3	20.8	19.4	13.9	7.58	3.91	5.17	5.78
(WY)	1965	1965	1981	1981	1980	1981	1985	1955	1965	1966	1966	1964
SUMMARY	STATISTIC	S		FC	OR 1989 WATE	R YEAR			FOR F	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT	ANNUAL MEA ANNUAL MEA DAILY MEA DAILY MEAN ANEOUS PEA ANEOUS LOW RUNOFF (IN ENTILE ENTILE	N K FLOW K STAGE			514 15 1020 3.37 9.3 37.17 82 30 18	May 17 Oct 1 Sep 20 Sep 20 Oct 21				.3 .1 20 Nov .5 Jul 00a Nov 06 Nov	1984 1965 8 1977 13 1966 8 1977 8 1977 2 1966	

a From rating curve extended above 750 ft³/s by computation of peak flow over dam

01391200 SADDLE RIVER AT FAIR LAWN, NJ

LOCATION.--Lat 40°56'30", long 74°05'36", Bergen County, Hydrologic Unit 02030103, at bridge on Century Road in Fair Lawn, and 0.8 mi downstream from Hohokus Brook.

DRAINAGE AREA .-- 45.2 mi2.

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CU F TIME F	BIC CO	FIC N- P CT- (ST CE A	AND - AT RD WA	URE D	GEN, (I	OLVED BI PER- CH CENT IC ATUR- 5	AND, COL O- FOR EM- FEC AL, EC DAY BRO	RM, CAL, STREP- TOCOCCI
OCT_1988									
27 JAN 1989	0800	30E	633			7.7		3 >24000	
19 APR	1330	60E	574	8.0	7.0 1	1.6	96	9.0 540	350
11 MAY	1100	99E	530	8.0	8.0 1	1.4	96	5.4 230	130
31 JUL	1315 1	140E	425	8.1 1	8.0	8.8	93	1.6 2200	230
12	1130	73E	430	7.9 2	0.5	9.0	100	2.9 4900	2300
AUG 29	1100	64E	610	7.8 2	0.5	7.7	86	2.9 1300	3300
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988 27	180	48	15	41	6.9	114	36	72	0.1
JAN 1989 19	180	49	14	45	3.9	135	31	78	0.1
APR 11	160	43	12	42	2.8	99	27	80	0.1
MAY	160								
31 JUL		44	11	36	2.7	102	25	65	0.1
12	150	42	11.	33	3.6	104	27	59	0.1
29	190	50	15	48	5.7	124	34	78	0.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 27	12	299	0.320	2.49	6.50	6.5	9.0	1.35	6.1
JAN 1989 19	9.3	311	0.197	1.86	3.50	4.3	6.2	0.81	7.4
APR 11	8.1	274	0.205	1.74	2.15	2.8	4.5	0.53	5.7
MAY 31	11	256	0.007	2.84	0.09	0.84	3.7	0.38	4.4
JUL 12									
AUG	10	248	0.370	3.21	0.53	1.3	4.6	0.65	5.4
29	12	317	0.510	6.80	0.16	0.80	7.6	1.32	5.5

PASSAIC RIVER BASIN

01391200 SADDLE RIVER AT FAIR LAWN, NJ--Continued

DATE	TIME	SULFI TOTA (MG/ AS S	L SOL	M, S- ARSE VED TOT /L (UC	TAL ERA	M, BOR AL TOT OV- REC BLE ERA	COV- REC	AL TOT COV- REC ABLE ERA G/L (UG	IM, COPP TAL TOT COV- REC ABLE ERA G/L (UG	AL OV-
OCT 1988 27 MAY 1989	0800	<0	.5	<10	2 <1	0	150	1	.<1	8
31	1315	<0	.5	10	<1 <1	0	90	<1	<1	6
DATE		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT 1988 27 MAY 1989		190	<5	100	0.10	4	<1	20	6	
31	C.	280	2	80	<0.10	1	<1	20	3	

01391500 SADDLE RIVER AT LODI, NJ

LOCATION.--Lat 40°53'25", long 74°04'51", Bergen County, Hydrologic Unit 02030103, on left bank 560 ft upstream from bridge on Outwater Lane in Lodi and 3.2 mi upstream from mouth. Water-quality samples collected at bridge on Outwater Lane at high flows.

DRAINAGE AREA .-- 54.6 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1923 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1031: 1940(M). WSP 1552: 1929(M), 1936(M), 1938. WRD-NJ 1969: 1967. WRD-NJ 1970: 1968, 1969.

GAGE.--Water-stage recorder. Concrete control since Nov. 2, 1938. Datum of gage is 25.00 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 2, 1938, at site 560 ft downstream at datum 2.54 ft lower.

REMARKS.--No estimated daily discharges. Records fair. Occasional regulation at low flow. Diversion upstream from station at Arcola by Hackensack Water Company, for municipal supply (records given herein). The flow past this station is affected by pumpage from wells by Hackensack Water Company and others. Several measurements of water temperature, other then those published, were made during the year. Satellite telemeter at station.

	DISCHA	RGE, CUBIC	FEET PE	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, N	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	31	167	90	54	52	66	186	84	131	90	74	47
2	40	142	82	53	50	63	118	359	119	85	67	45
3	48	85	78	53	55	61	120	164	111	82	79	42
4	34	75	73	49	54	60	123	108	106	80	63	41
5	34	140	69	44	50	67	199	133	102	531	58	43
6 7 8 9	34 35 85 45 39	227 103 84 77 75	67 66 64 62 61	48 51 75 75 56	49 48 46 44 43	94 76 63 65 64	278 169 141 127 115	675 224 156 134 343	105 117 172 301 365	243 131 112 92 95	55 55 54 51 50	47 44 42 41 39
11	35	72	59	52	44	64	102	632	138	151	123	39
12	32	68	54	83	44	68	95	241	112	87	363	38
13	31	96	54	108	42	63	96	181	293	84	221	37
14	30	87	55	69	63	61	105	158	152	82	104	69
15	31	55	56	116	68	60	136	150	242	76	102	101
16	30	48	53	85	88	59	308	922	348	77	76	82
17	30	149	51	65	55	56	141	1820	201	123	108	102
18	30	82	50	59	50	113	114	411	137	81	71	56
19	31	56	51	61	49	91	104	277	121	75	64	227
20	30	772	50	57	48	69	95	228	110	149	65	1040
21	38	623	55	52	307	111	93	202	196	141	62	524
22	217	136	52	47	231	75	88	186	162	85	60	139
23	61	101	64	49	112	64	84	214	173	79	60	240
24	46	88	89	48	87	218	85	489	206	73	58	170
25	41	80	112	47	74	329	81	272	129	69	54	98
26 27 28 29 30 31	38 36 35 35 34 33	72 69 465 144 101	65 58 78 81 61 56	48 55 49 45 55 53	67 68 62 	125 98 88 86 217 336	82 79 77 74 112	190 196 172 145 135	129 237 121 108 96	67 68 67 63 58 61	51 49 49 77 56 49	192 115 85 78 72
MEAN	43.5	151	65.0	60.0	73.2	101	124	314	168	108	81.5	131
MAX	217	772	112	116	307	336	308	1820	365	531	363	1040
MIN	30	48	50	44	42	56	74	84	96	58	49	37
(†)	.20	.04	0	0	.29	.50	0	0	0	0	0	0
MEAN*	43.7	151	65.0	60.0	73.5	102	124	314	168	108	81.5	131
		MONTHLY FLOW						(YW)				
MEAN	62.9	88.5	99.7	104	121	156	157	118	84.1	72.0	67.8	68.9
MAX	257	284	301	331	257	333	457	315	336	371	225	256
(WY)	1956	1978	1984	1979	1973	1953	1983	1984	1972	1945	1955	1971
MIN	16.5	25.5	17.0	12.1	38.1	40.1	32.9	44.9	31.8	14.1	15.1	11.4
(WY)	1936	1982	1981	1981	1980	1981	1985	1941	1965	1966	1966	1932

01391500 SADDLE RIVER AT LODI, NJ--Continued

WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW *	119 Unadjusted	99.7 Unadjusted
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	1820 May 17	187 1984 45.2 1981 2970 Apr 5 1984
LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW	30 Oct 14 2380 May 17	6.0 Aug 4 1930 4500 Nov 9 1977
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE	7.08 May 17 22 Jan 5 219	12.36a Nov 9 1977 1.0 May 25 1938
50 PERCENTILE 95 PERCENTILE	77 77 36	69 21

a From high-water mark in gage house
 † Diversion, equivalent in cubic feet per second, above station by Hackensack Water Company for municipal supply.
 Records provided by Hackensack Water Company.
 * Adjusted for diversion.

01391500 SADDLE RIVER AT LODI, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

COOPERATION.--Analysis of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

	DATE	CH I	INST. CI CUBIC CO FEET DU PER AN	JCT - (ST	TAND- AT	URE D	GEN, (FOLVED SA	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5	O- FOI IEM- FEI CAL, EI DAY BRO	LI- RM, CAL, STREP C TOCOCC DTH FECAL PN) (MPN)
00	T 1988	1030	30	633	7.7 1	3.0	5.3	51	7.1 240	0 790
FE	B 1989 02	1300	46	645		8.5	9.0	77	9.0 350	0 260
AP	11	1300 1	103	540	8.2 1	0.5 1	0.2	91	6.0 70	0 20
JL	JN 14	1230 1	142	390	7.9 1	6.5	7.9	81	3.9 330	0 3300
JU	12	0945	84	440	8.0 2	0.0	6.2	68	3.6 330	0 700
AL	JG 28	1100	46	620	7.7 1	9.5	7.3	79	3.9 80	0 2300
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
	OCT 1988 11	200	0 52	16	45	4.8	129	35	80	0.1
	FEB 1989 02	190	0 53	15	44	4.2	151	36	84	0.1
	APR 11	170	0 47	12	42	2.9	116	30	75	0.1
	JUN 14	140	0 39	9.4	30	2.8	96	23	54	0.1
	JUL 12	150	0 43	11	34	3.5	109	28	62	<0.1
	AUG 28	200	0 55	15	47	4.6	133	34	80	0.1
	DATE	SILICA DIS- SOLVEI (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED		NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT 1988	11	321	0.525	3.50	3.05	3.4	6.9	1.40	5.7
	FEB 1989 02	9.2				4.40	4.6	6.9	0.87	5.5
	APR 11	8.7				1.55	2.2	4.2	0.44	5.2
	JUN 14	11	227			0.19	0.75	3.0	0.35	6.5
	JUL 12	11	258	0.280		0.52	1.4	4.3	0.56	5.5
	AUG 28	12	327	E0.220	4.97	0.48	1.2	6.1	1.03	4.8

01391500 SADDLE RIVER AT LODI, NJ--Continued

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1988 11	1030	380	0.2	6.9			9				<10
JUN 1989 14	1230		,,,		20	1		<10	60	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988		6	<50		10		3200		40		70
11 JUN 1989 14	<1			10		730		14		130	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G	NICKEL, TOTAL RECOV- ERABLE (UG/L	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G	SELE- NIUM, TOTAL (UG/L	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL	ZINC, TOTAL RECOV- ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL	PCN, TOTAL IN BOT- TOM MA- TERIAL
A.	ÀS HG)	ÀS HG)	ÀS NI)	AS NI)	AS SE)	(UG/G)	AS ZN)	AS ZN)	(UG/L)	(UG/KG)	(UG/KG)
OCT 1988 11		0.05		10		<1		60		<10	<1.0
JUN 1989 14	0.10		5	••	<1	••	10		6		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988	-0.4	F4	.4.0								
11 JUN 1989 14	<0.1	51	<1.0	<2.0	<2.0	0.2	1.1	<0.1	<0.1	<0.1	<0.1
DATE OCT 1988	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
11 JUN 1989	0.4	<0.1	<0.1	<1.0	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
14		•••	••	••	••				••	••	••

01392210 THIRD RIVER AT PASSAIC, NJ

LOCATION.--Lat 40°49'47", long 74°08'32", Passaic County, Hydrologic Unit 02030103, on right bank 400 ft upstream from bridge on State Highway 3, 0.8 mi south of Passaic, 1.2 mi upstream from Passaic River.

DRAINAGE AREA. -- 11.8 mi 2.

PERIOD OF RECORD .-- May 1977 to current year.

GAGE.--Water-stage recorder. Datum of gage is 22.15 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Some regulation from ponds upstream. Several measurements of water temperature were made during the year.

OT Wa			ere made d	_	•		4000		1000 115		VALUEO	
					WATER YEAR							050
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.8 16 13 6.7 6.3	83 17 9.5 8.8 57	14 13 12 11 11	9.0 8.8 8.3 8.1 8.3	9.6 9.1 13 9.4 8.6	18 18 14 12 13	29 16 21 17 29	16 140 20 15 40	28 18 17 17 17	14 14 13 13 229	12 11 66 13 13	9.7 9.4 9.1 8.0 8.5
6 7 8 9 10	5.9 7.4 33 7.6 6.6	23 11 9.6 8.8 9.0	11 11 10 9.7 9.3	8.6 11 38 15 9.6	9.5 9.0 8.6 8.4	23 13 14 12 12	39 19 25 19 14	125 24 18 16 122	24 25 23 115 68	32 24 26 17 18	11 11 11 10 9.5	8.8 8.7 8.3 8.4 8.1
11 12 13 14 15	6.2 6.1 6.2 6.0 5.9	8.6 7.7 55 14 9.6	9.0 9.6 9.1 9.0 8.7	9.3 39 16 11 41	8.4 8.1 8.0 22 21	11 11 11 11 11	13 13 16 14 47	71 27 21 19 17	19 16 94 22 38	19 15 16 15 14	49 183 62 56 31	7.9 7.9 7.7 23 20
16 17 18 19 20	5.7 5.9 5.9 5.7 5.5	9.6 73 14 11 255	8.5 8.3 9.1 8.3 8.2	13 11 10 11 10	9.5 8.7 8.4 8.4	11 11 36 16 12	60 19 16 15 13	235 250 56 38 31	31 21 16 15 14	23 37 14 14 38	29 22 14 29 16	26 10 134 226
21 22 23 24 25	25 73 9.6 9.1 8.6	58 20 17 15 14	12 9.8 21 31 17	9.4 12 9.4 9.8 11	130 40 19 15	31 12 11 118 54	13 12 12 12 12	26 25 85 127 37	24 14 163 47 21	19 14 14 13 13	14 13 40 16 12	81 22 34 18 15
26 27 28 29 30 31	7.6 7.2 7.0 6.8 6.6 7.2	13 18 140 20 15	9.8 8.9 24 14 8.9 9.1	13 12 9.0 8.8 30 11	14 17 14	19 15 13 12 46 59	11 11 11 11 39	28 37 24 21 20 17	38 42 22 17 15	13 12 15 11 11	11 10 11 11 12 10	58 17 15 14 13
MEAN MAX MIN IN.	10.8 73 5.5 1.06	34.1 255 7.7 3.23	11.8 31 8.2 1.15	13.9 41 8.1 1.36	17.1 130 8.0 1.51	21.9 118 11 2.14	19.9 60 11 1.88	56.4 250 15 5.51	34.7 163 14 3.28	24.2 229 11 2.37	26.4 183 9.5 2.58	29.3 226 7.7 2.78
STATIST					OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	14.5 22.6 1978 6.00 1983	23.9 66.1 1978 9.31 1982	21.2 60.2 1984 7.55 1981	22.4 64.3 1979 7.25 1981	20.6 31.0 1984 10.4 1980	24.9 48.1 1983 9.94 1985	31.0 70.4 1983 7.56 1985	29.3 56.4 1989 12.9 1982	17.9 34.7 1989 9.61 1987	18.5 31.7 1984 9.58 1977	18.4 44.1 1978 7.44 1981	16.6 29.3 1989 8.43 1982
SUMMARY	Y STATIST	ICS		FO	R 1989 WATE	R YEAR			FOR PE	RIOD OF	RECORD	SAPE TO
HIGHES LOWEST INSTAN' INSTAN' INSTAN' ANNUAL 10 PER 50 PER	E FLOW T ANNUAL M ANNUAL M DAILY M DAILY ME TANEOUS P TANEOUS P TANEOUS C RUNOFF (CENTILE CENTILE	EAN AN EAK FLOW EAK STAGE OW FLOW			25.1 255 5.5 1120 5.64 4.9 28.88 48 14 6.9	Nov 20 Oct 20 Jul 5 Jul 5 Oct 1			21.6 32.7 13.7 798 3.9 2300 8.25 24.8 4 12	Nov Sep Nov Nov Jul	16 1980 8 1977 8 1977	

RESERVOIRS IN PASSAIC RIVER BASIN

- 01379990 SPLITROCK RESERVOIR.--Lat 40°57'40", long 74°27'45", Morris County, Hydrologic Unit 02030103, at dam on Beaver Brook, 2 mi northeast of Hibernia. DRAINAGE AREA, 5.50 mi². PERIOD OF RECORD, September 1925 to September 1931, December 1948 to September 1950, October 1953 to current year. Monthend contents only 1925-31, 1948-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Reservoir is formed by a concrete gravity dam with earth embankment; present dam constructed 1946-48 and sluice gate first closed Dec. 22, 1948. Prior to 1946, reservoir was formed by earthfill dam with creet about 20 ft lower. Capacity of spillway level, 3,310,000,000 gal, elevation, 835 ft. Flow is regulated by two 30-inch sluice gates. Flow is released for diversion for municipal supply of Jersey City.

 CODPERATION.--Records provided by Jersey City, Bureau of Water.

 EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 3,652,500,000 gal, Apr. 5, 1973, elevation, 836.75 ft; minimum, 1,522,800,000 gal, Jan. 4, 1954, elevation, 824.20 ft.

 EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,524,000,000 gal, May 17, elevation, 836.10 ft; minimum, 3,157,000,000 gal, Oct. 21,30,31, Nov. 1, elevation, 834.25 ft.
- 01380900 BOONTON RESERVOIR.--Lat 40°53'. long 74°24', Morris County, Hydrologic Unit 02030103, at dam on Rockaway River at Boonton. DRAINAGE AREA, 119 mi². PERIOD OF RECORD, April 1904 to September 1950, October 1953 to current year. Monthend contents only 1904-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. REVISED RECORDS.--WDR NJ-85-1: 1984. GAGE, hook gage. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by a cyclopean masonry dam with earth wings; dam completed and storage began in 1904. Total capacity at spillway level, 7,620,000,000 gal elevation, 305.25 ft of which 7,366,000,000 gal is usable contents above elevation 259.75 ft, sill of lowest outlet gate. Spillway is topped with two Bascule gates, 2 ft high; prior to 1952, flashboards were used. Flow regulated by Bascule gates, three outlets in gatehouse at head of conduit and by two 48-inch pipes (bottom of sluice pipes at elevation 205 ft). Water is diverted from reservoir for municipal supply of Jersey City.

 COOPERATION.--Records provided by Jersey City, Bureau of Water.

 EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,545,600,000 gal, May 31, 1984, elevation, 308.81 ft; minimum, 1,445,000,000 gal, Jan. 31, 1981, elevation 274.71 ft.

 EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,370,000,000 gal, May 18, elevation, 308.71 ft; minimum, 6,999,000,000 gal, Sept. 30, elevation, 303.35 ft.
- 382100 CANISTEAR RESERVOIR.--Lat 41°06'30", long 74°29'30", Sussex County, Hydrologic Unit 02030103, at dam on Pacock Brook, 1.8 mi northeast of Stockholm. DRAINAGE AREA, 5.6 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by earth-embankment type dam, completed about 1896. Capacity at spillway level, 2,407,000,000 gal, elevation, 1,086.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply for City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

 COOPERATION.--Records provided by City of Newark, Division of Water Supply.
- 01382200 OAK RIDGE RESERVOIR.--Lat 41°02'30", long 74°30'10", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 0.9 mi southwest of Oak Ridge. DRAINAGE AREA, 27.3 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1924-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by earthfill dam with concrete-core wall and ogee overflow section; dam constructed between 1880-92; dam raised 10 ft during 1917-19. Capacity at spillway level, 3,895,000,000 gal, elevation, 846.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

 COOPERATION.--Records provided by City of Newark Division of Mater Supply COOPERATION. -- Records provided by City of Newark, Division of Water Supply.
- 01382300 CLINTON RESERVOIR.--Lat 41°04'30", long 74°27'00", Passaic County, Hydrologic Unit 02030103, at dam on Clinton Brook, 2.0 mi north of Newfoundland. DRAINAGE AREA, 10.5 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by earthfill dam constructed between 1889-92. Capacity at spillway level, 3,518,000,000 gal, elevation, 992.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

 COOPERATION --Records provided by City of Newark. Division of Mater Simply COOPERATION. -- Records provided by City of Newark, Division of Water Supply.
- 01382380 CHARLOTTEBURG RESERVOIR.--Lat 41°01'34", long 74°25'30", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 1.1 mi upstream from Macopin River, and 1.5 mi southeast of Newfoundland, NJ. DRAINAGE AREA, 56.2 mi². PERIOD OF RECORD, May 1961 to current year. REVISED RECORDS.--WRD NJ-74: Station number. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Reservoir is formed by concrete-masonry dam and earth embankment, with concrete spillway at elevation 738.00 ft; storage began May 19, 1961. Spillway equipped with Bascule gate 5 ft high. Capacity, 2,964,000,000 gal, elevation, 743.00 ft, top of Bascule gate. No dead storage. Outflow is controlled by sluice and automatic Bascule gates. Water diverted from reservoir since May 21, 1961, for municipal supply of City of Newark. COOPERATION.--Records provided by City of Newark, Division of Water Supply.

RESERVOIRS IN PASSAIC RIVER BASIN--Continued

- 01382400 ECHO LAKE.--Lat 41°03'00", long 74°24'30", Passaic County, Hydrologic Unit 02030103, at Echo Lake Dam on Macopin River, 1.6 mi north of Charlotteburg, and 1.9 mi upstream from mouth. DRAINAGE AREA, 4.35 mi². PERIOD OF RECORD, October 1927 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is National Geodetic Vertical Datum of 1929.

 REMARKS.--Lake is formed by earth-embankment type dam completed about 1925. Capacity at spillway level, 1,583,000,000 gal, elevation, 893.0 ft, with provision for additional storage of 180,000,000 gal at elevation 894.9 ft with flashboards. Usable contents, 1,045,000,000 gal above elevation 880.0 ft. Lake used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and water diverted to Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow to Macopin River controlled by operation of gates in gatehouse at dam and water released through pipe and canal to Charlotteburg Reservoir.

 COOPERATION.--Records provided by City of Newark, Division of Water Supply.
- 01383000 GREENWOOD LAKE.--Lat 41°09'36", long 74°20'03", Passaic County, Hydrologic Unit 02030103, in gatehouse near right end of Greenwood Lake Dam on Wanaque River at Awosting. DRAINAGE AREA, 27.1 mi². PERIOD OF RECORD, June 1898 to November 1903, June 1907 to current year (gage heights only prior to October 1953). GAGE, water-stage recorder. Datum of gage is 608.86 ft National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Oct. 1, 1931, staff gage on former railroad bridge at site 100 ft upstream at datum 89.75 ft lower.

 REMARKS.--Reservoir is formed by earthfill dam with concrete spillway; dam completed about 1837 and reconstruction completed in 1928 with crest of spillway 0.25 ft lower. Usable capacity, 6,860,000,000 gal between gage heights -4.00 ft, sill of gate, and 10.00 ft, crest of spillway. Dead storage, 7,140,000,000 gal. Outflow mostly regulated by two gates, 3.5 by 5.0 ft. Records given herein represent usable capacity. Lake used for recreation.

recreation.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 9,528,000,000 gal, Oct. 9-14, 1903, gage height, 14.25 ft, present datum; minimum, 3,160,000,000 gal, several days in November 1900, gage height, 3.50 ft, present datum. EXTREMES FOR CURRENT YEAR.--Maximum contents, 7,732,000,000 gal, May 17, gage height, 11.40 ft; minimum, 6,768,000,000 gal, Sept. 13, 14, gage height, 9.85 ft.

01384002 MONKSVILLE RESERVOIR.--Lat 41°07'20", long 74°17'49", Passaic County, Hydrologic Unit 02030103, at dam on Wanaque River at Monks. DRAINAGE AREA, 40.4 mi². PERIOD OF RECORD, September 1988 to current year. GAGE, measurement from reference point. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by a Roller Compacted Concrete dam constructed in 1988. Total capacity at spillway level, 7,000,000,000 gal, elevation 400.0 ft. Reservoir used for storage and water released to Wanaque Reservoir. Outflow is controlled by a 60-inch fixed-cone valve in a 72-inch pipe and 10-inch cone valve which can discharge directly into Wanaque Reservoir or into the 72-inch pipe.

COOPERATION.--Records provided by North Jersey District Water Supply Commission.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 7,140,000,000 gal, Nov. 21, 1989, elevation 400.9 ft; minimum, 860,000,000, Sept. 28, 1988 (first filling), elevation 339.0 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 7,140,000,000 gal, Nov. 21, elevation 400.9 ft; minimum, 7,010,000,000 gal, Sept. 5, elevation 400.0 ft.

01386990 WANAQUE RESERVOIR.--Lat 41°02'42", long 74°17'44", Passaic County, Hydrologic Unit 02030103, at Raymond Dam on Wanaque River at Wanaque. DRAINAGE AREA, 90.4 mi². PERIOD OF RECORD, February 1928 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by North Jersey District Water Supply Commission).

REMARKS.--Reservoir is formed by earthfill with concrete-core wall main dam and seven secondary dams; dams completed in 1927 and storage began in March 1928. Total capacity at spillway level, 29,630,000,000 gal, revised, elevation, 302.4 ft, revised, prior to 1936 300.3 ft. Capacity available by gravity at spillway level, 27,850,000,000 gal, revised. Outflow mostly controlled by sluice gates in intake conduits in gage house. Water is diverted from reservoir for municipal supply. Diversion to reservoir from Posts Brook and Ramapo River (see Passaic River basin, diversions).

Passaic River basin, diversions)

COOPERATION.--Records provided by North Jersey District Water Supply Commission.
REVISED RECORDS.--WDR NJ-85-1: 1984 (M).
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 31,280,000,000 gal, Apr. 5, 1984, elevation, 304.52 ft;
minimum, 5,110,000,000 gal, Dec. 26, 1964, elevation, 256.06 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 30,490,000,000 gal, May 17, elevation, 303.51 ft; minimum,
12,350,000,000 gal, Nov. 1, elevation, 274.72 ft.

Date	Elevation (feet)*	Contents	Change in contents (equivalent	Elevation (feet)*	Contents	CTOBER 1988 TO Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	01379990	SPLITROCK	RESERVOIR	01380900	BOONTON	RESERVOIR	01382100	CANISTEAR R	ESERVOIR
Sept. 30. Oct. 31. Nov. 30. Dec. 31.	834.25 835.25	3,217 3,157 3,355 3,326	-3.0 +10.2 -1.4	303.35 299.90 305.65 305.31	6,999 6,140 7,580 7,490	-42.9 +74.3 -4.5	1,084.80 1,084.40 1,086.10 1,086.00	2,282 2,242 2,417 2,407	-2.0 +9.0 5
CAL YR 19	88		1			05			0
	835.20 835.35 835.15 835.25 835.20	3,326 3,346 3,375 3,335 3,356 3,276 3,237 3,316	0 +1.1 +1.4 -2.1 +1.0 -3.5 -1.9 +4.1	305.35 305.44 307.62 307.37 307.50 307.44 306.81 305.42 307.40	7,500 7,520 8,080 8,020 8,050 8,040 7,870 7,520 8,030	+.5 +1.1 +27.9 -3.1 +1.5 -8.5 -17.5 +26.3	1,086.00 1,086.00 1,086.10 1,086.00 1,086.00 1,085.00 1,085.60 1,086.00	2,407 2,407 2,417 2,407 2,407 2,407 2,396 2,365 2,407	0 0 +.5 5 0 5 -1.6 +2.2
WTR YR 19	989		+.4			+4.4			+.5

RESERVOIRS IN PASSAIC RIVER BASIN--Continued

		MONTHEND EI	EVATION AND	CONTENTS, WAT	ER YEAR O	CTOBER 1988 T	O SEPTEMBER 19	989	
Date	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	01382200	OAK RIDGE	RESERVOIR	01382300	CLINTON I	RESERVOIR	01382380 CH	ARLOTTEBURG	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 795.60 . 819.80	332 25.3 913 972	-15.3 +45.8 +2.9	980.00 967.30 974.70 976.10	2,058 897 1,518 1,654	-57.9 +32.0 +6.8	731.10 733.95 737.20 730.15	1,759 2,011 2,324 1,679	+12.6 +16.1 -32.2
CAL YR 198	8 ,		-12.3			-8.0			4
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	. 822.40 . 831.50 . 841.80 . 846.10 . 846.10 . 845.90 . 838.70	979 1,119 2,015 3,312 3,909 3,909 3,881 2,901 2,888	+.4 +7.7 +44.7 +66.9 +29.8 0 -1.4 -48.9	976.30 977.40 981.80 986.40 992.30 992.20 992.20 990.20 989.20	1,674 1,784 2,249 2,782 3,556 3,544 3,518 3,288 3,160	+1.0 +6.1 +23.2 +27.5 +38.7 -1.3 -11.5 -6.6	730.40 730.50 731.70 732.85 742.45 742.80 732.50 732.60 731.55	1,700 1,708 1,811 1,912 2,900 2,941 1,881 1,889 1,798	+1.0 +.5 +5.1 +5.2 +49.3 +2.1 -52.9 +.4 -4.7
WTR YR 198	9		+10.8			+4.7			+.2

Elevation Date (feet)		Elevation (feet)**	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
013	82400 ECHO LAKE	013830	O GREENWO	01384002	MONKSVILL	E RESERVOIR	
Sept. 30 891.90 Oct. 31 891.60 Nov. 30 892.90 Dec. 31 892.90	1,458 -1.3 1,574 +6.0	11.03 10.18 10.39 10.15	7,499 6,972 7,102 6,953	-26.3 +6.7 -7.4	400.1 400.1 400.4 a400.3	7,020 7,020 7,060 7,040	0 +2.1 -1.0
CAL YR 1988	04			1			0
Jan. 31 892.10 Feb. 28 890.40 Mar. 31 889.00 Apr. 30 890.40 May 31 893.10 June 30 893.00 Aug. 31 893.00 Sept. 30 893.10	1,353 -8.2 1,234 -5.9 1,353 +6.1 1,592 +11.9 1,5835 1,5745 1,583 +.5	10.14 10.21 10.44 10.15 10.25 10.14 10.02 10.01	6,947 6,990 7,133 6,953 7,015 6,947 6,872 6,866 7,058	+2.4 +7.1 -9.3 +3.1 -3.5 -3.7 -3.7 +9.9	a400.3 400.4 400.5 a400.2 a400.5 a400.3 a400.1 400.2 400.6	7,040 7,060 7,080 7,030 7,080 7,040 7,020 7,030 7,090	0 +1.0 +1.0 -2.8 +2.9 -1.8 -1.1 +.4 +3.0
WTR YR 1989	+.5			-1.9	*		+.3

Date	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	0138699	0 WANAQUE	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 274.90 . 288.77	14,880 12,430 20,030 23,530	- 122 +391 +175
CAL YR 1988	В		-5.8
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	. 295.52 . 301.83 . 301.97 . 302.46 . 302.35 . 299.85 . 296.10	22,260 24,540 29,190 29,300 29,680 29,590 27,670 24,940 24,180	-63.8 +126 +232 +5.7 +19.0 -4.6 -95.8 -136 -39.2
WTR YR 198	9	14	+39.4

Elevation taken a few days prior to end of month. Estimated.
Elevation at 0900.
Gage height at 2400.
Elevation at 0800 on first day of following month.

DIVERSIONS WITHIN PASSAIC RIVER BASIN

- 01368720 North Jersey District Water Supply Commission diverts water from Upper Greenwood Lake (Hudson River basin) near Moe, NJ to the Green Brook, a tributary of Greenwood Lake, for municipal supply. Consult North Jersey District Water Supply Commission for data available.
- 01379510 New Jersey-American Water Copmpany (formerly Commonwealth Water Company) diverts water from Passaic River, 1.2 mi upstream from Canoe Brook for municipal supply. These figures also include water diverted from the Passaic River by the Bernards Division of the Commonwealth Water Company. Records provided by New Jersey-American Water Company.
- 01379530 New Jersey-American Water Company (formerly Commonwealth Water Company) diverts water from Canoe Brook near Summit, 0.5 mi from mouth, for municipal supply. Records provided by New Jersey-American Water Company.
- 01380800 Jersey City diverts water from Boonton Reservoir on Rockaway River at Boonton for municipal supply. Records provided by Jersey City, Bureau of Water.
- 01382370 City of Newark diverts water from Charlotteburg Reservoir on Pequannock River since May 21, 1961 for municipal supply. Prior to May 21, 1961 water was diverted from reservoir formed by Macopin intake dam on Pequannock River (former diversion 01382490). Records provided by City of Newark, Division of Water Supply. REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01386980 North Jersey District Water Supply Commission diverts water for municipal supply from Wanaque Reservoir on Wanaque River. Records provided by North Jersey District Water Supply Commission.
- 01387020 North Jersey District Water Supply Commission diverts water from Post Brook near Wanaque into Wanaque Reservoir for municipal supply. Records not available.
- 01387990 North Jersey District Water Supply Commission diverts water from Ramapo River by pumping from Pompton Lakes into Wanaque Reservoir. Records provided by North Jersey District Water Supply Commission.
- 01388490 Passaic Valley Water Commission supplements the dependable yield of its supply at Little Falls by diverting water at high flows at the Jackson Avenue Pumping Station into Point View Reservoir on Haycock Brook for release as required to sustain minimum flow requirements. Also water may be released into Haycock Brook for maintenance of flow in that stream. These diversions and releases occur upstream of Pompton Plains gaging station. Records provided by Passaic Valley Water Commission. No diversion or release during the year. REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01388980 North Jersey District Water Supply Commission diverts water from the Wanaque South pumping station on the Pompton River at Two Bridges, 750 ft upstream from the Passaic River, to Wanaque Reservoir. Record provided by the North Jersey District Water Supply Commission.
- 01388981 Hackensack Water Company diverts water from the Wanaque South pumping station on the Pompton River at Two Bridges, 750 ft upstream from the Passaic River, to Oradell Reservoir. Water can also be diverted from Wanaque Reservoir to Oradell Reservoir in the Hackensack River basin. Figures given herein include diversion from both sources. Prior to water year 1989 diversion was from Ramapo River at Pompton Lakes (see station 01387991). Records provided by the Hackensack Water Company.
- 01389490 The Passaic Valley Water Commission diverts water from Passaic River above Beattie's Dam at Little Falls for municipal supply. Records provided by Passaic Valley Water Commission.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 01379530 01379510 01380800 JERSEY NJ-AMERICAN NJ-AMERICAN 01382370 NEWARK WATER COMPANY WATER COMPANY MONTH FROM PASSAIC RIVER FROM CANOE BROOK CITY October..... 10.8 57.4 21.4 74.8 75.5 35.0 2.15 83.0 November..... 14.2 December..... CAL YR 1988..... 22.4 6.88 71.7 98.6 January..... 72.0 59.0 45.7 77.8 34.8 35.7 February..... 3.91 70.0 80.6 March.... 4.08 April..... 13.8 10.1 May..... 16.9 12. .7 83.4 1.45 82.1 93.9 89.5 91.0 86.4 85.0 83.9 June..... 11.6 July... August... September... 6.28 .99 2.99 5.56 WTR YR 1989..... 19.4 7.75 76.7 76.4

DIVERSIONS WITHIN PASSAIC RIVER BASIN--Continued

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989, Continued

MONTH	01386980 WANAQUE RESERVOIR	01387990 RAMAPO RIVER TO WANAGUE RESERVOIR	01388980 POMPTON RIVER TO WANAQUE RESERVOIR	01388981 POMPTON RIVER TO ORADELL RESERVOIR	01389490 PASSAIC VALLEY WATER COMMISSION	
October	161 166 195	0 0 0	72.8 297 286	63.4 6.0 0	73.4 72.6 85.2	**
CAL YR 1988	151	0		25.3	78.6	
January February March April May June July August September	180 177 179 166 142 157 143 173	0 0 0 0 0 0	32.5 305 327 0 0 0 0	0 43.0 46.4 0 .44 2.2 2.7 4.4 10.1	76.7 76.3 69.2 83.6 76.3 85.3 87.3 74.3	
WTR YR 1989	168	0	110	14.8	77.7	

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ

LOCATION.--Lat 40°40'30", long 74°13'20", Union County, Hydrologic Unit 02030104, on left bank at Ursino Lake Dam in Elizabeth, 75 ft upstream of bridge on Trotters Lane and 3.8 mi upstream from mouth.

DRAINAGE AREA .-- 16.9 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year.

REVISED RECORDS.--WSP 1552: Drainage area, 1922-23, 1927-29(M), 1932, 1933-34(M), 1938(P), 1942(M) 1944(P), 1945(M), 1948(P), 1952-53(M). WDR NJ-84-1: 1974.

GAGE.--Water-stage recorder, crest-stage gages, and two concrete weirs. The right concrete weir was lowered 5 ft on Dec. 18, 1985. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Oct. 1, 1922, nonrecording gage at site 2,800 ft downstream at datum 4.14 ft higher and Oct. 1, 1922 to May 18, 1923, at same site at datum 5.23 ft higher. May 19, 1923 to Dec. 27, 1972, at site 2,800 ft downstream at datum 5.23 ft higher and published as "Elizabeth River at Elizabeth" (station 01393500).

REMARKS.--No estimated daily discharges. Records good. Diversion by pumpage from Hammock Well Field in Union for municipal supply by Elizabethtown Water Co., probably reduces the flow past the station. Several measurements of water temperature, other than those published, were made during the year.

	DISCHA	RGE CUBIC	FEET PER	SECOND	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989.	MEAN DAILY	VALUES		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	4.2 28 14 6.0 5.6	178 24 11 7.4 64	12 10 9.4 8.0 7.9	6.8 6.8 7.2 7.2 6.8	8.0 7.0 16 7.1 6.0	9.5 8.7 9.7 8.3	29 14 30 18 54	24 218 27 17 67	12 12 11 12 11	8.4 8.5 8.0 7.9 418	9.0 9.2 23 8.3 8.2	7.6 8.6 6.6 6.1 6.7	
6 7 8 9 10	5.1 10 54 6.4 5.6	16 8.7 7.5 7.5 7.6	8.5 8.6 7.8 7.7 7.5	7.6 7.7 48 13 9.4	9.2 6.8 6.3 6.2 6.3	28 12 11 10 9.0	61 20 43 21 13	182 30 16 13 276	64 38 23 195 158	74 33 84 15 13	7.3 14 8.1 6.7 6.3	6.6 6.5 6.4 6.3	
11 12 13 14 15	5.5 5.2 5.0 4.8 4.7	7.7 5.5 49 13 8.2	7.1 7.1 7.7 7.9 7.8	9.7 65 18 9.7 57	5.8 5.6 5.6 41 29	8.4 8.0 7.9 7.8 7.8	12 12 23 14 113	104 31 19 15	22 14 192 30 57	24 11 39 13	85 271 351 132 77	6.3 6.4 6.5 26 21	
16 17 18 19 20	4.4 4.9 5.0 5.0 4.8	7.0 119 18 9.8 498	7.7 7.5 7.2 7.3 7.6	13 11 10 11 13	17 7.7 6.6 5.9 5.7	7.5 7.5 46 13	87 21 16 17 13	371 244 44 24 19	30 26 13 12 12	52 77 14 11 71	29 18 12 53 14	51 29 12 368 345	
21 22 23 24 25	91 153 13 8.8 6.7	71 25 14 11 9.4	18 8.6 32 44 14	12 11 8.4 8.1 7.8	201 66 21 14 11	59 11 9.4 197 52	13 11 11 10 10	17 15 148 101 37	23 12 23 30 12	18 11 10 10	21 16 14 11 8.9	160 35 31 16 12	
26 27 28 29 30 31	5.7 5.2 5.5 5.0 4.7 4.5	8.5 24 221 28 15	8.2 7.5 34 12 7.8 7.3	13 14 7.4 7.7 51	13 13 9.7 	17 13 12 11 74 105	9.9 9.8 9.6 20 48	20 32 15 13 13	16 21 12 9.8 8.8	10 11 16 9.3 8.5 9.3	8.2 7.6 7.6 19 13 8.2	121 20 13 11 10	
MEAN MAX MIN	15.8 153 4.2	49.8 498 5.5	11.5 44 7.1	15.8 65 6.8	19.9 201 5.6	25.9 197 7.5	26.1 113 9.6	70.3 371 13	37.1 195 8.8	36.0 418 7.9	41.2 351 6.3	45.6 368 6.1	
STATIST	ICS OF N	MONTHLY FLO	W DATA FO	R PERIOD	OF RECORD	BY WATE	R YEAR (WY)					
MEAN MAX (WY) MIN (WY)	19.9 60.1 1928 1.58 1922	24.9 90.6 1973 5.05 1923	23.1 85.1 1984 6.25 1981	23.2 86.3 1979 3.71 1925	26.9 55.1 1971 6.56 1934	31.9 75.5 1953 6.03 1981	30.1 97.0 1983 10.3 1963	27.4 83.8 1968 5.97 1923	22.9 57.4 1972 3.94 1923	27.3 83.1 1922 3.24 1923	28.2 195 1971 .07 1923	26.0 102 1966 1.99 1923	
SUMMARY	STATIST	rics		FO	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD		
LOWEST HIGHEST LOWEST INSTANT INSTANT	ANNUAL MAILY ME ANEOUS FANEOUS FANEOUS FANEOUS FANEOUS FENTILE	MEAN MEAN			498 4.2 2560 20.08 3.6 56 9.5 5.3	Nov 20 Oct 1 Jul 5 Jul 5 Oct 1			41 18 -	.3 .2 00 Aug 00 Jul 10 Aug .7a Aug	adjusted 1971 1923 28 1971 14 1922 28 1971 28 1971 any days		

a From floodmark, site and datum then in use, from rating curve extended above 1,100 ft³/s on basis of contractedopening measurement of peak flow.

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH. CI TIME	NST. CI UBIC CO FEET DU PER AN	CT- (ST	TAND - AT	TURE ATER S	(YGEN, DIS- SOLVED	DIS- DEN SOLVED BI (PER- CH CENT IC SATUR- 5	EM- FEG CAL, EG DAY BRO	RM, CAL, STREP-
OCT 1988 18	1000	5.0	719	7.9	13.5	8.0	77	1.8 170	0 800
FEB 1989 08	1200	6.1	2020	8.2	4.0	12.5	96	4.8 >2400	0 70
APR 06	1230	50	300	7.9	12.0	9.7	91	3.0 2600	0 13000
JUN 08	1130	18	255	7.7			1	10 5400	0 28000
JUL 20	1130	90	440	7.8	21.0	6.5	74 -	- 16000	0 160000
AUG 24	1100	10	770	7.9	24.5	8.3	100	2.0 -	
DATE OCT 1988	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	, LINITY LAB	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
18 FEB 1989	240	72	14	46	2.6	151	61	97	0.1
08 APR	. 270	87	14	340	3.5	131	58	600	0.1
06 JUN	71	23	3.4	29	1.4		16	20	
08 JUL	88	28	4.4	17	1.9	57	24	25	0.1
20 AUG	160	52	8.4	36	2.6	103	34	69	0.1
24	200	65	10	71	2.9	129	46	130	0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONI/ TOTAL (MG/L AS N)	MONÍA	+ NITRO- C GEN, TOTAL (MG/L	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 18	14	397	0.045	1.40	<0.05	0.35	1.7	0.07	
FEB 1989 08	14	1200	0.071	1.82	0.44	0.95		0.37	4.2
APR 06	5.7		0.026	1.06	0.05	0.53		0.11	5.2
JUN 08	7.9	142	0.067	0.90	0.21	0.88	1.8	0.13	6.7
JUL 20	11	275	0.100	1.60	0.18	1.3	3.0	0.24	11
AUG 24	15	417	0.106	1.80	0.08	0.75	2.6	0.13	7.3

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFI TOTA (MG/ AS S	L SOL	M, S- ARSE VED TOT /L (UG	NIC REC	AL TOT OV- REC BLE ERA	AL TOTA OV- RECO BLE ERAB /L (UG/	V- REC LE ERA L (UG	M, COPP AL TOT OV- REC BLE ERA /L (UG	AL OV-
OCT 1988 18	1000	<0	.5	<10	1 <1	0	100	1	8	13
DAT	T R E E (RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT 198	В	320	<5	60	<0.10	5	<1	30	4	

01393950 WEST BRANCH RAHWAY RIVER AT WEST ORANGE, NJ

LOCATION.--Lat 40°47'01", long 74°16'27", Essex County, Hydrologic Unit 02030104, at bridge on Mountain Avenue, 300 ft downstream of Turtle Brook, and 400 ft southeast of intersection with Pleasant Valley Way in West Orange. DRAINAGE AREA. -- 2.52 mi 2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- July 1982 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1988 18	1200	0.8E	767	7.9	13.5	8.1	78	1.0	700	310
JAN 1989 30	1200	1.2E	974	7.5	5.0	11.3	91	11	9200	2200
APR 04	1200	1.1E	890	7.9	10.0	12.2	111	6.3	490	170
JUN 05	1230	1.0E	750	7.7	19.5	11.5	128	3.9	700	<200
JUL 13	1130	1.2E	560	7.7	18.0	7.7	83		3300	18000
AUG 23	1130	1.0E	700	7.8	25.0	10.8	134	1.5	130	350
DAT OCT 198	CAC	SS CALC TAL DIS G/L SOL G (MG	IUM S - D VED SO I/L (M	IS- DI LVED SOL G/L (M	IUM, S S- D VED SOI G/L (MG	TAS- ALK IUM, LINI IS- LA LVED (MC G/L AS K) CAC	TY SULF AB DIS G/L SOL	- DIS VED SOL /L (MG	E, R1 VED SC L/L (N	LUO- IDE, IS- DLVED IG/L S F)
18 JAN 198	_	240 57	2	4 4	4	1.7 76	31	150		<0.1
30 APR		130 32	2 1	2 14	0	1.5 33	28	290	ř.	0.1
04 JUN		170 42	2 1	6 10	0	1.5 49	35	220	ľ	0.1
05 JUL		280 72	2 2	5 5	6	1.5 85	31	190)	0.1
13		210 52	2 2	0 5	5	1.5 71	27	170)	0.1
23		210 50) 2	0 5	2	1.7 79	30	160)	0.1
DAT	(M)	S- CONS LVED TUEN G/L DI S SOL	OF NI STI- G ITS, NIT IS- TO VED (M	EN, G RITE NO2 TAL TO G/L (M	EN, G +NO3 AMM TAL TO IG/L (M	TRO- GEN EN, MONI ONIA ORGA TAL TOI G/L (MO	TRO- ,AM- IA + NIT ANIC GE TAL TOT G/L (MG N) AS	AL TOT	OUS OR	RBON, GANIC DTAL MG/L S C)
OCT 198 18 JAN 198	19					.05 1	.1 2.			.0
30 APR		7.2					.75 1.			.5
04 JUN_							.51 2.			.0
05							.44 2.			.1
13 AUG_							.46 1.			.7
23	. 17	7	378 0	.019 1	.08 <0	.05 0	.45 1.	5 0.0	7 3	.2

01393950 WEST BRANCH RAHWAY RIVER AT WEST ORANGE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	(UG	AL	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	TOTAL	TOT. FEC. E ERA	M, C AL OV- BLE /L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 18 JUN 1989	1200	<0.5	<10		1	<10	150	•	:1	2	8
05	1230	<0.5	10		<1	<10	110		:1	3	5
DATE	1 F	TOTAL TO RECOV- RI RABLE EI CUG/L (I	EAD, NOTAL TECOV- RABLE E	ANGA- ESE, OTAL ECOV- RABLE UG/L S MN)	MERC TOT. REC ERA (UG AS	AL TO OV- RE BLE ER /L (U	COV- N ABLE T G/L (ELE- IUM, OTAL UG/L S SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENO TOTA (UG/L	\L
OCT 1988 18		410	6	60	0	.20	3	<1	20		11
JUN 1989 05		360	6	80	0	-10	2	<1	30		1

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ

LOCATION.--Lat 40°41'11", long 74°18'44", Union County, Hydrologic Unit 02030104, on left bank 50 ft downstream from bridge on eastbound U.S. Highway 22, 100 ft downstream from Pope Brook, and 1.5 mi south of Springfield.

DRAINAGE AREA.--25.5 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1938 to current year.

REVISED RECORDS.--WSP 1622: 1945. WRD-NJ 1973: 1938(M), 1968(M), 1971(M).

GAGE.--Water-stage recorder. Former concrete control is no longer effective. Datum of gage is 66.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Water for municipal supply diverted from river by city of Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., and Springfield station of Elizabethtown Water Co. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

	DISCHAF	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.1 18 18 6.6 6.5	125 21 11 9.4 52	16 12 12 10 10	7.2 7.6 7.2 6.8 6.1	8.1 7.6 14 7.7 6.6	9.2 8.7 8.5 9.2	86 30 41 29 39	20 310 55 25 72	16 15 14 13 13	9.7 9.2 10 9.4 510	8.3 7.6 19 6.3 7.8	7.2 7.5 6.9 6.6 7.2
6 7 8 9 10	6.0 6.5 40 5.6 4.3	33 11 9.5 8.0 8.9	10 12 10 11 9.5	6.8 7.1 41 14 8.5	7.5 7.0 6.6 6.6 6.3	23 11 9.7 9.5 9.1	88 40 49 33 22	376 71 34 27 307	37 49 43 113 242	116 29 85 17 16	6.4 6.9 7.5 7.0 6.3	7.5 7.8 7.6 7.3 6.9
11 12 13 14 15	4.1 4.6 5.0 4.9 4.4	9.1 58 15 8.3	8.9 7.7 7.8 8.1 7.8	7.9 60 28 12 75	6.3 6.1 6.0 32 22	9.2 8.5 7.8 7.6 7.4	17 15 21 22 86	319 79 46 33 27	29 17 246 41 70	27 14 35 14 12	61 202 209 107 78	7.0 7.2 6.7 38 20
16 17 18 19 20	3.6 3.0 4.1 4.9 4.7	6.8 140 24 9.9 528	7.2 7.3 7.2 7.2 7.2	20 12 11 11 9.4	18 7.5 6.7 6.6 6.6	7.8 7.4 38 13 8.6	176 43 25 24 18	488 501 107 54 38	48 35 20 16 14	43 65 16 13 31	37 19 12 34 17	42 33 7.0 381 643
21 22 23 24 25	61 123 10 8.4 7.6	214 29 16 12 12	13 8.4 26 41 16	8.0 7.6 7.8 7.6 8.7		61 16 10 160 168	16 14 13 12 13	29 24 94 150 45	25 15 32 48 16	14 12 11 10 10	23 15 19 12 8.8	391 41 70 34 16
26 27 28 29 30 31	7.9 10 12 14 10 10	9.9 17 361 48 22	8.3 7.4 28 13 7.9 7.5	10 12 7.4 7.2 41 10	13 13 11	35 19 17 15 54 195	13 12 11 15 55	30 40 27 20 19 18	13 15 12 11 10	10 10 12 9.0 8.5 9.7	8.5 8.0 8.0 17 13 7.4	141 30 16 14 13
MEAN MAX MIN	14.1 123 3.0	61.3 528 6.8	11.8 41 7.2	15.7 75 6.1	25.1 259 6.0	31.4 195 7.4	35.9 176 11	112 501 18	42.9 246 10	510	32.2 209 6.3	67.4 643 6.6
STATIST	ICS OF M	ONTHLY FLO	W DATA FO	OR PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	15.6 47.0 1974 2.17 1964	26.7 107 1973 2.73 1950	29.7 129 1984 4.02 1940	28.6 116 1979 4.26 1966	35.1 77.7 1939 7.01 1954	46.1 112 1953 8.08 1981	42.7 139 1983 7.37 1963	34.5 112 1989 6.31 1965	22.4 110 1972 4.14 1965	138 1975	22.8 112 1942 2.10 1964	21.2 100 1975 2.97 1964
SUMMARY	STATIST	ICS		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT	ANNUAL M DAILY ME ANEOUS P ANEOUS P ANEOUS L ENTILE	EAN Fan			40.7 643 3.0 1590 6.68 2.7 83 14 6.2	Sep 20 Oct 17 Sep 19 Sep 19 Oct 17)		1 1 5 9	9.1 5.9 0.0 620 Aug .40 Sep .430a Aug .76b Aug .10 Sep 59 9.0 2.3	1973 1965 28 1971 11 1966 2 1973 2 1973 11 1966	

a From rating curve extended above 1,600 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow b From floodmark

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1978 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CU F TIME P	BIC CO EET DU EER AN	FIC N- F CT- (SI CE #	TAND - AT	TURE ATER S	YGEN, (ODIS-OLVED S	DIS- DE SOLVED B IPER- C CENT I SATUR- 5	IO- FOI HEM- FEO CAL, EO DAY BRO	CAL, STREP-
OCT 1988									
12 FEB 1989	1030	4.9	548	7.6	11.0	7.0	64	1.8 49	0 170
01	1230	8.5	503	7.9	6.5	12.5	103	40	0 <200
APR 03	1300	66	530	7.8	8.5	9.8	85	3.6 170	0 330
JUN 07	1130	34	380	7.7	17.5			8.1 920	0 3500
JUL 18	1145	15	420		19.5	7.0	77	2.4 700	
AUG									
21	1200	11	495	7.7	22.0	6.9	80	2.1 170	0 200
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L) AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988 12	210	63	12	30	2.1	129	39	64	0.1
FEB 1989									
01 APR_	150	44	8.8	38	1.7	93	31	73	0.1
03 JUN	130	39	8.5	51	1.7	70	31	98	0.1
07 JUL	140	41	8.1	26	2.5	85	26	58	0.1
18	140	41	8.1	30	1.9	82	26	62	0.1
AUG 21	160	50	9.5	33	2.5	106	32	65	0.1
	SILICA, DIS-	SOLIDS, SUM OF CONSTI-	NITRO- GEN,	NITRO-	NITRO-	NITRO GEN, AM MONIA	-	PHOS-	CARBON,
DATE	SOLVED (MG/L AS SIO2)	TUENTS, DIS- SOLVED (MG/L)	NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)			PHOROUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)
OCT 1988	15	303	0.018	1.91	0.08	0.36	2.3	0.06	2.8
FEB 1989 01	12	264	0.017	1.37	<0.05	0.33	1.7	0.06	3.3
APR 03	9.7	281	0.019	1.37	0.11	0.57	1.9	0.07	4.3
JUN 07	12	225	0.065		0.31	0.93		0.14	6.7
JUL									
18	14	232	0.031		0.10	0.45		0.08	4.2
21	16	272	0.027	1.62	0.08	0.63	2.3	0.08	4.2

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	(UG/L	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
OCT 1988	1030		80	0.1	8.6			3			
JUN 1989 07	1130	<0.5				10	1		<10	80	1
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L	(UG/G	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	RECOV- ERABLE (UG/L
OCT 1988 12	<10		9	<50	,	10)	3100	• •	90	
JUN 1989 07		2			12		460		7		220
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 12 JUN 1989	60		0.16	, •••	10		<1		70		50
07	••	<0.10		8		<	1	30	-	2	· •
	TO IN TO!	OTAL TO BOT- IN M MA- TOM ERIAL TE	DRIN, DA DTAL TO BOT- IN M MA- TON ERIAL TE	DTAL TO BOT- IN 1 MA- TON ERIAL TE	DTAĹ TO BOT- IN 1 MA- TO! ERIAL TI	BOT - II MA- TO ERIAL	TOTAL 1 N BOT- IN DM MA- TO TERIAL 1	INON, SULTOTAL TO BOT- IN MMA- TON TERIAL TE	DTAL TO BOT IN MA TO ERIAL T	HION, COTAL TO BOT- IN MA- TO ERIAL T	EPTA- CHLOR, OTAL I BOT- OM MA- ERIAL IG/KG)
ОСТ 12	1988	<1.0	<0.1	77	6.8	<0.1	<0.1	0.1	<0.1	<0.1	<0.1
JUN 07	1989								••	••	•
	TO IN TO	NDANE TO OTAL TO BOT- IN M MA- TOI ERIAL TO	HION, OX OTAL CI BOT- TO M MA- BO ERIAL I	(Y- P/ HLOR, TH I. IN TOT OTTOM BO MATL. N	ARA- HION, TI I. IN TO DITOM BO MATL.	HION, T. IN II OTTOM TO MATL.	MIREX, TOTAL N BOT- II OM MA- TO TERIAL	TOTAL TI N BOT- IN OM MA- TOP TERIAL TER	ER- PHANE TBOT- INM MA- TORIAL T	OTAL 1 BOT- IN M MA- TO ERIAL 1	TRI- THION, TOTAL N BOT- DM MA- TERIAL UG/KG)
12 Jun	1988	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<1.00 <	10	<0.1
07	7	••	• •		••	••		••	••	••	

01395000 RAHWAY RIVER AT RAHWAY, NJ

LOCATION.--Lat 40°37'05", long 74°17'00", Union County, Hydrologic Unit 02030104, on left bank 100 ft upstream from St. Georges Avenue bridge in Rahway and 0.9 mi upstream from Robinsons Branch.

DRAINAGE AREA. -- 40.9 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1908 to April 1915 (gage heights and discharge measurements only), October 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1930-31(M), 1937. WDR NJ-79-1: 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 8.77 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 25, 1934, nonrecording gage at site 40 ft downstream from Church Street and 1,500 ft downstream from present site at datum 2.77 ft lower.

REMARKS.--No estimated daily discharges. Records good. Water for municipal supply diverted from river by Rahway and Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., Springfield station of Elizabethtown Water Co, and by storage in the Lenape Park flood control reservoir (since 1980). Several measurements of water temperature, other than those published, were made during the year.

	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	5.8 7.1 47 9.9 7.2	151 102 18 8.5 21	28 21 19 16 15	10 9.6 10 9.4 7.4	13 11 17 18 9.8	17 16 15 15	175 52 61 52 58	28 447 172 45 73	25 24 23 24 19	14 13 11 12 557	12 12 37 13 11	10 11 8.9 8.1 8.4	
6 7 8 9	5.9 6.0 64 16 20	76 17 11 8.7 7.9	17 17 16 13 16	8.9 10 41 40 15	9.9 12 9.5 8.8 8.8	38 26 19 18	148 75 79 51 39	603 185 55 42 394	72 62 98 145 516	668 57 139 38 24	9.2 13 14 9.3 8.8	9.0 9.8 9.4 9.0 7.3	
11 12 13 14 15	42 31 30 3.7 5.2	9.0 8.0 57 49 14	12 9.9 10 10 11	13 67 76 23 111	9.6 8.1 7.9 51 37	19 18 15 15	29 26 27 41 88	743 149 74 54 45	61 31 378 90 115	40 20 58 32 19	101 333 216 356 338	7.3 7.2 6.8 29 73	
16 17 18 19 20	5.2 3.6 4.1 4.5 5.7	12 215 65 20 660	9.9 9.2 8.1 8.3 8.6	42 22 18 17 15	46 15 11 9.8	14 13 35 57 16	344 74 50 41 31	649 1090 326 93 64	83 62 35 28 24	143 31 21 69	83 33 26 35 45	43 80 13 469 1470	
21 22 23 24 25	34 260 28 13 7.0	767 87 16 23 20	17 23 26 59 52	13 10 10 11 11	322 368 73 39 25	94 38 23 144 402	27 25 23 20 21	51 43 118 317 79	40 27 36 87 29	39 21 17 15 15	31 56 20 33 14	1070 158 62 87 36	
26 27 28 29 30 31	7.7 6.8 8.3 8.6 5.8 4.3	16 18 616 131 40	16 12 20 45 13	12 23 13 9.1 59	23 27 22 	68 41 30 28 48 308	20 20 18 19 101	49 58 49 33 28 28	22 25 18 18 15	14 14 19 13 10	12 11 10 13 34	216 64 31 25 23	
MEAN MAX MIN	22.8 260 3.6	109 767 7.9	18.3 59 8.1	24.7 111 7.4	43.6 368 7.9	52.8 402 13	61.2 344 18	199 1090 28	74.4 516 15	70.9 668 10	62.9 356 8.8	135 1470 6.8	
STATIST	TICS OF M	ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATER	YEAR (WY)					
MEAN MAX (WY) MIN (WY)	25.2 130 1928 1.48 1964	42.8 221 1973 3.05 1966	46.2 255 1984 3.27 1981	48.6 211 1979 1.41 1981	59.7 156 1925 12.5 1954	77.4 190 1983 12.6 1981	68.8 246 1983 7.80 1963	52.5 199 1989 6.20 1965	35.0 173 1972 3.32 1965	40.8 268 1975 .33 1966	39.2 242 1971 .43 1964	36.3 175 1975 2.26 1964	
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR P	ERIOD OF	RECORD		
LOWEST HIGHEST LOWEST INSTANT INSTANT 10 PERC 50 PERC	F ANNUAL NANNUAL NE DAILY METANEOUS F	IEAN IEAN EAN PEAK FLOW PEAK STAGE			72.9 1470 3.6 2150 5.63 2.7 151 23 7.3	Sep 20 Oct 17 Sep 20 Sep 20 Oct 17			542 7.8 .0	15 0 Aug 10 Oct 10a Aug 18 Aug 10 M	adjusted 1973 1965 128 1971 9 1964 2 1973 1 2 1973 Jany days		
a F	rom ratir	ng curve ex	tended at	ove 3,00	00 ft ³ /s								

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1952, 1962, 1967-70, and February 1979 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CU F TIME F	BIC CO EET DU ER AN	FIC N- P CT- (ST CE A	AND - AT	TURE S	YGEN, () DIS- OLVED S	OLVED BI PER- CH CENT IC ATUR- 5	AND, CO O- FO EM- FE AL, E DAY BR	LI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)
OCT 1988 26	1130	7.0	295	7.5	9.5	7.6	66	5.1 23	0 3500
JAN 1989 25	1400	9.4	539	8.3		14.8		6.0 5	
MAR 20		4	750	8.3				5.1 130	
MAY 22		1	465		20.0	9.7		3.0 23	
JUL 13		7	400		21.0	8.2		- 130	
AUG 10	1315	8.8			21.0			3.0 <20	
DATE OCT 1988 26 JAN 1989 25 MAR 20 MAY 22 JUL 13 AUG 10	HARD- NESS TOTAL (MG/L AS CACO3) 110 190 170 140 150	CALCIUM DIS- SOLVED (MG/L AS CA) 32 56 52 42 47	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 6.2 11 9.6 8.6 8.6	SODIUM, DIS- SOLVED (MG/L AS NA) 14 36 84 36 24 25	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 2.2 1.9 2.5 2.1 2.2	ALKA- LINITY LAB	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 26 72 140 69 50	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONIA +	NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 26	8.4	160	0.009	0.65	0.05	0.59	1.2	0.11	5.3
JAN 1989 25	12	302	0.016	1.33	0.05	0.31	1.6	0.08	2.8
MAR 20	6.0	396	0.029	1.11	0.08	0.85	2.0	0.10	5.9
MAY 22	13	257	0.031	1.18	0.11	0.68	1.9	0.12	5.0
JUL 13	13	237	0.040	1.22	0.09	0.71	1.9	0.14	5.3
AUG 10	13	272	0.047	0.92	E0.11	E0.40		0.10	4.1

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFI TOTA E (MG/ AS S	L SOL	M, S- ARSE VED TOT /L (UG	TO NIC REI AL ER	TAL TO COV- REG ABLE ERA G/L (U	ABLE ERA	AL TOT OV- REC BLE ERA /L (UG	M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE
OCT 1988	1130) <0	.5	10	2 <	10	60	<1	3 6
MAY 1989 22	1330			20	1 <	10	90	<1	1 7
DATE		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
OCT 1988 26 MAY 1989		580	<5	280	0.10	1		20	1
22		550	7	180	<0.10	3	<1	<10	3

01396000 ROBINSONS BRANCH AT RAHWAY, NJ LOCATION.--Lat 40°36'20", long 74°17'40", Union County, Hydrologic Unit 02030104, on right bank of Milton Lake, 2,000 ft upstream from Maple Avenue in Rahway, 3,200 ft downstream from Middlesex Reservoir Dam, and 1.6 mi upstream from mouth.

DRAINAGE AREA. -- 21.6 mi².

PERIOD OF RECORD.--September 1939 to current year. September 1939 to September 1978, published as "Robinsons Branch Rahway River at Rahway." October 1978 to September 1985, published as "Robinsons Branch Rahway River at Maple Avenue, at Rahway" (station 01396001).

REVISED RECORDS.--WDR NJ-75-1: 1973(P). WDR NJ-87-1: 1986(M).

GAGE.--Water-stage recorder. Datum of gage is 19.99 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). From Sept. 26, 1978 to Sept. 30, 1985, water-stage recorder 2,000 ft downstream at Maple Avenue at datum 8.69 ft lower.

REMARKS.--No estimated daily discharges. Records fair above 10 ft³/s and poor below. Water diverted for municipal supply by Middlesex Water Co., from Middlesex Reservoir, capacity, 89,000,000 gal, 1.0 mi above station. No diversion this year. Several measurements of water temperature were made during the year.

	DISCHAF	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 T	O SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.9 4.5 15 3.2 1.9	101 63 11 7.1 16	17 14 14 12 10	6.7 5.9 5.9 6.1 3.0	14 7.5 16 13 6.4	6.2 5.1 5.0 4.8 6.0	142 41 41 37 46	18 214 89 23 42	13 11 8.4 16 9.3	4.8 5.3 4.8 4.9 409	5.7 5.3 18 6.1 4.7	4.1 4.2 3.1 2.5 2.5
6 7 8 9 10	1.7 1.7 29 6.6 2.0	8.5 5.6 5.1 5.0	10 9.7 9.5 9.0 8.9	3.1 3.2 20 33 13	6.1 7.2 5.5 4.3 3.6	22 16 7.3 9.5	117 59 58 37 26	333 131 36 24 307	54 53 58 117 282	70 70 23 11	3.6 11 9.7 3.6 2.5	2.6 3.1 3.0 3.1 4.2
11 12 13 14 15	1.9 1.5 1.7 1.4 1.5	6.6 4.6 41 34 12	9.6 7.2 6.6 6.7 7.5	8.1 40 58 22 76	3.2 3.6 3.2 41 49	14 16 11 9.2 8.2	20 17 18 26 69	403 147 45 29 25	71 19 147 60 84	19 7.9 36 24 8.4	46 135 92 95 158	4.2 3.9 3.9 31 42
16 17 18 19 20	1.5 1.6 1.9 1.8 2.1	11 137 57 17 501	7.6 7.3 7.0 6.8 7.4	39 21 12 6.2 4.9	65 21 8.1 6.4 5.9	7.2 5.8 23 40 14	230 62 25 19	385 504 193 49 29	80 49 25 16 12	29 106 30 14 64	43 12 6.3 15 18	24 38 8.2 605 1030
21 22 23 24 25	43 159 18 5.8 4.8	380 94 13 8.5 7.2	15 17 21 39 35	3.4 2.5 2.5 2.6 2.9	217 216 77 23 10	58 29 14 106 202	9.3 7.1 6.6 6.5	24 -20 75 164 50	17 13 50 55 20	87 24 14 9.5 8.6	16 26 19 40 12	707 249 78 31 30
26 27 28 29 30 31	4.3 4.1 4.3 4.7 5.0 4.4	6.6 7.7 376 124 26	15 9.3 15 18 9.6 8.1	3.9 11 5.5 4.3 39 36	11 15 11	51 26 22 18 38 273	6.6 6.9 5.9 7.5 47	27 32 26 17 15	11 18 10 8.3 5.6	8.2 9.5 22 8.8 5.3 5.9	5.6 3.6 3.2 8.0 38	69 46 32 14 1.0
MEAN MAX MIN	11.0 159 1.4	70.3 501 4.6	12.6 39 6.6	16.2 76 2.5	31.1 217 3.2	34.8 273 4.8	40.5 230 5.9	113 504 15	46.4 282 5.6	44.8 409	28.2 158 2.5	103 1030 1.0
STATIST	ICS OF M	ONTHLY FLO	W DATA FO	R PERIO	OF RECORD,	BY WATE	R YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	11.9 60.3 1959 .22 1954	26.0 98.8 1973 .48 1965	28.6 142 1984 1.03 1966	29.5 118 1979 .87 1966	36.8 77.0 1973 7.24 1954	44.8 108 1953 8.49 1981	38.2 129 1983 .45 1963	30.7 113 1989 .27 1963	16.5 76.8 1972 .15 1957	- 00	16.7 90.9 1942 .13 1953	16.6 118 1975 .02 1955
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST	ANNUAL M DAILY ME ANEOUS P ANEOUS P ANEOUS L ENTILE	EAN			1030 1.0 2980 5.83 1.0 99 14 2.2	Sep 20 Sep 30 Sep 20 Sep 29			3 6	2.2	adjusted 1984 1965 15 1975 9 1942 15 1975 15 1969 any days	

a From rating curve extended above 750 ft³/s on basis of flow-over-dam computation.

01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ

LOCATION.--Lat 40°45'40", long 74°49'18", Morris County, Hydrologic Unit 02030l05, at bridge on Middle Valley Road in Middle Valley, 6.9 mi downstream from Drakes Brook.

DRAINAGE AREA. -- 47.6 mi 2.

PERIOD OF RECORD. -- Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	INST. CI CUBIC CO FEET DU PER AM	ICT- (S	TAND - ARD	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		DEMAND BIO- CHEM- ICAL, 5 DAY	FOR FEC EC BRO	M, AL, STREP- TOCOCCI TH FECAL
OCT_1988	4400						404		270	470
13 FEB 1989	1120	29E	282	7.2	6.0	12.5	101	E1.1	230	
09 APR	1200	44E	244	6.6	••	••	••	E2.0	50	7
04	1015	119E	183	6.8	8.0	12.7	110	E2.4	80	11
JUN 07	1150	106E	263	6.8	12.0	9.6	91	3.7	2800	>2400
JUL 26	1030	54E	318	7.7	17.0	11.1	116	3.0	2400	1600
AUG 28	1330	37E	282	7.8	16.5	9.3	96	<1.2		
20	1330	3/6	202	7.0	10.5	7.3	70	11.2	470	1000
DATE	HARD NESS TOTA (MG/ AS CACO	CALCIUM L DIS- L SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/	M, S1 D1 D SOL L (MC	UM, LIN S- L VED (M	AB DI IG/L SC IS (N	FATE R S- D DLVED S IG/L (HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988										
13 FEB 1989	1	10 23	13	13	1	1.8 93		13	20	<0.1
09		98 21	11	16	•	1.5 72	2	15	29	0.1
APR 04		65 15	6.8	14		1.1 43	,	16	23	0.1
JUN 07		80 18	8.6	13		1.3 57	,	12	23	0.1
JUL 26		94 21	10	13		3.0 73		11	23	<0.1
AUG										
28		10 24	12	13		1.5 83		11	21	0.1
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI- ED TUENTS, L DIS- SOLVED		GEN	I, GI 103 AMMO 1L TO 'L (MO	FRO- GENEN, MONDONIA ORG FAL TO G/L (N	SANIC (DTAL TO MG/L (I	GEN, PHOTAL T	PHOS- IOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988										
13 FEB 1989	12	152	0.025	2.1	6 <0	.05	0.29	2.5	•	2.3
09 APR	11	148	0.018	3 2.0	06 <0	.05	0.30	2.4 0	.23	2.5
04	11	113	0.016	1.3	5 0	.10	0.37	1.7	.15	3.1
JUN 07	13	123	0.02	1.9	21 0	.05	0.59	2.5	44	4.8
JUL 26	12	137	0.009	1.5	64 0	.08	0.70	2.2	.50	4.1
AUG 28	14	146							.18	2.5

01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + OI FIDE TOT TAL BOT G/L (MI	,NH4 ING RG. GAI IN TOT MAT BOT G/KG (G	OR- INOI NIC, ORG/ IN TOT MAT BOT /KG (GM/	ANIC IN . IN D MAT SO /KG (U	LVED TO	TO IN ENIC TOM TAL TE G/L (U	TAL LI BOT- TO MA- RE RIAL ER G/G (U	TAL TO COV- RE ABLE ER	TAL TO COV- REA ABLE ERA G/L (U	MIUM REC TAL FM E COV- TOM ABLE TER G/L (UC	MIUM COV. BOT- MA- RIAL G/G CD)
OCT 1988	1120	1:	30	<0.1	1.6			3				<10
JUN 1989 07	1150	<0.5				70	1	<	:10	10	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 13		4	<50		3		4600		<100		170	
13 JUN 1989 07	1		••	9		390		2		40		
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT_1988		0.04		.400				20				
13 JUN_1989		0.01		<100	•••	<1		20		<1	<1.0	
07	<0.10		2		<1		90		2	••	••	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 13	<0.1	<1.0	0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
JUN 1989 07			0.1	0.1	VO. 1	\0.1	VO. 1	\0.1	\0.1	\0.1	NO.1	
07									,		1	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 13	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1	
JUN 1989 07		••	••	••								
1.5.5.5												

01396500 SOUTH BRANCH RARITAN RIVER NEAR HIGH BRIDGE, NJ

LOCATION.--Lat 40°40'40", long 74°52'46", Hunterdon County, Hydrologic Unit 02030105, on left bank 1.0 mi northeast of High Bridge, and 4.4 mi upstream from Spruce Run.

DRAINAGE AREA. -- 65.3 mi 2.

e Estimated

PERIOD OF RECORD. -- October 1918 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 601: 1924. WSP 781: Drainage area. WSP 1552: 1919(M), 1920(M), 1921, 1923, 1924(M), 1927-28(M), 1934(M), 1941(M).

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Sept. 28, 1930. Datum of gage is 282.10 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to Sept. 30, 1921, reference point at same site and datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Occasional regulation from unknown source. Several measurements of water temperature were made during the year. New Jersey Water-Supply Authority gage-height and USGS satellite telemeters at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Outstanding floods occurred on Feb. 6, 1896, in February 1902, and October 1903. At High Bridge, according to reports of the New Jersey State Geologist, the discharges for these floods respectively were 7,560 ft³/s, 3,840 ft³/s, and 2,670 ft³/s.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	42 46 65 51 47	55 78 58 52 85	127 114 106 99 94	e73 e72 e70 e66 e59	84 80 81 78 71	90 86 85 84 85	272 172 170 183 231	94 398 215 141 158	147 136 126 122 117	133 125 118 114 205	70 67 72 67 66	49 48 47 44 43
6 7 8 9	45 44 44 45 44	177 86 67 62 59	91 91 87 83 78	e58 e67 e78 e110 80	70 69 65 63 61	104 92 82 84 84	276 230 181 168 155	902 389 264 225 557	122 190 250 171 345	189 137 205 124 110	69 67 79 63 61	43 43 42 43 42
11 12 13 14 15	43 42 41 41 41	56 53 96 131 79	77 e78 e79 e80 e78	74 95 150 88 186	63 60 58 74 85	87 98 90 87 104	140 133 133 136 151	596 371 327 280 272	158 125 250 164 188	107 97 106 102 91	64 123 100 80 72	42 41 41 41 59
16 17 18 19 20	42 41 40 40 39	67 200 141 91 627	e76 e77 e81 e88 e80	143 100 88 84 83	106 75 68 67 65	104 88 105 157 102	316 177 148 139 127	599 861 459 355 307	328 244 160 136 125	103 140 99 91 103	76 67 62 61 64	56 79 56 128 1760
21 22 23 24 25	47 150 76 66 67	689 218 175 143 123	e70 e72 73 108 171	73 69 73 71 71	347 342 177 127 103	164 155 111 194 363	123 118 111 107 104	269 236 239 481 306	133 154 283 804 307	107 93 89 83 79	61 68 63 61 57	711 270 251 199 148
26 27 28 29 30 31	54 50 49 48 47 46	112 109 335 197 151	97 82 88 119 e82 e76	72 94 80 75 83 90	103 100 94 	182 152 142 134 145 298	102 99 95 93 96	225 221 202 171 160 157	217 183 184 166 145	78 76 80 70 67 69	54 52 52 55 57 51	256 176 133 122 114
MEAN MAX MIN IN.	51.1 150 39 .90	152 689 52 2.60	90.4 171 70 1.60	86.3 186 58 1.52	101 347 58 1.62	127 363 82 2.24	156 316 93 2.67	337 902 94 5.95	206 804 117 3.52	109 205 67 1.93	67.1 123 51 1.19	171 1760 41 2.92
STATIST	ICS OF MONT	THLY FLO	W DATA FO	OR PERIOD	OF RECORD	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	71.6 257 1928 21.8 1964	109 335 1928 26.9 1966	131 382 1974 36.5 1966	135 480 1979 31.8 1981	154 301 1925 54.0 1934	202 466 1936 79.5 1965	192 528 1983 70.7 1965	143 337 1989 50.5 1965	96.7 401 1972 27.6 1965	86.1 295 1975 20.7 1965	77.8 285 1942 20.4 1965	72.6 195 1979 20.8 1964
SUMMARY	STATISTIC	S		FC	OR 1989 WATE	R YEAR			FOR I	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT ANNUAL 10 PERC 50 PERC	F FLOW T ANNUAL MEA ANNUAL MEA T DAILY MEAN DAILY MEAN TANEOUS PEA TANEOUS LOW RUNOFF (IN CENTILE CENTILE	N K FLOW K STAGE FLOW			1760 39 2750 10.00 39 28.65 260 94 44	Sep 20 Oct 20 Sep 20 Sep 20 Oct 20			46 33 69 12. 6 25.	40 Jan 13 Aug 10 Jan 23a Feb	1928 1965 25 1979 11 1966 25 1979 24 1979 11 1930	
a Id	ce jam											

01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ

LOCATION.--Lat 40°39'49", long 74°53'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi northeast of Mariannes Corner, 1.0 mi downstream from Lake Solitude dam, and 4.3 mi northeast of Norton.

DRAINAGE AREA. -- 68.8 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CU F	JBIC COL FEET DU PER AN	FIC N- P CT- (ST CE A	AND -	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEMAND, BIO- CHEM- ICAL, 5 DAY	FORM FECA EC BROT	L, STRE TOCOC H FECA	CI
OCT 1988 13	1250	39E	274	7.0	7.0	12.2	100	<0.4	20	49	
FEB 1989 09	1245	63E	268	7.7				E1.5	230	2	
APR 04		160E	185	7.6	10.0	13.5	122	E2.2	940	79	
JUN 07		160E	260	7.7	13.0	9.6	92	2.7	2800	>2400	
JUL 26	1230	80E	305	8.2	18.5	8.8	94	2.7	790	1600	
AUG 28	1100	51E	273	8.3	18.5	8.8	94	E1.3	1300	920	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	IM, SI DI DI CL (MG	UM, LIN S- L VED (M	AB DI G/L SC S (N	FATE RI IS- DI OLVED SO IG/L (N	HLO- IDE, IS- DLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1988	120	24	14	12	1	.8 94	. 1	14	18	0.1	
FEB 1989 09	91	20	10	16	1	.4 71	1	16 7	27	0.1	
APR 04	65	15	6.8	12	1	.1 44		17 2	20	0.1	
JUN 07	81	18	8.7	11	1	.3 59		13 2	20 :	0.1	
JUL 26	100	22	11	11	1	1.6 76	aş di	12	19	0.1	
AUG 28	110	24	12	11	1	.5 88	3	12	18	0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITE GEN NO2+N TOTA (MG/ AS N	N, GE NO3 AMMO AL TOT /L (MO	TRO- GEN EN, MON ONIA ORO TAL TO G/L (N	SANIC (OTAL TO IG/L (GEN, PHO DTAL TO MG/L (1		CARBON, DRGANIĆ TOTAL (MG/L AS C)	
OCT 1988 13	11	151	0.013	1.5	59 <0.	.05 (.27	1.9		2.5	
FEB 1989 09	10	143	0.014	3.0					.14	2.0	
APR 04	11	109	0.013	1.3					.15	2.4	
JUN 07	13	120	0.015	1.5	53 0.	.17 (.63	2.2		3.9	
JUL 26	11	133	0.016	1.4	46 <0.	.05 (.77	2.2 0	.44	3.2	
AUG 28	12	143	,,	1.7	74 <0.	.05 (.23	2.0 0	.11	2.3	

01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ

LOCATION.--Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, at site 800 ft downstream of Rocky Run, 0.3 mi above Van Syckel Road bridge, 1.5 mi northwest of High Bridge, and 1.6 mi southeast of Glen Gardner.

DRAINAGE AREA. -- 15.5 mi 2.

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

Di	ATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	CI COI DU AN	FIC N- I CT- (S' CE	PH TAND- ARD ITS)	TEMPE ATUR WATE (DEG	RE I	YGEN, DIS- OLVED MG/L)	DIS- DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND BIO- CHEM- ICAL 5 DAY (MG/I	FOI FOI FEI BRI	CAL,	STREP- TOCOCCI FECAL (MPN)
OCT 19		1100	5.48		170	7.7	10.		12 0	117	<0.6	5 14		170
FEB 19	989								12.8					49
MAR		1030	56 1		170	7.1	2.		13.2	97	<1.1			
JUN		0930	23	•	165	6.7	3.	.5	15.8	119	E2.0			33
O6. JUL		1045	30 I		182	7.0	12.	.5	12.1	116	3.2	2 540) >	2400
AUG	••	1200	15		205	7.9	20.	.5	9.7	108	E1.4	130	0	350
02.	••	1120	11 1		220	7.1	13.	.0	9.9	95	3.0	26	0	920
	DATE	HARD NESS TOTAL (MG/I AS CACO	CAI L D L S(LCIUM IS- DLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG	ED /L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINITY LAB (MG/I AS CACO	Y SULF DIS L SOL (MG	ATE - VED /L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUC RIDE DIS SOLV (MG, AS	, - /ED /L
	CT 1988		63	15	6.3	9	.1	1.4	41	20)	13	0	.1
	EB 1989 23	7	46	11	4.4	9	.4	1.3	20	18	3	16	0	.1
	AR 20		47	11	4.8	8	.8	1.0	24	19)	14	0	.1
J	UN 06	- 0	55	13	5.4	8	.8	1.5	33	17		13	0	.1
J	UL 25		58	14	5.6	10		1.4	36	18		15		.2
A	UG 02			15	6.0		.1	1.4	40	17		13		.1
	02			15	0.0	,	•	1.4	40			1.5	·	•
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	A, SU CO ED TU L S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	NÓ3 AL S/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONÍA	M- + NII IC GE L TOI L (MC	N, P	PHOS- HOROUS TOTAL (MG/L AS P)	CARBORGA TOT (MG	NIČ AL /L
	11 EB 1989	17		106	0.003	1.	.12	<0.05	0.2	2 1	.3		2.2	
	23 IAR	14		86	0.010	1.	.16	0.08	0.2	5 1	4	0.10	2.8	
	20	15		88	0.005	1.	20	0.08	0.2	0 1	.4	0.07	1.7	
	06	16		95	0.008	1.	.49	0.08	0.6	7 2	.2		3.8	
	25	18		104	0.006	1.	.31	0.15	0.1	7 1	.5	0.07	1.7	
A	O2	18		104	0.026	1.	.75	0.06	0.5	1 2	.3	0.43	2.8	

01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1988 11 11 JUN 1989	1100 1100	170	0.2	1.8	<10 	<1	2	<10	10	<1	 <10
06	1045	••	•••	••	20	<1	••	<10	20	2	••
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988	2			2		70		<5		20	
JUN 1989		10	<50		9		3100		10		160
06	1	••	••	7	••	200	••	2	••	30	••
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988	0.30		1		<1		20		<1		
11 JUN 1989 06	0.20	0.01	2	10	 <1	<1	210	40		<1 	<1.0
00	0.20		_	1,	\ 1		210		3	,	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
ост 1988 11					·						
11 JUN 1989	<0.1	5.0	<0.1	0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1	<0.1
06	••					••					•
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 11	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	<1.00	<10	 <0.1
JUN 1989 06											

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ

LOCATION.--Lat 40°38'51", long 74°58'09", Hunterdon County, Hydrologic Unit 02030105, on left bank downstream side of bridge on Jutland Road, 0.2 mi south of Van Syckel, 0.8 mi north of Perryville, and 0.3 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA. -- 11.8 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1973-77. July 1977 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 280.25 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of water temperature, other than those published, were made during the year.

REVISIONS.--Some of the peak discharges and annual maximums(*) reported from water years 1978 through 1982 have been revised as shown in the following table. These figures supercede those published in the 1978 through 1982 reports.

Water year	Date	Discharge (ft ³ /s)	Gage height (ft)	Water		Date	D	ischarge (ft ³ /s)	Gag	ge height (ft)
1978 1978 1978 1978 1979 1979 1979	Dec. 1, 1977 Jan. 9, 1978 Jan. 26, 1978 Aug. 7, 1978 Jan. 8, 1979 Jan. 20, 1979 Jan. 24, 1979 Feb. 26, 1979	527 670 712 *837 516 910 *2,500 1,020	3.39 3.73 3.82 *4.08 4.23 *6.48 4.44	1979 1980 1981 1981 1982 1982 1982	Sept. Mar. Oct. May Jan. Apr. Aug.	6, 1979 21, 1980 25, 1980 12, 1981 4, 1982 3, 1982 9, 1982	43	1,240 *842 *986 837 *1,400 1,240 925		4.80 *4.09 *4.38 4.08 *5.05 4.80 4.26
	DISCHARGE, CL	JBIC FEET PER SECOND,	WATER YEAR	OCTOBER 19	88 TO SEF	PTEMBER 19	89, MEA	N DAILY V	ALUES	
DAY	OCT NO	DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.2 9.9 8.0 8. 7.2 6. 4.8 5. 4.4 22	1 13 8.2 1 12 8.1	11 9.8 12 9.4 8.6	12 11 10 10 12	37 25 28 42 39	16 91 26 19 43	21 19 17 17 16	27 24 21 40 97	6.6 5.9 7.7 5.4 5.4	e4.9 e4.8 e4.3 e4.0 e4.1
6 7 8 9	4.2 18 4.2 8.4 4.2 6.4 4.3 6.4 4.4 5.0	8 8.9 17	8.9 7.9 6.7 6.7	16 12 11 11 13	60 37 29 29 25	150 54 34 30 189	21 66 35 54 56	37 28 61 22 19	4.7 6.6 5.1 4.3 4.1	e4.2 e4.3 e4.1 e4.2 e4.2
11 12 13 14 15	4.3 5.4.4 5.4.4 12 4.4 12 4.5 7.4	8 7.3 8.6 6 6.2 20 6.4 19 7.5 11 8 7.9 43	7.1 7.2 6.9 12 16	15 16 13 13	23 22 21 20 39	80 54 44 48 47	23 18 78 47 62	16 15 31 18 13	5.5 46 20 8.4 7.1	e4.1 e3.9 e3.9 e3.9 e7.0
16 17 18 19 20	4.4 6.4 4.4 43 4.6 15 4.6 9.	9 8.0 20 8.0 14 8.0 12	17 9.8 8.6 8.3 8.4	12 10 21 18 13	50 26 23 21 19	160 124 56 46 41	122 58 36 29 31	29 21 14 12 21	6.7 5.1 4.4 7.1 6.2	e5.1 e9.4 e5.3 e26 e336
21 22 23 24 25	19 52 43 23 8.5 17 9.3 14 6.8 12	8.1 8.3 8.5 7.9 8.6 8.4 9.7 8.7 13 8.6	80 45 24 16 12	38 20 15 68 46	18 17 16 16 15	37 33 55 73 39	60 73 285 282 78	17 13 11 8.7 8.3	e6.6 e7.9 e6.7 e8.5 e5.4	e51 e23 e24 e18 e14
26 27 28 29 30 31	6.0 11 5.6 12 5.6 69 5.3 22 5.2 17 5.1	11 11 9.2 15 13 9.9 12 9.6 8.9 16 - 8.3 13	13 14 12	24 21 19 18 42 68	15 15 13 14 15	31 34 27 24 23 22	56 44 56 44 30	7.8 7.3 10 6.3 6.2 7.2	e5.7 e5.2 e4.9 e5.8 e6.8 e4.8	51 19 14 13 10
MEAN MAX MIN IN.	6.89 22. 43 20 4.2 5. .67 2.1	4 15 43 6 6.2 6.0	14.5 80 6.7 1.28	68 10	60 13	189 16	61.1 285 16 5.78	21.6 97 6.2 2.11	7.76 46 4.1 .76	22.8 336 3.9 2.16
STATIS	TICS OF MONTHLY	FLOW DATA FOR PERIO	D OF RECORD,	BY WATER	YEAR (WY)					
MEAN MAX (WY) MIN (WY)	9.90 17. 25.1 32. 1980 198 4.55 6.3 1983 198	6 47.9 79.2 6 1984 1979 4 5.61 5.01	25.8 40.2 1979 11.1 1980	47.9 1978	94.1 1984 6.88	59.2 1984 15.7	19.3 61.1 1989 9.01 1987	14.2 53.2 1984 5.80 1980	8.97 19.7 1978 2.84 1980	10.2 22.8 1989 2.85 1980

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENTILE	23.4 336 Sep 20 3.9 Sep 12 3590 Sep 20 7.41 Sep 20 3.7 Aug 10 26.93	20.7 35.2 11.8 1985 700 Apr 5 1984 1.5 Sep 12 1980 3590a Sep 20 1989 7.41 Sep 20 1989 1.1 Sep 23 1980 23.87
50 PERCENTILE 95 PERCENTILE	13 3.9	13 3.7

a From rating curve extended above 200 ${\rm ft}^3/{\rm s}$ e Estimated

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	CH I C	UBIC CO FEET DU PER AN	FIC N- CT- (S CE	PH TAND- ARD ITS)	TEMPER- ATURE WATER (DEG C)	OXYGE DIS SOLV (MG/	SC SN, (F S- C /ED SA		DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI FORM FECA EC BROT (MPN	L, STREP- TOCOCCI H FECAL	
	Т 1988 11 В 1989	1330	4.4	212	8.2	11.0	11.	.1	103	<0.5	130	350	
	22	1100	54	210	7.3	3.0	12.	.0	89	E1.6	790	>2400	
MA	20	1135	11	180	7.4	5.0	15.	.5	121	E1.8	50	11	
JU	06	1240	24	200	7.5	13.0	10.	.7	103	E1.9	5400	>2400	
JU	25	1330	8.0	195	7.9	20.5	9.	.7	108	<1.0	1300	540	
AU	G 02	1315	6.2	225	7.6	14.5	9.	.1	90	E1.5	2400	>2400	
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG	UM, S - D ED SO /L (M	TAS- IUM, L IS- LVED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	ED SOL	E, S- .VED	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	OCT 1988 11	88	3 22	8.1	8	.2	1.7	72	16	12	2	0.1	
	FEB 1989 22	52	2 14	4.2	13		1.8	28	23	19)	0.1	
	MAR 20	67	7 17	6.0	14		1.2	45	20	21	ı	0.1	
	JUN 06	61	1 16	5.1	7	.3	1.4	43	17	13	3	0.1	
	JUL 25	69	9 18	5.9	7	.2	1.4	50	15	10)	0.1	
	AUG 02	70	0 18	6.0		.0	1.4	53	16		5.6	0.1	
	DATE	SILICA DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)		EN, G HNÓ3 AMM TAL TO G/L (M	EN, I	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITR GEN TOTA (MG/ AS N	I, PHOI L TO L (M	OS- (ROUS (FAL	CARBON, DRGANIC TOTAL (MG/L AS C)	
	OCT 1988 11 FEB 1989	14	125	0.003	5 0.	.96 <0	.05	0.16	1.1		- 125 125 126 126 126 126 126 126 126 126 126 126	2.0	
	22	10	102	0.008	3 1.	.07 <0	.05	0.45	1.5	0.	19	5.0	
	MAR 20	13	119	0.006	5 0.	.97	.15	0.52	1.5	0.	11	1.8	
	JUN 06	14	100	0.016	5 1.	.06 (.06	0.56	1.6			4.2	
	25	16	104	0.006	5 1.	.07 (.05	0.13	1.2	2 0.	05	1.4	
	AUG 02	15	101	0.036	5 1.	.24 <0	.05	0.49	1.7	7 0.	54	2.3	

RARITAN RIVER BASIN

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1989 06	1240	<0.5	30	<1	<10	10	2	2	9
DAT	T(R) E(OTAĽ TO ECOV- RI RABLE EI UG/L (I	EAD, NE DTAL TO ECOV- RE RABLE ER JG/L (L	DTAL TO ECOV- RE RABLE ER JG/L (U	TAL TO CCOV- RE RABLE ER UG/L (U	COV- NI ABLE TO G/L (U	TAL ERA	AĹ OV- BLE PHE	NOLS Tal /L)
JUN 198 06		490	3	60	0.10	2	<1	90	<1

01396800 SPRUCE RUN AT CLINTON, NJ

LOCATION.--Lat 40°38'21", long 74°54'58", Hunterdon County, Hydrologic Unit 02030105, 1,800 ft downstream from dam at Spruce Run Reservoir, 0.2 mi north of Clinton, 0.3 mi upstream from mouth, and 2.2 mi southwest of High Bridge.

DRAINAGE AREA.--41.3 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1959 to current year.

a Result of reservoir filling

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Mar. 15, 1964. Datum of gage is 193.5 ft above National Geodetic Vertical Datum of 1929. May to Nov. 24, 1959, nonrecording gage; Nov. 25, 1959 to July 23, 1961, water-stage recorder at site 1,800 ft upstream and at datum 1.41 ft lower; July 24, 1961 to Mar. 14, 1964, water-stage recorder at site 1,500 ft upstream at datum 1.41 ft lower.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Spruce Run Reservoir (see Raritan River basin, reservoirs in). Several measurements of water temperature, other than those published, were made during the year. New Jersey Water Supply Authority gage-height telemeter at station.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	69 67 31 13 49	7.7 7.5 7.1 8.0	10 15 12 48 14	20 21 22 51 103	18 19 40 38 21	48 42 40 39 43	201 106 106 117 174	47 229 167 80 87	79 78 51 60 42	77 70 61 64 191	170 130 116 120 120	159 159 159 159 206
6 7 8 9	68 69 58 51 57	7.8 7.6 7.3 7.3 7.2	7.9 39 91 87 87	112 101 103 86 59	33 44 72 145 137	70 61 41 38 38	191 176 134 126 113	477 285 164 129 397	57 121 187 135 231	201 105	120 120 120 120 120	230 279 274 272 272
11 12 13 14 15	62 70 76 76 76	7.2 7.1 7.8 7.7 7.7	88 111 122 51 15	59 34 18 17 18	117 88 58 43 8.5	42 56 43 43 54	77 73 76 71 92	420 242 186 166 182	121 57 174 146 131	74 79	120 122 120 120 120 114	295 310 310 258 215
16 17 18 19 20	76 76 76 76 76	7.7 8.7 7.7 7.7 13	15 15 14 13 14	18 17 17 17 26	8.4 8.4 8.4 8.4	58 39 67 92 44	193 125 98 86 69	380 524 291 201 170	275 269 149 105 92	67 53	110 108 107 108 108	280 279 275 281 117
21 22 23 24 25	60 10 9.0 9.1 8.9	8.7 7.4 7.1 6.7 6.6	14 13 18 21 20	47 26 42 17 17	11 71 107 93 80	105 89 65 110 221	65 80 51 43 34	154 130 139 303 202	118 167 226 616 261	173 172 173	107 113 124 124 131	85 177 170 265 266
26 27 28 29 30 31	8.7 8.5 8.9 8.7 11	6.6 6.7 8.8 9.2 7.0	20 20 27 23 20 21	17 17 17 17 17 17	31 51 48 	130 96 92 78 92 199	44 45 39 37 47	140 133 118 79 78 80	164 129 128 156 94	172 173 171 169 171 171	146 146 112 138 137 159	276 294 302 302 302
MEAN MAX MIN	46.2 76 8.5	7.85 13 6.6	35.0 122 7.9	37.7 112 17	50.6 145 8.4	73.4 221 38	96.3 201 34	206 524 47	154 616 42	201	124 170 107	241 310 85
STATIST	ICS OF MON	THLY FLO	W DATA FO	R PERIO	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	50.2 198 1972 .00 1964	29.5 81.0 1976 .00 1964	44.1 196 1974 .00 1964	61.3 257 1979 .00 1964	66.2 162 1971 .00 1964	82.7 158 1983 .19 1964	103 342 1983 .86 1964	75.6 225 1984 .81 1964	61.1 278 1972 2.60 1981	1975	50.0 132 1983 4.32 1963	77.9 241 1989 .50 1963
SUMMARY	STATISTIC	s		F	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT 10 PERC	ENTILE	N K FLOW K STAGE			99.3 616 6.6 890 2.86 5.5 214 77 7.8	Jun 24 Nov 25 Jun 24 Jun 24 Dec 19			3 2 6	4.5 Ur 107 3.81 060 Jul -00a Aus 410 Apr -17 Apr -100 Aus 152 40	22 1963 2 1970 2 1970	

01396800 SPRUCE RUN AT CLINTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-62, 1967 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1968 to September 1969, January 1971 to September 1980.
SUSPENDED-SEDIMENT DISCHARGE: October 1960 to April 1961.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	CH/ II CU TIME	JBIC CO FEET DU PER AN	FIC N- CT- (S CE	PH TAND- ARD ITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
	1988 1	1300	62	165	7.8	14.0	9.3	92	E2.2	20	2
FEB	1989 2	1215	81	160	7.4	2.5	11.8	87	E1.7	20	17
MAR 2	0	1020	42	160	7.2	4.0	13.6	103	E2.4	<20	<2
JUN	6	1200	51	185	7.6	18.0	9.0	96	E1.5	40	33
JUL	5	1030	173	200	7.7	18.0	9.3	98	3.0	<20	8
AUG 0	2	1205	142	180	7.4	16.0	8.8	90	4.4	20	11
	DATE OCT 1988 11 FEB 1989 22 MAR 20 JUN 06 JUL 25 AUG	HARD - NESS TOTAL (MG/L AS CACO3) 62 61 63 57	15 15 14	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 5.9 5.7 6.1 5.4	SODIU DIS SOLVI (MG, AS 1	JM, SI - DI ED SOIO (/L (MC NA) AS	UM, LIN S- L VED (M G/L A	AB DI: G/L SO S (M CO3) AS	FATE RII LVED SO G/L (M SO4) AS 9 1. 8 1.	DE, RI S- D LVED SC G/L (N CL) AS	0.1 0.1 0.1 0.1
	02	56	14	5.2	7	.8	1.3 43	1	6 1	2	0.1
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GE	N, GI NO3 AMMO AL TO /L (MO	FRO- GENEN, MONDNIA ORG FAL TO G/L (M	ANIC G TAL TO IG/L (M	EN, PHO TAL TO G/L (M	ROUS ORO TAL TO IG/L (1	RBON, GANIC OTAL MG/L S C)
	OCT 1988	2.9	95	0.005	5 0.	23 0.0	07 0.	54 0.	77	4	.8
	FEB 1989	2.4	90	0.004	0.	36 <0.0	05 0.	46 0.	82 0.0	40 3	.1
	MAR 20	2.2	91	0.00	0.	34 0.	12 0.	36 0.	70 0.1	00 3	.0
	JUN 06	1.2	84	0.008	3 0.	31 0.	10 0.	58 0.	89	3	.4
	JUL 25	4.3	84	0.01	0.	42 <0.	05 0.	46 0.	88 0.0	40 3	.0
	AUG 02	4.6	87	0.044	٠.	44 <0.	05 0.	87 1.	3 0.4	10 3	.8

01396800 SPRUCE RUN AT CLINTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, TOTAL (UG/L AS SE)	PHENOLS TOTAL (UG/L)
OCT 1988 11	1300	<0.5	<10	1	<0.10	<1	2

01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ

LOCATION.--Lat 40°34'21", long 74°52'10", Hunterdon County, Hydrologic Unit 02030105, on right bank at downstream side of bridge on Stanton Road at Stanton Station, 0.4 mi upstream from Prescott Brook, and 1.4 mi west of Stanton.

DRAINAGE AREA. -- 147 mi 2.

PERIOD OF RECORD.--July 1903 to December 1906, July 1919 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS.--WSP 561: Drainage area. WSP 1552: 1904, 1922-24(M), 1928-29(M), 1933-35(M). WDR NJ-88-1: 1982.

GAGE.--Water-stage recorder. Datum of gage is 125.01 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 17, 1925, nonrecording gage on downstream side of highway bridge at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Spruce Run Reservoir since September 1963 (see Raritan River basin, reservoirs in). Occasional regulation at low flows by ponds above station. Water diverted by Hamden Pumping Station, 4.0 mi upstream, into Round Valley Reservoir since February 1966 (see Raritan River basin, diversions). Several measurements of water temperature were made during the year. New Jersey Water Supply Authority gage-height and National Weather Service telemeters at station.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, N	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	149	99	216	123	137	190	781	177	290	268	262	215
2	152	119	200	123	133	174	459	829	272	247	217	214
3	155	98	183	124	144	167	416	571	232	229	204	212
4	99	85	205	144	159	164	430	301	232	242	204	208
5	121	110	162	189	124	166	580	300	209	527	201	248
6	146	259	151	284	128	220	659	1770	234	562	200	264
7	144	140	161	220	143	208	596	997	402	334	200	327
8	138	110	217	211	143	168	458	620	629	570	212	325
9	127	99	206	244	225	166	416	494	433	312	194	323
10	130	95	198	169	237	164	379	1340	860	250	188	322
11	134	92	194	158	205	172	306	1550	436	226	195	341
12	136	86	202	169	185	200	284	932	273	188	327	365
13	145	122	293	222	132	185	278	752	652	240	277	363
14	144	197	169	147	155	173	272	627	513	239	231	340
15	143	123	128	299	133	194	306	631	468	188	216	258
16	143	106	128	235	159	213	718	1170	802	206	207	376
17	143	287	145	169	125	170	425	1880	723	305	193	406
18	140	240	133	145	110	201	333	1110	453	213	183	354
19	138	148	139	156	105	322	303	799	344	183	183	581
20	136	1030	116	144	104	198	265	673	294	271	192	3550
21	144	1220	117	166	489	325	247	587	320	299	183	1520
22	283	400	120	127	738	345	253	503	401	310	197	754
23	141	276	121	161	433	240	221	501	559	297	212	618
24	114	231	169	124	311	382	202	1050	1800	283	199	648
25	112	202	258	121	273	876	188	726	813	274	195	548
26 27 28 29 30 31	94 86 83 82 80 86	182 173 637 344 242	161 135 140 185 141 130	124 147 134 124 143 149	202 217 201 	463 352 321 291 436 913	185 189 176 167 181	501 470 445 336 313 307	517 411 397 450 308	272 265 279 258 253 257	212 207 176 202 219 219	717 640 554 529 507
MEAN	131	252	168	168	209	283	356	750	491	285	210	554
MAX	283	1220	293	299	738	913	781	1880	1800	570	327	3550
MIN	80	85	116	121	104	164	167	177	209	183	176	208
STATIST	ICS OF MO	NTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN	154	205	260	280	322	403	377	270	189	178	160	162
MAX	641	659	767	1099	807	1057	1137	750	967	752	793	554
(WY)	1904	1952	1974	1979	1925	1936	1983	1989	1972	1975	1955	1989
MIN	34.1	46.2	65.1	55.0	61.2	61.3	58.5	80.3	60.1	40.7	30.1	31.0
(WY)	1964	1965	1966	1966	1967	1981	1981	1965	1965	1955	1957	1957
SUMMARY	STATISTI	CS C		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST / HIGHEST LOWEST I	ANNUAL ME ANNUAL ME DAILY ME ANEOUS PE ANEOUS LO ENTILE ENTILE	AN AN IN			3550 80 6240 9.65 53 623 220 109	Sep 20 Oct 30 Sep 20 Sep 20 Jan 18			4 95 80 180 15 •	12 Oct	1952 1966 19 1955 18 1963 19 1955 19 1955 7 1931	

a From rating curve extended above 6,400 ft³/s on basis of computation of flow over Clinton Dam, 6.5 mi upstream, at gage height 10.72 ft, contracted-opening measurement 1.7 mi downstream, and slope-area measurement 0.4 mi downstream at gage height 15.22 ft, adjusted to present site.

01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ

LOCATION.--Lat 40°31'01", long 74°48'12", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 0.4 mi northeast of Voorhees Corner, 1.3 mi downstream of Bushkill Brook, and 2.2 mi southeast of Darts Mills.

DRAINAGE AREA. -- 181 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	CUBIC CO FEET DU PER AN	FIC N- I CT- (S' CE	TAND- A	MPER- TURE JATER JEG C)	OXYGEN, DIS- SOLVED (MG/L)		BIO- FO CHEM- FE ICAL, E 5 DAY BE	DLI- DRM, ECAL, STREP- EC TOCOCCI ROTH FECAL MPN) (MPN)
OCT 1988	1100 1	150E		8.7	10.5	13.6		<1.0 3	10 33
FEB 1989 14	1330	180E	298	8.2	2.0	14.4	104	E1.6 13	30 49
APR 12		320E		8.6	8.5	12.3	••		30 13
JUN 20		340E	255	7.6	20.0	8.6	95		30 170
JUL							7 7 7		
31 AUG		290E	255	7.9	18.0	8.5	90		30 350
24	1130	235E	243	7.6	22.0	8.7	100	E1.7 3	30 1600
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SOLV (MG)	JM, LINI S- LA /ED (MG /L AS	TY SULFAT B DIS- G/L SOLVE	DIS- D SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988 13	96	6 23	9.4	21	2.	.6 75	31	22	0.1
13 FEB 1989 14	90	0 22	8.5	23		.2 67	30	35	0.1
APR 12	79		7.7	14		.8 55	24	20	0.1
JUN 20	7		7.6	15		.6 59	22	23	0.1
JUL 31	84								
AUG	_		7.7	14		.0 60	25	20	0.1
24	8	1 20	7.5	15	2	.3 64	23	18	0.1
DATE	SILICA DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEI	RO- GEN, N, MONI NIA ORG/ AL TOI /L (MO	A + NITRO ANIC GEN FAL TOTAL G/L (MG/	, PHOROUS L TOTAL L (MG/L	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT_1988									
13 FEB 1989	5.7	160	0.043	1.43	0.	08 0	.49 1.9	0.23	3.6
14	5.7	167	0.036	1.32	0.	59 0.	.99 2.3	0.15	3.0
12 JUN	8.7	128	0.021	1.55	0.3	32 0	.54 2.1	0.13	2.9
20 JU <u>L</u>	11	139	0.060	1.52	0.	23 0	.73 2.3	0.16	2.7
31	7.0	133	0.051	1.22	0.	05 0	.50 1.7	0.12	3.1
AUG 24	8.0	132	0.048	2.15	0.	18 0	.56 2.7	0.12	3.5

01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1988 13 13	1100 1100	170	 <0.1	1.8	<10 	1	4	<10	30	<1	 <10
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988 13 13	<1	8	<50	6	10	110	4000	<5	10	30	 510
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 13 13	<0.10	0.01	<1	10	<1	· <1	20	50	1	 <1	 <1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 13						••		, ,,,	\$4 \$14 		
13	<0.1	<1.0	0.2	0.5	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 13 13	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	<1.00	<10	 <0.1

01398000 NESHANIC RIVER AT REAVILLE, NJ

LOCATION.--Lat 40°28'18", long 74°49'42", Hunterdon County, Hydrologic Unit 02030105, on left bank 50 ft downstream from bridge on Everitts Road, 0.6 mi southwest of Reaville, 1.5 mi downstream from Third Neshanic River, and 2.2 mi upstream from Back Brook.

DRAINAGE AREA. -- 25.7 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1930 to current year.

REVISED RECORDS.--WSP 1552: 1933, 1934(M), 1936(M), 1938, 1940(M), 1942(M), 1945-46, 1951, 1952(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 26, 1935. Datum of gage is 109.46 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature, other than those published, were made during the year.

	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	1.5 3.5 3.7 1.9 1.7	15 15 8.6 7.1 21	54 42 35 29 25	16 16 15 10	28 25 29 24 20	28 24 23 22 23	175 80 76 64 55	20 714 118 70 81	18 15 13 20 12	19 16 14 41 176	7.8 6.6 7.6 5.6 5.1	4.3 4.5 3.5 3.0 2.9	
6 7 8 9	1.5 1.4 1.5 1.5	41 18 13 11 9.5	23 21 18 16 14	9.1 10 24 27 17	20 19 16 12 12	34 31 26 26 29	91 68 57 49 40	303 125 74 57 585	21 157 92 353 477	62 39 39 22 18	4.4 20 5.6 4.5 4.0	2.8 2.8 2.7 2.4 2.3	
11 12 13 14 15	1.3 1.0 1.0 1.0	8.5 6.9 36 26 16	11 10 9.3 10	15 56 51 30 139	12 10 9.7 24 36	42 55 45 41 43	34 30 27 25 73	310 127 87 67 55	81 52 178 85 74	15 12 29 18 12	8.5 43 28 16 131	2.1 2.0 1.9 5.8 6.5	
16 17 18 19 20	1.2 1.0 1.0 1.1	14 190 54 36 954	8.1 7.7 7.1 7.1 7.1	63 44 36 33 28	54 29 25 22 20	34 28 36 40 28	157 60 47 42 33	246 340 111 73 56	88 60 43 33 27	22 27 15 12 55	55 25 17 16 15	8.0 20 5.1 344 2800	
21 22 23 24 25	19 72 11 11 8.1	222 81 58 45 36	11 9.2 11 42 43	19 18 17 16 15	320 224 103 64 46	76 47 36 150 180	29 26 23 21 19	45 35 48 180 63	28 37 30 388 70	42 24 19 15	12 13 9.2 7.5 6.2	352 107 70 46 35	
26 27 28 29 30 31	5.8 5.1 4.6 4.3 3.6 3.2	31 33 667 108 70	21 17 28 31 20 18	16 20 15 14 44 35	41 40 33 	75 56 47 41 90 326	18 16 14 14 35	44 44 33 26 22 20	47 35 37 44 23	11 9.7 14 7.8 6.8 8.8	5.4 4.8 4.6 10 13	92 44 33 28 23	
MEAN MAX MIN IN.	5.75 72 1.0 .26	95.1 954 6.9 4.13	19.9 54 7.1 .89	28.4 139 9.1 1.27	47.1 320 9.7 1.91	57.5 326 22 2.58	49.9 175 14 2.17	135 714 20 6.05	87.9 477 12 3.82	26.9 176 6.8 1.21	16.7 131 4.0 .75	135 2800 1.9 5.87	
		ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD,		R YEAR ((YW)					
MEAN MAX (WY) MIN (WY)	11.8 78.8 1956 .67 1965	34.7 139 1933 .90 1966	46.5 162 1984 1.59 1966	50.9 244 1979 1.14 1981	60.5 147 1939 3.92 1934	75.2 179 1936 15.2 1985	56.3 200 1983 7.20 1985	32.8 135 1989 3.78 1963	20.7 118 1972 1.11 1965	18.9 137 1938 .37 1966	19.1 216 1971 .44 1964	16.4 135 1989 .47 1965	
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD		
LOWEST / HIGHEST LOWEST / INSTANT/ INSTANT/ ANNUAL / 10 PERC	ANNUAL M DAILY ME ANEOUS F ANEOUS F ANEOUS I RUNOFF (ENTILE ENTILE	MEAN MEAN MEAN MEAN MEAK FLOW MEAK STAGE MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEA			2800 1.0 6330 10.92 .77 30.91 96 25 1.9	Sep 20 Oct 12 Sep 20 Oct 12			15 13	6.8 7.1 4.5 7.40 Aug 7.00 Jul 900a Aug .84b Aug .00 Jul .46 .77 13	1979 1965 1 28 1971 29 1965 28 1971 28 1971 1 7 1968		

From rating curve extended above 1,700 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement 0.7 mi downstream (adjusted to present site) at gage height 11.90 ft From high-water mark in gage house

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957, 1962, 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH/ II CU TIME I	UBIC CO FEET DU PER AN	FIC N- F CT- (ST CE	PH TAND- ARD ITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI FORM FECA EC BROT (MPN	STREP- TOCOCCI H FECAL
OCT 1988 03	1130	3.2	867	8.4	17.5	10.1	107	2.4	16000	>2400
FEB 1989 14	1100	30	426	7.9	1.5	13.2	94	5.7	2400	>2400
APR 12	0930	30	252	9.1	4.0	13.5	103	<0.7	330	49
JUN 20	0930	28	267	7.9	18.0	8.6	91	E1.8	1300	1600
JUL 31	1100	9.8	434	7.7	18.0	5.7	60	<1.2	630	>2400
AUG 24	1000	7.6	332	7.5	20.0	6.8	75	<0.8	490	920
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVI (MG, AS I	- DI ED SOL /L (MG	UM, LINI S- L/ VED (MC /L AS	TY SULF AB DIS S/L SOL	ATE RI - DI VED SO	DE, S- DLVED IG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988 03	300	84	21	59	3	.9 68	110	17	0	0.1
FEB 1989	100	28	8.3	34	2	.3 41	45	5 5	7	0.1
APR 12	83	21	7.4	13	1	.4 40	40) 1	9	0.1
JUN 20	86	22	7.5	14	2	.1 48	35	5 1	7	0.1
JUL 31 AUG	140	38	12	27	2	.5 68	52	2 6	52	0.1
24	120	31	9.4	14	2	.2 72	47	7 2	23	0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NIT GE NO2+ TOT (MG AS	N, GE NO3 AMMO AL TOT /L (MO	RO- GEN IN, MON INIA ORG IAL TO I/L (M		N, PHO	DROUS 0	ARBON, RGANIC TOTAL (MG/L AS C)
OCT 1988 03	1.3	490	0.038	0.	48 <0.	.05 0	.56 1.	.0 0.	.03	6.4
FEB 1989 14	8.5	208	0.022				.96 3		.20	4.3
APR 12	10	136	0.011	2.	13 0.	.09 0	.22 2	.4 0	.04	2.1
JUN 20	13	140	0.010	2.	32 0.	.11 0	.21 2	.5 0	.06	1.8
JUL 31	9.1	243	0.027	1.	35 <0.	.05 0	.32 1.	.7 0	.05	2.5
AUG 24	6.0	176	0.018	2.	08 <0.	.05 0	.42 2	.5 0	.06	3.8

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + OI FIDE TOT TAL BOT G/L (M	RG. GAN IN TOT MAT BOT G/KG (G)	OR- INON NIC, ORGA IN TOT MAT BOT /KG (GM	ANIC INC . IN D MAT SOI /KG (U	LVED TO	TO IN SENIC TOM STAL TE IG/L (U	TAL LI BOT- TO I MA- RE RIAL ER IG/G (U	TAL TO COV- RE ABLE ER G/L (U	TAL TO COV- REP ABLE ER G/L (U	CADMIUM RECOV. TAL FM BOT- COV- TOM MA- ABLE TERIAL G/L (UG/G CD) AS CD)
OCT 1988 03 JUN 1989	1130	11	00	2.0	7.5	•	• 1.780	5		••	<10
20	0930	<0.5	· ·	75		20	<1		:10	40	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988		20	<50		50		14000		70		490
JUN 1989 20	<1			3		310	· · ·	1		40	•• 3.
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 03		0.05		30		<1		200		<1	<1.0
JUN 1989 20	0.20		2		<1		10		16		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1988				14							
03 JUN 1989	<0.1	4.0	0.7	5.0	<0.1	<1.0	0.6	<0.1	<0.1	<1.0	<0.1
20			••	••			••	4		- 1	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	TERIAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988	0.1	-0.1	-1.0	-0.4	-4.0	-1 0	40.4	-1 0	41.00	~10	<1.0
JUN 1989 20	0.1	<0.1	<1.0	<0.1	<1.0	<1.0	<0.1	<1.0	<1.00	<10	
					7						

01398107 HOLLAND BROOK AT READINGTON, NJ

LOCATION.--Lat 40°33'30", long 74°43'50", Somerset County, Hydrologic Unit 02030105, on right bank 15 ft downstream from bridge on Old York Road, 0.9 mi southeast of Readington, and 2.5 mi upstream from mouth.

DRAINAGE AREA .- - 9.00 mi 2.

PERIOD OF RECORD. -- June 1978 to current year.

REVISED RECORDS.--WDR NJ-80-1: 1978, 1979(P). WDR NJ-82-1: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and concrete parking-block control. Datum of gage is 77.65 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Records good. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 то	SEPTEMBER	1989, N	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.0 2.7 3.9 2.2 2.0	8.2 8.9 7.1 6.3	24 17 13 11 9.0	5.4 5.2 4.8 3.9 3.1	e13 e12 e13 e11 e10	13 12 12 11 11	81 41 35 30 28	9.8 e260 52 28 26	7.9 6.8 5.9 5.7 5.0	5.9 5.3 4.8 4.5 24	3.2 2.9 2.9 2.6 2.5	1.8 1.6 1.5
6 7 8 9	1.9 1.8 1.9 1.8 1.9	16 12 10 8.6 7.6	7.5 6.6 5.9 5.1 4.4	3.1 3.1 4.1 5.5 4.0	9.7 8.9 7.8 6.2 6.2	13 11 11 11 13	34 31 28 24 20	103 47 30 23 220	11 95 58 95 112	9.3 27 12 9.7	2.3 2.3 2.1 1.9 1.8	1.6 1.6 1.5 1.5
11 12 13 14 15	1.7 1.6 1.6 1.6 1.7	6.5 5.4 15 12 11	3.8 2.9 2.8 3.1 3.1	3.7 7.8 15 11 31	6.1 5.7 5.1 8.3 9.7	15 16 e12 e11 15	18 16 15 14 24	130 57 41 30 25	35 22 73 38 37	7.7 6.4 10 7.1 5.4	3.2 6.4 4.0 3.1 3.7	1.2 1.2 1.2 2.5 2.6
16 17 18 19 20	1.6 1.6 1.6 e1.6	9.8 71 32 21 274	2.7 2.4 2.2 2.3 2.1	30 21 15 13	13 11 11 10 9.4	14 13 e15 e18 14	47 29 24 21 17	110 162 58 34 25	33 25 18 14 12	9.1 10 7.5 6.3 9.9	3.5 2.7 2.4 2.4 2.6	2.1 3.9 1.9 52 328
21 22 23 24 25	6.1 25 8.6 8.0 6.5	91 34 23 20 16	2.5 2.6 2.4 5.4 10	8.8 8.1 7.7 7.3 6.6	e146 71 42 29 22	24 22 19 51 57	16 14 13 12	20 16 21 30 20	11 10 9.1 42 15	7.1 6.3 5.4 4.7 4.3	2.3 2.3 2.8 2.2 1.9	93 32 21 15
26 27 28 29 30 31	5.3 4.7 4.3 3.9 3.5 3.4	14 14 142 57 36	6.1 5.2 6.0 8.2 6.6 6.3	6.8 7.5 6.1 6.0 e16 e14	19 18 15	33 25 21 19 64 141	11 10 9.2 9.1	17 16 13 11 9.8 9.0	9.9 9.4 9.4 6.8	4.1 4.0 4.5 3.3 3.3	1.8 1.8 1.8 2.9 3.1	21 15 12 11 9.1
MEAN MAX MIN IN.	3.79 25 1.6 .49	33.4 274 5.4 4.14	6.20 24 2.1 .79	9.57 31 3.1 1.23	19.6 146 5.1 2.27	23.8 141 11 3.05	23.2 81 9.1 2.88	53.3 260 9.0 6.83	28.1 112 5.0 3.49	7.88 27 3.3 1.01	2.69 6.4 1.8 .34	21.8 328 1.2 2.70
STATIST	ICS OF MO	ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATER	R YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	5.61 20.9 1980 1.10 1983	16.3 34.4 1986 2.85 1983	18.7 56.1 1984 1.93 1981	21.6 102 1979 1.93 1981	25.1 56.4 1979 4.69 1980	24.8 49.5 1983 7.05 1985	26.5 59.4 1983 3.02 1985	20.9 53.3 1989 5.68 1986	9.17 28.1 1989 3.25 1981	7.64 26.4 1984 1.63 1980	5.40 26.6 1978 1.23 1983	6.50 21.8 1989 1.13 1983
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENTILE 50 PERCENTILE				328 1.2 956 6.71 1.2 29.27 38 9.4 1.4	Sep 20 Sep 11 Sep 20 Sep 20 Sep 11			13 8. 23.	04 Jan 37 Aug 00 Jul 08 Jul	1979 1985 21 1979 28 1980 7 1984 7 1984 28 1980		

e Estimated

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ

LOCATION.--Lat 40°46'16", long 74°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi upstream from Burnett Brook, and 3.8 mi east of Chester.

DRAINAGE AREA. -- 7.57 mi 2.

PERIOD OF RECORD. -- Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epaidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DA	TE	TIME	DIS- HARGE, INST. CUBIC FEET PER SECOND	DUC	FIC N- CT- (CE	PH STAND- ARD NITS)	AT	IPER- TURE TER (G C)	SO	GEN, (IS- LVED S		OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COL FOR FEC EC BRO (MP	M, AL, S1 TO TH FE	TREP- COCCI ECAL MPN)
OCT_19		1100			240	7,					101	2.8	1300		50
27 FEB 19	89		4.0E		260	7.4		5.5		2.7					E ALE
MAR 01		1100	7.7E		220	7.6		4.5	1	3.1	104	3.0	220		79
20	•	1045	9.9E		200	7.8		5.0	1	2.7	100	E2.0	80		5
24 JUL		1245	35 E		175	7.7	1	13.5	1	0.4	103	E1.9	5400	>240	00
17		1030	10.2E		240	7.4	1	17.0		9.3	98	E1.9	790	160	00
AUG 08	. 4	1045	4.3E	1	261	7.6	<u></u>	16.5		9.7	101	E1.5	490	160	00
	DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALC DIS SOL (MC		MAGNE SIUM DIS- SOLVE (MG/L AS MG	D SOL	IUM, S- VED IG/L NA)	SI DI SOL	AS- IUM, IS- VED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS SOLV (MG,	TE RI DI ED SO	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	T 1988	8	30 19		7.8	1	7		2.5	51	18	3	0	0.1	
FE	B 1989 01		55 16		6.2		8		2.0	41	17		3	0.1	
MA	R 20		33 19		6.1		2		1.7	39	17		7	0.2	
MA	Y											_			
JU	24 IL_		3 1		3.8		3		1.5	23	11		0	0.1	
AL	17		57 17		5.9	1	5		1.8	40	13	_	6	0.1	
	08		33 2	1	7.4	1	5		2.2	52	14	2	8	0.2	
	DATE	SILIC/ DIS- SOLVE (MG/I AS SIO2	CONS ED TUEI D SOI		NITRO GEN, NITRII TOTAL (MG/L AS N)	E NO2 TE NO2	TRO- SEN, 2+NO3 OTAL IG/L S N)	AMMO TO (Mo	TRO- EN, ONÍA TAL G/L N)	NITRO- GEN, AM- MONIA - ORGANIO TOTAL (MG/L AS N)	NIT	N, PHO AL TO /L (M	IOS- PROUS OTAL IG/L S P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
00	T 1988	18		143	0.05		.09	•	.60	0.05	2.	0 0	42	3.0	
FE	B 1989			12. 5.31				5 1		0.95					
MA	01	15		132	0.0		.03		.10	1.4	2.		36	3.0	
MA	20 Y	14		136	0.0	15 0	.90	0	.68	1.1	2.	0 0.	24	3.4	
JL	24	11		85	0.0	19 0	.69	0	.06	0.55	1.	2 0.	12	4.9	
	17	15		118	0.04	1 2	2.06	. 0	.06	0.69	2.	8 0.	25	3.7	
7.0	08	18		137	0.04	42 2	2.45	<0	.05	0.29	2.	7 0.	45	2.8	

RARITAN RIVER BASIN

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFID TOTAL (MG/L AS S)	SOL'	M, S- ARSE VED TOT /L (UG	LIL TOT NIC REC AL ERA	AL TOT COV- REC BLE ERA	COV- RECABLE ERA	AL TOT OV- REC BLE ERA	M, COPPE AL TOTA OV- RECO BLE ERAB /L (UG/	NL OV- BLE 'L
OCT 1988 27 MAY 1989	1100	<0.	5	<10	1 <1	0	110	<1	<1	3
24	1245	<0.	5	50	<1 <1	0	40	<1	2	5
DATE	20		LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT 1988		50	<5	<10	<0.10	2	<1	<10	2	
MAY 1989 24		660	2	30	<0.10	<1	<1	10	3	

01398500 NORTH BRANCH RARITAN RIVER NEAR FAR HILLS, NJ

LOCATION.--Lat 40°42'30", long 74°38'11", Somerset County, Hydrologic Unit 02030105, on left bank 75 ft upstream from Ravine Lake Dam, 1.6 mi north of Far Hills, and 2.3 mi upstream from Peapack Brook.

DRAINAGE AREA .-- 26.2 mi 2.

PERIOD OF RECORD.--October 1921 to September 1975, October 1977 to current year. Operated as crest-stage gage, water years 1976-77. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23, 1924-25(M), 1935(M). WSP 1902: 1954.

GAGE.--Water-stage recorder and crest-stage gage above masonry dam. Datum of gage is 224.49 ft above National Geodetic Vertical Datum of 1929 (New Jersey Geological Survey bench mark). Prior to June 18, 1925, nonrecording gage in stilling box at left end of dam at same datum.

REMARKS.--No estimated daily discharges. Records good. Records given herein include diversion by small turbine at dam (average discharge, 3.0 ft³/s) and returned to river 1,000 ft downstream from Ravine Lake Dam. Turbine operating from Oct. 1-15 and Apr. 15 to Sept. 30. Flow regulated occasionally by operation of waste gate in dam (no gate opening this year). Recording rain gage, with telemeter, 500 ft downstream of station. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Stage of 7.6 ft, from floodmark, occurred July 23, 1919, discharge about 7,000 ft³/s.

	DISCHARGE	CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	14 15 27 18 17	22 44 43 41 41	61 48 40 46 46	33 33 33 29 22	35 34 36 36 34	41 39 39 39 39	163 103 105 107 131	70 319 98 75 100	73 69 65 64 61	44 41 40 39 85	22 21 28 22 20	11 11 9.4 8.6 8.5	
6 7 8 9 10	16 16 18 19 15	56 27 23 26 25	45 44 43 42 41	31 31 39 43 34	34 34 32 29 29	47 42 38 39 40	147 114 99 95 86	516 163 124 116 307	66 113 112 81 134	63 48 68 42 38	18 23 20 17 16	8.9 9.3 8.9 8.9 9.3	
11 12 13 14 15	14 13 13 15 16	23 17 32 48 31	40 32 37 40 39	32 46 52 36 65	32 31 31 40 43	41 45 42 40 43	81 78 81 86 106	261 162 151 140 135	67 53 114 66 74	38 34 39 38 32	22 43 33 24 22	9.1 8.2 8.1 8.3	
16 17 18 19 20	14 14 15 18 16	25 73 45 32 405	37 34 32 35 34	45 37 35 34 36	47 38 35 34 34	42 39 49 58 46	211 110 96 93 85	391 517 222 181 157	122 69 59 55 52	39 51 37 34 55	23 19 17 17 20	12 18 13 59 422	
21 22 23 24 25	18 74 31 24 25	199 86 71 63 58	37 37 38 59 61	32 31 33 33 33	238 104 61 51 45	72 56 47 90 129	82 78 76 75 74	137 124 142 242 129	54 113 121 164 70	43 37 34 30 28	18 20 17 24 15	104 45 43 33 26	
26 27 28 29 30 31	18 16 14 14 13	55 53 226 81 61	39 35 38 45 36 34	34 39 35 34 38 38	45 44 42 	68 61 59 57 97 257	73 72 69 68 74	107 108 94 84 81 79	59 54 54 50 46	28 25 28 23 20 21	13 12 11 13 17	49 35 27 25 20	
MEAN MAX MIN IN.	74 13 .83	67.7 405 17 2.89	41.1 61 32 1.81	36.3 65 22 1.60	47.4 238 29 1.89	59.4 257 38 2.61	97.3 211 68 4.14	178 517 70 7.85	78.5 164 46 3.34	39.4 85 20 1.74	20.0 43 11 .88	35.8 422 8.1 1.53	
	ICS OF MONT												
MEAN MAX (WY) MIN (WY)	97.4 1956 6.29	42.4 170 1928 9.22 1965	49.0 124 1974 8.43 1981	52.9 182 1979 6.76 1981	60.1 128 1973 22.1 1934	81.4 207 1936 22.8 1981	82.6 226 1983 26.8 1985	59.8 178 1989 20.0 1965	38.7 190 1972 10.5 1965	31.2 132 1984 4.41 1966	28.3 153 1942 4.55 1965	27.8 134 1971 3.61 1964	
SUMMARY	STATISTICS			FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD		
LOWEST HIGHEST LOWEST INSTANT INSTANT	FLOW ANNUAL MEAN ANNUAL MEAN DAILY MEAN ANEOUS PEAK ANEOUS LOW RUNOFF (INC ENTILE ENTILE	FLOW STAGE			517 8.1 1330 4.07 7.7 31.09 117 41	May 17 Sep 13 May 6 May 6 Sep 13			63 7 24	3.1 9.7 7.7 260 Apr 20 Oct 390a Aug 28 Aug 00 Sever .95 .99 33	1928 1965 5 1984 22 1953 28 1971 28 1971 al times		

a From rating curve extended above 2,000 ft3/s on basis of computation of peak flow over dam

01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'09", long 74°40'56", Somerset County, Hydrologic Unit 02030l05, at bridge on Burnt Mills Road in Burnt Mills, 0.1 mi upstream from Lamington River, and 4.0 mi southwest of Far Hills.

DRAINAGE AREA. -- 63.8 mi².

PERIOD OF RECORD.--Water years 1964, 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	Ţ	IME	DIS- HARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C	DIS- SOLVE	CENT D SATUR-	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL EC BROTH (MPN)	STREP- TOCOCCI FECAL
NOV 1988 03	1	200	83E	258	7.3	5.0	12.8	101	2.6	330	130
JAN 1989 26	1	350	65E	265	8.3	2.0	14.0	102	<1.1	130	9
APR 04	1	330	148E	206	7.0	9.5	11.2	99	E2.2	2400	170
MAY 16	1	345	460E	147	7.1	16.5	9.0	93	3.4	>24000	>2400
JUL 18	1	045	71E	250	7.3	20.5	9.0	100	E1.6	790	1300
AUG 02	1	000	42E	235	7.4	20.0	8.6	94	<1.2	2400	>2400
DA	ATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCI DIS- SOLV (MG/	UM SI DI ED SOL L (MG	S- DI VED SOL	IUM, S S- I VED SO IG/L (I	SIUM, LI DIS- DLVED (MG/L	LAB DIS MG/L SOI AS (M	FATE RI S- DI LVED SO G/L (M	DE, R S- DLVED S IG/L (FLUO- RIDE, DIS- SOLVED (MG/L AS F)
NOV 19		7	9 19	7	'.7 1	2	2.3 5	7 2	1 2	.5	0.1
JAN 19 26		8	1 20	7	.6 1	6	1.6 5	2 1	9 2	25	0.1
APR 04		6	4 16	5	.8 1	13	1.2 3	9 1	9 2	24	<0.1
MAY 16 Jul		4	7 12	4	.2	8.1	1.8 2	9 1	3 1	2	0.1
18 AUG		7	6 19	7	.0 1	12	1.7 5	5 1	5 2	20	0.1
02.	••	8	8 22	8	3.1 1	13	1.7 6	3 1	6 2	22	0.1
D/	ATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONST D TUENT DIS SOLV	OF NIT FI - GE FS, NITE S- TOT /ED (MC	EN, CRITE NOS	GEN, 2+NO3 AM DTAL T MG/L (ITRO- GE GEN, MC MONIA OR OTAL T MG/L (GANIC G OTAL TO MG/L (M	EN, PHO TAL TO G/L (M	DROUS OF	ARBON, RGANIC TOTAL (MG/L AS C)
NOV 19 03. JAN 19		12	1	133 0	.016	0.87	0.07	0.36 1	.2	;	3.9
26. APR	••	11	1	131 0	.013	1.20 <	0.05	0.17 1	.4 0.	.09	1.6
04. MAY	••	12	1	114 0	.010	0.89	80.0	0.36 1	.2 0.	.07	2.3
16. JUL	• •	7.5	i	76 0	.030	1.33	0.10	1.2 2	.5 0.	.25 1	1
18. AUG		14	•	122 0	.020	1.09 <	0.05	0.29 1	.4 0.	.10	3.5
02.	••	11	•	132 0	.044	1.07 <	0.05	0.26 1	.3 0.	.11	2.8

01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 INC RG. GAI IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC II . IN I MAT SO /KG (I	OLVED TO	TO IN ENIC TOM TAL TE G/L (U	TAL LI BOT- TO MA- RE RIAL ER G/G (U	TAL TO COV- RE ABLE ER IG/L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM REG TAL FM I COV- TOM ABLE TEI G/L (U	BOT -
NOV 1988 03 03		<0.5	30	0.2	0.7	<10	<1	3	10	50	<1	 <10
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
NOV 1988 03 03	1	4	<10	3	4	230	5900	<5	<100	20	170	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
NOV 1988 03 03	<0.10	0.01	5	 <10	<1	 <1	20	20	2	<1	 <1.0	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TERIAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
NOV 1988 03 03	 <0.1	<1.0	0.1	0.1	0.2	 <0.1	 <0.1	0.9	<0.1	 <0.1	 <0.1	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	BOTTOM MATL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
NOV 1988 03 03	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	<1.00	<10	 <0.1	

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ

LOCATION.--Lat 40°50'07", long 74°38'40", Morris County, Hydrologic Unit 02030105, on left bank 15 ft upstream from bridge on Ironia Road, 1.0 mi below Succasunna Brook, 1.3 mi northwest of Ironia, and 4.4 mi northeast of Chester.

DRAINAGE AREA. -- 10.9 mi2.

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CU F TIME P	BIC CO EET DU ER AN	FIC N- F CT- (ST CE /	TAND - A	TURE ATER S	YGEN, (DIS-	DIS- DEN OLVED BI PER- CI CENT IC ATUR- 5	IO- FO HEM- FE CAL, E DAY BR	LI- RM, CAL, STREP- C TOCCCCI OTH FECAL PN) (MPN)
OCT 1988 27	1300	8.2E	462	7.3	7.5	9.8	83	5.0 240	0 350
FEB 1989 01		1 E	380	7.5	7.5	11.4	99	3.5 11	
MAR 20		7.6E		7.4	6.5	11.8		2.8 7	
MAY 24		9 E	275		13.5	5.9	59 I	E1.4 350	
JUL 17		6 E	300		19.5	7.6		<1.0 170	
AUG 09	1415	7.3E	397		19.0	9.3		E1.3 79	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	LINITY	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988 27	120	28	12	44	4.3	82	23	68	0.1
FEB 1989 01	110	26	11	38	3.7	82	20	61	0.1
MAR 20	100	24	10	43	3.4	78	20	67	0.1
MAY 24	70	17	6.6	21	1.9	50	14	33	0.1
JUL 17	96	23	9.3	26	2.3	67	15	45	0.1
AUG 09	110	25	11	33	3.0	71	18	57	0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)		NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 27 FEB 1989	12	241	0.188	3.23	0.38	1.2	4.4	0.27	9.1
01 MAR	11	220	0.052	2.09	1.17	1.5	3.6	0.26	4.7
20 MAY	11	225	0.019	1.82	0.22	0.90	2.7	0.14	5.9
24 JUL_	7.2	131	0.026	0.53	0.08	0.66	1.2	0.10	7.2
17 AUG	10	171	0.028	1.07	0.85		••	0.09	4.9
09	9.3	199	0.028	2.47	<0.05	0.28	2.8	0.10	4.3

01399200 LAMINGTON (BLACK) RIVER NEAR IRONIA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 27	1300	<0.5	<10	<1	<10	100	<1	2	6
DAT	T R R E	OTAL T ECOV- R RABLE E UG/L (EAD, NI OTAL TO ECOV- RI RABLE EI UG/L (I	DTAL TO ECOV- RE RABLE EN UG/L (1	DTAL TO ECOV- RE RABLE ER JG/L (U	COV- NI RABLE TO JG/L (U	ZING LE- TOT/ UM, RECO ITAL ERAI IG/L (UG,	AĹ OV- BLE PHE /L TO	NOLS NTAL S/L)
OCT 198		480	<5	140	<0.10	4	<1	10	1

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'39", long 74°43'50", Morris County, Hydrologic Unit 02030105, on right bank 1.1 mi upstream from bridge on State Highway 512, 1.2 mi northwest of Pottersville, and 5.5 mi upstream from Cold Brook. Water-quality samples collected at bridge 1.1 mi downstream from gage at high flows.

DRAINAGE AREA . - - 32.8 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to current year. Monthly discharge only for October and November 1921, published in WSP 1302. Prior to October 1952, published as "Black River near Pottersville".

REVISED RECORDS.--WSP 741: 1932. WSP 781: Drainage area. WSP 1552: 1922, 1924-29(M), 1931(M), 1933-34(M), 1938(P), 1939(M), 1940, 1941(M), 1942-46(P), 1947(M), 1948-49(P), 1951-52(P), 1953(M). WDR-NJ-80-1: Correction 1979(P).

GAGE.--Water-stage recorder. Concrete control since July 1, 1937. Datum of gage is 284.14 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark). Prior to July 1, 1922, nonrecording gage on downstream side of highway bridge at Pottersville, 1.1 mi downstream at different datum.

REMARKS.--Records poor. Flow regulated occasionally by pond above station. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12 14 17 14 13	26 28 23 21 28	75 70 63 56 51	34 e26 e21 e18 e32	34 e30 e26 e25 e24	19 18 18 18 18	e65 e61 e63 e53 e50	34 e130 e105 98 129	79 71 64 59 56	68 61 53 50 75	27 26 27 26 25	18 17 16 15 15
6 7 8 9	13 13 13 13 13	34 29 30 31 31	48 46 44 42 e34	48 46 42 41 35	27 27 24 23 e25	19 18 20 18 18	e53 e51 e48 e46 35	267 e240 213 174 220	57 83 95 95 132	72 65 81 66 60	24 24 23 22 22	15 15 15 15 14
11 12 13 14 15	12 12 12 12 12	31 28 37 44 52	e28 e25 e23 23 24	33 41 43 e38 57	25 24 24 28 32	18 18 18 18	29 26 25 25 53	219 181 165 137 136	91 80 104 83 91	57 50 49 45 41	25 35 31 27 28	14 13 12 15 17
16 17 18 19 20	11 11 11 11 11	68 108 87 81 236	22 22 20 20 20	43 e37 e36 34 31	31 e32 e30 e31 e27	20 19 21 24 24	97 72 78 68 55	234 302 272 258 216	116 100 94 86 76	50 52 44 42 54	30 28 26 26 25	17 23 18 54 242
21 22 23 24 25	15 39 26 27 26	137 103 102 96 91	19 19 21 41 57	27 e29 34 33 30	81 52 27 24 23	32 28 24 37 e82	51 48 40 38 42	179 145 142 179 156	71 72 66 173 145	42 39	25 25 23 21 20	140 127 115 80 61
26 27 28 29 30 31	26 25 24 23 21	82 77 125 87 77	43 42 47 47 41 39	31 37 34 33 35 36	24 21 19 	75 71 62 60 68 81	38 41 40 38 37	148 141 124 107 96 89	141 120 106 91 78	32 28	19 19 19 21 21 19	e73 e70 e57 e50 e47
MEAN MAX MIN IN.	39 11 .59	67.7 236 21 2.30	37.8 75 19 1.33	35.3 57 18 1.24	29.3 81 19 .93	32.4 82 18 1.14	48.9 97 25 1.66	169 302 34 5.94	92.5 173 56 3.15	81	24.5 35 19 .86	46.7 242 12 1.59
	ICS OF MONTI								A gri		1	
MEAN MAX (WY) MIN (WY)	116 1956	50.2 163 1928 11.2 1965	58.6 170 1974 15.4 1981	63.7 225 1979 11.7 1981	70.9 144 1973 28.0 1934	89.8 230 1936 32.0 1981	88.3 239 1984 25.9 1985	67.0 169 1989 19.0 1965	45.9 191 1972 10.1 1965	165 1984	33.9 125 1928 5.61 1966	33.8 123 1971 3.76 1964
SUMMARY	STATISTICS			FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT	ANNUAL MEAN ANNUAL MEAN DAILY MEAN DAILY MEAN ANEOUS PEAK ANEOUS LOW RUNOFF (INCI	FLOW STAGE			54.3 302 11 658 3.57 11 22.48 117 36 14	May 17 Oct 16 Sep 20 Sep 20 Oct 20			2 3 5	6.0 104 0.5 905 Jar 1.5 Oct 460a Jul .94b Jul 1.3 Oct 1.9 114 43	7 1984 7 1984	

a From rating curve extended above 380 ft³/s on basis of slope-area measurement at gage height 4.71 ft

b From floodmark

e Estimated

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by the New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	CH/ II CU TIME	JBIC CO FEET DU PER AN	FIC N- F CT- (ST CE /	AND -	EMPER- ATURE WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- DI SOLVED (PER- CENT SATUR-	BIO- CHEM- ICAL, 5 DAY	EC TOC BROTH FE	REP- OCCI CAL PN)
00	CT 1988	1300	18	280	7 7	, -	47.2	100	-1.0	20 13	
F	31 EB 1989				7.7	4.5	13.2	102	<1.0		
M/	06 AR	1300	30	240	7.5	1.0	14.6	104		500 1	
Jl	20 JN	1330	23	180	7.5	4.5	12.7	98			9
Jl	21 JL	1045	72	250	7.8	19.5	9.0	98	E1.5	40 92	0
Al	17 UG	1330	51	220	7.9	18.5	9.4	102	<1.0	130 160	0
	08	1345	23	174	7.8	18.5	9.7	105	<0.9	330 35	0
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	SOL' (MG	UM, LINI S- LA VED (MG /L AS	TY SULFAT B DIS- /L SOLVE	DIS- D SOLVEI (MG/L	(MG/L	
	31 FEB 1989	77	17	8.4	22	7	.5 47	23	37	0.1	
	06	73	17	7.4	19	1	.9 45	19	34	0.1	
	MAR 20	55	13	5.5	17.	. 1	.7 35	14	29	0.1	
	JUN 21	67	16	6.6	15	1	.3 47	11	26	0.1	
	JUL 17	64	15	6.4	14	1	.4 46	10	25	0.1	
	AUG 08	79	19	7.7	18	1	.5 57	11	32	0.2	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/I AS N)	GE OS AMMO TOT (MG	RO- GEN, N, MONI NIA ORGA AL TOT /L (MG	A + NITRO NIC GEN, AL TOTAL I/L (MG/L	PHOROU TOTAL (MG/L	S ORGANIĆ TOTAL (MG/L	
	OCT_1988		457								
	FEB 1989	14	157	0.005	0.73				0.02	3.6	
	06 MAR	13	138	0.008		4	6 0.4		0.05	2.6	
	20 JUN	10	111	0.010	0.99	0.0	7 0.4	6 1.5	0.05	5.1	
	21 JUL	12	116	0.005	0.5	2 0.0	5 0.5	1.0	0.10	6.0	
	17	14	113	0.006	0.60	0.0	5 0.3	0.98	0.09	5.1	
	08	16	140	0.018	0.7	1 <0.0	5 0.3	5 1.1	0.09	4.4	

RARITAN RIVER BASIN

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ERABL (UG/L	BOROI TOTAI - RECO' E ERABI (UG/	L TOTA V- REC LE ERA L (UG	AL TOT. OV- REC BLE ERA /L (UG	M, COPP AL TOT OV- REC BLE ERA /L (UG	AL OV- BLE
OCT 1988 31 JUN 1989	1300	<0.5	<10	<1	<10		80	1	<1	2
21	1045	<0.5	10	<1	<10		30	<1	<1	2
DATE	T(Ri Ei : (l	DTAL TO ECOV- RE RABLE ER UG/L (U	AD, NE DTAL TO CCOV- RE ABLE ER	TAL T COV- R ABLE E IG/L (OTAL ECOV- RABLE UG/L	ICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT 1988 31 JUN 1989		160	<5	10	<0.10	3	<1	10	2	
21		680	1	50	0.50	1	<1	<10	18	

01399510 UPPER COLD BROOK NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'16", long 74°45'09", Hunterdon County, Hydrologic Unit 02030105, on right bank along a private dirt road, 400 ft downstream from the former Pottersville Reservoir, and 1.5 mi west of Pottersville.

DRAINAGE AREA. -- 2.18 mi 2.

PERIOD OF RECORD. -- October 1972 to current year.

REVISED RECORDS.--WDR-NJ-84-1: 1975(P), 1980-83(P). WDR NJ-88-1: 1979.

GAGE.--Water-stage recorder and rock outcrop control. Datum of gage is 451.57 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow regulated by Pottersville Reservoir, 400 ft above station, until August 1982 when dam was demolished. Several measurements of water temperature were made during the year.

	DISCHAR	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, ME	N DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e1.06 e1.21 e1.49 e1.09 e1.08	2.7 1.9 1.5 1.5 3.0	3.3 3.2 3.0 2.9 2.9	2.1 2.1 2.1 2.4 2.7	2.3 2.3 2.4 2.1 2.1	2.5 2.4 2.4 2.3 2.5	7.6 6.0 6.3 7.2 6.8	3.3 23 5.5 4.5 17	4.1 3.9 3.5 3.4 3.1	3.7 3.5 3.3 3.5 8.7	2.1 2.0 2.2 1.8 1.7	1.5 1.5 1.4 1.3 1.4
6 7 8 9 10	e1.10 e1.11 e1.13 e1.12 e1.10	2.9 1.7 1.6 1.5	2.7 2.7 2.7 2.7 2.3	2.7 3.9 3.1 2.2 2.1	2.1 2.0 1.9 2.2 2.2	3.0 2.5 3.4 2.8 2.4	8.1 5.9 5.3 5.3 4.8	29 10 7.4 6.4 28	3.9 9.8 5.7 8.3 9.8	4.7 4.6 6.3 3.3 3.1	1.5 1.6 1.5 1.4 1.4	1.4 1.4 1.4 1.4 1.3
11 12 13 14 15	e1.03 e1.05 e1.05 e1.05 e1.05	1.4 1.3 3.4 2.0 1.6	2.2 2.4 2.7 2.9 2.3	3.8 4.1 2.5 6.4 3.6	2.3 2.3 2.4 2.8 3.2	2.6 2.7 2.4 2.5 2.7	4.4 4.3 4.1 4.0 8.2	15 12 9.9 8.5 7.8	4.4 3.7 11 5.0 8.2	3.0 2.8 3.8 3.0 2.6	2.0 3.6 2.3 1.8 1.9	1.3 1.2 1.2 2.5 2.1
16 17 18 19 20	e.99 e1.01 e1.0 e1.0 e.99	1.7 6.0 2.4 1.9	2.0 2.0 2.2 2.3 2.3	2.8 2.5 2.5 2.5 2.5	2.9 2.1 2.0 1.9	2.4 2.3 3.7 3.1 2.6	9.0 5.2 4.8 4.5 4.2	24 23 11 9.4 8.2	12 5.7 4.6 4.0 4.2	5.2 3.8 3.0 2.8 6.3	1.7 1.5 1.4 1.5 1.6	2.7 3.4 1.8 25 35
21 22 23 24 25	2.2 3.1 1.4 1.8 1.4	9.4 5.8 4.2 3.3 3.0	2.6 2.1 2.7 5.3 3.8	2.1 2.2 2.3 2.3 2.3	18 6.8 4.3 3.3 3.4	5.5 3.5 3.0 9.6 7.0	4.0 3.8 3.7 3.5 3.5	7.3 6.5 9.2 11 6.6	4.1 4.1 5.0 27 6.5	3.7 3.3 2.9 2.5 2.4	1.4 1.3 1.5 1.6 1.5	8.7 4.6 3.5 2.9
26 27 28 29 30 31	1.3 1.3 1.3 1.3 1.2	2.8 3.0 13 4.7 3.7	2.5 2.3 3.1 2.7 2.2 2.1	2.9 2.4 2.3 2.3 2.9 2.4	2.8 2.8 2.6	4.8 4.2 3.8 3.6 11	3.3 3.2 3.1 3.0 3.2	5.8 6.0 5.2 4.7 4.6 4.4	5.4 4.8 4.9 4.3 3.9	2.3 2.6 2.9 2.1 2.1 2.2	1.5 1.6 2.0 2.0	6.0 3.2 2.8 2.6 2.5
MEAN MAX MIN IN.	1.26 3.1 .99 .67	4.55 42 1.3 2.33	2.68 5.3 2.0 1.42	2.74 6.4 2.1 1.45	3.19 18 1.9 1.53	3.97 14 2.3 2.10	5.01 9.0 3.0 2.56	10.8 29 3.3 5.70	6.28 27 3.1 3.21	3.55 8.7 2.1 1.88	1.74 3.6 1.3 .92	4.39 35 1.2 2.25
STATIS	TICS OF MO		W DATA FO		OF RECORD,			WY)				
MEAN MAX (WY) MIN (WY)	1.78 4.05 1980 .62 1981	3.05 8.37 1973 .93 1981	4.47 10.6 1984 .43 1981	4.66 12.4 1979 .08 1981	4.98 8.46 1984 2.03 1980	5.65 9.30 1978 2.09 1985	6.59 15.0 1983 1.72 1985	5.40 10.8 1989 2.30 1985	3.38 6.45 1975 1.49 1985	2.79 12.1 1984 .90 1980	1.58 3.48 1975 .38 1980	1.81 4.58 1975 .16 1980
SUMMAR	Y STATISTI	CS		FC	OR 1989 WATE	R YEAR			FOR PE	RIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PER 50 PER	E FLOW T ANNUAL ME ANNUAL ME T DAILY MEA TANEOUS PE TANEOUS PE TANEOUS LO RUNOFF (I CENTILE CENTILE	AN AN N AK FLOW AK STAGE W FLOW			4.18 42 .99 189 1.76 26.03 7.7 2.6 1.2	Nov 20 Oct 16 Sep 20 Sep 20			3.84 7.07 1.74 125 .03 2000 3.91 23.91 7.0 2.3	Jul Aug a Jul Jul	28 1980 7 1984	

a From rating curve extended above 20 ft³/s on basis of slope-area measurement of peak flow

e Estimated

01399670 SOUTH BRANCH ROCKAWAY CREEK AT WHITEHOUSE STATION, NJ

LOCATION.--Lat 40°37'10", long 74°46'30", Hunterdon County, Hydrologic Unit 02030105, on right bank 1,700 ft upstream from bridge on U.S. Route 22, 0.4 mi northeast of Whitehouse Station, and 0.8 mi upstream from mouth.

DRAINAGE AREA. -- 12.3 mi 2.

PERIOD OF RECORD.--October 1986 to current year. March 1977 to September 1986, water-stage recorder 1,700 ft downstream, at datum 8.07 ft lower (sta. 01399690).

REVISED RECORDS. -- WDR NJ-88-1: 1987.

GAGE.--Water-stage recorder. Datum of gage is 121.5 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good except those below 5.0 ft³/s, which are fair. Releases from Round Valley Reservoir enter stream directly above station (see Raritan River basin, reservoirs in). Several measurements of water temperature were made during the year.

	DISCHAF	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, N	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.4 6.9 9.8 4.8 4.5	17 15 8.8 8.1 20	23 19 17 15	9.2 9.6 9.5 7.9 6.9	12 11 13 11 9.8	13 12 11 11 12	68 38 38 37 42	13 148 35 25 37	21 20 18 19 17	14 13 12 12	8.9 23 28 27 7.2	4.5 4.5 3.9 3.6 3.8
6 7 8 9 10	4.2 4.2 4.4 4.1 4.1	32 13 10 9.7 9.6	13 13 12 11 10	7.8 8.2 14 14 9.8	9.8 9.7 8.8 7.6 7.7	20 14 12 12 15	54 39 31 29 25	145 53 36 31 250	25 79 56 60 84	23 15 49 15 13	6.8 29 28 24 28	3.9 4.0 3.8 3.8 3.9
11 12 13 14 15	4.0 3.7 3.9 4.6 4.9	9.1 7.8 28 19	9.5 7.7 8.7 8.8	9.3 21 22 12 48	8.1 8.1 7.7 13	16 17 14 13	21 20 19 18 35	102 58 49 40 38	34 27 87 43 47	12 11 23 14 11	7.9 25 12 29 28	3.9 3.5 3.4 5.1 6.4
16 17 18 19 20	4.7 4.8 5.0 5.1 5.9	11 76 25 17 312	7.8 7.3 10 7.8	24 16 14 13 12	20 11 9.8 9.5 9.4	13 12 19 19 13	67 29 24 22 19	164 134 58 45 39	52 36 28 23 21	22 23 13 12 57	7.4 6.4 5.8 6.8 9.2	7.1 16 5.5 57
21 22 23 24 25	12 47 11 12 9.4	83 36 28 23 19	9.6 8.7 10 23 25	9.8 8.9 9.3 9.3 9.2	104 61 34 23 17	38 21 16 64 59	18 17 15 15 14	35 31 37 71 38	20 19 18 156 38	22 15 13 11 11	7.0 7.6 8.6 6.5 5.3	118 44 36 26
26 27 28 29 30 31	7.8 7.3 7.0 7.0 6.6 6.4	17 17 132 36 27	13 11 16 16 11	11 14 10 10 19	17 17 15	29 23 20 18 56 167	14 13 12 12 13	31 28 24 23 23	28 22 22 25 16	11 23 29 8.3 8.3 27	5.1 4.8 5.1 5.4 6.9	43 23 17 16 14
MEAN MAX MIN	7.50 47 3.7	35.9 312 7.8	12.7 25 7.3	13.3 48 6.9	17.9 104 7.6	25.6 167 11	27.3 68 12	60.5 250 13	38.7 156 16	19.1 57 8.3	13.4 29 4.8	36.0 577 3.4
		ONTHLY FLO			OF RECORD,	BY WATE	R YEAR (v
MEAN MAX (WY) MIN (WY)	32.7 115 1981 7.15 1982	31.3 64.0 1981 6.58 1982	34.0 91.6 1981 12.7 1989	36.3 93.3 1981 8.31 1985	29.9 51.1 1979 16.7 1985	32.4 55.0 1978 10.2 1985	36.2 85.0 1983 3.80 1985	28.5 60.5 1989 11.9 1977	20.5 38.7 1989 9.57 1981	26.7 80.5 1984 7.33 1983	34.8 127 1980 5.49 1983	35.6 146 1980 4.19 1983
SUMMARY	STATIST	ICS		FO	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST I INSTANTA	ANNUAL M DAILY ME DAILY ME ANEOUS P ANEOUS L ENTILE ENTILE	EAN EAN AN EAK FLOW FAK STAGE			25.6 577 3.4 1200 7.55 3.1 49 15 3.9	Sep 20 Sep 13 Sep 20 Sep 20 Oct 11			1 21 15.	00 Jan	7 1984	

a Site and datum then in use

176

RARITAN RIVER BASIN

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'49", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth.

DRAINAGE AREA. -- 37.1 mi 2.

PERIOD OF RECORD .-- Water years 1977 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: April 1977 to September 1978. WATER TEMPERATURES: April 1977 to September 1978. SEDIMENT ANALYSES: October 1976 to September 1978.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

D	DATE	CH I	NST. CI UBIC CO FEET DU PER AN	ICT- (ST	AND -	EMPER- ATURE WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)		OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1		1200	20E	263	8.3	12.0	10.1	95	<0.7	390	240
FEB 1	1989	1230	105E	205	7.2	3.5	12.4	94	E1.7	260	130
APR 12.		1300	68E	191	9.0	10.0	14.4	127	<1.0	20	46
JUN 20.		10 100 100 100								1100	920
JUL		1130	58E	196	7.3	19.0	9.3	101	2.8		
AUG		1330	96E	176	7.6	17.0	8.8	91	E1.4	790	920
24.	•••	1330	24.5E	223	8.4	21.0	8.5	96	<1.1	9200	>2400
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DIS SOLV (MG/	JM, LINI S- LA /ED (MG /L AS	TY SULFA B DIS- /L SOLV	/ED SOL	E, R VED SO L (I	LUO- IDE, OIS- OLVED 4G/L S F)
	OCT 1988	100	24	9.9	11	1.	.8 76	22	15		0.1
	FEB 1989 23	63	16	5.6	13	2.	.2 35	26	17		0.1
,	12	65	16	6.1	8.7	7 1.	.2 42	20	12		0.1
	JUN 20	73	18	6.8	8.2		.5 53	17	11		0.1
	JUL 31	65	16	6.1	7.5	5 1.	4 49	16	10		0.1
,	AUG 24	82	2 20	7.9	9.6		.7 66	18	12		0.1
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN NO2+NO TOTAI (MG/I	GEN 03 AMMON L TOTA L (MG)	RO- GEN, N, MONI NIA ORGA AL TOT /L (MG	A + NITE INIC GEN IAL TOTA I/L (MG)	N, PHOR AL TOT /L (MG	OUS OR	RBON, GANIC DTAL MG/L S C)
	OCT 1988 11 FEB 1989	13	142	0.010	1.8	2 <0.0	05 0.	16 2.0	0.1	4 2	.4
	23 APR	12	113	0.021	2.4	6 0.	10 0.	69 3.	2 0.4	6 4	.9
	12 JUN	13	102	0.011	1.3	3 0.0	07 0.	.20 1.	5 0.0	7 1	.8
	20 JUL	16	110	0.010	1.4	1 0.	14 0.	.51 1.9	9 0.0	8 3	.1
	31	5.7	92	0.023	1.5	6 <0.	05 0.	.27 1.8	8 0.0	7 2	.7
	AUG 24	15	125	0.015	2.5	4 0.	05 0	.47 3.	0.0	13 2	.5

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + 0 FIDE TOT TAL BOT G/L (M	,NH4 IN: RG. GAI IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN . IN D MAT SO /KG (U	LVED TO G/L (U	TO IN ENIC TOM TAL TE G/L (U	TAL LI BOT- TO MA- RE RIAL ER G/G (U	TAL TO COV- RE ABLE ER	TAL TO COV- REG ABLE ERA G/L (U	TAL FM E COV- TOM ABLE TEI G/L (UI	COV. BOT-
OCT 1988 11	1200	2	10	0.1	2.5			2				<10
JUN 1989 20	1130	<0.5				20	<1		:10	20	<1	• •
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988		10	<50		7		2700		20		110	
JUN 1989 20	<1			3		420		2		40	••	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988		0.02	***	10		<1		40		<1	<1.0	
JUN 1989 20	0.20		2		<1		10		<1			
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988	<0.1	<1.0	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
JUN 1989 20					••	••						
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 11 JUN 1989	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1	
20	••		• •	••	••		••				• • •	

01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'04", long 74°41'13", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 1,400 ft upstream from mouth, and 2.4 mi southwest of Greater Cross Roads.

DRAINAGE AREA .-- 100 mi 2 .

PERIOD OF RECORD. -- Water years 1964, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND ARD UNITS)	- ATI	JRE Ter s	YGEN, DIS- OLVED MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L	FOR FEC EC BRO	M, AL, STRE TOCOO TH FEC	CC I
NOV 1988 03	1100	59E	260	7.0		5.0	12.5	98	E2.2	330	540	
JAN 1989												
26 APR	1115	70E	250	8.3			13.2	91	<0.8			
04	1045	295E	180	7.2	2 1	8.0	11.8	101	E2.2	490	49	
16 JUL	1030	900E	154	7.3	1!	5.0	9.2	92	2.3	5400	>2400	
18	1230	111E	220	7.5	2	0.0	9.3	102	E1.3	270	240	
02	1200	64E	215	7.2	2 1	9.5	8.8	96	3.9	790	>2400	
DATE	HARI NESS TOT/ (MG, AS CACO	S CALCI AL DIS- /L SOLV (MG/	LUM SI DI VED SOI VL (MC	S- C VED SC G/L (DDIUM, DIS- DLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINIT	Y SULF DIS L SOL (MC	ATE R S- D VED S G/L (HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
NOV 1988 03		81 19		3.2	13	2.7	60	24		22	0.1	
JAN 1989 26		79 19		7.6	13	1.7	54	22		21	0.1	
APR 04		57 14		5.3	11	1.3	37	19		16	0.1	
MAY												
16 JUL		49 12		4.6	9.4	2.2	33	15		13	0.1	
18 AUG		74 18		7.0	11	1.6	56	14	•	17	0.1	
02		90 22		8.5	13	1.6	67	14	4	20	0.1	
DATE	SILI DIS SOL (MG AS	- CONST VED TUENT /L DIST	OF NI TI- G TS, NIT S- TO VED (M	EN, RITE NO TAL G/L	NITRO- GEN, D2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	MONIA	M- IIC GI IL TO' /L (M	EN, PH TAL T G/L (PHOS- IOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
NOV 1988	13		138 0	.012	1.12	0.05	0.3	. 1	.5		3.9	
JAN 1989												
26 APR	12			.011	1.53	0.15	0.2			0.07	1.6	
04 MAY	11		100 0	.005	0.98	0.06	0.2	24 1		0.05	3.1	
16 JUL	8	.2	84 0	.025	0.79	0.12	0.7	71 1	.5 (.23	7.8	
18	14		116 0	.013	1.11	<0.05	0.3	36 1	.5 (.10	3.9	
02	13		132 0	.039	1.21	>0.05	0.3	37 1	.6 (0.10	2.9	

RARITAN RIVER BASIN

01399780 LAMINGTON (BLACK) RIVER AT BURNT MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV ERABL (UG/L AS CR	E ERABLE (UG/L
NOV 1988 03	1100	<0.5	<10	<1	<10	90	2		1 2
D	ATE	TOTAL TO RECOV- RE ERABLE ER (UG/L (U	EAD, NE DTAL TO ECOV- RE RABLE ER JG/L (U	TAĹ TO COV- RE ABLE ER IG/L (U	TAL TO COV- REG ABLE ERA G/L (U	COV- NI ABLE TO G/L (U	LE- TO UM, REG TAL ER/	G/L	HENOLS TOTAL UG/L)
NOV 19		100	~ 5	30 <	0.10	6	~1	90	1

01400000 NORTH BRANCH RARITAN RIVER NEAR RARITAN, NJ

LOCATION.--Lat 40°34'10", long 74°40'45", Somerset County, Hydrologic Unit 02030105, on right bank, 400 ft upstream from U.S. Highway 202, 1.4 mi upstream from confluence with South Branch, and 2.7 mi west of Raritan.

DRAINAGE AREA . - - 190 mi 2.

PERIOD OF RECORD.--June 1923 to current year. Monthly discharge only for June 1923, published in WSP 1302. Prior to October 1943, published as "at Milltown".

REVISED RECORDS. -- WSP 1552: 1924-26, 1928-35. WDR NJ-79-1: 1971-78(P).

GAGE.--Water-stage recorder. Concrete control since Sept. 1, 1936. Datum of gage is 50.43 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 17, 1936, nonrecording gage at site 30 ft downstream at same

REMARKS.--Records fair above 5,000 ft³/s and good below. Releases from Round Valley Reservoir enter basin upstream of gage. Several measurements of water temperature were made during the year. New Jersey Water Supply Authority gage-height telemeter at station.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, ME	AN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	67	151	358	145	190	215	1390	219	310	221	108	72
2	74	214	301	143	177	196	645	2720	277	202	111	71
3	127	130	268	141	193	187	613	733	252	186	135	65
4	87	111	237	e152	e180	183	570	477	240	175	116	60
5	73	135	218	e150	e155	185	717	490	225	579	97	58
6	68	337	202	e149	e143	271	871	2720	289	393	89	62
7	66	156	195	e148	e135	227	663	1050	815	252	103	62
8	71	123	183	180	e125	189	538	772	1020	557	107	61
9	73	115	169	274	e115	202	483	644	734	245	94	58
10	72	111	157	168	e105	211	421	2410	1300	205	92	58
11	68	109	e152	147	e101	235	369	1940	475	196	111	57
12	66	97	e147	283	e105	256	339	1030	346	168	228	55
13	65	264	e142	406	104	223	318	943	1140	221	166	52
14	64	283	e138	206	170	205	325	724	536	198	137	64
15	64	150	e133	691	224	222	443	658	571	155	133	122
16	63	125	e129	389	322	218	1160	2570	828	208	125	77
17	62	846	e125	254	188	191	529	2380	508	344	109	136
18	65	344	e122	218	153	232	431	1160	388	186	97	80
19	62	210	e119	207	145	373	389	932	329	161	97	477
20	62	3680	118	196	137	229	339	783	291	439	109	4510
21	85	2000	136	154	1520	540	313	669	291	264	102	1830
22	484	587	144	144	1160	388	291	566	313	192	115	515
23	157	444	144	192	601	274	265	609	474	171	119	477
24	123	372	317	175	397	634	252	1310	1140	148	113	373
25	125	312	472	142	306	1070	245	693	496	136	90	273
26 27 28 29 30 31	99 90 87 84 79 74	266 247 2190 617 411	220 175 200 274 181 161	142 197 161 148 251 245	286 270 241 	482 389 353 319 555 1940	237 223 211 207 271	548 535 472 388 353 336	407 350 313 309 246	132 130 148 112 101 118	80 75 73 78 122 84	550 334 233 204 181
MEAN	93.7	505	195	213	284	368	469	1027	507	224	110	374
MAX	484	3680	472	691	1520	1940	1390	2720	1300	579	228	4510
MIN	62	97	118	141	101	183	207	219	225	101	73	52
STATIST	ICS OF MON	ITHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATER	R YEAR (MY)				
MEAN	163	285	345	373	436	513	475	342	222	186	190	174
MAX	826	824	994	1416	948	1272	1368	1027	1270	1291	1068	672
(WY)	1956	1973	1984	1979	1925	1936	1983	1989	1972	1984	1942	1975
MIN	26.6	46.1	73.1	79.4	109	163	117	84.1	46.4	25.5	22.3	14.8
(WY)	1931	1965	1966	1940	1934	1981	1985	1926	1965	1966	1932	1964
SUMMARY	STATISTIC	cs		FC	OR 1989 WATE	R YEAR			FOR PE	RIOD OF	RECORD	
LOWEST A HIGHEST LOWEST A INSTANTA INSTANTA	ANNUAL ME/ ANNUAL ME/ DAILY MEAI ANEOUS PE/ ANEOUS LOI ENTILE ENTILE	AN AN AK FLOW AK STAGE			364 4510 52 8200 9.32 721 210 65	Sep 20 Sep 13 Nov 20 Nov 20			308 605 119 15300 7.5 28600 15.47 3 619 184	Jul Sep a Aug b Aug c Nov	1984 1965 7 1984 26 1964 28 1971 28 1971 28 1930	

From rating curve extended above 15,000 ft³/s

From high-water mark in gage house Result of freezeup

е Estimated

01400120 RARITAN RIVER AT RARITAN, NJ

LOCATION.--Lat 40°33'52", long 74°38'10", Somerset County, Hydrologic Unit 02030105, at bridge on South Branch-Raritan Road in Raritan, 1.7 mi upstream from Peters Brook, 3.5 mi northeast of South Branch, and 3.6 mi southeast of North Branch.

DRAINAGE AREA. -- 474 mi 2.

PERIOD OF RECORD. -- Water years 1977 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	CH/ II CU TIME	JBIC CO FEET DU PER AN	FIC N- P CT- (ST CE A	AND - A1	TURE D	GEN, (F OIS- (DLVED SA	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5	O- FO IEM- FE CAL, E DAY BR	DLI- DRM, ECAL, STREP- C TOCOCCI ROTH FECAL APN) (MPN)	
	1988	1100	200E	259	8.7 1	12.0 1	11.2	105	1.8 <2	20 20	
	1989 2	1200	450E		8.3		14.1	111	1.1 28	30 <2	
APR 1	1	1000	890E	220	7.8	8.5 1	12.0	101	1.5	20 <20	
JUN 05	5	0930	600E	227	8.0 2	22.0	8.3	95	3.4		
JUL 10	o	1030	585E	202	7.7	24.0	7.8	92	1.2 110	00 170	
AUG 09	9	1000	330E	217	8.1 2	21.0	8.6	96	0.9 33	30 270	
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	OCT 1988	96	23	9.4	14	1.8	70	24	20	0.1	
	FEB 1989 02	79	19	7.6	15	1.7	50	25	23	0.1	
	APR 11 JUN	70	17	6.7	12	1.4	44	21	19	0.1	
	05 JUL	83	20	8.0	12	1.6	57	20	19	0.1	
	10 AUG	71	17	6.9	11	1.9	50	16	15	0.1	
	09	86	21	8.2	12	1.7	60	18	15	0.1	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	OCT 1988 11 FEB 1989	4.5	139	0.010	0.71	<0.05	0.30	1.0	0.07	2.3	
	02 APR	7.7	129	0.017	1.40	0.22	0.25	1.7	0.04	2.3	
	11 JUN	9.7	113	0.009	1.23	<0.05	0.26	1.5	0.05	2.3	
	05 JUL	9.1	124	0.025	1.19	<0.05	0.50	1.7	0.11	3.3	
	10	11	109	0.013	1.18	0.07	0.57	1.7	0.10	3.8	
	09	8.1	120	0.018	0.95	<0.05	0.22	1.2	0.08	2.7	

01400120 RARITAN RIVER AT RARITAN, NJ--Continued

WATER	QUALITY	DATA.	WATER	YEAR	OCTOBER	1988	TO	SEPTEMBER	1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988	1100	<0.5	<10	<1	<10	<10	<1	2	4
JUN 1989 05	0930	<0.5	10	<1	<10	30	<1	<1	5
DATE	T R E	ECOV- REC RABLE ER/ UG/L (U	AD, NE FAL TO COV- RE ABLE ER G/L (U	DTAL TO CCOV- RE RABLE ER UG/L (U	TAL TO COV- RE ABLE ER G/L (L	COV- NI RABLE TO IG/L (I	ELE- TO IUM, RE DTAL ER JG/L (U	G/L TO	NOLS ITAL
OCT 1988 11 JUN 1989		200	<5	10 <	0.10	<1	<1	<10	<1
05		340	7	40 <	0.10	5	<1	10	<1

01400300 PETERS BROOK NEAR RARITAN, NJ

LOCATION.--Lat 40°35'37", long 74°37'51", Somerset County, Hydrologic Unit 02030105, on left bank 12 ft upstream from bridge on Garretson Road, 1.5 mi north of Raritan, and 2.5 mi from mouth.

DRAINAGE AREA. -- 4.19 mi 2.

PERIOD OF RECORDS. -- May 1978 to current year.

REVISED RECORD .-- WDR NJ-79-1: 1978(P).

GAGE.--Water-stage recorder. Datum of gage is 68.71 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Records fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, 1	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.76 3.2 1.7 .91 .82	11 3.0 1.3 1.1 6.5	3.4 2.9 2.7 2.3 2.1	1.8 1.8 1.6 1.3	2.6 2.2 3.3 2.2 1.9	2.9 2.7 2.6 2.5 2.8	13 5.9 7.3 6.5 8.9	4.8 159 12 8.4 18	3.1 2.9 2.8 2.9 2.6	2.0 2.0 1.9 1.8 36	1.7 1.7 2.6 1.7 1.9	1.4 1.3 1.3 1.3
6 7 8 9	.80 .76 1.2 .85 .81	3.0 1.4 1.1 1.3	2.0 2.1 2.0 1.9 1.8	1.4 1.4 6.8 3.4 2.1	1.8 1.8 1.6 1.4	5.8 4.1 3.2 3.8 5.0	8.0 6.8 5.1 3.7	106 11 6.4 4.9 127	13 59 11 67 35	3.9 3.5 e24 2.6 2.2	1.6 1.7 1.6 1.5 1.5	1.3 1.3 1.3 1.3
11 12 13 14 15	.78 .80 .83 .80 .81	1.2 .94 11 2.4 1.5	1.7 1.5 1.6 1.6	1.8 16 6.3 2.7 25	1.4 1.3 1.3 4.6 9.8	5.4 5.1 3.6 3.3 3.4	3.4 2.9 3.0 2.8 23	24 12 10 6.3 4.7	5.5 4.0 51 11 13	2.1 2.2 5.7 2.5 2.0	4.6 9.6 2.6 1.9 4.6	1.4 1.4 1.4 8.4 3.1
16 17 18 19 20	.81 .81 .81 .81	1.1 34 2.8 1.6 204	1.6 1.5 1.5 1.5	5.1 2.9 2.4 2.3 2.1	8.7 2.6 1.9 1.7	3.0 2.6 7.2 4.9 3.2	19 5.6 4.0 3.6 3.0	110 63 11 7.7 6.1	9.5 5.0 3.5 3.0 2.8	12 8.1 2.6 2.3 3.5	2.3 1.7 1.6 1.6 1.5	3.0 4.4 1.8 68 117
21 22 23 24 25	20 18 1.7 2.4 1.3	16 5.3 3.8 3.2 2.9	2.8 1.9 4.5 14 7.4	1.7 1.5 1.5 1.5	84 24 9.2 4.9 3.5	18 5.1 3.5 35 16	2.8 2.6 2.4 2.3 2.3	5.0 4.2 31 20 6.9	2.6 2.8 3.5 4.6 2.5	2.3 2.1 1.9 1.9	1.8 1.8 4.1 1.8 1.5	6.8 6.3 3.3 2.3
26 27 28 29 30 31	1.0 .96 .93 .95 1.0	2.6 5.0 119 7.5 4.4	2.9 2.2 6.2 3.9 2.3 2.0	1.8 2.5 1.7 1.6 11 4.0	3.6 4.2 3.3	5.5 3.9 3.4 3.1 30 47	2.3 2.1 2.1 3.0 24	5.2 6.4 4.4 3.7 3.5 3.3	2.3 2.2 2.4 2.9 2.1	1.8 1.8 2.0 1.7 1.7	1.5 1.5 1.7 1.7	22 3.9 2.7 2.2 1.9
MEAN MAX MIN IN.	2.23 20 .76 .61	15.4 204 .94 4.10	2.87 14 1.5 .79	3.88 25 1.3 1.07	6.85 84 1.3 1.70	7.99 47 2.5 2.20	6.78 24 2.1 1.81	26.0 159 3.3 7.16	11.2 67 2.1 2.98	4.64 36 1.7 1.28	2.25 9.6 1.4 .62	9.88 117 1.3 2.63
					OF RECORD,		R YEAR (-	- 40			
MEAN MAX (WY) MIN (WY)	2.57 4.96 1980 .59 1987	6.94 15.8 1987 .56 1979	7.31 23.7 1984 .49 1981	9.21 41.2 1979 .24 1981	9.84 17.7 1982 1.39 1980	8.20 18.9 1980 1.37 1985	10.1 25.3 1983 .57 1985	8.41 26.0 1989 1.21 1986	3.69 11.2 1989 .82 1988	4.58 11.8 1984 .28 1983	3.21 11.8 1978 .04 1980	3.71 9.88 1989 .24 1984
SUMMARY	STATIS	TICS		FO	R 1989 WATE	R YEAR	1		FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERC	ANNUAL ANNUAL DAILY M TANEOUS TANEOUS TANEOUS RUNOFF CENTILE CENTILE	MEAN			8.31 204 .76 928 7.23 .70 26.93 17 2.4 .89	Nov 20 Oct 1 May 6 May 6 Oct 1			3. 10 8. 20.	37 51 00 Jan 00 Jul 90 Jul 15 Jul 00 M	1984 1985 24 1979 12 1978 7 1984 7 1984 any days	

e Estimated

01400350 MACS BROOK AT SOMERVILLE, NJ

LOCATION.--Lat 40°34'26", long 74°37'06", Somerset County, Hydrologic Unit 02030105, on left upstream wingwall of culvert under access road from U.S. Highway 22 west to U.S. Highways 202 and 206, 1,200 ft upstream from Peters Brook, and 0.4 mi north of Somerville.

DRAINAGE AREA. -- 0.77 mi2.

e Estimated

PERIOD OF RECORD. -- June 1982 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 58.37 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records poor. Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

COOPERAT					in cooperat							
	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.16 1.0 .49 .33 .28	e3.1 e.74 e.27 e.25 e1.6	1.0 .82 .70 .59	.44 .38 .37 .32 .31	.89 .68 1.2 .64 .48	.68 .55 .55 .47 .63	3.4 1.5 2.1 2.0 3.6	1.8 23 2.8 1.3 4.1	.65 .56 .52 .63 .46	.38 .37 .35 .31 6.7	.23 .20 .65 .23	.30 .31 .24 .20 .20
6 7 8 9 10	.18 .16 .49 .19	e.66 e.30 e.26 e.33 e.32	.46 .46 .38 .35	.31 .33 1.6 .88 .48	.54 .46 .37 .31	1.5 1.2 1.2 1.3	6.7 2.6 2.3 1.7 1.3	17 3.0 1.5 1.1	2.2 7.9 2.5 21 11	1.2 1.4 4.0 .59 .43	.21 .23 .19 .16 .16	.19 .16 .16 .16
11 12 13 14 15	.18 .15 .11 .10	e.29 e.22 e2.8 e.57 e.35	.31 .31 .31 .34 .38	3.8 1.8 .93 6.5	.32 .31 .31 1.5 2.9	1.4 1.3 .88 .95	1.2 1.1 1.4 1.1 5.9	7.8 4.4 3.7 1.9	1.5 .96 13 3.7 4.4	.36 .31 2.1 .60 .37	1.7 3.5 .96 .43	.13 .13 .12 2.3 .99
16 17 18 19 20	.09 e.10 e.12 e.12 e.12	e.26 e8.7 e.71 e.36 e67	.38 .38 .38 .35	1.7 1.0 .75 .69	2.5 .95 .68 .56	.83 .70 2.3 1.4 1.1	5.0 1.9 1.4 1.4 1.2	16 12 2.9 1.8 1.5	3.5 1.8 1.2 1.0 .85	4.9 3.4 .72 .47 1.2	.63 .36 .31 .31	1.1 1.3 .31 e53 e55
21 22 23 24 25	e5.4 e4.6 e.51 e.67 e.34	e4.4 e1.2 e.94 e.64 e.68	.88 .42 1.2 3.6 2.1	.48 .46 .46 .44 .38	15 6.7 2.4 1.2 .80	5.0 1.5 1.1 8.2 4.4	1.2 .93 .86 .71	1.4 1.2 5.5 5.3 1.7	.80 .66 1.2 1.5 .77	.53 .44 .38 .35	.46 .32 1.2 .44 .30	e13 e8.4 e7.9 e4.1 e1.9
26 27 28 29 30 31	e.21 e.19 e.18 e.20 e.21 e.20	e.66 e1.1 e9.5 2.3 1.3	.89 .59 1.4 .94 .60	.62 .73 .46 .38 3.1	1.1 1.1 .85	1.6 1.3 1.2 1.1 3.6 9.1	.65 .57 .52 .99 5.9	1.3 1.7 1.1 .89 .84	.61 .73 .61 .42	.30 .41 .46 .27 .25 .26	.26 .25 .25 2.4 5.0 .55	e34 e2.3 e1.7 e1.2 e.56
MEAN MAX MIN IN.	.56 5.4 .09 .84	3.73 67 .22 5.40	.72 3.6 .31 1.07	1.05 6.5 .31 1.57	1.63 15 .31 2.20	1.92 9.1 .47 2.87	2.06 6.7 .52 2.99	4.83 23 .70 7.24	2.90 21 .42 4.21	1.10 6.7 .25 1.65	.78 5.0 .16 1.16	6.38 55 .12 9.25
	stimated											
STATIST	TICS OF N	MONTHLY FLO			OF RECORD	BY WATE						
MEAN MAX (WY) MIN (WY)	.41 .87 1988 .05 1987	2.14 4.09 1986 .49 1985	1.61 4.33 1984 .47 1986	1.48 3.12 1986 .44 1985	2.15 2.94 1984 1.09 1987	2.08 4.26 1983 .41 1985	2.98 6.51 1983 .19 1985	2.12 4.83 1989 .22 1986	1.03 2.90 1989 .25 1988	1.56 3.41 1987 .06 1983	.77 2.08 1987 .07 1983	1.46 6.38 1989 .04 1983
SUMMARY	Y STATIST	TICS		FC	OR 1989 WATE	R YEAR			FOR F	PERIOD OF F	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERO 50 PERO	T ANNUAL ANNUAL P T DAILY M DAILY M TANEOUS P	MEAN MEAN PEAK FLOW PEAK STAGE LOW FLOW			2.29 67 .09 190 .09 40.38 4.4 .63 .16	Nov 20 Oct 16 Nov 20 Nov 20 Oct 14			54.6 4.6 29.1	29 72 77 Apr 70 Jul 49 Apr 66 Apr	1989 1985 16 1986 28 1983 16 1986 16 1986 any days	

LOCATION.--Lat 40°33'18", long 74°35'02", Somerset County, Hydrologic Unit 02030105, on left bank at downstream side of bridge on North Main Street (Finderne Avenue) at Manville, and 1.4 mi upstream from Millstone River.

DRAINAGE AREA. -- 490 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to March 1907 (published as "at Finderne"), August 1908 to April 1915 (gage heights only, published in WSP 521), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 1552: 1904, 1906, 1922, 1923(M), 1924-25, 1926-29(M), 1930, 1932-33(M), 1924-54. WDR NJ-75-1: 1964(M), 1969(M), 1970(P), 1971(P), 1972(P), 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 20.61 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 15, 1923, nonrecording gage on downstream side of highway bridge at same site and datum. From Oct. 1, 1952 to Sept. 30, 1966, water-stage recorder at station at Bound Brook, above Calco Dam (station 01403000) used as auxiliary gage when stage is above 5.0 ft. In Oct. 1, 1966, water-stage recorder at station at Bound Brook, used as auxiliary gage, was moved downstream to present site (station 01403060). Between June 9, 1978 and June 7, 1979, gage temporarily relocated at site 1.4 mi downstream, just upstream of Millstone River, because of reconstruction of highway bridge.

REMARKS.--No estimated daily discharges. Records fair. Records given herein represent flow at gage only. Slight diurnal fluctuation at low flow. Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversion to Round Valley Reservoir since March 1966 (see Raritan River basin, diversions). Prior to Sept. 1, 1986, water diverted 1,500 ft upstream from station by Johns-Manville Corporation and returned to river 600 ft downstream from Millstone River (see Raritan River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989, MEAN DAILY VALUES DAY OCT NOV JUL AUG SEP DEC JAN FEB MAR APR MAY JUN 467 521 296 662 629 244 552 2130 226 212 384 334 311 454 447 377 496 471 2230 715 13 339 811 673 522 1320 391 22 23 24 25 384 418 667 598 604 547 2090 1510 412 1130 1220 254 239 231 217 207 657 419 27 28 29 30 31 742 395 . . . MEAN 1220 322 1690 334 339 271 MAX 319 323 STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) MEAN 1933 87.5 1979 1975 1971 51.2 1904 MAX 1925 1972 (WY) 64.8 1942 MIN 88.8 50.5 (WY)

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	1064 11300 Sep 21 185 Oct 5 16200 Sep 21 16.24 Sep 21 175 Oct 5 2270 581 229	772 Unadjusted 1365 1984 309 1965 21600 Sep 22 1938 17a Sep 19 1964 36300b Aug 28 1971 23.8c Aug 28 1971 17 Sep 19 1964 1590 435 96

Does not include water diverted to Johns-Manville plant From rating curve extended above 14,000 ft³/s on basis of slope-area measurements at gage heights 14.9 and 20.42 ft From floodmark (backwater from Millstone River)

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1959, 1962-73, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECON	CII COI DUC AND	FIC N- CT- (S CE	PH TAND- ARD IITS)	TEMP ATU WAT (DEG	IRE ER	OXYGEN, DIS- SOLVED (MG/L)	SO (P C	IS- DI LVED ER- ENT TUR-	KYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI FORM FECA EC BROT (MPN	L, ST TOC H FE	REP- OCCI CAL PN)
	1988 1	1330	205		261	8.6	13	3.0	11.6		111	1.3	50	5	0
FEB	1989	1100	505		220	8.2		.5	13.8	Que I	107		79	2	3
APR	2	1100	843		228	7.8	10	0.0	13.4		117	1.1		-	•
JUN		1030	652		226	8.1		.5	8.6		98	3.4	920	54	0
JUL 2	4	1045	536		230	7.9	24	5	8.4		100	1.1	170	28	80
AUG 1	0	1045	312		221	8.0	2	1.5	9.1		102	1.6	540	24	0
	DATE OCT_1988	HAR NES TOT (MG AS CAC	S C/AL D () () () () () () () () () () () () ()	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVEI (MG/L AS MG)	SODI DIS SOLV (MC	;- /ED i/L NA)	POTA SIU DIS SOLV (MG/ AS K	M, LI) - (PED (P 'L /	LKA- NITY LAB MG/L AS ACO3)	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOL (MG) AS	E, ;- .VED i/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	11 FEB 1989		97	23	9.5	14		1.		E	25	21		0.1	
	01 APR		81	20	7.5	15		1.			25	24		0.1	
	12 JUN		74	18	7.1	13		1.			23	20	51	0.1	
	06 JUL		82	20	7.8	12		1.		7	20	19		0.1	
	24 AUG		79	19	7.6	11	5.0		.7 5		18	16		0.1	
	10		87	21	8.4	12	2	1.	.5 6	1	20	16	5	0.3	
	DATE	SILI DIS SOL (MG AS	CA, SI - CO VED TI	OLIDS, UM OF ONSTI- UENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRITI TOTAL (MG/L AS N)	GI E NO2- TO (Mi	TRO- EN, HNÓ3 TAL G/L N)	NITE GEN AMMON TOTA (MG) AS N	RO- GEI I, MOI IIA ORI IL TI IL (I	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	NITRO GEN, TOTAL (MG/L AS N)	PHOF TO1	ROUS (FAL G/L	CARBON, ORGANIĆ TOTAL (MG/L AS C)	
	OCT 1988	4	2	141	0.00	8 0	.65	<0.05	5 0	.26	0.91	0.06	5 ;	2.8	
	FEB 1989 01	8	3.7	132	0.01	5 1	.42	<0.05	5 0	.33	1.7	0.06	5 :	3.0	
	APR 12	9	.3	120	••	,	• •		-	-	••	••	;	2.6	
	JUN 06	8	3.1	123	0.01	7 1	.01	0.07	7 0	.54	1.5	0.09)	3.9	
	JUL 24	11	ĺ	118	0.01	6 1	.12	0.2	1 0	.52	1.6	0.10)	3.1	
	AUG 10	7	7.5	123	<0.00	3 0	.86	E0.08	3 E0	.36		0.07	7	3.2	

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		TIME	SULFI TOTA (MG/ AS S	L SOLY	M, S- ARSE VED TOT /L (UC	LIL TOT ENIC REC AL ERA G/L (UG	TAL TO COV- REG ABLE ERA G/L (U	ABLE ERA	IUM MI AL TO OV- RE BLE ER	TAĹ COV- ABLE G/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 11		1330	<0	.5	<10	<1 <1	10	<10	<1	1	3
	DATE	T R	RON, FOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	TOTA	AL .
	1988		100	<5	10	<0.10	- 21	<1	<10		<1

01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ

LOCATION.--Lat 40°15'44", long 74°25'13", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapan, 5.5 mi east of Hightstown, and 8.4 mi above Rocky Brook.

DRAINAGE AREA .- - 7.37 mi 2.

PERIOD OF RECORD.--Water years 1960 to 1964, June 1981 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CU F	JBIC CO EEET DU PER AN	FIC N- P CT- (ST CE A	AND - AT	URE D	GEN, (POLYED SA	DLVED BI PER- CH CENT IC TUR- 5	AND, COL O- FOR EM- FEC AL, EC DAY BRO	RM, CAL, STREP-
OCT 1988 19	0930	2.3E	76	8.4 1	1.0	9.2	84 E	1.3 20	33
FEB 1989 07	0930	7.2E		7.5	1.5 1	3.8	99 <	0.9 50	79
APR 11	1030	15 E	124	9.5 1	0.5 1	2.4	111 <	0.8 20	13
JUN 07	1230 2	22 E	- 138			8.2	87 E	1.9 5400	>2400
JUL 27	1230	9.8E	130	7.2 2	3.0	7.6	90 E	1.5 1100	540
AUG 02	1130	8.4E	118	7.0 1	9.0	8.2	89 <	0.8 230	>2400
DATE OCT 1988	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
19 FEB 1989	29	5.6	3.6	5.2	2.5	14	11	11	0.1
07 APR	31	6.8	3.5	11	2.5	4.0	21	21	0.1
11 JUN	32	7.0	3.5	7.3	3.1	2.0	18	14	0.2
07 JUL_	33	7.0	3.7	6.3	2.3	9.0	16	12	0.1
27 AUG	32	6.9	3.6	6.4	2.8	11	14	12	0.2
02	33	7.1	3.8	6.2	2.7	12	13	12	0.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIĆ TOTAL (MG/L AS C)
OCT 1988 19 FEB 1989	9.0	56	0.008	1.50	<0.05	0.19	1.7	0.04	2.7
07 APR	9.9	78	0.010	2.45	0.12	0.24	2.7	0.06	1.2
11 JUN	8.3	63	0.004	2.11	<0.05	0.31	2.4	0.07	2.0
07	8.8	62	0.015	1.30	0.18	0.63	1.9	0.15	5.3
27 AUG	9.8	62	0.028	1.54	0.07	0.60	2.1	0.12	5.5
02	9.4	62	0.035	2.43	<0.05	0.56	3.0	0.22	4.2

01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		TIM	SULFI TOTA E (MG/ AS S	L SOL	S- VED	ARSE TOT (UG AS	AL /L	BER' LIUI TOTA RECO ERAI (UG)	M, AL OV- BLE /L	BORON TOTAL RECOV ERABL (UG/L AS B)	TOT - REC E ERA (UG	AL OV- BLE	CHRI MIUI TOTA RECI ERAI (UG AS	M, AL OV- BLE /L	COPPE TOTA RECO ERAL (UG,	AL OV- BLE /L
OCT 1988 19 JUN 1989		093	0 <0	.5	20		1	<1	0	<1	0	<1		1		4
07		123	0 <0	.5	40		1	<1	0	3	0	<1		2		3
	DATE		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	NE TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN)	REI ER	CURY TAL COV- ABLE G/L HG)	TO RE ER (U		SELE- NIUM, TOTAL (UG/L AS SE)	REG ER/	NC, TAL COV- ABLE G/L ZN)	TO	NOLS TAL /L)	
1	1988 1989		1300	<5		40	<	0.10		12	<1		20		1	
	7		3700	2		110	<	0.10		7	<1		20		<1	

01400650 MILLSTONE RIVER AT GROVERS MILL, NJ

LOCATION.--Lat 40°19'19", long 74°36'31", Mercer County, Hydrologic Unit 02030105, at bridge on Millstone Road in Grovers Mill, 0.3 mi upstream from Cranbury Brook, and 2.7 mi north of Dutch Neck.

DRAINAGE AREA. -- 43.4 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM	(ST	PH AND- ARD TS)	TEMPI ATU WAT (DEG	RE ER	XYGEN DIS- SOLVE (MG/L	SO (P C D SA	IS- DE LVED E ER- C ENT I TUR- 5	YGEN MAND, BIO- CHEM- CAL, DAY MG/L)	COL FORI FEC/ EC BRO (MPI	1, AL, S1 TOC TH FE	TREP- COCCI ECAL MPN)
OCT 1988		1100	21E	20	2	6.6	16	.0	3.2		33		330	13	30
JAN 1989 24		1200	31E	25	7	7.0		.5	10.7		81	8.7	70		46
MAR 27		1200	140E	15	0	6.9	10		9.2	2	82	2.4	20		70
MAY 24		1330	160E	17	' 5	6.9	17		6.5		68	3.9	>2400	>240	00
JUL 06		1215	930E			7.0	20		5.0			3.0	2200	24	40
AUG 08		1200	66E	15	5	7.1	22		5.5	;	64	5.2	5400	540	00
	DATE	HARD NESS TOTAL (MG/I AS CACO	CALC L DIS L SOL (MG	IUM - VED S /L (MAGNE- SIUM, DIS- SOLVED MG/L AS MG)	SODII DIS SOLVI (MG AS	- ED /L	POTAS SIUM DIS- SOLVE (MG/L AS K)	I, LI D (LKA- NITY LAB (MG/L AS CACO3)	SULFATI DIS- SOLVEI (MG/L AS SO4	E RI DI O SO (M	LO- DE, S- LVED G/L CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
05	1988		49 12		4.5	15		4.4	. 1	15	22	2	1	0.3	
24	1989		53 13		5.1	21		4.0) 1	18	29	3	5	<0.1	
MAR 27			40 9	.6	4.0	13		3.2	2	8.0	27	2	2	0.2	5 85 -
			35 8	.7	3.3	10		2.9	,	9.0	18	. 1	6	0.2	
	S		56 14		5.2	11		1.4		40	12	1	6	0.1	
AUG 08	3		40 9	.8	3.8	10		3.6	5 1	14	15	1	6	0.3	
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONS ED TUEN L DI SOL	OF I TI- TS, N S- VED	NITRO- GEN, ITRITE FOTAL (MG/L AS N)	NIT GE NO2+ TOT (MG AS	N, NO3 AL /L	NITRO GEN, AMMONI TOTAL (MG/L AS N)	O- GE MO	NITRO- EN, AM- DNÍA + RGANIC TOTAL (MG/L AS N)	NITRO GEN, TOTAL (MG/L AS N)	PHO TO	IOS- PROUS PTAL IG/L S P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
05	1988	6.	2	94	0.068		•							3.8	
	1909	10		128	0.025	3.	03	2.25	5	2.6	5.6	0.	24	3.9	
27 MAY	7	7.	2	91	0.013	1.	63	0.55	5	0.90	2.5	0.	25	5.9	
		5.	6	70	0.052	1.	58	0.64	•	1.3	2.9	0.	34	7.3	
	5	17		101	0.072	0.	78	0.28	3	1.4	2.1	0.	95	7.1	
08	3	7.	4	74	0.200	2.	17	0.67	7	1.3	3.5	0.	38	6.9	

01400650 MILLSTONE RIVER AT GROVERS MILL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 IN RG. GA IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC INI . IN D MAT SO /KG (U	LVED TO	TO IN ENIC TOM TAL TE G/L (U	TAL LI BOT- TO MA- RE RIAL ER G/G (U	TAL TOT COV- REC ABLE ER/ G/L (UC	TAL TO COV- REG ABLE ER/ G/L (U	MIUM REITAL FM COV- TOM ABLE TE	MIUM COV. BOT- MA- RIAL G/G CD)
OCT 1988 05	1100	33	00	0.2	54			13				<10
MAY 1989	1330	40 E				F0 '	•		10	/0	<1	
24	1330	<0.5	••	•	••	50	2	<	10	40	NI.	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988		10	<50		20		9200		10		31	
05 MAY 1989		10	130		20		7200				3.	
24	3		••	6	••	2800	••	11	••	40	••	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT_1988												
05 MAY 1989	••	0.07	••	10		<1	••	350	••	<1	<1.0	
24	<0.10	••	4		<1	••	40	••	3	••	•	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT_1988			1911									
05 MAY 1989	<0.1	4.0	3.9	35	<0.1	<0.1	1.4	<0.1	<0.1	<0.1	<0.1	
24		••		••	••				••			
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 05	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1	
MAY 1989 24												
64		7 3/ 1	•							19		

193

01400730 MILLSTONE RIVER AT PLAINSBORO, NJ

LOCATION.--Lat 40°19'27", long 74°36'51", Mercer County, Hydrologic Unit 02030105, on left bank 30 ft upstream from bridge on AMTRAK railroad, 100 ft downstream from Cranbury Road, 0.2 mi upstream from Bear Brook, and 0.9 mi southwest of Plainsboro.

DRAINAGE AREA. -- 65.8 mi 2.

PERIOD OF RECORD. -- May 1964 to September 1975, March 1987 to September 1989 (discontinued).

GAGE.--Water-stage recorder and crest-stage gage. Operated as a crest-stage gage water years 1976-86. Datum of gage is 53.41 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair. Occasional diversion for irrigation above station. Several measurements of water temperature were made during the year.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, N	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	14 15 30 31 27	32 77 98 91 64	209 88 68 69 66	46 44 43 41 34	72 60 57 63 65	79 71 e70 e66 e63	e245 e194 e142 e122 e110	62 134 239 177 99	67 62 53 67 66	50 48 44 43 706	79 81 72 107 108	64 51 42 37 34
6 7 8 9	23 21 26 30 30	59 50 49 44 38	61 57 55 52 49	32 32 41 75 93	58 53 51 45 38	e73 e93 e94 e83 e79	e148 e185 e187 e177 e157	250 340 223 105 165	92 152 236 212 1040	1730 708 323 203 121	69 62 93 113 79	32 32 31 30 30
11 12 13 14 15	27 22 20 17 15	43 89 29 43 39	46 41 36 34 35	76 71 109 108 125	35 34 33 50 73	e81 e97 e106 e97 e89	e114 e94 e85 e82 e80	651 534 321 203 111	749 290 165 142 126	87 69 81 115 115	80 143 190 235 232	30 28 26 29 50
16 17 18 19 20	17 18 17 17	39 68 110 105 155	38 38 34 31 33	155 128 87 71 63	136 138 89 63 54	e84 e78 e72 e99 e103	e173 e263 183 112 89	306 920 540 300 173	151 155 153 133 98	91 283 434 270 191	156 131 105 86 97	53 83 74 180 1140
21 22 23 24 25	47 120 90 105 74	434 317 186 99 73	38 49 53 67 81	56 47 41 41 41	116 495 559 294 159	e119 e136 e114 e117 e249	73 63 57 51 49	111 88 86 215 275	75 84 169 216 101	256 504 283 131 89	72 62 66 69 63	1490 543 266 164 105
26 27 28 29 30 31	45 34 29 26 29 57	62 59 260 508 358	78 66 56 61 58 52	43 46 46 45 51 68	103 95 90 	e294 e214 e135 e106 e94 e172	48 46 44 42 55	219 128 138 176 107 77	74 65 59 66 56	75 70 106 126 85 74	53 47 43 43 58 63	155 209 214 142 97
MEAN MAX MIN IN.	35.2 120 14 .62	123 508 29 2.08	58.0 209 31 1.02	64.5 155 32 1.13	113 559 33 1.80	111 294 63 1.94	116 263 42 1.96	241 920 62 4.22	172 1040 53 2.93	242 1730 43 4.25	95.4 235 43 1.67	182 1490 26 3.09
	ICS OF MONT				OF RECORD,							
MEAN MAX (WY) MIN (WY)	57.0 116 1972 17.5 1971	84.4 222 1973 20.2 1966	127 265 1974 32.9 1966	109 205 1975 32.2 1966	132 209 1973 81.0 1968	129 187 1968 86.9 1966	119 232 1973 38.0 1966	102 241 1989 37.3 1965	79.5 172 1989 18.4 1965	105 371 1975 7.32 1966	80.7 260 1971 3.65 1966	76.4 183 1971 16.5 1970
SUMMARY	STATISTICS	3		FO	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL	ANNUAL MEA ANNUAL MEAN DAILY MEAN ANEOUS PEAN ANEOUS PEAN ANEOUS LOW RENOUS (INC ENTILE ENTILE	I I C FLOW C STAGE FLOW			129 1730 14 2450 6.73 14 26.70 251 78 28	Oct Jul Jul	5 1 5 6 1		1 49 34 1 39 8. 1 20.	.9 Aug 70 Jul 96 Jul .9 Aug	1975 1966 21 1975 10 1966 21 1975 21 1975 10 1966	

e Estimated

01401000 STONY BROOK AT PRINCETON, NJ

LOCATION.--Lat 40°19'59", long 74°40'56", Mercer County, Hydrologic Unit 02030105, on right bank 10 ft downstream of bridge on U.S. Highway 206, 1.6 mi southwest of Princeton, and 4.0 mi upstream from Carnegie Lake.

DRAINAGE AREA. -- 44.5 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 62.23 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Since July 1959 some regulation by several small reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature, other than those published, were made during the year.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.7 2.0 4.3 4.5 3.0	11 30 17 12 10	87 66 53 47 41	26 25 25 18 14	47 39 43 52 39	53 47 42 39 39	318 117 101 100 86	28 638 170 84 82	27 22 18 40 26	20 16 14 17 594	21 16 15 13	5.0 4.6 3.9 3.4 3.2
6 7 8 9	2.5 2.2 3.2 2.5 2.4	30 21 13 10 8.9	37 36 33 28 25	17 19 26 75 42	36 37 31 23 24	76 72 54 51 47	252 157 148 100 78	852 268 125 90 804	70 532 543 707 1240	263 131 113 53 37	8.6 15 14 8.8 7.2	3.3 3.2 3.0 2.9 2.7
11 12 13 14 15	2.2 2.0 1.7 1.6 1.4	8.7 7.8 15 43 22	21 15 17 17 19	32 80 165 60 307	23 21 20 48 111	65 113 96 75 80	60 51 47 43 65	609 243 181 113 91	162 88 141 85 70	29 22 46 49 27	16 75 101 63 243	2.7 2.7 2.4 5.6 31
16 17 18 19 20	1.5 1.4 1.4 1.6 1.5	17 229 107 41 669	16 14 12 13 12	140 81 59 51 45	209 87 55 47 44	64 48 65 150 65	393 111 79 69 55	456 552 189 104 77	98 68 47 36 30	57 177 58 37 137	187 43 26 22 22	15 26 15 437 1360
21 22 23 24 25	9.2 131 29 14 10	635 172 83 58 46	17 25 23 43 101	35 26 30 29 29	572 569 242 117 77	173 112 68 223 428	46 42 36 33 30	59 47 66 367 122	84 184 143 209 78	272 84 56 41 32	18 15 20 14 9.2	785 141 89 59 42
26 27 28 29 30 31	7.2 6.0 5.6 5.5 4.9 4.5	39 35 595 568 164	44 31 32 53 36 30	28 33 29 26 56 85	69 68 66 	132 91 75 64 59 520	30 27 24 22 29	68 60 62 39 33 30	48 36 31 45 27	28 19	7.5 6.6 6.2 6.0 6.4 6.3	129 80 43 35 30
MEAN MAX MIN IN.	8.76 131 1.4 .23	124 669 7.8 3.11	33.7 101 12 .87	55.3 307 14 1.43	101 572 20 2.35	106 520 39 2.75	91.6 393 22 2.30	216 852 28 5.61	164 1240 18 4.13	594 14	33.6 243 6.0 .87	112 1360 2.4 2.81
STATIST	ICS OF M				OF RECORD,	BY WATE	R YEAR ((WY)				
MEAN MAX (WY) MIN (WY)	23.9 120 1980 1.00 1958	54.7 212 1973 1.50 1966	87.3 244 1987 4.56 1966	87.9 306 1979 3.22 1981	110 203 1971 19.7 1978	128 231 1980 31.3 1985	106 295 1983 20.9 1985	63.0 216 1989 8.95 1963	31.3 164 1989 2.67 1957	216 1975 .55	31.8 240 1955 .14 1966	30.4 158 1975 1.31 1970
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERC	ANNUAL M ANNUAL M DAILY ME ANEOUS P ANEOUS P ANEOUS L RUNOFF (ENTILE	EAN EAN AN EAK FLOW EAK STAGE OW FLOW			93.6 1360 1.4 3120 8.81 1.3 28.56 200 40 2.6	Sep 20 Oct 15 Jun 10 Jun 10 Oct 14			2 3 8 14 19	5.3 109 8.5 410 Aug .00 Aug 960a Aug .26 Aug .20 Many c .94 141 23	1973 1966 1 27 1971 1 5 1966 1 28 1971 1 28 1971 1 days 1966	

a From rating extended above 4,000 ft³/s on basis of contracted-opening measurement of peak flow

01401000 STONY BROOK AT PRINCETON, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD...Water years 1956-75, 1978 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1956 to September 1962, October 1963 to September 1964, October 1965 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: January 1956 to June 1970.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	INST. C CUBIC C FEET D PER A	UCT- (S NCE	TAND - A	TURE D	GEN, (FO)	DIS- DEN DLVED BI PER- CH CENT IC ATUR- 5	IO- F HEM- F CAL, DAY E	COLI- FORM, FECAL, EC BROTH	STREP TOCOCC FECAL (MPN)
00	T 1988	1100	3.2	299	7.9	13.5	7.5	72	6.0	50	330
	N 1989 19	1145	48	214	7.6	3.0 1	13.9	103	1.8	170	350
AF	11	1200	59	188	8.8	12.5	15.6	146	1.5	110	130
JL 	05	1400	24	188	8.3	23.5 1	10.9	129			
	JL 11	1230	29	177	8.2	26.5	9.8	122	1.5	79	540
AL	JG 09	1230	8.6	223	8.9	22.0	13.3	151	2.1 <	200	<200
	DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL	(MG	E, S- VED /L
	OCT 1988 05	9	2 21	9.6	23	3.1	77	29	30	0	.1
	JAN 1989 19	6	52 14	6.5	14	1.9	32	26	22	0	.1
	APR 11	5	7 13	6.0	12	1.5	32	26	17	0	.1
	JUN 05	6	34 15	6.5	12	2.2	45	22	15	0	.1.
	JUL 11 AUG	6	50 14	6.1	12	2.4	44	20	13	0	1.1
	09	7	76 18	7.5	. 16	2.3	58	24	19).1
	DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- ED TUENTS, DIS- SOLVED	NITRIŤE TOTAL (MG/L	NITRO- GEN, E NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO-	PHOS- PHOROU TOTAL (MG/L AS P)	TOT (MG	NIC AL S/L
	OCT 1988 05	0.6	52 163	<0.003	s <0.05	0.07	0.43		0.05	4.4	
	JAN 1989 19	12	116	0.009		0.06	0.39	1.3	0.07	3.9	
	APR 11	10	105	0.004	0.65	<0.05	0.35	1.0	0.06	3.4	
	JUN 	4.5	5 104	0.013	0.54	0.14	0.34	0.88	0.08	4.2	
	JUL 11 AUG	11	105	0.013	0.65	<0.05	0.49	1.1	0.07	4.1	
	09	4.5	5 126	0.006	0.14	0.06	0.45	0.59	0.08	4.0	

01401000 STONY BROOK AT PRINCETON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1988 05	1100	340	0.1	2.1	1		13				<10
JUN 1989	1400	340	0.1	2.1	20		13	-10	20	-4	110
05	1400			•	20	<1	•	<10	20	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988		80	<50		20		26000		20		790
05 JUN 1989 05	<1			5	20	140	20000	1	20	20	
03	\ 1			,	••	140	•••	1		20	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1988										_	
05 JUN 1989	••	0.03	••	40	••	<1	••	130	••	63	<1.0
05	<0.10	••	1	•	<1		10		1	••	••
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1988											
05 JUN_1989	<0.1	5.0	<2.0	<1.0	<10	0.1	0.1	<1.0	<0.1	<0.1	<1.0
05	••	••	• • •	• • •		••	••	••		••	••
					METUVI	METHYL		PARA-		TOXA-	TRI-
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
	CHLOR EPOXIDE TOT. IN BOTTOM MATL.	TOTAL IN BOT- TOM MA- TERIAL	THION, TOTAL IN BOT- TOM MA- TERIAL	OXY- CHLOR, TOT. IN BOTTOM MATL.	PARA- THION, TOT. IN BOTTOM MATL.	TRI- THION, TOT. IN BOTTOM MATL.	TOTAL IN BOT- TOM MA- TERIAL	THION, TOTAL IN BOT- TOM MA- TERIAL	THANE IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL

01401301 MILLSTONE RIVER AT CARNEGIE LAKE, AT PRINCETON, N.J.

LOCATION.--Lat 40°22'11", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at right end of Carnegie Lake dam, 2.5 mi northeast of Princeton.

DRAINAGE AREA. -- 159 mi 2.

PERIOD OF RECORD.--October 1972 to September 1974, October 1987 to September 1989 (discontinued). Operated as crest-stage gage water years 1977-87. October and November 1924, May 1925, and January 1926 to September 1965, gage height only, published as "Lake Carnegie at Princeton" in NJ Special Reports 9, 12, 14, 16, 20, 31, and 37.

GAGE.--Water-stage recorder above dam. Datum of gage is 50.00 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1950, staff gage at left end of dam at datum 2.56 ft higher.

REMARKS.--Records fair. Water diverted to and from Delaware and Raritan Canal 2.0 mi upstream at aquaduct (see Raritan River basin diversions). Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 28, 1971 reached a stage of 7.09 ft, discharge, 13,000 ft 3 /s, from rating curve extended above 4,000 ft 3 /s on basis of computation of peak flow over dam. Flood of July 21, 1938 reached a stage of 6.76 ft, present datum.

, 646116			•				4000 70	05075W050	1000	MEAN DATIV	VALUES	
					WATER YEAR							-
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	43 43	75 123	302 196	114 111	157 136	207 183	830 417	148 907	269 282	126 110	218 231	91 78
2 3 4	53 51 50	128 121 106	153 142 128	107 103	133 147	164	318 307	849 403	282 253 278	103 98	228 250	78 72 66
5	50	106	128	84	139	154 153	296	297	266	1780	267	63
6 7	44 42	97 101	118	85 84	128 122 117	216 280	571 655	1810 1250	329 643	3640 1420	233 224	60 59
8	46 50	86 e69	113 107 102	99 159	117 110	244 235 224	655 512 470	671 411	1860 990	611	258 263	59 57 56
10	48	e63	102	175	102	224	365	1160	4130	368 250	195	56 56
11 12	45 42	e65 e71	101 79	146 154	98 96	228 285	281 242	2650 1530	1940 773	188 160	159 292	56 53 51
12 13 14 15	41 40	e83 e127	73 73	286 221 371	91 118	295	224 212	891 602	527 427 373	180 230	346 364	51 61
	40	e104	73		178	253 236	226	413		196	329	108
16 17	40 40	e77 e322	76 73 73	345 253	329 262	226 194	842 602	1230 2860	333 308	195 567	542 225	111 146
18 19	41 40	e440 e272	73 73	200 168	195 158	166 322	410 307	1560 834	284	610 382	184 151	122 550
20	40	e789	71	151	143	262	281	518	246 201	382 370	153	3810
21 22 23 24 25	50 254	e1910 e997	77 93	133 115	478 1570	321 373	246 205	373 319	164 275	782 669	137 118	5000 1180
23 24	254 179 130	e997 e372 215	105 127	112 109	1030 488	282 327	185 171	376 1010	381 506	439 251 191	115	493 311
25	111	169	194	107	304	1210	158	770	300	191	124 112	311 228
26 27 28 29 30 31	81 67	145 1 3 9	172 140	109 112	242 236	730 451	153 143	552 421	201 161	161 153	100 85	323 380
28	59	1190 881	127 146	112 110	228	299 251	130 128	380 407	149 178	210	85 78 77	299 248
30	56 53 62	468	138 121	122 179		241 857	143	356 314	151	255 215 193	91 90	198
MEAN	63.9	327	118							487	201	480
MAX	254	1910	302 71	153 371	269 1570	318 1210	334 842	847 2860	573 4130	3640	542	5000
MIN IN.	40 -46	63 2.29	.86	84 1.11	91 1.76	153 2.31	128 2.35	148 6.15	149 4.02	98 3.53	77 1.46	3.37
STATIST	ICS OF MO	NTHLY FLO	W DATA F	OR PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX	106 147	230 618	356	262 433	335 535	319	437	299 847	196 573	205 487	127 203	144 479
(WY)	1984	1973	748 1974	1973	1973	734 1983	962 1983	1989	1989	1989	1973	1989
MIN (WY)	35.2 1983	67.2 1982	118 1989	121 1985	175 1987	124 1985	110 1985	74.7 1982	69.9 1974	45.0 1974	38.5 1982	35.6 1982
SUMMARY	STATISTI	cs		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
AVERAGE					347					266 372	4077	
LOWEST	ANNUAL M ANNUAL ME DAILY ME	AN AN								162	1973 1982	
LOWEST	DAILY MEA	N.			5000 40	Sep 21 Oct 14			5	780 Dec 17 May	21 1973 14 1982	
	ANEOUS PE				7720 5.30	Sep 21 Sep 21				100 Jar	1 26 1978 1 26 1978	
INSTANT	ANEOUS LO RUNOFF (I	W FLOW			40 29.67	Oct 2	2			.74	. 20 1710	
10 PERC	ENTILE	HOILS)			771				!	551		
50 PERC 95 PERC					193 50					147 32		

e Estimated

01401440 MILLSTONE RIVER AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at bridge on Lincoln Highway in Kingston, 0.2 mi downstream from the outflow of Carnegie Lake, and 3.0 mi northwest of Plainsboro.

DRAINAGE AREA.--172 mi², includes 8.0 mi² which drains into Delaware and Raritan Canal.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	COL	FIC N- CT- (S CE	PH TAND- ARD ITS)	TEMP ATU WAT (DEG	IRE ER S	(YGEN, DIS- SOLVED (MG/L)	OXYGEN DIS- SOLVED (PER- CENT SATUR- ATION)	DEMA BIO CHE ICA 5 D	ND, C N- F N- F L,	OLI- ORM, ECAL, EC ROTH MPN)	STREP- TOCOCCI FECAL (MPN)	
	1988	1030	79E		211	7.6	11	.0	10.0	91	5	.7	80	80	
JAN	1989	0930								102		'.8	20	<20	
APR	5		150E		210	7.2		3.5	13.8						
JUN	6	1100	570E		179	7.2		3.5	10.3	99		2.4	94	23	
JUL	8	1300	920E		103	7.0	20	0.5	7.8	86		.1 >240		>24000	
AUG	1	1030	150E		116	7.1	26	5.0	7.6	93	1	.9	130	130	
	2	1400	110E		170	7.4	24	.5	8.0	96	2	2.7	11	34	
	DATE	HAR NES TOT (MG AS CAC	S CAI AL D /L SO	CIUM IS- DLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODI DIS SOLV (MG	S- /ED	POTAS SIUM DIS- SOLVEI (MG/L AS K)	, LINI1 LAE	Y SUL B DI 'L SO (M	FATE S- LVED IG/L SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL)	RII D SOI (Mi	UO- DE, IS- LVED G/L F)	
	25		59	14	5.8	13	3	3.8	31	2	4	22		0.2	
	JAN 1989 25		52	12	5.3	16	5	2.9	20	2	:6	28		0.1	
	APR 06		47	11	4.8	13	3	2.2	21	2	.6	20		0.1	
	JUN 08		34	8.1	3.3	5	5.9	2.4	20	1	4	7.8		0.1	
	JUL 11		36	8.5	3.5	7	7.1	3.1	18	1	4	10		0.1	
	AUG 02		46	11	4.6	9	9.8	3.3	25	1	7	15		0.2	
	DATE	SILI DIS SOL (MG AS	CA, SUI S- COI VED TU	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	NITRO GEN, NITRITI TOTAL (MG/L AS N)	GE NO2-1 TO1 (MC	TRO- EN, HNÓ3 TAL G/L N)	NITRO GEN, AMMONI TOTAL (MG/L AS N)	MONÍ/ A ORGAI TOT/ (MG/	AM- A + NI NIC G AL TO /L (N	TRO- SEN, OTAL IG/L S N)	PHOS- PHOROU TOTAL (MG/L AS P)	S ORG To (M	BON, ANIC TAL G/L C)	
	OCT 1988 25 JAN 1989		2.5	104	0.03		.17	0.11	0.7			0.14	5.3		
	25 APR	9	0.0	111	0.02	5 0.	. 14	0.46	0.9	1 1.	.0	0.11	3.8	2.	
	06 JUN	9	0.0	99	0.02	1 1.	.45	0.24	0.8	0 2.	.3	0.14	4.4		
	08 JUL	6	8.8	60	0.05	5 0.	.68	0.24	1.1	1.	.8	0.29	7.6		
	11 AUG	8	3.5	66	0.03	2 0	.93	0.13	1.0	. 1.	9	0.04	8.0		
	02	8	3.9	85	0.07	7 1	.26	0.09	0.8	1 2.	.1	0.12	6.0		

01401440 MILLSTONE RIVER AT KINGSTON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 IN RG. GA IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC III . IN II MAT SO /KG (I	OLVED TO UG/L (U	TO IN ENIC TOM TAL TE G/L (U	TAL L BOT- TO MA- RI RIAL EI G/G (I	DTAL TO ECOV- RE RABLE ER UG/L (U	TAL TO COV- RE ABLE ER	MIUM RE TAL FM COV- TOM ABLE TE G/L (U	MIUM COV. BOT- MA- RIAL JG/G CD)
OCT 1988 25 25		.0.5	10	0.1	3.2	<10	1	3	<10	70	<1	 <10
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 25 25	2	5	<50	4	20	790 	2400	8	20	60	110	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 25 25	<0.10	0.02	<1	<100	<1	·· <1	20		2	<10	 <1.0	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TERIAL	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 25 25	 <0.1	14	4.0	 <5.0	 <2.0	 <0.1	0.5	 <0.1	 <0.1	 <0.1	 <1.0	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	BOTTOM MATL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THANE IN BOT- TOM MA- TERIAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 25 25	0.1	<0.1	 <0.1	 <0.1	 <0.1	<0.1	 <0.1	 <0.1	<1.00	<10	 <0.1	

01401600 BEDEN BROOK NEAR ROCKY HILL, NJ

LOCATION.--Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206 at State Route 533, 0.7 mi upstream from Pike Run, 1.2 mi northwest of Rocky Hill, and 4.6 mi north of Princeton.

DRAINAGE AREA.--27.6 mi².

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- IARGE, NST. CUBIC FEET PER SECOND	SPE- CIFI CON- DUCT ANCE (US/C	- (1	PH STAND- ARD NITS)	AT!	PER- URE TER G C)	SO	GEN, IS- LVED	XYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGE DEMAN BIO- CHEM ICAL 5 DA (MG/	D, CO FO I- FE E Y BR	LI- RM, CAL, C OTH PN)	STREP TOCOCC FECAL (MPN)	
OCT	1988	1330	10E	,	344	7.8	1	1.0		8.1	72	2.	8 130	0	700	
JAN	1989 19	0945	62E		190	7.4		3.0		3.0	96	1.			80	
APR	3	1400	88E		202	8.8		1.0		6.4	148	1.	- 15		170	
MAY	24	1200	185E	•	92	7.2		5.0		9.3	93	2.			24000	
JUL	io	1300	24E		183	7.9				0.2	123	1.			630	
AUG	2	1030	60E		240	7.6		4.5 1.0		0.8	122	1.			800	
,		1030	OUE		240	7.0		1.0	'	0.0	122		2 20	0	000	
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCI DIS- SOLV (MG/	ED	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, sot D sot	IUM, IS- LVED MG/L S NA)	SI		ALKA- LINITY LAB (MG/L AS CACO3	SULF. DIS SOL (MG	VED /L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLU RID DI SOL (MG AS	E, S- VED	
	OCT 1988	110	27		11		24	,	3.4	75	41		31		.1	
	JAN 1989									10.00						
	19 APR	5			6.0		11	1	1.6	28	27		16		0.1	
	13	53	3 12		5.5		11	1	1.5	31	24		15	C	1.1	
	24 JUL	34	4 8.	.0	3.4		5.7	1	1.6	21	15		6.6	C	1	
	10	6	1 14		6.2		11		2.2	41	21		12	(1.1	
	02	7	7 18		7.7	•	13	2	2.1	54	25		8.6	C	0.1	
	DATE	SILICA DIS- SOLVE (MG/L AS S102)	CONST D TUENT DIS SOL	OF TI- TS, S- VED	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E NO	ITRO- GEN, 2+NO3 OTAL MG/L S N)	AMMO TO	TRO- EN, ONÍA TAL G/L N)	NITRO GEN, AN MONIA ORGANI TOTAL (MG/I AS NI	1- + NIT IC GE - TOT - (MG	AĹ /L	PHOS- PHOROUS TOTAL (MG/L AS P)	CARE ORGA TOT (MC	ANIĊ FAL G/L	
	OCT_1988	2.0		105					00	0.70			0.51			
	06 JAN 1989	2.8		185	0.11		1.54		.09	0.79			0.54	4.4		
	19 APR	12		103	0.01	4	1.86	<0	.05	0.3	1 2.	2	0.07	3.0		
	13 MAY	11		99	E0.01	7	1.22	0	.09	0.2	2 1.	.4	0.10	2.	1	
	24 JUL	11		64	0.02	26	0.65	0	. 13	0.7	6 1.	.4	0.13	6.9	9	
	10 AUG	14		105	0.01	1	1.40	<0	.05	0.4	4 1.	.8	0.12	3.4	4	
	02	9.1		116	0.06	51	1.61	<0	.05	0.39	9 2.	.0	0.16	3.	3	

LOCATION.--Lat 40°28'05", long 74°38'57", Somerset County, Hydrologic Unit 02030105, on right bank 20 ft upstream of bridge on Township Line Road, 0.7 mi east of Belle Mead, 0.8 mi upstream of Cruser Brook, and 1.0 mi downstream of bridge on U.S. Route 206.

01401650 PIKE RUN AT BELLE MEAD, NJ

DRAINAGE AREA. -- 5.36 mi².

PERIOD OF RECORD. -- July 1980 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete parking-block control. Datum of gage is 58.85 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharge. Records fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1810, 13.5 ft, from floodmark, present datum, Aug. 28, 1971.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.65 .77 2.1 .81 .71	10 6.2 2.6 1.8 4.6	7.9 5.9 5.1 4.2 3.6	3.2 3.1 3.1 2.5	5.8 4.8 7.0 7.3 5.1	2.9 2.6 3.0 3.1 1.3	26 12 11 9.6 12	3.9 112 13 7.5	3.4 3.0 2.8 3.7 2.6	3.1 2.8 2.6 2.7 65	1.3 1.1 1.1 .98 .91	.87 .84 .68 .63
6 7 8 9 10	.65 .58 1.4 .99 .88	7.3 2.9 2.1 1.7 1.6	3.4 3.3 3.0 2.8 2.7	2.1 2.2 5.8 6.4 4.0	3.3 3.4 2.8 3.6 2.5	5.5 8.7 7.5 5.0 6.3	29 14 12 8.6 7.0	135 17 9.3 7.1 136	5.9 39 20 125 231	12 5.5 10 3.3 2.3	.83 1.3 .98 .75 .67	.60 .58 .58 .58 .46
11 12 13 14 15	.71 .67 .74 .73 .74	1.5 1.3 8.3 5.3 2.7	2.6 2.3 2.1 2.1 2.2	3.4 15 13 6.5 32	1.9 2.0 2.1 7.5	9.4 9.9 6.7 5.7 5.8	6.0 5.3 4.9 4.6 17	42 16 14 8.8 7.2	13 7.4 23 21 19	1.8 1.5 4.0 2.5 1.9	4.6 9.4 7.0 3.5 4.5	.44 .43 .40 4.1 4.1
16 17 18 19 20	.89 .65 .64 .70 .74	2.1 49 8.4 4.8 260	2.4 1.7 1.7 1.5 1.5	13 7.0 5.2 4.7 4.1	21 7.6 5.2 4.4 3.9	4.6 3.9 5.8 7.3 4.3	36 11 7.8 6.8 5.7	77 58 14 8.4 6.6	31 11 7.0 5.5 4.7	4.8 11 3.4 2.4 4.9	3.5 1.9 1.4 1.4	1.7 4.6 1.2 132 209
21 22 23 24 25	9.2 25 3.1 2.2 1.8	51 15 11 10 9.1	2.9 3.0 3.6 9.7 9.5	3.8 3.5 1.9 2.2 2.2	94 41 16 5.7 3.8	17 8.1 5.6 39 33	5.1 4.5 3.9 3.6 3.5	5.6 4.7 15 38 12	5.2 5.3 5.4 8.0 5.1	3.9 2.8 2.2 1.6 1.5	1.1 1.3 1.1 .95 .81	73 10 10 7.2 5.1
26 27 28 29 30 31	1.4 1.4 1.4 1.4 1.3	9.0 9.5 144 17 10	4.7 3.6 6.9 7.6 4.4 3.6	2.8 4.5 3.3 2.3 14 9.2	2.3 3.3 3.1	9.5 6.8 6.0 5.4 8.8	3.3 3.6 3.0 3.0 5.6	7.0 8.3 6.2 4.7 4.1 3.8	4.4 3.9 4.2 4.3 3.4	1.4 1.3 3.1 1.3 1.2	.74 .66 .65 2.7 3.9	25 7.3 4.5 3.8 3.3
MEAN MAX MIN IN.	2.14 25 .58 .46	22.3 260 1.3 4.65	3.92 9.7 1.5 .84	6.10 32 1.9 1.31	10.1 94 1.9 1.97	10.6 80 1.3 2.28	9.51 36 3.0 1.98	26.2 136 3.8 5.64	20.9 231 2.6 4.36	5.46 65 1.2 1.17	2.05 9.4 .65 .44	17.1 209 .40 3.56
			W DATA FO	R PERIOD	OF RECORD,		YEAR (
MEAN MAX (WY) MIN (WY)	2.82 7.72 1988 .83 1987	10.8 22.3 1989 2.09 1985	10.7 33.6 1984 .74 1981	9.51 23.0 1982 .04 1981	14.4 26.0 1982 6.21 1987	11.4 30.2 1983 3.05 1981	16.0 43.1 1983 2.18 1985	10.4 26.2 1989 1.89 1986	6.10 20.9 1989 .81 1986	8.16 26.1 1984 .36 1980	2.54 7.29 1986 .16 1980	3.55 17.1 1989 .51 1983
SUMMARY	STATIST	ics		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST I INSTANT INSTANT	ANNUAL ME ANNUAL ME DAILY ME ANEOUS PE ANEOUS PE ANEOUS C RUNOFF (ENTILE ENTILE	EAN EAN AN EAK FLOW EAK STAGE OW FLOW			260 .40 1310 9.77 .33 28.63 18 4.0	Nov 20 Sep 13 Jun 10 Jun 10 Sep 14			10 3 20 11 22	010 Jul .76 Jul	20 1980 7 1984	

01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ

LOCATION.--Lat 40°28'30", long 74°34'34", Somerset County, Hydrologic Unit 02030105, on left bank 30 ft downstream from highway bridge at Blackwells Mills, and 0.3 mi downstream from Six Mile Run.

DRAINAGE AREA. -- 258 mi 2.

a From high-water mark

PERIOD OF RECORD.--June 1903 to December 1904 (gage heights only), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at Millstone" 1903-04.

REVISED RECORDS.--WSP 1552: 1924-25(M), 1926.

GAGE.--Water-stage recorder. Concrete control since Nov. 18, 1933. Datum of gage is 26.97 ft above National Geodetic Vertical Datum of 1929. June 27, 1903 to Dec. 31, 1904, nonrecording gage at bridge 2.0 mi downstream at Millstone at different datum. Aug. 4, 1921 to Aug. 16, 1928, nonrecording gage at present site and datum.

REMARKS.--No estimated daily discharges. Records good except those above 1,200 ft³/s, which are fair. Inflow from and losses to Delaware and Raritan Canal above station. Flow slightly regulated by Carnegie Lake, capacity, 310,000,000 gal and several smaller reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	63 63 90 81 74	154 235 192 165 152	561 383 295 250 230	176 166 162 145 124	274 230 227 247 224	323 290 264 246 241	1500 719 549 522 456	206 1140 1650 618 455	305 294 271 376 307	163 141 128 119 1180	175 165 173 147 167	111 102 94 87 82
6 7 8 9	69 65 75 76 74	186 152 133 118 107	211 200 187 175 164	123 124 153 262 263	209 202 188 167 150	321 399 344 316 308	847 913 774 648 532	2310 2720 1120 619 1450	383 704 2120 1460 5100	4080 2970 1140 514 341	141 135 153 161 161	79 77 76 75 74
11 12 13 14 15	70 65 62 60 60	101 106 154 211 168	152 133 123 121 123	223 277 577 384 794	143 138 131 213 326	346 467 470 400 385	410 344 312 299 313	3920 2790 1560 881 614	4120 1620 891 701 592	249 202 226 289 242	192 348 474 467 538	72 70 68 78 165
16 17 18 19 20	58 60 62 63 61	137 564 765 436 1460	120 116 112 109 108	740 472 354 303 264	639 476 337 271 240	342 302 292 512 393	1320 889 591 459 378	1680 3750 3060 1360 706	698 536 421 339 286	278 872 731 521 488	757 347 251 206 207	142 213 161 718 3610
21 22 23 24 25	78 546 294 178 149	3870 1830 607 393 300	123 149 150 210 336	222 187 179 204 166	977 2540 2140 992 549	548 596 433 587 1710	325 286 259 239 223	525 426 449 1350 971	244 332 461 577 449	1080 721 604 355 249	185 158 147 162 141	9710 4490 1490 605 394
26 27 28 29 30 31	115 94 83 77 73 77	253 234 2050 2260 972	274 213 204 277 231 199	167 178 172 162 231 332	413 390 365	1120 674 485 395 355 1480	213 203 190 178 215	658 529 468 439 407 361	276 226 195 218 200	197 212 203	123 107 100 108 135 113	714 697 484 385 278
MEAN MAX MIN IN.	100 546 58 .45	615 3870 101 2.66	201 561 108 .90	267 794 123 1.19	478 2540 131 1.93	495 1710 241 2.21	504 1500 178 2.18	1264 3920 206 5.65	823 5100 195 3.56	119	221 757 100 .99	847 9710 68 3.66
		THLY FLO	W DATA FO		OF RECORD	BY WATE		WY)				
MEAN MAX (WY) MIN (WY)	183 838 1928 42.6 1942	337 1113 1973 51.2 1966	453 1344 1984 67.0 1966	492 1743 1979 62.9 1981	583 1199 1925 105 1934	677 1383 1936 158 1985	538 1520 1983 103 1985	359 1264 1989 82.8 1963	234 823 1989 45.5 1963	1808 1975 19.3	213 1267 1971 17.3 1981	226 1277 1938 20.2 1980
SUMMARY	STATISTIC	cs		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST / HIGHEST LOWEST / INSTANT/ INSTANT/ INSTANT/	ANNUAL ME ANNUAL MEA DAILY MEAI ANEOUS PEA ANEOUS LOI ANEOUS LOI RUNOFF (II ENTILE ENTILE	AN AN AK FLOW AK STAGE			9710 58 11400 14.42 58 28.14 1100 266 72	Sep 21 Oct 16 Sep 21 Sep 21 Oct 15			17 22 18	5.0 Sep 200 Aug .68a Aug	1975 1985 128 1971 16 1923 128 1971 28 1971 28 1971 16 1923	

01402540 MILLSTONE RIVER AT WESTON, NJ

LOCATION.--Lat 40°31'47", long 74°35'19", Somerset County, Hydrologic Unit 02030105, at bridge on Wilhouski Street in Weston, 50 ft upstream from Royce Brook, 0.8 mi southwest of Alma White College, and 1.9 mi north of Millstone.

DRAINAGE AREA.--271 mi², includes approximately 13 mi² which drains into Delaware and Raritan canal.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM	(8)	PH TAND- ARD ITS)	TEMPI ATUI WATI	RE S	(YGEN, DIS- SOLVED (MG/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	DEM D BI CH IC	GEN IAND, IO- IEM- CAL, DAY IG/L)	FORM FECA EC BROT (MP)	1, AL, 5 TH I	STREI OCOC FECAI (MPN
OCT 24	1988	1345	190E	23	2	7.6	11	.5	8.9	82		2.9	230		490
JAN	1989	1130	180E	25		7.4		.0	13.1	96		2.0	<20		50
APR		1400	440E	20		7.1	10		10.1	89		2.1	490		<20
JUIN	3	1000	2300E	13		7.1	20		6.9	76			4000	>24	
JUL		1330	390E	15		7.1	23		7.0	80		1.4	330		700
AUG)	1330	170E	21		7.3	22		6.0	68		1.4	460		80
	DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALC: DIS- SOLV (MG)	IUM - VED S /L (AGNE- SIUM, DIS- OLVED MG/L S MG)	(MG	ED	POTAS SIUM DIS- SOLVEI (MG/L AS K)	, LINI	TY SL B D /L S	ULFATE DIS- SOLVED MG/L S SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	, ED L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F)	
	OCT 1988		58 16		6.7	15	;	3.8	36		32	21		0.2	
	JAN 1989 25	. 6	56 16		6.4	18	3	2.7	33		31	27		0.1	
	APR 11	5	54 13		5.2	12	2	2.3	23		27	18		0.1	
	08	4	1 10		3.9	8	3.1	2.3	24		16	11		0.1	
	JUL 24	4	46 11		4.4	8	3.6	2.5	24		18	12		0.1	
	AUG 10		59 16		7.0	14	•	3.6	34		26	19		0.4	
	DATE	SILIC/ DIS- SOLVE (MG/I AS SIO2)	CONS ED TUEN L DI	OF N TI- TS, NI S- T VED (ITRO- GEN, TRITE OTAL MG/L S N)	GE	AL S/L	NITRO GEN, AMMONI TOTAL (MG/L AS N)	MONÍ	AM- A + N NIC AL 1	IITRO- GEN, TOTAL (MG/L AS N)	PHOS PHORO TOTA (MG/ AS P	US (L L	CARBON ORGANI TOTAL (MG/L AS C)	Ċ
	OCT 1988 24 JAN 1989	3.7	7	120	0.019	2.	.34	<0.05	0.	76	3.1	0.21		5.3	
	25 APR	9.4	4	130	0.040	1.	.90	0.75	1.	2	3.1	0.23		3.8	
	11 JUN	9.	7	101	0.045	1.	.65	0.11	0.	71	2.4	0.16	•	4.2	
	08 JUL	7.	4	73	0.068	1.	.10	0.20	1.	1	2.2	0.36	•	7.5	
	24 AUG	9.	7	81	0.038	1.	.47	0.06	0.	83	2.3	0.26	•	7.1	
	10	9.:	3	116	0.060	2.	.38	E0.09	E0.	55	••	0.30)	5.3	

01402600 ROYCE BROOK TRIBUTARY NEAR BELLE MEAD, NJ

LOCATION.--Lat 40°29'56", long 74°39'05", Somerset County, Hydrologic Unit 02030105, on right bank 25 ft upstream from bridge on State Highway 514 (Amwell Road), 1,200 ft upstream from mouth, and 2.0 mi north of Belle Mead.

DRAINAGE AREA. -- 1.20 mi 2.

PERIOD OF RECORD. -- October 1966 to September 1974, January 1980 to current year.

REVISED RECORDS. -- WRD NJ-69: 1967, 1968. WDR NJ-85-1: 1980-84(P).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 66.98 ft above National Geodetic Vertical Datum of 1929. Prior to September 1974 at same site at datum 0.79 ft higher.

REMARKS.--No estimated daily discharges. Records fair. Some regulation from storm-water detention basin 542 ft upstream of gage since 1980. Several measurements of water temperature were made during the year. Recording raingage and gage-height telemeter at station.

gage	and gage	neight te	telleter at	Statio	n .							
	DISCHAF	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.25 1.3 .54 .32 .29	4.9 2.0 .89 .56 3.3	1.5 1.2 1.1 .89 .78	.70 .64 .60 .60	.87 .72 1.2 .83 .68	.60 .51 .50 .46	5.4 2.3 2.3 1.7 3.9	1.2 26 3.6 1.9 4.0	.43 .37 .43 .87	.33 .31 .31 .50	.37 .37 .69 .31	.35 .38 .26 .31
6 7 8 9 10	.20 .18 .72 .40 .38	3.5 2.0 1.5 1.3	.78 .66 .56 .51	.43 .37 1.9 1.5 1.0	.68 .61 .52 .42 .37	1.9 1.3 1.1 1.0	8.0 3.4 2.9 1.8 1.3	30 4.1 1.9 1.4 33	2.8 12 4.3 45 18	2.6 1.2 2.4 .79 .61	.38 1.8 .40 .37 .37	.43 .31 .31 .31
11 12 13 14 15	.35 .21 .24 .18 .20	1.1 .89 5.2 2.6 1.7	.44 .31 .21 .22 .30	.81 4.3 2.3 1.3 6.8	.38 .37 .33 1.8 2.9	2.7 2.4 1.5 1.2	1.0 .89 .78 .72 6.6	9.7 3.8 2.5 1.6 1.2	2.7 1.6 12 3.5 5.7	.47 .43 2.5 .78 .53	3.4 5.5 2.2 1.2 1.1	.31 .31 .31 5.5 1.9
16 17 18 19 20	.22 .24 .26 .22 .19	1.5 16 4.5 2.8 63	.19 .06 .00 .00	2.0 1.3 1.1 .88 .79	3.3 1.2 .83 .69	.89 .82 2.2 1.6 1.2	7.2 2.3 1.5 1.4 1.0	24 14 3.5 1.6 1.1	5.5 2.3 1.4 1.2 .90	3.6 4.5 1.2 .87 3.0	.79 .61 .51 .52	1.9 2.9 .75 46 56
21 22 23 24 25	12 11 2.8 2.7 1.7	8.9 4.1 3.1 2.5 2.1	.56 .58 1.3 2.6 1.8	.54 .48 .44 .43	20 10 3.6 1.8 1.0	5.3 2.0 1.3 9.9 7.3	.85 .70 .56 .50	.85 .69 8.2 7.8 2.4	.79 1.2 .67 1.4	1.3 .84 .63 .52	.53 .57 .68 .33 .25	13 4.5 4.7 2.5 1.8
26 27 28 29 30 31	1.3 .92 .92 .80 .90	2.0 2.6 34 3.5 2.2	1.0 .80 1.7 1.3 .95 .82	.52 .75 .51 .45 3.3 1.3	1.0 1.0 .74	2.4 1.6 1.3 1.0 4.0	.43 .39 .38 .69	1.3 2.4 .97 .71 .60	.56 .44 .62 .66 .39	.38 .70 1.1 .31 .31	.25 .25 .25 .78 2.9	9.0 2.7 1.5 1.3 1.2
MEAN MAX MIN IN.	1.37 12 .18 1.32	6.18 63 .56 5.75	.76 2.6 .00 .73	1.25 6.8 .33 1.20	2.09 20 .33 1.81	2.43 14 .46 2.33	2.10 8.0 .38 1.95	6.34 33 .50 6.09	4.29 45 .37 3.99	1.77 21 .31 1.70	.94 5.5 .25 .90	5.38 56 .26 5.00
STATIS					OF RECORD,	BY WATE	R YEAR (
MEAN MAX (WY) MIN (WY)	1.39 3.40 1967 .19 1969	2.95 7.55 1986 .57 1974	3.41 8.85 1984 .30 1981	2.58 6.25 1975 .03 1981	3.61 7.37 1981 .69 1980	3.30 7.06 1967 .98 1985	3.14 8.25 1983 .41 1985	2.20 6.34 1989 .42 1986	1.46 5.00 1972 .07 1971	2.03 7.17 1984 .02 1968	2.09 9.71 1971 .01 1972	2.11 12.5 1971 .00 1972
SUMMAR	Y STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHES LOWEST INSTAN INSTAN INSTAN ANNUAL 10 PER 50 PER	T ANNUAL ANNUAL M T DAILY M DAILY ME TANEOUS P	EAN EAN AN EAK FLOW EAK STAGE OW FLOW			2.90 63 .00 392 5.16 .00 32.81 5.3 .89	Nov 20 Dec 18 Jun 9 Jun 9 Dec 18	3		1 7 28	.00 Jul 450 Aug .80 Aug	1984 1981 28 1971 10 1968 28 1971 28 1971 any days	

01403060 RARITAN RIVER BELOW CALCO DAM, AT BOUND BROOK, NJ

LOCATION.--Lat 40°33'05", long 74°32'54", Somerset County, Hydrologic Unit 02030105, on right bank 1,000 ft downstream from Calco Dam and Cuckold Brook, 1,400 ft upstream of bridge on Interstate 287, 1.2 mi downstream from Millstone River, and 1.2 mi southwest of Bound Brook.

DRAINAGE AREA.--785 mi² (includes 11 mi² which drains into the Delaware and Raritan Canal).

PERIOD OF RECORD.--September 1903 to March 1909, October 1944 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1966 published as "Raritan River at Bound Brook" (station 01403000).

REVISED RECORDS.--WSP 1552: 1903-07, 1946(M), 1949, 1952(P).

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Sept. 12, 1903 to Mar. 31, 1909, nonrecording gages at highway bridge, 1.2 mi downstream at different datum. October 1944 to Sept. 30, 1966, water-stage recorder and concrete control at site 1,000 ft upstream at datum 18.06 ft higher.

REMARKS.--Records good, except for estimated daily discharges, which are fair. Water diverted 1.2 mi above station by Elizabethtown Water Co. for municipal supply (see Raritan River basin, diversions). Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversions to and releases from Round Valley Reservoir (see Raritan River basin, diversions and station 01399690). Slight diurnal fluctuations at low flow. Several measurements of water temperature were made during the year. New Jersey Water Supply Authority gage-height telemeter at station.

	DISCHARGE	, CUBIC	FEET PE	R SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	181 196 326 232 155	414 711 477 384 405	1680 1290 1080 949 e905	e540 e503 e497 e598 e341	735 645 643 688 564	852 760 693 653 645	5770 2600 2060 1960 2060	664 6420 5060 2070 1600	880 789 691 766 707	675 592 525 488 2600	553 487 525 440 437	330 334 309 288 262
6 7 8 9	178 185 206 201 189	952 632 446 375 332	e840 e777 e714 639 602	e380 e458 e572 953 715	511 514 460 446 451	865 985 785 761 783	2910 2780 2240 1910 1620	8270 6370 3270 2180 5520	846 1760 5260 3390 10300	5280 4010 2750 1380 924	394 442 426 408 383	306 365 399 387 357
11 12 13 14 15	185 166 169 172 170	326 293 494 981 586	570 399 474 546 467	586 775 1660 957 2310	471 449 374 586 763	869 1120 1100 953 950	1300 1120 1020 998 1110	11400 6050 4180 2800 2260	6090 2970 3830 2700 2250	752 610 746 863 631	540 1040 1120 938 988	335 364 362 456 615
16 17 18 19 20	170 167 170 169 167	438 2370 2040 1010 5070	394 344 313 342 336	1970 1220 959 835 748	1420 989 683 572 527	916 772 759 1410 989	4190 2450 1720 1410 1170	5800 10900 7130 3890 2590	3050 2330 1650 1240 995	759 1870 1300 944 1160	1480 748 557 485 508	517 812 591 2260 12400
21 22 23 24 25	1860 806 456	2100 4180 2010 1470 1160	384 448 422 691 1410	632 487 526 506 449	3150 6530 4180 2350 1420	1570 1750 1160 1570 5250	1020 937 856 761 703	2040 1650 1580 4460 3060	946 1120 1480 4080 2640	828	451 443 456 455 394	19400 7640 3360 2060 1470
26 27 28 29 30 31	221	985 897 7280 4640 2440	847 616 553 e942 e721 e605	443 560 514 461 708 963	1180 1070 980	2900 1890 1460 1240 1170 5530	666 627 580 560 862	1990 1670 1550 1230 1090 988	1410 1100 961 1070 828	602 731 592	334 324 294 311 632 358	2420 2230 1520 1260 1070
MEAN MAX MIN		1863 2100 293	687 1680 313	769 2310 3 41	1191 6530 374	1391 5530 645	1666 5770 560	3862 11400 664	2271 10300 691	1241 5280 488	560 1480 294	2149 19400 262
STATIST	ICS OF MONT	HLY FLO		OR PERIOD	OF RECORD,	BY WATE	R YEAR					
MEAN MAX (WY) MIN (WY)	636 2953 1904 113 1958	1077 3684 1973 138 1966	1471 4172 1974 178 1966	1580 5825 1979 179 1981	1760 3232 1971 485 1980	2135 3858 1978 454 1985	1796 5326 1983 230 1985	1296 3862 1989 339 1965	780 3883 1972 117 1965	4624 1975 84.7	674 3576 1955 69.9 1957	698 3158 1975 76.1 1957
SUMMARY	STATISTICS	;		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST I	ANNUAL MEA ANNUAL MEAN DAILY MEAN ANEOUS PEAK ANEOUS LOW ENTILE ENTILE	ELOU			1492 19400 155 23500 30.22 135 3260 795 204	Sep 21 Oct 5 Sep 21 Sep 21 Oct 5			34 46 37 2		adjusted 1975 1985 1985 28 1971 6 6 1964 1 28 1971 1 28 1971	

a From floodmark

e Estimated

01403150 WEST BRANCH MIDDLE BROOK NEAR MARTINSVILLE, NJ

LOCATION.--Lat 40°36'44", long 74°35'28", Somerset County, Hydrologic Unit 02030105, on left bank 150 ft upstream from bridge on Crim Road, 1.4 mi northwest of Martinsville, and 1.8 mi upstream from confluence with East Branch Middle Brook.

DRAINAGE AREA. -- 1.99 mi 2.

e Estimated

PERIOD OF RECORD. -- June 1979 to current year.

GAGE.--Water-stage recorder. Datum of gage is 240.48 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--Records fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.16 .79 .38 .14	7.9 1.9 .79 .56 4.1	1.7 1.3 1.1 1.0 .99	.71 .78 .75 .54	1.6 1.3 2.0 1.3 1.0	1.1 1.1 1.0 1.1 1.3	8.3 2.8 4.1 3.5 7.4	3.6 108 6.3 2.9	1.0 .85 .76 .74	.55 .55 .55 .55	.35 .35 .88 .35 .35	.19 .22 .19 .19
6 7 8 9 10	.23 .24 .61 .40 .37	2.2 .95 .65 .56	.89 .89 .74 .70	.45 .48 2.3 1.6 .92	1.0 .98 .77 .62 .58	2.3 1.5 1.3 1.4 1.8	19 5.6 4.6 3.5 2.7	80 7.8 3.6 2.8	6.5 25 4.1 61 27	1.1 .97 5.7 .59	.35 .30 .31 .31	.19 .20 .20 .19 .19
11 12 13 14 15	.40 .41 .41 .41 .43	.55 .46 6.4 1.6 .88	.55 .41 .43 .46 .48	.79 12 3.3 1.4	.59 .56 .50 1.9 6.0	2.5 2.8 1.9 2.0 2.1	2.3 2.1 2.2 2.0 19	27 11 8.2 4.7 3.8	2.3 1.3 35 6.7 9.8	.53 .52 1.5 .56 .46	1.7 4.2 .67 .39 2.2	.18 .16 .15 4.5 .61
16 17 18 19 20	.41 .41 .41 .41	.70 26 2.4 1.3 134	.39 .38 .34 .35	3.0 1.8 1.4 1.3	4.7 1.5 1.2 1.0 .94	1.5 1.3 4.5 2.3 1.6	16 4.2 2.9 2.5 2.0	96 54 7.3 4.3 3.5	5.9 2.9 1.7 1.2 1.0	5.6 4.4 .69 .55	.58 .33 .28 .28 .30	.37 .98 .21 52 e115
21 22 23 24 25	12 12 .71 .91 .51	11 1.8 1.1 .78 .56	.76 .49 1.4 9.9 3.4	.83 .66 .67 .69 .63	55 20 4.6 2.3 1.6	14 2.8 1.9 32 14	1.8 1.7 1.6 1.5	2.8 2.3 21 14 3.4	.96 .93 1.4 2.8 .94	.61 .55 .52 .46 .44	.39 .29 1.4 .28 .24	e20 4.1 3.7 1.2 .63
26 27 28 29 30 31	.58 .94 1.2 1.2 1.3 1.2	1.9 97 4.5 2.4	1.3 1.0 3.6 1.7 1.7	.90 1.5 .90 .89 9.1 2.2	1.4 1.5 1.2	3.5 2.4 2.1 1.9 19 34	1.3 1.3 1.2 1.6 21	2.5 3.2 1.9 1.5 1.3	.82 .74 .99 .88 .60	.35	.24 .24 .23 .24 .29	14 1.3 .73 .60 .43
MEAN MAX MIN IN.	1.30 12 .14 .75	10.5 134 .44 5.91	1.30 9.9 .34 .75	2.36 19 .39 1.37	4.20 55 .50 2.20	5.29 34 1.0 3.07	5.04 21 1.2 2.82	19.4 108 1.2 11.21	6.88 61 .60 3.86	.35	.61 4.2 .22 .35	7.43 115 .15 4.16
					OF RECORD,		R YEAR (
MEAN MAX (WY) MIN (WY)	1.20 2.86 1988 .22 1987	4.03 10.5 1989 .67 1981	3.79 11.5 1984 .18 1981	3.18 6.82 1982 .12 1981	5.09 9.02 1988 .92 1980	5.00 9.29 1980 1.64 1985	6.40 11.6 1983 .74 1985	5.54 19.4 1989 .76 1986	2.07 6.88 1989 .41 1980	6.40 1984	.80 2.54 1986 .12 1980	1.74 7.43 1989 .11 1980
SUMMAR	Y STATIST	TICS		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHES LOWEST INSTAN INSTAN INSTAN ANNUAL 10 PER 50 PER	T ANNUAL I ANNUAL I T DAILY M DAILY MI TANEOUS I	MEAN MEAN EAN PEAK FLOW PEAK STAGE			5.48 134 749 5.59 112 37.39 11 1.1 .21	Nov 20 Oct 4 Nov 28 Nov 28 Oct 4			5 23	.00 Sep 816 May	1989 1981 16 1986 19 1980 11 1981 11 1981 19 1980	

01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ (National stream-quality accounting network)

LOCATION.--Lat 40°33'34", long 74°31'41", Somerset County, Hydrologic Unit 02030105, at Queens Bridge on Main street in Bound Brook, 1.7 mi upstream of Fieldsville Dam.

DRAINAGE AREA. -- 804 mi².

PERIOD OF RECORD.--Water years 1964 to 1969, 1971 to 1973, 1978 and November 1981 to present. Published as "at Bound Brook" (station 01403000) 1964-66, and as "below Calco Dam at Bound Brook" (station 01403060) 1967-69.

REMARKS.--Instantaneous discharges are determined at Raritan River below Calco Dam at Bound Brook (station 01403060).

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
NOV 1988 15	0900	E630	233	7.5	8.0	10	9.7	82	3.9	530	1100	82
FEB 1989 17	1330	E970	250	7.8	3.0	6.6	15.0	109	4.8			74
MAY 05	1230	E1450	203	7.0	14.5	6.6	10.3	102	1.7	530	420	65
SEP 11	1355	E325	254	8.8	25.5	1.6	11.5	141	5.6	480	1200	85
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	CAR- BONATE IT-FLD (MG/L AS CO3)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
NOV 1988 15	20	7.7	16	3.1				48*	33	21	0.2	9.0
FEB 1989	18	7.0	19	2.4	••			34*	30	33	0.2	8.8
MAY 05 SEP	16	6.0	12	2.0		44	36	52	24	16	0.2	9.5
11	21	7.9	17	2.6	4.2	66	62	54	30	21	0.1	6.4
DAT	SUM CON: TUE: D E SO	STI- SEC NTS, MEN IS- SUS LVED PEN	SI - SIE NT, DI S- % FI	IAM. DI	N, GE ITE NO2+ S- DI VED SOL /L (MG	N, NIT NO3 GE S- AMMO VED TOT I/L (MG	RO- GE N, AMMO NIA DI TAL SOL G/L (MO	EN, GEN, DNÍA MONÍ IS- ORG/ LVED TOI G/L (MO	IA + PHO ANIC PHOR TAL TOT G/L (MO	ROUS DI FAL SOL G/L (MG	COUS ORT	ROUS HO, S- /ED /L
NOV 198	8	148	15	90 0.0	040 1.	70 0.	360 0.	.350	1.0 0.	.200 0.	160 0.	.130
FEB 198	9	148	10									.040
MAY 05		114	15									.050
SEP 11		156	9									.220

^{*}Laboratory determination

RARITAN RIVER BASIN

01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

ı	DATE		TIME	(UG	M, S- VED	ARSEN DIS SOLV (UG) AS	S- DI /ED SOL /L (U	IUM, S- VED G/L BA)	BERYL LIUM, DIS- SOLVEI (UG/L AS BE)	CADM DI SOL (UG	S- VED	CHRO MIUM DIS- SOLV (UG/ AS C	COB/ DIS ED SOLV		COPP DIS SOL (UG AS	VED /L	IRO DI SOL (UG AS	S- VED	DIS SOL' (UG,	S: VED /L
NOV 15 FEB			0900		30		1	36	<0.5	5	<1		<1	<3		4		99		<5
			1330		30		<1	37	<0.5	5	<1		<1	<3		3		65		<5
05 SEP	• • •		1230		30		<1	32	<0.	5	<1		<1	<3		3		99		<5
	• • •		1355		50		1	28	<0.	5	<1		<1	<3		2		45		<1
		DATE	SO (U	HIUM DIS- DLVED JG/L S LI)	NE D SO (U	NGA- SE, IS- LVED G/L MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DEI D SOI (U	IS- I LVED S G/L	ICKEL, DIS- SOLVED (UG/L AS NI)	SOI (U		SILVER, DIS- SOLVED (UG/L AS AG)	D SOI (UI	RON- IUM, IS- LVED G/L SR)	SOL	JM, IS- LVED G/L	SOL (UC	IC, IS- VED G/L ZN)	
	1	1988 5 1989		5		42	0.2	!	<10	1		<1	<1.0		140		<6		14	
	1 MAY	7		4		51	••		<10	1		<1	<1.0		120		<6		4	
	0 SEP	5		<4		51	<0.1		<10	<1		<1	<1.0		94		<6		11	
		1		<4		16	<0.1		<10	1		<1	<1.0		140		<6		7	

01403400 GREEN BROOK AT SEELEY MILLS, NJ

LOCATION.--Lat 40°39'53", long 74°24'10", Somerset County, Hydrologic Unit 02030105, on right bank at Seeley Mills, 250 ft downstream from Blue Brook, 300 ft downstream from bridge on Diamond Hill Road, and 0.5 mi northwest of Scotch Plains.

DRAINAGE AREA. -- 6.23 mi 2.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1959-64, 1969: annual maximum, water years 1969-79.

June 1979 to current year. Fragmentary records 1944-53 in the files of the Geological Survey. Crest-stage data 1927-38, 1958-68 in files of Union County Park Commission.

REVISED RECORDS.--WDR-NJ 81-1: 1979(M). WDR-NJ 87-1: 1971(M), 1973(M), 1975(M).

GAGE.--Water-stage recorder. Datum of gage is 184.44 ft above National Geodetic Vertical Datum of 1929. From 1944 to 1953, water-stage recorder and masonry dam about 400 ft downstream above lower Seeley Mills dam at different datum. From July 1969 to May 1979, crest-stage gage about 450 ft downstream below lower Seeley Mills dam (washed out May 29, 1968) at different datum.

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 23, 1938 reached an elevation of 196.5 ft, New Jersey Geological Survey datum, above lower Seeley Mills dam.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.5 5.5 4.3 3.4 3.3	23 8.0 5.3 4.9	9.1 7.9 7.3 6.7 6.6	5.2 5.1 5.1 5.2 13	6.2 5.7 6.7 5.6 5.0	7.2 6.7 6.6 6.6 6.8	24 14 16 13 13	9.2 117 27 16 28	6.8 6.1 5.7 5.6 5.3	5.7 5.5 5.5 5.5 78	5.1 5.0 5.6 4.9 5.0	5.1 5.0 4.8 4.8
6 7 8 9	3.3 3.8 7.6 4.2 3.5	8.9 5.4 4.9 4.6 4.7	6.3 6.2 5.8 5.5 5.3	4.4 4.5 10 7.9 5.9	5.4 5.3 5.0 4.7 4.5	8.8 6.8 6.4 6.5 6.7	25 16 16 13 11	157 38 22 16 142	11 18 11 54 105	19 10 18 7.8 7.3	4.8 5.0 4.7 4.5 4.5	4.8 4.8 4.8 4.8
11 12 13 14 15	3.4 3.3 3.3 3.4 3.4	4.6 4.2 15 6.7 5.2	5.0 7.8 4.6 4.7 4.8	5.5 16 10 7.3 20	4.6 4.5 4.4 8.8 9.5	7.4 7.8 6.9 6.7 6.9	9.6 8.9 9.8 9.0 31	100 40 27 20 16	17 9.6 62 21 27	7.4 6.1 11 6.4 5.8	9.6 21 14 17 29	4.7 4.5 4.5 14 6.2
16 17 18 19 20	3.5 3.5 3.5 3.6 3.5	4.8 41 8.8 6.4 185	4.5 4.4 5.7 4.3 4.3	9.9 8.1 7.4 7.1 6.8	10 6.4 6.0 5.7 5.5	6.3 5.9 9.6 7.9 7.1	44 18 13 12 9.7	138 136 44 27 20	21 15 11 9.1 8.1	13 17 6.9 6.2 8.0	9.9 6.7 5.8 7.1 6.0	9.2 8.2 5.1 177 162
21 22 23 24 25	24 17 4.7 4.7	54 16 9.9 8.4 7.3	5.8 4.7 7.2 12 8.6	5.8 5.4 5.5 5.5 5.4	67 37 19 12 9.4	9.6 8.2 47 38	8.8 8.2 7.6 7.2 6.9	16 13 29 32 16	9.7 9.0 19 16 8.4	6.4 6.1 5.8 5.8 5.5	11 7.3 9.5 6.4 5.7	111 21 54 20 11
26 27 28 29 30 31	4.0 4.1 4.0 3.8 3.9	6.7 9.1 110 20	6.0 5.5 9.2 7.2 5.9 5.6	6.1 6.7 5.4 5.3 11 7.1	8.6 8.4 7.9	16 12 10 9.3 16 45	6.7 6.3 5.9 7.2 15	12 13 9.6 8.0 7.3 7.2	7.7 7.4 7.0 6.5 6.1	5.5 5.4 5.5 5.1 5.1 5.1	5.5 5.3 5.1 6.6 5.7 5.1	38 14 9.7 8.6 7.9
MEAN MAX MIN IN.	5.00 24 3.3 .93	20.7 185 4.2 3.70	6.27 12 4.3 1.16	7.54 20 4.4 1.39	10.3 67 4.4 1.72	12.0 47 5.9 2.22	13.5 44 5.9 2.42	42.0 157 7.2 7.78	17.5 105 5.3 3.14	10.0 78 5.1 1.86	8.01 29 4.5 1.48	24.6 177 4.5 4.42
					OF RECORD,							
MEAN MAX (WY) MIN (WY)	4.60 10.8 1980 1.72 1983	10.4 22.4 1986 2.04 1982	12.3 46.9 1984 2.57 1981	9.50 19.2 1982 1.67 1981	13.0 20.9 1984 2.95 1980	15.6 36.5 1983 5.11 1985	21.9 41.1 1983 3.50 1985	15.0 42.0 1989 4.48 1986	6.94 17.5 1989 2.74 1981	7.27 18.9 1984 1.89 1980	4.16 8.01 1989 1.33 1981	6.20 24.6 1989 1.85 1982
SUMMARY	STATISTI	cs		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST / HIGHEST LOWEST [INSTANT/ INSTANT/ INSTANT/	ANNUAL ME ANNUAL ME DAILY ME ANEOUS PE ANEOUS PE ANEOUS LO RUNOFF (1 ENTILE ENTILE	EAN EAN AN EAK FLOW EAK STAGE DW FLOW			14.8 185 3.3 826 4.53 3.1 32.26 26 6.8 3.7	Nov 20 Oct 5 Sep 20 Sep 20 Oct 5			6 1 22	0.5 8.2 .16 407 Apr .00 Sep 240a Aug 6.1b Aug .00 Sep .97 .21 4.8	11 1981 2 1973 2 1973	

a From rating curve extended above 600 ft³/s on basis of slope-area measurement of peak flow

b Site and datum then in use

01403535 EAST BRANCH STONY BROOK AT BEST LAKE AT WATCHUNG, NJ

LOCATION.--Lat 40°38'25", long 74°26'52", Somerset County, Hydrologic Unit 02030105, 700 ft upstream of dam on Best Lake in Watchung, 1,400 ft upstream of mouth, and 0.5 mi northeast of Watchung.

DRAINAGE AREA. -- 1.57 mi 2.

PERIOD OF RECORD. -- July 1980 to current year.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 193.87 ft above National Geodetic Vertical Datum of 1929 (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records fair. Records given herein represent flow over dam and leakage through ports in dam. Several measurements of water temperature were made during the year. Recording rain-gage and gage-height telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with Somerset County.

EXTREMES OUTSIDE PERIOD OF RECORD...Flood of August 2, 1973, reached a stage of 5.4 ft, present datum, from floodmarks, discharge, 2,840 ft³/s, by computation of flow over dam, embankment, and road.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, MI	EAN DAILY	VALUES		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	.48 .54 .65 .52	5.2 .70 .44 .44 3.8	3.2 2.7 2.3 1.1	.71 .71 .63 .60	1.3 .99 1.7 1.2 .94	1.6 1.1 1.1 1.0 1.3	7.0 4.7 5.4 4.8 4.6	1.7 36 6.5 4.7 7.9	.83 .70 .63 .61	.53 .51 .48 .48	.41 .39 .51 .40 .38	.38 .38 .37 .34 .32	
6 7 8 9	.48 .52 .91 .53	4.2 2.8 2.3 1.9 1.8	.88 .87 .83 .79 .74	.58 .57 2.3 2.0 .90	1.0 .96 .88 .80 .82	2.3 1.1 .96 1.0 1.2	7.6 5.8 6.0 5.2 4.2	7.7 5.9 5.9 39	2.0 3.9 2.6 20 22	3.6 1.4 3.0 .74 .62	.34 .32 .30 .25	.30 .30 .31 .30	
11 12 13 14 15	.49 .48 .46 .49	1.6 1.3 4.0 1.1	.68 .59 .56 .55	.82 4.5 3.5 1.8 7.4	.85 .82 .79 2.7 4.4	1.7 2.3 1.8 1.9 2.2	3.7 3.4 3.4 3.3	19 8.9 7.1 6.2 5.9	3.9 2.3 15 4.7 6.3	.66 .52 1.5 .61 .52	.46 3.9 .73 2.1 3.3	.29 .27 .26 1.1	
16 17 18 19 20	.63 .73 .83 .90 .87	.61 10 2.0 .90 51	.55 .54 .53 .51 .49	3.6 2.4 1.7 1.3 1.1	3.8 1.3 .95 .88 .87	1.2 1.0 2.3 1.8 1.1	13 6.3 5.0 4.5 3.4	34 33 9.1 6.6 5.9	5.4 3.8 2.3 1.4	3.3 4.5 .88 .83	.90 .51 .44 .58	1.6 1.5 .50 42 40	
21 22 23 24 25	5.3 4.8 .46 .47 .43	9.4 3.7 2.6 1.8 1.1	.65 .59 1.2 3.0 2.3	.87 .79 .79 .79	21 10 5.9 3.1 2.7	5.7 3.0 2.1 12 9.5	2.9 2.4 2.1 1.8 1.7	5.6 4.8 7.0 6.6 4.7	1.6 1.7 5.7 4.9 1.8	.86 .77 .67 .55	.71 .67 1.4 .61 .48	16 3.1 10 3.6 1.3	
26 27 28 29 30 31	.41 .41 .45 .44	1.0 2.2 31 4.9 3.7	.86 .72 1.7 1.2 .82 .76	.86 1.2 .81 .78 3.4 2.1	2.5 2.5 2.3 	4.8 3.8 3.4 2.7 4.4	1.3 1.0 .90 .96 3.7	3.7 3.5 2.4 1.5 1.1	.90 .77 .70 .62	.47 .43 .41 .40 .38	.42 .39 .37 .39 .47	8.7 2.5 1.0 .92 .86	
MEAN MAX MIN IN.	.84 5.3 .39 .62	5.27 51 .44 3.75	1.09 3.2 .49 .80	1.64 7.4 .54 1.20	2.78 21 .79 1.85	3.01 12 .96 2.21	4.34 13 .90 3.08	10.9 44 .92 7.98	3.97 22 .55 2.82	1.74 22 .38 1.28	.75 3.9 .21 .55	4.65 42 .26 3.31	
STATIST		ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD	BY WATE	R YEAR ((WY)					
MEAN MAX (WY) MIN (WY)	.95 2.12 1988 .24 1987	3.04 5.73 1986 .90 1983	3.15 10.1 1984 .52 1981	2.35 4.46 1982 .07 1981	3.82 5.75 1984 1.96 1987	3.67 9.02 1983 1.67 1981	5.14 10.2 1983 .82 1985	4.14 10.9 1989 1.25 1986	1.83 3.97 1989 .76 1981	1.67 4.53 1984 .36 1980	.77 1.51 1987 .09 1980	1.12 4.65 1989 .25 1983	
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR P	PERIOD OF	RECORD		
LOWEST / HIGHEST LOWEST I INSTANT/ INSTANT/ ANNUAL I 10 PERCI	ANNUAL MANNUAL MANNUAL ME MAILY ME	EAN EAN AN EAK FLOW EAK STAGE OW FLOW			3.41 51 .21 429 2.46 .19 29.49 6.7 1.1 .34	Nov 20 Aug 10 Sep 20 Sep 20 Aug 10	a. 4 4.		2.5 22.9 5.	67 68 79 Apr 80 Aug 84 Jul 66 Jul 90 N	7 1984		

01403540 STONY BROOK AT WATCHUNG, NJ

LOCATION.--Lat 40°38'12", long 74°27'06", Somerset County, Hydrologic Unit 02030105, on right bank at Watchung Borough Administration Building, 150 ft downstream from bridge on Watchung Avenue, and 2.9 mi upstream from confluence with Green Brook.

DRAINAGE AREA. -- 5.51 mi 2.

PERIOD OF RECORD. -- October 1974 to current year.

REVISED RECORDS.--WDR NJ-86-1: 1973 (P).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 172.24 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Occasional regulation from Watchung and Best Lakes directly upstream from station. Several measurements of water temperature were made during the

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 2, 1973, reached a stage of 14.5 ft, from floodmark, discharge, 10,500 ft³/s, from slope-area measurements of peak flow.

•	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.3 1.8 2.8 1.6 1.5	14 6.8 3.4 2.7	8.6 7.4 6.7 6.0 5.5	3.9 3.8 3.7 3.5 3.0	6.0 5.2 5.8 5.5 4.9	e6.4 e5.3 e5.2 e5.0 e5.6	e25 e16 e19 e16 e15	7.6 120 23 15 27	5.8 5.0 4.5 4.2 4.1	3.7 3.6 3.3 3.0 68	2.4 2.2 2.8 2.2 2.3	1.6 1.9 1.9 1.6 1.6
6 7 8 9 10	1.4 1.3 3.1 2.0 1.6	8.0 3.9 3.0 2.7 2.6	5.1 4.9 4.5 4.2 4.1	3.0 3.1 7.4 7.4 4.9	4.8 4.7 4.3 3.8 3.5	e8.0 e5.1 e4.6 e4.7 e5.3	e24 e19 18 14 12	156 32 21 17 132	9.7 19 12 57 66	12 7.6 14 5.9 5.0	2.1 2.1 1.9 1.9 2.0	1.5 1.5 1.4 1.4
11 12 13 14 15	1.5 1.4 1.4 1.2 1.3	2.7 2.3 10 5.9 3.7	4.0 3.5 3.4 3.2 3.1	4.4 15 10 6.5 23	3.4 3.5 3.3 6.7 9.6	e6.3 e7.2 e6.0 e6.1 e6.7	10 9.4 10 9.7 33	70 34 28 21 17	12 9.0 50 17 24	4.8 3.8 7.4 5.2 3.8	5.7 12 6.6 6.0 14	1.3 1.2 1.1 4.6 5.0
16 17 18 19 20	1.4 1.4 1.3 1.3	3.8 35 8.1 5.3 167	3.0 2.7 2.6 2.5 2.5	10 7.6 6.7 6.5 5.9	10 6.3 5.3 4.9 4.8	e5.1 e4.7 e8.5 e7.4 e5.6	41 17 13 12 10	123 107 35 24 19	21 14 11 8.8 7.9	10 17 6.4 5.1 6.5	6.4 3.6 3.0 3.9 3.7	5.0 7.2 2.6 151 135
21 22 23 24 25	12 17 3.6 2.8 2.5	34 12 9.0 7.5 6.4	3.6 3.5 4.9 11 8.8	5.1 4.7 4.4 4.3 4.4	68 e31 e19 e12 e10	e17 e9.8 e7.5 e35 e31	9.5 8.7 8.0 7.4 6.8	16 13 25 25 25 13	8.4 11 15 15 8.0	5.5 4.6 4.1 3.6 3.2	3.2 3.8 13 6.3 3.3	59 19 32 13 8.2
26 27 28 29 30 31	2.1 1.9 1.9 1.8 1.8	5.5 6.5 77 16 11	5.2 4.4 6.2 6.3 4.7 4.3	4.6 6.0 4.6 4.3 11 7.8	e9.3 e8.7 e8.1	e18 e14 e12 e9.9 e14 e37	6.3 5.7 5.3 5.4 14	11 11 9.1 7.6 6.9 6.4	6.6 5.6 5.0 5.2 4.4	2.9 2.7 2.5 2.3 2.3	2.6 2.2 2.1 2.2 2.5 1.8	34 10 7.5 6.5 5.5
MEAN MAX MIN IN.	2.62 17 1.2 .55	16.2 167 2.3 3.29	4.85 11 2.5 1.02	6.47 23 3.0 1.35	9.73 68 3.3 1.84	10.5 37 4.6 2.19	14.0 41 5.3 2.84	37.8 156 6.4 7.92	14.9 66 4.1 3.01	7.49 68 2.3 1.57	4.19 14 1.8 .88	17.5 151 1.1 3.54
STATIST		ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	4.84 15.1 1976 1.31 1983	9.26 22.2 1978 1.94 1977	12.1 37.1 1984 1.79 1981	13.2 37.5 1979 1.08 1981	13.3 20.1 1988 3.60 1980	16.8 31.9 1983 5.60 1985	17.6 38.3 1983 3.89 1985	13.5 37.8 1989 3.42 1986	6.59 18.0 1975 2.27 1980	6.93 32.1 1975 1.27 1977	3.55 8.08 1975 .81 1981	5.51 18.6 1975 .87 1983
SUMMARY	STATIST	ICS		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT	ANNUAL MANNUAL MANNUAL MANNUAL MANNUAL ME,	EAN EAN AN EAK FLOW EAK STAGE. OW FLOW			12.2 167 1.1 1200 6.32 .80 30.06 23 5.8 1.5	Nov 20 Sep 13 May 6 May 6 Sep 14			10 5 40 10 25	.00 Sep 420a Jul .40 Jul	1984 1981 14 1975 18 1982 14 1975 14 1975 13 1982	

a From rating curve extended above 500 ft³/s on basis of slope area measurement of peak flow

e Estimated

01405000 LAWRENCE BROOK AT FARRINGTON DAM, NJ

LOCATION.--Lat 40°27'00", long 74°27'05", Middlesex County, Hydrologic Unit 02030105, on left bank 300 ft upstream from Farrington Dam, 0.7 mi southwest of Milltown, and 5.4 mi upstream from mouth.

DRAINAGE AREA. -- 34.4 mi 2.

PERIOD OF RECORD. -- May 1927 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1432: 1959(P).

GAGE ... Water-stage recorder above concrete dam. Datum of gage is 25.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair except those below 15 ft³/s, which are poor. Records given herein include flow over dam and through blowoff gates. No gate opening this year. Flow regulated by Farrington Lake, capacity, 655,250,000 gal. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of gate openings furnished by employees of City of New Brunswick.

	DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.6 6.6 10 12 9.8	42 61 22 19 22	36 28 22 19 18	16 14 14 14 13	24 21 25 25 21	25 22 20 20 20	125 56 47 45 46	26 192 105 52 53	25 22 20 37 26	18 17 16 14 601	23 20 41 24 19	9.5 9.1 8.2 7.7
6 7 8 9	7.8 7.1 9.9 12 9.2	29 17 14 12 11	17 17 16 15	13 14 18 32 23	20 20 18 16 13	39 38 26 25 26	129 78 90 58 43	316 125 64 48 260	46 88 139 156 608	314 103 69 38 31	18 23 26 17 16	7.8 8.2 8.1 7.9 8.0
11 12 13 14 15	7.8 7.1 6.9 6.7 6.6	10 9.6 19 38 18	14 13 11 11 12	20 32 61 26 92	11 11 10 25 38	33 42 38 30 28	35 32 32 32 52	328 130 93 59 47	133 66 102 60 54	23 30	32 66 49 31 24	7.7 7.5 7.1 9.8 27
16 17 18 19 20	6.6 6.6 6.5 6.5	15 86 61 28 205	12 11 11 10 10	55 36 29 29 23	64 37 25 23 23	25 22 28 52 31	202 82 51 43 37	501 388 166 90 58	95 59 40 33 27	158 49 33 75	22 19 16 18 18	21 32 19 231 1090
21 22 23 24 25	15 112 28 16 12	197 87 53 33 26	14 18 18 28 36	20 18 18 16 16	128 230 111 56 40	68 49 32 92 204	35 31 29 28 26	44 38 76 150 66	28 32 36 61 37	76 41 34 28 24	18 20 17 24 17	1420 227 103 58 44
26 27 28 29 30 31	9.6 8.6 8.2 8.2 7.7 7.3	21 24 202 101 53	23 18 20 29 20 18	18 18 18 16 33 35	32 32 27	82 48 38 32 34 176	26 23 20 21 31	42 43 38 30 26 26	29 24 21 21 19	19	14 11 11 12 18 13	128 80 48 38 33
MEAN MAX MIN (†) MEAN*	12.6 112 6.5 +0.3 12.9	51.2 205 9.6 +0.6 51.8	18.0 36 10 -0.2 17.8	25.8 92 13 +0.1 25.9	40.2 230 10 0 40.2	46.6 204 20 +0.8 47.4	52.8 202 20 -0.8 52.0	119 501 26 -0.5 118	71.5 608 19 -0.1 71.4	601 14 +0.1	22.5 66 11 -0.3 22.2	124 1420 7.1 +0.4 124
STATIST	TICS OF N			R PERIOD	O OF RECORD	BY WATE	R YEAR ((YW)				
MEAN MAX (WY) MIN (WY)	20.9 132 1928 2.90 1981	35.4 133 1973 .00 1954	41.9 123 1974 4.77 1966	47.1 143 1979 .30 1966	54.9 126 1973 4.58 1980	66.0 142 1936 19.3 1981	56.0 124 1983 15.2 1966	41.8 119 1989 11.7 1965	26.0 89.7 1973 7.76 1966	197 1975 4.00	22.3 113 1971 2.35 1965	26.7 131 1975 3.96 1983
SUMMARY	STATIST	TICS		F	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	v i
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT 10 PERC 50 PERC	E* I ANNUAL I ANNUAL I I DAILY M DAILY M TANEOUS I	MEAN MEAN EAN PEAK FLOW PEAK STAGE			54.1 54.1 1420 6.5 4360 26.77 6.5 102 27 7.8	Sep 21 Oct 19 Sep 21 Sep 21 Oct 21			4	.00 Jul 920a Jul .93 Jul	1975 1981 1981 21 1975 12 1930 21 1975 21 1975 lany days	

a From rating curve extended above 1,100 ft³/s on basis of weir formula.
† Change in contents, in cubic feet per second, in Farrington Lake.
* Adjusted for change in contents.

01405030 LAWRENCE BROOK AT WESTONS MILLS, NJ

LOCATION.--Lat 40°28'59", long 74°24'45", Middlesex County, Hydrologic Unit 02030105, on left bank at dam on Weston Mill Pond in Westons Mills, 200 ft downstream from bridge on State Route 18, and 1.3 mi upstream from mouth.

DRAINAGE AREA. -- 44.9 mi² (revised).

PERIOD OF RECORD. -- December 1988 to September 1989. Water-quality records water years 1976-81.

GAGE.--Water-stage recorder above masonry dam. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for estimated daily discharges, which are fair. Records given herein include flow over dam and through bypass gates. No gate openings this period. Flow regulated by Farrington Lake, capacity, 655,250,000 gal. Diversion at gage by New Brunswick Water Department (records given herein). Several measurements of water temperature were made during the year.

COOPERATION.--Water-stage recorder inspected by and records of gate openings provided by employees of City of New Brunswick.

	DISCHARGE,	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1				26	e27	34	151	40	29	17	26	5.9
				26 25	e25	31 27	74	289	29 22	18	22 47	5.1
2 3 4 5				17	35	27	64	134	17	11	47	3.6 3.3
4		• • •		20	35	27	63	64	80	12	27	3.3
5	•••		•••	15	e25 35 35 28	30	69	69	32	950	20	3.0
6 7				16	28 27	57	162	470	68	531	14	1.9
(•••	•••		19	27	53	101	156	145	105	29	1.6
8	•••	•••		40	24	40	113	78	180	100	36	1.3 1.6 1.4
10				50 35	21	39 39	76	-56	212	36	19 14	1.0
	•••		•••	35	19		59	360	1040	29	14	1.4
11 12 13		•••		30	15 15 15	45 53	51	530	167	31	46	.81 .74
12	•••	• • •		e33	15	53	44	153	77	26 43	117	.74
13	•••	• • •		e66	15	48	43	107	131	43	73	.76
14 15		•••		e22	55 62	42	42 83	73 57	71	37	40	18
15	•••		•••	e141	62	41	83	57	67	29	29	34
16				e56	00	37	272	788	121	75	26	26
17				e35	90 51	37	100	630	77	229	19	26 43
18				e33	38	48	63	211	77 51	67	14	18
19	• • •			e31	32	72	63 54	104	38	41	20	572
19 20	•••		•••	e23	38 32 29	33 48 72 44	46	73	38 32	105	23	1770
21			• • • •	e21	252	89	41	60	30	96	20	2200
21 22 23 24 25	•••		30	e17	252 327	64	41 37	50	30 34	50	20 35	249
23			33	e16	134	44	33 29	113	37	39	22 33 15	88
24			49 53	e16	63 47	141	29	208	66 43	29 22	33	36
25		•••	53	e17	47	277	30	90	43	22	15	30
26 27 28 29 30			34 27 39 54	e19	43	94	28	58	30	21	8.7	176
27		• • •	27	e17	44	63	28 27 26 29 54	58 52	21	20	7.0	93
28	• • • •	• • •	39	e17	38	54	26	52	20	35	6.1	51
29		• • •	54	e16		46	29	40 35	17	24	36	40
30		•••	35	e38		49		35	13	20	38	34
31	•••		29	e39	•••	210	•••	31		27	9.0	
MEAN				31.2	57.8	63.6	68.8	169	98.9	92.7	28.7	184
MAX	• • •			141	327	277	272	788	1040	950	117	2200
MIN	•••			15	15	.16	26	31	13	11	6.1	.74
(†)	1.05	.91	.58	-14	0	.16	.88	1.44	3.14	2.60	1.61	2.32
SUMMARY	STATISTICS						FOR F	PERIOD OF	RECORD			
LOWEST DINSTANTA	DAILY MEAN DAILY MEAN ANEOUS PEAK ANEOUS PEAK ANEOUS LOW F	STAGE					485 19.2	74 Sep 50a Sep 20 Sep	21			

a From rating curve extended above 1,000 ft³/s.

e Estimated
† Diversion, in cubic feet per second, by City of New Brunswick for municipal supply.

01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°22'55", Middlesex County, Hydrologic Unit 02030105, at bridge on Mundy Avenue in Spotswood, 0.2 mi upstream from mouth, 0.5 mi east of De Voe Lake dam, and 3.4 mi southeast of Tanners Corners.

DRAINAGE AREA. -- 44.1 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CU F TIME P	BIC CO EET DU ER AN	FIC N- P CT- (ST CE A	AND- AT	URE D	GEN, (I	DLVED BI PER- CH CENT IC ATUR- 5	AND, COL O- FOR EM- FEC AL, EC DAY BRO	RM, CAL, STREP-
OCT_1988		100				_111111	1 95		
17 JAN 1989	1200	9.5E	316	7.4 1	2.0	7.9	73 E	2.0 130	0 33
19 APR	1230	48 E	278	6.2	5.0 1	2.2	96 E	2.1 <20	0 13
18	1230 1	05 E	218	4.8 1	1.0 1	2.2	111 <	1.0 20	0 33
JUN 06	1030	88 E	258	6.8 1	8.5	8.0	86 <	0.9 220	0 >2400
JUL 25	1030	68 E	273	6.8 2	0.0	6.8	75 E	1.3 33	0 1600
AUG 09 23	1400 1100	55 E	260 247		0.5	7.1 7.1		(0.7 50 (0.1 79)	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT_1988	00	77	7.0	20		70	40	70	0.4
17 JAN 1989	98	33	3.8	28	5.4	30	60	32	0.1
19 APR	54	15	4.0	17	3.7	7.0	56	23	0.1
18 JUN	52	15	3.6	12	2.6	<1.0	55	17	0.2
JUL 06	67	21	3.5	16	4.3	6.0	52	20	0.1
25 AUG	62	19	3.5	15	4.0	8.0	46	20	0.2
09 23	60 60	18 18	3.6	16 16	3.7 4.0	5.0 8.0	50 47	23 23	0.1 0.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 17	12	192	0.103	9.20	0.27	0.78	10	0.04	3.9
JAN 1989	-								
19 APR	9.9	133	<0.009	1.11	2.90	3.3	4.4	0.13	4.9
18 JUN	8.9		0.013	1.61	0.17	0.33	1.9	0.07	2.7
06	9.8	130	0.009	4.36	0.19	0.80	5.2	0.11	4.8
25 AUG	11	123	0.007	3.82	0.17	0.55	4.4	0.07	3.9
09 23	10 11	127 128	0.013 0.008	3.35 4.01	0.20 0.13	0.46	3.8 4.5	0.05	4.1 3.5

01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ--Continued

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 IN RG. GA IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC II . IN I MAT SO /KG (I	DLVED TO	TO IN ENIC TON TAL TE G/L (U	DTAL LI BOT- TO MA- RE ERIAL EF JG/G (U	DTAL TO ECOV- RE RABLE ER JG/L (U	TAL TO COV- RE ABLE ER	CADMIUM MIUM RECOV. TAL FM BOT- COV- TOM MA- ABLE TERIAL G/L (UG/G CD) AS CD
OCT 1988 17 17			30	0.1	6.9	<10	<1	5	<10	70	<1 <10
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988 17 17	<1	6	<50	5	5	1200	8600	<5	<100	120	25
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	(UG/G	PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 17 17	<0.10	0.02	8	 <100	<1	 <1	30		2	 <1	 <1.0
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL	ETHION, TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 17 17	 <0.1	5.0	0.8	0.8	0.5	0.7	0.2	 <0.1	 <0.1	<0.1	 <0.1
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	MATL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	PER- THANE IN BOT- TOM MA- TERIAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 17 17	0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	<1.00	<10	 <0.1

01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ

LOCATION.--Lat 40°17'46", long 74°23'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Federal Road, 2.6 mi north of Manalapan, 3.1 mi southwest of Matchaponix, 3.3 mi downstream of Still House Brook, and 4.1 mi northeast of Applegarth.

DRAINAGE AREA .-- 20.9 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH I	NST. CI UBIC CO FEET DU PER AN	ICT- (S	TAND- ARD	EMPER- ATURE WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	BIO- CHEM- ICAL, 5 DAY	EC TO BROTH F	TREP- COCCI ECAL MPN)
OCT 1988	4470 -									
19 FEB 1989	1130 E	4.7	••	8.5	11.5	9.8	••	<1.0	20 3	50
07 APR	1100 E	16	172	7.2	1.5	15.2	109	<0.8	50	14
11 JUN	1200 E	26	139	7.1	8.5	11.7	99	<0.8	<20	11
07	1030 E	42	121	7.0	19.0	7.6	83	E2.0 1	700 >24	00
JUL 27	1330 E	23	135	7.0	25.0	8.0	98	E1.2	110 9	220
AUG 02	1030 E	26	122	6.6	20.0	9.1	100	<0.9	130 16	500
DATE	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG/L	DI: SOL' (MG	UM, LINI S- L/ VED (MC /L AS	ITY SULF AB DIS G/L SOL	- DIS- VED SOLVE /L (MG/L	RIDE, DIS- DIS- CMG/L)
OCT 1988 19	37	8.5	3.9	7.6		.2 10	24	15	0.1	
FFR 1989		40.1								
07 APR	37		3.7	9.5			.0 29		0.2	
11 JUN	34	8.0	3.4	6.4	3	.6 2	.0 27	13	0.2	
07 JUL	32	7.4	3.2	6.7	7 2	.3 8	.0 18	13	0.2	
27	33	8.0	3.2	7.0	3	.3 9	.6 18	15	0.2	
02	34	8.0	3.3	6.3	3 2	.6 10	16	12	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN.	GE AMMO TOT. (MG	RO- GEN N, MON NIA ORGA AL TO /L (MO	TRO- ,AM- IA + NIT ANIC GE TAL TOT G/L (MG N) AS	N, PHOROL AL TOTAL /L (MG/L	JS ORGANIO TOTAL (MG/L	
OCT 1988 19	9.1	77	0.007	1.30) <0.	05 0	.25 1.	5 0.05	2.4	
FEB 1989 07	10	83	0.006				.14 2.		1.5	
APR 11	8.9	72	0.005				.30 1.		2.2	
JUN 07										
JUL	8.3	64	0.017				.65 2.		6.2	
27	9.7	70	0.023				.41 1.		5.6	
02	9.3	64	0.032	1.87	7 <0.	05 0	.48 2.	4 0.12	4.8	

01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ--Continued

DATE	TIME (N	GEN + O FIDE TOT TAL BOT IG/L (M	NH4 IN RG. GA IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC III . IN II MAT SO /KG (I	DLVED TO JG/L (I	TO IN SENIC TO TAL TO JG/L (1	DTAL L BOT- T M MA- R ERIAL E JG/G (OTAL TO ECOV- RE RABLE ER UG/L (L	TAL TO COV- RE RABLE ER IG/L (U	MIUM REITAL FM ICOV- TOM ABLE TEIG/L (U	MIUM COV. BOT- MA- RIAL IG/G CD)
OCT 1988 19 19	1130 1130	-0.5	10	0.2	6.1	40	<1	9	<10	<10	<1	 <10
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 19 19	<1	10	<10	3	3		23000	<5	<100	60	95	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	. PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 19 19	<0.10	0.01	5	<100	<1	 <1	20		1	<1	<1.0	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 19 19	 <0.1	<1.0	3.0	1.6	0.9	<0.1	 <0.1	<0.1	 I <0.1	<0.1	<0.1	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	BOTTOM MATL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL		THANE IN BOT- TOM MA- TERIAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 19 19	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	<0.1	 1 <1.00	<10	 <0.1	

01405400 MANALAPAN BROOK AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°23'27", Middlesex County, Hydrologic Unit 02030105, on right bank of DeVoe Lake Dam in Spotswood, 0.1 mi upstream from Cedar Brook, and 0.6 mi upstream from confluence with Matchaponix Brook.

DRAINAGE AREA .-- 40.7 mi 2.

PERIOD OF RECORD. -- January 1957 to current year.

REVISED RECORDS .-- WSP 1722: 1957-60.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Duhernal Water System). January 1957 to September 1966 at datum 17.72 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge given herein includes flow through waste gates when open. Gates open Dec. 20 to Mar. 22, July 23-24, and Sept. 20-23. Some regulation by Lake Manalapan, Helmetta Pond, and DeVoe Lake. Several measurements of water temperature were made during the year.

year.												
	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
AY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.0 11 17 15 11	34 50 56 34 32	58 46 41 37 34	e31 e32 e32 e31 e27	e39 e31 e30 e36 e37	e46 e43 e40 e39 e39	121 83 62 62 63	50 104 144 78 60	44 40 35 45 43	34 31 31 24 67	61 55 81 90 58	40 37 35 32 31
6 7 8 9	9.8 8.8 13 16 11	36 28 29 23 24	33 31 31 29 29	e27 e34 e40 e47 e46	e34 e32 e31 e29 e26	e49 e59 e51 e44 e43	108 105 120 117 75	145 180 90 62 124	58 96 90 74 320	414 370 130 81 61	44 55 81 67 55	31 31 31 30 29
11 12 13 14 15	8.1 12 8.0 7.6 8.8	24 22 25 28 18	27 22 23 24 25	e38 e37 e45 e45 e50	e26 e26 e26 e29 e36	e45 e49 e50 e48 e46	57 50 49 67 38	345 359 129 81 63	373 104 92 88 78	49 44 47 64 54	67 152 333 339 162	29 28 27 35 52
16 17 18 19 20	7.7 7.0 8.3 8.1 7.6	38 44 62 43 95	26 23 23 24 e24	e56 e53 e45 e41 e35	e44 e42 e36 e32 e31	e52 e53 e44 e44 e48	164 150 80 65 57	161 363 312 129 85	92 130 124 112 67	57 201 192 86 83	122 98 74 70 61	47 67 71 145 836
21 22 23 24 25	14 72 69 41 28	196 99 53 40 35	e27 e31 e33 e36 e43	e30 e27 e27 e29 e29	e50 184 231 e97 e74	e55 e56 51 53 138	51 47 43 41 39	66 55 59 129 150	61 122 64 78 61	241 441 e129 e91 61	55 52 55 74 61	e1200 e425 e148 87 69
26 27 28 29 30 31	24 19 17 16 14 7.4	33 35 172 240 97	e40 e34 e34 e37 e36 e33	e29 e27 e24 e26 e35 e44	e52 e46 e48	184 136 76 54 50	39 38 36 35 47	92 70 133 81 54 48	52 47 41 39 36	52 49 143 98 61 58	46 41 38 37 53 54	121 178 101 71 61
MEAN MAX MIN	17.0 72 7.0	58.2 240 18	32.1 58 22	36.1 56 24	51.2 231 26	60.5 184 39	70.3 164 35	129 363 48	90.2 373 35	114 441 24	86.8 339 37	137 1200 27
TATIST	ICS OF MONT	HLY FLOW	DATA FO	R PERIOD	OF RECORD,	BY WATER	R YEAR (WY)				
EAN IAX WY) IIN WY)	39.5 81.5 1976 13.7 1983	59.4 154 1978 21.7 1966	76.1 156 1984 27.4 1981	77.4 186 1978 21.1 1981	83.6 139 1979 44.0 1980	93.1 163 1958 37.0 1985	87.5 154 1983 31.1 1985	70.1 148 1984 26.5 1977	47.2 109 1968 17.4 1966	46.1 141 1975 4.40 1966	42.8 112 1971 5.56 1966	43.1 137 1989 11.6 1965
SUMMARY	STATISTICS	3		FO	R 1989 WATE	R YEAR			FOR F	PERIOD OF F	RECORD	
HIGHEST LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT INSTANT 10 PERC	/Y) 1976 1978 1984 1978 1979 1958 1983 1984 1968 1975 1971 1989 N 13.7 21.7 27.4 21.1 44.0 37.0 31.1 26.5 17.4 4.40 5.56 11.6											
a Wa	ste gates d	open				Winds						

01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'26", long 74°23'26", Middlesex County, Hydrologic Unit 02030105, at bridge on Bridge Street in Spotswood, 150 ft downstream from Cedar Brook, and 400 ft below DeVoe Lake Dam.

DRAINAGE AREA .-- 43.9 mi 2.

PERIOD OF RECORD. -- February 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

						-												
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECONI	CIII COI DUC ANG	FIC V- CT-		AND - RD	TEMP ATL WAT	IRE ER	SO	GEN, IS- DLVED IG/L)	S() () ()	GEN, DIS- DLVED PER- CENT ATUR- TION)	OXYGE DEMAI BIO CHEI I CAI 5 D/ (MG/	ND, M- AÝ	FORI FEC EC BRO (MPI	M, AL, TH	STREP TOCOCC FECAL (MPN)	I
OCT 1988 17	1100	E9.	7	129		8.0	11	.5		7.0		64	E1	.0	80		540	
JAN 1089 19	1030	E48		121		5.2		50	1	1.8		93	<0		<20		13	
APR 18	1000	E94		133		4.9).5		11.8		105	<1		<20		170	
JUN 06	1200	E55		110		6.4		7.0		7.9		83	E1		2200		430	
JUL 25	1130	E75		110		5.2		1.5		8.0		90	E1		50		350	
AUG 09	1130	E116		126		6.4		9.5					<0		80		350	
23	1300	E156		120		6.0		1.0		7.9		90	E1	.4	70		920	
DATE	HARI NESS TOTA (MG, AS CAC	S CA AL D /L S	LCIUM IS- OLVED MG/L S CA)	MAG SI DI SOL (MG AS	UM, S- VED /L	SOD I DIS SOLV (MO	ED	SO SO (M	TAS- IUM, IS- LVED G/L K)	LIN L (M	KA- IITY AB IG/L IS ICO3)	SULF DIS SOL (MG AS S	- VED /L	CHLO RIDI DIS SOL' (MG, AS	E, VED /L	FLUC RIDI DI: SOL' (MG AS	E, S- VED /L	
OCT 1988 17		30	5.9	3	.8	1	7.0		2.1	3	3.0	18		13		<0		
JAN 1989 19		27	5.2		.4		5.4		2.6		1.0	22		12		0		
APR 18		32	7.4		.2		7.1		2.2		1.0	28		13			.1	
JUN 06		25	5.5		.8		5.4		1.9		2.0	18		12			.1	
JUL 25		26	6.1		.5		5.8		2.2		1.0	21		11			.1	
AUG 09		28	6.3		.0		7.1		2.4		2.0	21		12			.1	
23		31	7.3		.1		5.8		0		2.0	24		13		0	.1	
DATE	SILI DIS SOL (MG AS SIO	CA, SU - CO VED TU /L S	M OF MSTI- ENTS, DIS- OLVED MG/L)	NIT GE NITR TOT (MG AS	N, ITE AL /L	NO2- TO	TRO- EN, HNO3 FAL G/L N)	AMM TC	TRO- EN, IONÍA ITAL IG/L	GEN MON OR (TRO- N,AM- NIA + GANIC OTAL MG/L S N)	NIT GE TOT (MG AS	N, AL /L	PHO PHOR TOT (MG AS	OUS AL /L	CARB ORGA TOT (MG AS	NIČ AL /L	
OCT 1988	7	.4	59	0.	005	2	.40	<۱	.05	(0.46	2.	•	<0.0	2	2.7		
17 JAN 1989 19	_	.2			003		.61		.09		0.48	3.		0.0		4.9		
APR 18		.9			006		.74		.21		0.48	1.		0.0		3.1		
JUN 06		.6	54		006		.44		.11		0.96	2.		0.0		9.7		
JUL 25		.7	58		018		.39		.05		0.71	2.		0.0		6.1		
AUG 09		.2	60		010		.72		.06		0.51	1.		0.0		6.4		
23		.0	73		005	1.	.52		.10		88.0	ż.	4	0.0		5.1		

01405440 MANALAPAN BROOK AT BRIDGE STREET AT SPOTSWOOD, NJ--Continued

		NITRO- GEN,NH4 + ORG. TOT IN BOT MAT	CARBON, INOR- GANIC, TOT IN BOT MAT	CARBON, INORG + ORGANIC TOT. IN BOT MAT	ARSENIC TOTAL IN BOT- TOM MA- TERIAL	CADMIUM RECOV. FM BOT- TOM MA- TERIAL	CHRO- MIUM, RECOV. FM BOT- TOM MA-	COBALT, RECOV. FM BOT- TOM MA- TERIAL	COPPER, RECOV. FM BOT- TOM MA- TERIAL	IRON, RECOV. FM BOT- TOM MA- TERIAL
DATE	TIME	(MG/KG AS N)	(G/KG AS C)	(GM/KG AS C)	(UG/G AS AS)	(UG/G AS CD)	TERIAL (UG/G)	(UG/G AS CO)	(UG/G AS CU)	(UG/G AS FE)
OCT 1988						Marile .				
17	1100	320	<0.1	18	3	<10	4	<50	6	7100
	LEAD, RECOV. FM BOT- TOM MA- TERIAL	MANGA- NESE, RECOV. FM BOT- TOM MA-	MERCURY RECOV. FM BOT- TOM MA- TERIAL	NICKEL, RECOV. FM BOT- TOM MA- TERIAL	SELE- NIUM, TOTAL IN BOT- TOM MA-	ZINC, RECOV. FM BOT- TOM MA- TERIAL	PCB, TOTAL IN BOT- TOM MA-	PCN, TOTAL IN BOT- TOM MA-	ALDRIN, TOTAL IN BOT- TOM MA-	CHLOR- DANE, TOTAL IN BOT- TOM MA-
DATE	(UG/G AS PB)	TERIAL (UG/G)	(UG/G AS HG)	(UG/G AS NI)	TERIAL (UG/G)	(UG/G AS ZN)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)
OCT 1988										
17	30	3	0.04	<100	<1	20	36	<1.0	1.0	18
	DDD, TOTAL IN BOT- TOM MA-	DDE, TOTAL IN BOT- TOM MA-	DDT, TOTAL IN BOT- TOM MA-	DI- AZINON, TOTAL IN BOT- TOM MA-	DI- ELDRIN, TOTAL IN BOT- TOM MA-	ENDO- SULFAN, TOTAL IN BOT- TOM MA-	ENDRIN, TOTAL IN BOT- TOM MA-	ETHION, TOTAL IN BOT- TOM MA-	HEPTA- CHLOR, TOTAL IN BOT- TOM MA-	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM
DATE	(UG/KG)	TERIAL (UG/KG)	(UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	(UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	MATL. (UG/KG)
OCT_1988										
17	13	<1.0	<1.0	<0.1	0.2	0.6	<0.1	<0.1	<0.1	0.1
	LINDANE TOTAL IN BOT- TOM MA-	MALA- THION, TOTAL IN BOT- TOM MA-	METH- OXY- CHLOR, TOT. IN BOTTOM	METHYL PARA- THION, TOT. IN BOTTOM	METHYL TRI- THION, TOT. IN BOTTOM	MIREX, TOTAL IN BOT- TOM MA-	PARA- THION, TOTAL IN BOT- TOM MA-	PER- THANE IN BOT- TOM MA-	TOXA- PHENE, TOTAL IN BOT- TOM MA-	TRI- THION, TOTAL IN BOT- TOM MA-
DATE	TERIAL (UG/KG)	TERIAL (UG/KG)	MATL. (UG/KG)	MATL. (UG/KG)	MATL. (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)	TERIAL (UG/KG)
OCT_1988			ie 15		141					
17	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<1.00	<10	<0.1

RESERVOIRS IN RARITAN RIVER BASIN

01396790 SPRUCE RUN RESERVOIR.--Lat 40°38'30", long 74°55'19", Hunterdon County, Hydrologic Unit 02030105, at dam on Spruce Run, 0.5 mi north of Clinton, and 0.6 mi upstream from mouth. DRAINAGE AREA, 41.3 mi². PERIOD OF RECORD, November 1963 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929

REMARKS.--Reservoir is formed by earthfill dam with concrete spillway; dam completed in October 1963 with crest of spillway at elevation 273.00 ft. Usable capacity, 11,000,000,000 gal. Dead storage 300,000 gal. Reservoir used for water supply and recreation. Outflow mostly regulated by gates. Water is released to maintain minimum flow on the South Branch Raritan River and, at times, for municipal supply. Records given herein represent usable capacity

COOPERATION.--Records provided by New Jersey Water Supply Authority.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 11,640,000,000 gal, Apr. 2, 1970, elevation, 274.38 ft; minimum observed, 3,100,000,000 gal, Oct. 18, 1983, elevation, 246.68 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,260,000,000 gal, June 24, elevation, 273.53 ft; minimum observed, 6,070,000,000 gal, Sept. 19, elevation, 259.05 ft.
REVISED RECORDS.--WDR NJ-84-1: (M). WDR NJ-85-1: 1984.

01397050 ROUND VALLEY RESERVOIR.--Lat 40°36'39", long 74°50'42", Hunterdon County, Hydrologic Unit 02030105, at main dam on Prescott Brook, 1.8 mi south of Lebanon, 3.2 mi upstream from mouth, and 4.5 mi west of Whitehouse. DRAINAGE AREA, 5.7 mi². PERIOD OF RECORD, March 1966 to current year. Nonrecording gage read daily. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir is formed by earthfill dam at main dam on Prescott Brook and two dams on South Branch Rockaway River at Lebanon; storage began in March 1966. Capacity at spillway level, 55,000,000,000 gal, elevation, 385.00 ft. Reservoir is used primarily for storage and is filled by pumping from South Branch Raritan River at Hamden Pumping Station (see following page). Outflow is controlled by operation of gates in pipe in dams. Water is released into South Branch Rockaway Creek and Prescott Brook.

COOPERATION.--Records provided by New Jersey Water Supply Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 55,400,000,000 gal, June 15, 1975, elevation, 385.63 ft; minimum observed (after first filling), 37,100,000,000 gal, Feb. 9, 1981, elevation, 361.30 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 53,960,000,000 gal, June 25, elevation, 383.76 ft; minimum observed, 52,170,000,000 gal, Feb. 13, elevation, 381.55 ft.

REVISED RECORDS.--WDR NJ-85-1: 1984.

ate	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	11	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	0139679	O SPRUCE RUN	RESERVOIR		01397050	ROUND VALLEY RE	SERVOIR
Sept. 30	270.63 269.22 272.68 272.66	10,000 9,450 10,870 10,870	-27.5 +73.2		382.80 382.22 382.36 381.92	53,200 52,720 52,860 52,520	-24.0 +7.2 -17.0
CAL YR 1988	•	•	+.1			-	-1.6
Jan. 31	272.89 273.01 273.15 272.99 273.02 273.04 270.85 266.64 263.00	10,960 11,000 11,090 11,000 11,010 11,030 10,100 8,500 7,250	+4.5 +2.2 +4.5 -4.5 +1.0 -46.4 -79.8 -64.5		381.76 381.73 382.13 382.32 383.36 383.68 383.68 383.39 382.83 383.04	52,360 53,330 52,670 52,830 53,660 53,890 53,690 53,230 53,440	-8.0 -1.7 +17.0 +8.3 +41.4 +11.9 -10.0 -23.0 +10.8
WTR YR 1989		-	-11.7		•		+1.0

^{*} Elevation at 0800 on first day of following month.

DIVERSIONS IN RARITAN RIVER BASIN

- 01396920 Water is diverted 4.0 mi upstream from the gaging station on South Branch Raritan River at Stanton (see station 01397000), at the Hamden Pumping Station, for storage in Round Valley Reservoir. Records provided by New Jersey Water Supply Authority.

 REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01400509 Elizabethtown Water Company diverts water from the Raritan and Millstone Rivers just upstream from the mouth of the Millstone River at Manville. Records given herein represent the total diversion from both rivers. Records provided by the Elizabethtown Water Company.
- 01400836 Water is diverted from Carnegie Lake (Millstone River) at Princeton to the Delaware and Raritan Canal at the aqueduct 2.3 mi upstream from the gaging station on the Delaware and Raritan Canal at Kingston (station 01460500). Negative discharge indicates flow from Canal to Carnegie Lake. Records provided by New Jersey Water Supply Authority.
 REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01402910 Water is diverted from the Raritan River just below the Millstone River to the Delaware and Raritan Canal at Ten Mile Lock for municipal supply. Negative discharge indicates flow from Canal to Millstone River. Records provided by the New Jersey Water Supply Authority.

 REVISED RECORDS.--WDR NJ-85-1: 1984.

01460570 Elizabethtown Water Company diverts water from the Delaware and Raritan Canal 1200 ft downstream from Ten Mile Lock at Manville for municipal supply. Records provided by the Elizabethtown Water Company.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MONTH	01396920 HAMDEN PUMPING STATION	01400509 RARITAN AND MILLSTONE RIVERS	01400836 CARNEGIE LAKE	01402910 TEN MILE LOCK DIVERSION	01460570 DELAWARE AND RARITAN CANAL
October	0	137 135 142	-10.5 0	-18.6 -34.0 -38.6	30.8 22.2 19.5
CAL YR 1988	0	151	9	-33.2	21.3
January	0 0 0 0 0 0	143 154 152 149 158 164 170 170 158	0 0 0 -76.0 -40.2 0	-27.1 -5.9 -35.0 -31.4 -6.5 14.4 -32.5 -32.5	20.5 3.6 4.8 10.5 3.2 4.1 1.1 1.2 14.7
WTR YR 1989	0	153	-10.6	-23.5	11.4

NAVESINK RIVER BASIN

01407500 SWIMMING RIVER NEAR RED BANK, NJ

LOCATION.--Lat 40°19'10", long 74°06'55", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft upstream from spillway at Swimming River Reservoir, 3.3 mi southwest of Red Bank, and 4.8 mi upstream from mouth. Water-quality samples collected at bridge on Swimming River Road, 800 ft downstream from gaging station.

DRAINAGE AREA. -- 49.2 mi 2.

PERIOD OF RECORD. -- August 1922 to current year.

REVISED RECORDS.--WDR NJ-83-1. Drainage area. WSP 891: 1939.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 30.00 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 19, 1962, at site 800 ft upstream at datum 17.67 ft lower. Jan. 19 to Mar. 30, 1962, nonrecording gage, 700 ft upstream at datum 13.87 ft lower.

REMARKS.--Records fair above 10 ft³/s and poor below. Records given herein represent flow over spillway and flow or leakage through blowoff gates. Diversion above station for municipal supply. Flow regulated by Swimming River Reservoir. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and record of diversion furnished by New Jersey-American Water Co.

EXTREMES OUTSIDE PERIOD OF RECORD.--A flood in July 1919 reached a stage of 7.84 ft (site and datum then in use), from floodmark, discharge about 11,800 ft³/s.

	DISCHARGE	CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	12 12 11 10 11	99 48 40 39 36	46 256 133 58 54	49 39 32 50 43	20 15 11 9.1 588	70 48 38 35 29	22 18 14 10 8.4
6 7 8 9 10	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	21 33 28 25 24	61 52 156 79 48	179 100 50 43 329	143 150 93 98 609	502 110 106 59 36	24 22 25 21 18	7.6 6.7 5.6 4.6 3.5
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	25 30 29 26 26	36 32 31 33 42	743 194 101 78 67	144 61 115 78 59	30 26 37 48 33	152 769 553 176 102	2.3 1.7 1.3 2.1
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	23 19 17 39 32	257 97 52 44 37	483 556 280 127 92	142 177 272 86 54	40 374 101 53 174	115 63 40 40 43	33 104 43 247 473
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .01 .92 3.0 4.5	53 43 31 99 370	34 31 28 27 26	75 62 73 176 136	57 90 113 64 46	327 103 65 44 36	35 32 36 36 26	255 78 47 35 33
26 27 28 29 30 31	.00 .00 .00 .00 .00	.00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	5.9 9.0 10 	91 51 41 32 31 94	28 29 26 28 58	78 147 170 74 51	38 35 31 30 26	32 33 702 118 52 65	22 18 15 15 37 29	219 115 50 38 34
MEAN MAX MIN (†) MEAN*		.00 .00 .00 53.2 53.2	.00 .00 .00 41.4 41.4	.00 .00 .00 46.6 46.6	1.19 10 .00 62.5 63.7	44.8 370 10 44.8 89.0	54.5 257 26 54.5 93.0	163 743 43 163 201	101 609 26 101 120	127	86.6 769 15 86.6 130	64.3 473 1.3 64.3 111
STATIST			W DATA FO		OF RECORD,	BY WATE	R YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	.00	58.4 208 1973 .00 1981	70.1 196 1978 .00 1981	79.3 248 1978 .00 1981	94.1 201 1979 1.19 1989	103 184 1984 18.1 1985	94.3 209 1980 2.93 1962	71.5 183 1984 4.07 1985	50.1 135 1972 .00 1985	43.5 187 1938 .00 1966	39.3 128 1955 .00 1957	40.6 210 1938 .00 1980

NAVESINK RIVER BASIN

01407500 SWIMMING RIVER NEAR RED BANK, NJ--Continued

SUMMARY STATISTICS	FOR 1989 WATER	YEAR	FOR PERIOD	OF RECORD
AVERAGE FLOW AVERAGE* HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENTILE 50 PERCENTILE	769 .00 2040 6.33 0 27.13	Aug 12 Oct 1 Jul 5 Jul 5 Many days Unadjusted	22.60 127 49	1928 1985 Oct 27 1945 Oct 27 1943 Oct 27 1943 Oct 27 1943 Many days Unadjusted
50 PERCENTILE 95 PERCENTILE	.00		.00	

From rating curve extended above 1,000 $\rm ft^3/s$ on basis of weir formula, site and datum then in use. Diversion and change in contents, in cubic feet per second, from Swimming River Reservoir. Adjusted for change in contents.

SHARK RIVER BASIN 01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°11'56", long 74°04'14", Monmouth County, Hydrologic Unit 02030104, on left bank 100 ft upstream from bridge on Remsen Mill Road, 0.3 mi downstream from Robins Swamp Brook, and 1.7 mi west of Neptune City.

DRAINAGE AREA.--9.96 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1966 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 7.05 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for estimated daily discharges, which are fair. Diversion above station by New Jersey American Water Co. for municipal supply (records given herein) and by farmers for irrigation. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of diversion provided by New Jersey-American Water Co.

ooor Entre	DISCHA	RGE, CUBIC	FEET PE	R SECOND,	WATER YE	AR OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.07 .29 2.3 2.2 1.2	34 17 12 7.3 4.2	8.6 7.1 6.5 6.3	e4.5 e4.6 e4.3 e4.3 e3.5	8.7 e6.2 e6.3 e6.3	e9.9 e9.6 e9.6 e10	26 15 15 18 17	13 140 44 19 20	8.0 7.2 5.7 9.6 8.1	4.3 3.7 3.0 2.8 e197	9.3 6.6 5.8 4.9 4.0	e10 e7.0 e6.0 e5.6
6 7 8 9	1.7 3.0 9.5 3.3 3.9	4.4 8.4 5.4 6.3 6.7	6.0 5.8 5.5 5.6 4.6	e4.1 e4.1 e9.5 20 14	e6.1 e6.0 e5.9 e5.7 e5.4	19 10 8.4 9.7	26 21 78 31 22	43 27 15 11 172	32 21 18 22 40	e75 17 15 6.5 6.9	4.6 8.5 6.5 4.4 4.0	5.5 5.3 5.3 5.6
11 12 13 14 15	2.4 2.1 3.8 4.0 4.5	6.9 6.6 6.1 12 8.5	4.6 3.4 3.3 3.4 3.2	13 18 17 13 24	e5.2 e5.1 e5.0 e5.5 e6.2	14 15 14 13	18 16 16 16 25	305 60 31 28 25	17 9.6 17 13 11	5.7 4.7 12 9.4 5.9	111 143 96 79 46	5.3 5.2 5.2 14 20
16 17 18 19 20	4.5 4.6 4.7 4.9 4.4	7.4 25 12 9.1 35	3.2 3.2 3.1 3.0 3.0	17 14 13 10 5.6	e6.9 e6.6 e6.1 e5.8 e5.7	13 12 15 15 10	75 30 22 19	83 132 61 26 17	42 72 58 23 12	18 151 31 10 29	48 21 13 12 11	25 82 24 99 68
21 22 23 24 25	15 97 9.8 6.0 4.9	32 15 9.6 8.4 7.3	4.7 6.8 6.5 8.6 8.2	4.6 4.2 4.1 4.6 5.2	e23 e46 27 15 10	21 8.7 9.1 83 144	10 5.9 8.4 9.5	12 e14 e20 e34 e23	10 11 9.9 8.4 7.0	59 21 13 13	9.0 11 21 14 12	29 22 13 11 10
26 27 28 29 30 31	4.6 4.2 4.4 4.6 4.2 4.2	6.7 8.4 56 20 12	6.1 7.6 e5.0 e7.2 e4.9 e4.8	4.5 2.6 1.8 6.3 12	9.8 9.5 9.1	36 21 15 12 15 31	9.4 7.5 10 31	e15 e15 14 13 10 8.9	6.7 9.3 6.0 5.8 5.1	9.1 5.6 7.0 5.6 4.8 13	12 12 12 18 55 22	103 40 19 11 9.9
MEAN MAX MIN (†)	7.30 97 .07 7.4	13.7 56 4.2 7.6	5.36 8.6 3.0 7.8	8.95 24 1.8 7.7	9.65 46 5.0 5.8	20.6 144 8.4 3.4	21.1 78 5.9 2.1	46.8 305 8.9 6.5	17.5 72 5.1 7.7	24.9 197 2.8 7.0	27.0 143 4.0 7.0	22.6 103 5.2 7.7
						, BY WATER						
MEAN MAX (WY) MIN (WY)	9.29 28.1 1980 2.81 1982	13.6 31.7 1978 1.73 1982	17.7 44.2 1970 4.11 1981	16.4 41.1 1978 3.57 1981	16.0 32.9 1979 3.79 1974	21.6 50.2 1984 6.53 1986	20.9 48.3 1983 6.39 1985	17.1 46.8 1989 3.51 1986	9.92 21.9 1975 2.13 1986	10.9 30.1 1984 3.47 1985	10.6 27.0 1989 3.47 1988	9.22 22.6 1989 1.28 1988
SUMMARY	STATISTI	cs		FOR	1989 WAT	ER YEAR			FOR	PERIOD OF	RECORD	
AVERAGE	FLOW				18.9				14	.2 Unad	justed	
LOWEST HIGHEST LOWEST INSTANT INSTANT	CENTILE	AN AN IN AK FLOW AK STAGE			6.5 170 .24 520 5.46 .00 24 7.3	Feb 12 Sep 30 May 11 May 11 Oct 1,	2		6. 5 10 7.	00 Sep 10 Aug 84 Dec	1984 1981 26 1969 20 1981 10 1987 26 1969 any days	

e Estimated

[†] Diversion, equivalent in cubic feet per second, from Shark River by New Jersey-American Water Company, for municipal supply.

SHARK RIVER BASIN

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	INST. COUBIC CONTRACT COURSE	NCE	PH STAND- ARD NITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN DIS- SOLVEI (MG/L	CENT SATUR	DEMA D BIC CHE ICA	NND, COL D- FOR EM- FEC NL, EC	RM, CAL, STREP- TOCOCCI OTH FECAL	
	1988	1200	3.2	172	7.4	11.0	10.0	91	-1	0.1 80) 49	
FEB	1989	1145	E5.5	364								
MAR					7.2	5.0	14.2	111				
JUN	2	1200	8.4	211	7.2	3.0	15.2			1.0 <20		
JUL	·	0930	15	166	6.4	15.0	8.2	82	2	2.4 1100	>2400	
AUG	·	1100	8.4	158	6.7	16.0	8.6	87	E1	1.8 230	920	
31	١	1130	22	146	6.5	19.0	8.6	93	EZ	2.2 3500	920	
	DATE	HARD NESS TOTA (MG/ AS CACO	CALCIUM L DIS- L SOLVEI (MG/L	DIS- SOLVEI (MG/L	, SODI DIS D SOLV (MG	UM, S S- D VED SO S/L (M	IUM, LI IS- LVED (G/L	LAB D MG/L S AS (LFATE IS- OLVED MG/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	OCT 1988 12 FEB 1989		49 16	2.1			2.4 2		24	17	0.1	
	14 MAR		49 16	2.1	44		3.6 1	6	29	75	0.1	
	02 JUN		45 14	2.4	16	5	4.8 1	0	32	27	0.1	
	14 JUL		41 13	2.1	12	2	3.3	8.0	28	18	0.1	
	19		33 10	2.0	10)	2.8	8.0	24	15	0.1	
	31		34 10	2.1	11	1	4.4 1	0	23	16	0.1	
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI TUENTS L DIS- SOLVE	NITRO GEN, NITRIT TOTAL (MG/L	GE	EN, G HNÓ3 AMM FAL TO G/L (M	TRO- GE EN, MO ONIA OR TAL T G/L (GANIC OTAL 1 MG/L (IITRO- GEN, OTAL MG/L	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	OCT 1988	13	9	9 0.01	0 0.	.36 0.	10 0	.20 (.56	0.02	2.2	
	14	11	19	0.00	6 0.	.36 0.	27 0	.68	.0	0.13	4.7	
	MAR 02	12	11	4 0.00	4 0.	.95 0.	17 0	.29	.2	0.08	2.4	
	JUN 14	9.	7 9	1 0.02	0 1.	.18 0.	24 0	.90 2	2.1	0.12	8.2	
	JUL 19	10	7						1.1	0.06	8.3	
	AUG 31	10	8						1.7	0.11	9.0	

SHARK RIVER BASIN

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

		WATER QU	ALITY DATA	, WATER YE			SEPTEMBER			LOCATION
DATE	TIM	SULF TOT. IE (MG	AL SOLV	ARSENI	ERABLE	BORON TOTAL RECOV ERABLI	TOTAL RECOV- E ERABLE	TOTAL RECOV- ERABLE	COPPER, TOTAL RECOV- ERABLE	Samples DRAINAGE A
DATE	1111	AS				(UG/L AS B)	(UG/L AS CD)	(UG/L AS CR)	(UG/L AS CU)	715
OCT 1988 12 JUN 1989	120	0 <	0.5	30	1 <10	<1	0 <1	1	16	REV OF
14	093	so <	0.5 1	60 <	<1 <10	6	0 <1	<1	4	
		IRON, TOTAL RECOV- ERABLE	LEAD, TOTAL RECOV- ERABLE	MANGA- NESE, M TOTAL RECOV- ERABLE	TOTAL RECOV-	RECOV-	SELE- T NIUM, R	INC, OTAL RECOV- RABLE PHE	NOLS	
D	ATE	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L	(UG/L	(UG/L (UG/L TO	TAL G/L)	
OCT 1 12. JUN 1		1300	<5	70	<0.10	<1	<1	20	2	
14.		5300	4	80	0.20	5	<1	60	7	

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°12'13", long 74°03'58", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft downstream from dam on Jumping Brook Reservoir, 0.8 mi upstream from mouth, and 1.4 mi west of Neptune City. Water-quality samples collected at bridge on Corlies Avenue, 600 ft downstream from gaging station.

DRAINAGE AREA --6 46 mi 2

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1966 to current year. Records for water years 1976-83 are unpublished but are available in the files of New Jersey District Office.

REVISED RECORDS. -- WDR-84-1: drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 13.76 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except those above 70 ft³/s, which are poor. Diversion above station by New Jersey-American Water Co. for municipal supply (records given herein) and by farmers for irrigation. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of diversion provided by New Jersey-American Water Co.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989, MEAN DAILY VALUES

	DISCHA	KGE, CUBIC	PEET PER	SECUND,	WATER TEA	K OCTOBER	1900 10	SEPTEMBER	1909,	MEAN DAILT	VALUES		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	e.40 e1.2 e5.1 1.4 1.0	22 14 4.3 3.3 3.8	4.3 3.8 3.6 3.3 3.3	e3.4 e3.5 e3.3 e3.3 e2.6	e3.8 e3.0 e3.5 e3.8 e3.1	e4.8 e4.5 e4.4 e4.3 e4.5	e11 e6.3 e6.8 e7.2 e6.4	13 e380 18 9.3	5.1 4.9 4.7 8.4 4.8	2.9 3.0 2.6 2.5 e260	e5.7 e4.2 e4.4 e3.8 e3.4	4.9 4.6 3.9 3.5 3.4	
6 7 8 9	.95 1.1 11 2.8 1.6	4.6 3.4 2.8 2.6 2.6	3.2 3.1 3.1 3.0 2.9	e3.2 e3.4 e7.7 e8.1 e4.6	e3.2 e3.2 e3.0 e3.0 e2.6	e10 e6.0 e4.6 e4.8 e5.5	e11 e8.0 e32 e9.2 e7.2	26 12 7.7 6.8 e410	19 13 7.6 13 23	33 8.5 15 6.0 4.7	e4.8 e4.8 e3.8 e2.9 e2.8	3.5 3.5 3.2 3.2 3.2	
11 12 13 14 15	1.4 1.4 1.3 1.3	2.6 2.3 5.1 5.0 3.2	2.8 2.4 2.5 2.6 2.8	e4.1 e6.0 e7.4 e4.2 e11	e2.6 e2.6 e2.6 e3.7 e4.5	e6.1 e6.5 e5.7 e5.3 e5.3	e6.2 e6.2 4.5 4.5	e230 16 8.8 6.7 5.9	6.6 4.7 15 6.9 7.8	4.1 3.6 e9.1 e7.9 e4.9	e38 e84 e50 e23 e16	3.1 2.7 2.8 11	
16 17 18 19 20	1.8 1.5 1.3 1.5	2.9 17 9.5 4.1 34	2.7 2.6 2.6 2.6 2.7	e5.9 e4.9 e4.2 e3.8 e2.8	e6.4 e3.9 e3.5 e3.1 e3.5	e5.3 e5.3 e5.9 e10 e4.9	47 11 7.6 7.7 6.1	141 221 24 13 10	24 23 25 7.2 5.3	e10 e104 e12 e6.7 e19	e16 e7.7 e5.9 e5.0 e5.0	14 94 8.5 121 26	
21 22 23 24 25	9.6 118 6.5 3.7 3.1	30 6.5 4.5 3.8 3.5	3.3 2.4 4.3 6.0 5.3	e2.6 e2.4 e2.6 e2.9 e3.1	44 79 39 e12 e5.4	e11 e5.3 e4.8 e27 e58	5.6 5.1 4.6 4.5 4.6	8.2 7.3 11 20 12	4.9 5.0 4.8 4.5 4.1	e84 e7.5 e7.3 e6.3 e6.4	e4.4 e5.0 e13 e6.7 e4.7	9.1 7.2 6.2 5.1 4.7	
26 27 28 29 30 31	3.2 2.6 2.6 2.6 2.3 1.8	3.3 5.4 41 9.8 5.4	3.5 2.9 3.6 e5.4 e3.5 e3.6	e2.8 e2.4 e2.1 e3.6 e6.0 e5.4	e5.0 e5.1 e5.0	e8.9 e7.7 e6.5 e5.8 e5.6 e13	4.5 4.3 4.1 5.8 27	7.6 8.0 6.9 5.6 5.1	3.8 7.3 4.1 3.8 3.1	e4.7 e3.6 e11 e3.9 e3.7 e8.2	e4.5 e4.2 e4.0 10 e130 7.3	160 14 7.7 6.3 5.7	
MEAN MAX MIN (†)	6.36 118 .40 .6	8.74 41 2.3 0	3.35 6.0 2.4 0	4.30 11 2.1 0	9.40 79 2.6 0	8.62 58 4.3 0	9.57 47 4.1 0	53.8 410 5.1 0	9.15 25 3.1 0	21.5 260 2.5 0	15.6 130 2.8 0	18.6 160 2.7 0	
STATIST	TICS OF M	ONTHLY FLO	W DATA F		OF RECORD		R YEAR ((YW)					
MEAN MAX (WY) MIN (WY)	6.11 14.3 1972 1.97 1982	9.56 47.3 1978 1.89 1982	11.4 30.5 1970 2.78 1981	12.7 55.5 1979 1.94 1981	12.4 62.1 1979 3.53 1968	14.3 47.1 1984 3.86 1985	15.3 66.5 1980 3.29 1985	12.7 53.8 1989 2.08 1977	7.38 23.7 1972 2.11 1986	7.32 21.5 1989 2.44 1988	6.94 15.6 1989 1.52 1982	6.83 24.2 1971 1.25 1982	
SUMMARY	Y STATIST	ICS		FC	OR 1989 WAT	TER YEAR			FOR	PERIOD OF	RECORD		
LOWEST HIGHES' LOWEST INSTAN' INSTAN' 10 PERC 50 PERC	T ANNUAL ANNUAL M T DAILY ME TANEOUS P TANEOUS P TANEOUS L CENTILE CENTILE	EAN EAN EAK FLOW EAK STAGE			14.1 .05 410 .40 1320 6.93 .00 21	May 10 Oct 1 May 2 May 2 Dec 21			20 4 5 18 7	.12 Sep .330a Sep .00 Dec .00 Jun .19	1979 1981 21 1979 15 1981 12 1971 16 1974 7 1971		
73 PER	CENTILE			450	2.1					1.4			

a From rating curve extended above 150 ft³/s. † Diversion, in cubic feet per second, from Jumping Brook by New Jersey-American Water Co. for municipal supply e Estimated

229

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PI (ST/	H TE AND- A RD W	MPER- TURE ATER EG C)	OXYGEN, DIS- SOLVED	OXYGE DIS SOLV (PER CEN SATU	E- DEMA ED BIO E- CHE IT ICA IR- 5 D	GEN AND, CO D- FO EM- FE AL, E DAY BR	C TO	STREP- DCOCCI FECAL (MPN)	
OCT 1988 12	1000	1.7	169		B.1	10.5	14.1	12	?7 <0	0.7 5	0	79	
FEB 1989	0930	E3.7	260	7	7.5	4.0	16.2	12	3 E	1.5 <2	20	<49	
MAR 02	1030	E4.5	225	-	7.1	2.5	14.8	10	8 <	1.1 <2	20	<2	
JUN 14	1130	6.7	172			16.5	8.4			1.9 49		600	
JUL 19	0930	E6.7	154			18.0	8.3		_	1.0 13	-	600	
AUG 31	1030	7.3	124			19.0	8.3			2.0 540	-	600	
31	1030	7.5	124		0.5	17.0	0.5	,		2.0 340		000	
DATE	HARD NESS TOTA (MG/ AS CACO	CALC L DIS L SOL (MG	IUM S - D VED SO /L (M	GNE- IUM, IS- LVED G/L MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DI SOL (MG	UM, LII S- I VED (I /L	LAB MG/L As	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)		
OCT_1988						_				40	,		
12 FEB 1989		43 12		3.2	10			0	34	18	0.1		
14 MAR				2.8	27	2	.5	1.0	32	45	0.1		
02 JUN		39 11		2.8	24	2	.5	1.0	36	39	0.1		
14 JUL		39 12	!	2.3	13	2	.5	6.0	29	21	0.1		
19 AUG		31 8	.9	2.1	11	2	.4	5.0	23	16	0.1		
31		28 8	3.1	2.0	10	2	.5	3.0	24	14	0.1		
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONS /ED TUEN /L DI SOL	OF NI TI- G ITS, NIT S- TO VED (M	TRO- EN, RITE TAL G/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GE	RO- GE N, MO NIA OR AL T	ITRO- N,AM- NIA + GANIC OTAL MG/L S N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON ORGANI TOTAL (MG/L AS C)	Ċ	
OCT 1988 12	10		04 0	005	0.77	0.1	, ,	/0	4.2	0.47	7.4		
FEB 1989		1		.005	0.73	0.1		.48	1.2	0.13	3.6		
14 MAR	8.			.002	1.35	0.2		.46	1.8	0.04	3.2		
02 JUN	8.			.002	1.32	0.2		.25	1.6	0.04	2.4		
14 JUL	6.			.012	0.53	0.2		.81	1.3	0.06	9.5		
19 AUG	6.			.011	0.37	0.1	1 0	.61	0.98	0.05	11		
31	6.	.4	69 (.010	0.71	0.0	8 0	.69	1.4	0.08	8.9		

SHARK RIVER BASIN

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFI TOTA E (MG/ AS S	L SOLV	ARSE ED TOT L (UG	AL ERA	M, BORG	AL TOTA DV- RECO BLE ERAI /L (UG)	AL TOT DV- REC BLE ERA /L (UG	M, COPP AL TOT OV- REC BLE ERA /L (UG	AL OV- BLE
OCT 1988 12	1000) <0	.5	<10	1 <1	0 .	<10	<1	51	15
	DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT	1988	15000	7	610	-0 10	4	-1	60		

MANASQUAN RIVER BASIN

01407997 MARSH BOG BROOK AT SQUANKUM, NJ

LOCATION.--Lat 40°10'01", long 74°09'33", Monmouth County, Hydrologic Unit 02040301, at bridge on Squankum-Yellow Brook Road in Squankum, and 0.2 mi upstream from mouth.

DRAINAGE AREA .-- 4.91 mi2.

PERIOD OF RECORD. -- Water years 1971-74, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CL F TIME F	BIC CO EET DU ER AN	FIC N- I CT- (S' CE	TAND- AT ARD WA	URE D TER SO	GEN, (PE IS- CE LVED SAT	IS- DEM LVED BI ER- CH ENT IC TUR- 5	AND, CO O- FO EM- FE AL, E DAY BR	DLI- RM, CAL, STREP- C TOCOCCI OTH FECAL IPN) (MPN)
OCT 1988 04	1030	1.1E	208	7.3 1	5.5	6.7	67 E	1.1 240	0 350
JAN 1989 24	1130	1.9E	189				125 <	:0.3 2	20 540
MAR 21		12 E	134			1.3		1.9 <2	20 920
JUN 08	1030	7.0E	107			8.3		1.3 22	20 920
JUL 19		12 E	80			8.7	2.5	:1.0 17	
AUG 31	1330	8.8E	73			8.8		2.0 79	
DATE OCT 1988	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JAN 1989	46	14					44	14	0.1
24 MAR			2.7	8.1	4.3	1.0			
21 JUN	34	10	2.2	10	1.8	1.0	42	14	0.2
08 JUL	22	6.4	1.5	6.3	2.4	1.0	21	10	0.1
19 AUG	15	4.6	0.95		1.5	1.0	14	7.7	0.1
31	18	5.2	1.1	5.0	3.6	1.0	14	10	0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN,	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 04 JAN 1989	11	120	0.008	0.61	0.22	2.5	3.1	0.03	3.9
24 MAR	12	100	<0.003	0.59	0.32	0.46	1.0	<0.02	2.0
21 JUN	8.6	89	0.002	0.86	0.13	0.36	1.2	0.05	3.6
08 JUL	11	60	0.005	0.23	0.10	0.66	0.89	0.14	10
19 AUG	9.0	43	0.010	0.97	0.08	0.63	1.6	0.06	14
31	10	50	0.007	0.62	0.13	0.71	1.3	0.09	11

MANASQUAN RIVER BASIN

01407997 MARSH BOG BROOK AT SQUANKUM, NJ -- Continued

DATE	TIME (N	GEN + O FIDE TOT TAL BOT IG/L (M	I,NH4 IN ORG. GA IN TOT MAT BOT IG/KG (G	OR- INC NIC, ORG IN TOT MAT BOT KG (GM	ANIC I IN MAT S	OLVED TO	T IN SENIC TO DTAL T JG/L (DTAL BOT- M MA- ERIAL UG/G	TOTAL T RECOV- R ERABLE E (UG/L (OTAL TO ECOV- RE RABLE ER UG/L (U	OMIUM R OTAL FM ECOV- TO RABLE T UG/L (DMIUM RECOV. I BOT- DM MA- ERIAL UG/G AS CD)
OCT 1988 04	1030	2	230	<0.1	3.1			3				<10
JUN 1989		_			3.1	200			-10		-4	
08	1030	<0.5	1	19	••	290	1	••	<10	40	<1 .	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	TOTAL RECOV- ERABLE (UG/L	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV ERABL (UG/L AS PB	- TOM MA- E TERIAL (UG/G	ERABLE (UG/L	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988						_						1.34.
04 JUN 1989	••	7	<50	••		5	1900	•	20			•
08	3			4	••	5600			3	60	•	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	(UG/G	- L PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT_1988		0.00								4		
04 JUN 1989 08	••	0.02		<100	••	<1	••	2	0	<1	<1.0	
08	<0.10	•••	7	••	<	1	30		1	••	••	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT TOM MA TERIAL (UG/KG	TOM MA-	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TERIA	TOTAL - IN BOT TOM MA- L TERIAL	TOM MA- TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988				4145	E		1000	5.42 <u>5.</u>				
04 JUN 1989	<0.1	3.0	0.6	0.4	0.	1 0.1	0.1	<0.	1 <0.1	<0.1	<0.	
08	••	••	••	=======================================	••		••		arte di		1000	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TECKAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	METHYL PARA- THION TOT. II BOTTO MATL	N TOT. IN M BOTTOM MATL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL	IN BOT TOM MA TERIA	PER- THANE IN BOT- TOM MA- L TERIAL	TOM MA- TERIAL	TRI- THION TOTAL IN BOT TOM MA TERIAL	
	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG) (UG/KG)	(UG/KG)	(UG/KG	(UG/KG)	(UG/KG)	(UG/KG	,
OCT 1988 04	<0.1	<0.1	<0.1	<0.1	<0.	1 <0.1	<0.1	<0.	1 <1.00	<10	<0.	1
JUN 1989 08											al al	

MANASQUAN RIVER BASIN

01408000 MANASQUAN RIVER AT SQUANKUM, NJ

LOCATION.--Lat 40°09'47", Long 74°09'21", Monmouth County, Hydrologic Unit 02040301, on right bank 50 ft upstream from northbound bridge on State Highway 547 (Squankum Park Road) in Squankum, and 0.4 mi downstream from Marsh Bog Brook.

DRAINAGE AREA. -- 44.0 mi 2.

PERIOD OF RECORD.--July 1931 to current year. Monthly discharge only for July 1931, published in WSP 1302.

REVISED RECORDS.--WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.82 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 13, 1940, water-stage recorder at site 80 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Diversion by New Jersey-American Water Company at Hospital Road, 1.2 mi downstream (records given herein). Several measurements of water temperature were made during the year.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, ME	N DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	18 18 21 20 20	73 87 38 30 30	57 49 45 42 40	31 31 30 29 26	38 35 40 43 35	53 49 47 45 45	120 75 70 70 65	65 269 137 92 87	61 57 52 66 53	48 46 44 42 294	78 63 65 58 54	54 50 45 41 40
6 7 8 9	17 17 38 23 19	37 27 26 24 23	39 38 34 32 31	30 30 51 67 44	35 36 33 33 31	82 70 55 52 55	97 81 184 105 80	215 124 89 77 314	130 100 81 86 273	624 155 129 82 65	51 50 48 44 41	41 40 39 38 37
11 12 13 14 15	19 18 18 18 18	24 22 24 39 26	31 28 28 28 29	38 52 70 44 87	30 30 29 40 48	60 64 58 55 54	69 64 61 63 64	735 221 154 124 108	101 72 111 87 75	58 52 82 79 57	122 378 353 162 136	35 35 34 47 83
16 17 18 19 20	18 18 18 18 18	24 62 63 36 125	29 31 30 29 30	62 47 42 40 38	68 45 39 37 36	51 48 50 96 56	216 112 86 80 69	431 492 293 167 133	158 197 224 100 78	67 332 137 93 177	154 112 94 77 69	60 116 67 241 911
21 22 23 24 25	26 182 41 31 32	149 65 50 43 38	32 38 34 44 46	35 32 32 33 33	190 239 129 84 66	91 70 57 132 324	62 58 55 52 52	113 97 94 155 129	114 212 263 104 81	862 167 119 94 82	62 59 122 92 61	260 149 123 101 79
26 27 28 29 30 31	30 29 27 26 24 22	32 33 247 107 69	36 33 34 44 33 32	33 34 32 31 45 49	59 63 55 	122 89 76 68 62 104	52 50 48 49 91	101 125 122 87 77 66	72 65 59 58 52	73 65 197 87 65 92	56 50 48 50 146 67	249 151 96 82 73
MEAN MAX MIN IN. (†)	27.8 182 17 .73 2.7	55.8 247 22 1.41 0	35.7 57 28 .94 0	41.2 87 26 1.08 0	58.8 239 29 1.39	75.5 324 45 1.98 2.1	80.0 216 48 2.03 0	177 735 65 4-64 0	108 273 52 2.74 1.4	147 862 42 3.86 0	97.5 378 41 2.55	114 911 34 2.89
STATIST	ICS OF MON	THLY FLO	W DATA FO		OF RECORD,	BY WATER	R YEAR ((YY				
MEAN MAX (WY) MIN (WY)	50.7 130 1972 22.1 1964	71.7 231 1978 22.3 1966	82.7 212 1978 26.4 1966	89.6 218 1979 30.7 1981	99.1 214 1979 43.6 1932	113 221 1984 47.2 1985	102 218 1983 40.3 1985	80.3 177 1989 38.8 1955	58.4 126 1968 26.6 1957	53.9 200 1938 19.9 1966	50.7 108 1948 16.7 1932	52.6 183 1938 16.7 1932
	STATISTIC	S		FO	R 1989 WATE	R YEAR			FOR PE	RIOD OF	RECORD	
HIGHEST LOWEST INSTANT INSTANT INSTANT	ANNUAL ME ANNUAL MEA DAILY MEA DAILY MEA ANEOUS PEA ANEOUS LOW ANEOUS LOW RENTILE ENTILE	AN I AK FLOW AK STAGE J FLOW			85.1 .65 911 17 1530 8.97 17 26.26 158 57 22	Sep 20 Oct 6 Sep 20 Sep 20 Oct 6			75.3 130 40.5 1720 14 2940 12.45 8.1 23.23	Nov Aug Sep Sep Aug	1978 1966 8 1977 24 1932 21 1938 21 1938 6 1981	

[†] Diversion, equivalent in cubic feet per second, by New Jersey-American Water Company, for municipal supply.

METEDECONK RIVER BASIN

01408120 NORTH BRANCH METEDECONK RIVER NEAR LAKEWOOD, NJ

LOCATION.--Lat 40°05'30", long 74°09'10", Ocean County, Hydrologic Unit 02040301, on upstream right bank at bridge on State Route 549, 1.0 mi upstream from confluence with South Branch Metedeconk River, and 2.3 mi east of

DRAINAGE AREA. -- 34.9 mi 2.

PERIOD OF RECORD. -- October 1972 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 3.89 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 17, 1977, gage located on upstream left side of bridge. Nov. 17, 1977 to Dec. 19, 1984, gage located on the downstream side of bridge.

REMARKS. -- Records good. Several measurements of water temperature were made during the year. Satellite telemeter at station.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, MI	AN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	14 14 18 19 17	47 84 61 37 33	59 42 36 34 32	28 29 29 27 25	36 32 32 38 33	41 38 36 35 34	86 66 55 50 47	63 165 190 106 79	46 50 42 39 38	30 28 27 26 124	49 40 37 36 36	36 34 31 30 29
6 7 8 9	15 15 32 29 19	39 31 27 25 24	31 31 30 29 28	26 30 42 61 47	31 31 29 27 26	53 63 e53 e44 42	67 66 120 104 76	102 110 93 70 170	80 87 81 76 82	385 190 119 73 48	37 34 34 29 27	30 29 28 28 28
11 12 13 14 15	16 16 15 15	24 23 25 36 30	27 27 27 26 26	39 40 52 44 60	27 24 24 31 41	43 46 46 44 41	57 49 45 45 50	514 286 177 113 75	75 75 66 57 57	39 35 55 72 52	92 133 205 241 159	27 27 26 43 68
16 17 18 19 20	15 15 15 15 15	26 47 68 46 77	27 26 27 27 26	64 48 39 35 32	53 43 35 31 29	40 37 39 60 50	122 109 83 69 59	189 384 330 197 126	85 113 116 88 68	54 185 156 95 75	125 73 55 50 47	56 114 62 110 341
21 22 23 24 25	23 143 122 56 32	129 89 58 40 34	28 34 32 41 47	30 29 31 28 27	78 153 146 e94 e71	58 57 48 83 177	51 47 43 40 40	81 67 63 89 98	52 55 60 71 56	75 97 89 61 45	44 41 81 77 58	370 170 101 65 49
26 27 28 29 30 31	25 23 21 21 20 20	31 32 113 110 80	38 32 31 36 32 29	28 29 27 26 34 46	49 47 43	145 93 64 49 47 77	40 39 38 38 71	81 69 64 61 54 49	39 36 35 32	39 35 35 34 33 41	44 39 37 38 40 38	120 152 98 72 52
MEAN MAX MIN IN.	27.4 143 14 .91	50.9 129 23 1.63	32.2 59 26 1.06	36.5 64 25 1.21	47.6 153 24 1.42	57.5 177 34 1.90	62.4 122 38 2.00	139 514 49 4.60	63.4 116 32 2.03	79.1 385 26 2.61	67.0 241 27 2.21	80.9 370 26 2.59
					OF RECORD	1.0	R YEAR (
MEAN MAX (WY) MIN (WY)	43.9 71.8 1980 24.4 1982	63.5 141 1973 26.1 1982	76.2 129 1978 32.2 1989	77.1 153 1979 25.2 1981	75.0 153 1979 42.7 1980	82.1 160 1984 38.8 1981	87.5 153 1984 35.8 1985	68.5 139 1989 27.1 1977	51.2 89.6 1984 26.0 1986	46.6 107 1984 21.7 1988	38.9 67.0 1989 15.2 1981	40.4 80.9 1989 17.8 1988
SUMMARY	STATISTI	cs		FC	OR 1989 WAT	ER YEAR			FOR P	ERIOD OF	RECORD	
LOWEST INGREST LOWEST INSTANT INSTANT INSTANT ANNUAL	ANNUAL ME ANNUAL ME DAILY ME ANEOUS PE ANEOUS LO RUNOFF (1 ENTILE ENTILE	AN AN AN EAK FLOW EAK STAGE			514 14 598 7.44 13 24.16 116 44 20	May 11 Oct 1 May 11 May 11 Oct 2			137 9.2 1 24.3	8 Feb 1 Aug 0a Nov 8 Nov 1 Aug 2	28 1981 8 1977 8 1977	

a From rating curve extended above 600 $\ensuremath{\text{ft}}^3/\ensuremath{\text{s}}$ e Estimated

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°59'10", long 74°13'29", Ocean County, Hydrologic Unit 02040301, on left bank 500 ft downstream of bridge on State Route 527 (Oak Ridge Parkway), 1.9 mi downstream from Union Branch, and 2.6 mi northwest of Toms River.

DRAINAGE AREA. -- 123 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1928 to current year. Monthly discharge only for October, November 1928, published in WSP 1302.

REVISED RECORDS.--WSP 1702: 1938. WDR NJ-76-1: 1975(M). WDR NJ-77-1: 1976.

GAGE: :: Water-stage recorder and crest-stage gage. Datum of gage is 8.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Diversions by Ciba-Geigy Inc., 800 ft. upstream; the effluent is returned by pipeline directly into the Atlantic Ocean, thus bypassing station. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988. TO	SEPTEMBER	1989, N	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59	108	283	121	140	177	214	196	200	139	160	132
2	60	148	241	120	132	168	227	277	224	132	161	127
3	70	153	192	118	131	160	239	310	225	125	171	120
4	70	150	170	117	137	154	222	346	212	122	167	116
5	70	134	153	108	136	150	207	360	198	219	155	113
6	67	130	142	108	131	167	213	347	216	402	155	114
7	65	124	136	122	129	187	217	345	250	413	145	113
8	82	115	128	128	125	191	267	369	273	507	139	111
9	85	107	122	146	119	182	277	359	293	413	136	110
10	78	100	119	156	112	172	236	421	283	291	131	108
11	73	99	115	151	109	167	258	551	267	209	169	107
12	68	96	109	146	109	169	228	623	269	174	308	105
13	68	97	106	156	107	171	202	672	257	206	462	103
14	66	103	103	158	114	170	189	554	223	267	589	111
15	70	104	103	171	130	169	188	448	205	280	556	124
16	68	101	105	178	152	185	244	396	241	302	456	152
17	70	111	107	180	155	197	257	421	266	394	354	210
18	67	141	106	169	148	178	292	501	285	377	269	186
19	63	148	107	158	138	178	287	537	276	385	218	272
20	63	177	108	146	131	181	245	487	256	368	198	533
21	69	220	111	136	165	190	220	403	252	322	186	1180
22	182	236	117	124	226	190	201	321	214	304	179	898
23	177	250	124	121	262	191	188	275	208	314	167	606
24	179	219	134	120	312	214	176	285	220	288	162	451
25	169	179	149	118	300	271	168	297	213	235	158	331
26 27 28 29 30 31	131 110 100 95 91 85	158 144 219 243 266	151 145 138 135 133 126	118 119 118 116 120 136	234 202 187 	279 319 301 246 218 239	162 159 155 154 187	325 327 294 255 236 215	190 180 166 157 147	197 178 163 157 151 154	146 137 129 128 141 140	335 353 373 387 330
MEAN	89.4	153	136	136	160	198	216	379	229	264	218	277
MAX	182	266	283	180	312	319	292	672	293	507	589	1180
MIN	59	96	103	108	107	150	154	196	147	122	128	103
IN.	.84	1.39	1.28	1.27	1.35	1.85	1.96	3.55	2.08	2.48	2.05	2.51
STATIST	ICS OF MONT	HLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN	155	202	225	244	255	292	284	248	190	161	158	154
MAX	325	475	447	506	455	541	573	461	463	439	345	414
(WY)	1972	1973	1973	1978	1973	1958	1984	1958	1968	1938	1967	1971
MIN	83.3	85.5	96.1	104	141	143	120	119	96.8	77.3	57.9	69.7
(WY)	1942	1966	1966	1981	1934	1985	1985	1977	1977	1988	1966	1943
SUMMARY	STATISTICS	3		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST INSTANTA INSTANTA INSTANTA	ANNUAL MEA ANNUAL MEAN DAILY MEAN ANEOUS PEAN ANEOUS PEAN ANEOUS LOW RUNOFF (INC ENTILE ENTILE	I I C FLOW C STAGE FLOW			205 1180 59 1330 10.15 56 22.61 346 169 77	Sep 21 Oct 1 Sep 21 Sep 21 Oct 1			20 12. 23.	00a Sep 50b Sep 46 Aug	1978 1981 9 23 1938 9 31 1966 9 23 1938 9 23 1938 9 31 1966	

From rating curve extended above 1,500 ft³/s From floodmark

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: November 1974 to September 1981 (discontinued).
WATER TEMPERATURE: November 1963 to May 1966, November 1974 to September 1981 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
NOV 1988 29	1130	242	80	4.3	8.5	7.0	10.1	85	1.8	>30	740	14
JAN 1989 31	1130	135		5.2	6.5	3.1	11.9		0.7	8	83	13
MAR 28	1130	305	76	4.4	12.0	1.5	9.6	89	1.9	K5	150	11
MAY 30	1130	238	67	4.6	17.5	2.0	8.1	84	1.0	44	2400	10
JUL 25	1215	235	63	4.0	21.5	2.0	8.8	99	0.7	270		9
SEP 22	1100	895	63	4.0	21.0	2.4	5.9	66	0.9	>240	500	8
						-70	-					
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L- CACO3)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 1988										1411		
29 JAN 1989	3.2	1.4	4.8	1.1	••	••	<1	21	8.1	0.1	4.6	••
31	2.9	1.3	5.8	1.3	0.6	0.5	1	16	9.3	<0.1	5.1	45
28	2.6	1.1	4.7	1.0	••	••	<1	9.5	8.1	0.1	3.8	•• 9
30	2.2	0.98	5.2	1.0	••	••	<1	9.0	8.8	0.1	3.9	•
25 SEP	2.0	0.88	4.5	0.9	••	••	<1	7.0	9.6	<0.1	5.0	33
22	1.8	0.74	3.0	0.9		••	<1	7.0	6.4	<0.1	3.7	••2
DATE	* A.U **** **** **** ****	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)
NOV 1988		V04 F	+ 0%									27.0
JAN 1989		15	9.8	91	<0.010	0.200	0.110	0.130	0.60	0.020	<0.010	<0.010
MAR	•••	7	2.6	24	<0.010	0.550	0.190	0.190	0.30	0.010	0.010	<0.010
MAY 28	•••	12	9.9	76	<0.010	0.160	0.040	0.040	0.30	0.010	<0.010	0.050
JUL 30	•••	11	7.1	74	<0.010	0.330	0.140	0.160	0.70	0.020	<0.010	0.010
SEP 25	•••	6	3.8	95	<0.010	0.230	0.140	0.140	0.70	0.030	<0.010	<0.010
		18	43	40	0.010	<0.100	0.020	0.010	0.60	0.020	0.010	<0.010

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER QUALITY DATA

DATE	E TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)
JAN 1989 31	1130	160	<1	32	40 F	<1	<1	<3	6	290	< 5
MAR	1130	100	×1	32	<0.5	~1	\ 1	٧,	0	290	٧,
28 JUL	1130	270	<1	35	<0.5	<1	<1	<3	1	360	24
25 SEP	1215	230	1	22	<0.5	<1	<1	<3	3	860	4
22	1100	360	1	28	<0.5	<1	1	<3	3	980	7
	DATE	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	(UG/L	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, DIS- SOLVED (UG/L AS ZN)
	JAN 1989 31 MAR	<4	43	<0.1	<10	3	<1	<1.0	20	<6	22
	28	<4	42	1.0	<10	5	<1	<1.0	17	<6	27
	JUL 25	<4	32	0.4	<10	1	<1	<1.0	14	<6	20
	SEP 22	<4	42	<0.1	<10	2	<1	<1.0	15	<6	28

01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ

LOCATION.--Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi upstream from Wesickaman Creek.

DRAINAGE AREA. -- 26.7 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND ARD UNITS)	WAT	RE D	GEN, (DIS- D OLVED PFR-	BIO- F CHEM- F ICAL, 5 DAY E	COLI- FORM, ECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1988	4070	-47								-20	
31 JAN 1989	1030	E17	41	5.4		3.0	8.8	73		<20	<2
24 APR	1045	E34	68	5.6	3	.0 1	12.0	89	<1.1	<20	5
03 JUN	1000	E75	64	5.1	8	3.5	9.8	84	<0.8	<20	<2
12	1045	E68	38	4.8	21	.5	7.4	84	E2.3	50	22
JUL 17	1330	E81	46	5.3	20	.5	7.2	80	<0.5	20	17
AUG 08	1315	E60	44	4.2	23	3.0	5.8	68	<1.0	330	920
DAT		SS CALC FAL DIS G/L SOI S (MC	CIUM SI S- DI LVED SOI G/L (MO	S- D VED SO	DIUM, IS- LVED MG/L S NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFAT DIS- SOLVE (MG/L	DIS- D SOLVEI	(MG,	S- VED /L
OCT 198	38	8	1.9	0.88	2.4	0.8	1.0	13	6.1	<0.	1
JAN 198		9	2.1	1.0	3.3	0.9	<1.0	15	5.6	0.	1
APR 03				0.78	3.2		<1.0	18	6.2	<0.	
JUN		*				0.8					
12 JUL_		-		0.55	2.5	0.6	<1.0	6.0	5.5	<0.	
17				0.59	2.5	0.7	<1.0	3.0	6.8	0.	
08		6	1.2	0.61	2.4	0.7	<1.0	3.0	4.8	0.	1
DAT	DIS SOI (MI	ICA, SUM S- CON LVED TUE G/L D S_ SO	STI- GINTS, NITI	EN, RITE NO TAL T G/L (IITRO- GEN, 02+NO3 TOTAL (MG/L (S N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA - ORGANIC TOTAL (MG/L AS N)	- NITRO	PHOROUL TOTAL (MG/L	TOTA	NIČ AL /L
OCT 198 31 JAN 198		3.7	29 0	.004	0.14	0.08	0.56	0.70	0.05	2.0	
24 APR		4.6	<0	.003	0.28	<0.05	0.39	0.67	0.03	5.3	
) 03 JUN		2.6	0	.001	0.17	<0.05	0.35	0.52	0.03	6.5	
12		3.9	0	.004	0.24	0.06	0.79	1.0	0.05	13	
JUL 17		4.9	0	.013	0.23	0.11	0.86	1.1	0.06	18	
AUG 08		4.9	0	.024	0.27	0.06	0.92	1.2	0.05	29	
									-6-2		

01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ--Continued

DATE	TIME (M	GEN + O FIDE TOT TAL BOT IG/L (M	I,NH4 IN DRG. GA IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC I . IN MAT S /KG (OLVED TO UG/L (U	TO IN ENIC TOM TAL TE G/L (U	TAL L BOT- T MA- R RIAL E G/G (OTAĽ TO ECOV- RE RABLE ER UG/L (U	TAL TO COV- RE ABLE ER IG/L (U	MIUM RETAL FM COV- TON ABLE TE	MIUM COV. BOT- MA- ERIAL JG/G CD)
OCT 1988 31 31	1030 1030	-0.5	40	0.1	2.5	100	<1	4	<10	10	1	 <10
JUN 1989 12	1045	<0.5	••			180	1		<10	10	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 31 31	1	2	<50	58	1	470	8200	<5	10	30	 <10	
JUN 1989 12	1		••	8	••	3000		14	•••	30	•••	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 31	<0.10		3		<1		90		3	••	••	
31 JUN 1989 12	0 10	<0.01		<100		<1		<10	3	<1	<1.0	
12	<0.10		6	••	<1	••	20	•	3	••		
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA-	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 31	••						••					
31 JUN 1989	<0.1	1.0	0.2	0.1	0.5	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	
12		••	••	••			••	1,77	•		- 7	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	BOTTOM MATL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THANE IN BOT- TOM MA- TERIAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988								·				
31 JUN 1989	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<10	<0.1	
12	••		••	• •		••	••	••	••	••	••	

01409400 MULLICA RIVER NEAR BATSTO, NJ

LOCATION.--Lat 39°40'28", long 74°39'55", Atlantic County, Hydrologic Unit 02040301, on right bank 2.4 mi upstream from Sleeper Branch, and 2.5 mi north of Batsto.

DRAINAGE AREA. -- 46.7 mi 2.

PERIOD OF RECORD. -- September 1957 to current year.

REVISED RECORDS.--WRD-NJ 1969: 1958(M), 1960(M), 1967-68(M), WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 11.93 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for estimated daily discharges, which are poor. Some regulation from upstream cranberry bogs and Atsion Lake. Diversions from Sleeper Branch enter river upstream of gage. Several measurements of water temperature were made during the year.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, 1	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	29 21 22 24 24	41 50 50 49 49	133 120 107 95 86	e52 e52 e53 e52 e50	e60 e56 e60 70 71	122 111 101 93 89	178 164 147 138 130	158 216 273 231 209	134 120 106 89 75	72 68 65 61 72	119 124 102 86 85	57 56 54 52 50
6 7 8 9 10	23 22 24 24 23	46 43 41 39 37	80 75 70 67 64	e46 e48 e52 e59 e62	72 70 66 61 58	96 109 105 103	143 157 212 235 219	254 289 268 272 335	95 117 125 136 172	85 116 144 167 155	83 98 122 110 86	48 47 46 45 44
11 12 13 14 15	21 21 21 19	38 36 36 36 35	62 58 48 44 46	e59 e60 e64 e66 e74	57 55 53 59 64	101 102 100 102 100	209 190 170 153 142	504 509 523 336 309	159 137 129 132 131	96 67 84 122 129	82 119 134 146 162	43 42 42 46 60
16 17 18 19 20	20 19 19 19 18	34 45 51 50 70	44 45 46 e45 e44	e85 e90 e89 e87 e78	72 72 71 71 70	98 94 91 95 91	168 170 160 161 158	325 349 322 302 281	139 119 139 146 134	85 151 202 187 224	186 174 149 136 141	69 87 84 127 246
21 22 23 24 25	22 43 37 35 35	87 88 82 79 75	e46 e48 e48 e52 e62	e72 e71 e70 e66 e63	91 136 169 169 165	101 106 103 116 189	145 135 124 115 109	250 219 180 178 254	121 112 111 107 102	539 458 496 363 287	133 120 110 90 69	312 369 325 216 141
26 27 28 29 30 31	34 32 31 38 38 38	69 64 110 156 158	e65 e60 e58 e57 e55 e55	e58 e56 e54 e54 e56 e59	159 152 136	213 202 202 188 172 177	107 86 66 77 129	230 198 199 188 162 147	102 98 92 84 77	226 170 171 165 142 119	69 68 66 64 66 60	179 220 208 216 199
MEAN MAX MIN	26.1 43 18	61.5 158 34	64.0 133 44	63.1 90 46	88.0 169 53	122 213 89	150 235 66	273 523 147	118 172 75	177 539 61	108 186 60	124 369 42
STATIST	ICS OF MON	THLY FLO	W DATA FO	OR PERIOD	OF RECORD	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	66.9 192 1976 24.1 1966	91.4 305 1973 22.0 1966	121 304 1973 29.8 1966	138 311 1978 29.3 1981	143 292 1979 71.3 1981	157 312 1958 59.1 1985	153 358 1983 50.3 1985	127 273 1989 53.6 1965	80.0 159 1979 32.3 1977	73.4 177 1989 21.9 1977	73.3 253 1958 20.2 1977	62.7 223 1975 19.4 1980
SUMMARY	STATISTIC	cs		FC	R 1989 WATE	ER YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST I INSTANTA INSTANTA INSTANTA 10 PERC	ANNUAL ME/ ANNUAL ME/ DAILY MEAI ANEOUS PE/ ANEOUS LOI ENTILE ENTILE	AN AN AK FLOW AK STAGE			539 18 579 4.11 18 218 90 26	Jul 21 Oct 20 Jul 21 Jul 21 Oct 20			1 50 16 7 18 6. 7	07 68 .4 .5 Sep .40 Feb .0 Sep .05 87 26	1973 1966 26 1979 6 1966 26 1979 26 1979 6 6 1966	

e Estimated

01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ

LOCATION.--Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road in Wescoatville, 1.1 mi southwest of Nesco, 1.7 mi upstream from Norton Branch, and 3.8 mi southwest of Batsto.

DRAINAGE AREA. -- 9.57 mi², revised.

PERIOD OF RECORD. -- Water years 1974 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

OVVOCAL OVVOCAL

DATE	TIME	INST. CUBIC FEET PER	ANCE	PH TAND- ARD ITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI FORM FECA EC BROT (MPN	L, STRE	CC I AL
OCT 1988	1245	E 4.6	123	6.3	7.5	5.8	48	3.1	<20	350	
JAN 1989 24	1330	E13	158	6.8	4.0	8.4	64	5.8	<20	240	
APR 03	1130	E42	128	6.6	9.0	5.9	51	2.6	<20	5	
JUN 13	1045	E34	96	6.2	18.5	4.4	47	3.5	130	350	
JUL 17	1200	E88	87	6.4	19.0	4.2	45	<0.4	3500	>2400	
AUG 07	1040	E15	124	6.0	22.0	3.2	37	E1.8	120	110	
DATE	HARD- NESS TOTAL (MG/L AS CACO	CALCIU DIS- SOLVE (MG/L	DIS- D SOLVED (MG/L	SODI DIS SOLV (MG	UM, SI - DI ED SOL /L (MG		TY SUL AB DI G/L SO G (M	FATE RII S- DIS LVED SOI G/L (M	DE, S- LVED G/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT_1988					_				_		
31 JAN 1989	1	21 4.8		14			.0 1			0.1	
24 APR_		26 6.4		14	-	.9 24	1			<0.1	
03 JUN		26 6.4		8	3.1 3	12	1			0.1	
13 JUL		22 5.5	2.1	11	3	3.6 7.	.0 1	4 1:	3	0.2	
17	•	16 3.8	1.5	3	3.4	3.0 2	.0	9.0	6.2	0.1	
07	7	22 5.4	2.0	11	3	10	1	1		0.1	
DATE	SILIC/ DIS- SOLVI (MG/I AS SIO2)	CONST! ED TUENTS L DIS- SOLVE	NITRO GEN, NITRITI TOTAL D (MG/L	GE	N, GE NO3 AMMO AL TOTAL I/L (MO	RO- GEN N, MON NIA ORGA AL TO G/L (MO	ÎA + NI ANIC G TAL TO G/L (M	EN, PHO TAL TO G/L (M		ARBON, RGANIC TOTAL (MG/L AS C)	
OCT 1988 31 JAN 1989	7.0	0 6	0.079	3.	31 0.	82 1	.6 4	.9 0.	98	7.9	
24 APR	8.3	3 8	30 0.04	2 2.	03 3	.85 4	.4 6	.4 0.	94	9.2	
03	5.	7 (0.02	1.	67 1.	.63 2	.3 3	.9 0.	45	6.2	
13 JUL	6.9	9 (0.05	1.	63 1.	12 2	.4 4	.0 0.	47	7.3	
17	3.	5 3	0.01	3 1.	00 0.	.09 0	.90 1	.9 0.	22 1	2	
07	6.	5	0.10	3 1.	22 0	.33 1	.2 2	.4 0.	44	7.4	

01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ--Continued

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN . IN D MAT SO /KG (U	LVED TO G/L (U	TO IN ENIC TOM TAL TE	TAL L BOT- T I MA- R RIAL E	TOTAL T RECOV- F RABLE E (UG/L (TOTAL TO RECOV- RE ERABLE ER (UG/L (U	CADMIUM MIUM RECOV. TAL FM BOT- COV- TOM MA- ABLE TERIAL G/L (UG/G CD) AS CD
OCT 1988	1245		20	0.1	19			1			<10
JUN 1989				0.1	19	400	146			F0	
13	1045	<0.5	••			120	<1	••	<10	50	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	TERIAL (UG/G	RECOV- L ERABLE (UG/L	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988											Ph. 2.3.
31 JUN 1989	••	2	<50	••	4	•••	470	••	10	0	<10
13	<1	••		12	••	680	•••		4	30	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV FM BOT TOM MA TERIAL (UG/G AS ZN	- L PHENOLS TOTAL	TERIAL	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988		0.04		-100				-41	•	74	
31 JUN 1989	••	0.04	••	<100		<1	••	<10		36	<1.0
13	<0.10	•	3	•••	<1	•••	30	• • • • • • • • • • • • • • • • • • • •	1	2	••
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN TOTAL IN BOT TOM MA TERIA (UG/KG	, ENDRIN TOTAL - IN BOT - TOM MA L TERIA	TOTAL - IN BOT TOM MA- L TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988											
31 JUN 1989	<0.1	28	24	<10	<10	<0.1	6.9	1.	7 <0.	1 <0.1	0.2
13					••	••	••	••		••	••
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL.	LINDANE TOTAL IN BOT- TOM MA- TERIAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	METHYL PARA- THION, TOT. IN BOTTOM MATL.	METHYL TRI- THION, TOT. IN BOTTOM MATL.	TERTAL	PARA- THION TOTAL IN BOT TOM MA TERIA	, PER- THANE - IN BOT - TOM MA L TERIAL	TOTAL - IN BOT TOM MA- TERIAL	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL
	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG) (UG/KG) (UG/KG)	(UG/KG)
OCT 1988 31 JUN 1989	0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	0.	2 1.0	0 <10	<0.1
13	••							1.0		•	

01409500 BATSTO RIVER AT BATSTO, NJ

LOCATION.--Lat 39°38'33", long 74°39'00", Burlington County, Hydrologic Unit 02040301, on right bank 30 ft downstream from bridge on State Highway 542 at Batsto, and 1.0 mi upstream from mouth.

DRAINAGE AREA. -- 67.8 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1927 to current year. Monthly discharge only for April to September 1939, published in WSP 1302.

REVISED RECORDS.--WSP 1432: 1930, 1933, 1936, 1938. WDR NJ-83-1: Drainage area. WDR-87-1: 1939 (M).

GAGE.--Water-stage recorder. Concrete control since Oct. 12, 1939; prior to Mar. 24, 1939, wooden control at site 50 ft downstream. Datum of gage is 1.4 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Considerable regulation at times by sluice gates prior to December 1954 and by automatic Bascule and sluice gates since July 1959 at Batsto Lake, 300 ft upstream, capacity, about 60,000,000 gal. Several measurements of water temperature, other than those published, were made during the year.

,												
	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	47	65	159	80	89	133	156	149	131	91	111	83
2	48	76	148	80	87	124	168	173	123	88	108	81
3	51	81	132	81	85	118	162	221	117	84	104	78
4	52	76	119	79	91	108	149	264	111	81	98	76
5	54	66	111	75	91	106	146	229	105	89	94	73
6	55	65	103	71	88	111	147	217	111	105	90	72
7	56	62	98	72	88	108	153	247	124	121	101	71
8	51	60	94	78	86	111	179	274	131	132	122	70
9	49	59	92	87	83	113	203	244	136	126	110	70
10	50	59	90	90	81	112	222	249	141	117	102	68
11	50	60	88	87	79	112	205	391	153	105	106	66
12	50	59	86	87	79	114	180	568	146	96	126	64
13	50	60	81	92	77	116	163	472	132	96	143	65
14	48	64	79	94	80	117	151	371	120	105	168	67
15	49	63	78	101	87	115	150	292	114	106	186	77
16	51	61	76	110	94	114	152	243	127	104	194	80
17	49	70	74	118	97	111	161	231	130	131	189	97
18	48	80	72	116	98	109	162	242	144	162	167	101
19	51	84	70	111	94	109	160	250	141	190	140	133
20	52	92	70	106	89	109	153	229	140	226	122	196
21	49	101	72	102	100	115	146	201	131	279	120	377
22	71	110	75	97	122	117	137	176	125	384	115	378
23	82	112	76	96	158	119	128	163	119	384	109	319
24	78	112	82	94	182	125	121	159	122	295	103	240
25	67	109	91	91	174	147	113	172	122	227	102	187
26 27 28 29 30 31	63 60 58 57 57 56	104 94 119 132 156	95 89 87 85 82 81	85 84 82 81 84 87	158 144 143	198 211 190 170 157 151	110 109 107 106 127	190 200 184 167 154 143	118 113 109 100 94	178 149 136 127 120 114	99 93 91 90 90 88	183 195 242 221 187
MEAN	55.1	83.7	91.5	90.3	104	128	151	241	124	153	119	141
MAX	82	156	159	118	182	211	222	568	153	384	194	378
MIN	47	59	70	71	77	106	106	143	94	81	88	64
IN.	.94	1.38	1.56	1.54	1.60	2.18	2.48	4.10	2.05	2.61	2.02	2.31
STATIST	ICS OF MON	THLY FLO	DATA FO	R PERIOD	OF RECORD,	BY WATER	R YEAR (WY)				
MEAN	87.0	114	125	139	150	170	156	145	105	92.9	101	93.3
MAX	241	307	302	280	361	353	322	279	242	257	332	242
(WY)	1959	1973	1973	1949	1939	1958	1970	1958	1948	1938	1958	1960
MIN	43.9	43.4	48.4	55.6	75.9	79.5	71.8	65.1	50.9	40.6	42.0	44.5
(WY)	1966	1966	1966	1966	1931	1981	1985	1977	1977	1977	1957	1977
SUMMARY	STATISTIC	s		FO	R 1989 WATE	R YEAR			FOR P	ERIOD OF F	RECORD	
LOWEST A HIGHEST LOWEST I	ANNUAL MEA ANNUAL MEA DAILY MEA ANEOUS PEA RUNOFF (IN ENTILE ENTILE	IN IN IN STAGE			568 47 24.75 199 109 54	May 12 Oct 1			24.4 20 10	00 Aug ,7 Oct ,7a Aug ,9	1958 1966 20 1939 4 1959 20 1939	

a From floodmark

01409500 BATSTO RIVER AT BATSTO, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1925, 1956, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		TIME	CHAR INS CUB FE PE SEC	GE, T. IC ET R	SPE- CIFI CON- DUCT ANCE (US/0	r- (s	PH TAND ARD ITS)	- A	MPER- TURE ATER EG C	SC	GEN, IS- DLVED IG/L)	SO (P C SA		DXYGE DEMAN BIO- CHEN ICAL 5 D/ (MG/	ID, 1- ĀÝ	COLI- FORM, FECAL EC BROTH (MPN)	, STR TOCO	CCI
OCT 1988 26		1200	6	3E		45	4.8		10.5		9.4		84	<1.	.1	<20	<2	
JAN 1989		1015	11	5		68	5.3		3.0	1	2.0		89	<1.	n	<20	14	
APR															-	<20	4	
03		1345	15			56	4.6		9.5		9.4		82	<1.				
12 JUL		1330	14			35	5.0		20.0		6.6		73	E1.		20	8	
17		1030	13	3		58	4.8		18.5		7.4		79	<0	.7	220	240	
08		1115	12	1		30	5.5		20.0		7.2		79	<1	.1 2	200	>2400)
	DATE	HAR NES TOT (MG AS CAC	S AL /L	CALC DIS SOLY (MG, AS	VED /L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SO D SO	DIUM, IS- LVED MG/L S NA	S (OTAS- SIUM, DIS- DLVED MG/L S K)	(MI	TY AB G/L	SULFA DIS- SOLV (MG/ AS SO	ED L	CHLO- RIDE, DIS- SOLVE (MG/L AS CL	D :	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	1988		9	1	.9	1.0		2.7		1.1	1	.0	12		4.6		<0.1	
JAN	1989		11		.4	1.2		2.6		0.80	<1		15		5.1		0.1	
APR																		
JUN	3	2.5	10		.2	0.99		2.6		0.80	<1		16		4.9		<0.1	
JUL	2		7		.6	0.80		2.1		0.80	<1	.0	5.	0	4.3		0.1	
AUG	'···		7	1	.4	0.84	•	2.0		0.60	2	.0	3.	0	3.0		0.1	
30	3		5	1	.2	0.60)	1.8		0.60	1	.0	3.	0	4.0		0.1	
	DATE	SILI DIS SOL (MG AS SIO	VED /L	SOL II SUM CONS TUEN DI SOL (MG	OF TI- TS, S- VED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NO T	ITRO GEN, 2+NO OTAL MG/L S N)	S AM	ITRO- GEN, MONIA OTAL MG/L S N)	GEN MON ORG TO (M	TRO- ,AM- IA + ANIC TAL G/L N)	NITR GEN TOTA (MG/ AS N	Ĺ	PHOS- PHOROU TOTAL (MG/L AS P)	S O	ARBON, RGANIC TOTAL (MG/L AS C)	
	1988	6	.0		30	0.003		0.14	<0	.05	0.	25	0.39		0.02	3	.6	
JAN	1989		.7	21		0.003		0.30		.05	0.		0.51		0.02		.1	
APR					3.7													
JUN	3		.6	9		<0.003		0.21		.05	0.		0.48		0.02		.9	
JUL	2	4	.3	•		0.006	5	0.25	0	.06	0.	81	1.1		0.05	16		
AUG	7	4	.7		17	0.003	3	0.23	0	.05	0.	50	0.73		0.04	8	.0	
08	3	5	.1		17	0.026	5	0.27	0	.05	0.	55	0.82		0.04	9	.8	

01409510 BATSTO RIVER AT PLEASANT MILLS, NJ

LOCATION.--Lat 39°37'55", long 74°38'40", Burlington County, Hydrologic Unit 02040301, on right bank, 0.4 mi upstream from Mullica River, and 0.5 mi southeast of Pleasant Mills.

DRAINAGE AREA .-- 73.6 mi 2.

PERIOD OF RECORD. -- July 1958 to current year. Annual maximum only published for 1958 to 1965.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is -8.6 ft below National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation recorded, 7.2 ft, Mar. 7, 1962; minimum recorded (1966-87), -0.67 ft, Jan. 2, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 4.36 ft, Sept. 19; minimum recorded, -0.04 ft, Dec. 16.

Summaries of tide elevations during year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

***************************************		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	4.05	3.54	3.31	3.69	3.47	3.77	3.19	4.06	3.30	3.84	3.69	4.36
high tide	Date	21	5	23	7	25	9	8	11	4	16	19	19
Minimum	Elevation	.08	.13	04	.07	.04	.28	.32	.61	.43	.37	.67	.52
low tide	Date	15	11	16	6	12	18,19	29	31	4	. 3	31	13
Mean high ti	ide	2.64	2.48	2.30	2.38	2.43	2.61	2.59	2.94	2.85	2.94	2.92	2.97
Mean water	level	1.45	1.40	1.17	1.27	1.34	1.64	1.59	2.15	1.85	2.06	2.03	2.11
Mean low tic	de	.36	.42	.29	.31	.39	.66	.69	1.34	.78	1.10	1.02	1.16

01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ

LOCATION.--Lat 39°41'17", long 74°32'54", Burlington County, Hydrologic Unit 02040301, on right bank 900 ft downstream from Godfrey Bridge on Washington-Jenkins Road, 2.2 mi downstream from Hospitality Brook, and 1.2 mi southwest of Jenkins.

DRAINAGE AREA. -- 84.1 mi².

e Estimated

PERIOD OF RECORD. -- October 1974 to current year.

REVISED RECORDS.--WDR NJ-77-1: 1976. WDR NJ-81-1: 1975(P), 1976(P), 1977(P), 1978(P), 1979(P), 1980(P).

GAGE.--Water-stage recorder. Datum of gage is 10.17 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Some regulation by cranberry bogs and small ponds. Several measurements of water temperature were made during the year.

smal	l ponds.	Several m	neasuremen	ts of wat	ter tempera	ture were	made du	ring the y	ear.				
	DISCH	ARGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, ME	AN DAILY	VALUES		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	e43 e45 e46 50 e48	101 162 159 114 106	219 195 158 128 115	73 78 77 73 60	88 87 95 113 105	147 135 127 118 115	206 197 190 188 179	219 312 450 419 311	149 127 120 110 101	86 79 76 74 140	129 124 119 112 107	72 71 70 67 61	
6 7 8 9 10	e43 e44 e51 e48 e44	e95 e80 127 112 95	109 99 e90 e85 e80	67 81 89 92 85	101 99 96 91 86	131 150 141 134 130	239 222 275 259 255	334 395 361 278 345	121 162 183 180 195	326 354 314 254 209	95 97 122 109 103	58 56 55 51 53	
11 12 13 14 15	e42 e41 e40 e39 e40	84 e75 e72 e70 81	e75 e70 e65 e60 e55	79 81 92 85 107	83 82 80 92 101	128 138 143 135 132	240 240 219 215 200	724 694 547 427 337	189 164 144 128 121	163 95 122 204 191	139 292 408 456 416	52 50 51 51 66	
16 17 18 19 20	e41 e40 e38 e38 e39	80 92 117 103 126	e52 e46 e44 e47 50	120 112 106 104 101	111 104 96 93 90	172 140 115 128 119	220 208 194 217 258	288 288 284 249 222	165 187 226 223 198	190 387 434 362 396	370 312 249 211 194	68 121 122 286 985	
21 22 23 24 25	e45 138 120 98 e82	163 161 e140 e120 e100	57 55 60 72 86	94 88 85 85 85	126 198 212 196 171	145 164 153 162 282	219 197 192 179 181	196 177 160 179 184	179 170 193 237 225	688 598 482 364 268	150 122 112 103 93	1040 783 554 308 192	
26 27 28 29 30 31	e70 e62 e59 e55 e55 e54	e90 e80 205 289 241	76 73 75 73 72 72	85 89 87 84 87 93	179 171 159	266 241 203 175 148 176	176 146 111 98 201	189 210 243 222 197 174	210 186 157 130 91	208 159 149 128 116 122	87 79 75 72 79 76	272 334 295 284 249	
MEAN MAX MIN IN.	54.8 138 38 .75	121 289 70 1.61	84.3 219 44 1.16	87.9 120 60 1.20	118 212 80 1.46	155 282 115 2.12	204 275 98 2.71	310 724 160 4.25	166 237 91 2.20	250 688 74 3.42	168 456 72 2.31	226 1040 50 3.00	
					OF RECORD,								
MEAN MAX (WY) MIN (WY)	94.9 237 1976 50.4 1983	122 261 1978 69.3 1979	126 270 1978 58.7 1981	185 379 1979 54.6 1981	173 313 1979 102 1977	202 389 1979 93.0 1985	209 418 1983 98.8 1985	188 326 1979 72.1 1986	114 210 1984 47.5 1986	107 250 1989 29.9 1977	99.1 278 1978 35.6 1977	82.4 226 1989 38.9 1982	
SUMMA	RY STATIS	TICS		FO	R 1989 WATE	R YEAR			FOR P	ERIOD OF	RECORD		
HIGHE LOWES HIGHE LOWES INSTA INSTA ANNUA 10 PE 50 PE		MEAN MEAN IEAN PEAK FLOW PEAK STAGE LOW FLOW			162 1040 38 1120 14.65 36 26.19 298 123 47	Sep 21 Oct 18 May 11 May 11 Sep 21			14 22: 73.1 126 132 16.1: 22.9 27 10	4 9 0 Feb 3 Jul 0 Feb 4 Feb 2 Jul 0	1978 1985 27 1979 24 1977 26 1979 26 1979 24 1977		
_	Ectimator	J											

247

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ (National stream-quality accounting network station)

LOCATION.--Lat 39°40'30", long 74°32'28", Burlington County, Hydrologic Unit 02040301, at bridge on State Highway 563 in Maxwell, 2.2 mi southeast of Washington, 1.8 mi southwest of Jenkins, and 1.6 mi upstream from confluence with Oswego River.

DRAINAGE AREA. -- 85.9 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

REMARKS.--Water-stage recorder located at station 01409810.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS CHARG INST CUBI FEE PER SECO	E, SPE C CON T DUC ANC	IC - PI T- (STA	AND - A	MPER- TURE ATER EG C)	TUR- BID- ITY (NTU)	OXYGE DIS SOLV (MG/	- CE ED SAT	S- DEMAI VED BIO R- CHEI NT ICAI UR- 5 D/	ND, FOR FEC M- 0.7 L, UM- AY (COL	M, TOCOCI AL, FECAI KF AG MF (COLS S./ PER	CI L, AR
NOV 1988	0900	E312		72 3	3.7	7.5	4.4	8.	6	71 1	.1	42 44	0
JAN 1989 31	1100	E96		46	.0	6.5	4.6	10.	8	88 0	.3	<1 11	0
MAR 28	1215	E206		58 3	3.8	14.5	1.6	8.	8	87 0	.4	<1 19	0
MAY 30	1030	E201		47	4.3	18.0	3.5	6.	6	69 1	.0	K9 18	0
JUL 25	1045	E278		42	4.1	23.0	3.1	5.	4	63			
SEP 22	1015	E814	· -	- 4	4.1	22.5	3.0	5.	8	0	.9	77 19	0
DATE NOV 1988 29 JAN 1989 31 MAR 28 MAY 30 JUL 25 SEP 22	NE TO (N	ARD- ESS DTAL MG/L AS ACO3) 6 4 4 3 2	CALCIUM DIS- SOLVED (MG/L AS CA) 1.1 0.89 0.81 0.50 0.45	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 0.74 0.49 0.56 0.31 0.30		DIS SOLV (MG, AS I	AS- LII JM, WA' S- TO' /ED F /L MG	T FET IELD /L AS	SULFATE DIS- SOLVED (MG/L AS SO4) 14 9.0 7.9 4.0 1.0 4.0	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 4.1 3.8 4.3 3.9 4.5 4.1	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 0.1 <0.1 0.1 <0.1	SILICA, DIS- SOLVED (MG/L AS SIO2) 4.2 5.8 3.4 4.0 4.5	
DATE	MI SI PI	EDI- ENT, US- ENDED MG/L)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO DIS- SOLVE (MG/L AS N)	NITE 3 GEI AMMOI D TOTA	RO- N, AM NIA AL S /L (NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	
NOV 1988 29		5	95	<0.010	<0.10	00 0	060	0.050	0.30	0.020	<0.010	<0.010	
JAN 1989 31		4	75	<0.010				0.020	<0.20	<0.010	<0.010	<0.010	
MAR 28		14	60	<0.010				0.020	<0.20	<0.010	<0.010	<0.010	
MAY 30		18	89	<0.010				0.040	0.40	0.020	<0.010	<0.010	
JUL 25		36	57	<0.010				0.030	2.1	0.020	<0.010	<0.010	
SEP 22		13	86	<0.010				0.010	0.60	0.020	<0.010	<0.010	
22		13	00	~0.010	VO. 10	, V.	010	0.010	0.00	0.020	V0.010	~0.010	

^{*} Laboratory determination

MULLICA RIVER BASIN

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	(UG/	/ED SOLV	IUM, LIU S- DIS /ED SOI G/L (UC	VED SOL	S- DIS	JM, COBA S- DIS LVED SOLV G/L (UG	ED SO	S- DI LVED SOI G/L (UC	DN, LEAD, IS- DIS- LVED SOLVED G/L (UG/L FE) AS PB)
JAN 1989	1100	210	1	<1	22	<0.5	<1	<1	<3	<1	380 <5
MAR 28	1215	220	l	<1	23	<0.5	<1	<1	<3	2	440 13
JUL 25 SEP	1045	260	1	2	8 -	<0.5	- 1	1	<3	1 .	1500
22	1015	250		1	12	<0.5	<1	2	<3	4	1300 4
DA	SC SC TE (U	THIUM N DIS- DLVED S JG/L (ANGA- ESE, DIS- OLVED UG/L S MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	(UG/L	ZINC, DIS- SOLVED (UG/L AS ZN)
JAN 198		<4	18	<0.1	<10	3	<1	<1.0	8	<6	25
MAR 28		<4	17	<0.1	<10	6	<1	<1.0	8	<6	25
JUL 25		<4	11	<0.1	<10	1	<1	<1.0	3	<6	15
SEP 22		<4	14	0.2	<10	, 1	<1	<1.0	5	<6	25

01410000 OSWEGO RIVER AT HARRISVILLE, NJ

LOCATION.--Lat 39°39'47", long 74°31'26", Burlington County, Hydrologic Unit 02040301, on right bank 50 ft downstream from bridge on State Highway Spur 563 at Harrisville, and 0.5 mi upstream from confluence with West Branch Wading

DRAINAGE AREA. -- 72.5 mi 2.

PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1955, published as "East Branch Wading River at Harrisville".

REVISED RECORDS. -- WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since June 23, 1939. Datum of gage is 4.62 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for estimated daily discharges, which are fair. Figures given herein represent flow over main spillway and through bypass channel. Flow regulated by Harrisville Pond 200 ft above station, capacity, about 30,000,000 gal and by ponds and cranberry bogs 5 to 10 mi upstream. Flow probably reduced by ground-water outflow to nearby surface drainage basins, such as Oyster Creek. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, N	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	30	50	98	45	56	71	117	150	98	66	e86	68
2	36	60	82	45	50	67	109	207	92	60	e82	70
3	35	55	72	44	59	63	100	256	87	56	e79	67
4	36	48	65	43	71	61	94	241	78	42	e75	65
5	35	43	61	38	62	60	91	185	78	100	e73	61
6	33	41	58	43	57	74	104	196	84	133	e77	60
7	33	38	54	50	54	83	106	214	108	157	e94	57
8	37	38	48	57	51	76	148	184	116	135	e100	59
9	35	37	43	58	49	67	153	139	120	99	e84	50
10	32	39	43	56	47	69	132	206	118	95	e75	55
11	31	41	42	51	45	67	116	386	106	80	e120	53
12	31	40	41	52	45	69	103	424	97	67	e198	54
13	30	41	41	56	54	71	97	345	90	82	e234	54
14	30	49	41	56	58	92	92	290	84	102	e249	51
15	30	50	41	67	e60	87	92	241	83	97	e231	54
16	30	47	40	69	62	70	114	238	102	110	e208	60
17	29	73	40	64	61	57	113	268	136	250	e180	94
18	28	86	39	61	58	56	104	243	151	280	e155	95
19	28	65	39	60	53	82	105	184	147	232	e143	229
20	30	82	40	56	51	94	104	142	123	231	e131	624
21	36	89	43	52	74	79	97	128	102	361	e113	641
22	68	74	44	47	101	76	88	115	103	345	e98	458
23	73	64	45	44	97	68	80	120	121	284	e90	328
24	65	61	49	46	86	87	75	153	130	236	e82	209
25	54	58	53	49	75	138	72	142	105	171	e76	136
26 27 28 29 30 31	46 40 37 37 36 36	53 53 115 139 111	50 47 50 49 48 46	47 47 46 45 59 65	75 73 73 	146 114 95 91 90 104	68 74 105 88 147	128 128 145 132 116 107	100 91 85 72 68	126 104 101 92 85 e82	e73 e68 70 69 65	189 233 196 153 130
MEAN	37.6	61.3	50.1	52.2	62.7	81.4	103	198	102	144	114	155
MAX	73	139	98	69	101	146	153	424	151	361	249	641
MIN	28	37	39	38	45	56	68	107	68	42	51	50
IN.	.60	.94	.80	.83	.90	1.30	1.58	3.16	1.58	2.29	1.81	2.39
				R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN	1959	82.9	84.7	101	105	117	113	98.1	72.0	67.9	75.2	62.6
MAX		234	200	242	210	220	253	198	155	201	207	163
(WY)		1973	1973	1979	1939	1958	1970	1989	1984	1938	1933	1938
MIN		30.8	27.1	33.9	53.2	51.9	41.3	43.9	33.7	24.2	23.9	24.4
(WY)		1966	1966	1966	1931	1985	1985	1942	1966	1977	1957	1951
SUMMARY	STATISTICS	3		FC	R 1989 WATE	R YEAR			FOR I	PERIOD OF	RECORD	
HIGHEST LOWEST INSTANT	ANNUAL MEA ANNUAL MEAN DAILY MEAN ANEOUS PEAK ANEOUS PEAK ANEOUS LOW RUNOFF (INC ENTILE	l L			97.0 641 28 711 5.97 27 18.17 190 75 36	Sep 21 Oct 18 Sep 20 Sep 20 Oct 18			41 12: 4 13: 9.:	38 .4 20 Aug .0 Jun 90a Aug 54b Aug 0c Oct	1978 1966 20 1939 23 1967 20 1939 20 1939 26 1932	

From rating curve extended above 640 ft³/s

From high-water mark in gage house While pond filling b

Estimated

01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrietns were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH. I	UBIC CO FEET DU PER AN	FIC N- I CT- (ST CE	TAND- ARD	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		BIO- F- CHEM- F ICAL, 5 DAY B	OLI- ORM, ECAL, STREP- EC TOCOCCI ROTH FECAL MPN) (MPN)	
OCT 1988										
26 JAN 1989	1000	45	53	4.5	10.5	10.4	93	<0.2 <	20 <2	
17	1100	62	46	4.4	4.0	11.8	90	E1.6 <	20 <2	
MAR 20	1230	90	55	4.7	6.5	12.0	97	<1.2 <	20 4	
MAY 24	1100	151	53	4.5	17.0	8.4	88	<0.8	50 220	
JUL 13	1015	70	50	4.4	22.5	7.8	90	<7.5	20 130	
AUG 03	1400	E79	42	4.3	22.5	8.0	93		20 79	
	1400		7-	4.5	22.5	0.0	,,		20 17	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUI DIS- SOLVEI (MG/I	D SOL L (MG	UM, LINIT S- LAE VED (MG/ J/L AS	TY SULFA B DIS- /L SOLV (MG/	/ED SOLVED /L (MG/L	(MG/L	
OCT 1988 26	6	1.3	0.70	3.	2 1	.0 <1.0	13	5.6	<0.1	
JAN 1989 17	5		0.64			.90 <1.0			<0.1	
MAR								4.6	7.7	
20 MAY	5	3776	0.56			.80 <1.0		4.3	0.1	
24 JUL	4	0.86	0.43	2.	3 0	.50 <1.0	0 6.	.0 4.2	0.1	
13 AUG	4	1.1	0.37	2.	2 0	.60 <1.0	5.	.0 4.0	<0.1	
03	4	0.77	0.40	2.	2 0	.50 <1.0	0 4.	.0 4.6	0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITR GEN NO2+N TOTA (MG/ AS N	O3 AMMO L TOT L (MG	NIA ORGAI AL TOTA JL (MG,	AM- A + NITE NIC GEN AL TOTA /L (MG)	N, PHOROUS AL TOTAL /L (MG/L	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT_1988	7.0		-0.007			- 00				
26 JAN_1989	7.9		<0.003						2.8	
17 MAR	7.6	7.	0.004	0.1	8 0.1	11 0.2	3 0.4	1 <0.02	3.0	
20 MAY	5.4		0.003	0.1	2 0.1	0.2	0 0.3	2 0.03	3.6	
24 JUL	3.7	••	0.008	0.1	8 <0.0	0.4	5 0.63	3 0.04	9.0	
13	6.2		0.011	0.1	9 0.0	0.4	7 0.6	6 0.07	8.0	
AUG 03	6.2	••	0.023	0.1	8 <0.0	0.3	5 0.5	3 0.03	11	

01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1989 24	1100	<0.5	240	<1	<10	30	<1	1	38
DAT	T(Ri Ei TE (I	OTAL TO ECOV- RE RABLE ER UG/L (U	AD, NE TAL TO COV- RE ABLE ER G/L (U	DTAL TO ECOV- RE RABLE EF JG/L (U	DTAL TO ECOV- RE RABLE ER JG/L (U	COV- NI RABLE TO JG/L (U	ZIN LE- TOT UM, REC TAL ERA IG/L (UG	AĽ OV- BLE PHE /L TO	NOLS ITAL I/L)
MAY 198 24		1400	2	20	<0.10	<1	<1	20	2

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ

LOCATION.--Lat 39°37'23", long 74°26'30", Burlington County, Hydrologic Unit 02040301, on left bank upstream of bridge on Stage Road, 0.7 mi west of Lake Absegami, 2.2 mi north of New Gretna, and 5.3 mi upstream from mouth.

DRAINAGE AREA. -- 8.11 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1969 to 1974. January 1978 to current year. REVISED RECORDS.--WDR NJ-81-1: 1978-80(P).

GAGE. -- Water-stage recorder. Datum of gage is 1.10 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Some regulation by Lake Absegami. Several measurements of water temperature, other than those published, were made during the year.

water	temperature	7			-	_	-		4000 115			
					WATER YEAR							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 7.1 9.3 9.6 8.8	11 14 11 9.4 9.4	14 13 13 13	10 11 11 10 9.9	11 10 11 14 12	14 13 13 13 12	26 21 19 19 18	34 38 36 28 24	19 19 18 17 17	14 14 14 14 17	15 14 13 12 12	16 14 13 13 12
6 7 8 9 10	7.9 7.6 8.7 8.4 7.9	9.5 9.1 8.8 8.7 8.6	13 13 13 13 12	11 13 13 12 11	11 11 10 9.8 9.4	16 19 15 13	24 23 30 28 22	28 26 23 21 38	20 30 29 24 22	21 20 17 14 13	16 26 24 17 13	12 12 11 11
11 12 13 14 15	7.4 7.2 7.1 7.1 7.1	8.8 8.6 8.8 9.2 8.8	12 12 11 12 12	10 11 12 11 14	9.3 9.2 9.1 11 12	14 14 15 15 16	19 18 17 17	58 43 35 31 29	19 17 16 16 17	13 12 16 22 17	33 51 48 39 31	10 10 10 10 11
16 17 18 19 20	7.1 7.0 7.1 7.0	8.6 13 16 12 15	11 11 11 11 11	15 12 11 11	13 12 10 9.9 9.8	15 14 14 18 16	30 26 20 22 22	30 33 31 28 25	28 30 25 20 17	21 49 37 24 18	27 24 22 23 22	12 20 17 54 83
21 22 23 24 25	8.3 20 18 11 9.0	17 13 11 10 10	11 11 11 13 13	10 9.9 10 10	14 18 16 15	19 19 16 25 38	19 17 16 15	24 23 24 28 27	17 16 18 19	18 18 17 15 14	21 19 18 17 16	42 29 23 21 19
26 27 28 29 30 31	8.4 8.2 8.1 8.0 7.7 7.6	9.8 10 22 24 18	12 11 11 11 10 10	10 10 10 9.7 11	13 13 14	29 21 18 16 18 25	15 14 14 16 36	23 26 28 24 21 20	16 16 15 15	14 13 14 13 12 14	16 15 15 18 24 19	33 35 27 21 19
MEAN MAX MIN IN.	8.64 20 6.9 1.23	11.8 24 8.6 1.62	11.9 14 10 1.69	11.0 15 9.7 1.57	11.8 18 9.1 1.52	17.3 38 12 2.46	20.6 36 14 2.83	29.3 58 20 4.16	19.5 30 15 2.68	17.7 49 12 2.52	21.9 51 12 3.12	21.0 83 10 2.89
STAT	ISTICS OF MO		W DATA FO	R PERIOD	OF RECORD	, BY WATER	YEAR	(WY)				
MEAN MAX (WY) MIN (WY)	10.7 19.9 1980 8.13 1983	12.2 18.1 1980 8.75 1982	14.2 23.4 1984 9.78 1986	17.6 35.0 1978 9.28 1981	17.7 29.8 1979 11.4 1981	19.6 36.8 1979 10.5 1981	22.2 38.6 1984 9.06 1985	20.5 30.3 1984 8.95 1985	16.0 27.2 1984 8.11 1986	13.4 25.8 1978 7.80 1985	12.2 24.6 1978 7.97 1986	11.3 21.0 1989 7.18 1986
SUMM	ARY STATISTI	CS		FC	OR 1989 WAT	ER YEAR			FOR PE	ERIOD OF F	RECORD	
HIGH LOWE: HIGH LOWE: INST, INST, ANNU, 10 P 50 P	AGE FLOW EST ANNUAL ME EST ANNUAL ME EST DAILY ME ANTANEOUS PE ANTANEOUS PE ANTANEOUS LO AL RUNOFF (1) ERCENTILE ERCENTILE	EAN EAN AN EAK FLOW EAK STAGE DW FLOW			83 6.9 131 5.58 6.9 28.29 28 15 7.8	Sep 20 Oct 1 Sep 20 Sep 20 Oct 1			15. 21. 9.61 13. 6. 26 5.8 5.4 25.2 21.	B D Jul B Jul D Jul	1984 1985 4 1978 21 1985 4 1978 4 1978 8 1986	

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND ARD UNITS)	TEMP - ATL WAT (DEG	JRE D ER SC	GEN, DIS- DLVED	DIS- DE SOLVED E (PER- C CENT I SATUR- 5	IO- HEM- CAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1	1988	1300	7.1	35	4.9	11	.0	7.7	70	<0.3	<20	170
JAN	1 1989	1330	12	46	4.6			11.5	86		<20	7
MAR 2	20	1030	16	49	4.8	5	5.5	9.8	77	<1.1	<20	5
MAY 2	24	1345	28	54	4.7		5.0	7.8	79	<0.3	50	540
JUL 1	i3	1330	16	38	4.6	22	2.0	7.6	88	<0.3	20	79
AUG	3 3	1100	13	39	4.5	18	3.0	6.2	66	<0.3	50	540
	DATE	HARD NESS TOTA (MG/ AS CACO	CALC L DIS L SOL (MG	IUM SI - DI VED SOI /L (MG	S- D VED SO S/L (DIUM, IS- LVED MG/L S NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L	DIS- SOLVE (MG/L	(MG)	, S- /ED /L
	OCT 1988 19 JAN 1989		3 0	.48	0.54	2.7	0.70	1.0	5.6	4.9	<0.	.1
	17		5 0	.75	0.70	2.8	0.70	<1.0	9.1	4.9	<0.	.1
	MAR 20		6 1	.2	.78	3.9	0.70	<1.0	11	6.1	0.	.1
	MAY 24 JUL		4 0	.62	.49	3.4	0.50	<1.0	5.0	6.4	0.	.1
	13 AUG		2 0	.67	0.13	1.8	0.50	<1.0	4.0	4.0	<0.	.1
	03		4 0	.81	0.51	2.8	0.50	<1.0	4.0	5.8	<0	.1
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONS /ED TUEN /L D1 SOL	OF NI STI- G ITS, NIT IS- TO VED (M	EN, RITE NO TAL T G/L (ITRO- GEN, 2+NO3 OTAL MG/L S N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	+ NITRO C GEN, TOTAL (MG/L	PHOS- PHOROU TOTAL (MG/L AS P)	S ORGAI	NIČ AL /L
	OCT 1988	9.	.1	25 <0	.003 <	0.05	<0.05	0.10		<0.02	1.9	
	JAN 1989 17	7.				0.18	0.10	0.15	0.33	0.02	4.9	
	MAR 20	6.			7,17,17, 1 7,	0.23	<0.05	0.21	0.44	0.02	4.8	
	MAY 24	4.				0.25	0.05	0.28	0.53	0.03	6.6	
	JUL 13	5.				0.20	0.06	0.48	0.68	0.06	7.4	
	AUG 03	7.	.3	0		0.16	<0.05	0.12	0.28	0.04	4.5	

01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TI	SULFI TOTA ME (MG, AS S	AL SOLY	1, S- ARSE /ED TOT /L (UG	AL ERA	M, BORI AL TOT. OV- REC BLE ERA /L (UG	AL TOTAL OV- RECOV BLE ERABL /L (UG/L	TOTAL - RECOV- E ERABLE - (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 19	13	00 <	0.5	50	<1 <1	0	<10	<1 <1	2
	DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	(UG/L TO	ENOLS DTAL G/L)
OCT	1988	40	-	-10	-0.10	2	-1	~10	7

01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ

LOCATION.--Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on Sicklerville-New Freedom Road (Spur 536), 1.5 mi northeast of Sicklerville, and 2.7 mi upstream of New Brooklyn Lake dam.

DRAINAGE AREA. -- 15.1 mi 2.

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)
OCT 1988 05	1015	E 5.2	148	6.5	12.0	4.8	44	4.1	210	40
FEB 1989	1100	E 8.8	154	6.6	4.0	10.9	82	4.1		
APR 06	1030	E27	87	5.7	11.5	6.0	56	2.6	170	>2400
JUN 15	1100	E14	92	6.2	17.5	5.7	61	2.2	20	2400
JUL 24	1000	E55	63	4.5	21.5	3.4	38	1.7	540	920
AUG 29	1300	E 9.8	138	6.6	19.5	6.2	68	0.8	80	330
DATE OCT 1988 05	CAC	CALC AL DIS /L SOL' (MG D3) AS	IUM SI - DI VED SOL /L (MC CA) AS	S- DIS VED SOLV	IUM, S S- D VED SC G/L (M NA) AS	SIUM, LIN DIS- L DLVED (M NG/L A	AB DIS IG/L SOI IS (MI ICO3) AS	LVED SOL' G/L (MG SO4) AS	E, RI D D SO VED SO /L (M CL) AS	UO- DE, IS- LVED G/L F)
FEB 1989 13				2.3 1		3.1 17				0.1
APR 06					7.5		.0 1	-		0.1
JUN 15					8.3			9.0 11		0.1
JUL 24		11 3	.0	.85	4.6	1.9 2	2.0	5.7 11		0.1
AUG 29		19 4	.8	1.7 1	0	2.8 10	1	1 11		0.1
DATE	SILII DIS SOL' (MG, AS SIO	CONS VED TUEN /L DI SOL	OF NIT	EN, G RITE NO2 TAL TO G/L (M	EN, C +NO3 AMN TAL TO G/L (N	TRO- GEN GEN, MON MONÍA ORG DTAL TO MG/L (M	ANIC G TAL TO IG/L (M	TRO- PHO EN, PHOR TAL TOT G/L (MG N) AS	OUS ORG AL TO /L (M	BON, ANIĆ DTAL IG/L G C)
OCT 1988 05 FEB 1989	6	.9	74 0	.088 2	.36	.87 2	2.2 4	.6 0.7	3 5.	3
13 APR		.9	78 0	.016 1	.30		-	- 0.4	1 6.	9
06 JUN	4	.5	51 0	.011 0	.69 ().58 1	.5 2	.2 0.3	7 16	
15 JUL	6	.5	47 0	.027 1	.32). 3 6 1	.1 2	.4 0.3	3 14	
24 AUG	4	.4	33 0	.018 0	.22).10 1	1.1 1	.3 0.2	4 40	
29	5	.0	52 0	.005 1	.61	0.06	.82 2	.4 0.3	5 10	

01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ

LOCATION.--39°40'09", long 74°54'49", Camden County, Hydrologic Unit 02040302, at Williamstown-Winslow Road, 1.9 mi southwest of Blue Anchor, and 2.1 mi downstream from confluence of Fourmile Branch.

DRAINAGE AREA. -- 37.3 mi 2.

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECONI	CIF CON DUC AND	IC - T- (S	PH TAND- ARD IITS)	TEMP ATU WAT (DEG	IRE ER	XYGEN, DIS- SOLVED (MG/L)	SOI (PI CI SA		OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COL FOR FEC BRC (MF	M, AL, TH	STREP- TOCOCCI FECAL (MPN)	
OCT_1988	0070											470		070	
05 FEB 1989	0930	E24		75	6.4		.0	7.8		74	1.7	170		230	
13 APR	1330	E32		87	6.2	4	.5	12.9		99	0.7			••	
06 JUN	1330	E58		74	6.0	13	.0	7.7		74	1.0	540		920	
08	1130	E68		66	5.6	19	0.0	4.9		53	1.9	920		>2400	
JUL 24	0930	E200		56	4.4	21	.5	4.2		47	1.0	46		1600	
AUG 29	1045	E34		88	6.7	18	3.5	8.2		88	0.6	70		1300	
DATE	HAR NES TOT (MG AS	S CAI AL D i/L S	LCIUM IS- OLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	DIS SOLV	ED	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LIN L D (M	AB G/L	SULFA DIS- SOLVI (MG/I AS SO	TE RII	LO- DE, S- LVED G/L CL)		E, S- .VED i/L	
OCT_1988		.,			_										
05 FEB 1989		14	3.0	1.7		7.0	2.0			13		9.2		0.1	
13 APR		17	3.5	2.0	7	7.8	1.9	7	.0	13	1	1	(0.1	
06		16	3.5	1.8	6	5.4	1.6	4	.0	24	1	1	(0.1	
08		15	3.4	1.5		5.0	1.5	4	.0	8.	0	9.7	(1.1	
24		10	2.8	0.8	. 3	3.5	1.4	1	.0	2.	8 1	1	(0.1	
AUG 29		14	3.0	1.5	6	5.0	1.6	7	.0	6.	0	8.8	<(0.1	
DATE	SILI DIS SOL (MC AS	CA, SU S- CO LVED TU S/L S S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	NITRO GEN, NITRITI TOTAL (MG/L AS N)	GE NO2-1 TO1 (MC	FRO- EN, FNO3 FAL G/L N)	NITRO GEN, AMMONI TOTAL (MG/L AS N)	P GEN MON A ORG TO	TRO- ,AM- IA + ANIC TAL IG/L N)	NITR GEN TOTA (MG/ AS N	, PHO L TO L (M	IOS- PROUS PTAL IG/L S P)	CARE ORGA TOT (MC	ANIĆ FAL G/L	
OCT 1988		5.8	49	0.00	. 1	.12	0.05		.36	1.5	0	14	5.		
FEB 1989															
13 APR		5.4	50	0.01		.40	• • • • • • • • • • • • • • • • • • • •		•	•		10	4.:		
06		4.3	55	0.00		.78	0.46	0	1.61	1.4		.15	11		
08 JUL		5.0	38	0.01	7 0	.46	0.09	0	.96	1.4	0.	.24	22		
24 AUG		4.3	27	0.01	B 0	.20	<0.05	0	.94	1.1	0.	.17	27		
29		5.6	37	0.00	5 1	.21	0.08	0	.52	1.7	0.	.13	6.	8	

01410820 GREAT EGG HARBOR RIVER NEAR BLUE ANCHOR, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	NH4 ING RG. GAI IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN D . IN D MAT SO /KG (L	DLVED TO JG/L (L	TO IN SENIC TON STAL TE JG/L (U	DTAL LI BOT- TO I MA- RE RIAL ER IG/G (U	TAĹ TO COV- RE ABLE ER G/L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM RETAL FM COV- TOMABLE TEG/L (U	MIUM COV. BOT- MA- RIAL G/G CD)
OCT 1988 05	0930	1	90	<0.1	1.3	••		3				<10
JUN 1989 08	1130	<0.5			••	350	<1		10	10	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988		8	<50		2		670		<100	1	3	21
05 JUN 1989 08	2			4		1300		7		30	î ·	
•••••				4		1500						
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT_1988		0.00		-400								
05 JUN 1989		0.02		<100	•	<1	••	50		<1	<1.0	
08	<0.10	••	3	••	<1	•	20		<1	••	••	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 05	<0.1	<1.0	1.0	0.3	-0.1	-0.1	0.1	-0.1	-0.1	40.1	-0.1	
JUN 1989 08		11.0	1.0	0.3	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	
00111												
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1	
JUN 1989 08												

01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ

LOCATION.--Lat 39°35'42", long 74°51'06", Atlantic County, Hydrologic Unit 02040302, on left bank 25 ft upstream from bridge on State Highway 54, 1.0 mi south of Folsom, and 2.0 mi upstream from Pennypot Stream.

DRAINAGE AREA. -- 57.1 mi 2.

PERIOD OF RECORD.--September 1925 to current year. Prior to October 1947, published as "Great Egg River at Folsom".

REVISED RECORDS.--WSP 1432: 1928(M), 1933. WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Nov. 26, 1934. Datum of gage is 53.32 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 6, 1941, water-stage recorder at site 100 ft downstream at same datum. Mar. 6 to Oct. 5, 1941, nonrecording gage at site 145 ft downstream at datum 0.25 ft higher.

REMARKS...No estimated daily discharges. Records good. Several measurements of water temperature were made during the year. Satellite rain-gage and gage-height telemeter at station.

the	year. DI						height tele WATER YEAR				1989,	MEAN DAILY	VALUES	
DAY		СТ	NOV	DEC		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		28 28 32 34 39	41 53 57 56 52	135 127 106 88 76		52 52 53 54 53	61 58 59 65 69	94 87 81 76 74	105 105 101 95 91	104 117 144 169 172	95 85 77 71 67	69 64 61 58 72	108 96 88 80 74	57 54 52 50 49
6 7 8 9		34 32 32 32 31	51 48 45 44 42	70 65 62 60 58		51 51 53 59 65	70 68 66 61 57	75 84 90 89 83	100 110 138 165 178	172 193 232 228 229	79 98 116 131 142	103 144 185 178 146	68 68 84 87 76	49 49 47 46 46
11 12 13 14 15		30 29 28 28 33	42 42 41 41 42	56 54 52 50 50		67 64 65 68 74	56 54 53 56 63	80 82 84 85 84	162 137 115 99 93	309 386 358 284 222	154 153 136 115 96	115 85 77 101 107	70 83 100 126 151	45 44 44 47 65
16 17 18 19 20		29 28 28 27 27	42 50 58 60 68	50 50 49 49 48		82 90 94 91 77	71 74 75 70 65	79 75 72 76 78	103 111 118 116 111	191 184 186 177 158	101 116 134 131 116	112 140 172 180 176	167 141 124 113 107	66 79 90 123 214
21 22 23 24 25		28 44 54 57 52	79 84 91 92 83	50 51 50 53 64		68 63 62 60 58	72 96 117 155 161	84 89 90 95 119	105 98 89 82 78	138 119 107 116 127	100 94 121 166 161	204 267 471 344 225	104 101 90 79 71	344 364 270 198 152
26 27 28 29 30 31		45 40 38 38 37 36	69 62 88 104 118	68 65 60 58 56 55		57 57 57 56 56 60	141 119 104	148 174 161 136 114 106	74 72 69 69 93	146 148 137 123 118 108	138 117 96 83 75	161 127 116 123 139 125	65 62 59 58 63 61	142 158 193 193 162
MEAN MAX MIN IN.		.8 57 27 .70	61.5 118 41 1.20	64.0 135 48 1.29		63.5 94 51 1.28	79.9 161 53 1.46	95.0 174 72 1.92	106 178 69 2.07	181 386 104 3.65	112 166 67 2.19	150 471 58 3.03	91.1 167 58 1.84	116 364 44 2.27
STATI	STICS	OF MC	ONTHLY F			PERIO	O OF RECORD	BY WATE	R YEAR (WY)		ALARY S		
MEAN MAX (WY) MIN (WY)	19	0.2 148 939 7.8 931	79.9 213 1973 30.1 1932	92.6 212 1973 35.1 1966	(0.8)	102 203 1936 39.3 1981	107 228 1939 50.7 1931	120 229 1958 60.1 1981	115 234 1983 53.9 1985	96.2 199 1958 47.1 1955	72.7 149 1948 34.4 1977	63.3 187 1938 22.1 1966	64.6 182 1967 19.3 1966	62.2 215 1940 25.6 1964
SUMMA	ARY STA	ATISTI	cs			FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
HIGHE LOWES HIGHE LOWES INSTA INSTA ANNUA 10 PE 50 PE	ANTANE	NUAL MEDILY MEDUS PEOUS LOOFF (1)	AN AN	E			96.4 471 27 494 6.19 27 22.92 169 81 34	Jul 23 Oct 19 Jul 23 Jul 23 Oct 18			14 13 14 9	15 Sep	29 1966 3 1940 3 1940	

01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ

LOCATION.--Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi upstream from Deep Run, and 20.9 mi upstream from mouth.

DRAINAGE AREA. -- 154 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DA	TE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STA) ARI UNITS	ND- ATU	JRE D TER SC	GEN, ()	DIS- DEN OLVED BI PER- CH CENT IC ATUR- 5	IO- FOI HEM- FEI CAL, EI DAY BRI	CAĹ, STR	CCI
OCT 19		0900	E 95	51	5.	.9 1	4.5	8.7	85	1.7 4	0 140	777
FEB 19	89	1300	E150	57	6	.0	3.5	12.4	92	0.5 -		
APR 10		1030	E500	69	4.	.0 1	0.0	8.8	79	0.9 9	4 63	
JUN 19		1100	E375	55	5	.0 2	2.5	6.0	69	1.0 35	920	i
JUL 24		0900	E600	53	4	.2 2	2.0	5.0	57	1.5 35	0 1600	
AUG 24		1215	E230	56	5	.3 2	3.0	7.2	84	28	0 >2400	1
FE AP JU JU	10 JN 19 JL 24	HARD NESS TOTA (MG/ AS CACO	CALC L DIS L SOL (MC 33) AS	CIUM S S- D .VED SO G/L (M	IS-	SOD IUM, DIS- SOLVED (MG/L AS NA) 4.8 5.0 4.6 4.1 2.9	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.4 1.2 1.1	ALKA- LINITY LAB (MG/L AS CACO3) 4.0 2.0 <1.0 2.0	SULFATE DIS- SOLVED (MG/L AS SO4) 7.8 12 23 5.0 <1.0	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 7.1 8.2 8.6 7.9	FLUO- RIDE, DIS- SOLVED (MG/L AS F) <0.1 0.1 0.1	
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	SOL CA, SUM CONS /ED TUEI /L D	STI- (NTS, NIT IS- T(LVED (N	TRO- GEN, FRITE DTAL MG/L S N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA - ORGANIC TOTAL (MG/L AS N)	NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
FE	05 B 1989 13	6.			0.003	0.20	<0.05 0.10	0.22 0.50	0.42	0.03	3.2	
	10	3.	.7	<(0.003	0.20	<0.05	0.50	0.70	0.06	13	
	19 JL	5.	.6	28 (0.006	0.20	0.16	0.84	1.0	0.08	20	
	24 JG	4.	.4	(0.016	0.10	<0.05	0.83	0.93	0.07	32	
AC	24	6.	.6	28 (800.0	0.27	<0.05	0.84	1.1	0.12	18	

01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ERAI (UG	M, BOR AL TOT OV- REC BLE ERA /L (UG	OV- REC BLE ERA /L (UG	IIUM MI TAL TO COV- RE ABLE ER	RO- UM, TAL COV- ABLE G/L CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 05	0900	<0.5	40	<1	<1	0	40	<1	2	9
DATE	RI EI (I	DTAĽ T ECOV- R RABLE E JG/L (EAD, NOTAL TOTAL TOTAL RABLE EUG/L (OTAL I ECOV- R RABLE E UG/L (RCURY OTAL RECOV- RABLE UG/L S HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		NOLS TAL /L)
OCT 1988 05		510	<5	20	<0.10	6	<1	30		<1

01411300 TUCKAHOE RIVER AT HEAD OF RIVER, NJ

LOCATION.--Lat 39°18'25", long 74°49'15", Cape May County, Hydrologic Unit 02040302, on right bank at highway bridge on State Route 49, 0.2 mi upstream from McNeals Branch, 0.4 mi southeast of Head of River, and 3.7 mi west of Tuckahoe.

DRAINAGE AREA. -- 30.8 mi 2.

PERIOD OF RECORD. -- December 1969 to current year.

REVISED RECORDS. -- WDR NJ-78-1: 1975(M), 1976(M).

GAGE.--Water-stage recorder, wooden control, and downstream tidal crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Occasional regulation by ponds above station. There is a fish gate in the left control. Fish gate open Apr. 6 to May 16. Several measurements of water temperature were made during the year.

REVISIONS.--Maximum discharge of 129 $\rm ft^3/s$ for water year 1986 occurred on Mar. 14 and Apr. 17 and supercede the dates published in the 1986 report.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 11 17 20 19	23 31 28 23 21	57 44 37 33 30	23 24 23 23 22	29 27 27 31 30	43 43 40 39 39	113 102 83 79 70	158 151 150 124 99	51 46 43 40 38	38 36 34 32 34	42 39 34 31 29	47 36 32 31 30
6 7 8 9 10	15 13 14 14 13	20 19 18 18 18	29 28 27 27 26	25 34 33 30 28	28 28 28 26 25	48 76 67 51 46	84 91 109 114 93	94 95 85 72 99	46 58 72 71 74	46 82 89 66 51	28 29 38 36 32	29 29 28 28 27
11 12 13 14 15	12 12 12 12 12	18 18 18 19	26 25 24 24 24	26 29 34 31 38	24 24 24 38 48	46 48 51 50 49	71 57 51 47 53	187 177 148 117 94	67 55 47 43 42	42 36 38 57 60	35 52 68 62 51	26 26 26 28 32
16 17 18 19 20	12 12 12 12 13	18 27 41 42 41	23 23 22 22 22	46 40 34 31 30	45 39 34 31 30	48 44 41 49 48	84 92 74 72 80	88 111 116 109 92	47 72 84 76 59	58 114 129 102 75	45 47 46 52 61	35 54 68 88 212
21 22 23 24 25	15 32 33 27 21	47 48 39 32 29	22 23 23 25 25 28	28 27 26 26 26	36 52 59 51 44	56 66 56 75 135	70 58 51 46 43	76 65 59 62 70	49 44 44 104 131	57 49 45 40 37	56 49 43 37 34	188 135 96 70 55
26 27 28 29 30 31	18 17 16 16 16 15	27 27 51 93 85	26 25 24 24 24 23	26 26 25 25 27 31	40 41 42 	122 88 65 55 53 82	42 40 38 41 131	68 76 72 65 57	98 69 54 47 42	35 34 32 30 29 35	31 30 29 42 83 76	83 132 114 87 69
MEAN MAX MIN IN.	33 11 .60	31.9 93 18 1.16	27.1 57 22 1.01	28.9 46 22 1.08	35.0 59 24 1.18	58.7 135 39 2.20	72.6 131 38 2.63	100 187 57 3.75	60.4 131 38 2.19	53.0 129 29 1.98	44.1 83 28 1.65	64.7 212 26 2.34
	TICS OF MONT			3 1	OF RECORD,		R YEAR (
MEAN MAX (WY) MIN (WY)	1972 15.1	35.4 81.4 1973 18.1 1975	43.4 94.3 1973 19.4 1981	52.6 101 1978 16.0 1981	57.3 101 1973 28.7 1977	65.2 144 1979 30.9 1985	69.8 174 1983 21.3 1985	57.7 111 1983 20.0 1977	42.5 83.7 1984 14.8 1977	29.7 53.0 1989 12.7 1988	25.3 55.6 1971 10.6 1988	23.1 64.7 1989 7.04 1980
SUMMARY	STATISTICS	;		FC	R 1989 WATE	R YEAR			FOR F	ERIOD OF	RECORD	
HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERC	T ANNUAL MEAN ANNUAL MEAN DAILY MEAN TANEOUS PEAK TANEOUS PEAK TANEOUS LOW RUNOFF (INC EENTILE ENTILE	FLOW STAGE			49.4 212 11 240 5.28 10. 21.78 93 41	Sep 20 Oct 1 Sep 20 Sep 20 Oct 1			43. 64. 22. 46. 1. 51. 7.0	.4 54 May .3 Sep 10 May 01a Mar	3 1980 31 1984	

a Tide affected

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial record stations.

Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

					Annu	al Maximum	
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Hackensack River bas	in				
*01378385	Tenakill Brook at Closter, NJ	Lat 40°58'29", long 73°58'06, Bergen County, Hydrologic Unit 02030103, at bridge on High Street in Closter, 0.7 mi	8.56	1965-89	5-17-89	b3.21	910
		upstream from mouth. Datum of gage is 23.85 ft above National Geodetic Vertical Datum of 1929.					
*01378590	Metzler Brook at Englewood, NJ	Lat 40°54'29", long 73°59'13", Bergen County, Hydrologic Unit 02030103, at bridge on Lantana Avenue in Englewood, and 1.6 mi upstream from mouth. Datum of gage is 43.10 ft above National Geodetic Vertical Datum of 1929.	1.54	1965-89	7-05-89	b2.04	200
		Passaic River bas	in				
01378690	Passaic River near Bernardsville, NJ	Lat 40°44'03", long 74°32'26", Somerset County, Hydrologic Uni 02030103, at bridge on U.S. Route 202, 1.8 mi northeast of Bernardsville, and 3.0 mi upstream from Great Brook. Datum of gage is 238.07 ft above National Geodetic Vertical Datum of 1929.	8.83 t	1968-76†, 1977-89	9-20-89	ь13.12	502
01379845	Rockaway River at Warren Street, at Dover, NJ	Lat 40°53'08", long 74°33'36", Morris County, Hydrologic Unit 02030103, on left bank, 100 ft upstream from bridge on Warren Street, in Dover, 4.0 mi west of Denville and 6 mi southeast of Lake Hopatcong. Datum of gage is 561.83 ft above National Geodetic Vertical Datum of 1929.	52.1	1981-89	5-17-89	5.10	1,030
01387880	Pond Brook at Oakland, NJ	Lat 41°01'36", long 74°14'04", Bergen County, Hydrologic Unit 02030103, at bridge on NJ Route 208 in Oakland, 0.2 mi upstream from former site at Franklin Avenue (prior to October 1975), 0.6 mi upstream from mouth, and 1.5 mi northwest of Frankli Lakes. Datum of gage is 276.97 above National Geodetic Vertica Datum of 1929.	n ft	1968-71, 1976-89	5-17-89		e320

					Annua	al Maximum	
Station No.	Station name	Location	Drainage area (mi ²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Passaic River basinCon	tinued				
01389030	Preakness (Singac) Brook near Preakness, NJ	Lat 40°56'55", long 74°13'25", Passaic County, Hydrologic Unit 02030103, at bridge on Ratzer Road, 1.0 mi north of Preakness, and 2.0 mi upstream from Naachtpunkt Brook. Datum of gage is 230.8 ft above National Geodetic Vertical Datum of 1929.		1979-89	7-26-89	4.04	560
01389534	Peckman River at Ozone Avenue, at Verona, NJ	Lat 40°50'42", long 74°14'09", Passaic County, Hydrologic Unit 02030103, at bridge on Ozone Avenue in Verona, 4.0 mi west of Clifton and 1.0 mi southwest of Cedar Grove Reservoir. Datum of gage is 300.08 ft above National Geodetic Vertical Datum of 1929.	4.45	1945, 1979-89	9-20-89	b4.95	1,790
01389765	Molly Ann Brook at North Haledon, NJ	Lat 40°57'11", long 74°11'07", Passaic County, Hydrologic Unit 02030103, at bridge on Overlook Avenue in North Haldeon, 1.5 mi west of Hawthorne and 0.5 mi upstream from Oldham Pond Dam. Datum of gage is 209.68 fr above National Geodetic Vertical Datum of 1929.		1945, 1979-89	9-20-89	6.74	820
01389900	Fleischer Brook at Market Street, at Elmwood Park, NJ	Lat 40°53'57", long 74°06'54", Bergen County, Hydrologic Unit 02030103, at culvert on Market Street in Elmood Park (formerly East Paterson), and 2.0 mi upst from mouth. Datum of gage is 35.31 ft above National Geodetic Vertical Datum of 1929.		1967-89	7-26-89	2.57	147
*01390450	Saddle River at Upper Saddle River, NJ	Lat 41°03'32", long 74°05'44", Bergen County, Hydrologic Unit 02030103, at culvert on Lake Street in Upper Saddle River, and 1.3 mi downstream from Pine Brook. Datum of gage is 186.11 ft above National Geodetic Vertical Datum of 1929.	10.9	1966-89	9-20-89	b4.04	1,100
01390810	Hohokus Brook at Allendale, NJ	Lat 41°01'37", long 74°08'44", Bergen County, Hydrologic Unit 02030103, at bridge on Brooksid Avenue in Allendale, and 0.2 mi downstream from Valentine Broo Datum of gage is 277.46 ft abo National Geodetic Vertical Datum of 1929.	k.	1969-89	9-20-89	5.68	455
01390900	Ramsey Brook at Allendale, NJ	Lat 41°01'44", long 74°08'07", Bergen County, Hydrologic Unit 02030103, at bridge on Brooksid Avenue in Allendale and 0.6 mi upstream from Hohokus Brook. Datum of gage is 270.79 ft above National Geodetic Vertica Datum of 1929.		1975-89	9-20-89	b2.71	220
01392000	Weasel Brook at Clifton, NJ	Lat 40°52'12", long 74°08'47", Passaic County, Hydrologic Unit 02030103, at upstream side of bridge on Jewett Street, at Clifton, 1.3 mi downstream of US Route 46 bridge, and 1.3 mi northwest of Passaic. Datum of gage is 68.52 ft above National Geodetic Vertical Datum of 1929		1937-62†, 1963-78, 1989	6-26-89	7.73	1,780
01392170	Third River at Bloomfield, NJ	Lat 40°47'59", long 74°11'18", Essex County, Hydrologic Unit 02030103, on downstream left wingwall of bridge on entrance ramp at Interchange 148 to the Garden State Parkway in Bloomfi 0.6 mi west of Nutley, and 5.1 upstream from Passaic River.		1988-89	7-05-89	b6.08	a

					Annua	al Maximum	
Station No.	Station name	Location	Drainage area (mi ²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Raritan River basi	n				
01392500	Second River at Belleville, NJ	Lat 40°47'17", long 74°10'19", Essex County, Hydrologic Unit 02030103, on Mill Street in Branch Brook Park at Belleville, 300 ft downstream from Franklin Avenue, and 1,100 ft downstream from Hendricks Pond dam. Datum of gage is 62.6 ft above Nationa Geodetic Vertical Datum of 1929.	ι	1937-64†, 1963-89	7-05-89	7.63	3,840
01397500	Walnut Brook near Flemington, NJ	Lat 40°30'55", long 74°52'52", Hunterdon County, Hydrologic Unit 02030105, bank 1.2 mi northwest of Flemington, and 2.3 mi upstream from mouth. Datum of gage is 267.33 ft above National Geodetic Vertical Datum of 1929.	2.24	1936-61†, 1963-89	9-20-89	3.50	760
01398045	Back Brook tributary near Ringoes, NJ	Lat 4°25'41", long 74°49'52", Hunterdon County, Hydrologic Unit 02030106, or right up- stream wingwall of bridge on Wertzville Road, 2.1 mi east of Ringoes, 1.3 mi upstream from Back Brook, and 2.3 mi southwest of Wertzville.	1.98	1988-89	6-10-89	4.44	1,030
01399525	Axle Brook near Pottersville, NJ	Lat 40°41'40", long 74°43'05", Somerset County, Hydrologic Unit 02030105, on right upstream wingwall of bridge on Black River Road, 1.3 mi, south of Pottersville, and 0.3 mi up- stream from mouth. Datum of gage is 172.74 ft above National Geodetic Vertical Datum of 1929.		1977-88† 1988-89	5-05-89	4.45	527
01399700	Rockaway Creek at Whitehouse, NJ	Lat 40°37'55", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth. Datum of gage is 99.64 ft. National Geodetic Vertical Datum of 1929.	37.1	1959-62, 1964-65, 1977-84†, 1985-89	11-20-88	6.78	2,010
01399830	North Branch Raritan River at North Branch, NJ	Lat 40°36'00", long 74°40'27", Somerset County, Hydrologic Unit 02030105, on right bank 5 ft upstream from bridge on State Highway 28 in North Branch, 0.1 mm south of River Brook, and 3.6 mm upstream from confluence with South Branch Raritan River. Datum of gage is 56.94 ft above National Geodetic Vertical Datum of 1929.	174	1977-81†, 1982-89	9-20-89	12.15	7,300
01400630	Millstone River at Southfield Road, near Grovers Mill, NJ	Lat 40°18'12", long 74°34'33", Mercer County, Hydrologic Unit 02030105, at bridge on Southfield Road, 0.2 mi southeast at Grovers Mill, 3.5 mi southwest of Cranbury, and 3.0 mi upstream of Bear Brook. Datum of gage is 62.63 ft above National Geodetic Vertical Datum of 1929.	41.0	1971,75, 1979-89	9-20-89	6.79	1,140
01400775	Bear Brook at Route 535, near Locust Corner, NJ	Lat 40°16'41", long 74°34'39", Mercer County, Hydrologic Unit 02030'105, at bridge on State Route 535, 0.9 mi southwest of Locust Corner, 2.0 mi east of Hightstown, and 4.2 mi above mouth. Datum of gage is 73.75 ft above National Geodetic Vertical Datum of 1929.	6.69	1971,75, 1979-89	7-06-89	b7.95	1,550

					Annua	al Maximum	
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Raritan River basinCor	ntinued				
01400795	Bear Brook at Route 571, near Grovers Mill, NJ	Lat 40°17'41", long 74°35'34", Mercer County, Hydrologic Unit 02030105, at bridge on Route 571 (Princeton - Hightstown Road), 1.2 mi upstream of Grovers Mill Pond, 1.4 mi east of Princeton Junction, and 2.9 mi west of U.S. Route 130 and Hightstown.	9.28	1986-89	6-10-89	11.90	1,325
01400822	Little Bear Brook at Penns Neĉk, NJ	Lat 40°19'21", long 74°37'37", Mercer County, Hydrologic Unit 02030105, at downstream side of bridge on Alexander Road, 0.9 mi southeast of Penns Neck, 2.8 mi southwest of Plainsboro and 1.0 mi above mouth. Datum of gage is 53.96 ft above National Geodetic Vertical Datum of 1929.	1.84	1971,75, 1979-89	9-20-89	5.04	а
01400900	Stony Brook at Glenmoore, NJ	Lat 40°21'55", long 74°47'14", Mercer County, Hydrologic Unit 02030105, at highway bridge on Spur State Route 518, 200 ft east of tracks of CONRAIL, at Glenmoore, and 2.0 mi southwest of Hopewell. Datum of gage is 159.1 ft above National Geodetic Vertical Datum of 1929	17.0	1957-89	6-10-89	7.94	3,100
*01400930	Baldwin Creek at Pennington, NJ	Lat 40°20'18", long 74°47'50", Mercer County, Hydrologic Unit 02030105, at bridge on State Route 31, 0.8 mi north of Pennington, and 0.9 mi upstream from Baldwin Lake dam. Datum of gage is 161.69 ft above National Geodetic Vertical Datum of 1929.	1.99	1960-89	9-20-89	5.97	410
01400950	Hart Brook near Pennington, NJ	Lat 40°19'17", long 74°45'38", Mercer County, Hydrologic Unit 02030105, at culvert on Federal City Road, 1.6 mi upstream of mouth, and 1.7 mi southeast of Pennington. Datum of gage afte July 1, 1975 is 163.32 ft above National Geodetic Vertical Datum of 1929.	r	1968-89	6-10-89	4.09	200
01401160	Duck Pond Run near Princeton Junction, NJ	Lat 40°17"47", long 74°38'47", Mercer County, Hydrologic Unit 02030105, on right bank upstrea from bridge on Clarksville Road 1.5 mi southwest of Princeton Junction, and 4.0 mi south of Princeton. Datum of gage is 72.50 ft above National Geodeti Vertical Datum of 1929.		1980-89	6-10-89	6.68	275
01401301	Millstone River at Carnegie Lake, at Princeton, NJ	Lat 40°22'11", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at right end of Carnegie Lake dam, 2.5 mi northeast of Princeton. Datum of gage is 50.00 ft above National Geodetic Vertical Datum of 1929.	159	1977-89	9-21-89	5.30	7,720
01401595	Rock Brook near Blawenburg, NJ	Lat 40°25'47", long 74°41'05", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Hill Road, 0.7 mi upstrea from mouth, 1.0 mi northeast of Blawenburg, and 2.8 mi northwes of Rocky Hill. Datum of gage is 63.45 ft above National Geodetic Vertical Datum of 1929	t	1967-89	6-10-89	b6.58	2,150

					Annu	al Maximum	
Station No.	Station name	Location	Drainage area (mi²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Raritan River basinCom	ntinued				
01401600	Beden Brook near Rocky Hill, NJ	Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206, 0.7 mi upstream from Pike Run, 1.2 mi northwest of Rocky Hill, and 4.6 mi north of Princeton. Datum of gage is 38.09 ft above National Geodetic Vertical Datum of 1929.	h	1967-89	6-10-89	10.80	4,000
01401870	Six Mile Run near Middlebush, NJ	Lat 40°28'12", long 74°32'42", Somerset County, Hydrologic Unit, 02030105, at bridge on South Middlebush Road, 1.6 mi upstream from mouth, and 2.1 mi south of Middlebush. Datum of gage is 39.91 ft above National Geodetic Vertical Datum of 1929.	10.7	1966-89	9-20-89	9.01	3,620
01403395	Blue Brook at Seeleys Pond Dam, near Berkeley Heights, NJ	Lat 40°40'02", long 74°24'13", Union County, Hydrologic Unit 02030105, on wall on right bank, upstream from Seeleys Pond spillway, 300 ft north of Scotch Plains, 1.0 mi west of Mountainside, and 4.5 mi southeast of Berkeley Heights. Datum of gage is 202.05 ft National Geodetic Vertical Datum of 1929.	3.59	1973, 1981-89	9-20-89	4.84	275
01403500	Green Brook at Plainfield, NJ	Lat 40°36'53", Long 74°25'55", Union County, Hydrologic Unit 02030105, on left bank 20 ft downstream from bridge on Sycamore Avenue in Plainfield and 1.0 mi upstream from Stony Brook. Datum of gage is 70.37 ft above National Geodetic Vertical Datum of 1929.	9.75	1938-84†, 1985-89	9-20-89	3.73	910
		Navesink River bas	in				
01407290	Big Brook near Marlboro, NJ	Lat 40°19'10", long 74°12'52", Monmouth County, Hydrologic Unit 02030104, downstream side of bridge on Hillsdale Road, 1.7 mi east of Marlboro, and 3.0 mi northwest of Colts Neck.	6.42	1980-89	9-20-89	b10.16	1,370
		Manasquan River ba	sin				19190300
*01407830	Manasquan River near Georgia, NJ	Lat 40°12'36", long 74°16'41", Monmouth County, Hydrologic Unit 02040301, at culvert on Jacksons Mill Road near Georgia and 0.5 mi upstream from Debois Creek. Datum of gage is 70.47 ft above National Geodetic Vertical Datum of 1929. Revised RecordsWDR NJ-87-1.	10.6	1969-89	9-20-89	13.53	870
*01408015	Mingamahone Brook at Farmingdale, NJ	Lat 40°11'38", long 74°09'42", Monmouth County, Hydrologic Unit 02040301, at bridge on Belmar Road in Farmingdale, and 3.0 mi upstream from mouth. Datum of gage is 48.64 ft above National Geodetic Vertical Datum of 1929.	6.20	1969-89	5-11-89	5.44	205
*01408030	Manasquan River at Allenwood, NJ	Lat 40°08'35", long 74°07'03", Monmouth County, Hydrologic Unit 02040301, at bridge on Hospital Road at Allenwood, and 1.5 mi downstream from Mill Run. Datum of gage is 3.56 ft above National Geodetic Vertical Datum of 1929.	63.9	1969-89	9-20-89	b8.75	1,800

		Location			Annual Maximum		
Station No.	Station name		Drainage area (mi ²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Great Egg Harbor River	basin				
01410810	Fourmile Branch at New Brooklyn, NJ	Lat 39°41'47", long 74°56'25", Camden County, Hydrologic Unit 02040302, on left bank 70 ft upstream from bridge on Malaga Road, 0.3 mi northeast of New Brooklyn, 0.3 mi upstream from mouth. Datum of gage is 101.04 ft above National Geodetic Vertical Datum of 1929.	7.74	1972-79†, 1980-89	7-23-89	5.32	148

^{*} Also a low-flow partial-record station.
† Operated as a continuous-record gaging station.
a Discharge not determined.
b Downstream side of bridge.
c Peak gage height below recordable level.
e Estimated.

Low-flow partial-record stations

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

			Danimana	Desired	Measur	rements	
Station No.	Station Name	Location	Drainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)	
		Hudson River basin					
01367700	Wallkill River at Franklin, NJ	Lat 41°06'43", long 74°35'21", Sussex County, Hydrologic Unit 02020007, at bridge on Franklin Avenue (Route 631) at Franklin, 100 ft downstream of Franklin Pond and 0.5 mi northeast of State Route 23.	29.4	1959-64 1982-83, 1985, 1987-89	7-19-89	15	
		Passaic River basin					
01378700	Passaic River at outlet of Osborn Pond, at Osborn Mills, NJ	Lat 40°43'09", long 74°31'52", Somerset County, Hydrologic Unit 02030103, 800 ft downstream from dam on Osborn Pond, 0.9 mi above Penns Brook, and 1.3 mi northeast of Basking Ridge.	10.0	1961-63, 1968, 1987-89	10-12-88	4.6	
01379200	Dead River near Millington, NJ	Lat 40°56", long 74°31'26", Morris County, Hydrologic Unit 02030103, at bridge on King George Road (Spur State Route 527), 100 ft upstream from mouth, 2.0 mi south of Milling- ton, and 4.2 mi south of Basking Ridge.	20.8	1962-67, 1973-75, 1986-89	10-11-88	6.1	
01379525	Canoe Brook near Millburn, NJ	Lat 40°44'55", long 74°20'14", Essex County, Hydrologic Unit 02030103, at bridge on Parsonage Hill Road, 0.2 mi downstream from Taylor Lake, 1.0 mi upstream from New Jersey-American Water Company pumping station, and 1.4 mi northwest of Millburn.	10.2	1989	9-07-89	.47	
01379560	Passaic River at Florham Park, NJ	Lat 40°46'45", long 74°22'09", revised, Morris County, Hydrologic Unit 02030103, at bridge on South Orange Avenue, 1.2 mi southeast of Florham Park, and 1.6 mi downstrea from Spring Garden Brook.		1988-89	10-11-88	39	
01381200	Rockaway River at Pine Brook, NJ	Lat 40°51'42, long 74°20'53", Morris County, Hydrologic Unit 02030103,at bridge on U.S. Route 46, 0.9 mi west of Pine Brook, and 1.1 mi upstream of Whippany River.	136	1963-73, 1979-81, 1983-89	10-11-88	25	
01381550	Malapardis Brook at Whippany, NJ	Lat 40°49'22", long 74°25'08", Morris County, Hydrologic Unit 02030103, at bridge on Parsippany Road at Whippany, 400 ft upstream from mouth, and 2.2 mi south of Parsippany.	5.07	1989	9-07-89	1.7	
01381800	Whippany River near Pine Brook, NJ	Lat 40°50'42", long 74°20'51", Morris County, Hydrologic Unit 02030103, at bridge on Edwards Road, 0.3 mi upstream from mouth, and 1.3 mi south- west of Pine Brook.	68.5	1963-68, 1978, 1979-81, 1983-89	10-11-88	34	
01382000	Passaic River at Two Bridges, NJ	Lat 40°53'50", long 74°16'23", Essex County, Hydrologic Unit 02030103, at bridge on Two Bridges Road, just above confluence with Pompton River, 0.3 mi northeast of Two Bridges, and 2.6 mi northwest of Little Falls.	361	1963-68, 1983-84, 1986-89	10-11-88	3 128	

		933	Drainaga	Period	Measurements	
Station No.	Station Name	Location	Drainage area (mi ²)	of record	Date	Discharge (ft ³ /s)
		Passaic River basinContir				
01389100	Singac Brook at Singac, NJ	Lat 40°53'57", long 74°15'57", Passaic County, Hydrologic Unit 02030103, at bridge on Fairfield Road, between U.S. Routes 80 and 46, 60 ft upstream from mouth, 1.2 mi northwest of Signac, and 1.8 mi northwest of Little Falls.	11.1	1963-67, 1983-84, 1986-89	6-21-89 9-07-89	41 18
01389140	Deepavaal Brook at Two Bridges, NJ	Lat 40°53'14", long 74°16'00", Essex County, Hydrologic Unit 02030103, at bridge on Little Fall Road, 400 ft upstream from Passaid River, and 0.8 mi southeast of Two Bridges.		1970, 1983-84, 1988-89	6-21-89	14
		Elizabeth River basin				
01393350	West Branch Elizabeth River near Union, NJ	Lat 40°41'32", long 74°14'38", Union County, Hydrologic Unit 02030104, at bridge on Vauxhall Road, 0.3 mi upstream of mouth, 1.4 mi east of Union, and 2.3 mi northwest of Elizabeth.	2.53	1989	9-07-89	.62
		Rahway River basin				
01394400	Van Winkle Brook at Springfield, NJ	Lat 40°42'12", long 74°18'15", Union County, Hydrologic Unit 02030104, at railroad bridge in Springfield, 0.4 mi upstream from mouth, 0.4 mi downstream from Mountain Avenue bridge, and 2.3 mi west of Union.	4.85	1989	9-07-89	.69
01394600	Namahegan Brook near Mountain- side, NJ	Lat 40°40'42", long 74°19'54", Union County, Hydrologic Unit 02030104, at bridge on Springfield Avenue, 0.2 mi downstream of Echo Lake, 1.1 mi upstream of mouth, a 1.4 mi northeast of Mountainside.	3.76 d nd	1989	9-07-89	1.5
		Raritan River basin				
01396180	Drakes Brook at Bartley, NJ	Lat 40°48'43", long 74°43'45", Morris County, Hydrologic Unit 02030105, at bridge on Bartley Road, 0.25 mi upstream from mouth 0.9 mi southwest of Bartley, and 2.5 mi of Chester.	16.6	1964-73, 1975-76, 1988-89	12-14-88 4-13-89 7-26-89 9-08-89	27 17
01396280	South Branch Raritan River at Middle Valley, NJ	Lat 40°45'40", long 74°49'18", Morris County, Hydrologic Unit 02030105, at bridge on Middle Valley Road, at Middle Valley, 200 ft northwest of West Mill Road (State Route 513), and 0.2 mi upstream of CONRAIL railroad bridge.	47.7	1963-67, 1973, 1975, 1982-83, 1985-89	7-26-89	54
01396350	South Branch Raritan River at Califon, NJ	Lat 40°43'14", long 74°50'16", Morris County, Hydrologic Unit 02030105, at bridge on Main Street in Califon, 0.4 mi downstream from Frog Hollow Brook, and 2.5 mi northwest of Mountainville.	58.5	1975-76, 1989	7-26-89 9-08-89	
01397290	Assiscong Creek at Bartles Corners, NJ	Lat 40°32'23", long 74°50'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on River Road, 0.3 mi upstream from mouth, 1.5 mi north of Flemington, and 2.8 mi west of Three Bridges.	2.98	1981-89	6-21-89 9-08-89	
01397800	Neshanic River near Flemington, NJ	Lat 40°28'46", long 74°51'29", Hunterdon County, Hydrologic Unit 02030105, at bridge on Kuhl Road, 200 ft downstream from confluence of First Neshanic River and Second Neshanic River, 1.4 mi south of Flemington, and 2.1 mi west of Reaville.	11.4	1981-89	6-21-89 9-08-89	

		De		Decied	Measure	asurements	
Station No.	Station Name	Location	orainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)	
		Raritan River basinContinu	ued				
01397900	Third Neshanic River near Ringoes, NJ	Lat 40°27'31", long 74°52'05", Hunterdon County, Hydrologic Unit 02030105, at bridge on Eitts Road, 2.0 mi upstream from mouth, 2.1 mi north of Ringoes, and 3.0 mi southwest of Reaville.	9.24	1981-89	6-21-89 9-08-89	12 1.7	
01398052	Back Brook near Reaville, NJ	Lat 40°27'32", long 74°49'24", Hunterdon County, Hydrologic Unit 02030105, at bridge on Manners Road, 0.6 mi upstream from mouth, 0.8 mi northwest of Wertsville, and 1.5 mi southeast of Reaville.	11.4	1981-89	6-21-89 9-08-89		
01398075	Pleasant Run at Centerville, NJ	Lat 40°32'17", long 74°45'17", Hunterdon County, Hydrologic Unit 02030105, at bridge on Old York Road in Centerville, 2.4 mi northwest of Neshanic Station, 2.5 mi upstream from mouth, and 2.7 mi northwest of Three Bridges.	8.11	1982-89	6-21-89 9-08-89		
01398260	North Branch Raritan River near Chester, NJ	Lat 40°46'16", long 74°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi upstream from Burnett Brook, and 3.8 mi east of Chester.	7.57	1964-67, 1980-89	7-26-89	6.5	
01399190	Lamington (Black) River at Succasunna, NJ	Lat 40°51'03", long 74°38'02", Morris County, Hydrologic Unit 02030105, bridge on Righter Road, 0.7 mi south of Succasunna, and 0.4 mi upstream from Succasunna Brook.	7.37	1977-87a, 1988-89	10-27-88 12-14-88 4-13-89 7-26-89 9-08-89	6.1 10 8.5	
01399200	Lamington (Black) River near Ironia, NJ	Lat 40°50'07", long 74°38'40", Morris County, Hydrologic Unit 02030105, at bridge on Ironia Road, 1.0 mi downstream of Succasu Brook, and 1.3 mi northwest of Iro		1964-72, 1976-87a, 1988	10-27-88 12-14-88 4-13-89 7-26-89 9-08-89	8.0 17 12	
01399300	Lamington River at Milltown, NJ	Lat 40°47'13", long 74°43'13", Morris County, Hydrologic Unit 02030105, at bridge on New Furnace Road, 0.1 mi downstream from Tanners Brook, and 0.6 mi north of Milltown.	23.2	1988-89	69-09-88 1-05-89 4-13-89 7-26-89 9-08-89	27 41 32	
*01399700	Rockaway Creek at Whitehouse, NJ	Lat 40°37'49", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth.	37.1	1959-62, 1964-65, 1973, 1977-84a 1986-89	7-12-89	37	
01400540	Millstone River Plainsboro, NJ	Lat 40°15'44", long 74°25'13", Monmouth County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapar 5.5 mi east of Hightstown, and 8.4 mi upstream of Rocky Brook.	7.37	1960-62, 1964, 1971-72, 1985, 1987-89	9-17-89	9.94	
01404060	Ambrose Brook at Middlesex, NJ	Lat 40°03", long 74°31'02", Middlesex County, Hydrologic Unit 02030105, at dam, 900 ft upstream from bridge on State Route 18 in Middlesex, and 0.7 mi upstream from mouth.	13.9	1979-89	6-21-89 9-07-89		
01405170	Milford Brook at Englishtown, NJ	Lat 40°18'02", long 74°20'07", Monmouth County, Hydrologic Unit 02030105, at bridge on Conmack Road, 0.6 mi upstream from McGellairds Brook, 1.2 mi east of Englishtown, and 2.0 mi southwest of Gordons Corner.	4.86	1982, 1984-89	6-21-89 9-07-89		

		,			Measurements	
Station No.	Station Name	Location	Drainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)
		Raritan River basinConti	nued			
01405180	McGellairds Brook at Englishtown, NJ	Lat 40°18'06", long 74°21'26", Monmouth County, Hydrologic Unit 02030105, at bridge on Wilson Avenue in Englishtown, 0.8 mi downstream from Milford Brook, 1.0 mi southeast of Monmouth-Middlesex County line, and 5.5 mi northwest of Freehold.	14.9	1982, 1984-89	9-07-89	10
01405210	Pine Brook at Clarks Mills, NJ	Lat 40°18'58", long 74°19'51", Monmouth County, Hydrologic Unit 02030105, at bridge on Winthrop Drive, 1.3 mi east of Clarks Mills, 1.9 mi up- stream of Matchaponix Brook, and 4.8 mi northwest of Freehold.	4.66	1982, 1984-89	6-21-89 9-07-89	15 2.9
		Matawan Creek basin				
01407012	Gravelly Brook at Church Street, at Matawan, NJ	Lat 40°4'27", long 74°05'18", Monmouth County, Hydrologic Unit 02030104, at bridge on Church Road, 0.5 mi east of intersection of State Routes 34 and 79, and 0.9 mi upstream of the mouth.	2.36	1987-89	6-21-89 9-07-89	3.2 2.5
01407026	Wilkson Creek at Church Street, at Matawan, NJ	Lat 40°24'24", long 74°14'18", Monmouth County, Hydrologic Unit 02030104, at bridge on Church Street, 0.7 mi east of Matawan, 2.2 mi southeast of Keyport, and 2.6 mi upstream of mouth.	1.37	1987-89	6-21-89 9-07-89	2.6 1.8
		East Creek basin				
01407055	East Creek at North Centerville, NJ	Lat 40°25'32", long 74°09'58", Monmouth County, Hydrologic Unit 02030104, at bridge on Middle Road, 0.2 mi west of intersectior of Union Road and Middle Road at North Centerville, and 2.0 mi upstream from mouth.	2.56	1969, 1986-89	6-21-89 9-07-89	2.4 1.3
		Waackaack Creek basir	1			
01407070	Waackaack Creek at Middle Road, near Keansburg, NJ	Lat 40°25'23", long 74°08'12", Monmouth County, Hydrologic Unit 02030104, at bridge on Middle Ros at community of Philips Mills, 1. mi south of Keansburg, and 3.1 mi upstream from mouth.	4	1987-89	6-21-89 9-07-89	
		Compton Creek basin				
01407102	Town Brook at Church Street, at New Monmouth, NJ	Lat 40°24'52", long 74°06'00", Monmouth County, Hydrologic Unit 02030104, at bridge on Church Street, at New Monmouth, 0.2 mi upstream of mouth, and 1.1 mi south of Port Monmouth.	3.35	1987-89	6-21-89 9-07-89	
		Navesink River basin				
01407200	Hop Brook at Holmdel, NJ	Lat 40°20'41", long 74°10'29", Monmouth County, Hydrologic Unit 02030104, at bridge on State Route 520, 0.5 mi east of its intersection with South Street in Holmdel, and 1.7 mi downstream from Big Brook.	5.72	1969-74 1989	10-06-88	2.3
01407250	Willow Brook at Holmdel, NJ	Lat 40°20'17", long 74°11'14", Monmouth County, Hydrologic Unit 02030104, at bridge on South Street, 0.5 mi south of its intersection with State Route 520 in Holmdel, and 1.9 mi up- stream from Hop Brook.	6.88	1969-74, 1989	10-06-88	2.5

			Onain	Danied	Measurements	
Station No.	Station Name	Location	Drainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)
		Navesink River basinConti	nued			
01407300	Big Brook at Vanderburg, NJ	Lat 40°19'32", long 74°11'19", Monmouth County, Hydrologic Unit 02030104, at its intersection with Conover Road, 0.8 mi north of Vanderburg, and 1.8 mi upstream from Hop Brook.	8.41	1969-74, 1989	10-06-88	3.2
01407400	Yellow Brook at Colts Neck, NJ	Lat 40°17'47", long 74°10'16", Monmouth County, Hydrologic Unit 02030104, at bridge on Creamery Road, 0.3 mi upstream from Mine Brook, and 0.7 mi north of Colts Neck.	9.71	1969-74, 1980-82, 1989	10-06-88	4.1
01407450	Mine Brook at Colts Neck, NJ	Lat 40°17'29", long 74°10'11", Monmouth County, Hydrologic Unit 02030104, at bridge on Creamery Road, 0.4 mi northeast of Colts Neck, and 0.5 mi upstream from Yellow Brook.	5.48	1969-74, 1979-80, 1982, 1989	10-06-88	1.4
01407532	Poricy Brook at Red Bank, NJ	Lat 40°21'25", long 74°05'18", Monmouth County, Hydrologic Unit 02030104, at bridge on Navesink River Road, 200 ft downstream of Poricy Pond, 0.4 mi upstream of mouth, and 1.0 mi northwest of Red Bank.	2.54	1987-89	9-07-89	1.9
01407618	Whale Pond Brook near Oakhurst, NJ	Lat 40°16'35", long 74°00'12", Monmouth County, Hydrologic Unit 02030104, at bridge on Norwood Avenue, 0.6 mi upstream of Lake Takanassee, and 0.8 mi northeast of Oakhurst.	6.20	1989	6-01-89 6-21-89 9-07-89	10 9.6 8.8
01407628	Poplar Brook near Deal, NJ	Lat 40°15'24", long 74°00'42", Monmouth County, Hydrologic Unit 02030104, at bridge on Monmouth Road, 0.7 mi west of Deal, 0.1 mi south of Oakhurst, and 1.3 mi upstream of mouth.	2.49	1989	6-01-89 6-21-89 9-07-89	4.4 4.5 3.2
01407636	Hog Swamp Brook at West Allenhurst, NJ	Lat 40°14'36", long 74°00'52", Monmouth County, Hydrologic Unit 02030104, at culvert on Monmouth Road, 0.7 mi west of Deal, 1.6 mi north of Asbury Park, and 1.6 mi upstream of dam on Deal Lake.	1.99	1989	6-01-89 6-21-89 9-07-89	2.2 2.4 1.8
01407755	Jumping Brook above reservoir, near Neptune City, NJ	Lat 40°12'30", long 74°04'12", Monmouth County, Hydrologic Unit 02030104, at bridge on State Route 33, 0.25 mi upstream of Jumping Brook Reservoir, and 2.3 mi west of Neptune City.	5.58	1989	6-01-89 6-21-89 9-07-89	4.6 4.8 3.1
01407780	Polly Pod Brook at South Belmar, NJ	Lat 40°10'00", long 74°01'41", Monmouth County, Hydrologic Unit 02030104, at culvert on F Street at South Belmar, 50 ft upstream of Lake Como, and 0.6 mi upstream of mouth.	.99	1989	6-01-89 6-21-89 9-07-89	1.3 1.6 .87
01407806	Hannabrand Brook at Old Mill Road, near Spring Lake Heights, NJ		3.13	1989	6-01-89 6-21-89 9-07-89	4.3 4.1 3.9
01409390	Mullica River at Outlet of Atsion Lake, Atsion, NJ	Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi up- stream from Wesickaman Creek.	26.7	1975-86, 1989	9-13-89	16

					Measurements	
Station No.	Station Name	Location	Drainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)
		Mullica River basin				
01410215	Clarks Mill Stream at Port Republic, NJ	Lat 39°30'23", long 74°30'21", Atlantic County, Hydrologic Unit 02040301, at bridge on State Route 575, 0.5 mi upstream of Mill Pond and 1.0 mi east of Port Republic.	8.61	1986-89	6-21-89 9-11-89	
01410225	Morses Mill Stream at Port Republic, NJ	Lat 39°30'48", long 74°30'30", Atlantic County, Hydrologic Unit 02040301, at bridge on State Alternate Route 561 (Moss Mill Road), 0.6 mi upstream of Mill Pond, and 1.2 mi southwest of Port Republic	8.25	1986-89	6-21-89 9-11-89	
		Great Egg Harbor River ba	sin			
01410810	Fourmile Branch at New Brooklyn, NJ	Lat 39°41'47", long 74°56'25", Camden County, Hydrologic Unit 02040302, on left bank 70 ft up- stream from bridge on Malaga Road 0.3 mi northeast of New Brooklyn, and 0.3 mi upstream from mouth.	7.74	1972-79a 1980-89	11-21-88	2.5
01411170	Great Egg Harbor River at Mays Landing, NJ	Lat 39°27'13", long 74°44'04", Atlantic County, Hydrologic Unit 02040302, at bridge on Route 559, at outlet of Lake Lenape, and 0.4 mi west of intersection of State Route 50 with U.S. Route 40 in Mays Landing.		1988-89	9-07-89	94
01411250	English Creek near Scullville, NJ	Lat 39°22'07", long 74°39'46", Atlantic Coutny, Hydrologic Unit 02040302, at bridge on School House Road, 1.8 mi upstream from State Route 559, at the community of English Creek, and 2.5 mi northwest of Scullville.	3.80	1986-89	6-21-89 9-11-89	
		Patcong Creek basin				
01411305	Mill Branch near Northfield, NJ	Lat 39°23'23", long 74°35'37", Atlantic County, Hydrologic Unit 02040302, at bridge on County Route 684 (Spruce Rd), 0.4 mi downstream of Cedar Branch, 1.1 mi south of Cardiff, and 4.5 mi northwest of Northfiel	7.47	1986-89	6-21-89 9-11-89	

Also a crest-stage partial-record station.

Operated as a continuous-record gaging station by U.S. Geological Survey.

Not previously published
Estimated discharge

a b c

Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*).

Discharge measurements made at miscellaneous sites during water year 1989 Measurements Measured Drainage previously Discharge (ft³/s) Stream area (mi² (water Date Tributary to Location years) Hudson River basin Lat 40°11'38", long 74°34'32", Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.6 mi upstream of 1977-82, 7-20-89 37 01367770 Rondout Creek 60.8 1985, 1987-88 Wallkill River Papakating Creek, 1.7 mi southwest of Independence Corner and of Independence corner and 2.0 mi southeast of Sussex. Passaic River basin 89.5 1968, 01379340 10-11-88 28 Lat 40°41'22", long 74°26'24" Newark Union County, Hydrologic Unit 02030103, at bridge on Snyder Avenue at Berkeley Heights, and 1200 ft northwest of State Route Passaic Bay River 512. 0.10 Lat 40°45'21", long 74°21'43", Essex County, Hydrologic Unit 02030103, just downstream of New Jersey-American Water Company pumping station, 0.5 mi upstream of mouth, and 2.0 mi north of Summit. 1933-60ac, 01379530 Passaic 11.0 10-18-88 1961-87bc 12-05-88 Canoe River 1988 Brook 01379781 9-27-89 1989 22 9.26 Rockaway Lat 40°56'45", long 74°33'39" Morris County, Hydrologic Unit 02030103, at Picatinny Arsenal, at bridge on Ninth Street, 0.3 mi downstream of Picatinny Lake, Green Pond River Brook and 1.5 mi northwest of Mt. Hope. Lat 40°56'23", long 74°33'52", Morris County, Hydrologic Unit 02030103, at bridge on Farley Avenue in Picatinny Arsenal, 0.8 mi downstream of Picatinny Lake, and 1.4 mi northwest of Mt. Hope. a6-04-87 4-03-89 01379782 10.0 1983 5.3 Rockaway Green Pond River Brook Lat 40°56'45", long 74°34'04" Morris County, Hydrologic Unit 02030103, at bridge on Sixth Street in Picatinny Arsenal, 0.9 mi upa6-03-87 *.42 01379784 Green Pond 1982 1987 Bear Swamp **Brook** Brook stream from mouth, and 1.8 mi northwest of Mt. Hope. Lat 40°56'31", long 74°34'15", Morris County, Hydrologic Unit 02030103, at bridge on Farley Avenue in Picatinny Arsenal, 0.7 mi upstream of mouth, and 1.5 mi northeast of Berkshire Valley. a6-03-87 405631074341500 Green Pond .43 4-03-89 Bear Swamp Brook Brook Lat 40°56'29", long 74°34'16", Morris County, Hydrologic Unit 02030103, 500 ft downstream from bridge on Farley Avenue in Picatinny Arsenal, 0.6 mi upstream of mouth, and 1.4 mi northeast of Berkshire 405629074341600 a6-03-87 Green Pond .45 1987 Bear Swamp Brook Brook Valley. Lat 40°56'27", long 74°34'19",
Morris County, Hydrologic Unit
02030103, 800 ft downstream from
bridge on Farley Avenue in Picatinny
Arsenal, 0.5 mi upstream of mouth,
and 1.4 mi northeast of Berkshire 405627074341900 a6-03-87 *.41 Green Pond .48 1987 Bear Swamp Brook Brook Valley. Lat 40°56'29", long 74°33'18", Morris County, Hydrologic Unit 02030103, at bridge on Third Street in Picatinny Arsenal, 0.5 mi upstream of mouth, and 1.8 mi northwest of Mt. Hope. a6-03-87 9-25-89 *.46 01379785 1983 1987 Green Pond .50 *3.6 Bear Swamp Brook Brook

	- 11		Drainage	Measured previously		urements
Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft ³ /s)
		Passaic River basinCon	tinued			
01379786 Bear Swamp Brook	Green Pond Brook	Lat 40°56'19", long 74°34'28", Morris County, Hydrologic Unit 02030103, at bridge on Second Street in Picatinny Arsenal, 0.3 mi upstream of mouth, and 1.9 mi northwest of Mt. Hope.	.56	1983, 1987	a6-03-87 9-25-89	*.37 *4.2
05613074342200 Bear Swamp Brook	Green Pond Brook	Lat 40°56'13", long 74°34'22", Morris County, Hydrologic Unit 02030103, 900 ft upstream from Green Pond Brook, 0.5 mi down- stream from bridge on Farley Avenue, and 1.1 mi east of Berkshire Valley.	.59	1987	a6-03-87	*.41
01379787 Bear Swamp Brook	Green Pond Brook	Lat 40°56'11", long 74°34'12", Morris County, Hydrologic Unit 02030103, at Walkbridge on golf course in Picatinny Arsenal, 0.1 mi upstream of mouth, and 1.6 mi northwest of Mt. Hope.	.60	1983, 1987	a6-03-87 4-03-89 9-25-89	*.43 2.6 *3.7
05615074340100 Green Pond Brook	Rockaway River	Lat 40°56'15", long 74°34'03", Morris County, Hydrologic Unit 02030103, at Picatinnyu Arsenal, at bridge on Parker Road, 1.1 mi downstream of Picatinny Lake, and 1.5 mi northwest of Mt. Hope.	10.6	1987	a6-04-87 4-03-89 9-24-89	5.5 29 *23
05606074341200 Green Pond Brook	Rockaway River	Lat 40°56'06", long 74°34'15", Morris County, Hydrologic Unit 02030103, at bridge on First Street in Picatinny Arsenal, 0.5 mi downstream of pond, and 1.3 mi east of Berkshire Valley.	10.83		a6-04-87 4-03-89 9-24-89	6.4 32 *23
01379788 Green Pond Brook	Rockaway River	Lat 40°55'59", long 74°34'24", Morris County, Hydrologic Unit 02030103, just downstream of sewage treatment plant in Pica- tinny Arsenal, 1.5 mi downstream of Picatinny Lake, and 1.7 mi west of Mt. Hope.	10.9	1982, 1987	a6-29-87	7.9
05601074344000 Green Pond Brook tributary	Green Pond Brook	Lat 40°56'01", long 74°34'40", Morris County, Hydrologic Unit 02030103 at bridge on Fourth Avenue in Picatinny Arsenal, 800 ft upstream of mouth, and 1.8 mi. west of Mt. Hope.	<0.3		4-03-89 9-24-89	.3 .2
0555507432800 Green Pond Brook	Rockaway River	Lat 40°55'55", long 74°34'28", Morris County, Hydrologic Unit 02030103, 500 ft below sewage treatment plant in Picatinny Arsenal, 1.6 mi. downstream of Picatinny Lake, and 1.7 mi. west of Mt. Hope.	11.1	<u></u>	4-04-89 9-24-89	*32 *32
05548074343500 Green Pond Brook	Rockaway River	Lat 40°55'38", long 74°48'00", Morris County, Hydrologic Unit 02030103, at bridge on Shinkle Road in Picatinny Arsenal, 2.0 mi. downstream of Picatinny Lake, and 1.9 mi. west of Mt. Hope.	11.4	, , , , , , , , , , , , , , , , , ,	4-04-89 9-24-89	37 *33
05530074345300 Green Pond Brook	Rockaway River	Lat 40°55'30", long 74°34'53", Morris County, Hydrologic Unit 02030103, near Pyrotechnic Area, in Picatinny Arsenal and 2.1 mi. downstream of Picatinny Lake, and 2.1 west of Mt. Hope.	11.9		4-04-89 9-26-89	*51 *53
05522074345800 Green Pond Brook	Rockaway River	Lat 40°55'22", long 74°34'58" Morris County, Hydrologic Unit 02030103, near Building 1179 near South Brook in Picatinny Arsenal, 2.2 mi downstream from Picatinny Lake, and 2.1 mi west of Mt. Hope			4-04-89	*35

			. 0	Drainage	Measured previously	Measurements	
	Stream	Tributary to	Location	area (mi²)	(water years)	Date	Discharge (ft ³ /s)
			Passaic River basinConf	tinued			
05514	4074350400 Green Pond Brook	Rockaway River	Lat 40°55'14", long 74°35'04", Morris County, Hydrologic Unit 02030103, at lower dam, in Pica- tinny Arsenal, 2.5 mi downstream from Picatinny Lake, and 2.2 mi west of Mt. Hope.	12.1	•	4-04-89 9-26-89	*39 *52
	01379789 Green Pond Brook	Rockaway River	Lat 40°55'15", long 74°35'04", Morris County, Hydrologic Unit 02030103, at bridge on Wharton and Northern Railroad in Pica- tinny Arsenal, 2.5 mi downstream of Picatinny Lake, and 0.5 mi east of Berkshire Valley.	12.2 t	1982	4-04-89 9-26-89	*35 *49
	01380000 Beaver Brook	Rockaway River	Lat 40°57'38", long 74°27'43", Morris County, Hydrologic Unit 02030103, 50 ft below sluice gates at outlet of Splitrock Reservoir, 2 mi northeast of Hibernia, and 3.5 mi upstream of mouth of Hibernia Brook.	5.50	1925-46bd, 1976-88cd	11-02-88	*2.1
	01388600 Pompton River	Passaic River	Lat 40°56'36", long 74°16'47", Morris County, Hydrologic Unit 02030103, at bridge on Pompton- Newark Turnpike (State Road 504) 1.2 mi west of Packanack Lake, an 2.0 mi downstream of confluence of Ramapo and Pequannock Rivers.	361 d		8-14-89	464
	01388910 Pompton River	Passaic River	Lat 40°54'52", long 74°16'15", Passaic County, Hydrologic Unit 02030103, at bridge on U.S. Route 202 at Mountain View, 0.1 mi down stream of Packanack Brook, and 1. upstream of mouth.	•	1987-88	10-11-88	90
	01389802 Passaic River	Newark Bay	Lat 40°54'57", long 74°10'55", Passaic County, Hydrologic Unit 02030103, on right bank, 10 ft upstream from Passaic Falls (Grea Falls) in Paterson, and 1.5 mi downstreamfrom Peckman River. Note: These flows are only over the falls not through hydroelectr plant.		1987-88	5-09-89	5730
	01391200 Saddle River	Passaic River	Lat 40°56'30", long 74°05'36", Bergen County, Hydrologic Unit 02030103, at bridge on Century Road, at Fair Lawn, and 0.8 mi downstream of Hohokus Brook.	45.2	1978, 1981, 1983, 1986-88	8-14-89	74
			Rahway River basin				
	01393950 West Branch Rahway River	Rahway River	Lat 40°47'02", long 74°16'27", Essex County, Hydrologic Unit 02030104, at bridge on Indian Avenue, at West Orange, 1.1 mi downstream from bridge at Interstate 280, and 1.2 mi upstream from Orange Reservoir.	2.52	1983, 1985-86, 1988	8-11-89	*6.0
			Raritan River basin	mental disease			
	01396535 South Branch Raritan River	Raritan River	Lat 40°39'49", long 74°53'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi northeast of Mariannes Corner, and 4.3 mi northeast of Norton.	68.8	1978-81, 1983, 1985-88	7-26-89	*83

			Drainaga	Measured	Measurements	
Stream	Tributary to	Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		Raritan River basinCont	inued			
01396588 Spruce Run	South Branch Raritan River	Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, 800 ft down- stream of Rocky Run, 0.3 mi upstream of bridge on Van Syckel Road, and 1.6 mi southeast of Glen Gardner.	15.5	1979, 1981-83, 1985-88	7-26-89	*16
01397400 South Branch Raritan River	Raritan River	Lat 40°31'01", long 74°48'10", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 1.4 mi downstream from Bushkill Brook, and 3.0 mi northeast of Flemington.	181	1976, 1978-81, 1983, 1985-88	7-27-89	*306
01399120 North Branch Raritan River	Raritan River	Lat 40°38'09", long 74°40'56" Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road, 0.1 mi upstream from Lamington River, 0.3 mi east of Burnt Mills, and 4.0 mi southwest of Far Hills.	63.8 s	1964, 1975-78, 1981-83, 1985-88	7-12-89	*61
01399780 Lamington River	North Branch Raritan River	Lat 40°38'09", long 74°41'13", Somerset County, Hydrologic Unit 02030105, at bridge on Walsh Road at Burnt Mills, 0.2 mi upstream from North Branch Raritan River, and 4.4 mi southwest of Far Hills	100	1964, 1973, 1975-78, 1981-83, 1985-88	7-12-89	*112
01400120 Raritan River	Raritan Bay	Lat 40°33'42", long 74°38'10", Somerset County, Hydrologic Unit 02030105, at bridge on River Road in Raritan, and 3.5 mi northeast of South Branch.	474	1975-81, 1983, 1985-88	8-22-89	398
01400540 Millstone River	Raritan River	Lat 40°15'44", long 74°25'13", Monmouth County, Hydrologic Unit 02030105, at bridge on State Routo 33, 1.3 mi west of Manalapan, 5.5 mi east of Hightstown, and 8.4 mi upstream of Rocky Brook.	7.37	1960-62, 1964, 1971, 1985-88	9-17-89	9.9
01400583 Millstone River	Raritan River	Lat 40°17'36", long 74°31'39", Mercer County, Hydrologic Unit 02030105, at bridge on Old Cranbury Road, 1.0 mi upstream of Rocky Brook, and 1.6 mi north of Hightstown.	20.7	1987-88	7-06-89 8-31-89	418 22
01400589 Rocky Brook	Millstone River	Lat 40°15'11", long 74°29'16", Mercer County, Hydrologic Unit 02030105, at bridge on Disbrow Hill Road, 0.5 mi upstream from Timber Run tributary, and 2.2 mi east of Hightstown.	7.14	1987	7-05-89 8-31-89	64 7.8
01400591 Rocky Brook	Millstone River	Lat 40°15'10", long 74°30'11", Mercer County, Hydrologic Unit 02030105, at bridge on Milford Road, at outlet of Etra Lake, 1.2 mi upstream of Peddie Lake, a 1.6 mi southeast of Hightstown.	9.08 nd	1987-88	5-19-88e 7-06-89 8-31-89	24 94 11
01400599 Rocky Brook	Millstone River	Lat 40°16'37", long 74°32'06", Mercer County, Hydrologic Unit 02030105, at bridge on U.S. Route 130 at Hightstown, 0.4 mi northeast of intersection of U.S. Route 130, and County Route 571.	14.4	1971-72, 1987-88	5-19-88 7-06-89 8-31-89	e54 183 21
01400725 Cranbury Brook	Millstone River	Lat 40°19'34", long 74°36'11", Middlesex County, Hydrologic Unit 02030105, at bridge on Maple Aven at outlet of Plainsboro Pond in Plainsboro, and 0.7 mi upstream o mouth.		1967, 1971-72, 1987-88	5-19-88 8-31-89 9-05-89	e97 10 *1.7

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Drainage	Measured previously	Meas	Measurements	
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)	
		Raritan River basinCon	tinued				
01400870 Stony Brook tributary No. 3	Stony Brook	Lat 40°24'12", long 74°48'07" Mercer County, Hydrologic Unit 02030105, at bridge on Van Dyke Road, 0.2 mi east of Stony Brook Road, and 2.0 mi northwest of Hopewell.	e2.6	1970, 1987-88			
01400880 Stony Brook	Millstone River	Lat 40°22'53", long 74°48'11", Mercer County, Hydrologic Unit 02030105, downstream of unnamed tributary, 0.8 mi downstream of bridge on Lambertville-Hopewell Turn- pike, and 1.4 mi east of Woodsville.	e15.2	1985-88			
01400990 Palmer Lake outlet stream	Stony Brook	Lat 40°21'16", long 74°41'52", Mercer County, Hydrologic Unit 02030105, at bridge on Elm Road at Princeton, 0.6 mi downstream of Palmer Lake, and 0.6 mi upstre of mouth.	e2.2	1987-88		19 2 19 2 19 3 19 3 19 3 19 3 19 3 19 3 19 3 19 3	
01400998 Stony Brook tributary No. 6	Stony Brook	Lat 40°20'03", long 74°41'52", Mercer County, Hydrologic Unit 02030105, at bridge on private estate, 300 ft upstream of mouth, 0.6 mi north of Coxs Corner, and 1.8 mi southwest of Princetor		1987-88	••		
01401400 Heathcote Brook	Millstone River	Lat 40°22'10", long 74°36'59", Middlesex County, Hydrologic Unit 02030105, at bridge on Mapleton Road, at Former Penn Central rail road bridge, 0.3 mi south of Kingston, and 0.4 mi upstream of mouth.	9.0	1979-84	6-09-89	37	
01405340 Manalapan Brook	South River	Lat 40°17'46", long 74°23'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Federal Ro 2.0 mi west of Englishtown, 2.6 morth of Manalapan, and 3.0 mi do stream from Still House Brook.	ní	1979-81, 1986-88	9-17-89	33	
		Navasink River bas	in				
01407253 Willow Brook	Hop Brook	Lat 40°19'47", long 74°10'26", Monmouth County, Hydrologic Unit 02030104, at bridge on Willow Brook Road, 1.2 mi southeast of Holmdel, 1.3 mi northeast of Vanderburg, and 1.6 mi northwest of Sugar Loaf Hill.	7.56	1979, 1981, 1983	10-06-88	*2.5	
		Manasquan River bas	in				
01407997 Marsh Bog Brook	Manasquan River	Lat 40°10'01", long 74°09'33", Monmouth County, Hydrologic Unit 02040301, at bridge on Squankum-Yellow Brook Road at Squankum, 0.2 mi upstream of mouth, and 0.6 mi north of Lower Squankum.	4.91	1966, 1972-74, 1978-82, 1985-88	9-18-89	30	
		Mullica River basi	n			1146	
01409416 Hammonton Creek	Mullica River	Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road, 0.4 mi south of Wescoatville, and 1.6 mi upstream from Norton Branch.	9.57	1974, 1978-81, 1983, 1985-88	8-11-89	16	

Discharge measurements made at miscellaneous sites during water year 1989 -- Continued

				Measured	Measu	urements
Stream	Tributary to	Location	Drainage area (mi²)	previously (water years)	Date	Discharge (ft ³ /s)
		Mullica River basinCon	tinued			
01409815 West Branch Wading River	Wading River	Lat 39°40'30", long 74°32'28", Burlington County, Hydrologic Unit 02040301, at bridge on State Highway 563 in Maxwell, 1.6 mi southeast of Washington, 1.8 mi southwest of Jenkins, and 2.2 mi upstream from confluence with Oswego River.	85.9	1985 - 88	9-12-89	*58
		Absecon Creek basin				
01410500 Absecon Creek	Absecon Bay	Lat 39°25'45", long 74°31'16", Atlantic County, Hydrologic Unit 02040302, on right bank 30 ft downstream from Doughty Pond Dam of Atlantic City Water Department 1.0 mi west of Absecon, and 3.4 m upstream of mouth.		1923-29c, 1933-38c, 1946-85df, 1987-88f	6-21-89 9-11-89	15 10
		Great Egg Harbor River	basin			
01410784 Great Egg Harbor River	Great Egg Harbor Bay	Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on New Freedom Road in Winslow Town- ship, 0.7 mi northeast of Blackwood-New Brooklyn Road, and 1.5 mi northeast of Sicklerville.	15.1	1971-81 1985-87	8-15-89	26
01410820 Great Egg Harbor River	Great Egg Harbor Bay	Lat 39°40'09", long 74°54'49", Camden County, Hydrologic Unit 02040302, at bridge on Broad Lane Road, 2.1 mi downstream from confluence of Fourmile Branch, and 1.9 mi southwest of Blue Anchor.	37.2	1972-80d, 1985-88	8-11-89	43
01411110 Great Egg Harbor River	Great Egg Harbor Bay	Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi upstream from Deep Run, and 20.9 mi upstream of mouth.	154	1978-81, 1985-88	8-15-89	340

Not previously published.
Discharge records published in reports of the New Jersey Department of Environmental Protection.
Discharge records on file in U.S. Geological Survey Office, West Trenton, New Jersey.
Operated as continuous-recording gaging station.
Revised.
Also a tidal crest-stage partial-record station.

The following table contains annual maximum elevations for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum elevation is given. Information on some other high elevations may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum elevation has been determined.

Annual maximum elevation at tidal crest-stage partial-record stations during water year 1989

			Daniad	Annual N	
Station No.	Station name	Location	Period of record	Date	Elevation NGVD* (ft)
01406700	Raritan River at Perth Amboy, NJ	Lat 40°30'31", long 74°17'30", Middlesex County, Hydrologic Unit 02030104, on upstream left bridge pier of Victory Bridge on State Route 35 in Perth Amboy, 0.5 mi downstream from Garden State Parkway bridge, and 1.5 mi upstream from mouth of Raritan River.	1967-70†, 1980-89	9-19-89	6.62
01407030	Luppatatong Creek at Keyport, NJ	Lat 40°26'08", long 74°12'27", Monmouth County, Hydrologic Unit 02030104, on left bank upstream side of Front Street bridge in Keyport, 2.0 mi northwest of Matawan, and 0.1 mi upstream from mouth.	1980-89	9-19-89	6.69
01409145	Manahawkin Bay near Manahawkin, NJ	Lat 39°40'13", long 74°12'54", Ocean County, Hydrologic Unit 02040301, at west end of State Route 72 bridge over Manahawkin Bay, 2.5 mi northwest of Ship Bottom, and 3.1 mi southeast of Manahawkin.	1965-89	9-19-89	3.62
01409285	Little Egg Harbor at Beach Haven, NJ	Lat 39°33'10", long 74°15'07", Ocean County, Hydrologic Unit 02040301, in Beach Hayen at U.S. Coast Guard station, 6.0 mi southeast of Tuckerton and 7.4 mi southeast of Ship Bottom.	1979-89	9-19-89	4.15
01409510	Batsto River at Pleasant Mills, NJ	Lat 39°37'55", long 74°38'40", Ocean County, Hydrologic Unit 02040301, on right bank, 1.0 mi southeast of Pleasant Mills, and 0.5 mi upstream from mouth.	1958-89	9-19-89	4.36
01410100	Mullica River near Port Republic, NJ	Lat 39°33'12", long 74°27'46", Atlantic County, Hydrologic Unit 02040301, on right bank on bulkhead piling at south end of U.S. Route 9 and Garden State Parkway bridge over Mullica River, 2.8 mi northeast of Port Republic, and 2.8 mi south of New Gretna.	1965-89	9-19-89	6.00
01410500	Absecon Creek at Absecon, NJ	Lat 39°25'45", long 74°31'16", Atlantic County, Hydrologic Unit 02040302, on right abutment of bridge on Mill Road, 50 ft downstream of former gaging station, 1 mi west of Absecon, and 3.4 mi upstream from mouth.	1923-29†, 1933-38†, 1946-84†, 1985-89	9-19-89	4.99
01410570	Beach Thorofare at Atlantic City, NJ	Lat 39°21'56", long 74°26'44", Atlantic County, Hydrologic Unit 02040302, on west abutment south side of AMTRAK railroad swivel bridge in Atlantic City, 0.5 mi northeast of Bader Field airport, and 2.7 mi northeast of Ventnor City.	1978† 1969-89	9-19-89	5.71

Annual maximum elevation at tidal crest-stage partial-record stations during water year 1989--Continued

				Annual	Maximum
Station No.	Station name	Location	Period of record	Date	Elevation NGVD* (ft)
01411300	Tuckahoe River at Head of River, NJ	Lat 39°18'25", long 74°49'15", Cape May County, Hydrologic Unit 02040302, downstream right abutment of highway bridge on State Route 49, 0.2 mi upstream from McNeals Branch, 0.4 mi southeast of Head of River, and 3.7 mi west of Tuckahoe.	1979-89†	7-17-89	4.49
01411320	Great Egg Harbor Bay at Ocean City, NJ	Lat 39°17'03", long 74°34'41", Cape May County, Hydrologic Unit 02040302, on bulkhead at west end of 7th Street (prior to October 1974, gage was located at 5th Street), Ocean City, and 2.5 mi southeast of Somers Point.	1965-89	9-19-89	6.12
01411360	Great Channel at Stone Harbor, NJ	Lat 39°03'26", long 74°45'53", Cape May County, Hydrologic Unit 02040302, on boat-ramp piling near east end of bridge at west end of Borough of Stone Harbor, 3.7 mi southeast of Cape May Court House, and 3.9 mi southwest of Avalon.	1965-89	9-19-89	5.81

National Geodetic Vertical Datum of 1929 (NGVD).
 Operated as a continuous-record gaging station.

391827074371001. Local I.D., Jobs Point Obs. NJ-WRD Well Number, 01-0578.
LOCATION.--Lat 39°18'26", long 74°37'09", Hydrologic Unit 02040302, on the west side of the Garden State Parkway at interchange 29, Somers Point.

Owner: U.S. Geological Survey.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 680 ft, screened 670 to 680 ft.

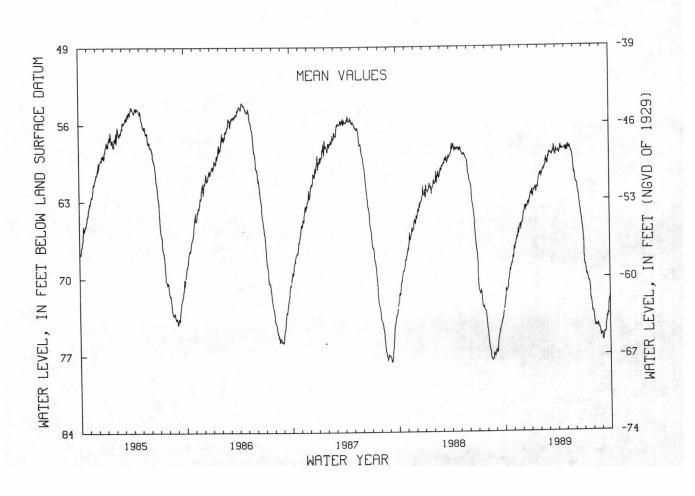
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to

INSTRUMENTATION.--Digital water-level recorder--ou-minute punch. water-level extremes recorder, may 17.1.

February 1984.

DATUM.--Land-surface datum is 10.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 9.34 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--October 1959 to June 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.

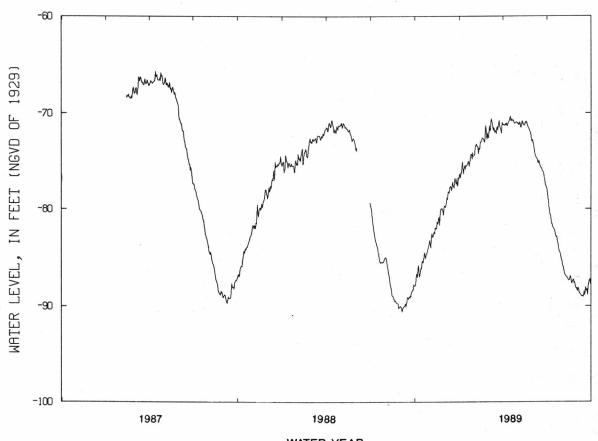
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 29.10 ft below land-surface datum, Apr. 13, 1961; lowest, 78.41 ft below land-surface datum, Sept. 8, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

						MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	71.85 71.24 70.72 69.87 68.90 68.52	67.15 66.91 66.59 65.62 65.49 65.24	64.91 64.08 63.63 63.59 63.25 62.82	62.53 62.58 61.98 61.76 61.82 60.99	60.57 60.55 60.18 60.08 59.31 59.36	59.15 58.66 58.75 58.55 58.31 58.29	58.59 58.81 58.18 58.38 58.41 58.39	58.37 57.97 58.32 58.35 58.81 60.56	61.18 61.49 62.32 63.61 64.45 65.68	68.53 69.43 69.86 70.33 71.69 73.16	73.42 74.49 74.42 74.40 74.65 75.17	75.75 75.00 74.61 73.64 72.84 71.60
MEAN	70.40	66.49	63.84	62.04	60.19	58.78	58.45	58.62	62.79	70.01	74.33	74.12
WTR YR	1989	MEAN 65.04	HIGH 56	.91 MAY 6	LOW	76.38 SEP	6					

391955074250701. Local I.D., ACOW 1 Obs. NJ-WRD Well Number 01-0711.
LOCATION.--Lat 39°19'55", long 74°25'07", in the Atlantic Ocean, 1.9 miles offshore of Atlantic City
Owner: U.S. Geological Survey.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.-- Drilled artesian observation well, diameter 4 in, depth 871 ft, screened 820 to 850 ft.
INSTRUMENTATION.--Digital data logger with differential pressure transducers. Recorder located on sea floor, about
33 ft below NGVD.


DATUM.-- 0.00 ft, National Geodedic Vertical Datum of 1929.
Measuring point: Deck of drilling platform at time when transducers were set at bottom of well.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Elevation of differential pressure transducers was determined by direct measurement from the deck of the drilling platform. Elevation of the deck of the drilling platform was determined by survey by the U.S. Geological Survey, National Mapping Division.

PERIOD OF RECORD.--February 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 63.72 ft below NGVD, April 14,16, 1987; lowest, 92.42 ft below NGVD, August 30, 1988.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

						MEAN VALU	JES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	-86.62 -86.87 -86.12 -84.94 -84.60 -83.49	-82.53 -82.40 -81.95 -80.86 -80.01 -79.88	-79.35 -78.29 -77.90 -77.61 -77.36 -76.88	-76.29 -75.87 -75.52 -75.03 -74.27	-73.25 -73.63 -73.03 -72.77 -71.64 -72.10	-71.89 -71.10 -72.03 -71.39 -71.30	-71.28 -71.25 -70.50 -70.76 -71.06 -71.11	-70.95 -70.83 -71.31 -71.04 -71.67 -72.96	-73.95 -74.69 -75.08 -75.78 -76.61 -77.73	-79.74 -81.37 -82.06 -82.94 -84.01 -85.28	-86.28 -86.98 -87.39 -87.37 -87.31 -88.13	-88.38 -88.96 -89.07 -88.44 -87.75 -87.06
MEAN	-85.67	-81.67	-78.00	-75.42	-73.04	-71.59	-70.97	-71.42	-75.36	-82.08	-87.10	-88.38
WTR YR	1989	MEAN -78.4	44 MAX -7	70.34 MIN	· -89.07							

WATER YEAR

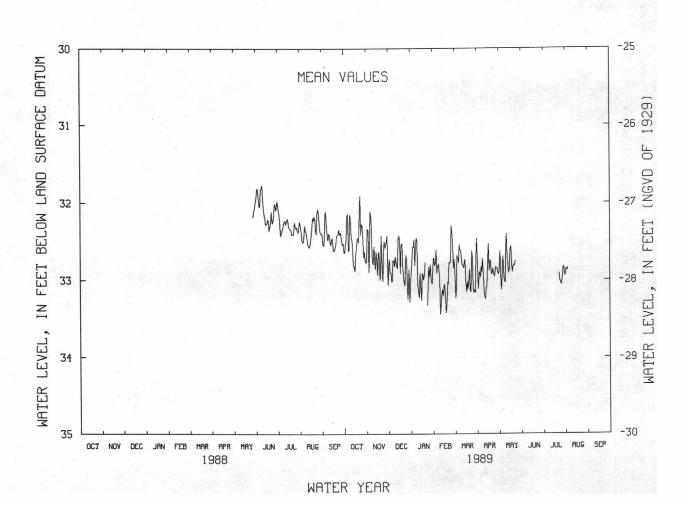
392017074300201. Local I.D., Margate Firehouse TW1. NJ-WRD Well Number, 01-0834. LOCATION.--Lat 39°20'17", long 74°30'02", Hydrologic Unit 02040302, behind Margate Firehouse no. 2, Fremont

Avenue, Margate City. Owner: U.S. Geological Survey

Owner: U.S. Geological Survey.

AQUIFER.--Piney Point aquifer of Eccene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 997 ft, screened 970 to 991 ft.


WELL CHARACTERISTICS.--Digital water-level recorder--60-minute punch.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 99/ ft, screened 9/0 to 99/ ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 5 ft above National Geodetic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 2.00 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation. Missing record from May 24 to July 19 and from August 4 to
September 30 was due to recorder malfunction.
PERIOD OF RECORD.--May 1988 to current year. Records for 1988 are unpublished and are available in files of New
Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 31.05 ft below land-surface datum, June 2, 1988; lowest,
33.99 ft below land-surface datum, Feb. 9, 1989.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUES	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	32.14	32.11	33.00	32.81	32.84	32.72	32.96	32.97	•••			
10	32.45	32.56	32.69	33.17	33.27	32.73	33.15	32.55			•••	
15	32.88	32.93	32.52	32.91	33.09	32.73	32.80	32.84		•••		
20	32.51	32.42	32.91		33.04	32.99	32.92	32.82		32.71		
10 15 20 25	32.30	32.58	32.84	32.96	32.41	32.71	32.91			33.06		
EOM	32.76	32.82	32.92	32.71	32.73	32.46	32.92	•••	a sergii	32.92	(10 mm)	
MEAN	32.50	32.65	32.83	32.87	32.93	32.88	32.91	32.80	1	•••	****	•••
WTR YR	1989	HIGH 31.	.22 OCT 22	LOW 33	3.99 FEB	9			35 4			

392153074250101. Local I.D., Galen Hall Obs. NJ-WRD Well Number, 01-0037. LOCATION.--Lat 39°21'51", long 74°24'59", Hydrologic Unit 02040302, near the intersection of Pacific and Congress

LOCATION.--Lat 39°21'51", long 74°24'59", Hydrologic Unit 02040302, near the intersection of Pacific and Congress Avenues, Atlantic City.

Owner: Atlantic City Municipal Utilities Authority.

AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.

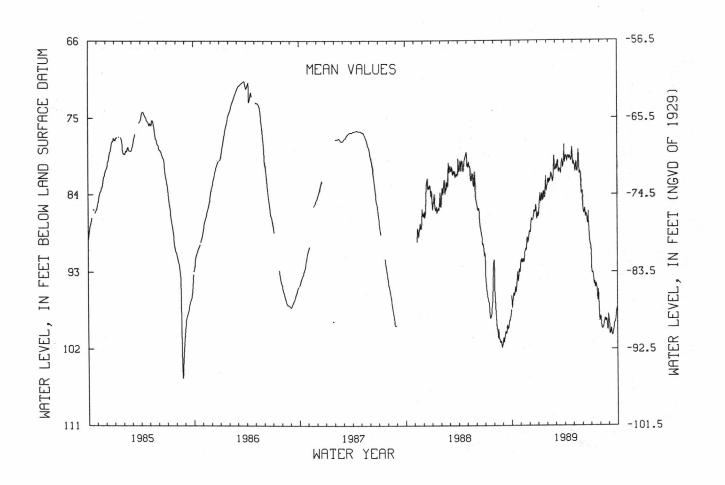
MELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 837 ft, screened 782 to 837 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to July 1980.

DATUM.--Land-surface datum is 9.54 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.75 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Water level affected by USGS aquifer test,


August 16-23, 1985. Well damaged by construction equipment in August 1987 and rehabilitated November 1987.

PERIOD OF RECORD.--January 1949 to August 1975, May 1977 to current year. Records for 1949 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.58 ft below land-surface datum, Mar. 7, 1962; lowest, 105.70 ft below land-surface datum, Aug. 22, 1985. (see remarks)

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

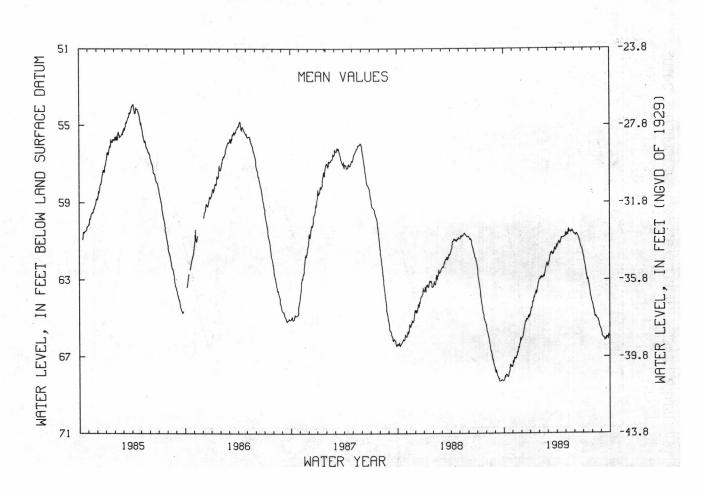
	MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5 10 15 20 25 EOM	96.02 95.75 94.76 94.03 93.69 92.87	90.22 88.92	88.39 86.73 86.55 86.00 85.59 86.08	84.85 84.78 84.42 83.59 83.44 83.04	82.57 82.46 81.57 82.50 79.47 81.13	80.71 80.08 80.96 81.27 79.84 78.14	79.60 80.10 79.39 79.46 79.92 80.20	80.46 80.56 81.31 79.61 81.28 83.78	85.85 85.56 86.13 87.33 88.00 89.83	92.84 93.54 94.14 94.57 96.05 98.65	98.34 99.58 98.98 98.55 98.68 98.22	100.20 99.92 100.11 98.81 98.44 97.05	
MEAN	94.72	90.71	86.75	84.19	81.85	80.60	79.60	81.03	86.66	94.36	98.82	99.16	
WTR YR	1989	MEAN 88.25	HIGH 77	.91 MAR 3	1 LOW	100.44 SEP	13,14						

392754074270101. Local I.D., Oceanville 1 Obs. NJ-WRD Well Number, 01-0180.
LOCATION.--Lat 39°27'54", long 74°27'01", Hydrologic Unit 02040302, at Edwin B. Forsythe National Wildlife Refuge, Brigantine Division, Oceanville, Galloway Township.
Owner: U.S. Geological Survey.
AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 570 ft, screened 560 to 570 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, April 1977 to

INSTRUMENTATION.--Digital water-level recorder--ou-minute punch. water-level extremes recorder, per February 1984.

DATUM.--Land-surface datum is 27.17 ft above National Geodetic Vertical Datum of 1929.

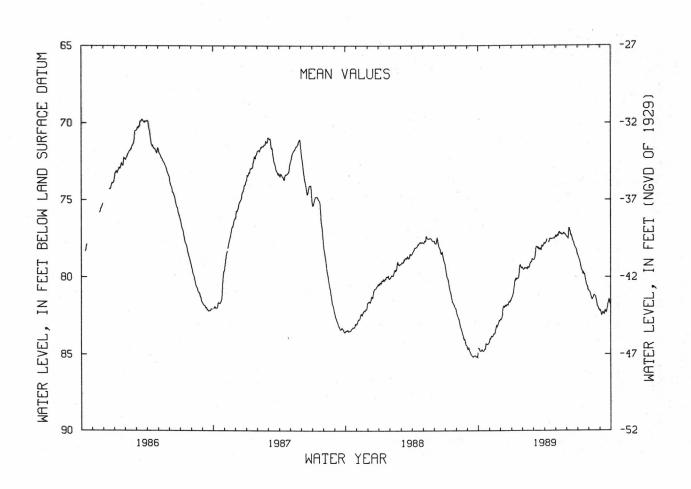
Measuring point: Top edge of bushing, 2.30 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--October 1959 to August 1975, April 1977 to current year. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 33.62 ft below land-surface datum, Apr. 13, 1961; lowest, 68.36 ft below land-surface datum, Sept. 29,30, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


	MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5 10 15 20 25 EOM	67.99 67.91 68.05 67.83 67.44 67.51	67.09 67.04 66.93 66.49 66.29 66.10	65.98 65.50 65.11 65.04 64.86 64.77	64.49 64.15 63.76 63.55 63.37 62.98	62.90 62.90 62.76 62.65 62.18 62.20	62.10 61.70 61.57 61.67 61.34 61.16	61.20 61.12 60.99 60.84 60.81 60.71	60.68 60.48 60.55 60.51 60.47 60.65	60.72 60.59 60.81 61.15 61.36 61.72	62.09 62.57 63.03 63.21 63.74 64.17	64.46 64.93 64.95 65.03 65.32 65.64	65.94 66.01 66.09 65.93 66.06 65.96	
MEAN	67.82	66.76	65.30	63.81	62.69	61.70	60.98	60.55	60.98	62.99	64.96	65.97	
WTR YR	1989	MEAN 63.72	HIGH 60	.17 MAY 1	1 LOW 6	8.31 OCT	1				160		

393232074263901. Local I.D., FAA-TW-Pomona Obs. NJ-WRD Well Number, 01-0703.
LOCATION.--Lat 39°26'39", long 74°32'32", Hydrologic Unit 02040302, at the NAFEC Atlantic City Airport, Egg Harbor Township.
Owner: U.S. Geological Survey
AQUIFER.--Atlantic City 800-foot sand of the Kirkwood Formation of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 570 ft, screened 560 to 570 ft.
INSTRUMENTATION.--Digital water-level recorder--60 minute punch.
DATUM.--Land-surface datum is 38 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 1.75 ft above land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--October 1985 to current year. Records for 1985 to 1986 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 69.74 ft below land-surface datum, March 18, 1986; lowest, 85.26 ft below land-surface datum, Sept. 29, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	84.72 84.73 84.79 84.67 84.32 84.29	83.89 83.82 83.69 83.21 83.02 82.81	82.67 81.87 81.82 81.76 81.54 81.38	81.11 80.17 80.06 80.01 79.27 79.42	79.46 79.44 79.31 79.23 78.94 78.87	78.76 78.03 78.07 78.23 77.94 77.77	77.76 77.59 77.54 77.49 77.40	77.37 77.15 77.20 77.21 77.19 77.36	77.53 76.93 77.36 77.77 78.08 78.47	78.87 79.29 79.78 79.79 80.44 80.83	81.08 81.46 81.15 81.36 81.92 82.18	82.48 82.24 82.13 82.03 81.61 81.88
MEAN	84.59	83.49	81.95	80.10	79.27	78.24	77.60	77.24	77.58	79.70	81.44	82.08
WTR YR	1989	MEAN 80.29	HIGH 76	.77 JUN	7,8 LOW	84.83 OCT	7,14					

393333074442401. Local I.D., Scholler 1 Obs. NJ-WRD Well Number, 01-0256.
LOCATION.--Lat 39°33'33", long 74°44'26", Hydrologic Unit 02040302, at Scholler Brothers plant, near intersection of Weymouth and Second Roads, Elwood, Hamilton Township.
Owner: Scholler Brothers Incorporated.

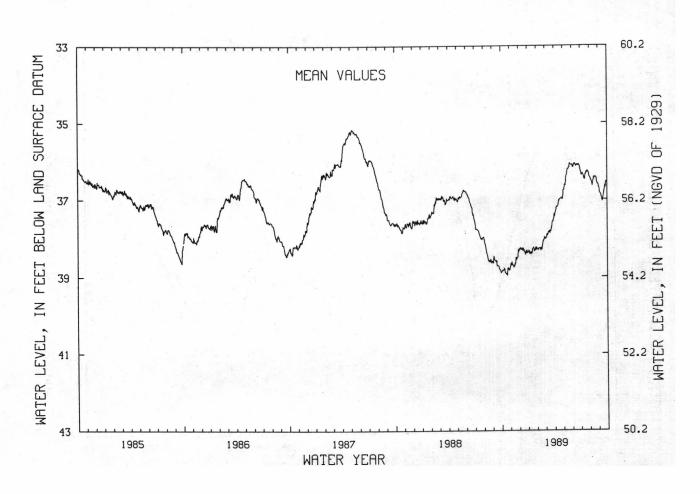
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 275 ft, screened 254 to 275 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, May 1977 to April

INSTRUMENTATION. --Digital water-level recorder --ou-minute punch. water-level extremes recorder, may 1984.

1984.

DATUM. --Land-surface datum is 93.19 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.66 ft above land-surface datum.

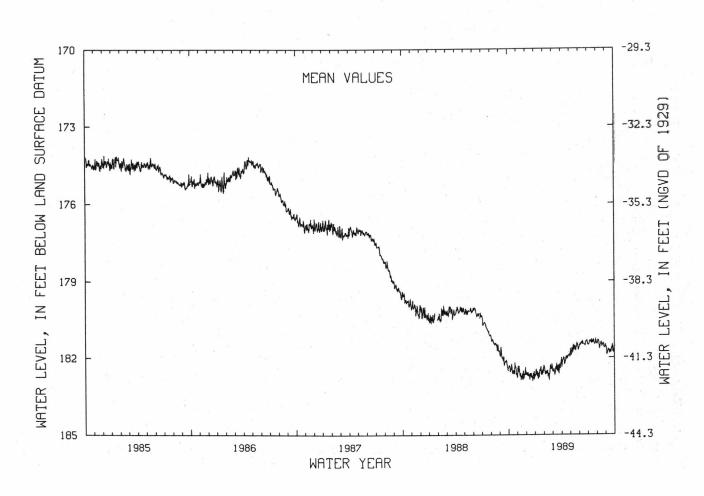

PERIOD OF RECORD. --April 1962 to August 1975, May 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 27.18 ft below land-surface datum, Mar. 20, 1963; lowest, 39.56 ft below land-surface datum, Sept. 13, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	38.84 38.80 38.90 38.96 38.76 38.82	38.61 38.68 38.72 38.51 38.49 38.33	38.28 38.27 38.27 38.36 38.32 38.36	38.40 38.42 38.28 38.23 38.32 38.32	38.29 38.26 38.24 38.20 38.02 37.99	37.97 37.89 37.80 37.81 37.57 37.37	37.34 37.20 37.09 37.00 36.96 36.90	36.73 36.49 36.29 36.18 36.09 36.09	36.17 36.05 36.13 36.10 36.09 36.26	36.36 36.37 36.48 36.30 36.27 36.41	36.50 36.64 36.45 36.41 36.52 36.66	36.82 36.93 36.98 36.74 36.67 36.54
MEAN	38.84	38.60	38.32	38.32	38.19	37.78	37.12	36.35	36.11	36.35	36.50	36.79

WTR YR 1989 MEAN 37.44 HIGH 36.00 MAY 24 LOW 39.00 OCT 20


BURLINGTON COUNTY

395122074301701. Local I.D., Butler Place 1 Obs. NJ-WRD Well Number, 05-0683.
LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township.
Owner: U.S. Geological Survey.

AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 2,117 ft, screened 2,102 to 2,117 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 140.66 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of coupling, 2.80 ft above land-surface datum.
PERIOD OF RECORD.--October 1964 to August 1975, March 1977 to current year. Records for 1964 to 1977 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 143.20 ft below land-surface datum, Feb. 25, 1965; lowest, 182.96 ft below land-surface datum, Dec. 22,23, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

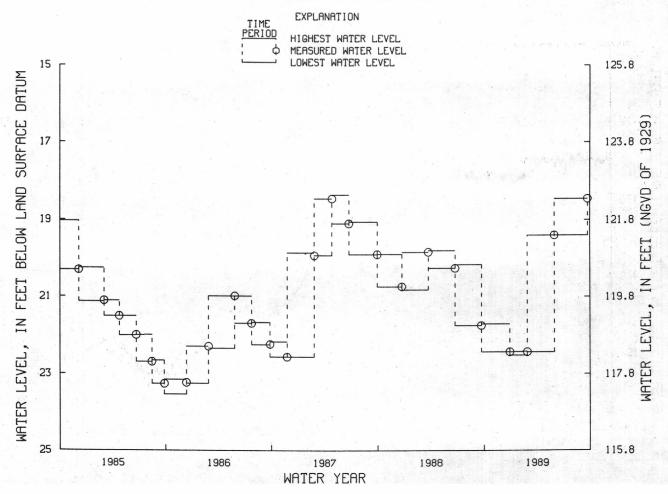
MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	182.41 182.35 182.58 182.64 182.41 182.77	182.32 182.61 182.80 182.51 182.67 182.63	182.71 182.66 182.62 182.75 182.62 182.67	182.69 182.80 182.47 182.35 182.66 182.36	182.63 182.60 182.61 182.58 182.42 182.41	182.42 182.55 182.23 182.52 182.25 182.00	182.14 182.18 182.06 182.04 181.91 181.90	181.83 181.60 181.64 181.61 181.50 181.57	181.51 181.37 181.45 181.51 181.37 181.50	181.45 181.33 181.44 181.27 181.48 181.45	181.30 181.65 181.43 181.49 181.57 181.59	181.87 181.66 181.71 181.61 181.79 181.76
MEAN	182.49	182.62	182.70	182.57	182.53	182.42	182.05	181.64	181.44	181.40	181.48	181.72
WTR YR	1989	MEAN 182.	D8 HIGH	181.22 JUL	28 LOV	182.96	DEC 22,23					

BURLINGTON COUNTY

395122074301702. Local I.D., Butler Place 2 Obs. NJ-WRD Well Number, 05-0684.
LOCATION.--Lat 39°51'22", long 74°30'17", Hydrologic Unit 02040301, in Lebanon State Forest, Woodland Township.
Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in, depth 170 ft, screened 160 to 170 ft.
INSTRUMENTATION.--Water-level extremes recorder, March 1977 to current year. Water-level recorder, May 1965 to April
1975.

DATUM.--Land-surface datum is 140.82 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Front edge of cutout in recorder housing, 2.67 ft above land-surface datum.

PERIOD OF RECORD.--May 1965 to April 1975, March 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.14 ft below land-surface datum, Feb. 15, 1973; lowest, 23.53 ft below land-surface datum, between Sept. 26, and Dec. 11, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEASURED WATER LEVEL WATER-LEVEL EXTREMES HIGHEST WATER LEVEL LOWEST WATER WATER LEVEL PERIOD DATE SEPT. 22, 1988 TO DEC. 29, 1988 22.43 21.71 22.43 DEC. 29, 1988 29, 1988 TO FEB. 27, 1989 27, 1989 22.43 22.42 22.52 FEB. 27, 1989 TO MAY 30, 1989 19.40 22.43 30, 1989 19.40 18.46 MAY 30, 1989 TO SEPT. 22, 1989 18.46 19.40 SEPT. 22, 1989

394215074561701. Local I.D., New Brooklyn Park 1 Obs. NJ-WRD Well Number, 07-0476.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 1,495 ft, screened 1,485 to 1,495 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977
to December 1984.
DATUM ---Land-surface datum is 111 13 ft above National Geodetic Vertical Datum of 1929.

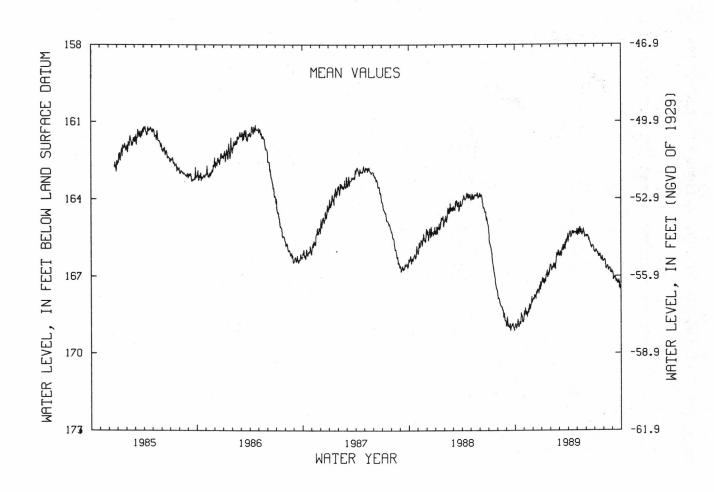
HIGH 165.04 MAY 11

WTR YR 1989

MEAN 166.70

DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.

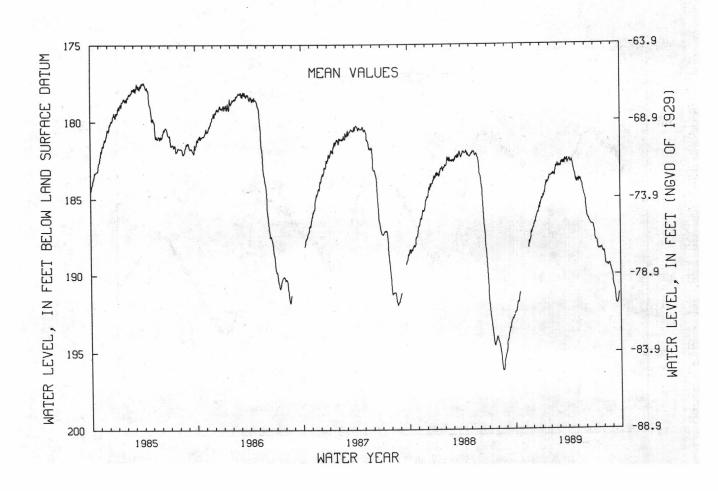
Measuring point: Top of coupling, 1.75 ft above land-surface datum.


PERIOD OF RECORD.--February 1963 to August 1975, February 1977 to current year. Records for 1963 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 120.16 ft below land-surface datum, March 6, 1963; lowest, 169.15 ft below land-surface datum, Sept. 16, 1988.

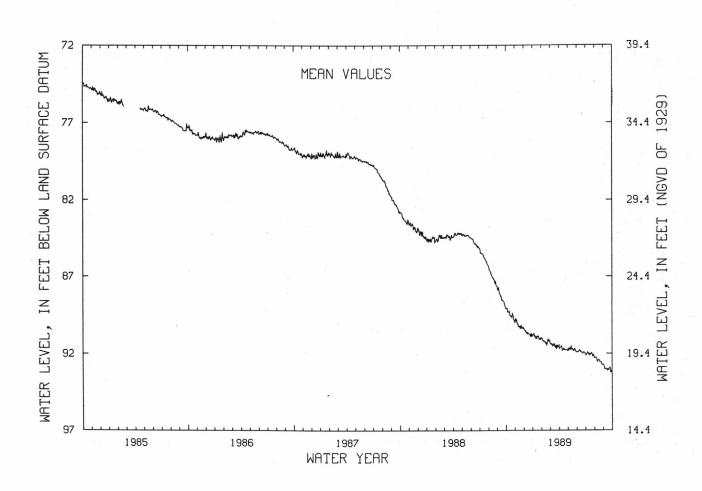
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES SEP DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL **AUG** 165.36 165.17 165.28 165.32 165.27 165.42 168.93 168.79 168.92 167.90 167.73 167.57 167.56 166.72 166.61 166.51 166.40 168.24 168.37 166.34 166.71 166.05 166.03 167.25 165-47 166.11 165.77 165.92 165.44 165.32 165.36 165.30 165.36 166.03 166.22 166.13 10 15 20 25 167.29 165.43 167.01 166.95 166.76 165.65 165.86 165.83 166.62 166.70 167.14 167.20 168.44 168.88 168.08 168.56 168.80 168.12 167.96 167.34 167.29 166.96 166.57 165.59 165.35 166.38 166.42 166.82 166.86 167.46 167.44 166.17 166.09 166.04 168.81 167.19 MEAN 168.28 167.63 167.00 166.46 165.90 165.37 165.29 165.66 166.17 166.63


LOW 169.07 OCT 6,7

394215074561702. Local I.D., New Brooklyn Park 2 Obs. NJ-WRD Well Number, 07-0477.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 839 ft, screened 829 to 839 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.13 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.30 ft above land-surface datum.
PERIOD OF RECORD.--January 1963 to August 1975, March 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 131.54 ft below land-surface datum, Mar. 6, 1963; lowest, 196.20 ft below land-surface datum, Aug. 19,20, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


					M	EAN VALU	JES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	192.39 191.87 191.60 191.15	187.87 187.66 187.21	186.90 186.55 186.24 185.95 185.54 185.27	185.06 184.88 184.31 183.89 183.96 183.56	183.54 183.48 183.41 183.19 182.94 182.88	182.84 182.87 182.60 182.74 182.44 182.41	182.63 182.60 182.60 182.94 183.34 183.83	183.97 183.80 183.84 183.99 184.50 184.93	185.81 186.23 186.52 186.68 186.70 186.99	187.67 187.80 188.32 188.30 188.26 188.53	188.47 189.33 189.39 189.37 189.44 189.90	190.60 191.01 191.83 191.72 191.20
MEAN	191.86		186.20	184.37	183.30	182.72	182.87	184.09	186.34	188.05	189.22	191.19
WTR YR	1989	MEAN 186.2	2 HIGH	182.33 MAR	31 LOW	192.56	OCT 1					

394215074561703. Local I.D., New Brooklyn Park 3 Obs. NJ-WRD Well Number, 07-0478.
LOCATION.--Lat 39°42'15", long 74°56'17", Hydrologic Unit 02040302, on eastern shore of New Brooklyn Lake about 900 ft upstream of Route 536, Winslow Township.
Owner: U.S. Geological Survey.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 530 ft, screened 520 to 530 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.45 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 6 inch coupling, 2.10 ft above land-surface datum.
PERIOD OF RECORD.--December 1962 to August 1975, March 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 58.53 ft below land-surface datum, Dec. 18, 1962; lowest, 93.26 ft below land-surface datum, Sept. 30, 1989.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

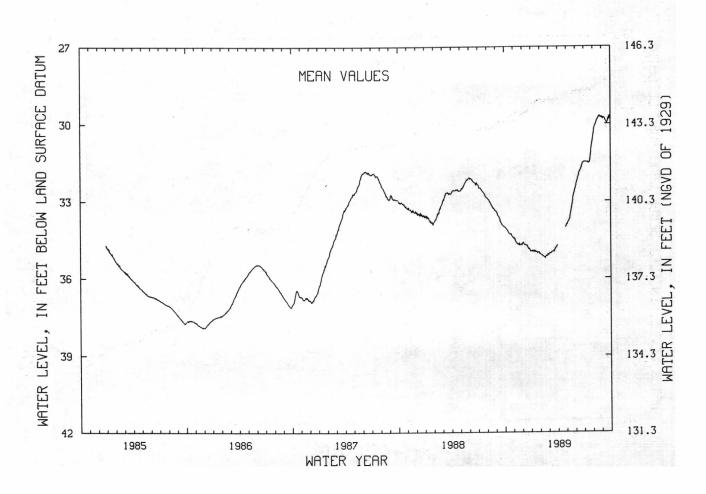
					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	89.12 89.27 89.52 89.63 89.57 89.97	89.79 90.09 90.27 90.27 90.32 90.39	90.55 90.61 90.62 90.78 90.65 90.82	90.82 90.95 90.86 90.85 91.08 90.95	91.20 91.26 91.28 91.31 91.20 91.24	91.35 91.48 91.35 91.62 91.43 91.42	91.61 91.67 91.74 91.77 91.77 91.82	91.80 91.67 91.72 91.80 91.71 91.89	91.92 91.74 91.90 91.98 91.91 92.07	92.07 91.99 92.07 92.01 92.18 92.27	92.24 92.53 92.43 92.53 92.66 92.74	93.03 92.95 93.03 92.93 93.21 93.21
MEAN	89.45	90.14	90.66	90.92	91.21	91.47	91.70	91.73	91.90	92.06	92.49	93.02
WTR YR	1989 N	MEAN 91.39	HIGH 88	.99 OCT	2.3 LO	93.26 SE	P 30					

394440074593101. Local I.D., Winslow WC 5 Obs. NJ-WRD Well Number, 07-0503.
LOCATION.--Lat 39°44'40", long 74°59'31", Hydrologic Unit 02040302, about 1,000 ft east of intersection of Cross Keys-Berlin and Erial-Williamstown Roads, Winslow Township.
Owner: Winslow Water Company.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 76 ft, screened 71 to 76 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, November 1977 to December 1984.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, November 1977 to December 1984.

DATUM.--Land-surface datum is 173.26 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 1.00 ft above land surface datum.


REMARKS.--Missing record from April 1 to April 26, 1989 was due to recorder malfunction.

PERIOD OF RECORD.--December 1972 to current year. Records for 1972 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 26.78 ft below land-surface datum, May 20-21, 1973; lowest, 38.35 ft below land-surface datum, between June 3 and Oct. 6, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					м	EAN VALUE	e					
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	34.08 34.12		34.65 34.71	34.96 34.98	35.10	35.01		33.85	32.26	31.48 31.47	30.18 30.01	29.78 29.80
10 15 20	34.26	34.69	34.74 34.81	34.95 34.98	35.15 35.19 35.16	35.01 34.97 34.92		33.71 33.47 33.11	32.06 31.88 31.73	31.53 31.47	29.84	29.91 29.91
20 25 EOM	34.36 34.45	34.71	34.90 34.96	35.04 35.07	35.12 35.10	34.84 34.73	33.97	32.78 32.48	31.57 31.50	31.02 30.52	29.73 29.77	29.77
MEAN	34.24	34.63	34.78	34.99	35.14	34.95		33.32	31.89	31.29	29.92	29.82
WTR YR	1989	MEAN 33.18	HIGH 29	.65 SEP 2	26.29 LO	w 35.25 I	FEB 16					

CUMBERLAND COUNTY

392512074521206. Local I.D., Ragovin 2100 Obs. NJ-WRD Well Number 11-0137.
LOCATION.--Lat 39°25'14", long 74°52'17", Hydrologic Unit 02040302, in wooded area off Harriet Avenue, 1.5 mi southeast of Milmay, Maurice River Township.
Owner: Sam DeRosa.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 5 in, depth 2,093 ft, perforated casing 2083

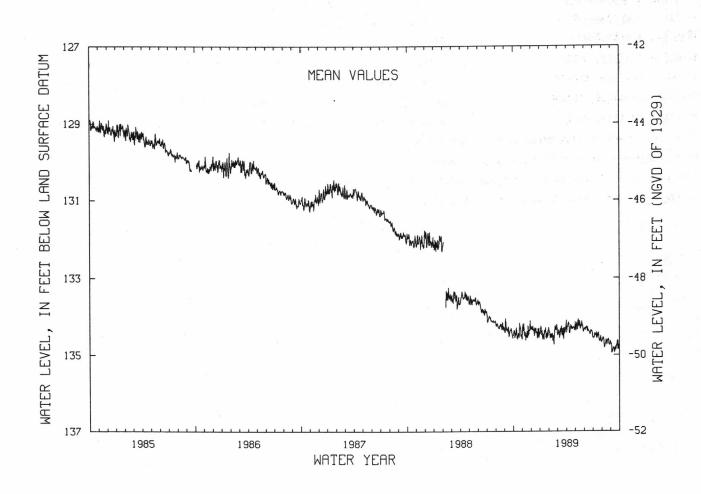
to 2,093 ft.

to 2,093 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 85 ft above National Geodedic Vertical Datum of 1929, by altimeter.

Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.


REMARKS.--This well is perforated in a saline zone of the aquifer system (Luzier, 1980, p. 8-12). An equivalent freshwater head is obtained by multiplying the column of water in the well by the ratio of density of water in the well to the density of freshwater. In 1974, the density of water was 1.011 grams per milliliter at 20 deg. C and a plus 17 foot correction was needed to obtain the equivalent freshwater head. Well was pumped on February 3, 1988. After pumping, the water-level did not recover to its previous level. The perforated area may have been partially clogged.

PERIOD OF RECORD.--October 1974 to April 1975, February 1977 to current year. Records for 1974 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 115.82 ft below land-surface datum, Apr. 3, 1975; lowest, 134.97 ft below land-surface datum, Sept. 5, 1989.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	134.44 134.37 134.53 134.55 134.32 134.58	134.18 134.40 134.54 134.24 134.37 134.30	134.36 134.33 134.31 134.43 134.34	134.47 134.59 134.36 134.29 134.55 134.33	134.53 134.52 134.49 134.49 134.35 134.34	134.38 134.47 134.25 134.50 134.29 134.10	134.27 134.35 134.30 134.33 134.29 134.30	134.31 134.14 134.23 134.25 134.22 134.33	134.35 134.25 134.37 134.45 134.38 134.54	134.55 134.46 134.56 134.42 134.65	134.54 134.81 134.66 134.63 134.71 134.72	134.95 134.80 134.82 134.74 134.85 134.79
MEAN	134.45	134.38	134.38	134.43	134.45	134.39	134.30	134.24	134.36	134.53	134.66	134.81
WTR YR	1989	MEAN 134.4	5 HIGH	133.99 MAR	31 LOW	134.97	SEP 5					

GROUND-WATER LEVELS GLOUCESTER COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	DEPTH OF WELL (FT.)	ELEV.** OF LAND SURFACE DATUM (FT.NGVD)	DATE OF MEASURMENT	WATER LEVEL (FT.)*
15-039	CIFALOGLIO, S	1	393148	745822	123	110	11/18/1988	10.80
15-198	LESHAY BROS	1965 WELL	393944	745934	141	130	5/ 2/1989 11/17/1988	6.64 11.21 8.17
15-568	RALPH SMITH FARM	1	394305	750307	97	140	5/ 3/1989 11/17/1988	21.12
15-726	SMITH, JOHN	AURA ORCHARDS	394130	750921	62	140	5/ 3/1989 11/18/1988	14.33
15-734	DASE, DENNIS	DASE 1	393523	745912	110	138	5/ 2/1989 11/18/1988	20.90
15-745	FRANKLIN TWP SANITARY LANDFILL	DUMP NORTH	393608	750257	35	124	5/ 2/1989 11/29/1988	19.32 25.79
15-754	DEAN, GEORGE	DEAN 1	393934	751033	58	143	5/11/1989 11/18/1988	22.61 15.92
15-759	MESIANO, JIM	MESIANO 1	394232	750126	135	159	5/ 2/1989 11/17/1988	9.54 39.49
15-760	WILLIAMS, RONALD	RW 1	394020	745611	30	115	5/ 3/1989 11/17/1988	38.77 17.72
15-761	LUCAS, HARRY	LUCAS IRR 1	394142	745818	38	130	5/ 3/1989 11/17/1988	14.12
15-763	MOORE, EAYRE	MOORE 2	393525	750521	60	109	5/ 3/1989 11/18/1988	11.35 21.35
15-764	SCAFONIS, FELIX	SCAFONIS D	393708	750143	49	130	5/ 2/1989 10/17/1988	18.89 21.82
15-792	THE PLANT PLACE INC	PP 1	393928	750434	75	110	11/17/1988	19.20 13.19
15-793	FERRUCCI, MARY	FERRUCCI 10	393448	745606	150	110	5/ 3/1989 11/18/1988	10.42 12.75
15-795	SMITH, FRED	FRED SMITH-1965	394140	750312	100	150	5/ 3/1989 11/17/1988	10.17 16.20
15-796	SMITH, FRED	SMITH 5	394238	750308	90	160	5/ 3/1989 11/17/1988	13.22 20.62
15-801	CHILLARI, JOE	CHILLARI 1	394227	750522	85	144	5/ 3/1989 11/17/1988	16.98 16.72
15-804	FRANKLIN TWP BOARD OF EDUCATION	MALAGA 1	393428	750244	100	110	5/ 3/1989 11/17/1988	12.95 31.53
15-808	GLASSBORO WATER DEPT	GLASS OBS 1	394319	750725	60	122	5/ 2/1989 11/17/1988	29.71 28.46
15-810	ELK TWP MUA	ELK 1	394021	750827	63	144	5/ 3/1989 11/18/1988	28.68 16.43
15-811	SHOEMAKER, G	SHOEMAKER 1	394055	751412	32	140	5/ 2/1989 11/18/1988	12.82 20.64
15-812	CORONA PUMPS	CORONA 1	393805	745554	100	123	5/ 2/1989 11/17/1988	18.44
15-840	DEVAULT, HARRY	DEVAULT 1	393744	750735	34	110	5/ 3/1989 11/18/1988	26.67 4.87
15-846	U S GEOL SURVEY	CARPENTER 126	394053	750453	10	126	5/ 2/1989 11/17/1988	3.83 7.56
15-1016	DUFFIELD, CLAUDE	DUFFIELD 2	393633	750630	60	129	5/ 3/1989 11/18/1988	3.23
15-1037		FRIMAIR IRR	394303	750303	77	150	5/ 2/1989 5/11/1989	23.71 14.55

^{* -} Water level in feet below land surface datum

^{** -} Elevations are from USGS topographic maps

^{***-} Well covered over by new construction- replaced in network by 15-1037 (FRIMAIR IRR)
Aquifer unit: 121CKKD - Kirkwood-Cohansey aquifer system

402015074275701. Local I.D., Forsgate 3 Obs. NJ-WRD Well Number, 23-0228.

LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township. Owner: Monroe Township Municipal Utilities Authority.

AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 138 ft, screened 128 to 138 ft.

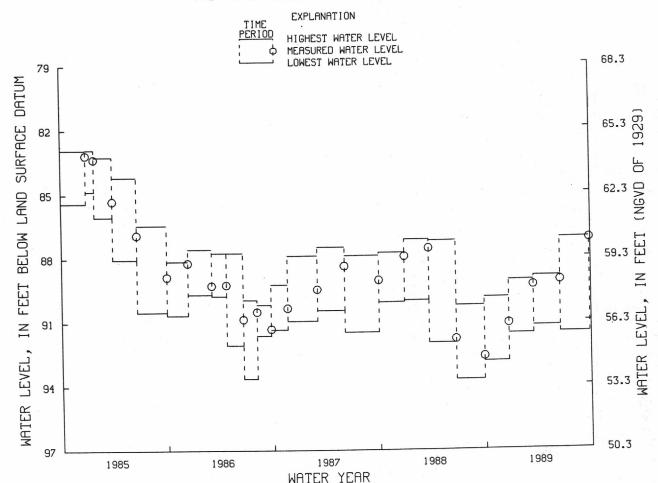
INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, October 1961 to August 1967, August 1968 to August 1975.

DATUM.--Land-surface datum is 147.34 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.40 ft below land-surface datum.

REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--October 1961 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1961 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 70.32 ft below land-surface datum, May 6, 1962; lowest, 93.72 ft below land-surface datum, between June 22 and Sept. 28, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

	PERIOD	HIGHEST Water Level	LOWEST WATER LEVEL		DATE	WATER LEVEL
SEPT. 28,	1988 TO DEC. 21,	1988 89.86	92.86	DEC.	21, 1988	91.08
DEC. 21,	1988 TO MAR. 15,	1989 89.07	91.57	MAR.	15, 1989	89.31
MAR. 15,	1989 TO JUNE 16,	1989 88.89	91.21	JUNE	16, 1989	89.09
JUNE 16,	1989 TO SEPT. 26,	1989 87.12	91.53	SEPT.	26, 1989	87.16

WATER-LEVEL EXTREMES

402015074275702. Local I.D., Forsgate 4 Obs. NJ-WRD Well Number, 23-0229.

LOCATION.--Lat 40°20'15", long 74°27'57", Hydrologic Unit 02030105, on Hanover Lane at Rossmoor, Monroe Township.

Owner: Monroe Township Municipal Utilities Authority.

AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

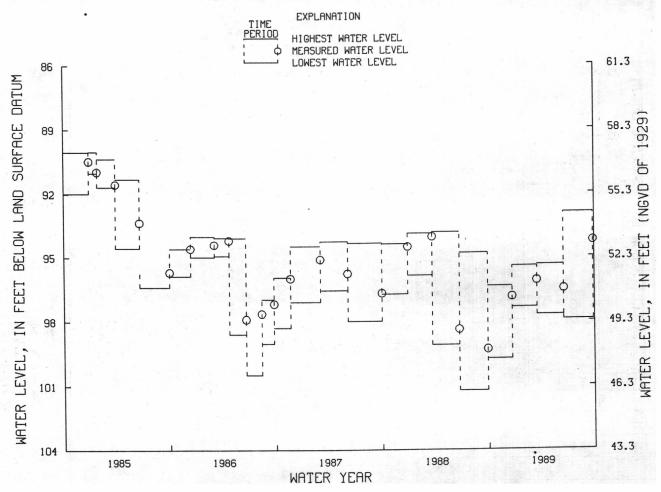
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 330 ft screened 319 to 330 ft.

INSTRUMENTATION.--Water-level extremes recorder, January 1977 to current year. Water-level recorder, April 1965 to August 1967, August 1968 to August 1975.

DATUM.--Land-surface datum is 147.34 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.50 ft below land-surface datum.

REMARKS.--Water level affected by nearby pumping.


PERIOD OF RECORD.--April 1965 to August 1967, August 1968 to August 1975, January 1977 to current year. Records for 1965 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 80.09 ft below land-surface datum, July 16, 1973; lowest, 101.23 ft below land-surface datum, between June 22 and Sept. 28, 1988.

MEASURED WATER LEVEL

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

HIGHEST LOWEST WATER WATER WATER PERIOD LEVEL DATE LEVEL LEVEL SEPT. 28, 1988 TO DEC. 21, 1988 96.37 99.74 DEC. 21, 1988 96.86 DEC. 21, 1988 TO MAR. 15, 1989 95.44 97.36 MAR. 15, 1989 96.11 MAR. 15, 1989 TO JUNE 16, 1989 95.38 97.71 JUNE 16, 1989 96.50 94.24 JUNE 16, 1989 TO SEPT. 26, 1989 92.92 97.93 SEPT. 26, 1989

402143074185201. Local I.D., Morrell 1 Obs. NJ-WRD Well Number 23-0104.

LOCATION.--Lat 40°21'43", long 74°18'49", Hydrologic Unit 02030105, on the north side of Texas Road, about .4 mi. east of Route 9, Old Bridge Township

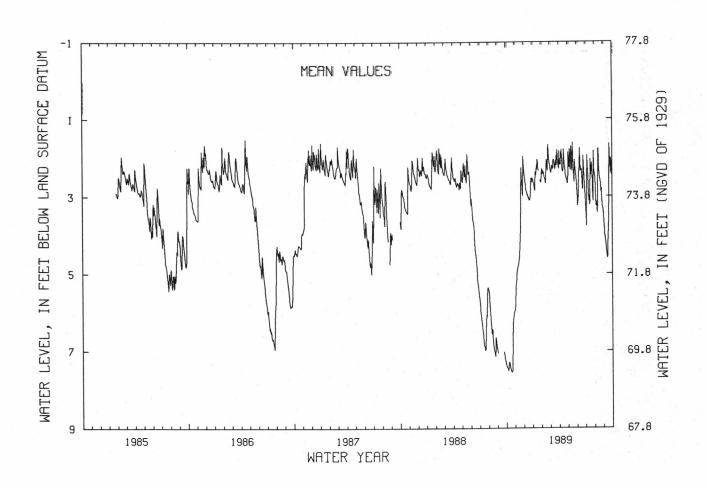
OWNER: Olympia and York Bridge Development Corp.

AQUIFER.--Englishtown aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Dug water-table observation well, diameter 17 in, depth 11 ft, cased with precast concrete rings. INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 76.75 ft above National Geodedic Vertical Datum of 1929.

Measuring point: Top inside edge of concrete ring, .20 ft above land-surface datum.

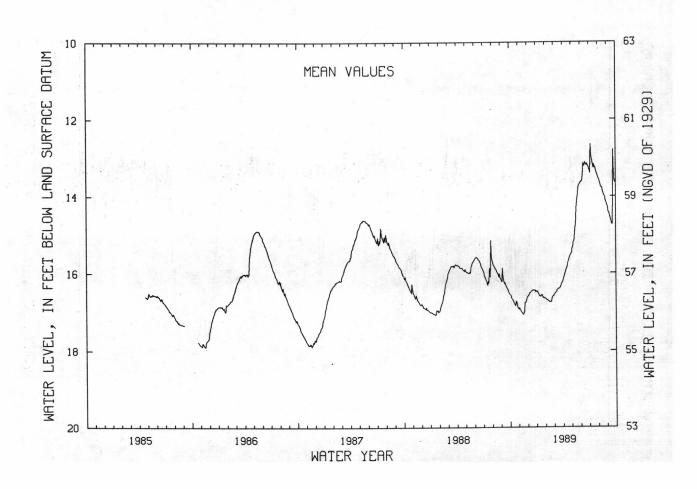

REMARKS.--Well depth was 6 ft before deepening in September 1932.

PERIOD OF RECORD.--October 1923 to July 1975, January 1985 to current year. Periodic manual measurements August 1975 to December 1984. Records for 1973 to 1985 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.97 ft below land-surface datum, September 19, 1989; lowest, 10.40 ft below land surface datum, October 13, 1953. Well was dry, August to September 1932, before deepening.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

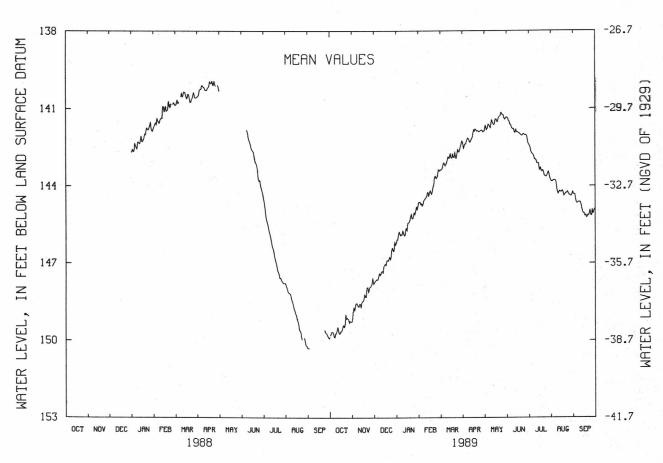
					M	EAN VALUES	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	7.46 7.29 7.48 7.56 6.14 5.93	5.14 4.80 4.53 3.02 2.89 2.25	2.68 2.88 3.01 3.10 2.53 2.57	2.78 2.41 2.05 2.34 2.61 2.29	2.38 2.53 2.27 2.33 2.12 2.24	2.40 2.27 2.14 2.19 1.80 1.83	2.18 2.18 2.27 2.30 2.53 2.50	2.25 1.88 2.34 2.37 2.08 2.78	3.13 1.76 2.31 2.79 2.35 3.16	2.68 2.71 3.21 2.31 2.80 2.40	3.07 3.41 2.20 2.58 2.93 3.52	4.01 4.37 4.19 1.64 2.42 2.52
MEAN	7.03	3.99	2.79	2.48	2.28	2.17	2.26	2.20	2.55	2.69	2.81	3.36
WTR YR	1989 MI	FAN 3.07	HIGH O. O	7 SFP 10	10U 7 5	6 OCT 20 3	21					



402553074271701. Local I.D., Robert Fischer Obs. NJ-WRD Well Number, 23-0070.
LOCATION.--Lat 40°25'55", long 74°27'19", Hydrologic Unit 02030105, about 1,800 ft southeast of Weber School on Hardenburg Lane, East Brunswick Township.
Owner: Robert D. Fischer.
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 4.5 ft, depth 21 ft, lined with concrete blocks.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, January 1977 to April 1985.
DATUM.--Land-surface datum is 73.00 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of angle iron at bottom of shelter doors, 1.70 ft above land-surface datum.
REMARKS.--Well deepened October 29, 1965 from 17 to 21 ft.
PERIOD OF RECORD.--June 1936 to April 1975, January 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.88 ft below land-surface datum, Apr. 26-27, 1939; lowest, 19.11 ft below land-surface datum, between July 24 and Oct. 6, 1981; well was dry many times, 1963-1965 before deepening.

deepening.

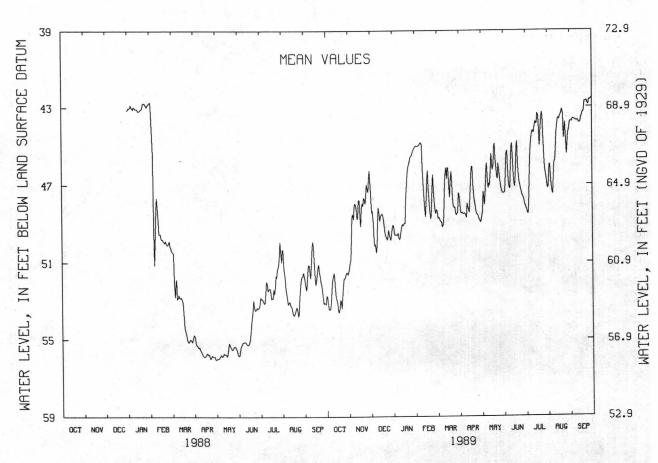
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


						MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	16.60 16.68 16.77 16.84 16.81 16.93	16.95 17.01 17.07 16.97 16.75 16.61	16.56 16.50 16.45 16.45 16.45	16.52 16.58 16.57 16.57 16.64 16.65	16.69 16.71 16.74 16.74 16.60 16.58	16.51 16.47 16.40 16.38 16.30 16.20	16.08 15.94 15.83 15.67 15.56	15.33 15.12 14.74 14.06 13.75 13.64	13.62 13.14 13.19 13.18 13.18 13.30	13.01 13.05 13.23 13.25 13.37 13.51	13.60 13.76 13.82 13.96 14.08 14.25	14.41 14.53 14.67 13.88 13.57
MEAN	16.74	16.90	16.49	16.58	16.68	16.40	15.81	14.51	13.31	13.23	13.87	14.15
WTR YR	1989	MEAN 15.38	HIGH 12	.37 JUL	5 LOW	17.08 NOV	15-17					

401105074120201. Local I.D., Howell Twp. 1 Obs. NJ-WRD Well Number, 25-0635.
LOCATION.--Lat 40°11'05", long 74°12'02", Hydrologic Unit 02040301, on the south side of Peskin Rd., about 5000 ft east of the intersection of Georgia Tavern and Peskin Roads, Howell Twp.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 1360 ft, screened 1226 to 1240, 1280 to 1290 and 1320 to 1330 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.3 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.10 ft above land-surface datum.
PERIOD OF RECORD.--December 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 139.88 ft below land-surface datum, April 21, 1988; lowest, 150.32 ft below land-surface datum, Sept. 2, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES DAY OCT SEP NOV DEC JUN JUL **AUG** JAN **FEB** MAR APR MAY 142.74 142.98 143.33 143.39 143.62 143.79 149.73 148.58 148.57 143.14 143.08 142.74 142.90 142.57 142.37 142.28 142.00 141.89 145.92 144-67 145.92 145.44 145.07 145.11 144.40 144.18 143.97 143.61 10 15 20 25 141.79 141.94 142.02 142.02 142.36 149.60 147.32 141.59 141.58 141.40 141.23 144.31 144.22 144.31 144.35 144.67 145.06 145.13 148.48 147.95 147.90 147.76 149.65 149.49 147.03 146.84 146.40 141.88 145.15 EOM 146.09 141.88 MEAN 149.50 148.32 147.00 145.42 144.16 142.90 141.50 141.87 143.21 144.16 142.07 WTR YR 1989 MEAN 144.59 HIGH 141.06 MAY 24 LOW 149.90 OCT 6,7

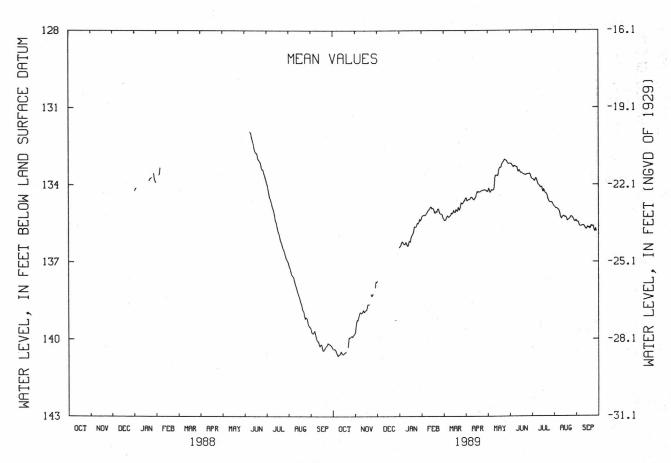


WATER YEAR

401105074120202. Local I.D., Howell Twp. 2 Obs. NJ-WRD Well Number, 25-0636.
LOCATION.--Lat 40°11'05", long 74°12'02", Hydrologic Unit 02040301, on the south side of Peskin Rd., about 5000 ft east of the intersection of Georgia Tavern and Peskin Roads, Howell Twp.
Owner: U.S. Geological Survey.
AQUIFER.--Vincentown Formation of Paleocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 100 ft, screened 85 to 95 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.9 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.20 ft above land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--December 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 42.52 ft below land-surface datum, Sept. 29, 1989; lowest, 56.09 ft below land-surface datum, April 29, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	IEAN VALUE	S					
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	53.41 51.53 53.13 53.05 51.80 51.35	48.50 48.34 48.64 47.67 47.29 47.82	50.13 48.16 48.49 49.63 49.53 49.15	49.60 49.35 48.96 46.11 45.52 45.00	44.91 47.15 46.70 48.75 48.01 48.29	48.89 48.57 46.12 46.31 48.15 47.51	48.49 48.68 47.59 47.62 48.54 48.91	48.01 47.16 45.85 45.68 46.33 47.43	45.27 45.97 46.95 45.84 47.43 48.07	48.05 44.23 43.86 44.99 44.82 47.19	47.03 45.78 43.57 43.14 44.77 43.75	43.63 43.68 43.55 42.71 42.89 42.61
MEAN	52.48	48.18	49.25	47.64	46.90	47.83	48.12	46.70	46.59	45.32	44.86	43.28
WTR YR	1989	MEAN 47.27	HIGH 42	.52 SEP 2	9 LOW 5	3.74 OCT	17					


WATER YEAR

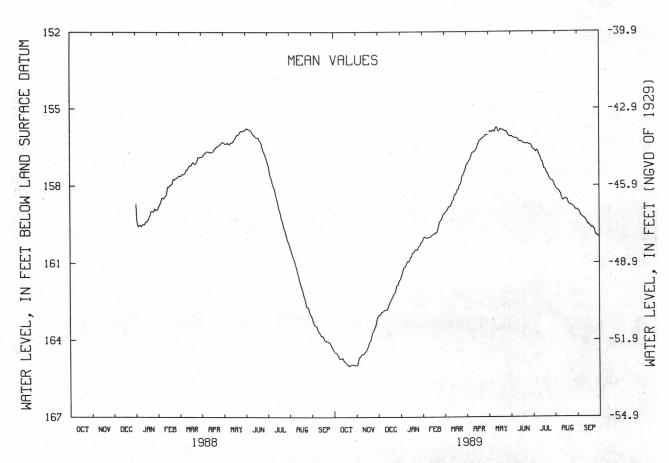
401105074120203. Local I.D., Howell Twp. 3 Obs. NJ-WRD Well Number, 25-0637.
LOCATION.--Lat 40°11'05", long 74°12'02", Hydrologic Unit 02040301, on the south side of Peskin Rd., about 5000 ft east of the intersection of Georgia Tavern and Peskin Roads, Howell Twp.
Owner: U.S. Geological Survey.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 324 ft, screened 307 to 317 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.9 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.80 ft above land-surface datum.
REMARKS.--Missing record from December 1-28 was due to recorder malfunction.
PERIOD OF RECORD.--December 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 131.88 ft below land-surface datum, June 8, 1988; lowest, 140.65 ft below land-surface datum, Oct. 6,7, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES DAY OCT AUG SEP NOV DEC JAN FEB MAR APR MAY JUN JUL 136.29 136.37 136.06 140.51 139.10 135.26 133.80 135.17 134.57 134.91 134.93 135.05 135.12 134.54 134.39 134.27 134.20 133.94 133.62 133.21 133.02 134.00 134.21 134.32 134.67 134.82 135.31 135.26 135.35 135.27 135.20 134.99 135.03 134.69 133.30 133.52 133.59 133.57 133.74 10 140.55 138.93 138.87 135.59 135.63 135.58 140.56 20 25 138.40 138.22 137.74 135.61 135.51 139.89 135.81 EOM 139.69 136.37 135.20 135.26 133.16 135.42 138.70 135.21 135.63 MEAN 140.28 135.90 135.04 135.02 134.38 133.57 133.45 134.23 WTR YR 1989 MEAN 135.54 HIGH 132.99 MAY 24 LOW 140.65 OCT 6,7

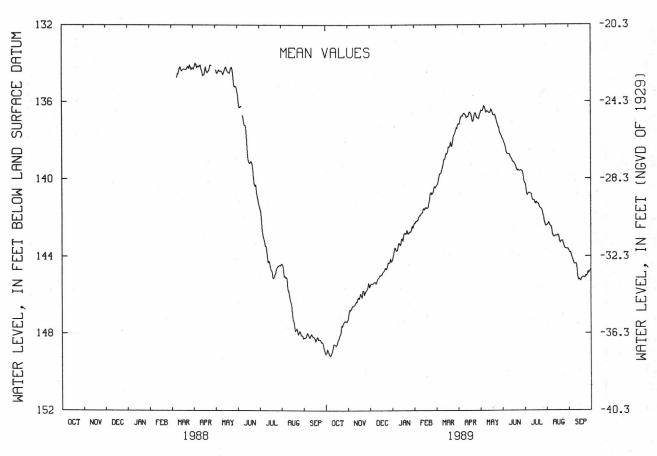
WATER YEAR


401105074120204. Local I.D., Howell Twp. 4 Obs. NJ-WRD Well Number, 25-0638.

LOCATION.--Lat 40°11'05", long 74°12'02", Hydrologic Unit 02040301, on the south side of Peskin Rd., about 5000 ft east of the intersection of Georgia Tavern and Peskin Roads, Howell Twp.

ft east of the intersection of Georgia Tavern and Peskin Roads, Howell Twp.
Owner: U.S. Geological Survey.
AQUIFER.--Englishtown aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 499 ft, screened 483 to 493 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 112.1 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.80 ft above land-surface datum.
PERIOD OF RECORD.--December 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 155.72 ft below land-surface datum, May 11,12, 1989; lowest, 165.02 ft below land-surface datum, Oct. 21, 1988.

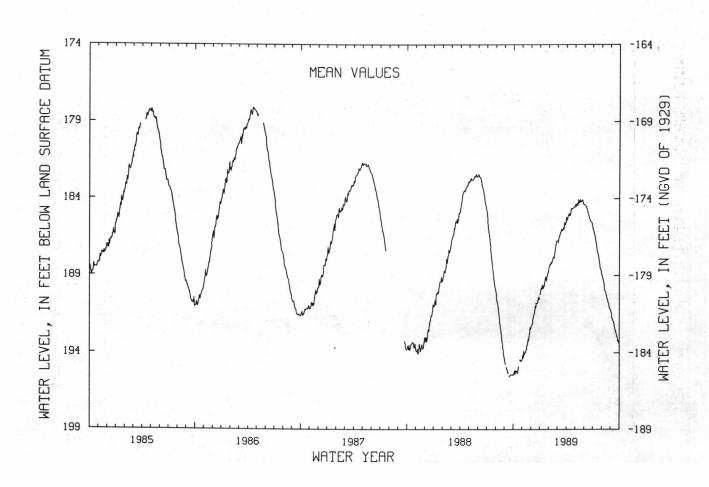
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


						MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	164.57 164.73 164.85 164.98 164.95	164.65 164.52 164.29 163.91 163.50 163.06	162.90 162.82 162.55 162.28 161.87 161.54	161.14 160.94 160.69 160.48 160.35 160.03	160.04 159.97 159.86 159.69 159.30 159.10	158.93 158.73 158.38 158.15 157.68 157.24	157.00 156.70 156.53 156.22 156.10 156.02	155.92 155.90 155.90 155.83 155.88 156.09	156.15 156.17 156.29 156.36 156.38 156.52	156.69 156.84 157.20 157.51 157.77 158.02	158.19 158.53 158.51 158.72 158.80 158.91	159.16 159.27 159.48 159.60 159.90 160.00
MEAN	164.81	164.10	162.42	160.69	159.75	158.29	156.50	155.88	156.28	157.24	158.56	159.49
WTR YR	1989	MEAN 159.5	1 HIGH	155.72 MAY	11,12	LOW 165.0	02 OCT 21					

401105074120205. Local I.D., Howell Twp. 5 Obs. NJ-WRD Well Number, 25-0639.
LOCATION.--Lat 40°11'05", long 74°12'02", Hydrologic Unit 02040301, on the south side of Peskin Rd., about 5000 ft east of the intersection of Georgia Tavern and Peskin Roads, Howell Twp.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 907 ft, screened 891 to 901 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 111.7 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.
PERIOD OF RECORD.--March 1988 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 133.93 ft below land-surface datum, April 4, 1988; lowest, 149.23 ft below land-surface datum, Oct. 6,7, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					1	MEAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	149.13 148.76 148.62 148.10 147.43 147.27	146.68 146.43 146.22 145.80 145.77 145.53	145.38 145.23 144.94 144.69 144.31 144.09	143.72 143.41 142.88 142.64 142.74 142.29	142.00 141.75 141.51 141.11 140.69 140.47	139.89 139.37 138.69 138.30 137.77 137.19	136.74 136.66 136.68 137.02 136.67	136.40 136.49 136.53 136.68 137.19 137.87	138.44 138.70 139.11 139.45 139.56 140.06	140.83 140.79 141.24 141.26 141.65 142.40	142.42 142.98 142.91 143.22 143.57 143.72	144.13 144.39 145.22 145.07 144.95
MEAN	148.29	146.18	144.88	143.02	141.40	138.75	136.78	136.77	139.05	141.25	143.03	144.72
WTR YR	1989	MEAN 142.0	02 HIGH	136-14 MAY	6 10	1 149.23	OCT 6.7					


WATER YEAR

400711074020201. Local I.D., DOE - Sea Girt Obs. NJ-WRD Well Number, 25-0486. LOCATION.--Lat 40°07'11", long 74°02'02", Hydrologic Unit 02030104, at the National Guard Camp, Sea Girt, Manasquan Boro.

Manasquan Boro.
Owner: State of New Jersey.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 614 ft, perforated casing 604 to 614 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 10 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 3.20 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping.
PERIOD OF RECORD.--May 1984 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 176.58 ft below land-surface datum, May 25, 1984; lowest, 195.60 ft below land-surface datum, Sept. 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					MI	EAN VALU	JES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	195.16 195.23 195.34 194.89 194.45 194.55	194.04 193.79 193.26 192.77	192.15 191.56 190.96 190.83 190.43 190.26	189.89 189.85 189.52 189.06 188.96 188.43	188.28 188.19 187.77 187.48 186.74 186.73	186.58 186.30 185.97 186.00 185.54 185.21	185.23 185.06 184.92 184.67 184.62 184.54	184.52 184.33 184.29 184.20 184.06 184.41	184.44 184.62 184.99 185.36 185.52 185.90	186.23 186.71 187.26 187.76 188.41 188.93	189.23 189.95 190.20 190.55 190.91 191.26	191.74 192.00 192.48 192.79 193.28 193.42
MEAN	195.00	193.53	191.21	189.40	187.70	186.07	184.87	184.26	185.04	187.38	190.22	192.46
WTR YR	1989	MEAN 188.9	2 HIGH	183.97 MAY	25 LOW	195.53	OCT 1					

400832074082101. Local I.D., Allaire State Park C Obs. NJ-WRD Well Number, 25-0429.
LOCATION.--Lat 40°08'34", long 74°08'34", Hydrologic Unit 02040301, about 1.3 mi southeast of Lower Squankum, in Allaire State Park, Wall Township.
Owner: U.S. Geological Survey.
AQUIFER.--Englishtown aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 633 ft, screened 623 to 633 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, January 1964 to July 1975.

to July 1975.

To July 1975.

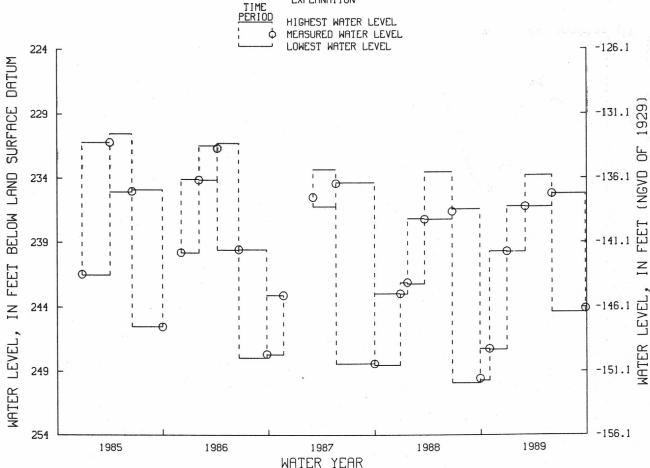
DATUM.--Land-surface datum is 97.93 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 1.64 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to July 1975, February 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 141.05 ft below land-surface datum, Apr. 8, 1964; lowest, 249.89 ft below land-surface datum, between June 24 and Sept. 28, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIO	OD				HIGHEST Water Level	LOWEST WATER LEVEL		DATE		WATER LEVEL
OCT.	31,	1988	то	DEC.	30,	1988	239.69	247.29	DEC.	30,	1988	239.71
DEC.	30,	1988	TO	MAR.	2,	1989	236.21	239.73	MAR.	2,	1989	236.21
MAR.	2,	1989	то	JUNE	2,	1989	233.78	236.23	JUNE	2,	1989	235.22
JUNE	2,	1989	то	SEPT.	26,	1989	235.22	244.38	SEPT	. 26,	1989	244.10

NJ-WRD WELL NO. 25-0429

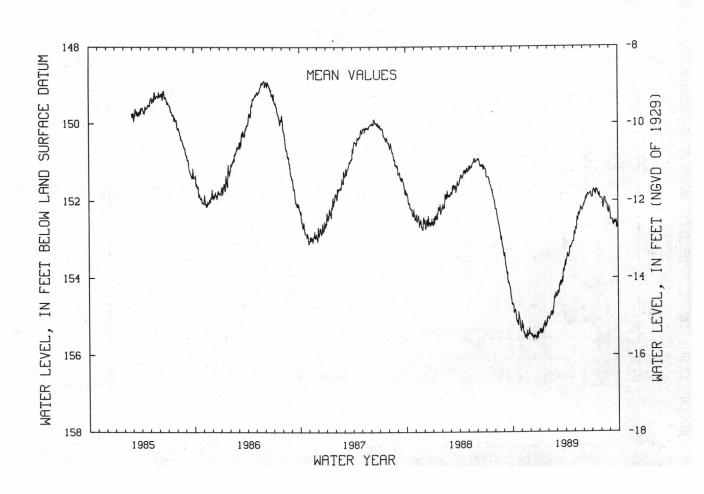
EXPLANATION

WTR YR 1989

MONMOUTH COUNTY

401542074053001. Local I.D., Ft. Monmouth 1-NCO. NJ-WRD Well Number, 25-0353.
LOCATION.--Lat 40°15'42", long 74°05'30", Hydrologic Unit 02030104, at Training Center, Wyckoff Rd. and Wayside Rd. New Shrewsbury Borough.
Owner: U.S. Army.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 327 ft, screened 321 to 327 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land surface datum is 140 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 1.50 ft above land surface datum.
PERIOD OF RECORD.--February 1985 to current year. Records for 1985 are unpublished and are available in files of
New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level 148.88 ft below land surface datum, May 31-Jun. 2, 1985; lowest,
155.63 ft below land surface datum Dec. 22, 23, 1988.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	154.77 154.84 155.08 155.22 155.07 155.38	155.20 155.41 155.53 155.38 155.47 155.46	155.51 155.50 155.48 155.54 155.41 155.43	155.43 155.43 155.22 155.12 155.23 154.99	155.06 154.96 154.86 154.75 154.50 154.44	154.38 154.32 154.08 154.13 153.77 153.55	153.54 153.44 153.35 153.22 153.10 153.01	152.85 152.61 152.49 152.32 152.19 152.19	152.12 151.91 151.91 151.85 151.82 151.90	151.86 151.73 151.84 151.72 151.88 151.94	151.93 152.20 151.94 152.06 152.22 152.23	152.50 152.48 152.56 152.53 152.71 152.72
MEAN	155.01	155.41	155.49	155.26	154.81	154.12	153.31	152.46	151.93	151.81	152.07	152.54

MEAN 153.68 HIGH 151.65 JUL 17

NJ-WRD WELL NO.25-0353

LOW 155.63 DEC 22,23

402208074145201. Local I.D., Marlboro 1 Obs. NJ-WRD Well Number, 25-0272.

LOCATION.--Lat 40°22'08", long 74°14'52", Hydrologic Unit 02030104, on the west side of New Jersey Route 79, 0.9 mi south of Morganville, Marlboro Township.

Owner: Marlboro Township Municipal Utilities Authority.

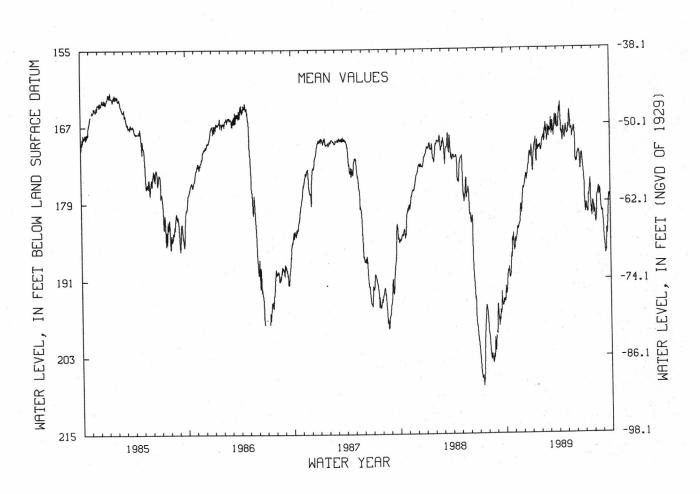
AQUIFER.--Farrington aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 680 ft, screened 670 to 680 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 116.93 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.50 ft above land-surface datum.


REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--January 1973 to July 1975, March 1977 to current year. Records for 1973 to 1977 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 144.06 ft below land-surface datum, Apr. 4, 1973; lowest, 207.78 ft below land-surface datum, Jul. 16, 1988. ft below land-surface datum, Jul. 16, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	192.98 190.30 189.87 190.76 187.53 183.82	186.11 184.82 182.79 182.49 179.62 179.86	176.63 176.20 174.90 174.52 171.84 172.05	173.31 171.60 169.82 172.80 170.97 170.29	171.04 169.49 169.63 168.03 169.59 168.55	167.46 167.86 167.86 168.78 165.58 166.43	167.39 165.12 168.16 169.53 168.34 167.99	168.26 166.88 164.69 167.44 168.28 168.18	172.85 171.46 171.04 174.01 171.44 174.07	179.02 179.44 180.71 177.36 178.14 179.23	180.88 181.92 178.37 176.95 177.04 180.60	181.52 185.49 186.41 182.87 178.10
MEAN	189.57	183.14	174.68	171.17	169.16	167.26	167.19	167.49	172.06	178.74	179.21	182.25
WTR YR	1989	MEAN 175.2	20 HIGH	163.28 APR	12 LOW	194.38	OCT 1					

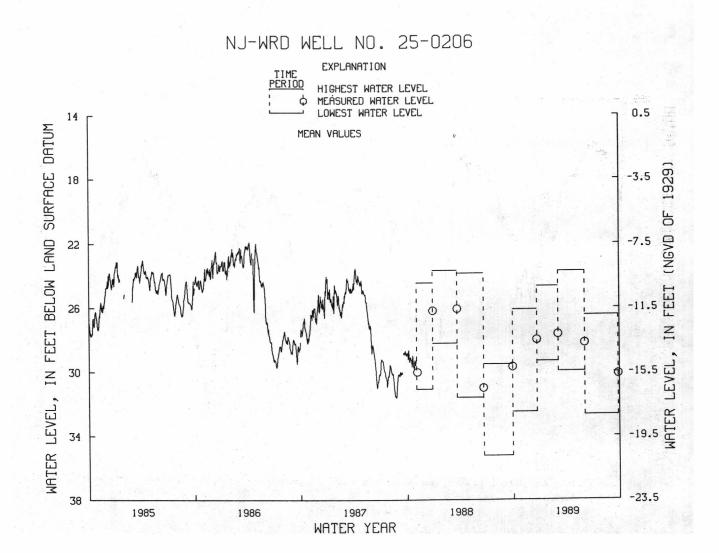
JUNE

MONMOUTH COUNTY

402626074114204. Local I.D., Keyport Borough WD 4 Obs. NJ-WRD Well Number, 25-0206.
LOCATION.--Lat 40°26'25", long 74°11'45", Hydrologic Unit 02030104, at the unused Myrtle Avenue Water Plant, Keyport.
Owner: Keyport Borough Water Department.
AQUIFER.--Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 249 ft, screened 225 to 249 ft.
INSTRUMENTATION.--Water-level extremes recorder. Digital water-level recorder, June 1978 to November 1987.
DATUM.--Land-surface datum is 14.47 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 2.47 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation. Water level affected by USGS aquifer test, April 22-28, 1986.
PERIOD OF RECORD.--June 1978 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 20.57 ft below land-surface datum, Mar. 27, 1986; lowest, 35.22 ft below land-surface datum, between June 20 and Sept. 28, 1988.

32.67

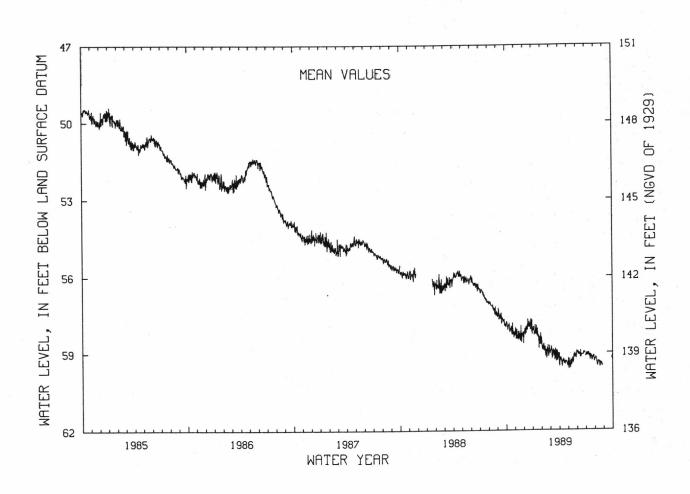
SEPT. 26, 1989


30.11

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERIOD DATE SEPT. 28, 1988 TO DEC. 21, 1988 26.09 32.49 DEC. 21, 1988 27.99 DEC. 21, 1988 TO MAR. 3, 1989 24.67 29.32 MAR. 3, 1989 27.64 MAR -28.18 3, 1989 TO JUNE 2, 1989 23.71 29.93 JUNE 2, 1989

26.46


2, 1989 TO SEPT. 26, 1989

404639074230001. Local I.D., Briarwood School Obs. NJ-WRD Well Number, 27-0012.
LOCATION.--Lat 40°46'39", long 74°23'00", Hydrologic Unit 02030103, at Briarwood School, Florham Park Borough.
Owner: U.S. Geological Survey.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 110 ft, screened 100 to 110 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 198 ft above National Geodedic Vertical Datum of 1929, by altimeter.
Measuring point: Top edge of recorder shelf, 3.00 ft above land-surface datum.
REMARKS.--Missing record from August 27 to September 28 was due to recorder malfunction.
PERIOD OF RECORD.--March 1967 to May 1975, April 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 34.17 ft below land-surface datum, June 3, 1968; lowest, 59.71 ft below land-surface datum, May 4, 1989.

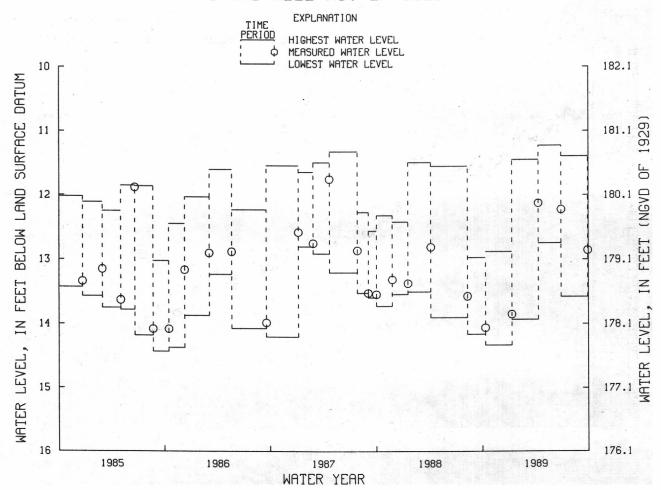
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5	58.00	58.07	58.13	58.27	58.73	58.76	59.30	59.43	59.08	59.10	59.23		
10	57.84	58.16	57.95	58.25	58.81	58.98	59.54	59.34	59.04	59.00	59.44		
10 15 20 25	58.05	58.44	57.93	58.04	58.95	58.92	59.25	59.29	59.09	59.28	59.36		
20	58.27	57.94	57.82	58.31	58.96	59.02	59.45	59.07	59.09	59.11	59.36		
25	58.26	58.33	57.99	58.66	58.88	58.98	59.34	59.16	59.02	59.16	59.53		
EOM	58.28	58.22	58.08	58.67	59.03	59.02	59.44	58.96	59.12	59.28	•••	59.37	
MEAN	58.09	58.31	57.99	58.31	58.90	59.05	59.36	59.28	59.05	59.14	59.37		
WTR YR	1989	MEAN 58.80	HIGH 57	.39 DEC 28	LOW 5	9.71 MAY	4						

405027074232301. Local I.D., Troy Meadows 1 Obs. NJ-WRD Well Number, 27-0020.
LOCATION.--Lat 40°50'27", long 74°23'23", Hydrologic Unit 02030103, on the east side of Beverwyck Road, 0.8 mi north of intersection with Troy Road, Parsippany-Troy Hills Township.
Owner: U.S. Geological Survey.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 89 ft, screened 79 to 89 ft.
INSTRUMENTATION.--Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1965 to

July 1970.

DATUM.--Land-surface datum is 192.07 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Front edge of cutout in recorder housing, 3.32 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 to July 1970, April 1977 to current year. Periodic manual measurements, December 1970 to February 1975. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District

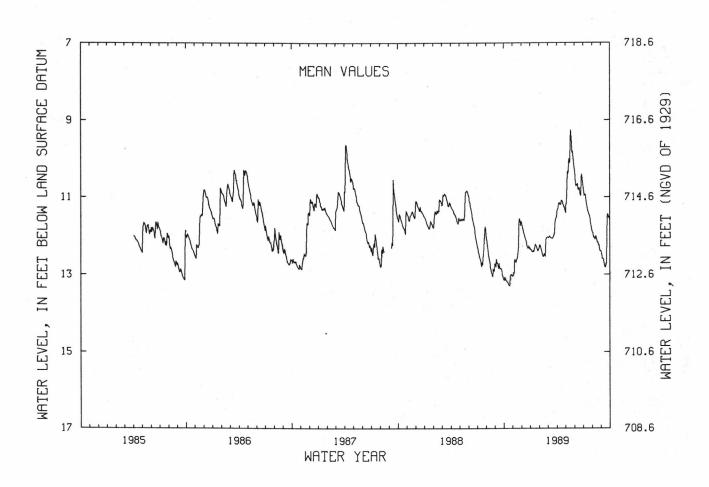
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.00 ft below land-surface datum, Mar. 15-16, 1967 and June 15, 1968; lowest, 15.77 ft below land-surface datum, between Feb. 10 and May 31, 1978.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES MEASURED WATER LEVEL HIGHEST LOWEST WATER WATER WATER PERIOD DATE LEVEL I FVFI OCT. 11, 1988 TO JAN. 10, 1989 12.88 14.33 JAN. 10, 1989 13.85 10, 1989 TO APR. 10, 1989 11.45 13.93 APR. 10, 1989 12.13 10, 1989 TO JUNE 28, 1989 11.23 JUNE 28, 1989 12.23 12.75 JUNE 28, 1989 TO SEPT. 28, 1989 11.40 13.58 SEPT. 28, 1989 12.86

405531074361901. Local I.D., Berkshire Valley TW-9. NJ-WRD Well Number, 27-0027.
LOCATION.--Lat 40°55'31", long 74°36'19", Hydrologic Unit 02030103, about 1,000 ft east of the intersection of Lower Berkshire Valley Rd and Minnisink Rd., Jefferson Township.
Owner: State of New Jersey.
AQUIFER.--Stratified drift of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 98 ft, screened 78 to 98 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 725.64 ft above National Geodedic Vertical Datum of 1929 (levels by Woodward-Clyde Consultants).

Consultants)


Measuring point: Top of 6 inch casing, 2.25 ft above land surface datum.

PERIOD OF RECORD.--April 1985 to current year. Periodic manual measurements November 1981 to March 1985.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 9.25 ft below land-surface datum, May 18, 1989; lowest, 13.29 ft below land-surface datum, Oct. 20,21, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 5 13.12 12.91 11.84 12.39 12.34 12.04 11.27 11.17 10.68 10.95 12.01 12.60 10 13.17 12.66 11.97 12.40 12.46 12.05 11.15 10.34 10.65 11.09 12.09 12.70 15 13.23 12.58 12.12 12.28 12.51 12.05 11.18 10.12 10.80 11.32 12.08 12.78 20 13.29 12.27 12.28 12.26 12.53 12.02 11.13 9.48 10.93 11.45 12.17 11.95 25 12.99 11.63 12.26 12.39 12.04 11.72 11.23 9.83 10.41 11.65 12.29 11.53 EOM 13.06 11.65 12.36 12.26 12.03 11.43 11.38 10.29 10.74 11.89 12.42 11.61												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
10 15 20 25	13.17 13.23 13.29 12.99	12.66 12.58 12.27 11.63	11.97 12.12 12.28 12.26	12.40 12.28 12.26 12.39	12.46 12.51 12.53 12.04	12.05 12.05 12.02 11.72	11.15 11.18 11.13 11.23	10.34 10.12 9.48 9.83	10.65 10.80 10.93 10.41	11.09 11.32 11.45 11.63	12.09 12.08 12.17 12.29	12.70 12.78 11.95 11.53
MEAN	13.14	12.33	12.11	12.34	12.33	11.92	11.21	10.19	10.70	11.32	12.15	12.26
WTR YR	1989 M	IEAN 11.83	HIGH 9.	25 MAY 18	LOW 13	.29 OCT 2	0.21					

410207074270001. Local I.D., Green Pond TW5 Obs. NJ-WRD Well Number, 27-0028.
LOCATION.--Lat 41°02'07", long 74°27'00", Hydrologic Unit 02030103, about 500 ft east of Route 513 and 1.1 mi south of the intersection with Route 23, Rockaway Township.

Owner: State of New Jersey.

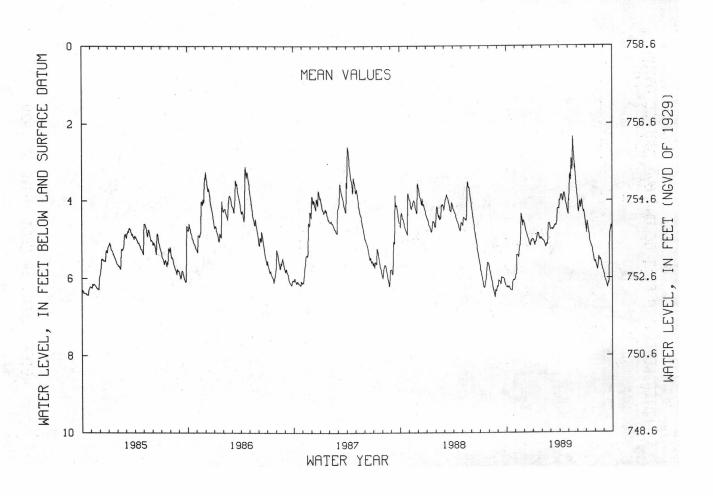
AQUIFER.--Stratified drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 120 ft, screened 80 to 120 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 758.56 ft above National Geodetic Vertical Datum of 1929 (levels by Woodward-Clyde Consultants).

Measuring point: Top edge of recorder shelf 1 20 ft above lenderupfees datum.


Measuring point: Top edge of recorder shelf, 1.20 ft above land-surface datum.

PERIOD OF RECORD.--November 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.35 ft below land-surface datum, Apr. 5, 1984; lowest, 6.49 ft below land-surface datum, Aug. 23, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUES	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	6.22 6.21 6.28 6.32 6.04 6.06	5.76 5.39 5.25 4.81 4.57 4.52	4.71 4.83 4.98 5.11 5.03 4.99	5.10 5.08 4.88 4.84 5.00 4.98	5.04 5.10 5.16 5.13 4.58 4.68	4.73 4.75 4.65 4.65 4.21 4.07	3.97 3.91 4.00 3.92 4.11 4.32	4.00 3.32 3.20 2.78 3.19 3.81	4.26 4.01 4.10 4.21 4.28 4.59	4.71 4.76 5.03 5.18 5.34 5.58	5.62 5.78 5.45 5.51 5.68 5.86	6.02 6.14 6.16 5.32 4.77 4.79
MEAN	6.19	5.13	4.93	4.98	4.97	4.57	3.99	3.31	4.20	5.04	5.64	5.62
UTP VP	1080 M	EAN / 88	HICH 2 2	6 MAV 17	100 4 7	7 OCT 20	21				er Caribas	

394829074053501. Local I.D., Island Beach 1 Obs. NJ-WRD Well Number, 29-0017.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park, about 6.6 mi south of main entrance, Berkeley Township.
Owner: U.S. Geological Survey.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 397 ft, screened 377 to 397 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, July 1962 to
March 1975.
DATIM---Land-surface detreming 8.50 for the minute of the state of t

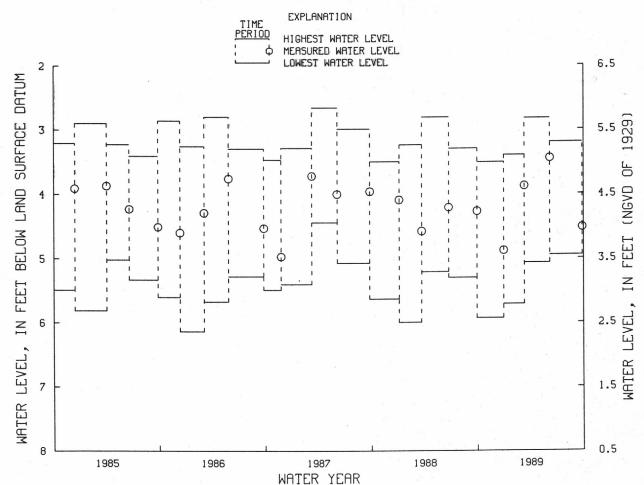
March 1975.

DATUM.--Land-surface datum is 8.50 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.40 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD.--July 1962 to March 1975, February 1977 to current year. Records for 1962 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.05 ft below land-surface datum, Dec. 6, 1962; lowest, 6.14 ft below land-surface datum, between Dec. 13, 1978 and Jan. 10, 1979 and between Dec. 11, 1985 and Mar. 3, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

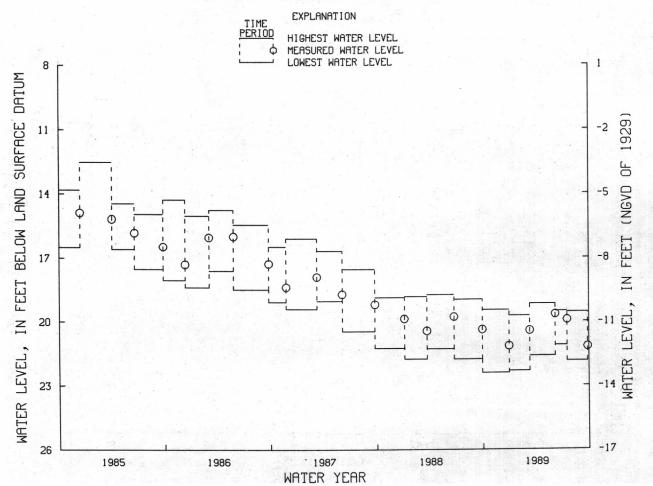
	PERIOD	WATER W	OWEST IATER EVEL	DATE WATER LEVEL
SEPT. 29,	1988 TO DEC. 30, 19	3.51	5.93 DEC.	30, 1988 4.88
DEC. 30	1988 TO MAR. 10, 19	3.40	5.71 MAR.	10, 1989 3.88
MAR. 10	1989 TO JUNE 6, 19	2.83	5.07 JUNE	6, 1989 3.45
JUNE 6	1989 TO SEPT. 26, 19	3,20	4.95 SEPT.	26, 1989 4,52

394829074053503. Local I.D., Island Beach 3 Obs. NJ-WRD Well Number, 29-0019.
LOCATION.--Lat 39°48'29", long 74°05'35", Hydrologic Unit 02040301, in Island Beach State Park, about 6.6 mi south of main entrance, Berkeley Township.
Owner: U.S. Geological Survey.
AQUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 2,756 ft, screened 2,736 to 2,756 ft.
INSTRUMENTATION.--Water-level extremes recorder, February 1977 to current year. Water-level recorder, November 1968 to March 1975.

INSTRUMENTATION. -- Water-level extremes recorder, repruary 1977 to current year. water took 1975.

DATUM. -- Land-surface datum is 9.02 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 5.11 ft above land-surface datum.


REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- November 1968 to March 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.95 ft above land-surface datum, Apr. 23, 1969; lowest, 22.40 ft below land-surface datum, between Sept. 29 and Dec. 30, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES MEASURED WATER LEVEL LOWEST HIGHEST WATER WATER WATER LEVEL LEVEL PERIOD DATE LEVEL SEPT. 29, 1988 TO DEC. DEC. 30, 1988 21.14 30, 1988 19.45 22.40 DEC. 30, 1988 TO MAR. 10, 1989 19.72 22.31 MAR. 10, 1989 20.42 10, 1989 TO JUNE 6, 1989 19.16 6, 1989 19.66 21.60 JUNE JULY 17, 1989 JUNE 6, 1989 TO JULY 17, 1989 19.50 21.11 19.92 JULY 17, 1989 TO SEPT. 26, 1989 21.17 19.55 21.84 SEPT. 26, 1989

395028074104401. Local I.D., DOE-Forked River Obs. NJ-WRD Well Number, 29-0585.
LOCATION.--Lat 39°50'28", long 74°10'44", Hydrologic Unit 02040301, at the Forked River Game Farm, Forked River, Lacey Township.

Lacey Township.
Owner: State of New Jersey.

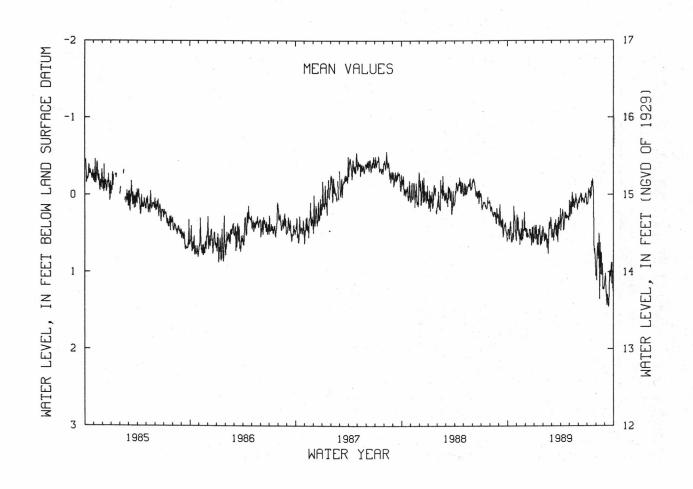
AQUIFER.--Piney Point aquifer of Eocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 422 ft, perforated casing 412 to 422 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 15 ft above National Geodedic Vertical Datum of 1929, from topographic map.

Measuring point: Top edge of recorder shelf, 3.80 ft above land-surface datum.


REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--April 1984 to current year.

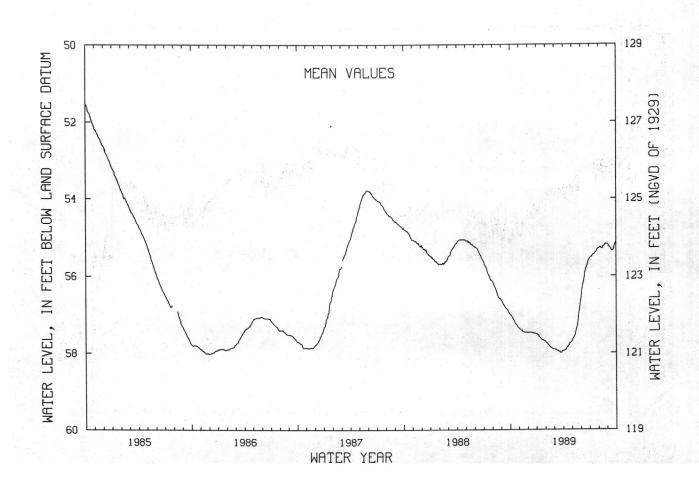
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.83 ft above land-surface datum, June 1, 1984; lowest, 1.60 ft below land-surface datum, Sept. 13, 1989.

WATER LEVEL, IN FEET ABOVE (-) OR BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					ME	AN VALUES	3					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	.46 .38 .59 .58 .30	.29 .45 .58 .32 .46	.54 .49 .44 .52 .44	.57 .62 .44 .39 .63	.58 .57 .58 .39 .43	.44 .48 .32 .54 .29	.31 .38 .33 .31 .29	.23 .07 .13 .10 .07	.11 02 .07 .10 .04	.07 05 .02 20 .63 1.05	.79 .75 .86 .78 1.22 1.12	1.23 1.29 1.40 .98 1.15
MEAN	.47	.45	.51	.52	.52	-44	.31	.12	.06	.18	.94	1.18
WTR YR	1989 ME	AN .47	HIGH25	JUL 17	LOW 1.60	SEP 13						

395714074223401. Local I.D., Crammer Obs. NJ-WRD Well Number, 29-0486.
LOCATION.--Lat 39°57'14", long 74°22'34", Hydrologic Unit 02040301, about 800 ft east of Central Railroad of New Jersey, Whiting, Manchester Township.
Owner: Whiting Bible Church.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Water-table observation well, diameter 8 in, depth 69 ft, slotted steel casing, gravel packed.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 179.05 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 8-inch coupling, 0.90 ft above land-surface datum.
REMARKS.--Originally a dug well in which slotted casing was installed on March 31, 1966, and the well deepened from 60 to 69 ft.

from 60 to 69 ft.


PERIOD OF RECORD.--May 1952 to current year. Records for 1952 to 1962 are unpublished and are available in files of

New Jersey District office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 47.80 ft below land-surface datum, June 9-14, 20-29, 1973; lowest, 58.02 ft below land surface datum, Nov. 21,22,29,30, Dec. 1-8, 1985 and Mar. 25,26, 1989. Well was dry, November 1957 to February 1958, December 1965, before deepening.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	57.03 57.09 57.18 57.25 57.29 57.36	57.38 57.41 57.44 57.46 57.47 57.47	57.47 57.47 57.47 57.48 57.49 57.51	57.54 57.59 57.63 57.67 57.69 57.72	57.75 57.80 57.84 57.87 57.90 57.90	57.91 57.94 57.94 57.97 58.00 57.94	57.94 57.91 57.85 57.80 57.74 57.69	57.62 57.54 57.41 57.23 56.94 56.59	56.31 56.10 55.89 55.75 55.64 55.55	55.52 55.47 55.44 55.40 55.34 55.30	55.27 55.30 55.27 55.23 55.18 55.18	55.26 55.28 55.34 55.35 55.23 55.14
MEAN	57.18	57.43	57.48	57.62	57.83	57.95	57.84	57.28	55.94	55.43	55.24	55.27
WTR YR	1989 MI	EAN 56.87	HIGH 55	.13 SEP 3	0 LOW 5	8.02 MAR	25,26					

395930074142101. Local I.D., Toms River Chem 84 Obs. NJ-WRD Well Number, 29-0085. LOCATION.--Lat 39°59'29", long 74°14'20", Hydrologic Unit 02040301, at Toms River Plant, Ciba-Geigy Corporation,

LOCATION.--Lat 39°59'29", long 74°14'20", Hydrologic Unit 02040301, at Toms River Plant, Ciba-Geigy Corporation, Dover Township.

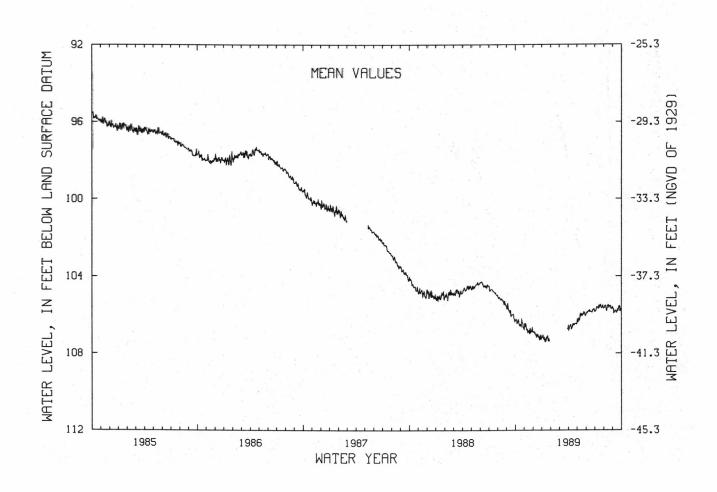
Owner: Ciba-Geigy Corporation.

AOUIFER.--Potomac-Raritan-Magothy aquifer system, undifferentiated, of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 1,480 ft, screened 1,460 to 1,480 ft. INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 66.71 ft above National Geodetic Vertical Datum of 1929.

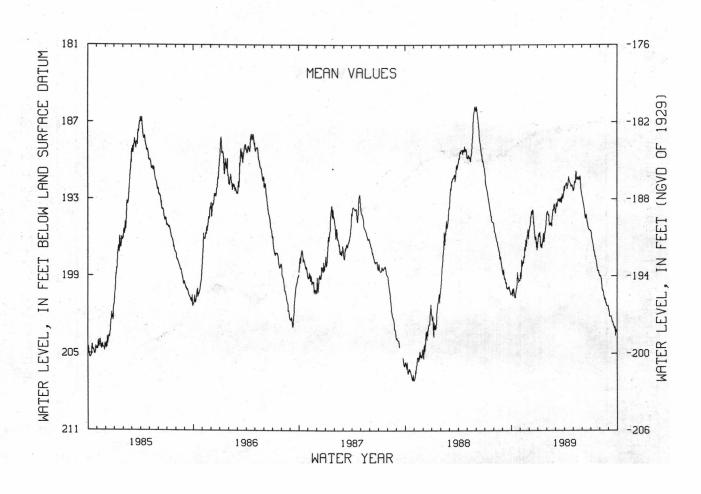
Measuring point: Top edge of recorder shelf, 2.70 ft above land-surface datum.


REMARKS.--Missing record from January 27 to March 27 was due to recorder malfunction.

PERIOD OF RECORD.--July 1968 to July 1975, March 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

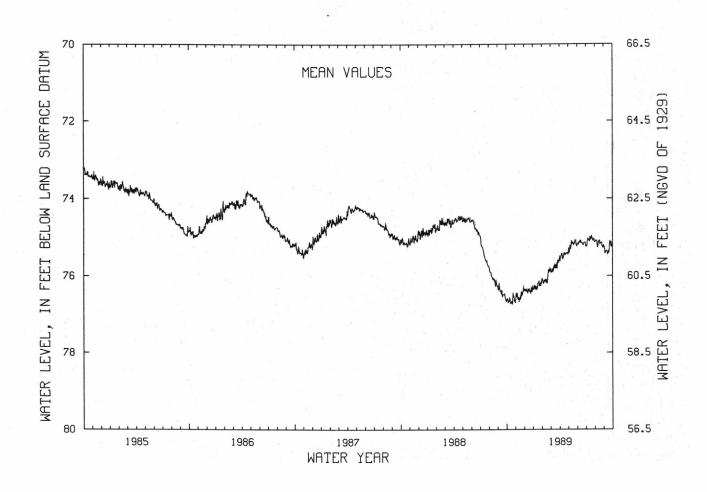
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 62.32 ft below land-surface datum, July 19, 1968 and Feb. 9, 1969; lowest, 107.45 ft below land-surface datum, Jan. 11, 1989.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


MEAN VALUES SEP DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL **AUG** 107.25 107.37 107.15 107.07 106.30 106.97 106.65 105.89 106.32 106.97 106.99 107.01 107.15 107.08 105.75 105.58 105.63 105.45 105.65 10 15 20 25 EOM 106.27 105.73 105.82 105.74 105.77 105.64 106.71 106.67 106.08 105.79 106.03 105.95 105.88 105.94 105.46 105.55 105.65 105.66 106.58 106.53 106.90 105.85 105.73 105.83 106.61 106.69 - - -105.80 105.75 106.40 106.86 107.36 ... 106.44 106.42 106.76 106.86 107.18 106.52 MEAN 106.44 106.75 107.07 105.62 105.58 105.74 107.23 106.55 106.05 105.80 WTR YR 1989 MEAN 106.27 HIGH 105.39 JUL 17 LOW 107.45 JAN 11

400210074031001. Local I.D., Mantoloking 6 Obs. NJ-WRD Well Number, 29-0503.
LOCATION.--Lat 40°02'10", long 74°03'10", Hydrologic Unit 02040301, at the Bay Avenue water treatment plant, Mantoloking.
Owner: New Jersey - American Water Company.
AQUIFER.--Englishtown aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 906 ft, screened 845 to 906 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 5 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping.
PERIOD OF RECORD.--May 1984 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 185.32 ft below land-surface datum, Jun. 3,4, 1988; lowest, 207.49 ft below land-surface datum, Oct. 31, 1987.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5 10 15 20 25 EOM	200.01 200.17 200.64 199.85 199.19 199.34	196.19 195.88	194.97 193.95 194.09 195.57 196.14 196.43	195.92 196.60 196.39 195.66 195.61 194.16	194.25 195.02 194.92 194.30 193.41 193.82	193.30 193.06 192.96 193.07 192.60 192.01	191.94 192.08 191.58 191.73 192.06 192.16	192.13 191.29 191.48 191.36 191.27 192.68	193.19 193.82 194.29 194.96 195.37 195.48	195.99 196.67 197.31 197.77 198.59 198.99	199.02 200.12 200.44 200.76 201.25 201.53	202.09 202.09 202.54 202.80 203.53 203.11	
MEAN	199.94	197.20	195.26	195.87	194.34	193.15	191.88	191.65	194.36	197.35	200.36	202.59	
WTR YE	1989	MEAN 196.	17 HIGH	190.50 MAY	11 LO	203.94	SEP 24						

400416074270101. Local I.D., Colliers Mills TW 1 Obs. NJ-WRD Well Number, 29-0138.
LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.
Owner: U.S. Geological Survey.
AQUIFER.--Englishtown aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 427 ft, screened 417 to 427 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 136.52 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 6 inch coupling, 2.20 ft above land-surface datum.
PERIOD OF RECORD.--February 1964 to July 1975, March 1977 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 52.02 ft below land-surface datum, Feb. 19, 1964; lowest, 76.76 ft below land-surface datum, Oct. 20, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					М	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	76.64 76.60 76.70 76.73 76.54 76.69	76.44 76.55 76.62 76.41 76.45 76.37	76.39 76.37 76.34 76.39 76.31 76.32	76.34 76.37 76.19 76.13 76.26 76.09	76.18 76.13 76.10 76.05 75.87 75.85	75.85 75.85 75.69 75.79 75.60 75.48	75.53 75.52 75.48 75.46 75.41 75.43	75.36 75.19 75.20 75.17 75.12 75.20	75.20 75.08 75.15 75.20 75.15 75.24	75.15 75.06 75.08 74.97 75.10 75.13	75.08 75.27 75.10 75.15 75.23 75.26	75.42 75.35 75.39 75.11 75.26 75.26
MEAN	76.64	76.50	76.37	76.24	76.05	75.76	75.47	75.21	75.16	75.09	75.16	75.30
UTD VD	1080	4EAN 75 74	HIGH 7/	0/, 1111 2	0 100 7	4 74 OCT	20					

400416074270102. Local I.D., Colliers Mills TW 2 Obs. NJ-WRD Well Number, 29-0139. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Jackson Township.
Owner: U.S. Geological Survey.
AQUIFER.--Vincentown Formation of Paleocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 171 ft, screened 161 to 171 ft.
INSTRUMENTATION.--Water-level extremes recorder, October 1976 to current year. Water-level recorder, January 1964 to August 1975.

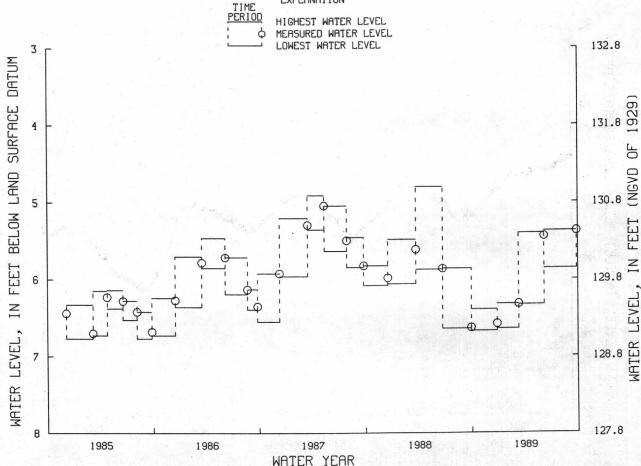
DATUM.--Land-surface datum is 135.76 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.25 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to August 1975, October 1976 to current year. Records for 1964 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.92 ft below land-surface datum, between Apr. 3 and July 11, 1984; lowest, 6.77 ft below land-surface datum, between Dec. 4, 1984 and Mar. 6, 1985 and between Aug. 6 and Sept. 26, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

PE	W	IGHEST LOWEST ATER WATER EVEL LEVEL	DATE	WATER LEVEL
SEPT. 29, 19	88 TO DEC. 27, 1988	6.39 6.67	DEC. 27, 1988	6.58
DEC. 27, 19	88 TO MAR. 10, 1989	6.32 6.64	MAR. 10, 1989	6.32
MAR. 10, 19	89 TO JUNE 6, 1989	5.40 6.33	JUNE 6, 1989	5.44
JUNE 6, 19	89 TO SEPT. 26, 1989	5.37 5.86	SEPT. 26, 1989	5.37

NJ-WRD WELL NO. 29-0139

EXPLANATION

400416074270103. Local I.D., Colliers Mills TW 3 Obs. NJ-WRD Well Number, 29-0140. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Jackson Township.
Owner: U.S. Geological Survey.

AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 267 ft, screened 257 to 267 ft.
INSTRUMENTATION.--Water-level extremes recorder, October 1976 to current year. Water-level recorder, January 1964 to
July 1975.

DATUM.--Land-surface datum is 135.15 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Front edge of cutout in recorder housing, 3.49 ft above land-surface datum.

PERIOD OF RECORD.--January 1964 to July 1975, October 1976 to current year. Records for 1964 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 15.72 ft below land-surface datum, May 9, 1964; lowest, 23.59 ft below land-surface datum, between Sept. 29 and Dec. 27, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIOD				HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE		WATER LEVEL
SEPT.	29,	1988 TO	DEC.	27,	1988	23.17	23.59	DEC.	27,	1988	23.38
DEC.	27,	1988 то	MAR.	10,	1989	23.02	23.41	MAR.	10,	1989	23.14
MAR.	10,	1989 TO	JUNE	6,	1989	22.38	23.16	JUNE	6,	1989	22.38
JUNE	6,	1989 TO	SEPT.	26,	1989	21.90	22.39	SEPT.	26,	1989	21.90

400416074270104. Local I.D., Colliers Mills TW 4 Obs. NJ-WRD Well Number, 29-0141. LOCATION.--Lat 40°04'14", long 74°27'02", Hydrologic Unit 02040301, along western shore of Colliers Mills Pond, Jackson Township.

Owner: U.S. Geological Survey.

AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 6 in, depth 71 ft, gravel-filled hole 46 to 71 INSTRUMENTATION.--Water-level extremes recorder, October 1976 to current year. Water-level recorder, March 1964 to April 1975.

DATUM.--Land-surface datum is 135.31 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.86 ft above land-surface datum.

REMARKS.--Water level affected by stage of Colliers Mills Pond.

PERIOD OF RECORD.--March 1964 to April 1975, October 1976 to current year. Records for 1964 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.68 ft below land-surface datum, between Apr. 3 and July 11, 1984; lowest, 7.17 ft below land-surface datum, between Dec. 4, 1984 and Mar. 6, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

	PERIOD		HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE	WATER LEVEL
SEPT. 29	, 1988 TO DEC. 27	7, 1988	5.26	5.64	DEC.	27, 1988	5.57
DEC. 27	, 1988 TO MAR. 10	0, 1989	5.24	5.58	MAR.	10, 1989	5.39
MAR. 10	, 1989 TO JUNE	6, 1989	4.73	5.39	JUNE	6, 1989	4.93
JUNE 6	, 1989 TO SEPT. 20	6, 1989	4.21	5.36	SEPT.	26, 1989	4.89

UNION COUNTY

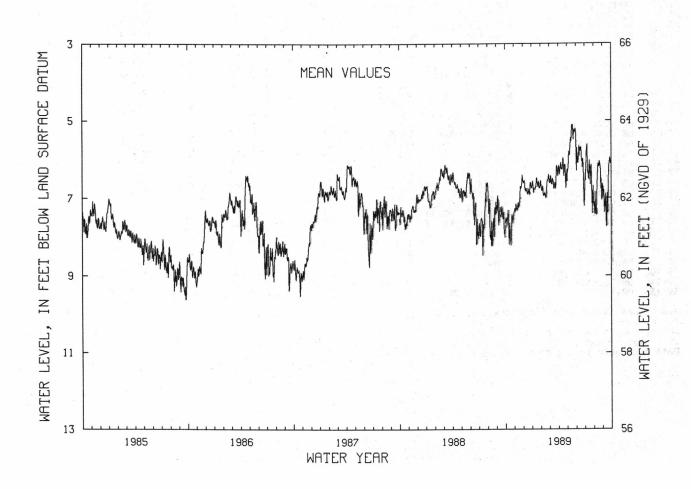
404106074171901. Local I.D., Union County Park Obs. NJ-WRD Well Number, 39-0119.
LOCATION.--Lat 40°41'06", long 74°17'19", Hydrologic Unit 02030104, at Galloping Hill Golf Course, Kenilworth.
Owner: Union County Park Commission.
AQUIFER.--Passaic Formation of Jurassic-Triassic age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, length of casing unknown, depth 290 ft,

WELL CHARACTERISTICS.--Drilled artesian observation well, underly, underly, underly, open hole.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 69.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.30 ft above land-surface datum.


REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--June 1943 to May 1975, July 1984 to current year. Periodic manual measurements, August 1976 to April 1984. Records for 1975 to 1983 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.06 ft below land-surface datum, June 2, 1952; lowest, 16.05 ft below land-surface datum, June 29, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					ME	AN VALUES						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	7.62 7.31 7.75 8.22 7.53 7.35	7.27 7.28 7.21 6.95 6.66 6.54	6.57 6.81 6.87 6.83 6.60 6.72	6.82 6.53 6.63 6.75 6.60	6.73 6.94 6.94 6.78 6.52 6.54	6.45 6.64 6.62 6.61 6.27 6.32	6.39 6.11 6.23 6.43 6.21 6.30	6.25 5.85 5.53 5.11 5.29 5.39	5.95 5.74 5.71 6.04 5.99 6.94	6.32 6.24 6.52 6.65 6.76 7.11	7.41 7.43 6.24 6.05 6.48 6.66	6.79 6.89 7.15 6.61 5.99 6.42
MEAN	7.67	7.03	6.74	6.67	6.76	6.54	6.26	5.58	6.04	6:41	6.69	6.79
WTR YR	1989 M	EAN 6.60	HIGH 5.0	1 MAY 18	LOW 8.6	7 OCT 20						

NJ-WRD WELL NUMBER	RAMBERG, RALPH US GEOL SURVEY DUHERNAL WC NJ WATER POLICY MONROE TWP MUA MONROE TWP WUA MONROE TWP MUA MONROE M	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	AQUIFER UNIT	WC	PERIOD OF RECORD
							40/4 400/
01-387	RAMBERG, RALPH	AMATOL 8	393557	744114	121CKKD	W	1961-1986 1963-1986
01-490	US GEOL SURVEY	USGS 4-H-2	394029	743937	121CKKD	ü	1960-1986
01-545	US GEOL SURVEY	WHARTON 2G	394028	744000	121CKKD	ü	1957-1986
01-775	ATLANTIC CITY MUA	FAA INTERMED	302630	743232	121CKKD	ü	1985-P
01-776	ATLANTIC CITY MUA	FAA SHALLOW	392639	743232	121CKKD	W	1985-P
05-029	US GEOL SURVEY	OSWEGO LAKE 1	394208	742645	121CKKD	W	1962-1986
05-030	US GEOL SURVEY	OSWEGO LAKE 2	394208	742645	121CKKD	W	1962-1986
05-407	US GEOL SURVEY	ATSION 1	394422	744309	124PNPN	A	1963-P
05-408	US GEOL SURVEY	ATSION 2	394422	744309	121CKKD	W	1963-P 1963-P
05-409	US GEOL SURVEY	MOUNT	394422	7/44309	121CKKD	ü	1955-P
05-628	US GEOL SURVEY	PENN SF SHALLOW	394452	742819	121CKKD	Ü	1936-P
05-630	US GEOL SURVEY	PENN SF DEEP	394513	742806	121CKKD	W	1963-P
05-676	US GEOL SURVEY	COYLE AIRPORT	394914	742546	124PNPN	A	1962-P
09-011	CAPE MAY CITY WD	CMCWD 1 OBS	385612	745457	121CNSY	A	1967-1986 1957-P
09-048	US GEOL SURVEY	CARE MAY 42CC	385748 300313	745533	1210051	A	1957-P
09-080	US GEOL SURVEY	CAPE MAY 23HR	390213	745056	112HL RC	û	1957-P 1957-P
13-013	COMMONWEALTH WC	CANOE BROOK 30	404452	742116	112SFDF	ü	1950-P
13-014	EAST ORANGE WD	NEUTRAL ZONE	404454	742116 742021 740834	112SFDF	U	1926-P
13-017	WALSH BROS	BALLENTINE 8	404401	740834	227PSSC	A	1949-P
21-088	US GEOL SURVEY	HONEYBRANCH 10	402128	744613	227PSSC	W	1968-P
23-159	DUHERNAL WC	DUHERNAL OBS 5	402353	742152 742129	21100BG	W	1939-1986 1938-1986
23-181	PERTH AMBOY WD	RUNYON 123	402438	742136	2110DBG	ü	1955 - 1986
23-194	PERTH AMBOY WD	RUNYON 1	402536	742136 742018	211FRNG	Ä	1934-P
23-265	CHEVRON OIL CO	11	403211	741612	211FRNG	W	1950-1986
23-270	AMER CYANAMID	TEST 2	403231	741616	211FRNG	W	1950-1986
23-2/3	NJ WATER POLICY	PLAINSBORO PONI	401932	743529 743013	211MRPAM	Ų	1970-P 1965-P
23-291	MONPOE TUP MUA	OBS 1-1901	402109	743013	121CKKD 121CKKD 121CKKD 121CKKD 121CKKD 121CKKD 121CKKD 121CKKD 121CKKD 121CKKD 121CKKD 121CKSD 121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 121FRNG 211CSFDF 112SF	û	1961-P
23-306	PHELPS DODGE CO	PHELPS DODGE 3	402147	742847	211FRNG	Ä	1969-1987
23-344	SAYREVILLE WD	SWD 2	402558	742013	2110DBG	W	1968-P
23-351	SAYREVILLE WD	SWD 1	402605	741959	2110DBG	Ň	1968-P
23-365	DUHERNAL WC	DUH SAY 4	402633	742120	211FRNG	A	1932-P 1968-1986
23-433	SOUTH RIVER UD	SPUD 2P	402555	742120 742133 742200	21100BG	×	1968-P
23-482	AMER CYANAMID	TEST 1	403242	741617	211FRNG	Â	1950-P
23-516	NOVAK, W	HULSART	402123	741849	211EGLS	W	1936-1984
25-250	GORDONS CRNR WC	VILLAGE 215	401918	741529	211EGLS	A	1971-P
27-001	US GEOL SURVEY	RECREATION FLD	404432	742252	112SFDF	Ü	1967-P 1966-P
27-002	US GEOL SURVEY	W B DRIVER 2	404738	742400	112SFDF	ŭ	1966-P
27-004	US GEOL SURVEY	CLEMENS	404816	742359	112SFDF	ŭ	1966-P
27-005	US GEOL SURVEY	SANDOZ CHEM CO	404826	742347	112SFDF	U	1966-P
27-006	US GEOL SURVEY	GREEN ACRES	404937	742200	112SFDF	Ü	1967-P
27-014	MODELSTOWN ARRE	ESSO SIX INCH	404/05	742452	1125FDF	, H	1967-P 1960-P
27-017	MADISON RORO WD	MRUD 4	404743	742322	112SFDF	ŭ	1958-P
27-022	INT PIPE	INT PIPE	405209	742638	112SFDF	ŭ	1963-P
27-023	RANDOLPH WD	RWD MT FR 2	404921	743356	400PCMB	U	1964-P
29-018	US GEOL SURVEY	IS BEACH 2	394829	740535	124PNPN	A	1962-P
29-020	US GEOL SURVEY	IS BEACH 4	394829	740535	121CKKD	Ä	1962-P
29-513	US GEOL SURVEY	GARDEN ST PKY	1 394744	741418	124PNPN 121CKKD	û	1962-P 1962-P
29-514	US GEOL SURVEY	GARDEN ST PKY	2 394744	741418	121CKKD	Ü	1962-P
29-530 29-532	PT PLEASANT WD	PPWD 6	400454	740413	211EGLS	A	1988-P
29-532	PT PLEASANT WD	PPWD 3	400459	740359	211EGLS	A	1986-1988
31-011 39-058	WANAQUE WD MAGRUDER COLOR	HASKELL SCHWEITZER	410209 404113	741708 741216	112SFDF 227PSSC	W	1965 - 1982 1956 - P
39-102	WHITE LABS INC	LAB 3	404113	741644	227PSSC	Â	1952-P
39-115	WHITE LABS INC	LAB 3 LAB 4	404043	741618	227PSSC	Α*	1952-P 1952-P
39-133	ORIT CORP	HATFIELD OBS	403726	741623	227PSSC	A	1959-1987

See figure 13 for well locations.
P - Present
Aquifer unit: see definition of terms
WC - (Water Condition): A-Artesian, W-Water table, U-Undetermined
Data available in the files of the New Jersey District Office.

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 ATLANTIC COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE L	ONG I TUDE	ELEV. LAND SURF. (FT. NGVD)	SCREENED INTERVAL (FT.)	AQUIFER UNIT
01-367 01-582 01-589 01-370 01-353 01-598 01-362 01-682 01-682 01-549 01-150 01-041 01-013	LONGPORT WD NJ WATER CO NJ WATER CO MARGATE CITY WD NJ WATER CO VENTNOR CITY WD NJ WATER CO RESORTS INTRNTL NJ WATER CO NJ WATER CO BRIGANTINE WD NJ WATER CO	LONGPORT 2 NJWC 5 NJWC 9 MCWD 6 SHORE-KIRKLIN VCWD 9 NJWC 8 1-1980 SHORE-MILL RD MARTIN AVE 13 BRIG WD 1 SHORE-ABSECON1	391859 391906 391924 391928 392001 392030 392119 392134 392157 392428 392431 392554	743122 743629 743550 743055 743055 743522 742852 743424 742521 743317 743328 742153 743027	10 15 19 10 10 8 20 8 25 50 9	79 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	00 122KRKDL 99 121CKKD 59 121CKKD 98 122KRKDL 71 121CKKD 00 122KRKDL 46 121CKKD 40* 122KRKDL 52 121CKKD 22 121CKKD 29 122KRKDL
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (µs/cm)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)
01-367 01-582 01-589 01-370 01-373 01-598 01-362 01-682 01-549 01-150 01-041 01-013	LONGPORT WD NJ WATER CO NJ WATER CO MARGATE CITY WD NJ WATER CO VENTNOR CITY WD NJ WATER CO RESORTS INTRNTL NJ WATER CO NJ WATER CO BRIGANTINE WD NJ WATER CO	LONGPORT 2 NJWC 5 NJWC 9 MCWD 6 SHORE-KIRKLIN VCWD 9 NJWC 8 1-1980 SHORE-MILL RD MARTIN AVE 13 BRIG WD 1 SHORE-ABSECON1	8/ 7/19/ 8/14/19/ 8/14/19/ 8/ 14/19/ 8/ 7/19/ 8/ 7/19/ 8/ 14/19/ 8/ 14/19/ 8/ 14/19/ 8/ 14/19/	39 15.0 39 14.5 39 19.0 39 14.0 39 19.0 39 14.5 39 19.0 39 14.5 39 18.5	155 125 515 150 125 144 160 125 70 123	7.31 4.64 75.51 75.14 75.75 75.14	6.8 20 170 7.2 18 5.1 18 7.4 15 6.2 3.5

^{*} Total depth of well.

Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system 122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 BERGEN COUNTY

NJ-WRD WELL NUMBER	SITE		LOCA	AL FIER	LATITUD	E LO	ONGITUDE	LA	EV. ND RF. NGVD)	OPEN OR SCREENE INTERVA (FT.)	D	AQUIFE UNIT
030203 030236	SIKA CHEMICAL BOY SCOUTS OF	COMPANY	SIKA 1 CAMP YAN		404819 410508	, ,	740639 741339		55 80	25-302 21- 86		227BRC 400PCM
NJ-WRD WELL NUMBER	DATE	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	
030203 030236	01-10-89 09-28-89	13.0 10.5	1940 74	7.2 6.5	35	12	1.1	3.2	0.6	33	<0.1	
NJ-WRD WELL NUMBER	DATE	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	
030203 030236	01-10-89 09-28-89	27	10	1.2	1.1	13	59	<0.010	<0.10	0.01	0.40	
NJ-WRD WELL NUMBER	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
030203 030236	01-10-89 09-28-89	<0.01	<0.01	50	<1	 <1	 <1	3	150	2	3	
NJ-WRD WELL NUMBER	DATE	MERCURY DIS- SOLVED (UG/L AS HG)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	
030203 030236	01-10-89 09-28-89	<0.1	170	0.5	<1	<0.20	<0.20	<0.20	<0.20	<0.20	0.40	
NJ-WRD WELL NUMBER	DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	
030203 030236	01-10-89 09-28-89		<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	15	<0.20	
NJ-WRD WELL NUMBER	DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TÉTRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	
030203 030236	01-10-89 09-28-89		0.40	1.0	<0.20	<0.20	<0.20	<0.20	2.4	<0.20	<0.20	
NJ-WRD WELL NUMBER	DATE	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	VINYL-	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLO-	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)		

Aquifer Units: 227BRCK - Brunswick Group (undifferentiated) 400PCMB - Precambrian Erathem

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 CAPE MAY COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LO	NGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREENE INTERVA (FT.)		AQUIFER UNIT
09-017 09-018 09-132 09-166 09-002 09-008 09-127 09-129 09-106 09-124	US COAST GUARD US COAST GUARD STONE HARBOR WD STONE HARBOR WD AVALON WD AVALON WD SEA ISLE CITY WD SEA ISLE CITY WD NJ WATER CO NJ WATER CO	USCG 1 USCG 2 SHWD 4 SHWD 5 AVALON WD 7-71 AVALON WD 3 SICWD 4 SICWD 2 SHORE DIV 7 SHORE DIV 13	385652 390301 390351 390420	745310 745327 744545 744504 744435 744235 744248 744200 744131 743755 743340	11 11 10 7 5 10 7 7 8 8	295 - 830 - 820 - 821 - 845 - 742 - 744 - 760 -	322 325 880 860 861 925 830 861 810	121CNSY 121CNSY 122KRKDL 122KRKDL 122KRKDL 122KRKDL 122KRKDL 122KRKDL 122KRKDL 122KRKDL 122KRKDL
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (µs/cm)	PH (UNITS)	SODIUM DIS- SOLVED (MG/L AS NA)	CHLORIDE DIS- SOLVED (MG/L AS CL)
09-017 09-018 09-132 09-166 09-002 09-008 09-127 09-129 09-106 09-124	US COAST GUARD US COAST GUARD STONE HARBOR WD STONE HARBOR WD AVALON WD AVALON WD SEA ISLE CITY WD SEA ISLE CITY WD NJ WATER CO NJ WATER CO	USCG 1 USCG 2 SHWD 4 SHWD 5 AVALON WD 7-71 AVALON WD 3 SICWD 4 SICWD 2 SHORE DIV 7 SHORE DIV 13	8/23/1989 8/23/1989 8/30/1989 8/30/1989 9/ 1/1989 9/ 1/1989 8/30/1989 8/30/1989 9/21/1989	16.0 20.0 20.0 20.0 20.5 19.5 19.5	1070 363 357 277 254 336 252 233 206 201	8.0 7.8 8.7 8.5 8.6 8.4 7.7	65 51 44 55 33 32 29	260 38 32 14 13 36 14 10 10

Aquifer unit:

121CNSY - Cohansey Sand 122KRKDL - Atlantic City 800-foot sand of the Kirkwood Formation

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 HUNTERDON COUNTY

AQUIFER UNIT

400PCMB 400PCMB 400PCMB 400PCMB

NJ-WRD WELL NUMBER	SITE OWNER		LOCAL IDENTIFIER		LAT	LATITUDE		DE (1	ELEV. LAND SURF. FT. NGVD)	INTE	OR EENED ERVAL
190010 190236 190245 190248	CALIFON WC MILLER, JEF GARDEN STATI HIGH BRIDGE	E WATER CO	MILLE CALII	NG VALLEY1 ER 1 FON 2 BRIDGE BO	4044 4044 4042 RO 3 4042	432 244	0744645 0745156 0745150 0745315	5	760 900 630 840	68 50	-545 -200 -265 -330
NJ-WRD WELL NUMBER	DATE	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)
190010 190236 190245 190248	11-23-88 09-29-89 11-22-88 09-19-89	11.5 10.5 10.5 11.0	226 94 212 212	6.8 6.3 6.5 7.1	88 31 77 89	26 8.4 20 25	5.7 2.5 6.6 6.4	10 6.7 7.9 9.1	0.7 0.8 0.9 0.8	74 33 44 88	<0.1 <0.1 <0.1 <0.1
NJ-WRD WELL NUMBER	DATE CACO3	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS AS SO4)	SULFATE DIS- SOLVED (MG/L AS CL)	CHLO- RIDE, DIS- SOLVED (MG/L AS F)	FLUO- RIDE, DIS- SOLVED (MG/L SIO2)	SILICA, DIS- SOLVED (MG/L AS (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L
190010 190236 190245 190248	11-23-88 09-29-89 11-22-88 09-19-89	71 27 40 70	38 13 19 16	14 5.0 18 11	0.2 0.1 <0.1 0.3	22 29 27 28	155 86 132 145	<0.010 <0.010 0.020 <0.010	0.22 0.76 2.30 1.20	<0.01 <0.01 <0.01 <0.01	0.30 0.60 <0.20 0.30
NJ-WRD WELL NUMBER	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
190010 190236 190245 190248	11-23-88 09-29-89 11-22-88 09-19-89	<0.010 0.030 0.020 <0.010	<0.010 0.040 0.030 0.021	<10 <10 <10 <10	<1 <1 <1 <1	<1 <1 <1	<1 <1 <1	2 9 4 <1	960 <3 4 4	<5 3 <5 <1	120 8 2 <1
NJ-WRD WELL NUMBER	DATE	MERCURY DIS- SOLVED (UG/L AS HG)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)
190010 190236 190245 190248	11-23-88 09-29-89 11-22-88 09-19-89	<0.1 <0.1 <0.1 0.2	640 270 3	0.4 0.3 0.3 0.4	1 <1 <1 2	<0.20	<0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20
NJ-WRD WELL NUMBER	DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)
190010 190236 190245 190248	11-23-88 09-29-89 11-22-88 09-19-89	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

HUNTERDON COUNTY

NJ-WRD WELL NUMBER	DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO-	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)
190010 190236 190245 190248	11-23-88 09-29-89 11-22-88 09-19-89	<0.20 <0.20	<0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20
NJ-WRD WELL NUMBER	DATE	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLO- RIDE		STYRENE TOTAL (UG/L)	XYLENE TOTAL WATER WHOLE TOT REC	
190010 190236 190245 190248	11-23-88 09-29-89 11-22-88 09-19-89	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	

Aquifer Unit: 400PCMB - Precambrian Erathem

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MIDDLESEX COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREENE INTERVA (FT.)	L	AQUIFER UNIT
23-735 23-571 23-196 23-570 23-551 23-434 23-438 23-355 23-367 23-368 23-371 23-376 23-206 23-384 23-401 23-401 23-403	PERTH AMBOY WD SOUTH RIVER WD SOUTH RIVER WD SOUTH RIVER WD SAYREVILLE WD SAYREVILLE WD SAYREVILLE WD HERCULES POWDER OLD BRIDGE MUA OLD BRIDGE MUA HERCULES POWDER SAYREVILLE WD SAYREVILLE WD SAYREVILLE WD SAYREVILLE WD SAYREVILLE WD SOUTH AMBOY WD	RUNYON 8R PERTH AMBOY 7 PERTH AMBOY 5 PERTH AMBOY 1A PERTH AMBOY 6 SRWD 6 SRWD 2 SRWD 5 SWD A SWD G I HERCULES 5 HERCULES 3 LAWRENCE HAR 8 LAWRENCE HAR 8 LAWRENCE HAR 9 HERCULES 1REBT MORGAN P SWD Q-1973 SAWD 8 SAWD 10	402524 402531 402537 402538 402548 402559 402614 402624 402626 402638 402649 402700 402700 402705 402744 402742 402825	741940 741932 742020 742020 741950 742155 742141 742142 741950 741944 741936 742022 742025 741454 741454 741630 741630 741632	10 15 15 20 15 47 20 30 46 58 41 60 60 64 44 41 10	155 - 173 - 132 - 72 - 56 - 83 - 182 - 180 - 193 -	82 80 261 80 208 198 182 87 94 228 220 213 395 225 288 213 395 225 288	2110DBG 2110DBG 21110DBG 2111FRNG 2111FRNG 2111FRNG 2111FRNG 2111FRNG 21110DBG 2111FRNG 21110DBG 2111FRNG 2111FRNG 2111FRNG 2111FRNG 2111FRNG 2111FRNG 2111FRNG 2111FRNG 2111FRNG 2111FRNG
NJ-WRD WELL NUMBER	SITE OWNER	IDENTIFIER	DATE OF SAMPL	E (DEG C)	SPE- CIFIC CONDUCT -ANCE (µs/cm)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)	
23-735 23-571 23-195 23-196 23-570 23-551 23-434 23-438 23-355 23-367 23-367 23-368 23-376 23-376 23-306 23-384 23-401 23-401 23-403 23-411	SAYREVILLE WD SAYREVILLE WD HERCULES POWDER HERCULES POWDER OLD BRIDGE MUA OLD BRIDGE MUA HERCULES POWDER SAYREVILLE WD SAYREVILLE WD SOUTH AMBOY WD SOUTH AMBOY WD	PERTH AMBOY 6 SRWD 6 SRWD 2 SRWD 5 SWD A SWD G I HERCULES 5 HERCULES 3 LAWRENCE HAR 8	8/ 9/1 8/ 9/1 7/28/1 7/28/1 8/ 3/1	989 12.0 989 13.0 989 13.5 989 12.5 989 14.5 989 12.5 989 12.5 989 13.0 989 13.0 989 13.0 989 13.0	78 167 138 284 255 359 10000 9500 53 460	63555544455556664.	36 19 50 280 27 10 17 17 51 13 16 2700 2200 5.0 1.9 350 4.6 27 8.2	

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system 211FRNG - Farrington aquifer, Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MONMOUTH COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LON	NGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREENE INTERVA (FT.)	L AQU	I FER INIT
25 - 234 25 - 235 25 - 235 25 - 237 25 - 387 25 - 014 25 - 014 25 - 001 25 - 006 25 - 513 25 - 197 25 - 197 25 - 197 25 - 196 25 - 420 25 - 514 25 - 514 25 - 514	MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SPRING LK HT WD SPRING LK HT WD SPRING LK HT WD BELMAR BORO WD AVON WD ALLENHURST WD HIGHLANDS WD ATLAN HIGH WD ATLAN HIGH WD BAYSHORE SEW AU SHORELANDS WC KEYPORT BORO WD SHORELANDS WC KEANSBURG MUA KEANSBURG MUA KEANSBURG MUA KEANSBURG MUA KEANSBURG MUA KEANSBURG MUA UNION BEACH WD UNION BEACH WD INT FLAVOR FRAG NATIONAL PARK SERV.	MWD 3 MWD 2R MWD 7 MWD 5 SPRING LK HGT1 SPRING LK HGT4 10 (2 ELECT) BWD 4 ELEC(11) AWD 1 AWD 1 AHWD 5 BAYSHORE 1 W KEANSBURG 1 KEYPORT 7 W KEANSBURG 1 KEYPORT 7 W KEANSBURG 2 KWD 6 KWD 5A KWD 3 UBWD 3 1977 UBWD 2 1969 IFF-2R FT HANCOCK 5A	400712 400712 400714 400857 400928 401038 401102 401138 401401 402401 402437 402437 402442 402537 402535 402537 402621 402621 402628 402634 402634	740328 740328 740328 740329 740309 740311 740045 740025 740025 74025 740236 740242 741214 740933 740743 740743 740741 740911 740911 735959	15 21 20 15 60 20 20 20 20 20 20 20 20 20 20 20 20 21 20 20 21 20 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	103 - 97 - 570 - 485 - 601 - 424 - 525 - 630 - 245 - 312 - 304 - 312 - 308 - 480 - 246 -	118 121 112 121 1600 211 560 211 561 211 567 211 504 211 505 211 582 211 582 211 582 211 354 211 356 211 356 211 356 211 356 211 357 211 358 211	CKKD CKKD CKKD MLRW MLRW MLRW EGLS EGLS MLRW EGLS ODBG ODBG ODBG ODBG ODBG ODBG ODBG ODBG
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (µs/cm)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)	
25-234 25-235 25-235 25-237 25-387 25-387 25-018 25-014 25-011 25-006 25-513 25-282 25-111 25-197 25-112 25-191 25-195	MANASQUAN WD MANASQUAN WD MANASQUAN WD MANASQUAN WD SPRING LK HT WD SPRING LK HT WD BELMAR BORO WD BELMAR BORO WD AVON WD ALLENHURST WD HIGHLANDS WD ATLAN HIGH WD BAYSHORE SEW AU SHOERLANDS WC KEYPORT BORO WD SHORELANDS WC	MWD 3 MWD 2R MWD 7 MWD 5 SPRING LK HGT1 SPRING LK HGT4 10 (2 ELECT) BWD 4 ELEC(11) AWD 4 HWD 4 HWD 4 AHWD 1 AHWD 1 AHWD 5 BAYSHORE 1 W KEANSBURG 1 KEYPORT 7 W KEANSBURG 2	9/ 5/1989 9/ 5/1989 9/ 5/1989 9/ 5/1989 9/ 1/1989 9/ 1/1989 9/ 1/1989 9/ 5/1989 8/25/1989 8/16/1989 8/18/1989 8/18/1989 8/18/1989 8/18/1989 8/17/1989	13.5 13.5 13.5 18.0 18.0 17.5 20.0 17.5 13.0 14.0	76 104 72 67 195 194 218 2244 208 145 104 102 98 68 124 73	4.568990788.77.66.66.22225.	10 13 11 9.7 0.7 1.3 0.7 2.8 1.0 1.1 2.5 1.4	

^{*} Total depth of well.

Aquifer unit:

121CKKD - Kirkwood Cohansey aquifer system 211MLRW - Wenonah Mount Laurel aquifer 211EGLS - Englishtown aquifer system

2110DBG - Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MORRIS COUNTY

AQUIFER UNIT

400PCMB 400PCMB 400PCMB 400PCMB 400PCMB

400PCMB 374LSVL 400PCMB 400PCMB 400PCMB

400PCMB 400PCMB 400PCMB 400PCMB

NJ-WRD WELL NUMBER		ITE NER			OCAL TIFIER		LATITUDE	LONGITUDI	L S	LEV. AND URF. . NGVD)	OPEN OR SCREENED INTERVAL (FT.)
270432 271120 271138 271139 271141	PEDERSEN, JO SMITH, EARL MENDHAM BORG MENDHAM BORG SOLONDZ, PAU	AND PHYLI D WATER CO D WATER CO	DMPANY	MENDHAM	M		405654 404813 404720 404621 405140	0742717 0744617 0743610 0743522 0744313	1	630 040 520 520 100	50-123 49.5-123 88-325 69-560 50-422
271142 271144 271145 271146 271147	SELENGUT, M MORRIS COUN ROXBURY WATI GUNNESON, AI WASHINGTON	TY MUA ER CO LVIN	, ROBERT	ROXBURY GUNNESON	ST9-CAMP 5	PULASKI	405140 405020 405006 405236 404835	0744228 0743807 0744020 0744043 0744658	1	100 690 770 140 030	50-647 603-708 164-345 52-100 50-200
271149 271161 271162 271178	WASHINGTON HIGGINS, CAI GOETZ, GARY ROXBURY TWP	RL		HIGGINS GOETZ DO			404900 404751 404802 405258	0744625 0744556 0744501 0744104		060 590 575 162	50-450 58.5-298 70-230 50-400
NJ-WRD WELL NUMBER	DATE	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)
270432 271120 271138 271139 271141	09-27-89 09-28-89 12-01-88 06-06-89 06-27-89	11.0 10.5 12.0 12.0 11.0	161 108 286 305 500	6.3 5.9 7.0 7.3 6.6	65 42 130 140 130	15 11 32 39 34	6.6 3.5 13 10	6.2 5.0 8.7 21 28	1.0 0.6 0.8 1.2 2.7	54 23 136 167 31	<0.1 <0.1 <0.1 <0.1 <0.1
271142 271144 271145 271146 271147	04-12-89 05-15-89 11-28-88 09-20-89 11-30-88	11.0 11.0 11.5 11.0	150 144 125 273	6.0 9.0 7.3 6.7	61 61 56 	17 13 16 26	4.4 6.9 4.0	5.1 4.8 6.4 8.5	3.3 0.7 0.7 0.9	83 68 71	<0.1 <0.1 <0.1 <0.1
271149 271161 271162 271178	11-17-88 08-29-89 08-31-89 09-27-89	11.5 12.0 11.5 11.0	160 180 225 269	7.6 8.0 8.0 7.4	70 78 110 130	19 25 22 39	5.5 3.8 14 7.0	7.1 6.7 3.4 6.2	3.2 0.5 0.7 0.7	77 116	<0.1
NJ-WRD WELL NUMBER	DATE	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
270432 271120 271138 271139 271141	09-27-89 09-28-89 12-01-88 06-06-89 06-27-89	45 19 110 139 29	12 12 12 40 28	16 12 13 13 91	0.1 <0.1 0.2 0.3 0.1	26 16 29 36 22	115 77 186 244 243	<0.010 <0.010 <0.010 <0.010 <0.010	1.30 1.30 2.30 0.230 2.10	<0.010 <0.010 <0.010 <0.010 0.020	0.30 0.70 0.40 0.50 0.30
271142 271144 271145 271146 271147	04-12-89 05-15-89 11-28-88 09-20-89 11-30-88	39 61 69 55 59	3.0 3.2 15 20	4.4 4.3 1.1 7.3 33	0.1 0.2 0.2 <0.1 0.1	20 17 27 17 34	110 91 101 175	0.010 0.020 <0.010 <0.010 <0.010	0.370 1.10 0.220 2.10 1.30	0.020 0.030 <0.010 0.010 <0.010	<0.20 <0.20 0.20 1.0 <0.20
271149 271161 271162 271178	11-17-88 08-29-89 08-31-89 09-27-89	63 57 96 93	14 26 13 20	2.0 1.9 4.8 15	0.1 0.1 0.1 0.1	35 18 13 20	124 116 131 166	<0.010 <0.010 <0.010 <0.010	<0.100 <0.100 0.540 0.410	0.020 0.010 <0.010 <0.010	0.40 0.30 <0.20 0.40

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MORRIS COUNTY

NJ-WRD WELL NUMBER	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)
270432 271120 271138 271139 271141	09-27-89 09-28-89 12-01-88 06-06-89 06-27-89	0.020 0.030 0.030 0.020 0.020	0.010 0.020 0.030 0.020 <0.010	<10 <10 <10 20 <10	<1 <1 <1 <1	:: 7	::	<1 <1 <1 1 <1	<1 <1 1 <1 <1		20 15 3 1 2
271142 271144 271145 271146 271147	04-12-89 05-15-89 11-28-88 09-20-89 11-30-88	<0.010 0.030 0.030 <0.010 0.030	<0.010 0.020 0.030 0.010 0.030	<10 <10 <10 <10 <10	<1 <1 <1 1	::	::	<1 <1 <1 <1	<1 <1 <1 2 <1	:: 1	2 1 1 20 4
271149 271161 271162 271178	11-17-88 08-29-89 08-31-89 09-27-89	0.020 <0.010	0.020 <0.010 <0.010 <0.010	<10 20 <10 <10	<1 <1 <1	12 9	<0.5 <0.5	<1 <1 <1	<1 <5 <5 <1	 <3 <3 	1 <10 <10 1
NJ-WRD WELL NUMBER	DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)
270432 271120 271138 271139 271141	09-27-89 09-28-89 12-01-88 06-06-89 06-27-89	3 <3 <3 17 1700	1 1 <5 <1 <1		3 <1 <1 21 320	<0.1 <0.1 0.2 <0.1 <0.1	:: :: 1:				
271142 271144 271145 271146 271147	04-12-89 05-15-89 11-28-88 09-20-89 11-30-88	1400 19 12 <3 7	<5 <1 <5 1 <5	::	120 7 5 <1 <1	<0.1 <0.1 0.1 0.1 <0.1	::	::	::		
271149 271161 271162 271178	11-17-88 08-29-89 08-31-89 09-27-89	. 11 4 5 150	8 <10 10 <1	5 <4	<1 2 3 190	0.1 <0.1	<10 <10	<10 <10	<1.0 <1.0	72 29	 <6 <6
NJ-WRD WELL NUMBER	DATE	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)
270432 271120 271138 271139 271141	09-27-89 09-28-89 12-01-88 06-06-89 06-27-89	4 7 4 25 16	0.5 0.5 0.4 0.5 0.5	<1 <1 3 <1 3	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	<0.20
271142 271144 271145 271146 271147	04-12-89 05-15-89 11-28-88 09-20-89 11-30-88	52 <3 7 12 130	0.9 0.4 0.3 0.5 0.4	<1 <1 2 <1 <1	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	<0.20 <0.20	0.20 <0.20	<0.20 <0.20
271149 271161 271162 271178	11-17-88 08-29-89 08-31-89 09-27-89	30 <3 7 4	0.3 0.3 6.7 0.5	 <1	::	::		: : :			::

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MORRIS COUNTY

NJ-WRD WELL NUMBER	DATE	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)
270432	09-27-89					12.				100	••
271120	09-28-89						:	:			
271138 271139	12-01-88 06-06-89	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
271141	06-27-89	••	••	••		••	••			•	•
271142 271144	04-12-89 05-15-89	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
271145	11-28-88	••	• •		••		••			••	:
271146 271147	09-20-89 11-30-88	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
271149	11-17-88	• •	••	••	••	••	••				••
271161 271162	08-29-89 08-31-89	::	::	• ::	••	••		::	::		
271178	09-27-89	••	••		• •			•••			
NJ-WRD WELL NUMBER	DATE	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)
270432	09-27-89			• •						1	
271120 271138	09-28-89 12-01-88	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
271139	06-06-89										
271141	06-27-89	••	••	• •		••	••	••			••
271142 271144	04-12-89 05-15-89	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
271145 271146	11-28-88 09-20-89			::		::					
271147	11-30-88	<0.20	0.50	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20
271149	11-17-88										4
271161	08-29-89			• •		• •	•••		••	• • •	
271162 271178	08-31-89 09-27-89	- ::	:::	- 15			- ::			- ::	
NJ-WRD WELL NUMBER	DATE	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)			STYRENE TOTAL	XYLENE TOTAL WATER WHOLE TOT RE (UG/L)	ic	
270432	09-27-89			••	•••				••		
271120 271138	09-28-89 12-01-88	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2		
271139	06-06-89						••				
271141	06-27-89	••	••	-20.	• • •	***		1.5	\$,45		
271142	04-12-89	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2	The second second	
271144 271145	05-15-89 11-28-88		• • • • • • • • • • • • • • • • • • • •	••			::	::	in give		
271146	09-20-89										
271147	11-30-88	<0.20	<0.20	<0.20	<0.20	<0.20	<0.2	<0.2	<0.2	1.54	
271149	11-17-88		• • •	••							
271161 271162	08-29-89 08-31-89		••					- :			
271178	09-27-89	••	••						- 1		

Aquifer Units: 374LSLV - Leithsville Formation 400PCMB - Precambrian Erathem

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 OCEAN COUNTY

29-500 BEACH MAVEN MD BHMD 9 3033342 74.1431 5 552 - 630 122KRKDL 29-111 BEACH HAVEN MD BHMD 8 3033346 74.1430 5 572 - 656 122KRKDL 29-111 BEACH HAVEN MD BHMD 8 3033346 74.1430 5 572 - 656 122KRKDL 29-111 BEACH HAVEN MD BHMD 8 304545 74.0655 5 597 - 662 122KRKDL 29-101 BARNEGAT LT MD BLMD 4 394.134 74.0832 9 4.65 - 500 122KRKDL 29-102 SINGE WATER CO SUC 2 394.24 74.0635 7 7 175 - 200 121KKDK 29-002 SINGE WATER CO SUC 2 394.24 74.0632 7 593 - 646 124PHPN 29-004 BARNEGAT LT MD BLMD 2 395.24 74.0658 7 7 175 - 200 121KKDK 29-022 SINGE WATER CO SUC 2 395.22 74.0458 7 7 175 - 200 121KKDK 29-027 SINGE WATER CO SUC 2 395.22 74.0458 7 7 175 - 200 121KKD 29-027 SINGE WATER CO SUC 2 395.22 74.0458 7 7 175 - 200 121KKD 29-035 SINGE WATER CO SUC 2 395.24 74.0455 10 474 - 514 124PHPN 29-809 OCEAN GATE BORO WD OGEND 4 395.25 7 74.0455 10 474 - 514 124PHPN 29-809 OCEAN GATE BORO WD OGEND 4 395.25 7 74.0455 10 474 - 514 124PHPN 29-809 OCEAN GATE BORO WD OGEND 4 395.25 7 74.0455 10 474 - 514 124PHPN 29-515 PINE BEACH WU SHU 1 395558 7 74.0439 4 400 - 430 124PHPN 29-538 SEASIDE HOTS WD SHWD 1 395558 7 74.0439 5 10 474 - 170 121KKD 29-537 SEASIDE HOTS WD SHWD 6 87 395636 74.0439 5 10 40 - 430 124PHPN 29-538 SEASIDE HOTS WD SHWD 6 87 395636 74.0439 5 10 40 - 430 124PHPN 29-538 SEASIDE HOTS WD SHWD 6 87 395636 74.0439 5 10 40 - 430 124PHPN 29-636 SEASIDE HOTS WD SHWD 6 87 395636 74.0439 5 10 40 - 430 124PHPN 29-636 SEASIDE HOTS WD SHWD 6 87 395636 74.0439 5 10 10 10 10 10 10 10 10 10 10 10 10 10	NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LON	IGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREENED INTERVAL (FT.)	AQUI FER UNIT
NJ-WRD WELL SITE DOAL IDENTIFIER SAMPLE (DEG C) (MS/CM) (UNITS) AS CL) 29-590 BEACH HAVEN WD BHWD 9 8/22/1989 17.5 67 2.9 29-009 BEACH HAVEN WD BHWD 8 8/22/1989 17.0 72 6.5 2.7 29-607 BARNEGAT LT WD BLWD 4 8/22/1989 18.0 370 8.1 1.9 29-022 SHORE WATER CO SWC 1 8/8/1989 16.5 291 9.0 1.0 29-023 SHORE WATER CO SWC 1 8/8/1989 16.5 291 9.0 1.0 29-809 OCEAM GATE BORO WD GSWD 4 8/18/1989 14.0 57 5.8 4.7 29-809 OCEAM GATE BORO WD GSWD 4 8/18/1989 14.0 57 5.8 4.7 29-515 PINE BEACH WU PBWU 1 8/18/1989 14.0 57 5.8 4.7 29-527 SEASIDE HARK WD EAST-REP (8) 8/8/1989 16.5 291 9.0 1.0 29-515 PINE BEACH WU PBWU 1 8/18/1989 14.0 165 7.3 2.9 29-515 PINE BEACH WU PBWU 1 8/18/1989 14.0 165 7.3 2.9 29-515 SEASIDE HGTS WD SHWD 2 8/8/1989 14.0 165 7.3 2.9 29-5253 SEASIDE HGTS WD SHWD 2 8/8/1989 14.0 165 7.3 2.9 29-537 SEASIDE HGTS WD SHWD 2 8/8/1989 14.5 1270 6.3 300 29-815 SEASIDE HGTS WD SHWD 2 8/8/1989 14.5 1270 6.3 300 29-853 EASIDE HGTS WD SHWD 2 8/8/1989 14.5 1270 6.3 300 29-453 LAVALLETTE WD LWD 4 8/17/1989 22.5 191 7.5 1.0 29-504 NJ WATER CO NORMANDY 3 8/17/1989 22.5 191 7.5 1.0 29-504 NJ WATER CO NORMANDY 3 8/17/1989 22.5 191 7.3 3.7 29-505 PT PLEAS BCH WD PPBWD 11 8/17/1989 25.0 170 7.2 1.0 29-532 PT PLEAS BCH WD PPBWD 12 8/17/1989 14.5 1020 6.5 300	29-009 29-111 29-607 29-004 29-022 29-023 29-697 29-535 29-815 29-537 29-538 29-454 29-454 29-100 29-531 29-531 29-532 29-87	BEACH HAVEN WD HARVEY CDRS WD BARNEGAT LT WD SHORE WATER CO SHORE WATER CO ARLINGTON BEACH WC SEASIDE PARK WD OCEAN GATE BORO WD PINE BEACH WU SEASIDE HGTS WD SEASIDE HGTS WD SEASIDE HGTS WD TOMS RIVER WC LAVALLETTE WD NJ WATER CO NJ WATER CO NJ WATER CO PT PLEASANT WD PT PLEAS BCH WD PT PLEAS BCH WD	BHWD 8 HCWD 4 BLWD 4 BLWD 2 SWC 1 SWC 2 ABWC 1 EAST-REP (8) OGBWD 4 PBWU 1 SHWD 2 SHWD 1R SHWD 6-87 TRWC 30 LWD 4 LWD 2 NORMANDY 3 MANTOLOKING 7 BAY HEAD 6 PPWD 5 PPWD 5 PPWD 3 PPBWD 11 PPBWD 12	393346 394134 394454 394524 395422 395422 395423 395450 395527 395558 395636 395636 395643 395721 395808 395808 395808 395808 395808	741430 740832 740632 740658 740458 740458 740455 740439 740439 740439 740431 74021 740421 740421 740310 740444 740310 740214 740310	9 5 7 7 7 10 10 30 4 5 7 9 5 5 8 5 10 10 10 10	572 - 64 465 - 5 597 - 66 593 - 66 175 - 2 490 - 5 76 - 5 474 - 5 330 - 3 135 - 1 400 - 4 144 - 1 129 - 1 1700 - 1 1428 - 14 1263 - 13 778 - 8 1256 - 13 748 - 7 1308 - 1	122KRKDL 122KRKDL 122KRKDL 122KRKDL 122KRKDL 124PNPN 121CKKD 124PNPN 121CKKD 14 124PNPN 121CKKD 14 124PNPN 121CKKD 121MRPA 121MRPA 121MRPA 121MRPA 121MRPA 121MRPA 121MRPA 121MRPA 121CKKD 121MRPA 121CKKD 121MRPA 121CKKD 121CKCD 121CKCD 121CKCD 121CKCD 121CKCD
29-009 BEACH HAVEN WD BHWD 8 8/22/1989 18.0 67 3.5 29-111 HARVEY CDRS WD HCWD 4 8/22/1989 17.0 72 6.5 2.7 29-607 BARNEGAT LT WD BLWD 4 8/22/1989 18.0 370 8.1 1.9 29-004 BARNEGAT LT WD BLWD 2 8/22/1989 18.0 370 8.0 2.6 29-022 SHORE WATER CO SWC 1 8/8/1989 14.0 57 5.8 4.7 29-023 SHORE WATER CO SWC 2 8/8/1989 16.5 291 9.0 1.0 29-697 ARLINGTON BEACH WC ABWC 1 8/8/1989 14.0 95 6.6 6.6 29-935 SEASIDE PARK WD EAST-REP (8) 8/8/1989 16.5 252 8.5 1.1 29-809 OCEAN GATE BORO WD OGBWD 4 8/18/1989 16.5 252 8.5 1.1 29-515 PINE BEACH WU PBWU 1 8/18/1989 16.5 252 8.5 1.1 29-537 SEASIDE HGTS WD SHWD 2 8/8/1989 16.5 219 8.6 2.1 29-538 SEASIDE HGTS WD SHWD 1R 8/18/1989 16.5 219 8.6 2.1 29-815 SEASIDE HGTS WD SHWD 1R 8/8/1989 14.5 1270 6.3 300 29-815 SEASIDE HGTS WD SHWD 1R 8/8/1989 14.5 670 5.9 150 29-626 TOMS RIVER WC TRWC 30 8/18/1989 26.5 120 7.3 0.9 29-454 LAVALLETTE WD LWD 4 8/17/1989 23.5 191 7.5 1.0 29-455 LAVALLETTE WD LWD 4 8/17/1989 23.5 191 7.3 3.7 29-100 NJ WATER CO MANTOLOKING 7 8/17/1989 25.0 170 7.2 1.0 29-504 NJ WATER CO MANTOLOKING 7 8/17/1989 25.0 170 7.2 1.0 29-579 PT PLEASANT WD PPWD 5 8/17/1989 25.0 150 6.9 0.9 29-579 PT PLEASANT WD PPWD 3 8/17/1989 21.0 212 8.0 1.0 29-579 PT PLEASANT WD PPWD 1 8/17/1989 14.5 1320 6.6 410 29-523 PT PLEAS BCH WD PPBWD 11 8/17/1989 14.5 1320 6.6 410 29-523 PT PLEAS BCH WD PPBWD 12 8/17/1989 14.5 1320 6.6 410 29-523 PT PLEAS BCH WD PPBWD 12 8/17/1989 14.5 1320 6.6 410 29-523 PT PLEAS BCH WD PPBWD 12 8/17/1989 14.5 1320 6.6 410	WELL			OF	ATURE	CIFIC CONDUCT - ANCE	PH	DIS- SOLVED (MG/L
	29-009 29-111 29-607 29-004 29-022 29-023 29-697 29-935 29-515 29-537 29-538 29-538 29-454 29-453 29-454 29-100 29-504 29-531 29-532 29-579 29-523	BEACH HAVEN WD HARVEY CDRS WD BARNEGAT LT WD SHORE WATER CO SHORE WATER CO ARLINGTON BEACH WC SEASIDE PARK WD OCEAN GATE BORO WD PINE BEACH WU SEASIDE HGTS WD SEASIDE HGTS WD SEASIDE HGTS WD TOMS RIVER WC LAVALLETTE WD NJ WATER CO NJ WATER CO NJ WATER CO NJ WATER CO PT PLEASANT WD PT PLEASANT WD PT PLEAS BCH WD PT PLEAS BCH WD PT PLEAS BCH WD	BHWD 8 HCWD 4 BLWD 4 BLWD 2 SWC 1 SWC 2 ABWC 1 EAST-REP (8) OGBWD 4 PBWU 1 SHWD 2 SHWD 1R SHWD 6-87 TRWC 30 LWD 4 LWD 2 NORMANDY 3 MANTOLOKING 7 BANTOLOKING 7 PPWD 5 PPWD 5 PPWD 5 PPWD 1	8/22/1989 8/22/1989 8/22/1989 8/22/1989 8/ 8/1989 8/ 8/1989 8/ 8/1989 8/ 8/1989 8/ 8/1989 8/ 8/1989 8/ 8/1989 8/ 8/1989 8/ 8/17/1989 8/17/1989 8/17/1989 8/17/1989 8/17/1989 8/17/1989 8/17/1989 8/17/1989	18.0 17.0 18.0 14.0 14.0 16.5 14.0 12.5 14.5 26.5 22.5 22.5 22.0 21.0 21.0	67 72 370 370 57 291 95 252 165 67 219 1270 120 191 170 212 150 202 1260 1320	6.5 8.1 9.0 6.5 7.3 4.4 8.3 9.7 7.8 7.7 8.7 7.8 6.7 6.6	3.5 2.7 1.9 2.6 4.7 1.0 6.6 1.1 2.9 7.0 2.1 300 150 0.9 1.0 1.9 3.7 1.0 0.9 0.7

121CKKD - Kirkwood-Cohansey aquifer system
122KRKDL - Atlantic City 800-foot sand of
the Kirkwood Formation

124PNPN - Piney Point aquifer 211EGLS - Englishtown aquifer system 211MRPA - Potomac-Raritan-Magothy aquifer system

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

-	ASSA	7.0	COL	INIT	v
- 1	ASSA.	16	LU	ו אכ	1

OPEN OR SCREENED INTERVAL

(FT.)

AQUIFER UNIT

400PCMB 400PCMB 400PCMB 400PCMB

NJ-WRD WELL NUMBER	SITE OWNER			LOCAL IDENTIFIER L			E LO	ELEV. LAND SURF. (FT. NGVD)		
310009 310054 310055 310057	WINDBEAM WAT OLD MILFORD WEST MILFORD WEST MILFORD	HOMES	MUA AV					0741442 0742248 0742020 0742332	9	40 970 550 770
NJ-WRD WELL NUMBER	DATE	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)
310009 310054 310055 310057	09-26-89 08-25-89 08-25-89 09-26-89	12.0 11.0 12.0 11.5	350 216 236 422	7.4 6.4 7.3 7.5	160 87 100 180	49 22 22 47	10 7.8 11 16	7.5 8.8 8.6 16	0.7 0.6 0.5 0.5	156 56 79 172
NJ-WRD WELL NUMBER	DATE	CAR- BONATE IT-FLD (MG/L AS CO3)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
310009 310054 310055 310057	09-26-89 08-25-89 08-25-89 09-26-89	<0.1 <0.1 <0.1 <0.1	127 45 65 141	11 16 11 29	26 24 21 32	0.1 0.2 0.7 0.1	20 19 20 11	206 128 134 237	<0.010 <0.010 <0.010 0.010	1.10 0.49 <0.10 0.10
NJ-WRD WELL NUMBER	DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	
310009 310054 310055 310057	09-26-89 08-25-89 08-25-89 09-26-89	<0.010 0.021 <0.010 0.041	1.2 0.20 <0.20 0.60	0.010 <0.010 <0.010 0.010	0.020 <0.010 0.020 0.021	20 <10 10 <10	<1 <1 <1 <1	<1 <1 <1 <1	<1 <1 <1 <1	
NJ-WRD WELL NUMBER	DATE	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)	
310009 310054 310055 310057	09-26-89 08-25-89 08-25-89 09-26-89	<1 4 1 <1	7 4 240	1 2 <1 <1	<1 <1 <1 410	<0.1 <0.1 <0.1 <0.1	17 <3 25 12	0.7 0.7 0.4 0.4	<1 <1	

Aquifer Unit: 400 PCMB - Precambrian Erathem

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 UNION COUNTY

NJ-WRD WELL NUMBER		ITE NER		LOCAL NTIFIER	LATI	TUDE	LONGITU	DE (ELEV. LAND SURF. (FT. NGVD)	INT	OR EENED ERVAL	AQUIFER UNIT
390119	UNION	CO PARK	UNION C	O PARK OBS	s 404	106	0741719	7	69	29	90*	#
NJ-WRD WELL NUMBER	DATE	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	TOLUENE TOTAL (UG/L)	
390119	01-10-89	12.5	733	7.70	<0.20	<0.20	<0.20	<0.20	<0.20	0.80	<0.20	
NJ-WRD WELL NUMBER	DATE	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	
390119	01-10-89	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	0.30	
NJ-WRD WELL NUMBER	DATE	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSD CHLORO ETHENE TOTAL (UG/L)		1,3-DI- CHLORO- BENZENE TOTAL (UG/L)		
390119	01-10-89	8.7	16	<0.20	<0.20	<0.20	<0.20	0.30	<0.20	<0.20		
NJ-WRD Well Number	DATE	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	VINYL-	DI- CHLORO- DI- FLUORO- METHANE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO-	VINYL CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO ETHYL- ENE TOTAL (UG/L	STYRENE TOTAL	XYLENE TOTAL WATER WHOLE TOT REC (UG/L)		
390119	01-10-89	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	2.8	<0.2	<0.2		

^{*} Total depth of well

Aquifer Unit: # Passaic Formation of Jurassic-Triassic age

	PAGE	Ρ	AGE
Absecon Creek at Absecon	280		197
miscellaneous measurements	279	Cells/volume, definition of	24
Accuracy of the records	15	Centerville, Pleasant Run at	270
Acknowledgments	111	Cfs-day, definition of	128
ACOW 1 Observation well	283 23	Charlotteburg Reservoir	65
Acre-foot, definition ofAdenosine triphosphate, definition of	23	Chemical oxygen demand, definition of	24
Algae, definition of	23	Chester, North Branch Raritan River near164,	270
Algae, definition of	23	Chlorophyll, definition of	24
Allaire State Park C observation Well	307	Clarks Mills, Pine Brook at	271 273
Allendale, Hohokus Brook at	263 263	Clarks Mills Stream at Port Republic Clifton, Weasel Brook at	263
Ramsey Brook at	266	Clinton Reservoir127,	129
Ambrose Brook at Middlesex	270	Clinton, Spruce Run at	154
Aquifer code list and geologic names	23	Closter. Tenakill Brook at	262
Aquifer, definition of	23	Colliers Mills TW 1 observation well	321 322
Artesian, definition of	23 24	Colliers Mills TW 2 observation well	323
Ash mass, definition of	269	Colliers Mills TW 4 observation well	324
Atlantic City, Beach Thorofare at	280	Color unit, definition of	24
Atlantic County, ground-water levels	282	Colts Neck. Yellow Brook at	272
ground-water quality	327	Colts Neck, Mine Brook at	272
Atsion, Mullica River at outlet of Atsion	270	Contents, definition of	24
Lake at	238 88	Control, definition of	24
Axle Brook near Pottersville	264	Control structure, definition of	24
		Cooperation	_ 1
Back Brook near Reaville	270	Crammer observation well	318
tributary near Ringoes	264	Cranbury Brook, miscellaneous measurements	277
Bacteria, definition of	23 265	Crest-stage partial-record stations	24
Bartles Corners, Assiscong Creek at	269	Cumberland County, ground-water levels	295
Bartley, Drakes Brook at	269		. 10
Bass River, East Branch, near New Gretna	252	Dead River near Millington	268
Batsto, Mullica River néar	240 243	Deal, Poplar Brook near	272 269
at Pleasant Mills24	5 280	Definition of terms	23
Beach Haven, Little Egg Harbor at	280	De Forest Lake, NY	0,61
Beach Thorofare at Atlantic City	280	Diatoms, definition of	26
Beaver Brook, miscellaneous measurements	276	Discharge, definition of	24
Bear Brook at Route 535 near Locust Corner	264	Discharge measurements at miscellaneous sites	262 36
Bear Swamp Brook at Picatinny Arsenal miscellaneous measurements27	4 275	Discontinued continuous Water-Quality stations. Discontinued gaging stations	34
Beden Brook near Rocky Hill20		Dissolved, definition of	24
Bedload, definition of	23	Dissolved-solids concentration, definition of	24
Bed material, definition of	24	DOE - Forked River observation well	317
Belle Mead, Pike Run at	201 264	DOE - Sea Girt observation well	306 262
Benthic invertebrate, definition of	21	Dover, Rockaway River at Warren Street, at Downstream order and system	12
Bergen County, ground-water quality	328	Drainage area, definition of	25
Berkeley Heights, Blue Brook at Seeleys Pond		Drainage basin, definition of	25
Dam near	266	Drakes Brook at Bartley	269
Berkshire Valley, Rockaway River at Berkshire Valley TW 9 observation well	68 313	Dry mass, definition of	265
Bernardsville, Passaic River near	262	Duck Ford Rull Hear Filliceton Sunction	203
Big Brook near Marlboro	266	East Creek at North Centerville	271
Big Brook at Vanderburg	272	Echo Lake128	, 129
Biochemical oxygen demand, definition of	24	Elizabeth River at Ursino Lake at Elizabeth	132
Black Creek near Vernon	24 52	Elizabeth River, West Branch, near Union Elizabethtown Water Company, diversions	222
Black River: See Lamington River	76	Elmwood Park, Fleischer Brook at Market Street	
Blackwells Mills, Millstone River at	202	at	263
Blawenburg, Kock Brook near	265	Englewood, Metzler Brook at	262
Bloomfield, Third River at	263 256	English Creek near Scullville	273 271
Blue Brook at Seeleys Pond Dam near Berkeley	230	Englishtown, McGelliards Brook at	270
Heights	266	Explanation of the Records	12
Blue green algae, definition of	26		
Boonton Reservoir		FAA-TW Pomona observation well	287
Boonton, Rockaway River above Reservoir, at Rockaway River below Reservoir, at	72 73	Fair Lawn, Saddle River at Far Hills, North Branch Raritan River near	120
Bottom material	24	Farmingdale, Mingamahone Brook at	266
Bound Brook, Raritan River below Calco Dam, at.	205	Farrington Dam, Lawrence Brook at	212
Raritan River at Queens Bridge at	207	Fecal coliform bacteria, definition of	212 23 23
Briarwood School observation well	311	Fecal streptococcal bacteria, definition of	700
Burnt Mills, Lamington River at	289 178	Fischer observation wellFleischer Brook at Market Street at Elmwood Park	300
North Branch Raritan River at	167	Flemington, Neshanic River near	263 269
Butler Place 1 observation well	289	Walnut Brook near	264
Butler Place 2 observation well	290	Florham Park, Passaic River at	268
Califon South Brench Periton Bives at	240	Folsom, Great Egg Harbor River at	258 297
Califon, South Branch Raritan River at Camden County, ground-water levels	269 291	Forsgate 3 observation well	298
Canistear Reservoir	7,128	Fourmile Branch at New Brooklyn267	.273
Canoe Brook near Millburn	268	Franklin, Wallkill River at 46	, 268
Canoe Brook, miscellaneous measurements	274	Ft. Monmouth 1-NCO observation well	308

PAGE

Gage height, definition of	22	Identifying estimated daily discharge	15
Gaging station, definition of	22 22	Instantaneous discharge, definition of	24
Records	42	Introduction	1
Galen Hall observation well	285	Ironia, Lamington (Black) River near169,2	70
Georgia, Manasquan River near	266	Island Beach 1 observation well	15
Glen Gardner, Spruce Run near	148	Island Beach 3 observation well 3	16
Glenmoore, Stony Brook at	265		
Gloucester County, ground-water levels	296		46
Gloucester County Water-table Network	296		30
Gravelly Brook at Church Street at Matawan	271		82
Great Channel at Stone Harbor	281		72
Great Egg Harbor Bay at Ocean City	281	Jumping Brook near Neptune City 2	28
Great Egg Harbor River at Folsom	258	2	74
at Mays Landing	273		71
at Weymouth	259	Re/port Borough in Control	10
miscellaneous measurements	279		80
near Blue Anchor	256	Kingston, Millstone River at 1	98
near Sicklerville	255	Lakes and managed as	
Great Egg Harbor River basin, crest-stage	270	Lakes and reservoirs: Boonton Reservoir127,1	28
partial-record stations in	279	Canistear Reservoir127,1	
Discharge measurements at low-flow partial- record stations in	273	Charlotteburg Reservoir127,1	20
Green algae, definition of	24	Clinton Reservoir127,1	29
Green Brook at Plainfield	266	De Forest Lake	60
at Seeley Mills	209	Echo Lake128,1	29
Green Pond Brook at Picatinny Arsenal	69	Farrington Reservoir	12
at Wharton	71	Greenwood Lake128,1	29
below Picatinny Lake, at Picatinny Arsenal	79	Monksville Reservoir128,1	29
miscellaneous measurement274		Oak Ridge Reservoir127,1	29
Green Pond TW 5 observation well	314		60
Greenwood Lake128,		Round Valley Reservoir 2	21
Ground-water level records	282	Splitrock Reservoir127,1	28
Ground-water levels, explanation of records	17	Spruce Run Reservoir	21
Data collection and computation	17	Swimming River Reservoir 2	
Data Presentation	18	Tappan, Lake	60
Ground-water quality, explanation of records	18	Wanague Reservoir128,1	29
Data collection and computation	18	Woodcliff Lake	60
Data presentation	18	Lakewood, North Branch Metedeconk River near 2	234
Ground-water quality records	327	Lamington River at Milltown	70
Grovers Mill, Bear Brook at Route 571 near	265		78
Millstone River at	191	at Succasunna2	70
Millstone River at Southfield Road near	264	near Ironia169,2	70
Hashamasah Biran at Nav Wilford		near Pottersville	71
Hackensack River at New Milford	59		25 12
at Rivervale	55		12
at West Nyack, NY	54		13
Hackensack River basin, diversions	61		265
Elevations, reservoir and lake	60		280
Maximum discharge at crest-stage partial- record stations	262		113
Reservoirs in	60		64
Hackensack Water Co., diversions			122
Hamden Pumping Station, diversions	222		268
Hammonton Creek at Wescoatville	241	Low tide, definition of	25
miscellaneous measurements	278		280
Hannabrand Brook at Old Mill Road, near Spring			
lake heights	272	Macopin Intake Dam, Pequannock River at	87
Hardness, definition of	22	Macs Brook at Somerville	184
Harrisville, Oswego River at	249	Mahwah, Ramapo River near	96
Hart Brook near Pennington	265	Mahwah River near Suffern, NY	95
Head of River, Tuckahoe River at261	, 281		268
Heathcote Brook, miscellaneous measurements	278		280
High Bridge, South Branch Raritan River at Arch		Manalapan Brook at Bridge Street at Spotswood	219
Street at	147	at Federal Road near Manalapan	216
South Branch Raritan River near	146		218
High tide, definition of	22		278
Hog Swamp Brook at West Allenhurst	272		189
Hohokus Brook at Allendale	263	Manasquan River at Allenwood	266
at Ho-Ho-Kus	119		233 266
Holland Brook at Readington	163	near Georgia	200
Holmdel, Hop Brook at	271	Manasquan River basin, crest-stage partial-	266
Holmdel, Willow Brook at	271	record stations in	326
Hop Brook at Holmdel	271		185
Howell Twp. 1 observation well	301		284
Howell Twp. 3 observation well	302 303		266
Howell Twp. 4 observation well	304	Marlboro, Big Brook near	300
Howell Twp. 5 observation well	305	Marsh Bog Brook at Squankum	231
Hudson River basin, discharge measurements at	303	miscellaneous measurements	309 231 278
low flow sites	268	Martinsville, West Branch Middle Brook near	206
Hunterdon County, ground-water quality	330	Matawan, Gravelly Brook at Church Street at	271
Hydrologic Bench-Mark Network	12	Matawan, Wilkson Creek at Church Street at	271
Hydrologic Bench-Mark station, definition of	25	Matchaponix Brook at Mundy Avenue at Spotswood.	214
Hydrologic conditions, summary of	2	at Spotswood	276
Hydrologic station records	46	miscellaneous measurements	283
Hydrologic unit, definition of	25		247

344 <u>INDEX</u>

	PAGE		PAGE
Poplar Brook near Deal	272	Saddle River at Lodi	122
Poricy Brook at Red Bank	272	at Fair Lawn	120 118
Port Republic, Clarks Mills Stream at	273 273	at Ridgewoodat Upper Saddle River	263
Mullica River near	280	miscellaneous measurements	276
Pottersville, Axle Brook near	264	Scholler 1 observation well	288
Pottersville, Lamington (Black) River near	171	Screened interval, definition of	27 273
Upper Cold Brook near Preakness (Signac) Brook near Preakness	174 263	Scullville, English Creek near	326
Princeton Junction, Duck Pond Run near	265	Secondary wells	264
Princeton, Millstone River at Carnegie Lake at.	197	Sediment	16
Stony Brook at	194	Sediment, definition of	27
Publications, current NJ projectstechniques of water-resource investigations.	19 32	Seeley Mills, Green Brook at	209 225 255
techniques of water resource investigations.	32	Sicklerville, Great Egg Harbor River near	255
Radiochemical program	12,27	Singac Brook at Singac	269
Ragovin 2100 observation well	295	Six Mile Run near Middlebush	266 27
Rahway River at Rahway	140 143	Sodium-adsorption-ratio, definition of Solute, definition of	27
near Springfield	137	Somerville, Macs Brook at	184
West Branch, at West Orange	135	South Belmar, Polly Pond Brook at	272
miscellaneous measurements	276	Special networks and programs	12
Ramapo River at Pompton Lakes	100 94	Specific conductance, definition of Splitrock Reservoir	127 128
diversions	130	Spotswood, Manalapan Brook at Bridge Street at.	219
near Mahwah	96	Manalapan Brook at	218
Ramsey Brook at Allendale	263	at Mundy Avenue, at	214
Raritan, Peters Brook near	183 180	Spring Lake Heights, Hannabrand Brook, Old	272
North Branch Raritan River near	181	Mill Road nearSpring Valley Water Company, diversions	61
Raritan River at Manville	185	Springfield, Rahway River near	137
at Perth Amboy	280	Springfield, Van Winkel Brook at	269
at Queens Bridge at Bound Brook	207 205	Spruce Run at Clinton	154 277
below Calco Dam, at Bound Brook miscellaneous measurements	277	miscellaneous measurementsnear Glen Gardner	148
North Branch, at Burnt Mills	167	Spruce Run Reservoir	221
miscellaneous measurements	277	Squankum, Manasquan River at	233
near Chester1		Marsh Bog Brook at	231
near Far Hillsat North Branch	166 264	Stage and water-discharge records, explanation of	13
near Raritan	180	Stage-discharge relation, definition of	28
South Branch at Arch Street at High Bridge	147	Stanton, South Branch Raritan River at	157
at Califon	269	Station Identification numbers	12 281
at Middle Valley1	157	Stone Harbor, Great Channel at	
at Three Bridges	158	at Princeton	194
miscellaneous measurements2		at Watchung	211
near High Bridge	146	East Branch, at Best Lake at Watchung	
Raritan River basin, crest-stage partial-record stations in	264	miscellaneous measurements Streamflow, definition of	
Discharge measurements at low-flow partial-	204	Streamflow, summary of	2
record stations in	269	Substrate, definition of	28
Discharge measurements at miscellaneous site	276	Succasunna, Lamington (Black) River at	270 95
Reservoirs in	222 221	Suffern, NY, Mahwah River near	
Elevation	221	Surface area, definition of	28
Readington, Holland Brook at	163	Surface-Water Quality	15
Reaville, Back Brook near	270	Arrangement	15
Neshanic River at	160	Classification	15 16
Records of stage and water discharge	13	Laboratory measurements	
Recoverable from bottom material, definition of	27 272	On-site measurements	15
Red Bank, Poricy Brook at	272	Sediment	
Swimming River near References, selected	29	Water-temperature	46
Remark Codes for water-quality data	17	Surficial bed material, definition of	28
Reservoirs: See Lakes and reservoirs		Suspended, recoverable, definition of	28
Return period, definition of	27	Suspended sediment concentration, definition of	25
Ridgewood, Saddle River at	118 264	Suspended sediment, definition ofSuspended sediment discharge, definition of	28
Third Neshanic River near	270	Suspended-sediment load, definition of	28
Ringwood Creek near Wanague	89	Suspended-sediment load, definition of Suspended, total, definition of	28
River mile, definition of	27	Sussex, Papakating Creek at	50
Rivervale, Hackensack River at	55 143	Wallkill River near	223
Rockaway Creek at Whitehouse		ON HAMITING KITCH HOLD KEE BEHAVIOR	
South Branch, at Whitehouse	175,268	Tappan, Lake	60
Rockaway River above Reservoir, at Boonton	72	Taxonomy, definition of	_ 28
at Berkshire Valleyat Warren Street at Dover	68 262	Tenakill Brook at Closter Ten Mile Lock, diversions	777
at Pine Brook	75.268	Terms, definition of	27
below Reservoir, at Boonton	73	Thermograph, definition of	28
miscellaneous measurements	275,276	Third Neshanic River near Ringoes	. 270
Rock Brook near Blawenburg	265	Third River at Bloomfield	126
Round Valley Reservoir data	221	Third River at Passaic	158
Royce Brook tributary near Belle Mead	204	Tidal crest-stage stations	. 280
Runoff in inches, definition of	27	Time weighted average, definition of	

PAGE		PAGE
Toms River Chemical 84 observation well 319	Wanaque River at Awosting	84
Toms River near Toms River	at Wanaque	90
Tons per day, definition of	Best Lake at	210
Total coliform bacteria, definition of 23	Stony Brook at	211
Total, definition of	Water Quality Records, explanation of	15
Total discharge, definition of	Water Quality, summary of	2
Total organism count, definition of	Water-Related Reports for New Jersey completed by the Geological Survey in	
Total recoverable, definition of	recent years	20
Tritium Network, definition of	recent years	29
Troy Meadows 1 observation well	Water Year, definition of	29
Tuckahoe River at Head of River261,281	WATSTORE Data, access to	22
Two Bridges, Deepavaal Brook at	WRD, definition of	29
Two Bridges, Passaic River at	Weasel Brook at Clifton	263
Passaic River below Pompton River at 112	Weighted average, definition of	29
Union, West Branch Elizabeth River near 269	Ueccetville Hammonton Creek at	241 272
Union, West Branch Elizabeth River near 269 Union County, ground-water levels	West Allenhurst, Hog Swamp Brook at West Nyack, NY, Hackensack River at	54
ground-water quality	diversions	61
Union County Park observation well	Weston Mills, Lawrence Brook at	213
Upper Cold Brook near Pottersville 174	Weston, Millstone River at	203
Upper Saddle River, Saddle River at 263		135
Ursino Lake, Elizabeth River at, at Elizabeth 132		58
Van Syckel, Mulhockaway Creek at	Wet mass, definition of	24 259
Van Syckel, Mulhockaway Creek at		71
Vanderburg, Big Brook at		268
Vernon, Black Creek near	Whippany River at Morristown	77
Verona, Peckman River at Ozone Avenue at 263	near Pine Brook8	30,268
	Whitehouse, Rockaway Creek at176,26	4,270
Waackaack Creek, at Middle Road near Keansburg. 271	Whitehouse Station, South Branch Rockaway	475
Wading River, West Branch, at Maxwell 247		175
near Jenkins		271 271
Whale Pond Brook near Oakhurst		278
Wallkill River at Franklin		294
miscellaneous measurements		60
near Sussex	WSP, definition of	29
Walnut Brook near Flemington		
Wanaque Reservoir		272
Wanaque Reservoir diversions		24
managac, amgacoa of eek fieal	Looptankton, derinition of	24

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
6	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm ²)
	4.047×10^{-3}	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785×10^{3}	cubic meters (m ³)
	3.785×10^{-3}	cubic hectometers (hm³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
	2.447x10 ⁻³	cubic hectometers (hm ³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm ³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
	2.832×10^{1}	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
(8,)	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, N.J. 08628

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE