

Water Resources Data New Jersey Water Year 1989

Volume 2. Delaware River Basin and tributaries to Delaware Bay

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-89-2 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

CALENDAR FOR WATER YEAR 1989

1988

										1988	8									
S	М	OCT T	OBE	ER T	F	S	S	М	Т	/EME	Т	F	S	S	М	DEC	CEMI W	Т	F	S
2 9 16 23 30	3 10 17 24 31	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	6 13 20 27	21	1 8 15 22 29	2 9 16 23 30	3 10 17 24	4 11 18 25	5 12 19 26	4 11 18 25	5 12 19 26	6 13 20 27	7 14 21 28	1 8 15 22 29	2 9 16 23 30	3 10 17 24 31
_										198	9					1				
		J	ANU	ARY					FE	BRU	ARY	p.				М	IARC	Н		
S 1 8 15 22 29	M 2 9 16 23 30	T 3 10 17 24 31	W 4 11 18 25	T 5 12 19 26	F 6 13 20 27	S 7 14 21 28	5 12 19 26	20	7 14 21 28	W 1 8 15 22	T 2 9 16 23	F 3 10 17 24	S 4 11 18 25	5 12 19 26	M 6 13 20 27	7 14 21 28	W 1 8 15 22 29	T 2 9 16 23 30	F 3 10 17 24 31	S 4 11 18 25
			APRI	L						MAY	,						JUNE			
2 9 16 23 30	M 3 10 17 24	T 4 11 18 25	W 5 12 19 26	T 6 13 20 27	F 7 14 21 28	S 1 8 15 22 29	7 14 21 28	22	T 2 9 16 23 30	W 3 10 17 24 31	T 4 11 18 25	F 5 12 19 26	S 6 13 20 27	S 4 11 18 25	M 5 12 19 26	T 6 13 20 27	W 7 14 21 28	T 1 8 15 22 29	F 2 9 16 23 30	S 3 10 17 24
S	М		JUL'		F	S	S	М	T	JGU: W	ST T	F	S	S	М	SEP.	TEM W	BER T	F	S
2 9 16 23	3 10 17 24 31	4 11 18	5 12 19 26	6 13 20	7 14 21 28	1 8 15 22	6 13 20 27	7 14 21	1 8 15 22	2 9 16	3 10 17 24	4 11 18 25	5 12 19	3 10 17	4	5 12 19	6 13 20 27	7 14 21	1 8 15 22	2 9 16 23 30

United States Department of the Interior

GEOLOGICAL SURVEY

Water Resources Division Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, New Jersey 08628

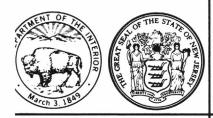
I am pleased to announce the release of our Annual Report "Water Resources Data for New Jersey, Water Year 1989". This report was prepared by the U.S. Geological Survey, in cooperation with the State of New Jersey and several local and federal government agencies.

Once again this year, the report is issued in two volumes:

Volume 1.--Atlantic Slope Basins, Hudson River to Cape May. Volume 2.--Delaware River Basin and tributaries to Delaware Bay.

The report contains records of stream discharge and water-quality measurements, elevations of lakes and reservoirs, major water-supply diversions and tidal elevations. Also included are records of sediment concentrations and records of ground-water quality and ground-water levels. Special sections are devoted to low-flow and crest-stage data as well as summaries of tidal crest elevations in the New Jersey estuaries and intracoastal waterways.

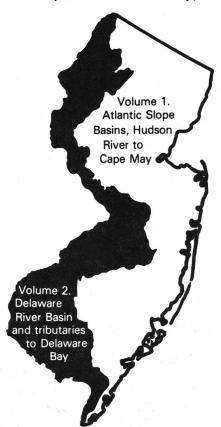
Streamflow data in this report are again presented in the new format that was introduced in the 1988 report. The new format includes tabular presentations of streamflow statistics rather than some of the written text. Station numbers are included in the table of contents. Tables of discontinued surface-water and water-quality stations are also included. Hydrographs have been included for ground-water stations. Another new addition is a bar graph showing precipitation as reported at three National Weather Service stations. We extend our thanks to those who took the time to respond to the questionnaire concerning this new format. The overwhelming majority of the responses preferred the new format to the old.


Copies of this report in paper or microfiche are for sale through the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161. When ordering, refer to U.S. Geological Survey Water-Data Report NJ-89-1 (for volume 1) and NJ-89-2 (for volume 2). For further information on this report, or to change or remove your address from our mailing list, please contact me at the above address or telephone (609) 771-3900.

Sincerely,

William R. Bauersfeld, Chief

Hydrologic Data Assessment Program


iam R. Bourge

Water Resources Data New Jersey Water Year 1989

Volume 2. Delaware River Basin and tributaries to Delaware Bay

by W.R. Bauersfeld, E.W. Moshinsky, E.A. Pustay, and W.D. Jones

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-89-2 Prepared in cooperation with the New Jersey Department of Environmental Protection and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in New Jersey write to

District Chief, Water Resources Division
U.S. Geological Survey
Mountain View Office Park
810 Bear Tavern Road, Suite 206
West Trenton, New Jersey 08628

PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Atlantic Slope Basins, Hudson River to Cape May Volume 2. Delaware River Basin and tributaries to Delaware Bay

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the completion of the report.

Eugene Dorr

Jacob Gibs

Robert D. Schopp

M.D. Morgan word processed the text of the report, and G.L. Simpson drafted the illustrations.

The data were collected, computed, and processed by the following personnel:

W.F.	Calvetti	J.F.	Dudek	D.S.	Kauffman	E. Re	odgers
G.L.	Centinaro	M.D.	Eanes	G.R.	Olshefski	F.L.	Schaefer
R.S.	Cole	C.E.	Gurney	T.J.	Reed	A.J.	Velnich
M.J.	DeLuca	J.D.	Joyner	R.G.	Reiser		

This report was prepared in cooperation with the State of New Jersey and with other agencies under the general supervision of Janice R. Ward, Associate District Chief for Hydrologic Data Assessment and Information Management; Donald E. Vaupel, District Chief, New Jersey; and Stanley P. Sauer, Regional Hydrologist, Northeastern Region.

272 - 101 REPORT DOCUMENTATION	1. REPORT NO.	2.	3. Recipient's Accession No.
PAGE	USGS/WRD/HD-90/290		larger and the second
Title and Subtitle		1000	5. Report Date
Water Resources Data	a - New Jersey, Water Ye	ear 1989	May 1990
Volume 2. Delaware	River Basin and tributa	aries to Delaware Bay	6
. Author(s)	Y Manhandey E A Dr	-otay W D Iones	8. Performing Organization Rept. No.
	. W. Moshinsky, E. A. Pu	istay, w. D. Jones	USGS-WDR-NJ-89-2
Performing Organization Name a U.S. Geological Sur	nd Address vey, Water Resources Div	vision	10. Project/Task/Work Unit No.
Mountain View Offic			11. Contract(C) or Grant(G) No.
810 Bear Tavern Roa			(C)
West Trenton, New J		The same of the same of the	The state of the s
		1440	(G)
2. Sponsoring Organization Name a			13. Type of Report & Period Covered
U.S. Geological Sur	vey, Water Resources Div	vison	Annual - Oct. 1, 1988
Mountain View Offic			to Sept. 30, 1989
810 Bear Tavern Roa	d, Suite 206	1	14.
West Trenton, New J	[10] [15] [10] [10] [10] [10] [10] [10] [10] [10	The state of the s	
stage, discharge, a lakes and reservoir of the report contastations; stage and surface-water sites included are data figages, and 18 low-fat 10 sites, not page	ta for the 1989 water ye and water quality of str rs; and water levels and ains discharge records fd contents for 18 lakes and 50 wells; and wate for 23 crest-stage partiflow partial-record stat art of the systematic da	eams; stage, contents water quality of gro for 24 gaging stations and reservoirs; water r levels for 55 obserual-record stations, 2 ions. Additional water at a collection program	sist of records of , and water quality of und water. This volume ; tide summaries for 3 quality for 30 vation wells. Also tidal crest-stage er data were collected , and are published as
system operated by in New Jersey.	urements. These data re U.S. Geological Survey	present that part or and cooperating State	the national water data and Federal agencies
7. Document Analysis a. Descript	tors		
rate. Gaging stati	ologic data, *Surface wa ons, Lakes, Reservoirs, ling sites, Water Levels	Chemical analyses, Se	water quality, Flow diments, Water
b. Identifiers/Open-Ended Terms	•		Discussion of the control of the con
c. COSATI Field/Group			
			A STATE OF THE STA
8. Availability Statement No To	estriction on distribution	on . 19. Security Class (This	s Report) 21. No. of Pages

This report may be purchased from: National

Unclassified
20. Security Class (This Page)

Unclassified

223

22. Price

<u>CONTENTS</u>	Page
Prefere	iii
Preface	vi
list of ground-water wells, by county, for which records are published	vi i
Introduction	1
Cooperation. Summary of hydrologic conditions	3
Streamflow	1222223333446661777777777777777777777777777777
Ground-water levels	
Special networks and programsExplanation of records	12
Station identification numbers	12
Downstream order system.	12
Latitude-longitude system	13
Data collection and computation.	13
Data presentation	15
Accuracy of the records	15
Other records available	15
Records of surface-water quality	15
Arrangement of records	15
On-site measurements and sample collection	1:
Sediment	16
Laboratory measurements	16
Data presentationRemark codes	17
Records of ground-water levels	17
Data collection and computation	17
Records of ground-water quality.	18
Records of ground-water quality	18
Data presentationCurrent water-resources projects in New Jersey	10
Current water-resources projects in New Jersey	20
Access to WATSTORE data	27
Definition of termsSelected references	20
Publications on Techniques of Water-Resources Investigations	32
List of discontinued gaging stations	30
Station records, surface water	40
Discharge at partial-record stations and miscellaneous sites	160
Crest-stage partial-record stations	17
Miscellaneous sites	177
Tidal crest-stage stationsStation records, ground water	17
Ground-water levels.	17
Secondary observation wellsQuality of ground water	200
Index	21
ILLUSTRATIONS	
Figure 1. Monthly precipitation at three National Weather Service locations	
2. Monthly streamflow at key gaging stations	
3. Annual mean discharge at key gaging stations. 4. Combined usable storage in 13 major water-supply reservoirs	
5. Monthly mean specific conductance at Delaware River at Trenton	
/. Map showing locations of sites with concentrations of Chlordane. DDD. DDE. DDT. or PCB's in	
bottom material greater than 20 μ g/kg, 1988	4
9. Twenty-year hydrographs of one artesian and one water-table observation well	1
10. System for numbering wells and miscellaneous sites	<u>i</u>
11. Map showing location of gaging stations and surface-water quality stations	1: 1: 3: 4:
13. Map showing location of ground-water observation wells	4
14. Map showing locations of ground-water quality stations	4

TABLES

<u>Note</u>.--Data for partial-record stations and miscellaneous sites for surface-water quantity are published in a separate section of the data report. See references at the end of this list for page numbers for this section.

[Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (s) sediment, (t) water temperature, (e) elevation, gage height or contents, (b) biological]

이 그는 그는 그는 그들은 그들은 그는 그는 그는 그는 그들은	age
MAURICE RIVER BASIN	Ar Ar
Maurice River: Little Ease Run near Clayton (d)	46
Maurice River at Norma (dcms)01411500	47
COHANSEY RIVER BASIN Cohansey River at Seeley (cm)01412800	50
DELAWARÉ RIVER BASIN Delaware River at Port Jervis, NY (dct)	52
Neversink River at Godeffroy, NY (dc)01437500	52 57
Delaware River at Montague (d)	60
Delaware River near Delaware Water Gap, PA (d)01440200	62 63
Flat Brook at Flatbrookville (d)	64
Paulins kill at Blairstown (QCm)	67
Yards Creek near Blairstown (d)	70
Delaware River at Belvidere (d)	72
Delaware River at Northampton Street, at Easton, PA (cm)	73 75
Delaware River at Belvidere (d) 01446500 Delaware River at Northampton Street, at Easton, PA (cm) 01447000 Lehigh River at Bethlehem (d) 01453000 Pohatcong Creek at New Village (cm) 01455200	77
Musconetcong River at outlet of Lake Hopatcong (cm)	79
Musconetcong River at Lockwood (cm)	83
Musconetcong River near Bloomsbury (d)	85
Musconetcong River at Riegelsville (cm)	65 67 70 71 72 73 75 77 79 81 83 85 86 88 89 91
Delaware River at Lumberville (cm)	89
Delaware River at Washington Crossing (cm)	93 95
Delaware River at Trenton (dcmts)	95
Assundink Creek at Trenton (d)	107
Crosswicks Creek at Extonville (dcm)	108
Doctors Creek at Allentown (cm)	111
South Branch Rancocas Creek at Vincentown (cm)	114
North Branch Rancocas Creek at Browns Mills (cm)	116
McDonalds Branch in Lebanon State Forest (dcmts)	118
North Branch Rancocas Creek at Pemberton (dcm)	131 134
Pennsauken Creek:	1
North Branch Pennsauken Creek near Moorestown (cm)	135 137
Cooper River at Norcross Road, at Lindenwold (cm)	140
Cooper River at Lawnside (cm)	142 144
Big Timber Creek:	
South Branch Big Timber Creek at Blackwood Terrace (cm)	145 147
Raccoon Creek near Swedesboro (dcm)	148
Oldmans Creek at Porches Mill (cm)	151 153
Salem River at Woodstown (dcm)	154
Salem River at Woodstown (dcm)	157 163
Discharge at partial-record stations and miscellaneous sites	166
Crest-stage partial-record stations	166
Low-flow partial-record stations	170 172
Miscellaneous sites Elevation at tidal crest-stage partial-record stations	174

GROUND WATER STATIONS	S, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED	vii
	Pa	age
G	GROUND-WATER LEVEL RECORDS	
BURLINGTON COUNTY		4
Lebanon State Forest 23-D(NJ-WRD Well N		175 176
Medford 4(NJ-WRD Well N	No. 05-0262)	177
	No. 05-0261)	178
		179
	No. 05-0440)	180
CAMDEN COUNTY	No. 07 0/40\	181
		182
Hutton Hill 1 (N.I-WRD Well N		183
CAPE MAY COUNTY	,	
West Cape May 1(NJ-WRD Well N		184
Higbee Beach 3(NJ-WRD Well N	No. 09-0049)	185
Oyster Lab 4(NJ-WRD Well N	No. 09-0089)	186
	No. 09-0099)	187
CUMBERLAND COUNTY	No. 11-0096)	188
Vocational School 2(NJ-WRD Well N	No. 11-0042)	189
GLOUCESTER COUNTY		
WTMUA Monitoring 1(NJ-WRD Well N		190
Mantua Shallow(NJ-WRD Well N		191
Mantua Deep(NJ-WRD Well)		192
Sterka 1(NJ-WRD Well)		193
Sterka Z		195
Shell Chemical 5 (N.I-UPD Well)		196
Deptford Deep(NJ-WRD Well)		197
Eagle Point 3(NJ-WRD Well)	No. 15-0323)	198
Gloucester Co. Water-table Network		199
HUNTERDON COUNTY	10 Jane 10 1	
Bird(NJ-WRD Well)	No. 19-0002)	200
SALEM COUNTY	No. 33-0251)	201
Salem 2		202
Salem 3(NJ-WRD Well)	No. 33-0253)	203
Point Airy(NJ-WRD Well)	No. 33-0253)	204
SUSSEX COUNTY		
Taylor House(NJ-WRD Well)		205
Secondary observation wells		206
QUAI	LITY OF GROUND-WATER RECORDS	
Cape May County		207
Cumberland County		208
Gloucester County		209
Morris County		210
Salem County		212

WATER RESOURCES DATA - NEW JERSEY, 1989

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of New Jersey each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - New Jersey."

This report series includes records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 24 gaging stations; tide summaries at 3 gaging stations; stage and content at 18 lakes and reservoirs; water quality at 30 surface-water stations and 50 wells; and water levels at 55 observation wells. Records included for ground-water levels are only a part of those obtained during the year. Also included are data for 23 crest-stage partial-record stations and stage only at 2 tidal crest-stage gages. Locations of these sites are shown on figures 11, 12, 13, and 14. Additional water data were collected at various sites not involved in the systematic data-collection program. Discharge measurements were made at 18 low-flow partial-record stations. Miscellaneous data were collected at 10 measuring sites. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

This series of annual reports for New Jersey began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. Beginning with the 1977 water year, these data were published in two volumes.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for New Jersey were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Part 1B." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Books and Open-file Reports Section, Federal Center, Building 4, Box 25425, Denver, CO, 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NJ-89-2." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information, Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 771-3900.

COOPERATION

This report was prepared by the U.S. Geological Survey under cooperative agreement with the following organizations:

New Jersey Department of Environmental Protection, Judith A. Yaskin, Commissioner.

Division of Water Resources, Eric J. Evenson, Acting Director.

New Jersey Water Supply Authority, Rocco Ricci, Executive Director.

North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.

Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.

County of Bergen, Edward R. Ranuska, director of Public Works and County Engineer.

County of Camden, Barton Harrison, Chairman of Camden County Planning Board.

County of Gloucester, Robert V. Scolpino, Director of Planning.

County of Somerset, Thomas E. Decker, County Engineer, and Thomas Harris, Administrative Engineer.

Township of West Windsor, Larry Ellery, Chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 17 surface water stations, and by the U.S. Army Armament Research and Development Center for the collection of records at 3 surface-water stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Funding was also supplied by the following Federal Energy Regulatory Commission licensee: Jersey Central Power and Light Company and Independent Hydro Developers Inc. Assistance was provided by the National Weather Service and the National Ocean Service.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Company; Elizabethown Water Company; Ewing-Lawrence Sewerage Authority; Hackensack Water Company; New Jersey-American Water Company (formerly Monmouth Consolidated Water Company and Commonwealth Water Company); and Jersey Central Power and Light Company.

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow

Streamflow for the 1989 water year was about normal. The year began with below-normal streamflow but ended with well above-normal streamflow. Precipitation ranged from 56.40 inches (133 percent of the 1951-80 30-year mean) at Newark to 48.08 inches (115 percent of the 30-year mean) at Atlantic City. Figure 1 shows monthly precipitation at three National Weather Service sites compared with 30-year means. Combined contents at 13 major water-supply reservoirs was about average at the beginning of the year and, at most sites, water levels were above spillway elevations from April through July (see figure 2).

Water year 1989 began with below-normal streamflow, ranging from 84 percent of long-term normal (1918-89) in the northern part of the State to 72 percent of long-term normal (1926-89) in the southern part. Streamflow continued to be deficient through March, reflecting below-normal precipitation. Snow cover, which accounts for much of the spring runoff, was light, with snowfall about 20 inches less than normal. A drought warning was issued in January in the Delaware River basin as contents of reservoirs in the upper basin in New York fell to about 50 percent of capacity. Water conservation also was stressed in other areas of the State. Streamflow began to increase significantly in March and April, when precipitation was about normal. In May, precipitation was extremely high, with reports of 12.4 inches at Charlotteburg (8.5 inches above normal) and 12.5 inches at Morris Plains (8.3 inches above normal). Some minor flooding was reported in northern communities. Streamflow increased to more than 200 percent of normal in May, Reservoir contents also rose sharply and, by the end of May, the Delaware River reservoirs were at about 88 percent of capacity, and some reservoirs in the Hackensack and Passaic River basins were spilling. Drought warning in the Delaware River basin was lifted on May 12. Above-normal precipitation was recorded in June, July, August, and September, with September precipitation more than 200 percent of normal (see figure 1). At some sites in September, precipitation was recorded on 11 consecutive days. Long Valley, in northern New Jersey, reported 7.7 inches in the 48-hour period September 20-21. Peak flow for the year was recorded at many stream-gaging sites on September 20. No major flooding was reported during these periods, reflecting the uniform precipitation distribution. At the end of the water year, streamflow was 327 percent of normal in the north and 244 percent of normal in the south.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged 122 ft³/s for the water year; this flow is 100 percent of the 1918-89 average, Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 86.3 ft³/s for the water year; this flow is 100 percent of the 1926-89 average. The observed annual mean discharge of the Delaware River at Trenton was 10,510 ft³/s, which is 90 percent of the 1913-89 average. The Delaware River is highly regulated by reservoirs and diversions. The natural flow at Trenton (adjusted for upstream storage and diversion) was 99 percent of normal for the year. Figure 3 compares monthly mean discharge at each of these index gaging stations during the current water year with the long-term normal (1951-80) monthly discharge. Figure 4 compares annual mean discharge at each of these index gaging stations with the mean annual discharge for the period of record.

Combined usable storage in 13 major water-supply reservoirs in New Jersey increased from 55.4 billion gallons (72 percent of capacity) on October 1, 1988, to 67.9 billion gallons (88 percent of capacity) on September 30, 1989. Storage in Wanaque Reservoir increased from 14.9 billion gallons (54 percent of capacity) on October 1, 1988, to 24.2 billion gallons (82 percent of capacity) on September 30, 1989. Pumped storage in Round Valley Reservoir, the largest capacity reservoir in the State, increased from 53.2 billion gallons (96.7 percent of capacity) on October 1, 1988, to 53.4 billion gallons (97.1 percent of capacity) on September 30, 1989.

Water Quality

Below-normal streamflow during the first half of the water year decreased dilution of dissolved solids in streams throughout the State, and increased dilution during the second half of the year as streamflow increased to normal and above normal. Dilution of dissolved solids generally results in an improvement in water quality because concentrations of undesirable substances, such as trace elements, organic compounds, nutrients, bacteria, and nuisance aquatic organisms, usually also are diluted. The degree of dilution is apparent when monthly mean values of specific conductance, which is related directly to dissolved-solids concentration, for 1989 are compared with mean specific-conductance values for an earlier period. Figure 5 compares specific-conductance values for the Delaware River at Trenton, a large drainage area in central New Jersey as well as parts of New York and Pennsylvania, in 1989 with those for 1988, and with the mean for 1981-88. High specific-conductance values are readily apparent for most of the months from October through March. The values for most of the remaining months are normal or below normal. The month of September is omitted because of insufficient data.

Polychlorinated biphenyls (PCBs) and a number of pesticides commonly are detected in New Jersey streams. Table 1 summarizes the frequency of detection of these compounds in bottom sediments from 1976 through 1989. Detection limits during this period were 1.0 μ g/kg (micrograms per kilogram) for PCN, chlordane, and PCB; 1.0 to 10 μ g/kg for toxaphene, and 0.1 μ g/kg for the other compounds. The number of sites at which samples were collected ranged from 13 to 35 per year, with a median of 27 per year. Sites sampled more than once in a year were counted only once. The organochlorine compounds chlordane, dieldrin, DDT (and its decomposition products DDD and DDE), and PCBs are the most commonly detected organic compounds in stream-bottom sediments in the State. Chlordane and dieldrin have been used widely to control soil pests as well as termites and ants. The production and use of DDT, a common, low-cost, broad-spectrum pesticide, have been banned in the United States since 1972. PCBs were used in many industrial and manufactured items (for example, lubricants, dyes, and hydraulic fluids), but their use has been restricted to environmentally closed systems (for example, electrical capacitors and transformers) since 1971. Common sources of PCBs include industrial and municipal effluents, landfills and other soil-disposal sites, and incineration of material containing PCBs (Natural Resources Council, 1979). All of these organochlorine compounds persist in the environment and still are found in surface and ground waters in the State despite the restriction or prohibition of their use.

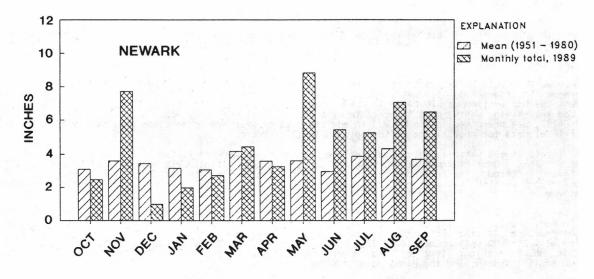
Figure 6 summarizes the frequency of detection of chlordane, DDT, DDD, DDE, and PCBs in New Jersey stream-bottom samples for 1976-89. Only those sites for which water-quality data are presented in either volume of this report are included. Figure 6 shows the percentage of samples collected in which the concentration of at least one compound exceeded 20 μ g/kg·-a level selected to include the highest 15 to 20 percent of values measured nationwide (J. S. Cragwall, Jr., U.S. Geological Survey, written commun., 1977). Although it is detected frequently, dieldrin is not included in figure 6 because a concentration greater than 20 μ g/kg was measured only three times during this period. Figure 7 shows the locations of water-quality stations sampled during the 1989 water year at which the concentration of at least one of these compounds exceeded 20 μ g/kg.

The U.S. Geological Survey maintains a network of saltwater-observation wells in the Coastal Plain of New Jersey to document and evaluate the movement of saline water into freshwater aquifers that serve as sources of water supply. During the 1989 water year, 138 samples were collected in eight counties. The results of the sampling of these wells are presented in the ground-water-quality tables in these reports.

Ground-Water Levels

Changes in ground-water levels during the 1989 water year were determined from a statewide network of observation wells. Ground-water levels in many water-table observation wells rose significantly during the year. Water levels in most observation wells that tap the heavily stressed confined aquifers of the Coastal Plain continued to show long-term net declines. Increased withdrawals of ground water contributed to these declines.

Monthly water levels in two water-table observation wells in 1989 are compared with monthly extremes and long-term averages in figure 8. The wells are the Bird well (NJ-WRD well number 19-0002) in Hunterdon County and the Crammer well (NJ-WRD well number 29-0486) in Ocean County. For further comparison, 20-year water-level hydrographs of two Coastal Plain wells, one water-table well (NJ-WRD well number 05-0689) and one artesian well (NJ-WRD well number 07-0413), are presented in figure 9. In addition, multi-year hydrographs are provided with the 1989 water year water-level data for most of the wells included in this report.


Water levels in the water-table aquifers of the Coastal Plain were declining slowly at the beginning of the 1989 water year. This decline continued through February, when some water levels were near record lows. Water levels rose significantly through the remainder of the water year. One of the greatest increases occurred in the Lebanon State Forest 23-D well (NJ-WRD well number 05-0689), where the water level rose by 6.1 feet during the last 7 months of the water year.

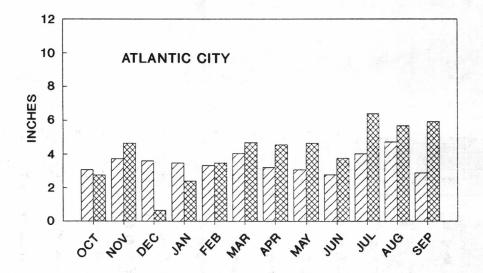

Observation wells that tap the heavily stressed confined Coastal Plain aquifers continued to show long-term net declines in many areas. New lows of record were set in nine Coastal Plain artesian observation wells. The greatest water-level decline in the 1989 water year occurred in the Wenonah-Mount Laurel aquifer at the New Brooklyn Park 3 observation well (NJ-WRD well number 07-0478), where the previous record low was exceeded by 4.18 feet. Other aquifers in which previous lows of record were exceeded include the Potomac-Raritan-Magothy aquifer system, the Englishtown aquifer system, and the Piney Point aquifer.

Table 1.--Frequency of detection of organochlorine and organophosphorus compounds in bottom materials of New Jersey streams, for water years, 1976-89

COMPOUND	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989
Organochlorine compounds				***************************************										
Chlordane	•	Θ	Θ	•	•	Θ	•	0	Θ	•	•	Θ	•	•
DDD :	•	Θ	•	•	•	•	•	•	•	0	•	•	•	
DDE	•		Θ	Θ	Θ	Θ	•	Θ	Θ		•	•	•	0
DDT	•	Θ	Θ	Θ	Θ	•	•	Θ		-	θ	•	Θ	Θ
PCB	Θ	Θ	Θ	Θ	•	•	•	0	•	Θ	Θ	Θ	0	Θ
Dieldrin	•	Θ	θ	Θ	\odot	•		θ	Θ	, 0	Θ	Θ	Θ	Θ
Endosul fane		0		0	0	0	0	0	0	0	0	Θ	0	0
Heptachlor Epoxide	0	0	0	0	0	0	0	0	0		Θ	Θ	Θ	Θ
Aldrin, Lindane, Endrin Toxaphene, Heptachlor	0	0	0	0	0	0	0	0	0	0	0	0	Θ	0
Perthane														0
PCN			0	0	0	0	0	0	0	0	0	0	0	0
Mirex					0	0	0	0	0	0	0	0	0	0
Organophosphorus compounds														
Methoxychlor, Malathion, Parathion, Diazanon, Methyl Parathion, Ethyl Trithion, Methyl Trithion, Ethion			0	0	0	0	0	0	0	0	0	0	Θ	Θ

Frequency (rounded to nearest whole number): ○ (0 - 25%), ○ (26 - 50%), ○ (51 - 75%), ● (76 - 100%)

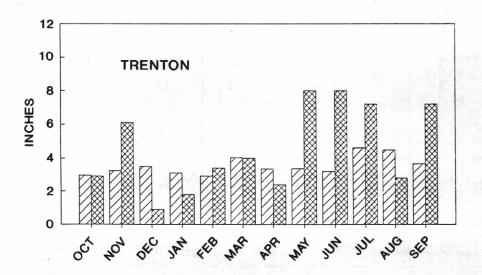
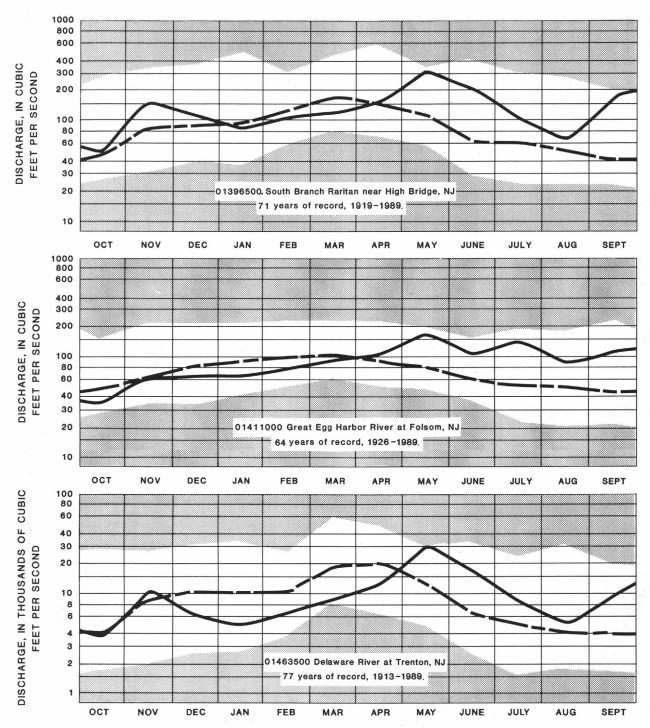



Figure 1.--Monthly precipitation at three National Weather Service locations.

Unshaded area.--Indicates range between highest and lowest mean recorded for the month, prior to 1989 water year.

Broken line.--Indicates normal (median of the monthly means) for the standard reference period, 1951-1980.

Solid line.--Indicates observed monthly mean flow for the 1989 water year.

Figure 2.--Monthly mean discharge at index gaging station.

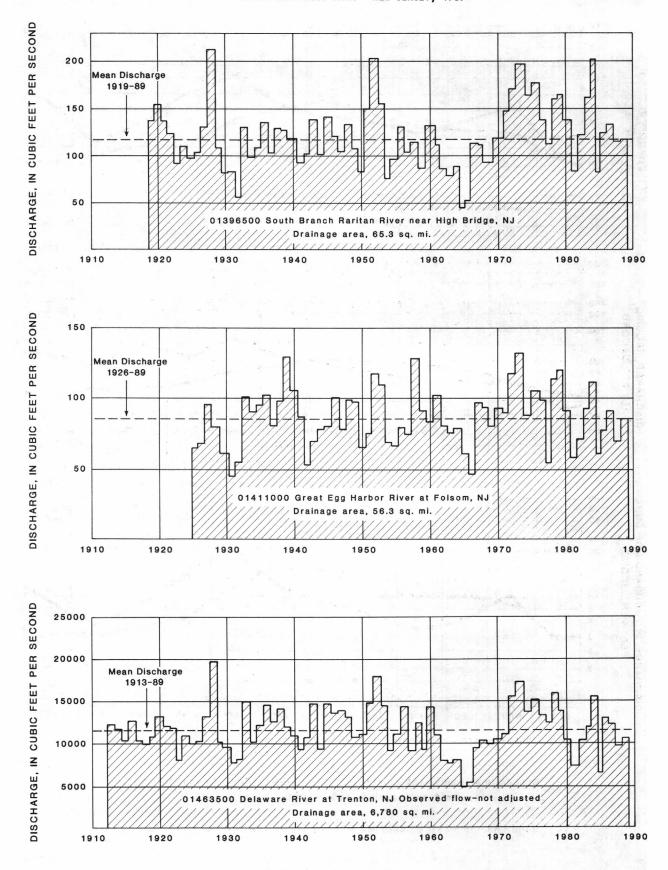


Figure 3. -- Annual mean discharge at index gaging stations.

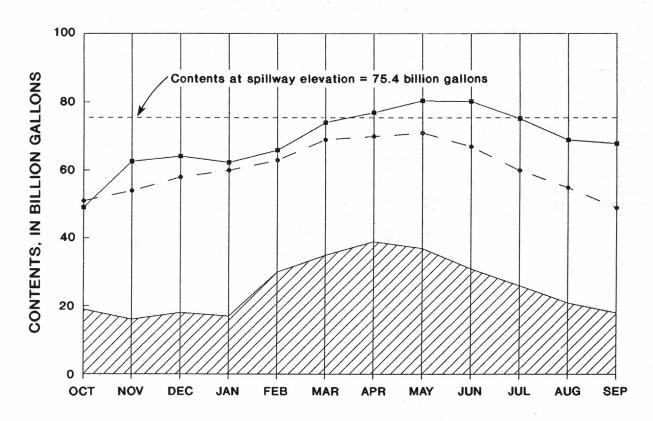


Figure 4.--Combined usable storage in 13 major water-supply reservoirs.

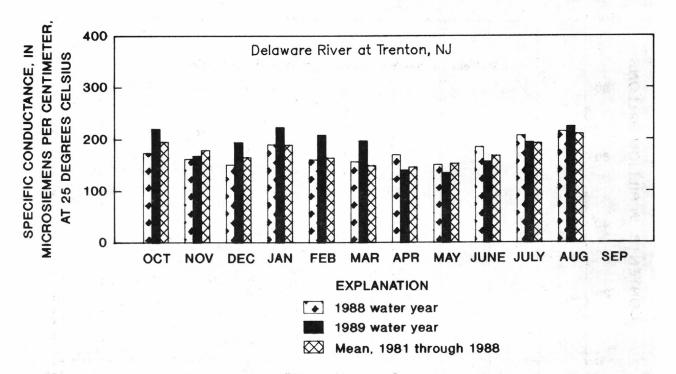
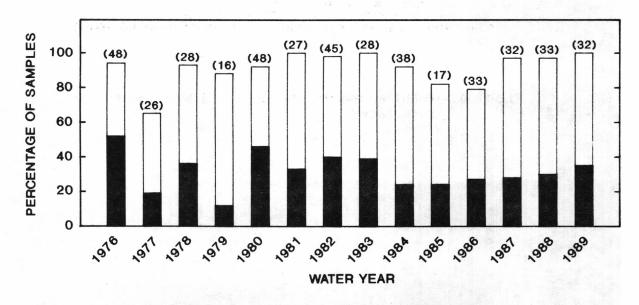



Figure 5.--Monthly mean specific conductance at Delaware River at Trenton.

EXPLANATION

- (48) Number of samples collected
- Concentration of one or more compounds exceeded 20 micrograms per kilogram
- One or more compounds detected

Figure 6.--Frequency of detection of chlordane, DDT, DDE, DDD and PCBs in stream bottom material.

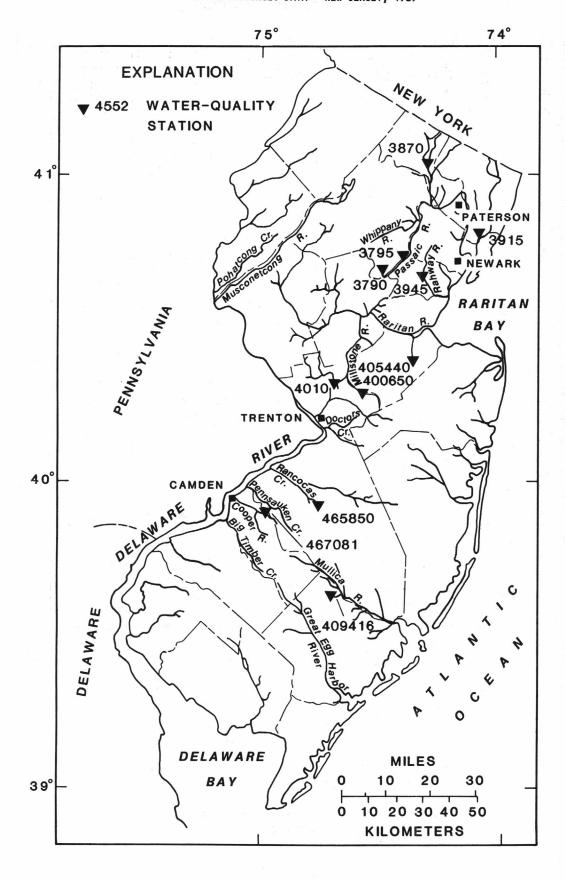
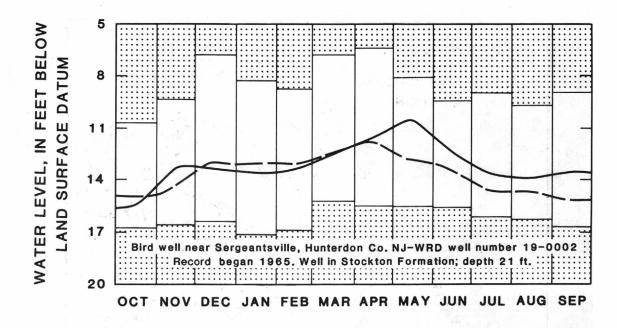
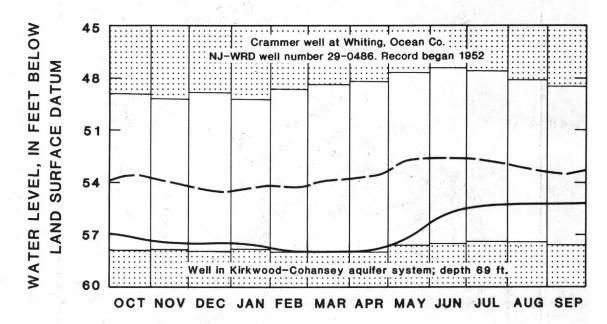
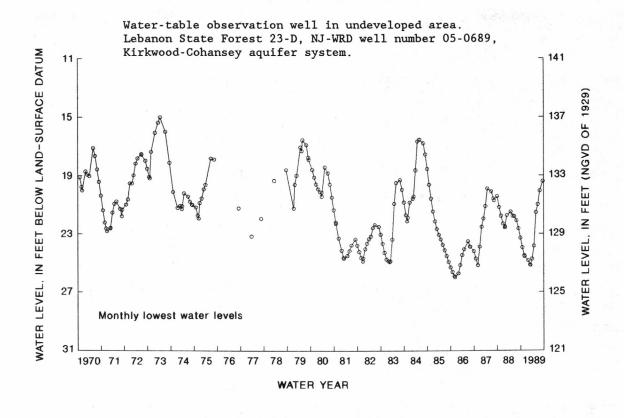




Figure 7.--Locations of water-quality stations with concentrations of chlordane, DDD, DDE, DDT, or PCBs in bottom material greater than 20 micrograms per kilogram, water year 1989.



Unshaded area -- Indicates range between highest and lowest recorded monthly water levels, prior to current year.

Dashed line -- Indicates average of monthly water levels, prior to current year.

Solid line -- Indicates monthly mean water level for the current year.

Figure 8.--Monthly ground-water levels at key water-table observation wells.

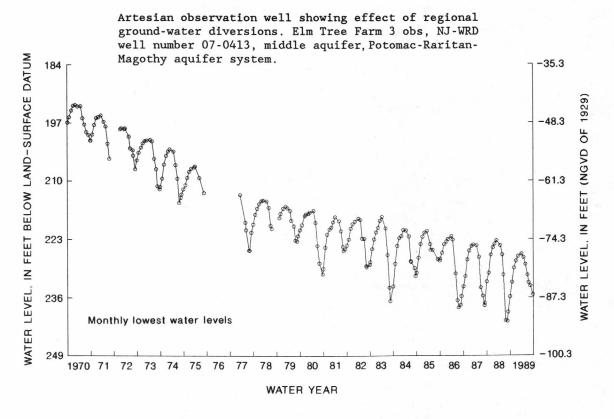


Figure 9.--Twenty-year water-level hydrographs of one artesian and one water-table observation well.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. The Bench-mark Network station published in this report is McDonalds Branch in Lebanon State Forest, NJ (01466500).

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. NASQAN stations published in this report are: Passaic River at Little Falls, NJ (01389500), Raritan River, at Queens Bridge, at Bound Brook, NJ (01403300), Toms River near Toms River, NJ (01408500), West Branch Wading River at Maxwell, NJ (01409815), Maurice River at Norma, NJ (01411500), and Delaware River at Trenton, NJ (01463500).

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). No NTN stations are published in this report.

<u>Radiochemical Program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. The Radiochemical Program station published in this report is Delaware River at Trenton, NJ (01463500).

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information or the occurrence of tritium in the Nation's surface waters. In addition to the surface water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. No Tritium Network stations are published in this report.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1989 water year that began October 1, 1988, and ended September 30, 1989. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 11, 12, 13, and 14. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. Generally the "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 01396500, which appears just to the left of the station name, includes the two-digit Part number "01" plus the 6-digit downstream-order number "396500". The Part number designates the major drainage basin; for example, Part "01" covers the North Atlantic slope basins.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

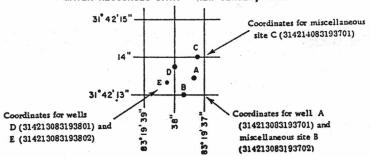


Figure 10.--System for numbering wells and miscellaneous sites (latitude and longitude).

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 11 and 12.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage, with digital recorders that punch stage values on paper tapes at selected time intervals, or with Data Collection Platforms (DCP) that electronically record and then transmit the data via satellite to ground receiving stations. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or

nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflowoutflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each gaging station consist of three parts, the manuscript or station description, the data table for the current water year, and tables of monthly, annual, and other statistics. The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers or the Delaware River Basin Commission.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the offices whose addresses are given on the back of the title page of this report to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly summaries. In the monthly summary below the daily table, the line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month for some stations can also be expressed in inches (line headed "IN"). Figures for runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Beginning with the 1988 water year, below the monthly summary, statistical figures are listed for current water year and period of record. The first heading is the average monthly flow data for the period of record. The line headed "MEAN" gives the average flow in cubic feet per second for that month for the period of record. The lines headed "MAX" and "MIN" give the highest and lowest mean for that month and the water year (WY) in which it occurred. Below the monthly flow statistics, summary statistics for the current water year and period of record are listed. The line headed "AVERAGE FLOW" is the average for the current year and period of record. The following lines list the extremes and date of each for the current year and period of record. The line headed "ANNUAL RUNOFF (INCHES)" is the annual total discharge in inches. The following lines list the discharges for the 10, 50, and 95 percentiles.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flow partial-record stations. These measurements are generally made in times of drought or flow partial-record stations. These measurements are generally made in times of drought or flow partial-record stations. These measurements are generally made in times of drought or flow partial-record stations. These measurements are generally made in times of drought or flow partial-record stations.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated" or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 $\rm ft^3/s$; to the nearest tenth between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures for more than 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge- measurement notes, gage-height records, temperature measurements, and rating tables is on file in the New Jersey District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 10.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites which are not at a surface-water daily record station appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

Water-quality data must represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made onsite when the samples are collected. In addition, specific procedures must be used in collecting, treating, and shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. These references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey, New Jersey District office.

In streams, concentrations of various constituents may vary within the cross section depending on variables such as flow rate, the sources of the constituents, and mixing. Generally, constituents in solid phases are more variable in the cross section than are dissolved constituents. In many cases, samples must integrate several parts of the stream cross section to be representative, especially if loads will be calculated. One sample may be representative of the cross section when the distribution of constituents is homogeneous. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from several verticals.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. In some instances, apparent inconsistencies may exist in the data. For example, the orthophosphate-phosphorus concentration may exceed total phosphorus concentration. However, the difference in the inconsistent values normally is smaller than the precision of the analytical techniques. Inconsistencies between pH and carbonate and bicarbonate concentrations are commonly caused by intake or loss of carbon dioxide by the sample before it can be analyzed.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Geological Survey, New Jersey District Office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, maximum, minimum and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the New Jersey District Office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspenced-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical-oxygen demand and for fecal coliform and fecal streptococcal bacteria are analyzed at the District laboratory or at the New Jersey Department of Health, Division of Laboratories and Epidemiology. Samples for nutrients are analyzed at the New Jersey Department of Health or at the Geological Survey Laboratory in Arvada, Colorado. Sediment samples are analyzed in the Geological Survey Laboratory in Harrisburg, Pennsylvania. All other samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

In March 1989 the National Water-Quality Laboratory discovered a bias in the turbidimetric method for sulfate analysis, indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989. Sulfate values in this report have not been corrected for this bias.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceeding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites which are not at a surface-water daily record station are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the PRINTED OUTPUT	ne water-quality data in this report: REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
ι	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)

Records of Ground-Water Levels

Biological organism estimated as dominant

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in New Jersey are shown in figure 13.

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the NJ-WRD well number, a hyphenated 6 digit identification number assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. The first two digits are a code for the county in which the well is located and the last four digits are a sequence number. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water quality analyses, and on the corresponding location maps in these reports.

Water-level records are obtained from direct measurments with a steel tape, from the punched tape of a water-level recorder, or from water-level extremes recorder. Beginning in the 1977 water year, water-level recorders were removed from some wells and replaced by water-level extremes recorders. The extremes are read from these recorders at about three month intervals, but the actual dates of occurrence of these extremes (highest and lowest water-levels) are unknown. In these reports, the water-level extremes are given together with the manually measured water levels.

Most water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with water-level recorders are reported for every fifth day and the end of each month (eom).

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. All measurements published herein are reported to a hundredth of a foot.

Data Presentation

Each well record consists of three parts, the station description, the data table of water levels observed during the water year, and a multi-year hydrograph. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; (a landline location designation); the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of record and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum or elevation of water level. For wells equipped with recorders, only abbreviated tables are published. Mean daily water-levels are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Records of Ground-Water Quality

Records of ground-water quality in this report consist of only one set of measurements for the water year. Because ground-water movement is normally slow compared to surface water, frequent measurements are not necessary for monitoring purposes. More frequent measurements may be necessary for studying ground-water problems, trends, or processes. Locations of wells for which water-quality data are published are shown in figure 13.

Laboratory Measurements

In March 1989 the National Water-Quality Laboratory discovered a bias in the turbidimetric method for sulfate analysis, indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989. Sulfate values in this report have not been corrected for this bias.

Data Collection and Computation

The records of ground-water quality in this report were obtained from water-quality monitoring studies in specific areas. Consequently, chemical analyses are presented for some counties but not for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

In ground-water observation wells, water in the casing may not be representative of aquifer water quality. To collect samples representative of aquifer water, samples are collected only after at least three casing volumes of water have been pumped from the well and measurements of temperature, specific conductance, and pH have stabilized during the pumping.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County and are identified by NJ-WRD well number. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

CURRENT WATER RESOURCES PROJECTS IN NEW JERSEY

The Geological Survey is currently involved in a number of hydrologic investigations in the State of New Jersey. The following is a list of these investigations. Results are published at the conclusion of short-term projects or periodically in the case of long-term projects. Hydrologic data from these projects are entered into the WATSTORE data base. Subsequent sections contain information on recent publications and on WATSTORE.

Agricultural Water Demand Model for the State of New Jersey

An Assessment of Impacts of Rolling Knoll Landfill on Nearby Water Resources

Assessement of Ground-Water Resources in the Vicinity of Ground-Water Contamination Sites in Greenwich Township, Gloucester County, New Jersey

Assessment of the Water Resources of Logan Township, Gloucester County, New Jersey

Compositional Modeling of Organic Transport and Biodegradation in the Unsaturated Zone and Ground Water

Effects of Streamflow Diversions on the Water-Quality of Selected New Jersey Estuaries

Evaluation of Field Sampling Techniques and Analytical Methods for Organic Compounds in Ground-Water

Flood Characteristics of New Jersey Streams

Flood Insurance Studies for Federal Insurance Administration, HUD

Geochemical Effects on the Corrosivity of Ground Water in the Kirkwood-Cohansey Aquifer in the New Jersey Coastal Plain

Geochemical Processes Controlling Aluminum and Sulfate Transport in Acidic Surface, Ground and Soil Waters In a Watershed In the New Jersey Coastal Plain

Geohydrology of Picatinny Arsenal in Morris County, New Jersey

Geophysical and Water-Quality Reconnaissance of the Ciba-Geigy Superfund Site, Toms River, Ocean County, New Jersey Geophysical Characteristics of Aquifers in New Jersey

Ground Water Data Collection Network

Ground-Water Contamination by Light Chlorinated Hydrocarbons at Picatinny Arsenal, Morris County, New Jersey

Ground-Water Flow and Water Quality, Newark Basin, New Jersey

Ground-Water Quality and its Relationship to Geohydrology and Land Use in the Outcrop Area of the Potomac-Raritan-Magothy Aquifer System, Mercer and Middlesex Counties, New Jersey

Ground-Water Quality of the Central Passaic River Basin, Northeastern, New Jersey

Ground-Water Resources Investigation of the Rockaway River Buried Valley

Ground-Water Resources of the Buried Valley and Carbonate Rock Systems of the Lamington River and the South Branch Raritan River Drainage Areas in Northern New Jersey

Hydrologic Conditions in the Jacobs Creek, Stony Brook and Beden Brook Drainage Basins in West Central New Jersey, 1986-1988

Hydrologic Conditions of the Upper Rockaway River Basin, New Jersey, 1984-1986

Hydrologic Processes With Special Emphasis on Ground-Water Quality near Camden, New Jersey

Hydrologic Processes With Special Emphasis on Ground-Water Quality near South River, New Jersey

Hydrology of the Kirkwood-Cohansey Aquifer System in Metedeconk and Toms River Basin

Interpretation of Water Quality Trends in New Jersey Streams, 1976-85

Investigation of Naturally Occurring Radioactive Substances in Ground Water of the Triassic Formations in New Jersey

Land Subsidence Related to Ground-Water Withdrawls in the Coastal Plain Aquifer of New Jersey

Mobility, Transport and Fate of Naturally Occurring Radionuclides in Ground-Water Newark Basin, New Jersey

Modeling and Experimental Investigation of Hydrocarbon Transport and Biodegradation in the Unsaturated Zone

Natural Radioactivity in Ground-Water of the Kirkwood-Cohansey Aquifer System, Southern Coastal Plain, New Jersey

Optimal Withdrawls from a Coastal Aquifer Subject to Salt-Water Encroachment: Numerical Analysis and Case Study

Potential Effects of Climate Change on the Water Resources of the Delaware River Basin

Preliminary Natural Resource Surveys of Superfund Sites in New Jersey

Quality of Water Data Collection Network

Regionalization of Low Flows for New Jersey Streams

Removing Volatile Ground-Water Contaminants by Inducing Air-Phase Transport

Somerset County Flood-Monitoring Network

Spatial Analysis of Statewide Water-Quality Data

Surface Water Data Collection Network

Surfactant Sorption to Soil and its Effect on the Distribution of Anthropogenic Organic Compounds

Water Levels in Major Artesian Aquifers of the New Jersey Coastal Plain and Surrounding Areas, 1989

Water Resources and Saltwater Intrusion of the Holly Beach-Cohansey, Rio Grande, Atlantic City 800-Foot Sand, and Piney Point Aquifers, Cape May County

Water Table, Hydrologic Properties and Ground-Water Quality of the Kirkwood-Cohansey Aquifer System, Gloucester County and Maurice River Basin North of Norma, New Jersey

Water Use

WATER-RELATED REPORTS FOR NEW JERSEY COMPLETED BY THE GEOLOGICAL SURVEY IN RECENT YEARS

- Ayers, M.A. and Leavesley, G. H., 1989, Assessment of the potential effects of climate change on water resources of the Delaware River basin: Work plan for 1988-90: U.S. Geological Survey Open-File Report 88-478.
- Ayers, M.A., and Pustay, E.A., 1988, New Jersey ground-water quality: National Water Summary 1986, U.S. Geological Survey Water Supply Paper 2325, p. 369-376.
- Baehr, A. L., and Bruell, C. J., 1989, Application of the Stefan-Maxwell equations to determine limitations of Fick's law when modeling organic vapor transport in sand columns: Water Resources Research.
- Baehr, A. L., Hoag, G. E., and Marley, M. C., 1988, Removal of volatile contaminants from the unsaturated zone by inducing advective air-phase transport: Contamination Hydrology.
- Baehr, A. L. and Hult, M. F., 1988, Determination of the air-phase permeability tensor of an unsaturated zone at the Bemidji, Minnesota, Research Site: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Barringer, J. L. and Johnsson, P. A., 1989, Theoretical considerations and a simple method for measuring alkalinity and acidity in low-pH waters: U.S. Geological Survey Water-Resources Investigations Report 89-4029.
- Barringer, J. L., Ulery, R. L., and Kish, G. R., 1987, A methodology for relating regions of corrosive ground water to hydrogeologic variables in the New Jersey Coastal Plain: Proceedings of International Geographic Information Systems Symposium.
- Barringer, T. H., Dunn, Dennis, Battaglin, W. A., and Vowinkel, E. F., 1988, Relating land use to ground-water quality: Methods and problems: Water Resources Bulletin.
- Barringer, T. H., Dunn, Dennis, Ulery, R. L., Declercq, E. P., 1987, Two-dimensional display of geographically referenced three-dimensional hydrologic vector fields: Proceedings of International Geographic Information Systems Symposium.
- Barton, Cynthia, Vowinkel, E. F., and Nawyn, J. P., 1987, Preliminary assessment of water quality and its relation to hydrogeology and land use: Potomac-Raritan-Magothy aquifer system, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4023.
- Barton, G. J., and Krebs, Martha, 1989, Hydrogeologic reconnaissance of the Swope Oil Superfund site and vicinity, Camden and Burlington Counties, New Jersey: U.S. Geological Survey Open-File Report 89-402.
- Battaglin, W. A. and Hill, M. C., 1988, Simulated effects of future withdrawals on water levels in the northeastern Coastal Plain aquifers of New Jersey: U. S. Geological Survey Water-Resources Investigations Report 88-4199.
- Battaglin, W. A., Ulery, R. L., and Vowinkel, Eric, 1988, Method for simulating water-table altitudes from stream and drainage-basin locations by use of a geographic information system: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Clark, J. S. and Paulachok, G. N., 1987, Water levels in the principal aquifers of Atlantic County and vicinity, New Jersey, 1985-86: New Jersey Department of Environmental Protection.
- Ehlke, T. A., 1988, Microbiological transformation of trichloroethylene in soil at Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-10, 1988.
- Fulton, J. L., 1989, Application of a distributed-routing rainfall-runoff model to flood-frequency estimation in Somerset County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 89-4210.
- Fusillo, T. V. and Ehlke, T. A., 1987, Movement and fate of chlorinated solvents in ground water: Research activities at Picatinny Arsenal, New Jersey: U.S. Geological Survey Open-File Report 87-395.
- Gibs, Jacob and Imbrigiotta, T. E., 1988, Evaluation of well-purging criteria for sampling purgeable organic compounds: Proceedings of the Second National Outdoor Action Conference on Aquifer Restoration.
- Gibs, Jacob and Imbrigiotta, T. E., 1988, Comparison of well-purging criteria for sampling purgeable organic compounds: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Gronberg, J. M., Birkelo, B. A., and Pucci, A. A., Jr., 1987, Selected borehole geophysical logs and drillers' logs northern Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 87-243.
- Harriman, D. A., Gordon, A. D., and Pope, D. A., 1988, Water-quality data for the Potomac-Raritan-Magothy aquifer system in the northern Coastal Plain of New Jersey, 1923-86: New Jersey Department of Environmental Protection.
- Hay, L. E., and Battaglin, W. A., 1989, Effects of land-use buffer size on Spearman's partial correlations of land-use and shallow ground-water quality: U.S. Geological Survey Water-Resources Investigations Report 89-4163.
- Hay, L. E., McCabe, G. J., Jr., Wolock, D. M., and Ayers, M. A., 1989, Simulation of precipitation by weather-type analysis: Water Resources Research.
- Hill, M. C., 1988, Analysis of accuracy of approximate, simultaneous, nonlinear confidence intervals on hydraulic heads in analytical and numerical test cases: Journal of Water Resources.
- Hill, M. C., and Battaglin, W. A., 1989, Simulated effects of ground-water pumpage in New Jersey's Coastal Plan: Journal of Hydraulic Engineering.
- Imbrigiotta, T. E. and Martin, Mary, 1988, Site description and summary of research activities on the movement and fate of chlorinated solvents in ground water at Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 15-30, 1988.
- Imbrigiotta, T. E., Martin, Mary, Sargent, B. P., and Voronin, L. M., 1988, Preliminary results of a study of the chemistry of ground water at the Building 24 research site, Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.

- Kammer, J. A. and Gibs, Jacob, 1989, An analytical technique for screening purgeable volatile organic compounds in water: U.S. Geological Survey Open-File Report 89-53.
- Kammer, J. A. and Smith, J. A., 1988, Collection and analysis of unsaturated-zone soil gas for volatile organic compounds: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Kish, G. R., Barringer, J. L., and Ulery, R. L., 1987, Corrosive ground water in the Kirkwood-Cohansey aquifer system in the vicinity of Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4181.
- Lacombe, P. J., and Duran, P.B., 1988, Map of bedrock-surface topography in parts of the Paterson and Pompton Plains Quadrangles, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 88-4061, 1 p.
- Lacombe, P. J., Sargent, B.P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Lacombe, P. J. and Duran, P. B., 1988, Map of bedrock surface topography in parts of Paterson and Pompton Plains quadrangles, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 88-4061.
- Leahy, P. P., Paulachok, G. N., Navoy, A. S., and Pucci, A. A., Jr., 1987, Plan of study for the New Jersey bond issue ground-water-supply investigations: New Jersey Geological Survey Open-File Report 87-1.
- Lord, D. G., Barringer, J. L., Johnsson, P. A., Schuster, P. F., Walker, R. L., Fairchild, J. E., Sroka, B. N., and Jacobsen, E., 1988, Hydrogeochemical data from an acidic deposition study at McDonalds Branch basin in the New Jersey Pinelands: U.S. Geological Survey Open-File Report 88-500.
- Louis, J. B., and Vowinkel, E. F., 1989, Effect of agricultural chemicals on ground-water quality in the New Jersey Coastal Plain: Proceedings of the 1989 National Research Conference, Pesticides in Terrestrial and Aquatic Environments.
- Martin, Mary, 1987, Methodology and use of interfacing regional and subregional ground-water flow models: Proceedings of the National Water Well Association Conference.
- Martin, Mary, 1987, Ground-water flow in the New Jersey Coastal Plain aquifers: U.S. Geological Survey Open-File Report 87-528.
- Martin, Mary, 1988, Preliminary results of a study to simulate trichloroethylene movement in ground water at Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- McCabe, G. J., Jr., 1989, A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area: U.S. Geological Survey Water-Resources Investigations Report 89-4183.
- McCabe, G. J., Jr., and Ayers, M.A., 1989, Effect of global warming on soil moisture and runoff in the Delaware River basin: Water Resources Bulletin.
- McCabe, G. J., Jr., Hay, L. E., Kalkstein, L. S., Ayers, M. A., and Wolock, D. M., 1989, Simulation of precipitation by weather-type analysis: Proceedings of the American Society of Civil Engineers Meeting.
- McCabe, G. J., Jr., and Wolock, D. M., 1989, Effects of climatic change in the Delaware River basin on the Thornthwaite moisture index: Climatic Change.
- Price, C. V., Wolock, D. M., Ayers, M. A., 1989, Extraction of terrain features from digital elevation models: Proceedings of the American Society of Civil Engineers.
- Pucci, A. A., Jr., Harriman, D. A., Ervin, E. M., Bratton, Lisa, and Gordon, Alison, 1989, Lead and cadmium contamination associated with saltwater intrusion in a ground-water basin of New Jersey: Science.
- Pucci, A. A., Jr., Murashige, J. E., and Pope, D. A., 1987, Hydraulic properties of the middle and upper aquifers of the Potomac-Raritan-Magothy aquifer system in the northern Coastal Plain of New Jersey: New Jersey Department of Environmental Protection.
- Pucci, A. A., Jr. and Owens, J. P., 1988, Geochemical variations in a core of Coastal Plain aquifers and confining units near Freehold, New Jersey: Groundwater.
- Smith, J. A., Chiou, C. T., Kammer, J. A., Kile, D. E., 1989, Effect of soil moisture on the sorption of trichloroethene vapor to vadose-zone soil at Picatinny Arsenal, New Jersey: Environmental Science and Technology.
- Smith, J. A., Harte, P. T., and Hardy, M. A., 1987, Trace-metal and organochlorine residues in sediments of the upper Rockaway River, New Jersey: Bulletin of Environmental Contamination and Toxicology.
- Smith, J. A., Kammer, J. A., Chiou, C. T., and Kile, D. E., 1988, Distribution of trichloroethene in soil gas above contaminated ground water at Picatinny Arsenal, New Jersey: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Smith, J. A. and Witkowski, P. J., 1987, Partition of nonionic organic compounds in aquatic systems: Reviews of Environmental Contamination and Toxicology.
- Smith, J. A., Witkowski, P. J., and Fusillo, T. V., 1987, Manmade organic compounds in the surface waters of the United States: A review of current understanding: U.S. Geological Survey Circular 1007.
- Spitz, F. J. and Barringer, T. H., 1989, Simulation of ground-water flow in coastal southern New Jersey: Proceedings of the Sixth Symposium on Coastal and Ocean Management.
- U.S. Geological Survey, 1989, Water Resources data for New Jersey, 1988--part 1: U.S. Geological Survey Water-Data Report NJ-88-1, 359 p.

- U.S. Geological Survey, 1989, Water Resources data for New Jersey, 1988--part 2: U.S. Geological Survey Water-Data Report NJ-88-2, 217 p.
- Vowinkel, E. F. and Battaglin, W. A., 1988, Methods of evaluating the relation of ground-water quality to land use in a New Jersey Coastal Plain aquifer system: Proceedings of the Fourth Toxic Substances Hydrology Technical Meeting, September 25-30, 1988.
- Vowinkel, E. F. and Battaglin, W. A., 1988, Evaluation of ground-water quality and its relation to hydrogeology and land use in a New Jersey Coastal Plain aquifer system using a geographic information system: U.S. Environmental Protection Agency Conference on Wellhead Protection.
- Vowinkel, E. F. and Battaglin, W. A., 1988, Effects of hydrogeology, well construction, and land use on the evaluation of regional ground-water quality: Proceedings of the International Association of Hydrological Sciences.
- Wolock, D. M., Ayers, M. A., and McCabe, G. J., Jr., 1989, Prediction of the effects of climate change on watershed runoff in the Delaware River basin: Proceedings of the American Society of Civil Engineers Meeting.
- Wolock, D. M., and Hornberger, G. M., 1989, Hydrological effects of changes in levels of atmospheric carbon dioxide: Journal of Forecasting.
- Zapecza, O. S., Brickey, D. W., and Ulery, R. L., 1988, Delineation of lineaments by radar and photographic imagery in the northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 88-4121.

ACCESS TO WATSTORE DATA

The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey. A variety of useful products ranging from data tables to complex statistical analyses such as Log Pearson Type III statistics can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia and consists of related files and data bases.

- Station Header File Contains descriptive information on over 440,000 sites throughout the United States and it's territories where the U.S. Geological Survey collects or has collected data.
- Daily Values File Contains over 220 million daily values of stream flows, stages, reservoir contents, water temperatures, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
- Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage height values at surfce-water sites.
- Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radiochemical characteristics of both surface and ground water.
- Ground-Water Site Inventory Data Base Contains inventory data for over 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, wellconstruction history, and one-time field measurements such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requestor will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092

In addition to providing direct access to WATSTORE, the National Water Data Exchange (NAWDEX) services include datasearch assistance, data dissemination, and data referrals. Data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk. The request for water-data should be forwarded to the local Geological Survey District office:

District Chief
U.S. Geological Survey
Mountain View Office Park
810 Bear Tavern Road, Suite 206
West Trenton, New Jersey 08628

If the district office does not have the facility to fulfill the request, it will be referred to the National Water Data Exchange (NAWDEX) office in Reston, Virginia.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

<u>Aquifer</u> is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Aquifer codes and geologic names:

The following list shows the aquifer unit codes and geologic names of the formations in which the sampled wells are finished. The aquifer unit codes also appear in the ground-water quality and ground-water level tables.

```
Stratified drift
                          Stratified drift
Holly Beach water-bearing zone
Cape May Formation, undifferentiated
Cape May Formation, estuarine sand facies
Cohansey Sand
Kirkwood-Cohansey aquifer system
Rio Grande water-bearing zone of the Kirkwood Formation
Atlantic City 800-foot sand of the Kirkwood Formation
112HLBC
112CPMY
112ESRNS
121CNSY
121CKKD
122KRKDU
122KRKDL
124PNPN
                           Piney Point aquifer
Vincentown Formation
125VNCN
211MLRW
211EGLS
                           Wenonah-Mount Laurel aquifer
                          Englishtown aquifer system
Potomac-Raritan-Magothy aquifer system, undifferentiated
211MRPA
                          Upper aquifer, Potomac-Raritan-Magothy aquifer system
Middle aquifer, Potomac-Raritan-Magothy aquifer system
Lower aquifer, Potomac-Raritan-Magothy aquifer system
Lower aquifer, Potomac-Raritan-Magothy aquifer system
Old Bridge aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex,
Monmouth Counties)
211MRPAU
211MRPAM
211MRPAL
2110DBG
                           Monmouth Counties)
Farrington aquifer, Potomac-Raritan-Magothy aquifer system (Mercer, Middlesex, Monmouth Counties)
Brunswick Group, undifferentiated
Hook Mountain Basalt of Olsen (1980)
Passaic Formation of Olsen (1980)
211FRNG
227BRCK
227HKMN
227PSSC
230TRSC
                            Triassic System
                          Lockatong Formation
Stockton Formation
Devonian System
Leithsville Formation
231LCKG
231SCKN
340DVNN
374LSVL
400PCMB
                           Precambrian Erathem
```

<u>Artesian</u> means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal streptococcal bacteria</u> are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Bedload</u> is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Benthic invertebrates are invertebrate animals inhabiting the bottoms of lakes, streams, and other water bodies. They are useful as indicators of water quality.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m 3), and periphyton and benthic organisms in grams per square mile (g/m 2).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

 $\frac{\text{Chlorophyll}}{\text{In plants.}} \text{ refers } \text{ to the green pigments of plants.} \text{ Chlorophyll } \underline{a} \text{ and } \underline{b} \text{ are the two most common green pigments in plants.}$

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

 $\underline{\text{Contents}}$ is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing-record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> (ft^3/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Data Collection Platform</u> (DCP) is an electronic instrument which collects, processes, stores, and transmits data from various sensors to an earth-orbiting Geostationary Operational Environmental Satellite (GOES) and/or through landline telemetry.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

<u>Gage height</u> (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

<u>Gaging station</u> is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCo).

High tide is the maximum height reached by each rising tide.

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Low-tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specified period.

<u>Measuring point</u> (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

<u>Multiple-plate samplers</u> are artificial substrates of known surface area used for obtaining benthic-invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Deposition Program (NADP).

NJ-WRD well number is a hyphenated, 6-digit identification number which the U.S. Geological Survey assigned to all New Jersey wells in the Ground Water Site Inventory (GWSI) data base. This numbering system was developed in 1978 to simplify identification of wells. The first two digits are a code for the county in which the well is located, and the last four digits are a sequence number. Each well added to GWSI is assigned the next higher sequence number for the county in which the well is located. These NJ-WRD well numbers are being used now in the ground-water level descriptions, wells sampled for water-quality analyses, and on the corresponding location maps in these reports.

Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m^2) , acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	<u>M</u>	lethod of analysis	
Clay Silt Sand Gravel	0.00024 - 0.00 .00406 .062 - 2.0 2.0 - 64.0	•	Sedimentation Sedimentation Sedimentation or si Sieve	eve

The partial-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10 12) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and ar commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

<u>Green algae</u> have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2/time)$] for periphyton and macrophytes and [mg $C/(m^3/time)$] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg 0 $/(m^2/time)$] for periphyton and macrophytes and [mg 0 $/(m^3/time)$] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

River mile as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

<u>Runoff in inches</u> (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Screened interval is the length of well screen through which water enters a well, in feet below land surface.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

 $\underline{\text{Bed load discharge}}$ (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

 $\underline{\text{Mean concentration}}$ is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration $(mg/L) \times discharge (ft^3/s) \times 0.0027$.

<u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

<u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

 $\frac{7\text{-day }10\text{-year low flow}}{10\text{-year low flow}}$ (MA7CD10) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artifical substrate is a device which is purposely placed in a stream or lake for colonization or organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

<u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. all areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent.

<u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u>, is the following:

 Kingdom.
 Animal

 Phylum.
 Arthropoda

 Class.
 Insecta

 Order.
 Ephemeroptera

 Family.
 Ephemeridae

 Genus.
 Hexagenia

 Species.
 Hexagenia

<u>Thermograph</u> is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

<u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water table is that surface in an unconfined ground-water body at which the pressure is atmospheric.

<u>Water year</u> in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

SELECTED REFERENCES

- Anderson, P.W., 1970, Occurrence and distribution of trace elements in New Jersey Streams; New Jersey Division of Water Policy and Supply, Water-Resources Circular 24, 24 p.
- Anderson, P.W., and Faust, S.D., 1973 Characteristics of water quality and stream flow, Passaic River basin above Little Falls, New Jersey: U.S. Geological Survey Water-Supply Paper 2026, 80 p.
- _____ 1974, Water-quality and stream flow characteristics, Raritan River basin, New Jersey: U.S. Geological Survey Water-Resources Investigations 14-74, 82 p.
- Anderson, P.W., and George, J.R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Ayers, M.A., and Pustay, E.A., 1988, New Jersey ground-water quality: National Water Summary 1986, U.S. Geological Survey Water Supply Paper 2325, p. 369-376.
- Barton, C., Vowinkel, E.F., and Nawyn, J.P., 1987, Preliminary assessment of water quality and its relation to hydrogeology and land use: Potomac-Raritan-Magothy aquifer system, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4023, 79 p.
- Campbell, J.B., 1987, Rainfall-runoff data for Somerset County, New Jersey, U.S. Geological Survey Open-File Report 87-384, 161 p.
- Eckel, J.A., and Walker, R.L., 1986, Water levels in major artesian aquifers of the New Jersey Coastal Plain, 1983: U.S. Geological Survey Water-Resources Investigations 86-4028, 62 p.
- Fusillo, T.V., 1982, Impact of suburban residential development on water resources in the area of Winslow Township, Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 81-27, 38 p.
- Fusillo, T.V., Hochreiter, J.J., Jr., and Lord, D.G., 1984, Water-quality data for the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey, 1923-83: U.S. Geological Survey Open-File Report 84-737, 127 p, 1 plate.
- Fusillo, T.V., and Voronin, L.M., 1982, Water-quality data for the Potomac-Raritan-Magothy aquifer system, Trenton to Pennsville, New Jersey, 1980: U.S. Geological Survey Open-File Report 81-814, 38 p. 2 plates.
- Fusillo, T.V., Schornick, J.C., Jr., Koester, H.E., and Harriman, D.A., 1980, Investigation of acidity and other water-quality characteristics of upper Oyster Creek, Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-10, 30 p.
- Gillespie, B.D., and Schopp, R.D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.
- Harriman, D.A., and Velnich, A.J., 1982, Flood data in West Windsor Township, Mercer County, New Jersey through 1982 Water Year: U.S. Geological Survey Open-File Report 82-434, 22 p.

- Harriman, D.A., and Voronin, L.M., 1984, Water-quality data for aquifers in east-central New Jersey, 1981-82: U.S. Geological Survey Open-File Report 84-821, 39 p.
- Harte, P.T., Sargent, B.P., and Vowinkel, E.F., 1986, Description and results of test-drilling program at Picatinny Arsenal, new Jersey, 1982-84: U.S. Geological Survey Open-File Report 86-316, 54 p.
- Heath, R.C., 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3d ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Hindall, S.M., and Jungblut, D.W., 1980, Sediment yields of New Jersey streams: U.S. Geological Survey Open-File Report 80-432, 1 sheet.
- Hochreiter, J.J., Jr., 1982, Chemical-quality reconnaissance of the water and surficial bed material in the Delaware River estuary and adjacent New Jersey tributaries, 1980-81: U.S. Geological Survey Water-Resources Investigations 82-36, 41 p.
- Hochreiter, J.J., Jr., Kozinski, J., and Lewis, J.C., 1986, Characterization of organic ground-water contamination at a waste-oil disposal site, Bridgeport, N.J.: EOS, v. 67, no. 44, p. 945.
- Keith, L.H., and Telliard, W.A., 1979, Priority Pollutants I a perspective view: Environmental Science and Technology, v. 13, no. 4, p. 416-423.
- Kish, G.R., Macy, J.A., and Mueller, R.T., 1987, Trace-metal leaching from plumbing materials exposed to acidic ground water in three areas of the Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4146, 19 p.
- Lacombe, P., Sargent, B.P., Harte, P.T., and Vowinkel, E.F., 1987, Determination of geohydrologic framework and extent of ground-water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-4051, 31 p.
- Langbein, W.B., and Iseri, K.T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Laskowski, S.L., 1970, Statistical summaries of New Jersey stream flow records: New Jersey Division of Water Policy and Supply, Water-Resources Circular 23, 264 p.
- Leahy, P.P., Paulachok, G.N., Navoy, A.S., and Pucci, A.A., Jr., 1987, Plan of study for the New Jersey Bond Issue ground-water supply investigations: New Jersey Geological Survey Open-File Report 87-1, 53 p.
- Lewis, J.C., and Spitz, F.J., 1987, Hydrogeology, ground-water quality, and the possible effects of a hypothetical radioactive-water spill, Plainsboro Township, New Jersey: U.S. Geological Survey Water-Resources Investigation Report 87-4092, 45 p.
- Lohman, S.W., and others, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Lord, D.G., Barringer, J., Johnsson, P., and Schuster, P., Effects of Acid precipitation on surface and ground waters in the New Jersey Pinelands [abs]: EOS, Transactions, American Geophysical Union, v. 67, no. 16., April 22, 1986, p. 282.
- Lord, D.G., Johnsson, P.A., Barringer, J.L., and Schuster, P.F., 1987, Results of an acidic deposition study in McDonalds Branch watershed, New Jersey Pinelands [abs]: New Jersey Academy of Science Bulletin, v. 32, no. 1, p. 45.
- Luzier, J.E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Mansue, L.J., and Anderson, P.W., 1974, Effect of landuse and retention practices on sediment yields in the Stony Brook basin, New Jersey: U.S. Geological Survey Water-Supply Paper 1798-L.
- National Research Council, 1979, Polychlorinated biphenyls: Washington D.C., National Academy of Sciences, 182 p.
- Olsen, P.E., 1980, The latest Triassic and Early Jurassic Formations of the Newark Basin (eastern North America, Newark Supergroup)--Stratigraphy, structure and correlation: New Jersey Academy of Science, The Bulletin, V. 25, p. 25-51.
- Paulachok, G.N., Walker, R.L., Barton, G.J., Clark, J.S., Duran, P.B., and Hochreiter, J.J., Jr., 1985, Marine well-drilling program for estimation the seaward extent of fresh ground water and evaluating the likelihood of seawater intrusion near Atlantic City, New Jersey [abs.]: EOS, Transactions, American Geophysical Union, v. 66, no. 46, Nov. 12, 1985, p. 889-890.
- Philips, M.O., and Schopp, R.D., Flood of April 5-7, 1984, in northeastern New Jersey: U.S. Geological Survey Water-Resources Investigations Report 86-423W, 112 p.
- Rantz, S.E., and others, 1982, Measurement and computation of streamflow; Volume 1. Measurement of stage and discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Sargent, B.P., Green, J.W., Harte, P.T., and Vowinkel, E.F., 1986, Ground-water-quality data for Picatinny Arsenal, new Jersey, 1958-85: U.S. Geological Survey Open-File Report 86-58, 66 p.
- Schaefer, F.L., and Walker, R.L., 1982, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Schaefer, F.L., 1983, Distribution of chloride concentrations in the principal aquifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.
- Schaefer, F.L., 1987, Selected literature on the water resources of New Jersey by the U.S. Geological Survey, through 1986: U.S. Geological Survey Open-File Report 87-767, 45 p.

- Schornick, J.C., and Ram, N.M., 1978, Nitrification in four acidic streams in southern New Jersey: U.S. Geological Survey Water-Resources Investigations, 77-121, 51 p.
- Schornick, J.C., and Fishel, D.K., 1980, Effects of storm runoff on water quality in the Mill Creek drainage basin, Willingboro, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-98, 111 p.
- Schopp, R.D., and Gillespie, B.D., 1979, Selected streamflow data for the Delaware River basin: U.S. Geological Survey Open-File Report 79-347, 16 p.
- Schopp, R.D., and Ulery, R.L., 1984, Cost-effectiveness of the stream-gaging program in New Jersey: U.S. Geological Survey Water-Resources Investigations Report 84-4108, 97 p.
- Schopp, R.D., and Velnich, A.J., 1979, Flood of November 8-10, 1977 in northeastern and central New Jersey: U.S. Geological Survey Open-File Report 79-559, 32 p.
- Seaber, P.R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- Stankowski, S.J., 1972, Floods of August and September 1971 in New Jersey: New Jersey Division of Water Resources, Special Report 37, 329 p.
- Stankowski, S.J., and Velnich, A.J., 1974, A summary of peak stages and discharges for the flood of August 1973 in New Jersey: U.S. Geological Survey Open-File Report, 12 p.
- Stankowski, S.J., 1974, Magnitude and frequency of floods in New Jersey with effects of urbanization: New Jersey Department of Environmental Protection, Division of Water Resources, Special Report 38, 46 p.
- Stankowski, S.J., Schopp, R.D., and Velnich, A.J., 1975, Flood of July 21, 1975 in Mercer County, New Jersey: U.S. Geological Survey Water-Resources Investigations 51-75, 52 p.
- Szabo, Z., and Zapecza, O.S., 1987, Relation between radionuclide concentrations and other chemical constituents in ground water in the Newark Basin, New Jersey in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium, and other radioactivity in ground water-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers Inc., p. 283-308.
- U.S. Environmental Protection Agency, 1976, National interim primary drinking water regulations: U.S. Environmental Protection Agency report EPA 570/9-76-003, 159 p.
- U.S. Geological Survey, 1976, Surface water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- _____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vecchioli, John, and Miller, E.G., 1973, Water resources of the New Jersey part of the Ramapo River basin: U.S. Geological Survey Water-Supply Paper 1974, 77 p.
- Velnich, A.J., and Laskowski, S.L., 1979, Technique for estimating depth of 100-year flood in New Jersey: U.S. Geological Survey Open-File Report 79-419, 17 p.
- Velnich, A.J., 1982, Drainage areas in New Jersey: Delaware River basin and streams tributary to Delaware Bay: U.S. Geological Survey Open-File Report 82-572, 48 p.
- Velnich, A.J., 1984, Drainage areas in New Jersey: Atlantic Coastal basins, South Amboy to Cape May: U.S. Geological Survey Open-File Report 84-150, 33 p.
- Vickers, A.A., and McCall, J.E., 1968, Surface water supply of New Jersey, stream flow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vickers, A.A., 1982, Flood of August 31 September 1, 1978, in Crosswicks Creek basin and vicinity, Central New Jersey: U.S. Geological Survey Water-Resources Investigations 80-115,
- Vickers, A.A., Farsett, H.A., and Green, J.W., 1982, Flood peaks and discharge summaries in the Delaware River basin: U.S. Geological Survey Open-File Report 81-912, 292 p.
- Vowinkel, E.F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R.L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.
- Witkowski, P.J., Smith, J.A., Fusillo, T.V., and Chiou, C.T., 1987, A review of surface-water sediment fractions and their interactions with persistent anthropogenic organic compounds: U.S. Geological Survey Circular 993, 39 p.
- Zapecza, O.S., and Szabo, Z., 1987, Source and distribution of natural radioactivity in ground water in the Newark Basin, New Jersey, in Graves, Barbara, ed., Radon in ground water-Hydrogeologic impact and indoor air contamination [Conference on radon, radium and other radioactivity-Hydrogeologic impact and application to indoor airborne contamination, Somerset, N.J., April 7-9, 1987]: Chelsea, Mich., Lewis Publishers., p. 31-46.
- Zapecza, O.S., Voronin, L.M., and Martin, M., 1987, Ground-water-withdrawal and water-level data used to simulate regional flow in the major Coastal Plain aquifers of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 87-4038, 120 p.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS-TWRI Book 2, Chapter El. 1971. 126 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-Alo. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Alo. 1984. 59 pages.
- 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages.
- 3-Al2. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter Al2. 1986. 41 pages.
- 3-Al3. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Al3. 1983. 53
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS-TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-Al5. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter Al5. 1984. 48 pages.
- 3-Al6. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter Al6. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-Al8. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathbun, N. Yotsukura, G. W. Parker, and L. L. DeLong: USGS-TWRI Book 3, Chapter Al8. 1989. 52 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 3-Bl. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by 0. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS-TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-Bl. Low-flow investigations, by H. C. Riggs: USGS-TWRI Book 4, Chapter Bl. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M. J. Fishman and L. C. Friedman: USGS--TWRI Book 5, Chapter Al. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS-TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-Cl. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages.
- 6-Al. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter Al. 1988. 586 pages.
- 7-Cl. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-Al. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter Al. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

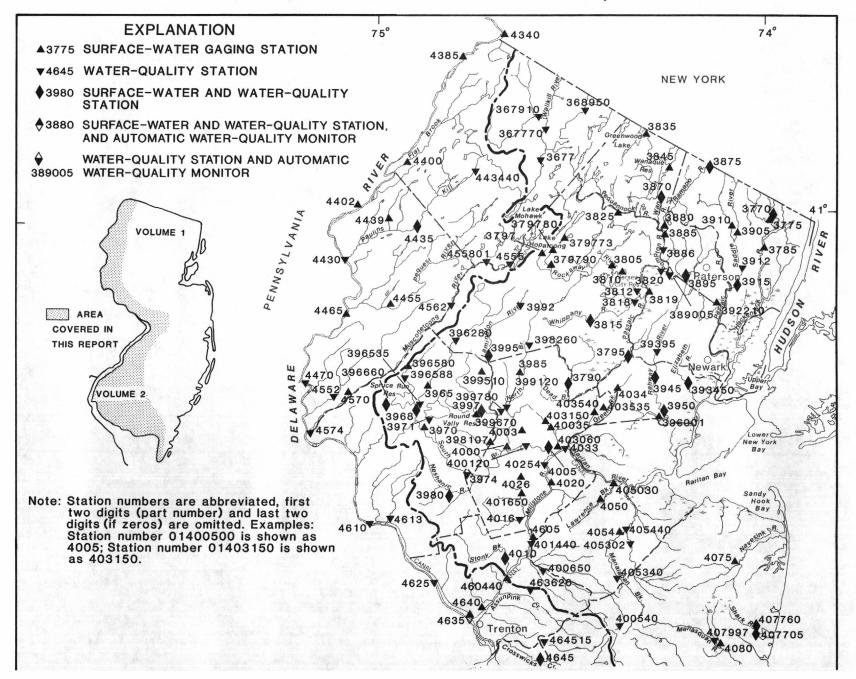
DISCONTINUED GAGING STATIONS

The following continuous-record streamflow stations in New Jersey have been discontinued or converted to partial-record stations. Daily streamflow records were collected and published for the period of record shown for each station.

Station. Station number	4	Station name	Drainage area (sq mi)	Period of record (water years)
01368000 01368720 01378690 01379630 01384000		Wallkill River near Unionville, NY Auxiliary outlet of Upper Greenwood Lake at Moe, NJ Passaic River near Bernardsville, NJ Russia Brook tributary at Milton, NJ Wanaque River at Monks, NJ	8.83 2.51 40.4	1938-81 1968-80a 1968-77 1969-71 1935-85
01385000	200	Cupsaw Brook near Wanaque, NJ	4.37	1935-58
01385500		Erskine Brook near Wanaque, NJ	1.14	1934-38
01386000		West Brook near Wanaque, NJ	11.8	1935-78
01386500		Blue Mine Brook near Wanaque, NJ	1.01	1935-58
01389800		Passaic River at Paterson, NJ	785	1897-1955
01392000		Weasel Brook at Clifton, NJ	4.45	1937-62
01392500		Second River at Belleville, NJ	11.6	1938-64
01393000		Elizabeth River at Irvington, NJ	2.90	1931-38
01393500		Elizabeth River at Elizabeth, NJ	20.2	1922-73
01393800		East Fork East Branch Rahway River at West Orange, NJ	.83	1972-74
01394000 01395500 01397500 01398045 01399000		West Branch Rahway River at Millburn, NJ Robinsons Branch Rahway River at Goodmans, NJ Walnut Brook near Flemington, NJ Back Brook tributary near Ringoes, NJ North Branch Raritan River at Pluckimen, NJ	7.10 12.7 2.24 52.0	1940-50 1921-24 1936-61 1977-88 1903-06
01399190 01399200 01399525 01399690 01399830		Lamington (Black) River at Succasunna, NJ Lamington (Black) River near Ironia, NJ Axle Brook near Pattersville, NJ South Branch Rockaway Creek at Whitehouse, NJ North Branch Raritan River at North Branch, NJ	7.37 10.9 13.2 174	1976-87 1975-87 1977-88 1964-67 1977-81
01400932 01400953 01401500 01402590 01403000		Baldwin Creek at Baldwin Lake, near Pennington, NJ Honey Branch near Pennington, NJ Millstone River near Kingston, NJ Royce Brook tributary at Frankfort, NJ Raritan River at Bound Brook, NJ	2.52 .70 171 779	1963-70 1967-75 1934-49 1969-74 1903-09, 1945-66
01403500		Green Brook at Plainfield, NJ	9.75	1938-84
01403900		Bound Brook at Middlesex, NJ	48.4	1972-77
01404000		Bound Brook at Bound Brook, NJ	49.0	1923-30
01404500		Lawrence Brook at Patricks Corner, NJ	29.0	1922-26
01405300		Matchaponix Brook at Spotswood, NJ	43.9	1957-67
01405500 01406000 01406500 01407000 01408140		South River at Old Bridge, NJ Deep Run near Browntown, NJ Tennent Brook near Browntown, NJ Matawan Creek at Matawan, NJ South Branch Metedeconk River at Lakewood, NJ	8.07 5.25 6.11 26.0	1939-88 1932-40 1932-41 1932-55 1973-76
01409000 01409095 01409280 01410500 01410787		Cedar Creek at Lanoka Harbor, NJ Oyster Creek near Brookville, NJ Westecunk Creek at Stafford Forge, NJ Absecon Creek at Absecon, NJ Great Egg Harbor River tributary at Sicklerville, NJ	55.3 7.43 17.9 1.64	1933-58, 1971 1965-84 1939-88 1946-85 1972-79
01410810		Fourmile Branch at New Brooklyn, NJ	7.74	1973-79
01410820		Great Egg Harbor River near Blue Anchor, NJ	37.3	1972-79
01412000		Menantico Creek near Millville, NJ	23.2	1931-57, 1978-85
01412500		WB Cohansey River at Seeley, NJ	2.58	1951-67
01413000		Loper Run near Bridgeton, NJ	2.34	1937-59
01444000		Paulins Kill at Columbia, NJ	179	1908-09
01445000		Pequest River at Huntsville, NJ	31.0	1940-62
01445430		Pequest River at Townsbury, NJ	92.5	1977-80
01446000		Beaver Brook near Belvidere, NJ	36.7	1923-61
01455160		Brass Castle Creek near Washington, NJ	2.34	1970-83
01455200		Pohatcong Creek at New Village, NJ	33.3	1960-70
01455355		Beaver Brook near Weldon, NJ	1.72	1969-71
01455500		Musconetcong River at outlet of Lake Hopatcong, NJ	25.3	1961-75
01456000		Musconetcong River near Hackettstown, NJ	68.9	1922-74
01457500		Delaware River at Riegelsville, NJ	6328	1906-71
01462000		Delaware River at Lambertville, NJ	6680	1898-1906
01463587		New Sharon Run at Carsons Mills, NJ	6.63	1976-77
01463620		Assunpink Creek near Clarksville, NJ	34.3	1972-82
01463657		Shipetaukin Creek tributary at Lawrenceville, NJ	.78	1976-77
01463690		Little Shabakunk Creek at Bakersville, NJ	3.98	1976-77
01464525		Thornton Creek at Bordentown, NJ	.84	1976-77
01465850		South Branch Rancocas Creek at Vincentown, NJ	64.5	1961-75
01466000		Middle Branch Mount Misery Brook in Lebanon State Forest,	NJ 2.82	1953-65, 1977
01467019		Mill Creek near Willingboro, NJ	4.12	1975-78
01467021		Mill Creek at Levitt Parkway, at Willingboro, NJ	9.12	1975-77

WATER RESOURCES DATA - NEW JERSEY, 1989 DISCONTINUED GAGING STATIONS--Continued

Station number	Station name	Drainage area (sq mi)	Period of record (water years)
01476600	Still Run near Mickleton, NJ	3.98	1957-66
01477500	Oldmans Creek near Woodstown, NJ	18.5	1932-40
01482500	Salem River at Woodstown, NJ	14.6	1940, 1941-85
01483000	Alloway Creek at Alloway, NJ	20.3	1953-72


a Not published, on file at U.S. Geological Survey, West Trenton, NJ

DISCONTINUED CONTINUOUS WATER-QUALITY STATIONS

The following stations were discontinued as continuous water-quality stations prior to the 1987 water year. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station.

Station number	Station name	Drainage area (sq mi)	Type of record	Period of record (water years)
01379500	Passaic River near Chatham, NJ	100	Sed.	1964-68
01379773	Green Pond Brook at Picatinny Arsenal, NJ		Temp., S.C., pH	. D.O. 1984-86
01382000	Passaic River at Two Bridges, NJ	361	Temp., S.C., pH	. D.O. 1969-74
01387500	Ramapo River near Mahwah, NJ	118	Sed.	1964-65
01389000	Dompton Divon moon Tue Bridges All			
01389500	Pompton River near Two Bridges, NJ	372 762	Temp., S.C., pH	1964-65
01309300	Passaic River at Little Falls, NJ	102	Sed.	
			Temp., S.C.	1981-86
01396500	South Branch Raritan River near High Bridge, NJ	65.3	Temp.	1961-79
			S.C.	1969-79
01397000	South Branch Raritan River at Stanton, NJ	147	Temp., S.C.	1969-79
			Sed.	1960-63
01399690	South Branch Rockaway Creek at Whitehouse, NJ	13.2	Temp., S.C.	1977-78
	order of drief nookanay of con ac will concace, no		Sed.	1977
01399700	Rockaway Creek at Whitehouse, NJ	37.1	Temp., S.C.	1977-78
01400510	Raritan River near Manville, NJ	497		
01400932			Temp., S.C., ph	1963-66
01400932	Baldwin Creek at Baldwin Lake, near Pennington, NJ	2.52	Temp.	1963-69
04/04000			Sed.	
01401000	Stony Brook at Princeton, NJ	44.5	Sed.	1959-70
01402900	Millstone River near Manville, NJ	287	Temp., S.C., pl	I, D.O. 1968-74
01404100	Raritan River near South Bound Brook, NJ	862	Temp., S.C., pl	i, D.O. 1969-77
01408000	Manasquan River at Squankum, NJ	44	Temp., S.C., pl	I. D.O. 1969-74
01408500	Toms River near Toms River, NJ	123	Temp., S.C.	1964-66, 1975-8
		4.40	S.C.	1975-81
01409095	Oyster Creek near Brookville, NJ	7.43	Temp., D.O.	1975-76
01107075	dyster dreck fiedr brookvitte, No	7.43	S.C., pH	1975 - 77
01409810	West Branch Wading River near Jenkins, NJ	84.1	Town C C	1978-81
01410787			Temp., S.C.	1974-78
	Great Egg Harbor River trib. at Sicklerville, NJ	1.64	Sed.	
01410810	Fourmile Branch at New Brooklyn, NJ	7.74	Sed.	1974-78
01411000	Great Egg Harbor River at Folsom, NJ	57.1	Temp.	1961-80
01411500	Maurice River at Norma, NJ	112	Temp., S.C.	1980-86
01440200	Delaware River near Delaware Water Gap, Pa.	3850	Sed.	1964-65, 1972
01442750	Delaware River at Dunnfield NJ	4150	Sed.	1966-76
01463500	Delaware River at Trenton, NJ	6780	Sed.	1949-82
01464040	Delaware River at Marine Terminal, at Trenton, NJ		Temp., S.C.	1973-76
01464500	Crosswicks Creek near Extonville, NJ	81.5	Sed.	1965-70
01467016	Rancocas Creek at Willingboro, NJ	315	Temp., S.C., pl	
01401010	Mailedad dieck at Wittingpold, No	313		1970-72
			D.O.	1970-74
01/47150	Coopen Divon on Haddanfield NI	47.0	pH	
01467150	Cooper River at Haddonfield, NJ	17.0	Sed.	1968-69
01477120	Raccoon Creek near Swedesboro, NJ	26.9	Temp.	1966-73
			Sed.	1966-69

Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment).

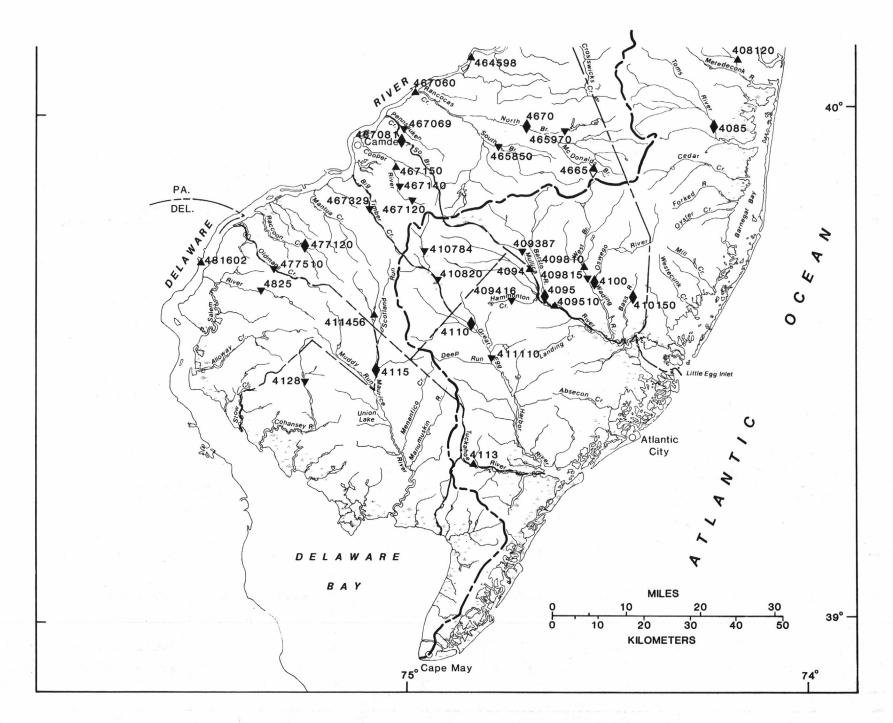
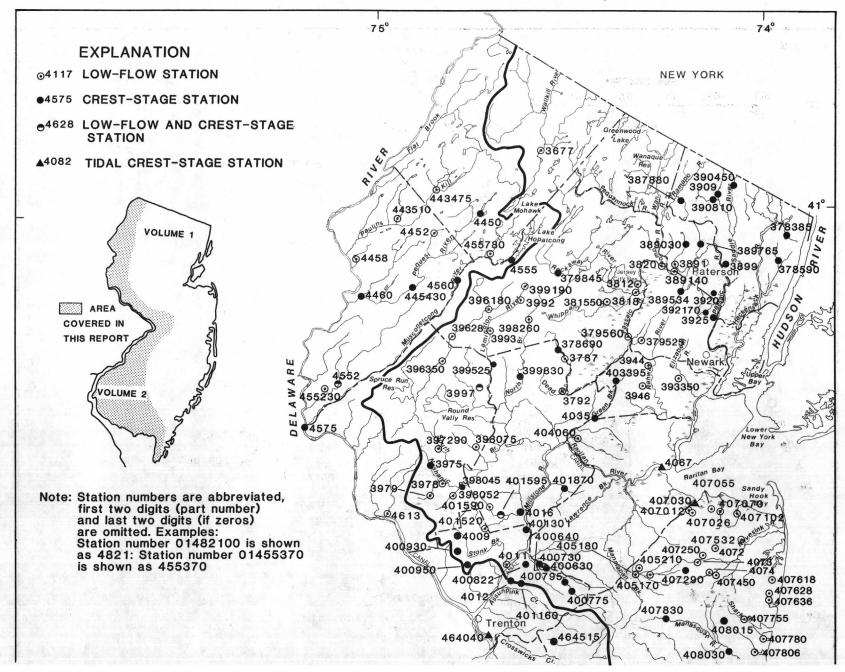



Figure 11.--Map showing location of gaging stations and surfacewater quality stations.

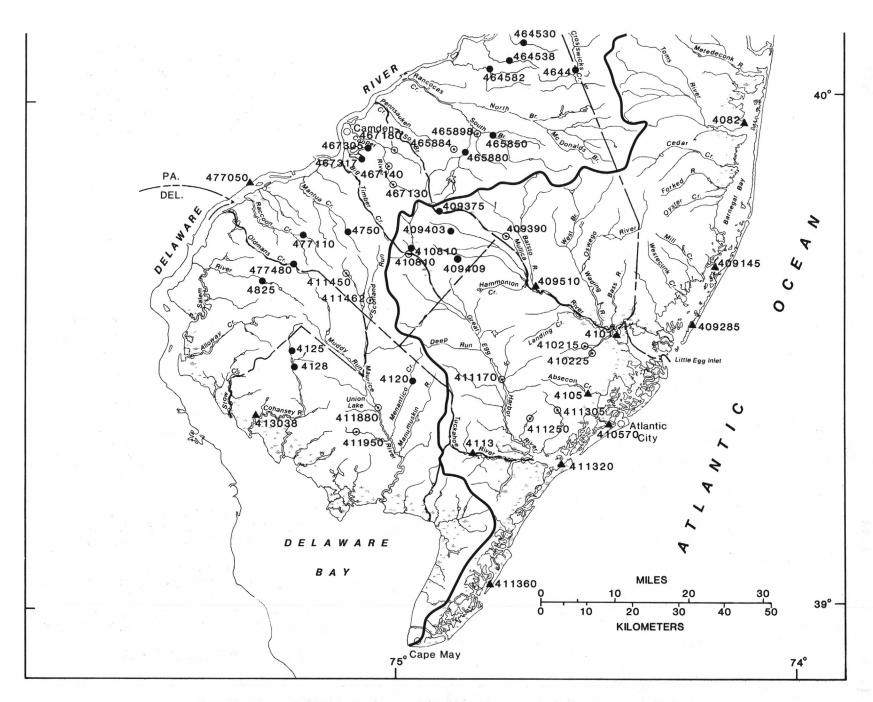
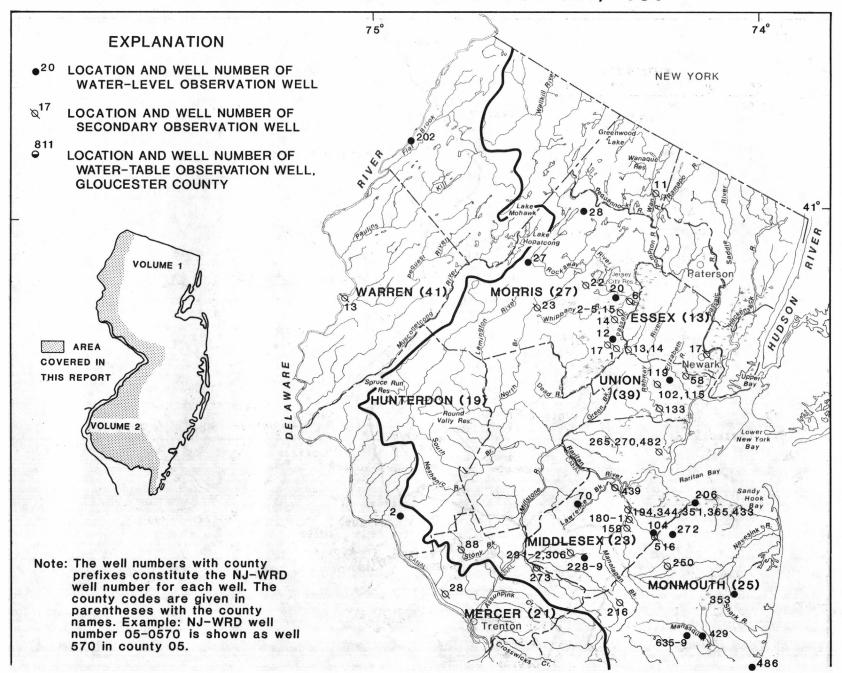



Figure 12.--Map showing location of low-flow and crest-stage partial-record stations.

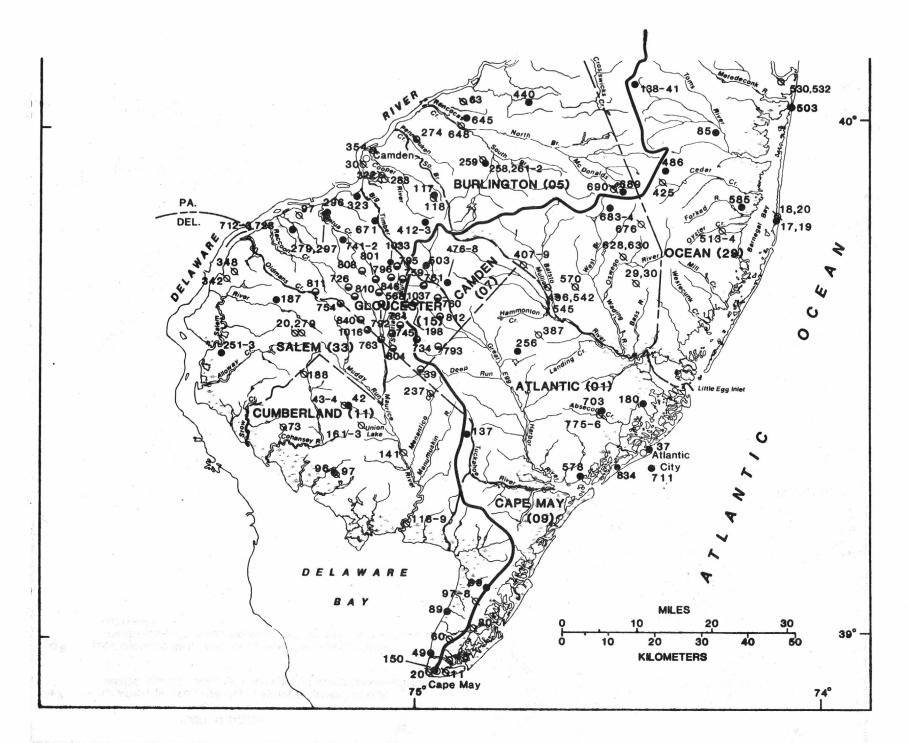
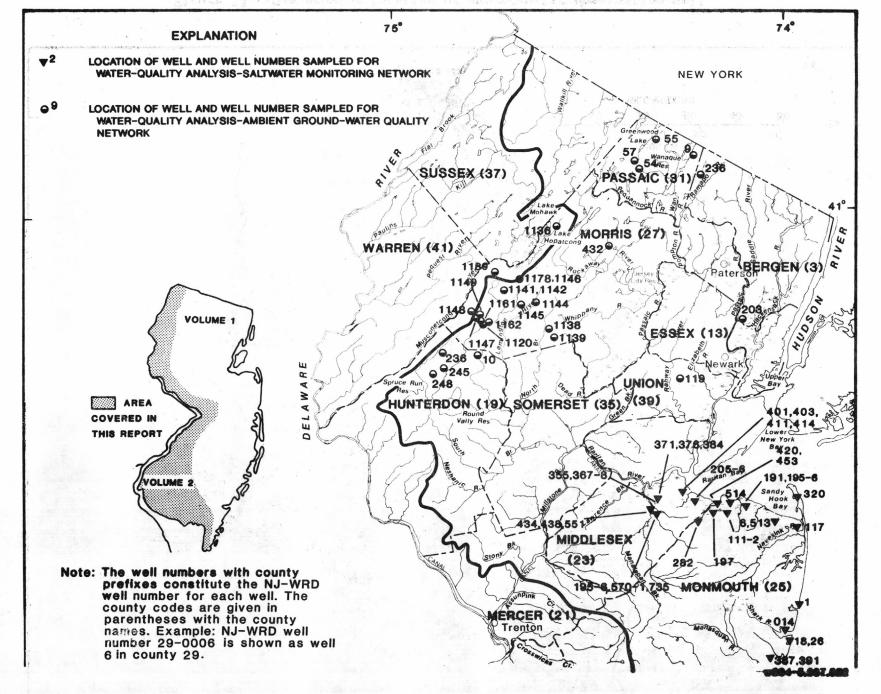



Figure 13. -- Map showing location of ground-water observation well.

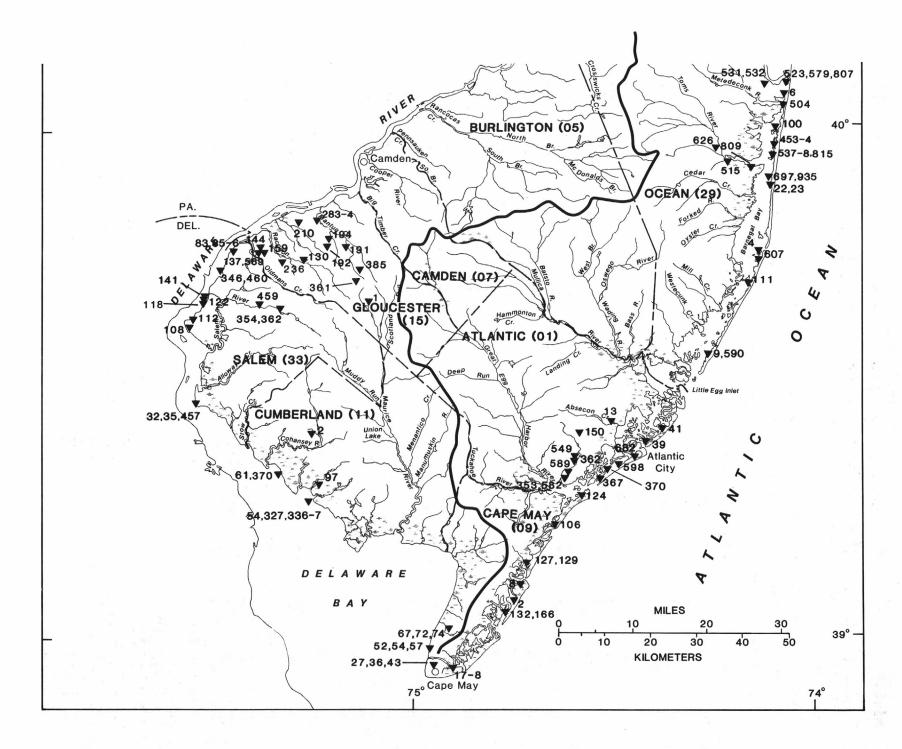


Figure 14.--Map showing location of ground-water quality stations.

HYDROLOGIC-DATA STATION RECORDS

MAURICE RIVER BASIN

01411456 LITTLE EASE RUN NEAR CLAYTON, NJ

LOCATION.--Lat 39°39'32", long 75°04'04", Gloucester County, Hydrologic Unit 02040206, on right bank 30 ft downstream from bridge on Academy Road (County Route 610), 0.9 mi west of Fries Mill, 1.3 mi east of Clayton, and 1.4 mi downstream from Beaverdam Branch.

DRAINAGE AREA .- - 9.77 mi 2.

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1966, 1976-84, 1987. February 1988 to current year. GAGE. -- Water-stage recorder. Datum of gage is 100.94 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except above 40 ${\rm ft}^3/{\rm s}$, which are fair. Several measurements of water temperature were made during the year.

	DISCHAR	E, CUBIC	FEET PER	SECOND,	WATER YEA	R OCTOBER	1988 TO	SEPTEMBER	1989, MEA	N DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.1 1.1 1.3 1.4 1.6	4.6 6.2 5.4 4.8 4.8	19 17 14 11 9.2	5.6 6.1 6.1 5.6 4.9	7.8 7.2 8.2 11 11	14 13 11 e10 e9.1	19 18 17 16 16	16 25 30 29 26	12 11 9.5 8.4 7.6	8.3 7.3 6.7 6.4 18	12 11 10 9.2 8.3	7.4 6.9 6.3 5.9 5.7
6 7 8 9	1.5 1.4 1.4 1.4	5.2 4.7 4.3 3.8 3.4	8.0 7.2 6.6 6.1 5.7	4.6 4.5 6.0 9.1 9.2	9.3 8.6 8.0 7.3	e14 e18 e15 e13 e13	20 23 29 31 29	40 52 39 31 43	14 18 20 20 22	29 29 24 17 12	7.5 7.1 7.6 7.8 7.4	5.6 5.5 5.3 5.2 5.2
11 12 13 14 15	1.3 1.3 1.2 1.3	3.3 3.0 3.2 3.8 3.4	5.3 4.8 4.1 3.9 4.1	8.6 9.4 12 11 15	6.7 6.2 5.9 7.5	e12 e12 e13 e13 e12	25 21 18 16 17	74 61 41 31 26	19 16 13 11	9.7 8.0 12 19	8.5 22 28 28 26	5.0 5.0 5.6 8.2
16 17 18 19 20	1.2 1.2 1.2 1.3	3.1 6.0 9.0 8.4 11	4.6 4.4 4.1 3.9 4.0	18 16 15 13	12 12 11 9.4 8.5	e11 e9.9 e9.8 e11 e11	21 22 21 21 20	24 24 22 20 18	14 16 15 13	15 27 25 21 26	30 23 17 25 31	12 28 26 42 111
21 22 23 24 25	2.2 6.1 4.2 2.9 2.8	15 15 13 11 9.4	4.2 4.6 4.9 6.7 8.9	9.9 8.5 7.5 7.0 6.7	15 26 30 29 24	e16 15 14 18 27	18 17 15 14 12	15 13 14 31 34	9.8 12 24 33 30	38 38 32 24 18	26 22 18 14 12	74 42 27 20 14
26 27 28 29 30 31	2.8 2.7 2.7 2.5 2.3 2.3	8.2 7.6 17 21 21	8.3 7.4 7.0 6.8 6.3 5.9	6.8 7.5 7.2 6.8 7.3 8.2	20 17 15	28 26 23 20 17	12 11 11 11 15	30 26 23 19 16 14	22 17 13 11 9.6	15 23 20 17 15 13	10 9.2 8.4 8.4 9.8 8.3	26 34 28 23 17
MEAN MAX MIN IN.	1.93 6.1 1.1 .23	7.99 21 3.0 .91	7.03 19 3.9 .83	8.84 18 4.5 1.04	12.6 30 5.9 1.35	15.1 28 9.1 1.78	18.5 31 11 2.12	29.3 74 13 3.45	15.4 33 7.6 1.76	19.0 38 6.4 2.24	15.2 31 7.1 1.80	20.4 111 5.0 2.33
					OF RECOR	D, BY WATER	R YEAR (
MEAN MAX (WY) MIN (WY)	1.93 1.93 1989 1.93 1989	7.99 7.99 1989 7.99 1989	7.03 7.03 1989 7.03 1989	8.84 1989 8.84 1989	12.6 12.6 1989 12.6 1989	14.7 15.1 1989 14.3 1988	16.5 18.5 1989 14.6 1988	20.5 29.3 1989 11.7 1988	8.79 15.4 1989 2.18 1988	10.4 19.0 1989 1.83 1988	8.40 15.2 1989 1.60 1988	11.1 20.4 1989 1.77 1988
SUMMARY	STATISTI	cs		FC	OR 1989 WA	TER YEAR			FOR PE	RIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT ANNUAL 10 PERC	ANNUAL ME ANNUAL ME DAILY MEA ANEOUS PE ANEOUS PE ANEOUS LO RUNOFF (I ENTILE	AN AN N AK FLOW AK STAGE W FLOW			14.3 111 1.1 124 4.27 1.0 19.87 28 12	Sep 20 Oct 1 Sep 20 Sep 20 Oct 1			14.3 14.3 11.1 .41 124 4.27 .35 ***** 28 12	Sep Aug Sep Sep Aug	20 1989 20 1989	

e Estimated
***** Indicates not enough data, therefore statistic is not computed

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°29'42", long 75°04'38", Salem County, Hydrologic Unit 02040206, on right bank just upstream from bridge on Almond Road (State Route 540) at Norma, and 0.8 mi downstream from Blackwater Branch.

DRAINAGE AREA. -- 112 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1932 to current year. Monthly discharge only for December 1933, published in WSP 1302.

REVISED RECORDS.--WSP 1382: 1933. WDR NJ-79-1: 1967(P). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Dec. 27, 1937. Datum of gage is 46.94 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Occasional regulation by ponds above station. Several measurments of water temperature, other than those published, were made during the year. Satellite telemeter at

,	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO S	SEPTEMBER	1989, M	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	60 59 68 69 68	82 102 102 101 97	188 178 165 153 142	103 104 104 103 98	114 117 121 136 134	177 166 157 151 135	200 192 187 187 188	201 242 317 289 286	209 200 190 181 173	173 172 168 161 180	215 203 191 180 165	199 187 178 175 164
6 7 8 9	67 66 65 64 62	97 94 90 87 85	133 126 123 120 118	96 100 104 108 109	131 128 124 118 112	151 170 157 161 164	207 215 248 286 276	322 356 368 363 416	189 226 249 281 281	249 274 287 265 235	161 172 214 187 168	159 159 158 149 149
11 12 13 14 15	60 59 58 57 57	84 84 82 86 84	116 113 111 109 107	109 111 117 117 132	109 108 105 114 123	160 157 157 154 154	258 240 205 200 193	547 495 493 447 392	264 245 227 211 200	203 179 161 192 200	164 226 291 293 295	149 148 145 145 163
16 17 18 19 20	56 55 55 55 55	82 97 112 109 126	106 106 102 99 98	141 143 143 139 131	133 132 129 125 121	152 149 146 154 153	207 209 209 214 212	316 309 300 273 235	215 229 258 244 223	225 355 307 327 316	289 273 258 428 902	178 212 223 288 549
21 22 23 24 25	59 94 97 97 94	139 144 143 138 130	98 99 101 107 121	120 119 116 113 110	141 186 218 215 211	162 166 160 176 216	202 198 192 183 167	236 230 224 252 286	209 238 296 316 408	291 286 329 323 289	657 424 364 311 270	563 627 464 356 283
26 27 28 29 30 31	86 79 75 73 70 68	122 117 168 195 193	122 120 114 112 109 105	109 110 110 109 111 116	205 197 188 	218 220 220 211 203 202	147 153 153 155 194	353 328 304 274 201 210	357 300 226 214 200	237 225 225 225 240 222	235 205 186 192 200 198	305 333 339 341 318
MEAN MAX MIN IN.	68.0 97 55 .70	112 195 82 1.12	120 188 98 1.24	115 143 96 1.18	143 218 105 1.33	170 220 135 1.75	203 286 147 2.02	318 547 201 3.28	242 408 173 2.41	243 355 161 2.50	275 902 161 2.83	260 627 145 2.59
STATIST	ICS OF MO	NTHLY FLO	W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (W	Y)				
MEAN MAX (WY) MIN (WY)	112 264 1980 48.6 1966	143 330 1973 46.7 1966	168 385 1973 57.1 1966	191 380 1936 64.7 1966	203 418 1939 95.7 1981	231 427 1979 97.2 1981	227 437 1984 90.9 1966	192 387 1958 79.5 1977	149 291 1979 57.7 1966	126 333 1975 35.6 1966	127 327 1958 34.6 1966	126 591 1940 40.6 1965
SUMMARY	STATISTI	cs		FO	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT	ANNUAL ME ANNUAL ME DAILY MEA ANEOUS PE ANEOUS PE ANEOUS LO RUNOFF (I ENTILE	AN AN N AK FLOW AK STAGE W FLOW			902 55 1140 4.70 55 22.94 311 169 67	Aug 20 Oct 17 Aug 20 Aug 20 Oct 16			20. 52. 73. 8. 20.	60 Sep 23 Sep 60a Sep 72 Sep 23 Sep	8 1964 2 1940 2 1940	

a From rating curve extended above 3,000 ft³/s, highest since 1867

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923, 1953, 1960-62, 1965 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: January 1980 to November 1986 (discontinued).
WATER TEMPERATURE: October 1966 to January 1968 (once daily), January 1980 to November 1986 (discontinued).
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to January 1968.

INSTRUMENTATION. -- Water-quality monitor, January 1980 to November 1986.

REMARKS.:-Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD...
SPECIFIC CONDUCTANCE: Maximum, 151 microsiemens, Jan. 25, 1984; 52 microsiemens, June 16, 1982.
WATER TEMPERATURE: Maximum, 28.0°C, July 21, 1980; minimum 0.0°C on many days during winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
NOV 1988 16	0930	82	73	6.7	9.5	2.0	8.4	74	3.6	K14	70	21
JAN 1989 17	0800	141	96	5.4	3.5	1.3	12.2	91	0.5	6	15.	22
MAR 23	1230	159	90	6.2	8.0	1.2	11.2	94		K4	76	22
MAY 19	1230	271	72	5.7	18.0	0.80	7.4	78		K1	310	18
JUL 24	1215	325	71	6.2	24.5	1.4	6.0	72	0.9	57	() ()	17
SEP 21	1100	544	64	5.3	21.5	1.9	5.4	61	0.9	>60	1000	14
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BONATE IT-FLD	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L- CACO3)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 1988	4.2	2.6	5.3	2.0	1.6	1.3	2	12	9.2	0.1	6.1	50
JAN 1989	4.5	2.5	5.8	1.8	1.1	0.9	2	15	9.6	0.1	6.8	55
17 MAR 23 MAY	4.6	2.6	5.6	1.8			3	17	9.6	0.1	4.6	55
19	4.1	2.0	4.7	1.9	2.0	2.0	2	12	8.7	0.1	3.5	42
JUL 24	3.7	1.9	4.3	1.8	6.5	7.9	9	6.0	9.9	0.1	5.9	40
SEP 21	3.0	1.6	4.6	1.9	\ <u>.</u> .	· ·	3	* 8.0	8.6	0.1	5.5	38
DAT		IT, CHAI S- SI IDED PEI	NT, S IS- SI RGE, D JS- % F NDED T	USP. (CEVE NITE OF TAME OF TAM	GEN, GIRITE NO2DIS- DOLVED SO	+NÓ3 GI IS- AMMO LVED TO G/L (M	TRO- GEN, AMM ONIA D TAL SO G/L (M	EN, GEN ONIA MON IS- ORG LVED TO G/L (M	TRO- ,AM- IA + PHOR ANIC PHOR ITAL TOT ,G/L (MG,	OUS DI AL SOL /L (MG	COUS ORT S- DIS VED SOLV G/L (MG/	OUS HO, ED L
NOV 198	8							14			040	
16 JAN 198	9	•	. 70					.050				010
17 MAR			0.38					.030				030
23			6.0					.030				010
19 JUL			8.8					.030				010
24 SEP		12 1				.350 0	.040 0	.030				010
21		15 2	2	56 <	0.010 0	.460 0	.020 0	.010	0.50 0.	030 0.	.020 0.	010

Laboratory determination

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	т	IME :	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	DIS SOLVI (UG	UM, LI - DI ED SC /L (U	RYL- UM, S- DLVED JG/L S BE)	CADM DIS SOLV (UG,	IUM S- VED /L	CHRO MIUM DIS- SOLV (UG/ AS C	, ED L	COBAL DIS- SOLVE (UG/ AS C	D L	COPPE DIS- SOLV (UG,	/ED	IRON, DIS- SOLVEI (UG/L AS FE	(UG	S- VED
JAN 1989 17 MAR	0	800	120	21		68	<0.5		<1		<1		<3		<1	150)	7
23 JUL	1	230	110	20	ı	71	<0.5		<1		1		<3		3	130)	11
24 SEP	1	215	230	32	!	58	<0.5		<1		2		<3		4	84	ס	6
21	1	100	200	17	•	46	<0.5		2		2		<3		3	46)	2
C	DATE	LITHII DIS SOLV (UG/ AS L	UM NE - D ED SO L (U	IS: LVED S G/L (RCURY DIS- OLVED UG/L IS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NIC DI SO (U	KEL, S- LVED G/L NI)	SELE NIUM DIS SOLV (UG) AS S	1, S- /ED /L	SOL (UG	S- VED	DI SOL (UC	RON- IUM, IS- LVED G/L SR)	VAN DIU DI SOL (UG AS	M, S- VED /L	ZINC, DIS- SOLVED (UG/L AS ZN)	
JAN 1 17.			<4	29	0.1	<10) "	<1		<1	<	1.0		29		<6	21	
MAR 23.			<4	25	0.7	<10)	6		<1	<	1.0		29		<6	14	
JUL 24.	•••		<4	27	0.4	<10)	5		<1	<	1.0		24		<6	16	
SEP 21.			<4	35	<0.1	<10		2		<1	<	1.0		19		<6	15	

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ

LOCATION.--Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi south of Seeley, 2.6 mi east of Shiloh, 4.1 mi north of Bridgeton, and 22.5 mi upstream from mouth.

DRAINAGE AREA .- - 28.0 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

ı	DATE	CH II C	UBIC CO FEET DU PER AN	FIC N- P CT- (ST CE A	AND - AT	URE D	GEN, (P IS- C LVED SA	GEN, OXYGIS- DEMALVED BIOER- CHEENT ICATUR- 5 DION) (MC	ND, COL FOR M- FEC	M, AL, STREP- TOCOCCI TH FECAL	
OCT 18		1130 E	13	186	5.5 1	4.0 1	3.6	133 <1	.2 490	220	
FEB 28	1989	0945 E	22	170	6.6	4.5 1	2.6	98 <1	.0 80	540	
MAR 22	•••	1100 E	27	205	7.6	8.0 1	1.0	93	2.9 90	280	11
		0900 E	28	203	7.0 1	9.0	7.2	79 E2	2.1 700	5400	
JUL 18		1030 E	41	171	6.9 1		7.0	76 E	1.8 5400	>2400	
AUG			28	198			7.6		1.3 130		
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	OCT 1988 18	61	12	7.6	14	4.7	10	25	28	0.1	
	FEB 1989 28	55	11	6.6	10	4.3	9.0	27	22	0.1	
	MAR 22	56	5 11	6.9	9.4	2.5	10	26	22	0.1	
	JUN 13	58	3 12	6.8	10	4.7	17	21	21	0.1	
	JUL 18	41	8.5	4.8	6.5	4.8	14	16	15	0.2	
	AUG 03	58	3 12	6.8	9.8	5.5	16	21	21	0.1	
	DATE	SILICA, DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
	OCT 1988 18	7.9	105	0.013	/ 90	0.060	0.77	5.1	0.070	2.4	
	FEB 1989 28	7.5	94		4.80	0.060	0.33		0.030	5.2	
	MAR			0.029		0.140	0.75	4.7	0.220		
	22 JUN_	6.6	90	0.023		0.090	0.46	6.1	0.090	3.1	
	13 JUL	7.6	93	0.043		0.120	0.94	4.9	0.120	7.1	
	18 AUG	6.5	71	0.042	2.69	0.110	0.94	3.6	0.190	7.9	
	03	7.6	93	0.043	4.76	<0.050	0.72	5.5	0.080	4.8	

COHANSEY RIVER BASIN

01412800 COHANSEY RIVER AT SEELEY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

~~	DATE	TIME	SULFI TOTA (MG/ AS S	INDE D	UM- UM, IS- LVED G/L AL)	ARSE TOT (UG AS	AL	BER LIUI TOT REC ERA (UG AS	M, AL OV- BLE /L	BORO TOTA RECO ERAB (UG/ AS B	L TOT V- REC LE ERA L (UG	IUM NAL 1	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
	1988 1989	1130) <().5	20		1	<1	0	<	10	<1	<1	4
		0900) <(0.5	60		2	<1	0		40	<1	<1	4
	DATE		IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	NE TO RE ER (U	NGA- SE, TAL COV- ABLE IG/L MN)	TO RE ER (U	CURY TAL COV- ABLE G/L HG)	TO RE ER (U	KEL, TAL COV- ABLE G/L NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC TOTAL RECO ERAB (UG/ AS Z	Z V- LE PHI L TO	ENOLS OTAL G/L)
	OCT 1988 18 JUN 1989		590	<5		70		0.10		3	<1		20	1
	13		1700	2		130	<	0.10		4	<1	<	10	6

01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, Pa., Hydrologic Unit 02040104, on right bank 250 ft downstream from bridge (on U.S. Highway 6 and 209) between Port Jervis, N.Y. and Matamoras, Pa., 1.2 mi upstream from Neversink River, and 6.5 mi downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 3,070 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1904 to current year.

REVISED RECORDS.--WSP 1031: 1905-36. WDR NY-71-1: 1970. WDR NY-82-1: Drainage area. WDR NY-86-1: 1979-80.

GAGE.--Water-stage recorder. Datum of gage is 415.35 ft above National Geodetic Vertical Datum of 1929. October 1904 to August 13, 1928, nonrecording gage at bridge 250 ft upstream at present datum; operated by U.S. Weather Bureau prior to June 20, 1914.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by Lake Wallenpaupack and by Toronto, Cliff Lake, and Swinging Bridge Reservoirs (see Reservoirs in Delaware River Basin) and smaller reservoirs. Large diurnal fluctuations at medium and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi² of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² of drainage area controlled by Cannonsville Reservoir (see Reservoirs in Delaware River Basin). Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master. Telephone gageheight telemeter and satellite gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD...The U.S. Weather Bureau reported a discharge of 205,000 ft³/s, Oct. 10, 1903, gage height, 23.1 ft, from rating curve extended above 70,000 ft³/s, by velocity-area studies; maximum gage height, 25.5 ft, Mar. 8, 1904 (ice jam).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989, MEAN DAILY VALUES DAY OCT SEP NOV JUN .1111 DEC JAN **FEB** MAR APR MAY AUG 2760 2310 2040 7410 2540 2900 2150 1740 e1880 e2310 6650 2200 8920 7980 38200 23300 1550 e2090 1720 2400 3610 12 13 14 15 2150 2240 2140 1770 2690 2610 2150 1700 1790 4170 3990 4600 e1920 1710 1810 13300 2880 3100 3170 2200 1730 1550 1540 1980 1640 1250 2300 e1730 e1960 9790 8700 4140 e2010 e1780 22 23 24 25 7670 2240 2150 3760 5310 4710 2110 5430 4580 3980 27 2190 2020 2490 29 e1990 e2110 2020 e1800 MEAN MAX STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) 13140 1956 15240 1928 13700 1943 10110 1928 10270 MEAN 1913 1909 1940 1972 1955 MAX (WY) 1911 1965 MIN 1910 1913 (WY)

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1989 WATE	R YEAR	FOR PERIO	D OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE	3881 38200 1030 50500 11.21 8370 2220 1370	May 7 Nov 3 May 6 May 6	5239 9882 2028 163000 175 233000a 26.6b 175c 11600 3120 872	1928 1965 Aug 19 1955 Sep 23 1908 Aug 1908 Feb 12 1981 Sep 23 1908

a From rating curve extended above 89,000 ft³/s, on basis of slope-area measurement of peak flow b Floodmarks from ice jam c Ice Jam e Estimated

01434000 DELAWARE RIVER AT PORT JERVIS, NY -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957-60, 1964 to current year.

CHEMICAL DATA: 1958-59 (e), 1964-65 (c), 1966 (a), 1967-68 (c), 1969-76 (d), 1987 (b), 1988-89 (c).

MINOR ELEMENTS DATA: 1970 (a), 1972-73 (a), 1974-76 (c), 1987 (b), 1988-89 (c).

PESTICIDE DATA: 1974 (a).

ORGANIC DATA: 0C--1974 (b), 1975 (d).

NUTRIENT DATA: 1968 (a), 1969-76 (d).

BIOLOGICAL DATA:

BIOLOGICAL DAIR:
Bacteria--1973-76 (d).
Phytoplankton--1974 (b), 1975-76 (c).
Periphyton--1976 (a).
SEDIMENT DATA: 1959 (c), 1976 (c), 1988 (b), 1989 (c).

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: January 1973 to September 1973.
WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, Jun SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976. June 1974 to current year.

INSTRUMENTATION. -- Water-temperature digital recorder since January 1973, provides one-hour-interval punches.

REMARKS.--Interruption of record was due to malfunction of recording instrument. Water-quality samples were collected by personnel of the New York State Department of Environmental Conservation, and were analyzed by USGS laboratories.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum (water years 1957-59, 1973-81, 1983-84, 1988-89), 30.0°C, July 13, 1981; minimum after years 1958-60, 1973, 1975-89), 0.0°C, on many days during winter periods, except 1984.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum recorded, 27.0°C, July 26, but may have been higher during period of instrument malfunction; minimum, 0.0°C, on many days during winter period.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 18	1000	1710	86	7.00	12.0		10.3		27	7.6	1.9	4.8
NOV 15	1000	3740	81	7.20	5.5		11.9		23	6.9	1.4	3.9
APR 12	1200	4820	81	6.90	6.0	760	10.5	85	21	6.2	1.4	4.7
MAY 08	1000	23700	65	8.40	9.5	746	10.9	97	17	5.2	1.0	4.9
JUN 14	1000	4220	81	7.30	17.5	750	6.4	68	22	6.5	1.3	4.7
AUG 29	1200	1590	96	8.90	22.0	751	7.9	91	25	7.3	1.7	5.1
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 18	1.1	18	9.9	7.5	<0.10	20	10	<1	<1	4	2	80
NOV 15	0.90	13	12	6.9	<0.10	70		<1	100	7		150
APR 12	0.80	9.0	10	8.1	0.10	80		1	••	7		150
MAY 08	1.1	6.0	10	5.1	0.10	450		<1		6		720
JUN 14	0.90	10	9.0	7.5	0.10	80		<1	••	4	•••	270
AUG 29	0.90	16	9.0	8.3	0.10	250	••	<1	a de la	6		260

55

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
OCT 18	12	<5	5	20	3	<0.10	1	2	<10	4
NOV	12	٧,	,	20	3	VO. 10	· • •	_	110	•
15		<5		30		<0.10	3		<10	
APR		_								
12		<5		30		<0.10	5	••	20	
MAY 8	39	8		120		<0.10	3	••	10	
JUN 14 AUG	,	1		60		<0.10	1		10	
29		2	• • •	30		<0.10	3	••	20	

SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT	4000	4740		, ,
18 NOV	1000	1710	1	4.6
15	1000	3740	3	30
APR 12	1200	4820	2	26
08	1000	23700	30	1920
JUN 14	1000	4220	4	46
AUG 29	1200	1590	3	13

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

		I EM	LKATOKE	(DEG. C) O	WAILK,	MAILK ILAK	OCTOBER	1700 10	SEP I LIIDEK	1707		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DI	ECEMBER		JAI	NUARY	
1 2 3 4 5	19.0 19.0 19.0 18.0 16.5	17.0 18.0 17.5 16.5 15.5	18.0 18.5 18.5 17.0 16.0	5.0 6.5 6.5 6.0 8.5	4.5 5.0 5.5 4.5 6.0	4.5 5.5 6.0 5.5 7.0	4.0 3.0 3.0 2.5 2.0	3.0 2.5 2.0 1.0	3.5 3.0 2.5 1.5	.0 .5 .5 .0	.0 .0 .0	.0 .0 .0
6 7 8 9 10	15.5 13.5 12.5 11.5 12.0	13.5 12.0 11.5 10.5 10.5	14.0 12.5 12.0 11.0 11.5	9.0 9.0 8.5 8.0 7.5	8.0 8.5 8.0 7.5 6.5	8.5 9.0 8.0 7.5 7.0	2.0 2.5 2.5 2.0 1.5	1.0 1.0 1.5 1.0	1.5 1.5 2.0 1.5	.0 .0 .0	.0	.0 .0 .0
11 12 13 14 15	12.5 12.5 10.5 9.5 10.0	11.5 10.5 9.0 8.0 8.0	12.0 11.0 9.5 9.0	6.0	6.0 5.0 5.0 5.0	6.5 5.5 5.5 6.0 6.0	.5 .0 .0	.0 .0 .0	.0	.0	.0	.0
16 17 18 19 20	11.5 13.0 13.0 12.5 11.5	9.5 11.0 12.0 11.5 10.0	10.5 12.0 12.5 12.0 10.5	6.0 7.0 6.5 5.0 5.5	5.5 6.0 5.5 5.0 5.0	6.0 6.5 6.0 5.0	.0	.0	.0 .0 .0	.0	.0 .0 .0	.0 .0 .0
21 22 23 24 25	10.0 9.0 8.5 9.0 9.0	9.0 8.0 7.5 8.5 7.5	9.5 8.5 8.0 8.5 8.0	4.0	5.5 5.0 4.0 3.0 2.5	5.5 5.0 4.5 3.5 3.0	.5 .0 .0	.0 .0 .0	.5 .0 .0	.0 .0 .0	.0 .0 .0	.0
26 27 28 29 30 31	7.0 7.0 6.5 6.5 6.0 5.5	6.5 6.0 6.0 5.5 5.5 4.5	7.0 6.5 6.5 6.0 5.0	4.5 5.5 5.0	3.0 3.5 4.5 4.5 4.0	3.5 4.0 5.5 5.0 4.5	.0 .5 .0	.0 .0 .0 .0	.0 .5 .0	.0 .5 .5 .5 .5	.0	.0 .5 .5
MONTH	19.0	4.5	11.0	9.0	2.5	5.5	4.0	0.0	0.5	1.5	0.0	0.0

01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

TEMPERATURE (DEG. C) OF WATER, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN	MAX	MIN .	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			ARCH			APRIL			YAY	
1 2 3 4 5	2.5 2.0 1.0 .5	1.0 .5 .0	1.5 1.5 1.0 .0	2.0 2.0 3.0 2.5 2.5	.5 .0 .5 1.5 2.0	1.0 1.0 2.0 2.0 2.0	5.0 5.5 5.5 6.5 7.0	4.5 3.5 5.0 5.5 6.0	4.5 5.5 6.0 6.5	15.0 14.0 11.5 11.5 11.0	13.5 12.0 10.5 9.5 10.5	14.0 13.0 11.0 10.5 11.0
6 7 8 9	.0	.0 .0 .0	.0 .0 .0	2.0 1.0 1.5 2.5 3.5	1.0 .0 .0 .0	1.5 .5 .5 1.5 2.5	7.0 7.0 7.0 7.0 6.5	7.0 6.0 6.0 6.0 5.5	7.0 6.5 6.5 6.5	11.0 11.0 10.0 9.5 9.5	10.5 10.5 9.0 8.5 9.5	11.0 10.5 9.5 9.0 9.5
11 12 13 14 15	.5 .0 .0	.0	.0 .0 .0	3.5 3.5 3.0 4.5 7.0	1.5 1.5 .5 2.0 4.0	2.5 2.5 2.0 3.0 5.5	6.5 6.5 7.0 8.0 7.5	4.5 5.0 6.0 5.5 7.0	5.5 6.0 6.5 7.0 7.0	9.5 9.5 10.5 10.5 11.5	9.0 9.0 9.0 10.0	9.0 9.0 9.5 10.0 11.0
16 17 18 19 20	1.5 .0 .0 .5	.0	1.0 .0 .0 .0	7.5 8.0 7.5 6.5 5.5	6.0 6.5 5.0 3.0	7.0 7.0 7.0 6.0 4.0	7.5 9.5 11.0 11.5 12.0	7.0 6.5 9.0 10.0 9.5	7.0 8.0 10.0 10.5 11.0	11.5 13.5 15.0 16.5 17.5	11.0 11.5 13.0 14.5 15.5	11.5 12.0 14.0 15.5 16.5
21 22 23 24 25	1.5 1.0 1.0 .5	.5 .0 .0	1.0 .5 .5 .0	4.0 4.5 4.5 4.5	3.0 2.0 2.0 3.5 3.0	3.5 3.0 3.5 3.5 3.5	12.0 11.5 11.0 11.0	10.0 9.0 8.0 8.0 8.0	11.0 10.5 9.5 9.5 10.0	18.0 17.5 17.0 16.0 16.0	16.5 16.0 16.0 14.5 14.0	17.0 17.0 16.5 15.0 15.0
26 27 28 29 30 31	1.0 1.5	.0	.0 .5 .5	5.0 6.5 9.0 10.0 10.0 7.5	3.0 4.0 6.5 8.5 7.5 5.0	4.0 5.5 7.5 9.5 8.5 6.0	12.5 14.5 14.5 14.0 15.5	9.5 10.5 11.5 12.5 12.0	11.0 12.5 13.5 13.0 13.5	17.0 17.0 17.5 18.0 18.0 18.5	16.0 16.0 15.5 15.5 16.5 17.0	16.5 16.5 16.5 17.0 17.0
MONTH	2.5	0.0	0.5	10.0	0.0	4.0	15.5	3.5	8.5		8.5	13.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			ULY	A 19/196		AUGUST	1.20		TEMBER	
1 2 3 4 5	20.5 21.5 21.0 23.5 22.0	17.5 19.5 19.5 20.0 20.5	19.0 20.5 20.5 21.5 21.5	23.0 25.0 25.5 24.0 23.0	20.0 20.5 22.5 23.0 22.5	21.5 23.0 24.0 23.5 22.5	23.0 23.5 25.0 25.5	21.0 22.0 23.0 23.0	22.0 23.0 24.0 24.5	22.0 21.0 21.0 20.0 20.0	20.5 20.5 19.0 18.5 18.0	21.0 21.0 20.0 19.5 19.0
6 7 8 9	20.5 18.5 19.0 18.0 18.5	18.5 17.5 17.5 17.5 17.5	19.0 18.0 18.0 17.5 18.0	22.5 23.0 23.5 24.5 25.0	20.5 20.5 21.5 22.0 22.5	21.0 21.5 22.5 23.5 24.0	22.5	20.0	 21.5	20.0 21.0 22.0 22.5 24.0	18.5 19.0 19.5 20.5 21.5	19.0 20.0 21.0 21.5 22.5
11 12 13 14 15	19.0 20.0 19.0 18.5 17.0	17.5 17.5 18.5 17.0 15.0	18.5 19.0 19.0 18.0 16.0	25.0 23.5 22.0 23.5 24.0	23.0 22.0 21.0 21.0 21.5	24.0 22.5 21.5 22.5 22.5	21.5 20.5 22.5 23.5 24.5	20.5 20.0 20.5 21.5 22.0	21.0 20.5 21.0 22.5 23.5	23.5 22.5 22.0 21.5 22.0	22.0 21.5 20.0 20.5 20.5	23.0 22.0 21.0 21.0 21.0
16 17 18 19 20	16.0 17.5 18.5 19.5 20.0	14.5 15.5 16.5 17.5 18.0	15.0 16.5 17.5 18.5 19.0	23.0 22.0 23.5 24.5 22.5	21.5 21.0 21.0 21.5 21.5	22.0 21.5 22.5 23.0 22.0	25.0 25.0 23.5 22.5 23.5	23.0 23.0 22.0 21.5 21.0	24.0 24.0 23.0 22.0 22.5	21.0 19.0 18.5 18.0 18.5	18.5 18.0 18.0 17.5 17.0	19.5 18.5 18.0 17.5 17.5
21 22 23 24 25	21.0 21.0 21.5 22.0 21.5		19.5 20.0 20.5 20.5 21.0	21.0 22.0 25.5 26.0 25.5	20.0 20.0 21.5 23.0 24.0	20.5 21.0 23.0 24.5 25.0	25.0 25.0 24.5 24.5 23.5	22.5 22.5 23.0 22.5 21.0	23.5 24.0 24.0 23.5 22.5	19.0 20.0 20.0 17.5 16.0	18.0 18.5 17.5 16.0 15.0	18.5 19.0 19.5 17.0 15.5
26 27			20.5 22.0 22.0	27.0 25.5 26.0	24.0 24.5 24.0					17.0 15.5 15.0	15.0 14.5 13.0	16.0
26 27 28 29 30 31	21.5 23.5 22.5 21.5 21.0	20.5 21.0 20.0 19.0	22.0 21.0 20.0	26.0 25.5 24.0 23.5	24.0 23.5 22.5 22.0	25.5 25.0 25.5 24.5 23.5 23.0	22.5 22.5 23.0 22.5 23.5 23.0	20.5 20.5 21.0 22.0 21.5 21.0	22.0 22.0 22.0 22.0 22.5 22.5	15.0 16.0 16.0	13.0 13.0 14.0	16.0 15.0 14.0 14.5 15.0

01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41°26'28", long 74°36'07", Orange County, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi downstream from Basher Kill, 0.8 mi southeast of Godeffroy, 1.7 mi south of Cuddebackville, and 8.5 mi upstream from mouth.

DRAINAGE AREA. -- 307 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August to October 1903, July 1937 to current year. Gage heights and discharge measurements, August 1909 to April 1914. Twice-daily figures of discharge, January 1911 to December 1912, which do not represent daily mean discharges because of diurnal fluctuation. August to October 1903, published as "Naversink River at Godeffroy, NY."

REVISED RECORDS.--WSP 1502: 1951 (M). WDR NY-82-1: Drainage area. WDR NY-87-1: 1986.

GAGE.--Water-stage recorder. Datum of gage is 459.66 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to Apr. 30, 1914, nonrecording gages at same site (August to October 1903 at datum 0.98 ft higher).

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Prior to 1949, diurnal fluctuation at low and medium flow caused by powerplant at Cuddebackville. Subsequent to June 1953, entire flow from 92.5 mi² of drainage area controlled by Neversink Reservoir (see Reservoirs in Delaware River Basin). Part of flow diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill), impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, ME	AN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	100 98 99 96 95	124 174 164 147 164	456 403 363 334 301	186 184 178 e180 e170	217 227 206 160 e150	e210 e190 e190 193 191	1140 769 719 756 696	239 882 938 588 531	443 683 500 438 402	337 314 287 284 407	179 159 232 222 201	126 123 120 112 109
6 7 8 9	93 90 93 95 92	809 479 361 308 273	283 267 249 228 203	e180 e180 e180 e170 167	e140 e130 e120 e120 e110	200 e170 e170 e160 e150	849 895 756 649 610	2870 2010 1470 1160 1450	466 575 498 482 993	457 348 311 276 259	199 193 177 154 131	108 107 104 108 133
11 12 13 14 15	91 94 92 93 90	257 229 262 467 354	e200 e190 e190 181 190	154 150 199 198 195	e110 e110 e109 117 140	e140 e150 e130 e140 158	543 494 463 498 473	3110 2040 1550 1280 1060	731 569 625 649 1240	264 232 219 211 197	129 173 247 313 214	134 129 104 117 149
16 17 18 19 20	89 85 86 88 83	298 300 350 294 663	162 150 e140 140 148	242 205 178 177 176	201 140 130 120 115	188 177 188 224 195	670 614 538 501 437	1130 4140 3060 2390 1850	1550 1290 1050 850 709	192 193 187 178 182	187 189 174 176 227	147 303 228 199 1490
21 22 23 24 25	86 181 224 156 142	1560 1080 886 747 623	160 160 157 172 300	170 160 160 151 147	300 700 400 350 280	206 214 204 240 713	399 369 339 319 299	1450 1300 870 968 1020	698 703 677 982 800	224 205 197 183 181	212 185 180 171 160	1140 832 873 681 517
26 27 28 29 30 31	130 123 128 131 122 116	531 474 576 531 473	240 201 200 257 217 183	144 198 200 194 213 224	260 240 220	827 682 640 748 815 906	281 265 259 249 242	839 755 659 564 510 479	624 533 482 447 380	186 178 188 190 168 169	150 127 123 126 152 140	792 832 607 509 457
MEAN MAX MIN	109 224 83	465 1560 124	227 456 140	181 242 144	201 700 109	313 906 130	536 1140 242	1392 4140 239	702 1550 380	239 457 168	181 313 123	380 1490 104
MEAN	296	448	w DATA FO	438	OF RECORD	, BY WATE . 841	979	(WY) 650	422	285	230	238
MAX (WY) MIN (WY)	2033 1956 75.2 1942	1210 1952 86.3 1966	1272 1953 119 1981	1504 1949 72.6 1981	1271 1951 118 1980	2303 1945 297 1981	2669 1940 248 1985	1519 1943 180 1962	1722 1972 111 1957	1404 1945 54.2 1966	1327 1955 64.7 1949	967 1938 68.4 1941
SUMMARY	STATISTIC	cs		FO	R 1989 WAT	ER YEAR			FOR P	ERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST D INSTANTA INSTANTA	FLOW ANNUAL MEA ANNUAL MEA DAILY MEA ANEOUS PEA ANEOUS LO	AN AN N AK FLOW AK STAGE			4140 83 5420 7.29	May 17 Oct 20 May 17 May 17 Oct 20			94 21 1590	3 5 0 Aug 2 Aug	adjusted 1952 1965 19 1955 17 1965 17 1955 19 1955 21 1911	

a Since water year 1938

b From rating curve extended above 11,000 ft³/s, on basis of slope-area measurement of peak flow

e Estimated

01437500 NEVERSINK RIVER AT GODEFFROY, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1987 to current year. Records prior to water year 1989 are unpublished and available in files of the Geological Survey.

CHEMICAL DATA: 1987 (b), 1988-89 (c).
MINOR ELEMENTS DATA: 1987 (b), 1988-89 (c).
SEDIMENT DATA: 1988 (b), 1989 (c).

REMARKS.--Water-quality samples were collected by personnel of the New York State Department of Environmental Conservation, and were analyzed in USGS laboratories.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DA	TE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECON	CIFIC CON- DUCT- ANCE	PH (STAND- ARD	TEMPER ATURE WATER (DEG C	(MM OF	OXYGEN, DIS- SOLVEC (MG/L)	CENT SATUR	HARD D NESS TOTA (MG/	CALCIU L DIS- L SOLVE (MG/L	DIS- D SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L
OCT 1	8	0800	84	10	3 6.60	11.0	0	10.5	486 (4)		27 8.2	1.6	7.8
NOV 1	5	0900	362	9	7.10	5.	0	12.8	3		24 7.0	1.5	6.6
APR	2	1000	502	10	01 6.40	5.	5 759	9 13.0) 10	3	23 6.9	1.4	7.9
MAY	8	1200	1480		30 6.80						19 5.5	1.2	6.5
JUN		1200	631		39 6.80						22 6.5	1.3	6.0
AUG		1000	122	11					5 10		28 8.4	1.6	7.9
	7	1000	122		7.10	19.	5 15	y	0 3, 10		20 0.4	1.0	1.7
	DAT	E	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL (RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)
	OCT 18		1.2	17	10	11	0.10	30	<10	<1	<1	19	3
	NOV 15		1.1	13	14	11	0.10	110		3		10	
	APR 12		0.90	10	10	12	0.10	70		<1		4	
	MAY 08		0.90	8.0	10	8.4	0.10	190	1 des	1	-2.	9	
	JUN 14		0.70	12	9.0	9.5	0.10	150		<1		11	
	AUG 29		1.1	18	10	12	0.10	20		<1		5	
	DAT	Έ	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
	0CT 18		80	21	<5	<5	<10	5	<0.10	5	<1	110	5
	NOV 15		200		<5		20		<0.10	10	. · ·	<10	28 M 10 M
	APR 12		140		<5	·	40		<0.10	3	kan 🚅 🖈	20	144.5
	MAY 08		290	72	6		60		<0.10	5		10	1-1-53
	JUN 14		330		4		60		<0.10	2		20	
	AUG 29		150						201	for both to			

DELAWARE RIVER BASIN

01437500 NEVERSINK RIVER AT GODEFFROY, NY--Continued
SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
18 NOV	0800	84	1	0.23
15	0900	362	3	2.9
APR 12	1000	502	4	5.4
MAY 	1200	1480	9	36
JUN 14	1200	631	6	10
AUG 29	1000	122	4	1.3

01438500 DELAWARE RIVER AT MONTAGUE, NJ

LOCATION.--Lat 41°18'33", long 74°47'44", Pike County, PA, Hydrologic Unit 02040104, on right bank 1,500 ft upstream from toll bridge (on U.S. Route 206) between Montague, NJ and Milford, PA, 0.8 mi downstream from Sawkill Creek, and at river mile 246.3.

DRAINAGE AREA .-- 3,480 mi 2.

PERIOD OF RECORD.--March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS. -- WDR-NJ-81-2: 1980.

GAGE.--Water-stage recorder. Datum of gage is 369.93 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum 70 ft lower.

REMARKS.--Records excellent except for periods of ice effect, Dec. 12 to Jan. 29, and Feb. 8-20, and periods of shifting control, Oct. 1 to Nov. 6, and Aug. 20 to Sept. 30, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). Several measurements of water temperature were made during the year. Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of October 10, 1903, reached a stage of 35.5 ft, from floodmark, present datum.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1950 1810 1720 1640 1670	1740 1800 1350 1850 1850	3720 3730 3320 2560 2700	e1900 e2100 e2100 e2100 e2600	2500 2560 2770 2380 1730	3100 2730 2450 2230 1890	14100 11400 9240 8670 8670	2260 6340 15100 10600 7810	4810 5500 4690 3660 33 40	4150 3330 3130 3160 3100	2240 2070 2210 2520 2310	1820 1650 1660 1590 1620
6 7 8 9	1750 1680 1650 1700 1650	2900 7180 5080 4100 3440	2940 2630 2520 2560 2370	e2400 e2000 e1800 e1900 e2300	1950 2440 e2000 e2100 e2000	2250 2560 2650 2490 2020	9240 10200 9380 8060 7430	27000 41900 26700 18300 16200	3450 4190 4330 4250 6260	7550 5840 4710 3980 3490	1840 2000 2600 2200 2250	1600 1590 1710 1740 1750
11 12 13 14 15	1900 1760 1750 1810 1770	2850 2530 2290 3200 4400	1630 e1650 e2300 e2000 e2100	e2200 e1950 e1900 e2100 e1800	e1750 e1200 e1300 e2000 e2000	1840 1380 1520 1510 1440	6420 5690 5030 4950 4470	29500 27200 19700 15100 13100	6770 5330 4910 5450 8870	4020 3480 3020 2850 2710	2040 2090 2040 2280 2390	2270 2350 2030 1870 1800
16 17 18 19 20	1810 1800 1810 1890 1830	3850 3290 3560 3670 3790	e1700 e2100 e2000 e2100 e2100	e1800 e2200 e2200 e1800 e1800	e2600 e2500 e2200 e1500 e1300	1450 2320 2020 2130 2950	5310 5940 5560 5070 4580	12100 22900 22700 16200 13400	14600 13700 13500 10900 9810	1820 1750 2470 2510 2420	2260 2570 1840 1700 1890	1980 2170 1530 1380 5040
21 22 23 24 25	2020 2270 2010	12800 12100 8560 6510 5610	e1900 e2000 e1800 e1600 e2300	e1600 e1400 e1500 e2000 e1800	1990 9450 7670 5260 4270	2770 2380 2010 2330 6490	4280 3920 3590 3500 3300	11600 10400 8460 9180 9110	8510 9120 8640 9910 12300	2790 3060 2460 2440 3110	2090 2470 2440 2400 1800	6770 6400 5280 4510 4150
26 27 28 29 30 31	2050 1670 1280 1190 1370 1630	4930 4090 4120 4190 4240	e2900 e2800 e2400 e2000 e2400 e2200	e1700 e2200 e2400 e1750 2210 2650	2730 2920 3030	9780 9010 8010 8200 11200 13500	2900 2580 2450 2410 2100	7700 6780 5910 4970 4810 4840	11200 8880 7930 6960 5970	2650 1810	1740 1710 1710 1860 1860 2310	4790 4910 3570 3150 2710
MEAN MAX MIN	1768 2270 1190	4396 12800 1350	2356 3730 1600	2005 2650 1400	2789 9450 1200	3826 13500 1380	6015 14100 2100	14450 41900 2260	7591 14600 3340	7550	2120 2600 1700	2846 6770 1380
STATIST			W DATA FO	R PERIOD	OF RECORD,	BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	3333 15690 1956 806 1942	5049 11760 1952 995 1965	6144 14050 1974 1968 1965	5672 15050 1949 1318 1981	5968 15120 1976 1748 1980	10180 24480 1945 3191 1981	12000 31560 1940 3322 1985	7616 16090 1943 2215 1965	4523 15200 1972 1214 1965	3068 11220 1945 864 1954	2596 14230 1955 715 1954	2725 9167 1960 892 1941

01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF	F RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	4451 41900 May 7	8621 2309 7 187000 Au	Unadjusted 1952 1965 ug 19 1955
LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE	1190 Oct 29 52200 May 6 16.19 May 6 960 Sep 15 9580	5 250000a Ai 5 35.15 Ai	ug 23 1954 ug 19 1955 ug 19 1955 ug 24 1954
50 PERCENTILE 95 PERCENTILE	2530 1600	3440 1250	

a $\,$ From rating curve extended above 90,000 $\,\mathrm{ft}^3/\mathrm{s}$ on basis of flood-routing study e $\,$ Estimated

01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ

LOCATION.--Lat 41°06'24", long 74°57'09", Sussex County, Hydrologic Unit 02040104, on right bank 1.0 mi upstream from Flatbrookville, and 1.5 mi upstream from mouth.

DRAINAGE AREA. -- 64.0 mi 2.

PERIOD OF RECORD. -- July 1923 to current year.

REVISED RECORDS.--WSP 1432: 1924(M), 1928(M), 1929, 1930(M), 1932, 1933(M), 1936, 1938(M), 1939-40, 1949(M), 1952-53(M). WDR-NJ-80-2: 1970(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Aug. 19, 1929. Datum of gage is 347.73 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 6, 1926, nonrecording gage at same site and datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Flow occasionally regulated by ponds above station. Several measurements of water temperature were made during the year. Satellite telemeter at station.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, N	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16	20	110	55	55	76	160	65	148	78	44	21
2	16	28	100	47	56	69	136	170	132	73	47	21
3	17	31	95	45	53	66	121	215	119	68	44	19
4	17	27	84	e42	48	62	122	138	108	63	38	18
5	17	26	74	e38	45	61	120	121	106	93	33	18
6	16	67	71	e39	e40	69	152	930	114	117	36	17
7	16	64	70	e39	e35	63	196	765	159	96	51	17
8	16	45	67	e44	e33	e55	159	416	266	106	38	16
9	16	38	64	e50	e31	e59	144	302	175	80	32	16
10	16	35	59	51	e32	55	137	355	289	66	29	16
11	16	32	56	46	e33	54	121	964	204	62	28	15
12	14	30	48	46	e34	56	115	620	146	57	55	15
13	15	37	49	67	e35	50	106	409	158	55	100	15
14	14	95	52	60	36	53	110	321	165	53	80	14
15	14	70	55	62	41	54	110	280	218	47	59	15
16	16	57	48	74	55	62	142	382	392	45	46	18
17	15	59	46	64	43	59	137	943	391	47	41	60
18	31	78	45	59	42	60	114	703	271	44	38	42
19	34	65	50	59	44	70	107	428	206	42	34	39
20	27	163	46	63	36	61	99	328	168	46	35	1010
21	22	513	47	51	78	66	92	274	162	62	34	834
22	38	264	47	58	207	80	87	234	156	59	31	359
23	47	186	44	e60	172	70	81	208	152	70	29	324
24	34	142	49	e54	124	77	77	343	185	52	27	271
25	32	122	82	e50	97	235	73	416	162	47	25	193
26 27 28 29 30 31	28 25 23 21 20 20	108 98 159 164 124	66 52 50 63 55 54	49 53 52 50 53 57	101 86 77 	199 153 136 128 121 131	72 69 66 64 64	269 236 210 175 162 159	131 112 100 96 86	48 40 37 33 31 31	23 22 21 21 23 23	306 329 215 175 149
MEAN	21.6	98.2	61.2	52.8	63.2	84.2	112	372	176	59.6	38.3	153
MAX	47	513	110	74	207	235	196	964	392	117	100	1010
MIN	14	20	44	38	31	50	64	65	86	31	21	14
IN.	.39	1.71	1.10	.95	1.03	1.52	1.95	6.71	3.07	1.07	.69	2.66
					OF RECORD,							
MEAN	51.6	95.4	118	116	133	204	205	143	88.3	58.3	50.9	48.3
MAX	306	292	369	367	275	513	570	372	334	333	386	258
(WY)	1956	1928	1974	1979	1951	1936	1983	1989	1972	1928	1955	1933
MIN	9.57	12.2	20.6	24.5	37.3	82.0	65.9	44.0	23.7	13.1	9.55	7.01
(WY)	1964	1965	1947	1981	1940	1985	1946	1941	1965	1966	1966	1964
SUMMARY	STATISTIC	S		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST / HIGHEST LOWEST I INSTANT/ INSTANT/	ANNUAL MEA ANNUAL MEA DAILY MEA DAILY MEA ANEOUS PEA ANEOUS LOV RUNOFF (IN ENTILE ENTILE	AN AN AK FLOW AK STAGE V FLOW			1010 14 1980 6.02 12 22.85 229 60 17	Sep 20 Oct 12 Sep 20 Sep 20 Jan 14			2 43 63 4 95 12. 3 23.	.1 Sep 60a Aug 58b Aug	19 1955	

From rating curve extended above 2,000 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow From high-water mark in gage house

Estimated

01440200 DELAWARE RIVER BELOW TOCKS ISLAND DAMSITE, NEAR DELAWARE WATER GAP, PA

LOCATION.--Lat 41°00'42", long 75°05'09", Warren County, NJ, Hydrologic Unit 02040105, on left bank 40 ft streamward from River Road, 1.0 mi downstream from Tocks Island, 3.7 mi northeast of Delaware Water Gap, PA, 4.0 mi upstream from bridge on Interstate Route 80, and at mile 216.1.

DRAINAGE AREA. -- 3,850 mi², approximately.

PERIOD OF RECORD. -- May 1964 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 293.64 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). Several measurements of water temperature were made during the year. Gage height satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 19, 1955, reached a stage of 37.4 ft, present datum (discharge about 260,000 cfs). Information on stage supplied by Harlan Fish, retired caretaker of Worthington State Forest.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e1970 e2000 e1850 e1860 e1780	1960 1940 2030 1480 2300	4760 4600 4270 3300 3020	e2450 e2150 e2150 e2830 e2870	3040 2840 3020 3120 2000	3770 3400 2890 2730 2500	16100 13800 10800 9680 9650	2590 3740 16800 13100 9340	5620 5960 5760 4590 3960	5560 4250 3590 4070 3450	2540 2430 2310 2740 2750	2330 2000 1890 1880 1800
6 7 8 9 10	e1810 e1840 e1770 e1780 e1800	2380 6200 6510 4770 4130	3750 3190 3070 2890 3030	e3020 e2870 e2070 e2110 e2550	e2060 e2610 e2310 e2290 e2200	2490 3000 3040 3100 2380	9820 11300 11000 9410 8500	23900 60200 38600 23900 19100	4080 4560 5540 5200 6490	6610 7570 6310 4900 4080	2050 2180 2560 2600 2390	1890 1810 1840 2050 1900
11 12 13 14 15	e1850 e2000 1840 1890 1870	3520 2940 2670 2810 4770	2120 e1760 e2310 e2550 e2620	e2470 e2300 e2060 e2290 e2090	e2010 e1750 1630 2000 2270	2470 1750 1660 2040 1710	7680 6730 6200 5860 5530	34600 38200 26000 19300 15800	7940 6700 5940 6140 7790	4640 4260 3550 3260 3170	2260 2330 2340 2960 3100	2210 2810 2350 2290 2000
16 17 18 19 20	1860 1900 1940 1970 2040	4580 3840 3920 4150 4310	e2030 e2550 e2270 e2400 e2740	e2000 e2230 e2650 e2170 e1990	2350 3370 3060 1990 1670	1660 2140 2740 2350 2970	5700 6830 6550 6140 5590	14600 25600 31700 21600 16800	15700 17000 15800 13100 11300	2220 1980 2480 2710 2680	2700 2810 2300 1990 1760	2190 2870 2540 2030 6680
21 22 23 24 25	2010 2280 2450 2350 2640	11800 15900 10800 8340 6750	e2300 e2180 e2710 e1740 e2440	e2100 e1770 e1660 e2270 e1980	1710 7000 10400 6840 5870	3430 3080 2610 2570 5100	5080 4800 4350 4090 3950	14200 12200 10400 10400 11100	9710 10100 10200 10600 13300	2690 3510 2990 3070 3540	2280 2570 2700 2940 2190	11000 9410 8030 6830 6100
26 27 28 29 30 31	2310 2200 1740 1420 1420 1710	6180 5400 4910 5270 5240	e3180 e3030 e3070 e2490 e2900 e2980	e1920 e2380 e2530 e2020 2330 2970	3870 3510 3630	11200 10300 9230 8780 11600 13900	3640 3250 3040 2920 2760	9510 8210 7550 6160 5700 6110	13200 10600 8970 8150 7160	3610 3330 3470 3140 2240 1960	2050 1940 2000 2070 2080 2370	6370 7530 5820 4930 4320
MEAN MAX MIN	1940 2640 1420	5060 15900 1480	2847 4760 1740	2298 3020 1660	3229 10400 1630	4277 13900 1660	7025 16100 2760	17970 60200 2590	8705 17000 3960	3706 7570	2396 3100 1760	3923 11000 1800
STATIS					OF RECORD	, BY WATE	R YEAR (
MEAN MAX (WY) MIN (WY)	3910 13030 1978 1193 1965	5092 12870 1973 992 1965	6708 16730 1974 1914 1965	5922 17960 1979 1437 1981	7145 17320 1976 1936 1980	10470 21490 1977 3873 1981	12130 24100 1983 3796 1985	8655 17970 1989 2746 1965	5522 18150 1972 1397 1965	3538 9455 1973 950 1965	2766 6242 1969 1101 1965	3180 10310 1987 1283 1965
	Y STATISTI	cs		FC	OR 1989 WATE	R YEAR				PERIOD OF	RECORD	
AVERAGE HIGHES LOWEST HIGHES LOWEST INSTAN INSTAN 10 PER 50 PER 95 PER	E FLOW T ANNUAL ME ANNUAL ME T DAILY ME DAILY ME TANEOUS PE TANEOUS PE CENTILE CENTILE				5288 60200 1420 67900 16.89a 11000 2990 1780	May 7 Oct 29 May 7 May 7			96 96 1100 24 136 3	271 Un 418 572 000 Mar 580 Jul 000 Mar .00 Mar 400 790	adjusted 1973 1965 16 1986 7 1965 16 1986 16 1986	

e Estimated

01443000 DELAWARE RIVER AT PORTLAND, PA

LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi upstream of Paulins Kill.

DRAINAGE AREA. -- 4,165 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	INST. CCUBIC CCFEET DUPER AI	JCT- (S	TAND- ARD	EMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- DEM SOLVED BI (PER- CH CENT IC SATUR- 5	O- FOI IEM- FEI CAL, EI DAY BRI	CAL, STREP-
OCT 1988	4000	- 4000	407	_ ,	44.0			4 5 70	
06 JAN 1989	1200	E 1880	107	7.4	14.0	9.9		1.5 79	
APR	1130	E 2710	105	6.6	1.0	14.0		(1.1 4)	
17	1100	E 7720	95	7.2	7.0	12.4	102	<1.1 <2	0 33
17 JUL	1100	E28100	80	6.4	9.0	10.7	93 E	1.6 17	0 140
31 AUG	1330	E 2420	120	6.8	20.0	8.5	93	4.4 13	0 240
15	1215	E 3530	104	7.1	21.0	8.4	95 E	2.4 9	0 130
DATE	HARD NESS TOTAI (MG/I AS CACO	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/I AS NA	DIS SOLV (MG)	JM, LINIT S- LAB /ED (MG/ /L AS	Y SULFATE DIS- L SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988		3 9.5	2.2	6.8	. 1	.2 25	12	9.6	<0.1
JAN 1989		12 12	2.9	7.7			15	12	0.1
APR									
17 MAY		26 7.9	1.6	5.0	-	.9 14	11	9.6	0.1
17 JUL		22 6.6	1.3	3.8	в о	.7 11	10	6.3	0.1
31	•	11 12	2.6	6.6	6 0	.9 27	12	10	0.1
15		32 9.7	1.9	5.4	4 0	.9 21	11	7.3	0.1
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI- ED TUENTS, DIS- SOLVED		NITRO GEN NO2+NO TOTA (MG/ AS N	GE O3 AMMO L TOT L (MG	N, MONI/ NIA ORGAN AL TOT/ /L (MG/	AM- A + NITRO- NIC GEN, AL TOTAL /L (MG/L	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 06 JAN 1989	0.	93 57	0.009	0.2	7 <0.0	5 0.29	0.56	 	2.6
24 APR	2.	5 69	0.010	0.5	1 0.1	8 0.38	0.89	0.12	3.6
17	2.	2 47	0.005	0.3	5 0.0	6 0.2	7 0.62	0.03	2.5
17	3.	2 39	0.010	0.3	5 <0.0	5 0.4	0.76		3.7
JUL 31	2.	0 62	0.022	0.4	4 <0.0	5 0.6	0 1.0	0.50	3.3
AUG 15	2.	9 52	0.010	0.3	3 <0.0	5 0.3	9 0.72		3.3

01443440 PAULINS KILL AT BALESVILLE, NJ

LOCATION.--Lat 41°06'20", long 74°45'19", Sussex County, Hydrologic Unit 02040105, at bridge on unnamed road at Balesville, 2.2 mi downstream from Dry Brook, and 3.4 mi north of Newton.

DRAINAGE AREA. -- 67.1 mi².

PERIOD OF RECORD. -- January 1979 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH/ II CI TIME	JBIC CO FEET DU PER AN	FIC N- I CT- (ST CE	TAND- A ARD W	TURE	XYGEN, DIS- SOLVED (MG/L)	DIS- DEI SOLVED B: (PER- CI CENT II SATUR- 5	IO- FO HEM- FE CAL, E DAY BR	LI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)	
OCT 1988 20	1100	16E	592	7.8	8.5	12.0	104	<0.6 33	0 140	
JAN 1989 26	1115	38E	300	7.6	2.0	15.5	114	<1.1 8	0 13	
APR 26	1100	52E	390	7.9	10.5	11.9	108	<0.7 33	0 23	
JUN 20	1100	180E	400	7.5	18.0	8.8	93	E1.9 79	0 350	
JUL 05	1100	96E	450	7.8	19.0	8.9	97	E1.3 130	0 >2400	
AUG 03	1200	56E	464	7.4	20.0	9.5	106	E1.8 350	1600	
DATE OCT 1988	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG/L	DIS- SOLVE (MG/L	LINITY LAB D (MG/	Y SULFATE DIS- L SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
20	240	58	23	30	2.5	186	33	59	0.1	
JAN 1989 26 APR	170	43	15	26	1.9	127	33	50	0.1	
26 JUN	180	45	16	23	1.5	131	28	42	0.1	
20 JUL	140	36	11	19	1.4	106	18	29	0.1	
05 AUG	170	44	15	21	1.8	136	20	35	0.1	
03	190	49	16	25	2.2	149	23	44	0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITROGEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	MONÍA A ORGAN TOTA (MG/	M- + NITRO- IC GEN, L TOTAL L (MG/L	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 1988 20 JAN 1989	6.2	323	0.027	1.41	<0.05	0.4	6 1.9	0.26	5.2	
26 APR	5.1	250	0.015	1.26	0.42	0.6	9 2.0	0.09	3.5	
26 JUN	2.3	236	0.021	0.10	0.10	0.4	6 0.56	0.07	4.9	
20 JUL	6.4	184	0.028	0.92	0.12	2 0.8	2 1.7	0.12	8.2	
05 AUG	7.1	226	0.030	1.15	0.07	7 0.7	5 1.9	0.10	5.7	
03	7.4	256	0.040	1.36	<0.05	0.4	9 1.8	0.12	5.4	

01443440 PAULINS KILL AT BALESVILLE, NJ -- Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFID TOTAL (MG/L AS S)	SOLV (UG/	ARSE TOT	NIC REC AL ER/	TAL TOT COV- REC ABLE ERA	COV- RECO BLE ERAB G/L (UG/	L TOTA OV- REC BLE ERA 'L (UG	M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE /L (UG/L
OCT 1988 20	1100	<0.	5	10	<1 <	10	30	1	<1 5
DA	T R E TE (RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
OCT 19		120	<5	70	<0.10	2	<1	<10	1

01443500 PAULINS KILL AT BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'44", long 74°57'15", Warren County, Hydrologic Unit 02040105, on right bank 1,200 ft upstream from bridge on State Highway 94 in Blairstown, 1,400 ft upstream from Blairs Creek, and 10 mi upstream from mouth. Water-quality samples collected at bridge 1,200 ft downstream from gage at high flows.

DRAINAGE AREA. -- 126 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. - 1921 to September 1976, October 1977 to current year.

REVISED RECORDS.--WSP 971: 1942. WSP 1382: 1952-53(M).

GAGE.--Water-stage recorder and concrete control (Aug. 1, 1931, to Aug. 3, 1941, concrete control at site 280 ft, downstream). Datum of gage is 335.86 ft above National Geodetic Vertical Datum of 1929. Prior to May 24, 1922, nonrecording gage and May 24, 1922 to July 31, 1931, water-stage recorder, at site of former highway bridge 1,300 ft downstream at different datum. Aug. 1, 1931 to July 28, 1939, water-stage recorder at site 100 ft downstream at present datum.

REMARKS.--No estimated daily discharges. Records good. Diurnal fluctuations caused by unknown source and flow regulated slightly by Swartswood Lake. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARGE	CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	31 30 35 35 35	34 43 48 44 86	214 194 210 233 221	108 104 100 88 85	87 90 108 109 106	149 139 133 125 120	322 284 263 276 264	108 237 330 253 219	280 253 228 206 198	224 201 186 172 219	85 84 106 92 85	47 46 43 40 39
6 7 8 9 10	31 29 29 27 28	177 165 150 132 94	210 199 184 167 128	78 78 85 92 85	99 57 54 49	144 138 111 116 115	306 352 312 293 276	950 1070 742 549 596	199 250 347 292 785	268 243 258 199 169	96 85 79 70 63	39 39 38 37 36
11 12 13 14 15	32 29 27 26 26	52 37 43 85 82	74 62 66 70 70	84 92 111 102 120	52 79 77 54 58	118 125 114 111 127	251 229 219 219 223	1190 1040 785 606 521	515 384 381 371 411	153 132 122 115 109	63 128 194 175 139	35 34 34 36 42
16 17 18 19 20	26 26 25 26 25	79 86 87 84 198	65 64 60 68 67	129 178 198 158 153	67 59 58 57 52	177 180 183 190 154	265 254 225 208 188	709 1510 1370 1080 801	548 567 479 399 341	111 120 112 105 110	115 100 92 84 87	49 83 72 81 1460
21 22 23 24 25	24 48 52 52 47	444 538 371 300 234	71 77 77 88 108	145 160 120 67 60	135 402 346 262 202	174 205 174 202 442	173 162 146 137 129	617 501 450 662 765	337 358 488 618 522	127 115 139 116 101	81 74 69 72 69	1900 1300 1070 822 528
26 27 28 29 30 31	42 38 35 35 34 32	192 197 286 289 242	96 91 96 107 102 113	61 66 64 64 72 74	184 172 161	400 329 292 274 266 311	125 118 112 107 107	589 491 426 359 318 301	427 363 320 292 252	123 103 99 92 80 74	60 55 53 55 57 52	660 634 449 372 323
MEAN MAX MIN IN.		163 538 34 1.45	118 233 60 1.08	103 198 60 -94	117 402 49 .97	188 442 111 1.72	218 352 107 1.93	650 1510 108 5.95	380 785 198 3.37	145 268 74 1.33	87.7 194 52 .80	346 1900 34 3.07
					OF RECORD,	BY WATER						
MEAN MAX (WY) MIN (WY)	20.5	163 479 1933 22.1 1965	205 588 1974 39.5 1947	214 712 1979 50.5 1981	249 516 1951 67.4 1940	368 963 1936 139 1965	334 930 1983 106 1985	223 650 1989 54.6 1941	155 690 1972 41.0 1965	118 527 1945 19.4 1955	106 663 1955 19.6 1932	109 626 1933 18.2 1964
SUMMARY	STATISTICS			FO	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST A HIGHEST LOWEST D INSTANTA INSTANTA ANNUAL A 10 PERCE	ANNUAL MEAN ANNUAL MEAN DAILY MEAN DAILY MEAN ANEOUS PEAK ANEOUS LOW RUNOFF (INC ENTILE ENTILE	FLOW STAGE FLOW			212 1900 24 2390 6.25 23 22.90 491 122 33	Sep 21 Oct 21 Sep 20 Sep 20 Oct 20			3 67 59 87 11. 20.	750 Aug 12a Aug 2.8 Nov	1952 1965 1 19 1955 1 13 1930 1 19 1955 1 19 1955 1 1 1922	

a From high-water mark in gage house

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1921, 1925, 1957-60, 1962-63, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	CH. II	UBIC CO FEET DU PER AN	FIC N- P CT- (ST CE A	AND - A	TURE D	YGEN, (F OIS- (OLVED SA	DLVED BI PER- CH CENT IC ATUR- 5	AND, COL O- FOR	RM, CAL, STREP- TOCOCCI OTH FECAL
	1988	1330	25	471	7.8	10.0	11.8	105 <	0.6 50	49
JAN	1989		60	265	7.7		15.0		1.0 80	
APR	5									
JUN	S		26	330			13.0		1.5 <20	
JUL)		35	364		19.0	8.2		2.3 80	
AUG	5		14	380		21.0	8.8		1.4 1700	
09	····	1145	69	432	7.9	19.5	9.6	105 <	1.0 130	350
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
	OCT 1988 20	210	50	21	25	2.0	166	31	47	0.1
	JAN 1989 26	150	35	14	18	1.3	120	24	31	0.1
	APR 26	150	38	14	18	1.3	123	24	31	0.1
	JUN 20	120	30	11	14	1.1	97	15	22	0.1
	JUL 05	150	37	14	16	1.4	134	16	24	0.1
	AUG 09	180		17	19	1.5	146	19	31	0.1
			2.00	8	- 7			1.0		
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	MONIA +		PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT 1988 20 JAN 1989	3.6	279	0.015	0.63	<0.05	0.35	0.98	0.03	3.6
	26 APR	3.6	199	0.007	0.86	<0.05	0.34	1.2	0.03	2.5
	26	2.0	202	0.011	0.45	0.07	0.48	0.93	0.04	4.2
	JUN 20	5.8	157	0.010	0.62	0.10	0.86	1.5	0.09	6.7
	JUL 05	6.2	195	0.014	0.58	0.08	0.72	1.3	0.07	5.9
	AUG 09	4.2	223	0.009	0.54	<0.05	0.36	0.90	0.06	4.0

DELAWARE RIVER BASIN

01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFID TOTAL (MG/L AS S)	SOL (UG	M, S- / VED	ARSENIC TOTAL (UG/L AS AS)	BER' LIUI TOTA RECO ERAI (UG, AS	M, B AL T OV- R BLE E /L (ORON, OTAL ECOV- RABLE UG/L S B)	CADMIL TOTAL RECOV ERABI (UG/I AS CI	V- REC LE ERA L (UG	M, COI AL TOV- RI BLE E	PPER, OTAL ECOV- RABLE UG/L S CU)
OCT 1988 20 JUN 1989	1330	<0.	5	<10	<1	<10	0	30		<1	<1	3
20	1300	<0.	5	20	<1	<10	0 -	30		<1	<1	3
DATE	T R E (RABLE UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANO NESE TOTA RECO ERAE (UG,	E, MER AL TO OV- RE BLE ER /L (L	CURY OTAL COV- ABLE IG/L G HG)	NICKEL TOTAL RECOV ERABL (UG/L AS NI	SE TO	LE- UM, DTAL IG/L S SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOL TOTAL (UG/L)	
OCT 1988		70	<5		30	0.10		1	<1	<10	<	1
JUN 1989 20		470	2		60 <	0.10		1	<1	20	<	1

01443900 YARDS CREEK NEAR BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'51", long 75°02'25", Warren County, Hydrologic Unit 02040105, on left bank 100 ft upstream from bridge on Hainesburg-Mount Vernon Road, 1.4 mi downstream of Yards Creek Reservoir, 2.2 mi northeast of Hainesburg, 2.4 mi upstream from mouth, and 4.2 mi west of Blairstown.

DRAINAGE AREA. -- 5.34 mi 2.

PERIOD OF RECORD. -- October 1966 to current year.

REVISED RECORDS.--WDR NJ-77-2: 1976. WDR NJ-79-2: 1977(m). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 606.8 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily dischages. Records fair. Complete regulation by the Jersey Central Power and Light Co., at Yards Creek Reservoir 1.4 mi above station. Several measurements of water temperature, other than those published, were made during the year.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, ME	AN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.7 1.8 1.6 1.6	1.8 1.8 1.8 1.8 2.4	2.9 2.8 2.5 2.0 3.6	2.9 2.8 3.0 2.6 3.1	2.7 2.8 3.0 2.9 2.7	7.5 7.7 8.1 8.0 7.8	49 28 8.9 10	1.9 6.7 3.5 3.1 5.0	19 19 19 17 17	17 16 9.9 4.1 5.5	3.8 3.5 3.7 3.4 4.3	3.5 3.6 3.5 3.3 3.2
6 7 8 9 10	1.6 1.7 1.8 1.7	2.4 1.9 1.8 1.7	8.2 13 19 20 20	2.0 2.0 3.4 2.4 2.4	2.8 2.7 2.5 3.0	8.6 9.9 14 8.4 8.0	15 16 15 16 14	35 28 30 37 57	14 8.9 14 25 24	4.5 4.8 5.2 4.1 3.9	5.0 3.7 3.5 3.4 3.5	3.3 3.4 3.4 3.5 3.6
11 12 13 14 15	1.5 1.5 1.6 1.6	.97 1.4 2.7 1.9 1.8	18 26 30 19 13	2.3 3.1 3.8 3.5 4.1	2.9 2.5 2.4 2.7 3.0	8.0 7.4 7.7 7.7 7.7	13 11 4.8 3.1 3.6	83 78 34 28 29	17 16 18 17 19	3.7 3.8 3.9 3.9 4.5	3.6 4.9 6.0 4.5 4.2	3.4 3.4 3.6 3.6
16 17 18 19 20	1.6 1.5 1.6 1.6	1.9 2.8 2.3 2.2	4.8 5.7 6.1 4.9	3.5 3.5 3.4 3.4	3.2 2.9 2.8 2.6 2.5	7.8 7.9 8.3 7.5 7.7	3.5 3.4 3.0 2.9 2.9	59 91 60 31 24	22 20 18 17 17	3.9 3.7 3.6 3.6 4.8	4.0 3.9 3.9 4.1 3.8	4.3 4.8 3.4 5.7
21 22 23 24 25	1.9 3.1 1.8 2.0 1.8	9.7 4.9 3.8 3.1 2.7	2.8 2.8 3.2 4.3 3.8	3.2 3.4 3.0 2.9 2.8	6.1 8.6 13 13	9.2 8.4 8.3 12	2.8 2.8 2.6 2.4 2.0	20 25 33 38 42	25 33 33 34 32	4.1 4.0 4.0 3.5 3.5	3.6 3.7 3.8 3.7 3.7	118 174 97 22 20
26 27 28 29 30 31	1.8 1.7 1.8 1.8 1.6	2.4 2.3 5.3 3.2 2.9	3.0 3.1 3.6 3.2 3.3	3.0 3.3 3.0 2.9 2.9	8.3 7.7 7.8 	9.4 15 29 41 37	1.9 1.9 1.8 1.9	37 31 27 25 22 20	30 23 17 17 16	3.6 3.5 3.4 3.8 3.1 3.3	3.7 3.4 3.5 3.7 3.5 3.6	30 30 31 33 33
MEAN MAX MIN	1.72 3.1 1.5	3.10 16 .97	8.47 30 2.0	3.03 4.1 2.0	4.96 19 2.4	12.7 47 7.4	8.54 49 1.8	33.7 91 1.9	20.6 34 8.9	4.97 17 3.1	3.89 6.0 3.4	23.7 174 3.2
STATIST	ICS OF M	ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD	, BY WATER	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	4.25 17.3 1980 .97 1981	7.80 22.4 1976 1.20 1967	14.0 37.7 1974 .91 1981	14.7 51.0 1979 1.66 1981	15.5 36.4 1979 2.24 1985	16.6 50.1 1977 6.99 1973	18.7 55.3 1983 4.43 1981	14.7 33.7 1989 1.58 1970	9.42 35.2 1972 1.00 1980	5.05 19.9 1984 .89 1980	4.10 21.6 1969 .65 1980	4.96 27.0 1987 .59 1980
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	ER YEAR			FOR P	ERIOD OF R	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT	TANNUAL MANNUAL MANNUA	EAN EAN AN EAK FLOW EAK STAGE			10.8 174 .97 196 3.17 .94 29 3.6 1.5	Sep 22 Nov 11 Sep 21 Sep 21 Nov 11			10 14 3.1 22: .0 588 3.9 .0 2	9 7 5 Jan 2 Jun 3 Feb 2 Feb 0 Sep 6	1984 1985 18 1977 19 1970 24 1977 24 1977 12 1971	

71

01445500 PEQUEST RIVER AT PEQUEST, NJ

LOCATION.--Lat 40°49'50", long 74°58'43", Warren County, Hydrologic Unit 02040105, on right bank at Pequest, 100 ft upstream from CONRAIL (formerly Lehigh and Hudson River Railway) bridge, and 300 ft downstream from Furnace Brook. DRAINAGE AREA. -- 106 mi 2.

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302. REVISED RECORDS.--WSP 1902: 1940(M), 1945, 1955(M), 1957, 1959(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 29, 1929. Datum of gage is 398.78 ft above National Geodetic Vertical Datum of 1929. Prior to June 22, 1926, nonrecording gage at site 10 ft upstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Several measurements of water temperature were made during the year.

	DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, 1	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	35 37 45 43 39	39 42 43 40 43	e134 128 122 115 116	77 75 75 67 50	86 86 87 85 79	108 102 100 98 99	261 218 197 199 199	112 204 240 181 155	234 238 226 199 179	214 196 177 176 241	81 80 83 90 94	53 51 50 48 47
6 7 8 9	37 36 34 33 34	75 63 55 50 47	112 105 99 96 92	69 65 79 98 84	77 75 70 59 59	118 117 97 106 104	243 276 234 209 199	605 546 447 353 409	167 215 279 243 441	286 237 272 220 185	106 96 86 76 70	45 45 44 44 43
11 12 13 14 15	38 37 36 35 35	46 43 52 78 63	85 58 80 73 75	79 90 127 97 127	70 63 60 73 73	106 123 112 108 127	184 169 163 168 174	547 529 455 394 371	329 248 249 248 256	162 144 137 132 119	67 151 213 198 141	42 41 40 41 42
16 17 18 19 20	33 32 33 33 33	57 77 87 73 207	70 67 62 68 69	125 103 96 95 95	95 86 75 75 70	134 124 124 139 119	227 221 188 173 155	473 828 811 718 595	316 352 305 252 219	122 140 130 120 117	126 104 88 81 83	48 69 60 89 1100
21 22 23 24 25	33 51 51 47 46	474 e307 e289 e230 e198	72 72 71 82 110	83 70 87 77 79	169 300 226 167 129	158 162 134 174 359	145 143 139 121 118	501 428 387 537 536	218 252 451 490 463	119 118 119 104 94	79 77 70 73 69	1490 1430 1300 1110 786
26 27 28 29 30 31	42 40 39 37 36 37	e193 e184 e251 e249 e208	93 84 86 112 95 85	76 87 84 83 85 88	125 118 114	264 219 198 187 179 250	116 113 110 110 114	466 384 335 288 258 245	389 317 281 267 237	91 88 85 79 75 76	64 62 61 60 60 57	663 571 474 399 346
MEAN MAX MIN IN.	37.9 51 32 .41	129 474 39 1.36	89.9 134 58 .98	86.2 127 50 .94	102 300 59 1.00	147 359 97 1.60	176 276 110 1.86	430 828 112 4.68	285 490 167 3.00	148 286 75 1.61	91.8 213 57 1.00	354 1490 40 3.72
STATIST	ICS OF MO			R PERIOD	OF RECORD,	BY WATER	R YEAR ((Y)				
MEAN MAX (WY) MIN (WY)	82.6 337 1956 18.0 1965	126 409 1928 21.4 1966	157 425 1974 27.0 1966	165 627 1979 33.9 1966	197 371 1939 60.8 1940	275 750 1936 93.8 1965	259 720 1983 76.9 1985	184 430 1989 55.7 1965	130 556 1972 35.0 1965	107 487 1945 19.0 1965	92.5 409 1928 15.1 1965	91.7 354 1989 16.6 1964
SUMMARY	STATISTI	cs		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT ANNUAL	ANNUAL ME ANNUAL ME DAILY MEA TANEOUS PE TANEOUS PE TANEOUS LO RUNOFF (I CENTILE CENTILE	AN AN N AK FLOW AK STAGE W FLOW			173 1490 32 1640 5.15 28 22.15 368 107 38	Sep 21 Oct 17 Sep 21 Sep 21 Jan 6			21 20 21 5. 19.	12 Aug 30 Jan 97a Jan 12 Aug	1952 1965 25 1979 18 1965 25 1979 25 1979 17 1965	

a From high-water mark e Estimated

01446500 DELAWARE RIVER AT BELVIDERE, NJ

LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft downstream from Pequest River, and at river mile 197.7.

DRAINAGE AREA. -- 4,535 mi 2.

PERIOD OF RECORD. -- October 1922 to current year.

REVISED RECORDS.--WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).

GAGE.--Water-stage recorder. Datum of gage 226.43 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversions from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). National Weather Service gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 10, 1903, reached a stage of 28.6 ft, from floodmark, discharge, 220,000 ft 3 /s, from rating curve extended above 170,000 ft 3 /s.

	DISCHAF	RGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2140 2260 2190 2140 2020	2180 2270 2360 1790 2470	6230 5870 5510 4590 4150	3080 3010 3120 3010 2440	3730 3550 3770 3900 2880	4620 4370 3900 3680 3420	18600 16500 13300 11900 11700	3330 5040 16700 16100 11800	7130 7640 7110 5830 5190	7500 5810 4990 5220 5140	2920 3090 2970 3210 3330	2830 2360 2190 2150 2090
6 7 8 9	2000 2060 2000 1970 2020	3340 5890 7800 5700 4900	4690 4260 4060 3840 3920	2900 2670 2780 2850 2860	2560 3260 3020 2390 2270	3380 3750 3620 3950 3530	12100 13600 13400 11700 10600	25800 63100 44100 29000 24000	5500 6610 7370 e7250 e8700	7190 9660 8300 6370 5470	3290 2900 2950 3200 2830	2130 2100 2090 2260 2260
11 12 13 14 15	1950 2230 2070 2060 2120	4180 3520 3280 3580 5000	3140 2060 2270 3030 3370	3160 2980 3220 2840 3370	2370 2370 1850 2160 2900	3310 2870 2550 2700 2620	9650 8440 7750 7220 6970	36800 43200 31600 24100 20100	e11200 e9300 e8100 e8600 e10200	5530 5310 4570 4230 4030	2760 2960 4230 4440 4120	2310 2890 2710 2590 2340
16 17 18 19 20	2090 2150 2160 2190 2280	5320 4790 4650 4800 6220	2640 2580 2780 2790 3080	3350 3180 3570 3460 3130	3080 3550 3300 2760 2310	2700 2790 3700 3420 3640	7150 8340 8060 7490 6820	18900 29200 37700 27400 21500	e18200 e20200 e19800 e16500 e14500	3490 3080 3090 3550 3580	3600 3370 3220 2670 2600	2430 3460 3080 2610 7530
21 22 23 24 25	2250 2830 2970 2810 3100	14800 19300 14000 10900 8690	3230 2760 2950 2740 3150	2690 2240 2400 2610 2990	2670 7800 12900 8990 6840	4560 4450 3790 3800 6820	6240 5910 5400 5060 4890	18300 15800 14200 14000 15000	e12700 e12900 e13300 e13800 e17300	3740 4320 4360 4020 4140	2840 2960 3120 3280 2910	18200 14300 12300 10600 8670
26 27 28 29 30 31	2680 2650 2220 1790 1660 1850	7770 6920 6830 7080 6620	3770 3840 4060 3460 3370 3520	2860 2960 3400 3250 2920 3530	5160 4550 4690	13300 13000 11700 10900 13000 15800	4630 4130 3860 3670 3630	13000 11300 10400 8420 7690 7930	e16900 e13800 e12100 10800 9210	4060 4110 3800	2450 2320 2310 2350 2490 2500	9130 10600 8400 6880 5970
MEAN MAX MIN	2223 3100 1660	6232 19300 1790	3604 6230 2060	2995 3570 2240	3985 12900 1850	5472 15800 2550	8624 18600 3630	21470 63100 3330	11260 20200 5190	4798 9660 2560	3038 4440 2310	5315 18200 2090
STATIST	ICS OF M	ONTHLY FLO	W DATA FO	R PERIOD	OF RECORD	, BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	4575 19570 1956 1055 1942	7110 21140 1928 1226 1965	8315 20590 1974 1481 1923	7821 20890 1949 1683 1981	8313 19930 1976 2452 1980	14120 42520 1936 5243 1981	15860 40720 1940 4512 1985	10020 21470 1989 3261 1965	6024 22280 1972 1590 1965	16840 1928 1017	3668 19260 1955 881 1954	3865 13940 1938 1199 1941
SUMMARY	STATIST	ICS		FC	OR 1989 WAT	ER YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT	F ANNUAL M ANNUAL M DAILY ME TANEOUS P TANEOUS P TANEOUS L CENTILE CENTILE	MEAN EAN AN EAK FLOW EAK STAGE OW FLOW			6592 63100 1660 70800 14.98 1590 14100 3790 2100	May 7 Oct 30 May 7 May 7 Feb 9			144 184 273 30	130 990 000 Aug 610 Aug 000a Aug	adjusted 1928 1965 19 1955 25 1954 19 1955 1 19 1955 28 1943	

a From rating curve extended above 170,000 ft³/s on basis of flood-routing study

b From high-water mark in gage house

e Estimated

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA

LOCATION.--Lat 40°41'30", long 75°12'15", Northampton County, Hydrologic Unit 02040105, at bridge on Northampton Street in Easton, 600 ft upstream from Lehigh River, and 0.2 mi downstream from U.S. Route 22 toll bridge in Easton.

DRAINAGE AREA. -- 4,717 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	STREP- TOCOCCI FECAL (MPN)	
OCT 1988 06	1330	2340E	153	7.4	15.0	10.2	100	E2.0	40	70	
JAN 1989 24	1300	2090E	180	7.3	5.0	15.8	124	4.1	50	17	
APR 17	1345	7280E	145	7.3	6.0	12.0	97	E2.1	490	130	
MAY 17	1315	18900E	95	7.2	9.5	10.5	93	E1.6	5400	1600	
JUL 31	1130	3230E	180	7.5	23.5	7.3	86	<1.1	1300	350	
AUG 30	1130	2380E	184	8.4	23.0	8.9	105	<1.0	80	130	
DATE	HARD NESS TOTA (MG/ AS CACO	CALCI L DIS- L SOLV (MG/	ED SOL	UM, SOD S- DI VED SOL' /L (M	IUM, S S- D VED SO G/L (M	LVED (MO	TTY SULFA AB DIS- G/L SOLV	- DIS VED SOL /L (MG	E, RI S- D .VED SO G/L (M	UO- DE, IS- LVED G/L F)	
OCT 1988 06 JAN 1989	;	51 14	4	.0	9.2	1.6 37	14	12	? <	0.1	
24 APR		59 16	4	.6 1	1	1.2 39	20	16	•	0.1	
17 MAY		48 13	3	.7	7.4	1.0 32	13	12	2	0.1	
17 JUL	:	36 10	2	.7	5.0	0.9 22	12	7	7.7	0.1	
31 AUG		61 17	4	.6	7.2	1.1 42	15	10)	0.1	
30		58 16	4	.5	8.1	1.1 43	16	13	5	0.1	
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONST ED TUENT L DIS SOLV	OF NIT [I- GE [S, NITR S- TOT /ED (MG	N, G ITE NO2 AL TO	EN, G +NO3 AMM TAL TO IG/L (M	TRO- GEN EN, MON ONIA ORG TAL TO G/L (M	TRO- ,AM- IA + NITI ANIC GEI TAL TOT. G/L (MG N) AS	N, PHOR AL TOI /L (MC	ROUS ORG FAL TO G/L (M	BON, ANIC STAL IG/L S C)	
OCT 1988 06 JAN 1989	1.	0	78 0.	007 0	.61 <0.	05 0	.36 0.	97 -	- 3.	.3	
24 APR	2.	4	95 0.	009 0	.95 <0.	05 1	.0 2.	0 0.	11 2.	.8	
17 MAY	2.	7	72 0.	009 0	0.54 0.	06 0	.69 1.	2 0.0	05 4.	.1	
17 JUL	3.	6	55 0.	009 0	0.67 0.	06 0	.47 1.	1	- 4.	.5	
31 AUG	2.	7	83 0.	022 0	.71 <0.	05 0	.25 0.	96 0.0	04 3.	.4	
30	2.	3	87 0.	008 0	0.77 0.	07 0	.39 1.	2 0.0	06 2.	.7	

01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFI TOTA (MG/	L SOL	S- /	ARSENI TOTAL (UG/L AS AS	C REC	AL OV- BLE J/L	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L	(UG/L
MAY 1989 17	1315	<0	.5	30		1 <1	0	<10	<1	2	4
DATE	R E	RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANO NESI TOTA RECO ERAI (UG, AS I	E, M AL OV- BLE /L	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKE TOTA RECO ERAB (UG/ AS N	L SE DV- NI BLE TO 'L (U	LE- 1 IUM, F DTAL E	UG/L T	ENOLS OTAL G/L)
MAY 1989		500	20		100	-0 10		2	-1	20	4

DELAWARE RIVER BASIN 01453000 LEHIGH RIVER AT BETHLEHEM, PA

LOCATION.--Lat 40°36'55", long 75°22'45", Lehigh County, PA, Hydrologic Unit 02040106, on left bank 110 ft upstream from New Street Bridge at Bethlehem, and 1,800 ft upstream from Monocacy Creek. Records include flow of Monocacy

DRAINAGE AREA.--1,279 mi² includes that of Monocacy Creek. At site used prior to Oct. 1, 1928, 1,229 mi².

PERIOD OF RECORD.--September 1902 to February 1905, April 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at South Bethlehem" prior to October 1913.

REVISED RECORDS.--WSP 261: 1903-5, WSP 321: 1910-11. WSO 1051: Drainage area. WSP 1141: 1929-34(M). WSP 1302: 1914(M), 1916(M), 1918, 1921, 1927-28. WSP 1432: 1903, 1919(M), 1920-21, 1929, 1933.

GAGE.--Water-stage recorder. Datum of gage is 210.94 ft above National Geodetic Vertical Datum of 1929. Prior to October 1928, nonrecording gage at New Street Bridge 120 ft downstream at same datum. Oct. 1, 1928, to Sept. 30, 1962, water-stage recorder at site 4,250 ft downstream at datum 2.49 ft lower. Oct. 1, 1963, to Dec. 14, 1975, water-stage recorder at site 40 ft downstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated by Wild Creek Reservoir (station (01449700) since January 1941, Penn Forest Reservoir (station 01449400) since October 1958, Francis E. Walter Reservoir (station 01447780) since February 1961, and Beltzville Lake (station 01449790) since February 1971. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Feb. 28, 1902, reached a stage of 24.9 ft, from floodmark, present site and datum, discharge, about 88,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989, MEAN DAILY VALUES OCT SEP DAY NOV DEC JUN JUL JAN **FFB** MAR APR MAY ALIG 1140 2420 2230 2910 1160 **5** e680 3300 3120 2270 2080 700 621 1870 1490 1410 14300 1320 1240 871 e780 579 567 774 13 1390 1460 7440 6260 1490 3270 e1000 e1050 543 1670 1730 1530 17 1110 1050 11500 11000 2650 2080 1520 4990 910 1570 2060 19 701 e1050 22 23 4940 3710 3120 1510 25 980 2770 3270 1260 1510 2790 2690 30 1270 . . . 7050 6000 3120 MEAN 3380 1490 MAX 1240 1210 1270 3.27 MIN .85 1.94 1.25 1.09 1.10 1.01 1.09 1.72 STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) 5778 1956 6991 7898 1979 5913 1915 7041 1989 7272 1972 6192 1955 MEAN MAX 1927 370 1910 1936 1632 1983 1428 1945 365 1965 1987 (WY) 1911 MIN 1931 1965

01453000 LEHIGH RIVER AT BETHLEHEM, PA--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	22600 May 6 543 Sep 15 31900 May 6 12.88 May 6 23.21 3800 1940 771	2341 3973 1952 1165 1965 70400 Aug 19 1955 160 Oct 15 1910 92000a May 23 1942 25.9b May 23 1942 125 Jun 28 1965 24.85 4760 1650 494

From rating curve extended above 48,000 ${\rm ft}^3/{\rm s}$ From floodmark, present site, and datum Estimated a b e

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ

LOCATION.--Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek.

DRAINAGE AREA.--33.3 mi².

PERIOD OF RECORD. -- Water years 1959, 1962 and January 1979 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH I	UBIC CO FEET DU PER AN	FIC N- P CT- (ST CE A	AND - AT	URE D	GEN, (FOLVED SA	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5	O- FOI IEM- FEI IAL, EI DAY BRI	CAĹ, STREP-
OCT 1988 17	1210	E 4.4	271	6.9 1	3.0 1	13.1	125	2.9 79	0 540
FEB 1989 22		E72	130			13.3		3.2 110	0 >2400
APR 26		E25	160			17.6	= 15	1.9 <2	
JUN 14		E45	178		2.0	9.4	88	2.9 350	
JUL 24		E27	280			10.3	115	2.7 920	
AUG 01		E25	295		3.0	9.3		1.8 170	
DATE OCT 1988 17 FEB 1989 22 APR 26	HARD- NESS TOTAL (MG/L AS CACO3)	22	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 11 4.2	SODIUM, DIS- SOLVED (MG/L AS NA) 13 9.3	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 2.8 2.6	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4) 20 20	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 17	FLUO- RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1
JUN 14	69	17	6.5	7.8	1.8	49	16	12	0.1
JUL 24	140	33	15	13	1.6	113	20	24	<0.1
AUG 01	93	22	9.3	9.0	1.9	68	17	13	0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 17 FEB 1989	10	142	0.068	2.45	0.13	0.46	2.9		6.3
22 APR	9.0	86	0.020	1.42	0.25	0.95	2.4	0.38	7.0
26 JUN	8.2	100	0.051	1.58	0.12	0.44	2.0	0.18	3.4
4.1	13	104	0.058	1.68	0.13	0.96	2.6	••	5.3
JUL 24 AUG	9.1	183	0.070	2.27	<0.05	1.0	3.3	0.21	5.3
01	14	127	0.082	2.41	0.09	0.42	2.8	0.63	3.1

01455200 POHATCONG CREEK AT NEW VILLAGE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFID TOTAL (MG/L AS S)	ALUI I NUI E DIS SOLV (UG, AS	A, S- ARSE VED TOT /L (UG	NIC REC	AL TOT	COV- RECABLE ERAL	AL TOTON RECORD FOR ALL TOTON	IM, COPE TAL TOT COV- REC ABLE ER/ G/L (UC	PER, TAL COV- ABLE G/L CU)
OCT 1988 17	1210	<0.	5	<10	<1 <	10	30	<1	2	10
DATE	R E	OTAL ECOV- RABLE UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
ост 1988 17		70	<5	10	0.20	4	<1	100	4	

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ

LOCATION.--Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, just upstream of bridge on Warren County Route 43 and 300 ft downstream from Lake Hopatcong dam in Landing.

DRAINAGE AREA .- - 25.3 mi 2.

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS CHARG INST CUBI FEE PER SECO	E, SPI C COI T DU	FIC N- CT- (S CE	PH TAND- ARD ITS)	TEMP ATU WAT (DEG	RE D ER SO	(GEN,)IS- DLVED (G/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	FORM FECA EC BROT	Ĺ, S TO H F	TREP COCC ECAL (MPN)
	1988 1	1100	2	4E	282	7.8		.5	12.2	102	<1.0	20		70
FEB	1989 6	1100	12.		305	7.5			15.9	116	3.0	<20		13
APR	9	1330	20	E	250	7.9			11.2	106	E1.5	20		9
JUN	1	1300	45	E	345	7.8		.0	8.2	100	E2.3	130		23
JUL	8	1045	12	E	275	7.6		.5		102	E1.9	<20		21
AUG	2	1330		2E	265	8.7			8.6 9.1	110	<0.9	<20		79
_	2	1330	7.	26	203	0.7	23	.0	9.1	110	10.9	120		17
	DATE	HARD NESS TOTA (MG/ AS CACO	L L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOD: DIS SOLV	S -	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT LAB (MG/I AS CACO	Y SULF DIS L SOL (MC	ATE R	HLO- IDE, IS- DLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F))
	OCT 1988 31		64	16	5.8	29	9	1.1	34	17	,	53	0.1	
	FEB 1989 06		62	16	5.3	28		1.1	30	19		55	0.1	
	APR 19		65	17	5.4	2		1.1	33	16		57	0.1	
	JUN 21		67	18	5.4	2		1.3	37	1!		53	0.1	
	JUL 18		57	15	4.8	2		0.7	31	13		46	0.1	
	AUG 22		55	14	4.9	2		0.5	29	14		49	0.1	
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	ED 1	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	G NO2 TO (M	TRO- EN, +NO3 TAL G/L N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITR GEN,A MONIA ORGAN TOTA (MG/ AS N	M- + NI' IC GI L TO' L (MI	N, PH		CARBON, DRGANIO TOTAL (MG/L AS C)	
	OCT 1988 31	1.	6	144	0.003	s <0	.05	<0.05	0.44		<0.	n2 2	.9	
	FEB 1989 06	1.		144	<0.003		.07	<0.05	0.33				3.0	
	APR 19		19	146	<0.003		.07	0.06	0.38				3.9	
	JUN 21		85	145	0.005		.07	0.07	0.68				.3	
	JUL 18	1.		126	0.004		.09	<0.05	0.35				.3	
	AUG 22	1.		126	<0.003		.06	<0.05	0.32				3.5	
			-	.20	-0.502	•			V.JE	J.,		• •		

01455500 MUSCONETCONG RIVER AT OUTLET OF LAKE HOPATCONG, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFI TOTA (MG/ AS S	L SOL	M, S- ARSE VED TOT /L (UG	TO ENIC REFAL ER	TAL TO COV- RE ABLE ER G/L (U	TAL TO COV- RE ABLE ER	MIUM MI TAL TO COV- RE ABLE ER G/L (U	RO- UM, TAL COV- ABLE IG/L CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1989 21	1300	<().5	<10	3 <	10	30	<1	<1	1
DATE	T(RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHE	NOLS Tal /L)
JUN 1989		220	1	70	-0.10	_1	-1	-10		7

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ

LOCATION.--Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge in Lockwood, at boundary between Sussex County and Morris County, 0.2 mi southeast of Cage Hill, 0.4 mi south of Jefferson Lake, and 0.9 mi downstream from Lubbers Run.

DRAINAGE AREA. -- 60.1 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	CT- (ST	TAND - A ARD W	TURE ATER	XYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED (PER- CENT I SATUR- 5	BIO- F CHEM- F CAL, DAY E	COLI- FORM, FECAL, STREP- FECAL TOCOCCI FECAL (MPN) (MPN)
OCT 1988 26	1100	E 27	409	7.5	7.0	11.4	97	2.3 1	130 23
JAN 1989 24		E 43	295	7.8	3.0	15.1	114		220 79
APR 20		E 95	380		12.0	11.2	105	3.8	80 110
JUN 20		E170	310		22.0	8.7	101	E2.2	70 34
JUL 18		E 71	370		21.0	8.6	98		170 >2400
AUG 31		E 26	432				84		500 920
31	1115	20	432	7.9	20.0	7.5	04	2.6 33	920
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LINIT LAB D (MG/ AS	Y SULFATE DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/L
OCT 1988 26 JAN 1989	14	0 31	14	29	2.0	80	27	59	0.1
24 APR	9	3 23	8.7	28	1.4	58	19	53	0.2
7 20 JUN	10	0 25	9.2	32	1.2	58	19	59	0.1
20	8	3 21	7.4	23	1.1	54	14	41	0.1
JUL 18	10	0 26	9.5	26	1.4	70	15	48	0.1
AUG 31	13	0 31	12	32	2.1	83	17	61	0.1
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	MONÍA A ORGAN TOTA (MG/	M- + NITRO IC GEN, L TOTAL L (MG/L	PHOS-PHOROUS TOTAL (MG/L AS P)	CARBON, S ORGANIC TOTAL (MG/L AS C)
OCT 1988 26 JAN 1989	7.2	217	0.054	0.55	0.97	1.5	2.0	0.04	5.2
24	4.6	173	0.012	0.31	0.46	0.87	1.2	0.03	3.7
APR 20	3.8	184	0.039	0.45	0.37	0.90	1.3	0.07	4.4
JUN 20	6.5	146	0.036	0.39	0.20	0.82	1.2	0.09	4.4
JUL 18	7.9	176	0.110	0.93	0.18	0.67	1.6	0.07	4.5
AUG 31	7.5	212	0.204	1.66	0.15	0.78	2.4	0.09	3.7

01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIC TOTAL (MG/L AS S)	SOL (UC	IM, IS- ARSE IVED TOT	LI TC ENIC RE FAL ER	RYL- UM, OTAL COV- ABLE UG/L S BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 26 JUN 1989	1100	<0.	.5	<10	1 •	:10	60	<1	<1	3
20	1045	<0.	.5	10	2 .	10	10	<1	<1	3
DAT	1 F E (RON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOT REC ERA (UG	AL SE OV- NI BLE TO /L (U	ELE- TO IUM, RE DTAL ER JG/L (U	G/L TO	NOLS TAL 3/L)
OCT 198 26 JUN 198	9	200	<5	60	<0.10)	4	<1	<10	2
20		460	3	120	<0.10)	3	<1	<10	<1

01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ

LOCATION.--Lat 40°48'48", long 74°50'32", Warren County, Hydrologic Unit 02040105, at bridge at Beattystown, 1.6 mi upstream of Hanes Brook, 2.1 mi northeast of Stephensburg, and 3.5 mi northeast of Scrappy Corner.

DRAINAGE AREA. -- 90.3 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	ICT (ST	TAND - A'	TURE I	GEN, (FOLVED SA	DLVED BIO PER- CHI CENT IC ATUR- 5	AND, COI O- FOR EM- FEC AL, EC DAY BRO	CAĹ, STREP-
OCT 1988 25	1300	E 64	452	7.7	7.5	12.6	108 E	1.5 20	0 33
JAN 1989 24	1045	E105	314	7.8	1.0	16.3	116 <	0.9 50	0 79
APR 20	1045	E210	320	7.9		11.6	105	2.7 1300	0 130
JUN 20	1300	E250	265		21.5	9.3		1.6 490	
JUL 18	1345	E130	310		19.5	9.8		1.7 80	0 220
AUG 31	1400	E 70	426		20.5	8.8		2.3 130	
DATE OCT 1988	HARD- NESS TOTAL (MG/L AS CACO	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
25	16	50 36	17	28	2.8	112	30	51	0.1
JAN 1989 24 APR	12	20 27	12	25	1.7	84	20	50	0.1
20	11	10 24	11	20	1.0	72	17	36	0.1
JUN 20 JUL	10	00 25	10	21	1.3	74	14	38	0.1
18	13	30 30	13	21	1.4	98	14	37	0.1
AUG 31	16	60 35	17	23	2.1	120	17	41	0.1
DATE	SILIC/ DIS- SOLVI (MG/I AS SIO2	CONSTI- TUENTS, L DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 25 JAN 1989	7.9		0.059		0.61	1.1	2.3	0.05	4.4
24 APR	6.3		0.024		0.66	0.94	1.6	0.04	3.6
20 JUN 20	4.!		0.020		0.17	0.58	1.1	0.07	3.7
20 JUL	7.9		0.031		0.15	0.62	1.4	0.07	3.6
18 AUG	8.		0.034		0.17	0.47	1.6	0.05	3.5
31	7.9	9 215	0.104	1.42	0.27	0.94	2.4	0.07	2.9

DELAWARE RIVER BASIN

01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFI TOTA (MG/ AS S	DE D L SO L (U	UM- UM, IS- LVED G/L AL)	ARSE TOT (UG	AL	BERYI LIUM TOTAI RECOV ERABI (UG/I AS BI	BOF L TOT V- REC LE ER/ L (UC	RON, FAL COV- ABLE G/L B)	CADM TOT REC ERA (UG AS	IUM M AL T OV- R BLE E /L (HRO- IUM, OTAL ECOV- RABLE UG/L S CR)	COPPEI TOTAL RECO ERAB (UG/ AS CI	L V- LE L
OCT 1988 25 JUN 1989	1300	<0	.5	30		<1	<10		60		1	1		2
20	1300	<0	.5	10		1	<10		50		<1	<1		3
DATE	RE EF	RON, DTAL ECOV- RABLE JG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	NE TO RE ER (U	NGA- SE, TAL COV- ABLE G/L MN)	REG ER/	CURY I	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NI TO (U	LE- UM, TAL G/L SE)	ZINC, TOTAL RECOV ERABL (UG/L AS ZN	E PHE	NOLS OTAL	
OCT 1988 25 JUN 1989		120	<5		30	<	0.10	3		<1	<1	0	2	
20		380	2		50	<	0.10	2		<1	<1	0	3	

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ

LOCATION.--Lat 40°40'20", long 75°03'40", Warren County, Hydrologic Unit 02040105, on right bank just downstream from bridge on Limekiln Road (Person Road), 1.5 mi upstream from Bloomsbury, and 9.5 mi upstream from mouth.

DRAINAGE AREA. -- 141 mi 2.

PERIOD OF RECORD. -- July 1903 to March 1907, July 1921 to current year.

REVISED RECORDS.--WSP 1051: 1944-45. WSP 1382: 1904-06, 1922, 1923-29(M), 1931(M), 1933-34(M), 1936(M), 1940, 1942(M), 1944-45(M), 1951-52(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Sept. 29, 1932. Datum of gage is 274.83 ft above National Geodetic Vertical Datum of 1929. July 1903 to Mar. 31, 1907, nonrecording gage at bridge 15 ft upstream at different datum. July 26 to Sept. 12, 1921, nonrecording gage at bridge at present datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Lake Hopatcong (see Delaware River basin, reservoirs in). Several measurements of water temperature were made during the year.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	79 86 129 109 98	90 103 102 99 110	306 330 354 348 339	158 155 155 149 131	144 138 140 136 130	161 154 148 144 144	342 301 279 289 318	176 325 364 307 295	369 345 322 301 280	358 297 269 274 387	136 137 139 135 133	101 97 95 91 89
6 7 8 9	89 85 83 82 82	197 168 137 121 112	332 326 320 314 309	144 148 169 190 171	127 125 120 117 120	165 172 152 147 144	352 356 313 293 277	827 873 732 638 807	275 349 424 386 516	435 364 434 343 296	135 151 158 138 125	92 88 88 87 87
11 12 13 14 15	81 80 79 79 78	106 104 146 201 186	304 303 311 275 206	159 172 206 170 232	113 111 108 118 128	145 152 149 144 155	256 240 232 230 241	957 883 769 674 619	439 367 432 387 391	264 238 229 209 190	124 233 220 172 153	88 98 93 91 93
16 17 18 19 20	78 77 78 77 77	167 224 237 217 566	148 133 129 129 125	216 186 171 166 164	147 138 124 119 116	165 158 163 196 177	328 299 270 252 235	811 1190 1250 1100 921	535 549 446 389 339	197 230 196 180 189	145 136 128 126 126	116 135 118 193 3190
21 22 23 24 25	83 162 142 130 120	741 545 442 376 330	129 130 129 150 194	158 148 148 145 144	249 359 298 236 192	208 218 191 229 391	226 214 205 200 195	771 667 609 767 730	322 325 624 790 800	199 190 178 166 160	124 128 122 117 117	1770 984 748 601 477
26 27 28 29 30 31	109 99 93 89 88 84	301 287 402 372 322	170 148 147 177 166 163	145 161 157 149 153 156	180 177 170	337 290 260 241 243 321	189 182 179 174 175	631 580 528 476 429 387	657 581 566 487 418	156 152 151 138 134 136	110 106 104 107 113 106	513 479 424 388 357
MEAN MAX MIN	93.7 162 77	250 741 90	227 354 125	164 232 131	156 359 108	196 391 144	255 356 174	680 1250 176	447 800 275	237 435 134	136 233 104	396 3190 87
	TICS OF MONT						4.5					
MEAN MAX (WY) MIN (WY)	41.2	224 701 1928 61.2 1966	258 686 1974 57.3 1966	260 924 1979 73.7 1977	277 582 1973 99.4 1923	344 935 1936 127 1965	352 1027 1983 103 1985	273 680 1989 98.1 1965	198 843 1972 56.8 1965	163 659 1975 38.1 1965	152 583 1928 38.5 1965	160 454 1960 37.3 1965
SUMMARY	STATISTICS			FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
HIGHEST	F FLOW T ANNUAL MEA ANNUAL MEAN T DAILY MEAN TANEOUS PEAK TANEOUS LOW CENTILE CENTILE CENTILE				3190 777 4830a 7.20 66 551 178 86	Sep 20 Oct 17 Sep 20 Sep 20 Sep 11			82 58 72 8.	236 .25 .66 .27 Sep .200a Jan .50b Jan .50b Jan .61 Aug .64	1928 1965 10 1903 8 1966 25 1979 25 1979 2 1955	

a From rating curve extended above 1,800 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement at gage height 6.95 ${\rm ft}$ b From floodmark

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'32", long 75°11'20", Warren County, Hydrologic Unit 02040105, at bridge on State Highway 13 in Riegelsville, 0.2 mi north of Mount Joy, and 0.2 mi upstream from mouth.

DRAINAGE AREA. -- 156 mi 2.

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

REMARKS.--Water-quality samples do not include Riegelsville Paper Company bypass.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DA	NTE	TIME	CHARC INS CUB FEI PEI SEC	GE, SP T. CI IC CO ET DU R AN	CE	PH STAND- ARD NITS)	AT WA	PER- URE TER G C)	SO	GEN, IS- LVED G/L)	DIS- SOLVED (PER- CENT SATUR- ATION)		AND, CO D- FO EM- FI AL, D OAY B	OLI- ORM, ECAL, EC ROTH MPN)	STREP- TOCOCCI FECAL (MPN)	
OCT_19			8 <u>.</u>													
17 FEB 19	89	1350	E 8	В	404	8.1	1	1.0	1	1.6	105	E.	1.8 1	70	70	
22		0940	E35	0	258	6.9		4.5	1	2.3	97		3.4 92	00	>2400	
APR 26		0950	E21	0	263	7.5	1	1.0	1	2.5	114	E.	1.8 1	30	130	
JUN 14		1150	E42	0	280	7.4	1	3.5	1	0.2	98	<(0.1 4	90	>2400	
24		1230	E18	0	420	8.1	2	1.0		9.0	100	E	1.3 17	00	280	
AUG 01		1315	E15	0	375	7.8	1	3.0		9.1	87	ř.	3.9 13	00	240	
	DATE	HAR NES TOT (MG AS	S AL S/L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	, SOD D D SOL (M	S- VED IG/L NA)	DI	UM, S- VED /L	ALKA- LINITY LAB (MG/I AS CACO3	Y SULI DIS SOI (MO	ATE S- LVED G/L SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RI D SO (M	UO- DE, IS- DLVED IG/L F)	A. Garage Transfer Ma
00	17		170	37	20	1	15	2	.2	132	30	1	24		0.1	
FE	B 1989 22						1.05					200				
AF	PR		82	19	8.3		14		.3	56	2		24		0.1	
JL	26 JN		130	29	14	1	15	1	.5	96	20)	29		0.1	1
	14 JL		110	25	11	- 1	15	1	.6	83	16	5	27		0.1	
	24 JG		93	22	9.2		9.4	2	.4	116	17	7	13		0.1	
AC	01		160	35	17	1	13	1	.9	123	20	0	23		0.2	
	DATE		CA, S- LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E NO2	TRO- GEN, 2+NO3 DTAL MG/L S N)	NIT GE AMMO TOT (MG	NÍA AL	NITRO GEN, AI MONIA ORGANI TOTAI (MG/I AS N	H- H NI' L TO' L (MI	TRO- EN, TAL G/L N)	PHOS- PHOROUS TOTAL (MG/L AS P)	ORG TO	RBON, GANIC DTAL IG/L G C)	
	CT_1988														Total	
FE	17 EB 1989	•	5.8	214	0.02	2 2	2.45	0.	16	1.7	4	.1		4.	.1	
	22 PR		5.2	128	0.02	8 1	1.50	0.	16	1.1	2	.6	0.41	7.	.2	
	26 UN		5.3	171	0.02	2 1	1.67	0.	18	0.8	1 2	.5	0.11	3.	.3	
	14		9.3	155	0.02	9 1	1.57	0.	14	1.1	2	.7	•••	4.	.7	
	UL 24	14	4	157	0.02	23 2	2.24	0.	.08	1.0	3	.3	0.06	2.	.4	
Al	01		9.9	194	0.05	7 2	2.49	0.	19	1.3	3	.8	0.48	2.	.9	

DELAWARE RIVER BASIN

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L	ALUM- INUM, DIS- SOLVED (UG/L	ARSENIC TOTAL (UG/L	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L	BORON, TOTAL RECOV- ERABLE (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L
		AS S)	AS AL)	AS AS)	AS BE)	AS B)	AS CD)	AS CR)	AS CU)
OCT 1988 17	1350	<0.5	80	<1	<10	<10	<1	2	3
D	ATE	TOTAL TRECOV- FERABLE E	LEAD, NOTAL TRECOV- RERABLE E	OTAĽ T ECOV- R RABLE E UG/L (OTAL T ECOV- R RABLE E UG/L (ECOV- NI RABLE TO UG/L (U	DTAĹ ERA JG∕L (UC	TAĽ COV- ABLE PHE G/L TO	NOLS OTAL G/L)
OCT 19		70	<5	20	<0.10	<1	<1	80	1

01460500 DELAWARE AND RARITAN CANAL AT KINGSTON, NJ

LOCATION.--Lat 40°22'24", long 74°37'08", Middlesex County, Hydrologic Unit 02040105, on right bank at canal lock at Kingston, and 250 ft upstream from new bridge on State Highway 27.

PERIOD OF RECORD .- - March 1947 to current year.

GAGE.--Two water-stage recorders and concrete control. Datum of gage is 40.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. The canal diverts water from the Delaware River at Raven Rock and discharges into Raritan River at New Brunswick. Some water may be released to the Millstone River 500 ft and 2.3 mi above station (see Diversions in Raritan River basin). Gage-height telemeter at station.

		DISCHA	ARGE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
0	YAC	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	1 2 3 4 5	136 136 137 136 136	137 138 141 135 126	152 151 150 148 147	136 136 136 136 135	117 115 109 109 108	103 103 102 102 102	100 99 77 51 65	112 112 113 114 113	.00 .00 .00	123 122 120 120 154	107 105 105 104 104	117 116 114 113 113
	6 7 8 9	135 135 136 135 134	125 133 147 146 145	147 147 140 135 136	134 133 134 136 136	107 107 105 101 101	103 103 103 103 104	79 86 86 86 99	111 39 12 .00	.00 .00 .00 .00	151 147 143 129 140	104 108 108 109 110	112 111 111 111 110
	11 12 13 14 15	134 133 133 133 133	144 145 145 148 147	136 136 136 136 136	137 139 137 130 132	101 101 101 102 103	105 105 105 105 105	105 104 104 103 103	.00 .00 .00 .00	2.6 .00 .00 .00	127 112 117 119 110	107 111 106 91 109	110 110 108 110 117
	16 17 18 19 20	133 132 132 132 133	146 70 .00 51 150	136 135 136 136 136	132 126 120 119 119	104 103 102 102 102	105 103 100 100 102	104 104 107 109 110	5.2 43 .59 .00	135 130 123 120 102	109 26 42 104 106	108 117 119 117 106	121 128 128 137 156
	21 22 23 24 25	134 140 136 131 133	161 154 150 150 149	136 136 137 137 138	118 118 116 105 110	105 108 105 105 104	89 95 96 98 100	110 108 108 112 113	.00 .00 .00 .00	97 96 117 108 108	107 104 105 105 105	107 109 113 117 116	120 132 138 149 146
	26 27 28 29 30 31	134 136 135 134 136 136	148 148 158 154 154	138 137 137 137 136 136	115 116 116 117 117	104 104 103	100 100 99 99 99 102	113 113 113 113 113	.00 .00 .00 .00	108 108 107 119 123	104 104 105 105 105 106	116 114 113 113 113	139 138 138 138 138
	MEAN MAX MIN	134 140 131	135 161 .00	139 152 135	126 139 105	105 117 101	101 105 89	99.9 113 51	25.0 114 .00	58.9 135 .00	112 154 26	109 119 91	124 156 108
	STATIST	ICS OF	MONTHLY FLO	W DATA FO	OR PERIOD	OF RECORD,	BY WATER	R YEAR	(WY)				
	MEAN MAX (WY) MIN (WY)	70.7 134 1989 .00 1986	74.5 135 1989 .03 1982	76.8 139 1989 .00 1982	75.3 126 1989 1.39 1982	75.5 119 1988 7.52 1948	78.3 124 1980 4.03 1948	77.8 139 1957 10.4 1949	73.8 119 1988 18.3 1949	74.8 131 1988 6.92 1986	146 1988 2.83	73.0 147 1988 7.13 1985	71.4 140 1988 1.88 1985
	SUMMARY	STATIS	TICS		FC	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
	AVERAGE HIGHEST LOWEST / HIGHEST LOWEST (10 PERCI 50 PERCI 95 PERCI	ANNUAL ANNUAL DAILY DAILY M ENTILE ENTILE	MEAN			161 .00 150 113	Nov 21 Nov 18			2	5.3 124 1.7 174 Apr .00 Dec 121 81	1988 1948 6 1957 31 1948	

01461000 DELAWARE RIVER AT LUMBERVILLE, PA

LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi upstream of Lockatong Creek.

DRAINAGE AREA. -- 6,598 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	CHAR INS CUB FEI PEI SEC	GE, SPI T. CII IC COI ET DUC R ANG	FIC N- CT- (CE	PH STAND- ARD NITS)	AT!	PER- URE TER G C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGI DI: SOLY (PEI CEI SATI	S- D VED R- NT UR-	XYGEN EMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI FORM FECA EC BROT (MPN	L, S TO	TREP COCC ECAL MPN)
	1988 11	1000	300	0E	236	7.7	1:	3.0	10.1		97	<0.6	50		11
	3 1989 08	1045	435	0E	200	7.6		3.0	15.0	1	10	E1.3	20		5
APR	? 04	1030	1620	0E	130	7.7		8.0	12.6	1	07	E2.5	40		11
MA	r 22	1045	2290	0E	150	7.7	18	8.0	9.0		95	E1.8	110		33
JUL	īo	1100	870	0E	180	7.6	2	4.0	8.6	1	03	E2.1	490		79
AUC	3 02	1045	500	0E	254	7.3	2	2.5	8.8	1	02	E1.5	790	1	70
	DATE	HAR NES TOT (MG AS CAC	S AL /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG	D SOL		POTA SIU DIS SOLV (MG/ AS K	M, LIN ED (M L A	AB G/L S	SULFAT DIS- SOLVE (MG/L AS SO4	DIS D SOLV	VED /L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	ì
	OCT 1988		85	21	8.0	1	2	1.	9 58		25	16		0.1	
	FEB 1989 08		75	19	6.6	1	2	1.	6 47	•	25	19		0.1	
	APR 04		44	12	3.4	•	7.0	1.	1 23		18	11		<0.1	
	MAY 22 JUL		45	12	3.6	•	5.9	1.	1 27		15	8	.9	0.1	
	10 AUG		66	17	5.6	•	8.0	1.	4 43		16	12		0.1	
	02		87	22	7.9	•	9.9	1.	7 57	•	24	12		0.1	
	DATE	SILI DIS SOL (MG AS SIC	CA, VED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	G NO2	TRO- EN, +NO3 TAL G/L N)	NITR GEN AMMON TOTA (MG/ AS N	O- GEN I, MON IIA ORG L TO 'L (M	TRO- IA + IANIC TAL IG/L	NITRO GEN, TOTAL (MG/L AS N)	PHORE TOTA	OUS C AL /L	CARBON, DRGANIC TOTAL (MG/L AS C)	
	OCT 1988 11 FEB 1989	2	2.0	121	0.01	5 1	.03	<0.0)5 (.30	1.3	0.0	9	2.9	
	08 APR	2	2.3	114	0.02	26 1	.25	0.5	6 0	.80	2.1	0.1	3	2.6	
	04 MAY	3	.7	70	0.01	0 0	.86	0.0	9 0	.46	1.3	0.0	7	3.2	
	22 JUL	3	8.8	67	0.00	9 0	.72	0.0)5 (.47	1.2	0.0	7	4.2	
	10 AUG	4	.2	90	0.03	34 1	.04	0.0)5 (.40	1.4	0.0	6	3.7	
	02	4	.5	116	0.09	98 1	.64	0.1	12 (.53	2.2	0.0	9	3.1	

01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1989 22	1045	30	1	<10	30	<1	1	9
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
MAY 1989 22	440	31	80	<0.10	14	<1	30	3

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ

LOCATION.--Lat 40°24'41", long 74°59'13", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Route 29 in Stockton, 900 ft upstream from mouth.

DRAINAGE AREA. -- 26.6 mi 2.

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CL TIME	IST. CI IBIC CO EET DU ER AN	CT- (ST	AND - AT	TER SC	GEN, (I	OLVED BI PER- CH CENT IC ATUR- 5	AND, COI O- FOI EM- FEI AL, EI DAY BRO	LI- RM, CAL, STREP C TOCOCC OTH FECAL PN) (MPN)
OCT 1988	1130	1.2E	229	7.5 1	0.5 1	0.9	99 <	0.4 2	0 110
FEB 1989 08		3 E				6.9	- 27	0.4 <2	
APR 04		6 E				2.1		1.9 13	
MAY 22		26 E				0.4		0.9 4	
JUL 10	1230	14 E			24.0	9.2		1.4 13	0 350
AUG 02	1300	5.6E	200			0.5		0.7 5	0 >2400
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988 11 FEB 1989	69	16	7.0	18	2.0	50	23	16	0.1
08	51	12	5.1	59	1.9	27	42	77	0.1
APR 04	46	11	4.6	76	1.9	23	48	100	0.1
MAY 22	51	12	5.1	55	2.1	28	38	69	0.1
JUL 10 AUG	43	10	4.4	27	2.2	36	25	21	0.1
02	54	13	5.3	16	2.1	38	21	13	0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988	11	123	0.005	2.70	<0.05	0.05	2.8	<0.02	1.3
FEB 1989 08	10	223	0.006	1.79	<0.05	0.19	2.0	0.05	1.9
APR 04	10	265	0.005	1.48	0.06	0.27	1.7	0.05	2.9
MAY 22	12	210	0.012	2.40	<0.05	0.15	2.6	0.06	1.9
JUL 10	14	125	0.007	2.49	<0.05	0.24	2.7	0.08	3.0
AUG 02	13	106	0.018	2.43	0.09	0.15	2.6	0.07	2.6

01461300 WICKECHEOKE CREEK AT STOCKTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1989 22	1215	20	<1	<10	40	<1	1	3
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
MAY 1989 22	60	- 1	<10	<0.10	. 1	<1	<10	-2

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ

LOCATION.--Lat 40°17'20", long 74°52'08", Mercer County, Hydrologic Unit 02040105, at bridge at Washington Crossing, 1.4 mi upstream of Jacobs Creek.

DRAINAGE AREA. -- 6,735 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		INST. C CUBIC CO FEET DO PER A	JCT- (S NCE	TAND- A ARD W	TURE ATER S	YGEN, (I DIS- (I OLVED S	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5	O- FOI IEM- FEI CAL, EI DAY BRI	LI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)
OCT 1988	1330	3150E	234	8.1	15.0	11.8	119	0.5 2	0 2
FEB 1989 08	1330	5350E	220	8.3	3.0	15.0	111 E	1.6 2	0 2
APR 04	1330	16700E	125	7.7	9.0	12.9	112	2.3 5	0 7
MAY 22	1330	23500E	160	7.6	18.5	9.4	101 E	2.1 2	0 46
JUL 10	1400	9300E	200	7.9	25.0	9.5	115 E	2.2 49	0 34
AUG 02	1415	5550E	241	7.7	23.0	9.1	106	0.9 4	0 70
DATE	HARD- NESS TOTAL (MG/L AS CACO	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM- DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988 11 FEB 1989	8	35 21	8.0	12	1.9	57	26	16	0.1
08 APR	7	74 19	6.5	12	1.6	48	24	19	0.1
04 MAY	4	14 12	3.3	7.2	1.1	23	18	. 11	<0.1
122 JUL	4	5 12	3.7	6.6	1.1	27	16	9.9	0.1
10		53 16	5.5	7.4	1.4	42	16	. 11	0.1
02	8	39 22	8.2	10	1.7	58	24	14	0.1
DATE	SILICA DIS- SOLVE (MG/I AS SIO2)	CONSTI- ED TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN,	GEN,	MONÍA +		PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988	1.6	5 121	0.014	1.01	<0.05	0.36	1.4	0.04	2.8
FEB 1989 08	1.7				0.29	0.61	1.8	0.09	2.7
APR 04	3.8				0.09	0.46	1.4	0.07	3.3
MAY 22	4.3				0.06	0.45	1.2	0.08	4.3
JUL 10	4.3	2 87	0.038	3 1.13	<0.05	0.41	1.5	0.06	3.6
AUG 02	4.0		0.065	1.66	0.07	0.32	2.0	0.10	3.1

01462500 DELAWARE RIVER AT WASHINGTON CROSSING, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 11 MAY 1989 22	1330	<0.5	30	1	<10	40	<1	2	3
22	1330		40	<1 NCA-	<10	<10	<1	2	3

	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCURY TOTAL RECOV-	NICKEL, TOTAL RECOV-	SELE- NIUM,	ZINC, TOTAL RECOV-	18 34 T
DATE	 ERABLE (UG/L AS FE)	ERABLE (UG/L AS PB)	ERABLE (UG/L AS MN)	ERABLE (UG/L AS HG)	ERABLE (UG/L AS NI)	(UG/L AS SE)	ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
OCT 1988 11 MAY 1989	250	<5	<10	<0.10	<1	<1	10	<1
22	550	58	80	<0.10	4	<1	30	4

01463500 DELAWARE RIVER AT TRENTON, NJ (National stream quality accounting network and Radiochemical program station)

LOCATION.--Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft upstream from Calhoun Street Bridge at Trenton, 0.5 mi upstream from Assunpink Creek, and at mile 134.5.

DRAINAGE AREA. -- 6,780 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service.

REVISED RECORDS. -- WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1965, at datum 7.77 ft higher. Feb. 24, 1913 to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 500 ft downstream.

REMARKS.--Records excellent except for period of ice effect, Dec. 13-14, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack and Hopatcong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, Wild Creek, and Merrill Creek Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs. Diversion to Bradshaw Reservoir and to Delaware and Raritan Canal (see Delaware River basin, diversions). Water diverted just above station by borough of Morrisville, PA, and city of Trenton for municipal supply (see Delaware River basin, diversions). Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft above National Geodetic Vertical Datum of 1929, discharge estimated, 295,000 ft³/s. Maximum elevation since 1903, 30.6 ft above National Geodetic Vertical Datum of 1929, Mar. 8, 1904, from floodmark (ice jam).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989, MEAN DAILY VALUES DAY SEP OCT NOV DEC JUN JUL JAN FEB MAR APR MAY 3550 23500 3690 4790 3460 3360 3460 3540 7470 9900 5020 4730 4160 4210 18600 6150 9710 6690 14500 5270 6020 5930 6030 5510 5010 3310 e4010 11500 10700 14600 13600 8300 3510 36900 5130 15 7060 e4680 6770 6040 4480 5320 11900 3330 7180 22 23 24 8790 4770 7730 23000 7140 27 28 4700 4440 6130 5980 16300 4900 5220 3940 3880 14100 11700 5920 14200 12400 6320 5840 15700 ---MEAN MAX STATISTICS OF MONTHLY FLOW DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) 27550 1951 22490 1933 34950 1979 52680 1940 31690 1989 30290 1955 MEAN 25720 1928 1956 1936 1972 MAX 1928 (WY) 1942 MIN (WY)

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1989 WATER YEAR	FOR PERIOD OF RECORD
AVERAGE FLOW HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENTILE 50 PERCENTILE 95 PERCENTILE	74900 May 7 3090 Oct 12 83300 May 7 16.95 May 7 3020 Oct 6 22000 6520 3320	11650 Unadjusted 19810 1928 4708 1965 279000 Aug 20 1955 1240 Oct 31 1914 329000a Aug 20 1955 28.60b Aug 20 1955 1180 Oct 31 1963 24600 7860 2310

From rating curve extended above 230,000 ${\rm ft}^3/{\rm s}$ from high-water mark in gage house a

Estimated

01463500 DELAWARE RIVER AT TRENTON, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1945 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: June 1968 to September 1978, May 1979 to current year.
pH: June 1968 to September 1978, May to September 1979, February 1980 to August 1982, April 1983 to current year.
WATER TEMPERATURE: October 1944 to September 1978, May 1979 to current year.
DISSOLVED OXYGEN: October 1962 to September 1978, May 1979 to current year.
SUSPENDED-SEDIMENT DISCHARGE: Water years 1949 to 1981.

INSTRUMENTATION.--Temperature recorder since October 1944, water-quality monitor since October 1962. Monitor probes are located within raw water intake of Trenton Filtration Plant.

REMARKS.--Missing continuous water-quality records are the result of malfunctions of the instrument. Unpublished records of suspended sediment discharge for the period October 1, 1981 to March 31, 1982 are available in files of the district office.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum, 400 microsiemens, Jan. 24, 1959; minimum, 50 microsiemens, Mar. 19, 1945.
pH: Maximum, 10.3, August 9, 10, 1983; minimum, 5.3, June 22, 1972.
WATER TEMPERATURE: Maximum, 34.0°C, Aug. 6; minimum, 0.0°C on many days during the winter months.
DISSOLVED OXYGEN: Maximum, 20.0 mg/L, Feb. 11, 1989; minimum, 4.0 mg/L, Nov. 9, 1972.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 262 microsiemens, Jan. 11; minimum, 86 microsiemens, May 8. WATER TEMPERATURE: Maximum, 30.5°C, Aug. 6; minimum, 0.0°C on many days during the winter months.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BID	- D		DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
NOV 1988 15	1320	6070	186	7.9	10.0	4.1	12	2.3	108	2.1	30	16	64
MAR 1989 03	1300	6880	180	8.1	4.5	0.6	0 1	4.2	109	2.6			62
MAY 03	1200	13700	206	7.7	15.5	15		8.9	89	••	K650	830	72
SEP 12	1115	3300	245	8.2	25.5	0.3	30	8.2	100	1.3	к8	11	86
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)		Y, LIN ON- WAT TOT D FI	WH S FET ELD L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
NOV 1988 15 MAR 1989	16	5.9	10	1.6	46	38		39	34	12	0.1	3.4	111
03	16	5.3	11	1.4	50	41		41	21	16	0.1	2.9	103
03 SEP	18	6.5	10	1.7	55	45		45	23	15	0.1	3.6	111
12	21	8.2	12	1.9	77	63		61	24	16	0.1	2.7	128
DAT		ME DI- D IT, CHA S- S IDED PE	NT, SI IS- SI RGE, D US- % F NDED T	USP. G EVE NIT IAM. D INER SO HAN (M	EN, CRITE NOT IS- ILVED SO	2+NÓ3	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRI GEN AMMON DIS SOLVI (MG/ AS N	GEN IA MON - ORGO TO L (MI	TRO- ,AM- IA + PHO ANIC PHOF TAL TOT G/L (MO N) AS	ROUS DI TAL SOI G/L (MO		ROUS THO, S- /ED /L
NOV 198 15	8	7 11	5	63 0	.020	1.10	0.010	0.0	20	0.40 0.	.070 0	.070 0.	.050
MAR 198 03		33 61				0.910	0.060	0.0					.030
MAY 03		51 189	0			1.20	0.160	0.1					.050
SEP 12		3 2	7	100 0	.020	0.900	0.030	0.0	20	0.40 0	.110 0	.080 0.	.070

DELAWARE RIVER BASIN

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		TIME	SOL (UC	M, S- VED	ARSEI DI SOL (UG AS	S- VED /L	SOL (U	IUM, S- VED IG/L BA)	DI:	RYL- JM, S- LVED G/L BE)	SOL (UC	S- VED	SOI (U	JM,	SOL (U	ALT, S- VED IG/L CO)	(U		SOL (UG	N, S- VED S/L FE)
NOV 1988	3	1320		30		1		27		<0.5		<1		<1		<3		3		30
MAR 1989)	1320		30				21	7.7	.0.5		-1		`'						
03		1300		30		<1		26		<0.5		<1		9		<3		3		24
03 SEP		1200		20		1		30		<0.5		<1		<1		<3		3		31
12		1115		20		<1		28		<0.5		<1		<1		<3		2		8
DATE	ı	LEAD, DIS- SOLVED (UG/L AS PB)	SOI (U	HIUM (S- VED G/L LI)	MAN NES DI SOL (UG AS	E, S- VED /L	SC (L	CURY DIS- DLVED JG/L S HG)	DE D SO (U	LYB- NUM, IS- LVED G/L MO)	(U		NI D SO (U	LE- UM, IS- LVED G/L SE)	SC (L	VER, DIS- DLVED JG/L S AG)	D SO (U	RON- IUM, IS- LVED G/L SR)	SOL	JM, IS- LVED G/L
NOV_1988	3	_												W.7.				100		
15 MAR 1989		<5		<4		12		<0.1		<10		3		<1		<1.0		67		<6
03		<5		<4		29		<0.1		<10		3		<1		1.0		70		<6
MAY 03		<5		<4		14		<0.1		<10		<1		<1		<1.0		77		<6
SEP 12		<1		<4		5		<0.1		<10		<1		<1		<1.0		93	Agra.	<6
12		`1		\4)		VU. 1		<10		~1 .		1		VI.0		73		10
	DATE	SO: (U	NC, IS- LVED G/L ZN)	(UG	HA, S- VED	TOT (UC	HA, SP. AL S/L	BE SOI (PC	IS- LVED I/L	GRO BET SUS TOT (PC) AS CS-	TA, SP. TAL	SOL (PC		SUS TO (PC		SOLV RAD ME	OIUM 26, IS- /ED, OON THOD I/L)		RAL S- VED	
19 MAR	1988 1989		17	•	0.4		0.4		2.4		<0.4		2.0		<0.4	(0.04		.08	
MAY			12		•		•		••		•		-		•				•	
SEP	3		11	•	0.4		1.6		0.9		1.6		8.0		1.2	- 6	0.11	C	.04	
1	2		11		-				••	-	••		• (1)-1		••		- 1		•	

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	OF LU	IIIC COND	OCIANCE	(MICKOSII	LILENS/ CIT	AI 23 DEG.	C), WATE	IN ILAK	OCTOBER	1700 10 30	I I LIIDLK	1707
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1 2 3 4 5	244 248 242 246 244	235 230 236 241 220	240 244 239 244 231	224 229 225 224 227	185 225 224 220 214	210 226 224 222 223	161 165 172 175 180	159 159 165 168 171	160 162 168 171 174	194 186 197 199 206	186 181 181 196 199	191 183 190 197 202
6 7 8 9 10	222 227 242 242 240	215 220 227 239 235	218 222 236 241 237	231 231 215 177 148	216 217 179 147 144	220 223 201 157 146	187 191 189 192 193	180 187 181 185 189	183 188 184 187 192	209 216 237 241 253	205 204 211 231 242	207 210 220 236 246
11 12 13 14 15	237 234 231 228 231	232 230 227 226 223	235 232 229 227 226	152 154 168 174 176	148 150 155 166 174	149 151 160 169 175	196 195 192 204 219	192 188 182 191 198	194 192 187 196 210	262 248 242 230 251	246 234 217 218 212	257 241 228 226 233
16 17 18 19 20	234 230 234 234 210	230 222 221 211 204	232 226 228 224 206	175 161 166 171 169	163 150 158 167 135	169 154 162 169 156	216 207 208 210 208	208 199 202 205 200	212 205 204 208 203	228 232 230 227 230	210 229 224 221 221	221 231 226 224 225
21 22 23 24 25	210 211 236 237 214	163 168 210 215 190	202 196 220 230 200	157 149 120 124 128	143 118 115 118 122	151 135 118 120 124	208 205 205 209 206	206 199 199 200 198	207 204 201 204 203	227 235 240 243 245	223 227 231 235 240	225 231 235 238 242
26 27 28 29 30 31	197 195 189 194 201 211	190 184 184 189 194 202	194 189 186 191 197 207	135 136 146 157 164	128 134 119 142 155	132 135 133 149 159	216 212 195 177 179 191	203 195 176 174 174 180	210 205 185 176 176 187	244 232 227 230 221 216	233 222 222 222 223 208 206	240 226 223 228 216 210
MONTH	248	163	220	231	115	167	219	159	192		181	223
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4 5	MAX 217 215 211 218 219					183 185 185 189 195		MIN APRIL 125 118 119 124 130	131 120 120 126 132	MAX 202 210 174 128		MEAN 166 187 136 123
		FEBRUAR	1		MARCH 180	183 185 185 189 195	135 124 124 130 135	125 118 119 124 130	131 120		MAY 126	
1 2 3 4 5	217 215 211 218 219	212 206 207 212 207	214 210 209 216 213	187 187 188 192 198	MARCH 180 183 183 187 193	183	135 124 124 130 135	125 118 119 124 130	131 120 120 126 132	202 210 174 128	126 146 122 121	166 187 136 123
1 2 3 4 5 6 7 8 9	217 215 211 218 219 212 219 229 231 224	212 206 207 212 207 204 206 220 217 217 217 226 230 240	214 210 209 216 213 208 212 223 225 220	187 187 188 192 198 200 210 218 222 224	180 183 183 187 193 196 200 210 211 213 217 221 221	183 185 185 189 195 198 204 213 216 219	135 124 124 130 135 138 140 139 139 141 143 147 152	125 118 119 124 130 135 136 133 132 138	131 120 120 126 132 137 138 136 135 140 142 144 150	202 210 174 128 141 124 92 96 107 114 109 104	126 146 146 122 121 128 89 86 89 96	166 187 136 123 133 102 89 93 100 111 103 101
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	217 215 211 218 219 219 229 231 224 229 239 240 251 254 258 237 228	212 206 207 212 207 204 206 220 217 217 217 217 226 230 240 244	214 210 209 216 213 208 212 223 225 220 221 235 244 248	187 187 188 192 198 200 210 218 222 224 225 226 225 226 230	180 183 183 187 193 196 200 210 211 213 217 221 221 223 225 227 229	183 185 185 189 195 198 204 213 216 219 221 221 222 223 226	135 124 124 130 135 138 140 139 139 141 143 147 156 166	125 118 119 124 130 135 136 133 132 138 140 142 147 152 156	131 120 120 126 132 137 138 136 135 140 142 144 150 155 160	202 210 174 128 141 124 92 96 107 114 109 104 111 119	126 146 122 121 128 89 86 89 96 108 99 99 104	166 187 136 123 133 102 89 93 100 111 103 101 108 115
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 7 18 9 20 21 22 3 24 5	217 215 211 218 219 2219 2219 231 224 229 231 224 251 254 258 237 228 212 208 2112 208 2116 1168	212 206 207 212 207 204 206 220 217 217 217 217 226 230 240 244 235 228 225 209 207 164 170 168 162 158	214 210 209 216 213 208 212 223 225 220 222 231 235 2244 248 247 233 226 219 209 195 185 199 165 161	187 187 188 192 198 200 218 222 224 225 226 230 231 234 249 239 224 220 211 206 210 202	180 183 183 187 193 196 200 210 211 213 217 221 221 223 225 227 229 221 209 211 196 199 179 175 148 149 147 146	183 185 185 189 195 198 204 213 216 219 221 222 223 227 231 222 223 227 231 229 217 215 203 205 192 157 150 147	135 124 130 135 138 140 139 141 143 147 152 156 165 170 166 153 152	125 118 119 124 130 135 136 133 132 138 140 147 152 156 157 163 148 149 150 158 161	131 120 120 126 132 137 138 136 135 140 142 144 155 160 167 158 151 151 151	202 210 174 128 141 124 92 96 107 114 109 104 111 119 127 132 121 115 124 131 137 141 151 158 161 162 169	126 126 122 121 128 89 86 89 96 108 99 104 111 118 121 123 103 115 125 130 136 137 146 151 155 160 161	166 187 136 123 133 102 89 93 100 111 103 101 108 115 127 111 109 120 128 133 139 142 149
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	217 215 211 218 219 219 229 231 224 229 237 240 251 254 258 237 228 212 208 214 216 168 161 171 187	212 206 207 212 207 204 206 220 217 217 217 226 230 240 244 235 228 225 209 207 164 170 168 162 158	214 210 210 216 213 208 212 223 220 221 235 220 221 235 244 248 247 233 226 219 219 216 217 218 219 219 219 219 219 219 219 219 219 219	187 187 188 192 198 200 218 222 224 225 226 230 231 234 249 239 224 220 211 206 210 211 206 210 211 211 206 210 211 211 211 211 211 211 211 211 211	180 183 183 183 193 196 200 210 211 213 217 221 223 225 227 229 221 209 211 196 199 194 179	183 185 185 189 195 198 204 213 216 219 221 222 223 226 227 231 234 229 217 215 203 205 192 157 150 148	135 124 130 135 138 140 139 141 143 147 152 156 165 170 166 153 152	125 118 119 124 130 135 136 133 132 138 140 142 147 152 156 157 163 148 149 150 158 161	131 120 120 126 132 137 138 136 135 140 142 144 150 155 160 167 158 151 151 151 151	202 210 174 128 141 124 92 96 107 114 109 111 115 127 132 121 115 124 131 146 151 151 158 161 162	126 146 146 122 121 128 89 86 89 96 108 99 104 111 118 121 103 115 125 130 136 139 146	166 187 136 123 133 102 89 93 100 111 103 101 108 115 121 127 111 109 120 128 133 139 142 149

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

	SPEC	IFIC COND	UCTANCE	(MICROSIE	MENS/CM	AT 25 DEG.	C), WAT	ER YEAR	OCTOBER	1988 TO S	EPTEMBER	1989
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	
1 2 3 4 5	176 184 185 179 183	172 172 179 171 173	175 179 182 176 178	161 167 184 191 191	154 159 168 184 148	159 164 177 187 177	228 239 237 236 238	209 228 226 225 230	218 235 235 231 234	242 244 240 238 242	238 241 230 232 239	240 243 233 235 240
6 7 8 9	190 192 186 189 178	180 129 139 138 119	184 175 166 174 150	192 197 174 171 181	181 177 161 165 169	186 193 165 169 174	233 229 225 232 232	224 220 220 224 227	230 225 222 228 230	242 241 240 247 253	240 238 238 240 247	241 239 239 242 250
11 12 13 14 15	179 171 167 175 180	172 164 159 160 175	177 167 163 170 177	188 197 193 203 207	181 188 179 186 202	183 192 188 191 205	227 216 219 219 220	217 206 212 194 126	222 212 215 208 192	254 248 244 241 224	248 241 241 209 210	251 245 243 227 214
16 17 18 19 20	179 158 128 129 133	161 127 122 122 125	174 139 125 125 128	210 208 231 230 226	184 199 209 220 206	203 205 222 224 217	205 212 218 224 227	137 206 212 218 217	180 210 215 222 222	229 229 253 256	220 221 231 132	225 224 238 194
21 22 23 24 25	135 148 147 142 148	132 134 138 127 143	133 140 142 135 145	216 224 213 211 208	186 202 206 200 202	199 213 211 204 205	244 249 244 234 233	228 242 231 231 219	235 245 236 232 228			
26 27 28 29 30 31	143 137 141 151 154	133 134 134 141 150	137 135 136 146 151	209 212 209 209 210 212	204 203 198 202 205 205	207 207 203 206 207 209	219 226 239 242 243 243	215 212 226 237 239 239	217 217 233 239 242 240			
MONTH	192	119	156	231	148	195	249	126	224			•••
			PH (STANDARD	UNITS).	WATER YEAR	OCTOBER	1988 TO	SEPTEMB	ER 1989		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5		::: :::	:::	8.0 8.3 8.5 8.6 8.0	7.6 7.6 7.7 7.7 7.5	7.8 7.9 8.0 8.0 7.8	8.0 8.1 8.1 8.1	7.8 7.9 7.9 7.9 8.0	7.9 7.9 8.0 8.0	8.2 8.6 8.8 8.8	7.5 7.7 7.7 7.9 7.9	7.9 8.0 8.2 8.3 8.3
6 7 8 9	:::	::: :::	:::	8.1 7.9 7.6 7.7 7.6	7.5 7.5 7.4 7.3 7.3	7.7 7.7 7.5 7.5 7.4	8.2 8.1 8.2 8.1 8.2	7.9 8.0 7.9 7.9 8.0	8.0 8.0 8.0 8.0	8.3 8.4 7.9 8.1 8.6	7.8 7.8 7.3 7.4 7.5	8.0 8.0 7.6 7.7 8.0
11 12 13 14 15		::: :::		7.7 7.9 7.6 8.0 8.4	7.3 7.3 7.4 7.4 7.4	7.5 7.5 7.6 7.8	8.3 8.3 8.2 8.2	8.0 8.1 8.0 8.0 7.9	8.1 8.2 8.1 8.1 8.0	8.8 8.0 8.2 8.6 8.0	7.6 7.5 7.4 7.5 7.4	8.1 7.8 7.6 7.9 7.6
16 17 18 19 20	 8 5	7.6	8.0	8.0 7.7 7.8 8.0 7.7	7.7 7.5 7.5 7.7 7.4	7.8 7.6 7.7 7.8 7.6	8.2 8.2 8.2 8.1 8.0	7.9 7.9 7.9 7.6 7.6	8.0 8.0 7.9 7.7	8.2 8.8 9.1 9.2 9.2	7.4 7.6 7.9 8.0 7.9	7.7 8.1 8.4 8.5 8.5
	8.5 8.7	7.6 7.7	8.0 8.1	7.7	7.4	7.6	8.0	7.6	1.1			
21 22 23 24 25	8.7 8.1 7.8 7.9 8.0 8.1	7.7 7.4 7.5 7.6 7.5	7.9 7.5 7.6 7.7 7.8	7.7 7.6 7.7 7.6 7.6 7.7	7.4 7.5 7.5 7.5 7.6	7.6 7.5 7.6 7.5 7.6 7.6	8.0 7.8 7.6 7.3 7.4 7.6	7.6 7.3 7.3 7.2 7.2 7.2	7.6 7.4 7.3 7.3 7.4	9.3 9.4 9.4 9.5 9.5	7.9 8.1 8.0 8.0 8.1	8.6 8.7 8.7 8.8 8.8
21 22 23 24 25 26 27 28 29 30 31	8.1 7.8 7.9 8.0									9.3	7.9 8.1 8.0 8.0	8.6 8.7 8.7

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued
PH (STANDARD UNITS), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

			PH	(STANDARD	UNITS),	WATER YEAR	OCTOBER	1988 10	SEPTEMBER	1989		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FERRUARY			MADOU			40011			MAV	
		FEBRUARY			MARCH			APRIL			MAY	
1	9.4	8.1 7.9	8.7				7.5	7.4	7.5 7.5			
2 3	9.2 8.6	7.9	8.5 7.9	•••	• • • •	•••	7.6	7.4 7.5	7.5			
4	9.2	7.6 7.5	8.3				7.7 7.9	7.6	7.7	•••	•••	
5	9.2 9.2	7.8	8.5			• • •	7.8	7.6	7.6 7.7 7.7			
,		7 /					77	7 /				
6 7	9.4 9.4	7.6 7.7	8.5 8.6	• • • • • • • • • • • • • • • • • • • •			7.7 7.9	7.6 7.7	7.6 7.8			
8 9	9.4	7.9	8.7	• • •			8.0	7.7	7.9			
9	9.4	8.0	8.8	• • •	•••		7.9	7.7 7.7	7.8			
10	9.5	8.3	8.9	•••	•••		8.2	7.7	7.9			
11	9.6 9.5	8.3	8.9				8.6	7.9	8.2 8.2			•••
12 13	9.5	8.1	8.9		• • • •		8.6	7.9	8.2	•••		
15	9.4	8.1 7.8	8.8 8.6			•••	8.8 9.1	7.9	8.3			
14 15	9.5	8.1 7.8 7.7	8.2		•••	•••	8.5	8.0 7.2	8.5 8.1	•••		
4.												
16 17	9.1 9.3	7.5 7.6	8.1 8.5				8.0 8.7	7.2 7.9	7.6 8.3 8.3			
18	9.4	7.9	8.7			• • •	8.8	8.0	8.3	•••	• • • •	
19	9.6	7.9	8.8				9.0	7.5	8.3	•••		• • •
20	9.6	7.9	8.8	•••	• • • •		9.1	7.9	8.6	•••	•••	-,
21	8.5	7.2	7.7				9.0	8.1	8.6			• • •
22	8.5 7.3	7.2 7.2	7.7 7.3	• • • • • • • • • • • • • • • • • • • •		•••	9.3	7.8	8.7			
23	7.3	6.6	7.1				9.4	8.7	9.0			
21 22 23 24 25	7.2	7.1 7.1	7.2			•••						•••
26 27 28 29	7.2 7.4	7.1 7.1	7.2 7.2	•••	• • • • • • • • • • • • • • • • • • • •	•••			• • • • • • • • • • • • • • • • • • • •			
28	7.6	7.1	7.3			•••						•••
29											• • • •	
30		• • • •										
31				•••	•		•••	•••	•••	•••		
MONTH	9.6	6.6	8.2		•••	•••					• • •	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX		MEAN	MAX			MAX			MAX		
DAY	MAX	MIN	MEAN	MAX	JULY			MIN		MAX	MIN SEPTEMBE	
1		JUNE			JULY			AUGUST	7.5		SEPTEMBE	:R
1	:::	JUNE	:::	7.8 8.1	JULY 7.6	7.7 7.8		7.4 7.4	7.5 7.6	:::	SEPTEMBE	R
1 2 3		JUNE		7.8 8.1 8.3	JULY 7.6	7.7 7.8	7.8 7.8 7.7	AUGUST	7.5		SEPTEMBE	:R
1	:::	JUNE		7.8 8.1	JULY 7.6 7.6	7.7 7.8	7.8 7.8 7.7	7.4 7.4 7.3	7.5 7.6 7.5	-	SEPTEMBE	:R
1 2 3 4 5	:::	JUNE		7.8 8.1 8.3 8.4 7.9	JULY 7.6 7.6 7.7 7.9 7.5	7.7 7.8 8.0 8.1 7.7	7.8 7.8 7.7	7.4 7.4 7.3	7.5 7.6 7.5		SEPTEMBE	:R
1 2 3 4 5		JUNE		7.8 8.1 8.3 8.4 7.9 7.7	JULY 7.6 7.6 7.7 7.9 7.5	7.7 7.8 8.0 8.1 7.7	7.8 7.8 7.7	7.4 7.4 7.3	7.5 7.6 7.5		SEPTEMBE	iR
1 2 3 4 5		JUNE		7.8 8.1 8.3 8.4 7.9 7.7	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7	7.8 7.8 7.7 	7.4 7.4 7.3 	7.5 7.6 7.5		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9		JUNE		7.8 8.1 8.3 8.4 7.9 7.7 7.8 7.9	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.7	7.8 7.8 7.7 	7.4 7.4 7.3 	7.5 7.6 7.5 		SEPTEMBE	:R
1 2 3 4 5		JUNE		7.8 8.1 8.3 8.4 7.9 7.7 7.8 8.0	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.4 7.6	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.7 7.8	7.8 7.8 7.7 	7.4 7.4 7.3 	7.5 7.6 7.5		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10		JUNE		7.8 8.1 8.3 8.4 7.9 7.7 7.8 8.0	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.4 7.6	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.7 7.8	7.8 7.8 7.7	7.4 7.4 7.3	7.5 7.6 7.5 		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10		JUNE		7.8 8.1 8.3 8.4 7.9 7.7 7.8 8.0	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.4 7.6	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.7 7.8	7.8 7.8 7.7	7.4 7.4 7.3 	7.5 7.6 7.5 		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14		JUNE		7.8 8.1 8.3 8.4 7.9 7.7 7.8 8.0	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.4 7.6	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.7 7.8	7.8 7.8 7.7	7.4 7.4 7.3	7.5 7.6 7.5 		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10		JUNE		7.8 8.1 8.3 8.4 7.9 7.7 7.8 7.9	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.4 7.6	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.7 7.8	7.8 7.8 7.7	7.4 7.4 7.3	7.5		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		JUNE		7.8 8.1 8.3 8.3 7.9 7.8 7.8 8.3 8.2 8.2 8.4	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.6 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.9 7.7 7.8 8.0	7.8 7.8 7.7	7.4 7.4 7.3	7.5		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		JUNE		7.8 8.1 8.3 8.3 7.9 7.8 8.0 8.3 8.3 8.4	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.6 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.9 7.7 7.8 8.0	7.8 7.8 7.7	7.4 7.4 7.3 	7.5		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 7 18		JUNE		7.8 8.1 8.3 8.3 7.9 7.8 8.0 8.3 8.3 8.4	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.6 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.9 7.7 7.8 8.0	7.8 7.8 7.7	7.4 7.4 7.3 	7.5		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.66	JUNE	7.55	7.8 8.3 8.3 7.9 7.8 7.9 8.3 8.3 8.4 7.8 8.4 7.8 8.3	JULY 7.6 7.6 7.7 7.9 7.5 7.6 7.6 7.6 7.6 7.7 7.6 7.7 7.6 7.7 7.6 7.7 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.9 7.7 7.8 8.0	7.8 7.8 7.7 	7.4 7.4 7.3 	7.5 7.6 7.5 		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 7 18		JUNE	7.55	7.8 8.3 7.9 7.8 8.2 7.8 8.2 8.2 8.2 8.2 8.3 7.9 8.2 8.3 7.9 8.3 7.9 8.2 8.3 7.9 8.3 7.9 8.3 8.3 7.9 8.3 8.3 7.9 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	JULY 7.6 7.7 7.5 7.6 7.7 7.6 7.6 7.7 7.6 7.6 7.7 7.6 7.7 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.8 8.0 7.6 8.0 7.6 8.0	7.8 7.8 7.7	7.4 7.4 7.3 	7.5 7.6 7.5 		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.66 7.7	JUNE	7.55	7.8 8.3 7.9 7.8 8.2 7.8 8.2 8.2 8.2 8.2 8.3 7.9 8.2 8.3 7.9 8.3 7.9 8.2 8.3 7.9 8.3 7.9 8.3 8.3 7.9 8.3 8.3 7.9 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	JULY 7.6 7.7 7.5 7.6 7.7 7.6 7.6 7.7 7.6 7.6 7.7 7.6 7.7 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.8 8.0 7.6 8.0 7.6 8.0	7.8 7.8 7.7 	7.4 7.4 7.3 	7.5 7.6 7.5 		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.6 7.7 7.7	JUNE	7.57.57.6	7.8 8.3 8.3 7.9 7.8 8.3 7.9 7.8 8.3 7.9 7.8 8.3 7.9 7.7	JULY 7.6 7.7 7.5 7.6 7.7 7.6 7.6 7.7 7.6 7.6 7.7 7.6 7.7 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.8 8.0 7.6 8.0 7.6 8.0	7.8 7.8 7.7 7.8 7.7 7.8 7.9 8.0	7.4 7.4 7.3 7.5 7.5 7.5	7.5 7.6 7.5 		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.6 7.6 7.7 7.7	JUNE	7.57.57.6	7.8 8.3 8.3 7.9 7.8 8.3 7.9 7.8 8.3 7.9 7.8 8.3 7.9 7.7	JULY 7.6 7.7 7.5 7.6 7.7 7.6 7.6 7.7 7.6 7.6 7.7 7.6 7.7 7.7	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.8 8.0 7.6 8.0 7.6 8.0	7.8 7.8 7.7 7.8 7.7 7.8 7.9 8.0	7.4 7.4 7.3 7.5 7.5 7.5	7.5 7.6 7.5 7.6 7.6 7.6 7.6 7.7		SEPTEMBE	iR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	7.6 7.7 7.7	JUNE	7.57.57.6	7.8 8.3 8.3 7.9 7.8 8.3 7.9 7.8 8.3 7.9 7.8 8.3 7.9 7.7	JULY 7.66 7.79 7.5 7.67 7.67 7.67 7.67 7.67 7.67 7.67	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 7.9 7.9 7.7 7.8 8.0 7.6 8.0 7.6 8.0 7.6	7.8 7.8 7.7 7.8 7.7 7.8 7.9 8.0	7.4 7.4 7.3 	7.5 7.6 7.5 7.6 7.6 7.6 7.6 7.7		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	7.6 7.6 7.7 7.7 7.7	JUNE 7.55 7.55 7.4 7.5 7.4 7.5	7.557.56	7.8 8.3 8.3 7.9 7.8 8.3 7.9 7.8 8.3 8.4 7.9 7.7 8.8 8.3 7.7 7.7 8.8 8.3 7.7 7.7 8.8 8.3 7.7 7.7 8.8 7.7 7.7 8.8 7.7 7.7 8.8 8.8	JULY 7.66 7.77 7.56 7.77 7.66 7.77 7.66 7.77 7.67 7.6	7.7 7.8 8.0 8.11 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.8 8.0 7.6 7.6 8.0 7.6 7.6 8.7 7.7	7.8 7.8 7.7 7.8 7.7 7.8 7.9 8.0 7.9 7.8 7.8	7.4 7.4 7.3 7.5 7.5 7.5 7.4 7.4	7.5 7.6 7.5 7.6 7.6 7.6 7.6 7.5 7.5 7.5		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	7.6 7.6 7.7 7.7 7.7	JUNE 7.55 7.55 7.4 7.5 7.4 7.5	7.55 7.66 7.67 7.44	7.8 8.3 7.9 7.8 8.2 7.9 7.8 8.2 8.2 7.8 8.3 7.9 7.8 8.8 7.9 7.7 8.8 7.9 7.7 8.8 7.9 7.7 8.8 7.9 7.7 8.8 8.8 7.7 7.7 8.8 8.8 7.7 7.7 8.8 8.8	JULY 7.66 7.77 7.55 7.67 7.75 7.57 7.57 7.57	7.7 7.8 8.0 8.11 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.8 8.0 7.6 7.8 8.0 7.7	7.8 7.8 7.7 7.8 7.7 7.8 7.9 8.0 9.7 7.8 7.8	7.4 7.4 7.3 7.5 7.5 7.5 7.4 7.4	7.5 7.6 7.5 7.6 7.6 7.6 7.7 7.5 7.6		SEPTEMBE	:R
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	7.66 7.66 7.7 7.7 7.66 7.7	JUNE 7.55 7.55 7.4 7.5 7.4 7.5	7.55 7.6 7.4 7.4 7.4	7.8 8.3 8.3 7.9 7.8 8.3 7.9 7.8 8.3 8.4 8.0 7.8 8.8 7.9 7.8 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 8.8 8.8 8.8 7.9 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	JULY 7.66 7.79 7.5 7.67 7.66 7.77 7.66 7.77 7.67 7.67	7.7 7.8 8.0 8.1 7.7 7.7 7.7 7.6 7.8 8.0 7.6 7.8 8.0 7.6 7.6 7.7 7.7	7.8 7.8 7.7 7.8 7.7 7.8 7.9 8.0 7.9 7.8 7.8	7.4 7.4 7.3 7.5 7.5 7.5 7.5 7.5	7.5 7.6 7.5 7.6 7.6 7.6 7.6 7.5 7.5 7.5		SEPTEMBE	iR
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	7.66 7.66 7.77 7.76 7.66 7.77	JUNE 7.55 7.55 7.4 7.5 7.4 7.5	7.55 7.6 7.4 7.4 7.4	7.8 8.3 8.3 7.9 7.8 8.3 7.9 7.8 8.3 8.4 8.0 7.8 8.8 7.9 7.8 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 7.9 8.8 8.8 8.8 8.8 7.9 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8	JULY 7.66 7.77 7.55 7.67 7.46 7.77 7.56 7.77 7.56 7.77 7.57 7.46 7.57 7.57 7.57 7.57 7.57 7.57 7.57 7.5	7.7 7.8 8.0 8.11 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.8 8.0 7.6 7.6 8.0 7.7 7.7	7.8 7.8 7.7 7.8 7.7 7.8 7.9 7.8 7.9 7.8 7.9	7.4 7.4 7.3 7.5 7.5 7.5 7.4 7.4 7.3	7.5 7.6 7.5 7.6 7.6 7.6 7.6 7.5 7.6 7.6 7.6		SEPTEMBE	iR
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	7.66 7.66 7.77 7.76 7.67 7.67 7.77	JUNE 7.55 7.55 7.4 7.5 7.55 7.4 7.3 7.3 7.3 7.3 7.3 7.2 7.2	7.55 7.55 7.66 7.67 7.44 7.44 7.44 7.44	7.8 8.3 7.9 7.8 8.2 8.2 8.2 8.2 8.3 7.7 7.8 8.3 8.3 7.8 8.3 7.7 7.7 8.3 8.3 7.7 7.7 8.3 7.7 7.7 8.3 7.7 7.7 8.3 7.7 7.7 8.3 8.3 7.7 7.7 8.3 8.3 7.7 8.3 8.3 7.7 8.3 8.3 7.7 8.3 8.3 7.7 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	JULY 7.66 7.77 7.5 7.67 7.76 7.77 7.5 7.67 7.77 7.5 7.67 7.77 7.5 7.77 7.5 7.77 7.5 7.5 7.5 7.5	7.7 7.8 8.0 8.11 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.6 8.0 7.6 7.6 7.7 7.6 7.7	7.8 7.8 7.7 7.8 7.7 7.8 7.9 8.0 7.9 7.8 7.9	7.4 7.4 7.3 7.5 7.5 7.5 7.4 7.4 7.4	7.5 7.6 7.5 7.6 7.6 7.6 7.6 7.7 7.5 7.6		SEPTEMBE	iR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.66 7.66 7.77 7.76 7.66 7.77	JUNE 7.55 7.55 7.4 7.5 7.4 7.5	7.55 7.6 7.4 7.4 7.4	7.8 8.3 7.9 7.8 8.2 8.2 8.2 8.2 8.3 7.7 7.8 8.3 8.3 7.8 8.3 7.7 7.7 8.3 8.3 7.7 7.7 8.3 7.7 7.7 8.3 7.7 7.7 8.3 7.7 7.7 8.3 8.3 7.7 7.7 8.3 8.3 7.7 8.3 8.3 7.7 8.3 8.3 7.7 8.3 8.3 7.7 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	JULY 7.66 7.77 7.5 7.67 7.76 7.77 7.5 7.67 7.77 7.5 7.67 7.77 7.5 7.77 7.5 7.77 7.5 7.5 7.5 7.5	7.7 7.8 8.0 8.11 7.7 7.7 7.7 7.6 7.8 7.9 7.7 7.6 8.0 7.6 7.6 7.7 7.6 7.7	7.8 7.8 7.7 7.8 7.7 7.8 7.9 7.8 7.9 7.8 7.9	7.4 7.4 7.3 7.5 7.5 7.5 7.4 7.4 7.3	7.5 7.6 7.5 7.6 7.6 7.6 7.6 7.5 7.6 7.6 7.6		SEPTEMBE	iR

DELAWARE RIVER BASIN

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

			TEMPERA	TURE, WATER	R (DEG.	C), WATER	YEAR OCT	OBER 1988	S TO SEPT	EMBER 198	,	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	24 5	OCTOBER	10.5		NOVEMBER			DECEMBER		2.0	JANUARY	2.0
1 2 3 4 5	21.5 21.5 20.5 19.0 19.0	18.0 19.0 19.0 17.5 16.5	19.5 20.0 20.0 18.5 17.5	8.5 9.5 10.0 11.5	8.0 7.0 6.5 7.5 9.0	8.0 7.5 8.0 8.5 10.0	6.0 5.5 5.5 5.0 4.0	5.5 4.5 4.0 4.0 3.5	6.0 5.0 5.0 4.5 4.0	2.0 3.0 3.0 2.5	2.0 2.0 2.0 .0	2.0 2.5 2.5 1.5
6 7 8 9	18.0 16.0 14.5 15.5 16.0	15.5 14.5 13.0 12.0 12.5	16.5 15.5 14.0 13.5 14.0	12.5 11.0 10.5 10.0 9.5	10.0 10.0 9.5 9.0 8.5	11.0 10.5 10.0 9.5 9.0	4.5 5.0 3.5 3.5	3.5 3.5 3.0 2.5	4.0 4.5 3.5 3.0	.0 .5 1.5 1.5 2.5	.0 .5 1.5	.0 1.0 1.5 2.0
11 12 13 14 15	15.5 13.5 13.0 13.0 14.0	13.5 12.0 10.5 9.5 10.5	14.0 13.0 11.5 11.5 12.0	10.0 9.5 9.0 9.5 10.0	8.5 8.0 7.5 7.5 8.5	9.0 8.5 8.5 8.5 9.0	2.5 1.0 .0 .5 1.5	1.0 .0 .0	2.0 .5 .0 .0	3.5 2.5 3.0 2.5 3.5	1.5 2.0 2.0 1.5 2.0	2.5 2.5 2.5 2.0 2.5
16 17 18 19 20	15.5 16.0 15.0 14.5 15.0	12.0 13.0 13.5 12.5 11.5	13.5 14.5 14.5 13.5 13.0	9.5 10.0 9.0 8.0 8.5	8.5 8.5 8.0 7.5 7.5	9.0 9.0 8.5 7.5 8.0	1.0 .5 .0 1.5 2.5	.0 .0 .0	.5 .0 .5 1.5	3.5 3.5 3.5 4.5 4.0	2.5 2.0 2.0 3.0 2.5	3.0 2.5 3.0 3.5 3.5
21 22 23 24 25	12.5 11.5 11.5 12.5 11.5	11.5 10.5 10.0 10.5 10.0	12.0 11.0 10.5 11.0 10.5	9.0 7.5 6.5 6.0 5.5	7.5 6.5 6.0 5.5 5.0	8.5 7.0 6.5 6.0 5.5	3.0 3.5 2.5 3.5 4.0	2.0 2.0 2.5 2.5	2.5 2.5 2.5 2.5 3.0	2.5 2.0 2.5 3.5 4.0	.5 .0 .5 1.0 2.5	1.5 1.0 1.5 2.0 3.0
26 27 28 29 30 31	10.5 10.0 9.5 10.5 10.5	9.0 8.0 8.0 8.0 7.0	10.0 9.0 9.0 9.0 9.0	6.0 6.5 9.0 7.5 7.0	5.0 5.5 7.0 6.5 6.0	5.5 6.0 8.0 7.0 6.5	3.0 4.0 3.5 2.5 3.0	2.0 2.0 2.5 2.0 2.0	2.5 2.5 3.0 2.0 2.0	4.0 5.0 5.0 4.5 4.5	3.5 3.5 3.0 3.0 4.0 3.5	3.5 4.0 3.5 4.0 4.5 4.5
MONTH	21.5	7.0	13.0	12.5	5.0	8.0	6.0	.0	2.5	5.0	.0	2.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR			MARCH			APRIL			MAY	
1 2 3 4 5	6.0 6.0 5.5 5.0 3.5	4.0 5.0 4.5 3.0 3.0	5.0 5.5 5.5 4.0 3.5	4.0 4.5 4.0 4.5	2.0 3.0 3.5 4.0 4.0	3.0 3.5 4.0 4.0	9.5 8.5 8.5 10.5 10.5	8.5 7.5 7.5 7.5 9.5	8.5 8.0 8.0 8.5 10.0	15.0 15.0 14.5 14.0	13.5 13.5 13.0 13.0	14.5 14.5 14.0 13.0
6 7 8 9	4.0 3.5 3.5 2.0 2.0	2.5 2.5 2.0 .5	3.0 3.0 2.5 1.0	4.5 3.0 3.5 4.5 5.5	2.0 1.5 1.5 2.0 2.5	3.5 2.0 2.5 3.0 4.0	10.0 9.0 10.0 9.5 10.0	9.0 8.5 8.5 9.0 8.5	9.5 9.0 9.0 9.5 9.5	14.0 13.0 11.5 11.0	13.0 12.0 10.5 10.0 10.5	13.5 13.0 11.0 10.5 10.5
11 12 13 14 15	3.0 3.5 2.5 4.5	.0 1.0 1.0 2.0 4.0	1.5 2.0 1.5 3.5 4.5	6.5 6.5 6.5 9.0	3.5 4.5 4.0 4.5 6.5	4.5 5.0 5.0 5.5 7.5	10.5 10.0 10.0 11.5 10.5	8.5 8.5 9.0 9.5	9.5 9.5 9.5 10.0 10.0	10.5 10.5 11.0 12.0 12.5	10.0 10.0 10.0 11.0 11.5	10.5 10.0 10.5 11.5 12.0
16 17 18 19 20	5.0 4.0 4.0 4.5 5.0	4.0 2.5 2.0 2.0 3.0	4.5 3.5 2.5 3.0 3.5	11.0 11.5 13.5 11.0 9.0	8.0 8.0 10.0 9.0 7.5	9.5 9.5 11.5 10.0 8.5	10.0 11.5 13.0 14.5 14.5	9.5 9.0 9.5 12.5 12.5	9.5 9.5 11.5 13.0 13.5	13.0 14.0 15.0 16.5 17.5	12.5 13.0 13.5 14.5 16.0	12.5 13.5 14.0 15.5 17.0
21 22 23 24 25	6.0 5.0 5.0 3.5 2.0	4.0 4.5 3.5 2.0	5.0 5.0 4.5 2.5 1.5	8.0 8.0 7.0 8.0	7.0 6.0 6.0 5.5 5.5	7.5 7.0 7.0 6.5 6.5	14.0 14.0 13.5	13.5 12.5 11.5	13.5 13.5 12.5	19.0 19.0 18.5 17.5 17.5	17.0 17.5 17.5 16.0 15.5	18.0 18.5 18.0 16.5 16.5
26 27 28 29 30 31	1.5 3.0 2.5	1.5 1.0 2.0	1.5 2.0 2.5	9.0 9.5 11.0 12.0 12.0	7.5 8.0 8.5 10.5 11.0 9.5	8.0 8.5 9.5 11.5 11.5				18.0 18.5 18.5 19.0 19.0 20.0	16.5 17.5 17.0 17.0 18.0 18.5	17.5 18.0 17.5 18.0 18.5 19.5
MONTH	6.0	.0	3.0	13.5	1.5	6.5	10%		•••	20.0	10.0	14.5

> 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBEI	
1 2 3 4 5	22.0 23.5 24.0 24.5 24.0	19.5 21.5 22.0 22.5 22.5	21.0 22.5 23.0 23.5 23.5	24.0 24.5 25.0 25.5 24.0	22.0 22.5 23.5 24.0 22.5	23.0 23.5 24.5 24.5 23.5	23.5 25.0 26.5 28.5 29.5	22.0 22.0 23.0 24.5 26.0	23.0 23.5 25.0 26.5 27.5	26.5 26.5 26.0 24.0 22.5	23.5 24.0 22.0 21.5 20.5	25.0 25.0 24.0 23.0 21.5
6 7 8 9 10	22.5 22.0 20.5 20.5 20.0	22.0 19.5 19.0 19.0 18.5	22.5 21.0 20.0 19.5 19.5	23.0 24.5 25.5 25.5 26.5	22.5 22.5 24.0 23.5 24.5	22.5 23.5 24.5 24.5 25.5	30.5 28.5 26.0 26.0 24.5	27.5 26.0 23.5 22.5 23.0	29.0 27.5 25.0 24.5 24.0	23.5 25.0 25.5 26.0 27.5	20.5 20.5 21.5 22.5 23.5	22.0 22.5 23.5 24.0 25.5
11 12 13 14 15	20.5 21.0 20.5 20.0 19.0	19.0 19.0 20.0 18.5 18.5	20.0 20.0 20.5 19.5 18.5	27.5 26.5 24.5 25.0 25.5	25.5 24.5 23.0 22.5 23.0	26.5 25.5 24.0 23.5 24.0	23.5 22.0 24.0 23.0 23.5	22.0 21.5 21.5 22.5 22.0	22.5 21.5 23.0 23.0 23.0	28.5 26.5 26.0 26.0 26.0	25.0 25.0 24.0 24.0 24.0	26.5 25.5 25.0 24.5 25.0
16 17 18 19 20	19.5 19.0 20.0 20.5 21.5	18.0 18.0 18.0 19.0 20.0	18.5 18.5 19.0 20.0 20.5	24.0 24.0 25.0 25.0 24.5	21.5 21.0 22.0 22.5 23.0	23.0 22.0 23.0 23.5 23.5	25.0 26.5 25.0 23.5 25.0	22.0 24.0 23.5 22.5 22.5	23.5 25.0 24.5 23.0 23.5	24.0 23.0 22.0 21.0	22.0 21.5 21.0 19.0	23.0 22.0 21.5 20.0
21 22 23 24 25	22.5 22.5 22.0 22.0 23.0	21.0 21.5 21.5 21.0 21.5	21.5 22.0 22.0 21.5 22.0	23.5 23.5 25.5 27.0 27.0	22.5 22.0 22.5 24.0 25.0	23.0 22.5 24.0 25.5 26.0	26.0 27.0 28.0 28.0 27.0	23.5 24.0 25.0 25.0 24.0	24.5 25.5 26.0 26.5 25.5	:::		:::
26 27 28 29 30 31	23.5 24.5 24.5 23.5 23.5	22.0 23.0 23.0 22.5 21.5	23.0 23.5 23.5 23.0 22.5	28.5 29.0 29.5 28.0 26.0 24.5	25.5 26.5 27.0 25.5 24.5 23.0	26.5 28.0 28.0 27.0 25.5 23.5	27.0 26.5 26.0 24.5 26.5 27.0	23.5 23.0 23.5 24.0 23.5 23.5	25.0 24.5 24.5 24.5 25.0 25.0			
MONTH	24.5	18.0	21.0	29.5	21.0	24.5	30.5	21.5	24.5			
			OXYGEN,	DISSOLVED	(DO), M	G/L, WATER	YEAR OCT	OBER 198	8 TO SEF	TEMBER 198	19	
DAY	MAX	MIN	OXYGEN, MEAN	DISSOLVED MAX	(DO), M	G/L, WATER MEAN	YEAR OCT	OBER 198	8 TO SEF	TEMBER 198 MAX	9 MIN	MEAN
DAY	MAX		MEAN			MEAN	MAX		MEAN			
DAY 1 2 3 4 5	MAX	MIN	MEAN		MIN	MEAN	MAX	MIN	MEAN		MIN	
1	10.1	MIN OCTOBER	MEAN	MAX	MIN NOVEMBE 10.7 10.2 10.7	MEAN R	MAX	MIN DECEMBER 11.6 11.9 12.1	11.9 12.2 12.4	15.1 15.9 16.0	MIN JANUARY 14.1 14.0	14.5 14.7 14.8
1 2 3 4 5 6 7 8 9	10.1 10.7 10.9 10.8 11.0	MIN OCTOBER 7.9 8.2 8.7 9.0 8.9	MEAN 8.8 9.2 9.6 9.7 9.8	11.7 12.0 12.7 12.8 11.2 11.1 10.5	MIN NOVEMBE 10.7 10.2 10.7 10.8 9.3 9.0 9.6 9.2	MEAN R 11.1 11.5 11.5 10.6 9.9 9.9	12.3 12.5 12.8 12.9 13.2	MIN DECEMBER 11.6 11.9 12.1 12.2 12.5 12.7 12.6 12.5	11.9 12.2 12.4 12.5 12.8 12.9	MAX 15.1 15.9 16.0 15.9 16.2 15.8 16.0 15.1	MIN JANUARY 14.1 14.0 14.1 13.9 14.7 14.6 14.5 14.0	14.5 14.7 14.8 14.7 15.3
1 2 3 4 5 6 7 8 9 10	10.1 10.7 10.9 10.8 11.0 11.8 12.1 11.5 12.2 12.6	MIN OCTOBER 7.9 8.2 8.7 9.0 8.9 9.5 9.9 10.0 10.5	MEAN 8.8 9.2 9.6 9.7 9.8 10.8	11.7 12.0 12.7 12.8 11.2 11.1 10.5 10.6 10.8 11.1	MIN NOVEMBE 10.7 10.2 10.7 10.8 9.3 9.0 9.6 9.2 9.4 10.3	MEAN R 11.1 11.5 11.5 10.6 9.9 9.9 10.0 10.6 10.6	12.3 12.5 12.8 12.9 13.2 13.3 13.2	MIN DECEMBER 11.6 11.9 12.1 12.2 12.5 12.7 12.6 12.5 12.9	MEAN 11.9 12.2 12.4 12.5 12.8 12.9 12.8 13.0 13.4 14.1	15.1 15.9 16.0 15.9 16.2 15.8 16.0 15.1 15.6 16.6	MIN JANUARY 14.1 14.0 14.1 13.9 14.7 14.6 14.5 14.0 13.7 13.9	14.5 14.7 14.7 15.3 15.1 14.6 14.4 15.0
12345 678910 112345 167819	10.1 10.7 10.9 10.8 11.0 11.8 12.1 11.5 12.0 12.2 12.6 12.7	MIN OCTOBER 7.9 8.2 8.7 9.0 8.9 9.5 9.9 10.0 10.5 10.9	MEAN 8.8 9.2 9.6 9.7 9.8 10.8 11.3 11.6 11.7 11.5 11.3	11.7 12.0 12.7 12.8 11.2 11.1 10.6 10.8 11.1 11.4 12.3 11.5 10.5	MIN NOVEMBE 10.7 10.2 10.7 10.8 9.3 9.6 9.2 9.4 10.3 10.2 10.3 10.2	MEAN R 11.1 11.5 11.5 10.6 9.9 9.9 10.0 10.6 10.8 11.0 11.3	12.3 12.5 12.8 12.9 13.2 13.3 13.3 13.7 13.8 14.6 15.0 14.7	MIN DECEMBER 11.6 11.9 12.1 12.5 12.7 12.6 12.5 12.8 12.9 13.1 13.5 14.3 14.3	MEAN 11.9 12.2 12.4 12.5 12.8 12.8 13.0 13.2 13.4 14.6 14.6 14.6 14.3	MAX 15.1 15.9 16.0 15.2 15.8 16.6 17.0 15.4 16.6 15.1 15.5 15.9 15.9 16.5 17.7 18.5	MIN JANUARY 14.1 14.0 14.1 13.9 14.7 14.6 14.5 14.0 13.7 13.9 14.1 13.7 13.9 13.8	14.57 14.78 14.73 15.11 15.64 14.40 15.3 14.41 15.3 14.41 14.3 14.3 14.41 14.5 15.6 15.6 16.8 16.8 16.8
1 2 3 4 5 6 7 8 9 0 11 2 3 14 5 16 7 8 9 0 17 18 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10.1 10.7 10.9 10.8 11.0 11.8 12.1 11.5 12.2 12.6	MIN OCTOBER 7.9 8.2 8.7 9.0 8.9 9.5 9.9 10.0 10.5 10.9 11.0 10.6 9.9 9.6 10.3	MEAN 8.8 9.2 9.67 9.7 10.5 10.8 11.3 11.3 11.3 10.6 11.2 10.9 10.4 11.0	11.7 12.0 12.7 12.8 11.1 10.6 10.8 11.1 11.4 11.9 11.4 12.3 11.5 10.7	MIN NOVEMBE 10.7 10.8 9.3 9.0 9.6 9.2 10.3 10.3 10.3 10.2 10.5 9.9 10.7	MEAN R 11.1 11.5 11.5 10.6 9.9 9.9 10.0 10.6 11.0 10.8 11.0 10.2 10.5 11.0 10.6	12.3 12.5 12.8 12.9 13.2 13.3 13.2 13.3 13.7 13.8 15.0 15.0 14.4 14.4 14.4	MIN DECEMBER 11.6 11.9 12.1 12.2 12.5 12.7 12.6 12.5 12.9 13.1 13.5 14.3 14.0 13.9 13.7 13.7 13.6	MEAN 11.9 12.2 12.4 12.5 12.8 12.8 12.9 13.0 14.1 14.6 14.6 14.3 14.2 14.0 13.9	MAX 15.1 15.9 16.0 15.9 16.2 15.8 16.0 15.1 15.6 16.6 17.0 15.4 16.6 15.1 15.5 15.9 15.9	MIN JANUARY 14.1 14.0 14.1 13.9 14.7 14.6 14.5 14.0 13.7 13.9 14.1 13.7 13.8 13.7 13.8 13.7 13.9 14.1 13.9 14.1 13.9 14.1	14.78 14.87 14.87 15.1 15.1 15.1 14.40 15.3 14.1 15.3 14.1 14.1 14.1 14.1 14.1 14.1 15.1 14.1 14

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	•		MARCH			APRIL			MAY	
1	18.2 16.5 14.2 17.5	13.4 12.5	15.3 14.0		:::	:::		:::	5.0	:::	:::	
3	14.2	12.0	12.9			111						
2 3 4 5	17.5	12.0 12.0 13.2	14.4							•••	•••	•••
5	17.4	13.2	14.8					•••	•	•••	•••	•••
6	18.5 18.6	13.1 13.3	15.2 15.3 15.8 15.7		•••			•••		•••	•••	
7	18.6	13.3	15.3	•••	•••	:::	:::		:::	101	:::	
6 7 8 9	18.2	13.7	15.7		:::							
10	19.0 18.2 19.2	13.4 13.7 14.3	16.4		•••			•••			•••	12.00
11	20.0	14.5 13.9	16.8									•••
11 12 13 14 15	19.2 19.3	13.9	16.2							:::	:::	
14	19.3	13.7 13.0	15.5									
15	19.8 15.7	12.2	15.9 15.5 13.6			•••			•••			
16	16.9	11.6	13.7						0.45	9.6	8.9	9.1
16 17	18.5	12.5	13.7 15.1							9.1	9.0	9.1
18	18.9	13.5	15.8	x •••	9		•••			9.0	8.9	9.0
19 20	19.5 19.8	13.4 13.2	16.1 15.8	111			:::			8.9	8.5 8.4	8.7 8.5
21 22 23 24 25	13.9	11.6	12.7						•••	8.4	8.2	8.3 8.2 8.3 8.6
22	12.1 12.6	11.5 11.5	11.8 12.0				:::			8.4	8.0	8.2
24	13.3	12.7	13.0		•••					8.3 8.5 8.7	8.2 8.5	8.3
25	13.7	13.0	13.4			•••	•••			8.7	8.5	8.6
26	13.8	13.3 13.2 13.2	13.5 13.8		• • • •	•••				8.6	8.5 8.2 8.3	8.5
26 27 28 29 30	14.7 14.6	13.2	13.8 13.8			• • •				8.5	8.2	8.4
29	14.0	13.2	13.0							8.7	8.3	8.4 8.5
30		• • •								8.9	8.4	8.6
31		•••	•••			•••	•••		•••	8.7	8.3	8.5
MONTH	20.0	11.5	14.6	•••	•••	•••	•••		•••	•••		••••
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
									7.0			
2	8.7 8.4	8.0 7.7	8.3 8.1	8.2 8.5	7.5	7.8 7.9	8.6 8.7	7.1 7.2	7.8 7.9	9.0 8.9	7.2	8.0 7.9
3	8.6	7.6	8.1	8.8	7.5	8.1	8.8	7.1	7.9	9.1	7.2	8.1
1 2 3 4 5	8.6 8.7 9.3	7.4 7.8	8.1	8.8	7.5 7.5 7.5 7.5 7.5	8.1	8.9 8.7	7.0	7.9	9.4	7.2 7.4 7.7	8.1 8.4 8.6
		7.8	8.6	7.8	7.5	7.6	8.7	6.7	7.6	9.8		
6	8.6	7.9	8.2 7.9	7.6	7.4	7.5 7.7	8.5 7.5	6.4	7.4	10.0	7.9	8.8 8.6 8.5 8.3
· 6	8.2	7.6	7.8	8.0 8.3	7.4	7.7	8.4	6.4	7.0	10.1 10.0	7.6	8.6
8 9	8.1	7.8	8.0	8.2	6.9 7.3	7.8 7.5	8.7	6.6 7.3	7.5 8.0	10.1	7.4	8.5
10	8.1	7.9	8.0	8.8	7.3	8.0	8.9	7.5	8.2	9.9	7.1	
11	8.1 8.4	7.8	7.9	9.6	7.3	8.3	8.3	7.4	7.8	10.1	6.8	8.1
12	8.4	7.9	8.1	9.1	7.4	8.2	8.3	7.4	7.8	9.6	6.7	8.1
11 12 13 14 15	7.9	7.8	7.8	9.0	7.4	8.2	7.5	7.4	7.8	9.5	6.4	7.6
15	8.1 7.9 8.2	7.8 7.9 7.8 7.8 7.9	7.9 8.1 8.0 7.8 8.0	9.6 9.1 8.2 9.0 9.5	7.3 7.4 7.4 7.4 7.6	8.3 8.2 7.7 8.2 8.5	8.3 8.2 7.5 7.6	7.4 7.4 7.1 7.3	7.8 7.8 7.8 7.2 7.4	10.1 9.6 9.8 9.5 9.3	6.8 6.7 6.8 6.4 6.3	8.1 8.0 7.6 7.5
16												
17	8.3	8.1	8.2	8.9	7.4	8.1	8.2	7.1	7.6	9.4	6.7 6.9 7.1 7.3	7.9
18	8.3	8.0	8.2	9.3	7.7	8.4	8.0	7.2	7.6	8.7	7.1	7.8
16 17 18 19 20	8.2 8.3 8.3 8.2 8.1	8.1 8.0 7.9 7.8	8.1 8.2 8.2 8.0 7.9	8.3 8.9 9.3 9.5 8.6	7.5 7.4 7.7 7.7 7.5	7.8 8.1 8.4 8.5 7.9	7.5 8.2 8.0 8.2 8.5	7.1 7.1 7.2 7.3 7.4	7.3 7.6 7.6 7.6 7.8	8.5 9.4 8.7 8.3	7.3	7.3 7.9 7.8 7.8
21 22 23 24 25	8.1 7.9 7.7 7.6 7.7	7.7 7.4 7.5 7.4 7.5	7.9 7.7 7.6 7.5 7.6	7.8 8.0	7.2 6.9 7.1 7.3 7.2	7.5 7.4 7.8 8.1 7.9	8.3 8.6 8.5 8.7 8.9	7.3 7.1 7.1 7.0 7.1	7.8 7.8 7.7 7.8 7.9	•••	•••	•••
22	7.7	7.5	7.4	8.0	6.9	7.4	8.6	7.1	7.8			111
24	7.6	7.4	7.5	8.6 9.1 8.8	7.3	8.1	8.7	7.0	7.8			
25		7.5	7.6		7.2	7.9			7.9	•••	•••	
26	7.7 7.6 7.5 7.9 8.1	7.4 7.3 7.2 7.2 7.4	7.5 7.5 7.3 7.5 7.7	8.5 8.3 9.0 9.7 8.4 8.0	6.8	7.5	9.0 9.2 9.4 8.6 9.1 9.2	7.3 7.4 7.4 7.3 7.1 7.2	8.1			1
27	7.6	7.3	7.5	8.3	6.4	7.3	9.2	7.4	8.2	3.40	Spr. Str.	
20	7.0	7.5	7.5	9.0	6.4	8.0	9.4	7.4	7.0		:::	1344
26 27 28 29 30 31	8.1	7.4	7.7	8.4	6.8 6.4 6.6 6.9 6.7	7.6	9.1	7.1	8.1 8.2 8.2 7.9 8.0 8.1			•••
31	•••	•••	22.	8.0	6.7	7.5 7.3 7.6 8.0 7.6 7.3	9.2	7.2	8.1	•	•••	•••
MONTH	9.3	7.2	7.9	9.7	6.4	7.9	9.4	6.4	7.8		5 ···	

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ

LOCATION.--Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 200 ft upstream from bridge on Quaker Bridge Road, 1.9 south of Clarksville, 2.0 mi upstream from Shipetaukin Creek, and 7.6 mi upstream of mouth.

drainage area.--34.3 mi^2 .

PERIOD OF RECORD. -- Water years 1963, 1965, 1967, and 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Water Resources Division. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH I C	NST. CI UBIC CO FEET DU PER AN	CE (S	TAND - AT	TURE I	YGEN, (I DIS- (I OLVED S/	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5	O- FOI EM- FEI CAL, EI DAY BR	C TOO	TREP- COCCI ECAL MPN)
OCT 1988 21	1055 E	8.8	136	5.9	10.0	9.1	80 E	2.1 2	0 3	33
FEB 1989 27	1400 E	104	160	6.8	2.5	13.0	95 E	1.8 2	0 3	34
APR 18	1415 E	102	120	7.4	13.5	11.8	114	3.6 <2	0 4	<2
MAY 24	1030 E	270	118	6.5	15.5	8.7	89	4.2 5	0 35	50
JUL 27	1045 E	56	130	7.0	25.0	8.2	100	2.8 <2	0 6	53
AUG 03	1400 E	38	120	6.9	20.5	9.0	100	4.9 5	0 17	70
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1988 21	44	9.1	5.1	6.6	3.1	19	21	13	0.1	
FEB 1989 27	42	9.1	4.6	8.2	2.7	7.0	29	17	0.1	
APR 18	40	8.8	4.4	8.0	2.4	7.0	25	15	0.1	
MAY 24	32	7.2	3.3	5.1	2.6	12	18	10	0.2	
JUL 27	28	6.4	2.9	3.9	2.9	13	12	9.0	0.1	
AUG 03	30	6.7	3.2	4.0	2.8	19	11	9.4	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)		PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 1988 21 FEB 1989	2.1	71	0.010	0.41	0.06	0.75	1.2		5.7	
27 APR	6.8	82	0.014	1.50	0.19	0.60	2.1	0.17	4.5	
18 MAY	4.5	72	0.015	1.00	0.06	0.60	1.6	0.06	4.5	
24 JUL	4.0	58	0.018	0.75	0.14	1.3	2.0		6.7	
27 AUG	5.7	51	0.014	0.34	<0.05	0.84	1.2	0.07	8.9	
03	6.0	55	0.031	0.42	0.12	1.8	2.2	0.54	8.9	

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued

DATE	TIME (M	GEN + O FIDE TOT TAL BOT IG/L (M	,NH4 IN RG. GA IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN . IN D MAT SO /KG (U	UM- UM, IS- ARS LVED TO G/L (U AL) AS	TO IN ENIC TO TAL TI G/L (DTAL L BOT- 1 MA- F ERIAL E	TOTAL T RECOV- R RABLE E (UG/L (OTAL TO ECOV- RE RABLE ER UG/L (U	CADMIUM RECOV. TAL FM BOT- COV- TOM MA- ABLE TERIAL G/L (UG/G CD) AS CD)
OCT 1988	1055	. 1	60	<0.1	1.0	••	•	1		••	<10
MAY 1989 24	1030	<0.5		22 M (2)	1. 338,1 .	90	1	4 11	<10	40	<1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOVERABLE (UG/L AS PB	TERIAL (UG/G	TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988		,	4 E0				4400		<100		45
21 MAY 1989	••	4	<50		1	- 2.5	1600	MOST H			43
24	2	• •	•	3	•••	1200			3	90	4.1
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV FM BOT TOM MA TERIAL (UG/G AS ZN	- L PHENOLS TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988				10.42						F-45F	
21 MAY 1989	• •	<0.01		<100	••	<1	••	<10	0	<1	<1.0
24	<0.10	••	3	••	<1	. ••	200	· · ·		• • •	515C 1975
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN TOTAL IN BOT TOM MA TERIA (UG/KG	TOTAL - IN BOT - TOM MA- L TERIAL	TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1988											
21 MAY 1989	<0.1	<1.0	0.3	0.4	<0.1	<0.1	<0.1	<0.	1 <0.	1 <0.1	<0.1
24	• • •	••			•••			• • •	•		
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TERIA	PER- THANE IN BOT TOM MA L TERIAL	TERIAL	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 21	-0.1	-0.1	-0.1	-0.4	-0.4	-0.4	-0.4	امد ا	1 -10	-10	-0.1
MAY 1989	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.	1 <1.0	0 <10	<0.1
24		• • • • • • • • • • • • • • • • • • • •		••					receipt.	•	

01464000 ASSUNPINK CREEK AT TRENTON, NJ

LOCATION.--Lat 40°13'27", long 74°44'58", Mercer County, Hydrologic Unit 02040105, on left bank 20 ft upstream from bridge on Chambers Street (Lincoln Avenue) in Trenton, and 1.5 mi upstream from mouth.

DRAINAGE AREA .-- 90.6 mi 2 .

PERIOD OF RECORD. -- August 1923 to current year.

REVISED RECORDS.--WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since July 10, 1932. Datum of gage is 24.76 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Records good except for estimatedi daily discharges, which are fair. Records include water diverted from outside the basin since February 1954 for municipal supply which returns to Assumpink Creek through Ewing-Lawrence Sewerage Authority Treatment Plant, 2.4 mi above station (records given herein). In addition there is an average inflow of about 2.0 ft³/s from industrial use of water that originates outside the basin. Some diversion for irrigation in headwater area during summer months. Flow regulated by several flood-control reservoirs upstream of gage since mid-1970's. Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

DICCHARGE CURIS FEET DED CECCUR LIATER VEAR COTORER 4000 TO CERTENDER 4000 MEAN BALLY VALUE

	DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	34 54 77 42 37	133 91 69 60 81	244 187 150 125 109	69 68 60 57 56	92 88 118 102 82	161 143 133 124 118	314 250 242 222 171	115 422 255 209 220	120 111 99 165 105	78 73 1040	109 98 99 89 82	61 60 55 52 52
6 7 8 9 10	35 34 38 34 34	79 64 56 52 50	100 91 83 79 76	75 130 102 89 105	81 78 74 67 64	223 195 168 157 157	342 346 381 300 242	751 426 260 196 722	204 498 502 660 1370	945 628 569 411 339	76 87 87 82 78	52 51 50 48 46
11 12 13 14 15	33 32 32 32 32 32	49 47 106 77 58	71 68 64 63 64	241 155 288 251 189	61 58 56 131 184	165 184 175 161 152	194 170 155 146 233	631 470 350 281 232	585 427 321 220 187	251 207 316 150 101	131 219 168 155 144	47 46 46 107 95
16 17 18 19 20	31 32 32 31 31	54 300 174 115 615	60 58 55 56 56	153 136 121 105 89	274 177 135 114 109	140 127 190 199 137	414 260 215 203 165	546 609 508 423 348	215 174 150 137 126	e350 e284	122 114 108 102 93	99 125 71 694 1150
21 22 23 24 25	164 320 58 46 40	519 296 196 149 119	69 73 85 112 120	e79 e73 e72 70 67	599 620 422 340 269	233 173 164 427 481	145 135 121 113 105	271 201 257 495 292	195 265 230 192 145	223	90 83 117 88 78	e779 e437 e251 e186 e171
26 27 28 29 30 31	36 34 31 29 29 28	100 128 703 414 318	93 83 101 84 74 70	68 72 68 66 124 110	237 220 187 	332 258 215 190 195 391	108 108 105 104 116	217 210 178 160 144 131	130 118 108 147 104	125 105	72 68 66 67 70 64	e308 e261 e173 e162 e135
MEAN MAX MIN (†)		176 703 47 14.9	91.1 244 55 13.9	110 288 56 13.6	180 620 56 16.0	202 481 118 17.7	204 414 104 18.3	340 751 115 22.7	267 1370 99 21.2	1040 73	100 219 64 14.8	196 1150 46 16.9
					OF RECORD,							
MEAN MAX (WY) MIN (WY)	75.8 257 1928 19.1 1931	114 331 1973 27.6 1932	142 386 1984 42.1 1944	159 498 1979 44.2 1981	186 395 1939 52.0 1934	204 426 1936 76.7 1985	178 494 1983 65.2 1963	130 340 1989 40.0 1941	95.0 267 1989 25.9 1942	1975	88.3 355 1971 17.3 1966	90.0 327 1938 15.8 1943
SUMMARY	STATISTICS			FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
HIGHEST	ANNUAL MEAN DAILY MEAN DAILY MEAN ANEOUS PEAK ANEOUS LOW ENTILE ENTILE				185 16.8 1370 28 2500 10.00 10 413 127 35	Jun 10 Oct 31 Sep 21 Sep 21 Oct 31			6 4 5 14	130 233 9.2 050 Jul 4.0 Jul 450 Jul 1.0 Aug 269 86 25	1984 1931 21 1975 21 1929 21 1975 21 1975 21 1931	

a From high-water mark in gage house

e Estimated

[†] Inflow from outside basin, equivalent in cubic feet per second, 2.4 mi upstream of station through plant of Ewing-Lawrence Sewerage Authority.

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ

LOCATION.--Lat 40°08'15", long 74°36'02", Mercer County, Hydrologic Unit 02040201, on right bank upstream from highway bridge in Extonville, 0.5 mi upstream from Pleasant Run, and 0.7 mi downstream from Mercer-Monmouth County line.

DRAINAGE AREA. -- 81.5 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1940 to October 1951, October 1952 to current year.

REVISED RECORDS.--WDR NJ-79-2: 1971(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 24.94 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good below 300 ${\rm ft}^3/{\rm s}$, and fair above. Flow regulated occasionally by lakes above station. Several measurements of water temperature, other than those published, were made during the year.

	DISCHARGE,	CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	用了课	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	26 27 31 35 32	60 183 93 66 66	146 119 104 94 87	66 66 60 58	86 76 74 89 82	113 101 94 91 90	200 160 133 129 125	110 188 272 168 136	91 119 110 94 85	72 67 62 58 e1200	96 88 85 81 74	52 50 47 44 42	
6 7 8 9	30 29 37 44 34	74 65 58 49 52	85 82 80 78 74	60 62 71 128 100	76 77 72 66 62	129 183 136 113 114	177 196 273 276 181	270 373 239 160 247	169 198 220 172 302	e3350 848 365 193 150	68 73 93 73 63	44 43 44 42 42	
11 12 13 14 15	32 29 28 28 28	51 49 48 77 65	73 67 67 63 66	86 89 142 110 137	58 57 55 65 100	130 135 125 114 108	144 121 110 103 101	647 620 330 212 163	287 155 129 120 111	97 55 244 657 322	81 169 239 229 154	42 45 44 45 94	
16 17 18 19 20	29 34 30 29 29	55 80 154 90 143	67 71 71 65 61	183 123 101 92 84	136 121 95 86 78	103 95 90 160 126	249 219 154 139 136	e510 e1090 e570 286 178	265 399 477 224 136	207 715 517 232 245	149 121 91 85 88	71 146 116 209 492	
21 22 23 24 25	33 187 144 71 59	297 176 117 95 84	66 83 76 88 108	76 66 67 67	167 463 422 205 146	140 156 121 139 359	117 107 98 92 89	147 126 124 271 256	169 269 173 246 157	899 434 218 157 129	79 72 76 71 65	514 433 218 122 116	
26 27 28 29 30 31	50 45 39 40 37 35	76 75 339 466 194	93 78 81 93 80 70	66 73 68 65 72 104	127 130 127	293 165 140 124 115 160	89 87 84 80 113	167 176 188 130 106 97	130 109 93 90 80	113 100 108 94 83 90	58 54 53 53 66 61	217 307 202 153 125	
MEAN MAX MIN IN.	43.9 187 26 .62	117 466 48 1.60	81.8 146 61 1.16	86.3 183 58 1.22	121 463 55 1.55	137 359 90 1.95	143 276 80 1.95	276 1090 97 3.91	179 477 80 2.46	390 3350 55 5.51	93.8 239 53 1.33	139 514 42 1.90	
					OF RECORD								
MEAN MAX (WY) MIN (WY)	32.9	132 406 1973 36.7 1966	160 355 1973 46.2 1966	168 452 1978 62.1 1981	183 416 1979 86.6 1954	197 369 1958 86.1 1985	175 388 1983 68.3 1985	135 319 1984 60.8 1955	99.0 251 1968 39.8 1965	106 390 1989 25.8 1955	91.8 299 1971 25.4 1966	88.7 284 1971 31.7 1941	
SUMMARY	STATISTICS			FC	OR 1989 WATE	ER YEAR			FOR	PERIOD OF	RECORD		
LOWEST / HIGHEST LOWEST [INSTANT/ INSTANT/ ANNUAL I 10 PERCI	FLOW ANNUAL MEAN ANNUAL MEAN DAILY MEAN DAILY MEAN ANEOUS PEAK ANEOUS LOW RUNOFF (INC ENTILE ENTILE	FLOW			3350 26 4070 13.22 26 25.16 275 99 36	Jul 6 Oct 1 Jul 6 Jul 6 Oct 1			48 14. 13 22.	35 5.9 5.9 30 Aug 360 Sep 18 Sep 3.1a Feb 49 252 94 35	1978 1966 1 28 1971 1 30 1966 1 1978 1 1978 1 1 1978		

a Result of freezeup

e Estimated

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD...
WATER TEMPERATURES: October 1966 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to June 1970.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	CI CO DU AN	FIC N- CT- CE	PH (STA AR UNIT	ND -	TEMP ATU WAT (DEG	RE ER	SO.	GEN, IS- LVED IG/L)	OXYG DI SOL (PE CE SAT ATI	S- [VED R- NT UR-	DXYG DEMA BIC CHE ICA 5 D (MG	ND,)- :M- L,	BRO	RM, CAL,	STRE TOCOC FECA (MPN	CI
OCT	1988	1030	35		242	-	8.8	16	5.5		6.9		71	5	.7	330	1	1700	
JAN	1989	1300	65		188		'.5		.0		3.1		92		3.4	17		11	
MAR		1300	111		157		7.4		2.5		8.8		83		.5	20		460	
JUN	1	1200	91		170		·- '.2		.0		7.1		80		2.4	1300		2400	
JUL	7	1330	785		114		· · · · · · · · · · · · · · · · · · ·		2.0		6.4		70		3.9	9200		24000	
AUG	5	1200	150		130		7.3		2.5		7.5		87		1.1	800		1300	
	J	1200	150		130	· '		22			7.5		01			500	,	1300	
	DATE	HAR NES TOT (MG AS CAC	S CAL AL DI /L SC	CIUM S- DLVED IG/L S CA)	MAGN SIU DIS SOLV (MG/ AS M	M, ED	SODIU DIS- SOLVE (MG, AS I	ED /L	POTA SII SOL' (MG AS	UM, S- VED /L	ALKA LINIT LAE (MG/ AS CACO	Y L	SULFAT DIS- SOLVE (MG/I AS SO	ED L	(MC	E, VED		E, S- VED G/L	
	OCT 1988 04		69 2	22	7	,	14		.,	,	7/		20		24		,	. 7	
	JAN 1989				3.		16			.6	34		29					0.3	
	23 MAR			17	3.	=	10		3	. 1	20		34		17).2	
	30 JUN		49	15	2.	9	8	.0	2	.6	15		31		13	3	().2	
	01 JUL		50 ′	15	3.	1	7	.5	2	.4	18		25		14	•	(0.2	
	17		34	10	2.	2	4	.6	3	.5	15		14		9	7.1	(0.2	
	15		39	12	2.	2	6	.0	2	.6	15		18		12	2	(0.2	
	DATE	SILI DIS SOL (MG AS	CA, SUM COI VED TUI CIL I	IDS, 4 OF NSTI- ENTS, DIS- DLVED MG/L)	NITE GEN NITE TOTA (MG) AS	ite AL 'L	NIT GE NO2+ TOT (MG AS	N, NÓ3 AL /L	NIT GE AMMO TOT (MG AS	N, NIA AL /L	NITE GEN, MONIA ORGAN TOTA (MG, AS I	AM- A + NIC AL /L	NITRO GEN TOTA (MG/ AS N	Ĺ	PHOI TO	OS- ROUS FAL G/L P)	(MC		
	OCT 1988 04 JAN 1989	8	3.7	128	0.0	079	1.	85	0.2	1	0.98	3	2.8		0.1	1	4.5		
	23 MAR	11		107	0.0	016	0.	93	0.6	3	1.1		2.0		0.19	9	4.1		
	30	9	2.1	91	0.0	027	0.	97	0.2	4	0.69	9	1.7		0.2	7	5.5		
	JUN 01	10)	88	0.0	067	1.	27	0.1	8	0.8	0	2.1		0.2	3	6.3		
	JUL 17	7	7.2	60	0.0	050	0.	66	0.3	3	1.0		1.7		0.3	4	9.2		
	AUG 15	9	0.0	71	0.0	031	0.	74	0.1	0	0.6	5	1.4		0.2	7	11		

01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ -- Continued

		WAL	EK GOVETI	I DAIA, W	AIEK IEAK	OCTOBER	1700 10 3	EI I ENDEK	1707			
DATE	TIME (M	GEN + O FIDE TOT TAL BOT IG/L (M	,NH4 ING RG. GAI IN TOT MAT BOT G/KG (G	OR- INON NIC, ORGA IN TOT MAT BOT /KG (GM	ANIC IN IN D MAT SO /KG (U	LVED TO	TO IN SENIC TOM STAL TE JG/L (U	TAL LI BOT- TO MA- RE RIAL EF	TAL TO ECOV- RE RABLE ER JG/L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM RE TAL FM COV- TOM ABLE TE G/L (U	MIUM COV. BOT- MA- RIAL G/G CD)
04 04		<0.5	40	 <0.1	2.2	10	1	23	<10 	60	<1	 <1
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 04 04	<1	20	250	2	6	910	23000	<5	 <10	90	 80	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	TOTAL	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 04 04	0.20	0.03	3	10	<1	<1	10	120	5	 <1	 :A: <1.0	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	IN BOT- TOM MA- TERIAL	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 04 04	<0.1	2.0	<1.0	1.0	0.1	0.1	0.3	 <0.1	 <0.1	<0.1	 <0.1	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	IN BOT- TOM MA- TERIAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THANE IN BOT- TOM MA- TERIAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 04 04	<0.1	<0.1	<0.1	 <0.1	 <0.1	 <0.1	 <0.1	 <0.1	<1.00	<10	 <0.1	

01464515 DOCTORS CREEK AT ALLENTOWN, NJ

LOCATION.--Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond dam.

DRAINAGE AREA. -- 17.4 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	DIS- HARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAN ARD UNITS	D- ATI	JRE (YGEN, DIS- DLVED	DIS- DI SOLVED I (PER- CENT SATUR-	KYGEN EMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL EC BROTH (MPN)	, STREP- TOCOCCI FECAL (MPN)	
	1988	1215	2.6E	201	6.	8 1	4.5	6.3	62	9.6	790	220	
JAN	1989	1330	13 E	183				12.8	97	6.0	350	49	
MAR		1130	62 E	185			5.0	9.7	97		20	20	
JUN	l)6	1215	30 E	150	7.		2.5	8.2	96	2.7	3500	1300	
JUL 1	7	1045	165 E	112	7.		9.0	8.3	90	3.3	9200	>24000	
AUG	2	1200	26 E	166	7.		3.5	7.6	90	2.7	490	230	
	DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALC DIS SOL (MG	IUM S - D VED SO /L (M	IS- LVED S G/L	ODIUM, DIS- OLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFATI DIS- SOLVEI (MG/L	DIS- D SOLV (MG/	E, R FED SI L (I	LUO- IDE, DIS- DLVED MG/L S F)	
	06 JAN 1989	6	3 16		5.7	9.6	4.5	27	28	19		0.3	
	26 MAR	5	3 13		5.1	7.9	3.8	16	27	20		0.2	
	28 JUN	5	0 12	!	4.8	10	3.4	14	27	22		0.2	
	06 JUL	5	1 12		5.0	6.3	2.8	21	19	14		0.2	
	17	3	37 8	.6	3.7	3.8	4.1		15	9.	.5	0.2	
	22	5	4 13	;	5.2	6.5	3.5	26	15	15		0.2	
	DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONS D TUEN D I SOL	OF NI STI- G ITS, NIT S- TO VED (M	TRO- SEN, RITE N STAL IG/L S N)	NITRO- GEN, 102+N03 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO GEN, AN MONÍA ORGANI TOTAL (MG/I AS NI	+ NITRO IC GEN, TOTAL (MG/L	PHORE TOTA (MG)	OUS OR AL T 'L (RBON, GANIC OTAL MG/L S C)	
	OCT 1988 06 JAN 1989	7.8			.110	1.17	1.03	1.6	2.8	0.40		5.2	
	26 MAR	8.7	7	95 (0.017	1.24	0.42	0.83	3 2.1	0.14		2.7	
	28 JUN	6.0			0.019	1.25	0.54	0.99	9 2.2	0.18	3	5.7	
	06 JUL	6.3	3	78 (.024	0.88	0.21	0.78	1.7	0.12	2	4.6	
	17	7.0) .	(.042	0.84	0.14	0.76	5 1.6	0.30) ,	8.7	
	22	9.3	3	83 (.015	0.97	0.09	0.49	9 1.5	0.15	5	3.7	

01464515 DOCTORS CREEK AT ALLENTOWN, NJ -- Continued

DATE	TIME	SULFID TOTAL (MG/L AS S)	SOL (UG	M, S- ARS VED TO	ENIC I TAL I G/L	BERYL- IUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	TOTAL RECOV-	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 06	1215	<0.	5	30	1	<10	140	<1	2	4
DATE	RI EI (I	DTAL ECOV- RABLE JG/L	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	(UG/	. TO /- RE .E ER . (U	COV- N ABLE T G/L (ELE- TO IUM, RE OTAL EF UG/L (U	JG/L T	ENOLS DTAL G/L)
OCT 1988 06		840	10	100	0.	10	1	<1	20	1

01464598 DELAWARE RIVER AT BURLINGTON, NJ

LOCATION.--Lat 40°04'42", long 74°52'28", Burlington County, Hydrologic Unit 02040201, on left bank at the intake canal of the Public Service Electric and Gas Company, 0.3 mi downstream from Burlington-Bristol Bridge, 1.4 mi downstream from Assiscunk Creek, and at river mile 117.54.

DRAINAGE AREA. -- 7,160 mi 2.

PERIOD OF RECORD.--July 1964 to current year. March 1921 to July 1926, January 1931 to November 1939, August 1951 to June 1954, July 1957 to June 1964, in files of Philadelphia District Corps of Engineers.

REVISED RECORDS.--WDR NJ-76-1: 1973(m)

GAGE.--Water-stage recorder. Datum of gage is -12.90 ft below National Geodetic Vertical Datum of 1929. Prior to May 20, 1971, water-stage recorder at site 0.7 mi upstream at same datum. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--No gage-height or doubtful record: Oct. 8, 18, 21, 28, Nov. 4-6, 19-20, 27-28, Dec. 18-31, Jan. 12-31, Apr. 26 to May 2, and June 1-4. Summaries for months with short periods of no gage-height record have been estimated with little or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 8.74 ft, Oct. 25, 1980; minimum, -6.60 ft, Feb. 26, 1967.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 10.8 ft, Aug. 20, 1955, from high-water mark at site 1.4 mi upstream; minimum, -9.1 ft, Dec. 31, 1962, at present site.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 7.91 ft, May 7; minimum recorded, -4.65 ft, Feb. 10.

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	6.04	6.21	5.58	e6.9	5.79	5.82	6.07	7.91	6.49	6.84	6.29	7.34
high tide	Date	25	20	14	8	3	11	9	7	24	18	17	20
Minimum	Elevation	-3.64	-3.59	-4.30	e-4.6	-4.65	-3.60	-3.43	e-3.3	-2.96	-2.85	-2.82	-3.79
low tide	Date	13	3	4	21	10	19	11	28	29	26	22	24
Mean high ti	ide	4.57			••	4.37	4.66	4.99		5.65	5.52	5.37	5.18
Mean water level		1.17				.98	1.29	1.41		2.00	1.77	1.64	1.55
Mean low tic	ean low tide					-2.65	-2.27	-2.33		-2.96	-2.15	-2.21	-2.16

e Estimated

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ

LOCATION.--Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, at bridge on Lumberton-Vincentown Road at Vincentown, 2.9 mi southeast of Lumberton, and 3.1 mi upstream from Southwest Branch.

DRAINAGE AREA .-- 64.5 mi 2.

PERIOD OF RECORD. -- Water years 1925, 1959-62, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	INST. CUBIC FEET PER	SPE- CIFIC CON- DUCT- ANCE US/CM)	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	BIO- F CHEM- F ICAL, 5 DAY B	OLI- ORM, STREP- EC TOCOCCI ROTH FECAL MPN) (MPN)
	1988	1115	72E	106	5.4	10 5	7.0	71	14 1	70 330
JAN	1989				100	10.5	7.9			
MAR	9	1100	84E	163	5.8	4.5	11.9	92		240 11
MAY	0	1100	83E	108	6.3	9.0	11.0	94		70 5
JUL		1100	82E	78	6.1	19.0	10.1	110	2.6 16	500 49
AUG	0	0900	140E	66	5.5	22.0	6.4	73	eng Aliza sura ĝ	70 1600
1	7	1415	105E	93	5.9	24.0	6.3	75	1.3	790 1700
	DATE OCT 1988 25 JAN 1989 19 MAR 20	HARD NESS TOTA (MG/ AS CACC	CALCIU L DIS- 'L SOLVE (MG/L	D I SOL (MG	UM, SOD S- DI VED SOL /L (M MG) AS	IUM, S S- D VED SO G/L (M NA) AS 5.1	IUM, LIN IS- L LVED (M G/L A K) CA 2.7 2	AB DIS G/L SO S (M	VED SOLVEI G/L (MG/L SO4) AS CL 7 9.2 4 9.3	(MG/L
	MAY 23		21 6.0					.0 1		0.1
	JUL 20				•			.0 1		0.1
	AUG 17		17 4.8	1	.3	4.3	•		0 8.4	0.1
	DATE	SILIO DIS- SOLV (MG/ AS- SIO	SOLIDS CA, SUM OF CONSTI VED TUENTS /L DIS- SOLVE	NIT GE NITR TOT ED (MG	RO- NI N, G RITE NO2 AL TO	TRO- NI EN, G +NO3 AMM TAL TO IG/L (M	TRO- GEN EN, MON ONIA ORG TAL TO	TRO- ,AM- IA + NI ANIC G TAL TO G/L (M	TRO- PHOS- EN, PHOROU TAL TOTAL G/L (MG/L N) AS P)	CARBON, S ORGANIC TOTAL (MG/L
	OCT 1988 25 JAN 1989					.26 <0.			.94 0.09	6.8
	19 MAR	6	.4	8 0.	.007 0	.66 <0.	05 0	.53 1	.2 0.06	8.6
	20	4	.7	9 0.	.017 0	0.65 0.	11 0	.53 1	.2 0.07	8.3
	23 JUL	4	.5	2 0.	.016 0	.48 0.	19 1	.0 1	.5 0.18	18
	20	•	•	0.	.008	.39 0.	06 0	.79 1	.2 0.13	•
	17	6	.8	39 0.	.014 0	.27 0.	09 0	.86 1	.1 0.13	19

01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ--Continued

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1988	1115	380	<0.1	3.5		• • •	2				<10
MAY 1989 23	1100		••	••	270	1		<10	30	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988 25		7	<50		2		5300		<10		<10
25 MAY 1989 23	2			3		2100		6		40	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 25		0.02		<100		<1		20		27	<1.0
MAY 1989 23	<0.10		5		<1	•••	30		4		••
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988	<0.1	7.0	8.0	<10	<10	0.3	0.5	<0.1	<0.1	<0.1	<0.1
25 MAY 1989 23											
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 25 MAY 1989	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
23		. ,	••	•	••	••	••	••		••	

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ

LOCATION.--Lat 39°58'04", long 74°34'48", Burlington County, Hydrologic Unit 02040202, at bridge on Lakehurst Road at outflow of Mirror Lake in Browns Mills, 1.5 mi north of Browns Mills Junction, and 2.0 mi northwest of outflow of Country Lake.

DRAINAGE AREA. -- 27.4 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	FEET DU PER AN	FIC N- PH CT- (STA	ND- ATU	JRE D	GEN, (PI IS- CI LVED SA	IS- DEM LVED BI ER- CH ENT IC TUR- 5	AL, EC	RM, CAL, STREP-
OCT 1988 12 JAN 1989	1130	17.5E	53 6	3.3 1	1.5	9.4	86	1.6 350) 9
JAN 1989 25	1100	8.1E	71	7	.5 1	2.9	99	0.9 <	2 <2
MAR 27	1100	76 E			0.0 1	1.6	102	0.9 <	2 5
MAY 31	1130	64 E	52 5	5.2 2°	1.0	8.0	90	1.4	5 13
JUL 26	1000	48 E	39			7.7	92	1.6 79	9 350
AUG 22	1230	11 E				7.9	94	0.7	
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988	1	12 2.7	1.3	3.6	1.3	3.0	10	6.1	<0.1
JAN 1989 25	1	15 3.5	1.6	3.9	1.2	1.0	20	5.8	0.1
MAR 27	1	13 2.9	1.3	3.9	1.0	<1.0	17	6.1	0.1
MAY 31		8 1.9	0.83	3.2	0.7	<1.0	9.0	5.3	0.1
JUL 26		7 1.8	0.54	2.5			5.0	5.0	<0.1
AUG					0.6	2.0			
22		9 2.2	0.94	3.1	0.8	<1.0	6.0	6.0	<0.1
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- ED TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 12	5.6	6 32	0.007	0.05	0.14	0.73	0.78	0.05	5.1
JAN 1989 25	5.9		0.007	0.14	0.07	0.73	0.41	0.02	3.6
MAR									
27 MAY	3.8		<0.003	0.14	<0.05	0.22	0.36	<0.02	4.5
31	3.1		0.004	0.11	0.14	0.70	0.81	0.03	9.1
26 AUG	3.7		0.014	0.10	<0.05	0.58	0.68	0.05	14
22	4.3	2	<0.003	0.08	<0.05	0.52	0.60	0.06	10

01465970 NORTH BRANCH RANCOCAS CREEK AT BROWNS MILLS, NJ--Continued

DATE	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 IN RG. GA IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN D . IN D MAT SO /KG (U	DLVED TO	TO IN ENIC TOM TAL TE G/L (U	TAL LI BOT- TO MA- RE RIAL ER G/G (U	TAL TO COV- RE ABLE ER G/L (U	TAL TO COV- REA ABLE ER G/L (U	TAL FM E COV- TOM ABLE TER G/L (UC	COV. BOT-
OCT 1988 12 12	1130 1130		 70	0.1	2.6	20	1	_	10	<10	<1 ·	 <10
MAY 1989 31		<0.5				190	<1		10	<10	<1	
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988	AG GRY	(00,0)	A0 007	A0 007	A0 00)	AS IL)	A0 127	AG 157	, NO 107	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(00,0)	
12 12 MAY 1989	2	2	<50	9	3	2100	840	15	20	60	4	
31	2	••	•	10	••	2000	••	18		50	••	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 12 12 MAY 1989	<0.10	0.01	<1	 <100	<1	 <1	10	·· <10	3	12	 <1.0	
31	<0.10		3	••	<1	• •	30	••	2		••	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT_1988												
12 12 MAY 1989	<0.1	3.0	8.0	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
31		••	••	• • •	•	•••		•••				
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988		1					•••			.:-	- 12.15	
12 MAY 1989 31	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1	

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ (Hydrologic bench-mark station)

LOCATION.--Lat 39°53'05", long 74°30'20", Burlington County, Hydrologic Unit 02040202, on right bank in Lebanon State Forest, 25 ft upstream from Butterworth Road Bridge, 3.4 mi upstream from confluence with Cooper Branch, and 7.0 mi southeast of Browns Mills.

DRAINAGE AREA. -- 2.35 mi 2.

e Estimated

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1953 to current year. Prior to October 1962, published as "McDonald Branch in Lebanon State Forest".

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 117.73 ft above National Geodetic Vertical Datum of 1929 (levels from New Jersey Geological Survey bench mark).

REMARKS.--Records good above 1.0 ft³/s and fair below. Gage-height record is collected above concrete control and discharge record, which includes leakage around control, is at site 785 ft downstream. Several measurements of water temperature, other than those published, were made during the year.

DISCHARG	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, MEA	N DAILY	VALUES	
ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
.84 .85 .93 .91 .88	1.0 1.0 .95 .93	1.1 1.1 1.1 1.1	1.0 1.0 1.0 .99	1.0 1.0 1.0 1.0	e1.3 e1.2 1.3 1.3	1.8 1.7 1.7 1.7	2.0 3.4 4.6 3.4 2.8	2.5 2.4 2.4 2.3 2.3	2.0 1.9 1.9 1.8 4.9	2.4 2.2 2.2 2.1 2.0	1.5 1.5 1.4 1.4
.85 .84 .89 .87	.94 .92 .91 .90	1.1 1.1 1.1 1.1 1.1	.98 .99 1.0 1.0	1.0 1.0 .99 .99	1.5 1.4 1.3 1.3	1.8 1.7 2.4 2.8 2.4	3.5 3.9 3.2 2.7 5.0	2.7 3.0 2.7 2.7 2.7	5.3 3.9 3.1 2.7 2.4	1.9 1.9 1.9 1.8	1.4 1.4 1.4 1.4
.84 .83 .83 .84 .83	.91 .90 .92 .91	1.0 1.0 1.0 1.0	.99 1.0 1.0 1.0	.99 .99 .99 1.0	1.3 1.3 1.4 1.4	2.0 1.8 1.7 1.7	9.3 5.8 4.2 3.6 3.3	2.4 2.2 2.2 2.2 2.3	2.3 2.2 3.0 3.3 2.7	2.5 4.4 6.1 4.5 3.5	1.4 1.4 1.4 1.7
.83 .82 .83 .82 .82	.90 1.0 .99 .94 1.1	1.0 1.0 1.0 1.0	1.1 1.0 1.0 1.0	1.1 1.0 1.0 1.0	1.4 1.4 1.4 1.4	2.2 2.0 2.1 2.1 1.9	3.8 4.7 4.8 4.0 3.4	2.8 2.6 2.7 2.4 2.2	2.9 4.9 4.3 3.0 3.4	3.0 2.6 2.4 2.3 2.2	1.7 2.1 1.8 8.4 13
.91 1.1 .95 .91 .89	1.1 1.0 1.0 1.0 .99	1.0 1.0 1.0 1.1	1.0 1.0 1.0 1.0	e1.3 e1.7 e1.7 e1.5 e1.3	1.5 1.5 1.4 1.7	1.8 1.7 1.7 1.7	3.2 2.9 3.0 3.6 3.4	2.1 2.6 3.3 3.9 3.5	5.8 4.6 3.4 2.8 2.4	2.1 2.0 1.9 1.8 1.7	5.7 4.0 3.3 2.8 2.6
.88 .87 .86 .87 .87	.99 .99 1.5 1.2 1.2	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0	e1.3 e1.3 e1.4	2.4 2.1 1.8 1.6 1.6	1.6 1.6 1.6 2.1	3.4 3.2 2.9 2.7 2.6 2.5	2.8 2.5 2.3 2.2 2.1	2.3 2.2 3.3 3.2 2.7 2.5	1.6 1.6 1.6 1.6 1.6	4.7 5.3 3.7 3.1 2.8
.87 1.1 .82 .43	.99 1.5 .90 .47	1.04 1.1 1.0 .51	1.00 1.1 .97 .49	1.13 1.7 .99 .50	1.49 2.4 1.2 .73	1.87 2.8 1.6 .89	3.70 9.3 2.0 1.82	2.57 3.9 2.1 1.22	3.13 5.8 1.8 1.54	2.35 6.1 1.6 1.15	2.88 13 1.4 1.37
1.60 4.45 1959 .87 1989	1.80 4.82 1973 .95 1986	2.13 5.75 1973 1.00 1966	2.35 4.78 1973 .98 1981	2.50 5.69 1973 1.13 1977	2.92 5.67 1979 1.25 1966	2.99 5.74 1984 1.24 1985	2.71 5.65 1958 1.24 1985	2.29 5.35 1979 1.19 1985	1.95 4.15 1958 1.00 1977	1.87 5.65 1958 .91 1985	1.73 4.31 1958 .89 1988
STATISTI	CS		FC	OR 1989 WAT	ER YEAR			FOR PE	RIOD OF	RECORD	
ANNUAL ME DAILY MEA DAILY MEA ANEOUS PE ANEOUS LO	AN AN N AK FLOW AK STAGE W FLOW			1.92 13 .82 23 2.16 .82 11.09 3.3 1.5	Oct 17 Sep 19 Sep 19			1.19 20 .71 35 2.33 12.90 3.7	Feb Sep Aug Aug	1973 1966 28 1958 21 1985 25 1958 25 1958	
	0CT .844.85 .933.91 .888 .897.85 .844.89 .873.83 .844.83 .833.844.83 .832.82 .821.82 .811.1 .911.89 .886.87 .866.87 .866.87 .866.87 .866.87 .866.87 .87 .887 .8	OCT NOV .84 1.0 .85 1.0 .93 .95 .91 .93 .88 .94 .85 .94 .84 .92 .89 .91 .87 .90 .84 .91 .83 .90 .84 .91 .85 .90 .86 .91 .87 .99 .88 .99 .88 .99 .88 .99 .88 .99 .88 .99 .87 .99 .88 .99 .86 1.5 .87 .99 .86 1.5 .87 .99 .87 .99 .88 .99 .86 1.5 .87 .99 .87 .99 .88 .99 .87 .99 .88 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .88 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .87 .99 .88 .99 .88 .99 .88 .99 .88 .99 .88 .99 .89 .99 .88 .99 .89 .99 .88 .99 .89 .99 .88 .99 .89 .99 .80 .99 .80 .90 .80 .	OCT NOV DEC .84 1.0 1.1 .85 1.0 1.1 .93 .95 1.1 .91 .93 1.1 .88 .94 1.1 .85 .90 1.0 .84 .92 1.1 .87 .90 1.1 .87 .90 1.0 .83 .90 1.0 .83 .90 1.0 .83 .90 1.0 .83 .90 1.0 .83 .90 1.0 .83 .90 1.0 .83 .90 1.0 .83 .90 1.0 .83 .90 1.0 .83 .90 1.0 .85 .90 1.0 .87 .99 1.0 .89 .91 1.1 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.0 1.1 .89 .99 1.1 .88 .99 1.0 .87 .99 1.0 .88 .99 1.0 .87 .99 1.0 .87 .99 1.0 .88 .99 1.0 .87 .99 1.0 .87 .99 1.0 .88 .99 1.0 .87 .99 1.0 .88 .99 1.0 .87 .99 1.0 .88 .99 1.0 .89 .99 1.0 .80 .90 .90 .80 .90 .90 .80 .90 .90 .80 .90 .90 .80 .90 .90 .80 .90 .80 .90 .90 .80 .90 .	0CT NOV DEC JAN .84 1.0 1.1 1.0 .93 .95 1.1 1.0 .91 .93 1.1 .99 .88 .94 1.1 .97 .85 .94 1.1 .99 .89 .91 1.1 1.0 .85 .90 1.0 1.0 .85 .90 1.0 1.0 .83 .90 1.0 1.0 .83 .90 1.0 1.0 .83 .90 1.0 1.0 .83 .90 1.0 1.0 .84 .91 1.0 1.0 .85 .90 1.0 1.0 .87 .99 1.0 1.0 .89 .99 1.0 1.0 .80 .99 1.0 1.0 .81 .99 1.0 1.0 .82 .94 1.0 1.0 .83 .99 1.0 1.0 .84 .91 1.0 1.0 .85 .99 1.0 1.0 .87 .99 1.0 1.0 .88 .99 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.1 1.0 1.0 .91 1.0 1.0 1.0 .87 .99 1.0 1.0 1.0 .88 .99 1.0 1.0 1.0 .89 1.91 .88 .99 1.0 1.0 1.0 .91 .91 1.0 1.0 1.0 .91 .91 1.0 1.0 1.0 .91 .91 1.0 1.0 1.0 .91 .91 1.0 1.0 1.0 .91 .91 .91 .91 .91 .91 .91 .91 .91 .91	OCT NOV DEC JAN FEB .84	OCT NOV DEC JAN FEB MAR .84 1.0 1.1 1.0 1.0 e1.3 .85 1.0 1.1 1.0 1.0 e1.2 .93 .95 1.1 1.0 1.0 1.3 .88 .94 1.1 .99 1.0 1.3 .88 .94 1.1 .99 1.0 1.3 .85 .94 1.1 .99 1.0 1.5 .87 .90 1.1 1.0 .99 1.3 .87 .90 1.1 1.0 .99 1.3 .83 .90 1.0 1.0 .99 1.3 .83 .90 1.0 1.0 .99 1.3 .84 .91 1.0 .99 1.3 .85 .94 1.1 1.0 .99 1.4 .87 .90 1.1 1.0 .99 1.3 .87 .90 1.1 1.0 .99 1.3 .88 .90 1.0 1.0 1.0 .99 1.3 .83 .90 1.0 1.0 1.0 .99 1.3 .84 .91 1.0 1.0 .99 1.3 .83 .90 1.0 1.0 1.0 .99 1.3 .84 .91 1.0 1.0 .99 1.3 .85 .94 1.1 1.0 1.0 .99 1.3 .86 .90 1.0 1.0 1.0 .99 1.3 .87 .90 1.0 1.0 1.0 .99 1.3 .88 .90 1.0 1.0 1.0 1.0 1.4 .89 .99 1.0 1.0 1.0 1.0 1.4 .80 .90 1.0 1.1 1.0 1.0 1.4 .81 .90 1.0 1.0 1.0 1.0 1.4 .82 1.0 1.0 1.0 1.0 1.0 1.4 .82 1.0 1.0 1.0 1.0 1.0 1.4 .83 .99 1.0 1.0 1.0 1.0 1.4 .84 .91 1.0 1.0 1.0 1.0 1.4 .85 .99 1.0 1.0 1.0 1.0 1.4 .86 1.5 1.0 1.0 e1.3 1.5 .87 .99 1.0 1.0 1.0 e1.3 1.5 .88 .99 1.0 1.0 1.0 e1.3 1.5 .89 .99 1.0 1.0 1.0 e1.3 2.4 .89 .99 1.0 1.0 1.0 e1.3 2.4 .87 .99 1.0 1.0 e1.3 2.4 .88 .99 1.0 1.0 e1.3 2.5 .89 .99 1.0 1.0 2.0 e1.3 2.7 .87 .99 1.0 1.0 e1.3 2.7 .88 .99 1.0 1.0 e1.3 2.4 .89 .99 1.0 1.0 e1.3 2.4 .80 2.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	OCT NOV DEC JAN FEB MAR APR .84 1.0 1.1 1.0 1.0 e1.3 1.8 .85 1.0 1.1 1.0 1.0 e1.3 1.8 .85 1.0 1.1 1.0 1.0 e1.2 1.7 .93 .95 1.1 1.0 1.0 1.3 1.7 .91 .93 1.1 .99 1.0 1.3 1.7 .88 .94 1.1 .97 1.0 1.3 1.6 .85 .94 1.1 .99 1.0 1.3 1.6 .85 .94 1.1 .99 1.0 1.5 1.8 .84 .92 1.1 .99 1.0 1.4 1.7 .89 .91 1.1 1.0 .99 1.3 2.4 .87 .90 1.1 1.0 .99 1.3 2.4 .88 .94 1.1 0 .99 1.3 2.4 .88 .99 1.0 1.0 .99 1.3 2.4 .84 .91 1.0 .99 .99 1.3 2.4 .85 .90 1.0 1.0 .99 1.3 1.8 .83 .90 1.0 1.0 .99 1.3 1.8 .84 .91 1.0 .99 .99 1.3 1.8 .83 .90 1.0 1.0 .99 1.3 1.8 .84 .91 1.0 .0 .99 1.3 1.8 .85 .90 1.0 1.0 .0 .99 1.3 1.8 .84 .91 1.0 .0 .99 1.3 1.8 .85 .90 1.0 1.0 1.0 .99 1.3 1.8 .86 .99 1.0 1.0 1.0 1.0 1.4 1.7 .88 .99 1.0 1.0 1.0 1.0 1.4 1.7 .88 .99 1.0 1.0 1.0 1.0 1.4 2.0 .82 1.1 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .83 .99 1.0 1.0 1.0 1.0 1.4 2.1 .84 .99 1.0 1.0 1.0 1.0 1.4 2.1 .85 1.1 1.0 1.0 1.0 1.0 1.4 2.1 .86 1.5 1.7 1.7 1.7 .87 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 .88 .99 1.0 1.0 e1.3 2.4 1.6 .86 1.5 1.0 1.0 e1.3 2.1 1.6 .87 1.2 1.0 1.0 e1.3 2.1 1.6 .86 1.5 1.0 1.0 1.0 e1.3 2.1 1.6 .87 1.2 1.0 1.0 e1.3 2.1 1.6 .87 1.9 1.0 1.0 1.0 e1.3 2.2 2.9 .44 1.0 1.0 1.0 e1.3 2.1 1.6 .87 1.9 1.0 1.0 1.0 e1.3 2.2 2.9 .49 1.0 1.0 1.0 e1.3 2.4 1.6 .87 1.2 1.0 1.0 99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	OCT NOV DEC JAN FEB MAR APR MAY .84 1.0 1.1 1.0 1.0 e1.3 1.8 2.0 .85 1.0 1.1 1.0 1.0 e1.3 1.8 2.0 .95 1.0 1.1 1.0 1.0 1.0 e1.3 1.7 3.4 .88 .95 1.1 1.0 1.0 1.3 1.7 3.4 .88 .94 1.1 .99 1.0 1.3 1.7 3.4 .88 .94 1.1 .99 1.0 1.3 1.7 3.4 .88 .94 1.1 .99 1.0 1.3 1.7 3.4 .88 .99 1.1 1.0 .99 1.0 1.3 1.7 3.4 .88 .99 1.1 1.0 .99 1.0 3.2 2.4 3.2 .87 .90 1.1 1.0 .99 1.3 2.4 5.0 .88 .91 1.1 1.0 .99 1.3 2.4 5.0 .88 .91 1.1 1.0 .99 1.3 2.8 2.7 .85 .90 1.0 1.0 .99 1.3 2.8 2.7 .85 .90 1.0 1.0 .99 1.3 2.4 5.0 .84 .91 1.0 .99 .99 1.3 2.4 5.0 .84 .91 1.0 .99 .99 1.3 2.4 5.0 .83 .90 1.0 1.0 .99 1.3 1.8 5.8 .83 .90 1.0 1.0 1.0 .99 1.3 1.7 4.2 .84 .91 1.0 1.0 .99 1.3 1.7 4.2 .84 .91 1.0 1.0 1.0 1.4 1.7 3.6 .83 .90 1.0 1.0 1.0 1.4 2.0 4.7 .83 .90 1.0 1.0 1.0 1.0 1.4 2.1 .83 .99 1.0 1.0 1.0 1.0 1.4 2.0 4.7 .85 .94 1.0 1.0 1.0 1.0 1.4 2.1 4.8 .82 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 4.8 .82 .94 1.0 1.0 1.0 1.0 1.4 2.1 4.8 .82 .94 1.0 1.0 1.0 1.0 1.4 2.1 4.8 .82 .94 1.0 1.0 1.0 1.0 1.4 2.1 4.8 .82 .99 1.0 1.0 1.0 1.0 1.4 2.1 4.8 .82 1.1 1.0 1.0 1.0 1.0 1.0 1.4 2.9 .91 1.1 1.0 1.0 e1.7 1.4 1.7 3.6 .89 .99 1.1 1.0 0 e1.3 1.5 1.8 3.2 .91 1.1 1.0 1.0 e1.7 1.5 1.7 2.9 .91 1.0 1.0 1.0 e1.7 1.5 1.7 2.9 .91 1.0 1.1 1.0 e1.3 1.9 1.7 3.6 .88 .99 1.0 1.0 e1.3 2.4 1.6 3.4 .87 .99 1.0 1.0 e1.3 1.9 1.7 3.6 .88 .99 1.0 1.0 e1.3 2.4 1.6 3.4 .87 .99 1.0 1.0 e1.3 2.4 1.6 3.4 .88 .99 1.0 1.0 e1.3 2.4 1.6 3.4 .87 .99 1.0 1.0 e1.3 2.1 1.6 3.2 .86 1.5 1.0 1.0 e1.3 1.9 1.7 3.6 .87 .99 1.0 1.0 e1.3 1.9 1.7 3.6 .88 .99 1.0 1.0 e1.3 1.9 1.7 3.6 .87 .99 1.0 1.0 e1.3 1.9 1.7 3.6 .88 .99 1.0 1.0 e1.3 1.9 1.7 3.6 .87 .95 1.0 1.0 e1.3 1.9 1.7 3.6 .88 .99 1.0 1.0 e1.3 1.9 1.7 3.6 .89 .99 1.1 1.0 e1.5 1.7 1.4 1.7 3.6 .89 .99 1.1 1.0 e1.5 1.7 1.4 1.7 3.6 .89 .99 1.0 1.0 e1.5 1.7 1.4 1.7 3.6 .89 .99 1.0 1.0 e1.5 1.7 1.7 1.7 3.6 .89 .99 1.0 1.0 e1.5 1.7 1.7 1.7 3.6 .89 .99 1.0 1.0 e1.5 1.7 1.7 1.7 3.6 .89 .99 1.0 1.0 e1.5 1.7 1.7 1.7 3.6 .89 .99 1.0 1.0 e1.5 1.7 1.7 1.7 3.6 .89 .99 1.0 1.0 e1.6 1.0 e1.7 1.4 1.7 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	OCT NOV DEC JAN FEB MAR APR MAY JUN .84 1.0 1.1 1.0 1.0 e1.3 1.8 2.0 2.5 .85 1.0 1.1 1.0 1.0 e1.3 1.8 2.0 2.5 .85 1.0 1.1 1.0 1.0 e1.3 1.7 3.4 2.4 .91 .93 1.1 1.99 1.0 1.3 1.7 3.4 2.3 .88 .94 1.1 .99 1.0 1.3 1.7 3.6 2.8 2.5 .85 .94 1.1 .99 1.0 1.5 1.8 3.5 2.7 .84 .92 1.1 .99 1.0 1.4 1.7 3.9 3.0 .89 .91 1.1 1.0 .99 1.3 2.4 3.2 2.7 .87 .90 1.1 1.0 .99 1.3 2.4 5.0 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.4 5.0 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.8 2.7 2.7 .85 .90 1.0 1.0 .99 1.3 2.4 5.0 2.7 .85 .90 1.0 1.0 .99 1.3 2.4 5.0 2.7 .84 .91 1.0 .99 1.3 2.4 5.0 2.7 .85 .90 1.0 1.0 .99 1.3 2.4 5.0 2.7 .85 .90 1.0 1.0 .99 1.3 2.4 5.0 2.7 .86 .91 1.0 1.0 .99 1.3 2.8 2.7 2.7 .85 .90 1.0 1.0 .99 1.3 2.8 2.7 2.7 .85 .90 1.0 1.0 .99 1.3 2.8 2.7 2.7 .85 .90 1.0 1.0 .99 1.3 2.4 5.0 2.7 .86 .91 1.0 1.0 .99 1.3 2.8 2.7 2.7 .87 .90 1.1 1.0 .99 1.3 2.4 5.0 2.7 .87 .90 1.1 1.0 .99 1.3 2.4 5.0 2.7 .88 .90 1.0 1.0 .99 1.3 2.4 5.0 2.7 .87 .90 1.1 1.0 .99 1.3 2.4 5.0 2.7 .88 .90 1.0 1.0 .99 1.3 2.4 5.0 2.7 .87 .90 1.1 1.0 .99 1.3 2.4 5.0 2.7 .88 .90 1.0 1.0 .99 1.3 1.8 5.8 2.2 .83 .90 1.0 1.0 .99 1.3 1.8 2.8 2.2 .83 .90 1.0 1.0 .99 1.3 1.7 4.2 2.2 .83 .90 1.0 1.0 .99 1.3 1.7 4.2 2.2 .83 .90 1.0 1.0 1.0 1.0 4.4 1.7 3.6 2.2 .83 .90 1.0 1.0 1.0 1.0 4.4 1.7 3.6 2.2 .83 .90 1.0 1.0 1.0 1.0 1.4 1.8 3.3 2.3 .83 .90 1.0 1.0 1.1 1.0 1.4 1.8 3.3 2.3 .83 .90 1.0 1.0 1.1 1.0 1.0 1.4 2.1 4.8 2.7 .85 .99 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .91 1.1 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .92 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .92 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .93 1.1 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL .84 1.0 1.1 1.0 1.0 e1.3 1.8 2.0 2.5 2.0 .85 1.0 1.1 1.0 1.0 e1.2 1.7 3.4 2.4 1.9 .91 1.0 1.1 1.0 1.0 e1.2 1.7 3.4 2.4 1.9 .92 1.1 1.90 1.0 1.3 1.7 4.6 2.4 1.9 .93 1.1 1.97 1.0 1.3 1.7 4.6 2.4 1.9 .94 1.1 .98 1.0 1.3 1.7 4.6 2.8 2.3 1.8 .84 .92 1.1 .99 1.0 1.3 1.7 3.0 3.0 3.9 .89 .91 1.1 1.0 .99 1.3 2.4 3.2 2.7 3.1 .87 .90 1.1 1.0 .99 1.3 2.4 5.0 2.7 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.4 5.0 2.7 2.7 .84 .91 1.0 .99 .99 1.3 2.4 5.0 2.7 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.4 5.0 2.7 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.4 5.0 2.7 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.4 5.0 2.7 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.0 5.8 2.2 2.7 3.1 .84 .91 1.0 .99 .99 1.3 2.0 5.8 2.2 2.7 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.4 5.0 2.7 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.0 5.8 2.2 2.7 3.1 .84 .91 1.0 .90 .99 1.3 2.0 5.8 2.2 2.7 2.7 .85 .90 1.0 1.0 1.0 .99 1.3 2.4 5.0 2.7 2.7 .85 .90 1.0 1.0 1.0 1.0 1.0 1.4 2.0 4.7 2.6 4.2 3.8 .83 .90 1.0 1.1 1.0 1.0 1.4 1.8 3.3 2.3 2.3 2.7 .83 .90 1.0 1.1 1.0 1.0 1.4 2.0 4.7 2.6 4.9 .82 1.0 1.0 1.0 1.0 1.0 1.4 2.0 4.7 2.6 4.9 .82 1.0 1.0 1.0 1.0 1.0 1.4 2.0 4.7 2.6 4.9 .82 1.0 1.0 1.0 1.0 1.0 1.4 2.0 4.7 2.6 4.9 .82 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .82 1.9 1.1 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .82 1.9 1.1 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .82 1.9 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .82 1.9 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.0 2.4 3.0 .82 1.1 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.0 2.4 3.0 .82 1.1 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .83 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.8 2.7 4.3 .84 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.1 4.0 2.4 3.0 .85 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.0 4.7 2.6 4.9 .82 1.0 1.0 1.0 1.0 1.0 1.0 1.4 2.0 4.7 2.6 4.9 .83 .99 1.0 1.0 1.0 1.0 1.0 1.4 2.0 4.7 2.6 4.9 .84 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.4 2.0 4.7 2.0 4.7 2.6 4.9 .85 .99 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	.84 1.0 1.1 1.0 1.0 e1.3 1.8 2.0 2.5 2.0 2.4

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ -- Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1968 to current year.

PH: October 1984 to current year.
WATER TEMPERATURE: October 1960 to current year.
DISSOLVED OXYGEN: October 1984 to current year.

INSTRUMENTATION.--Temperature recorder since October 1960, water-quality monitor since October 1968.

REMARKS.--Water-quality samples were collected at the weir. Interruptions in the daily record were due to malfunctions of the instrument. Water quality monitor records of pH and dissolved oxygen for the 1987 water year appear after the current year's monitor records.

EXTREMES FOR PERIOD OF DAILY RECORD.

SPECIFIC CONDUCTANCE: Maximum, 182 microsiemens, June 16, 1969; minimum, 19 microsiemens, Aug. 25, 1979, Nov. 14, 1985.

PH: Maximum 5.4, Nov. 1, 1985; minimum, 3.6, on several days in water years 1987 and 1988. WATER TEMPERATURE: Maximum, 22.0°C, Aug. 1, 1970; minimum, 0.0°C on many days during winter months. DISSOLVED OXYGEN: Maximum, 9.8 mg/L, Mar. 2, 1987; minimum, 1.1 mg/L, May 11, 20, 1985.

EXTREMES FOR CURRENT YEAR.-

WATER TEMPERATURE: Maximum, 4.5, Oct. 16; minimum, 3.7, Mar. 28, 29, May 2-4.

WATER TEMPERATURE: Maximum, 20.5°C, Jul. 28; minimum, 4.0°C, Dec. 12, 13, 18.

DISSOLVED OXYGEN: Maximum, 7.4 mg/L, Mar. 26; minimum, 1.4 mg/L, on several days during June and July.

DIS-										
CHARGE INST. CUBIC FEET ME PER	CIFIC CON- DUCT- ANCE	PH (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	
						•				
	2 36	4.0	9.5	0.80	2.9		0.6			
00 1.2	67	4.1	9.0	1.0	4.3	37	0.6	5	75	
30 1.0	41	4.3	7.0	0.40	5.5	46	0.3	<1	22	
30 1.0	38	4.4	7.0	2.0	4.8	40	••	К1	100	
		4.0 3.9	5.0 7.0	0.30 0.30	7.6 6.9	59 57	0.3 1.3	<1 <1	K8 22	
00 1.7	70	3.9	8.5	0.30	5.4	46	0.3	<1	39	
30 2.6	64	3.9	13.5	0.20	2.7	26	0.4	<1	46	
30 2.5	55	3.9	19.0	0.50	2.5	27	0.5	к3	43	
30 2.5	48	3.9	18.0	0.40	2.2	23	0.3	5		
00 1.7	40	4.1	17.0	0.60	2.9	30	0.4	K1	77	
00 5.7	50	3.9	14.5	0.70	3.6	36	0.4		240	
S CALCIU AL DIS- I/L SOLVE (MG/L	DIS- D SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SEDI- MENT, SUS- PENDED (MG/L)	
3 0.3	2 0.44	1 0	0.4	<1	63	3.5	<∩ 1	43	<1	
	1.2	2.5	0.5	<1	15	4.2	0.1	3.9	9	
5 0.8	0.64	1.9	0.3	<1	8.2	3.3	0.1	3.4	6	
, ,,,										
3 0.6		2.4	0.2	<1	7.0	3.5	0.1	2.0	4	
-	8 0.41	2.4 1.6	0.2 0.1	<1 <1	7.0 4.0	3.5 3.7	0.1	2.0 3.6	5	
3 0.6	8 0.41 7 0.32									
3 0.6	0.41 7 0.32 7 0.27	1.6	0.1	<1	4.0	3.7	0.1	3.6	5	
	ME FEET PER SECONI 00 0.90 00 1.2 30 1.0 30 1.0 30 2.5 30 2.5 30 2.5 30 2.5 30 3.7 3	ME FEET ANCE SECOND (US/CM) 00 0.92 36 00 1.2 67 30 1.0 41 30 1.0 38 30 E1.3 60 30 1.9 91 00 1.7 70 30 2.6 64 30 2.5 55 30 2.5 48 00 1.7 40 00 5.7 50 CALCIUM SIUM, DIS-SIVM,	FEET PER ANCE ARD UNITS) 00 0.92 36 4.0 00 1.2 67 4.1 30 1.0 38 4.4 30 E1.3 60 4.0 30 1.9 91 3.9 00 1.7 70 3.9 30 2.6 64 3.9 30 2.5 55 3.9 30 2.5 48 3.9 30 2.5 48 3.9 30 1.7 40 4.1 500 5.7 50 3.9 CALCIUM DIS-SOLVED SOLVED SOLVED (MG/L MG/L AS MG) AS NA) 3 0.32 0.44 1.9 8 1.4 1.1 3.0 3 0.46 0.51 1.9 3 0.46 0.47 1.9 7 1.0 1.1 2.3	FEET DUCT- ARD WATER WATER	FEET DUCT- ARD WATER ITY	FEET DUCT ARD ATURE BID DIS	FEET DUCT- (STAND- ATURE BID- STURD- STURD- ATURE SECOND (US/CM) UNITS) (DEG C) (NTU) (MG/L) SATUR- ATION)	FEET DUCT ATURE BID DIS CENT ICAL SOLVED SATUR SOLVED SOLV	FEET DUCT ADD ATTIME BID DIS SATUR SATUR SOLVED SATUR SA	FEET DUCT-

DELAWARE RIVER BASIN
01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

WATER-QUALITY RECORDS

DATE	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)
OCT_1988		100	-0.010	-0.400	0.000	-0.010	-0.20	0.010	-0.010	10.010	2.7
25		100	<0.010	<0.100	0.020	<0.010	<0.20	0.010	<0.010	<0.010	2.3
29 DEC	0.01	92	<0.010	<0.100	0.050	0.050	0.30	<0.010	<0.010	<0.010	4.4
28 JAN 1989	0.01	75	<0.010	<0.100	0.010	<0.010	<0.20	<0.010	<0.010	<0.010	2.0
31	0.01	50	<0.010	<0.100	0.050	0.040	0.30	<0.010	<0.010	<0.010	2.2
01 28 APR	0.05	75 82	<0.010 <0.010	<0.100 <0.100	0.020	0.030	<0.20 0.20	<0.010 <0.010	<0.010 <0.010	0.010 0.010	3.6 8.4
25 MAY	0.03	71	<0.010	<0.100	0.030	0.020	0.60	0.010	<0.010	<0.010	6.7
30	0.03	73	<0.010	<0.100	0.030	0.040	0.20	<0.010	<0.010	<0.010	9.6
27 JUL	0.03	67	<0.010	<0.100	0.030	0.030	0.50	0.020	0.020	0.010	15
25 AUG	0.04	71	<0.010	<0.100	0.030	0.030	0.90	<0.010	<0.010	<0.010	15
30 SEP	0.03	63	<0.010	<0.100	0.010	0.020	<0.20	<0.010	<0.010	0.010	9.5
26	0.06	80	<0.010	<0.100	0.010	0.020	0.30	0.020	<0.010	0.010	16

> 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)
OCT 1988 25	1000	60	<1	8	<0.5	<1	1	<3	<1	110
NOV 29	0900	230					'			140
DEC 28	1030	80							,	52
JAN 1989 31	1030	70	<1	11	<0.5	<1	<1	<3	7	55
MAR 01	1030	210		••	••				::	70 160
28 APR 25	0730 1200	520 310	<1	19	<0.5	<1	2		3	120
MAY 30	0930	310								260
JUN 27	1230	350						· · · · ·		490
JUL 25	0830	360	<1	30			1		2	690
AUG 30	1400	220			••					550
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)
OCT 1988 25	<5	<4	12		<10	<1	<1	<1.0	4	<6
NOV 29		••							'	
DEC 28	• • •			'	••		••			
JAN 1989	6	<4	9		<10	2	<1	<1.0	6	<6
MAR 01 28	••					- :			-:	•••
APR 25	 <5	<4	21	<0.1	<10	<1	<1	<1.0	11	<6
MAY 30							`'			
JUN 27										
JUL 25	3		31	<0.1		1	<1	<1.0	4	
AUG 30		٠	4.		••		••		••	••
DAT	SOL (UC	IC, DI IS- SOL IVED (UG	HA, ALF S- SUS VED TOT I/L (UG	PHA, BET. SP. DI FAL SOL S/L (PCI	A, BET S- SUS VED TOT /L (PC1	A, BET P. DI AL SOI /L (PC	A, BE S- SU VED TO I/L (P SR/ AS	TA, 22 SP. DI TAL SOLV CI/L RAI SR/ MEI	01UM 26, URAN IS- NATU /ED, DI OON SOL THOD (UG	RAL S- VED /L
OCT 198 25		8 -						- 1		
NOV 29										
DEC 28										•
JAN 198	39 -	14 -								•
MAR 01 28										-
APR 25							· **			
MAY 30								-,-		-
JUN 27				, , .						
JUL 25		34	1.6	<0.4	2.1	0.4	1.8	<0.4	0.23	.11
AUG 30		,								

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1 2 3 4 5	33 34 34 35 35	32 31 33 33 33	32 32 34 34 34	49 48 44 41 40	33 44 41 39 38	40 46 43 40 39	66 63 61 58 56	63 61 57 55 53	64 62 59 57 55	44 44 44 43 43	43 43 43 42 42	44 44 43 43 42
6 7 8 9	35 35 34 34 34	33 33 33 32 32	34 34 34 33 33	40 39 39 38 38	38 37 37 36 36	39 38 38 37 37	54 52 51 50 47	52 50 49 47 46	53 51 50 48 46	43 42 44 44 44	41 41 42 43 42	42 42 43 43 43
11 12 13 14 15	34 33 33 34 33	32 32 32 32 32 29	32 33 33 33 31	37 36 37 36 36	35 34 34 35 34	36 35 35 36 35	46 46 46 44 44	44 43 44 43 42	45 45 45 43 43	43 44 45 44 49	42 42 44 43 44	43 43 44 44 47
16 17 18 19 20	32 32 32 32 32 32	29 30 31 30 29	31 31 31 31 30	36 45 45 44 52	34 35 43 40 35	35 40 44 42 46	43 42 42 42 42	41 41 41 41 41	42 41 41 42 41	49 49 48 48 48	48 48 47 47	48 48 48 48 47
21 22 23 24 25	43 56 50 44 41	30 48 43 39 38	32 53 47 41 39	53 50 48 48 48	50 47 47 47 46	52 49 48 48 47	42 41 42 44 45	40 40 40 41 43	41 41 41 42 44	47 47 46 45 44	46 44 43 44 42	47 46 45 44 43
26 27 28 29 30 31	40 39 38 38 37 36	38 37 35 36 35 34	39 38 37 37 36 35	47 47 64 67 68	46 45 47 64 65	46 46 58 65 66	45 45 45 45 45	44 43 44 44	44 44 45 44 44	43 42 41 43 42 46	41 40 39 39 39 41	42 41 40 41 41 41
MONTH	56	29	35	68	33	44	66	40	47	49	39	44
											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Υ	MAX	MIN	MEAN		APRIL			MAY	
1 2 3 4	MAX 46 46 47 46 46			MAX 59 58 58		MEAN 58 58 57	88 86		87 85	76 90 94 92 87		74 83 93 89 85
		FEBRUAR	Υ		MARCH			85 84	87 85		MAY	
1 2 3 4 5	46 47 46 46	FEBRUAR 45 45 45 45 45	46 46 46 46 45	59 58 58	MARCH 57 57 56	58 58 57		85 84	87 85 	76 90 94 92 87	73 77 90 87 84	74 83 93 89 85
1 2 3 4 5 6 7 8 9	46 47 46 46	FEBRUAR 45 45 45 45 45	46 46 46 46 45	59 58 58 61 61 60 59	MARCH 57 57 56 57 60 58 57	58 58 57 59 60 59 58 56		85 84	87 85 	76 90 94 92 87 89 90 88 83 83	73 77 90 87 84 85 88 88 83 79	74 83 93 89 85 87 89 85 81 80
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 14 5 14 5 14 5 14 5 14 5 15	46 47 46 46	FEBRUAR 45 45 45 45 45	46 46 46 46 45	59 58 58 61 60 57 554 54 57	MARCH 57 57 56 57 60 58 57 55 53 52 52 54	58857 590598 560598 564533255		85 84	87 85 	76 90 94 92 87 89 90 88 83 83 86 83 80 78 78 80 81 83 88	MAY 73 77 90 87 84 85 88 83 79 79 78 77	74 83 93 89 85 87 89 85 81 80 84 81 79 78 78 78 78 77 78
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	46 47 46 46	FEBRUAR 45 45 45 45 45	46 46 46 46 45	558 58 61 60 557 554 557 60 60 61 61	MARCH 57 56 57 60 58 57 55 53 53 52 52 54 57 58 57	588 57 590 598 5 5 7 7 7 8 8 5 5 7 7 5 8 5 5 7 7 5 8 5 5 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		85 84	87 85 	76 90 94 92 87 89 90 88 83 83 86 83 80 87 88 81 83 81	73 77 90 87 84 85 88 83 79 79 82 79 78 80 80 80	74 83 93 89 85 87 89 85 81 80 84 81 79 78 78 78 78

123 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

	0, 20,	I I C COM	DOCIANCE	(MICROSIEME	13) CH AI	LJ DLG.	C), WAILK	TEAR OUTO	DER 1700			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1				53 50	50	52	50	48	49		•••	
2					49	50	48 48	46	48			
3				50	48	49	48	48	48			
4				49	47 47	48 56	48 45	45	46 45			
5		•••	•••	65	47	56	45	43	45	• • • • • • • • • • • • • • • • • • • •		
6	•••	•••	•••	63 62 59	62	63	45	43	43 43		•••	
7				62	59	60	44	43				
8		• • •		59	56 54	57 55			•••	•••		
9 10		•••		56	54	55				• • • •		
10	•••	•••		54	51	52		•••	••••	• • • •		•••
11				51	49	50						
12 13				50	48	49						
13				57	48 55 53	52						• • • •
14 15				58	55	56						
15	•••	• • •		55	53	54	•••			•••		
16 17				58	52	53						
17				61	52 57	53 59						
18				61	56	59	• • • •					
19				56	54 53	55						•••
20	•••	• • •		56	53	54		•••			•••	
21	•••	•••		60	55 55	58			• • •			
22				59	55	57						•••
21 22 23 24 25	•••	•••		57	53 51	55						
24				55 53	51	53						
25		• • • •	•••	53	51	51	•••	•••	•••	•••		
26				51	48	49		•••	•••			
27				48	46	48				•••		• • •
28	57	55	56	56	48	54			•••	•••		•••
29	56	54	55	54	52	53						•••
26 27 28 29 30 31	54	52	53	52 50	50 50	51 50	:::					- :::
				200				7-5			8-5	
MONTH				65	46	54				•••		

27 28 29 30 31	57 56 54	55 54 52	56 55 53	48 56 54 52 50	46 48 52 50 50	48 54 53 51 50						:::
MONTH	•••		•••	65	46	54	•••		•••	•••		••••
			PH (STANDARD UNIT	S), WAT	ER YEAR O	CTOBER 1988	TO SEPT	EMBER 1989			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			IOVEMBER		D	ECEMBER			JANUARY	
1 2 3 4 5	4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2	4.2 4.0 4.1 4.1	3.9 4.0 3.9 3.9	4.0 3.9 4.0 4.0	4.1 4.1 4.1 4.1 4.3	3.9 4.0 4.0 4.1 4.1	4.0 4.1 4.1 4.2	4.3 4.3 4.3 4.3	4.2 4.2 4.3 4.3	4.3 4.3 4.3 4.3
6 7 8 9 10	4.2 4.2 4.2 4.1	4.2 4.1 4.1 4.1	4.2 4.2 4.2 4.1	4.0 4.0 4.0 4.0	3.9 3.9 3.9 4.0 4.0	3.9 4.0 4.0 4.0	4.2 4.2 4.3 4.3	4.1 4.2 4.2 4.3	4.2 4.2 4.2 4.2 4.3	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3
11 12 13 14 15	4.1 4.2 4.2 4.2 4.4	4.0 4.1 4.1 4.1 4.2	4.1 4.1 4.2 4.2	4.0 4.1 4.1 4.1 4.1	4.0 4.0 4.0 4.1	4.0 4.1 4.1 4.1	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3 4.2	4.3 4.3 4.3 4.3
16 17 18 19 20	4.5 4.3 4.3 4.3	4.2 4.2 4.3 4.2	4.3 4.3 4.3 4.3 4.2	4.2 4.1 4.3 4.2 4.3	4.1 4.0 4.0 4.2 4.0	4.1 4.2 4.2 4.1	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.2 4.3 4.3 4.3	4.2 4.2 4.3 4.3	4.2 4.3 4.3 4.3
21 22 23 24 25	4.2 4.1 4.0 4.0 4.1	4.1 3.9 3.9 4.0 3.9	4.2 3.9 4.0 4.0 4.0	4.0 4.1 4.1 4.0 4.1	3.9 4.0 4.0 4.0	4.0 4.1 4.1 4.0 4.0	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3 4.3	4.3	4.3	4.3
26 27 28 29 30 31	4.0 4.0 4.0 4.0 4.0	3.9 3.9 3.9 4.0 4.0	3.9 3.9 4.0 4.0 4.0	4.1 4.2 4.0 4.0	4.0 4.0 3.8 3.9 3.9	4.0 4.1 3.9 3.9 4.0	4.3 4.3 4.2 4.2 4.2	4.3 4.2 4.2 4.2 4.2	4.3 4.3 4.2 4.2 4.2			::: :::
MONTH	4.5	3.9	4.1	4.3	3.8	4.0	4.3	3.9	4.2			

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN
		FEBRUARY	1			MARCH			APRIL				MAY	
1 2 3 4 5	:::		:::		4.1 4.1 4.1	4.1 4.1 4.1	4.1 4.1 4.1	3.8	3.8	3.8		4.0 3.8 3.7 3.8 3.8	3.9 3.7 3.7 3.7 3.8	3.9 3.8 3.7 3.8 3.8
6 7 8 9	:::				4.1 4.1 4.1 4.1	4.0 4.0 4.1 4.1 4.1	4.1 4.1 4.1 4.1			:::		3.8 3.8 3.9 3.9	3.8 3.8 3.8 3.8 3.8	3.8 3.8 3.9 3.9
11 12 13 14	:::		:::		4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1 4.0	4.1 4.1 4.1 4.1 4.0		:::	:::		3.8 3.9 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.8	3.8 3.9 3.8 3.8 3.8
16 17 18 19 20	:::	:::			4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0		:::	:::		3.8 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.8
21 22 23 24 25					4.0 4.0 4.1 3.9	4.0 4.0 3.9 3.8	4.0 4.0 4.0 3.9			:::		3.9 3.9 3.9 3.9 3.8	3.8 3.9 3.9 3.8 3.8	3.9 3.9 3.9 3.8 3.8
26 27 28 29 30 31				*	3.8 3.8 3.8 3.8 3.8	3.8 3.7 3.7 3.8 3.8	3.8 3.7 3.7 3.8 3.8	4.0 4.0 4.1 4.1	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0		3.8 3.8 3.9 3.9	3.8 3.8 3.8 3.8 3.8	3.8 3.8 3.9 3.8 3.8
MONTH		•••	•••		4.1	3.7	4.0	•••	•••	•••		4.0	3.7	3.8
DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	# 1 max	MAX	MIN	MEAN
DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN	+1.4	MAX	MIN SEPTEMBE	
DAY 1 2 3 4 5	3.8 3.9 3.9 3.9 3.9		3.8 3.8 3.9 3.9		4-1 4-1 4-1 4-1 4-1		4.1 4.1 4.1 4.1 4.1	4.2 4.2 4.2 4.2 4.2		4.2 4.2 4.2 4.2		4.3 4.3 4.3 4.3		
1 2 3 4	3.8 3.9	JUNE	3.8 3.8		4.1 4.1 4.1 4.1	JULY 4.0 4.1 4.1 4.1	4.1 4.1 4.1		AUGUST				SEPTEMBE	R
12345 6789	3.8 3.9 3.9 3.9 3.9 3.9	JUNE 3.8 3.8 3.9 3.9 3.9	3.88 33.99 3.99 3.99		4.1 4.1 4.1 4.1 4.1 4.0 4.0 4.0	4.0 4.1 4.1 4.1 3.9 3.9 3.9 4.0	4.1 4.1 4.1 4.0 3.9 4.0 4.1	4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2 4.2		4.3 4.3 4.3 4.3 4.4 4.4	4.2 4.3 4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3 4.3 4.3
1 2 3 4 5 6 7 8 9 10	89999999999999999999999999999999999999	JUNE 3.8 3.8 3.9 3.9 3.8 3.9 3.9	3.88999 3.993.99 3.993.99		4.1 4.1 4.1 4.1 3.9 4.0 4.1 4.1	JULY 4.0 4.1 4.1 3.9 3.9 4.0 4.1 4.1 4.1 4.1 4.0 4.0	4.1 4.1 4.1 4.0 3.9 4.0 4.1 4.1	4.22 4.22 4.22 4.33 4.33	4.2 4.2 4.2 4.2 4.2 4.1 4.2 4.1 4.3 4.1 4.0 4.0	4.2 4.2 4.2 4.2 4.2 4.2 4.3 4.3		4.33 4.33 4.44 4.44 4.44	SEPTEMBE 4.2 4.3 4.3 4.3 4.3 4.4 4.4 4.4 4.4 4.3 4.3	4.3 4.3 4.3 4.3 4.3 4.4 4.4
123345 6789 10 1123345	33.999 33.999 33.333 33.333 33.44.00	JUNE 3.88899 9.88899 9.999999999999999999999	33.99.99 9.89.99 9.90.00 9.99 33.33.33.33.33.33.44.4 3.33.33.33.44.4 3.33.33.33.33.44.4 3.33.33.33.33.44.4 3.33.33.33.33.44.4 3.33.33.33.44.4 3.33.33.33.44.4 3.33.33.33.44.4 3.33.33.33.44.4 3.33.33.33.44.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.33.4 4.4 3.33.3 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5		4.1 4.1 4.1 4.1 3.9 4.0 4.1 4.1 4.1 4.1 4.1 4.1 4.1	JULY 4.0 4.1 4.1 4.1 3.9 3.9 4.0 4.1	4.1 4.1 4.1 4.0 3.9 4.0 4.1 4.1 4.1 4.1 4.1	4.2222 233333 31.000 11.11 4.11	4.2 4.2 4.2 4.2 4.2 4.1 4.1 4.1 4.0 4.0 4.0 4.1 4.1 4.1	4.2 4.2 4.2 4.2 4.2 4.3 4.3 4.0 4.0 4.0 4.0		4.3333 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	SEPTEMBE 4.2 4.3 4.3 4.3 4.3 4.3 4.4 4.4	4.3 4.3 4.3 4.3 4.3 4.4 4.4 4.4 4.4 4.4
1 2 3 4 5 6 7 8 9 10 11 2 3 14 15 16 7 18 19 20	899999 999999 99000 90000 00 333333 333333 334444 34444 444	JUNE 888899 988999 999900 333333 333333 333333 3333444	33.89.99 3.88.99.99 3.89.99 3.99.90 3.99.90 4.00 3.99.90 4.00 3.99.90 4.00		4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	JULY 4.01 4.11 3.9 3.99 4.01 4.11 4.10 4.00 4.00 4.00 4.00 4.00	4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1 4.1	4.2.2.2.2 2.3.3.3.3 3.1.0.0.0 1.1.1.2.2 1.1.1.2.2 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	4.2 4.2 4.2 4.2 4.2 4.1 4.2 4.1 4.3 4.1 4.0 4.0	4.2 4.2 4.2 4.2 4.2 4.3 4.0 4.0 4.0 4.1 4.1 4.1 4.2 4.1		4.3333 4.4444 4.44443 3.3333 4.44444 4.444 4.4444 4	SEPTEMBE 4.2 4.3 4.3 4.3 4.3 4.4 4.4 4.4 4.4 4.4 4.3 4.3	4.33 4.33 4.33 4.44 4.44 4.44 4.44 4.43 4.23 4.32 4.32

> 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

			TEMPERATURE,	WATER	(DEG. C),	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989		77.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
4	1/ 0			0.5						4 5		4 5
1 2	14.0 14.0	12.5 13.0	13.5 13.5	8.5 9.0	6.5 8.0	8.0 8.5	8.0 7.5	7.5 7.5	7.5	6.5 7.0	6.0	6.5
2 3 4 5	13.5 13.5	13.5 13.0	13.5	9.0	7.5	8.5 9.0	7.5	7.0	7.5	6.5	6.0	6.5
5	13.0	12.0	13.5 13.5 12.5	9.5	7.5 7.0 9.5	10.0	7.5 7.5 7.0	7.0 7.0	8.0 7.5 7.5 7.5 7.0	6.5 6.5 5.5	6.5 6.0 5.0	6.5 6.5 5.5 5.0
6	12 5	11 0				10.0						
6 7 8 9	12.5 11.5	11.0 10.5 10.5 9.5	11.5 11.0	10.5 10.0 10.0 10.0 10.0	10.0 9.5 8.5 8.5	10.0 10.0 9.5	7.5 7.5	6.5 6.5 6.0 5.5	7.0 7.0	5.5 5.5 6.5 6.0	5.0 5.5 5.5 6.0 5.5	5.5 5.5 6.0
8	11.0 11.0 11.5	10.5 9.5	11.0	10.0 10.0	8.5 8.5	9.5	7.0 6.5 6.0	6.5	7.0 6.5 6.0	6.0	6.0	6.0
10	11.5	10.0	10.5 11.0	10.0	8.0	9.0	6.0	5.5	6.0	6.0	5.5	6.0
11 12	11.5	10.5	11.0	10.0	9.0	9.5 8.5	6.0 5.0	5.0	5.5	6.0	5.5	6.0
12 13	11.5 10.5 10.0 10.0	10.5 9.5 9.0	10.0 9.5 9.0 9.5	9.0	8.0	8.5	5.0	5.0 4.0 4.5 5.0	5.5 4.5 4.5	6.0 6.5 6.0 6.5	5.5 6.0 6.0 5.5 6.0	6.5
14 15	10.0	8.0 8.5	9.0	10.0 9.5 9.5	8.5	9.0 9.0 9.0	5.0 5.5 6.0	4.5	5.0	6.0	5.5	6.0
15		8.5				9.0		5.0	5.5	6.5		6.0
16 17	11.0 11.5 11.5 11.5 10.0	10.0	10.5 11.0 11.5 11.0 9.5	10.5 10.5 9.0 8.5 10.0	8.5 9.0 6.5 6.5 7.0	9.5 10.0	5.0 5.0 4.5 5.0 6.0	4.5	5.0	6.5	6.0 5.5 5.5 6.0	6.0
18	11.5	10.0 10.5 11.0 10.5	11.0	9.0	6.5	7.5	4.5	4.5 4.5 4.0	5.0 4.5 4.5	6.0	5.5	6.0
18 19 20	11.5	10.5	11.0	8.5	6.5	7.5 9.0	5.0	4.5 5.0	5.0 5.5	6.5	6.0	6.0
21 22 23 24 25	10.5 10.5 10.5 11.0 10.5	9.0 10.0	9.5 10.5	10.0	9.0 8.0 7.5 7.0 7.0	9.5 8.5 8.0 7.5 7.5	6.5	6.0 5.5 5.5 6.0 6.5	6.0 5.5 6.0	6.0 6.0	5.0 5.0 5.0 5.0 5.5	5.5 5.5 5.5 6.0
23	10.5	10.0	10.0	8.5	7.5	8.0	6.0	5.5	6.0	6.0	5.0	5.5
24 25	11.0 10.5	10.0	10.5 10.0	8.5 8.0 8.0	7.0 7.0	7.5	6.0 7.0 7.0	6.0	6.5 7.0	6.5	5.0 5.5	5.5 6.0
26 27 28 29	10.0 9.5 10.0	8.5 8.0 8.0 8.5	9.5 8.5 9.0	8.0 9.5 10.0 9.0	7.0 8.0 9.0 8.0	7.5 8.5 9.5 8.5	6.5 6.5 8.0 7.0	6.0 6.5 6.5	6.5 6.5 7.5 6.5	6.5 6.5 6.5	5.5 6.0 5.5 6.0	6.0
28	10.0 9.5	8.0	9.0 9.0	10.0	9.0	9.5	8.0	6.5	7.5	6.5 7.0	5.5	6.0
30	9.0 8.5	8.0	8.5	8.5	8.0	8.0	6.5	6.0	6.5	7.0	6.5	7.0
31	8.5	8.0 7.0	8.0				6.5	6.0	6.5	7.0 7.0	6.5 6.5	7.0 7.0
MONTH	14.0	7.0	10.5	10.5	6.5	9.0	8.0	4.0	6.0	7.0	5.0	6.0
DAY												
DAY	MAX	MIN	MEAN	MAX		MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN MARCH	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2		FEBRUAR	Y ·		MARCH			APRIL	8.5		MAY	
2		7.0 7.0 7.0	7.5 7.5 7.5		MARCH	:::	8.5 8.5	APRIL 8.0 7.5		10.5 11.0	MAY 10.0 10.0	
2		7.0 7.0 7.0	7.5 7.5 7.5		MARCH	:::	8.5 8.5	8.0 7.5	8.5 8.0	10.5 11.0	MAY 10.0 10.0	10.5 10.5 10.5
1 2 3 4 5	8.0 7.5 7.5 6.5 6.5	7.0 7.0 7.0 7.0 6.5 6.0	7.5 7.5	5.5 5.5 6.0	MARCH 5.0 5.5 5.5		8.5 8.5	8.0 7.5	8.5 8.0	10.5 11.0 11.0 10.5 11.0	10.0 10.0 10.0 9.5 10.5	10.5 10.5 10.5 10.0 10.5
1 2 3 4 5	8.0 7.5 7.5 6.5 6.5	7.0 7.0 7.0 7.0 6.5 6.0	7.5 7.5 7.5 6.5 6.5	5.5 5.5 6.0	MARCH 5.0 5.5 5.5	5.5 5.5 6.0	8.5 8.5	8.0 7.5	8.5 8.0 	10.5 11.0 11.0 10.5 11.0	10.0 10.0 10.0 9.5 10.5	10.5 10.5 10.5 10.0 10.5
1 2 3 4 5	8.0 7.5 7.5 6.5 6.5	7.0 7.0 7.0 7.0 6.5 6.0 6.5 5.5	7.5 7.5 7.5 6.5 6.5	5.5 5.5 6.0 6.0	MARCH 5.0 5.5 5.5 4.5 4.5	5.5 5.5 6.0 5.5 6.5	8.5 8.5	8.0 7.5	8.5 8.0 	10.5 11.0 11.0 10.5 11.0 12.0 12.0	10.0 10.0 10.0 9.5 10.5	10.5 10.5 10.5 10.0 10.5
12345 6789	8.0 7.5 7.5 6.5 6.5	7.0 7.0 7.0 7.0 6.5 6.0 6.0 5.5 5.5	7.5 7.5 7.5 6.5 6.5 6.5 6.0 5.5	5.5 5.5 6.0 5.00 5.00	MARCH 5.05 5.5 4.55 4.55	5.5 5.5 6.5 5.0 5.0 5.0 45.0	8.5 8.5	8.0 7.5	8.5 8.0 	10.5 11.0 11.0 10.5 11.0 12.0 12.0	10.0 10.0 10.0 9.5 10.5	10.5 10.5 10.5 10.0 10.5 11.5 11.5
1 2 3 4 5 6 7 8 9	8.0 7.5 7.5 6.5 6.5 6.0 6.0 5.5	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.5 5.5 6.0 6.0 5.0 5.5 5.5	MARCH 5.05 5.5 4.5 4.5 5.05	5.5 5.5 6.0 5.5 4.5 5.0	8.5	8.0 7.5	8.5	10.5 11.0 11.5 11.0 12.0 12.0 10.5 10.5	MAY 10.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0	10.5 10.5 10.5 10.5 10.5 11.5 10.5 10.5
1 2 3 4 5 6 7 8 9	8.0 7.5 7.5 6.5 6.5	7.0 7.0 7.0 7.0 6.5 6.0 6.0 5.5 5.5	7.5 7.5 7.5 6.5 6.5 6.5 6.0 5.5	5.5 5.5 6.0 6.0 5.0 5.5 5.5	MARCH 5.05 5.5 4.5 4.5 5.05	5.5 5.5 6.0 5.5 4.5 5.0	8.5	8.0 7.5	8.5	10.5 11.0 11.5 11.0 12.0 12.0 10.5 10.5	MAY 10.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0	10.5 10.5 10.5 10.5 10.5 11.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13	8.0 7.5 7.5 6.5 6.0 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55 6.00 5.05 5.55 5.50 5.55 5.50	MARCH	5.550 5.550 5.550 5.550 5.550 5.555 5.555	8.5	8.0 7.5	8.5	10.5 11.0 11.0 10.5 11.0 12.0 10.5 10.5 10.5	MAY 10.0 10.0 9.5 10.5 11.0 10.0 10.0 10.0 9.5 10.0	10.5 10.5 10.5 10.0 10.5 11.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13	8.0 7.5 7.5 6.5 6.5 6.0 6.5 5.5	7.0 7.0 7.0 6.5 6.0 6.0 5.5 5.5 5.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55.0 6.00 5.05.5 5.5 6.00	MARCH	55.50 55.50 55.50 55.50 55.50 55.50	8.5	8.0 7.5	8.5	10.5 11.0 11.5 11.0 12.0 10.5 10.5 10.5	MAY 10.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 9.5 10.0 10.0	10.5 10.5 10.5 10.5 11.5 10.5 10.5 10.0 10.0
12345 678910 112345 13145	8.0 7.5 7.5 6.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.0 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	55.55 6.0 65.05 5.55 5.55 6.00 7.0	MARCH 55.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	5.550 5.550	8.5	8.0 7.5 	8.5	10.5 11.0 10.5 11.0 12.0 10.5 10.5 10.5 10.5 11.0	MAY 10.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 11.0	10.5 10.5 10.5 10.5 10.5 11.5 10.5 10.0 10.0
1 2 3 4 5 6 7 8 9 10 11 23 13 4 15 16 17	8.0 7.5 7.5 6.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55 6.0 65.05 5.55 6.00 7.0	MARCH 55.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	5.550 5.550	8.5	8.0 7.5	8.5	10.5 11.0 10.5 11.0 12.0 10.5 10.5 10.5 10.5 11.0	MAY 10.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 11.0	10.5 10.5 10.5 10.5 11.5 10.5 10.5 10.0 10.0
12345 678910 112345 16718	8.0 7.5 7.5 6.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	55.55 6.0 0.0005 55.55 55.6000 7.79.	MARCH0555 5.550050 5.555 44454 455556 667.	55.50 55.50 55.50 55.50 55.50 55.50 55.50 57.00	8.5	8.0 7.5	8.5	10.5 11.0 11.0 10.5 11.0 12.0 10.5 10.5 10.5 11.0 12.0 12.5 11.0	MAY 10.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 11.0	10.5 10.5 10.5 10.5 11.5 10.5 10.0 10.0
1 2 3 4 5 6 7 8 9 10 11 23 13 4 15 16 17	8.0 7.5 7.5 6.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55 6.0 65.05 5.55 5.55 6.00 7.0 7.55	MARCH 0555 5.5550 5.5550 6677.	5.550 5.550	8.5	8.0 7.5	8.5	10.5 11.0 10.5 11.0 12.0 10.5 10.5 10.5 10.5 11.0	MAY 10.0 10.0 10.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 11.0	10.5 10.5 10.5 10.5 11.5 10.5 10.5 10.0 10.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	8.0 7.5 7.5 6.5 6.0 6.0 5.5 5.0	7.0 7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55 6.0 000 55.05 5.55 5.55 6.00 7.75 98.05	MARCH 55.55 55.55 55.55 55.55 55.55 55.55 55.55 66.77 6.55	55.50 55.50 55.50 55.50 55.50 55.50 55.50 55.50 57.87.7	8.5	8.0 7.5	8.5	10.5 11.0 11.0 10.5 11.0 12.0 10.5 10.5 10.5 10.5 11.0 12.0 12.5 11.0	MAY 10.0 10.0 10.0 10.5 10.5 11.0 10.0 10.0	10.5 10.5 10.5 10.5 11.5 10.5 10.0 10.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	8.0 7.5 7.5 6.5 6.0 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55 6.0 0.005 5.55 6.0 0.05 5.55 6.0 0.05 7.79 8.7 7.50 8.7 7.50	MARCH 0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	55.50 56.50 56.50	8.5	8.0 7.5	8.5	10.5 11.0 11.0 10.5 11.0 12.0 10.5 10.5 10.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	MAY 10.0 10.0 10.0 10.0 10.5 11.0 10.0 10.0	10.5 10.5 10.5 10.5 11.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	8.0 7.5 7.5 6.5 6.5 6.0 6.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55 6.0 0.005 5.55 6.0 0.05 5.55 6.0 0.05 7.79 8.7 7.50 8.7 7.50	MARCH 0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	55.50 55.50	8.5	APRIL 8.0 7.5	8.5	10.5 11.0 11.0 10.5 11.0 12.0 10.5 10.5 10.5 10.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	MAY 10.0 10.0 10.0 10.5 10.5 11.0 10.0 10.0	10.5 10.5 10.5 10.5 11.5 10.5 10.5 10.5
12345 678910 112345 167819	8.0 7.5 7.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55 6.0 000 55.05 5.55 5.55 6.00 7.75 98.05	MARCH 0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	55.50 56.50 56.50	8.5	APRIL 8.0 7.5	8.5	10.5 11.0 11.0 10.5 11.0 12.0 10.5 10.5 10.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	MAY 10.0 10.0 10.0 10.0 10.5 11.0 10.0 10.0	10.5 10.5 10.5 10.5 11.5 10.5 10.5 10.5
12345 67890 1112345 167890 212345	8.0 7.5 7.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	5.55.0 000055 65.055.5 5.550007 7.766.555 66	MARCH	55.50 505.00 055.05 005.50 055.55 555.66 778.77 766666	8.5	8.0 7.5	8.5	10.5 11.0 11.0 11.0 12.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 11.0 12.3 13.5 14.0 14.5 14.0 14.5 14.0	MAY 10.0 10.0 10.0 10.5 10.5 11.0 10.0 10.0	10.5 10.5 10.5 10.5 11.5 10.5 10.5 10.5
12345 67890 1112345 167890 212345	8.0 7.5 7.5 6.5 6.0 6.5 5.0 	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	55.56.0 0.000.55.55.5 5.5.50.00 5.5.55.5 5.5.50.00 7.7.98.7 7.7.66.6.5 5.5.5 5.5.5 5.5.5 5.5.5 5.5.5 5.5.5 5.5.5 5.5.5 5.5	MARCH 0555 5.55505 5.0050 5.5505 0.0000 0.0	55.50 50500 05505 00550 05555 55 55455 55566 77877 766666 66	9.5	8.0 7.5	8.5 8.0 	10.5 11.0 11.0 11.0 12.0 10.5 10.5 10.5 10.5 10.5 10.5 11.0 10.5 11.0 12.5 10.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	9.5 10.0 10.0 9.5 10.5 11.0 10.0 10.0 10.0 10.0 11.0 12.0 12.5 12.5 13.5 13.5 13.5 13.5	10.5 10.5 10.5 10.5 11.5 10.5 10.5 10.5
12345 67890 112345 167890 212345 267829	8.0 7.5 7.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	55.6 65.55 5.56.000 5.50.05 50.55 5.50.05 5.50	MARCH 0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	55.0 50500 05505 00550 05555 5505 55455 55566 77877 76666 6689	9.5 9.5 10.0	8.0 7.5 	8.5 8.0	10.5 11.0 11.0 11.0 12.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 11.0 12.3 13.5 14.0 14.5 14.0 14.5 14.0	MAY 10.0 10.0 10.0 9.5 11.0 10.0 10.0 10.0 10.0 11.5 12.0 12.5 12.5 13.5 14.0 15.0 15.0	10.55 10.55 10.55 11.55 10.50 10.55
12345 678910 112345 1678920 2122345 2678930	8.0 7.5 7.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	55.50 0.000.55 55.000 55.00.55 50.005.55 55.000 55.005.55 55.005.55 50.005.5	MAR055 5.550.5 500.50 5550.5 000.00 000.	55.50 50500 05505 00550 05555 55055 55.50 555566 77877 76666 66899	9.5 9.5 10.0 10.5	8.0 7.5 	8.5 8.0 9.0 9.0 9.5 10.0	10.5 11.0 11.0 11.0 10.5 10.5 10.5 10.5	MAY 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.	10.55 10.55 10.55 11.55 10.00 10.05 11.55 10.00 10.05 11.55 11.55 12.05 11.55 12.05 11.55
12345 67890 112345 167890 212345 267829	8.0 7.5 7.5 6.5 6.0 5.5 5.0	7.0 7.0 7.0 6.5 6.0 6.5 5.5 5.5 5.0 4.5	7.5 7.5 7.5 6.5 6.5 6.0 6.0 5.5 5.0	55.6 65.55 5.56.000 5.50.05 50.55 5.50.05 5.50	MARCH	55.0 50500 05505 00550 05555 5505 55455 55566 77877 76666 6689	9.5 9.5 10.0	8.0 7.5 	8.5 8.0 	10.5 11.0 11.0 11.0 12.0 10.5 10.5 10.5 10.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 12.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	MAY 10.0 10.0 10.0 10.5 11.0 10.0 10.0 10.0	10.55 10.55 10.55 11.55 10.50 10.55

MONTH

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

			TEMPERAT	TURE,	WATER	(DEG. C),	WATER Y	YEAR	OCTOBER	1988 TO	SEPTEMBE	R 198	9		
DAY	MAX	MIN	MEAN		MAX		MEAN		MAX	MIN	MEAN		MAX	MIN	MEAN
4		JUNE	4.5. 5			JULY				AUGUST				SEPTEMBER	
1 2 3 4 5	16.0 16.5 16.0 16.5 16.0	15.0 15.5 15.5 16.0 15.5	15.5 16.0 16.0 16.0		17.0 17.0 17.0 17.0 19.0	16.5 16.5 16.5 16.5	16.5 16.5 16.5 16.5 18.0		17.5 17.5 17.5 18.0 18.5	17.5 17.0 17.0 17.5 18.0	17.5 17.0 17.5 18.0 18.5		16.5 16.0 15.0 14.5	16.0 15.5 14.5 14.0	16.5 16.0 15.0 14.5
6 7 8 9	16.0 16.5 16.5 16.5 17.0	15.5 16.0 16.0 16.5 16.5	16.0 16.0 16.5 16.5 16.5		19.0 20.0 19.5 19.0 18.5	19.0 19.0 19.0 18.0 18.0	19.0 19.5 19.5 18.5 18.5		18.5 18.5 18.0 16.5 16.0	18.0 18.0 17.0 16.0 15.5	18.5 18.0 17.5 16.5 16.0		14.5 14.5 14.5 14.5	14.0 14.0 13.5 14.0 14.5	14.5 14.0 14.0 14.0 14.5
11 12 13 14 15	16.5 15.5 16.0 15.5 15.5	16.0 15.0 15.5 15.0 15.0	16.5 15.5 15.5 15.5		19.0 18.5 17.5 18:0 17.5	18.5 18.0	18.5 18.0 17.5 17.5		17.0 18.0 19.0 19.0 19.0	15.5 17.0 18.0 19.0	16.5 17.5 18.5 19.0 19.0		15.5 15.5 15.5 16.0 16.5		15.0 15.5 15.5 15.5 16.5
16 17 18 19 20	16.5 17.0 17.0 16.5 16.5	15.5 16.5 16.0 16.0	16.5 16.5 17.0 16.5 16.5		17.5 18.0 18.0 17.5 18.5		17.0 17.5 17.5 17.0 17.5		19.5 19.0 18.5 18.0 18.5			0	16.5 17.0 16.5 18.0 19.5		16.5 17.0 16.0 17.0 19.0
21 22 23 24 25	17.0 17.5 18.0 18.5 18.5	16.5 16.5 17.5 18.0 18.0	16.5 17.0 17.5 18.5 18.0		19.0 19.5 20.0 19.5 19.0		19.0 19.0 19.5 19.5 19.0		18.5 18.5 18.5 18.0 17.5	18.0 18.0 18.0 17.5 16.5	18.0 18.0 18.0 18.0 17.0	0.10 0.10 0.10 0.10	20.0 20.0 20.0 18.0 14.5	19.0 19.5 18.0 15.0 13.5	19.5 20.0 19.5 16.5 14.0
26 27 28 29 30 31	18.5 19.0 19.0 18.5 17.5	18.0 18.5 17.5 17.0	18.0 18.5 18.5 18.0 17.0		19.5 19.5 20.5 20.0 18.5 18.0	19.0 19.0 19.0	19.0 19.0 20.0 19.5 18.0 17.5		16.5 16.0 16.0 16.5 17.0	16.0 15.5 15.5 16.0 16.5			15.0 15.0 12.5 13.0 13.0	14.0 12.5 11.0 12.0 12.5	15.0 13.5 12.0 12.5 13.0
MONTH	19.0	15.0	16.5		20.5		18.0		19.5	15.5	17.5	•	20.0	11.0	15.5
14 S				DISS		(DO), MG/L		YEA				BER 19		1.44	i Alla
DAY	MAX	MIN	MEAN		MAX		MEAN		MAX		MEAN		MAX	MIN	MEAN
		OCTOBER	2			NOVEMBER				DECEMBE				JANUARY	
1 2 3 4 5	3.9 3.3 3.9 3.7 3.7	2.1 2.0 3.2 2.6 2.5	2.6 2.5 3.4 3.2 2.9		5.7 4.1 3.7 3.7	2.6 3.3 3.1 2.8 2.5	3.7 3.7 3.3 3.2 2.9		4.8 5.0 4.8 4.9 5.0	4.4 4.6 4.5 4.5	4.6 4.7 4.7 4.7		5.2 5.1 5.0 5.4 5.4	4.5 4.6 4.5 4.9 4.9	4.8 4.9 4.7 5.1 5.1
6 7 8 9	3.5 3.4 4.2 4.2 3.8	2.4 2.5 3.3 2.8 2.7	2.8 2.9 3.8 3.5 3.0		3.2 2.9 3.1 3.0 3.1	2.5 2.3 2.4 2.2 2.4	2.8 2.6 2.6 2.5 2.7		5.0 4.9 4.9 5.4 5.4	4.7 4.6 4.6 4.8 5.1	4.8 4.7 4.7 5.0 5.2		5.8 5.6 5.5 5.5 5.6	4.9 5.3 5.2 5.1 5.0	5.5 5.5 5.3 5.3 5.2
11 12 13 14 15	3.6 3.4 3.9 4.0 4.2	2.4 2.6 2.8 2.6	2.8 2.8 3.1 3.2 3.1		3.2 3.3 3.4 3.4	2.6 2.6 2.4 2.7 2.5	2.9 2.9 2.9 3.1 2.7		5.5 5.7 5.8 5.7	5.1 5.3 5.4 5.3 5.3	5.3 5.6 5.6 5.5 5.4		5.3 5.6 5.6 5.7 6.1	4.9 4.9 5.2 5.1 5.3	5.1 5.2 5.3 5.4 5.8
16 17 18 19 20	3.7 3.2 2.8 3.1 3.5	2.2 2.0 2.0 1.9 2.1	2.7 2.4 2.3 2.3 2.7		3.1 3.9 4.1 3.9 5.1	2.3 2.1 3.5 3.3 3.9	2.6 3.2 3.7 3.6 4.3		5.7 6.3 6.3 6.0 5.9	5.3 5.4 5.7 5.7 5.4	5.5 5.8 5.9 5.8 5.6		5.9 5.6 5.6 5.5 5.5	5.5 5.4 5.2 5.2 5.1	5.6 5.5 5.4 5.3 5.2
21 22 23 24 25	4.4 4.3 3.4 3.4 3.1	2.1 2.9 2.6 2.3 2.3	2.8 3.6 2.9 2.7 2.6		4.1 4.2 4.4		3.8 3.8 4.0 4.1 4.2		5.7 5.8 5.9 6.1 5.9	5.2 5.4 5.3 5.7 5.4	5.5 5.6 5.8 5.8		5.7 5.9 5.9 5.7 5.8	5.2 5.4 5.3 5.2 5.1	5.4 5.6 5.5 5.4 5.4
26 27 28 29 30 31	3.0 3.2 2.8 2.9 3.1 3.2	2.2 2.4 2.4 2.3 2.4 2.7	2.5 2.7 2.5 2.5 2.7 2.9		4.5	4.0 3.8 4.3 4.3 4.5	4.2 4.0 4.8 4.5 4.7		5.6 5.8 5.3 5.1 4.8	5.3 5.2 4.8 4.6 4.5 4.4	5.4 5.5 5.1 4.8 4.7 4.6		5.6 5.8 5.6 5.7 5.5 5.5	5.0 5.0 5.0 4.7 4.6 4.8	5.2 5.3 5.2 5.1 5.0

4.4 5.2

6.1 4.5

> 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

			OXIGEN,	DISSULVED	DO), MG/I	., WATER	IEAK	OCTOBER	1900 10	SEPTEMBER	1707		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN
		FERRUAR	v		MADOU				40011			MAV	
		FEBRUAR	T.		MARCH				APRIL			MAY	
1	5.1 5.1	4.6	4.8		• • •			5.2	4.7	4.9	4.1	3.7 3.8 3.7	3.9
1 2 3 4 5	5.1	4.5	4.6					5.5	4.9	5.1	4-8	3.8	4.4
2	5.6	4.4 5.1	4.9	6.7	6.2	6.4 6.3			:::	•••	4.2	3.7	4.1
3	5.2 5.6 6.0	5.0	5.3 5.4	6.7 6.5 6.4	5.9	6.1			·	•••	4.5 4.5 4.0	3.7 3.6	4.0 3.8
,													
6 7 8 9				6.8 7.2 7.1	5.9 6.6	6.5 6.8				•••	4.2	3.2 3.1 3.4 3.5 3.5	3.8
8				7.1	6.6	6.8					4.0	3.4	3.6
9		•••		7.2 6.9	6.5	6.7				• • •	4.2 5.6	3.5	3.8 4.7
10				6.9	6.4	6.5		•••		•••	5.6	3.5	4.7
11				6.7	6.2	6.4					5.5	4.4	5.1
12 13 14	• • •	• • • •		6.7 6.7	6.2 6.1	6.4 6.3		•••		•••	4.4	3.8	4.2
13				6.8	6.1	6.4		•••			4.1	3.5	3.8
15				6.7	6.1 6.0	6.4 6.3 6.3				•••	4.1 3.7	4.4 3.8 3.5 3.2 2.9	5.1 4.2 3.8 3.6 3.3
16 17	•••	•••	•••	6.5	5.9	6.2		•••	•••	• • • •	3.7	2.8	3.3
17				6.4	2.6	6.0 5.6			- :::		4.1 3.8	5.1	3.0
19		• • •		6.2	5.9 5.6 5.4 5.5	5.7					3.4	2.8 3.1 2.7 2.4 2.3	3.3 3.6 3.3 2.8 2.7
20			• • •	6.2 6.2	5.6	5.8					3.2	2.3	2.7
21				4 7	5.7	5.9					2 8		2 4
21 22 23 24 25				6.3 6.5 6.7	5.8	6.0					2.8	2.1	2.4
23		• • •		6.5	5.9	6.1		• • •			2.8	2.2	2.5
24				6.7	5.9	6.3			• • • •	•••	2.8 2.7 3.1	2.2	2.5 2.6 2.6
25		•••		7.0	6.6	6.8			• • • •	•••		2.3	
26		• • •		7.4	6.8	7.1		4.8	3.9	4.3	2.9 2.6 2.9 3.2 2.9 2.7	2.0	2.4 2.2 2.4 2.7
26 27 28 29 30 31	•••	• • • •		6.9	6.2 5.1 4.3	6.7		4.8	3.9 3.7 3.5 3.5	4.2	2.6	2.0	2.2
20				6.1 5.1	5.1	5.8 4.8		4.4	3.5	3.9 3.7	2.9	2.1	2.4
30				4.5	4.3	4.4		4.9	3.8	4.3	2.9	2.1	2.5
31		• • •		4.8	4.5	4.4		:::			2.7	1.9	2.5
MONTH				7.4	4.3	6.1					5.6	1.9	3.3
HONTH				7.4	4.3	0.1					5.0	1.7	3.3
DAV	MAY												MEAN
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN		MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN		MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
		JUNE			JULY				AUGUST			SEPTEMBE	R
1		JUNE		2.6	JULY				AUGUST			SEPTEMBE	R
1 2 3		JUNE 1.8 1.8 1.8	2.1	2.6	JULY	2.1 2.1 2.2			AUGUST	2.1 2.2 2.2		SEPTEMBE	R
1 2 3 4		JUNE 1.8 1.8 1.8	2.1 2.0 2.0 2.0	2.6	JULY	2.1 2.1 2.2			AUGUST	2.1 2.2 2.2 2.0		SEPTEMBE	R
1 2 3	MAX 2.6 2.5 2.5 2.4 2.6	JUNE 1.8 1.8 1.8	2.1		JULY	2.1		MAX 2.4 2.6 2.7 2.6 2.3	AUGUST	2.1 2.2 2.2		SEPTEMBE	R
1 2 3 4 5	2.6 2.5 2.5 2.4 2.6	JUNE 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.0 2.1	2.6 2.7 2.8 2.7 4.2	JULY 1.8 1.9 1.9 1.9	2.1 2.1 2.2 2.2 2.4		2.4 2.6 2.7 2.6 2.3	1.9 1.9 1.8 1.7	2.1 2.2 2.2 2.0 1.9	2.6 2.8 2.9 3.1	2.1 2.2 2.5 2.6	2.3 2.5 2.6 2.8
1 2 3 4 5	2.6 2.5 2.5 2.4 2.6	JUNE 1.8 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.0 2.1 2.2	2.6 2.7 2.8 2.7 4.2	JULY 1.8 1.9 1.9 1.9	2.1 2.1 2.2 2.2 2.4 1.6		2.4 2.6 2.7 2.6 2.3	1.9 1.9 1.8 1.7	2.1 2.2 2.2 2.0 1.9	2.6 2.8 2.9 3.1	2.1 2.2 2.5 2.6	2.3 2.5 2.6 2.8 2.8
1 2 3 4 5 6 7 8	2.6 2.5 2.5 2.4 2.6	JUNE 1.8 1.8 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.0 2.1 2.2 2.2	2.6 2.7 2.8 2.7 4.2	JULY 1.8 1.9 1.9 1.9	2.1 2.1 2.2 2.2 2.4 1.67 1.7		2.4 2.6 2.7 2.6 2.3	1.9 1.9 1.8 1.7 1.7	2.1 2.2 2.2 2.0 1.9 1.9	2.6 2.8 2.9 3.1	2.1 2.2 2.5 2.6	2.3 2.5 2.6 2.8 2.8
1 2 3 4 5	2.6 2.5 2.5 2.4 2.6	JUNE 1.8 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.1 2.2 2.2 2.1 2.0	2.6 2.7 2.8 2.7 4.2 1.9 2.2 2.1	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.4	2.1 2.1 2.2 2.2 2.4 1.6 1.7 1.7		2.4 2.6 2.7 2.6 2.3 2.4 2.1 2.5	1.9 1.9 1.8 1.7 1.7 1.7	2.1 2.2 2.2 2.0 1.9 1.9 1.9	2.6 2.8 2.9 3.1 3.1 3.2 3.3	2.1 2.2 2.5 2.6 2.6 2.7 2.7	2.3 2.5 2.6 2.8 2.8
1 2 3 4 5 6 7 8 9	2.6 2.5 2.4 2.5 2.5 2.5 2.7	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.1 2.2 2.1 2.1 2.1	2.6 2.7 2.8 2.7 4.2 1.9 2.1 2.3 2.4	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.4 1.5	2.1 2.1 2.2 2.2 2.4 1.6 1.7 1.7 1.8		2.4 2.6 2.7 2.3 2.4 2.1 2.5 2.4	1.9 1.9 1.8 1.7 1.7 1.7 2.0	2.1 2.2 2.2 2.0 1.9 1.9 2.1 2.1 2.2	2.6 2.8 2.9 3.1 3.1 3.2 3.2 3.3	2.1 2.2 2.5 2.6 2.6 2.7 2.7 2.7	2.3 2.5 2.6 2.8 2.8 2.9 2.9 2.9
1 2 3 4 5 6 7 8 9 10	2.6 2.5 2.4 2.5 2.5 2.5 2.7	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.1 2.2 2.1 2.1 2.1	2.6 2.7 2.8 2.7 4.2 1.9 2.1 2.3 2.4	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.4 1.5	2.1 2.1 2.2 2.2 2.4 1.6 1.7 1.7 1.8		2.4 2.6 2.7 2.3 2.4 2.1 2.5 2.4	1.9 1.9 1.8 1.7 1.7 1.7 2.0	2.1 2.2 2.2 2.0 1.9 1.9 2.1 2.1 2.2	2.6 2.8 2.9 3.1 3.1 3.2 3.2 3.3	2.1 2.2 2.5 2.6 2.6 2.7 2.7 2.7	2.3 2.5 2.6 2.8 2.8 2.9 2.9 2.9
1 2 3 4 5 6 7 8 9 10	2.6 2.5 2.4 2.5 2.5 2.5 2.7	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.1 2.2 2.1 2.1 2.1	2.6 2.7 2.8 2.7 4.2 1.9 2.1 2.3 2.4	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.4 1.5	2.1 2.1 2.2 2.2 2.4 1.6 1.7 1.7 1.8		2.4 2.6 2.7 2.3 2.4 2.1 2.5 2.4	1.9 1.9 1.8 1.7 1.7 1.7 2.0	2.1 2.2 2.2 2.0 1.9 1.9 2.1 2.1 2.2	2.6 2.8 2.9 3.1 3.1 3.2 3.2 3.3	2.1 2.2 2.5 2.6 2.6 2.7 2.7 2.7	2.3 2.5 2.6 2.8 2.8 2.9 2.9 2.9
1 2 3 4 5 6 7 8 9 10	2.6 2.5 2.4 2.5 2.5 2.5 2.7	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.1 2.2 2.1 2.1 2.1	2.6 2.7 2.8 2.7 4.2 1.9 2.1 2.3 2.4	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.4 1.5	2.1 2.1 2.2 2.2 2.4 1.6 1.7 1.7 1.8		2.4 2.6 2.7 2.3 2.4 2.1 2.5 2.4	1.9 1.9 1.8 1.7 1.7 1.7 2.0	2.1 2.2 2.2 2.0 1.9 1.9 2.1 2.1 2.2	2.6 2.8 2.9 3.1 3.1 3.2 3.2 3.3	2.1 2.2 2.5 2.6 2.6 2.7 2.7 2.7	2.3 2.5 2.6 2.8 2.8 2.9 2.9 2.9
1 2 3 4 5 6 7 8 9	2.6 2.5 2.5 2.4 2.6	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8	2.1 2.0 2.0 2.1 2.2 2.2 2.1 2.0	2.6 2.7 2.8 2.7 4.2 1.9 2.2 2.1	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.4 1.5	2.1 2.1 2.2 2.2 2.4 1.6 1.7 1.7		2.4 2.6 2.7 2.6 2.3 2.4 2.1 2.5	1.9 1.9 1.8 1.7 1.7 1.7	2.1 2.2 2.2 2.0 1.9 1.9 1.9	2.6 2.8 2.9 3.1 3.1 3.2 3.3	2.1 2.2 2.5 2.6 2.6 2.7 2.7	2.3 2.5 2.6 2.8 2.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.55.54.6 2.55.27 2.55.27 2.87.39	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2.0 1.9 1.8 1.8 2.0 2.1	2.10 2.00 2.1 2.22 2.1 2.32 2.1 2.32 2.1	2.6 2.7 2.8 2.7 4.2 1.9 2.1 2.1 2.2 3.6 2.7	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9	2.1 2.2 2.4 1.67 1.7 1.8 1.8 1.7 2.1		2.467.63 2.22.23 2.41.45.4 2.32.22 2.32.23 2.32.20	1.9 1.9 1.8 1.7 1.7 1.7 2.0 2.1 2.0 1.7 1.7	2.1 2.2 2.0 1.9 1.9 2.1 2.1 2.4 2.4 2.1 1.8	2.6 2.8 3.1 3.1 2.2 3.3 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	2.1 2.2 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6	2.35 2.56 2.8 2.99 2.99 2.8 2.77 2.77 2.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.55.54.6 2.55.27 2.55.27 2.87.39	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2.0 1.9 1.8 1.8 2.0 2.1	2.10 2.00 2.1 2.22 2.1 2.32 2.1 2.32 2.1	2.6 2.7 2.8 2.7 4.2 1.9 2.1 2.1 2.2 3.6 2.7	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9	2.1 2.2 2.4 1.67 1.7 1.8 1.8 1.7 2.1		2.467.63 2.22.23 2.41.45.4 2.32.22 2.32.23 2.32.20	1.9 1.9 1.8 1.7 1.7 1.7 2.0 2.1 2.0 1.7 1.7	2.1 2.2 2.0 1.9 1.9 2.1 2.1 2.4 2.4 2.1 1.8	2.6 2.8 3.1 3.1 2.2 3.3 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	2.1 2.2 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6	2.35 2.56 2.8 2.99 2.99 2.8 2.77 2.77 2.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.55.54.6 2.55.27 2.55.27 2.87.39	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2.0 1.9 1.8 1.8 2.0 2.1	2.10 2.00 2.1 2.22 2.1 2.32 2.1 2.32 2.1	2.6 2.7 2.8 2.7 4.2 1.9 2.1 2.1 2.2 3.6 2.7	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9	2.1 2.2 2.4 1.67 1.7 1.8 1.8 1.7 2.1		2.467.63 2.22.23 2.41.45.4 2.32.22 2.32.23 2.32.20	1.9 1.9 1.8 1.7 1.7 1.7 2.0 2.1 2.0 1.7 1.7	2.1 2.2 2.0 1.9 1.9 2.1 2.1 2.4 2.4 2.1 1.8	2.6 2.8 3.1 3.1 2.2 3.3 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	2.1 2.2 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6	2.35 2.56 2.8 2.99 2.99 2.8 2.77 2.77 2.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.55.54.6 2.55.27 2.55.27 2.87.39	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 2.0 1.9 1.8 1.8 2.0 2.1	2.10 2.00 2.1 2.22 2.1 2.32 2.1 2.32 2.1	2.6 2.7 2.8 2.7 4.2 1.9 2.1 2.1 2.2 3.6 2.7	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9	2.1 2.2 2.4 1.67 1.7 1.8 1.8 1.7 2.1		2.467.63 2.22.23 2.41.45.4 2.32.22 2.32.23 2.32.20	1.9 1.9 1.8 1.7 1.7 1.7 2.0 2.1 2.0 1.7 1.7	2.1 2.2 2.0 1.9 1.9 2.1 2.1 2.4 2.4 2.1 1.8	2.6 2.8 3.1 3.1 2.2 3.3 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	2.1 2.2 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6	2.35 2.56 2.8 2.99 2.99 2.8 2.77 2.77 2.55
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	22222 2222 7 78739 96996 22222 22222 22222 22222	JUNE 1.88 1.88 1.88 1.88 1.88 1.80 1.80 1.90 1.90 1.90 1.90 1.90 1.90 1.90	2.10001 2.2101 1.32114 4.232.2 2.2222 2.222 2.222.2	2.67 2.87 2.87 2.19 2.13 2.13 2.23 2.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.9 1.9	2.112222		2.46763 41454 916110 230113 2.2222 2.30113	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.0 1.7 1.7	2.1222.09 1.99 1.1222.12 2.441.88 1.88.899 1.99	2.68 2.3.1 3.12 2.3.3.2 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	2.1 2.1 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.4 2.3 2.3 2.3	2.35.68 2.89.99 2.77.77.5 2.25.58 2.20.23.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	22222 2222 7 78739 96996 22222 22222 22222 22222	JUNE 1.88 1.88 1.88 1.88 1.88 1.80 1.80 1.90 1.90 1.90 1.90 1.90 1.90 1.90	2.10001 2.2101 1.32114 4.232.2 2.2222 2.222 2.222.2	2.67 2.87 2.87 2.19 2.13 2.13 2.23 2.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.9 1.9	2.112222		2.46763 41454 916110 230113 2.2222 2.30113	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.0 1.7 1.7	2.1222.09 1.99 1.1222.12 2.441.88 1.88.899 1.99	2.68 2.3.1 3.12 2.3.3.2 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	2.1 2.1 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.4 2.3 2.3 2.3	2.35.68 2.89.99 2.77.77.5 2.25.58 2.20.23.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	22222 2222 7 78739 96996 22222 22222 22222 22222	JUNE 1.88 1.88 1.88 1.88 1.88 1.80 1.80 1.90 1.90 1.90 1.90 1.90 1.90 1.90	2.10001 2.2101 1.32114 4.232.2 2.2222 2.222 2.222.2	2.67 2.87 2.87 2.19 2.13 2.13 2.23 2.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.9 1.9	2.112222		2.46763 41454 916110 230113 2.2222 2.30113	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.0 1.7 1.7	2.1222.09 1.99 1.1222.12 2.441.88 1.88.899 1.99	2.68 2.3.1 3.12 2.3.3.2 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	2.1 2.1 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.4 2.3 2.3 2.3	2.35.68 2.89.99 2.77.77.5 2.25.58 2.20.23.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	22222 2222 7 78739 96996 22222 22222 22222 22222	JUNE 1.88 1.88 1.88 1.88 1.88 1.80 1.80 1.90 1.90 1.90 1.90 1.90 1.90 1.90	2.10001 2.2101 1.32114 4.232.2 2.2222 2.222 2.222.2	2.67 2.87 2.87 2.19 2.13 2.13 2.23 2.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.9 1.9	2.112222		2.46763 41454 916110 230113 2.2222 2.30113	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.0 1.7 1.7	2.1222.09 1.99 1.1222.12 2.441.88 1.88.899 1.99	2.68 2.3.1 3.12 2.3.3.2 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	2.1 2.1 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.4 2.3 2.3 2.3	2.35.68 2.89.99 2.77.77.5 2.25.58 2.20.23.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	22222 2222 7 78739 96996 22222 22222 22222 22222	JUNE 1.88 1.88 1.88 1.88 1.88 1.80 1.80 1.90 1.90 1.90 1.90 1.90 1.90 1.90	2.10001 2.2101 1.32114 4.232.2 2.2222 2.222 2.222.2	2.67 2.87 2.87 2.19 2.13 2.13 2.23 2.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	JULY 1.8 1.9 1.9 1.4 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.9 1.9	2.112222		2.46763 41454 916110 230113 2.2222 2.30113	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.8 1.9 2.0 2.1 2.0 1.7 1.7	2.1222.09 1.99 1.1222.12 2.441.88 1.88.899 1.99	2.68 2.3.1 3.12 2.3.3.2 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10	2.1 2.1 2.5 2.6 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.4 2.3 2.3 2.3	2.35.68 2.89.99 2.77.77.5 2.25.58 2.20.23.8
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	22222 22222 22222 23222 23222 22222 22222 23222	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.8 1.8	2.100 2.200 2.000	2.67874.2 2.272.1 2.272.1 2.272.2 2.272.2 3.27	JULY 1.8 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.8 1.6 1.6	2.112.22 2.4 6.7.7.8.8 7.8.1.1.1 2.3.2.3.4 0.0.9.8.8 1.8.1.1.1 2.3.2.2.2.2.2.2.1.8.8.8.8.8.8.8.8.8.8.8.8.8		2.467.63 411454 91.610 23013 122223 2.2222 23222 22222 22222	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.8 1.9 1.9 2.0 2.1 2.0 1.7 1.7 1.7	2.22.09 1.99112 2.22.1 1.88 1.88 1.99 1.99 1.99 1.99 1.99 1.	2.68.99 3.11 3.33.32 3.10.10.8 9.77.73.3 2.19.95.1	2.1 2.5 2.6 2.6 2.7 2.7 2.6 2.6 2.6 2.4 2.3 2.3 2.4 1.8 1.7 1.6 1.9 2.5	2.35.668 8.99.98 2.77.77.75 5.55.588 8.77.73.8
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	22222 22222 22222 23222 23222 22222 22222 23222	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.8 1.8	2.100 2.200 2.000	2.67874.2 2.272.1 2.272.1 2.272.2 2.272.2 3.27	JULY 1.8 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.8 1.6 1.6	2.112.22 2.4 6.7.7.8.8 7.8.1.1.1 2.3.2.3.4 0.0.9.8.8 1.8.1.1.1 2.3.2.2.2.2.2.2.1.8.8.8.8.8.8.8.8.8.8.8.8.8		2.467.63 411454 91.610 23013 122223 2.2222 23222 22222 22222	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.8 1.9 1.9 2.0 2.1 2.0 1.7 1.7 1.7	2.22.09 1.99112 2.22.1 1.88 1.88 1.99 1.99 1.99 1.99 1.99 1.	2.68.99 3.11 3.33.32 3.10.10.8 9.77.73.3 2.19.95.1	2.1 2.5 2.6 2.6 2.7 2.7 2.6 2.6 2.6 2.4 2.3 2.3 2.4 1.8 1.7 1.6 1.9 2.5	2.35.668 8.99.98 2.77.77.75 5.55.588 8.77.73.8
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	22222 22222 22222 23222 23222 22222 22222 23222	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.8 1.8	2.100 2.200 2.000	2.67874.2 2.272.1 2.272.1 2.272.2 2.272.2 3.27	JULY 1.8 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.8 1.6 1.6	2.112.22 2.4 6.7.7.8.8 7.8.1.1.1 2.3.2.3.4 0.0.9.8.8 1.8.1.1.1 2.3.2.2.2.2.2.2.1.8.8.8.8.8.8.8.8.8.8.8.8.8		2.467.63 411454 91.610 23013 122223 2.2222 23222 22222 22222	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.22.09 1.99112 2.22.1 1.88 1.88 1.99 1.99 1.99 1.99 1.99 1.	2.68.99 3.11 3.33.32 3.10.10.8 9.77.73.3 2.19.95.1	2.1 2.5 2.6 2.6 2.7 2.7 2.6 2.6 2.6 2.4 2.3 2.3 2.4 1.8 1.7 1.6 1.9 2.5	2.35.668 8.99.98 2.77.77.75 5.55.588 8.77.73.8
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	22222 22222 22222 23222 23222 22222 22222 23222	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.8 1.8	2.100 2.200 2.000	2.67874.2 2.272.1 2.272.1 2.272.2 2.272.2 3.27	JULY 1.8 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.8 1.6 1.6	2.112.22 2.4 6.7.7.8.8 7.8.1.1.1 2.3.2.3.4 0.0.9.8.8 1.8.1.1.1 2.3.2.2.2.2.2.2.1.8.8.8.8.8.8.8.8.8.8.8.8.8		2.467.63 411454 91.610 23013 122223 2.2222 23222 22222 22222	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.22.09 1.99112 2.22.1 1.88 1.88 1.99 1.99 1.99 1.99 1.99 1.	2.68.99 3.11 3.33.32 3.10.10.8 9.77.73.3 2.19.99 3.11.23.1	2.1 2.5 2.6 2.6 2.7 2.7 2.6 2.6 2.6 2.4 2.3 2.3 2.4 1.8 1.7 1.6 1.9 2.5	2.35.668 8.99.98 2.77.77.75 5.55.588 8.77.73.8
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	22222 22222 22222 23222 23222 22222 22222 23222	JUNE 1.88 1.88 1.88 1.88 1.88 1.89 1.88 1.89 1.89	2.0001 221101 13214 42322 12111 096880 2.0001 22222 22222 22222 21112	2.67874.2 2.272.1 2.272.1 2.272.2 2.272.2 3.27	JULY 1.8 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.8 1.6 1.6	2.112.22 2.4 6.7.7.8.8 7.8.1.1.1 2.3.2.3.4 0.0.9.8.8 1.8.1.1.1 2.3.2.2.2.2.2.2.1.8.8.8.8.8.8.8.8.8.8.8.8.8		4.67.63 41454 91.610 23013 12223 5.6745 22222 22222 23222 22222 22222	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.22.09 1.99112 2.22.1 1.88 1.88 1.99 1.99 1.99 1.99 1.99 1.	2.8.9.1 1.2.2.3.2 1.0.1.0.8 9.7.7.3.3 1.9.9.5.1 5.8.3.9.5 4.3.4.3.5.5	2.1 2.5 2.6 2.6 2.7 2.6 2.6 2.6 2.3 2.3 2.4 1.7 1.6 1.9 2.5 2.3 3.7 2.3	R 23.568 899998 777775 555588 877738 55062 334333
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	22222 2222 7 78739 96996 22222 22222 22222 22222	JUNE 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.8 1.8	2.100 2.200 2.000	2.67 2.87 2.87 2.19 2.13 2.13 2.23 2.10 3.10 3.10 3.10 3.10 3.10 3.10 3.10 3	JULY 1.8 1.9 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.7 1.9 1.9 1.8 1.7 1.6 1.6	2.112222		2.467.63 411454 91.610 23013 122223 2.2222 23222 22222 22222	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.1222.09 1.99 1.1222.12 2.441.88 1.88.899 1.99	2.68.99 3.11 3.33.32 3.10.10.8 9.77.73.3 2.19.99 3.11.23.1	2.1 2.5 2.6 2.6 2.7 2.7 2.6 2.6 2.6 2.4 2.3 2.3 2.4 1.8 1.7 1.6 1.9 2.5	2.35.6.8 2.3
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22 3 24 5	22222 22222 22222 23222 23222 22222 22222 23222	JUNE 1.88 1.88 1.88 1.88 1.88 1.89 1.88 1.89 1.89	2.0001 221101 13214 42322 12111 096880 2.0001 22222 22222 22222 21112	2.67874.2 2.272.1 2.272.1 2.272.2 2.272.2 3.27	JULY 1.8 1.9 1.9 1.4 1.4 1.5 1.5 1.6 1.6 1.6 1.6 1.6 1.8 1.9	2.112.22 2.4 6.7.7.8.8 7.8.1.1.1 2.3.2.3.4 0.0.9.8.8 1.8.1.1.1 2.3.2.2.2.2.2.2.1.8.8.8.8.8.8.8.8.8.8.8.8.8		4.67.63 41454 91.610 23013 12223 5.6745 22222 22222 23222 22222 22222	1.9 1.9 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	2.22.09 1.99112 2.22.1 1.88 1.88 1.99 1.99 1.99 1.99 1.99 1.	2.8.9.1 1.2.2.3.2 1.0.1.0.8 9.7.7.3.3 1.9.9.5.1 5.8.3.9.5 4.3.4.3.5.5	2.1 2.5 2.6 2.6 2.7 2.6 2.6 2.6 2.3 2.3 2.4 1.7 1.6 1.9 2.5 2.3 3.7 2.3	R 23.568 899998 777775 555588 877738 55062 334333

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MEAN		MAX	MIN	MEAN		MAX	MIN	MEAN		MAX	MIN	MEAN
		OCTOBER				NOVEMBER				DECEMBER				JANUARY	
1 2	4.3	4.3	4.3 4.3 4.3		4.3	4.3	4.3		4.0	4.0	4.0				:::
2 3 4 5	4.3 4.3 4.4 4.4	4.3 4.3 4.3 4.3	4.3 4.4 4.4		4.3 4.3 4.3 4.5	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3		4.0 4.0 3.9 3.8	3.9 3.8 3.8	4.0 3.9 3.8		:::		
										3.8			3.6	3.6	3.6
6 7 8 9	4.3 4.3 4.4 4.3	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3		4.3 4.3 4.3 4.3	4.2 4.2 4.2 4.2	4.2 4.3 4.3 4.2		3.8 3.8 3.9 3.9 3.9	3.8 3.9 3.9	3.8 3.9 3.9 3.9		3.6 3.7 3.7 3.7 3.7	3.6 3.7 3.7 3.7 3.7	3.6 3.7 3.7 3.7 3.7
11	4.3	4.2	4.3							3.8					
12 13 14 15	*.3	4.3	4.3		4.3 4.2 4.3 4.2	4.2 4.2 4.2 4.2 4.2	4.2 4.2 4.2 4.2		3.8 3.8 3.8 3.8	3.8 3.8 3.8	3.8 3.8 3.8 3.8		3.7 3.7 3.7 3.8 3.8	3.7 3.7 3.7 3.7 3.8	3.7 3.7 3.7 3.7 3.8
16 17			:::												
18 19 20					4.2 4.2 4.1 4.1	4.2 4.1 4.1 4.1	4.2 4.2 4.1 4.1		3.8 3.9 3.8 3.8	3.8 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.8		3.8 3.8 3.8 3.7	3.8 3.7 3.7 3.7	3.8 3.8 3.7 3.7
3. *				1 9. 9.	4.1	4.1	4.1	Set .		3.8	3.8				
21 22 23 24 25					4.1	4.1	4.1		3.8 3.8 3.8 3.8 3.8	3.8	3.8		•••	:::	
25		• 7.•			4.1	4.1	4.1			3.8	3.8				- 11
26 27	:::				4.1	4.1	4.1	3	3.8 3.8 3.8 3.8	3.8 3.8 3.8 3.8	3.8		:::	:::	
26 27 28 29 30	4.3	4.3	4.3	5.1	4.0	4.0	4.0		3.8	3.8	3.8		:::	111	:::
30 31	4.3 4.4 4.3	4.3 4.3 4.3	4.3 4.3 4.3		4.0	4.0	4.0		:::		:::		:::		::::
MONTH					4.5	4.0	4.2		4.0	3.8	3.8				Livi
DAY	MAX	MIN	MEAN		MAX	MIN	MEAN		MAX	MIN	MEAN	*	MAX	MIN	MEAN
	MAX	MIN			MAX	MIN	MEAN		MAX		MEAN	*	MAX	MIN MAY	MEAN
	MAX				4.0	MARCH 3.9 3.8	4.0		3.8	MIN APRIL 3.7 3.7	3.8 3.8		3.9 4.0	MAY 3.9 3.9	3.9 3.9
	::	FEBRUAR	r 		4.0	MARCH 3.9 3.8	4.0 3.9 3.9		3.8	MIN APRIL 3.7 3.7 3.8	3.8 3.8		3.9 4.0 4.0	MAY 3.9 3.9 4.0	3.9 3.9 4.0
1 2 3 4 5	:::	FEBRUAR	r :::		4.0 3.9 3.9 3.9 3.9	MARCH 3.9 3.8 3.9 3.9	4.0 3.9 3.9 3.9 3.9		3.8 3.8 3.8 3.8 3.8	MIN APRIL 3.7 3.7 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.8		3.9 4.0 4.0 4.0 3.9	MAY 3.9 3.9 4.0 3.9 3.9	3.9 3.9 4.0 3.9 3.9
1 2 3 4 5 6 7		FEBRUAR	· · · · · · · · · · · · · · · · · · ·		4.0 3.9 3.9 3.9 3.9	MARCH 3.9 3.8 3.9 3.9 3.9	4.0 3.9 3.9 3.9 3.9		3.8 3.8 3.8 3.8 3.8	MIN APRIL 3.7 3.8 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.8		3.9 4.0 4.0 4.0 3.9 3.9	MAY 3.9 3.9 4.0 3.9 3.9	3.9 3.9 4.0 3.9 3.9
1 2 3 4 5 6 7 8 9		FEBRUAR			4.0 3.9 3.9 3.9 3.9 3.9	MARCH 3.9 3.8 3.9 3.9 3.9	4.09		35.888888888888888888888888888888888888	MIN APRIL 3.7 3.8 3.8 3.8 3.8	3.8 3.8 3.8 3.8 3.8 3.8 3.8		3.9 4.0 4.0 3.9 3.9 3.9 3.9	MAY 3.9 4.0 3.9 4.0 3.9 3.8 3.8	3.9 3.9 4.0 3.9 3.9 3.9 3.9
1 2 3 4 5 6 7 8 9		FEBRUAR			4.0 3.9 3.9 3.9 3.9 3.9 4.0 3.9	3.9 3.8 3.9 3.9 3.9 3.9 3.9 3.9	4.0999999999999999999999999999999999999		888888 8888888888888888888888888888888	MIN APRIL 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8	35.88 35.88 35.88 35.88 35.88 35.88		3.9 4.0 4.0 3.9 3.9 3.9 3.9 3.8 3.8	MAY 3.9 3.9 4.0 3.9 3.9 3.8 3.8 3.8	3.9 3.9 4.0 3.9 3.9 3.9 3.8 3.8
1 2 3 4 5 6 7 8 9		FEBRUAR			4.0 3.9 3.9 3.9 3.9 3.9 4.0 3.9	3.9 3.8 3.9 3.9 3.9 3.9 3.9 3.9	4.0999999999999999999999999999999999999		888888 8888888888888888888888888888888	MIN APRIL 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8	35.88 35.88 35.88 35.88 35.88 35.88		3.9 4.0 4.0 3.9 3.9 3.9 3.9 3.8 3.8	MAY 3.9 3.9 4.0 3.9 3.9 3.8 3.8 3.8	3.9 3.9 4.0 3.9 3.9 3.9 3.8 3.8
1 2 3 4 5 6 7 8 9		FEBRUAR			4.0 3.9 3.9 3.9 3.9 3.9 4.0 3.9	3.9 3.8 3.9 3.9 3.9 3.9 3.9 3.9	4.0999999999999999999999999999999999999		888888 8888888888888888888888888888888	MIN APRIL 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8	35.88 35.88 35.88 35.88 35.88 35.88		3.9 4.0 4.0 3.9 3.9 3.9 3.9 3.8 3.8	MAY 3.9 3.9 4.0 3.9 3.9 3.8 3.8 3.8	3.9 3.9 4.0 3.9 3.9 3.9 3.8 3.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUARY			43,999,999,999,999,999,999,999,999,999,9	MARCH 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	4.9.9.9.9 4.3.9.9.9 3.3.3.3.3 3.3.3.3.3 3.3.3.3.3 3.3.3.3.		333333 33333 333333 333333	MIN APRIL 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	33.88888888888888888888888888888888888		3.90 4.00 4.09 3.99 3.99 3.99 3.99 3.99 3.99 3.99	MAY 3.9 3.9 4.99 3.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	3.90 3.90 3.99 3.99 3.88 3.88 3.88 3.88 3.88 3.88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		FEBRUAR			43,999,999,999,999,999,999,999,999,999,9	MARCH 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	4.9.9.9.9 4.3.9.9.9 3.3.3.3.3 3.3.3.3.3 3.3.3.3.3 3.3.3.3.		333333 33333 333333 333333	MIN APRIL 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8	33.88888888888888888888888888888888888		3.90 4.00 4.09 3.99 3.99 3.99 3.99 3.99 3.99 3.99	MAY 3.9 3.9 4.99 3.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	3.90 3.90 3.99 3.99 3.88 3.88 3.88 3.88 3.88 3.88
1 2 3 4 5 6 7 8 9		FEBRUAR			43333 33343 33333 33333	3.9 3.8 3.9 3.9 3.9 3.9 3.9 3.9	4.0999999999999999999999999999999999999		888888 888888 99998 889999 333333 333333 333333 333333	MIN APRIL 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8	35.88 35.88 35.88 35.88 35.88 35.88		3.9 4.0 4.0 3.9 3.9 3.9 3.9 3.8 3.8	MAY 3.9 3.9 4.0 3.9 3.9 3.8 3.8 3.8	3.9 3.9 4.0 3.9 3.9 3.9 3.8 3.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		FEBRUARY			43333 33343 33333 33333	MARCH 3.8999999999999999999999999999999999999	43333 33333 33533 33533 43333 35333 33533		888888 888888 99998 889999 333333 333333 333333 333333	MIN APRIL 3.77 3.88 3.78 3.88 3.88 3.88 3.88 3.88	888888 888888 898888 889999 33333 333333 333333 333333		3.90 4.09 3.99988 3.99999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3	MAY 3.9.099 9.88888 8.88888 9.999999999999999	3.9.09.9.9.88.8.8.9.88.9.9.9.9.9.9.9.9.9.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		FEBRUARY			43333 33343 33333 33333	MARCH 3.8999999999999999999999999999999999999	43333 33333 33533 33533 43333 35333 33533		888888 888888 99998 889999 333333 333333 333333 333333	MIN APRIL 3.77 3.88 3.78 3.88 3.88 3.88 3.88 3.88	888888 888888 898888 889999 33333 333333 333333 333333		3.90 4.09 3.99988 3.99999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3	MAY 3.9.099 9.88888 8.88888 9.999999999999999	3.9.09.9.9.88.8.8.9.88.9.9.9.9.9.9.9.9.9.
1 2 3 4 5 6 7 8 9 10 11 123 14 15 16 17 18 19 20 21 223 24 5	 4.0	FEBRUARY	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		43533 35343 35353 35353 353533 353533	MARCH 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	4.9.9.9.9 4.3.9.9.9 3.3.3.3.3 3.3.3.3.3 3.3.3.3.3 3.3.3.3.		888888 88888 99998 889999 999999 333333 333333 333333 333333 333333	MIN APRIL 3.77 3.88 3.78 3.88 3.88 3.88 3.88 3.89 3.99 3.99 3.9	888888 88888 898888 889999 99999999999		900009 99988 99999 99099 000000 34443 33333 333333 33433 44444	MAY 3.99.99.99.99.99.99.99.99.99.99.99.99.99	3.9.0.9.9.9.9.8.8.8.8.8.9.9.9.9.9.9.9.9.9
1 2 3 4 5 6 7 8 9 10 11 123 14 15 16 17 18 19 20 21 223 24 5	 4.0	FEBRUARY	4.0		43533 35343 35353 35353 353533 353533	MARCH 3.8999999999999999999999999999999999999	45555 55555 55555 55555 55555 55555 55555		888888 88888 99998 889999 999999 333333 333333 333333 333333 333333	MIN APRIL 3.77 3.88 3.78 3.88 3.88 3.88 3.88 3.89 3.99 3.99 3.9	888888 88888 898888 889999 99999999999		900009 99988 99999 99099 000000 34443 33333 333333 33433 44444	MAY 3.99.99.99.99.99.99.99.99.99.99.99.99.99	3.9.0.9.9.9.9.8.8.8.8.8.9.9.9.9.9.9.9.9.9
1 2 3 4 5 6 7 8 9 10 11 123 14 15 16 17 18 19 20 21 223 24 5	4.0	FEBRUARY	4.0		43533 35343 35353 35353 353533 353533	MARCH 3.8999999999999999999999999999999999999	45555 55555 55555 55555 55555 55555 55555		888888 88888 99998 889999 999999 333333 333333 333333 333333 333333	MIN APRIL 3.77 3.88 3.78 3.88 3.88 3.88 3.88 3.89 3.99 3.99 3.9	88888 88888 89888 88999 99999 9999 33333 33333 33333 33333 33333 33333		900009 99988 99999 99099 000000 34443 33333 333333 33433 44444	MAY 3.99.99.99.99.99.99.99.99.99.99.99.99.99	3.9.0.9.9.9.9.8.8.8.8.8.9.9.9.9.9.9.9.9.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.0	FEBRUARY	4.0		43333 33343 33333 33333	MARCH 3.8999999999999999999999999999999999999	43333 33333 33533 33533 43333 35333 33533		888888 888888 99998 889999 333333 333333 333333 333333	MIN APRIL 3.77 3.88 3.78 3.88 3.88 3.88 3.88 3.88	888888 888888 898888 889999 33333 333333 333333 333333		3.90 4.09 3.99988 3.99999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3.9999 3	MAY 3.9.099 9.88888 8.88888 9.999999999999999	3.9.09.9.9.88.8.8.9.88.9.9.9.9.9.9.9.9.9.

129

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

			rn (S	I ANDARD OF	11.07, WA	EK IEAK	OCTOBER 190	J IU SEP	Eliber 17	01		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	4.0 4.0 4.0	4.0 4.0 4.0	4.0 4.0 4.0	4.3 4.3 4.2 4.2	4.3 4.2 4.2 4.2 4.1	4.3 4.3 4.2 4.2 4.1	4.0 4.0 4.0	4.0 4.0 4.0	4.0 4.0 4.0	4.1 4.1 4.0	4.0 4.0 3.9	4.0 4.0 4.0
5	4.0	3.9 3.9	4.0	4.2	4.2	4.2	4.0 4.0	4.0 4.0	4.0	4.0 3.9	3.9 3.9	3.9 3.9
6 7 8	4.0 4.0 4.0	3.9 3.9 4.0	4.0 4.0 4.0	4.1	4.1	4.1	4.0 4.0 4.0	4.0 4.0 4.0	4.0 4.0 4.0	4.0 4.0 4.0	3.9 4.0 4.0	3.9 4.0 4.0 4.0
9 10	4.0 4.0 4.0	4.0	4.0		:::		4.1 4.1	4.0	4.0 4.1	4.0	4.0	4.0
11 12 13 14 15	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0			:::	4.0 4.0 4.0 4.0	4.0 4.0 3.9 3.9 4.0	4.0 4.0 4.0 4.0	4.0 4.1 4.0 4.0	3.9 4.0 4.0 4.0	4.0 4.0 4.0 4.0
16 17 18 19 20	4.1 4.1 4.1 4.1 4.1	4.0 4.1 4.1 4.1	4.1 4.1 4.1 4.1				4.0 4.0 4.0 4.1 4.0	4.0 4.0 4.0 4.0	4.0 4.0 4.0 4.0	4.1 4.1 4.2 4.2 4.2	4.0 4.1 4.1 4.1	4.0 4.1 4.2 4.2 4.2
	4.1	4.1	4.1				4.0	4.0	4.0			
21 22 23 24 25	4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1	4.1 4.1 4.1 4.1			:::	4.1 4.1 4.0 4.1	4.0 4.0 4.0 4.0	4.0 4.1 4.0 4.0	4.2 4.2 4.2 4.2 4.2	4.2 4.1 4.2 4.1	4.2 4.2 4.2 4.1
26	4.1	4.1	4.1				4.0	4.0	4.0	4.1	4.1	4.1
27 28	4.1	4.1 4.1	4.1		•••	• • • •	4.0 4.0	4.0	4.0 4.0	4.1	4.1	4.1
26 27 28 29 30 31	4.1	4.1	4.1	4.1 4.1 4.0	4.0 4.0 4.0	4.1 4.0 4.0	4.1 4.0 4.0	4.0 4.0 4.0	4.0 4.0 4.0	4.2	4.1	4.1
MONTH	4.3	3.9	4.1	• • • • • • • • • • • • • • • • • • • •	•••	•••	4.1	3.9	4.0	4.2	3.9	4.1
			OXYGEN, I	DISSOLVED	(DO), MG/	L, WATER	YEAR OCTOBE	R 1986 T	O SEPTEMB	ER 1987		
DAY	MAX	MIN	OXYGEN, I	DISSOLVED MAX		L, WATER MEAN	YEAR OCTOBE	R 1986 T MIN	O SEPTEMB MEAN	SER 1987 MAX	MIN	MEAN
DAY	MAX	MIN	MEAN			MEAN			MEAN		MIN JANUARY	
		OCTOBER	MEAN R	MAX	MIN	MEAN R	MAX	MIN DECEMBE 4.6	MEAN R 4.8		JANUARY	
		1.5 1.8	MEAN R	MAX	MIN	MEAN R 2.4 3.0	MAX	MIN DECEMBE 4.6 4.6 4.8	MEAN R 4.8 5.0 5.3	MAX	JANUARY	: ::::
DAY 1 2 3 4 5	3.2 3.4 2.3 3.3 3.3	OCTOBER	MEAN		MIN	MEAN R	MAX	MIN DECEMBE	MEAN R 4.8	MAX	JANUARY	:::
	3.2 3.4 2.3 3.3	1.5 1.8 1.6 1.7	MEAN 2.0 2.5 2.0 2.3 2.1 2.3 2.7	2.8 3.6 3.5 3.6 5.7 4.4	MIN NOVEMBE 2.1 2.4 3.0 2.7 3.0	MEAN R 2.4 3.0 3.2 3.1 3.9 3.7 3.7	5.0 5.9 5.8 5.9 6.1 6.4 6.6	MIN DECEMBE 4.6 4.8 4.7 5.9 6.0 6.2 6.1	MEAN R 4.8 5.0 5.3 5.1 6.0	8.8 8.5 8.3	JANUARY 8.5 8.1 8.1	:::
1 2 3 4 5 6 7 8	3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3	1.5 1.8 1.6 1.7 1.6 1.7 2.3 2.3 2.0 1.8	MEAN 2.0 2.5 2.0 2.3 2.1 2.3 2.7 2.5 2.5	2.86 3.5 3.6 5.7 4.4 4.0 3.9	MIN NOVEMBEI 2.1 2.4 3.0 2.7 3.0 3.6 3.4 2.9 2.7 2.3	MEAN R 2.4 3.2 3.1 3.9 3.9 3.7 3.8 3.0	5.0 5.9 5.8 5.9 6.1 6.4 6.6 6.9	MIN DECEMBE 4.6 4.8 4.7 5.9 6.0 6.1 5.9	MEAN 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.5 6.2	8.8 8.5 8.3 8.2	3.5 8.5 8.1 8.1 8.0 7.9	8.7 8.4 8.2 8.1 8.0
1 2 3 4 5 6 7 8 9	3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3	1.5 1.8 1.6 1.7 1.6 1.7 2.3 2.3 2.0 1.8	MEAN 2.0 2.5 2.0 2.3 2.1 2.3 2.7 2.5 2.5	2.86 3.5 3.6 5.7 4.4 4.0 3.9	MIN NOVEMBEI 2.1 2.4 3.0 2.7 3.0 3.6 3.4 2.9 2.7 2.3	MEAN R 2.4 3.2 3.1 3.9 3.9 3.7 3.8 3.0	5.0 5.9 5.8 5.9 6.1 6.4 6.6 6.9	MIN DECEMBE 4.6 4.8 4.7 5.9 6.0 6.1 5.9	MEAN 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.5 6.2	8.8 8.5 8.3 8.2	3.5 8.5 8.1 8.1 8.0 7.9	8.7 8.4 8.2 8.1 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.43333 3.32331.6 3.97779	1.5 1.8 1.6 1.7 1.6 1.7 2.3 2.0 1.8 2.3 2.0 1.8 2.8 2.6	MEAN 2.0 2.5 2.0 2.3 2.1 2.3 2.7 2.5 2.7 2.5 2.7 2.3 3.0	MAX 2.86 3.56 3.56 5.7 4.0 4.0 7.4 4.6 5.1	MIN NOVEMBEI 2.1 2.4 3.0 2.7 3.0 3.6 3.4 2.9 2.7 2.3 2.7 2.3	MEAN R 2.40.21.19 9.7.5.80 3.7.0.3.44.54.4	5.0 5.9 5.8 5.9 6.1 6.4 6.6 6.4 7.3 7.4 7.7	MIN DECEMBE 4.6 4.8 4.7 5.9 6.0 6.1 6.1 7.0 7.4 7.6	MEAN R 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.2 6.5 6.2 7.1 7.6 7.7	8.8 8.5 8.3 8.2 8.1 7.9 7.8 7.6	8.5 8.1 8.1 8.0 7.9 7.6 7.5 7.5	8.7 8.4 8.2 8.1 8.0 7.8 7.7 7.6
1 2 3 4 5 6 7 8 9	3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3	1.5 1.8 1.6 1.7 1.6 1.7 2.3 2.3 2.0 1.8	MEAN 2.0 2.5 2.0 2.3 2.1 2.3 2.7 2.5 2.5	2.86 3.5 3.6 5.7 4.4 4.0 3.9	MIN NOVEMBEI 2.1 2.4 3.0 2.7 3.0 3.6 3.4 2.9 2.7 2.3 2.7 2.3	MEAN R 2.40.21.19 9.7.5.80 3.7.0.3.44.54.4	5.0 5.9 5.8 5.9 6.1 6.4 6.6 6.4 7.3 7.4 7.7	MIN DECEMBE 4.6 4.8 4.7 5.9 6.0 6.1 6.1 7.0 7.4 7.6	MEAN R 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.2 6.5 6.2 7.1 7.6 7.7	8.8 8.5 8.3 8.2	3.5 8.5 8.1 8.1 8.0 7.9	8.7 8.4 8.2 8.1 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	33233 32316 39779 65356 33233 33333 32233 33333	1.5 1.8 1.6 1.7 1.6 1.7 2.3 2.0 1.8 2.3 2.8 2.6 2.7 2.9 2.8	MEAN R 2.05 2.10 2.31 2.67 2.55 2.73 2.12 3.0 3.0 3.0 3.1 3.0	MAX 2.86 33.56 5.7 4.40 32.79 74.66 5.11 4.51 4.51 4.51 4.51	MIN NOVEMBEI 2.1 2.0 2.7 3.0 3.6 3.4 22.7 2.7 4.1 4.0 3.9 4.1 4.4 4.3	MEAN R 23331.9 97580 703544 433344 433344 43344 433344 43344 43344 43344 433344 4344 4444 4344 4444 4444 4444 4444 4444 4444 4444 4444	5.0 5.9 5.8 5.9 6.1 6.4 6.6 6.9 6.5 7.4 7.7 7.8 7.7 7.8 8.6	MIN DECEMBE 4.6 4.8 4.7 5.9 6.0 6.2 6.1 5.9 6.1 7.0 7.4 7.6 7.4 7.6	MEAN R 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.5 6.2 7.1 7.6 7.7 8.2	MAX 8.8 8.5 8.3 8.2 8.1 7.9 7.8 7.6 7.3 7.2 8.2 9.2	3.5 8.5 8.1 8.1 8.0 7.9 7.6 7.5 7.5 7.5 7.1 7.0 7.0	8.7 8.4 8.2 8.1 8.0 7.8 7.7 7.6 7.7 7.4 7.1 7.1 7.1 7.1 8.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	33233 32316 39779 65356 33233 33333 32233 33333	1.5 1.8 1.6 1.7 1.6 1.7 2.3 2.0 1.8 2.3 2.8 2.6 2.7 2.9 2.8	MEAN R 2.05 2.10 2.31 2.67 2.55 2.73 2.12 3.0 3.0 3.0 3.1 3.0	MAX 2.86 33.56 5.7 4.40 32.79 74.66 5.11 4.51 4.51 4.51 4.9	MIN NOVEMBEI 2.1 2.0 2.7 3.0 3.6 3.4 22.7 2.7 4.1 4.0 3.9 4.1 4.4 4.3	MEAN R 23331.9 97580 703544 433344 433344 43344 433344 43344 43344 43344 433344 4344 4444 4344 4444 4444 4444 4444 4444 4444 4444 4444	5.0 5.9 5.8 5.9 6.1 6.4 6.6 6.9 6.5 7.4 7.7 7.8 7.7 7.8 8.6	MIN DECEMBE 4.6 4.8 4.7 5.9 6.0 6.2 6.1 5.9 6.1 7.0 7.4 7.6 7.4 7.6	MEAN R 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.5 6.2 7.1 7.6 7.7 8.2	8.8 8.5 8.3 8.2 8.1 7.9 7.8 7.7 8.2 9.2	8.5 8.1 8.1 8.1 8.0 7.9 7.6 7.5 7.5 7.1 7.0 7.1	8.7 8.4 8.2 8.1 8.0 7.8 7.7 7.6 7.7 7.4 7.1 7.1 7.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.43333 3.32331.6 3.97779	1.5 1.8 1.6 1.7 1.6 1.7 2.3 2.0 1.8 2.3 2.0 1.8 2.8 2.6	MEAN 2.0 2.5 2.0 2.3 2.1 2.3 2.7 2.5 2.7 2.5 2.7 2.3 3.0	MAX 2.86 3.56 3.56 5.7 4.0 4.0 7.4 4.6 5.1	MIN NOVEMBEI 2.1 2.0 2.7 3.0 3.6 3.4 2.7 2.7 3.7 4.1 4.0 3.9 4.1 4.4 4.3	MEAN R 2.40.21.19 9.7.5.80 3.7.0.3.44.54.4	5.0 5.9 5.8 5.9 6.1 6.4 6.6 6.4 7.3 7.4 7.7	MIN DECEMBE 4.6 4.8 4.7 5.9 6.0 6.1 6.1 7.0 7.4 7.6	MEAN R 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.2 6.5 6.2 7.1 7.6 7.7	8.8 8.5 8.3 8.2 8.1 7.9 7.8 7.6 7.3 7.2	8.5 8.1 8.1 8.0 7.9 7.6 7.5 7.5 7.1 7.0 7.1 8.1	8.7 8.4 8.2 8.1 8.0 7.8 7.7 7.6 7.7 7.4 7.1 7.7 8.6
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 3 24 5	3.44333 3.2316 3.97779 65356 84257 3.3233 3.3333 3.2233 3.3333 3.33333	1.5 1.8 1.7 1.6 1.7 2.3 2.8 2.8 2.8 2.6 2.7 4.9 2.8 2.8 2.8 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	MEAN R 2.503.1 2.507.55 2.731.20 3.008.10 3.187.68 3.187.68	MAX 2.86.7 4.85.15 4.4.17 4.9 4.70 4.9 4.9 4.9 4.9 4.9	MIN NOVEMBER 22.14.07.3.0.64.97.3.7.4.0.94.1.4.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	MEAN 40.21.9 9.75.80 7035.4 266666 65.5656	MAX 5.09 5.89 5.99 6.1 6.46 6.64 6.9 6.5 7.4 7.7 7.8 7.6 8.6 8.4 8.3 8.1 8.3	MIN DECEMBE 4.6 4.8 4.7 5.9 6.02 6.1 5.9 6.1 7.0 7.4 7.6 7.4 7.6 8.1 8.08 7.8	MEAN R 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.5 6.2 7.7 7.6 7.4 7.7 8.3 8.1 8.3	8.8 8.5 8.3 8.2 8.1 7.9 7.8 7.7 8.2 9.2	3.5 8.5 8.1 8.1 8.0 7.9 7.6 7.5 7.5 7.1 7.0 7.1 8.1 8.1	8.7 8.4 8.2 8.1 8.0 7.8 7.7 7.6 7.1 7.1 7.1 7.7 8.6
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 3 24 5	3.44333 3.2316 3.97779 65356 84257 3.3233 3.3333 3.2233 3.3333 3.33333	1.5 1.8 1.7 1.6 1.7 2.3 2.8 2.8 2.8 2.6 2.7 4.9 2.8 2.8 2.8 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	MEAN R 2.503.1 2.507.55 2.731.20 3.008.10 3.187.68 3.187.68	MAX 2.86.7 4.85.15 4.4.17 4.9 4.70 4.9 4.9 4.9 4.9 4.9	MIN NOVEMBER 22.14.07.3.0.64.97.3.7.4.0.94.1.4.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	MEAN 40.21.9 9.75.80 7035.4 266666 65.5656	MAX 5.09 5.89 5.99 6.1 6.46 6.64 6.9 6.5 7.4 7.7 7.8 7.6 8.6 8.4 8.3 8.1 8.3	MIN DECEMBE 4.6 4.8 4.7 5.9 6.02 6.1 5.9 6.1 7.0 7.4 7.6 7.4 7.6 8.1 8.08 7.8	MEAN R 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.5 6.2 7.7 7.6 7.4 7.7 8.3 8.1 8.3	8.8 8.5 8.3 8.2 8.1 7.9 7.8 7.6 7.3 7.2 8.2 9.2	3.5 8.5 8.1 8.1 8.0 7.9 7.6 7.5 7.5 7.5 7.1 7.0 7.1 8.1	8.7 8.4 8.2 8.1 8.0 7.8 7.6 7.7 7.4 7.1 7.1 7.1 8.6
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 3 24 5	3.44333 3.2316 3.97779 65356 84257 3.3233 3.3333 3.2233 3.3333 3.33333	1.5 1.8 1.7 1.6 1.7 2.3 2.8 2.8 2.8 2.6 2.7 4.9 2.8 2.8 2.8 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	MEAN R 2.503.1 2.507.55 2.731.20 3.008.10 3.187.68 3.187.68	MAX 2.86.7 4.85.15 4.4.17 4.9 4.70 4.9 4.9 4.9 4.9 4.9	MIN NOVEMBER 22.14.07.3.0.64.97.3.7.4.0.94.1.4.3.3.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	MEAN 40.21.9 9.75.80 7035.4 266666 65.5656	MAX 5.09 5.89 5.99 6.1 6.66.4 6.5 7.43 77.7 7.8 8.43 8.31 8.5 8.63 8.63	MIN DECEMBE 4.66.4.87 5.9 6.02166.1 5.9 6.027.04 7.04 7.05.9 6.027.06 7.06.1 7.06 8.10 7.06 8.10 7.06 8.10 7.06 8.10 7.06 8.10 7.06 8.10 7.06 8.10 7.06 8.10 7.06 8.10 7.06	MEAN R 4.80 55.31 6.02 66.42 66.52 6.77.7.7 7.44 7.7.8 8.31 8.42 7.9	8.8 8.5 8.3 8.2 8.1 7.9 7.8 7.7 7.8 7.6	3.5 8.5 8.1 8.1 8.0 7.9 7.6 7.5 7.5 7.1 7.0 7.1 8.1 8.1	8.7 8.4 8.2 8.1 8.0 7.8 7.7 7.6 7.7 7.4 7.1 7.1 7.1 7.1 7.1 7.1 8.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	33233 32316 39779 65356 33233 33333 32233 33333	1.5 1.8 1.6 1.7 1.6 1.7 2.3 2.0 1.8 2.3 2.8 2.6 2.7 2.9 2.8	MEAN R 2.05 2.10 2.31 2.67 2.55 2.73 2.12 3.0 3.0 3.0 3.1 3.0	MAX 2.86 33.56 5.7 4.40 32.79 74.66 5.11 4.51 4.51 4.51 4.9	MIN NOVEMBER 1.4.07.0 6.4.97.3 7.4.7.1.0 9.4.1.4.3 4.4.3.3.2.4 4.4.4.4.4 4.4.4.4.4 4.4.4.4.4 4.4.4.4.4 4.4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4.4.4 4.4 4.4	MEAN R 23331.9 97580 703544 433344 433344 43344 433344 43344 43344 43344 433344 4344 4444 4344 4444 4444 4444 4444 4444 4444 4444 4444	MAX 5.09 5.89 5.99 6.1 6.46 6.64 6.9 6.5 7.4 7.7 7.8 7.6 8.6 8.4 8.3 8.1 8.3	MIN DECEMBE 4.6 4.8 4.7 5.9 6.02 6.1 5.9 6.1 7.0 7.4 7.6 7.4 7.6 8.1 8.08 7.8	MEAN R 4.8 5.0 5.3 5.1 6.0 6.2 6.4 6.5 6.2 7.7 7.6 7.4 7.7 8.3 8.1 8.3	8.8 8.5 8.3 8.2 8.1 7.9 7.8 7.6 7.3 7.2 8.2 9.2	8.5 8.1 8.1 8.0 7.9 7.6 7.5 7.5 7.1 7.0 7.1 8.1	8.7 8.4 8.2 8.1 8.0 7.8 7.7 7.6 7.7 7.4 7.1 7.1 7.7 8.6

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued
OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987

DAY	MAX	MIN	MEAN		MAX	MIN	MEAN	. 12.14	MAX	MIN	MEAN	11/9%	MAX	MIN	MEAN
		FEBRUARY				MARCH			1	APRIL			self to	MAY	
1 2 3 4 5			:::		8.7 9.8 9.7 9.4 9.2	7.6 8.7 9.3 9.0 8.8	8.2 9.3 9.6 9.2 9.0		6.0 6.3 5.9 7.1 6.6	4.7 5.6 5.3 5.9 6.1	5.4 5.9 5.6 6.4 6.4		4.4 4.1 4.3 4.8 5.1	3.6 3.5 3.5 3.8 4.4	3.9 3.8 3.8 4.3 4.7
6 7 8 9		::: ::::	:::		8.9 8.6 8.3 7.8 7.6	8.6 8.3 7.8 7.3 7.2	8.8 8.5 8.2 7.6 7.4		6.7 6.4 5.7 5.5 5.3	6.1 5.7 5.1 4.9 4.6	6.5 6.1 5.5 5.1 4.9		5.0 3.9 3.3 3.4 3.0	3.6 2.8 2.6 2.5 2.2	4.5 3.5 2.9 2.9 2.6
11 12 13 14 15		::: :::	:::		7.9 7.9 8.1 8.2 8.0	7.5 7.6 7.8 7.9 7.7	7.7 7.8 7.9 8.0 7.9		4.9 4.5 4.0 4.6 4.5	4.1 3.8 3.7 3.8 4.0	4.6 4.1 3.8 4.1 4.2	*	2.8 2.7 2.8 3.2 2.6	2.0 2.0 2.0 2.2 2.2	2.3 2.2 2.3 2.6 2.3
16 17 18 19 20	:::	::: 2 ::::			8.0 7.9 7.8 7.6 7.5	7.6 7.5 7.4 7.2 7.0	7.8 7.7 7.6 7.4 7.2		4.3 5.4 4.9 4.4 3.8	4.0 4.2 4.2 3.6 3.1	4.2 4.8 4.6 4.1 3.5		2.9 3.0 2.8 2.4 3.0	2.2 2.1 2.0 2.0 2.4	2,5 2,5 2,3 2,2 2,7
21 22 23 24 25	8.0	7.7	7.8		7.3 7.1 7.0 6.8 6.6	6.9 6.8 6.5 6.3 6.0	7.0 6.9 6.8 6.5 6.3		3.5 3.4 3.4 4.4	2.8 2.7 2.9 3.0 3.4	3.1 3.0 3.1 3.2 3.8		3.8 3.2 2.8 2.9 3.0	2.7 2.3 2.1 2.1 2.1	3.2 2.7 2.4 2.4 2.5
26 27 28 29 30 31	7.9 8.0 7.9	7.6 7.5 7.5	7.7 7.7 7.7		6.2 5.9 5.7 5.1 5.5	5.5 5.2 5.2 4.9 4.7 4.8	5.9 5.6 5.3 4.8 5.1		4.3 4.5 4.4 4.9 4.3	3.6 3.7 3.9 4.0 3.7	3.9 4.0 4.1 4.4 4.0		2.7 2.8 3.2 2.8 2.7 2.6	2.3 2.3 2.1 1.9 1.8 1.8	2.4 2.5 2.6 2.3 2.2 2.1
MONTH	·		•••		9.8	4.7	7.4		7.1	2.7	4.5		5.1	1.8	2.8
DAY,	MAX	MIN	MEAN	721	MAX	MIN	MEAN	X	MAX	MIN	MEAN		MAX	MIN	MEAN
DAY,	MAX		MEAN	121	MAX	MIN JULY	MEAN	*.	MAX	MIN AUGUST	MEAN		MAX	MIN SEPTEMBE	Con 15, 264
DAY 1 2 3 4 5	2.6 2.6 2.3 2.6 2.9	MIN	MEAN 2.0 2.0 2.0 2.1 2.3		MAX 2.5 3.1 2.3 2.2 2.3		1.9 2.1 1.7 1.7		MAX 2.3 2.6 2.6 2.6 2.7	7.0 x	1.9 1.9 1.9 1.9				Con 15, 264
	en egan.	MIN JUNE 1.7 1.7 1.8	2.0			JULY	1.9 2.1 1.7			1.6 1.6 1.6	1.9 1.9	A TANK	HIH.	2.2 2.1 2.1 2.1 2.2	ER Tan
1 2 3 4 5 6 7 8 9	2.6 2.3 2.6 2.9 2.9 2.9 2.9 2.5 8	MIN JUNE 1.7 1.8 1.9 2.0 2.0 1.9 1.8 1.9	2.00		2.5 3.1 2.3 2.2 2.3	JULY 1.6 1.6 1.5 1.4 1.4	1.9 2.1 1.7 1.7 1.8		2.362.662.7	1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7	1.9 1.9 1.9 1.9 1.9 2.1 2.2 2.3 2.2		2.9 2.7 2.7 2.9 2.9 2.6 2.3 2.5 2.6	2.2 2.1 2.1 2.1 2.2 2.1 2.2 2.1 2.0 2.0 1.9	2.6 2.3 2.3 2.4 2.4 2.3 2.1 2.1
1 2 3 4 5 6 7 8 9	2.6 2.6 2.3 2.6 2.9	MIN JUNE 1.7 1.8 1.9 2.0 2.0 2.0 1.9	2.00 2.13 2.33 3.1		2.5 3.1 2.3 2.2 2.3 2.4	JULY 1.6 1.6 1.5 1.4 1.4 1.4	1.9 2.1 1.7 1.7 1.8 1.8		2.3 2.6 2.6 2.7 2.8 2.9 3.0 1.7 2.1 2.1 2.3	1.6 1.6 1.6 1.6 1.6 1.8 1.7 1.7 1.5 1.2 1.3 1.5 1.7	1.9 1.9 1.9 1.9 1.9 2.1 2.2 2.3 2.2 1.5 1.5 1.9		2.9772.99 2.6635.56 2.2557	2.2 2.1 2.1 2.1 2.2 2.1 2.0 2.0 1.9 1.9 1.9 1.9 2.0 2.0	2.63 2.33 2.44 2.32 2.11 2.11 2.20 2.22 2.22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.66 2.36 2.9 2.99 2.99 2.99 2.12 3.5 	MIN JUNE 1.7 1.8 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	2.00 2.00 2.13 2.33 2.31 2.43 2.44 2.55 2.7		2.5 3.1 2.3 2.2 2.3 2.4	JULY 1.6 1.6 1.5 1.4 1.4 1.4	1.9 2.1 1.7 1.7 1.8 1.8 		2.362.662.7	1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7	1.9 1.9 1.9 1.9 1.9 2.1 2.2 2.3 2.2		2.9 2.7 2.7 2.9 2.9 2.6 2.3 2.5 2.6	2.2 2.1 2.1 2.1 2.2 2.1 2.2 2.1 2.0 2.0 1.9	2.6 2.3 2.3 2.4 2.4 2.3 2.1 2.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.66 2.36 2.9 2.99 2.99 2.55 2.8 3.7 2.91 3.5	MIN JUNE 1.7 1.8 1.9 2.0 2.0 1.9 1.8 1.9 2.0 2.1 2.2 2.2 2.2	2.0 2.0 2.0 2.1 2.3 2.3 2.3 2.1 2.2 2.4 2.5 2.7		2.5 3.1 2.3 2.2 2.3 2.4	JULY 1.6 1.6 1.5 1.4 1.4 1.4	1.9 2.1 1.7 1.7 1.8 1.8 		2.366 2.66 2.7 2.68 2.92 5.0 1.70 1.14 2.33 2.33 2.33 2.4	1.6 1.6 1.6 1.6 1.6 1.8 1.7 1.7 1.5 1.7 1.5 1.7 1.6 1.6 1.6	1.9 1.9 1.9 1.9 1.9 2.1 2.2 2.3 2 1.5 1.8 1.9 1.9 1.9		2.7.7.9.9 2.2.7.2.9 2.6.6.3.5.6 2.2.5.5.7 2.2.2.2.2 2.2.2.2.2 2.2.2.2.2 2.2.2.2.	2.2 2.1 2.1 2.1 2.2 2.1 2.0 2.0 2.0 1.9 1.9 2.0 2.1 2.1 2.1 2.1 2.1	2.63.3.44 3.2.1.11 2.0.2.2.2 3.2.4.4.5

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ

LOCATION.--Lat 39°58'10", long 74°41'05", Burlington County, Hydrologic Unit 02040202, on right bank at downstream side of bridge on Hanover Street in Pemberton, 12 mi upstream from confluence with South Branch Rancocas Creek.

DRAINAGE AREA. -- 118 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1921 to current year.

REVISED RECORDS.--WSP 1302: 1922-23. WSP 1382: 1933. WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder above concrete dams. Datum of gage is 31.19 ft above National Geodetic Vertical Datum of 1929. Prior to June 9, 1923, nonrecording gage and June 9, 1923 to Aug. 9, 1951, water-stage recorder at site 600 ft downstream at datum 6.54 ft lower.

REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated occasionally by cranberry bogs and ponds above station. Water diverted for water supply at Fort Dix army base upstream at gage. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989, M	EAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	63 60 61 64 65	76 113 102 88 77	218 181 140 116 119	80 80 79 75 68	68 67 70 84 95	161 149 142 136 130	285 270 241 204 187	147 217 287 320 302	166 163 159 150	112 106 99 93 416	135 132 127 122 113	90 87 83 80 78
6 7 8 9	44 40 44 46 46	77 73 78 75 67	113 107 103 116 101	70 75 85 101 96	95 96 95 89 85	152 175 173 165 155	213 222 288 302 297	416 491 449 361 449	180 208 251 263 285	766 698 438 322 246	106 105 111 106 99	78 77 77 76 73
11 12 13 14 15	45 43 41 39 37	67 62 65 70 72	92 84 79 77 76	101 104 115 105 129	81 80 77 90 105	152 154 153 148 147	266 238 223 199 186	650 762 634 489 398	178 178 164 149 156	197 167 247 314 354	114 169 229 305 314	73 73 72 79 91
16 17 18 19 20	38 39 38 38 37	68 86 109 98 133	76 73 72 70 71	141 130 120 111 78	128 128 121 114 109	141 133 129 143 145	234 250 247 237 229	390 438 487 446 382	191 202 226 219 193	311 402 439 386 410	279 203 205 211 178	97 133 131 340 864
21 22 23 24 25	47 111 104 80 64	154 154 141 111 96	75 80 82 94 103	70 65 63 63 70	174 289 294 262 215	161 160 154 e197 e283	226 215 171 149 140	327 295 281 266 230	164 154 161 177 203	425 423 366 293 189	155 127 100 104 102	905 713 569 437 316
26 27 28 29 30 31	55 50 49 49 49 52	89 98 221 267 256	98 92 91 89 85 83	71 67 64 61 67 71	189 181 172	e325 e295 e265 e238 e215 e243	132 128 112 93 129	265 256 239 215 198 186	202 181 161 138 109	179 158 146 137 128 129	96 91 89 88 94 93	237 300 388 304 236
MEAN MAX MIN IN.	52.8 111 37 .52	108 267 62 1.02	98.6 218 70 .96	86.3 141 61 .84	130 294 67 1.15	178 325 129 1.74	210 302 93 1.99	364 762 147 3.55	183 285 109 1.73	293 766 93 2.87	145 314 88 1.42	239 905 72 2.26
					OF RECORD,							
MEAN MAX (WY) MIN (WY)	117 365 1928 38.7 1923	152 430 1973 45.7 1923	172 434 1973 54.4 1966	197 479 1979 62.1 1981	217 445 1939 92.2 1931	245 469 1958 105 1985	237 475 1984 85.4 1985	198 397 1958 89.8 1985	145 297 1968 54.8 1942	125 401 1938 44.1 1957	129 426 1958 41.4 1957	118 341 1971 40.1 1957
SUMMARY	STATISTIC	S		FO	R 1989 WATE	R YEAR			FOR F	PERIOD OF	RECORD	
LOWEST / HIGHEST LOWEST / INSTANT, INSTANT, ANNUAL 10 PERC	ANNUAL MEA ANNUAL MEA DAILY MEA DAILY MEAN ANEOUS PEA ANEOUS LOW RUNOFF (IN ENTILE ENTILE	N K FLOW K STAGE FLOW			905 37 1010 3.01 36 20.06 327 135 51	Sep 21 Oct 15 Sep 20 Sep 20 Oct 15			92 169 173 10.7 19.6 19.6	70 Aug .0 Sep 30 Aug 77a Aug .0 Sep	1978 1985 21 1939 29 1932 21 1939 21 1939 29 1932	

e Estimated

a From high-water mark, site and datum then in use.

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1958, 1962-69, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECON	CIF CON DUC ANC	IC - T- (\$	PH STAND- ARD NITS)	TEMP ATU WAT	JRE	XYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	DEM BI CH IC	O- FO EM- FE AL, E DAY BR	DLI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)	
OCT 1988 25	1300	64		66	5.0	1.	1.0	0 E	78		1.0 3	3 350	
JAN 1989		1.71						8.5					
23 MAR_	1100	61		67	5.2		1.5	13.0	92				
23 MAY	1130	154		67	4.1	1	7.5	11.1	91		1.0		
24 JUL	1030	291	(4)	58	4.4	22	2.0	9.8	114		0.4 24	0 920	
20 AUG	1015	378		44	5.0	2	1.0	6.0	68	-	- 4	9 540	
17	1100	202		49	4.5	2	3.0	6.5	76		1.7 8	30 460	
DATE OCT 1988 25 JAN 1989 23 MAY 24 JUL 20 AUG 17	NES TOT (MC AS CAC	TAL D	2.8 2.5 2.3 1.9 1.4	MAGNE SIUM DIS- SOLVE! (MG/L AS MG 1.4 1.2 1.1 0.7 0.6	SOD DI SOL (M) AS	IUM, S-VED IG/L NA) 4.0 4.1 3.9 3.0 2.6	POTAS SIUM DIS- SOLVE (MG/L AS K) 1.4 1.1 0.9 0.7 0.5	D (MC	TY SULB DI (A) SC (A) SC (A) SC (A) AS 17 17 17 17 17 17 17 17 17 17 17 17 17	5	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 6.7 6.3 6.2 5.6 5.6	FLUO- RIDE, DIS- SOLVED (MG/L AS F) <0.1 <0.1 0.1 <0.1 <0.1	
DATE	SOI (MC	ICA, SUS- S- CO LVED TU G/L S S	DLIDS, JM OF DNSTI- JENTS, DIS- SOLVED (MG/L)	NITRO GEN, NITRIT TOTAL (MG/L AS N)	E NO2	TRO- SEN, 2+NO3 OTAL MG/L S N)	NITRO GEN AMMONI TOTAL (MG/I AS NI	O- GEN MON IA ORGA TO	ANIC (FAL TO G/L (1	ITRO- GEN, DTAL MG/L S N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 1988		5.5	40	0.00	7 0	0.07	<0.05	0.4	44 0	.51	<0.02	5.2	
JAN 1989 23		6.2		<0.00	3 0	0.17	<0.05	0.:	36 0	.53	0.02	4.3	
MAR 23		4.2		<0.00		0.084	0.02			.38	0.01	5.5	
MAY 24		3.4		0.01		0.11	0.07	0.		.62	0.05	12	
JUL		3 100											
AUG_		4.2		0.01		0.15	<0.05	0.		.74	0.06	15	
17		4.7	- 10	0.01	1 (0.06	<0.05	0.	56 0	.62	0.05	16	

01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFI TOTA (MG/ AS S	L SOL	IM, IS- ARSE IVED TO	TO ENIC RE TAL ER G/L (U	TAĹ TO COV- RE ABLE ER G/L (U	TAL COV- ABLE G/L	ADMIUM TOTAL RECOV- ERABLE (UG/L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	=
MAY 1989 24	1030	<0).5	320	<1 <	10	<10	<1	<1	4	4
y DATE	T(RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	(UG/L	SELE NIUM TOTA (UG/	RECO L ERAB L (UG/	Ĺ V- LE PHE L TO	ENOLS DTAL G/L)	
MAY 1989 24		1700	14	30	<0.10	<1		<1	30	3	

01467060 DELAWARE RIVER AT PALMYRA, NJ

LOCATION.--Lat 40°01'05", long 75°02'16", Philadelphia County, PA, Hydrologic Unit 02040202, on right bank opposite Palmyra, 0.5 mi upstream from Tacony-Palmyra Bridge, 3.5 mi downstream from Rancocas Creek, and at river mile 107.55.

DRAINAGE AREA .-- 7,850 mi 2.

PERIOD OF RECORD. -- December 1962 to current year. Tidal volumes published from December 1962 to September 1970.

GAGE.--Water-stage recorder. Datum of gage is -10.00 ft below National Geodetic Vertical Datum of 1929. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum of 1929 for publication.

REMARKS.--No gage-height or doubtful record: Dec. 12-14, Feb. 4, Mar. 7-8, and July 28-31. Some periods of low tide are affected by sluggish or plugged intake and the record is estimated with negligible loss in accuracy. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 8.23 ft, Oct. 25, 1980; minimum, -8.6 ft, Dec. 31, 1962.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known since 1899, 8.9 ft, Aug. 24, 1933, from profile furnished by Corps of Engineers, U.S. Army.

EXTREMES FOR CURRENT YEAR. -- Maximum elevation recorded, 7.16 ft, May 7; minimum recorded, -3.96 ft, Jan. 21 (bottom of stilling well at 4.0 ft).

Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.65	5.77	5.19	6.16	5.34	5.54	5.66	7.16	5.85	6.16	5.58	6.82
high tide	Date	21	20	14	8	3	31	9	7	14	18	17	20
Minimum	Elevation	-3.29	-3.37	-3.67	-3.96	-3.92	-3.19	-3.02	-2.98	-2.80	-2.77	-2.76	-3.24
low tide	Date	13	22	4	21	10	19	11	28	29	26	22	24
Mean high ti	de	4.23	4.16	3.79	3.79	3.81	4.30	4.56	5.25	5.10	4.85	4.68	4.63
Mean water l	evel	1.20	1.15	.72	.82	.89	1.33	1.42	2.01	1.79	1.60	1.46	1.58
Mean low tic	le	-2.21	-2.17	-2.60	-2.45	-2.34	-1.89	-2.04	-1.47	-1.86	-2.03	-2.16	-3.24

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ

LOCATION.--Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on Kings Highway, 200 ft downstream from outlet of Strawbridge Lake, 0.6 mi northwest of Moorestown Mall, 0.8 mi southeast of Lenola, and 1.8 mi southwest of Moorestown.

DRAINAGE AREA. -- 12.8 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients wre performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CH. I CI TIME	UBIC CO FEET DU PER AN	FIC N- I CT- (S' CE	TAND- A ARD W	TURE I	YGEN, () DIS- OLVED S	OLVED BI PER- CH CENT IC ATUR- 5	AND, CO O- FO EM- FE AL, E DAY BR	CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)
OCT 1988	0900	3.3E	230	6.8	11.0	7.9	72	4.9 700	0 1700
JAN 1989 26	1100	3.0E	348	6.4		11.8			0 130
MAR 29	1100	7.0E	295	6.1	16.0	8.1		2.1 11	
MAY 18		12 E	179			10.1	112	1.8 1600	
JUL 19	0900	9.8E	187		22.0	6.5	75	2.4 79	
AUG 28	1030	3.5E	278			8.3	100	3.4 34	
20	1030	3.56	210	7.3	25.0	0.3	100	3.4 34	490
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988 24	66	18	5.2	11	5.2	15	46	. 21	0.2
JAN 1989 26	92	25	7.2	21	5.0	12	68	44	0.2
MAR 29	80	22	6.1	18	4.3	11	61	35	0.2
MAY 18	54	15	4.0	8.6	3.5	13	34	14	0.2
JUL 19	57	16	4.2	8.5	4.3	16	36	14	0.2
AUG 28	88	24	6.9	15	5.4	17	60	30	0.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN,	MONÍA +	NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIĆ TOTAL (MG/L AS C)
OCT 1988 24 JAN 1989	6.8	122	0.025		0.18	0.97	1.6	0.32	6.7
26 MAR	12	190	0.009	0.76	0.41	0.48	1.2	0.03	1.9
29 MAY	10	163	0.009	0.62	0.18	0.71	1.3	0.23	5.2
18 JUL	8.0	95	0.030	0.50	0.11	0.39	0.89	0.26	8.2
19 AUG	9.9	103	0.026	0.41	0.21	0.91	1.3	0.33	10
28	10	162	0.019	0.41	<0.05	1.0	1.4	0.31	7.2

01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFII TOTAI (MG/I AS S	SOL (UG	M, S- ARSE VED TOT /L (UG	NIC REC	TAL TOT COV- REC ABLE ERA	COV- REC	AL TO COV- REG BLE ER/		AL OV- BLE /L
OCT 1988 24	0900	<0	.5	<10	2 <1	10	50	<1	4	5
DATE	T R E	RON, OTAL RECOV- RABLE UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
OCT 1988	.2	5700	<5	140	<0.10	3	c1	30	2	

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ

LOCATION.--Lat 39°56'30", long 75°00'05", Camden County, Hydrologic Unit 02040202, on left bank on downstream wingwall of bridge on Mill Road in Cherry Hill, 1.1 mi south of Maple Shade and 3.8 mi upstream from confluence with the North Branch Pennsauken Creek.

DRAINAGE AREA. -- 8.98 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1967 to September 1976, October 1977 to current year.

REVISED RECORDS.--WDR NJ-82-2: Drainage area.

GAGE..-Water-stage recorder and crest-stage gage. Datum of gage is 8.12 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records fair. Diurnal fluctuations from unknown source. Several measurements of water temperature, other than those published, were made during the year.

	DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.9 8.4 14 9.5 7.9	72 18 8.7 7.8 12	9.8 9.4 9.0 9.1	9.1 9.8 8.7 8.4 7.5	9.5 9.5 26 22 11	12 11 11 10 11	38 18 24 19 32	26 149 24 17 27	12 12 12 10 10	9.3 8.9 8.8 8.9 551	11 10 9.7 9.2 9.0	7.7 7.3 6.6 6.5 6.7
6 7 8 9	7.0 7.7 7.5 6.4 6.3	13 7.8 7.8 7.8 8.2	9.0 8.7 8.6 8.5 8.5	8.2 8.5 46 20 11	11 10 9.1 8.6 8.4	51 18 14 17 18	82 30 68 22 16	162 33 19 16 286	63 27 15 129 230	146 24 16 13 12	8.5 15 11 7.9 7.8	6.8 6.5 6.7 6.8 6.6
11 12 13 14 15	6.5 6.5 6.1 6.1 6.2	9.6 8.5 22 11 7.4	8.4 7.7 7.7 7.7 7.9	9.9 53 20 11 86	9.0 9.0 8.1 33 36	16 15 13 12 12	14 13 13 12 43	98 27 21 20 17	20 15 13 12 29	11 11 123 29 14	17 77 20 11 21	7.7 7.1 6.6 25 28
16 17 18 19 20	6.2 6.3 6.3 6.3	7.0 83 15 9.2 114	7.8 7.7 7.5 7.6 7.8	17 12 11 10 12	32 12 10 10 9.7	11 11 24 21 13	50 16 14 23 15	86 39 20 16 14	51 52 55 15 12	52 59 16 14 91	9.9 8.6 18 11	31 47 10 222 218
21 22 23 24 25	41 88 12 9.0 7.6	35 12 9.8 9.1 8.3	13 11 15 22 18	9.5 8.8 9.1 8.8 8.8	171 88 22 14 12	36 15 13 134 85	13 12 11 11	13 13 66 102 22	40 45 23 20 23	62 18 14 12 36	9.5 8.7 11 7.7	19 14 14 13 10
26 27 28 29 30 31	6.9 7.0 7.1 7.2 7.8	7.9 27 218 21 13	9.5 8.8 11 12 8.8 8.6	9.4 9.7 8.5 8.3 24 12	16 17 13	21 17 15 14 23 113	11 11 9.7 15 41	17 48 19 14 13	13 12 11 11 9.9	17 15 14 10 9.6	7.4 7.4 7.3 13 29 8.6	89 18 11 10 9.7
MEAN MAX MIN IN.	11.1 88 5.9 1.43	27.0 218 7.0 3.36	9.91 22 7.5 1.27	16.0 86 7.5 2.05	23.1 171 8.1 2.68	26.0 134 10 3.34	23.6 82 9.7 2.93	47.0 286 13 6.04	33.4 230 9.9 4.15	551 8.8	14.0 77 7.3 1.80	29.3 222 6.5 3.64
					OF RECORD,							
MEAN MAX (WY) MIN (WY)	12.9 23.2 1973 6.08 1969	18.1 48.8 1973 6.99 1977	22.3 40.8 1978 7.05 1981	21.5 50.5 1979 6.55 1981	20.9 44.7 1979 9.19 1968	22.3 41.0 1984 9.29 1985	22.7 49.8 1983 8.08 1985	20.8 47.0 1989 8.57 1969	15.9 33.4 1989 6.65 1971	1989	15.7 58.2 1978 6.22 1968	14.0 38.8 1975 4.71 1968
SUMMARY	STATIST	ICS		FC	OR 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT	ANNUAL II ANNUAL MI DAILY ME ANEOUS PI ANEOUS PI ANEOUS LO RUNOFF (ENTILE	EAN EAN AN EAK FLOW EAK STAGE			25.6 551 5.9 975 10.53 4.9 38.71 52 13 6.6	Jul 5 Oct 1 Jul 5 Jul 5 Oct 1			11 28	20 500	1978 1981 5 1989 19 1982 28 1978 28 1971 6 1970	

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1970-73, 1975 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE		TIME		DIS HARO INST CUBI FEE PEF SECO	GE, SP T. CI IC CO ET DU R AN	FIC N- CT- (CE	PH STAND ARD NITS))- /	MPER ATURE VATER DEG C	1	YGEN, DIS- DLVED MG/L)	SO (P C SA	GEN, IS- LVED ER- ENT TUR- ION)	DEN B1 CH	GEN MAND, IO- HEM- CAL, DAY MG/L)	COL FORI FEC EC BRO (MP	M, AL, TH	STREP- OCOCCI FECAL (MPN)	
OCT_1988	3	1215		10		300	7.		47 5						8.3	11000	,	900	
JAN 1989	9	1215		9.3	ý.		6.8		13.5		6.9		67			A SOL		2.7	
30		1100		35		254	6.8		8.5		9.0		78		11	330		13	
30		1330		17		385	6.8		11.5		7.8		72		3.7	1700		300	
JUL_		1130		12		365	6.8		22.0		4.4		51		5.2	4900		400	
19		1000		13		320	6.8		20.0		5.4		60			7000	2	2300	
21		1245		9	.1	320	7.4	4	23.0	1 gr	4.2		49	. 6	5.7	490	67	330	
	DATE	NI Ti	ARD- ESS OTAL MG/L AS ACO3		CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE SIUM DIS- SOLVE (MG/L AS MG), S(ODIUM DIS- OLVED (MG/L AS NA	, S	OTAS- SIUM, DIS- OLVED MG/L	LIN L/ (MI A:	AB G/L		S- LVED G/L	RI DI SO (M	LO- DE, S- LVED IG/L CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D	The second second second
OCT	1988				200									1,100					
JAN	1989		7	3	20	5.7	7	18 ,		7.1	34		43	3	2	2	0.1		
	0		5	8	16	4.5	5	17		5.2	34		39	9	2	2	0.2	2	'a . de .
	0		9	3	25	7.5	5	29		7.7	42		56	5	4	6	0.2	2	
0	1	ť -	9	4	25	7.7	7	24		8.2	34		5.	1	3	2	0.3	2	
JUL 1	9		8	15	23	6.6	5	19		6.6	36	10	47	7	2	26	0.7	2	
AUG 2	1		8	14	23	6.5	5	24		8.9	45		4	2	2	28	0.	2	
	DATE	D S	LICA IS- OLVE MG/L AS IO2)	D	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN NITRI TOTAI (MG/I AS N	É N	NITRO GEN, O2+NO TOTAL (MG/L AS N)	3 A!	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	GEN MON ORG TO	TRO- ,AM- IA + ANIC TAL G/L N)	TO (M	TRO- EN, TAL G/L N)	PHO TO (N	HOS- DROUS DTAL HG/L S P)	CARBOI ORGAN TOTA (MG/ AS C	IĊ L L	The state of the s
2	1988		9.5	5	146	0.1	43	1.29		2.10		2.8	â	4.1	(0.65	9.4		
	0		7.6	5	132	0.10	02	1.42		1.90		3.7		5.1	1	1.57	15		
JUN	0		12		209	0.0	56	1.73		2.20		3.0	7	4.7	(0.46	7.3		
0	11		13		182	0.3	65	1.91		2.25		3.2		5.1	(0.48	6.3		
	9		13		163	0.3	10	1.49		1.43		2.0		3.4	(0.26	5.6		
AUG 2	1		12		172	0.2	55	1.18		1.83		2.8		4.0	(0.33	6.0		

01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE OCT. 1988	TIME (M	GEN + O FIDE TOT TAL BOT G/L (M	,NH4 ING. GAI IN TOT MAT BOT G/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN . IN D MAT SO /KG (U	IS: ARS LVED TO G/L (U	TO IN ENIC TOM TAL TE	TAL LI BOT- TO MA- RE RIAL ER G/G (U	TAĽ TO COV- REG ABLE ERA G/L (U	TAL TO COV- RE ABLE ER G/L (U	TAL FM E COV- TOM ABLE TER G/L (UC	COV. BOT-
OCT 1988 24 24 JUN 1989	1215 1215	-0.5		 <0.1	3.3	<10	2		10	140	1	 <10
01	1130	<0.5		•• <u>•</u>		30	1	<	10	100	<1	••
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 24 24	3	9	<50	13	9	2300	6400	<5	10	100		
JUN 1989 01	. 2			7		2900		3		160	••	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 24 24 JUN 1989	<0.10	0.02	6	<100	<1	·· <1	50	40	4	 <1	 <1.0	
01	<0.10	••	7		<1		30	••	1	, , . .	•	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988												
24 24 JUN 1989	<0.1	30	13	<0.1	<0.1	0.8	2.3	0.6	<0.1	<0.1	<0.1	
01	••			••		••	•		- i	•••	•••	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 24 24 JUN 1989	0.5	 <0.1	 <0.1	<0.1	 <0.1	<0.1	<0.1	 <0.1	<1.00	<10	 <0.1	
01	••			••		••	••	••	•••	••	••	

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ

LOCATION.--Lat 39°49'43", long 74°58'55", Camden County, Hydrologic Unit 02040202, at bridge on Norcross Road in Lindenwold, 50 ft downstream from outflow of Linden Lake, 1.1 mi southwest of Gibbstown, and 1.7 mi south of Glendale.

DRAINAGE AREA. -- 1.13 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAN ARD UNITS	ID- AT	URE TER S	(YGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL EC BROTH (MPN)	FECAL
OCT 1988	0070	0.00						40		50	20
04 FEB 1989	0930	0.2E	79	6.	9 1	8.0	6.4	68	3.6	50	20
02 APR	1100	0.7E	91	6.	9	8.0	12.5	106	0.7		••
04	1100	2.0E	94	6.	.4 1	4.5	9.8	97	4.5	33	2
JUN 	1130	1.4E	83	6.	9 2	4.0	6.9	83	3.6	>2400	1600
JUL 18	1115	4.6E	73	6.	.5 2	2.0	7.8	89	1.6	350	920
AUG 31	1330	0.8E	82	6.	.9 2	6.0	6.5	80	0.8	46	110
DATE	HAR NES TOT (MG AS	S CALC AL DIS I/L SOI (MG	CIUM S S- C LVED SC G/L (N	IS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVEI (MG/L AS K)	LINI LAI D (MG	TY SULF B DIS	ATE RI - DI VED SO /L (M	DE, R S- LVED S G/L (LUO- IDE, DIS- OLVED MG/L IS F)
OCT 1988	9-7	23	7.2	4.2	4.7	4.5	13	14		8.2	0.1
FEB 1989				1.2		1.5					
02 APR		24	7.6	1.2	6.1	1.3	12	14	. 1	1	0.1
04 JUN		23	7.1	1.2	7.3	1.4	11	14	. 1	1	0.1
06		21	6.6	1.1	5.7	1.1	13	8	1.0	0	0.1
JUL 18		20	6.1	1.1	4.7	1.1	11	7 . 7	.0	8.5	0.1
AUG 31		20	6.3	1.1	6.3	1.4	13	5	.0	9.6	0.1
DATE	SILI DIS SOL (MO AS	ICA, SUM S- CON LVED TUE G/L D S SO	STI- NTS, NI IS- TO LVED (ITRO- GEN, FRITE OTAL MG/L S N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN, AMMONI TOTAL (MG/L AS N)	MONÎ A ORGA TOT (MG	AM- A + NII NIC GE AL TOI /L (MC	AL TO	DROUS OF	ARBON, RGANIC FOTAL (MG/L AS C)
OCT 1988 04		0.38	45 <	0.003	<0.05	0.09	0	67	. 0.	.05 !	5.9
FEB 1989 02		2.5		0.003	<0.05	<0.05		28			3.5
APR 04				77				1 0 L			5.1
JUN		3.6		0.003	0.09	0.05					
06 JUL		1.3	42	0.007	0.17	<0.05	0.	50 0.	.67 0.	.06	8.6
18 AUG	- 7	2.8	38	0.005	0.09	0.05	0.	47 0.	.56 0.	.04 1	4
31		2.5	40	0.003	<0.05	0.07	0.	74	0.	.07	4.5

DELAWARE RIVER BASIN

01467120 COOPER RIVER AT NORCROSS ROAD AT LINDENWOLD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIDE TOTAL (MG/L AS S)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1988 04 JUN 1989	0930	<0.5	20	1	<10	40	<1	<1	3
06	1130		60	<1	<10	40	<1	<1	3
DATE	TO RE EF	COV- REC RABLE ER/ JG/L (UC	AD, NE FAL TO COV- RE ABLE ER G/L (U	DTAL TO ECOV- RE RABLE EF JG/L (1	DTAL TO ECOV- RE RABLE ER JG/L (U	COV- NI ABLE TO	ELE- TO IUM, RE DTAL ER UG/L (U	G/L TO	NOLS TAL (/L)
OCT 1988 04 JUN 1989		1200	<5	80	<0.10	2	<1	<10	2
06		2000	4	80	<0.10	2	<1	10	2

01467140 COOPER RIVER AT LAWNSIDE, NJ

LOCATION.--Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, at bridge on Woodcrest Road in Lawnside, 0.2 mi upstream from the New Jersey Turnpike, and 1.7 mi upstream from Tindale Run.

DRAINAGE AREA. -- 12.7 mi 2.

PERIOD OF RECORD. -- Water years 1964-65, 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	DATE	TIME	CUBIC CO FEET DU PER AN	FIC N- F CT- (ST CE A	AND - AT	TURE D	GEN, (FOLVED SA	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5	GEN AND, COL O- FOR EM- FEC AL, EC DAY BRC	AL, STREP- TOCOCCI TH FECAL
0	OCT 1988	1015	12 E	152	7.2 1	6.0	8.1	82	6.0 790	9200
F	EB 1989 01	1100	10 E	192	6.7		11.3	96 -	- 80	
A	NPR 03	1100	23 E	188		10.5	9.8	88	4.8 16000	460
J	UN 05	1200	8.9E	183		20.0	8.0	88	5.7 1700	T. W. T B. K.
J	IUL 26	1200	15 E	178		27.0	7.5	94	1.8 3500	4.550
A	NUG 31	1120	7.4E	175		20.5	9.3	104	1.0 1300	
	DATE	HARD- NESS TOTAL (MG/L AS CACO3	SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
	OCT 1988	5	1 15	3.4	8.3	3.5	27	28	13	0.2
	FEB 1989 01	5	4 16	3.4	11	3.0	23	30	17	0.2
	APR 03	5	1 15	3.3	13	2.9	24	26	19	0.1
	JUN 05	5	8 17	3.8	11	3.6	29	23	17	0.2
	JUL 26	5	2 15	3.5	8.3	3.6	29	20	14	0.2
	AUG 31	5	2 15	3.5	9.9	3.7	30	21	16	0.2
	DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)		PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
	OCT 1988 04 FEB 1989	9.9		0.010		0.15	1.3	1.5	0.32	5.9
	O1	11	105	0.006		0.06	0.33	0.63	0.15	2.9
	03 JUN_	7.6		0.020		0.18	0.86	1.4	0.28	7.3
	05 JUL	13	106	0.014		0.07	0.61	0.95	0.33	6.0
	26 AUG	12	94	0.012		<0.05	0.66	1.0	0.32	7.7
	31	11	98	0.008	0.33	0.06	0.53	0.86	0.25	7.4

01467140 COOPER RIVER AT LAWNSIDE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME (M	GEN + O FIDE TOT TAL BOT IG/L (M	,NH4 IN RG. GA IN TOT MAT BOT IG/KG (G	OR- INO NIC, ORG IN TOT MAT BOT /KG (GM	ANIC IN . IN D MAT SO /KG (U	LVED TO	TO IN ENIC TOM TAL TE	TAL LI BOT- TO MA- RE RIAL ER IG/G (U	TAL TO COV- REG ABLE ERA G/L (U	TAL TO COV- RE ABLE ER G/L (U	MIUM REG TAL FM I COV- TOM ABLE TEI G/L (U	MIUM COV. BOT- MA- RIAL G/G CD)
OCT 1988 04 04	1015 1015		50	0.1	1.9	<10	<1		10	30	<1	 <10
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
OCT 1988 04 04	2	10	<50	2	7	3600	8100	<5	20	90		
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 04 04	<0.10	0.03	4	 <10	<1	 <1	30	₇₀	7	<1	<1.0	
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 04 04	 <0.1	10	4.5	1.3	0.4	0.7	0.4	 <0.1	<0.1	 <2.0	 <0.1	
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1988 04 04	0.1	 <0.1	<2.0	 <0.1	 <2.0	<2.0	 <0.1	 <2.0	<1.00	 <10	<2.0	

01467150 COOPER RIVER AT HADDONFIELD, NJ

LOCATION.--Lat 39°54'11", long 75°01'19", Camden County, Hydrologic Unit 02040202, on right bank of Wallworth Lake in Pennypacker Park, 200 ft upstream from bridge on State Highway 41 (Kings Highway) in Haddonfield, 0.6 mi upstream from North Branch Cooper River, and 7.7 mi upstream from mouth.

DRAINAGE AREA. -- 17.0 mi 2.

e Estimated

PERIOD OF RECORD. -- October 1963 to current year.

REVISED RECORDS.--WRD-NJ 1969: 1967(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 9.29 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except for estimated daily discharges, which are fair. Bypass gates were installed on both ends of the dam in August 1987. Gates were open Nov. 30 to Mar. 3. Occasional regulation at low flow from Kirkwood Lake, other small lakes and wastewater treatment plants. Regulation from unknown source on July 7 and Sept. 25-26. Several measurements of water temperature were made during the year. Gage-height telemeter at station.

		DISCH	ARGE	, CUBI	C FEE	T PE	R SECON	D, 1	MATER Y	EAR	OCTOBER	1988 TO	SEPTEMBER	1989, ME	AN DAILY	VALUES	
DAY		ОСТ		NOV		EC	JAN		FEB		MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	51	11 12 25 17 14		70 34 16 13 16		18 15 13 13	e15 e16 e15 e14 e13		14 13 28 e30 e16		e24 e20 e18 16 17	46 24 28 26 33	37 196 46 26 40	17 15 14 13 12	14 14 15 16 774	20 19 18 18 15	9.7 9.3 8.9 8.7 9.3
6 7 8 9 10		12 12 12 12 12	A. A. M.	17 13 12 12 12		e13 e13 e13 e13 e13	e14 e14 e51 24		e15 14 13 12 16		68 36 21 27 29	106 49 99 37 27	226 58 30 26 362	118 51 28 149 225	186 37 32 25 21	14 18 15 13	9.8 9.6 9.5 9.2 8.8
11 12 13 14 15		11 11 11 9.9 9.9		13 11 25 19 14		e12 e12 e12 e12 e13	e48 26 e16 e109		e15 e15 e13 e41 e48		27 26 22 19 18	22 20 20 23 47	159 45 33 29 27	31 21 19 18 30	19 16 101 40 26	23 105 35 25 83	8.9 9.0 8.8 42 48
16 17 18 19 20		10 11 11 11 11		13 85 37 22 109	7 908 2 800 3 800 3 800	e12 e12 e12 e12 e13	e32 22 20 17		e47 e22 e17 e17 e16		17 16 32 31 18	66 29 23 33 23	80 52 32 24 21	74 111 52 26 19	59 79 30 23 125	64 23 17 32 21	41 77 21 251 293
21 22 23 24 25		26 110 25 17 14		50 25 20 18 17		e18 e17 e20 e31 e27	e12 e12 12 13		e216 e142 e43 20 e20		52 26 18 160 114	19 19 18 17 18	19 18 70 123 39	28 120 49 45 36	51 31 25 20 32	27 18 15 14 12	43 25 25 19 8.3
26 27 28 29 30 31		13 13 13 12 12 11		16 30 247 49 e20		e15 e18 e19 e15 e14	12 e12 e12 e20 e18		e26 31 29		31 23 20 20 26 76	18 17 17 22 55	28 55 32 21 18	25 19 18 18 15	47 82 25 18 16 25	12 11 12 12 12 12	102 30 20 18 16
MEAN MAX MIN IN.		16.5 110 9.9 1.12		35.2 247 11 2.31	1	5.1 31 12 .02	21.1 109 1.4	5	33.9 216 12 2.08		34.5 160 16 2.34	33.4 106 17 2.19	64.2 362 17 4.35	47.2 225 12 3.10	65.3 774 14 4.43	24.0 105 10 1.63	40.0 293 8.3 2.62
			MON	THLY F	LOW D	ATA	FOR PER	OD	OF REC	ORD,		R YEAR					
MEAN MAX (WY) MIN (WY)		28.1 46.8 1976 9.26 1966		34.4 79.6 1973 11.8 1966	7 1 1	9.5 4.6 973 4.3 966	39.4 97.8 1978 16.1 1966	3	39.7 76.1 1979 22.5 1968		42.1 78.9 1984 23.2 1981	43.1 99.4 1983 20.2 1965	39.3 66.7 1983 14.2 1965	31.1 54.9 1972 10.9 1988	32.8 66.8 1975 14.6 1966	30.9 97.6 1971 7.79 1966	27.7 65.8 1975 13.0 1965
SUMM	IARY	STATIS	STIC	S				FOR	1989	WATE	R YEAR			FOR P	ERIOD OF F	RECORD	
HIGH LOWE LOWE INST INST ANNU 10 F 50 F	EST ST IEST ST ANT ANT JAL PERC PERC	FLOW ANNUAL ANNUAL DAILY I ANEOUS ANEOUS RUNOFF ENTILE ENTILE	MEAN MEAN PEA PEA	N N K FLOW K STAG	E				35. 77 8. 171 4.1 28.6 7 21	4 3 0	Jul 5 Sep 25 Jul 5 Jul 5			35. 50. 20. 151 1. 330 5.4 28.4	6 3 0 Aug 2 Jun 0 Aug 6 Aug	1973 1965 28 1971 27 1964 28 1971 28 1971	

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ

LOCATION.--Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, at bridge on Blackwood-Clementon Road at Blackwood Terrace, 1,000 ft upstream from Bull Run, and 2.0 mi northeast of Fairview.

DRAINAGE AREA. -- 19.1 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	INST. CUBIC FEET PER	ANCE	PH (STAND- ARD JNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED E (PER- C CENT I SATUR- 5	BIO- FO CHEM- FI CAL, I DAY BI	DLI- DRM, ECAL, STREP- EC TOCOCCI ROTH FECAL MPN) (MPN)
OCT 1988 04	0900	E17	144	7.3	17.0	7.8	81	4.2 50	00 400
FEB 1989 09	1100	E22	168	7.0	3.0	13.7	101		90 130
APR 05	1330	E34	165	7.2	18.5	10.3	110		80 110
JUN 07	1130		136				93		
JUL		E43		7.2	22.5	8.0			
18 AUG	0900	E40	134	6.9	21.0	7.6	85	1.8 110	
30	1200	E28	146	7.6	25.5	9.0	111	2.4 50	00 800
DATE	HARD NESS TOTA (MG/ AS CACO	CALCIU L DIS- L SOLVE (MG/L	DIS- D SOLVE (MG/L	DIS DIS DIS MG	- DI ED SOL /L (MG	UM, LINI S- LA VED (MG /L AS	TY SULFATE B DIS- /L SOLVED	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1988		40 11	3.0	10	3	.0 25	15	14	0.1
FEB 1989 09		44 13	2.9			.8 25	19	17	0.1
APR 05		44 13	2.9			.7 25	18	17	0.1
JUN 07		39 11	2.7			.8 22	13	12	0.1
JUL 18		35 9.9				.7 22	11	12	0.1
AUG 30		39 11	2.9			.8 23	11	14	0.1
DATE	SILIC DIS- SOLV (MG/ AS SIO2	SOLIDS A, SUM OF CONSTI	NITRO GEN NITRI TOTAL	O- NIT GE TE NO2+ L TOT L (MG	RO- NIT N, GE NO3 AMMO AL TOT /L (MG	RO- GEN, N, MONI NIA ORGA AL TOT	RO- AM- A + NITRO NIC GEN, AL TOTAL		CARBON,
OCT 1988 04 FEB 1989	4.		6 0.0		-		66 1.8	0.09	4.1
09 APR	5.	_	0.0				75 2.2	0.08	3.2
05 JUN_	4.		0.0				66 1.8	0.15	4.7
07 JUL	4.	5 6	0.0	57 0.	86 0.	.34 1.	.0 1.9	0.15	8.5
18 AUG	5.	.5	66 0.0	66 0.	93 0.	.22 0.	79 1.7	0.13	8.0
30	6.	.4	2 0.0	48 1.	39 0.	.05 0.	.63 2.0	0.12	4.8

01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFIC TOTAL (MG/I	SOL (UG	M, S- ARS VED TO /L (U	ENIC RETAL ER	TAL TO COV- RE ABLE ER G/L (U	ABLE ERA	AL TOTAL TOT		COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1989 07	1130	<0.	.5	40	1 <	10	110	<1	2	4
DATE	RI EI	RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ERABLE (UG/L	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHEN TOT (UG)	TAL
JUN 1989		2000	7	70	<0.10	4	<1	10		2

01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA

(National stream-quality accounting network station)

LOCATION.--Lat 39°58'00", long 75°11'20", Philadelphia County, PA, Hydrologic Unit 02040203, on right bank 150 ft upstream from Fairmount Dam, 1,500 ft upstream from Spring Garden Street Bridge, in Philadelphia, and 8.7 mi upstream from mouth. Water-quality sampling site 1.6 mi upstream. Water-quality monitor intake at gage.

DRAINAGE AREA. -- 1,893 mi 2.

PERIOD OF RECORD.--September 1931 to current year. Records for January 1898 to December 1912, published in WSP 35, 48, 65, 82, 97, 125, 166, 202, 214, 261, 301, 381 have been found to be unreliable and should not be used.

REVISED RECORDS.--WSP 756: Drainage area. WSP 1302: 1936(M). WSP 1432: 1945. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 5.74 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 25, 1956, water-stage recorder at site on right bank just upstream from Fairmount Dam at same datum. Nov. 26, 1956, to Oct. 6, 1966, water-stage recorder at site on left bank 40 ft upstream from Fairmount Dam at same datum.

REMARKS.--Records good. Flow regulated by Still Creek Reservoir (station 01469200) since February 1933, Blue Marsh Reservoir (station 01470870) since April 1979, Green Lane Reservoir (station 01472200) since December 1956, and to some extent by Lake Ontelaunee, capacity 518,600,000. Records of discharge do not include diversion above station by City of Philadelphia for municipal water supply.

EXTREMES OUTSIDE PERIOD OF RECORD.: Flood of Oct. 4, 1869, reached a stage of 17.0 ft, discharge, 135,000 ft³/s, from rating extended above 46,000 ft³/s. Flood of Mar. 1, 1902, reached a stage of 14.8 ft, discharge, 98,000 ft³/s.

	DISCHARGE	E, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	744 860 1050 993 877	1000 1030 843 788 882	2320 2130 1960 1780 1690	1150 1140 1100 1090 975	1460 1330 1310 1350 1380	2820 2370 2120 2010 1910	7060 4410 3770 3700 4070	1600 4310 5920 4000 3300	3100 2970 2580 2820 2670	3400 2990 2690 2450 6050	2990 2630 2220 1920 1750	1110 1130 1070 1020 1030
6 7 8 9	916 833 806 808 793	1390 1640 1230 1180 1030	1560 e1400 e1300 e1200 e1100	904 808 1150 1860 1960	1340 1290 1230 1130 973	2520 3020 2430 1980 1990	5300 4950 3830 3390 3140	20500 28700 15600 11700 14900	2890 5290 6740 5130 14000	7630 5110 3640 2970 2720	1720 1690 1650 1660 1440	1000 967 955 989 975
11 12 13 14 15	846 748 774 740 748	924 902 1050 1340 1540	e1050 e1000 e900 e980 1140	1670 1730 2810 2460 4340	e900 e880 e940 1190 1660	2220 2800 3040 2790 2650	2830 2580 2460 2370 2460	18300 11800 9030 7370 6740	6030 4330 4420 4560 3650	2380 2110 9260 8360 4500	1470 2690 7270 4840 2940	1010 931 931 920 913
16 17 18 19 20	666 645 628 594 561	1320 2390 2800 1730 6720	1080 1020 994 1020 925	4050 3080 2740 2570 2130	2650 2090 1650 1320 1360	2730 2490 2660 3250 2760	3920 3050 2470 2310 2150	12200 26700 19700 13600 9840	7080 8770 6420 4890 4040	3890 6560 7090 5250 5430	6210 2470 1760 1650 1760	1030 1310 1360 1920 14500
21 22 23 24 25	712 3040 2710 1660 1490	14400 7080 4930 3550 2700	1020 1100 1090 1230 1810	1880 1600 1500 1520 1430	2430 9590 7490 5280 4000	3570 3980 3110 3950 9240	1960 1860 1860 1750 1680	7630 6150 5470 9330 8120	3690 5990 6460 7700 6670	5260 4310 3710 3390 2900	1690 1590 1470 1450 1290	13300 4430 3670 4220 2220
26 27 28 29 30 31	1440 1220 1040 935 872 861	2340 2090 7880 4320 2820	1770 1380 1300 1590 1390 1200	1410 1420 1620 1540 1600 1790	3380 3310 3110	6170 5190 4680 4020 3920 6640	1670 1730 1590 1630 1630	5580 4840 4500 3910 3590 3310	7130 5230 4490 4590 4200	3640 4150 3200 2840 2510 2660	1240 1190 1200 1130 1240 1180	2890 3360 2330 1910 1640
MEAN MAX MIN (†)	1020 3040 561 235	2795 14400 788 231	1336 2320 900 234	1840 4340 808 245	2358 9590 880 241	3388 9240 1910 235	2919 7060 1590 199	9943 28700 1600 226	5284 14000 2580 283	4292 9260 2110 284	2174 7270 1130 283	2501 14500 913 277
		THLY FLO	W DATA FO		OF RECORD,							
MEAN MAX (WY) MIN (WY)	1270 4771 1956 89.4 1942	2276 6272 1973 223 1932	3063 9569 1984 444 1981	3230 11400 1979 340 1981	3684 8136 1939 647 1934	4737 13320 1936 1552 1981	4241 11620 1983 1237 1985	3159 9943 1989 693 1965	2125 11640 1972 261 1965	1659 6435 1984 116 1966	1392 7980 1933 140 1966	1422 4863 1960 117 1932
SUMMARY	STATISTIC	S		FO	R 1989 WATE	R YEAR			FOR	PERIOD OF	RECORD	
LOWEST I INSTANTA	FLOW ANNUAL MEA ANNUAL MEA DAILY MEA DAILY MEAN ANEOUS PEA ANEOUS LOW	N K FLOW K STAGE			3328 28700 561 34700 10.18	May 7 Oct 20 May 7 May 7			1030 1030 14.	114 1600 Jun 160 Sep 100 Jun 165 Jun	adjusted 1984 1965 23 1972 2 1966 23 1972 23 1972 At times	

[†] Diversion, equivalent in cubic feet per second, for municipal supply, provided by City of Philadelphia e Estimated

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ

LOCATION.--Lat 39°44'28", long 75°15'33", Gloucester County, Hydrologic Unit 02040202, on right bank 25 ft downstream from County Bridge No. 5-F-3 on Harrisonville-Gibbstown Road, 1.8 mi west of Mullica Hill, and 2.8 mi east of Swedesboro.

DRAINAGE AREA .- - 26.9 mi 2.

a Present datum

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is National Geodetic Vertical Datum of 1929. Prior to July 28, 1969, at datum 7.96 ft higher. July 28, 1969 to Sept. 30, 1969, at datum 5.96 ft higher.

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature, other than those published, were made during the year.

15. 440	DISCHARGE	, CUBIC	FEET PER	SECOND,	WATER YEAR	OCTOBER	1988 TO	SEPTEMBER	1989,	MEAN DAILY	VALUES	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	13 13 18 15 14	31 33 21 18 18	33 29 28 26 25	24 28 25 24 22	25 24 30 40 30	35 33 32 31 32	70 53 50 48 48	39 279 107 53 52	30 29 28 26 26	31 29 28 29 649	41 38 35 33 33	28 27 26 26 25
6 7 8 9	14 14 14 13 13	20 18 16 16 16	25 24 24 24 23	23 24 34 39 30	27 26 25 23 22	53 55 37 35 40	95 68 138 70 52	172 104 57 47 213	99 80 62 104 239	278 94 57 46 41	30 30 29 27 27	26 26 26 26 25
11 12 13 14 15	13 13 13 14 13	17 16 18 21 18	23 21 22 21 23	27 39 43 31 79	22 22 22 34 38	42 42 39 36 35	45 42 40 39 46	193 74 56 49 46	58 41 38 37 38	38 35 58 72 41	33 125 135 50 50	25 25 25 31 34
16 17 18 19 20	13 13 14 14 14	17 47 37 25 58	23 21 21 21 21 22	53 34 29 27 26	42 32 28 27 26	33 31 34 39 34	70 50 44 49 46	54 53 44 38 36	68 144 54 39 35	105 215 61 44 295	75 43 36 158 99	62 183 43 270 355
21 22 23 24 25	20 57 26 19 16	67 38 29 26 25	24 25 26 31 32	24 22 23 23 23	159 196 86 49 39	52 44 37 105 158	41 39 37 36 36	35 32 47 83 50	39 131 235 229 126	219 73 54 45 40	51 47 42 37 34	85 57 48 38 37
26 27 28 29 30 31	14 14 14 14 14	24 27 186 76 40	26 24 24 26 24 23	23 25 23 23 26 28	38 42 39	61 47 42 40 43	36 35 33 36 58	39 49 49 36 33 32	56 44 41 39 34	43 125 92 50 38 42	32 32 31 31 32 30	143 79 47 42 39
MEAN MAX MIN IN.	16.0 57 13 .69	34.0 186 16 1.41	24.6 33 21 1.06	29.8 79 22 1.28	43.3 196 22 1.68	46.1 158 31 1.97	51.7 138 33 2.14	72.6 279 32 3.11	75.0 239 26 3.11	98.9 649 28 4.24	49.2 158 27 2.11	64.3 355 25 2.67
STATISTI	CS OF MON	THLY FLO	DATA FO		OF RECORD,		R YEAR (
MEAN MAX (WY) MIN (WY)	28.0 62.6 1972 15.9 1969	36.0 93.9 1973 18.0 1975	45.5 107 1973 18.8 1981	50.3 123 1978 20.7 1981	51.3 115 1979 25.9 1981	52.1 88.5 1984 22.7 1981	52.9 134 1983 21.3 1985	43.8 72.6 1989 15.9 1977	36.9 77.7 1975 10.7 1966	34.2 112 1975 6.01 1966	31.2 121 1967 5.89 1966	26.7 71.9 1971 11.7 1968
	STATISTIC			FOR	1989 WATE	R YEAR			FOR	PERIOD OF F	RECORD	
LOWEST A HIGHEST LOWEST C INSTANTA INSTANTA INSTANTA ANNUAL F 10 PERCE 50 PERCE	FLOW ANNUAL MEA ANNUAL MEA DAILY MEAN NEOUS PEA NEOUS LOW UNOFF (IN ENTILE ENTILE	N N K FLOW K STAGE			50.5 649 13 1670 15.04 25.49 91 36 15	Jul 5 Oct 1 Jul 5 Jul 5 Oct 1		- 34	22 12 2 35 17.	.0 .7 .5 .60 Aug .9 Jul 30 Aug 44a Aug -70 68 30	1973 1981 28 1971 14 1966 10 1967 10 1967	

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: May 1966 to September 1973.
SUSPENDED-SEDIMENT DISCHARGE: June 1966 to September 1969.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and selected water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	INST. COUBIC COFEET DER A	UCT- (S NCE	TAND- A	ATURE VATER S	YGEN, (DIS- OLVED S	OLVED BI PER- CH CENT IC ATUR- 5	AND, COI O- FOI EM- FEG AL, EG DAY BRO	RM, CAL, STREP-
OCT 1988 27	1245	14	217	7.2	6.5	9.4	77	2.4 8	920
JAN 1989 25	1330	23	204	5.9	3.5	12.4	94 <	1.0 34	0 170
MAR 27	1030	47	172	6.7	9.0	10.8	92 E	1.3 2	0 240
MAY 22	1300	33	192	6.5	16.5	8.6	88 E	1.7 49	0 130
JUL 11	1300	39	188	6.5	22.5	8.9	103 E	1.4 49	0 920
AUG 01	1130	42	194	6.6	19.0	8.2	89 E	1.5 49	0 540
DATE OCT 1988	HARD NESS TOTA (MG/ AS CACO	CALCIUM L DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	LINITY	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
27		74 22	4.6	8.2	4.6	38	29	16	0.2
JAN 1989 25		66 19	4.6	6.8	3.7	25	30	16	0.2
MAR 27		61 15	5.8	5.7	4.0	14	26	16	0.1
MAY 22 JUL		60 18	3.7	6.3	3.2	25	27	12	0.2
11 AUG		59 16	4.7	7.0	4.2	22	23	14	0.2
01		64 15	6.4	8.5	4.9	21	21	20	0.1
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI- ED TUENTS, L DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	GEN,	MONIA +	NITRO-	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)
OCT 1988 27 JAN 1989	12	119	0.013	3 1.83	<0.05	0.36	2.2		2.9
25 MAR	10	105	0.016	2.98	<0.05	0.23	3.2	0.11	2.2
27 MAY	7.	6 89	0.010	3.87	<0.05	0.30	4.2	0.06	2.4
7022 JUL	9.	4 95	0.019	1.69	0.05	0.47	2.2	0.18	4.0
11 AUG	9.	7 92	0.034	2.53	0.09	0.72	3.3	0.23	5.9
01	8.	9 97	0.045	3.83	0.11	0.53	4.4	0.13	4.0

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 1988 27	1245	120	0.1	2.5	· ·		7			240	<10
MAY 1989 22	1300				30	1		<10	50	<1	
				4.0	77.58	10000		e Ma	a a l		
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1988 27		5	< 5 0		1	·	4000		<100		48
MAY 1989 22	2			2		1600		1		50	
			199	•		1000					
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PHENOLS TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1988		-0.04		400							
27 MAY 1989		<0.01		<100		<1	•	20		<1	<1.0
22	<0.10	90	3	ge ,	<1		<10	+6) ••	2	in i	GAG
DATE	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 27	<0.1	-1.0		2.5		.0.1	0.4	0.2	-0.1	-0.1	-0.1
MAY 1989	٧٥.١	<1.0	1.1	2.5	1.2	<0.1	0.4	0.2	<0.1	<0.1	<0.1
22			•	••			••	•			
DATE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1988 27	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<1.00	<10	<0.1
MAY 1989 22								6-14-5 B		ur grand	•••

01477510 OLDMANS CREEK AT PORCHES MILL, NJ

LOCATION.--Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 150 ft downstream of tributary from outflow of lake at Porches Mill, 1.0 mi north of Seven Stars, and 2.1 mi southeast of Auburn.

DRAINAGE AREA. -- 21.0 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	CHA IN CU F TIME F	IST. CI IBIC CO EET DU PER AN	CT- (ST	TAND- AT ARD WA	PER- OXY URE D TER SO	GEN, (PIS- COLVED SA	DLVED BI PER- CH CENT IC NTUR- 5	AND, CO O- FO EM- FE AL, E DAY BR	LI- RM, CAL, STREP- C TOCOCCI OTH FECAL PN) (MPN)	
OCT 1988 27 JAN 1989	1030	9.2E	190	6.8	7.5	9.0	75	2.7 23	0 540	
JAN 1989 25	1100 1	7 E	129	5.3	3.5 1	0.0	75 E	2.1 <2	0 4	
MAR 27	1330	1 E	198	6.9 1	1.0	8.8	79 E	1.2 21	0 49	
MAY 22		26 E	124		7.0	7.2		3.3 17		
JUL 11	1030 3	32 E	200		4.0	8.4	100 E	2.0 8	0 540	
AUG 01	1300	35 E	220		2.0	7.8		2.2 5	0 920	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L' AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1988 27 JAN 1989	66	19	4.5	4.8	3.9	33	25	15	0.2	
25 MAR	38	10	3.1	5.0	3.6	16	16	14	0.2	
27 MAY	57	16	4.2	5.0	3.5	14	31	14	0.2	
22 JUL	37	9.6	3.1	4.1	3.6	16	11	11	0.1	
11 AUG	57	16	4.1	4.5	4.1	22	21	12	0.2	
01	38	10	3.2	4.4	4.0	21	10	12	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 1988 27	9.2	101	0.019	1.14	0.15	0 44	1.8	0.04	3.0	
JAN 1989 25	9.2	71	0.019	1.99	0.15	0.66	2.4	0.10	2.8	
MAR 27	7.9	90	0.024		<0.05	0.41	2.6	0.08	4.8	
MAY 22	8.8	61	0.030		E0.05	0.79	2.5	0.27	3.2	
JUL 11	10	85	0.029		0.07	0.79	2.5	0.16	6.6	
AUG 01	8.7	65	0.040	1.35	0.07	0.48	1.8	0.10	4.2	
VI	0.7	05	0.040	1.33	0.11	0.40	1.0	0.10	4.6	

01477510 OLDMANS CREEK AT PORCHES MILL, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFII TOTAI (MG/I	SOLV	A, S- ARSE /ED TOT /L (UG	NIC REC	TAL TOT	OV- RECO	AL TOT DV- REC BLE ERA 'L (UG	M, COPPER, AL TOTAL OV- RECOV- BLE ERABLE /L (UG/L
OCT 1988 27	1030	<0	.5	<10	1 <	10	60	1	1 5
DATE	T R E	RON, OTAL ECOV- RABLE UG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)
OCT 1988	3	1000	<5	80	9.0	14	<1	40	2

01481602 DELAWARE RIVER BELOW CHRISTINA RIVER, AT WILMINGTON, DE

LOCATION.--Lat 39°43'00", long 75°31'03", New Castle County, DE, Hydrologic Unit 02040206, on right bank, 1,000 ft from mouth of Christina River at the Wilmington Marine Terminal at Wilmington, 2.0 mi upstream of Delaware Memorial Bridge, and at river mile 69.70.

DRAINAGE AREA. -- 11,030 mi 2.

- PERIOD OF RECORD.--December 1982 to current year. July 1967 to May 1983 published as "Delaware River at Delaware Memorial Bridge, at Wilmington, DE" (station 01482100). Tidal volumes published from July 1967 to September 1973.
- GAGE.--Water-stage recorder. Datum of gage is -18.05 ft below National Geodetic Vertical Datum of 1929. Prior to Dec. 1982, water-stage recorder at Delaware River at Delaware Memorial Bridge 2.0 mi downstream at datum 8.05 ft higher. Gage-height record converted to elevation above or below (-) National Geodetic Vertical Datum 1929 for publication.
- REMARKS.--No gage-height or doubtful record: Oct. 1-5, Nov. 4, 20.27, Dec. 7 to Jan. 4, Mar. 8, May 11 to June 16. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.
- EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 7.88 ft, Oct. 25, 1980; minimum, -5.86 ft, Apr. 4, 1975.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 8.4 ft, Nov. 23, 1950, furnished by Corps of Engineers, U.S. Army; minimum, -9.1 ft, Dec. 31, 1962.
- EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 5.69 ft, Sept. 22; minimum recorded, -4.21 ft, Jan. 21.

 Summaries of tide elevations during current year are as follows:

TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

****		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.20	e4.8	e4.6	5.07	4.63	4.56	4.59	5.66	e4.7	5.42	5.06	5.69
high tide	Date	21	20	14	8	3	11	9	6	14	17	19	22
Minimum	Elevation	-2.71	-2.91	-3.59	-4.21	-4.04	-2.89	-2.95	e-2.9	-2.53	-2.23	-2.14	-3.25
low tide	Date	13	21	4	21	9	19	10	28	29	26	22	24
Mean high tide		3.43	3.10		2.96	3.07	3.33	3.52			4.07	4.01	4.00
Mean water level		1.20			.55	.62	.92	.92			1.31	1.35	1.42
Mean low tide		-1.69			-2.03	-1.99	-1.67	-1.89			-1.64	-1.54	-1.38

e Estimated

01482500 SALEM RIVER AT WOODSTOWN, NJ

LOCATION.--Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memorial Lake Dam at Woodstown, 0.2 mi upstream from small brook, and 0.3 mi downstream from Pennsylvania-Reading Seashore Lines bridge.

DRAINAGE AREA. -- 14.6 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to September 1940, December 1941 to January 1985, June to December 1989 (discontinued). Prior to October 1952, published as "Salem Creek at Woodstown".

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 19.49 ft National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1977 at datum 10.00 ft higher.

REMARKS.--No estimated daily discharges. Records fair except those below 5 ft³/s, which are poor.

	DIS	CHARGE, I	N CUBIC	FEET PER	SECOND, P	ERIOD JUNE	1989 TO	DECEMBER	1989, MEA	N DAILY V	ALUES	76 1 16 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
DAY	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
1 2 3 4 5					:::		14 14 14 15 382	14 14 12 12 11	8.7 8.6 8.6 7.5 7.2	14 58 55 24 19	22 19 22 22 22	16 16 15 14
6 7 8 9						68 75 39 100 114	77 36 19 14 12	10 10 9.9 8.6 8.6	8.6 10 10 10 10	18 18 16 16 16	21 21 27 70 43	16 16 15 16 16
11 12 13 14 15	·				:::	26 19 18 17 22	11 10 34 41 16	11 95 98 23 16	9.2 8.6 8.6 12 16	16 16 16 16 16	24 19 18 18 18	16 16 18 17 16
16 17 18 19 20						79 115 28 20 19	54 116 25 17 254	17 14 12 75 45	30 83 18 133 163	16 37 42 85 186	21 20 17 16 16	16 15 14 14 14
21 22 23 24 25				:::		24 72 125 82 60	55 37 24 17 14	20 15 11 9.7 8.6	36 20 15 13	72 26 18 16 16	15 14 18 17	14 12 12 12 12
26 27 28 29 30 31			:::			28 22 20 18 15	14 15 24 13 12	8.6 8.6 8.6 11	98 36 19 16 15	14 15 16 16 17 20	22 23 21 19 16	13 14 14 14 15 20
MEAN MAX MIN	:::	:::	:::	:::	:::	:::	45.6 382 10	20.5 98 8.6	28.4 163 7.2	30.5 186 14	21.9 70 14	14.9 20 12
STATIST	ICS OF MO	NTHLY FLO	W DATA	FOR PERIO	OF RECOR	RD, BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	25.3 82.7 1978 5.22 1966	27.0 55.7 1971 11.5 1980	29.2 51.9 1958 9.33 1966	24.9 65.7 1983 7.67 1966	17.3 38.5 1983 4.99 1955	14.6 45.6 1983 2.75 1954	14.4 66.1 1984 .98 1955	13.6 47.5 1958 .55 1966	15.6 172 1940 2.66 1964	12.0 34.6 1980 3.11 1966	18.7 50.9 1973 3.91 1966	23.1 52.6 1973 4.99 1966
SUMMARY	STATISTI	CS			FOR 1989 I	PERIOD			FOR P	ERIOD OF	RECORD	
LOWEST HIGHEST LOWEST INSTANT INSTANT INSTANT	ANNUAL ME ANNUAL ME DAILY MEA ANEOUS PE ANEOUS PE ANEOUS LO RUNOFF (I ENTILE ENTILE	AN AN IN AK FLOW AK STAGE DW FLOW			30.8 382 3.2 1060 12.45 7.2 28.64 68 20 6.4	Apr 5 Oct 10 Jul 5 Jul 5 Sep 5			19.: 30.: 5.7 446 2200 17.9 .0 17.9 3 1.2.	8 1 0 Sep 0 Jul 0a Sep 8b Sep 0 For sho 2	1984 1966 1 1940 21 1949 1 1940 1 1940 ort time	

a From rating curve extended above 220 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow at site 0.5 mi downstream

b From floodmark

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

PERIOD OF RECORD. -- Water years 1973 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection, Division of Water Resources. Analyses of fecal coliform and fecal streptococci by the MPN method, and water-phase nutrients were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	CUBIC CO FEET DU PER AN	FIC N- (S CT- (S	TAND- AT ARD WA	URE D TER SC	GEN, (POLVED SA	DLVED BIO PER- CHI CENT ICA TUR- 5 I	AND, COL O- FOR EM- FEC AL, EC DAY BRO	RM, CAL, STREP	I
OCT 1988 18	1300	12E	215	6.6 1	5.5	9.0	91	4.3 20	280	
FEB 1989 28	1215	16E	150			2.7		1.2 90		
MAR 22	1300	26E	255			0.0		3.5 330		
JUN 13	1215	18E	226			5.4		1.5 1300		
JUL 18	1200	23E	205		5.0	5.6		4.5 >24000		
AUG 03	1230	12E	218		6.0	7.4		2.9 230		
DATE OCT 1988 18 FEB 1989 28 MAR 22	7	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 9.9 8.3	7.9 7.4	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 21 18	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
JUN 13		0 17		8.8	4.3	26	41		0.2	
JUL 18		7 13	6.8 5.9	5.4 4.5	6.9 5.9	36 24	24 20	13 12	0.2	
AUG 03	_	9 18	8.3	6.7	6.9	35	30	20	0.2	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN,	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHOROUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	
OCT 1988 18 FEB 1989	1.5		0.054		0.07	1.2	2.3	0.07	6.6	
28 MAR	9.1		0.027		0.26	1.0	4.2	0.16	7.2	
22 JUN_	8.2		0.036		0.45	1.7	5.7	0.42	8.0	
13 JUL	8.5		0.074	75.7	0.39	1.8	3.9	0.29	11	
18 AUG	6.7		0.063	1.97	0.27	2.3	4.2	0.27	15	
03	6.9	118	0.071	2.54	0.15	1.2	3.8	0.18	9.0	

01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

DATE	TIME	SULFI TOTA (MG/ AS S	DE DI L SOI L (U	JM, IS- ARSE LVED TOT G/L (UC	LIL TOT ENIC REC TAL ERA G/L (UC	COV- REC	OV- REC	AL TOT COV- REC BLE ERA	M, COPPE AL TOTA OV- RECO BLE ERAE	AL OV- BLE /L
JUN 1989 13	1215	<0	.5	130	2 <1	10	40	<1	<1	5
DATE	TO RE EF	RON, DTAL ECOV- RABLE JG/L S FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOLS TOTAL (UG/L)	
JUN 1989 13		3100	6	170	0.10	6	<1	20	6	

RESERVOIRS IN DELAWARE RIVER BASIN

01416900 PEPACTON RESERVOIR.--Lat 42°04'38", long 74°58'04", Delaware County, NY, Hydrologic Unit 02040102, near release chamber at Downsville Dam on East Branch Delaware River, and 1.6 mi east of Downsville, NY. DRAINAGE AREA, 371 mi². PERIOD OF RECORD, September 1954 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam. Storage began Sept. 15, 1954. Usable capacity 140,190 mil gal between minimum operating level, elevation, 1,152.0 ft, and crest of spillway, elevation, 1,280.0 ft. Capacity, at crest of spillway 149,700 mil gal; at minimum operating level, 9,609 mil gal; at still of diversion tunnel, elevation, 1,143.0 ft, 6,098 mil gal; in dead storage below release outlet, elevation, 1,126.50 ft, 1,898 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through East Delaware Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin (see Delaware River Basin, diversions), for water supply to City of New York; for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Jan. 6, 1955.

COOPERATION.--Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 154,027 mil gal, Apr. 5, 1960, elevation, 1,282.27 ft; minimum observed (after first filling), 9,575 mil gal, Dec. 26, 1964, elevation, 1,151.92 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 149,929 mil gal, June 26, 28, 29, elevation, 1,280.07 ft; minimum observed, 74,543 mil gal, Feb. 5, elevation, 1,230.87 ft.

01424997 CANNONSVILLE RESERVOIR.--Lat 42°03'46", long 75°22'29", Delaware County, NY, Hydrologic Unit 02040101, in emergency gate tower at Cannonsville Dam on West Branch Delaware River, and 1.8 mi southeast of Stilesville, NY. DRAINAGE AREA, 454 mi². PERIOD OF RECORD, October 1963 to current year. REVISED RECORDS, WRD-NY 1972: 1966. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 30, 1963, usable capacity 95,706 mil gal between minimum operating level, elevation, 1,040.0 ft and crest of spillway, elevation, 1,150.0 ft. Capacity, at crest of spillway, 98,618 mil gal; at minimum operating level, 2,912 mil gal; at mouth of inlet channel to diversion tunnel, elevation, 1,035.0 ft, 1,892 mil gal; in dead storage below release outlet elevation, 1,020.5 ft, 328 mil gal. Figures given herein represent total contents. Impounded water is diverted for New York City water supply via West Delaware Tunnel to Rondout Reservoir in Hudson River basin (see Delaware River Basin, diversion); is released in Delaware River for downstream low flow augmentation as directed by Delaware River Master; and is released for conservation flow in the Delaware River. No diversion prior to Jan. 29. 1964.

COOPERATION.--Records provided by Bureau of Water Resources Development, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 108,116 mil gal, Mar. 15, 1977, elevation, 1,155.85 ft; minimum observed (after first filling), 11,901 mil gal, Nov. 7, 1968, elevation, 1,066.24 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 100,452 mil gal, June 18, 19, elevation, 1,151.14 ft; minimum observed, 27,921 mil gal, Oct. 24, elevation, 1,090.74 ft.

01428900 PROMPTON RESERVOIR.--Lat 41°35'18", long 75°19'39", Wayne County, PA, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi north of Prompton, PA, 0.4 mi upstream from highway bridge and 0.5 mi upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi². PERIOD OF RECORD, December 1960 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). REMARKS.--Reservoir formed by an earth and rockfill dam with ungaged bedrock spillway at elevation 1,205.00 ft; storage began July 1960. Capacity at elevation 1,205.00 ft is 51,700 acre-ft. Ordinary minimum (conservation) pool elevation, 1,125.00 ft capacity, 3,420 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel. COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,170 acre-ft, June 29, 1973, elevation, 1,138.40 ft; minimum (after first filling), 2,920 acre-ft, Sept. 27, 1964, elevation, 1,123.20 ft.

EXTREMES FOR CURRENT YEAR.--Maximum content, 5,670 acre-ft, May 7, elevation, 1,131.83 ft; minimum, 2,940 acre-ft, Oct. 12,13, elevation, 1,123.00 ft.

01429400 GENERAL EDGAR JADWIN RESERVOIR.--Lat 41°36'44", long 75°15,55", Wayne County, PA, Hydrologic Unit 02040103, at dam on Dyberry Creek, 0.45 mi upstream from unnamed tributary, 2.4 mi north of Honesdale, PA, and 2.9 mi upstream from mouth. DRAINAGE AREA, 64.5 mi². PERIOD OF RECORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earth and rockfill dam with ungated, concrete spillway at elevation, 1,053.00 ft; storage began in October 1959. Capacity at elevation 1,053.00 ft is 24,500 acre-ft. Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated turnel. ungated tunnel.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 6,520 acre-ft, June 19, 1973, elevation 1,017.40 ft; no

storage many times.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 800 acre-ft, May 6, elevation, 992.04 ft; no storage many days.

01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, PA, Hydrologic Unit 02040103, at dam or Wallenpaupack Creek at Wilsonville, PA, 1.2 mi south of and 1.5 mi upstream from mouth. DRAINAGE AREA, 228 mi PERIOD OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Power and Light Co.).

REMARKS.--Reservoir formed by concrete gravity-type and earthfill dam with concrete spillway at elevation 1,176.00 ft in two sections. Spillway equipped with roller gate, 14 ft high on each section. Storage began No. 3, 1925; water in reservoir first reached minimum pool elevation in January 1926. Total capacity at elevation 1,190.00 ft, top of gates, is 209,300 acre-ft of which 157,800 acre-ft is controlled storage above elevation 1,160.00 ft, minimum pool. Reservoir is used for generation of hydrolelectric power. Figures given herein represent usable contents. Storage began Nov.

represent usable contents.

COOPERATION.--Records provided by Pennsylvania Power and Light Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 178,200 acre-ft, Aug. 19-21, 1955, elevation, 1,193.45 ft; minimum (after first filling), 12,280 acre-ft, Mar. 28, 1958, elevation, 1,162.60 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 96,160 acre-ft, May 12,17,18, elevation, 1,187.8 ft; minimum, 33,850 acre-ft, Mar. 10, 11, elevation, 1,176.5 ft.

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

01433000 SWINGING BRIDGE RESERVOIR.--Lat 41°34'25", long 74°47'00", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Mongaup River, and 1.8 mi northwest of Fowlersville, NY. DRAINAGE AREA, 118 mi² excluding Cliff Lake, Lebanon Lake, and Toronto Reservoir. PERIOD OF RECORD, January 1930 to current year. REVISED RECORDS, WSP 1552: 1951-54. WDR NJ-86-2: 1985. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,010 ft.

REMARKS.--Reservoir is formed by an earthfill dam. Storage began Jan. 19, 1930. Usable capacity, 1,436.6 mil ft³ between elevations 1,010.0 ft, minimum operating pool, and 1,071.2 ft, top of flashboards. Capacity below elevation 1,010.0 ft, minimum operating pool, about 212.7 mil ft³. Reservoir is used for storage of water for power. Figures given herein represent contents above 1,010.0 ft. Water is received from Cliff Lake, Lebanon Lake, and Toronto Reservoir.

COOPERATION.--Records provided by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,461.6 mil ft³, Mar. 14, 1977, elevation, 1,071.8 ft; minimum (after first filling), -141.4 mil ft³, Dec. 2, 1938, elevation, 987.5 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,375.2 mil ft³, May 23, elevation, 1,069.7 ft; minimum, 1,059.5 mil ft³, Aug. 23, elevation, 1,061.4 ft.

01433100 TORONTO RESERVOIR.--Lat 41°37'15", long 74°49'55", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi southeast of village of Black Lake, NY. DRAINAGE AREA, 23.2 mi². PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). WDR NJ-85-2: 1984. WDR NJ-86-2: 1985. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating

Pool level, 1,165.0 ft.

REMARKS.--Reservoir is formed by an earthfill dam completed July 24, 1926. Storage began Jan. 13, 1926.

Usable capacity, 1,098.2 mil ft³ between elevations 1,165.0 ft, minimum operating pool, and operating pool, above 26.8 mil ft³. Reservoir is used for storage of water for power. Figures given herein represent contents above

COOPERATION. -- Records provided by Orange and Rockland Utilities, Inc. EXTREMES FOR PERIOD OF RECORD. -- Maximum contents observed, 1,171.2 mil ft³, July 20, 1945, elevation, 1,222.0 ft. minimum observed (after first filling), -26.8 mil ft³, Nov. 15, 1928, elevation, 1,144.5 ft. EXTREMES FOR CURRENT YEAR. -- Maximum contents observed, 628.7 mil ft³, July 7, elevation, 1,204.4 ft; minimum observed, 21.2 mil ft³, Oct. 31, elevation, 1,169.5 ft.

01433200 CLIFF LAKE.--Lat 41°35'00", long 74°47'40", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi northwest of Fowlersville, NY. DRAINAGE AREA, 6.46 mi² excluding area above Toronto Reservoir. PERIOD OF RECORD, January 1939 to current year. REVISED RECORDS, WSP 1552: 1951-54. WRD NY-75-1: 1974(m). WDR NJ-86-2: 1985. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,043.3 ft.

REMARKS.--Reservoir is formed by a concrete gravity-type dam. Storage began Jan. 6, 1939. Usable capacity, 136.06 mil ft³ between elevations 1,043.3 ft, minimum operating pool, and 1,072.0 ft, top of permanent flashboards. Capacity below elevation 1,043.3 ft, minimum operating pool, about 6.54 mil ft³. Reservoir is used for storage of water for power. Water is received from Toronto and Lebanon Lake reservoirs and is discharged through a tunnel into Swinging Bridge Reservoir. Figures given herein represent contents above 1,043.3 ft. COOPERATION.--Records provided by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 145.44 mil ft³, July 30, 31, 1945, elevation, 1,073.1 ft; minimum observed (after first filling), about -6.54 mil ft³, May 17, elevation, 1,038.0 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 122.09 mil ft³, May 17, elevation, 1,070.3 ft; minimum observed, 63.35 mil ft³, Dec. 23, elevation, 1,061.7 ft.

435900 NEVERSINK RESERVOIR.--Lat 41°49'40", long 74°38'21", Sullivan County, NY, Hydrologic Unit 02040104, at a gate-house at Neversink Dam on Neversink River, and 2 mi southwest of Neversink, NY. DRAINAGE AREA, 91.8 mi². PERIOD OF RECORD, June 1953 to current year. Nonrecording gage read daily at 0900. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam. Storage began June 2, 1953. Usable capacity 34,941 mil gal between minimum operating level, elevation, 1,319.0 ft and crest of spillway, elevation, 1,440.0 ft. Capacity at crest of spillway, 37,146 mil gal; at minimum operating level, 2,205 mil gal; dead storage belowand outlet sill at elevation 1,314.0 ft, 1,680 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grahamsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin, for water supply of City of New York (see Delaware River basin, diversions); for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Dec. 3, 1953.

COOPERATION.--Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 37,978 mil gal, Apr. 25, 1961, elevation, 1,441.67 ft; minimum observed (after first filling), 1,985 mil gal, Nov. 25, 1964, elevation, 1,316.98 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 37,385 mil gal, May 18, elevation, 1,440.48 ft; minimum observed, 10,378 mil gal, Dec. 24, elevation, 1,365.96 ft. 01435900 NEVERSINK RESERVOIR .-- Lat 41°49'40",

01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County, PA, Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft downstream from Bear Creek and 5 mi northwest of White Haven, PA. DRAINAGE AREA, 289 mi². PERIOD OF RECORD, February 1961 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). REMARKS.--Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft; storage began Feb. 17, 1961; water in reservoir first reached conservation pool elevation in June 1961. Total capacity at elevation 1,450.0 ft is 110,700 acre-ft of which 108,700 acre-ft is controlled storage above elevation 1,300.0 ft or (conservation pool). Dead storage is 2,000 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow regulated by three gates and low flow by-pass system.

flood control and recreation. Figures given herein represent total contents of the system.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 62,100 acre-ft, Sept. 28, 1985, elevation, 1,417.08 ft; minimum (after establishment of conservation pool), 981 acre-ft, July 6, 1982, elevation, 1,287.70 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 25,120 acre-ft, May 7, elevation, 1,375.93 ft; minimum, 1,440 acre-ft, Nov. 13, elevation, 1,294.28 ft.

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01449400 PENN FOREST RESERVOIR.--Lat 40°55'45", long 75°33'45", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 0.7 mi upstream from Hatchery, 2.6 mi upstream from Wild Creek Dam, 4.4 mi upstream from mouth, and 10 mi northeast of Palmerton, PA. DRAINAGE AREA, 16.5 mi². PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

REMARKS.--Reservoir formed by an earthfill dam, with ungated concrete spillway at elevation 1,000.00 ft; storage began in October 1958. Capacity at elevation 1,000.00 ft is 19,980 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is done by valves on pipe through dam. Figures given herein include diversion, since October 1969, from Tunkhannock Creek basin into Wild Creek basin.

Creek basin.

COOPERATION.--Records provided by city of Bethlehem.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 20,560 acre-ft, Apr. 6, 1984, elevation, 1,001.19 ft;
minimum, 176 acre-ft, Oct. 6, 1965, elevation, 902.40 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 20,370 acre-ft, May 19, elevation, 1,000.67 ft; minimum, 12,830 acre-ft, Mar. 23, elevation, 982.48 ft.

01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 1.6 mi upstream from mouth, 2.4 mi south of Hatchery, and 7.5 mi northeast of Palmerton, PA. DRAINAGE AREA, 22.2 mi². PERIOD OF RECORD, January 1941 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by city of Bethlehem).

REMARKS.--Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 820.00 ft; storage began January 27, 1941; water in reservoir first reached minimum pool elevation in February 1941. Total capacity at elevation 820.00 ft is 12,500 acre-ft of which 12,000 acre-ft is controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable contents. Regulation is accomplished by valves on pipe through dam. Since October 1969 the basin upstream has received diversion from Tunkhannock Creek basin.

COOPERATION.--Records provided by City of Bethlehem.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,880 acre-ft, May 23, 1942, elevation, 822.93 ft; minimum (after first filling), 2,680 acre-ft, Nov. 15, 1966, elevation, 774.10 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 12,200 acre-ft, May 19, elevation, 820.67 ft; minimum, 10,740 acre-ft, Mar. 6, elevation, 815.15 ft.

acre-ft, Mar. 6, elevation, 815.15 ft.

01449790 BELTZVILLE LAKE.--Lat 40°50'56", long 75°38'19", Carbon County, PA, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.45 mi upstream from gaging station on Pohopoco Creek, 0.55 mi upstream from Sawmill Run and 2.3 mi northeast of Parryville, PA. DRAINAGE AREA, 96.3 mi². PERIOD OF RECORD, February 1971 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earth and rockfill dam with ungated, partially lined spillway at elevation 651.00 ft; storage began Feb. 8, 1971. Capacity at elevation 651.00 ft is 68,300 acre-ft. Ordinary minimum (conservation) pool elevation, 628.00 ft, capacity, 41,250 acre-ft. Dead storage is 1,390 acre-ft. Reservoir is used for recreation, flood control, low flow augmentation and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system and two flood-control gates.

COOPERATION.--Records provided by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents 49,730 acre-ft, Jan. 29, 1976, elevation, 636.30 ft; minimum, 15,110 acre-ft, March 31, 1983 elevation, 588.79

EXTREMES FOR CURRENT YEAR.--Maximum contents 45,450 acre-ft, May 7, elevation, 632.25 ft; minimum, 40,800 acre-ft, Sept. 16, elevation, 627.53 ft.

01455221 MERRILL CREEK RESERVOIR.--Lat 40°43'42", long 75°06'11", Warren County, Hydrologic Unit 02040105, at dam on Merrill Creek in Harmony Township, 4.5 mi northeast of Phillipsburg, and 2.8 mi upstream from mouth. DRAINAGE AREA, 3,13 mi². PERIOD OF RECORD, March 1988 to current year. GAGE, measurement from reference point. Datum of gage is National Geodetic Vertical Datum of 1929.

REMARKS.--Reservoir formed by zoned, compacted, earth-rockfill dam constructed in November 1987. Storage began March 1988. Total capacity at spillway elevation, 16,617,000,000 gal, elevation 929.0 ft. Useable capacity, 15,6654,000,000 gal. Reservoir used for storage of water pumped from the Delaware River through a 57-inch diameter pipe 17,000 ft long. Releases are made into the Delaware River through the same pipe. Reservoir is used to augment low flow in the Delaware River. Conservation release of 3 ft³/s made to Merrill Creek.

COOPERATION.--Records provided by the Merrill Creek Reservoir Project.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,469,000,000 gal, Sept. 30, 1989, elevation, 922.3 ft; minimum (after first filling), 15,076,000,000 gal, March 17, 1989, elevation 920.2 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 16,469,000,000 gal, Sept. 30, elevation 922.3 ft; minimum (after first filling), 15,076,000,000 gal, Mar. 17, elevation 920.2 ft.

01455400 LAKE HOPATCONG.--Lat 40°55'00", long 74°39'50", Morris County, Hydrologic Unit 02040105, in gatehouse of Lake Hopatcong Dam on Musconetcong River at Landing. DRAINAGE AREA, 25.3 mi². PERIOD OF RECORD, February 1887 to current year. Monthend contents only prior to October 1950, published in Wsp 1302. REVISED RECORDS, WDR NJ-82-2: Drainage area; WDR NJ-83-2: Corrections 1981 (m/m). GAGE, max-mim recorder and staff gage. Prior to June 24, 1928, daily readings obtained by measuring from high-water mark to water surface converted to gage height, present datum. Datum of gage is 914.57 ft National Geodetic Vertical Datum of 1929.

REMARKS.--Lake is formed by concrete spillway and earthfill dam completed about 1828. Crest of spillway was lowered 0.11 ft in 1925. Usable capacity, 7,459,000,000 gal between (gage height -2.6 ft, sills of gates and 9.00 ft, crest of spillway). Flow regulated by four gates (3 by 5 ft, also by one 24-inch pipe with gate valve to recreation fountain 250 ft downstream from dam. Dead storage, about 8,117,000,000 gal. Figures given herein represent usable capacity. Lake used for recreation. CORRECTIONS.--Once-daily staff readings furnished by New Jersey Department of Environmental Protection.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,777,000,000 gal, August 19, 1955 correction, gage height, 10.55 ft; minimum, 1,525,000,000 gal, Dec. 29, 1960, gage height, 0.65 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,390,000,000 gal, May 18, gage height, 10.10 ft; minimum, 5,443,000,000 gal, Dec. 21, 22, 23, gage height, 6.50 ft.

01459350 LAKE NOCKAMIXON.--Lat 40°28'13", long 75°11'10", Bucks County, PA, Hydrologic Unit 02040105, at dam on Tohickon Creek, 6.2 mi upstream from gaging station on Tohickon Creek, 2.9 mi upstream from Mink Run and 1.3 mi east of Ottsville. DRAINAGE AREA, 73.3 mi². PERIOD OF RECORD, December 1973 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Pennsylvania Department of Environmental Resources).

Environmental Resources).

REMARKS.--Reservoir formed by earthfill dam with concrete spillway at elevation 395.0 ft. Storage began Decmeber 1973. Total capacity 66,500 acre-ft at elevation 410 ft. Reservoir is used primarily for recreation, but can be used for water supply and flood control.

COOPERATION.--Records provided by Pennsylvania Department of Environmental Resources.

EXTRMES FOR PERIOD OF RECORD.--Maximum contents, 44,380 acre-ft, Jan. 20, 1979, elevation 397.85 ft; minimum (after first filling) 15,900 acre-ft, around Dec. 31, 1975, elevation 372.78 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 43,550 acre-ft, Sept. 21, elevation 397.30 ft; minimum, 39,150 acre-ft, Nov. 6, elevation 394.25 ft.

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01469200 STILL CREEK RESERVOIR.--Lat 40°51'25", long 75°59'30". Schuylkill County, PA, Hydrologic Unit 02040106, at dam on Still Creek, 1 mi upstream from mouth and 2.3 mi north of Hometown, PA. DRAINAGE AREA, 8.5 mi². PERIOD OF RECORD, January 1933 to current year. Nonrecording gage. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Panther Valley Water Co.).

REMARKS.--Reservoir formed by earth fill dam, with ungated concrete spillway at elevation 1,182.00 ft; storage began in February 1933. Capacity at elevation, 1,182.00 ft is 8,290 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through

COOPERATION.--Records provided by Panther Valley Water Co.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,570 acre-ft, Oct. 15, 1955, elevation, 1,182.92 ft, but may have been greater during 1950 and 1951 water years; minimum (after initial filling), 588 acre-ft, Dec. 8, 1944, elevation, 1,136.70 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,500 acre-ft, May 17, elevation, 1,182.7 ft; minimum, 5,410 acre-ft, Nov. 11, elevation, 1,171.7 ft.

01470870 BLUE MARSH LAKE.--Lat 40°22'45", long 76°01'59", Berks County, PA, Hydrologic Unit 02040203, at dam on Tulpehocken Creek, 0.8 mi upstream from gaging station on Tulpehocken Creek, 1.0 mi northeast of Blue Marsh, PA, 1.9 mi upstream from Reber's Bridge, and 5.1 mi southeast of Bernville, PA. DRAINAGE AREA, 175 mi². PERIOD OF RECORD, April 1979 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers).

REMARKS.--Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 307.00 ft. Storage began April 23, 1979. Capacity at elevation, 307.00 ft is 50,000 acre-ft. Dead storage is 3,000 acre-ft.

Reservoir is used for flood control, water supply, and recreation. Figures herein represent total contents.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 39,480 acre-ft, Apr. 17, 1983, elevation, 301.65 ft; minimum, 17,440 acre-ft, Nov. 28, 1983 elevation, 284.49 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 34,400 acre-ft, May 7, elevation, 298.59 ft; minimum, 17,130 acre-ft, Sept. 25, 26, elevation, 284.48 ft.

acre-ft, Sept. 25, 26, elevation, 284.48 ft.

01472200 GREEN LANE RESERVOIR.--Lat 40°20'30", long 75°28'45", Montgomery County, PA, Hydrologic Unit 02040203, at dam on Perkiomen Creek at Green Lane, PA, 0.4 mi west of Green Lane and 2.1 mi upstream from Unami Creek.

DRAINAGE AREA, 70.9 mi². PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by Philadelphia Suburban Water Co.).

REMARKS.--Reservoir formed by concrete, gravity-type dam, with ungated spillway at elevation 286.00 ft; storage began December 21, 1956. Capacity at spillway level, elevation 286.00 ft, 13,430 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through dam

pipe through dam.
COOPERATION.--Records provided by Philadelphia Suburban Water Co.
EXTREMES FOR PERIOD OF RECORD: Maximum contents, 17,030 acre-ft, June 23, 1972, elevation, 290.05 ft; minimum (after first filling), 1,270 acre-ft, Aug. 25, 1957, elevation, 251.60 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 13,990 acre-ft, May 7, elevation, 286.63 ft; minimum, 10,310 acre-ft, Sept. 26, elevation, 281.90 ft.

MONTHEND ELEVATION AND CONTENTS. WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	levation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
01	416900 PE	PACTON RES	SERVOIR	01424997 CA	NNONSVILL	RESERVOIR	01428900 P	ROMPTON RE	ESERVOIR
oct. 31 lov. 30	1,253.12 1,240.06 1,242.54 1,236.44	104,785 86,245 89,596 81,501	-925 +173 -404	1,103.68 1,091.52 1,114.29 1,119.13	39,827 28,585 51,160 56,768	-561 +1,164 +280	1,123.21 1,123.35 1,125.27 1,124.80	3,000 3,040 3,580 3,440	+0.7 +9.1 -2.3
CAL YR 198	8		-149			-178			2
Teb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31	1,231.29 1,235.19 1,240.85 1,251.20 1,272.65 1,279.85 1,276.79 1,269.55 1,263.52	75,054 79,903 87,304 101,917 136,597 149,523 143,945 131,235 121,139	-322 +268 +369 +754 +1,731 +667 -278 -634 -521	1,115.39 1,113.04 1,117.90 1,129.04 1,150.23 1,150.09 1,145.21 1,138.81 1,131.24	52,404 49,770 55,332 69,033 98,988 98,763 91,331 82,143 71,899	-218 -146 +278 +707 +1,495 -11.6 -371 -459 -528	1,125.17 1,125.10 1,125.89 1,124.61 1,124.90 1,125.20 1,125.20 1,123.80 1,124.67	3,550 3,530 3,750 3,390 3,470 3,760 3,560 3,160 3,410	+1.8 4 +3.6 -6.0 +1.3 +4.9 -3.3 -6.5 +4.2
WTR YR 198	9		+69.3			+136			+.6

RESERVOIRS IN DELAWARE RIVER BASIN--Continued

							118 11945	_	
Park	Elevation	Contents (acre-	Change in contents (equivalent	Elevation	Contents (acre-	Change in	Elevation	Contents (million	Change in contents (equivalent
Date 01/20/1	(feet)† 00 GENERAL EI	feet)	in ft ³ /s)	(feet)†01431700 LA	feet)		(feet)† 433000 SWING	ft ³)	in ft ³ /s)
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 962.36 . 965.50 . 966.88	0 0 0 0	0 0 0	1,179.1 1,179.3 1,182.9 1,181.4	47,840 48,920 68,550 60,300	+17.6 +330 -134	1,064.7 1,065.4 1,065.5 1,062.9	1,180 1,206 1,210 1,114	+9.7 +1.5 -35.8
CAL YR	1988		0			+26.8			-1.4
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	. 967.63 . 974.19 . 967.44 . 968.63 . 968.60 . 965.66	0 0 0 0 0	0 0 0 0 0	1,179.1 1,177.6 1,179.0 1,183.4 1,185.5 1,185.9 1,182.0 1,180.9	47,840 39,740 47,300 71,340 83,100 85,340 63,600 57,560 44,060	-203 -146 +123 +404 +191 +37.7 -353 -98.2 -227	1,066.0 1,067.5 1,067.8 1,065.7 1,068.1 1,066.8 1,063.3 1,063.2 1,065.7	1,229 1,288 1,299 1,218 1,311 1,260 1,128 1,124 1,218	+42.9 +24.4 +4.1 -31.2 +34.7 -19.7 -49.3 -1.5 +36.3
WTR YR	1989		0			-5.2			+1.2
Date	Elevation (feet)†		Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	(million	Change in contents (equivalent in ft ³ /s)	Elevation (feet)*	(million	Change in contents (equivalent s) in ft ³ /s)
	01433100	TORONTO R	ESERVOIR	0143320	O CLIFF LA	AKE	01435900 N	EVERSINK F	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 1,169.5	27 21 69 69	-2.2 +18.5 0	1,064.5 1,065.4 1,065.5 1,062.7	80.5 86.3 87.0 69.3	+2.2 +0.3 -6.6	1,406.68 1,375.81 1,369.59 1,367.63	22,764 12,883 11,261 10,782	3 -493 7 -83.3
CAL YR	1988		-11.7			-0.5			-71.7
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	. 1,177.6 . 1,180.5 . 1,186.7 . 1,199.2 . 1,204.1 . 1,202.0 . 1,190.6	72 100 141 240 497 621 566 310 314	+1.1 +11.6 +15.3 +38.2 +96.0 +47.8 -20.5 -95.6 +1.5	1,065.8 1,067.8 1,067.6 1,065.8 1,068.5 1,066.9 1,066.9 1,063.5 1,063.5	88.9 102.9 101.5 88.9 108.1 96.5 90.3 74.2 84.3	+7.3 +5.8 -0.5 -4.9 +7.2 -4.5 -2.3 -6.0 +3.9	1,373.20 1,381.39 1,398.89 1,414.29 1,437.79 1,436.85 1,432.77 1,439.40	12,19 14,42 19,95! 25,70 36,06: 35,60: 33,73: 24,32 20,13:	3 +123 +276 5 +297 5 +517 -23.5 2 -93.6 1 -470
WTR YR	1989		+9.1			+0.1			-11.2
Date	Elevation (feet)*	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	(acre-	Change in contents (equivalent in ft ³ /s)
	01447780 F	RANCIS E.	WALTER LAKE	01449400 PE	NN FOREST	RESERVOIR	01449700 WI	LD CREEK	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 1,301.70 . 1,301.50	2,500 2,170 2,150 1,940	-5.4 3 -3.4	994.38 990.63 989.60 987.67	17,470 15,900 15,490 14,740	-25.5 -6.9 -12.2	817.09 816.96 817.25 817.13	11,280 11,240 11,320 11,290	-0.7 +1.3 5
CAL YR	1988		0			-7.3			-1.0
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	. 1,301.11 1,302.37 1,300.65 - 1,308.09 1,299.71 1,301.47 1,300.35	2,060 2,110 2,240 2,060 2,850 1,970 2,150 2,040 2,780	+2.0 +.9 +2.1 -3.0 +12.9 -14.8 +2.9 -1.8 +12.4	985.32 984.00 984.00 987.02 1,000.27 1,000.30 1,000.06 996.34 993.63	13,840 13,370 13,370 14,490 20,140 20,150 20,010 18,330 17,160	+18.8 +91.8 +.2 -2.3 -27.3	816.78 816.04 817.42 817.02 820.21 820.26 818.48 819.09 817.54	11,190 10,990 11,370 11,260 12,060 12,080 11,660 11,820 11,400	-1.6 -3.6 +6.2 -1.8 +13.0 +.3 -6.8 +2.6 -7.1
WTR YR	1989		+.4			4			+.2

RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

Date	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft 3/s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	01449790	BELTZVILL	E LAKE	01455221 MER	RILL CREEK	RESERVOIR	014554	00 LAKE H	OPATCONG
Sept. 30 Oct. 31 Nov. 30	628.06 628.05	41,300 41,310 41,300 41,240	+0.2 2 -1.0	917.4 921.0 921.0 920.6	16,056 16,196 16,196 16,112	+7.0 0 -4.2	7.64 7.60 8.22 6.66	6,344 6,312 6,815 5,568	-1.6 +25.9 -62.2
CAL YR 1	988		+.2			+68.1			+8.3
lan. 31 leb. 28 lar. 31 lapr. 30 lay 31 lune 30 luly 31 lug. 31 Sept. 30	628.07 627.99 628.02 628.03 628.00 627.98 627.87	41,240 41,320 41,240 41,270 41,280 41,250 41,230 41,130 41,310	0 +1.4 -1.3 +.5 +.2 3 -1.6 +3.0	920.5 920.4 920.3 920.3 921.4 921.8 921.8 921.7 922.3	16,091 16,070 16,049 16,049 16,280 16,364 16,364 16,343	-1.0 -1.2 -1.0 0 +11.5 +4.3 0 -1.0 +6.5	6.56 6.96 8.04 9.12 9.40 9.26 8.96 8.88 9.26	5,490 5,803 6,669 7,560 7,795 7,677 7,426 7,359 7,677	-3.9 +17.3 +43.2 +45.9 +11.7 -6.1 -12.5 -3.3 +16.4
WTR YR 1	989		0			+1.8			+5.6

Date	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft (s)	Elevation (feet)†	Contents	Change in contents equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft 3/s)
	014593	50 LAKE NO	OCKAMIXON	01469200 ST	ILL CREEK	RESERVOIR	01470870	BLUE MAR	SH LAKE
Sept. 30 Oct. 31 Nov. 30 Dec. 31	394.95 395.50	39,920 40,130 40,900 40,480	+3.4 +12.9 -6.8	1,174.2 1,172.0 1,172.6 1,173.9	6,100 5,490 5,660 6,020	-9.9 +2.9 +5.9	289.92 285.14 285.07 285.17	22,810 17,760 17,690 17,790	-82.1 -1.2 +1.6
CAL YR 1	988		+.3			-3.1			+.2
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	395.20 395.75 395.10 395.20 395.25 395.10 395.00	40,620 40,480 41,250 40,340 40,480 40,550 40,340 40,200 41,040	+2.3 -2.5 +12.5 -15.3 +2.3 +1.2 -3.4 -2.3 +14.1	1,173.0 1,173.3 1,174.9 1,175.9 1,182.1 1,182.0 1,181.11 1,180.6 1,178.0	5,770 5,850 6,290 6,570 8,320 8,290 8,030 7,880 7,150	-4.1 +1.4 +7.2 +4.7 +28.5 5 4.2 -2.4 -12.3	284.97 285.19 285.41 290.08 290.01 290.09 290.29 290.01 285.06	17,590 17,810 18,030 22,990 22,910 23,000 23,240 22,910 17,680	-3.3 +4.0 +3.6 +83.3 -1.3 +1.5 +3.9 -5.4 -87.8
WTR YR 1	989		+1.5			+1.4			-14.1

Date	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01472200	GREEN LANE	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	285.33 285.08 286.04 285.84	12,840 12,610 13,470 13,290	-3.7 +14.4 -2.9
CAL YR 19	988		1
Jan. 31 Feb. 28 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	286.01 286.40 285.96 286.03 286.03 286.00 285.90 285.90	13,440 13,430 13,780 13,460 13,460 13,430 13,340 13,390	+2.4 2 +5.7 -6.4 +1.0 0 5 -1.5 +.8
WTR YR 1	989		+.8

Elevation at 0900 hours on first day of following month.
 Elevation or gage height at 2400 hours.

DIVERSIONS AND WITHDRAWALS

WITHDRAWALS FROM THE DELAWARE RIVER BASIN

- 01415200 Diversion from Pepacton Reservoir, NY, on East Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of City of New York. No diversion prior to Jan. 6, 1955. Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York. REVISED RECORDS.--WRD NY-71: 1970. WRD NJ-72: 1970. WRD NJ-82-2: 1980. WRD NY-81-1: 1980.
- 01423900 Diversion from Cannonsville Reservoir, NY, on West Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 29, 1964. Records provided by Board of Water Supply, City of New York. REVISED RECORDS.--WDR NJ-82-2: 1980. WDR NY-81-1: 1980.
- 01435800 Diversion from Neversink Reservoir, NY, on Neversink River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of City of New York. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply and Department of Water Resources, city of New York. REVISED RECORDS.--WDR NJ-82-2: 1976, 1977. WDR NY-82-1: 1976, 1977.
- 01436520 Village of Woodridge, NY, diverts water from East Pond Reservoir, tributary to Neversink River, for municipal supply outside of basin. Village of Woodridge has estimated that this year virtually all the withdrawal from East Pond Reservoir was returned to the Neversink River.
- 01437360 Diversion from Bear Swamp Reservoir, NY, tributary to Neversink River, by the New York State Training School, Otisville, NY, for water supply outside of basin. Records provided by Delaware River Basin Commission.
- 01447750 Diversion from Bear Creek, PA, tributary to Lehigh River, by Bear Creek Gas and Water Company for water supply outside of basin. Records provided by Delaware River Basin Commission. Data for this year is not available but, from past records, monthly withdrawal is approximately 0.5 ft³/s.
- 01448830 Diversion from Hazle Creek Watershed by Hazelton Joint Sewerage Authority for municipal water supply.
 Waste effluent from the municipal water system is released to the Susquehanna River. Records provided by Delaware River Basin Commission.
- 01460500 Diversion by Delaware and Raritan Canal from Delaware River at Raven Rock, for municipal and industrial use. Water is discharged into the Raritan River at New Brunswick. Records of discharge are collected on the Delaware and Raritan Canal at Kingston, (see station 01460500).

 REVISED RECORDS.--WDR NJ-82-2: 1981.

WITHDRAWALS BY CITY OF NEW YORK

DIVERSION, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

Month	01415200 PEPACTON RESERVOIR	01423900 CANNONSVILLE RESERVOIR	01435800 NEVERSINK RESERVOIR	
October November December	680 622 685	0 0 9.6	516 441 124	
CAL YR 1988	572	30.1	217	
January. February. March. April May. June July. August. September.	545 157 301 240 62.3 128 578 678 701	530 709 560 564 245 606 354 3.3	1.8 0 3.8 0 138 200 133 468 350	
WTR YR 1989	451	306	199	

MISCELLANEOUS WITHDRAWALS	FROM BASIN,	IN CUBIC FEET	PER SECOND,	WATER YEAR	OCTOBER 1988	TO SEPTEMBER	1989
MONTH		01447750 BEAR CREEK	,	01448830 HAZLE CREEK*		01460500 DELAWARE & ARITAN CANAL	
October		0 0 0		3.1 3.1 3.1		134 135 139	
CAL YR 1988		0		3.1		130	
January. February. March. April May. June. July. August. September.		0 0 0 0 0 0		3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1		126 105 101 99.9 25.0 58.9 112 109	
WTR YR 1989		0 ,		3.1		106	

DIVERSIONS WITHIN THE DELAWARE RIVER BASIN

- 01446572 Diversion from Delaware River at Brainards to Merrill Creek Reservoir for storage to augment low flow in the Delaware River. A conservation release of 3 ft³/s to Lower Merrill Creek, which eventually reaches the Delaware River, is made. Records provided by Merrill Creek Reservoir Project.
- 01459005 Diversion from the Delaware River at Point Pleasant, PA by Philadelphia Electric Company to Bradshaw Reservoir on the East Branch Perkiomen Creek, tributary to Schuylkill River, to supplement flow to Limerick Power Station. Diversion began August 1989. Records provided by the Delaware River Basin Commission.
- 01463480 Diversion from the Delaware River at the Morrisville Filtration Plant, by the Borough of Morrisville, PA for municipal supply. The water withdrawn at this site is returned to the basin after treatment, only slightly diminished by consumptive uses and losses in transmission. Records provided by the Borough of Morrisville, PA.
- 01463490 Diversion from the Delaware River just above the Trenton gaging station by the city of Trenton, NJ for municipal supply. The water being withdrawn is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records provided by the City of Trenton.

 REVISED RECORDS.--WDR NJ-82-2: Station number.
- 01467030 Diversion from the Delaware River at the Torresdale Intake, by the City of Philadelphia, PA for municipal supply. The water being withdrawn at this intake is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records provided by the Delaware River Basin Commission.
- 01474500 Diversion from the Schuylkill River at the Belmont and Queen Lanes Intakes, by the City of Philadelphia, PA for municipal supply. The water being withdrawn at these intakes is returned after treatment within the Delaware River basin only slightly diminished by consumptive uses and losses in transmission. Records provided by the Delaware River Basin Commission.

WITHDRAWALS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

Month	01446572 MERRILL CREEK RESERVOIR	01459005 POINT PLEASANT	01463480 BOROUGH OF MORRISVILLE	01463490 CITY OF TRENTON	0.500 - 1/2 - 73
October	7.0 0 0		4.25 3.96 4.42	48.6 46.7 46.5	1 44.4
CAL YR 1988	.02		3.58	48.4	
January	0		4.83 4.10 3.77	45.8 45.4 45.6	a diagnosis
April	Ŏ	Y	3.94 4.00 3.98	45.4 46.1 48.2	
JulyAugustSeptember	, , , , , , , , , , , , , , , , , , ,	9.2 3.1	3.90 3.91 3.92	50.5 50.9 51.7	
WTR YR 1989	.02	1.0	4.08	47.6	n ura

WITHDRAWALS	. IN CUBIC	FEET	PER	SECOND.	WATER Y	/EAR	OCTOBER	1988	TO	SEPTEMBER	1989 Continued	
-------------	------------	------	-----	---------	---------	------	---------	------	----	-----------	----------------	--

		ITY OF PHILADELPHIA	
Month	01467030 DELAWARE RIVER TORRESDALE	01474500 SCHUYLKILL RIVER BELMONT QUEEN LANE	10 Mg 11
October November December	344 329 338	92.0 143 102 128 93.3 140	
CAL YR 1988	335	104 157	
January	325 317 318 331 315 305 327 329 309	89.4 155 88.8 152 89.1 146 77.2 122 92.4 134 101 182 105 179 104 179 101 176	907 907 920 00 10 1 94
WTR YR 1989	324	94.6 153	

DIVERSIONS AND WITHDRAWALS--Continued

DIVERSIONS IMPORTED INTO BASIN

- 01367630 Water diverted from Morris Lake, tributary to the Wallkill River (Hudson River basin), by the Newton Water and Sewer Authority for municipal use. After use the water is released into the Paulins Kill (Delaware River basin). Records provided by the Delaware River Basin Commission.
- 01578420 Water diverted from West Branch Octoraro Creek (Susquehanna River basin) at the McCray Plant of the Coatesville Water Authority (formerly Octoraro Water Co.) for municipal use. After use the water is released into the Delaware River basin. Records provided by the Delaware River Basin Commission.
- 01578450 Water divered from Octoraro Lake (Susquehanna River basin) by Chester Water Authority for municipal use.
 After use the water is released into the Delaware River basin. Records provided by the Delaware River Basin
 Commission.

DIVERSIONS IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

		OCTORA	RO CREEK	
MONTH	01367630 MORRIS LAKE	01578420 COATSVILLE WATER AUTHORITY	01578450 CHESTER WATER AUTHORITY	
October	1.34 1.38 1.37	1.23 1.00 1.37	46.9 43.1 46.7	
CAL YR 1988	1.48	1.34	47.7	
January. February. March. April May. June July August. September.	1.54 1.57 1.51 1.31 1.52 1.54 1.60 1.61	1.19 1.35 1.24 1.21 1.17 1.30 1.29 1.32 1.30	48.7 47.5 48.1 44.5 46.3 49.2 48.4 48.4	
WTR YR 1989	1.50	1.25	47.2	

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial record stations.

Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

Annual maximum discharge at crest-stage partial-record stations during water year 1989 Annual Maximum Period Drainage Gage Discharge (ft³/s) Station Station name Location of Date height area (mi²) record No. Maurice River basin Lat 39°25'12", long 74°58'00", Cumberland county, Hydrologic Unit 02040206, on left bank at upstream side of Mays Landing Road (State Route 552), 0.9 mi downstream of Menantico Lake, 1931-57†, 1978-84†, 196 01412000 Menantico Creek near Millville, NJ 9-20-89 3.17 23.2 1985-89 4.0 mi northeast of Millville and 7.0 mi upstream from mouth. Datum of gage is 36.63 ft above National Geodetic Vertical Datum of 1929. Cohansey River basin Lat 39°29'06, long 75°15'33", Cumberland County, Hydrologic Unit 02040206, on right bank 15 ft upstream from county bridge, Highway 31, at Seeley, 450 ft upstream from mouth, and 1 mi porthyect of 01412500 135 West Branch 2.58 1952-67+, 7-5-89 3.40 Cohansey River 1968-89 at Seeley, NJ and 4.1 mi northwest of Bridgeton. Datum of gage is 42.23 ft above National Geodetic Vertical Datum of 1929. Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on 1978-88+, 01412800 Cohansey River at Seeley, NJ 28.0 7-05-89 5.65 543 1989 Just downstream from bridge on Silver Lake Road, 0.6 mi south of Seeley, 2.6 mi east of Shiloh, 4.1 mi north of Bridgeton, and 22.5 mi upstream from mouth. Datum of gage is 26.9 ft above National Geodetic Vertical Datum of 1929. Delaware River basin Lat 40°58'52", long 74°46'36", Sussex County, Hydrologic Unit 02040105, on right bank, 20 ft upstream from highway bridge in Huntsville, and 0.4 mi downstream from East Branch. Datum of gage is 553.81 ft above National *01445000 498 Pequest River 31.0 1940-621, 9-21-89 4.74 at Huntsville, NJ 1963-89 Geodetic Vertical Datum of 1929. 01445430 Pequest River Lat 40°51'06", long 74°56'02" 92.5 1977-80+, 9-21-89 4.56 1,880 Warren County, Hydrologic Unit 02040105, upstream of highway bridge in Townsbury, 2.8 mi northeast of Pequest, and 8.7 mi west of Hackettstown. Altitude of gage is 480 ft, from topographic map 1981-89 at Townsbury, NJ topographic map.

Annual maximum discharge at crest-stage partial-record stations during water year 1989--Continued

					Annu	al Maximum	
Station No.	Station name	Location	Drainage area (mi ²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Delaware River basin-	Continued				
*01446000	Beaver Brook near Belvidere, NJ	Lat 40°50'40", long 75°02'48, Warren County, Hydrologic Unit 02040105, on right bank, 2,000 ft upstream from mouth, and 2 mi east Belvidere. Datum of gage is 303.36 ft National Geodetic Vertical Datum of 1929.	36.7	1922-61†, 1963-89	9-21-89	3.92	569
*01455200	Pohatcong Creek at New Village, NJ	Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek. Datum of gage is 308.32 ft above National Geodetic Vertical Datum of 1929.		1960-69†, 1970-89	9-21-89	7.18	2,450
01455500	Musconetcong River at outlet of Lake Hopatcong, NJ	Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, on left bank just upstream of highway bridge 300 ft downstream from Lake Hopatcong Dam in Landing. Datum of gage is 904.99 ft above National Geodetic Vertical Datum of 1929.	25.3	1929-75†, 1976-89	5-19-89	3.94	309
01456000	Musconetcong River near Hackettstown, NJ	Lat 40°53'17", long 74°47'53", Warren County, Hydrologic Unit 02040105, on right bank 75 ft upstream from Saxton Falls Dam, 0.5 mi upstream from Erie-Lackawanna Railway bridge, and 3.0 mi northeast of Hackettstown Datum of gage is 630.93 ft above National Geodetic Vertical Datum of 1929.		1921-73†, 1974-89	9-20-89	2.83	1,040
01457500	Delaware River at Riegelsville, NJ			1906-71†, 1972-89	5-07-89	18.72	87,000
01464400	Crosswicks Creek at New Egypt, NJ	Lat 40°04'03", long 74°31'57", Ocean County, Hydrologic Unit 020401201, at upstream side of bridge on State Route 528 in New Egypt, and 300 ft downstrea from Oakford Lake Dam. Datum o gage is 43.46 ft above National Geodetic Vertical Datum of 1929	f	1968-89	7-06-89	26.2	1,920
01464515	Doctors Creek at Allentown, NJ	Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond dam. Datum of gage is 50.98 ft above National Geodetic Vertical Datum of 1929	17.4	1968-89	9-22-89 1-21-88	b4.29 b4.13	385 f365
01464530	Blacks Creek at Mansfield Square, NJ	Lat 40°07'02", long 74°41'58", Burlington County, Hydrologic Unit 02040202, at bridge on Mansfield Square-Crosswicks Road 0.4 mi east of Mansfield Square and 3.4 mi upstream from mouth. Datum of gage is 12.44 ft above National Geodetic Vertical Datum of 1929.	,	1978-89	7-06-89	b8.74	940

Annual maximum discharge at crest-stage partial-record stations during water year 1989--Continued

Station No.	Station name	Location	Drainage area (mi²)	Period of record	Annual Maximum		
					Date	Gage height (ft)	Discharge (ft ³ /s)
		Delaware River basin-	Continued				
01464538	Crafts Creek at Columbus, NJ	Lat 40°04'44", long 74°43'07", Burlington County, Hydrologic Unit 02040202, at bridge on Columbus-Mansfield road, 0.4 mi north of Columbus, and 6.0 mi northeast of Mount Holly. Datum of gage is 33.71 ft above National Geodetic Vertical Datum of 1929.	5.38	1978-89	7-06-89	ь10.25	880
01464582	Assiscunk Creek near Columbus, NJ	Lat 40°03'13", long 74°44'34", Burlington County, Hydrologic Unit 02040202, at bridge on Petticoat Bridge Road, 1.7 mi southwest of Columbus, 4.0 mi northeast of Mount Holly, and 0.1 mi downstream from Assiscunk Branch.	10.9	1978-89	7-06-89	b8.34	700
01465850	South Branch Rancocas Creek at Vincentown, NJ	Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, on left bank 150 ft downstream from highway bridge on Lumberton-Vincentown road, 0.8 mi west of Vincentown 2.9 mi southeast of Lumberton, and 3.1 mi upstream from Southwest Branch. Datum of gage is 13.17 ft above National Geodetic Vertical Datum of 1929		1962-75†, 1976-89	5-12-89	6.64	770
*01465880	Southwest Branch Rancocas Creek at Medford, NJ	Lat 39°53'43", long 74°49'26", Burlington County, Hydrologic Unit 02040202, at bridge on Argonne Highway (State Route 54 0.6 mi south of intersection of Argonne Highway and State Highway 70 at Medford, and 5.3 mi upstro	47.2 1),	1983-89	7-05-89	15.3	3,300
*01467305	Newton Creek at Collingswood, NJ	Lat 39°54'30", long 75°03'13", Camden County, Hydrologic Unit 02040202, at bridge on Park Avenue in Collingswood, 0.3 mi east of Cuthbert Avenue. Datum of gage is 18.74 ft above National Geodetic Vertical Datum of 1929.	1.33	1964-89	7-05-89	4.62	223
01467317	South Branch Newton Creek at Haddon Heights, NJ	Lat 39°52'45", long 75°04'26", Camden County, Hydrologic Unit 02040202, at bridge on Haddon Heights Park in Haddon Heights, and 2.6 mi south of Collingswood. Datum of gage is 23.34 ft above National Geodetic Vertical Datum of 1929.	.63	1964-89	7-05-89	4.55	185
01475000	Mantua Creek at Pitman, NJ	Lat 39°44'14", long 75°06'53", Gloucester County, Hydrologic Unit 02040202, on left abutment of Wadsworth Dam, 0.9 mi east o Pitman, and 2.0 mi upstream fro Porch Branch. Datum of gage is 68.51 ft above National Geodeti Vertical Datum of 1929.	f m	1940-76†, 1977-89	7-05-89	2.01	199
01477110	Raccoon Creek at Mullica Hill, NJ	Lat 39°44'10", long 75°13'30", Gloucester County, Hydrologic Unit 02040202, at bridge on State Routes 45 and 77 in Mullica Hill, 1,200 ft down- stream of Mullica Hill Pond, and 5.5 mi west of Pitman. Datum of gage is 21.91 ft above National Geodetic Vertical Datum of 1929.	15.6	1978-89	7-05-89	5.53	1,635

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Annual maximum discharge at crest-stage partial-record stations during water year 1989--Continued

					Annua		
Station No.	Station name	Location	Drainage area (mi ²)	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)
		Delaware River basin	Continued				
01477480	Oldmans Creek near Harrisonville, NJ	Lat 39°41'20", long 75°18'38", Salem County, Hydrologic Unit 02040206, at bridge on Harrison- ville Station Road, 2.4 mi west of Harrisonville, and 2.8 mi north of Woodstown. Datum of gage is 16.58 ft above National Geodetic Vertical Datum of 1929.		1975 - 89	5-02-89	5.05	278
01482500	Salem River at Woodstown, NJ	Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right side of Memorial Lake Dam at Woodstown, 0.2 mi upstream from small brook, and 0.3 mi downstream fro Pennsylvania-Reading Seashore Lines bridge. Datum of gage is 29.49 ft above National Geodetic Vertical Datum of 1929.		1940† 1942-84†, 1985-88, 1989†	7-05-89	12.45	1,060

Also a low-flow partial-record station. Operated as a continuous-record gaging station. Downstream side of bridge. Revised.

Low-flow partial-record stations

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

Discharge measurements made at low-flow partial-record stations during water year 1989 Measurements Period Drainage Discharge (ft³/s) Station Station Name Location of Date area No. record Maurice River basin Lat 39°40'23", long 75°07'50", Gloucester County, Hydrologic Unit 02040206, at bridge on Aura-Glassboro Road, 0.4 mi east of Aura, 1.0 mi upstream of Silver Lake, and 1966, 1976-84 01411450 6-21-89 Still Run at 3.21 Aura, NJ 1987-89 2.6 mi southeast of Glassboro. 1976-84 1987-89 01411462 9-11-89 Scotland Run at Lat 39°37'05", long 75°03'36" 14.8 16 of 39°37'05", long 75°03'350", Gloucester County, Hydrologic Unit 02040206, at bridge on State Route 538, 0.9 mi east of Franklinville, 2.7 mi upstream of Malaga Lake, and 2.8 mi southeast of Clayton. Franklinville, 1973-76, 01411880 Maurice River at Lat 39°24'01", long 75°05'15" 408 Cumberland County, Hydrologic Unit 02040206, at bridge on Sharp Street, Sharp Street, at Millville, NJ 1988 9-12-89 293 200 ft downstream from Union Lake, and 0.9 mi northwest of Millville. Lat 39°20'51", long 75°03'47", Cumberland County, at bridge on State Route 555 (Dividing Creek Road), 1.3 mi upstream of Gravelly Run, 1.8 mi west of Laurel Lake, and 3.6 mi south-west of Millville. 01411950 Buckshutem Creek 1976-77 b9-11-79 12.9 4.6 near Laurel 1980-84 Lake, NJ Delaware River basin Lat 41°03'03", long 74°51'23", Sussex County, Hydrologic Unit 02040105, at bridge on County Highway 612, 0.4 mi upstream from mouth, 0.5 mi southeast of Middleville, and 5.1 mi west of Newton. 01443475 Trout Brook near 24.0 1979-89 6-21-89 74 Middleville, Lat 40°59'12", long 74°57'35", Warren County, Hydrologic Unit 02040105, at bridge on Mill 01443510 Blairs Creek at 13.1 1989 6-21-89 33 Blairstown, NJ Brook Road, at Blairstown, 300 ft upstream from Blair Lake, 0.4 mi upstream of mouth, and 1.2 mi east of Jacksonburg. Lat 40°56'35", long 74°52'31", Warren County, Hydrologic Unit 02040105, at bridge on Bear Creek Road, 1.8 mi upstream of Trout Brook, and 1.5 mi south 01445200 1940-42, 6-21-89 Bear Creek near 12.9 41 Johnsonburg, NJ 1987-89 4.1 of Johnsonburg. Lat 40°53'44", long 75°01'04", Warren County, Hydrologic Unit 02040105, at bridge on Hope-Delaware Road, 2.3 mi northeast of Ramseyburg, 01445800 Honey Run near 1981-89 2.21 6-21-89 5.7 Ramseyburg, NJ -11-89 2.8 mi southwest of Hope, and 3.1 mi upstream from mouth. Lat 40°42'57, long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi_southeast of New Village, *01455200 Pohatcong Creek at New Village, NJ 1960-69a, 33.3 7-26-89 28 1970-89 and 4.3 mi upstream from Merrill Lat 40°42'25", long 75°06'54", Warren County, Hydrologic Unit 02040105, at bridge on Lows Hollow Road at Coopers-01455230 Merrill Creek at 3.85 1981-89 6-21-89 Coopersville, NJ ville, 0.9 mi north of Stewarts-ville, 2.1 mi upstream from mouth, and 3.3 mi east of Phillipsburg.

Discharge measurements made at low-flow partial-record stations during water year 1989--Continued

					Measurements		
Station No.	Station Name	Location	rainage area (mi ²)	Period of record	Date	Discharge (ft ³ /s)	
		Delaware River basinCor	ntinued				
01455780	Lubbers Run at Lockwood, NJ	Lat 40°55'36", long 74°43'09", Sussex County, Hydrologic Unit 02040105, at bridge on U.S. Route 206 at Lockwood, 1.0 mi upstream from mouth, and 1.5 mi northwest of Stanhope.	16.3	1982-89	9-11-89	1.5	
01461300	Wickecheoke Creek at Stockton, NJ	Lat 40°24'41", long 74°59'13", Hunterdon County, Hydrologic Unit 02040105, at bridge on State Highway 29, at Prallsville, 0.2 mi upstream of mouth, and 0.6 mi northwest of Stockton.	26.6	1958-62, 1964, 1977-83, 1987-89	7-27-89	7.5	
01465884	Sharps Run at Route 541, at Medford, NJ	Lat 39°54'18", long 74°49'30", Burlington County, Hydrologic Unit 02040202, at bridge on State Route 541 (Argonne Highway) in Medford, 0.7 mi upstream from mouth, 1.2 mi northeast of Oliphants Mills, and 2.6 mi northwest of Medford Lakes.	4.41	1982-89	6-21-89 9-11-89	2.6	
01465898	Little Creek near Lumberton, NJ	Lat 39°56'16", long 74°47'38", Burlington County, Hydrologic Unit 02040202, at bridge on Eayrestown Road, 0.6 mi upstream from mouth, 1.9 mi southeast of Lumberton, and 3.0 mi northeast of Medford.	19.2	1982-89	6-21-89 9-11-89	14 3.1	
01467130	Cooper River at Kirkwood, NJ	Lat 39°50'11", long 75°00'06", Camden County, Hydrologic Unit 02040202, at outlet of Kirkwood Lake in Kirkwood, 100 ft east of tracks of Pennsylvania-Reading Seashore Lines, and 1.0 mi north of Laurel Springs.	5.18	1964-72, 1988-89	6-21-89 9-07-89	6.0	
01467140	Cooper River at Lawnside, NJ	Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, on right bank at Lawnsidd 300 ft downstream of Lawnside sewa treatment plant and 0.2 mi upstream of New Jersey Turnpike.	ge	1964-72, 1988-89	6-21-89 9-07-89	13 7.3	
01467160	North Branch Cooper River near Marlton, NJ	Lat 39°53'20", long 74°58'08", Burlington County, Hydrologic Unit 02040202, at bridge on Springdale Road, 2.5 mi west of Marlton, and 5.7 mi southwest of Moorestown.	5.34	1965-69, 1971, 1988-89	6-21-89 9-07-89	7.8 5.7	
01467180	North Branch Cooper River at Ellisburg, NJ	Lat 39°54'27", long 75°00'42", Camden County, Hydrologic Unit 02040202, on Brace Road, 0.4 mi south of Ellisburg, and 0.9 mi upstream from confluence with Coope River.	10.5 er	1964-69, 1971-72, 1977, 1988-89	6-21-89 9-07-89	14 10	

Also a crest-stage partial-record station.
 a Operated as continous-record gaging station.
 b Not previously published.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*).

Discharge measurements made at miscellaneous sites during water year 1989

				Drainage	Measured previously	Measi	urements
Stream	Tributary to		Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
			Delaware River	basin			
01443440 Paulins Kill	Delaware River	Sussex 020401 2.3 mi	6'20", long 74°45'19", County, Hydrologic uni 05, at bridge in Balesv upstream from Paulins and 3.0 mi north of New	Kill	1979-82, 1985, 1988	7-24-89	46
01446400 Pequest River	Delaware River	Warren 020401 Route	9'45", long 75°04'44", County, Hydrologic Uni 05, at bridge on State 519, in Belvidere, and ft upstream of mouth.	157 t	1950,53, 1977-82, 1984-88	2-28-89 8-18-89 7-26-89	180 123 31
01455801 Musconetcong River	Delaware River	Sussex 020401 road a from L	5'10", long 74°44'07", County, Hydrologic Uni 05, at bridge on unname t Lockwood, 0.2 mi down ubbers Run, and 1.5 mi f Stanhope.	stream	1979-83, 1985-88	7-26-89	31
01456200 Musconetcong River	Delaware River	Warren 020401 Highwa upstre	8'48", long 74°50'32", County, Hydrologic Uni 05, at bridge on Kings y at Beattystown, 1.6 m am from Hances Brook an west of Schooleys Moun	i d	1973, 1979-81, 1983, 1985-88	7-26-89	70
01457400 Musconetcong River	Delaware River	Warren 020401 Route mi nor	5'32", long 75°11'11", County, Hydrologic Uni 05, at bridge on County 627, at Riegelsville 0. th of Mount Joy, and 0. am from mouth.	156 t 2 2 mi	1940-55, 1973, 1977, 1987-88	7-26-89	171
01460440 Delaware and Raritan Canal	Raritan River	Mercer 020401	8'17", long 74°41'06", County, Hydrologic Uni 05, at bridge on State Port Mercer, 2.5 mi ea ceville and 3.0 mi sout ton.	t Route st of h of	4-	12-08-88 1-19-89 1-24-89 2-13-89 2-13-89 2-23-89 3-89 a 10 04-89 a 12 04-89 a 14 4-13-89 4-28-89 6-01-89 6-01-89 6-07-89 8-15-89 8-29-89 9-25-89	55 25
01462198 Moore Creek tributary	Delaware River	Mercer 020401 picnic ski sl	0'09", long 74°54'59", County, Hydrologic Uni 05, at the Valley Road area near Belle Mounta ope, 0.1 mi downstream Road, and 0.6 mi upstr	in of		8-15-89	
01465970 North Branch Rancocas Creek	Rancocas Creek	Burlin Unit O Lakehu at out	8'04", long 74°34'48", gton County, Hydrologic 2040202, at bridge on Irst Road in Browns Mill flow of Mirror Lake, an east of Pemberton.	s,	1979-81, 1985-88	9-12-89	21
01467120 Cooper River	Delaware River	Camden Unit 0 Norcro end of wold,	9'43", long 74°58'55", County, Hydrologic 2040202, at bridge on ss Road, at downstream Linden Lake at Linden- and 0.4 mi upstream licholson Branch.	1.13	1971, 1979-81, 1985-88	b8-10-89	0

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

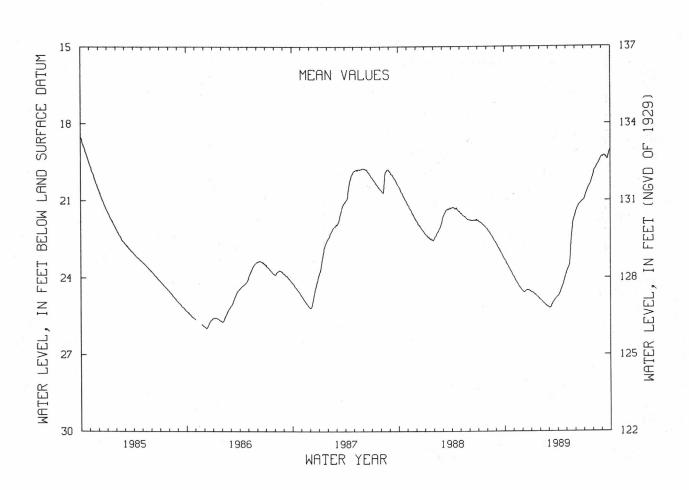
Discharge measurements made at miscellaneous sites during water year 1989--Continued

				Measured	Measurements		
Stream	Tributary to	Location	Drainage area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)	
		Delaware River basinCo	ntinued				
01467329 South Branch Big Timber Creek	Big Timber Creek	Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, just upstream from Bull Run, 1,000 ft down- stream of Blackwood Avenue, and 0.5 mi southeast of Blackwood Terrace.	19.1	1979-81, 1985-88	8-10-89	30	
01477510 Oldmans Creek	Delaware River	Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 1.0 mi north of Seven Stars, and 3.1 mi north of Woodstown.	21.0	1979-83, 1987-88	9-30-88	23	

Peak discharge. Temporary regulation, Linden Lake refilling.

The following table contains annual maximum elevations for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are converted to elevations above National Geodetic Vertical Datum of 1929 unless otherwise noted. Only the maximum elevation is given. Information on some other high stages may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum elevation at tidal crest-stage partial-record stations during water year 1989


				Annual Maximum			
Station No.	Station name	Location	Period of record	Date	Elevation NGVD* (ft)		
01413038	Cohansey River at Greenwich, NJ	Lat 39°23"02", long 75°20'58", Cumberland County, Hydrologic Unit 02040206, at Greenwich Pier, 0.7 mi southwest of Greenwich, and 5.8 mi south- west of Shiloh.	1979-89	9-22-89	5.72		
01464040	Delaware River at Marine Terminal, Trenton, NJ	Lat 40°11'21", long 74°45'22", Mercer County, Hydrologic Unit 02040202, on left bank at downstream end of wharf at Marine Terminal, Trenton,	1921-46†, 1951-54†, 1957-89†a	5-31-89	8.54		
		1.6 mi downstream from toll bridge on U.S. Route 1, 2.0 mi downstream from Assunpink Creek, and at mile 131.80.	90 (1443)	ngag mesa 1 ga Padag			

National Geodetic Vertical Datum of 1929. Operated as a continuous-record gaging station. Operated by National Ocean Service since March 1975.

395150074284201. Local I.D., Lebanon State Forest 23-D Obs. NJ-WRD Well Number, 05-0689.
LOCATION.--Lat 39°51'52", long 74°28'48", Hydrologic Unit 02040202, in Lebanon State Forest, Woodland Township.
Owner: U.S. Geological Survey.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 8 in, depth 33 ft, open-end cement casing.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 152.02 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 8 inch casing, 0.70 ft above land-surface datum.
PERIOD OF RECORD.--September 1955 to April 1975, January 1979 to current year. Records for 1955 to 1975 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.37 ft below land-surface datum, Sept. 11, 1958; lowest, 25.97 ft below land-surface datum, Dec. 8-10, 1985.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					М	EAN VALUE	S					
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	23.37 23.48 23.59 23.70 23.80 23.94	24.03 24.14 24.25 24.33 24.42 24.49	24.55 24.54 24.49 24.48 24.49 24.54	24.58 24.62 24.66 24.71 24.78 24.83	24.90 24.96 25.01 25.07 25.11 25.13	25.16 25.11 24.98 24.89 24.81 24.74	24.68 24.54 24.39 24.23 24.04 23.85	23.69 23.55 23.06 22.20 21.80 21.54	21.38 21.24 21.15 21.09 21.03 20.99	20.85 20.66 20.54 20.41 20.30 20.07	19.85 19.75 19.63 19.55 19.44 19.31	19.30 19.24 19.29 19.37 19.20 19.03
MEAN	23.61	24.24	24.52	24.68	25.00	24.97	24.35	22.76	21.18	20.52	19.63	19.26
WTR YR	1989	MEAN 22.88	HIGH 19	.03 SEP 2	9,30 LO	W 25.16 M	IAR 4-8					

395524074502501. Local I.D., Medford 1 Obs. NJ-WRD Well Number, 05-0258. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford

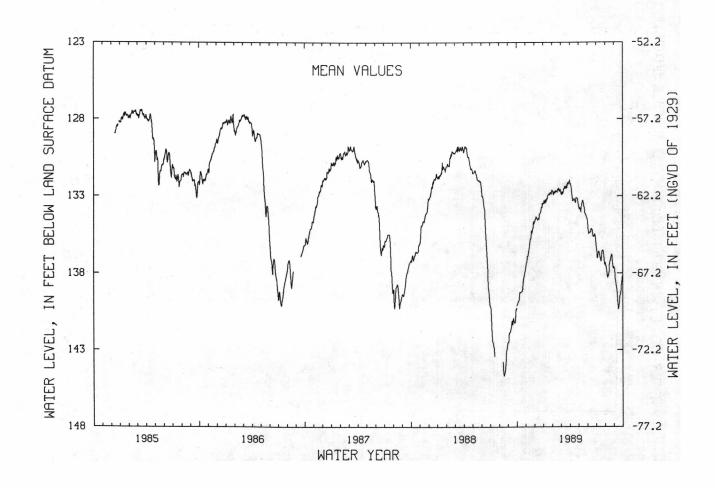
Township.
Owner: U.S. Geological Survey.

AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 410 ft, screened 400 to 410 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977

MEAN 135.28 HIGH 131.88 MAR 31

DATUM.--Land-surface datum is 70.77 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of coupling, 2.70 ft above land-surface datum.


PERIOD OF RECORD.--October 1963 to August 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 85.22 ft below land-surface datum, Feb. 16-19, 1964; lowest, 144.81 ft below land-surface datum, Aug. 17,18, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL AUG SEP 133.48 133.39 132.96 132.85 132.83 132.33 133.21 133.24 133.43 133.13 133.90 133.70 133.33 133.69 134.18 135.43 135.35 135.12 135.62 135.57 139.83 137.01 137.02 137.66 138.45 134-45 139.12 140.34 139.51 138.91 134.43 134.41 134.18 133.70 10 15 139.42 139.23 139.18 136.60 136.06 135.32 135.08 132.68 132.35 132.44 132.11 138.25 137.53 132.76 132.66 132.60 132.69 136.56 137.02 136.96 137.13 20 25 136.65 138.23 136.61 EOM 137.85 134.76 133.45 132.60 132.63 131.96 134.56 136.14 137.42 137.59 138.16 139.07 MEAN 139.08 136.03 134.18 137.52 133.06 132.68 132.48 133.02 133.84 135.39 136.83 WTR YR 1989

LOW 140.50 SEP 16

395525074502601. Local I.D., Medford 4 Obs. NJ-WRD Well Number, 05-0262. LOCATION.--Lat 39°55'24", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.

Owner: U.S. Geological Survey.

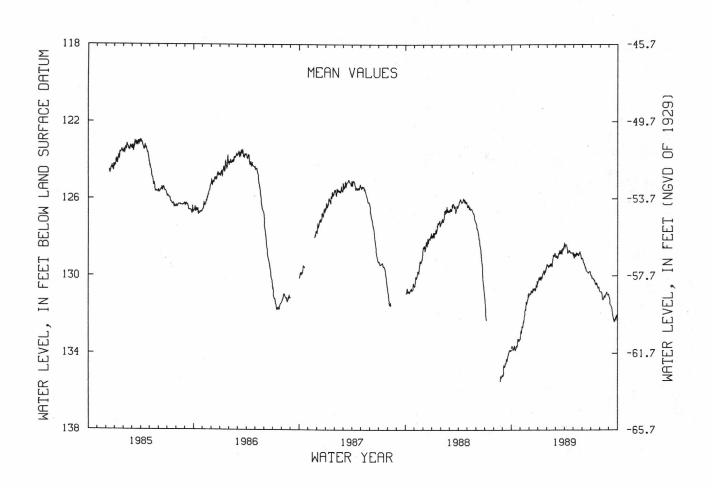
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 1,145 ft, screened 1,125 to 1,145 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977 to December 1984.

December 1984.

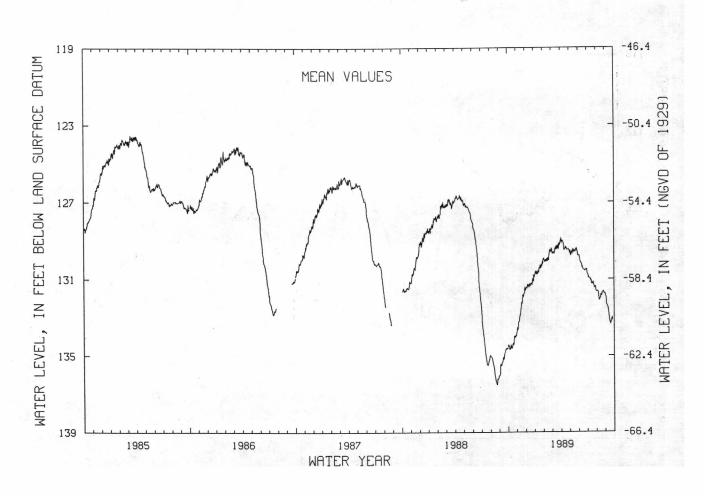
DATUM.--Land-surface datum is 72.32 ft above National Geodetic Vertical Datum of 1929.


Measuring point: Top edge of recorder shelf, 2.40 ft above land-surface datum.

PERIOD OF RECORD.--January 1968 to July 1975, February 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.24 ft below land-surface datum, Mar. 13, 1968; lowest, 135.51 ft below land-surface datum, Aug. 23, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


	MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5 10 15 20 25 EOM	133.74 133.69 133.80 133.69 133.28 133.27	132.66 132.40 132.01 131.35 131.24 131.01	130.93 130.75 130.66 130.68 130.45	130.21 130.21 129.88 129.72 129.81 129.44	129.53 129.46 129.35 129.20 128.98 128.94	128.95 128.99 128.69 128.83 128.56 128.28	128.41 128.71 128.73 128.82 128.81 128.92	129.03 128.86 128.93 128.88 128.87 129.09	129.30 129.42 129.73 129.84 129.80 129.98	130.10 130.17 130.42 130.35 130.65 130.81	130.78 131.24 131.09 130.97 130.94 131.06	131.49 131.65 132.12 132.29 132.27 132.01	
MEAN	133.59	131.95	130.69	129.92	129.29	128.80	128.69	128.93	129.61	130.37	130.98	131.91	
WTR YR	1989	MEAN 130.4	HOTH OA	128.19 MAR	31 100	J 133 03	OCT 14						

395525074502505. Local I.D., Medford 5 Obs. NJ-WRD Well Number, 05-0261.
LOCATION.--Lat 39°55'25", long 74°50'25", Hydrologic Unit 02040202, at Medford Public Shooting Grounds, Medford Township.
Owner: U.S. Geological Survey.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
MELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 750 ft, screened 740 to 750 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 72.60 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.60 ft above land-surface datum.
PERIOD OF RECORD.--January 1968 to March 1975, March 1977 to current year. Records for 1968 to 1977 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 94.46 ft below land-surface datum, Mar. 1, 1968; lowest, 136.57 ft below land-surface datum, Aug. 23, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

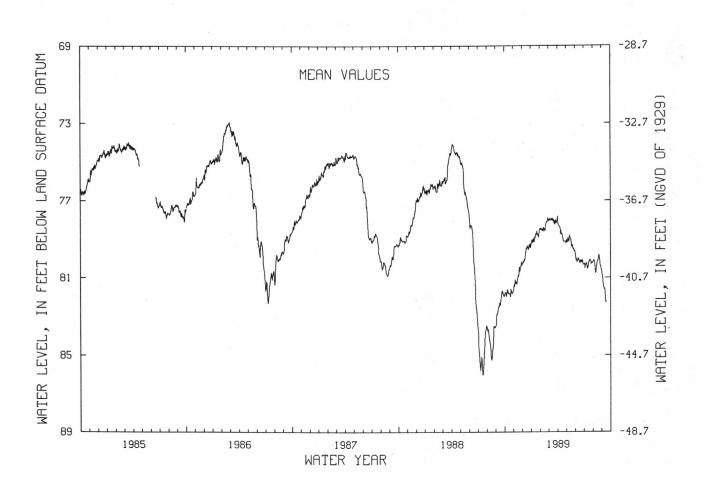
						MEAN VALU	ES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	134.56 134.51 134.54 134.43 133.96 133.93	132.92 132.49 131.82 131.75	131.43 131.28 131.25 131.25 130.97 130.79	130.74 130.74 130.41 130.25 130.30 129.96	130.07 130.04 129.88 129.75 129.55 129.52	129.57 129.55 129.28 129.40 129.14 128.86	129.03 129.38 129.38 129.47 129.45 129.60	129.71 129.52 129.57 129.48 129.52 129.76	130.03 130.18 130.45 130.54 130.51 130.73	130.90 130.96 131.22 131.14 131.44 131.63	131.59 132.10 131.88 131.71 131.67 131.87	132.33 132.56 133.13 133.20 133.09
MEAN	134.34	132.49	131.22	130.44	129.84	129.39	129.33	129.58	130.33	131.16	131.78	132.78
UTP YP	1080	MEAN 131	па нтен	128 77 MAD	31 10	u 17/ 72	OCT 7		11	(= X	100	

400010074521601. Local I.D., Willingboro 2 Obs. NJ-WRD Well Number, 05-0645. LOCATION.--Lat 40°00'10", long 74°52'16", Hydrologic Unit 02040202, near intersection of Bridge Street and Tiffany Lane, Willingboro Township.

Owner: Willingboro Municipal Utilities Authority.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 441 ft, screened 431 to 441 ft.


WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 441 ft, screened 431 to 441 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 40.30 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.00 ft below land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping.
PERIOD OF RECORD.--March 1966 to September 1975, March 1977 to current year. Records for 1966 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 49.79 ft below land-surface datum, June 21, 1967; lowest, 86.22 ft below land-surface datum, July 18, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES SEP DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL AUG 81.77 81.70 81.80 81.91 81.81 79.20 79.15 78.73 78.58 78.92 80.41 80.25 80.47 80.09 80.30 5 10 15 80.13 81.29 81.56 82.24 81.16 80.10 80.15 78.51 79.99 79.43 79.44 79.28 79.25 78.50 78.46 78.32 78.04 77.99 78.62 78.73 79.12 79.14 79.27 78.98 78.95 79.34 79.54 79.79 79.98 80.15 80.17 80.09 81.20 81.05 80.45 80.42 80.29 77.98 77.91 78.16 78.00 80.76 20 25 79.88 80.32 80.77 - - -EOM 81.68 78.49 80.36 80.20 77.81 81.58 MEAN 81.80 80.90 79.66 78.87 78.36 78.04 78.75 79.23 80.13 80.28 80.29

WTR YR 1989 MEAN 79.76 HIGH 77.68 MAR 31 LOW 82.45 SEP 13

400242074422301. Local I.D., Rhodia Corp. 1 Obs. NJ-WRD Well Number, 05-0440. LOCATION.--Lat 40°02'42", long 74°42'23", Hydrologic Unit 02040201, on the lands of Rhodia Corporation near Jobstown. Owner: Rhodia Corporation.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 615 ft, screened 603 to 613 ft.
INSTRUMENTATION.--Water-level extremes recorder, April 1977 to current year. Water-level recorder, December 1968 to March 1975.

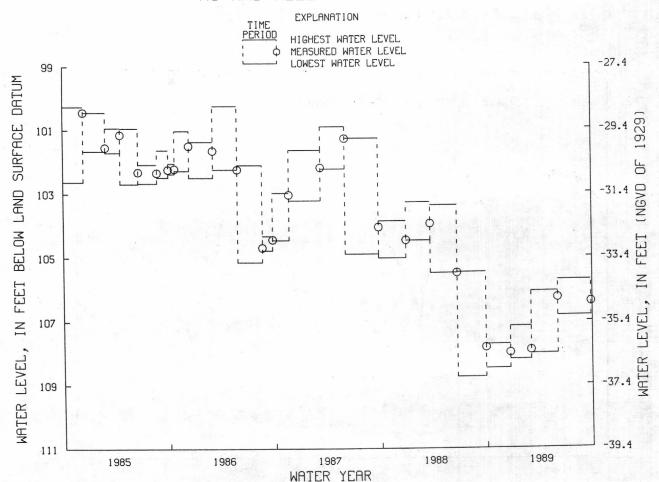
March 1975.

DATUM.--Land-surface datum is 71.65 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.22 ft above land-surface datum.

PERIOD OF RECORD.--December 1968 to March 1975, April 1977 to current year. Records for 1968 to 1975 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 86.55 ft below land-surface datum, Dec. 31, 1969; lowest, 108.74 ft below land-surface datum, between Jun. 21 and Sep. 28, 1988.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

	PERIOD	HIGHEST WATER LEVEL	LOWEST WATER LEVEL	DATE	WATER LEVEL
SEPT. 28	, 1988 TO DEC. 21, 1988	107.71	108.47	DEC. 21, 1988	107.98
DEC. 21	, 1988 TO MAR. 2, 1989	107.15	108.19	MAR. 2, 1989	107.90
MAR. 2	, 1989 TO JUNE 2, 1989	106.07	108.01	JUNE 2, 1989	106.27
JUNE 2	, 1989 TO SEPT. 26, 1989	105.72	106.83	SEPT. 26, 1989	106.40

CAMDEN COUNTY

394922074563301. Local I.D., Elm Tree Farm 2 Obs. NJ-WRD Well Number, 07-0412.
LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft northeast of Thomas Road and about 2 mi northwest of Berlin. 394922074563301.

Owner: New Jersey - American Water Company.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 1,092 ft, screened 1,082 to 1,092 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977 to

December 1984

MEAN 224.48 HIGH 220.44 APR 8

WTR YR 1989

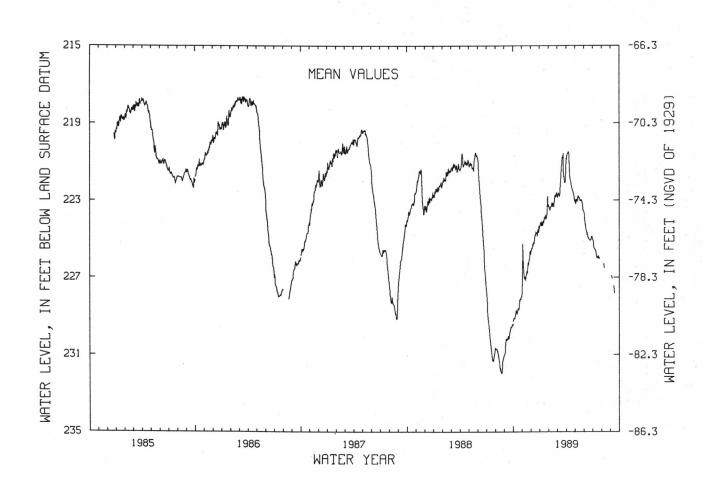
December 1984.

DATUM.--Land-surface datum is 148.68 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 2.80 ft above land-surface datum.

REMARKS.--Well was originally screened 1,217 to 1,227 ft; rehabilitated August 1969. Missing record from August 11 to September 2 and from September 16-30 was due to recorder malfunction.

PERIOD OF RECORD.--January 1963 to June 1975, February 1977 to current year. Records for 1963 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 166.06 ft below land-surface datum, July 21, 1965; lowest, 232.01 ft below land-surface datum, Aug. 22, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES AUG SEP DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL 220.63 220.63 221.95 222.40 222.61 224.21 224.63 224.92 225.03 225.05 226.53 226.98 226.91 226.31 226.02 225.46 225.18 224.78 224.71 224.52 223.09 222.89 222.85 222.96 223.09 224.34 224.31 223.89 223.76 223.64 223.42 223.26 223.16 223.01 222.77 222.61 222.62 221.25 220.77 221.82 225.43 229.12 228.79 228.79 228.79 228.70 228.13 225.43 225.57 225.98 225.88 226.02 10 15 20 25 226.66 ---225.02 EOM 227.81 220.85 226.09 ---228,63 226.47 224.93 223.04 225.71 MEAN 223.88 223.11 221.92 221.73 224.70

NJ-WRD WELL NO.07-0412

LOW 229.34 OCT 1

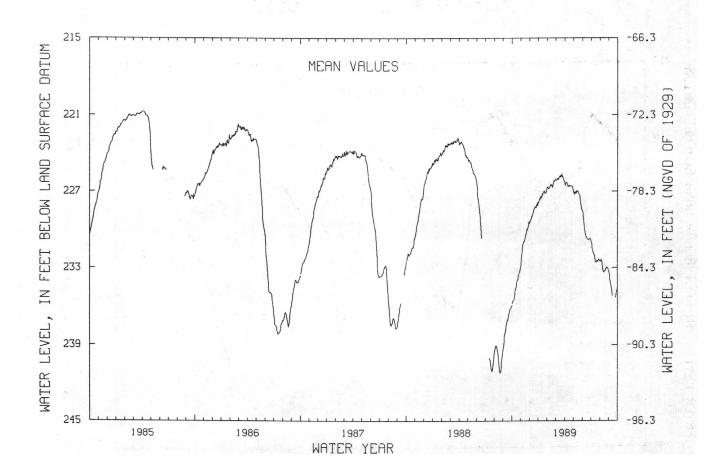
WTR YR 1989

MEAN 229.63

CAMDEN COUNTY

394922074563302. Local I.D., Elm Tree Farm 3 Obs. NJ-WRD Well Number, 07-0413. LOCATION.--Lat 39°49'22", long 74°56'30", Hydrologic Unit 02040202, about 200 ft northeast of Thomas Road and about 2 miles northwest of Berlin.

HIGH 225.55 MAR 21


2 miles northwest of Berlin.
Owner: New Jersey - American Water Company.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 717 ft, screened 706 to 717 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 148.73 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 0.60 ft above land-surface datum.
PERIOD OF RECORD.--December 1963 to April 1975, March 1977 to current year. Records for 1963 to 1977 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 174.21 ft below land-surface datum, Feb. 6, 1964; lowest, 241.24 ft below land-surface datum, Aug. 20, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES DAY OCT JUL AUG SEP NOV DEC FEB JUN JAN MAR APR MAY 229.44 230.30 230.68 230.82 230.75 230.96 235.53 234.95 234.27 233.94 233.38 232.34 233.15 233.36 233.14 232.99 226.76 226.34 10 15 20 25 230.94 230.65 230.00 229.77 229.45 228.81 228.41 228.24 228.01 227.50 227.07 226.96 227.13 226.67 226.55 226.50 226.45 226.18 226.09 226.01 225.75 225.79 225.79 226.25 227.02 227.04 227.25 227.90 226.56 234.67 232.49 232.46 232.44 232.50 226.59 226.61 226.59 227.05 235.23 227.84 233.31 234.55 EOM 228.58 MEAN 234.31 230.58 228.52 230.32 232.13 232.97 234.51 227.21 226.47 225.96 226.57 227.42

NJ-WRD WELL NO.07-0413

LOW 235.82 OCT

CAMDEN COUNTY

395229074571201. Local I.D., Hutton Hill 1 Obs. NJ-WRD Well Number, 07-0117.
LOCATION.--Lat 39°52'29", long 74°57'12", Hydrologic Unit 02040202, about 800 ft northeast of intersection of Kresson and Cropwell Roads, Cherry Hill Township.
Owner: New Jersey - American Water Company.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 562 ft, screened 552 to 562 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, February 1977 to December 1984.
DATUM.--Landseurfere detem in 457 (4 ft)

MEAN 246.08 HIGH 240.55 MAR 5

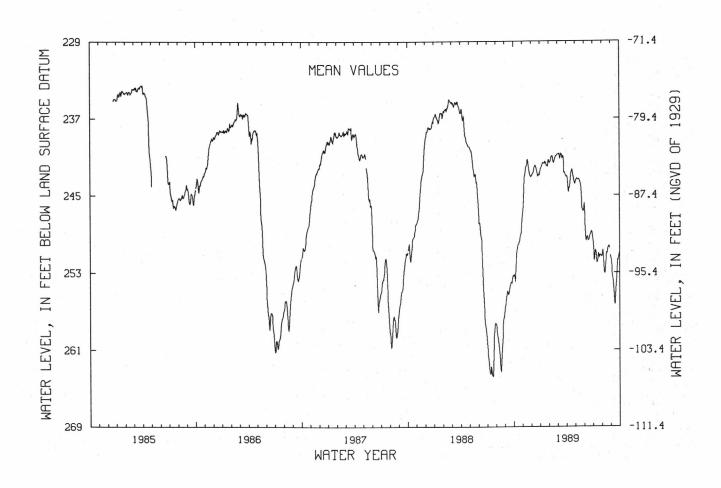
WTR YR 1989

December 1984.

DATUM.--Land-surface datum is 157.61 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top edge of recorder shelf, 1.60 ft above land-surface datum.

PERIOD OF RECORD.--August 1967 to April 1975, February 1977 to current year. Records for 1967 to 1975 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 200.77 ft below land-surface datum, Mar. 23, 1968; lowest, 263.74 ft below land-surface datum, July 20, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES DAY OCT **AUG** SEP NOV DEC JAN **FEB** MAR **APR** MAY JUN JUL 249.11 249.27 249.67 249.12 248.73 251.13 253.06 251.34 250.52 250.23 253.26 254.82 255.76 253.44 251.72 253.74 251.14 250.07 249.79 248.96 242.84 242.08 242.02 242.59 242.84 241.97 241.66 241.49 241.67 242.00 240.63 240.80 240.84 241.09 5 10 15 20 25 242.31 241.72 241.94 242.94 243.37 243.45 244.29 246.45 244.12 242.89 242.47 243.29 250.68 251.94 250.95 251.21 240.90 241.60 241.13 240.88 EOM 243.03 242.33 249.65 251.35 250.94 246.89 245.79 243.73 MEAN 250.48 242.83 242.55 241.72 249.03 251.24 251.30 253.32 241.16 241.51 243.40 244.44

NJ-WRD WELL NO.07-0117

LOW 256.32 SEP 13

385607074555201. Local I.D., West Cape May 1 Obs. NJ-WRD Well Number, 09-0150. LOCATION.--Lat 38°56'07", long 74°55'56", Hydrologic Unit 02040206, on the north side of Sunset Boulevard, West Cape May Borough.

Owner: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 293 ft, screened 283 to 293 ft.

INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, July 1957 to

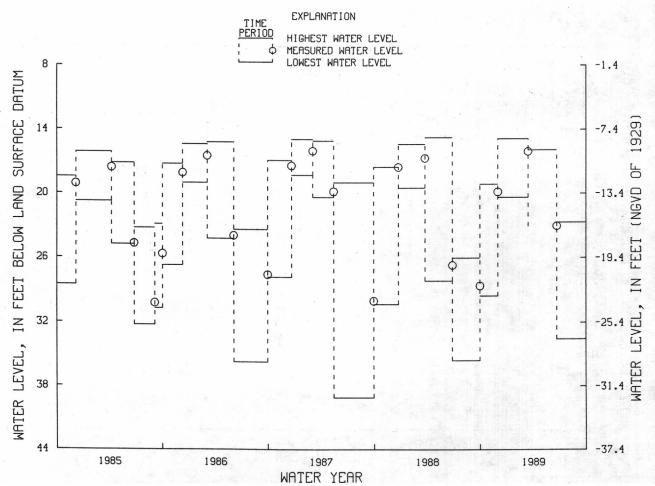
December 1972.

DATUM.--Land-surface datum is 6.60 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.88 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--July 1957 to December 1972, May 1977 to current year. Periodic manual measurements, February 1973 to September 1976. Records for 1957 to 1982 are unpublished and are available in files of New Jersey District


Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.38 ft below land-surface datum, between Jan. 10 and Apr. 10, 1984; lowest, 41.30 ft below land-surface datum, Sept. 3, 1963.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

	WATER-LEVEL EXTRE	MES		MEASURED WATER LEVEL					
	PERIOD	HIGHEST WATER LEVEL	LOWEST Water Level	DATE	WATER LEVEL				
SEPT. 30	1988 TO DEC. 1, 1988	19.13	29.53	DEC. 1, 1988	19.85				
DEC. 1	1988 TO MAR. 14, 1989	14.88	20.36	MAR. 14, 1989	16.06				
MAR. 14	1989 TO JUNE 21, 1989	15.91		JUNE 21, 1989	23.05				
JUNE 21	1989 TO OCT. 3, 1989	22.70	33.55	OCT. 3, 1989	25.90				

385804074574201. Local I.D., Higbee Beach 3 Obs. NJ-WRD Well Number, 09-0049. LOCATION.--Lat 38°58'04", long 74°57'42", Hydrologic Unit 02040206, on the north bank of the west end of the Cape May

LOCATION.--Lat 38*58'04", long 74*57'42", Hydrologic Unit 02040206, on the north bank of the west end of the Cape MacCanal, Lower Township.

OWNER: U.S. Geological Survey.

AQUIFER.--Cohansey Sand of Miocene age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 250 ft, screened 241 to 250 ft.

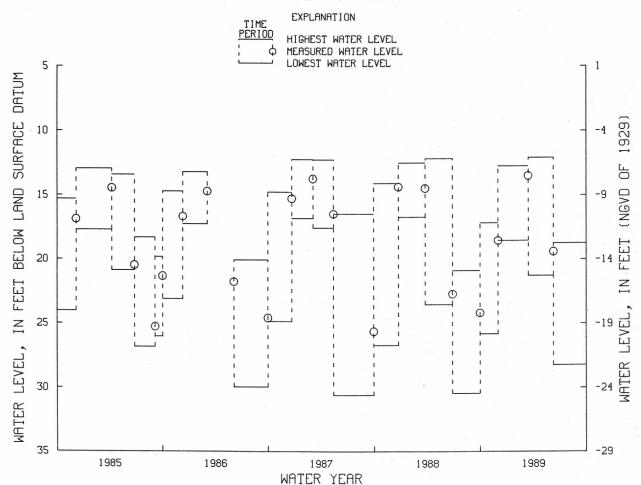
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, June 1965 to September 1975.

DATUM.--Land-surface datum is 6.00 ft above National Geodetic Vertical Datum of 1929.

Measuring Point: Front edge of cutout in recorder housing, 2.93 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--June 1965 to September 1975, May 1977 to current year. Records for 1975 to 1980 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.10 ft below land-surface datum, between Mar. 14 and Jun. 9, 1989; lowest, 34.22 ft below land-surface datum, July 31, 1974.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

	PERIOD		HIGHEST WATER LEVEL	LOWEST WATER LEVEL	DATE	WATER
SEPT. 30	, 1988 TO DEC.	1, 1988	17.18	25.83	DEC. 1, 1988	18.56
DEC. 1	, 1988 TO MAR.	14, 1989	12.75	18.56	MAR. 14, 1989	13.51
MAR. 14	, 1989 TO JUNE	9, 1989	12.10	21.27	JUNE 9, 1989	19.42
JUNE 9	, 1989 то ост.	3, 1989	18.75	28.23	OCT. 3, 1989	21.95

390425074544601. Local I.D., Oyster Lab 4 Obs. NJ-WRD Well Number, 09-0089.
LOCATION.--Lat 39°04'25", long 74°54'46", Hydrologic Unit 02040206, at the Rutgers Oyster Laboratory near Green Creek, Middle Township.
Owner: U.S. Geological Survey.
AQUIFER.--Cohansey Sand of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 210 ft, screened 195 to 210 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, August 1957 to August 1975.

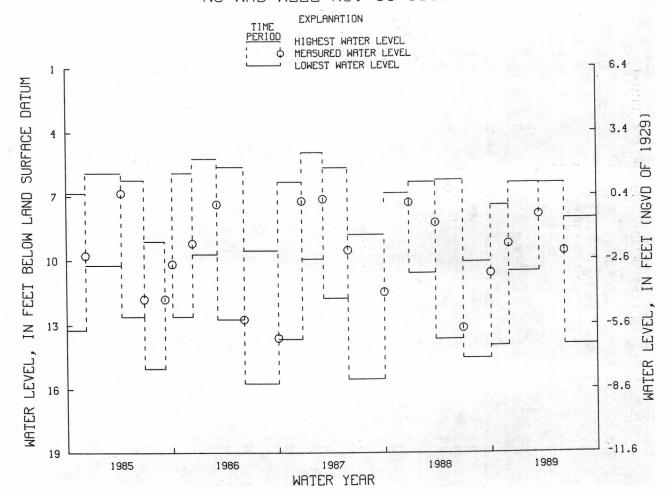
August 1975.

DATUM.--Land-surface datum is 7.37 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 3.90 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--August 1957 to August 1957, May 1977 to current year. Periodic manual measurements, September 1975 to April 1977. Records for 1957 to 1982 are unpublished and are available in files of New Jersey District Office.


EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 2.07 ft below land-surface datum, Apr. 3, 1958; lowest, 15.71 ft below land-surface datum, between June 4 and Sept. 30, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

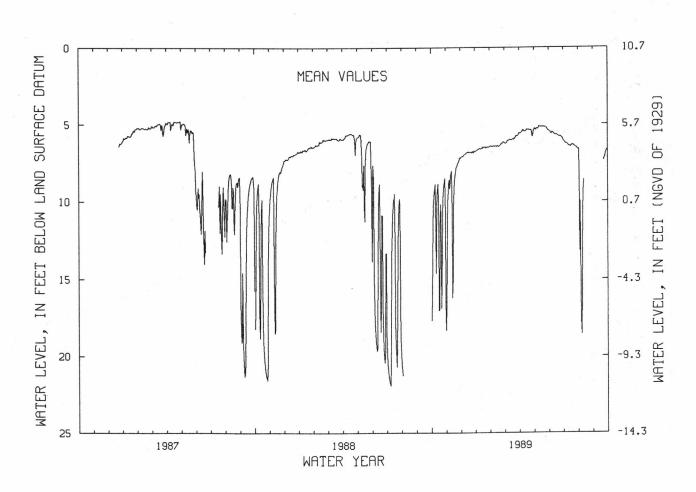
WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

PERIOD			HIGHEST WATER LEVEL	LOWEST WATER LEVEL		DATE				WATER LEVEL						
SE	PT.	30,	1988	то	DEC.	1,	1988	7.44	13.96		DEC.	1,	1988		9.25	
DE	EC.	1,	1988	TO	MAR.	14,	1989	6.38	10.53		MAR.	14,	1989		7.87	
M/	AR.	14,	1989	то	JUNE	9,	1989	6.40	• • • • • • • • • • • • • • • • • • • •		JUNE	9,	1989	ari.	9.60	
JL	JNE	9,	1989	то	OCT.	3,	1989	8.06	13.91	*	OCT.	3,	1989	1	8.32	

390608074483801. Local I.D., Cape May County Park T8 Obs. NJ-WRD Well Number, 09-0099. LOCATION.--Lat 39°06'11", long 74°48'38", Hydrologic Unit 02040206, at the Cape May County Park on Rt. 9, Middle Township.

Middle Township.
Owner: U.S. Geological Survey.

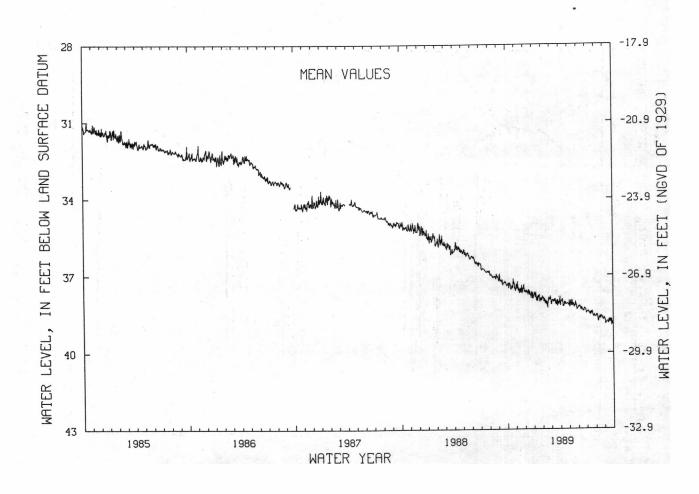

AQUIFER.--Cohansey Sand of Miocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 230 ft, screened 215 to 230 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 10.73 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.20 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Missing record from August 13 to September 21 was due to recorder malfunction.
PERIOD OF RECORD.--October 1957 to current year. Periodic manual measurements, January 1959 to December 1960 and from November 1968 to November 1986. Records from 1957 to 1987 are unpublished and are available in files of the New Jersey District Office.

the New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.73 ft below land-surface datum, April 5, 1958; lowest, 22.01 ft below land-surface datum, July 9, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					ME	EAN VALUES	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	9.73 14.62 11.49 11.12 9.27 18.32	8.87 8.15 10.46 7.91 7.50 7.17	7.11 6.92 6.82 6.84 6.80 6.77	6.71 6.64 6.51 6.48 6.53 6.44	6.46 6.44 6.41 6.41 6.21 6.20	6.22 6.05 6.04 6.00 5.75 5.57	5.52 5.44 5.40 5.36 5.38 5.37	5.33 5.17 5.17 5.14 5.21 5.41	5.60 5.57 5.66 5.76 5.82 6.04	6.24 6.34 6.48 6.48 6.48	15.56 9.38 	7.06 6.62
MEAN	11.92	9.23	6.90	6.57	6.38	5.98	5.46	5.23	5.69	6.38	••••	
WTR YR	1989 M	EAN 7.16	HIGH 5.0	9 MAY 11	LOW 19.	16 OCT 2						



CUMBERLAND COUNTY

391828075120902. Local I.D., Jones Island 2 Obs. NJ-WRD Well Number, 11-0096.
LOCATION.--Lat 39°18'29", long 75°12'08", Hydrologic Unit 02040206, in Nantuxent Wildlife Management Area, about 1.7 mi south of Cedarville, Lawrence Township.
Owner: Cumberland County.
AQUIFER.--Piney Point aquifer of Eocene age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 375 ft, screened 365 to 375 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 10.10 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.90 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation. Well was pumped on Sept. 22, 1986. After pumping, the water level did not recover to its previous level. The screen may have been partially clogged.
PERIOD OF RECORD.--March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 19.99 ft below land-surface datum, Mar. 22, 1977; lowest, 39.00 ft below land-surface datum, Sept. 24, 1989.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	37.29 37.28 37.51 37.49 37.29 37.60	37.47 37.64 37.37	37.67 37.60 37.57 37.72 37.68 37.79	37.84 37.95 37.78 37.74 37.96 37.83	37.97 38.04 38.04 38.04 37.92 37.95	37.95 37.98 37.90 38.09 37.96 37.81	38.01 38.13 38.07 38.12 38.11 38.15	38.14 37.99 38.15 38.17 38.12 38.28	38.24 38.21 38.27 38.38 38.28 38.46	38.39 38.44 38.53 38.39 38.63 38.59	38.51 38.79 38.63 38.59 38.68 38.71	38.87 38.77 38.77 38.72 38.92 38.90
MEAN	37.40	37.50	37.68	37.84	37.98	38.01	38.08	38.14	38.29	38.48	38.63	38.80
WTR YR	1989	MEAN 38.07	HIGH 37	,00 OCT 2	1 LOW 3	9.00 SEP	24					

CUMBERLAND COUNTY

392731075092401. Local I.D., Vocational School 2 Obs. NJ-WRD Well Number, 11-0042. LOCATION.--Lat 39°27'32", long 75°09'29", Hydrologic Unit 02040206, next to the Cumberland County Vocational and Technical School on Bridgeton Avenue, Deerfield Township.

and Technical School on Bridgeton Avenue, Decision Communication County.

Owner: Cumberland County.

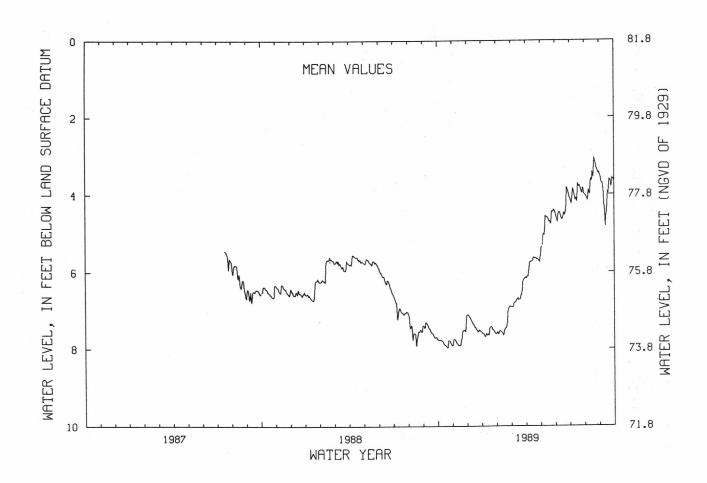
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.

WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in, depth 47 ft, screened 42 to 47 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 81.77 ft above National Geodetic Vertical Datum of 1929.

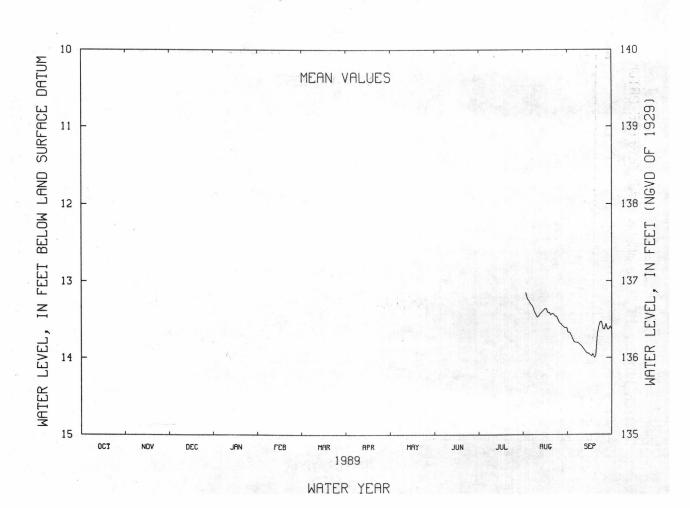
Measuring point: Top edge of recorder shelf, 2.92 ft above land-surface datum.


PERIOD OF RECORD.--March 1972 to current year. Periodic manual measurements, March 1972 to June 1987. Records from 1972 to 1987 are unpublished and are available in files of the New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 2.40 ft below land-surface datum, April 21, 1972; lowest, 8.12 ft below land-surface datum, Aug. 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	7.77 7.80 7.90 7.97 7.80 7.92	7.76 7.87 7.91 7.59 7.52 7.12	7.17 7.28 7.41 7.51 7.51 7.58	7.67 7.63 7.51 7.44 7.56 7.57	7.53 7.58 7.51 7.45 6.92 6.90	6.91 6.78 6.67 6.69 6.24 6.13	6.11 5.73 5.69 5.63 5.67 5.61	5.30 4.80 4.58 4.68 4.44 4.46	4.71 4.46 4.63 4.53 3.83 4.08	4.09 4.02 4.18 3.77 3.96 4.01	4.11 4.00 3.63 3.07 3.35 3.51	3.71 4.31 4.43 3.61 3.80 3.68
MEAN	7.84	7.69	7.39	7.57	7.38	6.62	5.77	4.74	4.39	3.98	3.63	3.89
LITE VE	1000 W	TAN E 00	117011 7	0/ 4110 40	20 1011	7 00 007	20. 24					


WTR YR 1989 MEAN 5.90 HIGH 3.04 AUG 19,20 LOW 7.98 OCT 20,21

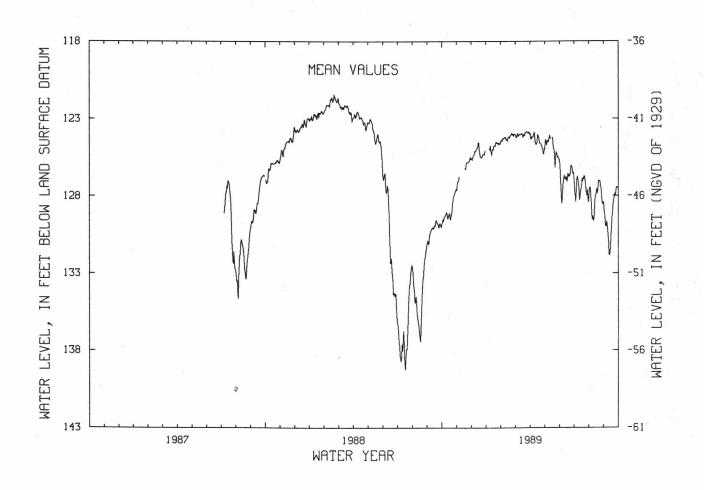
394354075025901. Local I.D., WTMUA Monitoring 1 Obs. NJ-WRD Well Number, 15-1033.
LOCATION.--Lat 39°43'54", long 75°02'59", Hydrologic Unit 02040202, next to the Washington Township MUA Water Tank at the intersection of White Birches Rd. and Rt. 555 (Fries Mill Rd.), Washington Township.
Owner: Washington Township Municipal Utilities Authority.
AQUIFER.--Kirkwood-Cohansey aquifer system of Miocene age.
WELL CHARACTERISTICS.--Drilled water-table observation well, diameter 4 in, depth 54 ft, screened 44 to 54 ft.
INSTRUMENTATION.--R-200 Data Logger and pressure transducer.
DATUM.--Land-surface datum is 150 ft above National Geodetic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of steel outer casing 2.50 ft above land-surface datum.
PERIOD OF RECORD.--August 1989 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 13.14 ft below land-surface datum, Aug. 2, 1989; lowest, 14.02 ft below land-surface datum, Sep. 19, 1989.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					MEA	N VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5											13.29	13.80
10											13.47	13.87
15											13.36	13.96
15 20 25											13.42	13.70
25											13.54	13.63
EOM						•••	•••				13.67	13.63
MEAN					•••			·	-14-	, 15 	13.43	13.77
WTR YR	1989	HIGH 13.1	4 AUG 2	LOW 14	.02 SEP 19				15.1	54.5		(4.3%

WTR YR 1989

HIGH 123.31 MAR 25


MEAN 126.24

394652075100401. Local I.D., Mantua Shallow Obs. NJ-WRD Well Number, 15-0741.
LOCATION.--Lat 39°46'52", long 75°10'04", Hydrologic Unit 02040202, at the Township of Mantua Road Dept. off Main Street, Mantua Township.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 313 ft, screened 293 to 313 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 82 ft above National Geodetic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 4.00 ft above land-surface datum.
REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--July 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 121.20 ft below land-surface datum, Feb. 20, 1988; lowest, 139.61 ft below land-surface datum, July 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MEAN VALUES DAY OCT NOV JUN JUL AUG SEP DEC JAN **FEB** MAR APR MAY 129.37 124.32 124.37 124.17 128.52 129.98 10 15 20 25 129.04 129.12 129.15 128.04 124.99 124.55 125.51 125.31 126.67 126.77 126.76 126.09 127.26 127.72 126.91 127.68 127.97 129.61 127.87 127.00 127.48 131.11 130.56 128.30 127.77 124.11 124.53 125.16 124.00 124.17 124.77 124.50 124.68 124.01 124.11 123.81 125.03 125.23 125.83 125.81 125.58 124.09 124.15 124.56 124.79 128.65 127.44 FOM 124.42 124.03 123.91 126.72 128.86 127.48 128.11 129.31 MEAN 126.16 125.25 124.77 124.20 124.01 124.48 124.87 126.83

LOW 132.26 SEP 11

394652075100402. Local I.D., Mantua Deep Obs. NJ-WRD Well Number, 15-0742.

LOCATION.--Lat 39°46'52", long 75°10'04", Hydrologic Unit 02040202, at the Township of Mantua Road Dept. off Main Street, Mantua Township.

Owner: U.S. Geological Survey.

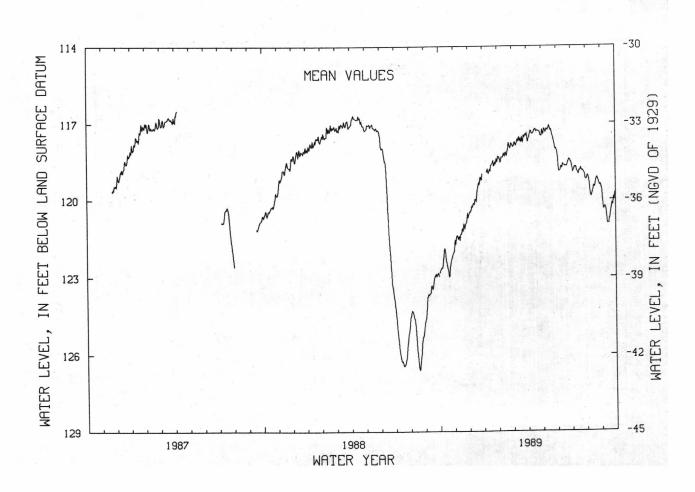
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 777 ft, screened 757 to 777 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 84 ft above National Geodetic Vertical Datum of 1929, from topographic map.

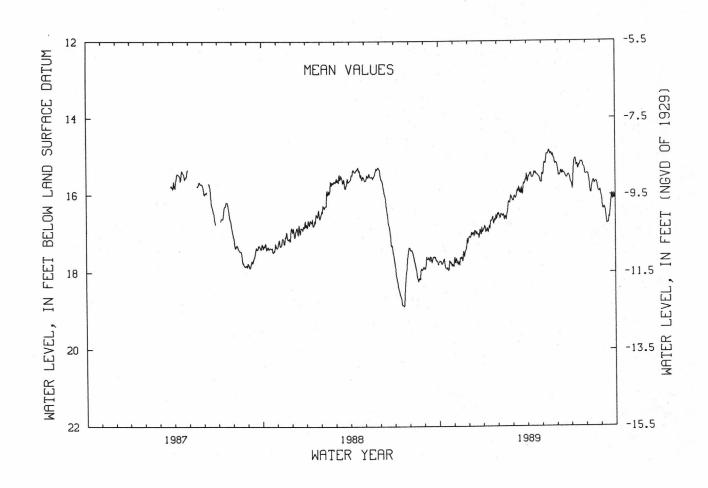
Measuring point: Top edge of recorder shelf, 4.20 ft above land-surface datum.


REMARKS.--Water level affected by nearby pumping.

PERIOD OF RECORD.--November 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 116.47 ft below land-surface datum, April 7, 1987; lowest, 126.62 ft below land-surface datum, Aug. 19, 1988.

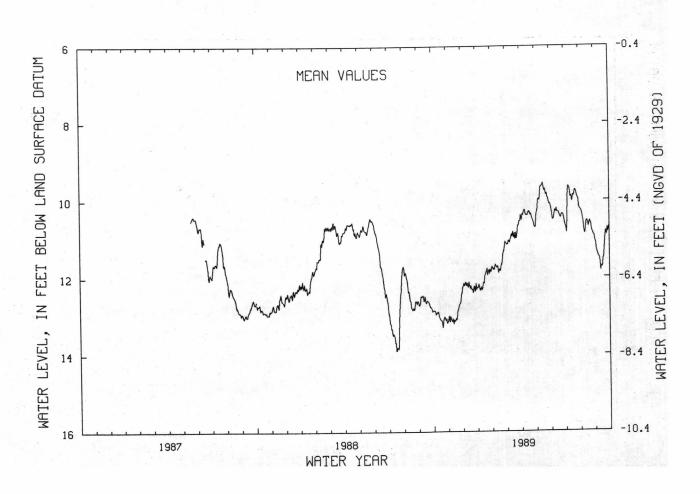
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 119.12 119.85 119.58 119.30 119.25 122.63 121.98 122.42 122.99 122.33 120.42 120.14 119.99 119.41 118.46 118.27 118.14 118.02 117.94 118.84 5 121.44 121.41 121.34 120.92 118.88 120.35 118.69 119.00 118.73 118.87 118.97 118.64 118.45 117.78 117.54 117.71 117.47 117.37 117.33 117.32 117.31 117.26 117.19 117.24 117.62 118.67 118.61 118.66 118.46 10 120.38 15 20 25 120.92 120.42 118.60 118.02 EOM 117.38 MEAN 122.42 121.21 119.86 118.64 118.15 117.67 117.39 117.42 118.59 118.86 119.40 120.30 WTR YR 1989 MEAN 119.17 HIGH 117.04 MAY 16 LOW 123.05 OCT 21

394808075172401. Local I.D., Stefka 1 Obs. NJ-WRD Well Number, 15-0712.
LOCATION.--Lat 39°48'08", long 75°17'24", Hydrologic Unit 02040202, near the intersection of Swedesboro and Tomlin Station roads, next to Pargey Creek, on land owned by Mr. William Stefka, Greenwich Township.
Owner: U.S. Geological Survey.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 290 ft, screened 275 to 290 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 6.50 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 2.20 ft above land-surface datum.
PERIOD OF RECORD.--March 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.80 ft below land-surface datum, May 16, 1989; lowest, 18.88 ft below land-surface datum, July 20,21, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

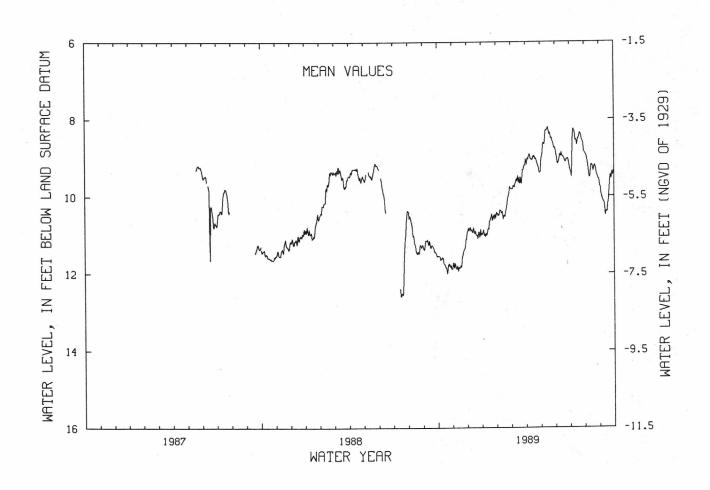
					M	IEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	17.73 17.67 17.87 17.95 17.74 17.84		17.09 16.96 16.93 17.01 16.89 16.89	16.95 16.96 16.67 16.55 16.66 16.51	16.56 16.54 16.53 16.42 16.15 16.07	16.05 16.01 15.78 15.96 15.68 15.45	15.52 15.51 15.46 15.47 15.52 15.66	15.40 15.05 14.90 14.90 15.01 15.16	15.49 15.37 15.43 15.53 15.48 15.66	15.60 15.05 15.32 15.14 15.22 15.46	15.46 15.94 15.64 15.66 15.84 15.98	16.37 16.45 16.71 16.30 16.11 16.04
MEAN	17.79	17.57	16.99	16.73	16.41	15.89	15.51	15.09	15.45	15.30	15.71	16.32
UTD VD	1080	MEAN 16 23	HICH 1/	SO MAY 1	6 100 1	7 00 007	20 21					



394808075172402. Local I.D., Stefka 2 Obs. NJ-WRD Well Number, 15-0713.
LOCATION.--Lat 39°48'08", long 75°17'24", Hydrologic Unit 02040202, near the intersection of Swedesboro and Tomlin Station roads, next to Pargey Creek, on land owned by Mr. William Stefka, Greenwich Township.
Owner: U.S. Geological Survey.

AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Dilled artesian observation well, diameter 8 in, depth 155 ft, screened 125 to 155 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 5.64 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.00 ft above land-surface datum.
PERIOD OF RECORD.--May 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 9.53 ft below land-surface datum, May 16, 1989; lowest, 13.96 ft below land-surface datum, July 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


					ME	EAN VALUES	-					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	12.88 13.05 13.29 13.06	13.00 13.06 13.13 12.85 12.68 12.27	12.18 12.14 12.21 12.30 12.25 12.25	12.32 12.31 11.95 11.76 11.90	11.73 11.72 11.78 11.67 11.22 11.12	11.05 10.99 10.82 10.98 10.66 10.38	10.39 10.35 10.34 10.38 10.51 10.70	10.20 9.83 9.62 9.71 9.91 10.11	10.50 10.26 10.30 10.42 10.38 10.60	10.50 9.70 10.03 9.78 9.90 10.23	10.41 10.87 10.53 10.57 10.80 11.06	11.37 11.53 11.74 11.16 10.87 10.78
MEAN	13.03	12.92	12.23	12.02	11.61	10.89	10.42	9.93	10.37	10.01	10.64	11.26
UTD VD	1080 MEA	N 11 2Ω	HICH O	57 MAY 14	1011 17	72 OCT 20	Y	6.4		19 9 9 01	NASH W	801 HY K

394808075172404. Local I.D., Stefka 4 Obs. NJ-WRD Well Number, 15-0728.
LOCATION.--Lat 39°48'08", long 75°17'24", Hydrologic Unit 02040202, near the intersection of Swedesboro and Tomlin Station roads, next to Pargey Creek, on land owned by Mr. William Stefka, Greenwich Township.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 56 ft, screened 46 to 56 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 4.46 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 3.42 ft above land-surface datum.
PERIOD OF RECORD.--May 1987 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 8.17 ft below land-surface datum, May 16, 1989; lowest, 12.64 ft below land-surface datum, July 17, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	11.59 11.58 11.77 12.00 11.78 11.87	11.73 11.80 11.87 11.57 11.37 10.96	10.85 10.84 10.91 11.00 10.95 10.95	11.02 11.00 10.64 10.45 10.59 10.45	10.42 10.41 10.48 10.36 9.89 9.80	9.73 9.66 9.47 9.64 9.32 9.04	9.05 9.01 9.01 9.04 9.18 9.37	8.86 8.48 8.26 8.35 8.56 8.77	9.16 8.91 8.95 9.07 9.04 9.26	9.15 8.32 8.67 8.42 8.53 8.87	9.05 9.51 9.18 9.23 9.43 9.71	10.03 10.19 10.40 9.81 9.50 9.41
MEAN	11.74	11.64	10.92	10.72	10.29	9.56	9.08	8.58	9.03	8.65	9.29	9.91
WTR YR	1989 M	EAN 9.95	HIGH 8.1	7 MAY 16	LOW 12.	03 OCT 20						

394942075131701. Local I.D., Shell Chemical 5 Obs. NJ-WRD Well Number, 15-0296.
LOCATION.--Lat 39°49'42", long 75°13'17", Hydrologic Unit 02040202, near the intersection of Mantua Grove Road and Route 295, West Deptford Township.

ROUTE 299, West Deptrord Township.

Owner: Huntsman Polypropylene Corp.

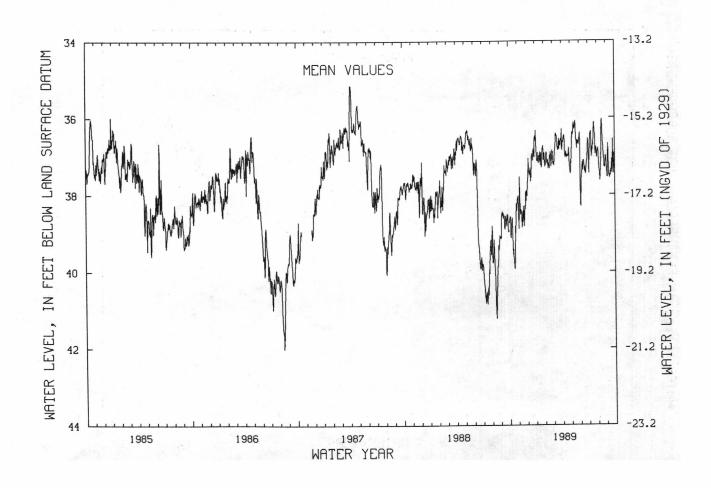
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 327 ft, screened 321 to 326 ft.

INSTRUMENTATION.--Digital water-level recorder--60-minute punch.

DATUM.--Land-surface datum is 20.76 ft above National Geodetic Vertical Datum of 1929.

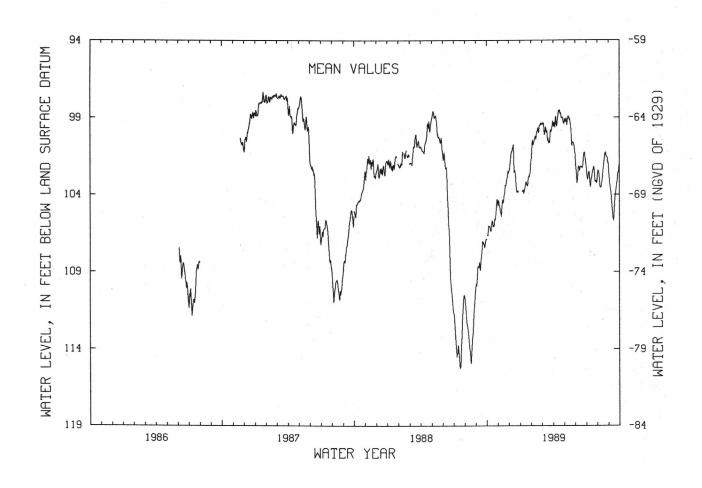
Measuring point: Top edge of recorder shelf, 2.90 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.-June 1962 to current year. Records for 1962 to 1977 are unpublished and are available in files of New Jersey District Office. New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 27.75 ft below land-surface datum, Dec. 6, 1962; lowest, 42.50 ft below land-surface datum, Aug. 15, 1986.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


					М	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	38.62 38.71 39.42 39.92 38.23 38.09	38.01 38.38 38.86 38.30 38.37 37.92	37.51 37.50 37.44 36.94 36.82 36.61	37.13 37.15 36.90 37.00 36.82 36.97	37.00 37.18 37.18 37.06 37.07 36.90	37.24 36.59 36.50 36.73 36.61 36.31	36.65 36.67 36.89 37.01 36.79 37.45	36.66 36.24 36.31 36.58 36.68 36.58	38.30 37.17 37.12 37.39 37.19 36.54	36.96 36.37 36.87 36.15 36.77 36.96	36.97 37.63 36.44 36.70 37.28 37.11	37.54 37.44 37.40 37.08 37.12 37.45
MEAN	38.91	38.38	37.20	36.99	37.10	36.74	36.91	36.56	37.25	36.73	36.97	37.28
WTR YR	1989	MEAN 37.25	HIGH 35	.66 AUG 1	7 LOW 4	0.15 OCT	20					

394957075053001. Local I.D., Deptford Deep Obs. NJ-WRD Well Number, 15-0671.
LOCATION.--Lat 39°49'57", Long 75°05'30", Hydrologic Unit 02040202, at N.J. Dept. of Transportation facility off N.J. Route 41 south, Deptford Township.
Owner: U.S. Geological Survey.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 670 ft, screened 650 to 670 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 35 ft above National Geodedic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 3.55 ft above land-surface datum.
REMARKS.--Water level affected by tidal fluctuation and nearby pumping.
PERIOD OF RECORD.--June 1986 to current year. Records for 1986 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level 97.10 ft below land surface datum, Jan. 22, 1987; lowest 115.36 ft below land surface datum, July 19, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

						MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	106.02 106.32 105.69 106.07 105.17 104.70	104.80 105.13 104.55 103.37 102.95 102.47	101.67 100.98 102.54 103.38 103.88	103.91 103.38 103.36 102.86 101.56	100.78 100.30 99.96 99.97 99.47 99.38	99.29 99.89 99.86 100.66 99.80 99.23	99.51 99.47 98.76 98.74 99.00 99.33	99.21 99.17 99.12 99.86 100.59 101.24	103.24 102.15 102.14 102.24 101.27 102.02	102.88 102.78 102.98 102.35 103.08 102.92	102.78 103.55 102.75 101.51 101.52 102.07	103.64 104.74 105.35 103.70 102.93 102.04
MEAN	105.77	103.99	102.35	103.16	100.09	99.88	99.08	99.76	102.15	102.79	102.35	103.78
WTR YR	1989	MEAN 102.0	9 HIGH	98.34 APR	18,19	LOW 106.85	OCT 1					

395232075094201. Local I.D., Eagle Point 3 Obs. NJ-WRD Well Number, 15-0323.

LOCATION.--Lat 39°52'35", long 75°09'50", Hydrologic Unit 02040202, at the Coastal Eagle Point Oil Company, West Deptford Township.

Owner: Coastal Eagle Point Oil Company.

AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.

WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 8 in, depth 276 ft, screened 255 to 275 ft.

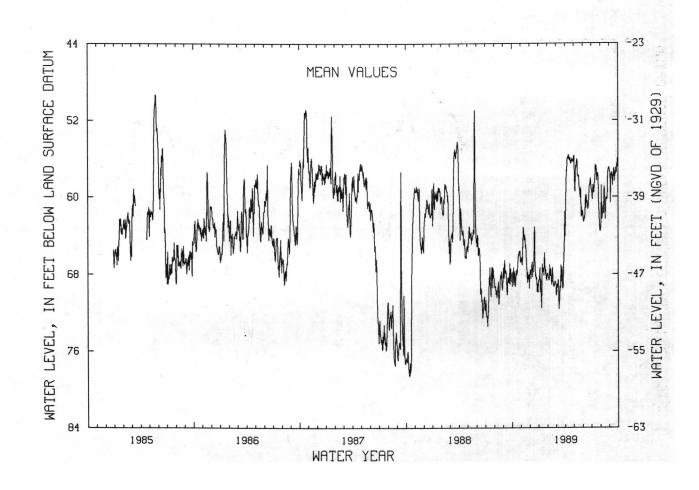
INSTRUMENTATION.--Digital water-level recorder--60-minute punch. Water-level extremes recorder, April 1981 to

December 1984.

DATUM.--Land-surface datum is 20.96 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Top of casing, 3.00 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.


PERIOD OF RECORD.--November 1949 to July 1975, April 1981 to current year. Periodic manual measurements, October 1976 to March 1981. Records for 1975 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 37.70 ft below land-surface datum, Nov. 25, 1950; lowest, 87.30 ft below land-surface datum, June 28, 1963.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	67.34 67.71 67.86 66.86 65.81 66.83	66.32 63.92 65.23 66.98 68.16 68.18	67.73 68.29 64.21 68.23 69.82 68.78	69.85 71.49 67.40 65.80 68.44 67.95	68.32 67.40 67.69 69.21 68.73 69.14	68.99 71.61 69.47 67.27 69.04 64.05	57.25 55.91 56.04 56.27 56.27 55.95	59.45 56.27 57.84 59.24 59.49 61.72	62.45 59.91 60.51 60.74 58.77 59.29	59.45 58.76 57.29 57.52 60.18 63.43	61.26 61.74 60.53 60.10 58.25 57.33	58.55 57.79 57.20 57.43 57.12 55.56
MEAN	67.45	66.34	67.65	68.15	68.46	68.42	56.88	58.68	60.49	59.30	59.98	57.52
LITE VE	1000	MEAN 47 27	HTCH EZ	E4 0FD 7	0 1017	7 24 1411	40					

MEAN 63.27 HIGH 53.51 SEP 30 WTR YR 1989 LOW 73.21 JAN 10

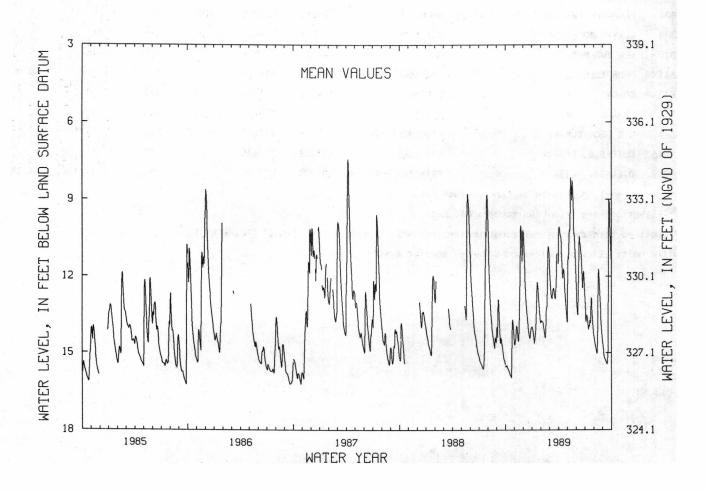
GROUND-WATER LEVELS GLOUCESTER COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	DEPTH OF WELL (FT.)	ELEV.** OF LAND SURFACE DATUM (FT.NGVD)	DATE OF MEASURMENT	WATER LEVEL (FT.)*
15-039	CIFALOGLIO, S	1	393148	745822	123	110	11/18/1988	10.80
15-198	LESHAY BROS	1965 WELL	393944	745934	141	130	5/ 2/1989 11/17/1988	6.64 11.21 8.17
15-568	RALPH SMITH FARM	1	394305	750307	97	140	5/ 3/1989 11/17/1988 5/ 3/1989 11/18/1988	21.12
15-726	SMITH, JOHN	AURA ORCHARDS	394130	750921	62	140	11/18/1988 5/ 2/1989	14.33
15-734	DASE, DENNIS	DASE 1	393523	745912	110	138	11/18/1988	20.90
15-745	FRANKLIN TWP SANITARY LANDFILL	DUMP NORTH	393608	750257	35	124	5/ 2/1989 11/29/1988 5/11/1989	25.79 22.61
15-754	DEAN, GEORGE	DEAN 1	393934	751033	58	143	11/18/1988	15.92 9.54
15-759	MESIANO, JIM	MESIANO 1	394232	750126	135	159	5/ 2/1989 11/17/1988 5/ 3/1989	39.49 38.77
15-760	WILLIAMS, RONALD	RW 1	394020	745611	30	115	11/17/1988 5/ 3/1989 11/17/1988	17.72 14.12
15-761	LUCAS, HARRY	LUCAS IRR 1	394142	745818	38	130	5/ 3/1989	14.27 11.35
15-763	MOORE, EAYRE	MOORE 2	393525	750521	60	109	11/18/1988 5/ 2/1989	21.35 18.89
15-764	SCAFONIS, FELIX	SCAFONIS D	393708	750143	49	130	5/ 2/1989	21.82 19.20
15-792	THE PLANT PLACE INC	PP 1	393928	750434	75	110	11/17/1988 5/ 3/1989	13.19 10.42
15-793	FERRUCCI, MARY	FERRUCCI 10	393448	745606	150	110	11/18/1988	12.75 10.17
15-795	SMITH, FRED	FRED SMITH-1965	394140	750312	100	150	11/17/1988 5/ 3/1989 11/17/1988	16.20 13.22
15-796	SMITH, FRED	SMITH 5	394238	750308	90	160	11/17/1988	20.62
15-801	CHILLARI, JOE	CHILLARI 1	394227	750522	85	144	5/ 3/1989 11/17/1988 5/ 3/1989	16.72
15-804	FRANKLIN TWP BOARD OF EDUCATION	MALAGA 1	393428	750244	100	110	5/ 3/1989 11/17/1988 5/ 2/1989	31.53 29.71
15-808	GLASSBORO WATER DEPT	GLASS OBS 1	394319	750725	60	122	5/ 2/1989 11/17/1988 5/ 3/1989	28.46 28.68
15-810	ELK TWP MUA	ELK 1	394021	750827	63	144	11/18/1988 5/ 2/1989	16.43 12.82
15-811	SHOEMAKER, G	SHOEMAKER 1	394055	751412	32	140	11/18/1988 5/ 2/1989	20.64
15-812	CORONA PUMPS	CORONA 1	393805	745554	100	123	11/17/1988 5/ 3/1989	29.74
15-840	DEVAULT, HARRY	DEVAULT 1	393744	750735	34	110	11/18/1988 5/ 2/1989 11/17/1988	4.87
15-846	U S GEOL SURVEY	CARPENTER 126	394053	750453	10	126	11/17/1988 5/ 3/1989	7.56 3.23
15-1016	DUFFIELD, CLAUDE	DUFFIELD 2	393633	750630	60	129	11/18/1988	26.35 23.71
15-1037	DILLNER, PETER	FRIMAIR IRR	394303	750303	77	150	5/ 2/1989 5/11/1989	14.55

^{* -} Water level in feet below land surface datum

Aquifer unit: 121CKKD - Kirkwood-Cohansey aquifer system

^{** -} Elevations are from USGS topographic maps


^{***-} Well covered over by new construction- replaced in network by 15-1037 (FRIMAIR IRR)

HUNTERDON COUNTY

402644074563601. Local I.D., Bird Obs. NJ-WRD Well Number, 19-0002.
LOCATION.--Lat 40°26'44", long 74°56'36", Hydrologic Unit 02040105, near U.S. Post Office, Sergeantsville,
Delaware Township
Owner: Phillip Fleming.
AQUIFER.--Stockton Formation of Triassic age.
WELL CHARACTERISTICS.--Dug water-table observation well, diameter 3 ft, depth 21 ft, lined with stone.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 342.08 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top edge of recorder shelf, 1.50 ft above land-surface datum.
PERIOD OF RECORD.--June 1965 to July 1970, May 1977 to current year. Periodic manual measurements, September 1970 to
September 1976. Records for 1965 to 1976 are unpublished and are available in files of New Jersey District Office.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 6.37 ft below land-surface datum, Apr. 18, 1983; lowest, 17.04
ft below land-surface datum, Jan. 26-28, 1981.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	15.50 15.65 15.79 15.94 13.70 14.58	14.50 14.02 14.45 12.10 10.72 10.20	11.52 12.84 13.67 14.19 14.30 13.98	14.31 14.47 13.26 12.38 13.31 13.84	13.78 14.04 14.35 13.24 10.85 11.42	12.47 12.86 12.46 12.87 11.65 11.33	10.24 10.75 12.06 12.00 12.91 13.72	11.33 10.11 8.68 8.74 10.31 12.09	13.34 10.85 10.81 11.73 11.93 12.66	13.77 13.70 13.93 13.83 13.23 14.29	14.63 14.98 13.41 12.43 13.62 14.59	15.11 15.30 15.44 11.18 9.92 11.51
MEAN	15.21	12.91	13.20	13.60	13.19	12.34	11.67	10.18	11.95	13.63	13.87	13.36
WTR YR	1989	MEAN 12.93	HIGH 8.	13 MAY 13	LOW 15	.97 OCT 2	21					

393348075275701. Local I.D., Salem 1 Obs. NJ-WRD Well Number, 33-0251.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem City.
Owner: U.S. Geological Survey.
AQUIFER.--Middle aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 709 ft, screened 699 to 709 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, December 1965 to August 1975.

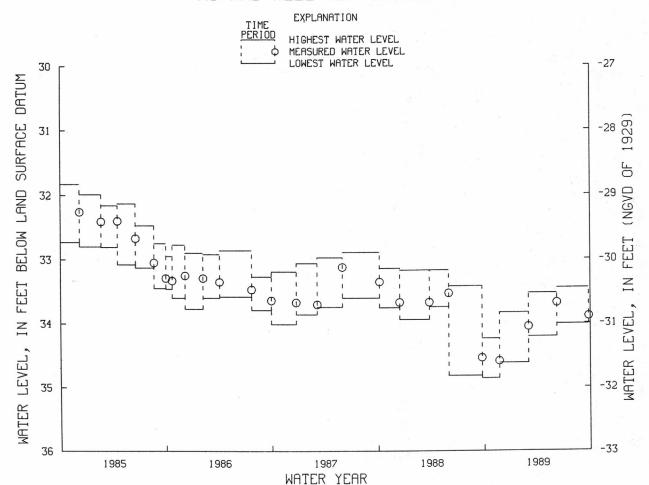
August 1973.

DATUM.--Land-surface datum is 3.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.87 ft above land-surface datum.

PERIOD OF RECORD.--December 1965 to August 1975, May 1977 to current year. Records for 1965 to 1980 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 14.97 ft below land-surface datum, Dec. 13, 1965; lowest, 34.86 ft below land-surface datum, between Sept. 23 and Nov. 22, 1988.


WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

		PERIOD			HIGHEST WATER LEVEL	LOWEST Water Level		DATE	WATER LEVEL
SEPT.	23,	1988 TO NO	v. 22,	1988	34.24	34.86	NOV.	22, 1988	34.59
NOV.	22,	1988 TO MA	R. 1,	1989	33.83	34.62	MAR.	1, 1989	34.05
MAR.	1,	1989 TO JU	NE 7,	1989	33.53	34.21	JUNE	7, 1989	33.68
JUNE	7.	1989 TO SE	PT. 25.	1989	33.45	34.01	SEPT.	25, 1989	33.89

NJ-WRD WELL NO. 33-0251

393348075275702. Local I.D., Salem 2 Obs. NJ-WRD Well Number, 33-0252.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem City.
Owner: U.S. Geological Survey.
AQUIFER.--Wenonah-Mount Laurel aquifer of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 4 in, depth 96 ft, screened 91 to 96 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to

July 1975.

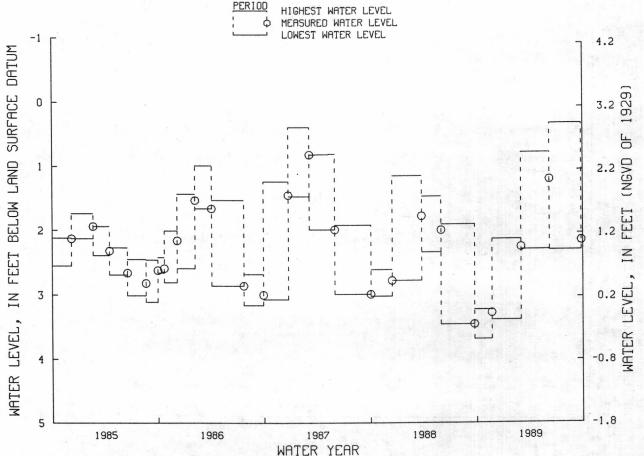
DATUM.--Land-surface datum is 3.25 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.77 ft above land-surface datum.

PERIOD OF RECORD.--November 1965 to July 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.51 ft above land-surface datum, between Jan. 12 and Apr. 27, 1983; lowest, 6.45 ft below land-surface datum, Sept. 9, 1966.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989


WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

PERIOD							HIGHEST WATER LEVEL	LOWEST WATER LEVEL	DATE			WATER LEVEL
SEPT.	23,	1988	то	NOV.	22,	1988	3.23	3.69	NOV.	22,	1988	3.28
NOV.	22,	1988	то	MAR.	1,	1989	2.14	3.39	MAR.	1,	1989	2.26
MAR.	1,	1989	то	JUNE	7,	1989	0.79	2.30	JUNE	7,	1989	1.21
JUNE	7.	1989	то	SEPT.	25.	1989	0.34	2.31	SEPT.	25.	1989	2.16

NJ-WRD WELL NO. 33-0252

EXPLANATION TIME

393348075275703. Local I.D., Salem 3 Obs. NJ-WRD Well Number, 33-0253.
LOCATION.--Lat 39°33'48", long 75°27'55", Hydrologic Unit 02040206, about 300 ft south of the intersection of Elm and Magnolia Streets, Salem City.
Owner: U.S. Geological Survey.
AQUIFER.--Upper aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 340 ft, screened 335 to 340 ft.
INSTRUMENTATION.--Water-level extremes recorder, May 1977 to current year. Water-level recorder, November 1965 to August 1975.

August 1975.

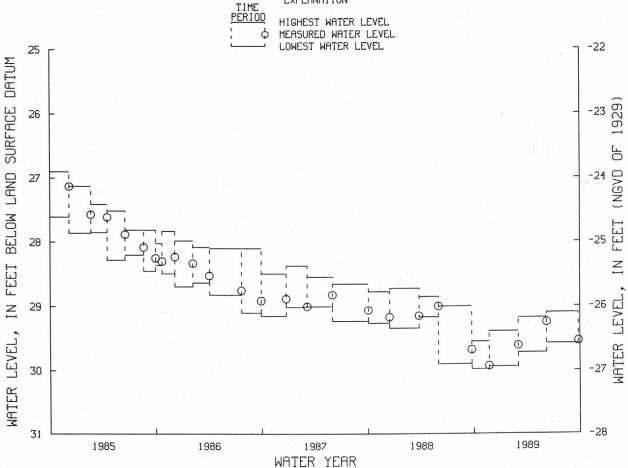
DATUM.--Land-surface datum is 3.00 ft above National Geodetic Vertical Datum of 1929.

Measuring point: Front edge of cutout in recorder housing, 2.30 ft above land-surface datum.

PERIOD OF RECORD.--November 1965 to August 1975, May 1977 to current year. Records for 1965 to 1981 are unpublished and are available in files of New Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.28 ft below land-surface datum, Feb. 13, 1966; lowest, 29.98 ft below land-surface datum, between Sept. 23 and Nov. 22, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

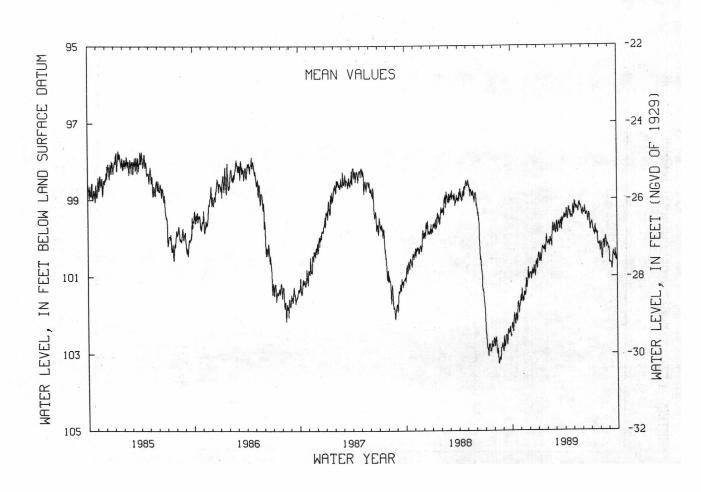

WATER-LEVEL EXTREMES

MEASURED WATER LEVEL

	PERIOD		HIGHEST WATER LEVEL	LOWEST WATER LEVEL	DATE	WATER
SEPT. 23,	1988 TO NOV. 2	2, 1988	29.55	29.98 NOV	. 22, 1988	29.93
NOV. 22,	1988 TO MAR.	1, 1989	29.39	29.94 MAR	. 1, 1989	29.61
MAR. 1,	1989 TO JUNE	7, 1989	29.18	29.72 JUN	E 7, 1989	29.25
JUNE 7.	1989 TO SEPT. 2	5. 1989	29.10	29.58 SEP	т. 25. 1989	29.54

NJ-WRD WELL NO. 33-0253

EXPLANATION



394037075191501. Local I.D., Point Airy Obs. NJ-WRD Well Number, 33-0187.
LOCATION.--Lat 39°40'37", long 75°19'14", Hydrologic Unit 02040206, at intersection of Point Airy and Woodstown-Swedesboro Roads, 1 mi. north of Woodstown Borough boundary, Pilesgrove Township.
Owner: U.S. Geological Survey.
AQUIFER.--Lower aquifer, Potomac-Raritan-Magothy aquifer system of Cretaceous age.
WELL CHARACTERISTICS.--Drilled artesian observation well, diameter 6 in, depth 672 ft, screened 664 to 672 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.
DATUM.--Land-surface datum is 72.97 ft above National Geodetic Vertical Datum of 1929.
Measuring point: Top of 6 inch casing, 1.80 ft above land-surface datum.
PERIOD OF RECORD.--February 1959 to August 1975, March 1977 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 78.55 ft below land-surface datum, Mar. 6, 1959; lowest, 103.37 ft below land-surface datum, Aug. 17, 1988.

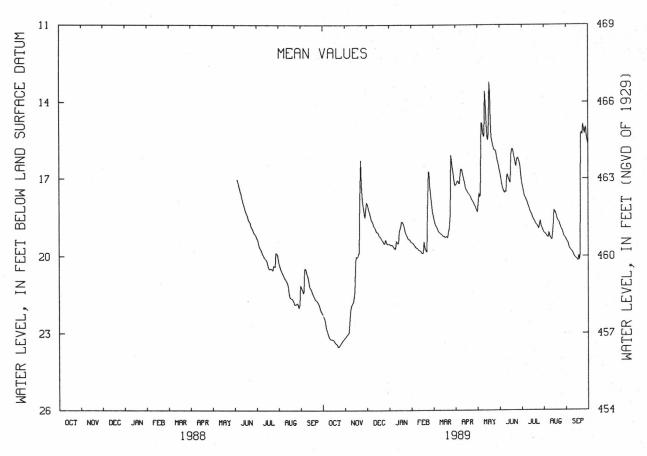
WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					M	EAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	102.34 101.93 102.05 102.14 101.74 101.73	101.30 101.52 101.47 101.03 101.07	100.88 100.92 100.84 100.88 100.59	100.61 100.58 100.22 100.24 100.38 100.06	100.12 100.15 100.06 99.82 99.77 99.75	99.62 99.80 99.59 99.64 99.47 99.37	99.48 99.37 99.29 99.42 99.42 99.27	99.33 99.17 99.18 99.14 99.18 99.36	99.30 99.17 99.42 99.47 99.37 99.77	99.57 99.78 99.93 99.82 100.03 100.12	100.15 100.55 100.09 100.01 100.26 100.31	100.66 100.69 100.50 100.45 100.57
MEAN	102.02	101.32	100.83	100.34	99.98	99.65	99.39	99.20	99.41	99.86	100.21	100.53
WTR	YR 1989	MEAN 100	.23 HIGH	98.94 MAY	6 LOW	102.48	OCT 6,7					

NJ-WRD WELL NO.33-0187

SUSSEX COUNTY

410914074540401. Local I.D., Taylor House Obs. NJ-WRD Well Number, 37-0202.
LOCATION.--Lat 41°09'14", long 74°54'04", Hydrologic Unit 02040104, near Walpack Center, Delaware Water Gap National Recreation Area, Wallpack Township.
Owner: National Park Service.
AQUIFER.--Devonian Limestone AQUIFER.--Devonian Limestone
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in, depth 95 ft, open hole 42 to 95 ft.
INSTRUMENTATION.--Digital water-level recorder--60-minute punch.


DATUM.--Land-surface datum is 480 ft above National Geodetic Vertical Datum of 1929, from topographic map.
Measuring point: Top edge of recorder shelf, 3.00 ft above land-surface datum.
PERIOD OF RECORD.--June 1988 to current year. Records for 1988 are unpublished and are available in files of New
Jersey District Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.70 ft below land-surface datum, May 17, 1989; lowest, 23.55
ft below land-surface datum, Oct. 21,22, 1988.

WATER LEVEL, IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

					, ,	MEAN VALUE	S					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 10 15 20 25 EOM	22.82 23.21 23.26 23.44 23.37 23.15	22.95 21.81 20.01 17.79 18.20 17.99	18.54 18.88 19.13 19.37 19.36 19.53	19.65 19.47 18.84 18.90 19.31 19.47	19.66 19.78 19.85 19.83 17.65 18.32	18.85 19.10 19.22 19.27 16.09 17.26	17.19 16.78 17.41 17.65 17.91 18.23	17.64 15.33 15.49 15.37 15.88 16.65	17.42 16.91 17.15 16.09 16.18 16.96	17.70 18.07 18.45 18.75 18.77 19.07	19.25 19.32 18.24 18.65 18.99	19.72 19.95 20.12 15.26 15.24 15.70
MEAN	23.16	20.21	19.08	19.29	19.12	18.49	17.43	15.70	16.72	18.36	18.96	18.17
WTR YR	1989 M	EAN 18.73	HIGH 12	.70 MAY 1	7 LOW 2	23.55 OCT	21.22					

NJ-WRD WELL NO.37-0202

WATER YEARS

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	AQUIFER UNIT	WC	PERIOD OF RECORD
05-063 05-259 05-274 05-648 05-690 07-118 07-332 07-354 09-020 09-097 09-098 11-044 11-073 *11-141 11-161 11-163 1	WILLINGBORO MUA US GEOL SURVEY CAMPBELL SOUP WILLINGBORO MUA US GEOL SURVEY SO JRSY PORT CM NJ WATER CO NJ WATER CO NJ WATER CO GENERAL FOODS US GEOL SURVEY CUMBERLAND CO CUMBERLAN	WMUA 1-OBS MEDFORD 2 OBS CAMPBELL 1 WMUA 3-OBS LEBANON SF 2 NY SHIP 5A HUTTON HILL 2 EGBERT OAKLYN TEST PETTY IS OBS TRAFFIC CIRCLE AIRPORT T7 BDWLL DCH 31ES BDWLL DCH 31ES BDWLL DCH 31HB VOCAT SCH 3 VOCAT SCH 3 SHEPPARDS 2 JONES ISLAND 1 HEISLERVILLE 1 HEISLERVILLE 2 ORANGE ST FAIR GROUNDS 1 FAIR GROUNDS 2 FAIR GROUNDS 3 BOSTWICK LK 1 NATURAL AREA 1 GIBBSTOWN TH 8 SHELL OBS 7 CIVIL DEFENSE HORNER GARRISON PENNS GROVE 14 HOF LAR 4	400213 395524 395841 400103 395211 3952447 395229 395246 395359 395359 395811 385616 390527 390527 392732 392732 392732 392732 392732 392526 391350 391350 391350 391350 391350 391350 391350 391350 391350 391350 391350 391350 391350 391350 391350 391350 391350	745108 745025 745905 745905 745409 743103 750711 745712 750445 750556 745800 745426 745024 750929 751846 751208 750018 750113 750643 750643 751636 751636 751636 751636 751636 751752 751752 751752 751752 751752 751752 751752 751752 751752	211MRPAM 211EGLS 211MRPAM 211MRPAL 121CKKD 211MRPAL 211MRPAL 211MRPAL 211MRPAL 112CPMY 121CNSY 112ESRNS 112HLBC 121CKKD 121CKCD 121CKC		1966-P 1963-P 1972-P 1966-1986 1964-1986 1950-1986 1967-P 1963-P 1963-P 1967-P 1963-P 1968-1984 1972-P 1972-P 1972-P 1972-P 1972-P 1972-P 1972-P 1972-P 1972-P 1972-P 1972-P 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986 1972-1986

See figure 13 for well locations.
P - present
Aquifer unit: see definition of terms
WC - (Water Condition): A-Artesian, W-Water table, U-Undetermined
Data available in the files of the New Jersey District Office.
* - Water-quality data for 1989 is published elsewhere in this report.

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 CAPE MAY COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LO	ONGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREENE INTERVA (FT.)	L	AQUIFER UNIT
09-027 09-036 09-043 09-052 09-054 09-057 09-067 09-072 09-074	CAPE MAY CITY WD CAPE MAY CITY WD CAPE MAY CITY WD LOWER TWP MUA LOWER TWP MUA LOWER TWP MUA WILDWOOD WD WILDWOOD WD WILDWOOD WD	CMCWD 3 CMCWD 2 CMCWD 5 LTMUA 1 LTMUA 2 LTMUA 3 RIO GRANDE 38 RIO GRANDE 31 RIO GRANDE 29	385643 385701 385724 385851 385905 385919 390135 390138 390139	745533 745528 745521 745715 745715 745625 745518 745352 745350 745349	7 10 15 18 14 20 10 10	174 - 241 - 212 - 263 -	306 282 276* 262 247 303 590 135 231	121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 121CNSY 122KRKDU 112ESRNS 121CNSY
NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (µs/cm)	PH (UNITS)	SODIUM DIS- SOLVED (MG/L AS NA)	CHLORIDE DIS- SOLVED (MG/L AS CL)
09-027 09-036 09-043 09-052 09-054 09-057 09-067 09-072 09-074	CAPE MAY CITY WD CAPE MAY CITY WD CAPE MAY CITY WD LOWER TWP MUA LOWER TWP MUA LOWER TWP MUA WILDWOOD WD WILDWOOD WD WILDWOOD WD	CMCWD 3 CMCWD 2 CMCWD 5 LTMUA 1 LTMUA 2 LTMUA 3 RIO GRANDE 38 RIO GRANDE 31 RIO GRANDE 29	8/23/198/ 8/23/198/ 8/23/198/ 8/23/198/ 8/23/198/ 8/23/198/ 9/ 1/198/ 9/ 1/198/ 9/ 1/198/	9 15.5 9 15.5 9 15.5 9 15.0 9 15.5 9 16.5 9 13.5	567 738 292 254 252 194 522 194 227	7.6 7.6 7.7 7.9 7.9 7.7 8.1 7.8 7.5	74	87 140 16 11 13 7.7 75 11 27

^{*} Total depth of well.

Aquifer unit:

112ESRNS - Cape May Formation, estuarine sand facies 121CNSY - Cohansey Sand 122KRKDU - Rio Grande water-bearing zone of the Kirkwood Formation

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE LONGITUDI	ELEV. LAND SURF. (FT. E NGVD)	SCREENED INTERVAL (FT.)	AQUIFER UNIT
11-054 11-327 11-336 11-337 11-097 11-061 11-370 11-002	GANDYS BEACH WC MYERS, H ROSSI, EDWARD COVE RD WATER ASSOC CUMBERLAND COUNTY GRIFFITH, MAE SOBUSIAK, WALTER BRIDGETON WD	GANDYS BEACH 1 1 1 1 JONES ISLAND 1 SEA BREEZE SOBUSIAK 1 BWD 2 REP	391618 751354 391619 751357 391620 751406 391622 751414 391829 751208 391926 751921 391938 751923 392432 751312	5 5 5 10 4 5 30	378 - 402 399 - 409 400* 373 - 393 166 - 171 281 - 354 350* 72 - 98	124PNPN 124PNPN 124PNPN 124PNPN 121CKKD 124PNPN 124PNPN 124PNPN 121CKKD
NJ-WRD Well Number	SITE Owner	LOCAL IDENTIFIER	DATE TEMP OF ATU SAMPLE (DEG	RE -ANCE	SODIUM DIS- SOLVED PH (MG/L (UNITS) AS NA	(MG/L
11-054 11-327 11-336 11-337 11-097 11-061 11-370 11-002	GANDYS BEACH WC MYERS, H ROSSI, EDWARD COVE RD WATER ASSOC CUMBERLAND COUNTY GRIFFITH, MAE SOBUSIAK, WALTER BRIDGETON WD	GANDYS BEACH 1 1 1 1 JONES ISLAND 1 SEA BREEZE SOBUSIAK 1 BWD 2 REP	8/28/1989 8/28/1989 8/28/1989 11/16/1988 8/28/1989 8/28/1989	4.0 3300 1200 600 620 3.5 183 720 4.0 970 3.0 109	7.6 7.8 7.8 2.4 7.8 5.2 10	890 220 51 51 2.6 66 150

^{*} Total depth of well.

Aquifer unit:

121CKKD - Kirkwood-Cohansey aquifer system 124PNPN - Piney Point aquifer

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 GLOUCESTER COUNTY

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREENED INTERVAL (FT.)	AQUIFER UNIT
15-001 15-361 15-385 15-130 15-236 15-569 15-137 15-191 15-192 15-194 15-283 15-284 15-210	CLAYTON WD GLASSBORO WD PITMAN WD SOUTH JERSEY WC SWEDESBORO WD PURELAND WC PURELAND WC PURELAND WC MANTUA TWP MUA MANTUA TWP MUA MANTUA TWP MUA HUNTSMAN CORP PAULSBORO WD	CWD 3 GWD 5 PWD P4 SJWC 3 SBWD 3 PWC 3 PURE 2(3-1973) 1-1973 MTMUA 2 MTMUA 5 MTMUA 4 SHELL 4 6-1973	393913 394141 394345 394408 394529 394535 394613 394629 394635 394919 394919	750517 750710 750804 751330 751843 752045 752054 752129 750859 751116 751037 751256 751256 751417	133 140 125 355 75 32 29 8 72 80 10 30 30	746 - 800 610 - 657 520* 234 - 265 241 - 312 161 - 201 158 - 208 81 - 136 336 - 368 315 - 337 233 - 265 358 - 383 127 - 157 185 - 227	211MRPAU 211MRPAU 211MRPAU 211MRPAM 211MRPAM 211MRPAM 211MRPAM 211MRPAU 211MRPAU 211MRPAU 211MRPAU 211MRPAU 211MRPAU 211MRPAU
					SPE-	CHLO	RIDE

NJ-WRD WELL NUMBER	SITE OWNER	LOCAL IDENTIFIER	DATE OF SAMPLE	TEMPER- ATURE (DEG C)	SPE- CIFIC CONDUCT -ANCE (µs/cm)	PH (UNITS)	CHLORIDE DIS- SOLVED (MG/L AS CL)
15-001	CLAYTON WD	CWD 3	8/23/1989	21.0	1020	8.3	150
15-361	GLASSBORO WD	GWD 5	8/23/1989	19.5	710	8.7	67
15-385	PITMAN WD	PWD P4	8/23/1989	17.5	600	8.1	45
15-130	SOUTH JERSEY WC	SJWC 3	8/25/1989	15.5	1100	8.0	170
15-236	SWEDESBORO WD	SBWD 3	8/25/1989	15.0	370	7.1	34
15-569	PURELAND WC	PWC 3	8/25/1989	14.0	243	6.7	18
15-137	PURELAND WC	PURE 2(3-1973)	8/25/1989	14.0	225	6.6	20
15-144	PURELAND WC	1-1973	8/25/1989	13.5	180	5.9	32
15-191	MANTUA TWP MUA	MTMUA 2	8/28/1989	15.0	425	7.9	18 20 32 28
15-192	MANTUA TWP MUA	MTMUA 5	8/28/1989	15.0	550	7.8	48
15-194	MANTUA TWP MUA	MTMUA 4	8/28/1989	15.0	450	7.8	34
15-283	HUNTSMAN CORP	SHELL 3	8/28/1989	15.0	800	7.6	150
15-284	HUNTSMAN CORP	SHELL 4	8/28/1989	15.0	360	7.2	13
15-210	PAULSBORO WD	6-1973	8/28/1989	15.0	255		28
12 510	I NOLODONO WD	0 1773	0/20/1707	13.0	633		20

^{*} Total depth of well.

Aquifer unit:

211MRPAU - Upper aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAL - Lower aquifer, Potomac-Raritan-Magothy aquifer system

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 MORRIS COUNTY

NJ-WRD WELL NUMBER	SITE LOCAL OWNER IDENTIFIER					LATITUDE	LONGITU	JDE	ELEV. OPEN OR LAND SCREENED SURF. INTERVAL (FT. NGVD) (FT.)			AQUIFER UNIT
271136 271148 271189	JEFFERSON TO WASHINGTON MORRIS COUN	WP MUA	JEFFERS SCHOOLE	ON TWP WEI Y MOUNTAII W3 CAMP PI	N 10	405909 404915 405348	074351 074474 074441	11 42	990 1050 980	55 58	-232 -291 -470	400PCMB 400PCMB 400PCMB
NJ-WRD WELL NUMBER	DATE	TEMPER- ATURE WATER (DEG C)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	CAR- BONATE IT-FLD (MG/L AS CO3)	
271136 271148 271189	08-28-89 11-16-88 04-05-89	15.0 12.0 11.5	134 181 190	6.6 6.4 6.4	51 68 77	14 17 20	4.0 6.2 6.6	6.8 7.8 6.2	0.80 1.1 0.90	59 65 76	<0.1 <0.1 <0.1	
NJ-WRD WELL NUMBER	DATE	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	
271136 271148 271189	08-28-89 11-16-88 04-05-89	48 53 64	8.0 12 24	10 16 1.9	0.1 0.2 0.1	12 22 19	85 121 121	<0.010 <0.010 <0.010	<0.100 1.50 1.10	0.021 0.020 0.010	0.30 <0.20 <0.20	
NJ-WRD WELL NUMBER	DATE	PHOS- PHOROUS DIS- SOLVED (MG/L AS P)	PHOS- PHOROUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC DIS- SOLVED (UG/L AS AS)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	500 .00 500 .00 500 .00 500 .00 500 .00
271136 271148 271189	08-28-89 11-16-88 04-05-89	<0.010 0.010 0.020	<0.010 <0.010 0.020	<10 <10 <10	<1 <1 <1	<1 <1 <1	<1 <1 <1	3 1 3	42 66 7	<1 <5 <5	100 50 4	
NJ-WRD WELL NUMBER	DATE	MERCURY DIS- SOLVED (UG/L AS HG)	ZINC, DIS- SOLVED (UG/L AS ZN)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	PHENOLS TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	
271136 271148 271189	08-28-89 11-16-88 04-05-89	0.3 <0.1 0.1	24 22 26	1.5 4.0 2.3	2 <1	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
NJ-WRD WELL NUMBER	DATE	TOLUENE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	ETHYL- BENZENE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- FLUORO- METHANE TOTAL (UG/L)	
271136 271148 271189	08-28-89 11-16-88 04-05-89	 <0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
NJ-WRD WELL NUMBER	DATE	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	
271136 271148 271189	08-28-89 11-16-88 04-05-89	 <0.20	 <0.20	<0.20	 <0.20	 <0.20	<0.20	<0.20	 <0.20	<0.20	<0.20	

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989

MORRIS COUNTY

DATE	CHLORO- BENZENE TOTAL (UG/L)	VINYL- ETHER TOTAL (UG/L)	DI- FLUORO- METHANE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	STYRENE TOTAL (UG/L)	TOTAL WATER WHOLE TOT REC (UG/L)
28-89 16-88						::			 <0.2
•	28-89	DATE CHLORO- BENZENE TOTAL (UG/L) 28-89 16-88	DATE CHLORO- VINYL- BENZENE ETHER TOTAL TOTAL (UG/L) (UG/L) 28-89 16-88	DATE BENZENE ETHER METHANE TOTAL TOTAL TOTAL TOTAL (UG/L) (UG/L)	DATE CHLORO- VINYL- FLUORO- CHLORO- BENZENE ETHER METHANE PROPENE TOTAL TOTAL TOTAL TOTAL (UG/L) (UG/L) (UG/L) 28-89 16-88	DATE CHLORO- VINYL- FLUORO- CHLORO- CH	DATE CHLORO- VINYL- FLUORO- CHLORO- CH	DATE	DATE

Aquifer Unit: 400PCMB - Precambrian Erathem

QUALITY OF GROUND WATER - SALTWATER MONITORING NETWORK WATER QUALITY DATA, WATER YEAR OCTOBER 1988 TO SEPTEMBER 1989 SALEM COUNTY

NJ-WRD WELL NUMBER	SITE	LOCAL IDENTIFIER	LATITUDE	LONGITUDE	ELEV. LAND SURF. (FT. NGVD)	SCREENED INTERVAL (FT.)	AQUIFER UNIT
33-032 33-035 33-457 33-108 33-112 33-354 33-362 33-459 33-118 33-460 33-346 33-083 33-085 33-086	PUBLIC SERV E-G PUBLIC SERV E-G PUBLIC SERV E-G PUBLIC SERV E-G US ARMY PENNSVILLE TWP WD WOODSTOWN W D RICHMAN ICE CRM PENNSVILLE TWP WD ATL CITY ELEC E I DUPONT PENNS GROVE WSC PENNS GROVE WSC B F GOODRICH CO B F GOODRICH CO	PW 3 PW 2 PSEG 6 FINNS POINT PTWD 4 WWD 2 WWD 3 1A PTWD 1 DEEPWATER 3R CHAMBERS OBS-3 PGWSC 1A LAYNE 1 #9 (PW-1) #6 (PW-2) #4 (PW-3)	392740 392744 392751 393641 393754 393904 393926 393928 394045 394131 394247 394256 394556 394557	753201 753206 753207 753322 753147 751946 751927 752147 753045 753009 752714 752718 752535 752530 752530	12 9 20 7 10 45 60 25 8 10 5 19 10 10 13	242 - 293 230 - 281 1115 - 1135 290 - 319 117 - 137 670 - 705 692 - 712 414 - 457 213 - 238 165 - 235 197 - 207 41 - 61 317 - 357 93 - 133 109 - 129 169 - 189	211MLRW 211MRPAM 211MRPAL 211MRPAL

41 90
90
00
11
80
50
16
60
61
50 12
20
20 2/
34 34
80
C. C

Aquifer unit:

211MLRW - Wenonah-Mount Laurel aquifer 211MRPAU - Upper aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAM - Middle aquifer, Potomac-Raritan-Magothy aquifer system 211MRPAL - Lower aquifer, Potomac-Raritan-Magothy aquifer system

	PAGE		PAGE
Acquirecy of percents		Crosswicks Creek at Extonville	108
Accuracy of records	15 111	at New Egypt	167
Acre-foot, definition of	23	Cubic foot per second, definition of	24
Adenosine triphosphate, definition of	23	Cumberland County, ground-water levelsground-water quality	188 208
Algae, definition of	23	ground water quatry	
Allentown, Doctors Creek at	,167	Definition of terms	23 88
Aquifer code list and geologic names Aquifer, definition of	23	Delaware and Raritan Canal at Kingston Delaware and Raritan Canal, diversions	163
Artesian, definition of	23	miscellaneous measurements	172
Ash mass, definition of	24	Delaware River at Belvidere	72
Assiscunk Creek near Columbus	168 107	at Burlingtonat Lumberville	113 89
near Clarksville105		at Marine Terminal, Trenton	174
Aura, Still Run at	170	at Montague	60 73
Bacteria, definition of	23	at Northampton Street at Easton, PAat Palmyra	134
Balesville, Paulins Kill at	65	at Port Jervis NY	52
Bear Creek near Johnsonburg	170	at Portland, PAat Riegelsville	167
Bear Creek, PA, diversions	163 163	at Trenton	95
Beattystown, Musconetcong River at	83	at Washington Crossing	93
Beaver Brook near BelvidereBedload, definition of	167 23	below Christina River at Wilmington, DE below Tocks Island Damsite, near Delaware	153
Bed material, definition of	24	Water Gap	63
Beltzville Lake159	,162	Delaware River basin:	166
Belvidere, Beaver Brook near	167 72	crest-stage partial-record stations in discharge measurements at low-flow partial-	100
	21	record stations in	170
Benthic invertebrate, definition ofBethlehem, PA, Lehigh River at	75	discharge measurements at miscellaneous sites	172
South Branch, at Blackwood Terrace miscellaneous measurements	145 173	diversions and withdrawals in	163
Blochemical oxygen demand, definition of	24	reservoirs in,	7,160
Biomass, definition of	24 200	Delaware Water Gap, PA, Delaware River below Tocks Island Damsite, near	63
Blacks Creek at Mansfield Square	167	Deptford Deep observation well	197
Blackwood Terrace, South Branch Big Timber	4.5	Diatoms, definition of	26
Creek at	145 170	Discharge, definition of	24 172
Blairstown, Blairs Creek at	170	Discontinued continuous Water-Quality stations	36
Blairstown, Paulins Kill at	67	Discontinued continuous gaging stations	34 24
Yards Creek near	70 85	Dissolved, definition of	24
Blue green algae, definition of		Doctors Creek at Allentown11	1,167
Blue Marsh Lake, PA	1,162	Downstream order and system	12 25
Bottom material	24 116	Drainage area, definition of	25
Buckshutem Creek near Laurel Lake	170	Dry mass, definition of	24
Burlington County, ground-water levels Burlington, Delaware River at	175 113	Eagle Point 3 observation well	198
but this ton, betakare kiver attriction	113	Easton, PA, Delaware River at Northampton St.,	
Camden County, ground-water levels	181	at	163
Cannonsville Reservoir	184	East Pond Reservoir, NY, diversions Ellisburg, North Branch Cooper River at	171
ground-water quality	207	Elm Tree Farm 2 observation well	181
Cells/volume, definition of	24	Elm Tree Farm 3 observation well	182
cfs-day, definition of	24	Explanation of the Records	108
Cherry Hill, South Branch Pennsauken Creek at	137	Extensively dissentates of dark definition	
Chlorophyll, definition of	24 105	Fecal coliform bacteria, definition of	23 62 170
Clayton, Little Ease Run near	46	Fecal streptococcal bacteria, definition of Flat Brook near Flatbrookville	62
Cliff Lake. NY	8,161	Franklinville, Scotland Run at	170
Cohansey River at Greenwich	174	Gage height, definition of	22
miscellaneous measurements	174	Gaging station, definition of	22
West Branch, at Seeley	166	Records	
Collingswood, Newton Creek at	168 24	Gloucester County, ground-water levelsground-water quality	190
Columbus, Assiscunk Creek near	168	Gloucester County Water-table Network	199
Crafts Creek at	168	Godeffroy, NY, Neversink River at	57
Contents, definition of	24 24	Green algae, definition of6	0 162
Control, definition of	24	Greenwich, Cohansey River at	1/4
Control structure, definition of	24	Ground-water level records	175
Cooper River at Haddonfield	144	Ground-water levels, explanation of records Data collection and computation	17
at Kirkwood	171	Data presentation	18
at Lawnside14 at Norcross Road at Lindenwold	2,171 140	Ground-water Quality, explanation of records	18
miscellaneous measurements	172	Data collection and computation Data presentation	18
North Branch, at Ellisburg	171	Ground-water quality records	207
North Branch, near Mariton Coopersville, Merrill Creek at	171 170	Hackettstown, Musconetcong River near	167
County Park T8 observation well	187	Haddonfield, Cooper River at	144
Craft's Creek at Columbus	168 166	Haddon Heights, South Branch Newton Creek at Hardness, definition of	168

INDEX

	PAGE	PAG	E
Harrisonville, Oldmans Creek near	169	Merrill Creek Reservoir159,16	2
Hazel Creek, PA, diversions	163	Metamorphic stage, definition of	
Higbee Beach 3 observation well	185	Methylene blue active substance, definition of. 2 Micrograms per gram, definition of. 2	2
High tide, definition of	22 170	Micrograms per gram, definition of	5
Honey Run near Ramseyburg	. 167	Middleville, Trout Brook near	0
Hunterdon County, ground-water levels	200	Milligrams per liter, definition of 2	
Huntsville, Pequest River at	166	Millville, Maurice River at Sharp Street at 1/	
Hutton Hill 1 observation well	183 12	Millville, Menantico Creek near	
Hydrologic Bench-Mark Network	25	Moore Creek tributary miscellaneous measurements 17	
Hydrologic conditions	2	Moorestown, North Branch Pennsauken Creek near 13	
Hydrologic station records	46	Morrisville, PA, Borough of, diversions 16	
Hydrologic unit, definition of	25	Mullica Hill, Raccoon Creek at	
Identifying estimated daily discharge	15	at Lockwood8	
IndexInstantaneous discharge, definition of	197	at Lockwood	7
Instantaneous discharge, definition of	24	at Riegelsville	0
Introduction	1	miscellaneous measurements	35
Jadwin, General Edgar, Reservoir, PA157	,161	near Hackettstown	
Johnsonburg, Bear Creek near	170	National Geodetic Vertical Datum of 1929	
Jones Island 2 observation well	188	(NGVD of 1929)	25
Kingston, Delaware and Raritan Canal at	88	(NASOAN) definition of	25
Kirkwood, Cooper River at	171	National Irends Network	-
	4.7	Natural substrate, definition of	: 0
Lake Hopatcong, Musconetcong River at outlet of Lakes and reservoirs:	167	Neversink Reservoir, NY	57
Beltzville Lake	1.162	New Egypt, Crosswicks Creek at	
Blue Marsh Lake, PA160	1.162	Newton Creek at Collingswood	8
Cannonsville reservoir, NY	, 160	South Branch, at Haddon Heights	ž
Cliff Lake, NY	1 162	New Village, Pohatcong Creek at	23
Hopatcong, Lake	, 162	NJ-WRD well number	52
Hopatcong, Lake	, 161	Norma, Maurice River at4	. 7
Neversink Reservoir, NY	7,162	Numbering system for wells and miscellaneous sites.	
Nockamixon Reservoir, PA	162		
Penn Forest Reservoir, PA	161	Oldmans Creek at Porches Mill	51
Pepacton Reservoir, NY	7,160	miscellaneous measurements	73
Still Creek Reservoir, PA	1,160	near Harrisonville	26 26
Swinging Bridge Reservoir, NY	3.161	Organic mass definition of	24
Toronto Reservoir, NY	3.161	Organism count/area, definition of	20
Wallenpaupack, Lake, PA	7,161	Organism count/volume, definition of	20
Wild Creek Reservoir, PA	161	Organism, definition of	15
Land-surface datum	25	Oyster Lab. 4 observation well	
Latitude-longitude system	12	Palmyra, Delaware River at	7/
Laurel Lake, Buckshutem Creek near	170		26 26
Lebanon State Forest, McDonalds Branch in	118	Partial-record stations, crest-stage	
Lebanon State Forest 23D observation well	175	definition of	20
Lehigh River at Bethlehem, PA	75	low-flow	
Lindenwold, Cooper River at Norcross Road at Little Creek near Lumberton	140 171	tidal crest-stage	
Little Ease Run near Clayton	46	Particle-size, definition of	2
Lockwood, Lubbers Run at	171	Paulins Kill at Balesville	
Musconetcong River at	81 170	at Blairstown	67
Low tide, definition of	25	Pemberton North Branch Rancocas Creek at 1	3
Lubbers Run at Lockwood	171	Penn Forest Reservoir, PA	6
Lumberton, Little Creek near	171	Pennsauken Creek, North Branch, near	71
Lumberville, Delaware River at	89	Moorestown	3
Mansfield Square, Blacks Creek at	167	Pepacton Reservoir, NY157,10	61
Mantua Creek at Pitman	168	Pequest River at Huntsville	6
Mantua Deep observation well	192		7
Mantua Shallow observation well	191 171	at Townsbury	7
Maurice River at Sharp Street at Millville	170	Percent composition, definition of	20
Maurice River at Norma	47	Periphyton, definition of	20
Maurice River basin:	166	Pesticides, definition of	20
crest-stage partial-record stations McDonalds Branch in Lebanon State Forest	166 118	Phytoplankton definition of	2
Mean concentration, definition of	27 24	Picocurie, definition of	2
Mean discharge, definition of	24	Pitman. Mantua Creek at	6
Mean high or low tide, definition of	25 25	Plankton, definition of	20
Medford, Sharps Run at Route 541 at	171	Point Airy observation Well	U
Medford, SW Branch Rancocas Creek at	168	Polychlorinated hiphenyls, definition of	2
Medford 1 observation well	176	Porches Mill, Oldmans Creek at	5
Medford 4 observation well	177 178	Portland, PA. Delaware Kiver at	6
Menantico Creek near Millville	166	Prompton Reservoir, PA157,10	6
Merrill Creek at Coopersville	170	Publications, current NJ projects	1

PAGE	PAGE
Techniques of water-resources investigations. 32 Raccoon Creek at Mullica Hill	Surface-Water Quality records
Records of stage and water discharge	Taxonomy, definition of
Runoff in inches, definition of	Toronto Reservoir, NY
Screened interval, definition of 27 Secondary Observation Wells 206 Sediment 16 Sediment, definition of 27 Seeley, Cohansey River at 50,166 West Branch Cohansey River at 166 Sharps Run at Route 541 at Medford 171 Shell Chemical 5 observation well 196 Skefka 1 observation well 193	Tritium Network, definition of
Skefka 2 observation well	Water Quality, summary of
Stage-discharge relation, definition of	Weighted average, definition of
Surface area, definition of 28 Surface-Water Quality 15 Arrangement 15 Classification 15 Surface-Water Quality, Data Presentation 16 Laboratory measurements 16 On-site measurements 15 Sediment 16	Withdrawals from the Delaware River Basin
Water temperature	

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
foot (ft)	2.54x10 ⁻² 3.048x10 ⁻¹	meters (m)
feet (ft) miles (mi)	1.609x10°	meters (m) kilometers (km)
nines (iii)	1.009X10	knometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
	4.047x10 ⁻³	square kilometers (km²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
Burrons (gur)	3.785x10°	cubic decimeters (dm ³)
	3.785×10^{-3}	cubic meters (m ³)
million gallons	3.785×10^3	cubic meters (m ³)
minon ganons	3.785×10^{-3}	cubic hectometers (hm ³)
cubic feet (ft ³)	2.832x10 ¹	cubic decimeters (dm³)
,	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447×10^{3}	cubic meters (m ³)
•	2.447×10^{-3}	cubic hectometers (hm ³)
acre-feet (acre-ft)	1.233×10^{3}	cubic meters (m ³)
	1.233×10^{-3}	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
edole feet per second (it /s)	2.832×10^{1}	cubic decimeters per second (dm ³ /s)
	2.832x10 ²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR Geological Survey, Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, N.J. 08628 3 1818 00453180 0

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300
SPECIAL 4TH CLASS BOOK RATE