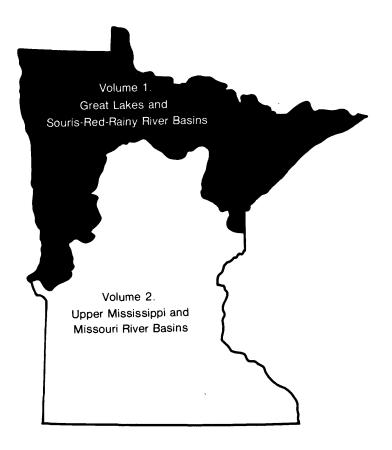


Water Resources Data Minnesota Water Year 1991

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-91-1 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies

CALENDAR FOR WATER YEAR 1991


										1990)										
		00	гові	R					NO	/EMI	BER						DE	CEMI	BER		
S	М	T	W	T	F	S	S	M	T	W	Т	F	S		S	M	T	W	T	F	S
21	1 8 15 22 29	16 23	17 24	18		20	18	19	6 13 20 27	21		16 23	3 10 17 24	1 2	5 1	7				7 14 21 28	1 8 15 22 29
										199	1										_
		J	ANU	ARY					FI	EBRI	JAR	1					1	MAR	СН		
S	М	T	W	T	F	S	S	M	T	W	T	F	S		S	M	T	W	T	F	S
20	7 14 21 28	15 22	16 23	24		19	17	11 18	5 12 19 26	20			2 9 16 23	1	7 1	8	19		21	1 8 15 22 29	
		-	APR:	IL						MA	Y						,	JUNI	E		
S	М	T	W	T	F	S	S	M	T	W	T	F	S		S	M	T	W	T	F	S
21	15	16 23	17	18		6 13 20 27	12 19	20	14	15 22	16 23	10 17 24	18 25	1	5 1 3 2	0	11 18	12 19	13 20	7 14 21 28	22
			JULY	1					Al	JGU:	ST						SEI	PTE	MBE	R	
S	М	T	W	T	F	S	S	M	T	W	T	F	S		S	M	T	W	T	F	S
14 21	1 8 15 22 29	9 16 23	17 24	11 18	12 19	20	18	12 19	13 20	14 21	8 15 22	9 16 23	3 10 17 24 31	1 2	B 5 1	9 6 23	17	11 18	12 19	6 13 20 27	14 21

Water Resources Data Minnesota Water Year 1991

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

by Kurt T. Gunard, Joseph H. Hess, and James L. Zirbel

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-91-1 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State,

s tate e s Eacher e, which

DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief, Water Resources Division U.S. Geological Survey 2280 Woodale Drive Mounds View, Minnesota 55112

PREFACE

This volume of the annual hydrologic data report of Minnesota is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Minnesota are contained in two volumes:

Volume 1. Great Lakes and Souris-Red-Rainy River Basins Volume 2. Upper Mississippi and Missouri River Basins

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the preparation of this report:

Lan H. Tornes, Water-Quality Specialist, Minnesota District Alex Brietkrietz, Ground-Water Network Project Chief, Minnesota District

Most of the data were collected, processed, and tabulated by the following individuals:

St. Paul District Office

Allan D. Arntson George H. Carlson Pierce A. Flanagan Paul E. Hanson Mark R. Have Joan M. Helms Rebecca A. Miller Gregory B. Mitton Shelley L. Morrison George A. Roach Chris A. Sanocki Charles J. Smith Gregory W. Stratton Duane A. Wicklund Thomas A. Winterstein

Grand Rapids Field Headquarters

Montevideo Field Headquarters

Howard D. Braden William A. Gothard Gregory R. Melhus Roderick L. Johnson

This report was prepared in cooperation with the State of Minnesota and with other agencies under the general supervision of George Garklavs, District Chief, Minnesota.

REPORT DOCUMENTATION 1. Report No. USGS/WRD/HD-92/307	2.	3. Recipient's Accession No.
4. Title and Subtitle Water Resources for Minnesota, Water Year 199 Volume 1, Great Lakes and Souris-Red-Rainy Riv		5. Report September 1992 6.
7. Author(s) Kurt T. Gunard, Joseph H. Hess and .	James L. Zirbel	8. Performing Organization Rept. No. USGS-WDR-91-1
 Performing Organization Name and Address U.S. Geological Survey, Water Resources Divising 2280 Woodale Drive 	ion	10. Project/Task/Work Unit No. 11. Contract(C) or Grant(G) No.
Mounds View, MN 55112		(C) (G)
12. Sponsoring Organization Name and Address U.S. Geological Survey, Water Resources Divis 2280 Woodale Drive	sion	13. Type of Report & Period Covered Annual Oct. 1, 1990 Sept. 30, 1991
Mounds View, MN 55112		14.

15. Supplementary Notes

Prepared in cooperation with the State of Minnesota and with other agencies.

16. Abstract (Limit: 200 words)

Water-resources data for the 1991 water year for Minnesota consist of records of stage, discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This volume contains discharge records for 46 gaging stations; stage-only records for 1 gaging station; stage and contents for 5 lakes and reservoirs; water quality for 13 stream stations; and water levels for 12 observation wells. Also included are 27 high-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2, represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

17. Document Analysis a. Descriptors

*Minnesota, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Data collection

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement: No restriction on distribution. This report may be purchased from:	19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages 142
	20. Security Class (This Page) UNCLASSIFIED	22. Price

CONTENTS

	Page
Preface	iii
List of surface-water stations, in downstream order, for which records are published in this volume	vi
List of ground-water wells, by county, for which records are published in this volume	vii viii
List of discontinued surface-water discharge or stage-only stations	V111 1
Cooperation	ī
Summary of hydrologic conditions	1
Precipitation.	1 2
Streamflow	2
Ground-water levels	10
Special networks and programs	10
Explanation of the records.	10
Station identification numbers	10 12
Latitude-longitude system for wells and miscellaneous sites.	12
Records of stage and water-discharge	12
Data collection and computation	12
Data presentationStation manuscript	13 13
Data table of daily mean values.	14
Statistics of monthly mean data	14
Summary statistics	14
Identifying estimated daily discharge	15
Accuracy of the records	15 15
Records of surface water-quality	15
Classification of records	15
Arrangement of records	15
Onsite measurement and sample collection	15 16
water temperature.	16
Laboratory measurements.	16
Data presentation	16
Remark codes	17
Records of ground-water levels	17 17
Data presentation	17
Records of ground-water quality	18
Data collection and computation	18
Data presentation	18 18
Definition of terms.	19
Publications on Techniques of Water-Resources Investigations	24
Station records, surface water	27
Discharge at partial-record stations and miscellaneous sites	111 112
Station records, ground water levels.	118
Index	127
TI I LIGHT A MITANO	
ILLUSTRATIONS	
Figure 1. Map showing precipitation, in inches, during 1991 water year compared with normal	
annual precipitation for Minnesota	3
Graph showing comparison of mean discharge for 1991 water year with median of mean discharge	
for 1961-90 at three long-term representative gaging stations	6
3. Graph showing comparisons of dissolved solids concentrations in water year 1991 with median for period of record at representative gaging stations	8
4. Graph showing comparison of nitrite plus nitrate concentrations in water year 1991 with	
median for period of record at representative gaging stations	9
surficial sand aquifers in two representative wells	11
6. Diagram showing system for numbering wells and miscellaneous sites	12
7. Map showing location of lake and stream-gaging stations	28 30
9. Map showing location of high-flow partial-record stations	112
10 Man sharing location of summittees wells	120

TABLES

Table 1. Runoff at streamflow stations in representative basins in Minnesota.....

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED

Note.-Data for partial-record stations and miscellaneous sites for both surface-water quantity and quality are published in separate sections of the data report. See references at the end of this list for page numbers for these sections.

[Letters after station name designates type of data: (d) discharge; (e) gage height, elevation, or contents; (c) chemical, radio-chemical, or pesticides; (b) biological or mictro-biological; (p) physical (water temperature, sediment, or specific conductance)]

	AWRENCE RIVER REAMS TRIBUTAR Pigeon River Grand Portage Reservation F Baptism River Knife River I St. Louis Riv Nemadji River Deer Creek	RY TO LAKE at Middle e River at River near r near Beav near Two Ha ver at Scan	Falls, near (Grand Portage Hovland er Bay rbors	B			(d -		-)040 -)040 -)040 p)040	10510 10530 14500 15330 24000	32 33 34 35 38 39
*	*	*	*	*	*	*	*		*	*	*
	Bois de Si	THE NORTH : iver (head (Reservoir) iver below ioux River : ioux River :	BASIN of Red River near Fergus Drwell Dam, near White Ronear Doran.	Falls mear Fergu mock, SD	s Falls		(d -		-)050 -)050 -)050	46000 50000 51300	43 44 45 46
	South I Buffalo Ri Wild Rice Wild Rice Red River of Marsh Rive	the North the North iver near H Branch Buff iver near D River at T River at H the North er near She River at C	at Hickson, I at Fargo, ND awleyalo River at ilworth win Valley	ND			(d -	6	p)050 p)050 -)050 -)050 -)050 -)050 p)050	51522 54000 61000 61500 62000 62500 64000 64500	47 50 53 56 57 58 59 60 61 64 65
	Red Lake F Red Lake F Thief F Clearwe Lost Clearwe Red Lake F Red River of	River near River at Hi River near Stater River at Catter River at Catter at Catter at Catter at Catter at Catter River at Catter North	Red Lake Red Lake ghlanding, no Thief River I at Plummer Dklee at Red Lake I bookston at Grand Forl	ear Goodric	dge		(d -		-)050 -)050 -)050 -)050 -)050 -)050 p)050	74500 175000 176000 178000 178230 178500 179000	66 67 68 69 70 71 72 73 76
	Red River of Two Rivers South Red River of	River at A the North 3: Branch Two the North	Rivers at Lal	ND ke Bronson Manitoba			(d - (d - (b b		92000 94000 02500	79 80 83 84 88

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER--Continued

'					Page
HUDSON BAY BASINContinued			Stat	ion Number	
Roseau River at Roseau Lake(-			-)0	5106500	89
Roseau River at Ross(d	-		-)0	5107500	90
Roseau River below State ditch 51, near Caribou(d	-	c p	p)0	5112000	91
Lake Winnipeg (head of Nelson River) Continued					
LAKE OF THE WOODS BASIN (head of Winnipeg River) Namakan River (head of Rainy River):					
Basswood River:					
Kawishiwi River near Ely(d	_	c b	0(a	5124480	94
Kawishiwi River near Winton	_			5127000	97
Basswood River near Winton	-			5127500	98
Namakan River at outlet of Lac la Croix, Ontario(d	-		-)0:	5128000	99
Vermilion River:			_\ 0	E10011E	100
Vermilion River near Crane Lake(d Gold Portage Outlet from Kabetogama Lake near Ray(d				5129115 5129290	100
Rainy Lake near Fort Frances, Ontario			-)0	5129400	102
Rainy River:	•		,	5120,00	
Little Fork River:					
Sturgeon River near Chisholm(d				5130500	103
Little Fork River at Littlefork(d	-	- ~		5131500	104
Big Fork River at Big Falls	-			5132000	105
Rainy River at Manitou Rapids	-	c b		5133500	106 109
Lake of the Woods at Warroad(- Lake of the Woods at Springsteel Island near Warroad(-	e		-)0	5140520 5140521	1109
Lake of the woods at Springsteel Island hear warroad	-		7	3140321	110
* * * * * * *	*		*	*	*
High-flow partial-record stations	••••	••••	•••••	•••••	112
RECORDS ARE PUBLISHED IN THIS VOLUME					
GROUND-WATER LEVELS					
CLAY					
Well 463854096250701 Local number 137N45W30CDB01					122
Well 465237096383901 Local number 139N47W05CDC01					122
Well 465328096391001 Local number 139N47W06AAA01					122
Well 465231096415801 Local number 139N48W11ABA01					123
<u>GRANT</u>					
Well 455927095575505 Local number 129N42W16ABB05					123
OTTER TAIL					
Well 463956095352601 Local number 137N39W22ACD01	• • • •	• • • • •	• • • • • • •	• • • • • •	124
ST. LOUIS Well 472638092533601 Local number 057N20W05DAD01					124
Well 473102092345001 Local number 05/N20WU5DAD01					124
Well 4730110925243001 Local number 058N20W16DBC01					125
Well 474253091574101 Local number 050N20W16DBC01					125
Well 475502091494601 Local number 063N12W26ABB01					126
TRAVERSE	• • • •				120
Well 455700096314001 Local number 129N47W25CDC01		. .			126
= · · · · · · · · · · · · · · · · · · ·					

WATER RESOURCES DATA - MINNESOTA, 1991

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Minnesota have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of the data collected: (d) discharge, (e) elevation (stage only)]

Station name	Station number	Drainage area (mi ²)	Period of record
STREAMS TRIBUTARY TO LAKE	SUPERIOR		
Pigeon River above mouth of Arrow River, MN (d)	04010000	256	1924-27
Brule River at mouth near Hoveland, MN (e)	04011000	248	1911†
Devil Track River at mouth near Grand Marais, MN (e)	04011500	a77	1911†
Cascade River at mouth near Grand Marais, MN (e)	04012000	111	1911†
Poplar River at Lutsen, MN (d)	04012500*	114	1911†, 1912-17, 1928-47, 1952-61
Cross River at Schroeder, MN (d)	04013000	a 91	1931-32
Beaver Creek (Beaver Bay Rum) at Beaver Bay, MN (d)	04015000	126	1911-14, 1928-31
South Branch Partridge River near Babbitt, MN (d)	04015455	18.5	1977-80
Partridge River above Colby Lake, at Hoyt Lakes, MN (d)	04015475	106	1979-88
Second Creek near Aurora, MN (d)	04015500	29	1955-80
Partridge River near Aurora, MN (d)	04016000	161	1942-82
St. Louis River near Aurora, MN (d)	04016500	290	1942-87
Embarrass River at Embarrass, MN (d)	04017000	93.8	1942-64
Embarrass River near McKinley, MN (d)	04018000	171	1953-62
St. Louis River at Forbes, MN (d)	04018750	713	1965-90
East Two Rivers near Iron Junction, MN (d)	04018900	40.0	1966-79
West Two Rivers near Iron Junction, MN (d)	04019000	65.3	1953-62, 1965-79
West Swan River near Silica, MN (d)	04019300	16.3	1963-79
East Swan River near Toivola, MN (d)	04019500	112	1953-62, 1964-71
Swan River near Toivola, MN (d)	04020000	254	1952-61
Whiteface River below (at) Meadowlands, MN (d)	04021000	453	1909-17
Stoney Brook at Brookston, MN (d)	04021530	97.3	1983-84
Cloquet River at Independence, MN (d)	04023000	a750	1909-17
Simian Creek near Brookston, MN (d)	04023150	-	1983-84
St. Louis River near Cloquet, MN (e)	04023500	a3,400	1903†
Squaw Creek near Cloquet, MN (d)	04023600	-	1983-84
Otter Creek near Cloquet, MN (d)	04024015	-	1983-84
Elim Creek near Holyoke, MN (d)	04024090	1.06	1976-78
Skunk Creek below Elim Creek near Holyoke, MN (d)	04024093	8.83	1976-78

[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi ²)	Period of record
RED RIVER OF THE NORTH BASIN			
Otter Tail River near Detroit Lakes, MN (d)	05030000	270	1937-71
Otter Tail River at German Church, near Fergus Falls, MN (d)	05030500	a1,230	1904-17
Pelican River at Detroit Lakes, MN (d)	05033900	-	1968-71, 1974-75
Pelican River at Detroit Lake outlet near Detroit Lakes, MN (d)	05034100	-	1968-71, 1972-75
Long Lake outlet near Detroit Lakes, MN (d)	05035100	-	1968-71
West Branch County Ditch No. 14 near Detroit Lakes, MN (d)	05035200	-	1968-71
East Branch County Ditch No. 14 near Detroit Lakes, MN (d)	05035300	-	1968-71
St. Clair Lake outlet near Detroit Lakes, MN (d)	05035500	-	1968-75
Pelican River at Muskrat Lake outlet near Detroit Lakes, MN (d)	05035600	-	1968-75
Pelican River at Sallie Lake outlet near Detroit Lakes, MN (d)	05037100	-	1968-75
Pelican River at Lake Melissa outlet near Detroit Lakes, MN (d)	05039100	-	1968-75
Pelican River near Detroit Lakes, MN (d)	05040000	123	1942-53
Pelican River near Fergus Falls, MN (d)	05040500	482	1909-12, 1942-80
Otter Tail River (Red River) near Fergus Falls, MN (e)	05045500	a1,690	1909-10
Otter Tail River near Breckenridge, MN (d)	05046500	a2,040	1931-32, 1939-46
Mustinka River (head of Bois de Sioux River) near Norcross, MN (d)	05047000	-	1940-47
Mustinka ditch above West Branch Mustinka River (Twelve Mile Creek) near Charlesville, MN (d)	05047500	-	1943-55
Mustinka ditch below West Branch Mustinka River (Twelve Mile Creek) near Charlesville, MN (d)	05048000	-	1943-55
West Branch Mustinka River (Twelve Mile Creek) below Mustinka ditch near Charlesville, MN (d)	05048500	-	1943-55
Mustinka River above (near) Wheaton, MN (d)	05049000	834	1915-24, 1930-58
Bois de Sioux River below Fairmont, ND (d)	05050500	a1,540	1919-44
Rabbit River at Cambell, MN (d)	05051000	266	1942-52
Red River of the North below Fargo, ND (d)	05054020	-	1969-78
Whiskey Creek at Barnesville, MN (d)	05061200*	25.3	1964-66
Wild Rice River near Ada, MN (d)	05063000	a1,100	1948-54
South Branch Wild Rice River near Borup, MN (d)	05063500*	254	1944-49
Marsh River below Ada, MN (d)	05067000	-	1948-52
Sand Hill River at Beltrami, MN (d)	05068000	a324	1943-58
Sand Hill ditch at Beltrami, MN (d)	05068500	-	1943-58
Thief River near Gatske, MN (d)	05075500	-	1953-56
Red Lake River at Thief River Falls, MN (d)	05076500	a3,450	1909-18, 1920-30
Clearwater River near Pinewood, MN (d)	05077000	132	1940-45
Clearwater River near Leonard, MN (d)	05077500	153	1934-47
Ruffy Brook near Gonvick, MN (d)	05077700*	45.2	1960-78


[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi ²)	Period of record
RED RIVER OF THE NORTH BASINCon	tinued		
Red River of the North at Oslo, MN (d)	05083500	331,200	1936-37, 1941-43, 1945-60, 1973-78
Snake River at Warren, MN (d)	05085500	a175	1945, 1953-56
Snake River at Alvarado, MN (d)	05086000	309	1945, 1953-56
Snake River near Argyle, MN (d)	05086500	481	1945
liddle River near Strandquist, MN (d)	05087000	-	1953-56
amarac River near Strandquist, MN (d)	05090500	-	1953-56
amarac River at Stephen, MN (d)	05091000	-	1945
amarac River near Stephen, MN (d)	05091500	a320	1945, 1953-55
wo Rivers (Middle Fork Two Rivers) near Hallock, MN (d)	05092500	131	1931-38
South Branch (South Fork) Two Rivers near Pelan, MN (d)	05093000	281	1928-38, 1953-56
South Branch Two Rivers (Two Rivers) at Hallock, MN (d)	05094500		1940-47
wo Rivers (South Branch Two Rivers) at Hallock, MN (d)	05095000		1911-14, 1929-30, 1938-39, 1941-43
wo Rivers below Hallock, MN (d)	05095500	644	1945-55
orth Branch (North Fork) Two Rivers near Lancaster, MN (d)	0 509 600 0	a32	1929-38, 1941-55
tate Ditch 85 near Lancaster, MN (d)	05096500	a 95	1929-38, 1942-55
orth Branch Two Rivers at Lancaster, MN (d)	05097000	209	1941-42, 1953-56
orth Branch Two Rivers near Northcote, MN (d)	05097500	386	1941-42, 1945-51
wo Rivers below North Branch near Hallock, MN (d)	0 509 80 00	a1,060	1941-43
oseau River (at) near Malung, MN (d)	05103000	252	1928-46
outh Fork (West Branch) Roseau River near Malung, MN (d)	05104000	312	1911-14, 1928-46
oseau River at Roseau, MN (d)	05105000	-	1940-47
oseau River near Roseau, MN (d)	05105500	-	1930-60
prague Creek near Sprague, Manitoba (d)	05106000	176	1928-81
ine Creek near Pine Creek, MN (d)	05107000	74.6	1928-53
oseau River near Badger, MN (d)	05108000	-	1928-69
oseau River near Duxby, MN (d)	05108500	-	1929-51, 1952-56
adger Creek near Badger, MN (d)	05109000	a2.2	1929-30, 1931-38
oseau River near Haug, MN (d)	05109500	-	1932-66
oseau River at outlet of State Ditch 69 near Oak Point, MN (d)	05110000	-	1939-42
oseau River at head of State Ditch 51 near Oak Point, MN (d)	05110500	-	1933-42
oseau River at Oak Point, MN (d)	05111000	-	1933-39, 1941-60
oseau River at international boundary, near Caribou, MN (d)	05112500	a1,590	1933-69

^{*}See footnotes at end of table."

Station name	Station number	Drainage area (mi ²)	Period of record
LAKE OF THE WOODS BASIN			
Isabella River near Isabella, MN (d)	05124500	341	1953-61, 1976-77
Filson Creek near Ely, MN (d)	05124990	9.66	1974-85
South Kawishiwi River near Ely, MN (d)	05125000	-	1953-61, 1976-78
Stony River near Isabella, MN (d)	05125500	180	1953-64
Stony River near Babbitt, MN (d)	05125550	219	1975-80
Dunka River near Babbitt, MN (d)	05126000	53.4	1951-62, 1975-80
South Kawishiwi River above White Iron Lake near Ely, MN (d)	05126210		1975-78
Bear Island River near Ely, MN (d)	05126500	68.5	1953-62, 1975-77
Burntside River near Ely, MN (d)	05127205	-	1967-78
Bjorkman's Creek near Ely, MN (d)	05127207	1.36	1972-78
Armstrong Creek near Ely, MN (d)	05127210	5.29	1967-78
Longstorff Creek near Ely, MN (d)	05127215	8.84	1967-78
Shagawa Lake tributary at Ely, MN (d)	05127219	1.84	1971-78
Burgo Creek near Ely, MN (d)	05127220	3.04	1967-78
Shagawa River near Ely, MN (d)	05127230	99	1967-78
Vermilion Lake near Soudan, MN (e)	05128200	-	1913-15 1941-42 1946-87
Pike River near Biwabik, MN (d)	05128340		1977-79
Pike River near Embarrass, MN (d)	05128500	115	1953-64, 1976-79
Vermilion River below Vermilion Lake near Tower, MN (d)	05129000	483	1911-17, 1928-81
Rainy River at International Falls, MN (d)	05129500	14,900	1905-60
Sturgeon River (Lake) at Side Lake, MN (d)	05130000	-	1938-47
Dark River near Chisholm, MN (d)	05131000	50.6	1942-61, 1965-79
Deer Lake outlet (Deer Lake) near Effie, MN (d)	05131800	-	1937-39, 1940-46
Big Fork River at Laurel, MN (d)	05132500	<u>=</u>	1909
Black River near Loman, MN (d)	05133000		1909
Rapid River near Baudette, MN (d)	05134200	543	1956-85
Warroad River near Warroad, MN (d)	05139500	162	1946-80
Bulldog Run near Warroad, MN (d)	05140000*	14.2	1946-51, 1966-77
East Branch Warroad River near Warroad, MN (d)	05140500*	102	1946-54, 1966-77

^{*} Presently operated as high-flow partial-record station. † Stage records only. e Approximately.

Chippewa National Forest Road

WATER RESOURCES DATA FOR MINNESOTA, 1991

INTRODUCTION

The Water Resources Division of the U.S Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Minnesota each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Minnesota."

Water resources data for the 1991 water year for Minnesota consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains discharge records for 46 gaging stations; stage only records for 1 gaging station; stage and contents for 5 lakes and reservoirs; water quality for 13 stream stations; and water levels for 12 observation wells. Also included are 27 high-flow partial-record stations. These data, together with the data in Volume 2, represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

This series of annual reports for Minnesota began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Minnesota were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 4, 5 and 6A." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply papers can be consulted in the libraries of the principal cities of the United States and may be purchased from the books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and volume number. For example, this volume is identified as the "U.S. Geological Survey Water-Data Report MN-91-1. For archiving and general distribution, the reports for 1971-1974 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc-Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (612) 783-3101. A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

COOPERATION

The U.S. Geological Survey and organizations of the State of Minnesota have had cooperative agreements for the systematic collection of streamflow records since 1909, for ground-water levels since 1948, and for water-quality records since 1952. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Minnesota Department of Natural Resources, Division of Waters, Kenneth Lokkesmoe, director.

Minnesota Department of Transportation, Leonard W. Levine, commissioner.

Metropolitan Waste Control Commission of the Twin Cities Area, Louis R. Clark, chairperson.

Beltrami Soil and Water Conservation District, Floyd W. Jorgensen, chairperson.

Elm Creek Conservation Commission, Fred G. Moore, chair-person.

Leech Lake Reservation Business Committee, Daniel Brown, chairperson.

Lower Red River Watershed Management Board, Donald Ogaard, chairman.

Whitewater Joint Powers Board, Eugene Kalmes, chairman.

Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers, in collecting records for 46 gaging stations and 12 water-quality stations published in this report of 2 volumes. Thirteen gaging stations in the Hudson Bay and St. Lawrence River basins were maintained by funds appropriated to the United States Department of State. Eight of these, on water adjacent to the international boundary, are maintained by the United States (or Canada) under agreement with Canada (or the United States), and the records are obtained and compiled in a manner equally acceptable in both countries. These stations are designated herein as "International gaging stations."

SUMMARY OF HYDROLOGIC CONDITIONS

PRECIPITATION

Normal annual precipitation in Minnesota ranges from about 19 in. (inches) in the northwest to more than 32 in. in the southeast. Precipitation during water year 1991 ranged from less than 20 in. in the northwest to 44 in. in several areas in southern, central, and east-central Minnesota. Precipitation ranged from more than 3 in. below normal (based on record period 1961-90) in small areas of northern, southwestern, and southeastern Minnesota to more than 12 in. above

normal in other areas of southern, central, and east-central Minnesota; precipitation in one small area in central Minnesota was more than 16 in. above normal during the water year (fig. 1).

The water year began with an 8- to 12-in. precipitation deficit in parts of northern Minnesota, and a 12- to 16-in. precipitation excess in parts of east-central and southeastern Minnesota. The following is a summary of precipitation during the 1991 water year:

October - above normal statewide except in the northwest and south where it was below normal.

November - below normal statewide.

December - near normal statewide except in parts of the south where it was considerably above normal.

January - below normal statewide.

February - below normal statewide except in the east-central, west-central, north-central, and northwest where it was above normal.

March - above normal statewide except in the northwest and northeast where it was below normal.

April - above normal statewide except in the northeast where it was below normal.

May - above normal statewide except in west-central region where it was below normal.

June - below normal statewide except in the northwest, west-central, and southwest where it was above normal.

July - above normal statewide except in the southwest where it was below normal.

August - below normal statewide except in the south-central and southeast where it was above normal.

September - above normal statewide.

Two notable rainfalls occurred during the summer of 1991. The first event was on Sunday, July 21, when approximately 6 in. of rain fell in a one-hour period in the Garvin Brook basin in southeastern Minnesota. This is about twice the 100-year one-hour rainfall for that area. The entire town of Stockton, which lies in the Garvin Brook valley, was flooded to depths as much as 5 feet. Four miles downstream from Stockton, the gage shelter for gaging station, Garvin Brook near Minnesota City (05378235) was washed away. A survey showed that Garvin Brook had risen 17 feet at the gage site.

The second event was on September 7, when more than 6 in. of rain fell Saturday evening between 2 pm and 10 pm from south of Breckenridge in west-central Minnesota near the North Dakota border to Paynesville in central Minnesota, and from Hector to Glencoe, in central Minnesota. A Soil and Water Conservation District official reported 11 in. of rain just west of Glencoe. An additional 2 or more inches of rain fell over much of Minnesota on Sunday night, September 8. As a result, flood stages or near flood stages were reached in several tributaries to the Minnesota and Mississippi Rivers during September.

STREAMFLOW

Average annual runoff in Minnesota ranges from 1 in. in the west to 14 in. in the northeast. Annual runoff in water year 1991 ranged from 0.14 in. (6 percent of average) in a small part of northwestern Minnesota to 16.90 in. (129 percent of average) in east-central Minnesota (table 1, vol. 1). In contrast to the previous year, when runoff in the western one-third of the State was considerably less than one-half the long-term average, runoff in 1991 was less than one-half the long-term average only in the northwest. Runoff in west-central and southwestern Minnesota during 1991 generally exceeded the long-term average and for some streams was almost twice the long-term average. In the remaining eastern two-thirds of

the State, runoff ranged from more than one-half the long-term average in the north to greater than twice the long-term average in some areas of the south.

In 1991, runoff to the Great Lakes and Souris-Red-Rainy River Basins (Volume 1) ranged from considerably below the long-term average in most of the west to near or slightly above the long-term average in the east. Runoff ranged from a low of 6 percent of average at Thief River near Thief River Falls (05076000) in the Red River of the North basin in northwestern Minnesota to a high of 129 percent of average at Deer Creek near Holyoke (04024098) in the Lake Superior basin in east-central Minnesota.

In northwestern Minnesota, runoff for the index station, Red Lake River at Crookston (05079000), was 0.61 in. - 21 percent of the station's 90-year average (1902-1991) of 2.87 in. and the 11th lowest runoff of record indicating that the drought, which began in the late 80's, persisted in this area. In the three previous years (1988-90), runoff was the 11th, 23rd, and 6th lowest for the respective period of record.

In north-central Minnesota, runoff for the index station Little Fork River at Littlefork (05131500) was 6.42 in. - 77 percent of the 68-year average (1912-16, 1929-91) of 8.29 in. This is identical to the previous year when runoff was 77 percent of the 67-year average.

In northeastern Minnesota, runoff for the index station, Baptism River near Beaver Bay (04014500) was 14.26 in. - 87 percent of the 64-year average (1928-91) of 16.30 in. This is considerably higher than the 9.00 in. of runoff in water year 1990 and reflects the above normal precipitation in this area during the year.

Annual and monthly mean discharges for 1991 for the index stations are compared to the median of mean discharges for a 30-year base period in figure 2. Although near-record high flows occurred at a few stations, no new records were established. However, record low flows occurred at several stations. The most notable low flow, for the 2nd consecutive year, occurred in the Roseau River below State Ditch No. 51 near Caribou (65112000) in northwestern Minnesota; monthly mean flows for October, November, December, January, and February were the lowest for the period of record, which ranged from 34 years for January and February to 65 years for October.

WATER QUALITY

Boxplots for four U.S. Geological Survey National Stream-Quality Accounting Network (NASQAN) stations are used to depict variability in concentrations of dissolved solids and nitrate as nitrogen in the three major basins (figs. 3 and 4): Lake Superior, Rainy River, and Red River of the North basins.

Boxplots are a useful graphical technique because they display the central tendency, variation, and skewness of a data set, as well as the presence or absence of extreme values. A boxplot consists of a centerline (the median) dividing a rectangle defined by the 75th and 25th percentiles. Whiskers are drawn from the ends of the box (75th and 25th percentiles) to the most extreme observation within 1.5 times the interquartile range (the distance from the 25th to the 75th percentile values) beyond the ends of the box. Values more than 1.5 interquartile ranges from the box ends may indicate extreme hydrologic and chemical conditions or sampling and analytical errors. Observations from 1.5 to 3 interquartile ranges from the box in either direction are plotted individually with an asterisk. Observations greater than three interquartile ranges from the ends of the box are plotted with an open circle. Water year 1991 values are plotted with a closed circle to show where these data lie with respect to the historic distribution of data.

Dissolved-solids concentrations in 1991 were generally less than historic median in the Lake Superior basin, as evidenced by data for Baptism River near Beaver Bay and St. Louis River at Scanlon. Red Lake River at Crookston in the Red River of the North basin generally had lower concentrations of dissolved solids in the fall and higher in the winter and summer. Dissolved-solids concentrations were substantially greater than historic median in January and July

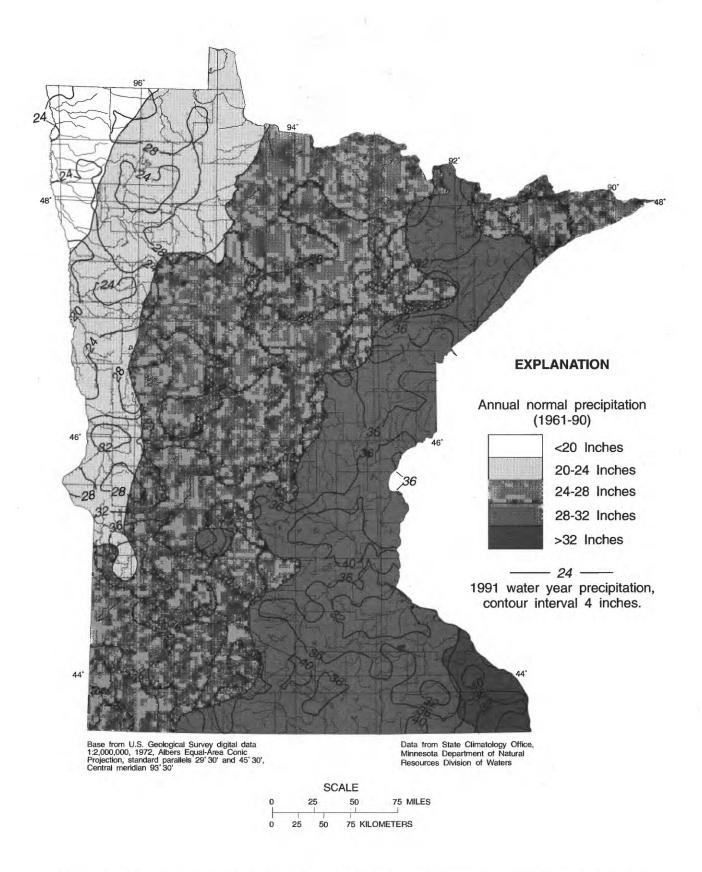


Figure 1.--Precipitation, in inches, during 1991 water year compared to normal annual precipitation in Minnesota.

Table 1.--Runoff at streamflow stations in 1991 compared with long-term average for river basins in Minnesota [Average runoff for station is based on period of record. Maximum and minimum runoff and year of occurrence are shown. mi², square miles.]

4

			Runoff (inches)	nches)	Maxim	Maximum runoff	Minin	Minimum runoff	
Station no.	Station name	Drainage area (mi2)	1991 Water year	Average	Inches	Water year	Inches	Water year	Years of record
04010500	Pigeon River at Middle Falls near Grand Portage	009	10.30	11.38	19.01	1971	3.58	1958	88
04014500	Baptism River near Beaver Bay	140	14.26	16.30	32.50	1972	7.92	1963	2
04015330	Knife River near Two Marbors	85.6	15.31	14.17	23.32	1986	7.01	1977	17
04024000	St. Louis River at Scanlon	3,430	16.6	9.56	16.93	1972	3.74	1924	83
04024098	Deer Creek near Holyoke	7.77	16.90	13.13	33.70	1986	6.38	1980	15
02046000	Otter Tail River below Orwell Dam near Fergus Falls	1,830	2.52	2.37	6.25	1966	.15	1934	19
02020000	Bois de Sioux River near White Rock	1,160	κ.	76.	3.85	1986	.000	1977	20
05051500	Red River of the North at Wahpeton	4,010	1.66	1.84	2.00	1986	.18	1977	87
05061500	South Branch Buffalo River at Sabin	522	9.	1.45	5.15	1962	.32	1977	418
05062000	Buffalo River near Dilworth	1,040	66.	1.72	5.76	1975	.33	1934	09
02064000	Wild Rice River at Hendrum	1,600	96.	2.20	5.79	1975	.25	1977	\$97
02069000	Sand Hill River at Climax	426	.88	2.25	6.50	1950	.59	1977	577
05074500	Red Lake River near Red Lake	1,950	.45	3.30	00.6	1951	.04	1936	28
02076000	Thief River near Thief River Falls	656	-14	2.27	8.60	1966	.02	1939	73.8
05078500	Clearwater River at Red Lake Falls	1,370	1.25	3.07	8,48	1950	\$	1939	648
05079000	Red Lake River at Crookston	5,280	19.	2.87	8.05	1950	.22	1934	06
05082500	Red River of the North at	30,100	.53	1.16	3.42	1950	.11	1934	87

Table 1.--Runoff at streamflow stations in 1991 compared with long-term average for river basins in Minnesota--Continued

			Runoff (Inches)	nches)	Maxim	Maximum runoff	Minin	Minimum runoff	
Station no.	Station name	Drainage area (mi2)	1991 Water year	Average	Inches	Water year	Inches	Water year	Years of record
05087500	Middle River at Argyle	265	.23	1.95	5.74	1966	.08	1977	408
05102500	Red River of the North at Emerson	40,200	.45	1.12	60.4	1950	.11	1934	٤
05104500	Roseau River below South Fork near Malung	573	1.19	3.13	8.18	1950	11.	1990	45
05107500	Roseau River at Ross	1,220	1.59	2.84	8.07	1950	.32	1934	63
05112000	Roseau River below State Ditch No. 51 near Caribou	1,570	1.47	2.36	5.91	1927	.31	1977	348
05124480	Kawishiwi River near Ely	253	6.33	11.22	16.80	1971	5.07	1977	52
05127000	Kawishiwi River near Winton	1,229	7.83	11.39	21.73	1950	5.65	1924	718
05127500	Basswood River near Winton	1,740	7.53	10.01	20.63	1950	4.35	1958	63§
05128000	Namakan River at Outlet of Lac la Croix	5,170	7.39	10.01	19.10	1950	2.53	1924	69
05130500	Sturgeon River near Chisholm	187	6.34	8.93	15.11	1950	4.58	1977	67
05131500	Little Fork River at Littlefork	1,730	6.42	8.29	15.01	1966	2.40	1931	68§
05132000	Big Fork River at Big Falls	1,460	67.4	72.9	12.67	1950	8.	1931	§09
05133500	Rainy River at Manitou Rapids	19,400	6.33	8.97	16.28	1950	4.10	1761	63

§ Noncontinuous period.

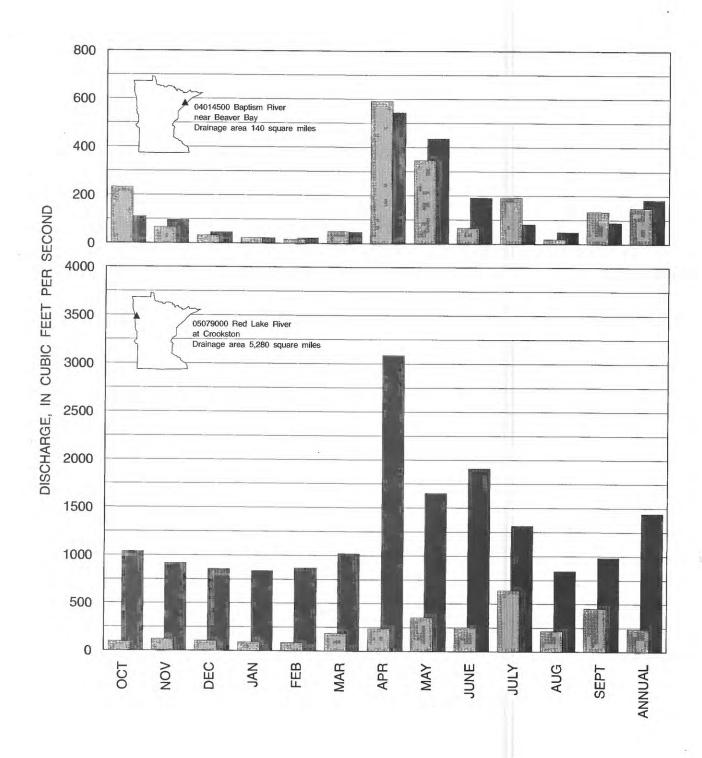
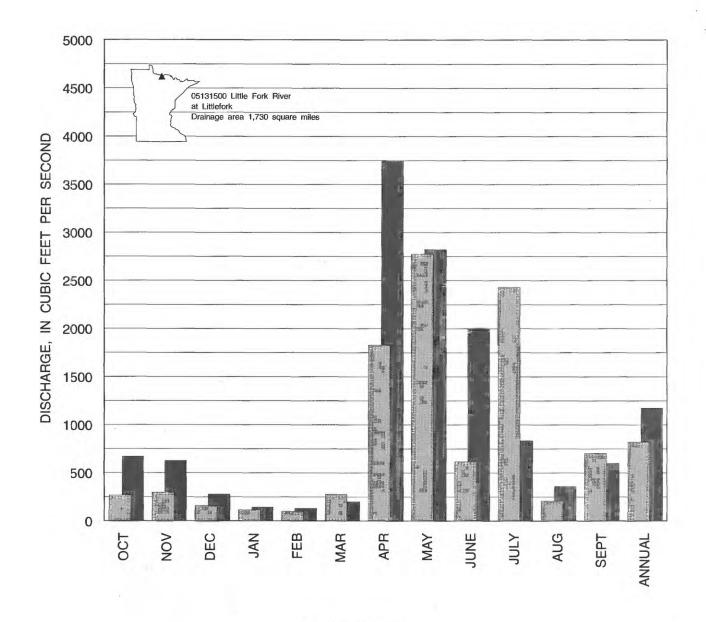



Figure 2.--Comparison of mean discharge for the 1991 water year with median

EXPLANATION

Mean discharge for water year 1991

Median of mean discharge for 1961-1990

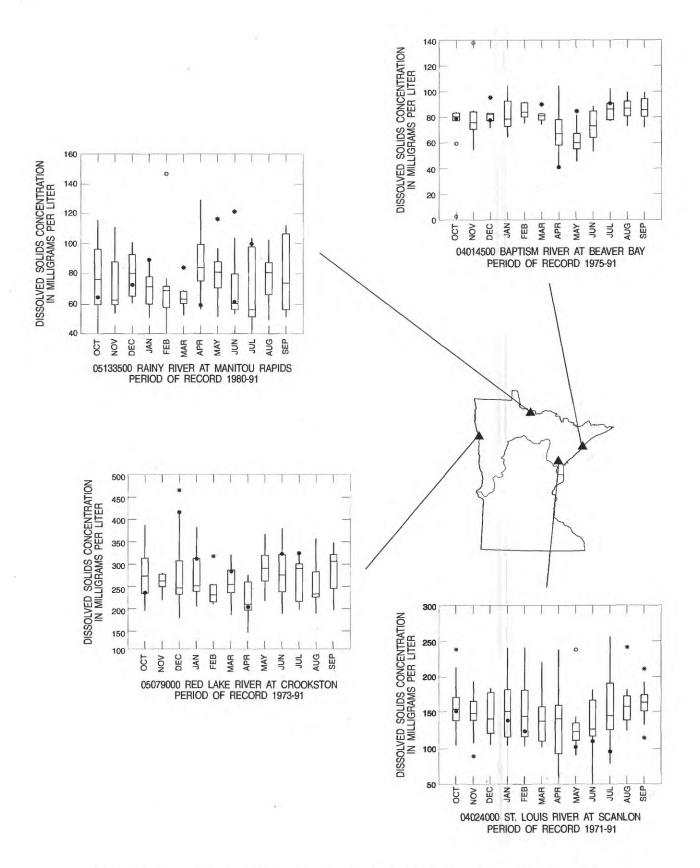


Figure 3--Comparison of dissolved-solids concentrations in water year 1991 with median for period of record at representative gaging stations.

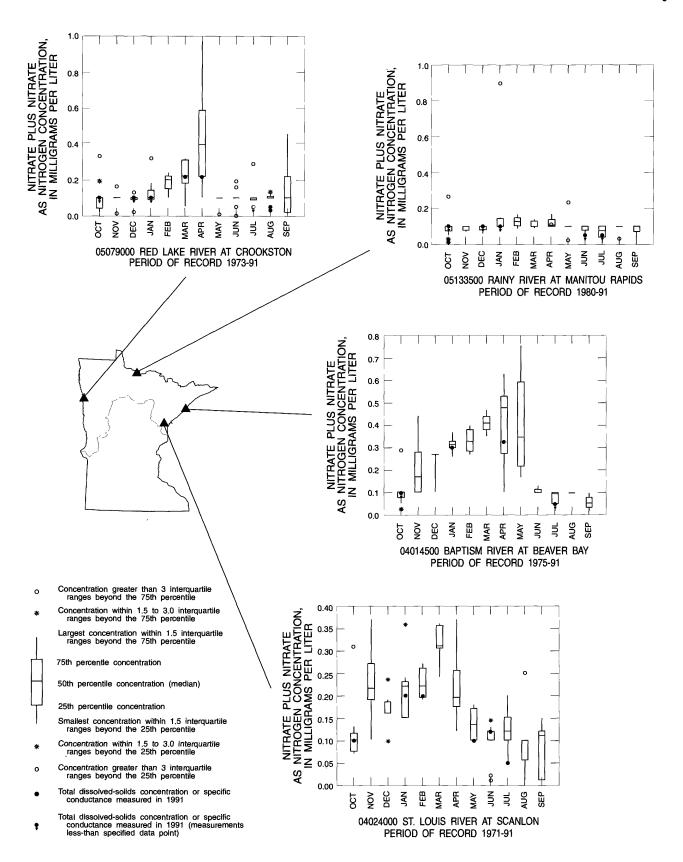


Figure 4--Comparison of nitrate plus nitrate concentrations in water year 1991 with median for period of record at representative gaging stations.

and substantially less than median in April in the Rainy River at Manitou Rapids. Dissolved-solids concentrations in samples collected in October, December, and June were within the interquartile range.

Nitrate concentrations reported as nitrogen (analyzed for nitrate plus nitrite, but nitrite concentration assumed to be negligible) were generally close to the median throughout 1991 for the four NASQAN stations. No ground-water samples were collected in the hydrologic areas described by this volume.

GROUND-WATER LEVELS

Data from six wells completed in surficial sand aquifers, five wells completed in buried sand and gravel aquifers, and one well completed in the Biwabik Iron-Formation aquifer are presented in this volume.

Surficial Sand Aquifers

Compared to the previous water year, water levels during 1991 were higher in five of six surficial sand wells, while record low levels occurred in the remaining well. Recharge to the surficial sand aquifers closely follows precipitation. For example, water level in a west-central Minnesota well (455700096314001) was 3.4 feet higher at the end of September than it was a year ago. This was in response to 11 inches of precipitation above the 22-inch average precipitation for this area. In another shallow well (463956095352601) in the same part of the State, water levels were 1.5 feet higher at the end of September compared to September 1990 (see hydrograph page However, water levels in this well were below the monthly average from October through May, and above the monthly average from June through September. In a shallow well (474253091574101) in northeastern Minnesota, monthly water levels were above average for the entire year (fig. 5). Another well (475502091494601), in the same county, also had water levels above the monthly average for the entire year. Precipitation in this area was 5.8 inches above the annual average. Continued water-level declines were observed in one well (465237096383901) near Moorhead in northwestern Minnesota. From October through July record monthly low levels were observed in this well which has 44 years of record. This well is in an area of large ground-water withdrawals for public supply and irrigation. In contrast, a well (463854096250701) 20 miles southeast of Moorhead had an average water-level gain of 1 foot from May through September as compared to the previous year (fig. 5).

Buried Sand and Gravel Aquifer

By the end of the 1991 water year, water levels in three of the five buried sand and gravel wells were higher than they were at the end of the previous year while levels in the other two were lower. The two wells with lower water levels are near Moorhead in northwestern Minnesota. New monthly low levels were measured in one well (465328096391001) throughout the water year; in August, the lowest water level in a 30-year period of record was measured (see hydrograph page 123). In the other well (465231096415801), located 2.5 miles from the previously mentioned well, no record low water levels were measured, but water levels were below average the entire water year. Two wells (473102092345001 and 473011092524301) in northeastern Minnesota, along the Mesabi Iron Range, had water levels 1.5 feet higher at the end of the water year compared to a year ago; precipitation in this area was about 6 inches above the yearly average. Maximum recharge to these two wells was greatest from May through September causing water levels to be above average at the end of the water year. In well (455927095575505), in west central Minnesota, water levels at the end of the water year were about the same as at the close of the previous water year, even though precipitation near this well was 5 inches above the yearly average.

Bibwabik Iron-Formation Aquifer

Monthly high water levels were recorded for the entire water year as well as a record all time high in September in a well (472638092533601) in northeastern Minnesota with 36 years of record (see hydrograph page 125). This well is located on the Mesabi Iron Range. The steady rise in water level is due to a combination of

above average precipitation and no dewatering of nearby mines. This type of natural phenomenon has been described at other abandoned mine sites that are now filled by ground water.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National Stream Quality Accounting Network (NASQAN) is a national data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional waterquality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of the hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, and aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1991 water year that began October 1, 1990, and ended September 30, 1991. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for the surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 7, 8, 9, and 10. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

STATION IDENTIFICATION NUMBERS

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The system used by the U.S.

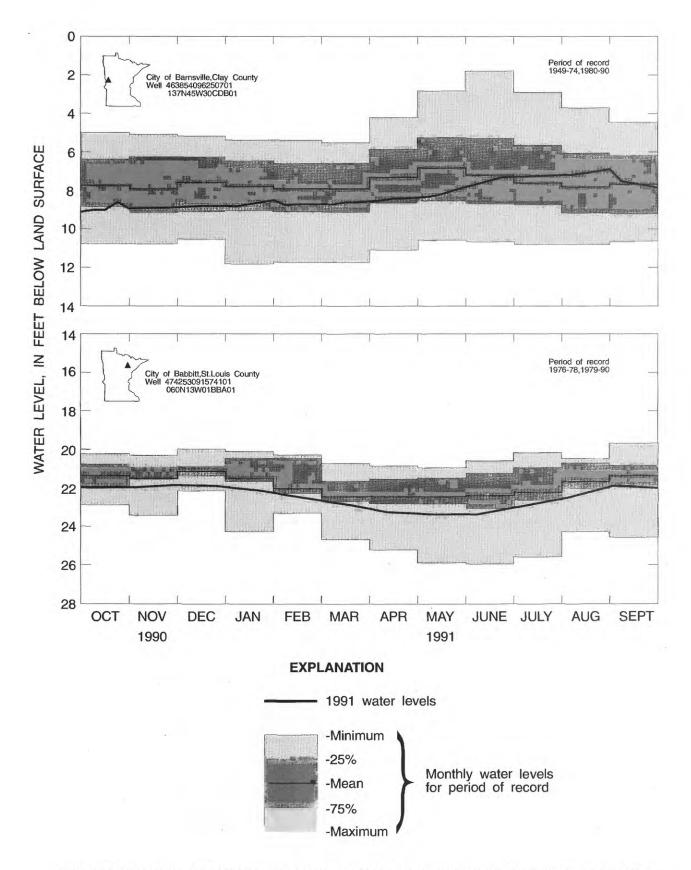


Figure 5.--Relation of water levels during 1991 to long-term levels in two representative wells in surficial sand aquifers.

Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Minnesota, for surface-water stations where only miscellaneous measurements are made.

Downstream Order System and Station Number

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream sections is listed between them. A similar order is followed by listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indentation in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 05041000, which appears just to the left of the station name, includes the 2-digit part number "05" plus the 6-digit downstream order number "041000."

Latitude-Longitude System for Wells and Miscellaneous Sites

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 6. Each well site is also identified by a local well number which consists of township, range, and section numbers, three letters designating 1/4, 1/4, 1/4 section location, and a two-digit sequential number.

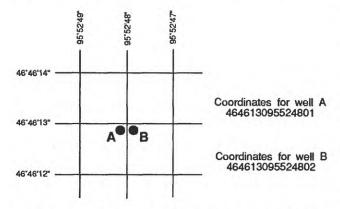


Figure 6.--Example of system for numbering wells and miscellaneous sites.

RECORDS OF STAGE AND WATER DISCHARGE

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharge may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations".

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Highflow partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and high-flow partial-record stations for which data are given in this report are shown in figures 7 and 9.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of current-meter measurements, the curves are extended using: (1) logarithmic-plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby

basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means, of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharge over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surfacewater discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.-Information on locations is obtained from the most accurate maps available. The location of the gage with respect

to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time when the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all reports in which revisions have been published for the station and water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datum of previous gages are given under this heading.

REMARKS.—All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.—Included here is the information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the district office (address given on the back of title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and to the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN"); or in acre-feet (line headed "AC-FT). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figure are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS 19_-19_, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS 19 _-19 _," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because

the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by symbol and corresponding footnotes.
- ANNUAL MEAN.—The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. At least 5 complete years of record must be available before this statistic is published for the designated period.
- HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.
- LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.
- HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.
- LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.
- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)
- INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF (AC-FT).—Indicates the depth, in acrefect, to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it.
- ANNUAL RUNOFF (CFSM).-Indicates the average number of cubic feet of water flowing per second from each

square mile of area drained, assuming that the runoff is distributed uniformly in time and area for the year.

- ANNUAL RUNOFF (INCHES).—Indicates the depth to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it.
- 10 PERCENT EXCEEDS.—The discharge that is exceeded by 10 percent of the flow for the designated period.
- 50 PERCENT EXCEEDS.—The discharge that is exceeded by 50 percent of the flow for the designated period.
- 90 PERCENT EXCEEDS.—The discharge that is exceeded by 90 percent of the flow for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the waterdischarge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated", or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1000 ft³/s; and to 3 significant figures for more than 1000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of all discharge measurement sites in the State as well as an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

RECORDS OF SURFACE-WATER QUALITY

Records of surface water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 8.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurement and Collection

In obtaining water quality data, a major concern needs to be assuring that the data obtained represents the in situ quality of water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed

procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5 Chap. A1, A3, and A4. All of these references are listed on p. 17 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey district office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. district office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the district office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment

discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations

Laboratory Measurements

Samples for indicator bacteria and specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratories in Arvada, Colo., Doraville, Ga., or Iowa City, Ia. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, when appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

DRAINAGE AREA.—See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

PERIOD OF RECORD.—This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.—If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organisms count less than 0.5 percent (organisms may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant

RECORDS OF GROUND-WATER LEVELS

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Minnesota are shown in figure 10.

Although, in this report, records of water levels are presented for fewer than 200 wells, records are obtained through cooperative efforts of many Federal, State, and local agencies for several hundred observation wells throughout Minnesota and are placed in computer storage. Each spring, the Minnesota Department of Natural Resources, Division of Waters publishes a report for the previous water year entitled "Observation Well Data Summary, Water Year 19_." This report contains hydrographs of recorder wells, detailed maps showing the location of active observation wells, and other useful items. Information about the availability of the data in the water-level file may be obtained from the District Chief, Minnesota District. (See address on back of front page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well assure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (Isd). Land-surface datum is a datum plane that is approximately at land surface at each well. If nown, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

All water-level measurements are reported to the nearest hundredth of a foot. The error of water-level measurements is normally only a hundredth or a few hundredth of a foot.

Hydrographs showing water-level fluctuations are included for 3 representative wells; 1 in a surficial-sand aquifer, 1 in a buried sand aquifer, and 1 in a bedrock aquifer.

Data Presentation

Each well consists of two parts, the station description and the data table of water levels observed during the water year. In addition a graph of water levels for the current year or other selected period is included for several representative wells. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.—This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.— This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.—This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and includes additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in the top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision depending on the method of determination.

REMARKS.—This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that are also water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.—This entry indicates the period for which there are published records for the well. It reports the month and year of the start of the publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR THE PERIOD OF RECORD.—This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, abbreviated tables are published; generally, only water-level lows are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. A hydrograph for a selected period of record follows the water-level table for several representative wells.

RECORDS OF GROUND-WATER QUALITY

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigation" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit

number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the U.S. Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases.

- * Station Header File Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the U.S. Geological Survey collects or has collected data.
- Daily Values File + Contains more than 220 million daily values of stream flows, stages, reservoir contents, water temperature, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
- Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage-height values at surface-water sites
- * Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water.
- * Ground-Water Site Inventory Data Base Contains inventory data for more than 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requester will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092

In addition to providing direct access to WATSTORE, data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk; and, as noted in the introduction, on CD-ROM discs. Beginning with the 1990 water year, all water-data reports will also be available on Compact disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the

Water Resources Division's District offices. (See address on the back of the title page.) A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting inch-pound units to International System of units (SI) on the inside of back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life process. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP, therefore, provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore- forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheet within 24 hours when incubated at 35°C ±1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C ±0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria also found in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C ±1.0°C on M-FC medium

(nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

<u>Biomass</u> is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500° C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m^3) , and periphyton and benthic organisms in grams per square meter (g/m^2) .

<u>Dry mass</u> refers to the weight of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed Material.

<u>Cells/volume</u> refers to the number of cells or any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, or about 646,000 gallons or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Cubic foot per second</u> (FT³/s, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calender year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

<u>Dissolved</u> refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45-micrometer membrane filter, and thus may include some very small (colloidal) suspended particles. Analyses are performed on filtered samples.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Diversity index</u> is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where 'n_i' is the number of individuals per taxon, 'n' is the total number of individuals, and 's' is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used

interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egglarva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (UG/G, ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per kilogram (MG/KG, mg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional waterquality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and

other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The <u>National Trends Network</u> (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases, The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

<u>Total organism count</u> is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter code numbers</u> are unique five-digit code numbers assigned to each parameter placed into storage. These codes are assigned by the Environmental Protection Agency and are also used to identify data exchanged among agencies.

<u>Partial-record station</u> is a particular site where limited streamflow and (or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004062	Sedimentation
Sand	.062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include

insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (C1). A curie is the amount of radioactivity that yields 3.7×10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(m² time) for periphyton and macrophytes and mg C/(m³ time) for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time $[mg\ 0_2/(m^2 \cdot time)]$ for periphyton and macrophytes and $mg\ 0_2/(m^3 \cdot time)]$ for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is

sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotypes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

<u>Bed load discharge</u> (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocityweighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

<u>Suspended-sediment load</u> is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

 $\frac{7\text{-day }10 \text{ year low flow}}{10 \text{ year low flow}}$ (7 Q_{10}) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as a streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

<u>Natural substrates</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and miltiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a watersediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer filter has been digested by a method (usually using a dilute acid solution) that

results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

<u>Suspended, total</u> is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

<u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common.

For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u> is the following:

Kingdom......Animal
Phylum.....Arthropoda
Class.....Insects
Order.....Ephemeroptera
Family.....Ephermeridae
Genus.....Hexageria
Species....Hexagenia limbata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the

constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent percent in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surfacewater stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in Geological Survey reports dealing with surfacewater supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1991, is called the "1991 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in reference to published reports beginning in 1975.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WRD is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

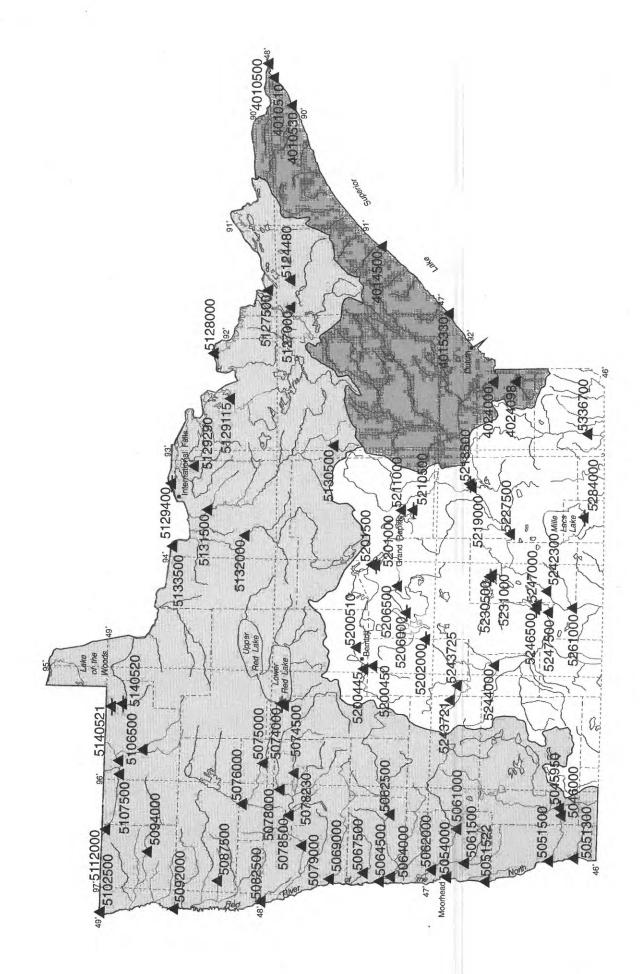
<u>WSP</u> is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. McCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W. Scott Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS-- TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by idirect methods, by H. F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS¹-TWRI Book 3, Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-Alo. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10, 1984, 59 pages.


- 3-A11. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A12. 1986. 41 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathburn, N. Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels of streamflow gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 27 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS-- TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by Richard L. Cooley and Richard L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6, 1987, 28 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs; USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. J. Fishman and L. C. Friedman: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages.

- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS-TWRI Book 5, Chapter C1. 1969. 58 pages.
- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Gold-berg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

Surface-water Station Records

Pelican River near Fergus Falls June 16, 1960

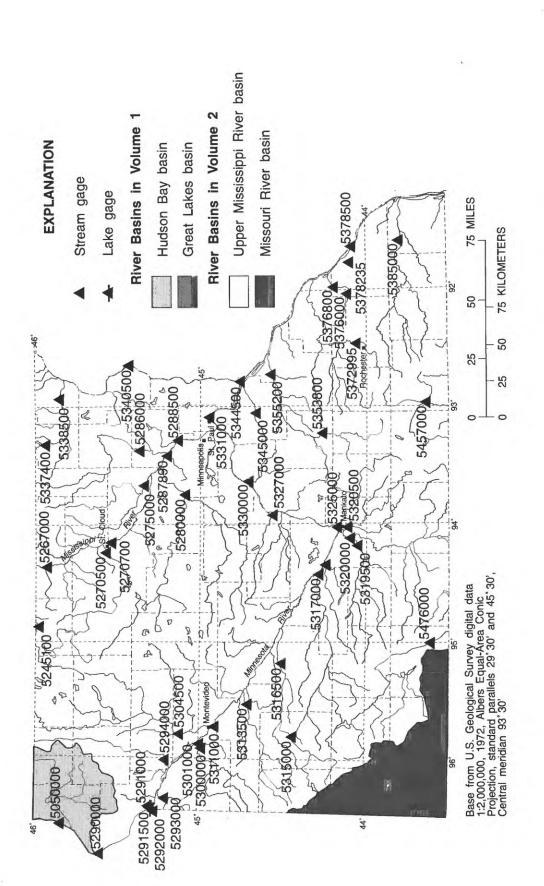
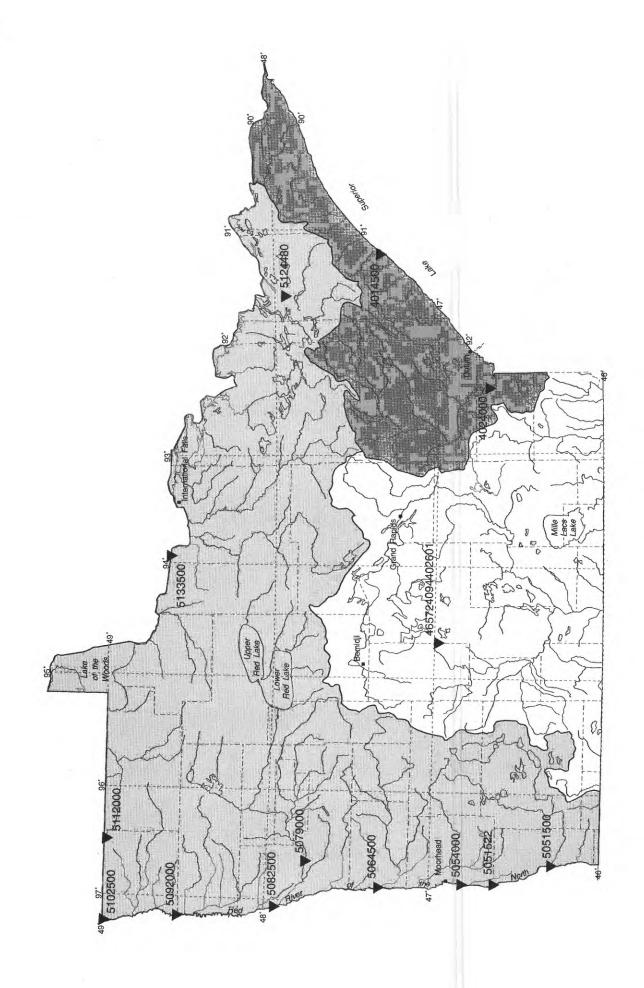



Figure 7.--Location of lake and stream-gaging stations

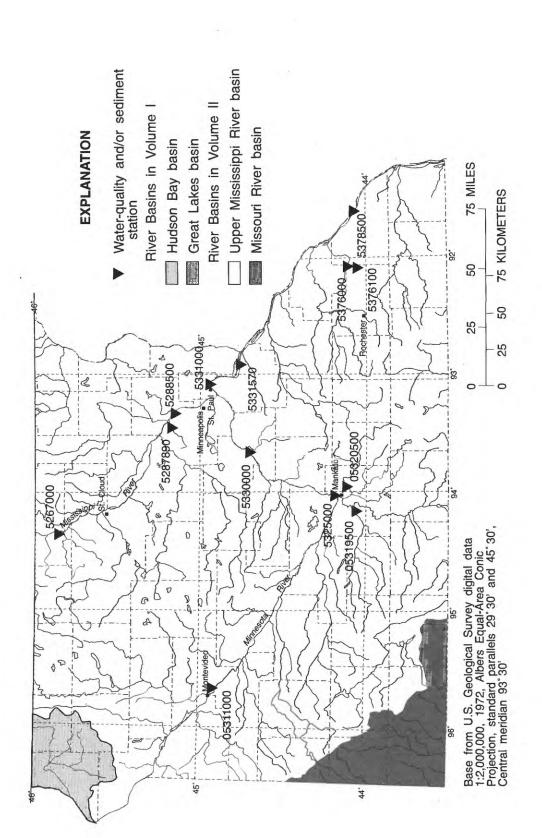


Figure 8.--Location of surface-water-quality stations

04010500 PIGEON RIVER AT MIDDLE FALLS, NEAR GRAND PORTAGE, MN

(International gaging station)

LOCATION.--Lat 48°00'44", long 89°36'58", in SWkNEk sec.24, T.64 N., R.6 E., Cook County, Hydrologic Unit 04010101, on the Grand Portage Indian Reservation, on right bank 400 ft upstream from Middle Falls, 2.5 mi upstream from Grand Portage Port of Entry, 3.5 mi upstream from mouth, and 4.7 mi northeast of city of Grand Portage.

Portage.

DRAINAGE AREA. --600 mi².

PERIOD OF RECORD. --June to October 1921, April to November 1922, March 1923 to current year. Published as "at International Bridge" April 1924 to September 1940; as "below International Bridge" October 1940 to September 1965. Monthly discharge only for some periods, published in WSP 1307.

REVISED RECORDS. --WSP 744: 1927-28. WSP 804: 1934(M). WSP 974: Drainage area. WSP 1337: 1924(M), 1925, 1926-28(M), 1931(M), 1938(M), 1941(M), 1945-46(M), 1947, 1948(M), 1950(M).

GAGE. --Water-stage recorder. Datum of gage is 787.58 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1940, nonrecording gage at International Bridge, 5.8 mi upstream at datum 102.24 ft higher.

Oct. 1, 1940, to Dec. 31, 1975, at present site at datum 2.00 ft higher.

REMARKS. --Records good except those for estimated daily discharges, which are poor. Satellite telemeter at station.

station.

COOPERATION, -- This station is one of the international gaging stations maintained by the United States under agreement with Canada. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft³/s and maximum (*):

Discharge Gage height Greater than base discharge of 3,000 ft³/s and maximum (*):

Date Time	EXTREMES	s for cu	JRRENT YEAR	Peak di	scharges (reater 1	than bas	e discharg	e of 3,	000 ft ³ /s	and maximum	(*):	
Apr. 7 2000 Ics Jam *10.38	n-4-		min	Discharge	Gage			D-4-		T	Discharge		
Apr. 8				(Ito/s)	(1						(It /s)		
DAY OCT NOV DEC JAN MALE TEAR COTOBER 1990 TO SEPTEMBER 1991 DAY OCT NOV DEC JAN MALE TEAR COTOBER 1990 TO SEPTEMBER 1991 1 112 437 e240 e155 e145 e135 e250 2590 728 933 889 33 3 278 386 e230 e155 e145 e135 e250 2590 728 933 889 33 3 278 386 e230 e155 e145 e135 e300 2060 662 901 85 35 4 3410 3653 e230 e155 e145 e135 e300 2060 662 901 85 35 4 4411 3653 e230 e155 e145 e135 e300 2060 662 901 85 35 4 4411 3653 e230 e155 e145 e155 e130 e135 e300 2060 662 901 85 35 4 4411 3653 e230 e155 e130 e155 e130 e135 e130 1720 603 9146 94 28 5 2411 21 21 21 21 21 21 21 21 21 21 21 21 2				ice jam				Apr. 30	,	1300	*3,790		.86
DATY OCT NOV DEC JAN FEB MAR APR MAY JUN JUN JUL AUG SEP 1 112 112 437 6240 6155 6145 6155 6250 3200 6238 844 85 32 1 2 106 437 6240 6155 6145 6155 6250 3200 6288 848 85 32 3 2 178 386 6230 6155 6145 6135 6300 1720 603 848 84 28 5 44 510 365 6230 6155 6150 6135 6900 1720 603 848 84 28 5 44 7 344 324 6230 6155 6150 6135 6900 1720 603 848 84 28 5 44 7 344 32 6230 6155 6150 6155 6100 1355 6900 1720 603 848 84 28 6 7 361 319 6225 6150 6155 6150 6135 6900 1720 603 848 84 28 8 18 2 18 2 18 2 18 2 18 2 18 2 18	Apr. 8			3,340			LIATED V	TAD OCTODE	TD 1000	TO CEDTEM	PP 1001		
DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 112 437 e240 e155 e145 e135 e250 2360 823 e84 e95 38 2 1 106 416 e235 e155 e145 e145 e135 e250 2500 720 603 e84 e85 33 3 1 210 366 e230 e155 e146 e135 e250 2500 720 603 e82 e84 e85 33 5 447 343 e230 e155 e160 e155 e130 e250 120 603 e150 e140 e130 e150 e140 e130 e130 e250 e135 e140 e130 e130 e130 e140 e130 e130 e130 e140 e130 e130 e130 e140 e130 e130 e130 e130 e130 e130 e130 e13			DISCHA	KGE, CUBIC	. PEEL PER				W 1990	IO SEPTEM	DEK 1991		
1 112 437 e240 e155 e145 e135 e250 3260 823 944 95 38 23 106 410 e235 e155 e145 e135 e250 2590 728 953 89 33 3 3 278 386 e230 e155 e145 e145 e135 e250 2590 728 953 89 33 3 3 278 386 e230 e155 e145 e145 e135 e250 2590 728 953 89 33 3 3 278 386 e230 e155 e145 e145 e135 e250 2590 728 622 911 82 35 44 5 41 36 319 e225 e150 e155 e130 e155 e130 100 000 662 901 85 43 35 44 6 6 34 6 319 e225 e150 e155 e130 e150 100 000 662 901 85 43 35 44 6 6 34 6 319 e225 e150 e155 e130 e2500 2050 477 84 2 74 21 72 20 8 2500 205 e150 e155 e130 e2500 2050 477 84 2 74 21 10 10 10 10 10 10 10 10 10 10 10 10 10	DAV	OCT	NOV	DEC	TAN				MAY	TIIN	TIIT	AUG	CED
2 106 410 e225 e155 e145 e135 e200 2250 2590 728 9953 89 33 3 278 386 e230 e155 e145 e135 e300 2060 662 901 85 35 4 510 365 e230 e155 e150 e155 e300 2060 662 901 85 35 4 510 365 e230 e155 e150 e155 e300 1720 603 848 84 28 6 6 61 139 e225 e150 e155 e130 e2500 2050 477 8833 70 21 7 295 296 e225 e150 e155 e130 a2500 2500 2050 477 8833 70 21 9 218 275 e200 e150 e150 e130 3270 1870 449 826 67 221 9 11 197 225 296 e225 e150 e150 e150 e130 3270 1870 449 826 67 221 11 197 225 296 e150 e150 e150 e130 3270 1870 449 826 67 221 11 197 225 e10 e150 e150 e150 e130 3270 1870 449 826 67 221 11 197 225 e10 e150 e150 e150 e130 3270 1870 449 826 67 221 11 197 225 e10 e150 e150 e150 e130 3270 1870 449 826 67 221 11 197 225 e10 e150 e150 e150 e130 3270 1870 449 826 67 221 11 197 225 e10 e150 e150 e150 e130 3270 1870 449 826 67 221 11 197 225 e10 e150 e150 e150 e130 3270 1870 449 826 67 221 12 174 203 e195 e150 e150 e150 e130 3270 1870 449 826 67 221 13 170 228 e190 e150 e140 e130 1500 1200 322 e150 820 849 844 82 82 82 82 82 82 82 82 82 82 82 82 82													
3 278 386 220 e155 e145 e135 e500 2060 662 901 85 35 45 6510 365 e230 e155 e150 e135 e500 1720 603 848 84 228 510 365 e230 e155 e150 e135 e500 1510 549 1010 79 24 65 67 320 67 3	2												
5 447 343 e230 e155 e150 e135 e500 1720 603 848 84 28 5 447 343 e230 e155 e150 e155 e130 e150 1510 549 1010 79 24 6 361 319 e225 e150 e155 e130 e250 1260 599 942 74 21 7 225 225 226 e225 e150 e155 e130 e2500 2550 447 830 70 220 8 250 281 e225 e150 e155 e130 e2500 2550 447 830 70 220 8 250 281 e125 e210 e150 e145 e130 e2500 1260 447 830 70 220 10 198 257 e205 e150 e145 e130 e2500 2490 1450 441 769 65 226 11 176 256 e200 e150 e145 e130 170 1290 382 615 56 24 12 174 203 e195 e150 e140 e130 1710 1290 382 615 56 24 13 170 228 e190 e150 e140 e130 1710 1290 382 615 56 24 13 170 228 e190 e150 e140 e130 1710 1290 382 615 56 24 14 17 410 256 e185 e150 e140 e130 1710 1270 346 554 54 23 14 17 410 256 e185 e150 e140 e130 1500 1270 346 574 88 22 16 18 287 214 e145 e150 e140 e130 1500 1270 346 574 88 22 17 17 410 225 e180 e150 e140 e130 1500 1270 346 574 88 22 18 6 173 222 e180 e150 e140 e130 1500 1270 346 574 88 22 19 661 199 e180 e150 e140 e130 1500 1800 962 470 314 55 446 18 713 222 e180 e150 e140 e130 1800 1800 833 447 214 53 68 20 600 2222 e180 e150 e140 e130 1800 1800 833 447 214 53 68 20 600 2222 e180 e150 e140 e130 1800 1800 833 447 214 53 68 20 600 2222 e180 e150 e140 e130 1800 1800 833 447 214 53 68 20 600 2222 e180 e150 e140 e130 1800 1800 833 447 214 53 68 20 600 2222 e180 e150 e140 e130 1800 1800 833 447 214 53 68 20 600 2222 e180 e150 e140 e130 1800 1800 1800 1800 1800 1800 1800 1													
5 447 343 e230 e155 e160 e135 e160 599 1010 79 24 6 361 319 e225 e150 e155 e135 e250 2500 477 8333 70 20 7 295 296 e225 e150 e155 e130 e2500 2050 477 8333 70 20 8 218 277 e21 e120 e130 e150 e130 3270 1670 449 826 67 21 10 11 176 256 e200 e150 e140 e130 3270 1670 449 782 63 326 111 176 256 e200 e150 e140 e130 1710 1290 346 651 56 24 112 174 203 e195 e150 e140 e130 1510 1270 346 554 54 23 14 185 245 e190 e150 e140 e130 1500 1270 337 466 52 34 15 2253 235 e185 e180 e150 e140 e130 1500 1270 337 466 52 34 16 17 225 e180 e150 e140 e130 1500 1270 337 466 52 34 17 225 e180 e150 e140 e130 1500 1270 337 466 52 34 18 185 245 e190 e150 e140 e130 1500 1270 337 466 52 34 18 185 245 e190 e150 e140 e130 1500 1270 337 466 52 34 18 18 287 224 214 e180 e150 e140 e130 1500 1270 337 466 52 34 18 18 287 224 214 e180 e150 e140 e130 1500 1270 337 466 52 34 18 18 287 224 214 e180 e150 e140 e130 1720 1290 342 419 31 339 18 18 287 288 e190 e150 e140 e130 1720 120 337 42 419 31 339 18 18 287 288 e190 e150 e140 e130 1720 1720 337 42 419 31 339 18 288 e190 e180 e150 e140 e130 1720 1720 337 42 419 31 339 18 288 e190 e180 e150 e140 e130 1720 1720 337 42 419 31 339 18 288 e190 e180 e150 e140 e130 1720 1720 337 42 419 31 339 18 288 e190 e180 e150 e140 e130 1720 1720 337 42 419 31 339 18 288 e190 e180 e150 e140 e130 1720 1720 337 42 419 31 339 18 288 e190 e180 e150 e140 e150 1760 779 395 190 48 63 21 927 328 e175 e150 e140 e160 1540 738 379 178 47 58 22 1080 376 e175 e150 e140 e160 1540 738 379 178 47 58 22 1080 376 e175 e150 e140 e160 1540 738 379 178 47 58 22 1080 376 e175 e150 e140 e150 1760 779 395 190 48 63 21 927 328 e175 e150 e140 e150 1760 779 395 190 48 63 21 927 328 e175 e150 e140 e150 1760 779 395 190 48 63 22 1080 376 e175 e150 e140 e150 1760 779 395 190 48 63 23 985 361 e170 e130 e140 e150 170 1380 788 477 58 22 1080 376 e175 e150 e140 e150 1760 779 395 190 48 63 24 129 129 129 129 129 129 129 129 129 129													
6 361 319 9225 e150 e155 e130 e250 2050 477 833 70 20 8 250 291 e225 e150 e155 e130 e250 2050 477 833 70 20 8 250 291 e226 e150 e155 e130 e250 2050 477 833 70 20 8 250 291 e226 e150 e150 e155 e130 3270 1870 449 826 67 21 10 115 275 e210 e150 e150 e150 3270 1870 449 826 67 21 11 176 236 e200 e150 e150 e150 e150 3270 1870 449 826 67 21 11 176 256 e200 e150 e150 e150 e150 e150 2050 413 789 63 32 11 170 258 e190 e150 e140 e130 170 1290 342 615 56 24 13 170 258 e190 e150 e140 e130 170 1290 346 554 54 23 14 185 245 e190 e150 e140 e130 1510 1270 346 554 54 23 15 257 235 e185 e150 e140 e130 1500 1210 337 486 52 34 15 257 258 e180 e150 e140 e130 1500 1210 347 419 51 39 16 61 199 e180 e150 e140 e130 1500 1210 347 419 51 39 17 40 214 e163 e150 e140 e130 1500 120 347 419 51 39 18 61 19 661 199 e180 e150 e140 e130 1500 120 347 419 51 39 18 61 19 661 199 e180 e150 e140 e130 1500 834 417 214 53 68 20 608 222 e180 e150 e140 e140 1960 833 417 214 53 68 20 608 222 e180 e150 e140 e150 1760 779 395 190 48 63 21 927 328 e175 e150 e140 e160 1540 778 395 190 48 63 22 1087 378 e175 e150 e140 e160 1540 778 395 190 48 63 22 1087 378 e165 e150 e140 e160 150 1760 779 395 190 48 63 22 1087 328 e175 e150 e140 e160 150 1760 779 395 190 48 63 22 1087 378 e165 e150 e130 e140 e100 130 130 130 130 130 147 214 53 68 22 1088 376 e175 e150 e140 e160 1540 778 395 190 48 63 22 1087 388 e175 e150 e130 e130 e100 120 682 443 13 138 44 51 25 789 287 e165 e150 e135 e200 120 682 443 13 138 44 51 26 694 278 e165 e150 e135 e200 120 682 443 13 138 44 51 27 637 e265 e160 e145 e135 e130 e130 e130 e130 e130 e140 e150 e140 e160 e150 e16													
7 295 296 e225 e150 e150 e150 e130 3270 1870 449 826 67 21 9 218 275 e210 e150 e150 e150 e130 3270 1870 449 826 67 21 9 218 275 e210 e150 e150 e150 e130 32030 1620 423 788 65 32 11 11 137 257 e205 e150 e150 e140 e130 2400 1450 17 792 68 32 11 11 137 257 e205 e150 e150 e140 e130 2400 130 17710 1220 326 515 56 24 112 1774 203 e1105 e150 e140 e130 e130 17710 1220 326 515 56 24 113 170 258 e190 e150 e140 e130 15701 1270 326 515 56 24 114 185 245 e190 e150 e140 e130 1500 1270 346 554 54 23 14 185 245 e180 e150 e140 e130 1700 120 377 486 52 34 15 253 235 e185 e150 e140 e130 1700 120 377 486 52 34 16 287 214 e185 e150 e140 e130 1700 120 377 486 52 34 17 17 17 17 17 17 17 17 17 17 17 17 17 1													
8 250 291 e220 e150 e150 e130 3270 1870 449 826 67 211 9 218 275 e210 e150 e150 e130 3030 1620 423 789 65 32 10 195 257 e205 e150 e145 e130 2030 1620 423 789 65 32 11 195 257 e206 e150 e145 e130 2030 1350 407 721 59 26 112 1176 238 e200 e150 e145 e130 2030 1350 407 721 59 26 112 1176 238 e150 e150 e145 e130 2030 1350 407 721 59 26 113 1176 238 e150 e150 e140 e130 1710 120 362 655 44 23 38 14 185 245 e150 e150 e140 e130 1710 120 367 655 45 44 18 15 24 18 18 18 18 18 18 18 18 18 18 18 18 18						e155							
9 218 275 e210 e150 e150 e130 3030 1620 423 789 65 32 2 10 195 257 e205 e150 e145 e130 2490 1450 411 792 63 26 111 176 256 e200 e150 e145 e130 2490 1450 411 792 63 26 111 176 256 e200 e150 e140 e130 1710 1290 382 6155 56 24 113 1774 203 e195 e150 e140 e130 1710 1290 382 6155 56 24 113 1774 258 e130 e150 e140 e130 1710 1290 382 6155 56 24 113 1775 258 e130 e150 e140 e130 1710 1290 382 6155 56 24 115 e130 e150 e140 e130 1710 1290 382 6155 56 24 115 e130 e150 e140 e130 1710 1290 382 6155 56 24 115 e130 e150 e140 e130 1710 1290 382 6155 54 62 115 e130 e140 e130 1710 1290 382 6155 54 62 115 e130 e140 e130 1710 1290 382 6155 54 62 115 e130 e140 e130 1710 1710 346 54 65 54 62 115 e130 e140 e130 1710 1710 1710 346 54 65 54 62 115 e130 e140 e130 1710 1710 1710 346 54 65 45 115 e130 e140 e130 1710 1710 1710 347 1710 1710 1710 1710 1710 1710 1710 17													
10													
11 176 256 e200 e150 e140 e130 1710 1280 407 721 59 24 13 170 258 e190 e150 e140 e130 1710 1280 382 e155 65 24 13 170 258 e190 e150 e140 e130 1501 1270 346 554 54 23 14 185 245 e190 e150 e140 e130 1501 1270 346 554 54 23 15 253 235 e185 e150 e140 e130 1720 1280 337 486 52 34 15 253 235 e185 e150 e140 e130 1720 1280 342 419 51 39 16 27 328 e175 e150 e140 e130 1720 1280 457 63 17 470 26 e180 e150 e140 e130 1720 140 455 120 446 18 4713 222 e180 e150 e140 e130 1720 180 103 437 140 55 46 18 61 199 e180 e150 e140 e135 12010 884 446 274 57 63 19 661 199 e180 e150 e140 e150 1760 779 385 190 48 63 21 927 328 e175 e150 e140 e160 1540 779 385 190 48 63 21 927 328 e175 e150 e140 e160 1540 779 385 190 48 63 22 1080 376 e175 e150 e140 e160 1540 788 379 178 47 58 22 1080 376 e175 e150 e140 e160 150 478 379 178 47 58 22 1080 376 e175 e150 e140 e160 150 478 379 178 47 58 22 1080 376 e175 e150 e140 e180 1310 603 419 156 45 49 24 885 316 e170 e150 e135 e190 1280 682 453 145 44 43 24 885 316 e170 e150 e135 e200 1280 682 453 145 44 453 25 684 287 e165 e150 e135 e200 1280 682 453 145 44 453 26 684 287 e165 e150 e135 e200 1380 100 435 132 44 55 26 684 287 e165 e150 e135 e200 1380 100 435 132 44 55 27 637 e265 e165 e150 e135 e280 1380 100 435 132 44 55 28 585 e250 e160 e145 e-250 e220 9210 988 798 112 43 52 29 585 e250 e160 e145 e-250 e220 9210 988 798 112 43 52 29 585 e250 e160 e145 e-250 e220 9210 988 798 112 43 52 29 585 e250 e160 e145 e-250 e220 9210 988 798 112 43 52 29 585 e250 e160 e145 e-250 e220 9210 988 798 112 43 52 29 585 e250 e160 e145 e-250 e220 9210 988 798 112 43 52 29 585 e250 e160 e145 e-250 e220 e220 e220 e220 e220 e220 e220 e													
122 174 203 e195 e150 e140 e130 1710 1290 382 6155 56 24 131 1770 258 e190 e150 e140 e130 1510 1270 346 554 54 23 14 185 245 e190 e150 e140 e130 1500 1210 337 486 52 341 15 253 235 e185 e150 e140 e130 1500 1210 337 486 52 341 15 253 235 e185 e150 e140 e130 1720 1120 342 419 51 39 16 287 214 e185 e150 e140 e130 1930 1030 437 379 52 44 19 51 39 16 287 214 e185 e150 e140 e130 1930 1030 437 379 52 44 19 51 44 185 e150 e140 e130 1930 1030 437 379 52 44 19 51 44 185 e150 e140 e140 e150 1980 862 477 379 52 44 185 e150 e140 e140 e150 1980 862 470 24 14 57 44 18 18 18 18 18 18 18 18 18 18 18 18 18													
13 170 258 e190 e150 e140 e130 1510 1270 346 554 54 23 14 185 245 e190 e150 e140 e130 1500 1210 337 486 52 34 15 233 235 e185 e150 e140 e130 1720 1120 337 486 52 34 16 287 214 e185 e150 e140 e130 1930 1030 437 379 52 44 17 410 256 e185 e150 e140 e130 1930 1030 437 379 52 44 17 410 256 e185 e150 e140 e130 1980 962 470 314 55 46 18 713 222 e180 e150 e140 e140 e135 2010 894 446 244 57 63 19 661 199 e180 e150 e140 e140 e140 1960 833 417 214 53 68 21 190 322 e180 e150 e140 e140 e140 1960 833 417 214 53 68 21 190 328 e175 e150 e140 e150 1100 778 395 178 47 63 21 190 328 e175 e150 e140 e150 1360 788 339 178 47 63 22 e180 e150 e140 e150 1360 788 395 188 47 24 24 24 24 24 24 24 24 24 24 24 24 24		176				e145	e130						
14 185 245 e190 e150 e140 e130 1500 1210 337 486 52 34 15 233 235 e185 e150 e140 e130 1720 1120 342 419 51 339 16 287 214 e185 e150 e140 e130 1930 1030 437 379 52 44 17 410 256 e185 e150 e140 e130 1980 962 470 314 55 46 18 713 222 e180 e150 e140 e135 2010 894 446 244 57 63 19 661 199 e180 e150 e140 e150 1760 779 395 190 48 63 20 608 222 e180 e150 e140 e150 1540 738 379 190 48 63 21 927 328 e175 e150 e140 e150 1540 738 379 190 48 63 22 1080 376 e175 e150 e140 e150 1540 738 379 178 47 58 22 1080 376 e175 e150 e140 e150 1540 738 379 178 47 58 22 1080 376 e175 e150 e140 e150 1540 738 379 178 47 58 22 1080 376 e175 e150 e140 e150 1540 738 379 178 47 58 22 1080 376 e175 e150 e140 e170 1380 708 358 168 46 53 23 985 361 e170 e150 e140 e180 1310 693 419 156 45 49 24 885 316 e170 e150 e135 e190 1280 682 453 144 44 43 25 685 316 e170 e150 e135 e190 1280 682 473 143 44 44 56 26 694 27 e165 e150 e135 e20 120 120 682 473 143 44 55 26 694 27 e165 e150 e135 e20 120 120 682 473 143 44 56 28 696 e25 e160 e155 e150 e135 e20 120 120 682 473 143 44 56 30 528 e250 e160 e155 e150 e135 e20 120 120 698 798 112 43 50 30 528 e250 e160 e145 e260 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e150 143 168 1674 1309 494 466 57.7 40.8 MAX 1080 437 240 155 160 300 3710 3260 1010 100 69 568 MIN 106 199 155 145 135 130 250 657 337 100 40 2267 MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 MAX 1080 437 240 155 160 300 3710 3260 1010 1010 95 68 MIN 106 199 155 145 135 130 250 657 337 100 40 2267 MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 MAX 1080 437 240 155 1860 300 3710 3260 1010 1010 95 68 MIN 106 199 155 145 135 130 250 657 337 100 40 227 100 40 100 40 50 40 40 40 40 40 40 40 40 40 40 40 40 40		174			e150	e140	e130	1710					
15	13	170	258	e190	e150	e140	e130	1510	1270	346	554		
16	14	185	245	e190	e150	e140	e130	1500	1210	337	486	52	
16 287 214 e185 e150 e140 e130 1930 1030 437 379 52 44 17 410 256 e185 e150 e140 e130 1980 962 470 314 55 46 18 713 222 e180 e150 e140 e135 2010 894 446 224 57 63 19 661 199 e180 e150 e140 e150 1760 779 395 190 48 63 20 608 222 e180 e150 e140 e150 1760 779 395 190 48 63 21 927 328 e175 e150 e140 e160 1540 738 379 178 47 58 22 1080 376 e175 e150 e140 e170 1380 708 338 118 46 53 23 985 361 e170 e150 e140 e180 1310 693 419 156 45 49 24 885 316 e170 e150 e135 e190 1280 682 453 145 44 43 25 684 278 e165 e150 e135 e210 1270 657 443 138 44 56 26 684 278 e165 e150 e135 e220 1270 657 443 138 44 56 27 685 685 e160 e145 e135 e280 1800 1400 458 125 43 28 666 e255 e160 e145 e135 e280 1800 190 458 112 43 52 28 667 e265 e160 e145 e135 e280 1800 190 458 112 43 52 28 686 e250 e160 e145 e135 e280 1800 190 458 112 43 52 30 528 e240 1806 e145 e135 e280 3710 100 100 100 40 20 7071	15	253	235	e185	e150	e140	e130	1720	1120	342	419	51	39
17	16	287		e185	e150		e130		1030	437	379	52	44
18	17	410		e185	e150		e130	1980	962	470	314	55	46
19													
20													
21													
22 1080 376 e175 e150 e140 e180 1380 708 358 168 46 53 23 985 361 e170 e150 e140 e180 1310 693 419 156 45 49 24 885 316 e170 e150 e135 e190 1280 682 453 145 44 43 25 789 227 e165 e150 e135 e240 1290 1010 437 132 44 56 27 637 e265 e165 e150 e135 e280 1380 1190 456 125 43 53 28 606 e255 e160 e145 e135 e300 1840 1160 459 119 43 52 29 585 e250 e160 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 1 e155 e145 e280 3710 1060 1010 106 67 67 67 67 67 67 67 67 67 67 67 67 67													
23 985 361 e170 e150 e140 e180 1310 693 419 156 45 49 24 885 316 e170 e150 e135 e190 1280 682 453 145 444 43 25 789 287 e165 e150 e135 e240 1270 657 443 138 44 51 26 694 278 e165 e150 e135 e240 1290 1010 437 132 44 56 27 637 e265 e165 e150 e135 e280 1380 1390 456 125 43 53 28 606 e255 e160 e145 e250 e180 e135 e280 1380 1390 456 125 43 53 28 606 e255 e160 e145 e250 e180 e145 e250 e180 e180 e180 e180 e180 e180 e180 e18													
24 885 316 e170 e150 e135 e190 1280 682 453 145 44 43 25 789 2287 e165 e150 e135 e210 1270 657 443 138 44 51 26 694 278 e165 e150 e135 e240 1290 1010 437 132 44 56 27 637 e265 e165 e150 e135 e280 1380 1390 456 125 43 53 28 606 e255 e160 e145 e290 2210 998 798 112 43 52 29 585 e250 e160 e145 e290 2210 998 798 112 43 50 30 528 e250 e160 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e260 941 100 40 TOTAL 14601 8650 5940 4655 4000 5223 50230 40585 14825 14453 1789 1225 MEAN 471 288 192 150 143 168 1674 1309 494 466 57.7 40.8 MIN 106 199 155 145 135 130 250 657 337 100 40 20 CFSM .78 .48 .32 .25 .24 .28 2.79 2.18 .82 .78 .10 .07 CFSM .78 .48 .32 .25 .24 .28 2.79 2.18 .82 .78 .10 .07 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 1991, BY WATER YEAR (WY) MEAN 370 352 204 149 124 174 1212 1610 865 402 237 302 MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 (WY) 1978 1971 1978 1975 1989 1975 1989 1975 1989 1975 1989 1975 1989 1975 1989 1975 1977 1977 1977 1977 1977 1977 197													
25 789 287 e165 e150 e135 e210 1270 657 443 138 44 51 26 694 278 e165 e150 e135 e240 1290 1010 437 132 44 56 27 637 e265 e165 e150 e135 e280 1380 1390 456 125 43 53 28 606 e255 e160 e145 e135 e300 1840 1160 459 119 43 52 29 585 e250 e160 e145 e280 3710 1060 1010 106 42 53 30 528 e245 e160 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e260 941 100 40 TOTAL 14601 8550 5940 4655 4000 5223 50230 40585 14825 14453 1789 1225 MEAN 471 228 192 150 143 168 1674 1309 494 466 57,7 40.8 MAX 1080 437 240 155 160 300 3710 3260 1010 1010 95 68 MIN 106 199 155 145 135 130 250 657 337 100 40 20 AC-FT 28960 17160 11780 9230 7930 10360 99630 80500 29410 28670 3550 2430 CFSM .78 48 32 .25 .24 .28 2.79 2.18 .82 78 .10 .07 IN91 .54 .37 .29 .25 .32 3.11 2.52 .92 .90 .11 .08 STATISTICS OF MONTHLY MEAN DATA FOR MATER YEARS 1921 - 1991, EY WATER YEAR MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 MIN 17.4 11.4 2.85 2.18 8.02 60.0 280 138 125 78.0 57.7 40.2 MY) 1978 1971 1978 1975 1969 1945 1976 1950 1947 1968 1950 1977 MIN 17.4 11.4 2.85 2.18 8.02 60.0 280 77 197 1975 1959 SUMARY STATISTICS FOR 1990 CALENDAR YEAR 166176 ANNUAL MEAN LOWEST DAILY MEAN 2200 Apr 29 3790 Apr 30 1000 May 5 1934 LOWEST ANNUAL MEAN LOWEST CASH ANNUAL ME					-150								
26 694 278 e165 e150 e135 e240 1290 1010 437 132 44 56 27 637 e265 e165 e150 e135 e280 1380 1390 456 125 43 53 28 606 e255 e160 e145 e290 2210 998 798 112 43 52 29 585 e250 e160 e145 e260 3710 1060 1010 106 42 34 35 31 476 e155 e145 e260 3710 1060 1010 106 42 34 31 476 e155 e145 e260 3710 1060 1010 106 42 34 31 476 e155 e145 e260 3710 1060 1010 106 42 34 31 476 1040 18650 5940 4655 4000 5223 50230 40585 14825 14453 1789 1225 MEAN 471 288 192 150 143 168 1674 1309 494 466 57.7 40.8 MIN 1060 199 155 145 135 130 250 657 337 100 100 1010 95 68 MIN 106 199 155 145 135 130 250 657 337 100 40 50 50 2430 CFSM .78 48 32 .25 .24 .28 2.79 2.18 .82 .78 .10 .07 IN .91 .54 .37 .29 2.55 .32 3.11 2.52 .92 .90 .11 .08 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 1991, BY WATER YEAR (WY) 1978 1971 1978 1975 1969 1945 1976 4950 1345 1975 1978 1971 1978 1971 1978 1975 1969 1945 1976 1950 1947 1968 1950 1977 MIN 1, 4 11.4 2.85 2.18 8.02 60.0 290 138 125 78.0 57.7 40.2 (WY) 1977 1977 1977 1977 1977 1977 1977 197					-150								
27 637 e265 e165 e150 e135 e280 1380 1390 456 125 43 53 28 606 e255 e160 e145 e135 e300 1840 1160 459 119 43 52 29 585 e250 e160 e145 e290 2210 998 798 112 43 50 30 528 e245 e160 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 1 105 e145 1 e280 3710 1060 1010 106 42 54 31 476 1 105 e145 1 e280 3710 1060 1010 106 42 54 31 476 1 105 e145 1 e280 3710 1060 1010 106 42 54 31 476 1 105 e145 1 e280 3710 1060 1010 106 42 54 31 476 1 105 e145 1 e280 3710 1060 1010 106 42 54 31 476 1 105 e145 1 e280 3710 1060 1010 100 40 1 105 e145 100 143 168 1674 1309 494 466 57.7 40.8 MAX 1080 437 240 155 160 300 3710 3260 1010 1010 95 68 MIN 106 199 155 145 135 130 250 657 337 100 40 20 AC-FT 28960 17160 11780 9230 7930 10360 99630 80500 29410 28670 3550 2430 CFSM .78 .48 .32 .25 .24 .28 .279 2.18 .82 .78 .10 .07 IN91 .54 .37 .29 .25 .32 3.11 2.52 .92 .90 .11 .08 STATISTICS OF MOTHLY MEAN DATA FOR WATER YEARS 1921 - 1991, BY WATER YEAR (WY) MEAN 370 352 204 149 124 174 1212 1610 865 402 237 302 MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 (WY) 1978 1971 1978 1971 1978 1971 1978 1971 1978 1971 1977 1977													
28 606 e255 e160 e145 e-35 e300 1840 1160 459 119 43 52 29 585 e250 e160 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e280 941 100 40 TOTAL 14601 8650 5940 4655 4000 5223 50230 40585 14825 14453 1789 1225 MEAN 471 288 192 150 143 168 1674 1309 494 466 57.7 40.8 MIN 1080 437 240 155 160 3300 3710 3260 1010 1010 95 68 MIN 106 199 155 145 135 130 250 657 337 100 40 20 AC-FT 28960 17160 11780 9230 7930 10360 99630 80500 29410 28670 3550 2430 CFSM .78 48 .32 .25 .24 .28 2.79 2.18 .82 .78 .10 .07 IN91 .54 .37 .29 .25 .32 311 2.52 .92 .90 .11 .08 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 1991, BY WATER YEAR (WY) MEAN 370 352 204 149 124 174 1212 1610 865 402 237 302 MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 (WY) 1978 1971 1978 1975 1969 1945 1976 1950 1947 1968 1950 1977 MIN 1.4 11.4 2.85 2.18 8.02 66.0 290 138 125 78.0 57.7 40.2 (WY) 1977 1977 1977 1977 1977 1977 1977 197													
29 585 e250 e160 e145 e280 3710 1060 1010 106 42 54 3 50 31 476 e155 e145 e280 3710 1060 1010 106 42 54 31 476 e155 e145 e260 941 100 40 TOTAL 14601 8650 5940 4655 4000 5223 50230 40585 14825 14853 1789 1225 408AN 471 288 192 150 143 168 1674 1309 494 466 67.7 40.8 MAX 1080 437 240 155 160 300 3710 3260 1010 1010 95 68 MIN 106 199 155 145 135 130 250 657 337 100 40 20 AC-FT 28960 17160 11780 9230 7930 10360 99630 80500 29410 28670 3550 2430 CFSM .78 .48 .32 .25 .24 .28 2.79 2.18 .82 .78 .10 .07 IN91 .54 .37 .29 .25 .32 3.11 2.52 .92 .90 .11 .08 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 1991, BY WATER YEAR (WY) MEAN 370 352 204 431 300 1169 2701 4016 2801 1127 1029 2985 (WY) 1978 1991 1978 1975 1969 1945 1965 1976 1950 1947 1968 1950 1977 MIN 17.4 11.4 2.85 2.18 8.02 60.0 290 138 125 78.0 57.7 40.2 (WY) 1978 1971 1977 1977 1977 1977 1977 1977													
30 528 e245 e160 e145 e280 3710 1060 1010 106 42 54													
31													
TOTAL 14601 8650 5940 4655 4000 5223 50230 40585 14825 14453 1789 1225													
MAX													
MAX													
MIN													
AC-FT 28960 17160 11780 9230 7930 10360 99630 80500 29410 28670 3550 2430 CFSM .78 .48 .32 .25 .24 .28 2.79 2.18 .82 .78 .10 .07 .07 .07 .07 .07 .07 .07 .07 .07 .0													
CFSM	MIN	106			145	135	130	250					
N. 91 .54 .37 .29 .25 .32 3.11 2.52 .92 .90 .11 .08	AC-FT	28960		11780	9230	7930	10360	99630	80500	29410	28670	3550	2430
N. 91 .54 .37 .29 .25 .32 3.11 2.52 .92 .90 .11 .08	CFSM	.78	. 48	.32	.25	.24	.28	2.79	2.18	. 82	.78	.10	.07
MAX 2095 1461 720 431 300 174 1212 1610 865 402 237 302 238 238 239		.91		.37	.29	.25	.32	3.11			.90	.11	.08
MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 (WY) 1978 1971 1978 1975 1969 1945 1976 1950 1947 1968 1950 1977 MIN 17.4 11.4 2.85 2.18 8.02 60.0 290 138 125 78.0 57.7 40.2 (WY) 1977 1977 1977 1977 1977 1977 1977 197	STATIST	TICS OF	MONTHLY ME.	AN DATA FO	R WATER YE	EARS 1921	1 - 1991	. BY WATER	YEAR (MY)			
MAX 2095 1461 720 431 300 1169 2701 4016 2801 1127 1029 2985 (WY) 1978 1971 1978 1975 1969 1945 1976 1950 1947 1968 1950 1977 MIN 17.4 11.4 2.85 2.18 8.02 60.0 290 138 125 78.0 57.7 40.2 (WY) 1977 1977 1977 1977 1977 1977 1977 197		370	352		149	124	174	1212	1610				302
MIN 17.4 11.4 2.85 2.18 8.02 60.0 290 138 125 78.0 57.7 40.2 (WY) 1977 1977 1977 1977 1977 1977 1977 197	MAX	2095	1461	720	431	300	1169	2701	4016	2801	1127	1029	2985
MIN 17.4 11.4 2.85 2.18 8.02 60.0 290 138 125 78.0 57.7 40.2 (WY) 1977 1977 1977 1977 1977 1977 1977 197	(WY)	1978	1971	1978	1975	1969	1945	1976	1950	1947	1968	1950	1977
MY	MIN	17.4	11.4					290	138		78.0	57.7	40.2
SUMMARY STATISTICS							1941						
ANNUAL TOTAL 155942 166176 ANNUAL MEAN 427 455 503 HIGHEST ANNUAL MEAN 840 1971 LOWEST ANNUAL MEAN 158 1958 HIGHEST DAILY MEAN 2920 Apr 29 3710 Apr 30 10700 May 5 1934 LOWEST DAILY MEAN 33 Jan 1 20 Sep 7 1.0 Jan 15 1977 ANNUAL SEVEN-DAY MINIMUM 34 Jan 1 24 Sep 5 1.0 Jan 15 1977 INSTANTANEOUS PEAK FLOW 3060 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 329600 ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300	SUMMARY	STATIS	TICS	FOR 1	990 CALENI	AR YEAR		FOR 1991 W	ATER YE	AR	WATER YE	ARS 1921	- 1991
ANNUAL MEAN 427 455 503 HIGHEST ANNUAL MEAN 840 1971 LOWEST ANNUAL MEAN 2920 Apr 29 3710 Apr 30 10700 May 5 1934 LOWEST DAILY MEAN 33 Jan 1 20 Sep 7 1.0 Jan 15 1977 ANNUAL SEVEN-DAY MINIMUM 34 Jan 1 24 Sep 5 1.0 Jan 15 1977 INSTANTANEOUS PEAK FLOW 3060 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 329600 ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300													
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 2920 Apr 29 3710 Apr 30 10700 May 5 1934 LOWEST DAILY MEAN 33 Jan 1 20 Sep 7 1.0 Jan 15 1977 ANNUAL SEVEN-DAY MINIMUM 34 Jan 1 24 Sep 5 1.0 Jan 15 1977 INSTANTANEOUS PEAK FLOW 3060 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300											503		
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 2920 Apr 29 3710 Apr 30 10700 May 5 1934 LOWEST DAILY MEAN 33 Jan 1 20 Sep 7 ANNUAL SEVEN-DAY MINIMUM 34 Jan 1 24 Sep 5 1.0 Jan 15 1977 INSTANTANEOUS PEAK FLOW 3060 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 9.67 10.30 1139 10 PERCENT EXCEEDS 1050 1280 3710 Apr 30 10700 May 5 1934 1000 May 5 1934 1000 11000			MEAN										1971
HIGHEST DAILY MEAN 2920 Apr 29 3710 Apr 30 10700 May 5 1934 LOWEST DAILY MEAN 33 Jan 1 20 Sep 7 1.0 Jan 15 1977 ANNUAL SEVEN-DAY MINIMUM 34 Jan 1 24 Sep 5 1.0 Jan 15 1977 ANNUAL SEVEN-DAY MINIMUM 3600 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK FLOW 3060 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 329600 ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300													
LOWEST DAILY MEAN 33 Jan 1 20 Sep 7 1.0 Jan 15 1977 ANNUAL SEVEN-DAY MINIMUM 34 Jan 1 24 Sep 5 1.0 Jan 15 1977 ANNUAL SEVEN-DAY MINIMUM 3600 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 329600 ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300					2020	Anr 20		3710	Anr S	30		May	
ANNUAL SEVEN-DAY MINIMUM 34 Jan 1 24 Sep 5 1.0 Jan 15 1977 INSTANTANEOUS PEAK FLOW 3060 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 329600 364500 ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 11.39 10 PERCENT EXCEEDS 1050 1280 1300													
INSTANTANEOUS PEAK FLOW 3060 Apr 29 3790 Apr 30 11000 May 5 1934 INSTANTANEOUS PEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 329600 364500 ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300													
INSTANTANEOUS FEAK STAGE 8.18 Apr 29 10.38a Apr 7 7.60b May 5 1934 INSTANTANEOUS LOW FLOW 20 Sep 6,7,8 ANNUAL RUNOFF (AC-FT) 309300 329600 364500 ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300													
INSTANTANEOUS LOW FLOW									Apr .	30			
ANNUAL RUNOFF (AC-FT) 309300 329600 364500 ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300					8.18	Apr 29					7.60	o may	2 1834
ANNUAL RUNOFF (CFSM) .71 .76 .84 ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300									Sep	0,/,8	201500		
ANNUAL RUNOFF (INCHES) 9.67 10.30 11.39 10 PERCENT EXCEEDS 1050 1280 1300									_				
10 PERCENT EXCEEDS 1050 1280 1300													
									O				
50 PERCENT EXCEEDS 220 105 220													
					220			195			220		
90 PERCENT EXCEEDS 62 52 84								52			84		
a From highwater mark, backwater from ice.	a Fr	om high	water mark	, backwate	r from ice								

b Site and datum then in use. Estimated.

04010510 GRAND PORTAGE RIVER AT GRAND PORTAGE, MN

LOCATION.--Lat 47°57'49", long 89°41'00", in SWkSEk sec.4, T.63 N., R.6 E., Cook County, Hydrologic Unit 04010101, on Grand Portage Indian Reservation, on left bank at upstream side of bridge, 600 ft upstream of mouth, at city of Grand Portage.

PERIOD OF RECORD. -- May to September 1991.

GAGE.--Nonrecording gage. Elevation of gage is 615 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS. -- Records fair. No estimated daily discharges.

EXTREMES FOR CURRENT PERIOD.--May to September: Maximum discharge during period, 96 ft³/s, June 29, gage height, 2.10 ft, from graph based on gage readings; minimum daily, 0.10 ft³/s, Aug. 12-15.

		DISCHARGE	E, CUBIC	FEET PER	SECOND, N	MATER MEAN	YEAR OCTOBER VALUES	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									5.6	23	. 16	. 24
2									4.6	20	. 16	.24
3									3.9	22	. 16	.30
4									3.2	21	.16	.24
5									2.9	18	. 14	. 24
6									2.2	8.3	. 16	.30
7									2.0	3.2	. 14	.58
8									1.8	4.1	. 14	.85
9									1.8	3.0	. 11	1.7
10			~						1.6	3.5	.11	1.2
11									1.3	2.3	.11	.95
12									1.1	1.8	.10	. 58
13 14								8.6	1.6	1.7	.10 .10	. 43
15								7.3 6.7	3.7 2.9	1.3 1.2	.10	4.8 8.0
16								6.2	1.3	.95	. 20	8.6
17								5.6	1.2	. 85	.24	6.2
18								4.6	1.1	. 75	. 20	5.1
19								4.3	1.1	.66	. 20	3.5
20								3.7	. 95	. 66	.20	2.3
21			~					3.2	. 85	. 58	. 20	2.0
22			~					3.9	.66	. 58	. 20	1.7
23								3.7	. 58	. 50	. 20	1.3
24								3.5	. 50	.36	.20	1.1
25								3.9	. 50	.30	.24	1.1
26								34	3.7	.24	. 24	1.1
27								27	4.8	. 24	.30	1.3
28								16	6.4	.24	.24	1.6
29								14	53	.24	. 24	2.5
30								12	20	.20	. 24	3.0
31								7.6		. 20	.24	
TOTAL										141.95	5.53	63.05
MEAN									4.56	4.58	.18	2.10
MAX									53	23	.30	8.6
MIN AC-FT									. 50 271	.20 282	.10 11	. 24
AC-FI									2/1	202	11	125
STATISTIC	S OF	MONTHLY MEAN	DATA FO	R WATER Y	EARS 1991	- 199	1, BY WATER Y	YEAR (WY)			
MEAN												
MAX												
(WY)												
MIN												
(WY)												

04010530 RESERVATION RIVER NEAR HOVLAND, MN

LOCATION.--Lat 46°52'38", long 89°51'45", in SE\SW\ sec.6, T.62 N., R.5. E., Cook County, Hydrologic Unit 04010101 on the Grand Portage Indian Reservation, on left bank at downstream side of bridge on U.S. Highway 61, 1,200 ft upstream from mouth and 5.5 miles northeast of Hovland.

PERIOD OF RECORD. -- April to September 1991.

GAGE. -- Water stage recorder. Elevation of gage is 660 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to May 14, 1991, nonrecording gage at same site and datum.

REMARKS. -- Records good.

EXTREMES FOR CURRENT PERIOD.--April to September 1991: Maximum discharge during period, 281 ft³/s, June 29, gage height, 2.74 ft; minimum, 0.22 ft³/s, Sept. 1, gage height, 0.12 ft.

		DISCHARGE	, CUBIC	FEET PER	SECOND, DAILY	WATER MEAN	YEAR OCTOBER VALUES	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	R APR	MAY	JUN	JUL	AUG	SEP
1							10	117	18	63	1.7	.29
2								88	16	56	1.5	.35
3								67	14	39	1.5	.48
4								58	12	36	1.6	.61
5							92	49	10	32	1.2	. 64
6							+	140	8.9	25	1.1	.95
7							100	85	8.0	20	1.0	. 67
8							100	62	7.3	20	. 95	.85
9								53	6.8	19	. 87	10
10							86	45	7.5	20	.83	4.3
11							76	39	6.0	14	.77	2.2
12							· 69	33	5.0	13	.65	1.5
13							82	33	4.7	12	. 57	1.2
14							- 90	27	18	9.3	. 51	12
15							110	23	11	7.6	. 45	15
16							102	21	7.7	6.6	. 96	9.8
17							O _L	18	5.7	6.2	1.3	6.7
18							30	15	4.9	5.4	.99	9.6
19							0.1	14	4.5	5.6	.78	6.4
20							70	13	4.0	4.6	.76	4.0
21							Ο,	12	4.0	4.2	. 67	3.0
22							30	12	3.4	4.3	. 65	2.5
23								12	3.0	3.7	. 64	2.2
24							20	12	2.6	3.3	.70	1.9
25							48	10	2.5	3.0	.73	8.8
26							30	86	8.9	2.7	.70	8.2
27							J J	53	15	2.7	.71	4.7
28							. 73	26	8.4	2.5	.65	3.5
29							100	26	115	2.4	. 55	3.0
30							166	28	39	2.1	. 47	6.9
31								22		1.9	.36	
TOTAL							2512	1299	381.8	447.1	26.82	132.24
MEAN							00.7	41.9	12.7	14.4	. 87	4.41
MAX							189	140	115	63	1.7	15
MIN								10	2.5	1.9	.36	.29

Gaga haight

Discharge

STREAMS TRIBUTARY TO LAKE SUPERIOR 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN

LOCATION.--Lat 47°20'07", long 91°12'06", in SE\nE\s sec.15, T.56 N., R.7 W., Lake County, Hydrologic Unit 04010101, on right bank 400 ft upstream from bridge on U.S. Highway 61, 0.3 mi upstream from mouth, 4 mi northeast of Silver Bay, and 7 mi northeast of city of Beaver Bay.

DRAINAGE AREA.--140 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1927 to current year. Monthly discharge only for some periods, published in WSP 1307.

Discharge

WSP 1307.
REVISED RECORDS.--WSP 894: 1939. WSP 1337: 1933-34(M), 1935.
GAGE.--Water-stage recorder. Datum of gage is 613.65 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). Prior to Oct. 5, 1934, nonrecording gage, and Oct. 5, 1934 to Nov. 22, 1978, water-stage recorder at site 370 ft downstream and at datum 3.68 ft lower.
REMARKS.--Records fair except those for estimated daily discharges, which are poor.
EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³/s and maximum (*):

Gage height

Daka	T	Discha (ft ³ /	rge	Gage	height		Data.		11	Discharge (ft ³ /s)	Gage	height
Date Apr. 6	Time 1730	*1.72	s) :0	*9	ft) .55		Date Apr. 30		'ime 1430	1,610	(f 9.	
•		DISCHARGE	CUBIC	FEET	PER SECOND, DAILY		_			•		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	133	129	e39	e26	e18	e13	e100	1370	195	280	47	12
2	117	122	e38	e26	e18	e13		921	150	353	38	12
3 4	479 542	115 115	e38 e37	e26 e25	e18 e19	e13 e13		637 516	123 97	340 365	32 35	15 15
5	382	114	e37	e25		e13		485	80	378	33	14
6	249	94	e36	e25		e13	1440	615	67	277	28	15
7	188	84	e36	e24		e13		652	57	172	25	16
8	142	78	e35	e24	e24	e13		548	50	156	22	164
9 10	112 95	e72 e66	e35 e34	e24 e24	e25 e22	e13 e13		447 383	44 50	152 109	19 18	534 388
11	85	e60	e34	e24	e20	e13		338	48	81	17	e200
12	82	e56	e34	e23	e18	e13		310	42	250	16	e150
13	82	e53	e33	e23	e17	e13	317	281	37	278	14	e100
14	80	e51	e33	e23	e16	e13		240	43	180	13	e150
15 16	74 73	e50 e49	e33 e32	e23 e23	e16	e13 e13		216 209	46 64	120 96	12 13	e200 238
16 17	267	e48	e32	e23	e16 e15	e13		257	52	504	25	e200
18	530	e47	e32	e22		e13		200	44	360	22	e220
19	404	e47	e31	e22	e15	e15	5 549	154	38	281	18	e200
20	359	e47	e31	e22		e18		133	35	e222	17	e150
21 22	425 391	e60 e70	e30 e30	e22 e21		e20 e20		122 122	44 43	e167 134	16 15	e120
23	335	e55	e29	e21		e50		135	35	109	14	e100 76
24	290	e50	e29	e21		e100		131	31	114	16	68
25	256	e48	e29	e21		e200		120	28	86	19	90
26	227	e47	e28	e21		e200		121	25	61	19	107
27	201	e45	e28	e20	e13	e180		163	46	54 54	18	95
28 29	191 173	e44 e42	e28 e27	e20 e20	e13	e160 e140		159 188	51 97	79	16 14	83 73
30	154	e40	e27	e19		e120		271	102	67	13	86
31	140		e27	e19		e110		260		57	13	
TOTAL	7258		1002	700		1567		10704	1864	5936	637	3891
MEAN	234		32.3	22.6		50.5		345	62.1	191	20.5	130
MAX MIN	542 73	129 40	39 27	26 19		200 13		1370 120	195 25	504 54	47 12	534 12
AC-FT	14400	3960	1990	1390		3110		21230	3700	11770	1260	7720
CFSM	1.67	.48	.23	.16		.36		2.47	. 44	1.37	.15	.93
IN.	1.93	. 53	.27	.19		. 42		2.84	. 50	1.58	. 17	1.03
STATIST	CICS OF M	MONTHLY MEAN	DATA FO	R WATE	R YEARS 1928	199	1, BY WATER	YEAR (V	(Y)	404		400
MEAN MAX	152 558	134 504	52.6 180	29.4 65.5		63.6 602		488 1801	241 615	101 327	85.4 665	123 735
(WY)	1983		1971	1969		1945		1950	1943	1978	1972	1977
MIN	7.01	5.20	. 51	.036		5.73	138	77.6	31.0	7.52	2.71	3.35
(WY)	1977	1977	19//	1977	1977	1940		1977	1988	1934	1934	1976
	STATIST	rics	FOR 1		LENDAR YEAR		FOR 1991 W	MATER YEA	LR.	WATER YEA	ARS 1928	- 1991
ANNUAL ANNUAL				41864 115			53820 147			169		
	ANNUAL	MEAN		113			27/			335		1972
LOWEST	ANNUAL M	ŒAN								81.6		1963
	DAILY M			2570			1560	Apr 3	30	6860		2 1972
LOWEST	DAILY ME	CAN AY MINIMUM			.0 Feb 1		12 13	Aug 1 Feb 2	15	.00 .00		4 1977 4 1977
THATENT	SEVEN-DA	PEAK FLOW		3300			1720	Apr		10000a		4 1977
		PEAK STAGE		10	.93 Apr 29		9.5	55 Apr		11.06	b Apr 1	2 1965
INSTANI	ANEOUS I	LOW FLOW					12c				•	
ANNUAL	RUNOFF ((AC-FT)		83040			106800	_		122700		
ANNUAL	RUNOFF ((CFSM)		11	. 82		1.0			1.21		
10 PFRC	RUNOFF (ENT EXCE	(INCRES)		234	. 14		14.3 383			16.44 431		
50 PERC	ENT EXCE	EEDS		51			51			55		
90 PERC	ENT EXCE	EEDS		8	. 0		14			14		
a Fr	om ratin	g curve exte	nded ab	ove 4.	200 ft ³ /s or	basis	of slope-a	rea meas	urement of	peak flow		

From rating curve extended above 4,200 ft³/s on basis of slope-area measurement of peak flow. Site and datum then in use, from floodmark (backwater from ice). Occurred Aug. 15, 16, Aug. 31 to Sept. 3.

C

Estimated.

STREAMS TRIBUTARY TO LAKE SUPERIOR 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	(MM OF HG)	DXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAS (COLS. PER 100 ML) (31673)
OCT 01	1245	134	95	98	7.7	8.3	10.0	2.9	741	11.0	38	90
JAN 22	1620	214	111	112	7.4	8.2	0.0	1.7	719	13.4	<1	K4
APR 30	1315	1580	40	51	6.5	7.0	6.0	3.2	723	12.0	K72	70
JUL 31	0900	67	71	87	7.6	7.7	18.0	1.5	742	8.5	23	K1000
DATE	CALC DIS SOL (MG AS	IUM SI - DI VED SOI /L (MG CA) AS	MG) AS	- DI ED SOL /L (MG NA) AS	UM, WAT S- TOT VED FIE /L MG/L K) CAC	TY AL DIS LIN IT L LD (M . AS A	AB DIS G/L FI S MG/ CO3) C	ATE BONA TER WAT IT DIS	TE ER SULFAT IT DIS- ELD SOLVE AS (MG/I B AS SO4	DIS- ED SOLV (MG/	E, RID DI ED SOL L (MG EL) AS	E, S- VED S/L F)
01 JAN	11	3	3.6 3	.8 0	.4 3	2	36	0 39	5.3	3.7	0.	2
22 APR	13	4	2 4	.0 0	.3 4	1	43	0 50	6.1	3.3	<0.	1
30 Jul	5	.8 1	1.9 1	.8 0	.3 1	.1	14	0 13	5.0	1.4	0.	1
31	11	3	3.5 2	.7 0	.4 3	9	37	0 48	2.5	1.8	0.	3
DATE	SILI DIS SOL (MG AS SIO (009	- AT 1 VED DEG /L DI SOL 2) (MG	DUÉ GE 180 NITR 5. C DI IS- SOL VED (MG 5/L) AS	N, GE ITE NO2+ S- DI VED SOL /L (MG N) AS	N, NIT NO3 GE S- AMMO VED TOT /L (MG N) AS	RO- G IN, AMM DNIA D IAL SO G/L (M N) AS	EN, GEN ONIA MON IS- ORG LVED TO G/L (M N) AS	TRO- ,AM- IA + PHO ANIC PHOR TAL TOT G/L (MG N) AS 625) (006	US DIS- FAL SOLVE F/L (MG/I P) AS P	PHORUS ORTHO	S ORT DIS L SOLV L (MG/ AS P	US HO, ED L
OCT 01 JAN	9	.0 7	79 <0.	01 <0.1	0 <0.	01 <0.	01 0.	60 0.	03 <0.01	L <0.0	1 <0.	01
22 APR	14	7	78 <0.	01 0.3	0 0.	04 0.	04 0.	20 <0.	01 <0.01	L <0.0	1 <0.	01
30 JUL	7	.7 4	1 0.	02 0.3	30.	08 0.	08 0.	70 0.	04 0.01	L <0.0	1 <0.	01
31	10	9	01 <0.	01 <0.0	50.	04 0.	04 0.	70 0.	02 0.02	2 <0.0	1 <0.	01

STREAMS TRIBUTARY TO LAKE SUPERIOR 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT 01 JAN	6	82	80	<1	9	<0.5	<1.0	<1	<3	3	320
22	2	67	40	<1	4	<0.5	<1.0	<1	<3	2	320
APR 30	33	60	140	<1	8	<0.5	<1.0	<1	<3	2	200
JUL 31	1	100	80	<1	9	<0.5	<1.0	<1	<3	3	510
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
ОСТ 01	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
OCT 01 JAN 22	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 01 JAN	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)

04015330 KNIFE RIVER NEAR TWO HARBORS, MN

LOCATION.--Lat 46°56'49", long 91°47'32", in SW\hat{NW\hat{k}} sec.31, T.52 N., R.11 W., Lake County, Hydrologic Unit 04010102, on right bank 600 ft downstream from bridge on U.S. Highway 61, 0.5 mi upstream from bridge on County Highway 102, in town of Knife River, 0.8 mi upstream from Lake Superior, and 7.8 mi southwest of Two Harbors.

Harbors.
DRAINAGE AREA.--85.6 mi².
PERIOD OF RECORD.--Occasional low-flow measurements, water years 1970-71, July 1974 to current year.
GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 640 ft above National Geodetic Vertical
Datum of 1929, from topographic map.
REMARKS.--Records fair except those for estimated daily discharges, which are poor.
EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft³/s and maximum (*):

Date	Time	Di (scharge ft ³ /s)	Gage 1	heigh t t)		Date	Time	D	ischarge (ft ³ /s)	Gage (f	height t)
Oct. 17 Mar. 26 Apr. 4 Apr. 14 Apr. 30	2245 1900 1845 0115	ı i	1,740 1,230 1,300 981 1,200	6.: Ice 5.: 5.: 5.:	jam 78 35		May 6 June 29 July 1 Sep. 8	0945 0530 0715 2200		981 *5,440 1,490 1,640	5. *9. 6. 6.	82 02
			_	IC FEET PE	R SECOND,	WATER YE Y MEAN VA		1990 TO S	EPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31 31 31 31	33 27 24 25 29 26 23 22 618 986 380 235 215 1134 89	37 36 34 32 29 27 23 e20 e17 e15 e12 e11 e11 e10 e10 e10 e10 e15 e20 e15 e12 e11 e10 e10 e12 e12 e11 e10 e10 e10 e10 e10 e10 e10 e10 e10	e9.0 e8.8 e8.8 e9.5 e10 e10.6 e9.2 e8.6 e8.4 e8.2 e8.0 e7.8 e7.6 e7.6 e7.4 e7.4 e7.2 e7.2	e7.00.8886666.444422220008888866666666666666555.6666555.666666666	e5.8 e66.2 e66.4 e66.6 e10 e98.4 e10 e98.4 e66.5 e55.6 e55.6 e55.6 e55.6 e55.6 e55.6 e55.6 e55.6 e55.6 e55.6 e66.7 e55.6 e66.7	e5.0 e5.0 e5.0 e4.9 e4.8 e4.6 e4.6 e4.5 e4.5 e4.4 e4.4 e4.3 e4.3 e4.5 e20 e50 e50 e50 e60 e80 e80 e450 e450 e450 e450 e450 e450 e450 e45	97 201 422 679 775 728 509 421 273 198 166 125 103 435 502 356 257 203 149 139 137 139 137 122 123 132 373 1060	674 359 233 267 319 738 490 211 168 124 109 94 76 72 165 55 48 45 51 48 60 175 48 60 175 244 293 244 202	124 85 67 48 36 29 24 21 18 21 22 20 47 47 29 22 19 43 82 21 13 11 17 30 24 25 27 27 27 27 27 27 27 27 27 27 27 27 27	947 399 281 400 413 185 103 176 88 52 37 48 66 45 28 21 17 15 41 30 22 17 11 10 9.1 25	11 8.7.5.20 9.5.5.20 9.5.5.5.3 1.7.7.7.7.7.7.7.1.6.5.2.3.6.1.8.9.8.7.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	3.0 2.8 4.2 5.6 4.1 7.2 967 3357 150 83 57 150 181 181 181 108 766 44 35 44 35 44
MEAN MAX (WY) MIN (WY)	145 986 22 8920 1.70 1.95 ICS OF MON 90.0 226 1983 3.06 1977 STATISTIC	64.4 189 1983 1.58 1977	20.0 60.6 1983 .000 1977	192.2 6.20 7.0 5.6 381 .07 .08 FOR WATER 10.3 31.4 1975 .000 1977 1990 CALENI 21269.35	8.50 22.2 1984 .000 1977	51.2 136 1976 8.65 1980 FOR 1	9640 321 1060 97 19120 3.75 4.19 BY WATER 3 631 1982 73.6 1977 991 WATER 2	169 427 1979 16.0 1976	4166 139 2450 11 8260 1.62 1.81 88.1 240 1984 15.5 1988 WATER	3626.1 117 947 9.1 7190 1.37 1.58 68.1 267 1978 4.87 1988 YEARS 193	172.9 5.58 11 3.1 343 .07 .08 35.9 163 1988 2.95 1976 74 - 1991	3915.0 130 967 2.8 7770 1.52 1.70 91.6 314 1977 1.43 1976
ANNUAL N HIGHEST LOWEST A HIGHEST LOWEST I ANNUAL I INSTANTA INSTANTA INSTANTA ANNUAL I ANNUAL I ANNUAL I OPERCI 50 PERCI		N N MINIMUM K FLOW K STAGE FLOW FLOW SM) CHES) S		58.3 1180 .50 .59	Oct 17	2 5 69	96.5 450 Jui 2.8 Sej 4.0 Aug 440 Jui 9.82 Jui	p 2 g 28 n 29	7440 11 64710 1 14 220 21	.2 May .00 Mar .00 Dec .16 May	1986 1977 7 10 1979 ny days i: 2 1976 7 10 1979 7 10 1979	n 1977

e Estimated

STREAMS TRIBUTARY TO LAKE SUPERIOR 04024000 ST. LOUIS RIVER AT SCANLON. MN

LOCATION.--Lat 46°42'12", long 92°25'07", in NWk sec.30, T.49 N., R.16 W., Carlton County, Hydrologic Unit 04010201, on right bank 25 ft downstream from lower bridge on U.S. Highway 61 at Scanlon, 0.6 mi downstream from Minnesota Power Co. powerplant, 3 mi upstream from Thomson Reservoir, and 3.2 mi upstream from Midway

DRAINAGE AREA. -- 3,430 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1908 to current year. Monthly discharge only for some periods published in WSP 1307.
Published as "near Thomson" 1908-50.
REVISED RECORDS. -- WSP 1337: 1911-12.
GAGE. -- Water-stage recorder. Datum of gage is 1,101.23 ft above National Geodetic Vertical Datum of 1929.
Oct. 5, 1909, to Sept. 5, 1914, nonrecording gage 3 mi downstream and 50 ft below powerplant at datum about 420 ft lower. Sept. 6, 1914, to Aug. 4, 1953, powerplant record at Thomson hydroelectric plant.
REMARKS. -- Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation caused by powerplant upstream. Flow regulated by Whiteface Reservoir and Boulder, Island, Rice and Fish Lakes, combined capacity. 332.160 acre-ft: the water-discharge table shows the monthly change in contents (†).

capacity, 332,160 acre-ft; the water-discharge table shows the monthly change in contents (†).

Change in contents, equivalent in cubic feet per second, in Whiteface Reservoir, and Boulder, Island, Rice and Fish Lakes; records furnished by Minnesota Power Co. Adjusted for change in reservoir contents.

Estimated.

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1958-66, 1968 to current year.

REMARKS. -- Letter K indicates non-ideal colony count. Samples collected at cableway 0.75 mi downstream from gage.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L)	100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
OCT 09	1245	1620	180	174	7.3	7.6	9.0	3.2	731	10.0	K17	K27
JAN 02	1300	1150	170	184	7.4	7.5	0.5	3.4	741	8.4	кз	К9
FEB 12	1215	1140	165	180	7.1	7.3	0.0	2.9	727	9.0	K14	33
MAY 02 02	0730 1145	5740 6070	113 113	122 	6.7	7.5	7.5	7.1	729 	11.3	K15	45
JUN 10	1230	1830	123	129	7.3	7.4	23.0	3.8	732	6.1	K14	230
JUL 31	1530	3550	105	110	7.8	7.4	20.0	32	733	7.6	K200	660
AUG 01	1130	2920	100		7.3		20.5		732	7.8		
DATE	CALCI DIS- SOLV (MG/I AS C.	DIS ED SOLV L (MG/ A) AS M	M, SODIU - DIS- ED SOLVE L (MG/ G) AS N	DISD SOLV L (MG/ A) AS K	M, WAT TOT ED FIE L MG/L CAC	TY ALK DIS LINI IT LA LD (MG AS AS CO3 CAC	TY WA AB DIS 5/L FI 5 MG/1 CO3) C	ATE BONTER WAS IT DIS ELD FIL AS MG/O3 HO	S IT DI ELD SO 'L AS (M CO3 AS	FATE RISS- DISSELVED SOLUTION (MX SO4) AS	DE, RII S- D: LVED SOI G/L (MC CL) AS	JO- DE, IS- LVED J/L F) 950)
09 JAN	18	8.	7 5.	4 1.	5 5	8 6	36	0 7	1 1	3 :	5.7	0.2
02 FEB	19	8.	7 5.	31.	4 7	6 7	74	0 9	3 1	2 :	5.0	0.1
12 MAY	18	8.	5 6.	8 1.	3 6	7 7	0	0 ε	32 1	1 :	3.9 <	0.1
02 02	13	5. 	8 4.	0 1.			5 -					0.1
JUN 10	15	6.	5 4.	0 0.	7 4	6 5	51	0 5	56	6.9	4.1	0.2
JUL 31	13	5.	4 2.			.5 4	.7	0 5	55	3.8	2.6	0.2
AUG 01					_							
DATE	SILICA DIS- SOLVI (MG/I AS SIO2)	AT 18 ED DEG. L DIS SOLV) (MG/	UÉ GEN 0 NITRI C DIS - SOLV ED (MG/ L) AS N	, GEN TE NO2+N - DIS ED SOLV L (MG/) AS N	, NIT O3 GE - AMMO ED TOT L (MG) AS	RO- GE N, AMMO NIA DI AL SOL //L (MG N) AS	CN, GEN ONIA MON CS- ORG OVED TO CF/L (M N) AS	ANIC PHOTAL TO G/L (M N) AS	IOS- PHO DRUS D DTAL SO IG/L (M S P) AS	RUS PHOI IS- ORTI LVED TO: G/L (MC P) AS		RUS IHO, S- VED VL ?)
OCT 09	7.6	150	<0.0	1 0.1	0 0.	06 0.	06 1	.1 0).0 3 ⊢ 0	.03 0	.02 <0	.01
JAN 02	9.2	135										.01
FEB 12	8.6	122	<0.0									.01
MAY 02 02	4.9	102						.9 0		.02 <0	.01 <0.	.01
JUN 10	6.2	110	0.0	1 0.1	2 0.	05 0.						.01
JUL 31	8.2	96	0.0									.01
AUG 01												-

STREAMS TRIBUTARY TO LAKE SUPERIOR 04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. 7 FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT 09 JAN	10	8 6	100	<1	20	<0.5	2.0	1	<3	<1	700
02	18	46	~-						~-		
FEB 12 MAY	3	100	30	<1	11	<0.5	<1.0	2	<3	2	540
02 02	20	90	80	<1 	16	<0.5	<1.0	1	<3	2	400
JUN 10	4	98									
JUL 31			80	<1	17	<0.5	1.0	1	<3	2	790
AUG 01	9	99									
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT 09	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
OCT 09 JAN 02	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 09 JAN 02 FEB 12	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 09 JAN 02 FEB 12 MAY 02	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 09 JAN 02 FEB 12 MAY 02 02 JUN 10	DIS- SOLVED (UG/L AS PB) (01049) 1 <1 1	DIS- SOLVED (UG/L AS LI) (01130) 5 <4	NESE, DIS- SOLVED (UG/L AS MN) (01056) 60 37 25	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 49 52 38	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 <6	DIS- SOLVED SOLVED (OF,L AS ZN) (01090) 34 27 9
OCT 09 JAN 02 FEB 12 MAY 02 02 JUN	DIS- SOLVED (UG/L AS PB) (01049) 1 <1 1	DIS- SOLVED (UG/L AS LI) (01130) 5 <4 <4	NESE, DIS- SOLVED (UG/L AS MN) (01056) 60 37 25	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 49 52 38	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) 34 27

04024098 DEER CREEK NEAR HOLYOKE, MN

LOCATION.--Lat 46°31'30", long 92°23'20", in NE\SE\sec.29, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, on left bank 179 ft west of State Highway No. 23, 0.9 mi upstream from mouth and 4.0 mi north of Holyoke.

DRAINAGE AREA. -- 7.77 mi².

PERIOD OF RECORD. -- October 1976 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 786.14 ft above National Geodetic Vertical Datum of 1929.

REMARKS .-- Records fair except those for estimated daily discharges, which are poor.

		DISCHAR	-	FEET PER	SECOND.	-	AR OCTOBER	1990 TO	se ptem be	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1234567891011231451671890122234256789031	1.87 168.4.1 1.57 1.59 1.55 1.59 1.60 1.70 1.60 1.70 1.60 1.70 1.70 1.70 1.70 1.70 1.70 1.70 1.7	2.8 2.7 2.5 2.9 2.1 2.0 2.0 2.0 2.0 1.7 1.8 1.8 1.8 1.7 1.8 1.7 1.8 e1.8 e1.8	e1.8 e1.8 e1.9 e1.9 e1.9 e1.9 e1.9 e1.9 e1.9 e1.9	e1.9 e1.9 e1.9 e1.9 e1.9 e1.9 e1.9 e1.9	e1.9 e2.0 e2.2.0 e2.0 e3.0 e4.0 e3.4 e1.5 f1.6 f1.8 f1.9 f1.5 f1.5 f1.5 f1.5 f1.5 f1.5 f1.5 f1.5	1.4245555467874430 1.1.5555467874430 1.55554674430 1.559946667.9333	8.6 18 24 26 18 15 12 28 12 9.7 7.2 25 20 13 8.6 9.8 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	26 14 9.5 345 115 224 15 19.8 8.3 7.2 18 9.8 9.8 9.8 9.5 5.5 5.5 5.5 5.5 17 46 48 44 48	26 19 19 19 19 19 19 19 19 19 19	128 35 300 264 9.55.1.0 4.9 5.6.6.9 798 15.6.6.9 10.1.3 10	43.826211107875527622242001719999 11.9999	1.88 6.25 2.01 3.88 97.68 97.78 6.26 6.30 4.18 4.18 4.18 4.18 4.18 4.18 4.18 4.18
TOTAL MEAN MAX MIN AC-FT CFSM IN. STATIS:	284.7 9.18 72 1.5 565 1.18 1.36	59.8 1.99 2.9 1.6 119 .26 .29	58.2 1.88 1.9 1.6 115 .24 .28	58.9 1.90 1.9 1.9 117 .24 .28	55.8 1.99 4.0 1.2 111 .26 .27	324.2 10.5 64 1.2 643 1.35 1.55	439.3 14.6 50 5.8 871 1.88 2.10 BY WATER	753.2 24.3 115 5.0 1490 3.13 3.61 YEAR (WY)	393.8 13.1 110 4.2 781 1.69 1.89	690.5 22.3 128 3.4 1370 2.87 3.31	85.3 2.75 4.2 1.9 169 .35 .41	327.1 10.9 90 1.8 649 1.40 1.57
MEAN	7.21	4.28	2.40	1.78	2.33	8.43	23.6	11.1	7.24	6.46	5.49	9.58
MAX (WY) MIN (WY)	21.8 1983 1.69 1988	12.2 1983 1.59 1977	3.86 1983 1.31 1977	2.45 1983 .97 1979	5.87 1981 1.06 1979	19.2 1985 2.34 1986	90.8 1986 4.11 1977	24.3 1991 2.15 1980	19.8 1984 1.65 1982	22.3 1991 1.50 1988	36.9 1986 .89 1982	30.4 1986 1.69 1981
SUMMAR	STATISTI	cs	FOR	1990 CALENI	DAR YEAR	F	OR 1991 W	ATER YEAR		WATER YE	EARS 1976	- 1991
LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		EAN LAN LAN LN LN LN LN LN LN LN LN LAK LOW LAK LOW		1730 29.431	Sep 6 Jul 14 Jul 14 Sep 6 Sep 6 May 13		3530.8 9.67 128 1.2 1.3 328 16.10 7000 1.24 16.90 24 3.3 1.7	Jul 1 Feb 28 Feb 27 Jul 28 Jul 28		7.51 19.3 3.65 553 .21 2000a 32.76 .20 5440 .97 13.14	Sep 1 Jul 7 Aug: Sep 6b Sep 0c	1986 1980 6 1990 2 1976 10 1982 3 1985 3 1985

a From rating curve extended above $1000 \text{ ft}^3/\text{s}$ on basis of flow through culvert computations.

b From floodmarks.
c Occurred Aug. 13, 16, 1982, July 12, 1989.
e Estimated.

RED RIVER OF THE NORTH BASIN 05045950 ORWELL LAKE NEAR FERGUS FALLS, MN

LOCATION. -- Lat 46°12'55", long 96°10'40", in SWk sec.26, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, at dam on Otter Tail River at outlet of Orwell Lake, 7 mi southwest of Fergus Falls.

DRAINAGE AREA. -- 1,830 mi², approximately.

PERIOD OF RECORD. -- March 1953 to current year. Prior to October 1971, published as Orwell Reservoir.

GAGE. -- Water-stage recorder. Datum of gage is adjustment of 1912.

REMARKS.--Reservoir is formed by earth dam with concrete spillway with one taintor gate; storage began in March 1953. Capacity to elevation 1,070 ft (maximum operating stage) is 14,100 acre-ft of which 13,100 acre-ft is controlled storage above elevation 1,048 ft (minimum operating stage). Dead storage is 210 acre-ft. Figures given herein represent total contents. Reservoir is used for flood control and to increase low flow for water supply and pollution abatement.

COOPERATION. -- Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,920 acre-ft, June 17, 1962, May 23, 1966, elevation, 1,072.38 ft; minimum (after initial filling), 844 acre-ft, Aug. 26, 27, 1953, elevation, 1,046.96 ft.

EXTREMES FOR CURRENT YEAR. -- Maximum contents, 9,580 acre-ft, May 6, elevation, 1,065.50 ft; minimum, 7,400 acre-ft, Sept. 30, elevation, 1,062.80 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

	Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept.	30	1,063.80	8,150	
Oct.	31	1,063.90	8,220	+70
Nov.	30	1,064.20	8,470	+250
Dec.	31	1,061.13	8,410	-60
CAL	YR 1990			-13,590
Jan.	31	1,064.61	8,820	+140
Feb.	28	1,064.41	8,650	-170
Mar.	31	1,064.42	8,660	+10
Apr.	30	1,064.48	8,710	+50
May	31	1,064.38	8,620	-90
June	30	1,064.69	8,890	+270
July	31	1,063.85	8,190	-700
Aug.	31	1,064.25	8,510	+320
Sept.	30	1,062.80	7,400	-1110
WTR	YR 1991			-750

05046000 OTTER TAIL RIVER BELOW ORWELL DAM. NEAR FERGUS FALLS, MN

LOCATION.--Lat 46°12'35", long 96°11'05", in NE* sec.34, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, on left bank 0.7 mi downstream from Orwell Dam, 6.1 mi downstream from Dayton Hollow Dam, 8 mi southwest of Fergus Falls, and 11.1 mi downstream from Pelican River.

DRAINAGE AREA.--1,830 mi², approximately.

PERIOD OF RECORD.--October 1930 to current year. Prior to October 1952, published as Otter Tail River below Pelican River, near Fergus Falls. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSF 785: 1934(M). WSP 1208: 1947(M). WSP 1308: 1931(M).

GAGE.--Water-stage recorder. Datum of gage is 1,029.65 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Oct. 11, 1930, to Nov. 17, 1933, at same site at datum 2.00 ft higher; Nov. 18, 1933, to Mar. 21, 1953, at site 6.1 mi upstream at datum 40.30 ft higher.

REMARKS.--Records good. Flow regulated by Orwell Lake (station 05045950) beginning Mar. 21, 1953 and powerplants upstream.

upstream.

		DISCHARG	E, CUBIC	FEET PER	SECOND, V	WATER Y MEAN V	EAR OCTOBER ALUES	1990 TC	SEPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	121	114	94	84	137	166	387	508	840	895	538	384
2	106	115	94	84	137	166	357	557	840	1010	464	384
3 4	110 128	115 115	86 80	84 84	137 137	166 186	354 341	604 623	838 840	908 851	506 507	329 287
3	137	104	80	84	137	211	316	623	806	815	520	324
5 6	137	94	80	84	137	193	316	640	780	792	529	347
7	137	94	80	84	137	167	316	676	736	788	529	347
8	138		- 80	84	137	168	335	632	693	760	489	357
9	140	71	80	84	137	161	347	636	693	713	464	354
10	137	75	77	84	137	162	347	657	669	697	464 464	389 411
11 12	137 136	75 75	75 78	84 84	137 154	188 221	303 278	663 662	650 656	633 657	446	352
13	131	75 75	90	84	194	231	279	666	672	691	433	316
14	131	75	99	84	191	246	279	670	693	691	433	321
15	123	75	99	84	177	251	327	731	699	645	437	324
16	115	83	98	84	173	251	519	763	691	618	434	295
17	117	89	92	84	173	251	502	764	685	618	430	273
18	128	89 89	89	83	173	251	446	759 759	682 681	653 674	426 410	279 277
19 20	137 137	89	89 9 1	82 84	173 173	236 237	443 445	739 726	685	670	380	367
21	137	95	89	84	173	237	446	717	703	670	313	426
22	137	99	94	94	173	304	446	723	715	614	274	426
23	137	104	94	107	173	331	444	723	714	578	345	355
24	137	104	94	110	173	331	440	735	735	578	384	309
25	134	104	94	112	168	291	413	735	753	561 548	384 384	311
26 27	131 131	104 e104	94 94	118 115	166 166	275 373	39 8 403	733 729	655 601	545	384 384	414 467
28	131	e95	94	115	166	426	405	752	604	545	384	465
29	117	e95	94	115		426	405	816	610	545	385	461
30	104	93	94	115		424	454	845	668	545	384	290
31	107		89	126		419		841		545	384	
TOTAL	3986	2786	2755	2888	4446	7946	11491	21668	21287	21053	13308	10641
MEAN	129	92.9	88.9	93.2	159	256	383	699	710	679	429	355
MAX MIN	140	115	99 7 5	126	194 137	426	519 278	845 508	'840 601	1010 545	538 274	467 273
AC-FT	104 7910	71 5530	5460	82 5730	8820	161 15760	22790	42980	42220	41760	26400	21110
CFSM	.07	.05	.05	.05	.09	.14	.21	.38	.39	.37	. 23	.19
IN.	.08	.06	.06	.06	.09	.16	. 23	.44	.43	.43	.27	.22
STATIST	ICS OF MC	ONTHLY MEAN	DATA FO	OR WATER Y	EARS 1931	- 1991	, BY WATER	YEAR (WY)			
MEAN	224	234	223	214	215	294	450	552	547	395	259	219
MAX	817	831	706	603	605	653	1051	1427	1425	1246	1080	904
(WY)	1986	1986	1987	1986	1987	1987	1986	1986	1986	1953	1985	1985
MIN	9.15	8.42	8.10	15.1	10.8	23.5	39.5	14.1	14.2	12.8	11.5	7.99
(WY)	1977	1977	1977	1937	1935	1937	1934	1977	1934	1936	1934	1934
SUMMARY	STATIST	cs	FOR 1	1990 CALENI	DAR YEAR		FOR 1991 WA	TER YEAR		WATER Y	EARS 1931	- 1991
ANNUAL	TOTAL			95807			124255					
ANNUAL				262			340			319		
	ANNUAL N									842		1986
LUWEST	ANNUAL ME DAILY ME	LAN		644	Jun 15		1010	Jul 2	•	20.4 1670		1934 20 1953
LOWEST	DAILY MEA	N N		.71	Nov 9		71	Nov 9		1.6		7 1937
		MINIMUM		74	Nov 9		74	Nov 9		5.9	Sep 1	1934
INSTANT	ANEOUS PE	EAK FLOW		650	Jun 14		1050	Jul 1		1710	Jun 1	1953
INSTANT	ANEOUS PE	EAK STAGE		3.37 66 190000	a Jun 14	_	4.00			5.60		17 1953
INSTANT	ANEOUS LO	JW FLOW		55	Nov 8,	9	66 246500	Nov 8	, 9	231300	Ja Aug	5 1970
ANNUAL	RUNOFF (A	remi		.14			.19			.17	,	
ANNUAL.	RUNOFF (INCHES		1.95			2.53			2.37	,	
10 PERC	ENT EXCE	EDS		528			713			699		
	ENT EXCE			175			291			246		
90 PERC	ENT EXCE	EDS		89			84			30		

a Result of regulation.b Backwater from aquatic vegation.e Estimated.

05050000 BOIS DE SIOUX RIVER NEAR WHITE ROCK, SD

LOCATION.--Lat 45°51'45", long 96°34'25", in SWkSWk sec.27, T.128 N., R.47 W., Roberts County, Hydrologic Unit 09020101, on Sisseton Indian Reservation, on left bank just downstream from Big Slough Outlet, 300 ft downstream from White Rock Dam, 4 mi south of White Rock, SD and 5 mi northwest of Wheaton.

DRAINAGE AREA. -- 1,160 mi², approximately.

PERIOD OF RECORD. -- October 1941 to current year.

GAGE.--Water-stage recorder. Datum of gage is 960.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Jan. 14, 1943, nonrecording gage at same site at datum 0.11 ft lower. Jan. 15, 1943, to Sept. 30, 1963, water-stage recorder at same site at datum 0.11 ft lower.

REMARKS.--Records fair. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project (available capacity for flood control, 137,000 acre-ft).

		DISCHA	RGE, CUBI	C FEET PER	R SECOND, DAIL	WATER Y MEAN	YEAR OCTOBEI VALUES	R 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30	.90 .83 .88 .89 .81 .71 .75 .75 .76 .74 .75 .76 .71 .19 1.7 .2.1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .4 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	2.3762.2.2.2.1.981651651561544665761498155165154149811	948446620 9.8840 9.7770 9.66520 9.556644 9.555555555555555555555555555555555555	e.444444444444444444444444444444444444	257888888888888888888888888888888888888	e. 48 e. 48 e. 48 e. 48 e. 54 e. 54 e. 54 e. 67 e. 67 e. 67 e. 61. 2 e1. 2 e2. 2 e3. 4 e1. 2 e3. 4 e3. 6 e3.	APR 7.6.3 5.64 7.6.3 5.64 5.64 5.65 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	31 32 29 30 33 32 28 24 21 18 17 10 9.0 8.0 7.6 5.2 4.8 5.1 4.1 2.8 5.1 4.1 2.8 5.1 6.1 7.2 6.6 6.1 7.2 6.6 6.1 7.2 6.6 6.6 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	22 28 34 35 34 31 27 23 19 16 13 9.7 10 9.4 8.1 6.3 5.1 6.3 5.1 6.9 106 116 91 69 235 429 422 435 481	569 581 588 585 605 677 675 630 641 605 578 630 578 630 578 630 578 630 578 630 578 630 578 578 578 578 578 578 578 578 578 578	175 169 176 160 161 164 165 167 127 91 89 88 86 84 76 67 77.6 65.3 77.0 65.3	6.3 6.1 5.9 5.8 5.5 6.2 11 29 20 9.0 8.4 8.6 2 7.8 7.8 20 7.8 20 7.8 20 7.8 20 7.8 20 107 107 104 103 104 105 105 105 105 105 105 105 105 105 105
TOTAL MEAN MAX MIN AC-FT CFSM IN.	50.58 1.63 4.0 .69 100 .00	49.6 1.65 2.7 1.0 98 .00	18.40 .59 .94 .46 .36 .00	12.82 .41 .44 .40 .25 .00	13.34 .48 .48 .42 .26 .00	9.5 158.37 5.11 24 .48 314 .00	311.7 10.4 22 4.4 618 .01	15 448.4 14.5 33 2.7 889 .01	3250.2 108 481 4.6 6450 .09	679	2224.3 71.8 175 6.5 4410 .06	1152.0 38.4 107 5.5 2280 .03
STATIST MEAN MAX (WY) MIN (WY)	TICS OF MO 15.5 363 1987 .000 1942	NTHLY MEA 12.0 258 1985 .000 1942	AN DATA F 4.92 57.5 1985 .000 1942	OR WATER Y 2.51 36.0 1987 .000 1942	EARS 194 3.26 53.0 1966 .000 1942	2 - 199 24.8 227 1985 .000 1942	1, BY WATER 195 1322 1969 .000	YEAR (WY 249 1310 1969 .23 1977	234 1103 1986 .010 1977	148 1035 1962 .000 1961	51.1 1130 1962 .000 1970	17.9 260 1962 .000 1960
ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL M ANNUAL ME	EAN AN AN N MINIMUM AK FLOW AK STAGE C-FT) FSM) NCHES) DS DS		4.65	Mar 13 Many d Jan 1 Mar 13 B Mar 13		FOR 1991 WI 23355.71 64.0 679 .46 685 11.1 46330 .05 .75 227 4.9	Jul 7 0 Jan 16 0 Jan 16 Jul 7 4 Jul 7		3380 3770c 15.0 58010	1a 38 Apr 00 Many 00 Oct 07cd 069	1986 1977 20 1969 7 days 1 1941

- a Median of annual mean discharges is 54 ft³/s. b Due to regulation. c Occurred during period Apr. 19-21, 1969. d From floodmark.

- Estimated.

05051300 BOIS DE SIOUX RIVER NEAR DORAN, MIN

LOCATION.--Lat 46°09'08", long 96°34'44", in NE\nE\sec.21, T.131 N., R.47 W., Wilkin County, Hydrologic Unit 09020101, on right bank, 10 ft downstream from bridge on County Highway 6, 3 miles downstream from Rabbit River, 4.3 mi southwest of Doran.

DRAINAGE AREA. -- 1,880 mi², approximately

PERIOD OF RECORD. -- October 1989 to current year.

GAGE. --Water-stage recorder. Datum of gage is 943.90 ft above National Geodetic Vertical Datum of 1929 (elevation data obtained from Wilkin County Highway Engineer).

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project near White Rock, SD.

		DISCHA	RGE, CUBIC	FEET PER	SECOND DAI	, WATER LY MEAN	YEAR OCTOBI	ER 1990 TO	SEPTEMBE	R 1991		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.93 1.3 1.7 1.8 1.8	e1.3 e1.2 e1.2 e1.1	e.21 e.20 e.19 e.18 e.17	e.05 e.10 e.11 e.13 e.16	e.15 e.15 e.15 e.26	115 108 103	198 279 214 196 304	565 871 558 324 209	1840 2860 2790 2230 1640	233 193 191 193 218	16 16 16 13 13
6 7 8 9 10	.00 .00 .00 .00	1.6 1.6 1.7 1.9	e1.0 e1.0 e.92 e.88 e.84	e.16 e.15 e.14 e.13 e.12	e.19 e.20 e.20 e.18 e.17	e.40 e.50 e.70 e1.0 e1.5	63	273 187 135 104 81	160 132 110 98 87	1190 997 916 877 834	203 186 177 152 121	13 14 329 2020 2640
11 12 13 14 15	.00 .00 .00 .00	2.0 2.0 1.9 1.9	e.78 e.74 e.70 e.67 e.64	e.12 e.11 e.11 e.10 e.10	e.16 e.15 e.15 e.15	e2.0 e3.0 e4.3 e5.8 e8.0	25 23 24 25 28	69 57 51 40 34	70 61 50 52 176	807 1110 1130 986 880	111 106 103 101 98	2340 1530 830 492 438
16 17 18 19 20	.00 .00 .00 .00	2.3 2.8 3.6 3.2 3.1	e.60 e.55 e.52 e.50 e.47	e.08 e.06 e.04 e.02 e.00	e.15 e.15 e.15 e.15 e.15	e11 e16 e21 e33 e50	42 69 79 71 62	29 25 22 21 19	390 343 203 125 172	819 780 749 714 645	92 86 83 80 73	347 209 127 87 71
21 22 23 24 25	.00 .00 .00 .00	2.5 2.2 e2.1 e1.9 e1.8	e.44 e.41 e.38 e.35 e.33	e.00 e.00 e.00 e.00	e.15 e.15 e.15 e.15 e.15	e80 e109 e109 e100 e96	54 45 38 33 29	16 14 12 11 9.3	546 1090 914 546 316	577 554 537 519 498	46 28 21 19 19	93 91 89 101 122
26 27 28 29 30 31	.00 .00 .00 .00 .08 .72	e1.7 e1.6 e1.5 e1.4 e1.4	e.31 e.29 e.27 e.25 e.24 e.22	e.00 e.00 e.00 e.00 e.00	e.15 e.15 e.15 	e90 e200 403 330 254 173	26 27 25 23 55	8.8 7.8 7.5 10 13 65	241 316 360 849 994	433 355 316 306 298 285	18 16 16 16 16 17	126 121 118 117 114
TOTAL MEAN MAX MIN AC-FT CFSM IN.	0.80 .026 .72 .00 1.6 .00	59.03 1.97 3.6 .93 117 .00	20.20 .65 1.3 .22 40 .00	2.39 .077 .21 .00 4.7 .00	4.21 .15 .20 .05 8.4 .00	2103.06 67.8 403 .15 4170 .04	53.9 134 23 3210 .03	2512.4 81.0 304 7.5 4980 .04	10928 364 1090 50 21680 .19 .22	29472 951 2860 285 58460 .51 .58	3032 97.8 233 16 6010 .05	12653 422 2640 13 25100 .22 .25
MEAN MAX (WY) MIN (WY)	10.1 20.2 1990 .026 1991 (STATIST	5.25 8.54 1990 1.97 1991	4.57 8.48 1990 .65 1991	OR WATER Y .13 .19 1990 .077 1991 1990 CALEN 2136.45	.075 .15 1991 .000 1990 DAR YEA	46.7 67.8 1991 25.5 1990	53.9 1991 12.6 1990	46.4 81.0 1991 11.8 1990 WATER YEAR	188 364 1991 12.6 1990	478 951 1991 4.37 1990 WATER Y	48.9 97.8 1991 .000 1990 EARS 1990	211 422 1991 .000 1990 - 1991
ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN TANNUAL M ANNUAL M DAILY ME SEVEN-DA TANEOUS P	EAN EAN AN INIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS EDS		5.85 .00 .00 96	Mar 1 Many Jan Mar 1 a Mar 1	days 7 6	2980 17. 123800 13. 123800	Jul 2 00 Many da 00 Oct 1 Jul 2 89 Jul 2	ays ;	89.9 171 8.7 2860 .0 .0 2980 17.8 65110 .0 .6 193 5.1	7 Jul 0 Many 0 Jan Jul 9 Jul 48	1991 1990 2 1991 days 7 1990 2 1991 2 1991

a Due to regulation (backwater from ice).

e Estimated.

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND

LOCATION.--Lat 46°15'55", long 96°35'40", in NE% sec.8, T.132 N., R.47 W., Richland County, Hydrologic Unit 09020104, on left bank in Wahpeton, 800 ft downstream from confluence of Bois de Sioux and Otter Tail Rivers, and at mile 548.6.

DRAINAGE AREA.--4,010 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --April 1942 to October 1942, March 1943 to current year. Gage-height records collected in this vicinity since 1917 are contained in reports of the U.S. Weather Bureau.

GAGE. --Water-stage recorder and concrete and wooden dam. Datum of gage is 942.97 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 6, 1943, U.S. Weather Bureau nonrecording gage 800 ft upstream, converted to present datum. Aug. 6, 1943, to Oct. 27, 1950, nonrecording gage at present site and datum. REMARKS. --Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control; numerous other controlled lakes and ponds, and several powerplants.

EXTREMES OUTSIDE PERIOD OF RECORD. --A stage of 17.0 ft, discharge, 10,500 ft³/s, occurred in the spring of 1897 and has not been exceeded since.

		DISCHARGE	, CUBIC	FEET PER	SECOND, W	MEAN V	YEAR OCTOBE VALUES	ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	113	95	e82	e66	e84	e130		776	1050	1860	768	398
2	116	94	e86	e68	e90	e130		805	1600	2610	714	394
3 4	102	94	e90	e70	e94	e120		819	1530	2960	654	395
4 5	99 98	94	e98	e76	e98	e125	486	890	1220	2870	663	366
6	109	94 91	101 102	e80 e82	e100 e100	e130 e135		920 932	1040 945	2460 2030	678 693	302 311
7	109	65	102	e84	e100	e140		866	874	1740	731	344
á	109	68	105	e86	e100	e150		821	812	1620	695	638
9	109	96	105	e88	e98	e160		778	752	1560	657	1880
10	109	72	105	e88	e96	e175	393	718	734	1500	587	2500
11	108	74	106	e90	e94	e190		709	706	1450	566	2570
12	108	66	105	e90	e92	e200	361	708	670	1560	560	2220
13	109	64	103	e90	e90	e210		706	656	1680	541	1540
14 15	107 105	80 81	84	e92 e92	e90 e90	e240	334	690 671	687 790	1630 1540	516	1060 932
16	103	84	123 137	e92 e96	e90	e260 e280	341 379	691	954	1440	511 688	878
17	128	85	117	e98	e90	e290		736	996	1350	516	687
18	119	96	e90	e96	e90	e300		736	881	1300	507	513
19	109	100	e80	e90	e90	e320		72 9	788	1290	504	442
20	114	103	e70	e82	e90	e360		724	806	1280	488	395
21	118	102	e65	e78	e92	e400		705	993	1210	448	437
22	131	102	e60	e76	e94	e440		679	1550	1180	374	532
23	149	91	e55	e76	e96	e450	495	678	1670	1120	298	542
24	134	89	e60	e74	e100	e460	490	693	1390 1120	1050	332	507
25 26	143 125	e65 e60	e62	e74 e74	e105 e115	e520 e600		705 702	985	1020 968	411 407	468 474
27	122	e50	e64 e66	e74	e125	e640		6 9 9	960	881	395	534
28	115	e70	e68	e74	e130	e680		699	914	834	393	601
29	116	e78	e66	e76		e720		725	1180	815	389	606
30	109	e80	e64	e78		e680		771	1500	805	410	600
31	97		e65	e80		623		830		794	401	
TOTAL	3547	2483	2686	2538	2723	10258	13793	23311	30753	46407	16495	24066
MEAN	114	82.8	86.6	81.9	97.2	331		752	1025	1497	532	802
MAX	149	103	137	98	130	720		932	1670	2960	768	2570
MIN	97	50	55	66	84	120		671	656	794	298	302
AC-FT	7040	4930	5330	5030	5400	20350		46240	61000	92050	32720	47730
		ONTHLY MEAN					•	•				
MEAN	298	289	269	255	263	570	1203	1008	1021	727	373	298
MAX	1247	952	820	678	687	1679		3085	2675	2756	1983	1434
(WY) MIN	1987 5.72	1987 7.40	1987	1986 8.81	1987 18.0	1986 84.3	1969 138	1986 22.5	1962 90.0	1962 65.6	1962 53.5	1986 2.18
(WY)	1977	7.40 1977	6.60 1977	1977	1977	1977	1977	1977	1977	1977	1977	1976
	STATIST	ics	FOR :	1990 CALEN	IDAR YEAR			WATER YEAR		WATER	YEARS 1942	- 1991
ANNUAL ANNUAL				100755 276			179060 491			542		
	ANNUAL N	TEAN .		2/0			431			1477		1986
	ANNUAL MI									54.	0	1977
	DAILY MI			880	Mar 18		2960	Ju1 3		8940		10 1969
LOWEST	DAILY MEA	AN .		50	Nov 27		50	Nov 27		1.	7 Aug 2	28 1976
		MINIMUM		62	Dec 21		62	Dec 21		1.7		28 1976
INSTANT	ANEOUS PI	EAK FLOW					2980	Jul 3		9200	Apr :	1969
		EAK STAGE		100000			9.	52 Jul 3		17.9 392600	95 Apr	5 1989
	RUNOFF (A			199800 532			355200			1240		
10 PERC	ENT EXCEI	EDS		198			1120 379			350		
90 PERC	ENT EXCE	EDS		91			78			100		

e Estimated.

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
DEC 17	1015	109	598		-12.5	0.0						
JAN 08	0940	86	600		-7.0	0.0						
FEB 27	1245	128	683		-4.5	1.0						
MAR all	1630	188	535	8.1	7.0	0.5	13.6	93	250	48	32	16
APR 03	1210	500	514	8.1	10.5	2.5			230	45	28	13
MAY 03	. 0850	803	767		5.0	5.5						
JUN 05	0810	1060	543		9.5	19.0						
JUL 03	1330	2960	355		18.0	22.0						
12 AUG	0835	1520	623		20.0	23.0						
22	1000	401	498	8.5	23.0	22.5			230	41	32	14
DATE	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE, FET-LAB (MG/L AS HCO3) (95440)	CAR- BONATE, FET-LAB (MG/L AS CO3) (95445)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD: MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
MAR all	12	0.4	7.1	** **	***		238	290	0	34	22	0.10
APR 03	11	0.4	6.5	220	0	180				64	13	0.10
AUG 22	11	0.4	4.9	250	3	210				44	12	0.10
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
MAR all	16	304	321	0.41	154	0.410	0.020	0.430	0.210	1.1	0.060	0.060
APR 03	14	317	292	0.43	428							
AUG 22	19	319	295	0.43	345				***	***		

RED RIVER OF THE NORTH BASIN 05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)
MAR all APR	1	76	<0.5	60	<1.0	<5	<3	<10	13	<10	18
03	3			60					20	<1	20
AUG 22	4			10					10	<1	20
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)
MAR all	17	0.2	<10	<10	<1	<1.0	160	<6	8	8.8	0.8
APR 03 AUG	20	0.1	<1		<1		210				
22											

a Replicate sample also collected for quality-assurance purposes.

05051522 RED RIVER OF THE NORTH AT HICKSON, ND

LOCATION.--Lat 46°39'35", long 96°47'44", in SWk sec.19, T.137 N., R.48 W., Clay County, MN, Hydrologic Unit 09020104, on right bank 60 ft downstream from bridge on township road, and 1 mi southeast of Hickson, ND. DRAINAGE AREA.--4,300 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1975 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 877.06 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control, numerous other controlled lakes and ponds, and several powerplants.

		DISCHARGE	, CUBIC	FEET PER	SECOND, W	VATER Y MEAN V	YEAR OCTOBE VALUES	R 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	135 130 122 122 126	123 104 96 93 91	65 66 76 79 79	e60 e60 e60 e60	e66 e68 e72 e76 e78	e115 e120 e125 e140 e150	1010 950 663	685 964 997 994 1030	880 949 1310 1560 1420	1650 1890 e2400 e2600 e2800	830 815 779 723 672	409 406 410 407 398
6 7 8 9	114 113 119 127 127	90 82 55 59 69	76 73 69 70 72	e60 e62 e64 67 65	e80 e82 e84 e86 e90	173 186 203 207 207	499 458 435	1050 1060 1010 963 930	1200 1060 963 905 849	e2700 e2500 2370 1990 1800	683 702 719 717 703	364 328 355 469 1160
11 12 13 14 15	123 125 126 121 122	80 77 55 50 67	72 72 66 63 57	64 66 84 74 71	e94 e96 e96 e96 e96	207 202 211 218 226	414 415 396	869 827 814 798 786	807 789 756 738 745	1700 1620 1610 1750 1790	636 579 561 546 526	2070 2580 2660 2190 1440
16 17 18 19 20	118 125 138 141 132	71 58 53 55 64	56 55 e54 e52 e52	69 e66 e64 e62 e60	e94 e92 e90 e88 e88	245 266 288 314 329	392 467 629	770 758 790 814 815	790 893 1010 990 924	1700 1580 1450 1380 1340	512 505 497 489 483	1090 978 836 636 485
21 22 23 24 25	122 122 124 132 148	69 70 66 49 42	e52 e52 e54 e56 e58	e60 e58 e58 e58 e58	e86 e86 e86 e90 e95	369 442 498 513 502	567 550 545	813 804 777 759 758	880 920 1230 1630 1610	1330 1290 1240 1200 1120	481 468 430 373 343	430 402 459 510 512
26 27 28 29 30 31 TOTAL MEAN MAX MIN	141 145 137 130 125 127 3959 128 148 113	25 37 45 50 58 2003 66.8 123 25	e60 e60 e60 e61 e61 1958 63.2 79	e60 e60 e60 e62 e64 1956 63.1 84	e100 e105 e110 2470 88.2 110 66	542 624 738 789 858 951 10958 353 951	532 519 508 541 16456 549 1010	773 779 766 767 834 936 26490 855 1060 685	1340 1110 1040 1050 1110 31458 1049 1630 738	1080 1050 987 911 873 853 50554 1631 2800 853	387 415 410 396 400 404 17184 554 830 343	466 447 460 536 585 24478 816 2660 328
AC-FT	7850	3970	3880	3880	4900	21740		52540	62400 ·	100300	34080	48550
MEAN MAX (WY) MIN (WY)	330 1312 1987 2.02 1977	296 900 1987 .000	272 817 1986 .000 1977	257 747 1986 4.95 1977	288 745 1987 14.0 1977	704 1543 1986 75.9 1977	1627 4165 1978 165	957 3394 1986 22.0 1977	907 2485 1986 86.4 1977	698 1784 1986 73.4 1977	372 1073 1985 35.6 1977	357 1496 1986 12.6 1976
SUMMARY	STATISTIC	cs	FOR 1	1990 CALEN	DAR YEAR		FOR 1991 V	WATER YEAR		WATER YE	ARS 1975	- 1991
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL 10 PERC 50 PERC		AN AN N MINIMUM AK FLOW AK STAGE C-FT) DS		98198 269 829 25 44 194800 566 179 66	Apr 2 Nov 26 Nov 24		189924 520 2800 25 44 16.: 376700 1200 396 60	Jul 5 Nov 26 Nov 24 15 Jul 5		589 1604 53.1 12000 .00 12900 35.81 426500 1260 336 70	Oct 2	1986 1977 7 1989 26 1976 66 1976 7 1989 7 1989

e Estimated.

05051522 RED RIVER OF THE NORTH AT HICKSON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS CHARG INST CUBI FEE PER SECO (0006	E, SPE C CON T DUC ANC	fic i- pi ct- (st. ce ai (cm) uni	AND- A RD ITS) (I	MPER- TURE AIR DEG C)	TEMPH ATUR WATE (DEG (0001	RE D ER SO C) (M	GEN, IS- LVED G/L)	DXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	TOTA (MG AS CAC	S CALC AL DIS /L SOL (MG 03) AS	- DI VED SOL /L (MG CA) AS	UM, SODIUM, S- DIS- VED SOLVED /L (MG/L MG) AS NA)
JAN 09	0940	66		552		4.0	c	0.5				- -		
MAR 11	1615	213		725	8.1	7.0	c	0.0	12.5	86	;	280 51	36	19
APR 03	1500	898		594	8.1	16.5	3	3.0			:	210 40	26	16
MAY 07	1040	1060		673		7.5	8	3.5						
JUN 10	0940	865		488		15.0	16	5.5						
JUL 05 17	1130 0955	2790 1580		3,3		20.0 26.5		0.5 5.5				: :		<u> </u>
AUG 21	0830	492		518	8.5	23.5	21	1.5			:	240 43	32	18
DATE MAR 11 APR 03	PER	DDIUM RCENT 1932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR BONATE FET-LA (MG/II AS HCO3) (95440	E, BON LB FEI . (N	AR- NATE, I-LAB IG/L AS CO3) 5445)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	(390	TY BODIS WIT DI	CCAR- DNATE NATER S IT TIELD //L AS (CO3 10453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
AUG 21		14	0.5	6.3	260	,		210		_			54	12
DATE	RI D SC (M AS		SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS SUM OF CONSTI TUENTS DIS-	S, SOI S, SOI S, SOI SID I	LIDS, DIS- DLVED TONS PER C-FT)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRA DIS SOLV (MG, AS I	N, ATE NI S- VED S /L (N) A	GEN, TRITE DIS- COLVED MG/L SN)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
MAR 11 APR		0.20	16	336	31	.2	0.46	193	0.5	510	0.010	0.520	0.150	1.0
03 AUG		0.10	13	290	28	30	0.39	703		-				
21		0.10	20	332	31	.4	0.45	441		-				

RED RIVER OF THE NORTH BASIN
05051522 RED RIVER OF THE NORTH AT HICKSON, ND--CONTINUED

DATE	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
MAR 11	0.030	0.020		82	<0.5		<1.0	<5	<3	<10	17
APR 03			2			70					20
AUG 21			4			20					10
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
MAR 11 APR	<10	19	12		<10	<10		<1.0	170	<6	10
03											
AUG	<1	20	20	<0.1	2		1		200		

05054000 RED RIVER OF THE NORTH AT FARGO, ND

LOCATION.--Lat 46°51'40", long 96°47'00", in NWkNEk sec.18, T.139 N., R.48 W., Cass County, Hydrologic Unit 09020104, at waterplant on 4th St. S. in Fargo, 25 mi upstream from mouth of Sheyenne River, and at mi 453. DRAINAGE AREA.--6,800 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1901 to current year. Published as "at Moorhead, Minn.", 1901. Monthly discharge only for some periods, published in WSF 1308.

REVISED RECORDS. -- WSF 1308: 1902-4, 1906-7, 1910-14, 1916, 1918, 1924. WSF 1388: 1905-6, 1917-20(M), 1935(M), 1938-39(M), 1943.

1935(M), 1938-39(M), 1943.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 861.8 ft above National Geodetic Vertical Datum of 1929. Oct. 1, 1960, to Sept. 30, 1962, water-stage recorder at present site at datum 5.6 ft higher. See WSP 1728 or 1913 for history of changes prior to Oct. 1, 1960.

REMARKS.--Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity 137,000 acre-ft, available for flood control, other controlled lakes and ponds, and several powerplants. Some small diversions for municipal supply. Figures of daily discharge do not include diversions to cities of Fargo and Moorhead and from Sheyenne River.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 7, 1897, reached a stage of 39.1 ft present datum, discharge, 25,000 ft³/s at site 1.5 mi downstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991
DAILY MEAN VALUES DAY OCT NOV DEC JUN JUL JAN FEB APR MAY AUG SEP e1800 e65 e72 e110 e950 123 75 e65 e1000 e1950 e74 e125 e65 e76 e125 e1050 e80 e1530 e65 e135 e65 e82 e140 e1700 e70 e84 e160 e1600 e70 e88 e165 e1450 e1200 e75 e90 e190 e210 e1050 e78 e90 e80 e230 e945 e75 e90 e230 e88 e200 e80 e80 e88 e205 e80 e88 e200 e825 e88 e205 e820 e85 76 75 e85 e86 e220 515 e80 e86 e225 e250 e80 e86 e280 e62 e80 e86 e60 e75 e84 e305 e60 e75 e82 e335 e70 2.2 e60 e80 e365 1370 431 e60 e68 e84 e395 e60 e66 e88 e460 e55 e66 e90 e70 e66 e95 790 369 2.7 e70 e66 e100 e1300 e1150 152 e70 e68 e104 e70 e68 e840 e1050 --e860 e70 e70 e1300 e70 e900 e70 TOTAL MEAN 81.8 72.4 72.6 86.4 MAX MIN AC-FT (+) AC-FT* STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1901 1991. BY WATER YEAR (WY) 778 MEAN MAX (WY) .000 26.8 1937 2.87 1936 .000 MIN .000 .000 .000 . 18 8.12 .000 .000 (WY) SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1901 - 1991 ANNUAL TOTAL ANNUAL MEAN (*295)(*555)HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 17.5 Apr 14 1969 Jun Ju1 Nov 28 Nov 28 .00 Jul 25 1932 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM Nov 25 .00 Jul 25 1932 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW Jul Apr 15 1969 16.99 Jul Jul 25 1932

(*402090)

Estimated.

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

ANNUAL RUNOFF (AC-FT)

- Diversions in acre-feet to cities of Fargo and Moorehead.
- Adjusted for diversions to cities of Fargo and Moorehead.

(*213540)

05054000 RED RIVER OF THE NORTH AT FARGO, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
DEC		•-										
13 JAN	1010	90	543		-4.5	0.0						
09 FEB	1220	78	505		-15.5	0.5						
22 MAR	0800	80	600		-10.0	1.0						
12 APR	0905	193	620	8.0	4.0	0.5	13.1	89	K77	3200	270	50
02	0920	980	474	8.1	3.0	1.5					200	41
MAY 07	1325	1300	686		6.5	9.0						
JUN 10	1155	945	536		18.5	16.5						
JUL 03	1410	2090	415		18.5	22.5						
19 AUG	1400	1430	592		32.5	27.5						
19	1330	500	569	8.3	25.5	22.5					250	45
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE, FET-LAB (MG/L AS HCO3) (95440)	CAR- BONATE, FET-LAB (MG/L AS CO3) (95445)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
MAR 12	34	20	14	0.5	7.4				248	303	0	36
APR 02	24	16	14	0.5	6.8	190	0	150				68
AUG 19	33	19	14	0.5	5.8	270	0	220				61
10	00	10		0,5	3.0	2,0	Ū	220				01
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
MAR 12	25	0.20	15	332	340	0.45	173	0.510	0.020	0.530	0.140	1.0
APR 02	12	0.10	13	283	274	0.38	749					
AUG 19	12	0.10	21	354					1			

RED RIVER OF THE NORTH BASIN
05054000 RED RIVER OF THE NORTH AT FARGO, ND--CONTINUED

DATE	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
MAR 12 APR	0.060	0.060	<1	76	<0.5	60	<1.0	<5	<3	<10	13	<10
02 AUG			2			60					30	2
19			5			20					10	<1
DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)
MAR 12	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C)
MAR	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)

05061000 BUFFALO RIVER NEAR HAWLEY, MN

LOCATION.--Lat 46°51'00", long 96°19'45", in NW\sE\ sec.14, T.139 N., R.45 W., Clay County, Hydrologic Unit 09020106, near left downstream end of bridge on farm lane, 2 mi southwest of Hawley.

DRAINAGE AREA.--322 mi².

FERIOD OF RECORD.--March 1945 to current year, WY 1981 (annual maximum only), March 1982 to September 1985 (no winter records).

REVISED RECORDS.--WSP 1308: 1945-46(M), 1948(M).

GAGE.--Water-stage recorder. Datum of gage is 1,111.91 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 29, 1953, nonrecording gage at bridge 1,800 ft upstream at datum 3.17 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, about 11.3 ft, present datum, spring of 1921, from information by local resident.

		DISCHARGE	, CUBIC	FEET PER			YEAR OCTOBER	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAF	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	8.5 9.4 11 9.5 10 11 11 11 11 11 11 11 11 11	17 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 19 10 10 10 10 10 10 10 10 10 10 10 10 10	e20 e18 e16 e14 e13 e13 e13 e13 e13 e13 e13 e13 e13 e13	e13 e13 e13 e13 e13 e13 e13 e13 e13 e12	e13 e13 e14 e14 e14 e14 e14 e14 e14 e14 e14 e14	e14 e14 e15 e15 e15 e15 e16 e17 e18 e20 e20 e30 e45 74	77 87 96 103 102 90 77 77 67 60 52 47 44 49 54 55 54 54 54 54 54 54 54 54 54 54 54	188 189 182 214 239 246 237 225 201 175 146 130 124 110 90 86 78 72 67 65 65 152 156 116	67 67 65 59 54 36 35 96 114 87 66 63 115 133 111 92 72 67 61 59 46 42 38	169 168 144 144 134 118 105 91 86 79 76 73 53 40 38 35 30 28 28 25 24 21	16 16 41 36 31 24 21 19 18 16 15 15 14 13 13 12 11 11 11 11 11 11 11 11 11 11 11 11	15 16 16 15 14 13 16 14 15 14 17 21 18 20 19 18 20 17 15 16 16 17 17 18 18 20 19 19 19 19 19 19 19 19 19 19 19 19 19
29 30	18 18 18 18	e26 e24 e22	e13 e13 e13 e13	e12 e12 e12 e12	e14 	105 99 91 87	60 114	98 86 77 71	42 49 75	21 19 18 17	12 10 16 16	19 17 15
TOTAL 4 MEAN MAX MIN AC-FT CFSM IN.	79.4 15.5 25 8.5 951 .05	112 16 2220 .12 .13	421 13.6 20 13 835 .04	384 12.4 13 12 762 .04	390 13.9 14 13 774 .04 .05	1568 50.6 158 14 3110 .16	1857 61.9 8 114 9 37 9 3680 1.19	4238 137 246 65 8410 .42 .49	1995 66.5 133 35 3960 .21 .23	2019 65.1 169 17 4000 .20 .23	513 16.5 41 10 1020 .05	495 16.5 22 13 982 .05
MEAN MAX (WY) MIN	36.8 151 1974 11.6 1979	34.2 176 1972 12.2	23.6 63.8 1972 10.6 1977	20.0 54.7 1981 9.94 1962	20.6 99.6 1981 9.87 1949	80.7 434 1966 15.0	256 792 1978 33.3	125 372 1985 21.5 1977	98.2 530 1962 12.7 1977	83.7 625 1975 10.1 1976	44.3 472 1955 5.87 1976	35.8 182 1957 8.52 1976
SUMMARY S	TATISTICS	;	FOR 19	990 CALENI	DAR YEAR		FOR 1991 WA	TER YEAR		WATER YEA	ARS 1945 -	1991
ANNUAL TO ANNUAL ME HIGHEST AL LOWEST AN HIGHEST DA ANNUAL SE INSTANTAN INSTANTAN INSTANTAN ANNUAL RU ANNUAL RU 10 PERCEN' 50 PERCEN' 90 PERCEN'	AN NNUAL MEA NUAL MEAN NUAL MEAN AILY MEAN ILY MEAN VEN-DAY M EOUS PEAK EOUS PEAK EOUS LOW NOFF (AC- NOFF (INC T EXCEEDS T EXCEEDS	INIMUM FLOW STAGE FLOW FT) M)		14217.0 39.0 507 7.3 7.9 562 7.18 6.9 28200 .12 1.64 79 18	Mar 31 Aug 8 Aug 3 Mar 31 a Mar 31 Aug 8		15477.4 42.4 246 8.5 10 248 5.90 7.3 30700 1.79 105 18			71.1 157 16.7 1970 3.2 4.3 2050 9.76 2.8 51510 .22 3.00 169 30 013		1976 1976 1975 1975

a From highwater mark.b Backwater from ice.e Estimated.

05061500 SOUTH BRANCH BUFFALO RIVER AT SABIN, MN

LOCATION.--Lat 46°46'20", long 96°37'40", in SW\sW\sec.9, T.138 N., R.47 W., Clay County, Hydrologic Unit 09020106, near center of span on downstream side of highway bridge, 0.3 mi downstream from Stony Creek and 1 mi east of Sabin.

DRAINAGE AREA,--522 mi2.

PERIOD OF RECORD.--March 1945 to current year, WY 1981 (annual maximum only), March 1982 to September 1985 (no winter records).

REVISED RECORDS.--WSP 1308: 1949(M).

GAGE.--Water stage recorder. Datum of gage is 902.39 ft above National Geodetic Vertical Datum of 1929 (levels by Soil Conservation Service). Prior to Aug. 17, 1948, nonrecording gage at site 1 mi downstream at different datum. Aug. 17, 1948, to Oct. 4, 1989, nonrecording gage at present site and datum.

REMARKS.--Records fair.

REMARKSR	lecords fa	ir.										
	D	ISCHARGE	CUBIC :	FEET PER		WATER YE MEAN VA	AR OCTOBER LUES	1990 TO S	EPTEMBE	R 1991	,	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 21 22 12 23 12 24 25 12 27 28 29 30	1.4 1.57 3.3 2.2 2.1.8 11.7 11.8 11.9 11.8 11.9 11.8 11.9 11.8 11.9 11.8 11.9 11.8 11.9 11.9	9.3 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9	96.6.6.4 966.6.3 966.2.2 966.2.3 966.2.3 966.3 97.3 98.3 98.3 98.3 98.3 98.3 98.3 98.3 98	e2.1 e2.0 e1.9 e1.7 e1.6 e1.5 e1.4 e1.4 e1.3 e1.3 e1.3 e1.3 e1.2 e1.2 e1.2 e1.2 e1.2 e1.2 e1.2 e1.1 e1.1	e1.35 e1.79 e1.79 e2.72 e3.28 e4.77 e4.77 e4.77 e4.77 e4.77 e4.77 e4.77 e4.77 e4.77 e4.77 e4.77 e4.77	e4.7 e4.7 e4.7 e4.8 e4.8 e4.8 e4.8 e4.8 e5.5 e6.5 e7.0 e11 e18 e23 e40 e91 e95 e100 e100 e98 e95	e90 e80 67 59 54 50 50 49 47 44 40 37 35 33 38 44 48 51 38 44 48 51 38 44 48 51 38 44 48 51 53 53 54 54 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	113 172 224 278 278 252 221 186 143 111 88 70 60 49 42 36 32 27 25 23 22 24 21 19 17 14 13 117 14 13 14 17	5597566285432211111643333344466760-	102 129 124 1105 99 95 186 76 88 70 76 88 85 86 81 70 88 88 11 11	5.54.07.282.94.06.1.8.3.2.4.3.4.7.7.9.7.2.5.4.6.1.8.3.2.2.2.2.2.2.2.1.1.2.2.2.2.2.2.2.2.2.2	78233492261771984044441905044664-
MEAN 5 MAX MIN AC-FT CFSM IN.	5.71 9 11 1.4 351 .01	.50 12 6.9 565 .02	56.0 5.03 6.8 2.3 309 .01 .01	1.38 2.1 1.1 85 .00	112.1 4.00 4.7 1.3 222 .01 .01	966.9 31.2 100 4.7 1920 .06 .07	1422 47.4 90 34 2820 .09 .10 BY WATER Y	2638 85.1 278 13 5230 .16 .19	1040 34.7 69 21 2060 .07	2037.0 65.7 129 6.0 4040 .13 .15	111.3 3.59 8.8 1.7 221 .01	113.5 3.78 5.4 2.7 225 .01
MAX 5 (WY) 1 MIN .	1.1 7 .978 1 023 2	6.7 972 .05	4.80 23.5 1978 .006 1961	1.46 13.1 1978 .000 1946	1.40 14.0 1987 .000 1946	101 581 1966 .000 1951	260 928 1969 27.9 1973	78.5 580 1962 8.28 1980	95.0 1068 1962 1.30 1976	72.0 1112 1975 .000 1988	9.27 78.8 1962 .000 1976	14.2 173 1986 .000 1976
SUMMARY ST	ATISTICS		FOR 19	90 CALEND	AR YEAR	F	OR 1991 WAT	ER YEAR		WATER YE	ARS 1945	- 1991
ANNUAL TOT ANNUAL MEA HIGHEST AN LOWEST ANN HIGHEST DA LOWEST DA LOWEST CAN L	N NUAL MEAN UUAL MEAN LIY MEAN LY MEAN LY MEAN OUS PEAK OUS PEAK OUS LOW F OFF (AC-F OFF (CFSM OFF (INCH EEXCEEDS	NIMUM FLOW STAGE LOW I))		.00 178	Apr 1 Many da Aug 9 Apr 1 Mar 16	y s	9101.6 24.9 278 1.1 1.1 285 10.30 .048 .65 76 6.9 1.8			55.7a 198 12.2 8200 .00 8500 19.90 40390 .11 1.45 100 6.8 .00	Jul Many Dec 1 Jul Jul	1962 1977 1 1975 days 3 1945 2 1975 2 1975

a Median of annual mean discharges is 41 ${\rm ft}^3/{\rm s}\,.$ b Backwater from ice.

05062000 BUFFALO RIVER NEAR DILWORTH, MN

LOCATION. -- Lat 46°57'40", long 96°39'40", in SW\SE\ sec.6, T.140 N., R.47 W., Clay County, Hydrologic Unit 09020106, on left bank 4.5 mi southeast of Kragnes, 6.5 mi northeast of Dilworth, and 9 mi downstream from South Breach

O9020106, on left bank 4.5 ml scattled 1.3 ml

		DISCHARGE	, CUBIC	FEET PER	SECOND, DAILY	WATER YEA MEAN VAL	R OCTOBER	1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10	27	e38	e18	e14	e20	e270	201	102	175	23	11
2	11	27	e36	e17	e15	e20	e260	290	104	253	20	14
3	13	26	e34	e17	e16	e20	248	349 438	125 140	299 298	23 28	16 17
4 5	14 19	24	e33 e32	e17 e16	e17	e20 e20	221 192	538	136	280	44	17
6	21	23	e32	e16	e18 e18 e19 e19	e20	179	571	123	260	44	15
7	19	24	e31	e16	e19	e20	168	573	113	234	38	13
8	18	21	e30	e16	e19	e21	155	554	107	208	29	14
9	19	22	e30	e16	e19 e20 e20	e21	145 137	515 458	96 84	191 179	25 25	15 15
10 11	19 20	26 27	e29	e16 e16 e16 e16 e16 e15	e20 e20	e21 e21	129	387	75	174	23	16
12	20	25	e28	e15	e20	e21	120	321	112	169	20	14
13 -	20	26 24 23 23 24 21 22 26 27 25 24 24 30 29	e30 e29 e29 e28 e28 e27 e26	e15	e20	e22	111	280	127	179	17	13
14	20	24	e27	e15	e20	e24	105	244	117	186	15	14 15
15	20	30	e25	e15	e20 e20	e26 e28	104 103	209 181	107 116	169 153	14 14	21
16 17	20 21	30	e25	e15 e15	e20	e30	106	165	141	141	13	19
18	23	36	e24	e14	e20	e35	111	152	141	136	13	17
19	28	43	e23	e14	e20	e40	116	142	132	132	14	21
20	28	103	e23	e14	e20	e45	118	133	127 125	126	13 13	22 20
21 22	26 25	119 120	e22 e22	e14 e13	e20 e20	e60 e75	118 117	124 116	123	116 106	12	23
23	24	117	e21	e13	e20	e90	114	109	112	92	11	24
24	24	104	e21	e13	e20	e110	106	104	105	79	12	23
25	32	77	e20	e13	e20	e136	96	116	96	67	14	18
26	38	e60	e20 e20 e20 e19 e19	e13 e13 e13 e13	e20	e200	91	148	89	58 51	18 19	16 16
27 28	35 35	e50 e47	e20 e10	e13	e20 e20	e250 e290	93	143	76	44	16	17
29	31	e44	e19	e13		e290	104	130	81	37	13	17
30	29	e41	e18	672		e290	88 93 104 125	120	111	32	12	20
31	27		e18	e13		e280			96 89 81 76 81 111		12	
TOTAL	709		803	456		2566	4150	8075	3322	4653	607	513
MEAN	22.9	46.4	25.9	14.7	19.1	82.8	138 270	260 573	111 141	150 299	19.6 44	17.1 24
MAX MIN	38 10	120 21	38 18	18 13	20 14	290 20	270 88	104	75	29	11	11
AC-FT	1410		1590	904	1060	5090	8230	16020	6590	9230	1200	1020
CFSM	. 02	.04	.02	.01	. 02	.08	. 13	.25	.11	. 14	.02	. 02
IN.	.03	.05	.03	.02	.02	.09	. 15	.29	. 12	. 17	.02	.02
STATIST	ICS OF MO	NTHLY MEAN	DATA FO	OR WATER Y	EARS 193	1 - 1991,	BY WATER	YEAR (WY)			
MEAN	50.6	47.7	28.4	18.5	18.5	170	540	218	197	164	59.9	52.4
MAX	186	305	97.0	53.5	61.1	1308	1984	909	2138	2814	710	517
(WY)	1958	1972	1972	1987	1984	1966	1978	1986	1962	1975	1944	1944
MIN (WY)	5.48 1940		4.75 1938	.87 1940	.76 1940	2.26 1940	33.5 1931	27.2 1931	15.1 1934	2.23 1936	.000 1936	.79 1936
SUMMARY STATISTICS FOR 1990 CALENDAR YEAR									WAIER I	EARS 1931	- 1991	
ANNUAL				24299.9			27783 76.1			132		
ANNUAL	mean Annual M	TE A N		66.6			76.1			441		1975
	ANNUAL ME									25.6		1934
TITOTICOM DATEM ACCAN				565	Apr 3		573	May 7		13500	Jul	2 1975
LOWEST DAILY MEAN				7.3 8.1	Aug 10		10	Oct 1		.0	0a 0 7.1	1006
ANNUAL	SEVEN-DAY	WINTWOM		8.1 600	Aug 7 Apr 3		13 576	Aug 18 May 6		.0 13600	o Jura	28 1936 2 1975
INSTANT	ANEOUS PE	AK STAGE		12.40	b Apr 3		10.66		, '	27.1		2 1975
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (CFSM)				7.2	Aug 10		9.8	Oct 1	•			
ANNUAL	RUNOFF (A	C-FT)		48200			55110	•		95600	•	
	RUNOFF (CRUNOFF (I						.07 .99			.1 1.7		
	RUNOFF (1 ENT EXCEE			. 87 165			180			280	۵.	
	ENT EXCEE			27			27			34		
	ENT EXCEE			11			14			9.1		

a At times in 1936. b Backwater from ice. e Estimated.

RED RIVER OF THE NORTH BASIN 05062500 WILD RICE RIVER AT TWIN VALLEY, MN

LOCATION.--Lat 47°16'00", long 96°14'40", in NWaNE's sec.27, T.144 N., R.44., Norman County, Hydrologic Unit 09020108, on left bank 100 ft upstream from highway bridge, 0.8 mi northeast of Twin Valley, and 2 mi

upstream from small tributary.

DRAINAGE AREA. --888 mi ².

PERIOD OF RECORD. --June 1909 to September 1917, July 1930 to September 1983, October 1989 to current year.

Monthly discharge only for some periods, published in WSP 1308. October 1983 to September 1989, annual

Monthly discharge only for some periods, published in was level.

maximums only.

REVISED RECORDS.--WSP 955: 1941. WSP 1308: 1915(M), 1917(M).

GAGE.--Water-stage recorder. Datum of gage is 1,008.16 ft above National Geodetic Vertical Datum of 1929

(U.S. Army Corps of Engineers bench mark). June 1909 to September 1917, nonrecording gage at site 0.2 mi
downstream at different datum. July 23, 1930, to Nov. 24, 1934, nonrecording gage at highway bridge 100 ft
downstream from present site at present datum. Nov. 25, 1934, to Aug. 2, 1950, water-stage recorder 80 ft
upstream from present site at present datum. REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow slightly regulated by
Rice Lake and many other small lakes above station. Satellite telemeter at station.

		DISCHARGE	E, CUBI	C FEET PER	SECOND, W	ATER	YEAR OCTOBER	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAF		MAY	JUN	JUL	AUG	SEP
1	4.5	18	e16	e16	e25	e27	e170	386	147	353	19	4.9
	4.5	20	e16	e16	e26	e27	s153	491	136	239	17	5.5
2 3	5.3	19	e16	e16	e27	e27		481	129	225	26	7.5
4	5.1	19	e16	e16	e27	e27	7 183	599	112	202	34	11
5	4.8	20 20	e16	e16	e27	e27		658	96 88	184 166	41	10
6 7	4.6 4.6	20	e16 e16 e16	e16 e16 e16 e16	e27 e27	e27 e27		677 6 4 3	96	148	46 41	9.4 8.6
8	4.5	20	e16	e16	e27	e27		613	90	130	39	13
9	A 1	20	e16	e16	e27	e27		582	86	118	35	17
10	4,2	20	e1 6	e16	e27	e27		553	89	107	30	18
11	4.3	21	e16	e16	e27	e27		539	81	101	27	21
12	5.4	21	e16	e16	e27	e27		528	75 7 4	98 94	24	23 25
13 14	7.5 12	20	e16 e16	e16 e16	e27 e27	e27 e27		527 502	200	90	21 20	25 36
15	8.5	20	e16	e16	e27	e27		471	181	85	18	33
16	7.1	20	e16	e16	e27	e28		454	154	76	17	33
17	12	20	e16	e16	e27	e3(428	140	67	17	32
18	13	23	e16	e16	e27	e4(400	127	59	14	30
19	14	22	e16	e16	e27	e80		376	102	51	13	28
20	14	21	e16	e16	e27	e130	195	353	89 78	48 47	11	26 27
21 22	16 15	24	616	e16	e2/	e150	183 178	331 313	76 71	68	11 11	25
23	17	23	e16 e16 e16 e16	e16 e16 e16 e16 e16 e16 e17 e18 e20 e23	e27 e27 e27 e27 e27	e190	166	295	68	56	11	25
24	16	20	e16	e16	e27	e210		283	69	45	12	18
25	15	18	e16	e16	e27	e220		272	65	39	15	16
26	15	e17	e16	e17	e27	e230	157	260	63	34	12	20
27	18	e16	e16	e18	e27	e220		238	65	31	11	21
28	17	e16	e16	e20	e27	e210	178	219	62	30	8.4	18
29 30	16 15	e16		e23 e24		e200		205 178	123 135	28 26	7.6 6.2	22 18
31	15	e16	e16 e16	e24 e24		e180		160	133	23	5.7	10
01	13		910	927		9100	•	100			J.,	
TOTAL	319.0	591	496	526	753	2883	4894	13015	3091	3068	620.9	601.9
MEAN	10.3	19.7	16.0	17.0	26.9	93.0	163	420	103	99.0	20.0	20.1
MAX	18	24 16	16	526 17.0 24 16 1040	27	230	283	677	200	353	_46	36
MIN	4.1	16	16	16	25	27	7 110	160	62	23	5.7	4.9
AC-FT CFSM	633	1170	984	1040	.03	5720		25820 .47	6130 .12	6090 .11	1230 .02	1190 .02
IN.	.01 .01	.02 .02	.02 .02	.02 .02	.03	.10		.55	.13	.13	.02	.03
	.01		. • •	.02								
		MONTHLY MEAN	DATA I	OR WATER Y	EARS 1909	- 199	1, BY WATER	YEAR (WY)			
MEAN	86.4	74.7	49.5	37.4	34.2	123		419	309	218	91.0	80.4
MAX	614	488	123	100	80.0 1910	747		2259 1950	1560 19 4 3	1923 1909	960 1909	788 1973
(WY) MIN	1974 6.10	1972 9.31	1972 6.00	1910 4.00	4.00	1945 12.8		30.9	26.4	8.04	3.02	2.96
(WY)	1933	1933	1933	1933	1933	1940	1931	1977	1977	1934	1932	1936
•												
	RY STATIS L TOTAL	STICS	FOR	1990 CALEN 31487.9	IDAR YEAR		FOR 1991 WA 30858.8	TER YEAR	•	WATER Y	EARS 1909	- 1991
ANNUAL				86.3			84.5			171a		
	IAUNUAI	. MEAN		00.5			04.5			500		1950
	ANNUAL									22.7	,	1977
HIGHES	ST DAILY	MEAN		727	Apr 1		677	May 6		9100	Jul 2	22 1909
	DAILY N			3.6 4.4	Aug 22		4.1	Oct 9		1.1	Aug 1	3 1932 1 1932
ANNUAI	SEVEN-I	MUMINIM YAC		4.4	Oct 5		4.4	Oct 5		1.3	Aug 1	11 1932
		PEAK FLOW		4.4 1090 6.31	Apr 3		682 4.96	May 6 May 6		9200b 20.0		22 1909 22 1909
		PEAK STAGE LOW FLOW		0.01	Apr 3 Aug 22,2	13	3.2	Sep 2		20.0		4 1939
	RUNOFF			62460	-		61210	oep z		124100		. 1000
ANNUAI	RUNOFF	(CFSM)		.09	17		.09 1,29	5		.1	.9	
ANNUAI	RUNOFF	(INCHES)		1.32	2		1.29			2.6	32	
	RCENT EXC			230			210			446		
	RCENT EXC			22 5 5			27 13			62 1 &		

90 PERCENT EXCEEDS

Median of annual mean discharges is $150 \text{ ft}^3/\text{s}$. From rating curve extended above 3,300 ft $^3/\text{s}$. Site and datum then in use.

C

Estimated.

DAY

RED RIVER OF THE NORTH BASIN

05064000 WILD RICE RIVER AT HENDRUM, MN

LOCATION.--Lat 47°16'05", long 96°47'50", in SE\SE\sec.19, T.144 N., R.48 W., Norman County, Hydrologic Unit 09020108, on right bank 30 ft downstream from highway bridge, 0.5 mi east of Hendrum and 4 mi upstream from

NOV

DEC

JAN

DRAINAGE AREA.--1,600 mi², approximately.

PERIOD OF RECORD.--March 1944 to September 1984 and May 1985 to current year. Operated as a high-flow partialrecord station October 1984 to April 1985.

OCT

record station October 1984 to April 1985.

REVISED RECORDS. --WSP 1728: 1958.

GAGE.--Water-stage recorder. Datum of gage is 836.75 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to July 18, 1989, nonrecording gage at same site and datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Large part of high flow diverted into Marsh River basin at overflow section 3.5 mi east of Ada. Another diversion into the Marsh River basin formed in 1947, 1.5 mi southeast of Ada and diverted water at all stages 1947-51, after which it was all the discount for a grall record of the diverted water of pollution from Ada serges plant effluent closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent. Amount of diversion not known.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES

MAR

APR

41270.1

113

945

952

81860

350 28

2.9

10.27

2.3

.071

.96

May

Oct

Oct

May

May

Oct

6

MAY

FEB

JUN

JIII.

259a

28.9

.00

.00

.00c

.16

2,20

32.30b

682

9220

9350

660

78

187800

1975

1977

1978

1978

Apr 10

Sep 13 1948 Sep 27 1948

Apr 10 1978 Apr 21 1979

AUG

SEP

3.4 19 e18 e17 e20 e28 e350 197 32 7.9 3.0 e350 565 180 256 28 7.8 18 e18 e17 e22 e28 8.4 3 3.6 e18 e17 e23 e28 e450 648 164 401 29 7.0 149 359 42 2.9 15 e18 e17 e24 e28 e400 699 135 316 60 8.3 2.4 e17 377 848 17 e18 e25 e28 6 e26 273 945 290 19 e17 e28 e17 2.9 47 224 925 98 259 6.6 e17 e17 e27 e28 8 e17 e28 e28 198 857 91 233 47 9.9 42 3.2 800 215 9 13 e17 e17 e28 e28 178 94 11 10 e17 757 90 196 39 11 21 168 e17 e28 e28 īī 3.9 23 e28 e28 152 704 36 10 e17 e17 5:3 20 e17 e17 e28 e28 666 109 152 35 13 137 13 6.3 20 e17 e17 e28 e28 160 685 102 30 13 25 21 22 14 6.7 19 e17 e17 e28 e28 165 659 128 125 15 16 17 631 28 280 109 6.2 27 e17 e17 e28 e28 168 583 20 180 335 99 43 13 13 26 e17 e17 e28 e30 20 e28 193 253 90 20 e17 e35 544 e17 18 23 e17 **e2**8 208 510 212 82 17 41 e17 e40 15 14 72 65 19 17 25 e17 e17 e28 e50 228 468 199 41 20 21 22 165 39 242 17 31 e17 e17 e28 e80 433 35 29 62 13 18 17 e17 e17 239 406 134 37 e17 e28 e150 234 65 12 e17 e28 e200 398 23 29 219 475 95 75 12 33 19 e17 e17 e28 e250 24 25 26 27 21 18 e17 e17 e28 e350 212 393 85 83 66 13 13 33 33 21 21 e17 200 341 317 80 18 e17 e28 e450 15 16 200 77 53 32 e17 e17 e28 e500 e18 e28 e500 301 70 48 28 e18 e17 e17 196 44 28 19 e17 e28 e400 198 290 66 16 25 e18 17 13 25 29 19 e18 e17 e17 e370 210 262 73 276 245 38 83 e17 30 20 e18 e17 e360 11 21 223 35 e18 31 e17 e350 355.5 4064 804 682.6 TOTAL 532 528 755 4535 6993 17013 4391 617 27.0 28 20 233 450 549 945 135 335 142 401 25.9 60 MEAN 11.5 20.6 17.2 17.0 146 22.8 24 2.4 705 18 17 43 MAY 35 18 17 500 28 6.6 145 66 MIN 11 AC-FT 1220 1060 1050 1500 9000 13870 33750 8060 8710 1590 1350 .09 CFSM .01 .01 .01 .01 , 02 .09 .34 .08 .02 .01 .01 . 09 .02 .01 .01 .01 .02 .16 40 .10 . 02 1991. STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1944 -BY WATER YEAR (WY) 117 744 43.1 265 290 108 62.3 44.7 1098 572 419 98.7 MEAN 105 784 160 121 124 1485 3261 2074 1776 3136 960 824 MAX (WY) 1972 1972 1972 1986 1984 1966 1978 1985 1962 1975 1944 1973 .44 1.08 8.82 1.07 MIN 3.32 .092 . 22 46 106 56.1 9 15 . 18 1949 1981 1952 1951 1948 1977 1040 1977 1977 (WY) 1977 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1944 1991

42112.1

115

1080

1100

83530

326

20

4.6

2.2

2.9

14.26 2.0

.072

. 98

Apr

Apr 1

Apr

Sep 28 Oct 4

Sep 28,29

ANNUAL TOTAL

HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN

HIGHEST DAILY MEAN

ANNUAL SEVEN-DAY MINIMUM

INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE

INSTANTANEOUS LOW FLOW

ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM)

ANNUAL RUNOFF (INCHES)

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

LOWEST DAILY MEAN

ANNUAL MEAN

b

Median of annual mean discharges is 220 ft³/s. Backwater from Red River of the North. Occurred many days during September and October, 1948. C

Estimated.

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN (National stream quality accounting network station and radiochemical program station)

LOCATION. --Lat 47°21'10", long 96°50'50", on line between secs.24 and 25, T.145 N., R.49 W., Traill County, Hydrologic Unit 09020107, on left bank on upstream side of highway bridge, 0.5 mi west of Halstad, 2.5 mi downstream from Wild Rice River, and at mile 375.2.

DRAINAGE AREA. --21,800 mi², approximately, including 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --April 1936 to June 1937 (no winter records), April 1942 to September 1960 (spring and summer months only), May 1961 to current year.

REVISED RECORDS.--WSP 1388: 1936, 1950. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 826.65 ft above National Geodetic Vertical Datum of 1929. Prior to July 17, 1961, nonrecording gage at same site and datum.

REMARKS.--Records good except those for Nov. 28 to Apr. 2, which are poor; and those for July 3-9, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in 1897 reached a stage of about 38.5 ft.

		DISCHARGE	, CUBIC	FEET PER	SECOND, W	NATER MEAN	YEAR OCTOB	ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAE	R APR	MAY	JUN	JUL	AUG	SEP
1	259		e155	e72	e140	e215	e1700	1250	1380	1800	1040	417
2	258	201	e145	e70	e140	e220	e2000	1640	1470	2510	981	403
3 4 5	250		e140	e72	e140	e220	2300	1790	1480	e2800	967	411
4	237		e150	e74	e145	e220	2150	2150	1500	e3000	1030	471
5	221	199	e155	e76	e150	e225		2700	1780	e3100	1090	493
6 7	209	194	e160	e80	e155	e230	1780	3030	2110	e3300	964	443
/	204	185	e165	e80	e160	e235	1440	3090	2110	e3500	844	425
8 9	199	203	e170	e80	e160	e240		3100	1920	e3600	808	423
10	193 189		e175 e180	e80 e80	e160 e165	e245 e250	1090 985	3060 2930	1730	e3500	807 80 7	407 424
11	183		e180	e82	e165	e250		2750 2750	1590 1480	3 390 3080.	799	444
12	178		e180	e84	e170	e270	819	2560	1400	2770	778	772
13	185		e180	e86	e170	e280	788	2390	1340	2620	738	1580
14	186		e180	e90	e170	e290		2380	1370	2440	680	2120
15	185		e175	e90	e170	e300		2300	1510	2290	630	2330
16	179		e160	e90	e170	e320	791	2080	1630	2250	623	2220
17	181	208	e155	e90	e170	e340		1990	1540	2240	615	1850
18	183	196	e150	e92	e170	e370	737	1750	1410	2170	600	1500
19	217		e145	e94	e170	e450	741	1660	1400	2070	595	1270
20	249	181	e140	e100	e170	e550	780	1590	1500	1940	582	1130
21	221	188	e135	e100	e170	e750		1550	1550	1810	568	963
22	207		e125	e100	e170	e900		1550	1540	1770	555	778
23 24	203 198	239 247	e115 e105	e100	e175	e1000		1970	1450	1720	542 534	641 5 5 9
25	193		e100	e105 e110	e180 e185	e1200 e1300		1940 1650	1380 15 2 0	1660 1580	530	535
26	185		e98	e115	e200	e1350		1480	1820	1500	500	574
27	185	246	e96	e120	e205	e1400		1400	1950	1410	453	595
28	197	e210	e92	e125	e210	e1450		1400	1860	1340	403	592
29	203	e195	e86	e125		e1500		1410	1710	1290	408	555
30	204	e175	e80	e130		e1550		1390	1690	1200	432	524
31	204 207		e74	e135		e1650		1360		1110	436	
TOTAL	6348	6146	4346	2927	4705	19780	34254	63290	48120	70760	21339	25849
MEAN	205	205	140	94.4	168	638		2042	1604	2283	688	862
MAX	259	256	180	135	210	1650	2300	3100	2110	3600	1090	2330
MIN	178	175	74	70	140	215	737	1250	1340	1110	403	403
AC-FT	12590	12190	8620	5810	9330	39230	67940	125500	95450	140400	42330	51270
STATIST	CICS OF M	ONTHLY MEAN	DATA FO	R WATER Y	EARS 1961	- 199	31, BY WATE	R YEAR (WY)			
MEAN	68 2	645	502	422	432	1991		3114	2527	2194	753	577
MAX	2188	1771	1253	1023	1052	9429		8994	10310	20060	3866	2034
(WY)	1987	1972	1987	1987	1987	1966		1979	1962	1975	1962	1986
MIN	61.5	92.3	51.2	32.1	45.9	249		449	242	153	59.5	38.4
(WY)	1977	1977	1977	1977	1977	1962	1981	1977	1977	1988	1977	1976
SUMMARY	STATIST	ics	FOR 1	.990 CALEN	DAR YEAR		FOR 1991	WATER YEAR		WATER Y	EARS 1961	- 1991
ANNUAL	TOTAL			186581			307864					
ANNUAL				511			843			1723		
	ANNUAL	MEAN		311			040			3968		1975
	ANNUAL M									214		1977
HIGHEST	DAILY M	EAN		2580	Jun 4		3600	Jul. 8		41500	Apr 2	2 1979
LOWEST	DAILY ME.	AN		2580 74 89	Dec 31		70	Jan 2		10	Sep	2 1979 2 1976
ANNUAL	SEVEN-DA	MINIMUM		89	Dec 25		74	Dec 30		17	Aug 2	8 1976
INSTANI	ANEOUS P	EAK FLOW					3700	Jul 8		42000	Apr 2	2 1979 2 1979
INSTANT	ANEOUS P	EAK STAGE					9.	.99 Ju1 8		39.0	O Apr 2	2 1979
INSTANT	ANEOUS L	OW FLOW		070400						5.4	Oct	8 1936
	RUNOFF (3/0100			610600]	248000		
TO PERC	ENT EXCE	ene ene		1240 24 9			2090 450			3700 684		
OU PERC	ENT EXCE	EDS		125			123			194		
30 LM10				125			120			207		

e Estimated.

05054500 RED RIVER OF THE NORTH AT HALSTAD, MN--CONTINUED (National stream quality accounting network station and radiochemical program station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1961-67, 1972 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT24	1115		197	626	8.6	4.5	5.0	10	7.9	62	K10
DEC 12	1040	180		904	7.9	-2.0	0.0	6.6	8.7	60	K15
JAN 11	1045		82	482		-15.5	1.0				
MAR 12	1610		269	810	7.7	1.5	0.0	5.0	8.9	59	K 4
APR 01	1235		1710	509		11.0	3.5				
09 May	0955		1110	562	8.3	5.5	8.0	89	11.2	94	K13
08 30 Jul	1015 1020		3080 1420	704 596	8.3	9.5 20.5	8.5 18.0	25	7.9	85	K46
05 18	1445 1325		3110 2210	426 640		22.5 25.0	21.0 26.5				
AUG 14	1040		691	569	8.3	27.5	24.0	83	7.5	89	K56
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
OCT 24	K27	260	51	31	33	21	0.9	7.1	223	202	234
DEC 12	к9	370	74	45	52	23	1	9.8	296	298	364
MAR 12	250	340	73	39	41	20	1	8.5	300	303	370
APR 09	K180	240	52	26	22	16	0.6	7.9	187	181	220
MAY 30	430	280	59	32	22	14	0.6	6.1	231	216	264
AUG 14	K51	280	57	34	23	15	0.6	7.6	227	205	250
27		200	•	04							200
DATE	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)
OCT 24	6	87	20	<0.10	6.8	382	357	0.52	203		<0.010
DEC 12	0	130	37	0.40	10	557	542	0.76	271	0.190	0.020
MAR 12	0	86	33	0.20	18	462	485	0.63	336	0.610	0.010
APR 09	0	95	16	0.30	12	347	343	0.47	1040	0.610	0.090
MAY 30	0	88	14	0.20	10	367	363	0.50	1410	0.310	0.160
AUG 14	0	92	15	0.20	20	390	373	0.53	728		0.030

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--CONTINUED (National stream quality accounting network station and radiochemical program station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 24	<0.010	<0.100	<0.100	0.020	0.030	1.0		0.130	0.050	0.060	0.050
DEC 12	0.010	0.300	0.200	1.70	1.60	3.1		0.640	0.570	0.650	0.520
MAR 12 APR	0.010	0.590	0.620	0.360	0.340	1.2		0.160	0.100	0.100	0.060
09 MAY	0.030	0.670	0.640	0.220	0.170	1.7		0.320	0.150	0.200	0.100
30 AUG	0.050	0.370	0.360	0.110	0.040	1.2		0.600	0.150	0.270	0.150
14	<0.010	0.059	0.056	0.030	0.030	1.0	0.80	0.260	0.170	0.170	0.130
DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
OCT 24	<10	3	61	<0.5		<1.0	<1	<3	4	8	2
MAR 12	<10	1	82	<0.5	110	<1.0	<1	<3	1	11	<1
APR 09	20	2	53	<0.5		<1.0	<1	<3	5	23	1
AUG 14	30	<1	65	<0.5		<1.0	<1	<3	10	8	<1
DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)
OCT	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U-NAT)
OCT 24 MAR	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U-NAT) (80030)
OCT 24 MAR 12	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890) <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U-NAT) (80030)
OCT 24 MAR 12	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U-NAT) (80030)
OCT 24 MAR 12 APR 09 AUG 14	DIS- SOLVED (UG/L AS LI) (01130) 31 34	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2 61	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 210 280 190 230	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U-NAT) (80030)
OCT 24 MAR 12 APR 09 AUG 14 DATE	DIS- SOLVED (UG/L AS LI) (01130) 31 34 26 29 GROSS ALPHA, SUSP. TOTAL (UG/L AS	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2 61 3 3 GROSS BETA, DIS- SOLVED (PCI/L AS	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1 <0.1 <0.1 GROSS BETA, SUSP. TOTAL (PC/L AS CS-137)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10 GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 3 1 -1 4 GROSS BETA, SUSP. TOTAL (PCT/L AS SR/ YT-90)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 URANIUM NATURAL DIS- SOLVED (UG/L AS U)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 210 280 190 230 CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 <6 <6 <6 SEDI- MENT, SUS- PENDED (MG/L)	DIS- SOLVED (UG/L AS ZN) (01090) 7 7 10 5 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	DIS- SOLVED (UG/L AS U-NAT) (80030) 1.6 3.1 SED. SUSP. SUSP. SIEVE DIAM. 2 FINER THAN .062 MM
OCT 24 MAR 12 APR 09 AUG 14 DATE	DIS- SOLVED (UG/L AS LI) (01130) 31 34 26 29 GROSS ALPHA, SUSP. TOTAL (UG/L AS	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2 61 3 3 GROSS BETA, DIS- SOLVED (PCI/L AS	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1 <0.1 <0.1 GROSS BETA, SUSP. TOTAL (PC/L AS CS-137)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10 GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 3 1 -1 4 GROSS BETA, SUSP. TOTAL (PCT/L AS SR/ YT-90)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 210 280 190 230 CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 <6 <6 <6 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS ZN) (01090) 7 7 7 10 5 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	DIS- SOLVED (UG/L AS U-NAT) (80030) 1.6 3.1 SED. SUSP. SIEVE DIAM. Z FINER TEAN. .062 MM (70331)
OCT 24 MAR 12 APR 09 AUG 14 DATE OCT 24 DEC 12 MAR 12	DIS- SOLVED (UG/L AS LI) (01130) 31 34 26 29 GROSS ALPHA, SUSP. TOTAL (UG/L AS	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2 61 3 GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1 <0.1 <0.1 GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10 GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 3 1 -1 4 GROSS BETA, SUSP. TOTAL (PCT/L AS SR/ YT-90) (80060)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 210 280 190 230 CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 <6 <6 <6 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS ZN) (01090) 7 7 7 10 5 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	DIS- SOLVED (UG/L AS U-NAT) (80030) 1.6 3.1 SED. SUSP. SIEVE DIAM. 2 FINER THAN .062 MM (70331)
OCT 24 MAR 12 AFR 09 AUG 14 DATE OCT 24 DEC 12 MAR 12 APR 09	DIS- SOLVED (UG/L AS LI) (01130) 31 34 26 29 GROSS ALPHA, SUSP. TOTAL (UG/L AS	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2 61 3 3 GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1 <0.1 <0.1 GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10 GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 3 1 -1 4 GROSS BETA, SUSP. TOTAL (PCT/L AS SR/ YT-90) (80060)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 <1.0 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 210 280 190 230 CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 <6 <6 <6 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS ZN) (01090) 7 7 7 10 5 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	DIS- SOLVED (UG/L AS U-NAT) (80030) 1.6 3.1 SED. SUSP. SIEVE DIAM. Z FINER THAN (70331)
OCT 24 MAR 12 APR 09 AUG 14 DATE OCT 24 DEC 12 MAR 12 APR	DIS- SOLVED (UG/L AS LI) (01130) 31 34 26 29 GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	NESE, DIS- SOLVED (UG/L AS MN) (01056) 2 61 3 3 GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1 <0.1 <0.1 GROSS BETA, SUSP. TOTAL (PCT/L AS CS-137) (03516)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10 GROSS BETA, DIS- SOLVED (PCIL) (AS SR/ YI-90) (80050)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065) 3 1 -1 4 GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YI-90) (80060)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1 <1 RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0 URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 210 280 190 230 CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 <6 <6 <6 SEDI- MENT, SUS- PENDED (MG/L) (80154)	DIS- SOLVED (UG/L AS ZN) (01090) 7 7 7 10 5 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 11 20	DIS- SOLVED (UG/L AS U-NAT) (80030) 1.6 3.1 SED. SUSP. SIEVE DIAM. 2 FINER THAN .062 MM (70331)

05067500 MARSH RIVER NEAR SHELLY, MN

LOCATION.--Lat 47°24'45", long 96°45'50", in NE\hat{NW\hat{k}} sec.3, T.145 N., R.48 W., Norman County, Hydrologic Unit 09020107, near center of span on downstream truss of bridge, 3.8 mi southeast of Shelly and 10 mi upstream from mouth.

DRAINAGE AREA.--151 mi².

DRAINAGE AREA.--151 mi².

PERIOD OF RECORD.--March 1944 to September 1983 and April 1985 to current year (no winter records since 1989).

Monthly discharge only for March 1944, published in WSP 1308. Operated as a high-flow partial-record station October 1983 to March 1985.

GAGE.--Water-stage recorder. Datum of gage is 841.14 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct.1, 1965, nonrecording gage at datum 3.0 ft higher. Oct. 1, 1965, to May 17, 1989, nonrecording gage at present site and datum.

REMARKS.--Records fair. Large part of high flow of Wild Rice River diverted into Marsh River basin at overflow section 4.6 mi east of Ada. Another diversion from Wild Rice River basin formed in 1947, 1.5 mi southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,120 ft³/s, May 23, gage height, 11.88 ft; no flow for many days.

		DISCHARG	E, CUBIC	C FEET PER			YEAR OCTOBER VALUES	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00					e1.0	13	3.3	3.0	2.2	.18	.00
2	.00					e1.0		24	2.0	2.0	.15	.00
3	.00					e1.0		24	1.2	2.2	.30	.00
4	.00					e1.0		32	.60	4.3	.19	.00
5 6	.00					e1.0		61 59	.32 .26	12 12	.18 .14	.00 .00
7	.00 .00					e1.0 e1.0		45 .	.19	11	.06	.00
8	. 0 0					e1.0		33	.08	8.5	.16	.00
9	.00					e1.0		21	.06	5.9	.6 8	.00
10	.00					e1.0		14	.08	3.9	.71	.00
11	.00					e1.0		10	. 04	3.1	.35	.00
12	.00					e1.0		7.1	.02	2.6	.24	.00
13 14	.00 . 00					e1.0 e1.0		7.1 8.5	.01 113	1.7 1.1	. 23 . 13	.00 .00
. 15	.00					e1.0		7.4	295	1.50	.03	.00
16	.00					e1.0		6.7	179	.72	.02	.00
17	.00					e1.1		4.8	89	3.3	.01	.00
18	.00					e2.0		2.9	48	3.0	.01	.00
19	.00					e5.0		2.2	30	2.1	.01	.00
20 21	.00 .00					e13 e18	. 41 . 29	1.7 1.3	20 14	1.4 1.0	.01 .01	.00 .0 0
22	.00					e22	. 26	3.0	8.1	.85	.01	.0 0
23	.00					e25	.26	784	4.8	.72	.01	.00
24	.00					e26	.12	750	2.9	. 45	.01	.00
25	.00					e26	.08	188	2.0	.32	.01	.00
26	.00					e28	.08	58	1.4	.25	.01	.00
27 28	.00					e28	.26	30 18	.78	.16	.01	.00 .00
29	.00 .00					e23 e20	.29 .19	12	.85 1.6	.15 .15	.00 .00	.00
30	.00					e17	1.8	7.9	2.3	. 17	.00	.00
31	.00					e15		5.0		. 19	.00	
							447.00					
TOTAL	0.00					285.1		2231.9	820.59	87.93	3.86	0.00
MEAN MAX	.000 .00					9.20 28		72.0 784	27.4 295	2.84 12	. 12 . 71	.00
MIN	.00					1.0		1.3	.01	.15	.00	.00
AC-FT	.00					565		4430	1630	174	7.7	.00
CFSM	.00					.06	.03	.48	.18	.02	.00	.00
IN.	.00					.07	.04	, 55	.20	.02	.00	.00
STATIST	ICS OF MO	NTHLY MEAN	DATA FO	OR WATER Y	EARS 1944	- 199	1, BY WATER	YEAR (WY)			
							•	•••••				
MEAN	12.9	10.7	5.60	3.79	3.29	69.6		133	84.3	72.9	20.8	11.6
MAX (WY)	13 0 1952	102 1952	77.1 1951	64.5 1951	62.1 1951	437 1945		2617 1950	1030 1950	820 1950	363 1949	144 1944
MIN	.000	.000	.000	.000	.000	.000		.87	.000	.000	.000	.000
(WY)	1955	1956	1956	1946	1946	1964		1980	1980	1961	1959	1954
	STATISTIC	CS	FOR	R 1991 WAT	ER YEAR		WATER YEAR	S 1944 -	1991			
ANNUAL	MEAN ANNUAL M	FAN					63.3a 543		1950			
	ANNUAL ME						1,24		1977			
	DAILY ME						4740	Apr 19				
	DAILY MEA						.00	Sep 4				
	SEVEN-DAY						.00	Sep 12				
	ANEOUS PE		1,1		ay 23		4880	Apr 19				
	ANEOUS PEA ANEOUS LO				ay 23 any days		23.36b .00	Apr 19 Many da				
	RUNOFF (A			.00	any days		45850	many us	474			
	RUNOFF (C						. 42					
ANNUAL :	RUNOFF (II	NCHES)					5,69					
	ENT EXCEE						108					
	ENT EXCEES						. 90					
SO PERC	ENT EXCEE	Jo.					.00					

a Median of annual mean discharges is 46 ft3/s.

b From floodmark. e Estimated.

05069000 SAND HILL RIVER AT CLIMAX, MN

LOCATION.--Lat 47°36′43", long 96°48′52", in NE\NE\ sec.30, T.148 N., R.48 W., Polk County, Hydrologic Unit 09020301, on left bank 25 ft upstream from bridge on U.S. Highway 75 in Climax and 3.7 mi upstream from mouth. DRAINAGE AREA.--426 mi².

PERIOD OF RECORD.--March 1943 to September 1984, June 1985 to current year (winter records incomplete prior to 1947). Monthly discharge only for some periods, published in WSP 1308 and 1728. October 1984 to May 1985, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 1388: 1943(M), 1944, 1947(M). WSP 1728: 1951(M), 1960 (Average discharge).

GAGE.--Water stage recorder. Datum of gage is 820.10 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Frior to Oct. 1, 1966, nonrecording gage at site 3.2 mi upstream at datum 12.78 ft higher. Oct. 1, 1966, to Sept 5, 1989, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor.

		DISCHAR	GE, CUBIC	FEET PER	SECOND, V	MATER YE MEAN VA	EAR OCTOBER	1990 TO :	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.3 7.4 7.0 6.1 6.0	12 11 11 11 11	e12 e12 e12 e12 e12	e8.0 e8.0 e7.5 e7.5	e5.0 e5.5 e6.0 e6.5 e7.0	e12 e12 e12 e12 e12	e140 e135 e130 102 90	67 68 70 104 153	29 27 25 23 21	29 52 70 73 69	9.6 10 13 18 23	6.1 7.1 7.4 6.7 7.7
6 7 8 9 10	7.4 7.2 7.1 8.3 9.9	9.7 8.1 9.7 11 12	e12 e12 e11 e11 e11	e7.5 e7.0 e7.0 e7.0 e7.0	e8.0 e9.0 e10 e11 e12	e12 e12 e12 e12 e12	71 58 43 38 35	132 120 111 105 97	20 18 17 36 66	65 59 49 42 35	16 14 13 12 11	8.7 10 9.8 9.9 15
11 12 13 14 15	9.0 9.4 9.1 9.7 9.8	11 11 11 13 13	e11 e11 e11 e11	e6.5 e6.5 e6.5 e6.5 e6.0	e13 e13 e13 e13 e13	e12 e12 e12 e12 e12	32 30 28 29 31	86 75 64 64 58	47 39 30 55 85	31 30 32 49 35	10 10 9.0 7.7 7.2	15 11 11 11 11
16 17 18 19 20	10 11 12 12 12	13 13 12 14 15	e11 e10 e10 e10 e10	e6.0 e6.0 e6.0 e6.0	e13 e13 e13 e13 e13	e12 e13 e15 e20 e40	32 31 30 31 32	52 46 41 37 34	69 51 37 28 23	29 23 19 17 18	7.4 8.9 8.6 9.0 7.9	19 12 10 11 12
21 22 23 24 25	12 12 11 11	14 17 15 12 e12	e9.5 e9.5 e9.5 e9.0	e5.5 e5.5 e5.5 e5.5 e5.5	e12 e12 e12 e12 e12	e50 e70 e90 e110 e140	33 33 33 32 30	34 65 454 374 177	20 18 17 15 13	16 17 15 15	7.7 6.7 6.6 6.4 7.1	11 11 9.5 8.9 8.9
26 27 28 29 30 31	13 13 13 12 12 12	e12 e12 e12 e12 e12	e9.0 e8.5 e8.5 e8.5 e8.0 e8.0	e5.5 e5.5 e5.0 e5.0 e5.0	e12 e12 e12	e150 e150 e150 e140 e130 e120	28 30 30 33 37	100 66 50 40 34 31	14 16 20 18 27	13 12 10 11 9.7 8.7	8.7 8.3 6.9 6.8 6.9 5.7	8.5 8.8 8.4 8.6 8.7
TOTAL MEAN MAX MIN AC-FT CFSM IN.	309.7 9.99 13 6.0 614 .02	362.5 12.1 17 8.1 719 .03 .03	320.0 10.3 12 8.0 635 .02 .03	194.5 6.27 8.0 5.0 386 .01	306.0 10.9 13 5.0 607 .03	1580 51.0 150 12 3130 .12 .14	1467 48.9 140 28 2910 .11 .13	3009 97.1 454 31 5970 .23 .26	924 30.8 85 13 1830 .07	967.4 31.2 73 8.7 1920 .07	303.1 9.78 23 5.7 601 .02	303.7 10.1 19 6.1 602 .02
MEAN MAX (WY) MIN (WY) SUMMARY ANNUAL ANNUAL	32.5 223 1972 9.43 1977 STATIST: TOTAL MEAN	27.6 209 1972 8.64 1956 ICS	16.7 48.7 1972 5.11 1964	R WATER Y. 12.3 30.1 1986 2.02 1962 990 CALEN. 10069.9 27.6	12.2 46.8 1984 3.55 1962	75.3 385 1966 5.81 1948	BY WATER Y 351 946 1978 25.3 1981 OR 1991 WAT 10046.9 27.5	121 1156 1950 23.7 1958	96.3 596 1984 11.5 1980	70.6a	29.4 256 1985 6.30 1961 EARS 1943	
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL	CANEOUS PI CANEOUS PI CANEOUS LO RUNOFF (A RUNOFF (A	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM)		236 5.5 6.0 405 7.52 4.8 19970	Sep 15		19930 .065	May 23 Jan 26 May 23 May 23		204 18.4 4360 1.0 1.1 4560 32.79 51170	Jan 1 Jan 1 Apr 1 Oc Apr 2	1950 1977 4 1965 7,18, 1962 2 1962 4 1965 3 1979
10 PERC 50 PERC	RUNOFF () ENT EXCEL ENT EXCEL ENT EXCEL	EDS EDS		.88 63 12 7.1	a. 3 .		.88 67 12 7.0			2.25 140 21 8.5	•	

a Median of annual mean discharges is 52 ft³/s.
b Occurred Jan. 28 to Feb. 1.
c From floodmark (backwater from Red River of the North).

Estimated.

05074000 LOWER RED LAKE NEAR RED LAKE, MN

LOCATION.--Lat 47°57'27", long 95°16'34", in SW\nW\sec.28, T.152 N., R.36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank just upstream from dam at outlet, 13 mi northwest of city of Red Lake.

DRAINAGE AREA. -- 1,950 mi², approximately.

PERIOD OF RECORD. -- June 1930 to November 1932 and May 1933 to current year. Published as "Red Lake at Redby" prior to May 1933 and as "Red Lake near Red Lake" May 1933 to September 1940. Records on Upper Red Lake published as Red Lake at Waskish, April 1930 to September 1933, all in reports of Geological Survey. October 1921 to September 1929 gage heights at Redby and on Upper Red Lake at Waskish in files of Minnesota Department of Natural Resources (fragmentary).

GAGE.--Water-stage recorder. Datum of gage is 1,100.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers); gage readings have been reduced to elevations based on adjustment of 1912. May 1933 to Sept. 6, 1934, nonrecording gage and Sept. 7, 1934 to Sept. 30, 1986, recording gage at same site at datum 69.00 ft higher. Nonrecording gages at Waskish and Redby.

REMARKS .-- Water level subject to fluctuation caused by change in direction and velocity of wind and by seiches.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 1,178.53 ft, June 25, 1950; minimum recorded, 1,169.80 ft, Nov. 20, 1936.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,173.87 ft, June 26; maximum daily, 1,173.45 ft, July 12; minimum, 1,171.60 ft, Nov. 22; minimum daily, 1,171.94 ft, Nov. 22.

MONTHEND ELEVATION, IN FEET, OCTOBER 1990 TO SEPTEMBER 1991

Oct. 31 1,172.66	Feb. 28 1,172.69	June 30 1,173.38
Nov. 30 1,172.49	Mar. 31 1,172.76	July 31 1,173.09
Dec. 31 1,172.56	Apr. 30 1,172.78	Aug. 31 1,173.15
Jan. 31 1.172.62	May 31 1.173.22	Sept. 30 1.172.79

NOTE. -- Mean daily gage heights are available.

05074500 RED LAKE RIVER NEAR RED LAKE, MN

LOCATION.--Lat 47°57'27", long 95°16'35", in SWkNWk sec.28, T.152 N., R.36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank 50 ft downstream from dam at outlet of Lower Red Lake and 13 mi northwest of city of Red Lake.

DRAINAGE AREA.--1,950 mi², approximately.

PERIOD OF RECORD.--May 1933 to current year. Monthly discharge only for May 1933, published in WSP 1308.

GAGE.--Water-stage recorder. Datum of gage is 1,100.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 7, 1934, nonrecording gage at site 50 ft upstream at datum 69.00 ft higher.

Sept. 7, 1934, to Nov. 26, 1951, water-stage recorder at present site at datum 69.00 ft higher. Nov. 27, 1951 to Sept. 30, 1986, water-stage recorder at present site at datum 67.00 ft higher.

REMARKS.--Records poor. Flow completely regulated by outlet dam on Lower Red Lake.

•		DISCHAR	GE, CUBIC	FEET PER	SECOND, N	NATER YE	EAR OCTOBER	1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	63 65 63 60 64	63 61 61 62 62	61 61 61 61	62 62 62 62 62	63 63 63 63 63	63 63 64 63	64 64 64 64	64 66 68 68 67	68 68 69 70 68	68 66 69 69	68 70 70 69 69	67 65 65 66 66
6 7 8 9 10	64 64 63 63	61 61 61 61 60	61 61 61 61	62 62 62 62 62	63 63 62 62 62	63 63 64 64	64 64 64 64	67 68 68 68 68	67 67 67 67 66	69 69 69 69 70	69 69 69 68 68	66 67 67 65 66
11 12 13 14 15	62 63 63 63 62	61 62 62 62 62	61 61 61 61	62 62 62 62 62	63 63 63 63	64 64 64 64	64 64 65 65 65	68 68 68 68	67 69 67 68 66	71 71 71 70 70	68 68 68 68	67 66 66 67 67
16 17 18 19 20	64 65 63 64 63	61 62 61 62 62	61 61 62 62 62	62 62 62 62 62	63 63 63 63	64 63 63 64	65 65 65 65	69 71 69 68 68	66 67 66 66 69	70 71 70 69 71	68 68 68 68	67 67 66 67 67
21 22 23 24 25	62 63 63 63 63	60 56 57 60 61	62 62 62 62 62	62 62 62 62 62	63 63 63 63	64 64 64 64	65 65 65 65	68 68 68 68	68 67 66 65 66	71 69 69 70 70	67 68 68 68 68	67 63 67 66 64
26 27 28 29 30 31	62 60 63 63 63	62 61 61 61	62 62 62 62 62 62	62 62 62 63 63 63	63 63 	64 64 64 64 64	66 67 65 66 64	69 68 69 68 68	67 67 69 68 71	70 70 70 70 69 68	68 68 67 67 67 68	66 67 67 68 64
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1953 63.0 65 60 3870 .03	1830 61.0 63 56 3630 .03	1905 61.5 62 61 3780 .03	1925 62.1 63 62 3820 .03 .04	1761 62.9 63 62 3490 .03	1974 63.7 64 63 3920 .03	1941 64.7 67 64 3850 .03 .04	2109 68.0 71 64 4180 .03 .04	2022 67.4 71 65 4010 .03 .04	2157 69.6 71 66 4280 .04	2112 68.1 70 67 4190 .03 .04	1986 66.2 68 63 3940 .03
STATIST	ICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 1933	- 1991	, BY WATER Y	(EAR (WY)				
MEAN MAX (WY) MIN (WY)	476 2071 1951 5.10 1934	465 1649 1951 3.57 1934	456 1498 1951 .95 1934	470 1418 1951 .35 1934	464 1342 1951 .40 1934	429 1396 1951 .60 1936	341 1199 1951 4.00 1936	492 1624 1950 .60 1933	576 2025 1950 2.15 1933	544 1840 1950 4.63 1934	467 1464 1975 2.73 1936	463 1712 1950 1.61 1934
SUMMARY	STATISTI	CS	FOR 1	990 CALENI	DAR YEAR	I	FOR 1991 WAT	TER YEAR		WATER YEA	RS 1933 -	- 1991
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL 50 PERC	MEAN ANNUAL ME DAILY ME DAILY MEA	AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS		72a	Jul 4 Nov 22 Sep 24 Feb 21,	Jul 10	23675 64.9 71 56 60 76 70.19 52 46960 .033 .45 64 61	5	days	474 1292 5.55 2240 .00 .3600 78.19 343500 .24 3.30 1020 386 35	Sep 19 Sep Jun 2	1951 1936 6 1950 9 1933 1 1934 5 1950 5 1950

a Occurred part or all of each day July 3-11.

05075000 RED LAKE RIVER AT HIGH LANDING, NEAR GOODRIDGE, MN

LOCATION.--Lat 48°02'34", long 95°48'28", in NWkNWk sec.28, T.153 N., R.40 W., Pennington County, Hydrologic Unit 09020303, on left bank 50 ft upstream from highway bridge at High Landing, 7 mi south of Goodridge and 33 mi upstream from Thief River.

DRAINAGE AREA.--2,300 mi², approximately. PERIOD OF RECORD.--September 1929 to current year. Prior to October 1930, published as "at Kratka".

GAGE.--Water-stage recorder. Datum of gage is 1,141.57 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). See WSP 1308 or 1738 for history of changes prior to Oct. 1, 1949.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow regulated by outlet dam on Lower Red Lake.

		DISCHARGE	CUBIC	FEET PER	SECOND, DAILY	WATER YE MEAN VA	EAR OCTOBER	1990 TO S	SEPTEMBI	ER 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	60	65	e62	e62	e62	e63	e88	78	70	63	89	64
2	58	64	e62	e62	e62	e63	e85	77	70	66 70	87	6 3 63
3	60	63	e62	e62	e62	e63	e83	74	70	70 76	87 88	63
4	61	65	e59	e62	e62	e63	e81	88	70			63
5	54	67	e55	e62	e62	e63	e79	83	69	82	88	
6	60	e60	e66	e62	e62	e63	76 e73	78 80	69 69	84 82	86 84	64 64
7	60	e50	e62	e62	e62	e63		77	69	80	82	64
8	59	e65	e62	e62	e62	e63	69 -67	74	68	79	80	64
9 10	59 59	e70 e62	e62 e62	e62 e62	e62 e62	e63 e63	e67 65	73	68	81	78	64
					e62	e63	e64	68	67	85	76	64
11 12	58 57	`e62	e62 e62	e62 e62	e62	e63	e63	67	67	92	74	64
		e62						70	67	134	73	64
13	58	e62	e62	e62	e62	e63	62 - 6 6	65	67	148	72	64
14	58	e62	e62	e62	e62	e64	e66				71	64
15	58	e62	e62	e62	e62	e65	73	67	67	125	/1	04
16	58	e62	e62	e62	e62	e67	e70	67	66	107	72	63
17	60	e62	e62	e62	e62	e71	e67	67	66	101	73	63
18	62	e62	e62	e62	e62	e79	e64	69	66		, 72	63
19	62	e62	e62	e62	e62	e88	e62	69	65	94	69	62
20	63	e62	e62	e62	e62	e96	60	70	65	94	67	62
21	60	e59	e62	e62	e62	e104	e61	70	65	97	64	63
22	59	e55	e62	e62	e62	e109	e62	71	64	103	63	63
23	60	e48	e62	e62	e62	e115	e63	71	64	112	62	64
24	58	e59	e62	e62	e62	e120	e64	71	64	109	63	64
25	60	e65	e62	e62	e63	e120	65	71	64	104	66	64
26	62	e62	e62	e62	e63	e115	64	71	64	100	66	65
27	61	e62	e62	e62	e63	e110	69	71	63	97	65	65
28	59	e62	e62	e62	e63	e105	68	71	62	95	63	65
29	67	e62	e62	e62		e100	65	71	. 63	93	63	65
30	66	e62	e62	e62		e95	78	71	63	93	63	65
31	64		e62	e62		e91		71		93	64	
TOTAL	1860	1847	1916	1922	1740	2533	2076	2241	1991	2936	2270	1912
MEAN	60.0		61.8	62.0	62.1	81.7	69.2	72.3	66.4	94.7	73.2	63.7
MAX	67	70	66	62	63	120	88	88	70	148	89	65
MIN	54	48	55	62	62	63	60	65	62	63	62	62
AC-FT	3690	3660	3800	3810	3450	5020	4120	4450	3950	5820	4500	3790
CFSM	.03	.03	.03	.03	.03	.04	.03	.03	.03	.04	.03	.03
IN.	.03	.03	.03	.03	.03	.04	.03	.04	.03	.05	.04	.03
STATIST	TCS OF MO	NTHLY MEAN	DATA FO	R WATER Y	EARS 1930	- 1991	BY WATER Y	(EAR (WY)				
MEAN	530	502	450	448	445	479	666	671	663	567	490	511
MAX	1955		1539	1424	1366	1453	1980	3179	2161	2474	1478	1733
(WY)	1951	1951	1951	1951	1951	1951	1951	1950	1950	1975	1975	1950
MIN	2.11	1.61	.000	.000	.000	.000	24.7	5.58	1.04	5.92	.026	.000
(WY)	1934	1934	1934	1934	1934	1936	1933	1933	1936	1934	1934	1934
SUMMARY	STATISTI	cs	FOR 1	990 CALEN	DAR YEAR	T	OR 1991 WAT	TER YEAR		WATER YEA	RS 1930	- 1991
ANNUAL	TOTAL.			26209		_	25244					
ANNUAL	MEAN			71.8			69.2			535		
HIGHEST	ANNUAL M	EAN								1407		1951
LOWEST	ANNUAL ME	AN								6.21		1934
	DAILY ME			145	Mar 13		148	Jul 14		4040	Jul	7 1975
	DAILY MEA			48	Nov 23		48	Nov 23		.00		days
	SEVEN-DAY			58	Oct 10		58	Oct 10		.00		16 1933
INSTANT	ANEOUS PE	AK FLOW		150	Mar 13		154	Jul 13,1	L4	4060	Jul	7 1975
INSTANT	ANEOUS PE	AK STAGE			b Mar 13,	14	5.32			13.44	Jul	3 1975
	RUNOFF (A			51990		•	50070	•		387700		
	RUNOFF (C			.03	1		.030)		. 23		
	RUNOFF (I			.42			.41			3,16		
	CENT EXCÉE			87			88			1180		
	ENT EXCEE			71			64			415		
	ENT EXCEE			61			62			30		

b Backwater from ice.

e Estimated.

05076000 THIEF RIVER NEAR THIEF RIVER FALLS, MN

LOCATION.--Lat 48°11'08", long 96°10'11", in NW\SW\ sec.3, T.154 N., R.43 W., Marshall County, Hydrologic Unit 09020304, on right bank, 0.2 mi upstream from highway bridge, 5 mi north of Thief River Falls, 7 mi upstream from mouth, and 9 mi downstream from Mud Lake National Wildlife Refuge.

DRAINAGE AREA.--959 mi².

PERIOD OF RECORD.--July 1909 to September 1917, April 1920 to September 1921, October 1922 to September 1924, October 1928 to September 1981, March 1982 to current year. Monthly discharge only for some periods, annual maximums for water years 1919, 1922, 1925, 1926, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 925: Drainage area. WSP 1308: 1917(M), 1924(M), 1929(M), 1931-33(M), 1935(M), 1937(M).

GAGE.--Water-stage recorder and control of grouted boulders. Datum of gage is 1,112.33 ft above National Geodetic Vertical Datum of 1929 (levels by Minnesota Department of Transportation). Prior to May 4, 1939, nonrecording gages at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Thief and Mud Lakes.

Mud Lakes.

		DISCHA	RGE, CUBIC	FEET PER	SECOND,	WATER YI Y MEAN V	EAR OCTOBER ALUES	1990 TO	SEPTEMBI	ER 1991		
DAY	OCT	VOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 31 20 31 21 21 21 21 21 21 21 21 21 21 21 21 21	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	5.0 3.8 3.1 2.2 1.7 1.3 .99 .61 .56 .57 .55 .44 .38 .18 e.04 e.00 e.00 e.00 e.00 e.00 e.00 e.00	.00 .00 .00 .00 .00 .00 .00 .00 .00 .00	.00 .00 .00 .00 .00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00	EAR OCTOBER ALUES APR 22 27 42 60 45 32 22 14 7.8 4.6 2.8 2.1 1.3 2.5 2.2 2.0 2.1 2.0 2.1 1.7 1.4 1.3 1.1 .83 .65 .51 .50 .44 1.1 305.34 10.2 60 .01	1.255 4.5 128 188 166 163 1.0 8.3 1.6 5.5 4.9 2.3 8 1.3 91 2.9 2.9 4.7 2.1 2.9 4.1 1.0 2.9 4.1 2.9 4.1 2.9 4.1 2.9 4.1 2.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4	6.5 4.8 3.5 1.6 1.0 70 2.76 1.0 2.1 1.7 1.3 9.4 8.7 6.5 2.1 1.7 1.2 77 2.39 2.39 2.39 2.39 2.39 2.39 2.39 2.39	.97 5.2 24 28 24 20 22 45 38 41 43 38 33 35 30 25 19 17 16 13 11 8.7 3.2 9 4.3 2.9 4	1.8 1.5 1.9 1.7 1.2 1.0 2.54 1.0 7.7 7.7 7.7 7.7 7.7 7.7 7.7 8.1 1.1 1.8 1.2 1.1 1.8 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.6 1.4 3.0 21.7 1.2 1.0 1.4 9.0 1.2 1.6 2.1 2.6 9.0 8.4 3 11 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
IN.	.00	.05	.00	.00	.00	.02	305.34 10.2 60 .44 606 .01 .01	.03	3.95 25 .25 .25 .00	656.67 21.2 45 .97 1300 .02 .03	30.39 .98 2.0 .15 60 .00	181.81 6.06 22 .62 361 .01
MEAN	84.7	63.2	19.6	5.66	3.58	65.8	578	464	, 289	194	82.6	81.6
MAX (WY) MIN (WY)	637 1986 .000 1911	844 1972 .000 1911	206 1945 .000 1911	100 1910 .000 1911	45.0 1910 .000 1911	609 1983 .000 1930	2827 1966 7.75 1981	4274 1950 1.83 1990	1774 1962 .032 1980	2103 1975 .000 1932	842 1985 .000 1932	943 1985 .000 1929
SUMMARY	STATIS	TICS	FOR 1	990 CALEN	DAR YEAR	t I	FOR 1991 WA	TER YEAR		WATER YE	ARS 1909	- 1991
ANNUAL ANNUAL HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC 90 PERC	MEAN ANNUAL ANNUAL DAILY DAILY DAILY MESEVEN-D ANEOUS ANEOUS RUNOFF RUNOFF RUNOFF ENT EXC ENT EXC	MEAN MEAN EAN EAN AY MINIMUM PEAK FLOW PEAK STAGE (AC-FT) (CFSM) (INCHES) EEDS		2890.79 7.92 184 .00 .00 211 7.08 5730 .00 .11 20	Nov 16 Many d Jan 1 Nov 16 b Mar 13	i lays	3651.56 10.0 202 .00 .00 314 6.07 7240 .01 .14 30	May 23 May 23	ays	160a 607 1.28 5580 .000 5610 17.38 115900 .17 2.27 505 6.5	May Many Oct May May	1966 1939 13 1950 days 1 1910 13 1950 13 1950

a Median of annual mean discharges is 110 ft3/s.

b Backwater from ice.

e Estimated.

05078000 CLEARWATER RIVER AT PLUMMER, MN

LOCATION.--Lat 47°55'24", long 96°02'46", in SE\sWk sec. 4, T.151 N., R.42 W., Red Lake County, Hydrologic Unit 09020305, on right bank 200 ft downstream from Soo Line Railroad bridge, 300 ft downstream from bridge on U.S. Highway 59, 0.9 mi northwest of railroad depot in Plummer, and 8 mi upstream from Hill River.

DRAINAGE AREA.--512 mi².

PERIOD OF RECORD.--April 1939 to September 1979, March 1982 to current year. Annual maximums only, October 1979 to February 1982.

GAGE.--Water-stage recorder. Datum of gage is 1,098.57 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Nov. 10, 1939, nonrecording gage at site 100 ft upstream at same datum. REMARKS.--Records and except those for estimated daily discharges, which are poor. Since 1968, undetermined amounts of water diverted for the flooding of wild rice paddies upstream.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft³/s and maximum (*):

Date	Tim		charge	Gage height (ft)	ht		Date	Time	Discharg (ft ³ /s)		ge height (ft)	
July 7	020	0 *5	565	*5.39			No other pea	ak greater	than base	disch	arge.	
		DISCHAR	SE, CUBI	C FEET PER	SECOND, W	NATER MEAN	YEAR OCTOBER VALUES	R 1990 TO S	SEP TEM BER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	33	24	30	e34	e23	e37		32 31	21 22	36 109	213 190	34 34
2 3	32 32	26 27	31 31	e35 e32	e13 e17	e34 e24		32	26 26	250	157	44
4	29	27	29	e31	e23	e32	e50	44	25	324	176	95
5	26	27	31	e36	e25	e33		49	25	435	204 177	88
6 7	26 25	26 24	30 30	e38 e36	e30 e30	e33 e31		33 38	28 23	530 555	148	73 64
8	24	23	30	e33	e29	e28		53	19	522	122	60
ğ	24	25	30	e30	e29	e26	21	62	29	488	107	66
10	24	27	30	e25	e29	e31		31	55	431	92	146
11	23	26	30	e18	e24	e31		39	49	375	79	147
12 13	22 23	25 26	e30 e27	e25 e31	e28 e27	e30 e31		30 35	38 24	365 397	68 60	93 70
14	23	26 26	e27	e30	e29	e24		34	18	449	55	62
15	24	26	e24	e31	e30	e29		34	32	402	50	62
16	24	26	e31	e32	e31	e30		20	41	359	49	101
17	23	20	e32	e33	e31	e35		23	39	336	50	211
18 19	26 26	23 22	e30 e31	e34 e33	e34 e32	e40 e45		27 20	39 32	292 272	112 117	220 202
20	25	25	e24	e30	e23	e49		24	29	265	101	170
21	21	27	e30	e32	e30	e49	27	25	26	303	84	137
22	22	25	e35	e31	e35	e48		29	20	306	73	117
23 24	22	15	e38	e29	e36	e47 e46		26 34	28 32	386 424	66 62	114 99
25	21 19	21 18	e39 e39	e26 e28	e35 e38	e44		24	26	351	61	75
26	16	14	e38	e24	e38	e42		34	23	307	60	68
27	12	24	e39	e17	e37	e40		26	19	323	56	57
28	15	15	e37	e25	e37	e36		21	51	313	50	55
29 30	24 23	24 30	e38 e32	e28 e28		e34 e34		22 22	35 29	302 291	44 39	55 54
31	21		e33	e27		e35		30		266	35	
TOTAL	730	714	986	922	823	1108		984	903	10764	2957	2873
MEAN	23.5	23.8	31.8	29.7	29.4	35.7		31.7	30,1	347	95.4	95.8
MAX MIN	33 12	30 14	39 24	38 17	38 13	49 24		62 20	55 18	555 36	213 35	220 34
AC-FT	1450	1420	1960	1830	1630	2200		1950	1790	21350	5870	5700
CFSM	.05	.05	.06	.06	.06	.07		.06	.06	.68	. 19	.19
IN.	. 05	.05	.07	.07	.06	.08		. 07	. 07	.78	. 21	. 21
STATIST	ICS OF MO						1, BY WATER					
MEAN	117	93.3	63.9	50.9	47.1	110		356	257	191	115	101
MAX (WY)	483 1972	503 1972	140 1978	90.1 1952	98.4 1974	351 1945		1974 1950	1140 1962	844 1975	507 1985	666 1973
MIN	21.5	23.8	24.4	18.4	19.0	22.8		7.52	30.1	16.0	13.3	14.1
(WY)	1941	1991	1990	1940	1940	1940		1977	1991	1940	1940	1940
SUMMARY ANNUAL	STATISTI	CS	FOR	1990 CALENI 20343	DAR YEAR	F	OR 1991 WATE 24680	ER YEAR	WATE	R YEAR	S 1939 -	1991
ANNUAL I				55.7			67.6		17	1		
HIGHEST	ANNUAL M					•			35			1950
LOWEST	ANNUAL ME	AN		204	7 00			71 7		57.0	A 25 1	1990
	DAILY ME DAILY MEA			384 12	Jun 22		555 12	Oct. 27	3840		Apr 25 1 May 16 1	979 977
	SEVEN-DAY			18	Oct 27 Oct 22		18	Oct 22	' 2 2	2.9	May 10 1	977
INSTANT	ANEOUS PE	AK FLOW		393	Jun 22		565	Jul 7	3940)	Apr 25 1	979
	ANEOUS PE			6.79	a Mar 13		555 12 18 565 5.39	Jul 7		2.37a	Apr 18 1	
INSTANTA ANNIIAI	ANEOUS LO RUNOFF (A	W FLUW C-RT)		40350			48950		123600	2.5	May 16,1	/, 19//
ANNUAL I	RUNOFF (C	FSM)		. 11			.13		_20000	. 33		
ANNUAL I	RUNOFF (I	nches)		1.48			1.79		4	. 53		
	ENT EXCEE			119			176		405			
	ENT EXCEE ENT EXCEE			36 23			31 23		75 32			
OU LENGI	ana machb			20			20		02	-		

a Backwater from ice.

e Estimated.

05078230 LOST RIVER AT OKLEE, MN

LOCATION.--Lat 47°50'35", long 95°51'30", in SENE's sec.2, T.150 N., R.41 W., Red Lake County, Hydrologic Unit 09020305, on downstream side of bridge on State Highway 222 at northwest edge of Oklee, 12 mi upstream from

DRAINAGE AREA. -- 266 mi².

PERIOD OF RECORD.--April 1960 to September 1981, February 1982 to current year. Monthly and daily figures for April 1960, to June 1960, published in WSP 2113.

GAGE.--Water-stage recorder. Datum of gage is 1,126.94 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 9, 1960, reference points at same site at datum 8.00 ft higher. Sept. 9, 1960, to Sept. 30, 1964, nonrecording gage at same site at datum 8.00 ft higher. Oct. 1, 1964, to Sept. 30, 1981, and Feb. 24, 1982, to Sept. 6, 1989, nonrecording gage at same site and datum.

REMARKS. -- Records poor.

		DISCHAR	GE, CUBIC	FEET PER	SECOND,	WATER Y MEAN	YEAR OCTOE VALUES	ER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
12345678901123145678901222345678901	.00 .04 .13 .17 .21 .32 .40 .45 .553 .62 .790 1.3 1.4 1.6 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8	NOV 1.9 1.9 1.9 1.9 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	e.85 e.80 e.75 e.75 e.80 e1.1 e1.5 e1.6 e1.6 e1.5 e1.5 e1.6 e1.5 e1.6 e1.6 e1.6 e1.6 e1.6 e1.6 e1.6 e1.6	e.45 e.40 e.37 e.35 e.33 e.31 e.30 e.29 e.28 e.27 e.26 e.22 e.21 e.21 e.21 e.21 e.21 e.21 e.19 e.19 e.19 e.19 e.19 e.18 e.18 e.18 e.18	e.18 e.20 e.30 e.80 e.90 e.90 e.90 e.80 e.80 e.70 e.70 e.70 e.70 e.70 e.70	e.700 e.700 e.700 e.700 e.700 e.700 e.700 e.700 e.700 e.700 e.700 e.700 e.700 e.700 e.350 e.400	41 41 56 53 43 33 29 24 21 20 18 16 19 25 36 22 23 22 23 22 24 23 22 23 24 25 46 	115 116 115 1167 120 110 92 82 82 70 61 142 82 82 70 61 42 38 42 43 42 43 44 42 43 45 47 34 47 34 47 34 47 34 47 34 47 47 47 47 47 47 47 47 47 47 47 47 47	20 19 20 18 17 16 15 13 19 40 45 33 22 19 16 15 14 11 12 10 11 19 8.1 125 85 70 74	154 168 211 202 174 177 166 146 120 98 82 76 69 68 62 53 35 41 57 65 63 46 34 36 34 31 29 30 28	26 24 23 27 27 27 24 22 21 17 13 11 8.3 7.5 12 18 24 25 24 23 21 17 16 14 13 11 11 11	10 11 21 22 20 19 20 136 215 140 98 46 81 212 195 135 135 135 23 22 21 20 20 21 21 21 20 21 20 21 20 21 20 21 21 21 21 21 21 21 21 21 21 21 21 21
TOTAL MEAN MAX MIN AC-FT CFSM IN.	31.72 1.02 1.8 .00 63 .00	53.15 1.77 2.0 .90 105 .01	32.70 1.05 1.8 .50 65 .00	7.63 .25 .45 .18 .15 .00	19.16 .68 1.0 .18 .38 .00	620.05 20.0 70 .70 1230 .08	885 29.5 56 16 1760 111	2268 73.2 167 20 4500 .28 .32	123	2637 85.1 211 28 5230 .32 .37	2,	2024 67.5 215 10 4010 .25 .28
STATIST MEAN MAX (WY) MIN (WY)	FICS OF MC 47.0 470 1972 1.02 1991	ONTHLY MEA 30.3 232 1972 1.11 1977	N DATA FO 12.7 56.6 1978 .050 1977	OR WATER Y 7.38 19.8 1986 .002 1977	7.20 25.8 1984	0 - 199 66.4 242 1986 .19	313 745 1966	TR YEAR (WY 134 622 1962 10.5 1980	83.8 657 1962 8.20 1980	67.0 442 1962 1.99 1961	36.3 351 1985 1.17 1961	34.1 330 1973 .000 1990
SUMMARY	STATIST	CS	FOR 1				FOR 1991	WATER YEAR		WATER Y	EARS 1960	- 1991
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN T ANNUAL ME T ANNUAL ME T DAILY ME T DAILY ME SEVEN-DAY TANEOUS PH TRUNOFF (A RUNOFF (A	EAN EAN AN (MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) LINCHES) EDS EDS		6190.60 17.0 133 .00 .00 134 6.66 12280 .06 .87 51 2.9	Jun 22 Aug 30 Aug 30 Jun 21 b Mar 14	,22	78 11	3 Sep 10 00 Oct 1 18 Jan 27 Sep 10 60 Sep 10 10 39		69.5 177 18.2 3040 .00 3210a 16.72 50320 .22 3.55 166 16 2.0	Apr 1 Many Feb 1 Apr 1 2c May 2	1962 1990 1 1969 days 6 1963 1 1969 4 1962

From highwater mark.

b Backwater from ice.
c Present datum.

05078500 CLEARWATER RIVER AT RED LAKE FALLS, MN

LOCATION.--Lat 47°53'15", long 96°16'25", in NWkNE's sec.22, T.151 N., R.44 W., Red Lake County, Hydrologic Unit 09020305, on left bank 40 ft downstream from Great Northern Railroad bridge in Red Lake Falls, 1.4 mi upstream from mouth, and 3 mi downstream from Badger Creek.

DRAINAGE AREA.--1,370 mi², approximately.

PERIOD OF RECORD.--June 1909 to September 1917, October 1934 to September 1981, March 1982 to current year. Monthly discharge only for October, November, 1934, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 355: 1911-12. WSP 1438: 1910-11, 1917(M). WDR MN-84-1:1983.

GAGE.--Water-stage recorder. Datum of gage is 948.94 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Sept. 12, 1911, nonrecording gage at site 0.5 mi upstream, and Sept. 12, 1911, to Sept. 30, 1917, nonrecording gage at site 40 ft upstream at different datum. datum.
REMARKS.--Records fair.

		DISCHARGE	, CUBIC	FEET PER	SECOND, DAILY	WATER Y	EAR OCTOBER ALUES	1990 TO	SEPTEMBER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	28	34	14	e41	e35	e43	e135	122	66	335	315	55
2	28	30	20	e40	e36	e42	139	199	63	480	273	55
3	35	37	38	e40	e30	e40	162	216	60	670	240	60
4 5	33	48	e35	e39	e25	e38	170	264	53	823	203	57
5	31	49	e35	e39	e24	e33	158	329	57	771	227	91
6 7	36 41	41 33	e35 e35	e39 e40	e25 e28	e33 e37	173 133	322 282	49 49	789 806	236 212	113 103
8	33	42	e35	e43	e30	e38	95	273	50	748	182	96
ğ	26	37	e35	e42	e33	e35	82	263	54	677	154	363
10	26	26	e35	e38	e34	e33	74	244	191	600	135	643
11	e26	35	e35	e32	e33	e31	66	199	182	515	119	603
12	e26	46	e35	e30	e32	e37	67	184	154	479	105	374
13	e25	39	e35	e29	e31	e40	60	188	234	462 503	93	246
14 15	e25 e25	43	e35	e29	e32 e33	e40 e40	72 78	180 164	120 81	504	83 75	191 172
16	e25	41 30	e33 e31	e32 e35	e35	e40	78	154	69	439	99	720
17	e25	30	e30	e36	e35	e40	96	130	68	413	82	831
18	e25	36	e35	e37	e36	e43	102	119	66	372	84	730
19	e25	21	e36	e37	e37	e50	99	116	57	340	120	639
20	25	38	e35	e38	e37	e60	93	100	58	329	140	512
21	33	42	e32	e38	e35	e80	81	95	55	329	130	375
22	31 25	29	e30	e37	e32	e140	76 72	102 136	60 54	372 381	11 4 109	285 227
23 24	23 27	16 32	e35 e40	e36 e35	e32 e38	e165 e170	67	148	48	470	94	203
25	28	30	e43	e34	e41	e170	64	131	56	452	87	179
26	27	21	e45	e32	e42	e170	62	109	53	378	82	147
27	24	21	e45	e31	e43	e165	64	101	86	348	79	135
28	19	16	e45	e30	e43	e150	65	89	154	360	76	121
29	15	12	e45	e29		e140	70	83	182	336	70	111
30	13 34	20 	e45	e29		e130	93 	70 64	181	321 332	63 58	105
31	34		e43	e32		e130		04		332	30	
TOTAL	845	975	1105	1099	947	2403	2846	5176	2710	15134	4139	8542
MEAN	27.3		35.6	35.5	33.8	77.5	94.9	167	90.3	488	134	285
MAX	41	49	45	43	43	170	173	329	234	823	315	831
MIN	13	12	14	29	24	31	60	64	48	321	58	55
AC-FT	1680		2190	2180	1880	4770	5650	10270	5380	30020	8210	16940
CFSM IN.	.02 .02	.02 .03	.03 .03	.03 .03	.02 .03	.06 .07	. 07 . 08	. 12 . 14	.07 .07	.36 .41	.10 .11	.21 .23
IN.	.02	.03	.03	.03	.03	.07	.00	. 17	.07	.41		. 25
STATIST	ICS OF N	MONTHLY MEAN	DATA FO	OR WATER Y	EARS 1909	- 1991	, BY WATER Y	EAR (WY))			
MEAN	182		84.9	67.4	62.3	219	1148	677	485	341	191	170
MAX	1350	1233	260	220	150	993	3458	5059	3042	1813	1686	1267
(WY)	1972		1910	1910	1984	1946	1966	1950	1962	1962	1985	1973
MIN (WY)	10.0 1935		21.4 1937	21.4 1940	19.1 1937	13.6 1937	61.0 1981	32.2 1977	26.5 1980	8.34 1936	1.49 1936	2.92 1936
	STATIST			1990 CALEN			FOR 1991 WAT		1300		(EARS 1909	
ANNUAL		. 100		34633	DIEC TERE		45921					
ANNUAL	MEAN			94.9			126		1	310a		
HIGHEST	ANNUAL	MEAN								855		1950
LOWEST	ANNUAL N	ÆAN								64.4		1939
HIGHEST	DAILY	1EAN		632	Jun 22		831	Sep 17 Nov 29		9930	Apr 4	25 1979 15 1936
LOWEST	DAILY ME	Y MINIMUM		12 17	Nov 29 Sep 6		12 18	Nov 25			lO Sep 1 24 Sep 1	2 1936
INSTANT	ANEOUS I	PEAK FLOW		652	Jun 22		1040	Sep 16		10300	Apr 2	5 1979
INSTANT	ANEOUS	PEAK STAGE			b Apr. 3			Sep 16		15.8	35b Mar	6 1983
INSTANT	ANEOUS I	LOW FLOW						-		. (00c	
	RUNOFF (68690			91080			224600		
ANNUAL	RUNOFF	(CFSM)		.06			.092	2			23	
	RUNOFF (ENT EXC			. 94 200	•		1.25 335			3.0 777	10	
50 PERC	ENT EXC	EDS		45			57 57			104		
	ENT EXC			26			29			36		

Median of annual mean discharges 270 ft³/s. From highwater mark, backwater from ice. Occurred Sept. 15, 1936, Sept. 14, 1939, and Aug. 19-22, 1940.

Estimated.

05079000 RED LAKE RIVER AT CROOKSTON, MIN

LOCATION.--Lat 47°46'32", long 96°36'33", in SW\sW\sec.30, T.150 N., R.46 W., Polk County, Hydrologic Unit 09020303, on right bank 100 ft upstream from Sargent Street bridge in Crookston, 0.3 mi downstream from Interstate Power Co.'s dam, 0.6 mi downstream from bridge on U.S. Highway 75, and 53 mi upstream from mouth. DRAINAGE AREA.--5,280 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1901 to current year. Monthly discharge only for some periods, published in WSP 1308. Figures of daily discharge for Apr. 3-30, 1904, published in WSP 130, have been found unreliable and should

Figures of daily discharge for Apr. 3-30, 1904, published in WSP 130, have been found unreliable and should not be used.

REVISED RECORDS.--WSP 1115: 1906, 1915-16, 1919-20, 1922, 1925, 1927, 1929. WSP 1308: 1916(M), 1919(M), 1928(M), 1930(M). See also PERIOD OF RECORD.

GAGE.--WSP 1105: Datum of gage is 832.72 ft above National Geodetic Vertical Datum of 1929. May 18, 1901, to June 30, 1909, nonrecording gage at bridge 300 ft upstream at same datum. July 1, 1909, to Sept. 25, 1911, nonrecording gage, Sept. 26, 1911, to Sept. 30, 1919, water-stage recorder, Oct. 1, 1919, to Sept. 30, 1930, nonrecording gage, at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation prior to 1975 caused by powerplant 1,000 ft upstream. Runoff from 1,950 mi² in the headwaters of Red Lake River is completely controlled by dam at outlet of Lower Red Lake. Flow partially affected by occasional regulation at Thief and Mud Lakes in Thief River basin (see station 05076000).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

		DISCHARGE	E, CUI	old FEET FE	N SECOND, I	MEAN V	LAR OCTOBE	2K 1990 10 1	SEE LEED.	EK 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	76	65	e104	e104	e82	e95	e320	223	185	309	398	113
2	103	95	e104	e102	e83	e95	337	273	165	472	376	131
3	79	113	e104	e102	e84	e94	413	361	167	694	376	130
4	101	84	e104	e102	e85	e94	e480	443	130	931	329	123
5	94	87	e104	e102	e86	e94	520	542	119	1130	296	126
6	118	94	e104	e100	e87	e94	e510	620	128	1060	295	148
7	88	75	e104	e100	e88	e94	e450	576	108	1030	305	189
8	128	66	e104	e100	e89	e94	314	522	96	1030	302	206
9	107	98	e104	e100	e90	e94	239	482	145	928	261	287
10	88	82	e104	e98	e91	e94	204	433	167	846	245	570
11	82	88	e104	e96	e92	e93	177	433	354	775	208	899
12	112	94	e104	e96	e93	e93	154	364	331	643	190	769
13	86	95	e104	e96	e94	e93	149	330	1300	670	174	527
14	81	97	e104	e96	e95	e93	151	341	1180	647	156	395
15	115	100	e104	e9 5	e95	e94	174	296	485	641	155	341
16	94	101	e104	e96	e95	e98	189	312	282	637	158	340
17	81	101	e104	e9 6	e95	e105	189	244	214	590	186	1010
18	98	166	e104	e9 6	e95	e120	197	227	181	580	181	1120
19	92	202	e104	e96	e95	e135	199	194	147	501	150	999
20	73	260	e104	e95	e95	e155	185	212	148	488	169	888
21	71	212	e104	e96	e95	e195	176	165	148	455	231	763
22	93	219	e104	e9 6	e95	e240	171	182	145	495	221	593
23	106	128	e104	e94	e95	e340	154	249	133	502	195	502
24	108	119	e104	e92	e95	e385	149	377	120	457	177	411
25	113	e116	e104	e90	e95	e395	138	612	110	556	167	403
26	87	e112	e104	e85	e95	e400	131	582	109 113	517	178	354
27 28	119	e110	e104	e80	e95	e390	145	375 300	142	451 430	157	318
29	91 104	e108 e106	e104	e80 e80	e95	e370	136 145	300 233	221	436	132 149	259 255
30	105	e105	e104 e104	e80		e350 e320	206	258 258	284	408	123	233
31	72		e104	e80		e315	200	205	204	391	107	
TOTAL	2965	3498	3224	2923	2569	5721	7102	10966	7557	19700	6747	13402
MEAN	95.6	117	104	94.3	91.7	185	237	354	252	635	218	447
MAX	128	260	104	104	95	400	520	620	1300	1130	398	1120
MIN	71	65	104	80	82	93	131	165	96	309	107	113
AC-FT	5880	6940	6390	5800	5100	11350	14090	21750	14990	39070	13380	26580
CFSM	.02	.02	.02	.02	.02	.03	.04	.07	.05	.12	. 04	.08
IN.	.02	.02	.02	.02	.02	.04	.05	.08	.05	. 14	.05	.09
STATIST	ICS OF	MONTHLY MEAN									,	•
MEAN	811	670	549	495	471	934	2965	2063	1658	1247	791	782
MAX	2836	3172	1900	16 63	1464	3626	10260	15290	7205	6851	3868	3009
(WY)	1972	4070	4001	4054	4054	1910	1966	1950	1962	1975	1985	1905
MIN	8.02	10.1	5.34	15.6	17.8	24.9	232	154	80.4	26.2	12.3	8.87
(WY)	1937	1937	1937	1934	1937	1936	1981	1934	1934	1936	1934	1934
	STATIS	TICS	FO	1951 15.6 1934 R 1990 CALE 68422	NDAR YEAR	1	FOR 1991 V	VATER YEAR		WATER Y	EARS 1901	- 1991
ANNUAL							86374					
ANNUAL				187			237			1115		
	' ANNUAL									3129		1950
	ANNUAL									83.6		1934
	DAILY	MEAN		898	Jun 23		1300	Jun 13		27100	Apr	12 1969 29 1936
	DAILY M	IEAN		65	Sep 27		65	Nov 1		2.5		
		MUMINIM YA		74	Sep 8		81	Jan 27		3.9		28 1936
INSTANT	ANEOUS	PEAK FLOW		915	Jun 23		2200	Jun 13		28400	Apr	12 1969
		PEAK STAGE		7.6	a Apr 2		6.9	99 Jun 13		27.3	3 Apr	12 1969
		LOW FLOW		125700	NOA R		51	Nov 8		.0 807900	Ob Jul	13 1960
ANNUAL	RUNOFF	(AC-FT)		132/00	26		6.9 51 171300	14.5			1	
ANUNAL	MUNOE F.	(CFSM) (INCHES)		898 65 74 916 7.6 51 135700 .0 4 373	30 0		٠.	045 51		.2 2.8	± 7	
	ENT EXC	(THCHED)		272.4	U		518	-1		2510	,	
50 PFRC	ENT EXC	FFDS		116			133			652		
	ENT EXC			88			91			105		
				•								

a From highwater mark, backwater from ice.

Caused by regulation of powerplant upstream. Estimated. b

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962, 1974-76, 1979 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
OCT 30	1445	93	360	402	8.2	8.2	7.0	3.7	739	11.8	K19	170
DEC 11	1500	104	625	653	8.0	8.2	0.0	2.4	733	14.0	К5	K14
JAN 29	1615	73	625	516	7.3	7.7	0.0	2.0	739		К6	K13
MAR 13	1130	93	504	489	7.7	8.1	0.0		760	9.6		
APR 02	1445	335	318	340	8.2	8.0	1.5	4.0	738	13.4	200	K10
JUN 04	0800	130	475	494	8.0	8.3	19.0	5.0	739	7.6	67	240
JUL 17	0900	576	501	490	8.7	8.5	28.0	2.3	728	7.6	69	140
DATE OCT 30 DEC 11 JAN 29 MAR 13 APR 02 JUN 04 JUL 17	CALC DIS SOL (MG AS (009 46 75 65 59 41 55	- DI SOLL (MG CA) AS: 15) (009 21 37 26 24 15 25	UM, SODII DIS: VED SOLVI /L (MG, MG) AS: 225) (009: 7.0 12 8.0 10 5.0	DIS SOLV (MG/NA) AS R 330) (0093 5 5.0 4 3.7 4 3.9 5.4	M, WAT TOT TOT (C) CAC (390)	ITY ALI DIS LINI IT L/CLD (MC LAS AS 003 CA(6) 01 19 69 26 - 26 00 28 13	TY WA'S WA'S WA'S WA'S WA'S WA'S WA'S WA'S	ATE BON 1ER WA 1T DIS 1	ATE TER SULI TER SULI SOIL AS (MM 453) (009 33 33 28 - 81 56	LVED SOI G/L (MC SO4) AS 945) (009 25 7 84 9 23 7 19 9	DE, RII SUVED SOID 3/L (MC CL) AS 9/40) (009 7.2 0. 9.4 0. 7.1 <0. 9.4 <0. 5.8 0.	DE, IS- IS- IS- IS- IS- IS- IS- IS- IS- IS-
DATE	SILI DIS SOL (MG AS SIO (009	- AT 1 VED DEG /L DI SOL 2) (MG	DUE GEI 80 NITR . C DIS S- SOL' VED (MG /L) AS I	N, GEN ITE NO2+N S- DIS VED SOLV /L (MG/ N) AS N	i, NII 103 GE 5- AMMO 7ED TOI 7L (MO 1) AS	TRO- GE EN, AMMO DNIA DE TAL SOI G/L (MO N) AS	EN, GEN, DNIA MON: IS- ORGA VED TO: G/L (MO N) AS	IA + PH ANIC PHO IAL TO G/L (M N) AS	OS- PHO RUS D TAL SO	IS- ORTH LVED TOT G/L (MC P) AS	RUS ORT HO DIS TAL SOLV F/L (MG/ P) AS H	RUS THO, S- VED VL ?)
OCT 30	3.	5 23	7 <0.0	01 <0.1	.0 0.	.01 0.	.01 0	. 4 0	.02 <0	.01 <0.	.01 <0.	.01
DEC 11	10	41					.04 1.		1		.02 <0.	
JAN 29	17	31					.17 1					.01
MAR 13	15	28	0 <0.0	0.2			. 17	-	- 0	.04		.04
APR 02	7.	7 20	3 <0.0	0.2	2 0.	.02 <0	.01 0	. 8 0	.05 <0	.01 <0.	.01 <0.	01
JUN 04	7.	5 32	4 <0.0	01 <0.0	0.	.04 0.	.04 0	.9 0	.09 0	.03 0.	.03 0.	.01
JUL 17	11	32	5 0.0	0.0)S 0.	.04 0.	.04 1	. 4 0	.11 0	.06 0.	.06 0.	.05

RED RIVER OF THE NORTH BASIN 05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT 30	10	85	<10	1	51	<0.5	1.0	<1	<3	15	19
DEC									_	_	
11 JAN	44	80									
29 MAR	44	60	<10	1	79	<0.5	<1.0	<1	<3	2	15
13 APR					69	<0.5	<1.0	<5	<3	<10	13
02 JUN	4	100	<10	<1	44	<0.5	<1.0	<1	<3	1	55
04	10	87									
JUL 17	12	94	<10	5	72	<0.5	<1.0	<1	<3	1	17
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
oct	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 30 DEC	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
OCT 30 DEC 11 JAN 29	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 30 DEC 11 JAN 29	DIS- SOLVED (UG/L AS PB) (01049) 1 <1	DIS- SOLVED (UG/L AS LI) (01130) 14 15	NESE, DIS- SOLVED (UG/L AS MN) (01056) 6 79	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 120 150	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 30 DEC 11 JAN 29 MAR 13	DIS- SOLVED (UG/L AS PB) (01049) 1 <1	DIS- SOLVED (UG/L AS LI) (01130) 14 15	NESE, DIS- SOLVED (UG/L AS MN) (01056) 6 79 31	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10	DIS- SOLVED (UG/L AS NI) (01065) 1 <1 <10	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 120 150 140	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 30 DEC 11 JAN 29 MAR 13 APR 02 JUN	DIS- SOLVED (UG/L AS PB) (01049) 1 <1	DIS- SOLVED (UG/L AS LI) (01130) 14 15	NESE, DIS- SOLVED (UG/L AS MN) (01056) 6 79 31 22	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1 <1	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 120 150 140 95	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) . 12 13 17
OCT 30 DEC 11 JAN 29 MAR 13 APR 02	DIS- SOLVED (UG/L AS PB) (01049) 1 <1	DIS- SOLVED (UG/L AS LI) (01130) 14 15	NESE, DIS- SOLVED (UG/L AS MN) (01056) 6 79 31	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10 <10	DIS- SOLVED (UG/L AS NI) (01065) 1 <1 <10	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 120 150 140	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND

LOCATION.--Lat 47°55'38", long 97°01'34", in sec.2, T.151 N., R.50 W., Grand Forks County, Hydrologic Unit 09020301, on the right bank, 200 ft upstream from the DeMers Avenue bridge, 0,4 mi downstream from Red Lake River, and at mile 293.8.

DRAINAGE AREA.--30,100 mi², approximately, including 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1882 to current year. Prior to January 1904 monthly discharge only, published in WSP 1308. REVISED RECORDS.--WSP 855: WSF 1308.

REVISED RECORDS.--WSP 855: 1936(M). WSP 1115: 1942. WSP 1175: 1897(M). WSP 1388: 1904, 1914-15, 1917-19, 1921-22, 1927, 1950. WSP 1728: Drainage area. WRD-ND-81-1: 1882, 1897 (M).

GAGE.--Water-stage recorder. Datum of gage is 779.00 ft above National Geodetic Vertical Datum of 1929.

Oct. 1, 1983, to Sept. 30, 1986, datum of gage was 780.00 ft at same site. Apr. 14, 1965, to Sept. 30, 1983, water-stage recorder 1.9 mi downstream at a datum of 778.35 ft. Nov. 3, 1933, to Apr. 13, 1965, water-stage recorder 0.3 mi upstream at 778.35 ft datum. See WSP 1728 or 1913 for history of changes prior to Nov. 3, 1933. REMARKS.--Records good.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991
DAILY MEAN VALUES JUL SEP DAY OCT NOV DEC JAN FER MAR APR MAY JUN AUG 1430 337 710 11 317 261 16 315 326 350 2010 21 326 270 319Ô 715 1770 ---TOTAL 4850 MEAN MAX MTN AC-FT STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1904 - 1991, BY WATER YEAR (WY) MEAN MAX (WY) 1972 88.8 30 6 20.3 30.5 17.8 2.87 MIN FOR 1991 WATER YEAR WATER YEARS 1904 -SUMMARY STATISTICS FOR 1990 CALENDAR YEAR ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Apr 23 1979 Jul Apr LOWEST DAILY MEAN Dec 24 a1.8 2 1977 Jan Dec 27 ANNUAL SEVEN-DAY MINIMUM 2.5 Feb 12 1937 ъ85000 Apr 10 1897 INSTANTANEOUS PEAK FLOW Jul 17.63 c50.20 Apr 10 1897 INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) Ju1 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS

Caused by unusual regulation during repair of dam at Grand Forks. From rating curve extended above $58,000~{\rm ft}^3/{\rm s}$. Site and datum then in use.

- h

90 PERCENT EXCEEDS

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1949, 1956 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
NOV 20 DEC	1505	377	640		6.0	1.5						
31	1255	168	920		-15.0	0.0						
JAN 30	1300	186	875		-18.0	0.0						
FEB 26	1120	346	900		-3.5	0.5						
MAR 13	1440	356	790	7.8	7.5	0.0	10.9	72	160	>1000	340	75
APR 01	1020	2060	460		5.0	1.5						
04 29	1205 1550	3330 1170	475 560	8.2	15.0 13.5	2.0 12.5					200	42
MAY 09	1110	3870	660		17.0	13.5						
30 JUL	1305	1980	700		20.5	21.5						
01 09	1210 1115	2000 4830	675 400		24.0 20.0	22.0 22.0						
AUG a01	1220	1530	638	8.4	23.0	23.0					300	62
22 SEP	1520	818	410		32.0	25.0						
03 16	1520 1540	581 2870	640 495		24.0 15.0	24.5 17.0						
10	1340	2070	493		15.0	17.0						
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE, FET-LAB (MG/L AS HCO3) (95440)	CAR- BONATE, FET-LAB (MG/L AS CO3) (95445)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
MAR 13	38	40	20	0.9	7.4				301	367	0	89
APR 04	22	16	15	0.5	6.1	180	0	150				63
AUG a01	34	18	11	0.5	5.7	270	0	220				100
402	•		••	0.5	3.,	2,0	v	220				200
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
MAR												
13 APR	32	0.20	17	475	483	0.65	457	0.580	0.010	0.590	0.290	1.3
04 AUG	11	0.10	13	304	264	0.41	2730					
a01	13	0.20	23	451	388	0.61	1860					

RED RIVER OF THE NORTH BASIN 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--CONTINUED

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)
MAR 13 APR	0.100	0.090	1	82	<0.5	100	<1.0	<5	<3	<10	10	<10
04			2			40					20	. <1
AUG a01			6			80					10	<1
DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)
MAR 13	33	42	<0.1	<10	<10	<1	<1.0	270	<6	10	8.8	0.3
APR 04	20	10	<0.1	2		<1		200				
AUG a01	30	10	0.1	2		<1		480				

a Replicate sample also collected for quality-assurance purposes.

05087500 MIDDLE RIVER AT ARGYLE, MN

LOCATION.--Lat 48°20'25", long 96°48'58", in NE\hat{NW}\hat{k} sec.15, T.156 N., R.48 W., Marshall County, Hydrologic Unit 09020309, on left bank 30 ft upstream of bridge on County Highway 4 in Argyle and 14 mi upstream from mouth. DRAINAGE AREA.--265 mi².

PERIOD OF RECORD.—March to September 1945, October 1950 to September 1981, February 1982 to current year. Monthly discharge only for some periods, published in WSP 1728. October 1981 to January 1982, operated as a high-flow partial-record station.

partial-record station.

GAGE.--Water-stage recorder. Datum of gage is 828.53 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 8, 1951, nonrecording gage and Nov. 8, 1951, to Sept. 18, 1952, water-stage recorder at site 800 ft downstream at datum 1.0 ft higher. Sept. 19, 1952, to June 28, 1982, recording gage at site 800 feet downstream at present datum. June 29, 1982, to Sept. 20, 1983, nonrecording gage at present site and datum.

REMARKS.--Records poor.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1950 reached a stage of 15.25 ft present datum, site then in use, from floodmarks, discharge, 2,790 ft³/s.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1	1			DISCHARG	E, CUBI	C FEET PER	SECOND, V	VATER YEA MEAN VAI	ar october Lues	1990 TC	SEPTEMBE	R 1991		
2 . 00 . 00 . 00 . 00 . 00 . 00 . 00 .	2 . 000 . 000 . 000 . 000 . 000 . 000 . 000 . 33 . 1.4	DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 . 00 . 00 . 00 . 00 . 00 . 00 . 00 .	2 . 000 . 000 . 000 . 000 . 000 . 000 . 000 . 33 . 1.4	1		.00	.00	.00	.00	.00		, 33				
16	16	2		.00	.00	.00	.00	.00	.37	. 19				
16	16	3			.00	.00	.00	.00	.33	. 14				
16	16	4	.00	.00 、	.00	.00	.00	.00	. 46	. 18				
16	16	٥	.00	.00	.00	.00	.00	.00		.16				
16	16	D 7	.00		.00	.00	.00	.00	.2/	. 12				.27
16	16			.00	.00	.00	.02	.00	. 24					
16	16			.00	.00	.00	.11	.00	10	.10	.04			
16	16		.00	.00	.00	.00	.05	.00	15	10		74	3.0	
16	16		.00	.00	.00	.00	.05	.00	14	11	31	74	3.1	35
16	16			.00	.00	.00	.04	.00	.14	. 11	. 27	73	2.8	
16	16		.00	.00	.00	.00	.03	.00	.12	. 13	.27	78	2.8	
16	16	14	.00	.00	.00	.00	.00	.00	. 20	.09	. 25	72	2.2	
16	16	15	.00	.00	.00	.00	.00	.09	.25	. 15	.29		2.6	
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	.03	. 21	. 14	. 27			
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	.04	. 18	. 13	. 26			
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	.09	. 16	. 13	. 26			
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	.09			.74			
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0			.00	.00	.00	.00	. 13	.11			_ :		
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	. 14	.10	.08	2.3	29	.42	.21
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	. 14	.11	. 13	1.0	23	.33	
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0	23	.00	.00	.00	.00	.00	. 17	.10		1.0	10	.37	
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	19	10	1.2	2.2	18	43	
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	.23	. 10	2.2	6.0	16	.38	. 16
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	.23	.14	9.6	3.5	15	.33	. 14
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00	.00	.21	.13	46	5.0	14	.31	. 13
TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.014 0.84 2.0 4.63 3.65 40.6 3.38 .35 MAX 0.0 0.00 0.00 0.00 0.01 1.02 5.50 4.6 18 84 12 2.1 MIN 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL 0.00 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 20 4.63 3.65 40.6 3.38 .35 MAX 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.0		.00	.00	.00	.00		.20	. 10	31	9.8	13	.31	. 12
TOTAL 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.14 0.84 2.0 4.63 3.65 40.6 3.38 35 MAX 0.0 0.00 0.00 0.00 1.1 2.5 5.50 46 18 84 12 2.1 MIN 0.00 0.00 0.00 0.00 0.00 1.0 0.8 2.5 10 31 1.2 AC-FT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	TOTAL 0.00 0.00 0.00 0.00 0.39 2.61 5.92 143.59 109.47 1258 104.78 10.59 MEAN 0.00 0.00 0.00 0.00 0.11 0.25 5.50 46 18 84 12 2.1 MIN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		.00						.50		18	11	.31	
MIN .00 .00 .00 .00 .00 .00 .00 .00 .10 .08 .25 10 .31 .12 AC-FT .00 .00 .00 .00 .00 .8 5.2 12 285 217 2500 208 21 CFSM .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	MIN	31	.00		.00	.00		.25		21		10	.31	
MIN .00 .00 .00 .00 .00 .00 .00 .00 .10 .08 .25 10 .31 .12 AC-FT .00 .00 .00 .00 .00 .8 5.2 12 285 217 2500 208 21 CFSM .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	MIN	TOTAL	0.00	0.00	0.00	0.00	0.39	2.61	5.92	143.59	109.47	1258	104.78	10.59
MIN .00 .00 .00 .00 .00 .00 .00 .00 .10 .08 .25 10 .31 .12 AC-FT .00 .00 .00 .00 .00 .8 5.2 12 285 217 2500 208 21 CFSM .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	MIN			.000	.000	.000	.014	.084	.20					
MIN .00 .00 .00 .00 .00 .00 .00 .00 .10 .08 .25 10 .31 .12 AC-FT .00 .00 .00 .00 .00 .8 5.2 12 285 217 2500 208 21 CFSM .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	MIN	MAX	.00	.00	.00	.00	.11	.25	. 50					2.1
CFSM .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	CFSM			.00	.00	.00	.00		.10	.08	. 25	10	.31	
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1945 - 1991, BY WATER YEAR (WY) MEAN 9.23 5.25 2.27 .98 .75 23.5 207 72.9 73.3 51.9 4.87 7.67 MAX 94.1 33.4 15.8 4.65 3.32 217 747 330 660 688 29.5 163 (WY) 1983 1957 1983 1983 1983 1983 1966 1970 1970 1975 1985 1957 MIN .000 .000 .000 .000 .000 .000 .000 .0	STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1945 - 1991, BY WATER YEAR (WY) MEAN 9.23 5.25 2.27 .98 .75 23.5 207 72.9 73.3 51.9 4.87 7.67 MAX 94.1 33.4 15.8 4.65 3.32 217 747 330 660 688 29.5 163 (WY) 1983 1957 1983 1983 1983 1983 1966 1970 1970 1975 1985 1957 MIN .000 .000 .000 .000 .000 .000 .000 .0		.00	.00	.00	,00	.8	5.2	12		217			21
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1945 - 1991, BY WATER YEAR (WY)	MEAN 9.23 5.25 2.27 .98 .75 23.5 207 72.9 73.3 51.9 4.87 7.67			.00	.00	.00		.00			.01	.15		
MEAN 9.23 5.25 2.27 .98 .75 23.5 207 72.9 73.3 51.9 4.87 7.67 MAX 94.1 33.4 15.8 4.65 3.32 217 747 330 660 688 29.5 163 (WY) 1983 1983 1983 1983 1966 1970 1970 1975 1985 1957 MIN .000 <	MEAN 9.23 5.25 2.27 .98 .75 23.5 207 72.9 73.3 51.9 4.87 7.67 MAX 94.1 33.4 15.8 4.65 3.32 217 747 330 660 688 29.5 163 (WY) 1983 1983 1983 1983 1983 1966 1970 1975 1985 1957 MIN .000 <	IN.	.00	.00	.00	.00	.00	.00	.00	.02	.02	.18	.01	.00
MAX 94.1 33.4 15.8 4.65 3.32 217 747 330 660 688 29.5 163 (WY) 1983 1957 1983 1983 1983 1983 1986 1970 1970 1975 1985 1957 MIN .000 .000 .000 .000 .000 .000 .000 .20 2.12 .37 .000 .000 .000 .000 (WY) 1954 1954 1954 1953 1953 1953 1954 1991 1981 1973 1961 1961 1952 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1945 - 1991 ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 112 1966 LOWEST DAILY MEAN .00 Many days .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (FSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) 9.0 12 75	MAX 94.1 33.4 15.8 4.65 3.32 217 747 330 660 688 29.5 163 (WY) 1983 1957 1983 1983 1983 1983 1983 1966 1970 1970 1975 1985 1957 MIN .000 .000 .000 .000 .000 .000 .000 .20 2.12 .37 .000 .000 .000 .000 (WY) 1954 1954 1954 1953 1953 1953 1954 1991 1981 1973 1961 1961 1952 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1945 - 1991 ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 112 1966 LOWEST DAILY MEAN 1.60 1977 HIGHEST DAILY MEAN .00 Many days .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 .00 ANNUAL RUNOFF (CFSM) .010 .017 .14 .00 ANNUAL RUNOFF (INCHES) 9.0 12 75	STATIST	CICS OF M	ONTHLY MEAN	DATA F	OR WATER Y	EARS 1945	- 1991,	BY WATER	YEAR (W)	?)			
MAX 94.1 33.4 15.8 4.65 3.32 217 747 330 660 688 29.5 163 (WY) 1983 1957 1983 1983 1983 1983 1986 1970 1970 1975 1985 1957 MIN .000 .000 .000 .000 .000 .000 .000 .20 2.12 .37 .000 .000 .000 .000 (WY) 1954 1954 1954 1953 1953 1953 1954 1991 1981 1973 1961 1961 1952 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1945 - 1991 ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 112 1966 LOWEST DAILY MEAN .00 Many days .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (FSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) 9.0 12 75	MAX 94.1 33.4 15.8 4.65 3.32 217 747 330 660 688 29.5 163 (WY) 1983 1957 1983 1983 1983 1983 1983 1966 1970 1970 1975 1985 1957 MIN .000 .000 .000 .000 .000 .000 .000 .20 2.12 .37 .000 .000 .000 .000 (WY) 1954 1954 1954 1953 1953 1953 1954 1991 1981 1973 1961 1961 1952 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1945 - 1991 ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 112 1966 LOWEST DAILY MEAN 1.60 1977 HIGHEST DAILY MEAN .00 Many days .00	MEAN	9 23	5 25	2 27	98	75	23 5	207	72.9	73.3	51.9	4.87	7.67
(WY) 1983 1957 1983 1983 1983 1983 1983 1966 1970 1970 1975 1985 1957 MIN .000 .000 .000 .000 .000 .000 .20 2.12 .37 .000 .000 .000 (WY) 1954 1954 1953 1953 1954 1991 1981 1973 1961 1961 1952 SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1945 - 1991 ANNUAL TOTAL 993.18 1635.35 ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 1.60 1977 LOWEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days	(WY) 1983 1957 1983 1983 1983 1983 1983 1966 1970 1970 1975 1985 1957 MIN .000 <					4.65	3.32							
MIN .000 .000 .000 .000 .000 .000 .000 .0	MIN .000 .000 .000 .000 .000 .000 .000 .0			1957										
SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1945 - 1991 ANNUAL TOTAL 993.18 1635.35 38.1a ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 1.2 1966 LOWEST ANNUAL MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (FSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	SUMMARY STATISTICS FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR WATER YEARS 1945 - 1991 ANNUAL TOTAL 993.18 1635.35 38.1a ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 1.2 1966 LOWEST ANNUAL MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) 9,0 12 75												.000	.000
ANNUAL TOTAL 993.18 1635.35 ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 1.60 1977 HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (FSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	ANNUAL TOTAL 993.18 1635.35 ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN	(WY)	1954	1954	1954	1953	1953	1954	1991	1981	1973	1961	1951	1952
ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 1.60 1977 HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (FSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 1.60 1977 HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) 9,0 12 75	SUMMARY	STATIST	ICS	FOR	1990 CALEN	DAR YEAR	F	OR 1991 WA	TER YEAR	₹	WATER Y	EARS 1945	- 1991
ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 1.60 1977 HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (FSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	ANNUAL MEAN 2.72 4.48 38.1a HIGHEST ANNUAL MEAN 112 1966 LOWEST ANNUAL MEAN 1.60 1977 HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) 9,0 12 75	ANNUAJ.	TATOT.			993.18	3		1635.35	i				
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST D	HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN SO Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 9,0 12 112 1966 107 114 1970 115 116 117 118 11966 11970 11											38.1	.a	
HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	HIGHEST	ANNUAL	MEAN								112		1966
HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	HIGHEST DAILY MEAN 50 Apr 4 84 Jul 8 3790 Jul 4 1975 LOWEST DAILY MEAN .00 Many days .00 Many days .00 Many days ANNUAL SEVEN-DAY MINIMUM .00 Jan 1 .00 Oct 1 .00 Aug 18 1952 INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75											1.6	0	
INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75										3	3790	Jul	
INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	INSTANTANEOUS PEAK FLOW 60 Apr 4 87 Jul 8 4260 Jul 3 1975 INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75							/S	. 00	Many o	lays	.0	00 Many	
INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	INSTANTANEOUS PEAK STAGE 5.16b Mar 19 5.00 Jul 12,13 16.59c Jul 3 1975 ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	ANNUAL	SEVEN-DA	MINIMUM Y		00	Jan 1		00	Oct 1	L	.0		
ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	ANNUAL RUNOFF (AC-FT) 1970 3240 27620 ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	INSTANT	ANEOUS P	EAK FLOW					87	Jul	3			3 1975
ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	ANNUAL RUNOFF (CFSM) .010 .017 .14 ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	INSTANT	ANEUUS P	LAK STAGE			op mar 19		33.00	Jul 12	6,13		ac Jat	3 18/2
ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	ANNUAL RUNOFF (INCHES) .14 .23 1.96 10 PERCENT EXCEEDS 9.0 12 75	AMMIAT	MINORE (CESM)			n			7			4	
10 PERCENT EXCEEDS 9.0 12 75	10 PERCENT EXCEEDS 9.0 12 75	ANNITAT	RIINOFF	INCHES		1/								
						9.0	•		12	•			-	
						.00)			L			3	
90 PERCENT EXCEEDS .00 .00 .00									.00)				

a Median at annual mean discharge is 25 ${\rm ft}^3/{\rm s}$. Backwater from ice.

c Present datum.

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND

LOCATION.--Lat 48°34'20", long 97°08'50", in SE\SE\SE\SE\SE\sec.24, T.159 N., R.51 W., Pembina County, Hydrologi Unit 09020311, on downstream side of bridge on North Dakota State Highway 11, at the North Dakota-Minnesota border, 1.5 mi northeast of Drayton, and at mile 206.7.

DRAINAGE AREA.--34,800 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --April 1936 to June 1937, April 1941 to current year (fragmentary prior to April 1949).
REVISED RECORDS. --WSP 1388: 1949-50. WSP 1728: Drainage area.
GAGE. --Water-stage recorder and concrete control. Datum of gage is 755.00 ft above National Geodetic Vertical Datum of 1929 (Minnesota highway benchmark). Prior to Nov. 30, 1954, nonrecording gage at site 1.5 mi

upstream at datum 1.59 ft higher.

REMARKS.--Records good. Some regulation by reservoirs on tributaries.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1897 reached a stage of about 41 ft, at site and datum in use

prior to Nov. 30, 1954.

DISCHARGE CURIC PEPT BED SECOND WATER VEAD OCTOBER 1000 TO SEPTEMBER 1001

		DISCHARG	E, CUBI	C FEET PE	R SECOND, N	WATER Y MEAN V	YEAR OCTOBEI VALUES	R 1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	322	308	e315	e166	e202	e322	2390	1300	2180	2140	1780	619
2	335	335	e315	e161	e197	e349		1360	2070	2150	1690	608
3	315	362	e315	e156	e197	e376		1430	2030	2180	1600	625
4	335	398	e315	e156	e191	e376		1630	1960	2260	1560	643
5	348	376	e302	e161	e186	e362		2000	1980	2860	1510	608
6								2440	1920	3540	1530	608
7	322 348	335 322	e270 e252	e166 e166	e197 e213	e328 e322		2960	1880	4040	1490	592
								2960 3540	1920	4470	1480	651
8 9	348 335	328	e247	e171	e224	e322		3860	2100	4720	1450	777
10	335 335	335 295	e235 e235	e181 e181	e230 e241	e322 e322		3910	e2300	4890	1360	824
11	295	283	e241	e181	e252	e335			e2220	4940	1260	814
12	302	283	e247	e176	e264	e335		3690	e2340	e4890	1180	795
13	302	283	e252	e171	e276	e335		3540	e2300	e4760	1130	843
14	295	295	e258	e166	e295	e335		3340	2190	e4450	1090	1030
15	295	322	e264	e166	e348	e335	1260	3120	e2040	3940	1070	1350
16	283	308	e270	e166	e376	e342	1180	2930	e2240	e3640	1040	2000
17	264	308	e270	e166	e405	e342		2810	e2940	e3390	1000	2630
18	308	342	e264	e166	e412	e355		2680	e2760	e3230	960	2860
19	308	355	e258	e176	e412	e390		2500	2560	3060	901	2840
20	302	e369	e252	e186	e390	e427		2300	e2180	3020	843	2800
21	315	e369	e247	e213	e348	e503	1100	2150	e1860	2950	795	2620
22	295	e376	e241	e235	e322	e575		2040	e1740	2810	795	2440
23	295	e434	e230	e230	e315	e643		1990	e1720	2660	777	2300
24	328	e369	e213	e224	e315	e731		2120	e1760	2490	777	2100
25	342	e362	e213	e224	e322	901		2950	e1780	2390	777	1810
26	322	e355	e202	e230	e328	1170	1270	3890	e1680	2300	768	1580
27	302	e328	e191	e218	e328	1490		3770	1580	2230	777	1380
28	355	e322	e171	e218	e322	1770		3280	1610	2180	768	1200
29	315	e322	e171	e207		1980		2900	1810	2100	713	1130
30	322	e315	e176	e207		2120		2560	2020	1990	686	1070
31	328		e171	e207		2270		2300		1870	660	
TOTAL	9816	10094	7603	5798	8108	21085		85130	61670	98540	34217	42147
MEAN	317	336	245	187	290	680	1894	2746	2056	3179	1104	1405
MAX	355	434	315	235	412	2270		3910	2940	4940	1780	2860
MIN	264	283	171	156	186	322		1300	1580	1870	660	592
AC-FT	19470	20020	15080	11500	16080	41820		168900	122300	195500	67870	83600
STATTS'	TICS OF M	ONTHLY MEA	N DATA F	OR WATER	VEARS 1949	- 199	1, BY WATER	YEAR (WY	·)			
							•					
MEAN	1721	1489	1183	1041	1012	2480		8379	5270	4204	1951	1617
MAX	4463	5653	3072	2065	1876	9329		58890	23420	28240	7247	5392
(WY)	1972	1972	1972	1966	1952	1983		1950	1962	1975	1985	1957
MIN	317	277	149	174	201	280		938	676	348	243	329
(WY)	1991	1977	1977	1990	1977	1962	1981	1977	1977	1988	1977	1988
SUMMAR	Y STATIST	ICS	FOR	1990 CAL	ENDAR YEAR		FOR 1991 W	VATER YEAR		WATER	YEARS 1949	- 1991
ANNUAL	TOTAT			325368			441018					
ANNUAL				891			1208			3685		
	T ANNUAL I	MEAN		091			1200			10510		1950
	ANNUAL M											1977
DOMES!	I DAILY M	CAN		5000	Amm 7		4940	Tu 1 11		91000	Ann	28 1979
I OUTEST	DAILY ME	A NT		125	Apr /		156	Jul 11		110	Doc.	23 1989
ANNIIAT	SEVEN-DAY	MINIMUM		129	Apr 7 Jan 1 Jan 1		162	Jan 1		118	Dec	28 1989
TNCTAN	TANEOUS PI	EAR BLOG		125	Jan 1		4940	Jul 11		92900	Ann	28 1979
TNSTAN	TANEOUS PI	FAK STAGE					13.2)6 Jul 11		43.	66 Arr	28 1979
	IANEOUS LO						13.2	our II		73.	7 Oct	28 1979 16 1936
	RUNOFF (645400			874800			2670000	, 000	10 1900
	CENT EXCE			1960			2910			7850		
	CENT EXCE			375			660			1650		
	CENT EXCE			220			213			440		
ao reku	THI DACE	200		220			213			770		

e Estimated.

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--CONTINUED

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FEAGL, KF AGAR (COLS. PER 100 ML) (31673)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
OCT	4000		4050		40.5							
NOV 15	1635	275	1050		12.5	7.5						
19 JAN_	1515	341			7.0	2.5						
17	1525	168	1100		-3.0	0.0						
14 APR	1105	336	1010	7.8	0.0	0.0	11.9	80	<2	K250	380	82
08 May	1340	2900	610	8.0	11.5	6.5					220	48
10 JUN	1740	4120	600		25.5	13.0						
14 JUL	1320	2180	702		24.0	24.0		,				
10 SEP	1550	5100	395		26.0	22.0						
10	1225	827	840	8.6	14.5	20.0					290	59
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE, FET-LAB (MG/L AS HCO3) (95440)	CAR- BONATE, FET-LAB (MG/L AS CO3) (95445)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
MAR 14	42	70	28	2	8.2				320	390	0	100
APR 08	24	37	26	1	6.7	190	0	160				86
SEP 10	35	59	30	2	12	270	7	230				120
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)
MAR 14 APR	83	0.20	16	635	598	0.86	576	<0.010	0.770	0.230	1.1	0.110
08 SEP	45	0.10	12	380	352	0.52	2980					
10	70	0.20	16	537	509	0.73	1200					

RED RIVER OF THE NORTH BASIN 05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--CONTINUED

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ARSEN DIS SOLV (UG) AS A	S- I VED SO VL (AS) A	ARIUM, DIS- DLVED (UG/L AS BA) D1005)	BER LIU DIS SOL (UG AS	M, BOI - D VED SOI /L (U BE) AS	IS- LVED G/L B)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHROMIUM DIS- SOLV (UG/) AS CI	COBA DIS ED SOLV L (UG R) AS	FD S()/L ()(CO) A	PPER, IS- DLVED UG/L S CU)	IRON DIS SOLV (UG/ AS FI	ED SC L (1 E) A	EAD, DIS- DLVED JG/L S PB) 1049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)
MAR 14	0.110		1	86	<	0.5	140	<1.0	•	<5	<3	<10		11	10	43
APR 08			2		-	-	70			-	-			90	<1	30
SEP 10			8		-	-	150			-	-		:	20	<1	40
DA	NE (U AS	NGA- SE, IS- LVED G/L MN)	MERCUR DIS- SOLVE (UG/I AS HG (71890	RY DE D SO J (U	LYB- NUM, DIS- DLVED G/L MO)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELI NIUN DIS SOLV (UG, AS S	M, SIL S- D WED SO /L (U SE) AS	VER, IS- LVED G/L AG) 075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVEI (UG/L AS V) (01085)	D SO: (U AS	NC, IS- LVED : G/L ZN)	CARBON ORGANIO DIS- SOLVED (MG/L AS C) (00681	SU PEN TO (M AS	ANIC S- DED TAL G/L C) 689)
MAR 14 APR	•	45	<0.	.1	<10	<10		<1	1.0	360	<(5	9	9.1		0.3
08 SEP	•	<10	<0.	1	2			<1		270						
10	_	10	<0.	1	1			<1		390						

05094000 SOUTH BRANCH TWO RIVERS AT LAKE BRONSON, MN

LOCATION.--Lat 48°43′50", long 96°39′50", in SW\SW\ sec.30, T.161 N., R.46 W., Kittson County, Hydrologic Unit 09020312, on left bank 70 ft upstream from culvert on U.S. Highway 59 at Lake Bronson and 3.4 mi downstream from dam at outlet of Bronson Lake.

DRAINAGE AREA.--444 mi².

PERIOD OF RECORD.--September 1928 to November 1936, April to September 1937, April 1941 to October 1943, April to December 1944, April 1945 to September 1947, October 1953 to September 1981, April 1985 to current year.

Monthly discharge only for some periods, published in WSP 1308. October 1981 to March 1985, annual maximums only. Published as South Fork Two Rivers at Bronson prior to 1941.

REVISED RECORDS.--WSP 1308: 1929(M), 1931(M), 1936(M), 1944(M), 1947(M).

GAGE.--Water-stage recorder. Datum of gage is 928.53 ft above National Geodetic Vertical Datum of 1929 (Minnesota Department of Transportation bench mark). Prior to Nov. 23, 1953, nonrecording gage at bridge 100 ft downstream at datum 2.00 ft higher. Nov 23, 1953, to Oct. 5, 1963, water-stage recorder at same site at datum 2.00 ft higher.

higher.
REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow partly regulated since 1937 by Bronson Lake, usable capacity, 3,700 acre-ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	. 17	. 52	e.44	e.36	FEB e.34 e.34 e.34 e.34 e.34 e.34 e.34 e.3	e11	e1.8	.30	8.1	236	5.9	12
2	. 17	. 52	е.44	e.36	e.34	e11	e1.5	.16	12	611	6.2	10
3	.19	.45	8.44	e.36	e.34	e10	el.3	.22	18	765	6.5	8.5 5.2
4	20	39	e.44	e.36 e.36	e.34 e.34	e10	e1.1	.63	16	803	7.2	3.2
6	.28	.40	e.44	e.36	e.34	e10	e.70	.20	16	645	9.4	1.1
7	. 28	. 45	e.44	e.36	e.34	e12	e.60	. 19	15	955	8.9	.25
8	.28	.45	e.44	e.36	e.34	e14	. 52	. 15	12	926	8.6	1.3
10	. 28	.45	0.44	e.36	e.34	e13	.39	.14	14	1010 071	8.3	7.5
11	.29	.45	e.44	e.34	e.34	e12	.23	. 14	13	890	7.8	5.4
12	.32	. 47	e.44	e.34	e.36	e12	.19	.19	3.5	993	7.7	63
13	.39	. 48	e.42	e.34	e.38	e11	.21	. 28	.52	1920	7.9	130
14	.45	.53	e.42	e.34	e.40	ell ell	. 58	. 23	.20	1430	6.5 6.6	318
16	.45	.59	e. 42	e.34	e. 45	e13	.33	. 20	.26	802	25	112
17	. 45	. 54	e.40	e.34	e.50	e15	.35	.16	24	303	160	640
18	. 47	. 52	e.40	e.34	e.55	e20	.29	. 16	29	211	81	957
19	. 52	e.50	e.40	e.34	e.65	e16	.28	.22	26	149	60	783 647
21	.51	e.50	e.40	e.34 e.34	e.03 e1 0	e14	19	.39 63	20	127	52 60	465
22	.51	e.50	e.40	e.34	e10	e11	.25	1.4	16	94	69	337
23	. 52	e.50	e.40	e.34	e10	e9.0	.34	2.3	14	8.6	44	369
24	.52	e.50	e.38	e.34	e9.5	e7.0	.21	1.5	8.7	103	43	325
25 26	. 52	e.50	e.38	e.34	e9.5	eb.0	. 19	1.5	8 0	36 28	/3 23	422 276
27	.54	e.48	e.38	e.34	e12	e4.0	. 22	2.8	6.1	29	8.4	152
28	. 59	e.46	e.38	e.34	e12	e3.5	.27	4.3	7.6	24	10	126
29	. 54	e.46	e.38	e.34		e3.0	1.1	3.6	8.1	18	8.9	70
30	. 52	e.45	e.38	e.34		e2.5	.88	3.0	39	18 12	3.1	/4
31	. 32		8.30	6.54		82.2		3.2		10	14	
TOTAL	12.41	14.53	12.80	10.74	81.30 2.90 12 .34 161 .01	315.2	16.18	30.49	402.36	16350.6	848.6	6516.45
MEAN	. 40	.48	. 41	.35	2.90	10.2	. 54	,98	13.4	527	27.4	217
MAX	.59	. 59	.44	.36	12	20	1.8	4.3	20	1920	3 1	937 25
AC-FT	25	29	25	21	161	625	32	60	798	32430	1680	12930
CFSM	.00	.00	.00	.00	.01	.02	.00	.00	.03	1.19	.06	. 49
IN.	.00	. 0 0	.00	.00	.01	.03	.00	.00	. 03	1.37	.07	. 55
CTATTCT	TTCC OF M	ONTHIV ME	AT DATA	COD WATED	VEADS 1020	- 1001	BY WATED	VEAD (UV				
MEAN	17.3	9,90	3.94	2.59	3.04	54.9	395	196	168	104	24.1	33.8 525 1957
MAX	153	87.5	16.8	10.8	23.6	362	1977	1338	1336	1136	360	525
(WY)	1958	1957	1986	1966	1981	1986	1966	1970	1970	1956	1985 .089	1957 .000
MIN (WY)	1991	1990	1987	1987	3.04 23.6 1981 .12 1987	1934	1991	1991	1980	104 1136 1956 .44 1988	1988	
SUMMARY	STATIST	ICS	FOR	1990 CAL	ENDAR YEAR 71	F	OR 1991 WA	TER YEAR		WATER YE	ARS 192	9 - 1991
ANNUAL	TOTAL			7008.	/1		24611.66			04.30		
HIGHEST	C ANNUAL.	MEAN		19.	2		07.4			312		1966
LOWEST	ANNUAL M	EAN								2.89		1934
HIGHEST	DAILY M	EAN		650	Apr 1		1920	Jul 13		5290	Apr	5 1966
LOWEST	DAILY ME	AN V Mathetratika		• '	05 Sep 15		.14	May 9		.00	Man	y days
INSTANT	CANEOUS P	EAK FLOW		784	Apr 1		2160	Jul 13		5410	Anr	5 1966
INSTANT	TANEOUS P	EAK STAGE		9.	14b Mar 16		11.35	Jul 13		18.23	Apr	5 1966
INSTANT	TANEOUS L	OW FLOW			04 Sep 17		.12	Jun 16		01677	-	
ANNUAL	RUNOFF (AC-FT)		13900	043		48820			61050		
ANNUAL	RUNOFF (INCHES		•	59		2.06			2.58		
10 PERC	CENT EXCÈ	EDS		3 5			126			206		
50 PERC	CENT EXCE	EDS			71 2 Apr 1 05 Sep 15 06 Sep 12 Apr 1 14b Mar 16 04 Sep 17		.58			4.2		
90 PERC	CENT EXCE	EDS		•	20		. 28			. 80		

Median of annual mean discharges is 53 ft³/s.

b From highwater mark, backwater from ice. e Estimated.

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA (National stream-quality accounting network station) (International gaging station)

LOCATION.--Lat 49°00'30", long 97°12'40", in sec.2, T.1, R.2 E., Hydrologic Unit 09020311, on right bank 1,500 ft downstream from Canadian National Railway bridge in Emerson, 0.8 mi downstream from international boundary, 3.6 mi downstream from Pembina River, and at mile 154.3.

DRAINAGE AREA.--40,200 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --March to November 1902 (gage heights only), May 1912 to September 1929 (monthly discharge only, published in WSP 1308), October 1929 to current year.

GAGE. --Water-stage recorder. Datum of gage is Geodetic Survey of Canada Datum of 1929. See WSP 1728 or 1913 for history of changes prior to Apr. 10, 1953.

COOPERATION. --This station is one of the international gaging stations maintained by Canada under agreement with the United States. Records provided by Water Survey of Canada.

WILL C	Wie OHITCEC	States.	Vecorde	broarded	Dy Macer	parvey	OI Callada	•				
		DISCHAR	GE, CUBIC	FEET PER	R SECOND, V DAILY	VATER Y	YEAR OCTOBI VALUES	ER 1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	313	301	e282	e195	e184	e309	e2410	1360	2600	2150	2140	713
2	305	297	e279	e193	e183	e317		1410	2490	2390	2010	660
3	302	293	e278	e190	e180	e320		1470	2440	2720	1890	629
4	300	e299	e280	e188	e179	e320		1600	2380	3110	1770	614
5	298	e311	e281	e186	e177	e327		1770	2270	3470	1680	629
6	314	e319	e279	e184	e176	e338		2060	2200	4030	1660	618
7	317	e312	e273	e181	e1 80	e349	3920	2450	2130	4590	1650	597
8	320	e299	e261	e180	e189	e351		2920	2060	5010	1620	604
. 9	324	e308	e248	e181	e202	e343		3420	2090	5330	1610	667
10	318	e306	e23 8	e180	e214	e340	2670	3780	2180	5540	1600	710
11	315	e301	e229	e181	e225	e339	2370	3880	2260	5650	1540	763
12	304	e302	e223	e181	e232	e339	2090	3880	2300	5690	1440	791
13	288	e303	e219	e181	e234	e339	1850	3810	2320	5610	1360	784
14	289	e313	e21 8	e180	e241	e335	1670	3640	2330	5580	1300	798
15	285	e326	e219	e177	e249	e334	1520	3440	2280	558 0	1250	915
16	284	e321	e219	e175	e253	e334	1400	3290	2240	5540	1220	1320
17	287	e323	e221	e172	e261	e334		3190	2470	5370	1180	1830
18	275	e31 8	e220	e167	e272	e339	1250	3010	3000	4980	1140	2280
19	272	e325	e21 8	e164	e285	e349		2850	3030	4480	1120	2780
20	286	e350	e21 8	e162	e297	e371	. 1190	2680	2900	4100	1100	3200
21	288	e388	e218	e161	e306	e406	1170	2490	2670	3780	1030	3350
22	288	e374	e21 6	e160	e311	e459		2380	2430	3600	982	3340
23	298	e322	e215	e156	e321	e533		2340	2230	3410	957	3190
24	290	e261	e213	e160	e316	e590		2300	2090	3200	936	2980
25	289	e292	e212	e172	e309	e678	1190	2340	2040	2980	911	2740
26	306	e325	e209	e176	e303	e791		2870	2020	2800	879	2490
27	310	e340	e207	e178	e299	e971		3570	1960	2690	869	2260
28	290	e327	e204	e178	e29 8	e1310	1320	3740	1890	2580	869	1970
29	297	e296	e202	e181		e1700		3510	1900	2490	851	1670
30	308	e285	e199	e185		e2020		3170	1970	2380	809	1460
31	297		e197	e185		e2240		2840		2270	763	
TOTAL	9257	9437	7195	5490	6876	18425		87460	69170	123100	40136 1295	473 <i>5</i> 2 1578
MEAN	299	315	232	177	246	594		2821 3880	2306 3030	3971 5690	2140	3350
MAX	324	388	282 197	195 156	321 176	2240 309		1360	1890	2150	763	597
MIN AC-FT	272 18360	261 18720	14270	10890	13640	36550		173500	137200	244200	79610	93920
				an				n 1171 11 11 11 11				
STATIST	rics of Mc	NIHLY ME	AN DATA F	OR WATER	YEARS 1912	- 199	1, BY WATE	R ILAR (WI)			
MEAN	1434	1279	940	779	739	1959		8407	4924	3734	1707	1454
MAX	4533	5163	2760	2053	1914	9361		72820	25430	28020	7342	6388
(WY)	1986	1972	1966	1951	1952	1983		1950	1962	1975	1985	1957
MIN	28.6	23.7	33.3	7.05	1.21	2.25	1282	663	196	121	46.6	23.6
(WY)	1937	1937	1937	1937	1937	1937	1938	1934	1934	1936	1934	1934
SUMMARY	STATISTI	cs	FOR	1990 CALE	NDAR YEAR		FOR 1991	WATER YEAR		WATER Y	EARS 1912	- 1991
ANNUAL	TOTAL			359186			486798					
ANNUAL	MEAN			984			1334			3328		
HIGHES?	C ANNUAL M	TEAN								12100		1950
LOWEST	ANNUAL ME	EAN								333		1934
HIGHEST	T DATLY ME	CAN		5470	Apr 10		5690	Jul 12		94400	May	13 1950
LOWEST	DAILY MEA	7N		138	Jan 2		156	Jan 23		.9	0 Feb	6 1937
ANNUAL	SEVEN-DAY	MINIMUM		151	Jan 1		161	Jan 18		.9	7 Feb	4 1937
INSTANT	CANEOUS PE	AK FLOW					5690	Jul 12 15 Jul 12		95500 791.1		13 1950 1 1979
INSTANT	TANEOUS PE	LAK STAGE					756.	13 JUL 12	•	.91.1		6 1937
INSTANT	TANEOUS LO	M ELUM		712400			965600			2411000	C E BD	J 1937
ANNUAL	RUNOFF (A	EDG PO_LI)		2310			3310			7240		
50 PERC	CENT EXCER	ens		378			667			7240 1370		
	CENT EXCER			214			190			248		

e Estimated.

RED RIVER OF THE NORTH BASIN

05102500 RED RIVER AT EMERSON, MANITOBA--CONTINUED (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. --Water years 1978 to current year.
PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: October 1977 to current year.
WATER TEMPERATURE: October 1977 to current year.
REMARKS. --Records of daily mean values of water temperature and specific conductance are furnished by Water

Survey of Canada.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum daily mean, 2,180 microsiemens, Dec. 8, 1989; minimum daily mean, 259
microsiemens, Apr. 14, 1989.

WATER TEMPERATURES: Maximum daily mean, 26.7C, Aug. 16, 1988; minimum daily mean, 0.0C, on many days

during winter months.

EXTREMES FOR CURRENT YEAR. -
SPECIFIC CONDUCTANCE: Maximum daily mean, 1,650 microsiemens, Feb. 21; minimum daily mean, 501 microsiemens,

Apr. 5.
WATER TEMPERATURES: Maximum daily mean, 26.2C, Aug. 14; minimum daily mean, 0.1C, Jan. 14, 15, 17, and 18.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE OCT	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
30	1230		310	1020		9.5	5.5					
NOV a01	1100	301		935	8.7	11.0	6.5	24	13.2	109	K4	K 8
DEC 11	1015	229		1230	8.1	3.0	0.5	8.8	10.3	72	K4	К33
JAN 17	1210		172	1180			0.0					
MAR 14	1450		337	940	7.8	5.5	0.0	4.0	11.3	76	<2	K20
APR 09	1245		2980	667	8.0	8.0	4.0	130	12.4	94	K10	K100
MAY 29	1100	3510		753	7.9	29.0	22.0	22	7.8	90	230	460
SEP 06	1200		618	850	8.4	15.0	17.5	65	9.0	94		
DATE	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
NOV a01	280	55	34	8 9	40	2	9,1	222	210	228	14	100
DEC 11	370	74	46	110	38	2	17	298	324	361	17	140
MAR 14	380	82	42	61	25	1	8.1	324	326	398	0	110
APR 09	200	46	21	34	26	1	7.3	156				73
MAY 29	280	63	30	45	25	1	8.4	201				110
SEP 06	330	68	38	62	29	1	8.1	239	216	234	14	120
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
NOV a01	100	0.30	8.1	543	522	0.74	441		0.030	<0.010	<0.100	<0.100
DEC 11	140	0.30	5.9	720	730	0.98	445	0.190	0.010	0.010	0.200	0.200
MAR 14	66	0.20	16	589	586	0.80	536		0.010	<0.010	0.870	0.840
APR 09	43	0.20	14	356	336	0.48	2860	0.390	0.130	0.040	0.430	0.430
MAY 29	52	0.20	12	453	445	0.62	4290	0.670	0.210	0.010	0.590	0.680
SEP 06	71	0.30	18	532	516	0.72	888	0.046	<0.010	0.010	<0.050	0.056

a Replicate sample also collected for quality-assurance purposes.

05102500 RED RIVER AT EMERSON, MANITOBA--CONTINUED (National stream-quality accounting network station)

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

NOV A01 0.020 0.010 1.0 0.180 0.120 0.160 0.100 20 4 62 <0.5	DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO GEN, AMMONI DIS- SOLVE (MG/I AS N)	GEN, IA MONI ORGA TOT. (MG) AS	AM- A + PHO NIC PHOR AL TOT /L (MG N) AS	RUS DI FAL SOL F/L (MG P) AS	RUS PHO S- ORT VED TO F/L (M P) AS	OS-PHO RUS OR HO DI TAL SOL G/L (MG P) AS	THO, IN S- D VED SO /L (U P) AS	DIS- DOLVED SOIG/L (UGAL) AS	ENIC BARI IS- DIS LVED SOLV G/L (UC AS) AS 000) (010	IUM, LIU S- DIS VED SOL G/L (UG BA) AS	JOHN SOLVED (UG/L BE) AS B)
Dec	NOV												
Note	a01	0.020	0.01	10 1	.0 0.	180 0.	120 0	.160 0	.100	20	4	62 <	:0.5
APR 08 0.220 0.180 0.90 0.90 0.420 0.160 0.370 0.070 420 2 46 08 0.170 0.080 0.190 0.420 0.180 0.90 0.420 0.180 0.90 0.420 0.180 0.90 0.420 0.180 0.90 0.420 0.180 0.90 0.420 0.180 0.90 0.420 0.180 0.90 0.420 0.180 0.90 0.180 0.90 0.180 0.190 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1	11	0.190	0.19	90 1	.3 0.	440 0.	380 0	.430 0	.350				
APR		0.220	0.18	30 0	.90 0.	.130 0.	110 0	.120 0	.110	<10	<1	86 <	0.5 130
MAY 28	APR	0 170	0 08	an n	90 0	420 0	160 0	370 0	070	420	2	46 <	:0 5
SEP O6 O.020	MAY												
CADMIUM MIUM, COBALT, COPPER, IRON, LEAD, LITHIUM MANGA- MERCURY MERCURY DIS-	SEP												
CADMIUM MIUM, COPALT, COPPER, IRON, LEAD, DIS- DI	06	0.020	<0.01	10 0	.90 0.	280 0.	130 0	.100 0	.100	100	6	74 <	:0.5
SELE-	NOV a01 MAR 14 APR 09 SEP	TE SC AS	OMIUM DIS- DLVED DLVED DIG/L S CD) (1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) <1 <1	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) 15	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UGAS LI) (01130)	NESE, DIS- DIS- SOLVED (UG/L AS MN) (01056)	TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <0.10	DIS- SOLVED (UG/L AS HG) (71890) <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10 <10
DEC 11 45 28 70 MAR 14 1 <1 <1.0 350 <6 6 9.3 0.4 34 31 22 APR 09 11 <1 <1.0 210 <6 24 500 4020 95 MAY 29 726 6880 97 SEP		D1 SC TE (U AS	CKEL, IS- DLVED JG/L S NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)	ORGANIÓ DIS- SOLVED (MG/L AS C)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. 7 FINER THAN .062 MM
11 45 28 70 MAR 14 1 <1 <1.0 350 <6 6 9.3 0.4 34 31 22 AFR 09 11 <1 <1.0 210 <6 24 500 4020 95 MAY 29 726 6880 97 SEP	a01	•	5	<1	<1.0	320	<6	6			51	41	74
14 1 <1 <1.0 350 <6 6 9.3 0.4 34 31 22 APR 09 11 <1 <1.0 210 <6 24 500 4020 95 MAY 29 726 6880 97 SEP	11										45	28	70
APR 09 11 <1 <1.0 210 <6 24 500 4020 95 MAY 29 726 6880 97 SEP	14		1	<1	<1.0	350	<6	6	9.3	0.4	34	31	22
MAY 29 726 6880 97 SEP	APR		11	<1	<1.0	210	<6	24			500	4020	95
SEP	MAY										726	6880	97
	SEP		4	<1	<1.0	350	9	17		'			

a Replicate sample also collected for quality-assurance purposes.

05102500 RED RIVER AT EMERSON, MANITOBA--CONTINUED (National stream-quality accounting network station)

SPECIFIC CONDUCTANCE, MICROSIEMENS/CM AT 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES DAY NOV OCT DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 994 996 1 2 960 1180 1290 954 996 967 868 723 651 630 720 798 963 1100 1020 1280 1270 757 774 949 1010 831 861 713 794 3 1000 957 946 1110 1140 732 752 798 780 871 858 649 696 688 1000 1000 1250 948 560 788 Š 986 908 1080 1240 951 1010 501 908 789 705 763 784 6 7 973 1250 1270 882 1110 954 1040 581 985 842 687 787 801 963 944 939 964 953 1230 997 580 575 1000 882 912 670 657 810 788 796 775 974 915 8 959 1370 1270 1010 953 1010 1470 1280 593 905 655 749 937 1040 764 10 942 1050 1280 1260 947 622 1060 879 760 612 745 940 995 791 795 772 11 1160 1210 925 958 652 1070 631 762 761 12 936 922 1090 1180 925 941 994 667 773 666 804 13 1180 724 647 934 918 1020 925 800 812 914 852 932 1110 728 752 636 936 1000 924 913 832 796 810 15 929 944 1050 1100 920 955 851 718 603 843 808 16 925 906 1080 1080 959 855 726 756 723 918 772 582 881 747 17 1070 1070 960 860 1160 857 941 806 877 759 784 597 902 18 850 1160 983 946 895 624 922 1090 819 19 1080 861 1180 1070 1250 966 629 656 897 893 611 20 1040 818 1220 1070 1360 1100 853 891 668 666 845 1030 21 1100 1240 1070 1650 1040 899 884 651 675 812 625 22 997 1300 1260 1070 1570 875 629 798 613 995 932 680 1470 1340 23 970 1350 1240 1060 962 967 894 635 704 619 800 24 25 989 1360 1220 1050 964 967 899 649 715 807 614 1030 1080 1380 1240 1150 961 947 864 672 720 814 640 26 1140 1410 1260 1030 1110 1050 936 831 647 727 839 680 27 1110 1530 1340 1020 1040 1140 925 856 622 732 810 689 28 987 1510 1360 1000 1000 1230 931 847 624 740 807 709 971 29 30 1320 1360 980 ---1110 928 832 625 744 745 799 736 ---957 1250 1370 966 1010 931 754 727 629 811 779 743 31 970 1370 961 1080 803 MEAN 991 1070 1200 1130 1060 1010 782 895 732 672 803 734 WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 10.6 10.5 10.5 9.7 5.3 5.2 1.8 .3 22.1 21.7 20.8 . 9 . 8 11.0 24.3 23.7 23.0 2 23.2 22.7 1.0 . 8 . 8 1.2 23.9 22.7 21.9 10.1 4.1 3 1.6 .4 . 9 1.9 1.8 8.9 .7 24.3 22.7 20.8 . 8 8.4 21.2 5 9.1 1.6 .7 .7 8.4 24.4 22.9 20.5 2.6 8.9 8.5 8.4 21.3 21.3 21.3 6 . 5 . 3 . 7 8.4 22.1 22.4 22.7 1.5 . 8 4.9 24.4 .2 .8 1.6 22.4 . 8 6.6 7.2 8.8 24.4 . 1 1.2 24.3 23.4 8 . 7 8,1 2.3 . 7 7.5 24.2 24.2 1.4 11.8 23.2 20.9 10 7.9 1,0 .3 .7 7.8 19.8 11 7.8 7.6 16.1 23.9 25.3 26.0 19.3 19.1 2.3 1.0 .3 . 8 . 8 8.9 25.4 .4 12 2.1 2.2 1.0 .8 9.0 17.5 24.6 23.8 . 8 13 7.6 . 8 8.9 19.2 24.1 26.1 19.8 2.2 . 8 . 9 8.4 19.5 24.1 24.2 26.2 20.6 15 7.5 1.0 . 1 . 8 . 7 8.2 18.7 24.5 26.0 20.5 7.0 6.0 5.2 25.6 26.1 26.1 16 2.1 1.0 . 2 .9 . 8 8.8 17.6 24.0 25.9 19.6 24.6 23.8 17 18 2.1 1.3 .1 .7 .9 .7 .8 9.6 16.9 15.5 24.0 18.6 18.0 4.3 2.0 .9 .7 . 9 23.4 26.0 9.8 15.6 20 . 3 .8 . 9 9.0 16.8 23.9 25.9 23.4 15.4 2.2 1.7 1.7 .8 .7 .7 . 9 21 22 4.7 . 8 . 8 . 7 23.5 26.0 24.0 14.7 .4 11.2 11.2 17.7 22.2 14.3 13.8 4.6 .8 .7 23.2 24.7 25.9 22.9 23.1 23 4.5 . 9 9.6 22.8 25.6 24.8 4.9 9.3 24 1.6 . 6 . 8 22.7 24.9 24.7 13.8 . 7 25 4.7 1.7 . 5 . 8 .8 11.7 23.2 22.8 24.6 24.5 13.7 .7 .7 .7 25.3 25.3 . 8 26 5.0 1.8 . 5 . 4 . 9 23.8 23.3 24.4 24.0 12.8 14.4 14.6 13.2 27 . 9 .8 24.0 5.7 1.6 24.0 12.9 .3 .9 24.0 28 4.9 1.7 . 9 24.1 23.7 25.9 13.8 23.5 29 4.6 1.7 1.0 . 6 13.1 24.5 23.1 26.0 13.6 ---4.5 .4 .7 24.3 23.9 25.4 30 1.7 . 9 13.7 22.4 13.1 31 .9

. 8

8.5

17.0

23.9

23.9

24.4

17.9

1.0

2.1

MEAN

6.8

. 5

. 8

05104500 ROSEAU RIVER BELOW SOUTH FORK NEAR MALUNG, MN

LOCATION.--Lat 48°47'30", long 95°44'40", in NW\sW\sec.6, T.161 N., R.39 W., Roseau County, Hydrologic Unit 09020314, on left bank 0.3 mi downstream from South Fork and 1.5 mi northwest of Malung.

DRAINAGE AREA.--573 mi².

PERIOD OF RECORD.--October 1946 to current year.

REVISED RECORDS.--WSP 2113: 1948, 1950, 1951, 1956(M), 1957(M), 1962(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,029.67 ft, adjustment of 1912.

REMARKS.--Records poor. Some flow bypasses the gaging station through a natural overflow channel 0.8 mi upstream and returns to river 0.5 mi downstream. Overflow begins at stage of about 13.0 ft, discharge, 1,800 ft³/s.

These records include any flow in the overflow channel

These records include any flow in the overflow channel.

111050		2,101440 4	, 110 1		51110W GIIG							
		DISCHAR	GE, CUBIC	FEET PER	R SECOND, P DAILY	WATER YE MEAN V	EAR OCTOBEI ALUES	R 1990 T) SEPTEMBE	R 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	-02	.06	. 20	. 20	.15	.07	2.4	8.3	30	e120	30	.37
2	.02	.06	. 62	. 20	.15	.06	2.8	9.5	21	e180	24	.39
3	.02	.06	.76	. 19	. 16	.07	3.7	9.8	14	e270	24 24	.43 .46
4 5	.02 .02	.07 .07	.33 .23	. 20 . 20	. 14 . 13	.06 .06	4.7 7.7	12 14	10 7.8	e400 e600	18	.49
6 7	.02 .02	.07 .07	.20 .18	.20 .20	. 13 . 12	.06 .05	6.7 8.9	19 23	6.9 5.3	e750 e800	16 13	.60 .82
8	.02	.08	.17	.20	.12	.05	11	31	5.4	e830	10	3. 3
ğ	.02	.09	.16	.21	.13	.05	9.4	29	2.4	e860	7.4	15
10	.02	. 10	. 17	.21	.12	.05	9.4	38	1.8	e830	5.6	16
11	.02	.12	. 17	.21	.11	.05	8.3	32	1.4	e750	3.6	42
12	.02	.12	. 20	.21	.11	.05	5.8	26	1.3	e600	2.7	54
13	.02	. 12	. 20	.21	. 10	.04	3.9	31	133	e480	2.2	41
14	.02	. 17	.18	.21	.10	.04	4.6	29	795	e390	1.2	32
15	.02	. 23	.18	.21	.10	.04	5.0	22	823	e310	. 67	33
16	.02	. 24	.18	.20	.09	.04	4.3	14	439	e250	1.1	133
17	.02	.22	.19	.20	.09	.04	5.2	12	174	198	1.6	426
18	.03	.21	.19	.20	.08	.05	7.0	8.9	101	172	8.5	449
19 20	.03 .03	.21 .21	. 17 . 17	.21 .20	.08 .09	.06 .09	6.0 5.2	6.8 5.6	63 44	149 129	26 17	378 274
	.00				.00							
21	.03	. 23	. 19	. 20	.09	. 14	5.0	4.3	33	114	11	208
22	.03	. 24	. 19	.20	.08	.16 2.3	5.0 4.4	5.3 35	26 18	108 107	8.8 4.2	181 16 9
23 24	.04 .04	.23 .22	.19 .18	.18 .17	.08 .08	3.2	3.9	76	14	103	2.8	187
25	.04	. 23	.18	. 17	.08	3.2 3.5	3.5	161	14	95	2.7	192
26	40	.23	.18	17	0.0	4.1	3.3	182	28	84	2.8	161
27	.04 .04	.23	.18	.17 .17	.08 .08	3.6	3.6	133	54	71	3.0	148
28	.05	. 22	.18	. 17	.07	3.4	4.3	92	52	61	2.4	143
29	.05	.20	.19	.16		2.7	4.6	69	52	51	. 63	135
30 31	.05 .06	. 20	.20 .20	.16		2.0 2.4	8.3	53 44	e90	44 37	. 53 . 36	127
TOTAL	0.90	4.81	6.91	5.98	2.95	28.58	167.9	1235.5	3060.3	9943	275.79	3550.86
MEAN	.029	. 16	.22	. 19	.11	.92	5.60	39.9	102	321	8.90	118
MAX	.06	. 24	. 76	.21	.16	4.1	. 11	182	823	860	30	449
MIN	.02	.06	.16	.16	.07	04	2.4	4.3	1.3	37 19720	.36	.37 7040
AC-FT CFSM	1.8 .00	9.5 .00	.00	12 .00	5.9 .00	.57 .00	333 .01	2450 .07	6070 .18	.56	547 .02	.21
IN.	.00	.00	.00	.00	.00	.00	.01	.08	.20	.65	.02	. 23
OT L TTO	TCC OF MO	NITTIT V MEA	N DATA 70	D 1347777 V	FADE 1047	- 1001	DV LIATED	VEAD (US	7 \			
21V1121	ICS OF MO	MINLI MEA	N DAIA PO	K WAIEK I	EARS 1947	- 1991,	, BY WATER	IEAR (W.	.,			
MEAN	67.9	43.4	14.1	6.83	5.13	49.9	589	305	231	149	58.1	69.4
MAX	351	229	51.1	21.0	14.4	345	2035	1589	1140 1968	1152 1968	585 1968	710 1957
(WY) MIN	1983 .029	1957 .16	1978 .013	1966 .000	1986 .000	1986 .83	1966 5.60	1950 8.77	4.16	.092	.000	.025
(WY)	1991	1991	1977	1977	1977	1977	1991	1990	1980	1980	1961	1988
	STATISTI			990 CALEN		1	FOR 1991 W	ATER YEAR	ì.	WATER Y	EARS 194	7 - 1991
ANNUAL				2615.89		_	18283.48		-			
ANNUAL				7.17			50.1	o .		132a		
	ANNUAL M	EAN		,,,,,						304		1950
	ANNUAL ME								_	7.2	88	1990
HIGHEST	DAILY ME	AN		. 70	Apr 1		860	Jul 9 2 Oct) 1-17	5670	Jul	18 1968
ANNIIAI	DAILY MEA SEVEN-DAY	MINTMIM			Jan 16 Jan 16		. 02	2 Oct 1	,	0.	10 Jul	23 1961 23 1961
	ANEOUS PE			78	Apr 1		898	2 Oct 1 Jun 1	•	5750	Jul	18 1968
INSTANT	ANEOUS PE	AK STAGE		5.49	Apr 1		9.10	0 Jun 14 2 Oct :		23.3	7b Apr	3 1966
	ANEOUS LO			.00 5190	Apr 1 Many day	y s	.02	2 Oct :	1-17,18	06700	o Man	y days
	RUNOFF (A RUNOFF (C			.01			36270 .08			95790 .2		
ANNIIAI.	RUNOFF (I	NCHES)		.17	j		1.19			3.1		
	ENT EXCEE			23			138			302		'
50 PERC	ENT EXCEE	DS		.20)		.76			15		
90 PERC	ENT EXCEE	. ชน.		.01	L .		.05	2		1.2	•	

a Median of annual mean discharges is 110 ft3/s

b Backwater from ice.
e Estimated.

05106500 ROSEAU RIVER AT ROSEAU LAKE, MN

LOCATION.--Lat 48°54'22", long 95°49'55", in SW\sW\sec.28, T.163 N., R.40 W., Roseau County, Hydrologic Unit 09020314, at downstream side of bridge on County Road 123 at Roseau Lake, 3.5 mi upstream from Pine Creek, 3.8 mi downstream from Sprague Creek, and 7 mi northwest of Roseau.

PERIOD OF RECORD. -- November 1939 to September 1991 (incomplete, discontinued).

GAGE.--Water-stage recorder. Datum of gage is 1,018.59 ft, adjustment of 1928 (levels by Geodetic Survey of Canada); gage readings have been reduced to elevations, adjustment of 1928. Prior to Aug. 26, 1970, and Oct. 18, 1979 to Sept. 30, 1980, nonrecording gage at same site and datum.

EXTREMES FOR PERIOD OF RECORD. --Maximum elevation observed, 1,036.86 ft, May 13, 1950; minimum observed, 1,019.75 ft, Aug. 16, 1941.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in July 1919 reached an elevation of about 1,034 ft.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,030.75 ft, July 10; minimum observed, 1,020.68 ft, Jan. 15, but may have been lower during period of no gage-height record.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									22.78	28.38	23.39	
2									22.50	29.57	22.78	
3			21.06							29.92	22.40	
4										30.21		
5								22.31		30.39		
6								22.38		30.53		
7								22.51		30.59		
8							21.80	22.66		30.61		
9								22.67		30.68		22.33
10								22.65		30.73		22.99
11								22.83		30.66		22.64
12								22.59		30.63		22.38
13								22.43		30.54		22.30
14								22.35	22.97	30.38		
15				20.68				22.30	28.80	30.21		
16								22,29	28.31	30.06		22.97
17									27.30	29.83		26.53
18									26.66	29.56		27.33
19									26.08	29.23		27.37
20						20.86		21.62	25.50	28.89		27.05
21									24.97	28.51	21.21	26.83
22									24.42	28.12		26.79
23	20.96								23.81	27.74		27.01
24								23.74	23.21	27.42		27.06
25								24.26	22.86	27.03		27.09
26					20.89			24.76	24,20	26.63		27.03
27								24.79	26.27	26.17		26.83
28								24.34	26.79	25.70		26.62
29								23.78	26.86	25.24		26.39
30								23.34	26.98	24.70		26.05
31								23.02	20.30	24.04		20.03
MEAN										28.80		
MAX										30.73		
MIN										24.04		

NOTE: Add 1,000 ft to obtain elevations in adjustment of 1928. Gage height below intake elevation of 1,022.29 ft (gage height, 22,29 ft) Oct. 1-23, Mar. 20 to May 4, May 17-23, June 3-13, Aug. 4 to Sept. 8, Sept. 14, 15. No winter record.

RED RIVER OF THE NORTH BASIN 05107500 ROSEAU RIVER AT ROSS, MN

LOCATION.--Lat 48°54'37", long 95°55'18", in NE\set sec.27, T.163 N., R.41 W., Roseau County, Hydrologic Unit 09020314, on left bank 300 ft downstream from highway bridge, 0.2 mi north of Ross, and 2.3 mi downstream from Pine Creek.

DRAINAGE AREA.--1,220 mi², approximately.

PERIOD OF RECORD.--July 1928 to September 1991 (discontinued).

REVISED RECORDS.--WSF 1055: 1945. WSF 1175: Drainage area. WSF 1308: 1936(M). WSF 1508: 1948-49(P).

GAGE.--Water-stage recorder. Datum of gage is 1,018.61 ft above National Geodetic Vertical Datum of 1929 (levels by Geodetic Survey of Canada). Prior to Mar. 13, 1929, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. High flow affected by natural storage in Roseau Lake.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, about 19 ft in 1896. Other outstanding floods reached the following stages, from information by local residents: flood of July 1919, 17.5 ft; flood of 1927, about 16 ft.

	DISCHARGE	, CUBIC	FEET PER	SECOND, DAIL	WATER Y	EAR OCTOBER ALUES	1990 TO	SEPTEMBER	1991		
DAY OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 .84 2 .88 3 .96 4 .95 5 .88	2.3 2.2 2.1 2.0 2.0	2.1 2.4 2.4 2.0 1.9	1.0 1.0 1.0 1.0	.80 .67 .67 .67	.81 e.80 e.80 e.80 e.80	e32 e30 e45 e60 95	31 45 48 60 97	148 125 103 83 69	734 897 945 989 1040	205 154 115 92 86	2.6 2.4 2.3 2.2 2.0
6 1.0 7 1.2 8 1.2 9 1.2 10 1.3	1.9 1.9 1.9 1.9	1.7 1.5 1.3 1.3	.91 .84 .80 .85	.80 .88 .88 .96	e.80 e.80 e.80 e.80	107 89 63 44 35	115 128 144 148 144	58 48 40 34 27	1110 1160 1180 1200 1220	73 63 55 49 43	1.8 1.6 2.0 97 188
11 1.3 12 1.4 13 1.5 14 1.7 15 1.9	1.8 1.6 1.5 1.6 1.5	1.1 1.2 1.3 1.2	.80 .80 .80 .80	1.1 .93 .96 e.90 e.85	e.80 e.80 e.80 e.80	29 22 15 14 19	159 141 123 115 108	20 16 38 458 744	1220 1230 1220 1180 1140	37 30 24 20 16	162 134 123 109 95
16 2.0 17 2.0 18 2.3 19 3.1 20 3.0	1.4 1.4 1.6 1.7	1.5 1.5 1.2 1.2	. 80 . 80 . 88 . 88 . 88	e.80 e.80 e.80 .73 .67	e.80 e.80 e1.0 e1.5 2.2	22 28 30 29 24	99 83 68 58 49	721 591 505 445 386	1100 1050 1000 939 877	16 33 40 30 33	203 574 706 714 669
21 2.9 22 2.9 23 2.9 24 2.7 25 2.6	1.8 2.1 2.2 2.1 2.1	1.2 1.3 1.3 1.3	. 96 . 96 . 96 . 96 . 96	.67 .75 .80 .94 .85	2.2 3.5 e7.0 e15 e30	18 15 13 12 12	43 39 78 213 262	337 290 239 189 159	810 740 677 629 568	32 24 18 13 7.2	635 631 673 678 673
26 2.5 27 2.5 28 2.5 29 2.5 30 2.4 31 2.3	2.0 2.0 2.0 1.9	1.2 1.2 1.3 1.3	. 96 . 96 . 96 . 96 . 88 . 88	.75 .67 .83	e40 e50 e48 e45 e40 e35	9.6 9.6 9.5 11	305 314 280 234 197 169	251 439 507 522 542	510 458 408 363 317 261	5.5 4.7 3.7 3.4 3.0 2.7	664 633 596 560 533
TOTAL 59.31 MEAN 1.91 MAX 3.1 MIN .84 AC-FT 118 CFSM .00 IN .00	1.86 2.3 1.4 111 .00	44.2 1.43 2.4 1.1 88 .00	27.89 .90 1.0 .80 .55 .00	22.76 .81 1.1 .67 45 .00	334.01 10.8 50 .80 663 .01	962.2 32.1 107 9.6 1910 .03 .03 , BY WATER	4097 132 314 31 8130 .11 .12	8134 271 744 16 16130 .22 .25	27172 877 1230 261 53900 .72 .83	1331.2 42.9 205 2.7 2640 .04	10066.9 336 714 1.6 19970 .28 .31
STATISTICS OF MON MEAN 131 MAX 974 (WY) 1942 MIN 1.91 (WY) 1991 SUMMARY STATISTIC ANNUAL TOTAL	87.9 512 1957 1.63 1977	29.5 107 1978 .27	14.5 57.7 1966 .001 1977 1990 CALENI 16252.59	11.3 27.8 1981 .000	78.6 551 1946 2.76	848 3234 1966 32.1 1991 FOR 1991 WA' 52307.27	855 4583 1950 29.5 1988	467 2258 1970 6.83 1980		121 1352 1968 .84 1961 EARS 192	135 1041 1968 .38 1990 9 - 1991
ANNUAL MEAN HIGHEST ANNUAL MEA HIGHEST ANNUAL MEA HIGHEST DAILY MEA LOWEST DAILY MEA ANNUAL SEVEN-DAY INSTANTANEOUS PEA INSTANTANEOUS PEA INSTANTANEOUS PEA ANNUAL RUNOFF (AC ANNUAL RUNOFF (CE ANNUAL RUNOFF (INSTANUAL RUNOFF (INS	AN AN AN AN AN MINIMUM AK FLOW AK STAGE AFLOW FLOW FST) FSM) NCHES)		310 7.15	Sep 11 Apr 1 b Apr 1 Sep 12		.74 1240 11.22	Jul 12 Many da	ys	255a 725 28.9 6510 .0 6560 18.2 185000 .2 2.8 829 35	May 0 Aug 0 Jan May 5 May 0 Man	1950 1934 12 1950 29 1961 3 1977 12 1950 12 1950 y days

a Median of annual mean discharges is 230 ft^3/s . b Backwater from ice.

e Estimated.

RED RIVER OF THE NORTH BASIN 05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN (International gaging station)

ATION.--Lat 48°58'54", long 96°27'46", in SE\SW\ sec.34, T.164 N., R.45 W., Kittson County, Hydrologic Unit 09020314, on left bank 400 ft downstream from State ditch 51 (known locally as Caribou cutoff ditch) and LOCATION. -0.6 mi west of Caribou.
DRAINAGE AREA.--1,570 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --April to October 1917, April 1920 to current year (no winter records in water years 1931, 1932, 1934-36, 1938-40, 1944-72). Published as "at Caribou," prior to April 1929; as "below Cutoff ditch, near Caribou" April 1929 to September 1936. Records published for both sites April 1929 to September 1930. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. --WSP 1308: 1938(M). WSP 1508: 1917(M), 1920, 1932(M), 1934-35(M). WSP 1913: 1954(M).

GAGE. --Water-stage recorder. Datum of gage is 1,002.31 ft above National Geodetic Vertical Datum of 1929 (levels by Geodetic Survey of Canada). Prior to Apr. 1, 1929, nonrecording gage at site at Caribou 0.6 mi upstream at datum 0.95 ft lower.

REMARKS. --Records fair except those for estimated daily discharges, which are poor. Satellite telemeter at station. Occasionally, at high stages, there is some natural diversion of flow above station to headwaters of Two Rivers.

Two Rivers.

COOPERATION.--This station is one of the international gaging stations maintained by the United States under agreement with Canada.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of 1916 is reported to have reached a stage of about 15.5 ft at former site. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
						•			100	700		
1	. 15 . 15	. 25 . 27	.45 .41	e.25 e.20	e.06 e.06	e.06 e.06	61 58	38 42 49 60 63 81 96 106 117 121 119 125 119 104 99 94 87 78 67 56 53 53 53 68 145 227 288 273 235 189	166 134	798 902	622 457	8.0 8.7
2 3	.15	.20	.35	e. 18	e.06	9.06	56	44	110	995	327	8.7
4	.14	.16	.33	e.16	e.06	9.06	50 60	49 60	90	997	235	7.5
5	.10	.16	.34	e.14	e.06	9.00	64	63	75	1000	170	6.6
5	.15	.17	.36	e.13	e.06	9.00	85	81	62	1030	139	6.3
7	.14	.15	.37	e.12	e.06	e.05	93	96	53	1040	118	6.4
8	.10	.15	.39	e.11	e.05	9.00	87	106	46	1060	106	9.2
ğ	.10		.41	e.10	e.06	e 06	73	117	46 42 39 34 31 29 30 211	1080	89	21
10	.07		.45	•.09	•.06	• 06	56	121	39	1100	77	64
īĭ	.10	.10	. 52	e,08	e.06	e.06	44	119	34	1120	67	171
12	.05	.05	. 63	e.07	e.06	e.06	37	125	31	1170	57	159
13	.09	.04	. 66	e.07	e.06	e.06	32	119	29	1230	48	128
14	. 14	.06	.71	e.06	e.06	e.06	30	104	30	1260	39	115
15	.15	. 10	.75	e.06	e.06	e.06	28	99	211	1290	34	100
16	. 14	. 12	.80	e.06	e.06	e.06	27	94	400	1310	30	116
17	. 10	.08	. 63	e.06	e.06	e.06	28	87	571	1330	27	322
16	.10	. 10	.79	e.06	e.05	e.07	32	78	595	1330	27	603
19	12	.08	.75	e.06	e.06	e.50	34	67	572	1330	37	735
20	.10	.10	.76	e.06	e.06	e2.0	37	56	532	1320	35	770
21	.10	.20	. 68	e.06	e.06	5.6	34	53	476	1310	32	768
22	. 10	. 36	. 65	e.06	e.06	7.2	34	53	407	1310	32	767
23	.10	. 54	. 59	e.06	•.06	9.3	31	64	337	1290	31	776
24	.10	. 62	. 55	e.06	e.06	6.4	28	68	270	1260	26	789
25	.09	. 68	. 53	e.06	e.06	11	25	145	229	1230	23	792
26	. 11	.62	. 52	e.06	e.06	12	24	224	247	1190	21	793
27	.20	. 60	. 46	•.06	•.06	17	32	271	311	1140	20	776
28	. 14	. 57	.36	e.06	e.06	32	34	288	452	1060	16	742
29	. 17	.51	. 35	e.06		51	30	2/3	563	1010	15	703
30	.20	. 50	.31	e.06		58	37	235	640	912	11	666
31	.20	7.79 .26	.27	e.06 2.78 .090 .25 .06 5.5		62		189		783	9.1	10937.4
TOTAL MEAN	3.85	7.79	10.33	2.78	1.00	2//.09	1331	3588	7822 261	35207 1136	2977.1 96.0	365
MAX	.12	.26	. 53	.090	. 050	8.94	44.4		640	1330	622	793
MIN	. 20	. 68 . 04	. 83	. 23	.06	02	93	288 38	20	783	9.1	6.3
AC-FT	.05 7.6	15	.4/	.00	.00	.00	2640	38 7120	15510	69830	5910	21690
CFSM	.00	.00	.00	.00	.00	.01	.03	.07	.17	.72	.06	.23
IN.	.00		.00	.00	.00	.01	.03	.09	.19	,83	.07	.26
						7 - 1001	RV WATE	D VEAD (WV)	. 10	.00	.07	.20
MEAN	162	MONTHLY MEAN 102 382 1927 .26 1991 STICS L MEAN MEAN MEAN	41 7	23 1	18.6	98.8	780	908	572	390	140	156
MAX	1302	382	226	134	75 1	446	2167	3029	2588	1653	1577	1451
(WY)	1942	1927	1927	1927	1927	1946	1966	1950	1970	1968	1968	1968
MIN	. 12	.26	. 53	.090	.060	1.57	38 2	26.9	6 70	65	2.09	.30
(WY)	1991	1991	1991	1991	1991	1989	1981	1988	1980	1980	1936	1990
SUMMARY	Y STATIS	STICS	FOR	1990 CAL	ENDAR YEAR		FOR 1991	1988 WATER YEAR	1980	WATER	YEARS 191	7 - 1991
ANNUAL	TOTAL			21153.	97		62172.	02				
ANNUAL	MEAN			58.	0		170			2/3		
HIGHES!	LAUNNA 1	L MEAN								683		1927
LOWEST	ANNUAL	MEAN								35.	. 9	1977
HIGHEST	r Daily	MEAN		390	Apr 3	l	1330	Jul 17		4020	May	19 1950
LOWEST	DAILY P	MEAN		•	00 Sep 15	5		04 Nov 13			.00 Sep	15 1990
ANNUAL	SEVEN-I	DAY MINIMUM		• • • • • • • • • • • • • • • • • • • •	04 Sep 12	2		06 Jan 14			.04 Sep	12 1990
INSTAN	TANEOUS	PEAK FLOW		400	Apr 3	}	1340	Jul 18,	19	4080	May	19 1950
INSTAN	TANEOUS	PEAK STAGE		6.	40a Apr 3	1	7.	35 Jul 18,	19	11.	.81 May	19 1950
INSTAN	TANEOUS	LOW FLOW		• • • • • • • • • • • • • • • • • • • •	00 Sep 15	5-17		00Þ			.00c	
ANNUAL	RUNOFF	(AC-FT)		41960			123300			197500		
ANNUAL	RUNOFF	(CFSM)		•	037		٠.	11		_,	. 17	
ANNUAL	KUNOFF	(INCHES)		100	20		1.	4/		2.	. 30	
TO PERC	CENT EXC	CEEDS		199	71		//2	•		1190		
OO PERC	CENT EXC	CEEDS		•	/ <u>1</u>		9.	4 06		70	0	
an bek	CENT EX	L MEAN MEAN MEAN MEAN DAY MINIMUM PEAK FLOW PEAK STAGE LOW FLOW (AC-FT) (CFSM) (INCHES) CEEDS CEEDS CEEDS r from ice.		•	10		•	VO		8.	. •	
a Ba	ackwate:	r from ice.	. dev (not 12 1	and No.	. 13						

Estimated.

Occurred Part of each day Oct. 12, 13, and Nov. 13.
Occurred Aug. 13, 1936, Sept. 15-17, and part of each day Oct. 12, 13, and Nov. 13, 1990.

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NR CARIBOU, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1972 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT 23	1315	0.12	468	479	8.5	8.2	4.5	1.5	734	12.4	K2
JAN 15	0915	0.06	1150	1020	7.6	7.7	1.0	3.8	728	3.0	<1
APR 02	0945	63	385	419	7.8	7.7	2.0	3.0	735	7.7	240
JUL 16	1600	1260	377	373	6.9	7.4	25.5	2.5	722	0.8	77
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
OCT 23	35	48	29	10	3.0	208	220	4	245	48	9.3
JAN 15 APR	1	130	61	26	7.0	526	531	0	642	72	13
02 JUL	K13	43	20	14	5.2	163	170	0	199	27	10
16	K650	52	17	4.1	4.7	185	187	0	226	10	4.5
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)
OCT 23 JAN	0.2	0.99	280	<0.01	<0.10	0.02	<0.01	0.8	0.03	0.02	0.01
15 APR	0.3	17	704	<0.01	<0.10	0.23	0.23	2.3	0.14	<0.01	<0.01
02 JUL	0.1	8.9	250	0.04	0.47	0.19	0.17	1.3	0.10	0.03	0.03
16	0.1	30	287	0.01	<0.05	0.06	0.11	2.2	0.24	0.14	0.14

RED RIVER OF THE NORTH BASIN 05112000 ROSEAU RIVER BELOW STATE DITCH 51 NR CARIBOU, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)
OCT											
23 JAN	20	1	26	<0.5	<1.0	2	<3	2	27	<1	14
15 APR	10	2	130	<0.5	<1.0	<1	<3	1	69	<1	29
02	10	<1	38	<0.5	<1.0	<1	<3	2	160	1	11
JUL 16	10	3	52	<0.5	<1.0	2	<3	2	320	<1	11
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM (70331)
OCT 23 JAN	14	<0.1	<10	1	<1	<1.0	150	<6	10	6	82
15 APR	2000	<0.1	<10	2	<1	<1.0	340	<6	16	93	59
02	110	<0.1	<10	1	<1	<1.0	120	<6	17	4	81
JUL 16	230	<0.1	<10	.2	<2	<1.0	100	<6	17	15	83

LAKE OF THE WOODS BASIN

05124480 KAWISHIWI RIVER NEAR ELY, MN (Hydrologic bench-mark station)

LOCATION. -- Lat 47°55'22", long 91°32'06", in SE\SE\ sec.24, T.63 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on left bank upstream from rapids, 2 mi upstream from South Kawishiwi River, 2.2 mi southwest of Fernberg Lookout Tower and 14 mi east of Ely.
DRAINAGE AREA. --253 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,450 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good.

		DISCHARG	E, CUBI	C FEET PER	SECOND, W	ATER Y	YEAR OCTOBER VALUES	1990 TO	se ptem ber	1991		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	37 36 41 43 42	45 45 44 42 42	41 41 41 40 41	58 58 58 58 58	60 59 59 59 59	48 48 48 48	52 52 56 70 90	489 486 486 484 481	286 273 259 243 229	143 144 146 155 159	109 105 101 98 93	36 35 37 35 33
6 7 8 9 10	39 38 36 35 33	42 41 40 39 38	41 41 42 42	58 58 60 63 61	59 58 58 57 55	50 49 49 49	149 161	501 507 509 512 508	217 206 195 189 201	160 159 154 150 148	88 83 79 76 72	33 32 34 39 41
11 12 13 14 15	32 32 31 31 31	37 36 36 35 36	43 45 47 47 47	60 61 62 63 64	54 53 53 54 53	48 47 46 46 45	232	501 507 504 494 486	187 176 166 160 166	143 143 144 139 133	70 67 64 62 59	39 38 37 37 37
16 17 18 19 20	30 34 40 41 41	36 35 35 35 35	48 48 48 53	63 65 64 64 63	52 52 52 54 54	45 44 44 44		478 459 443 427 411	195 184 174 163 155	129 131 130 126 122	58 61 60 57 54	37 38 40 40 38
21 22 23 24 25	41 42 42 41 41	37 36 36 35 35	56 58 58 58 58	62 62 62 62 61	55 55 54 54 54	44 43 48 50 50	433 446	399 386 382 382 363	148 139 132 124 120	119 113 104 100 96	52 51 50 50 50	37 35 34 33 37
26 27 28 29 30 31 TOTAL MEAN MAX MIN AC-FT CFSM	42 43 44 44 44 1191 38.4 30 2360 .15	35 38 41 41 41 1149 38.3 45 35 2280 .15	57 57 58 58 58 58 1519 49.0 58 40 3010	60 61 61 60 60 1890 61.0 65 58 3750	53 52 50 1541 55.0 60 50 3060 .22	51 54 54 53 52 1492 48.1 54 43 2960	466 471 473 483 8232 274 483 52 16330 1.08	348 336 323 318 313 300 13523 436 512 300 26820 1.72	119 121 119 136 138 5320 177 286 119 10550	91 88 98 104 108 111 3990 129 160 88 7910	50 48 46 442 39 2038 65.7 109 4040 626	39 38 37 36 36 1098 36.6 41 32 2180 .14
MEAN MAX (WY) MIN (WY)	165 881 1978 12.1 1977	176 684 1971 9.43 1977	137 345 1983 7.25 1977	92.3 163 1984 5.32 1977	67.9 107 1971 4.77 1977	.22 - 199 56.4 85.2 1969 5.87 1977	1, BY WATER 251 785 1976 8.95 1977	663 1133 1979 13.3 1977	.78 392 1069 1970 115	.59 196 467 1968 74.5 1980	.30 145 758 1988 46.7 1976	150 698 1988 18.5 1976
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		EAN AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS	FOR	1990 CALEN 66124 181 1240 30 31 1260 5.54 30 131200 .72 9.72 417 57	May 3 Oct 16 Oct 10 May 2 May 2 Oct 15,1	16,17	FOR 1991 WA 42983 118 512 30 31 512 4.55 30 85260 .47 6.32 354 58 36	May 9 Oct 16 Oct 10 May 8, 5 May 8, Oct 15,	9,10 9,10 16,17	209 313 94.5 1710 4.5 1720 5.92 4.5c 151200 82 11.21 530 107 36	Apr 2	1971 1977 4 1976 1 1977 3 1977 4 1976

c Occurred all or part of each day Jan. 30 to Feb. 2, 1977.

05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued (Hydrologic bench-mark station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1966 to current year.

REMARKS.--Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT 03	1100	41	29	31	7.1	7.4	12.5	1.6	693	9.8	<1
JAN 29	1300	63	30	34	7.0	7.8	0.0	1.0	721	11.3	<1
MAY 01	1115	480	24	35	6.2	6.9	8.5	1.4	799	10.7	K1
JUL 30	1330	103	29	32	7.0	7.1	21.0	1.1	716	7.1	К6
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
OCT 03	230	3.2	1.5	1.1	0.4	10	11	0	12	2.5	0.5
JAN 29	К8	3.1	1.5	1.1	0.3	9	11	0	11	2.4	<0.1
MAY 01 JUL	K2	3.1	1.3	1.0	0.3	9	11	0	12	3.1	0.4
30	K1200	3.0	1.4	0.9	0.3	9	11	0	11	2.7	0.2
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)
OCT 03 JAN	0.1	3.0	37	<0.01	<0.10	<0.01	0.01	0.40	0.01	<0.01	<0.01
29 MAY	<0.1	2.6	21	0.01	<0.10	0.02	0.02	0.50	<0.01	<0.01	<0.01
01 JUL	<0.1	3.0	31	<0.01	0.06	0.02	0.02	0.50	0.03	<0.01	<0.01
30	<0.1	2.5	26	<0.01	<0.05	0.01	0.01	0.40	0.02	0.01	0.01

LAKE OF THE WOODS BASIN 05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)
ОСТ 03	<0.01	4	71	20	<1	6	0.7	<1.0
JAN 29	<0.01	0	100	20	<1	3	<0.5	<1.0
MAY 01	<0.01	9	82	30	<1	8	<0.5	<1.0
JUL 30	<0.01	2	86	20	<1	8	<0.5	<1.0
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)
OCT 03	1	<3	5	140	<1	<4	3	<0.1
JAN 29	<1	<3	20	210	1	<4	5	<0.1
MAY 01	8	<3	3	150	1	<4	6	<0.1
JUL 30	1	<3	3	110	<1	<4	3	<0.1
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	
OCT 03	<10	<1	<1	<1.0	13	<6	12	
JAN 29	<10	1	<1	<1.0	12	<6	9	
MAY 01 JUL	<10	1	<1	<1.0	11	<6	14	
30	<10	1	<1	<1.0	12	<6	4	
	RADIOCHEMI	CAL, ANAL	YSES, WAT	ER YEAR O	CTOBER 19	90 TO SEF	TEMBER 19	91
DATE	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
ОСТ 03	<0.6	<0.6	1.4	<0.6	1.4	<0.6	0.17	<0.01
JAN 29								
MAY 01	<0.6	<0.6	1.2	0.7	1.1	0.6	0.03	0.01
JUL 30								

05127000 KAWISHIWI RIVER NEAR WINTON, MN

LOCATION.--Lat 47°56'05", long 91°45'50", in NE'NWk sec.20, T.63 N., R.11 W., Lake County, Hydrologic Unit 09030001, Superior National Forest, at powerplant of Minnesota Power Co., just upstream from Fall Lake, and

1.8 mi east of Winton,
DRAINAGE AREA.--1,229 mi².

PERIOD OF RECORD.--June 1905 to June 1907, October 1912 to September 1919 (fragmentary), September 1923 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WDR MN-77-1: Drainage area.

REMARKS.--No estimated daily discharges. Records fair. Daily discharge computed from powerplant records. Flow regulated by powerplant and by Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, South Farm, and Garden Lakes

Garden Lakes.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

COOPERATION. -- Records collected by Minnesota Power Co., under general supervision of Geological Survey, in connection with a Federal Power Commission project.

		DISCHARGE	, COBIC	FEET PER	DAILY	MEAN VA	LUES	1990 10	SEFIEMBER	1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	118 118 321	958 959 959	444	444 444 444 444 444 443 419 423 422 422 422 407 399 399 399 399 399 399 399 399 399 39	399 399 399	397 397	674 788 787 786 670 475 476 700 896 952 953 953 954 956 957 959 960 1080 1480 1480 1480 1230 1230 1510	2110 2110 2110	1310 1220 1220	399 399 428	795 795 795	.00 .00 232
4 5	476 481	959 959 960 960 960 959 959	444	444	398 398	396 306	786 670	2110 2110	1220 1240	443 680	795 795	283 233
6	482	960	444	444	398	396	475 476	2270	960	798	794 794	234
7 8	223 127	960	444	419	398 398	395 395	700	2370 2700	959 960	000	648	.00
9 10	116 118	960 959	444 444	424 423	398 398	395 395	896 952	2880 2850	960 959	959 959	631 420	559 581
11 12	115 190	959 862	444 576	422 422	3 98 398	395 395	951 952	2840 2810	959 886	959 1570	398 398	582 574
13	.00	793 793	798 649	422	398 398	395 395	953 954	2740 2690	840 813	959 1570 2060 1920 1680	398 348 240	578
15	250 400	792 692	443	407	398	329	956	2680	795	1680 1460	240 231	.00 .00 284
16 17	200	397	443	399	398 397	.00	959 959	2310	795 795	1470	.00	341
18 19	622 797	397 397	443 443	399 399	397 397	278 396	959 959	2220 2110	795 794	1470 1470	233	280 273
20 21	827 883	397 397	444 444	399 399	397 39 7	396 396	960 1080	1940 1490	794 742	1470 1470	233 233	398 347
22 23	802 746	398 398	444	399 399	397 397	421 440	1480 1480	1220 1270	397 398	1170 920	232 232	.00 283
24 25	802 746 746 703	398	444	399	397 39 7	692	1180	1550	398	883	.00	399 398
26	694	398	444	399	397	789	1140	1550	398	830	240	399
27 28	839 839	398 39 9	444	399 399	39 7 397	789 789	1230 1230	1470 1470	398 398	795 795	248 244	399 398
29 30	694 839 839 913 958	397 397 397 397 398 398 398 398 398 398 398 398	444 444	399 399		706 394	1510 1910	1470 1470	398 399	1470 1470 1170 920 883 883 830 795 795 849 883 822	243 235	398 399
31	957		444	399		395		1470		822	243	
TOTAL MEAN	15260.00 492	20085	14450 466	12842 414 444 399 -138 276	11135	13583.00	29965	64660 2086	23498 783 1310 397 -80 703 .57 .64 FSM‡ .80	32590 1051	11891.00	8852.00 295
MAX	958 .00	20065 669 960 397 -22	798	444	399	834	999 1910 475 622 1621	2880	1310	2060	795	582
MIN †	109	-22	-128	-138	-130	-151	622	-44	-80	57	-83	52
MEAN : CFSM :	601 .49	647 .53	338 .28	276 . 22	268 .22	287 .23	1621 1.32	2042 1.66	703 . 5 7	.90	301 .24	.28
IN‡ CAL YR	.56 1990	.59 TOTAL 359,0	.32 18 MEA	.26	23 MAX 6660	.27 MIN	1.47 0 MEAN‡	1.92 988 C	.64 FSM: .80	1.04 IN# 1	.28 .0.91	.32
WTR YR	1991	TOTAL 258,8	11 MEA		MAX 2880		0 MEAN	714 C	FSM‡ .58	IN‡	7.89	
STATIS	TICS OF M	ONTHLY MEAN	DATA FOR	WATER Y	EARS 1905	- 1991,	BY WATER Y	TEAR (WY)				
MEAN MAX	906 4277	750 3572	582 1422	446 862	342 770	365 844	1185 5020	3122 9278	1963 5661	1126 2748		754 3149
(WY) MIN	1947 66.5	3572 1971 8.97 1924	1983	1978 80.3	1927 74.5	1945 103	1945 19.3	9278 1950 111 1924	1968 519	2748 1944 217 1961	1988 51.7	1928 38.1
(WY)	1924	1924	1977	1977	1977	1924	1924	1924	1980	1961	1919	1919
SUMMAR	Y STATIST	ics	FOR 19	90 CALENI	DAR YEAR	F	OR 1991 WAT	ER YEAR		WATER YE	ARS 1905	- 1991
ANNUAL ANNUAL	MEAN		3	59018.00 984			258811.00 709			1031 1967		1050
LOWEST	T ANNUAL M	MEAN EAN				_	2222	O		240	1	1950 1924
LOWEST	DAILY ME	lan An		.00	at times	, 5	2880	At time	s	.00	May 1 At ti	mes
ANNUAL ANNUAL	SEVEN-DA' RUNOFF (EAN EAN AN Y MINIMUM AC-FT) CFSM) INCHES) EDS EDS EDS	7	33 12100	Sep 6		95 513400	Oct 8		.00 746600	Oct 1	3 1923
ANNUAL ANNUAL	RUNOFF (CFSM) INCHES)		.80 10.87			.58 7.83			. 84 11. 39	1	
10 PER	CENT EXCE	EDS EDS		2610 480			1470 444			2450 587		
90 PER	CENT EXCE	EDS		97			243			186		

Change in contents, equivalent in cubic feet per second, in Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, Farm, South Farm and Garden Lakes.

Adjusted for change in reservoir content.

05127500 BASSWOOD RIVER NEAR WINTON, MN (International gaging station)

LOCATION.--Lat 48°04'57", long 91°39'09", in SE\SE\s sc.30, T.65 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on island in Jackfish Bay of Basswood Lake, used to determine discharge at outlet [lat 48°06'21", long 91°38'51", in sec.19, T.65 N., R.10 W., on international boundary 14 mi northeast of Winton].

DRAINAGE AREA.--1,740 mi², approximately (above outlet of Basswood Lake).

PERIOD OF RECORD.--March to June 1924, September 1925 to March 1928, January 1930 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 955: Drainage area. WSP 1145: 1935, 1937.

GAGE.--Water-stage recorder. Datum of gage is 1,296.80 ft, 1928 datum, (levels by Geodetic Survey of Canada). Prior to Oct. 27, 1938, nonrecording gages at several sites in vicinity of gage, at datum 3.0 ft higher. Oct. 28, 1938, to Sept. 30, 1966, water-stage recorder at datum 3.0 ft higher.

REMARKS.--No estimated daily discharges. Records good. Satellite telemeter at station. Some regulation by powerplant on Kawishiwi River at Winton, and by many lakes located upstream from station.

COOPERATION.--This station is one of the international gaging stations maintained by the United States under agreement with Canada. agreement with Canada.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

		DISCHAR	GE, CUI	oic feet fer	DAILY	MEAN V	ALUES	A 1990 10	OLI ILII	TW 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	230	592	664	648	576	546	668	1740	2320	1330	1320	415
2	229	611	658	CLC	572	552	672 692 730 788 854	1800	2260	1320	1310	400
3	262	632	651 642 636	642	564	552 548 544 549	692	1870	2210	1360	1280	385
4 5 6	270	653	642	642	560	544	730	1920	2120	1400	1240	368
5	270	675	636	642	560	549	788	1990	2050	1420	1220	361 355
7	271 273	686 703	629 621	637	555	551	930	2110 2200	1970 1900	1400 1400	1190 1160	353
8	275	703 724	617	634 634 634	544	556	992	2310	1830	1400	1130	360
9	274	729	613	634	537	560	1040	2410	1770	1410	1100	364
10	271	735	608	634	551 544 537 530 529	560	1080	2530	1750	1420	1080	355
11	266	7.1	600	634	529	558	1130	2650	1690	1420	1040	356
12	264	753	623 632 642 650 653	630	529 529 528 528 527 524	549	1170	2830	1650	1460	1000	358
13	263	753 770 777 782 794 802 789 775	632	627	528	544	1210	2930	1580	1500	963	365
14	257	777	642	634	528	539	1250	3000	1530	1540	926	379
15 16	253 250	782	650	633	52/	536	1300 1330	3040 3120	1530 1540	1600 1630	890 861	379 375
17	272	/94 802	6/0	627	524 522	522	1360	3130	1510	1670	825	374
18	301	789	644	625	51Q	500	1390	3090	1480	1680	784	376
19	310	775	644 642	618	535	496	1410	3040	1440	1670	734	369
20	321	772	673	613	543	489	1420	2990	1420	1680	691	365
21	339	774	685	609	552	556 5560 5589 55449 5336 5322 5996 4820	1430	2930	1400	1680	648	361
22	362	752	702	613			1450	2850	1330	1650	613	349
23	378	723	698	605	560	517	1480	2770	1280	1600	595	344
24	399	723 715 700 700 695	690	601	560 560 560 557 554 550	532	1530	2770	1220	1570	575	341
25 26	422 442	700	683	505	56U	542	1550 1560	2700 2620	1170 1160	1530 1480	554 535	353 356
27	451	700 605	676	503	55/	580	1580	2560	1160	1450	516	355
28	483	693	667	588	550	609	1580	2500	1140	1470	498	352
29	508	691	659	587		631	1610	2460	1340	1450	475	355
30	533	680	659	630 627 634 633 631 627 618 613 609 613 600 593 588 587 584 576		517 532 542 565 589 609 631 654 661	1680	2420	1330	1420	453	360
31	563	700 695 693 691 680	698 690 683 681 676 659 659 656	576		661		2370		1370	437	
TOTAL	10262		20212		15286	17056	36866	79650	48080	46380	26643	10938
MEAN	331	721	652	620	546	550	1229	2569	1603	1496	859	365
MAX	563	721 802 592	652 702 608	620 648 576	576	661	1680	3130	2320	1680	1320	415
MIN	229	592	608	576	546 576 519	480	668	1740	1140	1320	437	341
AC-FT	20350	42880	40090	38110	30320	17056 550 661 480 33830	73120	158000	95370	91990	52850	21700
CFSM	.19	.41	.37	.36			. / -	1.48	.92	.86	.49	.21
IN.	.22	. 46	.43	.41	.33	.36	.79	1.70	1.03	.98	.57	. 23
		MEA	N DATA	FOR WATER Y	EARS 1931	- 1991	, BY WATER					
MEAN	1104	1011	857	711		562	1201	3749	2904	1770	1086	942
MAX	5320	3879	2510	1475	1229	1143	5069	9114 1950	7332 1950	4453 1944	3487 1944	5034 1988
(WY) MIN	1978 1,77	19/1	1 79	1 90	1229 1966 1.85	1966 2.02	1945 2.41	2.32	3.06	3.95	3.21	5.26
(WY)	1977	3879 1971 1.70 1977	2510 1983 1.78 1977	1475 1966 1.80 1977	1977	1977	1977	1977	1977	1977	1977	1977
									2071			
SUMMARY	YSTATIST	rics	FOR	1990 CALE	NDAR YEAR	1	FOR 1991 W	NATER YEAR		WATER Y	EARS 1931	- 1991
ANNUAL ANNUAL	TOTAL			487982 1337			352205 965	=		1398		
HIGHEST	r Annual	MEAN		1337						2612		1950
LOWEST	ANNUIAL N	AEAN								557		1958
HIGHEST	DAILY N	ÆAN		6170	May 11		3130	May 17		15200	May 2	24 1950
LOWEST	DAILY ME	EAN		229	Oct 2		229	Oct 2		58	Nov	3 1976
ANNUAL	SEVEN-DA	MUMINIM YA		235	Sep 26		258	Oct 1	'	58	Nov	7 1976
INSTANT	IANEOUS I	PEAK FLOW		6170 229 235 6210 6.5 ⁴ 226a 967900 .77	May 11		3130 229 258 3150 4.9 226	May 17 Oct 2 Oct 1 May 16, Oct 1,	1/	12600	May 2	4 1950
INSTANT	IANEOUS I	CLAK STAGE		6.54	May 11		4.9	May 16,	1/	55.8	No.	19 1076
ANNIIAT	TANEOUS I	OW FLOW		220a 967900			226 698600 .5	QUE I,	4	1013000	NOV	19/0
ANNIIAT	RUNOFF	CFSM)		. 71	7		590000	55		.8	10	
ANNUAL	RUNOFF	INCHES)		10.43	3		7.5	53		10.9	2	
10 PERC	CENT EXC	(CFSM) (INCHES) EDS		3440			1850			3270		
50 PERC	CENT EXC	EEDS		664			656			852		
90 PERC	CENT EXC	EEDS		321			361			371		

Occurred Sept. 29, Oct. 1, 2.

b Present datum.

05128000 NAMAKAN RIVER AT OUTLET OF LAC LA CROIX, ONTARIO

(International gaging station)

LOCATION.--Lat 48°21'14", long 92°13'01", at Campbell's Camp, on Lac La Croix Lake, used to determine discharge at outlet [Lat 48°23'00", long 92°10'40", 2.5 mi east of Campbell's Camp].

DRAINAGE AREA.--5,170 mi².

PERIOD OF RECORD.--September 1921 to January 1922, April 1922 to current year, in reports of Geological Survey.

Monthly discharge only for some periods, published in WSP 1308. August 1921 to current year, in reports of

Water Survey of Canada.

GAGE.--Water-stage recorder. Gage readings have been reduced to elevations, United States and Canada Boundary Survey datum. Prior to October 1933, nonrecording gages at various sites on Lac la Croix. October 1933 to Mar. 13, 1963, nonrecording gage at present site and datum.

REMARKS.--Records good. Satellite telemeter at station.

COOPERATION. -- This station is one of the international stations maintained by Canada under agreement with the United States.

		DISCHA	RGE, CUB	IC FEET PER	SECOND, DAILY	WATER MEAN	YEAR OCTOR	BER 1990 TO	SEPTEMBER	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1580	1500	1660	1760	1660	1550		5120	7030	4380	e3780	e2010
2 3	1590 1670	1480 1470	1650 1640	1760 1760	1660 1650	1540 1550	1560 1580	5260 5440	6920 6890	4310 4410		e1980 e1950
4	1640	1490	1640	1750	1640	1540	1610	5580	6750	4590		e1930
5	1670	1500	1660	1740	1630	1540	1670	5650	6600	4700	e3480	e1890
6	1640	1480	1660	1730	1630	1530	1740	5790	6460	4840	e3410	e1850
7	1630	1480	1670 1670	1730	1620 1610	1540 1540	1860	5900	6360	4940	e3340	e1820
8 9	1620 1600	1490 1470	1670 1670	1730 1740	1610 1600	1540 1540	2000 2160	6040 6140	6220 6140	4980	e3270	e1790 e1760
10	1570	1450	1660	1740	1590	1550	2310	6220	6110	5010 5010	e3210 e3150	e1730
11	1540	1460	1660	1740	1580	1550 1530	2460	6290	6000	5010		e1700
12	1530	1460 1470	1680	1740	1580	1520	2600	6390	5930	4980	e3020	e1670
13	1510	1490	1680	1740	1570	1510	2720	6430	5760	4940		e1650
14	1490	1490	1680	1740	1560	1510 1510	2890	6500	5620	e4870	e2900	e1610
15 16	1460 1470	1490 1510	1680 1680	1750 1740	1560 1550	1500	3080 3230	6530 6640	5440 5330	e4800 e4730	e2830 e2770	e1590 e1560
17	1490	1520	1680	1740	1550	1500	3400	6750	5260	e4660		e1540
18	1520	1530	1680	1740	1540	1500	3570	6750	5120	e4590		e1510
19	1540	1530	e1700	1720 1720	1550	1490	3710	6780	4980	e4560	e2600	1470
20	1510	1550	e1710	1720	1560	1490	3850	6780	4910	e4480		1430
21 22	1500	1550	1720 1760	1720 1710	1560 1580	1490	3990 4130	6820	4800	e4410		1400
23	1510 1490	1520 1500	1770	1710	1580	1480 1510	4130	6820 6920	4660 4560	e4340 e4270	e2450 e2410	1310 1330
24	1490	1550	1770	1700	1580	1540		7100	4450	4200	e2370	1320
25	1500	1550	1770	1700	1570	1540	4480	7170	4340	4100	e2330	1290
26	1490	1570	1760	1690	1560	1540	4590	7170	4410	4030	e2280	1300
27	1450	1610	1760	1690	1560	1550 1550	4700	7170	4450 4410	3990	e2250	1300
28	1490	1620	1760	1680	1550	1550	4730	7170	4410	4060	2210	1270
29 30	1490 1490	1650 1670	1760 1760	1680 1670		1550 1550	4870 5050	7130 7130	4450 4380	3990 3920	2160 2090	1280 1240
31	1500		1770	1670		1560		7100		e3850	e2040	
TOTAL	47670	45640	52770	53430	44430	47340	94750	200680	164740	139950	87720	47460
MEAN	1538	1521 1670	1702	1724 1760	1587	1527	3158	6474	5491	4515	2830	1582
MAX	1670	1670	1770	1760	1660	1560	5050	7170	7030	5010		2010
MIN	1450	1450	1640	1670	1540	1480		5120	4340	3850	2040	1240
AC-FT CFSM	94550 .30	90530 .29	104700 .33	106000 .33	88130 .31	93900		398000 1.25	326800 1.06	277600 .87	174000 .55	94140 .31
IN.	.34	.33	.38	.38	.32	.34	.68	1.44	1.19	1.01	.63	.34
				FOR WATER Y								
MEAN	2899	2741	2370	2060	1808	1603	2542	7643	8034	6100	3992	3061
MAX	11010	8370	7166	4514	3432	2996	9071	16900	22120	15930	11200	13140
(WY)	1942	1947	1971	1947	1966	1966	1945	1938	1950	1968	1944	1988
MIN	864	732	647	583	540	535	620	1110	1475	1263	1180	1223
(WY)	1937	1937	1924	1924	1924	1924		1924	1924	1924	1924	1933
ANNUAL		ICS	FOR	1990 CALEN	DAR YEAR		1026580	WATER YEAR			YEARS 1921	- 1991
ANNUAL	MEAN			3820			2813			3832		
HIGHEST	ANNUAL	MEAN								7270 964		1950 1924
HIGHEST	ANNUAL M	EAN		12700	May 10		7170	May 25		28200	May :	31 1950
LOWEST	DAILY ME	AN		1110	Mar 9		1240	Sep 30		535	Feb	4 1924
ANNUAL	SEVEN-DA	MINIMUM Y		1120	Mar 5		1290	Sep 24		535	Feb	4 1924
INSTANT	CANEOUS P	EAK FLOW_		12700a			7240	May 29		282001	b	
INSTANT	ANEOUS P	EAK STAGE		1188.32	May 19		1186.	May 25 Sep 30 Sep 24 May 29 .11 May 29 Sep 30		1193	.30b	
ANNITAT	AMEUUS L	OW FLOW		2766000 1100	mar. 9		3036000	Sep 30	3	710000	5	
ANNUAL	RUNOFF (CFSM)		.74			2000000	.54	2	, 10000	. 72	
ANNUAL	RUNOFF (INCHÉS)		10.03			7.	. 54 . 39		9.	. 83	
10 PERC	ENT EXCE	EDS		12700 1110 1120 12700a 1188.32 1100 2766000 .74 10.03 9370 1710 1210			5910			8180		
50 PERC	ENT EXCE	EDS		1710			1730			2510		
AO LEKC	ENT EACE	ENS		1210			1490			1160		

Occurred all or part of each day May 18-22. Occurred May 31 to June 2, 1950. Occurred at times in Feb., Mar., and Apr. 1924.

Estimated.

05129115 VERMILION RIVER NEAR CRANE LAKE, MN

LOCATION.--Lat 48°15'53", long 92°33'57", in NE\nE\s sec. 30, T.67 N., R.17 W., St. Louis County, Hydrologic Unit 09030002, in Superior National Forest, on left bank 350 ft downstream from bridge on Forest Route 491, 3.5 mi upstream from mouth, and 3.5 mi west of city of Crane Lake.

PERIOD OF RECORD. -- August 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,180 ft above National Geodectic Vertical Datum of 1929, from topographic map.

REMARKS. -- Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of April 1979 reached a stage of 15.15 ft, from high-water mark, discharge, about 4,500 ft³/s.

		DISCHA	RGE, CUBI	C FEET PER		WATER YE MEAN VA		R 1990 TO	SEPTEMBI	ER 1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	82	354	e212	e174	e158	163	347	1300	1140	661	708	211
2 3	79	351	e210	e174	e158	165	357 435	1350 1360	1100 1050	723 774	671 649	208 208
4	113 148	343 335	e208 e206	e172 e172	e156 e156	160 161	720	1350	994	1000	626	186
5	150	331	e204	e172	e156	167	1130	1360	944	1200	603	174
6 7	158 159	326 320	e201 e198	e172 e170	e156 e154	171 166	1380 1540	1440 1560	897 849	1290 1260	581 561	1 69 164
8	162	318	e195	e170	e154	167	1620	1620	807	1250	536	186
9 10	163 161	321 303	e193 e191	e170 e170	e152 e152	173 175	1590 1420	1610 1590	777 773	1200 1160	511 488	219 23 8
11	162	294	e190	e168	e152	176	1250	1550	728	1110	464	256
12	161	284	e188	e168	151	175	1100	1640	691	1060	443	283
13	160	275	e186	e168	151	174	984	1750	675	1060	425	304
14 15	159 158	274 275	e186 e184	e166 e166	152 148	172 168	935 1010	1740 1680	661 653	1080 1080	407 392	331 356
16	154	280	e184	e166	145	166	1090	1610	640	1080	390	384
17	168	276	e184	e164	143	164	1120	1520	609	1060	388	399
18 19	211 231	274 269	e182 e182	e164 e162	141 145	165 168	1110 1070	1450 1380	592 564	1050 1080	365 351	422 433
20	250	271	e180	e162	151	176	1040	1320	543	1060	339	438
21	266	284	e180	e160	156	190	994	1260	531	1030	326	451
22 23	281 296	290 276	e180 e180	e160 e158	158 156	202 215	955 942	1210 1190	514 496	998 952	306 289	457 439
24	305	257	e178	e158	157	220	943	1310	480	911	279	426
25	317	e240	e178	e158	156	230	950	1420	462	883	277	430
26 27	330 338	e235 e226	e178 e176	e158 e158	159 161	263 308	940 914	1430 1410	488 491	858 833	27 2 268	420 414
28	339	e222	e176	e158	159	328	918	1360	457	811	264	412
29	350	e218	e176	e158		340	920	1300	508	788	253	409
30 31	352 351	e214	e176 e174	e158 e158		351 353	1120	1250 1190	573 	766 7 46	238 220	431
TOTAL	6714	8536	5816	5112	4293	6372	30844	44510	20687	30814	12890	9858
MEAN	217	285	188	165	153	206	1028	1436	690	994	416	329
MAX	352	354	212	174	161	353	1620	1750	1140	1290	708	457
MIN AC-FT	79 1 3 320	214 16930	174 11540	158 10140	141 8520	160 12640	347 61180	1190 88290	457 41030	661 61120	220 25570	184 19550
STATIST	ICS OF M	ONTHLY MEA	N DATA F	OR WATER Y	EARS 1979	- 1991,	BY WATER	YEAR (WY)				
MEAN	584	497	388	268	225	268	1120	1405	1050	767	457	469
MAX	1175	1138	872	460	368	465	1641	2249	1840	1609	1612	1880
(WY) MIN	1986 181	1983 152	1983 116	1984 97.8	1984 94.1	1987 89.5	1986 627	1982 507	1985 205	1985 113	1988 60.0	1988 103
(WY)	1980	1988	1988	1988	1988	1988	1987	1980	1980	1980	1980	1984
SUMMARY	STATIST:	ics	FOR	1990 CALENI	DAR YEAR	F	OR 1991 W	ATER YEAR		WATER Y	EARS 1979	- 1991
ANNUAL ANNUAL HIGHEST		MEAN		223032 611			186446 511			628 806		1986
LOWEST	ANNUAL MI	ean		2520	Wa 1		1750	Man. 12		326	An- 1	1980
	DAILY ME			2520 78	May 1 Sep 29		1750 79	May 13 Oct 2		4300 38		25 1985 13 1980
ANNUAL	SEVEN-DAY	MUMINIM Y		81	Sep 26		127	Oct 1		40	Aug :	10 1980
	ANEOUS P	EAK FLOW EAK STAGE		2530 12.29	May 1 May 1		1780 10.72	May 13 2 May 13		4360 15.2		25 1985 25 1985
INSTANT	ANEOUS LO	OW FLOW		76	Sep 29		78	Oct 2		38		13,14, 1980
	RUNOFF (A			442400 1650			369800 1250			454900 1430		
50 PERC	ENT EXCE	EDS		296			305			404		
90 PERC	ENT EXCE	EDS		128			158			155		

e Estimated

05129290 GOLD PORTAGE OUTLET FROM KABETOGAMA LAKE NEAR RAY, MN

LOCATION.--Lat 48°31'28", long 93°04'29", in SWkNEk sec.30, T.70 N., R.21 W., St. Louis County, Hydrologic Unit 09030003, on right bank in bay at head of Gold Portage Outlet from Kabetogama Lake, 9.8 mi northeast of Ray.

PERIOD OF RECORD. -- October 1982 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,100 ft, adjustment of 1912 (U.S. Army Corps of Engineers bench mark), water surface transfer.

REMARKS.--Records good. Flow completely regulated by outlet dam on Namakan Lake.

		DISCHAR	Æ, CUBI	C FEET PER		WATER YE MEAN VA		R 1990 TO	SEPTEMBE	R 1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	423	289	102	45	7.9	00	.00	.12	247	602	542	548
Ž	440	267	100	44	6.9	.00	.00	.62	253	611	557	548
3	433	256	98	43	5.8	.00	.00	4.8	269	620	559	525
4	411	257	95	42	4.5	.00	.00	9.2	281	651	558	520
5	425	255 255	93	40	3.6	.00	.00	12	290	669	563	522
6	415	236	89	38	2.8	.00	.00	16	297	679	565	521
7	416	233	88	38	1.7	.00	.00	21	309	689	564	525
8	414	234	85	38	. 82	. 00	.00	28	322	693	554	534
9	413	211	83	35	.23	.00	.00	34	335	697	556	515
10	411	199	80	35	. 18	.00	.00	41	341	698	560	501
11	398	192	79	35	.16	.00	.00	45	358	693	563	507
12	394	191	77	34	.15	.00	.00	53	390	689	567	506
13	400	195	74	35	.13	.00	.00	57	399	677	567	500
14	383	187	75	32	.10	.00	.00	64	405	666	568	510
15	376	179	72	32	.09	.00	.00	71	414	659	569	501
					-							
16	377	171	70	31	.08	.00	.00	80	424	650	582	493
17	373	170	65	29	.03	.00	.00	89	447	651	573	499
18	371	162	63	29	.01	.00	.00	93	448	647	572	484
19	385	158	62	27	.00	. 00	. 00	96	451	622	577	481
20	374	161	62	24	.01	.00	.00	102	465	622	582	491
21	360	148	60	23	e.00	.00	. 00	107	480	620	573	496
22	369	134	59	22	e.00	.00	.00	115	477	585	563	459
23	350	120	58	19	e.00	.00	.00	134	483	558	566	454
24	340	127	57	18	e.00	.00	.00	162	486	563	580	463
25	340	120	55	17	e.00	.00	.00	185	498	571	57 6	438
26	332	126	54	16	e.00	.00	.01	196	529	567	568	432
27	298	121	55	14	e.00	.00	.08	203	540	571	565	438
28	312	115	52	11	e.00	. 00	. 07	212	545	581	569	434
29	306	113	49	11		. 00	. 10	222	568	571	564	446
30	297	110	48	9.8		. 00	. 13	229	584	574	550	419
31	296		48	8.1		. 00		238		546	555	
TOTAL	11632	5437	2207	874.9	35.19	0.00	0.39 2	2919.74	12335	19492	17527	14710
MEAN	375	181	71.2	28.2	1.26	.000	.013	94.2	411	629	565	490
MAX	440	289	102	45	7.9	.00	. 13	238	584	698	582	548
MIN	296	110	48	8.1	.00	.00	.00	.12	247	546	542	419
AC-FT	23070	10780	4380	1740	70	.00	.8	5790	24470	38660	34760	29180
										00000	04700	20100
STATIST	TICS OF M	ONTHLY MEAI	DATA F	OR WATER Y	EARS 1983	3 - 1991,	BY WATER	YEAR (WY)				
MEAN	399	191	70.8	12.5	. 95	. 000	. 39	127	376	579	590	549
MAX	530	267	127	45.1	7.34	.002	1.66	307	583	683	686	787
(WY)	1986	1990	1990	1990	1990	1990	1985	1986	1985	1985	1988	1988
MIN	285	115	16.5	1.10	.000	.000	.000	.000	96.0	432	519	431
(WY)	1985	1988	1988	1988	1983	1983	1983	1987	1987	1987	1986	1984
SUMMARY	Y STATIST	ics	FOR	1990 CALEN	DAR YEAR	F	OR 1991 W	ATER YEAR		WATER Y	EARS 1983	- 1991
ANNUAL	TOTAL.			95739.68	.		87170.22	2				
ANNUAL				262	-		239	_		243		
	C ANNUAL	MEAN								280		1986
	ANNUAL M									192		1987
	DAILY M			701	Jul 7		698	Jul 10		876	Sen :	22 1988
	DAILY ME			.00		.ve	.00		WE	.0	0 Many	days
		Y MINIMUM		.00		-, -	.00		-, -	.ŏ	O Jan	21 1983
	IANEOUS P			726	Jul 7		718	Jul 9		897		21 1988
		EAK STAGE		18.52			18.58			19.2	3 Sen	21 1988
	RUNOFF (189900			172900	B		175800	- neb	
	CENT EXCE			607			570			591		
	CENT EXCE			199			134		•	148		
	CENT EXCE			.00	1		.00	n		.0	n	
OU EDM	JANI DAVE			.00	•		. 00	•		.0	-	

e Estimated.

05129400 RAINY LAKE NEAR FORT FRANCES, ONTARIO (International gaging station)

- LOCATION .-- Lat 48°38'30", long 93°20'00", at Five Mile dock, approximately 5 mi northeast of city of Fort Frances.
- PERIOD OF RECORD.--January 1910 to September 1917 and October 1934 to current year, in reports of Geological Survey. August 1911 to current year, in reports of Water Survey of Canada. Prior to October 1949, published as "at Ranier, Minn.", and as "at Fort Frances, Ontario" October 1949 to September 1964.
- GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (United States and Canadian Boundary Survey). January 1910 to December 1949, nonrecording gage 3 mi northeast at Ranier, Minn., at same datum. January 1950 to October 1964, water-stage recorder on Government dock at Pither's Point at Fort Frances, and supplementary gage in town pumping station, 0.5 mi south, used during winter months, at same datum.
- COOPERATION. -- This station is one of the international gaging stations maintained by Canada under agreement with the United States.
- EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation observed, 1,112.97 ft, July 5, 1950; minimum observed, 1,101.26 ft, Apr. 17, 1923, Apr. 2, 1930.
- EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,108.06 ft, June 25, maximum daily elevation, 1,107.86 ft, July 12, 13; minimum, 1,105.48 ft, Apr. 3; minimum daily, 1,105.53 ft, Mar. 31 to Apr. 3.

MONTHEND ELEVATION, IN FEET NGVD, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

Oct. 31 1,106.94	Feb. 28 1,105.68	June 30 1,107.51
Nov. 30 1,107.17	Mar. 31 1,105.53	July 31 1,107.47
Dec. 31 1,106.70	Apr. 30 1,106.51	Aug. 31 1,107.19
Jan. 31 1.106.02	May 31 1.107.51	Sept. 30 1.106.87

NOTE. -- Elevations other than those shown are available.

05130500 STURGEON RIVER NEAR CHISHOLM, MN

LOCATION.--Lat 47°40'25", long 92°54'00", in NEkNWk sec.20, T.60 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, on left bank 1,000 ft upstream from highway bridge, 0.6 mi downstream from East Branch Sturgeon River, and 11.5 mi north of Chisholm. DRAINAGE AREA. -- 187 mi².

PERIOD OF RECORD. -- August 1942 to current year. REVISED RECORDS. -- WSP 1438: 1946. GAGE. -- Water-stage recorder. Datum of gage is

CAGE.--Water-stage recorder. Datum of gage is 1,305.7 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 24, 1944, nonrecording gage at site 1,000 ft downstream at different datum. Aug. 25, 1944, to Sept. 30, 1975, at present site at datum 1.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base of 500 ft³/s and maximum (*):

Discharge (ft³/s) Discharge (ft³/s) Gage Height Gage height Time Date Time (ft) Date (ft.) May 8 0900 *522 *4.01 No other peak greater than base discharge. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991
DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUL AUG SEP 124 1 22 109 e42 e25 329 117 77 43 21 e22 2 21 67 103 e40 e24 e22 e22 114 343 111 103 80 40 21 23 327 166 39 96 e39 e24 e22 e22 136 e22 22 82 90 e24 e21 188 305 92 298 38 e38 82 e37 e24 e23 e21 243 312 334 22 25 27 6 80 80 e23 e21 300 76 317 22 e36 23 60 71 77 e35 e23 e21 313 490 69 289 32 89 61 73 e35 e23 27 e21 e21 307 519 62 263 30 27 29 53 69 277 58 216 102 e23 482 e34 10 49 73 e34 e23 e26 e21 411 120 e33 e26 49 e22 e21 210 149 26 126 25 25 12 47 70 e32 e22 e25 e21 180 307 49 148 120 13 14 15 e25 e25 e21 e21 45 52 107 43 66 e31 e22 160 273 175 49 152 24 94 62 241 e31 e22 173 60 e25 e21 217 84 38 e30 e22 226 147 51 45 16 e30 e22 e24 e21 273 196 150 92 17 25 57 60 e29 e22 e24 e21 298 177 140 84 18 19 20 40 35 42 94 58 e29 e22 e24 e22 296 159 128 25 86 24 23 101 120 e22 57 e29 e24 e27 277 144 82 36 248 132 76 108 56 e28 e22 e23 109 21 22 23 24 25 e28 e22 e23 220 123 100 130 63 e28 e22 e23 50 204 115 90 23 62 22 22 137 60 e27 e22 e23 60 198 121 39 80 58 142 144 e54 e51 144 138 36 72 52 e27 e22 e23 67 194 e27 85 190 33 65 23 53 e23 e22 26 27 144 e50 e27 e22 e22 134 182 133 31 58 143 e26 e22 e22 204 127 51 e49 199 28 137 e47 e26 e22 e22 206 216 119 30 49 22 48 29 130 121 e45 e26 e22 ---213 216 120 49 49 22 22 44 ---47 30 e44 e25 e25 e22 192 281 126 49 41 31 22 e22 122 113 150 48 6684 TOTAL 2670 2005 964 698 669 1850 7514 1688 4347 840 1920 22.5 25 22 242 519 MEAN 86.1 66.8 31.1 23.9 59.7 223 56.3 140 27.1 64.0 144 21 42 25 27 22 117 43 22 MAX 109 213 313 334 126 21 MIN 30 21 44 114 47 115 8620 1670 AC-FT 5300 3980 1910 1380 1330 3670 13260 14900 3350 3810 CFSM .36 .12 .13 .32 1.19 1.30 .34 IN. . 53 .40 .37 1.33 .34 .86 .38 1991, STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 BY WATER YEAR (WY) 87.5 27.1 21.9 MEAN 113 44.8 47.8 371 310 188 104 68.4 89.1 XAM 369 264 66.0 47.7 337 868 1451 528 483 268 1988 1978 1977 (WY) 1974 1978 1966 1984 1945 1948 1950 1944 1944 MIN 7.85 8.90 4.82 3.98 4.54 10.0 41.0 22.9 14.7 5.99 12.6 4.60 1988 (WY) 1977 1977 1977 1977 1977 1957 1977 1977 1988 1961 1976 FOR 1990 CALENDAR YEAR FOR 1991 WATER YEAR SUMMARY STATISTICS WATER YEARS 1942 1991 ANNUAL TOTAL ANNUAL MEAN 38441 31849 105 87.3 123 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 208 1950 63.1 1977 519 21 21 985 8 May 8 1950 Jul 30 1988 Jun May 3530 LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM Aug 21 2.5 16 Oct 16 Mar 3.0 Jul 24 1988 Sep INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE Jun 522 8 May 3630a May 4.87 4.01 May 8 7.41b May 1950 INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 14 Sep 10 20 Sep 1.2 89040 76250 63170 . 66 7.65 6.34 8.93 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 222 216 296 47 23 49 55

22

16

From rating curve extended above 1,600 ft³/s, on basis of slope-area measurement of peak flow.

b Present datum. Estimated.

05131500 LITTLE FORK RIVER AT LITTLEFORK, MW

LOCATION.--Lat 48°23'45", long 93°32'57", in NEASE's sec.9, T.68 N., R.25 W., Koochiching County, Hydrologic Unit 09030005, on right bank at town of Littlefork, 0.9 mi upstream from bridge on State Highway 217, 2.8 mi upstream from Beaver Creek, and 19 mi upstream from mouth.

DRAINAGE AREA.--1,730 mi², approximately.

PERIOD OF RECORD.--June to November 1909, April to November 1910, April 1911 to June 1917, September 1917, October 1917 to March 1919 (gage heights only), June 1928 to current year.

REVISED RECORDS.--WSP 955: Drainage area. WSP 1508: 1913, 1916, 1928-32, 1934. WRD MW-74: 1963.

GAGE.--Water-stage recorder. Datum of gage is 1,083.59 ft above National Geodetic Vertical Datum of 1929. June 23, 1909, to Mar. 4, 1917, nonrecording gage and July 21, 1937, to Oct. 23, 1979, water-stage recorder at site 1.2 mi downstream at datum 10.53 ft lower; Mar. 5 to Sept. 30, 1917, and June 22, 1928, to July 20, 1937, nonrecording gage at site 1.18 mi downstream at datum 10.53 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

		DISCHAR	GE, CUDI	C PEET PEK	DAILY	MEAN V	ALUES	7K TAAN TO	SELIEMD	FK 1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	63	491	e195	e125	e105	e85	e950	2880	1230	914	434	100
2	61	467	e190	e125	e110	e85	e900	3420	1150	1790	423	94
3	68	444	e190	e125	e110	e85	e850	3440	1020	2090	374	92
4 5	75 80	431	e185	e120	e110	e85	e850 e1200	3220 3100	901 833	3050 4870	374 380	88 88
6	100	415 390	e180 e180	e120 e120	e110 e110	e85 e85	3200	3470	762	5460	347	88
ž	139	374	e175	e120	e110	e85	2880	4460	668	4860	321	111
8	219	348	e175	e115	e105	e85	2530	4760	591	4430	294	206
9	239	328	e170	e115	e105	e85	2150	4570	526	4400	270	306
10	245	315	e170	e115	e105	e85	1910	4230	507	3870	246	395
11 12	233 213	262 233	e165 e165	e115 e115	e105 e100	e85 e85	1640 1400	3840 3940	576 553	3420 3240	221 205	574 1190
13	200	265	e160	e110	e100	e85	1200	4800	506	4270	191	1280
14	185	287	e160	e110	e100	e85	1080	4110	500	4370	174	1280
15	174	322	e160	e110	e95	e85	1310	3440	507	4020	162	1300
16	167	308	e155	e110	e95	e85	2180	2860	491	3450	155	1340
17 18	171 184	275 265	e155	e110 e105	e95	e85	2860 2990	2300 1900	489 473	2770 2170	151 148	1290 1250
19	192	265 245	e150 e150	e105	e90 e90	e90 e100	2800 2800	1620	471	1810	144	1240
20	202	269	e145	e105	e90	e120	2460	1370	422	1550	135	1150
21	260	274	e145	e105	e90	e140	2120	1200	378	1360	129	1070
22	341	253	e145	e105	e90	e170	1830	1080	359	1220	126	977
23	385	259	e140	e105	e90	e200	1640	1010	354	1090	118	892
24 25	435 470	175	e140	e105	e90 e90	e250 e300	1550 1650	1560 2810	372 369	894 728	113 110	788 711
25 26	495	e180 e170	e140 e135	e105 e105	e85	e500	1780	2630	544	662	106	684
27	528	e190	e135	e105	e85	e700	1740	2130	924	583	106	633
28	534	e210	e135	e105	e85	e1000	1690	1720	692	512	108	608
29	524	e210	e130	e105		e1300	1670	1440	564	495	108	597
30	522	e200	e130	e105		e1200	1930	1370	717	447	112	583
31	506		e130	e105		e1000		1320		416	110	
TOTAL	8210	8855	4880	3450	2745	8515	54940	86000	18449	75211	6395	21005
MEAN	265	295	157	111	98.0	275	1831	2774	615	2426	206	700
MAX	534	491	195	125	110	1300	3200	4800	1230	5460	434	1340
MIN	61	170	130	105	85	85	850 109000	1010 170600	354 36590	416 149200	106	88 41660
AC-FT CFSM	16280 . 15	17560 .17	9680 .09	6840 .06	5440 .06	16890 . 16	1.06	1.60	.36	1.40	12680 . 12	.40
IN.	.18	. 19	.10	.07	.06	. 18	1.18	1.85	.40	1.62	.14	.45
STATIS	TICS OF M	ONTHLY MEA	N DATA F	OR WATER YE	ARS 1909	- 1991	, BY WATER	YEAR (WY)				
MEAN	866	671	296	139	107	268	3186	2905	1828	927	547	735
MAX	3320	3044	972	477	270	3022	8421	12190	5490	3643	2679	5189
(WY)	1947	1972	1983	1966 43.5	1969	1945	1966 292	1950 173	1944 182	1944 75.4	1988 34.3	1977 29.2
MIN (WY)	43.4 1977	60.8 1977	52.6 1977	1931	42.2 1963	50.2 1940	1977	1977	1988	1988	1936	29.2 1976
(112)	1377							-	2000			
SUMMAR	Y STATIST	ICS	FOR	1990 CALEND	AR YEAR		FOR 1991 W	IATER YEAR		WATER YE	ARS 1909	- 1991
ANNUAL	TOTAL			289057			298655					
ANNUAL				792			818			1056		
HIGHES	I ANNUAL	MEAN								1912		1966
DICHES!	ANNUAL M T DAILY M	ean Can		5400	Jun 7		5460	Jul 6		306 25 00 0	Ann	1931 18 1916
LOWEST	DATEL ME	AN		59	Sep 18		61	Oct 2		23000	Aug	26 1936
ANNUAL	SEVEN-DA	Y MINIMUM		64	Sep 13		61 84 5550 8.4	Oct 1		22		21 1936
INSTAN	TANEOUS P	EAK FLOW		5480	Jun 6,7		5550	Jul 6		25000	a	
INSTAN	TANEOUS P.	EAK STAGE		5400 59 64 5480 8.26 57 573300	Jun 6,7			5 Jul 6		37.00	a	
INSTAN	TANEOUS L	UW FLOW		57 573300	Sep 18		60	Oct 2		764800		
ANNUAL	RUNOFF (ACTEI) CESMI		3/3300 2/3300			592400 .4	17		,64800 .61		
ANNUAL.	RUNOFF (INCHES)		6.22			6.4	2		8.29		
10 PERG	CENT EXCE	EDS		2080			2690			2800		
	CENT EXCE			233			275			342		
90 PER	CENT EXCE	EDS		85			90			84		

a Occurred Apr. 18, 1916, May 11, 1950, site and datum then in use.

05132000 BIG FORK RIVER AT BIG FALLS, MN

LOCATION.--Lat 48°11'45", long 93°48'25", in SW\SE\ sec.35, T.155 N., R.25 W., Koochiching County, Hydrologic Unit 09030006, on left bank at village of Big Falls, 700 ft downstream from falls, 0.3 mi downstream from bridge on U.S. Highway 71, and 4.8 mi upstream from Sturgeon River.

DRAINAGE AREA.--1,460 mi², approximately.

PERIOD OF RECORD.--August to November 1909, April to November 1910. April 1911 to September 1912 (gage heights and discharge measurements only). June 1928 to September 1979. October 1979 to September 1982, annual maximums only. October 1982 to current year.

REVISED RECORDS.--WSP 1308: 1935(M).

GAGE.--Water-stage recorder. Datum of gage is 1,144.71 ft above National Geodetic Vertical Datum of 1929. Prior to June 10, 1911, nonrecording gage at railroad bridge about 0.4 mi upstream at different datum. June 10, 1911, to Sept. 30, 1912, and June 22, 1928, to Dec. 17, 1937, nonrecording gage at site 200 ft upstream at same datum. REMARKS.--Records good except those for estimated daily discharges, which are fair. Prior to 1971, a powerplant, located 0.3 mi upstream, caused some diurnal fluctuation at low flows.

		DISCHARG	E, CUBI	C FEET PER	SECOND, DAILY	WATER Y	EAR OCTOBER ALUES	R 1990 TO	September	1991		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	128	256	e170	e130	e120	e130	e500	1510	991	805	312	121
2	129	255	e170	e130	e120	e130	e450	1840	909	1220	276	121
3	146	255	e170	e130	e125	e125	439	1840	80 9	1410	264	134
4	154	256	e165	e130	e130	e125	528	1750	713	1680	338	141
5	161	259	e165	e125	e135	e125	683	1810	617	1820	332	138
6 7	177 187	253 235	e165 e160	e125 e125	e135 e135	e125 e125	973 119 0	2370 3190	545 478	1840 1650	293 273	136 141
8	191	193	e160	e125	e135	e123	889	3410	422	1870	2/3	171
ğ	186	267	e155	e125	e135	e120	684	3300	385	1550	253	225
10	182	233	e155	e125	e135	e120	615	2980	452	1520	242	288
11	180	194	e150	e125	e135	e120	556	2580	457	1340	221	300
14	1/3	206	e150	e125	e135	e120	506	2730	411	1300	204	297
13	172	236	e150	e125	e135	e120	458	2560	367	1370	188	300
14 15	172 173	235 275	e150 e145	e120 e120	e135 e135	e120 e120	473 583	2280 1980	514 675	1150 955	175 165	327 393
16	173	279	e145	e120	e135	e120	861	1730	707	793	166	488
17	185	276	e145	e120	e135	e120	1130	1520	622	690	164	566
18	203	242	e145	e120	e135	e118	1240	1320	566	615	158	595
19	212	256	e140	e120	e135	e117	1200	1140	497	611	150	616
20	225	263	e140	e120	e135	e117	1120	1010	415	522	145	606
21 22	235	283	e140	e120	e135	e117	1010	925	390	470	138	581
23	239 245	238 e22 0	e140 e140	e12 0 e120	e135 e135	e120 e150	915 888	862 857	375 385	425 397	133 127	545 508
24	257	e20 0	e140	e120	e135	e200	883	1410	368	355	125	480
25	264	e190	e135	e120	e135	e250	865	2310	334	337	123	472
26	262	e180	e135	e120	e130	e350	819	232 0	350	309	123	472
27	265	e175	e135	e120	e130	e500	787	2060	329	282	127	444
28	263	e175	e130	e120	e130	e700	780	1700	283	439	127	422
29 30	268 270	e175 e170	e130 e130	e120 e120		e800 e700	782 1030	1380 1240	303 519	552 421	128 127	421 409
31	265	e1/0 	e130	e120		e600	1030	1100	219	355	129	
TOTAL	6344	6930	4580	3805	3720	6924	23837	59014	15188	29053	5979	10858
MEAN	205	231	148	123	133	223	795	1904	506	937	193	362
MAX MIN	270 128	283 170	170 130	130 120	135 120	800 117	1240 439	3410 857	991 283	1870 2 8 2	338 123	616 121
AC-FT	12580	13750	9080	7550	7380	13730	47280	117100	30130	57630	11860	21540
CFSM	. 14	. 16	.10	.08	.09	.15	. 54	1.30	.35	.64	. 13	.25
IN.	.16	. 18	. 12	.10	.09	. 18	.61	1.50	.39	.74	.15	.28
STATIST	rics of	MONTHLY MEAN	DATA F	OR WATER Y	EARS 1909	- 1991	, BY WATER	YEAR (WY)				
MEAN	666	524	276	169	133	241	1901	2023	1194	635	394	546
MAX	2247	2034	685	399	335	1928	5186	7496	2890	2321	1799	2989
(WY)	1970	1972	1970	1969	1969	1945	1966	1950	1974	1944	1978	1937
MIN	38.3	44.5	31.6	22.2	22.9	32.9	175	138	180	46.0	26.7	22.4
(WY)	1932	1935	1935	1935	1935	1940	1931	1931	1934	1931	1934	1934
SUMMARY	STATIS	STICS	FOR	1990 CALENI	DAR YEAR	FO	R 1991 WATE	ER YEAR	WAT	er years	1909 -	1991
ANNUAL				181815		;	176232					
ANNUAL	MEAN			498			483			25		
HIGHEST	ANNUAL ANNUAL	MEAN							13	62 92.0		1950 1931
HIGHEST	DAILY	MEAN		3680	Jun 23		3410	May 8	148		May 8	1931
LOWEST	DAILY N	ŒAN .		93	Aug 23			Mar 19		14	Jan 10	1940
ANNUAL	SEVEN-I	MUMIKIM YA		95	Aug 21		118	Mar 15		18	Jan 22	
		PEAK FLOW		3740	Jun 23			May 8	148			1950
		PEAK STAGE		7.56	Jun 34			May 8		17.08		1950
ANNUAL		LOW FLOW (AC-FT)		91a 36 0 600			91 349600	Nov 8	5256	7.0 nn	Aug 7	1939
	RUNOFF			.34		'	.33		الالعد	. 50		
ANNUAL	RUNOFF	(INCHES)		4.63			4.49			6.75		
	CENT EXC			1310			1240		18			
	ENT EXC			191			242			11		
90 PERC	ENT EXC	TEUS		121			121			76		

a Occurred Aug. 22, 23, Nov. 8.

e Estimated.

LAKE OF THE WOODS BASIN 05133500 RAINY RIVER AT MANITOU RAPIDS, MN (International gaging station)

LOCATION.--Lat 48°38'04", long 93°54'47", in NW\SE\ sec.36, T.160 N., R.26 W., Koochiching County, Hydrologic Unit 09030004, on left bank at Manitou Rapids, 4 mi west of Indus.
DRAINAGE AREA.--19,400 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1928 to current year. Monthly discharge only for some periods, published in WSP 1308.

October 1911 to October 1924 (gage heights only) at site near Birchdale in files of U.S. Army Corps of Engineers Published as "near Birchdale" 1932-34.

GAGE. -- Water-stage recorder. Datum of gage is 1,062.48 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 10, 1934, nonrecording gage at site near Birchdale, 7 mi. downstream at different datum. REMARKS. -- Records good except those for estimated daily discharges, which are fair. Satellite telemeter at station. Diurnal fluctuation caused by powerplant at International Falls. Some regulation at low and medium flows by Rainy and Namakan Lakes.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

		DISCHA	RGE, CUBI	C FEET PE	R SECOND, DAIL	WATER Y MEAN	YEAR OCTOB VALUES	ER 1990 TO	SEPTEMBI	ER 1991		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5120	5060	e4850	e8200	e7000	e5000	7780	14500	17000	14200	10600	4780
2	5170	5070	e4850	e7500	e7000	e5000	8080	15900	16900	15900	9870	4720
3 4	5140	5190 5170	e4900	e8000	e7000	e5000		16700 16700	16800 16300	17200 18100	9040 8250	4650 4780
5	5150 5260	5170 5120	e4800 e4500	e8500 e9000	e7000 e7000	e5000 e5000		16500	15900	19400	7860	4650
5 6	5170	5040	e4500	e9000	e7000	e5000		17700	15500	21500	6630	4650
ž	4840	4600	e5600	e9000	e6000	e5000	10100	20700	14300	21700	6990	4750
8	5100	4070	e600 0	e9000	e6000	e5000	10800	22900	13300	20800	7060	5160
9	5270	4090	e6000	e8500	e6000	e5000		23500	13000	20800	6320	5550
10	5370	4270	e6000	e8000	e6000	e5000		23100 22200	12800 12800	20400 17900	6710 6140	5810 6090
11 12	5670 5520	4050 4750	e6000 e6000	e7500 e7000	e600 0 e550 0	e6000 e7000		22000	12900	16500	5820	6300
13	5410	4370	e5700	e7000	e5000	e5000		22500	12700	17600	5410	6760
14	5320	3830	e6300	e7000	e5000	e4500		22600	12500	18900	4940	7190
15	5320	4230	e7550	e7000	e5000	e4500	8570	21700	12400	19400	4930	7540
16	5330	4440	e7800	e7000	e5000	e5000		20600	12500	18800	5040	7900
17	5240	4450	e8050	e7000	e5000	e5000	12200	19500	12500	17900	4930 4940	83 40 8 5 70
18 19	5250 5020	4400 4380	e8050 e8000	e7000 e7000	e5000 e5000	e5000 e4500		18500 17700	12400 12200	16900 16100	4940	8720
20	5180	4380	e8000	e7000	e5000	e4500		17000	12000	15600	4890	8740
21	5440	4370	e8100	e7000	e5000	e4500	14100	16400	11500	15100	4830	8510
22	5560	e4350	e850 0	e7000	e5000	4880	13700	16000	11500	14700	4870	818 0
23	5560	e4600	e9050	e7000	e5000	4910	13400	16000	11600	14500	4860	8010
24 25	5290	e4700 e4800	e9150 e8700	e7000 e7000	e5000	4900 4890		16200 18400	11600 11600	14300 13900	4850 4820	7690 7450
26	5170 5160 5230	e4650	e7000	e7000	e5000 e5000	6170		20100	11800	13700	4770	7410
27	5230	e4600	e7800	e7000	e5000	7160		20200	12500	13600	4760	7220
28	5610	e4600	e9150	e7000	e5000	7550	13000	19400	13300	13400	4770	7080
29	5260	e4800	e9200	e7000		7880		18400	13300	13200	4760	6920
30	5120	e4800	e9200	e7000		8470	13500	17800	13300	12600	4750	674 0
31 TOTAL	5090 163340	137230	e8800 218100	e7000 232200	157500	8190 170500	330610	17400 588800	398700	11400 516000	4840 184170	200860
MEAN	5269	4574	7035	7490	5625	5500		18990	13290	16650	5941	6695
XAM	5670	5190	9200	9000	7000	8470		23500	17000	21700	10600	8740
MIN	4840	3830	4500	7000	5000	4500	7780	14500	11500	11400	4750	4650
AC-FT	324000	272200	432600	460600	312400	338200	655800	1168000	790800	1023000	365300	398400
CFSM	. 27	. 24	.36	.39	. 29	. 28	.57	.98	.69 .76	.86 .99	.31	.35
IN.	.31	. 26	.42	.45	.30	.33		1.13		.99	.35	.39
							1, BY WATE					
MEAN	11890	11070	10030	9077	8749	9010	15470	19580	20300 49480	16360	11150	10870 30620
MAX (WY)	42410 1942	37280 1972	27790 1972	18430 1972	17240 1969	16640 1945	38100 1966	52880 1950	1950	47970 1950	33700 1944	1988
MIN	4728	3796	3190	2900	3129	2926	4378	4106	3676	3483	3422	4168
(WY)	1981	1977	1930	1931	1931	1931	1977	1977	1980	1980	1980	1958
SUMMAR	Y STATIST	rics	FOR	1990 CALE	NDAR YEAR		FOR 1991	WATER YEAR		WATER	YEARS 192	9 - 1991
ANNUAL	TOTAL		;	3957270			3298010					
ANNUAL				10840			9036			12810		
	T ANNUAL									23260		1950
	ANNUAL N T DAILY N	MEAN MEAN		27200	7 0		22.500	More O		71300	Mass	1931
	DAILY ME	CAN		3830	Nov 14		3830	Nov 14		928	Dec	11 1950 26 1929
		Y MINIMUM	1	4200	Nov 8		4200	Nov 8		1500	Dec	24 1929
INSTAN	TANEOUS E	PEAK FLOW		37300	Jun 8		23600	May 9		71600	May	12 1950 12 1950
		PEAK STAGE		13.70	5 Jun 8		10.	08 May 9		21.	04 May	12 1950
MATCHI	TANEOUS I RUNOFF (OM FLOW	•	3//0	Nov 14		23500 3830 4200 23600 10. 3770 6542000	May 9 Nov 14 Nov 8 May 9 08 May 9 Nov 14		9280000		
ANNUAL	RUNOFF (CFSM)		, 549000 , 51	6		0372000	47		9200000	66	
ANNUAL	RUNOFF ((INCHES)		7.59	9		6.	32		8.	97	
10 PER	CENT EXC	EEDS		27100			17000 7000			25400 10200		
	CENT EXCE CENT EXCE			6460 4760			7000 4770			5000		
OU LER	LACI			4,00			4770		1	2000		

e Estimated

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued (National stream-quality network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968-70, 1978 to current year.

REMARKS. -- Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	DIS- CHARGE, INST. CUBIC FEET FER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH (STAND- ARD UNITS) (00400)	PH LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT 22	1445		5680	93	92	7.5	7.6	6.0	5.0	724	11.2	83
DEC 03	1215	7680			115	7.4	7.4	0.0	6.1	740	13.1	360
JAN 14	1130		10300		122	6.9	7.3	1.0	4.3	724	9.0	48
APR 01	1130		7720	90	95	7.4	7.5	0.5	4.0	737	9.6	190
JUN 03	1230		16800	80	83	7.3	7.4	20.0	3.7	734	7.3	K240
JUL 15	1100		19500	79	81	7.1	7.6	22.0	14	720	7.2	K13
	1100		10500	,,	01	, . -	7.0	22.0		, 20	,,,	
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT 22	100	9.4	2.6	4.6	0.8	30	32	0	37	4.9	5.2	<01
DEC 03	140	13	3.6	5.5	1.0	37	39	0	45	6.3	7.2	<0.1
JAN 14	54	12	3.3	8.0	1.2	40	44	0	49	7.0	5.0	0.2
APR 01	K16	9.9	2.9	4.1	1.3	31	32	0	38	5.5	5.4	<0.1
JUN 03	K240	9.7	3.2	2.9	0.8	29	31	0	35	3.9	1.8	<0.1
JUL 15	59	14	4.4	2.0	0.9	37	34	0	45	2.9	2.0	<0.1
	-											
DAT	(MG	S- AT 1 LVED DEG S/L DI S SOL (MG	DUÉ GE 80 NITR 5. C DI S- SOL VED (MG 5/L) AS	N, GE ITE NO2+ S- DI VED SOL /L (MG N) AS	N, NII NO3 GE S- AMMO VED TOI /L (MG N) AS	ONÍA DI CAL SOL G/L (MG N) AS	N, GEN, NIA MONI S- ORGA VED TOI (/L (MO N) AS	A + PHO ANIC PHOF TAL TOT G/L (MG N) AS	RUS DI PAL SOL B/L (MG P) AS	US PHOR S- ORTH VED TOT J/L (MG P) AS	US ORT O DIS AL SOLV (MG/P) AS P	US HO, ED L
OCT 22	1.	.7 6	i4 <0.	01 <0.	10 0.	03 0.	03 0.	.50 0.	04 0.	04 0.	01 0.	01
DEC 03	2.		3 <0.	01 <0.			04 0.	.60 0.	05 0.	01 0.	03 <0.	01
JAN 14	2.		9 <0.									02
APR 01	3.		i9 <0.							01 <0.		
JUN 03	2.		i2 <0.						03 <0.			
JUL 15	6.	_		01 <0.								02

LAKE OF THE WOODS BASIN 05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. Z FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT								_	_	_	
22 DEC	10	92	70	1	10	<0.5	<1.0	2	<3	2	110
03											
JAN 14 APR	5	91	40	<1	17	<0.5	<1.0	, 1	<3	3	78
01 JUN	6	95	40	<1	11	<0.5	<1.0	2	<3	3	190
03	9	85									
JUL 15	28	93	160	2	21	<0.5	<1.0	<1	<3	3	610
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
OCT	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 22 DEC	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS ZN)
OCT 22 DEC 03	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 22 DEC 03 JAN 14	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 22 DEC 03 JAN 14 APR 01	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLUG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)
OCT 22 DEC 03 JAN 14 AFR	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UC/L AS MN) (01056) 8	DIS- SOLVED (UG/L AS EG) (71890) <0.1 <0.1	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <1 <1	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 26	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090) 24

05140520 LAKE OF THE WOODS AT WARROAD, MIN

(International gaging station)

LOCATION.--Lat 48°54'15", long 95°18'57", in SWkSEk sec.29, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, on left bank of Warroad River in Warroad, 300 ft downstream from Canadian National railroad bridge, 1,000 ft downstream from bridge on State Highway 11, and 4,000 ft upstream from mouth of Warroad River.

DRAINAGE AREA. -- 27, 200 mi².

PERIOD OF RECORD. --April to September 1978 (monthend elevations only), October 1978 to current year. Records collected prior to April 1978 are in reports of the Water Survey of Canada.

GAGE. -- Water-stage recorder. Datum of gage is 1,000.00 ft, Lake of the Woods datum.

REMARKS. -- Rumoff conditions of the Warroad River can affect water levels obtained at this station. Water level subject to fluctuation caused by change in direction and velocity of wind and seiches.

COOPERATION. -- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 62.38 ft, July 15, 1989; maximum daily, 61.84 ft, Sept. 12, 1978; minimum gage height recorded, 55.94 ft, Sept. 4, 1980; minimum daily recorded, 56.52 ft, Apr. 15, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 60.66 ft, July 12; maximum daily, 60.45 ft, July 12; minimum, 57.07 ft, Nov. 22; minimum daily, 57.65 ft, Nov. 22.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	58.94	58.70	58.44	58.47	58.44	58.18	57.80	57.87	59.29	59.81	60.12	59.34
2	59.01	58.51	58.45	58.47	58.41	58.17	57.81	58.14	59.41	59.76	60.25	59.21
3	58.84	58.48	58.47	58.46	58.40	58.18	57.79	58.34	59.53	60.04	60.24	59.29
4 5	58.51 59.01	58.68	58.46	58.47	58.38	58.16	57.79	58.35	59.47	59.99	60.11	59.26
_		58,59	58.41	58.48	58.40	58.13	57.79	58.26	59.40	59.94	60.09	59.30
6 7 8	58.94	58.52	58.40	58.48	58.37	58.10	57.79	58.41	59.35	59.93	60.11	59.20
7	58.91	58.45	58,39	58.52	58.37	58.11	57.79	58.37	59.33	60.10	60.06	59.31
8	58.85	58.36	58.40	58.51	58.34	58.12	57.80	58.39	59.25	60.08	60.01	59.36
9	58.77	58.28	58.37	58.51	58.33	58.11	57.81	58.44	59.28	60.10	59.98	59.29
10	58.61	58.42	58.41	58.55	58.31	58.13	57.81	58.39	59.28	60.19	59.97	59.32
11	58.66	58,52	58,41	58.53	58.32	58.12	57.81	58.47	59.39	60.26	59.95	59.29
12	58.84	58.58	58,38	58.54	58.32	58.07	57.82	58.58	59.46	60.45	59.92	59.18
13	58.71	58.51	58.40	58.54	58.32	58.05	57.81	58.53	59.41	60.28	59.90	5 9.2 8
14	58.79	58.49	58.41	58.52	58.28	58.03	57.85	58.64	59.54	60.20	59.82	59.39
15	58.73	58.56	58.40	58.54	58. 2 8	58.01	57.89	58.66	59.35	60.09	59.82	59.31
16	58.87	58.47	58.41	58.50	58.28	58.00	57.86	58.80	59.32	60.26	59.87	59.48
17	59.36	58.46	58.39	58.50	58.27	57.98	57.88	58.90	59.42	60.29	59.91	59.33
18	58.92	58.47	58.43	58.51	58.25	57.94	57.91	58.8 2	59.39	60.27	59.85	59.66
19	58.81	58.54	58.43	58.47	58.25	57.95	57.93	58.73	59.48	60.20	59.63	59.40
20	58.71	58.54	58.43	58.50	58.26	57.95	57.94	58.69	59.59	60.35	59.62	59.32
21	58.64	58.21	58.43	58.50	58.25	57.93	57.94	58.74	59.70	60.31	59.63	59.28
22	58.64	57.65	58.43	58.47	58.23	57.92	57.94	58.79	59.56	60.10	59.67	59.35
23	58.72	58.23	58.45	58.46	58.25	57.88	57.97	59.08	59.40	60.12	59.65	59.45
24	58.75	58.46	58.46	58.46	58.21	57.87	57.99	59.17	59.33	60.33	59.54	59.27
25	58.64	58.46	58.44	58.45	58.21	57.87	57.97	59.27	59.55	60.33	59.56	59.36
26	58.62	58.51	58.47	58.45	58,19	57.86	58.06	59.21	59.47	60.26	59.71	59.59
27	58.68	58.48	58.51	58.44	58.18	57.81	58.13	59.24	59.49	60.29	59.59	59.52
28	58.71	58.45	58.45	58.43	58,20	57.81	57.91	59.28	59.71	60.27	59.45	59.64
29	58.69	58.47	58.45	58.43		57.81	58.08	59.28	59.72	60.18	59.41	59.59
30	58.71	58.45	58.49	58.45		57.81	58.03	59.28	59.87	60.09	59.58	59.25
31	58.71		58.49	58.44		57.79		59.34		59.93	59.57	
MEAN	58.78	58.45	58.43	58.49	58.30	58.00	57.89	58.72	59.46	60.15	59.83	59.36
MAX	59.36	58.70	58.51	58.55	58.44	58.18	58.13	59.34	59.87	60.45	60.25	59.66
MIN	58.51	57.65	58.37	58.43	58.18	57.79	57.79	57.87	59.25	59.76	59.41	59.18
CAT VD	1000	MEAN 60	OA MA'	V 60 70	MTW 6	7 66						

CAL YR 1990 MEAN 58.84 MAX 60.72 MIN 57.65 WTR YR 1991 MEAN 58.83 MAX 60.45 MIN 57.65

05140521 LAKE OF THE WOODS AT SPRINGSTEEL ISLAND NEAR WARROAD, MN

LOCATION.--Lat 48°56'45", long 95°18'24", in SW\s\\ sec.9, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, at Springsteel Resort on Springsteel Island, 2.8 mi north of Warroad.

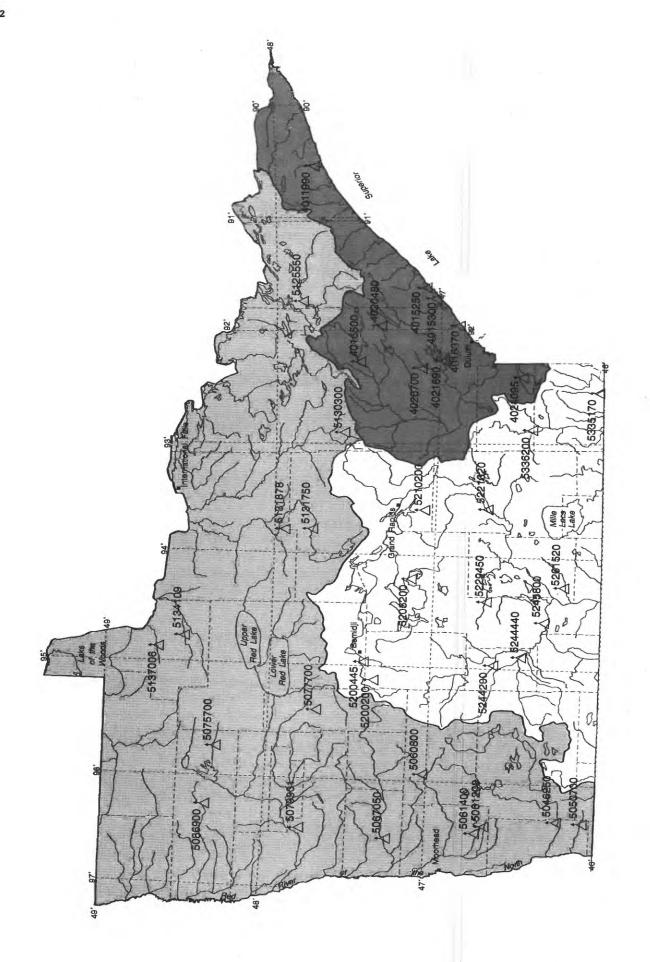
DRAINAGE AREA. -- 27, 200 mi².

PERIOD OF RECORD. -- June 1985 to current year.

GAGE. -- Water-stage recorder. Datum at gage is 1,000.00 ft, Lake of the Woods datum.

REMARKS.--Satellite telemeter at station. Water level subject to fluctuation caused by changes in direction and velocity of wind and seiches.

EXTREMES FOR PERIOD OF RECORD. --Maximum gage height, 62.24 ft, July 5, 1989; maximum daily, 61.81 ft, July 6, 7, 1985; minimum, 57.22 ft, Nov. 22, 1990; minimum daily, 57.43 ft, Mar. 18, 19, 20, 1988.


EXTREMES FOR CURRENT YEAR.--Maximum gage height, 60.54 ft, July 12, 20; maximum daily, 60.40 ft, July 12; minimum, 57.22 ft, Nov. 22; minimum daily, 57.72 ft, Nov. 22.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58.96 59.07 58.88 58.57 59.01	58.71 58.52 58.48 58.68 58.60	58.45 58.46 58.47 58.47 58.44	58.49 58.49 58.48 58.49 58.50	58.46 58.42 58.39	58.16 58.14 58.15 58.14 58.12	57.80 57.80 57.78 57.79 57.80	57.87 58.10 58.28 58.33 58.23	59.28 59.37 59.49 59.47 59.39	59.80 59.75 59.98 59.96 59.93	60.12 60.24 60.24 60.13 60.12	59.39 59.29 59.31 59.27 59.30
6 7 8 9 10	58.92 58.90 58.89 58.81 58.69	58.52 58.47 58.38 58.28 58.41	58.43 58.43 58.43 58.42 58.45	58.49 58.55 58.54 58.52 58.56		58.08 58.09 58.11 58.10 58.12	57.79 57.79 57.79 57.80 57.81	58.36 58.37 58.40 58.45 58.45	59.36 59.34 59.27 59.27 59.25	59.93 60.07 60.07 60.09 60.17	60.15 60.07 60.03 60.01 60.00	59.22 59.32 59.38 59.28 59.32
11 12 13 14 15	58.69 58.82 58.75 58.80 58.73	58.50 58.57 58.53 58.52 58.56	58.45 58.41 58.44 58.45 58.45	58.55 58.56 58.57 58.54 58.56		58.10 58.06 58.04 58.02 58.01	57.81 57.80 57.80 57.83 57.89	58.52 58.58 58.54 58.61 58.68	59.35 59.47 59.41 59.52 59.34	60.24 60.40 60.27 60.20 60.12	59.98 59.95 59.93 59.86 59.85	59.31 59.21 59.28 59.39 59.31
16 17 18 19 20	58.87 59.21 58.93 58.84 58.72	58.47 58.48 58.46 58.53 58.55	58.45 58.44 58.46 58.47 58.46	58.53 58.52 58.54 58.49 58.50		58.00 57.99 57.96 57.95 57.95	57.86 57.88 57.90 57.91 57.93	58.74 58.82 58.77 58.72 58.69	59.32 59.42 59.38 59.44 59.56	60.24 60.27 60.26 60.19 60.33	59.88 59.91 59.86 59.68 59.67	59.43 59.36
21 22 23 24 25	58.66 58.69 58.74 58.75 58.69	58.22 57.72 58.21 58.46 58.43	58.46 58.46 58.48 58.49 58.47	58.51 58.50 58.47 58.46 58.47	58.27	57.93 57.91 57.88 57.87 57.87	57.96 57.95 57.94 57.99 58.00	58.74 58.80 59.06 59.14 59.25	59.64 59.52 59.40 59.33 59.54	60.32 60.10 60.12 60.30 60.31	59.66 59.68 59.66 59.62 59.59	59.47 59.29 59.30
26 27 28 29 30 31	58.67 58.65 58.73 58.69 58.71 58.72	58.50 58.50 58.46 58.49 58.48	58.49 58.54 58.48 58.48 58.51 58.52	58.46 58.45 58.44 58.44 58.46 58.45	58.18 58.17 58.18	57.86 57.81 57.80 57.80 57.80 57.79	58.04 58.14 57.99 58.09 58.01	59.20 59.24 59.26 59.25 59.24 59.30	59.45 59.46 59.65 59.67 59.84	60.26 60.27 60.26 60.20 60.12 59.95	59.70 59.61 59.52 59.46 59.58 59.58	59.55 59.50 59.60 59.60 59.25
MEAN MAX MIN	58.80 59.21 58.57	58.46 58.71 57.72	58.46 58.54 58.41	58.50 58.57 58.44		57.99 58.16 57.79	57.89 58.14 57.78	58.71 59.30 57.87	59.44 59.84 59.25	60.14 60.40 59.75	59.85 60.24 59.46	

Partial-Record Stations

Roseau River at Ross April 23, 1929

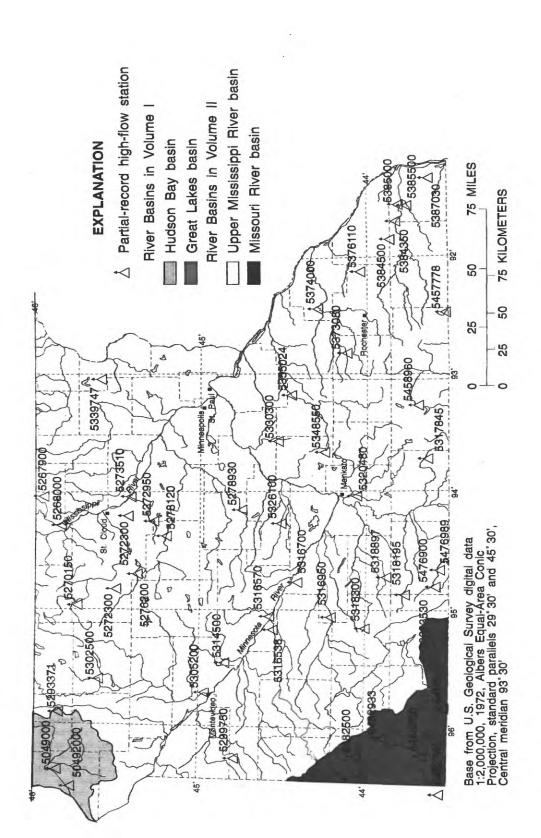


Figure 9.--Location of high-flow partial-record stations

High-flow partial-record stations

The following table contains annual maximum discharge for high-flow stations. A high-flow partial-record is equipped with a crest-stage gage, a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at high-flow partial-record stations during water year 1991

			Water	year 199	1 maximum	Period	of recor	d maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Streams tri	butary to 1	Lake Supe	rior				
Cascade River near Grand Marais, MN 04011990	Lat 47°47'24", long 90°31'35", in SE% sec.1, T.61 N., R.2 W., Cook County, Hydrologic Unit 04010101, at bridge on Forest Road 45, 6.6 miles upstream from mouth, 9.5 miles west of Grand Marais. Drainage area ismi ² .	1985-91	4-30-91	11.52	844	4-29-90	11.95	1,210
Silver Creek tributary near Two Harbors, MN 04015250	Lat 47°04'40", long 91°36'49", in SW\xNE\x sec.16, T.53 N., R.10 W., Lake County, Hydro- logic Unit 04010102, at cul- vert on County Highway 3, 1.0 mile upstream from mouth, 4.5 miles northeast of Two Harbors, Drainage area is 3.72 mi ² .	1965-91	7-4-91	a4.31	205	9-20-72	17.08	1,880
Little Stewart River near Two Harbors, MN 04015300	Lat 47°03'52", long 91°40'03", in SE\nE\s sec.24, T.53 N., R.11 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 2, 2.0 miles upstream from mouth, 2.7 miles north of Two Harbors. Drainage area is 5.54 mi ² .	1960-91	9-8-91	ab10.04	105	9-20-72	15.18	598
Talmadge River at Duluth, MN 04015370	Lat 46°53'20", long 91°55'21", in SE\NE\ sec.24, T.51 N., R.13 W., St. Louis County, Hydrologic Unit 04010102, at culvert on U.S. Highway 61, 0.6 mile upstream from mouth, 0.5 mile northeast of Duluth city limits. Drainage area is 5.79 mi.	1964-91	9-8-91	14.54	232	5-9-79	21.76	1,180
St. Louis River near Aurora, MN 04016500	Lat 47°29'30", long 92°14'20", in NW\sW\s sec.22, T.58 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, on left bank at upstream side of County Highway 100 bridge, 0.8 mile downstream from Partridge River and 1.5 mile south of Aurora. Drainage area is 290 mi ² .	1942-87# 1988-91	5-8-91	3.43	928	5-14-50	8.37	5,380
North Branch Whiteface River near Fairbanks, MN 04020480	Lat 47°22'20", long 91°56'28", in NW\(\) NW\(\) sec.1, T.56 N., R.13 W., St. Louis County, Hydrologic Unit 04010201, on right downstream wingwall of double box culvert on County Highway 16, 2 miles upstream from the mouth of Jenkins Creek, 0.7 mile west of Fairbanks. Drainage area is 17.1 mi ² .	1979-91	9-10-91	11.71	94	4-23-79	13.67	660

[&]quot;See footnotes at end of the table."

Annual maximum discharge at high-flow partial-record stations during water year 1991--Continued

			Water	year 199	1 maximum	Period	of recor	d maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Streams tributa	ry to Lake	Superior	Contin	ued			
Bug Creek at Shaw, MN 04020700	Lat 47°06'40", long 92°21'03", in SW\SE\ sec.34, T.54 N., R.16 W., St. Louis County, Hydrologic Unit 04010201, at left bank on downstream side of culverts on County Road 15 at Shaw, 7.5 miles upstream from mouth. Drainage area is 24.0 mi ² .	1979-91	4-7-91	12.73	130	4-23-79	15.12	590
Cloquet River near Toimi, MN 04021690	Lat 47°21'00", long 91°39'30", in NE\SW\ sec.7, T.56 N., R.10 W., Lake County, Hydrologic Unit 04010202, at bridge on County Highway 2, 5.8 miles southeast of Toimi, 23 miles north of Two Harbors. Drainage area is mi ² .	1986-91	4-7-91	a5.87	336	4-30-90	7.51	570
Nemadji River near Holyoke, MN 04024095	Lat 46°31'04", long 92°23'22", in NE\NE\x sec.32, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, at bridge on State Highway 23, 3.5 miles north of Holyoke, 7 miles south of Wrenshall. Drainage area is 118 mi².	1972-91 _.	6-22-91	a10.76	1,270	9-3-85	17.38	4,420
	Red Riv	ver of the	North bas	in				
Ottertail River near Foxhome, MN 05046250	Lat 46°12'48", long 96°18'24", in SW\SW\sec.26, T.132 N., R.45 W., Wilkin County, Hydrologic Unit 09020103, at bridge on County Road 19, 4 miles south of Foxhome, 10.8 miles below Orwell Dam. Drainage area ismi ² .	1990-91	6-23-91	15.63	1,730	6-23-90	15.63	1,730
Mustinka River above Wheaton, MN 05049000	Lat 45°49'15", long 96°29'25", in SWk sec.8, T.127 N., R.46 W., Traverse County, Hydrologic Unit 09020102, at bridge on U.S. Highway 75, 1 mile upstream from Chicago, Milwaukee and St.Paul railroad bridge, 0.5 mile north of Wheaton, about 8 miles above Lake Traverse. Drainage area is 834 mi ² .	1915-24#, 1930-58#, 1985-91	7-2-91	b11.22	1,420	4-10-52	16.56	7,320
Eighteenmile Creek near Wheaton, MN 05049200	Lat 45°47'18", long 96°31'52", in NW\u00e4NW\u00e4 sec.25, T.127 N., R.47 W., Traverse County, Hydrologic Unit 09020102, at culvert on County Highway 7, 1.4 miles upstream from mouth, 2.0 miles southwest of Wheaton. Drainage area 68.5.	1965-91	7-2-91	7.98	370	4-9-69		d2,400
Rabbit River near Nashua, MN 05050700	Lat 46°04'30", long 96°18'24", in SE\nE\s sec. 15, T.130 N., R.45 W., Wilkin County, Hydrologic Unit 09020101, at bridge on County Road 19, 2.6 miles north of Nashua, 4.8 miles upstream from mouth of South Fork Rabbit River. Drainage area is 56.1 mi ² .	1979-91	9-8-91	b14.86	765	9-21-86	14.27	1,280

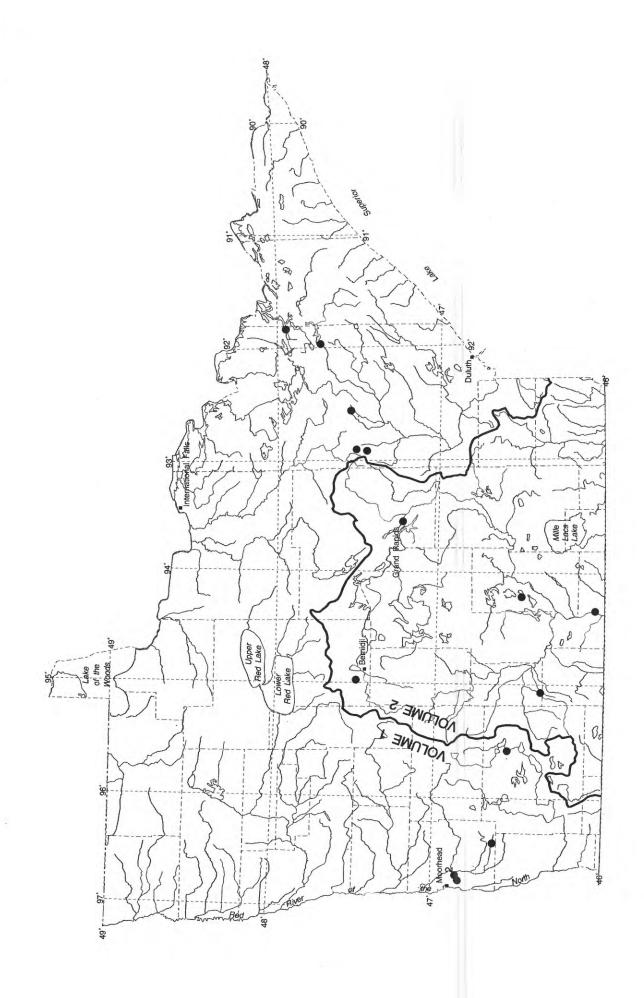
[&]quot;See footnotes at end of the table."

Annual maximum discharge at high-flow partial-record stations during water year 1991--Continued

			Water	year 199	1 maximum	Period	of recor	d maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Red River of th	e North ba	sinCon	tinued	···			
Buffalo River near Callaway, MW 05060800	Lat 47°01'17", long 95°54'43", in SW ₁ SW ₂ sec.17, T.141 N., R.41 W., Becker County, Hydro- logic Unit 09020106, at culvert on U.S. Highway 59, 2.7 miles north of Callaway. Drainage area is 94.5 mi ² .	1960-91	5-6-91	a11.30	69	5-12-85	17.13	635
Whiskey Creek at Barnesville, MN 05061200	Lat 46°39'35", long 96°23'54", in SE\SW\ sec.20, T.137 N., R.45 W., Clay County, Hydrologic Unit 09020106, at culvert on State Highway 34, 0.7 mile upstream from Blue Eagle Lake, 1.0 mile northeast of Barnesville, Drainage area is 25.3 mi ² .	1961-64, 1965-66#, 1967-91		a4.36	112	5-31-85	7.12	660
Spring Creek above Downer, MN 05061400	Lat 46°44'37", long 96°25'12", in NWaNWa sec.30, T.138 N., R.45 W., Clay County, Hydro- logic Unit 09020106, at cul- vert on county road, 3.1 miles east of Downer. Drainage area is 5.81 mi ² .	1961-91	5-31-91	ъ6.68	30	6-29-75 ·	13.52	1,460
Marsh River Ditch near Ada, MN 05067050	Lat 47°17'46", long 96°26'09", in NE\nE\sec.13, T.144 N., R.46 W., Norman County, Hydrologic Unit 09020108, at bridge on County Highway 24, 3.5 miles southeast of Ada. Drainage area is mi ² .	1985-91	-	-	0	4-6-89	16.74	1,070
Mud River near Grygla, MN 05075700	Lat 48°19'31", long 95°44'35", in NE\NE\s sec.23, T.156 N., R.40 W., Hydrologic Unit 09020304, Marshall County, at bridge on State Highway 89, 6 miles west of Grygla. Drain- age area is 170 mi ² .	1979-91	5-23-91	13.44	450	4-26-79	18.49	1,480
Ruffy Brook near Gonvick, MN 05077700	Lat 47°44'50", long 95°24'45", in SE\SE\sec.5, T.149 N., R.37 W., Clearwater County, Hydrologic Unit 09020305, at culvert on County Highway 67, 4.0 miles upstream from mouth, 4.8 miles east of Gonvick. Drainage area is 45.2 mi ² .	1960-78#, 1979-85, 1986,# 1987-91	7-3-91	2.29	66	3-30-67	6.35	453
Burnham Creek near Crookston, MN 05079901	Lat 47°43'59", long 96°39'52", in SE\SW\x sec.10, T.149 N., R.47 W., Polk County, Hydrologic Unit 09020303, at triple box culvert on U.S. Highway 75, 0.75 mile northeast of Girard, 3 miles southwest of Crookston, 7 miles above mouth. Drainage area is c111 mi ² .	1986-91	6-11-91	b13.87	96	4-4-89	20.44	1,900
Middle River near Newfolden, MN 05086900	Lat 48°22'04", long 96°16'47", in NEkNEk sec.3, T.156 N., R.44 W., Marshall County, Hydro- logic Unit 09020309, at bridge on township road, 2.0 miles northeast of Newfolden. Drain- age area is 91.1 mi ² .	1979-91	7-8-91	b13.27	74	4-25-79	17.10	1,000

[&]quot;See footnotes at end of table."

Annual maximum discharge at high-flow partial-record stations during water year 1991--Continued


			Water	year 199	1 maximum	Period	of recor	d maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft ³ /s)	date	gage height (ft)	discharge (ft ³ /s)
	Lake of	the Woods	basin					
Stony River near Babbitt, MN 05125550	Lat 47*41'36", long 91*45'38", in SW\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s\s	1975-80#, 1986-91	4-10-91	5.01	457	4-19-76	8.71	2,490
Boriin Creek near Chisholm, MN 05130300	Lat 47°36'14", long 92°51'58", in SE\SE\ sec.9, T.59 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, at culvert on State Highway 73, 1.3 miles upstream from mouth, 7.8 miles north of Chisholm. Drainage area is 13.7 mi ² .	1959-91	5-7-91	b11.33	79	4-13-69	13.40	700
Big Fork River near Bigfork, MN 05131750	Lat 47°44'56", long 93°46'31", in SWkNEk sec.27, T.61 N., R.27 W., Itasca County, Hydrologic Unit 09030006, at bridge on State Highway 6, 5.5 miles west of Bigfork. Drainage area is 602 mi ² .	1973-91	5-7-91	10.90	896	4-22-79	15.48	2,830
Bowerman Brook near Craigville, MN 05131878	Lat 47°55'29", long 93°45'34", in NE½NW½ sec.26, T.63 N., R.27 W., Koochiching County, Hydrologic Unit 09030006, at culvert on State Highway 6, 2.4 miles upstream from mouth, 7.0 miles west of Craigville. Drainage area is 25.0 mi ² .	1979-91	5-7-91	b12.67	160	4-21-79	14.73	650
North Branch Rapid River near Baudette, MN 05134100	Lat 48°31'56", long 94°38'50", in NW\xSW\x sec. 4, T.158 N., R.31 W., Lake of the Woods County, Hydrologic Unit 0903007, at bridge on County Highway 1, 12.7 miles south- west of Baudette. Drainage area is d180 mi ² .	1986-91	7-3-91	8.24	490	3-31-86	11.16	1,000
Winter Road River near Baudette, MN 05137000	Lat 48°42'39", long 94°41'52", in NWkNEk sec.1, T.160 N., R.32 W., Lake of the Woods County, Hydrologic Unit 09030008, at bridge on State Highway 11, 4.5 miles west of Baudette, 1.8 miles east of Pitt, 5 miles upstream of mouth. Drainage area is d145 mi ² .	1986-91	9-17-91	b10.22	450	3-31-86	14.30	1,400

[#] Operated as a continuous-record gaging station.
a Not annual maximum gage height.
b Backwater from aquatic growth or debris.
c Approximate.
d Estimate

Ground Water Levels

MSEA site near Princeton July, 1991

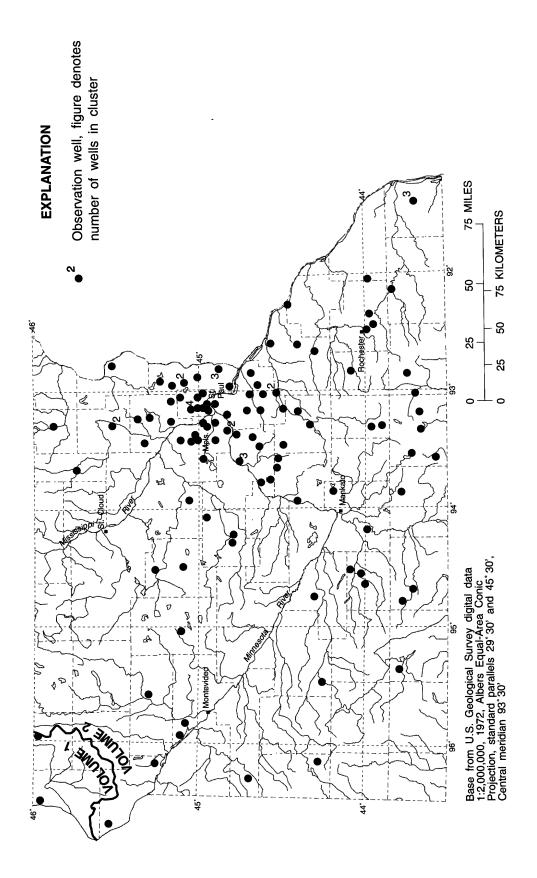


Figure 10.--Location of ground-water wells

CLAY COUNTY

463854096250701. Local number, 137N45W30CDB01. LOCATION.--Lat 46°38'54", long 96°25'07", in NW\sE\sW\sec.30, T.137 N., R.45 W., Hydrologic Unit 09020106, in Barnesville.

Owner: City of Barnesville, well 3.

AQUIFER. --Surficial sand of Pleistocene Age.
WELL CHARACTERISTICS. --Drilled unused water-table well, diameter 10 in., depth 73 ft.
DATUM. --Altitude of land-surface datum is 1,022 ft. Measuring point: Top of casing, 1.50 ft above land-surface datum.

PERIOD OF RECORD. -- January 1949 to January 1975, May 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 1.86 ft below land-surface datum, June 9, 1962; lowest, 11.86 ft below land-surface datum, June 3, 1970.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05 12 19 26 Nov 02 09 23 30	9.00 9.00 8.60 8.94 8.90 8.87 8.82	Dec 07 14 28 Jan 18 25	8.80 8.80 8.80 8.50 8.74	Feb 01 08 15 22 Mar 01 08 15 22 22	8.70 8.70 8.70 8.60 8.60 8.56 8.56	Apr 05 12 19 25 May 03 31	8.40 8.36 8.30 8.20 7.98 7.30	Jul 12 Aug 02 09 15 30	7.17 6.90 7.52 7.60 7.85

465237096383901. Local number, 139N47W05CDC01.
LOCATION.--Lat 46°52'37", long 96°38'39", in SWkSEkSWk sec.5, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.4 mi east of Dilworth.

depth 131 ft, slotted 91 to 107 ft.

east of Dilworth.

Owner: City of Moorhead, MS-1.

AQUIFER. --Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in., depth 131 ft, slotted 91 to 107 ft

DATUM.--Land-surface datum is 916.7 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of
recorder floor, 3.60 ft above land-surface datum.

REMARKS.--Water level affected by pumping from nearby wells.

PERIOD OF RECORD.--January 1947 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.19 ft below land-surface datum, July 15, 1947; lowest,
32.94 ft below land-surface datum, Aug. 24, 1988.

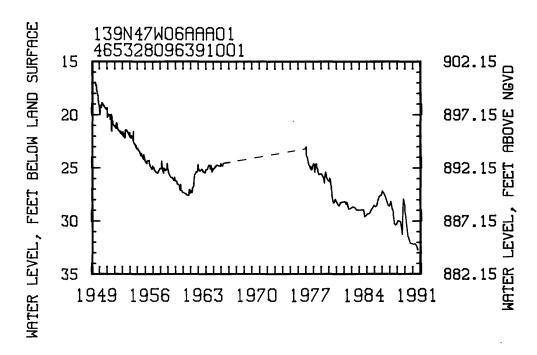
WATER LEVEL, IN FEET BELOW LAND-SURFACE DATAUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 05 10 15 20 25 31 Nov 05 10 15 20 25 30	32.32 32.24 32.06 31.94 31.90 32.08 31.72 31.42 31.24 31.26 31.52 31.68	Dec 05 10 15 20 25 31 Jan 05 10 15 20 25 31	31.50 31.78 31.92 31.96 31.98 31.98 32.02 32.00 32.00 32.00	Feb 05 10 15 20 25 28 Mar 05 10 15 20 25 31	31.88 31.52 31.40 31.62 31.64 31.54 31.54 31.72 31.54 31.18 31.42	Apr 05 10 15 20 25 30 May 05 10 15 20 25 31	31.58 31.68 31.48 31.16 31.06 31.04 31.26 31.08 30.90 30.90 30.96 31.28	Jun 05 10 15 20 25 30 Jul 05 10 15 20 25 31	31.44 31.54 31.64 31.72 31.78 31.72 31.70 31.34 31.34 31.06 31.64	Aug 05 10 15 20 25 31 Sep 05 10 15 20 25 30	31.88 31.98 32.16 32.28 32.40 32.36 32.34 32.06 32.22 32.18 32.24

Owner: U.S. Geological Survey, M-80.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 3 in., depth 103 ft, casing slotted near bottom


DATUM. --Altitude of land-surface datum is 915 ft. Measuring point: Top of casing, 2.50 ft above landsurface datum.

REMARKS.--Water level affected by pumping.
PERIOD OF RECORD.--July 1949 to April 1966, November 1976 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level, 16.94 ft below land-surface datum, July 16, 1949; lowest, 32.70 ft below land-surface datum, Aug. 26, 1991.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Dec 17	32 16	.Tan 28	32 20	Anr 24	32.15	Jun 24	32.33	Aug 26	32.70

CLAY COUNTY -- Continued

465231096415801. Local number, 139N48W11ABA01. LOCATION.--Lat 46°52'31", long 96°41'58", in NE%NW%NE% sec.11, T.139 N., R.48 W., Hydrologic Unit 09020104, at Dilworth.

Owner: City of Dilworth.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in., depth 152 ft.

DATUM.--Altitude of land-surface datum is 908 ft. Measuring point: Top of recorder platform, 2.40 ft above land-surface datum.

above land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD.--May 1965 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 101.33 ft below land-surface datum, Dec. 29, 1965; lowest, 131.24 ft below land-surface datum, July 18, 1985.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL								
Dec 17	125.24	Jan 28	125.32	Apr 24	125.32	Jun 24	126.64	Aug 26	128.47

GRANT COUNTY

455927095575505. Local number, 129N42W16ABB05.
LOCATION.--Lat 45°59'27", long 95°57'55", in NWkNWkNEk sec.16, T.129 N., R.42 W., Hydrologic Unit 09020102, in city of Elbow Lake.

Owner: City of Elbow Lake, well 5.

AQUIFER.--Buried sand of Pleistocene age.
WELL CHARACTERISTICS.--Drilled public-supply artesian well, diameter 12 in., depth 215 ft, screened 190 to 215 ft

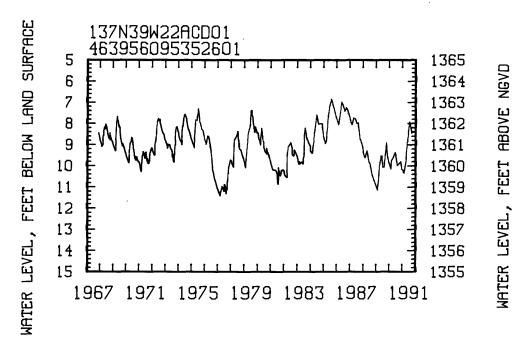
DATUM. --Altitude of land-surface datum is 1,220 ft. Measuring point: Top breather pipe, 1.80 absove land-surface datum.
PERIOD OF RECORD.--October 1989 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 74.10 ft below land-surface datum, Apr. 30, 1990; lowest, 76.50 ft below land-surface datum, Nov. 1, 1989.

WATER LEVEL. IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 02 Nov 05	74.70 74.90	Dec 04 27	74.90 75.00	Feb 11 Mar 04 29	75.00 74.70 74.80	Apr 30 May 31	74.50 74.50	Jul 03 31 Sep 03	74.50 74.50 74.70

OTTER TAIL COUNTY


463956095352601. Local number, 137N39W22ACD01.
LOCATION.--Lat 46°39'56", long 95°35'26", in SELSWLNEL sec.22, T.137 N., R.39 W., Hydrologic Unit 09020103,
4.5 mi north of Perham.
Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in., depth 24 ft, screened 21 to 24 ft.
DATUM.--Altitude of land-surface datum is 1,370 ft. Measuring point: Top of casing, 0.50 ft above land-surface datum.

PERIOD OF RECORD. --December 1967 to current year.

EXTREMES FOR PERIOD OF RECORD. --Higheest water level, 5.84 ft below land-surface datum, Aug. 12, 1985; lowest, 11.41 ft below land-surface datum, Mar. 10, 15, 1977.

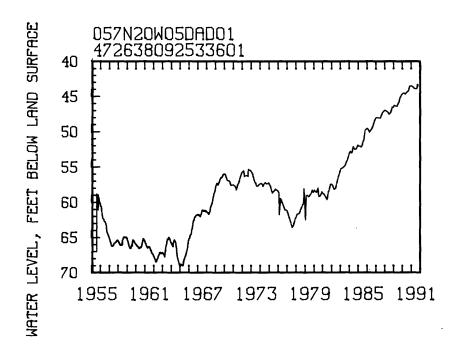
WATER LEVEL, IN FEET ABOVE LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL										
Nov 21	9.79	Jan 23	10.21	Feb 20	10.35	Apr 21	9.69	Jun 20	8.52	Aug 25	8.22
Dec 20	10.16	31	10.29	Mar 22	10.04	May 22	8.87	Jul 22	7.92	Sep 24	8.45

ST. LOUIS COUNTY

472638092533601. Local number, 057N20W05DAD01.
LOCATION.--Lat 47°26'38", long 92°53'36", in SE\nE\sE\sec.5, T.57 N., R.20 W., Hydrologic Unit 04010201,
2.5 mi east of Hibbing.
Owner: Burlington Northern, Inc.
AQUIFER.--Biwabik Iron Formation of Middle Precambrian Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth 430 ft, cased to 315 ft.
DATUM.--Altitude of land-surface datum is 1,470 ft. Measuring point: Top of platform, 1.20 ft above

land-surface datum.


PERIOD OF RECORD. --August 1955 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 43.34 ft below land-surface datum, Sept. 16, 1991; lowest, 69.07 ft below land-surface datum, Jan. 15, 1965.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 22	43.50	Jan 15	43.50	May 09	43.88	Aug 06	43.88
Nov 27	43.58	Feb 21	43.61	Jun 25	43.92	Sep 16	43.34

ST. LOUIS COUNTY--Continued

473102092345001. Local number, 058N18W12CCC01.
LOCATION.--Lat 47°31'02", long 92°34'50, in SWkSWkSwk sec.12, T.58 N., R.18 W., Hydrologic Unit 04010201,
1 mi west of Virginia.
Owner: U.S. Steel Corp. AQUIFER. --Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS. --Drilled observation artesian well, diameter 6 in., depth 97 ft, slotted casing between 67 to 97 ft. DATUM.--Land-surface datum is 1,427.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Edge of vent pipe, 1.90 ft above land-surface datum.

PERIOD OF RECORD.--December 1954 to July 1964 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 10.64 ft below land-surface datum, July 20, 1957; lowest, 17.47 ft below land-surface datum, Apr. 2, 1964.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 16	13.44	Jan 30	14.28	May 08	12.62	Aug 05	12.64
Dec 17	13.73	Mar 07	14.71	Jun 25	12.93	Sep 16	12.16

473011092524301. Local number, 058N20W16DBC01. LOCATION.--Lat 47°30'11", long 92°52'43", in SWkNWkSEk sec.16, T.58 N., R.20 W., Hydrologic Unit 04010201,

in Chisholm.
Owner: City of Chisholm.

AQUIFER.--Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in. depth 40 ft, screened 30 to 40 ft.
DATUM.--Altitude of land-surface datum is 1,500 ft. Measuring point: Top of wood platform, 1.70 ft above

land-surface datum.

REMARKS.--Water level affected by pumping. Water-level subject to freezing during winter months.

PERIOD OF RECORD.--August 1953 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.23 ft below land-surface datum, May 10, 1954; lowest, 15.60 ft below land-surface datum, Mar. 23-24, 1957.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 22	3.10	May 09	1.18	Aug 06	3.52
Nov 27	3.15	Jun 25	3.15	Sep 16	2.55

St. LOUIS COUNTY--Continued

474253091574101. Local number, 060N13W01BBA01.
LOCATION.--Lat 47°42′53", long 91°57′41", in NEkNWkNWk sec.1, T.60 N., R.13 W., Hydrologic Unit 09030001, at Babbitt water tower.

Badditt water tower.
Owner: U.S. Geological Survey.
AQUIFER.--Surficial sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 2 in., depth 30 ft, screened 27 to 30 ft.
DATUM.--Altitude of land-surface datum is 1,485 ft. Measuring point: Top of 3 in pipe, 4.00 ft above landsurface datum.

PERIOD OF RECORD. --October 1975 to June 1978, July 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 19.79 ft below land-surface datum, Sept. 6, 1989; lowest, 26.03 ft below land-surface datum, June 14, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL								
Oct 05 Nov 01	20.79 20.83	Dec 03 Jan 02	21.08 21.46	Feb 04 Mar 01	21.85 22.21	Apr 02 May 02	22.33 22.33	Jul 01 Aug 05	21.50 20.83	Sep 03	20.92

475502091494601. Local number, 063N12W26ABB01. LOCATION.--Lat 47°55'02", long 91°49'46", NWkNWkNEk sec.26, T.63 N., R.12 W., Hydrologic Unit 09030001, at Ely.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in., depth 9 ft, screened 7

to 9 ft.

DATUM. --Altitude of land-surface datum is 1,342 ft. Measuring point: Top of casing, 4.00 ft above

land-surface datum.

PERIOD OF RECORD.--October 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.53 ft lowest, 6.87 ft below land-surface datum, Sept. 27, 1976. 1.53 ft below land-surface datum, May 14, 1986;

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Nov 16 Dec 17	4.78 4.50	Jan 29 Mar 06	4.80 4.86	Apr 10 Jun 18	2.08 3.44	Aug 07	3.69

TRAVERSE COUNTY

455700096314001. Local number, 129N47W25CDC01. LOCATION.--Lat 45°57'00", long 93°31'40", in SWkSEkSWk sec.25, T.129 N., R.47 W., Hydrologic Unit 09020101,

9 mi north of Wheaton.
Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1% in., depth 39 ft, open end.

DATUM.--Altitude of land-surface datum is 1,010 ft. Measuring point: Top of casing, 2.00 ft above

DATUM. --Altitude of land-surface datum is 1,010 ft. Measuring point: Top of casing, 2.00 ft above land-surface datum.

PERIOD OF RECORD. --October 1965 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 5.39 ft below land-surface datum, Sept. 23, 1986; lowest, 12.42 ft below land-surface datum, Dec. 2, 1983.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Jun 24	8.58	Jul 24	7.93	Sep 10	8.09

	Page		Page
Access to WATSTORE data	18	Cloquet River near Toimi	115
Accuracy of the records, stage and water		Color, unit, definition of	19
discharge records	15	Contents, definition of	19
Acre-foot, definition of	19	Control, definition of	19
Ada, Marsh River Ditch near	116	Cooperation	1
Adenosine Triphosphate, definition of	19	Craigville, Bowerman Brook near	117
Algae, definition of	19	Crane Lake, Vermilion River near	100
Algal growth potential, definition of	19	Crookston, Burham Creek near	116
Annual 7-day minimum	20	Red Lake River at	73-75
Aquifer, definition of	19	Cubic foot per second, definition of	20
Argyle, Middle River at	79	Cubic feet per second per square mile,	
Arrangement of records, water quality	15	definition of	19-20
Artesian, definition of	19		
Artificial substrate, definition of	22	Data, collection and computation, ground-	
Ash mass, definition of	19	water levels	17
Aurora, St. Louis River near	114	ground-water quality	18
		surface-water records	12-13
Babbitt, Stoney River near	117	presentation, ground-water levels	17-18
Bacteria, definition of	19	ground-water quality	18
Baptism River near Beaver Bay	35-37	stage and water discharge	13
Barnesville, Whiskey Creek at	116	surface-water quality	16-17
Basswood River near Winton	98	Data table of daily mean values	14
Baudette, North Branch, Rapid River near	117	Deer Creek near Holyoke	42
Winter Road River near	117	Definition of terms	19-23
Beaver Bay, Baptism River near	35-37	Diatoms, definition of	21
Bed load, definition of	22	Dilworth, Buffalo River near	58
discharge, definition of	22	Discharge at, partial-record stations, and	111-117
Bed material, definition of	19	miscellaneous sites	111-117 112-117
Bigfork, Big Fork River near	117	high-flow partial-record stations	20
Big Falls, Big Fork River at	105 105	Discharge, definition of	viii-Xi
Big Fork River at Big Falls near Bigfork	117	Discontinued gaging stations Dissolved, definition of	20
Biochemical oxygen demand, definition of	19	Dissolved-solids concentration	20
Biomass, definition of	19	Diversity index, definition of	20
Blue-green algae, definition of	21	Doran, Bois de Sioux River near	46
Bois de Sioux River near Doran	46	Downer, Spring Creek above	116
near White Rock, SD	45	Downstream order system and station number	12
Boriin Creek near Chisholm	117	Drainage area, definition of	20
Bottom material, definition of	19	Drainage basin, definition of	20
Bowerman Brook near Craigville	117	Drayton, ND, Red River of the North at	80-82
Buffalo River near Callaway	116	Dry mass, definition of	19
near Dilworth	58	Duluth, Talmadge River at	114
near Hawley	56	buldon, lazmade hivel accommended	
South Branch, at Sabin	57	Eighteenmile Creek near Wheaton	115
Bug Creek at Shaw	115	Ely, Kawishiwi River near	94-96
Burnham Creek near Crookston	116	Emerson, Manitoba, Red River of the North at	84-87
		Explanation of the records	10
Callaway, Buffalo River near	116	Factors for converting Inch-Pound Units to	
Caribou, Roseau River below State ditch 51,		International System (SI) Units.Inside ba	ck cover
near	91-93	Fairbanks, North Branch Whiteface River near	114
Cascade River near Grand Marais	114	Fargo, ND, Red River of the North at	53-55
Cells/volume, definition of	19	Fecal colifrom bacteria, definition of	19
Cfs-day, definition of	19	Fecal streptococci bacteria, definition of	19
Chemical oxygen demand, definition of	19	Fergus Falls, Orwell Lake near	43
Chisholm, Boriin Creek near	117	Otter Tail River below Orwell Dam, near	44
Sturgeon River near	103	Fort Frances, Ontario, Rainy Lake near	102
Chlorophyll, definition of	19	Foxhome, Otter Tail River near	115
Classification of records, surface-water			
quality	15	Gage height, definition of	20
Clearwater River at Plummer	70	Gaging-station, definition of	20
at Red Lake Falls	72 65	records	27-110
LIIMAY SANG BILL KIVOP AT	רח	CHARLED SCALLODS CLSCOPLIDIEC	V111-11

	Page		Page
Gold Portage outlet from Kabetogama Lake		Latitude-longitude system for wells and	
near Ray	101 116	miscellaneous sites List of counties for which ground-water-level	12
Goodridge, Red Lake River at High Landing	68	records are published	vii
Grand Forks, ND, Red River of the North at	76-78	for which records are published	vi-vii
Grand Marais, Cascade River near	114	Little Fork River at Littlefork	104
Grand Portage, Grand Portage River at	33	Littlefork, Little Fork River at	104
Pigeon River at Middle Falls near	32	Little Stewart River near Two Harbors	114
Grand Portage River at Grand Portage	33	Lost River at Oklee	71
Graph showing comparison of dissolved solids		Lower Red Lake near Red Lake	66
concentrations	8		
of discharge at three long-term		Malung, Roseau River below South Fork, near	88
stream-gaging stations	6-7	Manitou Rapids, Rainy River at	106-108
of nitrate concentrations	9	Map of Minnesota, annual precipition	110-106
Grygla, Mud River near	116	ground-water observation wells	118-126 112-113
Green algae, definition of	21 118-126	high-flow partial-record stations lake and stream-gaging stations	
levels in hydrologic conditions	10-11	surface water-quality stations	30-31
TEVELS IN MYCHOLOGIC CONCILLIONS	10 11	Marsh River Ditch near Ada	116
Halstad, Red River of the North at	61-63	Marsh River near Shelly	64
Hardness of water, definition of	20	Mean concentration, definition of	22
Hawley, Buffalo River near	56	Mean discharge, definition of	20
Hendrum, Wild Rice River at	60	Metamorphic stage, definition of	20
Hickson, ND, Red River of the North at	50-52	Methylene blue active substance,	
High-flow partial-record stations	112-117	definition of	20
Holyoke, Deer Creek near	42	Micrograms per gram, definition of	
Nemadji River near	115	Micrograms per kilogram, definition of	20
Howland, Reservation River near	34	Micrograms per liter, definition of	20
Hydrographs showing comparison of water levels		Middle River at Argyle	79
in 1991 to long-term levels in two	11	near Newfolden	116
surficial sand aquifers	11 10	Milligrams of carbon per area or volume per unit time, definition of	21
Hydrologic conditions, summary of	1-11	Milligrams of oxygen per area or volume	21
Hydrologic unit, definition of	20	per unit time, definition of	21-22
n, alored a mile, abeliation of		Milligrams per liter, definition of	20
Identifying estimated daily discharge	15	Miscellaneous sites, numbering system for	12
Introduction	1	Mud River near Grygla	116
Instantaneous discharge, definition of	20	Mustinka River above Wheaton	115
Kawishiwi River near Ely	94-96	Namakan River at outlet of Lac la Croix	
near Winton	97	Ontario	99
Knife River near Two Harbors	38	Nashaua, Rabbit River near	115
Laboratory measurements, surface-water quality	16	(NGVD), definition of	20
Lac la Croix, Ontario, Namakan River at		National stream-quality accounting network	10 00 01
outlet of	99	(NASQAN), definition of	
Lake Bronson, South Branch Two Rivers at Lakes and Reservoirs:	83	Natural substrate, definition of	22
Lake of the Woods at Springsteel Island		Nemadji River near Holyoke	115
near Warroad	110	Newfolden, Middle River near	116
at Warroad	109	North Branch, Rapid River near Baudette	117
Lower Red Lake near Red Lake	66	Whiteface River near Fairbanks	114
Orwell Lake near Fergus Falls	43	Numbering system for wells and	
Lake of the Woods at Springsteel Island		miscellaneous sites	12
near Warroad	110		
at Warroad	109	Oklee, Lost River at	71
Lake of the Woods basin, gaging-station		Onsite measurement and collection, surface-	
records in	94-110	water quality	15-16
high-flow partial-record stations in	117	Organic mass, definition of	19
Lake Superior, streams tributary to, gaging-	20.10	Organism, definition of	21
station records	32-42	count/area, definition of	21 21
streams tributary to, high-flow partial- record stations	114-115	Orwell Lake near Fergus Falls	43

	Page		Page
Other records available	15	Runoff in inches, definition of	22
Otter Tail River below Orwell Dam, near		at streamflow stations	2,4-5
Fergus Fallsnear Foxhome	44 115	Sabin, South Branch Buffalo River at	57
Hour Portions	113	St. Louis River at Scanlon	39-41
Parameter code numbers	21	near Aurora	114
Partial-record station, definition of	21	Sand Hill River at Climax	65
discharge at	111-117	Scanlon, St. Louis River at	39-41
Particle-size classification, definition of	21	Sediment, definition of	22
Particle-size, definition of	21	surface-water quality	16
Percent composition, definition of	21	Seven-day 10-year low flow, definition of	22
Periphyton, definition of	21	Shaw, Bug Creek at	115
Pesticides, definition of	21	Shelly, Marsh River near	64
Phytoplankton, definition of	21	Silver Creek, tributary near Two Harbors	114
Picocurie, definition of	21	Sodium-adsorption-ratio, definition of	22
Pigeon River at Middle Falls, near Grand	20	Solute, definition of	22
Portage	32	South Branch Type Diverge at Lake Brancon	57
Plankton, definition of	21 70	South Branch Two Rivers at Lake Bronson Special networks and programs	83 10
Polychlorinated biphenyls, definition of	21	Specific conductance definition of	22
Precipitation, in summary of hydrologic	21	Spring Creek above Downer	116
conditions	1-3	Stage-discharge relation, definition of	22
Primary productivity, definition of	21	Station identification numbers, explanation	
Publications on techniques of water-		of	10,12
resources investigations	24-26	Station manuscript	13-14
		Statistics of monthly mean data	14
Rabbit River near Nashaua	115	Stony River near Babbitt	117
Radiochemical program, definition of	10,22	Streamflow, definition of	22
Rainy Lake near Fort Frances, Ontario	102	in summary of hydrologic conditions	2
Rainy River at Manitou Rapids	106-108	Streams tributary to Lake Superior,	
Rapid River, North Branch, near Baudette	117	gaging-station records in	32-42
Ray, Gold Portage outlet from Kabetogama		high-flow partial-record stations in	114-115
Lake near	101	Sturgeon River near Chisholm	103
Records of ground-water levels	17-18	Substrate, definition of	22
ground-water quality	18	Summary of hydrologic conditions	1-11
stage and water discharge	12-15 15-17	graphs, maps, or tables ofground-water levels	3-9,11 10-11
surface-water quality	13 17	precipitation	1-3
definition of	22	streamflow	2
Red Lake, Lower Red Lake near	66	water quality	2-10
Red Lake River near	67	Summary statistics	14
Red Lake Falls, Clearwater River at	72	Surface area, definition of	22
Red Lake River at Crookston	73-75	Surficial bed material, definition of	22
at High Landing, near Goodridge	68	Suspended, definition of	22
near Red Lake	67	Suspended recoverable, definition of	22 -23
Red River of the North at Drayton, ND	80-82	Suspended total, definition of	23
at Emerson, Manitoba	84-87	Suspended sediment, definition of	22
at Fargo, ND	53-55	Suspended-sediment concentration,	
at Grand Forks, ND	76-78	definition of	22
at Halsted	61-63	Suspended-sediment discharge, definition of	22
at Hickson, ND	50-52	Suspended-sediment load, definition of	22
at Wahpeton, ND	47-49	m11 0 00 4 4 01 444	
Red River of the North basin, gaging-	42-02	Table of runoff at streamflow stations	4-5
station records in	43-93 115-116	Talmadge River at Duluth	114 23
high-flow partial-record stations in Remark codes	113-116	Terms, definition of	19-23
Reservation River near Hovland	34	Thermograph, definition of	23
Reservoir (see lakes and reservoirs)	J4	Thief River near Thief River Falls	69
Return period, definition of	22	Thief River Falls, Thief River near	69
Roseau Lake, Roseau River at	89	Time-weighted average, definition of	23
Roseau River at Roseeu Lake	89	Toimi, Cloquet River near	115
at Ross	90	Tons per acre-foot, definition of	23
below State ditch 51, near Caribou	91-93	Tons per day, definition of	23
below South Fork, near Malung	88	Total, definition of	23
Ross, Roseau River at	90	Total in bottom material, definition of	23
Ruffy Brook near Gonvick	116	Total coliform bacteria, definition of	19

	Page		Page
Total load, definition of	23	remark codes	17
Total organism count, definition of	21	sediment	16
Total recoverable, definition of	23	water temperature	16
Total sediment discharge, definition of	22	Water temperature, surface-water quality	16
sediment load	22	Water year, definition of	23
Tritium network, definition of	10,23	Weighted average, definition of	23
Twin Valley, Wild Rice River at	59	Well number, definition of	12
Two Harbors, Knife River near	38	Wet mass, definition of	19
Little Stewart River near	114	Wheaton, Eighteen Mile Creek near	115
Silver Creek tributary near	114	Mustinka River above	115
Two Rivers, South Branch, at Lake Bronson	83	Whiskey Creek at Barnesville	116
Vermilion River near Crane Lake	100	Fairbanks	114 45
Wahpeton, ND, Red River of the North at	47-49	Wild Rice River at Hendrum	60
Warroad, Lake of the Woods at	109	at Twin Valley	59
Lake of the Woods at Springsteel Island		Winter Road River near Baudette	117
near	110	Winton, Basswood River near	98
Water-quality records, arrangement of	15	Kawishiwi River near	97
classification of	15	WDR, definition of	23
data presentation	16-17	WRD, definition of	23
in summary of hydrologic conditions	2-10	WSP, definition of	23
laboratory measurements	16		
onsite measurement and collection	15-16	Zoonlankton definition of	21

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x101	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048×10^{-1}	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ²)
	4.047x10 ⁻¹	square hectometers (hm²)
	4.047x10 ⁻³	square kilometers (km ²)
square miles (mi ²)	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
	3.785x10°	cubic decimeters (dm³)
	3.785x10 ⁻³	cubic meters (m ³)
million gallons	3.785x10 ³	cubic meters (m ³)
	3.785x10 ⁻³	cubic hectometers (hm ³)
cubic feet (ft ³)	2.832x101	cubic decimeters (dm ³)
	2.832x10 ⁻²	cubic meters (m ³)
cfs-days	2.447x10 ³	cubic meters (m ³)
Name and the state of the state	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	1.233×10^3	cubic meters (m ³)
	1.233x10 ⁻³	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	
cubic feet per second (ft ³ /s)	2.832x101	liters per second (L/s)
	2.832x101	cubic decimeters per second (dm ³ /s)
	2.832x10 ⁻²	cubic meters per second (m ³ /s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m ³ /s)
million gallons per day	4.381x101	cubic decimeters per second (dm ³ /s)
100 mm	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey 702 Post Office Building St. Paul, MN 55101 USMAIL

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL 4th CLASS BOOK RATE