

Water Resources Data Minnesota Water Year 1992

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-92-1
Prepared in cooperation with the Minnesota Department of
Natural Resources, Division of Waters; the Minnesota
Department of Transportation; and with other State,
municipal, and Federal agencies

		OC'	rob!	ER						NO	VEM	BER					DE	CEMI	BER		
S	М	Т	W	T	F	S		S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S
		1	2	3	4	5							1	2							
6	7	8	9	10	11	12		3	4	5	6	7	8	9	1	2	3	4	5	6	7
						19					13		15		8		-	11			
					25	26					20					16		18			
7	28	29	30	31				24	25	26	27	28	29	30		30		25	26	27	28
				-			that a solution to				1992	2									
		Ji	ANU	ARY						F	EBRI	UAR'	Y				1	MAR	СН		
S	М	T	W	T	F	S		S	M	T	W	T	F	S	S	М	T	W	Т	F	S
			1	2	3	4								1	1	2	3	4	5	6	7
5	6	7	8	9	10	11		2	3	4	5	6	7	8	8	9	10	11	12	13	14
		14									12					16		18			21
		21									19					23		25	26	27	28
6	27	28	29	30	31			23	24	25	26	27	28	29	29	30	31				
		1	APR	IL							MA:	Y						JUNI	Ξ		
S	М	Т	W	Т	F	S		S	М	T	W	Т	F	S	S	М	Т	W	Т	F	S
			1	2	. 3	4							1	2		1	2	3	4	5	6
5	6	7	8	9	10	11		3	4	5	6	7	8	9	7	8	9	10	11	12	13
2	13	14	15	16	17	18		10	11	12	13	14	15	16	14	15	16	17	18	19	20
9	20	21	22	23	24	25		17	18	19	20	21	22	23	21				25	26	27
6	27	28	29	30						26	27	28	29	30	28	29	30				
			JUL	4				31		IA	JGUS	ST					SEI	PTEN	1BEI	3	
S	М	Т	W	Т	F	S		S	М	т	W	т	F	S	S	М	т	W	т	F	S
								~				-	•								
5	6	7	7	2	10	4		2	2	Λ	_	-	7	1	6	7	1	2	3	4	5
2	13	14	15	16	17	1.0		2	10	11	12	12	11	15	13	1/	15	16	17	10	10
9	20	21	22	23	24	25		16	17	18	19	20	21	22	20	21	22	23	24	25	26
															27						
											7.0						- 1 - W				

30 31

Water Resources Data Minnesota Water Year 1992

Volume 1. Great Lakes and Souris-Red-Rainy
River Basins

by Kurt T. Gunard, Joseph H. Hess, and James L. Zirbel

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-92-1 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies

DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

GEOLOGICAL SURVEY

Robert M. Hirsch, Acting Director

For additional information write to:

District Chief, Water Resources Division
U.S. Geological Survey
2280 Woodale Drive
Mounds View, Minnesota 55112

PREFACE

This volume of the annual hydrologic data report of Minnesota is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Minnesota are contained in two volumes:

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

Volume 2. Upper Mississippi and Missouri River Basins

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the preparation of this report:

Gregory W. Stratton, Water-Quality Technician, Minnesota District Alex Brietkrietz, Ground-Water Network Technician, Minnesota District

Most of the data were collected, processed, and tabulated by the following individuals:

Mounds View District Office

Allan D. Amtson
George H. Carlson
George A. Roach
Pierce A. Flanagan
Chris A. Sanocki
Paul E. Hanson
Charles J. Smith
Mark R. Have
Julie A. Tapper
Rebecca A. Miller
Duane A. Wicklund
Gregory B. Mitton
Thomas A. Winterstein

Grand Rapids Field Headquarters

Montevideo Field Headquarters

Kevin G. Guttormson

Roderick L. Johnson

Howard D. Braden William A. Gothard Gregory R. Melhus

This report was prepared in cooperation with the State of Minnesota and with other agencies under the general supervision of George Garklavs, District Chief, Minnesota.

REPORT DOCUMENTATION PAGE	1. REPORT NO.	USGS/WRD/HD-94/235	2.	3. Recipient's Accession No.
4. Title and Subtitle Water Resources for Minnesota, W				5. Report Date December 1993
Volume 1, Great Lakes and Souris-	Red-Kainy River Basi	ns		6.
7. Author(s) Kurt T. Gunard, Josep	h H. Hess and James l	L. Zirbel		8. Performing Organization Rept. No. USGS-WDR-92-1
9. Performing Organization Name	and Address			10. Project/Task/Work Unit. No.
U.S. Geological Survey, Water Res 2280 Woodale Drive Mounds View, MN 55112	ources Division			11. Contract (C) or Grant (G) No.
12. Sponsoring Organization Nam U.S. Geological Survey, Water Re 2280 Woodale Drive				13. Type of Report & Period Covered Annual 10/01/91 to 09/30/92
Mounds View, MN 55112				14.
15. Supplementary Notes Prepared in cooperation with the S	tate of Minnesota and	with other agencies.		
16. Abstract (Limit: 200 words)				
water quality of lakes and reservoir stations; stage and contents for 5 la 27 high-flow partial-record stations	rs; and water levels and kes and reservoirs; was. Additional water da rements. These data to	d water quality in wells and spitter quality for 13 stream station ta were collected at various site gether with the data in Volume	ings. This volume ones; and water levels es, not part of the sy 2, represent that pa	ster quality of streams; stage, contents, and contains discharge records for 46 gaging for 12 observation wells. Also included are stematic data collection program, and are rt of the National Water Data System

17. Document Analysis a. Descriptors

*Minnesota, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Data collection

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement: No restriction on distribution	19. Security Class (This Report)	21. No. of Pages
This report may be purchased from:	Unclassified	246
National Technical Information Service	20. Security Class (This Page)	22. Price
Springfield, VA 22161	Unclassified	

CONTENTS

	Page
Preface	ii
List of surface-water stations, in downstream order, for which records are published in this volume	
List of ground-water wells, by county, for which records are published in this volume.	. VII
List of discontinued surface-water discharge or stage-only stations. List of discontinued surface-water-quality stations.	i) xv
Introduction.	
Cooperation	1
Summary of hydrologic conditions	
Precipitation	
Streamflow	
Water quality	
Ground-water levels	
Special networks and programs. Explanation of the records.	
Station identification numbers	
Downstream order system and station number	
Latitude-longitude system for wells and miscellaneous sites.	
Records of stage and water-discharge.	
Data collection and computation	
Data presentation	
Station manuscript	
Data table of daily mean values	
Statistics of monthly mean data	
Summary statistics	
Identifying estimated daily discharge.	
Accuracy of the records.	
Other records available.	
Records of surface water-quality	
Classification of records.	
Arrangement of records	
Onsite measurement and sample collection.	
Water temperature	
Sediment	
Laboratory measurements	
Data presentation	
Remark codes	
Dissolved trace-element concentrations	
Records of ground-water levels	
Data collection and computation.	
Data presentation	
Records of ground-water quality	
Data collection and computation.	
Data presentation	
Access to WATSTORE data	
Definition of terms.	. 22
Publications on Techniques of Water-Resources Investigations	. 28
Station records, surface water	. 31
High-flow partial-record stations.	
Miscellaneous sites	
Station records, ground water	
Ground-water levels	
Quality of ground water	. 199
Index	. 225

ILLUSTRATIONS

-	snowing precipitation, in inches, during 1992 water year compared with normal a		
	showing annual precipitation departure from normal in inches for 1992 water year		3
3. Grap	ph showing total monthly precipitation compared to average monthly precipitation	n by climatological division	
	a 30-year base period		
	oh showing comparison of mean discharge for 1992 water year with median of me		
	esentative gaging stations		
	oh showing comparison of dissolved solids concentrations in samples collected du accord at four national network stations		
	oh showing comparison of nitrite plus nitrate concentrations in samples collected of		
perio	od of record at four national network stations		11
7. Hydi	rographs showing comparison of water levels for 1992 water year to long-term lev	vels in two representative wells in surficial	
	ram showing system for numbering wells and miscellaneous sites		
	showing location of lake and stream-gaging stations		
	o showing location of surface-water-quality stations		
	showing location of high-flow partial-record stations		
	o showing location of ground-water wells		
12. Map	showing location of ground-water wells	••••••	190
	TABLES		
	TABLES		
Table 1. Runoff	f at streamflow stations in representative basins in Minnesota		6
	GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH REC	ORDS ARE PUBLISHED	
No	ote Data for partial-record stations and miscellaneous sites for both surface-water in separate sections of the data report. See references at the end of this list for partial sections.		
[Lette	ers after station name designates type of data: (d) discharge: (e) gage height, eleva	ation, or contents; (c) chemical, radio-	
	ers after station name designates type of data: (d) discharge; (e) gage height, eleva- cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperat		
chemic ST. LAWRENC	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperat CE RIVER BASIN		
chemic ST. LAWRENC	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperat	ure, sediment, or specific conductance)]	
chemic ST. LAWRENC STREAMS	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperat CE RIVER BASIN	ure, sediment, or specific conductance)] Station Number	36
chemic ST. LAWRENC STREAMS Pigeor	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperat CE RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	ure, sediment, or specific conductance)] Station Number	
chemic ST. LAWRENC STREAMS Pigeor Grand	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperat E RIVER BASIN E TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number(d)04010500(d)04010510	38
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number (d)04010500	38 40
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Lo	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Lo	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Lo	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Lo	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate of RIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Lor Nemac	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52 52
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife: St. Loo Nemac	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52 54 56
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife: St. Lor Nemac HUDSON BAY Lake Winni RED R Otter T Orwell Otter T	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52 54 56 58
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife: St. Loo Nemac HUDSON BAY Lake Winnig RED F Otter T Orwell Otter T	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52 54 56 58 60
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac HUDSON BAY Lake Winnig RED F Otter T Orwell Otter T	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52 54 56 58 60 62
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac HUDSON BAY Lake Winnig RED F Otter T Orwell Otter T I Red Ri	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52 54 56 58 60 62 64
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac HUDSON BAY Lake Winnig RED R Otter T Orwell Otter T I Red Ri Red Ri Red Ri	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52 54 56 58 60 62 64 68
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac HUDSON BAY Lake Winnin RED R Otter T Otter T Orwell Otter T Red Ri Red Ri Red Ri Red Ri	cal, or pesticides; (b) biological or micro-biological; (p) physical (water temperate ERIVER BASIN ETRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage	Station Number	38 40 42 46 48 52 54 56 58 60 62 64
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac HUDSON BAY Lake Winnin RED R Otter T Otter T Orwell Otter T Red Ri Red Ri Red Ri Red Ri	ERIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage. I Portage River at Grand Portage. I Portage River near Hovland. I River near Beaver Bay River near Two Harbors I River at Scanlon. I River Deer Creek near Holyoke. I Portage River Rive	Station Number	38 40 42 46 48 52 54 56 58 60 62 64 68
Chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Loo Nemac HUDSON BAY Lake Winni RED R Otter 7 Otter 7 Orwell Otter 1 I Red Ri Red Ri Red Ri Red Ri	ERIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage. Portage River at Grand Portage. Vation River near Hovland. Sim River near Beaver Bay. River near Two Harbors. Alis River at Scanlon. dji River Deer Creek near Holyoke. * * * * * * BASIN ipeg (head of Nelson River): RIVER OF THE NORTH BASIN Tail River (head of Red River of the North): Tail River near Elizabeth. 1 Lake (Reservoir) near Fergus Falls. Bois de Sioux River near White Rock, SD. Bois de Sioux River near Doran. iver of the North at Wahpeton, ND. iver of the North at Hickson, ND. iver of the North at Fargo, ND. Buffalo River near Hawley. South Branch Buffalo River at Sabin.	Station Number	38 40 42 46 48 52 54 56 58 60 62 64 68 72
chemic ST. LAWRENC STREAMS Pigeor Grand Reserv Baptis Knife St. Lou Nemac HUDSON BAY Lake Winni RED R Otter T Orwell Otter T Orwell Red Ri Red Ri Red Ri Red Ri	ERIVER BASIN TRIBUTARY TO LAKE SUPERIOR In River at Middle Falls, near Grand Portage. I Portage River at Grand Portage. I Portage River near Hovland. I River near Beaver Bay River near Two Harbors I River at Scanlon. I River Deer Creek near Holyoke. I Portage River Rive	Station Number	38 40 42 46 48 52 54 56 58 60 62 64 68 72 76

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED--Continued

HUDSON BAY BASINContinued	Station Number	
Wild Rice River at Twin Valley(d) 05062500	82
Wild Rice River at Hendrum	The state of the s	84
Red River of the North at Halstad	•	86
Marsh River near Shelly		92
Sand Hill River at Climax (d		94
Red Lake River:		77
Lower Red Lake near Red Lake(-	.) 05074000	96
Red Lake River near Red Lake		98
		, -
Red Lake River at Highlanding, near Goodridge		
Thief River near Thief River Falls		
Clearwater River at Plummer(d	•	
Lost River at Oklee	•	_
Clearwater River at Red Lake Falls(d	•	
Red Lake River at Crookston(d		
Red River of the North at Grand Forks, ND(d	- c b p) 0508250Q	114
Snake River:		
Middle River at Argyle(d	•	
Red River of the North at Drayton, ND(d	- c b p) 05092000	120
Two Rivers:		
South Branch Two Rivers at Lake Bronson(d).05094000	124
Red River of the North at Emerson, Manitoba(d	- c b p).0510250Q	126
Roseau River below South Fork near Malung(d) 05104500	132
Roseau River below State ditch 51, near Caribou(d	- c b p).05112000	134
LAKE OF THE WOODS BASIN (head of Winnipeg River)	• •	
Namakan River (head of Rainy River):		
Basswood River:		
Kawishiwi River near Ely((d	- c b p).05124480	138
Kawishiwi River near Winton(d		
Basswood River near Winton		
Namakan River at outlet of Lac la Croix, Ontario		
Vermilion River:	<i>j.</i> 0512000a	1-10
Vermilion River near Crane Lake(d) 05129115	148
Gold Portage Outlet from Kabetogama Lake near Ray(d	•	
Rainy Lake near Fort Frances, Ontario(-		
Rainy River:	5 J.: 0312940d	1,72
Little Fork River:		
Sturgeon River near Chisholm(d) 05120500	154
Little Fork River at Littlefork		
· ·	•	
Big Fork River at Big Falls		158
Rainy River at Manitou Rapids	- c b p)05133500	
		164
Lake of the Woods at Springsteel Island near Warroad (-	e)05140521	166
* * *	*	
Discharge at partial-record stations		168
High-flow partial-record stations		169
Miscellaneous sites		178
Analysis of samples collected at miscellaneous water-quality sites for Red River of the North NAWQA Study.		181

GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

GROUND-WATER LEVELS

CLAY	
Well 463854096250701 Local number 137N45W30CDB01	192
Well 465237096383901 Local number 139N47W05CDC01	192
Well 465328096391001 Local number 139N47W06AAA01	
Well 465231096415801 Local number 139N48W11ABA01	194
GRANT	
Well 455927095575505 Local number 129N42W16ABB05	194
OTTER TAIL	
Well 463956095352601 Local number 137N39W22ACD01	194
ST. LOUIS	
Well 472638092533601 Local number 057N20W05DAD01	195
Well 473102092345001 Local number 058N18W12CCC01	
Well 473011092524301 Local number 058N20W16DBC01	197
Well 474253091574101 Local number 060N13W01BBA01	197
Well 475502091494601 Local number 063N12W26ABB01	197
TRAVERSE	
Well 455700096314001 Local number 129N47W25CDC01	198
COUNTIES WITH QUALITY OF GROUND WATER	
CLEARWATER	200
COOK	
MARSHALL	205
PENNINGTON	209
POLK	213
RED LAKE	219
TD A VED OF	222

WATER RESOURCES DATA - MINNESOTA, 1992 DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Minnesota have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*)after the station number are currently operated as crest-stage partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)]

Station name	Station number	Drainage area (mi²)	Period of record
STREAMS TRIBUTAR	Y TO LAKE SUPERIOR	***************************************	
Pigeon River above mouth of Arrow River, MN (d)	04010000	256	1924-27
Brule River at mouth near Hoveland, MN (e)	04011000	248	1911†
Devil Track River at mouth near Grand Marais, MN (e)	04011500	a77	1911†
Cascade River at mouth near Grand Marais, MN (e)	0401200	111	1911†
Poplar River at Lutsen, MN (d)	04012500*	114	1911†,
			1912-17
			1928-47,
			1952-61
Cross River at Schroeder, MN (d)	04013000	a91	1931-32
Beaver Creek (Beaver Bay Run) at Beaver Bay, MN (d)	04015000	126	1911-14,
			1928-31
South Branch Partridge River near Babbitt, MN (d)	04015455	18.5	1977-80
Partridge River above Colby Lake, at Hoyt Lakes, MN (d)	040154	106	1979-88
Second Creek near Aurora, MN (d)	04015500	29	1955-80
Partridge River near Aurora, MN (d)	04016000	161	1942-82
St. Louis River near Aurora, MN (d)	04016500	290	1942-87
Embarrass River at Embarrass, MN (d)	04017000	93.8	1942-64
Embarrass River near McKinley, MN (d)	04018000	171	1953-62
St. Louis River at Forbes, MN (d)	04018750	713	1965-90
East Two Rivers near Iron Junction, MN (d)	04018900	40.0	1966-79
West Two Rivers near Iron Junction, MN (d)	04019000	65.3	1953-62,
			1965-79
West Swan River near Silica, MN (d)	04019300	16.3	1963-79
East Swan River near Toivola, MN (d)	04019500	112	1953-62,
			1964-71

[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi²)	Period of record
STREAMS TRIBUTARY TO LAKE S			
Swan River near Toivola, MN (d)	04020000	254	1952-61
Whiteface River below (at) Meadowlands, MN (d)	04021000	453	1909-17
Stoney Brook at Brookston, MN (d)	04021530	97.3	1983-84
Cloquet River at Independence, MN (d)	04023000	a750	1909-17
Simian Creek near Brookston, MN (d)	04023150	-	1983-84
St. Louis River near Cloquet, MN (e)	04023500	a3,400	1903†
Squaw Creek near Cloquet, MN (d)	04023600	-	1983-84
Otter Creek near Cloquet, MN (d)	04024015		1983-84
Elim Creek near Holyoke, MN (d)	04024090	1.06	1976-78
Skunk Creek below Elim Creek near Holyoke, MN (d)	04024093	8.83	1976-78
RED RIVER OF THE NOR	TH RASIN		
Otter Tail River near Detroit Lakes, MN (d)	05030000	270	1937-71
Otter Tail River at German Church, near Fergus Falls, MN (d)	05030500	a1,230	1904-17
Pelican River at Detroit Lakes, MN (d)	05033900	-	1968-71,
Pelican River at Detroit Lake outlet near Detroit Lakes, MN (d)	05034100	_	1974-75 1968-71,
renean river at Denon Lake outlet hear Denon Lakes, 1911 (u)	03034100	_	1972-75
Long Lake outlet near Detroit Lakes, MN (d)	05035100	-	1968-71
West Branch County Ditch No. 14 near Detroit Lakes, MN (d)	05035200	-	1968-71
East Branch County Ditch No. 14 near Detroit Lakes, MN (d)	05035300	-	1968-71
St. Clair Lake outlet near Detroit Lakes, MN (d)	05035500	-	1968-75
Pelican River at Muskrat Lake outlet near Detroit Lakes, MN (d)	05035600	-	1968-75
Pelican River at Sallie Lake outlet near Detroit Lakes, MN (d)	05037100	-	1968-75
Pelican River at Lake Melissa outlet near Detroit Lakes, MN (d)	05039100	-	1968-75
Pelican River near Detroit Lakes, MN (d)	05040000	123	1942-53
Pelican River near Fergus Falls, MN (d)	05040500	482	1909-12, 1942-80
Otter Tail River (Red River) near Fergus Falls, MN (e)	05045500	a1,690	1909-10†
Otter Tail River near Breckenridge, MN (d)	05046500	a2,040	1931-32,

[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi²)	Period of record
RED RIVER OF THE NORTH			1040 45
Mustinka River (head of Bois de Sioux River) near Norcross, MN(d Mustinka ditch above West Branch Mustinka River (Twelve Mile	05047000 05047500	-	1940-47 1943-55
Creek) near Charlesville, MN (d)	05041500	_	1743-33
Mustinka Ditch ditch below West Branch Mustinka River	05048000	-	1943-55
Twelve Mile Creek) near Charlesville, MN (d)1			
West Branch Mustinka River (Twelve Mile Creek) below Mustinka	05048500	-	1943-55
ditch near Charlesville, MN (d)			
fustinka River above (near) Wheaton, MN (d)	05049000	834	1915-24
ois de Sioux River below Fairmont, ND (d)	05050500	-1.540	1930-58 1919-44
oos de Sioux River delow Painmont, IAD (d)	03030300	a1,540	1919-44
Rabbit River at Cambell, MN (d)	05051000	266	1942-52
ted River of the North below Fargo, ND (d)	05054020	-	1969-78
Whiskey Creek at Barnesville, MN (d)	05061200*	25.3	1964-66
Vild Rice River near Ada, MN (d)	05063000	al,100	1948-54
South Branch Wild Rice River near Borup, MN (d)	05063500*	254	1944-49
Marsh River below Ada, MN (d)	05067000	-	1948-52
and Hill River at Beltrami, MN (d)	05068000	a324	1943-58
and Hill ditch at Beltrami, MN (d)	05068500	-	1943-58
hief River near Gatske, MN (d)	05075500	-	1953-56
ed Lake River at Thief River Falls, MN (d)	05076500	a3,450	1909-18
			1920-30
learwater River near Pinewood, MN (d)	05077000	132	1940-45
learwater River near Leonard, MN (d)	05077500	153	1934-47
suffy Brook near Gonvick, MN (d)	05077700*	45.2	1960-78
ed River of the North at Oslo, MN (d)	05083500	331,200	1936-37,
			1941-43,
			1945-60, 1973-78
nake River at Warren, MN (d)	05085500	a175	1973-78 1945,
man are ros as it district that (a)	05005500	4113	19 5 3,
nake River at Alvarado, MN (d)	05086000	309	1945,
		·	1953-56
nake River near Argyle, MN (d)	05086500	481	1945
liddle River near Strandquist, MN (d)	05087000	-	1953-56
See footnotes at and of table "			

[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi²)	Period of record
RED RIVER OF THE NORTH B	ASINContinued		
Tamarac River near Strandquist, MN (d)	05090500	-	1953-56
Tamarac River at Stephen, MN (d)	05091000	-	1945
Tamarac River near Stephen, MN (d)	05091500	a320	1945, 1953-55
Wo Rivers (Middle Fork Two Rivers) near Hallock, MN (d)	05092500	131	1933-33
South Branch (South Fork) Two Rivers near Pelan, MN (d)	05093000	281	1928-38, 1953-56
South Branch Two Rivers (Two Rivers) at Hallock, MN (d)	05094500	-	1940-47
Two Rivers (South Branch Two Rivers) at Hallock, MN (d)	05095000		1911-14, 1929-30, 1938-39, 1941-43
Two Rivers below Hallock, MN (d)	05095500	644	1945-55
North Branch (North Fork) Two Rivers near Lancaster, MN (d)	05096000	a32	1929-38, 1941-55
State Ditch 85 near Lancaster, MN (d)	05096500	a95	1929-38, 1942-55
North Branch Two Rivers at Lancaster, MN (d)	05097000	209	1941-42, 1953-56
Iorth Branch Two Rivers near Northcote, MN (d)	05097500	386	1941-42, 1945-51
wo Rivers below North Branch near Hallock, MN (d)	05098000	a1,060	1941-43
loseau River (at) near Malung, MN (d)	05103000	252	1928-46
South Fork (West Branch) Roseau River near Malung, MN (d)	05104000	312	1911-14, 1928-46
Roseau River at Roseau, MN (d)	05105000	•	1940-47
Roseau River near Roseau, MN (d)	05105500	-	1930-60
Sprague Creek near Sprague, Manitoba (d)	05106000	176	1928-81
Pine Creek near Pine Creek, MN (d)	05107000	74.6	1928-53
Roseau River at Roseau Lake, MN (e)	05106500		1939-91
toseau River at Ross, MN (d)	05107500	1,220	1928-91
loseau River near Badger, MN (d)	05108000	-	1 928-69
oseau River near Duxby, MN (d)	05108500	-	1929-51, 1952-56

See footnotes at end of table."

Station name	Station number	Drainage area (mi²)	Period of record
RED RIVER OF THE NORT	TH BASINContinued		
Badger Creek near Badger, MN (d)	05109000	a2.2	1929-30, 1931-38
Roseau River near Haug, MN (d)	05109500	-	1932-66
Roseau River at outlet of State Ditch 69 near Oak Point, MN (d)	05110000	-	1939-42
Roseau River at head of State Ditch 51 near Oak Point, MN (d)	05110500	-	1933-42
Roseau River at Oak Point, MN (d)	05111000	-	1933-39, 1941-60
Roseau River at international boundary, near Caribou, MN (d)	05112500	a1,590	1933-69
LAKE OF THE WO	ODS RASIN		
(sabella River near Isabella, MN (d)	05124500	341	1953-61, 1976-77
Filson Creek near Ely, MN (d)	05124990	9.66	1974-85
South Kawishiwi River near Ely, MN (d)	05125000	-	1953-61, 1976-78
Stony River near Isabella, MN (d)	05125500	180	1953-64
Stony River near Babbitt, MN (d)	05125550	219	1975-80
Ounka River near Babbitt, MN (d)	05126000	53.4	1951-62, 1975-80
South Kawishiwi River above White Iron Lake near Ely, MN (d)	05126210		1975-78
Bear Island River near Ely, MN (d)	05126500	68.5	1953-62, 1975 <i>-7</i> 7
Burntside River near Ely, MN (d)	05127205	-	1967-78
Bjorkman's Creek near Ely, MN (d)	05127207	1.36	1972-78
Armstrong Creek near Ely, MN (d)	05127210	5.29	1967-78
ongstorff Creek near Ely, MN (d)	05127215	8.84	1967-78
ihagawa Lake tributary at Ely, MN (d)	05127219	1.84	1971-78
Burgo Creek near Ely, MN (d)	05127220	3.04	1967-78
hagawa River near Ely, MN (d)	05127230	99	1967-78
remilion Lake near Soudan, MN (e)	05128200	-	1913-15† 1941-42† 1946-87†
ike River near Biwabik, MN (d)	05128340	-	1977-79

[&]quot;See footnotes at end of table."

Station name	Station number	Drainage area (mi²)	Period of record
LAKE OF THE WOOD	S BASINContinued		
ike River near Embarrass, MN (d)	05128500	115	1953-64
			1976-79
Vermilion River below Vermilion Lake near Tower, MN (d)	05129000	483	1911-17,
			1928-81
ainy River at International Falls, MN (d)	05129500	14,900	1905-60
turgeon River (Lake) at Side Lake, MN (d)	05130000	-	1938-47
ark River near Chisholm, MN (d)	05131000	50.6	1942-61,
			1965-79
eer Lake outlet (Deer Lake) near Effie, MN (d)	05131800	-	1937-39,
			1940-46
ig Fork River at Laurel, MN (d)	05132500	-	1909
lack River near Loman, MN (d)	05133000	-	1909
apid River near Baudette, MN (d)	05134200	543	1956-85
Varroad River near Warroad, MN (d)	05139500	162	1946-80
ulldog Run near Warroad, MN (d)	05140000*	14.2	1946-51,
			1966-77
st Branch Warroad River near Warroad, MN (d)	05140500*	102	1946-54,
· · · · · ·			1966-77

^{*} Presently operated as high-flow partial-record station.
† Stage records only.
a Approximately.

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

[The following stations were discontinued as continuous-record or periodic-record stations prior to the 1992 water year. Daily or periodic records of chemical, biological, sediment, temperature, dissolved oxygen, pH, or specific conductance were collected and published for the record shown for each station.]

Discontinued continuous-record and periodic-record surface-water-quality stations

Station name	Station number	Drainage area (sq mi)	Type of record	Period of record (water years)
Saptism River near Beaver Bay, MN	04014500	140	Temp, S.C.	1980-83
artridge River abv Colby Lake at Hoyt Lakes, MN	04015475	106	Temp, S.C.	1976-85
t. Louis River at Forbes, MN	04018750	713	Sed.	1968-70
t. Louis River at Scanlon, MN	04024000	3430	Temp, S.C.	1980-83
lim Creek near Holyoke, MN	04024090	1.06	Sed.	1976-79
kunk Creek below Elim Creek near Holyoke, MN	04024093	8.83	C, Sed., Temp, D.O., pH, S.C.	1976-79
eer Creek near Holyoke, MN	04024098	7.77	C, Bio., Temp, D.O., pH, S.C.	1977-79
-			Sed.	1977-81
uffalo River near Dilworth, MN	05062000	1040	Sed.	1971-81
/ild River River at Twin Valley, MN	05062500	888	C, Bio., Temp, D.O., pH, S.C.	1971, 73-79
•			Sed.	1976-79
oseau River below Roseau, MN	05105300		C, Bio., Sed., Temp, D.O., pH, S.C.	1973-83
oseau River below State Ditch 51 nr Caribou, MN	05112000	1570	Temp, S.C.	1980-83
awishiwi River near Ely, MN	05124480	253	Temp	1966-81
ittle Fork River at Littlefork, MN	05131500	1730	C, Bio., Sed., Temp,	1967, 69, 71,
·			D.O., pH, S.C.	73-86
ig Fork River at Big Falls, MN	05132000	1460	C, Bio., Sed., Temp, D.O., pH, S.C.	1968, 71-77
ainy River at Manitou Rapids, MN	05133500	19,400	Temp, S.C.	1980-83

Type of record: C (Chemical), Bio. (biological), Sed. (sediment), Temp. (temperature), D.O. (dissolved oxygen), pH (pH), S.C. (specific conductance).

This page is blank.

INTRODUCTION

Water Resources Division of the U.S Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Minnesota each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Minnesota."

Water resources data for the 1992 water year for Minnesota consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains discharge records for 46 gaging stations; stage and contents for 5 lakes and reservoirs; water quality for 13 stream stations; and water levels for 12 observation wells. Also included are 27 high-flow partial-record stations. These data, together with the data in Volume 2, represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

This series of annual reports for Minnesota began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Minnesota were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 4, 5 and 6A." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply papers can be consulted in the libraries of the principal cities of the United States and may be purchased from the books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and volume number. For example, this volume is identified as the "U.S. Geological Survey Water-Data Report MN-92-1. For archiving and general distribution, the reports for 1971-1974 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc-Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (612) 783-3101. A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

COOPERATION

The U.S. Geological Survey and organizations of the State of Minnesota have had cooperative agreements for the systematic collection of streamflow records since 1909, for ground-water levels since 1948, and for water-quality records since 1952. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Minnesota Department of Natural Resources, Division of Waters, Kenneth Lokkesmoe, director.

Minnesota Department of Transportation, Leonard W. Levine, commissioner.

Metropolitan Waste Control Commission of the Twin Cities Area, Louis R. Clark, chairperson.

Beltrami Soil and Water Conservation District, Floyd W. Jorgensen, chairperson.

Elm Creek Conservation Commission, Fred G. Moore, chair-person.

Leech Lake Reservation Business Committee, Daniel Brown, chairperson.

Lower Red River Watershed Management Board, Donald Ogaard, chairman.

Whitewater Joint Powers Board, Eugene Kalmes, chairman.

Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers, in collecting records for 46 gaging stations and 12 water-quality stations published in this report of 2 volumes. Thirteen gaging stations in the Hudson Bay and St. Lawrence River basins were maintained by funds appropriated to the United States Department of State. Eight of these, on water adjacent to the international boundary, are maintained by the United-States (or Canada) under agreement with Canada (or the United States), and the records are obtained and compiled in a manner equally acceptable in both countries. These stations are designated herein as "International gaging stations."

SUMMARY OF HYDROLOGIC CONDITIONS

PRECIPITATION

Normal annual precipitation in Minnesota ranges from less than 19 in. (inches) in the northwest to more than 33 in. in the southeast. Precipitation duringwater year 1992 ranged from less than 20 in. in part of the northwest and west-central areas up to 40 in. in part of the northeast, central, south-central and southeast areas (fig. 1). Precipitation ranged from 12 in. below normal (based on record period 1961-90) in a small area in central Minnesota to more than 12 in. above normal in extreme tip of the "arrowhead" in northeastern Minnesota (fig 2).

The water year began with a 0- to 4-in. precipitation deficit in parts of northern and southwestern Minnesota, and a 12- to 20- in. precipitation excess in parts of central, south-central and southwestern Minnesota. The following is a summary of precipitation during the 1992 water year.

October - below normal statewide.

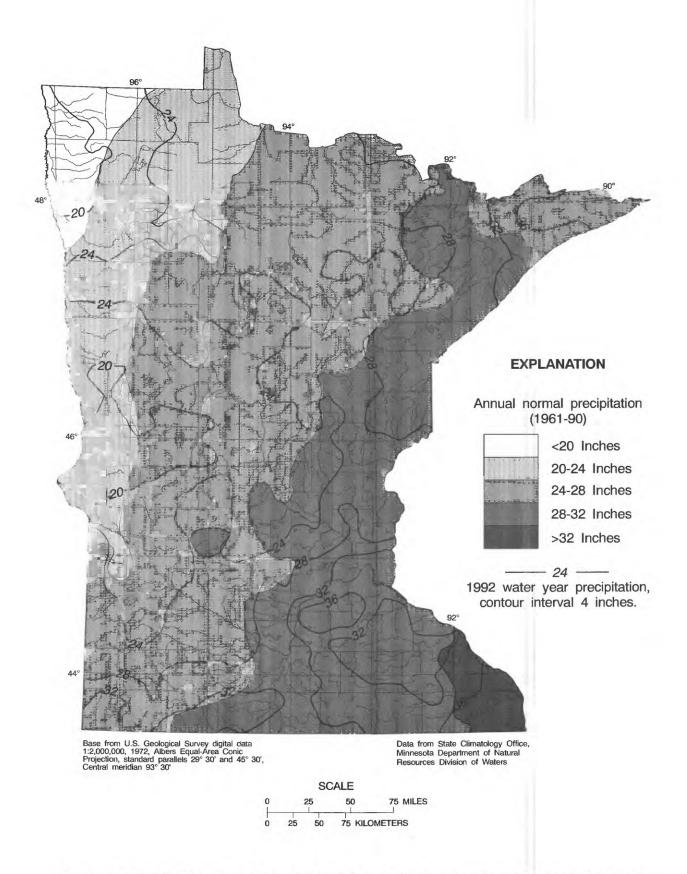


Figure 1.--Precipitation, in inches, during 1992 water year compared to normal annual precipitation in Minnesota.

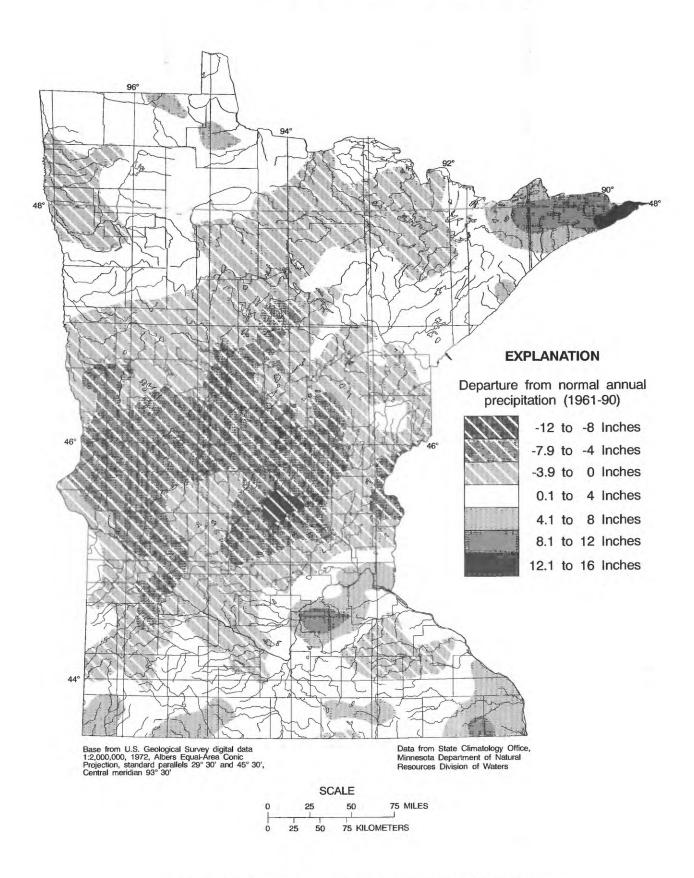


Figure 2.--Precipitation departure from normal, in inches, during 1992 water year in Minnesota.

November - above normal statewide except in the northwest and west-central regions where it was normal or below.

December - below normal statewide except for the southeast region where it was slightly above normal.

January - below normal statewide except for the southwest and south-central regions where it was above normal.

February - below normal statewide except for the north-central, northeast, and southwest regions where it was above normal.

March - below normal statewide except in the south where it was above normal.

April - below normal statewide except in the southeast where it was above normal.

May - below normal statewide.

June - below normal statewide except in the west-central and southwest regions where it was above normal.

July - above normal statewide except in the northeast where it was below normal.

August - above normal statewide except for the west-central, east-central, and southeast regions where it was below normal.

September - below normal statewide except for the northwest, northeast, and southeast regions were it was above normal.

Figure 3 shows total monthly precipitation compared to the normal 30-year (1961-90) monthly values. Two notable precipitation events occurred during the 1992 water year. The first was the "Great Halloween Snowstorm" of October 31 - November 2, 1991, when up to 28 in. of snow fell in the Twin Cities of Minneapolis and St. Paul, and up to 36 in. in the "arrowhead" region in northeastern Minnesota. This storm produced the greatest 24-hour snowfall ever recorded at the Twin City Airport - 20.4 in.. The previous record was 18.5 in. which fell on January 22-23, 1982 (James A. Zandlo, State Climatologist, oral commun., 1993). Only one other storm in historical weather records, the "Great Armistice Day Storm" in November 1940, compares with this event. Both of these storms produced record snowfalls, in a short time period, unusually early in the fall. As a result of the "Halloween storm", November, 1991 precipitation was about 2 1/2 times normal in the regions covered by the storm.

The second event occurred on the evening of September 15 and early morning of September 16, 1992 when 7 in. or more of rain fell in a band from the area around Belle Plain and New Prague to the Wisconsin border just south of Hastings in southeastern Minnesota. This caused September precipitation in this region to reach 1.7 times the normal 30-year (1961-90) value.

STREAMFLOW

Average annual runoff in Minnesota ranges from 1 in. in the west to 14 in. in the northeast. Annual runoff in water year 1992 ranged from 0.20 in. (22 percent of average) in part of west-central Minnesota to 11.83 in. (225 percent of average) in part of south-central Minnesota (table 1). Except for these extremes, runoff generally was greater than 50 percent of the long-term average in the northwest and west and near 100 percent of average in most of the remainder of the State except for parts of southern Minnesota where runoff was greater than 200 percent of average.

In 1992, runoff in the Great Lakes basin in northeast Minnesota and the Souris-Red-Rainy River basins, which extend from the north east to the west and northwest part of the state, (Volume 1) was similar to the pattern that occurred in 1991. Runoff in 1992 ranged from considerably below the long-term average in most of the west to near or somewhat above the long-term average in the east. Runoff as percent of average was lowest in the Red River of the North basin where it was 22 percent of the average in the Bois de Sioux River near White Rock, S.D. (05050000) and in the Red Lake River at High Landing near Goodrich (05075000). Runoff was highest in the Great Lakes basin where it was 127 percent of average in the Knife River near Two Harbors (04015330) and in the St. Louis River at Scanlon (04024000). An anomaly in this runoff pattern occurred in the Roseau River basin in northwestern Minnesota where runoff was 183 percent of average.

In northwestern Minnesota, runoff for the index station, Red Lake River at Crookston (05079000), was 1.43 in. - 50 percent of the station's 91-year average (1902-1992) of 2.85 in. and the 26th lowest runoff of record indicating a partial recovery from the drought which began in the 80's. In the four previous years (1988-91), runoff was the 11th, 23rd, 6th, and 11th lowest, respectively.

In north-central Minnesota, runoff for the index station, Little Fork River at Littlefork (05131500) was 7.32 in. - 88 percent of the 69-year average (1912-16, 1929-92) of 8.28 in. and 11 percent higher than each of the two previous years when it was 77 percent of average.

In nonheastern Minnesota, runoff for the index station, Baptism River near Beaver Bay (04014500) was 17.31 in. - 105 percent of the 65-year average (1928-92) of 16.46 in.. reflecting the up to 8 in. of above normal precipitation in this area in 1992. Runoff in water years 1990 and 1991 was 9.00 in. and 14.26 in., respectively.

Annual and monthly mean discharges for 1992 for the three index stations are compared to the median of mean discharges for the 30-year base period (1961-90) in figure 4. Although near-record high flows occurred at a few stations, no new records were established. For example, flows were in the excessive range throughout the entire year except for June, July, and August in the Roseau River below State Ditch 51 near Caribou (05112000), in contrast to the two previous water years of record low-flows.

WATER QUALITY

Boxplots for three U.S. Geological Survey National Stream-Quality Accounting Network (NASQAN) stations and one bemchmark station are used to depict variability in concentrations of dissolved solids and nitrate as nitrogen in three major basins (figs. 5 and 6): Lake Suprior, Rainy River, and Red River of the North basins.

Boxplots are a useful graphical technique because they display the central tendency, variation, and skewness of a data set, as well as the presence or absence of extreme values. A boxplot consists pf a centerline (the median) dividing a rectangle defined by the 75th and 25th percentiles. Whsikers are drawn from the ends of the box (75th and 25th percentiles) to the most extreme observation within 1.5 times the interquantile range (the distance from the 25th to the 75th percentile values) beyond the ends of the box. Values more than 1.5 interquartile ranges from the box ends may indicate extreme hydrologic and chemical conditions or sampling and analytical errors. Observations from 1.5 to 3 interquartile ranges from the box in either direction are plotted individually with an asterisk.

Observations greater than three interquartile ranges from the ends of the box are plotted ith an open circle. Water year 1992 values are plotted with a closed circle to show where these data lie with respect to the historic distribution of data.

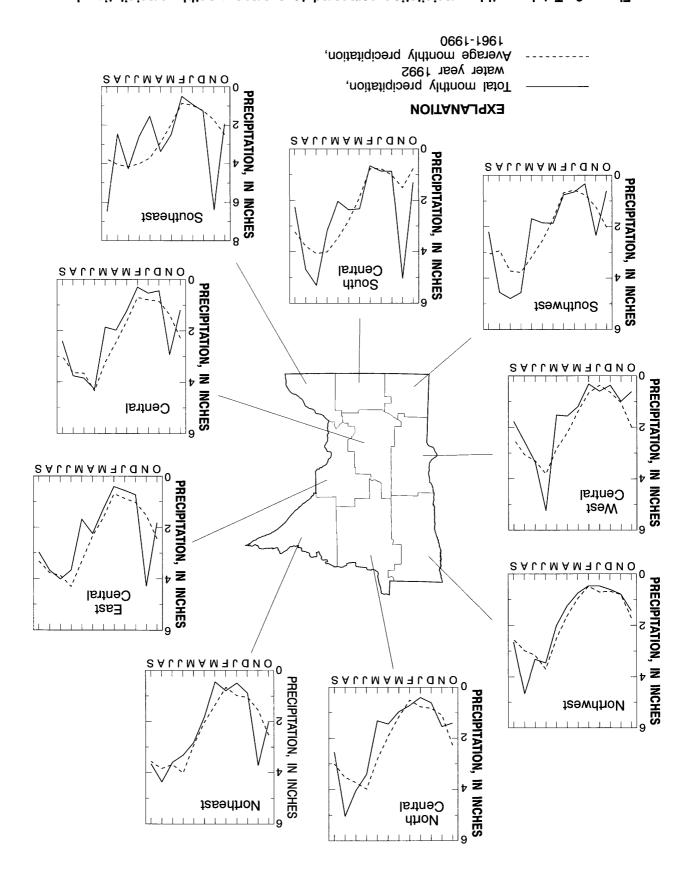


Figure 3.--Total monthly precipitation compared to average monthly precipitation by climatological division for a 30-year base period.

[Average runoff for station is based on period of record. Maximum and minimum runoff and year of occurrence are shown. mi, square miles.]

Table 1.--Runoff at streamflow stations in 1992 compared with long-term average for river basins in Minnesota

			Runoff (inches)	ches)	Maxim	Maximum runoff	Minim	Minimum runoff	4
Station no.	Station name	area (mi ²)	1992 Water year	Average	Inches	Water year	Inches	Water year	of record
04010500	Pigeon River at Middle Falls near Grand Portage	600	12.50	11.41	19.01	1971	3.58	1958	69
04014500	Baptism River near Beaver Bay	140	17.31	16.46	32.50	1972	7.92	1963	65
04015330	Knife River near Two Harbors	85.6	18.25	14.40	23.32	1986	7.01	1977	18
04024000	St. Louis River at Scanlon	3,430	11.81	9.29	16.93	1972	3.74	1924	% 4
04024098	Deer Creek near Holyoke	7.77	12.36	13.09	33.70	1986	6.38	1980	16
05046000	Otter Tail River below Orwell Dam near Fergus Falls	1,830	2.18	2.37	6.25	1966	.15	1934	83
05050000	Bois de Sioux River near White Rock	1,160	.20	.92	3.85	1986	.004	1977	51
05051500	Red River of the North at Wahpeton	4,010	1.15	1.82	5.00	1986	.18	1977	49
05061500	South Branch Buffalo River at Sabin	522	.72	1.43	5.15	1962	.32	1977	428
05062000	Buffalo River near Dilworth	1,040	1.02	1.71	5.76	1975	.33	1934	61
05064000	Wild Rice River at Hendrum	1,600	1.70	2.19	5.79	1975	.25	1977	478
05069000	Sand Hill River at Climax	426	1.11	2.23	6.50	1950	.59	1977	458
05074500	Red Lake River near Red Lake	1,950	.51	3.25	9.00	1951	.04	1936	59
05076000	Thief River near Thief River Falls	959	2.03	2.26	8.60	1966	.02	1939	748

Table 1.--Runoff at streamflow stations in 1992 compared with long-term average for river basins in Minnesota--Continued

			Runoff (inches)	thes)	Maxim	Maximum runoff	Minimu	Minimum runoff	
Station no.	Station name	Drainage area (mi ²)	1992 Water year	Average	Inches	Water year	Inches	Water year	Years of record
05078500	Clearwater River at Red Lake Falls	1,370	2.27	3.06	8.48	1950	2	1939	959
05079000	Red Lake River at Crookston	5,280	1.43	2.85	8.05	1950	.22	1934	91
05082500	Red River of the North at Grand Forks	30,100	37:	1.15	3.42	1950	Π.	1934	80
05087500	Middle River at Argyle	265	1.08	1.93	5.74	1966	.08	1977	418
05102500	Red River of the North at Emerson	40,200	76.	1.12	4.09	1950	П	1934	80
05104500	Roseau River below South Fork near Malung	573	4.12	3.16	8.18	1950	.17	1990	46
05112000	Roseau River below State Ditch No. 51 near Caribou	1,570	4.43	2.42	5.91	1927	.31	1977	358
05124480	Kawishiwi River near Ely	253	10.42	11.18	16.80	1971	5.07	1977	26
05127000	Kawishiwi River near Winton	1,229	12.07	11.40	21.73	1950	2.65	1924	728
05127500	Basswood River near Winton	1,740	11.08	10.92	20.63	1950	4.35	1958	849
05128000	Namakan River at Outlet of Lac la Croix	5,170	10.43	10.08	19.10	1950	2.53	1924	70
05130500	Surgeon River near Chisholm	187	8.07	8.91	15.11	1950	4.58	1977	20
05131500	Little Fork River at Littlefork	1,730	7.32	8.28	15.01	1966	2.40	1931	969
05132000	Big Fork River at Big Falls	1,460	5.69	6.73	12.67	1950	98.	1931	618
05133500	Rainy River at Manitou Rapids	19,400	9.95	8.99	16.28	1950	4.10	1977	2

8 Noncontinuous period.

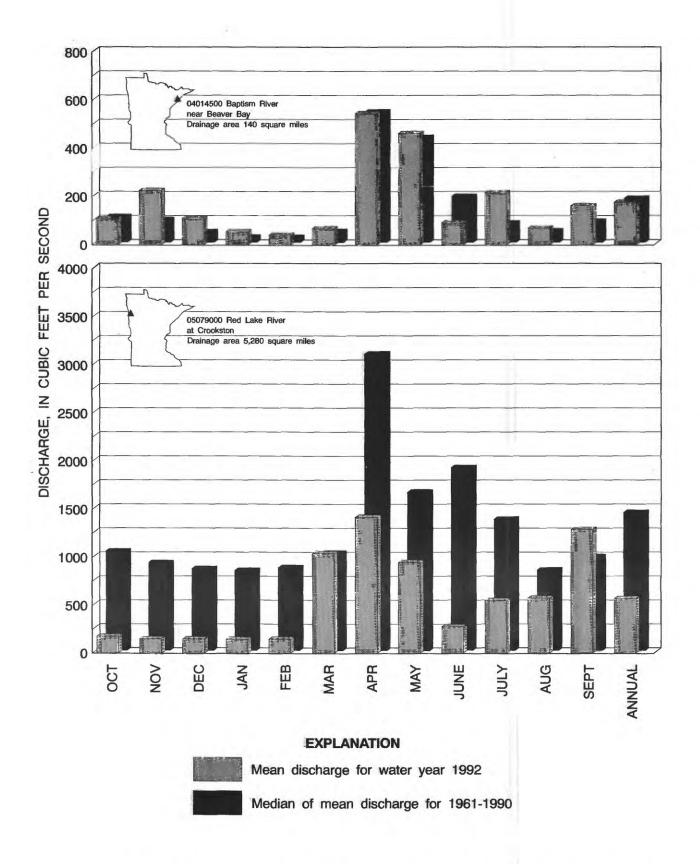
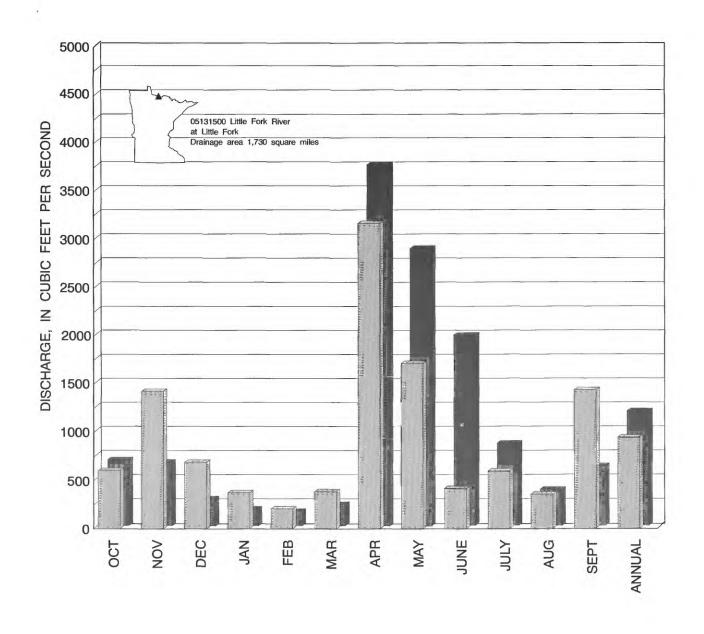



Figure 4.--Comparison of mean discharge for the 1992 water year with median

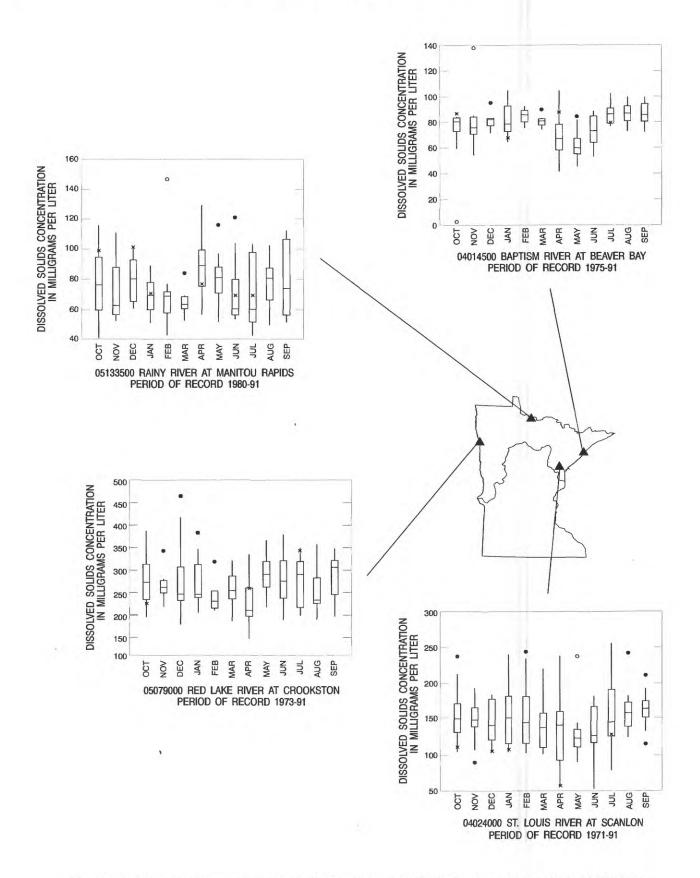


Figure 5-Comparison of dissolved-solids concentrations in samples collected during water year 1992 with median for period of record at four national network stations.

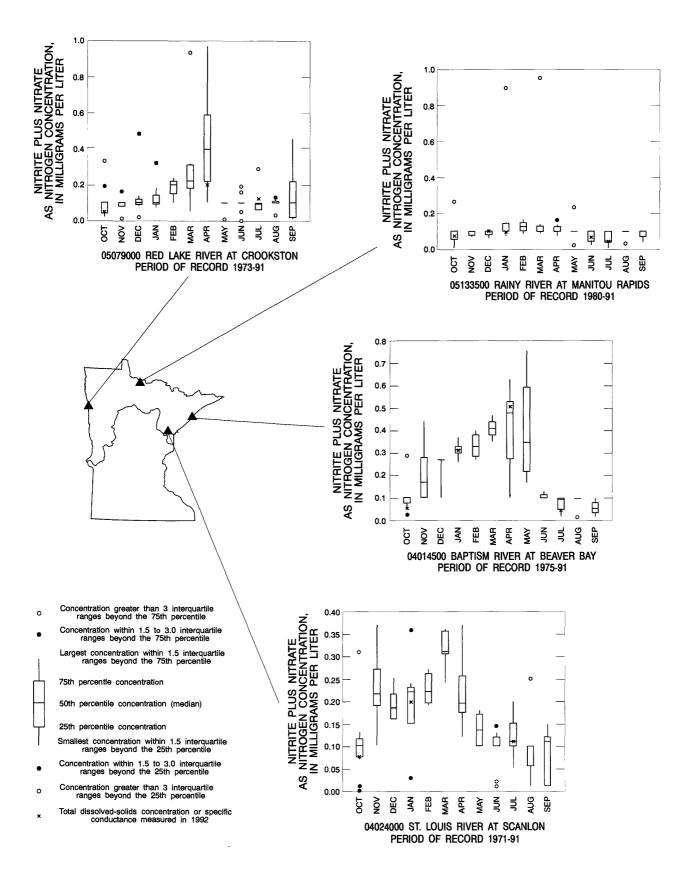


Figure 6--Comparison of nitrite plus nitrate concentrations in samples collected during water year 1992 with median for period of record at four national network stations.

Dissolved-solids concentrations determined in 1992 were generally less than median in the Lake Superior basin, as evidenced by data for Baptism River near Beaver Bay and St. Louis River at Scanlon. Red Lake River at Crookston in the Red River of the North basin generally had lower concentrations of dissolved solids in the fall and higher in the winter and summer. Rainy River at Manitou Rapids had greater concentrations of dissolved solids in all samples except the October sample.

Nitrate concentrations reported as nitrogen (analyzed for nitrate plus nitrite, with nitrite concentration assumed to be negligible) were generally close to the median throughout 1992 for the four NASQAN stations. Samples collected in December and January at Red Lake River at Crookston were exceptions; those samples had nitrate concentrations much higher than the monthly medians.

Sixty five wells were samples in 7 counties. Nitrate concentrations were above the primary drinking-waters standard of 10 mg/L (Minnesota Pollution Control Agency, 1988) in 2 samples, Iron concentrations in twenty five samples were above the iron standard of 300 ug/L, and manganese concentrations in 22 samples were above the manganese standard of 50 ug/L.

GROUND-WATER LEVELS

Data from six wells completed in surficial sand aquifers, five wells completed in buried sand and gravel aquifers, and one well completed in the Biwabik Iron-Formation aquifer are presented in this volume. A phaseout of these wells from the ground-water network began in March, and by the end of August, all of the wells were eliminated from the network. However, county soil and water conservation personnel will make water-level measurements in these wells starting in October 1992.

Surficial Sand Aquifers

Water level declines continued in well 465237096383901 near Moorhead, in northwestern Minnesota. From October through July, record monthly low levels were observed in this well, which has 45 years of record. The average monthly water level decline was 0.4 foot from the previous water year. This well is in an area of large ground water withdrawals for public supply and irrigation. In contrast, well 463854096250701 about 20 miles southeast of Moorhead had monthly water levels which were average during the year (fig. 7). This well has 37 years of record and shows no appreciable long-term water-level declines. Two wells, 455700096314001 and 463956095352601, in the west-central part of the state, had above-average monthly water levels for the year which probably reflects the above-normal rainfall from the previous year. Two wells in northeastern Minnesota, 474253091574101 and 475502091494601, also had above-average monthly water levels, although the precipitation amounts (October-April) were 3.2 inches below normal around these wells (fig. 7).

Buried Sand and Gravel Aquifers

Long-term water level declines continued in two wells in northwestern Minnesota. Record monthly low levels were measured in well 465328096391001 which has 31 years of record, and in December, the lowest level ever measured was recorded. The other well, 465231096415801 with 27 years of record, located 2.5 miles from the first well, had record monthly low levels from October through March. Both wells are in an area of large ground water withdrawals for public supply and irrigation. Record water-level-highs for March and May were measured in well 455927095575505 in west-central Minnesota. Temperatures for these months were below normal, which may have caused less ground-water use from production wells allowing water levels to recover higher than normal. Water levels were above the monthly average in two wells, 473102092345001 and 473011092524301, in northeastern Minnesota, on the Mesabi Iron Range. These higher-than-normal water levels probably reflect the effect of the wet third and fourth quarters of the previous water year.

Bibwabik Iron-Formation Aquifer

Monthly high water levels were recorded for the entire water year as well as a record all time high in January in well 472638092533601 in northeastem Minnesota with 37 years of record (see hydrograph page). This well is located on the Mesabi Iron Range. Since 1983 a water-level rise of 12 feet, or 1.3 feet per year has been recorded in this well. The steady rise in water level is due to a combination of above average precipitation and no dewatering of nearby mines. Many abandoned mine sites in this area are now filled with ground water.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National Stream Quality Accounting Network (NASQAN) is a national data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of the hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, and aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, diverse, and geographically distributed part of the Nation's ground-and surface-water resources, and to identify, describe, and explain the major natural and human factors that affect these observed conditions and trends.

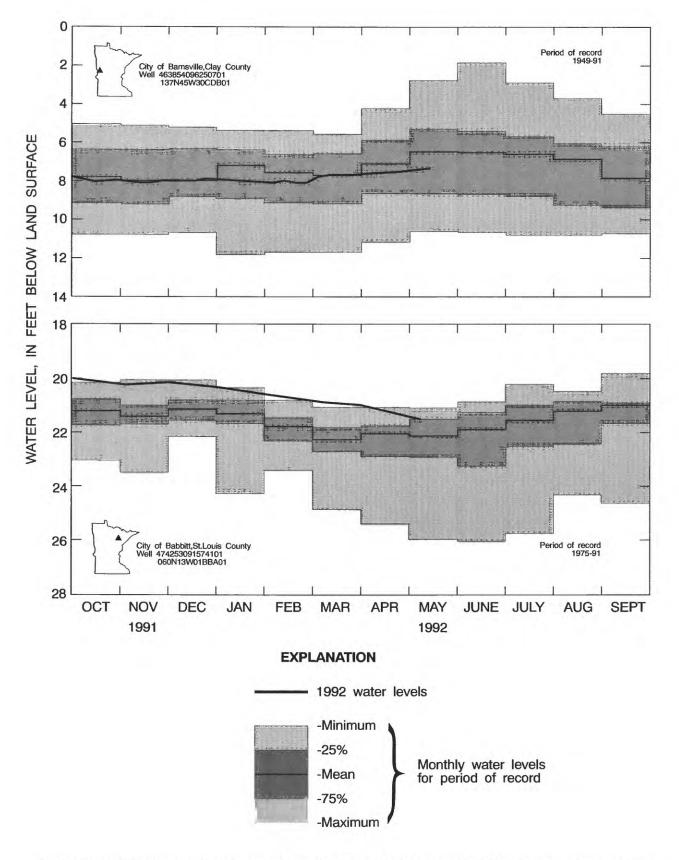


Figure 7.--Comparison of water levels during 1992 to long-term levels in two representative wells in surficial sand aquifers.

Assessment activities have begun in more than one-third of the study units and ultimately will be conducted in 60 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interst.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1991 water year that began October 1, 1990, and ended September 30, 1991. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for the surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 7, 8, 9, and 10. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

STATION IDENTIFICATION NUMBERS

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The system used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Minnesota, for surface-water stations where only miscellaneous measurements are made.

Downstream OrderSystem and Station Number

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream sections is listed between them. A similar order is followed by listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary i0 indicated by an indentation in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 05041000, which appears just to the left of the station name, includes the 2-digit part number "05" plus the 6-digit downstream order number "041000."

Latitude-Longitude System for Wells and Miscellaneous Sites

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 8. Each well site is also identified by a local well number which consists of township, range, and section numbers, three letters designating 1/4, 1/4, 1/4 section location, and a two-digit sequential number.

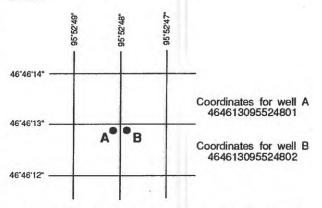


Figure 8. Example of system for numbering wells and miscellaneous sites.

RECORDS OF STAGE AND WATER DISCHARGE

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharge may be computed for anytime, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations".

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Highflow partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and high-flow partial-record stations for which data are given in this report are shown in figures 9 and 11.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adapted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of current-meter measurements, the curves are extended using: (1) logarithmic-plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means, of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharge over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surfacewater discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time when the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.—Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all reports in which revisions have been published for the station and water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datum of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is the information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the district office (address given on the back of title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and to the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN"); or in acre-feet (line headed "AC-FT). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figure are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS 19__-19__, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS 19_-19_," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date

of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

INSTANTANEOUS PEAK FLOW.—The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)

INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF -- Indicates the total quality of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data.

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

- 10 PERCENT EXCEEDS.--The discharge that is exceeded by 10 percent of the flow for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that is exceeded by 50 percent of the flow for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that is exceeded by 90 percent of the flow for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the waterdischarge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated", or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1000 ft³/s; and to 3 significant figures for more than 1000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of all discharge measurement sites in the State as well as an index of records of discharge collected by other agencies but not published by the Geological Survey. Information on records available at specific sites can be obtained upon request.

RECORDS OF SURFACE-WATER QUALITY

Records of surface water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 10.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurement and Collection

In obtaining water quality data, a major concern needs to be assuring that the data obtained represents the in situ quality of water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5 Chap. A1, A3, and A4. All of these references are listed on p. of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey district office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating

load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S.G.S. district office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diumal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the district office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for indicator bacteria and specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratories in Arvada, Colo., Doraville, Ga., or Iowa City, Ia. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, when appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

PERIOD OF RECORD.—This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.—Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.—If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
К	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organisms count less than 0.5 percent (organisms may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
& .	Biological organism estimated as dominant

Dissolved Trace-Element Concentrations

NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Present data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes. However, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey will begin using new trace-element protocols in water year 1994.

RECORDS OF GROUND-WATER LEVELS

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Minnesota are shown in figure 12.

Although, in this report, records of water levels are presented for fewer than 200 wells, records are obtained through cooperative efforts of many Federal, State, and local agencies for several hundred observation wells throughout Minnesota and are placed in computer storage. Each spring, the Minnesota Department of Natural Resources, Division of Waters publishes a report for the previous water year entitled "Observation Well Data Summary, Water Year 19_..." This report contains hydrographs of recorder wells, detailed maps showing the location of active observation wells, and other useful items. Information about the availability of the data in the water-level file may be obtained from the District Chief, Minnesota District. (See address on back of front page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well assure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

All water-level measurements are reported to the nearest hundredth of a foot. The error of water-level measurements is normally only a hundredth or a few hundredth of a foot.

Hydrographs showing water-level fluctuations are included for 3 representative wells; 1 in a surficial-sand aquifer, 1 in a buried sand aquifer, and 1 in a bedrock aquifer.

Data Presentation

Each well consists of two parts, the station description and the data table of water levels observed during the water year. In addition a graph of water levels for the current year or other selected period is included for several representative wells. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.-- This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and includes additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in the top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) sea level; it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that are also water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.—This entry indicates the period for which there are published records for the well. It reports the month and year of the start of the publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR THE PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, abbreviated tables are published; generally, only water-level lows are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. A hydrograph for a selected period of record follows the water-level table for several representative wells.

RECORDS OF GROUND-WATER QUALITY

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigation" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the U.S. Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases.

 Station Header File - Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the U.S. Geological Survey collects or has collected data.

- Daily Values File-Contains more than 220 million daily values of stream flows, stages, reservoir contents, water temperature, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
- Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage-height values at surface-water sites.
- Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water.
- Ground-Water Site Inventory Data Base Contains inventory data for more than 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requester will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092

In addition to providing direct access to WATSTORE, data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk; and, as noted in the introduction, on CD-ROM discs. Beginning with the 1990 water year, all water-data reports will also be available on Compact disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices. (See address on the back of the title page.) A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting inch-pound units to International System of units (SI) on the inside of back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life process. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP, therefore, provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore- forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C ±1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C ±0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria also found in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35° C ± 1.0 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

Dry mass refers to the weight of residue present after drying in an oven at 60° C for zooplankton and 105° C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed Material.

Cells/volume refers to the number of cells or any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, or about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll a and b are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foot per second (FT³/s, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time

Annual 7-day minimum is the lowest mean discharge

for 7 consecutive days for a calender year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

Dissolved refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45-micrometer membrane filter, and thus may include some very small (colloidal) suspended particles. Analyses are performed on filtered samples.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where 'n.' is the number of individuals per taxon, 'n' is the total number of individuals, and 's' is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage", although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egglarva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (UG/G, ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per kilogram (MG/KG, mg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASOAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases, The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Parameter code numbers are unique five-digit code numbers assigned to each parameter placed into storage. These codes are assigned by the Environmental Protection Agency and are also used to identify data exchanged among agencies.

Partial-record station is a particular site where limited streamflow and (or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	00024- 0.004	Sedimentation
Silt	004062	Sedimentation
Sand	.062 - 2.0	Sedimentation or sieve-
Gravel	2.0 -64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

Periphyton is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

Pesticides are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

Picocurie (PC, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (C1). A curie is the amount of radioactivity that yields 3.7×1010 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organo-chlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time $[mg\ C/(m^2\ .time)]$ for periphyton and macrophytes and $mg\ (C/(m^3\ .time)]$ for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume pet unit time

[mg $0_2/(m^2$. time) for periphyton and macrophytes and mg $0_2/(m^3$. time) for phytoplankton] are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotypes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water, it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted

concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended-sediment discharge tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Total sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

7-day 10 year low flow (7 Q_{10}) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as a streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

Natural substrates refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and miltiplate samplers (made of hardboard) for benthic organism

collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a watersediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common.

For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u> is the following:

KingdomAnimal
PhylumArthropoda
ClassInsects
OrderEphemeroptera
FamilyEphermeridae
GenusHexageria
SpeciesHexagenia lambata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. The term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in aspecific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the

constituent, times the factor 0.0027, times the number of days.

Total recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent percent in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surfacewater stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1992 is called the "1992 water year."

WDR is used as an abbreviation for "Water-Data Report" in reference to published reports beginning in 1975.

Welghted average is used in this report to indicate dischargeweighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WRD is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basicdata reports published before 1975.

 \boldsymbol{WSP} is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

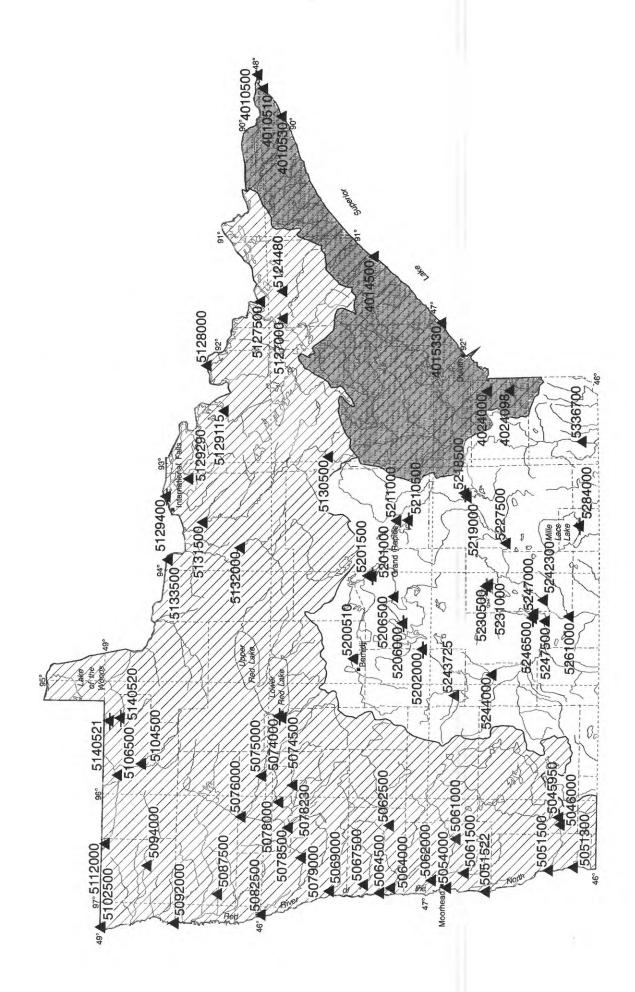
The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resource investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications to Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficken, and G.F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2 Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. Scott Keys and L.M. McCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W. Scott Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS-TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3. Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-A10. Discharge ratings at gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. Measurement of discharge by moving-boat method, by G.F. Smoot and C.E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS--TWRI Book 3, Chapter A12. 1986. 41 pages.
- 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A13. 1983. 53 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

- 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Anonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathburn, N. Yotsukura, G.W. Parker, and L.L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels of streamflow gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A19. 1990. 27 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G.D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-waterflow, by Richard L. Cooley and Richard L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS-TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transporting round-water systems with uniform flow, by Eliezer J. Wexler: USGS--TWRI Book 3, Chapter B7. 1992. 90 pages.
- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H.C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H.C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.,: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS--TWRI Book 5, Chapter A3, 1987, 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.


PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate a quifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI Book 6, Chapter A2. 1991. 68 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffrannek, R.A. Baltzer, and D.E. Goldberg: USGS-TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring waterlevels indeep wells, by M.S. Garber and F.C. Koopman: USGS--TWRIBook 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installationand service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages.

Surface-Water Station Records

Big Fork River at Big Falls - Cableway June 10, 1976

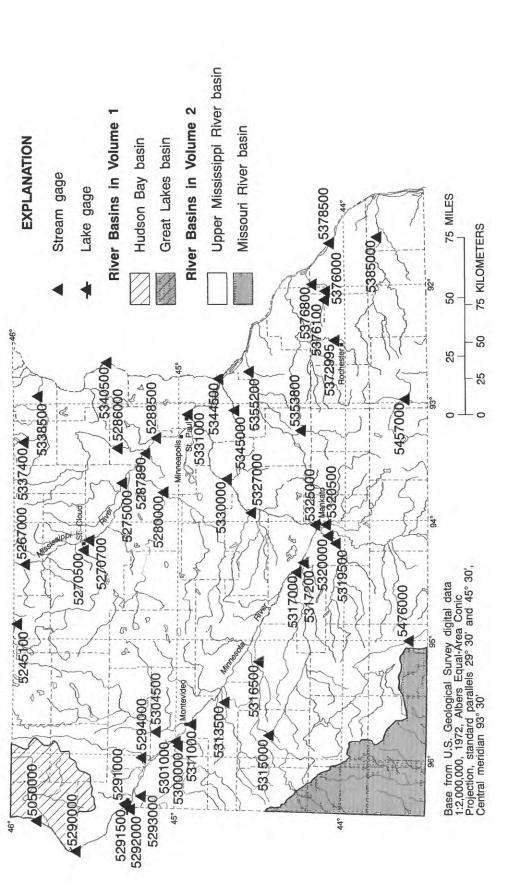
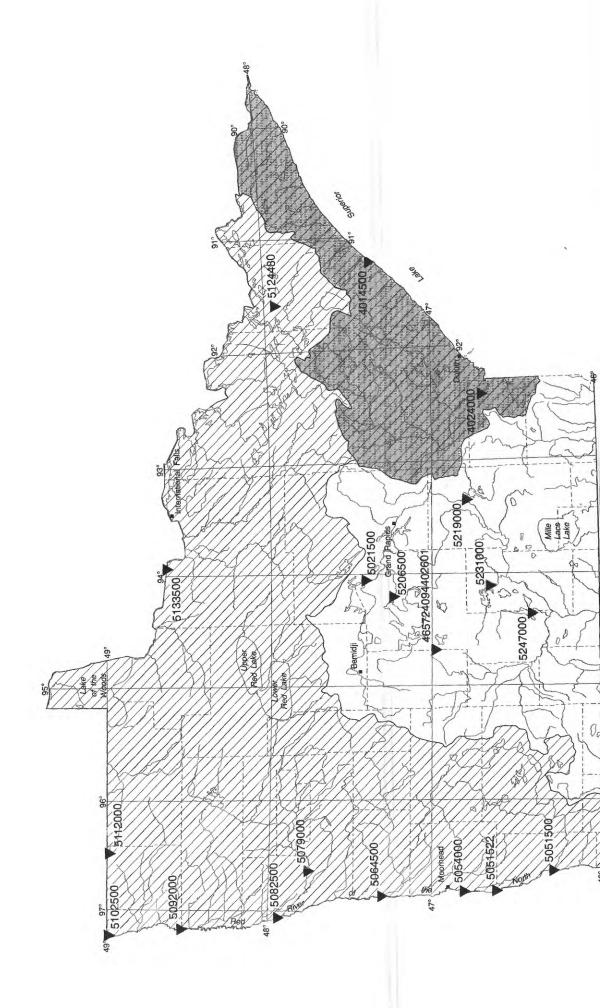



Figure 9.--Location of lake and stream-gaging stations.

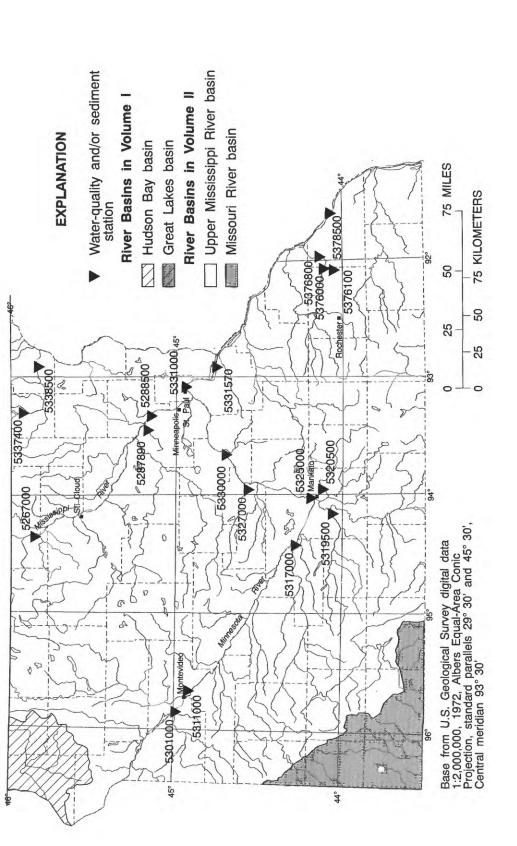


Figure 10.--Location of surface-water quality stations.

AC-FT

CFSM

IN.

7470

.20

.23

26970

.76

.84

13980

.38

.44

11520

.31

.36

8610

.25

.27

8990

.24

.28

41950

1.17

1.31

166200

4.51

5.20

41550

1.16

1.30

29850

.81

.93

14990

.41

.47

27880

.78

.87

STREAMS TRIBUTARY TO LAKE SUPERIOR

04010500 PIGEON RIVER AT MIDDLE FALLS, NEAR GRAND PORTAGE, MN (International gaging station)

LOCATION .- Lat 48°44", long 89°36'58", in SW1/4NE1/4 sec. 24, T.64 N., R.6 E., Cook County, Hydrologic Unit 04010101, on the Grand Portage Indian Reservation, on right bank 400 ft upstream from Middle Falls, 2.5 mi upstream from Grand Portage Port of Entry, 3.5 mi upstream from mouth, and 4.7 mi northeast of city of Grand Portage.

DRAINAGE AREA .-- 600 mi².

PERIOD OF RECORD.--June to October 1921, April to November 1922, March 1923 to current year. Published as "at International Bridge" April 1924 to September 1940; as "below International Bridge" October 1940 to September 1965. Monthly discharge only for some periods, published in WSP 1307.

REVISED RECORDS.--WSP 744:1927-28. WSP 804:1934(M). WSP 974: Drainage area. WSP 1337:1924(M), 1925, 1926-28(M), 1931(M), 1938(M), 1941(M), 1945-46(M), 1947, 1948(M), 1950(M).

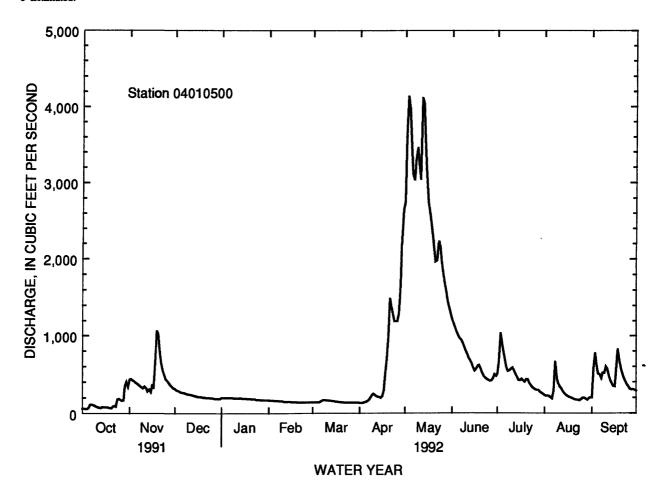
GAGE.--Water-stage recorder. Datum of gage is 787.58 ft above sea level. Prior to Sept. 30, 1940, nonrecording gage at International Bridge, 5.8 mi upstream at datum 102.24 ft higher. Oct. 1, 1940, to Dec. 31, 1975, at present site at datum 2.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Satellite telemeter at station.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 3,000 ft3/s and maximum (*):

			Discharge	Ga Ga	ge height					Discharg	e	Gage heig
Date		Time	(ft ³ /s)		(ft)		Date		Time	(ft ³ /s)		(ft)
May 3		1730	4,200		9.20		May 1	2	0130	*4,260		*9.53
		DISCHAI	RGE, CUBIC	FEET P	ER SECON	D, WATER	YEAR OC	TOBER 1	991 TO SE	PTEMBER 1	992	
					DAI	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUC	S SE
1	59	e430	e315	e200	e170	e140	e130	2750	1230	503	233	20
2	60	e440	e300	e200	e165	e140	e130	3610	1170	670	225	
3	58	e425	e290	e200	e165	e140	e130	4140	1110	1040	225	
4	55	e410	e280	e200	e165	e140	e140	3970	1060	924	219	
5	69	e395	e270	e200	e160	e140	e145	3480	1010	792	203	50
6	109	e380	e265	e200	e160	e150	e155	3110	968	686	189	50
7	112	e365	e260	e200	e160	e160	e170	3030	949	590	284	
8	108	e350	e255	e200	e155	e170	e200	3320	915	543	669	
9	97	e335	e250	e195	e155	e170	e230	3460	860	553	452	
10	87	321	e245	e195	e155	e165	e250	3240	805	572	385	
11	78	343	e240	e195	e150	e165	e235	3040	760	588	345	56
12	72	322	e235	e195	e150	e160		4120	716	547	320	
13	68	281	e230	e195	e150		e220 e210	4040	681	499	286	
14	81	307	e225	e195	e150	e160 e155	e205	3570	640	460	257	
15	79	271	e220	e190	e150	e155	e200	3100	589	429	236	
16	76	372	e216	e190	e145	e150	e220	2750	548	422	219	34
17	76	320	e213	e190	e145	e150	e300	2610	572	440	212	
18	74	650	e210		e145						204	
19	69			e185		e145	e500	2480	611	422		
20	66	1070 1020	e207 e204	e185 e185	e145 e140	e145 e140	e700 e1000	2300 2120	618 572	403 434	193 185	
21	87	015	000	100	1.40	1.40	1500	1000	514	40.4	122	
21 22		815	e202	e180	e140	e140	e1500	1970	514	434	177	
23	94	e650	e200	e180	e140	e135	e1400	1980	475	395	174	
	87	e550	e198	e180	e140	e135	e1300	2230	456	363	169	
24 25	179 187	e490 e440	e196 e194	e175 e175	e140 e140	e135 e135	e1200 e1200	2160 1980	441 426	337 320	165 181	
26	171	-420	-102	175	-140	.125	-1200	1000	414	205	100	20
	171	e420	e192	e175	e140	e135	e1200	1820	414	305	199	
27	162	e390	e190	e170	e140	e135	e1300	1690	420	296	198	
28	164	e365	e188	e170	e140	e135	1670	1580	444	298	184	
29	342	e345	e188	e170	e140	e135	2260	1470	496	275	174	
30 31	402 339	e325	e186	e170		e135	2650	1380 1300	478	262	193 202	
31	339		e186	e170		e135		1300		246	202	1
OTAL	3767	13597	7050	5810	4340	4530	21150	83800	20948	15048	7557	1405
IEAN	122	453	227	187	150	146	705	2703	698	485	244	
IAX	402	1070	315	200	170	170	2650	4140	1230	1040	669	
IIN	55	271	186	170	140	135	130	1300	414	246	165	


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	366	354	205	149	124	174	1205	1625	862	403	237	305
MAX	2095	1461	720	431	300	1169	2701	4016	2801	1127	1029	2985
(WY)	1978	1971	1978	1975	1969	1945	1976	1950	1947	1968	1950	1977
MIN	17.4	11.4	2.85	2.18	8.02	60.0	290	138	125	78.0	57.7	40.2
(WY)	1977	1977	1977	1977	1977	1941	1977	1977	1977	1958	1991	1976

SUMMARY STATISTICS FOR 1991 CALENDAR YEAR			FOR 1992 WAT	TER YEAR	WATER YEARS 1921 - 1992		
ANNUAL TOTAL	161399		201653				
ANNUAL MEAN	442		551		504		
HIGHEST ANNUAL MEAN					840	1971	
LOWEST ANNUAL MEAN					158	1958	
HIGHEST DAILY MEAN	3710	Apr 30	4140	May 3	10700	May 5 1934	
LOWEST DAILY MEAN	20	Sep 7	55	Oct 4	1.0	Jan 15 1977	
ANNUAL SEVEN-DAY MINIMUM	24	Sep 5	74	Oct 14	1.0	Jan 15 1977	
INSTANTANEOUS PEAK FLOW		•	4260	May 12	11000	May 5 1934	
INSTANTANEOUS PEAK STAGE			9.53	May 12	7.60a	May 5 1934	
INSTANTANEOUS LOW FLOW			55	Oct 4, 5		·	
ANNUAL RUNOFF (AC-FT)	320100		400000		365000		
ANNUAL RUNOFF (CFSM)	.74		.92		.84		
ANNUAL RUNOFF (INCHES)	10.01		12.50		11.41		
10 PERCENT EXCEEDS	1280		1300		1300		
50 PERCENT EXCEEDS	186		252		220		
90 PERCENT EXCEEDS	52		138		84		

a Site and datum then in use.

e Estimated.

04010510 GRAND PORTAGE RIVER AT GRAND PORTAGE, MN

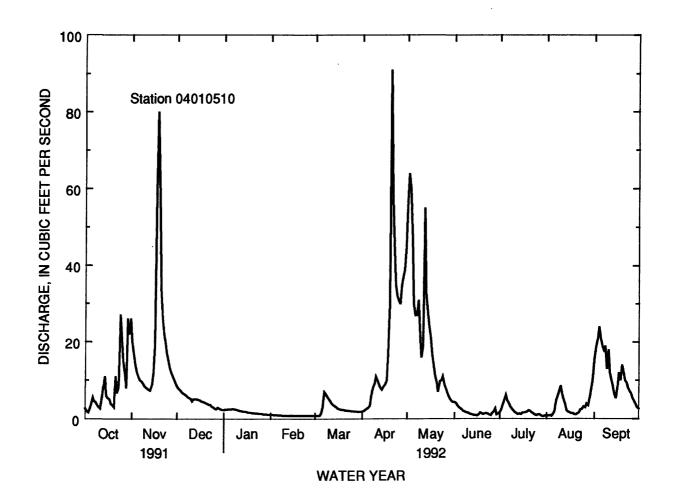
LOCATION.--Lat 47°57'49", long 89°41'00", in SW¹/₄SE¹/₄ sec.4, T.63 N., R.6 E., Cook County, Hydrologic Unit 04010101, on Grand Portage Indian Reservation, on left bank at upstream side of bridge, 600 ft upstream of mouth, at city of Grand Portage.

PERIOD OF RECORD.--May 1991 to September 1992 (discontinued).

GAGE.--Nonrecording gage. Elevation of gage is 615 ft above mean sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992


					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.7	e20	e8.4	e2.3	el.1	e.80	e1.9	55	4.3	1.7	.75	16
2	2.0	e17	e7.8	e2.4	el.1	e. 80	e2.0	e64	4.1	2.5	.85	19
3	1.7	e14	e7.4	e2.4	e1.0	e.80	e2.3	e60	3.5	3.7	.95	21
4	2.5	e12	e7.0	e2.5	e1.0	e.80	e2.6	47	3.0	4.8	.75	24
5	3.9	e11	e6.6	e2.5	e.98	e1.3	e2.9	e30	2.7	6.2	1.2	21
6	5.6	e10	e6.3	e2.5	e.94	e3.0	e3.4	27	2.3	4.8	1.8	19
7	4.6	e9.7	e6.0	e2.6	e.92	e7.0	e6.0	27	2.0	4.1	4.6	18
8	4.3	e9.2	e5.7	e2.5	e.90	e6.6	e8.0	31	1.8	3.2	5.9	19
9	3.5	e8.6	e5.4	e2.4	e.88	e5.8	e9.2	22	1.7	2.5	7.0	13
10	3.0	e8.2	e5.2	e2.3	e.86	e5.2	e11	16	1.6	2.2	8.6	18
11	2.7	e7.8	4.6	e2.2	e.84	e4.6	e10	19	1.3	1.7	6.4	12
12	5.3	e7.5	5.1	e2.1	e.84	e4.0	e8.8	55	1.2	1.4	5.1	10
13	8.6	7.3	5.1	e2.0	e.82	e3.6	e8.0	33	1.1	1.2	3.9	8.3
14	11	8.6	e5.1	e1.9	e.82	e3.3	7.6	28	.95	1.3	2.2	6.7
15	5.9	12	e4.9	e1.9	e.80	e3.0	8.3	24	.95	1.2	1.8	5.3
16	5.3	19	e4.8	e1.8	e.80	e2.7	e9.0	21	.85	1.6	1.7	8.3
17	5.1	59	e4.6	e1.7	e.80	e2.5	10	17	1.1	1.6	1.4	12
18	3.9	80	e4.4	e1.7	e.80	e2.4	e17	14	1.6	1.7	1.4	10
19	3.5	58	e4.3	e1.6	e.80	e2.3	e30	11	1.4	1.8	1.2	14
20	3.0	34	4.1	e1.5	e.80	e2.3	91	9.3	1.2	2.2	1.1	12
21	11	e26	3.9	el.5	e.80	e2.2	e60	7.0	1.3	2.0	1.3	10
22	6.7	e22	3.7	e1.4	e.80	e2.2	e46	9.7	1.4	1.7	1.6	9.3
23	8.0	e20	3.7	e1.4	e.80	e2.1	e35	10	1.3	1.4	2.3	8.0
24	27	e17	3.2	e1.3	e.80	e2.1	32	11	1.1	1.1	2.5	7.3
25	22	e15	3.0	e1.3	e.80	e2.0	e31	9.0	.95	.95	3.2	6.7
26	15	e13	2.7	e1.3	e.80	e2.0	e30	8.0	1.4	1.1	2.9	5.3
27	12	e12	2.5	e1.2	e.80	e1.9	35	7.0	1.8	1.2	3.9	4.6
28	8.0	e11	2.9	e1.2	e.80	e1.9	37	5.9	2.7	.95	3.5	3.9
29	26	e10	2.7	e1.2	e.80	e1.8	e39	5.1	1.1	.66	5.6	3.0
30	22	e9.2	2.5	e1.1		e1.8	e45	4.6	1.3	.66	8.3	2.7
31	26		2.3	e1.1		e1.8		4.3		.85	11	
TOTAL	271.8	568.1	145.9	56.8	25.00	84.60	639.0	691.9	53.00	63.97	104.70	347.4
MEAN	8.77	18.9	4.71	1.83	.86	2.73	21.3	22.3	1.77	2.06	3.38	11.6
MAX	27	80	8.4	2.6	1.1	7.0	91	64	4.3	6.2	3.50	24
MIN	1.7	7.3	2.3	1.1	.80	.80	1.9	4.3	.85	.66	.75	2.7
AC-FT	539	1130	289	113	50	168	1270	1370	105	127	208	689

e Estimated.

OT 1 MIONITO OT 1 101 MINT TO	1 m 1 1 m 1 m 1 m 2 m 2 m 1 m 2 m 2 m 2	
STATISTICS OF MONTHLY	MEAN DATA FOR WATER YEARS 1991 -	- 1992 BY WATER YEAR (WY) -

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX (WY) MIN (WY)	8.77 8.77 1992 8.77 1992	18.9 18.9 1992 18.9 1992	4.71 4.71 1992 4.71 1992	1.83 1.83 1992 1.83 1992	.86 .86 1992 .86 1992	2.73 2.73 1992 2.73 1992	21.3 21.3 1992 21.3 1992	22.3 22.3 1992 22.3 1992	3.16 4.56 1991 1.77 1992	3.32 4.58 1991 2.06 1992	1.78 3.38 1992 .18 1991	6.84 11.6 1992 2.10 1991
SUMMA	RY STAT	TISTICS				F	OR 1992 W	ATER YE	AR	WATER Y	ÆARS 199	1 - 1992
ANNUA	L TOTAL						3052.17					

ANNUAL TOTAL	3052.17			
ANNUAL MEAN	8.34		8.34	
HIGHEST ANNUAL MEAN			8.34	1992
LOWEST ANNUAL MEAN			8.34	1992
HIGHEST DAILY MEAN	91	Apr 20	91	Apr 20 1992
LOWEST DAILY MEAN	.66	Jul 29, 30	.10	Aug 12 1991
ANNUAL SEVEN-DAY MINIMUM	.78	Jul 29	.10	Aug 9 1991
INSTANTANEOUS PEAK FLOW	118	Nov 18	118	Nov 18 1991
INSTANTANEOUS PEAK STAGE	2.26	Nov 18	2.26	Nov 18 1991
ANNUAL RUNOFF (AC-FT)	6050		6040	
10 PERCENT EXCEEDS	22		19	
50 PERCENT EXCEEDS	3.5		2.7	
90 PERCENT EXCEEDS	.95	•	58	

04010530 RESERVATION RIVER NEAR HOVLAND, MN

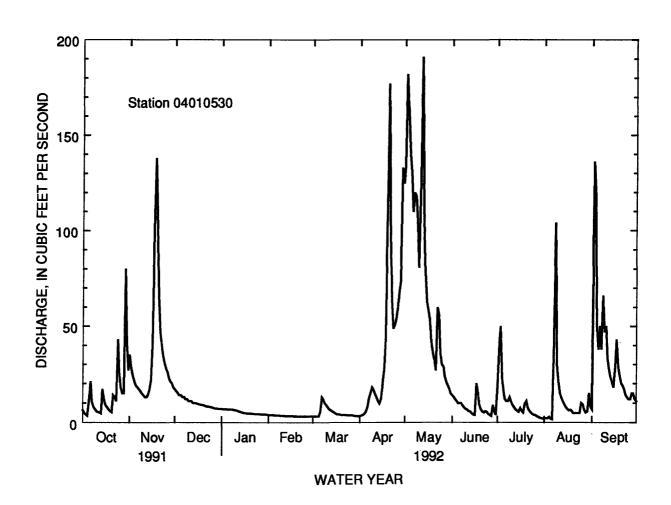
LOCATION.--Lat 46°52'38", long 89°51'45", in SE'/4SW'/4 sec.6, T.62 N., R.5. E., Cook County, Hydrologic Unit 04010101 on the Grand Portage Indian Reservation, on left bank at downstream side of bridge on U.S. Highway 61, 1,200 ft upstream from mouth and 5.5 miles northeast of Hovland.

PERIOD OF RECORD .-- April 1991to September 1992 (discontinued).

GAGE.--Water stage recorder. Elevation of gage is 660 ft above mean sea level, from topographic map. Prior to May 14, 1991, nonrecording gage at same site and datum.

REMARKS .-- Records fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992


					DA	ILY MEAI	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	6.3 4.8	e35 e28	e17 e16	e7.0 e6.8	e3.9 e3.9	e3.2 e3.2	e3.3 e3.5	134 182	14 13	19 41	2.3 2.2	6.9 136
3	4.0	e24	e15	e6.8	e3.8	e3.2	3.9	162	12	50	2.1	118
4	3.5	e21	e14	e6.8	e3.8	e3.2	e4.3	140	11	23	2.8	51
5	11	e19	e14	e6.7	e3.7	e3.2	e5.6	131	9.9	16	2.0	38
6	21	e18	e13	e6.7	e3.6	e5.5	e8.0	110	10	12	1.6	
7 8	11	e17	e13	6.7	e3.6	e13	12	120	10	11 11	43 104	38 66
9	8.2 6.8	e16	e12	e6.6	e3.6	e12 e10	e15	118	8.6 7.7	13	30	47
10	5.8	e15 e14	e12 e11	e6.5 e6.4	e3.5 e3.5	e10 e9.0	e18 e17	102 81	6.9	11	21	50
11	5.3	e13	e11	e6.2	e3.5	e7.6	e15	127	6.6	9.0	15	33
12	5.2	e13	ell	e5.9	e3.4	e6.8	e13	191	5.8	7.9	13	27
13	4.7	e14	e10	ట్.6	e3.4	e6.2	e11	112	5.7	6.9	11	23
14	17	e17	e10	e5.3	e3.3	e5.6	9.8	78	4.6	6.1	9.4	21
15	12	e 22	e9.8	e5.1	e3.3	e5.1	12	63	4.0	5.5	8.0	18
16	8.9	e40	e9.6	e4.9	e3.3	e4.6	e20	58	3.9	7.4 6.1	7.0 6.2	29 43
17 18	7.9 6.9	e100 138	e9.4 e9.2	e4.8 e4.7	e3.3 e3.1	4.2	29 44	54 42	20 15	5.2	6,5	43 29
19	5.8	102	e9.0	e4.7	3.3	e4.1 e4.0	112	36	9.2	9.7	5.8	29
20	5.4	e66	e8.8	e4.6	e3.2	3.9	177	32	6.9	11	4.8	20
21	14	e47	e8.5	e4.5	e3.2	e3.9	107	27	5.7	7.4	4.8	19
22	13	e40	e8.2	e4.5	e3.2	e3.8	64	60	5.2	6.1	4.8	17
23	11	e35	e8.2	e4.4	e3.2	e3.8	49	56	5.8	5.1	4.8	14
24	43	e31	. e8.0	e4.4	e3.2	3.7	51	36	5.5	4.4	4.8	13
25	26	e28	e7.8	e4.3	e3.2	e3.7	54	30	4.3	3.8	10	12
26	18	e26	e7.6	e4.3	e3.2	e3.6	60	29	4.0	3.9	9.2	12
27	15	e23	e7.4	e4.2	e3.2	3.6	69	24	3.4	3.1	6.6	15
28	15	e21	e7.2	e4.2	e3.2	e3.5	74	21	8.9	2.8	5.1	15
29	80	e20	e7.2	e4.1	e3.2	e3.4	133	19	5.9	2.5	5.6	12
30	41	e18	e7.0	e4.1		e3.3	125	17	3.8	2.2	15	11
31	27		e7.0	e4.0		3.2		15		2.0	8.4	
TOTAL		1021	318.9	165.7	98.8	157.1	1319.4	2407	237.3	325.1 10.5	376.8 12.2	1007.9 33.6
MEAN MAX	15.0 80	34.0 138	10.3 17	5.35	3.41	5.07	44.0	77.6	7.91 20	10.5 50	104	33.6 136
MIN	3.5	138	7.0	7.0 4.0	3.9 3.1	13 3.2	177 3.3	191 15	20 3.4	2.0	1.6	6.9
IATTIA	3.3	13	7.0	4.0	3.1	3,2	3.3	15	3.4	2.0	1.0	0.9

e Estimated.

CTATIOTICS OF MONITOR	Y MEAN DATA FOR WATER YEARS 1991 -	1000 DV WATED VEAD (WX)
STATISTICS OF MONTH	.I WEAN DATA FUR WATER YEARS 1991 -	- 1992 BI WAIRK TRAKIWII

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	15.0	34.0	10.3	5.35	3.41	5.07	63.9	59.8	10.3	12.5	6.51	19.0
MAX	15.0	34.0	10.3	5.35	3.41	5.07	83.7	<i>7</i> 7.6	12.7	14.4	12.2	33.6
(WY)	1992	1992	1992	1992	1992	1992	1991	1992	1991	1991	1992	1992
MIN	15.0	34.0	10.3	5.35	3.41	5.07	44.0	41.9	7.91	10.5	.87	4.41
(WY)	1992	1992	1992	1992	1992	1992	1992	1991	1992	1992	1991	1991

SUMMARY STATISTICS	FOR 1992 WA	TER YEAR	WATER YEARS 1991 - 1992			
ANNUAL TOTAL	7899.5					
ANNUAL MEAN	21.6		21.6			
HIGHEST ANNUAL MEAN			21.6	1992		
LOWEST ANNUAL MEAN			21.6	1992		
HIGHEST DAILY MEAN	191	May 12	191	May 12 1992		
LOWEST DAILY MEAN	1.6	Aug 6	.29	Sep 1 1991		
ANNUAL SEVEN-DAY MINIMUM	2.1	Jul 31	.44	Aug 29 1991		
INSTANTANEOUS PEAK FLOW	386	May 11	386	May 11 1992		
INSTANTANEOUS PEAK STAGE	3.04	May 11	3.04	May 11 1992		
INSTANTANEOUS LOW FLOW	1.4	Aug 7	.22	Sep 1 1991		
10 PERCENT EXCEEDS	55	-	67	-		
50 PERCENT EXCEEDS	9.2		9.0			
90 PERCENT EXCEEDS	3.4		2.5			

Date

Apr. 21

STREAMS TRIBUTARY TO LAKE SUPERIOR

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN

LOCATION.--Lat 47°20'07", long 91°12'06", in SE¹/4NE¹/4 sec. 15, T. 56 N., R. 7 W., Lake County, Hydrologic Unit 04010101, on right bank 400 ft upstream from bridge on U.S. Highway 61, 0.3 mi upstream from mouth, 4 mi northeast of Silver Bay, and 7 mi northeast of city of Beaver Bay. DRAINAGE AREA .--140 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1927 to current year. Monthly discharge only for some periods, published in WSP 1307.

REVISED RECORDS.--WSP 894: 1939. WSP 1337: 1933-34(M), 1935.

GAGE.--Water-stage recorder. Datum of gage is 613.65 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Oct. 5, 1934, nonrecording gage, and Oct. 5, 1934 to Nov. 22, 1978, water-stage recorder site 370 ft downstream and at datum 3.68 ft lower.

Date

July 2

Time

2130

Discharge

 (ft^3/s)

1,370

1.76

.59

1.27

Gage Height

(ft)

9.52

REMARKS.--Records fair except those for estimated daily discharges, which are poor.

Discharge

 (ft^3/s)

*2,420

Time

0030

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft³s and maximum (*):

Gage Height

(ft)

*10.59

Apr. 21		0030	2,420		10.55		July	4	2130	1,570	,	7.32
May 12	τ	Jnknown	1,400		9.55					•		
		DISCHA	RGE, CUBIO	FEET P	ER SECON	D, WATER	R YEAR O	CTOBER :	1991 TO SE	PTEMBER	1992	
					DA	ILY MEAN	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	91	262	119	e71	e 4 7	e36	71	854	95	538	89	72
2	87	218	136	e70	e46	e36	73	907	84	1140	67	259
3	80	e200	e130	e69	e45	e36	e80	870	75	1160	46	367
4	73	e180	e125	e68	e45	e36	e90	688	71	783	36	254
5	68	e170	e125	e67	e44	e36	e110	534	65	545	30	212
6	67	e160	e120	e66	e43	e50	e150	435	78	376	25	177
7	67	e155	e120	e65	e43	e100	e200	384	91	261	171	135
8	67	e150	el 15	e64	e42	e120	e250	336	80	196	383	168
9	64	e150	e115	e63	e42	e130	378	264	68	164	221	173
10	58	e145	e110	e63	e41	e130	353	238	58	131	147	294
11	55	e140	e110	e62	e41	e120	292	404	51	106	104	235
12	52	137	e105	e62	e40	e100	233	890	43	88	85	175
13	50	137	e105	e61	e40	e90	201	1070	36	75	69	136
14	63	146	e100	e61	e39	e80	199	703	31	73	55	114
15	80	159	e100	e60	e39	e75	217	563	28	70	44	91
16	86	153	e9 5	e59	e38	68	208	571	32	74	36	105
17	81	149	e95	e58	e38	67	272	732	81	63	32	243
18	72	512	e90	e58	e37	64	414	548	170	69	30	286
19	64	629	e90	e57	e37	60	777	435	152	73	26	258
20	60	536	e90·	e56	e37	55	1730	357	114	98	24	196
21	68	447	e85	e55	e36	52	2050	285	89	90	26	155
22	79	375	e85	e54	e36	50	1510	336	72	74	25	122
23	80	277	e85	e53	e36	48	1070	420	65	63	23	97
24	108	216	e80	e52	e36	51	838	331	88	52	25	82
25	115	192	e80	e5 1	e36	60	714	270	124	46	51	71
26	103	174	e80	e51	e36	60	650	227	142	46	63	66
27	98	183	e78	e50	e36	61	663	195	120	39	54	63
28	108	1 56	e76	e49	e36	61	731	170	94	33	43	64
29	449	141	e74	e49	e36	57	873	148	<i>7</i> 2	30	40	64
30	427	148	e73	e48		69	974	127	57	35	80	60
31	319		e72	e48		74		110		45	79	
TOTAL	3339	6797	3063	1820	1148	2132	16371	14402	2426	6636	2229	4794
MEAN	108	227	98.8	58.7	39.6	68.8	546	465	80.9	214	71.9	160
MAX	449	629	136	71	47	130	2050	1070	170	1160	383	367
MIN	50	137	72	48	36	36	71	110	28	30	23	60
AC-FT	6620	13480	6080	3610	2280	4230	32470	28570	4810	13160	4420	9510
CFSM	.77	1.62	.71	.42	.28	.49	3.90	3.32	.58	1.53	.51	1.14

e Estimated.

1.81

.81

.31

.57

4.35

3.83

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1928 - 1992, BY WATER YEAR (WY)

	OC T	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	151	135	53.3	29.9	22.2	63.7	546	488	239	103	85.1	123
MAX	558	504	180	65.5	56.0	602	1083	1801	615	327	665	735
(WY)	1983	1933	1971	1969	1984	1945	1976	1950	1943	1978	1972	1977
MIN	7.01	5.20	.51	.036	.000	5.73	138	<i>7</i> 7.6	31.0	7.52	2.71	3.35
(WY)	1977	1977	1977	1977	1977	1940	1977	1977	1988	1934	1934	1976
SUMMA	ARY STAT	ristics f	OR 1991 C	CALENDA	AR YEAR	FOR	1992 WAT	TER YEAR		WATER YE	EARS 192	28 - 1992
ANNUA	L TOTAL			56761			65157					
ANNUA	L MEAN			156			178			170		
HIGHES	T ANNU	AL MEAN		,						335		1972
LOWES	T ANNUA	L MEAN								81.6		1963
HIGHES	T DAILY	MEAN		1560	Apr 30		2050	Apr 21		6860	May	2 1972
LOWES	T DAILY	MEAN		12	Aug 15		23	Aug 23		.00	Jan	14 1977
ANNUA	L SEVEN	-DAY MIN	IMUM	13	Feb 26		26	Aug 18		.00	Jan	14 1977
INSTAN	TANEOU	S PEAK F	LOW				2420	Apr 21		10000a	Sep	24 1977
INSTAN	TANEOU	S PEAK S'	ΓAGE				10.59	Apr 21		11.06b	Apr	12 1965
INSTAN	TANEOU	S LOW FL	.ow				23c	_			_	
ANNUA	L RUNOF	Ŧ (AC-FT)	,	112600			129200			122800		
ANNUA	L RUNOF	F (CFSM)		1.11			1.27			1.21		
ANNUA	L RUNOF	F (INCHE	S)	15.08			17.31			16.46		

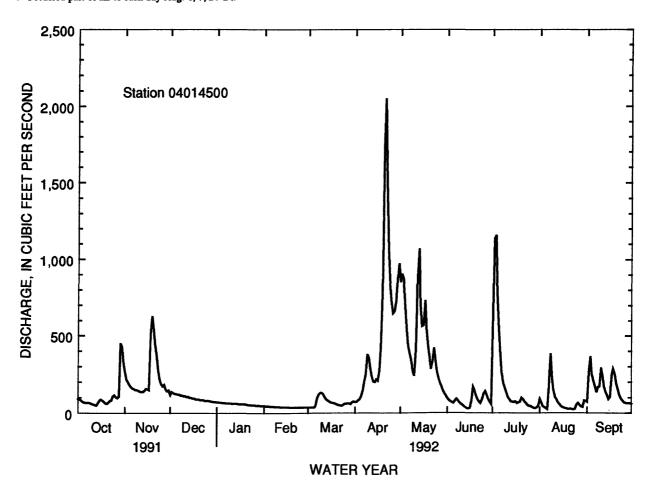
429

84

38

430

55


14

383

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

⁸³ 14 a From rating curve extended above 4,200ft³/s on basis of slope-area measurement of peak flow.

b Site and datum in use from floodmark (backwater from ice).

c Occurred part or all of each day Aug. 6, 7, 20-24.

STREAMS TRIBUTARY TO LAKE SUPERIOR 04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1968 to current year. REMARKS.--Letter K indicates non-ideal colony count.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	, SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	WHOLE FIELD (STAND- ARD	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	WATER	BID- ITY	BARO- METRIC PRES- SURE (MM OF HG) (00025)		FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
OCT 02	1400	99	82	78	7.8	7.5	11.0	1.2	738	10.3	K18	24
JAN	1215	60		83	8.1	7.6	0.0	1.6	738	13.5	K6	K19
APR				05	0.1	7.0	0.0	1.0	750	15.5	110	,
14 JUL	1300	188	93	103	7.4	7.5	2.0	6.1	751	12.1	K5	K5
22	0830	79	99	83	7.6	7.6	15.0	0.80	750	9.9	72	58
DATE	DIS-	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SIUM, DIS-	TOT IT FIELD MG/L AS	LINITY LAB (MG/L AS CACO3)	WATER DIS IT FIELD	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 02	10	3.1	2.7	0.40	28	32	0	34	3.6	2.6	0.30	9.9
JAN 14	10	3.1	2.8	0.30	30	32	0	37	4.7	1.9	0.20	14
APR 14	11	5.0	3.6	1.1		36	0	23	7.1	4.1	<0.10	7.9
JUL 22	11	3.2	2.9	0.30	26	36	0	32	2.5	0.70	0.20	7.8
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, NITRITE DIS-	NITRO- GEN, NO2+NO3 DIS- A SOLVED (MG/L AS N) (00631)	GEN, A	DIS-	GEN,AM- MONIA + ORGANIC	PHORUS	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO	DIS- SOLVED	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 02	83	<0.010	<0.050	0.050	0.060	0.60	<0.010	<0.010	<0.010	<0.010	3	76
JAN	CO.	~0.010	\U.U.JU	0.050	0.000	0.00	\0. 010	CO.010	Z0:010	~0.010	,	70
14 APR	68	0.020	0.310	0.060	0.060	0.40	<0.010	<0.020	0.020	<0.010	3	81
14 JUL	88	<0.010	0.520	0.050	0.040	0.30	<0.010	<0.010	<0.010	<0.010	3	91
22	80	<0.010	<0.050	0.050	0.040	0.50	<0.010	<0.010	<0.010	<0.010		

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	DIS-	IRON, DIS- SOLVED (UG/L AS FE) (01046)	DIS-	NESE, DIS-	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS-	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)
OCT												
02	90	5	⋖3	350	<4	5	<10	<1	<1	<1.0	29	<6
JAN												
14	90	4	<3	330	<4	3	<10	1	<1	<1.0	26	<6
APR												
14	100	10	<3	500	<4	35	<10	<1	<1	<1.0	30	<6
JUL												
22	60	4	<3	400	<4	4	<10	<1	<1	<1.0	32	<6

04015330 KNIFE RIVER NEAR TWO HARBORS, MN

LOCATION.--Lat 46°56'49", long 91°47'32", in SW¹/4NW¹/4 sec.31, T.52 N., R.11 W., Lake County, Hydrologic Unit 04010102, on right bank 600 ft downstream from bridge on U.S. Highway 61, 0.5 mi upstream from bridge on County Highway 102, in town of Knife River, 0.8 mi upstream from Lake Superior, and 7.8 mi southwest of Two Harbors.

Date

Discharge

(ft3/s)

Time

Gage height

(ft)

DRAINAGE AREA.--85.6 mi².

Time

Date

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1970-71, July 1974 to current year.

GAGE .-- Water-stage recorder and crest-stage gage. Elevation of gage is 640 ft above sea level from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor.

Discharge

(ft³/s)

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft³/s and maximum (*):

Gage height

(ft)

Date		1 111111	(11-/8)		(11)		Date		THE	(11.9)	ľ	(11)
Nov. 2			Ice jam		*8.40		May 1	2.	0300	1,300)	5.79
Apr. 8		2315	1,180		5.64		July		1030	1,890		6.51
Apr. 21		0145	*3,140		7.84		July	1	1050	1,000	,	0.51
Apr. 21												
		DISCHAI	RGE, CUBIC	C FEET PI	ER SECON	D, WATER	R YEAR OO	TOBER 1	991 TO SE	PTEMBER	1992	
					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	e300	e76	e34	e21	e16	e170	212	24	1070	13	24
2	63	e400	e73	e34	e21	e16	e150	175	22	1550	17	150
3	60	e200	e70	e33	e20	e16	e200	141	21	807	12	169
4	48	e130	e68	e33	e20	e16	e300	115	19	316	10	87
5	40	e120	e66	e32	e20	e16	e400	94	18	165	8.7	141
6	38	e110	e64	e32	e20	e16	e520	80	23	94	7.3	178
7	36	e105	e62	e31	e19	e40	e620	69	34	62	12	85
8	33	e100	e60	e31	e19	e100	690	62	26	46	67	124
9	30	e97	e58	e30	e19	e100	768	54	21	51	35	78
10	27	e95	e56	e30	e19	e80	580	49	18	102	21	78
11	25	e95	e54	e29	e18	e65	330	247	16	66	15	53
12	23	e95	e52	e29	e18	e55	226	1080	16	45	14	36
13	23	e 96	e51	e28	e18	e45	172	480	11	34	11	28
14	27	e98	e50	e28	e18	e40	168	210	11	29	9.1	23
15	38	e100	e49	e28	e18	e35	253	186	11	24	7.9	19
16	36	e120	e48	e27	e17	e30	237	220	11	22	6.6	23
17	34	e200	e47	e27	e17	e28	323	341	52	22	5.8	84
18	29	e900	e46	e27	e17	e27	491	160	115	21	5.7	96
19	26	e700	e45	e26	e17	e26	1260	111	82	20	5.8	71 50
20	23	e500	e44	e26	e17	e25	1740	86	86	22	4.7	50
21	28	e300	e43	e25	e16	e24	2310	66	51	18	5.5	37
22	36	e220	e42	e25	e16	e24	1240	70	35	16	7.4	29
23	33	e160	e41	e24	e16	e24	812	155	30	15	6.4	23
24	53	e130	e40	e24	e16	e40	456	94	36 52	13	5.6	20
25	75	e110	e39	e24	e16	e80	315	67	52	12	15	18
26	63	e100	e38	e23	e16	e180	263	59	84	12	25	17
27	53	e95	e37	e23	el6	e150	248	47	53	13	22	16
28	50	e90	e36	e22	e16	e130	249	40	35	12	16	15
29	599	e85	e36	e22	e16	e120	276	35	25	10	13	15
30	405	e80	e35	e22		e124	267	31	19	9.3	21	14
31	226		e35	e21		e200		27		8.8	29	
TOTAL	2335	5931	1561	850	517	1888	16034	4863	1057	4707.1	454.5	1801
MEAN	75.3	198	50.4	27.4	17.8	60.9	534	157	35.2	152	14.7	60.0
MAX	599	900	76	34	21	200	2310	1080	115	1550	67	178
MIN AC ETA	23	80 11760	35 3100	21	16	16	150	27	2100	8.8	4.7 902	14 3570
AC-FT4 CFSM	630 .88	11760 2.31	3100 .59	1690 .32	1030 .21	3740 .71	31800 6.24	9650 1.83	2100 .41	9340 1.77	.17	.70
IN.	1.01	2.58	.68	.37	.22	.82	6.97	2.11	.46	2.05	.20	.78
	1.01	2.50	.00	,		.02	0.77	2.11		200		

e Estimated.

STATISTICS OF MONTHLY MEAN DATA	DOD WATER VEADO 1074	1000 DAZ BULLDOD AZOLD GUAD
STATISTICS OF MONTHLY MEAN DATA	POR WATER YEARS 1974	- 1992 BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	89.2	71.8	21.7	11.3	9.03	51.7	376	168	85.2	72.5	34.8	89.9
MAX	226	198	60.6	31.4	22.2	136	631	427	240	267	163	314
(WY)	1983	1992	1983	1975	1984	1976	1982	1979	1984	1978	1988	1977
MIN	3.06	1.58	.000	.000	.000	8.65	73.6	16.0	15.5	4.87	2.95	1.43
(WY)	1977	1977	1977	1977	1977	1980	1977	1976	1988	1988	1976	1976
STIMMA	DVCTAT	потгое в	OR 1991 C	AT ENDAE	VEAD	EOD	1002 337 47	TER YEAR		WATER Y	TEADS 107	4 1000
SUMIMA	IKI SIAI	isiics r	OK 1991 C	ALENDAN	LIBAK	FUR	1992 WAI	EK IEAK		WAIER	EARS 19/	4 - 1992

SUMMARY STATISTICS FOR 1991	CALENDA	AK IEAK	FOR 1992 WA1	EK IEAK	WAIER YEA	LKS 1974 - 1992
ANNUAL TOTAL	39781.4		41998.6			
ANNUAL MEAN	109		115		90.7	
HIGHEST ANNUAL MEAN					147	1986
LOWEST ANNUAL MEAN					44.2	1977
HIGHEST DAILY MEAN	2450	Jun 29	2310	Apr 21	4480	May 10 1979
LOWEST DAILY MEAN	2.8	Sep 2	4.7	Aug 20	.00a	•
ANNUAL SEVEN-DAY MINIMUM	4.0	Aug 28	5.9	Aug 18	.00	Dec 2 1976
INSTANTANEOUS PEAK FLOW		_	3140	Apr 21	7440	May 10 1979
INSTANTANEOUS PEAK STAGE			8.40b	Nov 2	11.16	May 10 1979
INSTANTANEOUS LOW FLOW			4.6	Aug 20, 21		•
ANNUAL RUNOFF (AC-FT)	78910		83300	•	65740	
ANNUAL RUNOFF (CFSM)	1.27		1.34		1.06	
ANNUAL RUNOFF (INCHES)	17.29		18.25		14.40	
10 PERCENT EXCEEDS	300		250		222	
50 PERCENT EXCEEDS	41		36		21	
90 PERCENT EXCEEDS	5.0		15		4.1	
a Many days in water year 1977.						

a Many days in water year 1977.b Backwater from ice.

WATER YEAR

^{2,500} Station 04015330 0 [July Sept Nov 1991 May 1992 Oct Dec Feb Mar June Jan Apr Aug

04024000 ST. LOUIS RIVER AT SCANLON, MN

LOCATION.--Lat 46°42'12", long 92°25'07", in NW¹/4 sec.30, T.49 N., R.16 W., Carlton County, Hydrologic Unit 04010201, on right bank 25 ft downstream from lower bridge on U.S. Highway 61 at Scanlon, 0.6 mi downstream from Minnesota Power Co. powerplant, 3 mi upstream from Thomson Reservoir, and 3.2 mi upstream from Midway River.

DRAINAGE AREA .-- 3,430 mi², approximately.

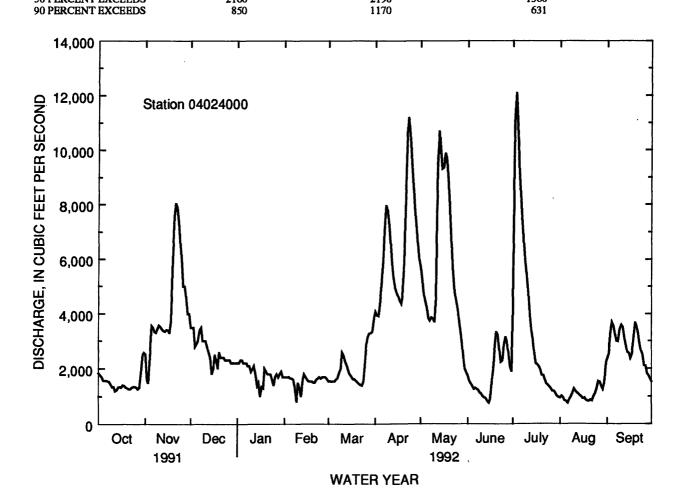
WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1908 to current year. Monthly discharge only for some periods published in WSP 1307. Published as "near Thomson" 1908-50.

REVISED RECORDS .-- WSP 1337: 1911-12.

GAGE.--Water-stage recorder. Datum of gage is 1,101.23 ft above sea level. Oct. 5, 1909, to Sept. 5, 1914, nonrecording gage 3 mi downstream and 50 ft below powerplant at datum about 420 ft lower. Sept. 6, 1914, to Aug. 4, 1953, powerplant record at Thomson hydroelectric plant.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation caused by powerplant upstream. Flow regulated by Whiteface Reservoir and Boulder, Island, Rice and Fish Lakes, combined capacity, 332,160 acre-ft; the water-discharge table shows the monthly change in contents (+).


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

					DA	ILY ME	AN VALUES	S				
DAY	OCT	NOV	DEC	C JAN	FEB	MAR	APR	MAY	JUN	I JUL	AUG	SEP
1	1840	2520	e3500	e2200	e1700	1550	4070	5750	1730	4210	938	2370
2	1770	1580	e3500		e1700	1560		5280	1570	11000	1010	2550
3	1700	1480	e3500	e2300	e1700	1540	3910	4720	1470	12100	960	3360
4	1570	2400	e2800		e1700	1550		4460	1370	10900	851	3690
5	1570	3560	e2900		e1650	1550		4220	1270		824	3550
3	1370	3300	٠.,	, u2200	C1050	1550	3010	1220	12.0	, , , , , ,	•2.	2000
6	1570	3500	e3000	e2200	e1650	1610	5940	3830	1300	8370	757	3250
7	1550	3340	e3400		e1600	1660		3750	1270	7320	859	3010
8	1540	3310	e3500		e1300	1850	7980	3860	1220	6520	962	2990
9	1440	3460	e3000		e800	2000		3820	1140		1090	3440
10	1340	3580	e3000		e1500	2580	7250	3690	1090	5360	1270	3590
11	1350	3520	e3000		e1300	2470		4590	1000		1200	3490
12	1200	3430	e2800		e1000	2250	5840	9460	948	4030	1130	3170
13	1230	3370	e2600		e1600	2120	5300	10700	939	3420	1080	2880
14	1340	3360	e2400	e1400	e1800	1950	4940	10100	836		1030	2590
15	13 5 0	3410	e1800	e1500	e1700	1800	4790	9330	759	2500	988	2550
16	1330	3400	e2000	e1000	e1600	1730	4650	9370	892	2180	916	2370
17	1410	3290	e2500		e1550	1630		9900	1480		946	2530
18	1380	3770	e2300		e1550	1630	4370	9730	2000		873	3080
19	1320	5980	e2000		e1550	1570		8970	2810		822	3690
20	1300	7580	e2600		e1500	1510	5920	7750	3330	1760	823	3570
				*****		••••	-,	,,,,,,				
21	1270	8050	e2400	e1800	e1500	1470	8200	6540	3200	1740	870	3320
22	1270	7880	e2400	e1800	e1600	1420	10600	5680	2670		841	2920
23	1320	73 5 0	e2400		e1650	1390	11200	4930	2230		993	2670
24	1350	e6500	e2300		e1700	1530	10600	4520	2280	1390	1110	2500
25	1350	e6000	e2300	e1400	e1650	2100		4220	2830		1280	2110
2.5		#000	22.00	4500		*050	0.550	2050	24.40	1000	1500	2000
26	1320	e5000	e2300		e1700	2870	8720	3870	3140		1530	2090
27	1270	e5000	e2300		e1700	3160	7910	3450	2990	1190	1510	1840
28	1320	e4500	e2200		e1700	3270	7260	2980	2570	1180	1380	1750
29	1860	e4000	e2200		1640	3280		2390	2060		1260	1630
30	2490	e4000	e2200			3340		1990	1880		1510	1540
31	2570		e2200	e1700		3830		1860		966	2200	
TOTAL	46490	128120	81300	57050	45290	63770	195770	175710	54274	123136	33813	84090
MEAN	1500	4271	2623		1562	2057	6526	5668	1809	3972	1091	2803
MAX	2570	8050	3500	2300	1800	3830	11200	10700	3330		2200	3690
MIN	1200	1480	1800		800	1390	3910	1860	759		757	1540
+	40	-101	-846		-721.4	-98.9	1516.6	451.8	-27.9		-125.9	183.9
MEAN ‡		4170	1777	1025	840	1958	8042	6120	1781	3862	965	2987
CFSM ‡	.45	1.22	.52		.24	.57	2.34	1.78	.52		.28	.87
IN ±	.52	1.36	.60		.26	.66		2.06	.58	1.30	.32	.97
CAL YR		TOTAL 9		MEAN 2671	MAX 1		MIN 494	MEAN‡		CFSM‡78	IN ‡ 10	
WTR YR		TOTAL 1	08813	MEAN 2975	MAX 1	2 100	MIN 757	MEAN‡	2919	CFSM‡.85	IN ‡11.	59
			-5015		1712 121 1	_, , , 00	1111111111	171201 61 44				

Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1908 - 1992, BY WATER YEAR (WY)

						•		•			
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1977	1656	1248	1056	1039	1410	5555	5137	3559	2250	1659	1772
7508	8518	2993	2272	2200	6026	15230	22210	16480		9197	7594
1974	1972	1972	1966	1966	1945	1948	1950	1908		1953	1928
407	473	282	265	249	301	667	593	458	199	377	402
1935	1935	1911	1911	1924	1924	1977	1977	1988	1988	1977	1934
ARY STAT	listics i	OR 1991	CALENDA	R YEAR	FOR	1992 WA	TER YEAR		WATER Y	EARS 190	18 - 1992
AL TOTAL			974823			1088813					
AL MEAN			2671			2975			2346		
ST ANNU	AL MEAN								4276		1972
ST ANNUA	AL MEAN								945		1924
ST DAILY	MEAN		11100	May 7		12100	Jul 3		37900	May	9 1950
ST DAILY	MEAN		494	Sep 2		757	Aug 6		88	Aug	24 1977
AL SEVEN	-DAY MIN	MUMIN	539	Aug 30		870	Aug 16		134	Jul	26 1988
NTANEOU	IS PEAK F	LOW		•		12400	Jul 3		37900	May	9 1950
NTANEOU	S PEAK S	TAGE				8.31	Jul 3		15.80	May	9 1950
AL RUNOI	F (AC-FT)	1934000		:	2160000			1699000	-	
AL RUNOI	F (CFSM)		.78			.87			.68		
AL RUNOI	T (INCHE	S)	10.57			11.81			9.29		
CENT EXC	CEEDS	-	5350			6180			5240		•
CENT EXC	CEEDS		2160			2190			1360		
	1977 7508 1974 407 1935 ARY STA' AL TOTAL AL MEAN ST ANNUA ST ANNUA ST DAILY AL SEVEN NTANEOU NTANEOU AL RUNOI AL RUNOI AL RUNOI CENT EXC	1977 1656 7508 8518 1974 1972 407 473 1935 1935 ARY STATISTICS I AL TOTAL AL MEAN ST ANNUAL MEAN ST ANNUAL MEAN ST DAILY MEAN ST DAILY MEAN AL SEVEN-DAY MIN NTANEOUS PEAK F NTANEOUS PEAK S AL RUNOFF (AC-FT AL RUNOFF (CFSM)	1977 1656 1248 7508 8518 2993 1974 1972 1972 407 473 282 1935 1935 1911 ARY STATISTICS FOR 1991 AL TOTAL AL MEAN ST ANNUAL MEAN ST ANNUAL MEAN ST DAILY MEAN ST DAILY MEAN AL SEVEN-DAY MINIMUM NTANEOUS PEAK FLOW NTANEOUS PEAK STAGE AL RUNOFF (AC-FT) AL RUNOFF (CFSM) AL RUNOFF (INCHES) CENT EXCEEDS	1977 1656 1248 1056 7508 8518 2993 2272 1974 1972 1972 1966 407 473 282 265 1935 1935 1911 1911 ARY STATISTICS FOR 1991 CALENDA AL TOTAL 974823 AL MEAN 2671 ST ANNUAL MEAN ST ANNUAL MEAN ST ANNUAL MEAN ST DAILY MEAN 11100 ST DAILY MEAN 494 AL SEVEN-DAY MINIMUM 539 NTANEOUS PEAK STAGE AL RUNOFF (AC-FT) 1934000 AL RUNOFF (CFSM) .78 AL RUNOFF (INCHES) 10.57 CENT EXCEEDS 5350	1977 1656 1248 1056 1039 7508 8518 2993 2272 2200 1974 1972 1972 1966 1966 407 473 282 265 249 1935 1935 1911 1911 1924 ARY STATISTICS FOR 1991 CALENDAR YEAR AL TOTAL 974823 AL MEAN 2671 ST ANNUAL MEAN ST ANNUAL MEAN ST ANNUAL MEAN ST DAIL Y MEAN 11100 May 7 ST DAIL Y MEAN 494 Sep 2 AL SEVEN-DAY MINIMUM 539 Aug 30 NTANEOUS PEAK FLOW NTANEOUS PEAK STAGE AL RUNOFF (AC-FT) 1934000 AL RUNOFF (CFSM) .78 AL RUNOFF (INCHES) 10.57 CENT EXCEEDS 5350	1977 1656 1248 1056 1039 1410 7508 8518 2993 2272 2200 6026 1974 1972 1972 1966 1966 1945 407 473 282 265 249 301 1935 1935 1911 1911 1924 1924 ARY STATISTICS FOR 1991 CALENDAR YEAR FOR AL TOTAL 974823 AL MEAN 2671 ST ANNUAL MEAN ST ANNUAL MEAN ST DAILY MEAN 11100 May 7 ST DAILY MEAN 494 Sep 2 AL SEVEN-DAY MINIMUM 539 Aug 30 NTANEOUS PEAK STAGE AL RUNOFF (AC-FT) 1934000 AL RUNOFF (CFSM) .78 AL RUNOFF (INCHES) 10.57 CENT EXCEEDS 5350	1977 1656 1248 1056 1039 1410 5555 7508 8518 2993 2272 2200 6026 15230 1974 1972 1972 1966 1966 1945 1948 407 473 282 265 249 301 667 1935 1935 1911 1911 1924 1924 1977 ARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WAY AL TOTAL 974823 1088813 AL MEAN 2671 2975 ST ANNUAL MEAN ST ANNUAL MEAN ST ANNUAL MEAN ST DAILY MEAN 11100 May 7 12100 ST DAILY MEAN 494 Sep 2 757 AL SEVEN-DAY MINIMUM 539 Aug 30 870 NTANEOUS PEAK FLOW 12400 NTANEOUS PEAK FLOW 12400 NTANEOUS PEAK STAGE 8.31 AL RUNOFF (AC-FT) 1934000 2160000 AL RUNOFF (CFSM) .78 8.87 AL RUNOFF (INCHES) 10.57 11.81 CENT EXCEEDS 5350 6180	1977 1656 1248 1056 1039 1410 5555 5137 7508 8518 2993 2272 2200 6026 15230 22210 1974 1972 1972 1966 1966 1945 1948 1950 407 473 282 265 249 301 667 593 1935 1935 1911 1911 1924 1924 1977 1977 ARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR AL TOTAL 974823 1088813 AL MEAN 2671 2975 ST ANNUAL MEAN ST ANNUAL MEAN ST ANNUAL MEAN ST DAILY MEAN 11100 May 7 12100 Jul 3 ST DAILY MEAN 494 Sep 2 757 Aug 6 AL SEVEN-DAY MINIMUM 539 Aug 30 870 Aug 16 NTANEOUS PEAK FLOW 12400 Jul 3 NTANEOUS PEAK STAGE 8.31 Jul 3 AL RUNOFF (AC-FT) 1934000 2160000 AL RUNOFF (CFSM) .78 .87 AL RUNOFF (INCHES) 10.57 11.81 CENT EXCEEDS 5350 6180	1977 1656 1248 1056 1039 1410 5555 5137 3559 7508 8518 2993 2272 2200 6026 15230 22210 16480 1974 1972 1972 1966 1966 1945 1948 1950 1908 407 473 282 265 249 301 667 593 458 1935 1935 1911 1911 1924 1924 1977 1977 1988 ARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR AL TOTAL 974823 1088813 AL MEAN 2671 2975 ST ANNUAL MEAN ST ANNUAL MEAN ST ANNUAL MEAN ST DAILY MEAN 11100 May 7 12100 Jul 3 ST DAILY MEAN 494 Sep 2 757 Aug 6 AL SEVEN-DAY MINIMUM 539 Aug 30 870 Aug 16 NTANEOUS PEAK FLOW 12400 Jul 3 NTANEOUS PEAK STAGE 8.31 Jul 3 AL RUNOFF (AC-FT) 1934000 2160000 AL RUNOFF (CFSM) 78 87 AL RUNOFF (INCHES) 10.57 11.81 CENT EXCEEDS 5350 6180	1977 1656 1248 1056 1039 1410 5555 5137 3559 2250 7508 8518 2993 2272 2200 6026 15230 22210 16480 6798 1974 1972 1972 1966 1966 1945 1948 1950 1908 1953 407 473 282 265 249 301 667 593 458 199 1935 1935 1911 1911 1924 1924 1977 1977 1988 1988 ARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEAR AL TOTAL 974823 1088813 AL MEAN 2671 2975 2346 ST ANNUAL MEAN 4276 ST ANNUAL MEAN 974823 1011 3 37900 ST DAILY MEAN 11100 May 7 12100 Jul 3 37900 ST DAILY MEAN 494 Sep 2 757 Aug 6 88 AL SEVEN-DAY MINIMUM 539 Aug 30 870 Aug 16 134 NTANEOUS PEAK FLOW 12400 Jul 3 37900 NTANEOUS PEAK FLOW 12400 Jul 3 37900 NTANEOUS PEAK STAGE 8.31 Jul 3 15.80 AL RUNOFF (AC-FT) 1934000 2160000 1699000 AL RUNOFF (CFSM) .78 .87 .688 AL RUNOFF (INCHES) 10.57 11.81 9.29 CENT EXCEEDS 5350 6180 5240	1977 1656 1248 1056 1039 1410 5555 5137 3559 2250 1659 7508 8518 2993 2272 2200 6026 15230 22210 16480 6798 9197 1974 1972 1972 1966 1966 1945 1948 1950 1908 1953 1953 407 473 282 265 249 301 667 593 458 199 377 1935 1935 1911 1911 1924 1924 1977 1977 1988 1988 1977 ARY STATISTICS FOR 1991 CALENDAR YEAR FOR 1992 WATER YEAR WATER YEARS 190 AL TOTAL 974823 1088813 AL MEAN 2671 2975 2346 ST ANNUAL MEAN 945 ST DAILY MEAN 11100 May 7 12100 Jul 3 37900 May ST DAILY MEAN 494 Sep 2 757 Aug 6 88 Aug AL SEVEN-DAY MINIMUM 539 Aug 30 870 Aug 16 134 Jul NTANEOUS PEAK FLOW 12400 Jul 3 37900 May NTANEOUS PEAK STAGE 8.31 Jul 3 15.80 May AL RUNOFF (AC-FT) 1934000 2160000 1699000 AL RUNOFF (CFSM) .78 .87 .68 AL RUNOFF (INCHES) 10.57 11.81 9.29 CENT EXCEEDS 5350 6180 5240

⁺ change in contents, equivalent in cubic feet per second, in Whiteface Reservoir, and Boulder, Island, Rice and Fish Lakes; records furnished by Minnesota Power Co.

‡ Adjusted for change in reservoir contents.

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued (National stream-quality accounting network station)

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1958-66, 1968 to current year.

REMARKS.--Letter K indicates non-ideal colony count. Samples collected at cableway 0.75 mi downstream from gage.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	WHOLE FIELD (STAND- ARD	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	WATER	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
OCT	0830	1770	142	145	7.8	7.6	10.5	3.0	728	9.7	K 6	20
DEC												
JAN	1415	2320	142	137	7.4	7.6	0.5	3.3	734	11.4	K15	K 9
13 APR	1300	1750	190	150	7.9	7.4	0.0	3.4	727	13.5	K8	K17
	1230	5010		66	7.7	7.7	2.0	1.8	739	12.1	49	60
	1330	1810	182	152	7.6	7.5	20.0	3.0	736	7.6		K12
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS-	SODIUM, DIS- SOLVED (MG/L	SIUM, DIS- SOLVED	TOT IT	LINITY LAB (MG/L AS CACO3)	DIS IT FIELD MG/L AS	WATER DIS IT FIELD	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED AS AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 03	15	7.1	4.4	1.0	55	59	0	67	9.6	4.4	0.20	7.9
DEC 04	13	6.9	4.8	1.0	40	51	0	49	7.0	3.5	0.40	9.3
JAN 13	15	7.2	4.3	1.1	59	59	0	72	9.3	3.2	0.20	10
APR 13	7.8	2.5	2.5	0.30	35	22	0	43	4.8	2.4	0.10	12
JUL 22		7.5	4.8	0.90	61	5 9	0	74	9.6	2.1	0.10	7.3
4040	10	7.5	4.0	0.50	01	39	U	/ -1	9.0	2.1	0.10	7.5
DATE	RESIDUE AT 180 DEG. C DIS-	NITRITE DIS- SOLVED	GEN, NO2+NO3 DIS- A SOLVED	GEN, A AMMONIA TOTAL	DIS- O	GEN,AM- MONIA + ORGANIC TOTAL	PHOS- PHORUS TOTAL	DIS- SOLVED	PHORUS ORTHO TOTAL	DIS-	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 03 DEC	121	<0.010	0.068	0.040	0.030	0.70	0.030	0.010	0.030	0.010	6	100
04 JAN	104	<0.010	0.180	0.090	0.090	0.80	0.030	0.020	0.010	0.010	6	100
13 APR	108	<0.010	0.210	0.080	0.080	0.60	0.020	0.020	0.020	<0.010	8	60
13	57	<0.010	0.160	0.060	0.050	0.60	0.030	<0.010	0.020	<0.010	18	94
JUL 22	128	<0.010	0.110	0.040	0.030	1.0	0.030	0.010	0.020	0.020		

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	ALUM-					MANGA-	MOLYB-		SELE-		STRON-	VANA-
	INUM,	BARIUM,	COBALT,	IRON,	LITHIUM	NESE,	DENUM,	NICKEL,	NIUM,	SILVER,	TIUM,	DIUM,
	DIS-											
	SOLVED											
DATE	(UG/L											
	AS AL)	AS BA)	AS CO)	AS FE)	AS LI)	AS MN)	AS MO)	AS NI)	AS SE)	AS AG)	AS SR)	AS V)
	(01106)	(01005)	(01035)	(01046)	(01130)	(01056)	(01060)	(01065)	(01145)	(01075)	(01080)	(01085)
OCT												
03	50	12	<3	670	<4	61	<10	<1	<1	<1.0	44	<6
DEC												
04												
JAN												
13	70	10	<3	700	<4	33	<10	2	<1	<1.0	41	<6
APR												
13	100	3	<3	240	<4	6	<10	<1	<1	<1.0	21	<6
JUL												
22	60	13	3	1000	<4	85	<10	2	<1	<1.0	48	<6

04024098 DEER CREEK NEAR HOLYOKE, MN

LOCATION.--Lat 46°31'30", long 92°23'20", in NE¹/₄SE¹/₄ sec.29, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, on left bank 179 ft west of State Highway No. 23, 0.9 mi upstream from mouth and 4.0 mi north of Holyoke.

DRAINAGE AREA.--7.77 mi².

PERIOD OF RECORD .-- October 1976 to current year.

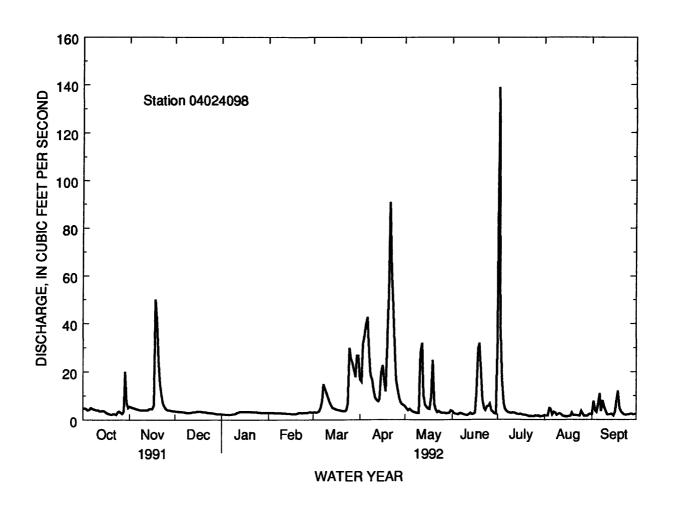
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 786.14 ft above mean sea level.

REMARKS.--Records fair except those for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.7	e5.5	e3.6	e2.4	e2.9	3.1	17	5.6	3.7	35	1.8	2.3
2	4.8	e5.2	e3.5	e2.3	e2.9	3.2	16	4.8	2.8	139	1.7	7.7
3 4	4.6	e5.0	e3.5	e2.3	e2.9	3.1	32	4.1	2.6	40	1.7	3.8
4	4.0	e4.8	e3.4	e2.2	e2.9	3.2	35	4.5	2.5	17	4.8	3.3
5	4.2	e4.6	e3.4	e2.2	e2.8	e3 .5	40	4.0	2.3	7.3	4.6	6.5
6	5.0	e4.4	e3.3	e2.2	e2.8	e5.0	43	3.5	2.8	4.5	2.2	11
7	4.7	e4.2	e3.2	e2.2	e2.8	e8.0	29	3.3	2.7	3.6	3.3	3.7
8	4.4	e4.1	e3.1	e2.3	e2.8	e15	19	3.1	2.4	3.1	3.0	8.1
9 10	4.2 4.0	e4.0	e3.0 e3.0	e2.4 e2.5	e2.8 e2.7	e13	17	2.8 2.8	2.2 2.1	3.0 2.8	2.0 2.4	5.3 3.5
10	4.0	e4.0	e 3.0	e2. 5	e2.7	e11	13	2.8	2.1	2.0	2.4	3.3
11	4.0	e4.0	e3.0	e2.9	e2.7	e9.0	9.4	28	1.9	3.0	2.7	2.2
12	3.7	e4.0	e3.1	e3.1	e2.7	e7.5	8.3	32	2.3	3.0	2.3	2.2
13	3.7	e4.0	e3.2	e3.4	e2.6	e6.0	7.8	11	2.8	2.7	1.6	2.3
14	3.8	e4.5	e3.3	e3.4	e2.6	e5 .0	8.8	6.4	2.3	2.5	1.5	2.4
15	3.6	e4.5	e3.4	e3.4	e2.6	e4.7	20	5.4	2.5	2.3	1.4	1.7
16	3.2	e4.5	e3.5	e3.4	e2.5	e4.4	23	4.7	2.9	2.5	1.4	3.4
17	2.7	e6.0	e3.5	e3.4	e2.5	e4.2	16	4.5	12	2.3	1.5	7.6
18	2.6	e50	e3.5	e3.4	e2.5	e4.0	12	9.3	30	2.0	1.6	12
19	2.3	e40	e3.4	e3.4	2.5	e3 .9	32	25	32	2.1	2.9	4.9
20	2.2	e25	e3.3	e3.4	2.7	e3 .8	52	6.6	21	1.9	1.9	3.4
21	2.4	e15	e3.2	e3.3	2.9	e3.7	91	4.4	8.3	1.6	1.9	2.8
22	2.4	e10	e3.1	e3.3	3.0	e3.6	63	3.3	4.8	1.5	1.9	2.2
23	2.2	e7.0	e3.0	e3.2	2.8	e4.0	48	3.7	4.0	1.5	1.7	2.1
24	3.3	e5.5	e2.9	e3.2	2.9	e7.0	29	3.2	5.5	1.5	1.6	2.2
25	3.5	e4. 5	e2.8	e3.1	2.9	e30	17	3.0	5.8	1.5	3.6	2.2
26	3.1	e4.1	e2.8	e3.1	2.9	e26	13	2.9	6.7	1.7	2.4	2.4
27	2.6	e4.0	e2.7	e3.0	3.1	24	9.2	2.9	3.9	1.6	1.6	2.4
28	3.5	e3 .9	e2.6	e3 .0	3.2	21	7.5	2.7	3.2	1.7	1.6	2.2
29	20	e3.8	e2.5	e3.0	3.1	18	6.6	2.8	2.6	1.4	1.6	2.3
30	7.3	e3.7	e2.5	e3.0		27	6.2	2.9	2.4	1.5	2.3	2.4
31	5.0		e2.4	e3.0		27		3.9		1.6	2.5	
		253.8	96.7	90.4	81.0	311.9	740.8	207.1	183.0	296.7	69.0	120.5
MEAN	4.25	8.46	3.12	2.92	2.79	10.1	24.7	6.68	6.10	9.57	2.23	4.02
MAX	20	50	3.6	3.4	3.2	30	91	32	32	139	4.8	12
MIN	2.2	3.7	2.4	2.2	2.5	3.1	6.2	2.7	1.9	1.4	1.4	1.7
AC-FT	261	503	192	179	161	619	1470	411	363	589	137	239
CFSM	.55	1.09	.40	.38	.36	1.29	3.18	.86	.79	1.23	.29	.52
IN.	.63	1.22	.46	.43	.39	1.49	3.55	.99	.88	1.42	.33	.58

e Estimated.


STATISTICS OF MONTHLY MEAN	DATA FOR WATER YEARS 1976	- 1992 BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	7.02	4.54	2.45	1.86	2.36	8.53	23.7	10.8	7.17	6.65	5.28	9.23
MAX	21.8	12.2	3.86	2.92	5.87	19.2	90.8	24.3	19.8	22.3	36.9	30.4
(WY)	1983	1983	1983	1992	1981	1985	1986	1991	1984	1991	1986	1986
MIN	1.69	1.59	1.31	.97	1.06	2.34	4.11	2.15	1.65	1.50	.89	1.69
(WY)	1988	1977	1977	1979	1979	1986	19 77	1980	1982	1988	1982	1981

SUMMARY STATISTICS	R YEAR	FOR 1992 WAT	TER YEAR	WATER YEA	WATER YEARS 1976 - 1992		
ANNUAL TOTAL	3610.3		2582.6				
ANNUAL MEAN	9.89		7.06		7.49		
HIGHEST ANNUAL MEAN	Ī				19.3	1986	
LOWEST ANNUAL MEAN					3.65	1980	
HIGHEST DAILY MEAN	128	Jul 1	139	Jul 2	55 3	Sep 6 1990	
LOWEST DAILY MEAN	1.2	Feb 28	1.4	Jul 29	.21	Jul 2 1976	
ANNUAL SEVEN-DAY MI	NIMUM 1.3	Feb 27	1.6	Jul 21	.47	Aug 10 1982	
INSTANTANEOUS PEAK I	LOW		270	Jul 2	2000a	Sep 3 1985	
INSTANTANEOUS PEAK S	STAGE		15.46	Jul 2	32.76b	Sep 3 1985	
INSTANTANEOUS LOW F	LOW		1.1	Aug 15	.20c	•	
ANNUAL RUNOFF (AC-FI	7160		5120	-	5420		
ANNUAL RUNOFF (CFSM)	1.27		.91		.96		
ANNUAL RUNOFF (INCHI	ES) 17.28		12.36		13.09		
10 PERCENT EXCEEDS	25		17		15		
50 PERCENT EXCEEDS	4.1		3.3		2.5		
90 PERCENT EXCEEDS	1.9		2.2		1.4		

a From rating curve extended above 1,000 ft³/s on basis of flow through culvert computations.

c Occurred Aug. 13, 16, 1982, July 12, 1989.

b From floodmark.

RED RIVER OF THE NORTH BASIN

05030500 OTTER TAIL RIVER NEAR ELIZABETH, MN

LOCATION.--Lat 46°22'10", long 96°01'02", in SW¹/₄SE¹/₄ sec.31, T.134 N., R.42 W., Ottertail County, Hydrologic Unit 09020103, on right bank, 2.5 miles below Taplin Gorge Dam, 5.0 miles above the Diversion Dam, 5.7 miles east of Elizabeth and 6.6 miles northeast of Fergus Falls. DRAINAGE AREA.--1,230 mi², approximately.

PERIOD OF RECORD.--Nov. 1913 to September 1917, monthly discharge only, published as at German Church near Fergus Falls in WSP 1308. July 1992 to September 1992.

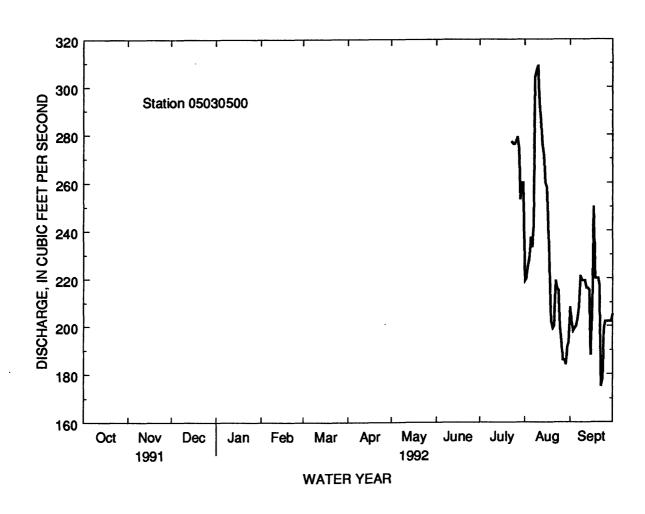
GAGE.--Water-stage recorder. Datum of gage is 1,250 ft above mean sea level, from topographic map. Nonrecording gage at same site Nov. 1913 to September 1917 at datum 1,265 ft from topographic map.

REMARKS.--Records good. Flow regulated by power plants upstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	•••										219	208
2											220	202
3											225	198
4											228	199
5				***							237	200
6											233	203
7											242	208
8											304	221
9											307	219
1Ó											309	219
10			•								307	217
11											293	219
12											286	216
13											276	216
14											271	215
15											260	1 8 8
16											258	208
17				,							242	e250
18											220	e220
19											202	e220
20											199	e220
21											200	217
22											219	175
23										277	216	178
24										276	215	199
25										276	200	202
26										277	194	e202
27										279	186	e202
28										274	186	e202
29										25 3	184	202
30										260	191	205
31										260	193	
TOTAL											7215	6233
MEAN											233	208
MAX											309	250
MIN											184	175
AC-FT											14310	12360
CFSM											.19	.17
IN.											.22	.19


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN											233	208
MAX											233	208
(WY)											1992	1992
MIN											233	208
(WY)											1992	1992

SUMMARY STATISTICS FOR 1992 WATER YEAR

INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE 335 Aug 13 5.68 Aug 13

05045950 ORWELL LAKE NEAR FERGUS FALLS, MN

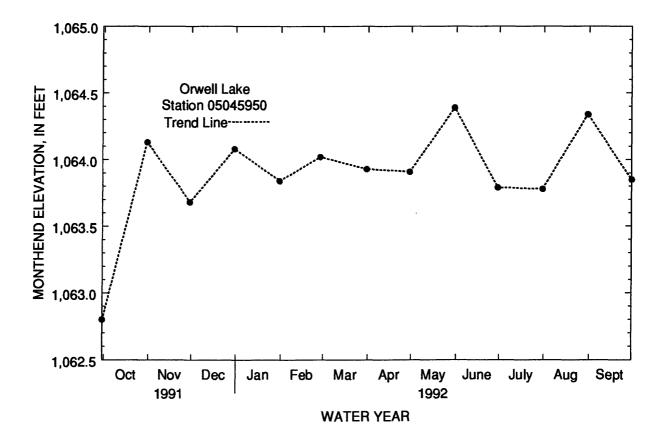
LOCATION.--Lat 46°12'55", long 96°10'40", in SW¹/4 sec.26, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, at dam on Otter Tail River at outlet of Orwell Lake, 7 mi southwest of Fergus Falls.

DRAINAGE AREA.--1,830 mi², approximately.

PERIOD OF RECORD.-March 1953 to current year. Prior to October 1971, published as Orwell Reservoir.

GAGE.--Water-stage recorder. Datum of gage is in mean sea level, adjustment of 1912.

REMARKS.--Reservoir is formed by earth dam with concrete spillway with one taintor gate; storage began in March 1953. Capacity to elevation 1,070 ft (maximum operating stage) is 14,100 acre-ft of which 13,100 acre-ft is controlled storage above elevation 1,048 ft (minimum operating stage). Dead storage is 210 acre-ft. Figures given herein represent total contents. Reservoir is used for flood control and to increase low flow for water supply and pollution abatement.


COOPERATION .-- Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,920 acre-ft, June 17, 1962, May 23, 1966, elevation, 1,072.38 ft; minimum (after initial filling), 844 acre-ft, Aug. 26, 27, 1953, elevation, 1,046.96 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 9,180 acre-ft, Aug. 8, elevation, 1,065.03 ft; minimum, 7,580 acre-ft, Oct. 1, elevation, 1,063.04 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	1,062.80	7,400	
Oct. 31	1,064.13	8,410	+1010
Nov. 30	1,063.68	8,060	-350
Dec. 31	1,064.08	8,370	+310
CAL YR 1991			-40
Jan. 31	1,063.84	8,180	-190
Feb. 28	1,064.02	8,320	+140
Mar. 31	1,063.93	8,250	-70
Apr. 30	1,063.91	8,230	-20
May 31	1,064.39	8,630	+400
June 30	1,063.79	8,140	-490
July 31	1,063.78	8,140	0
Aug. 31	1,064.34	8,590	+450
Sept. 30	1,063.85	8,190	-40 0
WTR YR 1992	•	•	+790

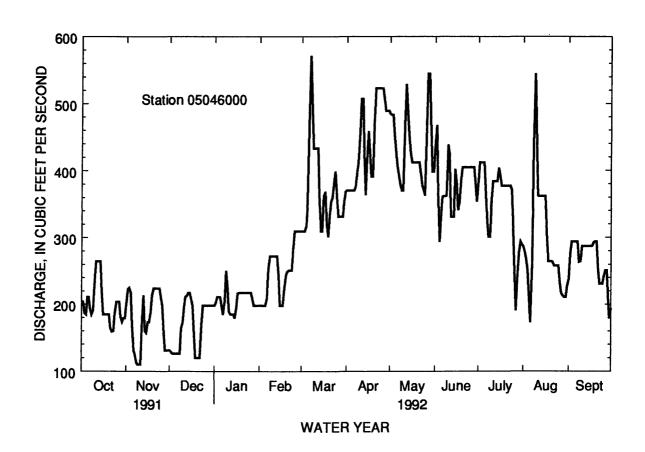
05046000 OTTER TAIL RIVER BELOW ORWELL DAM, NEAR FERGUS FALLS, MN

LOCATION.--Lat 46°12'35", long 96°11'05", in NE¹/4 sec.34, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, on left bank 0.7 mi downstream from Orwell Dam, 6.1 mi downstream from Dayton Hollow Dam, 8 mi southwest of Fergus Falls, and 11.1 mi downstream from Pelican River.

DRAINAGE AREA.--1,830 mi², approximately.

PERIOD OF RECORD.--October 1930 to current year. Prior to October 1952, published as Otter Tail River below Pelican River, near Fergus Falls. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 785: 1934(M). WSP 1208: 1947(M). WSP 1308: 1931(M).


GAGE.--Water-stage recorder. Datum of gage is 1,029.65 ft above sea level, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Oct. 11, 1930, to Nov. 17, 1933, at same site at datum 2.00 ft higher; Nov. 18, 1933, to Mar. 21, 1953, at site 6.1 mi upstream at datum 40.30 ft higher. REMARKS.--Records good. Flow regulated by Orwell Lake (station 05045950) beginning Mar. 21, 1953 and powerplants upstream.

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	205	200	131	198	198	309	370	485	438	385	286	238
2	204	223	129	202	198	309	370	483	467	412	279	275
3	187	e225	126	211	198	309	370	483	369	412	266	294
4	185	e217	126	211	198	317	370	453	294	412	251	294
5	211	170	126	211	198	354	370	433 4 26	329	412	208	294
,	211	170	120	211	170	334	370	420	329	412	206	274
6	211	131	126	196	209	489	370	407	361	374	173	294
7	192	125	126	185	253	571	375	391	362	323	26 3	294
8	185	113	126	205	272	491	397	379	362	301	437	264
9	191	110	164	250	272	433	412	370	362	301	545	265
10	236	110	173	222	272	433	457	370	438	351	444	287
11	265	110	196	189	272	433	507	466	425	384	362	287
12	265	178	211	185	272	433	507	529	331	384	362	287
13	265	213	213	185	272	365	424	486	331	384	362	287
14	265	160	217	185	242	309	364	446	331	384	362	287
15	220	157	217	179	198	309	416	426	402	404	362	287
16	185	173	207	195	198	362	458	412	379	394	362	287
17	185	173	198	216	198	368	421	412	341	377	306	287
18	185	188	155	217	224	319	391	412	354	377	265	293
19	185	214	120	217	244	301	391	412	38 5	377	265	294
20	185	224	120	217	249	333	468	412	405	377	265	294
21	165	224	120	217	251	354	523	412	405	377	264	256
22	159	224	120	217	251	3 5 9	523	395	405	377	258	231
23	160	224	162	217	251	383	523	378	405	377	258	231
24	186	224	198	217	281	398	523	370	405	371	258	231
25	204	209	198	217	309	362	523	363	405	309	258	241
26	204	198	198	217	309	331	523	466	405	251	232	251
27	204	157	198	210	309	331	505	545	405	191	217	251
28	182	131	198	198	309	331	489	545	405	246	213	211
29	174	131	198	198	309	331	489	459	376	277	211	179
30	179	131	198	198		350	489	398	354	294	211	194
31	179		198	198		368		398		290	227	
TOTAL	6208	5267	5193	6380	7216	11445	13318	13389	11436	10885	9032	7965
MEAN	200	176	168	206	249	369	444	432	381	351	291	265
MAX	265	225	217	250	309	571	523	545	467	412	545	294
MIN	159	110	120	179	198	301	364	363	294	191	173	179
AC-FT	12310	10450	10300	12650	14310	22700	26420	26560	22680	21590	17910	15800
CFSM	.11	.10	.09	.11	.14	.20	.24	.24	.21	.19	.16	.15
		.10	.07			.20	.24		.21		.10	.15
e E	stimated.									1		
STATIS	TICS OF I	MONTHLY	MEAN D	ATA FOR	WATER Y	EARS 1931	l - 1992, B	Y WATER	YEAR (W	Y)		
MEAN	224	233	222	214	215	295	450	550	544	395	260	220
MAX	817	831	706	603	605	653	1051	1427	1425	1246	1080	904
(WY)	1986				1987	1987			1986	1953	1985	1985
		1986	1987	1986			1986	1986			11.5	7.99
MIN	9.15	8.42	8.10	15.1	10.8	23.5	39.5	14.1	14.2	12.8		
(WY)	1977	1977	1977	1937	1935	1937	1934	1977	1934	1936	1934	1934

SUMMARY STATISTICS FOR 1991 (CALENDAR	YEAR	FOR 1992 WATER	YEAR	WATER Y	EARS 1931 1992
ANNUAL TOTAL	131396		107734		•	
ANNUAL MEAN	360		294		319	
HIGHEST ANNUAL MEAN					842	1986
LOWEST ANNUAL MEAN					20.4	1934
HIGHEST DAILY MEAN	1010	Jul 2	571	Mar 7	1670	Jun 20 1953
LOWEST DAILY MEAN	82	Jan 19	110	Nov 9	1.6	Feb 7 1937
ANNUAL SEVEN-DAY MINIMUM	84	Jan 13	124	Nov 5	5.9	Sep 15 1934
INSTANTANEOUS PEAK FLOW			589	Jul 25, 26	1710	Jun 17 1953
INSTANTANEOUS PEAK STAGE			330a	Nov 4	5.60b	Jun 17 1953
INSTANTANEOUS LOW FLOW			7.0	Jul 26, 27	.70c	Aug 5 1970
ANNUAL RUNOFF (AC-FT)	260600		213700		231000	
ANNUAL RUNOFF (CFSM)	.20		.16		.17	
10 PERCENT EXCEEDS	713		434		693	
50 PERCENT EXCEEDS	291		278		246	
90 PERCENT EXCEEDS	120		177		30	

a Backwater from ice.

c Result of regulation.

b Backwater from aquatic vegetation.

05050000 BOIS DE SIOUX RIVER NEAR WHITE ROCK, SD

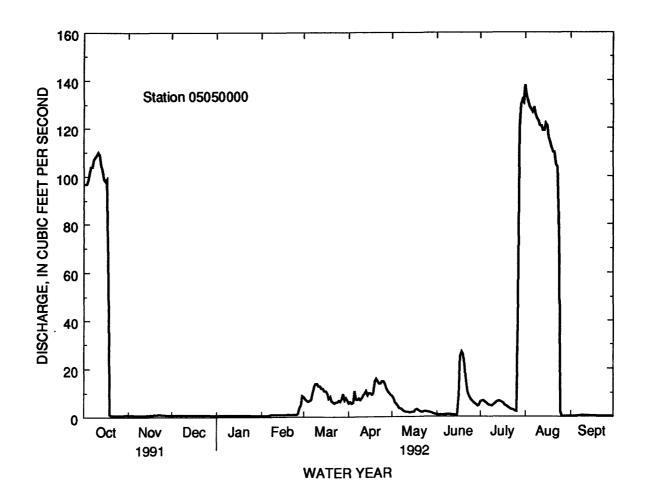
LOCATION.--Lat 45°51'45", long 96°34'25", in SW¹/4SW¹/4 sec.27, T.128 N., R.47 W., Roberts County, Hydrologic Unit 09020101, on Sisseton Indian Reservation, on left bank just downstream from Big Slough Outlet, 300 ft downstream from White Rock Dam, 4 mi south of White Rock, SD and 5 mi northwest of Wheaton.

DRAINAGE AREA.--1,160 mi², approximately.

PERIOD OF RECORD .-- October 1941 to current year.

GAGE.--Water-stage recorder. Datum of gage is 960.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Jan. 14, 1943, nonrecording gage at same site at datum 0.11 ft lower. Jan. 15, 1943, to Sept. 30, 1963, water-stage recorder at same site at datum 0.11 ft lower. REMARKS.--Records poor. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project (available capacity for flood control, 137,000 acre-ft).

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	97	.86	e.80	e.72	e.59	e8.4	5.8	8.8	.95	6.5	138	e.18
2	97	e.82	e.80	e.72	e.59	e7.6	6.3	7.8	.87	6.7	134	e.17
3	97	e.78	e.80	e.72 e.71	e.59	e7.0	5.7	6.0	.81	6.8	131	e.18
4	99	e.76	e.80	e.71	e.59	e6.6	6.0	5.5	.78	6.4	129	e.19
5										5.9	129	e.20
3	102	e.72	e.80	e.70	e.59	e6 .8	11	4.6	.80	3.9	128	6.20
6	104	e.70	e.80	e.70	e.64	e7.4	7.4	3.6	.84	5.4	127	e.25
7	104	e.70	e.80	e.69	e.80	e10	7.1	3.5	.84	4.9	129	e.30
8	107	e.70	e.80	e.68	e.90	e13	7.8	3.1	.90	4.9	126	.45
9	108	e.70	e.80	e.68	e.90	e14	7.1	2.4	.93	4.6	124	.51
10	109	e.70	e.80	e.68	e.90	el4	7.9	2.2	.92	5.1	123	.45
11	110	e.70	e.80	e.67	e.90	e13	9.0	2.1	.88	5.5	121	.39
12	109	e.70	e.80	e.67	e.90	e13	10	2.0	.81	6.2	121	.38
13	105	e.72	e.80	e.66	e.90	e12	11	1.7	.76	6.6	119	.36
14	103	e.76	e.80	e.66			9.1	1.7	e.72	6.7	119	e.33
					e.90	e12				6.5		
15	99	e.78	e.79	e.65	e.90	11	10	2.0	e.69	0.5	122	e.31
16	98	e.80	e.79	e.65	e.90	11	10	2.1	9.1	6.1	121	e.28
17	99	e.84	e.79	e.64	e.90	10	9.4	2.9	25	5.6	116	e.26
18	56	e.88	e.79	e.64	e.90	7.8	10	3.2	27	4.9	114	e.24
19	1.1	e.92	e.79	e.63	e.90	8.5	15	2.8	26	4.5	112	e.22
20	.74	e.98	e.78	e.63	e.90	6.7	16	2.4	22	4.1	110	e.20
21	.74	e1.0	e.78	e.63	e.90	6.1	15	2.1	16	3.7	110	e.19
22	.74	e1.1	e.78	e.62	e.90	5.8	14	2.0	11	3.3	105	e.17
23	.74	el.1	e.77	e.62	e.90	6.2	14	2.3	9.1	3.1	104	e.16
24	.73	e1.0	e.76	e.62	e.90	6.2	15	2.3	7.8	2.8	77	e. 15
25	.73 .71	e.94	e.76	e.61	e.90	6.8	15	2.2	7.0	2.5	2.1	e.14
2	./1	C. 74	6.70	6.01	C.50	0.8	15	2.2	7.0	2.3	2.1	0.14
26	.71	e.90	e.75	e.60	e1.4	6.4	14	2.1	6.3	2.3	.18	e.13
27	.71	e.88	e.75	e.60	e4.0	7.6	12	1.9	5.7	50	e.15	e.12
28	.74	e.84	e.74	e.60	e5.0	9.8	11	1.7	5.2	120	e.11	e.11
29	.86	e.82	e.74	e.59	e9.0	7.1	10	1.4	4.6	130	e.13	.10
30	.88	e.80	e.73	e.59		8.0	9.2	1.2	4.8	132	e.15	.05
31	.88		e.73	e.59		6.9		1.0		131	e.19	
TOTAL	1812 28	24.90	24.22	20.16	39.99	276.7	310.8	90.8	199.10	694.6	2863.01	7.17
MEAN	58.5	.83	.78	.65	1.38	8.93	10.4	2.93	6.64	22.4	92.4	.24
MAX	110	.65 1.1	.78	.63 .72		14	16	8.8	27	132	138	.51
					9.0					2.3	.11	
MIN	.71	.70	.73	.59	.59	5.8	5.7	1.0	.69			.05
AC-FT	3590	49	48	40	79	549	616	180	395	1380	5680	14
CFSM	.05	.00	.00	.00	.00	.01	.01	.00	.01	.02	.08	.00
IN .	.06	.00	.00	.00	.00	.01	.01	.00	.01	.02	.09	.00


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	16.3	11.8	4.84	2.47	3.22	24.5	191	244	230	146	51.9	17.5
MAX	363	258	57.5	36.0	53.0	227	1322	1310	1103	1035	1130	260
(WY	1987	1985	1985	1987	1966	1985	1969	1969	1986	1962	1962	1962
MIN	.000	.000	.000	.000	.000	.000	.000	.23	.010	.000	.000	.000
(WY)	1942	1942	1942	1942	1942	1942	1942	1977	1977	1961	1970	1960

SUMMARY STATISTICS FOR 199	1 CALENDA	R YEAR	FOR 1992 WAT	ER YEAR	WATER YEAR	RS 1942 - 1992
ANNUAL TOTAL	25098.53		6363.73			
ANNUAL MEAN	68.8		17.4		78.8a	
HIGHEST ANNUAL MEAN					329	1986
LOWEST ANNUAL MEAN					.38	1977
HIGHEST DAILY MEAN	679	Jul 7	138	Aug 1	3380	Apr 20 1969
LOWEST DAILY MEAN	.40	Jan 16-31	.05	Sep 30	.00	Many days
ANNUAL SEVEN-DAY MINIMUM	.40	Jan 16	.11	Sep 24	.00	Oct 1 1941
INSTANTANEOUS PEAK FLOW			139	Aug 1	3770ь	
INSTANTANEOUS PEAK STAGE			7.17	Aug 1	15.07bc	
ANNUAL RUNOFF (AC-FT)	49780		12620	J	57110	
ANNUAL RUNOFF (CFSM)	.059		.015		.068	
ANNUAL RUNOFF (INCHES)	.80		.20		.92	
10 PERCENT EXCEEDS	227		102		228	
50 PERCENT EXCEEDS	6.1		1.3		1.7	
90 PERCENT EXCEEDS	.48		.57		.00	
Madieu of several manual discharges	- 52 G3/-					

a Median of annual mean discharges is 53 ft³/s. b Occurred during period Apr. 19-21, 1969. c From floodmark.

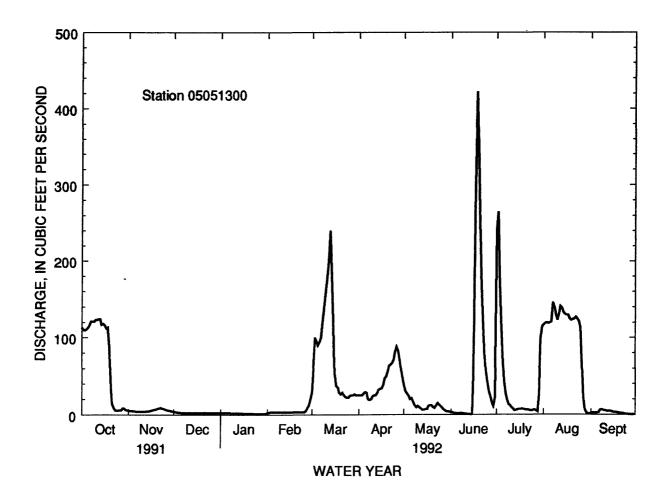
05051300 BOIS DE SIOUX RIVER NEAR DORAN, MN

LOCATION.--Lat 46°09'08", long 96°34'44", in NE¹/4NE¹/4 sec.21, T.131 N., R.47 W., Wilkin County, Hydrologic Unit 09020101, on right bank, 10 ft downstream from bridge on County Highway 6, 3 miles downstream from Rabbit River, 4.3 mi southwest of Doran.

DRAINAGE AREA.--1,880 mi², approximately

PERIOD OF RECORD.-October 1989 to current year.

GAGE.--Water-stage recorder. Datum of gage is 943.90 ft above mean sea level (elevation data obtained from Wilkin County Highway Engineer). REMARKS.--Records poor. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project near White Rock, SD.


DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP						DA	ILY MEAN	VALUES					
2 110 e50 e37 e22 e27 e60 25 30 27 206 119 24 4 111 e45 e23 e22 e30 e100 25 27 20 115 76 120 2.5 6 117 e40 e2.4 e2.2 e30 e95 27 24 2.1 122 119 2.3 5 113 e4.3 e2.6 e2.2 e30 e90 29 20 1.5 76 120 2.5 6 117 e40 e2.4 e2.2 e30 e100 20 16 19 28 146 6.2 8 121 e40 e2.3 e2.1 e30 e100 20 16 19 28 146 6.2 8 121 e40 e2.3 e2.1 e30 e100 20 16 19 12 1.7 19 140 6.4 9 121 e40 e2.3 e2.1 e30 e100 20 15 17 19 140 6.4 9 121 e40 e2.2 e2.1 e30 e100 20 15 11 12 12 12 123 5.2 10 123 e4.0 e2.2 e2.1 e3.0 e160 23 11 12 12 12 123 5.2 11 123 e4.0 e2.2 e2.1 e3.0 e160 23 11 12 12 12 123 5.2 11 124 e4.0 e2.2 e1.9 e3.0 e160 23 11 12 12 12 123 5.2 11 125 e4.0 e2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.0 e2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.9 e2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 15 118 e4.9 e2.2 e1.7 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e6.5 e2.2 e1.6 e3.0 s3 3 4 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.6 e3.0 s3 5 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 12 2 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 50 12 351 7.1 13 55 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.3 24 5.4 e7.6 e2.2 e1.1 e2.2 e1.5 e3.0 25 65 12 115 6.0 127 115 2.5 25 5.5 e7.0 e2.2 e1.1 e1.2 e2.0 25 74 5.2 15 3.8 6.5 22 42 28 8.2 e52 e2.2 e1.1 e1.2 e2.0 25 74 5.2 15 3.8 6.5 32 29 8.0 e4.8 e2.2 e1.1 e2.0 65 5 9 41 11 25 5 6.3 22 81 29 8.0 e4.8 e2.2 e1.1 e2.0 26 5 9 9 7 9 1 1 12 9 5 6 9 130 3.0 26 5.6 e6.2 e2.2 e1.1 e1.0 25 65 9 9 11 1 12 12 12 12 12 12 12 12 12 12 12 1	DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 110 e50 e37 e22 e27 e60 25 30 27 206 119 24 4 111 e45 e23 e22 e30 e100 25 27 20 115 76 120 2.5 6 117 e40 e2.4 e2.2 e30 e95 27 24 2.1 122 119 2.3 5 113 e4.3 e2.6 e2.2 e30 e90 29 20 1.5 76 120 2.5 6 117 e40 e2.4 e2.2 e30 e100 20 16 19 28 146 6.2 8 121 e40 e2.3 e2.1 e30 e100 20 16 19 28 146 6.2 8 121 e40 e2.3 e2.1 e30 e100 20 16 19 12 1.7 19 140 6.4 9 121 e40 e2.3 e2.1 e30 e100 20 15 17 19 140 6.4 9 121 e40 e2.2 e2.1 e30 e100 20 15 11 12 12 12 123 5.2 10 123 e4.0 e2.2 e2.1 e3.0 e160 23 11 12 12 12 123 5.2 11 123 e4.0 e2.2 e2.1 e3.0 e160 23 11 12 12 12 123 5.2 11 124 e4.0 e2.2 e1.9 e3.0 e160 23 11 12 12 12 123 5.2 11 125 e4.0 e2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.0 e2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.9 e2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 15 118 e4.9 e2.2 e1.7 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e6.5 e2.2 e1.6 e3.0 s3 3 4 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.6 e3.0 s3 5 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 12 2 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 50 12 351 7.1 13 55 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.3 24 5.4 e7.6 e2.2 e1.1 e2.2 e1.5 e3.0 25 65 12 115 6.0 127 115 2.5 25 5.5 e7.0 e2.2 e1.1 e1.2 e2.0 25 74 5.2 15 3.8 6.5 22 42 28 8.2 e52 e2.2 e1.1 e1.2 e2.0 25 74 5.2 15 3.8 6.5 32 29 8.0 e4.8 e2.2 e1.1 e2.0 65 5 9 41 11 25 5 6.3 22 81 29 8.0 e4.8 e2.2 e1.1 e2.0 26 5 9 9 7 9 1 1 12 9 5 6 9 130 3.0 26 5.6 e6.2 e2.2 e1.1 e1.0 25 65 9 9 11 1 12 12 12 12 12 12 12 12 12 12 12 1	1	113	e5.3	e4.1	e2.2	e2.2	e30	25	38	3.7	241	117	1.5
3 110 e4.7 c3.3 e2.2 e3.0 e100 25 27 24 2.1 183 120 2.4 4 111 e4.5 c2.9 e2.2 e3.0 e90 29 20 1.5 76 120 2.5 6 117 e4.0 e2.4 c2.2 e3.0 e90 29 20 1.5 76 120 2.5 6 117 e4.0 c2.4 c2.2 e3.0 e90 29 20 1.5 76 120 2.5 6 117 e4.0 c2.3 c2.2 e3.0 e100 20 16 1.9 28 146 6.2 8 121 e4.0 c2.3 c2.1 e3.0 e100 20 16 1.9 28 146 6.2 8 121 e4.0 c2.3 c2.1 e3.0 e100 20 16 1.9 12 1.7 19 140 6.4 9 121 e4.0 c2.3 c2.1 e3.0 e140 20 9.5 1.4 13 131 5.9 10 123 e4.0 c2.2 e2.1 e3.0 e140 20 9.5 1.4 13 131 5.9 11 122 e4.0 c2.2 e2.0 e3.0 e160 23 11 1.2 112 112 123 5.2 11 123 e4.0 c2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 13.4 4.7 12 124 e4.0 c2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 132 4.7 12 124 e4.0 c2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 132 4.7 12 124 e4.0 c2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 133 4.5 14 117 e4.6 c2.2 e1.8 e3.0 e180 32 6.2 4.2 5.9 133 4.5 15 118 e4.9 e2.2 e1.8 e3.0 e180 32 6.2 4.2 5.9 133 4.5 15 118 e4.9 e2.2 e1.6 e3.0 s100 33 6.7 7.1 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 c2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 21 14 e8.4 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 c2.2 e1.5 e3.0 25 65 7 9.4 250 63 124 2.1 21 14 e8.4 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 c2.2 e1.4 e3.0 28 50 12 351 7.1 123 2.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 8.7 24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 8.7 25 5.2 e7.0 e2.2 e1.2 e3.0 25 65 12 1115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.1 e2.0 26 59 41 11 25 5.4 22 29 2 e9.0 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 20 2 9.8 e6.6 e6.2 e2.2 e1.1 e2.0 26 59 41 11 25 2.4 2.2 21 24 5.4 e7.6 e2.2 e1.3 e3.0 28 60 38 5 107 60 127 1.5 23 5.7 e8.4 e2.2 e1.1 e2.0 26 59 41 11 25 5.4 2.2 25 5.2 e7.0 e2.2 e1.2 e3.0 22 71 13 55 5.2 122 8.7 26 5.6 66.2 e2.2 e1.1 e2.0 26 59 41 11 12 25 2.4 2.6 30 e6.0 e4.6 e2.2 e1.2 e3.0 25 65 12 115 3.8 6.5 32 29 8.													
4 111 e4.5 e2.9 e2.2 e3.0 e90 29 20 1.5 76 120 2.5 6 117 e4.0 e2.4 e2.2 e3.0 e90 29 20 1.5 76 120 2.5 6 117 e4.0 e2.4 e2.2 e3.0 e100 20 16 1.9 28 146 6.2 8 121 e4.0 e2.3 e2.1 e3.0 e120 19 12 1.7 19 140 6.4 9 121 e4.0 e2.2 e2.1 e3.0 e160 23 11 1.2 12 123 52 11 123 e4.0 e2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 132 4.7 12 124 e4.0 e2.2 e1.8 e3.0 e200 25 7.7 7.8 7.2 141 4.6 <td>3</td> <td></td>	3												
5 113 e4.3 e2.6 e2.2 e3.0 e90 29 20 1.5 76 120 2.5 6 117 e4.0 e2.4 e2.2 e3.0 e94 28 21 1.4 45 121 3.1 7 121 e4.0 e2.3 e2.1 e3.0 e100 20 16 1.9 28 146 6.2 8 121 e4.0 e2.3 e2.1 e3.0 e100 20 16 1.9 28 146 6.2 9 121 e4.0 e2.2 e2.1 e3.0 e140 20 9.5 1.4 13 131 5.9 10 123 e4.0 e2.2 e2.0 e3.0 e160 23 11 12 12 123 5.2 11 123 e4.0 e2.2 e2.0 e3.0 e160 23 11 12 12 123 5.2 11 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 7.8 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e200 25 7.7 7.8 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e240 28 6.0 6.7 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e210 25 6.0 6.0 6.7 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e110 33 6.7 7.1 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 53 34 7.1 86 7.0 130 3.0 17 112 e6.0 e2.2 e1.5 e3.0 53 34 7.1 86 7.0 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 242 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 63 8.5 167 6.0 125 1.8 21 14 e8.4 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 23 5.7 e8.4 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 24 5.4 e7.6 e2.2 e1.3 e3.0 22 81 11 40 5.7 113 55 5.2 122 88 25 5.7 e8.4 e2.2 e1.3 e3.0 22 81 11 40 5.7 113 55 5.2 122 88 29 8.0 e4.8 e2.2 e1.1 e8.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 81 11 40 5.7 113 55 5.2 122 88 29 8.0 e4.8 e2.2 e1.1 e2.0 26 59 4.1 11 25 2.4 2.6 30 e6.0 e4.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 4.2 29 8.0 e4.8 e2.2 e1.1 e2.0 26 59 4.1 11 25 2.4 2.6 30 e6.0 e4.6 e2.2 e1.1 e2.0 26 59 4.1 11 25 2.4 2.6 30 e6.0 e4.6 e2.2 e1.1 e2.0 25 77 45.5 15 3.8 65.3 2.2 29 8.0 e4.8 e2.2 e1.1 e2.0 26 60 77 0 3940 2690 6490 162 EVENTIONAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 125 70 3940 2690 6490 162 EVENTIONAL 24 9.0 4.10 2.2 11.1 2.2 20 240 280 83 38 422 25.8 146 6.4 MIN 5.2 4.0 2.2 11.	4												
6 117 e4.0 c2.4 c2.2 c3.0 e94 28 21 1.4 45 121 3.1 7 121 e4.0 c2.3 c2.2 e3.0 e100 20 16 1.9 28 146 6.2 8 121 e4.0 c2.3 c2.1 e3.0 e120 19 12 1.7 19 140 6.4 9 121 e4.0 c2.2 c2.1 e3.0 e160 23 11 12 12 12 123 52 10 123 e4.0 c2.2 e2.0 e3.0 e160 23 11 12 12 12 123 52 11 123 e4.0 c2.2 e1.9 e3.0 e160 23 11 12 12 12 123 52 11 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.2 c2.2 e1.8 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.2 c2.2 e1.8 e3.0 e180 32 62. 42 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 c5.4 c2.2 e1.6 e3.0 33 6.7 .71 6.6 131 3.7 16 116 e5.4 c2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 492 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 8 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 8 63 8.5 167 6.0 125 1.8 24 5.4 e7.6 e2.2 e1.3 e3.0 22 8 63 8.5 167 6.0 125 1.8 25 5.2 e7.0 e2.2 e1.2 e3.0 25 65 12 115 6.0 127 1.5 26 5.6 66.2 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 28 1.7 5.9 e5.6 e2.2 e1.3 e3.0 22 81 11 40 5.7 113 .50 26 5.6 66.2 e2.2 e1.1 e2.0 25 59 41 11 25 5.2 22 87 29 8.0 e4.8 e2.2 e1.1 e3.0 25 65 12 115 6.0 127 1.5 29 8.0 e4.8 e2.2 e1.1 e2.0 26 59 41 11 25 2.4 26 6.3 2.4 26 6.3 2.4 26 6.3 2.4 26 6.3 2.4 26 6.3 2.4 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4													2.5
7 121 e4.0 e2.3 e2.2 e3.0 e100 20 16 1.9 28 146 62 8 121 e4.0 e2.3 e2.1 e3.0 e120 19 12 1.7 19 140 6.4 9 121 e4.0 e2.2 e2.1 e3.0 e140 20 9.5 1.4 13 131 5.9 10 123 e4.0 e2.2 e2.0 e3.0 e160 23 11 1.2 12 123 5.2 11 123 e4.0 e2.2 e1.9 e3.0 e160 23 11 1.2 12 123 5.2 11 124 e4.0 e2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 132 4.7 12 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 7.8 7.2 141 4.6 13 131 124 e4.2 e2.2 e1.8 e3.0 e2.40 28 6.0 6.7 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e180 32 6.2 4.2 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 7.1 6.6 131 3.7 14 e4.9 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 112 e6.0 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 26 57 9.4 250 6.3 124 2.1 2.1 2.1 14 e8.4 e2.2 e1.5 e3.0 26 57 9.4 250 6.3 124 2.1 2.1 2.1 14 e8.4 e2.2 e1.5 e3.0 25 67 9.4 250 6.3 124 2.1 2.1 2.1 14 e8.4 e2.2 e1.4 e3.0 25 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 25 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 25 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 25 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 25 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 25 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 25 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 4.2 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 4.2 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 4.2 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 4.2 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 4.2 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 4.2 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 81 11 20 1.2 25 1.3 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 115 1.2 115 1.2 1.3 1.5 1.2 1.3 1.5 1.2 1.3 1.5 1.2 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.3 1.5 1.5 1.3	_					-	•,					323	
8 121 e4.0 e2.3 e2.1 e3.0 e120 19 12 1.7 19 140 6.4 9 121 e4.0 e2.2 e2.1 e3.0 e160 23 11 1.2 123 5.2 11 123 e4.0 e2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 132 4.7 12 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 7.8 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e240 28 6.0 .67 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 53 34 7.1 86 7.0 130 3.2	6	117	e4.0	e2.4	e2.2	e3.0	e94	28	21	1.4	45	121	3.1
9 121 e4.0 e2.2 e2.1 e3.0 e160 23 11 12 12 12 123 5.2 11 123 e4.0 e2.2 e2.0 e3.0 e160 23 11 12 12 12 123 5.2 11 123 e4.0 e2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 132 4.7 12 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 7.8 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e240 28 6.0 .67 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 33 34 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.6 e3.0 35 34 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.5 e3.0 35 47 12 422 72 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 35 47 12 422 72 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 26 57 9.4 250 6.3 124 2.1 21 14 e8.4 e2.2 e1.5 e3.0 26 67 9.4 250 6.3 124 2.1 21 14 e8.4 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 8.7 24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 8.7 25 5.2 e7.0 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 42 28 8.2 e5.2 e2.2 e1.1 e2.2 e5.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.1 e2.2 e5.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.1 e2.2 e5.0 24 88 8.9 30 6.1 63 .43 27 5.9 e5.6 e2.2 e1.1 e2.2 e5.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.1 e2.0 25 59 47 3.9 22 100 1.1 23 31 e5.7 e2.2 e1.1 e2.2 25 47 3.9 22 100 1.1 23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 24 88 8 422 265 146 6.3 4MN 5.2 40 9.0 4.1 2.2 20 240 88 83 84 422 265 146 6.4 MIN 5.2 40 9.0 4.0 2.2 11.1 2.2 22 19 3.7 42 3.8 1.1 23 AC-FFM 4580 327 147 104 226 4660 2600 770 3940 2690 6490 162 CFSM .04 0.0 .00 .00 .00 .00 .04 .02 .01 01 0.4 .02 .06 .00	7	121	e4.0	e2.3	e2.2	e3.0	e100	20	16	1.9	28	146	6.2
10 123 e4.0 e2.2 e2.0 e3.0 e160 23 11 1.2 12 123 5.2 11 123 e4.0 e2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 132 4.7 12 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e240 28 6.0 .67 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e180 32 6.2 .42 5.9 133 3.7 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 53 34 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 26 57 9.4 250 6.3 124 2.1 21 14 e8.4 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 22 81 11 40 5.7 113 50 26 5.6 e6.2 c2.2 e1.2 e3.0 22 81 11 40 5.7 113 50 26 5.6 e6.2 c2.2 e1.1 e8.0 22 81 88 8.9 30 6.1 63 .43 27 5.9 e5.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 29 8.0 e4.8 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 29 8.0 e4.8 e2.2 e1.1 e2.0 26 5.9 4.1 11 25 2.4 2.6 30 e6.0 e4.6 e2.2 e1.1 e2.0 26 5.9 4.1 11 25 2.4 2.6 30 e6.0 e4.6 e2.2 e1.1 e2.0 26 5.9 4.1 11 25 2.4 2.6 30 e6.0 e4.6 e2.2 e1.1 e2.0 26 5.9 4.1 11 25 2.4 2.6 30 e6.0 e4.6 e2.2 e1.1 e2.2 20 24 88 83 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 24 88 83 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 20 19 3.7 4.2 3.8 1.1 23 AC-FTM 4580 327 147 104 236 4660 2600 770 33940 2690 6490 162 CFSM .04 00 .00 .00 .00 .00 .04 .02 .01 0.01 .04 .02 .06 .00	8	121	e4.0	e2.3	e2.1	e3.0	e120	19	12	1.7	19	140	
11 123 e4.0 c2.2 e1.9 e3.0 e180 25 9.3 1.0 9.5 132 4.7 12 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 7.8 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e240 28 6.0 .67 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 130 3.3 16 116 e5.4 e2.2 e1.6 e3.0 33 34 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.6 e3.0 35 47 12 422 72 125 2.8 </td <td></td> <td>121</td> <td>e4.0</td> <td>e2.2</td> <td>e2.1</td> <td>e3.0</td> <td>e140</td> <td>20</td> <td>9.5</td> <td>1.4</td> <td>13</td> <td>131</td> <td>5.9</td>		121	e4.0	e2.2	e2.1	e3.0	e140	20	9.5	1.4	13	131	5.9
12 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e240 28 6.0 .67 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 63	10	123	e4.0	e2.2	e2.0	e3.0	e160	23	11	1.2	12	123	5.2
12 124 e4.0 e2.2 e1.9 e3.0 e200 25 7.7 .78 7.2 141 4.6 13 124 e4.2 e2.2 e1.8 e3.0 e240 28 6.0 .67 5.3 139 4.8 14 117 e4.6 e2.2 e1.8 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 63			4.0		4.0	• •	100	25			0.5	100	4.5
13 124 e4.2 e2.2 e1.8 e3.0 e240 28 6.0 .67 5.3 139 4.8 14 117 e4.6 e2.2 e1.7 e3.0 e180 32 6.2 .42 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 53 34 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.6 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 63 8.5 167 6.0 125 1.8 21 14 e8.4 e2.2 e1.4 e3.0 25 65													
14 117 e4.6 e2.2 e1.8 e3.0 e180 32 6.2 4.2 5.9 133 4.5 15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 e6.0 e2.2 e1.6 e3.0 53 34 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.5 e3.0 35 47 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 11 242 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 63 8.5 167 6.0 125 1.8 21 14 e8.4 e2.2 e1.4 e3.0 28 63													
15 118 e4.9 e2.2 e1.7 e3.0 e110 33 6.7 .71 6.6 131 3.7 16 116 e5.4 e2.2 e1.6 e3.0 53 34 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 26 57 9.4 250 6.3 124 2.1 21 14 e8.4 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 23 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.2 e3.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e2.0 26 59 4.1 11 25 2.4 2.6 30 e6.0 e4.8 e2.2 e1.1 e2.0 26 59 4.1 11 25 2.4 2.6 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .00 .04 .02 .01 10 .04 .02 .06 .00													
16 116 e5.4 e2.2 e1.6 e3.0 53 34 7.1 86 7.0 130 3.2 17 112 e6.0 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 71 13													4.5
17 112 e6.0 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.3 e3.0 22 71 13<	15	118	e4.9	e2.2	e1./	e3.0	6110	33	6.7	./1	0.0	131	3.1
17 112 e6.0 e2.2 e1.6 e3.0 37 39 11 299 6.9 130 3.0 18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.3 e3.0 22 71 13<	16	116	e5.4	e2.2	e1.6	e3.0	53	34	7.1	86	7.0	130	3.2
18 113 e6.5 e2.2 e1.5 e3.0 35 47 12 422 7.2 125 2.8 19 88 e7.1 e2.2 e1.5 e3.0 28 50 12 351 7.1 123 2.5 20 35 e7.7 e2.2 e1.5 e3.0 26 57 9.4 250 6.3 124 2.1 21 14 e8.4 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.2 e3.0 22 81 11<		112	e6.0		e1.6	e3.0			11				
19 88 c7.1 c2.2 c1.5 c3.0 28 50 12 351 7.1 123 2.5 2.6 20 35 c7.7 c2.2 c1.5 c3.0 26 57 9.4 250 6.3 124 2.1 2.1 2.1 14 c8.4 c2.2 c1.4 c3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 c9.0 c2.2 c1.4 c3.0 25 65 12 115 6.0 127 1.5 23 5.7 c8.4 c2.2 c1.3 c3.0 23 67 15 79 5.4 125 1.3 24 5.4 c7.6 c2.2 c1.3 c3.0 22 71 13 55 5.2 122 .87 25 5.2 c7.0 c2.2 c1.2 c3.0 22 81 11 40 5.7 113 .50 26 5.6 c6.2 c2.2 c1.2 c3.0 22 81 11 40 5.7 113 .50 26 5.6 c6.2 c2.2 c1.1 c8.0 25 83 7.1 23 5.0 22 .42 28 8.2 c5.2 c2.2 c1.1 c1.2 c5.0 24 88 8.9 30 6.1 63 .43 27 5.9 c5.6 c2.2 c1.1 c1.2 25 74 5.2 15 3.8 6.5 .32 29 8.0 c4.8 c2.2 c1.1 c1.2 c5.0 26 59 4.1 11 25 2.4 .26 30 c6.0 c4.6 c2.2 c1.1 c2.0 26 59 4.1 11 25 2.4 .26 30 c6.0 c4.6 c2.2 c1.2 c3.0 27 25 47 3.9 22 100 1.1 .23 31 c5.7 c2.2 c1.6 25 3.7 115 1.2 11	18	113	e6.5			e3.0		47	12		7.2	125	
20 35 e7.7 e2.2 e1.5 e3.0 26 57 9.4 250 6.3 124 2.1 21 14 e8.4 e2.2 e1.4 e3.0 28 63 8.5 167 6.0 125 1.8 22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 23 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.2 e3.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.2 e3.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 240 88 38 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 12 2.2 20 240 88 38 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06		88	e7.1		e1.5	e3.0		50				123	
22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 23 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.2 e3.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.2 e5.0 24 88 8.9 30 6.1 63 .43 27 5.9 e5.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 <td>20</td> <td>35</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>57</td> <td>9.4</td> <td></td> <td>6.3</td> <td>124</td> <td></td>	20	35						57	9.4		6.3	124	
22 9.2 e9.0 e2.2 e1.4 e3.0 25 65 12 115 6.0 127 1.5 23 5.7 e8.4 e2.2 e1.3 e3.0 23 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.2 e3.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.2 e5.0 24 88 8.9 30 6.1 63 .43 27 5.9 e5.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 <td></td>													
23 5.7 e8.4 e2.2 e1.3 e3.0 23 67 15 79 5.4 125 1.3 24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.2 e3.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.2 e5.0 24 88 8.9 30 6.1 63 .43 27 5.9 e5.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .00 .00 .00 .00 .00	21	14	e8.4	e2.2	e1.4	e3.0	28	63	8.5	167	6.0	125	1.8
24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.2 e3.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309	22	9.2	e9.0	e2.2	e1.4	e3.0	25	65	12	115	6.0	127	1.5
24 5.4 e7.6 e2.2 e1.3 e3.0 22 71 13 55 5.2 122 .87 25 5.2 e7.0 e2.2 e1.2 e3.0 22 81 11 40 5.7 113 .50 26 5.6 e6.2 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309	23	5.7	e8.4	e2.2	e1.3	e3.0	23	67	15	79		125	1.3
26 5.6 e6.2 e2.2 e1.2 e5.0 24 88 8.9 30 6.1 63 .43 27 5.9 e5.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7		5.4	e7.6	e2.2	e1.3	e3.0	22	71	13	55	5.2	122	.87
27 5.9 e5.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 240 <td>25</td> <td>5.2</td> <td>e7.0</td> <td>e2.2</td> <td>e1.2</td> <td>e3.0</td> <td>22</td> <td>81</td> <td>11</td> <td>40</td> <td>5.7</td> <td>113</td> <td>.50</td>	25	5.2	e7.0	e2.2	e1.2	e3.0	22	81	11	40	5.7	113	.50
27 5.9 e5.6 e2.2 e1.1 e8.0 25 83 7.1 23 5.0 22 .42 28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 240 <td>26</td> <td>5.6</td> <td>~6 2</td> <td>-2.2</td> <td>-1.2</td> <td>-5.0</td> <td>24</td> <td>00</td> <td>9.0</td> <td>20</td> <td><i>4</i> 1</td> <td>62</td> <td>42</td>	26	5.6	~ 6 2	-2.2	-1.2	-5.0	24	00	9.0	20	<i>4</i> 1	62	42
28 8.2 e5.2 e2.2 e1.1 e12 25 74 5.2 15 3.8 6.5 .32 29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 115													
29 8.0 e4.8 e2.2 e1.1 e20 26 59 4.1 11 25 2.4 .26 30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4,1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.2</td> <td></td> <td></td> <td></td> <td></td>									5.2				
30 e6.0 e4.6 e2.2 e1.2 25 47 3.9 22 100 1.1 .23 31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06 .00													
31 e5.7 e2.2 e1.6 25 3.7 115 1.2 TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06 .00													
TOTAL 2308.9 165.0 74.2 52.3 118.9 2348 1309 388.3 1988.18 1356.2 3272.2 81.43 MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4.1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06 .00													
MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4,1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06 .00	31	es./		62.2	e1.0		23		3.7		113	1.2	
MEAN 74.5 5.50 2.39 1.69 4.10 75.7 43.6 12.5 66.3 43.7 106 2.71 MAX 124 9.0 4,1 2.2 20 240 88 38 422 265 146 6.4 MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06 .00	TOTAL	2308.9			52.3	118.9				1988.18			
MIN 5.2 4.0 2.2 1.1 2.2 22 19 3.7 .42 3.8 1.1 .23 AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06 .00		74.5		2.39	1.69	4.10	75.7	43.6			43.7	106	
AC-FT 4580 327 147 104 236 4660 2600 770 3940 2690 6490 162 CFSM .04 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06 .00	MAX	124	9.0		2.2	20				422		146	6.4
CFSM .04 .00 .00 .00 .00 .04 .02 .01 .04 .02 .06 .00	MIN	5.2	4.0			2.2					3.8		.23
				147	104	236	4660			3940		6490	162
IN05 .00 .00 .00 .00 .05 .03 .01 .04 .03 .06 .00	CFSM	.04		.00									
	IN.	.05	.00	.00	.00	.00	.05	.03	.01	.04	.03	.06	.00

e Estimated.

STATISTICS OF MONTH	LY MEAN DATA FOR WATER	VEADS 1000 - 1002	DV WATED VEAD (WV)
2 I A I I S I I C S OF MON I H	LI MEAN DATA PUR WATER	1 EAKS 1990 - 1992	. BI WAIER IEAR (WI)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	31.6	5.33	3.84	.65	1.45	56.4	36.7	35.1	148	333	67.8	141
MAX	74.5	8.54	8.48	1.69	4.10	75.7	53.9	81.0	364	951	106	422
(WY)	1992	1990	1990	1992	1992	1992	1991	1991	1991	1991	1992	1991
MIN	.026	1.97	.65	.077	.000	25.5	12.6	11.8	12.6	4.37	.000	.000
(WY)	1991	1991	1991	1991	1990	1990	1990	1990	1990	1990	1990	1990
SUMMA	RY STA	TISTICS F	OR 1991 C	ALENDAI	R YEAR	FOR	1992 WA'	TER YEAR		WATER Y	EARS 199	0 - 1992
ANNUA	L TOTAL		6	4873.16		1	3462.61					
ANNUA	L MEAN			178			36.8			72.2		
HIGHES	T ANNU	AL MEAN								171		1991
LOWES	T ANNUA	L MEAN								8.77		1990
HIGHES	TDAILY	MEAN		2860	Jul 2		422	Jun 18		2860	Jul	y 2 1991

ANNUAL MEAN	178		36.8		72.2	
HIGHEST ANNUAL MEAN					171	1991
LOWEST ANNUAL MEAN					8.77	1990
HIGHEST DAILY MEAN	2860	Jul 2	422	Jun 18	2860	July 2 1991
LOWEST DAILY MEAN	.00	Jan 20-31	.23	Sep 30	.00	Many days
ANNUAL SEVEN-DAY MINIMUM	.00	Jan 20	.43	Sep 24	.00	Jan 7 1990
INSTANTANEOUS PEAK FLOW			436	Jun 18	2980	July 2 1991
INSTANTANEOUS PEAK STAGE			10.58	Jun 18	17.89	July 2 1991
ANNUAL RUNOFF (AC-FT)	128700		26700		52260	
ANNUAL RUNOFF (CFSM)	.095		.020		.038	
ANNUAL RUNOFF (INCHES	1.28		.27		.52	
10 PERCENT EXCEEDS	541		122		130	
50 PERCENT EXCEEDS	25		6.5		6.1	
90 PERCENT EXCEEDS	.15		1.6		.00	

e Estimated.

RED RIVER OF THE NORTH BASIN

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND

LOCATION.--Lat 46°15'55", long 96°35'40", in NE¹/₄ sec.8, T.132 N., R.47 W., Richland County, Hydrologic Unit 09020104, on left bank in Wahpeton, 800 ft downstream from confluence of Bois de Sioux and Otter Tail Rivers, and at mile 548.6.

DRAINAGE AREA.--4,010 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—April 1942 to October 1942, March 1943 to current year. Gage-height records collected in this vicinity since 1917 are contained in reports of the U.S. Weather Bureau.

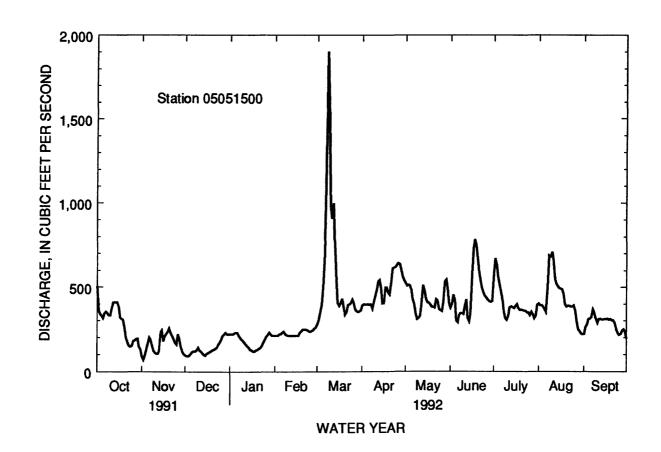
GAGE.--Water-stage recorder and concrete and wooden dam. Datum of gage is 942.97 ft above sea level. Prior to Aug. 6, 1943, U.S. Weather Bureau nonrecording gage 800 ft upstream, converted to present datum.

Aug. 6, 1943, to Oct. 27, 1950, nonrecording gage at present site and datum.

REMARKS.--Records good except those for periods of estimated daily discharges, which are poor. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control; numerous other controlled lakes and ponds, and several powerplants.

EXTREMES OUTSIDE PERIOD OF RECORD.—A stage of 17.0 ft, discharge, 10,500 ft³/s, occurred in the spring of 1897 and has not been exceeded since.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES


					2.	HUI WILLIAM	· · · · · · · · · · · · · · · · · · ·					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	505	e90	e96	e220	e210	e280	392	526	379	582	403	223
2	361	e70	e93	e220	e210	e300	400	509	402	672	394	262
3	340	e90	e90	e220	e210	e350	397	514	454	632	394	280
4	329	e130	e95	e225	e220	e400	397	512	422	564	386	309
5	316	e160	e105	e230	e220	e500	400	484	300	513	369	313
•	310	0100	0100	0250	0220	6500		,,,	500	0.10	50,	
6	342	e200	e115	e230	e230	e700	395	430	290	475	353	321
7	353	185	e120	e215	e235	e1100	401	398	333	426	501	369
8	347	152	e120	e200	e220	e1900	373	345	345	357	689	350
9	333	122	e125	e190	e215	e1600	408	309	345	315	682	314
10	333	111	e140	e180	e210	985	448	315	341	306	710	288
11	371	106	e125	e170	e210	909	481	328	387	331	661	309
12	406	106	e120	e160	e210	998	536	400	427	380	552	312
13.	410	120	e110	e150	e210	755	544	511	318	386	522	308
14	409	230	e100	e140	e210	547	493	477	297	382	506	308
15	409	244	e95	e130	e210	408	403	431	346	376	496	309
13	409	244	693	6130	6210	400	403	431	340	370	470	309
16	381	178	e105	e125	e210	392	405	409	580	388	490	309
17	320	206	e110	e120	e210	409	498	407	731	399	489	311
18	309	222	e115	e120	e230	434	498	395	784	376	458	307
19	306	232	e120	e125	e240	381	465	384	744	365	400	309
20	257	254	e125	e130	e250	339	457	382	656	366	385	302
	23.		· · ·	0100	0200	237				-		
21	201	e230	e130	e135	e250	356	532	378	589	364	389	303
22	170	e210	e135	e140	e250	396	613	428	532	361	389	286
23	149	e190	e140	e150	e245	400	619	421	495	359	387	245
24	146	e170	e160	e170	e240	407	621	371	467	350	387	226
25	151	e160	e170	e185	e235	428	634	363	448	350	391	216
26	178	e220	e190	e205	e240	410	642	357	438	335	360	222
27	183	e190	e210	e215	e245	368	638	410	427	353	300	244
28	190	e150	e220	e230	e255	360	607	534	416	337	248	250
29	192	e120	e230	e220	e260	353	564	546	413	316	240	238
30	145	e105	e220	e210		357	541	491	419	333	224	194
31	e130		e220	e210		363	J41 	400	419	395	221	174
31	6130		6220	6210		303		400		393	221	
TOTAL	8972	4953	4249	5570	6590	17885	14802	13165	13525	12444	13376	8537
MEAN	289	165	137	180	227	577	493	425	451	401	431	285
MAX	505	254	230	230	260	1900	642	546	784	672	710	369
MIN	130	70	90	120	210	280	373	309	290	306	221	194
AC-FT	17800	9820	8430	11050	13070	35470	29360	26110	26830	24680	26530	16930
		,	5 120			22	_, , , , ,	_~		500		,

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	297	287	266	253	262	570	1188	996	1010	721	374	298
MAX	1247	952	820	678	687	1679	4436	3085	2675	2756	1983	1434
(WY)	1987	1987	1987	1986	1987	1986	1969	1986	1962	1962	1962	1986
MIN	5.72	7.40	6.60	8.81	18.0	84.3	138	22.5	90.0	65.6	53.5	2.18
WY)	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1976
SUMMA	RY STAT	ISTICS FO	R 1991 C	CALENDA	R YEAR	FOR	1992 WATI	ER YEAR		WATER Y	EARS 19	942-1992
ANNUA	L TOTAL			188518			124068					
ANNUA:	L MEAN			516			339			538		
HIGHES	T ANNUA	L MEAN								1477		1986
LOWES	Γ ANNUA	L MEAN								54.0		1977
HIGHES	T DAILY I	MEAN		2960	Jul 3		1900	Mar 8		8940	Apr	10 1969
LOWES	ΓDAILY N	MEAN		66	Jan 1		70	Nov 2		1.7	Aug	28 1976
		DAY MIN		75	Jan 22		100	Nov 30		1.7	Aug	28 1976
		S PEAK FL					2000a	Mar 8		9200		10 1969
		S PEAK ST	'AGE				8.46b	Mar 8		17.95	Apr	5 1989
	L RUNOF	•		373900			246100			389600		
	ENT EXC			1120			535			1220		
	ENT EXC			393			330			350		
90 PERC	ENT EXC	EEDS		90			130			100		

a About.

b Backwater from ice.

RED RIVER OF THE NORTH BASIN 05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		TEMPER- ATURE AIR (DEG C) (00020)	TEMPERATURE WATER (DEG C) (00010)	(MG/L AS	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	DIS- SOLVED (MG/L	MAGNE- M SIUM, DIS- O SOLVED (MG/L AS MG) (00925)	SODIUM, DIS-
OCT	0850	224	702		0.5	0.0					
10 NOV	0630	334	783		8.5	9.0					
21 JAN	0945	232	664		2.5	1.0					
08	1445	200	684		-8.0	0.0					
MAR 19	0915	416	612	7.6	-1.5	0.5	280	220	54	35	16
APR 07	0920	399	487		1.5	2.5					
MAY 14	1315		477								
AUG		501			16.0	16.5					
a06 SEP	1100	360	863	8.4	16.5	21.5	390		70	51	33
30	1500	184	627		22.5	16.5					
DATE	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	DIS-	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS-	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS-	SOLVED (TONS	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)
MAR	••	0.4	7.7	o.e	16	0.00	1.5	270	262	0.50	40.6
19 AUG	11	0.4	7.7	85	16	0.20	15	379	363	0.52	426
a06	15	0.7	8.1	230	19	0.20	13	601	563	0.82	584
DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	DIS-	DIS-	DIS D SOLV (UG) AS I	S- DIS /ED SOLV //L (UG PB) AS I	UM NI G- D YED SOI /L (U .I) AS	IS- LVED SO G/L (MN) A	RCURY I DIS- DLVED S UG/L S HG)	DENUM, DIS- SOLVED S (UG/L AS MO)	NIUM, 7 DIS- OLVED SO (UG/L (AS SE) A	TRON- TUM, DIS- DLVED (UG/L \S SR) 01080)
MAR 19	3	50	30	<1	20	50) .	<0.1	5	1	360
AUG a06	3	90	20	1	50	50)	0.1	<1	<1	400

a Replicate sample also collected for quality-assurance purposes.

Bois de Sioux River at Wahpeton - Breckenridge

May 1992

05051522 RED RIVER OF THE NORTH AT HICKSON, ND

LOCATION.--Lat 46°39'35", long 96°47'44", in SW1/4 sec.19, T.137 N., R.48 W., Clay County, MN, Hydrologic Unit 09020104, on right bank 60 ft downstream from bridge on township road, and 1 mi southeast of Hickson, ND.

DRAINAGE AREA.--4,300 mi², approximately.

WATER-DISCHARGE RECORDS

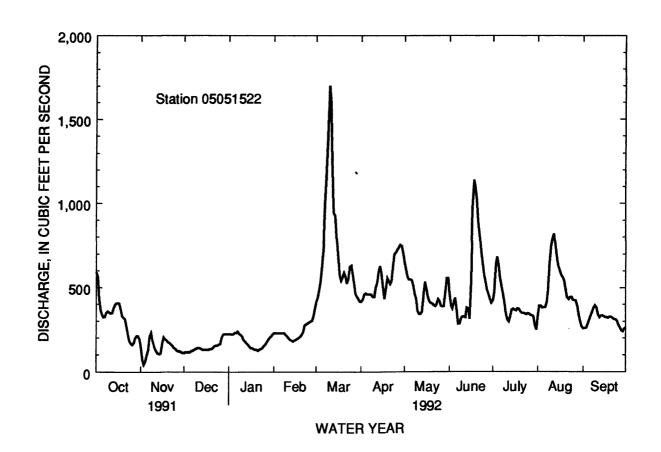
PERIOD OF RECORD .-- October 1975 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 877.06 ft above sea level.

REMARKS.--Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at 1,070 ft above sea level, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control, numerous other controlled lakes and ponds, and several powerplants.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

					DA	ILY MEA	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	591	151	el 10	224	229	414	418	651	466	425	336	258
2	561	73	e115	224	229	438	432	602	392	474	393	259
3	430	45	el 15	222	229	487	460	565	374	640	393	261
4	360	65	e115	224	229	549	467	549	415	684	382	282
5	340	96	e115	231	229	632	462	549	439	627	383	309
6	322	128	e120	231	229	e750	462	546	360	556	384	330
7	325	209	e125	238	229	e1000	461	510	284	505	411	354
8	348	231	e130	e225	229	e1200	460	466	286	467	487	377
9	356	192	e135	e220	e220	e1400	447	429	317	408	652	394
10	350	158	e140	e210	e210	e1700	446	360	326	348	761	381
11	345	133	e140	e190	e200	e1600	502	342	327	309	788	342
12	348	117	e140	e180	e190	1190	532	341	323	300	819	325
13	374	107	e135	e170	e185	941	594	356	380	332	756	334
14	397	106	e130	e160	e180	930	630	467	375	368	677	333
15	404	111	e130	e150	e185	806	593	533	315	373	631	330
16	406	172	e130	e140	e190	683	507	491	540	. 369	602	324
17	404	205	e130	e140	e195	571	435	444	972	364	578	324
18	366	191	e130	e135	e200	544	488	417	1140	376	563	320
19	328	e185	e135	e130	e210	567	558	409	1100	374	546	326
20	319	e175	e135	e130	e220	591	543	404	1020	357	489	326
21	310	e170	e140	e125	238	566	523	395	896	349	444	321
22	263	e160	e150	e130	275	527	537	390	810	350	433	314
23	214	e150	e155	e135	282	557	632	401	723	346	445	310
24	182	e140	e155	e140	287	626	700	431	642	341	447	304
25	165	e135	e160	e150	295	634	711	421	582	348	429	282
26	159	e125	164	e160	297	586	726	392	532	345	425	264
27	170	e120	203	e175	304	525	742	387	490	338	424	244
28	199	e120	222	e190	324	466	755	390	461	334	389	240
29	212	e115	224	e200	365	446	747	477	431	331	339	256
30	212	e110	224	e210		434	699	556	411	274	297	262
31	194		224	e220		418		557		250	270	
TOTAL	9954	4195	4576	5609	6884	22778	16669	14228	16129	12262	15373	9286
MEAN	321	140	148	181	237	735	556	459	538	396	496	310
MAX	591	231	224	238	365	1700	755	651	1140	684	819	394
MIN	159	45	110	125	180	414	418	341	284	250	270	240
AC-FT	19740	8320	9080	11130	13650	45180	33060	28220	31990	24320	30490	18420


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 19'	75 - 1992	. BY WATER YEAR (W	Y)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	329	287	264	252	285	706	1564	928	885	680	379	354
MEAN	329	201	204	232	283	/06	1304	920	دەە	000	319	334
MAX	1312	900	817	747	745	1543	4165	3394	2485	1784	1073	1496
(WY)	1987	1987	1986	1986	1987	1986	1978	1986	1986	1986	1985	1986
MIN	2.02	.000	.000	4.95	14.0	75.9	165	22.0	86.4	73.4	35.6	12.6
(WY)	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1976

SUMMARY STATISTICS FOR 1991	1 CALENDAR YEAR		FOR 1992 WAT	ER YEAR	WATER YEARS 1975 - 19		
ANNUAL TOTAL	200729		137943				
ANNUAL MEAN	550		377		576		
HIGHEST ANNUAL MEAN					1604	1986	
LOWEST ANNUAL MEAN					53.1	1977	
HIGHEST DAILY MEAN	2800	Jul 5	1700	Mar 10	12000	Apr 7 1989	
LOWEST DAILY MEAN	45	Nov 3	45	Nov 3	.00	Oct 26 1976	
ANNUAL SEVEN-DAY MINIMUM	5 9	Jan 20	107	Oct 31	.00	Oct 26 1976	
INSTANTANEOUS PEAK FLOW			17 5 0a	Mar 10	12900	Apr 7 1989	
INSTANTANEOUS PEAK STAGE			13.62b	Mar 10	35.81	Apr 7 1989	
ANNUAL RUNOFF (AC-FT)	398100		273600		417400		
10 PERCENT EXCEEDS	1200		633		1220		
50 PERCENT EXCEEDS	404		342		337		
90 PERCENT EXCEEDS	75		135		72		


a About. b Backwater.

RED RIVER OF THE NORTH BASIN 05051522 RED RIVER OF THE NORTH AT HICKSON, ND--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1976 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	AIR	ATURE WATER	(MG/L AS	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	DIS-	MAGNE- M SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
OCT 10 JAN	1250	348	72 6		9.5	9.5					
08	0845	223	701		-6.5	0.0					••
MAR 25	0930	605	542	8.0	-4.0	1.0	260	210	50	32	15
APR 07	1230	460	512		3.5	2.5					
MAY 15	0740	537	529		12.5	13.0					
JUN 22	1315	840	438		19.5	17.5					
AUG 05	0845	383	890	8.5	21.0	21.0	390	290	71	52	39
DATE	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	DIS- SOLVED (MG/L	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	AT 180	SUM OF CONSTI-	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)
MAR 25	11	0.4	6.7	65	15″	0.20	14	306	324	0.42	500
AUG 05	17	0.9	21	200	28	0.20	12	614	598	0.84	635
DATE	ARSENIO DIS- SOLVED (UG/L AS AS) (01000)	C BORON, DIS-	IRON, DIS-	LEA DIS D SOLV (UG AS P	D, LITHI S- DIS VED SOLV /L (UG, PB) AS L	MA UM NI - D ED SOI /L (U .I) AS	NGA- ESE, ME DIS- LVED SC G/L (MN) A	RCURY I DIS- DLVED S UG/L S HG)	MOLYB- SOENUM, IN DIS- SOLVED SO (UG/L AS MO)	SELE- ST NIUM, T DIS- D DLVED SO (UG/L () AS SE) A	RON- IUM, DIS-
MAR 25											
	3	80	30	1	20	30) .	<0.1	1	<1 2	10

Red River of the North at Grand Forks

June 1992

05054000 RED RIVER OF THE NORTH AT FARGO, ND

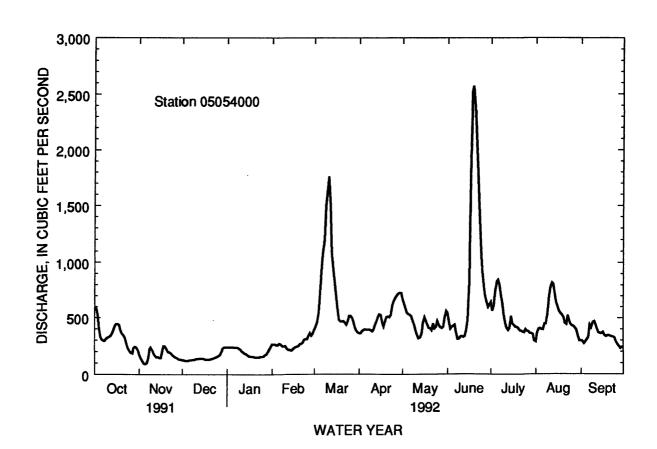
LOCATION.--Lat 46°51'40", long 96°47'00", in NW¹/₄NE¹/₄ sec.18, T.139 N., R.48 W., Cass County, Hydrologic Unit 09020104, at waterplant on 4th St. S. in Fargo, 25 mi upstream from mouth of Sheyenne River, and at mi 453. DRAINAGE AREA.--6,800 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1901 to current year. Published as "at Moorhead, Minn.", 1901. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1902-4, 1906-7, 1910-14, 1916, 1918, 1924. WSP 1388: 1905-6, 1917-20(M), 1935(M), 1938-39(M), 1943.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 861.8 ft above sea level. Oct. 1, 1960, to Sept. 30, 1962, water-stage recorder at present site at datum 5.6 ft higher. See WSP 1728 or 1913 for history of changes prior to Oct. 1, 1960.

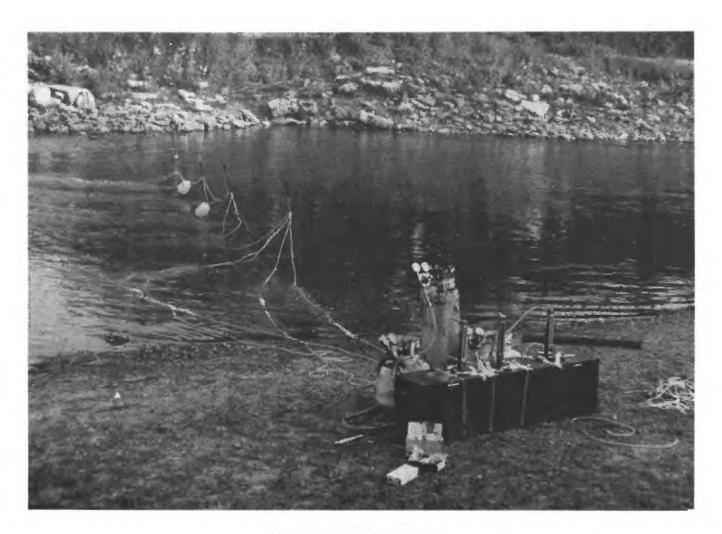

REMARKS.--Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at 1,070 ft above sea level, adjustment of 1912; Lake Traverse, capacity 137,000 acre-ft, available for flood control, other controlled lakes and ponds, and several power-plants. Some small diversions for municipal supply. Figures of daily discharge do not include diversions to cities of Fargo and Moorhead and from Sheyenne River.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 7, 1897, reached a stage of 39.1 ft present datum, discharge, 25,000 ft³/s at site 1.5 mi downstream.

					DA	ILY MEA	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	577	e170	e125	239	265	394	363	670	542	645	290	295
2	583	e140	e125	239	266	420	363	625	455	565	367	292
3	528	e120	e120	239	266	460	382	589	403	615	402	273
4	395	e95	e120	239	256	553	393	547	420	738	409	289
5	328	e90	e120	239	258	733	398	532	425	828	396	309
6	306	e100	e125	237	272	966	397	529	436	844	397	326
7	295	e130	124	e235	265	e1100	396	514	368	794	447	435
8	293	219	127	e235	250	e1200	396	474	310	706	448	414
9	311	235	128	e230	248	e1500	393	435	311	628	539	459
10	322	213	134	e220	e250	e1650	382	390	330	530	700	468
11	328	185	135	e205	e230	1760	397	345	337	453	780	438
12	337	161	135	e195	e215	1500	441	319	328	413	818	395
13	356	151	140	e185	e215	1090	467	326	335	394	807	371
14	388	154	e140	e180	e210	940	509	359	393	411	712	364
15	426	145	e140	e170	e220	836	533	453	474	515	640	362
16	442	144	e135	e160	e230	699	529	505	828	451	597	375
17	442	196	e130	e160	e240	568	455	474	1760	436	560	346
18	433	247	e130	e155	e245	483	426	435	2520	422	539	337
19	387	249	e130	e155	e250	466	477	411	2570	418	527	342
20	355	225	e130	e150	e265	466	510	404	2390	408	503	344
21	345	200	e135	e150	272	471	514	390	2120	392	454	339
22	320	e195	e140	e150	279	460	507	448	1810	384	441	334
23	268	e185	e145	e150	304	440	531	405	1500	379	522	332
24	233	e170	e150	e155	311	464	613	420	1170	374	467	322
25	206	e160	e155	e155	311	519	657	470	943	400	442	290
26	190	e150	e165	e160	339	518	680	434	805	385	429	264
27	184	e145	173	e170	363	502	705	415	707	381	425	247
28	231	e135	201	e180	342	470	720	406	647	365	408	231
29	243	e130	226	e200	360	416	728	419	598	366	391	238
30	237	e130	239	e220		392	723	503	619	355	333	241
31	e210		239	e240		372		558		298	295	
TOTAL	10499	4969	4561	5997	7797	22808	14985	14204	26854	15293	15485	10072
MEAN	339	166	147	193	269	736	499	458	895	493	500	336
MAX	583	249	239	240	363	1760	728	670	2570	844	818	468
MIN	184	90	120	150	210	372	363	319	310	298	290	231
AC-FT	20820	9860	9050	11900	15470	45240	29720	28170	53260	30330	30710	19980
(+)	1257	1120	1152	1175	1100	1160	1114	1482	1458	1402	754	270
AC-FT*	22080	10980	10200	13080	16570	46400	30830	29650	54780	31730	31460	20250

STATIST	TICS OF M	MONTHLY M	IEAN I	DATA FOR	WATER Y	EARS 1901	- 1992, BY	WATER Y	EAR (W	Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	291	261	217	198	196	637	1637	971	990	792	375	295
MAX	1435	942	800	740	778	3756	9924	4589	5122	5692	2691	1707
(WY)	1987	1907	1987	1986	1987	1966	1969	1986	1962	1962	1962	1986
MIN	.000	.000	.000	.000	.18	26.8	102	8.12	2.87	.000	.000	.000
(WY)	1935	1937	1938	1933	1933	1937	1934	1934	1936	1934	1932	1934
SUMMA	RY STAT	ISTICS FOR	1991	CALENDA	AR YEAR	FO	R 1992 W	ATER YEAR	1	WATER Y	EARS 190	01 - 1992
ANNUA	LTOTAL			206563			153524	,				
ANNUA				566	(*579)		419	(*438)		57		
		L MEAN								192		1986
	'ANNUA									17		1934
	T DAILY			2600	Jul 6		2570			2480		14 1969
	DAILY			65	Jan 1		90					25 1932
		DAY MINIM		66	Jan 1		121					25 1932
		S PEAK FLO					2590			2530		15 1969
		S PEAK STA					16.93	Jun 19		37.3		15 19 6 9
INSTAN	TANEOU:	S LOW FLOV	V									25 1932
ANNUA	RUNOF	F (AC-FT)		409700(*	418,780)		304500	(*318,020)		41490	00	
10 PERC	ENT EXC	EEDS		1330			701			124	Ю	
50 PERC	ENT EXC	EEDS		385			366			29	0	
90 PERC	ENT EXC	EEDS		83			150			. 3	17	

e Estimated.
+ Diversions in acre-feet to cities of Fargo and Moorhead.
* Adjusted for diversions to cities of Fargo and Moorhead.



RED RIVER OF THE NORTH BASIN 05054000 RED RIVER OF THE NORTH AT FARGO, ND--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1956 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	(STAND- ARD	TEMPER- ATURE AIR (DEG C) (00020)	ATURE WATER	(MG/L AS	(MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L) AS CA)	DIS- SOLVED (MG/L AS MG)	SODIUM, DIS-
OCT	1050	215									٠
11 NOV	1050	317	823		11.5	9.0					
20 JAN	1340	227	658		8.5	1.5					
06	1310	237	640		-5.0	0.0					
MAR al8 APR	0815	481	608	7.4	-4.5	0.5	270	200	55	33	19
09	0900	398	517		-5.0	2.5					
JUN 22	1145	1820	421		20 .0	18.5					
AUG 05	1105	414	487	8.4	26.0	24.0	240	220	44	31	14
DATE	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO AS K) (00931)	DIS-	SULFATE DIS- SOLVED (MG/L AS CL) (00945)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L SIO2) (00950)	DIS-	SOLIDS, RESIDUH AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CONSTI- TUENTS, DIS-	SOLIDS, DIS- SOLVED (TONS	SOLIDS, DIS- SOLVED (TONS PER (70302)
MAR a18	13	0.5	8.4	96	18	0.20	15	391	364	0.53	508
AUG 05	11	0.4	4.5	26	13	0.20	12	211	289	0.42	348
DATE	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BORON, DIS-	IRON, DIS-	DIS D SOLV (UG, AS P	D, LITHI S- DIS YED SOLV /L (UG,	UM NE - D ED SOI /L (U I) AS	IS- .VED SO G/L (MN) A	ERCURY : DIS- DLVED : UG/L	MOLYB- DENUM, DIS- SOLVED SO (UG/L AS MO)	SELE- S' NIUM, 'I DIS- OLVED SC (UG/L (AS SE) A	IRON- TUM, DIS-
MAR a18	5	50	180	<1	20	50)	<0.1	1	<1	380
AUG 05	3	30	10	<1	20	10)	0.1	<1	<1	230

 $^{{\}bf a} \ \ Replicate \ sample \ also \ collected \ for \ quality-assurance \ purposes.$

Red River of the North at Fargo

Time of Travel and Reagration Study

05061000 BUFFALO RIVER NEAR HAWLEY, MN

LOCATION.--Lat 46°51'00", long 96°19'45", in NW¹/₄SE¹/₄ sec.14, T.139 N., R.45 W., Clay County, Hydrologic Unit 09020106, near left downstream end of bridge on farm lane, 2 mi southwest of Hawley.

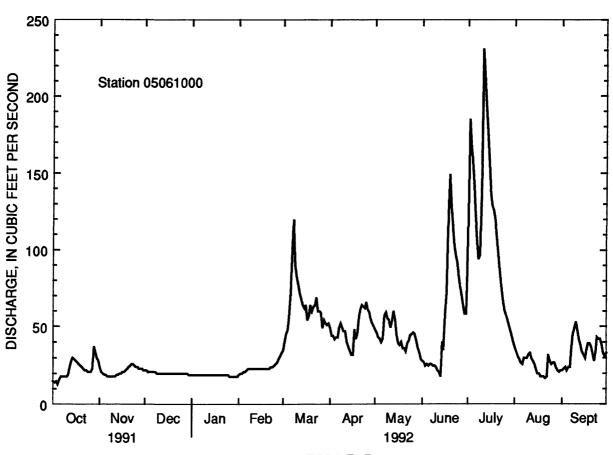
DRAINAGE AREA .-- 322 mi².

PERIOD OF RECORD.--March 1945 to current year, WY 1981 (annual maximum only), March 1982 to September 1985 (no winter records). REVISED RECORDS.--WSP 1308: 1945-46(M), 1948(M).

GAGE.--Water-stage recorder. Datum of gage is 1,111.91 ft above sea level. Prior to Jan. 29, 1953, nonrecording gage at bridge 1,800 ft upstream at datum 3.17 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage known, about 11.3 ft, present datum, spring of 1921, from information by local resident.


					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	24	e22	e19	e19	e35	49	48	28	107	37	22
2	14	e21	e22	e19	e20	e40	44	46	27	185	34	23
3	15	e20	e21	e19	e20	45	44	43	25	169	31	24
4	13	e19	e21	e19	e21	48	42	42	26	157	29	22
5	16	e19	e21	e19	e21	e56	43	40	25	141	27	24
6	18	e18	e21	e19	e22	e72	43	42	26	123	26	24
7	18	e18	e21	e19	e23	e100	49	57	26	107	30	35
8	18	e18	e21	e19	e23	e120	52	59	25	94	30	45
9	18	e18	e20	e19	e23	e90	49	55	25	97	30	49
10	18	e18	e20	e19	e23	e82	47	54	24	137	32	53
11	19	e18	e20	e19	e23	e77	47	49	22	231	33	48
12	24	e19	e20	e19	e23	e72	40	54	21	210	30	42
13	28	e19	e20	e19	e23	e68	37	60	18	195	28	38
14	30	e20	e20	e19	e23	e64	35	54	40	177	26	34
15	29	e20	e20	e19	e23	62	32	44	35	156	23	32
16	28	e21	e20	e19	e23	64	32	39	57	136	20	30
17	27	e21	e20	e19	e23	54	48	38	72	129	20	35
18	26	e22	e20	e19	e23	57	42	40	123	126	18	39
19	25	e23	e20	e19	e23	64	45	36	149	119	18	39
20	24	e24	e20	e19	e23	60	56	36	128	108	18	37
21	23	e25	e20	e19	e23	63	61	34	115	97	17	33
22	22	e26	e20	e19	e24	64	64	39	103	87	18	28
23	22	e26	e20	e19	e24	69	63	41	97	77	32	34
24	21	e25	e20	e19	e25	60	62	44	92	68	28	43
25	21	e24	e20	e19	e26	60	66	45	82	61	26	42
26	21	e24	e20	e18	e27	59	61	46	76	58	27	42
27	23	e23	e20	e18	e29	49	59	45	70	55	27	38
28	37	e23	e20	e18	e31	54	55	41	63	51	24	33
29	34	e23	e20	e18	e33	52	52	36	58	48	22	31
30	30	e22	e19	e18		51	50	33	58	44	21	33
31	28		e19	e18		52		29		40	22	***
TOTAL	705	641	628	583	687	1963	1469	1369	1736	3590	804	1052
MEAN	22.7	21.4	20.3	18.8	23.7	63.3	49.0	44.2	57.9	116	25.9	35.1
MAX	37	26	22	19	33	120	66	60	149	231	37	53
MIN	13	18	19	18	19	35	32	29	18	40	17	22
AC-FT	1400	1270	1250	1160	1360	3890	2910	2720	3440	7120	1590	2090
CFSM	.07	.07	.06	.06	.07	.20	.15	.14	.18	.36	.08	.11
IN.	.08	.07	.07	.07	.08	.23	.17	.16	.20	.41	.09	.12

e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1945 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX	36.5 151	33.9 176	23.6 63.8	19.9 54.7	20.7 99.6	80.4 434	251 792	124 372	97.3 530	84.4 625	43.9 472	35.8 182
(WY)	1974	1972	1972	1981	1981	1966	1978	1985	1962	1975	1955	1957
MIN	11.6	12.2	10.6	9.94	9.87	15.0	33.3	21.5	12.7	10.1	5.87	8.52
(WY)	1979	1977	1977	1962	1949	1969	1981	1977	1977	1976	1976	1976
SUMMA	RY STAT	TISTICS F	OR 1991 C	ALENDA	R YEAR	FOR	1992 WAT	TER YEAR		WATER Y	EARS 194	5 - 1992

ANNUAL TOTAL	15433		15227			
ANNUAL MEAN	42.3		41.6		70.4	
HIGHEST ANNUAL MEAN			1212		157	1975
LOWEST ANNUAL MEAN					16.7	1977
HIGHEST DAILY MEAN	246	May 6	231	Jul 11	1970	Jul 1 1975
LOWEST DAILY MEAN	10	Aug 22	13	Oct 4	3.2	Aug 25 1976
ANNUAL SEVEN-DAY MINIMUM	11	Aug 17	16	Oct 1	4.3	Aug 22 1976
INSTANTANEOUS PEAK FLOW			237	Jul 11	2050	Jul 1 1975
INSTANTANEOUS PEAK STAGE			5.66	Jul 11	9.76	Jul 1 1975
INSTANTANEOUS LOW FLOW			12	Oct 4	2.8	Aug 26 1977
ANNUAL RUNOFF (AC-FT)	30610		30200		51000	
ANNUAL RUNOFF (CFSM)	.13		.13		.22	
ANNUAL RUNOFF (INCHES)	1.78		1.76		2.97	
10 PERCENT EXCEEDS	102		76		166	
50 PERCENT EXCEEDS	21		28		30	
90 PERCENT EXCEEDS	13		19		13	

WATER YEAR

05061500 SOUTH BRANCH BUFFALO RIVER AT SABIN, MN

LOCATION.--Lat 46°46'20", long 96°37'40", in SW¹/4SW¹/4 sec. 9, T. 138 N., R. 47 W., Clay County, Hydrologic Unit 09020106, near center of span on downstream side of highway bridge, 0.3 mi downstream from Stony Creek and 1 mi east of Sabin.

DRAINAGE AREA .-- 522 mi².

PERIOD OF RECORD.--March 1945 to current year, WY 1981 (annual maximum only), March 1982 to September 1985 (no winter records). REVISED RECORDS.--WSP 1308: 1949 (M).

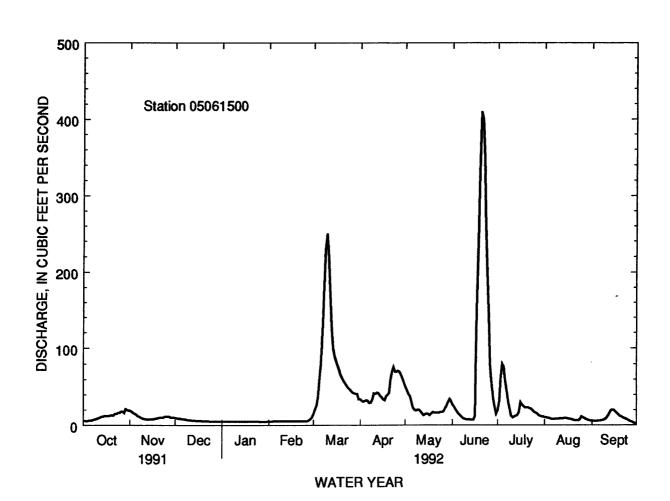
GAGE. -- Water-stage recorder. Datum of gage is 902.39 ft above mean sea level (levels by Soil Conservation Service).

Prior to Aug. 17, 1948, nonrecording gage at site 1 mi downstream at different datum. Aug. 17, 1948, to Oct. 4, 1989, nonrecording gage at present site and datum.

REMARKS .-- Records poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.8	19	e9.4	e4.9	e4.9	e15	34	51	e27	e20	e10	ట్.4
2	5.6	e18	e9.1	e4.9	e5.0	e20	32	46	e24	e32	e9.7	e5.4
3	5.4	e16	e8.8	e4.9	e5.1	e25	31	41	e21	e60	e9.4	e5.4
4	5.6	e15	e8.5	e4.9	e5.2	e38	32	38	e18	e80	e9.0	e5.4
5	6.0	e14	e8.2	e4.9	ట్.2	e58	33	31	e15	e76	e8.4	ట్.6
6	6.2	e12	e7.9	e4.9	e5.2	e80	32	23	e13	e60	e8.0	e5.8
7	6.7	e11	e7.7	e4.9	e5.2	e120	29	e20	e11	e45	e8.0	e6.0
8	7.4	e9.8	e7.4	e4.9	e5.2	e170	30	e19	e9.2	e30	e8.1	e6.6
9	7.9	e9.0	e7.1	e4.9	e5.2	e230	35	e20	e8.1	e20	e8.2	e7.4
10	8.7	e8.4	еб.8	e4.9	e5.2	e250	42	e20	e7.6	e12	e8.3	e9.0
11	9.2	e8.0	e6.6	e4.8	e5.2	e220	41	e18	e7.4	e10	e8.5	e11
12	9.8	e7.7	еб.4	e4.8	e5.2	e180	43	e15	e7.2	e11	e8.7	e15
13	11	e7.6	e6.2	e4.8	e5.2	e130	42	e13	e7.0	e12	e8.9	e19
14	11	e7.7	e 6.0	e4.8	e5.2	e100	39	e14	e7.0	e13	e9.0	e20
15	12	e7.8	e5.9	e4.8	e5.2	e90	37	e15	e7.0	e17	e9.0	e20
16	12	e8.0	e5.7	e4.8	e5.2	e84	34	e14	e12	e30	e8.6	e18
17	12	e8.2	e5.6	e4.8	e5.2	e78	33	e13	e150	e27	e8.2	e16
18	12	e8.6	e5.6	e4.8	e5.2	e72	38	e15	e240	e25	e7.7	e14
19	13	e9.0	e5.4	e4.8	e5.2	e66	40	e17	e330	e23	e7.2	e12
20	13	e9.5	e5.4	e4.8	e5.2	e62	43	e16	e410	e23	e6.8	e11
21	13	e10	e5.2	e4.7	e5.2	e58	59	e16	e400	e23	e6.3	e10
22	15	e10	e5.2	e4.7	e5.3	e55	70	e16	e350	e22	e6.1	e9.2
23	15	e10	e5.2	e4.7	e5.3	e52	76	e16	e260	e21	e6.4	e8.2
24	16	e11	e5.0	e4.7	e5.3	e49	70	e17	e200	e19	e7.2	e7.2
25	16	e11	e5.0	e4.7	ట్.4	e47	70	e17	e140	e17	e11	e6.0
26	18	e11	e5.0	e4.6	e5.5	e45	71	e18	e80	e16	e10	e5.0
27	18	el1	e5.0	e4.6	e6.0	e43	70	e21	e55	e15	e9.0	e4.5
28	16	e10	e5.0	e4.6	e8.0	e42	67	e25	e35	e13	e8.0	e3.2
29	21	e10	e5.0	e4.6	e10	e41	62	e30	e25	e12	e7.0	e2.6
30	20	e9.7	e5.0	e4.6		41	56	e34	e15	e11	e6.2	e2.3
31	19		e5.0	e4.7		34		e32		e11	e5.6	
TOTAL	367.3	318.0	195.3	148.2	159.4	2595	1391	701	2891.5	806	252.5	276.2
MEAN	11.8	10.6	6.30	4.78	5.50	83.7	46.4	22.6	96.4	26.0	8.15	9.21
MAX	21	19	9.4	4.9	10	250	76	51	410	80	11	20
MIN	5.4	7.6	5.0	4.6	4.9	15	29	13	7.0	10	5.6	2.3
AC-FT	729	631	387	294	316	5150	2760	1390	5740	1600	501	548
CFSM	.02	.02	.01	.01	.01	.16	.09	.04	.18	.05	.02	.02
IN.	.03	.02	.01	.01	.01	.18	.10	.05	.21	.06	.02	.02


e Estimated.

STATISTICS OF MONTHLY MEAN DA	

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	14.3	14.2	4.84	1.54	1.50	100	256	77.4	95.1	71.0	9.24	14.1
MAX	51.1	76.7	23.5	13.1	14.0	581	928	580	1068	1112	78.8	173
(WY)	1978	1972	1978	1978	1987	1966	1969	1962	1962	1975	1962	1986
MIN	.023	2.05	.006	.000	.000	.000	27.9	8.28	1.30	.000	.000	.000
(WY)	1977	1977	1961	1946	1946	1951	1973	1980	1976	1988	1976	1976

SUMMARY STATISTICS FOR 1991 CALEND		R YEAR	FOR 1992 WAT	TER YEAR	WATER YEARS 1945 - 19		
ANNUAL TOTAL	9364.1		10101.4				
ANNUAL MEAN	25.7		27.6		55.1a		
HIGHEST ANNUAL MEAN					198	1962	
LOWEST ANNUAL MEAN					12.2	1977	
HIGHEST DAILY MEAN	278	May 4	410	Jun 20	8200	Jul 1 1975	
LOWEST DAILY MEAN	1.1	Jan 27	2.3	Sep 30	.00	Dec 13 1945	
ANNUAL SEVEN-DAY MININ	MUM 1.1	Jan 24	4.4	Sep 24	.00	Dec 13 1945	
INSTANTANEOUS PEAK FLO)W		414	Jun 20	8500	Jul 2 1975	
INSTANTANEOUS PEAK STA	GE		10.94	Jun 20	19.90	Jul 2 1975	
INSTANTANEOUS LOW FLO	W		2.3	Sep 30			
ANNUAL RUNOFF (AC-FT)	18570		20040	-	39920		
ANNUAL RUNOFF (CFSM)	.049		.053		.11		
ANNUAL RUNOFF (INCHES)	.67		.72		1.43		
10 PERCENT EXCEEDS	76		60		100		
50 PERCENT EXCEEDS	8.5	*	11		7.0		
90 PERCENT EXCEEDS	2.1		5.0		.00		

a Median of annual mean discharges is 41 ft³/s.

05062000 BUFFALO RIVER NEAR DILWORTH, MN

LOCATION--Lat 46° 57'40", long 96° 39'40", in SW¹/4 SE¹/4 sec. 6, T.140 N., R.47 W., Clay County, Hydrologic Unit 09020106, on left bank 4.5 mi southeast of Kragnes, 6.5 mi northeast of Dilworth, and 9 mi downstream from South Branch.

DRAINAGE AREA.--1,040 mi², approximately.

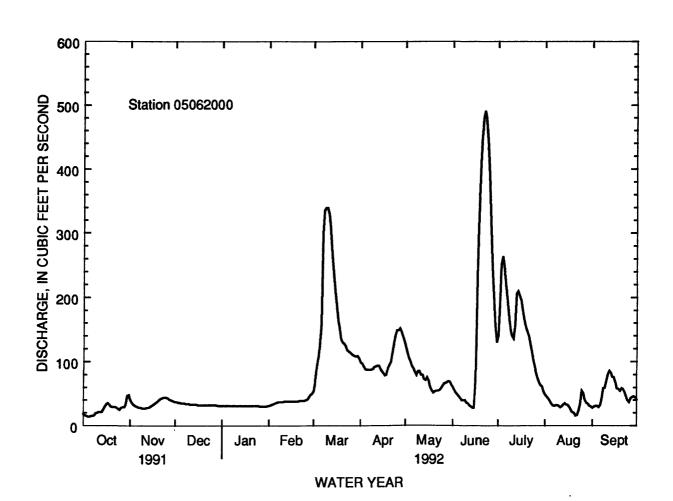
PERIOD OF RECORD.--March 1931 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS .-- WSP 1308: 1931(M).

GAGE.--Water-stage recorder. Datum of gage is 878.31 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to April 5, 1937, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18	41	e37	e31	e31	e54	99	125	61	141	49	28
2	16	e36	e37	e31	e32	e66	97	115	56	202	46	30
3	15	e33	e36	e31	e33	e93	93	106	52	252	43	31
4 5	14	e31	e36	e31	e34	e108	89	100 94	49	264	39 35	31 29
3	14	e30	e35	e31	e35	e125	88	94	46	244	33	29
6	15	e29	e35	e31	e36	e160	88	90	43	220	32	33
7	15	e28	e35	e31	e37	e300	88	85	40	195	31	42
8	16	e28	e34	e31	e37	e335	88	80	40	169	32	59
9	19	e27	e34	e31	e37	e340	89	86	40	148	32	60
10	20	e27	e34	e31	e37	e340	92	86	36	140	31	71
11	21	e27	e33	e31	e38	e330	93	80	35	136	29	80
12	21	e28	e33	e31	e38	e310	94	80	32	158	30	86
13	21	e28	e33	e31	e38	e270	94	74	30	206	33	83
14	24	e29	e33	e31	e38	e240	90	72	28	210	35	77
15	29	e31	e33	e31	e38	e210	86	76	28	203	33	76
16	33	e32	e32	e31	e38	e190	83	71	70	195	32	68
17	35	e34	e32	e31	e38	e165	79	62	232	181	29	59
18	33	e36	e32	e31	e38	e150	80	56	326	166	24	58
19	30	e38	e32	e31	e38	e135	91	52	385	154	21	55
20	29	e40	e32	e31	e38	e130	96	54	443	147	20	59
21	29	e 42	e32	e31	e39	e128	100	55	478	139	16	58
22	2 9	e43	e32	e31	e39	e124	115	55	491	129	17	53
23	28	e44	e32	e31	e39	e118	130	56	479	116	23	46
24	26	e44	e32	e31	e39	e116	143	58	446	102	34	40
25	25	e44	e32	e31	e40	el 14	149	62	392	92	55	37
26	28	e43	e32	e30	e41	e112	149	66	318	83	51	43
27	29	e41	e32	e30	e44	el 10	152	67	247	75	41	45
28	29	e40	e32	e30	e48	e109	148	68	194	68	36	46
29	33	e39	e31	e30	e50	108	140	70	156	64	34	45
30	47	e38	e31	e30		109	133	69	130	62	31	41
31	48		e31	e31		105		65		53	30	
TOTAL	789	1051	1027	956	1108	5304	3156	2335	5403	4714	1024	1569
MEAN	25.5	35.0	33.1	30.8	38.2	171	105	75.3	180	152	33.0	52.3
MAX	48	44	37	31	50	340	152	125	491	264	55	86
MIN	14	27	31	30	31	54	79	52	28	53	16	28
AC-FT	1560	2080	2040	1900	2200	10520	6260	4630	10720	9350	2030	3110
CFSM	.02	.03	.03	.03	.04	.16	.10	.07	.17	.15	.03	.05
IN.	.03	.04	.04	.03	.04	.19	.11	.08	.19	.17	.04	.06


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 19	OO RY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	50.2	47.5	28.4	18.7	18.8	170	533	215	197	164	59.5	52.4
MAX	186	305	97.0	53.5	61.1	1308	1984	909	2138	2814	710	517
(WY)	1958	1972	1972	1987	1984	1966	1978	1986	1962	1975	1944	1944
MIN5	.48	8.74	4.75	.87	.76	2.26	33.5	27.2	15.1	2.23	.000	.79
(WY)	1940	1937	1938	1940	1940	1940	1931	1931	1934	1936	1936	1936

SUMMARY STATISTICS FOR 1991	CALENDAR YEAR		FOR 1992 WATE	ER YEAR	WATER YEARS 1931 - 199		
ANNUAL TOTAL	27745		28436				
ANNUAL MEAN	76.0		77.7		131		
HIGHEST ANNUAL MEAN					441	1975	
LOWEST ANNUAL MEAN					25.6	1934	
HIGHEST DAILY MEAN	573	May 7	491	Jun 22	13500	Jul 2 1975	
LOWEST DAILY MEAN	11	Aug 23	14	Oct 4, 5	.00a		
ANNUAL SEVEN-DAY MINIMUM	13	Aug 18	15	Oct 2	.00	Jul 28 1936	
INSTANTANEOUS PEAK FLOW		•	492	Jun 22	13600	Jul 2 1975	
INSTANTANEOUS PEAK STAGE			10.82b	Mar 8	27.10	Jul 2 1975	
INSTANTANEOUS LOW FLOW			14.	Oct 4, 5, 6			
ANNUAL RUNOFF (AC-FT)	55030		56400		94950		
ANNUAL RUNOFF (CFSM)	.073		.075		.13		
ANNUAL RUNOFF (INCHES)	.99		1.02		1.71		
10 PERCENT EXCEEDS	180		161		276		
50 PERCENT EXCEEDS	32		41		34		
90 PERCENT EXCEEDS	14		29		9.2		
a At times in 1936.							

b Backwater from ice.

05062500 WILD RICE RIVER AT TWIN VALLEY, MN

LOCATION.--Lat 47°16'00", long 96°14'40", in NW¹/4NE¹/4 sec.27, T.144 N., R.44, Norman County, Hydrologic Unit 09020108, on left bank 100 ft upstream from highway bridge, 0.8 mi northeast of Twin Valley, and 2 mi upstream from small tributary.

DRAINAGE AREA.--88 mi2.

PERIOD OF RECORD.—June 1909 to September 1917, July 1930 to September 1983, October 1989 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1983 to September 1989, annual maximums only.

REVISED RECORDS.--WSP 955: 1941, WSP 1308: 1915(M), 1917(M).

GAGE.--Water-stage recorder. Datum of gage is 1,008.16 ft above mean sea level (U.S. Army Corps of Engineers bench mark). June 1909 to September 1917, nonrecording gage at site 0.2 mi downstream at different datum. July 23, 1930, to Nov. 24, 1934, nonrecording gage at highway bridge 100 ft downstream from present site at present datum. Nov. 25, 1934, to Aug. 2, 1950, water-stage recorder 80 ft upstream from present site at present datum.

REMARKS.--Records fair. Flow slightly regulated by Rice Lake and many other small lakes above station. Satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAILY MEAN VALUES OCT AUG DAY NOV DEC FEB JUN JUL SEP JAN MAR APR MAY e600 e750 82. e700 e520 TOTAL MEAN 20.6 26.0 32.8 38.6 41.0 65.3 MAX MIN AC-FT **CFSM** .02 .03 .05 .07 .35 .21 .24 .04 .04 .32 .18 .20

.03

.03

.04

.05

.05

.37

.20

.23

.08

.41

.24

.26

IN.

e Estimated.


STATISTICS OF MONTHLY	' NATE A NI IN A TEA	COD WATED VEADS 1000	1002	DVWATED	VEAD AUV
SIATISTICS OF MONTHLE	WIEAN DATA	L PUR WAIER TEARS 1909	- 1774	. DI WAIEK	TEWN (M I)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	84.1	73.1	48.8	37.1	34.2	125	562	415	302	218	91.4	81.5
MAX	614	488	123	100	80.0	747	1543	2259	1560	1923	960	788
(WY	1974	1972	1972	1910	1910	1945	1979	1950	1943	1909	1909	1973
MIN	6.10	9.31	6.00	4.00	4.00	12.8	73.8	30.9	26.4	8.04	3.02	2.96
(WY)	1933	1933	1933	1933	1933	1940	1931	1977	1977	1934	1932	1936

SUMMARY STATISTICS FOR 199	SUMMARY STATISTICS FOR 1991 CALENDAR		FOR 1992 WAT	ER YEAR	WATER YEARS 1909 - 1992		
ANNUAL TOTAL	31891.8		47700				
ANNUAL MEAN	87.4		130		169a		
HIGHEST ANNUAL MEAN					500	1950	
LOWEST ANNUAL MEAN					22.7	1977	
HIGHEST DAILY MEAN	677	May 6	750	Mar 7	9100	Jul 22 1909	
LOWEST DAILY MEAN	4.9	Sep 1	10	Oct 18	1.1	Aug 13 1932	
ANNUAL SEVEN-DAY MINIMUM	6.5	Aug 28	15	Oct 18	1.3	Aug 11 1932	
INSTANTANEOUS PEAK FLOW		J	791	Aug 25	9200b	Jul 22 1909	
INSTANTANEOUS PEAK STAGE			7.18c	Mar 8	20.00d	Jul 22 1909	
INSTANTANEOUS LOW FLOW			6.2	Oct 18	.50	Nov 4 1939	
ANNUAL RUNOFF (AC-FT)	63260		94610		122700		
ANNUAL RUNOFF (CFSM)	.098		.15		.19		
ANNUAL RUNOFF (INCHES)	1.34		2.00		2.59		
10 PERCENT EXCEEDS	210		272		440		
50 PERCENT EXCEEDS	28		75		62		
90 PERCENT EXCEEDS	16		23		15		
. M. dien of	150 63/-						

a Median of annual mean discharges is 150 ft³/s.

d Site and datum then in use.

b From rating curve extended above 3,300 ft³/s.

c Backwater from ice.

05064000 WILD RICE RIVER AT HENDRUM, MN

LOCATION.--Lat 47°16′05", long 96°47′50", in SE¹/₄SE¹/₄ sec. 19, T.144 N., R.48 W., Norman County, Hydrologic Unit 09020108, on right bank 30 ft downstream from highway bridge, 0.5 mi east of Hendrum and 4 mi upstream from mouth.

DRAINAGE AREA.--1,600 mi², approximately.

PERIOD OF RECORD.—March 1944 to September 1984 and May 1985 to current year. Operated as a high-flow partial-record station October 1984 to April 1985.

REVISED RECORDS.--WSP 1728: 1958.

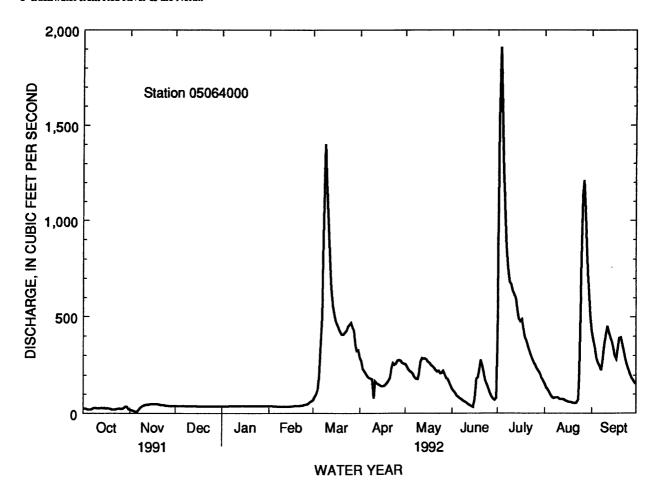
GAGE.--Water-stage recorder. Datum of gage is 836.75 ft above mean sea level (levels by U.S. Army Corps of Engineers). Prior to July 18, 1989, nonrecording gage at same site and datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Large part of high flow diverted into Marsh River basin at overflow section 3.5 mi east of Ada. Another diversion into the Marsh River basin formed in 1947, 1.5 mi southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent. Amount of diversion not known.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	23	e18	e37	e36	e37	e70	290	258	127	343	158	425
2	24	e16	e37	e 36	e37	e84	270	249	e118	1530	136	380
3 4	22	e12	e37	e36	e37	e100	232	233	e108	1910	127	337
4	20	e9.0	e37	e36	e36	e125	221	222	e95	1600	113	289
5	20	e6.9	e37	e36	e36	e200	208	216	87	1270	96	265
6	19	e10	e37	e37	e36	e330	195	210	e80	1030	86	247
7	22	e20	e37	e37	e35	e500	188	192	e74	866	80	226
8	28	e30	e37	e37	e35	e1000	184	182	67	754	82	270
9	28	e35	e37	e37	e35	e1400	181	181	e62	685	82	351
10	26	e40	e37	e37	e34	e1200	79	206	58	669	82	406
11	26	e42	e37	e37	e34	e1000	e170	267	51	e640	75	453
12	26	e44	e37	e37	e34	e800	e160	287	46	e620	74	424
13	27	e45	e37	e37	e34	e650	155	285	41	600	74	397
14	26	e46	e37	e37	e35	e560	e150	286	36	534	71	372
15	28	e47	e37	e37	e35	e510	e145	280	33	491	66	344
16	25	e48	e36	e37	e36	e480	e145	267	e80	477	62	300
17	26	e48	e36	e37	e36	e460	146	262	182	487	60	282
18	25	e 48	e36	e37	e37	e440	e152	252	191	446	59	333
19	22	e47	e36	e37	e37	e420	e162	246	225	398	5 6	391
20	20	e46	e36	e37	e38	e410	175	238	278	378	54	395
21	20	e44	e36	e37	e38	e410	192	227	251	349	52	358
22	19	e43	e36	e37	e 39	e420	238	219	207	328	5 6	326
23	21	e42	e36	e37	e40	e430	262	222	175	305	73	285
24	23	e41	e36	e37	e42	e450	255	211	153	282	223	253
25	24	e40	e3 6	e37	e44	e460	261	212	129	262	714	230
26	23	e39	e36	e37	e46	e470	275	223	106	252	1130	210
27	22	e38	e36	e37	e50	e450	277	206	91	234	1210	189
28	27	e38	e36	e37	e57	e430	275	186	78	221	1020	174
29	35	e37	e36	e37	e62	355	265	182	71	209	793	163
30	35	e37	e36	e37		325	260	e165	79	190	630	155
31	21		e 36	e37		327		e145		174	510	
TOTAL	753	1056.9	1131	1142	1132	15266	6168	7017	3379	18534	8104	9230
MEAN	24.3	35.2	36.5	36.8	39.0	492	206	226	113	598	261	308
MAX	35	48	37	37	62	1400	290	287	278	1910	1210	453
MIN	19	6.9	36	36	34	70	79	145	33	174	52	155
AC-FT	1490	2100	2240	2270	2250	30280	12230	13920	6700	36760	16070	18310
CFSM	.02	.02	.02	.02	.02	.31	.13	.14	.07	.37	.16	.19
IN.	.02	.02	.03	.03	.03	.35	.14	.16	.08	.43	.19	.21

e Estimated.


CTATIOTICS OF	E MONITHII V MEANINATA	EOD WATER VEARS 1044	1992 BY WATER YEAR (WY)
2 I A H 2 H C 2 U	F MUNIBLI MEAN DATA	FUR WATER YEARS 1944 -	· 1992 BY WAIRK TRAK (WY)

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	115	104	61.8	44.5	43.0	270	1079	565	413	296	111	103
MAX	744	784	160	121	124	1485	3261	2074	1776	3136	960	824
(WY)	1972	1972	1972	1986	1984	1966	1978	1985	1962	1975	1944	1973
MIN	.44	3.32	1.08	.092	.22	.46	106	56.1	9.15	8.82	1.07	.18
(WY)	1949	1949	1977	1977	1977	1949	1981	1977	19 5 2	1951	1977	1948

SUMMARY STATISTICS FO	OR 1991 CALENDA	R YEAR	FOR 1992 WA	TER YEAR	WATER YEA	RS 1944 - 1992
ANNUAL TOTAL	42706.5		72912.9			
ANNUAL MEAN	117		199		258a	
HIGHEST ANNUAL MEAN					682	1975
LOWEST ANNUAL MEAN					28.9	1977
HIGHEST DAILY MEAN	945	May 6	1910	Jul 3	9220	Apr 10 1978
LOWEST DAILY MEAN	6.6	Sep 7	6.9	Nov 5	.00	Sep 13 1948
ANNUAL SEVEN-DAY MINI	MUM 7.7	Sep 1	13	Nov 1	.00	Sep 27 1948
INSTANTANEOUS PEAK FL	OW	-	1950	Jul 3	9350	Apr 10 1978
INSTANTANEOUS PEAK ST	AGE		14.70	Jul 3	32.30ь	Apr 21 1979
ANNUAL RUNOFF (AC-FT)	84710		144600		186900	-
ANNUAL RUNOFF (CFSM)	.073		.12		16	
ANNUAL RUNOFF (INCHES	.99		1.70		2.19	
10 PERCENT EXCEEDS	350		455		654	
50 PERCENT EXCEEDS	37		82		78	
90 PERCENT EXCEEDS	17		29		14	

a Median of annual mean discharges is 210 ft³/s.

b Backwater from Red River of the North.

e Estimated.

RED RIVER OF THE NORTH BASIN

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN (National stream quality accounting network station and radiochemical program station)

LOCATION.--Lat 47°21'10", long 96°50'50", on line between secs.24 and 25, T.145 N., R.49 W., Traill County, Hydrologic Unit 09020107, on left bank on upstream side of highway bridge, 0.5 mi west of Halstad, 2.5 mi downstream from Wild Rice River, and at mile 375.2.

DRAINAGE AREA.--21,800 mi², approximately, including 3,800 mi² in closed basins.

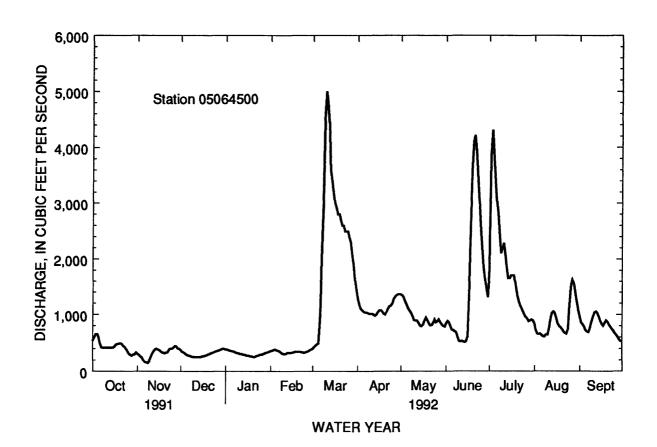
WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1936 to June 1937 (no winter records), April 1942 to September 1960 (spring and summer months only), May 1961 to current year.

REVISED RECORDS.--WSP 1388: 1936, 1950. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 826.65 ft above sea level. Prior to July 17, 1961, nonrecording gage at same site and datum.

REMARKS.--Records good except those for Nov. 3 to Mar. 29, which are poor.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1897 reached a stage of about 38.5 ft.

					D	AILY MEA!	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	540	310	e380	e390	e360	e400	1290	1360	841	1820	840	962
2	607	294	e350	e390	e370	e430	1180	1340	889	3840	734	862
3	653	e270	e340	e380	e380	e460	1110	1290	867	4310	663	832
4	653	e250	e320	e370	e390	e480	1080	1230	793	3920	660	792
5	599	e200	e300	e360	e380	e500	1060	1170	739	3400	664	728
6	499	e1 7 0	e290	e355	e370	e1000	1040	1110	731	3060	644	703
7	427	e160	e280	e350	e360	e2000	1040	1070	704	2820	617	696
8	417	e1 50	e270	e335	e340	e3000	1030	1030	688	2490	615	761
9	417	e180	e260	e325	e320	e4500	1020	969	616	2110	647	885
10	417	e250	e260	e320	e310	e5000	1020	903	538	2190	649	973
11	418	e300	e260	e310	e310	e4800	1020	897	526	2290	746	1040
12	419	e350	e260	e310	e320	e4400	1000	898	537	2100	932	1060
13	419	e380	e260	e300	e330	e3600	985	859	530	1830	1030	1030
14	419	e400	e260	e300	e330	e3400	1010	808	517	1660	1060	964
15	417	e390	e260	e290	e330	e3200	1050	798	530	1660	1030	895
16	438	e380	e270	e280	e340	e3000	1080	822	605	1710	937	834
17	468	e360	e270	e280	e340	e2900	1080	888	1330	1710	850	810
18	483	e340	e280	e270	e350	e2800	1060	952	2550	1710	796	857
19	489	e330	e290	e270	e350	e2800	1020	912	3580	1540	776	900
20	492	e320	e300	e260	e350	e2700	1010	854	4110	1350	746	869
21	485	e330	e310	e260	e350	e2600	1060	812	4220	1260	703	825
22	454	e340	e320	e270	e345	e2600	1110	816	3930	1170	679	783
23	431	e390	e330	e280	e340	e2500	1150	851	3530	1120	667	748
24	401	e400	e340	e290	e335	e2500	1160	918	3050	1060	750	719
25	358	e400	e350	e300	e340	e2500	1200	866	2620	1010	1180	679
26	318	e420	e360	e300	e350	e2400	1280	879	2200	969	1550	644
27	292	e445	e370	e310	e360	e2300	1330	913	1870	942	1630	600
28	282	e440	e380	e320	e380	e2100	1350	864	1630	888	1550	560
29	298	e410	e390	e330	e390	e1900	1370	824	1430	901	1390	540
30	301	e400	e400	e340		1640	1370	801	1310	918	1220	526
31	335		e400	e350		1440		790		901	1090	
TOTAL	13646	9759	9710	9795	10120	75850	33565	29494	48011	58659	28045	24077
MEAN	440	325	313	316	349	2447	1119	951	1600	1892	905	803
MAX	653	445	400	390	390	5000	1370	1360	4220	4310	1630	1060
MIN	282	150	260	260	310	400	985	790	517	888	615	526
AC-FT	27070	19360	19260	19430	20070	150400	66580	58500	95230	116400	55630	47760

STATIST	TICS OF N	MONTHLY	MEAN DA	ATA FOR	WATER Y	EARS 1961	-1992, BY W	ATER Y	EAR (WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	674	634	496	418	429	2006	6508	3044	2498	2185	758	584
MAX	2188	1771	1253	1023	1052	9429	20080	8994	10310	20060	3866	2034
(WY)	1987	1972	1987	1987	1987	1966	1969	1979	1962	1975	1962	1986
MIN	61.5	92.3	51.2	32.1	45.9	249	705	449	242	153	59.5	38.4
(WY)	1977	1977	1977	1977	1977	1962	1981	1977	1977	1988	1977	1976
SUMMA	RY STAT	ISTICS FO	R 1991 C	CALENDA	R YEAR	FC	OR 1992 WA	ΓER YEA	R	WATER Y	EARS 1	961-1992
ANNUA	L TOTAL			324139			350731					
ANNUA	L MEAN			888			958			1698	}	
HIGHES	T ANNUA	L MEAN					3968			1975	i	
LOWES	ΓANNUA	L MEAN					214			1977	'	
	T DAILY			3600	Jul 8		5000	Mar 1	0	41500) Ap	r 22 1979
	Γ DAILY I			70	Jan 2		150	Nov	8	10		p 2 1976
		DAY MIN		75	Jan 1		194	Nov		17		28 1976
		S PEAK FL					5200a	Mar		42000		r 22 1979
		S PEAK ST					15.64b	Mar	9	39.00		22 1979
		S LOW FLO	OW						•	5.4		t 8 1936
		F (AC-FT)		642900			695700			1230000		
	ENT EXC			2090			2230			3640		
	ENT EXC			524			699			685		
90 PERC	ENT EXC	EEDS		150			299			196	i	

a About.

b Backwater from ice.

 $05064500\ RED\ RIVER\ OF\ THE\ NORTH\ AT\ HALSTAD,\ MN--Continued\ (National\ stream\ quality\ accounting\ network\ station\ and\ radiochemical\ program\ station)$

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1961-67, 1972 to current year. REMARKS.--Letter K indicates non-ideal colony count.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	PH SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	ARD	ATURE AIR (DEG C)	- TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	OXYGEN DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED, (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
OCT 03	1050	656		631	9.5	11.0	11.0	40	7.4	67	290
NOV	1030			031	8.5		11.0	40	1.4		
27 JAN	1100	443		929	8.1	-8.0	0.0	8.1	8.4	57	380
09 FEB	1030	323				-13.5	0.0				
24 APR	1125	331		757	7.9	4.5	0.5	5.3	6.8	48	340
APK 03	1150	1110		641			2.0				
14	1110	1020		702	8.7	2.5		27			290
MAY 21 JUN	0845	812		429		18.0	17.5				
22 JUL	0730	4030		504		15.0	18.0				
08 09	0930 1050	2160	2490 	573 570	8.0 	21.5 21.5	19.0 19.5	56 	6.8 	77 	250
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, C KF AGAR (COLS. PER 100 ML) (31673)	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS MG)	AS NA)			SIUM, DIS- SOLVED	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)
OCT 03 NOV	216	K39	K270	59	34	23	14	0.6	6.7	254	5
27	308	K25	K88	79	44	51	22	1	9.4	376	0
FEB 24	304	K4	K66	70	39	36	18	0.9	8.3	371	0
APR 14	236	K4	K33	60	33	33	20	0.8	7.1	273	7
JUL 08	187	140	160	5 7	27	20	14	0.5	7.2	228	0

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued (National stream quality accounting network station and radiochemical program station)

DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS-	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS-	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITROGEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)
OCT 03	100	17	0.20	15	386	394	0.54	698	0.020	0.010	••
NOV 27	160	36	0.40	14	583	590	0.80	706	0.030	0.020	0.240
FEB 24 APR	86	29	0.10	20	475	473	0.64	423	<0.010	<0.010	
14 JUL	110	21	0.20	8.1	415	431	0.59	1190	0.030	<0.010	
08	84	13	0.20	20	343	354	0.48	2380	0.040	0.040	0.370
DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	ORGANIC	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)		PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 03	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, A AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
OCT 03 NOV 27	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, TOTAL (MG/L AS N)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 03 NOV 27 FEB 24	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, TOTAL (MG/L AS N) (00600)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.130 0.530	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 03 NOV 27 FEB	GEN, NO2+NO3 TOTAL (MG/L AS N) (00630) <0.050	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <0.050 0.260	GEN, AMMONIA TOTAL (MG/L AS N) (00610) 0.030	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.020	GEN, ORGANIC TOTAL (MG/L AS N) (00605)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 0.90 2.6	GEN, TOTAL (MG/L AS N) (00600)	PHORUS TOTAL (MG/L AS P) (00665) 0.270 0.630	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.130 0.540	PHORUS ORTHO TOTAL (MG/L AS P) (70507) 0.130 0.530 0.110	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.120 0.510

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued (National stream quality accounting network station and radiochemical program station)

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS-	DIS- SOLVED S (UG/L AS CO)	DIS-	DIS-	IM NI ED SOI L (U) AS	ESE, DIS-	DIS-	M, NICKE DIS- D SOLVE (UG/L) AS NI	DIS- D SOLVI (UG/) AS SI	M, SILVE DIS- ED SOLVI L (UG/ E) AS AC	DIS- ED SOLVED L (UG/L G) AS SR)
OCT												
03 FEB	<10	62	⋖₃	16	30		2	<10	3	<1	< 1.	0 230
24 APR	<10	70	⋖₃	21	34	:	22	<10	2	<1	<1.	0 260
14	<10	54	⋖3	8	33		2	<10	3	<1	<1.	0 230
JUL 08	20	56	⊲	4	27		2	<10	4	<1	<1.	0 210
DATE	VANA- DIUM, DIS- SOLVEI (UG/L AS V)	2 SIGMA WAT DIS D AS TH-230 (PCI/L)	SED SUS TOT DRY AS TH-230 (PCI/L)	COU COU COU COU COU COU COU COU COU COU	NT, A MA DIS SO G (L'U /L) U	(UG/L AS -NAT)	AL SI TO (U U-1	JSP. TAL G/L AS NAT)	BETA, 2 SIGMA WATER, DISS, AS CS-137 (PCI/L)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137)	(PCI/L AS CS-137)	BETA, 2 SIGMA WATER, DISS, ASSR90 /Y90 (PCIL
	(01085)	(75987)	(76004)	(759)	86) (8	30030)	(80	040)	(75989)	(03515)	(03516)	(75988)
OCT 03	<6											
FEB 24	<6											
APR	<0											
14 JUL	<6	3.2	1.3	2.9)	4.4	1	.6	2.3	12	1.5	1.7
08	<6	1.4	5.5	1.9	•	2.4	1	1	1.9	11	7.4	1.5
	GROSS BETA,	GROSS BETA,		RADI 226		ETA, SIGMA	TID A	ATT IN A T I	RANIUM		SEDI- MENT,	SED. SUSP.
	DIS-	SUSP.	RA-226	DIS		SED,			ATURAL	SEDI-	DIS-	SIEVE
	SOLVED		2 SIGMA			USP,		GMA	DIS-		CHARGE,	
DATE	(PCI/L AS SR/	(PCI/L AS SR/	WATER, DISS,		ON TO IOD SR			TER, S SS.	OLVED (UG/L	SUS- PENDED	SUS- PENDED	% FINER THAN
	YT-90) (80050)	YT-90) (80060)	(PCI/L) (76001)	(PCI, (095)		PCI/L) (6005)		G/L) 990)	AS U) (22703)	(MG/L) (80154)	(T/DAY) (80155)	.062 MM (70331)
OCT												
03 NOV				-			-			110	195	96
27 FEB			-				_			16	19	96
24		-								38	34	49
APR 14	8.6	1.4	0.020	0.0	6	0.68	<1	.0	2.8	460	1270	95
JUL 08	8.2	6.7	0.020	0.0	9	2.0	<1	.0	2.4	360	2420	99

Red River of the North at Halstad, Minnesota

June 1992

05067500 MARSH RIVER NEAR SHELLY, MN

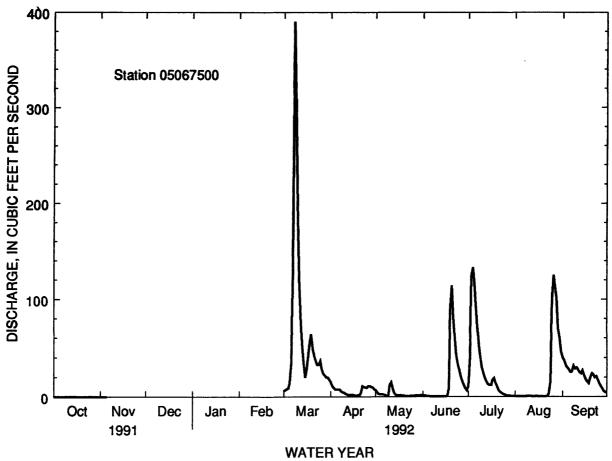
LOCATION.--Lat 47°24'45", long 96°45'50", in NE¹/4NW¹/4 sec.3, T.145 N., R.48 W., Norman County, Hydrologic Unit 09020107, near center of span on downstream truss of bridge, 3.8 mi southeast of Shelly and 10 mi upstream from mouth.

DRAINAGE AREA .-- 151 mi².

PERIOD OF RECORD.—March 1944 to September 1983 and April 1985 to current year (no winter records since 1989). Monthly discharge only for March 1944, published in WSP 1308. Operated as a high-flow partial-record station October 1983 to March 1985.

GAGE.--Water-stage recorder. Datum of gage is 841.14 ft above mean sea level (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1965, nonrecording gage at datum 3.0 ft higher. Oct. 1, 1965, to May 17, 1989, nonrecording gage at present site and datum.

REMARKS.--Records fair. Large part of high flow of Wild Rice River diverted into Marsh River basin at overflow section 4.6 mi east of Ada. Another diversion from Wild Rice River basin formed in 1947, 1.5 mi southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent.


					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00				e6.0	15	6.9	1.3	11	.32	40
2	.00	.00			-	e7.0	11	4.7	1.2	41	.28	37
3	.00	.00				e8.0	9.1	2.7	.80	124	.21	32
4	.00	.00	-			e9.0	7.6	2.5	.47	133	.19	30
5	.00	.00		-		e15	7.7	2.7	.41	116	.19	28
6	.00			-		e35	7.6	2.3	.31	95	.19	25
7	.00					e130	7.6	2.0	.30	72	.18	26
8	.00					e390	5.5	.87	.32	52	.19	32
9	.00					e300	4.7	.65	.26	38	e.40	29
10	.00					e200	4.3	12	.27	30	e.65	30
11	.00		-			e122	2.9	15	.20	24	e.40	28
12	.00					e90	2.3	8.3	.17	19	e.30	25
13	.00					e55	1.6	3.9	.20	16	e.20	24
14	.00					e35	1.8	2.0	.16	13	e.30	27
15	.00	-				e20	1.8	1.2	.13	12	e.40	22
16	.00	1100	-		-	e27	1.8	1.5	.19	12	e.35	18
17	.00					e42	1.2	1.4	.56	17	e.25	16
18	.00			-		e56	1.1	1.2	8.6	19	e.20	14
19	.00		-			e64	1.4	1.1	88	14	e.25	20
20	.00			-		e50	1.6	.74	114	9.9	e.35	24
21	.00					e42	3.9	.65	81	6.2	e.20	23
22	.00							.59	58	4.8	e.60	20
23	.00					e37	11	.62	42		e3.0	21
24	.00					e33	10			3.6		18
25	.00					e33 37	9.5 9.1	.91 1.0	33 27	2.4 1.8	e15 e100	14
200	00							0.0	24		105	
26	.00					29	11	.96	21	1.2	e125	11
27	.00					24	11	1.2	16	.94	e114	8.1
28	.00					22	10	1.1	12	.77	102	5.9
29	.00					20	9.6	1.2	8.8	.66	70	4.7
30 31	.00					20 18	7.7	1.3 1.4	6.6	.57 .38	58 46	3.9
mom 4.	0.00					7.6.2						
TOTAL	0.00					1976.0	190.4	84.59	523.25	891.22	639.60	656.6
MEAN	.000				-	63.7	6.35	2.73	17.4	28.7	20.6	21.9
MAX	.00					390	15	15	114	133	125	40
MIN	.00	-				6.0	1.1	.59	.13	.38	.18	3.9
AC-FT	.00					3920	378	168	1040	1770	1270	1300
CFSM	.00					.42	.04	.02	.12	.19	.14	.14
IN.	.00					.49	.05	.02	.13	.22	.16	.16

e Estimated.

STATISTICS OF MONTHLY	MEAN DATA FOR W	ATED VEARS 1044 - 1002	BY WATER YEAR (WY)
STATISTICS OF MONTHET	MEAN DATA FOR W.	A I C.	DI WAIER IEAR (WI)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	12.6	10.7	5.60	3.79	3.29	69.5	296	130	82.9	72.0	20.8	11.8
MAX	130	102	<i>7</i> 7.1	64.5	62.1	437	1537	2617	1030	820	363	144
(WY)	1952	1952	1951	1951	1951	1945	1950	1950	1950	1950	1949	1944
MIN	.000	.000	.000	.000	.000	.000	.078	.87	.000	.000	.000	.000
(WY)	1955	19 56	1956	1946	1946	1964	1981	1980	1980	1961	1959	1954

SUMMARY STATISTICS	FOR 1992 WATE	ER YEAR	WATER YEARS 1944 - 1992		
ANNUAL MEAN			63.3a	(1944-89)	
HIGHEST ANNUAL MEAN			54 3	1950	
LOWEST ANNUAL MEAN			1.24	1977	
HIGHEST DAILY MEAN			4740	Apr 19 1979	
LOWEST DAILY MEAN			.00	Many days	
ANNUAL SEVEN-DAY MINIMUM			.00	Sep 12 1945	
INSTANTANEOUS PEAK FLOW	430	Mar. 8	4880	Apr 19 1979	
INSTANTANEOUS PEAK STAGE	10. 36 Ь	Mar. 8	23.36c	Apr 19 1979	
INSTANTANEOUS LOW FLOW				-	
ANNUAL RUNOFF (AC-FT)			45850		
ANNUAL RUNOFF (CFSM)			.42		
ANNUAL RUNOFF (INCHES)			5. 69		
10 PERCENT EXCEEDS			106		
50 PERCENT EXCEEDS			.95		
90 PERCENT EXCEEDS			.00		
a Median of annual mean discharges is 16 ft3/s					

b Backwater from ice. c From floodmark.

05069000 SAND HILL RIVER AT CLIMAX, MN

LOCATION.--Lat 47°36'43", long 96°48'52", in NE¹/4NE¹/4 sec.30, T.148 N., R.48 W., Polk County, Hydrologic Unit 09020301, on left bank 25 ft upstream from bridge on U.S. Highway 75 in Climax and 3.7 mi upstream from mouth.

DRAINAGE AREA .-- 426 mi².

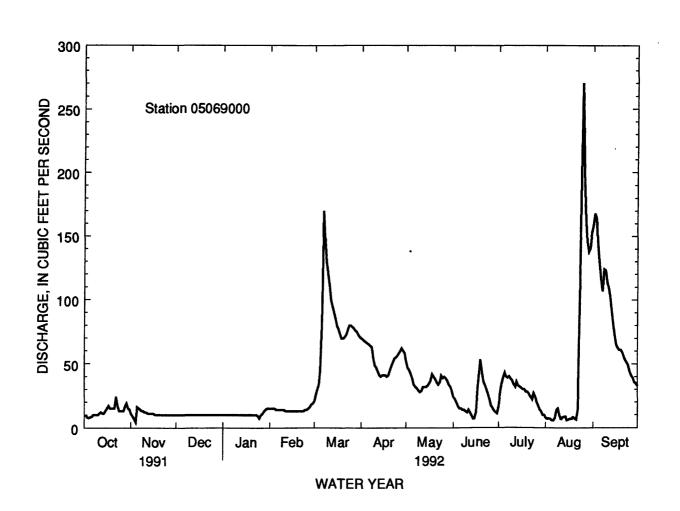
PERIOD OF RECORD.—March 1943 to September 1984, June 1985 to current year (winter records incomplete prior to 1947). Monthly discharge only for some periods, published in WSP 1308 and 1728. October 1984 to May 1985, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 1388: 1943(M), 1944, 1947(M). WSP 1728: 1951(M), 1960 (Average discharge).

GAGE.--Water stage recorder. Datum of gage is 820.10 ft above mean sea level (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1966, nonrecording gage at site 3.2 mi upstream at datum 12.78 ft higher. Oct. 1, 1966, to Sept 5, 1989, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are fair.

					DA	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.5	ell	e10	e10	e15	e21	e70	52	24	17	7.8	158
2	9.4	e9.0	e10	e10	e15	e25	e69	47	22	28.	6.9	168
3	7.9	e7.0	e10	e10	e15	e30	e68	45	20	34	7.3	164
4	7.7	e4.5	e10	e10	e15	e34	e67	42	17	39	6.9	143
5	8.1	e16	e10	e10	el4	e45	e66	3 9	15	43	6.0	128
6	8.8	e15	e10	e10	e14	e80	e65	34	15	40	5.8	114
7	10	e14	e10	e10	e14	e170	e64	32	· 14	39	7.4	107
8	10	e13	e10	e10	e14	e150	63	31	14	40	14	124
9	10	e13	e10	e10	e14	e130	54	29	13	38	15	123
10	9.9	e12	e10	e10	e14	e120	49	28	12	37	9.6	113
11	11	e12	e10	e10	e13	e110	47	29	14	34	6.4	110
12	12	e11	e10	e10	e13	e100	44	32	12	32	7.8	102
13	11	e11	e10	e10	e13	e95	41	32	9.3	36	8.5	91
14	11	e11	e10	e10	e13	e90	40	32	7.0	33	8.7	82
15	13	ell	e10	e10	e13	e85	41	33	7.1	32	6.0	73
16	15	e11	e10	e10	e13	e80	41	35	12	31	6.3	65
17	17	e10	e10	e10	e13	e77	41	37	30	30	6.8	63
18	15	e10	e10	e10	e13	e73	40	42	43	30	7.0	61
19	15	e10	e10	e10	e13	e70	41	40	53	28	8.2	61
20	15	e10	e10	e10	e13	e70	45	38	44	28	7.1	59
21	15	e10	e10	e10	e13	e71	48	36	36	26	6.5	56
22	24	e10	e10	e10	e13	e73	51	34	33	24	15	53
23	17	e10	e10	e10	e13	e76	54	36	30	22	78	51
24	13	e10	e10	e9.0	e14	e80	55	41	26	27	177	49
25	13	e10	e10	e7. 5	e14	e80	56	3 9	21	24	270	. 44
26	13	e10	e10	e10	e15	e79	58	40	17	20	200	41
27	13	e10	e10	el1	e16	e78	60	39	15	17	170	39
28	17	e10	e10	e13	e18	e7 6	62	37	13	14	146	36
29	19	e10	e10	e14	e19	e75	60	34	12	13	138	35
30	15	e10	e10	e15		e73	58	32	11	10	141	33
31	e14		e10	e15		e71		29		10	152	***
TOTAL	399.3	321.5	310	324.5	409	2487	1618	1126	611.4	876	1653.0	2546
MEAN	12.9	10.7	10.0	10.5	14.1	80.2	53.9	36.3	20.4	28.3	53.3	84.9
MAX	24	16	10	15	19	170	70	52	53	43	270	168
MIN	7.7	4.5	10	7.5	13	21	40	28	7.0	10	5.8	33
AC-FT	792	638	615	644	811	4930	3210	2230	1210	1740	3280	5050
CFSM	.03	.03	.02	.02	.03	.19	.13	.09	.05	.07	.13	.20
IN.	.03	.03	.03	.03	.04	.22	.14	.10	.05	.08	.14	.22

e Estimated.


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1943 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	32.1	27.2	16.5	12.2	12.2	75.4	345	119	94.8	58.1	29.9	24.9
MAX	223	209	48.7	30.1	46.8	385	946	1156	596	298	256	93.9
(WY)	1972	1972	1972	1986	1984	1966	1978	1950	1984	1962	1985	1985
MIN	9.43	8.64	5.11	2.02	3.55	5.81	25.3	23.7	11.5	8.95	6.30	6.49
(WY)	1977	1956	1964	1962	1962	1948	1981	1958	1980	1980	1961	1955

SUMMARY STATISTICS FOR 199	1 CALENDA	AR YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	RS 1943 - 1992
ANNUAL TOTAL	10085.5		12681.7			
ANNUAL MEAN	27.6		34.6		69.8a	
HIGHEST ANNUAL MEAN					204	1950
LOWEST ANNUAL MEAN					18.4	1977
HIGHEST DAILY MEAN	454	May 23	270	Aug 25	4360	Apr 14 1965
LOWEST DAILY MEAN	4.5	Nov 4	4.5	Nov 4	1.0	Jan 17 1962
ANNUAL SEVEN-DAY MINIMUM	5.1	Jan 26	6.8	Aug 15	1.1	Jan 12 1962
INSTANTANEOUS PEAK FLOW			312	Aug 25	4560	Apr 14 1965
INSTANTANEOUS PEAK STAGE			7.06b	Mar 7	32.79c	Apr 23 1979
ANNUAL RUNOFF (AC-FT)	20000		25150		50590	
ANNUAL RUNOFF (CFSM)	.065		.081		.16	
ANNUAL RUNOFF (INCHÉS)	.88		1.11		2.23	
10 PERCENT EXCEEDS	67		78		139	
50 PERCENT EXCEEDS	12		15		21	
90 PERCENT EXCEEDS	7.0		10		8.5	
a Median of annual mean discharges is	51 ft3/g					

a Median of annual mean discharges is 51 ft³/s.

c From floodmark (backwater from Red River of the North).

b Backwater from ice.

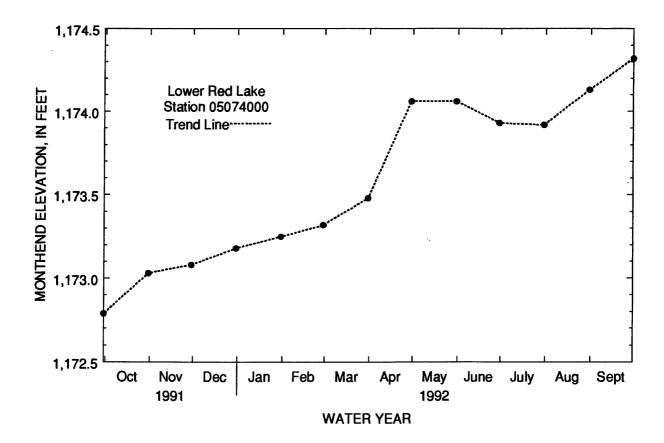
05074000 LOWER RED LAKE NEAR RED LAKE, MN

LOCATION.--Lat 47°57'27", long 95°16'34", in SW1/4NW1/4 sec. 28, T. 152 N., R. 36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank just upstream from dam at outlet, 13 mi northwest of city of Red Lake.

DRAINAGE AREA.--1,950 mi², approximately.

- PERIOD OF RECORD.--June 1930 to November 1932 and May 1933 to current year. Published as "Red lake at Redby" prior to May 1933 and as "Red Lake near Red Lake" May 1933 to September 1940. Records on Upper Red Lake published as Red Lake at Waskish, April 1930 to September 1933, all in reports of Geological Survey. October 1921 to September 1929 gage heights at Redby and on Upper Red Lake at Waskish in files of Minnesota Department of Natural Resources (fragmentary).
- GAGE.--Water-stage recorder. Datum of gage is 1,100.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers); gage readings have been reduced to elevations based on adjustment of 1912. May 1933 to Sept. 6, 1934, nonrecording gage and Sept. 7, 1934 to Sept. 30, 1986, recording gage at same site at datum 69.00 ft higher. Nonrecording gages at Waskish and Redby.

REMARKS.--Water level subject to fluctuation caused by change in direction and velocity of wind and by seiches.


EXTREMES FOR PERIOD OF RECORD.—Maximum elevation, 1.178.53 ft, June 25, 1950; minimum recorded, 1,169.80 ft, Nov. 20, 1936.

EXTREMES FOR CURRENT YEAR.--Maximum elevation 1,175.22 ft, Sept. 16; maximum daily, 1,174.53 ft, Sept. 20; minimum, 1,171.77 ft, Sept. 27; minimum daily, 1,172.70 ft, Nov. 2.

MONTHEND ELEVATION, IN FEET, OCTOBER 1991 TO SEPTEMBER 1992

Oct. 311,173.03	Feb. 291,173.32	June 301,173.93
Nov. 301,173.08	Mar. 311,173.48	July 311,173.92
Dec. 311,173.18	Apr. 301,174.06	Aug. 311,174.13
Jan. 31 1,173.25	May 311,174.06	Sept. 301,174.32

NOTE.--Mean daily gage heights are available.

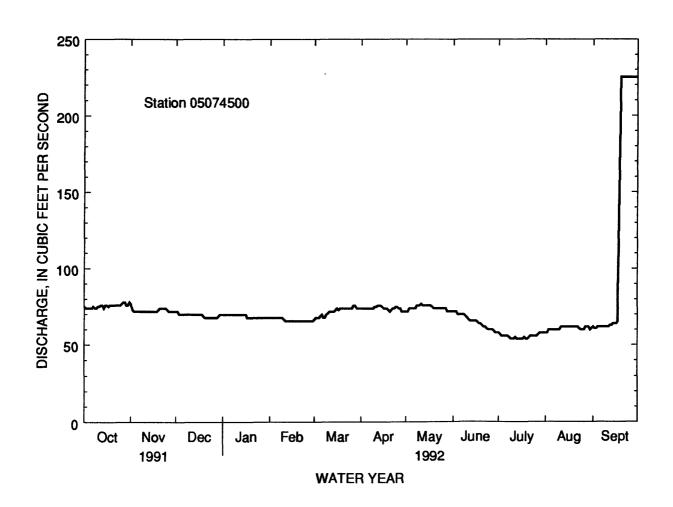
05074500 RED LAKE RIVER NEAR RED LAKE, MN

LOCATION.--Lat 47°57'27", long 95°16'35", in SW¹/4NW¹/4 sec. 28, T. 152 N., R. 36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank 50 ft downstream from dam at outlet of Lower Red Lake and 13 mi northwest of city of Red Lake. DRAINAGE AREA.--1,950 mi², approximately.

PERIOD OF RECORD.--May 1933 to current year. Monthly discharge only for May 1933, published in WSP 1308.

GAGE.--Water-stage recorder. Datum of gage is 1,100.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 7, 1934, nonrecording gage at site 50 ft upstream at datum 69.00 ft higher. Sept. 7, 1934, to Nov. 26, 1951, water-stage recorder at present site at datum 69.00 ft higher. Nov. 27, 1951 to Sept. 30, 1986, water-stage recorder at present site at datum 67.00 ft higher.

REMARKS.--Records poor. Flow completely regulated by outlet dam on Lower Red Lake.


					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	75	77	72	70	68	67	74	72	72	58	58	62
2	74	73	72	70	68	68	74	72	72	5 7	58	61
3	74	72	70	70	68	68	74	74	72	56	60	61
4	74	72	70	70	68	68	74	74	70	56	60	62
5	74	72	70	70	68	69	74	74	70	56	60	62
6	74	72	70	70	68	70	74	74	70	56	60	62
7	75	72	70	70	68	68	74	74	70	56	60	62
8	74	72	70	70	68	68	74	7 6	70	55	60	62
9	74	72	70	70	68	70	74	7 6	69	54	60	62
10	75	72	70	70	67	71	75	76	68	54	60	62
11	75	72	70	70	66	72	75	77	67	54	62	62
12	76	72	70	70	66	72	76	7 6	66	55	62	63
13	76	72	70	70	66	72	76	76	66	54	62	63
14	74	72	70	70	66	72	76	76	66	54	62	64
15	76	72	70	70	66	73	75	76	66	54	62	64
16	76	72	70	70	66	74	74	76	66	54	62	64
17	75	72	70	68	66	73	74	76	65	54	62	e65
18	76	72	7 0	68	66	74	74	75	64	55	62	150
19	76	73	69	68	66	74	73	74	64	54	62	e225
20	76	74	68	68	66	74	72	74	63	54	62	e225
21	76	74	68	68	66	74	73	74	62	55	62	e225
22	76	74	68	68	66	74	74	74	62	56	62	e225
23	76	74	68	68	66	74	74	74	61	56	61	e225
24	76	74	68	68	66	74	75	74	60	56	60	e225
25	76	73	68	68	66	74	75	74	60	56	60	225
26	77	72	68	68	66	74	74	74	60	56	60	e225
27	78	72	68	68	66	76	74	74	60	57	62	e225
28	78	72	68	68	66	7 6	72	72	59	58	62	e225
29	76	72	69	68	66	74	72	72	58	58	62	e225
30	76	72	70	68		74	72	72	58	58	60	e225
31	78		70	68		74		72		58	61	
TOTAL	2342	2178	2154	2140	1933	2235	2221	2304	1956	1724	18 8 8	3913
MEAN	75.5	72.6	69.5	69.0	66.7	72.1	74.0	74.3	65.2	55. 6	60.9	130
MAX	78	77	72	70	68	76	76	77	72	58	62	225
MIN	74	72	68	68	66	67	72	72	58	54	58	61
AC-FT	4650	4320	4270	4240	3830	4430	4410	4570	3880	3420	3740	7760
CFSM	.04	.04	.04	.04	.03	.04	.04	.04	.03	.03	.03	.07
IN.	.04	.04	.04	.04	.04	.04	.04	.04	.04	.03	.04	.07

e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1933 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	470	458	449	463	457	423	336	485	568	536	461	457
MAX	2071	1649	1498	1418	1342	1396	1199	1624	2025	1840	1464	1712
(WY)	1951	1951	1951	1951	1951	1951	1951	1950	1950	1950	1975	1950
MIN	5.10	3.57	.95	.35	.40	.60	4.00	.60	2.15	4.63	2.73	1.61
(WY)	1934	1934	1934	1934	1934	1936	1936	1933	1933	1934	1936	1934

SUMMARY STATISTICS	FOR 1991 CALENDAR	YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	ARS 1933 - 1992
ANNUAL TOTAL	24661		26988			
ANNUAL MEAN	67.6		73.7		467	
HIGHEST ANNUAL MEAD	N				1292	1951
LOWEST ANNUAL MEAN	1				5.55	1936
HIGHEST DAILY MEAN	78	Oct 27, 28, 31	225	Sep 19-30	2240	Oct 6 1950
LOWEST DAILY MEAN	62a		54b	•	.00	Sep 19 1933
ANNUAL SEVEN-DAY M	INIMUM 62	Jan 1	54	Jul 9	.00	Sep 1 1934
INSTANTANEOUS PEAK	FLOW		225	Sep 19-30	3600	Jun 25 1950
INSTANTANEOUS PEAK	STAGE		71.01	Jul 12, 13, 15	78.19	Jun 25 1950
INSTANTANEOUS LOW I	FLOW		54	Jul 8-22		
ANNUAL RUNOFF (AC-F)	Γ) 48920		53530		338300	
ANNUAL RUNOFF (CFSM	.035		.038		.24	
ANNUAL RUNOFF (INCH	ĖS) .47		.51		3.23	
10 PERCENT EXCEEDS	. 74		76		1010	
50 PERCENT EXCEEDS	68		7 0		368	
90 PERCENT EXCEEDS	63		60		35	
a Jan. 1-28, Feb. 8-10.						
b Jul. 9-11, 13-17, 19, 20.						

05075000 RED LAKE RIVER AT HIGH LANDING, NEAR GOODRIDGE, MN

LOCATION.--Lat 48°02'34", long 95°48'28", in NW¹/4NW¹/4 sec.28, T.153 N., R.40 W., Pennington County, Hydrologic Unit 09020303, on left bank 50 ft upstream from highway bridge at High Landing, 7 mi south of Goodridge and 33 mi upstream from Thief River.

DRAINAGE AREA.--2,300 mi², approximately.

PERIOD OF RECORD.--September 1929 to current year. Prior to October 1930, published as "at Kratka".

GAGE.--Water-stage recorder. Datum of gage is 1,141.57 ft above sea level, adjustment of 1912 (levels by U.S. Army Corps of Engineers). See WSP 1308 or 1738 for history of changes prior to Oct. 1, 1949.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow regulated by outlet dam on Lower Red Lake.

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	67	e44	e59	e61	e62	e65	e235	287	73	107	67	211
2	67	e47	e59	e61	e62	e65	e210	261	74	130	67	235
2 3	67	e50	e59	e61	e62	e66	e190	254	74	149	68	256
4	68	e60	e59	e61	e62	e69	e170	230	79	155	67	243
4 5	68	e60	e58	e61	e62	e78	e160	205	80	158	66	236
6	68	e60	e58	e61	e62	e100	e160	184	81	154	65	235
7	69	e60	e58	e6 l	e62	e190	e158	162	81	144	63	256
8	69	e60	e58	e61	e62	e250	e155	148	81	136	64	358
9	69	e60	e58	e61	e62	e210	133	136	79	127	65	359
10	69	e60	e58	e61	e62	e180	128	120	78	126	6 3	318
11	69	e60	e58	e61	e62	e160	130	112	78	138	60	286
12	69	e60	e58	e61	e62	e145	118	108	79	139	61	258
13	69	e60	e58	e61	e62	e130	123	98	80	129	61	240
14	70	e60	e58	e61	e62	e120	125	95	84	119	62	220
15	70	e60	e58	e61	e62	e110	141	89	88	110	60	199
16	70	e60	e58	e61	e63	e104	157	90	92	101	59	188
17	70	e60	e58	e61	e63	e99	163	97	101	95	69	189
18	71	e60	e58	e61	e64	e96	168	101	101	92	80	197
19	71	e60	e58	e61	e65	e96	244	92	99	91	73	196
20	71	e60	e58	e61	e65	e97	374	86	100	90	68	215
21	71	e60	e59	e62	e65	e98	375	83	101	91	69	258
22	71	e60	e60	e62	e65	e99	326	84	99	90	88	286
23	71	e60	e60	e62	e65	e103	300	90	97	86	129	307
24	71	e60	e60	e62	e65	e112	308	94	98	82	287	321
25	71	e60	e60	e62	e65	e135	330	90	96	78	310	316
26	71	e60	e60	e63	e65	e180	366	89	97	78	260	307
27	71	e60	e60	e63	e65	e175	372	85	102	76	221	301
28	71	e60	e60	e63	e65	e175	341	81	99	72	197	295
29	71	e60	e60	e63	e65	e180	315	76	93	70	185	292
30	71	e60	e60	e63		e200	307	76	93	70	193	290
31	e50		e60	e63		e230		74		69	205	
TOTAL	2141	1761	1823	1908	1835	4117	6782	3877	2657	3352	3452	7868
MEAN	69.1	58.7	58.8	61.5	63.3	133	226	125	88.6	108	111	262
MAX	71	60	60	63	65	250	375	287	102	158	310	359
MIN	50	44	58	61	62	65	118	74	73	69	59	188
AC-FT	4250	3490	3620	3780	3640	8170	13450	7690	5270	6650	6850	15610
CFSM	.03	.03	.03	.03	.03	.06	.10	.05	.04	.05	.05	.11
IN.	.03	.03	.03	.03	.03	.07	.11	.06	.04	.05	.06	.13

e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1930 - 1992, BY WATER YEAR (WY)

50270

.030

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	523	495	443	442	438	473	659	662	654	560	484	507
MAX	1955	1730	1539	1424	1366	1453	1980	3179	2161	2474	1478	1733
(WY)	1951	1951	1951	1951	1951	1951	1951	1950	1950	1975	1975	1950
MIN	2.11	1.61	.000	.000	.000	.000	24.7	5.58	1.04	5.92	.026	.000
(WY)	1934	1934	1934	1934	1934	1936	1933	1933	1936	1934	1934	1934
SUMM	ARY STAT	TISTICS I	FOR 1991 C	CALENDA	R YEAR	FOR	1992 WA	TER YEAR		WATER Y	EARS 19	30 - 1992
ANNUA	L TOTAL			25346			41573					
ANNUA	L MEAN			69.4			114			529		
HIGHES	ST ANNU	AL MEAN								1407		1951
LOWES	T ANNUA	L MEAN								6.21		1934
HIGHES	ST DAILY	MEAN		148	Jul 14		375	Apr 21		4040	J	ul 7 1975
LOWES	T DAILY	MEAN		44	Nov 1		44	Nov 1		.00	N	lany days
ANNUA	L SEVEN	-DAY MIN	MUMIN	53	Oct 31		53	Oct 31		.00	No	v 16 1933
INSTAN	ITANEOU	S PEAK F	LOW				390	Apr 21		4060	J	ul 7 1975

7.15a

.049

82460

Mar 8

13.44

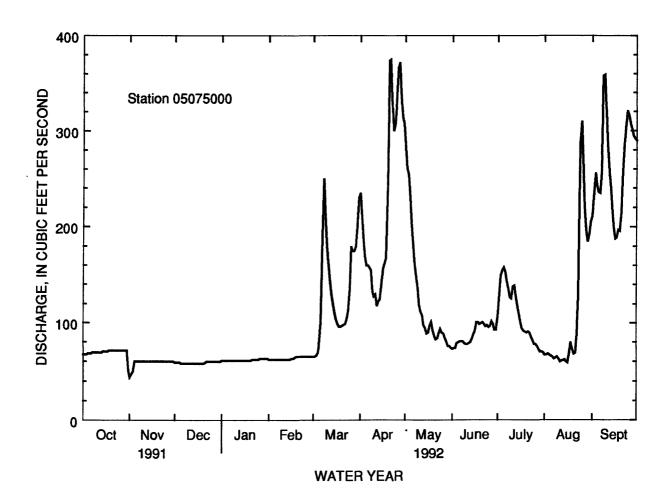
.23 3.12

1170 401 31

382900

Jul 3 1975

a Backwater from ice.


INSTANTANEOUS PEAK STAGE

ANNUAL RUNOFF (AC-FT)

ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

05076000 THIEF RIVER NEAR THIEF RIVER FALLS, MN

LOCATION.--Lat 48°11'08", long 96°10'11", in NW¹/4SW¹/4 sec.3, T.154 N., R.43 W., Marshall County, Hydrologic Unit 09020304, on right bank, 0.2 mi upstream from highway bridge, 5 mi north of Thief River Falls, 7 mi upstream from mouth, and 9 mi downstream from Mud Lake National Wildlife Refuge.

DRAINAGE AREA, -- 959 mi².

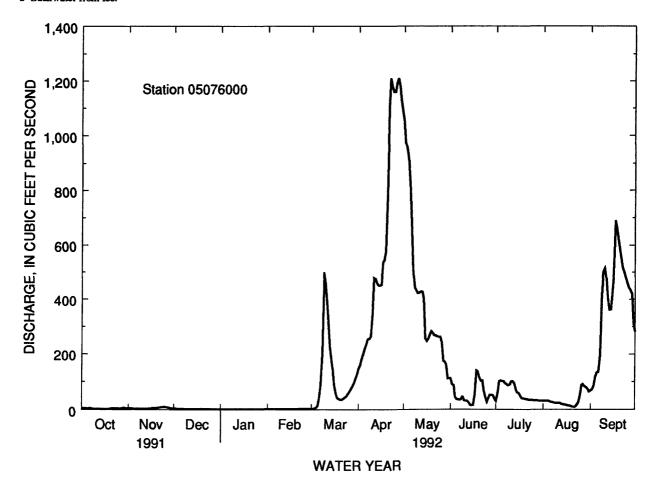
PERIOD OF RECORD.—July 1909 to September 1917, April 1920 to September 1921, October 1922 to September 1924, October 1928 to September 1981, March 1982 to current year. Monthly discharge only for some periods, annual maximums for water years 1919, 1922, 1925, 1926, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 925: Drainage area. WSP 1308: 1917(M), 1924(M), 1929(M), 1931-33(M), 1935(M), 1937(M).

GAGE.--Water-stage recorder and control of grouted boulders. Datum of gage is 1,112.33 ft above mean sea level (levels by Minnesota Department of Transportation). Prior to May 4, 1939, nonrecording gages at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Thief and Mud Lakes.

					DA	ILY MEAN	I VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5.2	e6.0	e4.4	e2.5	e2.7	e3.5	e147	1050	112	31	32	69
2	5.0	e5.2	e4.1	e2.5	e2.7	e3.9	e160	975	91	57	32	73
3	4.5	e4.4	e3.8	e2.5	e2.7	e5.0	e180	953	88	102	32	87
4	4.2	e3.7	e3.6	e2.5	e2.7	e7.0	e200	905	47	104	32	117
5	3.8	e3.4	e3.4	e2.5	e2.8	e15	e220	804	37	103	30	133
6	4.2	e3.3	e3.2	e2.5	e2.8	e40	e238	686	36	101	27	135
7	4.2	e3.2	e3.1	e2.5	e2.8	e90	256	511	35	96	27	195
8	3.0	e3.3	e2.9	e2.5	e2.8	e200	256	445	37	91	24	393
9	2.7	e3 .3	e2.8	e2.5	e2.8	e500	266	433	48	88	23	501
10	2.7	e3.4	e2.8	e2.5	e2.8	e460	346	424	33	90	23	515
11	2.5	e3.5	e2.7	e2.5	e2.8	e390	479	425	31	100	23	475
12	2.4	e3.6	e2.6	e2.5	e2.8	e300	476	429	31	101	23	407
13	2.4	e3.8	e2.6	e2.5	e2.8	e230	459	428	26	94	20	362
14	2.7	e4.0	e2.5	e2.5	e2.8	e180	452	403	16	72	19	363
15	2.5	e4.3	e2.5	e2.5	e2.8	e140	452	257	15	62	18	416
16	2.9	e4.8	e2.5	e2.5	e2.8	e90	455	249	16	59	16	497
17	2.9	e5.2	e2.5	e2.5	e2.8	e60	539	258	54	49	15	690
18	2.9	e5.7	e2.5	e2.5	e2.9	e42	545	271	140	41	14	666
19	2.8	e6.2	e2.5	e2.5	e2.9	e38	579	283	137	40	13	624
20	3.6	e6.7	e2.5	e2.5	e2.9	e36	783	277	115	39	10	583
21	4.6	e7.5	e2.5	e2.6	e2.9	e36	1100	270	104	37	9.4	546
22	4.4	e8.3	e2.5	e2.6	e3.0	e40	1210	268	104	36	11	517
23	4.3	e9.1	e2.5	e2.6	e3.0	e44	1180	265	70	35	17	501
24	4.4	e9.8	e2.5	e2.6	e3.0	e48	1160	264	45	35	24	477
25	4.1	e10	e2.5	e2.6	e3.1	e56	1160	264	28	34	47	456
26	3.9	e9.2	e2.5	e2.6	e3.1	e65	1190	243	43	33	88	443
27	4.8	e7.6	e2.5	e2.6	e3.2	e74	1210	175	53	33	91	433
28	5.5	e6.5	e2.5	e2.7	e3.3	e84	1180	172	53	33	84	419
29	7.5	e5.5	e2.5	e2.7	e3.4	e96	1130	162	51	32	81	314
30	6.3	e4.8	e2.5	e2.7		e110	1090	112	39	32	75	282
31	6.4		e2.5	e2.7		e125 _.		112	***	32	65	
TOTAL	123.3	165.3	87.0	79.0	83.9	3608.4	19098	12773	1735	1892	1045.4	11689
MEAN	3.98	5.51	2.81	2.55	2.89	116	637	412	57.8	61.0	33.7	390
MAX	7.5	10	4.4	2.7	3.4	500	1210	1050	140	104	91	690
MIN	2.4	3.2	2.5	2.5	2.7	3.5	147	112	15	31	9.4	69
AC-FT	245	328	173	157	166	7160	37880	25340	3440	3750	2070	23190
CFSM	.00	.01	.00	.00	.00	.12	.66	.43	.06	.06	.04	.41
IN.	.00	.01	.00	.00	.00	.14	.74	.50	.07	.07	.04	.45


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1909 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FE B	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	83.6	62.5	19.4	5.62	3.57	66.4	578	463	286	193	82.0	85.6
MAX	637	844	206	100	45.0	609	2827	4274	1774	2103	842	943
(WY)	1986	1972	1945	1910	1910	1983	1966	1950	1962	1975	1985	1985
MIN	.000	.000	.000	.000	.000	.000	7.75	1.83	.032	.000	.000	.000
(WY)	1911	1911	1911	1911	1911	1930	1981	1990	1980	1932	1932	1929

SUMMARY STATISTICS FOR 199	1 CALENDA	AR YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	ARS 1909 - 1992
ANNUAL TOTAL	2764.80		52379.3			
ANNUAL MEAN	7.57		143		160a	
HIGHEST ANNUAL MEAN					607	1966
LOWEST ANNUAL MEAN					1.28	1939
HIGHEST DAILY MEAN	202	May 24	1210	Apr 22	5580	May 13 1950
LOWEST DAILY MEAN	.00	Many days	2.4	Oct 12, 13	.00	Many days
ANNUAL SEVEN-DAY MINIMUM	.00	Jan 1	2.5	Dec 14	.00	Oct 1 1910
INSTANTANEOUS PEAK FLOW			1220	Apr 22	5610	May 13 1950
INSTANTANEOUS PEAK STAGE			9.18b	Mar 9	17.38	May 13 1950
INSTANTANEOUS LOW FLOW			2.2	Oct 13	.00	Many days
ANNUAL RUNOFF (AC-FT)	5480		103900		115700	
ANNUAL RUNOFF (CFSM)	.008		.15		.17	
ANNUAL RUNOFF (INCHES)	.11		2.03		2.26	
10 PERCENT EXCEEDS	22		464		504	
50 PERCENT EXCEEDS	2.5		31		6.7	
90 PERCENT EXCEEDS	.00		2.5		.00	

a Median of annual mean discharges is 110 ft³/s.
 b Backwater from ice.

05078000 CLEARWATER RIVER AT PLUMMER, MN

LOCATION.--Lat 47°55'24", long 96°02'46", in SE'1/4SW'1/4 sec. 4, T.151 N., R.42 W., Red Lake County, Hydrologic Unit 09020305, on right bank 200 ft downstream from Soo Line Railroad bridge, 300 ft downstream from bridge on U.S. Highway 59, 0.9 mi northwest of railroad depot in Plummer, and 8 mi upstream from Hill River.

DRAINAGE AREA.--512 mi².

PERIOD OF RECORD.--April 1939 to September 1979, March 1982 to current year. Annual maximums only, October 1979 to February 1982. GAGE.--Water-stage recorder. Datum of gage is 1,098.57 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Nov. 10, 1939, nonrecording gage at site 100 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Since 1968, undetermined amounts of water diverted for the flooding of wild rice paddies upstream.

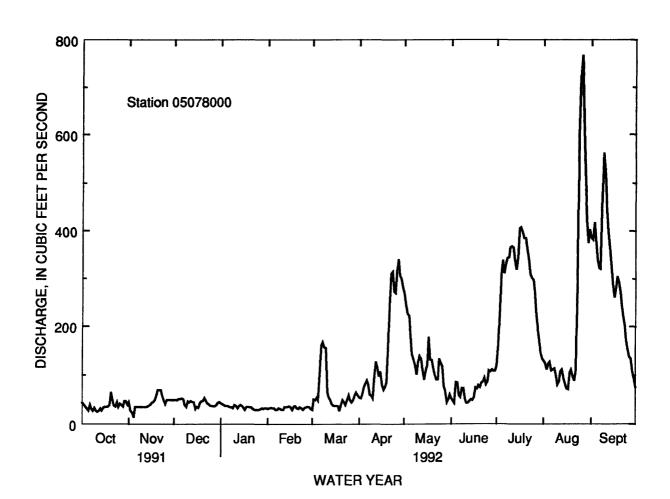
Discharge

Gage height

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft³/s and maximum (*): Gage height

Discharge

			Discharge	: 0	age neight					Discharg	,	Gage nergin
Date		Time	(ft³/s)		(ft)		Date		Time	(ft³/s)		(ft)
Mar. 7		_	Ice jam		*6.80		Sept.	٥	0700	568		5.73
		0500	-				Sept.	,	0700	J00		3.13
Aug. 26		05 00	*776		6.60							
		DISCHAI	RGE, CUBIC	EEET I	ED SECON	D WATER	VEADO	TODED 1	001 TO SE	DTEMBED 1	002	
		DISCHA	KGE, CUBIC	FEETF	EK SECON	D, WAIER	LIEARO	LODER	991 10 SE	F I EMIDEK I	772	
					DAI	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	44	45	e50	e43	e32	e30	e55	271	53	120	130	386
2	40	28	e50	e42	e33	e51	e54	247	48	162	125	382
3	35	24	e50	e40	e34	e50	e60	227	44	225	112	
4	32	14	e52	e38	e33	e55	e75	223	86	310	124	
5	28	e35	e52	e38	e33	e50	83	188	85	339	127	
_					000	-	00					
6	40	e35	e53	e37	e30	e102	90	144	59	312	110	323
7	32	e35	e51	e35	e30		82	133	56	331	112	
					-30	e161						
8	27	e35	e40	e35	e33	e168	61	121	74	344	114	4/3
9	33	e35	e36	e33	e32	e157	59	102	74	345	101	
10	27	e35	e47	e40	e30	e156	54	125	52	366	81	517
11	25	e35	e45	e38	e30	e 66	98	139	44	368	88	
12	27	e35	e48	e33	e36	e56	128	133	44	365	108	
13	32	e36	е4б	e37	e35	e50	115	112	48	341	112	
14	28	e38	e45	e40	e36	e41	98	91	51	320	94	
15	34	e40	e32	e38	e37	e38	108	110	50	344	84	290
16	35	e43	e36	e34	e35	e38	81	122	55	406	73	262
17	35	e46	e34	e30	e30	e38	71	178	75	408	72	277
18	36	e50	e43	e36	e37	e37	76	132	73	398	106	
19	39	e60	e47	e36	e38	e27	85	131	80	385	111	293
20	65	e70	e48	e35	e33	e40	156	113	76	385	98	272
20	0.5	Cit	040	633	C 33	C-10	150	115	,,	505	70	2,2
21	51	e70	e54	e35	e32	e50	244	101	85	360	89	245
	38	e70	e48	e32	e35	e45	311	91	88	343	112	219
22 23	36	e60	e43	e30	e33	e40	315	92	95	310	292	199
24	45	e50		e30	e30	e50			82	302	597	171
			e41				274	134				1/1
25	35	e42	e38	e30	e34	e60	271	126	88	298	720	152
4.		# 0		•		=0	240			071	m.m	100
26	42	e50	e38	e30	e35	e50	318	118	110	274	767	137
27	39	e50	e37	e31	e36	e45	341	79	108	224	668	133
28	36	e50	e37	e33	e36	e50	308	67	112	194	525	109
29	47	e50	e40	e32	e32	e60	300	45	109	173	423	93
30	47	e50	e44	e33		e65	281	52	109	146	375	76
31	40		e46	e33		e60		61		134	403	
										1		
TOTAL	1150	1316	1371	1087	970	1986	4652	4008	2213	9332	7053	8890
MEAN	37.1	43.9	44.2	35.1	33.4	64.1	155	129	73.8	301	228	296
MAX	65	70	54	43	38	168	341	271	112	408	767	561
MIN	25	14	32	30	30	27	54	45	44	120	72	76
AC-FT	2280	2610	2720	2160	1920	3940	9230	7950	4390		13990	17630
CFSM	.07	.09	.09	.07	.07	.13	.30	.25	.14	.59	.44	.58
CLOM	.07	.07	.09	.07	.07	.13	.30	ىء.	•177	,	1-4	.50


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	115	92.3	63.5	50.6	46.8	110	526	352	253	194	117	105
MAX	483	503	140	90.1	98.4	351	1391	1974	1140	844	507	666
(WY)	1972	1972	1978	1952	1974	1945	1966	1950	1962	1975	1985	1973
MIN	1.5	23.8	24.4	18.4	19.0	22.8	26.8	7.52	30.1	16.0	13.3	14.1
(WY)	1941	1991	1990	1940	1940	1940	1977	1977	1991	1940	1940	1940
SUMMA	ARY STAT	TISTICS I	FOR 1991 C	CALENDA	R YEAR	FOR	1992 WAT	ER YEAR		WATER Y	E ARS 19	39 - 1 992
ANNUA	L TOTAL			26087			44028					
ANNUA	L MEAN			71.5			120			170		
HIGHES	T ANNU	AL MEAN								354		1950
LOWES	T ANNUA	L MEAN								57.0		1990
HIGHES	T DAILY	MEAN		555	Jul 7		767	Aug 26		3840	Ap	r 25 1979
LOWES	T DAILY	MEAN		13	Feb 2		14	Nov 4		2.6	May	y 16 1977
ANNUA	L SEVEN	-DAY MIN	NIMUM	22	Jan 30		28	Oct 8		2.9	May	y 10 1977
INSTAN	TANEOU	S PEAK F	LOW				776	Aug 26		3940	Ap	r 25 1979
INSTAN	TANEOU	S PEAK S	TAGE				6.80a	Mar 7		12.37a	Ap	r 18 1979
INSTAN	TANEOU	S LOW FI	LOW				9.6	Nov 5		2.5		17, 1977
43737744		m /		#4 FF 40			00000			10000		

INSTANTANEOUS PEAK STAGE 6.80a Mar 7 12.37a 9.6 INSTANTANEOUS LOW FLOW Nov 5 2.5 ANNUAL RUNOFF (AC-FT) 51740 87330 122900 .23 332 57 33 .33 400 74 32 ANNUAL RUNOFF (CFSM) .14 10 PERCENT EXCEEDS 176 36 25 **50 PERCENT EXCEEDS** 90 PERCENT EXCEEDS

a Backwater from ice.

05078230 LOST RIVER AT OKLEE, MN

LOCATION.--Lat 47°50'35", long 95°51'30", in SE¹/₄NE¹/₄ sec.2, T.150 N., R.41 W., Red Lake County, Hydrologic Unit 09020305, on downstream side of bridge on State Highway 222 at northwest edge of Oklee, 12 mi upstream from mouth.

DRAINAGE AREA -- 266 mi2

PERIOD OF RECORD.--April 1960 to September 1981, February 1982 to current year. Monthly and daily figures for April 1960, to June 1960, published in WSP 2113.

GAGE.--Water-stage recorder. Datum of gage is 1,126.94 ft above sea level, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 9, 1960, reference points at same site at datum 8.00 ft higher. Sept. 9, 1960, to Sept. 30, 1964, nonrecording gage at same site at datum 8.00 ft higher. Oct. 1, 1964, to Sept. 30, 1981, and Feb. 24, 1982, to Sept. 6, 1989, nonrecording gage at same site and datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor.

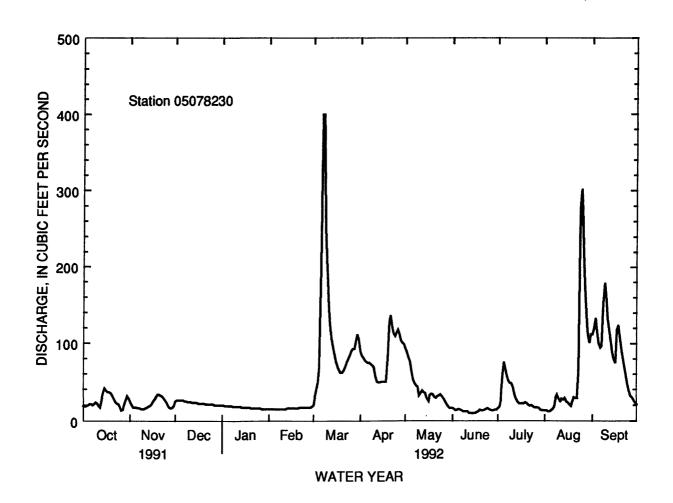
EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage known since at least 1897, 18.39 ft, present datum, Apr. 21, 1950, from floodmarks, discharge, 2,790 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAILY MEAN VALUES

					DAI	LI MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	e24	e25	e20	e15	e20	90	94	16	16	13	112
2	18	e20	e 26	e20	e15	e30	84	89	15	18	13	120
3	19	e17	e26	e19	e15	e40	82	82	13	26	12	133
4	20	e17	e26	e19	e15	e50	78	76	14	57	12	116
5	21	e17	e26	e19	e15	e70	76	65	15	76	13	100
6	21	e16	e 26	e19	e15	e200	75	53	14	68	15	95
7	20	e16	e 25	e19	e15	e400	75	48	13	58	18	97
8	21	e15	e 25	e18	e15	e400	73	45	12	51	30	1 5 3
9	23	e1 5	e24	e18	e15	e250	71	43	12	48	33	179
10	22	e15	e24	e18	e15	e200	69	32	12	48	28	157
11	19	e16	e24	e18	e15	e150	57	35	12	43	25	132
12	17	e17	e23	e18	e15	e125	50	38	10	34	28	117
13	27	e18	e 23	e18	e16	e106	49	36	9.7	28	27	101
14	35	e19	e23	e17	e16	e 95	49	35	9.3	24	29	89
15	41	e21	e23	e17	e16	e85	50	28	10	22	e25	79
16	38	e24	e22	e17	e16	e 77	50	25	10	22	e23	75
17	36	e 27	e22	e17	e16	e70	50	32	11	22	e21	117
18	36	e30	e22	e17	e16	e65	50	34	12	22	19	124
19	35	e33	e22	e17	e16	e62	80	33	14	23	e25	107
20	32	e33	e22	e16	el6	e62	128	30	13	22	e30	92
	<i>32</i>	655	022	0.10	CIO	002	120	30				/ -
21	28	e32	e21	e16	e17	e65	137	29	13	20	e29	82
22	24	e31	e21	e16	e17	e70	123	31	14	19	29	70
23	22	e29	e21	e16	e17	e75	113	32	15	20	e60	58
24	21	e26	e21	e16	e17	e80	110	33	16	18	277	48
25	18	e 23	e21	e16	e17	e85	114	31	15	17	302	39
26	13	e19	e21	e16	e17	e90	118	28	14	17	23 2	32
27	14	e17	e20	e15	e17	93	112	25	13	17	180	30
28	22	e16	e20	e15	e17	93	104	21	13	16	142	27
29	26	e17	e 20	e15	e18	104	101	18	14	14	112	23
30	31	e19	e20	e15		112	99	16	14	13	101	21
31	e28		e20	e15		105		16		13	112	
TOTAL	767	639	705	532	462	3529	2517	1233	388.0	912	2015	2725
MEAN	24.7	21.3	22.7	17.2	15.9	114	83.9	39.8	12.9	29.4	65.0	90.8
MAX	41	33	22.7 26	20	13.9	400	137	39.8 94	16	76	302	179
MIN	13	35 15	20	15	15	20	49	16	9.3	13	12	21
AC-FT	1520	1270	20 14 00	1060	916	7000	4990	2450	9.3 770	1810	4000	5410
CFSM.						/000		.15	.05	.11		.34
	09	.08	.09	.06	.06	.43	.32		.05		.24	.34
IN.	.11	.09	.10	.07	.06	.49	.35	.17	.03	.13	.20	.36

e Estimated.


	- 1992. BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	46.3	30.0	13.0	7.70	7.49	67.9	306	131	81.6	65.9	37.2	35.8
MAX	470	232	56.6	19.8	25.8	242	745	622	657	442	351	330
(WY)	1972	1972	1978	1986	1984	1986	1966	1962	1962	1962	1985	1973
MIN	1.02	1.11	.050	.002	.000	.19	29.5	10.5	8.20	1.99	1.17	.000
(WY)	1991	1977	1977	1977	1977	1964	1991	1980	1980	1961	1961	1990

SUMMARY STATISTICS FO	R 1991 CALENDA	R YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	RS 1960 - 1992
ANNUAL TOTAL	11964.14		16424.0			
ANNUAL MEAN	32.8		44.9		68.7	
HIGHEST ANNUAL MEAN					177	1962
LOWEST ANNUAL MEAN					18.2	1990
HIGHEST DAILY MEAN	215	Sep 10	400	Mar 7	3040	Apr 11 1969
LOWEST DAILY MEAN	.18	Jan 27	9.3	Jun 14	.00a	•
ANNUAL SEVEN-DAY MININ	MUM .18	Jan 27	10	Jun 11	.00	Feb 16 1963
INSTANTANEOUS PEAK FLO)W		500	Маг 8	3210	Apr 11 1969
INSTANTANEOUS PEAK STA	AGE		12.33b	Mar 8	16.72c	May 24 1962
INSTANTANEOUS LOW FLO	W		9.2	Jun 14		•
ANNUAL RUNOFF (AC-FT)	23730		32580		49740	
ANNUAL RUNOFF (CFSM)	.12		.17		.26	
ANNUAL RUNOFF (INCHES)	1.67		2.30		3.51	
10 PERCENT EXCEEDS	78		105		161	
50 PERCENT EXCEEDS	22		23		16	
90 PERCENT EXCEEDS	.62		15		2.0	
a Many days in 1963, 1964, 1977	7, and 1990.					

b Backwater from ice.

c Present datum.

05078500 CLEARWATER RIVER AT RED LAKE FALLS, MN

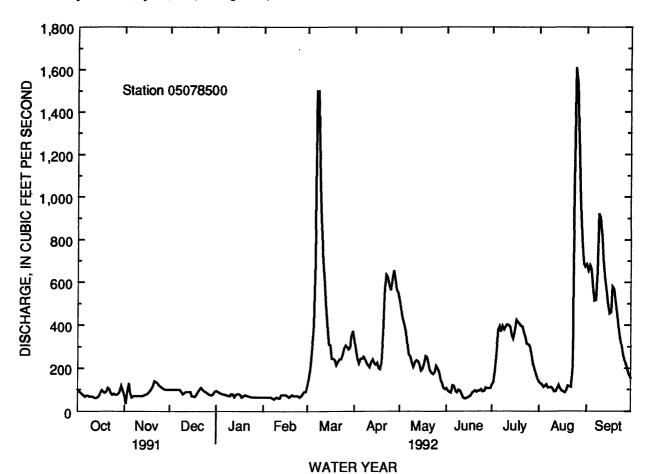
LOCATION.--Lat 47°53'15", long 96°16'25", in NW¹/4NE¹/4 sec.22, T.151 N., R.44 W., Red Lake County, Hydrologic Unit 09020305, on left bank 40 ft downstream from Great Northern Railroad bridge in Red Lake Falls, 1.4 mi upstream from mouth, and 3 mi downstream from Badger Creek. DRAINAGE AREA.--1,370 mi², approximately.

PERIOD OF RECORD.--June 1909 to September 1917, October 1934 to September 1981, March 1982 to current year. Monthly discharge only for October, November, 1934, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 355: 1911-12. WSP 1438: 1910-11, 1917(M). WDR MN-84-1:1983.

GAGE.--Water-stage recorder. Datum of gage is 948.94 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Sept. 12, 1911, nonrecording gage at site 0.5 mi upstream, and Sept. 12, 1911, to Sept. 30, 1917, nonrecording gage at site 40 ft upstream at different datum. REMARKS.--Records good except those for estimated daily discharges, which are poor.

					DA	ILY MEAN	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	100	74	e100	e95	e65	e120	330	515	107	123	136	685
2	90	35	e100	e90	e65	e150	281	481	95	134	129	657
3	86	92	e100	e86	e65	e200	247	434	88	195	124	681
4	79	131	e100	e83	e65	e300	223	406	85	269	112	664
5	74	86	e100	e80	e65	e400	246	371	120	377	119	584
6	68	65	e100	e78	e65	e700	246	321	117	396	125	515
7	72	e70	e100	e76	e60	e1500	255	265	93	370	110	517
8	72	e70	e100	e74	e55	e1500	243	255	87	397	111	652
9	67	e70	e90	e72	e60	e1100	225	225	99	381	112	923
10	67	e70	e80	e70	e65	e900	213	207	94	396	107	902
11	67	e70	e85	e80	e60	e700	205	228	79	404	93	799
12	63	e70	e90	e80	e60	e600	230	238	64	400	93	687
13	62	e70	e90	e66	e75	e500	243	233	59	393	106	612
14	65	e73	e90	e75	e75	e400	224	219	60	351	121	557
15	70	e76	e90	e80	e75	311	218	189	63	338	104	504
16	84	e80	e70	e80	e75	307	226	198	67	374	95	455
17	98	e86	e69	e75	e70	245	201	227	72	425	92	460
18	90	e94	e68	e65	e65	245	197	258	85	415	87	581
19	86	e105	e80	e70	e70	237	229	252	90	408	99	570
20	90	e120	e90	e75	e75	215	365	216	96	397	119	509
21	108	e140	e100	e72	e70	230	578	191	90	395	116	451
22	102	e135	e110	e70	e70	243	637	178	96	369	112	393
23	86	e130	e100	e68	e70	243	626	172	95	347	207	340
24	77	e120	e95	e66	e70	261	590	182	102	313	1060	303
25	81	e115	e90	e65	e65	292	566	211	92	311	1610	259
26	77	e110	e85	e65	e70	307	610	199	94	301	1530	237
20 27	77	e105	e80	e65	e80	302	658	182	109	265	1280	218
28	81	e100	e77	e65	e90	290	614	145	106	220	996	189
29	92	e100	e75	e65	e90	298	568	132	107	195	798	169
30	118	e100	e80	e65		352	554	108	106	175	689	154
31	e95		e90	e65		374		102		152	675	
mom · ·						40000	40510	m#10	07/	0000	110/7	15000
TOTAL	2544	2762	2774	2281	2005	13822	10848	7540	2717	9986	11267	15227
MEAN	82.1	92.1	89.5	73.6	69.1	446	362	243	90.6	322	363	508
MAX	118	140	110	95	90	1500	658	515	120	425	1610	923
MIN	62	35	68	65	55	120	197	102	59 5300	123	87	154 30200
AC-FT	5050	5480	5500	4520	3980	27420	21520	14960	5390	19810		30200
CFSM	.06	.07	.07	.05	.05	.33	.26	.18	.07	.24	.27 .31	.37
IN.	.07	.07	.08	.06	.05	.38	.29	.20	.07	.27	.31	.41


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1909 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	180	136	85.0	67.5	62.4	223	1136	670	479	340	194	175
MAX	1350	1233	260	220	150	993	3458	5059	3042	1613	1686	1267
(WY)	1972	1972	1910	1910	1984	1946	1966	1950	1962	1962	1985	1973
MIN	10.0	19.0	21.4	21.4	19.1	13.6	61.0	32.2	26.5	8.34	1.49	2.92
(WY)	1935	1935	1937	1940	1937	1937	1981	1977	1980	1936	1936	1936

SUMMARY STATISTICS FOR 1991	CALENDA	R YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	RS 1909 - 1992
ANNUAL TOTAL	51076		83773			
ANNUAL MEAN	140		229		309a	
HIGHEST ANNUAL MEAN					855	1950
LOWEST ANNUAL MEAN					64.4	1939
HIGHEST DAILY MEAN	831	Sep 17	1610	Aug 25	9930	Apr 25 1979
LOWEST DAILY MEAN	24	Feb 5	35	Nov 2	.10	Sep 15 1936
ANNUAL SEVEN-DAY MINIMUM	28	Feb 3	61	Feb 6	.24	Sep 12 1936
INSTANTANEOUS PEAK FLOW			1640	Aug 25	10300	Apr 25 1979
INSTANTANEOUS PEAK STAGE			10.10ь	Mar 8	15.85c	Mar 6 1983
INSTANTANEOUS LOW FLOW			20d	Nov 2	.00f	
ANNUAL RUNOFF (AC-FT)	101300		166200		223700	
ANNUAL RUNOFF (CFSM)	.10		.17		.23	
ANNUAL RUNOFF (INCHES)	1.39		2.27		3.06	
10 PERCENT EXCEEDS	335		567		766	
50 PERCENT EXCEEDS	86		110		104	
90 PERCENT EXCEEDS	35		67		36	

- a Median of annual mean discharges is 270 ft³/s.
- b Backwater from ice.
- c From highwater mark, backwater from ice.
- d Result of freezeup.
- f Occurred Sept. 15, 1936, Sept. 14, 1939, and Aug. 19-22, 1940.

05079000 RED LAKE RIVER AT CROOKSTON, MN

LOCATION.--Lat 47°46'32", long 96°36'33", in SW¹/₄SW¹/₄ sec.30, T.150 N., R.46 W., Polk County, Hydrologic Unit 09020303, on right bank 100 ft upstream from Sargent Street bridge in Crookston, 0.3 mi downstream from Interstate Power Co.'s dam, 0.6 mi downstream from bridge on U.S. Highway 75, and 53 mi upstream from mouth.

DRAINAGE AREA .-- 5,280 mi², approximately.

WATER-DISCHARGE RECORDS

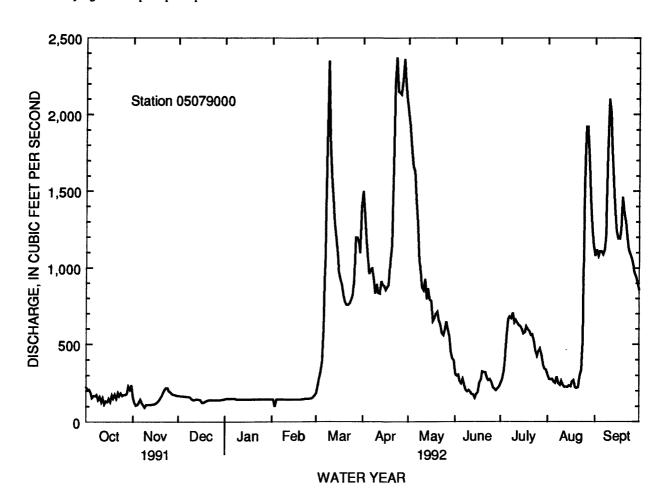
PERIOD OF RECORD.--May 1901 to current year. Monthly discharge only for some periods, published in WSP 1308. Figures of daily discharge for Apr. 3-30, 1904, published in WSP 130, have been found unreliable and should not be used.

REVISED RECORDS.--WSP 1115: 1906, 1915-16, 1919-20, 1922, 1925, 1927, 1929. WSP 1308: 1916(M), 1919(M), 1928(M), 1930(M). See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 832.72 ft above sea level. May 18, 1901, to June 30, 1909, nonrecording gage at bridge 300 ft upstream at same datum. July 1, 1909, to Sept. 25, 1911, nonrecording gage, Sept. 26, 1911, to Sept. 30, 1919, water-stage recorder, Oct. 1, 1919, to Sept. 30, 1930, nonrecording gage, at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diumal fluctuation prior to 1975 caused by powerplant 1,000 ft upstream. Runoff from 1,950 mi2 in the headwaters of Red Lake River is completely controlled by dam at outlet of Lower Red Lake. Flow partially affected by occasional regulation at Thief and Mud Lakes in Thief River basin (see station 05076000).

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2 22	154	e168	e146	e145	e185	e1500	2000	312	248	301	1080
2	210	123	e167	e148	e145	e225	e1350	1930	299	273	275	1120
3	208	105	e1 66	e150	e100	e280	e1200	1780	306	324	274	1080
4	190	e110	e165	e150	e145	e330	1060	1660	263	398	277	1110
5	155	e125	e164	e148	e145	e400	963	1630	249	549	258	1110
6	169	e1 42	e163	e148	e145	e600	993	1460	278	663	251	1090
7	166	e120	e162	e148	e145	e1100	1000	1300	236	681	291	1120
8	173	e105	e1 6 1	e148	e145	e1800	937	1050	208	670	250	1210
9	140	e94	e160	e145	e145	e2350	834	978	196	705	239	1750
10	162	e110	e150	e145	e145	e1850	895	875	206	642	263	2100
11	128	e110	e140	e145	e145	e1600	836	856	193	659	238	2010
12	154	e110	e140	e145	e145	e1450	833	928	181	639	224	1760
13	113	e110	e145	e145	e145	e1300	913	796	176	623	226	1540
14	132	e112	e145	e145	e145	e1200	889	865	155	616	224	1360
15	129	e114	e143	e145	e145	el 100	882	792	178	600	234	1240
16	150	e118	e140	e145	e145	e980	857	785	191	570	229	1190
17	129	e125	e125	e145	e145	e930	877	653	254	579	257	1190
18	172	e135	e125	e145	e145	e890	888	670	271	616	267	1250
19	152	e150	e130	e145	e145	e820	1040	699	323	596	22 2	1460
20	176	e165	e134	e145	e145	e 780	1150	714	320	585	219	1360
21	148	e185	e138	e145	e146	e760	1660	660	319	559	222	1300
22	187	e205	e140	e145	e147	e760	2190	631	282	564	297	1210
23	166	e218	e140	e145	e148	e770	2370	572	269	524	337	1120
24	185	e218	e140	e145	e149	e790	2150	559	275	460	511	1090
25	168	e200	e140	e145	e150	e820	2140	592	256	426	1560	1060
26	174	e190	e140	e145	e151	e920	2130	650	2 22	453	1920	1020
27	175	e180	e140	e145	e152	e1200	2220	597	213	472	1920	968
28	182	e176	e140	e145	e158	e1200	2360	550	203	432	1720	940
29	228	e174	e140	e145	e170	e1170	2220	457	215	369	1440	905
30	208	e170	e142	e145		e1100	2090	409	229	343	1240	860
31	237		e144	e145		e1400		396		334	1150	
TOTAL	5288	4353	4537	4521	4226	31060	41427	28494	7278	16172	17336	37603
MEAN	171	145	146	146	146	1002	1381	919	243	522	559	1253
MAX	237	218	168	150	170	2350	2370	2000	323	705	1920	2100
MIN	113	94	125	145	100	185	833	396	155	248	219	860
AC-FT	10490	8630	9000	8970	8380	61610	82170	56520	14440	32080	34390	74590
CFSM.	03	.03	.03	.03	.03	.19	.26	.17	.05	.10	.11	.24
IN.	.04	.03	.03	.03	.03	.22	.29	.20	.05	.11	.12	.26


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1901 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	804	664	545	492	467	934	2947	2050	1643	1239	789	787
MAX	2836	3172	1900	1663	1464	3626	10260	15290	7205	6851	3868	3009
(WY)	1972	1972	1904	1951	1951	1910	1966	1950	1962	1975	1985	1905
MIN	8.02	10.1	5.34	15.6	17.8	24.9	232	154	80.4	26.2	12.3	8.87
(WY)	1937	1937	1937	1934	1937	1936	1981	1934	1934	1936	1934	1934
SUMMA	ARY STAT	TISTICS I	OR 1991 C	CALENDA	R YEAR	FOR	1992 WAT	TER YEAR		WATER YE	EARS 190	01 - 1992
ANNUA	L TOTAL	,		90865			202295					
ANNUA	L MEAN			249			553			1109		
HIGHES	T ANNU	AL MEAN								3129		1950
LOWES	T ANNUA	L MEAN								83.6		1934
HIGHES	T DAILY	MEAN		1300	Jun 13		2370	Apr 23		27100	Apr	12 1969
LOWES	T DAILY	MEAN		80	Jan 27		94	Nov 9		2.5		29 1936
ANNUA	L SEVEN	-DAY MIN	NIMUM	81	Jan 27		107	Nov 8		3.9		28 1936
INSTAN	TANEOU	S PEAK F	LOW				2460	Apr 28		28400	Apr	12 1969
INSTAN	TANEOU	S PEAK S	TAGE				12.17a	Mar 9		27.33	Apr	12 1969
INSTAN	TANEOU	S LOW FL	.OW				70	Nov 3		.00ь	Jul	13 1960
ANNUA	L RUNOF	F (AC-FT))	180200			401300			803400		
ANNUA	LRUNOF	F (CFSM)		.047			.10			.21		
ANNUA	LRUNOF	F (INCHE	S)	.64			1.43			2.85		
40 DEDC	TART DAG	TTTT		~			1050			A 400		

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

b Caused by regulation of powerplant upstream.

a Backwater from ice.

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962, 1974-76, 1979 to current year REMARKS.--Letter K indicates non-ideal colony count.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
09	1430 0830	184 	495 	534 	8.7 	8.6 	9.0 	1.9 	734 	14.1 	K6 	K12
	1530	105	730	743	8.0	7.9	0.0	2.5	742	13.1	К9	K12
	1520	146	610	603	8.2	7.7	0.5	2.3	724	7.6	K10	K14
	0845	848	400	426	8.2	8.1	7.0	6.0	738	12.3	39	K19
JUL 08	1245	720	525	532	8.5	8.2	21.5	6.5	735	8.0	200	370
DATE	CALCIUM DIS-	DIS-		DIS- SOLVED	WAT DIS TOT IT	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	DIS IT FIELD MG/L AS CO3	WATER DIS IT FIELD	SULFATE DIS- SOLVED	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 08 09 DEC	61 	27 	13	4.8	186	201	0 	227	85 	11 _	0.20 	0.45
04	94	38	13	4.9	294	307	0	359	120	12	0.20	13
JAN 22	77	29	11	4.5	270	284	0	329	45	11	0.20	18
APR 16 JUL	57	19	5.1	4.2	157	170	0	192	54	7.0	0.20	6.8
08	61	27	10	3.8	194	210	7	237	72	9.7	0.20	8.5

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRITE DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONL	GEN, AMMONIA	AMONIA + ORGANIC	PHOS-	DIS-	ORTHO	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT												
08	324	<0.010	<0.050	<0.010	<0.010	0.80	0.030	<0.010	0.010	<0.010		
09 DEC											6	60
04	463	<0.010	0.470	0.030	0.030	1.0	0.020	0.020	0.010	<0.010		
JAN												
22	383	<0.010	0.320	0.170	0.190	0.90	0.050	0.020	0.030	0.020		
APR 16	268	<0.010	0.200	0.020	0.020	0.70	0.030	<0.010	0.020	<0.010	18	91
JUL	200	40.010	0.200	0.020	0.020	0.70	0.050	40.010	0.020	40.010		
08	348	<0.010	0.058	0.050	0.040	1.1	0.070	0.050	0.050	0.040	16	95
DATE	DIS-	DIS-	DIS-	DIS-	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	DIS- SOLVED (UG/L	DENUM, DIS-	NICKEL, DIS- SOLVED (UG/L	DIS-	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)
OCT												
08	10	50	⋖3	32	19	9	<10	<1	<1	<1.0	160	≪6
09 DEC												
04												
JAN				***								
22	 20					 35			 <1	 <1.0	 180	 < 6

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND

LOCATION.--Lat 47°55'38", long 97°01'34", in sec.2, T.151 N., R.50 W., Grand Forks County, Hydrologic Unit 09020301, on the right bank 200 ft upstream from the DeMers Avenue bridge, 0.4 mi downstream from Red Lake River, and at mile 293.8.

DRAINAGE AREA.--30,100 mi², approximately, including 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

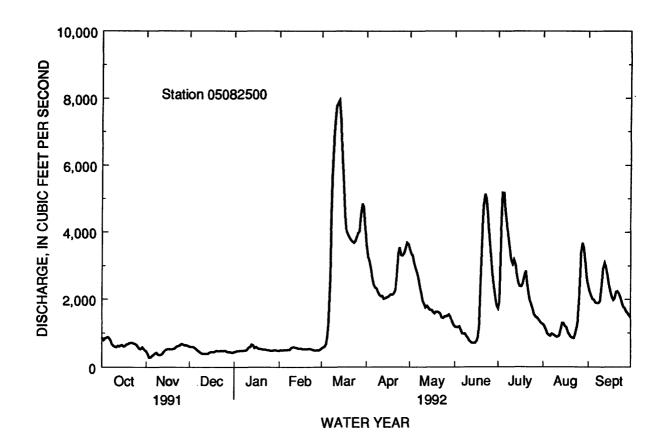
PERIOD OF RECORD.--April 1882 to current year. Prior to January 1904 monthly discharge only, published in WSP 1308.

REVISED RECORDS.--WSP 855: 1936(M). WSP 1115: 1942. WSP 1175: 1897(M). WSP 1388: 1904, 1914-15, 1917-19, 1921-22, 1927, 1950. WSP 1728: Drainage area. WRD-ND-81-1: 1882, 1897 (M).

GAGE.--Water-stage recorder. Datum of gage is 779.00 ft above sea level. Oct. 1, 1983, to Sept. 30, 1986, datum of gage was 780.00 ft at same site. Apr. 14, 1965, to Sept. 30, 1983, water-stage recorder 1.9 mi downstream at a datum of 778.35 ft. Nov. 3, 1933, to Apr. 13, 1965, water-stage recorder 0.3 mi upstream at 778.35 ft datum. See WSP 1728 or 1913 for history of changes prior to Nov. 3, 1933.

REMARKS.--Records good except those for period of estimated daily discharges, which are fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES


					D	aili mea	N VALUES	•				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	859	461	604	442	487	552	3620	3500	1200	1720	1250	2400
2	801	375	596	454	496	576	3270	3360	1180	1930	1190	2240
3	844	285	597	471	494	600	3150	3300	1180	4040	1090	2100
4	864	290	586	475	496	670	2910	3100	1200	5180	982	2010
5	886	331	557	476	496	908	2640	2920	1110	5170	934	1980
3	000	331	337	470	420	700	2040	2720	1110	3110	754	1700
6	853	371	520	480	496	1460	2430	2810	1000	4660	924	1900
7	<i>7</i> 74	403	477	486	506	2670	2360	2610	985	4250	977	1880
8	668	419	445	495	514	5590	2320	2390	989	3880	961	1880
9	619	376	413	491	558	e6520	2220	2180	918	3520	925	1940
10	598	355	401	526	584	e7280	2130	1960	863	3200	890	2440
	2,0	555	101	320	301	C/200	2150	1700	000	5200	0,0	2110
11	585	358	395	577	586	e7770	2090	1850	790	3060	888	2920
12	620	388	394	601	577	e7860	2100	1760	736	3190	928	3090
13	609	439	395	660	564	e7940	2010	1790	708	3040	1090	2970
14	636	489	398	644	550	e7360	2030	1730	708	2730	1290	2730
15	639	520	434	566	545	e6310	2050	1680	711	2490	1290	2460
	027					00510	2000	1000		2.70		
16	608	525	443	600	545	e5440	2070	1680	766	2400	1200	2240
17	612	527	443	564	531	e4470	2120	1630	874	2390	1180	2090
18	662	527	442	543	529	e4030	2150	1580	1280	2470	1030	1980
19	675	528	461	536	529	e3920	2140	1630	2590	2700	955	2020
20	704	538	477	527	525	e3840	2180	1630	3940	2850	894	2220
	, , ,		•••		520	650.6	2100	1050	27.10		•	
21	715	559	472	516	539	e3770	2280	1610	4790	2480	866	2240
22	708	605	474	516	539	e3730	2720	1570	5140	2150	858	2170
23	691	625	477	508	520	e3690	3380	1460	4990	1950	967	2040
24	677	637	471	503	515	e3730	3550	1440	4490	1810	1170	1900
25	658	673	483	496	493	e3860	3320	1480	3880	1690	1390	1780
26	592	677	479	486	491	e3980	3310	1490	3330	1550	2240	1730
27	537	651	458	478	500	e4030	3380	1500	2830	1470	3370	1630
28	526	641	441	492	490	e4500	3510	1540	2410	1440	3680	1590
29	583	640	439	500	506	4850	3690	1460	2070	1400	3540	1520
30	542	623	439	494		4760	3640	1350	1810	1320	3070	1460
31	492	023										
31	492	***	427	486		4130		1240		1280	2650	
TOTAL	20837	14836	14529	16089	15201	130796	80770	61230	59468	83410	44669	63550
MEAN	672	495	469	519	524	4219	2692	1975	1982	2691	1441	2118
MAX	886	677	604	660	586	7940	3690	3500	5140	5180	3680	3090
MIN	492	285	394	442	487	552	2010	1240	708	1280	858	1460
AC-FT	41330	29430	28820	31910	30150	259400	160200	121400	118000	165400	88600	126100

e Estimated.

STATIST	TICS OF N	MONTHLY M	IEAN D	OATA FOR	WATER Y	EARS 1904	- 1992, BY	WATER Y	EAR (W	Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1315	1144	921	787	754	2311	9075	4888	3829	3021	1535	1338
MAX	4290	5218	3073	1929	1869	10250	31480	36510	19340	25270	6564	4702
(WY)	1972	1972	1972	1951	1952	1966	1979	1950	1962	1975	1905	1985
MIN	12.1	30.5	17.8	18.8	2.87	42.1	954	373	151	88.8	30.6	20.3
(WY)	1937	1937	1937	1937	1937	1937	1938	1934	1934	1936	1934	1936
SUMMA	RY STAT	ISTICS FOR	1991	CALENDA	R YEAR	FOR	. 1992 WAT	ER YEAR		WATER Y	EARS 19	04 - 1992
ANNUAI	L TOTAL			450227			605385					
ANNUAI	L MEAN	-		1233			1654			2555	5	
HIGHES?	T ANNUA	L MEAN								7580)	1950
LOWEST	ANNU A	L MEAN								244	\$	1934
HIGHEST	T DAILY :	MEAN		4850	Jul 8		7940	Mar 13		80900) Ap	r 23 1979
LOWEST	DAILY	MEAN		180	Jan 1		285	Nov 3		1.8	Sc Ser	2 1977
ANNUAI	L SEVEN-	DAY MINIM	1UM	184	Jan 10		353	Nov 2		2.5	5 Fei	12 1937
INSTAN	TANEOU:	S PEAK FLO	W				8000a	Mar 12		85000	d Ap	r 10 1897
INSTANT	FANEOUS	S PEAK STA	GE				23.30ь	Mar 12		50.20	of Ap	r 10 1897
ANNUAL	RUNOF	F (AC-FT)		893000			1201000			1851000) 1	
10 PERCI	ENT EXC	EEDS		2790			3690			5660)	
50 PERCI	ENT EXC	EEDS		774			1010			1280)	
90 PERCI	ENT EXC	EEDS		239			475			260)	

a About.

f Site and datum then in use.

b Backwater from ice.

c Caused by unusual regulating during repair of dam at Grand Forks.

d About, from rating curve extended above 58,000 ft³/s.

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1949, 1956 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		TEMPER- ATURE AIR (DEG C) (00020)	ATURE WATER	DIS- SOLVED (MG/L)	CENT SATUI ATION	HARD NESS TOTAL (MG/I R- AS N) CACOS	LINITY L LAB L (MG/L AS S) CACO3	Y CALCIUM DIS- . SOLVED (MG/L 3) AS CA)	MAGNE- M SIUM, DIS- O SOLVED (MG/L AS MG) (00925)
OCT	1545	606	605		1.0	5.0						
NOV	1373	000	005		1.0	5.0						
	1450	650	925	8.2	-5.5	0.5			340	280	71	39
DEC	1245	405	840	8.0	-12.0	0.0	13.0	92	380	310	83	42
	1200	428	900		1.5	0.5						
JAN	1645	4770	000									
MAR	1645	473	900		-14.5	0.0						
	1100	8080	425		1.0	0.5						
APR												
03 MAY	1150	3170	539	7.8	8.0	3.0			220	180	50	23
	1215	1600	655		20.0	17.0						
JUL												
06 AUG	1155	4680	458		15.0	17.5						
	1005	1120	572		19.5	18.0						
SEP												4.
30	0945	1630	590	8.1	10.0	12.5			300	230	68	31
DATE	SODIU DIS- SOLVI (MG/ AS NA (00930	ED L SODIU A) PERCE	AI SOF TIO M RAT	RP- DI ON SOL' TIO (MC AS	JM, SULF SS- DI VED SOLV G/L (MC K) AS S	ATE F S- VED SC G/L (1 O4) A	RIDE, F DIS- DLVED SO MG/L (I S CL) A	RIDE, DIS- S DLVED MG/L AS F)	SILICA, DIS- SOLVED ' (MG/L	SOLIDS, SUM OF I CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	RESIDUE AT 180 DEG. C DIS-	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
NOV												
27 DEC	39	20	().9 7	.3 110		29	0.30	12	476	523	0.71
DEC 11	38	18	().8 7	.4 130		30	0.20	7.4	522	554	0.75
APR												
03 SEP	20	16	C).6 5.	.8 76		11	0.20	14	310	351	0.48
30	15	10	C).4 4.	.4 84		12	0.20	9.3	362	401	0.55

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

DATE	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
NOV 27 DEC 11	918 606	3	90 110	30 10	<1 <1	30 30	20 20	<0.1 <0.1	<1 1	<1 <1	380 420
APR 03 SEP	3000	2	40	20	<1	20	10	<0.1	2	1	290
30	1760	4	60	20	<1	20	10	<0.1	<1	<1	320

05087500 MIDDLE RIVER AT ARGYLE, MN

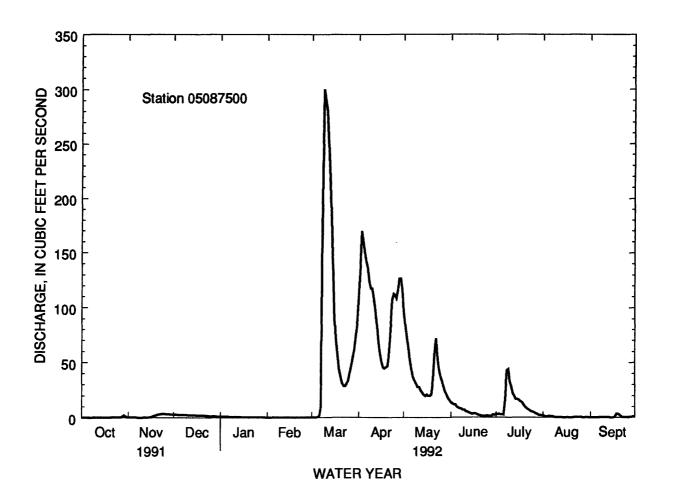
LOCATION.--Lat 48°20'25", long 96°48'58", in NE¹/4NW¹/4 sec.15, T.156 N., R.48 W., Marshall County, Hydrologic Unit 09020309, on left bank 30 ft upstream of bridge on County Highway 4 in Argyle and 14 mi upstream from mouth.

DRAINAGE AREA.--265 mi²

PERIOD OF RECORD.--March to September 1945, October 1950 to September 1981, February 1982 to current year. Monthly discharge only for some periods, published in WSP 1728. October 1981 to January 1982, operated as a high-flow partial-record station.

GAGE.--Water-stage recorder. Datum of gage is 828.53 ft above mean sea level. Prior to Nov. 8, 1951, nonrecording gage and Nov. 8, 1951, to Sept. 18, 1952, water-stage recorder at site 800 ft downstream at datum 1.0 ft higher. Sept. 19, 1952, to June 28, 1982, recording gage at site 800 feet downstream at present datum. June 29, 1982, to Sept. 20, 1983, nonrecording gage at present site and datum.

REMARKS .-- Records fair except those for estimated daily discharges, which are poor.


EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of April 1950 reached a stage of 15.25 ft present datum, site then in use, from floodmarks, discharge, 2,790 ft³/s.

					D.	AILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.10	.30	e3.0	e1.3	e.54	e.41	e110	98	14	3.3	2.0	.17
2	.10	e.28	e2.9	e1.2	e.53	e.43	e138	84	13	3.1	1.2	.17
3	.10	e.26	e2.9	e1.2	e.52	e.46	e170	73	12	3.3	.99	.15
4	.10	e.24	e2.8	el.1	e.51	e.52	e160	63	12	3.0	.87	.14
5	.10	e.23	e2.8	el.1	e.50	e.62	e150	53	10	2.9	1.5	.18
J	.10	0.23	02. 0	01.1	0.50	0.02	C130	33		,	1.0	120
6	.11	e.22	e2.7	e1.1	e.49	e1.5	e142	44	8.9	2.8	1.2	.19
7	.13	e.21	e2.7	e1.0	e.48	e10	136	37	8.7	16	1.1	.30
8	.14	e.20	e2.6	e1.0	e.47	e170	124	34	8.0	43	.83	.24
9	.12	e.20	e2.6	e.97	e.46	e300	118	31	7.2	44	.48	.24
10	.10	e.21	e2.5	e.95	e.45	€290	118	28	7.1	34	.53	.28
•												
11	.09	e.22	e2.5	e.92	e.45	e280	109	28	5.7	28	.31	.26
12	.09	e.24	e2.5	e.90	e.44	e250	98	25	5.3	22	.29	.24
13	.16	e.27	e2.4	e.87	e.43	e22	83	23	4.5	20	.25	.23
14	.20	e.40	e2.4	e.85	e.43	e180	70	21	3.8	17	.21	.20
15	.14	e.60	e2.4	e.83	e.42	e130	59	20	3.2	17	.20	.20
16	.20	e.90	e2.3	e.81	e.42	e90	51	21	3.7	16	.21	.21
17	.20	e1.3	e2.3	e.79	e.41	e70	46	20	3.6	15	.22	.89
18	.17	el.8	e2.2	e.77	e.41	e57	45	20	3.2	14	.21	3.6
19	.16	e2.3	e2.2	e.75	e.40	e45	46	21	2.5	. 12	.21	3.3
20	.18	e2.7	e2.1	e.73	e.40	e38	47	35	2.2	10	.20	2.4
		•	• •							0.5		
21	.26	e3.1	e2.0	e.72	e.40	e32	57	57	1.6	8.5	.19	1.2
22	.27	e3.4	e1.9	e.70	e.40	e29	80	72	1.5	7.7	.23	.49
23	.25	e3.5	e1.9	e.68	e.40	e29	107	54	1.3	6.8	.28	.38
24	.45	e3.5	e1.8	e.66	e.40	e31	113	45	1.5	5.8	.29	.43
25	.42	e3.5	e1.7	e.65	e.40	e34	112	38	1.9	5.3	.28	.45
26	.27	e3.4	e1.6	e.63	e.40	e40	109	34	1.7	4.7	.25	.49
27	.27	e3.3	el.6	e.61	e.40	e47	117	29	1.3	3.9	.21	.74
28	1.1	e3.2	el.5	e.60	e.40	e55	127	24	1.6	3.2	.21	.78
29	2.2	e3.1	e1.4	e.59	e.40	e63	127	21	2.6	2.5	.24	.89
30	1.3	e3.1	e1.4	e.57		e74	116	18	2.5	2.5	.26	1.0
31	.36		e1.3	e.55		e86		16		2.3	.21	
TOTAL	9.84	46.18	68.9	26.10	12.76	2653.94	3085	1187	156.1	379.6	15.66	20.44
MEAN	.32	1.54	2.22	.84	.44	85.6	103	38.3	5.20	12.2	.51	.68
MAX	2.2	3.5	3.0	1.3	.44 .54	300	170	30.3 98	14	44	2.0	3.6
MIN	.09	.20	1.3	.55	.34 .40	.41	45	16	1.3	2.3	.19	.14
AC-FT	20	.20 92	1.3	.33 52	.40 25	5260	6120	2350	310	753	31	41
CFSM	.00	.01	.01	.00	ىك 00.	.32	.39	.14	.02	.05	.00	.00
IN.	.00	.01	.01	.00	.00	.32 .37	.43	.14	.02	.05	.00	.00
114.	.00	.01	.01	.00	.00	,37	.43	.17	.02	·w	.00	.00

e Estimated.

STATIST	TICS OF	MONTHL	Y MEAN I	DATA FOR	WATER YEA	RS 1945	- 1992, BY	WATER Y	EAR (W	Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	9.01	5.16	2.27	.98	.74	25.0	205	72.1	71.8	51.0	4.77	7.51
MAX	94.1	33.4	15.8	4.65	3.32	217	747	330	660	688	29.5	163
(WY)	1983	1957	1983	1983	1983	1983	1966	1970	1970	1975	1985	1957
MIN	.000	.000	.000	.000	.000	.000	.20	2.12	.37	.000	.000	.000
(WY)	1954	1954	1954	1953	1953	1954	1991	1981	1973	1961	1961	1952
SUMMA	RY STA	TISTICS	FOR 1991	CALENDA	R YEAR	FOR	1992 WAT	ER YEAR		WATER Y	EARS 19	45 - 1992
ANNUA	L TOTA	L		1760.27			7661.52					
ANNUA	L MEAN			4.82			20.9			37.8a		
HIGHES	T ANNU	AL MEA	N							112		1966
LOWES	T ANNU.	AL MEAN	1							1.60		1977
HIGHES	TDAILY	MEAN		84	Jul 8		300	Mar 9		3790	J	ul 4 1975
LOWES	T DAILY	MEAN		.00	Many days		.09	Oct 11,	12	.00	N	lany days
ANNUA	L SEVEN	N-DAY M	INIMUM	.00	Jan 1		.11	Oct 1		.00	Au	g 18 1952
INSTAN	TANEOU	JS PEAK	FLOW				350	Mar 9		4260	Ji	ul 3 1975
INSTAN	TANEOU	JS PEAK	STAGE				9.87ь	Mar 9		16.59c	J	ա1 3 1975
INSTAN	TANEOU	JS LOW I	FLOW				.08	Oct 11,	12			
ANNUA	LRUNO	FF (AC-F	T)	3490			15200			27390		
ANNUA	L RUNO	FF (CFSM	f)	.018			.079			.14		
ANNUA	LRUNO	FF (INCH	ES)	.25			1.08			1.93		
10 PERC	ENT EX	CEEDS		12			72			74		
50 PERC	ENT EX	CEEDS		.27			1.7			1.8		
90 PERC	ENT EX	CEEDS		.00			.21			.00		
a Median	at annua	l mean dis	charges is	25 ft ³/s.								

a Median at annual meb Backwater from ice.c Present datum

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND

LOCATION.--Lat 48°34'20", long 97°08'50", in SE¹/₄SE¹/₄SE¹/₄SE./₄ sec.24, T.159 N., R.51 W., Pembina County, Hydrologic Unit 09020311, on downstream side of bridge on North Dakota State Highway 11, at the North Dakota-Minnesota border, 1.5 mi northeast of Drayton, and at mile 206.7.

DRAINAGE AREA.--34,800 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1936 to June 1937, April 1941 to current year (fragmentary prior to April 1949).

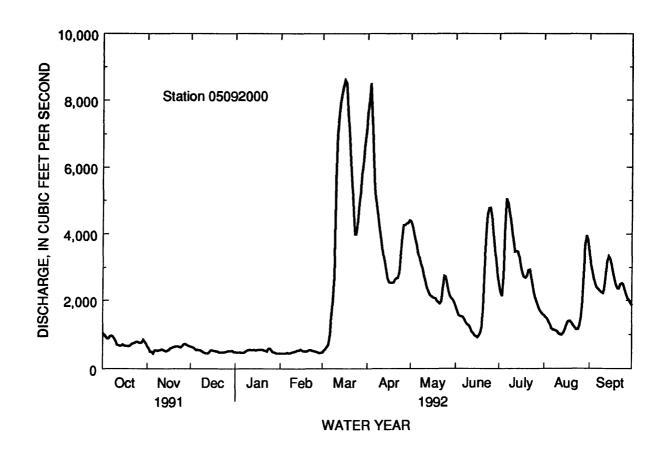
REVISED RECORDS.--WSP 1388: 1949-50. WSP 1728: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 755.00 ft above sea level (Minnesota highway bench mark). Prior to Nov. 30, 1954, nonrecording gage at site 1.5 mi upstream at datum 1.59 ft higher.

REMARKS.--Records good except those for period Oct. 30 to Mar. 4, which are fair and those for Mar. 5-13, which are poor.

EXTREMES OUTSIDE PERIOD OF RECORD. --Flood of April 1897 reached a stage of about 41 ft, at site and datum in use prior to Nov. 30, 1954.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992


DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 1040 e650 651 490 456 480 e7600 4390 1810 2460 1560 3470 2 980 e600 634 485 449 530 e8000 4260 1680 2240 1510 3080 3 940 e500 625 480 456 574 e8500 4080 1570 2140 1460 2860 4 881 e500 583 480 456 651 e7400 3890 1540 2730 1390 2660 5 891 e450 550 475 456 e700 e6300 3690 1530 4300 1280 2490 6 940 542 559 470 472 e1000 e5200 3450 1510 5040 118						D	AILY MEA	N VALUES	6				
2 980 e600 634 485 449 530 e8000 4260 1680 2240 1510 3080 3 940 e500 625 480 456 574 e8500 4080 1570 2140 1460 2860 4 881 e500 583 480 456 651 e7400 3890 1540 2730 1390 2660 5 891 e450 550 475 456 e700 e6300 3690 1530 4300 1280 2490 6 940 542 559 470 472 e1000 e5200 3450 1510 5040 1180 2400 7 960 534 550 472 456 e1500 e4920 3280 1440 4920 1140 2350 8 940 526 534 503 464 e2000 e4570 3110 1350 4680 1130 2300 9 881 534 510 526 487 e2700 e4250 2980 1290 4410 1110 2250 10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 668 511 479 559 542 e8200 2870 2180 981 3470 1010 2820 13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 e8200 2870 2180 981 3470 1010 2820 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2140 948 3290 1130 3260 18 669 617 518 559 518 e7500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7500 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 2470 2410 2460 2470 2470 2470 2470 2470 2470 2470 247	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 940 e500 625 480 456 574 e8500 4080 1570 2140 1460 2860 4 881 e500 583 480 456 651 e7400 3890 1540 2730 1390 2660 5 891 e450 550 475 456 e700 e6300 3690 1530 4300 1280 2490 6 940 542 559 470 472 e1000 e5200 3450 1510 5040 1180 2400 7 960 534 550 472 456 e1500 e4920 3280 1440 4920 1140 2350 8 940 526 534 503 464 e2000 e4570 3110 1350 4680 1130 2300 9 881 534 510 526 487 e2700 e4250 2980 1290 4410 1110 2250 10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 704 567 464 559 503 e7000 e3630 2590 1200 3760 1030 2360 12 695 551 449 550 518 e7500 e3140 2410 1080 3470 1010 2820 13 669 526 449 550 542 e8200 2870 2180 981 3470 1010 2820 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 550 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 550 542 e8200 2570 2180 981 3470 1040 3340 15 713 526 534 534 550 542 e8200 2550 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2140 948 3290 1130 3260 16 686 551 534 550 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 2300 2470 2470 2420 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 2300 2470 2470 2420 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 2360 2470 2470 2420 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 2360 2470 2420 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 2360 2470 2420 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 2360 2470 2420 686 643 510 559 542 68500 25500 26680 1910 2940 2910 1250 2360 2370 2370 2370 2370 2370 2370 2370 237			e650			456	480	e7600	4390				
4 881 e500 583 480 456 651 e7400 3890 1540 2730 1390 2660 5 891 e450 550 475 456 e700 e6300 3690 1530 4300 1280 2490 6 940 542 559 470 472 e1000 e5200 3450 1510 5040 1180 2400 7 960 534 550 472 456 e1500 e4920 3280 1440 4920 1140 2350 8 940 526 534 503 464 e2000 e4570 3110 1350 4680 1130 2300 9 881 534 510 526 487 e2700 e4250 2980 1290 4410 1110 2250 10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 704 567 464 559 503					485								
5 891 e450 550 475 456 e700 e6300 3690 1530 4300 1280 2490 6 940 542 559 470 472 e1000 e5200 3450 1510 5040 1180 2400 7 960 534 550 472 456 e1500 e4920 3280 1440 4920 1140 2350 8 940 526 534 503 464 e2000 e4570 3110 1350 4680 1130 2300 9 881 534 510 526 487 e2700 e4250 2980 1290 4410 1110 2250 10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 704 567 464 559 503 e7000 e3630 2590 1200 3760 1030 2360 12 695 551 449 550 518	3	940		625	480	456	574	e8500					
6 940 542 559 470 472 e1000 e5200 3450 1510 5040 1180 2400 7 960 534 550 472 456 e1500 e4920 3280 1440 4920 1140 2350 8 940 526 534 503 464 e2000 e4570 3110 1350 4680 1130 2300 9 881 534 510 526 487 e2700 e4250 2980 1290 4410 1110 2250 10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 70 795 551 449 550 518 e7500 e3340 2410 1080 3470 1010 2820 13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 534 567 e8400 2650 2140 948 3290 1130 3260 17 669 592 526 559 518 e8500 2540 2650 2140 948 3290 1130 3260 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e87750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370										1540	2730	1390	2660
7 960 534 550 472 456 e1500 e4920 3280 1440 4920 1140 2350 8 940 526 534 503 464 e2000 e4570 3110 1350 4680 1130 2300 9 881 534 510 526 487 e2700 e4250 2980 1290 4410 1110 2250 10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 704 567 464 559 503 e7000 e3630 2590 1200 3760 1030 2360 12 695 551 449 550 518 e7500 e3340 2410 1080 3470 1010 2820 13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 <td>5</td> <td>891</td> <td>e450</td> <td>550</td> <td>475</td> <td>456</td> <td>e700</td> <td>e6300</td> <td>3690</td> <td>1530</td> <td>4300</td> <td>1280</td> <td>2490</td>	5	891	e450	550	475	456	e700	e6300	3690	1530	4300	1280	2490
8 940 526 534 503 464 e2000 e4570 3110 1350 4680 1130 2300 9 881 534 510 526 487 e2700 e4250 2980 1290 4410 1110 2250 10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 704 567 464 559 503 e7000 e3630 2590 1200 3760 1030 2360 12 695 551 449 550 518 e7500 e3340 2410 1080 3470 1010 2820 13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567	6	940				472							
9 881 534 510 526 487 e2700 e4250 2980 1290 4410 1110 2250 10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 704 567 464 559 503 e7000 e3630 2590 1200 3760 1030 2360 12 695 551 449 550 518 e7500 e3340 2410 1080 3470 1010 2820 13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2100 920 3030 1260 3060 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2680 1910 2940 2910 1250 2360								e4920					
10 795 550 487 550 495 e5600 e3930 2780 1260 4090 1080 2230 11 704 567 464 559 503 e7000 e3630 2590 1200 3760 1030 2360 12 695 551 449 550 518 e7500 e3340 2410 1080 3470 1010 2820 13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2100 920 3030 1260 3060 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 51		940				464							
11 704 567 464 559 503 e7000 e3630 2590 1200 3760 1030 2360 12 695 551 449 550 518 e7500 e3340 2410 1080 3470 1010 2820 13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2100 920 3030 1260 3060 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518				510		487							2250
12 695 551 449 550 518 e7500 e3340 2410 1080 3470 1010 2820 13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2100 920 3030 1260 3060 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526<	10	795	550	487	550	495	e5600	e3930	2780	1260	4090	1080	2230
13 669 526 449 550 542 e7900 e3150 2290 1040 3490 997 3200 14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2100 920 3030 1260 3060 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370	11	704	567	464	559	503	e7000	e3630	2590	1200		1030	2360
14 686 511 479 559 542 e8200 2870 2180 981 3470 1040 3340 15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2100 920 3030 1260 3060 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370	12	695	551	449	550	518	e7500	e3340	2410	1080	3470		2820
15 713 526 534 534 567 e8400 2650 2140 948 3290 1130 3260 16 686 551 534 550 542 e8600 2550 2100 920 3030 1260 3060 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 21 722 651 487 542 550 e5500 e2680 1910 2940 2910 1250 2360	13	669	526			542	e7900	e3150	2290				
16 686 551 534 550 542 e8600 2550 2100 920 3030 1260 3060 17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 21 722 651 487 542 550 e5500 e2680 1910 2940 2910 1250 2360	14	686	511	479	559	542	e8200	2870	2180		3470	1040	
17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 21 722 651 487 542 550 e5500 e2680 1910 2940 2910 1250 2360	15	713	526	534	534	567	e8400	2650	2140	948	3290	1130	3260
17 669 592 526 559 518 e8500 2540 2080 960 2830 1360 2850 18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 21 722 651 487 542 550 e5500 e2680 1910 2940 2910 1250 2360	16	686	551	534	550	542	e8600	2550	2100	920	3030	1260	3060
18 669 617 518 559 518 e7750 2540 2070 1050 2720 1390 2630 19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 21 722 651 487 542 550 e5500 e2680 1910 2940 2910 1250 2360	17	669	592	526	559	518	e8500	2540	2080	960	2830	1360	2850
19 660 625 510 559 510 e7000 2550 1990 1210 2690 1390 2470 20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 21 722 651 487 542 550 e5500 e2680 1910 2940 2910 1250 2360		669											
20 686 643 510 559 526 e6250 e2630 1950 1780 2750 1320 2370 21 722 651 487 542 550 e5500 e2680 1910 2940 2910 1250 2360	19	660									2690		
	20	686	643							1780		1320	2370
	21	722	651	487	542	550	e5500	e2680	1910	2940	2910	1250	2360
22 749 651 487 526 550 e4750 2690 1980 3960 2930 1190 2490	22	749	651						1980	3960	2930	1190	2490
23 758 643 487 510 526 e4000 2850 2360 4570 2720 1150 2520	23												
24 786 625 487 600 518 e4000 3330 2750 4770 2440 1150 2480	24							3330					
25 786 660 495 600 510 e4400 3910 2730 4780 2220 1240 2350	25								2730		2220		2350
26 768 710 503 542 503 e4900 4260 2490 4520 2070 1440 2190	26	768	710	503	542	503	e4900	4260	2490	4520	2070	1440	2190
27 758 731 518 490 487 e5300 4270 2290 4080 1940 1820 2060	27												
28 768 713 518 487 464 e5800 4310 2130 3590 1800 2770 2010													
29 843 677 518 464 472 e6200 4330 2060 3160 1710 3660 1930													
30 e800 660 526 456 e6700 4410 2020 2760 1640 3960 1860	30			526	456		e6700	4410	2020				
31 e740 490 456 e7100 1930 1600 3840	31												
TOTAL 24563 17816 16172 16142 14513 151485 126160 82360 65279 92490 48237 76700	TOTAT	24563	17816	16172	16142	14513	151485	126160	82360	65279	92490	48237	76700
MEAN 792 594 522 521 500 4887 4205 2657 2176 2984 1556 2557													
MAX 1040 731 651 600 567 8600 8500 4390 4780 5040 3960 3470								8500					
MIN 660 450 449 456 449 480 2540 1910 920 1600 997 1860													1860
AC-FT4 8720 35340 32080 32020 28790 300500 250200 163400 129500 183500 95680 152100													

e Estimated.

STATISTICS OF MC	NTHLY I	MEAN D	ATA FOR	WATER Y	EARS 1949	-1992, BY	WATER Y	EAR (WY)		
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 1699	1468	1168	1028	1000	2536	13500	8249	5200	4177	1942	1638
MAX 4463	5653	3072	2065	1876	9329	38390	58890	23420	28240	7247	5392
(WY) 1972	1972	1972	1966	1952	1983	1966	1950	1962	1975	1985	1957
MIN 317	277	149	174	201	280	1275	938	676	348	243	329
(WY) 1991	1977	1977	1990	1977	1962	1981	1977	1977	1988	1977	1988
SUMMARY STATIS	TTCS EOD	1001	CALENDA	D VEAD	EOB	1992 WAT	TED VEAD		WATER Y	TADS 1	040_1002
	IICS I'ON	1771			TON	1772 WA	IEK IEAK		WAILKI	EVIO I	747-1776
ANNUAL TOTAL			472056	7 31917							
ANNUAL MEAN			1293			2000	l		3646		
HIGHEST ANNUAL									10510		1950
LOWEST ANNUAL									536		1977
HIGHEST DAILY M			4940	Jul 11		8600			91000		28 1979
LOWEST DAILY ME			156	Jan 3		449			110		23 1989
ANNUAL SEVEN-D.			162	Jan 1		455			118		28 1989
INSTANTANEOUS I						8800a			92900		28 1979
INSTANTANEOUS I						23.28	Mar 1	6	43.66		28 1979
INSTANTANEOUS I		W							7.7		16 1936
ANNUAL RUNOFF (AC-FT)		936300			1452000			2641000		
10 PERCENT EXCE	EDS		2910			4400			7 700		
50 PERCENT EXCE	DS		795			1260			1650		
90 PERCENT EXCE	DS		228			493			448		

a About.

b Backwater from ice.

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	(STAND- A ARD UNITS) (EMPER- ATURE AIR DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DIS- SOLVEI (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
NOV	1110	cno.			• •	0.5			400	
29 DEC	1140	678	1440	8.2	-2.0	0.5			480	
12 JAN	1550	451	1190	8.1	0.0	0.0	10.5	75	400	303
21 APR	1505	541	1010		0.0	-2.0				
06	1645	5170	588		10.0	4.0				
13	1600	3130	695	8.2	8.0	6.0			240	
JUN										
01 JUL	1155	1820	939		20.0	22.0				
08	1200	4670	525		20.5	18.0				
SEP	1145	1000	CD E	0.0	16.0	100			220	
29	1145	1920	675	8.3	16.0	13.0			320	
DATE	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)		T	D- SI RP- I DN SOI TIO (M A	TAS- F UM, ' DIS- LVED IG/L M S K)	BICAR- SONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)
NOV										
29 DEC	310	98	56	130	37	3	3 1	2		
12		84	47	83	30	2	2	9.3	370	0
APR	100		25							
13 SEP	190	56	25	44	28]	l	5.6		
29	235	73	33	23	13	().6	5.3		

RED RIVER OF THE NORTH BASIN 05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)
NOV 29 DEC	220	160	0.30	12	878	932	1.27	1710	4
12 APR	140	110	0.30	14	673	718	0.98	874	<1
13 SEP	80	51	0.20	8.7	383	389	0.53	3290	2
29	98	25	0.20	13	412	455	0.62	2360	5
DATE NOV	BORON, DIS- SOLVED (UG/L AS B) (01020)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
NOV 29	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	NIUM, DIS- SOLVED (UG/L AS SE)	TIUM, DIS- SOLVED (UG/L AS SR)
NOV 29 DEC 12	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	TTUM, DIS- SOLVED (UG/L AS SR) (01080)
NOV 29 DEC	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)

05094000 SOUTH BRANCH TWO RIVERS AT LAKE BRONSON, MN

LOCATION.--Lat 48°43'50", long 96°39'50", in SW¹/4SW¹/4 sec.30, T.161 N., R.46 W., Kittson County, Hydrologic Unit 09020312, on left bank 70 ft upstream from culvert on U.S. Highway 59 at Lake Bronson and 3.4 mi downstream from dam at outlet of Bronson Lake.

DRAINAGE AREA.--444 mi².

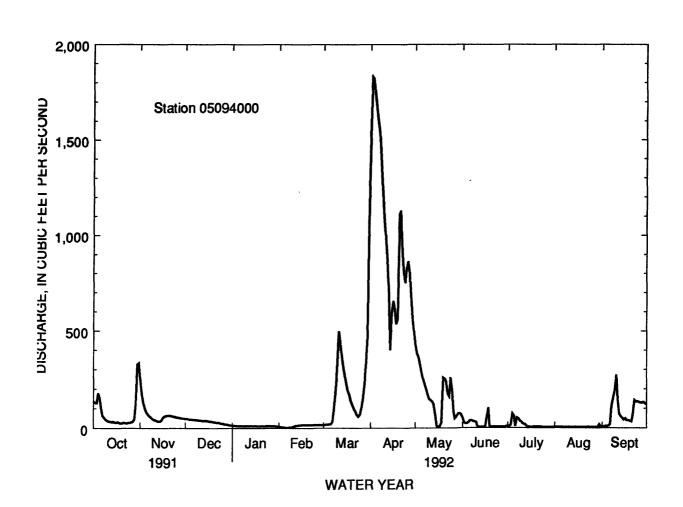
PERIOD OF RECORD.—September 1928 to November 1936, April to September 1937, April 1941 to October 1943, April to December 1944, April 1945 to September 1947, October 1953 to September 1981, April 1985 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1981 to March 1985, annual maximums only. Published as South Fork Two Rivers at Bronson prior to 1941.

REVISED RECORDS.--WSP 1308: 1929(M), 1931(M), 1936(M), 1944(M), 1947(M).

GAGE.--Water-stage recorder. Datum of gage is 928.53 ft above mean sea level (Minnesota Department of Transportation bench mark). Prior to Nov. 23, 1953, nonrecording gage at bridge 100 ft downstream at datum 2.00 ft higher. Nov 23, 1953, to Oct. 5, 1963, water-stage recorder at same site at datum 2.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow partly regulated since 1937 by Bronson Lake, usable capacity, 3,700 acre-ft.

					DA	ILY MEAN	N VALUES	;				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	137	255	e49	e15	e9.0	e17	1520	435	53	11	5.8	8.0
2	131	177	e48	e14	e7.0	e17	1830	386	29	11	5.9	8.8
3	129	e130	e47	e13	e5.5	e18	1820	365	23	15	5.8	10
4	179	e100	e46	e12	e4.5	e19	1740	326	24	73	5.8	11
5	152	e 84	e45	e12	e3.9	e20	1660	289	31	62	5.8	12
6	94	e70	e44	e12	e3.0	e21	1590	254	38	10	5.7	20
7	64	e62	e43	e12	e3.7	e33	1540	226	38	54	6.1	111
8	53	e55	e42	e12	e4.4	e90	1380	199	36	48	5.9	157
9	44	e49	e42	e12	e6.0	e180	1220	170	32	35	5.8	196
10	39	e43	e41	e12	e8.0	e3 00	1100	150	31	32	5.8	272
11	36	e40	e40	e12	e11	e500	991	143	7.2	22	6.0	148
12	33	e37	e39	e12	e13	e450	8 69	135	5.5	21	6.2	73
13	32	e36	e 39	e12	e14	e380	688	122	5.6	15	6.2	60
14	33	e35	e38	e12	e15	e320	404	70	5.7	6.4	5.9	54
15	31	e40	e38	e12	e16	e270	597	8.1	5.9	6.4	5.8	44
16	28	e53	e37	e12	e17	e230	658	8.8	7.1	6.0	6.0	50
17	32	e61	e 36	e12	e17	e190	611	10	55	6.2	6.0	41
18	28	e64	e35	e12	e17	e170	5 39	27	103	6.6	5.8	40
19	26	e65	e34	e12	e17	e140	566	261	7.3	7.1	5.7	37
20	25	e65	e3 2	e12	e17	e120	1110	255	6.4	7.1	5.5	34
21	28	e64	e31	e12	e17	e100	1130	242	6.7	6.9	5.4	68
22	27	e62	e 2 9	e12	e17	e8 5	918	179	7.1	6.5	5.8	143
23	26	e60	e28	e12	e17	e70	809	163	7.2	6.3	7.0	136
24	29	e58	e26	e12	e17	e60	75 3	260	7.1	6.2	6.1	137
25	28	e56	e24	e12	e17	e70	824	198	7.6	6.2	6.2	134
26	30	e55	e23	e12	e17	e100	865	85	6.7	5.9	5.5	131
27	33	e 54	e21	e12	e17	e150	803	50	6.4	5.9	5.2	130
28	46	e52	e20	e12	e17	e230	687	61	6.3	5.7	5.2	133
29	124	e51	e18	e12	e17	e340	573	73	6.8	5.8	5.6	127
30	327	e50	e17	e11		474	492	76	8.1	5.8	18	120
31	333		e16	e10		1060		71		6.0	7.3	
TOTAL	2357	2083	1068	375	362.0	6224	30287	52 97.9	613.7	522.0	194.8	2645.8
MEAN	76. 0	69.4	34.5	12.1	12.5	201	1010	171	20.5	16.8	6.28	88.2
MAX	333	255	49	15	17	1060	1830	435	103	73	18	272
MIN	25	35	16	10	3.0	17	404	8.1	5.5	5.7	5.2	8.0
AC-FT	4680	4130	2120	744	718	12350	60070	10510	1220	1040	386	5250
CFSM	.17	.16	.08	.03	.03	.45	2.27	.38	.05	.04	.01	.20
IN.	.20	.17	.09	.03	.03	.52	2.54	.44	.05	.04	.02	.22


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1929 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	18.4	11.1	4.58	2.79	3.24	58.0	407	195	165	103	23.7	34.8
MAX	153	87.5	34.5	12.1	23.6	362	1977	1338	1336	1136	360	525
(WY)	1958	1957	1992	1992	1981	1986	1966	1970	1970	1956	1985	1957
MIN	.40	.38	.13	.12	.12	.66	.54	.98	1.43	.44	.089	.000
(WY)	1991	1990	1987	1987	1987	1934	1991	1991	1980	1988	1988	1937

SUMMARY STATISTICS FOR 199	R YEAR	FOR 1992 WAT	ER YEAR	WATER YEARS 1929 - 199		
ANNUAL TOTAL	30079.92		52030.2			
ANNUAL MEAN	82.4		142		85.5a	
HIGHEST ANNUAL MEAN					312	1966
LOWEST ANNUAL MEAN					2.89	1934
HIGHEST DAILY MEAN	1920	Jul 13	1830	Apr 2	5290	Apr 5 1966
LOWEST DAILY MEAN	.14	May 9	3.0	Feb 6	.00	Jul 25 1937
ANNUAL SEVEN-DAY MINIMUM	.16	May 6	4.4	Feb 3	.00	Many days
INSTANTANEOUS PEAK FLOW		•	1870	Apr 2	5410	Apr 5 1966
INSTANTANEOUS PEAK STAGE			10.82	Apr 2	18.23	Apr 5 1966
ANNUAL RUNOFF (AC-FT)	59660		103200	-	61940	•
ANNUAL RUNOFF (CFSM)	.19		.32		.19	
ANNUAL RUNOFF (INCHES)	2.52		4.36		2.62	
10 PERCENT EXCEEDS	155		382		208	
50 PERCENT EXCEEDS	12		33		4.4	
90 PERCENT EXCEEDS	.34		6.0		.80	

a Median of annual mean discharges is 56 fr³/s.

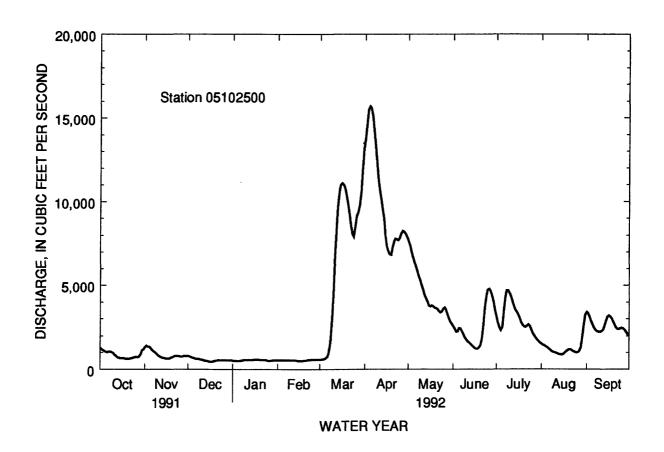
05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA (International gaging station)

(National stream-quality accounting network station)

LOCATION.--Lat 49°00'30", long 97°12'40", in sec.2, T.1, R.2 E., Hydrologic Unit 09020311, on right bank 1,500 ft downstream from Canadian National Railway bridge in Emerson, 0.8 mi downstream from international boundary, 3.6 mi downstream from Pembina River, and at mile

DRAINAGE AREA.--40,200 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS


PERIOD OF RECORD. -- March to November 1902 (gage heights only), May 1912 to September 1929 (monthly discharge only, published in WSP 1308), October 1929 to current year.

GAGE .-- Water-stage recorder. Datum of gage is Geodetic Survey of Canada Datum of 1929. See WSP 1728 or 1913 for history of changes prior to Apr. 10, 1953.

COOPERATION.--This station is one of the international gaging stations maintained by Canada under agreement with the United States. Records provided by Water Survey of Canada.

					DA	AILY MEA	N VALUES	5				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1290	e1340	e794	e533	e554	e590	e13700	7700	2570	3100	1550	3410
2	1190	e1430	e773	e519	e554	e597	e14700	7420	2420	2760	1490	3330
3	1130	e1380	e745	e508	e554	e604	e15500	7100	2240	2490	1440	3110
4	1090	e1360	e710	e501	e554	e629	e15700	6780	2260	2340	1390	2870
5	1050	e1270	e678	e501	e551	e671	e15600	6460	2450	2530	1330	2660
,	1050	61270	6076	6301	6331	6071	613000	0-100	2430	2030	1550	2000
6	1030	e1160	e650	e512	e547	e756	15100	6180	2440	3430	1260	2490
7	1060	e1090	e632	e530	e551	e982	14300	5860	2290	4340	1170	2360
8	1060	e1030	e621	e551	e551	e1620	13300	5580	2110	4700	1110	2290
9	1020	e943	e611	e561	e554	e2690	12400	5330	1930	4700	1050	2250
10	971	e858	e597	e568	e551	e4450	11300	5050	1790	4550	1020	2240
••	,,,	-			0001	0.150	11500	0.000	,0			
11 -	879	e805	e572	e568	e551	e6390	10700	4770	1690	4340	992	2270
12	787	e749	e540	e576	e551	e8230	10100	4480	1610	4060	957	2360
13	713	e710	e512	e579	e544	e9670	9530	4240	1530	3740	922	2570
14	685	e681	e501	e579	e530	e10600	8970	4030	1450	3530	893	2880
15	664	e664	e484	e576	e519	e11000	8020	3810	1360	3400	879	3120
16	671	e639	e459	e583	e508	e11100	7340	3740	1280	3250	911	3190
17	667	e639	e452	e583	e508	e11000	7060	3810	1240	3040	9 85	3140
18	643	e653	e463	e590	e516	e10800	6890	3740	1240	2820	1080	3020
19	629	e685	e484	e586	e523	e10300	6850	3670	1320	2640	1150	2850
20	618	e727	e508	e576	e537	e9850	7270	3640	1470	2550	1190	2670
21	621	e766	e530	e565	e547	e9220	7660	3570	1820	2540	1190	2510
22	643	e787	e544	e565	e558	e8620	7800	3470	2690	2610	1130	2420
23	671	e798	e544	e576	e568	e8090	7770	3390	3670	2660	1090	2420
24	706	e794	e540	e572	e586	e7940	7730	3450	4380	2560	1040	2460
25	727	e770	e540	e537	e593	e8550	7870	3600	4730	2380	1010	2480
26	734	e752	e544	e516	e597	e9150	8120	3670	4800	2190	1020	2430
27	727	e759	e540	e526	e597	e9360	8260	3520	4660	2030	1110	2330
28	766	e791	e540	e537	e593	e9750	8230	3260	4380	1900	1330	2220
29	918	e805	e544	e540	e590	e10500	8120	2990	3950	1780	1910	2120
30	1140	e805	e547	e547		e11800	7910	2810	3500	1690	2700	2030
31	e1200		e544	e551		e13200	7710	2690		1610	3260	2050
31	C1200		W 11	6551		613200		2090		1010	3200	
TOTAL	26700	26640	17743	17112	16037	218709	303800	139810	75270	92260	39559	78500
MEAN	861	888	572	552	553	7055	10130	4510	2509	2976	1276	2617
MAX	1290	1430	794	590	597	13200	15700	7700	4800	4700	3260	3410
MIN	618	639	452	501	508	590	6850	2690	1240	1610	879	2030
AC-FT	52960	52840	35190	33940	31810	433800	602600	277300	149300	183000	78470	155700
e Estin	mated.											

STATIS	TICS OF	MONTHLY N	MEAN.	DATA FOR	WATER Y	ÆARS 191	2-1992, BY	WATER Y	EAR (WY	7)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1427	1274	936	776	737	2023	12460	8359	4894	3724	1701	1468
MAX	4533	5163	2760	2053	1914	9361	45820	72820	25430	28020	7342	6388
(WY)	1986	1972	1966	1951	1952	1983	1966	1950	1962	1975	1985	1957
MIN	28.6	23.7	33.3	7.05	1.21	2.25	1282	663	196	121	46.6	23.6
(WY)	1937	1937	1937	1937	1937	1937	1938	1934	1934	1936	1934	1934
SUMMA	RY STAT	TSTICS FOR	1991	CALENDA	R YEAR	FOR	2 1992 WAT	TER YEAR		WATER Y	EARS 1	912-1992
ANNUA	L TOTAL			531992			1052140)				
ANNUA:	L MEAN			1458			2875	i		3322	Į.	
HIGHES'	T ANNUA	AL MEAN								12100)	1950
LOWEST	l annua	L MEAN								333	į.	1934
HIGHES'	T DAILY	MEAN		5690	Jul 12		15700	Apr 4		94400) May	13 19 5 0
LOWEST	DAILY	MEAN		156	Jan 23		452	Dec 17		.90) Fe	b 6 1937
ANNUA	L SEVEN	-DAY MINIM	1UM	161	Jan 18		479	Dec 14		.97	Fe	b 4 1937
INSTAN'	TANEOU	S PEAK FLO	W				15800) Apr 4		95500) May	13 1950
INSTAN'	TANEOU	S PEAK STA	GE				774.19	Apr 4		791.19	Ma	y 1 1979
INSTAN	TANEOU.	S LOW FLOY	V					_		.90	Fε	b 6 1937
ANNUA	L RUNOF	F (AC-FT)		1055000			2087000			2407000	i	
10 PERC	ENT EXC	EEDS		3310			8100	1		7270	į	
50 PERC	ENT EXC	EEDS		971			1330)		1360	į	
90 PERC	ENT EXC	EEDS		190			544	,		250	j	

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: October 1977 to current year.

WATER TEMPERATURE: October 1977 to current year.

REMARKS.--Records of daily mean values of water temperature and specific conductance are furnished by Water Survey of Canada. Letter K indicates non-ideal colony count.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily mean, 2,180 microsiemens, Dec. 8, 1989; minimum daily mean, 259 microsiemens, Apr. 14, 1989. WATER TEMPERATURES: Maximum daily mean, 26.7C, Aug. 16, 1988; minimum daily mean, 0.0C, on many days during winter months. EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum daily mean, 1,550 microsiemens, Nov. 17; minimum daily mean, 457 microsiemens, Mar. 15 and 16. WATER TEMPERATURES: Maximum daily mean, 25.3C, Aug. 9; minimum daily mean, 0.0C, on many days during the winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	CIFIC CON- DUCT- ANCE	ARD	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	OXYGEN DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED, (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
ост											
02 NOV	1130		1190	898	8.1	10.5	11.0	60	10.4	95	270
26 DEC	1100		752	1620	8.1	-3.0	0.5	8.1	13.6	95	440
12 FEB	1115	542		1140	7.8	-3.0	0.0		12.2	87	400
25 APR	1030		593	1140	7.5	-10.5	0.0	5.0	11.3	79	370
15 JUL	1200	8040		424	8.3	10.0	5.5	140	10.8	88	190
07	1115		4340	737	7.9	19.0	18.0		8.2	91	
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, (KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)
OCT 02 NOV	172	K42	5	62	27	69	35	2	7.5	210	0
26 DEC	274	K24	330	94	50	130	38	3	17	334	0
12	308			89	44	79	29	2	9.0	376	0
FEB 25	304	K4	К9	82	41	80	31	2	7.9	371	0
APR 15	160	8	320	46	18	22	20	0.7	6.2	195	0
JUL 07	173	K53	K40							212	0

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued (National stream-quality accounting network station)

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	AT 180	DIS-	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITROGEN, NITRITE DISSOLVED (MG/L AS N) (00613)	NITROGEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)
OCT 02	110	100	0.30	16	500	522	0.71	1680	0.030	0.040	0.810
NOV 26	230	190	0.30	11	890	914	1.24	1860	0.020	0.010	0.480
DEC 12	160	100	0.30	13	680	739	1.01	1080			
FEB 25	100	110	0.20	20	629	631	0.86	1010	<0.010	<0.010	
APR 15	65	22	<0.10	12	289	287	0.39	6230	0.020	0.010	0.230
JUL 07	130	38	0.20			447			<0.010	<0.010	
DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	ORGANIC	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)		PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 02	0.840	0.850	0.030	0.050	0.87	0.90	1.7	0.270	0.180	0.160	0.150
NOV 26	0.400	0.490	0.140	0.160	1.1	1.2	1.6	0.340	0.250	0.270	0.230
FEB 25	0.780	0.920	0.140	0.160	0.66	0.80	1.6	0.140	0.160	0.100	0.080
APR 15	0.260	0.240	0.070	0.060	1.3	1.4	1.7	0.290	0.080	0.050	0.060
JUL 07	0.660	0.670	0.010	0.020	0.69	0.70	1.4	0.270	0.190	0.150	0.150
DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, O DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	DIS- SOLVED	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED	DIS- SOLVED	DIS-	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
OCT								•		40	
02 DEC	20	62			 	<3		28	-10	40	8
12 FEB		68	<0.5	<1.0	ర	<3	<10	21	<10	48	14
25 APR	<10	71				<3		7		49	25
15	20	31				<3		21		22	43

.

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued (National stream-quality accounting network station)

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

							SEDI-	SED.		
	MOLYB-		SELE-		STRON-	VANA-			MENT,	SUSP.
	DENUM,	NICKEL,	NIUM,	SILVER,	TIUM,	DIUM,	ZINC,	SEDI-	DIS-	SIEVE
	DIS-	MENT,	CHARGE,	DIAM.						
	SOLVED	SUS-	SUS-	% FINER						
DATE	(UG/L	PENDED	PENDED	THAN						
	AS MO)	AS NI)	AS SE)	AS AG)	AS SR)	AS V)	AS ZN)	(MG/L)	(T/DAY)	.062 MM
	(01060)	(01065)	(01145)	(01075)	(01080)	(01085)	(01090)	(80154)	(80155)	(70331)
OCT	4.0	_				_		4.40		••
02	<10	3	<1	<1.0	320	<6		148	476	98
DEC		4.0				_				
12	<10	<10	<1	2.0	380	<6	13			
FEB		_				_				
25	<10	2	<1	<1.0	390	<6		64	102	86
APR		_				_				
15	<10	5	<1	<1.0	170	<6		483	10500	98

SPECIFIC CONDUCTANCE, MICROSIEMENS/CM AT 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

SPECII	ric CONL	OCTANCI	e, MICKOS	TEMENS/C	.M A1 25 1	1992	.ENIIGK	ADE, WAII	KIBAK	CIOBER	1991 10 3.	EL I DIAID
					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	802	751	1230	1210	1020	1020	396	650	768	597	774	636
2	832	732	1260	1210	1040	1000	402	685	766	611	770	633
3	844	729	1250	1140	1030	1010	410	696	797	624	767	640
4	843	773	1210	1160	1020	1030	410	700	788	644	746	599
5	851	770	1180	1120	1000	1030	416	657	766	705	715	573
6	903	788	1170	1090	999	967	430	660	758	720	728	588
7	906	834	1130	1070	984	9 86	445	656	813	731	776	628
8	918	912	1040	1110	985	969	451	654	809	739	779	638
9	927	1020	1040	1140	999	1000	460	663	811	594	790	662
10	928	1070	1040	1140	1030	892	472	662	846	561	855	682
11	932	1090	1050	1100	1020	755	497	667	877	563	867	675
12	932	1210	1040	1070	1030	652	524	671	873	578	807	711
13	930	1340	1040	1050	1040	536	538	67 0	880	601	803	728
14	904	1420	1030	1060	1050	477	572	680	902	610	818	737
15	909	1430	1000	1060	1050	457	578	672	911	631	845	738
16	905	1490	1010	1030	1060	457	665	712	915	644	846	737
17	911	1550	1010	1030	1060	464	627	724	915	661	799	748
18	897	1530	1040	9 99	1060	463	581	683	895	682	779	742
19	898	1500	1100	995	1040	507	612	693	880	700	752	747
20	889	1570	1140	990	1020	502	545	658	896	666	755	754
21	905	1500	1160	989	1010	509	578	664	900	697	732	745
22	901	1470	1150	973	988	529	579	670	928	704	717	745
23	898	1410	1120	976	984	547	589	679	873	745	702	746
24	1010	1340	1 07 0	961	991	554	605	684	808	774	710	746
25	1010	1320	1020	951	995	512	610	686	608	789	781	729
26	957	1290	1000	939	1000	505	615	696	607	795	842	716
27	862	1280	1020	944	1020	498	620	655	580	798	887	708
28	845	1300	1040	947	1010	464	635	637	571	805	873	704
29	802	1310	1140	9 5 7	1000	442	659	665	574	818	744	721
30	774	1330	1190	964		430	697	706	613	786	768	758
31	770		1180	1010		402		714		<i>77</i> 9	735	
MEAN	890	1200	1100	1040	1020	663	541	676	798	689	783	697

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued (National stream-quality accounting network station)

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAILY MEAN VALUES

					DA	ILI MIBAH	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	12.3	1.0	.0	.0	.0	.8	.4	10.0	22.2	19.2	22.9	17.8
2	12.1	.2	.0	.0	.0	.8	1.3	10.0	22.0	19.2	22.8	18.1
3	12.1	.2	.0	.0	.0	.8	1.4	10.7	22.3	19.3	22.3	18.8
4	11.7	.5	.0	.0	.1	1.4	1.7	12.0	22.0	18.3	22.1	18.6
5	11.0	.2	.0	.0	.3	2.0	2.2	15.2	21.3	18.7	22.3	19.2
6	9.4	.1	.0	.0	.2	1.9	3.3	16.0	21.0	19.2	22.8	18.0
7	9.5	.1	.0	.0	.2	2.0	4.1	17.1	19.4	19.8	23.3	16.9
8	9.9	.0	.0	.0	.2	1.9	4.9	18.3	19.6	20.5	24.1	16.5
9	10.0	.0	.0	.0	.2	1.8	5.3	19.3	20.9	19.8	25.3	16.0
10	10.1	.0	.0	.0	.1	1.3	5.4	19.8	23.0	20.3	24.9	15.2
11	9.9	.0	.0	.0	.2	1.2	5.3	19.0	24.4	20.2	23.7	15.6
12	10.0	.4	.0	.0	.8	1.2	5.2	18.8	24.4	20.9	22.2	16.1
13	9.6	.0	.0	.0	.7	1.1	5.1	18.0	25.1	21.5	22.3	17.2
14	8.3	.1	.0	.0	.8	1.2	5.2	17.6	24.6	22.0	22.7	17.2
15	7.2	.0	.0	.0	.9	1.2	5.4	18.0	23.8	22.6	23.0	16.5
16	7.1	.0	.0	.0	.8	1.1	5.4	19.1	22.4	22.8	23.1	16.0
17	7.6	.0	.0	.0	.7	.8	7.2	18.9	21.3	21.5	23.2	15.3
18	5.8	.0	.0	.0	.7	.8	7.1	18.3	20.2	21.5	23.3	14.7
19	5.5	.0	.0	.0	.8	.8	7.0	19.7	19.1	21.9	23.0	14.2
20	5.2	.0	.0	.0	.8	.8	7.5	20.9	19.4	21.5	23.1	14.6
21	4.7	.0	.1	.0	.8	.8	6.9	22.5	19.8	21.7	22.7	15.2
22	5.0	.0	.0	.0	.8	.8	5.6	19.8	19.1	22.1	22.8	14.3
23	4.9	.0	.0	.0	1.0	.8	5.3	20.5	19.9	22.9	21.8	14.4
24	4.5	.0	.0	.0	.8	.7	5.6	18.2	20.4	22.7	19.7	14.9
25	4.3	.0	.0	.0	.8	.7	5.8	18.1	19.9	22.6	18.7	15.5
26	4.4	.0	.0	.0	.8	.8	6.4	18.3	19.7	22.7	18.7	14.4
27	4.5	.0	.0	.0	.8	.8	7.2	18.5	20.2	22.4	19.1	14.0
28	4.4	.0	.0	.0	.8	.8	8.1	19.0	20.8	22.4	18.9	13.1
29	1.8	.0	.0	.0	.8	1.1	9.1	19.7	20.6	22.4	18.5	12.7
30	2.6	.0	.0	.0		.9	10.0	20.6	20.3	22.6	19.0	12.9
31	2.3		.0	.0		1.2		21.5		23.0	18.4	
MEAN	7.3	.1	.0	.0	.5	1.1	5.3	17.9	21.3	21.2	22.0	15.8

05104500 ROSEAU RIVER BELOW SOUTH FORK NEAR MALUNG, MN

LOCATION.--Lat 48°47'30", long 95°44'40", in NW¹/4SW¹/4 sec.6, T.161 N., R.39 W., Roseau County, Hydrologic Unit 09020314, on left bank 0.3 mi downstream from South Fork and 1.5 mi northwest of Malung.

DRAINAGE AREA .-- 573 mi2.

PERIOD OF RECORD .-- October 1946 to current year.

REVISED RECORDS.--WSP 2113:1948, 1950, 1951, 1956(M), 1957(M), 1962(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,029.67 ft, adjustment of 1912.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some flow bypasses the gaging station through a natural overflow channel 0.8 mi upstream and returns to river 0.5 mi downstream. Overflow begins at stage of about 13.0 ft, discharge, 1,800 ft³/s. These records include any flow in the overflow channel.

					DA	ILY MEAN	I VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	120 116	176 93	e39 e35	e13 e13	13 14	10 10	e1450 e1350	650 618	71 62	28 32	6.3 5.7	35 39
3	110	e81	e32	e12	14	10	e1250	544	56	65	5.1	38
3 4	102	e74	e31	e12	e13	11	e1200	477	53	139	5.8	37
5	94	e69	e30	e12	e12	11	e1150	420	54	192	6.2	77
6	88	e66	e29	e12	ell	12	1130	366	57	204	4.1	134
7	83	e65	e28	e12	e9.6	20	1030	321	62	180	.96	175
8	77 70	e67	e28	e12	e8.6	115	1020	283	60	144	1.2	504
9 10	73 68	e68	e27	e12	e7.6	e300	1010 975	240 212	56 52	118 108	1.8 1.9	524 501.
10	08	e70	e27	e12	e6.4	e470	9/3	212	32	108	1.9	501.
11	61	e72	e27	e12	e5.5	e500	901	208	47	97	1.3	439
12	56	e75	e27	e12	e5.0	e460	788	205	44	88	1.3	358
13	53	78	e26	e12	e5 .5	e350	650	203	40	77	.45	283
14	52	81	e26	e12	e6.2	e200	578	194	36	66	.47	230
15	50	83	e26	e12	e7.0	e140	551	179	35	54	.64	194
16	49	87	e26	e12	e8.0	el 10	543	179	31	44	.68	173
17	53	90	e25	e12	e9.0	e95	543	351	34	35	.97	157
18	51	92	e24	e12	e10	e85	540	510	38	29	1.3	158
19	49	101	e22	12	11	e73	949	489	46	23	1.6	165
20	47	121	e20	12	11	e66	1450	419	55	21	1.8	179
21	49	146	e18	12	11	e60	1490	336	55	17	2.1	185
22	54	151	e16	12	11	e54	1430	270	50	14	3.2	178
23	54	136	e15	12	10	e52	1320	250	45	14	25	168
24	54	116	e15	11	10	e60	1160	224	41	13	62	162
25	54	101	e14	12	10	e150	1080	205	39	12	62	154
26	57	91	e14	12	10	e300	1120	186	37	11	45	141
27	59	77	e14	13	9.9	e380	1070	160	34	11	33	126
28	62	63	e13	13	10	e450	964	138	31	10	24	113
29	88	56	e13	13	10	e700	846	118	29	8.6	19	102
30	147	e46	e13	14		e1300	739	102	28	8.0	26	94
31	177		e13	13		e1600		88		7.8	29	
TOTAL	2307	2692	713	379	279.3	8154	30277	9145	1378	1870.4	379.87	5823
MEAN	74.4	89.7	23.0	12.2	9.63	263	1009	295	45.9	60.3	12.3	194
MAX	177	176	39	14	14	1600	1490	650	71	204	62	524
MIN	47	46	13	11	5.0	10	540	88	28	7.8	.45	35
AC-FT	4580	5340	1410	752	554	16170	60050	18140	2730	3710	753	11550
CFSM IN.	.13 .15	.16 .17	.04 .05	.02 .02	.02	.46	1.76	.51 .59	.08 .09	.11 .12	.02 .02	.34 .38
IIN.	.15	.17	.05	.02	.02	.53	1.97	.39	.09	.12	.02	.38

e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	68.1	44.4	14.3	6.95	5.23	54.5	598	305	227	147	57.1	72.1
MAX	351	229	51.1	21.0	14.4	345	2035	1589	1140	1152	585	710
(WY)	1983	1957	1978	1966	1986	1986	1966	1950	1968	1968	1968	1957
MIN	.029	.16	.013	.000	.000	.83	5.60	8.77	4.16	.092	.000	.025
(WY)	1991	1991	1977	1977	1977	1977	1991	1990	1980	1980	1961	1988

SUMMARY STATISTICS FOR 1991	CALENDA	R YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	RS 1947 - 1992
ANNUAL TOTAL	23982.86		63397.57			
ANNUAL MEAN	65.7		173a		133a	
HIGHEST ANNUAL MEAN					304	1950
LOWEST ANNUAL MEAN					7.28	1990
HIGHEST DAILY MEAN	860	Jul 9	1600	Mar 31	567 0	Jul 18 19 6 8
LOWEST DAILY MEAN	.04	Mar 13	.45	Aug 13	.00	Jul 23 1961
ANNUAL SEVEN-DAY MINIMUM	.04	Mar 11	.83	Aug 11	.00	Jul 23 1961
INSTANTANEOUS PEAK FLOW			1800	Mar 31	5750	Jul 18 1968
INSTANTANEOUS PEAK STAGE			14.41b	Mar 30	23.37b	Apr 3 1966
INSTANTANEOUS LOW FLOW			.38	Aug 14	.00	Many days
ANNUAL RUNOFF (AC-FT)	47570		125700	-	96440	
ANNUAL RUNOFF (CFSM)	.11		.30		.23	
ANNUAL RUNOFF (INCHES)	1.56		4.12		3.16	
10 PERCENT EXCEEDS	150		529		307	
50 PERCENT EXCEEDS	15		54		15	
90 PERCENT EXCEEDS	.11		9.8		1.3	
a Madian of annual many discharges 13	IA & 3/-					

a Median of annual mean discharges 110 ft ³/s. b Backwater from ice.

05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN (International gaging station)

LOCATION.--Lat 48°58'54", long 96°27'46", in SE¹/₄SW ¹/₄ sec.34, T.164 N., R.45 W., Kittson County, Hydrologic Unit 09020314, on left bank 400 ft downstream from State ditch 51 (known locally as Caribou cutoff ditch) and 0.6 mi west of Caribou.

DRAINAGE AREA.--1,570 mi², approximately.

WATER-DISCHARGE RECORDS

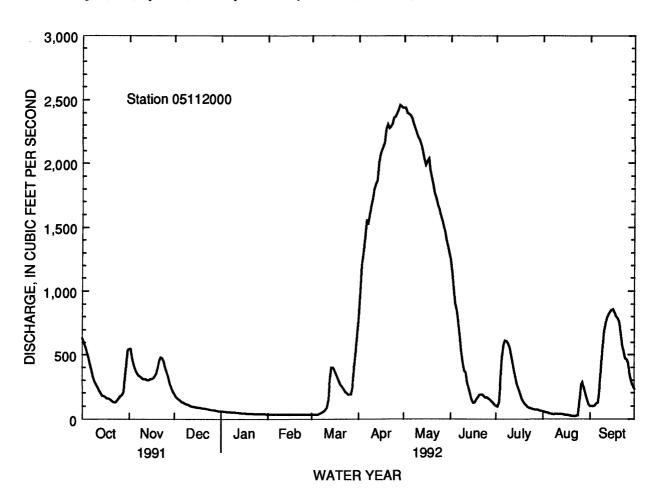
PERIOD OF RECORD.--April to October 1917, April 1920 to current year (no winter records in water years 1931, 1932, 1934-36, 1938-40, 1944-72). Published as "at Caribou," prior to April 1929; as "below Cutoff ditch, near Caribou" April 1929 to September 1936. Records published for both sites April 1929 to September 1930. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1938(M). WSP 1508: 1917(M), 1920, 1932(M), 1934-35(M). WSP 1913: 1954(M).

GAGE.--Water-stage recorder. Datum of gage is 1,002.31 ft above sea level (levels by Geodetic Survey of Canada). Prior to Apr. 1, 1929, nonrecording gage at site at Caribou 0.6 mi upstream at datum 0.95 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Satellite telemeter at station. Occasionally, at high stages, there is some natural diversion of flow above station to headwaters of Two Rivers.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1916 is reported to have reached a stage of about 15.5 ft at former site.

					DA	ILY MEA	N VALUES	3				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	631	e550	e190	e59	e37	e33	e800	2440	1240	102	58	99
2	600	e550	e170	e58	e37	e33	e1000	2440	1130	95	55	99
3	565	e470	e160	e57	e37	e34	e1200	2400	995	130	51	99
4	527	e420	e150	e56	e37	e34	e1300	2390	900	280	48	104
5	481	e390	e140	e55	e36	e34	1420	2380	848	482	44	118
•		•55,0	21.0		220							
6	427	e360	e130	e54	e36	e40	1560	2360	749	583	41	127
7	376	e340	e125	e53	e36	e45	1530	2320	643	613	39	242
8	328	e330	e120	e52	e36	e50	1600	2280	536	609	36	370
9	290	e320	e115	e51	e36	e60	1670	2240	444	591	38	543
10	267	e310	el 10	e50	e36	e70	1730	2210	373	559	38	691
	- 40	205	***	••				24.00	250	507	40	256
11	242	e305	e105	e49	e35	e90	1800	2190	359	507	40	756
12	219	e305	e100	e48	e35	e150	1840	2150	288	441	40	795
13	198	e300	e97	e47	e35	e300	1870	2090	236	369	38	819
14	180	e300	e94	e46	e35	e400	2010	2040	187	311	36	841
15	176	e305	e92	e45	e35	e400	2070	1990	149	266	34	855
16	172	e310	e90	e44	e34	e380	2110	2020	124	226	32	858
17	160	e315	e88	e43	e34	e350	2140	2040	127	192	31	832
18	159	e330	e86	e42	e34	e320	2160	1950	151	159	29	803
19	154	e350	e84	e42	e34	e290	2270	1890	164	135	26	788
20	143	e400	e82	e41	e34	e270	2310	1830	183	117	25	760
21	134	e450	e80	e41	e33	e250	2280	1770	187	103	23	668
22	129	e480	e78	e41	e33	e230	2290	1730	186	94	22	586
23	130	e470	e76	e40	e33	e210	2310	1680	176	87	27	526
24	144	e440	e74	e40	e33	e200	2360	1640	165	80	30	470
25	162	e400	e72	e39	e33	e190	2370	1600	167	76	142	461
26	175	e360	e70	e39	e33	e190	2390	1560	156	74	261	438
27	184	e320	e68	e38	e33	e190	2420	1510	148	72	282	345
28	203	e280	e66	e38	e33	e250	2460	1460	137	72	234	289
29	282	e240	e64	e38	e33	e400	2450	1400	123	68	185	258
30	412	e210	e62	e38		e500	2440	1350	108	64	142	232
31	538		e60	e37		e650	2440	1290		61	112	
J.	050		000	657		0000		1270		••		
TOTAL		10910	3098	1421	1006	6643	58160	60640	11379	7618	2239	14872
MEAN	283	364	99.9	45.8	34.7	214	1939	1956	379	246	72.2	496
MAX	631	550	190	59	37	650	2460	2440	1240	613	282	858
MIN	129	210	60	37	33	33	800	1290	108	61	22	99
AC-FT	17430	21640	6140	2820	2000	13180	115400	120300	22570	15110	4440	29500
CFSM	.18	.23	.06	.03	.02	.14	1.23	1.25	.24	.16	.05	.32
IN.	.21	.26	.07	.03	.02	.16	1.38	1.44	.27	.18	.05	.35

e Estimated.

STATIS	TICS OF	MONTHL	Y MEAN	DATA FOR	WATER Y	EARS 1917	/ - 1992, B	Y WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	164	108	43.4	23.8	19.1	102	796	922	569	388	139	160
MAX	1302	382	226	134	75.1	446	2167	3029	2588	1653	1 <i>577</i>	1451
(WY)	1942	1927	1927	1927	1927	1946	1966	1950	1970	1968	1968	1968
MIN.	12	.26	.53	.090	.060	1.57	38.2	26.9	6.70	.65	2.09	.30
(WY)	1991	1991	1991	1991	1991	1989	1981	1988	1980	1980	1936	1990
SUMMA	RY STA	TISTICS	FOR 1991	CALENDA	R YEAR	FOR	1992 WA	TER YEAR		WATER Y	EARS 191	7 - 1992
ANNUA	L TOTAI			84940.05			186774					
ANNUA	L MEAN			233			510			279		
HIGHES	T ANNU.	AL MEAN	1							683		1927
LOWES	T ANNUA	AL MEAN	ī							35.9		1977
HIGHES	T DAILY	MEAN		1330	Jul 17		2460	Apr 28		4020	May	19 1950
LOWES	T DAILY	MEAN		.06	Jan 14		22	Aug 22		.00	Sep	15 1990
ANNUA	L SEVEN	I-DAY MI	NIMUM	.06	Jan 14		26	Aug 18		.04		12 1990
INSTAN	TANEOU	S PEAK	FLOW				2470	Apr 28		4080	May	19 1950
INSTAN	TANEOU	S PEAK	STAGE				9.33	Apr 28		11.81		19 1950
INSTAN	TANEOU	IS LOW F	LOW				20	Aug 22		.00a	Aug	13 1936
ANNUA	L RUNOI	FF (AC-F)	Γ)	168500			370500	_		202500		
ANNUA	L RUNOI	F (CFSM	D)	.15			.33			.18		
ANNUA	LRUNO	F (INCH	ĖS)	2.01			4.43			2.42		
10 PERC	ENT EXC	CEEDS		772			1880			1190		
50 PERC	ENT EXC	CEEDS		81			187			72		
90 PERC	ENT EXC	CEEDS		.06			36			8.0		

a Occurred Aug. 13, 1936, Sept. 15-17, 1990 and part of each day Oct. 12, 13, and Nov. 13, 1990.

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972 to current year. REMARKS.--Letter K indicates non-ideal colony count.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	, SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	WHOLE FIELD (STAND- ARD	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPERATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	FECAL, 0.7 UM-MF (COLS./	100 ML)
OCT 08	1100	323	360	385	8.0	7.9	6.0	5.6	724	10.6	56	69
JAN 22	1030	146	550	591	7.9	7.3	0.5	2.1	719	7.6	K5	К3
APR 15	1240	2020	241	277	7.6	7.6	5.0	3.6	736	8.7	К3	22
JUL 08	0930	608	345	389	8.1	8.0	18.0	9.4	729	7.7	77	200
	0,50	000	343	JU)	0.1	6.0	10.0	2.4	123	,.,	• • • • • • • • • • • • • • • • • • • •	200
DATE	DIS-	MAGNE- I SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS-	SIUM, DIS-		LINITY LAB (MG/L AS	WATER DIS IT FIELD	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
OCT 08	50	18	8.5	2.5	170	174	0	207	27	9.5	0.10	13
JAN							_					
22 APR	81	29	9.3	2.8		305	0	372	23	9.3	0.20	21
15 JUL	37	12	2.4	4.0	125	126	0	152	14	1.6	0.20	8.3
08	48	19	5.6	1.8	176	184	0	215	20	4.1	<0.10	9.6
	RESIDUE		GEN, NO2+NO3					PHOS- PHORUS DIS-		PHOS- PHORUS ORTHO, DIS-	SEDI- MENT,	SED. SUSP. SIEVE DIAM.
DATE	DIS- SOLVED (MG/L) (70300)				SOLVED (MG/L AS N) (00608)			SOLVED (MG/L AS P) (00666)		SOLVED	SUS- PENDED (MG/L) (80154)	% FINER THAN .062 MM (70331)
OCT 08 JAN	268	<0.010	<0.050	0.020	<0.010	1.2	0.060	0.020	0.030	0.020	25	81
22 APR	339	<0.010	0.160	0.100	0.140	1.1	0.030	<0.010	0.020	<0.010	5 0	90
15 JUL	181	<0.010	0.073	0.020	0.020	0.70	0.040	0.040	0.020	0.010	60	43
08	277	0.010	0.580	0.040	0.030	1.4	0.080	0.030	0.040	0.030	30	94

05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	DIS-	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)		DIS-	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	DIS-	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)
OCT												
08	20	33	⋖	190	11	16	<10	1	<1	<1.0	92	<6
JAN 22	20	48	<3	400	16	630	<10	1	<1	<1.0	160	<6
APR	20	70	0	400	10	030	<10		\1	\1.0	100	~0
15	<10	25	⊲	64	8	16	<10	1	<1	<1.0	68	<6
JUL												
08	10	34	<3	89	8	10	<10	<1	<1	<1.0	100	<6

05124480 KAWISHIWI RIVER NEAR ELY, MN (Hydrologic bench-mark station)

LOCATION.—Lat 47°55'22", long 91°32'06", in SE¹/₄SE¹/₄ sec.24, T.63 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on left bank upstream from rapids, 2 mi upstream from South Kawishiwi River, 2.2 mi southwest of Fernberg Lookout Tower and 14 mi east of Ely.

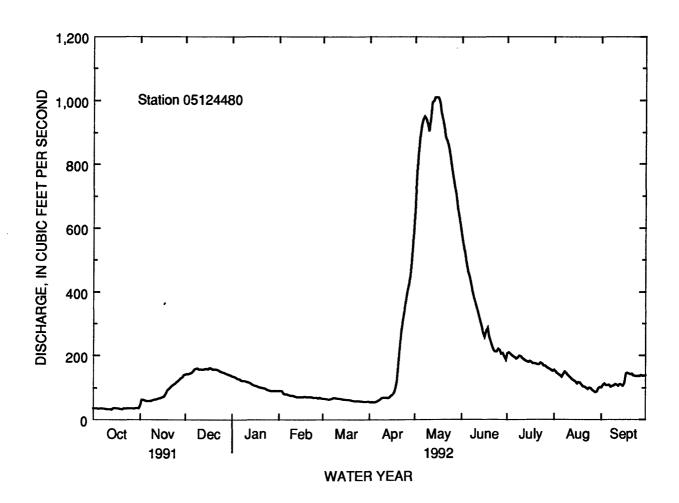
DRAINAGE AREA .-- 253 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,450 ft above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records good.


					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	47	143	137	91	67	56	653	577	206	156	102
2	36	63	144	136	91	67	55	743	547	209	151	110
3 4	36	63	144	134	91	66	56	823	521	205	146	114
4 5	35 35	61	146	131	83	65	55	883	493	201	143	110
3	33	59	147	129	80	64	56	922	465	197	139	109
6	36	59	152	128	81	65	58	941	448	194	135	110
7	35	59	158	124	79	66	61	951	426	190	144	104
8	35	59	160	123	77	69	64	944	403	193	151	106
9	34	61	161	123	76	69	69	927	383	199	146	108
10	33	63	158	122	76	68	70	905	366	197	141	112
11	33	64	158	120	75	67	70	944	348	192	136	110
12	33	65	158	118	73	67	70	995	330	188	131	107
13	32	67	158	116	72	66	69	1000	311	184	127	112
14	36	68	159	113	72	65	71	1010	292	182	124	110
15	37	70	160	110	72	64	75	1010	273	180	120	107
16	36	72	158	108	72	64	7 9	1010	259	183	114	114
17	36	74	162	107	72	63	85	996	278	180	118	144
. 18	35	83	161	105	73	63	96	965	287	176	117	147
19	34	93	158	103	72	62	120	942	262	176	110	145
20	33	98	158	102	72	61	178	916	244	175	105	143
21	3 6	102	158	101	72	60	233	886	229	173	104	144
22 23	36	107	157	100	72	59	274	875	216	173	101	139
23	36	111	155	99	71	59	312	856	212	178	97	138
24	36	114	152	95	70	59	344	826	212	175	101	137
25	36	118	150	94	70	59	373	796	220	169	100	138
26	36	122	149	92	70	58	401	763	216	169	94	137
27	36	127	147	91	68	58	423	733	205	165	91	140
28	35	131	145	91	70	57	455	701	207	161	87	138
29	37	134	143	91	68	57	503	666	197	159	89	138
30	37	141	141	91		57	572	637	187	156	100	139
31	36	***	140	91		57		606		153	103	
TOTAL	1093	2555	4740	3425	2181	1948	5403	26825	9614	5638	3721	3712
MEAN	35.3	85.2	153	110	75.2	62.8	180	865	320	182	120	124
MAX	37	141	162	137	91	69	572	1010	577	209	156	147
MIN	32	47	140	91	68	57	55	606	187	153	87	102
AC-FT	2170	5070	9400	6790	4330	3860	10720	53210	19070	11180	7380	7360
CFSM	.14	.34	.60	.44	.30	.25	.71	3.42	1.27	.72	.47	.49
IN.	.16	.38	.70	.50	.32	. 2 9	.79	3.94	1.41	.83	.55	.55

STATISTICS OF MO	NTHLY MEAN DATA	FOR WATER YEARS 1966	- 1992. BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	160	173	137	93.0	68.2	56.7	249	671	389	195	144	149
MAX	881	684	345	163	107	85.2	785	1133	1069	467	758	-698
(WY)	1978	1971	1983	1984	1971	1969	1976	1979	1970	1968	1988	1988
MIN (WY)	12.1 1977	9.43 1977	7.25 1977	5.32 1977	4.77 1977	5.87 1977	8.95 1977	13.3 1977	115 1977	74.5 1980	46.7 1976	18.5 1976

SUMMARY STATISTICS FOR 199	1 CALENDA	R YEAR	FOR 1992 WAT	TER YEAR	WATER YEA	RS 1966 - 1992
ANNUAL TOTAL	47512		70855			
ANNUAL MEAN	130		194		208	
HIGHEST ANNUAL MEAN					313	1971
LOWEST ANNUAL MEAN			•		94.5	1977
HIGHEST DAILY MEAN	512	May 9	1010	May 14	1710	Apr 24 1976
LOWEST DAILY MEAN	32	Sep 7	32	Oct 13	4.5	Jan 31 1977
ANNUAL SEVEN-DAY MINIMUM	I 34	Oct 7	34	Oct 7	4.6	Jan 29 1977
INSTANTANEOUS PEAK FLOW			1020	May 14	1720	Apr 24 1976
INSTANTANEOUS PEAK STAGE			5.29	May 14	5.92	Apr 24 1976
INSTANTANEOUS LOW FLOW			32	Oct 13	4.5a	•
ANNUAL RUNOFF (AC-FT)	94240		140500		150800	
ANNUAL RUNOFF (CFSM)	.51		.77		.82	
ANNUAL RUNOFF (INCHES)	6.99		10.42		11.18	
10 PERCENT EXCEEDS	354		496		530	
50 PERCENT EXCEEDS	64		117		107	
90 PERCENT EXCEEDS	36		56		37	

a Occurred all or part of each day Jan. 30 to Feb. 2, 1977.

05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued (Hydrologic bench-mark station)

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1966 to current year. REMARKS.--Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM (90095)	WA WH FIE (STA AI	TER WA OLE WH OLD L AND- (ST RD A TTS) UN	HOLE AB	WAT	RE BID ER ITY C) (NT)- (MN (OF (U) HG)	LIC S- E OXYGEI I DIS- SOLVEI) (MG/L)	FECAL, N, 0.7 UM-MF D (COLS./) 100 ML)	`
	1330	36	30	32	7	.6	7.2	11.0	1.3	3 714	9.0	<1	220
FEB 05 MAY	1400	76	32	34	7	.1	7.0	0.0	0.7	70 713	11.6	<1	K10
	1415	976	23	33	6	.6	7.2	6.0	1.5	728	11.9	K 1	57
	1200	165	31	31	6	.4	7.0	19.0	0.6	60 727	10.2	K12	K18
DATE	CALCIC DIS- SOLVE (MG/I AS CA (00915	DIS ED SOLVE L (MG/ A) AS M	I, SODII DIS ED SOLV L (MG G) AS N	UM, Si S- I YED SO I/L (N IA) A	IUM, DIS- LVED	ALKA- LINITY WAT DIS TOT ID FIELD MG/L AS CAC03 (39086)	LI I (M	NITY LAB MG/L		BICAR- BONATE WATER DIS IT FIELD (MG/L HC03 (00453)	DIS- SOLVED : (MG/L	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
OCT 01	3.2	1.4	1	.0	0.50	12		12	0	13	2.8	0.60	0.10
FEB 05	3.4	1.5	1	.2	0.40	11		13	0	13	2.7	0.60	0.20
MAY 05	3.0	1.4	1	.0	0.30	12		11	0	14	2.5	0.60	<0.10
JUL 21	3.1	1.3	. 1	.3	0.30	9		10	0	11	2.6	0.20	<0.10
DATE	SILICA DIS- SOLVE (MG/L AS SI02) (00955	AT 18 D DEG. DIS- SOLVI (MG/I	UE GEN 60 NITRI C DIS SOLV ED (MG L) AS N	N, G ITE NO2 I- I IED SO1 /L (M N) A	DIS- A	NITRO- GEN, AMMONIA TOTAL (MG/L AS N0) (00610)	AMI A I SO! (M A	GEN, O MONIA DIS- O	NITRO- GEN, AM- MONIA + DRGANIC TOTAL (MG/L AS N) (00625)	PHOS-	SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT	2.0	22		010	0.050	0.040		0.000	0.00	0.000	-0.010	0.020	-0.010
01 FEB 05	2.8 3.2	22 38			0.050	0.040		0.030	0.30	0.020 <0.010	<0.010	0.020 <0.010	<0.010 <0.010
MAY 05	4.2	28			0.081	0.020		0.020	0.50	<0.010	<0.010	<0.010	<0.010
JUL 21	3.4	35			0.050	0.020		0.030	0.30	<0.010	<0.010	<0.010	<0.010

05124480 KAWISHWI RIVER NEAR ELY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	DIS-	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	DIS-	DIS-	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	DIS-	DIS-	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	DIS-
OCT 01 FEB	6	84	20	4	3	130	<4	4	<10	<1	<1
05	2	61	30	2	<3	200	<4	6	<10	<1	<1
MAY 05 JUL	5	81	70	4	⋖	270	<4	27	<10	2	<1
21	100	11	40	4	⋖	240	<4	6	<10	2	<1
DATE	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	GROSS ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	BETA, SUSP.	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED
OCT 01	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	ALPHA, DIS- SOLVED (UG/L AS U-NAT)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT)	BETA, DIS- SOLVED (PCI/L AS CS-137)	BETA, SUSP. TOTAL (PCI/L AS CS-137)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	226, DIS- SOLVED, RADON METHOD (PCI/L)	URANIUM NATURAL DIS- SOLVED (UG/L AS U)
ост	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
OCT 01 FEB	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	ALPHA, DIS- SOLVED (UG/L AS U-NAT) (80030)	ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)

05127000 KAWISHIWI RIVER NEAR WINTON, MN

LOCATION.--Lat 47°56'05", long 91°45'50", in NE¹/4NW¹/4 sec.20, T.63 N., R.11 W., Lake County, Hydrologic Unit 09030001, Superior National Forest, at powerplant of Minnesota Power Co., just upstream from Fall Lake, and 1.8 mi east of Winton.

DRAINAGE AREA .-- 1,229 mi2.

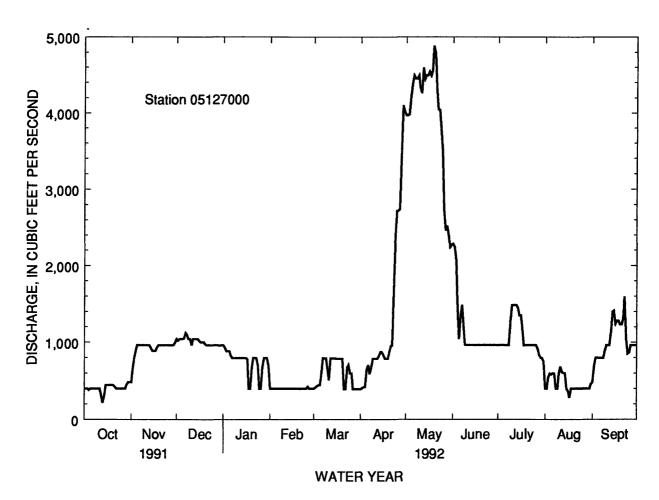
PERIOD OF RECORD.--June 1905 to June 1907, October 1912 to September 1919 (fragmentary), September 1923 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS .-- WDR MN-77-1: Drainage area.

REMARKS.--No estimated daily discharges. Records fair. Daily discharge computed from powerplant records. Flow regulated by powerplant and by Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, South Farm, and Garden Lakes.

COOPERATION.--Records collected by Minnesota Power Co., under general supervision of Geological Survey, in connection with a Federal Power Commission project.

					DA	ILY ME	AN VALUES	S				
DAY	OCT	NOV	DEC	. JAN	FEB	MAI	R APR	MAY	JUN	JUL	AUG	SEP
1	399	483	1040	959	396	39	8 395	3970	2280	959	398	482
2	399	649	1020		397	409		3970		959	398	694
	399 399								2240	939	396	
3		798	1040	882	397	429		3980	2070	959	538	798
4	382	894	1040	882	397	442		4220	1540	960	594	797
5	399	960	1040	882	397	442	2 646	4400	1040	960	580	795
6	399	960	1050		397	56		4490	1330	960	596	795
7	399	960	1120		397	793		4450	1480	960	595	795
8	399	960	1100		397	791	1 674	4450	1230	962	398	795
9	399	960	1040		397	791		4490	959	1260	399	891
10	399	959	1040	794	397	675	788	4330	961	1480	589	959
11	399	959	962		397	512	2 786	4260	961	1480	681	959
12	331	959	1040	794	397	790	786	4590	960	1480	613	960
13	216	959	1040	794	397	789	822	4450	961	1480	601	1140
14	300	922	1040		397	789		4490	960	1440	600	1400
15	444	884	1040		397	789	874	4490	961	1350	398	1410
16	444	884	1020		397	788		4540	961	1350	365	1240
17	444	884	1000	776	397	788	3 7 87	4490	960	1130	283	1280
18	444	933	1000	397	397	788	3 787	4550	962	958	399	1280
19	444	959	1000	397	397	788	3 787	4880	962	960	399	1230
20	444	960	975		397	787		4790	962	960	399	1230
21	421	960	961	795	397	394	954	4340	960	959	399	1310
22	399	960	961		397	394		4050	960	959	399	1590
23	399	960	961		397	673	1660	4040	960	959	399	1040
24	399	960	960		397	706		3730	960	959	399	853
25	399	960	960		397	600		3500	960	959	399	869
		,	,00	57.	57.	000	2.20	5500	,,,,	,,,,		007
26	399	961	960		424	598		2740	960	959	399	960
27	399	962	960		397	394		2460	960	909	399	960
28	399	962	959		398	395		2520	960	830	3 99	960
29	447	962	958		398	395		2410	960	794	39 9	960
30	482	993	958	792		395	4020	2240	959	794	399	960
31	482		959	694		395	·	2270		743	456	
TOTAL	12508	27526	31204	23165	11541	18684	39850	122580	34339	32831	14269	30392
MEAN	403	918	1007		398	603		3954	1145	1059	460	1013
MAX	482	993	1120		398 424	793		4880	2280	1480	681	1590
MIN	216	483	958	397	424 396	793 394		4880 2240	959	743	283	482
					-60				939 -77	-25		
+	30 422	105	-167	-264		-185	49/	146		-25 1034	63 522	86
MEAN ‡	433	1023	840	483	338	418		4100	1068		523	1099
CFSM ‡	.35	.83	.68	.39	.28	.34	1.48	3.34	.87	.84	.43	.89
IN‡.	.41	.93	.79		.30	.39		3.85	.97	.97	.49	1.00
CAL YR.	1991	TOTAL 28	0,254	MEAN 768	MAX. 2		MIN. 0	MEAN ‡7	73 CF	SM ‡.63	IN \$8.54	}
WTR YR	1992	TOTAL 39	8,889	MEAN 1090	MAX. 4	1480	MIN. 216	MEAN ‡1	IUI CF	SM ‡.90	IN ‡12.2	XU


⁺ Change in contents, equivalent in cubic feet per second, in Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, Farm, South Farm and Garden Lakes.

[‡] Adjusted for change in reservoir content.

OTHER PROPERTY OF THE PARTY	** * ** ** * * * * * * * * * * * * * * *	TOD W	
STATISTICS OF MONTH	Y MEAN DATA	A FOR WATER YEARS 1905	- 1992. BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	900	752	587	450	343	369	1187	3133	1952	1125	689	757
MAX	4277	3572	1422	862	770	844	5020	9278	5661	2748	3775	3149
(WY)	1947	1971	1983	1978	1927	1945	1945	1950	1968	1944	1988	1928
MIN	66.5	8.97	76.1	80.3	74.5	103	19.3	111	519	217	51.7	38.1
(WY)	1924	1924	1977	1977	1977	1924	1924	1924	1980	1961	1919	1919

SUMMARY STATISTICS FOR 199	01 CALENDA	AR YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	ARS 1905 - 1992
ANNUAL TOTAL	280254.00		398889			
ANNUAL MEAN	768		1090		1031	
HIGHEST ANNUAL MEAN					1967	1950
LOWEST ANNUAL MEAN					240	1924
HIGHEST DAILY MEAN	2880	May 9	4880	May 19	16000	May 18 1950
LOWEST DAILY MEAN	.00	At times	216	Oct 13	.00	At times
ANNUAL SEVEN-DAY MINIMUM	140	Sep 1	349	Oct 8	.00	Oct 13 1923
ANNUAL RUNOFF (AC-FT)	555900	-	791200		747200	
ANNUAL RUNOFF (CFSM)	.62		.89		.84	
ANNUAL RUNOFF (INCHES)	8.48		12.07		11.40	
10 PERCENT EXCEEDS	1470		2320		2450	
50 PERCENT EXCEEDS	582		873		590	
90 PERCENT EXCEEDS	294		397		190	

05127500 BASSWOOD RIVER NEAR WINTON, MN (International gaging station)

LOCATION.—Lat 48°04'57", long 91°39'09", in SE¹/₄SE¹/₄ sec.30, T.65 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on island in Jackfish Bay of Basswood Lake, used to determine discharge at outlet [lat 48°06'21", long 91°38'51", in sec.19, T.65 N., R.10 W., on international boundary 14 mi northeast of Winton].

DRAINAGE AREA.--1,740 mi², approximately (above outlet of Basswood Lake).

PERIOD OF RECORD.--March to June 1924, September 1925 to March 1928, January 1930 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 955: Drainage area. WSP 1145: 1935, 1937.

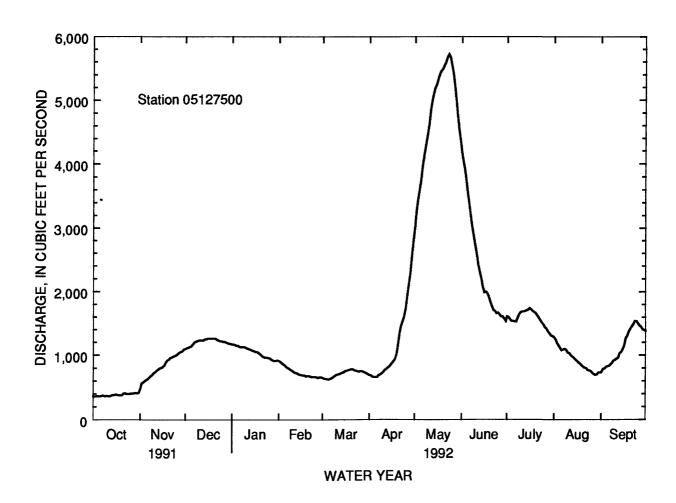
GAGE.--Water-stage recorder. Datum of gage is 1,296.80 ft above sea level, 1928 datum, (levels by Geodetic Survey of Canada). Prior to Oct. 27, 1938, nonrecording gages at several sites in vicinity of gage, at datum 3.0 ft higher. Oct. 28, 1938, to Sept. 30, 1966, water-stage recorder at datum 3.0 ft higher.

REMARKS.--No estimated daily discharges. Records good. Satellite telemeter at station. Some regulation by powerplant on Kawishiwi River at Winton, and by many lakes located upstream from station.

COOPERATION .- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAILY MEAN VALUES SEP DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL AUG ---**TOTAL 11947** MEAN MAX MIN AC-FT 1.38 .90 .53 .66 **CFSM** .47 .69 .22 .60 .42 .41 .68 2.75 IN. .26 .53 .80 .70 .46 .47 .75 3.18 1.54 1.04 .62 .74


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1094	1009	864	718	592	566	1205	3770	2907	1793	1097	1007
MAX	5320	3879	2510	1475	1229	1143	5069	9114	7332	4453	3487	5034
(WY)	1978	1971	1983	1966	1966	1966	1945	1950	1950	1944	1944	1988
MIN	65.1	60.2	76.2	86.2	95.0	135	269	225	69 6	512	323	120
(WY)	1977	1977	1977	1977	1977	1977	1977	1977	1980	1980	1980	1976

SUMMARY STATISTICS FOR 19	991 CALENDA	AR YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	ARS 1931 - 1992
ANNUAL TOTAL	374196		518436			
ANNUAL MEAN	1025		1416		1399	
HIGHEST ANNUAL MEAN					2643	1950
LOWEST ANNUAL MEAN					557	1958
HIGHEST DAILY MEAN	3130	May 17	5720	May 23	15200	May 24 1950
LOWEST DAILY MEAN	341	Sep 24	362	Oct 2	58	Nov 3 1976
ANNUAL SEVEN-DAY MINIMU	M 350	Sep 22	367	Oct 1	58	Nov 7 1976
INSTANTANEOUS PEAK FLOW		-	5740	May 22, 23	15600	May 24 1950
INSTANTANEOUS PEAK STAGE	Į.		6.33	May 22, 23	9. 94a	May 24 1950
INSTANTANEOUS LOW FLOW			360b		55	Nov 18 1976
ANNUAL RUNOFF (AC-FT)	742200		1028000		1013000	
ANNUAL RUNOFF (CFSM)	.59		.81		.80	
ANNUAL RUNOFF (INCHES)	8.00		11.08		10.92	
10 PERCENT EXCEEDS	1850		3180		3270	
50 PERCENT EXCEEDS	788		1030		854	
90 PERCENT EXCEEDS	375		623		375	

a Present datum.

b Occurred Oct. 1, 2, 3, 5, 9, 11.

05128000 NAMAKAN RIVER AT OUTLET OF LAC LA CROIX, ONTARIO (International gaging station)

LOCATION.--Lat 48°21'14", long 92°13'01", at Campbell's Camp, on Lac La Croix Lake, used to determine discharge at outlet [Lat 48°23'00", long 92°10'40", 2.5 mi east of Campbell's Camp].

DRAINAGE AREA.--5,170 mi².

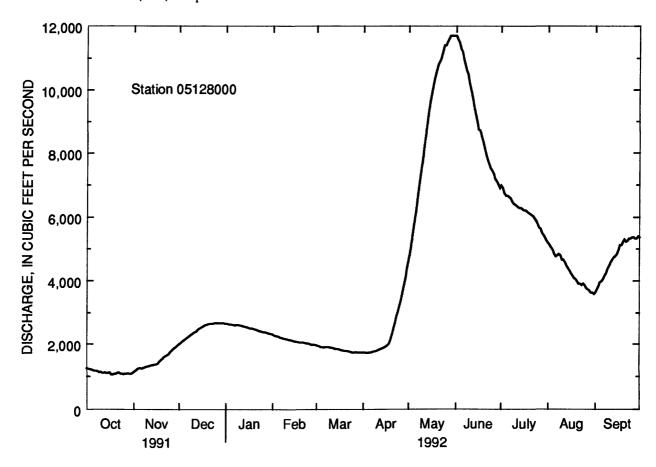
PERIOD OF RECORD.--September 1921 to January 1922, April 1922 to current year, in reports of Geological Survey. Monthly discharge only for some periods, published in WSP 1308. August 1921 to current year, in reports of Water Survey of Canada.

GAGE.--Water-stage recorder. Gage readings have been reduced to elevations, United States and Canada Boundary Survey datum. Prior to October 1933, nonrecording gages at various sites on Lac la Croix. October 1933 to Mar. 13, 1963, nonrecording gage at present site and datum. REMARKS.--Records good. Satellite telemeter at station.

COOPERATION .-- This station is one of the international stations maintained by Canada under agreement with the United States.

					D	AILY MEA	N VALUES	3				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1250	1140	e2000	2660	2320	1970	1740	4660	11700	6990	5190	3640
2	1230	1170	e2040	2660	2290	1950	1740	e4940	11600	6920	5120	3740
3	1220	1200	e2080	2640	2270	1940	1730	e5300	11500	6750	5050	38 5 0
4	1210	1240	e2120	2640	2260	1910	1730	e5650	11300	6670	4980	3960
5	1190	1250	e2160	2630	2250	1910	1740	e6000	11200	6670	4840	3990
6	1170	1240	e2190	2620	2220	1900	1740	e6360	11000	6640	4770	4060
7	1170	1250	e2230	2610	2210	1910	1760	e6710	10800	6600	4800	4170
8	1160	1270	e2270	2620	2190	1910	1770	e7100	10600	6500	4840	4240
9	1130	1290	e2310	2620	2180	1910	1780	e7490	10500	e6430	4800	4380
10	1140	1300	2340	2610	2170	1900	1800	e7840	10200	e6390	4660	4480
11	1110	1310	2380	2600	2160	1890	1820	e8230	9990	e6360	4660	4590
12	1110	1330	2400	2590	2140	1880	1840	e8620	9750	e6320	4590	4660
13	1120	1340	2440	2570	2140	1860	1860	8970	9500	e6290	4480	4730
14	1100	1350	2490	2560	2120	1850	1880	9290	9250	e6290	4410	4770
15	1110	1360	2520	2550	2110	1850	1900	9640	9010	6250	4340	4840
16	1120	1370	2550	2530	2090	1840	1930	9920	8760	6220	4240	4940
17	1060	1390	2570	2510	2080	1820	1970	10200	8720	6220	4170	5120
18	1060	1450	2610	2510	2070	1810	2020	10400	8510	6180	4100	5120
19	1080	1500	2620	2500	2060	1800	2130	10600	8330	6140	4060	5230
20	1080	1540	2640	2480	2060	1790	2290	10800	8160	6110	3990	5300
21	1110	1590	2650	2470	2060	1790	2500	10900	7950	6070	3920	5230
22	1120	1620	2660	2450	2050	1780	2690	11000	7770	6040	3920	5260
23	1080	1650	2660	2430	2030	1770	2890	11200	7660	<i>5</i> 9 70	3880	5 330
24	1080	1680	2670	2420	2030	1750	3060	11400	7520	5900	39 20	5330
25	1070	1740	2680	2400	2020	1740	3250	11400	7450	5790	3880	5370
26	1080	1790	2680	2390	2000	1740	3440	11500	7350	5690	3780	5370
27	1080	1840	2680	2390	1980	1750	3640	11600	7200	5650	3740	5330
28	1090	1880	2680	2370	1990	1740	3880	11700	7130	5510	3710	5330
29	1080	1910	2680	2360	1980	1740	4100	11700	7030	5440	3640	5400
30	1080	1960	2680	2340		1740	4410	11700	6920	5370	3640	5370
31	1100		2670	2330		1740		11700		5260	3600	***
TOTAL	34790	43950	76350	78060	61530	56880	71030	284520	274360	191630	133720	143130
MEAN	1122	1465	2463	2518	2122	1835	2368	9178	9145	6182	4314	4771
MAX	1250	1960	2680	2660	2320	1970	4410	11700	11700	6990	5190	5400
MIN	1060	1140	2000	2330	1980	1740	1730	4660	6920	5260	3600	3640
AC-FT	69010	87170	151400	154800	122000	112800	140900	564300	544200	380100	265200	283900
CFSM.	22	.28	.48	.49	.41	.35	.46	1.78	1.77	1.20	.83	.92
IN.	.25	.32	.55	.56	.44	.41	.51	2.05	1.97	1.38	.96	1.03

e Estimated.


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 1992, BY WATER YEAR (WY)

	OCT	NOV	·DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	3064	2887	2569	2169	1872	1662	2548	7691	8058	6105	3983	3177
MAX	4200	10610	7189	4568	3432	2996	9071	16900	22120	15930	11200	13140
(WY)	1978	1978	1972	1978	1966	1966	1945	1938	1950	1968	1944	1988
MIN	835	624	567	547	540	535	614	899	1475	1263	1141	1223
(WY)1	977	1977	1977	1977	1924	1924	1977	1977	1924	1924	1980	1933

SUMMARY STATISTICS FOR 199	1 CALENDA	AR YEAR	FOR 1992 WAT	TER YEAR	WATER YEA	RS 1921 - 1992
ANNUAL TOTAL	1035590		1449950			
ANNUAL MEAN	2837		3962		3834	
HIGHEST ANNUAL MEAN					7270	1950
LOWEST ANNUAL MEAN					964	1924
HIGHEST DAILY MEAN	7170	May 25	11700	May 28	28200	May 31 1950
LOWEST DAILY MEAN	1060	Oct 17	1060	Oct 17	535	Feb 4 1924
ANNUAL SEVEN-DAY MINIMUM	1080	Oct 23	1080	Oct 23	535	Feb 4 1924
INSTANTANEOUS PEAK FLOW			11800	May 31	28200a	
INSTANTANEOUS PEAK STAGE			1187.94	May 31	1193.30a	
INSTANTANEOUS LOW FLOW			939	Oct 17	53 <i>5</i> b	
ANNUAL RUNOFF (AC-FT)	2054000		2876000		2778000	
ANNUAL RUNOFF (CFSM)	.55		.77		.74	
ANNUAL RUNOFF (INCHES)	7.45		10.43		10.08	
10 PERCENT EXCEEDS	5910		8650		8340	
50 PERCENT EXCEEDS	1910		2610		2640	
90 PERCENT EXCEEDS	1250		1250		1180	

a Occurred May 31 to June 2, 1950.

b Occurred at times in Feb., Mar., and Apr. 1924.

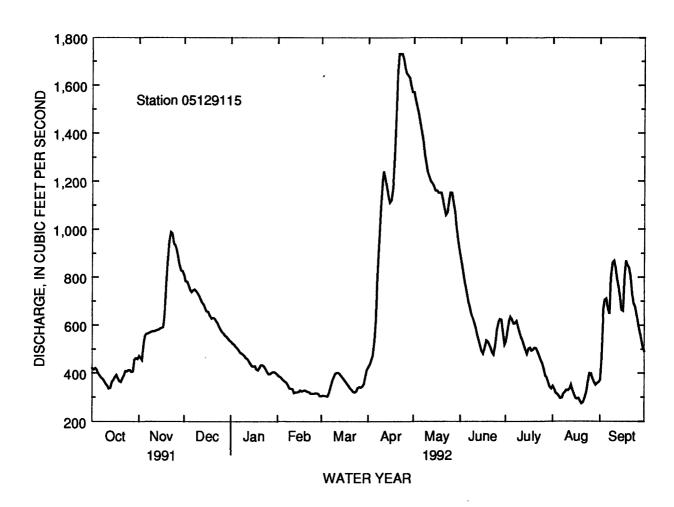
05129115 VERMILION RIVER NEAR CRANE LAKE, MN

LOCATION.--Lat 48°15'53", long 92°33'57", in NE¹/₄NE¹/₄ sec. 30, T.67 N., R.17 W., St. Louis County, Hydrologic Unit 09030002, in Superior National Forest, on left bank 350 ft downstream from bridge on Forest Route 491, 3.5 mi upstream from mouth, and 3.5 mi west of city of Crane Lake

PERIOD OF RECORD.--August 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,180 ft above sea level, from topographic map.

REMARKS.--Records good. No estimated daily discharges.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1979 reached a stage of 15.15 ft, from high-water mark, discharge, about 4,600 ft³/s.

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	420	471	806	531	392	304	425	1570	885	532	346	371
2	414	465	783	523	387	307	437	1540	848	576	333	465
3	420	454	780	519	382	305	453	1510	806	620	318	669
4	415	522	764	512	375	304	476	1480	773	634	313	705
5	399	556	746	505	368	302	536	1440	738	623	305	710
6	389	564	737	497	364	316	648	1410	700	607	295	670
7	380	565	745	488	358	340	803	1370	674	608	297	648
8	376	569	748	483	346	365	956	1310	650	617	316	796
9	366	572	741	479	335	383	1090	1270	630	592	322	861
10	355	574	731	471	334	395	1190	1240	610	569	330	869
11	346	574	720	464	333	401	1240	1220	588	551	329	839
12	336	577	708	460	317	401	1210	1200	562	535	335	797
13	338	580	693	447	320	397	1170	1190	538	514	352	759
14	364	581	685	439	320	389	1130	1180	515	496	329	712
15	372	586	667	429	322	379	1110	1160	495	481	312	663
16	383	589	657	427	327	373	1120	1160	483	502	296	659
17	392	592	655	429	324	363	1170	1150	507	507	293	806
18	377	647	639	416	326	355	1270	1150	537	495	295	869
19	366	773	628	411	327	346	1430	1150	533	498	282	850
20	362	878	630	422	325	337	1640	1120	521	507	275	838
21	378	949	628	433	322	330	1730	1090	505	504	280	799
22	392	988	619	433	320	323	1730	1060	486	491	300	733
23	408	981	608	428	315	319	1730	1070	478	475	325	691
24	406	938	596	417	315	324	1710	1120	518	455	363	675
25	412	933	582	406	314	339	1670	1150	581	440	400	637
26	411	913	572	395	316	342	1650	1150	614	420	398	603
27	403	878	565	395	316	340	1640	1110	625	391	379	571
28	406	850	557	401	314	344	1630	1070	622	380	363	539
29	455	827	551	404	304	355	1600	1010	569	358	352	511
30	462	825	544	404		381	1570	958	520	343	358	492
31	458		537	399		411		915		335	362	
TOTAL	12161	20771	20622	13867	9718	10870	36164	37523	18111	15656	10153	20807
MEAN	392	692	665	447	335	351	1205	1210	604	505	328	694
MAX	462	988	806	531	392	411	1730	1570	885	634	400	869
MIN	336	454	537	395	304	302	425	915	478	335	275	371
AC-FT	24120	41200	40900	27510	19280	21560	71730	74430	35920	31050	20140	41270

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1979 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	569	512	409	282	233	275	1127	1390	1016	747	447	485
MAX1	175	1138	872	460	368	465	1641	2249	1840	1609	1612	1880
(WY)	1986	1983	1983	1984	1984	1987	1986	1982	1985	1985	1988	1988
MIN	181	152	116	97.8	94.1	89.5	627	507	205	113	60.0	103
(WY)	1980	1988	1988	1988	1988	1988	1987	1980	1980	1980	1980	1984

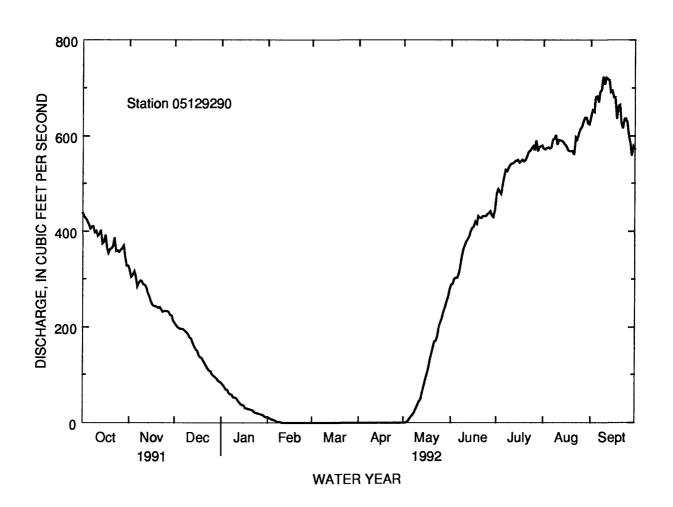
SUMMARY STATISTICS F	OR 1991 CALENDA	AR YEAR	FOR 1992 WATER YEAR		WATER YEA	ARS 1979 - 1992
ANNUAL TOTAL	218934		226423			
ANNUAL MEAN	600		619		627	
HIGHEST ANNUAL MEAN					806	1986
LOWEST ANNUAL MEAN					326	1980
HIGHEST DAILY MEAN	1750	May 13	1730	Apr 21	4300	Apr 25 1985
LOWEST DAILY MEAN	141	Feb 18	275	Aug 20	38	Aug 13 1980
ANNUAL SEVEN-DAY MIN	IMUM 146	Feb 13	289	Aug 16	40	Aug 10 1980
INSTANTANEOUS PEAK FL	WO.		1870	Apr 23	4360	Apr 25 1985
INSTANTANEOUS PEAK ST	TAGE		10.93	Apr 23	15.20	Apr 25 1985
INSTANTANEOUS LOW FLO	ow		271	Aug 20, 22	38	Aug 13, 14, 1980
ANNUAL RUNOFF (AC-FT)	434300		449100	-	454400	•
10 PERCENT EXCEEDS	1250		1150		1410	
50 PERCENT EXCEEDS	488		509		414	
90 PERCENT EXCEEDS	160		324		158	

05129290 GOLD PORTAGE OUTLET FROM KABETOGAMA LAKE NEAR RAY, MN

LOCATION.--Lat 48°31'28", long 93°04'29", in SW¹/4NE¹/4 sec.30, T.70 N., R.21 W., St. Louis County, Hydrologic Unit 09030003, on right bank in bay at head of Gold Portage Outlet from Kabetogama Lake, 9.8 mi northeast of Ray.

PERIOD OF RECORD.--October 1982 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,100 ft above sea level, adjustment of 1912 (U.S. Army Corps of Engineers benchmark), water surface transfer.

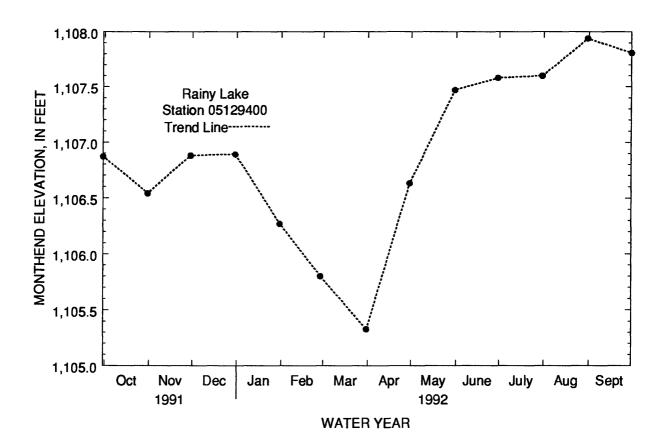

REMARKS.--Records good. No estimated daily discharges. Flow completely regulated by outlet dam on Namakan Lake.

			,		DAI	LY MEAN	VALUES	S				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	438	321	209	82	12	.00	.00	.12	288	479	574	641
2	431	305	204	79	10	.00	.00	.18	291	488	572	654
3	427	309	200	75	8.0	.00	.00	1.2	300	483	575	651
4	422	316	198	69	6.9	.00	.00	4.0	303	478	576	681
5	415	307	197	68	6.4	.00	.00	8.4	303	499	574	683
6	406	285	197	62	4.6	.00	.00	13	312	513	576	671
7	410	293	195	59	2.9	.00	.00	17	325	529	593	692
8	411	297	192	58	2.0	.00	.00	22	347	526	595	696
9	398	296	189	53	1.8	.00	.00	30	362	534	602	724
10	401	289	185	52	.81	.00	.00	36	372	539	582	708
11	391	288	179	51	.22	.00	.00	44	379	542	592	722
12	395	282	176	46	.21	.00	.00	48	384	543	591	719
13	403	272	167	43	.19	.00	.00	61	391	546	590	717
14	375	264	159	39	.17	.00	.00	75	401	548	587	692
15	378	254	153	37	.17	.00	.00	88	407	550	583	695
16	393	248	150	36	.14	.00	.00	101	410	544	579	681
17	365	245	141	31	.13	.00	.00	112	421	547	571	681
18	355	244	136	30	.12	.00	.00	130	416	550	568	636
19	363	243	135	29	.10	.00	.00	145	432	547	568	662
20	365	241	129	28	.10	.00	.00	159	429	550	569	665
21	369	242	123	27	.08	.00	.00	170	428	558	561	627
22	387	237	117	26	.04	.00	.00	172	432	566	597	617
23	359	233	112	22	.00	.00	.00	183	432	569	593	636
24	360	234	108	21	.00	.00	.00	201	432	575	605	637
25	357	234	106	20	.00	.00	.00	211	436	579	615	629
26	361	234	100	19	.00	.00	.00	221	438	570	620	600
27	365	232	97	18	.00	.00	.00	232	442	591	630	584
28	370	226	94	17	.00	.00	.00	242	433	568	638	559
29	349	225	91	16	.00	.00	.00	254	430	576	638	579
30	328	215	87	13		.00	.06	265	444	579	626	573
31	328		85	12		.00		279		580	625	373
31	320		0.5	12		.00		219		300	023	
TOTAL	11875	7911	4611	1238	57.08	0.00	0.06	3524.90	11620	16846	18365	19712
MEAN	383	264	149	39.9	1.97	.000	.002	114	387	543	592	657
MAX	438	321	209	82	12	.00	.06	279	444	591	638	724
MIN	328	215	85	12	.00	.00	.00	.12	288	478	561	559
AC-FT		15690	9150	2460	113	.00	.1	6990	23050	33410	36430	39100
										-		

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1983 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	207	100	70 6	150	1.05	000	25	106	077	576	500	550
MEAN	397	199	78.6	15.3	1.05	.000	.35	126	377	576	590	559
MAX	530	267	149	45.1	7.34	.002	1.66	307	583	683	6 86	78 7
(WY)	1986	1990	1992	1990	1990	1990	1985	1986	1985	1985	1988	1988
MIN	285	115	16.5	1.10	.000	.000	.000	.000	96.0	432	519	431
(WY)	1985	1988	1988	1988	1983	1983	1983	1987	1987	1987	1986	1984

SUMMARY STATISTICS FOR 1991	CALENDA	AR YEAR	YEAR FOR 1992 WATER YEAR			EARS 1983 - 1992
ANNUAL TOTAL	92291.22		95760.04			
ANNUAL MEAN	253		262		245	
HIGHEST ANNUAL MEAN					280	1986
LOWEST ANNUAL MEAN					192	1987
HIGHEST DAILY MEAN	698	Jul 10	724	Sep 9	876	Sep 22 1988
LOWEST DAILY MEAN	.00	Many days	.00	Many days	.00.	Many days in each yr
ANNUAL SEVEN-DAY MINIMUM	.00	Feb 21	.00	Feb 23	.00	Jan 21 1983
INSTANTANEOUS PEAK FLOW			742	Sep 11	897	Sep 21 1988
INSTANTANEOUS PEAK STAGE			· 18.67	Sep 11	19.23	Sep 21 1988
ANNUAL RUNOFF (AC-FT)	183100		189900		177200	
10 PERCENT EXCEEDS	570		596		591	
50 PERCENT EXCEEDS	226		232		161	
90 PERCENT EXCEEDS	.00		.00		.00.	


05129400 RAINY LAKE NEAR FORT FRANCES, ONTARIO (International gaging station)

- LOCATION.-Lat 48°38'30", long 93°20'00", at Five Mile dock, approximately 5 mi northeast of city of Fort Frances.
- PERIOD OF RECORD.—January 1910 to September 1917 and October 1934 to current year, in reports of Geological Survey. August 1911 to current year, in reports of Water Survey of Canada. Prior to October 1949, published as "at Ranier, Minn.", and as "at Fort Frances, Ontario" October 1949 to September 1964.
- GAGE.--Water-stage recorder. Datum of gage is sea level (United States and Canadian Boundary Survey). January 1910 to December 1949, nonrecording gage 3 mi northeast at Ranier, Minn., at same datum. January 1950 to October 1964, water-stage recorder on Government dock at Pither's Point at Fort Frances, and supplementary gage in town pumping station, 0.5 mi south, used during winter months, at same datum.
- COOPERATION .-- This station is one of the international gaging stations maintained by Canada under agreement with the United States.
- EXTREMES FOR PERIOD OF RECORD.--Maximum elevation observed, 1,112.97 ft, July 5, 1950; minimum observed, 1,101.26 ft, Apr. 17, 1923, Apr. 2, 1930.
- EXTREMES FOR CURRENT YEAR.—Maximum elevation, 1,108.44 ft, Sept. 10; maximum daily elevation, 1,108.33 ft, Sept. 9; minimum, 1,105.31 ft, Mar. 25; minimum daily, 1,105.32 ft, Mar. 26.

MONTHEND ELEVATION, IN SEA LEVEL, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

Oct. 31 1,106.54	Feb. 28 1,105.80	June 301,107.58
Nov. 30 1,106.88	Mar. 31 1,105.33	July 31 1,107.60
Dec. 311,106.89	Apr. 301,106.63	Aug. 311,107.94
Jan. 311,106.27	May 31 1,107.47	Sept. 301,107.81

NOTE.--Elevations other than those shown are available.

05130500 STURGEON RIVER NEAR CHISHOLM, MN

LOCATION.--Lat 47°40'25", long 92°54'00", in NE¹/4NW¹/4 sec. 20, T.60 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, on left bank 1,000 ft upstream from highway bridge, 0.6 mi downstream from East Branch Sturgeon River, and 11.5 mi north of Chisholm.

DRAINAGE AREA.--187 mi².

PERIOD OF RECORD.--August 1942 to current year.

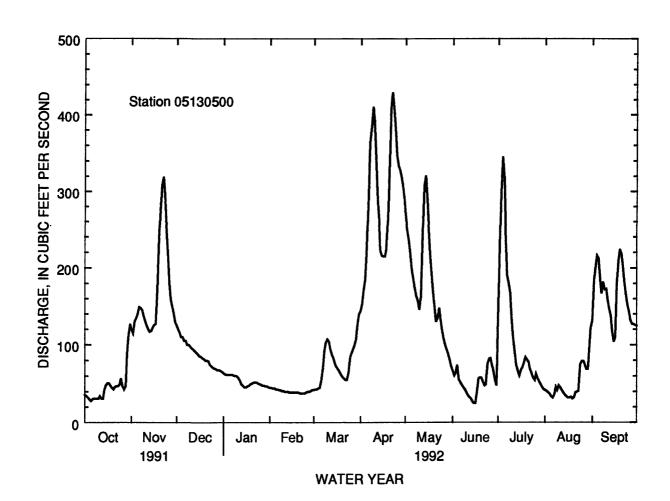
REVISED RECORDS .-- WSP 1438: 1946.

GAGE.--Water-stage recorder. Datum of gage is 1,305.7 ft above sea level. Prior to Aug. 24, 1944, nonrecording gage at site 1,000 ft downstream at different datum. Aug. 25, 1944, to Sept. 30, 1975, at present site at datum 1.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base of 500 ft³/s and maximum (*):

Date	. 1	[ime	Discharge (ft³/s)		ge height (ft)		Date	Time		harge ³/s)	Gage He	ight
Apr. 2	1, 22		*432	*	*3.66		No peak	greater than	base disch	narge.		
		DISC	HARGE, CU	BIC FEET	PER SECO	ND, WATEI	R YEAR O	CTOBER 199	91 TO SEI	PTEMBER	1992	
					DA	JILY MEAI	N VALUES					
DAY	OCT	NO	V DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36	12		e64	e45	42	144	270	67	133	42	132
2	34	11		e63	e45	43	154	250	61	228	41	185
3	32	13		e62	e44	43	170	237	64	299	39	203
4	30	13.		e62	e44	44	185	219	74	346	37	216
5	28	14	0 e110	e62	e43	45	227	201	56	317	34	212
6	30	14		e62	e43	54	296	187	52	248	32	185
7	31	14		e62	e42	70	364	174	49	191	36	167
8 9	31	14		e61	e42	91	384	163	46	181 167	46 42	182 172
10	31 31	13: 13		e61	e41	103 107	411 391	157 146	43 39	136	42 48	172
10	31	13	1 90	e 60	e41	107	391	140	39	130	40	173
11	34	12:	5 96	e58	e40	104	344	163	36	109	45	159
12	31	120	0 94	e54	e40	95	289	244	33	90	42	147
13	31	11'	7 92	e50	e40	88	262	307	31	75	39	138
14	42	118		e48	e39	83	223	321	27	67	36	119
15	48	12:	3 88	e46	e39	76	216	289	25	61	34	104
16	51	120	5 86	e46	e39	72	215	249	25	68	32	110
17	51	12	7 85	e47	e39	69	215	219	40	71	32	179
18	48	172		e48	e39	66	224	193	57	<i>7</i> 7	33	209
19	45	238		e50	e39	63	266	168	58	84	31	224
20	43	270	5 80	e51	e39	59	340	148	58	81	32	218
21	46	309	80	e52	e38	57	411	130	53	78	39	202
22	47	319	79	e52	e38	55	430	135	48	69	40	181
23	47	296	5 75	e52	e38	55	406	148	49	64	41	164
24	49	255		e51	e38	64	376	134	76	58	75	153
25	57	e220	71	e50	39	84	348	119	82	55	79	144
26	47	e180	70	e49	40	89	334	108	83	63	79	132
27	43	e160	69	e48	40	94	328	101	74	57	76	127
28	47	e150	68	e48	41	100	320	94	66	53	69	127
29	89	e140	68	e47	42	108	307	88	56	50	69	126
30	113	e130		e47		126	289	80	48	46	99	125
31	127		- 66	e 46		140		73		43	122	
TOTAL	1450	5053	2750	1659	1177	2389	8869	5515	1576	3665	1541	4915
MEAN	46.8	168		53.5	40.6	77.1	296	178	52.5	118	49.7	164
MAX	127	319		64	45	140	430	321	83	346	122	224
MIN	28	115	66	46	38	42	144	73	25	43	31	104
AC-FT	2880	10020		3290	2330	4740	17590	10940	3130	7270	3060	9750
CFSM.	.25	.90		.29	.22	.41	1.58	.95	.28	.63	.27	.88
IN.	.29	1.01	55	.33	.23	.48	1.76	1.10	.31	.73	.31	.98


e Estimated.

STATISTICS OF MONTHLY MEAN	

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	112	89.1	45.7	27.7	22.2	48.4	370	307	185	105	68.0	90.6
MAX	369	264	115	66.0	47.7	337	868	1451	528	483	268	424
(WY)	1974	1978	1978	1966	1984	1945	1948	1950	1944	1944	1988	1977
MIN	7.85	8.90	4.82	3.98	4.54	10.0	41.0	22.9	14.7	5.99	12.6	4.60
(WY)	1977	1977	1977	1977	1977	1957	1977	1977	1988	1988	1961	1976

SUMMARY STATISTICS	FOR 1991 CALENDA	R YEAR	FOR 1992 WA	TER YEAR	WATER YEA	RS 1942 - 1992
ANNUAL TOTAL	35463		40559			
ANNUAL MEAN	97.2		111		123	
HIGHEST ANNUAL MEAN					208	1950
LOWEST ANNUAL MEAN					63.1	1977
HIGHEST DAILY MEAN	519	May 8	430	Apr 22	3530	May 8 1950
LOWEST DAILY MEAN	21	Mar 4	25	Jun 15	2.5	Jul 30 1988
ANNUAL SEVEN-DAY MIT	NIMUM 21	Mar 4	30	Oct 4	3.0	Jul 24 1988
INSTANTANEOUS PEAK F	LOW		432	Apr 21, 22	3630a	May 7 1950
INSTANTANEOUS PEAK ST	ΓAGE		3.66	Apr 21, 22	7.41b	May 7 1950
INSTANTANEOUS LOW FI	LOW		24	Jun 15		•
ANNUAL RUNOFF (AC-FT	70340		80450		88870	
ANNUAL RUNOFF (CFSM)	.52		.59		.66	
ANNUAL RUNOFF (INCHE	S) 7.05		8.07		8.91	
10 PERCENT EXCEEDS	239		240		294	
50 PERCENT EXCEEDS	60		76		55	
90 PERCENT EXCEEDS	22		39		17	

a From rating curve extended above 1,600 ft³/s, on basis of slope-area measurement of peak flow. b Present datum.

05131500 LITTLE FORK RIVER AT LITTLEFORK, MN

LOCATION.—Lat 48°23'45", long 93°32'57", in NE¹/₄SE¹/₄ sec.9, T.68 N., R.25 W., Koochiching County, Hydrologic Unit 09030005, on right bank at town of Littlefork, 0.9 mi upstream from bridge on State Highway 217, 2.8 mi upstream from Beaver Creek, and 19 mi upstream from mouth.

DRAINAGE AREA.--1,730 mi², approximately.

PERIOD OF RECORD.—June to November 1909, April to November 1910, April 1911 to June 1917, September 1917, October 1917 to March 1919 (gage heights only), June 1928 to current year.

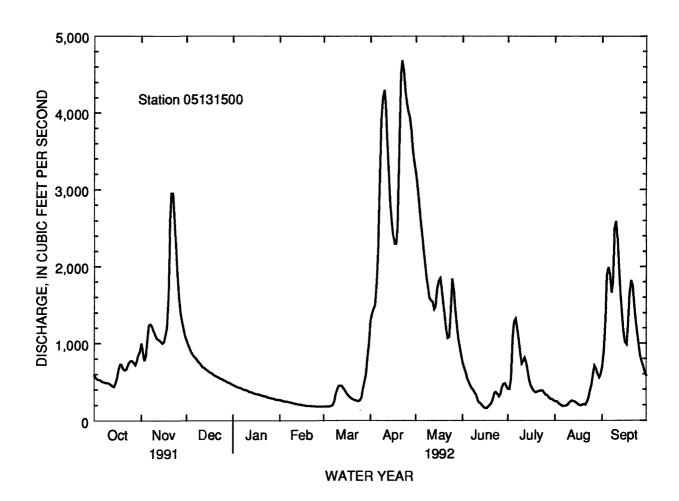
REVISED RECORDS.--WSP 955: Drainage area. WSP 1508: 1913, 1916, 1928-32, 1934. WRD MN-74: 1963.

GAGE.--Water-stage recorder. Datum of gage is 1,083.59 ft above sea level. June 23, 1909, to Mar. 4, 1917, nonrecording gage and July 21, 1937, to Oct. 23, 1979, water-stage recorder at site 1.2 mi downstream at datum 10.53 ft lower; Mar. 5 to Sept. 30, 1917, and June 22, 1928, to July 20, 1937, non-recording gage at site 1.18 mi downstream at datum 10.53 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

					DA	ILY MEA	N VALUES	3				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	583	996	e1040	e460	e265	e180	e1300	3220	747	407	249	693
2	552	907	e990	e450	e260	e180	e1400	3090	679	403	246	910
3	532	771	e940	e440	e255	e180	e1450	2870	618	549	232	1310
4	529	831	e890	e430	e250	e180	e1500	2630	547	1050	212	1890
5	521	e1030	e860	e425	e250	e180	e1800	2440	500	1280	198	1990
6	503	e1230	e830	e420	e245	e190	e2300	2240	454	1320	186	1900
7	500	e1250	e810	e410	e240	e200	e3000	2050	416	1220	187	1660
8	491	e1220	e790	e400	e235	e250	e3900	1850	398	1060	191	1800
9	487	e1170	e760	e395	e230	e350	e4200	1720	359	879	198	2490
10	485	e1120	e740	e390	e225	e400	e4300	1590	326	737	218	2590
11	472	e1070	e710	e380	e220	e450	e4100	1560	259	764	240	2350
12	459	e1050	e690	e370	e215	e450	e3600	1540	233	813	258	1990
13	443	e1040	e680	e365	e210	e450	e3200	1450	219	751	250	1640
14	437	e1020	e660	e360	e205	e420	e2800	1480	195	638	243	1370
15	489	e1000	e650	e350	e205	e390	e2600	1710	174	535	227	1160
16	549	e1020	e630	e345	e200	e360	e2400	1810	161	454	210	1010
17	662	el 100	e620	e340	e200	e330	e2300	1850	162	416	200	986
18	727	e1200	e610	e335	e195	e310	e2300	1720	183	384	195	1230
19	723	e1600	e590	e330	e190	e290	e2500	1530	197	365	202	1650
20	667	e2600	e580	e325	e190	e280	e3500	1360	224	366	213	1820
21	653	e2950	e570	e320	e190	e270	4520	1200	279	379	203	1740
22	661	e2950	e560	e315	e185	e260	4680	1070	352	379	241	1530
23	707	e2600	e550	e310	e185	e255	4540	1080	365	388	298	1310
24	754	e2200	e540	e300	e185	e250	4290	1440	344	383	378	1130
25	771	e1900	e530	e295	e180	e260	4120	1840	312	352	462	956
26	773	e1600	e520	e290	e180	e300	4020	1700	341	332	605	837
27	748	e1400	e510	e285	e180	e400	3940	1440	419	324	706	759
28	720	e1300	e500	e280	e180	e500	3760	1230	467	299	670	699
29	763	e1200	e490	e275	e180	e600	3520	1070	476	278	598	639
30	844	e1100	e480	e270		e800	3350	949	437	277	555	583
31	887		e470	e270		e1000		832		262	593	
TOTAL	19092	42425	20790	10930	6130	10915	95190	53561	10843	18044	9664	42622
MEAN	616	1414	671	353	211	352	3173	1728	361	582	312	1421
MAX	887	2950	1040	460	265	1000	4680	3220	747	1320	706	2590
MIN	437	2930 771	470	270	180	180	1300	832	161	262	186	583
AC-FT	37870	84150	41240	21680	12160	21650	188800	106200	21510	35790	19170	84540
CFSM	.36	.82	.39	.20	.12	.20	1.83	1.00	.21	.34	.18	.82
IN.	.41	.91	.45	.24	.13	.23	2.05	1.15	.23	.39	.21	.92

e Estimated.


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1909	1002 DV WATED VEAD (WV)
STATISTICS OF MONTHLI MEAN DATA FOR WATER TRAKS 1909	- 1992. DI WAIER IEAR (WI)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	863	681	301	142	108	269	3186	2889	1807	922	544	744
MAX	3320	3044	972	477	270	3022	8421	12190	5490	3643	2679	5189
(WY)	1947	1972	1983	1966	1969	1945	1966	1950	1944	1944	1988	1977
MIN	43.4	60.8	52.6	43.5	42.2	50.2	292	173	182	75.4	34.3	29.2
(WY)	1977	1977	1977	1931	1963	1940	1977	1977	1988	1988	1936	1976

SUMMARY STATISTICS	FOR 1991 CALENDA	R YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	RS 1909 - 1992
ANNUAL TOTAL	359017		340206			
ANNUAL MEAN	984		930		1054	
HIGHEST ANNUAL MEAN					1912	1966
LOWEST ANNUAL MEAN					306	1931
HIGHEST DAILY MEAN	5460	Jul 6	4680	Apr 22	25000	Apr 18 1916
LOWEST DAILY MEAN	85	Feb 26	161	Jun 16	21	Aug 26 1936
ANNUAL SEVEN-DAY MII	NIMUM 85	Feb 26	180	Feb 25	22	Aug 21 1936
INSTANTANEOUS PEAK F	LOW		4690	Apr 22	25000a	•
INSTANTANEOUS PEAK S	TAGE		10.70ь	Apr 9	37.00a	
INSTANTANEOUS LOW F	LOW		157	Jun 16, 17		
ANNUAL RUNOFF (AC-FT	712100		674800		763500	
ANNUAL RUNOFF (CFSM)	.57		.54		.61	
ANNUAL RUNOFF (INCHE	S) 7.72		7.32		8.28	
10 PERCENT EXCEEDS	2800		2300		2800	
50 PERCENT EXCEEDS	597		551		349	
90 PERCENT EXCEEDS	95		204	•	85	

a Occurred Apr. 18, 1916, May 11, 1950, site and datum then in use.

b Backwater from ice.

05132000 BIG FORK RIVER AT BIG FALLS, MN

LOCATION.--Lat 48°11'45", long 93°48'25", in SW1/4SE1/4 sec.35, T.155 N., R.25 W., Koochiching County, Hydrologic Unit 09030006, on left bank at village of Big Falls, 700 ft downstream from falls, 0.3 mi downstream from bridge on U.S. Highway 71, and 4.8 mi upstream from Sturgeon River.

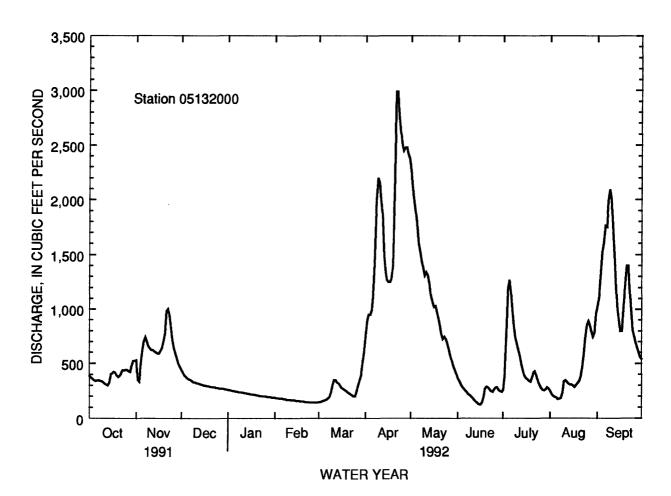
DRAINAGE AREA.--1,460 mi², approximately.

PERIOD OF RECORD.—August to November 1909, April to November 1910. April 1911 to September 1912 (gage heights and discharge measurements only). June 1928 to September 1979. October 1979 to September 1982, annual maximums only. October 1982 to current year. REVISED RECORDS.—WSP 1308:1935 (M).

GAGE.--Water-stage recorder. Datum of gage is 1,144.71 ft above sea level. Prior to June 10, 1911, nonrecording gage at railroad bridge about 0.4 mi upstream at different datum. June 10, 1911, to Sept. 30, 1912, and June 22, 1928, to Dec. 17, 1937, nonrecording gage at site 200 ft upstream at same datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Prior to 1971, a powerplant, located 0.3 mi upstream, caused some diurnal fluctuation at low flows.

					DA	ILY MEA	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	386	529	e440	e260	e190	e150	e760	2270	364	259	249	1030
2	369	350	e420	e260	e185	e150	e900	2120	338	415	219	1120
3	358	335	e390	e255	e185	e155	e950	1990	307	774	203	1340
4	348	498	e375	e250	e180	e160	e950	1880	285	1170	195	1520
5	340	e600	e365	e250	e180	e165	e1000	1740	269	1270	191	1600
6	346	e700	e355	e245	e180	e170	e1200	1600	252	1150	175	1760
7	347	e740	e350	e245	e175	e180	e1500	1520	236	1000	177	1750
8	341	e700	e340	e240	e175	e195	e2000	1430	220	846	184	1990
9	339	e660	e330	e240	e170	e240	e2200	1370	209	742	237	2090
10	330	e640	e330	e235	e170	e300	e2150	1310	194	680	339	e2000
11	316	e620	e320	e235	e170	e350	e2000	1340	182	630	347	1710
12	311	e620	e320	e230	e165	e350	1870	1310	167	571	332	e1500
13	301	e610	e315	e230	e165	e330	1490	1230	153	494	318	e1200
14	328	e600	e310	e225	e165	e320	1340	1130	140	434	308	e1000
15	403	e590	e305	e225	e160	e300	1270	1070	129	388	308	e900
16	409	e590	e300	e220	e160	e280	1250	1020	127	367	297	e800
17	424	e610	e300	e220	e160	e270	1250	1030	143	355	287	e800
18	417	e640	e295	e215	e155	e260	1280	978	196	344	306	e1000
19	392	e700	e295	e215	e155	e250	1400	916	270	337	3 24	e1200
20	375	e780	e290	e210	e155	e240	2050	847	290	376	342	e1400
21	389	e980	e290	e210	e150	e230	2990	776	279	419	383	e1400
22	416	e1000	e285	e205	e150	e220	2990	727	262	430	463	el200
23	438	e940	e285	e205	e150	e210	2780	748	248	382	592	e1000
24	435	e820	e280	e200	e145	e200	2630	724	243	335	731	810
25	440	e720	e280	e200	e145	e200	2500	687	264	299	852	e750
26	439	e640	e275	e200	e145	e250	2450	629	283	277	891	e700
27	429	e590	e275	e195	e145	e300	2480	564	283	261	857	e650
28	424	e550	e270	e195	e145	e350	2480	518	256	253	799	e600
29	476	e500	e270	e195	e145	e400	2420	478	247	267	748	e560
30	523	e470	e265	e190		e500	2380	440	243	282	786	e540
31	523		e265	e190		e600		400		270	958	
TOTAL	12112	19322	9785	6890	4720	8275	54910	34792	7079	16077	13398	35920
MEAN	391	644	316	222	163	267	1830	1122	236	519	432	1197
MAX	523	1000	440	260	190	600	2990	2270	364	1270	958	2090
MIN	301	335	265	190	145	150	760	400	127	253	175	540
AC-FT	24020	38330	19410	13670	9360	16410	108900	69010	14040	31890	26570	71250
CFSM.	27	.44	.22	.15	.11	.18	1.25	.77	.16	.36	.30	.82
IN.	.31	.49	.25	.18	.12	.21	1.40	.89	.18	.41	.34	.92


e Estimated.

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1909 - 1992, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	662	525	277	170	134	242	1900	2009	1179	633	395	556
MAX	2247	2034	685	399	335	1928	5186	7496	2890	2321	1799	2989
(WY)	1970	1972	1970	1969	19 69	1945	1966	1950	1974	1944	1978	1937
MIN (WY)	38.3 1932	44.5 1935	31.6 1935	22.2 1935	22.9 1935	32.9 1940	175 1931	138 1931	180 1934	46.0 1931	26.7 1934	22.4 1934

SUMMARY STATISTICS FO	R 1991 CALENDA	R YEAR	FOR 1992 WAT	ER YEAR	WATER YEA	ARS 1909 - 1992
ANNUAL TOTAL	199597		223280			
ANNUAL MEAN	547		610		724	
HIGHEST ANNUAL MEAN					1362	1950
LOWEST ANNUAL MEAN					92.0	1931
HIGHEST DAILY MEAN	3410	May 8	2990	Apr 21	14800	May 9 1950
LOWEST DAILY MEAN	117	Mar 19	127	Jun 16	14	Jan 10 1940
ANNUAL SEVEN-DAY MINI	MUM 118	Mar 15	146	Feb 23	18	Jan 22 1935
INSTANTANEOUS PEAK FLO	ow		3110	Apr 21	14800	May 8 1950
INSTANTANEOUS PEAK STA	AGE		7.05	Apr 9a	17.08	May 8 1950
INSTANTANEOUS LOW FLO	W		124	Jun 15, 16	7.0	Aug 7 1939
ANNUAL RUNOFF (AC-FT)	395900		442900	•	524200	_
ANNUAL RUNOFF (CFSM)	.37		.42		.50	
ANNUAL RUNOFF (INCHES)	5.09		5.69		6.73	
10 PERCENT EXCEEDS	1240		1400		1810	
50 PERCENT EXCEEDS	368		350		314	
90 PERCENT EXCEEDS	121		176		78	

a Backwater from ice.

05133500 RAINY RIVER AT MANITOU RAPIDS, MN (International gaging station)

LOCATION.--Lat 48°38'04", long 93°54'47", in NW¹/4SE¹/4 sec.36, T.160 N., R.26 W., Koochiching County, Hydrologic Unit 09030004, on left bank at Manitou Rapids, 4 mi west of Indus.

DRAINAGE AREA.--19,400 mi², approximately.

WATER-DISCHARGE RECORDS

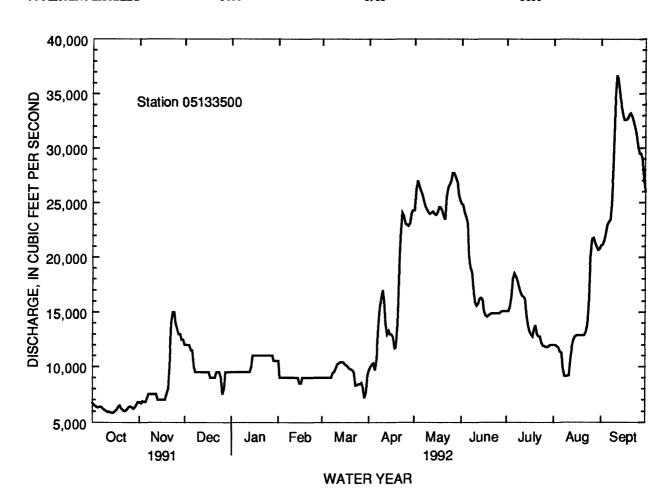
PERIOD OF RECORD.--July 1928 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1911 to October 1924 (gage heights only) at site near Birchdale in files of U.S. Army Corps of Engineers. Published as "near Birchdale" 1932-34.

GAGE.--Water-stage recorder. Datum of gage is 1,062.48 ft above sea level. Prior to Nov. 10, 1934, nonrecording gage at site near Birchdale, 7 mi. downstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Satellite telemeter at station. Diurnal fluctuation caused by powerplant at International Falls. Some regulation at low and medium flows by Rainy and Namakan Lakes.

COOPERATION.--This station is one of the international gaging stations maintained by the United States under agreement with Canada.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES


					DA	TILY MEA	N VALUE	S				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	6720	6770	e12000	e9500	e10500	e9000	9680	24300	24900	15100	12000	21100
2	6550	6680	e12000	e9500	e9000	e9000	10000	26300	24800	15100	12000	21200
3	6470	6860	e12000	e9500	e9000	e9000	10200	27000	24100	e15500	11900	21600
4	6350	e6800	e12000	e9500	e9000	e9000	10300	26500	23700	e16500	11800	22200
5	6340	e6800	e12000 e11500	e9500	e9000		9670		23100	e18000	11400	23000
J	0340	60000	e11500	e9300	e9000	e9000	9670	26100	23100	619000	11400	23000
6	6410	e7200	e11500	e9500	e9000	e9000	10700	25700	20200	e18500	11300	23300
7	6340	e7500	e10000	e9500	e9000	e9000	13600	25200	19000	18200	9940	23500
8	6230	e7500	e9500	e9500	e9000	9390	15300	24700	18600	17800	9170	25300
9	6100	e7500	e9500	e9500	e9000	9520	16300	24400	17200	17300	9150	29000
10	6030	e7500	e9500	e9500	e9000	9800	17000	24100	15900	16800	9180	34500
11	5940	e7500	e9500	e9500	e9000	10200	16000	24000	15600	16500	9200	36700
12	5950	e7500	e9500	e9500	e9000	10300	13900	24100	15800	16400	10800	36400
13	5910	e7000	e9500	e9500	e9000	10400	13000	24200	16200	16200	11900	35200
14	5850	e7000	e9500	e10000	e9000	10400	13300	24000	16300	14700	12500	33800
15	5900	e7000	e9500	e11000	e8500	10400	13000	23900	16100	13800	12800	33000
	3700	0,000	0,500	011000	00500	10400	15000	25700	10100	15000	12000	22000
16	6020	e7000	e9500	e11000	e8500	10200	13000	24100	15100	13300	12900	32600
17	6130	e7000	e9500	e11000	e9000	10100	12700	24600	14700	13000	12900	32600
18	6400	e7000	e9000	e11000	e9000	9980	11700	24600	14600	12800	12900	32700
19	6490	e7500	e9000	e11000	e9000	9810	11800	24300	14700	13400	12900	33100
20	6250	e8000	e9000	e11000	e9000	9760	13900	23800	14800	13800	12900	33200
	0200	00000	0,000	011000	0,000	7700	13,00	25000	11000	15000	12,00	55200
21	6120	e10000	e9000	e11000	e9000	9670	18900	23500	14900	13000	12900	32900
22	6030	e14000	e9500	e11000	e9000	9510	22500	25500	14900	12800	13200	32400
23	6050	e15000	e9500	e11000	e9000	8290	24100	26400	14900	12800	13900	31900
24	6210	e15000	e9500	e11000	e9000	8330	23800	26700	14900	12200	16300	31200
25	6370	e14000	e9000	e11000	e9000	8420	23100	27000	14900	11900	20000	30100
	03.0	011000	0,000	C11000	C 7000	0420	25100	27000	14700	11700	20000	50100
26	6400	e13500	e7500	el1000	e9000	8400	23000	27700	14900	11900	21700	29500
27	6330	e13000	e8000	e11000	e9000	8520	22900	27700	15000	11800	21800	29500
28	6230	e13000	e9500	e11000	e9000	8160	23100	27300	15100	11800	21400	29000
29	6360	e12500	e9500	e10500	e9000	7190	24100	26900	15100	11900	21000	26900
30	6620	e12500	e9500	e10500		7660	24300	25800	15100	12000	20700	26000
31	6810		e9500	e10500		9220		25200		12000	20800	
тотат	102010	976110	202000	210000	061500	206620	404050	705/00	£1£100	446000	422040	000 400
	193910	276110	303000	319000	261500	286630	484850	785600	515100	446800	433240	883400
MEAN		9204	9774	10290	9017	9246	16160	25340	17170	14410	13980	29450
MAX	6810	15000	12000	11000	10500	10400	24300	27700	24900	18500	21800	36700
MIN	5850	6680	7500	9500	8500	7190	9670	23500	14600	11800	9150	21100
	384600	547700	601000	632700	518700	568500	961700	1558000	1022000	886200	859300	1752000
CFSM.		.47	.50	.53	.46	.48	.83	1.31	.89	.74	.72	1.52
IN	37	.53	.58	.61	.50	.55	.93	1.51	.99	.86	.83	1.69

e Estimated.

STATISTICS OF MONTHLY MEAN DATA	EOD WATER VEARS 1020	1002 BY WATER VEAD (WV)
STATISTICS OF MONTHLE MEAN DATA	FUR WATER TEARS 1929	- 1992. BI WAIER IEAR (WI)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	11010	11040	10020	0006	0752	0014	15400	10670	00050	16000	11100	11170
MEAN	11810	11040	10030	9096	8753	9014	15480	19670	20250	16330	11190	11160
MAX	42410	37280	27790	18430	17240	16640	38100	52880	49480	47970	33700	30620
(WY)	1942	1972	1972	1972	1969	1945	1966	19 50	1950	1950	1944	1988
MIN	4728	3796	3190	2900	3129	2926	4378	4106	3676	3483	3422	4168
(WY)	1981	1977	1930	1931	1931	1931	1977	1977	1980	1980	1980	1958

SUMMARY STATISTICS FOR 1993	I CALENDA	R YEAR	FOR 1992 WAT	ER YEAR	WATER YEARS 1929 - 1992		
ANNUAL TOTAL	3552360		5189140				
ANNUAL MEAN	9732		14180		12830		
HIGHEST ANNUAL MEAN					23260	1950	
LOWEST ANNUAL MEAN					4470	1931	
HIGHEST DAILY MEAN	23500	May 9	36700	Sep 11	71300	May 11 1950	
LOWEST DAILY MEAN	4500	Mar 14	58 50	Oct 14	928	Dec 26 1929	
ANNUAL SEVEN-DAY MINIMUM	4710	Sep 1	5940	Oct 10	1500	Dec 24 1929	
INSTANTANEOUS PEAK FLOW		•	36900	Sep 11	71600	May 12 1950	
INSTANTANEOUS PEAK STAGE			13.66	Sep 11	21.04	May 12 1950	
INSTANTANEOUS LOW FLOW			5770	Oct 11		•	
ANNUAL RUNOFF (AC-FT)	7046000		10290000		9295000		
ANNUAL RUNOFF (CFSM)	.50		.73		.66		
ANNUAL RUNOFF (INCHES)	6.81		9.95		8.99		
10 PERCENT EXCEEDS	17000		25400		25400		
50 PERCENT EXCEEDS	8000		11500		10200		
90 PERCENT EXCEEDS	5000		6960		5000		

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued (National stream-quality network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1968-70, 1978 to current year. REMARKS.--Letter K indicates non-ideal colony count.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	WHOLE LAB	WATER	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN DIS- SOLVED (MG/L) (00300)	FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)
OCT												
07 DEC	1330	6050	100	109	7.4	7.2	8.0	3.5	728	9.6	190	22
03	1230	20400	107	116	7.7	7.6	0.0	4.0	732	11.6	67	92
JAN 21	1200	17600	102	82	7.2	7.4	0.5	1.6	730	12.1	K20	20
APR	0000	10000	100		7.4			7.0	700	10.5	7710	
JUN	0820	13300	106	97	7.4	7.6	1.0	7.9	738	12.5	K19	K14
08	1045	18700	80	65	7.3	7.4	13.5	1.6	737	9.8	41	К3
JUL 07	1330	18200	80	82	7.6	7.6	18.0	3.0	727	6.5	K720	68
	CALCIUM DIS-	MAGNE- M SIUM, DIS-	SODIUM, DIS-		ALKA- LINITY WAT DIS	LINITY		WATER	SULFATE DIS-	CHLO- RIDE, DIS-	FLUO- RIDE, DIS-	SILICA, DIS-
DATE		SOLVED (MG/L AS MG)	SOLVED (MG/L	SOLVED	MG/L AS	LAB (MG/L AS CACO3) (90410)	DIS IT FIELD MG/L AS CO3 (00452)	DIS IT FIELD MG/L AS HCO3 (00453)	SOLVED			SOLVED (MG/L AS SIO2) (00955)
OCT 07 DEC	14	4.5	4.1	0.90		44	0	54	4.5	4.3	0.10	4.1
03	14	5.1	3.5	0.90	42	49	0	51	5.7	2.7	0.20	5.6
JAN 21 APR	9.1	2.7	3.6	0.90	33	31	0	40	4.8	2.7	0.20	3.0
14	10	3.2	4.2	1.1	33	34	0	40	6.4	4.5	<0.10	4.2
JUN 08	6.8	2.1	2.6	0.70	22	23	0	26	4.3	2.3	<0.10	2.7
JUL												
07	9.7	2.9	2.8	0.70	30	31	0	37	4.4	2.2	<0.10	3.4

LAKE OF THE WOODS BASIN

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued

DATE	RESIDUE	NITRITE DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	AMMONL		ORGANIC	PHOS-	DIS-	ORTHO	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT,	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 07 DEC	98	<0.010	<0.050	0.050	0.040	0.70	0.040	<0.010	0.020	<0.010	15	87
03	101	<0.010	0.100	0.060	0.050	0.70	0.030	0.020	0.010	<0.010	9	90
JAN 21 APR	71	<0.010	0.090	0.050	0.050	0.40	0.020	<0.010	0.010	<0.010	12	85
14	78	<0.010	0.077	0.020	0.020	0.50	0.030	0.010	0.020	<0.010	31	85
JUN 08	68	<0.010	0.068	0.030	0.040	0.30	0.020	0.020	<0.010	0.010	9	77
JUL 07	68	<0.010	<0.050	0.020	0.020	0.50	0.030	<0.010	0.010	<0.010	15	47
DATE	DIS-	DIS-	DIS-	DIS-	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	DIS-	DENUM, DIS- SOLVED (UG/L	DIS-	DIS-	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)
DATE OCT 07 DEC	INUM, DIS- SOLVED (UG/L AS AL)	DIS- SOLVED (UG/L AS BA)	DIS- SOLVED (UG/L AS CO)	DIS- SOLVED (UG/L AS FE)	LITHIUM DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)
OCT 07 DEC 03	INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS- SOLVED (UG/L AS BA) (01005)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS FE) (01046)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)
OCT 07 DEC 03 JAN 21	INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS- SOLVED (UG/L AS BA) (01005)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS FE) (01046)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)
OCT 07 DEC 03 JAN 21 APR 14	INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS- SOLVED (UG/L AS BA) (01005)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS FE) (01046) 320	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) <4	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)
OCT 07 DEC 03 JAN 21 APR	INUM, DIS- SOLVED (UG/L AS AL) (01106) 10	DIS- SOLVED (UG/L AS BA) (01005)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS FE) (01046) 320 130	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) <4 <4	NESE, DIS- SOLVED (UG/L AS MN) (01056) 29	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10	DIS- SOLVED (UG/L AS NI) (01065) 2 <1	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 30	DIUM, DIS- SOLVED (UG/L AS V) (01085) <6 <6

LAKE OF THE WOODS BASIN

05140520 LAKE OF THE WOODS AT WARROAD, MN (International gaging station)

LOCATION.—Lat 48°54'15", long 95°18'57", in SW¹/₄SE¹/₄ sec.29, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, on left bank of Warroad River in Warroad, 300 ft downstream from Canadian National railroad bridge, 1,000 ft downstream from bridge on State Highway 11, and 4,000 ft upstream from mouth of Warroad River.

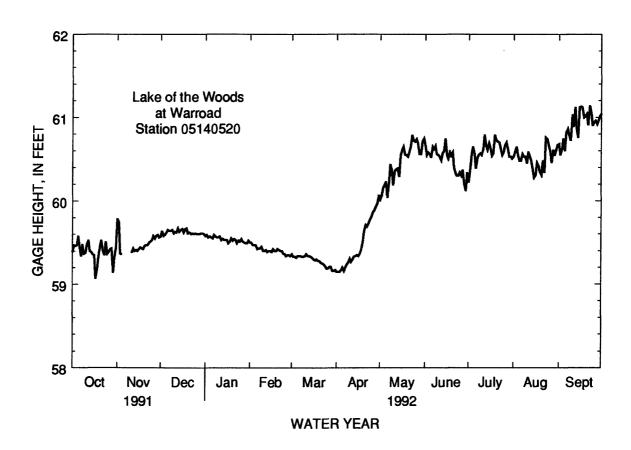
DRAINAGE AREA .-- 27,200 mi2.

PERIOD OF RECORD.--April to September 1978 (monthend elevations only), October 1978 to current year. Records collected prior to April 1978 are in reports of the Water Survey of Canada.

GAGE .-- Water-stage recorder. Datum of gage is 1,000.00 ft above sea level, Lake of the Woods datum.

REMARKS.--Runoff conditions of the Warroad River can affect water levels obtained at this station. Water level subject to fluctuation caused by change in direction and velocity of wind and seiches.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.


EXTREMES FOR PERIOD OF RECORD.—Maximum gage height, 62.38 ft, July 15, 1989; maximum daily, 61.84 ft, Sept. 12, 1978; minimum gage height recorded, 55.94 ft, Sept. 4, 1980; minimum daily recorded, 56.52 ft, Apr. 15, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 61.31 ft, Sept. 15; maximum daily, 61.13 ft, Sept. 12, 22; minimum, 58.18 ft, Oct. 17; minimum daily, 59.06 ft, Oct. 17.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES

	•				DA	ILI MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59.39	59.79	59.57	59.58	59.50	59.36	59.15	60.02	60.68	60.22	60.53	60.68
2	59.47	59.74	59.64	59.59	59.50	59.33	59.15	60.07	60.55	60.36	60.59	60.55
3	59.46	59.37	59.58	59.56	59.47	59.33	59.15	60.15	60.58	60.56	60.65	60.62
4	59.47	59.36	59.59	59.57	59.47	59.32	59.17	60.19	60.56	60.65	60.55	60.75
5	59.58		59.62	59.56	59.47	59.34	59.20	60.23	60.52	60.56	60.48	60.60
6	59. 46		59.6 5	59.55	59.42	59.34	59.16	60.04	60.65	60.39	60.48	60.82
7	59.34		59.64	59.59	59.43	59.34	59.20	60.20	60.62	60.52	60.56	60.86
8	59.48		59.64	59.57	59.43	59.33	59.24	60.44	60.66	60.55	60.53	60.79
9	59.37		59. 65	59.56	59.45	59.33	59.26	60.37	60.56	60.57	60.53	60.72
10	59.38		59.61	59.56	59.40	59.34	59.31	60.19	60.55	60.55	60.45	61.03
11	59.48	59.38	59.63	59.57	59.40	59.36	59.27	60.36	60.53	60.62	60.59	60.89
12	59.53	59.43	59.62	59.53	59.41	59.34	59.30	60.38	60.49	60.79	60.53	61.12
13	59.40	59.40	59. 67	59.55	59.39	59.34	59.33	60.39	60.57	60.66	60.48	60.86
14	59.39	59.41	59.63	59.53	59.40	59.33	59.34	60.29	60.60	60.61	60.38	60.76
15	59.36	59.40	59. 65	59.53	59.40	59.32	59.35	60.54	60.75	60.69	60.28	61.12
16	59.35	59.42	59.66	59.53	59.39	59.30	59.34	60.61	60.55	60.64	60.31	61.13
17	59.07	59.44	59.62	59.49	59.42	59.29	59.37	60.65	60.51	60.54	60.46	61.12
18	59.18	59.43	59.66	59.51	59.40	59.30	59.41	60.55	60.58	60.57	60.42	61.00
19	59.33	59.42	59.67	59.55	59.40	59.28	59.50	60.55	60.54	60.79	60.35	61.01
20	59.46	59.46	59.61	59.52	59.42	59.28	59.63	60.53	60.58	60.72	60.31	61.04
21	59.53	59.47	59.62	59.54	59.41	59.26	59.71	60.58	60.40	60.71	60.48	60.91
22	59.40	59.47	59.60	59.53	59.40	59.25	59.69	60.66	60.33	60.70	60.34	61.14
23	59.35	59.50	59.61	59.49	59.40	59.24	59.73	60.79	60.30	60.63	60.76	61.05
24	59.51	59.51	59.60	59.52	59.37	59.22	59. <i>7</i> 7	60.72	60.30	60.55	60.74	60.90
25	59.37	59.53	59.61	59.51	59.36	59.19	59.81	60.71	60.34	60.58	60.67	60.94
26	59.39	59.58	59.60	59.54	59.34	59.19	59.86	60.74	60.30	60.66	60.59	60.96
27	59.42	59.55	59.60	59.51	59.35	59.21	59.89	60.69	60.37	60.70	60.46	60.92
28	59.43	59.58	59.60	59.50	59.35	59.21	59.93	60.56	60.20	60.61	60.61	60.96
29	59.14	59.59	59.61	59.49	59.34	59.16	59.97	60.56	60.12	60.53	60.54	61.01
30	59.32	59.56	59.61	59.49		59.16	60.07	60.71	60.34	60.53	60.61	61.04
31	59.44		59.60	59.52		59.17		60.75		60.51	60.67	
MEAN	59.40		59.62	59.54	59.41	59.28	59.48	60.46	60.49	60.59	60.51	60.91
MAX	59.58		59.67	59.59	59.50	59.36	60.07	60.79	60.75	60.79	60.76	61.14
MIN	59.07		59.57	59.49	59.34	59.16	59.15	60.02	60.12	60.22	60.28	60.55

05140520 LAKE OF THE WOODS AT WARROAD, MN--Continued

LAKE OF THE WOODS BASIN

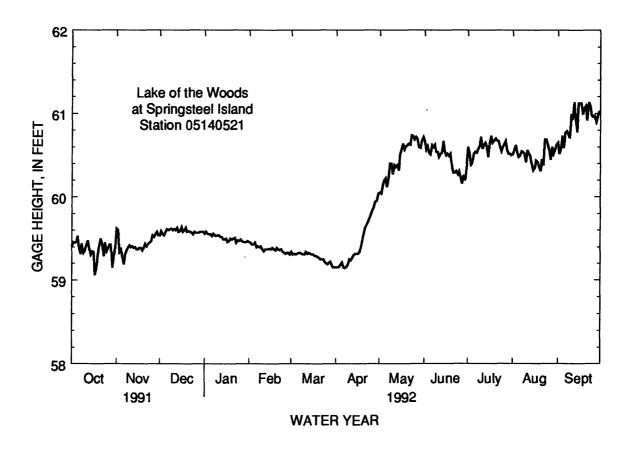
05140521 LAKE OF THE WOODS AT SPRINGSTEEL ISLAND NEAR WARROAD, MN

LOCATION.--Lat 48°56'45", long 95°18'24", in SW¹/4SW¹/4 sec.9, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, at Springsteel Resort on Springsteel Island, 2.8 mi north of Warroad.

DRAINAGE AREA.--27,200 mi².

PERIOD OF RECORD .-- June 1985 to current year.

GAGE.--Water-stage recorder. Datum at gage is 1,000.00 ft above sea level, Lake of the Woods datum.


REMARKS.--Satellite telemeter at station. Water level subject to fluctuation caused by changes in direction and velocity of wind and seiches.

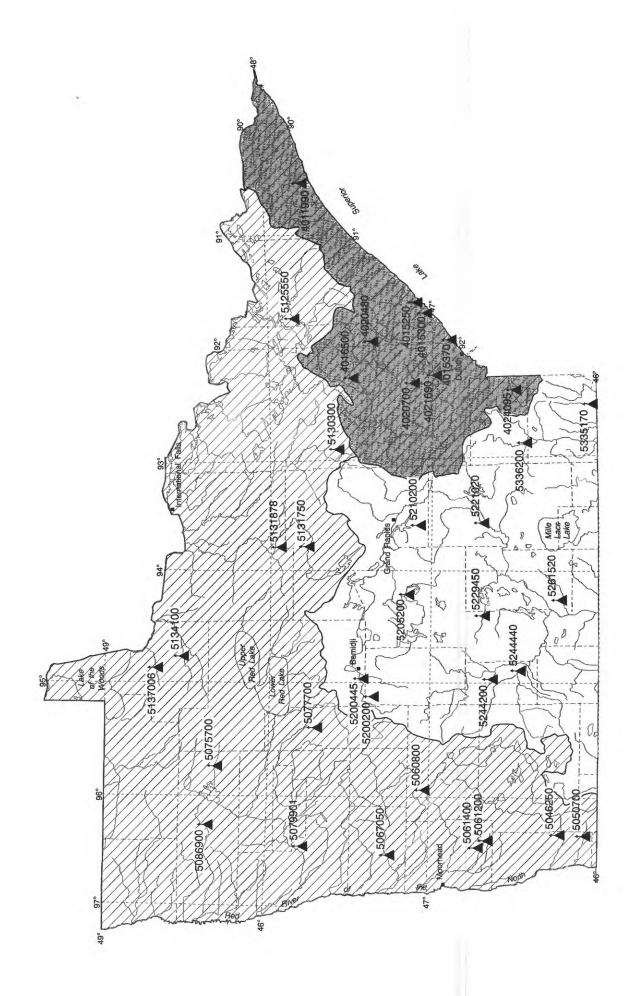
EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 62.24 ft, July 5, 1989; maximum daily, 61.81 ft, July 6, 7, 1985; minimum, 57.22 ft, Nov. 22, 1990; minimum daily, 57.43 ft, Mar. 18, 19, 20, 1988.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 61.31 ft, Sept. 15; maximum daily, 61.13 ft, Sept. 12, 22; minimum, 58.18 ft, Oct. 17; minimum daily, 59.06 ft, Oct. 17.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAILY MEAN VALUES DAY OCT JUL AUG SEP NOV DEC JAN FEB MAR APR MAY JUN 59.56 59.46 59.41 59.62 59.54 59.34 60.05 60.68 60.60 60.51 60.65 59.15 59.46 59.59 59.31 60.57 60.56 2 59.60 59.58 59.45 60.04 60.54 60.52 59.15 3 59.45 59.34 59.55 59.56 59.43 59.32 59.16 60.13 60.61 60.39 60.62 60.58 4 60.54 60.73 59,46 59.37 59.54 59.55 59.43 60.53 60.41 59.31 59.19 60.19 5 59.53 59.28 59.58 59.55 59.45 59.32 59.21 60.22 60.51 60.52 60.48 60.59 6 59.41 59.19 59.61 59.40 59.33 59.15 60.12 60.62 60.54 60.49 60.77 59.53 7 60.55 59.14 60.60 60.53 60.79 59.32 59,32 59.60 59.56 59.41 59.33 60.22 8 59.44 59.36 59.61 59.54 59.40 59.32 60.40 60.63 60.57 60.54 60.76 59.16 60.71 9 59.53 59.41 60.54 60.61 60.52 59.33 59.39 59.62 59.18 60.40 59.31 10 59.36 59.42 59.60 59.54 59.37 59.31 59.25 60.27 60.54 60.72 60.42 60.99 11 59.42 59.40 59.61 59.54 59.35 59.34 59.24 60.38 60.48 60.58 60.56 60.93 12 59.48 59.41 59.60 59.52 59.37 59.32 59.27 60.36 60.52 60.62 60.52 61.13 13 59.40 59.52 59.37 59.33 59.30 60.38 60.53 60.65 60.49 60.93 59.39 59.63 60.39 60.78 14 59.31 59.58 59.32 59.32 60.67 60.61 59,40 59,49 59.37 60.32 15 59.35 59.37 59.59 59.49 59.38 59.31 59.32 60.51 60.55 60.48 60.32 61.12 16 59.34 59.37 59.64 59.50 59.37 59.32 60.58 60.50 60.64 60.35 61.12 59.31 59.39 17 59.06 59.58 59.46 59.39 59.29 59.34 60.64 60.52 60.73 60.44 61.12 59.15 59.60 59.37 59.29 60.57 60.49 60.65 60.42 60.99 18 59.39 59.47 59.38 61.06 60.36 19 59.31 59.36 59.63 59.50 59.36 59.28 59.47 60.61 60.52 60.68 20 59.42 59.39 59.58 59.49 59.39 59.27 59.55 60.62 60.36 60.70 60.31 61.09 60.68 59.50 60.64 60.29 60.45 60.92 21 59.44 59.59 59.50 59.37 59.25 59.63 22 59.44 59,41 59.58 59.51 59.36 59.25 59.66 60.63 60.29 60.67 60.38 61.13 23 59.29 59.44 59.37 59.25 59.70 60.74 60.31 60.61 60.69 61.09 59.57 59.45 60.98 60.27 60.55 60.69 24 59.45 59.45 59.55 59.48 59.34 59.22 59.74 60.73 25 59.35 59.47 60.69 60.31 60.60 60.63 60.96 59.47 59.58 59.33 59.20 59.79 59.38 59.54 59.19 60.72 60.23 60.63 60.56 60.97 26 59.57 59.49 59.32 59.84 27 59.43 59.52 59.57 59.47 59.33 59.21 60.70 60.16 60.45 60.90 59.88 60,67 59.43 59.55 60.60 60.26 60.56 60.60 60.95 28 59.57 59.46 59.33 59.22 59.94 29 59.15 59.58 59.58 59.46 59.31 59.17 59.95 60.59 60.20 60.52 60.52 61.01 30 60.57 59.29 59.54 59.58 59.46 59.15 60.04 60.68 60.34 60.52 61.03 31 59.39 59.58 59.47 59.15 60.72 60.50 60.63 **MEAN** 59.37 59.42 59.59 59.51 59.38 59.27 59.45 60.47 60.45 60.59 60.50 60.91 61.13 MAX 59.53 59.58 60.68 60.69 59.62 59.64 59.46 59.34 60.04 60.74 60.73 MIN 59.06 59.19 59.54 59.45 59.31 59.15 59.14 60.04 60.16 60.39 60.31 60.52

Partial-Record Stations and Miscellaneous Sites


High-Flow Partial-Record Stations

Upstream Side of Bridge

Downstream Side of Bridge Ruffy Brook near Gonvick October 4, 1978

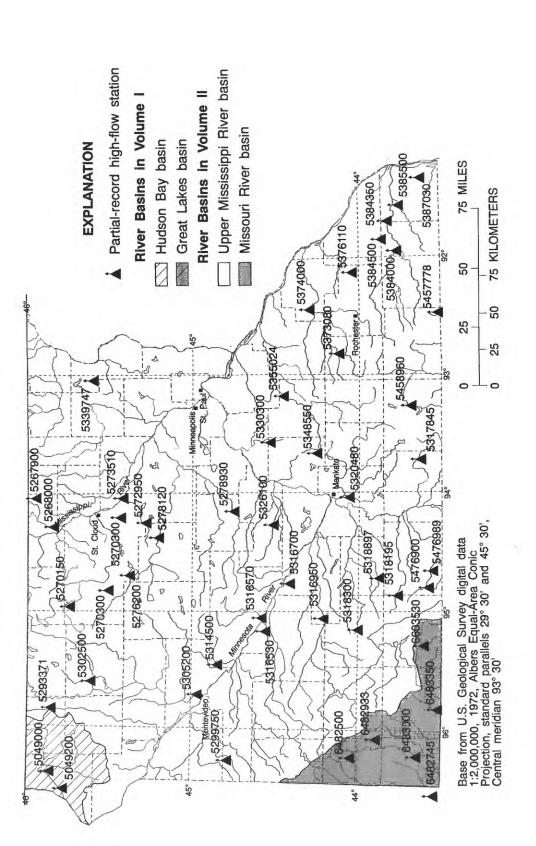


Figure 11.--Location of high-flow partial-record stations.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations or miscellaneous sites are presented in two tables. The first is a table of discharge at high-flow partial-record stations and the second is a table of discharge measurements made at miscellaneous sites.

High-flow partial-record stations

The following table contains annual maximum discharge for high-flow stations. A high-flow partial-record station is equipped with a crest-stage gage, a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at high-flow partial-record stations during water year 1992

			Water	year 199	2 maximum	Perio	d of record	maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	St	reams tributa	ry to Lake Si	perior				
Cascade River near Grand Marais, MN 04011990	Lat 47°47'24", long 90°31'35", in SE ¹ / ₄ sec.1, T.61 N., R.2 W., Cook County, Hydrologic Unit 04010101, at bridge on Forest Road 45, 6.6 miles upstream from mouth, 9.5 miles west of Grand Marais. Drainage area is mi ² .	1985-92	5-12-92	12.57	a954	4-29-90	11.95	1,210
Silver Creek tributary near Two Harbors, MN 04015250	Lat 47°04'40", long 91°36'49", in SW¹/4NE¹/4 sec.16, T.53 N., R.10 W., Lake County, Hydroogic Unit 04010102, at culvert on County Highway 3, 1.0 mile upstream from mouth, 4.5 miles northeast of Two Harbors. Drainage area is 3.72 mi².	1965-92	4-20-92	b5.68	320	9-20-72	17.08	1,880
Little Stewart River near Two Harbors, MN 04015300	Lat 47°03'52", long 91°40'03", in SE¹/ ₄ NE¹/ ₄ sec.24, T.53 N., R.11 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 2, 2.0 miles upstream from mouth, 2.7 miles north of Two Harbors. Drainage area is 5.54 mi².	1960-92	4-21-92	b10.23	158	9-20-72	15.18	598

[&]quot;See footnotes at end of the table."

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Annual maximum discharge at high-flow partial-record stations during water year 1992--Continued

			Water	r year 199	2 maximum	Perio	d of record	maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	Streams	tributary to L	ake Superio	rContinu	ed			
Talmadge River at Duluth, MN 04015370	Lat 46°53'20", long 91°55'21", in SE'/4NE'/4 sec.24, T.51 N., R.13 W., St. Louis County, Hydrologic Unit 04010102, at culvert on U.S. Highway 61, 0.6 mile upstream from mouth, 0.5 mile northeast of Duluth city limits. Drainage area is 5.79 mi ² .	1964-92	4-20-92	14.28	200	5-9-79	21.76	1,180
St. Louis River near Aurora, MN 04016500	Lat 47°29'30", long 92°14'20", in NW¹/ ₄ SW¹/ ₄ sec.22, T.58 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, at bridge on County Highway 100, 0.8 mile downstream from Partridge River and 1.5 mile south of Aurora. Drainage area is 290 mi².	1942-87# 1988-92	4-23-92	3.97	1,270	5-14-50	8.37	5,380
North Branch Whiteface River near Fairbanks, MN 04020480	Lat 47°22'20", long 91°56'28", in NW¹/₄NW¹/₄ sec.1, T.56 N., R.13 W., St. Louis County, Hydrologic Unit 04010'201, at culvert on County Highway 16, 2 miles upstream from the mouth of Jenkins Creek, 0.7 mile west of Fairbanks. Drainage area is 17.1 mi²	1979-92	4-22-92	12.50	230	4-23-79	13.67	660
Bug Creek at Shaw, MN 04020700	Lat 47°06'40", long 92°21'03", in SW¹/ ₄ SE¹/ ₄ sec.34, T.54 N., R.16 W., St. Louis County, Hydrologic Unit 04010201, at culverts on County Road 15 at Shaw, 7.5 miles upstream from mouth. Drainage area is 24.0 mi².	1979-92	4-22-92	a13.70	255	4-23-79	15.12	590
Cloquet River near Toimi, MN 04021690	Lat 47°21'00", long 91°39'30", in NE¹/ ₄ SW ¹/ ₄ sec.7, T.56 N., R.10 W., Lake County, Hydrologic Unit 04010202, at bridge on County Highway 2, 5.8 miles southeast of Toimi, 23 miles north of Two Harbors. Drainage area is mi².	1986-92	5-12-92	7.39	550	4-30-90	7.51	570

[&]quot;See footnotes at end of the table."

Annual maximum discharge at high-flow partial-record stations during water year 1992--Continued

			Wate	r year 1992	2 maximum	Perio	od of record	maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	Streams	tributary to L	ake Superio	orContinu	ıed			
Nemadji River near Holyoke, MN 04024095	Lat 46°31'04", long 92°23'22", in NE¹/4NE¹/4 sec.32, T.47 N., R.16 W., Carlton County, Hydro- logic Unit 04010301, at bridge on State Highway 23, 3.5 miles north of Holyoke, 7 miles south of Wrenshall. Drainage area is 118 mi².	1972-92	7-2-92	10.52	1,180	9-3-85	17.38	4,420
]	Red River of	the North b	asin				
Ottertail River near Foxhome, MN 05046250	Lat 46°12'48", long 96°18'24", in SW¹/4SW¹/4 sec.26, T.132 N., R.45 W., Wilkin County, Hydrologic Unit 09020103, at bridge on County Road 19, 4 miles south of Foxhome, 10.8 miles below Orwell Dam. Drainage area is mi².	1990-92	3-7-92	c15.08	640	6-23-90	15.63	1,730
Mustinka River above Wheaton, MN 05049000	Lat 45°49'15", long 96°29'25", in SW¹/4 sec.8, T.127 N., R.46 W., Traverse County, Hydrologic Unit 09020102, at bridge on U.S. Highway 75, 1 mile upstream from Chicago, Milwaukee and St. Paul railroad bridge, 0.5 mile north of Wheaton, about 8 miles above Lake Traverse. Drainage area is 834 mi².	1915-24#, 1930-58#, 1985-92	3-7-92	c5.45	220	4-10-52	16.56	7,320
Eighteenmile Creek near Wheaton, MN 05049200	Lat 45°47'18", long 96°31'52", in NW¹/4NW¹/4 sec.25, T.127 N., R.47 W., Traverse County, Hydrologic Unit 09020102, at culvert on County Highway 7, 1.4 miles upstream from mouth, 2.0 miles southwest of Wheaton. Drainage area 68.5 mi².	1965-92	3-8-92	5.28	42	4-9-69		d2,400
Rabbit River near Nashua, MN 05050700	Lat 46°04'30", long 96°18'24", in SE¹/4NE¹/4 sec. 15, T.130 N., R.45 W., Wilkin County, Hydrologic Unit 09020101, at bridge on County Road 19, 2.6 miles north of Nashua, 4.8 miles upstream from mouth of South Fork Rabbit River. Drainage area is 56.1 mi².	1979-92	6-17-92	e10.10	79	9-21-86	14.27	1,280

[&]quot;See footnotes at end of the table."

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Annual maximum discharge at high-flow partial-record stations during water year 1992--Continued

			Water	year 199	2 maximum	Perio	od of record	maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	Red R	iver of the No	orth basin(Continued			,	
Buffalo River near Callaway, MN 05060800	Lat 47°01'17", long 95°54'43", in SW¹/ ₄ SW¹/ ₄ sec.17, T.141 N., R.41 W., Becker County, Hydro- logic Unit 09020106, at culvert on U.S. Highway 59, 2.7 miles north of Callaway. Drainage area is 94.5 mi².	1960-92	7-10-92	13.17	215	5-12-85	17.13	635
Whiskey Creek at Barnesville, MN 05061200	Lat 46°39'35", long 96°23'54", in SE¹/ ₄ SW¹/ ₄ sec.20, T.137 N., R.45 W., Clay County, Hydrologic Unit 09020106, at culvert on State Highway 34, 0.7 mile upstream from Blue Eagle Lake, 1.0 mile northeast of Barnesville. Drainage area is 25.3 mi².	1961-64, 1965-66#, 1967-92	6-16-92	a3.76	56	5-31-85	7.12	660
Spring Creek above Downer, MN 05061400	Lat 46°44'37", long 96°25'12", in NW¹/₄NW¹/₄ sec.30, T.138 N., R.45 W., Clay County, Hydro- logic Unit 09020106, at cul- vert on county road, 3.1 miles east of Downer. Drainage area is 5.81 mi².	1961-92	6-16-92	7.38	54	6-29-75	13.52	1,460
Marsh River Ditch near Ada, MN 05067050	Lat 47°17'46", long 96°26'09", in NE¹/4NE¹/4 sec. 13, T.144 N., R.46 W., Norman County, Hydro- logic Unit 09020108, at bridge on County Highway 24, 3.5 miles southeast of Ada. Drainage area is mi².	1985-92	-	-	0	4-6-89	16.74	1,070
Mud River near Grygla, MN 05075700	Lat 48°19'31", long 95°44'35", in NE¹/4NE¹/4 sec.23, T.156 N., R.40 W., Hydrologic Unit 09020304, Marshall County, at bridge on State Highway 89, 6 miles west of Grygla. Drainage area is 170 mi².	1979-92	4-21-92	a16.10	740	4-26-79	18.49	1,480
Ruffy Brook near Gonvick, MN 05077700	Lat 47°44'50", long 95°24'45", in SE¹/ ₄ SE¹/ ₄ sec.5, T.149 N., R.37 W., Clearwater County, Hydrologic Unit 09020305, at culvert on County Highway 67, 4.0 miles upstream from mouth, 4.8 miles east of Gonvick. Drainage area is 45.2 mi².	1960-78#, 1979-85, 1986,# 1987-92	3-7-92	c3.25	98	3-30-67	6.35	453

[&]quot;See footnotes at end of the table."

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Annual maximum discharge at high-flow partial-record stations during water year 1992--Continued

			Wate	r year 199	2 maximum	Perio	d of record	maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	Red Ri	ver of the N	orth basin	Continued				
Bumham Creek near Crookston, MN 05079901	Lat 47°43'59", long 96°39'52", in SE¹/ ₄ SW¹/ ₄ sec.10, T.149 N., R.47 W., Polk County, Hydrologic Unit 09020303, at triple box culvert on U.S. Highway 75, 0.75 mile northeast of Girard, 3 miles southwest of Crookston, 7 miles above mouth. Drainage area is f111 mi².	1986-92	3-7-92	c15.80	205	4-4-89	20.44	1,900
Middle River near Newfolden, MN 05086900	Lat 48°22'04", long 96°16'47", in NE¹/₄NE¹/₄ sec.3, T.156 N., R.44 W., Marshall County, Hydro- logic Unit 09020309, at bridge on township road, 2.0 miles northeast of Newfolden. Drain- age area is 91.1 mi².	1979-92	4-1-92	c13.86	115	4-25-79	17.10	1,000
		Lake of the	Woods bas	in				
Stony River near Babbitt, MN 05125550	Lat 47°41'36", long 91°45'38", in SW¹/ ₄ SW¹/ ₄ sec. 8, T.60 N., R.11 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, at bridge on Forest Road 424, 4.7 miles upstream from mouth, 8.5 miles southeast of Babbitt. Drainage area is 219 mi².	1975-80#, 1986-92	5-12-92	6.56	1,060	4-19-76	8.71	2,490
Boriin Creek near Chisholm, MN 05130300	Lat 47°36'14", long 92°51'58", in SE¹/ ₄ SE¹/ ₄ sec.9, T.59 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, at culvert on State Highway 73, 1.3 miles upstream from mouth, 7.8 miles north of Chisholm. Drainage area is 13.7 mi².	1959-92	4-8-92	d11.36	83	4-13-69	13.40	700
Big Fork River near Bigfork, MN 05131750	Lat 47°44'56", long 93°46'31", in SW¹/₄NE¹/₄ sec.27, T.61 N., R.27 W., Itasca County, Hydro- logic Unit 09030006, at bridge on State Highway 6, 5.5 miles west of Bigfork. Drainage area is 602 mi².	1973-92	4-6-92	10.83	872	4-22-79	15.48	2,830

[&]quot;See footnotes at end of the table."

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Annual maximum discharge at high-flow partial-record stations during water year 1992—Continued

Water year 1992 maximum Period of record maximum Location Station name Period gage gage and and height discharge height discharge of (ft3/s) date (ft) (ft3/s) date (ft) number drainage area record Lake of the Woods basin-Continued Bowerman Brook Lat 47°55'29", long 93°45'34", 1979-92 4-21-92 a12.66 141 4-21-79 14.73 650 in NE1/4NW1/4 sec.26, T.63 N., near Craigville, R.27 W., Koochiching County, MN Hydrologic Unit 09030006, at 05131878 culvert on State Highway 6, 2.4 miles upstream from mouth, 7.0 miles west of Craigville. Drainage area is 25.0 mi². North Branch Lat 48°31'56", long 94°38'50", 1986-92 4-23-92 10.88 920 3-31-86 11.16 1,000 Rapid River in NW1/4SW1/4 sec.4, T.158 N., near R.31 W., Lake of the Woods Baudette, MN County, Hydrologic Unit 05134100 09030007, at bridge on County Highway 1, 12.7 miles southwest of Baudette. Drainage area is f180 mi2. Winter Road Lat 48°42'39", long 94°41'52", 1986-92 4-7-92 c11.77 575 3-31-86 14.30 1,400 River near in NW1/4NE1/4 sec. 1, T. 160 N., Baudette, MN R.32 W., Lake of the Woods 05137000 County, Hydrologic Unit 09030008, at bridge on State Highway 11, 4.5 miles west of Baudette, 1.8 miles east of Pitt, 5 miles upstream of mouth. Drainage area is f145 mi².

[#] Operated as a continuous-record gaging station.

a Affected by shifting control.

b Not annual maximum gage height.

c Backwater from ice.

d Estimated.

e Backwater from aquatic growth or debris.

f Approximate.

Miscellaneous Sites

Whiteface River near Meadowland September 9, 1965

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. The measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

Discharge measurements made at miscellaneous sites during water year 1992

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft ³ /s)
		Stream tributary to Lake Superio	r			
Section 5 Creek	Lake Superior	Lat 47°53'00", long 89°50'18", in SE¹/4NW¹/4 sec.5, T.62 N., R.5 E., Cook County, Hydrologic Unit 04010101, at bridge on U.S. Highway 61, 6.5 miles northeast of Hoveland.	-	1991-92	‡9-24-91 11-19-91	*.06 23
		Red River of the North basin				
Buffalo River	Red River of the	Lat 46°51'49", long 96°28'04", in SE¹/4 sec. 10, R.46 W., T.139 N., Clay County, Hydrologic Unit 09020106, at foot bridge downstream of dam in Buffalo River State Park, 5.5 miles east of Glyndon (465149096280401).	-	1992	8-5-92	27
Buffalo River	Red River of the North	Lat 47°04'43", long 96°47'50", in NE¹/ ₄ NE¹/ ₄ sec.31, T.142 N., R.48 W., Clay County, Hydrologic Unit 09020106, at culvert crossing 0.7 mile downstream from U.S. Highway 75 bridge, 1.5 miles upstream from mouth (05062100).	-	1992	12-9-91	30
Wild Rice River	Red River of the North	Lat 47°17'35", long 96°48'23", in NE¹/4NE¹/4 sec.13, T.144 N., R.49 W., Norman County, Hydrologic Unit 09020108, at bridge on county road, 2 miles upstream from mouth, 2 miles north of Hendrum (05064100).	-	1992	12-9-91	36
Sand Hill River	Red River of the North	Lat 47°32'35", long 96°15'31", in NE¹/4NE¹/4 sec.21, T.147 N., R.44 W., Polk County, Hydrologic Unit 09020301, at bridge on County Road 12, 1 mile northeast of Fertile (05067900).	225	1950, 1964-67, 1970-73, 1976, 1980, 1992	8-5-92	5.6
Red Lake River	Red River of the North	Lat 47°53'31", long 96°14'24", in SW¹/4, sec. 13, R.44 W., T.151 N., Red Lake County, Hydrologic Unit 09020303 at bridge on State Highway 32, 2 miles east of Red Lake Falls (475331096144601).	-	1992	8-12-92	186

[‡] Not previously published.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements made at miscellaneous sites during water year 1992--Continued

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft ³ /s)
, , , , , , , , , , , , , , , , , , , ,		Red River of the North basinCont	inued			
Red Lake River	Red River of the North	Lat 47°51'40", long 96°54'48", in NE¹/4NE¹/4 sec.34, T.151 N., R.49 W., Polk County, Hydrologic Unit 09020303, at bridge on county road, about 12 miles upstream from mouth, and 5.7 miles southeast of East Grand Forks (05081000).	-	1992	12-11-91	*1.6
Snake River	Red River of the North	Lat 48°24'42", long 97°06'26", in SE¹/ ₄ SE¹/ ₄ sec.16, T.157 N., R.50 W., Marshall County, Hydrologic Unit 09020309, at crossing on State Highway 220, 2.0 miles upstream from mouth, 7 miles north of Big Woods (05087600).	-	1992	12-11-91	*1.6
Tamarac River	Red River of the North	Lat 48°29'34", long 97°06'27", in NW¹/ ₄ SW¹/ ₄ sec.22., T.158 N., R50 W., Marshall County, Hydrologic Unit 09020311, at crossing on State Highway 220, 1.2 miles upstream from mouth, 6 miles southeast of Robbin (05091600)	-	1992	12-11-91	*3.1
Two Rivers	Red River of the North	Lat 48°48'32", long 97°07'40", in SE¹/ ₄ NE¹/ ₄ sec.5, T.161 N., R.50 W., Kittson County, Hydrologic Unit 09020312, at County Road crossing, 3 miles upstream from mouth, 1.5 miles downstream from confluence with North Branch, 5.5 miles southwest of Northgate (05098100).	-	1992	12-12-91	64
Roseau River	Red River of the North	Lat 48°38'53", long 95°36'10", in SW¹/4 sec.30, T.160 N., R.38 W., Roseau County, Hydrologic Unit 09020314, upstream of bridge of County Road 4, 1 mile west of Hayes Lake State Park, 7.5 miles east of Wannaska.	-	1992	8-10-92	*.90

Miscellaneous Water-Quality

Buffalo River near Georgetown

Sampling for macro invertebrates in stream bottom and off woody debris.

Spring 1992

LOCATION.--These miscellaneous analyses were collected and analyzed as part of the NAWQA (National Water Quality Assessment) study being conducted in the Red River of the North basin (<, less than; U, micrograms; UG/G, micrograms per gram; WS, wet-sieved.)

DATE	TIME	ALUM- INUM BOT MATI <63U WS FIELD PERCENT (34790)		ARSENIC BOT MAT <63U WS FIELD (UG/G) (34800)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)			BOT MA	T BOT MA	T BOT M S <63U V FIELD (UG/C	G) (UG/G)
	05046	500	OTT	ER TAIL R	IVER AT B	RECKENRI	DGE, MN (L	AT 46 16 20N	LONG 09	5 34 40W)	
AUG 1992 20	1000	4.6	1	7	1	<10	0	50	50	9	17
	05062	500		WILD RICE	RIVER AT	TWIN VAI	LEY, MN (L	AT 47 16 00N	LONG 09	6 14 40W))
AUG 1992 05	1330	4.4	1	8	1	<10	0	46	45	9	13
	050785	500	CLEA	RWATER R	IVER AT R	ED LAKE I	FALLS, MN (LAT 47 53 15	IN LONG 0	96 16 25V	V)
AUG 1992 12	1300	4.1	1	5	<1	<10	1	41	46	8	17
SEP 1992 02	050822	5.9	RED I	AKE RIVE	R AT EAST	GRAND F	ORKS, MN (I	AT 47 55 24 50	N LONG 09	97 00 59W 14	20
DATE	<63U W FIELD (UG/G	GALLIU AT BOT MA S <63U W FIELD (UG/G)	AT BOTM S <63U V FIELL) (UG/C	WS <63U D FIEI G) (UG)	MAT BOT WS <63L D FIE G) PERC	MAT BOT IWS <631 LD FII CENT (UC	MAT BOT UWS <631 ELD FIE G/G) (UC	HIUM SI MAT BOT JWS <63 ELD FI G/G) PER	TUM T MAT BO U WS <0 ELD I CENT (0	OT MAT 63U WS FIELD (UG/G)	MERCURY BOT MAT <63U WS FIELD (UG/G)
AUG 1992	050465	000	OTT	ER TAIL RI	VER AT BI	RECKENRII	OGE, MN (LA	T 46 16 20N	LONG 096	34 40W)	
20	29	12	<8	<4	2.	.3 12	30		2.6	000	<0
AUG 1992	050625	600	WI	LD RICE RI	VER AT T	WIN VALLI	EY, MN (LAT	47 16 00N L	ONG 096 1	4 40W)	
05	26	12	<8	<4	2.	3 10	20		3.2 11	00	0
	050785	500	CLEAR	RWATER R	IVER AT R	ED LAKE F	ALLS, MN (I	AT 47 53 15	N LONG 0	96 16 25W	n)
AUG 1992 12	24	11	<8	<4	2.	3 17	20		2.3 11	00	0
	050822	200	RED L	AKE RIVE	R AT EAST	GRAND FO	ORKS, MN (L	AT 47 55 24	N LONG 09	7 00 59W)
SEP 1992 02	29	16	<8	<4	2.	8 11	40		3.1 11	00	0

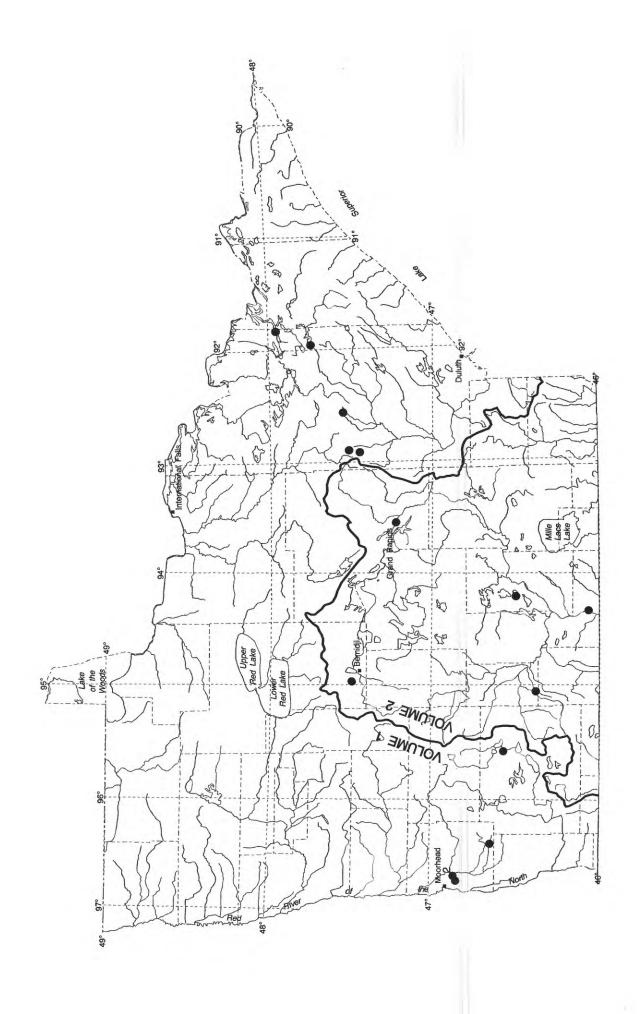
DATE	DENUM	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)		PHOS- PHORUS BOT MAT <63U WS FIELD (UG/G) (34935)	POTAS- SIUM BOT MAT <63U WS FIELD (UG/G) (34940)	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	SODIUM BOT MAT <63U WS FIELD (UG/G) (34960)
	05046500	•	OTTER 7	TAIL RIVER	AT BRECK	ENRIDGE, M	AN (LAT 46 1	6 20N LONG	096 34 40W)
AUG 1992 20	2	27	20	7	0.09	1.3	7	1	0	0.71
	05062500	•	WILD I	RICE RIVER	AT TWIN	VALLEY, MI	N (LAT 47 16	00N LONG 0	96 14 40W)	
AUG 1992 05	2	23	19	6	0.10	1.3	7	1	0	0.88
	05078500		CLEARWA	TER RIVER	AT RED L	AKE FALLS,	MN (LAT 47	53 15N LON	G 096 16 25V	W)
AUG 1992 12	2	22	20	6	0.12	1.2	7	1	0	0.70
	05082200		RED LAK	E RIVER AT	EAST GRA	ND FORKS,	MN (LAT 47	55 24N LON	G 097 00 59V	/)
SEP 1992 02	4	26	30	9	0.09	1.6	10	1	0	0.66
DATE	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SULFUR BOT MAT <63U WS FIELD (UG/G) (34970)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)
AUG 1992	05046500		OTTER T	'AIL RIVER	AT BRECK	ENRIDGE, M	IN (LAT 46 16	5 20N LONG	096 34 40W)	
20	200	0	<40	9	<10	3	88	16	2	69
	05062500		WILD F	LICE RIVER	AT TWIN V	ALLEY, MN	I (LAT 47 16 (00N LONG 0	96 14 40W)	
AUG 1992 05	190	0	<40	7	<10	3	71	14	2	52
	05078500		CLEARWA	TER RIVER	AT RED LA	AKE FALLS,	MN (LAT 47	53 15N LON	G 096 16 25V	V)
AUG 1992 12	190	1	<40	6	<10	3	75	12	1	73
	05082200		RED LAKE	E RIVER AT	EAST GRA	ND FORKS,	MN (LAT 47 :	55 24N LONG	3 097 00 59W	")
SEP 1992 02	150	0	<40	9 ,	<10	3	130	15	2	79

DATE	TIME	ALUM- INUM BOT MAT: <63U WS FIELD PERCENT (34790)	BOT MAT BOT WS < FIELD (UG/G)	RSENIC I OT MAT BC 63U WS <6 FIELD F (UG/G) (I	TMAT BC 3UWS <6 TELD F JG/G) (1		CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)			BOT MA	(UG/G)
	050825	500	RED RIVE	R OF THE N	ORTH AT	GRAND F	ORKS, ND (I	AT 47 55 38	BN LONG	97 01 34V	V)
SEP 1992 02	1800	6.0	1	6	1 <	:10	2	51	71	13	22
	050876	500	SNAKE R	IVER NEAR	MOUTH N	R. BIG W	OOD, MN (L	AT 48 24 42	N LONG 0	97 06 26W	")
AUG 1992 11	1530	6.7	1	6	2 <	10	1	57	83	14	28
	050945	600	SOUTH B	RANCH TW	O RIVERS .	AT HALL	OCK, MN (L	AT 48 47 00	N LONG 09	96 55 00W)
AUG 1992 11	0900	7.6	2	10	2 <	10	0	54	95	17	28
	051045	600 R	OSEAU RIVE	R BELOW S	OUTH FOR	K NEAR	MALUNG, M	N (LAT 48 4	47 30N LO	NG 095 44	40W)
AUG 1992 10	1700	5.0	1	4	1 <	10	0	55	55	10	13
46514	9096280	1401 B	UFFALO RIV	ER AT BUF	ALOR ST	PARK NR	GLYNDON,	M(LAT 46	51 49N LO	NG 096 28	04W)
AUG 1992 05	0900	3.9	1	10	<1 <	10	0	43	41	9	14
	EURO- PIUM BOT MA <63U W FIELD (UG/G) (34855)	GALLIU AT BOT MA S <63U W FIELD (UG/G	AT BOT MAY /S <63U WS /FIELD / (UG/G)		BOT MA		AT BOTM WS <63U V D FIEL G) (UG/0	AT BOT I WS <63U D FIE G) PERC	MAT BO' WS <63 LD FI ENT (U	ГМАТ Е	MERCURY SOT MAT <63U WS FIELD (UG/G) (34910)
SEP 1992	050825	00	RED RIVE	R OF THE N	ORTH AT C	GRAND FO	ORKS, ND (L	AT 47 55 38	N LONG 0	97 01 34 W	n)
02	30	15	<8	<4	2.8	11	40	2.	4	1100	0
AUG 1992	050876	00	SNAKE R	IVER NEAR	MOUTH NI	R. BIG WO	OOD, MN (LA	AT 48 24 421	N LONG 09	7 06 26W)
11	33	17	<8	<4	3.2	16	50	2.	4	610	0
AUG 1992	050945	00	SOUTH B	RANCH TWO	O RIVERS A	AT HALLO	OCK, MN (LA	T 48 47 00N	I LONG 09	6 55 00W))
11	32	20	<8	<4	3.8	14	50	2.	0	1100	0
	0510450	00 R	OSEAU RIVE	R BELOW S	OUTH FOR	K NEAR N	AALUNG, M	N (LAT 48 4	7 30N LON	īG 095 44	40W)
AUG 1992 10	31	13	<8	<4	2.5	9	30	4.	1	1000	<0
465149	9096280	401 BU	JFFALO RIV	ER AT BUFF	ALOR ST I	PARK NR	GLYNDON,	M(LAT 46 5	1 49N LON	īG 096 28	04W)
AUG 1992 05	25	11	<8	<4	2.5	12	20	2.:	5	1400	0

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DENUM	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	<63U WS FIELD	POTAS- SIUM BOT MAT <63U WS FIELD PERCENT (34940)	SCAN- DIUM BOT MAT <63U WS FIBLD (UG/G) (34945)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)
	05082500		RED RIVER	OF THE NO	ORTH AT GI	RAND FORK	S, ND (LAT 4	17 55 38N LO	NG 097 01 34	4W)
SEP 1992 02	<2	28	33	8	80.0	1.6	10	1	0	0.59
	05087600		SNAKE RI	VER NEAR I	MOUTH NR	. BIG WOOD	, MN (LAT 4	8 24 42N LOI	NG 097 06 26	W)
AUG 1992 11	2	29	35	9	0.09	1.7	11	1	0	0.58
	05094500		SOUTH BR	ANCH TWO	RIVERS A	T HALLOCK	, MN (LAT 4	8 47 00N LON	IG 096 55 00	W)
AUG 1992 11	2 <2	30	42	8	0.08	1.8	14	1	0	0.50
	05104500	ROS	EAU RIVER	BELOW SO	OUTH FORK	NEAR MAL	UNG, MN (L	AT 48 47 30N	I LONG 095	44 40W)
AUG 1992 10	2	29	21	7	0.09	1.4	8	0	0	0.85
4651	4909628040	1 BUF	FALO RIVE	R AT BUFF	ALOR ST PA	ARK NR GLY	NDON, M(L	AT 46 51 49N	LONG 096	28 04W)
AUG 1992 05	2	24	17	5	0.13	1.2	6	1	0	0.79
DATE	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SULFUR BOT MAT <63U WS FIELD (UG/G) (34970)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)			URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)
SEP 1992	05082500	;	RED RIVER	OF THE NO	RTH AT GR	RAND FORKS	S, ND (LAT 4	7 55 38N LO	NG 097 01 34	W)
02	150	0	<40	8	<10	3	140	17	2	87
	5087600		SNAKE RIV	/ER NEAR M	MOUTH NR.	BIG WOOD,	MN (LAT 48	3 24 42N LON	IG 097 06 26	W)
AUG 1992 11	130	0	<40	11	<10	3	150	18	2	99
	05094500		SOUTH BR	ANCH TWO	RIVERS AT	HALLOCK,	MN (LAT 48	3 47 00N LON	(G 096 55 00)	W)
AUG 1992 11	130	0	<40	11	<10	10	170	18	2	100
	05104500	ROS	EAU RIVER	BELOW SO	UTH FORK	NEAR MAL	UNG, MN (L	AT 48 47 30N	LONG 095 4	14 40W)
AUG 1992 10	170	0	<40	9	<10	2	78	14	1	58
46514	4909628040	BUF	FALO RIVE	R AT BUFFA	LOR ST PA	ARK NR GLY	'NDON, M(L	AT 46 51 49N	LONG 096 2	28 04W)

DATE	TIME	ALUM- INUM BOT MAT I <63U WS FIELD PERCENT (34790)	BOT MAT BO <63U WS <0 FIELD I (UG/G) (RSENIC I OT MAT BC 63U WS <6 FIELD F UG/G) (1	ERYL- LIUM OT MAT 3U WS TELD UG/G) 34810)	BIMUTH BOT MAT <63U WS FIELD (UG/G) (34816)	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)	T BOT MAT		BOT MA	COPPER TBOT MAT S <63U WS FIELD (UG/G) (34850)
4712	43095514	4301	WHIT	E EARTH RI	VER NE	AR WAUB	UN, MN (LA	AT 47 12 43N I	ONG 095	51 43 W)	
SEP 1992 01	1230	4.7	1	8	1	<10	0	47	50	10	16
4719	31095564	4601	WILD	RICE RIVE	R NEAR	MAHNOM	EN, MN. (LA	AT 47 19 31N I	ONG 095 5	56 46W)	
AUG 1992 12 SEP	1700	4.4	1	8	1	<10	0	48	48	9	13
01	1500	4.6	1 .	7	1	<10	<0	46	50	10	14
4753	31 096 144	1601	RED LA	KE RIVER	AT RED	LAKE FAI	LLS. MN. (L.	AT 47 53 31N	LONG 096	14 24W)	
AUG 1992							, (
12	0930	4.6	1	4	1	<10	0	44	52	10	17
DATE	EURO- PIUM BOT MA <63U W FIELD (UG/G) (34855)	GALLIU AT BOT MA S <63U W FIELD) (UG/G	AT BOT MAT S <63U WS FIELD) (UG/G)		r BOT	MAT BOT WS <63U LD FIE ENT (UC	MAT BOT J WS <63 LD FI G/G) (U	HIUM SIT IT MAT BOT SU WS <63U ELD FIE G/G) PERG	UM N MAT BO JWS <6 ELD F CENT (U	TMAT B	IERCURY 6OT MAT 63U WS FIELD (UG/G) (34910)
47124	43095514	301	WHITE	EARTH RI	VER NE	AR WAUB	UN, MN (LA	T 47 12 43N L	ONG 095 5	1 43 W)	
SEP 1992 01	27	12	<8	<4	2.	3 8	3	0 3	.3 82	20	0
47193	31095564	1601	WILD	RICE RIVER	NEAR	MAHNOMI	EN, MN. (LA	AT 47 19 31N L	ONG 095 5	i6 46W)	
AUG 1992					_		_			••	
12 SEP	28	13	<8	<4	2.:	5 10	3	0 3	.1 160	00	0
01	26	13	<8	<4	2.:	5 9	30	0 3	.1 150	00	0
47533	31096144	601	RED LA	KE RIVER	AT RED	LAKE FAL	LS, MN. (LA	AT 47 5 3 31N I	LONG 096	14 24 W)	
AUG 1992							•			•	
12	26	13	<8	<4	2.3	3 18	30	0 2	.6 92	20	<0


DATE	DENUM	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	<63U WS FIELD	POTAS- SIUM BOT MAT <63U WS FIELD PERCENT (34940)	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)
4712	4309551430	1	WHITE	EARTH RIV	ER NEAR V	VAUBUN, M	N (LAT 47 12	43N LONG	95 51 43W)	
SEP 1992 01	<2	25	20	7	0.09	1.4	7	1	0	0.76
4719	3109556460	1	WILD R	ICE RIVER	NEAR MAH	NOMEN, MI	N. (LAT 47 19	31N LONG	95 56 46W)	
AUG 1992 12 SEP	<2	27	19	7	0.10	1.3	7	1	0	0.73
01	<2	25	20	6	0.10	1.3	7	1	0	0.73
4753	3109614460	1	RED LAI	KE RIVER A	T RED LAK	E FALLS, M	N. (LAT 47 5 3	3 31N LONG	096 14 24W)	
AUG 1992										
12	<2	25	23	6	0.12	1.3	7	1	0	0.69
DATE	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SULFUR BOT MAT <63U WS FIELD (UG/G) (34970)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)
4712	4309551430	1	WHITE	EARTH RIV	ER NEAR V	VAUBUN, MI	N (LAT 47 12	43N LONG	95 51 43W)	
SEP 1992 01	170	0	<40	7	<10	3	82	14	2	58
47193	3109556460	1	WILDR	ICE RIVER I	NEAR MAH	NOMEN, MI	v. (LAT 47 19	31N LONG	95 56 46W)	
AUG 1992 12 SEP	180	0	<40	9	<10	3	77	13	1	56
01	180	0	<40	8	<10	3	81	13	2	61
47533	3109614460	1	RED LAI	KE RIVER A	T RED LAK	E FALLS, M	N. (LAT 47 53	31N LONG	096 14 2 4W)	
AUG 1992 12	180	1	<40	8	<10	3	93	12	1	71

Ground-Water Levels

Drilling Observation Well

Tim Cowdery and Don Boyce

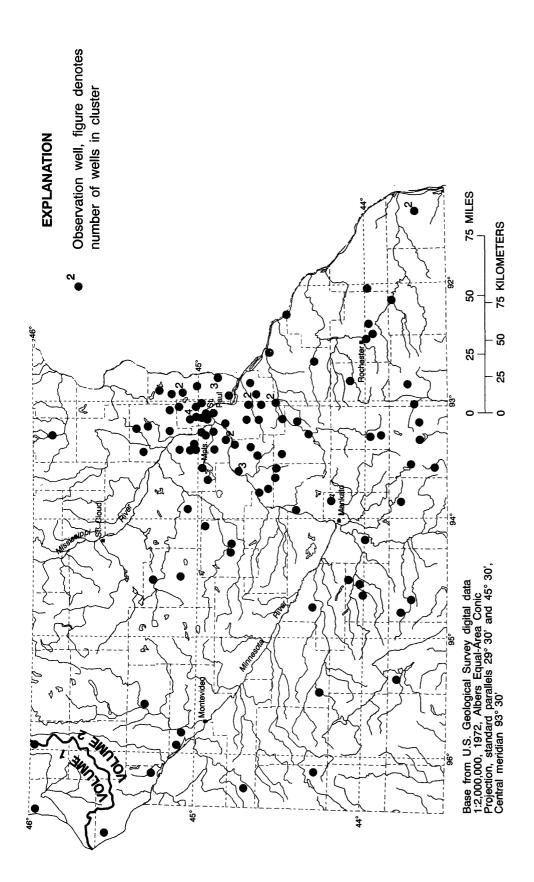


Figure 12.--Location of ground-water wells.

CLAY COUNTY

463854096250701. Local number, 137N45W30CDB01.

LOCATION.--Lat 46°38'54", long 96°25'07", in NW1/4SE1/4SW1/4 sec.30, T.137 N., R.45 W., Hydrologic Unit 09020106, in Barnesville. Owner: City of Barnesville, well 3.

AQUIFER.--Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 10 in., depth 73 ft.

DATUM.--Altitude of land-surface datum is 1,022 ft. Measuring point: Top of casing, 1.50 ft above land-surface datum.

PERIOD OF RECORD.--January 1949 to January 1975, May 1980 to current year.

EXTREMES FOR PERIOD OF RECORD .-- Highest water level, 1.86 ft below land-surface datum, June 9, 1962; lowest, 11.86 ft below landsurface datum, June 3, 1970.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	WATER								
DATE	LEVEL								
Oct 04	7.80	Nov 22	8.10	Dec 27	7.90	Feb 28	8.10	Apr 10	7.60
18	8.05	29	8.00	Feb 07	8.10	Mar 06	7.80	24	7.55
Nov 01	7.97	Dec 13	8.00	14	8.00	13	7.70	May 15	7.36
15	8.10	20	8.00	21	8.10	27	7.70		

465237096383901. Local number, 139N47W05CDC01.

LOCATION.--Lat 46°52'37", long 96°38'39", in SW1/4SE1/4SW1/4 sec.5, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.4 mi east of Dilworth... Owner: City of Moorhead, MS-1.

AQUIFER .-- Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in., depth 131 ft, slotted 91 to 107 ft.

DATUM.--Land-surface datum is 916.7 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder floor, 3.60 ft above land-

REMARKS.--Water level affected by pumping from nearby wells.

PERIOD OF RECORD.-January 1947 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.19 ft below land-surface datum, July 15, 1947; lowest, 32.94 ft below landsurface datum, Aug. 24, 1988.

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
Oct 05	32.34	Dec 05	31.86	Feb 05	32.42	Apr 05	31.54	Jun 05	31.96	Aug 05	32.18
10	32.40	10	31.90	10	32.44	10	31.76	10	31.88	10	32.28
15	32.46	15	31.90	15	32.44	15	31.92	15	32.02	15	32.40
20	32.44	20	32.10	20	32.44	20	32.00	20	31.92		
25	32.44	25	32.08	25	32.44	25	31.92	25	31.86		
31	32.46	31	32.08	29	32.38	30	31.96	30	31.92		
Nov 05	32.20	Jan 05	32.14	Mar 05	32.18	May 05	32.02	Jul 05	31.88		
10	31.90	10	32.16	10	32.24	10	31.92	10	31.72		
15	32.02	15	32.16	15	32.18	15	31.98	15	31.78		
20	32.08	20	32.16	20	31.76	20	31.98	20	31.76		
25	32.14	25	32.16	25	31.56	25	31.98	25	31.82		
30	32.02	31	32.38	31	31.38	31	31.90	31	31.96		

CLAY COUNTY--Continued

465328096391001. Local number, 139N47W06AAA01.

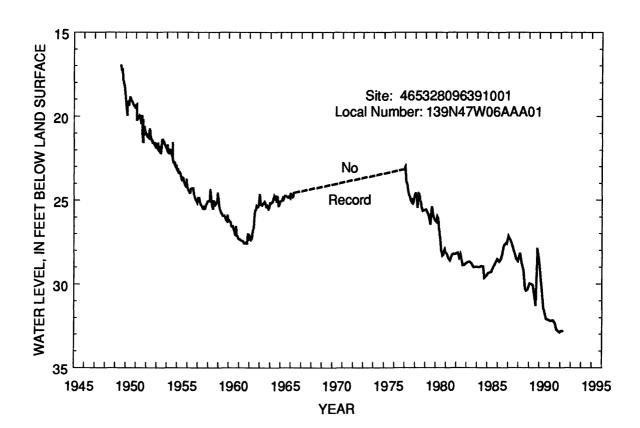
LOCATION.--Lat 46°53'27", long 96°39'08", in NE¹/4NE¹/4NE¹/4 sec.6, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.7 mi northeast of Dilworth.

Owner: U.S. Geological Survey, M-80.

AQUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 3 in., depth 103 ft, casing slotted near bottom.

DATUM.-Altitude of land-surface datum is 915 ft. Measuring point: Top of casing, 2.50 ft above land-surface datum.


REMARKS.--Water level affected by pumping.

PERIOD OF RECORD .-- July 1949 to April 1966, November 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 16.94 ft below land-surface datum, July 16, 1949; lowest, 34.20 ft below land-surface datum, Jul 28 and Sep 24, 1992.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL		WATER LEVEL
Oct 29	32.82	Jan 28	32.78	Apr 21	32.79	Aug 25	33.60
Dec 17	32.88	Mar 04	32.80	Jul 28	34.20	Sep 24	34.20

CLAY COUNTY--Continued

465231096415801. Local number, 139N48W11ABA01.

LOCATION.--Lat 46°52'31", long 96°41'58", in NE¹/4NW¹/4NE¹/4 sec.11, T.139 N., R.48 W., Hydrologic Unit 09020104, at Dilworth.

Owner: City of Dilworth.

AQUIFER .-- Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 8 in., depth 152 ft.

DATUM.--Altitude of land-surface datum is 908 ft. Measuring point: Top of recorder platform, 2.40 ft above land-surface datum.

REMARKS.--Water level affected by pumping.

PERIOD OF RECORD .-- May 1965 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 101.33 ft below land-surface datum, Dec. 29, 1965; lowest, 131.24 ft below land-surface datum, July 18, 1985.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 29	127.82	Dec 17	125.83	Mar 04	126.35	Apr 21	124.13

GRANT COUNTY

455927095575505. Local number, 129N42W16ABB05.

LOCATION.--Lat 45°59'27", long 95°57'55", in NW¹/4NW¹/4NE¹/4 sec.16, T.129 N., R.42 W., Hydrologic Unit 09020102, in city of Elbow Lake. Owner: City of Elbow Lake, well 5.

AQUIFER .-- Buried sand of Pleistocene age.

WELL CHARACTERISTICS.-Drilled public-supply artesian well, diameter 12 in., depth 215 ft, screened 190 to 215 ft.

DATUM.-Altitude of land-surface datum is 1,220 ft. Measuring point: Top breather pipe, 1.80 above land-surface datum.

PERIOD OF RECORD .-- October 1989 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 74.10 ft below land-surface datum, Apr. 30, 1990, Nov 27, 1991, Feb 28, 1992; lowest, 76.50 ft below land-surface datum, Nov. 1, 1989.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL		WATER LEVEL
Nov 01 27	74.20 74.10	Dec 30 Jan 29		Feb 28 Mar 31		Apr 29 May 28	74.80 73.90

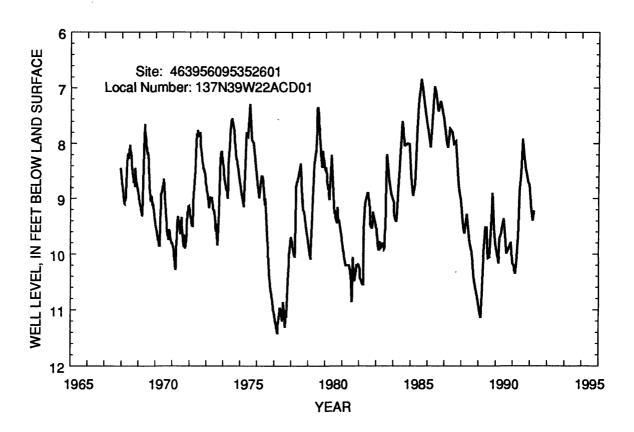
OTTER TAIL COUNTY

463956095352601. Local number, 137N39W22ACD01.

LOCATION.-Lat 46°39'56", long 95°35'26", in SE¹/4SW¹/4NE¹/4 sec.22, T.137 N., R.39 W., Hydrologic Unit 09020103, 4.5 mi north of Perham. Owner: U.S. Geological Survey.

AQUIFER .-- Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS.-Bored observation water-table well, diameter 2 in., depth 24 ft, screened 21 to 24 ft.


DATUM.--Altitude of land-surface datum is 1,370 ft. Measuring point: Top of casing, 0.50 ft above land-surface datum.

PERIOD OF RECORD .- December 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 6.84 ft below land-surface datum, Aug. 12, 1985; lowest, 11.41 ft below land-surface datum, Mar. 10, 15, 1977.

	WATER										
DATE	LEVEL										
Oct 23	8.56	Nov 22	8.70	Dec 20	8.75	Jan 25	9.21	Feb 23	9.39	Mar 24	9.22

OTTER TAIL COUNTY--Continued

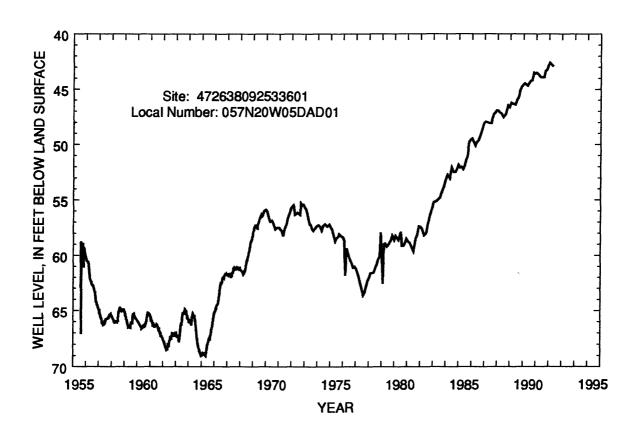
ST. LOUIS COUNTY

472638092533601. Local number, 057N20W05DAD01.

LOCATION.--Lat 47°26'38", long 92°53'36", in SE¹/4NE¹/4SE¹/4 sec.5, T.57 N., R.20 W., Hydrologic Unit 04010201, 2.5 mi east of Hibbing. Owner: Burlington Northern, Inc.

AQUIFER.--Biwabik Iron Formation of Middle Precambrian Age.

WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in., depth 430 ft, cased to 315 ft.


DATUM .-- Altitude of land-surface datum is 1,470 ft. Measuring point: Top of platform, 1.20 ft above land-surface datum.

PERIOD OF RECORD.--August 1955 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 42.60 ft below land-surface datum, Jan 22, 1992; lowest, 69.07 ft below land-surface datum, Jan. 15, 1965.

	WATER WA		WATER	ATER WATER			WATER	WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
Oct 28	43.21	Dec 10	42.81	Jan 22	42.60	Mar 04	42.76	Apr 16	42.91

ST. LOUIS COUNTY-Continued

473102092345001. Local number, 058N18W12CCC01.

LOCATION.-Lat 47°31'02", long 92°34'50, in SW1/4SW1/4SW1/4 sec.12, T.58 N., R.18 W., Hydrologic Unit 04010201, 1 mi west of Virginia. Owner: U.S. Steel Corp.

AQUIFER.—Buried sand and gravel of Pleistocene Age.
WELL CHARACTERISTICS.—Drilled observation artesian well, diameter 6 in., depth 97 ft, slotted casing between 67 to 97 ft.

DATUM.--Land-surface datum is 1,427.5 ft National Geodetic Vertical Datum of 1929. Measuring point: Edge of vent pipe, 1.90 ft above land-

PERIOD OF RECORD.—December 1954 to July 1964 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level, 10.64 ft below land-surface datum, July 20, 1957; lowest, 17.47 ft below landsurface datum, Apr. 2, 1964.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 28	12.81	Dec 10	12.77	Jan 24	13.20	Mar 04	13.53

ST. LOUIS COUNTY--Continued

473011092524301. Local number, 058N20W16DBC01.

LOCATION.--Lat 47°30'11", long 92°52'43", in SW1/4NW1/4SE1/4 sec.16, T.58 N., R.20 W., Hydrologic Unit 04010201, in Chisholm.

Owner: City of Chisholm.

AOUIFER.--Buried sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS .- Drilled unused artesian well, diameter 12 in. depth 40 ft, screened 30 to 40 ft.

DATUM.--Altitude of land-surface datum is 1,500 ft. Measuring point: Top of wood platform, 1.70 ft above land-surface datum.

REMARKS.--Water level affected by pumping. Water-level subject to freezing during winter months. PERIOD OF RECORD.--August 1953 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 0.23 ft below land-surface datum, May 10, 1954; lowest, 15.60 ft below landsurface datum, Mar. 23-24, 1957.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

WATER DATE LEVEL Oct 28 2.82

474253091574101. Local number, 060N13W01BBA01.

LOCATION.--Lat 47°42′53", long 91°57′41", in NE¹/4NW¹/4NW¹/4 sec.1, T.60 N., R.13 W., Hydrologic Unit 09030001, at Babbitt water tower. Owner: U.S. Geological Survey.

AQUIFER .-- Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.-Bored observation water-table well, diameter 2 in., depth 30 ft, screened 27 to 30 ft.

DATUM.--Altitude of land-surface datum is 1,485 ft. Measuring point: Top of 3 in pipe, 4.00 ft above land-surface datum.

PERIOD OF RECORD.--October 1975 to June 1978, July 1979 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level, 19.79 ft below land-surface datum, Sept. 6, 1989; lowest, 26.03 ft below landsurface datum, June 14, 1977.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	WATER LEVEL	DATE	WATER LEVEL		WATER LEVEL		WATER LEVEL
Oct 04	20.80	Dec 03	20.92	Feb 04	21.33	Apr 01	21.67
Nov 06	21.00	Jan 03	21.08	Mar 09	21.58	May 08	21.42

475502091494601. Local number, 063N12W26ABB01.

LOCATION .-- Lat 47°55'02", long 91°49'46", NW1/4NW1/4NE1/4 sec.26, T.63 N., R.12 W., Hydrologic Unit 09030001, at Ely.

Owner: U.S. Geological Survey.

AQUIFER .-- Surficial sand and gravel of Pleistocene Age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1 in., depth 9 ft, screened 7 to 9 ft.

DATUM. -- Altitude of land-surface datum is 1,342 ft. Measuring point: Top of casing, 4.00 ft above land-surface datum.

PERIOD OF RECORD .-- October 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level, 1.53 ft below land-surface datum, May 14, 1986; lowest, 6.87 ft below landsurface datum, Sept. 27, 1976.

	WATER								
DATE	LEVEL								
Oct 01	4.02	Nov 20	2.71	Jan 14	3.40	Feb 20	4.17	Apr 01	2.46

TRAVERSE COUNTY

455700096314001. Local number, 129N47W25CDC01.

LOCATION.--Lat 45°57'00", long 93°31'40", in SW¹/₄SE¹/₄SW¹/₄ sec.25, T.129 N., R.47 W., Hydrologic Unit 09020101, 9 mi north of Wheaton.

Owner: U.S. Geological Survey.

AQUIFER.--Surficial sand of Pleistocene Age.
WELL CHARACTERISTICS.--Bored observation water-table well, diameter 1 in., depth 39 ft, open end.

DATUM.--Altitude of land-surface datum is 1,010 ft. Measuring point: Top of casing, 2.00 ft above land-surface datum.

PERIOD OF RECORD.-October 1965 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level, 5.39 ft below land-surface datum, Sept. 23, 1986; lowest, 12.42 ft below landsurface datum, Dec. 2, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
Oct 28	8.46	Dec 18	8.97	Jan 29	8.80	Apr 22	8.74

Ground-Water Quality Data

Radon Sampling of Ground Water

Red River of the North NAWQA Program

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

CLEARWATER COUNTY

								77767							
STATION	NUMBER	LOC IDEN I- FIE	NT-	GEC LOG UNI	IC	ATE T	IME	WI TO (FI	EPTH OF ELL, TAL EET) 2008)	ELI OF L SURF DAT (F ABC NGV (720	AND FACE TUM IT. OVE VD) (SPE- CIFIC CON- DUCT- ANCE US/CM) (00095)	SP CII CO DU AN LA (US/ (900	FIC W ON- W CT- F CE (ST AB A CM) U	PH ATER HOLE IELD FAND- ARD NITS) 0400)
473131095 473150095 473832095	5210500	147.36.28 147.37.22 148N37W	CDD	112DM 112DM 112DM	DF 09-	02-92 1 01-92 0 11-92 1	920	29	5.00 9.00 5.00	1445 1470 1460		545 790 875	473 - 885		7.1 7.1 7.3
DATE		TEMPER- ATURE WATER (DEG C) (00010)	CALCIUN DIS- SOLVED (MG/L AS CA) (00915)	DIS- SOLVI (MG/	I, SODIU DIS ED SOLV L (MG G) AS N	UM, SI ED SOI /L (M A) AS	IS- LVED	BICAL BONA WATH WHI FIELL MG/L HCO (0045)	TE A ER L T D (AS 3 C.	LAB MG/L AS	DIS	TE RII DI SOL L (MO)	IS-	FLUO- RIDE, DIS- SOLVEI (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2)
09-02-92 09-01-92 09-11-92	7.5 - 7.5	8.0 8.0 875.0	76 	16 	2.6 	1.:	5	252 343 449		55 96	3.2 - 60		6.1 - 3.3	0.20 0.20	-
DATE	SOLII RESID AT 1: DEG. DIS SOLV (MG/ (7030	OUE GE 80 NITE C DI - SOLV ED (MC L) AS	RITE NO2 S- D VED SOI G/L (M N) AS	EN, 2+NO3Al DIS- LVED SO IG/L (S N)	MMONIAI DIS- O OLVED (MG/L AS N)	EN,AM	+ PHC C D SOI (M	ORUS OIS-	DIS	US IO, AF ED SO /L (P) A	RSENIC DIS- DLVED UG/L S AS) 01000)	IRON DIS- SOLVE (UG/I AS FE (01046	D SC	EAD, DIS- DLVED UG/L S PB)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
09-02-92 09-01-92 09-11-92	279 518	<0.0 <0.0		0.130 <0.050	0.020 0.580	<0.20 0.70		0.029 0.006	0.0		1 -	9	<	100	1.5 3.1
				Al	NALYSIS	FOR OR	GANIC	CHEN	MICAL	S					

STATION NUMBER	DATE	TIME	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	AME- TRYNE TOTAL (82184)	ATRAZINE WATER UNFLTRD REC (UG/L) (39630)	CARBO- IN ATER HOLE RECOV- ERABLE (UG/L (30245)	CYAN- AZINE TOTAL (UG/L) (81757)	CYCLO- ATE ATER HOLE RECOV- ERABLE (UG/L (30254)	
473131095160600	09-02-92	1220	< 0.10	<0.10	2.0	< 0.20	<0.20	<0.10	
473832095253300	09-11-92	1750	-	••			••	-	

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

CLEARWATER COUNTY--Continued

DATE	DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	DIPHEN- AMID WATER WHOLE RECOV- ERABLE (UG/L) (30255)	HEXAZI- NONE WATER WHOLE RECOV- ERABLE (UG/L) (30264)	METOLA- CHLOR WATER WHOLE TOT.REC (UG/L) (82612)	METRI- BUZIN WATER WHOLE TOT.REC (UG/L) (82611)	PHENOLS TOTAL (UG/L) (32730)	PROME- TONE TOTAL (UG/L) (39056)
09-02-92	0.20	<0.20	<0.10	<0.20	<0.20	<0.10	2	<0.20
09-11-92							<1	
DATE	PROME- TRYNE TOTAL (UG/L) (39057)	PROPA- CHLOR WATER WHOLE RECOV. (UG/L) (30295)	PRO- PAZINE TOTAL (UG/L) (39024)	SIMA- ZINE TOTAL (UG/L) (39055)	SIME- TRYNE TOTAL (UG/L) (39054)	TER- BACIL WATER WHOLE RECOV. (UG/L) (30311)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	VER- NOLATE WATER WHOLE RECOV. (UG/L) (30324)
09-02-92 09-11-92	<0.10 	<0.10 	< 0.10 	<0.10 	<0.10	<0.20	<0.10 	<0.10

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 COOK COUNTY

LOCAL IDENT- I- STATION NUMBER FIER	DATE	TIME	DEPTH OF WELL, TOTAL (FEET) (72008)	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)
475229089520701 T62NR5E06CCC	09-15-92	1000	230.00		5250	5210
475325089491001 T63NR5E33CCD	09-16-92	1700	404.00	20	1840	1480
475505089444501 T63NR5E25ABA	09-15-92	1200	104.00		825	716
475618089423801 T63NR6E17CAB	09-14-92	1600	350.00		4650	4540
475650089425501 T63NR6E07DDD	09-16-92	1400	285.00		620	183
475710089390001 T63NR6E10AAA	09-14-92	1800	115.00		315	317
475719089465201 T63NR5E03CCC	09-16-92	1600	275.00		300	94
475755089410501 T63NR6E04CDA	09-15-92	1500	155.00		860	709
	09-15-92	1530	155.00		860	764
475827089413501 T63NR6E04BBC	09-16-92	1100	84.00		895	974
480002089360501T64NR7E30BCB	09-15-92	1400			660	458

DATE	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3 (00410)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
09-15-92	8.9	7.5	7.0	490	1.6	460	1.9	17	9.2	43
09-16-92	8.8	8.7	8.0	52	0.32	240	1.8	48	49	61
09-15-92	7.4	7. 7	9.0	35	3.4	95	0.60	52	53	34
09-14-92	8.2	8.2	9.0	440	0.60	400	0.70	19	14	19
09-16-92	10.0	10.0	7.0	2.0	0.29	36	0.20	78	78	5.4
09-14-92	8.8	8.8	6.5	8.0	1.8	57	1.5	104	103	22
09-16-92	6.8	7.4	6.5	12	3.3	1.6	0.30	44	44	5.1
09-15-92	7.6	7.9	6.5	66	33	38	3.5	205	207	91
09-15-92	7.6	7.8	6.5	65	33	37	3.4	205	207	91
09-16-92	7.9	8.1	6.5	56	19	91	4.7	66	67	17
09-15-92	8.5	8.6	11.0	14	4.8	66	4.2	85	87	41

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

COOK COUNTY--Continued

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- I MIUM, DIS- SOLVED (UG/L AS CR) (01030)
00 15 00	1.000	0.00	0110			.1	.100	10	
09-15-92	1600	0.90	3110			<l< td=""><td><100</td><td>10</td><td>2</td></l<>	<100	10	2
09-16-92	410	1.7	800			1	54	<10	<1
09-15-92	170	0.50	394			<1	18	<10	<1
09-14-92	99	0.60	2760			<l< td=""><td>500</td><td>10</td><td><l< td=""></l<></td></l<>	500	10	<l< td=""></l<>
09-16-92	3.6	0.60	107			<1	7	<10	<1
09-14-92	23	3.4	179			<1	25	<10	<1
09-16-92	1.1	<0.10	58			<1	7	<10	1
09-15-92	73	0.80	450			3	33	<10	<1
09-15-92	77	0.80	445			3	33	<10	<1
09-16-92	240	1.0	531	< 0.010	< 0.050	3	110	<10	<1
0, 10,2	210	1.0	551	10.010	νο.οσο	_	110	110	••
09-15-92	64	1.8	25 5			<1	64	<10	< l
DATE	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
09-15-92	10	100	<100	20	<0.1	<1.0	260	<l< td=""><td></td></l<>	
09-16-92	<10	<3	<100	<l< td=""><td><0.1</td><td><1.0</td><td>14</td><td><l</td><td>**</td></l<>	<0.1	<1.0	14	< l	**
09-15-92	<10	37	<100	16	<0.1	<1.0	52	<1	
09-14-92	10	30	<100	20	<0.1	<1.0	20	< 1	
09-16-92	<10	30	<100	<1	<0.1	<1.0	3	<1	
09-14-92	<10	19	<100	11	<0.1	<1.0	<3	<1	
09-16-92	<10	1600	<100	19	<0.1	<1.0	13	<1	
09-15-92	<10	1300	<100	59	< 0.1	<1.0	23	<1	
09-15-92	<10	1600	<100	58	<0.1	<1.0	12	<1	
09-16-92	<10	170	<100	31	<0.1	<1.0	<3	<1	0.6
09-15-92	<10	36	<100	12	<0.1	<1.0	<3	< 1	

					BENZENI	3				BENZENE
			1,1,1-		1,1-DI-	0-			1,2-	1,3-DI-
			TRI-	1,1-DI-	CHLORO	-CHLORO-	1,2-DI-	1,2-DI-	TRANSDI	CHLORO-
			CHLORO-	CHLORO-	ETHYL-	WATER	CHLORO-	CHLORO-	-CHLORO-	WATER
			ETHANE	ETHANE	ENE	UNFLTRD	ETHANE	PROPANE	ETHENE	UNFLTRD
STATION NUMBER	DATE	TIME	TOTAL	TOTAL	TOTAL	REC	TOTAL	TOTAL	TOTAL	REC
			(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
			34506)	(34496)	(34501)	(34536)	(32103)	(34541)	(34546)	(34566)
			•							
475827089413501	09-16-92	1100	<0.2	<0.2	<0.2	<0.20	<0.2	<0.2	<0.2	<0.20
175027007115501	0, 10,2	1100	70.2	10.2	~~			~~		40.20

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

COOK COUNTY--Continued

	BENZENE							CIS-1,2		DI-
	1,4-DI-			CARBON-		CHLORO-		-DI-	DI-	CHLORO-
	CHLORO-			TETRA-		DI-		CHLORO-	CHLORO	- DI-
	WATER		BROMO-	CHLO-	CHLORO-	BROMO-	CHLORO-	ETHENE	BROMO-	- FLUORO-
	UNFLTRD	BENZENE	FORM	RIDE	BENZENE	METHANE	FORM	WATER N	METHAN	EMETHANE
DATE	REC	TOTAL	TOTAL	TOTAL						
	(UG/L)	(UG/L)	(UG/L)							
	(34571)	(34030)	(32104)	(32102)	(34301)	(32105)	(32106)	(77093)	(32101)	(34668)
09-16-92	<0.20	<0.2	<0.2	<0.2	<0.20	<0.2	<0.2	<0.2	<0.2	<0.2
		FREON-	METHYL-		TETRA-		TRI-	TRI-		
		113	ENE		CHLORO-		CHLORO-	CHLORO-	VINYL	XYLENE
	ETHYL-	WATER	CHLO-		ETHYL-		ETHYL-	FLUORO-	CHLO-	WATER
	BENZENE	UNFLTRD	RIDE	STYRENE	ENE	TOLUENE	ENE	METHANE	RIDE	UNFLTRD
DATE	TOTAL	REC	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	REC
	(UG/L)	(U G/L)	(UG/L)	(UG/L)						
	(34371)	(77652)	(34423)	(77128)	(34475)	(34010)	(39180)	(34488)	(39175)	(81551)
09-16-92	<0.2	<0.5	<0.2	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.20

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MARSHALL COUNTY

LOCAL IDENT- I- STATION NUMBER FIER	DATE	TIME	DEPTH OF WELL, TOTAL (FEET) (72008)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
481200096133000 155-43-31DBCD	06-04-92	1655	180.00	1165	1770	7.5	180
481332096342900 155-46-22CDC	06-08-92	1045	86.00	946	883	7.3	57
481437096232700 155-45-13CCB	06-05-92	1100	207.00	1075	852	7.7	56
481452095512700 155-41-13ADB	06-04-92	1119	236.00	1153	658	7.9	41
481537095504800 155-40-07BDCB	06-05-92	1430	118.00	1155	917	7.6	70
481807096430801 156N47W29CAD	04-28-92	1600	32.00	853	827	7.2	80
481820096401700 156-48-26BBBD	08-19-92	1000	29.00	848			
482447096094300 157-43-14BBA	06-04-92	1300	218.00	1145	697	7.8	36
482634096111000 157-43-03CCCD	08-20-92	1150	22.00	1160			
482634096324101 157-46-02DDCC	08-20-92	1025	16.00	1040			
482725096332201 158-46-35CDCC2	04-28-92	1740	23.00	1048	401	7.7	53
	08-26-92	1420	23.00	1048			
482935096332101 158-46-23BDCC	04-28-92	1130	22.00	1052	488	7.5	60

				ALKA-					SOLIDS,	NITRO-	NITRO-
	MAGNE-		POTAS-	LINITY		CHLO-	FLUO-	SILICA,	RESIDUE	GEN,	GEN,
	SIUM,	SODIUM,	SIUM,	WAT WH	SULFATE	RIDE,	RIDE,	DIS-	AT 180	NITRITE	NO2+NO3
	DIS-	DIS-	DIS-	TOT FET	DIS-	DIS-	DIS-	SOLVED	DEG. C	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	FIELD	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SOLVED	SOLVED
DATE	(MG/L	(MG/L	(MG/L	MG/L AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	(MG/L	(MG/L
	AS MG)	AS NA)	AS K)	CACO3	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	AS N)	AS N)
	(00925)	(00930)	(00935)	(00410)	(00945)	(00940)	(00950)	(00955)	(70300)	(00613)	(00631)
06-04-92	120	71	8.7	292	750	4.0	0.30	23	1420		
06-08-92	20	94	5.0	354	<0.10	88	0.40	34	504		
06-05-92	38	73	3.3	290	150	14	0.40	22	539		
06-04-92	24	74	2.4	281	55	12	0.30	2 6	384		
06-05-92	40	78	3.4	305	210	9.7	0.20	26	594		
04-28-92	54	6.8	3.5		25	7.9	0.20	23	481		
08-19-92										< 0.010	2.00
06-04-92	38	63	3.2	296	63	13	0.50	21	401		
08-20-92										0.110	7.90
08-20-92										0.040	44.0
04-28-92	17	1.5	0.80	198	5.4	1.6	0.10	10	222		
08-26-92										0.040	6.00
04-28-92	23	1.9	1.6	260	5.2	5.3	0.10	8.1	260		

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

MARSHALL COUNTY--Continued

	NITRO-		PHOS-								
	GEN,		PHORUS		BERYL-			CHRO-			
	AMMONIA							M MIUM,		T, COPPER	
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
DAME	SOLVED			SOLVED				SOLVED		D SOLVE	
DATE	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L		(UG/L
	AS N)	AS P)	AS P)	AS BA)	AS BE)	AS B)	AS CD)	AS CR) (01030)	AS CO (01035)		
	(00608)	(00666)	(00671)	(01005)	(01010)	(01020)	(01025)	(01030)	(01033)) (01040)	(01046)
06-04-92				20	<0.5	290	<1.0	<5	4	<10	1700
06-08-92				300	<0.5	170	<1.0	<5	9	<10	2600
06-05-92				83	<0.5	260	<1.0	<5	<3	<10	630
06-04-92				140	<0.5	180	<1.0	<5	<3	<10	310
06-05-92				89	<0.5	180	<1.0	<5	<3	<10	770
04.00.00				000	0.0	00	.1.0		•	-10	9300
04-28-92	0.450			280	<0.5	30	<1.0	<5	⋖	<10	2300
08-19-92 06-04-92	0.450	0.020	<0.010	130	<0.5	180	<1.0	 <5	3	<10	610
08-20-92	0.050	<0.010	 <0.010		<0.5 	180	<1.0	~		<10	
08-20-92	0.020	<0.010 <0.010	0.010								
00-20-32	0.020	\0.0 10	0.010								
04-28-92				27	<0.5	10	<1.0	<5	⊲	<10	20
08-26-92	0.040	< 0.010	<0.010								
04-28-92				30	<0.5	20	<1.0	<5	<3	<10	11
	LEAD,	MANGA NESE,	DENUM	A, NICK		ER, TI	UM,	VANA- DIUM,		LITHIUMC	
	DIS-	NESE, DIS-	DENUM DIS-	A, NICK DIS	S- DIS	ER, TT - D	UM, I	DIUM, DIS-	DIS-	LITHIUM C DIS-	DRGANIC DIS-
DART	DIS- SOLVED	NESE, DIS- SOLVED	DENUM DIS- SOLVE	A, NICK DIS D SOLV	S- DIS- /ED SOLV	ER, TI - D ED SOI	UM, I DIS- LVED S	DIUM, DIS- OLVED S	DIS- SOLVED (LITHIUM C DIS- SOLVED S	ORGANIC DIS- SOLVED
DATE	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DENUM DIS- SOLVE (UG/L	M, NICK DIS D SOLV (UG	S- DIS /ED SOLV !/L (UG/	ER, TI - D ED SOI L (U	UM, I DIS- LVED SO IG/L	DIUM, DIS- OLVED S (UG/L	DIS- SOLVED ((UG/L	LITHIUM C DIS- SOLVED S (UG/L	ORGANIC DIS- SOLVED (MG/L
DATE	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN)	DENUM DIS- SOLVE (UG/L AS MO	M, NICK DIS D SOLV (UG) AS N	S- DIS- /ED SOLVI //L (UG/ NI) AS AG	ER, TI - D ED SOI L (U G) AS	UM, I SIS- LVED SO G/L SSR)	DIUM, DIS- OLVED S (UG/L AS V)	DIS- SOLVED ((UG/L AS ZN)	LITHIUMO DIS- SOLVED S (UG/L AS LI)	ORGANIC DIS- SOLVED (MG/L AS C)
DATE	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	DENUM DIS- SOLVE (UG/L	M, NICK DIS D SOLV (UG) AS N	S- DIS- /ED SOLVI //L (UG/ NI) AS AG	ER, TI - D ED SOI L (U G) AS	UM, I SIS- LVED SO G/L SSR)	DIUM, DIS- OLVED S (UG/L AS V)	DIS- SOLVED ((UG/L	LITHIUM C DIS- SOLVED S (UG/L	ORGANIC DIS- SOLVED (MG/L
DATE 06-04-92	DIS- SOLVED (UG/L AS PB)	NESE, DIS- SOLVED (UG/L AS MN)	DENUM DIS- SOLVE (UG/L AS MO	M, NICK DIS D SOLV (UG) AS N	S- DIS- /ED SOLVI //L (UG/ NI) AS AG	ER, TI - D ED SOI L (U G) AS 5) (01	UM, I NIS- LVED SO G/L SSR) (080) (DIUM, DIS- OLVED S (UG/L AS V)	DIS- SOLVED ((UG/L AS ZN)	DIS- SOLVED S (UG/L AS LI) (01130)	ORGANIC DIS- SOLVED (MG/L AS C)
	DIS- SOLVED (UG/L AS PB) (01049)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM DIS- SOLVE (UG/L AS MO (01060	M, NICK DIS D SOLV (UG) AS 1) (0100	S- DIS- /ED SOLVI //L (UG/ NI) AS A0 65) (0107	ER, TI - D - D - D - D - D - D - D - D - D - D	UM, I SIS- LVED SO IG/L S SR) 080) (DIUM, DIS- OLVED S (UG/L AS V) (01085) <6 <6	DIS- SOLVED ((UG/L AS ZN) (01090)	DIS- SOLVED S (UG/L AS LI) (01130) 110 15	DRGANIC DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5
06-04-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM DIS- SOLVE (UG/L AS MO (01060	M, NICK DIS D SOLV (UG) AS 1) (0100	S- DIS- /ED SOLVI //L (UG/ NI) AS A6 65) (0107 <1.0 <1.0	ER, TI - D ED SOI L (U G) AS 5) (01 - 110 - 222 - 48	UM, I SIS- LVED SO IG/L S SR) 080) (DIUM, DIS- OLVED S (UG/L AS V) (01085) <6 <6 <6 <6	DIS- SOLVED ((UG/L AS ZN) (01090) 8 45 68	DIS- SOLVED S (UG/L AS LI) (01130) 110 15 28	DRGANIC DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5
06-04-92 06-08-92 06-05-92 06-04-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10 <10	M, NICK DIS D SOLV (UG) AS 1 (0100 <10 <10	S- DIS- /ED SOLVI /L (UG/ NI) AS A0 65) (0107 <1.0 <1.0 <1.0	ER, TI - D ED SOIL (U G) AS 5) (01 222 48 29	UM, 1015- LVED SC (G/L (S SR) (1080) (0000	DIUM, DIS- OLVED S (UG/L AS V) (01085) <6 <6 <6 <6 <6	DIS- SOLVED : (UG/L AS ZN) (01090) 8 45 68 13	DIS- SOLVED S (UG/L AS LI) (01130) 110 15 28 22	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5
06-04-92 06-08-92 06-05-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10	M, NICK DIS D SOLV (UG) AS 1 (0100 <10 <10 <10	S- DIS- /ED SOLVI //L (UG/ NI) AS A6 65) (0107 <1.0 <1.0	ER, TI - D ED SOIL (U G) AS 5) (01 222 48 29	UM, 1015- LVED SC (G/L (S SR) (1080) (0000	DIUM, DIS- OLVED S (UG/L AS V) (01085) <6 <6 <6 <6	DIS- SOLVED ((UG/L AS ZN) (01090) 8 45 68	DIS- SOLVED S (UG/L AS LI) (01130) 110 15 28	DRGANIC DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5
06-04-92 06-08-92 06-05-92 06-04-92 06-05-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18 45	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10 <10 <10 <10	M, NICK DIS D SOLV (UG) AS 10 <10 <10 <10 <10 <10 <10 <10 <10	S- DIS. /ED SOLV! /L (UG/ NI) AS A(65) (0107 <1.0 <1.0 <1.0 <1.0	ER, TI - D ED SOIL (U G) AS 5) (01 - 1100 - 220 - 480 - 460	UM, DIS- LVED SO IG/L IS SR) 1080) (DIUM, DIS- OLVED S (UG/L AS V) 01085) <6 <6 <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) 8 45 68 13 3	DIS- SOLVED S (UG/L AS LI) (01130) 110 15 28 22 18	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5 3.4
06-04-92 06-08-92 06-05-92 06-04-92 06-05-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18 45	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10 <10	M, NICK DIS DIS SOLV (UG	S- DIS. /ED SOLV! /L (UG/ NI) AS A(65) (0107 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	ER, TI - D ED SOIL (U G) AS 5) (01 222 48 29 46 18	UM, DIS- LVED S(G/L S SR) 1080) (DIUM, DIS- OLVED S (UG/L AS V) 01085) <6 <6 <6 <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) 8 45 68 13 3	DIS- SOLVED S (UG/L AS LI) (01130) 110 15 28 22 18	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5
06-04-92 06-08-92 06-05-92 06-04-92 06-05-92 04-28-92 08-19-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18 45	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	A, NICK DIS D SOLV (UG) AS 1) (0100 <10 <10 <10 <10 <10 <10 <10 <10 <10	S- DIS. /ED SOLV! /L (UG/ NI) AS A(65) (0107 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	ER, TI - D ED SOI L (U G) AS 5) (01 222 488 229 466	UM, DIS- LVED SO G/L S SR) (080) (0 0 0 0 0 0	DIUM, DIS- OLVED S (UG/L AS V) 01085) <6 <6 <6 <6 <6 <6 <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) 8 45 68 13 3	DIS- SOLVED S (UG/L AS LI) (01130) 110 15 28 22 18	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5 3.4
06-04-92 06-08-92 06-05-92 06-04-92 06-05-92 04-28-92 08-19-92 06-04-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18 45	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10 <10 <10 <10	A, NICK DIS D SOLV (UG 0) AS 1 (0100 <10 <10 <10 <10 <10 <10 <10 <10 <10	S- DIS. /ED SOLV! /L (UG/ NI) AS A(65) (0107 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	ER, TI ED SOI L (U G) AS 5) (01 1100 222 488 290 460	UM, DIS- LVED SO G/L S SR) (080) (0 0 0 0 0 0 0 0	DIUM, DIS- OLVED S (UG/L AS V) 01085) <6 <6 <6 <6 <6 <6 <6 <6 <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) 8 45 68 13 3	DIS- SOLVED S (UG/L AS LI) (01130) 110 15 28 22 18	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5 3.4
06-04-92 06-08-92 06-05-92 06-04-92 06-05-92 04-28-92 08-19-92 06-04-92 08-20-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18 45	DENUM DIS- SOLVE (UG/L AS MO) (01060) <10 <10 <10 <10 <10 <10 <10 <10 <10	A, NICK DIS D SOLV (UG) AS 1) (0100 <10 <10 <10 <10 <10 <10 <10 <10 <10	S- DIS. /ED SOLV! /L (UG/ NI) AS A(65) (0107 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	ER, TI - D ED SOI L (U G) AS 5) (01 222 488 229 466	UM, DIS- LVED SO G/L S SR) 0080) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIUM, DIS- OLVED S (UG/L AS V) 01085) <6 <6 <6 <6 <6 <6 <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) 8 45 68 13 3	DIS- SOLVED S (UG/L AS LI) (01130) 110 15 28 22 18 15 22	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5 3.4 5.9
06-04-92 06-08-92 06-05-92 06-04-92 06-05-92 04-28-92 08-19-92 06-04-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18 45	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	A, NICK DIS D SOLV (UG) AS 1 (0100 <10 <10 <10 <10 <10 <10 <10 <10 <10	S- DIS- VED SOLVI- VIL (UG/ VII) AS A(65) (0107 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <-1.0 <-1.0 <-1.0	ER, TI ED SOIL (U G) AS 5) (01 1100 220 488 299 466	UM, DIS- LVED SO G/L S SR) 0080) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIUM, DIS- OLVED S (UG/L AS V) 01085) <6 <6 <6 <6 <6 <6 <6 <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) 8 45 68 13 3 52 11 	DIS- SOLVED (UG/L AS LI) (01130) 110 15 28 22 18 15 22	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5 3.4 5.9 2.9
06-04-92 06-08-92 06-05-92 06-04-92 06-05-92 04-28-92 08-19-92 06-04-92 08-20-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18 45	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	A, NICK DIS D SOLV (UG) AS 1 (0100 <10 <10 <10 <10 <10 <10 <10 <10 <10	S- DIS- VED SOLVI- VIL (UG/ VII) AS A(65) (0107 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <-1.0 <-1.0 <-1.0	ER, TI - D ED SOIL (U G) AS 5) (01 22/2 48/2 48/2 46/	UM, DIS- LVED S(G/L SSR) (080) (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIUM, DIS- OLVED S (UG/L AS V) 01085) <6 <6 <6 <6 <6 <6 <6 <6 <6 <6	DIS- SOLVED (UG/L AS ZN) (01090) 8 45 68 13 3 52 - 11	DIS- SOLVED (UG/L AS LI) (01130) 110 15 28 22 18 15 22	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5 3.4 5.9 - 2.9
06-04-92 06-08-92 06-05-92 06-04-92 06-05-92 04-28-92 08-19-92 06-04-92 08-20-92	DIS- SOLVED (UG/L AS PB) (01049) <10 <10 <10 <10 <10 <10 <	NESE, DIS- SOLVED (UG/L AS MN) (01056) 110 72 50 18 45	DENUM DIS- SOLVE (UG/L AS MO (01060 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	A, NICK DIS D SOLV (UG) AS 1 (0100 <10 <10 <10 <10 <10 <10 <10 <10 <10	S- DIS. /ED SOLV! /L (UG/ NI) AS A(65) (0107 <1.0 <1.0 <1.0 <1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	ER, TI - D - D - D - D - D - D - D - D - D - D	UM, DIS- LVED S(G/L SSR) 0080) (0000) 0000 0000 0000 0000 0000 0000	DIUM, DIS- OLVED S (UG/L AS V) 01085) <6 <6 <6 <6 <6 <-6 <-6	DIS- SOLVED (UG/L AS ZN) (01090) 8 45 68 13 3 52 11 	DIS- SOLVED (UG/L AS LI) (01130) 110 15 28 22 18 15 22	DRGANIC DIS- DIS- SOLVED (MG/L AS C) (00681) 3.5 8.5 3.5 3.5 3.4 5.9 2.9

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

MARSHALL COUNTY--Continued

LOCAL IDENT- I- STATION NUMBER FIER	DATE	TIME	DEPTH OF WELL, TOTAL (FEET) (72008)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
475815096273500 152-45-17CCCD	06-09-92	1030	22.00	1010	606	7.7	83
475924096211300 152-45-13AAD	06-10-92	1550	74.00	1037	588	7.8	39
480211096265200 153-45-28CDD	06-09-92	1431	22.40	1035	579	7.8	73
	09-03-92	1140	22.40	1035			
480354096261000 153-45-21AAAA	08-26-92	1650	22.00	1030			
480440096034100 153-42-16BAB	06-08-92	1445	114.00	1130	749	7.6	61
480537096205800 153-44-06DDDD	06-17-92	1542	13.00	1103	1270	6.7	200
	08-20-92	1522	13.00	1103			
480537096263000 153-45-09ABA	06-09-92	1655	17.80	1030	544	7.8	82
480550096220100 153-45-30AAAA	08-20-92	1710					
480815096122500 154-43-20DCCC	08-20-92	1405	26.00	1130			
480937096261300 154-45-16DADB	08-25-92	1145	85.00	1031			

STATION NUI	MBER	DATE	ТІМЕ	2, 4-DP TOTAL (UG/L) (82183)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	2,6-DI- ETHYL ANALINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)
4818200964013	700	08-19-92	1000	< 0.01	< 0.01	< 0.01	< 0.00			
4826340961110	000	08-20-92	1150	< 0.01	< 0.01	< 0.01		< 0.00	< 0.01	0.00
482634096324	101	08-20-92	1025	< 0.01	< 0.01	< 0.01		<0.00	< 0.01	0.01
		08-26-92	1420	<0.01	<0.01	<0.01		<0.00	<0.01	0.01
	BUTYL	r	CYANA-	DEETHYL ATRA-		DICAMBA (MED-				
DATE	ATE, WATER DISS, REC (UG/L) (04028)	CHLOR- PYRIFOS DIS- SOLVED (UG/L)	ZINE, WATER, DISS, REC (UG/L) (04041)	ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	IBEN) (BAN- VEL D) TOTAL (UG/L) (82052)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS-	MALA- THION, DIS- SOLVED (UG/L) (39532)
08-19-92						<0.01				
08-26-92	<0.00	<0.00	<0.01	<0.02	<0.00	<0.01	<0.02	<0.00	<0.01	<0.01

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

MARSHALL COUNTY--Continued

					PICLO-				
		METRI-			RAM	PRO-	PROP-		SI-
	METO-	BUZIN		PARA-	(TOR-	METON,	CHLOR,		MAZINE,
	LACHLOR	SENCOR	P,P'	THION,	DON)	WATER,	WATER,		WATER,
	WATER	WATER	DDE	DIS-	(AMDON)	DISS,	DISS,	SILVEX,	DISS,
DATE	DISSOLV	DISSOLV	DISSOLV	SOLVED	TOTAL	REC	REC	TOTAL	REC
	(UG/L)								
	(39415)	(82630)	(34653)	(39542)	(39720)	(04037)	(04024)	(39760)	(04035)
08-19-92					<0.01			<0.01	
08-20-92	<0.00	0.00	0.01	<0.01	<0.01	<0.01	<0.00	< 0.01	0.00
08-20-92	<0.00	<0.01	<0.00	<0.01	<0.01	<0.01	<0.00	<0.01	0.00
08-26-92	<0.00	<0.01	<0.00	<0.01	<0.01	<0.01	<0.00	<0.01	0.01

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

PENNINGTON COUNTY

LOCAL IDENT- I- STATION NUMBER FIER	DATE	TIME	DEPTH OF WELL, TOTAL FEET	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD	SPE- CIFIC CON- DUCT- ANCE LAB (USCM)	PH WATER WHOLE LAB (STAND- ARD UNITS)	CALCIUM DIS- SOLVED (MG/L AS CA)
475815096273500 152-45-17CCCD	06-09-92	1030	22.00	1010	606	7.7	83
475924096211300 152-45-13ADD	06-10-92	1550	74.00	1037	588	7.8	39
480211096265200 153-45-28CDD	06-09-92	1431	22.40	1035	579	7.8	73
	09-03-92	1140	22.40	1035			
480354096261000 153-45-21AAAA	08-26-92	1650	22.00	1030			
480400996034100 153-42-16BAB	06-08-92	1445	114.00	1130	749	7.6	61
480537096205800 153-44-06DDDD	06-17-92	1542	13.00	1103	1270	6.7	200
	08-20-92	1522	13.00	1103			
480537096263000 153-45-09ABA	06-09-92	1655	17.80	1030	544	7.8	8.2
4805500962220100 153-4530AAA	08-20-92	1710					
480815096122500 154-43-20DCCC	08-20-92	1405	26.00	1130			
480937096261300 154-45-16DADB	08-25-92	1145	85.00	1031			

DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	TOT FET	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITROGEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
06-09-92	31	3.6	2.2	304	29	13	0.20	19	357		
06-10-92	19	64	4.6	314	<0.10	14	0.40	25	338		
06-09-92	28	3.7	2.8	204	13	12	0.20	17	329		
09-03-92		J.,								< 0.010	22.0
08-26-92										0.730	5.30
06-08-92	32	56	4.8	413	0.30	16	0.30	21	431		
06-17-92	70	5.1	6.0	746	42	22	0.20	26	868		
08-20-92		J.1								<0.010	<0.050
06-09-92	10	8.9	2.1	262			0.10	14			
	19	0.9	2.1	262	9.4	10	0.10	-	321		
08-20-92										<0.010	0.052
08-20-92										<0.010	< 0.050
08-25-92										<0.010	< 0.050

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

PENNINGTON COUNTY--Continued

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS-PHORUS DIS-SOLVED (MG/L AS P) (00666)	ORTHO, DIS-	DIS-	DIS-	DIS-	DIS-) AS CR)	DIS- SOLVEI (UG/L AS CO)		IRON, DIS- SOLVED (UG/L AS FE) (01046)
06-09-92				56	<0.5	100	<1.0	ৰ্ব	⊲	<10	9
06-10-92				120	<0.5	320	<1.0	<5	<3	<10	62
06-09-92				50	<0.5	230	<1.0	<5	<3	<10	7
09-03-92	0.040	<0.010	<0.010								
08-26-92	0.130	<0.010	<0.010								
06-08-92				140	<0.5	170	<1.0	<5	10	<10	4000
06-17-92				330	<0.5	40	<1.0	8	ও	<10	8500
08-20-92	0.760	0.040	<0.010					_			
06-09-92				55	<0.5	2600	<1.0	<5	3	<10	20
08-20-92	0.040	<0.010	<0.010								
08-20-92	0.200	0.120	<0.010								
08-25-92	1.00	0.060	0.060								
DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYI DENUM DIS- SOLVE (UG/L AS MO (01060)	M, NICK DIS D SOLV (UG) AS 1	/ED SOLV //L (UG NI) AS A	ER, TI F- I TED SO /L (U G) A	RON- IUM, DIS- LVED : JG/L S SR) 1080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED S (UG/L AS ZN)	ITHIUMOI DIS- SOLVED S (UG/L AS LI)	DIS-
06-09-92	<10	440	<10	<10	<1.0			<6	11	7	4.3
06-10-92	<10	48	<10	<10	<1.0			<6	41	20	5.0
06-09-92	<10	51	<10	<10	<1.0) 7	7	<6	8	5	2.0
09-03-92							-		***		
08-26-92						•					
06-08-92 06-17-92	<10 <10	18 690	<10 <10	<10 <10	<1.0 <1.0			<6 7	8 33	13 21	7.8 27
08-20-92								<u>'</u>			
06-09-92	<10	12	<10	10	<1.0		8	<6	6	4	4.2
08-20-92								-			
08-20-92 08-25-92		·		 			 	-			-

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

PENNINGTON COUNTY--Continued

STATION 480211096 480354096 480537096 480815096 480937096	5261000 5205800 5220100 5122500	DATE 09-03-92 08-26-92 08-20-92 08-20-92 08-20-92 08-25-92	TIME 1140 1650 1522 1710 1405 1145	2, 4-DP TOTAL (UG/L) (82183) <0.01 <0.01 <0.01 <0.01	2,4,5-T TOTAL (UG/L) (39740) <0.01 <0.01 <0.01 <0.01 <0.01	2,4-D, TOTAL (UG/L) (39730) <0.01 <0.01 <0.01 <0.01	(UG/L)		BHC DIS- SOLVED	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065) 110 110	DISS, REC	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <0.00 <0.00
DATE	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	WATER	FLTRD 0.7 U	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	WATER	WATER, DISS, REC (UG/L)	DI- AZINON, DIS- SOLVED	INON D10 SRG WAT FLT 0.7 U	(BAN- VEL D) TOTAL	DI- ELDRIN DIS-	0.7 U
09-03-92	<0.00	<0.0			<0.01	<0.00	<0.02	<0.00	100	<0.01	<0.02	<0.02
08-26-92	<0.00			<0.00	<0.01		<0.02	<0.00		< 0.01	< 0.02	
08-20-92	<0.00	<0.0	01 < 0.00	<0.00	<0.01	0.00	<0.02	<0.00	89	<0.01	<0.02	<0.02
08-20-92	<0.00	***		<0.00	<0.01		<0.02	<0.00		<0.01	<0.02	
08-20-92	< 0.00			< 0.00	< 0.01		< 0.02	< 0.00		< 0.01	< 0.02	
08-25-92	<0.00			<0.00	<0.01		< 0.02	<0.00		<0.01	< 0.02	
	DISU FOTO WATI FLTR 0.7 V	ON PRO ER WAT ED FLT	OP TER FONC RD WAT	TER LIND	UR WA ANE FLI		A MALA- PI HION, WA	HOS T	ARA- HION N AT FLT LA	METO- B		MOL- INATE WATER FLTRD 0.7 U
DATE	GF, R (UG/) (8267	EC GF, F L) (UG	REC RE	SC SOL'	VED GF, G/L) (UC	REC SO	OLVED GF UG/L) (U	, REC GI G/L) (U	REC DI JG/L) (SSOLV DI UG/L) (GF, REC (UG/L) (82671)
00 00 00	`	, ,	, ,	, ,	, ,	, ,	, .	, ,	, ,		•	` '
09-03-92 08-26-92	<0.10	<0.0		0.00 <0. 0.00 <0.	.01 <0 .01	0.01		0.01	<0.00	<0.00 <0.00	<0.01 0.01	<0.00
08-20-92	<0.10	<0.0				0.01		0.01	<0.00	<0.00	0.01	<0.00
08-20-92				0.00 <0		•				<0.00	0.01	
08-20-92		-	A	0.00 <0.	.01		<0.01			<0.00	<0.01	
08-25-92				0.00 <0.						<0.00	0.00	

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

PENNINGTON COUNTY--Continued

DATE	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	0.7 U	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER	(TOR- DON) (AMDON)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PROP- CHLOR, WATER, DISS, REC (UG/L) (04024)
09-03-92	<0.00	<0.00	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.01	<0.00
08-26-92		0.00	<0.01					< 0.01		<0.01	< 0.00
08-20-92	0.01	<0.00	<0.01	<0.01	<0.01	<0.01	< 0.02	<0.01	<0.01	<0.01	<0.00
08-20-92		<0.00	<0.01					<0.01		<0.01	<0.00
08-20-92		<0.00	<0.01					<0.01		<0.01	< 0.00
08-25-92		<0.00	<0.01					<0.01		<0.01	<0.00
DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SILVEX, TOTAL (UG/L) (39760)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064)	WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)
09-03-92	<0.00	<0.01	<0.01	0.00	<0.01	<0.01	<0.01	110	<0.01	<0.00	<0.00
08-26-92			<0.01	0.00							
08-20-92	<0.00	<0.01	<0.01	0.00	<0.01	<0.01	<0.01	99	<0.01	<0.00	<0.00
08-20-92			<0.01	0.00							
08-20-92 08-20-92 08-25-92	 		<0.01 <0.01 <0.01	0.00 0.00 0.00							

QUALITY OF GROUND WATER WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

POLK COUNTY

LOCAL IDENT- I- STATION NUMBER FIER	DATE	TIME	DEPTH OF WELL, TOTAL (FEET) (72008)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
473048096124300 147-44-36BBAD	08-27-92	1030	63.00	1185			
473119095500500 147-41-26ADCD	06-22-92	1500	237.00	1251	750	7.5	69
473214095484500 147-41-24ADDB	06-19-92	1000	78.00	1280	923	7.3	120
473229096083400 147-43-21BADA	07-13-92	1100	83.00	1190	711	7.6	86
473233096152100 147-44-22BBAB	06-11-92	1500	260.00	1125	841	7.5	82
4/3233070132100 14/ 11 22DD/10	00 11 72	1500	200.00	1120	011	7.5	02
473238096165300 147-44-17DDD	06-11-92	1615	59.00	1133	515	7.6	79
473412096263200 147-45-7BAA	06-11-92	1248	210.00	933	721	7.8	46
473752095521401 148N41W15CCDA	04-29-92	1305	60.00	1212	816	7.5	82
***************************************	08-25-92	1145	60.00	1212			
474207096083000 149-43-22DDCC	07-13-92	1400	86.00	1161	639	7.7	72
474224095451400 149-40-22DDBA	06-30-92	1030	84.00	1280	882	7.3	120
474241095454900 149-40-22BDD	06-30-92	1630	170.00	1290	727	7.8	86
474252096160800 149N44W22AADA	08-19-92	1530	53.00	1135			
474258096155400 149-44-1AAAA	08-19-92	1630					
474258096222000 149-45-24BBB	06-29-92	1350	121.00	1040	<i>7</i> 79	7.8	54
474356095525100 149-41-10DDDD	06-30-92	1400	75.00	1200	486	7.5	67
474450096532300 149-49-2DDD 0	6-11-92	1055	158.00	852	2060	7.6	94
474537096195200 149N44W05BBBB	06-16-92	1430	32.60	1125			
	08-24-92	1205	32.60	1125			
474537096195202 149-44-05BBBB2	06-16-92	1500	33.00	1080			
474500005100400 150NI44W00555	0.4.00.00	1050	1.5.00	1050	400	9.7	5.0
474629096180400 150N44W28CDD	04-29-92	1050	15.00	1050	428	7.7	56
474728095434501 150N40W24CCC	08-25-92	1700	46.00	1220	2620	7.6	 0 <i>E</i>
480512096520700 153-48-07ADD	06-10-92	1730	101.00	840	2630	7.6	85

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

POLK COUNTY--Continued

				ALKA-					SOLIDS,	NITRO-	NITRO-
	MAGNE-		POTAS-	LINITY		CHLO-	FLUO-	SILICA,	RESIDUE	GEN.	GEN,
	SIUM,	SODIUM,	SIUM,	WAT WH	SULFATE	RIDE,	RIDE,	DIS-	AT 180	NITRITE	NO2+NO3
	DIS-	DIS-	DIS-	TOT FET	DIS-	DIS-	DIS-	SOLVED	DEG. C	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	FIELD	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	SOLVED	SOLVED
DATE	(MG/L	(MG/L	(MG/L	MG/L AS	(MG/L	(MG/L	(MG/L	ÀS	SOLVED	(MG/L	(MG/L
	AS MG)	AS NA)	AS K)	CACO3	AS SO4)	ÀS CL)	AS F)	SIO2)	(MG/L)	AS N	AS N)
	(00925)	(00930)	(00935)	(00410)	(00945)	(00940)	(0095Ó)	(00955)	(70300)	(00613)	(00631)
08-27-92										<0.010	<0.050
06-22-92	29	50	4.6	327	70	15	0.30	21	454		
06-19-92	46	22	5.8	385	140	0.90	0.20	29	603		
07-13-92	32	27	7.7	372	35	0.30	0.30	28	417		
06-11-92	42	41	4.8	406	87	7.4	0.70	25	523		
06-11-92	22	2.2	1.3	236	53	4.4	0.20	27	314		
06-11-92	25	79	4.3	362	34	14	0.40	26	427		
04-29-92	36	28	4.7		91	1.0	0.20	26	493		
08-25-92										<0.010	< 0.050
07-13-92	31	27	5.7	336	23	0.50	0.40	30	358		-
06-30-92	50	12	6.2	491	28	0.60	0.20	30	521		
06-30-92	33	33	5.1	347	69	1.2	0.20	27	437		
08-19-92										<0.010	< 0.050
08-19-92										<0.010	0.390
06-29-92	30	76	3.8	426	4.4	7.4	0.30	33	457		
06-30-92	24	2.3	2.0	252	27	0.60	<0.10	28	294		
06-11-92	29	290	8.9	302	130	390	0.40	28	1160		
06-16-92										<0.010	0.210
08-24-92										<0.010	< 0.050
06-16-92											
04-29-92	17	0.60	0.90		7.9	0.80	0.10	13	260		
08-25-92										<0.010	1.30
06-10-92	38	390	8.9	228	320	600	0.50	26	1470		

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

POLK COUNTY--Continued

	NITRO-		PHOS-								
	GEN,	PHOS-	PHORUS		BERYL-			CHRO-			
	AMMONIA		ORTHO,				CADMIUM		COBALT,		IRON,
	DIS-										
T 4 0000	SOLVED		SOLVED				SOLVED			SOLVED	SOLVED
DATE	(MG/L	(MG/L	(MG/L	(UG/L							
	AS N)	AS P)	AS P)	AS BA)	AS BE)	AS B)	AS CD)	AS CR)	AS CO)	AS CU)	AS FE)
	(00608)	(00666)	(00671)	(01005)	(01010)	(01020)	(01025)	(01030)	(01035)	(01040)	(01046)
08-27-92	0.160	0.040	0.050								
06-22-92				65	<0.5	190	<1.0	<5	⋖₃	<10	1100
06-19-92				33	<0.5	200	<1.0	ৰ্ব	⋖₃	<10	1100
07-13-92				94	<0.5	240	<1.0	<5	5	<10	810
06-11-92				32	<0.5	230	<1.0	<5	10	<10	3300
06-11-92				150	<0.5	20	<1.0	ৰ্ব	4	<10	800
06-11-92				170	<0.5	360	<1.0	<5	<3	<10	180
04-29-92				35	<0.5	190	<1.0	<5	⋖	<10	1100
08-25-92	0.760	<0.010	<0.010								
07-13-92				96	<0.5	170	<1.0	<5	4	<10	780
06-30-92				170	<0.5	130	1.0	ৰ্ব	10	<10	2200
06-30-92				44	<0.5	180	<1.0	⋖5	3	<10	720
08-19-92	1.60	0.020	0.040								
08-19-92	0.030	<0.010	0.010								
06-29-92				180	<0.5	240	<1.0	<5	<3	<10	45
06-30-92				200	<0.5	20	1.0	<5	7	<10	1800
06-11-92				30	<1	910	<2.0	<10	<6	<20	730
06-16-92	0.050	0.010	<0.010								,50
08-24-92	0.070	<0.010	0.010					-			
06-16-92											
04-29-92				34	<0.5	10	<1.0	20	⋖3	<10	160
08-25-92	0.040	<0.010	<0.010								
06-10-92				21	<1	860	<2.0	<10	<6	<20	1000

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

POLK COUNTY--Continued

08-27-92	(00681)
06-22-92 <10	
06-19-92 <10	2.3
07-13-92 <10	2.1
06-11-92 <10	2.0
06-11-92 <10 14 <10 <10 <1.0 410 <6 29 29 04-29-92 <10 66 20 <10 <1.0 490 <6 58 43	
06-11-92 <10 14 <10 <10 <1.0 410 <6 29 29 04-29-92 <10 66 20 <10 <1.0 490 <6 58 43	1.3
04-29-92 <10 66 20 <10 <1.0 490 <6 58 43	3.3
	1.9
07-13-92 <10 47 <10 <10 2.0 380 <6 9 38	2.0
06-30-92 <10 75 <10 <10 1.0 660 <6 <3 52	2.7
06-30-92 10 89 <10 <10 <1.0 380 <6 14 27	2.1
08-19-92	
08-19-92	
06-29-92 <10 28 <10 <10 <1.0 440 <6 8 25	5.3
06-30-92 <10 170 <10 <10 <1.0 110 <6 6 9	1.4
06-11-92 <20 130 <20 <20 <2.0 560 <12 660 95	2.0
06-16-92	
08-24-92	
06-16-92	-
04-29-92 <10 13 <10 <10 1.0 41 <6 8 <4	1.2
08-25-92	
06-10-92 <20 110 <20 <20 <2.0 1000 <12 9 100	2.4

STATION NUMBER	DATE	TIME	2, 4-DP TOTAL (UG/L) (82183)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	2,6-DI- ETHYL ANALINE WAT FLT 0.7 U GF, REC (UG/L) (82660)		ALPHA BHC DIS- SOLVED (UG/L) (34253)	0.7 U	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)
473048096124300	08-27-92	1030	<0.01	<0.01	<0.01		<0.00	<0.01		0.00	
473752095521401 474252096160800 474258096155400 474537096195200 474537096195202 474728095434501	08-25-92 08-19-92 08-19-92 06-16-92 08-24-92 06-16-92 08-25-92	1145 1530 1630 1430 1205 1500	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	 <0.00	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00	<0.01 <0.01 <0.01 <0.01 <0.01	 110 	0.01 0.05 0.01 0.02 0.00 0.00	 <0.00

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

POLK COUNTY--Continued

DATE	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	PYRIFOS DIS-	WATER DISS,	WATE R, FLTRI 0.7 U GF, RE (UG/L	CR ZIND WAT DISC REC	A- E, DI ER, AZIN S, DIS C SOLV L) (UG/	INON - D10 SR ON, WAT FI - 0.7 U ED GF, RE L) PERCEN	G IBEN) T (BAN- VEL D) C TOTAL IT (UG/L)	DI- ELDRIN DIS-	DIMETH- OATE WATER FLTRD 0.7 U GG, REC (UG/L) (82662)
08-27-92	<0.00			<0.00	<0.01		<0.		_	<0.01	<0.02	
08-25-92	<0.00			< 0.00	< 0.01		<0.	02 <0.0	0	< 0.01	<0.02	
08-19-92	<0.00			<0.00	< 0.01		<0.		0	< 0.01	<0.02	
08-19-92	<0.00			<0.00	< 0.01		<0.	02 <0.0	0	< 0.01	<0.02	
06-16-92										<0.01		
08-24-92	<0.00	<0.0	1 <0.00	< 0.00	< 0.01	0.00	<0.	02 <0.0		<0.01	< 0.02	< 0.02
06-16-92	<0.00			<0.00	< 0.01		<0.			<0.01	<0.02	
08-25-92	<0.00			<0.00	< 0.01		<0.			<0.01	<0.02	
DATE	DISU FOTC WATI FLTR 0.7 U GF, RI (UG/) (8267	ON PROER WATER OF THE CONTROL OF THE	OP TER FONC RD WAT U DIS REC RE (L) (UG 72) (040	FER LINI SS DI C SOL (/L) (UC 95) (39)	W.DANE FI IS- 0 VED GF G/L) (U	CTRD 0.7 U 7, REC S 1G/L) 2666)	DIS- SOLVED (UG/L) (39532)	0.7 U GF, REC (UG/L) (82686)	PARA- THION WAT FLT I 0.7 U GF, REC I (UG/L) (82667)	METO- ACHLOR S WATER V DISSOLV D (UG/L) (39415)	VATER ISSOLV (UG/L) (82630)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)
08-27-92							<0.01			<0.00	0.01	
08-25-92							<0.01			<0.00	<0.01	
08-19-92							<0.01			<0.00	0.01	
08-19-92			∢	0.00 <0	.01		<0.01			<0.00	0.02	
06-16-92			_									
08-24-92	< 0.10	<0.0			.01 <	:0.01	< 0.01	< 0.01	<0.00	<0.00	0.01	< 0.00
06-16-92			<().00 <0	.00		< 0.01			< 0.00	0.00	
08-25-92			<(0.00 <0	.01		< 0.01			<0.00	0.01	

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

POLK COUNTY--Continued

DATE	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	0.7 U	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U	(TOR- DON) (AMDON)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PROP- CHLOR, WATER, DISS, REC (UG/L) (04024)
08-27-92		< 0.00	<0.01					< 0.01		<0.01	<0.00
08-25-92		<0.00	<0.01					<0.01		< 0.01	<0.00
08-19-92		< 0.00	< 0.01					< 0.01		< 0.01	< 0.00
08-19-92		<0.00	< 0.01					< 0.01		<0.01	< 0.00
06-16-92							0.01				
08-24-92	0.01	0.00	<0.01	<0.01	<0.01	<0.01	0.01 <0.02		<0.01	<0.01	<0.00
06-24-92 06-16-92	U.U1 	<0.00	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01 0.02	<0.01	<0.01	<0.00
08-25-92		0.01	<0.01					<0.02		< 0.01	<0.00
DATE	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SILVEX, TOTAL (UG/L)	MAZINE, WATER, DISS, REC (UG/L)	FLTRD 0.7 U GF, REC (UG/L)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L)	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L)	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT	WATER FLTRD 0.7 U GF, REC (UG/L)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)
	(02017)	(82083)	(39760)	(04035)	(82670)	(82665)	(82675)	(91064)	(82681)	(02070)	(02001)
08-27-92		(82083)	<0.01	0.00	(826/0)	(82665)	(82675)		(82081)		
08-25-92		·	<0.01 <0.01	0.00 0.01	-						
08-25-92 08-19-92	 	-	<0.01 <0.01 <0.01	0.00 0.01 0.00	 		 				
08-25-92		·	<0.01 <0.01	0.00 0.01	-						
08-25-92 08-19-92	 	-	<0.01 <0.01 <0.01	0.00 0.01 0.00	 		 				
08-25-92 08-19-92 08-19-92	 	 	<0.01 <0.01 <0.01 <0.01	0.00 0.01 0.00 0.00	 		 				
08-25-92 08-19-92 08-19-92 06-16-92 08-24-92 06-16-92		- - - -	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.00 0.01 0.00 0.00 0.00 <0.00	 	- - - -	- - - -	- - - -	- - - -		
08-25-92 08-19-92 08-19-92 06-16-92 08-24-92	 <0.00	 <0.01	<0.01 <0.01 <0.01 <0.01 <0.01	0.00 0.01 0.00 0.00	 <0.01	 <0.01	 <0.01	 110	 <0.01	 <0.00	 <0.00

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 RED LAKE COUNTY

STATION N	I	OCAL DENT- I- FIER		NTE	TIME	DEPTH OF WELL, TOTAL (FEET) (72008)	ELEV. OF LAN SURFAC DATUM (FT. ABOVE NGVD) (72000)	D CE CM D A A B 1	CON- V UCT- NCE (S LAB S/CM) U	TAND- SO ARD (I JNITS) A	LCIUM DIS- DLVED MG/L S CA) 0915)
	95300 150-44-		08-20		1851	29.00	1058				
	32800 150-41- 63100 150-44-		08-2		1015 1400	36.00 17.70	1182 1083				
	82600 150-42-		08-19 06-18		0923	191.00	1131		662	7.5	80
	55000 151-45-		06-10		1328	200.00	905		972	8.2	13
			00 1	- , -			,				
4754210961	95600 151-44-	07DDD	06-10	0-92	1122	220.00	1025	1	600	7.3	190
	92300 152-42-		06-29		1012	45.00	1130		821	7.6	83
4757580954	65700 152-40-2	28ABAA	08-2		1203	70.00	1155				
			09-03	3-92	0950	70.00	1155				
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	(MG/L AS NA) (00930)	SIUM, DIS- SOLVED (MG/L AS K) (00935)	TOT FET FIELD MG/L AS CACO3 (00410)	SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
08-26-92 08-21-92										<0.010 0.090	0.055 0.960
08-21-92 08-19-92										<0.090 <0.010	3.40
06-18-92	29	22	3.5	382	46	1.2	0.20	27	393		5.40
06-10-92	8.3	190	1.9	309	24	110	0.90	19	572		
06-10-92	72	87	6.6	396	480	37	0.40	31	1240		
06-29-92	40	54	4.6	310	190	6.6	0.30	27	577		050
08-21-92										<0.010	<0.050
09-03-92								-			
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHORUS DIS-	DIS- SOLVED	DIS- SOLVED	DIS-	DIS- SOLVED	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	DIS- SOLVED	DIS-	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
08-26-92	0.410	<0.010	<0.010								
08-20-92 08-21-92	0.410	<0.010 <0.010	0.030								
08-19-92	0.040	0.010	<0.010								
06-18-92				99	<0.5	100	1.0	<5	<3	<10	1400
06-10-92				44	<0.5	920	<1.0	<5	3	<10	100
								_			
06-10-92				15	<0.5	390	<1.0	<5	10	<10	3700
06-29-92	 0 5 40	0.020		38	<0.5	160	<1.0	<5	⋖	<10	68
08-21-92 09-03-92	0. 540 	0.030	0.050							. 	
U7-UJ*74											

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

RED LAKE COUNTY-Continued

DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	LITHIUM DIS-	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
08-26-92										
08-21-92										
08-19-92										
06-18-92	<10	58	10	<10	2.0	270	<6	11	15	1.8
06-10-92	<10	5	<10	<10	<1.0	180	<6	⋖3	17	3.9
06 -10- 9 2	10	190	<10	<10	<1.0	<i>7</i> 70	<6	13	110	2.1
06-29-92	<10	220	<10	<10	<1.0	400	<6	7	24	2.3
08-21-92										
09-03-92										

STATION NUMBER	DATE	TIME	2, 4-DP TOTAL (UG/L) (82183)	2,4,5-T TOTAL (UG/L) (39740)	2,4-D, TOTAL (UG/L) (39730)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)
474628096195300 474638095532800 474719096163100 475758095465700	08-26-92 08-21-92 08-19-92 08-21-92	1851 1015 1400 1203	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.01 <0.01 <0.01	<0.00 <0.00 <0.00 <0.00	<0.01 <0.01 <0.01 <0.01	0.01 0.00 0.01 0.00	<0.00 <0.00 <0.00 <0.00
	09-03-92	0950				<0.00	<0.01	0.01	<0.00

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

RED LAKE COUNTY--Continued

DATE	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DICAMBA (MED- IBEN) (BAN- VEL D) TOTAL (UG/L) (82052)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	MALA- THION, DIS- SOLVED (UG/L) (39532)
08-26-92	< 0.00	< 0.01	< 0.02	< 0.00	<0.01	< 0.02	<0.00	< 0.01	< 0.01
08-21-92	< 0.00	< 0.01	< 0.02	< 0.00	< 0.01	< 0.02	< 0.00	0.01	< 0.01
08-19-92	< 0.00	< 0.01	< 0.02	< 0.00	< 0.01	< 0.02	<0.00	0.01	< 0.01
08-21-92	< 0.00	< 0.01	< 0.02	<0.00		<0.02	<0.00	< 0.01	<0.01
09-03-92	< 0.00	< 0.01	< 0.02	<0.00		< 0.02	< 0.00	< 0.01	<0.01
DATE	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	WATER DISSOLV (UG/L) (82630)	P,P' DDE DISSOLV (UG/L) (34653)	PARA- THION, DIS- SOLVED (UG/L) (39542)	PICLO- RAM (TOR- DON) (AMDON) TOTAL (UG/L) (39720)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PROP- CHLOR, WATER, DISS, REC (UG/L) (04024)	SILVEX, TOTAL (UG/L) (39760)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)
08-26-92	< 0.00	< 0.01	0.00	<0.01	< 0.01	< 0.01	<0.00	<0.01	0.00
08-21-92	< 0.00	0.00	0.00	<0.01	< 0.01	< 0.01	<0.00	< 0.01	0.00
08-19-92	<0.00	0.01	<0.00	< 0.01	<0.01	<0.01	<0.00	<0.01	0.00
08-21-92	<0.00	0.00	<0.00	<0.01		<0.01	<0.00		0.00
09-03-92	<0.00	0.01	<0.00	<0.01		<0.01	<0.00		0.00

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

TRAVERSE COUNTY

	STATION NUMBE 454717096331201		-	TIME 2045	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET) (72019)	ELEV. OF LAND DEPTH OF WELL, TOTAL (FEET) (72008)	SURFACE DATUM (FT. ABOVE NGVD) (72000)			
DATE	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)		
08-18-92	2710	7.5	19.0	11.2	<0.010	0.083	1.80	0.020		
	ANALYSIS FOR ORGANIC CHEMICALS									
2,6-DI-										
45471709	63312010	8-18-92	2045 <0.00	<0.00	<0.01 65	<0.01	<0.01 <0.00	<0.01		
DATE	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CHLOR-	CYANA- DCPAZINE, WATER, FLTRIDISS, 0.7 UREC GF, RE(UG/L) (UG/L) (04041) (82682)	ER ZINE, D WATER, D DISS, EC REC L) (UG/L)	DI- D , AZINON, W DIS- SOLVED G (UG/L) PE	0.7 U DIS	I- WATER V RIN FLTRD I S- 0.7 U VED GG, REC (VL) (UG/L)	FOTON VATER FLTRD 0.7 U		
08-18-92	<0.00	<0.00	<0.01 <0.00	0 <0.02	<0.00	84 <0.	02 <0.02	<0.10		

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

TRAVERSE COUNTY--Continued

	ETHO-			LIN-		METHYL	METHYL			MOL-
	PROP			URON		AZIN-	PARA-		METRI-	INATE
	WATER	FONOFOS	2	WATER	MALA-	PHOS	THION	METO-	BUZIN	WATER
	FLTRD	WATER	LINDANE	FLTRD	THION.	WAT FLT	WAT FLT	LACHLOR	SENCOR	FLTRD
	0.7 U	DISS	DIS-	0.7 U	DIS-	0.7 U	0.7 U	WATER	WATER	0.7 U
DATE	GF, REC	REC	SOLVED	GF, REC	SOLVED	GF, REC	GF, REC	DISSOLV	DISSOLV	GF. REC
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
	(82672)	(04095)	(39341)	(82666)	(39532)	(82686)	(82667)	(39415)	(82630)	(82671)
08-18-92	<0.00	<0.00	<0.01	<0.01	<0.01	<0.01	<0.00	<0.00	<0.01	<0.00
	NA PROP			nun	DEN 1737	nem.		PROM		
	NAPROP-			PEB-	PENDI-	PER-	DITON AUT	PRON-	DDA	PROP
	AMIDE		DIDI	ULATE	METH-		PHORATE	AMIDE	PRO-	PROP-
	WATER	n ni	PARA-	WATER	ALIN	CIS	WATER	WATER	METON,	
	FLTRD	P,P'	THION,	FILTRD	WATFLT	WAT FLT	FLTRD	FLTRD		WATER,
DATE	0.7 U	DDE	DIS-	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	DISS,	DISS,
DATE	GF, REC	DISSOLV	SOLVED	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC	REC	REC
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
	(82684)	(34653)	(39542)	(82669)	(82683)	(82687)	(82664)	(82676)	(04037)	(04024)
08-18-92	<0.00	<0.02	<0.01	<0.01	<0.01	<0.01	<0.02	<0.01	<0.01	<0.00
	PRO-	PRO-		TEBU-	TER-	TER-	TERBUTH	THIO-	TRIAL-	TRI-
	PANIL	PARGITE	SI-	THIURON		BUFOS		BENCARB		FLUR-
	WATER	WATER	MAZINE.	WATER	WATER	WATER	SURROGT	WATER	WATER	ALIN
	FLTRD	FLTRD	WATER.	FLTRD	FLTRD	FLTRD	WAT FLT	FLTRD	FLTRD	WAT FLT
	0.7 U	0.7 U	DISS.	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U
DATE	GF, REC	GF, REC	REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	PERCENT	(UG/L)	(UG/L)	(UG/L)
	(82679)	(82685)	(04035)	(82670)	(82665)	(82675)	(91064)	(82681)	(82678)	(82661)
08-18-92	<0.00	<0.01	<0.01	<0.01	<0.01	<0.01	75	<0.01	<0.00	<0.01

Baptism River near Beaver Bay

Looking Upstream (cable in background)

June 1938

	Page		Pag
Access to WATSTORE data	21-22	Chisholm (continued)	
Accuracy of the records, stage and water		Sturgeon River near	154-15
discharge records	18	Chlorophyll, definition of	2:
Acre-foot, definition of	22	Classification of records, surface-water quality	18
Ada, Marsh River Ditch near	175	Clearwater River at Plummer	104-10
Adenosine Triphosphate, definition of	22	at Red Lake Falls	108-109
Algae, definition of	22	Climax, Sand Hill River at	94_9:
Algal growth potential, definition of	22	Cloquet, River near Toimi	173
Analysis of samples collected at miscellaneous water-		Color, unit, definition of	23
quality sites for Red River of the North		Contents, definition of	23
NAWQA Study	181–187	Control, definition of	23
Annual 7-day minimum, definition of	23	Cooperation	1
Aquifer, definition of	22	Craigville, Bowerman Brook near	177
Argyle, Middle River at	118–119	Crane Lake, Vermilion River near	148-149
Arrangement of records, water quality	18	Crookston, Burnham Creek near	170
Artesian, definition of	22	Red Lake River at	110-113
Artificial substrate, definition of	26	Cubic feet per second per square mile, definition of	23
Ash mass, definition of	22	Cubic foot per second	23
Aurora, St. Louis River near	173	De Halle I and a self-record and and	~
Dalain Complian	176	Data collection and computation, ground-water levels	20
Babbitt, Stony River near	176	ground-water quality	21
Bacteria, definition of	22	surface-water records	15
Baptism River near Beaver Bay	42–45 175	Data presentation, ground-water levels	20-21
Barnesville, Whiskey Creek at	175 144-145	ground-water qualitystage and water discharge	21 15
Baudette, North Branch Rapid River near	177	surface-water quality	18-20
Winter Road River near	177	Data table of daily mean values	16-20
Beaver Bay, Baptism River near	42–45	Deer Creek near Holyoke	52-53
Bed load, definition of	25	Definition of terms	22-27
discharge, definition of	25 25	Diatoms, definition of	25
Bed material, definition of	22	Dilworth, Buffalo River near	80-81
Big Falls, Big Fork River at	158-159	Discharge at, partial-record stations, and miscellaneous	0001
Big Fork, Big Fork River near	176	sites	168-180
Big Fork River at Big Falls	158-159	high-flow partial-record stations	172-177
near Big Fork	176	miscellaneous sites	179-180
Biochemical oxygen demand, definition of	22	Discharge, definition of	23
Biomass, definition of	22	Discontinued gaging stations	ix-xiv
Blue-green algae, definition of	25	Discontinued surface-water-quality stations	XV
Bois de Sioux River near Doran	62–63	Dissolved, definition of	23
near White Rock, SD	60-61	Dissolved-solids concentration, definition of	23
Borrin Creek near Chisholm	176	Dissolved trace-element concentrations	20
Bottom material, definition of	23	Diversity index, definition of	23
Bowerman Brook near Craigville	177	Doran, Bois de Sioux River near	62-63
Buffalo River near Callaway	175	Downer, Spring Creek above	175
near Dilworth	80-81	Downstream order system and station number	14
near Hawley	76–77	Drainage area, definition of	23
South Branch at Sabin	7 8–7 9	Drainage basin, definition of	23
Bug Creek at Shaw	173	Drayton, ND, Red River of the North at	120-123
Burnham Creek near Crookston	176	Dry mass, definition of	23
		Duluth, Talmadge River at	173
Callaway, Buffalo River near	175		
Caribou, Roseau River below State ditch 51, near	134-137	Eighteenmile Creek near Wheaton	174
Cascade River near Grand Marais	172	Elizabeth, Otter Tail River near	54-55
Cells/volume, definition of	23	Ely, Kawishiwi River near	138-141
Cfs-day, definition of	23	Emerson, Manitoba, Red River of the North at	126-131
Chemical oxygen demand, definition of	23	Explanation of the records	14
Chisholm, Borrin Creek near	176		

	Page		Page
Factors for converting Inch-Pound Units to Inter-		Lake of the Woods basin (continued)	
national System (SI) Units Inside	back cover	high-flow partial-record stations in	176-177
Fairbanks, North Branch Whiteface River near	173	Lakes and Reservoirs:	
Fargo, ND, Red River of the North at	72-74	Lake of the Woods at Springsteel Island near	
Fecal coliform bacteria, definition of	22	Warroad	166-167
Fecal Streptococal bacteria, definition of	22	at Warroad	164-165
Fergus Falls, Orwell Lake near	56-57	Lower Red Lake near Red Lake	96-97
Otter Tail River below Orwell Dam near	58-59	Orwell Lake near Fergus Falls	56 -57
Fort Frances, Ontario, Rainy Lake near	152-153	Lake Superior, gaging-station records on streams tri-	
Foxhome, Ottertail River near	174	butary to	36-53
		high-flow partial-record stations on streams	
Gage height, definition of	23	tributary to	172-174
Gaging station, definition of	23	Latitude-Longitude system for wells and miscellaneous	
records	31-167	sites	14
Gaging stations, discontinued	ix-xiv	List of counties for which ground-water-level records are	
Gold Portage outlet from Kabetogama Lake near Ray	150-151	published	vii
Gonvick, Ruffy Brook near	175	for which ground-water quality records are	
Goodridge, Red Lake River at High Landing near	100-101	published	viii
Grand Forks, ND, Red River of the North at	114–117	List of gaging stations, in downstream order, for which	
Grand Marais, Cascade River near	172	records are published	vi-vii
Grand Portage, Grand Portage River at	38-39	Little Fork River at Littlefork	156-157
Pigeon River at Middle Falls near	36–37	Littlefork, Little Fork River at	156-157
Grand Portage River at Grand Portage	38–39	Little Stewart River near Two Harbors	172
Graph showing comparison of dissolved solids concen-		Lost River at Oklee	106-107
trations	10	Lower Red Lake near Red Lake	96-97
showing comparison of nitrate concentrations	11	MI D D's Lles C de Federa	100 100
showing discharge of three long-term stream-	0.0	Malung, Roseau River below South Fork, near	132-133
gaging stations	8-9	Manitou Rapids, Rainy River at	160–163
Green algae, definition of	25	Map of Minnesota, annual precipitation	2
Ground-water levels in hydrologic conditions	12-13	departure from normal	
Ground-water, level data, by county	188-198	ground-water observation wells	192–193 170–171
quality data, by county	200-223	high-flow partial-record stations	32-33
Grygla, Mud River near	175	lake and stream-gaging stations	34-35
Holated Dad Diver of the North at	86-90	surface-water quality stations	34–33 175
Halstad, Red River of the North at	23	Marsh River near Shelly	92-93
Hawley, Buffalo River near	76 –7 7	Mean concentration, definition	25-26
Hendrum, Wild Rice River at	4–85	Mean discharge, definition of	23-20
Hickson, ND, Red River of the North at	68–70	Metamorphic stage, definition of	24
High-flow partial-record stations	169-177	Methylene blue active substance, definition of	24
Holyoke, Deer Creek near	52–53	Micrograms per gram, definition of	24
Nemadji River near	174	Micrograms per kilogram, definition of	24
Hovland, Reservation River near	40-41	Micrograms per liter, definition of	24
Hydrographs showing comparison of water levels in 1992	40-41	Middle River at Argyle	118, 119
to long-term levels in two surficial sand aquifers	13	near Newfolden	176
Hydrologic benchmark network, definition of	12	Milligrams of carbon per area or volume per unit time,	170
Hydrologic conditions, summary of	1-13	definition of	25
Hydrologic unit, definition of	23	Milligrams of oxygen per area or volume per unit time,	2
11) droiogic unit, definition of	23	definition of	25
Identifying estimated daily discharge	17	Milligrams per liter, definition of	24
Illustrations, in table of contents	vi	Miscellaneous sites, numbering system for	14
Instantaneous discharge, definition of	23	Miscellaneous water-quality data collected in Red	
Introduction	1	River of the North basin	181-187
	=	Mud River near Grygla	175
Kawishiwi River near Elynear Winton	138-141 142-143	Mustinka River above Wheaton	174
Knife River near Two Harbors	46-47	Namakan River at outlet of Lac la Croix, Ontario	146-147
		Nashua, Rabhit River near	174
Labatory measurements, surface-water quality	19	National Geodetic Vertical Datum of 1929 (NGVD),	•
Lac la Croix, Ontario, Namakan River at outlet of	146–147	definition of	24
Lake Bronson, South Branch Two Rivers at	124–125	National stream-quality accounting network (NASQAN),	
Lake of the Woods at Springsteel Island near Warroad	166-167	definition of	12, 24
at Warroad	164–165	National trends network (NTN)	12, 24
Lake of the Woods basin, sessing station records in	120 167	National Water Ovality Assessment (NAWOA) Program	12, 21

Index 227

	Page		Page
Natural substrate, definition of	26	Remark Codes	20
Nemadji River near Holyoke	174	Reservation River near Hovland	40-41
Newfolden, Middle River near	176	Reservoir (see lakes and reservoirs)	
North Branch Rapid River near Baudette	177	Return period, definition of	25
Whiteface River near Fairbanks	173	Roseau River below South Fork, near Malung	132-133
Numbering system for wells and miscellaneous sites .	14	below State Ditch 51, near Caribou	134-137
• ,		Ruffy Brook near Gonvick	175
Oklee, Lost River at	106-107	Runoff in inches, definition of	25
Onsite measurement and collection, surface-water quality	18-19	at streamflow stations	4, 6–7
Organic mass, definition of	23		
Organism, definition of	24	Sabin, South Branch Buffalo River at	78-79
count/area, definition of	24	Sand Hill River at Climax	94-95
count/volume, deinition of	24	Scanlon, St. Louis River at	48-51
Orwell Lake near Fergus Falls	56–57	Sea level, definition of	25
Other records available	18	Sediment, definition of	25
Otter Tail River below Orwell Dam, near Fergus Falls	5859	surface-water quality	19
near Elizabeth	54–55	Seven-day 10-year low flow, definition of	26
near Foxhome	174	Shaw, Bug Creek at	173
		Shelly, Marsh River near	92–93
Parameter code numbers, definition of	24	Silver Creek tributary near Two Harbors	172
Partial-record station, definition of	24	Sodium-adsorption-ratio, definition of	26
discharge at	169-177	Solute, definition of	26
Particle-size classification, definition of	24	South Branch Buffalo River at Sabin	78–79
Particle-size, definition of	24	South Branch Two Rivers at Lake Bronson	124-125
Percent composition, definition of	24	Special networks and programs	12–14
Periphyton, definition of	24	Specific conductance, definition of	26
Pesticides, definition of	25	Spring Creek above Downer	175
Phytoplankton, definition of	25	Springsteel Island, Lake of the Woods at, near Warroad	
Picocurie, definition of	25	Stage-discharge relation, definition	26
Pigeon River at Middle Falls near Grand Portage	36–37	Station identification numbers, explanation of	14 15–16
Plankton, definition of	25 104–105	Station manuscript	15-16
•	104–105 25	Statistics of monthly mean data	48–51
Polychlorinated biphenyls, definition of Precipitation in summary of hydrologic conditions	1–4	near Aurora	173
Preface	iii	Stony River near Babbitt	176
Primary productivity, definition of	25	Streamflow, definition of	26
Publications on techniques of water-resources	23	in summary of hydrologic conditions	4
investigations	28-30	Streams tributary to Lake Superior, gaging station	4
art out Santotta	20 30	records in	36-53
Rabbit River near Nashua	174	high-flow partial-record stations in	172-174
Radiochemical program, definition of	14, 25	Sturgeon River near Chisholm	154-155
Rainy Lake near Fort Frances, Ontario	152-153	Substrate, definition of	26
Rainy River at Manitou Rapids	160-163	Summary of hydrologic conditions	1-13
Ray, Gold Portage outlet from Kabetogama Lake near	150-151	graphs, maps or tables of	2, 3, 5–11, 13
Records of ground-water levels	20-21	ground-water levels in	12-13
ground-water quality	21	precipitation in	1–4
stage and water discharge	14-15	streamflow in	4
surface-water quality	18-20	water-quality in	4-12
Recoverable from bottom material, definition of	25	Summary statistics	17
Red Lake Falls, Clearwater River at	108-109	Surface area, definition of	26
Red Lake River at Crookston	110-113	Surficial bed material, definition of	26
at High Landing, near Goodridge	100-101	Suspended, definition of	26
near Red Lake	98-99	Suspended recoverable, definition of	26
Red Lake, Lower Red Lake near	96-97	Suspended sediment concentration, definition of	25
Red Lake River near	98 -9 9	Suspended sediment, definition of	25
Red River of the North at Drayton, ND	120-123	Suspended sediment discharge, definition of	26
at Emerson, Manitoba	126-131	Suspended-sediment load, definition of	26
at Fargo, ND	72-74	Suspended total, definition of	26
at Grand Forks, ND	114-117		
at Halstad	86 -9 0	Table of contents	v-viii
at Hickson, ND	68-70	Tables, in contents	vi
at Wahpeton, ND	64-66	Tables, Runoff at stream flow stations	6–7
Red River of the North basin, gaging-station records in	54-137	Talmadge River at Duluth	173
high-flow partial-record stations in	174-176	Taxonomy, definition of	26

	Page		Page
Terms, definition of	22 -27	Warroad (continued)	
Thermograph, definition of	27	Lake of the Woods at Springsteel Island near	166167
Thief River Falls, Thief River near	102-103	Water-quality records, arrangement of	18
Thief River near Thief River Falls	102-103	classification of	18
Time-weighted average, definition of	27	data presentation	20-21
Toimi, Cloquet River near	173	in summary of hydrologic conditions	4–12
Tons per acre-foot, definition of	27	labatory measurements	19
Tons per day, definition of	27	Water temperature, surface-water quality	19
Total coliform bacteria, definition of	22	Water year, definition of	27
Total, definition of	27	WDR, definition of	27
Total in bottom material, definition of	27	Weighted average, definition of	27
Total load, definition of	27	Well number, definition of	14
Total organism count, definition of	24	Wet mass, definition of	23
Total recoverable, definition of	27	Wheaton, Eighteenmile Creek near	174
Total sediment discharge, definition of	26	Mustinka River above	174
sediment load	26	Whiskey Creek at Bamesville	175
Tritium network, definition of	14, 27	White Rock, SD, Bois de Sioux River near	60-61
Twin Valley, Wild Rice River at	82-83	Wild Rice River at Hendrum	84-85
Two Harbors, Knife River near	46-47	at Twin Valley	82-83
Little Stewart River near	172	Winter Road River near Baudette	1 <i>7</i> 7
Silver Creek tributary near	172	Winton, Basswood River near	144-145
Two Rivers, South Branch, at Lake Bronson	124-125	Kawishiwi River near	142-143
		WRD, definition of	27
Vermilion River near Crane Lake	148–149	WSP, definition of	27
Wahpeton, ND, Red River of the North at	64-66	Zooplankton, definition of	25
Warroad, Lake of the Woods at	164-165	-	

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Ву	To obtain SI units
Length	
2.54x10 ¹	millimeters (mm)
	meters (m)
3.048x10 ⁻¹	meters (m)
1.609x10°	kilometers (km)
Area	
4.047x10 ³	square meters (m ²)
4.047x10 ⁻¹	square hectometers (hm²)
4.047x10 ⁻³	square kilometers (km²)
2.590x10°	square kilometers (km²)
Volume	
3.785x10°	liters (L)
3.785x10°	cubic decimeters (dm³)
3.785x10 ⁻³	cubic meters (m ³)
3.785x10 ³	cubic meters (m ³)
3.785x10 ⁻³	cubic hectometers (hm ³)
2.832x10 ¹	cubic decimeters (dm³)
	cubic meters (m³)
	cubic meters (m³)
2.447x10 ⁻³	cubic hectometers (hm³)
1.233x10 ³	cubic meters (m ³)
	cubic hectometers (hm³)
1.233x10 ⁻⁶	cubic kilometers (km³)
Flow	
2.832x101	liters per second (L/s)
	cubic decimeters per second (dm³/s)
	cubic meters per second (m³/s)
	liters per second (L/s)
	cubic decimeters per second (dm ³ /s)
	cubic meters per second (m ³ /s)
	cubic decimeters per second (dm³/s)
4.381x10 ⁻²	cubic meters per second (m ³ /s)
Mass	
9.072x10 ⁻¹	megagrams (Mg) or metric tons
	2.54x10 ¹ 2.54x10 ² 3.048x10 ¹ 1.609x10 ⁰ Area 4.047x10 ³ 4.047x10 ³ 4.047x10 ³ 2.590x10 ⁰ Volume 3.785x10 ⁰ 3.785x10 ³ 3.785x10 ³ 3.785x10 ³ 2.832x10 ¹ 2.832x10 ² 2.447x10 ³ 1.233x10 ³ 1.233x10 ³ 1.233x10 ³ 1.233x10 ³ 1.233x10 ³ 1.233x10 ³ 4.381x10 ¹ 4.381x10 ² 6.309x10 ²

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey 2280 Woodale Drive Mounds View, MN 55112

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL 4TH CLASS BOOK RATE