

Water Resources Data New Jersey Water Year 1992

Volume 1. Surface-Water Data

by W.R. Bauersfeld, E.W. Moshinsky, and C.E. Gurney

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NJ-92-1 Prepared in cooperation with the New Jersey Department of Environmental Protection and Energy and with other agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For information on the water program in New Jersey write to

District Chief, Water Resources Division
U.S. Geological Survey
Mountain View Office Park
810 Bear Tavern Road, Suite 206
West Trenton, New Jersey 08628

PREFACE

This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

Hydrologic data for New Jersey are contained in 2 volumes:

Volume 1. Surface-Water Data Volume 2. Ground-Water Data

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the completion of the report.

Eugene Dorr Walter D. Jones Jacob Gibs Robert D. Schopp

M.D. Morgan word processed the text of the report, and G.L. Simpson and D.K. Sun drafted the illustrations.

The data were collected, computed, and processed by the following personnel:

G.A. Brown R.S. Cole J.D. Joyner T.J. Reed M. Campbell M.J. Deluca D.S. Kauffman R.G. Reiser G.L. Centinaro J.F. Dudek T.P. Suro A.J. Velnich

This report was prepared in cooperation with the State of New Jersey and with other agencies under the general supervision of Eric J. Evenson, Assistant District Chief for Hydrologic Data Assessment and Information Management; Janice R. Ward, District Chief, New Jersey; Donald E. Vaupel, Area Assistant Regional Hydrologist, Mid-East Programs; and William J. Carswell, Jr., Acting Regional Hydrologist, Northeastern Region.

REPORT DOCUMENTATION	1. REPORT NO.	2.	3. Recipient's Accession No.
PAGE	USGS/WRD/HD-93/282		
4. Title and Subtitle			5. Report Date
Hatam Basaurasa Dat	a - New Jersey, Water Yea	r 1992	May 1993
Volume 1. Surface-			6.
volume 1. Surface-	water bata .		
7. Author(s)	U Machinelry C F Cur	rnav	8. Performing Organization Rept. No.
W. R. Bauersield, E	. W. Moshinsky, C. E. Gur	y	USGS-WDR-NJ-92-1
9. Performing Organization Name a	and Address		10. Project/Task/Work Unit No.
U.S. Geological Sur	vey, Water Resources Div	ision	,
Mountain View Offic			11. Contract(C) or Grant(G) No.
810 Bear Tavern Roa	d, Suite 206		(C)
West Trenton, New J			(G)
			(6)
12. Sponsoring Organization Name	and Address		13. Type of Report & Period Covered
U.S. Geological Sur	vey, Water Resources Div	ision	Annual - Oct. 1, 1991
Mountain View Offic			to Sept. 30, 1992
810 Bear Tavern Roa			14.
West Trenton, New J		· · · · · · · · · · · · · · · · · · ·	

15. Supplementary Notes

Prepared in cooperation with the New Jersey Department of Environmental Protection and Energy and with other agencies.

16. Abstract (Limit: 200 words)

Water resources data for the 1992 water year for New Jersey consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume of the report contains discharge records for 99 gaging stations; tide summaries for 2 stations; stage and contents for 37 lakes and reservoirs; water quality for 95 surface-water sites. Also included are data for 65 crest-stage partial-record stations, 13 tidal crest-stage gages, and 94 low-flow partial-record stations. Locations of these sites are shown on Figures 11 and 12. Additional water data were collected at various sites not involved in the systematic data-collection program. Miscellaneous data were collected at 42 measuring sites and 9 water-quality sampling sites. These data represent that part of the National Water Data System operated by U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

17. Document Analysis a. Descriptors

*New Jersey, *Hydrologic data, *Surface water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, and Water analyses

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statemen: No restriction on distribution. This report may be purchased:	19. Security Class (This Report) UNCLASSIFIED	21. No. of Pages 523
National Technical Information Service	20. Security Class (This Page)	22. Price
Springfield, VA 22161	UNCLASSIFIED	}

CONTENTS

·	Page
Preface	
List of surface-water stations, in downstream order, for which records are published	
List of discontinued surface-water discharge stations	
List of discontinued continuous water-quality stations	
List of discontinued low-flow stations	
Introduction	
Cooperation	
Summary of hydrologic conditions	
Streamflow	
Water quality	
Ground-water levels	
Special networks and programs	
Explanation of records	•
Station identification numbers	
Downstream order system	
Latitude-longitude system	
Records of stage and water discharge	
Data collection and computation	
Data presentation	
Identifying estimated daily discharge	
Accuracy of the records	
Other records available	
Records of surface-water quality	
Classification of records	
Arrangement of records	
On-site measurements and sample collection	
Water temperature	
Sediment	
Laboratory measurements	
Data presentation	
Remark codes	
Current water-resources projects in New Jersey	
Water-related reports for New Jersey completed in recent years	
Access to WATSTORE data	
Definition of terms	
Selected references	
Publications on Techniques of Water-Resources Investigations	
Station records, surface water	
Discharge at partial-record stations and miscellaneous sites	
Crest-stage partial-record stations	466
Low-flow partial-record stations	
Miscellaneous sites	486
Tidal crest-stage stations	
Analyses of samples collected at water-quality partial-record stations	493
Index	499
ILLUSTRATIONS	
	Page
Figure 1. Monthly precipitation at three National Weather Service locations	5
2. Combined usable storage in 13 major water-supply reservoirs	
3. Monthly mean discharge at index gaging stations	
4. Annual mean discharge at index gaging stations	
5. Monthly mean specific conductance at Delaware River at Trenton	
6. Monthly mean water temperature at Delaware River at Trenton	

ILLUSTRATIONS--Continued

7. Monthly medians of maximum and minimum daily dissolved oxygen concentrations at Delaware River at	Page
Trenton	1
8. Monthly ground-water levels at key water-table observation wells	
9. Twenty-year hydrographs of one artesian and one water-table observation well	
10. System for numbering wells and miscellaneous sites	1
11. Map showing location of gaging stations and surface-water quality stations	40
12. Map showing location of low-flow and crest-stage partial-record stations	
TABLES	
able 1. Factors for converting Inch-pound units to Metric unitsinsid	ie back cove

Note.--Data for partial-record stations and miscellaneous sites for both surface-water discharge and quality are published in separate sections of the data report. See references at the end of this list for page numbers for these sections.

[Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (s) sediment, (t) water temperature, (e) elevation, gage height or contents]

	Station	Page
	number	
HUDSON RIVER BASIN		
Rondout Creek:		
Wallkill River near Sussex (cms)		44
Papakating Creek at Sussex (cms)		46
Wallkill River near Unionville, NY (cms)	01368000	48
Black Creek (head of Pochuck Creek) near Vernon (cms)	01368950	50
HACKENSACK RIVER BASIN		
Hackensack River at West Nyack, NY (d)		52
Hackensack River at Rivervale (dcms)	01377000	54
Pascack Brook at Westwood (d)	01377500	58
Hackensack River at New Milford (d)	01378500	60
Reservoirs in Hackensack River basin (e)		62
Diversions in Hackensack River basin		63
PASSAIC RIVER BASIN		
Passaic River near Millington (dcms)	01379000	64
Passaic River near Chatham (dcms)		68
Rockaway River at Berkshire Valley (d)		72
Green Pond Brook at Picatinny Arsenal (d)		74
Green Pond Brook below Picatinny Lake, at Picatinny Arsenal (d)		76
Green Pond Brook at Wharton (d)		78
Rockaway River above reservoir, at Boonton (dcms)		80
Rockaway River below reservoir, at Boonton (d)		84
Rockaway River at Pine Brook (cms)		86
Whippany River at Morristown (dcms)		88
Whippany River near Pine Brook (cms)		92
Passaic River at Pine Brook (d)		94
Passaic River at Two Bridges (cms)		96
Pompton River:	01382000	90 .
Pequannock River (head of Pompton River) at Macopin intake dam (dcms)	01292500	99
		103
Wanaque River at Awosting (d)		105
Ringwood Creek near Wanaque (d)		
Wanaque River at Wanaque (d)		107
Ramapo River near Suffern, NY (d)		109
Mahwah River near Suffern, NY (d)		111
Ramapo River near Mahwah (dcms)		113
Ramapo River at Pompton Lakes (dcmt)		117
Pompton River at Pompton Plains (d)		126
Pompton River at Packanack Lake (cms)		128
Passaic River below Pompton River, at Two Bridges (cmt)		131
Passaic River at Little Falls (dcms)		147
Passaic River at Route 46 at Elmwood Park (cms)		153
Saddle River at Ridgewood (d)	01390500	155
Hohokus Brook at Ho-Ho-Kus (d)	01391000	157
Saddle River at Lodi (dcms)	01391500	159
Third River at Passaic (d)	01392210	163
Reservoirs in Passaic River basin (e)		165
Diversions in Passaic River basin		168
	· ·	

	0	n
	Station number	Page
ELIZABETH RIVER BASIN	number	
Elizabeth River at Ursino Lake, at Elizabeth (dcms)	01303450	170
RAHWAY RIVER BASIN		170
Rahway River near Springfield (dcms)	01394500	174
Rahway River at Rahway (dcms)		178
Robinsons Branch at Rahway (d)		182
RARITAN RIVER BASIN	,	
South Branch Raritan River at Middle Valley (cms)	01396280	184
South Branch Raritan River near High Bridge (d)		186
South Branch Raritan River at Arch Street, at High Bridge (cms)	01396535	188
Spruce Run at Glen Gardner (d)	01396580	190
Spruce Run near Glen Gardner (cms)	01396588	192
Mulhockaway Creek at Van Syckel (dcms)	01396660	194
Spruce Run at Clinton (d)	01396800	198
South Branch Raritan River at Stanton (dcms)	01397000	199
South Branch Raritan River at Three Bridges (cms)	01397400	203
Neshanic River at Reaville (dcms)	01398000	205
Holland Brook at Readington (d)	01398107	209
North Branch Raritan River near Chester (cms)	01398260	211
North Branch Raritan River near Far Hills (d)	01398500	213
North Branch Raritan River at Burnt Mills (cms)	01399120	215
Lamington (Black) River near Pottersville (dcms)	01399500	217
Upper Cold Brook near Pottersville (d)	01399510	221
Rockaway Creek:	1	
South Branch Rockaway Creek at Whitehouse Station (d)	01399670	223
Rockaway Creek at Whitehouse (cms)	01399700	224
Lamington River at Burnt Mills (cms)	01399780	226
North Branch Raritan River near Raritan (d)	01400000	228
Raritan River:		
Peters Brook near Raritan (d)	01400300	230
Macs Brook at Somerville (d)	01400350	232
Raritan River at Manville (dcms)	01400500	234
Millstone River near Manalapan (cms)	01400540	238
Millstone River at Grovers Mill (cms)	01400650	240
Stony Brook at Princeton (dcms)	01401000	242
Beden Brook near Rocky Hill (cms)	01401600	246
Pike Run at Belle Mead (d)	01401650	248
Millstone River at Blackwells Mills (dcms)	01402000	250
Royce Brook:		
Royce Brook tributary near Belle Mead (d)	01402600	254
Raritan River below Calco Dam, at Bound Brook (d)		256
Middle Brook:		
West Branch Middle Brook near Martinsville (d)	01403150	258
Raritan River at Queens Bridge, at Bound Brook (cms)		260
Bound Brook:		
Green Brook at Seeley Mills (d)	01403400	262
Stony Brook:		
East Branch Stony Brook at Best Lake, at Watchung (d)(d)	01403535	264
Stony Brook at Watchung (d)		266
Lawrence Brook at Westons Mills (d)		268
South River:		
Matchaponix Brook at Mundy Avenue, at Spotswood (cms)	01405302	270
Manalapan Brook at Federal Road, near Manalapan (cms)		272
Manalapan Brook at Peteral Road, near Wallanapan (ems)		274
Reservoirs in Raritan River basin (e)		275
Diversions in Raritan River basin		276
Diversions in Randin River ownii.	***************************************	210

	Station	Page
	number	
SHREWSBURY RIVER BASIN		
Navesink River:		
Swimming River (head of Navesink River) near Red Bank (d)	01407500	277
SHARK RIVER BASIN		
Shark River near Neptune City (d)	01407705	279
Jumping Brook near Neptune City (d)	01407760	281
MANASOUAN RIVER BASIN		
Manasquan River at Squankum (dcms)	01408000	283
Manasquan River near Allenwood (d)	01408029	287
Reservoir in Manasquan River basin (e)		289
METEDECONK RIVER BASIN		
North Branch Metedeconk River near Lakewood (d)	01408120	290
South Branch Metedeconk River near Lakewood (d)		292
TOMS RIVER BASIN		
Toms River near Toms River (dcms)	01408500	293
MULLICA RIVER BASIN		
Mullica River at outlet of Atsion Lake, at Atsion (cms)	01409387	297
Mullica River near Batsto (d)		299
Hammonton Creek at Wescoatville (cms)		300
Batsto River at Batsto (dcms)		302
Batsto River at Pleasant Mills (e)		306
West Branch Wading River near Jenkins (d)		307
West Branch Wading River at Maxwell (cms)		309
Oswego River at Harrisville (dcms)		311
Bass River:	01410000	311
East Branch Bass River near New Gretna (dcms)	01/10150	315
	01410130	313
GREAT EGG HARBOR RIVER BASIN	01410704	210
Great Egg Harbor River near Sicklerville (cms)		319
Great Egg Harbor River at Folsom (dcms)		321
Great Egg Harbor River at Weymouth (cms)	01411110	324
TUCKAHOE RIVER BASIN	01411200	200
Tuckahoe River at Head of River (d)	01411300	326
MAURICE RIVER BASIN		
Maurice River:	0014445	005
Little Ease Run near Clayton (d)	01411456	327
Maurice River at Brotmanville (dcms)		328
Blackwater Branch at Norma (d)		331
Maurice River at Norma (dcms)		332
Maurice River near Millville (dcms)	01411800	336
COHANSEY RIVER BASIN		
Cohansey River at Seeley (cms)	01412800	338
DELAWARE RIVER BASIN		
Delaware River at Port Jervis, NY (dct)		340
Neversink River at Godeffroy, NY (dc)	01437500	345
Delaware River at Montague (dcms)	01438500	348
Flat Brook at Flatbrookville (d)	01440000	352
Delaware River near Delaware Water Gap, PA (d)	01440200	354
Delaware River at Portland, PA (cms)	01443000	355
Paulins Kill:		
East Branch Paulins Kill near Lafayette (d)	01443280	357
Paulins Kill at Balesville (cms)		358
Paulins Kill at Blairstown (dcms)		360
Yards Creek near Blairstown (d)		364
Pequest River at Pequest (dcms)		365
Delaware River at Belvidere (d)		369
Delaware River at Northampton Street, at Easton, PA (cms)		371
• • • • • • • • • • • • • • • • • • • •		

·	Station	Page
	number	
DELAWARE RIVER BASINContinued		
Lehigh River at Bethlehem, PA (d)	01453000	373
Pohatcong Creek at New Village (cms)	01455200	375
Musconetcong River at Lockwood (cms)	01455801	377
Musconetcong River at Beattystown (cm)	01456200	378
Musconetcong River near Bloomsbury (dcms)	01457000	380
Musconetcong River at Riegelsville (cms)	01457400	384
Delaware River at Riegelsville (cms)	01457500	386
Delaware and Raritan Canal at Port Mercer (d)		388
Delaware River at Lumberville (cms)	01461000	389
Delaware River at Trenton (dcmts)	01463500	391
Assunpink Creek near Clarksville (dcms)	01463620	402
Assunpink Creek at Trenton (dcms)	01464000	406
Crosswicks Creek at Extonville (dcms)		410
Doctors Creek at Allentown (cms)		415
Delaware River at Burlington (e)		417
South Branch Rancocas Creek at Vincentown (cms)		418
North Branch Rancocas Creek:		,
Greenwood Branch:		
McDonalds Branch in Lebanon State Forest (dcmts)	01466500	420
North Branch Rancocas Creek at Pemberton (dcms)	01467000	431
Pennsauken Creek:		
North Branch Pennsauken Creek near Moorestown (cms)	01467069	435
South Branch Pennsauken Creek at Cherry Hill (dcms)		437
Cooper River at Haddonfield (dcms)		441
Big Timber Creek:		
South Branch Big Timber Creek at Blackwood Terrace (cms)	01467329	445
Schuylkill River at Philadelphia, PA (d)		447
Raccoon Creek near Swedesboro (dcms)		449
Oldmans Creek at Porches Mill (cms)		453
Salem River at Woodstown (cms)		455
Reservoirs in Delaware River basin (e)		457
Diversions and withdrawals in Delaware River basin		463
Diversions and windedwars in Delaware Kiver busin	•••••	403
Discharge at partial-record stations and miscellaneous sites		466
Crest-stage partial-record stations		466
Low-flow partial-record stations	********	476
Miscellaneous sites		486
Elevation at tidal crest-stage partial-record stations		491
Analyses of samples collected at water quality partial record stations		103

DISCONTINUED SURFACE-WATER DISCHARGE STATIONS

The following continuous-record surface-water discharge stations in New Jersey have been discontinued. Daily streamflow records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

Discontinued Surface-Water Discharge Stations

		Drainage	Period	
Station name	Station	area	of	
	number	(mi ²)	record	
Vallkill River near Unionville, NY	01368000	140	1938-81	
uxiliary outlet of Upper Greenwood Lake at Moe, NJ	01368720		1968-80a	
assaic River near Bernardsville, NJ	01378690*	8.83	1968-77	
ussia Brook tributary at Milton, NJ	01379630	2.51	1969-71	
eaver Brook at Splitrock Reservoir, NJ	01380000	5.50	1925-46, 1976-88a	
anaque River at Monks, NJ	. 01384000	40.4	1935-85	
upsaw Brook near Wanaque, NJ	01385000	4.37	1935-58	
skine Brook near Wanaque, NJ	01385500	1.14	1934-38	
est Brook near Wanaque, NJ	01386000	11.8	1935-78	
ue Mine Brook near Wanaque, NJ	01386500	1.01	1935-58	
ussaic River at Paterson, NJ	01389800	785	1897-1955	
easel Brook at Clifton, NJ	01392000	4.45	1937-62	
cond River at Belleville, NJ	01392500*	11.6	1938-64	
izabeth River at Irvington, NJ	01393000	2.90	1931-38	
izabeth River at Elizabeth, NJ	01393500	20.2	1922-73	
st Fork East Branch Rahway River at West Orange, NJ	01393800	.83	1972-74	
est Branch Rahway River at Millburn, NJ	01394000	7.10	1940-50	
binsons Branch Rahway River at Goodmans, NJ	01395500	12.7	1921-24	
alnut Brook near Flemington, NJ	01397500*	2.24	1936-61	
ck Brook tributary near Ringoes, NJ	01398045*	1.98	1977-88	
orth Branch Raritan River at Pluckimen, NJ	01399000	52.0	1903-06	
mington (Black) River at Succasunna, NJ	01399190	7.37	1976-87	
mington (Black) River near Ironia, NJ	01399200	10.9	1975-87	
de Brook near Pottersville, NJ	01399525*	1.22	1977-88	
uth Branch Rockaway Creek at Whitehouse, NJ	01399690	13.2	1964-67, 1977-86	
orth Branch Raritan River at North Branch, NJ	01399830*	174	1977-81	
illstone River at Plainsboro, NJ	01400730*	65.8	1964-75, 1987-89	
ldwins Creek at Baldwin Lake, near Pennington, NJ	01400932	2.52	1963-70	
oney Branch near Pennington, NJ	01400953	.70	1967-75	
llstone River at Carnegie Lake, at Princeton, NJ	01401301*	159	1972-74, 1987-89	
illstone River near Kingston, NJ	01401500	171	1934-49	
byce Brook tributary at Frankfort, NJ	01402590	.29	1969-74	
ritan River at Bound Brook, NJ	01403000	779	1903-09, 1945-66	
een Brook at Plainfield, NJ	01403500*	9.75	1938-84	
und Brook at Middlesex, NJ	01403900*	48.4	1972-77	
und Brook at Bound Brook, NJ	01404000	49.0	1923-30	
wrence Brook at Patricks Corner, NJ	01404500	29.0	1922-26	
wrence Brook at Farrington Dam, NJ	01405000*	34.4	1927-90	
atchaponix Brook at Spotswood, NJ	01405300	43.9	1957-67	
outh River at Old Bridge, NJ	01405500	94.6	1939-88	

DISCONTINUED SURFACE-WATER DISCHARGE STATIONS--Continued

Station name	Station	Drainage	Period
Station name	number	area (mi ²)	of record
Deep Run near Browntown, NJ	01406000	8.07	1932-40
Fennent Brook near Browntown, NJ	01406500	5.25	1932-41
Matawan Creek at Matawan, NJ	01407000	6.11	1932-55
South Branch Metedeconk River at Lakewood, NJ	01408140	26.0	1973-76
Cedar Creek at Lanoka Harbor, NJ	01409000	55.3	1933-58, 1971
Dyster Creek near Brookville, NJ	01409095	7.43	1965-84
Westecunk Creek at Stafford Forge, NJ	01409280	15.8	1974-88
Absecon Creek at Absecon, NJ	01410500	17.9	1946-85
Great Egg Harbor River tributary at Sicklerville, NJ	01410787	1.64	1972-79
Fourmile Branch at New Brooklyn, NJ	01410810*	7.74	1973-79
Great Egg Harbor River near Blue Anchor, NJ	01410820	37.3	1972-79
Menantico Creek near Millville, NJ	01412000*	23.2	1931-57, 1978-85
West Branch Cohansey River at Seeley, NJ	01412500*	2.58	1951-67
Cohansey River at Seeley, NJ	01412800*	28.0	1978-88
Loper Run near Bridgeton, NJ	01413000	2.34	1937-59
Paulins Kill at Columbia, NJ	01444000	179	1908-09
Pequest River at Huntsville, NJ	01445000*	31.0	1940-62
equest River at Townsbury, NJ	01445430*	92.5	1977-80
Beaver Brook near Belvidere, NJ	01446000*	36.7	1923-61
Brass Castle Creek near Washington, NJ	01455160	2.34	1970-83a
Ohatcong Creek at New Village, NJ	01455200*	33.3	1960-70
Beaver Brook near Weldon, NJ	01455355	1.72	1969-71
Musconetcong River at outlet of Lake Hopatcong, NJ	01455500*	25.3	1928-75
Ausconetcong River near Hackettstown, NJ	01456000*	68.9	1922-74
Delaware River at Riegelsville, NJ	01457500*	6328	1906-71
Delaware and Raritan Canal at Kingston, NJ	01460500		1947-91
Delaware River at Lambertville, NJ	01462000	6680	1898-06
lew Sharon Run at Carsons Mills, NJ	01463587	6.63	1976-77
hipetaukin Creek tributary at Lawrenceville, NJ	01463657	.78	1976-77
ittle Shabakunk Creek at Bakersville, NJ	01463690	3.98	1976-77
horton Creek at Bordentown, NJ	01464525	.84	1976-77
outh Branch Rancocas Creek at Vincentown, NJ	01465850*	64.5	1961-75
Middle Branch Mount Misery Brook in Lebanon State Forest, NJ	01466000	2.82	1953-65, 1977
fill Creek near Willingboro, NJ	01467019	4.12	1975-78
fill Creek at Levitt Parkway, at Willingboro, NJ	01467021	9.12	1975-77
fantua Creek at Pitman, NJ	01475000*	6.05	1940-76
till Run near Mickleton, NJ	01476600	3.98	1957-66
Oldmans Creek near Woodstown, NJ	01477500	18.5	1932-40
Salem River at Woodstown, NJ	01482500*	14.6	1940-85, 1989
Alloway Creek at Alloway, NJ	01483000	20.3	1953-72

a Not published, on file at U.S. Geological Survey, West Trenton, NJ.

WATER RESOURCES DATA - NEW JERSEY, 1992

DISCONTINUED CONTINUOUS WATER-QUALITY STATIONS

The following stations have been discontinued as continuous water-quality stations. Daily records of temperature, specific conductance, pH, dissolved oxygen or sediment were collected and published for the period of record shown for each station.

Passaic River near Chatham, NJ	ype of Period of record ecord (water years)
Passaic River near Chatham, NJ 01379500 100 Sed. Temp. Green Pond Brook at Picatinny Arsenal, NJ 01382000 361 Temp. Passaic River at Two Bridges, NJ 01387000 90.4 Temp. Wanaque River at Wanaque, NJ 01387500 90.4 Temp. Ramapo River near Mahwah, NJ 01389500 372 Temp. Passaic River at Little Falls, NJ 01389500 762 Sed. Passaic River at Little Falls, NJ 01396500 65.3 Temp. South Branch Raritan River near High Bridge, NJ 01396500 65.3 Temp. South Branch Raritan River at Stanton, NJ 01397000 147 Temp. Sed. South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp. Sed. Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp. Sed. Rockaway Creek at Baldwin Lake, near Pennington, NJ 01400510 497 Temp. Sed. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Millstone River near Manville, NI 01402900	(water years)
Temp. Green Pond Brook at Picatinny Arsenal, NJ 01379773 7.65 Temp. Seasaic River at Two Bridges, NJ 01382000 361 Temp. Seasaic River at Wanaque, NJ 01387000 90.4 Temp. Seasaic River at Wanaque, NJ 01387500 118 Sead. Pompton River near Mahwah, NJ 01387500 118 Sead. Pompton River near Two Bridges, NJ 01389500 762 Sead. Se	
Green Pond Brook at Picatinny Arsenal, NJ 01379773 7.65 Temp., S	1964-68
Passaic River at Two Bridges, NJ 01382000 361 Temp., S Wanaque River at Wanaque, NJ 01387000 90.4 Temp. Ramapo River near Mahwah, NJ 01387500 118 Sed. Pompton River near Two Bridges, NJ 01389000 372 Temp., S Passaic River at Little Falls, NJ 01389500 762 Sed. South Branch Raritan River near High Bridge, NJ 01396500 65.3 Temp., S South Branch Raritan River at Stanton, NJ 01397000 147 Temp., S South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp., S South Branch Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., S Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., S Rackana River near Manville, NJ 01400510 497 Temp., S Raritan River near Manville, NJ 01400932 2.52 Temp. Sed. Millstone River near Manville, NJ 01401000 44.5 Sed. Mansaquan River at Squankum, NJ 01402900 287 Temp., S	1967-68
Wanaque River at Wanaque, NJ 01387000 90.4 Temp. Ramapo River near Mahwah, NJ 01387500 118 Sed. Pompton River near Two Bridges, NJ 01389500 372 Temp., S. Passaic River at Little Falls, NJ 01389500 762 Sed. South Branch Raritan River near High Bridge, NJ 01396500 65.3 Temp., S.C. South Branch Raritan River at Stanton, NJ 01397000 147 Temp., S.C. South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp., S. South Branch Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., S. Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., S. Raritan River near Manville, NJ 01400932 2.52 Temp., S. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Millstone River near Manville, NJ 01401000 44.5 Sed. Manasquan River at Squankum, NJ 01408000 44 Temp., S. Toms River near Toms River, NJ 01408000 44 Temp., S. <	S.C., pH, D.O. 1984-86
Ramapo River near Mahwah, NJ 01387500 118 Sed. Pompton River near Two Bridges, NJ 01389000 372 Temp., Sod. Passaic River at Little Falls, NJ 01389500 762 Sed. Temp., South Branch Raritan River near High Bridge, NJ 01396500 65.3 Temp., Sod. South Branch Raritan River at Stanton, NJ 01397000 147 Temp., Sod. South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp., Sod. Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., Sod. Rockaway Creek at Whitehouse, NJ 01400510 497 Temp., Sod. Raritan River near Manville, NJ 01400932 2.52 Temp. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Millstone River near Manville, NJ 01402900 287 Temp., Sod. Manasquan River at Squankum, NJ 0140100 44.5 Sed. Manasquan River at Squankum, NJ 01408500 123 Temp., Sod. Oyster Creek near Brookville, NJ 01409905 7.43 Temp., Sod. <	S.C., pH, D.O. 1969-74
Pompton River near Two Bridges, NJ 01389000 372 Temp., Sed. South Branch Raritan River near High Bridge, NJ 01396500 65.3 Temp., S.C. South Branch Raritan River at Stanton, NJ 01397000 147 Temp., Sed. South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp., Sed. South Branch Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., Sed. Sed. Rockaway Creek at Whitehouse, NJ 01400510 497 Temp., Sed. Sed. South Branch Rockaway Creek at Baldwin Lake, near Pennington, NJ 01400932 2.52 Temp. Sed. Sed. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Sed. Millstone River near Manville, NJ 01402900 287 Temp., Sed.	1964-80
Passaic River at Little Falls, NJ 01389500 762 Sed. Temp., S. South Branch Raritan River near High Bridge, NJ 01396500 65.3 Temp., S. C. South Branch Raritan River at Stanton, NJ 01397000 147 Temp., S. C. South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp., S. Sed. Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., S. Sed. Raritan River near Manville, NJ 01400510 497 Temp., S. Baldwins Creek at Baldwin Lake, near Pennington, NJ 01400932 2.52 Temp. Sed. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Millstone River near Manville, NJ 01401000 44.5 Sed. Millstone River near Manville, NJ 01402900 287 Temp., S. Raritan River near South Bound Brook, NJ 01404100 862 Temp., S. Raritan River at Squankum, NJ 01408000 44 Temp., S. C. Oyster Creek near Brookville, NJ 01408000 123 Temp., S. C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., S. C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., S. C. Oyster Creek near Brookville, NJ 01409810 84.1 Temp., S. C. Great Egg Harbor River rib. at Sicklerville, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01410800 57.1 Temp. Maurice River at Norma, NJ 01411000 57.1 Temp., S. Delaware River at Donnfield, NJ 01442750 4150 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	1964-65
Temp., South Branch Raritan River near High Bridge, NJ 01396500 65.3 Temp. S.C.	S.C., pH, D.O. 1969-74
South Branch Raritan River near High Bridge, NJ 01396500 65.3 Temp. S.C.	1964-65
S.C. South Branch Raritan River at Stanton, NJ 01397000 147 Temp., Sed. South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp., Sed. Sed. South Branch Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., Sed. Raritan River near Manville, NJ 01400510 497 Temp., Sed. Sed. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Sed. Stony Brook at Princeton, NJ 01401000 44.5 Sed. S	
South Branch Raritan River at Stanton, NJ 01397000 147 Temp., Sed.	1961-79
Sed. South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp., Sed. Sed. Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., Sed. Raritan River near Manville, NJ 01400510 497 Temp., Sed.	1969-79
South Branch Rockaway Creek at Whitehouse, NJ 01399690 13.2 Temp., Sed.	
Sed.	1960-63
Rockaway Creek at Whitehouse, NJ 01399700 37.1 Temp., S Raritan River near Manville, NJ 01400510 497 Temp., S Baldwins Creek at Baldwin Lake, near Pennington, NJ 01400932 2.52 Temp. Sed. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Millstone River near Manville, NJ 01402900 287 Temp., S Raritan River near South Bound Brook, NJ 01404100 862 Temp., S Manasquan River at Squankum, NJ 01408000 44 Temp., S Common River near Toms River, NJ 01408500 123 Temp., S Compact Creek near Brookville, NJ 01409995 7.43 Temp., D S.C., pH Scd. Scd. Scd. Great Egg Harbor River trib. at Sicklerville, NJ 01409810 84.1 Temp., S Great Egg Harbor River at Folsom, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 0141080 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware Riv	S.C. 1977-78
Raritan River near Manville, NJ 01400510 497 Temp., S Baldwins Creek at Baldwin Lake, near Pennington, NJ 01400932 2.52 Temp. Sed. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Millstone River near Manville, NJ 01402900 287 Temp., S Raritan River near South Bound Brook, NJ 01404100 862 Temp., S Manasquan River at Squankum, NJ 01408000 44 Temp., S Toms River near Toms River, NJ 01408500 123 Temp., S C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., D S.C., pH West Branch Wading River near Jenkins, NJ 01409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	1977
Baldwins Creek at Baldwin Lake, near Pennington, NJ 01400932 2.52 Temp. Sed. Stony Brook at Princeton, NJ 01401000 44.5 Sed. Millstone River near Manville, NJ 01402900 287 Temp., S Raritan River near South Bound Brook, NJ 01404100 862 Temp., S Manasquan River at Squankum, NJ 01408000 44 Temp., S Toms River near Toms River, NJ 01408500 123 Temp., S C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ 01409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ 01410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	S.C 1977-78
Sed. Stony Brook at Princeton, NJ O1401000 44.5 Sed. Millstone River near Manville, NJ O1402900 287 Temp., S Raritan River near South Bound Brook, NJ O1404100 862 Temp., S Manasquan River at Squankum, NJ O1408000 44 Temp., S Toms River near Toms River, NJ O1408500 O123 Temp., S.C. Oyster Creek near Brookville, NJ O1409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ O1409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ O1410787 O1410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ O1411000 57.1 Temp. Maurice River at Norma, NJ O1411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. O1440200 O1442750 O1463500 O1463500 O1463500 O1862 O1463500 O14635	S.C., pH, D.O. 1968-74
Sed. Stony Brook at Princeton, NJ O1401000 44.5 Sed. Millstone River near Manville, NJ O1402900 287 Temp., S Raritan River near South Bound Brook, NJ O1404100 862 Temp., S Manasquan River at Squankum, NJ O1408000 44 Temp., S Toms River near Toms River, NJ O1408500 O123 Temp., S.C. Oyster Creek near Brookville, NJ O1409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ O1409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ O1410787 O1410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ O1411000 57.1 Temp. Maurice River at Norma, NJ O1411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. O1440200 O1442750 O1463500 O1463500 O1463500 O1862 O1463500 O14635	1963-66
Stony Brook at Princeton, NJ 01401000 44.5 Sed. Millstone River near Manville, NJ 01402900 287 Temp., S Raritan River near South Bound Brook, NJ 01404100 862 Temp., S Manasquan River at Squankum, NJ 01408000 44 Temp., S Toms River near Toms River, NJ 01408500 123 Temp., S.C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ 01409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ 01410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	1963-69
Millstone River near Manville, NJ 01402900 287 Temp., S Raritan River near South Bound Brook, NJ 01404100 862 Temp., S Manasquan River at Squankum, NJ 01408000 44 Temp., S Toms River near Toms River, NJ 01408500 123 Temp., S C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ 01409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ 01410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	1959-70
Raritan River near South Bound Brook, NJ 01404100 862 Temp., S Manasquan River at Squankum, NJ 01408000 44 Temp., S Toms River near Toms River, NJ 01408500 123 Temp., S.C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ 01409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ 01410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	S.C., pH, D.O. 1968-74
Manasquan River at Squankum, NJ 01408000 44 Temp., S Toms River near Toms River, NJ 01408500 123 Temp., S.C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ 01409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ 01410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	S.C., pH, D.O. 1969-77
Toms River near Toms River, NJ 01408500 123 Temp., S.C. Oyster Creek near Brookville, NJ 01409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ 01409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ 01410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp., S Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01463500 6780 Sed.	S.C., pH, D.O. 1969-74
Oyster Creek near Brookville, NJ O1409095 7.43 Temp., E S.C., pH West Branch Wading River near Jenkins, NJ O1409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ O1410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ O1410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ O1411000 57.1 Temp. Maurice River at Norma, NJ O1411500 O1411500 O1411500 O140200 O140200	1964-66, 1975-8
Oyster Creek near Brookville, NJ 01409095 7.43 Temp., Delaware River at Dunnfield, NJ 0140200 3850 Delaware River at Trenton, NJ 01442750 4150 Sed. Oyster Creek near Brookville, NJ 01409810 84.1 Temp., Sed. Oyster Creek near Brookville, NJ 01409810 84.1 Temp., Sed. Oyster Creek near Brookville, NJ 01409810 84.1 Temp., Sed. Oyster Creek near Brookville, NJ 01410787 1.64 Sed. Oyster Creek near Br	1975-81
S.C., pH West Branch Wading River near Jenkins, NJ O1409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ O1410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ O1410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ O1411000 57.1 Temp. Maurice River at Norma, NJ O1411500 O1411500 O1411500 O140200	
West Branch Wading River near Jenkins, NJ 01409810 84.1 Temp., S Great Egg Harbor River trib. at Sicklerville, NJ 01410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	
Great Egg Harbor River trib. at Sicklerville, NJ. 01410787 1.64 Sed. Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	
Fourmile Branch at New Brooklyn, NJ 01410810 7.74 Sed. Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	,.C. 1978-81
Great Egg Harbor River at Folsom, NJ 01411000 57.1 Temp. Maurice River at Norma, NJ 01411500 112 Temp., S Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	1974-78
Maurice River at Norma, NJ01411500112Temp., SDelaware River near Delaware Water Gap, Pa.014402003850Sed.Delaware River at Dunnfield, NJ014427504150Sed.Delaware River at Trenton, NJ014635006780Sed.	1974-78
Maurice River at Norma, NJ01411500112Temp., SDelaware River near Delaware Water Gap, Pa.014402003850Sed.Delaware River at Dunnfield, NJ014427504150Sed.Delaware River at Trenton, NJ014635006780Sed.	1961-80
Delaware River near Delaware Water Gap, Pa. 01440200 3850 Sed. Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	S.C. 1980-86
Delaware River at Dunnfield, NJ 01442750 4150 Sed. Delaware River at Trenton, NJ 01463500 6780 Sed.	1964-65, 1972
Delaware River at Trenton, NJ 01463500 6780 Sed.	1966-76
	1949-82
Delaware Kiver at Marine Terminar, at Hemon, 183 - U1404040 On70 - Temp., 5	
Crosswicks Creek near Extonville, NJ 01464500 81.5 Sed.	1965-70
Rancocas Creek at Willingboro, NJ 01467016 315 Temp., S	
D.O.	1970-72
pH	1970-72
Cooper River at Haddonfield, NJ 01467150 17.0 Sed.	1968-69
Raccoon Creek near Swedesboro, NJ 01477120 26.9 Temp.	
Raccoon Creek hear Swedesoord, NJ 01477120 20.9 1emp. Sed.	1966-73 1966-69

Type of record: Temp. (temperature), S.C. (specific conductance), pH (pH), D.O. (dissolved oxygen), Sed. (sediment).

DISCONTINUED LOW-FLOW STATIONS

The following low-flow parial-record stations in New Jersey have been discontinued. Stream flow measurements were made during periods of base-flow, for the period of record shown for each station. These measurements, when correlated with the concurrent daily discharges at nearby continuous-record sites, will give a picture of the low-flow potentiality of a stream.

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
Wallkill River at outlet Lake Mohawk at Sparta, NJ	01367620	4.38	1979-86
Wallkill River at Franklin, NJ	01367700	29.4	1959-64, 1982-83, 1985, 1987-90
Beaver Run near Hamburg, NJ	01367750	5.59	1966-72
Papakating Creek at Pellettown, NJ	01367800	15.8	1959-64
West Branch Papakating Creek at McCoys Corner, NJ	01367850	11.0	1967-72
Clove Brook above Clove Acre Lake at Sussex, NJ	01367890	19.2	1967-72
Clove Brook at Sussex, NJ	01367900	19.7	1959-64
Black Creek near Vernon, NJ	01368950	17.3	1977-86, 1988, 1990-91
Musquapsink Brook near Westwood, NJ	01377475	2.12	1964-72, 1975, 1978, 1981-86
Tenakill Brook at Cresskill, NJ	01378350	3.01	1964-73, 1975
Dwars Kill at Norwood, NJ	01378410	4.23	1973-80
Norwood Brook at Norwood, NJ	01378430	2.03	1973-80
Hirshfeld Brook at New Milford, NJ	01378520	4.54	1965-72
French Brook at New Bridge, NJ	01378530	.46	1965-72
Coles Brook at Hackensack, NJ	01378560	7.00	1965-72
Metzler Brook at Englewood, NJ	01378590	1.54	1964-72, 1991-92
Wolf Creek at Ridgewood, NJ	01378615	1.18	1964-72
Passaic River at outlet of Osborn Pond, at Osborn Mill, NJ	01378700	10.1	1961-68
Great Brook at Green Village, NJ	01378750	7.92	1961-65
Primrose Brook near New Vernon, NJ	01378800	4.68	1961-65
Great Brook near Basking Ridge, NJ	01378850	23.1	1961-65
Black Brook near Meyersville, NJ	01378900	11.7	1959-63
Harrisons Brook at Liberty Corner, NJ	01379150	3.74	1964-67
Dead River near Millington, NJ	01379200	20.8	1961-67, 1973-75, 1986-89
Passaic River at Stirling, NJ	01379300	84.1	1968-70, 1972-73, 1983-84
Passaic River at Lower Chatham Bridge, near Chatham, NJ	01379550	116.0	1964, 1984, 1988-89
Passaic River at Hanover, NJ	01379570	128.0	1963-66, 1973, 1987-89
Rockaway River at Dover, NJ	01379750	30.8	1963-66, 1983-86
Hibernia Brook at outlet of Lake Telemark, NJ	01380050	2.53	1966-72
Stony Brook near Rockaway Valley, NJ	01380300	8.43	1963-67, 1985-86
Crooked Brook near Boonton, NJ	01381150	7.86	1963-66
Whippany River near Morristown, NJ	01381400	14.0	1964-72
Jacquis Brook at Greystone Park State Hospital, NJ	01381470	1.39	1967-73
Watnong Brook at Morris Plains NJ	01381490	7.77	1966-72
Whippany River near Whippany, NJ	01381600	48.5	1963-66, 1973
Troy Brook at Troy Hills, NJ	01381700	10.1	1961-66, 1972-73
West Brook at Troy Hills, NJ	01381750	1.32	1961-66
Pequannock River near Stockholm, NJ	01382050	5.39	1959-64
Kanouse Brook at Newfoundland, NJ	01382360	3.87	1963-67
Macopin River at Macopin Reservoir, NJ	01382450	5.25	1970-73

	Drainage		
Station name	Station area Period of record		
	number	(mi ²)	(water years)
Belcher Creek at Stowaway Road, at West Milford, NJ	01382870	2.44	1973-77
Belcher Creek tributary at West Milford, NJ	01382880	.61	1973-77
Belcher Creek at West Milford, NJ	01382890	7.27	1973-77
Morsetown Brook at West Milford, NJ	01382910	1.31	1973-77
reen Brook near West Milford, NJ	01382960	1.47	1973-77
Cooley Brook near West Milford, NJ	01382990	1.34	1973-77
tag Brook near Mahwah, NJ	01387520	1.35	1963-70, 1972
Parlington Brook at Darlington, NJ	01387600	3.38 ·	1963-67
amapo River near Darlington, NJ	01387670	131	1963-66, 1982-83
ear Swamp Brook near Oakland, NJ	01387700	3.25	1963-67
amapo River tributary 5 at Oakland, NJ	01387930	.86	1963-67
amapo River tributary 6 at Pompton Plains, NJ	01387950	1.79	1963-67
aycock Brook at Pompton Lakes, NJ	01387980	4.18	1963-64, 1973-77
eckman River at West Paterson, NJ	01389600	10.1	1963-67
offle Brook at Hawthorne, NJ	01389850	8.77	1963-67
addle River at Upper Saddle River, NJ	01390450	10.9	1964-72, 1975
lohokus Brook at Wyckoff, NJ	01390700	5.31	1963-67
alentine Brook at Allendale, NJ	01390800	2.48	1963-67
addle River at Paramus, NJ	01391110	45.0	1964-69, 1971-72
prout Brook at Rochelle Park, NJ	01391485	5.56	1964-72
hird River at Nutley, NJ	01392200	11.4	1963-73
lizabeth River below Chancellor Ave at Irvington, NJ	01393200	5.14	1955, 1961-62, 1966
outh Branch Rahway River at Colonia, NJ	01396030	9.41	1979-86
outh Branch Raritan River trib 6 at Budd Lake, NJ	01396070	0.70	1973-77
outh Branch Raritan River trib 7 at Budd Lake, NJ	01396080	.21	1973-77
outh Branch Raritan River at outlet of Budd Lake, NJ	01396090	5.03	1964, 1973-77, 1980-83
outh Branch Raritan River at Bartley, NJ	01396120	12.5	1964-73, 1990
rakes Brook at Reger Road at Flanders, NJ	01396160	11.6	1965, 1990
rakes Brook at Bartly, NJ	01396180	16.6	1964-73, 1975-76, 1988-90
outh Branch Raritan River at Califon, NJ	01396350	58.5	1975-76, 1989-90
oruce Run near High Bridge, NJ	01396590	· 15.5	1973-77
pruce Run near Clinton, NJ	01396600	18.1	1959-64
ulhockaway Creek at Van Syckel, NJ	01396670	11.8	1973-77
ulhockaway Creek near Clinton, NJ	01396700	20.5	1959-64
apoolong Creek at Lansdowne, NJ	01396900	14.1	1959-65
escott Brook at Round Valley, NJ	01397100	4.61	1958-63
ssiscong Creek at Bartles Corners, NJ	01397290	2.98	1981-89
eshanic River near Flemington, NJ	01397800	11.4	1981-89
hird Neshanic River near Ringoes, NJ	01397900	9.24	1981-89
ick Brook near Reaville, NJ	01398052	11.4	1981-89
easant Run at Centerville, NJ	01398075	8.11	1982-89
dia Brook near Mendham, NJ	01398220	4.36	1964-67
awsons Brook near Ironia, NJ	01398300	1.04	1964-67
urnett Brook near Chester, NJ	01398360	6.64	1964-67
eapack Brook at Gladstone, NJ	01398700	4.23	1707-01

		•	
Station name	Station	area	Period of record
	number	(mi2)	(water years)
Peapack Brook at Far Hills, NJ	01398850	11.7	1964-67, 1973-76
Mine Brook at Far Hills, NJ	01398950	7.78	1964-67, 1973-76
Middle Brook at Burnt Mills, NJ	01399100	6.67	1964-67, 1976
Lamington River near Chester, NJ	01399280	17.3	1963-64, 1973, 1990
Cold Brook at Oldwick, NJ	01399540	5.32	1973-76
Rockaway Creek at McCrea Mills, NJ	01399570	17.0	1961-65
South Branch Rockaway Creek tributary at Lebanon, NJ	01399600	1.02	1958, 1960-64
Chambers Brook near North Branch, NJ	01399820	4.71	1964-72
Chambers Brook at North Branch Depot, NJ	01399900	10.2	1959-64, 1976
Millstone River at Applegarth, NJ	01400560	15.0	1960-64, 1971-72
Millstone River at Hightstown, NJ	01400580	19.7	1960-64, 1969-74
Rocky Brook at Hightstown, NJ	01400593	9.58	1965-72
Peddie Brook at Hightstown, NJ	01400596	3.07	1965-72
Millstone River at Locust Corner, NJ	01400600	37.5	1959-64, 1971-72
Millstone River near Grovers Mill, NJ	01400640	42.6	1959-65, 1971-72
Cranbury Brook at Old Church, NJ	01400670	3.69	1960-64
Cranbury Brook at Cranbury Station, NJ	01400700	9.56	1959-64, 1971-72
Bear Brook near Hickory Corner, NJ	01400750	3.46	1960-65
Little Bear Brook at Hickory Corner, NJ	01400770	1.88	1960-64
Bear Brook near Grovers Mill, NJ	01400800	9.52	1959-64
Bear Brook at Princeton Junction, NJ	01400810	12.4	1962-67, 1971-72
Millstone River at Princeton Junction, NJ	01400820	78.5	1960-61
Woodsville Brook at Woodsville, NJ	01400850	1.78	1957-59, 1965-73
Stony Brook at Pennington, NJ	01400947	26.7	1965-72
Honey Branch near Rosedale, NJ	01400970	3.83	1957-59, 1971-72
Stony Brook at Clarksville, NJ	01401100	46.5	1959-64
Duck Pond Run at Clarksville, NJ	01401200	5.21	1954-55, 1960-67
Beden Brook near Hopewell, NJ	01401200	6.67	1965-72
Rock Brook at Blawenburg, NJ	01401590	8.02	1962-67, 1971-72
Pike Run near Rocky Hill, NJ	01401700	22.2	1959-63, 1971-72
Ten Mile Run near Blackwells Mills, NJ	01401800	4.36	1060 64 1071 72
Six Mile Run at Blackwells Mills, NJ			1960-64, 1971-72
	01401900	16.1	1960-67, 1971-72
Royce Brook at Manville, NJ	01402700	11.7	1960-64
East Branch Middle Brook at Martinsville, NJ Bound Brook at South Plainfield, NJ	01403100 01403330	8.45 9.55	1959-64 1979-86
Cedar Brook at South Plainfield, NJ	01403350	7.10	1979-86
Ambrose Brook at Middlesex, NJ	01404060	13.9	1979-91
Mill Brook at Highland Park, NJ	01404180	1.41	1979-86
Lawrence Brook at outlet of Davidsons Mill Pond, NJ Oakeys Brook near Patricks Corner, NJ	01404300 01404400	12.2 4.75	1973-77 1973-77
			·
Beaverdam Brook near Patricks Corner, NJ	01404700	1.51	1973-77
Milford Brook at Englishtown, NJ	01405170	4.86	1982, 1984-91
McGellairds Brook at Englishtown, NJ	01405180	14.9	1982, 1984-91
Pine Brook at Clarks Mills, NJ	01405210	4.66	1982, 1984-91
Matchaponix Brook near Englishtown, NJ	01405240	29.1	1978-88

	Drainage		
Station name	Station	area	Period of record
	number	(mi2)	(water years)
Barclay Brook near Englishtown, NJ	01405285	4.94	1977-88
Manalapan Brook near Manalapan, NJ	01405335	16.0	1979-88
Manalapan Brook at Bridge Street, at Spotswood, NJ	01405440	43.9	1973-76
resick Brook at East Spotswood, NJ	01405470	2.29	1973-77
Hop Brook at Holmdel, NJ	01407200	5.72	1969-74, 1989
Willow Brook at Holmdel, NJ	01407250	6.88	1969-74, 1989
Big Brook at Vanderburg, NJ	01407300	8.41	1969-74, 1989
Yellow Brook at Colts Neck, NJ	01407400	9.71	1969-74, 1989
Mine Brook at Colts Neck, NJ	01407450	5.48	1969-74, 1989
Pine Brook at Tinton Falls, NJ	01407520	12.1	1969-74, 1989
Shark River at Glendola, NJ	01407700	9.14	1956-63, 1966
Wreck Pond Brook near Spring Lake, NJ	01407800	7.00	1956-63, 1966
Debois Creek at Adelphia, NJ	01407860	7.21	1966, 1969-74
Yellow Brook at West Farms, NJ	01407890	3.57	1966, 1969-74
Manasquan River at West Farms, NJ	01407900	33.5	1959-66, 1973
Fimber Swamp Creek near Farmingdale, NJ	01407970	3.38	1964-72
Mingamahone Brook at Squankum, NJ	01408020	10.7	1966, 1969-74
North Branch Metedeconk River at Lakewood, NJ	01408100	19.4	1959-63, 1966
Foms River at Whitesville, NJ	01408300	45.2	1959-63, 1966
Jnion Branch at Lakehurst, NJ	01408440	19.0	1960-64
Manapaqua Brook at Lakehurst, NJ	01408460	6.32	1960-64
Ridgeway Branch near Lakehurst, NJ	01408490	28.2	1959-63
Webbs Mill Branch near Whiting, NJ	01408800	2.92	1973-77
Webbs Mill Branch tributary near Whiting, NJ	01408810	.53	1973-77
North Branch Forked River near Forked River, NJ	01409050	13.4	1961-65
North Branch Forked River hear Forked River, 143	01409030	13.4	1901-05
South Branch Forked River near Forked River, NJ	01409080	1.28	1968-74
Dyster Creek near Waretown, NJ	01409100	9.95	1961-65
Mill Creek near Manahawkin, NJ	01409150	10.4	1961-67
Fourmile Branch near Manahawkin, NJ	01409200	5.24	1961-67
Cedar Run near Manahawkin, NJ	01409250	3.34	1961-67
Aill Branch near Tuckerton, NJ	01409300	4.89	1961-67
Mullica River at outlet of Atsion Lake, at Atsion, NJ	01409387	26.7	1980-81, 1985-89
Mullica River tributary near Atsion, NJ	01409395	4.10	1975-77
Vildcat Branch at Chesilhurst, NJ	01409403	1.03	1974-77
leeper Branch near Atsion, NJ	01409404	18.2	1975-77
Clark Branch near Atsion, NJ	01409405	7.12	1975-77
leeper Branch at Batsto, NJ	01409406	36.1	1975-77
rump Branch near Blue Anchor, NJ	01409407	6.20	1974-77
Blue Anchor Brook near Blue Anchor, NJ	01409409	3.01	1974-77
Albertson Brook near Hammonton, NJ	01409410	19.3	1975-77
lescochague Creek at Pleasant Mills, NJ	01409411	43.8	1975-77
pringers Brook near Indian Mills, NJ	01409450	12.6	1959-63, 1977
pringers Brook near Atsion, NJ	01409460	21.2	1975-77
anding Creek at Philadelphia Ave, at Egg Harbor City, NJ	01409575	4.86	1974-77
Vest Branch Wading River near Chatsworth, NJ	01409730	44.8	1975-77

WATER RESOURCES DATA - NEW JERSEY, 1992

	Drainage		
Station name	Station	area	Period of record
	number	(mi2)	(water years)
ulpehocken Creek near Jenkins, NJ	01409780	21.9	1975-77
Vest Branch Wading River near Harrisville, NJ	01409800	83.9	1957-63
Oswego River at Oswego Lake, NJ	01409970	61.4	1975-77
Vest Branch Bass River near New Gretna, NJ	01410200	6.54	1969-74
reat Egg Harbor River at Berlin, NJ	01410775	1.88	1964-74
Great Egg Harbor River near Sicklerville, NJ	01410784	15.1	1971-77
ourmile Branch near Williamstown, NJ	01410800	5.34	1959-64, 1971
enny Pot Stream near Folsom, NJ	01411020	5.35	1968-72
Iospitality Branch at Berryland, NJ	01411053	20.0	1976-86
eep Run at Weymouth, NJ	01411140	20.0	1976-86
abcock Creek at Mays Landing, NJ	01411200	20.0	1959-63
ishing Creek at Rio Grande, NJ	01411400	2.29	1965-72
reen Creek at Green Creek, NJ	01411404	2.49	1965-72
idwell Creek tributary near Cape May Court House, NJ	01411410	.41	1967-73
idwell Creek tributary 2 near Cape May Court House, NJ	01411412	.19	1967-72
oshen Creek at Goshen, NJ	01411418	.33	1967-72
luice Creek at Clermont, NJ	01411430	.67	1967-72, 1990-91
till Run at Aura, NJ	01411450	3.21	1976-90
cotland Run at Franklinville, NJ	01411462	14.8	1976-90
luddy Run at Centerton, NJ	01411700	37.7	1976-84
faurice River near Millville, NJ	01411800	191.0	1966-72
fill Creek near Millville, NJ	01411850	15.1	1973-79
uckshutem Creek near Laurel Lake, NJ	01411950	16.1	1976-84
Ianumuskin River near Manumuskin, NJ	01412100	32.1	1964-71
fuskee River near Port Elizabeth, NJ	01412120	13.1	1969, 1976-84
Cohansey River near Beals Mill, NJ	01412405	9.44	1976-84
Barrett Run near Bridgeton, NJ	01413010	7.02	1966, 1976-84
ndian Fields Branch at Bridgeton, NJ	01413010	4.64	1976-84
tow Creek at Jericho, NJ	01413050	8.00	1966-74
anton Ditch near Canton, NJ	01413060	2.50	1959-63
accoon Ditch at Davis Mill, NJ	01413080	3.19	1076 94
himers Brook near Montague, NJ		· 7.07	1976-84 1988-64
	01438400		
ig Flat Brook near Hainesville, NJ	01439800	22.6	1959-64, 1966
ig Flat Brook at Tuttles Corner, NJ ittle Flat Brook at Hainesville, NJ	01439830 01439900	28.2 7.73	1963, 1970-73 1959-64
Januaryana Brook paar Millbrook MI	01440100	7 27	1050 60
Vancampens Brook near Millbrook, NJ	01440100	7.27 3.51	1958-68
tony Brook near Columbia, NJ	01442800	3.51	1958-68
aulins Kill at Lafayette, NJ	01443300	33.0	1959-64, 1966
ulvers Creek at Branchville, NJ aulins Kill near Newton, NJ	01443400 01443450	11.2 69.0	1959-64 1973-77
	01440460	50.0	1072 77
aulins Kill at Paulins Kill, NJ	01443460	72.9	1973-77
rout Brook near Middletown, NJ	01443475	24.0	1979-89
urnace Brook at Oxford, NJ	01/145490	4.29	1965-69, 1971-72
oney Run near Ramseysburg, NJ	01445800	2.21	1982-90
Ioney Run near Hope, NJ	01445900	10.3	1966-72

^ .			
Station name	Station	Drainage area	Period of record
	number	(mi2)	(water years)
Pohatcong Creek at Carpentersville, NJ	01455300	57.1	1932, 1952-64
Weldon Brook near Woodport, NJ	01455350	3.27	1965-69, 1971-72
Beaver Brook near Woodport, NJ	01455360	2.79	1966-72
Weldon Brook at Hurdtown, NJ	01455370	8.10	1973-77
Musconetcong River at Stanhope, NJ	01455550	29.7	1973-76
Lubbers Run at Lockwood, NJ	01455780	16.3	1982-90
Hatchery Brook at Hackettstown, NJ	01456100	1.81	1966-72
Hakihokake Creek at Milford, NJ	01458100	17.2	1944, 1958-64
Harihokake Creek near Frenchtown, NJ	01458400	9.75	1944, 1958-65
Nishisakawick Creek at Frenchtown, NJ	01458600	12.3	1958-64
Little Nishisakawick Creek at Frenchtown, NJ	01458700	3.50	1958-65
Lockatong Creek near Raven Rock, NJ	01460900	23.2	1944, 1958-64
Alexauken Creek near Lambertville, NJ	01461900	14.9	1944, 1958-64
Moore Creek near Titusville, NJ	01462200	10.2	1958-64
Jacobs Creek at Somerset, NJ	01462800	13.3	1957-64
Shipetaukin Creek at Lawrenceville, NJ	01463650	4.48	1963-67
Shipetaukin Creek at Bakersville, NJ	01463670	8.96	1963-67
Shabakunk Creek at Ewingville, NJ	01463750	5.00	1963-67
West Branch Shabakunk Creek near Ewingville, NJ	01463790	4.56	1963-72
Miry Run at Robbinsville, NJ	01463830	4.02	1963-67
Miry Run at Mercerville, NJ	01463860	12.4	1963-67
Pond Run at Trenton, NJ	01463980	8.94	1963-69, 1971-72
Crosswicks Creek near Cookstown, NJ	01464300	21.2	1966, 1969-74
North Run at Cookstown, NJ	01464380	7.17	1966, 1969-74
Lahaway Creek near Hornerstown, NJ	01464460	21.4	1966, 1969-74
Miry Run at Holmes Mills, NJ	01464480	3.15	1966, 1969-74
Blacks Creek at Mansfield Square, NJ	01464530	19.7	1966-72
Crafts Creek at Hedding, NJ	01464540	10.6	1959-63
Assiscunk Creek at Columbus, NJ	01464580	8.28	1959-63
Assiscunk Creek near Burlington, NJ	01464590	37.2	1966-74
Southwest Branch Rancocas Creek at Medford, NJ	01465880	47.2	1961-66, 1973
Sharps Run at Medford, NJ	01465884	4.41	1982-90
Little Creek near Lumbertom, NJ	01465898	19.2	1982-90
Southwest Branch Rancocas Creek at Eayrestown, NJ	01465900	76.2	1959-61
Parkers Creek near Mount Laurel, NJ	01467010	2.66	1964-72
Mill Creek at Willingboro, NJ	01467020	7.73	1959-64, 1976
Pompeston Creek at Cinnaminson, NJ	01467057	5.74	1964-72
North Branch Pennsauken Creek at Maple Shade, NJ	01467070	13.0	1959-63
South Branch Pennsauken Creek at Maple Shade, NJ	01467080	8.13	1964-67
Newton Creek at Collingswood, NJ	01467305	1.32	1964-72
Newton Creek at West Collingswood, NJ	01467312	3.48	1964-72
S. Br. Newton Creek at Glover Ave, at Haddon Heights, NJ	01467315	.52	1968-74
S. Br. Newton Creek at 13th Ave, at Haddon Heights, NJ	01467317	.63	1964-67
	01-101211		1707-01
S. Br. Big Timber Creek at Blackwood, NJ	01467330	19.1	1964-72

xx

WATER RESOURCES DATA - NEW JERSEY, 1992

Station name	Station number	Drainage area (mi2)	Period of record (water years)
Mantua Creek at Glassboro, NJ	01474950	1.20	1965-66, 1974-77
Mantua Creek at Glassboro, NJ Mantua Creek at Greentree Road, at Glassboro, NJ	01474970	2.78	1965-66, 1974-77
Mantua Creek at Sewell, NJ	01475020	14.7	1966-72
Raccoon Creek near Mullica Hill, NJ	01477100	10.1	1959-63
South Branch Raccoon Creek near Mullica Hill, NJ	01477118	8.30	1966-72
Nichomus Run near Woodstown, NJ	01482510	3.76	1966-74
Salem River at Sharptown, NJ	01482520	27.3	1966-72, 1974-75
Major Run at Sharptown, NJ	01482530	3.04	1966-72, 1974-75
Cool Run near Alloway, NJ	01482900	4.92	1959-63
Cedar Brook near Alloway, NJ	01482950	3.76	1959-63
Deep Run near Alloway, NJ	01483010	5.30	1977-84

WATER RESOURCES DATA - NEW JERSEY, 1992

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of New Jersey each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - New Jersey."

This report series includes records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 99 gaging stations; tide summaries at 2 gaging stations; stage and contents at 37 lakes and reservoirs and water quality at 95 surface-water stations. Also included are data for 65 crest-stage partial-record stations and stage only at 13 tidal crest-stage gages. Locations of these sites are shown on figures 11 and 12. Additional water data were collected at various sites not involved in the systematic data-collection program. Discharge measurements were made at 94 low-flow partial-record stations. Miscellaneous data were collected at 42 discharge measuring sites. Water-quality data were collected at 9 partial-record stations. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in New Jersey.

This series of annual reports for New Jersey began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. For the 1975 through 1989 water years, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground-water, and ground-water levels. Beginning with the 1977 water year, these data were published in two volumes based on drainage basins. Beginning with the 1990 water year, the format was changed to include all surface-water discharge and surface-water quality records in Volume 1 and all ground-water level and ground-water quality records in Volume 2.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for New Jersey were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Part 1B." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from Books and Open-file Reports Section, Federal Center, Box 25425, Denver, CO, 80225.

Publications similar to this report are published annually by the Geological Survey, for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NJ-92-1." For archiving and general distribution, the reports for 1971-74 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information, Service, U.S. Department of Commerce, Springfield, VA 22161. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (609) 771-3900. A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

COOPERATION

The U.S. Geological Survey and agencies of the State of New Jersey have had joint-funding agreements for the collection of water-resource records since 1921. Organizations that assisted in collecting the data in this report through joint-funding agreements with the Survey are:

New Jersey Department of Environmental Protection and Energy, Scott A. Weiner, Commissioner.

New Jersey Water Supply Authority, Rocco Ricci, Executive Director.

North Jersey District Water Supply Commission, Dean C. Noll, Chief Engineer.

Passaic Valley Water Commission, W.I. Inhoffer, General Superintendent and Chief Engineer.

City of New Brunswick, Thomas J. Brennan, Director, Water Utility Department.

County of Bergen, Quenten Weist II, Director of Public Works and County Engineer.

County of Gloucester, Robert V. Scolpino, Director of Planning.

County of Morris, James W. Souders, Chairman, Morris County Municipal Utilities Authority.

County of Somerset, Michael J. Amorosa, County Engineer, and Thomas Harris, Administrative Engineer.

Pinelands Commission, Terrance D. Moore, Executive Director.

Township of West Windsor, Elaine W. Ballai, Chairman of Environmental Commission.

Assistance in the form of funds was given by the Corps of Engineers, U.S. Army, in collecting records for 12 surface-water stations, and by the U.S. Army Armament Research and Development Center for the collection of records at 3 surface-water stations. In addition, several stations were operated fully or partially from funds appropriated directly to the Geological Survey. Funding was also supplied by the following Federal Energy Regulatory Commission licensees: Jersey Central Power and Light Company, Passaic Valley Water Commission, and Independent Hydro Developers Inc. Assistance was provided by the National Weather Service and the National Ocean Service.

The following organizations aided in collecting records:

Municipalities of Atlantic City, Jersey City, Newark, New Brunswick and Spotswood; American Cyanamid Company; Elizabethtown Water Company; Ewing-Lawrence Sewerage Authority; Hackensack Water Company; New Jersey-American Water Company; and Jersey Central Power and Light Company.

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow

Streamflow for the 1992 water year was below normal throughout the State, ranging from 80 percent of normal in the northeastern part of the State to 65 percent of normal in the southern part. Streamflow was below normal at the beginning of the year and declined steadily for the remainder of the year. Streamflow was below normal at many stations during most months. Total precipitation for the water year ranged from 34.43 inches, 85.5 percent of the updated 30-year (1961-90) mean, at Atlantic City to 33.36 inches, 75.8 percent of the 30-year mean, at Newark. Figure 1 shows monthly precipitation at three National Weather Service sites compared with the updated 30-year means. Combined contents of 13 major water-supply reservoirs was below average at the beginning of the year and above average at the end of the year (see figure 2).

Water year 1992 began with streamflow below normal throughout the State. Streamflow declined steadily through October, November, and December. A devastating storm on October 30 caused severe coastal flooding and beach erosion. Damage was due primarily to high winds and high tides. Precipitation was minimal--less than 0.1 inch. Some tides were the highest of record. Another storm on November 12 again caused coastal flooding and was accompanied by more than 1 inch of precipitation, but this storm was not as severe as the October 30 storm. Above-normal precipitation was recorded in December, but streamflow remained below normal. January precipitation was very low, averaging less than 50 percent of normal. Another storm, on January 5, again caused flooding in coastal communities. Precipitation continued to be below normal through May. Snowfall during winter months was less than 10 inches in the northern part of the State and less than 5 inches in the southern part. Streamflow remained below normal from January through May. June began with heavy precipitation. At Greenwood Lake, 2.6 inches of precipitation was recorded on June 1. Another storm occurred on June 5 to 6. At Canoe Brook, in northern New Jersey, 5.75 inches of rainfall was recorded on June 5. These storms resulted in the peak discharges recorded for the year at most gaging stations throughout the State. Precipitation in June averaged more than 160 percent of normal. Flooding was reported throughout the State, but was most severe in the Passaic and Raritan River Basins. Reservoirs, which were very low before the storms, were nearly full by the end of June. The high precipitation in June and near-normal precipitation in July resulted in above-normal streamflow throughout July. Precipitation in August was about normal except in the coastal area, where recorded rainfall was 160 percent of normal. Some flooding was reported in Monmouth and Ocean Counties from storms on August 1, 18, and 29. Tornadoes were reported in the South Amboy area on August 1. In September, precipitation was again about normal, except in the Atlantic City area, where recorded rainfall was 172 percent of normal. This high rainfall was primarily the result of Hurricane Danielle, which passed near the coast on September 26. Inland communities were less seriously affected. Streamflow at the end of the water year was about normal.

Streamflow at the index station for northern New Jersey (South Branch Raritan River near High Bridge) averaged 88.1 ft³/s for the water year; this flow is 72.2 percent of the 1918-92 average. Streamflow at the index station for southern New Jersey (Great Egg Harbor River at Folsom) averaged 61.6 ft³/s for the water year; this flow is 71.8 percent of the 1926-92 average. The observed annual mean discharge of the Delaware River at Trenton was 8,308 ft³/s, which is 71.6 percent of the 1913-92 average. The Delaware River is highly regulated by reservoirs and diversions. The natural flow at Trenton (adjusted for upstream storage and diversion) was 87.0 percent of normal for the year. Monthly mean discharge at each of these index gaging stations during the current water year and the long-term normal (1961-90, updated this year) monthly discharge are shown in figure 3. Annual mean discharge at each of these index gaging stations and the mean annual discharge for the period of record are shown in figure 4.

Combined usable storage in 13 major water-supply reservoirs in New Jersey increased from 46.3 billion gallons (57.6 percent of capacity) on October 1, 1991, to 62.1 billion gallons (77.3 percent of capacity) on September 30, 1992. Storage in Wanaque Reservoir increased from 12.1 billion gallons (40.9 percent of capacity) on October 1, 1991, to 18.8 billion gallons (63.3 percent of capacity) on September 30, 1992. Pumped storage in Round Valley Reservoir, the largest capacity reservoir in the State, increased from 51.8 billion gallons (94.2 percent of capacity) on October 1, 1991, to 52.0 billion gallons (94.5 percent of capacity) on September 30, 1992.

Water Ouality

Below-normal precipitation at the beginning of the water year caused decreased dilution and, in turn, increased concentrations of dissolved solids in streams in the northern part of the State. By the end of the year, low streamflows had resulted in above-normal concentrations of dissolved solids. Dilution of dissolved solids generally results in an improvement in water quality because concentrations of undesirable substances, such as trace elements, organic compounds, nutrients, bacteria, and nuisance aquatic organisms, usually also are diluted. The degree of dilution is apparent when monthly mean values of specific conductance, which is related directly to dissolved-solids concentration, for water year 1992 are compared with mean specific-conductance values for an earlier period. Monthly mean specific-conductance values for the Delaware River at Trenton, a large drainage area in central New Jersey and parts of New York and Pennsylvania, in 1992 are compared with the monthly mean values for 1969-91 in figure 5. Specific-conductance values were above the historical average for the first 2 months of the year, reflecting below-normal streamflow; however, normal streamflow in December and January caused monthly mean specific conductance to approximate the historical monthly means for the previous 22 years. The mean monthly specific conductance for February was above the historical mean monthly value as a result of below-average streamflow. The mean monthly specific-conductance values for most of the remainder of water year 1992 were about equal to the mean of the historical monthly mean values, but in September, the specific conductance was above the historical mean as a result of low streamflow.

The monthly mean values of the temperature of the water flowing past the continuous-monitoring station on the Delaware River at Trenton, N.J., in water year 1992 were about equal to the historical monthly mean values (fig. 6). The largest differences between the historical (1966-91) monthly mean water temperatures and those for water year 1992 occurred in March, April, and June.

The monthly median extremes of concentrations of dissolved oxygen in the Delaware River at Trenton during the 1992 water year were within the range of historical (1966-91) extreme values (fig. 7). The monthly median of the daily minimum concentrations was lowest (7.0 milligrams per liter) in July and August, when the monthly mean water temperature was highest for the year. The monthly median of the daily maximum concentrations was highest (15.5 milligrams per liter) in February, when the monthly mean water temperature was 3°C, the minimum for the year.

Ground-Water Levels

Ground-water levels fluctuate in response to such factors as recharge from precipitation, discharge of ground water to streams, changes in atmospheric pressure, evapotranspiration, and ground-water withdrawals from wells. In addition, tidal fluctuations affect water levels in aquifers near oceans, bays, and estuaries. When recharge to the ground-water system exceeds discharge, water levels rise; conversely, when discharge from wells, to surface-water bodies, or to the atmosphere through evapotranspiration exceeds recharge, water levels decline. Records of water levels in wells, therefore, are useful in evaluating seasonal and long-term changes in ground-water storage and local and regional effects of pumping from wells (Rooney, 1971, p. 20).

Changes in ground-water levels during the 1992 water year were determined from a statewide network of observation wells. Ground-water levels in many water-table observation wells ranged from average to below average throughout most of the year and were lower than during the previous water year. Water levels in observation wells that tap the heavily pumped confined aquifers in the southern part of the Coastal Plain continued to undergo long-term net declines, whereas water levels rose dramatically in the confined aquifers in the northern part of the Coastal Plain (Monmouth, eastern Middlesex, and northern Ocean Counties). The greatest water-level decline in an observation well in the 1992 water year occurred in the New Brooklyn Park 3 observation well screened in the Wenonah-Mount Laurel aquifer in Camden County (NJ-WRD well number 07-0478), where the previous record low was exceeded by 4.1 feet. The water level in this well has declined a total of 33.9 feet since April 1983. Other aquifers in the southern New Jersey Coastal Plain in which water levels fell below previous lows of record include the Potomac-Raritan-Magothy aquifer system, the Piney Point aquifer, the Atlantic City 800-foot sand of the Kirkwood-Formation, and the Kirkwood-Cohansey aquifer system.

Long-term declines in water levels reversed in several observation wells screened in the deep confined aquifers in the northern part of the Coastal Plain (Monmouth, eastern Middlesex, and northern Ocean Counties). Water levels in these wells began to rise near the beginning of the 1991 water year and continued to rise during the 1992 water year. This trend resulted, in part, from the substitution of surface water for the ground water previously used for public supply in parts of Middlesex and Monmouth Counties. In addition, some public-water-supply systems shifted their withdrawals from the deeper confined aquifers to the shallower confined aquifers and the unconfined aquifer. Since October 1, 1990, water levels have risen from 5 to 58 feet in several observation wells screened in the Potomac-Raritan-Magothy aquifer system; the water level in the Allaire State Park C observation well (NJ-WRD well number 25-0429) screened in the Englishtown aquifer system has risen more than 48 feet; and the water level in the DOE-Sea Girt observation well (NJ-WRD well number 25-0486) screened in the Wenonah-Mount Laurel aquifer has risen more than 64 feet.

Water-level hydrographs included in this report illustrate the data presented in the tables. Monthly water levels in two water-table observation wells in 1992 are compared with monthly extremes and long-term averages in figure 8. These two wells are the Lebanon State Forest 23-D well (NJ-WRD well number 05-0689) in Burlington County and the Bird well (NJ-WRD well number 19-0002) in Hunterdon County. For further comparison, 20-year water-level hydrographs of two wells in the Coastal Plain--one in an unconfined aquifer (NJ-WRD well number 05-0689) and one in a confined aquifer (NJ-WRD well number 07-0413)--are presented in figure 9. In addition, multiyear hydrographs that include the water-level data for the 1992 water year are provided with the tabular data for most of the wells in this report.

SALTWATER-MONITORING NETWORK

The usability of the ground water of the Coastal Plain of New Jersey depends primarily on its chemical quality. In nearshore areas, actual or potential saltwater contamination of ground water is of paramount importance, and chloride concentration is an excellent index of the extent and degree of saltwater contamination. The presence of high concentrations of chloride alone is not definitive proof of active saltwater encroachment. It may represent a natural static condition common in shallow deposits bordering saline creeks, bays, and marshes. In the deep formations, saline ground water may be residual water trapped in the sediments. Saltwater encroachment in these areas can be proven only by periodic sampling that shows an increase in chloride concentration with time. Because saltwater encroachment is indicated by changes in chloride concentration rather than by actual concentration, the establishment of a chloride-concentration value as a limit that can be used to indicate encroachment is difficult; however, concentrations of chloride less than 10 ppm (parts per million) generally do not indicate encroachment (Seaber, 1963, p. 5).

The U.S. Geological Survey established a saltwater-monitoring network in the Coastal Plain of New Jersey in the 1940's to document and evaluate the movement of saline water into freshwater aquifers that serve as sources of water supply. Water samples are collected mainly from public-supply and industrial wells and, to a lesser extent, from U.S. Geological Survey observation wells. Sampling is concentrated along the coastal area from Raritan Bay to Cape May and along the Delaware River from Cape May County to Gloucester County. In the 1992 water year, samples of water were collected from 156 wells in 8 counties. The results of analysis of the water samples collected from these Saltwater-Monitoring-Network wells are presented in tables in the section of this report titled "Quality of Ground Water."

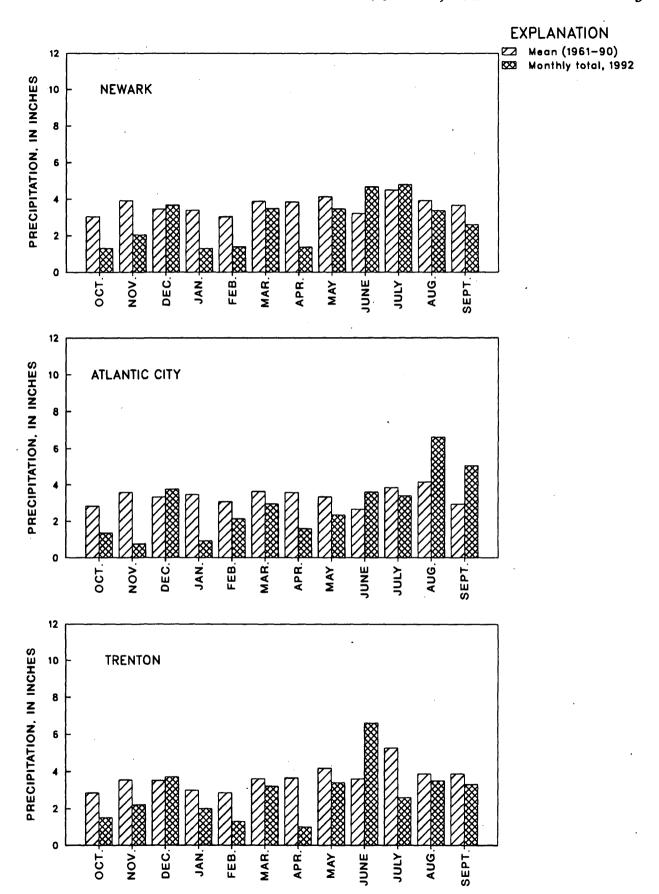
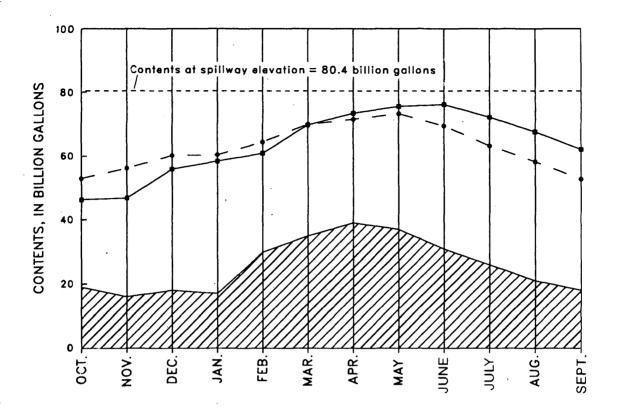



Figure 1.--Monthly precipitation at three National Weather Service locations.

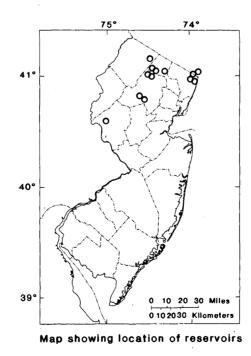
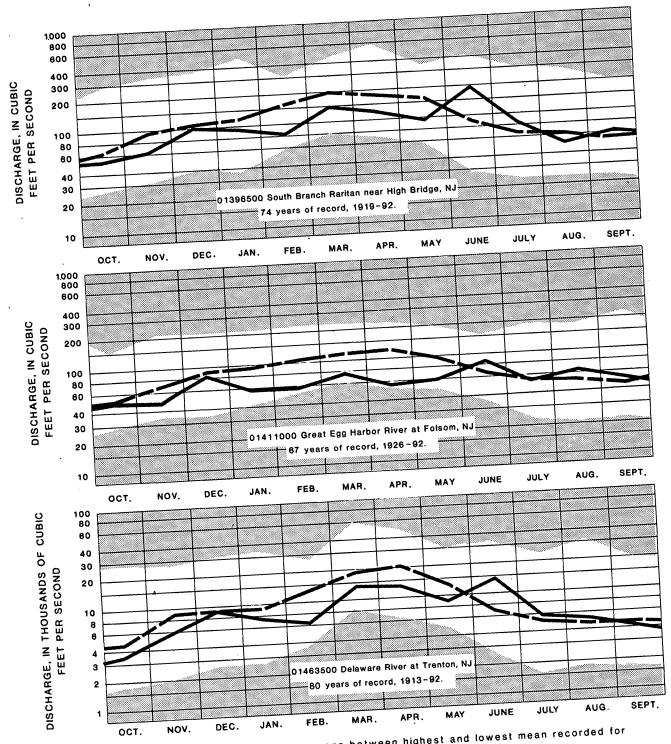



Figure 2.--Combined usable storage in 13 major water-supply reservoirs.

Unshaded area.--Indicates range between highest and lowest mean recorded for the month, prior to 1992 water year.

Broken line.--Indicates normal (median of the monthly means) for the standard reference period, 1961-90.

Solid line. -- Indicates observed monthly mean flow for the 1992 water year.

Figure 3.--Monthly mean discharge at index gaging stations.

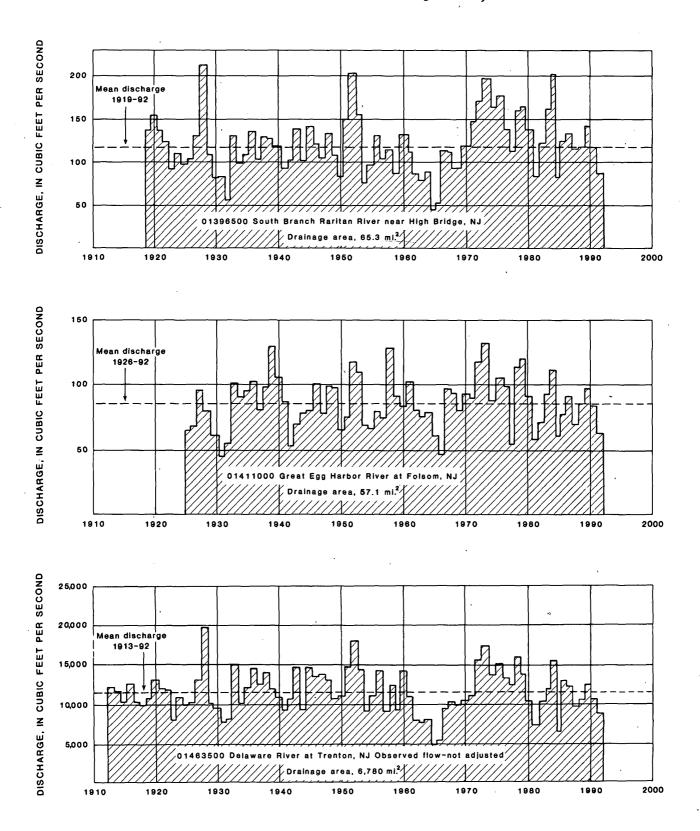
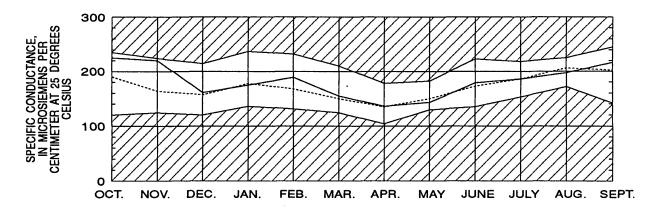
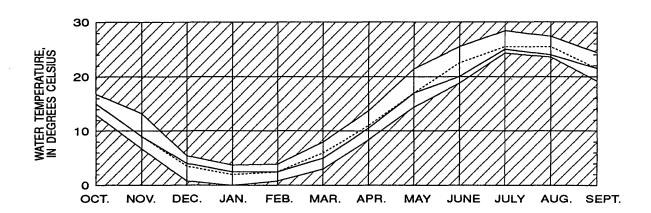



Figure 4.--Annual mean discharge at index gaging stations.

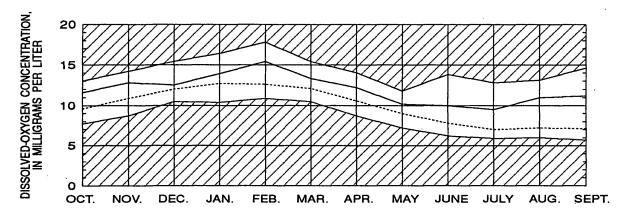


Unshaded area.--Indicates the range between the highest monthly mean of daily values and the lowest monthly mean of daily values, water years 1969-91.

Solid line.--Indicates the monthly mean values for water year 1992.

Broken line.-- Indicates the mean of monthly mean values for water years 1969-91.

Figure 5.--Monthly mean specific conductance at Delaware River at Trenton, New Jersey.

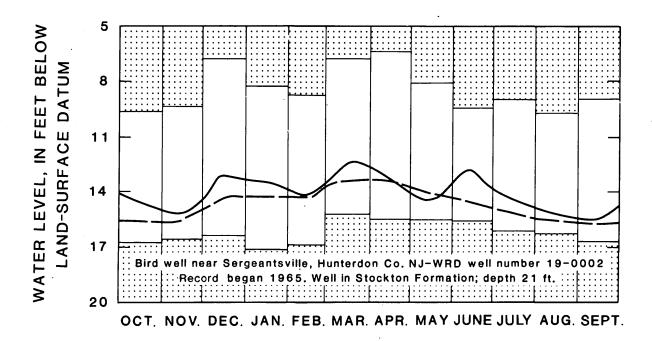


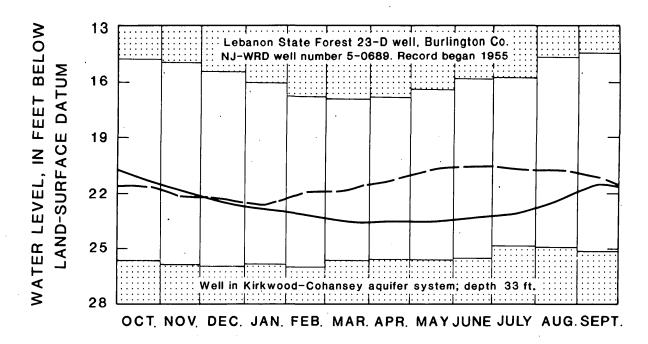
Unshaded area.--Indicates the range between the highest monthly mean of daily values and the lowest monthly mean of daily values, water years 1966-91.

Solid line,--Indicates the monthly mean values for water year 1992.

Broken line.-- Indicates the mean of monthly mean values for water years 1966-91.

Figure 6.--Monthly mean water temperature at Delaware River at Trenton, New Jersey.




Unshaded area.--Indicates the range between the highest monthly median of daily maximum values and the lowest monthly median of daily minimum values, water years 1966-91.

Solid line.--Indicates the monthly median of daily maximum values for water year 1992.

Broken line.-- Indicates the monthly median of daily minimum values for water year 1992.

Figure 7.--Monthly medians of maximum and minimum daily dissolved-oxygen concentrations at Delaware River at Trenton, New Jersey.

Unshaded area--Indicates range between highest and lowest recorded monthly water levels, prior to current year

Dashed line--Indicates average of monthly mean water levels, prior to current year

Solid line--Indicates monthly mean water level for the current year

Figure 8.--Monthly ground-water levels at key water-table observation wells.

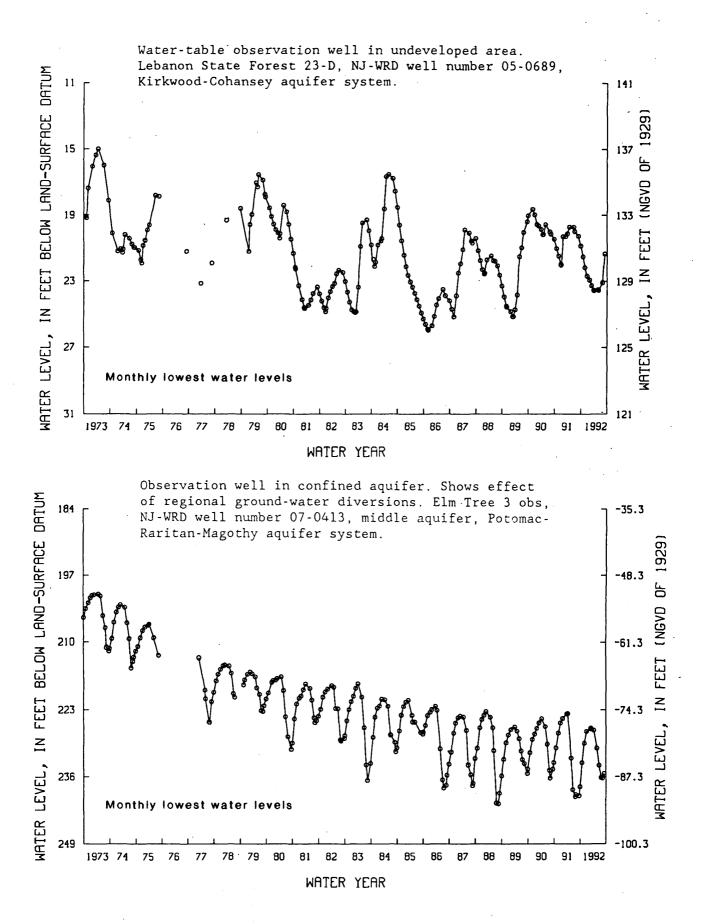


Figure 9.--Twenty-year water-level hydrographs of one artesian and one water-table observation well.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-mark Network is a network of 57 surface-water sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man. The Bench-mark Network station published in this report is McDonalds Branch in Lebanon State Forest, NJ (01466500).

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network of surface-water-quality stations designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research. NASQAN stations published in this report are: Passaic River at Little Falls, NJ (01389500), Raritan River, at Queens Bridge, at Bound Brook, NJ (01403300), Toms River near Toms River, NJ (01408500), West Branch Wading River at Maxwell, NJ (01409815), Maurice River at Norma, NJ (01411500), and Delaware River at Trenton, NJ (01463500).

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP). No NTN stations are published in this report.

Radiochemical Program is a network of regularly sampled surface-water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. The Radiochemical Program station published in this report is Delaware River at Trenton, NJ (01463500).

Tritium Network is a network of stations which has been established to provide baseline information or the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States. No Tritium Network stations are published in this report.

EXPLANATION OF THE RECORDS

The surface-water records published in this report are for the 1992 water year that began October 1, 1991, and ended September 30, 1992. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs and surface-water-quality data. The locations of the stations where the data were collected are shown in figures 11 and 12. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. Generally the "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 01396500, which appears just to the left of the station name, includes the two-digit Part number "01" plus the 6-digit downstream-order number "396500". The Part number designates the major drainage basin; for example, Part "01" covers the North Atlantic slope basins. In some areas where all 8-digit numbers are used up, 10-digit station numbers are assigned between the 8-digit numbers.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. (See figure below.)

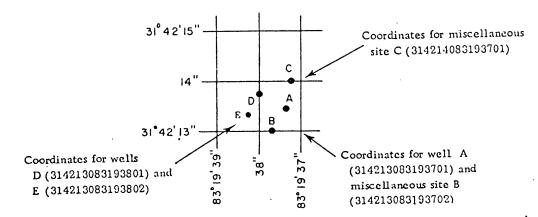


Figure 10.-- System for numbering wells and miscellaneous sites (latitude and longitude)

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records. Location of all complete-record and crest-stage partial-record stations for which data are given in this report are shown in figures 11 and 12.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage, with digital recorders that punch stage values on paper tapes at selected time intervals, or with data collection platforms (DCP) that electronically record and then transmit the data via satellite to ground receiving stations. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the unit mean stages (gage heights) to the stage-discharge curves or tables and averaging the results. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-out-flow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1988 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that flow at it can reasonably be considered equivalent to flow at the present station.

REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see glossary), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily discharge will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir station, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

PEAK DISCHARGES FOR CURRENT YEAR.--For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. All peaks greater than the base discharge are listed with the maximum for the year footnoted by an asterisk (*). Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man or at locations where the instantaneous peak discharge does not exceed the mean daily discharge by 10 percent. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of instantaneous peak discharges in the PEAK DISCHARGES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN."); or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station records within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year, but also for the previous calendar year and for the designated period, as appropriate. The designated period selected, "WATER YEARS ______," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript of in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period.

At some stations, the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN .-- The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date for the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Secondary instantaneous peak discharges above a selected base discharge are given in the station manuscript under the heading "PEAK DISCHARGES ABOVE BASE FOR CURRENT YEAR."
- INSTANTANEOUS PEAK STAGE.—The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
 - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
 - Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
 - Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS .-- The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS .-- The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. Following the listings of measurements at miscellaneous sites is a table of maximum elevations at tidal crest-stage stations.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated" or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures for more than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in the New Jersey District office. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 11.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records", as used in this report, and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites which are not at a surface-water daily record station appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

Water-quality data must represent the in-situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, must be made on-site when the samples are collected. In addition, specific procedures must be used in collecting, treating, and shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. These references are listed under "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS" at the end of the introductory text. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey, New Jersey District office.

In streams, concentrations of various constituents may vary within the cross section depending on variables such as flow rate, the sources of the constituents, and mixing. Generally, constituents in solid phases are more variable in the cross section than are dissolved constituents. In many cases, samples must integrate several parts of the stream cross section to be representative, especially if loads will be calculated. One sample may be representative of the cross section when the distribution of constituents is homogeneous. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from several verticals.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. In some instances, apparent inconsistencies may exist in the data. For example, the orthophosphate-phosphorus concentration may exceed total phosphorus concentration. However, the difference in the inconsistent values normally is smaller than the precision of the analytical techniques. Inconsistencies between pH and carbonate and bicarbonate concentrations are commonly caused by intake or loss of carbon dioxide by the sample before it can be analyzed.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the Geological Survey, New Jersey District Office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, maximum, minimum and mean temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the New Jersey District Office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for biochemical-oxygen demand and for fecal coliform and enterococcus bacteria are analyzed at the District laboratory or at the New Jersey Department of Health, Division of Laboratories and Epidemiology. Samples for nutrients are analyzed at the New Jersey Department of Health or at the Geological Survey Laboratory in Arvada, Colorado. Sediment samples are analyzed in the Geological Survey laboratory in Arvada, Colorado. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the Geological Survey laboratory are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites which are not at a surface-water daily record station are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
Е	Estimated.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
K	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
&	Biological organism estimated as dominant.
*	Laboratory determination (used when field determination is otherwise expected or indicated in column heading).

Dissolved Trace-Element Concentrations

Note.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Present data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes. However, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey will begin using new trace-element protocols in water year 1994.

CURRENT WATER RESOURCES PROJECTS IN NEW JERSEY

The Geological Survey is currently involved in a number of hydrologic investigations in the State of New Jersey. The following is a list of these investigations. Results are published at the conclusion of short-term projects or periodically in the case of long-term projects. Hydrologic data from these projects are entered into the WATSTORE data base. Subsequent sections contain information on recent publications and on WATSTORE.

Compositional Modeling of Organic Transport and Biodegradation of Organic Compounds in the Unsaturated Zone and Ground Water

Data Base Development and Determination of Confinement for Public Supply Wells in New Jersey

Development of a Geographical Information System Data Base, Gloucester County, New Jersey

Flood Characteristics of New Jersey Streams

Geohydrology at Picatinny Arsenal in Morris County, New Jersey

Geophysical Characteristics of Aquifers in New Jersey

Ground-Water Contamination with Chlorinated Volatile Organic Compounds at Picatinny Arsenal, Morris County, New Jersey

Ground-Water Data Collection Network

Ground-Water Resources and Saltwater Intrusion of Cape May County

Hydrologic Controls on Well-Contributing Areas in New Jersey

Hydrology of Surficial Aquifer Systems

Interpretation of Water Quality in New Jersey Streams, 1976-1986

Investigation of Optimal Recharge to Augment Ground-Water Supply in Peninsular Cape May County, New Jersey

Investigation of Water Quality in the Wanaque South Diversion Area, Morris and Passaic Counties, New Jersey

Land Subsidence Related to Ground-Water Withdrawals in the Coastal Plain Aquifer of New Jersey

Mercury Distribution, Sources and Mobility in the Kirkwood-Cohansey Aquifer System, New Jersey Coastal Plain

Modeling and Experimental Investigation of Hydrocarbon Transport and Biodegradation in the Unsaturated Zone

Multispecies Transport in Ground Water

New Jersey Water Use Program

Nonpoint-Source Ground-Water Contamination, Coastal Plain of Long Island, New York, and of Southern New Jersey

Optimal Withdrawals from a Coastal Aquifer in Cape May County Subject to Saltwater Encroachment: Numerical Analysis and Case Study

Optimization of Ground-Water-Withdrawal Strategies for the Coastal Plain Aquifer System of New Jersey

Pesticide Vulnerability of Public Ground-Water Supplies

Relation of Agricultural Pesticide Usage to Presence of these Pesticides in Surficial Waters Used for Water Supply

Quality of Water Data Collection Network

Regionalization of Low Flows for New Jersey Streams

Relation Between Land Use and Ground-Water Quality in Franklin Township, Gloucester County, New Jersey

Relations between Streamflow, Salinity, and Water Quality in Estuaries of the Toms and Metedeconk Rivers, New Jersey

Removal of Volatile Ground-Water Contaminants by Inducing Air-Phase Transport

Review of Remedial Investigation for the Vineland Chemical Superfund Site

Somerset County Flood-Monitoring Network

Spatial Analysis of Statewide Water-Quality Data

Surface Water Data Collection Network

Surfactant Sorption to Soil and its Effect on the Distribution of Anthropogenic Organic Compounds

Transport of Organic Contaminants Transport and Plume Delineation of Contaminant in Fractured Bedrock of the Passaic Formation, Rutgers University Busch Campus, New Brunswick, New Jersey

WATER-RELATED REPORTS FOR NEW JERSEY COMPLETED BY THE GEOLOGICAL SURVEY IN RECENT YEARS

- Baehr, A.L., Fischer, J.M., Lahvis, Matthew, Baker, R.J., and Smith, N.P., 1991, A method to estimate microbial degradation rates for hydrocarbons based on gas transport in the unsaturated zone at a gasoline spill site in Galloway Township, N.J.: Proceedings of the Fifth U.S. Geological Survey Toxic Substances Hydrology Technical Meeting, March 11-15, 1992, Monterey, California, Water-Resources Investigations Report 91-4034, p. 250-255.
- Baker, R.J., Fischer, J.M., Smith, N.P., Koehnlein, S.A., and Baehr, A.L., 1991, Gas chromatography methods for determining the composition of vapor phase in gasoline contaminated soils: Proceedings of the Fifth U.S. Geological Survey Toxic Substances Hydrology Technical Meeting, March 11-15, 1991, Monterey, California, Water-Resources Investigations Report 91-4034, p. 280-286.
- Barton, Cynthia, and Kozinski, Jane, 1991, Hydrogeology of the region of Greenwich Township, Gloucester County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 90-4198, 77 p., 11 pls.
- Barton, G.J., and Ivahnenko, Tamara, 1992, Hydrogeologic, geophysical, and ground-water-quality reconnaissance at and near the Ciba-Geigy Superfund Site, Ocean County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 91-4048, 84 p., 10 pls.

- Bauersfeld, W.R., Moshinsky, E.W., and Pustay, E.A., 1992, Water resources data for New Jersey, 1991--Volume 1 Surface-Water Data: U.S. Geological Survey Water-Data Report NJ-91-1.
- Bauersfeld, W.R., Jones, W.D., and Pustay, E.A., 1992, Water resources data, New Jersey, 1991--Volume 2 Ground-Water Data: U.S. Geological Survey Water-Data Report NJ-91-2.
- Bauersfeld, W.R., and Schopp, R.D., 1991, New Jersey floods and droughts: in National Water Summary, 1988-89--Floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, p. 401-405.
- Brown, G.A., and Zapecza, O.S., 1990, Results of test drilling in Howell Township, Monmouth County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 90-4062, 42 p.
- Bruell, C.J., Gilbert, C.D., and Baehr, A.L., 1991, Non-Fickian vapor transport in sand columns contaminated with volatile organic compounds: Proceedings of the Fifth U.S. Geological Survey Toxic Substances Hydrology Technical Meeting, March 11-15, 1992, Monterey, California.
- Cho, H.J., Jaffe, P.R., and Smith, J.A., 1991, Design of a field experiment to study the dynamics of trichloroethylene vapors in the unsaturated zone during an infiltration event: Proceedings of the Fifth U.S. Geological Survey Toxic Substances Hydrology Technical Meeting, March 11-15, 1992, Monterey, California.
- Fischer, J.M., Baehr, A.L., and Smith, N.P., 1991, An investigation of the transport and microbial degradation of hydrocarbons in the subsurface at a gasoline spill site in Galloway Twp., New Jersey: Proceedings of the Fifth U.S. Geological Survey Toxic Substances Hydrology Technical Meeting, March 11-15, 1992, Monterey, California.
- Fulton, J.L., 1990, Application of a distributed-routing rainfall-runoff model to flood-frequency estimation in Somerset County, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 89-4210, 78 p.
- Gibs, Jacob, 1990, Well-purging criteria for sampling purgeable organic compounds: Ground Water, v. 28, no. 1, January-February 1990, p. 68-78.
- Gibs, Jacob, Brown, G.A., and Turner, K.S., 1991, Use of a multi-level sampler to determine vertical concentration gradients of volatile aromatic hydrocarbons in ground water, Galloway Township, New Jersey: Proceedings of the Fifth U.S. Geological Survey Toxic Substances Hydrology Technical Meeting, March 11-15, 1992, Monterey, California.
- Gronberg, J.M., Pucci, A.A., Jr., and Birkelo, B.A., 1991, Hydrogeologic framework of the Potomac-Raritan-Magothy aquifer system, northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations Report 90-4016, 37 p., 8 pls.
- Hay, L.E., and Campbell, J.P., 1990, Water-quality trends in New Jersey streams: U.S. Geological Survey Water-Resources Investigations Report 90-4046, 297 p.
- Hickman, R.E., 1989, Compilation of mean annual suspended-sediment yields for selected streams draining basins within and adjacent to coal fields in the eastern United States: U.S. Geological Survey Open-File Report 88-80, 57 p.
- Hill, M.C., Lennon, G.P., Brown, G.A., Hebson, C.S., and Rheaume, S.J., 1992, Geohydrology of, and simulation of ground-water flow in, the valley-fill deposits in the Ramapo River Valley, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 90-4151, 92 p.
- Horn, M.A., and Bratton, Lisa, 1991, Ground-water withdrawals from Coastal Plain aquifers for public supply and self-supplied industrial use in Middlesex and Monmouth Counties, New Jersey, 1901-85: U.S. Geological Survey Water-Resources Investigations Report 90-4083, 50 p.
- Kozinski, Jane, Lacombe, P.J., Hochreiter, J.J., Jr., and Lewis, J.C., 1990, Geophysical and chemical investigations of ground water at five industrial or waste-disposal sites in Logan Township, Gloucester County, New Jersey, 1983-87: U.S. Geological Survey Water-Resources Investigations Report 90-4004, 131 p.
- Lacombe, P.J., 1990, Types of surface- and borehole-geophysical equipment and methods used in hydrologic and geologic investigations in New Jersey: in Brown, J.O., and Kroll, R.L., comp., Aspects of ground water in New Jersey: Seventh annual meeting of the Geological Association of New Jersey: Field guide and proceedings, October 26-27, 1990, p. L1-L4.

- Lewis, J.C., and Hochreiter, J.J., Jr., 1990, History of ground-water contamination and summary of ground-water investigations through 1985 at four industrial sites, Logan Township, New Jersey: U.S. Geological Survey Open-File Report 90-102, 39 p.
- Lewis, J.C., Hochreiter, J.J., Jr., Barton, G.J., Kozinski, Jane, and Spitz, F.J., 1991, Hydrogeology of, and ground-water quality in, the Potomac-Raritan-Magothy aquifer system in the Logan Township region, Gloucester and Salem Counties, New Jersey: U.S. Geological Survey Water-Resources Investigations Report 90-4142, 92 p., 11 pls.
- McAuley, S.D., Nicholson, R.S., Barringer, J.L., and Blyskun, G.J., 1992, Plan to evaluate the hydrogeology of the valley-fill and carbonate-rock aquifers near Long Valley in the New Jersey Highlands: New Jersey Geological Survey Open-File Report 92-3, 24 p.
- McDonald, C.L., Gibs, Jacob, Ehlke, T.A., and Koehnlein, S.A., 1992, Preservation of volatile aromatic hydrocarbons with silver salts: Proceedings of Water Quality Technology Conference, American Water Works Association, November 11-15, 1990, San Diego, California, p. 995-1008.
- Nicholson, R.S., 1990, Progress in the evaluation of a carbonate-rock aquifer near Long Valley in the New Jersey Highlands: in Brown, J.O., and Kroll, R.L., comp., Aspects of ground water in New Jersey: Seventh annual meeting of the Geological Association of New Jersey: Field guide and proceedings, October 26-27, 1990, p. N25-N31.
- Pucci, A.A., Jr., Ehlke, T.A., and Owens, J.P., 1992, Confining unit effects on water quality in the New Jersey Coastal Plain: Ground Water, v. 30, no. 3, May-June 1992, p. 415-427.
- Pucci, A.A., Jr., and Owens, J.P., in press, Geochemical variations in pore squeezed ground-water samples from the Freehold, New Jersey, corehole, in Proceedings of the 1988 U.S. Geological Survey Workshop on Geology and Geohydrology of the Atlantic Coastal Plain: U.S. Geological Survey Circular 1058.
- Pucci, A.A., Jr., Pope, D.A., and Gronberg, J.M., in press, Hydrogeology, ground-water flow model, and saltwater intrusion of the Potomac-Raritan-Magothy aquifer system in the northern Coastal Plain of New Jersey.
- Qualls, C.L., and Horn, M.A., 1990, New Jersey water supply and use: in U.S. Geological Survey Water-Supply Paper 2350, p. 367-374.
- Sargent, B.P., Fusillo, T.V., Storck, D.A., and Smith, J.A., 1990, Assessment of contamination of ground water and surface water in the area of Building 24, Picatinny Arsenal, New Jersey, 1986-87: U.S. Geological Survey Water-Resources Investigations Report 90-4057, 120 p.
- Schopp, R.D., and Burns, R.J., 1991, Local flood warning systems in New Jersey: Proceedings of the Fifteenth Annual Conference of the Association of State Floodplain Managers, June 10-14, 1991, Denver, Colorado, p. 172-175.
- Smith, J.A., Cho, H.J., Jaffe, P.R., MacLeod, C.L., and Koehnlein, S.A., 1992, Sampling and analysis of unsaturated-zone water for trichlo-roethene: A comparison of four methods: Proceedings of the Fifth U.S. Geological Survey Toxic Substances Hydrology Technical Meeting, March 11-15, 1992, Monterey, California.
- Smith, J.A., and Jaffe, P.R., 1991, Comparison of tetrachloromethane sorption to an alkylammonium-clay and alkyldiammonium-clay, Environmental Science and Technology, submitted.
- Smith, J.A., Jaffe, P.R., and Chiou, C.T., 1990, Effect of 10 quaternary ammonium cations on tetrachloromethane sorption to clay: Environmental Science and Technology, v. 24, no. 8, p. 1167-1172.
- Smith, J.A., Tuck, D.M., Jaffe, P.R., and Mueller, R.T., 1992, Effects of surfactant on the mobility of nonpolar organic contaminants in porous media: in Organic Substances and Sediments in Water, R. Backer, ed., Lewis Publishers (Chelsea, MI), p. 201-230.
- Szabo, Zoltan, 1990, Uranium, radium, and radon in ground water from the rock aquifers of the Piedmont province and the Kirkwood-Cohansey aquifer system of the Coastal Plain province, New Jersey: in Brown, J.O., and Kroll, R.L., comp., Aspects of ground water in New Jersey: Seventh annual meeting of the Geological Association of New Jersey: Field guide and proceedings, October 26-27, 1990, p. H1-H11.
- Szabo, Zoltan, Zapecza, O.S., and Nawyn, J.P., 1989, Effects of ground-water geochemistry on the distribution of dissolved uranium and radium-226 in Newark basin, New Jersey: in Proceedings of the October 1989 Conference: Ground Water in the Piedmont.

- Titus, E.O., Clawges, R.M., and Qualls, C.L., 1990, Estimated demand for agricultural water for irrigation use in New Jersey, 1990: U.S. Geological Survey Open-File Report 90-156, 23 p.
- Vowinkel, E.F., 1991, Comparison of relations between shallow-ground-water quality and land use in two New Jersey Coastal Plain aquifer systems: Proceedings of the Fifth U.S. Geological Survey Toxic Substances Hydrology Technical Meeting, march 11-15, 1992, Monterey, California.
- Vowinkel, E.F., and Siwiew, S.F., 1991, Plan to evaluate the effects of hydrogeologic conditions and human activities on water quality in the Coastal Plain of New York and New Jersey: U.S. Geological Survey Water-Resources Investigations Report 91-4091, 42 p.
- Zapecza, O.S., 1989, Hydrogeologic framework of the New Jersey Coastal Plain, Regional aquifer-system analysis--northern Atlantic Coastal Plain: U.S. Geological Survey Professional Paper 1404-B, 49 p. (Supersedes Open-File report 84-730.)
- Zapecza, O.S., 1990, An overview of New Jersey ground-water hydrology: in Brown, J.O., and Kroll, R.L., comp., Aspects of ground water in New Jersey: Seventh annual meeting of the Geological Association of New Jersey: Field guide and proceedings, October 26-27, 1990, p. B1-B22.

ACCESS TO WATSTORE DATA

The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases.

- Station Header File Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the U.S. Geological Survey collects or has collected data.
- Daily Values File Contains more than 220 million daily values of stream flows, stages, reservoir contents, water temperatures, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
- Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage-height values at surface-water sites.
- Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water.
- Ground-Water Site Inventory Data Base Contains inventory data for over 900,000 wells, springs, and other sources of ground
 water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time field measurements
 such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requestor will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092

In addition to providing direct access to WATSTORE, data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch and 3-1/2 inch floppy disk; and, as noted in the introduction, on CD-ROM discs. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices. (See address on the back of the title page.) A limited number of CD-ROM discs will be available for sale by Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C plus or minus 1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5°C plus or minus 0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C plus or minus 1.0°C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria which produce pink to red colonies with black or red-dish-brown precipitate after incubation at 41°C on mE agar and subsequent transfer to EIA medium. Enterococci include Streptococcus feacium, Streptococcus feacium, and their variants.

Bedload is the sediment which moves along in essentially continuous contact with the streambed by rolling, sliding, and making brief excursions into the flow a few diameters above the bed.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Benthic invertebrates are invertebrate animals inhabiting the bottoms of lakes, streams, and other water bodies. They are useful as indicators of water quality.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by micro-organisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m^3) , and periphyton and benthic organisms in grams per square mile (g/m^2) .

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 105°C for zooplankton and periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed material.

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell.

Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll a and b are the two most common green pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuing-record station is a specified site which meets one or all conditions listed:

- 1. When chemical samples are collected daily or monthly for 10 or more months during the water year.
- 2. When water temperature records include observations taken one or more times daily.
- When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic foot per second (FT³/S, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 um membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Extractable organic halides (EOX) are organic compounds which contain halogen atoms such a chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried stream bottom sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the stream bottom sediments.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCo).

High tide is the maximum height reached by each rising tide.

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Low tide is the minimum height reached by each falling tide.

Mean tide is the average of all high and low tides over a specified period.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

<u>Multiple-plate samplers</u> are artificial substrates of known surface area used for obtaining benthic-invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.

National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

<u>National Trends Network</u> (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Deposition Program (NADP).

Organism is any living entity.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m2), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey computerized data system, WATSTORE, to uniquely identify a specific constituent. The codes used in WATSTORE are the same as those used in the U.S. Environmental Protection Agency data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

<u>Classification</u>	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004062	Sedimentation
Sand	.062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The partial-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass, or volume.

<u>Periphyton</u> is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (PC, pCi) is one trillionth (1×10^{12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7×10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and ar commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(m²/time)] for periphyton and macrophytes and [mg C/(m³/time)] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg O /(m²/time)] for periphyton and macrophytes and [mg O /(m³/time)] for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

<u>River mile</u> as used herein, is the distance above the mouth of Delaware Bay, measured along the center line of the navigation channel or the main stem of the Delaware River. River mile data were furnished by the Delaware River Basin Commission.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

<u>Bed load</u> is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027.

<u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

<u>Total sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total sediment discharge.

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

<u>Natural substrate</u> refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization or organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hard-board) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. all areas shown are those for the stage when the planimetered map was made.

Surficial bed material is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent.

<u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u>, is the following:

Kingdom	Animal
Phylum	Arthropoda
Class	
Order	Ephemeroptera
Family	
Genus	
Species	

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

Total discharge is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1985, is called the "1985 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

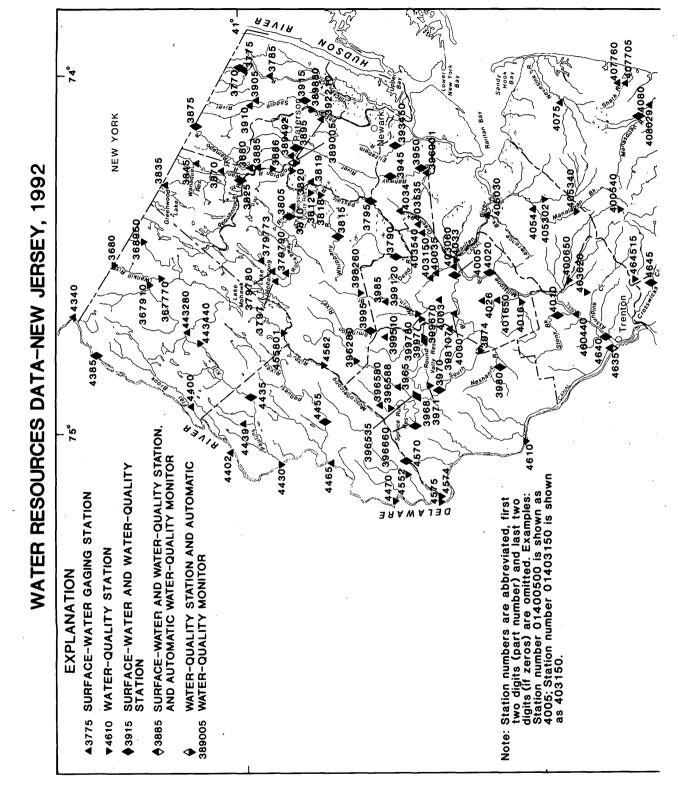
WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

SELECTED REFERENCES

- Anderson, P.W., and George, J.R., 1966, Water-quality characteristics of New Jersey streams: U.S. Geological Survey Water-Supply Paper 1819-G, 48 p.
- Ayers, M.A., and Pustay, E.A., 1988, New Jersey ground-water quality: in National Water Summary 1986, U.S. Geological Survey Water Supply Paper 2325, p. 369-376.
- Bauersfeld, W.R., and Schopp, R.D., 1991, New Jersey floods and droughts: in National Water Summary, 1988-89--Floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, p. 401-405.
- Fusillo, T.V., Hochreiter, J.J., Jr., and Lord, D.G., 1984, Water-quality data for the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey, 1923-83: U.S. Geological Survey Open-File Report 84-737, 127 p, 1 plate.
- Gillespie, B.D., and Schopp, R.D., 1982, Low-flow characteristics and flow duration of New Jersey streams: U.S. Geological Survey Open-File Report 81-1110, 164 p.

- Heath, R.C., 1983, Basic ground-water hydrology: U.S. Geological Survey Water-Supply Paper 2220, 84 p.
- Hem, J.D., 1985, Study and interpretation of the chemical characteristics of natural water, 3d ed.: U.S. Geological Survey Water-Supply Paper 2254, 263 p.
- Langbein, W.B., and Iseri, K.T., 1960, General introduction of hydrologic definitions: U.S. Geological Survey Water-Supply Paper 1541-A, 29 p.
- Lohman, S.W., and others, 1972, Definitions of selected ground-water terms-revisions and conceptual refinements: U.S. Geological Survey Water-Supply Paper 1988, 21 p.
- Luzier, J.E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.
- Rantz, S.E., and others, 1982, Measurement and computation of streamflow; Volume 1. Measurement of stage and discharge, Volume 2. Computation of Discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p.
- Rooney, J.G., 1971, Ground-water resources, Cumberland County, New Jersey: New Jersey Department of Environmental Protection Special Report 34, 83 p.
- Schaefer, F.L., 1983, Distribution of chloride concentrations in the principal aquifers of the New Jersey Coastal Plain, 1977-81: U.S. Geological Survey Water-Resources Investigations Report 83-4061, 56 p.
- Schaefer, F.L., 1987, Selected literature on the water resources of New Jersey by the U.S. Geological Survey, through 1986: U.S. Geological Survey Open-File Report 87-767, 45 p.
- Schopp, R.D., and Bauersfeld, W.R., 1986, New Jersey surface-water resources: in National Water Summary 1985 Hydrologic events and surface-water resources, U.S. Geological Survey Water-Supply Paper 2300, p. 335-340.
- Seaber, P.R., 1963, Chloride concentrations of water from wells in the Atlantic Coastal Plain of New Jersey, 1923-61: New Jersey Division of Water Policy and Supply, Special Report 22, 250 p.
- U.S. Geological Survey, 1976, Surface-water supply of the United States, 1966-70, Part 1. North Atlantic Slope basins, Volume 2. Basins from New York to Delaware: U.S. Geological Survey Water-Supply Paper 2102, 985 p., (most recent volume).
- ____1977, Ground-water levels in the United States, 1973-74, Northeastern States: U.S. Geological Survey Water-Supply Paper 2164, 126 p., (most recent volume).
- Vickers, A.A., and McCall, J.E., 1968, Surface water supply of New Jersey, streamflow records 1961-65: New Jersey Division of Water Policy and Supply, Special Report 31, 351 p., (most recent volume).
- Vowinkel, E.F., 1984, Ground-water withdrawals from the Coastal Plain of New Jersey, 1956-80: U.S. Geological Survey Open-File Report 84-226, 32 p.
- Walker, R.L., 1983, Evaluation of water levels in major aquifers of the New Jersey Coastal Plain, 1978: U.S. Geological Survey Water-Resources Investigations 82-4077, 56 p.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS


The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficken, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. Scott Keys and L. M. McCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W. Scott Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. *Measurement of peak discharge by the slope-area method,* by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. *Measurement of peak discharge at culverts by indirect methods,* by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. *Measurement of peak discharge at width contractions by indirect methods,* by H. F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS--TWRI Book 3. Chapter A5. 1967. 29 pages.
- 3-A6. *General procedure for gaging streams,* by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. *Measurement of time of travel in streams by dye tracing,* by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.

- 3-Al0. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. *Measurement of discharge by moving-boat method,* by G. F. Smoot and C. E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A12. 1986. 41 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. *Use of flumes in measuring discharge,* by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14, 1983, 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. *Measurement of discharge using tracers*, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathburn, N. Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels of streamflow gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 27 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G. D. Bennett: USGS-- TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by Richard L. Cooley and Richard L. Naff: USGS-TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by Eliezer J. Wexler: USGS--TWRI Book 3, Chapter B7. 1992. 90 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.

- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M. J. Fishman and L. C. Friedman: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. *Methods for determination of radioactive substances in water and fluvial sediments,* by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS-TWRI Book 5, Chapter C1. 1969. 58 pages.
- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S. A. Leake and D. E. Prudic: USGS--TWRI Book 6, Chapter A2. 1991. 68 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. *Methods of measuring water levels in deep wells,* by M. S. Garber and F. C. Koopman: USGS-TWRI Book 8, Chapter A1, 1968, 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

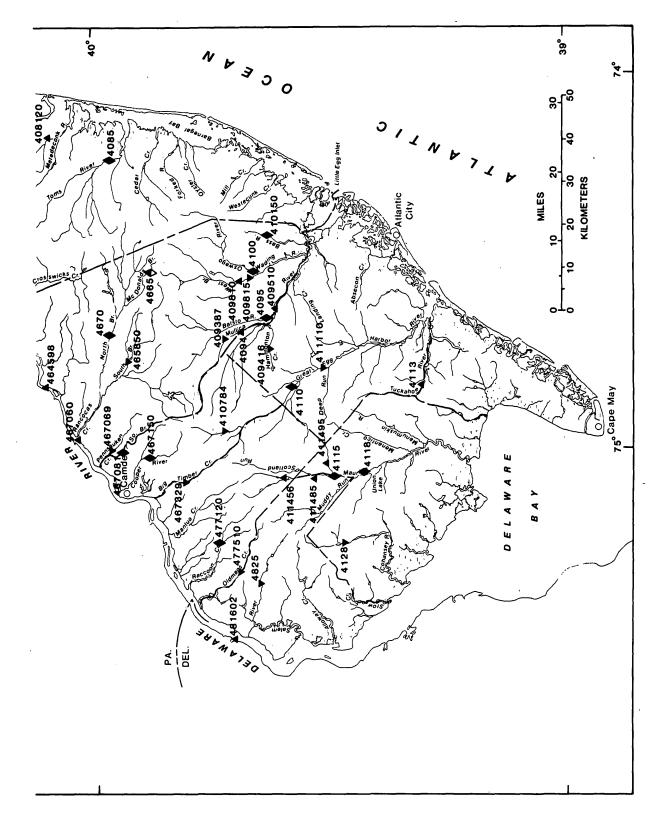
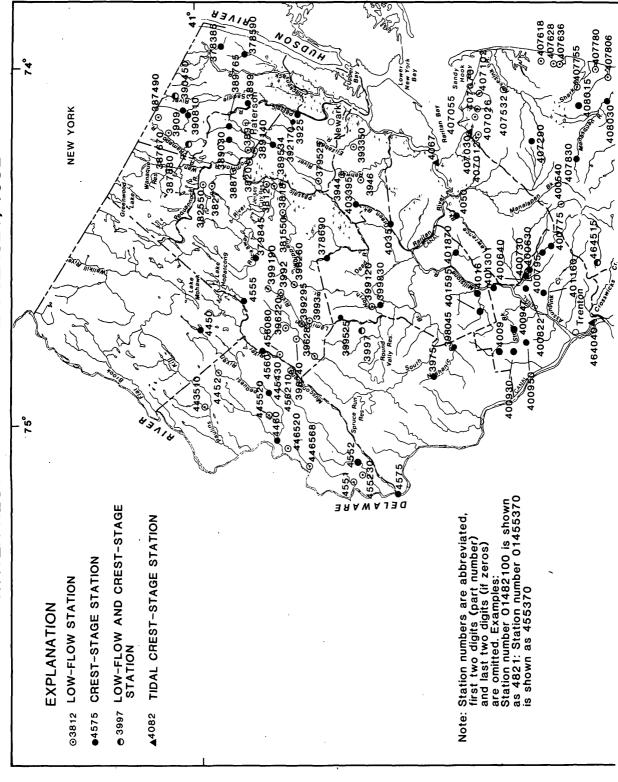



Figure 11.--Map showing location of gaging stations and surface-water quality stations.

WATER RESOURCES DATA-NEW JERSEY, 1992

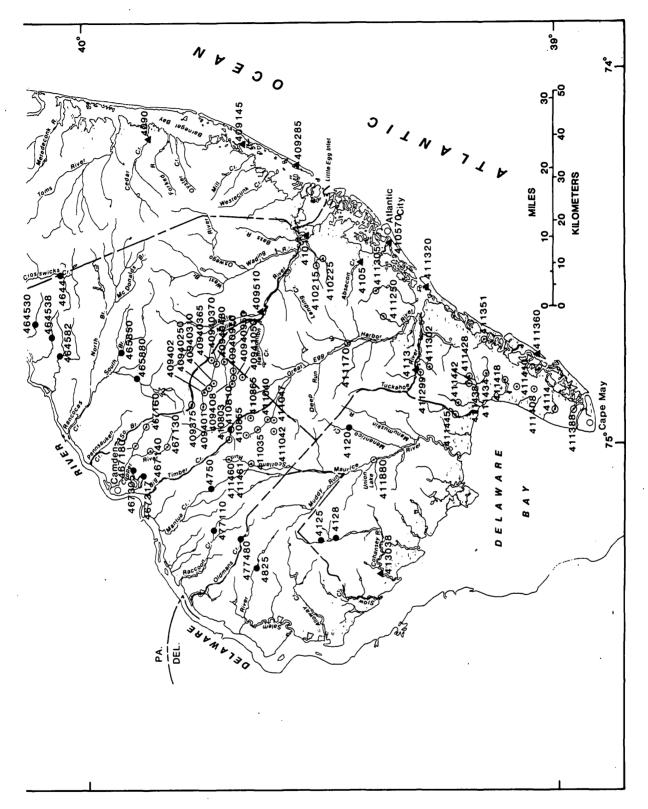


Figure 12.--Map showing location of low-flow and crest-stage partial-record stations

01367770 WALLKILL RIVER NEAR SUSSEX, NJ

LOCATION.--Lat 41°11'38", long 74°34'32", Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.8 mi upstream of Papakating Creek, 1.7 mi southwest of Independence Corner, 2.0 mi southeast of Sussex, and 2.1 mi northwest of McAfee.

DRAINAGE AREA.--60.8 mi².

PERIOD OF RECORD.--Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER. QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	ı	JATER, QUAL	ITY DATA	, WATER YE	EAR OCTOBI	ER 1991 T	O SEPTEMB	ER 1992		
DATE	CH/ II CU I TIME	JBIC CO FEET DU PER AN	E- W/ FIC WI N- FI CT- (SI CE /	TAND - AT ARD W	TURE (ATER SO	YGEN, (DIS- OLVED S	DIS- DE SOLVED B PER- C CENT I SATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT_1991	1070	45 (3	,	7.4	14.0	40.0	04	-1 0	4700	470
08 JA <u>N</u> 1992	1030	15 62			11.0	10.0	91	E1.8	1300	130
30 MAR	1315	55 35		8.0	2.0	••		E2.3	130	20
31 MAY		170 36		7.7	6.0	10.4	85	E1.3	80	20
20 JUL	1315	44 49	9	8.1	16.0	8.9	91	<1.2	50	30
22	1115	30 55	5	8.0	20.0	7.7	86	<1.0	220	340
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/	ED L
OCT 1991 08	230	53	. 24	35	3.7	186	47	73	0.	1
JAN 1992		'								
30 MAR	75			20		100	18	27	0.	
31 MAY	120		13	20	1.0	102	22	40	0.	
20 JUL_	190	45	19	24	1.4	159	21	45	0.	
22	210	48	22	29	2.3	184	20	61	0.	1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + IC L
OCT_1991										
08 JAN 1992	8.6	363	0.010	0.008	••	1.67	0.08	0.09	0.60	
30 MAR	4.7	152	0.130	0.070	0.83	0.65	<0.03	0.03	0.45	
31 May	5.6	194	0.008	0.007	0.71	0.71	0.04	0.07	0.33	
20 JUL	5.9	261	0.011	0.012	0.89	0.90	<0.03	<0.03	0.52	
22	6.7	308	0.011	0.011	1.94	1.88	0.04	0.04	0.30	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI MENT DIS CHARG SUS PEND (T/DA	: E , ED
ОСТ 1991	0.54		2 2	ZO 00	ZO 03	, ,	0.7	2	0.0	Ω
08 Jan 1992	0.51		2.2	<0.02	<0.02	4.6	0.3		0.0	
30 MAR	0.38	1.3	1.0	0.05	0.04	3.3	0.2	14	2.1	
31 May	0.34	1.0	1.0	<0.02	<0.02	3.8	0.3			
20 JUL	0.79	1.4	1.7	<0.02	<0.02	3.9	0.6	10	1.2	
22	0.24	2.2	2.1	0.04	0.02	4.1	0.5	6	0.4	9

01367770 WALLKILL RIVER NEAR SUSSEX, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYI LIUM, TOTAL RECOV ERABL (UG/I AS BE	BORC TOTA - RECC E ERAB	NL TOTA DV- RECO BLE ERAE 'L (UG)	AL TOTA DV- RECO BLE ERAN /L (UG)	AL TOTAL OV- RECOV- BLE ERABLE /L (UG/L
MAY 1992 20	1315	16	2	<10		20	<1	<1 1
DATE	IRO TOT REC ERA (UG AS	AĹ TOT OV- REC BLE ERA /L (UG	D NES	TAL 1 COV- F ABLE E G/L (OTAL ECOV- RABLE UG/L	IICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAY 1992 20		460	2	130	<0.10	1	<1	20

01367910 PAPAKATING CREEK AT SUSSEX, NJ

LOCATION.--Lat 41°12'02", long 74°35'59", Sussex County, Hydrologic Unit 02020007, at bridge on State Route 23 in Sussex, 0.7 mi downstream from Clove Brook, 2.6 mi southwest of Independence Corner, and 3.4 mi northwest of McAfee.

DRAINAGE AREA. -- 59.4 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC CO FEET DO PER A	PE- WAIFIC WHON- FI UCT- (SI NCE A	TAND- A NRD W	MPER- C TURE ATER EG C)	DXYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED E (PER- C CENT SATUR-	BIO- FO CHEM- FO ICAL, E 5 DAY BI	DLI- CO DRM, MI ECAL, W/ EC TO ROTH (CO	TERO- DCCI E,MF ATER DTAL DL / D ML)
OCT 1991	1100	16	369	7.5	11.0	7.8	72	2.8	9200	540
JAN 1992 29	1200	75		7.1	0.0	12.2		E1.5	700	80
MAR 30	1300	180	204	7.9	4.0	10.4	80	4.7	130	30
MAY 20	1200	36	234	7.8	16.0	7.5	76	<1.1	490	40
JUL 21	1030	19	295	8.0	22.0	6.0	70	<1.0	790	580
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUN DIS- SOLVE (MG/L	S- ALKA- M, LINITY LAB ED (MG/L AS	SULFATE DIS- SOLVEI (MG/L	CHLO- E RIDE, DIS- D SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	
OCT 1991	14	0 45	7.1	20	3.4	83	60	42	<0.1	
JAN 1992 29	6	52 19	3.5	13	1.2	2 34	25	25	0.2	
MAR 30	. 6	3 20	3.1	12	1.2	2 31	25	26	0.2	
MAY 20	7	' 8 25	3.8	13	1.3	58	22	24	0.1	
JUL 21	9	9 32	4.6	16	1.8	3 79	21	27	0.1	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- ED TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2+NC	NO2+NÖ 3 DIS- SOLVE (MG/L	NITRO- GEN, AMMONIA D TOTAL (MG/L	AMMON Ì A	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
OCT_1991								0.40		
10 JAN 1992	7.6			0.029				0.42	0.98	
29 MAR	6.7			0.010				0.33	0.98	
30 MAY	4.9			0.010				0.23	0.37	
20 JUL	4.4		0.028	0.026				0.19	0.59	
21	7.1	161	0.038	0.035	0.80	0.78	0.16	0.15	0.74	
DATE	NITRO GEN, AM MONIA ORGANI DIS. (MG/L AS N)	1- + NITRO- IC GEN, TOTAL - (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGANI DIS- SOLVED (MG/L	Č SUS- PENDED TOTAL (MG/L		SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
OCT 1991	0.8	32 1.3	1.3	0.08	0.10	4.8	0.6	26	1.1	
10 JAN 1992			2.0		0.10	2.9	0.6	22	4.5	
29 MAR	0.7			0.08		•		19		
30 MAY	0.3		1.4	0.05	0.02	3.9	0.3	•	9.2	
20 JUL 21	0.4		1.1	0.11	0.05	4.6	0.7	29	2.8	
21	0.5	52 1.5	1.3	0.14	0.09	5.5	0.8	23	1.2	

01367910 PAPAKATING CREEK AT SUSSEX, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME L	DXYGEN DEMAND, CHEM- ICAL A (HIGH EVEL) MG/L)	RSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1992 20	1200	23	<1	<10	10	<1	<1	2
DATE	IRON, TOTAL RECOV ERABL (UG/L AS FE	. TOTAĹ /- RECOV .E ERABL . (UG/L	. TOTAL /- RECOV .E ERABL . (UG/L	MERCUF TOTAL RECOV E ERABI	TOT REC E ERA (UG	AL SELE OV- NIUM BLE TOTAL /L (UG/	, RECO L ERAB L (UG/	iĹ DV - ILE 'L
MAY 1992 20	15	0 <	:1 15	i0 <0.′	10	<1	<1	20

01368000 WALLKILL RIVER NEAR UNIONVILLE, NY

LOCATION.--Lat 41°15'36", long 74°32'58", Sussex County, New Jersey, Hydrologic Unit 02020007, on right bank on downstream side of bridge on Quarryvill-Milton Road, 2.0 mi south of New York-New Jersey State line, and 3.0 mi south of Unionville.

DRAINAGE AREA. -- 140 mi 2.

PERIOD OF RECORD. -- Water years 1991 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. COUBIC CONFEET DO PER AN	PE- WAIFIC WHON- FI JCT- (ST NCE A	AND - AT	TURE ATER S	YGEN, DIS- OLVED	DIS- DI SOLVED I (PER- (CENT SATUR- !	BIO- F CHEM- F ICAL, DAY B	OLI CORM, MECAL, WEC TROTH (C	TERO- OCCI IE,MF VATER OTAL OL / IO ML)
OCT 1991 09	1100	31	470	7.8	12.5	8.0	75 ·	E1.7	5400	17
JAN 1992 30	1030	200	343	7.7	2.0			E1.9	80	20
APR 02	1100	300	280	7.4	5.0	10.9	. 87	E2.1	90	<10
MAY 20	1115	.120	348	7.8	16.0	6.6	67	<1.0	270	20
JUL 22		69								
	1300	09	427	8.0	22.5	5.5	64	<1.0	220	40
DATE	HARD NESS TOTA (MG/ AS CACO	CALCIUM L DIS- L SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATI DIS- SOLVEI (MG/L) AS SO4	DIS- SOLVED (MG/L	(MG/L	
OCT 1991	18	30 47	15	22	3.7	126	51	42	<0.1	
JAN 1992 30		98 26	8.0	17	1.3	77	27	35	0.1	
APR 02	10	00 27	7.9	16	3.5	67	24	. 34	0.2	
MAY 20	1	40 37	12	19	1.5	110	22	37	0.1	
JUL 22	10	50 41	14	22	1.9	137	20	45	0.2	
DATE	SILIC DIS- SOLVI (MG/I AS SIO2	CONSTI- ED TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NO	NITRO 3 GEN, AMMONIA	AMMON Í A	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
OCT_1991	0	, 247	0.014	0.015	0.04	0.40	0.10	0.00	0.47	
09 JAN 1992	8.		0.016	0.015	0.94	0.60		0.09	0.64	
30 APR	6.		0.085	0.073	1.06	0.93	0.04	0.04	0.50	
02 MAY	5.0		0.006	0.006	0.86	0.87	0.06	0.10	0.40	
20 JUL_	5.9		0.026	0.023	0.95	0.92		0.06	0.60	
22	7.3	2 239	0.033	0.031	1.28	1.24	0.08	0.07	0.63	
DATE	NITRI GEN, AI MONIA ORGAN DIS. (MG/ AS N	M- + NITRO- IC GEN, TOTAL L (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON ORGANIO DIS- SOLVED (MG/L AS C)			SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
OCT 1991	0 1	: 1 (4 4	0.00	0.07	E /	0.5	11	0.03	
09 JAN 1992	0.5		1.1	0.08	0.04	5.4	0.5	11 ,	0.92	
30·	0.4		1.4	0.04	0.02	3.7	0.3	7	3.8	
02 MAY	0.4		1.3	0.02	<0.02	4.5	0.3	15	12	
20 JUL_	0.		1.6	0.02	0.12	4.8	1.1	31	10	
22	0.4	1.9	1.6	0.09	0.04	8.0	1.3	. 18	3.4	

01368000 WALLKILL RIVER NEAR UNIONVILLE, NY--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 OXYGEN DEMAND, CHEM-NITRO- NITRO- PHOS-GEN,NH4 GEN,NH4 PHORUS TOTAL + ORG. TOTAL CARBON, CARBON, INOR- INORG + GANIC, ORGANIC ARSENIC TOTAL IN BOT-BERYL-LIUM, TOTAL

DATE	TIME	ICAL (HIGH LEVEL) (MG/L)	IN BOT. MAT. (MG/KG AS N)	TOT IN BOT MAT (MG/KG AS N)	IN BOT. MAT. (MG/KG AS P)	TOT IN BOT MAT (G/KG AS C)	TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)	TOM MA- TERIAL (UG/G AS AS)	RECOV- ERABLE (UG/L AS BE)
OCT_1991	4400		20	4700	540	2.7	20		•	
09 09	1100 1100	19	20	1300	540	2.3	20	<1	8	<10
MAY 1992 20	1115	18	•• .	••	••		••	. 2		<10
DATE	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)
OCT 1991 09 09	 <10	·· <1	<1	 < 1	10	<5		20	 550	13000
MAY 1992 20	20	<1	••	<1	••		2	••	930	••
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)
OCT 1991 09		<10		7/0		0.04		-10		-1
09 09 MAY 1992	3		110	740 	<0.10	0.06	1	<10 	<1	,
20	2		190		<0.10		2		<1	• •
DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 09 09	 <10	200	19	<1.0	<0.1	6.0	1.4	2.2	0.4	0.2
MAY 1992 20	20		••	••		••	••	••	••	
DATE	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ORGANIC HALOGEN TOT REC FROM BOT- TOM MAT- TERIAL (UG/G) AS CL
OCT 1991 09 09	<0.1 	<0.1	<0.1	<0.1	<0.1	<5.0	<0.1	<1.00	<10	1.94
MAY 1992 20			• •	••	••	· • •		••		

01368950 BLACK CREEK NEAR VERNON, NJ

LOCATION.--Lat 41°13'21", long 74°28'33", Sussex County, Hydrologic Unit 02020007, at bridge on Maple Grange road, 0.6 mi upstream of confluence with Wawayanda Creek, 0.7 mi northwest of Maple Grange, and 1.7 mi northeast of Vernon.

DRAINAGE AREA. -- 17.3 mi².

PERIOD OF RECORD.--Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE OCT 1991	CH/ II CU TIME	NST. CI JBIC CO FEET DU PER AN	PE- WA FIC WH N- FI CT- (ST	H TER OLE ELD TEI AND - A' RD W	MPER OX TURE ATER S	YGEN, (DIS- OLVED S	YGEN, OX DIS- DE OLVED B PER- C CENT I ATUR- 5	YGEN MAND, C IO- F HEM- F CAL, DAY E	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
10	1145	4.7	669	8.2	11.5	10.7	100	E2.3	1100	79
JAN 1992 28	1245	36	545	7.9	0.5	9.6	67	E1.3	460	80
APR 02	1330	48	430	7.7	6.5	8.7	73	E2.1	110	20
MAY 21	1200	25	583	8.2	16.0	11.2	114	<1.0	170	120
JUL 16	1130	22	546	7.9	21.0	4.2	48	E1.8	16000	4200
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-` SOLVED (MG/L	(MG/	'ED
OCT 1991. 10 JAN 1992	260	61	27	38	2.0	217	36	75	0.	1
28	190	45	19	25	1.4	162	29	50	0.	2 .
APR 02	170	40	17	25	1.3	136	23	48	0.	2
MAY 21	230	52	24	3 5	1.1	190	22	67	0.	2
JUL 16	200	48	20	26	2.0	198	17	56	0.	2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NÓ3	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,A MONIA ORGAN	M- + IC L L
OCT_1991										
10 JAN 1992	8.6	380	0.015	0.013	0.39	0.41	0.06	0.05	0.63	
28 APR	7.3	278	0.012	0.007	0.99	0.90	<0.03	<0.03	0.54	
02 MAY	6.5	246	0.009	0.008	0.71	0.74	0.05	0.03	0.43	
21 JUL	5.8	324	0.019	0.019	0.61	0.60	<0.03	<0.03	0.47	
16	9.5	299	0.023	0.022	0.31	0.30	0.14	0.10	0.97	
DATE`	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)		E, ED
OCT 1991	0.46	1.0	0.87	<0.02	<0.02	4.1	1.0	4	0.0	5
10 JAN 1992									1.8	
28 APR	0.54	1.5	1.4	0.02.	0.03	3.8	0.3	19		
02 MAY	0.48	1.1	1.2	<0.02	<0.02	5.0	0.8	2	0.2	
21 JUL	0.31	1.1	0.91	0.03	0.07	3.7	0.6	37 10	2.5	
16	0.68	1.3	0.98	0.10	0.04	8.3	0.9	18	1.1	

HUDSON RIVER BASIN

01368950 BLACK CREEK NEAR VERNON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L. AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 10 MAY 1992	1145	20	<1	<10	70	<1	<1	3
21	1200	18	1	<10	10	<1	<1	. <1
DATE	(UG	AĹ TOT. OV- REC BLE ERA	AL TOTA OV- REC BLE ERAI /L (UG	E, MERCI AL TOTA OV- RECI BLE ERAI /L (UG	AL TOTA OV- RECO BLE ERAI /L (UG)	AL SELE OV- NIUM BLE TOTAI /L (UG/I	, RECO L ERAB L (UG/	IL DV - BLE 'L
OCT 1991		270	1	80 <0	.10	<1	<1 <	:10
MAY 1992 21		390	< 1	100 <0	.10	<1 .	<1	10

HACKENSACK RIVER BASIN

01376800 HACKENSACK RIVER AT WEST NYACK, NY

LOCATION.--Lat 41 05'44", long 73 57'52", Rockland County, NY, Hydrologic Unit 02030103, on right bank 20 ft downstream from Penn Central Transportation Co. railroad bridge at West Nyack, 1,000 ft upstream from State Highway 59, and 1.0 mi downstream from DeForest Lake.

DRAINAGE AREA. -- 30.7 mi 2.

PERIOD OF RECORD. -- December 1958 to current year.

REVISIONS.--WDR NY-90-1: Drainage area.

GAGE.--Water-stage recorder, stop-log control, and crest-stage gage. Datum of gage is 53.50 ft above sea level (levels by Hackensack Water Co.).

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow regulated by DeForest Lake (see Reservoirs in Hackensack River Basin). Diversion from gaging station pool for municipal supply for village of Nyack (see Diversions in Hackensack River Basin). Discharge given for this station represents the flow of Hackensack River downstream from this diversion.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,550 ft³/s, Feb. 3, 1973, gage height, 9.38 ft, from floodmarks, from rating curve extended above 840 ft³/s; maximum gage height, 10.52 ft, May 30, 1984; minimum daily discharge, 2.6 ft³/s, June 12, 1965, Sept. 25-26, 30, 1966.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 157 ft³/s, Nov. 22, 23, gage height, 4.23 ft; minimum daily, 12 ft³/s, Feb. 12-14, Aug. 19, 25.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC APR MAY JUN JUL AUG SEP JAN FEB MAR 20 49 28 20 20 20 22 23 24 21 25 17 27 19 44 43 17 20 20 19 18 31 ŽĬ ŽÒ 21 21 21 15 16 17 20 21 21 17 20 21 20 20 16 16 20 15 39 19 e16 e16 ŽÕ e20 21 15 15 16 16 12 13 19 20 22 20 20 16 16 e19 20 20 23 19 21 21 20 20 17 12 12 12 15 e18 45 45 45 19 e18 19 e18 e17 15 20 19 21 21 17 18 19 20 22 16 15 15 20 21 20 20 e17 44 42 45 23 23 23 20 15 15 17 15 13 13 13 e16 12 14 e16 19 20 19 29 55 20 28 20 17 22 23 24 25 27 25 19 19 19 23 21 13 12 15 16 19 20 32 37 20 23 20 16 16 15 22 22 20 27 28 29 30 16 15 15 21 24 19 21 15 16 13 14 13 13 20 21 21 23 20 17.9 25 14 21.5 55 15 20.7 24 19 TOTAL MEAN 20.2 20.4 27 23.1 41.9 22.1 18.8 16.8 15.6 16.7 27 MAX 16 12 19 19 12 īė MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1959 - 1992, BY WATER YEAR (WY) 32.2 88.6 1976 7.59 1967 42.5 125 1978 8.95 35.1 162 1972 12.7 1981 32.6 84.2 1990 7.27 1967 51.6 152 1973 10.3 1967 28.8 83.3 1966 12.3 1981 37.9 121 1973 72.9 204 1983 33.6 127 67.5 151 1961 35.1 MEAN 54.1 1989 MAX 9.34 1962 (WY) 6.95 1981 MIN 5.63 1967 7.04 1965 9.61

01376800 HACKENSACK RIVER AT WEST NYACK, NY--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1959 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	14880 40.8 500 Mar 4 14 Oct 23 15 Oct 18 69 30 18	7803 21.3 66 May 31 12 Feb 12 13 Aug 19 38 19	43.9 74.1 13.4 13.20 Feb 3 1973 2.6 Jun 12 1965 3.4 Sep 24 1966 87 24 12

e Estimated.

01377000 HACKENSACK RIVER AT RIVERVALE, NJ

LOCATION.--Lat 40°59'55", long 73°59'27", Bergen County, Hydrologic Unit 02030103, on upstream right bank at bridge on Westwood Avenue in Rivervale, 1.5 mi upstream from Pascack Brook, 4.6 mi upstream from Oradell Dam, and 27.2 mi upstream from mouth.

DRAINAGE AREA. -- 58.0 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1941 to current year.

REVISED RECORDS. -- WDR-NJ-80-1: 1968-79(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 22.51 ft above sea level.

REMARKS.--No estimated daily discharges. Records good except those above 500 ft³/s, which are fair. Flow regulated by De Forest Lake (since Feb. 1956) and Lake Tappan (since 1965), see Hackensack River basin, reservoirs in. Diversions from De Forest Lake and West Nyack, NY, for municipal water supply (see Hackensack River basin, diversions). Water occasionally diverted from Oradell Reservoir to Lake Tappan. Several measurements of water temperature, other than those published, were made during the year. Hackensack Water Co. gage height telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with Hackensack Water Co.

		DISCHA	RGE, CUB	IC FEET	PER SECOND, DAIL	WATÈR Y MEAN	YEAR OCTOBER VALUES	1991	TO SEPTEMBER	1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	34 34 33 33 42	37 37 37 38 39	33 33 96 63 38	34 33 33 37 36	128 127 125 123 100	36 36 35 42 39	37 37 36 36 36	34 34 37 35 35	368 118 74 53 80	35 33 32 37 34	76 43 37 46 40	167 167 180 92 38
6 7 8 9 10	49 36 35 35 34	39 39 39 39 39	36 36 35 36 45	34 34 33 34 35	82 82 82 82 82 68	39 45 43 40 41	34 34 33 33 34	35 35 36 46 39	195 118 83 77 56	34 32 31 52 37	35 31 30 96 81	37 36 36 36 36
11 12 13 14 15	37 41 35 35 37	48 40 35 34 34	36 35 37 37 34	33 60 99 109 101	48 48 48 68 118	79 44 41 41 40	39 33 32 32 31	40 37 36 36 35	44 38 34 31 31	34 31 34 33 37	69 63 44 47 41	36 36 36 35
16 17 18 19 20	38 54 41 36 36	46 70 77 88 88	35 34 34 34 34	99 99 97 98 99	111 38 37 38 37	40 41 41 42 42	32 37 39 38 34	42 39 37 37 33	30 30 30 39 34	67 45 41 37 34	40 43 110 76 54	34 34 34 38 37
21 22 23 24 25	35 35 35 34 35	89 106 86 40 36	35 35 35 34 34	98 103 113 120 106	36 36 36 41 69	42 41 43 40 35	33 34 33 33 65	33 31 31 38 49	34 33 31 37 34	32 31 49 52 41	43 38 35 32 31	56 76 104 92 83
26 27 28 29 30 31	34 36 36 36 37 37	34 34 33 33 32	33 33 33 42 39 35	74 36 36 61 93 128	83 45 37 37	44 90 41 37 36 41	37 36 34 34 34	38 38 37 34 33 161	32 66 57 43 37	37 51 41 35 34 43	31 31 31 42 83 137	43 42 41 67 136
TOTAL MEAN MAX MIN	1145 36.9 54 33	1466 48.9 106 32	1189 38.4 96 33	2205 71.1 128 33	2010 69.3 128 36	1337 43.1 90 35	1070 35.7 65 31	1261 40.7 161 31	1967 65.6 368 30	1196 38.6 67 31	1636 52.8 137 30	1929 64.3 180 34
STATIST	ICS OF	MONTHLY MEAN	DATA FO	R WATER	YEARS 1942	- 1992	, BY WATER YE	AR (WY	')			
MEAN MAX (WY) MIN (WY)	59.1 312 1956 12.1 1942	73.8 240 1956 17.7 1950	80.7 202 1973 12.6 1981	89.5 251 1949 22.6 1982	93.9 221 1951 23.0 1967	135 379 1953 11.2 1981	14.5	104 310 1989 20.4 1981	13.4	77.4 339 1945 11.6 1954	71.1 197 1955 11.3 1944	63.7 177 1975 7.87 1953

HACKENSACK RIVER BASIN

01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1942 - 1992
ANNUAL TOTÄL ANNUAL MEAN HIGHEST ANNUAL MEAN	29284 80.2	18411 50.3	88.4 156 1952
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	863 Mar 4 24 Jul 28 27 Aug 12	368 Jun 1 30 Jun 16 32 Jun 12	30.9 1981 2190 May 31 1984 5.8 Sep 1 1953 6.3 Aug 30 1953
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		581 Jun 1 3.30 Jun 1 29 Aug 8	2530 May 17 1989 8.08 May 17 1989 .00 Jan 16 1970
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	135 71 29	94 37 33	171 60 21

01377000 HACKENSACK RIVER AT RIVERVALE, NJ.-Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962, 1964 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OC	TORER 1991 TO SEPTEMBER	1992

DATE OCT 1991 22 JAN 1992 28 APR 07 JUN	CH I C TIME	NST. CI CUBIC CO FEET DU PER AN	PE- WA FIC WH DN- FI DCT- (ST	H TER OLE ELD TEM AND - AT	MPER- OX TURE	OX (YGEN, (DIS- SOLVED S	YGEN, OX DIS- DE OLVED B PER- C CENT I ATUR- 5	YGEN MAND, C IO- F HEM- F CAL, DAY B	OLI- C ORM, M ECAL, W EC T ROTH (C	TERO- OCCI E,MF ATER OTAL OL / 0 ML) 50 20 <10
08 JUL	1200	80	460	8.0	21.0	7.4	83	E1.3	490	190
21	1100	33	443	7.7	23.0	8.8	103	E1.7	130	10
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	, LINITY LAB	SOLVED (MG/L	(MG/L	(MG/L	•
ОСТ 1991 22	110	33	6.0	27	1.8	82	18	52	0.1	
JAN 1992 28	120			26	1.8	85	19	53	0.2	
APR			6.4							
07 Jun	120		6.7	37	1.6	84	21	75 	0.1	
JUĽ 08	120		6.6	38	1.7	85	19	73	0.1	
21	130	39	6.9	37	1.7	96	17	72	<0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NÓ3	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
ост 1991	2.2	101	0.000	0 007	0.25	0.26	0 11	0.45	0.05	
22 JAN 1992	2.2	191	0.008	0.007	0.25		0.11	0.15	0.85	
28 APR	2.7	199	0.007	0.007	0.56	0.56	0.03	0.06	0.59	
07 Jun	2.1	233	0.017	0.016	0.52	0.50	0.11	0.03	0.58	
08 JUL	2.3	232		0.018	0.29	0.27	0.13	0.13	0.71	
21	4.7	238	0.029	0.026	0.46	0.46	0.10	0.07	0.64	
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
OCT_1991	0.74	4 4	0.43	0.04	0.04	, -	1.4	^	0 07	
22 JAN 1992	0.41		0.67	0.04	0.04	4.7	1.6	9	0.83	
28 APR	0.50		1.1	0.04	<0.02	4.1	0.6			
07 JUN	0.35		0.85	0.04	<0.02	4.3	0.9	. 6	0.55	
08 JUL	0.50	1.0	0.77	0.03	<0.02	5.4	1.1	14	3.0	
21	0.27	1.1	0.73	0.13	0.06	4.4	1.5	12	1.1	

01377000 HACKENSACK RIVER AT RIVERVALE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		#ATEK	WONLITT	2010, WOL	LK ILAK O	010011 17	71 10 SEF	I ENDER 17	-		
DATE	CH IC (H TIME LEV	AND, MA EM- FA AL DIA IGH % F EL) TI	AT. MA ALL SIE AM. DIA INER % FI HAN TH	AT. GEN EVE TO AM. IN I INER M HAN (MG)	,NH4 GEN TAL + OI BOT. TOT AT. BOT /KG (MI	,NH4 PHO RG. TO IN IN MAT M G/KG (MG	RUS INC TAL GAI BOT. TOT AT. BOT /KG (G	NIC, ORGA IN TOT MAT BOT /KG (GM,	RG + ANIC . IN ARSE MAT TOT /KG (UC	TAL TER G/L (UG,	AL, OT- MA- IAL /G
	(MG	/L) .UU4	4 MM .062	2 MM AS	N) AS	N) AS	P) AS	C) AS	C) AS	AS) AS	A5)
OCT 1991 22	1100		<1	2	5.3 1	40 15	0	<0.1	1.3	, -	2
JUN 1992 08		22								<1	_
08	1200	22							-		
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	(UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	
OCT_1991	• •			<1		2	<5		9		
22 JUN 1992				•		2	()	_,	-	400	
08	<10 ·	50	<1		<1	••	••	34	••	190	
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	FM BOT- TOM MA- TERIAL (UG/G	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	
OCT_1991											
22 JUN 1992	2900	••	10		210	••	0.01	••	· <10	• •	
08		2		230	• •	<0.10	••	<1		<1	
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1991						•					
22 JUN 1992	<1	••	10	2	<1.0	<0.1	5.0	0.1	<1.0	0.2	
08	••	10	• •	• •	••'		•• '			••	
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1991 22	0.4	-0.4	4 0ء	-0.4	-0.4	-0.4	-E A	-0.4	.4 00	-10	
JUN 1992	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5.0	<0.1	<1.00	<10	
08									• •		

01377500 PASCACK BROOK AT WESTWOOD, NJ

LOCATION.--Lat 40°59'33", long 74°01'19", Bergen County, Hydrologic Unit 02030103, on right bank 75 ft upstream from Harrington Avenue in Westwood, 500 ft downstream from Musquapsink Brook, and 2.3 mi upstream from mouth.

DRAINAGE AREA. -- 29.6 mi 2.

PERIOD OF RECORD. -- October 1934 to current year.

REVISED RECORDS.--WDR NJ-87-1: 1984 (P).

GAGE. - Water-stage recorder and concrete control. Datum of gage is 28.62 ft above sea level.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated by Woodcliff Lake 3.0 mi above station (see Hackensack River basin, reservoirs in). Water diverted for municipal supply by Spring Valley Water Co., by pumpage from well fields in headwater area of Pascack Brook in vicinity of Spring Valley, NY, and by Park Ridge Water Department by pumping from wells above Woodcliff Lake probably reduces flow past this station. Several measurements of water temperature were made during the year. Hackensack Water Co. gage-height telemeter at station

COOPERATION. -- Gage-height record collected in cooperation with Hackensack Water Co.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 400 ft³/s and maximum (*):

Date	Time		Discharge (ft ³ /s)	G	age height (ft)		Date	Time	Di	scharge (ft ³ /s)	G	age height (ft)
Nov. 23 June 5	0545 2215		443 463		3.39 3.42		June 27 Sep. 3	0915 2045		403 *559		3.28 *3.67
		DIS	CHARGE, CUE	BIC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOB	ER 1991 ⁻	TO SEPTEMB	ER 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	46	23	37	27	27	30	50	22	97	30	106	15
2	83	27	39	26	28	41	45	22	51	28	30	14
3	92	26	184	26	25	73	40	25	29	22	20	127
4	81	25	107	34	24	70	35	22	25	38	31	134
5	91	24	17	41	24	29	38	23	124	36	24	31
6	134	25	5.0	32	24	52	35	25	219	30	15	28
7	98	27	3.5	37	24	69	33	24	57	25	11	26
8	94	25	3.1	73	25	43	35	33	46	23	8.5	25
9	72	25	19	79	27	32	31	40	58	85	139	24
10	43	27	67	81	25	33	33	22	39	46	68	24
11	57	39	42	82	24	80	57	23	30	28	48	87
12	73	37	34	61	54	43	41	24	23	19	55	88
13	44	32	51	28	77	39	32	15	22	33	20	77
14	40	27	44	40	63	36	30	12	21	26	45	43
15	46	39	34	33	45	36	30	7.2	24	34	24	38
16	58	53	27	29	59	35	30	5.0	25	131	25	21
17	100	28	29	24	27	35	46	1.7	38	42	27	20
18	86	26	28	24	26	35	69	2.6	32	42	76	26
19	47	22	27	23	26	39	65	9.6	60	34	44	39
20	41	22	33	23	25	44	45	26	66	22	32	42
21	39	27	34	25	24	44	37	26	52	19	26	46
22	38	100	34	25	24	43	37	22	38	19	22	58
23	38	233	31	40	23	41	39	7.8	31	92	20	80
24	36	58	28	43	41	44	35	20	43	88	23	60
25	35	39	28	28	59	37	100	21	47	33	54	42
26 27 28 29 30 31	27 26 25 26 27 26	34 36 35 34 35	27 27 30 44 37 29	32 28 24 25 25 25	91 53 34 35	55 252 95 57 48 67	37 28 23 23 23	10 9.5 9.0 9.1 14 126	31 132 57 37 31	29 68 36 25 25 47	70 71 69 69 39 24	29 47 55 39 16
TOTAL	1769	1210	1179.6	1143	1063	1677	1202	658.5	1585	1255	1335.5	1401
MEAN	57.1	40.3	38.1	36.9	36.7	54.1	40.1	21.2	52.8	40.5	43.1	46.7
MAX	134	233	184	82	91	252	100	126	219	131	139	134
MIN	25	22	3.1	23	23	29	23	1.7	21	19	8.5	14
							BY WATER					
MEAN	38.5	48.7	52.1	53.7	59.7	79.9	79.4	64.0	50.1	46.2	43.2	40.3
MAX	143	131	129	151	135	197	198	155	175	180	127	157
(WY)	1956	1978	1984	1979	1973	1953	1983	1989	1972	1945	1971	1971
MIN	10.1	9.83	15.8	10.8	15.7	34.8	28.9	21.2	18.2	14.2	9.99	9.45
(WY)	1942	1950	1940	1954	1954	1965	1991	1992	1939	1944	1935	1939

HACKENSACK RIVER BASIN

01377500 PASCACK BROOK AT WESTWOOD, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1935 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	16816.62 46.1 401 Mar 4 .45 Apr 26 10 Apr 22	15478.6 42.3 252 Mar 27 1.7 May 17 7.6 May 13 559 Sep 3 3.67 Sep 3 1.1 May 17 79	54.6 88.6 1952 27.6 1770 Aug 28 1971 .45 Apr 26 1991 6.3 Oct 19 1949 2440 5 sep 12 1971 .05 Apr 23 1991 96 40 18

01378500 HACKENSACK RIVER AT NEW MILFORD, NJ

LOCATION.--Lat 40°56'52", long 74°01'34", Bergen County, Hydrologic Unit 02030103, on right bank upstream from two masonry dams and two lift gates at pumping plant of Hackensack Water Co., New Milford, 4.0 mi downstream from Pascack Brook, and 21.8 mi upstream from mouth.

DRAINAGE AREA. -- 113 mi 2.

PERIOD OF RECORD. -- October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302.

REVISED RECORDS: WSP 601: Drainage area. WSP 711: 1927-28(M). WRD-NJ 1970: 1969. WDR-NJ 1977: 1975(M). WDR-NJ 1984: 1983. WDR-NJ 1991: 1990.

GAGE.--Water-stage recorder and crest-stage gage above south dam. Datum of gage is 6.25 ft above sea level. October 1921 to November 23, 1923, nonrecording gage and Nov. 23, 1923, to Sept. 25, 1934, water-stage recorder at same site at datum 0.05 ft lower.

REMARKS. -- No estimated daily discharges. Records fair except those from Oct. 1-8 and Oct. 21 to Nov. 22, which are poor. Records given herein do not include diversion at gage. Flow regulated by DeForest Lake, Lake Tappan, Woodcliff Lake 9.0 mi upstream from station, and Oradell Reservoir 0.6 mi upstream from station (see Hackensack River basin, reservoirs in). Water pumped into basin above gage from Sparkill Creek (Hudson River basin), Saddle River and Ramapo River (Passaic River basin) by Hackensack Water Company for municipal supply (see Hackensack River basin, diversions). Water diverted at gage, Oradell Reservoir, De Forest Lake, and West Nyack, NY, for municipal supply (see Hackensack River basin, diversions). Diversion at gage was discontinued on May 30, 1990. Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with Hackensack Water Co.

		DISCHA	RGE, CUBI	C FEET PE	R SECOND, DAILY	WATER YE.	AR OCTOBER LUES	1991 TO	SEPTEMBER	1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.5 2.5 3.8 7.6 11	.98 .85 .74 .70 .69	12 13 14 6.5 6.0	14 11 11 11 6.8	7.7 5.4 2.0 2.1 2.2	2.2 2.5 2.1 2.8 2.7	8.9 5.8 5.6 6.6 5.7	6.5 6.5 5.8 5.9 6.8	400 63 24 7.9 609	10 11 11 10 9.9	10 11 11 10 10	9.9 9.9 19 9.0 7.7
6 7 8 9	2.1 1.1 5.5 5.2 6.2	.71 .74 .76 .82 .86	9.0 10 12 14 7.8	11 7.6 8.1 7.7 8.6	2.5 2.2 2.5 2.4 2.1	2.5 4.2 2.4 2.8 4.1	6.5 5.9 6.7 5.7 6.5	5.9 6.0 8.3 5.0 6.5	296 34 33 24 11	10 9.9 9.8 12 9.8	9.9 10 9.9 12 9.9	7.7 7.5 7.4 7.3 8.3
11 12 13 14 15	8.5 8.7 10 11 15	.98 .84 .83 .83	1.9 5.3 5.0 5.3 4.3	7.5 7.7 7.2 8.0 6.4	2.4 2.1 2.2 2.2 4.3	3.8 1.4 2.0 2.0 1.8	6.5 6.4 5.3 5.3 6.6	6.1 6.2 5.8 6.5 6.8	11 11 9.6 9.3 9.3	9.4 10 11 10 10	12 9.8 9.9 9.7 9.2	8.0 7.8 7.8 8.2 8.5
16 17 18 19 20	15 14 7.4 9.8 12	.93 .91 .90 .90	4.5 3.9 3.9 11 7.2	7.3 7.7 6.7 9.6 7.2	2.7 2.3 2.4 2.2 2.0	1.4 1.5 1.3 1.8	6.8 8.3 6.2 6.1 5.9	7.3 5.9 6.6 6.4 6.3	10 10 9.9 11 9.1	10 9.9 10 9.9 9.8	8.9 11 12 10 10	8.0 7.8 7.7 7.8 7.4
21 22 23 24 25	8.0 .22 .36 .59 .81	1.3 16 7.0 7.4 9.1	5.7 9.0 4.5 6.8 6.2	6.5 6.7 8.5 7.4 7.1	2.3 2.3 2.0 2.5 2.3	1.2 2.1 1.4 1.9 1.6	5.3 6.9 6.5 5.9 7.8	6.4 5.0 1.5 2.4 1.7	10 9.7 9.6 11 9.8	9.9 9.9 12 9.9 9.7	9.9 9.9 9.9 11 24	7.3 7.4 7.4 8.1 7.4
26 27 28 29 30 31	.88 .90 .91 .93 .96	11 11 11 11 11	5.5 4.3 3.6 5.0 3.5 7.5	6.6 6.6 6.6 7.2 6.5 6.7	2.6 2.4 2.7 2.6	4.3 2.4 4.6 5.3 6.8 5.3	6.6 6.5 6.0 6.2 6.8	1.6 1.7 1.8 1.9 2.1 317	9.2 10 9.2 9.2 11	11 8.9 11 10 10	18 10 9.8 10 10 9.9	8.4 9.0 7.2 7.6 7.8
TOTAL MEAN MAX MIN	174.46 5.63 15 .22	112.54 3.75 16 .69	218.2 7.04 14 1.9	248.5 8.02 14 6.4	77.6 2.68 7.7 2.0	83.4 2.69 6.8 1.2	191.8 6.39 8.9 5.3	470.2 15.2 317 1.5	1700.8 56.7 609 7.9	318.7 10.3 13 8.9	338.6 10.9 24 8.9	250.3 8.34 19 7.2
STATIS	TICS OF	MONTHLY ME	AN DATA FO	OR WATER '	YEARS 1922	- 1992,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	36.6 480 1956 .000 1922	67.4 356 1928 .000 1924	88.7 329 1973 .000 1932	105 359 1937 .000 1971	130 396 1939 .000 1977	213 651 1936 .000 1981	201 774 1983 .000 1981	128 528 1989 .39 1985	63.3 612 1972 .000 1977	46.9 543 1945 .000 1954	41.3 373 1927 .000 1924	44.1 385 1927 .000 1923

01378500 HACKENSACK RIVER AT NEW MILFORD, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1922 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	16875.41 46.2	4185.10 11.4	96.9 263 1928 .40 1981
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	1810 Mar 4 .22 Oct 22 .64 Aug 2	609 Jun 5 .22 Oct 22 .67 Oct 22	4230 May 31 1984 .00 Oct 1 1921 .00 Oct 1 1921
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	99	2300 Jun 6 4.51 Jun 6 .22 Oct 22	4630 May 17 1989 8.23 May 17 1989 .00 Many days 283
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	8.0 .85	7.1 1.4	17.00

RESERVOIRS IN HACKENSACK RIVER BASIN

- 01376700 DE FOREST LAKE.--Lat 41°06'23", long 73°58'01, Rockland County, NY, Hydrologic Unit 02030103, at dam on Hackensack River, 0.8 mi north of West Nyack, NY. DRAINAGE AREA, 27.5 mi². PERIOD OF RECORD, February 1956 to current year. REVISED RECORDS.--WDR NJ-84-1: Drainage area. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by earthfill dam with sheet piling cutoff and concrete spillway; dam completed and storage began in February 1956. Crest of dam topped by two 50 ft Bascule Gates, 5 ft high. Capacity 5,670,000,000 gal, elevation, 85.00 ft, top of Bascule gates. Flow regulated by 12-inch Howell-Bunger valve at elevation, 59.25 ft and 24-inch Howell-Bunger valve at elevation, 61.25 ft. Reservoir used for storage and water released by Hackensack Water Co., for municipal water supply.

 COOPERATION.--Records provided by Hackensack Water Company.
- 01376950 LAKE TAPPAN.--Lat 41°01'05", long 74°00'05", Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River, 0.5 mi north of Old Tappan. DRAINAGE AREA, about 49.0 mi². PERIOD OF RECORD, October 1966 to current year. REVISED RECORDS, WDR NJ-89-1: Capacity. GAGE, water-stage recorder. Datum of gage is sea level.

 REMARKS.--Reservoir is formed by earthfill dam, completed in 1966. Capacity, 3,853,000,000 gal, elevation, 55.00 ft at top of Bascule gates. Flow regulated by four Bascule gates and one sluice gate. Water is released for diversion at New Milford (diversion discontinued May 1990) and Haworth by Hackensack Water Co., for municipal water supply.
 COOPERATION.--Records provided by Hackensack Water Company.
- 01377450 WOODCLIFF LAKE.--Lat 41°01', long 74°03', Bergen County, Hydrologic Unit 02030103, at dam on Pascack Brook, 0.7 mi north of Hillsdale. DRAINAGE AREA, 19.4 mi². PERIOD OF RECORD, December 1929 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. REVISED RECORDS, WDR NJ-89-1: Capacity. GAGE, water-stage recorder. Datum of gage is sea level.

 REMARKS.--Reservoir is formed by earthfill dam, completed about 1905. The dam was modified in 1984, which increased capacity, 871,000,000 gal, elevation, 95.00 ft at top of Bascule gates. Flow is regulated by two Bascule gates 85 ft long and 6 ft high each and one 24-inch Ball valve. Water is released for diversion at New Milford (diversion discontinued May 1990) and Haworth by Hackensack Water Co., for municipal supply.

 COOPERATION.--Records provided by Hackensack Water Company.

01378480 ORADELL RESERVOIR.--Lat 40°57', long 74°02', Bergen County, Hydrologic Unit 02030103, at dam on Hackensack River at Oradell. DRAINAGE AREA, 113 mi². PERIOD OF RECORD, December 1922 to current year. Monthend contents only, prior to September 1953, published in WSP 1302, 1722. REVISED RECORDS.--WDR NJ-84-1: Spillway elevation, WDR NJ-89-1: Capacity. GAGE, water-stage recorder. Datum of gage is sea level.

REMARKS.--Reservoir is formed by hollow concrete dam, completed in 1922. Capacity at spillway level, 3,507,000,000 gal, elevation, 23.16 ft. Flow regulated by seven sluice gates (7 by 9 ft). Prior to May 1990, water was released for diversion by Hackensack Water Co., 1 mi downstream from dam for municipal supply. Water is diverted from reservoir at Haworth by Hackensack Water Company, for municipal supply. COOPERATION.--Records provided by Hackensack Water Company.

	MONTHEND ELEV	ATION AND C	ONTENTS, WATER Y	EAR OCTOBER 1991 TO S	EPTEMBER 1992	
Date	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	01376700	DE FOREST	LAKE	01	376950 LAKE TA	PPAN
Sept. 30	77.42 77.41 78.28 79.84	3,362 3,359 3,611 4,070	-0.1 +13.0 +22.9	52.12 52.40 52.77 54.09	2,864 2,955 3,077 3,529	+4.5 +6.3 +22.6
CAL YR 1991			-7.3			-2.0
Jan. 31	80.14 80.57 81.91 83.00 82.68 84.61 84.20 83.82 83.03	4,160 4,289 4,695 5,036 4,632 5,544 5,409 5,289 5,041	+4.5 +7.1 +20.3 +17.6 -20.2 +47.0 -6.7 -6.0 -12.8	52.26 51.32 54.23 55.00 55.46 55.05 55.14 54.52 53.51	2,909 2,608 3,574 3,851 4,019 3,870 3,899 3,687 3,332	-30.9 -16.6 +48.2 +14.3 +8.4 -7.7 +1.5 -10.6 -18.3
WTR YR 1992	<u>-</u>	•	+7.1	-	- <u>-</u>	+2.0

Date	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	013774	50 WOODCLIFF	LAKE	01378480	ORADELL RES	ERVOIR
Sept. 30	94.03 90.27 90.86 90.85	816 614 645 644	-10.1 +1.6 05	21.28 20.19 20.39 19.84	3,014 2,746 2,794 2,662	-13.4 +2.5 -6.6
CAL YR 1991			1			-2.3
Jan. 31	89.23 88.74 91.17 90.90 94.75 95.13 95.49 93.01 91.03	562 537 661 648 846 879 899 761 654	-4.1 -1.4 +6.2 7 +9.9 +1.7 +1.0 -6.9 -5.5	18.63 18.10 22.88 22.50 23.03 22.06 21.30 19.56 19.67	2,380 2,260 3,431 3,329 3,472 3,253 3,019 2,597 2,622	-14.1 -6.6 +58.4 -5.3 +7.1 -11.3 -11.7 -21.1 +1.3
WTR YR 1992	-	-	7			-1.7

† Elevation at 2400 of the last day of each month.

DIVERSIONS INTO AND FROM HACKENSACK RIVER BASIN

- 01376272 Hackensack Water Co., diverts water from Sparkill Creek (Hudson River basin) at foot of Danny Lane in Northvale, 300 ft south of New York-New Jersey state line and 0.6 mi upstream of Sparkill Brook. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.
- 01376699 Spring Valley Water Co., diverts water from De Forest Lake for municipal supply in Rockland County, NY. Records provided by Spring Valley Water Co.
- 01376810 Village of Nyack, NY, diverts water from Hackensack River 100 ft downstream from gaging station on Hackensack River at West Nyack, NY (station 01376800, measured flow includes diversions) for municipal supply. Records provided by Board of Water Commissioners of Nyack, NY.
- 01378490 Hackensack Water Co., diverts water for municipal supply from Oradell Reservoir at Haworth pumping station (station 01378478) 2.0 mi upstream from gaging station on Hackensack River at New Milford and prior to May 1990 from Hackensack River, at New Milford pumping station just upstream of gaging station on Hackensack River at New Milford, NJ (station 01378500). Diversion from the New Milford pumping station was discontinued in May 1990. Records provided by Hackensack Water Co.
- 01378520 Hackensack Water Co., diverts water from Hirshfeld Brook, a tributary of the Hackensack River, below the gaging station on Hackensack River at New Milford, NJ, for municipal supply. Records provided by Hackensack Water Co.
- 01388981 Hackensack Water Co., diverts water from the Wanaque South pumping station on the Pompton River at Two Bridges, 750 ft upstream from the Passaic River, to Oradell Reservoir. Water can also be diverted from Wanaque Reservoir to Oradell Reservoir in the Hackensack River basin. Figures given herein include diversion from both sources. Formerly diversion was from the Ramapo River (see station 01387991). Records provided by Hackensack Water Company.
- 01391210 Hackensack Water Co., diverts water from Saddle River (Passaic River basin) just north of bridge on State Route 4 at Arcola. Water is diverted into Oradell Reservoir on the Hackensack River, for municipal supply. Records provided by Hackensack Water Co.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 01376699 01376810 01378490 MONTH SPRING VALLEY WATER CO WEST NYACK, HACKENSACK WATER CO. 2.50 8.69 2.33 143 November..... 7.60 December....... CAL YR 1991..... 8.95 2.55 161 5.55 2.54 2.44 2.44 2.64 2.65 2.64 February..... 154 Õ 142 2.07 April...... 10.1 156 May...... 167 June....... August 159 ī September..... . 48 WTR YR 1992..... 8.43 2.50 152

The following are diversions by pumpage from sources other than the Hackensack River into Oradell Reservoir. These figures are included in diversions from Hackensack River as noted above (station 01378490).

MONTH	01376272 SPARKILL CREEK (HUDSON RIVER BASIN)	01378520 HIRSHFELD BROOK (HACKENSACK RIVER BASIN)	01388981 POMPTON RIVER (PASSAIC RIVER BASIN)	01391210 SADDLE RIVER (PASSAIC RIVER BASIN)	WELLS TO SURFACE SUPPLY
October November December	0.03 0 0	1.66 1.46 .28	15.5 15.1 1.38	10.6 13.7 6.88	0.43 .46 .24
CAL YR 1991	.10	.97	21.0	4.21	.45
January February March April May June July August September	0 0 .47 0 0 0 0	.19 1.70 2.33 0 1.01 1.63 2.22 0	0 0 41.8 30.6 60.6 28.8 43.1 12.0	5.24 8.53 13.2 0 2.23 10.8 16.3 0	.15 .23 1.19 .30 .81 .52 .59 .51
WTR YR 1992	.04	1.04	20.7	7.29	.50

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ

LOCATION.--Lat 40°40'48", long 74°31'45", Somerset County, Hydrologic Unit 02030103, on right bank 200 ft downstream from Davis Bridge on Maple Avenue, 0.7 mi northwest of Millington, and 1.8 mi downstream from Black Brook.

DRAINAGE AREA. -- 55.4 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1903 to June 1906 (published as "at Millington"), October 1921 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1905(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete-block control. Datum of gage is 215.60 ft above sea level (levels from New Jersey Geological Survey bench mark). Nov. 25, 1903 to July 15, 1906, nonrecording gage at bridge 0.8 mi downstream at different datum. Nov. 10, 1921 to Sept. 1, 1923, nonrecording gage at site 200 ft downstream at present datum. Oct. 31, 1923 to July 3, 1925, nonrecording gage and concrete control at present

REMARKS.--No estimated daily discharges. Records good. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, was discontinued in April 1979 and the installation dismantled. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft 3/s and maximum (*):

Date		Time	Di:	scharge ft ³ /s)	G	age height (ft)		Date	Time	. Di	ischarge (ft ³ /s)	Ga	ge height (ft)
June	6	1145	*	1,060		*7.99		No other p	eak grea	ter than	base disc	harge.	
			DISCHA	RGE, CUBI	C FEET			YEAR OCTOBE VALUES	R 1991 T	O SEPTEME	BER 1992		
DAY		OCT _.	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		90	23	52	56	46	77	144	43	177	26	86	13
2		67	23	52	51	38	70	118	41	138	21	51	12
3		51	22	172	53	35	62	96	38	118	20	39	15
4		40	22	363	86	35	56	80	33	88	41	40	33
5		33	21	305	147	33	50	70	33	203	33	34	23
6		30	20	249	123	29	47	62	34	979	30	28	17
7		31	20	184	110	29	55	55	31	980	28	25	18
8		28	20	136	91	30	101	52	33	901	24	22	18
9		27	19	108	78	28	91	48	59	752	109	28	18
10		27	19	125	79	23	86	50	55	458	107	39	18
11		26	28	116	70	22	168	57	58	255	56	27	27
12		31	36	98	62	23	157	61	48	152	48	30	22
13		27	33	95	57	20	126	55	42	101	46	26	17
14		24	33	108	77	22	104	49	37	73	75	28	17
15		26	33	104	108	30	83	45	32	57	82	27	17
16		47	32	85	78	119	66	43	37	47	88	27	16
17		46	30	67	61	131	59	59	40	39	71	32	16
18		79	27	61	49	121	55	66	37	35	64	38	15
19		64	26	48	34	119	58	69	34	36	56	36	15
20		56	25	39	25	110	68	68	29	45	46	30	14
21		48	26	37	24	91	67	64	27	37	39	28	13
22		42	72	42	24	79	67	61	25	34	33	25	14
23		38	193	42	40	71	71	68	23	32	35	23	20
24		35	175	43	153	68	65	60	22	33	48	21	17
25		33	151	38	113	68	66	75	27	38	36	19	14
26 27 28 29 30 31		32 30 29 26 25 23	123 96 75 63 55	33 32 30 47 83 66	81 74 59 47 44 45	128 143 121 104	112 395 395 330 229 180	70 65 57 52 46	26 27 26 24 22 65	30 27 25 23 25	, 33 35 33 28 25 30	18 19 19 17 15 14	24 36 36 29 25
TOTAL		211	1541	3060	2199	1916	3616	1965	1108	5938	1446	911	589
MEAN		9.1	51.4	98.7	70.9	66.1	117	65.5	35.7	198	46.6	29.4	19.6
MAX		90	193	363	153	143	395	144	65	980	109	86	36
MIN		23	19	30	24	20	47	43	22	23	20	14	12
CFSM		.71	.93	1.78	1.28	1.19	2.11	1.18	.65	3.57	.84	.53	.35
IN.		.81	1.03	2.05	1.48	1.29	2.43	1.32	.74	3.99	.97	.61	.40
` STATI	STICS	OF MON	THLY MEAN	DATA FOR	WATER	YEARS 1904	- 1992,	, BY WATER Y	EAR (WY)				
MEAN	1	5.8	86.0	103	112	130	184	144	93.8	58.5	45.3	51.5	52.8
MAX		187	340	335	463	380	430	420	365	292	307	397	380
(WY)		990	1933	1984	1905	1904	1936	1983	1989	1972	1975	1942	1971
MIN		.56	7.47	8.18	6.78	26.1	64.2	25.9	20.3	3.95	1.25	1.37	.73
(WY)		964	1966	1966	1981	1934	1981	1985	1965	1965	1965	1966	1964

PASSAIC RIVER BASIN , 01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1904 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	29513.8 80.9	25487 69.6	91.0 163 1984 32.3 1965
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	620 Jan 18	980 Jun 7	1800 Jan 8 1905
	9.8 Jul 20	12 Sep 2	.30 Sep 13 1966
	12 Jul 15	15 Sep 16	.47 Sep 11 1964
INSTANTANEOUS PEAK FLOW		1060 Jun 6	2000a Jan 9 1905
INSTANTANEOUS PEAK STAGE		7.99 Jun 6	9.73 Aug 29 1971
INSTANTANEOUS LOW FLOW		12 Sep 2	20 Sep 12 1966
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.46	1, 26	1.64
	19.82	17, 11	22.31
	172	122	224
	52	42	48
90 PERCENT EXCEEDS	16	21	8.9

a From rating curve extended above 1,400 ft³/s on basis of velocity-area study.

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-25, 1962 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

OCT 1991 1000 30 260 7.3 14.0 5.5 54 <1.0 1100 40 40 68 68 68 68 68 68 68 6	DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	PE- WA FIC WH DN- FI DCT- (ST ICE A	TAND- A	MPER- TURE ATER EG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED E (PER- CENT SATUR-	BIO- F CHEM- F ICAL, DAY B	OLI- ORM, ECAL, EC ROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
MAR 100 33 283 7.4 2.0 14.5 106 E2.1 11 11 10 10 10 10 10	28	1000	30	260	7.3	14.0	5.5	54	<1.0	1100	40
ABOUT 1940 97 305 7.5 6.5 10.5 86 4.5 90 <10	FEB 1992 03	1100	.33	283	7.4	2.0	14.5	106	E2.1	11	<10
MAY 18 1045 37 7.7 17.5 2.7 490 70 70 23 1030 29 240 7.5 22.0 2.5 29 <1.0 170 <100 <100	MAR 26	1200	97	305	7.5	6.5	10.5	86	4.5	90	<10
NATE CALCIUM MAGNE SILVED SOLVED SOLVED SOLVED CACO3) AS CL AS CL	MAY 18	1045	37	••	7.7	17.5	••	• •	2.7	490	70
NESS CALCIUM SIUM,	JUL 23	1030	29	240	7.5	22.0	2.5	29	<1.0	170	<100
28 79 19 7.6 21 2.8 61 16 33 <0.1 FEB 1992 03 82 20 7.8 23 1.9 50 24 40 0.1 MAR 26 73 18 6.8 27 1.6 42 21 55 <0.1 MAY 18 78 19 7.5 20 1.4 64 10 36 0.1 JUL 23 77 19 7.1 17 1.1 69 5.0 27 0.1 SILICA, SOLIDS, SUM OF DIS- CONSTI- GEN, OITRI- OITRI- GEN, O		NESS TOTAL (MG/L AS	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIU DIS SOLV (MG/	M, LINIT - LAB ED (MG/ L AS	Y SULFATE DIS- L SOLVEE (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE DIS SOLV (MG/	<u>'</u> ED L
MAR 26 73 18 6.8 27 1.6 42 21 55 <0.1	28 FEB 1992										
MAY 18 78 19 7.5 20 1.4 64 10 36 0.1	MAR										
SILICA, SUM OF CONST! GEN, NITRO-GEN, NITRO-GEN, NOZ+NO3 GEN, AMHONIA MONIA + DIS-OCT 1991 28 12	MAY										
SILICA, SUM OF DIS- CONSTI- GEN, NITRO- GEN, NITRO- GEN, OCHED TUBERS, NITRITE DIS- CONSTI- GEN, NITRITE DIS- CONSTI- CONSTI- GEN, NITRITE DIS- CONSTI- CONSTI- CONSTI- GEN, NITRITE DIS- CONSTI-	JUL			•							
28 12 148 E0.003 <0.003 0.07 0.07 <0.03 <0.03 0.47 FEB 1992 03 6.5 155 <0.003 <0.003 0.28 0.27 <0.03 0.03 0.33 MAR 26 4.2 160 0.006 0.005 0.18 0.17 0.08 0.09 0.37 MAY 18 8.4 141 E0.003 E0.004 0.12 0.12 0.03 <0.03 0.58 JUL 23 18 136 0.006 0.006 0.09 0.11 0.05 0.06 0.62 NITRO- GEN, AM- MONIA + NITRO- GEN, AM- MONIA + NITRO- ORGANIC GEN, DIS- DIS- DIS- TOTAL SOLVED TOTAL SOLVED SOLVED SOLVED TOTAL SOLVED SOLVED TOTAL SOLVED SOLVED SOLVED TOTAL SUS- SUS- SUS- SUS- SUS- SUS- SUS- SUS		SILICA DIS- SOLVE (MG/L AS	SOLIDS, SUM OF CONSTI- DIS- DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L	NITR GEN NO2+N TOTA (MG/	NITR O- GEN , NO2+N O3 DIS L SOLV L (MG/	O- , NITRO- 03 GEN, - AMMONI/ ED TOTAL L (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITR GEN,A MONIA ORGAN TOTA (MG/	O- M- + IC L
O3 6.5 155 <0.003 <0.003 0.28 0.27 <0.03 0.03 0.33 MAR 26 4.2 160 0.006 0.005 0.18 0.17 0.08 0.09 0.37 MAY 18 8.4 141 E0.003 E0.004 0.12 0.12 0.03 <0.03 0.58 JUL 23 18 136 0.006 0.006 0.09 0.11 0.05 0.06 0.62 NITRO- GEN, AM- MONIA + NITRO- ORGANIC GEN, DIS- DIS- DATE (MG/L	OCT_1991										
MAR 26 4.2 160 0.006 0.005 0.18 0.17 0.08 0.09 0.37 MAY 18 8.4 141 E0.003 E0.004 0.12 0.12 0.03 <0.03 0.58 JUL 23 18 136 0.006 0.006 0.09 0.11 0.05 0.06 0.62 NITRO- GEN, AM- MONIA + NITRO- ORGANIC GEN, DIS- DIS- DATE (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L) PENDED PENDED PENDED AS N) AS N) AS N) AS N) AS N) AS P) AS P) AS C) AS C) (MG/L) (T/DAY) OCT 1991 28 0.37 0.54 0.44 0.56 0.10 9.1 0.5 6 0.49 FEB 1992 03 0.33 0.61 0.60 0.03 0.03 5.7 0.2 2 0.18 MAR 26 0.28 0.55 0.45 0.11 0.02 5.8 0.3 8 2.1 MAY 18 0.48 0.70 0.60 0.14 0.22 8.2 0.7 19 1.9	FEB 1992										
MAY 18	MAR										
JUL 23 18 136 0.006 0.009 0.11 0.05 0.06 0.62 NITRO-GEN, AM-MONIA + NITRO-GEN PHOS-PHORUS ORGANIC SUS-SEDI-DIS-PENDED MENT, CHARGE, DIS. TOTAL SOLVED TOTAL SOLVED TOTAL SUS-SUS-SUS-DIS-PENDED MENT, CHARGE, AS N) AS	MAY										
NITRO- GEN, AM- NITRO- GEN PHOS- PHORUS DIS- DIS-	JUL										
GEN, AM-	23	18	136	0.006	0.006	0.0	9 0.11	0.05	0.06	0.62	
28 0.37 0.54 0.44 0.56 0.10 9.1 0.5 6 0.49 FEB 1992 03 0.33 0.61 0.60 0.03 0.03 5.7 0.2 2 0.18 MAR 26 0.28 0.55 0.45 0.11 0.02 5.8 0.3 8 2.1 MAY 18 0.48 0.70 0.60 0.14 0.22 8.2 0.7 19 1.9 JUL	DATE	GEN, AM MONIA ORGANI DIS. (MG/L	- + NITRO- C GEN, TOTAL (MG/L	GEN DIS- SOLVED (MG/L	PHORUS TOTAL (MG/L	PHORUS DIS SOLVI (MG/	S ORGAN - DIS- ED SOLVEI L (MG/	N, ORGANIÓ IC SUS- PENDED TOTAL L (MG/L	SEDI- MENT, SUS- PENDED	MENT DIS CHARGI SUS PENDI	; E, ED
FEB 1992 03 0.33 0.61 0.60 0.03 0.03 5.7 0.2 2 0.18 MAR 26 0.28 0.55 0.45 0.11 0.02 5.8 0.3 8 2.1 MAY 18 0.48 0.70 0.60 0.14 0.22 8.2 0.7 19 1.9 JUL		0.3	7 054	0.44	0.54	0 10	0 1	0.5	4	O 40	0
MAR 26 0.28 0.55 0.45 0.11 0.02 5.8 0.3 8 2.1 MAY 18 0.48 0.70 0.60 0.14 0.22 8.2 0.7 19 1.9 JUL	FEB 1992										
MAY 18 0.48 0.70 0.60 0.14 0.22 8.2 0.7 19 1.9 JUL	MAR								•		•
iJUL	MAY										
merry vito viti viti vito vito "" liv 14 lil		0.4		0.57	0.28	0.15		1.0	14	1.1	

01379000 PASSAIC RIVER NEAR MILLINGTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	OXYGEN DEMAND CHEM- ICAL (HIGH TIME LEVEL) (MG/L)		ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
OCT 1991 28	1000	27	<1	<10	120	<1 ·	2	2	
DATE	I RON TOTA RECO ERAB (UG/ AS F	NĹ TOT DV- REC BLE ERA 'L (UG	AĹ TOT OV- REC BLE ERA /L (UG	E, MERCI AL TOTA OV- RECI BLE ERAI /L (UG)	AL TOTA DV- RECO BLE ERAI /L (UG	AL SELE- OV- NIUM, BLE TOTAL /L (UG/L	RECO ERAB (UG)	AĹ DV- BLE 'L	
OCT 1991 28	6	500	2	100 <0	.10	4 .	:1 •	<10	

01379500 PASSAIC RIVER NEAR CHATHAM, NJ

LOCATION.--Lat 40°43'31", long 74°23'23", Morris County, Hydrologic Unit 02030103, on left bank 150 ft downstream from Stanley Avenue bridge in Chatham, and 3.0 mi upstream from Canoe Brook.

DRAINAGE AREA. -- 100 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1903 to December 1911, October 1937 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS. -- WDR NJ-86-1: 1984 (M).

GAGE.--Water-stage recorder. Concrete control since Sept. 19, 1938. Datum of gage is 193.51 ft above sea level. Prior to Dec. 31, 1911, nonrecording gage at bridge 150 ft upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Diversion from Osborn Pond by Commonwealth Water Co., Bernards Division, during water years 1903-79. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR...Peak discharges greater than base discharge of 800 ft3/s and maximum (*):

Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)	:	Date	Time	Di:	scharge ft ³ /s)	Gag	ge height (ft)
June 5	2100)	1,700		*6.87		No other	peak grea	ater than I	base disc	harge.	
		DISCHAR	GE, CUBIC	FEET PER	SECOND, DAILY	WATER YE MEAN V	EAR OCTOBER ALUES	1991 то	SEPTEMBER	1992		٠
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	176 121 88 66 57	34 35 33 32 33	81 88 312 365 347	102 100 89 166 245	76 e76 e69 61 56	135 113 104 93 85	273 211 174 143 122	74 70 65 59 60	398 291 192 145 628	44 42 44 75 71	106 113 73 64 59	28 27 30 45 52
6 7 8 9 10	68 48 42 39 39	31 32 32 32 32 32	304 255 207 189 209	226 210 183 160 167	51 51 53 49 e44	78 102 185 165 144	108 97 89 84 82	61 59 62 100 106	1120 1200 1160 1090 984	63 53 46 318 258	52 46 42 42 62	37 31 34 36 53
11 12 13 14 15	41 44 42 36 47	53 51 49 43 41	202 181 177 196 187	146 120 105 167 236	47 e45 42 41 62	327 322 226 176 144	107 113 98 86 77	102 91 75 67 58	799 577 342 163 108	131 82 75 149 167	60 55 50 59 56	72 53 38 32 32
16 17 18 19 20	79 126 201 146 96	40 38 36 36 34	161 136 117 e92 e76	193 e112 e87 e69 e52	229 237 190 190 187	118 102 95 100 114	78 104 127 127 123	87 106 77 69 59	88 74 64 71 77	194 141 111 95 81	51 53 77 71 57	33 30 29 28 26
21 22 23 24 25	75 65 57 52 49	35 160 309 271 236	71 69 70 71 66	e47 e47 81 292 e230	156 131 116 110 111	123 118 121 120 124	115 109 132 132 126	51 46 43 46 54	71 59 55 59 65	68 59 74 101 78	50 46 41 38 37	25 30 47 38 31
26 27 28 29 30 31	45 43 39 38 37 36	212 178 137 109 90	55 53 48 90 175 150	e174 e144 e117 e98 e88 78	224 261 203 170	267 598 645 545 444 364	118 109 101 89 81	48 49 48 45 41 211	58 48 44 41 40	59 59 61 54 48 72	35 65 47 39 31 28	79 71 69 60 46
TOTAL MEAN MAX MIN CFSM IN.	2138 69.0 201 36 .69 .80	2484 82.8 309 31 .83 .92	4800 155 365 48 1.55 1.79	4331 140 292 47 1.40 1.61	3338 115 261 41 1.15 1.24	6397 206 645 78 2.06 2.38	3535 118 273 77 1.18 1.32	2189 70.6 211 41 .71 .81	10111 337 1200 40 3.37 3.76	2973 95.9 318 42 .96 1.11	1705 55.0 113 28 .55 .63	1242 41.4 79 25 .41 .46
STATIS							, BY WATER Y					
MEAN MAX (WY) MIN (WY)	89.1 576 1904 8.05 1965	157 590 1973 13.6 1950	200 655 1984 32.3 1940	224 735 1979 21.5 1981	240 493 1908 63.2 1980	336 700 1907 94.5 1911	263 711 1983 54.3 1985	176 637 1989 7.52 1903	117 533 1972 13.6 1965	83.7 539 1975 7.74 1966	98.2 664 1942 7.35 1957	96.4 713 1971 4.70 1906

PASSAIC RIVER BASIN

01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1903 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	54633 150	45243 124	172 305 1984 67.7 1965
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	962 Jan 18 22 Jul 20 25 Sep 12	1200 Jun 7 25 Sep 21 29 Sep 16 1700 Jun 5	2990
INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.50 20.32 320	6.87 Jun 5 1.24 16.83 229	9.36a Aug 2 1973 1.72 23.35 457 83
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	92 33	76 37	63 16

From floodmark. Estimated.

01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

PERIOD OF DAILY RECORD...
WATER TEMPERATURES: October 1966 to September 1968.
SUSPENDED-SEDIMENT DISCHARGE: July 1963 to September 1968.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE OCT 1991	CH I C TIME S	NST. CI CUBIC CO FEET DU PER AN GECOND (US	PE- WA FIC WH DN- FI DCT- (ST DCE A G/CM) UN	H TER OLE ELD TEM AND- AT RD WA ITS) (DE	PER- OX URE I TER SI G C) (I	OX YGEN, (DIS- DLVED S MG/L) A	YGEN, OX DIS- DE OLVED B PER- C CENT I ATUR- 5 TION) (YGEN MAND, C IO- F HEM- F CAL, DAY E MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
28 FEB 1992	1100	38	536	7.6	14.0	8.4	. 82	E2.1	460	20
04	1100	56	609	7.5	1.5	••	••	E2.3	170	50
MAR 26	1100	207	457	7.6	3.0	15.2	113	2.8	1400	. 190
MAY 18	1300	74		7.7	16.5	••	• •	2.6	1100	70
JUL 23	1300	68	480	7.6	22.5	5.7	67·	E1.5	24000	15000
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	(MG,	, S- /ED /L
OCT 1991 28 FEB 1992	110	27	9.7	63	3.9	75	42	91	0.	.2
04 MAR	110	26	10	78	2.7	52	37	120	0.	:2
26 MAY	91	23	8.2	46	1.8	47	26	91	<0.	. 1
ື່ 18 JUL	92	23	8.5	27	2.2	66	22	45	0.	.1
23	.97	23	9.6	53	2.7	75	27	72	0.	.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,A MONIA ORGAN	\M- \ + \ I C \L 'L
OCT_1991	45	707								
28 FEB 1992	13	307	0.071	0.068	2.75	2.73	0.21	0.22	1.0	
04 MAR	8.8	324	0.017	0.019	2.18	2.17	0.25	0.19	0.78	3
26 May	6.5	235	0.023	0.020	0.98	0.94	0.13	0.16	0.70)
18 JUL	11	186	E0.005	<0.003	1.67	1.67	0.20	0.19	1.0	
23	15	256	0.097	0.092	2.01	1.96	0.27	0.24	1.2	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDEC (MG/L)		GE , SE , DED
OCT_1991	0.00	70	7 4	0.50	0.47	7 /	0.5	11	1.1	
28 FEB 1992	0.82		3.6	0.58	0.47	7.4	0.5			,
04 MAR	0.61		2.8	0.35	0.29	4.9	0.3	4	0.60	,
26 MAY	0.52		1.5	0.20	0.14	5.4	0.7	25	14	
18 JUL_	0.76		2.4	0.40	0.24	7.6	1.8	44	8.8	
23	0.98	3.2	2.9	0.44	0.30	5.0	0.5	36	6.6	

PASSAIC RIVER BASIN

01379500 PASSAIC RIVER NEAR CHATHAM, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 28	1100	25	<1	<10	250	<1	1	5
DATE	I ROI TOT. REC ERAI (UG. AS	AĹ TOT OV- REC BLE ERA /L (UG	TAL TOT. COV- REC BLE ERA	E, MERCU AL TOTA OV- RECO BLE ERAN /L (UG)	AL TOTA DV- RECO BLE ERAB /L (UG/	L SELE- N'- NIUM, LE TOTAL L (UG/L	ZINC TOTA RECO ERAB (UG/) AS Z	Ľ V- LE L
OCT 1991 28	!	560	3	60 <0	. 10	3 <	1 <	10

01379700 ROCKAWAY RIVER AT BERKSHIRE VALLEY, NJ

LOCATION.--Lat 40°55'51", long 74°35'42", Morris County, Hydrologic Unit 02030103, on left bank 60 ft downstream from bridge on Berkshire Valley Road in Berkshire Valley, 2.7 mi upstream from Stephens Brook, and 3.8 mi northwest of Dover.

DRAINAGE AREA. -- 24.4 mi².

PERIOD OF RECORD.--Low-flow partial-record station water years 1960-72. May 1985 to current year.

GAGE. - Water stage recorder and crest-stage gage. Datum of gage is 682.8 ft above sea level.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Some regulation from lakes and reservoirs upstream. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 11, 1936, reached a stage of 6.7 ft, present datum, discharge not determined. Flood of April 5, 1984, reached a stage of 9.05 ft, from floodmarks, discharge 1,290 ft³/s.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 150 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Ď	ischarge (ft ³ /s)	G	age height (ft)		Date	Time	Di (scharge ft ³ /s)	Gag	e height (ft)
Mar. 28	0345		169		5.47		June 6	2245		*328	. \$	6.09
		DISCH	ARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER VALUES	: 1991 1	TO SEPTEMB	ER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 18 19 19	22 23 24 23 20	35 34 56 62 60	27 25 26 30 33	48 48 40 36 35	49 47 49 46 40	103 97 91 85 79	38 39 44 39 40	113 105 89 70 85	39 33 32 38 34	46 33 28 26 26	23 22 31 40 30
6 7 8 9 10	21 19 16 15 14	17 16 15 15 15	57 51 47 45 46	30 30 31 31 32	35 28 29 28 26	31 40 54 53 58	72 68 65 64 68	42 41 49 63 57	269 272 192 154 127	28 21 19 36 32	25 21 17 23 22	27 28 27 26 26
11 12 13 14 15	15 16 15 e11 e10	19 21 19 19 18	43 40 39 39 39	32 31 30 39 44	29 32 28 28 29	82 82 81 76 72	68 63 59 51 52	50 49 51 47 44	108 88 73 62 52	28 21 30 25 26	23 31 33 32 30	30 26 25 26 26
16 17 18 19 20	e16 12 17 15 14	21 36 39 35 .30	38 35 31 29 30	42 38 35 32 30	43 35 39 45 45	67 67 68 73 71	53 53 57 62 61	52 46 37 32 37	38 36 54 55	35 24 30 30 26	32 34 34 30 29	25 32 26 24 30
21 22 23 24 25	16 18 19 18 19	29 38 50 42 38	31 29 29 29 28	30 30 39 72 69	43 38 34 32 38	66 56 49 44 48	55 56 67 62 63	40 37 31 28 29	53 48 43 46 41	26 26 30 35 30	28 26 26 26 26 26	29 30 32 30 21
26 27 28 29 30 31	19 21 22 21 22 22	36 36 35 34 34	27 26 26 29 32 28	58 58 49 47 47 48	54 58 58 56	63 149 161 137 116 109	63 52 44 43 40	28 29 28 25 24 63	37 55 \ 54 51 43	26 34 29 33 38 40	28 29 31 29 25 23	20 23 21 19 18
TOTAL MEAN MAX MIN CFSM IN.	537 17.3 22 10 .71 .82	819 27.3 50 15 1.12 1.25	1170 37.7 62 26 1.55 1.78	1195 38.5 72 25 1.58 1.82	1117 38.5 58 26 1.58 1.70	2204 71.1 161 31 2.91 3.36	40	1259 40.6 63 24 1.66 1.92	2557 85.2 272 36 3.49 3.90	934 30.1 40 19 1.23 1.42	872 28.1 46 17 1.15 1.33	793 26.4 40 18 1.08 1.21
STATIST							, BY WATER YE					
MEAN MAX (WY) MIN (WY)	39.9 95.2 1990 12.2 1989	56.2. 73.0 1986 27.3 1992	60.2 105 1991 25.9 1989	46.4 73.1 1991 28.1 1989	52.0 82.1 1990 26.4 1987	71.8 96.6 1986 46.5 1989	1987 39.1	72.7 170 1989 40.6 1992	43.9 85.2 1992 19.4 1987	28.0 49.9 1990 12.3 1991	24.6 59.7 1990 13.2 1991	33.2 100 1987 14.0 1991

PASSAIC RIVER BASIN

01379700 ROCKAWAY RIVER AT BERKSHIRE VALLEY, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1985 - 1992
ANNUAL TOTAL ANNUAL MEAN Highest annual mean	14892.1 40.8	15350.3 41.9	51.5 61.2 1990
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	191 Apr 22 2.3 Oct 15 8.8 Jul 15	272 Jun 7 2.3 Oct 15 10 Oct 11	41.9 1992 630 Sep 14 1987 2.3 Oct 15 1991 7.7 Oct 13 1988
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	5.5 Jul 15	328 Jun 6 6.09 Jun 6	744 Sep 14 1987 7.23 Sep 14 1987 4.4 Oct 13 1988
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.67 22.70 80 29	1.72 23.40 68 34	2.11 28.68 94 38
90 PERCENT EXCEEDS	12	19	14

e Estimated.

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°57'34", long 74°32'24", Morris County, Hydrologic Unit 02030103, on left bank at Picatinny Arsenal, 500 ft upstream from Picatinny Lake, and 0.55 mi downstream from Burnt Meadow Brook.

DRAINAGE AREA. 7.65 mi².

PERIOD OF RECORD.--October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 712.54 ft above sea level (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS.--No estimated daily discharges. Records good. Some regulation by Lake Denmark and Green Pond. Several measurements of water temperature were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. Peak discharges greater than base discharge of 75 $\rm ft^3/s$ and maximum (*):

Date	Tir	me	Discharg (ft ³ /s)	je)	Gage height (ft)		Date	Time	Disc (f	harge t ³ /s)	Ga	ge height (ft)
June	6 02	15 .	*103		*2.57		No other	peak grea	ter than ba	ase dis	charge.	
		DIS	SCHARGE, C	UBIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTO	BER 1991 T	O SEPTEMBER	1992		
DAY	ОСТ	NOV	DEC	. JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.3 2.2 2.1 2.1 2.1	1.6 1.6 1.5 1.5	2.9 3.1 12 14 9.6	3.8 3.8 3.8 5.2 5.6	6.7 6.1 5.8 5.6 5.6	7.5 7.9 7.5 7.3 7.1	26 23 20 18 16	9.9 9.6 9.9 9.1 9.0	21 21 19 17 29	7.5 7.0 6.9 7.5 7.0	8.0 6.8 6.3 6.2 6.0	5.0 4.9 7.1 9.1 7.0
6 7 8 9 10	2.3 2.3 2.1 1.9	1.5 1.5 1.4 1.3	7.8 6.7 6.1 5.8 7.0	5.1 4.9 4.8 4.8 5.0	5.3 5.3 5.1 4.8	7.6 9.7 12 11 12	14 13 12 11 11	8.6 8.2 8.3 9.6 9.1	81 62 53 46 38	6.8 6.4 6.2 8.9 7.4	5.8 5.7 5.5 7.5 6.6	6.3 6.3 6.0 6.0
11 12 13 14 15	2.0 2.1 2.0 1.9 2.6	1.8 1.8 1.5 1.4	5.7 5.2 5.1 5.2 4.9	4.8 4.6 4.5 7.5 7.2	4.7 4.6 4.3 4.3 5.0	22 20 21 19 17	13 12 11 9.6 9.2	9.2 8.9 8.3 8.0 7.6	31 26 21 18 16	6.7 6.6 8.5 7.8 7.7	6.3 6.5 6.1 6.3 6.1	6.8 6.0 5.7 5.5 5.4
16 17 18 19 20	3.5 3.7 4.1 3.3 3.1	1.2	4.6 4.3 4.2 3.9 3.6	6.3 5.8 5.4 4.9 4.5	6.9 6.1 5.9 6.4 6.2	15 14 13 15 14	9.8 11 11 12 11	10 11 9.9 8.7 7.8	13 11 9.8 13	9.0 7.9 7.5 7.2 6.9	6.2 6.6 7.4 6.6 6.2	5.0 4.9 4.8 5.0 4.8
21 22 23 24 25	2.9 2.8 2.6 2.4	7.6 5.6 4.6	3.8 3.8 3.8 3.8 3.6	4.6 4.8 7.4 11 8.3	6.2 6.1 6.0 5.7 5.7	12 11 11 9.9 9.7	11 12 14 13	7.5 7.2 6.8 6.6 6.7	11 9.6 8.5 9.2 8.8	6.6 6.5 7.2 7.5 6.9	5.9 5.7 5.5 5.4 5.4	4.3 4.5 4.2 4.1
26 27 28 29 30 31	2.3 2.3 2.2 2.0 1.9 1.7	3.9 3.5 3.2 3.1 2.9	3.4 3.4 4.3 4.9 4.2	7.7 7.3 7.1 7.0 7.0 6.9	8.4 7.8 7.8 8.1	14 41 41 37 32 31	14 13 12 11 10	6.4 6.3 6.1 5.8 5.8	7.8 13 10 8.8 8.0	7.0 8.0 7.0 6.6 6.3 7.1	5.3 6.1 6.3 5.8 5.4 5.2	5.0 4.9 4.8 4.4 4.1
TOTAL MEAN MAX MIN CFSM IN.	75.3 2.43 4.1 1.7 .32 .37	7.6 1.2	164.1 5.29 14 2.9 .69	181.4 5.85 11 3.8 .76 .88	171.8 5.92 8.4 4.3 .77 .84	509.2 16.4 41 7.1 2.15 2.48	398.6 13.3 26 9.2 1.74 1.94	259.9 8.38 14 5.8 1.10 1.26	653.5 21.8 81 7.8 2.85 3.18	224.1 7.23 9.0 6.2 .94 1.09	190.7 6.15 8.0 5.2 .80 .93	162.5 5.42 9.1 4.1 .71 .79
STATI	STICS OF	MONTHLY M	IEAN DATA		YEARS 1983			YEAR (WY)				
MEAN MAX (WY) MIN (WY)	8.39 26.1 1990 2.31 1985	11.2 19.4 1990 2.07 1985	17.1 40.8 1984 5.29 1992	12.5 19.3 1991 5.85 1992	15.1 22.6 1986 5.92 1992	21.3 49.5 1983 10.5 1985	26.2 64.1 1983 3.84 1985	20.3 50.6 1989 8.38 1992	12.2 21.8 1992 3.54 1987	8.76 32.6 1984 2.65 1991	7.05 20.9 1990 2.13 1991	7.11 24.7 1987 2.12 1991

PASSAIC RIVER BASIN

01379773 GREEN POND BROOK AT PICATINNY ARSENAL, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1983 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	3275.9 8.98	3060.8 8.36	13.9 21.4 1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	48 Apr 25 1.2 Nov 18 1.3 Nov 14	81 Jun 6 1.2 Nov 18 1.3 Nov 14	6.63 1985 248 Apr 5 1984 1.2 Nov 18 1991 1.3 Nov 14 1991
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	1.3 NOV 14	103 Jun 6 2.57 Jun 6 1.2 Nov 16	333 Apr 5 1984 3.51 Apr 5 1984 1.2 Nov 16 1991
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.17 15.93 21	1.09 14.88 14	1.82 24.74 29
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	5.4 1.6	6.4 2.3	9.0 2.9

01379780 GREEN POND BROOK BELOW PICATINNY LAKE, AT PICATINNY ARSENAL, NJ

LOCATION.--Lat 40°56'56", long 74°33'29", Morris County, Hydrologic Unit 02030103, on left bank 100 ft upstream from bridge on Whitmore Avenue at Picatinny Arsenal, and 200 ft downstream from dam on Picatinny Lake.

DRAINAGE AREA. -- 9.16 mi².

PERIOD OF RECORD...October 1984 to current year.

REVISED RECORDS. -- WDR NJ-90-1: 1987 (M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 694.91 ft above sea level (U.S. Army, Picatinny Arsenal, benchmark).

REMARKS.--No estimated daily discharges. Records fair. Occasional regulation at Picatinny Lake. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 5, 1984 reached an elevation of 699.0 ft above sea level, 200 ft upstream of bridge on Whitmore Avenue.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 70 ft³/s and maximum (*):

Date	Time	0	ischarge (ft ³ /s)	(Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
Mar. 27	1045		76		3.03		June 6	0700		*122		*3.25
		DISCH	IARGE, CU	BIC FEET	PER SECOND	WATER Y MEAN	YEAR OCTOB	BER 1991 1	O SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.8 2.8 2.8 2.8 2.4	1.7 2.7 2.3 2.1 1.8	3.8 3.9 18 25 18	4.9 4.6 4.6 6.7 7.4	7.7. 7.0 6.5 7.4 8.5	8.0 10 12 9.3	36 31 27 25 23	11 11 11 9.9 9.5	17 21 22 22 28	9.1 8.1 7.5 8.2 8.0	9.1 8.1 7.6 7.1 6.4	4.3 4.1 5.2 8.3 8.3
6 7 8 9 10	1.3 .98 .97 .75 .80	1.6 1.5 1.4 1.0 .86	14 11 9.5 8.8 11	6.6 6.0 5.7 6.0 6.2	7.2 7.0 7.2 6.8 6.3	16 14 15 15	22 19 16 14 13	9.1 8.4 8.4 9.4 9.9	111 92 74 63 52	7.7 7.2 6.7 9.3 9.0	6.0 5.6 5.2 7.1 7.2	8.0 7.5 7.2 6.6 6.4
11 12 13 14 15	.73 .77 .79 .78 .90	.77 .80 .77 .86 1.0	8.7 7.6 7.4 7.3 6.5	5.8 5.5 5.6 9.3	6.1 5.9 5.7 5.6 5.6	17 25 29 26 24	14 13 12 11 10	9.7 9.3 8.8 8.8 8.1	42 35 29 26 24	8.1 7.4 7.8 8.4 8.1	6.9 6.8 6.3 6.5 6.4	6.9 6.5 6.1 5.6 5.3
16 17 18 19 20	1.4 1.3 1.1 1.6 2.0	1.1 .77 .57 .65 .72	6.2 5.6 5.3 5.1 5.5	8.3 6.6 6.1 5.7 5.4	6.5 6.6 6.6 6.9 6.9	19 12 7.6 12 14	10 12 13 13 12	9.2 9.9 10 9.8 9.1	21 18 16 15 16	9.8 9.1 8.4 7.9 7.5	6.1 6.5 6.9 6.9	4.9 4.5 4.3 4.4 4.1
21 22 23 24 25	2.4 6.2 12 11 7.4	.77 .93 1.1 2.4 3.7	6.1 6.3 6.2 5.2	5.1 4.9 7.7 17 12	6.9 6.6 6.5 6.4 6.4	14 13 12 11	12 13 14 14 15	8.4 7.9 7.3 6.8 6.7	15 13 11 11	6.9 6.5 6.8 7.4 7.2	6.6 6.1 5.7 5.5 5.3	3.9 3.9 4.1 3.7 3.4
26 27 28 29 30 31	5.6 5.2 1.9 .42 .38	4.2 4.2 3.9 3.9 3.7	4.6 4.3 4.0 4.8 6.0 5.5	11 9.6 9.0 8.8 8.4 8.2	7.7 8.8 11 11	12 58 58 50 44 41	15 14 14 13 12	6.4 6.2 5.9 5.3 5.0 8.7	9.6 13 13 12 10	7.5 8.6 8.1 7.3 6.9 7.0	5.5 5.8 6.0 5.5 5.0 4.6	3.8 3.8 4.0 4.0
TOTAL MEAN MAX MIN CFSM IN.	82.52 2.66 12 .25 .29 .34	53.77 1.79 4.2 .57 .20 .22	247.3 7.98 25 3.8 .87 1.00	228.7 7.38 17 4.6 .81	205.3 7.08 11 5.6 .77 .83	632.9 20.4 58 7.6 2.23 2.57	482 16.1 36 10 1.75 1.96	264.9 8.55 11 5.0 .93 1.08	862.6 28.8 111 9.6 3.14 3.50	243.5 7.85 9.8 6.5 .86	197.2 6.36 9.1 4.6 .69	157.1 5.24 8.3 3.4 .57
STATIST	ICS OF MO	NTHLY MEA	N DATA FO	OR WATER	YEARS 1985	- 1992	, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	10.2 33.3 1990 .71 1985	15.0 24.3 1990 .28 1985	19.4 43.1 1987 5.28 1985	14.3 27.0 1991 6.98 1985	15.4 27.5 1990 7.08 1992	20.1 29.1 1991 10.6 1985	21.7 50.2 1987 2.48 1985	23.8 66.7 1989 8.55 1992	13.4 28.8 1992 2.23 1987	6.78 18.4 1990 2.02 1988	8.43 28.6 1990 .54 1991	10.2 36.7 1987 2.43 1991

PASSAIC RIVER BASIN

01379780 GREEN POND BROOK BELOW PICATINNY LAKE, AT PICATINNY ARSENAL, NJ--Continued

LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAI	SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR .	WATER YEARS 1985 - 1992
90 PERCENT EXCEEDS .67 1.8 2.1	ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	4142.65 11.3 64 Apr 25 .21 Aug 21 .27 Aug 20 1.24 16.82 27 6.5	9.99 111 Jun 6 .25 Oct 31 .79 Nov 16 122 Jun 6 3.25 Jun 6 1.09 14.85 17 7.2	14.9 22.1 6.35 1985 206 May 17 1990 .20 Nov 20 1984 .20 Nov 17 1984 243 Sep 13 1987 3.70 1.62 22.08 31 9.7

01379790 GREEN POND BROOK AT WHARTON, NJ

LOCATION.--Lat 40°55'04", long 74°35'02", Morris County, Hydrologic Unit 02030103, on left bank 600 ft upstream from bridge on northbound lane of State Route 15, 0.2 mi northwest of Wharton, and 1.7 mi upstream from mouth.

DRAINAGE AREA. -- 12.6 mi 2.

PERIOD OF RECORD.--October 1982 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 680.26 ft above sea level (U.S. Army, Picatinny Arsenal, bench mark).

REMARKS..-No estimated daily discharges. Records good. Some regulation from Lake Picatinny, Picatinny Arsenal sewage treatment plant, and flood gates located about 800 ft upstream of gage. Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 130 ft³/s and maximum (*):

Date		Time	D	ischarge (ft ³ /s)	Ga	age height (ft)		Date	Time	Di:	scharge ft ³ /s)	Ga	ge height (ft)
June	6	0715		*163		*3.66		No other	peak grea	ter than	base disc	charge.	
			DISCHAR	GE, CUBIC	FEET PEF	R SECOND, DAILY	WATER YEA MEAN VAL	AR OCTOBER	1991 TO	SEPTEMBER	1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		5.1 5.0 4.9 4.7 4.4	2.2 3.7 4.0 3.7 3.5	7.2 7.6 45 45 30	9.6 9.0 8.8 14 15	14 13 12 12 13	14 15 17 16 17	49 44 39 36 34	19 18 18 17 17	45 34 31 29 54	14 13 12 13 12	20 13 11 11 9.3	5.6 5.6 13 17 12
6 7 8 9 10		4.2 3.5 2.9 2.4 2.3	3.2 3.0 2.9 2.7 2.5	23 19 16 16 20	13 11 10 11 12	12 12 12 12 11	20 25 27 22 21	32 29 26 23 22	16 16 17 23 19	154 117 88 74 61	12 11 10 17 13	8.2 7.7 7.4 13 10	11 11 10 9.0 9.1
11 12 13 14 15		2.2 2.0 1.9 1.8 3.8	5.2 3.5 2.8 2.5 2.5	16 14 14 14 12	10 9.8 9.7 23 20	11 10 9.6 9.8 11	38 33 38 36 33	25 22 20 19 18	18 17 16 15 14	51 44 38 34 30	12 11 11 13 12	10 10 8.6 9.2 8.7	13 9.4 8.5 7.7 7.2
16 17 18 19 20		5.6 8.4 7.3 4.7 4.4	2.6 2.1 2.1 2.0 1.9	11 11 10 9.3 9.3	16 14 13 11 10	17 14 13 14 13	28 22 15 19 22	18 22 23 23 21	21 18 17 16 15	27 24 21 28 25	15 13 12 11 11	8.6 10 12 10 9.5	6.9 6.4 6.1 6.5 5.9
21 22 23 24 25		4.5 5.9 13 14 11	3.3 17 18 10 9.1	10 10 10 10 9.3	10 9.8 20 35 22	13 12 12 12 13	22 21 21 19 19	20 23 26 25 28	14 14 13 12 13	22 19 17 18 17	9.8 9.3 11 11 9.9	8.6 8.1 7.5 7.1 6.8	5.6 5.6 6.0 4.9 4.4
26 27 28 29 30 31		8.1 7.6 6.9 3.2 2.6 2.3	8.6 8.1 7.6 7.3 7.0	8.3 7.8 7.4 11 14 11	18 17 16 15 15	22 18 17 18	31 96 75 67 57 55	24 23 22 21 20	12 12 11 11 9.9 40	15 26 20 17 16	11 14 11 10 9.7 14	9.3 8.7 8.0 7.7 6.7 6.1	7.0 6.8 6.6 5.8 5.2
TOTAL MEAN MAX MIN CFSM IN.	•	160.6 5.18 14 1.8 .41 .47	154.6 5.15 18 1.9 .41	458.2 14.8 45 7.2 1.17 1.35	442.7 14.3 35 8.8 1.13 1.31	382.4 13.2 22 9.6 1.05 1.13	961 31.0 96 14 2.46 2.84	777 25.9 49 18 2.06 2.29	508.9 16.4 40 9.9 1.30 1.50	1196 39.9 154 15 3.16 3.53	368.7 11.9 17 9.3 .94 1.09	291.8 9.41 20 6.1 .75 .86	238.8 7.96 17 4.4 .63 .71
STATI	STI	ICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 1983	- 1992,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)		14.1 46.7 1990 4.54 1985	21.2 34.3 1986 4.23 1985	31.1 71.2 1984 11.7 1985	23.0 38.2 1991 11.3 1985	27.5 41.9 1984 13.2 1992	38.8 89.2 1983 17.8 1985	48.6 112 1983 8.96 1985	37.4 87.0 1989 16.4 1992	22.8 39.9 1992 6.65 1987	16.7 61.4 1984 5.08 1991	12.7 36.4 1990 3.12 1991	14.3 54.0 1987 4.73 1983

PASSAIC RIVER BASIN

01379790 GREEN POND BROOK AT WHARTON, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1983 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	6274.5 17.2 86 Apr 25 1.6 Sep 3 1.8 Aug 29	5940.7 16.2 154 Jun 6 1.8 Oct 14 2.2 Oct 8	25.6 40.6 1984 12.5 1985 512 Apr 6 1984 1.6 Sep 3 1991 1.8 Aug 29 1991
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.36 18.52 40 11 2.5	163 Jun 6 3.66 Jun 6 1.8 Oct 13 1.29 17.54 29 12 4.5	572 Apr 5 1984 5.11 Apr 5 1984 1.5 Sep 3 1991 2.04 27.65 52 17 5.7

01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°54'10", long 74°24'36", Morris County, Hydrologic Unit 02030103, on right bank, under New Jersey Transit railroad bridge, just downstream of bridge on Morris Avenue in Boonton, 1.8 mi upstream from dam at Boonton Reservoir.

DRAINAGE AREA. -- 116 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1937 to current year. Monthly discharge only for October 1937, published in WSP 1302.

REVISED RECORDS.--WRD-NJ 1974: 1938(M). WDR NJ-78-1: 1949(M), 1952(M), 1968(M), 1971(M), 1973(P), 1974(M), 1977(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 364.47 ft above sea level (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Splitrock Reservoir on Beaver Brook, 14.5 mi upstream of station (see Passaic River basin, reservoirs in). Town of Boonton diverts water for municipal supply from Taylortown Reservoir on Stony Brook, capacity, 75,000,000 gal and by pumping from wells in vicinity of Boonton. The mean diversion during the water year from Taylortown Reservoir was 0.78 ft³/s. Rockaway Valley trunk sewer bypasses the station (see station 01381000). Several measurements of water temperature were made during the year. Satellite telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with Jersey City, Bureau of Water.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 950 ft3/s and maximum (*):

Date	Time	C	ischarge (ft ³ /s)	(Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Gag	ge height (ft)
Mar. 27 June 1	1200 0130		1,220 1,010		4.18 3.88	,	June 6 Sep. 4	1430 0715	,	*2,310 1,660		*5.38 4.74
	•	DISCH	ARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER VALUES	1991	TO SEPTEM	BER 1992		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	58	45	81	110	140	135	373	160	856	114	546	41
2	59	38	81	101	120	127	328	160	466	96	206	40
3	66	38	402	102	124	126	293	160	320	88	122	179
4	64	38	618	183	116	128	264	150	251	117	118	1160
5	61	34	340	237	113	121	241	147	377	107	99	271
6	67	30	228	165	103	124	216	146	1960	103	82	133
7	61	28	191	132	102	176	200	134	1300	85	72	110
8	43	26	164	118	102	293	190	142	863	74	64	104
9	33	26	153	125	97	214	182	297	620	192	220	92
10	31	29	226	137	79	187	192	232	478	134	203	93
11	31	59	186	120	90	436	245	194	382	99	112	181
12	38	54	155	116	85	361	223	163	312	85	125	115
13	30	43	149	112	77	274	190	151	263	100	93	89
14	30	.38	159	227	90	238	168	145	224	118	96	80
15	58	34	143	262	99	213	154	131	193	98	89	70
16	112	32	123	166	270	190	157	179	168	151	93	63
17	134	30	108	118	179	174	205	202	151	119	163	56
18	167	41	102	140	140	163	221	160	137	108	204	59
19	93	50	82	105	148	188	221	134	207	97	153	54
20	62	43	88	105	147	195	207	120	268	84	111	48
21	50	42	91	103	134	182	191	115	188	74	89	48
22	45	167	91	100	120	169	205	111	154	66	75	52
23	46	392	90	143	111	169	323	102	135	101	67	74
24	48	220	92	437	110	151	244	109	161	117	61	57
25	49	140	89	285	120	148	286	156	179	89	57	51
26 27 28 29 30 31	44 48 49 47 44 45	106 90 86 84 80	82 82 84 130 182 144	226 174 169 152 144 142	238 227 182 166	220 1010 786 533 441 422	238 214 187 172 162	109 112 101 89 83 405	138 186 188 144 126	78 134 100 77 72 136	55 74 71 66 54 46	120 143 162 132 110
TOTAL	1813	2163	4936	4956	3829	8294	6692	4799	11395	3213	3686	3987
MEAN	58.5	72.1	159	160	132	268	223	155	380	104	119	133
MAX	167	392	618	437	270	1010	373	405	1960	.192	546	1160
MIN	30	26	81	100	77	121	154	83	126	66	46	40
STATIST							, BY WATER YE	AR (WY				•
MEAN	125	222	272	257	275	388	87.0	281	186	131	122	124
MAX	523	694	706	855	590	798		836	847	553	447	484
(WY)	1956	1973	1974	1979	1973	1977		1989	1972	1975	1955	1971
MIN	23.7	63.7	67.2	74.8	107	152		90.5	35.3	18.1	16.6	16.8
(WY)	1965	1962	1940	1981	1940	1985		1965	1965	1966	1957	1964

PASSAIC RIVER BASIN

01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1938 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	61472 168 1080 Mar 4 15 Sep 3 19 Aug 29 364 102 30	59763 163 1960 Jun 6 26 Nov 8 30 Nov 4 2310 Jun 6 5.38 Jun 6 6.8 Feb 3 270 124	231 396 88.3 4220 100 100 120 120 120 120 120

01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963-79, 1991 to current year.

COOPERATION. - Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

			WATER QUAL	LITY DATA,	, WATER Y	EAR OCTO	3ER 1991 I	O SEPTEMB	ER 1992	4	
	DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	PE- WA IFIC WA DN- FI UCT- (SI NCE A	TAND - A	TURE ATER S	YGEN, (DIS- SOLVED S	DIS- DE OLVED B PER- C CENT I ATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
	1991	1100	27	770	7.0	, -	44.0	94	F4 0	77	77
JAN	17 1992	1100	27	339	7.8	4.5	11.0	86	£1.8	33	33
APR	3	1100	138	218	7.4	0.5	14.6	104	E1.5	22 23	10 70
JUN	!	1100	189	211	7.4	8.0	12.6	107	<1.0		
AUG	1	1100	386	168	7.4	20.0	10.8		· <1.0	920	3 10 20
U	5	1100	100	242	7.9	22.0	9.0	105	<1.0	110	20
	DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	, LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	(MG/	<u>'</u> ED L
	NOV 1991 07 JAN 1992	12	0 28	11	20	1.7	82	19	43	0.	1
	30	6	0 15	5.5	16	1.0	35	18	3 5	0.	2
	13 JUN	6	3 16	5.7	16	1.1	35	16	30	0.	2
	11 AUG	5	1 13	4.4	12	0.90	33	12	23	<0.	1 .
	05	. 8	0 20	7.4	17 .	1.1	57	16	34	0.	2
	DATE	SILICA DIS- SOLVE (MG/L AS S102)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NO3	AMMON I A		GEN,A MONIA ORGAN	M- + IC L
	NOV 1991 07 JAN 1992	9.4	183	0.004	0.005	0.29	0.38	0.05	<0.03	0.30	
	30	9.3	123	0.004	0.003	0.39	0.39	<0.03	<0.03	0.24	
	APR 13	7.6	115	0.011	0.012	0.34	0.33	<0.03	0.04	0.34	
	JUN 11	8.7	95	0.010	0.006	0.30	0.27	0.04	0.14	0.49	
	AUG 05	9.0	. 140	0.009	0.008	0.34	0.34	<0.03	<0.03	0.52	
	DATE	NITRO GEN,AM MONIA ORGANI DIS. (MG/L AS N)	- + NITRO- C GEN, TOTAL (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)		E , ED
	NOV 1991	0.2	5 0.59	0.63	0.03	<0.02	2.9	0.2			
	JAN 1992 30	0.1		0.58	0.03	<0.02	3.1	0.2	8	3.0	n
	APR 13	0.2		0.57	<0.02	<0.02	3.3	0.2	20		•
	JUN 11	0.4		0.72	0.06	0.03	5.1	0.3	15		
	AUG	0.4		0.72	0.03		3.6	0.2	3		R1
	05	0.1	, 0.00	0.73	0.03		3.0	0.2	3	0.0	J 1

PASSAIC RIVER BASIN

01380500 ROCKAWAY RIVER ABOVE RESERVOIR, AT BOONTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
NOV 1991 07	1100	12	<1	<10	20	<1	<1
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
NOV 1991 07	300	1	60	<0.10	2	<1	20

01381000 ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, NJ

LOCATION.--Lat 40°53'49", long 74°23'42", revised, Morris County, Hydrologic Unit 02030103, on right bank 2,000 ft downstream from Boonton Reservoir Dam at Boonton, and 0.4 mi upstream at bridge on Greenback Road.

DRAINAGE AREA. -- 119 mi 2.

PERIOD OF RECORD. March to December 1903; January, February 1904 (gage height only); January 1906 to September 1950 (monthly discharge only, published in WSP 1302) October 1950 to current year (figures of daily discharge for October 1950 to September 1954 published in Special Report 16 of New Jersey Department of Environmental Protection). Published as "near Boonton" 1903-4, and as "at Boonton" 1906-37.

REVISED RECORDS.--WSP 1902: 1951-54. WDR NJ-79-1: 1949(M), 1952(M), 1968(M), 1970-74(M), 1977(M).

GAGE. Water-stage recorder. Concrete control since Nov. 5, 1936. Datum of gage is 195.68 ft above sea level (levels from New Jersey Geological Survey bench mark). Mar. 15, 1903 to Feb. 2, 1904, nonrecording gage at site 1.9 mi downstream at different datum. Jan. 1, 1906 to Mar. 3, 1918, nonrecording gage on Boonton Reservoir Dam 2,000 ft upstream at datum 305.25 ft sea level (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Records represent flow in river only. Sewage effluent enters river about 600 ft below station (records given herein). Flow regulated by Boonton Reservoir (see Passaic River basin, reservoirs in) 2,000 ft upstream of station, and by Splitrock Reservoir (see Passaic River basin, reservoirs in) 16.5 mi above station. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. Satellite telemeter at station.

COOPERATION.--Gage-height record collected in cooperation with and record of sewage effluent furnished by Jersey City, Bureau of Water.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC JAN **FEB** MAR MAY JUN JUL **AUG** SEP APR 517 61 52 57 28 32 999 497 12 73 13 10 12 34 22 30 17 33 19 13 259 222 211 171 13 83 17 9.8 12 12 12 69 12 12 12 107 20 22 22 23 24 97 73 101 13 12 12 51 253 210 11 11 13 33 103 12 53 27 12 178 45 79 127 13 1ŏ 29 30 395 10. 355.5 TOTAL 73.9 999 34.4 179 66.6 178 905 350 83.6 191 53.9 331 MEAN 10.4 11.0 29.0 10 MAX 9.7 13.1 MIN 13.2 12.3 12.3 11.3 11.4 13.0 12.7 13.6 12.4 15.0 12.9 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1950 1992, BY WATER YEAR (WY) 671 1972 49.8 582 978 45.6 269 MFAN 47.4 408 53.1 445 1979 .39 1973 MAX (WY) 18.6 (WY)

01381000 ROCKAWAY RIVER BELOW RESERVOIR, AT BOONTON, NJ -- Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1950 - 1992
ANNUAL TOTAL ANNUAL MEAN (†) HIGHEST ANNUAL MEAN	38776.2 106 12.3	32580.5 89.0 12.8	135 296 1952
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	993 Apr 22 9.7 Dec 20 9.9 Dec 15	2000 Jun 6 9.7 Dec 20 9.9 Dec 15 2440 Jun 6	7.19 1965 3850 Apr 6 1984 .00 Jan 19 1963 .00 Dec 18 1963 7560ab Oct 10 1903
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	278 12 10	6.20 Jun 6 8.2 Dec 21 198 29 11	.00a Many days 360 37 .70

Since 1903; see period of record section.
Maximum daily.
Sewage effluent, in cubic feet per second, from plant at Rockaway Valley Regional Sewage Authority.

01381200 ROCKAWAY RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'29", long 74°20'53", Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at intersection with New Road in Pine Brook, and 1.1 mi upstream of mouth.

DRAINAGE AREA. -- 136 mi 2.

PERIOD OF RECORD.---Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

ост	DATE 1991	TIME	CHA IN CU F P	ST. C BIC C EET D ER A	PE- IFIC ON- UCT- INCE IS/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	AT WA	IPER- TURE TER EG C)	D SO	GEN, IS- LVED IG/L)	OXYGEN DIS- SOLVE (PER- CENT SATUR ATION	DE D B C	YGEN MAND, IO- HEM- CAL, DAY MG/L)	COL FOR FEC BRO (MP	I- M, CAL, OTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)	
2	4	1130		28	491	7.7		13.5		8.6	8	32	E1.5		350 .	49	
29	1992 9	1100	1	00	284	7.5		0.5		15.2	10	16	<1.2		20	30	
APR 0	6	1100	1	40	255	7.6		4.0		15.6	11	9	E2.0		2	<10	
JUN 1	5	1100	1	68	231	7.6		22.0		9.0	10	14	<1.1		230	80	
JUL 3	0	1130		28	435	7.8		21.5		8.6	ç	9	E2.2		920	160	
	DATE	NE TO (M	RD- SS TAL G/L S CO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS SOLVI (MG/I	, SOD: DIS D SOLV	s- ·	POTA SIL DIS SOLV (MG, AS I	UM, S- VED /L	ALKA LINIT LAB (MG/ AS CACO	Y SI L S	ULFATE DIS- SOLVED MG/L S SO4)	DIS- SOLV (MG/	, /ED /L	FLUO RIDE DIS SOLV (MG/ AS F	: ED L	
	OCT 1991 24									88		33	63		0.	7	
	JAN 1992 29		77	19					.5	49		22	41				
	APR				7.										0.		
	06		71	18	6.3				.3	40		20	43		0.		
	15 JU <u>L</u>		66	17	5.7				.5	43		.18	32		0.		
	30		130	32	11	30	5.	4.	.1	.75		28	57		0.	3	
	DATE	DI SO (M A	LVED G/L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO GEN NITRI TOTAI (MG/I	D- GE , NITE TE DI . SOI . (MO	TRO- EN, RITE IS- LVED G/L N)	NITI GEI NO2+I TOT/ (MG/ AS I	N, NO3 AL /L	NITR GEN NO2+N DIS SOLV (MG/ AS N	, A - A ED 1 L (IITRO- GEN, IMONIA OTAL MG/L	NITE GEN AMMON DIS SOLV (MG) AS N	NIA S- /ED /L	NITR GEN,A MONIA ORGAN TOTA (MG/ AS N	M- + IC L	
	OCT 1991	4	2		0.00	1 0	024	, .	70		0	0.00	0.44	1	0 50		
	24 JAN 1992		2	••	0.0		.021	6.7		6.8		80.0	0.11		0.50		
	29 APR		8.9	156			.008	1.5		1.5		0.03	<0.03		0.61		
	06 JUN		7.2	144	0.0	12 0.	.012	0.9	97	0.9	6	0.04	<0.03	5	0.53		
	15 JUL		7.4	129	E0.0	14 EO.	.013	1.0	02	1.0	4	0.07	0.06	5	0.59		
	30	1	1	250	0.02	26 0.	.024	5.8	80	5.7	8	0.03	0.03	3	0.45		
	DATE	GEN MON ORG DI (M	TRO- ,AM- IA + ANIC S. G/L N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO GEN DIS- SOLVEI (MG/I AS N	PH0 PH0F T01 (M0	RUS FAL G/L	PHOS PHORU DIS SOLV (MG) AS F	JS S - VED /L	CARBO ORGAN DIS- SOLVE (MG/ AS C	N, OR IC S PE D 1	RBON, GANIC US- NDED OTAL MG/L S C)	SED I MENT SUS - PEND (MG/	, ED	SEDI MENT DIS CHARG SUS PENDI (T/DA	: E, ED	
	OCT 1991		N 75	77	7 .		02	0.03	2		9	0 5		2	0	15	
	JAN 1992		0.35	7.3	7.2		.92	0.93		4.		0.5		2	0.		
	29 APR		0.33	2.2	1.9		.17	0.14		3.		0.2		4	1.		
	06		0.33	1.5	1.3		.12	0.08		3.		0.6		9	3.	4	
	15 JUL		0.43	1.6	1.5		.17	0.12	2	4.	4	0.6		3 5	16		
	30	<	0.03	6.3	••	0.	.13			20		0.5		9	0.0	68	

PASSAIC RIVER BASIN

01381200 ROCKAWAY RIVER AT PINE BROOK, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		WATER	QUALITI D	MIA, WATE	K IEAR OL	,100EK 179	1 10 3271	EMBER 177	۲.	
DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)
OCT 1991 24	1130	18		• •		••	••	••	••	1
NOV 15	1100		<1	1	4.2	120	460	0.1	3.9	
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 1991 24	••	<10	140	<1		2		• •		370
NOV 15	. 1				<1	••	3	<5	50	
	·				·					
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 1991		• .								
24 NOV		3		90	••	<0.10		18		<1
15	4300	••	50	••	170	••	0.01	••	<10	••
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991										
24 NOV		40		•••	-14.0		7.0			
15	<1	••	60	2	<1.0	<0.1	7.0	0.7	0.8	1.2
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
ОСТ 1991 24						••				
NOV 15				-0 4			,1 C			
1	0.3	<1.0	<0.1	<0.1	<1.0	<0.1	<1.0	<1.0	<1.00	<10

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ

LOCATION.--Lat 40°48'26", long 74°27'22", Morris County, Hydrologic Unit 02030103, on left bank at Morristown sewagedisposal plant, 0.8 mi northeast of Morristown, and 9.0 mi upstream from mouth.

DRAINAGE AREA. -- 29.4 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1925-27(M) 1928-29, 1930-32(M), 1933-34. WRD-NJ 1974: 1965. WDR NJ-84-1: 1971(M). WDR NJ-88-1: Longitude.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since July 1, 1936. Datum of gage is 260.01 ft above sea level (levels from New Jersey Geological Survey bench mark). Prior to July 16, 1930, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow occasionally regulated by operation of gates in Pocahontas Dam, 2.5 mi above station. Diurnal fluctuations from unknown source at low flow. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft³/s and maximum (*):

Date	Time		Discharge (ft ³ /s)	(Gage height (ft)		Date	Time	Di:	scharge ft ³ /s)	Gag	ge height (ft)
Mar. 27 June 6	0915 0100		460 *1,510		3.79 *6.32	•	July 31	1745		633		4.28
		DISC	CHARGE, CU	BIC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBE	R 1991 T	O SEPTEMB	ER 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	· SEP
1 2 3 4 5	22 22 22 21 22	21 21 23 22 20	26 32 223 182 48	27 27 27 82 67	29 25 26 26 26	30 30 30 30 29	51 48 45 43 42	39 39 37 36 38	191 56 43 38 448	36 33 42 68 39	167 39 34 40 30	21 20 51 92 28
6 7 8 9	35 24 21 21 21	20 20 20 20 20	37 34 31 34 66	38 34 29 34 34	25 25 26 25 23	29 63 74 40 47	41 40 39 40 39	38 36 53 85 49	914 197 180 163 98	39 34 32 126 42	27 26 26 74 3 6	24 25 27 26 31
11 12 13 14 15	25 25 21 20 46	39 30 23 21 20	38 32 38 41 32	29 28 28 86 52	24 23 23 26 49	140 55 42 39 36	65 45 39 38 37	40 37 36 37 35	81 74 66 61 58	33 32 34 46 35	33 33 26 32 29	55 29 24 23 21
16 17 18 19 20	46 60 52 29 24	20 19 19 19 19	28 27 27 24 24	32 28 28 26 25	110 43 36 40 36	35 35 35 45 43	45 54 49 46 41	51 41 38 35 33	54 51 49 84 75	39 32 48 32 30	34 44 52 33 28	21 21 20 20 19
21 22 23 24 25	22 22 22 22 22 21	27 110 150 43 30	26 26 26 26 25	25 25 58 106 40	32 30 30 31 39	40 37 40 37 41	38 50 129 56 80	32 31 30 39 43	50 45 44 72 66	28 27 71 49 33	25 24 23 23 24	19 26 34 21 20
26 27 28 29 30 31	21 21 21 21 21 21 20	26 25 24 23 23	24 24 24 48 50 33	33 29 29 29 29 29	96 50 37 35	106 364 99 59 53 62	51 47 43 41 39	34 35 31 29 30 214	44 43 39 36 37	33 40 30 28 26 114	29 31 27 24 21 21	58 47 41 25 22
TOTAL MEAN MAX MIN CFSM IN.	813 26.2 60 20 .89 1.03	917 30.6 150 19 1.04 1.16	1356 43.7 223 24 1.49 1.72	1193 38.5 106 25 1.31 1.51	1046 36.1 110 23 1.23 1.32	1845 59.5 364 29 2.02 2.33	1461 48.7 129 37 1.66 1.85	1381 44.5 214 29 1.52 1.75	3457 115 914 36 3.92 4.37	1331 42.9 126 26 1.46 1.68	1115 36.0 167 21 1.22 1.41	911 30.4 92 19 1.03 1.15
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 1992, BY WATER YEAR (WY)												
MEAN MAX (WY) MIN (WY)	31.5 93.8 1990 8.72 1931	44.8 132 1933 13.3 1937	53.4 158 1984 14.2 1940	57.1 211 1979 16.9 1922	64.1 147 1973 23.5 1940	85.1 215 1936 28.1 1981	86.2 231 1983 30.2 1985	66.7 237 1989 24.4 1941	46.9 214 1972 14.6 1965	38.2 186 1975 10.3 1965	35.8 158 1942 8.02 1932	34.6 123 1971 7.25 1932

PASSAIC RIVER BASIN

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENT	DAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1922 - 1992
ANNUAL TOTAL ANNUAL MEAN Highest annual mean	19500 53.4		16826 46.0	53.6 98.5 1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	484 15 16	Sep 25 Sep 18 Sep 12	914 Jun 6 19 Nov 17 20 Nov 14	23.3 1965 1510 Aug 28 1971 4.2 Sep 10 1932 4.7 Sep 9 1932
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		33p 12	1510 Jun 6 6.32 Jun 6 18 Nov 17	2800 Aug 28 1971 8.60 Aug 28 1971 2.8 Aug 27 1932
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.82 24.67 90 40 20		1.56 21.29 69 34 21	1.82 24.78 104 36 15

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-24, 1926, 1962 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

· DATE	CH I	NST. CI UBIC CO FEET DU PER AN	PE- WA IFIC WA DN- FI JCT- (ST ICE A	AND - ARD	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)		BIO- F CHEM- F ICAL, 5 DAY E	COLI- FORM, FECAL, EC BROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991 22	1030	21	372	••	10.0	11.1	99	E8.7	330	700
JAN 1992 30	1200	25	440	8.5	4.5	18.4	145	4.8		
APR 08	1100	39	341	8.9	12.0	15.5	146	2.3	20	20
MAY 21		33							790	40
AUG	1345		355	8.8	20.5	13.7	152	<1.0		
04	1100 .	38	321	7.8	22.0	8.6	100	E1.3	5400	50
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIU DIS- SOLVE (MG/ AS N	D III D SOLI L (MG	UM, LINI S- LA VED (MG /L AS	TY SULFA B DIS- /L SOLV	DIS- ED SOLVED L (MG/L	(MG/	ED L
OCT 1991 22	120	30	10	28	3	.0 74	22	52	0.	2
JAN 1992 30	110		9.9	34		.5 64	25	76	0.	
APR 08	97	25	8.3	26	2	.1 53	21	61	0.	1
MAY 21	100	26	8.9	25	2	.2 65	22	51	. 0.	1
AUG 04	97	25	8.5	22	2	.4 60	24	48	0.	1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITR GEN NITRI DIS SOLV (MG/ AS N	, NITI TE GEI - NO2+I ED TOTA L (MG	N, NO2+ NO3 DI AL SOL /L (MG	N, NITRI NO3 GEN S- AMMON VED TOTAI /L (MG/	, AMMONÌA IA DIS- L SOLVED L (MG/L	GEN,A MONIA ORGAN	M- + IC L
OCT 1991	18	216	0.042	0.0	45 1.8	86 1.	78 0.20	6 0.34	0.55	
JAN 1992 30	16	238	0.016	0.0	16 1.	71 1.	70 <0.03	3 <0.03	0.29	
APR 08	14	196	0.023	0.0	23 1.	51 1.	48 <0.0	3 <0.03	0.55	
MAY 21	14	196	0.025	0.0	29 1.0	67 1.	67 <0.0	3 <0.03	0.52	
AUG 04	16	190	0.032	0.0	31 2.0	05 1.	90 <0.0	3 <0.03	0.37	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS PHORU TOTA (MG/ AS P	S DIS L SOLV L (MG)	JS ORGA S- DIS VED SOLV /L (MG	NIČ SUS- - PENDEI ED TOTAI /L (MG/I	SEDI- SEDI- MENT, SUS- PENDED		: E, - ED
OCT 1991 22	0.43	2.4	2.2	0.3	2 0.28	3 3.3	0.4	6	0.34	
JAN 1992 30	0.18		1.9	0.2				3	0.20	
APR								8	0.84	
08 May	0.21		1.7	0.0						
21 AUG	0.41		2.1	0.1				9	0.80	
04	0.11	2.4	2.0	0.1	1 0.05	5 3.4	0.6	15	1.5	

01381500 WHIPPANY RIVER AT MORRISTOWN, NJ--Continued

·DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM I TOTAL RECOV- I ERABLE I (UG/L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 22	1030	12	<1	<10	120	<1	<1	4
DATE	(UG	AL TOT OV- REC BLE ERA /L (UG	AL TOT OV- REC BLE ERA	E, MERCL AL TOTA OV- RECC BLE ERAE /L (UG)	L TOTA DV- RECO BLE ERAL 'L (UG)	AL SELE- DV- NIUM, BLE TOTAL /L (UG/L	ZINC TOTA RECO' ERAB (UG/) AS Z	Ľ V- LE '
OCT 1991 22		430	2	70 0.	10	2 <	1 <	10

. 01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ

LOCATION.--Lat 40°50'42", long 74°20'51", Morris County, Hydrologic Unit 02030103, at bridge on New Road, 0.3 mi southwest of overpass of Interstate 280, 0.4 mi upstream of Rockaway River, and 1.4 mi southwest of Pine Brook.

DRAINAGE AREA. -- 68.5 mi².

PERIOD OF RECORD. -- Water years 1963 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH/ II CU TIME	NST. CI JBIC CO FEET DU PER AN	E- WA FIC WH N- FI CT- (ST CE A	AND - A RD W	MPER- C TURE ATER EG C)	XYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED B (PER- CENT I SATUR- 5	IO- F CAL, DAY B	OLI- (ORM, PECAL, NEC	NTERO- COCCI ME,MF WATER TOTAL COL / OO ML)
NOV 1991 04	1115	39 ·	558	7.6	10.0	8.1	72	E2.0	50	<20
JAN 1992 29	1230	56	600	7.6	3.0	13.0	97	2.3	17	<10
APR 02	1130	90	421	7.4	7.0	11.2	94	3.8	94	40
MAY 21	1100	46	480	7.8	17.0		84	<1.0	40 -	330
AUG 03						8.1			7000	5000
03	1100	61	3 05	7.4	22.0	7.0	81	3.0	7000	5000
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L, AS NA)		, LINIT LAB D (MG/ AS	Y SULFATE DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/L))
NOV 1991	170	44	15	42	4.1	107	42	68	0.2	
JAN 1992 29	150	39	13	52	2.5	95	36	98	0.1	
APR 02	100	27	8.4	36 .	2.0	57	26	71	0.2	
MAY 21	130	34	12	36	2.9	87	29	66	0.2	
AUG 03	95	25	8.0	21	2.0	62	21	38	0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2+NO	NO2+N 3 DIS SOLV (MG/	, NITRO- 03 GEN, - AMMONIA ED TOTAL L (MG/L	AMMON Ì A	GEN, AM MONIA ORGANIO	- ⊦
NOV 1991										
04 JAN 1992		295	E0.155	E0.160	3.25	3.2	9 0.97	0.97	1.8	
29 APR	15	322	0.054	0.052		1.6	0 1.62	1.50	2.1	
02 MAY	10	222	0.036	0.033	1.44	1.4	5 0.36	0.33	1.1	
21 AUG	13	256	0.037	0.035	2.46	2.4	0 0.13	0.13	0.92	
03	12	171	0.020	0.018	1.48	1.5	0.05	0.06	1.2	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGAN DIS- D SOLVE (MG/	IČ SUS- PENDED D TOTAL L (MG/L	SEDI- MENT, SUS- PENDED (MG/L))
NOV 1991			, -					-	o 53	
04 JAN 1992	1.6	5.1	4.9	0.62	0.58	5.1	0.6	5	0.53	
29 APR	1.9	3.8	3.5	0.28	0.19		••	13	2.0	•
02 May	0.89	2.5	2.3	0.13	0.08	5.3	0.5	19	4.6	
21 AUG	0.60	3.4	3.0	0.35	0.27	4.7	• •	34	4.2	
03	0.61	2.7	2.1	0.32	0.15	7.9	1.8	90	15	

01381800 WHIPPANY RIVER NEAR PINE BROOK, NJ--Continued

DATE	TIME	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)
NOV 1991 04 04	1115 1115	<1	1	5.3	270	560	<0.1	3.4	2	3
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991, 04 04	<10	80	·· <1	<1	5	5	<5		7	 590
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 04 04	5900	3	30	100	⁷⁸	 <0.10	0.12	4	<10 	 <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 04 04	<1	 40	40	<1 	<1.0	<0.1 	2.0	0.3	0.2	0.1
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 04 04	0.1	<0.1 	<0.1	<0.1 	<0.1	<0.1 	<1.0	<0.1 	<1.00	<10

01381900 PASSAIC RIVER AT PINE BROOK, NJ

LOCATION.--Lat 40°51'45", long 74°19'18", Morris County, Hydrologic Unit 02030103, on downstream left wingwall of bridge on U.S. Route 46, 0.5 mi east of Pine Brook, and 1.3 mi downstream from Rockaway River.

DRAINAGE AREA. -- 349 mi 2.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1963-69, 1973, and annual maximum, water years 1966-75, 1978-79. October 1979 to current year. Feb. 19 to Aug. 24, 1939 in files of U.S. Army Corps of Engineers, New York District.

REVISED RECORDS. -- WDR NJ-77-1: 1967(M).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 149.26 ft above sea level. December 1965 to September 1979, crest-stage gage at same site at datum 10.00 ft higher. Feb. 19 to Aug. 24, 1939, water-stage recorder at present State Route 506 bridge, 1,600 ft upstream from gage, operated by U.S. Army Corps of Engineers, New York District at datum 13.05 ft higher.

REMARKS.--No estimated daily discharges. Records fair except those above 1,000 ft³/s, which are poor. Flow regulated by Boonton and Splitrock Reservoirs (see Passaic River basin, reservoirs in) and many small lakes. Water diverted from Boonton Reservoir for municipal supply of Jersey City (see Passaic River basin, diversions). Several measurements of water temperature were made during the year. Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD. --Maximum stage since at least 1810, according to State Geologist's report for 1904, 23.2 ft, Oct. 10, 1903, present datum, from King Survey of highwater marks at present State Route 506 bridge, 1,600 ft upstream from gage. Floods of Mar. 13, 1936 and Sept. 24, 1938 reached stages of 20.8 ft and 19.4 ft respectively, at present State Route 506 bridge and present datum. Flood of July 23, 1945 reached a stage of 22.3 ft at present site and datum according to U.S. Army Corps of Engineers; minimum observed, 41.1 ft³/s, Sept. 22, 1964.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,000 ft³/s and maximum (*):

Date	Tim	D :	ischarg (ft ³ /s	je (Gage height (ft)		Date	Time		Discharge (ft ³ /s)	Ga	ge height (ft)
Mar. 29	1030	0 2	2,080		17.97		June 7	1230		*4,270		*19.98
		DISCH	ARGE, C	UBIC FEET	PER SECOND	, WATER Y MEAN	YEAR OCTOE VALUES	BER 1991 T	O SEPTE	MBER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	571	176	269	333	276	438	1580	357	913	183	636	118
2	379	172	267	289	257	364	1370	345	1190	153	736	116
3	289	167	615	281	227	350	1160	325	1200	129	542	188
4	247	164	1010	380	226	341	989	297	1020	232	398	660
5	215	162	1160	642	224	328	795	282	917	235	282	848
6	304	161	1180	617	201	311	627	282	2720	198	207	699
7	316	160	1070	489	187	345	441	267	4190	167	173	379
8	232	159	895	394	185	575	346	255	4060	135	155	240
9	198	158	726	342	187	618	310	448	3670	382	276	194
10	182	155	661	342	162	548	304	523	3240	557	360	173
11	184	208	603	312	150	706	348	486	2820	466	314	328
12	230	282	523	279	153	882	389	414	2420	329	274	303
13	207	236	475	254	138	860	419	351	2040	258	222	218
14	185	211	495	330	144	780	399	312	1660	277	216	167
15	187	196	481	512	165	641	364	276	1300	342	213	141
16	321	187	435	453	509	505	339	279	1010	449	199	131
17	341	181	356	337	669	452	432	365	690	417	236	127
18	505	176	321	262	586	413	495	364	410	372	342	124
19	428	174	284	240	500	398	519	310	317	311	372	120
20	337	175	256	213	468	462	511	263	460	253	296	116
21	282	178	254	187	424	486	480	231	419	218	224	111
22	250	392	246	171	368	475	460	208	317	188	179	113
23	233	771	242	196	357	474	588	188	250	221	159	200
24	218	854	244	526	353	469	649	181	248	356	148	170
25	206	820	236	573	366	448	678	300	391	265	142	139
26 27 28 29 30 31	196 191 188 188 184 181	687 514 364 298 284	223 215 209 244 403 406	543 447 357 338 314 288	559 690 647 537	552 1110 1720 2060 1950 1770	656 559 491 434 388	267 241 216 188 168 356	311 237 246 230 204	211 238 210 185 171 204	139 182 194 196 150 126	243 315 295 225 183
TOTAL	8175	8822	15004	11241	9915	21831	17520	9345	39100	8312	8288	7384
MEAN	264	294	484	363	342	704	584	301	1303	268	267	246
MAX	571	854	1180	642	690	2060	1580	523	4190	557	736	848
MIN	181	155	209	171	138	311	304	168	204	129	126	111
STATIST	ICS OF I	MONTHLY MEAN	N DATA	•			BY WATER	YEAR (WY)			•	
MEAN	387	546	727	562	749	884	1193	888	600	378	290	281
MAX	1205	922	2286	1207	1221	2067	2842	2537	1482	1485	1024	849
(WY)	1990	1986	1984	1991	1984	1983	1983	1989	1984	1984	1990	1989
MIN	134	161	107	105	211	272	161	301	188	168	117	91.0
(WY)	1981	1981	1981	1981	1980	1981	1985	1992	1981	1980	1981	1980

PASSAIC RIVER BASIN
01381900 PASSAIC RIVER AT PINE BROOK, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YE	AR FOR 1992	WATER YEAR	WATER YEARS	1980 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS		164937 451 6 4190 15 111 12 120 4270 19. 110 784 311 167	Jun 7 Sep 21 Sep 16 Jun 7 98 Jun 7 Sep 21	623 1125 276 7910 72 78 8000a 22.90 70 1490 357	1984 1981 Apr 7 1984 Sep 29 1980 Oct 12 1980 Apr 7 1984 Apr 7 1984 Sep 29 1980

a Affected by backwater.

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'40", long 74°16'23", Passaic County, Hydrologic Unit 02030103, at bridge on Two Bridges Road in Two Bridges, 50 ft upstream from Pompton River.

DRAINAGE AREA. -- 361 mi².

PERIOD OF RECORD. Water years 1962 to current year.

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: June 1969 to September 1974.
pH: June 1969 to September 1974.
WATER TEMPERATURES: October 1962 to September 1974.
DISSOLVED OXYGEN: June 1969 to September 1974.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991 29	1145	200	593	. 7.7	14.5	5.3	52	E1.9	49	<2
NOV 19	1400	190	666	7.7	5.5	10.7	85	2.7		
DEC 17	1400	450	386	7.4	1.0	11.9	84	1.2		••
JAN 1992 15	1215	550	472	7.7	5.5	10.5	85	E2.1	540	280
FEB 19	1400	600	470	7.3	1.5	13.0	94	3.6		
MAR 23	1100	540	682	7.6	1.0	15.1	108	1.5	110	<10
APR 20 MAY	1200	600	370	7.6	8.5	11.2	96	1.5		••
12 27 JUN	1430 1200	510 270	402 471	7.6 7.5	15.5 15.5	8.8 8.0	89 81	4.8 E1.7	1600	30
10 25 JUL	1300 1000	4090 320	157 435	7.2 7.5	20.5 20.0	3.0 8.7	34 97	2.7 1.4		••
21 ·	1200	280	425	8.0	25.0	7.0	86	E1.8	110	110
27 SEP	1430	150	613	8.2	25.0	11.4	140	5.1	• •	
08 18	1400 1400	360 130	462 600	7.5 8.4	21.5 22.0	6.0 13.5	68 156	2.7 6.0		••
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 1991	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)
OCT 1991 29	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)
OCT 1991 29 NOV 19	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA) 52 66	SIUM, DIS- SOLVED (MG/L AS K) 5.6 6.1	LINITY LAB (MG/L AS CACO3) 88	DIS- SOLVED (MG/L AS SO4) 50	RIDE, DIS- SOLVED (MG/L AS CL) 89	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)
OCT 1991 29 NOV 19 DEC 17 JAN 1992	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)
OCT 1991 29 NOV 19 DEC 17 JAN 1992 15 FEB	NESS TOTAL (MG/L AS CACO3) 150 160	DIS- SOLVED (MG/L AS CA) 39 39	SIUM, DIS- SOLVED (MG/L AS MG) 13 14 9.0	DIS- SOLVED (MG/L AS NA) 52 66 32	\$1UM, DIS- SOLVED (MG/L AS K) 5.6 6.1 <0.10	LINITY LAB (MG/L AS CACO3) 88 95 61	DIS- SOLVED (MG/L AS SO4) 50 54 34	RIDE, DIS- SOLVED (MG/L AS CL) 89 100 53	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20	DIS- SOLVED (MG/L AS SIO2)
OCT 1991 29 NOV 19 DEC 17 JAN 1992 15 FEB 19 MAR 23	NESS TOTAL (MG/L AS CACO3) 150 160 100	DIS- SOLVED (MG/L AS CA) 39 39 25	SIUM, DIS- SOLVED (MG/L AS MG) 13 14 9.0 9.7	DIS- SOLVED (MG/L AS NA) 52 66 32 40	\$1UM, DIS- SOLVED (MG/L AS K) 5.6 6.1 <0.10	LINITY LAB (MG/L AS CACO3) 88 95 61 68	DIS- SOLVED (MG/L AS SO4) 50 54 34 36	RIDE, DIS- SOLVED (MG/L AS CL) 89 100 53	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20	DIS- SOLVED (MG/L AS SIO2) 16 15 15
OCT 1991 29 NOV 19 DEC 17 JAN 1992 15 FEB 19 MAR 23 APR 20	NESS TOTAL (MG/L AS CACO3) 150 160 100 110	DIS- SOLVED (MG/L AS CA) 39 39 25 29	SIUM, DIS- SOLVED (MG/L AS MG) 13 14 9.0 9.7 8.9	DIS- SOLVED (MG/L AS NA) 52 66 32 40 48	\$1UM, DIS- SOLVED (MG/L AS K) 5.6 6.1 <0.10 3.5 2.6	LINITY LAB (MG/L AS CACO3) 88 95 61 68 51	DIS- SOLVED (MG/L AS SO4) 50 54 34 36 30	RIDE, DIS-, SOLVED (MG/L AS CL) 89 100 53 69 87	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20 0.20 <0.10	DIS- SOLVED (MG/L AS SIO2) 16 15 15
OCT 1991 29 NOV 19 DEC 17 JAN 1992 15 FEB 19 MAR 23 APR 20 MAY 12 27	NESS TOTAL (MG/L AS CACO3) 150 160 100 110	DIS- SOLVED (MG/L AS CA) 39 39 25 29 26 30	SIUM, DIS- SOLVED (MG/L AS MG) 13 14 9.0 9.7 8.9 9.7	DIS- SOLVED (MG/L AS NA) 52 66 32 40 48 79	\$IUM, DIS- SOLVED (MG/L AS K) 5.6 6.1 <0.10 3.5 2.6 2.7	LINITY LAB (MG/L AS CACO3) 88 95 61 68 51	DIS- SOLVED (MG/L AS SO4) 50 54 34 36 30	RIDE, DIS-, SOLVED (MG/L AS CL) 89 100 53 69 87	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20 0.20 <0.10	DIS- SOLVED (MG/L AS SIO2) 16 15 15 12 10 8.2
OCT 1991 29 NOV 19 J9 JAN 1992 15 FEB 19 MAR 23 APR 20 MAY 12 27 JUN 10 25	NESS TOTAL (MG/L AS CACO3) 150 160 100 110 100	39 39 25 29 26	SIUM, DIS- SOLVED (MG/L AS MG) 13 14 9.0 9.7 8.9 9.7 8.5 8.8	DIS- SOLVED (MG/L AS NA) 52 66 32 40 48 79 31	\$1UM, DIS- SOLVED (MG/L AS K) 5.6 6.1 <0.10 3.5 2.6 2.7 2.4	LINITY LAB (MG/L AS CACO3) 88 95 61 68 51 59 57	50 54 34 36 30 36 27	RIDE, DIS-, SOLVED (MG/L AS CL) 89 100 53 69 87 140 56	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20 0.20 <0.10 <0.10 <0.10	DIS- SOLVED (Mg/L AS SIO2) 16 15 15 12 10 8.2 9.6 8.7
OCT 1991 29 NOV 19 J9 J9 J7 JAN 1992 15 FEB 19 MAR 23 APR 20 MAY 12 JUN 10 25 JUL 21	NESS TOTAL (MG/L AS CACO3) 150 160 110 110 100 110 45	39 39 25 29 26 30 26 28	SIUM, DIS- SOLVED (MG/L AS MG) 13 14 9.0 9.7 8.9 9.7 8.5 8.8 10 3.7	DIS- SOLVED (MG/L AS NA) 52 66 32 40 48 79 31 35 44 12	\$1UM, DIS- SOLVED (MG/L AS K) 5.6 6.1 <0.10 3.5 2.6 2.7 2.4 2.8 3.2	LINITY LAB (MG/L AS CACO3) 88 95 61 68 51 59 57 64 71 30	50 Solved (Mg/L AS SO4) 50 54 34 36 30 36 27 28 31 11	89 100 53 69 87 140 56 63 69 20	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20 0.20 <0.10 <0.10 <0.10 0.20 <0.10 0.20 <0.10	DIS- SOLVED (MG/L AS SIO2) 16 15 15 12 10 8.2 9.6 8.7 9.9 6.7
OCT 1991 29 NOV 19 DEC 17 JAN 1992 15 FEB 19 MAR 23 APR 20 MAY 12 JUN 10 JUN 10 JUL	NESS TOTAL (MG/L AS CACO3) 150 160 100 110 100 110 45 110	39 39 25 29 26 30 26 26 28	SIUM, DIS- SOLVED (MG/L AS MG) 13 14 9.0 9.7 8.9 9.7 8.5 8.8 10 3.7	DIS- SOLVED (MG/L AS NA) 52 66 32 40 48 79 31 35 44 12 39	\$IUM, DIS- SOLVED (MG/L AS K) 5.6 6.1 <0.10 3.5 2.6 2.7 2.4 2.8 3.2 2.2 3.5	LINITY LAB (MG/L AS CACO3) 88 95 61 68 51 59 57 64 71 30 68	50 Solved (Mg/L AS SO4) 50 54 34 36 30 36 27 28 31 11 35	RIDE, DIS-, SOLVED (MG/L AS CL) 89 100 53 69 87 140 56 63 69 20 63	RIDE, DIS- SOLVED (MG/L AS F) 0.20 0.20 0.20 <0.10 <0.10 <0.10 <0.10 0.20	DIS- SOLVED (MG/L AS SIO2) 16 15 15 12 10 8.2 9.6 8.7 9.9 6.7

PASSAIC RIVER BASIN

01382000 PASSAIC RIVER AT TWO BRIDGES, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, N NITRITE TOTAL (MG/L	NITRO- GEN, ITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, IO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM- GE MONIA + MC ORGANIC OR TOTAL D (MG/L (GANIC IS. MG/L	NITRO- GEN, TOTAL (MG/L AS N)
OCT 1991 29	345	0.098	0.097	5.56	5.60	0.310	0.330	1.3	1.2	6.8
NOV 19	382	0.050	0.050	6.60	6.20	0.410	0.400	1.1	1.0	7.7
DEC 17		0.030	0.030	2.40	2.40	0.290	0.270	0.80	0.60	3.2
JAN 1992 15	257	0.030	0.030	3.20	3.30	0.360	0.370	1.0	0.70	4.2
FEB	254	0.020	0.020	2.00	2.10	0.240	0.240	0.80	0.50	2.8
19 MAR 23 APR	354	0.030	0.030	2.70	2.60	0.130	0.140	0.70	0.50	3.4
20	207	0.040	0.040	2.50	2.50	0.190	0.190	0.80	0.50	3.3
MAY 12 27	221 254	0.030 0.050	0.030 0.050	2.20 3.30	2.20 3.40	0.090 0.190	0.100 0.180	0.50 1.1	0.40 0.80	2.7 4.4
JUN 10	88	0.020	0.020	0.320	0.340	0.060	0.050	0.60	0.50	0.92
25 JUL 21	254 253	0.060 0.050	0.050	4.10 3.70	3.80	0.200	0.190 0.041	0.60	0.60	4.7
AUG 27	352	0.030	0.020	6.00	3.70 5.90	0.050 0.010	<0.010	0.60 0.90	0.50	6.9
SEP 08	263	0.020	0.030	3.10	3.10	0.140	0.140	0.90	0.60	4.0
18	339	0.030	0.020	5.70	5.60	0.030	0.020	1.1	0.60	6.8
DAT	NITR GEN DIS- SOLVE [E (MG/ AS N	PHOS- PHORUS D TOTAL L (MG/L	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	PHORU ORTHO D TOTA (MG/	S ORTI DIS- L SOLVE L (MG/I	JS CARBO HO, ORGAI DIS SOLVE (MG)	NIČ SUS- - PENDE ED TOTA /L (MG/	IC SEDI- D MENT, L SUS- L PENDED		, D
OCT 199	91 . 6.	8 1.00	0.92	0.9	20 0.8	360 7.	.6 0.	7 12	6.5	;
NOV 19	7.	2 1.20	1.10	0.9	80 1.0	00 ′ 5.	.1 0.	5	••	
DEC 17 JAN 199	3.	0 0.470	0.36	0.4	00 0.3	3 60 5 .	.9 0.	5	••	
15 FEB	4.	0 0.690	0.50	0.5	70 0.4	90 4	.7 0.	7 20	30	
19 MAR_	2.	6 0.360	0.37	0 0.2	70 0.2	270 5	.1	••		
23 APR		1 0.420	0.33	0.3	50 0.3	300 4.	.2 0.	4 8	12	
20 MAY							.3 0.	6	• •	
12 27 JUN	2. 4.	6 0.320 2 0.650				230 5. 380 5.	.2 1. .2 1.	1	••	
10 25	0. 4.		0.12 0.30	0 0.14 0 0.4	40 0.1 00 0.3	40 9. 300 4.	.0 0. 7 0.		••	
JUL 21 AUG	4.	1 0.530	0.47	0 0.4	70 0.4	30 3.	.1 1.	1 25	19	
27 SEP	6.	4 0.970	0.91	0 0.9	00 0.8	320 4.	.6 2.	1	, 	
08 18	3. 6.	7 0.530 2 0.860	0.34 0.63	0 0.39 0 0.69	90 0.3 50 0.6	330 5. 40 4.	.5 1. .6 2.	2 ·· 7 ··	::	

01382000 PASSAIC RIVER AT TO BRIDGES, NJ--Continued

DATE	TIME	OXYG DEMA CHEI ICA (HI LEVE (MG/	ND, M- L AR! GH T(L) (SENIC DTAL JG/L S AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 29	1145	٠	24	2	<10	180	<1	2	6
DATE	ERA (UC	AL OV- BLE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANG NESE TOTA RECO ERAB (UG/ AS M	, MERCU L TOTA V RECO LE ERAE L (UG/	NL TOT DV- REC BLE ERA 'L (UG	COV- NIUI ABLE TOTA	M, REC AL ERA /L (UG	AĽ OV- BLE
OCT 1991 29		850	10		90 <0.	.10	5	<1	20

01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, NJ

LOCATION.--Lat 41°01'05", long 74°24'07", Morris County, Hydrologic Unit 02030103, on left bank 15 ft downstream of culvert at crossover between northbound and southbound lanes on State Route 23, 1,000 ft downstream from Macopin Intake Dam, 0.6 mi downstream from Macopin River, and 2.8 mi northwest of Butler.

DRAINAGE AREA. -- 63.7 mi².

WATER-DISCHARGE RECORDS

- PERIOD OF RECORD. January 1898 to March 1990, September 1992. Monthly discharge only for some periods, published in WSP 1302. Records for January 1892 to December 1897, published in WSP 541, have been found to be unreliable and should not be used.
- GAGE.--Water-stage recorder. Datum of gage is 549.17 ft above sea level. Prior to May 22, 1970, at site just upstream of Macopin Intake Dam, at datum 36.35 ft higher. May 22, 1970 to March 5, 1990, at site just upstream of Macopin Intake Dam, at datum 20.83 ft higher.
- REMARKS.--Records good. Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg Reservoirs, and Echo Lake (see Passaic River basin, reservoirs in). Water diverted at Charlotteburg Reservoir for municipal supply of city of Newark (see Passaic River basin, diversions). During peak flows, frequent variations in flow due to automatic gate operations upstream. Several measurements of water temperature were made during the year. Satellite telemeter at station.
- COOPERATION.--Gage-height record collected in cooperation with and record of gate openings provided by the Department of Public Affairs, Division of Water Supply, city of Newark. Prior to May 22, 1970, discharge figures provided by city of Newark.

		DISCHARGE	, CUBIC	FEET PER	SECOND, DAILY	WATER MEAN	YEAR OCTOBER VALUES	1991 TO	SEPTEMBER	1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	• • •	•••		•••	•••		•••		•••			• • •
2	• • •	• • •	• • •		• • •							• • •
2 3		• • •		• • •			• • •					• • •
4	• • •	• • •	• • •	• • •			•••			• • •		• • •
5	• • •	•••		•••			•••	• • •	• •*•	• • •	•••	•••
6		• • •			•••				•••	• • •		•••
7		•••	• • •	•••	• • •							
8	• • •	• • •				• • •						
9		• • •	•••	•••		• • •	•••					
10	•••	•••	• • •	•••	•••		•••	•••	•••			
11	• • •		• • •	• • •	• • •			• • •	•••	• • •		•••
12	• • •	•••			• • •	• • •	•••		• • •	• • •		• • •
13	• • •	• • •		• • •	• • •							
14	• • •	• • •		• • •			• • •					
15	• • • •	• • •					•••	•••		• • •	•••	e1.9
16										·• • •		2.0
17	• • • •	•••		• • •			• • • •					2.0
18	• • •	• • •	• • •	• • •		• • •		• • •				e2.0
19		•••	•••	• • •	• • •				• • •			e3.1
20	•••	• • •		•••	•••	•••	•••	• • •	•••	• • •		3.4
21	• • •			•••					•••			2.7
22		• • •		• • •	• • •	• • •			• • •			2.4
23			• • •			• • •	•••					2.8
22 23 24 25		• • •			• • •	• • •	•••		• • • .			3.0
25	•••	•••	• • •	•••		•••	•••	• • •	•••	•••	•••	2.6
26 27 28	•••	• • •					• • •			• • •		3.4
27		• • •				• • •			• • •	• • •		4.0
28 29	•••	• • • •			• • • •	• • •	•••		•••	•••		7.4
30				• • • •	••• ,	• • •			•••	• • •		5.4
30 31	• • •	• • • •				• • •			• • •			3.0
31			• • •	•••	•••	•••		•••	•••	•••	•••	•••
TOTAL	•••	• • •		•••	• • •		• • •	• • •		• • •	•••	• • •
MEAN	• • • •	• • •	• • •		•••		•••	•••	•••	• • •	• • • •	
MAX	• • •			• • •		• • •	• • •	•••				
MIN		•••	•••		•••				•••	• • •	• • •	•••
STATIS	TICS OF ME	ONTHLY MEAN D	DATA FOR	WATER Y	EARS 1923	- 199	O, BY WATER Y	EAR (WY)		•	
MEAN	15.9	32.3	38.7	37.0	48.0	94.6	127	66.3	32.9	19.1	15.2	19.8
MAX	288	309	236	208	270	572	506	263	360	238	228	211
(WY)	1956	1928 1	1973	1953	1939	1936	1983	1989	1972	1938	1955	1960
MIN	.000	.000 .	.000	.000	.000	.000		.000	.000	.000	.000	.000
(WY)	1929		1929	1931	1930	1965		1954	1944	1923	1923	1929

01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, NJ--Continued

SUMMARY STATISTICS	SEPTEMBER 1992	WATER YEARS 1923 - 1990
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	7.4 Sep 28 1.9 Sep 15 1.14 Sep 28 2.69 Sep 28 0 Sep 19	45.3 109A .12 3170a Apr 6 1984 .00 Oct 1 1922 .00 Oct 18 1922 6100a Oct 10 1903 17.40a Oct 10 1903 Oa Many days 138 4.4
90 PERCENT EXCEEDS	•••	.00

Since 1898. Estimated.

01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1924, 1962-69, 1973-79, 1991 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

		DIS- CHARGE, S	SPE- W	PH ATER	EAR OCTOBE	ОХ	YGEN, OX DIS- DE	YGEN MAND,	COLI-	NTERO- COCCI
DATE	TIME	CUBIC (FEET (PER /	CON- F DUCT- (S' ANCE	TAND- A' ARD W	TURE [ATER SO	YGEN, (DIS- DLVED S	(PER- C CENT I SATUR- 5	HEM- CAL, DAY I	FECAĽ, EC BROTH (ME,MF WATER TOTAL COL / 00 ML)
NOV 1991 07	1200	E0.60	265		6.5	12.7	105	E2.0	8	4
FEB 1992 03	1215	E6.0	195	7.8	2.0	15.0	111	E1.5	<20	<10
MAR 25	1215	E7.0	240	7.8	3.0	13.5	102	0.6	2	10
MAY 19	1230	E7.0	197	7.8	16.0	10.3	105	E2.3	49	10
AUG 04	1130	E3.0	203	7.8	21.5	8.1	95	<1.1	4	30
DA	HARI NES TOT/ (MG, TE AS CAC	S CALCIUM AL DIS- /L SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS' SO4)	DIS- SOLVEI (MG/L	(MG/L	D
NOV 19 07	•	76 19	7.0	19	1.2	43	17	38	0.2	!
FEB 19 03 MAR		51 13	4.5	16	0.70	22	17	32	0.2	:
25 MAY	•	54 14	4.7	23	0.70	24	17	49	<0.1	
19 AUG	•	48 12	4.4	15	0.80	29	12	30	<0.1	
04	•	56 14	5.0	14	0.70	36	12	35	0.1	
DA	SILII DIS SOLV (MG, TE AS SIO	CONSTI- VED TUENTS, /L DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA	AMMON Ì	GEN,AM MONÍA ORGANI	- + C
NOV 19 07 FEB 19	8.	.0 136	0.005	0.003	0.21	0.14	0.04	0.11	0.31	
03 MAR		.6 109	<0.003	<0.003	0.55	0.53	<0.03	<0.03	0.23	
25 MAY	- 9.	.4 135	0.004	0.004	0.54	0.54	0.12	0.12	0.17	
19 AUG		.4 100	<0.003	<0.003	0.16	0.17	<0.03	<0.03	0.32	
04	. 7.	.0 110	0.011	0.009	0.24	0.24	<0.03	<0.03	0.31	
DA	NITE GEN, A MONIA ORGAN DIS. TE (MG, AS N	AM- A + NITRO- NIC GEN, . TOTAL /L (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDEC (MG/L)		., D
NOV 199		.21 0.52	2 0.35	0.38	<0.02	3.1	0.4	11	••	
FEB 199	92	.16 0.78		0.08	0.04	2.8	•••	7	••	
MAR 25		.11 0.71		0.12	<0.02	2.6	••	3	••	
MAY 19		.20 0.48		0.03	0.03	4.5	0.4	4	••	
AUG 04		.24 0.55		0.04	0.02	4.7	0.2	5	••	
								•		

01382500 PEQUANNOCK RIVER AT MACOPIN INTAKE DAM, NJ--Continued

DATE	DE () TIME LE	VEL)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BEI MA SIE DIAI * FII TH. .062	T. GEN, VE TOT M. IN E NER MA AN (MG/	NH4 GEN FAL + O BOT. TOT AT. BOT FKG (M	,NH4 PH RG. T IN IN MAT G/KG (M	HORUS FOTAL BOT. T MAT. B MG/KG	INOR- GANIC, OT IN	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENI TOTAL (UG/L AS AS	TERIAL (UG/G
NOV 1991 07 07	1200 1200	 15	<1		. 1 .		50 3	310	<0.1	5.1		1
DATE	BERYI LIUM TOTAI RECOV ERABI (UG/I AS BE	BORG TOTA - REC E ERAI	AL TO OV- RE BLE ER /L (U	MIUM OTAL COV- ABLE IG/L CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV FM BOT TOM MA TERIA (UG/G	RECO FM BC TOM M TERI AL (UG/	V. COPP IT- TOT IA- REC AL ERA G (UG	ER, RI AL FM OV- TOI BLE TI	BOT- M MA- ERIAL JG/G	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 07	 <10	•	- <10	 <1	<1	 <1		8	<5 -	16	10	 530
07	<10	·	~10	~ 1	•••	< 1	••	••	•	10	••	530
DATE	IRON, RECOV FM BOT TOM MA TERIA (UG/O AS FE	/. LEAI I - TOT/ A - RECO AL ERAI G (UG)	D, RE AL FM OV- TOM BLE TE /L (U	AD, COV. BOT- I MA- RIAL IG/G S PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCUR TOTAL RECOV ERABL (UG/L AS HG	FM BO TOM M E TERI UG/	V. NICK T- TOT A- REC AL ERA G (UG	EL, RI AL FM OV- TOI BLE TI /L (I	M MA- ERIAL JG/G	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 07 07	720 	00 -	3	70	 180	240	 <0.1	<0. 10	01 -	. 2	<10 	 <1
DATE	SELE- NIUM, TOTAL IN BOT TOM MA TERIA (UG/O	ZING TOTA T- RECO A- ERAI AL (UG)	C, RE AL FM OV- TOM BLE TE /L (U	NC, COV. BOT- I MA- RIAL IG/G	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN TOTAL IN BOT TOM MA TERIA (UG/KG	. TOTA '- IN BO \- TOM M \L TERI	, DD L TOT T- IN B A- TOM AL TER	AL TO OT- IN MA- TOM IAL TO	BOT- II MA- TO ERIAL	DDT, TOTAL N BOT- DM MA- TERIAL UG/KG)
NOV 1991 07	•	c1 -		60	6	<1.0	<0.	.1 2.	0	0.6	1.0	11
O7	DI- ELDRIN TOTAL IN BOT TOM MA TERIA (UG/KC	ENDO I, SULFA TOTA I- IN BO A- TOM I	AN, END AL TO OT- IN MA- TOM IAL TE	RIN, OTAL BOT- I MA- RIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDAN TOTAL IN BOT TOM MA TERIA (UG/KG	. CHLO - TOT. N- BOTT NL MAT	MIR R, TOT IN IN B OM TOM L. TER	AL TI OT- IN MA- TOP IAL TER	ER- ! HANE : BOT- II MA- TO RIAL :	TOXA- PHENE, TOTAL N BOT- DM MA- TERIAL JG/KG)
NOV 1991 07 07	<0.	.1 <	0.1	<0.1	<0.1	<0.1	<0.	1 <1	.0 <		<1.00	<10

01383500 WANAQUE RIVER AT AWOSTING, NJ

LOCATION.--Lat 41°09'31", long 74°20'00", Passaic County, Hydrologic Unit 02030103, on right bank 700 ft downstream from dam at outlet of Greenwood Lake at Awosting.

DRAINAGE AREA. -- 27.1 mi².

PERIOD OF RECORD. -- May 1919 to current year. Prior to October 1940, published as "at Greenwood Lake".

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922(M), 1928(M), 1936. WDR NJ-79-1: 1933(M), 1936(M), 1945(M), 1948(P), 1951(P), 1952(P), 1953(M), 1955(P), 1956(M), 1957(M), 1958(M), 1960(P), 1961(M), 1968(P), 1969(P). WDR NJ-80-1: 1960(P).

GAGE.--Water-stage recorder. Concrete control since Oct. 31, 1938. Datum of gage is 601.32 ft above sea level (levels from New Jersey Geological Survey bench mark). Prior to Apr. 1, 1926, nonrecording gage and Apr. 1, 1926, to Oct. 31, 1938, water-stage recorder at site 100 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Flow completely regulated by Greenwood Lake (see Passaic River basin, reservoirs in). Water diverted into basin above gage from Upper Greenwood Lake (Hudson River basin) by North Jersey District Water Supply Commission since 1968. Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR...Peak discharges greater than base discharge of 200 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Mar. 28	1215 1645	234 238	3.17	June 6	1900	*621	*3.97

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

		DISCHARG	E, CUBIC	FEET PER	SECOND, I	WATER YE MEAN VA	AR OCTOBER	1991 TO	SEPTEMBER	1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.8	21	53	27	60	48	120	40	218	37	22	13
2	1.9	19	52	25	51	46	107	38	209	30	16	11
3	2.0	20	87	26	40	43	91	46	160	24	13	11
4	2.0	19	138	35	37	41	78	39	120	26	26	13
5	1.7	18	129	41	35	40	72	35	130	24	· 26	12
6 7 8 9 10	1.9 1.8 1.6 1.5	14 14 16 16 15	115 99 90 86 89	37 37 29 28 30	31 29 29 29 26	39 45 56 54 52	57 48 47 40 41	33 30 29 36 38	532 536 387 286 198	27 23 17 24 22	20 16 13 24 30	9.9 12 12 12 11
11	1.6	15	81	24	25	97	45	36	145	19	31	17
12	1.5	17	76	26	24	109	44	32	110	15	35	13
13	1.5	15	72	25	22	106	38	31	84	15	29	12
14	1.5	16	72	35	24	93	33	30	69	16	27	12
15	2.2	16	67	48	25	84	30	25	58	18	25	11
16	27	20	62	44	40	72	27	30	45	25	22	9.8
17	48	18	55	37	39	61	34	31	36	20	32	9.2
18	62	14	53	35	36	57	42	33	29	19	41	8.5
19	64	13	47	32	36	66	50	28	37	16	42	11
20	57	13	27	30	35	62	50	24	49	14	38	9.0
21	50	16	45	29	32	56	50	22	42	12	31	8.1
22	46	45	42	28	30	49	54	21	34	9.2	27	8.3
23	43	103	41	37	29	50	61	19	25	11	23	13
24	40	111	40	85	29	43	57	24	29	16	20	10
25	39	99	36	86	34	38	66	23	31	14	18	8.2
26 27 28 29 30 31	38 37 41 32 31 28	85 71 61 57 52	34 31 28 30 37 33	82 78 75 73 70 67	53 58 57 60	44 167 223 191 147 141	61 57 51 46 42	19 20 19 16 14 60	27 50 53 44 37	15 30 30 23 20 20	17 16 16 23 18 16	8.8 9.5 11 13 10
TOTAL	709.0	1029	1947	1361	1055	2420	1639	921	3810	631.2	753	329.3
MEAN	22.9	34.3	62.8	43.9	36.4	78.1	54.6	29.7	127	20.4	24.3	11.0
MAX	64	111	138	86	60	223	120	60	536	37	42	17
MIN	1.5	13	27	24	22	38	27	14	25	9.2	13	8.1
STATIS	TICS OF MO	NTHLY MEAN	DATA FOR	WATER YE	EARS 1929	- 1992,	BY WATER Y	(EAR (WY)				
MEAN	26.6	55.2	64.7	65.1	66.0	104	97.9	62.7	38.4	25.2	24.9	25.9
MAX	210	210	197	221	168	271	333	233	178	132	208	161
(WY)	1956	1984	1974	1979	1981	1980	1984	1989	1972	1938	1955	1979
MIN	.20	.18	1.88	6.98	16.3	43.5	24.7	13.4	4.37	2.76	.006	.057
(WY)	1932	1932	1985	1981	1980	1938	1985	1941	1957	1981	1929	1929

PASSAIC RIVER BASIN

01383500 WANAQUE RIVER AT AWOSTING, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1929 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	14466.7 39.6 337 Mar 5	16604.5 45.4 536 Jun 7	54.6 105 1984 19.9 1965 2350 Apr 6 1984
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	1.5 Oct 9 1.5 Oct 8	1.5 Oct 9 1.5 Oct 8 1.5 Oct 8 621 Jun 6 3.97 Jun 6 1.3 Oct 15	.00 Oct 15 1928 .00 Jul 27 1929 2800a Apr 5 1984 6.65 Apr 5 1984 .00 Many days
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	86 32 2.2	85 32 12	126 32 4.6

a From rating curve extended above 750 ${\rm ft}^3/{\rm s}$ based on theoretical weir formula.

01384500 RINGWOOD CREEK NEAR WANAQUE, NJ

LOCATION.--Lat 41°07'36", long 74°15'52", Passaic County, Hydrologic Unit 02030103, on right bank 500 ft upstream from Wanaque Reservoir, 0.7 mi downstream from Ringwood Mill Pond dam, and 6.5 mi north of Wanaque.

DRAINAGE AREA. -- 19.1 mi².

PERIOD OF RECORD.--October 1934 to September 1978, October 1985 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS. -- WDR NJ-82-1: 1935-77(P).

GAGE..-Water-stage recorder and concrete control. Datum of gage is 292.67 ft above sea level (levels by New Jersey Geological Survey). Prior to Sept. 30, 1978, at datum 10.0 ft higher.

REMARKS.--Records good except for estimated daily discharges, which are fair. Records given herein include flow over spillway and through ports in dam when open or through waste gate in dam. No flow through ports or waste gates this year. Flow slightly regulated by Ringwood Mill Pond, Sterling, and Sterling Forest Lakes, and several smaller lakes above station. Several measurements of water temperature were made during the year.

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 230 ft³/s and maximum (*):

Date	Time	Di e (scharge ft ³ /s)	Ga	ge height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
Mar. 27	0700)	235		11.68		June 6	0230		*335		*12.24
		DISCHA	RGE, CUBI	C FEET P	ER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBE	R 1991	TO SEPTEM	BER 1992		•
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.1 4.5 4.0 3.6 3.4	9.3 8.4 8.0 7.7 7.1	25 24 79 108 77	15 15 15 21 25	31 27 25 23 22	28 29 27 26 25	78 67 59 51 45	27 26 28 25 24	160 104 78 62 107	17 14 12 15 14	10 8.8 8.0 10 12	7.8 6.8 17 19 11
6 7 8 9 10	11 14 9.9 8.6 7.9	7.1 6.6 6.3 6.3	64 56 51 50 59	21 19 17 17 18	20 20 20 18 21	25 32 45 36 34	40 36 33 30 32	23 21 22 36 29	294 208 159 144 100	13 12 10 16 13	9.2 8.4 7.4 29 25	9.6 9.3 9.7 9.1 9.1
11 12 13 14 15	8.2 11 9.3 8.7	8.6 10 9.5 8.7 8.0	49 43 40 40 35	18 16 16 31 34	17 20 16 15 17	81 67 57 51 46	41 36 30 27 25	26 23 22 21 19	74 58 48 39 32	9.1 9.6 11 10	17 17 13 13 12	16 11 9.2 9.1 8.6
16 17 18 19 20	19 22 28 21 19	7.9 7.2 6.3 6.4 5.5	31 27 25 22 20	25 22 e22 e21 18	36 26 23 24 23	40 36 34 36 34	25 33 39 46 39	24 25 22 19 18	26 23 20 28 31	16 12 12 11 9.7	12 17 21 19 16	7.7 7.0 6.4 6.7 6.4
21 22 23 24 25	17 16 15 14 14	7.4 41 97 62 51	20 19 19 18 17	18 18 40 101 58	22 20 20 20 23	32 30 29 26 27	36 38 40 35 43	16 15 13 15 21	23 19 16 18 18	9.1 7.9 9.5 15	13 12 11 11 9.8	5.5 5.7 7.7 6.6 5.1
26 27 28 29 30 31	13 12 12 11 10 9.7	42 37 32 29 27	15 14 14 18 22 18	50 43 40 38 35 34	51 44 36 33	47 215 156 115 94 95	37 34 31 29 27	17 16 15 14 13 95	15 41 32 22 18	11 20 13 10 9.3 8.8	9.0 8.7 9.7 11 9.7 8.7	7.2 8.7 8.8 7.6 5.8
TOTAL MEAN MAX MIN CFSM IN.	372.9 12.0 28 3.4 .63 .73	576.8 19.2 97 5.5 1.01 1.12	1119 36.1 108 14 1.89 2.18	881 28.4 101 15 1.49 1.72	713 24.6 51 15 1.29 1.39	1655 53.4 215 25 2.80 3.22	1162 38.7 78 25 2.03 2.26	730 23.5 95 13 1.23 1.42	2017 67.2 294 15 3.52 3.93	371.0 12.0 20 7.9 .63 .72	398.4 12.9 29 7.4 .67 .78	265.2 8.84 19 5.1 .46
STATIST						1992,	BY WATER YE	EAR (WY)				
MEAN MAX (WY) MIN (WY)	16.2 131 1956 1.07 1945	32.5 88.8 1973 2.27 1950	42.2 103 1974 4.06 1940	40.1 149 1979 12.5 1940	41.3 109 1970 14.0 1940	65.8 157 1936 28.5 1938	58.4 123 1940 18.3 1966	40.2 131 1989 10.9 1941	23.3 121 1972 3.78 1957	14.8 86.1 1945 1.31 1966	13.8 107 1955 .70 1966	12.2 59.0 1960 .28 1964

PASSAIC RIVER BASIN

01384500 RINGWOOD CREEK NEAR WANAGUE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1935 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	8856.54 24.3	10261.3 28.0	33.3 54.4 1952
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	164 Mar 5 .47 Jul 22 .59 Jul 19	294 Jun 6 3.4 Oct 5 6.2 Sep 19	13.2 1965 756 Aug 19 1955 .00 Sep 11 1963 .16 Sep 5 1944
ANNUAL SEVEN-DAT MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	.59 Jul 19	6.2 Sep 19 335 Jun 6 12.24 Jun 6 3.1 Oct 5	1150 Mar 30 1951 13.74 Mar 30 1951 .00 Many days
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.27 17.25 56	1.47 19.99 51	1.74 23.71 76
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	17` 1.3	20 8.0	21 2.2

e Estimated.

01387000 WANAQUE RIVER AT WANAQUE, NJ

LOCATION.--Lat 41°02'39", long 74°17'36", Passaic County, Hydrologic Unit 02030103, on left bank 750 ft downstream from Raymond Dam in Wanaque, and 50 ft upstream from bridge on State Highway 511.

DRAINAGE AREA.--90.4 mi 2 , considered as 94 mi 2 Oct. 1, 1928 to Sept. 30, 1934.

PERIOD OF RECORD. December 1903 to December 1905 (gage heights only), September 1912 to April 1915, May 1919 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 210.00 ft above sea level (levels from New Jersey Geological Survey bench mark). Dec. 16, 1903, to Dec. 31, 1905, nonrecording gage on highway bridge at site 50 ft downstream at different datum. Sept. 15, 1912, to Apr. 1, 1922, nonrecording gage at site 200 ft downstream from present concrete control at different datum. Apr. 1, 1922 to Mar. 14, 1931, water-stage recorder at site 400 ft downstream from present concrete control at present datum.

REMARKS. - No estimated daily discharges. Records good. Flow regulated by Greenwood Lake 11 mi above station, since October 1987 by Monksville Reservoir just upstream of Wanaque Reservoir, and since 1928 by Wanaque Reservoir (see Passaic River basin, reservoirs in). North Jersey District Water Supply Commission diverts water for municipal supply from Wanaque Reservoir. Water is diverted to Wanaque Reservoir from Posts Brook at Wanaque and from Ramapo River at Pompton Lakes (see Passaic River basin, diversions). Water diverted into basin above gage from Upper Greenwood Lake (Hudson River basin) by North Jersey District Water Supply Commission since 1968. Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and USGS satellite gage-height telemeters at station.

COOPERATION. -- Gage-height record collected in cooperation with North Jersey District Water Supply Commission.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL **AUG** SEP 20 19 17 17 17 17 1270 17 17 19 19 17 17 19 19 19 134 13 17 17 30 29 18 19 17 19 18 15 17 21 19 19 17 17 19 20 19 19 18 19 23 24 25 17 17 17 2Ó 20 19 19 18 18 17 17 19 16 18 18 20 27 28 29 30 18 18 17 17 17 17 18 18 19 19 19 19 19 17 17 17 20 20 19 17 19 TOTAL 18.5 19 17.8 19 17 18.8 21 17 17.8 19 17 18.6 17.3 18 17 MEAN 16.6 18.6 18.3 18.8 MAX 18 MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1912 - 1992, BY WATER YEAR (WY) 65.6 434 1921 1.48 1950 41.2 247 1938 1.73 1965 29.2 258 1927 MEAN 61.3 36.2 1920 1.91 1966 MAX (WY) 1956 1.82 1928 1.70 1966 1915 .76 1972 2.17 1966 1915 2.05 1989 1927 MIN 1.72 1966 1.53 1965

PASSAIC RIVER BASIN

01387000 WANAQUE RIVER AT WANAQUE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1912 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	12017 32.9	12077 33.0	75.7 231 1920 1.93 1966
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	337 Apr 25 16 Jul 4 17 Jul 3	1630 Jun 6 16 Jan 18 16 Jan 18	5470 Apr 6 1984 .06 Oct 11 1984 .50 Dec 14 1949
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS	75 18	1840 Jun 6 6.34 Jun 6 4.9 Nov 6 19	10500 Apr 5 1984 10.82 Apr 5 1984 .06 Oct 11 1984 210
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	18 17	18 17	15 .

Gage height

Discharge

PASSAIC RIVER BASIN

01387420 RAMAPO RIVER AT SUFFERN, NY

LOCATION.--Lat 41°07'06", long 74°09'38", Rockland County, NY, Hydrologic Unit 02030103, on left bank, 145 ft downstream from highway bridge on New York State Thruway at Suffern, and 1.1 mi upstream from Mahwah River.

DRAINAGE AREA. -- 93.0 mi².

PERIOD OF RECORD. -- June 1979 to current year.

GAGE. - Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 264.44 ft above sea level.

REMARKS.--Records fair. Flow affected by diversion from Spring Valley Water Company well field upstream from station and by occasional regulation by Lake Sebago.

AVERAGE DISCHARGE.--13 years, 169 ft3/s, unadjusted.

Discharge

COOPERATION. -- Figures of pumpage from well field provided by Spring Valley Water Company.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 12,300 ft 3 /s, Apr. 5, 1984, gage height, 15.38 ft, from rating curve extended above 5,400 ft 3 /s; minimum discharge, 2.6 ft 3 /s, Sept. 30, 1981, gage height, 1.23 ft.

EXTREMES OUTSIDE PERIOD OF RECORD. - Maximum discharge, 6,600 ft³/s, Mar. 12, 1936, by computation of flow over dam at site 0.65 mi upstream, drainage area, 90.6 mi².

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,100 ft³/s and maximum (*):

Gage height

Date	T	ime	Discha (ft ³ ,	rge 's)	Gage height (ft)		Date	Time		Oischarge (ft ³ /s)		Gage height (ft)
Mar.	27 1	730	*1,620		*6.83		June 6	1200		1,400		6.39
Mi	nimum di	scharge,	11 ft ³ /s	Sept. 2,	gage height,	1.43	ft.					
			DISCHARGE,	CUBIC FEE	T PER SECOND	, WATER LY MEAN	R YEAR OCT N VALUES	TOBER 1991	TO SEPTI	EMBER 1992		
DAY	· 0C1	NO.	V DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	55 47 39 33 30	3 3 3	4 134 1 126 9 346 9 706 7 528	. 83	129 113 109 95 93	147 138 130 122 117	322 278 245 210 184	114 112 136 122 108	766 445 280 204 298	57 48 40 47 45	43 29 22 38 39	13 12 36 66 39
6 7 8 9 10	140 197 119 91 76	3 e3 e2 2	4 350 1 283 9 248 9 232 9 273	164 135 120 113 122	87 82 82 80 e66	111 137 221 194 172	158 139 130 121 127	103 94 92 156 135	1300 843 522 399 280	53 47 35 50 47	27 21 16 79 107	26 21 20 18 16
11 12 13 14 15	72 105 96 78 81	3 6 7 6 5	9 242 1 204 1 186 3 189 5 172	115 104 98 135 204	e62 e54 e56 62 72	453 434 303 246 207	147 143 125 113 106	117 104 95 90 80	215 169 137 115 99	35 27 27 31 32	68 57 42 37 35	37 33 22 18 18
16 17 18 19 20	156 182 247 192 140	5 4 4 4 3	0 144 8 138 4 130 0 122 8 117	149 e135 e120 e110 e105	168 140 113 108 110	172 153 141 156 152	101 160 219 254 227	95 112 96 85 72	85 73 62 81 108	77 · 59 45 37 28	30 50 78 75 57	. 41 49 48 44 27
21 22 23 24 25	114 103 94 86 84	4: 22: 89: 61: 36:	6 102	104 104 127 502 340	103 94 91 91 103	134 120 122 112 108	199 190 197 165 200	69 60 53 54 92	83 65 53 60 81	22 20 33 54 41	43 34 27 23 18	22 47 67 61 67
26 27 28 29 30 31	72 65 59 55 . 50 46	26/ 21/ 19/ 16/ 14/	4 87 4 82 1 79 9 88 7 122 - 108	232 191 162 152 142 136	218 248 204 181	155 1320 1030 547 379 373	196 166 143 130 123	77 70 64 55 49 365	60 130 128 87 64	33 54 43 29 25 23	16 14 20 25 22 16	26 27 29 21 16
TOTAL MEAN MAX MIN (†)	3004 96.9 247 30 14	3980 133 890 29	3 192 706	4692 151 502 83 14	3214 111 248 54 .	8306 268 1320 108 14	5218 174 322 101 14	3126 101 365 49 14	7292 243 1300 53 14	1244 40.1 77 20 14	1208 39.0 107 14 14	987 32.9 67 12 12
STATIS	STICS OF				YEARS 1979 -	1992,	BY WATER		·			
MEAN MAX (WY) MIN (WY)	104 389 1990 11.0 1985	17: 32: 198: 17. 198:	5 199 693 9 1984 1 29.6 5 1981	148 290 1982 6.84 1981	217 475 1981 49.7 1980	296 816 1983 128 1981	-358 862 1984 77.1 1985	243 777 1989 98.5 1987	121 269 1982 22.8 1991	56.8 234 1984 19.6 1983	58.2 305 1990 10.1 1981	64.7 219 1987 12.3 1981

01387420 RAMAPO RIVER AT SUFFERN, NY--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1979 - 1992
ANNUAL TOTAL	46283.1	48215	169
ANNUAL MEAN	127	132	
ANNUAL MEAN (†)	12	14	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN		450.	295 1984 78.2 1985
HIGHEST DAILY MEAN	1230 Mar 4	1320 Mar 27	7110 Apr 5 1984
LOWEST DAILY MEAN	5.9 Sep 13	12 Sep 2	3.7 Sep 30 1981
ANNUAL SEVEN-DAY MINIMUM	6.6 Sep 11	17 Aug 27	6.0 Jan 26 1981
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	270	246	357
	96	95	87
	9.6	29	14

Estimated. Diversion, in cubic feet per second, by pumpage from well field upstream of gage.

01387450 MAHWAH RIVER NEAR SUFFERN, NY

LOCATION.--Lat 41°08'27", long 74°07'01", Rockland County, NY, Hydrologic Unit 02030103, on left bank, 13 ft upstream from bridge on U.S. Highway 202, 2.5 mi northeast of Suffern, and 4.8 mi upstream from mouth.

DRAINAGE AREA. -- 12.3 mi 2.

PERIOD OF RECORD. -- August 1958 to current year.

REVISED RECORDS. -- WDR NY-79-1: 1977(P). WDR NY-87-1: 1986.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 321.57 ft above sea level. Prior to Nov. 18, 1976, water-stage recorder at site on right bank 13 ft downstream, at present datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Occasional regulation from unknown source. Telephone and satellite gage-height telemeters at station.

AVERAGE DISCHARGE...34 years, 24.4 ft3/s, 26.94 in/yr.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,840 $\rm ft^3/s$, Nov. 8, 1977, gage height, 9.91 ft, from rating curve extending above 850 $\rm ft^3/s$ on basis of contracted-opening measurement at gage height 9.91 ft; minimum discharge, 0.05 $\rm ft^3/s$, Oct. 20, 21, 1970, result of temporary pumping from gage pool.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ${\rm ft}^3/{\rm s}$ and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
June 6	0145	*301	*4.18	No other	peak greater	than base discha	rge.

Minimum discharge, 0.87 ft³/s, Sept. 24, gage height, 1.39 ft.

		DISCHA	RGE, CUB	IC FEET F	PER SECOND, DAIL	WATER MEAN	YEAR OCTOBE VALUES	ER 1991 T	O SEPTEMBER	1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.7 4.0 3.6 3.3 5.8	3.8 3.7 3.3 3.1 3.1	16 15 72 95 55	9.7 9.1 9.0 15 18	13 12 11 10 9.9	16 16 15 15 14	39 37 32 29 26	16 16 17 16 15	115 59 38 29 54	10 8.7 7.7 10 9.7	7.3 4.2 3.7 5.0 5.7	2.0 2.0 3.3 9.7 4.5
6 7 8 9 10	22 14 11 8.6 7.6	3.0 2.9 2.7 2.7 2.7	41 34 30 28 35	15 13 11 11 13	9.1 8.8 8.5 8.3 7.0	13 21 30 23 21	23 22 20 19 18	15 13 13 22 17	208 108 108 86 53	8.5 7.3 6.4 13 7.7	4.5 3.8 3.4 25 16	3.8 3.3 3.2 2.9 2.8
11 12 13 14 15	7.1 10 7.1 6.5 8.2	4.7 5.7 4.8 4.1 3.6	28 24 22 22 20	12 11 11 21 21	6.8 6.6 6.1 6.2 7.9	82 58 43 35 29	20 18 17 15 14	15 14 13 12 11	39 32 27 23 19	6.2 5.4 5.7 6.7 5.9	9.9 7.8 5.5 5.8 4.8	7.4 3.9 3.2 2.8 2.5
16 17 18 19 20	14 16 17 12 10	3.3 3.1 2.7 2.9 2.8	19 16 15 13	16 13 12 10 9.7	36 18 15 14 14	25 23 21 22 21	14 17 22 26 22	14 15 13 11	16 14 13 20 23	13 7.4 6.6 5.8 5.0	4.6 6.4 11 7.7 6.2	2.4 2.2 2.0 2.2 2.0
21 22 23 24 25	8.7 7.7 7.1 6.4 6.0	4.0 56 142 67 43	12 12 11 12 10	9.4 9.9 19 43 24	13 12 11 11 13	20 18 17 16 16	20 20 24 22 27	9.5 8.6 7.9 8.4 13	19 15 12 13 12	4.3 3.8 18 11 7.2	4.9 4.1 4.3 3.4 3.0	1.9 2.0 2.9 2.5 1.7
26 27 28 29 30 31	5.8 6.0 5.3 4.4 4.3 4.3	31 25 22 20 18	9.6 8.9 8.6 12 16	19 16 15 15 14 14	30 26 23 20	26 192 98 62 48 46	24 22 20 18 17	10 10 11 8.6 7.8 92	10 30 24 16 12	6.5 14 7.6 5.6 4.6 4.7	2.9 2.6 2.5 2.8 2.5 2.3	2.7 4.0 4.8 3.1 2.6
TOTAL MEAN MAX MIN CFSM IN.	258.5 8.34 22 3.3 .68 .78	496.7 16.6 142 2.7 1.35 1.50	735.1 23.7 95 8.6 1.93 2.22	458.8 14.8 43 9.0 1.20 1.39	387.2 13.4 36 6.1 1.09 1.17	1102 35.5 192 13 2.89 3.33	664 22.1 39 14 1.80 2.01	474.8 15.3 92 7.8 1.25 1.44	1247 41.6 208 10 3.38 3.77	244.0 7.87 18 3.8 .64 .74	183.6 5.92 25 2.3 .48 .56	96.3 3.21 9.7 1.7 .26
STATIST	TICS OF	MONTHLY MEA	N DATA FO	OR WATER	YEARS 1958	- 1992	, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	14.1 43.4 1990 1.94 1981	26.1 100 1978 2.31 1965	29.2 88.8 1984 5.72 1981	26.8 104 1979 2.02 1981	32.6 76.2 1970 7.68 1980	44.2 113 1983 15.0 1985	41.3 115 1983 8.14 1985	31.3 105 1989 12.5 1965	18.1 82.7 1972 3.92 1991	10.4 45.4 1984 1.31 1977	9.09 37.9 1990 1.16 1981	9.93 57.3 1971 .68 1980

01387450 MAHWAH RIVER NEAR SUFFERN, NY--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1958 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	6113.83 16.8	6348.0 17.3	24.4 41.4 1984 11.2 1985
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	301 Mar 4 .56 Aug 8 .81 Sep 11	208 Jun 6 1.7 Sep 25 2.1 Sep 16	1040 Nov 8 1977 .12 Oct 21 1970 .48 Aug 29 1980
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.36 18.49 34 12	1.41 19.20 31 12	1.98 26.95 52 15
90 PERCENT EXCEEDS	1.2	3.1	2.4

01387500 RAMAPO RIVER NEAR MAHWAH, NJ

LOCATION.--Lat 41°05'51", long 74°09'48", Bergen County, Hydrologic Unit 02030103, on left bank 350 ft downstream from State Highway 17, 0.6 mi downstream from Mahwah River, and 1.0 mi west of Mahwah. Water-quality samples collected at bridge, 350 ft upstream from gage, at high flows.

DRAINAGE AREA. -- 120 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1902 to December 1906, September 1922 to current year. October 1902 to February 1905 monthly discharge only, published in WSP 1302. Figures of daily discharge Feb. 10, 1903, to Dec. 31, 1904, published in WSP 97, 125, are unreliable and should not be used. Gage-height records for 1903-14 are contained in reports of the National Weather Service.

REVISED RECORDS.--WSP 781: 1904(M). WSP 1031: 1938, 1940. WSP 1552: 1923(M), 1924, 1925-26(M), 1927-28, 1933, 1937. WRD-NJ 1971: 1968(M). WDR NJ-82-1: Drainage area. WDR-NJ-87-1: 1986.

GAGE.--Water-stage recorder. Datum of gage is 253.10 ft above sea level. Prior to Dec. 31, 1906, nonrecording gage on former bridge at site 250 ft downstream at different datum. Sept. 1, 1922 to Dec. 23, 1936, water-stage recorder just below former bridge at present datum.

REMARKS...No estimated daily discharges. Records fair. Flow affected by diversion from Spring Valley (NY) Water Company well field upstream from station (see station 01387420). Occasional regulation from lakes and ponds upstream from the station. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,400 ft3/s and maximum (*):

Date	Time	Dis (1	scharge ft ³ /s)	Ge	nge height (ft)	:	Date	Time	Di:	scharge ft ³ /s)	Gaç	ge height (ft)
Mar. 27	1830	*1,	,850		*6.97		June 6	1130	1	,660		6.73
		DISCHARGE	CUBIC	FEET PER	SECOND, DAILY	WATER YI	EAR OCTOBER ALUES	1991 то	SEPTEMBER	1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	71 70 55 50 48	56 54 50 49 47	187 184 527 864 631	109 107 103 165 261	171 146 132 120 115	204 189 176 166 157	439 388 344 302 274	169 167 199 177 157	1040 577 382 286 452	83 71 64 82 72	74 46 39 53 53	29 27 76 98 51
6 7 8 9 10	191 250 156 113 90	46 46 51 45 45	446 375 330 313 375	217 177 153 145 160	103 98 97 96 79	151 203 298 263 246	247 224 210 196 204	147 131 141 244 200	1550 1040 655 560 399	76 67 54 101 71	42 37 33 169 165	41 38 36 34 34
11 12 13 14 15	89 136 118 93 113	58 79 85 75 67	323 277 261 267 245	147 131 130 196 266	79 72 64 71 108	604 583 414 341 292	237 224 194 172 158	171 147 133 122 108	310 256 215 179 150	54 47 47 55 73	101 81 58 58 51	69 47 37 32 31
16 17 18 19 20	209 246 307 239 183	61 58 53 50 48	210 188 177 152 138	198 167 142 136 110	273 203 156 145 145	254 231 224 238 231	152 232 295 340 299	146 164 136 116 97	126 107 92 141 177	128 84 66 54 46	51 71 116 100 74	48 54 54 62 39
21 22 23 24 25	147 130 116 104 101	68 363 1070 722 454	136 135 133 131 119	109 108 183 584 412	134 123 116 126 145	206 191 192 173 174	267 264 277 244 287	90 78 69 84 134	133 99 82 103 120	41 38 112 102 61	57 47 42 39 35	33 54 84 65 78
26 27 28 29 30 31	88 81 73 67 66 59	341 280 252 228 204	106 99 100 127 172 139	295 243 219 205 192 183	289 325 269 243	245 1550 1250 700 504 498	274 243 216 197 182	103 92 84 71 62 570	86 233 203 132 93	72 109 66 48 43 65	37 34 36 44 36 32	47 45 42 33 27
TOTAL MEAN MAX MIN CFSM IN.	3859 124 307 48 1.04 1.20	5105 170 1070 45 1.42 1.58	7867 254 864 99 2.11 2.44	5953 192 584 103 1.60 1.85	4243 146 325 64 1.22 1.32	11148 360 1550 151 3.00 3.46	7582 253 439 152 2.11 2.35	4509 145 570 62 1.21 1.40	9978 333 1550 82 2.77 3.09	2152 69.4 128 38 .58	1911 61.6 169 32 .51	1445 48.2 98 27 .40 .45
STATIST	ICS OF MON	ITHLY MEAN	DATA FOR	WATER Y	EARS 1903	- 1992,	BY WATER	YEAR (WY)		•		
MEAN MAX (WY) MIN (WY)	145 954 1904 13.8 1942	223 736 1978 24.4 1965	272 873 1984 43.4 1981	260 877 1979 16.5 1981	281 701 1970 70.8 1980	441 1151 1936 144 1985	402 1055 1984 88.4 1985	262 994 1989 79.5 1905	155 735 1972 36.5 1991	99.5 602 1945 21.9 1957	104 755 1955 13.5 1981	111 478 1927 11.1 1964

01387500 RAMAPO RIVER NEAR MAHWAH, NJ:-Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1903 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	. 64074 176	65752 180	229 461 1903 99.5 1985
LUWESI ANNOAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	1790 Mar 4 15 Sep 18 16 Sep 12	1550 Mar 27 27 Sep 2 34 Aug 27 1850 Mar 27 6.97 Mar 27	8920 Oct 9 1903 6.1a Sep 30 1981 8.7 Sep 1 1981 15500b Apr 5 1984 13.35 Apr 5 1984
INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.46 19.86 363 136 20	25 Sep 30 1.50 20.38 333 131 46	4.6 Sep 30 1981 1.91 25.97 507 139 28

a Possible regulation. b From rating curve extended above $6,500~{\rm ft}^3/{\rm s}$.

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD...
SUSPENDED-SEDIMENT DISCHARGE: February 1964 to June 1965.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	TIME	INST. CCUBIC COFEET DOPER A	PE- WI IFIC WI ON- F UCT- (S' NCE	PH ATER HOLE IELD TE TAND- A		DXYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED E (PER- CENT I SATUR-	BIO- F CHEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL /
007	1991 21	1100	149	269	7.7	8.5	11.8	101	<1.1	70	8
JAN	i 1992						15.6		<1.2	40	<10
APR	21	1130	110		8.2	1.0					
MAY	5	1100	161	318	8.1	9.5	15.6	137	<1.0	2	<10
JUL	io	1100	98	350	7.9	15.0	11.6	115	<1.0	240	20
3	30	1200	44	435	8.0	21.0	7.3	83 -	E2.1	790	200
	DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVE (MG/L	I, LINIT LAB D (MG/I . AS	Y SULFATE DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/I	ED L
	OCT 1991 21		8 19	F 0		4 7		14	39	۰ ۵۰	
	JAN 1992			5.0	22	1.3		16		<0.	
•	21 APR_		30 22	6.1	30	1.5		20	56	0.	
	15 May		37 24	6.5	27	1.4		21	٠ 46	0.	
	20 JUL	. 8	35 23	6.6	29	1.4	61	19	52	0.7	2
	30	11	0 31	8.5	35	1.9	82	20	62	0.	1
	DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO	NO2+NO 3 DIS SOLVI (MG/I	, NITRO- 03 GEN, - AMMONIA ED TOTAL L (MG/L	AMMON I A	GEN, AM MONÍA ORGANI	1- + IC - -
	OCT_1991										
	21 JAN 1992	7.4			0.013				0.22	0.64	
	21 APR	7.5	183	0.013	0.012	1.26	1.19	9 0.20	0.26	0.50	
	15 MAY	3.7	165	0.027	0.027	0.74	0.73	3 0.16	0.18	0.60	
	20 JUL	5.5	179	.0.036	0.036	1.22	1.2	2 <0.03	0.04	0.43	
	30	7.7	222	0.024	0.024	1.36	1.42	0.04	0.06	0.42	
	DATE	NITRO GEN,AM MONIA ORGANI DIS. (MG/L AS N)	+ NITRO- C GEN, TOTAL (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGANI DIS- D SOLVEI (MG/L	IČ SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED (MG/L)	SEDI MENT, DIS- CHARGE SUS- PENDE (T/DAY	
	OCT 1991		.	4 =					_		
	21 JAN 1992	0.4		1.2	0.12	0.10		0.3	3	1.2	
	21 APR	0.4		1.7	0.16	. 0.13	2.6	0.2	••	••	
	15 MAY	0.4	6 1.3	1.2	0.09	0.06	2.7	0.4	20	8.7	
	20 JUL	0.2	9 1.7	1.5	0.17	0.13	3.0	0.4		••	
	30	0.1	6 1.8	1.6	• •	0.19	23	0.7	8	0.95	i

01387500 RAMAPO RIVER NEAR MAHWAH, NJ--Continued

DATE	CH IC (H TIME LEV	AND, EM- AL ARS IGH TO EL) (U	L TO ENIC RI TAL EI G/L (I	DTAL TO ECOV- RE RABLE ER JG/L (L	DTAL TO ECOV- RE RABLE ER JG/L (U	MIUM MI DTAL TO COV- RE ABLE ER IG/L (U	RO- UM, COPPER, TAL TOTAL COV- RECOV- ABLE ERABLE G/L (UG/L CR) AS CU)
OCT 1991 21	1100	10	1 .	<10	50	<1	1 4
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
OCT 1991 21	. 80	1	40	0.10	2	<1	<10

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ

LOCATION.--Lat 40°59'33", long 74°16'44", Passaic County, Hydrologic Unit 02030103, on right end of dam at pumping station in Pompton Lakes, 700 ft upstream of bridge on Paterson-Hamburg Turnpike, and 2.0 mi upstream from mouth. Water samples collected upstream of dam at water-supply intake, on right bank. Water-quality monitor is 450 ft downstream of dam.

DRAINAGE AREA. -- 160 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year.

REVISED RECORDS.--WSP 1552: 1922(M), 1924-25, 1929-31(M), 1934-35(M). WRD-NJ 1970: 1968-69. WRD-NJ 1988: 1984(M).

GAGE.--Water-stage recorder and concrete dam. Datum of gage is 190.96 ft above sea level. Prior to October 1, 1981, at datum 10.00 ft higher.

REMARKS.--No estimated daily discharges. Records good. Diversion by North Jersey District Water Supply Commission to Wanaque Reservoir since December 1953 (see Passaic River basin, diversions) and to Oradell Reservoir by Hackensack Water Company since February 1985 (see Hackensack River basin, diversions) for municipal supply. Slight regulation by Pompton Lake, capacity, 300,000,000 gal. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at auxiliary station 700 ft below station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,600 ft³/s and maximum (*):

Date	Time	Di (scharge ft ³ /s)	, e	age height (ft)		Date	Time	D	ischarge (ft ³ /s)	Gaș	ge height (ft)
Mar. 28	0045	1	,880		11.42	•	June 6	1515	,	*2,400	,	*11.65
•		DISCHARG	E, CUBIC	FEET PE	R SECOND, DAILY	WATER YE MEAN V	EAR OCTOBER	R 1991 то	SEPTEMBER	R 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	117	84	149	84	82	78	567	92	1390	117	257	40
2	105	79	118	82	83	83	494	87	848	100	102	35
3	97	69	458	96	95	80	433	105	545	85	72	75
4	82	66	917	109	95	92	380	106	394	102	70	222
5	76	64	688	160	91	86	342	77	505	98	82	99
6	162	61	499	143	98	78	305	65	2170	87	67	70
7	251	61	420	89	88	92	275	55	1540	86	55	61
8	80	59	329	94	83	175	238	59	970	72	49	58
9	73	59	201	94	83	136	171	174	789	122	162	52
10	63	56	282	92	93	75	171	146	575	106	237	49
11	58	69	245	83	108	382	213	100	444	77	151	97
12	68	85	181	98	99	489	209	87	371	64	148	78
13	78	94	160	73	90	394	163	84	297	71	106	60
14	63	91	140	110	97	431	90	72	247	70	94	51
15	59	81	120	160	112	366	76	69	207	84	85	47
16	94	75	100	113	276	315	66	79	176	196	78	45
17	127	69	90	88	104	282	90	77	151	142	97	58
18	201	66	87	105	70	265	231	65	131	105	149	64
19	148	63	84	90	75	282	293	63	157	86	152	73
20	94	60	130	81	73	286	258	63	228	72	115	
21	66	66	99	74	69	255	199	67 ⁻	180	62	86	48
22	68	261	96	73	77	234	182	70	140	54	68	47
23	77	1080	94	83	76	228	244	66	117	80	59	86
24	62	957	90	400	75	216	187	77	126	190	53	88
25	69	579	82	373	99	202	235	78	156	109	48	81
26 27 28 29 30 31	63 58 60 95 92 89	356 268 224 196 168	85 81 82 113 106 93	201 122 91 76 94 87	165 227 159 119	256 1440 1630 971 676 616	234 185 149 121 105	101 124 115 101 90 535	127 274 278 198 145	86 184 120 84 69 109	44 52 55 56 50 45	97 75 82 61 48
TOTAL	2895	5566	6419	3718	3061	11191	6906	3149	13876	3089	2944	2111
MEAN	93.4	186	207	120	106	361	230	102	463	99.6	95.0	70.4
MAX	251	1080	917	400	276	1630	567	535	2170	196	257	222
MIN	58	56	81	73	69	75	66	55	117	54	44	35
STATIST	ICS OF MON	ITHLY MEAN	DATA FOR	WATER	YEARS 1922	- 1992,	BY WATER	YEAR (WY)				
MEAN	151	268	318	313	352	547	512	352	210	137	139	146
MAX	1154	954	1135	1035	838	1670	1465	1195	973	895	889	725
(WY)	1956	1933	1984	1979	1970	1936	1983	1989	1972	1945	1955	1927
MIN	13.6	22.2	12.8	27.5	83.0	67.8	24.8	72.0	39.9	5.89	6.17	10.8
(WY)	1981	1981	1981	1981	1969	1985	1985	1965	1965	1985	1985	1964

PASSAIC RIVER BASIN
01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALEN	DAR YEAR	FOR 1992 WAT	ER YEAR	WATER YEARS	1922 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	79972 219		64925 177	·	286 512 73.1	1984 1985
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	2040 20 24	Mar 4 Sep 12 Sep 8	2170 35 48	Jun 6 Sep 2 Aug 27	10400 .00 .00	Mar 12 1936 Oct 1 1922 Dec 1 1980
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	465 135		2400 11.65 34 367 95	Jun 6 Jun 6 Sep 2	15400 - 15.21a .00 641 163	Apr 5 1984 Apr 5 1984 Many days
90 PERCENT EXCEEDS	36		61		37	

a From gage well, outside high-water marks at 15.33 ft.

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923, 1962-67, 1982, 1987 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April, 1989 to current year. WATER TEMPERATURE: April, 1989 to current year. DISSOLVED OXYGEN: April, 1989 to current year.

INSTRUMENTATION. -- Water-quality monitor since April 1989. Data recorded at hourly intervals.

REMARKS.--Discrete water-quality samples were collected upstream of dam at water supply intake, on right bank. Water-quality monitor is 450 ft downstream of dam.

EXTREMES FOR PERIOD OF DAILY RECORD...
FROM WATER-QUALITY MONITOR DOWNSTREAM OF DAM.
SPECIFIC CONDUCTANCE: Maximum, 499 microsiemens, Jan. 13, 1990; minimum, 105 microsiemens, Oct. 21, 1989.
WATER TEMPERATURE: Maximum, 30.0 °C, July 21,22, Aug. 30, 1991; minimum, 0.5 °C, on several days in water years 1990 and 1992.
DISSOLVED OXYGEN: Maximum recorded, 14.2 mg/l, Dec. 9, 1989, but may have been higher during instrument malfunction Dec. 19, 1989 to Feb. 15, 1990; minimum, 4.7 mg/l, Aug. 9, 1991.

EXTREMES FOR CURRENT YEAR...
FROM WATER-QUALITY MONITOR DOWNSTREAM OF DAM.
SPECIFIC CONDUCTANCE: Maximum, 401 microsiemens, Feb. 18; minimum, 140 microsiemens, June 7.
WATER TEMPERATURE: Maximum, 27.5 °C, July 1,11,15,21,22; minimum, 0.5 °C, Jan. 26-29.
DISSOLVED OXYGEN: Maximum, 13.7 mg/l, Dec. 20; minimum, 6.2 mg/l, Aug. 26.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 1991	0830	90	284	7.9	11.5	10.7	98	2.4	80	22	6.1	21
NOV 19	0840	66	375	9.0	6.0	16.1	130	4.8	110	30	7.8	31
DEC 17	1445	90		7.6	3.0	12.4	••	1.5	66	18	5.2	20
JAN 1992 14	1500	111	312	7.8	4.0	13.5	108		77	21	5.9	25
FEB 19 MAR	1430	77	400	7.8	4.0	16.5	128	2.3	87	24	6.5	40
23 APR	1345	228	295	8.0	4.0	15.0	116	2.7	71	20	5.2	28
21 MAY	1400	191	300	7.8	10.0	12.5	112	3.0	78	22	5.7	23
12 28 JUN	0900 1430	77 118	291 335	8.3 9.5	15.5 17.0	12.3 19.0	124 199	5.1	83 91	23 25	6.1 6.9	23 26
11 24 JUL	1400 1500	431 126	195 315	7.8 7.8	21.0 19.5	9.5	108	1.8 2.7	54 91	15 25	3.9 6.9	14 24
21 AUG	0830	66	352	8.2	25.5	9.2	114	6.6	100	29	7.9	27
27 SEP	1245	56	350	9.2	23.5	10.5	125	2.2	100	28	7.5	28
08 17	1400 0915,	56 56	395 355	7.6 7.9	21.5 22.0	5.3 10.7	61 123	3.6 7.5	110 110	31 30	8.3 7.9	27 27

PASSAIC RIVER BASIN

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFAT DIS- SOLVE (MG/L AS SO4	DIS- D SOLVE (MG/L	RIDE DIS D SOLV	E, D S- S(VED (! /L	LICA, S IS- C OLVED T MG/L	CONSTI- TUENTS, N DIS- SOLVED	NITRO- GEN, ITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
OCT 1991 30	1.3	56	18	36	<0.	.10	6.1	146	0.020	0.010	0.500	0.490	0.05
NOV 19	1.6	79	22	55		.10	2.9	200	0.010	<0.010	0.530	0.540	0.01
DEC 17	1.2	45	17	38		.10	8.3	138	0.020	0.010	0.680	0.700	0.04
JAN 1992 14	1.2	55	18	47		.20	6.7	162	0.010	0.010	0.860	0.880	0.03
FEB 19	1.7	55	20	72		.10	6.3	208	0.010	0.020	1.00	1.00	0.03
MAR 23	1.1	41	18	54	<0.	.10	6.0	160	0.010	0.020	0.630	0.660	0.03
APR 21	1.2	50	18	48	<0.	.10	5.5	157	0.020	0.020	0.700	0.710	0.06
MAY 12	1.2	50	19	45	<0.	.10	4.4	154	0.020	0.020	0.480	0.490	<0.01
28 Jun	1.2	65 75	19	49		.20	1.1	169	0.020	0.030	0.310	0.310	0.02
11 24 JUL	1.0 1.2	35 63	12 16	27 46		.10 .10	7.2 8.8	103 168	0.010 0.030	0.010 0.020	0.440 0.580	0.440 0.590	0.05 0.11
21 AUG	1.6	77	18	54	<0.	.10	3.7	190	0.030	0.021	0.670	0.670	0.02
27 SEP	1.6	76	17	46	0.	.10	3.7	179	0.020	0.020	0.390	0.380	<0.01
08 17	1.7 1.7	79 80	20 17	54 55		.10 .10	5.7 0.80	199 190	0.040 0.020	0.030 0.020	0.680 0.480	0.710 0.500	0.36 <0.01
DATE	NITR GEN AMMON DIS SOLV (MG/ AS N	N, GEN NIA MON S- ORG/ /ED TO /L (M	,AM- GE IA + MO ANIC OR TAL D G/L (GANIC IS. T MG/L (IITRO- GEN, OTAL S MG/L IS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	DIS- SOLVE (MG/L	ORTHO D TOTA (MG/	S ORTI DIS L SOLVI L (MG/I	JS CARBO HO, ORGAN - DIS- ED SOLVE L (MG/	IIC SUS PENDI D TOTA L (MG)	NIC - ED AL /L
OCT 1991	GEN AMMON DIS SOLV (MG/ AS N	I, GEN IIA MON S- ORG/ /ED TO /L (MI I) AS	,AM- GE IA + MO ANIC OR TAL D G/L (I	N,AM- NIA + N GANIC IS. T MG/L (S N) A	GEN, OTAL S MG/L IS N)	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVE (MG/L AS P)	PHORU ORTHO D TOTA (MG/ AS P	- PHORI S ORTI DIS L SOLVI L (MG/I	JS CARBO HO, ORGAN - DIS- ED SOLVE L (MG/) AS C	DN, ORGAI IIC SUS PENDI D TOTA /L (MG C) AS	NIC - ED AL /L
OCT 1991 30	GEN AMMON DIS SOLV (MG/ AS N	M, GEN MIA MON S- ORG, ZED TO ZL (MI M) AS	AM- GE IA + MO ANIC OR TAL D G/L (I N) A	N,AM- NIA + N GANIC IS. T MG/L (S N) A	GEN, OTAL S MG/L (S N)	GEN DIS- SOLVED (MG/L	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVE (MG/L AS P)	PHORU ORTHO D TOTA (MG/ AS P	PHORI S ORTI DIS L SOLVI L (MG/I) AS P	US CARBO HO, ORGAN DIS- ED SOLVE (MG/ AS C	ON, ORGAI IIC SUS PENDI D TOT. (MG.) AS	NIC - ED AL /L
OCT 1991 30 NOV 19 DEC	GEN AMMON DIS SOLV (MG/ AS N	M, GEN MIA MON S- ORG, VL (M M) AS	,AM- GE IA + MO ANIC OR TAL D G/L (ANIC) N) A	N,AM- NIA + N GANIC IS. T MG/L (A S N) A <0.20	GEN, OTAL S MG/L S N)	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P) 0.10	PHORUS DIS- SOLVE (MG/L AS P) 0.03 <0.01	PHORU ORTHO TOTA (MG/ AS P 0.03	PHORI S ORTI DIS L SOLVI L (MG/) AS P	JS CARBO ORGAN DIS- ED SOLVE (MG/ AS C	ON, ORGAI SUS PENDIC CL (MG. C) AS	NIC - ED AL /L
OCT 1991 30 NOV 19	GEN AMMON DIS SOLV (MG/ AS N	N, GEN MON ORGAN TO	,AM- GE IA + MO ANIC OR TAL DG/L (IN) A	N,AM- NIA + N GANIC IS. T MG/L (S N) A	GEN, OTAL S MG/L (S N)	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVE (MG/L AS P) 0.03 <0.01 0.04	PHORU ORTHO TOTA (MG/ AS P 0.03 0.04 0.04	PHORI S ORTI DIS L SOLVI L (MG/I) AS P	US CARBO ORGAN DISS- ED SOLVE (MG/) AS C	DN, ORGAI SUS PENDI D TOT L (MG, C) AS 1.6 2.4 0.4	NIC - ED AL /L
OCT 1991 30 NOV 19 DEC 17 JAN 1992 14 FEB	GEN AMMON DIS SOLV (MG/ AS N	N, GEN MON CORGO (MIL) (MIL) AS	,AM- GE IA + MO ANIC OR TAL D G/L (N) A	N,AM- NIA + N GANIC IS. T MG/L (S N) A <0.20 <0.20	GEN, OTAL S MG/L IS N) 1.1 1.1 0.88	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P) 0.10 0.08	PHORUS DIS- SOLVE (MG/L AS P) 0.03	PHORU ORTHO TOTA (MG/ AS P 0.03	- PHORI S ORTI DIS L SOLVI L (MG/I) AS P - <0.01 0.02	JS CARBO ORGAN DIS- ED SOLVE (MG/ AS C	ON, ORGAI SUS PENDIC CL (MG. C) AS	NIC - ED AL /L
OCT 1991 30 NOV 19 DEC 17 JAN 1992 14	GEN AMMON DIS SOLV (MG/ AS N 0.0	MIA MON	,AM- GE IA + MO ANIC OR	N,AM- NIA + N GANIC IS. T MG/L (S N) A <0.20 <0.20 <0.20	GEN, OTAL S MG/L S N) 1.1 1.1 0.88	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L) AS P) 0.10 0.08 0.05	PHORUS DIS- SOLVE (MG/L AS P) 0.03 <0.01 0.04 0.05 0.05	PHORU ORTHO D TOTA (MG/AS P 0.03 0.04 0.04 0.05	PHORI ORTI DIS L SOLVI L (MG/I) AS P <0.01 0.02 0.05 0.04	JS CARBO HO, ORGAN DIS- ED SOLVE (MG/ AS C 3.2 3.0 2.5 2.3	ON, ORGAI SUS: PENDI TOTA (MG, AS)	NIC - ED AL /L
OCT 1991 30 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 23 APR 21	GEN AMMON DIS SOLV (MG/ AS N 0.0 0.0	NIA MON	,AM- GE IA + MO ANIC OR	N,AM- NIA + N GANIC IS. T MG/L (S N) A <0.20 <0.20 <0.20 <0.20	GEN, OTAL S MG/L S N) 1.1 1.1 0.88 1.1 1.3	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P) 0.10 0.08 0.05 0.07 0.10	PHORUS DIS- SOLVE (MG/L AS P) 0.03 <0.01 0.04 0.05 0.05 0.03	PHORU OR THO OR	PHORI ORTI DIS SOLVI (MG/I) AS P <0.01 0.02 0.05 0.04 0.05 0.02	JS CARBC HO ORGAN DIS- ED SOLVE (MG/ AS C 3.0 2.5 2.3 2.7 2.2	ON, ORGAI SUS PENDITO (MG, AS) 1.6 2.4 0.4 0.3	NIC - ED AL /L
OCT 1991 30 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 23 APR 21 MAY	GEN AMMON DIS SOLV (MG/ AS N 0.0 0.0 0.0 0.0 0.0	NIA GEN MON MON MON MON MON MON MON MON MON MO	,AM- GE IA + MO ANIC OR	N,AM- NIA + N GANIC IS. T MG/L (A S N) A <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	GEN, OTAL S MG/L S N) 1.1 1.1 0.88 1.1 1.3	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/LL AS P) 0.10 0.05 0.07 0.10 0.05 0.04	PHORUS DIS- SOLVE (MG/L AS P) 0 0.03 <0.01 0 0.04 0.05 0.05 0.03 0.02 0.01	PHORU ORTHO D TOTA (MG/AS P 0.03 0.04 0.04 0.05 0.06 0.04 0.03 0.03	- PHORI ORTI DIS SOLVI (MG/) AS P	JS CARBC HO, DIS- DIS- ED SOLVE (MG/ AS C 3.2 3.0 2.5 2.3 2.7 2.2	ON, ORGAI SUS PENDI TOTA (MG, AS)	NIC - ED AL /L
OCT 1991 30 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 23 APR 21 MAY 12 28 JUN 11 24	GEN AMMON SOLV (MG/ AS N 0.0 0.0 0.0 0.0	NIA GEN MON MON ORGAN TO (M) AS (M) A	,AM- GE IA + MO ANIC OR TAL D G/L (I N) A 0.60 0.20 0.20 0.30 0.20 0.30	N,AM- NIA + N GANIC IS. T MG/L (S N) A <0.20 <0.20 <0.20 <0.20 <0.20 <0.20	GEN, OTAL MG/L (S N) 1.1 1.1 0.88 1.1 1.3	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L) AS P) 0.10 0.05 0.07 0.10 0.05 0.04	PHORUS DIS- SOLVE (MG/L AS P) 0.03 <0.01 0.05 0.05 0.05 0.05 0.01 0.03 0.02 0.01 0.03	PHORU OR THO OR	- PHORI ORTI DIS L SOLVI (MG/) AS P	JS CARBC HO, ORGAN DIS- SOLVE (MG/ AS C 3.0 2.5 2.3 2.7 2.2 2.6 2.8 3.2	ON, ORGAI SUS PENDI TOTA (MG, AS 1.6 2.4 0.4 0.3 0.3 0.4 0.9 1.5	NIC - ED AL /L
OCT 1991 30 NOV 19 JAN 1992 14 FEB 19 MAR 23 APR 21 MAY 12 28 JUN 11 24 JUL 21	GEN AMMON SOLV (MG/ AS N 0.0 0.0 0.0 0.0 0.0 0.0	010 (100 (100 (100 (100 (100 (100 (100	, AM- FIA + MO ANIC OR TAL D G/L (N) A 0.60 0.20 0.20 0.30 0.20 0.30 0.20 0.30	N,AM- NIA + N GANIC IS. T MG/L (S N) A <0.20 <0.20 <0.20 <0.20 <0.20 0.20 <0.20	GEN, OTAL MG/L S N) 1.1 1.1 0.88 1.1 1.3 1.0 0.61 0.94	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L) AS P) 0.10 0.05 0.07 0.10 0.05 0.04	PHORUS DIS- SOLVE (MG/L AS P) 0.03 <0.01 0.04 0.05 0.05 0.03 0.02 0.01 0.03 0.04 0.01	PHORU OR THO OR	PHORI ORTIL DIS SOLVI (MG/I) AS P <0.01	JS CARBC HO, DIS- DIS- ED SOLVE (MG/ AS C 3.2 3.0 2.5 2.3 2.7 2.2	ON, ORGAI SUS PENDI TOTA (MG AS 1.6 2.4 0.4 0.3 0.3 0.4 0.9 1.5	NIC - ED AL /L
OCT 1991 30 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 23 APR 21 MAY 12 28 JUN	GEN AMMON DIS SOLV (MG/AS N 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NIA GEN MON ORGAN	, AM- FIA + MO ANIC OR TAL D G/L (N) A 0.60 0.20 0.20 0.30 0.20 0.30 0.20 0.30	N,AM- NIA + N GANIC IS. T MG/L (S N) A <0.20 <0.20 <0.20 <0.20 <0.20 0.20 <0.20 <0.20	GEN, OTAL MG/L S N) 1.1 1.1 0.88 1.1 1.3 1.0 0.61 0.94 1.2	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MAS P) 0.10 0.08 0.05 0.07 0.10 0.05 0.04 0.03 0.06 0.06	PHORUS DIS- SOLVE (MG/L AS P) 0.03 <0.01 0.04 0.05 0.05 0.03 0.02 0.01 0.03 0.04 <0.01 0.03	PHORU ORTHO ORTHO D TOTA (MG/AS P 0.03 0.04 0.05 0.06 0.04 0.03 0.03 0.03 0.03 0.04 0.03	PHORI ORTI DIS SOLVI (MG/I) AS P <0.01	JS CARBCHOOK ORGAN DISSELVE (MG/AS COME AS COM	ON, ORGAI SUS: PENDIT TOTAL (MG. AS) 1.6 2.4 0.4 0.3 0.3 0.4 0.9 1.5 0.8 1.0	NIC - ED AL /L

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	SPEC	IFIC CONL	OCTANCE	(MICKOSIE	MEN3/CM	AT 25 DEG.	C), WATE	K TEAK	OCTOBER	1991 10 36	PICMBER	1776
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			ECEMBE			JANUARY	
1 2 3 4 5	259 263 267 271 271	251 251 255 259 259	254 255 263 266 262	302 302 305 307 309	298 300 302 305 307	300 301 304 306 308	217 224 237 233 188	210 217 223 188 170	212 221 229 207 177	329 336 335 333 336	323 329 333 329 329	326 333 334 331 331
6 7 8 9 10	278 294 314 314 314	271 275 294 310 310	274 281 307 314 313	314 315 318 322 325	309 313 314 318 323	311 314 315 320 324	173 186 196 210 231	168 174 186 197 210	171 178 192 203 219	339 337 335 333 326	335 335 332 324 319	337 336 334 329 323
11 12 13 14 15	314 310 308 304 302	308 307 304 301 301	310 308 305 302 302	331 344 348 353 356	325 331 345 349 353	328 335 347 351 355	240 243 245 247 248	233 240 243 244 245	236 242 245 245 246	318 312 311 311 307	312 310 308 306 304	316 311 310 307 306
16 17 18 19 20	302 306 306 290 282	300 300 291 282 268	301 302 299 286 276	363 372 378 378 378	356 365 372 375 375	358 369 375 376 376	250 256 263 265 267	246 250 256 263 265	249 252 259 264 266	311 309 313 314 313	306 307 309 312 309	309 307 310 313 310
21 22 23 24 25	268 274 274 275 277	264 266 262 268 268	267 269 268 271 272	377 375 372 246 185	371 365 249 186 174	376 371 320 211 177	270 278 283 290 293	268 271 278 283 290	269 275 281 286 292	311 316 317 341 340	308 310 315 317 306	309 312 316 325 322
26 27 28 29 30 31	280 286 286 287 292 298	271 278 282 284 287 292	275 280 284 285 289 295	183 187 193 202 211	177 182 187 193 202	179 185 191 198 206	303 309 312 315 318 324	292 303 309 312 315 317	297 306 311 313 316 321	304 282 270 267 266 268	283 270 267 264 264 266	294 275 268 265 265 267
MONTH	314	251	285	378	174	303	324	168	251	341	264	311
DAY	MAX	MIN		MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
	MAX 271 274 277 279 284		MEAN	MAX 322 313 309 298 294		MEAN 320 311 306 295 293			MEAN 228 236 243 249 256	MAX 279 285 285 294 296		276 282 283 290 294
DAY		FEBRUARY	MEAN,		MARCH	320 311		225 232 241 246 253 260 264 270	228 236 243 249 256 262 267 274		MAY	
DAY 1 2 3 4 5 6 7 8 9	271 274 277 279 284 286 292 297 302	268 271 275 277 279 284 286 292 298	269 273 276 278 281 285 288 295 300	322 313 309 298 294	MARCH 313 309 300 292 292 292 292 292 288	320 311 306 295 293	232 242 247 252 261 265 270 278 284	225 232 241 246 253 260 264 270 278	228 236 243 249 256 262 267 274 280	279 285 285 294 296 295 298 306	MAY 274 277 282 286 292 293 295 296 299	276 282 283 290 294
1 2 3 4 5 6 7 8 9	271 274 277 279 284 286 292 297 302 305	FEBRUARY 268 271 275 277 279 284 286 292 298 302 306	269 273 276 278 281 285 285 288 295 300 304	322 313 309 298 294 294 295 295 296 287	313 309 300 292 292 292 292 292 292 288 281	320 311 306 295 293 293 293 294 291 284	232 242 247 252 261 265 270 278 284 290 292 304 303 302 300	225 232 241 246 253 260 264 270 278 282 287 287 292 301 298 298	228 236 243 249 256 267 274 280 285 290 297	279 285 285 294 296 298 298 306 302 300 296 295 300	MAY 274 277 282 286 292 293 295 296 299 298 299 294 293 294 293	276 282 283 290 294 296 298 302 300 300 297 294 295 298
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	271 274 277 279 284 286 292 297 305 318 323 328 333	268 271 275 277 279 284 286 292 298 302 306 311 318 323 328	269 273 276 278 281 285 288 2895 300 304 314 321 326 330	322 313 309 298 294 295 295 294 287 281 232 226 218	MARCH 313 309 300 292 292 292 292 298 281 263 230 218 211 214	320 311 306 295 293 293 294 291 284 275 242 225 215	232 242 247 252 261 265 270 278 284 290	225 232 241 246 253 260 264 270 278 282	228 236 243 249 256 267 274 280 285 290 297 300 299 299 302 307	279 285 285 294 296 295 298 298 306 302	MAY 274 277 282 286 292 293 295 296 299 298	276 282 283 290 294 294 296 298 302 300
DAY 1 2 3 4 5 6 7 8 9 10 11 123 134 15 16 17 18 19 20	271 274 277 279 284 286 292 297 302 305 318 323 328 333 366 393 401 394 389	268 271 275 277 279 284 286 292 298 302 306 311 318 323 328 334 368 394 390 380	269 273 276 278 281 285 288 2895 300 304 314 321 326 330 345 389 392 387 377 364 372	322 313 309 298 294 295 295 295 296 287 261 232 226 218 220 228 235 243 263 287 301 331	313 309 300 292 292 292 292 288 281 263 230 218 211 214 215 219 228 234 243	320 311 306 295 293 293 293 294 291 284 275 242 225 215 215 218 223 231 237 252 272 296 307 326	232 242 247 252 261 265 270 278 284 290 292 304 303 300 300 304 309 309 310	225 232 241 246 253 260 264 270 278 282 287 292 301 298 298 299	228 236 243 249 256 267 274 280 285 290 297 300 299 302 307 309 306 294 285 274	279 285 285 294 296 298 298 306 302 300 296 295 300 302 306 309 313 314	MAY 274 277 282 286 292 293 295 296 299 298 299 294 293 294 293 302 307 311	276 282 283 290 294 294 298 302 300 297 294 295 298 303 307 310 313

31

MONTH

19.0

11.0

11.0

14.5

12.0

6.0

8.0

8.0

PASSAIC RIVER BASIN

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MIN MIN MFAN DAY MAX MEAN MAX MEAN MAX MIN MEAN MAX MIN JUNE SEPTEMBER JULY **AUGUST** 195 178 236 184 179 316 315 313 300 313 328 330 368 367 327 324 322 321 196 185 187 311 314 312 329 326 325 321 319 320 369 370 367 344 353 368 364 361 176 180 183 311 317 308 310 310 314 326 323 368 357 189 363 186 198 146 313 314 318 324 325 322 324 329 332 371 370 373 371 316 318 329 329 324 325 331 335 167 6 371 376 373 369 370 368 140 148 161 143 153 168 328 335 339 315 161 175 321 326 1Ó 182 331 355 348 188 329 340 368 199 215 228 192 205 222 231 237 331 338 340 343 340 336 340 343 347 353 347 344 363 363 365 366 364 367 187 371 11 339 349 358 12 13 14 15 198 214 225 232 344 341 336 339 342 346 351 352 347 344 341 365 368 378 236 240 368 367 340 365 251 270 277 284 240 251 267 274 354 364 365 368 368 370 373 374 363 363 364 369 365 366 368 341 351 363 364 344 341 341 336 337 340 338 335 16 17 246 340 359 364 366 260 272 279 336 334 333 18 19 20 294 282 288 367 367 367 340 335 338 368 370 297 307 293 303 308 311 365 365 365 363 342 344 347 351 338 340 342 345 347 372 377 379 367 367 367 366 366 366 341 342 344 374 21 285 370 22 23 24 25 297 307 381 380 373 377 379 310 315 308 366 365 381 380 363 350 310 312 365 382 380 381 26 27 28 29 325 322 328 329 312 314 323 365 361 359 355 348 351 318 360 359 354 349 343 331 347 387 381 383 364 360 356 354 352 360 364 365 367 349 352 360 383 382 317 387 385 325 327 382 355 383 363 321 383 380 381 30 31 319 348 345 345 343 362 365 364 366 377 379 324 314 380 245 MONTH 329 140 368 308 343 367 319 341 387 344 372 TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN **OCTOBER** NOVEMBER **DECEMBER JANUARY** 15.5 15.5 17.0 17.5 17.5 12.0 12.0 11.5 11.5 11.0 11.5 11.5 11.0 11.5 12.0 11.5 11.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.0 2.5 2.5 3.0 2.5 2.5 2.5 3.0 3.0 3.0 16.0 17.0 7.0 7.5 7.5 15.5 3.0 1 2 3 16.0 17.5 18.0 3.0 18.0 19.0 3.0 6.0 3.0 3.5 5 19.0 18.0 11.0 6.0 3.0 10.0 10.5 4.5 18.0 17.5 16.5 15.5 15.5 9.5 9.0 4.5 4.0 3.5 3.5 3.5 3.5 3.5 6 17.5 18.0 10.0 9.0 4.0 4.0 4.0 3.5 16.5 17.0 9.0 8.5 4.0 4.0 15.5 15.5 15.0 8.5 8.0 7.0 6.5 8.5 7.5 7.0 16.0 15.5 15.5 4.5 5.5 8 4.0 4.0 4.0 5.0 3.5 3.0 10 7.0 5.5 3.5 6.5 6.0 3.0 15.5 14.5 14.5 14.0 13.5 6.5 6.5 7.5 6.5 6.5 6.5 6.5 6.5 7.0 3.0 2.5 3.5 4.5 2.5 2.5 2.5 3.5 15.5 15.0 15.0 6.0 6.0 6.0 3.0 2.5 3.0 15.0 6.5 6.0 12 13 14.5 14.0 13.5 6.0 6.5 7.0 6.0 6.5 7.0 14 15 14.0 13.5 4.0 6.5 7.0 7.0 5.5 4.0 3.0 7.0 7.0 6.0 13.5 13.0 13.0 13.0 13.0 13.5 12.5 12.5 12.5 12.5 8.0 7.5 6.5 6.5 7.5 2.5 16 17 13.0 12.0 11.5 7.0 7.0 6.0 7.5 7.0 5.5 4.0 5.0 3.0 1.5 1.5 1.5 1.5 4.0 2.5 1.0 4.0 3.5 4.0 1.0 18 19 20 1.5 1.0 1.5 1.5 1.5 1.5 6.5 6.5 7.0 4.0 12.5 12.0 2.5 1.0 2.0 1.0 6.0 1.0 12.0 12.0 12.5 13.0 1.5 1.5 2.0 2.0 1.0 1.5 1.5 2.0 2.0 12.0 12.5 13.5 9.0 21 22 23 24 25 11.5 8.0 1.0 1.5 1.5 2.0 2.0 2.0 9.0 9.5 1.5 1.5 1.5 1.0 1.5 1.0 1.5 1.5 1.5 11.5 10.0 12.0 12.0 11.0 10.5 14.0 11.0 11.0 1.0 1.0 2.0 14.0 13.0 13.0 10.5 9.0 9.5 14.0 14.5 14.5 14.0 13.0 11.5 2.0 2.5 3.0 3.0 2.5 2.0 .5 .5 .5 26 27 13.0 13.5 8.5 7.0 7.0 6.5 8.0 6.5 2.5 2.0 1.0 13.5 1.0 1.0 .5 .5 14.0 28 29 14.0 13.0 12.0 14.5 13.5 12.5 11.5 6.0 3.0 3.5 6.5 6.0 3.0 1.0 1.5 2.0 1.0 1.5 2.0 6.0 3.0 3.0 3.0 30 7.0 6.0 6.5

1.5

.5

4.5

2.0

4.0

1.0

> 01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued TEMPERATURE, WATER (DEG. C) WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

			TEMPERA	TURE, WATER	(DEG.	C) WATER	TEAR OCT	DREK 1991	10 SEP	IEMBEK 1992		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.5 2.5 2.5 2.5 2.5	2.0 2.0 2.0 2.0 2.0	2.0 2.0 2.0 2.0 2.0	3.0 3.5 4.0 4.5 5.5	3.0 3.5 3.5 4.0	3.0 3.5 3.5 4.0 4.5	7.5 7.5 7.0 7.5 8.0	7.0 7.0 6.5 6.5 7.0	7.0 7.0 7.0 7.0 7.5	16.0 16.5 18.0 17.5 16.0	14.0 14.0 16.5 16.0 15.5	14.5 15.0 17.0 17.0 16.0
6 7 8 9 10	2.5 2.5 2.5 2.0 2.0	2.0 2.5 2.5 2.0 1.5	2.0 2.5 2.5 2.0 2.0	5.5 6.0 7.0 8.5 8.5	5.0 5.5 5.5 7.0 8.0	5.5 6.0 6.0 7.5 8.0	8.5 9.0 10.5 10.0 12.0	7.0 8.0 9.0 10.0 10.0	7.5 8.5 9.5 10.0 11.0	16.5 16.0 15.0 15.5 16.0	15.0 14.5 14.5 14.5 15.0	15.5 15.0 14.5 14.5
11 12 13 14 15	2.5 2.5 2.5 3.0 2.5	2.0 2.5 2.5 2.5	2.5 2.5 2.5 2.5 2.5	9.0 7.5 6.0 5.0 4.5	7.5 6.0 5.0 4.0 3.5	8.5 6.5 5.0 4.5 4.0	11.5 10.5 10.0 11.0 12.5	10.5 10.0 9.0 9.5 11.0	11.0 10.5 9.5 10.0	17.5 19.0 19.5 21.0 20.0	15.0 15.5 17.5 18.5 19.0	16.0 17.0 18.5 19.5
16 17 18 19 20	2.5 2.5 3.0 3.5 3.5	2.0 2.0 2.5 3.0 3.0	2.0 2.0 3.0 3.0 3.5	3.5 3.5 4.0 4.0	3.0 3.0 3.0 3.5 3.0	3.5 3.5 3.5 3.5 3.5	11.5 10.5 10.0 9.0 9.0	10.5 10.0 9.0 8.5 8.5	11.0 10.0 9.5 9.0 9.0	19.0 18.0 19.0 19.5 19.5	17.5 17.0 17.0 17.0 17.0	18.5 17.5 18.0 18.0 18.0
21 22 23 24 25	4.0 4.5 4.5 4.0	3.5 3.5 4.0 4.0	3.5 4.0 4.0 4.0 4.0	4.5 4.5 4.0 4.0 5.5	4.0 4.0 3.5 3.5 4.0	4.0 4.0 4.0 4.0 4.5	10.5 12.0 15.0 15.5 15.5	9.0 10.5 12.0 14.5 14.0	9.5 11.0 13.5 14.5 14.5	23.5 24.0 23.5 23.0 21.5	17.5 20.0 21.5 21.5 19.0	20.0 22.0 22.0 22.0 20.5
26 27 28 29 30 31	4.0 4.0 4.5 4.5	3.5 3.5 4.0 3.0	4.0 4.0 4.0 3.5	6.0 6.5 6.0 6.0 7.0	5.0 6.0 5.0 4.5 5.5 6.0	5.5 6.5 5.5 5.0 5.5 6.5	15.0 15.0 14.5 14.0 14.0	13.5 13.5 13.5 13.5 13.5	14.0 14.0 14.0 13.5 14.0	19.0 18.0 19.0 19.5 19.0 18.0	18.0 17.5 17.0 17.0 17.0	18.5 17.5 18.0 18.0 18.0
MONTH	4.5	1.5	3.0	9.0	3.0	5.0	15.5	6.5	10.5	24.0	14.0	17.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	
1 2 3 4 5	16.5 17.5 18.5 19.5 20.0	15.5 15.5 17.0 18.0 18.5	16.0 16.5 17.0 18.5 19.5	27.5 26.5 25.0 24.0 23.5	24.0 24.5 22.5 22.5 22.5	25.5 25.5 24.0 23.0 23.0	24.0 23.0 23.5 24.5 25.0	23.0 22.5 22.5 23.0 23.0	23.5 23.0 23.0 23.5 24.0	23.5 23.5 22.5 23.0 23.0	23.0 22.5 22.0 22.0 22.0	23.5 23.0 22.5 22.5 22.5
6 7 8 9 10	18.0 19.5 20.5 21.0 22.0	17.0 17.5 19.0 20.0 20.0	17.5 18.5 19.5 20.5 21.0	26.0 25.5 25.0 27.0 26.5	23.0 24.0 23.5 23.0 25.0	24.5 25.0 24.5 24.5 26.0	27.0 26.0 24.0 24.5 24.5	23.0 23.5 23.0 23.0 23.5	25.0 24.5 23.5 23.5 23.5	22.5 22.0 22.0 23.5 23.5	21.5 21.5 21.5 22.0 22.0	22.0 21.5 21.5 22.5 22.5
11 12 13 14 15	22.0 21.5 22.0 23.0 25.0	20.0 20.5 20.5 21.5 22.5	21.0 21.0 21.0 22.0 23.5	27.5 26.5 27.0 26.5 27.5	25.0 25.5 24.5 25.5 26.0	26.0 26.0 25.5 26.0 26.5	24.5 25.5 24.5 24.0 23.0	23.0 24.0 23.5 23.0 22.0	23.5 24.5 24.0 23.5 22.5	24.5 23.5 23.0 21.5 21.5	22.5 22.5 21.5 21.0 20.5	23.5 23.0 22.5 21.5 21.0
16 17 18 19 20	24.0 23.0 23.0 22.5 22.5	23.0 22.5 22.0 22.0 22.0	23.5 22.5 22.5 22.5 22.0	27.0 25.5 25.5 25.0 25.5	25.5 24.5 24.5 24.0 24.5	26.5 25.0 25.0 24.5 25.0	22.0 21.0 21.0 22.5 23.0	21.0 21.0 20.5 20.5 21.0	21.5 21.0 21.0 21.5 22.0	22.5 22.5 23.0 22.5 23.0	21.0 21.5 22.0 22.0 21.5	21.5 22.0 22.5 22.5 22.0
21 22 23 24 25	23.0 22.5 20.5 20.5 22.5	21.5 20.0 19.5 19.5 20.0	22.5 21.0 20.0 20.0 21.0	27.5 27.5 27.0 24.5 24.5	25.0 26.0 24.5 23.0 22.5	26.0 26.5 25.5 23.5 23.5	24.0 24.5 23.5 22.5 25.0	21.0 21.0 22.0 21.5 22.5	22.5 23.0 22.5 22.0 23.5	21.5 21.5 21.5 20.5 19.0	21.0 21.0 20.5 19.0 18.0	21.0 21.5 21.0 19.5 18.5
26 27 28 29 30 31	21.5 23.0 23.0 22.5 24.0	20.5 20.5 21.0 21.5 22.0	21.0 21.5 22.0 21.5 22.5	23.0 24.5 24.0 23.5 26.5 25.0	22.5 22.5 23.0 23.0 23.5 23.5	23.0 23.5 23.5 23.0 25.0 24.0	27.0 27.0 26.0 24.0 23.5 23.5	24.5 25.5 23.0 22.5 23.0 22.5	26.0 26.0 25.5 23.5 23.0 23.0	18.0 17.5 17.5 17.5 17.0	17.5 17.5 17.0 17.0 16.0	17.5 17.5 17.5 17.0 16.5
MONTH	25.0	15.5	20.5	27.5	22.5	25.0	27.0	20.5	23.5	24.5	16.0	21.0

PASSAIC RIVER BASIN

01388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1 2 3 4 5	9.6 9.4 9.3 9.2 9.0	9.3 9.1 8.9 8.8 8.7	9.5 9.3 9.1 9.0 8.8	10.6 10.5 10.7 10.9 11.3	10.2 10.2 10.2 10.3 10.5	10.4 10.3 10.4 10.6 10.9	11.6 11.5 11.4 11.9 12.5	11.3 11.3 11.3 11.3 12.0	11.5 11.4 11.3 11.5 12.3	13.1 12.9 12.9 12.6 12.6	12.8 12.7 12.6 12.5 12.3	12.9 12.8 12.7 12.6 12.5
6 7 8 9	9.0 9.3 9.5 9.7 9.7	8.8 9.0 9.1 9.0 9.1	8.9 9.2 9.3 9.3 9.4	11.6 11.8 12.0 12.4 12.3	10.8 11.1 11.2 11.6 11.7	11.2 11.4 11.6 11.9	12.6 12.7 12.6 12.2 12.0	12.5 12.5 12.1 11.9 11.8	12.5 12.6 12.4 12.0 11.9	12.4 12.4 12.6 12.5 12.4	12.1 12.1 12.2 12.3 12.2	12.2 12.2 12.4 12.4 12.3
11 12 13 14 15	9.5 9.8 10.1 10.2 9.9	9.0 9.2 9.6 9.6 9.5	9.2 9.5 9.8 9.8 9.7	12.2 12.5 12.4 12.4 12.3	11.7 11.9 11.9 11.9 11.8	11.9 12.1 12.1 12.1 12.0	12.0 12.1 11.8 11.6 12.0	11.8 11.7 11.6 11.4 11.5	11.9 11.9 11.7 11.5 11.8	12.7 12.9 12.5 12.2 12.5	12.3 12.5 12.2 11.7 11.9	12.5 12.6 12.4 11.9 12.3
16 17 18 19 20	10.2 10.3 10.5 10.3 10.4	9.7 10.0 10.0 10.0	9.9 10.1 10.3 10.2 10.3	12.1 12.4 12.5 12.5 12.5	11.7 11.8 12.0 12.0 11.7	11.9 12.0 12.2 12.2 12.1	12.5 12.6 12.8 13.5 13.7	12.0 12.4 12.4 12.9 13.4	12.2 12.5 12.5 13.2 13.5	12.8 13.0 12.9 13.1 13.0	12.3 12.7 12.7 12.8 12.8	12.5 12.8 12.8 13.0 12.9
21 22 23 24 25	10.6 10.6 10.6 10.5 10.3	10.2 10.2 10.1 10.1 10.0	10.4 10.4 10.3 10.2 10.2	11.8 11.6 11.6 10.6 11.2	11.3 11.2 10.6 10.5 10.7	11.6 11.3 11.0 10.5 11.0	13.4 13.1 12.9 12.9 13.1	13.0 12.9 12.7 12.7 12.8	13.2 13.0 12.8 12.8 12.9	13.1 13.2 13.0 12.9 13.1	12.9 12.9 12.6 12.7 13.0	12.9 13.0 12.8 12.8 13.0
26 27 28 29 30 31	10.3 10.3 10.1 10.5 10.6 10.7	9.8 9.5 9.5 10.0 10.2 10.3	10.0 9.8 9.8 10.2 10.3	11.7 12.0 12.1 12.0 11.8	11.2 11.7 11.9 11.8 11.6	11.5 11.9 12.0 11.9 11.8	13.1 13.0 12.9 12.6 12.9 13.2	12.8 12.8 12.6 12.4 12.5 12.8	13.0 12.9 12.8 12.5 12.7 13.0	13.2 13.3 13.3 13.2 13.0 12.7	13.0 13.1 13.1 12.9 12.6 12.5	13.1 13.2 13.2 13.1 12.8 12.6
MONTH		8.7	9.8	12.5	10.2	11.5			12.4	13.3	11.7	12.7
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MĄX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR	-	, MAX	MIN MARCH	MEAN	MĄX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	MAX 12.7 12.8 12.8 12.7 12.7		-	•		MEAN 12.4 12.4 12.3 12.3	11.5 11.5 11.5 11.6 11.5		11.4 11.4 11.4 11.4 11.4	10.1 10.0 9.6 9.5 9.8		9.8 9.6 9.1 9.1 9.3
	12.7 12.8 12.8 12.7 12.7 12.7 12.7 13.1	FEBRUAR 12.5 12.5 12.5 12.4 12.5 12.6	12.6 12.6 12.5 12.6 12.7 12.5	12.6	MARCH 12.2 12.2 12.2 12.1 11.8	12.4 12.4 12.3 12.3 12.1	11.5 11.5 11.5 11.6 11.5	APRIL 11.3 11.3 11.3 11.3	11.4 11.4 11.4 11.4	10.1	MAY 9.5 9.0 8.8 8.8 8.9	9.8 9.6 9.1
1 2 3 4 5 6 7 8 9	12.7 12.8 12.8 12.7 12.7 12.7 12.7 13.1	FEBRUAR 12.5 12.5 12.5 12.4 12.5 12.6	12.6 12.6 12.5 12.6 12.7 12.5	12.6 12.6 12.5 12.5 12.4 12.1 11.8 11.6	MARCH 12.2 12.2 12.2 12.1 11.8	12.4 12.4 12.3 12.3 12.1	11.5 11.5 11.5 11.6 11.5	APRIL 11.3 11.3 11.3 11.3	11.4 11.4 11.4 11.4	10.1 10.0 9.6 9.5 9.8	MAY 9.5 9.0 8.8 8.8 8.9	9.8 9.6 9.1 9.3 9.5 9.8 10.1
1 2 3 4 5 6 7 8 9 10	12.7 12.8 12.8 12.7 12.7 12.7 12.7 13.1 13.2	FEBRUAR 12.5 12.5 12.5 12.4 12.4 12.5 12.4 12.6 12.9	12.6 12.6 12.5 12.6 12.7 12.6 12.9 13.0 12.8 12.8	12.6 12.6 12.5 12.5 12.4 11.8 11.6 11.5 11.2	MARCH 12.2 12.2 12.1 11.8 11.7 11.5 11.3 11.0 10.7 10.7 11.1 11.6 12.0	12.4 12.4 12.3 12.1 11.7 11.5 11.3 11.0	11.5 11.5 11.5 11.6 11.5 11.6 11.2 11.1 10.9 10.9	APRIL 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.	11.4 11.4 11.4 11.4 11.4 11.1 10.9 10.8 10.7	10.1 10.0 9.6 9.5 9.8 10.2 10.8 10.3 10.5 10.2	MAY 9.50 8.88 9.08 9.89 9.89 9.80 9.80 9.80 9.8	9.8 9.6 9.1 9.3 9.5 9.8 10.1 10.0 9.9 8.9 8.8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 16 7 18 9 19 19 19 19 19 19 19 19 19 19 19 19 1	12.7 12.8 12.8 12.7 12.7 12.7 12.7 13.1 13.0 12.9 12.8 12.9 13.0 12.9	FEBRUAR 12.5 12.5 12.5 12.4 12.4 12.5 12.4 12.6 12.6 12.6 12.6 12.6 12.6 12.6 12.6	12.6 12.6 12.5 12.6 12.7 12.6 12.7 12.8 12.8 12.8 12.8 12.8 12.8	12.6 12.6 12.5 12.4 12.1 11.8 11.6 11.5 11.2 11.1 12.0 12.3 12.4	MARCH 12.2 12.2 12.1 11.8 11.7 11.5 11.3 11.0 10.7 10.7 11.1 11.6 12.0 12.2 12.4 12.4 12.3	12.4 12.3 12.3 12.1 11.9 11.7 11.5 11.3 11.0 10.8 11.4 11.9 12.2 12.3	11.5 11.5 11.5 11.6 11.5 11.6 11.2 11.1 10.9 10.8 11.2 11.0 10.8	APRIL 11.3 11.3 11.3 11.3 11.3 11.3 11.0 10.7 10.7 10.3 10.6 10.7 10.2 10.2 10.2 10.4 10.7 11.0	11.4 11.4 11.4 11.4 11.4 11.1 10.9 10.8 10.7 10.5 10.7 10.9 10.8	10.1 10.0 9.5 9.8 10.2 10.3 10.5 10.2 10.3 10.1 9.2 9.3 9.3 9.7	MAY 9.0888.9 9.888.9 9.884.9 9.888.1 90.77	9.8 9.6 9.1 9.3 9.5 9.8 10.1 9.5 8.8 9.1 9.3 9.5 9.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	12.7 12.8 12.8 12.7 12.7 12.7 13.1 13.1 13.1 13.0 13.1 12.8 12.6 12.4 12.5 12.4	FEBRUAR 12.5 12.5 12.5 12.4 12.5 12.4 12.6 12.6 12.6 12.6 12.6 12.1 12.1	12.66 12.66 12.56 12.6 12.7 12.69 13.0 12.8 12.8 12.7 12.8 12.3 12.3 12.3	12.6 12.6 12.5 12.5 12.4 11.8 11.6 11.5 11.2 11.1 11.6 12.3 12.4 12.7 12.6 12.7	MARCH 12.2 12.2 12.1 11.8 11.7 11.5 11.0 10.7 10.7 11.6 12.2 12.4 12.4 12.3 12.2 12.1 12.1	12.4 12.4 12.3 12.3 12.1 11.9 11.7 11.5 11.3 11.0 10.8 11.4 11.9 12.3 12.4	11.5 11.5 11.5 11.6 11.5 11.6 11.2 11.1 10.9 10.6 10.8 11.2 11.0 10.8 11.2 11.0 10.8	APRIL 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11	11.4 11.4 11.4 11.4 11.4 11.1 10.9 10.8 10.7 10.5 10.9 10.8 10.4 10.5 10.9 11.0	10.1 10.0 9.5 9.8 10.8 10.3 10.5 10.1 10.1 9.3 9.3 9.7 9.9 9.6 9.8	MAY 9.0888.9 98.498 30.611 90.770 977.77	9.8 9.6 9.1 9.3 9.5 9.8 10.1 10.0 9.5 8.8 8.7 9.2 9.2

125

O1388000 RAMAPO RIVER AT POMPTON LAKES, NJ--Continued

OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		S	EPTEMBE	R
1 2 3 4 5	9.8 9.8 9.6 9.2 9.2	9.7 9.3 9.0 8.9 8.8	9.7 9.6 9.4 9.1 9.0	8.0 7.9 7.9 8.1 8.1	7.1 7.2 7.2 7.7 7.4	7.6 7.5 7.6 7.9 7.8	8.3 8.4 8.4 8.0 7.9	7.8 7.7 7.5 7.3 7.1	8.1 8.0 7.9 7.6 7.6	7.9 7.9 8.1 8.3 8.2	6.8 6.8 7.0 8.0 7.8	7.2 7.2 7.4 8.1 8.0
6 7 8 9	9.6 9.5 9.1 8.9 8.9	9.3 9.0 8.8 8.6 8.6	9.4 9.3 8.9 8.7 8.8	7.9 8.0 8.2 8.2 7.9	7.2 7.2 7.2 7.3 7.1	7.6 7.6 7.7 7.7 7.5	7.8 7.3 7.4 7.8 7.9	6.6 6.6 6.7 7.6	7.2 6.9 7.0 7.5 7.7	8.4 8.1 8.1 8.2 8.0	7.7 7.7 7.4 7.2 7.0	8.0 7.9 7.7 7.7 7.4
11 12 13 14 15	9.0 9.0 9.0 8.9 8.6	8.7 8.7 8.5 8.3 8.1	8.9 8.9 8.8 8.6 8.3	7.9 7.8 7.9 8.0 7.5	6.9 6.9 6.9 7.0	7.4 7.2 7.4 7.4 7.2	8.0 8.1 8.0 8.0	7.4 7.4 7.4 7.6	7.7 7.7 7.7 7.7 7.7	8.0 8.1 8.1 8.3 8.4	7.4 7.5 7.5 7.4 7.5	7.7 7.7 7.8 7.8 7.9
16 17 18 19 20	8.7 8.7 8.5 8.3 8.4	8.1 8.3 8.0 8.0 8.1	8.4 8.5 8.3 8.1 8.3	7.6 7.8 7.8 7.9 7.7	7.3 7.4 7.5 7.4 7.0	7.5 7.6 7.6 7.7 7.5	7.9 8.0 8.1 8.1	7.6 7.7 7.9 7.7 7.6	7.7 7.9 8.0 7.9 7.8	8.3 8.2 8.0 8.0 8.1	7.4 7.4 7.2 7.5	7.8 7.7 7.6 7.6 7.8
21 22 23 24 25	8.5 8.8 9.2 9.0 9.1	8.1 8.2 8.6 8.6 8.4	8.3 8.5 8.9 8.7 8.8	7.4 7.4 7.6 7.8 7.8	6.5 6.4 6.3 7.6 7.5	7.0 6.8 6.9 7.7 7.6	8.2 8.1 8.0 8.5 7.9	7.3 7.2 7.2 7.3 6.8	7.8 7.7 7.6 7.8 7.4	8.4 8.0 8.3 8.8 9.0	7.5 7.5 7.6 8.1 8.4	7.8 7.6 8.0 8.4 8.7
26 27 28 29 30 31	8.9 8.7 8.9 8.7 8.5	8.4 8.4 8.2 7.8	8.7 8.6 8.6 8.5 8.2	7.9 8.0 8.1 8.3 8.2 8.1	7.6 7.6 7.6 7.6 7.2 7.2	7.7 7.8 7.8 7.9 7.7 7.5	7.0 7.2 7.5 7.8 7.7 7.7	6.2 6.3 6.7 7.2 7.1 6.9	6.7 6.8 7.0 7.4 7.4 7.3	8.9 8.7 8.8 9.0 9.2	8.6 8.5 8.5 8.4 8.4	8.7 8.6 8.6 8.6 8.7
MONTH	9,8	7.8	8.8	8.3	6.3	7.5	8.5	6.2	7.6	9.2	6.8	7.9

01388500 POMPTON RIVER AT POMPTON PLAINS, NJ

LOCATION.--Lat 40°58'09", long 74°16'56", Passaic County, Hydrologic Unit 02030103, on left bank in Passaic Valley Water Commission pumping station, 800 ft below confluence of Pequannock and Ramapo Rivers, 100 ft upstream from bridge on Jackson Avenue (Pompton Plains Cross Road), and 0.7 mi east of Pompton Plains.

DRAINAGE AREA. -- 355 mi².

PERIOD OF RECORD.--March 1903 to December 1904, May 1940 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS. -- WSP 1202: 1945(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 160.00 ft above sea level.

March 1903 to December 1904, nonrecording gage on main spillway of dam 2,000 ft upstream at different datum. May
1940 to September 1964 two water-stage recorders, each above a concrete dam about 2,000 ft upstream at datum 14.46
ft higher.

REMARKS.--No estimated daily discharges. Records good. Water diverted from reservoirs on Pequannock and Wanaque Rivers, from Pompton River to Point View Reservoir (no diversion this year), and from Ramapo River to Wanaque Reservoir and Oradell Reservoir (from February 1985) for municipal supply (see Hackensack River basin, diversions into and from and Passaic River basin, diversions). Flow regulated by Canistear, Oak Ridge, Clinton, Charlotteburg and Echo Lake Reservoirs on Pequannock River and by Greenwood Lake, Monksville, and Wanaque Reserviors on Wanaque River (see Passaic River basin, reservoirs in). Several measurements of water temperature were made during the year. Satellite telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with Passaic Valley Water Commission.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,200 ft³/s and maximum (*):

PEAK U	713CHARGE	S FOR COR	CENT TEAK.	- Peak uis	scharges gre	eater ti	ian base urs	chai ge	01 3,200 1	t /s and	max man	().
Date	Ti	me	Discharg (ft ³ /s)	e (Gage height (ft)		Date	Time	Di	scharge (ft ³ /s)	Ga	ge height (ft)
June	6 16	45	*6,210		*14.75		No other p	eak gre	eater than	base disc	harge.	
	•	DI	SCHARGE, C	UBIC FEET	PER SECOND	, WATER Y MEAN	YEAR OCTOBER	R 1991	TO SEPTEME	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	145 135 129 115 109	124 110 105	200 175 794 1380 997	156 150 159 204 262	154 150 158 155 150	168 164 160 167 161	819 711 618 532 468	186 174 192 183 153	2160 1330 995 772 1020	184 164 151 179 168	454 196 146 149 146	82 77 189 343 180
6 7 8 9 10	231 290 126 110 104	112 98 98	729 589 475 306 404	232 172 167 165 159	148 145 146 141 145	150 189 305 264 175	417 367 327 265 268	136 120 128 288 256	6210 5120 2880 2130 1520	153 148 132 231 173	126 111 101 281 322	132 120 115 106 102
11 12 13 14 15	98 110 115 99 109	124 132 130	347 283 261 237 206	148 164 136 226 277	162 151 142 152 180	653 783 569 609 511	321 311 259 169 154	201 169 150 141 134	1120 877 670 526 441	139 122 148 137 167	225 235 178 166 155	180 146 117 101 94
16 17 18 19 20	147 195 277 212 162	102 98	174 170 169 159 195	203 166 175 152 148	425 208 159 162 161	429 378 351 388 388	147 182 330 418 369	187 177 149 138 134	292 241 203 265 344	295 206 168 145 126	145 168 245 253 186	92 105 113 124 112
21 22 23 24 25	114 108 121 103 110	382 1390 1210	172 171 166 161 151	142 139 179 630 545	148 150 151 150 178	341 318 315 301 289	300 294 393 312 391	136 134 127 155 167	283 227 193 222 250	114 102 165 260 167	148 130 118 105 99	92 93 137 132 125
26 27 28 29 30 31	104 102 105 139 138 136	332 291 262 230	152 146 144 190 198 166	306 212 175 156 169 161	292 347 272 223 	373 2060 2170 1370 977 911	360 301 263 231 198	167 191 175 158 146 981	201 475 398 288 216	169 293 192 145 130 272	95 103 118 127 105 91	157 137 143 122 98
TOTAL MEAN MAX MIN	4298 139 290 98	254 1390	10067 325 1380 144	6435 208 630 136	5305 183 425 141	16387 529 2170 150	10495 350 819 147	5933 191 981 120	31869 1062 6210 193	5345 172 295 102	5227 169 454 91	3866 129 343 77
STATI	STICS OF	MONTHLY !	MEAN DATA	FOR WATER	YEARS 1903	- 1992	, BY WATER YE	EAR (WY)			
MEAN MAX (WY) MIN (WY)	295 2369 1904 40.2 1981	1956	518 1543 1984 34.8 1981	487 1562 1979 39.2 1981	560 1654 1973 149 1969	911 2477 1983 118 1981	935 2995 1983 62.7 1985	624 2778 1989 110 1965	388 2177 1972 62.9 1965	239 1530 1945 34.2 1965	225 1520 1955 34.2 1966	229 1057 1971 46.7 1980

PASSAIC RIVER BASIN

01388500 POMPTON RIVER AT POMPTON PLAINS, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1903 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	134777 369 3180 Mar 4 52 Sep 13 56 Sep 8	112838 308 6210 Jun 6 77 Sep 2 100 Aug 27 6640 Jun 6 14.75 Jun 6 75 Sep 2 536 168	483 906 117 28300 Oct 10 1903 .00 Aug 18 1904 1.7 Aug 14 1904 28300a Oct 10 1903 14.30b,c Oct 10 1903 .00 Aug 18 1904 1120 245 74

<sup>a By computation of peak flow over dam, maximum observed.
b Site and datum then in use.
c Maximum stage at present site and datum was 24.47 ft, Apr. 6, 1984.</sup>

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ

LOCATION.--Lat 40°56'36", long 74°16'47", Morris County, Hydrologic Unit 02030103, at bridge on State Highway 504 in Packanack Lake, and 2.2 mi downstream from confluence of Pequannock and Wanaque Rivers.

DRAINAGE AREA. -- 361 mi 2.

PERIOD OF RECORD. -- Water years 1979 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

				A, WATER		DER 1771	TO SELLIE			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991	1100	140	294	7.8	12.0	11.7	107	3.2	490	80
NOV 19	1100	100	357	9.2	6.0	16.8	135	4.2	••	••
DEC 17	1100	170	259	7.5	1.0	15.0	106	1.8	•	 '
JAN 1992 14	1100	200	294	7.7	3.0	14.4	112	2.3	230	46
FEB 19	1100	170	332	7.6	1.5	15.9	115	2.4	• ••	
MAR 24	1100	310	342	8.0	2.0	17.9	130	<1.0	<20	<10
APR 24 MAY	1200	310	263	7.5	14.5	11.6	116	••	••	••
12 26 JUN	1100 1215	170 170	270 300	7.8 8.5	16.5 17.0	14.5 11.9	149 124	5.4	••	
11 24 JUL	1115 1130	1140 220	· 190 290	7.6 8.2	20.0 20.0	8.9 10.6	99 119	2.1 8.1	••	••
22 AUG	1200	110	346	8.0	24.0	8.5	101	E1.4	230	<100
27 SEP	1130	110	322	8.0	24.5	8.7	105	2.1		
08 18	1100 1100	120 120	326 333	7.8 8.2	21.5 22.5	9.5 10.7	108 125	E2.4	••	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
OCT 1991	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)
OCT 1991 29	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)
OCT 1991 29 NOV 19 DEC	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA) 23 28	SIUM, DIS- SOLVED (MG/L AS MG) 6.3	DIS- SOLVED (MG/L AS NA) 23 28	SIUM, DIS- SOLVED (MG/L AS K) 1.6	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4) 21	RIDE, DIS- SOLVED (MG/L AS CL) 35	RIDE, DIS- SOLVED (MG/L AS F) 0.1	DIS- SOLVED (MG/L AS SIO2) 6.3
OCT 1991 29 NOV 19 DEC 17 JAN 1992	NESS TOTAL (MG/L AS CACO3) 83 100	DIS- SOLVED (MG/L AS CA) 23 28	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5	DIS- SOLVED (MG/L AS NA) 23 28 20	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.8	LINITY LAB (MG/L AS CACO3) 57 72 47	DIS- SOLVED (MG/L AS SO4) 21 24 20	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4
OCT 1991 29 NOV 19 DEC 17 JAN 1992 14 FEB	NESS TOTAL (MG/L AS CACO3) 83 100 70	DIS- SOLVED (MG/L AS CA) 23 28 19 20	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5 5.5	DIS- SOLVED (MG/L AS NA) 23 28 20 23	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.8 1.4	LINITY LAB (MG/L AS CACO3) 57 72 47 50	DIS- SOLVED (MG/L AS SO4) 21 24 20 20	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37 42	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4 6.2
OCT 1991 29 NOV 19 DEC 17 JAN 1992 14 FEB 19	NESS TOTAL (MG/L AS CACO3) 83 100 70 73	DIS- SOLVED (MG/L AS CA) 23 28 19 20 23	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5 5.5 5.6 6.4	DIS- SOLVED (MG/L AS NA) 23 28 20 23 31	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.8 1.4 1.4	LINITY LAB (MG/L AS CACO3) 57 72 47 50	DIS- SOLVED (MG/L AS SO4) 21 24 20 20 23	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37 42 57	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.2 <0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4 6.2 6.6
OCT 1991 29 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 24	NESS TOTAL (MG/L AS CACO3) 83 100 70 73 84 73	DIS- SOLVED (MG/L AS CA) 23 28 19 20 23 20	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5 5.5 5.6 6.4 5.5	DIS- SOLVED (MG/L AS NA) 23 28 20 23 31 36	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.8 1.4 1.4 1.6	LINITY LAB (MG/L AS CACO3) 57 72 47 50 50 45	DIS- SOLVED (MG/L AS SO4) 21 24 20 20 23 20	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37 42 57 64	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.2 <0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4 6.2 6.6 5.5
OCT 1991 29 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 24 APR 24	NESS TOTAL (MG/L AS CACO3) 83 100 70 73 84 73 69	DIS- SOLVED (MG/L AS CA) 23 28 19 20 23 20 19	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5 5.5 5.6 6.4 5.5	DIS- SOLVED (MG/L AS NA) 23 28 20 23 31 36 21	\$IUM, DIS- SOLVED (MG/L AS K) 1.6 1.8 1.4 1.4 1.6 1.2	LINITY LAB (MG/L AS CACO3) 57 72 47 50 50 45	DIS- SOLVED (MG/L AS SO4) 21 24 20 20 23 20 21	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37 42 57 64 39	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.2 <0.1 <0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4 6.2 6.6 5.5 5.5
OCT 1991 29 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 24 APR 24 APR 24	NESS TOTAL (MG/L AS CACO3) 83 100 70 73 84 73	DIS- SOLVED (MG/L AS CA) 23 28 19 20 23 20	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5 5.5 5.6 6.4 5.5	DIS- SOLVED (MG/L AS NA) 23 28 20 23 31 36	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.8 1.4 1.4 1.6	LINITY LAB (MG/L AS CACO3) 57 72 47 50 50 45	DIS- SOLVED (MG/L AS SO4) 21 24 20 20 23 20	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37 42 57 64	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.2 <0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4 6.2 6.6 5.5
OCT 1991 29 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 24 APR 24 MAY 12 26 JUN 11 24	NESS TOTAL (MG/L AS CACO3) 83 100 70 73 84 73 69 76	DIS- SOLVED (MG/L AS CA) 23 28 19 20 23 20 19	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5 5.5 5.6 6.4 5.5	DIS- SOLVED (MG/L AS NA) 23 28 20 23 31 36 21	\$IUM, DIS- SOLVED (MG/L AS K) 1.6 1.8 1.4 1.4 1.6 1.2	LINITY LAB (MG/L AS CACO3) 57 72 47 50 50 45	DIS- SOLVED (MG/L AS SO4) 21 24 20 20 23 20 21	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37 42 57 64 39	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.2 <0.1 <0.1 <0.1 <0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4 6.2 6.6 5.5 5.5 4.6 4.1
OCT 1991 29 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 24 APR 24 MAY 12 26 JUN 11 24 JUL 22	NESS TOTAL (MG/L AS CACO3) 83 100 70 73 84 73 69 76 80	DIS- SOLVED (MG/L AS CA) 23 28 19 20 23 20 19 21 22 15	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5 5.5 5.6 6.4 5.5 5.3 5.8 6.2 4.0	DIS- SOLVED (MG/L AS NA) 23 28 20 23 31 36 21 21 23	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.8 1.4 1.6 1.2 1.2	LINITY LAB (MG/L AS CACO3) 57 72 47 50 50 45 44 49 54	DIS- SOLVED (MG/L AS SO4) 21 24 20 20 23 20 21 22 21	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37 42 57 64 39 38 41	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4 6.2 6.6 5.5 5.5 4.6 4.1
OCT 1991 29 NOV 19 DEC 17 JAN 1992 14 FEB 19 MAR 24 APR 24 MAY 12 26 JUN 11 24	NESS TOTAL (MG/L AS CACO3) 83 100 70 73 84 73 69 76 80 54 87	DIS- SOLVED (MG/L AS CA) 23 28 19 20 23 20 19 21 22 15 24	SIUM, DIS- SOLVED (MG/L AS MG) 6.3 7.5 5.5 5.6 6.4 5.5 5.3 5.8 6.2 4.0 6.5	DIS- SOLVED (MG/L AS NA) 23 28 20 23 31 36 21 21 23 14 22	SIUM, DIS- SOLVED (MG/L AS K) 1.6 1.8 1.4 1.6 1.2 1.3 1.5 0.90 1.5	LINITY LAB (MG/L AS CACO3) 57 72 47 50 50 45 44 49 54 33 57	DIS- SOLVED (MG/L AS SO4) 21 24 20 20 23 20 21 22 22 14	RIDE, DIS- SOLVED (MG/L AS CL) 35 52 37 42 57 64 39 38 41 27 41	RIDE, DIS- SOLVED (MG/L AS F) 0.1 0.1 0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1	DIS- SOLVED (MG/L AS S102) 6.3 3.6 8.4 6.2 6.6 5.5 5.5 4.6 4.1

PASSAIC RIVER BASIN

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	- GEN,A + MONIA	M- + NITRO- IC GEN, TOTAL L (MG/L
OCT 1991 29	154	0.04	0.05	0.75	0.74	0.14	0.14	0.70	0.40	1.5
NOV 19	192	0.04	0.05	0.80	0.83	0.09	0.09	0.80	0.30	1.6
DEC 17	144	0.02	0.02	0.81	0.81	0.17	0.15	0.60	0.30	1.4
JAN 1992 14	153	0.02	0.01	0.92	0.91	0.18	0.17	0.50	0.40	1.4
FEB 19	184	0.02	0.02	1.10	1.10	0.08	0.08	0.30	<0.20	1.4
MAR 24	182	0.02	0.01	0.74	0.72	0.03	0.03	0.20	<0.20	0.94
APR 24	142	0.02	0.01	0.69	0.69	0.03	0.03	0.40	<0.20	1.1
MAY 12 26	146 156	0.01 0.02	0.01	0.65	0.67	0.01 0.01	0.02 0.01	<0.20	<0.20 0.20	1.1
JUN 11	102	<0.01	0.02 0.01	0.73 0.37	0.73 0.37	0.06	0.06	0.40	0.20	0.77
24 JUL	159	0.02	0.02	0.74	0.72		<0.01	0.50	<0.20	1.2
22 AUG	183	0.03	0.02	1.10	1.00	0.06	0.04	0.40	0.30	1.5
27 SEP	178	0.02	0.02	0.91	0.90	0.02	0.03	0.40	<0.20	1.3
08 18	162 176	0.01 0.01	0.02 0.01	1.10 0.81	1.10 0.80	0.06 0.02	0.05 0.02	0.50 0.50	0.20 0.30	1.6 1.3
DAT	ÁS	N PHOS - PHORI ED TOT/ /L (MG/	US DI AL SOL /L (MG	US PHOR S- ORTH VED TOT /L (MG	RUS ORT IO DIS TAL SOLV	RUS CARI THO, ORGA S- DI! /ED SOL' /L (MI	ANIČ SUS S- PENI VED TO G/L (MI	ANIĆ S- SI DED MI TAL SI G/L PI	EDI- ENT, C US- ENDED	SEDI- MENT, DIS- HARGE, SUS- PENDED T/DAY)
OCT 199		.1 0.	11 0.0	7 0.	06 0.0	06 3.	7 0.	7	16	6.0
NOV 19	1	.1 0.	11 0.0	4 0.	05 0.0	5 3.	2 2.!	5 -		
DEC 17 JAN 199	, 1	.1 0.0	0.0	4 0.	05 0.0	5 2.9	0.	1 -	•	
14 FEB		.3 0.	12 0.0	5 0.	05 0.0	04 2.7	7		5	2.7
19 Mar	-	- 0.0	0.0	4 0.	02 0.0	04 2.8	3	•	•	
24 APR	-				03 0.0				10	8.4
24 MAY	-	•			02 0.0			7 -		• •
12 26	0	- 0.0 .93 0.0	03 <0.0 06 0.0	1 0. 2 0.	02 <0.0 03 0.0		3	•		• •
JUN 11 24 JUL	0 	.57 0.0 - 0.0			02 0.0 02 <0.0		0.6 3 1.0			••
22 AUG	1	.3 0.0	0.0	4 0.	04 0.0	2 3.0	0.8	3	8 3	2.4
27 SEP	•	• • • • • • • • • • • • • • • • • • • •	0.0	6 0.	0.0	3.2	2 0.6	5	•	
08 18	1	.3 0.0 .1 0.0	0.09 06 0.09	5 0. 4 0.	03 0.0 03 0.0	3.0 2) 1.	·-· 1 -·		

01388600 POMPTON RIVER AT PACKANACK LAKE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH IC (H TIME LEV	AND, EM- AL ARSI IGH TO' EL) (U	LI TC ENIC RE TAL ER G/L (U	TAL TO COV- RE ABLE EN IG/L (U	DTAL ECOV- RABLE JG/L	TOTAL RECOV- ERABLE (UG/L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 29	1100	14	1 <	10	70	<1	<1	3
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL TOTAL RECOV ERABL (UG/L AS NI	SELE- NIUM, E TOTAL (UG/L	REC ERA (UG	AĽ OV- BLE /L
OCT 1991 29	200	2	80	<0.10		3 <	1	<10

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ

LOCATION.--Lat 40°53'47", long 74°16'10", Passaic County, Hydrologic Unit 02030103, on right bank, in Two Bridges and 400 ft downstream from the Pompton River.

DRAINAGE AREA. -- 734 mi 2.

PERIOD OF RECORD. -- Water years 1987 to current year.

PERIOD OF DAILY RECORD.-

SPECIFIC CONDUCTANCE: August 1989 to current year.
WATER TEMPERATURE: August 1989 to current year.
DISSOLVED OXYGEN: August 1989 to current year.
Unpublished fragmentary water-quality records for the period March to July 1989 are available in the files of the district office.

INSTRUMENTATION. -- Three water-quality monitors are at the site; each measures the characteristics of water pumped from a single intake. Looking downstream, the "Left Intake" is 68 ft from the left bank, the "Middle Intake" is at midstream, and the "Right Intake" is 74 ft from the right bank. The distances are approximate values for low water conditions.

REMARKS. - Interruptions in the daily record were due to malfunction of the pumps or instruments.

EXTREMES FOR PERIOD OF DAILY RECORD.

SPECIFIC CONDUCTANCE: Maximum, 1,130 microsiemens from right intake, Jan.11, 1990; minimum, 123 microsiemens from left intake, Sept. 4, 1992.

WATER TEMPERATURE: Maximum, 29.5 °C from right and middle intakes, July 21, 1991; minimum, 0.0 °C from right intake, on several days during winters.

DISSOLVED OXYGEN: Maximum, 17.5 mg/l from left intake, Feb. 13, 1992; minimum, 1.3 mg/l from right intake, May 29, 1991.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 929 microsiemens from right intake, Feb. 16; minimum, 123 microsiemens from left intake, Sept. 4.

WATER TEMPERATURE: Maximum, 27.0 °C from left intake, July 15; minimum, 0.0 °C from right intake, Jan. 18-20, DISSOLVED OXYGEN: Maximum, 17.5 mg/l from left intake, Feb. 13; minimum recorded (more than 20% missing record), 2.7 mg/l from right intake, June 13,14, but may have been lower during period of equipment malfunction at right intake June 10-12.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
OCT 1991 30	1020	181	600	7.7	12.5	7.0	66	3.0	150	37	13	59
NOV 19	1120	200	625	8.0	7.0		98	3.3	150	38	13	57
DEC			023				_		150			
17 JAN 1992	1130	400	402	7.8	3.0	11.2	84	1.8	96	24	8.7	32
1/	1200	590	••	7.7	5.5	13.2	112	••	97	26	7.8	31
FEB 19	1200	500	510	7.7	4.0	••	••	2.4	100	26	8.8	50
23	1145	830	520	7.9	4.0	13.7	106	2.7	97	26	7.9	58
APR 21 MAY	1200	830	360	7.6	10.0	11.3	100	5.7	94	25	7.7	29
12 28	1200 1130	690 310	358 460	7.5 7.8	16.0 16.5	8.3 8.0	84 83	5.4	92 120	24 30	7.8 10	31 37
JUN 24	1145	570	380	7.8			98	2.6	100	27	8.4	31
JUL 21	1125	410	395	7.9	25.0	7.6	93	5.7	110	28	8.9	35
AUG 27	1100	330	520	8.1	24.5	9.9	120	3.3	130	34	11	45
SEP 08 17	1200 1120	490 270	415 444	7.7 7.4	20.5 21.0	6.8 9.7	76 109	5.1 3.0	100 120	28 32	8.5 9.8	35 38

01389005 PASSAIC RIVER' BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)
OCT 1991 30	5.2	92	46	89	0.20	15	346	0.090	0.090	5.40	5.40	0.250
NOV 19	5.5	91	50	92	0.20	13	351	0.050	0.060	5.80	5.50	0.400
DEC 17	3.0	61	35	55	0.10	15	221	0.030	0.030	2.30	2.30	0.270
JAN 1992 14	2.6	60	33	52	0.20	10	211	0.020	0.020	2.40	2.40	0.270
FEB 19	2.6	50	31	94	<0.10	10 .	263	0.020	0.020	2.00	2.10	0.240
MAR 23	2.1	53	29	110	<0.10	7.0	281	0.030	0.020	1.80	1.90	0.080
APR 21	1.9	54	26	53	<0.10	8.7	194	0.030	0.020	2.10	2.10	0.130
MAY 12 28	2.4 3.3	59 72	26 31	46 63	<0.10	7.5 9.5	189	0.020	0.020 0.050	1.90	1.90	0.070
JUN 24	2.5	63	26	51	0.20	13	245 208	0.050	0.030	3.50 2.50	3.60 2.40	0.180 0.090
JUL 21	3.1	71	28	59	<0.10	10	228	0.040	0.040	2.90	2.90	0.030
AUĞ 27	4.1	83	38	71	<0.10	11	284	0.020	0.020	4.20	4.30	<0.010
SEP 08	2.7	68		56	0.10	9.8	223	0.030	0.020	2.40	2.40	0.100
17	3.4	80	31 33	64	<0.10	9.7	254	0.020	0.020	3.60	3.50	<0.010
DATE	NIT GE AMMO DI SOL (MG AS	N, GEN NIA MONI S- ORG/ VED TOT /L (MO	TRO- NIT ,AM- GEN, IA + MONI ANIC ORGA TAL DIS G/L (MG N) AS	AM- A + NITR NIC GEN TOTA /L (MG/	I, DIS L SOLV L (MG	N PHO - PHORI ED TOT, /L (MG)	JS DI AL SOL /L (MG	US PHOR S- ORTH VED TOT G/L (MG	RUS ORT O DIS AL SOLV I/L (MG/	US CARBO HO, ORGAN E- DIS ED SOLVI L (MG)	NIČ SUS - PENDI ED TOTA /L (MG	NIČ - ED AL /L
OCT 1991 30		240 '	1.1 0	.80 6.	5 6	.2 1.0	0. 0.	840 0.	860 0.	810 5	.2 0	.4
NOV 19				.90 6.		.4 1.0				870 -		.1
DEC 17				.80 3.								.6
JAN 1992 14		260 (0.80 0	.50 3.	2 2	.9 0.9	500 0.	350 0.	390 0.	340 3.	.9 0	.4
FEB 19	0.	240 (0.70 0	.80 2.	7 2	.9 0.:	5 0 0.	280 0.	240 0.	280 5	.7 -	•
MAR 23	0.0	080 (0.40 0	.30 2.	2 2	.2 0.3	280 0.	200 0.	210 0.	180 3	.6 0	.4
APR 21	0.	120 (0.60 0	.40 2.	7 2	.5 0.:	310 0.	190 0.	240 0.	180 3	.5	
MAY 12 28 JUN	0.0	070 (180 (0. 3 0 0	.30 2. .70 4.	2 2 2 4		270 0. 320 0.	180 0. 430 0.	240 0. 490 0.	170 4. 420 5.	.1 1 .7 1	.0
24 JUL	. 0.0	080 (1.0 0	.30 3.	5 2	.7 0.4	20 0.	210 0.	270 0.	200 3.	.4 1	.5
21 AUG	0.0	020 (0.40 0	.30 3.	3 3	.2 0.3	s90 O.	330 0.	340 0.	300 4.	.5 1.	.4
700												_
27 SEP	<0.6	010 2	2.6 0	.30 6.	8 4	.6 0.6	60 0.	480 0.	520 0.	470 4.	.2 1.	.9

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), AT LEFT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

SPECI	FIC CON	DUCTANCE	(MICROSI	EMENS/CM A	T 25 DE	G. C), AT	LEFT INTA	AKE, WAT	ER YEAR	OCTOBER 1991	10 5	PIEMBER	17
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	
		OCTOBER			OVEMBER	,		DECEMBER			JANUAR'	,	
1	298 345	265 299	279 315	· 577 502	443 424	532 479	448 469	365 427	421 453	338 322	322 314	327 319	
1 2 3 4 5	420	299 299	358	552		515	447	211	281	322	311	317	
4	454	424	440	544	489 323	395	219	211 204	214	319	303	316	
>	514	463	496	340	323	333	204	196	200	308	294	301	
6	522	278	421	516	324 367	376	225 225	195	203 218	314	306	310	
7 8	482 443	298 357	384 429	561 617	367 564	466 593	225 229	208 208	218 215	•••		• • • •	
9	478	341	439	610	539	579	249	. 231	241	• • •		• • •	
10	529	337	456	595	556	579	288	251	266	• • •			
11	554	512	538	617	508	561	263	248	256	• • •			
12	569	512 528	550	746	447	561 627	263 275	248 259	256 267	• • •		• • •	
13 14	576 588	538 519	564 561	659 588	589 535	608 572	282 294	267 276	275 283	• • •			
13	582	518	554	578	527	572 552	321	280	295			• • •	
16	587	542	566	669	581	613	353	320	336	•••			
17	574	319	473	677	531	612	335	314	324	'-			
18 19	464 395	397	430	603	558	587 599	366	315 350	328 365	• • •	• • •		
20	406	352 365	380 384	626 634	586 586	614	384 384	350 294	318	•••		•••	
			,										
21	421 471	390 411	406 450	624 603	594 309	604 411	332 341	302 314	312 326	•••	• • •		
23	499	471	487	337	291	313	373	336	357	• • •	• • •		
21 22 23 24 25	506 566	474 493	493 521	287 220	220 211	248 215	405 448	343 402	369 427	• • •			
26 27 28 29 30	610 604	568 / 21	596 570	232	218	224 232 242	467 540	376 384	419 430	• • •			
28	618	421 319	468	240 253	224 234	242	565	454	508	•••		•••	
29	618	335	462	269	242	251	455	324	384	•••	• • •		
30 31	518 54 3	405 496	477 518	363	268	310	377 418	321 320	338 356	• • •		•••	
												•	
MONTH	618	265	467	746	211	461	565	195	322	•••			
- 4 1/	****	*****								****			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	
	•	FEBRUAR	Y		MARCH			APRIL			MAY		
1				405	374	387	• • •		• • •	286	277	281	
2.		• • • •	•••	406	395	401	•••	• • •		287	275	281	
2 3 4 5		• • • •		440 440	403 314	421 400	•••			290 291	279 279	284 284	
5		• • •	,	314	304	309	• • •		• • •	305	279 285	284 294	
6		• • •		313	301	307	• • •			307	293	300	
6 7 8 9		700		310	302	305		. •••		345	295	300 311	
9	313 321	300 305	307 313	303 289	281 282	288 285	• • • •			317 298	301 264	310 277	
10	381	311	329	297	283	291	291	287	289	291	268	284	
11	450	373	412	291	255	271	200	281	285	203	285	280	
11 12 13 14 15	450 602	373 413	412 509	291 265	255 250	271 259	290 289	281 282	285 287	293 295	285 282	289 289	
13 14	623 568	537 504	587 535	251 241	242	249 235	299 311	289 296	294	301 315	288	294 304	
13	623 568 590	537 504 421	587 535 552	251 241 236	242 232 231	249 235 233	318	304	294 305 310	320	288 296 308	294 306 313	
14							710						
16 17	433 649	350 397	382 568	243 247	236 243 247	238 245	318 313	304 302	311 308	310 285	286 275	280	
18	618	485	541	252	247	249	301.	291	294	` 299	279	290	
18 19 20	453 649 618 506 492	460 464	477 482	243 247 252 346 358	251 313	249 276 339	296 299	294 296	311 308 294 295 297	310 315	286 275 279 293 302	300 280 290 301 307	
21 22 23 24 25	508 472	472 461	493 467	311 301	299 293 303	305 296 339 380 349	300 296	294 289	298 294 270	318 528 561	304 307 518	310 370 543	
23	478	461	469	399	303	339	288	260	270	561	518	543	
24	4/0		1.73	300	362	380	278 275	269 262	273 268	530 504	317 311	476 .	
25	481 481	467	7/3	760	7//						744	7/0	
25	481 479	467 445	473 463	399 399 358	346	349	2/3	202	268	504		476 \ 368	
	481 479			352	344	347	270						
	481 479 444 413	416 335	428 375	352 346	344 298	347 317	270 274	262 269	267 271				
	481 479 444 413 384 379	416 335 363 362	428 375 373 369	352 346	344	347	270 274 278 280	262 269 274 274	267 271 276 278	507 333 353 410	321 315 329 352	409 325 338 381	
26 27 28 29 30	481 479 444 413 384 379	416 335 363 362	428 375 373 369	352 346	344 298 	347 317 	270 274 278 280 283	262 269 274 274 274	267 271 276 278 278	507 333 353 410 451	321 315 329 352 407	409 325 338 381	
	481 479 444 413 384 379	416 335 363 362	428 375 373 369	352 346	344 298	347 317	270 274 278 280	262 269 274 274	267 271 276 278	507 333 353 410	321 315 329 352	409 325 338 381 430 320	

MONTH

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued

SPECI	FIC CON	DUCTANCE	(MICROS	IEMENS/CM	AT 25 DE	G. C), A1	LEFT IN	TAKE, WA	TER YEAR	OCTOBER 1	991 TO S	EPTEMBER	1992
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	' MIN	MEAN	MAX	MIN	MEAN	
		JUNE			JULY			AUGUST			SEPTEMB		
1 2 3 4 5	256 204 194 202 215	205 193 189 189 161	233 200 192 196 201	322 324 330 323 320	311 313 320 317 313	317 318 324 320 316	289 304 312 316 317	207 289 302 306 307	246 295 306 311 312	359 370 364 253 303	336 348 161 123 256	347 357 333 181 285	
6 7 8 9 10				326 330 336 331 317	316 321 325 272 292	320 326 330 296 302	326 339 343 336 312	307 323 329 252 241	315 329 335 291 282	317 329 334 344 347	304 315 326 333 334	310 321 330 338 342	
11 12 13 14 15	216 225 230	207 216 224	211 220 227	332 340 338 320 337	317 327 311 315 315	323 332 326 318 325	330 330 328 323 320	313 319 319 308 311	324 327 323 317 315	335 333 334 341 354	314 314 327 328 335	323 324 331 334 343	
16 17 18 19 20	251 270 285 290 284	230 252 267 282 272	239 262 277 286 279	313 334 340 350 356	271 303 331 338 345	294 322 335 343 350	321 321 319 311 313	315 317 306 306 301	318 319 312 309 307	362 362 360 361 359	346 348 348 351 349	354 356 355 357 355	
21 22 23 24 25	294 300 312 306 305	283 288 295 296 289	288 295 303 303 297	362 367 367 333 348	351 351 328 306 335	357 360 352 320 342	323 331 331 344 345	310 318 322 319 331	316 323 327 331 339	364 370 359 361 373	352 354 332 338 357	357 363 344 349 366	
26 27 28 29 30 31	312 308 303 311 318	302 265 276 303 310	306 291 295 307 315	351 336 338 340 338 341	339 298 307 328 331 284	345 313 327 332 334 331	354 355 352 340 327 347	337 342 338 323 319 318	345 347 343 332 324 330	372 351 345 357 366	343 338 331 339 350	355 344 338 347 357	
MONTH				367	271	327	355	207	318	373	123	337	
MONIA				301					0.0	313			
				EMENS/CM A									1992
		JCTANCE (EMENS/CM A	AT 25 DEG MIN	. C), AT MEAN		NTAKE, W	ATER YEAR MEAN		1991 TO MIN	SEPTEMBER MEAN	1992
SPECIF DAY	IC CONDU	JCTANCE (MIN OCTOBER	MICROSI MEAN	EMENS/CM A	AT 25 DEG MIN NOVEMBER	. C), AT MEAN	MIDDLE II	NTAKE, W MIN DECEMBE	ATER YEAR Mean R	OCTOBER MAX	1991 TO MIN JANUAR	SEPTEMBER MEAN	1992
SPECIF	MAX 294 339 413 447 506	JCTANCE (MICROSI MEAN 274 310 370 433 489	EMENS/CM A	MIN MIN NOVEMBER 580 562 611 414 371	603 583 632 521 413	MIDDLE IN	NTAKE, W	ATER YEAR MEAN	OCTOBER	1991 TO MIN	SEPTEMBER MEAN	1992
SPECIF DAY	IC CONDUMAX	JCTANCE (MIN OCTOBER 260 295 342 417	MICROSI MEAN 274	EMENS/CM A MAX 623 619 672	MIN MIN NOVEMBER	. C), AT MEAN 603 583 632	MIDDLE IN	MIN DECEMBER	ATER YEAR MEAN R	OCTOBER MAX 443 400 407 427	1991 TO MIN JANUAR 396 380 390	SEPTEMBER MEAN Y 412 391 398	1992
SPECIF DAY 1 2 3 4 5 6 7 8 9	294 339 413 447 506 514 541 435 490	JCTANCE (MIN OCTOBER 260 295 342 417 455 463 431 412 424	274 310 370 433 489 507 491 425 461	623 619 672 684 446 653 664 696	MIN NOVEMBER 580 562 611 414 371 399 610 644 623	603 583 632 521 413 517 637 670 657	MAX MAX	MIN DECEMBER	MEAN R	OCTOBER MAX 443 400 407 427 434 356 344 351 391	1991 TO MIN JANUAR 396 380 391 322 324 308 325 325	SEPTEMBER MEAN 391 398 396 391 343 319 335	1992
SPECIF DAY 1 2 3 4 5 6 7 8 9 10	MAX 294 339 413 447 506 514 435 490 522 550 567 574 585	JCTANCE (MIN OCTOBER 260 295 342 417 455 463 431 412 424 478 518 526 536	274 310 370 433 489 507 491 425 461 504 534 548 563 566	623 619 672 684 446 653 664 696 657	MIN NOVEMBER 580 562 611 414 371 399 610 644 623 616	603 583 632 521 413 517 637 670 657 641 676 722 603 568	MAX MAX	MIN DECEMBER	MEAN R 413 426	OCTOBER MAX 443 400 407 434 351 391 418 434 444 444 470	1991 TO MIN JANUAR 396 380 390 351 322 324 325 353 379 410 431 436 441	MEAN 412 391 398 396 391 343 319 335 372 395 420 439 450 456	1992
SPECIF DAY 1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	MAX 294 339 413 447 506 514 541 435 490 522 550 567 574 585 577 583 570 463 394	JCTANCE (MIN OCTOBER 260 295 342 417 455 463 431 412 424 478 518 526 536 537 538 410 394 350	MICROSI MEAN 274 310 370 433 489 507 425 461 504 534 548 563 5561 562 482 437	623 619 672 684 446 653 664 696 696 657 719 740 654 584 574	MIN NOVEMBER 580 562 611 414 371 399 610 644 623 616 644 666 585 532 575 654 649	603 583 632 521 413 517 637 670 657 641 676 722 603 568 548 609 667 667 663	MAX MAX 423 441 446 446 411 462 461	MIN DECEMBER 405 413 422 400 382 397	MEAN R 413 426 434 415 394 423 447	OCTOBER MAX 443 400 407 427 434 356 344 351 391 418 434 444 464 470 467 406 374 423	1991 TO MIN JANUAR 396 380 390 351 322 324 308 325 353 379 410 431 436 441 392 377 354 370	MEAN 412 391 398 396 391 343 319 335 372 395 420 439 450 456 436 393 365 382	1992
SPECIF DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	MAX 294 339 413 447 506 514 541 435 490 522 550 567 574 585 577 583 570 463 394 404 419 467 495 501	JCTANCE (MIN OCTOBER 260 295 342 417 455 463 431 412 424 478 518 526 542 536 537 538 410 394 350 363 387 408 468 470	MEAN 274 310 370 433 489 507 425 461 504 534 5548 566 551 562 437 378 382 403 447 489	623 619 672 684 446 653 664 696 696 657 719 740 654 584 574 666 678 689 675 681	MIN NOVEMBER 580 562 611 414 371 399 610 644 623 616 644 666 585 532 575 654 670 649 646 645 387 294	603 583 632 521 413 517 637 670 657 641 676 722 603 568 548 609 667 679 663 664 655 600 324	MAX MAX MAX 423 441 446 446 446 446 446 447 452 555 581 561	MIN DECEMBER 405 413 422 400 382 397 433 422 495 519 553 5541	MEAN R 413 426 434 415 394 423 447 480 517 539	OCTOBER MAX 443 400 407 427 434 356 344 351 391 418 434 444 467 406 374 423 533 539 542 553 668	1991 TO MIN JANUAR 396 380 390 351 322 324 325 353 379 410 431 436 441 392 377 354 370 451 520 518	MEAN 412 391 398 396 391 343 319 335 372 395 420 439 450 456 436 393 365 382 500 532 532 533 579	1992

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), AT MIDDLE INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	•	FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	500 511 513 531 551	487 495 501 499 498	492 502 508 514 531	403 403 437 444 460	372 393 400 419 427	384 399 418 433 438	297 308 317 323 335	289 297 309 315 319	293 303 313 320 327	413 437 436 416 461	399 403 398 364 416	406 420 419 389 430
6 7 8 9 10	513 555 425 446 580	498 369 392 402 382	505 474 404 426 481	464 460 478 405 369	439 380 412 364 352	454 434 450 383 362	329 314 305 329 335	315 286 283 297 318	324 298 292 314 325	458 461 484 481 441	430 437 340 351 366	446 447 456 418 380
11 12 13 14 15	598 614 618 621 662	557 559 596 -588 607	581 591 611 607 633	350 285 297 285 279	281 271 278 272 268	315 278 288 279 274	332 370 410 412 414	298 326 370 392 389	313 340 391 402 403	405 405 417 417 462	359 390 383 392 421	376 397 400 404 448
16 17 18 19 20	927 839 614 503 489	506 621 507 457 462	695 714 543 473 479	268 270 270 358 367	255 257 259 263 350	260 265 266 287 358	426 478 445 385 345	399 430 377 340 332	411 456 395 354 338	481 512 470 438 414	336 478 415 387 386	408 496 432 420 397
21 22 23 24 25	505 470 475 479 477	469 458 458 465 442	491 465 466 471 461	459 473 488 572 670	374 414 424 485 573	420 449 450 516 613	361 363 363 349 346	344 342 315 327 330	351 357 335 336 342	434 536 562 550 570	399 427 520 446 448	413 475 545 535 535
26 27 28 29 30 31	449 443 390 376	426 389 362 360	437 415 378 367	638 392 294 265 283 289	425 300 230 229 265 281	601 323 253 245 276 285	353 356 361 374 403	317 332 354 349 365	335 341 357 363 383	536 470 492 505 528 549	438 459 454 481 500 218	468 466 462 490 517 400
MONTH	927	360	507	670		370	478	283	347	570	218	442
. DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
. DAY	MAX	MIN JUNE	MEAN	MAX .	MIN	MEAN	MAX	MIN AUGUST	MEAN		MIN SEPTEMBE	
1 2 3 4 5	258 213 240 272 285		235 209 225 257 258	369 376 383 536 559		360 363 371 437 482	357 277 315 345 342		MEAN 283 259 274 332 334			
	258 213	JUNE 209 207	235 209 225 257	369 376 383	JULY 354 353 365 366	360 363 371 437	357 277 315	AUGUST 212 244		443 493 498 282	383 431 172 155	406 460 408 209
1 2 3 4 5 6 7 8 9	258 213 240 272 285	JUNE 209 207 209 240 166	235 209 225 257 258	369 376 383 536 559 422 402 407 492	354 353 365 366 410 391 384 374 305	360 363 371 437 482 406 392 391 391	357 277 315 345 342 360 390 407 410	212 244 246 318 325 342 363 389 271	283 259 274 332 334 350 375 396 310	443 493 498 282 246 302 386 439 422	383 431 172 155 180 226 306 385 388	406 460 408 209 221 254 358 408 411
1 2 3 4 5 6 7 8 9	258 213 240 272 285	JUNE 209 207 209 240 166	235 209 225 257 258 	369 376 383 536 559 422 402 407 457 289 333	JULY 354 353 365 366 410 391 384 374 305 301 281 283 332 355	360 363 371 487 482 406 392 391 391 353 283 302	357 277 315 345 342 360 390 407 410 332	212 244 246 318 325 342 363 389 271 271 334 338 347 330	283 259 274 332 334 350 375 396 310 308 347 346 351 348	443 493 498 282 246 302 386 439 422 416	383 431 172 155 180 226 306 385 388 382 346 376 395 387	406 460 408 209 221 254 358 408 411 406
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 19 19 19 19 19 19 19 19 19 19 19 19 1	258 213 240 272 285 198 218 242 263 294 332 342	JUNE 209 207 209 240 166 182 198 219 243 264 293 323	235 209 225 257 258 190 207 230 255 280 314 334	369 376 383 536 559 422 402 407 492 457 289 333 350 409 437 389 373 365 384	JULY 354 353 365 366 410 391 384 374 305 301 281 283 332 355 343 317 336 337	360 363 371 437 482 406 392 391 391 353 283 302 336 380 415 348 344 349 373	357 277 315 345 342 360 390 407 410 332 357 357 356 368 379 387 399 426 431	212 244 246 318 325 342 363 389 271 271 334 338 347 330 364	283 259 274 332 334 350 375 396 310 308 347 346 351 348 370 378 408 390	443 493 498 282 246 302 386 439 422 416 451 460 426 449 462 480 479 453	383 431 172 155 180 226 306 385 388 382 346 376 395 387 406 436 436 436 4368	406 460 408 209 221 254 358 408 411 406 397 405 434 407 427 438 453 449 415
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	258 213 240 272 285 198 218 242 263 294 332 342 342 342 343 352	JUNE 209 207 209 240 166 182 198 219 243 264 293 323 334 328 3338	235 209 225 257 258 190 207 230 255 280 314 334 365 336 333 347	369 376 383 536 559 422 407 492 457 289 333 350 409 437 389 373 365 384 395 421 447 429 479	JULY 354 353 365 366 410 391 384 374 305 301 281 283 3355 343 317 336 337 380 395	360 363 371 437 482 406 392 391 391 353 283 302 336 380 415 348 349 373 385 405 405 401 436	357 277 315 345 342 360 390 407 410 332 357 357 356 368 379 387 399 426 431 363 391 394 382 406	212 244 246 318 325 342 363 389 271 271 334 338 347 330 364 355 391 349 343 355 363	283 259 274 332 334 350 375 396 310 308 347 346 351 348 370 378 408 390 351 365 375 375 375	443 493 498 282 246 302 386 439 422 416 451 460 449 462 479 453 389 498 564 563	383 431 172 155 180 226 306 385 388 382 346 376 395 387 406 406 418 368 359 385 464 418 368 359	406 460 408 209 221 254 358 408 411 406 397 405 434 407 427 438 453 449 415 371 427 514 541

PASSAIC RIVER BASIN

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ.-Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), AT RIGHT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	,
1 2 3 4 5		•••					490 470 464 347 224	447 447 372 227 212	471 457 439 272 216	453 439 472 490 438	418 418 442 429 324	427 425 458 467 394
6 7 8 9		•••		690 714 700 665	675 692 649 639	680 700 674 654	224 255 275 293 370	212 225 256 268 286	219 239 268 279 305	358 346 354 395 418	326 310 326 358 383	345 321 337 378 397
11 12 13 14				723 745 660 588 579	666 673 589 535 526	692 727 607 571 551	448 425 424 444 448	388 397 407 415 424	409 415 415 428 436	434 444 464 470 467	410 431 436 441 392	420 439 450 456 436
16 17 18 19 20		•••		670 683 693 680 685	580 658 674 655 653	613 672 684 667 668	447 413 465 464 496	402 384 400 436 462	417	406 374 423 533	377 354 370 451	393 365 382 500
21 22 23 24 25				669 658 595 310 289	649 609 315 262 267	659 631 445 283 276	535 558 584 564 576	498 522 557 544 528	520 542 572 554 562	539 542 553 668 693	520 518 518 532 497	532 532 533 579 571
26 27 28 29 30 31				304 335 386 422 467	279 302 336 389 428	289 314 354 408 453	547 593 592 537 554 519	522 508 542 514 483	535 542 577 525 521 484	490 398 445 454 475	401 367 402 428 451	451 380 427 443 462 482
MONTH		•••		745	262	553	593	458 212	432	494 693	471 310	439
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	500 511 513 531 551			MAX 404 405 439 446 463		386 400 420 435 441	301 313 		298 308	435 456 463 486 486		428 438 435 461 475
1 2 3 4	500 511 513 531	487 495 501 499	492 502 508 514	404 405 439 446	MARCH 373 394 402 421	386 400 420 435	301 313 	APRIL 294 302	298 308 	435 456 463 486	MAY 422 422 447 449	428 438 455 461
12345 6789	500 511 513 531 551 513 579 593 600	FEBRUARY 487 495 501 499 498 498 517 566 576	492 502 508 514 531 505 556 578 592	404 405 439 446 463 486 495 494	373 394 402 421 431 461 475 412 365	386 400 420 435 441 469 482 467 382	301 313 371 379 443 479	294 302 351 361 383 446	298 308 361 366 408 463	435 456 463 486 486 479 469 508	MAY 422 427 447 468 443 449 459 460	428 438 455 461 475 459 458 479 484
1 2 3 4 5 6 7 8 9 10	500 511 513 531 551 551 513 579 593 600 583 601 616 621	487 495 501 499 498 498 517 566 576 562 560 562 598	492 502 508 514 531 505 556 578 592 574 583 593 613	404 405 439 446 463 486 495 494 371 372	MARCH 373 394 402 421 431 461 475 412 365 352 340 298	386 400 420 435 441 469 482 467 382 362 357 315 300	301 313 371 379 443 479 505 504 504	351 361 361 383 446 480 470 478 429	298 308 361 366 408 463 495	435 456 463 486 486 479 469 508 503 447 408	MAY 422 447 449 468 443 449 459 460 369 361 394 385	428 438 455 461 475 459 458 479 484 384
1 2 3 4 5 6 7 8 9 10 11 23 4 5 16 17	500 511 513 531 551 513 579 593 600 583 601 616 621 623 664 929 840 617 505	487 495 501 499 498 498 517 566 576 562 598 591 609 643 623 509 458	492 502 508 514 531 505 556 578 592 574 583 609 636 739 717 545 475	404 405 439 446 463 486 495 494 404 371 372 339 304 313 334 369 388	MARCH 373 394 402 421 431 461 475 412 365 352 340 298 296 300 307 330 366 365	386 400 420 435 441 469 482 467 382 362 357 315 300 308 322 344 376 376	301 313 371 379 443 479 505 504 478 427 423 438 481 451 451	294 302 351 361 383 446 480 470 478 429 397 391 402 404 396	298 308 361 366 408 463 495 499 452 410 408 418	435 456 463 486 486 479 469 508 503 447 408 421 425 480 520 474 443	MAY 422 447 449 468 443 449 469 460 369 361 394 385 395 428 468 483 499 468	428 438 455 461 475 459 458 479 484 384 378 400 403 409 459
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20	500 511 513 531 551 513 579 593 600 583 601 616 621 623 664 929 840 617 507 471 476	487 495 501 499 498 498 517 566 576 562 560 562 598 591 609 458 464 470 459 466	492 502 508 514 531 505 556 578 592 574 583 593 613 609 636 739 717 545 480 492 466 467	404 405 439 446 463 486 495 494 404 371 372 339 304 313 334 369 385 388 431 667 804 8738	MARCH 373 394 402 421 431 461 475 412 365 352 340 298 296 300 307 336 365 376 435 702	386 400 420 435 441 469 482 467 382 362 357 315 300 308 322 344 374 375 490 756 710	301 313 313 371 379 443 479 505 504 478 427 423 438 4452 410 380	394 302 302 351 361 383 446 480 470 478 429 397 391 402 441 404 396 370 365 371	298 308 308 361 366 408 463 495 490 489 452 410 408 418 405 381 372 379 386	435 456 463 486 486 479 469 508 503 447 408 421 425 480 524 474 428 459 5364	MAY 422 447 448 449 468 449 469 460 369 361 395 428 483 421 399 421 464 514	428 438 455 461 475 459 458 479 484 384 378 400 403 409 459 483 512 435 425 408

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ.-Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), AT RIGHT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 MAX MIN DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN **SEPTEMBER** JUNE JULY **AUGUST** 314 241 245 271 289 409 260 275 559 621 631 593 495 603 403 264 257 424 433 439 472 439 432 447 475 527 512 508 277 315 261 244 247 255 232 234 448 457 1 2 3 576 247 566 486 258 198 576 591 348 220 283 318 163 Ś 246 167 350 324 338 6 7 180 455 381 301 226 165 172 431 444 352 150 147 151 439 437 459 467 386 435 457 306 399 168 152 398 361 484 489 518 150 443 477 480 500 468 153 152 501 429 457 517 496 466 507 10 158 153 155 460 302 354 514 366 436 493 535 517 283 301 507 11 12 13 14 15 333 370 282 332 445 478 461 364 384 182 199 219 190 208 231 340 408 435 412 439 442 424 443 468 436 435 468 198 435 500 477 218 242 433 445 376 421 447 480 524 503 553 604 621 505 549 586 16 17 18 19 20 388 490 480 295 357 407 427 265 294 359 368 485 507 430 391 281 321 383 383 366 392 333 329 369 346 348 377 501 543 484 450 476 378 568 605 604 625 668 673 640 404 401 412 443 443 417 475 487 668 634 647 531 362 365 399 422 343 348 360 393 348 354 376 403 702 709 21 22 23 24 25 429 688 389 478 508 526 373 478 516 541 570 502 582 577 472 475 520 687 699 687 680 536 572 603 433 460 457 448 486 331 400 377 407 405 440 427 427 576 477 428 585 26 27 403 448 472 477 596 625 610 561 445 414 453 454 419 599 554 644 471 643 644 551 607 616 607 406 403 430 421 410 28 29 30 502 401 418 448 452 464 403 505 462 542 482 448 472 586 584 536 454 147 299 591 428 457 709 163 513 MONTH 281 644 244 WATER TEMPERATURE (DEG. C), AT LEFT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAY MAX MIN MEAN MAX MIN MAX MIN MIN MEAN MEAN MAX MEAN OCTOBER NOVEMBER DECEMBER **JANUARY** 14.0 13.0 13.5 12.0 9.0 8.0 8.5 2.0 1.5 2.0 12345 10.0 9.5 7.5 6.5 9.0 7.5 6.5 4.5 9.5 8.0 7.0 5.0 2.5 3.5 5.0 5.5 13.5 15.5 17.0 14.5 16.5 17.5 13.0 13.5 12.0 12.0 12.0 12.5 12.5 2.0 3.0 15.5 17.0 3.0 4.5 5.0 5.5 11.0 19.5 11.0 5.0 19.0 18.0 18.0 16.5 14.5 19.0 17.0 15.5 9.5 8.5 9.0 6 7 4.5 4.5 4.5 8.0 4.0 5.0 4.5 8.0 7.5 8.0 7.5 4.5 4.0 4.5 16.5 8.0 . . . 15.5 15.5 7.5 7.0 7.0 7.0 6.0 7.0 10 14.0 14.0 13.5 7.0 7.5 8.0 6.5 7.0 8.0 11 14.0 6.5 7.0 6.0 6.0 15.0 14.5 12 13 14.0 13.5 6.5 7.0 7.0 7.5 7.5 6.0 7.0 . *.* . - - -- - -6.5 7.5 ... 13.0 - - -13.0 14 15 14.0 13.0 12.5 12.0 8.0 8.0 8.0 8.0 7.0 6.0 16 17 12.0 12.5 12.5 12.5 12.5 13.5 9.0 8.0 8.5 6.0 13.5 13.5 8.5 8.0 7.5 7.0 8.0 3.5 2.5 4.0 13.0 - - -- - -18 13.0 3.0 - - -. . . 19 13.5 13.0 7.5 8.0 13.0 12.5 8.0 6.5 7.5 2.5 1.0 2.0 . . . - - -- - -20 1.0 12.0 11.5 11.5 12.5 13.5 21 2.0 2.5 3.0 12.0 9.0 ---11.5 11.5 11.0 10.5 12.0 12.0 13.0 10.5 10.5 10.5 8.5 22 23 24 25 3.5 4.0 11.0 10.5 - - -- - -11.0 11.5 12.5 3.5 3.5 - - -- - -11.0 4.0 3.0 - - -

14.5 15.5 15.5

14.0 12.0 11.5

14.0

7.5

6.0

6.5 7.0

6.0

7.0 7.5

8.5

7.0 6.5 7.5 8.0

13.5

31

MONTH

15.5

16.5 16.5 15.0 13.0

19.5

15.0 15.0 12.5 11.5

11.0

11.0

3.0

2.5 2.5 2.5 3.5

4.0

3.0

5.0

- - -

. . .

. . .

. . .

...

- - -

- - -

- - -

- - -

2.5 2.0 1.5

2.5 4.0 2.0

1.0

3.5

3.0

4.0

4.0

10.0

PASSAIC RIVER BASIN

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued WATER TEMPERATURE (DEG. C), AT LEFT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		WATER	EMPERATURE	(DEG.	C), AI LE	FI INTAKE,	WATER	TEAR OUT	BEK IAAI	IU SEPIEM	BEK 1992	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
•		FEBRUAR	ιΥ		MARCH			APRIL			MAY	
1			• • •	4.5	3.5	4.0	• • • •		• • •	15.0	13.0	14.0
2 3			•••	5.0 5.5	4.0 5.0	4.5 5.5				17.0 18.5	15.0 17.5	16.0 18.0
1 2 3 4 5		•••	•••	7.0 6.5	5.5 5.5	6.0 6.0		• • • •	• • • •	18.0 15.5	17.5 15.5 14.0	18.0 17.0 15.0
				7.0	6.5	7.0		• • •	•, • •	15.0	13.5	
6 7 8 9	7.0	2.5		6.5 8.0	6.5 6.5	6.5 7.0		•••		15.0	13.5	14.0 14.0
9	3.0 2.5	1.5	2.5 2.5 1.5	9.0	- 8.0	8.5	• • •			14.5 15.0	13.5 13.5	14.0 14.0
10	2.0	1.0		9.0	9.0	9.0	12.0	10.0	11.0	15.5	15.0	15.0
11 12	2.5 2.5	1.5 1.0	2.0 1.5	9.5 7.5	8.0 6.0	9.0 6.5	12.0 10.5	10.5 10.0	11.5 10.0	16.0 17.5	14.5 15.5	15.5 16.5
13 14 15	2 0	1.0	1.5	6.0	5.0	5.5 4.5	10.0 11.5 12.5	8.5 9.5 11.0	9.5	18.0	17.5 17.5	18.0 18.5
15	3.5	1.0 1.5	2.0 2.5	5.0 4.5	4.0 3.5	4.0	12.5	11.0	10.5 11.5	20.0 19.5	18.0	19.0
16	4.0	3.0	3.5 4.0	4.0 4.0	3.0	3.5 3.5 4.5 3.5 4.0	12.0	10.0	11.0	18.0 16.5	16.0	17.0
17 18 19	4.0 4.0	3.0 3.5 3.5 3.5	3.5	5.0	3.5	4.5	10.0	9.0	11.0 9.5 9.0	17.0	15.5 16.0	17.0 16.0 16.5 17.5
19 20	4.5 5.0	3.5 4.0	4.0 4.5	5.0 4.5	3.0 3.5 3.0 3.0	3.5 4.0	9.0 9.5	9.0 8.5	9.0 9.0	18.5 19.0	16.5 17.0	17.5 18.0
21	5.0	4.0		4.5				9.5	10.5	20.0	17.5	18.5
22 23	5.0 6.0	4.0 5.0	4.5 4.5 5.5 6.0	4.5 4.5 4.0	3.5 3.5 3.5	4.5 4.0 4.0	13.0 15.5	9.5 12.0 13.0	10.5 12.5 14.0	21.0	17.5 18.5 20.0	19.5 21.0
21 22 23 24 25	6.5	6.0 5.5	6.0 6.0	5.0	3.0 4.0	4.0	11.5 13.0 15.5 15.5 15.5	15.0 13.5	14.0 15.5 14.5	20.0 21.0 22.5 23.5 19.5	20.0 18.5	18.5 19.5 21.0 21.5 19.0
		5.0	5.0		6.0					•		
27	5.5 5.5	45	5.0	7.0 7.0	6.5	6.5 6.5	13.5 14.5 14.5 14.0	12.5 13.0	13.0 14.0	18.0 17.0	16.5 16.0	17.5 - 16.5 - 16.5 - 17.0
28 29	5.0 5.5	4.5	5.0 5.0		• • • •	•••	14.5	13.0 13.5 13.0	14.0 13.5	17.5 18.5	15.5 16.0	16.5 17.0
26 27 28 29 30 31			•••		•••		14.0	13.0	13.5	18.5 17.5	16.5 16.0	17.5 16.5
MONTH				9.5	3.0	5.5		•••	•••	23.5	13.0	17.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MFAN	MAX	MIN	MFAN
DAY .	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN D
		JUNE			JULY			AUGUST			SEPTEMBE	R
	16.5 17.5	JUNE 16.0 15.5	16.0 16.5		JULY 23.0 23.5	23.5 23.5	22.5	AUGUST 21.5 21.5	22.0 22.0	23.0 22.0	SEPTEMBE 21.0 20.5	R 22.0 21.5
	16.5 17.5 18.5 20.0	JUNE 16.0 15.5 17.0 18.0	16.0 16.5 18.0 19.0		JULY 23.0 23.5 21.5	23.5 23.5 23.0	22.5 22.5 23.0	AUGUST 21.5 21.5	22.0 22.0 22.5 23.0	23.0 22.0 21.5	21.0 20.5 21.0	22.0 21.5
DAY 1 2 3 4 5 5	16.5 17.5 18.5	JUNE 16.0 15.5 17.0	16.0 16.5 18.0	24.0 24.5 23.5 22.0 22.5	JULY 23.0 23.5 21.5 21.0 21.5	23.5 23.5 23.0 21.5 22.0	22.5 22.5 23.0 23.5 23.0	AUGUST 21.5 21.5	22.0 22.0 22.5	23.0 22.0	SEPTEMBE 21.0 20.5	R 22.0 21.5
1 2 3 4 5	16.5 17.5 18.5 20.0	JUNE 16.0 15.5 17.0 18.0	16.0 16.5 18.0 19.0	24.0 24.5 23.5 22.0 22.5	JULY 23.0 23.5 21.5 21.0 21.5	23.5 23.5 23.0 21.5 22.0	22.5 22.5 23.0 23.5 23.0	AUGUST 21.5 21.5 22.5 22.5 22.0 22.0	22.0 22.0 22.5 23.0 22.5	23.0 22.0 21.5 22.0 22.0	21.0 20.5 21.0 20.5 21.5 20.5	22.0 21.5 21.5 21.5 21.5 22.0
1 2 3 4 5	16.5 17.5 18.5 20.0 19.5	JUNE 16.0 15.5 17.0 18.0 18.0	16.0 16.5 18.0 19.0 19.0	24.0 24.5 23.5 22.0 22.5 24.0 24.0 24.5	JULY 23.0 23.5 21.5 21.0 21.5	23.5 23.5 23.0 21.5 22.0	22.5 22.5 23.0 23.5 23.0	AUGUST 21.5 21.5 22.5 22.5 22.0 22.0 22.0	22.0 22.0 22.5 23.0 22.5 23.0 22.5	23.0 22.0 21.5 22.0 22.0 21.5 20.5	21.0 20.5 21.0 20.5 21.5 20.5 20.5 20.5	22.0 21.5 21.5 21.5 22.0 21.0 20.5 21.0
	16.5 17.5 18.5 20.0 19.5	JUNE 16.0 15.5 17.0 18.0	16.0 16.5 18.0 19.0 19.0	24.0 24.5 23.5 22.0 22.5	JULY 23.0 23.5 21.5	23.5 23.5 23.0	22.5 22.5 23.0 23.5 23.0	AUGUST 21.5 21.5 22.5 22.5 22.0 22.0	22.0 22.0 22.5 23.0 22.5 23.5	23.0 22.0 21.5 22.0 22.0	21.0 20.5 21.0 20.5 21.5 20.5	R 22.0 21.5 21.5 22.0 21.0 20.5
1 2 3 4 5 6 7 8 9	16.5 17.5 18.5 20.0 19.5	JUNE 16.0 15.5 17.0 18.0 18.0	16.0 16.5 18.0 19.0 19.0	24.0 24.5 23.5 22.0 22.5 24.0 24.5 24.5 24.5	JULY 23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.0 23.5	23.5 23.5 23.5 21.5 22.0 23.0 23.5 23.5 23.5 24.0	22.5 22.5 23.0 23.5 23.0 23.5 24.5 23.5 22.5 23.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0	22.0 22.5 23.0 22.5 23.0 22.5 22.5 22.5 22.5 22.5	23.0 22.0 21.5 22.0 22.0 21.5 20.5 22.0 23.0 24.0	21.0 20.5 21.5 21.5 20.5 20.5 20.5 20.5 20.5 20.5 21.5	22.0 21.5 21.5 21.5 22.0 21.0 20.5 21.0 22.0 23.0
1 2 3 4 5 6 7 8 9	16.5 17.5 18.5 20.0 19.5	JUNE 16.0 15.5 17.0 18.0 18.0	16.0 16.5 18.0 19.0 19.0	24.0 24.5 23.5 22.0 22.5 24.0 24.0 24.5 24.5 26.0	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.5	23.5 23.5 23.0 21.5 22.0 23.0 23.5 23.5 24.0	22.5 22.5 23.0 23.5 23.0 23.5 24.5 23.5 22.5 23.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0	22.0 22.0 22.5 23.0 22.5 23.0 22.5 22.0 22.5	23.0 22.0 21.5 22.0 22.0 21.5 20.5 22.0 23.0 24.0	21.0 20.5 21.0 20.5 21.5 20.5 20.5 20.5 20.5 22.5 22.5	22.0 21.5 21.5 21.5 22.0 21.0 20.5 21.0 22.0 23.0
1 2 3 4 5 6 7 8 9	16.5 17.5 18.5 20.0 19.5	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.0	16.0 16.5 18.0 19.0 19.0	24.0 24.5 23.5 22.0 22.5 24.0 24.0 24.5 24.5 26.0	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.5	23.5 23.5 23.0 21.5 22.0 23.0 23.5 23.5 24.0	22.5 22.5 23.0 23.5 23.0 23.5 24.5 23.5 22.5 23.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0	22.0 22.0 22.5 23.0 22.5 23.0 22.5 22.0 22.5	23.0 22.0 21.5 22.0 22.0 21.5 20.5 22.0 23.0 24.0	21.0 20.5 21.5 21.5 20.5 20.5 20.5 20.5 22.5 22.0 20.5 22.0	22.0 21.5 21.5 21.5 22.0 21.0 22.0 21.0 22.0 21.0 22.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.0 20.5	16.0 16.5 18.0 19.0 19.0 20.5 20.5 21.0	24.0 24.5 23.5 22.0 22.5 24.0 24.0 24.5 26.0 25.5 26.0 27.0	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.5 24.5 24.5 24.5 25.0	23.5 23.5 23.0 21.5 22.0 23.0 23.5 23.5 23.5 24.0 25.0 25.0 24.5 25.0 26.0	22.5 22.5 23.0 23.5 23.5 24.5 22.5 23.5 24.0 23.5 22.5 22.5 22.5 22.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.5 23.0 22.5 23.5 22.5 23.5 22.5 23.5 22.5 23.5 22.5 23.5 22.5	23.0 22.0 21.5 22.0 21.5 22.0 23.0 24.0 23.0 22.0 21.5 21.0 21.0	21.0 20.5 21.0 20.5 21.5 20.5 20.5 20.5 20.5 22.5 22.0 20.0 19.0	22.0 21.5 21.5 21.5 22.0 21.0 20.5 21.0 22.0 23.0 22.5 21.5 20.5 20.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.0 20.5	16.0 16.5 18.0 19.0 19.0 20.5 20.5 21.0	24.0 24.5 23.5 22.0 22.5 24.0 24.0 24.5 26.0 25.5 26.0 27.0	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.5 24.5 24.5 24.5 25.0	23.5 23.5 23.0 21.5 22.0 23.0 23.5 23.5 23.5 24.0 25.0 25.0 24.5 25.0 26.0	22.5 22.5 23.0 23.5 23.5 24.5 22.5 23.5 24.0 23.5 22.5 22.5 22.5 22.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.5 23.0 22.5 23.5 22.5 23.5 22.5 23.5 22.5 23.5 22.5 23.5 22.5	23.0 22.0 21.5 22.0 21.5 22.0 23.0 24.0 23.0 22.0 21.5 21.0 21.0	21.0 20.5 21.0 20.5 21.5 20.5 20.5 20.5 20.5 22.5 22.0 20.0 19.0	22.0 21.5 21.5 21.5 22.0 21.0 20.5 21.0 22.0 23.0 22.5 21.5 20.5 20.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5	16.0 16.5 18.0 19.0 19.0 20.5 21.0 21.0 21.5	24.0 24.5 23.5 22.0 22.5 24.0 24.0 24.5 26.0 25.5 26.0 27.0	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.0 23.5 24.5 24.5 25.0 24.5 25.0	23.5 23.5 23.0 21.5 22.0 23.0 23.5 23.5 23.5 24.0 25.0 25.0 24.5 25.0 26.0	22.5 22.5 23.0 23.5 23.5 24.5 22.5 23.5 24.0 23.5 22.5 22.5 22.5 22.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.5 23.0 22.5 23.5 22.5 23.5 22.5 23.5 22.5 23.5 22.5 23.5 22.5	23.0 22.0 21.5 22.0 21.5 22.0 23.0 24.0 23.0 22.0 21.5 21.0 21.0	21.0 20.5 21.0 20.5 21.5 20.5 20.5 20.5 22.5 22.5 22.0 20.0 19.0 19.0	22.0 21.5 21.5 22.0 21.0 20.5 21.0 22.0 23.0 22.5 20.0 20.5 20.0 20.5
1 2 3 4 5 6 7 8 9	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0 22.5 22.0 21.0 21.5	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5 21.0 20.5	16.0 16.5 18.0 19.0 19.0 20.5 20.5 21.0	24.0 24.5 23.5 22.5 24.0 24.5 24.5 24.5 25.5 26.0 27.0 25.5 24.0 27.0 24.5	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.0 23.5 24.5 24.5 24.5 25.0 23.5 24.5 25.0	23.5 23.5 23.5 23.5 22.0 23.5 23.5 23.5 24.0 25.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5 25.0	22.5 22.5 23.0 23.5 23.5 24.5 22.5 23.5 22.5 23.5 22.5 22.0 20.5 21.5 21.5 21.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.5 23.0 22.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	23.0 22.0 21.5 22.0 22.0 21.5 20.5 22.0 23.0 24.0 21.5 21.0 21.5 21.0 22.5 23.0	21.0 20.5 21.0 20.5 21.5 20.5 20.5 20.5 20.5 22.5 22.0 20.0 19.0	22.0 21.5 21.5 22.0 21.0 20.5 21.0 22.0 23.0 22.5 20.0 20.5 21.5 20.0 20.5 21.5 20.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0 22.5 22.0 21.0 21.5	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5 21.0 20.5	16.0 16.5 18.0 19.0 19.0 20.5 21.0 21.0 21.0 21.5 20.5 20.5	24.0 24.5 23.5 22.5 24.0 24.5 24.5 24.5 25.5 26.0 27.0 25.5 24.0 27.0 24.5	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.0 23.5 24.5 24.5 24.5 25.0 23.5 24.5 25.0	23.5 23.5 23.5 23.5 22.0 23.5 23.5 23.5 24.0 25.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5 25.0	22.5 22.5 23.0 23.5 23.5 24.5 22.5 23.5 22.5 23.5 22.5 22.0 20.5 21.5 21.5 21.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.5 23.0 22.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	23.0 22.0 21.5 22.0 22.0 21.5 20.5 22.0 23.0 24.0 21.5 21.0 21.5 21.0 22.5 23.0	21.0 20.5 21.0 20.5 21.5 20.5 20.5 20.5 22.5 22.5 22.0 20.0 19.0 19.0 20.0	22.0 21.5 21.5 22.0 21.0 20.5 21.0 22.0 23.0 22.5 20.0 20.5 21.5 20.0 20.5 21.5 20.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0 21.0 21.5 22.5 22.0 21.5	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5 21.0 20.5	16.0 16.5 18.0 19.0 19.0 20.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5	24.0 24.5 23.5 22.5 24.0 24.5 24.5 24.5 26.0 25.5 27.0 25.5 24.0 25.5 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 27.0 28.0 28.0 28.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.0 23.5 24.5 24.5 24.5 25.0 23.5 24.5 25.0	23.5 23.5 23.5 23.5 22.0 23.5 23.5 23.5 24.0 25.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5 25.0	22.5 22.5 23.0 23.5 23.5 24.5 22.5 23.5 22.5 23.5 22.5 22.0 20.5 21.5 21.5 21.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.5 23.0 22.5 23.0 22.5 22.5 22.5 22.5 22.5 22.0 21.5 20.0 21.0 21.0	23.0 22.0 21.5 22.0 22.0 21.5 20.5 22.0 23.0 24.0 21.5 21.0 21.5 21.0 22.5 23.0	21.0 20.5 21.0 20.5 21.5 20.5 20.5 20.5 22.5 22.5 22.0 20.0 19.0 19.0 20.0	22.0 21.5 21.5 21.5 22.0 21.0 22.0 22.0 22.5 20.0 22.5 20.0 20.5 20.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0 22.5 22.0 21.0 21.5	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5 21.0 20.5	16.0 16.5 18.0 19.0 19.0 20.5 21.0 21.0 21.0 21.5 20.5 20.5	24.0 24.5 23.5 22.5 24.0 24.5 24.5 24.5 25.5 26.0 27.0 25.5 24.0 27.0 24.5	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.0 23.5 24.5 24.5 24.5 25.0 23.5 24.5 25.0	23.5 23.5 23.5 23.5 22.0 23.5 23.5 23.5 24.0 25.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5 25.0 24.5 25.0	22.5 22.5 23.0 23.5 23.5 24.5 22.5 23.5 22.5 23.5 22.5 22.0 20.5 21.5 21.5 21.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.5 23.0 22.5 23.0 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22	23.0 22.0 21.5 22.0 21.5 22.0 23.0 24.0 23.0 22.0 21.5 21.0 21.0	21.0 20.5 21.5 20.5 21.5 20.5 20.5 20.5 21.5 22.5 22.0 20.5 21.0 20.5 21.0 20.0	22.0 21.5 21.5 22.0 21.0 20.5 21.0 22.0 23.0 22.5 20.0 20.5 21.5 20.0 20.5 21.5 20.0
12345 67890 112345 167890 212345	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0 21.0 21.5 22.0 21.5 21.5 20.0 20.0	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5 21.0 20.5 19.5 19.5	16.0 16.5 18.0 19.0 19.0 19.0 20.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5	24.0 24.5 23.5 22.5 24.0 24.5 24.5 25.5 26.0 27.0 25.5 24.0 24.5 26.0 27.0 26.0 24.5 22.0 24.5	23.0 23.5 21.5 21.5 22.5 23.0 23.0 23.5 24.5 24.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 25.0 23.5 24.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	23.5 23.5 23.5 23.0 23.5 23.5 23.5 24.0 25.0 25.0 25.0 26.0 25.0 26.0 27.0 28.5 28.5 28.5 28.5 28.5 28.5 28.5 28.5	22.5 22.5 23.5 23.5 23.5 24.5 23.5 22.5 22.5 22.0 20.5 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.5 23.0 22.5 23.0 22.5 22.5 22.5 22.5 22.5 22.0 21.5 20.0 21.0 21.0 21.0 21.0 22.0 22.0 22.0	23.0 22.0 21.5 22.0 21.5 22.0 23.0 24.0 23.0 21.5 21.0 22.5 21.5 21.5 21.5 21.5 21.5	21.0 20.5 21.5 20.5 21.5 20.5 20.5 20.5 20.5 21.5 22.5 22.0 19.0 19.0 19.5 21.0 20.0 19.0 19.5 21.0 21.0	22.0 21.5 21.5 22.0 21.0 22.0 21.0 22.5 21.5 20.0 22.5 20.0 20.5 20.5 20.5 20.5 20
12345 67890 112345 167890 212345	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0 21.0 21.5 22.0 21.5 21.5 20.0 20.0	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5 21.0 20.5 19.5 19.5	16.0 16.5 18.0 19.0 19.0 19.0 20.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5	24.0 24.5 23.5 22.5 24.0 24.5 24.5 25.5 26.0 27.0 25.5 24.0 24.5 26.0 27.0 26.0 24.5 22.0 24.5	23.0 23.5 21.5 21.5 22.5 23.0 23.0 23.5 24.5 24.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 25.0 23.5 24.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	23.5 23.5 23.5 23.0 23.5 23.5 23.5 24.0 25.0 25.0 25.0 26.0 25.0 26.0 27.5 28.5 28.5 28.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29	22.5 22.5 23.5 23.5 23.5 24.5 23.5 22.5 22.5 22.0 20.5 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.5 22.5 22.5 22.5 22.5 22.5	23.0 22.0 21.5 22.0 21.5 22.0 23.0 24.0 23.0 21.5 21.0 22.5 21.5 21.5 21.5 21.5 21.5	21.0 20.5 21.5 20.5 21.5 20.5 20.5 20.5 21.5 22.5 22.0 20.0 19.0 19.0 21.0 20.0 19.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	22.0 21.5 21.5 22.0 21.5 22.0 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22
12345 67890 112345 167890 212345	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0 21.0 21.5 21.5 20.0 21.5 20.0 21.5 21.5 22.5 21.5 22.5 21.5 22.5 22.5	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5 20.0 20.5 19.5 19.0 20.5 21.5	16.0 16.5 18.0 19.0 19.0 20.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5 21.0	24.0 24.5 23.5 22.5 24.0 24.5 24.5 25.5 26.0 27.0 25.5 24.0 24.5 26.0 27.0 26.0 24.5 22.0 24.5	23.0 23.5 21.5 21.5 22.5 23.0 23.0 23.5 24.5 24.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 23.5 24.5 25.0 23.5 24.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	23.5 23.5 23.5 23.0 23.5 23.5 23.5 24.0 25.0 25.0 24.5 25.0 24.5 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25	22.5 22.5 23.5 23.5 23.5 24.5 23.5 22.5 22.5 22.0 20.5 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22	AUGUST 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.5 23.5 22.5 22.5 22.5 22.5 22.5 22.5	23.0 22.0 21.5 22.0 21.5 22.0 23.0 24.0 23.0 21.5 21.0 22.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	21.0 20.5 21.5 20.5 21.5 20.5 20.5 20.5 21.5 22.5 22.0 20.0 19.0 19.0 21.0 20.0 19.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	22.05 21.55 21.55 22.00 21.55 22.00 21.55 22.00 22.55 22.00 20.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	16.5 17.5 18.5 20.0 19.5 21.0 21.0 21.0 21.0 21.5 22.0 21.5 21.5 20.0 20.0	JUNE 16.0 15.5 17.0 18.0 18.0 20.0 20.5 20.5 21.5 21.0 20.5 19.5 19.5	16.0 16.5 18.0 19.0 19.0 19.0 20.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5 21.0 21.5 20.5	24.0 24.5 23.5 22.5 24.0 24.5 24.5 24.5 26.0 25.5 27.0 25.5 24.0 25.5 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 26.0 27.0 27.0 28.0 28.0 28.0 28.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 29	23.0 23.5 21.5 21.5 21.5 22.5 23.0 23.0 23.0 23.5 24.5 24.5 24.5 25.0 23.5 24.5 25.0	23.5 23.5 23.5 23.0 23.5 23.5 23.5 24.0 25.0 25.0 25.0 26.0 25.0 26.0 27.5 28.5 28.5 28.5 29.5 29.5 29.5 29.5 29.5 29.5 29.5 29	22.5 22.5 23.0 23.5 23.5 24.5 22.5 23.5 22.5 23.5 22.5 22.0 20.5 21.5 21.5 21.5	21.5 21.5 22.5 22.5 22.0 22.0 22.0 22.0 22.0 22	22.0 22.0 22.5 22.5 22.5 22.5 22.5 22.5	23.0 22.0 21.5 22.0 21.5 20.5 22.0 23.0 24.0 21.5 21.0 21.5 21.0 21.5 21.5 21.5 21.5 21.5 21.5	21.0 20.5 21.5 21.5 20.5 21.5 20.5 21.5 20.5 21.5 22.5 22.5 22.5 22.0 19.0 19.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	22.0 21.5 21.5 22.0 21.5 22.0 21.5 22.0 22.0 22.0 22.0 22.0 22.0 22.0 22

PASSAIC RIVER BASIN

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued

WATER TEMPERATURE (DEG. C), AT MIDDLE INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1 2 3 4 5	14.0 16.0 17.0 18.0 19.5	13.5 13.5 16.0 17.0 18.0	13.5 14.5 16.0 17.5 19.0	12.0 12.5 13.0 12.5 11.0	11.5 12.0 12.5 11.0 9.5	11.5 12.5 12.5 12.0 10.5	•••			3.0 2.5 4.5 5.5 6.5	2.0 2.0 3.0 4.5 5.5	2.0 2.5 3.5 5.0 6.0
6 7 8 9 10	19.5 18.5 16.5 15.0 15.5	18.5 16.5 15.0 14.5 13.5	19.0 17.5 16.0 14.5 14.5	9.5 8.5 8.0 7.5 7.0	8.5 8.0 7.5 7.0 6.5	9.0 8.5 7.5 7.0 7.0				5.5 5.0 4.5 4.0 4.0	5.0 4.5 4.0 3.5 3.5	5.5 5.0 4.5 4.0 3.5
11 12 13 14 15	14.5 15.0 14.0 14.0 12.5	14.0 13.5 13.0 12.5 12.0	14.0 14.0 13.5 13.0 12.5	7.0 7.5 8.0 8.5 8.5	6.5 6.5 7.5 7.5 7.5	7.0 7.0 7.5 8.0 8.0	7.5 8.5 8.0	6.5 7.5 7.0	7.0 8.0 7.5	3.5 4.0 4.5 6.5 6.0	3.0 3.5 4.0 5.0 5.0	3.5 3.5 4.0 5.5 5.5
16 17 18 19 20	13.5 13.5 13.0 13.5 13.0	12.5 13.0 12.5 12.5 12.5	13.0 13.0 13.0 13.0 12.5	9.0 8.5 8.0 7.5 9.0	8.0 8.0 7.5 7.0 7.5	8.5 8.5 7.5 7.5 8.0	6.5 4.5 3.5 2.5 1.5	4.5 3.5 2.5 1.0	5.5 3.5 3.0 1.5 1.0	5.0 2.0 1.0 1.0	2.0 1.0 .5 .5	3.5 1.5 .5 .5
21 22 23 24 25	12.5 12.0 12.0 13.0 14.5	11.0 11.0 11.0 11.5 12.5	12.0 11.5 11.5 12.5 13.5	11.0 12.5 11.5 11.5 11.0	9.0 11.0 10.5 11.0 10.0	9.5 11.5 11.0 11.0 10.5	1.5 3.0 3.5 4.0 3.5	.5 2.0 2.5 3.0 3.0	1.0 2.5 3.0 3.5 3.0	1.0 1.5 2.5 3.0 2.0	.5 1.0 2.5 1.0	.5 1.0 1.5 3.0 1.5
26 27 28 29 30 31	15.5 16.5 16.0 15.0 13.5 12.0	14.0 15.0 15.0 13.5 12.0 11.5	14.5 15.5 15.5 14.5 12.5 11.5				3.0 3.5 3.5 4.5 4.0	2.5 2.0 1.5 2.5 3.5 3.0	2.5 2.5 2.5 3.0 4.0 3.5	1.5 1.0 2.0 2.5 3.0 3.5	.5 .5 1.5 2.0 3.0	1.0 1.0 1.5 2.0 2.5 3.0
MONTH	19.5	11.0	14.0	13.0	6.5	9.0		•••		6.5	.5	3.0
DAY	MAX	MIN	MEAN	MAX	MIN	MÉAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		FEBRUAR'			MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	3.5 2.5 2.0 2.5 3.0			MAX 4.5 5.5 6.0 7.0		4.0 4.5 5.5 6.0 6.5	8.5 8.0 7.5 8.0 8.5		8.0 7.5 7.0 7.5 8.0	15.0 17.5 18.5 18.5 16.5		MEAN 14.5 16.0 18.0 17.5 15.5
	3.5 2.5 2.0	FEBRUAR' 2.5 2.0 1.5	3.0 2.5 1.5 2.0	4.5 5.5 5.5 6.0	MARCH 3.5 4.0 5.5 5.5	4.0 4.5 5.5 6.0	8.5 8.0 7.5 8.0	7.0 7.0 7.0	8.0 7.5 7.0 7.5	15.0 17.5 18.5 18.5	MAY 13.5 15.0 17.5 16.5	14.5 16.0 18.0 17.5
12345	3.55 2.50 2.50 2.55 2.55 3.0	FEBRUAR 2.5 2.0 1.5 1.5 2.0 2.0 2.5 1.5	3.0 2.5 1.5 2.0 2.0 2.0 2.5	4.5 5.5 5.0 7.5 7.5 8.5 9.5	3.5 4.0 5.5 5.5 6.0 7.0 7.0 8.0	4.0 4.5 5.5 6.0 6.5 7.5 7.5 9.0	8.5 8.0 7.5 8.0 8.5 9.5 10.0 11.5 11.0	7.0 7.0 6.5 6.5 7.0 7.5 8.5 9.0 10.0	8.0 7.5 7.0 7.5 8.0 8.5 9.0 10.0	15.0 17.5 18.5 18.5 16.5 16.5 14.0 14.0	MAY 13.5 15.0 17.5 16.5 14.5 13.5 13.5 13.5	14.5 16.0 18.0 17.5 15.5 14.5 14.0 14.0
1 2 3 4 5 6 7 8 9	3.55 2.50 2.50 2.55 3.00 2.55 3.05	FEBRUAR 2.5 2.0 1.5 1.5 2.0 2.0 2.0 2.5 1.5 1.0	3.0 2.5 1.5 2.0 2.0 2.0 2.5 2.5 1.5	4.5 5.5 5.5 7.5 7.5 8.5 9.5 9.5	3.5 4.0 5.5 5.5 6.0 7.0 7.0 8.0 9.0	4.0 4.5 5.5 6.0 6.5 7.5 7.5 7.5 9.0 9.0	8.5 8.0 7.5 8.5 9.5 10.0 11.5 11.0 12.5	7.0 7.0 6.5 7.0 7.5 8.5 9.0 10.0	8.0 7.5 7.5 8.0 8.5 9.0 10.0 10.5 11.0	15.0 17.5 18.5 18.5 16.5 15.0 15.0 15.0 15.5 16.5 17.5 18.0	MAY 13.5 15.0 17.5 16.5 14.5 13.5 13.5 14.5 14.5	14.5 16.0 18.0 17.5 15.5 14.5 14.0 14.0 15.0
1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 5 1 5 1 5 1 5 1 5 1 6 7 8 9 1 0 1 1 2 3 1 4 5 1 5 1 6 7 8 9 1 0 1 1 2 3 1 4 5 1 5 1 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32.50.50 22.50.50 22.50.50 22.50.50 22.50.50	FEBRUAR' 2.5 2.0 1.5 1.5 2.0 2.0 2.5 1.5 1.0 .5 1.0	3.55.500 2.005.55 1.55.50 2.22.55 1.55.50 3.44.00	4.5 5.5 5.5 7.0 7.5 8.5 9.5 9.5 9.5 9.5 9.5 9.5	MARCH 3.5 4.0 5.5 6.0 7.0 7.0 8.0 9.0 8.0 6.0 5.5 3.0 3.0 3.0	4.55 6.55 7.55 9.00 9.55 4.05 4.05 4.50	8.5 8.0 7.5 8.0 8.5 9.5 10.0 11.5 11.5 12.5 11.5 11.5 12.5	7.0 7.0 6.5 7.0 7.5 8.0 10.0 11.0 9.5 9.5 10.0 9.5 9.0 9.0	8.0 7.5 7.5 8.0 8.5 9.0 10.0 10.5 11.5 10.0 10.5 11.5	15.0 17.5 18.5 18.5 16.5 15.0 15.0 15.0 17.5 18.0 19.0 18.5 16.5 16.5 18.0	MAY 13.5 15.0 17.5 16.5 14.5 13.5 13.5 14.5 15.6 16.0 18.6	14.5 16.0 18.5 15.5 14.5 14.0 14.0 15.5 16.5 17.5 16.5 17.5
1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 1 8 9 2 0	55.05.0 55.005 00.05.0 5.005.0 0.0 32.223 22.332 22.223 44445 55	FEBRUAR' 2.50 1.55 0.55 0.55 0.55 0.55 0.55 0.55 0	3.0 2.5 1.5 2.0 2.0 2.5 1.5 1.5 1.5 1.5 1.5 2.0 3.0 4.0 4.0 4.5	4.55 5.50 7.55 6.7 7.55 9.5 9.5 9.5 9.5 4.55 5.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	3.5 4.0 5.5 5.0 7.0 7.0 8.0 9.0 8.0 9.0 8.0 5.5 3.5 3.5 3.5 3.5	4.55 66.5 7779.0 975.5 4.4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5	8.5 8.5 7.5 8.5 9.5 10.5 11.5 12.5 11.0 12.5 12.0 12.0 9.5 12.0 14.0 16.5 17.0	7.0 7.0 6.5 7.0 7.5 8.5 9.0 10.0 11.0 10.5 9.5 10.5	8.0 7.5 7.5 8.0 8.5 9.0 10.0 10.5 11.5 10.5 11.5 10.5 9.0 9.0	15.0 17.5 18.5 16.5 16.5 15.0 15.0 15.0 17.5 18.0 19.0 18.5 17.5 18.5 19.5 19.0 18.5 19.5 20.5 223.0	MAY 13.5 15.0 17.5 16.5 13.5 13.5 13.5 14.5 15.0 16.0 16.5 17.5 18.5 20.5	14.5 16.0 18.5 15.5 14.0 14.0 15.5 16.5 17.5 18.0 17.5 18.0 18.5 17.5 18.0 18.5 17.5

PASSAIC RIVER BASIN

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued WATER TEMPERATURE (DEG. C), AT MIDDLE INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		WATER 1	TEMPERATURE	(DEG. C),	AT MID	DLE INTAKE,	WATER	YEAR OCT	OBER 1991	TO SEPTE	MBER 199	2 .	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	
		JUNE	=		JULY			AUGUST			SEPTEMBE	R .	
1	16.0	16.0 15.5	16.0	24.5 24.5	23.0 23.5	24.0 24.0	23.0 23.0	21.5 21.5	22.5 22.5	22.5 22.0	21.0	22.0	
2 3 4 5	17.5 19.0	15.5 17.0	16.5 18.0	24.5	23.5 21.5	24.0 23.0	23.0	21.5	22.5	22.0	21.0 21.0	21.5 21.5	
4	20 5	18.5	19.5	22.0	21.5	23.0 21.5	23.0 23.5 23.5	22.5	22.5 23.0 23.0	21.5	20.5	21.0	
5	20.0	18.0	19.5	23.5 22.0 22.5	21.0	21.5 21.5	23.5	21.5 22.5 22.5	23.0	21.5 21.5 22.5	21.0	22.0	
4					22 E						21.0	21 E	
6 7				24.0 24.5 24.5 24.5	22.5	23.0	23.5 24.0 23.5	22.0	23.U 23.U	21.0	21.0 20.5	21.5 20.5	
8		•••		24.5	23.0	23.5	23.5	22.0	22.5	21.5	20.5 21.5	21.0	
9				24.5	22.5 23.0 23.0 23.0 23.0	23.0 23.5 23.5 24.0 23.5	22.5	22.0 22.0 22.0 22.0 22.0	23.0 23.0 22.5 22.0 22.5	22.5 21.0 21.5 23.0 24.0	21.5	22.0	
10	•••	•••		24.5		23.5	23.5				22.5	23.0	
11				25.0 24.5	23.5 24.0	24.0 24.0	24.0 24.0 23.5 22.5 22.0	23.0 23.0 22.5 22.0 20.5	23.5 23.5	23.5 22.5 21.0 20.5 21.0	22.5 21.0	23.0	
12 13	22.0	20 5	24.0	24.5	24.0	24.0	24.0	23.0	23.5	22.5	21.0	22.0	•
13	22.0	20.5 21.0	21.0	25.0 26.0	23.5	24.5 25.0	23.5	22.5	23.0	21.U 20.5	20.0	20.5 20.0	
13	22.5 23.0	22.0	22.0 22.5	26.0 26.5	23.5 24.5 25.5	24.5 25.0 26.0	22.0	20.5	23.0 22.5 21.5	21.0	19.0 19.0	20.0	
14		24 5										20.5	
16 17	22.5 23.0 22.5 21.5 21.5	21.5	22.0	25.5 24.5 23.5 24.0 25.0	24.5 23.0 23.0	25.0 23.5 23.0 23.5 24.0	20.5 19.5 20.5 21.5	19.5 19.5 19.5 20.5 21.0	20.0 19.5	21.5 22.0 22.5 22.5 21.0	19.5 20.0	21.0	
18	22.5	21.5 21.5	22.0 22.0	23.5	23.0	23.0	20.5	19.5	20.0	22.5	21.0	22.0	
19	21.5	20.5 20.5	21.0 21.0	24.0	23.0 23.5	23.5	21.5	20.5	21.0 21.5	22.5	21.5 20.0	22.0	
20	21.5	20.5	21.0	25.0	23.5	24.0	22.0	21.0	21.5	21.0	20.0	20.5	
21	22.0	20.5 19.5	21.5 20.5 19.5	25.5 26.0	24.5 24.5	25.0 25.0	22.5	21.0 21.0	21.5 21.5	20.5 21.0	19.5	20.0	
22 23 24	21.5	19.5	20.5	26.0	24.5	25.0	22.5	21.0	21.5	21.0	20.0	20.5	
25	20.0	18.5	19.5 19.5	24.5	22.5 21.0	24.0	23.0	21.0	22.0	21.0	19.5	20.5 18.5	
25	19.5 20.5	18.5 19.5 19.5	20.0	24.5 22.5 22.0	20.5	24.0 21.5 21.5	23.0 23.5 23.5	21.0 21.5	22.0 22.5	21.0 19.5 17.5	17.5 16.5	17.0	
24			20.0		24 5								
26 27 28 29	20.5 21.5 22.5 23.0 23.0	19.5 20.5 20.5 21.5 22.5	20.0	22.0	21.5 21.5	22.0 22.0	25.0 25.0 25.5	22.5	24.0 24.5	16.5 16.5	16.0 16.0	16.5 16.0	
28	22.5	20.5	20.5 21.5	22.5 23.5	22.0	23.0	25.5	24.5	25.0	16.5 17.0 18.0 16.5	16.0 16.5 16.5	17.0	
29	23.0	21.5	22.5 23.0	24.0	22.5	23.0	24.5	23.5	24.5	18.0	16.5	17.0	
30 31	23.0	22.5	23.0	24.0 23.5	23.0 22.5	22.0 23.0 23.0 23.5 23.5	23.5 23.5	22.5 23.5 24.5 23.5 22.5 21.5	25.0 24.5 23.0 22.5	16.5	15.0	16.0	
31					22.5					***			
MONTH			• • •	26.5	20.5	23.5	25.5	19.5	22.5	24.0	15.0	20.0	
		WATER 1	EMPERATURE	(DEG. C).	AT RIG	HT INTAKE.	WATER '	YEAR OCTO	BER 1991	TO SEPTEM	BER 1992	٠.	
DAY	MAV					HT INTAKE,		•					
DAY	MAX	WATER 1	TEMPERATURE MEAN	(DEG. C),	AT RIG	HT INTAKE, MEAN	WATER Y	YEAR OCTO	BER 1991 MEAN	TO SEPTEM	BER 1992 Min	MEAN	
DAY	MAX		MEAN	MAX		MEAN	MAX	•					
		MIN	MEAN	MAX	MIN OVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	MIN JANUARY	MEAN	
1	MAX	MIN	MEAN	MAX	MIN	MEAN	9.0 10.0	MIN DECEMBER 7.5 9.0	MEAN	MAX 2.5 2.0	MIN JANUARY 2.0 2.0	MEAN 2.0 2.0	
		MIN OCTOBE	MEAN	MAX N	MIN OVEMBER	MEAN	9.0 10.0 9.5	MIN DECEMBER 7.5 9.0 8.5	MEAN 8.5 9.5	MAX 2.5 2.0 4.0	MIN JANUARY 2.0 2.0 2.5	MEAN 2.0 2.0 3.0	
1 2 3 4		MIN OCTOBE	MEAN	MAX N	MIN OVEMBER	MEAN	9.0 10.0 9.5 8.0	MIN DECEMBER 7.5 9.0 8.5 7.0	MEAN 8.5 9.5	MAX 2.5 2.0 4.0	MIN JANUARY 2.0 2.0 2.5 4.0	MEAN 2.0 2.0 3.0 4.5	
1		MIN OCTOBE	MEAN	MAX N	MIN OVEMBER	MEAN	9.0 10.0 9.5	MIN DECEMBER 7.5 9.0 8.5	8.5 9.5 9.0 7.5 5.5	2.5 2.0 4.0 5.5	MIN JANUARY 2.0 2.0 2.5 4.0 5.5	MEAN 2.0 2.0 3.0	
1 2 3 4 5		MIN	MEAN	MAX N	MİN OVEMBER	MEAN	9.0 10.0 9.5 8.0 7.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0	8.5 9.5 9.0 7.5 5.5	2.5 2.0 4.0 5.5 6.0	MIN JANUARY 2.0 2.0 2.5 4.0 5.5	2.0 2.0 3.0 4.5 6.0	
1 2 3 4 5		MIN OCTOBE	MEAN ER	MAX N	MİN OVEMBER	MEAN	9.0 10.0 9.5 8.0 7.0 4.0 3.5	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.0	8.5 9.5 9.0 7.5 5.5	MAX 2.5 2.0 4.0 5.5 6.0 5.5	MIN JANUARY 2.0 2.5 4.0 5.5 5.5	MEAN 2.0 2.0 3.0 4.5 6.0 5.0	
1 2 3 4 5 6 7 8 9		MIN	MEAN	MAX N	MIN OVEMBER	MEAN	9.0 10.0 9.5 8.0 7.0 4.0 3.5 4.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.5	8.5 9.5 9.0 7.5 5.5 3.5 3.5	MAX 2.5 2.0 4.0 5.5 6.0 5.5 4.5	MIN JANUARY 2.0 2.0 2.5 4.0 5.5	MEAN 2.00 3.00 4.5 6.0 5.45	
1 2 3 4 5		MIN OCTOBE	MEAN ER	MAX N	MİN OVEMBER	MEAN	9.0 10.0 9.5 8.0 7.0 4.0 3.5	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.0	8.5 9.5 9.0 7.5 5.5	MAX 2.5 2.0 4.0 5.5 6.0 5.5	MIN JANUARY 2.0 2.5 4.0 5.5 5.5	MEAN 2.0 2.0 3.0 4.5 6.0 5.0	
1 2 3 4 5 6 7 8 9		MIN OCTOBE	MEAN	MAX N	MIN OVEMBER	MEAN 8.5 7.5 7.0 6.5	9.0 10.0 9.5 8.0 7.0 4.0 3.5 4.0 6.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.0 3.5 4.0	8.5 9.5 9.5 5.5 3.5 3.5 5.5	MAX 2.5 2.0 4.0 5.5 6.0 5.5 4.5 4.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.0 4.5 4.0 3.5	MEAN 2.00 3.00 4.5 6.0 5.05 4.5 4.5 4.5 4.5	
1 2 3 4 5 6 7 8 9 10		MIN OCTOBE	MEAN ER	MAX N	MIN OVEMBER	MEAN 8.5 7.5 7.0 6.5	9.0 10.0 9.5 8.0 7.0 4.0 3.5 4.0 6.0 7.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 4.0 6.0	8.5 9.0 7.5 5.5 3.5 3.5 5.0 6.5	MAX 2.5 2.0 4.0 5.5 6.0 5.5 4.5 4.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.0 4.5 4.0 3.5	MEAN 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
1 2 3 4 5 6 7 8 9 10		MIN	MEAN	MAX N	MIN OVEMBER 8.0 7.0 6.5 6.5 7.5	MEAN 8.5 7.5 7.0 6.5	9.0 10.0 9.5 8.0 7.0 4.0 3.5 4.0 6.0 7.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 4.0 6.0	8.5 9.0 7.5 5.5 3.5 3.5 5.0 6.5 7.0	MAX 2.5 2.0 4.0 5.5 6.0 5.5 4.5 4.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.0 4.5 4.0 3.5	MEAN 2.00 3.55 6.0 5.55 6.3 5.50 3.55 0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14		MIN	MEAN	MAX N	MIN OVEMBER 8.0 7.0 6.5 6.5 7.5	MEAN 8.5 7.5 7.0 6.5	9.0 10.0 9.5 8.0 7.0 4.0 7.0 6.5 7.5 7.5	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 4.0 6.0	8.5 9.0 7.5 5.5 3.5 3.5 5.0 6.5 7.0	MAX 2.5 2.0 4.0 5.5 6.0 5.5 4.5 4.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.0 4.5 4.0 3.5	MEAN 2.00 3.55 6.0 5.55 6.3 5.50 3.55 0	
1 2 3 4 5 6 7 8 9 10		MIN	MEAN	MAX N	MIN OVEMBER	MEAN 8.5 7.5	9.0 10.0 9.5 8.0 7.0 4.0 3.5 4.0 6.0 7.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.5 4.0 6.0 6.5 7.5 6.5	8.5 99.0 7.5 5.5 3.5 5.5 7.0 6.5 7.0 8.0 7.5	MAX 2.5 2.0 4.0 5.5 6.0 5.5 4.0	MIN JANUARY 2.0 2.0 2.5 4.0 5.5	MEAN 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15		MIN	MEAN	MAX N	MIN OVEMBER	MEAN 8.5 7.5 7.0 6.5 7.5 7.5 8.0	9.0 10.0 9.5 8.0 7.0 4.0 3.5 4.0 7.0 7.5 8.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.5 4.0 6.0 6.5 7.5 6.5	8.5 99.0 7.5 5.5 3.5 5.5 7.0 6.5 7.0 8.0 7.5	MAX 2.50 4.05 5.0 5.5 4.00 3.55 4.00 5.0 6.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.0 4.0 3.5 3.5 3.5 4.0 2.0	MEAN 2.00050 0550 544.05 55.5 5	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17		MIN	MEAN ER	MAX 8.5 8.5 7.5 7.0 7.5 8.0 8.5 9.0 8.5	MIN OVEMBER 8.0 7.0 6.5 7.5 7.5 8.0 8.0	MEAN 8.5 7.5 7.0 6.5 7.5 7.5 8.0	9.0 10.0 9.5 8.0 7.0 4.0 3.5 4.0 7.0 7.5 8.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.5 4.0 6.0 6.5 7.5 6.5	8.5 99.0 7.5 5.5 3.5 5.5 7.0 6.5 7.0 8.0 7.5	MAX 2.50 4.05 5.0 5.5 4.00 3.55 4.00 5.0 6.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.5 5.5 3.5 3.5 3.5 5.0 2.0	MEAN 2.00050 0550 544.05 55.5 5	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18		MIN	MEAN ER	MAX N 8.5 8.0 7.5 7.0 7.5 8.0 8.5 9.0 8.5 9.0	MIN OVEMBER 8.0 7.0 7.0 6.5 7.5 7.5 7.5 7.5 8.0 8.0 7.0 7.0	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 8.0 8.5 7.5	MAX 9.0 10.5 7.0 4.0 7.0 7.5 7.0 7.5 8.0 7.0 6.5 7.0 6.5 8.0 6.5 8.0 6.5 8.0 6.5 8.0 6.5 8.0 6.5 8.0 6.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.5 4.0 6.0 6.5 7.5 6.5	8.5 99.0 7.5 5.5 3.5 5.5 7.0 6.5 7.0 8.0 7.5	MAX 2.50 4.05 5.0 5.5 4.00 3.55 4.00 5.0 6.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.0 4.0 3.5 3.5 3.5 4.0 2.0 0.0	MEAN 2.00050 0550 544.05 55.5 5	
1 23 45 67 8 90 10 11 12 13 14 15 16 17 18 19		MIN	MEAN	MAX N N N N N N N N N N N N N N N N N N N	MIN OVEMBER	MEAN 8.5 7.5 7.0 6.5 7.5 8.0 8.5 7.5 7.5 7.5	MAX 9.00 10.55 7.00 4.50 6.55 8.00 7.67 8.00 7.67 8.00 6.55 8.00	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.5 4.0 6.0 6.5 7.5 6.5	8.5 99.0 7.5 5.5 3.5 5.5 7.0 6.5 7.0 8.0 7.5	MAX 2.50 4.05 5.0 5.5 4.00 3.55 4.00 5.0 6.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.0 4.0 3.5 3.5 3.5 4.0 2.0 0.0	MEAN 2.00050 0550 544.05 55.5 5	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		MIN	MEAN	MAX 8.5 8.5 7.5 7.0 7.5 8.0 8.5 9.0 8.5 9.0	MIN OVEMBER 8.0 7.0 6.5 7.5 7.5 8.0 8.0 7.0 7.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 7.5 8.0 8.0 7.0 7.5 9.0 7.5 9.0 7.5 9.0 7.5 9.0 7.5 9.0 7.5 9.0 7.5 9.0 7.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	MEAN 8.5 7.5 7.0 6.5 6.5 7.0 7.5 8.0 8.5 7.0	9.0 10.0 9.5 8.0 7.0 4.0 5.5 7.0 7.0 7.5 7.5 8.0 6.5 7.0 6.5 7.0 6.5 7.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 5.5 4.0 6.5 6.5 7.5 4.5 2.0 5.5	MEAN 8.55 9.05 5.55 3.55 5.55 6.7 6.50 7.55 5.55 5.55 5.55 6.7 6.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8	MAX 2.50 4.00 5.50 5.50 4.00 5.50 4.00 5.50 4.00 5.50 4.00 5.50 5.5	MIN JANUARY 2.0 2.55 4.05 5.5 5.0 4.5 3.5 3.5 3.5 4.0 0.0	MEAN 223.050 055505 5.50555 31.5555 31.5555	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		MIN	MEAN ER	MAX 8.5 8.5 8.0 7.5 7.0 7.5 8.0 8.0 8.5 9.0 8.5 9.0 11.0	MIN OVEMBER 8.0 7.0 6.5 6.5 7.5 7.5 7.5 8.0 7.0 7.0 7.0 8.0 7.0 7.0 7.0 9.0 7.0 7.0 9.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 8.0 8.5 7.5 8.0 9.5	9.0 10.0 9.5 8.0 7.0 4.0 5.5 7.0 7.0 7.5 7.5 8.0 6.5 7.0 6.5 7.0 6.5 7.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 5.5 4.0 6.5 6.5 7.5 4.5 2.0 5.5	MEAN 8.55 9.05 5.55 3.55 5.55 6.7 6.50 7.55 5.55 5.55 5.55 6.7 6.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8	MAX 2.50 4.00 5.50 5.50 4.00 5.50 4.00 5.50 4.00 5.50 4.00 5.50 5.5	MIN JANUARY 2.0 2.55 4.05 5.5 5.0 4.5 3.5 3.5 3.5 4.0 0.0	MEAN 223.050 055505 5.50555 31.5555 31.5555	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		MIN	MEAN ER	MAX N N N N N N N N N N N N N N N N N N N	MIN OVEMBER	MEAN 8.5 7.5 7.0 6.5 7.5 8.0 8.5 7.0 8.0 9.5 11.5	9.0 10.0 9.5 8.0 7.0 4.0 5.5 7.0 7.0 7.5 7.5 8.0 6.5 7.0 6.5 7.0 6.5 7.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 5.5 4.0 6.5 6.5 7.5 4.5 2.0 5.5	MEAN 8.55 9.05 5.55 3.55 5.55 6.7 6.50 7.55 5.55 5.55 5.55 6.7 6.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8	MAX 2.50 4.00 5.50 5.50 4.00 5.50 4.00 5.50 4.00 5.50 4.00 5.50 5.5	MIN JANUARY 2.0 2.55 4.05 5.5 5.0 4.5 3.5 3.5 3.5 4.0 0.0	MEAN 223.050 055505 5.50555 31.5555 31.5555	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		MIN	MEAN ER	MAX 8.5 8.5 7.0 7.5 8.0 8.5 9.0 8.5 9.0 11.0 12.5 13.0	MIN OVEMBER 8.0 7.0 6.5 6.5 7.5 7.5 8.0 8.0 7.0 7.0 7.5 9.0 11.0 12.5	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 8.0 8.5 7.0 8.0 9.5 11.5 13.0	MAX 9.00 10.05 7.05 1.55	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 5.5 4.0 6.5 6.5 7.5 4.5 2.0 5.5	MEAN 8.55 9.05 5.55 3.55 5.55 6.7 6.50 7.55 5.55 5.55 5.55 6.7 6.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8	MAX 2.50 4.00 5.50 5.50 4.00 5.50 4.00 5.50 4.00 5.50 4.00 5.50 5.5	MIN JANUARY 2.0 2.55 4.05 5.5 5.0 4.5 3.5 3.5 3.5 4.0 0.0	MEAN 000050 055055 55055 5500	
1 23 45 67 8 90 10 11 12 13 14 15 16 17 18 19		MIN	MEAN ER	MAX 8.5 8.5 7.0 7.05 8.5 8.05 7.1 8.5 9.0 11.0 12.5 13.5	MIN OVEMBER 8.0 7.0 6.5 6.5 7.5 7.5 7.5 8.0 7.0 7.0 7.0 8.0 7.0 7.0 7.0 9.0 7.0 7.0 9.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 8.0 8.5 7.5 8.0 9.5	9.0 10.0 9.5 8.0 7.0 4.0 5.5 7.0 7.0 7.5 7.5 8.0 6.5 7.0 6.5 7.0 6.5 7.0	MIN DECEMBER 7.5 9.0 8.5 7.0 4.0 3.5 3.5 4.0 6.0 6.5 7.5 6.5	8.5 99.0 7.5 5.5 3.5 5.5 7.0 6.5 7.0 8.0 7.5	MAX 2.50 4.05 5.0 5.5 4.00 3.55 4.00 5.0 6.0	MIN JANUARY 2.0 2.5 4.0 5.5 5.0 4.0 3.5 3.5 3.5 4.0 2.0 0.0	MEAN 000050 05505 55055 50555 550	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		MIN	MEAN ER	MAX 8.5 8.5 7.0 7.0 8.5 8.0 7.5 8.0 9.0 8.5 9.0 11.0 12.5 13.0 12.0	MIN OVEMBER 8.00 7.00 7.05 8.00 7.00 7.05 9.00 11.00 12.5 12.5 9.5	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 8.0 8.5 8.0 9.5 11.5 13.0 11.0	9.00507 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.50	MIN DECEMBER 7.50 8.50 4.00 3.05 4.00 6.55 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.	MEAN	MAX 5.00.50 5.05.00 5.5.50.50 0.00.55 5.50.50 0.00.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.	MIN JANUARY 2.0 2.55 5.55 5.55 3.55 2.0 0.0 0.0 0.55 1.0 1.0	MEAN 000050 05505 55055 50555 55000 132	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		MIN	MEAN ER	MAX 8.5 8.5 8.0 7.5 7.0 7.5 8.0 8.5 9.5 8.0 11.0 12.5 13.5 13.6 12.0 9.5	MIN OVEMBER 8.00 7.00 6.5 6.55 7.55 7.5 8.00 7.00 7.00 11.05 12.55 9.5 7.05 9.00 11.05 12.55 9.5	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 7.5 8.0 8.5 7.0 8.1 11.0 8.5 13.0 11.0	9.00507 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.50	MIN DECEMBER 7.50 8.50 4.0 5.05 5.5 5.55 5.5 5.5 5.5 5.5 5.5 5.5	MEAN	MAX 5.00.50 5.05.00 5.5.50.50 0.00.55 5.50.50 0.00.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.	MIN JANUARY 2.0 2.55 5.55 5.55 3.55 2.0 0.0 0.0 0.55 1.0 1.0	MEAN 000050 055505 55055 55000 05	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		MIN	MEAN ER	MAX 8.5 8.5 8.0 7.5 7.0 7.5 8.0 8.5 9.5 8.0 11.0 12.5 13.5 13.6 12.0 9.5	MIN OVEMBER 8.00 7.00 6.5 6.55 7.55 8.00 7.00 7.05 12.55 9.0 11.00 12.55 9.5 5.0	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 8.0 8.5 7.5 8.0 9.5 11.0 8.5 13.0 11.0	9.00507 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.50	MIN DECEMBER 7.50 8.50 4.0 5.05 5.5 5.55 5.5 5.5 5.5 5.5 5.5 5.5	MEAN 555055 555555 05050 500 500 500 500 50	MAX 5.00.50 5.05.00 5.5.50.50 0.00.55 5.50.50 0.00.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.	MIN JANUARY 2.0 2.55 5.55 5.55 3.55 2.0 0.0 0.0 0.55 1.0 1.0	MEAN 000050 05505 55055 55000 050	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		MIN	MEAN ER	MAX N 8.5	MIN OVEMBER 8.00 77.00 6.5 6.55 77.5 8.00 77.05 9.00 112.5 12.5 5.5 5.5 5.5 5.5	MEAN 8.5 7.5 6.5 7.5 8.0 8.5 7.5 8.0 9.5 11.0 8.5 6.0 5.6 6.0	MAX 9.005.00 109.8.	MIN DECEMBER 7.50 8.50 4.0 5.05 5.5 5.55 5.5 5.5 5.5 5.5 5.5 5.5	MEAN 555055 555505 05005 555555 05000 50000	MAX 5.00.50 5.05.00 5.5.50.50 0.00.55 5.50.50 0.00.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.	MIN JANUARY 2.00 2.50 5.50 5.50 5.55 5.50 6.50 6.50 6.50 6	MEAN 000050 05505 55055 55000 050	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		MIN	MEAN ER	MAX 8.5 8.5 8.0 7.5 7.0 7.5 8.0 8.5 9.5 8.0 11.0 12.5 13.5 13.6 12.0 9.5	MIN OVEMBER 8.00 7.00 6.5 6.55 7.55 8.00 7.00 7.05 12.55 9.0 11.00 12.55 9.5 5.0	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 8.0 8.5 7.5 8.0 9.5 11.0 8.5 13.0 11.0	9.00507 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.5000 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.500 10.50	MIN DECEMBER 7.50 5.05 5.05 5.55 5.55 5.55 5.55 5.55	MEAN 555055 555505 05005 555555 050000 500000	MAX 5.00.50 5.05.00 5.5.50.50 0.00.55 5.50 0.00.55 5.50 5.50 0.00.55 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.	MIN JANUARY 2.00 2.50 5.50 5.50 5.55 5.50 6.50 6.50 6.50 6	MEAN 000050 05505 55055 55000 050	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31		MIN	MEAN ER	MAX 8.5 8.5 7.0 7.5 8.0 7.5 8.0 8.5 9.0 11.0 12.5 13.5 13.0 9.5 6.0 7.5	MIN OVEMBER 8.00 7.00 6.5 6.55 7.55 8.00 7.00 7.05 12.55 9.0 11.00 12.55 9.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	MEAN 8.5 7.5 7.0 6.5 6.5 7.5 8.0 8.5 7.5 8.0 9.5 11.0 8.5 6.0 7.0 6.7 8.0	MAX 9.00500 19.500 4.3.000 10.5550 10.5555 10.	MIN DECEMBER 7.50 8.50 6.55 5.55 5.55 5.55 5.55 5.55 5.55 5	MEAN 555055 55555 050005 555555 0500000 5000000	MAX 5.005.0 5.05.0 0.005.5 5.05.0 0.0	MIN JANUARY 2.00 22.55 4.05 5.5 5.05 4.00 5.55 1.00 6.00 6.55 1.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	MEAN 000050 05505 55055 55000 050000 050000	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		MIN	MEAN ER	MAX 8.5 8.5 7.0 7.5 8.0 7.5 8.0 9.5 9.0 11.0 12.5 13.0 9.5 6.5 7.5 6.6 7.5	MIN OVEMBER 8.00 77.05 6.55 77.55 8.00 77.05 9.112.55 5.55 5.55 5.55	MEAN 8.5 7.0 6.5 7.0 7.5 8.0 9.5 71.0 8.0 9.5 11.0 8.5 6.0 9.5 6.0 7.0	MAX 9.050.00 19.50.00 19.50.00 19.50.00 19.50.00 19.50.00 19.50.55 1	MIN DECEMBER 7.50 5.05 5.05 5.55 5.55 5.55 5.55 5.55	MEAN 555055 555505 05005 555555 050000 500000	MAX 5.00.50 5.05.00 5.5.50.50 0.00.55 5.50 0.00.55 5.50 5.50 0.00.55 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.	MIN JANUARY 2.00 2.50 5.50 5.50 5.55 5.50 6.50 6.50 6.50 6	MEAN 000050 05505 55055 55000 050	

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued WATER TEMPERATURE (DEG. C), AT RIGHT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

			MPERATURE			MI INTAKE,	-					
DAY	MAX	MIN	MEAN ·	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN MAY	MEAN
1	3.5	FEBRUAR 2 5			MARCH 3 5	4.0	8.5	APRIL 7 O	8.0	15.0		14.5
1 2 3 4 5	2.5	2.5 2.0 1.0	3.0 2.0 1.5	5.5 5.5	3.5 4.0 5.5	4.0 4.5 5.5	8.5 8.5	7.0 7.0	8.0 7.5	15.0 17.5 19.0	13.5 15.0 17.5	14.5 16.0 18.0
4 5	3.5 2.5 2.0 1.5 2.0	1.0 1.0 1.5	1.5 1.5 2.0	4.5 5.5 5.5 6.0 7.0	5.5 5.5 6.0	6.0 6.5	•••	• • • •	•••	19.0 19.0 17.0	17.0 14.5	18.0 18.0 16.0
6		1.5	2.0		7.0	7.5	10.5	8.0	9.0	14.5 14.0	13.5	14.0
6 7 8 9 10	2.0 2.5 2.5 2.0	1.5 1.5 2.0 1.5 1.0	2.0 2.0 2.0 2.0 1.5	7.5 7.5 8.5 9.5 9.5	7.0 7.0 8.0 9.0	7.5 7.5 7.5 9.0 9.0	10.0 11.5 11.5 13.0	8.0 8.5 10.0 11.5 11.5	9.0 9.5 11.0 11.5 12.0	14.0 14.5 15.5	13.5 13.5 13.5 13.5 14.5	14.0 14.0 14.0 14.0 15.0
1Ó												
11 12	1.5 2.0	.5	1.0 1.0	9.5 8.5	9.0 6.0	9.5 7.5	13.0 12.0	12.0 11.0	12.5 11.5	16.5 17.5	14.5 15.0	15.5 16.5
13 14	2.0 2.0 3.0	1.0 .5 1.5	1.0 1.0 1.5 1.5 2.0	9.5 8.5 6.0 5.5 5.0	5.0 4.5 3.5	9.5 7.5 5.5 5.0 4.5	11.0 11.5 12.0	10.0 9.5 10.5	10.5 10.5 11.5	16.5 17.5 18.0 19.0	16.5 18.0 19.0	15.5 16.5 17.5 18.5 19.0
15 16										18 5	16.5	
17 18	4.5 4.0 4.0	3.5 3.5	3.5 4.0 4.0	4.5 5.5	3.0 3.0 4.0	4.0 4.5	11.0	9.5 9.0	11.5 10.0 9.0	16.5 17.5	16.0 16.0	16.5
19 20	4.0 4.5 5.0	3.0 3.5 3.5 4.0 4.5	4.0 4.0 4.5	4.5 4.5 5.5 5.5 4.5	4.0	4.0 4.5 4.5 4.0	12.0 11.0 9.5 9.0 9.5	8.5 9.0	9.0 9.0	16.5 17.5 18.0 18.5	16.5 17.5	18.0 16.5 16.5 17.5 18.0
21	5.0	4.5 4.0	4.5		4.0 4.0			9.5 12.0	10.5	19.5	17.5 18.5	
21 22 23 24 25	5.0 5.0 6.0 6.5 6.5	5.0 6.0 5.5	4.5 4.5 5.5 6.0	5.5 5.5 4.5 5.0 6.5	3.5 3.5 4.0	4.5 4.5 4.0 4.5 5.0	12.0 14.0 16.5 17.0 16.5	14.0 15.5 14.5	10.5 12.5 15.0 16.0 15.5	19.5 21.0 22.5 23.0 20.5	20.0 20.5 18.5	18.5 19.5 21.0 22.0 20.0
			6.0									
26 27 28 29	5.5 5.5 5.0	5.0 4.5 4.5 4.5	5.0 5.0	7.5 7.5 7.5 7.0 7.0 8.5	6.0 7.0	6.5 7.5 6.5	14.5 14.0 14.0	13.0 12.5 13.0	13.5 13.5 13.5 13.5 13.5	18.5 16.5 17.0	16.0 16.0 15.0	17.0 16.0 16.0 16.5 17.5
28 - 29	5.0	4.5	5.0	7.5 7.0	6.0 5.0	6.0	14.0 14.0 14.0	12.5	13.5	18.0	15.5	16.5
30 31	•••	• • • •	•••	7.0 8.5	6.0	6.5 7.5	14.0	13.0	13.5	18.0 17.5	17.0 16.0	17.5
MONTH	6.5	.5	3.0	9.5	3.0	6.0	17.0	7.0	11.5	23.0	13.5	17.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	· MAX	MIN	MEAN
DAY	•	MIN JŲNE	MEAN	MAX	MIN JULY			AUGUST	MEAN		MIN SEPTEMBE	R
_	•	JUNE 16.0 16.5	16.0 17.0	25.0 25.5	JULY 23.5			AUGUST			SEPTEMBE	R
_	•	JUNE 16.0 16.5	16.0 17.0	25.0 25.5	JULY 23.5			AUGUST	23.0 22.5 22.5	23.0 22.5 22.0	SEPTEMBE	R
1 2 3 4 5	16.5 17.5 19.0 20.5 20.0	JUNE 16.0 16.5 17.0 18.5 18.0	16.0 17.0 18.0 19.5 20.0	25.0 25.5 24.5 22.5 22.5	JULY 23.5 24.0 22.5 21.5 21.0	24.5 24.5 23.5 22.0 21.5	23.5 23.0 23.5 23.5 23.5	AUGUST 22.5 21.5 21.5 22.5 22.5	23.0 22.5 22.5 23.0 23.0	23.0 22.5 22.0 21.5 23.0	21.5 21.5 21.5 21.0 20.5 21.5	22.5 22.0 21.5 21.0 22.0
1 2 3 4 5	16.5 17.5 19.0 20.5 20.0	JUNE 16.0 16.5 17.0 18.5 18.0	16.0 17.0 18.0 19.5 20.0	25.0 25.5 24.5 22.5 22.5	JULY 23.5 24.0 22.5 21.5 21.0	24.5 24.5 23.5 22.0 21.5 23.0 24.0	23.5 23.0 23.5 23.5 23.5	AUGUST 22.5 21.5 21.5 22.5 22.5	23.0 22.5 22.5 23.0 23.0 23.0	23.0 22.5 22.0 21.5 23.0	21.5 21.5 21.5 21.0 20.5 21.5	22.5 22.0 21.5 21.0 22.0
1 2 3 4 5 6 7 8 9	16.5 17.5 19.0 20.5 20.0 18.5 19.5 20.5	JUNE 16.0 16.5 17.0 18.5 18.0 17.5 18.0 19.5 20.5	16.0 17.0 18.0 19.5 20.0 18.0 18.5 20.5	25.0 25.5 24.5 22.5 22.5 24.0 24.5	JULY 23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.5 23.5	24.5 24.5 23.5 22.0 21.5 23.0 24.0 24.0 24.0	23.5 23.0 23.5 23.5 23.5 24.0 24.0	AUGUST 22.5 21.5 21.5 22.5 22.5 22.5 22.5 22.	23.0 22.5 22.5 23.0 23.0 23.0 23.0 23.0	23.0 22.5 22.0 21.5 23.0 22.5 21.0 22.0 23.0	21.5 21.5 21.0 20.5 21.5 21.0	22.5 22.0 21.5 21.0 22.0 22.0 21.0 21.5
1 2 3 4 5 6 7 8 9	16.5 17.5 19.0 20.5 20.0 18.5 19.5 20.5 21.0 21.0	JUNE 16.0 16.5 17.0 18.5 18.0 17.5 18.0 19.5 20.5	16.0 17.0 18.0 19.5 20.0 18.0 18.5 20.0 20.5 20.5	25.0 25.5 24.5 22.5 22.5 24.0 24.5 25.0 25.0 24.5	JULY 23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0	24.5 24.5 23.5 22.0 21.5 23.0 24.0 24.0 24.0 24.0	23.5 23.5 23.5 23.5 23.5 24.0 24.0 23.5 23.5 23.5	AUGUST 22.5 21.5 21.5 22.5 22.5 22.5 22.5 22.	23.0 22.5 22.5 23.0 23.0 23.0 23.0 23.0 22.5 23.0	23.0 22.5 22.0 21.5 23.0 22.5 21.0 22.0 23.0 24.0	21.5 21.5 21.0 20.5 21.5 21.0 20.5 21.0 21.5 21.0 21.5 23.0	22.5 22.0 21.5 21.0 22.0 22.0 21.5 22.5 23.5
1 2 3 4 5 6 7 8 9	16.5 17.5 19.0 20.5 20.0 18.5 19.5 21.0 21.0	JUNE 16.0 16.5 17.5 18.0 17.5 18.0 19.5 20.5	16.0 17.0 18.0 18.5 20.0 18.5 20.0 20.5	25.0 25.5 24.5 22.5 22.5 24.0 24.5 25.0 25.0 24.5	JULY 23.5 24.0 22.5 21.0 22.5 21.0 22.5 23.5 23.0 23.0	24.5 24.5 23.5 22.0 21.5 23.0 24.0 24.0 24.0 24.0	23.5 23.5 23.5 23.5 23.5 24.0 24.0 23.5 23.5 23.5	AUGUST 22.5 21.5 21.5 22.5 22.5 22.5 22.5 22.	23.0 22.5 22.5 23.0 23.0 23.0 23.0 23.0 22.5 23.0	23.0 22.5 22.0 21.5 23.0 22.5 21.0 22.0 23.0 24.0	21.5 21.5 21.0 20.5 21.5 21.0 20.5 21.0 21.5 21.0 21.5 23.0	22.5 22.0 21.5 21.0 22.0 22.0 21.5 22.5 23.5
1 2 3 4 5 6 7 8 9	16.5 17.5 19.0 20.5 20.0 18.5 19.5 20.5 21.0 21.0 22.5 23.0	JUNE 16.0 16.5 17.0 18.5 18.0 17.5 18.0 19.5 20.5 20.0 22.0	16.0 17.0 18.0 19.5 20.0 18.0 18.5 20.0 20.5 20.5	25.0 25.5 24.5 22.5 22.5 24.0 24.5	JULY 23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0	24.5 24.5 23.5 22.0 21.5 23.0 24.0 24.0 24.0 24.0	23.5 23.0 23.5 23.5 23.5 24.0 24.0	AUGUST 22.5 21.5 21.5 22.5 22.5 22.5 22.5 22.	23.0 22.5 22.5 23.0 23.0 23.0 23.0 23.0	23.0 22.5 22.0 21.5 23.0 22.5 21.0 22.0 23.0	21.5 21.5 21.0 20.5 21.5 21.0	22.5 22.0 21.5 21.0 22.0 22.0 21.0 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16.5 17.5 19.0 20.5 20.0 18.5 19.5 20.5 21.0 21.0 22.5 23.0	JUNE 16.0 16.5 17.0 18.5 18.0 17.5 18.0 19.5 20.5 20.0 22.0	16.0 17.0 18.0 19.5 20.0 18.5 20.0 20.5 20.5	25.0 25.5 24.5 22.5 24.0 25.0 25.0 24.5 25.0 26.0 26.0	23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0 23.0 23.0 24.0 24.5 25.5	24.5 24.5 23.0 21.5 23.0 24.0 24.0 24.0 24.0 24.5 25.5	23.5 23.0 23.5 23.5 24.0 23.5 23.5 24.0 25.0 25.0 22.5	AUGUST 22.5 21.5 22.5 22.5 22.5 22.5 22.0 22.0 23.0 23.0 23.0 22.5 21.0	23.0 22.5 23.5 23.0 23.0 23.0 22.5 23.0 23.5 23.5 23.5 23.5 23.5	23.0 22.5 22.0 21.5 23.0 22.0 23.0 24.0 24.0 23.5 21.5 20.5	21.5 21.5 21.5 21.5 21.5 21.0 20.5 21.0 21.5 23.0 23.5 21.5 20.0 19.5 19.0	22.5 22.0 21.5 21.0 22.0 22.0 22.0 21.5 22.5 23.5 23.5 21.0 20.0 20.0
1 2 3 4 5 6 7 8 9 10 11 123 145 16 17 18	16.5 17.5 19.0 20.5 20.0 18.5 19.5 20.5 21.0 21.0 22.5 23.0	JUNE 16.0 16.5 17.0 18.5 18.0 17.5 18.0 19.5 20.5 20.0 22.0	16.0 17.0 18.0 19.5 20.0 18.5 20.0 20.5 20.5	25.0 25.5 24.5 22.5 24.0 25.0 25.0 24.5 25.0 26.0 26.0	23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0 23.0 23.0 24.0 24.5 25.5	24.5 24.5 23.0 21.5 23.0 24.0 24.0 24.0 24.0 24.5 25.5	23.5 23.0 23.5 23.5 24.0 23.5 23.5 24.0 25.0 25.0 22.5	AUGUST 22.5 21.5 22.5 22.5 22.5 22.5 22.0 22.0 23.0 23.0 23.0 22.5 21.0	23.0 22.5 23.0 23.0 23.0 23.0 22.5 23.0 23.5 23.0 24.5 23.5 23.0 21.5	23.0 22.5 22.0 21.5 23.0 22.0 23.0 24.0 24.0 23.5 21.5 20.5	21.5 21.5 21.5 21.5 21.5 21.0 20.5 21.0 21.5 23.0 23.5 21.5 20.0 19.5 19.0	22.5 22.0 21.5 21.0 22.0 22.0 22.0 21.5 22.5 23.5 23.5 21.0 20.0 20.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	16.5 17.5 19.0 20.0 18.5 20.5 21.0 21.0 22.5 23.0 22.5 22.5 22.5 22.5 22.5	JUNE 16.0 16.5 17.0 18.5 18.0 17.5 18.0 19.5 20.5 20.0 21.5 21.0 22.0 21.5 21.5 21.0	16.0 17.0 18.0 19.5 20.0 18.5 20.5 20.5 20.5 21.0 22.0 22.0 22.0 21.5 21.0	25.0 25.5 24.5 22.5 24.5 25.0 24.5 25.0 24.5 26.5 26.5 26.5 26.5 26.5 26.5	23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0 24.0 24.5 24.5 23.0 24.5 23.0 23.0 23.0 23.5	24.5 24.5 23.5 21.5 23.0 24.0 24.0 24.0 24.0 24.0 24.5 25.5 26.0 25.5 26.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	23.5 23.0 23.5 23.5 23.5 24.0 24.0 25.0 24.0 25.0 24.0 20.5 21.0 20.5 22.0 22.5	AUGUST 22.5 21.5 21.5 22.5 22.5 22.5 22.0 22.0 23.0 24.0 23.0 24.0 23.0 20.0 19.5 19.5 20.5 21.5	23.0 22.5 22.5 23.0 23.0 23.0 23.0 22.5 23.0 22.5 23.5 24.5 23.5 23.5 24.5 23.5 21.5	23.0 22.5 22.0 21.5 23.0 22.0 23.0 24.0 23.5 21.5 20.5 21.5 20.5 21.5 22.5 22.5 22.5 22.5	21.5 21.5 21.0 20.5 21.5 21.0 20.5 21.0 21.5 23.0 23.5 21.5 20.0 19.5 19.0 19.5 20.0 21.0 22.0 21.0	22.5 22.0 21.5 22.0 22.0 22.0 22.5 23.5 23.5 23.5 22.0 20.0 20.0 20.0 22.0 21.5 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	16.5 17.5 19.0 20.5 20.0 18.5 19.5 21.0 21.0 22.5 23.0 22.5 22.5 22.0 21.5 22.0	JUNE 16.0 16.5 17.5 18.0 19.5 20.5 20.0 21.5 21.0 22.0 20.5 21.0 20.5	16.0 17.0 18.0 19.5 20.0 18.5 20.5 20.5 20.5 21.0 22.0 22.0 22.0 21.5 21.0	25.0 25.5 24.5 22.5 24.5 25.0 24.5 25.0 24.5 26.5 26.5 26.5 26.5 26.5 26.5	23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0 24.0 24.5 24.5 23.0 24.5 23.0 23.0 23.0 23.5	24.5 24.5 23.5 21.5 23.0 24.0 24.0 24.0 24.0 24.0 24.5 25.5 26.0 25.5 26.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	23.5 23.0 23.5 23.5 23.5 24.0 24.0 25.0 24.0 25.0 24.0 20.5 21.0 20.5 22.0 22.5	AUGUST 22.5 21.5 22.5 22.5 22.5 22.5 22.0 23.0 23.0 23.0 23.0 21.5 21.5 21.5 21.5	23.0 22.5 22.5 23.0 23.0 23.0 23.0 22.5 23.0 22.5 23.5 24.5 23.5 23.5 24.5 23.5 21.5	23.0 22.5 22.0 21.5 23.0 22.0 23.0 24.0 23.5 21.5 20.5 21.5 20.5 21.5 22.5 22.5 22.5 22.5	21.5 21.5 21.0 20.5 21.5 21.0 20.5 21.0 21.5 23.0 23.5 21.5 20.0 19.5 19.0 19.5 20.0 21.0 22.0 21.0	22.5 22.0 21.5 22.0 22.0 22.0 22.5 23.5 23.5 23.5 22.0 20.0 20.0 20.0 22.0 21.5 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	16.5 17.5 19.0 20.0 18.5 20.5 21.0 21.0 22.5 22.5 22.5 22.0 21.5 22.0 21.5	JUNE 16.0 16.5 17.0 18.5 18.0 17.5 18.0 20.5 20.0 21.5 21.0 20.5 21.5 21.0 20.5	16.0 17.0 18.0 19.5 20.0 18.5 20.5 20.5 21.0 22.0 22.0 21.5 21.0 21.5 21.0 21.5 21.5	25.0 25.5 24.5 22.5 24.5 25.0 24.5 25.0 24.5 26.5 26.5 26.5 26.5 26.5 26.5	23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0 24.0 24.5 24.5 23.0 24.5 23.0 23.0 23.0 23.5	24.5 24.5 23.5 21.5 23.0 24.0 24.0 24.0 24.0 24.0 24.5 25.5 26.0 25.5 26.0 27.5 27.5 27.5 27.5 27.5 27.5 27.5 27.5	23.5 23.0 23.5 23.5 23.5 24.0 24.0 25.0 24.0 25.0 24.0 20.5 21.0 20.5 22.0 22.5	AUGUST 22.5 21.5 22.5 22.5 22.5 22.5 22.0 23.0 23.0 23.0 23.0 21.5 21.5 21.5 21.5	23.0 22.5 22.5 23.0 23.0 23.0 23.0 23.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	23.0 22.5 22.0 21.5 23.0 22.0 23.0 24.0 23.5 21.5 20.5 21.5 20.5 21.5 22.5 22.5 22.5 22.5	21.5 21.5 21.0 20.5 21.5 21.0 20.5 21.0 21.5 23.0 23.5 21.5 20.0 19.5 19.0 19.5 20.0 21.0 22.0 21.0	22.5 22.0 21.5 22.0 22.0 22.0 22.5 23.5 23.5 23.5 22.0 20.0 20.0 20.0 22.0 21.5 21.5
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 7 18 19 20 21 22 3 24 5	16.5 17.5 19.0 20.0 18.5 20.5 21.0 21.0 22.5 22.5 22.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5	JUNE 16.0 16.5 17.5 18.0 17.5 18.0 19.5 20.5 20.0 21.5 21.5 21.5 21.5 21.6 20.5	16.0 17.0 18.0 19.5 20.0 18.5 20.5 20.5 21.0 22.0 22.0 22.5 21.0 22.0 21.5 21.5 21.5 21.5 20.5	25.0 25.5 24.5 22.5 24.5 25.0 25.0 26.0 26.5 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0 24.0 24.5 25.5 23.0 23.0 23.0 23.0 23.5 23.0 23.5 23.0 23.5 23.5 24.0 24.5 25.5 25.5 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	24.5 24.5 23.0 21.5 23.0 24.0 24.0 24.0 24.0 24.5 25.5 25.5 25.5 22.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	23.5 23.0 23.5 23.5 23.5 24.0 25.0 25.0 22.5 21.0 20.0 22.5 22.5 22.5 22.5 22.5 22.5 23.5	AUGUST 22.5 21.5 22.5 22.5 22.5 22.5 22.0 23.0 24.0 23.0 24.0 20.0 19.5 19.5 21.5 21.5 21.5 21.5 21.5	23.0 22.5 22.5 23.0 23.0 23.0 23.0 22.5 23.0 21.5 23.0 21.5 22.0 22.0 22.0 22.0 22.0 22.0	23.0 22.5 22.5 22.5 23.0 24.0 23.5 21.5 20.5 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22	21.5 21.5 21.5 21.5 21.0 20.5 21.0 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	22.5 22.0 21.5 21.5 22.0 22.0 22.0 21.5 22.5 23.5 23.5 22.0 20.0 20.0 21.5 22.0 20.0 21.5 22.0 20.0 21.5 20.0 21.5 20.0 20.0
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 7 18 19 20 21 22 3 24 5	16.5 17.5 19.0 20.0 18.5 20.5 21.0 21.0 22.5 22.5 22.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5	JUNE 16.0 16.5 17.5 18.0 17.5 18.0 19.5 20.5 20.0 21.5 21.5 21.5 21.5 21.6 20.5	16.0 17.0 18.0 19.5 20.0 18.5 20.5 20.5 21.0 22.0 22.0 22.5 21.0 22.0 21.5 21.5 21.5 21.5 20.5	25.0 25.5 24.5 22.5 24.5 25.0 25.0 26.0 26.5 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0 24.0 24.5 25.5 23.0 23.0 23.0 23.0 23.5 23.0 23.5 23.0 23.5 23.5 24.0 24.5 25.5 25.5 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	24.5 24.5 23.0 21.5 23.0 24.0 24.0 24.0 24.0 24.5 25.5 25.5 25.5 22.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	23.5 23.0 23.5 23.5 23.5 24.0 25.0 25.0 22.5 21.0 20.0 22.5 22.5 22.5 22.5 22.5 22.5 23.5	AUGUST 22.5 21.5 22.5 22.5 22.5 22.5 22.0 23.0 24.0 23.0 24.0 20.0 19.5 19.5 21.5 21.5 21.5 21.5 21.5	23.0 22.5 22.5 23.0 23.0 23.0 23.0 22.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	23.0 22.5 22.5 22.5 23.0 24.0 23.5 21.5 20.5 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22	21.5 21.5 21.5 21.5 21.0 20.5 21.0 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	22.5 22.0 21.5 21.5 22.0 22.0 22.0 21.5 22.5 23.5 23.5 22.0 20.0 20.0 21.5 22.0 20.0 21.5 22.0 20.0 21.5 20.0 21.5 20.0 20.0
1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 7 18 19 20 21 22 3 24 5	16.55 17.50 19.05 20.0 18.55 20.50 21.0 22.55 22.55 22.0 22.55 22.0 22.55 22.0 22.55 22.0 22.55 22.0 22.55 22.0 22.0	JUNE 16.0 16.5 17.5 18.0 17.5 18.0 20.5 20.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	16.0 17.0 18.5 20.0 18.5 20.5 20.5 21.0 22.5 22.0 21.5 21.5 21.0 21.5 21.5 21.5 22.5 22.5 22.5 22.5 22.5	25.0 25.5 24.5 22.5 24.5 25.0 25.0 26.0 26.5 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0	23.5 24.0 22.5 21.5 23.5 23.5 23.0 23.5 23.0 23.5 23.0 23.5 24.0 24.5 25.5 23.0 23.5 23.0 23.5 23.0 23.5 23.5 23.0 23.5 23.5 23.0 23.5 23.5 23.0 23.5 23.5 23.0 23.0 23.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	24.55 24.55 24.00 24.00 24.00 24.00 24.00 24.05 25.05 25.55 25.55 26.00 26.00 26.00 27.00	23.5 23.0 23.5 23.5 23.5 24.0 25.0 25.0 22.5 21.0 20.0 22.5 22.5 22.5 22.5 22.5 22.5 23.5	AUGUST 22.5 21.5 22.5 22.5 22.5 22.5 22.0 23.0 24.0 21.5 21.5 21.5 21.5 21.5 21.6 23.0 24.0 24.0 24.0 24.0	23.0 22.5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	23.0 22.5 22.5 22.5 22.5 23.0 24.0 23.5 20.5 21.5 20.5 21.5 22.5 20.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	SEPTEMBE 21.5 21.5 21.5 21.5 21.5 21.5 21.0 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	22.5 22.5 22.5 22.0 22.5 22.0 22.5 22.0 22.5 23.5 23.5 23.0 20.0 20.0 21.5 22.0 20.0 21.5 20.0 21.5 20.0 21.5 20.0 21.5 20.0 20.0 21.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	16.5 17.5 19.5 20.0 18.5 20.5 21.0 21.0 22.5 22.5 22.5 22.0 21.5 22.0 21.5	JUNE 16.0 16.5 17.5 18.0 17.5 18.0 20.5 20.0 21.5 21.0 22.0 21.5 21.5 21.0 20.5 20.5 20.5 20.5 20.5	16.0 17.0 18.5 20.0 18.5 20.5 20.5 21.0 22.0 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 21.5 22.0 22.5 22.0 22.5 22.0 22.5 22.0 22.5 22.5	25.0 25.5 24.5 22.5 24.5 25.0 24.5 25.0 24.5 26.5 26.5 26.5 26.5 26.5 26.5	23.5 24.0 22.5 21.5 21.0 22.5 23.5 23.0 23.0 24.0 24.5 25.5 23.0 23.0 23.0 23.0 23.5 23.0 23.5 23.0 23.5 23.5 24.0 24.5 25.5 25.5 26.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	24.5 24.5 23.0 21.5 23.0 24.0 24.0 24.0 24.0 24.5 25.5 25.5 25.5 22.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	23.5 23.0 23.5 23.5 23.5 24.0 24.0 25.0 24.0 25.0 24.0 20.5 21.0 20.5 22.0 22.5	AUGUST 22.5 21.5 22.5 22.5 22.5 22.5 22.0 23.0 24.0 23.0 24.0 20.0 19.5 19.5 21.5 21.5 21.5 21.5 21.5	23.0 22.5 22.5 23.0 23.0 23.0 23.0 22.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5	23.0 22.5 22.0 21.5 23.0 22.0 23.0 24.0 23.5 21.5 20.5 21.5 20.5 21.5 22.5 22.5 22.5 22.5	21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5	22.5 22.0 21.5 22.0 221.5 22.0 221.5 23.5 23.5 23.0 20.0 20.0 20.0 20.5 20.5 20.5 20.5 20

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued OXYGEN, DISSOLVED (MG/L), AT LEFT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		ONIGER	, 0.0002	ALD (MG/L)	, AI LLI	I THINKE,	WAILK IL	AK OCTOB	CK I	TO SEFTEMB	LK 177E	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	•
1 2 3 4 5	6.9 7.1 8.6 6.8 7.0	6.6 6.7 6.4 6.1 5.7	6.8 6.9 7.2 6.3 6.3	8.4 8.3 7.9 11.0 11.7	6.8 7.0 6.6 7.0 9.1	7.5 7.5 7.2 9.1 10.2	9.6 8.7 10.5 11.1 12.0	8.7 7.5 7.7 10.5 11.1	9.1 8.0 9.7 10.8 11.6	12.7 13.0 12.6 12.3 11.9	12.2 12.3 12.0 10.8 10.6	12.6 12.7 12.3 11.6 11.0
6 7 8 9 10	7.7 9.1 8.3 9.5 9.3	5.7 5.6 5.5 6.4 6.8	6.6 7.1 6.3 7.6 8.2	12.2 11.8 10.3 11.0 10.7	9.2 9.0 8.8 9.0 9.4	10.5 10.1 9.6 9.9 10.1	12.2 12.2 12.1 11.9 11.2	11.9 11.8 11.9 11.1 10.6	12.0 12.0 12.0 11.4 10.9	12.2	11.3	11.7
11 12 13 14 15	7.6 7.7 8.2 8.5 8.0	6.4 6.3 6.3 6.3 6.4	7.0 6.8 6.9 7.2	11.9 11.0 8.5 8.5 7.8	9.5 8.5 7.2 6.7 6.7	10.6 9.8 7.9 7.5 7.1	11.7 11.2 11.2 10.4 10.3	11.1 10.9 10.5 9.8 9.9	11.3 11.1 10.7 10.0 10.1			
16 17 18 19 20	8.0 8.5 7.5 7.5 7.6	6.9 6.4 7.0 7.0 6.9	7.3 6.9 7.3 7.3 7.2	9.1 12.6 12.0 11.7 11.8	6.7 7.5 9.2 9.7 9.2	7.7 9.7 10.6 10.7 10.5	10.8 11.2 11.6 11.6 12.6	10.0 10.8 11.1 11.1 11.3	10.4 11.0 11.3 11.3 12.2	•••		
21 22 23 24 25	8.1 8.4 8.6 8.3 7.9	7.1 7.6 7.6 7.0 6.4	7.5 7.9 8.0 7.6 7.1	10.6 10.5 10.8 10.2 10.5	9.4 9.0 9.1 9.9 9.9	10.0 9.7 10.0 10.0 10.2	12.7 12.1 11.8 11.7 11.5	11.6 11.6 11.2 11.0 10.7	12.3 11.8 11.5 11.3 11.0			
26 27 28 29 30 31	7.2 7.6 8.7 9.7 8.7 8.6	5.8 5.7 5.1 4.9 6.5 6.7	6.4 6.3 6.9 7.3 7.6 7.6	10.9 11.3 11.3 11.2 10.8	10.3 10.7 10.9 10.8 9.6	10.5 11.0 11.2 11.0 10.2	12.0 12.3 11.9 12.3 11.5 12.1	10.6 10.9 10.8 11.2 10.6 10.5	11.2 11.5 11.3 11.5 11.2			
MONTH	9.7	4.9	7.1	12.6	6.6	9.6	12.7	7.5	11.1	•••		•••
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5	MAX			13.0 13.4 13.2		MEAN 12.3 12.9 12.5	MAX		MEAN	10.9 11.2 11.2 10.4 10.6		MEAN 10.2 10.3 10.2 9.8 9.9
1		FEBRUAR	Y	13.0 13.4 13.2	MARCH 11.5 12.4 11.9	12.3 12.9 12.5		APRIL		10.9 11.2 11.2 10.4	MAY 9.8 9.5 9.4	10.2 10.3 10.2 9.8
1 2 3 4 5 6 7 8 9	14.7	FEBRUAR 13.3	Y 14.0	13.0 13.4 13.2	MARCH 11.5 12.4 11.9	12.3 12.9 12.5 		APRIL		10.9 11.2 11.2 10.4 10.6 11.5 12.0 11.0 9.8	9.8 9.5 9.1 9.3 9.7 10.5 8.6	10.2 10.3 10.2 9.8 9.9 10.5 11.1 10.3 9.1
1 2 3 4 5 6 7 8 9	14.7 14.6 15.6 16.3 17.4 17.5 17.1	FEBRUAR 13.3 13.5 13.7 13.8 14.3	14.0 14.0 14.6 14.9	13.0 13.4 13.2 11.2 12.5 13.4 13.6 14.2	MARCH 11.5 12.4 11.9 9.4 9.8 11.4	12.3 12.9 12.5 	12.2	APRIL	11.2 10.1 10.0 11.2	10.9 11.2 11.2 10.4 10.6 11.5 12.0 11.0 9.8 9.6	9.8 9.5 9.1 9.3 9.7 10.2 8.6 9.0 9.7	10.2 10.3 10.2 9.8 9.9 10.5 11.1 10.3 9.1 9.2
1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 15	14.7 14.6 15.6	FEBRUAR 13.3 13.5 13.7 13.8 14.3 14.1 13.0	14.0 14.0 14.6 15.5 15.7 15.4 15.9 12.3 11.9	13.0 13.4 13.2 11.2 12.5	9.4 9.8 11.4 12.0 12.1	12.3 12.9 12.5 12.5 12.5 10.2 11.3 12.3 12.8 13.4 13.4 13.4 13.6 13.1	12.2 12.3 11.5 12.4 12.6 12.2 11.8 9.6 10.7	APRIL	11.2 10.1 10.0 11.2 11.6 11.3 10.4 9.1 10.1	10.9 11.2 11.2 10.6 11.5 12.0 11.0 9.6 19.6 8.9 9.1 7.6 8.9 9.1	9.8 9.5 9.1 9.3 9.5 9.1 9.5 9.6 8.6 9.0 9.7 7.6 6.7 7.9 7.8	10.2 10.3 10.2 9.9 10.5 11.1 10.3 9.2 9.5 9.4 8.4 8.5 8.4
1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 1 8 9 2 0	14.7 14.6 15.6 16.3 17.5 17.1 16.5 13.0 12.3 11.9 12.0	13.3 13.5 13.7 13.8 14.3 14.6 14.1 13.0	14.0 14.0 14.6 15.5 15.7 15.7 15.8 11.9 11.6 11.7	13.0 13.4 13.2 11.2 12.5 13.6 14.2 14.8 14.8 14.8 14.9	MARCH 11.5 12.4 11.9 9.4 9.8 11.4 12.0 12.1 12.3 12.2 12.0 12.4 12.2	12.3 12.9 12.5 12.5 10.2 11.3 12.3 12.3 13.4 13.6 13.1 13.6 13.5 13.2	12.2 12.3 11.5 12.4 12.2 11.8 9.6 10.7 11.0 10.9 10.4 9.8	APRIL 10.0 8.9 9.1 10.4 10.9 10.3 8.6 9.6 9.7 10.0 9.7 8.5 8.4	11.2 10.1 10.0 11.2 11.6 11.3 10.4 9.1 10.1 10.5 10.1 9.2 9.0	10.9 11.2 11.2 10.6 11.5 12.0 9.6 10.1 9.8 9.5 9.1 7.9 9.4 11.4 13.0 13.0 6.6	MAY 9.54.13 752666 0.0966 7.0984 63.59	10.3 10.3 10.2 9.9 10.1 10.3 10.2 9.9 10.1 10.3 10.3 9.9 10.1 10.3 9.9 9.9 10.1 10.3 10.3 10.3 10.3 10.3 10.3 10.3

PASSAIC RIVER BASIN

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued OXYGEN, DISSOLVED (MG/L), AT LEFT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5				10.7 11.7 9.4 6.5 7.2	8.1 8.1 6.1 5.9 6.3	9.1 9.6 7.9 6.1 6.8	8.6 10.0 11.7 12.4 13.0	6.4 7.2 9.1 9.1 10.1	7.4 8.7 10.2 10.6 11.3	9.5 9.0 8.1 7.2 7.7	6.9 6.8 6.9 6.1 6.8	8.0 7.9 7.4 6.6 7.2
6 7 8 9 10			•••	7.1 7.9 9.0 7.5 9.3	6.3 6.9 7.1 7.1	6.7 7.1 7.8 7.3 8.0	12.9 12.4 11.5 8.1 8.6	9.4 8.7 8.0 6.7 6.5	10.8 10.3 9.5 7.1 7.3	7.7 7.7 8.6 9.3 9.2	7.1 7.1 6.9 7.2 7.1	7.3 7.4 7.6 8.1 7.9
11 12 13 14 15	9.2 9.5 9.0	7.2 7.1 7.5	8.1 8.3 8.4	10.1 9.4 9.0 10.1 10.5	7.9 7.2 6.5 7.0 7.6	8.8 8.3 7.6 8.5 8.8	8.1 10.5 9.6 9.6 8.9	6.8 6.6 8.1 8.1 7.6	7.6 8.5 8.9 8.8 8.5	7.6 8.7 10.2 11.2 11.4	6.7 7.4 8.1 8.3 8.2	7.2 8.0 9.1 9.5 9.6
16 17 18 19 20	8.7 9.0 8.7 8.2 7.7	7.4 7.8 7.6 6.2 6.2	8.2 8.4 8.1 7.1 6.8	7.4 6.8 7.2 8.2 8.8	5.1 5.5 6.0 6.6 6.6	6.4 6.1 6.6 7.2 7.5	8.0 7.7 8.1 8.3 8.8	7.4 7.1 7.2 7.6 7.4	7.6 7.3 7.6 7.9 8.1	11.3 11.1 10.7 9.5 9.2	8.1 7.9 7.9 7.5 7.2	9.5 9.3 9.0 8.3 8.1
21 22 23 24 25	7.7 8.6 10.9 10.4 11.9	6.7 7.0 8.4 8.6 8.1	7.3 7.7 9.6 9.8 9.7	8.9 10.1 7.6 7.2 8.0	6.6 6.2 5.5 5.5 6.9	7.6 7.9 6.7 6.4 7.4	10.5 11.4 12.5 13.6 12.4	8.3 8.8 8.9 8.9 9.0	9.1 9.8 10.2 10.8 10.4	10.2 10.4 9.6 9.5 10.6	7.7 7.8 7.5 8.0 8.6	8.8 8.9 8.4 8.7 9.5
26 27 28 29 30 31	10.4 9.7 10.1 10.8 9.5	8.8 7.2 6.8 7.1 7.5	9.7 8.0 8.3 9.0 8.7	7.8 7.7 9.0 10.9 13.1 11.5	6.6 6.3 6.9 7.7 8.8 7.9	7.3 7.0 7.9 8.9 10.5 10.0	10.9 9.0 8.6 7.3 8.4 9.5	7.5 6.6 5.8 6.1 6.2 6.7	9.0 7.6 7.1 6.7 7.2 7.9	9.7 8.6 8.8 9.7 10.4	8.5 8.0 7.9 8.5 8.5	9.1 8.4 8.3 9.1 9.4
MONTH	•••		•••	13.1	5.1	7.7	13.6	5.8	8.7	11.4	6.1	8.4
		OXYGEN,	DISSOLVED	(MG/L),	AT MIDD	LE INTAKE,	WATER Y	EAR OCTO	BER 1991	TO SEPTEM	1BER 1992	
DAY	MAX	MIN	DISSOLVED	MAX	MIN	MEAN	MAX	MIN	MEAN	TO SEPTEM	MIN	MEAN
		MIN OCTOBER	MEAN	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	MIN JANUARY	MEAN
DAY 1 2 3 4 5	MAX 6.8 6.9 6.4 6.3 6.4	MIN		MAX	MIN	MEAN	MAX	MIN	MEAN		MIN	MEAN
	6.8 6.9 6.4 6.3	MIN OCTOBER 6.5 6.4 6.0 5.8	6.6 6.6 6.2 6.0	7.3 6.8	MIN NOVEMBER 6.1 6.0 5.5	6.6 6.4 5.8 7.5	MAX	MIN DECEMBER	MEAN	11.4 11.9 12.2 11.9	MIN JANUARY 10.8 11.5 11.7 10.7	MEAN 11.1 11.7 11.9 11.5
1 2 3 4 5 6 7 8 9	6.8 6.4 6.3 6.4 5.6 5.4 6.4	MIN OCTOBER 6.5 6.4 6.0 5.8 5.5	MEAN 6.6 6.6 6.2 6.0 5.8 5.5 5.8	7.3 6.8 6.3 9.5 10.6	MIN NOVEMBER 6.1 6.0 5.5 7.9 7.8 7.7 8.1	MEAN 6.6 6.4 5.5 9.0 8.7 8.7	MAX	MIN DECEMBER	MEAN	11.4 11.9 12.2 11.9 10.6	MIN JANUARY 10.8 11.5 11.7 10.7 10.0 10.1 10.2 10.5 10.8	MEAN 11.1 11.7 11.9 11.5 10.3
12345 6789	6.8 6.4 6.3 6.4 5.4 7.8 7.8	MIN OCTOBER 6.5 6.4 6.0 5.8 5.5 5.3 5.1 6.5 6.1 6.5	MEAN 6.66.20 5.8 5.38 6.0 6.55	7.3 6.8 6.3 9.5 10.6 10.0 9.2 9.6 9.5	MIN NOVEMBER 6.1 6.0 5.5 5.4 7.9 7.8 7.7 8.1 8.2 8.5	MEAN 6.6 6.4 5.8 7.5 9.0 8.7 8.4 7 9.0	MAX	MIN DECEMBER	MEAN	11.4 11.9 12.2 11.9 10.6 10.5 10.5 11.0 11.2	MIN JANUARY 10.8 11.5 11.7 10.7 10.0 10.1 10.5 10.8 10.8	11.1 11.7 11.9 11.5 10.3 10.1 10.4 10.7 10.9
1 2 3 4 5 6 7 8 9 10 11 23 4 5 16 7 16 7 16 7 16 7 16 7 16 7 16 7 16	6.8 6.9 6.4 6.3 6.4 7.1 7.8 7.4 7.3 7.5	MIN OCTOBER 6.5 6.4 6.0 5.8 5.5 5.3 5.1 6.5 6.1 6.5 6.2 6.0 6.0	MEAN 6.66.20 5.8 55.866.0 6.56.9 7.65.9 7.65.9	7.3 6.3 9.5 10.6 10.0 9.2 9.6 9.5 9.6 8.4 8.2 7.6	MIN NOVEMBER 6.10 55.54 7.9 7.7.7 8.12 8.5 7.2 6.6 6.5 7.5 8.1 8.7	MEAN 66.4850 74700 18839 5139 7.5139	MAX 8.9 8.7 8.5 9.4 9.9 10.1	MIN DECEMBER 8.6 8.3 8.4 8.6 9.8 10.1	MEAN 8.8 8.6 8.4 9.0 9.8 10.0	11.4 11.9 12.2 11.9 10.6 10.2 10.5 10.8 11.2 11.7 12.1 11.7 12.2 10.8	MIN JANUARY 10.8 11.7 10.7 10.0 10.1 10.2 10.5 10.8 10.8 10.9 11.1 11.3 10.8 9.9 10.0 10.9 11.8	MEAN 11.1 11.7 11.9 11.5 10.3 10.1 10.4 10.7 11.0 11.5 11.5 11.5 11.5 11.5 11.5
1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 1 8 9 1 9 1 1 2 9 1 9 1 9 1 9 1 9 1 9 1 9 1	6.89 6.43 6.44 5.44 7.18 7.44 7.7.58 7.60 7.7.22 7.7.1 7.7.8	MIN OCTOBER 6.5 6.4 6.0 5.5 5.1 2 6.1 6.0 6.2 6.6 6.6 6.6 6.7 2.7 6.7	MEAN 6.66.20 5.8 5.38.60 6.85.56.6 7.66.9 7.5 7.7	MAX 7.38356 02465 68426 60289 9.8447 109999 9.88426 60289 9.89999 9.8447	MIN NOVEMBER 6.10 5.5.49 7.87.1 88.5 7.88.25 8.72.265 67.7.88.0 8.7.88.4 8.44	MEAN 66.4850 74700 18839 51390 8759	MAX 8.9 8.7 8.5 9.4 9.9 10.1 10.7 11.4 11.0 10.9 10.6	MIN DECEMBER 8.6 8.3 8.4 8.6 9.8 10.1 10.7 10.8 10.6 10.1 10.0	MEAN 8.8 8.6 8.4 9.0 9.8 10.0 10.4 10.8 10.9 10.7 10.1	11.4 11.9 12.2 11.9 10.6 10.5 10.8 11.0 11.2 12.1 11.7 12.2 10.8 10.9 11.8 12.5 12.8 13.0 13.1	MIN JANUARY 10.8 11.5 11.7 10.0 10.1 10.5 10.8 10.8 10.9 11.1 11.3 10.8 9.9 10.0 10.9 11.8 12.5 12.5	MEAN 11.1 11.7 11.9 11.5 10.3 10.1 10.4 10.7 11.5 11.5 11.5 10.2 11.4 11.2 12.6 12.7 12.8 12.1

PÄSSAIC RIVER BASIN

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued

OXYGEN, DISSOLVED (MG/L), AT MIDDLE INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIŃ	MEAN	MAX	MIN	MEAN
		FEBRUAR	Υ		MARCH			APRIL			MAY	
1 2 3 4 5	12.5 12.8 	11.9 11.8 	12.2 12.3 				9.6 10.0 10.6 11.1 12.0	8.8 9.0 9.6 10.4 10.7	9.2 9.4 10.0 10.8 11.2	9.0 8.7 8.5 8.4 8.1	8.5 8.0 7.6 7.7 7.5	8.7 8.3 8.0 8.0 7.8
6 7 8 9 10							12.5 13.5 13.3 13.0 12.5	10.7 10.7 10.5 10.5 10.1	11.6 12.0 12.0 11.4 11.3	8.6 8.8 9.1 8.9 8.0	7.5 8.1 8.2 7.7 7.0	8.0 8.4 8.4 8.4 7.5
11 12 13 14		•••		11.5 13.1 12.9 13.5 14.3	9.9 11.3 12.0 12.5 12.7	10.6 12.3 12.4 13.0 13.5	13.0 11.0 10.9 10.8 10.8	9.1 9.4 9.9 10.1 10.1	10.4 10.0 10.3 10.5 10.5	7.7 8.1 7.8 7.0 6.7	7.0 7.0 6.8 6.5 6.4	7.3 7.5 7.1 6.7 6.5
16 17 18 19 20		•••		15.1 14.4 15.2 14.3 14.6	13.2 13.1 12.5 11.8 12.3	14.1 13.8 13.8 13.0 13.5	10.7 9.9 10.4 11.1 11.0	9.4 9.1 9.4 9.6 10.0	9.9 9.5 9.8 10.2 10.5	7.4 7.0 7.2 7.3 7.6	6.4 6.5 6.6 6.8 7.0	6.8 6.9 7.0 7.3
21 22 23 24 25				14.2 13.8 15.1 15.8 16.0	11.8 11.8 11.6 13.6 12.8	13.0 12.9 13.0 14.7 14.7	10.7 10.1 9.7 8.5 8.4	9.6 8.9 8.5 7.6 7.5	10.1 9.3 9.0 8.0 7.9	9.3 9.4 6.8 7.3 6.9	7.1 6.5 5.7 5.9 5.4	8.0 7.4 6.2 6.5 6.1
26 27 28 29 30 31				15.9 12.9 12.7 12.3 10.5 9.9	13.5 10.2 10.9 10.6 9.5 9.3	14.2 11.0 11.7 11.7 9.8 9.5	8.9 9.1 9.1 9.2 9.1	7.6 8.2 8.1 8.3 8.5	8.3 8.7 8.6 8.8 8.8	5.4 6.6 6.8 7.4 7.4 8.7	3.7 5.5 6.1 6.6 6.8 6.9	4.6 6.2 6.5 7.0 7.1 7.8
MONTH	•		•••	•••	•••		13.5	7.5	9.9	9.4	3.7	7.3
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN		MIN SEPTEMBE	
1 2 · 3 4	9.1 9.2 8.4 6.9 8.2		8.9 8.9 7.7 6.7	MAX		MEAN	7.0 6.3 5.8 7.5 9.7					
	9.1 9.2 8.4	JUNE 8.5 8.4 7.0	8.9 8.9 7.7 6.7		JULY	•••	7.0 6.3 5.8	AUGUST 5.1 5.1 5.4	6.3 5.8 5.6 6.2	10.2 11.6 10.3 6.7	6.8 7.8 6.5	8.3 9.5 8.3 5.9
1 23 45 67 89	9.1 9.2 8.4 6.9 8.2	JUNE 8.5 8.4 7.0 6.2 5.9	8.9 8.9 7.7 6.7 6.7				7.0 6.3 5.8 7.5 9.7 11.1 11.7 11.0 7.8	5.1 5.1 5.4 5.4 6.7 7.8 8.0 8.2 6.3	6.3 5.8 5.6 6.2 8.1 9.3 9.5 6.8	10.2 11.6 10.3 6.7	6.8 7.8 6.5 5.5 	8.3 9.5 8.3 5.9
1 23 45 67 89 10 11 12 13	9.1 9.2 8.4 6.9 8.2	JUNE 8.5 8.4 7.0 6.2 5.9 3.3 3.4	8.9 8.9 7.7 6.7 6.7 	::: ::: ::: ::: ::: :::	JULY		7.0 6.3 5.8 7.5 9.7 11.1 11.0 7.8 8.0 7.6 9.3	5.1 5.1 5.4 6.7 7.8 8.0 8.2 6.3 6.2 6.3 7.3	6.3 5.8 5.6 6.2 8.1 9.3 9.5 6.8 7.0 7.7 7.8	10.2 11.6 10.3 6.7 6.5 7.4 7.9 6.8 6.8 6.8 7.9	6.8 7.8 6.5 5.5 5.4 6.0 6.2 6.2 6.2 6.7	8.3 9.5 8.3 5.9 6.7 6.9 6.3 7.6
1 2 3 4 5 6 7 8 9 10 11 12 3 14 5 16 7 8 9 10 17 8	9.1 9.2 8.9 8.2 4.3 4.4 4.5 4.6 7.1	JUNE 8.5 8.4 7.02 5.9 3.3 3.4 4.0 4.1 6.3	8.9 8.9 7.7 6.7 6.7 3.7 3.8 4.0 4.3 5.0 6.7	 	JULY		7.0 6.3 5.8 7.5 9.7 11.1 11.7 11.0 8.0 7.3 8.6 8.8 7.9 7.2 67.1	5.1 5.1 5.4 6.7 7.8 8.0 8.2 6.3 6.2 7.3 6.8	6.3 5.8 5.6 6.2 8.1 9.3 9.5 6.8 7.0 7.7 8.9 7.7 6.7 6.7 6.7	10.2 11.6 10.3 6.7 6.5 7.4 7.9 6.8 6.8 7.9 8.6	6.8 7.8 6.5 5.5 5.4 6.0 6.2 6.2 6.3 6.7	8.3 9.5 8.3 5.9 6.7 6.9 6.5 7.6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	9.1 9.2 8.4 68.2 4.3 4.5 4.6 8.7 10.9	JUNE 8.5 8.4 7.02 5.9 33.46 4.10 4.0 5.8 86.6 5.8 87.6	8.9 8.9 7.7 6.7 6.7 6.7 3.7 3.8 4.0 4.3 4.3 5.0 6.7 6.3 6.8 7.7	 5.7 6.1 6.9 7.9 9.7 7.4	JULY	 5.2 5.5 6.0	7.0 6.3 5.85 7.7 11.1 11.0 8.0 7.6 8.8 8.8 7.0 7.7 9.0 10.8 11.8	AUGUST 5.11 5.47 7.80 8.32 6.23 6.23 6.45 6.4 6.54 6.54 6.53 8.4	6.3 5.8 5.6 8.1 9.3 7.5 8.0 7.7 7.8 9.5 6.7 7.7 7.9 9.9 9.9	10.2 11.6 10.3 6.7 6.5 7.4 7.9 6.8 7.9 8.6 9.4 9.0	6.8 6.8 6.5 5.5 5.4 6.0 6.2 6.2 5.7 6.3 6.7 7.4 7.1	8.3 9.5 8.3 5.9 6.7 6.9 6.5 6.3 7.0 7.6

145 01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ -- Continued

OXYGEN, DISSOLVED (MG/L), AT RIGHT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1		•••	•••		•••	•••	9.0 8.7	8.6 7.6	8.8 8.0	10.9 11.2	10.6 10.9	10.8 11.0
2 3 4	• • • •	• • •		•••			8.6	7.7	8.0	11.5	11.1	11.2
4 5		• • •	•••	•••	•••	•••	9.0 9.0	8.7 8.8	9.0 8.9	11.2 10.5	10.6 10.0	10.9 10.2
					•••		9.2	9.0		10.1	10.0	10.0
6 7 8					• • •		9.4	9.2	9.1 9.3	10.3	10.1	10.2
8 9	• • • •	• • •	•••	•••	•••	•••	9.4 9.1	9.1 8.3	9.3 8.6	10.7 10.8	10.4 10.5	10.6 10.7
1Ó	• • •			•••			8.3	7.9	8.1	11.2	10.7	10.9
11					•••		8.8	8.2	8.5	11.1	10.8	11.0 11.2
12 13		•••		• • • •		• • • •	9.1 9.2	8.8 9.0	9.0 9.2	11.5 11.6	11.0 11.2	11.2 11.4
14		•••		•••	• • •		9.0	8.5	8.8	11.5	10.8	11.2 10.2
15	• • •	•••	•••	•••	•••	•••	8.8	8.7	8.7	10.8	9.9	10.2
16	• • •	• • •	•••	•••	•••		9.6	8.8	9.3	10.9	10.0	10.4
17 18		•••		•••	•••		10.2 10.3	9.6 10.0	10.0 10.2	11.3 11.8	11.0 11.3	11.1 11.5
19	• • •			• • •			10.9	10.3	10.6	• • •		• • •
20	• • •			•••	•••	•••	11.1	10.9	11.0	12.7	12.1	12.4
21 22			•••		•••	•••	11.2 11.1	11.0 10.7	11.1 10.9	12.5 12.3	12.1 11.8	12.3 12.0
23			• • •	•••	•••	• • •	10.7	10.2	10.5	11.9	11.3	11.6
21 22 23 24 25	• • • •	•••	•••	•••	•••	•••	10.4 10.4	10.1 10.0	10.3 10.2	11.6 11.2	10.7 10.9	11.2
			•••			F 0						
26 27 28	• • • • • • • • • • • • • • • • • • • •	•••	•••	6.2 7.1	5.5 6.3	5.9 6.7	10.4 10.8	10.2 10.4	10.3 10.6	11.8 12.3	11.2 11.9	11.5 12.1
28		•••	•••	8.2 8.8	7.2 8.2	7.8 8.5	11.0 11.0	10.6 10.6	10.8 10.8	12.2 12.4	11.9 12.0	12.1 12.2
29 30		•••		9.0	8.6	8.8	10.8	10.1	10.5	12.5	12.1	12.4
31	•••		•••	•••	•••	•••	10.6	10.2	10.4	12.5	12.0	12.2
MONTH	•••			•••	•••		11.2	7.6	9.6	12.7	9.9	11.3
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUAR		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1		FEBRUAR	Y 12.0		MARCH 11.0	11.8		APRIL		9.3	MAY 8.4	8.8
1	12.2 12.5	FEBRUAR 11.7 12.0	Y 12.0 12.2	12.4 12.7	MARCH 11.0 11.7	11.8 12.3		APRIL		9.3 9.0	MAY 8.4 8.2	8.8 8.5
1 2 3 4	12.2 12.5 13.1 13.5	FEBRUAR 11.7 12.0 12.3 12.6	12.0 12.2 12.6 12.9	12.4 12.7 12.6	MARCH 11.0 11.7 11.6 11.7	11.8 12.3 12.0 12.1		APRIL		9.3 9.0 8.3 7.6	MAY 8.4 8.2 7.6 6.8	8.8 8.5 7.8 7.1
1 2 3 4 5	12.2 12.5 13.1 13.5 13.4	11.7 12.0 12.3 12.6 12.6	12.0 12.2 12.6 12.9 12.9	12.4 12.7 12.6 12.8 12.9	MARCH 11.0 11.7 11.6 11.7 12.1	11.8 12.3 12.0 12.1 12.6		APRIL		9.3 9.0 8.3 7.6 7.3	MAY 8.4 8.2 7.6 6.8 6.9	8.8 8.5 7.8 7.1 7.1
1 2 3 4 5	12.2 12.5 13.1 13.5 13.4	FEBRUAR 11.7 12.0 12.3 12.6 12.6	12.0 12.2 12.6 12.9 12.9	12.4 12.7 12.6 12.8 12.9	MARCH 11.0 11.7 11.6 11.7 12.1	11.8 12.3 12.0 12.1 12.6		APRIL		9.3 9.0 8.3 7.6 7.3	MAY 8.4 8.2 7.6 6.8 6.9	8.8 8.5 7.8 7.1 7.1
1 2 3 4 5	12.2 12.5 13.1 13.5 13.4 13.7 14.0	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9	12.0 12.2 12.6 12.9 12.9	12.4 12.7 12.6 12.8 12.9	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5	:::	APRIL		9.3 9.0 8.3 7.6 7.3 8.5 8.5	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 8.1	8.8 8.5 7.8 7.1 7.1 8.1 8.5 8.3
1 2 3 4	12.2 12.5 13.1 13.5 13.4	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.3	12.4 12.7 12.6 12.8 12.9	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5		APRIL		9.3 9.0 8.3 7.6 7.3 8.5 8.5 8.5 8.3	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 8.1	8.8 8.5 7.8 7.1 7.1 8.1 8.3 8.3
1 2 3 4 5 6 7 8 9	12.2 12.5 13.1 13.5 13.4 13.7 14.0 13.8 14.1	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 12.9 13.0	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.2 13.3	12.4 12.7 12.6 12.8 12.9 13.0 11.0 10.7	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1		APRIL		9.3 9.0 8.3 7.3 8.5 8.5 8.3 8.1	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 8.1 7.6	8.8 8.5 7.8 7.1 7.1 8.1 8.3 8.3
1 2 3 4 5 6 7 8 9	12.2 12.5 13.1 13.5 13.4 13.7 14.0 13.8 14.1	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.0	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.2 13.3 13.7	12.4 12.7 12.8 12.9 13.0 10.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1 10.1		APRIL	 9.2	9.3 9.0 8.3 7.3 8.5 8.5 8.3 8.1	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 8.1 7.6 7.0	8.8 8.5 7.8 7.1 7.1 8.1 8.3 8.3
1 2 3 4 5 6 7 8 9	12.2 12.5 13.1 13.5 13.4 13.7 14.0 13.8 14.1	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.0	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.2 13.3 13.7	12.4 12.7 12.8 12.9 13.0 10.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 8.9 10.2	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1 10.1		APRIL	 9.2 8.7 7.9	9.3 9.0 8.3 7.3 8.5 8.5 8.3 8.1	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 8.1 7.6 7.0	8.8 8.5 7.8 7.1 7.1 8.1 8.3 8.3
1 2 3 4 5 6 7 8 9	12.2 12.5 13.1 13.5 13.4 14.0 13.8 14.1 14.5 15.3 16.0 15.5	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 12.9 13.0	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.6 14.8 14.7	12.4 12.7 12.8 12.9 13.0 10.2 11.0 10.6 10.6 11.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1 10.1 9.6 9.6	9.1 8.2 10.3 11.0	APRIL	 9.2	9.3 9.0 8.3 7.6 7.3 8.5 8.7 8.5 8.3	MAY 8.4 8.2 7.6 6.9 7.4 8.1 7.0 7.0 7.0 6.3 6.0	8.8 8.5 7.8 7.1 7.1 8.1 8.3 8.3
1 23 45 67 89 10 11 12 13 145	12.2 12.5 13.1 13.5 13.4 14.0 13.8 14.1 14.5 15.3 16.0 15.5	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.0 13.3 13.9 14.0 13.9 13.5	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.6 14.8 14.7	12.4 12.7 12.8 12.9 13.0 10.2 11.0 10.6 10.6 11.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 10.2 11.1	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1 10.1 9.6 9.6 10.4 10.9	9.1 8.2 10.3 11.0	APRIL 8.9 8.1 7.7 8.2 9.9 10.1	9.2 8.7 7.9 8.9 10.4	9.3 9.0 8.3 7.6 7.3 8.5 8.5 8.5 8.3 7.6 8.8 7.1	MAY 8.4 8.2 7.6 6.9 7.4 8.1 7.0 7.0 7.0 6.3 6.0	8.8 8.5 7.1 7.1 8.1 8.3 8.3 7.5 7.5 7.5 6.5 6.3
1 23 45 67 89 10 11 12 13 145	12.2 12.5 13.1 13.5 13.4 14.0 13.8 14.1 14.5 15.3 16.0 15.5	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.0 13.3 13.9 14.0 13.9 13.9	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.6 14.8 14.7 14.5	12.4 12.7 12.8 12.9 13.0 10.2 11.0 10.6 10.6 11.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 10.2 11.1	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1 10.1 9.6 9.6 10.4 10.9	9.1 8.2 10.3 11.0	APRIL 8.9 8.1 7.7 8.2 9.9 10.1	9.2 8.7 7.9 8.9 10.4	9.3 9.0 8.3 7.6 7.3 8.5 8.5 8.5 8.3 7.6 8.8 7.1	MAY 8.4 8.2 7.6 6.9 7.4 8.1 7.0 7.0 7.0 6.3 6.0	8.8 8.5 7.1 7.1 8.1 8.3 8.3 7.5 7.5 7.5 6.5 6.3
1 23 45 67 89 10 11 12 13 145	12.2 12.5 13.1 13.5 13.4 14.0 13.8 14.1 14.5 15.3 16.0 15.5	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.0 13.3 14.0 13.9 14.0 10.9 10.6	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.6 14.7 14.5 12.7 11.2 11.0	12.4 12.7 12.8 12.9 13.0 10.2 11.0 10.6 10.6 11.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 10.2 11.1	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1 10.1 9.6 9.6 10.4 10.9	9.1 8.2 10.3 11.0	APRIL 8.9 8.1 7.7 8.2 9.9 10.1	9.2 8.7 7.9 8.9 10.4 10.4 9.5 9.5	9.3 9.0 8.3 7.6 7.3 8.5 8.5 8.5 8.3 7.6 8.8 7.1	MAY 8.4 8.2 7.6 6.9 7.4 8.1 7.0 7.0 7.0 6.3 6.0	8.8 8.5 7.1 7.1 8.1 8.3 8.3 7.5 7.5 7.5 6.5 6.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	12.2 12.5 13.1 13.5 13.7 14.0 14.1 15.8 16.0 15.5 11.4 11.4	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.0 13.3 13.9 14.0 13.5 11.0 10.9 10.6 10.4	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.6 14.7 14.5	12.4 12.7 12.8 12.9 13.0 10.7 10.6 10.0 10.2 10.6 11.7 12.1 12.4 12.8 12.7 13.4	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 8.9 10.2 10.4 11.1 11.7 11.9 12.0 11.9	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1 10.1 9.6 10.4 10.9 11.4 11.6 12.3 12.2	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1	APRIL 8.9 8.1 7.7 8.2 9.9 10.1 9.1 9.0 8.9 9.0 9.4	9.2 8.7 7.9 8.9 10.4 9.5 9.5 9.7 9.9	9.3 9.0 8.3 7.3 8.5 8.5 8.3 7.6 6.9 6.9	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 7.6 7.0 7.0 6.9 6.3 6.5 6.5	8.8 8.5 7.8 7.1 8.5 8.3 8.1 7.5 7.5 7.5 6.3 6.6 6.7 6.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	12.2 12.5 13.1 13.5 13.7 14.0 14.1 15.8 16.0 15.5 11.4 11.4	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.3 13.9 14.0 13.9 14.0 10.9 10.6 10.4	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.6 14.7 14.5	12.4 12.7 12.8 12.9 13.0 10.7 10.6 10.0 10.2 10.6 11.7 12.1 12.4 12.8 12.7 13.4	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 8.9 10.2 10.4 11.1 11.7 11.9 12.0 11.9	11.8 12.3 12.0 12.1 12.6 12.1 11.3 10.5 10.1 10.1 9.6 10.4 10.9 11.4 11.6 12.3 12.2	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1	APRIL 8.9 8.1 7.7 8.2 9.9 10.1 9.1 9.0 8.9 9.0 9.4	9.2 8.7 7.9 8.9 10.4 9.5 9.5 9.7 9.9	9.3 9.0 8.3 7.3 8.5 8.5 8.3 7.6 6.9 6.9	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 7.6 7.0 7.0 6.9 6.3 6.5 6.5	8.8 8.5 7.8 7.1 8.5 8.3 8.1 7.5 7.5 7.5 6.3 6.6 6.7 6.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	12.2 12.5 13.1 13.5 13.7 14.0 14.1 15.8 16.0 15.5 11.4 11.4	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.3 13.9 14.0 13.9 14.0 10.9 10.6 10.4	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.6 14.7 14.5 11.1 11.0 11.0	12.4 12.7 12.8 12.9 13.0 10.7 10.6 10.0 10.2 10.6 11.7 12.1 12.4 12.8 12.7 13.4	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 8.9 10.2 10.4 11.1 11.7 11.9 12.0 11.9	11.8 12.3 12.0 12.1 12.6 12.1 10.5 10.1 10.1 9.6 10.9 11.4 11.6 12.3 12.2 12.5 13.0 13.2	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1	APRIL 8.9 8.1 7.7 8.2 9.9 10.1 9.1 9.0 8.9 9.0 9.4	9.2 8.7 7.8.9 10.4 9.5 9.5 9.5 9.5 9.5 9.5 9.5	9.3 9.0 8.3 7.3 8.5 8.5 8.3 7.6 6.9 6.9	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 7.6 7.0 7.0 6.9 6.3 6.5 6.5	8.8 8.5 7.8 7.1 8.5 8.3 8.1 7.5 7.5 7.5 6.3 6.6 6.7 6.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	12.2 12.5 13.1 13.5 13.7 14.0 14.1 15.8 16.0 15.5 11.4 11.4	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.3 13.9 14.0 13.9 14.0 10.9 10.6 10.4	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.6 14.7 14.5 11.1 11.0 11.0	12.4 12.7 12.8 12.9 13.0 10.7 10.6 10.0 10.2 10.6 11.7 12.1 12.4 12.8 12.7 13.4	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 8.9 10.2 10.4 11.1 11.7 11.9 12.0 11.9	11.8 12.3 12.0 12.1 12.6 12.1 10.5 10.1 10.1 9.6 10.9 11.4 11.6 12.3 12.2 12.5 13.0 13.2	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1	APRIL 8.9 8.1 7.7 8.2 9.9 10.1 9.1 9.0 8.9 9.0 9.4	9.2 8.7 7.9 8.9 10.4 9.7 9.5 9.7 9.5 9.7 9.8	9.3 9.0 8.3 7.3 8.5 8.5 8.3 7.6 6.9 6.9	MAY 8.4 8.2 7.6 6.8 6.9 7.4 8.3 7.6 7.0 7.0 6.9 6.3 6.5 6.5	8.8 8.5 7.8 7.1 8.5 8.3 8.1 7.5 7.5 7.5 6.3 6.6 6.7 6.7
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 32 22 5	12.2 12.5 13.1 13.5 13.4 13.7 13.8 14.1 15.3 16.0 15.5 11.7 11.4 11.4 12.6 12.7 11.8	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.0 13.3 13.9 14.0 13.9 14.0 10.9 10.9 10.6 10.4 10.7 11.8 10.7	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.8 14.7 14.5 11.0 11.0 11.0 11.0 12.3 12.1 11.1	12.4 12.7 12.6 12.9 13.0 10.7 10.6 10.2 11.7 12.4 12.8 12.8 13.4 13.8 14.7 15.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 10.2 10.4 11.1 11.7 11.9 12.0 11.9 12.3 12.5 12.9 13.3	11.8 12.3 12.0 12.1 12.6 12.1 10.5 10.1 10.5 10.1 10.9 11.4 11.6 12.3 12.3 12.5 13.0 13.2 13.8 14.2	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1 10.3 10.6 10.5 10.5 10.2 9.6 8.6 8.3	APRIL 8.9 8.1 7.7 8.2 9.9 10.1 9.1 9.0 8.9 9.4 9.5 8.9 8.2 7.6 7.4	9.2 8.7 7.8 9.2 8.7 9.5 9.5 9.7 9.5 9.7 9.5 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	9.3 9.0 8.5 7.3 8.5 8.5 8.5 8.5 7.6 6.5 9.9 7.6 6.9 7.6 7.6 7.6 7.6 7.6 7.6	MAY 8.427.68.9 7.431.60 7.093.0 9.935.5 6.55.80 6.55.80	8.85 7.71 8.53 7.77.6.5 8.6.6.6 6.6.6.7 9.71.5 6.6.6.7
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 32 22 5	12.2 12.5 13.1 13.5 13.4 13.7 13.8 14.1 15.3 16.0 15.5 11.7 11.4 11.4 12.6 12.7 11.8	FEBRUAR 11.7 12.0 12.3 12.6 12.7 12.9 13.0 13.3 13.9 14.0 13.5 11.0 10.9 10.6 10.4 10.7 11.7 11.8 10.7	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.8 14.7 14.5 11.0 11.0 11.0 11.0 12.3 12.1 11.1	12.4 12.7 12.6 12.9 13.0 10.7 10.6 10.2 11.7 12.4 12.8 12.8 13.4 13.8 14.7 15.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 10.2 10.4 11.1 11.7 11.9 12.0 11.9 12.3 12.5 12.9 13.3	11.8 12.3 12.0 12.1 12.6 12.1 10.5 10.1 10.5 10.1 10.9 11.4 11.6 12.3 12.3 12.5 13.0 13.2 13.8 14.2	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1 10.3 10.6 10.5 10.5 10.2 9.6 8.6 8.3	APRIL 8.9 8.1 7.7 8.2 9.0 9.4 9.5 8.9 9.4 7.2 8.9	9.2 8.77.9 8.94 10.4 9.55.7 9.9 10.05.9 8.1 8.6	9.3 9.0 8.5 7.3 8.5 8.5 8.5 8.5 7.6 6.5 9.9 7.6 6.9 7.6 7.6 7.6 7.6 7.6 7.6	MAY 8.4.2.6.8.9 7.4.3.1.6.0 0.0.9.3.0 9.9.3.5.5 6.2.5.8.0 1.1	8.5 7.7 7.1 8.5 8.3 7.7 6.3 6.6 6.6 6.7 7.7 6.5 6.6 6.6 6.6 6.6 6.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 32 22 5	12.2 12.5 13.1 13.5 13.4 13.7 13.8 14.1 15.3 16.0 15.5 11.7 11.4 11.4 12.6 12.7 11.8	FEBRUAR 11.7 12.0 12.3 12.6 12.7 12.8 12.9 13.0 13.3 13.9 14.0 10.9 10.6 10.7 11.7 11.8 10.7 10.5 10.9	12.0 12.2 12.6 12.9 12.9 13.1 13.3 13.7 14.2 14.8 14.7 14.5 11.0 11.0 11.0 11.0 12.3 12.1 11.1	12.4 12.7 12.6 12.9 13.0 10.7 10.6 10.2 11.7 12.4 12.8 12.8 13.4 13.8 14.7 15.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 10.2 10.4 11.1 11.7 11.9 12.0 11.9 12.3 12.5 12.9 13.3	11.8 12.3 12.0 12.1 12.6 12.3 10.5 10.1 10.5 10.9 11.4 11.6 10.9 11.2 12.3 12.5 13.3 13.4 13.8 14.2 13.9 11.0 10.2	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1 10.3 10.6 10.5 10.5 10.2 9.6 8.6 8.3	APRIL 8.9 8.1 7.7 8.2 9.0 9.4 9.5 8.9 9.4 7.2 8.9	9.2 8.7 7.8 9.9 10.4 10.4 9.5 9.7 9.9 10.5 9.8 8.6 8.6 8.6	9.3 9.0 8.5 7.3 8.5 8.5 8.5 8.5 7.6 6.5 9.9 7.6 6.9 7.6 7.6 7.6 7.6 7.6 7.6	MAY 8.4.2.6.8.9 7.4.3.1.6.0 0.0.9.3.0 9.9.3.5.5 6.2.5.8.0 1.1	8.5 7.7 7.1 8.5 8.3 7.7 6.3 6.6 6.6 6.7 7.7 6.5 6.6 6.6 6.6 6.6 6.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 32 22 5	12.5 13.5 13.6 13.6 13.7 13.8 14.5 15.8 16.0 15.5 11.4 11.4 11.4 11.5 11.7 11.7 11.8 11.7 11.8 11.7 11.8 11.7 11.8 11.8	FEBRUAR 11.7 12.0 12.3 12.6 12.6 12.7 12.8 12.9 13.0 13.3 13.9 14.0 13.5 11.0 10.9 10.6 10.4 10.7 11.4 11.7 11.8 10.7	12.0 12.2 12.6 12.9 13.1 13.3 13.7 14.2 13.3 13.7 14.6 14.7 14.5 11.0 11.0 11.0 11.1 11.1 11.1 11.1	12.4 12.7 12.8 12.9 13.0 10.7 10.6 10.2 11.7 12.4 12.8 12.7 13.4 13.8 14.7 15.2 15.1 10.1	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.5 9.7 8.9 10.2 11.1 11.7 11.9 12.3 12.5 12.9 13.3 12.5 12.9 9.6	11.8 12.3 12.1 12.6 12.1 10.5 10.1 10.9 11.4 12.3 10.5 10.1 11.5 10.1 11.0 12.3 12.3 13.4 13.8 14.2 13.9 10.8	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1 10.5 10.6 8.6 8.3 8.8 9.1 9.5 9.5	APRIL 8.9 8.1 7.7 8.9 9.0 9.0 9.4 9.5 8.9 8.2 7.6 7.4 7.2 8.1 8.3 8.6	9.2 8.7 7.8.9 10.4 9.55 9.7 9.55 9.7 9.8.9 10.5 8.6 8.6 8.6 8.9 9.0	9.3 9.0 8.5 7.3 8.5 8.5 8.5 8.5 7.6 6.5 9.9 7.6 6.9 7.6 7.6 7.6 7.6 7.6 7.6	MAY 8.26.68.9 7.88.160 00.930 9.93.55 6.25.80 1.15.2	8.85 7.77. 8.53 8.81.5 3.52 8.83.15 03.67.7 9.71.57 0.71.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	12.2 12.5 13.1 13.5 13.4 13.7 13.8 14.1 15.3 16.0 15.5 11.7 11.4 11.4 12.6 12.7 11.8	FEBRUAR 11.7 12.0 12.3 12.6 12.7 12.9 13.0 13.3 13.9 14.0 13.9 10.9 10.6 10.7 11.7 11.8 10.7 10.5 10.9 10.8	12.0 12.2 12.6 12.9 13.1 13.3 13.7 14.2 14.8 14.7 14.5 12.7 11.0 11.0 11.1 11.1 11.1 11.3 11.3	12.4 12.7 12.6 12.9 13.0 10.7 10.6 10.2 11.7 12.4 12.8 12.8 13.4 13.8 14.7 15.2	MARCH 11.0 11.7 11.6 11.7 12.1 11.1 10.3 9.9 9.5 9.7 8.9 10.2 10.4 11.1 11.7 11.9 12.0 11.9 12.3 12.5 12.9 13.3	11.8 12.3 12.0 12.1 12.6 12.3 10.5 10.1 10.5 10.9 11.4 11.6 10.9 11.2 12.3 12.5 13.3 13.4 13.8 14.2 13.9 11.0 10.2	9.8 9.1 8.2 10.3 11.0 10.7 9.9 10.1	APRIL 8.9 8.1 7.7 8.9 9.0 9.1 9.0 8.9 9.4 9.5 8.2 7.6 7.4 7.2 8.1 8.3	9.2 8.7 7.5 9.2 8.7 9.5 10.4 9.7 9.5 9.9 10.5 8.6 8.6 8.9	9.3 9.0 8.3 7.3 8.5 8.5 8.3 7.6 6.9 6.9	MAY 8.4.2.6.8.9 7.4.3.1.6.0 0.0.9.3.0 9.9.3.5.5 6.2.5.8.0 1.1	8.5 7.7 7.1 8.5 8.3 7.7 6.3 6.6 6.6 6.7 7.7 6.5 6.6 6.6 6.6 6.6 6.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7

PASSAIC RIVER BASIN

01389005 PASSAIC RIVER BELOW POMPTON RIVER AT TWO BRIDGES, NJ--Continued

OXYGEN, DISSOLVED (MG/L), AT RIGHT INTAKE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		J		(, -, ,			W/// E// / E///		,,,			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY	•	A	UGUST		S	EPTEMBE	R
1 2 3 4 5	7.8 7.0 6.2 5.5 7.4	6.9 6.2 5.5 5.2 5.0	7.4 6.6 5.9 5.5 5.4	9.5 10.1 9.6 7.9 7.0	6.7 6.9 7.3 6.5 5.9	7.8 8.3 8.5 7.2 6.5	7.9 6.6 6.2 7.0 7.5	5.6 5.8 5.6 5.7	6.5 6.2 6.0 6.2 6.6	11.1 11.7 10.7 9.6 6.6	7.4 9.6 7.4 5.7 5.7	9.2 10.6 10.1 6.7 6.3
6 7 8 9 10	8.0 7.5 3.6 3.3	6.9 3.4 3.4 3.1	7.6 5.3 3.5 3.2	7.8 8.7 9.2 8.9 6.6	5.9 6.0 6.5 6.5 5.5	6.6 7.2 7.8 7.7 5.9	9.4 10.7 10.7 9.0 7.5	6.7 7.5 8.8 7.6 6.0	7.9 9.1 9.6 8.4 6.5	6.4 5.7 6.1 6.9 7.5	5.5 5.3 5.5 5.9 6.2	6.0 5.5 5.8 6.4 6.7
11 12 13 14 15	3.4 3.5 3.6	2.7 2.7 2.8	3.0 3.0 3.2	5.8 5.5 6.7 7.9 7.0	5.0 5.0 4.9 5.4 5.5	5.4 5.2 5.6 6.6 6.3	7.3 7.5 7.7 8.1 7.6	6.1 6.5 6.5 6.5	6.6 6.8 7.0 7.3 7.1	7.2 6.7 7.9 8.2 9.1	6.3 5.8 6.4 6.9 7.2	6.7 6.3 7.1 7.5 8.0
16 17 18 19 20	3.6 3.5 3.9 4.3 4.8	3.2 3.2 3.1 3.6 4.3	3.4 3.5 3.9 4.5	5.8 5.6 6.2 7.0	5.1 4.4 4.6 5.0 5.3	5.4 4.7 5.1 5.5 6.0	6.8 6.7 7.3 7.2 7.6	6.3 6.4 6.8 6.6	6.5 6.8 6.9 7.0	9.9 	7.4	8.5
21 22 23 24 25	5.7 5.9 6.7 6.9 6.5	4.4 5.0 5.6 6.2 6.1	5.1 5.4 6.1 6.5 6.2	8.0 9.6 7.4 6.2 6.9	5.9 5.7 5.9 5.3 5.6	6.8 7.6 6.6 5.7 6.2	7.9 9.1 9.7 10.4 10.3	6.7 6.9 7.7 7.4 7.7	7.3 7.9 8.6 8.8 9.0			
26 27 28 29 30 31	6.4 6.8 7.4 8.1 8.4	5.8 6.0 6.1 6.0 6.8	6.1 6.4 6.7 7.1 7.5	6.7 6.8 8.5 9.5 9.8 9.6	5.9 5.6 5.9 6.3 7.2 8.1	6.2 6.1 7.0 7.9 8.4 8.6	10.8 10.4 9.7 7.9 9.9 10.2	7.8 8.2 7.3 4.6 7.5 7.1	9.3 9.3 8.6 6.4 8.6 8.6			
MONTH	8.4	2.7	5.2	10.1	4.4	6.7	10.8	4.6	7.5	•••		•••

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ (National stream quality accounting network station)

LOCATION.--Lat 40°53'05", long 74°13'35", Passaic County, Hydrologic Unit 02030103, on left bank 0.6 mi downstream from Beattie's Dam in Little Falls, and 1.0 mi upstream from Peckman River.

DRAINAGE AREA. -- 762 mi². Area at site used prior to Oct. 1, 1955, 799 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD...September 1897 to current year. Monthly discharge only for September 1897, published in WSP 1302. Published as "at Paterson", September 1897 to September 1955.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 120.00 ft above sea level (levels by Passaic Valley Water Commission). Prior to Jan. 8, 1933, nonrecording gage and Jan. 8, 1933, to Sept. 30, 1955, water-stage recorder, at site 3.7 mi downstream at sea level (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Diurnal fluctuation at medium and low flow caused by hydroelectric plant at Beattie's Dam. Flow regulated by reservoirs in Rockaway, Pequannock, Wanaque, and Ramapo River subbasins (see Passaic River basin, reservoirs in). Large diversions for municipal supply from Passaic River above Beattie's Dam, and from Rockaway, Pequannock, Pompton, Ramapo, and Wanaque Rivers (see Passaic River basin, diversions and Hackensack River basin, diversions). In addition, the New Jersey-American Water Company (formerly Commonwealth Water Co.) diverts from Canoe Brook near Summit and from Passaic River (see Passaic River basin, diversions); that company, the city of East Orange, and others also divert water for municipal supply by pumping wells in the basin. Several measurements of water temperature, other than those published, were made during the year. National Weather Service rain-gage and gage-height and USGS satellite telemeters at station.

COOPERATION.--Gage-height record collected in cooperation with the Passaic Valley Water Commission. Analyses of fecal coliform by the MPN method and enterococcus bacteria by the membrane filtration method were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

PEAK	DISC	IARGES	FOR CURREN	IT YEAR.	Peak di	scharges gr Gage height	eater t	han base d	ischarge d	of 4,400	ft ³ /s and	maximum Ga	(*): age height
Date		Time		(ft ³ /s	,)	(ft)	·	Date	Time	•	(ft ³ /s)		(ft)
June	7	2215		*6,410		*7.21		No other	peak grea	iter than	n base disc	harge.	
•			DISCHAR	RGE, CUE	BIC FEET F	ER SECOND, DAILY	WATER Y	EAR OCTOBE ALUES	R 1991 TO	SEPTEMBE	R 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		485	155	200	487	457	380	2310	578	2310	423	1190	172
2		229	117	174	417	437	262	2080	543	2290	362	989	155
3		240	100	1000	404	407	224	1830	537	2020	323	800	489
4		79	141	1910	562	389	298	1590	512	1780	410	619	1660
5		57	191	1830	843	384	463	1350	462	1970	478	479	1150
6		207	161	1630	876	369	448	1110	436	4590	419	355	967 ·
7		293	105	1390	754	358	522	889	400	6050	373	275	658
8		96	93	1260	624	354	805	730	422	6250	312	239	437
9		55	87	977	569	352	890	605	714	5600	621	607	335
10		107	87	925	539	298	792	575	801	4780	723	734	287
11		90	132	839	504	160	1210	674	749	3940	641	618	517
12		86	188	673	477	143	1540	706	635	3290	497	554	505
13		107	133	595	416	120	1420	681	551	2780	454	444	382
14		70	109	571	566	130	1360	601	492	2330	414	417	289
15		75	87	530	778	174	1200	533	433	1940	485	396	234
16		206	84	440	734	640	968	505	493	1520	741	369	205
17		317	90	352	573	698	839	588	549	1120	665	413	207
18		406	105	289	487	601	777	762	544	773	589	565	214
19		339	100	239	400	470	770	885	480	658	493	641	218
20		190	98	230	387	406	828	899	422	791	408	545	222
21		79	101	225	350	337	838	807	380	764	347	413	189
22		77	473	213	323	235	805	763	284	633	284	322	187
23		104	1430	204	407	205	797	938	137	518	354	270	327
24		79	1670	202	932	193	771	984	191	510	586	239	302
25		80	1360	188	1120	243	741	1110	338	630	471	219	241
26 27 28 29 30 31		92 87 135 97 92 85	985 685 448 308 242	160 149 140 209 406 468	929 756 600 527 511 483	594 769 720 564 	934 2420 2940 2780 2570 2490	1070 935 799 709 633	285 289 247 190 151 737	592 668 680 584 487	391 521 441 341 292 411	191 261 288 331 255 203	402 507 480 389 298
TOTA		4741	10065	18618	18335	11207	34082	28651	13982	62848	14270	14241	12625
MEAN		153	335	601	591	386	1099	955	451	2095	460	459	421
MAX		485	1670	1910	1120	769	2940	2310	801	6250	741	1190	1660
MIN		55	84	140	323	120	224	505	137	487	284	191	155
STAT	ISTIC	S OF MC	NTHLY MEA	N DATA	FOR WATER	YEARS 1898	- 1992,	, BY WATER	YEAR (WY)				
MEAN		627	947	1255	1336	1438	2377	2077	1329	788	535	555	538
MAX		5613	4757	4497	4039	3787	6755	5760	4554	4290	3124	2859	3561
(WY)		1904	1908	1903	1979	1973	1936	1983	1989	1972	1945	1942	1971
MIN		44.5	79.2	111	104	178	423	228	227	84.6	60.3	30.4	28.9
(WY)		1931	1932	1981	1981	1901	1981	1985	1965	1965	1954	1923	1964

PASSAIC RIVER BASIN
01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALEND	AR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1898 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	281429 771 3790 41 55 1880 453 91	Mar 5 Sep 7 Sep 7	243665 666 6250 Jun 8 55 Oct 9 84 Oct 9 6410 Jun 7 7.21 Jun 7 36 Oct 9 1350 472 131	1149 2394 269 28000 Oct 10 1903 .00 Jul 3 1904 13 Sep 19 1932 31700a Oct 10 1903 .00 Jul 3 1904 2780 635 128

a Present site.

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1980 to November 1986 (discontinued).
WATER TEMPERATURE: Water years 1963 to 1980 (once daily), September 1980 to November 1986 (discontinued).
DISSOLVED OXYGEN: October 1970 to September 1980 (once daily).
SUSPENDED-SEDIMENT DISCHARGE: August 1963 to July 1965.

INSTRUMENTATION. -- Water-quality monitor since October 1980.

REMARKS...Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD...
SPECIFIC CONDUCTANCE: Maximum, 965 microsiemens, Feb. 4, 1985; minimum, 99 microsiemens, April 6, 1984.
WATER TEMPERATURE: Maximum, 29.5°C, July 12, 1981; minimum, 0.0°C on many days during winter months.
DISSOLVED OXYGEN: Maximum daily, 14.4 mg/L, Jan. 7, 1973; minimum daily, 1.7 mg/L, June 23, 1976.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991 30	1230	97	605	7.9	12.5	••	10.6	100	E2.0	130		<20
NOV 20	1200	97	645	8.0	7.5	3.1	11.7	98	2.0		90	
DEC 19	1200	243	446	7.7	1.0	••	15.0	105	0.5		••	
JAN 1992	1200	329	458	7.8	2.0	2.8	15.5	112	E1.5	1300		140
FEB 20	1100	407	485	7.5	2.0	••	13.9	101	2.4			
24	1400	766	515	8.0	4.5	23	14.3	111	••			
APR 20	1230	900	353	7.8	8.0	••	12.6	106	1.2	·	••	••
MAY 13 27	1215 1200	547 292	372 444	7.8 7.7	17.5 16.0	10	9.5 9.1	100 93	3.6 E1.4	490	300	60
JUN 12 25	1300 1430	E3290 657	195 377	7.4 8.2	· 20.0 20.0	••	8.7 10.6	96 119	12	,	••	••
JUL 22 AUG	1130	303	404	7.9	24.5	5.0	9.0	108	• •	140	200	100
29 SEP	1230	333	515	8.3	24.5	••	9.0	110	••		••	• •
09 17	1200 1200	337 208	440 485	8.1 8.3	21.5 21.0	 5.7	8.5 9.5	97 107	4.8	••	 760	•••

PASSAIC RIVER BASIN
01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)	ALKA- LINITY LAB (MG/L AS CACO3)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVE (MG/L AS CL
OCT 1991 30	••	160	40	14	54	5.9		••	96	• •	51	90
NOV 20	36	160	42	14	62	6.2			100		54	92
DEC 19		120	30	9.8	38	3.5		-:	71		40	63
JAN 1992 22	200	120	31	10	39	3.3			75		36	65
FEB 20	••	110	28	9.5	48	2.9			57		31	86
MAR 24		100	28	8.2	61	2.3	70	58	55	60	30	110
APR 20		94	25	7.7	28	1.9			56		25	53
MAY 13		99	26	8.3	32	2.4		· _••	63	••	28	53
27 JUN	110	110	29	9.8	39	3.6	90	74	71	74	30	64
12 25		53 110	14 28	4.4 8.8	14 · 32	1.9 2.8	• •	••	34 65		13 28	20 51
JUL 22	1200	110	29	9.1	33	2.9	86	70	74	74	28	57
AUG 29	••	130	33	11	43	4.5			80	••	36	66
SEP 09 17	K380	110 120	30 32	9.4 10	38 40	3.0 3.7	98	80	74 80	80	32 32	61 66
DATE	FLUO RIDE DIS SOLVE (MG/I AS F)	, DIS - SOL' ED (MG, L AS	CONST VED TUENTS /L DIS SOLVI	F NIT I- GE S, NITR - TOT ED (MG	N, NITRI ITE DIS AL SOLV /L (MG/	NIT TE GE S- NO2+ ED TOT L (MG	RO- GE N, NO2+ NO3 DI AL SOL /L (MG	NO3 GE S- AMMO VED TOT J/L (MG	N, AMMO NIA DI AL SOL /L (MG	N, GEN, NIA MONI S- ORGA VED TOT /L (MG	AM- GEN, A + MONI NIC ORGA AL DIS /L (MG	AM- A + NIC ./L
OCT 199'	0.2	2 15	3 5:	7 0.0	8 0.07	6.	10 6	10 0.	17 0.1	6 1.0	0.8	
NOV 20	0.2		37			6.		70 0.				
DEC 19	0.2		258			3.:	•	30 0.				
JAN 1992 22			25			3.		10 0.				•
FEB 20	<0.		26			2.:		40 0.				
MAR 24	<0.					2.		00 0.			0.3	
APR 20	0.		9 19	1 0.0	4 0.03	1.9	90 1.	90 0.	13 0.1	3 0.7	0.4	
MAY 13	0.2	2 8.:	2 200	5 0.0	3 0.03	2.	20 2.	20 0.	0.0	8 0.4	0.2	
27 JUN				5 0.0	5 0.05	3.4	40 3.	20 0. 50 0.	17 0.1	7 1.1	0.8	
12 25	<0.′ <0.′		3 97 210	7 0.0 5 0.0	2 0.02 4 0.03	0.4 2.8	43 0. 30 2.	44 0.8 80 0.8		7 0.6 2 0.4	0.5 0.3	
JUL 22	0.2	2 10	225	5 0.0		2.9	-	90 0.	0.0	1 0.9		
AUG 29	0.2	2 9.8				4.0		30 0.	0.0	3 0.5	0.4	
SEP 09 17	0.2 <0.	2 10 1 9.4	24 ⁻ 4 260	0.0	1 0.02 1 0.02	2.8	30 2. 90 3.	80 0. 80 0.		5 0.8 1 0.8	0.4 0.4	٠

PASSAIC RIVER BASIN

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

				WAILK	MONETTI	DAIA, W	AIEK IEAK		1771 1	O SEFIEM	DEK 177			
D/	ATE	NITRO- GEN, TOTAL (MG/L AS N)	NITR GEN DIS- SOLVE (MG/ AS N	PHO PHO D TO L (M	HOS-PI DRUS DTAL HG/L	PHOS- HORUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBO ORGAN DIS- SOLVE (MG/ AS C	IIČ SUS PENDI D TOT. 'L (MG	NIĊ - SI ED MI AL SI /L PI	EDI- ENT, CH US- ENDED P	ENT, DIS- S ARGE, I SUS- % ENDED	SED. SUSP. IEVE DIAM. FINER THAN 52 MM
OCT 19	991	7.1	6.	•	1.10	0.90	0.91	0.84	5.6	0.7		9 2	.4 -	•
NOV 20.		7.4	7.			1.10	1.00	0.97	5.0	0.7		_		100
DEC 19.		4.2	4.			0.41	0.47	0.40	5.6	0.7				
JAN 19 22.	992	4.0				0.42	0.44	0.38	4.3	0.3		5 4	.4 1	E90
FEB 20.		3.1	3.			0.30	0.26	0.28	4.8					
MAR 24.		2.5	2.		•	0.21	0.22	0.19	3.6	0.4		2 4	-1	90
APR 20.		2.6	2.			0.16	0.18	0.14	3.7	0.7	•			
MAY 13.		2.6	2.	4 (0.24	0.27	0.21	4.3	1.2				•
27 Jun	••	4.5	4.	3 (0.56	0.35	0.39	0.32	5.7	••		22 17		97
12. 25.	••	1.0 3.2	0. 3.			0.14 0.21	0.16 0.25	0.15 0.20	8.4 4.1	0.8 1.5				
JUL 22.		3.8	3.	3 ().45	0.29	0.32	0.30	5.1	1.2		20 - 16		95
AUG 29.		4.5	4.	7 (0.63	0.56	0.52	0.50	4.5	1.9	-			-
SEP 09. 17.		3.6	3. 4.	2 (0.28	0.30	0.30	4.8	1.5	•	 93 52		
17.	••	4.7	4. ED			0.40 - NITI	0.41	0.41	4.2	1.6				47 CADMIUM
DATE	TIM	M F DI % F E T	AT. ALL AM. INER % HAN	BED MAT. SIEVE DIAM. FINER THAN 062 MM	NITRO GEN, NH TOTAL IN BOT MAT. (MG/KG AS N)	4 GEN,I + ORI	NH4 PHOR G. TOT IN IN B MAT MA /KG (MG/	US ING AL GAI OT. TOT T. BOT KG (G	OR- I NIC, O IN T MAT B /KG (ARBON, NORG + RGANIC OT. IN OT MAT GM/KG AS C)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)
OCT 199	1 113	n	<1	1	4.3	3 33(0 440		<0.1	12		<1		<1
NOV 20	120			'	7. .						<10		14	
MAR 1992 24				••	••	•					20	••	16	
JUL 22	113										<10		16	
SEP 17	120						•				20		17	••
	,20										20			
DATE	CHRO MIUM RECO FM BO TOM M TERI (UG/	V. COB T- DI A- SOL'	ALT, F S- T VED G/L	OBALT, RECOV. M BOT- OM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT TOM MA- TERIAL (UG/G AS CU)	IROI DIS SOLV	S- TOM (VED TER /L (UG)	OV. REC OT- FM E MA- TOM IAL TER /G (UC	COV. BOT- L MA- RIAL G/G	ITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)
OCT 1991 31 NOV		9		< 5	10		- 58	800	30	••		100	0.16	
20 MAR 1992	,		<3		••		24 -		• -	<4	26			<10
24 JUL	• ••		<3	••	••		42 -		· -	<4	59	••	·	<10
22 SEP			<3	••	••		<3		•	<4	46		••	<10
17			<3	••	••		11 -		-	<4	42	••	••	<10

01389500 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 31		<10	••	<1	. ••		. 	100	150	<1.0	<0.1	12
20 MAR 1992	2	. ••	<1		<1.0	150	<6	••	••		••,	
24 JUL	2	••	<1 ·		<1.0	100	<6		••		••	
22 SEP	2	••	<1	••	<1.0	100	<6	••	••		••	••
DATE	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL, (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 31	TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL	SULFAN, TOTAL IN BOT- TOM MA- TERIAL	TOTAL IN BOT- TOM MA- TERIAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL	CHLOR EPOXIDE TOT. IN BOTTOM MATL.	TOTAL IN BOT- TOM MA- TERIAL	OXY- CHLOR, TOT. IN BOTTOM MATL.	TOTAL IN BOT- TOM MA- TERIAL	THANE IN BOT- TOM MA- TERIAL,	PHENE, TOTAL IN BOT- TOM MA- TERIAL
OCT 1991 31 NOV 20	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL' IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THANE IN BOT- TOM MA- TERIAL (UG/KG)	PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 31 NOV 20 MAR 1992 24	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1	OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THANE IN BOT- TOM MA- TERIAL, (UG/KG) <1.00	PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 31 NOV 20 MAR 1992	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL' IN BOT- TOM MA- TERIAL (UG/KG) <0.1	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THANE IN BOT- TOM MA- TERIAL (UG/KG) <1.00	PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)

ORGANIC HALOGEN TOT REC FROM BOT-TOM MATTERIAL (UG/G)-AS CL

OCT 1991 31... <0.25 NOV 20... -- MAR 1992 24... -- JUL 22... -- SEP 17... -- --

01389880 PASSAIC RIVER AT ROUTE 46 AT ELMWOOD PARK, NJ

LOCATION.--Lat 40°53'37", long 74°07'46", Passaic County, Hydrologic Unit 02030103, at bridge on U.S. Route 46 at Elmwood Park, and 0.8 mi upstream from Dundee Dam.

DRAINAGE AREA. -- 803 mi 2.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1974-81, 1991 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		MAILK WOAL	יאואט וווי,	#A!E	ILAK OCI	OBER 1771	TO SEPTEME	JEK 1772		
DATE	TIME	INST. CI CUBIC CO FEET DL PER AN	PE- WA FIC WHON- FI JCT- (SI JCE A	AND - ARD	EMPER- ATURE WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED E (PER- C CENT I SATUR- 5	BIO- I CHEM- I ICAL, DAY E	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT_1991								- ,	F/00	0/0
30 JAN 1992	1100	97	543	, 8.0	11.0	8.9	80	3.4	5400	940
15 MAR	1100	820	434	7.6	2.0	11.9	86	E1.8	700	1060
25 MAY	1100	780	605	7.6	3.0	18.0	133	2.9	1600	950
	1130	260	512	8.1	18.0	15.0	159	E2.0 >	24000	210
23	1130	370	412	8.1	25.0	7.5	91	4.0	24000	1150
DATE	HARD - NESS TOTAL (MG/L AS CACO3	SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM DIS- SOLVED (MG/L AS NA	DIS SOLV (MG/	M, LINIT - LAB ED (MG/ L AS	Y SULFATE DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/	; }- /ED /L
OCT 1991 30 JAN 1992 15	16 11		13 8.6	46 40	4. 2.		44 32	72 63	0.	.1
MAR										
25 May	11		8.7	69	2.		29	120	<0.	
28 JUL_	13		11	46	3.		37	74	0.	
23	11	0 30	9.4	35	3.	3 77	27	58	0.	.2
DATE	SILICA DIS- SOLVEI (MG/L AS SIO2)	CONST1-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, NITRIT DIS- SOLVE (MG/L AS N)	NITRO E GEN NO2+NO D TOTAI (MG/I	, NO2+N 03 DIS L SOLV L (MG/	, NITRO- 03 GEN, - AMMONIA ED TOTAL L (MG/L	AMMON I A	GEN,A MONIA ORGAN	\M- \
OCT 1991										
30 Jan 1992	13	312	0.048	0.04	8 4.30	4.4	2 0.10	0.14	1.1	
15 MAR	10	237	0.040	0.02	5 2.6	2.6	6 0.14	0.14	. 1.1	
25 MAY	5.9	308	0.020	0.01	8 1.9	1.9	3 0.07	0.08	0.59)
28	9.0	280	0.052	0.05	4 3.2	3.2	8 <0.03	<0.03	1.7	
JUL 23	6.8	225	0.024	0.02	2 2.1	1 2.0	7 0.05	0.05	1.4	
DATE	NITRO GEN, AM MONIA ORGANIO DIS. (MG/L AS N)	- ► NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORUS DIS SOLVE (MG/I AS P	ORGAN DIS- D SOLVE	IČ SUS- PENDED D TOTAL L (MG/L	SEDI- MENT, SUS- PENDED (MG/L)		ED
OCT 1991	1.1	E /		0 /3	0.70	F 4	0.4	. 47	, =	
30 JAN 1992	,	5.4	5.5	0.47		5.6	0.6	17	4.5	
15 MAR_	0.62		3.3	0.36		4.9	0.5	10	22	
25 MAY	0.34		2.3	0.20	0.21	3.7	0.7	38	80	
28 JUL	0.70	5.0	4.0	0.12	0.24	5.3	1.8	39	27	
23	0.25	3.5	2.3	0.41	0.24	4.8	3.0			

01389880 PASSAIC RIVER AT LITTLE FALLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	ARS To (U	ENIC TAL	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 30	1100	. 2	8	1	<10	170	<1	<1	6
DATE	(UG	AĽ T OV- R BLE E	EAD, OTAL ECOV- RABLE UG/L S PB)	MANGA NESE, TOTAL RECOV ERABL (UG/L AS MA	MERCU TOTA - RECO E ERAB	L TOT DV- REC SLE ERA 'L (UG	AL SEL OV- NIU BLE TOT	M, REC AL ERA /L (UG	AĹ OV- BLE
OCT 1991 30		460	10	12	20 <0.	10	4	<1	10

01390500 SADDLE RIVER AT RIDGEWOOD, NJ

LOCATION.--Lat 40°59'05", long 74°05'30", Bergen County, Hydrologic Unit 02030103, on left bank 15 ft upstream from bridge on State Highway 17 in Ridgewood and 2.8 mi upstream from Hohokus Brook.

DRAINAGE AREA. -- 21.6 mi 2.

PERIOD OF RECORD.--October 1954 to September 1974, October 1977 to current year. Operated as a maximum stage gage water years 1975-77.

REVISED RECORDS. -- WRD-NJ 1974: 1971.

GAGE.--Water-stage recorder. Datum of gage is 71.74 ft above sea level (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records fair. The flow past this station is affected by pumpage from wells by Hackensack Water Co. and others. Several measurements of water temperature were made during the year. Satellite telemeter at station.

EXTREMES OUTSIDE OF PERIOD OF RECORD. -- Flood of July 23, 1945, reached a discharge of 6,400 ft³/s, at site 1.6 mi upstream, drainage area, 19.1 mi², by slope-area measurement.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 380 ft 3 /s and maximum (*):

Date	Time		Discharge (ft ³ /s)		Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
Nov. 23 Mar. 27 May 31	0100 0245 1930		478 463 574		4.14 4.09 4.45		June 6 Sep. 3	0130 2030		520 *689		4.28 *4.81
		DIS	CHARGE, CUI	BIC FEET	PER SECOND	, WATER Y MEAN	YEAR OCTOB VALUES	ER 1991 TO	SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.2 2.0 1.8 1.7 22	6.1 6.0 6.4 5.8 5.8	8.6 9.9 171 96 31	12 12 12 23 20	12 11 11 10 10	12 12 12 11 11	35 34 31 28 27	22 23 26 22 21	110 42 32 27 98	15 13 13 31 16	49 15 13 28 15	9.5 8.6 125 57 18
6 7 8 9 10	8.8 5.2 4.3 3.9	5.9 6.2 5.7 5.9 6.0	21 · 19 17 17 36	14 13 12 13 15	9.2 9.2 9.2 9.1 9.3	10 25 26 14 21	26 25 25 24 25	20 20 27 59 27	193 53 53 46 34	14 12 10 48 15	11 10 . 9.9 103 29	14 13 13 12 11
11 12 13 14 15	9.6 14 5.5 4.6 10	12 12 8.7 7.8 6.7	19 16 18 19 16	. 12 11 11 34 19	8.7 9.0 11 9.0 24	166 49 30 24 22	40 27 23 22 22	23 20 20 19 17	28 26 23 21 19	12 11 16 17 48	34 27 14 22 16	45 15 12 12 11
16 17 18 19 20	14 40 19 8.4 6.6	6.9 6.4 5.9 6.2 5.9	15 14 14 13 12	. 14 13 12 12 11	75 18 13 13	19 19 19 23 23	23 34 44 45 30	33 21 18 17 15	· 17 18 15 41 28	57 17 16 12 11	19 26 50 22 16	10 11 12 19 12
21 22 23 24 25	6.8 7.1 6.8 6.4 6.0	7.4 143 125 22 15	13 13 12 12 12	11 11 46 73 31	11 10 10 9.8 12	23 21 22 20 26	28 28 31 26 57	14 13 12 19 31	21 17 15 37 21	10 9.1 51 28 13	14 13 12 11 11	9.8 14 36 12 11
26 27 28 29 30 31	6.2 7.3 6.7 7.0 6.6 6.7	12 11 9.9 8.9 8.8	11 11 11 21 20 14	21 16 13 12 12 12	49 20 15 13	66 216 61 41 34 46	32 27 24 24 22	15 16 13 12 11 224	15 83 32 19 16	18 48 14 12 13 42	10 25 15 18 12 11	24 26 23 14 13
TOTAL MEAN MAX MIN CFSM IN.	301.2 9.72 44 1.7 .45 .52	501.3 16.7 143 5.7 .77 .86	732.5 23.6 171 8.6 1.09 1.26	553 17.8 73 11 .83 .95	442.5 15.3 75 8.7 .71 .76	1124 36.3 216 10 1.68 1.94	889 29.6 57 22 1.37 1.53	850 27.4 224 11 1.27 1.46	1200 40.0 193 15 1.85 2.07	662.1 21.4 57 9.1 .99 1.14	680.9 22.0 103 9.9 1.02 1.17	622.9 20.8 125 8.6 .96 1.07
STATIST	ICS OF MO	NTHLY MI	EAN DATA FO	R WATER	YEARS 1955	- 1992,	BY WATER	YEAR (WY)				
MEAN MAX (WY) - MIN (WY)	22.5 104 1956 5.80 1983	35.0 109 1978 8.41 1982	36.9 109 1973 7.49 1981	35.8 115 1979 6.43 1981	41.7 86.9 1961 11.8 1980	54.5 104 1983 15.6 1985	59.0 152 1983 11.0 1985	118 1989 14.8 1965	28.3 121 1972 7.46 1965	21.1 87.6 1984 3.23 1966	20.6 77.1 1955 3.30 1980	18.9 70.6 1971 2.34 1980

PASSAIC RIVER BASIN

01390500 SADDLE RIVER AT RIDGEWOOD, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1955 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	9912.7 27.2	8559.4 23.4	34.8 58.7 1984 16.6 1965
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	445 Mar 4 1.7 Oct 4 2.8 Sep 12	224 May 31 1.7 Oct 4 5.9 Nov 4 689 Sep 3	16.6 1965 1250 Nov 8 1977 .20 Sep 17 1966 1.7 Jul 12 1966 4650 Nov 8 1977
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES)	1.26 17.07	4.81 Sep 3 1.3 Oct 5 1.08 14.74	12.25 Nov 8 1977 1.61 21.92
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	51 18 4.3	15 7.2	69 22 6.9

01391000 HOHOKUS BROOK AT HO-HO-KUS, NJ

LOCATION.--Lat 40°59'52", long 74°06'48", Bergen County, Hydrologic Unit 02030103, on left bank 500 ft upstream from bridge on Maple Avenue in Ho-Ho-Kus, and 3.5 mi upstream from mouth.

DRAINAGE AREA. -- 16.4 mi 2.

PERIOD OF RECORD.--April 1954 to September 1973, October 1977 to current year. Operated as a crest-stage partial-record station, water years 1974-77.

REVISED RECORDS.--WDR NJ-77-1: 1955(M), 1968(M), 1976(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 120.09 ft above sea level (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good except those above 300 ft³/s, which are fair. Some regulation and diurnal fluctuation at low and medium flows caused by unknown sources, possibly sewage treatment plant upstream of gage. Several measurements of water temperature were made during the year. Satellite telemeter at station

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft 3/s and maximum (*):

Date	Time		Discharge (ft ³ /s)	1	Gage height (ft)		Date		Time	Di	ischarge (ft ³ /s)	Gag	ge height (ft)
May 31 June 5	1515 2045		541 622		2.79 2.89		Sep.	3	1930		1,060		*3.41
		DISC	HARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OC	TOBER	1991	TO SEPTEME	BER 1992.		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	}	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 19 18 17 22	17 18 17 16 16	21 22 155 92 41	22 22 22 40 37	23 21 22 21 21	26 27 25 25 24	43 40 37 35 33		30 31 33 29 28	123 52 39 33 173	25 23 23 35 27	98 33 28 33 27	20 19 155 100 35
6 7 8 9 10	36 24 18 17	16 16 16 16 17	33 30 28 29 51	27 25 24 26 27	20 20 21 21 20	24 44 46 32 35	32 31 31 31 33	: , ,	26 24 34 63 36	260 77 67 61 48	26 23 22 57 28	23 22 21 113 50	28 27 28 27 26
11 12 13 14 15	27 26 19 17 25	26 22 19 17 17	32 28 31 31 26	25 24 25 47 34	22 21 20 21 42	127 55 39 34 31	52 37 32 31 29		31 28 28 26 24	42 39 36 34 33	23 21 25 28 80	46 40 28 33 29	56 29 24 23 23
16 17 18 19 20	33 59 45 25 20	17 16 16 15 15	24 23 23 22 22	26 23 22 21 21	76 34 29 29 27	29 30 29 34 34	32 44 49 50 39		43 31 26 24 23	31 30 29 49 42	86 33 31 27 25	32 38 53 35 29	23 22 22 29 24
21 22 23 24 25	19 20 18 18 18	20 122 107 39 29	23 23 24 24 22	21 21 48 57 31	25 24 23 27 32	32 31 33 30 31	34 35 41 36 63	•	23 22 21 33 43	32 29 28 48 38	23 21 54 41 26	25 23 22 23 22	22 27 42 23 21
26 27 28 29 30 31	17 17 17 17 17	24 23 22 21 20	22 22 21 35 34 25	28 25 23 23 25 22	67 42 32 32	64 162 65 48 42 53	40 35 32 31 30		26 27 24 22 21 227	29 105 44 30 26	36 59 30 24 26 74	30 42 31 29 22 21	35 36 33 24 21
TOTAL MEAN MAX MIN CFSM IN.	698 22.5 59 17 1.37 1.58	772 25.7 122 15 1.57 1.75	1039 33.5 155 21 2.04 2.36	864 27.9 57 21 1.70 1.96	835 28.8 76 20 1.76 1.89	1341 43.3 162 24 2.64 3.04	1118 37.3 63 29 2.27 2.54	I	1107 35.7 227 21 2.18 2.51	1707 56.9 260 26 3.47 3.87	1082 34.9 86 21 2.13 2.45	1101 35.5 113 21 2.17 2.50	1024 34.1 155 19 2.08 2.32
					YEARS 1955								
MEAN MAX (WY) MIN (WY)	24.8 82.4 1956 6.21 1965	34.8 102 1978 7.10 1965	35.2 91.7 1984 12.3 1981	33.3 80.9 1979 9.07 1981	40.9 90.0 1973 15.3 1980	49.1 89.6 1983 20.8 1981	51.8 130 1983 19.4 1985	;	41.0 108 1989 13.9 1955	30.1 101 1972 7.58 1965	24.8 85.5 1984 3.91 1966	25.4 84.9 1955 5.17 1966	23.1 96.5 1971 5.78 1964

PASSAIC RIVER BASIN

01391000 HOHOKUS BROOK AT HO-HO-KUS, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992-WATER YEAR	WATER YEARS 1955 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	12949 35.5	12688 34.7	34.5 61.3 1984 16.1 1965
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	432 Mar 4 13 Aug 8 13 Sep 12	260 Jun 6 15 Nov 19 16 Nov 3 1060 Sep 3 -3.41 Sep 3	1220 Nov 8 1977 2.5 Jul 13 1966 2.8 Aug 2 1966 3700 Nov 8 1977 7.06 Nov 8 1977
INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	2.16 29.37 54 28 16	9.3 Nov 6 2.11 28.78 52 28 19	1.9 Aug 2 1966 2.10 28.56 62 24 9.8

01391500 SADDLE RIVER AT LODI, NJ

LOCATION.--Lat 40°53'25", long 74°04'51", Bergen County, Hydrologic Unit 02030103, on left bank 560 ft upstream from bridge on Outwater Lane in Lodi and 3.2 mi upstream from mouth. Water-quality samples collected at bridge on Outwater Lane at high flows.

DRAINAGE AREA. -- 54.6 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1923 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1031: 1940(M). WSP 1552: 1929(M), 1936(M), 1938. WRD-NJ 1969: 1967. WRD-NJ 1970: 1968, 1969.

GAGE.--Water-stage recorder. Concrete control since Nov. 2, 1938. Datum of gage is 25.00 ft above sea level. Prior to Nov. 2, 1938, at site 560 ft downstream at datum 2.54 ft lower.

REMARKS.--No estimated daily discharges. Records fair. Occasional regulation at low flow. Diversion upstream from station at Arcola by Hackensack Water Company, for municipal supply (records given herein). The flow past this station is affected by pumpage from wells by Hackensack Water Company and others. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft³/s and maximum (*):

Date	Time		Discharg (ft ³ /s)	e	Gage heigh (ft)	t	Date	Time	D	ischarge (ft ³ /s)	,Ga	ge height (ft)
May 31 June 6	2045 0200		1,440 1,580		5.06 5.29		Sep. 3	2345	*	1,990	,	*6.13
		DISC	CHARGE, C	UBIC FEET	PER SECON	D, WATER	YEAR OCTO VALUES	BER 1991 1	O SEPTEM	BER 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	34 34 34 35 111	40 37 37 37 36	41 43 413 292 111	52 52 52 79 73	47 44 47 46 47	53 54 48 48 46	102 94 88 84 81	67 71 73 67 64	407 130 96 82 322	43 39 44 76 47	251 74 65 79 62	42 41 416 570 98
6 7 8 9 10	157 63 43 37 35	35 36 37 37 46	89 79 73 75 143	59 53 50 61 59	44 45 46 44 41	46 86 97 64 66	76 72 72 71 76	63 59 94 184 91	744 178 135 138 104	44 36 32 173 42	52 49 48 273 119	75 68 67 62 72
11 12 13 14 15	52 76 41 35 56	69 44 35 36 33	84 71 78 73 63	50 45 49 121 77	44 40 37 40 78	358 126 83 73 66	125 87 75 70 68	76 67 62 57 53	91 84 79 74 70	34 36 73 57 59	112 110 61 85 66	137 69 58 54 51
16 17 18 19 20	65 126 108 54 41	29 32 33 37 35	63 57 57 53 46	56 51 53 46 49	234 82 67 64 61	61 59 57 71 69	75 97 121 118 87	113 77 64 58 56	59 44 43 109 74	218 55 55 40 44	75 87 174 80 65	50 50 50 60 53
21 22 23 24 25	38 37 36 35 34	58 316 388 100 73	46 46 52 53 51	47 46 104 168 72	56 55 54 53 65	63 58 67 54 59	80 82 98 80 167	54 52 51 77 132	52 44 41 89 61	42 38 135 100 57	57 56 52 49 48	47 53 117 53 45
26 27 28 29 30 31	43 43 41 36 36 38	58 48 47 43 40	48 48 42 75 83 59	56 53 55 51 52 51	164 86 66 56	123 504 154 108 95 134	94 83 76 71 69	64 64 56 51 46 617	48 181 87 52 45	62 139 62 49 50 119	96 101 77 72 51 45	83 83 79 53 48
TOTAL MEAN MAX MIN (†) MEAN* IN*	1654 53.4 157 34 10.6 64.0 1.35	1932 64.4 388 29 13.7 78.1	2607 84.1 413 41 6.88 91.0 1.92	1942 62.6 168 45 5.24 67.8 1.43	1853 63.9 234 37 8.24 72.1	3050 98.4 504 46 13.2 112 2.36	2639 88.0 167 68 0 88.0 1.79	2780 89.7 617 46 2.23 91.9 1.94	3763 125 744 41 10.8 136 2.77	2100 67.7 218 32 16.3 84.0 1.77	2691 86.8 273 45 0 86.8 1.83	2804 93.5 570 41 0 93.5 1.91
STATIST		ITHLY ME		FOR WATER	YEARS 1924	- 1992,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	64.9 257 1956 16.5 1936	88.6 284 1978 25.5 1982	99.7 301 1984 17.0 1981	104 331 1979 12.1 1981	119 258 1973 38.1 1980	155 333 1953 40.1 1981	155 457 1983 32.9 1985	119 315 1984 44.9 1941	84.9 336 1972 31.8 1965	72.2 371 1945 14.1 1966	69.3 225 1955 15.1 1966	69.2 256 1971 11.4 1932

01391500 SADDLE RIVER AT LODI, NJ--Continued

WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1924 - 1992
ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN* HIGHEST ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) ANNUAL RUNOFF (INCHES)* 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	34969 95.8 99.9 1490 Mar 4 12 Sep 18 16 Sep 12 23.83 Unadjusted 25.23 159 75 34	29582 80.8 88.8 737 Jun 6 29 Nov 16 34 Nov 13 1990 Sep 3 6.13 Sep 3 25 Nov 16 20.15 Unadjusted 22.31 124 59 38	99.9 102 187 45.2 1981 2970 Apr 5 1984 6.0 Aug 4 1930 8.9 Sep 9 1932 4500 Nov 9 1977 12.36a Nov 9 1977 1.0 May 25 1938 24.86 Unadjusted 191 69 26

a From high-water mark in gage house.
 † Diversion, equivalent in cubic feet per second, above station by Hackensack Water Company for municipal supply.
 Records provided by Hackensack Water Company.
 * Adjusted for diversion.

PASSAIC RIVER BASIN

01391500 SADDLE RIVER AT LODI, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CHA IN CU TIME	OIS- ARGE, SE IST. CI JBIC CO FEET DL PER AN	PE- WA IFIC WH DN- FI JCT- (ST ICE A	TH TER IOLE ELD TEN AND AT	TURE ATER	O XYGEN, DIS- SOLVED	DIS- DE SOLVED B (PER- C CENT I SATUR- 5	YGEN MAND, C IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH (NTERO- COCCI ME,MF WATER TOTAL COL /
OCT 1991 31	1030	35	693	7.8	10.0	8.5	76	2.6	700	<200
JAN 1992 16	1100	49	675	7.6	0.5	12.2	86		330	3
APR 02	1200	91	600	8.0	9.0	12.9	114	3.2	50	<10
MAY 21	1100	52	630	7.6	19.0	9.0	96	E1.5	1700	60
JUL 27		135	400	7.9	21.0	7.7	88	3.8	9200	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	- ALKA- , LINITY LAB D (MG/L AS	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVE (MG/L	ED.
OCT_1991	040	50		4.0		4.,	7.5	0/	0.4	
JAN 1992	210	59	16	48	5.9		35	84	0.1	
16 APR	190	54	14	51	4.7		35	95 05	0.1	
02 MAY 21	170	47	12	49	2.7		28	95 70	0.2	
JUL 27	190 120	52 35	15 9.1	44	4.5		34	79 49	0.1 <0.1	
21	120	35	y. 1	26	2.3	90	20	49	٧٠.١	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	NO2+NÖ 3 DIS- SOLVE (MG/L	NITRO- 3 GEN, AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	I- + C
OCT_1991	47		0.400					,		
31 JAN 1992	13	377	0.429	0.428	6.47		1.04	0.87		
16 APR	13	371	0.190	0.186	2.82		4.10	3.50	5.0	
02 MAY	8.2	323	0.051	0.049	3.74	3.48	0.45	0.53	1.2	
JUL_ JUL_	9.8	340	0.295	0.300	5.32		2.28	1.57	2.3	
27	8.1	213	0.064	0.061	2.16	2.15	0.11	0.13	0.8	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVEC (MG/L AS P)	CARBON ORGANIO DIS- O SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	, D
OCT 1991	4 7		7.0	0.70	0.40	. .	0.4	40	0.05	
31 JAN 1992	1.3	7.0	7.9	0.79	0.69	5.0	0.4	10	0.95	
16 APR	3.7	7.8	6.6	0.35	0.04	5.0	0.1	6	0.79	
02 May	0.90	4.9	4.4		0.28	3.7	0.5	4	0.98	
21 JUL 27	1.6	7.6	6.8	0.03	0.08	4.5	0.7			
27	0.30	3.0	2.5	0.37	0.30	24	1.8	30	11	

PASSAIC RIVER BASIN

01391500 SADDLE RIVER AT LODI, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)
OCT 1991 31 31	1030 1030	23	<1	1	12	290	310	<0.1 	3.5	 <1
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 1991 31 31	3	 <10	120	 <1	<1	1	5	5	10	210
DATE	IRON, RECOV. FM BOV. TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 1991 31 31	3500	4	40		490	<0.10	0.02	1	<10	· <1
. DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 31 31	<1		50	160	<1.0	<0.1 ···	74	3.4	3.9	3.3
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 31 31	1.2	<0.1	<0.1	<0.1 	<1.0	<0.1 	<10 	<0.1 	<1.00	10

PASSAIC RIVER BASIN

01392210 THIRD RIVER AT PASSAIC, NJ

LOCATION.--Lat 40°49'47", long 74°08'32", Passaic County, Hydrologic Unit 02030103, on right bank 400 ft upstream from bridge on State Highway 3, 0.8 mi south of Passaic, 1.2 mi upstream from Passaic River.

DRAINAGE AREA. -- 11.8 mi 2.

PERIOD OF RECORD. -- May 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 22.15 ft above sea level.

REMARKS.--Records good except for estimated daily discharges, which are fair. Some regulation from ponds upstream. Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR...Peak discharges greater than base discharge of 550 ft³/s and maximum (*):

Date	Time		Discharge (ft ³ /s)	(Gage height (ft)		Date	Time	C	ischarge (ft ³ /s)	Ga	ge height (ft)
May 31 June 5	1415 2015	,	604 *1,310	•	4.35 *6.07		Aug. 9	0845		583		4.30
	•	DISC	HARGE, CUB	IC FEET	PER SECOND	, WATER LY MEAN	YEAR OCTOBE VALUES	ER 1991	TO SEPTEM	IBER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.7 7.4 7.3 7.0 17	5.8 5.5 5.6 5.5	7.5 13 141 37 12	6.7 6.7 6.5 22 10	6.6 6.7 6.5 6.5	7.2 7.4 7.3 7.2 7.0	13 12 11 10 9.9	9.7 11 9.6 9.2 9.9	21 11 9.9 8.9 363	12 9.4 19 38 10	18 9.1 11 11 7.5	e5.4 e5.6 e58 e18 e7.9
6 7 8 9 10	29 8.6 7.1 7.0 7.0	5.5 5.4 5.5 5.4 8.0	10 9.2 8.2 13 34	7.4 6.9 6.7 11 8.2	6.3 6.3 6.0 6.3	7.0 31 11 7.8 17	9.9 9.8 9.7 10 9.9	8.9 8.9 43 32 17	216 30 28 17 14	15 9.5 9.3 65 11	6.8 5.3 5.5 e180 e10	e6.6 e7.0 e6.9 e6.5 e22
11 12 13 14 15	13 13 6.9 6.5 13	24 7.9 6.4 5.9 5.9	9.0 8.3 23 11 8.3	6.6 6.4 6.4 50 9.0	6.7 7.4 9.9 7.7 49	83 12 9.6 9.2 8.7	25 9.8 8.8 8.7 8.6	10 9.2 8.9 8.8 8.4	13 15 14 12 12	9.5 9.6 10 19	e16 e9.3 e7.5 e18 e8.8	e33 e9.4 e9.0 e7.5 e6.8
16 17 18 19 20	11 45 10 7.4 6.5	5.5 5.0 5.1 5.3 5.6	7.9 7.7 7.5 7.4 7.3	7.5 9.7 6.7 6.9	35 9.3 8.9 10 7.9	8.6 8.4 8.1 14 16	15 16 11 11 9.2	16 9.7 8.5 8.6 8.3	11 11 11 40 14	23 8.3 11 7.6 8.1	e16 e20 e35 e8.5 e8.0	e6.2 e6.2 e6.5 e7.6 e5.4
21 22 23 24 25	6.5 6.6 22 7.9 6.0	19 138 43 10 8.4	6.6 6.9 6.7 6.6 6.4	6.9 6.7 41 21 7.9	7.3 7.1 7.0 7.1	11 9.7 14 10 12	9.5 12 11 16 32	8.1 7.5 7.0 9.4 12	11 11 11 44 30	7.2 .7.1 27 11 7.7	e7.3 e6.8 e6.4 e6.1 e6.5	e5.3 e10 19 5.8 5.9
26 27 28 29 30 31	6.5 6.1 5.6 5.8 6.0 5.7	8.1 7.5 7.2 7.0 6.8	6.8 6.0 6.3 29 13 7.4	7.5 7.4 7.1 7.0 6.9 6.9	36 9.4 8.1 7.6	58 76 18 14 13 24	10 9.8 9.7 9.4 9.3	9.0 8.6 7.6 7.1 7.4 183	23 46 45 34 38	11 11 7.4 6.6 6.2 39	e16 e13 e8.1 e8.6 e6.0 e5.9	46 15 9.0 6.0 5.6
TOTAL MEAN MAX MIN CFSM IN.	322.1 10.4 45 5.6 .88 1.02	389.7 13.0 138 5.0 1.10 1.23	484.0 15.6 141 6.0 1.32 1.53	334.5 10.8 50 6.4 .91	316.4 10.9 49 6.0 .92 1.00	547.2 17.7 83 7.0 1.50 1.73	357.0 11.9 32 8.6 1.01 1.13	522.3 16.8 183 7.0 1.43 1.65	1164.8 38.8 363 8.9 3.29 3.67	464.5 15.0 65 6.2 1.27 1.46	502.0 16.2 180 5.3 1.37 1.58	369.1 12.3 58 5.3 1.04 1.16
STATIST		NTHLY ME	AN DATA FO	R WATER	YEARS 1977	- 1992	, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	16.4 34.3 1990 6.00 1983	22.6 66.1 1978 9.31 1982	20.4 60.2 1984 7.55 1981	22.3 64.3 1979 7.25 1981	19.3 31.0 1984 10.4 1985	24.6 48.1 1983 9.94 1985	28.4 70.4 1983 7.56 1985	28.7 56.4 1989 12.9 1982	18.8 38.8 1992 9.61 1987	17.6 31.7 1984 9.58 1977	19.2 44.1 1978 7.44 1981	16.1 29.3 1989 8.43 1982

PASSAIC RIVER BASIN

01392210 THIRD RIVER AT PASSAIC, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1977 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	6777.1 18.6	5773.6 15.8	21.2 32.7 1978
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	267 Mar 4 4.5 Sep 18	363 Jun 5 5.0 Nov 17 5.5 Nov 14	13.7 1985 798 Nov 8 1977 3.9 Sep 16 1980 4.4 Sep 10 1980
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	5.0 Aug 2	1310 Jun 5 6.07 Jun 5 1.8 Dec 27	2300a Nov 8 1977 8.25 Nov 8 1977 .84 Jul 3 1981
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.57 21.37 33	1.34 18.20 30	1.80 24.46 39
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	10 5.5	8.9 6.1	6.2

a From rating curve extended above 700 ft³/s by culvert computation at bridge on Kingsland Street, 0.2 mi upstream of gage.
e Estimated.

RESERVOIRS IN PASSAIC RIVER BASIN

- 01379990 SPLITROCK RESERVOIR.--Lat 40°57'40", long 74°27'45", Morris County, Hydrologic Unit 02030103, at dam on Beaver Brook, 2 mi northeast of Hibernia. DRAINAGE AREA, 5.50 mi². PERIOD OF RECORD, September 1925 to September 1931, December 1948 to September 1950, October 1953 to current year. Monthend contents only 1925-31, 1948-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is sea level.

 REMARKS.--Reservoir is formed by a concrete gravity dam with earth embankment; present dam constructed 1946-48 and sluice gate first closed Dec: 22, 1948. Prior to 1946, reservoir was formed by earthfill dam with crest about 20 ft lower. Capacity of spillway level, 3,310,000,000 gal, elevation, 835 ft. Flow is regulated by two 30-inch sluice gates. Flow is released for diversion for municipal supply of Jersey City.

 COOPERATION.--Records provided by Jersey City, Bureau of Water.

 EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 3,652,500,000 gal, Apr. 5, 1973, elevation, 836.75 ft; minimum, 1,522,800,000 gal, Jan. 4, 1954, elevation, 824.20 ft.

 EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,445,000,000 gal, June 6, elevation, 835.70 ft; minimum, 3,058,000,000 gal, Nov. 10, 14-21, elevation, 833.75 ft.
- 01380900 BOONTON RESERVOIR.--Lat 40°53'45", long 74°23'55", Morris County, Hydrologic Unit 02030103, at dam on Rockaway River at Boonton. DRAINAGE AREA, 119 mi². PERIOD OF RECORD, April 1904 to September 1950, October 1953 to current year. Monthend contents only 1904-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. REVISED RECORDS.--WDR NJ-85-1: 1984.

 GAGE, hook gage. Datum of gage is sea level.

 REMARKS.--Reservoir is formed by a cyclopean masonry dam with earth wings; dam completed and storage began in 1904. Total capacity at spillway level, 7,620,000,000 gal elevation, 305.25 ft of which 7,366,000,000 gal is usable contents above elevation 259.75 ft, sill of lowest outlet gate. Spillway is topped with two Bascule gates, 2 ft high; prior to 1952, flashboards were used. Flow regulated by Bascule gates, three outlets in gatehouse at head of conduit and by two 48-inch pipes (bottom of sluice pipes at elevation 205 ft). Water is diverted from reservoir for municipal supply of Jersey City, Bureau of Water.

 EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,545,600,000 gal, May 31, 1984, elevation, 308.81 ft; minimum, 1,445,000,000 gal, Jan. 31, 1981, elevation 274.71 ft.

 EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,291,000,000 gal, June 6, elevation, 308.42 ft; minimum, 4,570,000,000 gal, Nov. 21, 22, elevation, 292.94 ft.
- 01382100 CANISTEAR RESERVOIR.--Lat 41°06'30", long 74°29'30", Sussex County, Hydrologic Unit 02030103, at dam on Pacock Brook, 1.8 mi northeast of Stockholm. DRAINAGE AREA, 5.6 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is
- REMARKS.--Reservoir is formed by earth-embankment type dam, completed about 1896. Capacity at spillway level, 2,407,000,000 gal, elevation, 1,086.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply for City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

 COOPERATION.--Records provided by City of Newark, Division of Water Supply.
- 01382200 OAK RIDGE RESERVOIR.--Lat 41°02'30", long 74°30'10", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 0.9 mi southwest of Oak Ridge. DRAINAGE AREA, 27.3 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1924-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage.
 - REMARKS.--Reservoir is formed by earthfill dam with concrete-core wall and ogee overflow section; dam constructed between 1880-92; dam raised 10 ft during 1917-19. Capacity at spillway level, 3,895,000,000 gal, elevation, 846.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and diversion at Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.
 - COOPERATION. -- Records provided by City of Newark, Division of Water Supply.
- 01382300 CLINTON RESERVOIR.--Lat 41°04'30", long 74°27'00", Passaic County, Hydrologic Unit 02030103, at dam on Clinton Brook, 2.0 mi north of Newfoundland. DRAINAGE AREA, 10.5 mi². PERIOD OF RECORD, October 1923 to September 1950, October 1953 to current year. Monthend contents only 1923-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is sea level.

 REMARKS.--Reservoir is formed by earthfill dam constructed between 1889-92. Capacity at spillway level, 3,518,000,000 gal, elevation, 992.0 ft. Reservoir used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and for diversion at Charlotteburg Reservoir since May 21, 1961, for municipal supply of City of Newark. Outflow is controlled mostly by operation of gates in pipes through dam.

 COOPERATION.--Records provided by City of Newark.
 - COOPERATION. -- Records provided by City of Newark, Division of Water Supply.
- 01382380 CHARLOTTEBURG RESERVOIR.--Lat 41°01'34", long 74°25'30", Passaic County, Hydrologic Unit 02030103, at dam on Pequannock River, 1.1 mi upstream from Macopin River, and 1.5 mi southeast of Newfoundland, NJ. DRAINAGE AREA, 56.2 mi². PERIOD OF RECORD, May 1961 to current year. REVISED RECORDS.--WRD NJ-74: Station number. GAGE, water-stage recorder. Datum of gage is sea level.

 REMARKS.--Reservoir is formed by concrete-masonry dam and earth embankment, with concrete spillway at elevation 738.00 ft; storage began May 19, 1961. Spillway equipped with Bascule gate 5 ft high. Capacity, 2,964,000,000 gal, elevation, 743.00 ft, top of Bascule gate. No dead storage. Outflow is controlled by sluice and automatic Bascule gates. Water diverted from reservoir since May 21, 1961, for municipal supply of City of Newark. COOPERATION.--Records provided by City of Newark, Division of Water Supply.

RESERVOIRS IN PASSAIC RIVER BASIN--Continued

01382400 ECHO LAKE.--Lat 41°03'00", long 74°24'30", Passaic County, Hydrologic Unit 02030103, at Echo Lake Dam on Macopin River, 1.6 mi north of Charlotteburg, and 1.9 mi upstream from mouth. DRAINAGE AREA, 4.35 mi². PERIOD OF RECORD, October 1927 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, staff gage. Datum of gage is sea level.

REMARKS.--Lake is formed by earth-embankment type dam completed about 1925. Capacity at spillway level, 1,583,000,000 gal, elevation, 893.0 ft, with provision for additional storage of 180,000,000 gal at elevation 894.9 ft with flashboards. Usable contents, 1,045,000,000 gal above elevation 880.0 ft. Lake used for storage and water released for diversion at Macopin intake dam on Pequannock River prior to May 21, 1961, and water diverted to Charlotteburg Reservoir on Pequannock River since May 21, 1961, for municipal supply of City of Newark. Outflow to Macopin River controlled by operation of gates in gatehouse at dam and water released through pipe and canal to Charlotteburg Reservoir.

COOPERATION.--Records provided by City of Newark, Division of Water Supply.

01383000 GREENWOOD LAKE.--Lat 41°09'36", long 74°20'03", Passaic County, Hydrologic Unit 02030103, in gatehouse near right end of Greenwood Lake Dam on Wanaque River at Awosting. DRAINAGE AREA, 27.1 mi². PERIOD OF RECORD, June 1898 to November 1903, June 1907 to current year (gage heights only prior to October 1953). GAGE, water-stage recorder. Datum of gage is 608.86 ft above sea level (levels from New Jersey Geological Survey bench mark). Prior to Oct. 1, 1931, staff gage on former railroad bridge at site 100 ft upstream at datum 89.75 ft lower. REMARKS.--Reservoir is formed by earthfill dam with concrete spillway; dam completed about 1837 and reconstruction completed in 1928 with crest of spillway 0.25 ft lower. Usable capacity, 6,860,000,000 gal between gage heights -4.00 ft, sill of gate, and 10.00 ft, crest of spillway. Dead storage, 7,140,000,000 gal. Outflow mostly regulated by two gates, 3.5 by 5.0 ft. Records given herein represent usable capacity. Lake used for recreation.

EXTREMES FOR PERIOD OF RECORD. - Maximum contents, 9,528,000,000 gal, Oct. 9-14, 1903, gage height, 14.25 ft, present datum; minimum, 3,160,000,000 gal, several days in November 1900, gage height, 3.50 ft, present datum. EXTREMES FOR CURRENT YEAR. - Maximum contents, 8,104,000,000 gal, June 6, gage height, 11.99 ft; minimum, 6,738,000,000 gal, Oct. 2, gage height, 9.80 ft.

01384002 MONKSVILLE RESERVOIR.--Lat 41°07'20", long 74°17'49", Passaic County, Hydrologic Unit 02030103, at dam on Wanaque River at Monks. DRAINAGE AREA, 40.4 mi². PERIOD OF RECORD, September 1988 to current year. GAGE, measurement from reference point. Datum of gage is sea level.

REMARKS.--Reservoir is formed by a Roller Compacted Concrete dam constructed in 1988. Total capacity at spillway level, 7,000,000,000 gal, elevation 400.0 ft. Reservoir used for storage and water released to Wanaque Reservoir. Outflow is controlled by a 60-inch fixed-cone valve in a 72-inch pipe and 10-inch cone valve which can discharge directly into Wanaque Reservoir or into the 72-inch pipe.

COOPERATION.--Records provided by North Jersey District Water Supply Commission.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 7,140,000,000 gal, Nov. 21, 1989, elevation 400.9 ft; minimum, 860,000,000, Sept. 28, 1988 (first filling), elevation 339.0 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 7,000,000,000 gal, many days, elevation 400.0 ft; minimum, 7,000,000,000 gal, many days, elevation 400.0 ft.

01386990 WANAQUE RESERVOIR.--Lat 41°02'42", long 74°17'44", Passaic County, Hydrologic Unit 02030103, at Raymond Dam on Wanaque River at Wanaque. DRAINAGE AREA, 90.4 mi². PERIOD OF RECORD, February 1928 to September 1950, October 1953 to current year. Monthend contents only 1928-50, published in WSP 1302. October 1950 to September 1953 in Special Report 16, New Jersey Department of Environmental Protection. GAGE, water-stage recorder. Datum of gage is sea level (levels by North Jersey District Water Supply Commission).

REMARKS.--Reservoir is formed by earthfill with concrete-core wall main dam and seven secondary dams; dams completed in 1927 and storage began in March 1928. Total capacity at spillway level, 29,630,000,000 gal, revised, elevation, 302.4 ft, revised, prior to 1986, 300.3 ft. Capacity available by gravity at spillway level, 27,850,000,000 gal, revised. Outflow mostly controlled by sluice gates in intake conduits in gage house. Water is diverted from reservoir for municipal supply. Diversion to reservoir from Posts Brook Pompton River, and

27,85U,UUU,UUU gal, revised. Outflow mostly controlled by sluice gates in intake conduits in gage house. Wa is diverted from reservoir for municipal supply. Diversion to reservoir from Posts Brook, Pompton River, and Ramapo River (see Passaic River basin, diversions).
COOPERATION.--Records provided by North Jersey District Water Supply Commission.
REVISED RECORDS.--WDR NJ-85-1: 1984 (M).
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 31,280,000,000 gal, Apr. 5, 1984, elevation, 304.52 ft; minimum, 5,110,000,000 gal, Dec. 26, 1964, elevation, 256.06 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 30,380,000,000 gal, June 6, elevation, 303.37 ft; minimum, 12,230,000,000 gal, Oct. 1, elevation, 274.50 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992										
Date	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	
	01379990	SPLITROCK	RESERVOIR	01380900	BOONTON	RESERVOIR	01382100	CANISTEAR R	ESERVOIR	
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 833.90 . 834.20	3,128 3,088 3,148 3,316	-2.0 +3.1 +8.4	297.65 295.73 294.88 300.87	5,607 5,173 4,987 6,383	-21.7 -9.6 +69.7	1,084.00 1,084.00 1,075.10 1,070.00	2,202 2,202 1,369 940	 0 -43.0 -21.4	
CAL YR 199	1		•.3		•	-5.3			-6.3	
Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30.	. 835.20 . 835.35 . 835.15 . 835.15 . 835.05 . 835.05	3,336 3,346 3,375 3,336 3,316 3,316 3,286 3,286	+1.0 +.5 +1.4 -2.0 0 -1.0 0 -1.5	305.40 305.37 306.10 307.42 307.25 307.44 307.06 306.69 306.73	7,515 7,507 7,693 8,032 7,988 8,037 7,939 7,844 7,854	+56.5 4 +9.3 +17.5 -2.2 +2.5 -4.9 -4.7 +.5	1,068.50 1,062.70 1,067.90 1,072.90 1,074.90 1,079.90 1,080.90 1,081.40 1,081.40	825 432 779 1,180 1,351 1,803 1,896 1,944 1,944	-5.7 -21.0 +17.3 +20.7 +8.5 +23.3 +4.6 +2.4	
WTR YR 199	2		+.7			+9.5			-1.1	

PASSAIC RIVER BASIN RESERVOIRS IN PASSAIC RIVER BASIN -- Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992										
Date	Elevation (feet)†	Contents	Change in contents (equivalent	Elevation (feet)†	Contents	Change in contents (equivalent	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	
	01382200	OAK RIDGE	RESERVOIR	01382300	CLINTON I	RESERVOIR	01382380 CH	ARLOTTEBURG	RESERVOIR	
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 812.90 . 824.30	1,410 483 1,283 2,049	-46.3 +41.2 +38.2	978.40 977.30 977.20 981.50	1,888 1,774 1,764 2,218	-5.7 5 +22.7	732.90 732.70 731.60 731.00	1,916 1,899 1,802 1,750	-0.8 -5.0 -2.6	
CAL YR 199	1		-7.9	, i		-5.7			-5.4	
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	. 836.50 . 843.60 . 846.00 . 846.10 . 846.10	2,130 2,618 3,558 3,895 3,909 3,909 3,895 2,657	+4.0 +26.0 +46.9 +17.4 +.7 0 0 7	984.70 985.30 986.30 986.30 990.30 992.10 991.10 986.50 986.00	2,573 2,644 2,768 2,768 3,300 3,531 3,403 2,795 2,728	+17.7 +3.8 +6.2 0 +26.5 +11.9 -6.4 -30.3	734.25 734.35 740.65 743.10 742.60 739.40 733.00 732.05 737.05	2,040 2,049 2,692 2,977 2,918 2,557 1,925 1,841 2,308	+14.5 +.5 +32.1 +14.7 -2.9 -18.6 -31.5 -4.2 +24.1	
WTR YR 199	2		+5.3			+3.6			+1.7	

Date	Elevation (feet)†	Contents (million (gallons)	Change in contents equivalent in ft ³ /s)	Elevation (feet)**	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	01382	400 ECHO LA	KE	0138300	O GREENWO	OOD LAKE	01384002	MONKSVILL	E RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 891.60 . 888.70	1,574 1,458 1,210 1,046	-5.8 -12.8 -8.2	9.82 10.15 10.25 10.15	6,750 6,953 7,015 6,953	+10.1 +3.2 -3.1	400.0 400.0 400.0 400.0	7,000 7,000 7,000 7,000	0 0 0
CAL YR 199	1		-2.4			8			4
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	. 888.50 . 890.30 . 891.40 . 892.20 . 893.10	1,138 1,193 1,344 1,440 1,511 1,592 1,592 1,583 1,423	+4.6 +2.9 +7.5 +5.0 +3.5 +4.2 0 5 -8.3	a10.31 10.24 10.48 10.21 10.59 10.22 10.14 10.09	7,052 7,009 7,158 6,990 7,226 6,996 6,947 6,916 6,860	+4.9 -2.3 +7.4 -8.7 +11.8 -11.9 -2.4 -1.5 -2.9	400.0 400.0 400.0 400.0 400.0 400.0 400.0 400.0	7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000 7,000	0 0 0 0 0 0
WTR YR 199	2		6			+.5			0

Date	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	0138699	O WANAQUE	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 279.54 . 280.96	12,130 14,750 15,490 21,280	+131 +38.2 +289
CAL YR 199	1		-23.7
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Sept. 30	. 296.90 . 300.18 . 301.54 . 300.78 . 300.61 . 295.73 . 291.58	22,690 25,510 27,920 28,970 28,380 28,250 24,680 21,800 18,890	+70.4 +150 +120 +54.1 -29.4 -6.7 -178 -144 -150
WTR YR 1992	2		+28.6

Observed. Elevation at 0900. Gage height at 2400. Elevation at 0800 on first day of following month.

DIVERSIONS WITHIN PASSAIC RIVER BASIN

- 01368720 North Jersey District Water Supply Commission diverts water from Upper Greenwood Lake (Hudson River basin) near Moe, NJ to the Green Brook, a tributary of Greenwood Lake, for municipal supply. Consult North Jersey District Water Supply Commission for data available.
- 01379510 New Jersey-American Water Company diverts water from Passaic River, 1.2 mi upstream from Canoe Brook for municipal supply. These figures also include water diverted from the Passaic River by the Bernards Division of the Commonwealth Water Company. Records provided by New Jersey-American Water Company.
- 01379530 New Jersey-American Water Company diverts water from Canoe Brook near Summit, 0.5 mi from mouth, for municipal supply. Records provided by New Jersey-American Water Company.
- 01380800 Jersey City diverts water from Boonton Reservoir on Rockaway River at Boonton for municipal supply. Records provided by Jersey City, Bureau of Water.
- 01382370 City of Newark diverts water from Charlotteburg Reservoir on Pequannock River since May 21, 1961 for municipal supply. Prior to May 21, 1961 water was diverted from reservoir formed by Macopin intake dam on Pequannock River (former diversion 01382490). Records provided by City of Newark, Division of Water Supply. REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01386980 North Jersey District Water Supply Commission diverts water for municipal supply from Wanaque Reservoir on Wanaque River. Records provided by North Jersey District Water Supply Commission.
- 01387020 North Jersey District Water Supply Commission diverts water from Post Brook near Wanaque into Wanaque Reservoir for municipal supply. Records not available.
- 01387990 North Jersey District Water Supply Commission diverts water from Ramapo River by pumping from Pompton Lakes into Wanaque Reservoir. Records provided by North Jersey District Water Supply Commission.
- 01388490 Passaic Valley Water Commission supplements the dependable yield of its supply at Little Falls by diverting water at high flows at the Jackson Avenue Pumping Station into Point View Reservoir on Haycock Brook for release as required to sustain minimum flow requirements. Also water may be released into Haycock Brook for maintenance of flow in that stream. These diversions and releases occur upstream of Pompton Plains gaging station. Records provided by Passaic Valley Water Commission. No diversion or release during the year. REVISED RECORDS.--WDR NJ-82-1: Station number.
- 01388980 North Jersey District Water Supply Commission diverts water from the Wanaque South pumping station on the Pompton River at Two Bridges, 750 ft upstream from the Passaic River, to Wanaque Reservoir since January 1987. Record provided by the North Jersey District Water Supply Commission.
- 01388981 Hackensack Water Company diverts water from the Wanaque South pumping station on the Pompton River at Two Bridges, 750 ft upstream from the Passaic River, to Oradell Reservoir. Water can also be diverted from Wanaque Reservoir to Oradell Reservoir in the Hackensack River basin. Figures given herein include diversion from both sources. Prior to water year 1989, diversion was from Ramapo River at Pompton Lakes. Records provided by the Hackensack Water Company.
- 01389490 The Passaic Valley Water Commission diverts water from Passaic River above Beattie's Dam at Little Falls for municipal supply. Records provided by Passaic Valley Water Commission.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 01379510 NJ-AMERICAN 01379530 NJ-AMERICAN 01380800 WATER COMPANY WATER COMPANY 01382370 **JERSEY** CITY NEWARK MONTH FROM PASSAIC RIVER FROM CANOE BROOK 72.7 72.7 76.2 91.3 October..... 7.56 7.04 November..... 65.6 63.5 December..... CAL YR 1991..... 11.1 6.36 73.2 77.3 10.4 18.7 January..... 8.12 72.4 February..... 12.3 73.1 65.7 50.9 55.3 53.9 73.8 70.3 10.1 March..... 16.3 3.68 1.20 April..... 11.9 12.7 70.1 73.1 May.... 78.5 78.3 73.2 2.59 July..... 76.3 .81 11.4 75.5 August..... 0 9.31 September..... 0 12.4 75.6 75.8 WTR YR 1992..... 68.2 6.93 9.80 73.5

PASSAIC RIVER BASIN

DIVERSIONS WITHIN PASSAIC RIVER BASIN--Continued

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992, Continued

MONTH	01386980 WANAQUE RESERVOIR	01387990 RAMAPO RIVER TO WANAQUE RESERVOIR	01388980 POMPTON RIVER TO WANAQUE RESERVOIR	01388981* POMPTON RIVER TO ORADELL RESERVOIR	01389490 PASSAIC VALLEY WATER COMMISSION
October	166 163 162	61.9 9.4 100	221 147 189	15.0 14.5 1.4	80.5 70.1 70.1
CAL YR 1991	166	14.3	61.6	17.1	75.6
January	166 174 179 169 166 172 168 168 168	94.7 73.0 71.2 91.3 91.3 0 0	164 40.2 0 48.3 6.2 0	0 40.5 29.5 58.6 29.4 42.7 11.6 0	75.4 61.2 61.2 75.9 72.6 76.1 75.7 81.8 79.2
WTR YR 1992	168	49.4	68.0	20.3	73.4

^{*} Diversion is to the Hackensack River basin.

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ

LOCATION.--Lat 40°40'30", long 74°13'20", Union County, Hydrologic Unit 02030104, on left bank at Ursino Lake Dam in Elizabeth, 75 ft upstream of bridge on Trotters Lane and 3.8 mi upstream from mouth.

DRAINAGE AREA. -- 16.9 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to current year.

REVISED RECORDS.--WSP 1552: Drainage area, 1922-23, 1927-29(M), 1932, 1933-34(M), 1938(P), 1942(M) 1944(P), 1945(M), 1948(P), 1952-53(M). WDR NJ-84-1: 1974.

GAGE.--Water-stage recorder, two crest-stage gages, and two concrete weirs. The right concrete weir was lowered 5 ft on Dec. 18, 1985. Datum of gage is sea level (levels by Corps of Engineers). Prior to Oct. 1, 1922, nonrecording gage at site 2,800 ft downstream at datum 4.14 ft higher and Oct. 1, 1922 to May 18, 1923, at same site at datum 5.23 ft higher. May 19, 1923 to Dec. 27, 1972, at site 2,800 ft downstream at datum 5.23 ft higher and published as "Elizabeth River at Elizabeth" (station 01393500), drainage area 18.0 mi².

REMARKS.--Records good except for estimated daily discharges, which are fair. Diversion by pumpage from Hammock Well Field in Union for municipal supply by Elizabethtown Water Co., probably reduces the flow past the station. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft³/s and maximum (*):

•													
Date		Time		Discharge (ft ³ /s)	•	Gage height (ft)	:	Date	Time	D	ischarge (ft ³ /s)	G	age height (ft)
June	5	2030		*2,080		*19.58		No other	peak gre	ater than	base dis	charge.	
			DIS	CHARGE, CL	BIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTO	BER 1991	TO SEPTEM	IBER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		6.6 6.8 6.5 6.1 28	5.0 5.0 4.5 4.8 4.8	9.5 20 249 45 15	6.6 6.0 5.9 33 10	5.2 4.7 5.0 5.1 6.7	5.3 5.7 5.4 5.3	11 9.4 8.1 7.2 6.7	6.8 8.2 6.2 6.6 8.0	31 15 9.4 7.5 568	6.5 6.0 53 37 8.0	7.4 14 9.6 7.0	4.5 4.6 52 12 6.0
6 7 8 9 10		27 8.0 6.5 6.3 5.9	5.0 4.7 4.7 4.5 9.6	10 8.1 7.1 13 49	7.3 6.3 5.9 19 7.4	5.1 5.1 6.5 4.9 5.0	5.0 51 9.3 6.9 27	6.8 7.8 7.4 9.4 8.2	6.6 6.5 60 25 29	238 44 31 15 11	32 6.9 6.1 154 16	6.1 5.8 5.7 38 10	4.5 4.6 4.7 45
11 12 13 14 15		26 9.6 5.6 5.5 19	48 7.3 6.1 5.1 5.0	9.1 7.5 34 20 9.5	5.8 5.3 5.6 42 8.7	5.3 5.2 5.2 9.2 53	73 11 7.5 6.5 5.8	35 8.0 6.5 6.3 6.4	9.2 7.2 7.1 6.6 6.1	9.6 8.9 8.2 7.6 7.9	8.6 6.9 9.7 61 105	17 8.7 6.2 26 11	42 14 8.7 6.6 5.6
16 17 18 19 20		9.8 57 e12 e6.1 6.0	e4.8 e4.7 e4.8 e4.9 5.1	7.4 6.7 6.4 5.9 5.8	7.0 6.5 6.0 15 5.8	37 9.4 7.7 8.8 6.4	.5.8 5.7 5.6 26 32	35 27 12 14 7.9	69 12 8.0 6.5 6.2	7.4 7.4 7.1 34 13	31 11 13 7.7 7.2	24 28 58 8.1 6.0	4.9 4.8 4.5 5.0 4.1
21 22 23 24 25		5.9 5.6 5.7 5.5 5.4	11 171 34 12 7.8	5.9 5.6 5.6 5.3	5.7 5.6 51 23 8.2	5.8 5.4 5.2 5.8 14	14 10 24 11 12	7.5 19 10 30 15	5.8 6.0 5.7 18 12	7.4 6.8 6.6 40 8.7	6.8 7.1 69 12 6.9	5.5 5.1 4.7 4.9 5.5	4.1 12 23 6.0 5.5
26 27 28 29 30 31		5.1 5.0 4.9 5.0 5.1	6.5 5.8 5.2 5.1 5.0	5.3 5.3 5.9 58 23 8.5	7.2 6.5 6.3 6.0 5.8 5.9	52 8.6 6.9 5.9	118 76 20 12 10 32	7.0 7.7 7.3 6.7 6.7	9.3 7.8 5.9 5.7 5.6 267	6.8 27 7.3 6.7 6.5	7.5 8.7 6.6 5.7 5.5 70	30 13 8.2 6.2 4.4 4.6	114 46 14 7.3 5.4
TOTAL MEAN MAX MIN	•	322.5 10.4 57 4.9	411.8 13.7 171 4.5	672.3 21.7 249 5.3	346.3 11.2 51 5.3	310.1 10.7 53 4.7	644.3 20.8 118 5.0	357.0 11.9 35 6.3	649.6 21.0 267 5.6	1204.8 40.2 568 6.5	792.4 25.6 154 5.5	408.7 13.2 58 4.4	479.9 16.0 114 4.1
STATI	ST	CS OF MO	NTHLY ME	EAN DATA F	OR WATER	YEARS 1922	- 1992	, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)		20.4 60.1 1928 1.58 1922	24.7 90.6 1973 5.05 1923	23.1 85.1 1984 6.25 1981	23.2 86.3 1979 3.71 1925	26.4 55.1 1971 6.56 1934	31.7 75.5 1983 6.03 1981	29.6 97.0 1983 10.3 1963	27.3 83.8 1968 5.97 1923	23.1 57.4 1972 3.94 1923	27.1 83.1 1922 3.24 1923	28.5 195 1971 .068 1923	25.7 102 1966 1.99 1923

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1922 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	8921.0 24.4	6599.7 18.0	25.9 48.3 1971 10.2 1923
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	335 Sep 25 4.5 Nov 3 4.7 Nov 3	568 Jun 5 4.1 Sep 20 4.7 Nov 3	1900 Aug 28 1971 .00 Jul 14 1922 .00 Aug 7 1923
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS	47	2080 Jun 5 19.58 Jun 5 3.6 Sep 20 37	4110 Aug 28 1971 18.7a Aug 28 1971 51
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	11 5.6	7.2 5.0	11 5.5

a From floodmark, site and datum then in use, from rating curve extended above 1,100 ft³/s on basis of contracted opening measurement of peak flow. Maximum gage height at current site and datum was 25.77 ft, Aug. 2, 1973.
e Estimated.

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1979 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	T I:ME	DIS- HARGE, SF INST. CI CUBIC CC FEET DU PER AN	PE- WA FIC WH DN- FI JCT- (ST JCE A	PH ITER IOLE ELD TE AND- A				DXYGEN DEMAND, C BIO- F CHEM- F ICAL, 5 DAY E	COLI- FORM, FECAL, FEC BROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991 15	1100	5.0		7.9	13.0	7.3		4.0	1300	<200
JAN 1992 23	1115	5.4		7.8	3.5	11.6		3.5	490	70
APR 01	1230	9.7	600	7.9	11.0	13.7	126	E1.9	490	10
JUN 04	1230	7.2	725	8.0	22.0				500	140
JUL 29	1145	5.7	790	8.6	22.0	14.9	173	E1.7	50	10
DATE	HARD - NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L) AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVE (MG/I	M, LINIT - LAB ED (MG/ L AS	Y SULFAT DIS- L SOLVE (MG/L	DIS- D SOLVED (MG/L	(MG/	: ED L
OCT 1991 15	250	79	14	39	2.5	5 156	72	87	<0.	1
JAN 1992 23 APR	280	89	15	89	2.5	5 156	74	180	0.	1
01 JUN	140	46	7.2	56	1.5	5 84	40	110	0.	2
04 JUL_	230	72	12	46	2.7	7 136	63	96	<0.	1
29	240	74	13	54	2.0	5 133	74	130	0.	2
DATE	SILICA DIS- SOLVEI (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN NO2+NO	, NO2+N 03 DIS L SOLV L (MG/	, NITRO 03 GEN, - AMMONI ED TOTAL L (MG/L	AMMONÍA A DIS- . SOLVED . (MG/L	GEN,A MONIA ORGAN	M- - -
OCT 1991 15 JAN 1992	17	408	0.031	0.035	0.82	2 0.7	7 0.07	0.11	0.57	
23 APR	14	568	0.048	0.048	2.48	3 2.5	2 0.09	0.10	0.65	
01 JUN	8.7	326	0.026	0.025	1.40	1.4	2 0.06	0.07	0.56	
04 JUL	14	395	0.049	0.049	1.69	9 1.7	2 0.20	Ó.12	0.56	
29	11	444	0.039	0.039	1.28	3 1.2	9 <0.03	<0.03	0.38	:
DATE	NITRO GEN, AM MONIA - ORGANIO DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	S ORGAN - DIS- ED SOLVEI - (MG/	IČ SUS- PENDED D TOTAL L (MG/L	Č SEDI- MENT, SUS- PENDED		: E , ED
OCT 1991 15	0.3	1.4	1.1	0.0/	ZO 02	4.1	0.3	. ,	0.0	5
JAN 1992 23	0.3		2.9	0.04	<0.02	2.6	0.3	4	0.0	
APR 01	0.5		1.9	0.05	0.03	4.1	0.4	3	0.0	
JUN 04	0.46		2.2	0.07	0.06	4.7		3	0.0	
JUL 29	0.33		1.6	0.06	0.02	33	0.3	. 1	0.0	

ELIZABETH RIVER BASIN

01393450 ELIZABETH RIVER AT URSINO LAKE, AT ELIZABETH, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 04	1230	2	<10	100	<1	<1	8
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
JUN 1992 04	310	4	60	<0.10	5	<1	20

RAHWAY RIVER BASIN

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ

LOCATION.--Lat 40°41'11", long 74°18'44", Union County, Hydrologic Unit 02030104, on left bank 50 ft downstream from bridge on eastbound U.S. Highway 22, 100 ft downstream from Pope Brook, and 1.5 mi south of Springfield.

DRAINAGE AREA. -- 25.5 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1938 to current year.

REVISED RECORDS.--WSP 1622: 1945. WRD-NJ 1973: 1938(M), 1968(M), 1971(M).

GAGE.--Water-stage recorder. Former concrete control is no longer effective. Datum of gage is 66.17 ft above sea level.

REMARKS. - Records good except for estimated daily discharges, which are fair. Water for municipal supply diverted from river by city of Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., and Springfield station of Elizabethtown Water Co. Several measurements of water temperature, other than those published, were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,000 ft3/s and maximum (*):

Date		Time	t	ischarge (ft ³ /s)	•	Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	G	age height (ft)
June !	5	2215		*3,460		*8.63		No other	peak gre	ater than	base dis	charge.	
			DISC	HARGE, CL	BIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTOR	BER 1991	TO SEPTEM	BER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		10 9.8 10 9.6 17	16 19 13 12 12	13 17 279 123 24	8.7 8.6 8.9 47 15	8.8 8.5 8.7 8.7	9.6 9.4 9.5 9.3 9.2	26 19 15 14 13	9.3 10 8.8 8.6 10	57 15 11 10 860	8.6 7.8 33 44 9.0	23 7.9 36 15 7.9	e6.5 e5.0 e12 e32 e8.5
6 7 8 9		44 10 9.3 9.3 9.9	13 14 15 14 14	16 13 11 14 57	12 10 9.8 20 11	8.9 9.0 9.7 9.1 9.0	9.0 49 14 9.9 30	12 12 11 11 13	8.7 9.2 32 39 23	1330 76 37 27 19	29 8.5 8.1 144 11	7.3 6.5 6.6 32 13	e6.5 e6.0 e6.5 e6.0 e70
11 12 13 14 15		14 14 8.6 8.6 24	57 11 8.7 8.5 8.6	15 12 36 23 16	9.2 8.6 8.5 56 15	8.8 8.2 8.5 11 53	145 28 16 14 12	37 12 10 10 10	12 11 10 9.8 9.3	15 13 12 11 12	8.5 8.2 10 51 72	14 9.5 6.1 23 8.5	e40 e10 e7.0 e6.0 e5.0
16 17 18 19 20		16 69 14 8.6 12	9.1 10 11 12 12	14 12 11 9.8 10	12 11 9.5 8.5 8.8	56 11 11 12 12	11 10 9.2 22 28	29 25 17 15 12	51 10 9.3 8.8 8.5	9.7 9.7 9.7 36 18	31 9.7 14 7.8 7.3	13 12 38 7.7 6.6	e5.2 e5.0 e5.2 e5.0 e4.5
21 22 23 24 25	á	13 14 13 13	16 179 88 16 11	10 10 10 10 11	8.7 8.5 71 50 14	9.9 8.8 8.8 8.7	18 15 25 15 19	12 18 11 33 29	8.6 9.4 7.9 15 16	9.9 9.2 9.1 29	7.2 7.4 55 9.5 7.0	6.5 6.6 6.6 7.0 7.1	e4.0 e10 e42 e8.0 e20
26. 27 28 29 30 31		14 14 15 16 19	9.7 8.6 8.5 8.5 8.7	9.5 9.3 9.2 56 28 10	11 9.7 9.5 9.7 10 9.8	55 18 13 10	97 298 55 25 19 51	14 11 10 10 10	8.9 10 7.9 7.7 7.8 250	9.0 12 8.6 8.5 8.5	7.6 9.7 6.7 6.7 6.6	20 13 7.4 e8.5 e7.5 e7.0	e100 e40 e18 e11 e8.6
TOTAL MEAN MAX MIN	4	87.7 15.7 69 8.6	643.9 21.5 179 8.5	898.8 29.0 279 9.2	510.0 16.5 71 8.5	424.8 14.6 56 8.2	1091.1 35.2 298 9.0	481 16.0 37 10	647.5 20.9 250 7.7	2702.9 90.1 1330 8.5	742.9 24.0 144 6.6	390.8 12.6 38 6.1	513.5 17.1 100 4.0
STATIS	STIC	S OF MON	ITHLY MEA	N DATA F	OR WATER	YEARS 1939	-	, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)		17.1 65.3 1990 2.17 1964	26.7 107 1973 2.73 1950	29.8 129 1984 4.02 1940	29.0 116 1979 4.26 1966	34.2 77.7 1939 7.01 1954	45.7 112 1953 8.08 1981	42.1 139 1983 7.37 1963	34.9 112 1989 6.31 1965	23.6 110 1972 4.14 1965	24.4 138 1975 2.23 1966	23.4 112 1942 2.10 1964	21.2 100 1975 2.97 1964

RAHWAY RIVER BASIN

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1939 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	11456.8 31.4	9534.9 26.1	29.3 55.9 1973 10.0 1965
HIGHEST DAILY MEAN Lowest daily mean Annual Seven-day minimum	609 Mar 4 6.0 Jul 18 6.4 Jul 14	1330 Jun 6 4.0 Sep 21 4.8 Sep 15	1620 Aug 28 1971 .40 Sep 11 1966 .71 Oct 8 1970
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	EE	3460 Jun 5 8.63 Jun 5 6.0 Aug 7 43	5430a Aug 2 1973 9.76b Aug 2 1973 .10 Sep 11 1966
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	55 14 8.2	43 11 7.7	10 3.2

From rating curve extended above 1,600 ft³/s on basis of slope-area measurement of peak flow. From floodmark. Estimated.
Instantaneous low flow probably occurred during period of estimated daily discharges.

a b e *

RAHWAY RIVER BASIN

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1978 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE OCT 1991	CH/ II CI TIME	NST. CI JBIC CO FEET DL PER AN	FIC WA FIC WH IN- FI ICT- (ST ICE A	AND - A	MPER- OX TURE ATER S	S (YGEN, (DIS- SOLVED S	YGEN, OX DIS- DE OLVED B PER- C CENT I ATUR- 5	YGEN MAND, (IO- I HEM- I CAL, DAY E	COLI- FORM, FECAL, EC BROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
17 JAN 1992	1045	9.2	••	7.8	12.0	5.5	•••	E2.0	5400	>2400
27	1045	9.2	950	7.9	1.0	12.7	89	<1.1	330	. 130
APR 	1045 12	2	625	7.8	7.5	13.9	116	E1.4	9200	130
JUN 16	1100	9.2	567	7.6	20.0	10.0	110	<1.0	1100	9000
JUL 15	1100	7.8	335	7.7	24.5			<1.0	3500	290
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	, LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVEI (MG/L	(MG/	: ED L
OCT 1991 17 JAN 1992	130	41	7.2	19	2.8	. 95	26	40	<0.	1
27 APR	180	56	9.9	94	1.9	106	36	190	<0.	1
06 JUN	200	60	11	46	1.8	104	38	110	٠0.	1
16	190	57	. 11	37	1.9	112	39	89	<0.	1
JUL 15	110	33	5.9	17	1.9	75	25	38	0.	1
DÁTE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3	NO2+NO3	AMMON Í A	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,A MONÍA ORGAN	M- + IC L L
OCT 1991 17	12	209	0.009	0.015	1.05	0.97	0.05	0.07	0.65	
JAN 1992 27	15	473	0.014	0.014		1.56	0.05	<0.03	0.33	
APR 06	9.5	344	0.021	0.018	•	1.25	<0.03	0.05	0.35	
JUN 16	16.	324	0.031	0.031		1.26	0.05	0.05	0.56	
JUL 15	9.8	180	0.025	0.025		0.97	0.26	0.08	0.79	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIĆ DIS-	CARBON, ORGANIC		SEDI MENT DIS CHARG SUS PEND	- '. E, -
OCT_1991							<u></u>	_		_
17 JAN_1992	0.59		1.6	0.06	<0.02	6.2	0.5	6	0.1	
27 APR	0.32	1.9	1.9	0.03	<0.02	2.9	0.2	2	0.0	
06 JUN	0.26	1.6	1.5	<0.02	<0.02	3.7	1.3	3	0.1	
16 JUL	0.38	1.8	1.6	0.06	0.03	4.7	0.3	78	1.9	
15	0.35	1.8	1.3	0.11	0.08	5.0	0.7	5	0.1	1

RAHWAY RIVER BASIN

01394500 RAHWAY RIVER NEAR SPRINGFIELD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	DEM CH IC (H TIME LEV	IIGH TO	ENIC TAL G/L AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT_1991			_			_		
17 JUN 1992	1045	22	<1	<10	30	<1	11	10
16	1100	15	<1	<10	90	<1	<1	4
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA NESE, TOTAL RECOV ERABL (UG/L AS MA	MERCU TOTA - RECO LE ERAB - (UG/	L TOTA V- REC LE ERAI L (UG	AL SELE OV- NIUM BLE TOTA /L (UG/	, RECO L ERAB L (UG/	iĹ IV- ILE 'L
OCT 1991 17	400	7	12	20 <0.	10	8	<1	30
JUN 1992 16	330	3	10	00 <0.	10	<1	<1 <	:10 -

RAHWAY RIVER BASIN

01395000 RAHWAY RIVER AT RAHWAY, NJ

LOCATION.--Lat 40°37'05", long 74°17'00", Union County, Hydrologic Unit 02030104, on left bank 100 ft upstream from St. Georges Avenue bridge in Rahway and 0.9 mi upstream from Robinsons Branch.

DRAINAGE AREA .- - 40.9 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1908 to April 1915 (gage heights and discharge measurements only), October 1921 to current year.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23(M), 1924, 1930-31(M), 1937. WDR NJ-79-1: 1978.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 8.77 ft above sea level. Prior to Aug. 25, 1934, nonrecording gage at site 40 ft downstream from Church Street and 1,500 ft downstream from present site at datum 2.77 ft lower.

REMARKS.--No estimated daily discharges. Records good. Water for municipal supply diverted from river by Rahway and Orange. The flow past this station is affected by diversions by pumpage from wells by Orange, South Orange, Short Hills Water Co., Springfield station of Elizabethtown Water Co, and by storage in the Lenape Park flood control reservoir (since 1980). Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR. Peak discharges greater than base discharge of 600 ft3/s and maximum (*):

Date	Time	ι	Discharge (ft ³ /s)	G	age heigh (ft)	t	Date	Time	. D	ischarge (ft ³ /s)	Ga	ge height (ft)
May 31 June 5	1630 2215	,	. 634 *2,890		3.25 *6.25		July 9	0545		980		3.87
		DISCHA	RGE, CUBIC	FEET PE	R SECOND, DAIL	WATER Y	EAR OCTOBER ALUES	1991 TO	SEPTEMBE	R 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 10 9.6 9.3	6.9 7.4 10 8.3 6.5	12 17 358 258 42	9.7 10 63 42	9.5 9.1 9.8 9.5	10 10 9.7 9.2 10	42 29 23 21 20	14 16 14 12 15	198 28 15 13 723	9.0 8.1 15 100 17	111 13 9.4 52 12	4.5 6.1 25 46 9.8
6 7 8 9 10	72 30 8.4 6.7 7.4	6.6 7.0 7.8 7.7 8.4	23 19 15 13 85	17 13 11 17 27	8.9 9.5 10 11 8.3	10 59 42 13	18 17 16 15 21	14 13 25 87 38	2280 548 57 37 28	45 13 11 410 33	8.6 8.0 7.9 11 36	7.5 9.2 8.9 8.0 90
11 12 13 14 15	9.0 14 10 6.8 13	67 29 12 11 9.4	25 17 38 48 29	13 10 11 60 32	9.3 9.3 8.9 13 30	192 50 23 17 15	53 24 15 16 16	23 16 13 13	25 20 18 17 15	15 12 15 121 64	17 26 30 46 10	104 14 8.8 7.0 6.8
16 17 18 19 20	35 66 64 16 7.9	7.1 6.6 4.7 6.3 6.5	17 16 14 12 12	14 11 9.8 8.5 8.3	140 23 15 18 15	12 13 11 29 46	25 55 39 26 21	82 24 14 12 10	15 12 11 51 48	133 21 21 14 11	15 25 67 20 12	6.7 6.2 6.5 6.5 6.1
21 22 23 24 25	6.8 8.5 8.6 10 8.4	7.7 125 225 28 15	13 13 13 13 12	8.0 8.1 45 117 25	13 11 10 15 14	37 26 38 31 26	19 25 21 17 52	8.9 8.7 11 13 31	13 13 10 33 25	10 9.8 94 48 5.4	8.4 6.7 8.6 6.2 5.7	4.6 13 72 9.1 32
26 27 28 29 30 31	9.6 8.8 6.6 5.2 6.0 7.9	9.6 8.9 9.0 8.5 11	13 11 11 71 51 21	14 11 11 12 12 12	85 27 17 14	62 477 103 41 28 59	21 16 15 15 16	11 14 9.8 9.1 9.3 298	12 18 13 9.3 8.9	8.5 16 23 9.8 8.0 33	38 26 15 13 11 6.1	138 52 40 12 8.5
TOTAL MEAN MAX MIN	502.5 16.2 72 5.2	683.9 22.8 225 4.7	1312 42.3 358 11	673.4 21.7 117 8.0	584.1 20.1 140 8.3	1523.9 49.2 477 9.2	729 24.3 55 15	889.8 28.7 298 8.7	4314.2 144 2280 8.9	1353.6 43.7 410 5.4	681.6 22.0 111 5.7	768.8 25.6 138 4.5
							, BY WATER)			
MEAN MAX (WY) MIN (WY)	27.1 130 1928 1.48 1964	42.8 221 1973 3.05 1966	46.3 255 1984 3.27 1981	49.2 211 1979 1.41 1981	58.5 156 1925 12.5 1954	76.9 190 1983 12.6 1981	68.2 246 1983 7.80 1963	53.2 199 1989 6.20 1965	36.6 173 1972 3.32 1965	41.0 268 1975 .33 1966	40.3 242 1971 .43 1964	36.0 175 1975 2.26 1964

RAHWAY RIVER BASIN

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1922 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	18716.3 51.3	14016.8 38.3	47.9 105 1973 15.0 1965
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	1220 Mar 4 1.7 Jul 31 6.9 Nov 15	2280 Jun 6 4.5 Sep 1 6.2 Sep 15	3450 Aug 28 1971 .00 Oct 9 1964 .00 Jul 10 1981
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	·	2890 Jun 5 6.25 Jun 5 1.2 Feb 8	5420a Aug 2 1973 7.88 Aug 2 1973
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	99 22 7.4	62 14 7.9	98 18 3.2

a From rating curve extended above 3,000 ft³/s.

RAHWAY RIVER BASIN

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1923-24, 1952, 1967-70, and February 1979 to current year.

COOPERATION. - Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC C FEET D PER A	PE- WA IFIC WA ON- FI UCT- (SI NCE A	TAND- AT ARD W	TURE [Ater so	YGEN, (DIS- DLVED S	DIS- DE OLVED B PER- C CENT I ATUR- 5	IO- FO HEM- FO CAL, I DAY BO	OLI- (ORM, M ECAL, V EC 1 ROTH ((NTERO- COCCI ME, MF NATER FOTAL COL / DO ML)
OCT 1991	1030	6.4	332		10.5		79	E1.5	200	200
21 JAN_1992				•.	,	8.9		•		200
27 APR	1330	10	560	7.9	3.0	14.6	108	<1.2	330	110
06 Jun	1315	23	580	8.7	10.5	17.3	156	2.7	20	<10
17 JUL	1130	12	532	7.9	22.0	11.5	131	E2.1	130	110
16	1130	19	210	7.8	24.0	7.3	87	3.6	3200	4900
DATE	HARD NESS TOTA (MG/ AS CACO	CALCIUM L DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F))
OCT 1991 21	1	30 40	6.4	14	2.0	88	31	31	<0.1	
JAN 1992 27	1	20 38	5.9	52	1.8	76	30	98	0.1	
APR . 06	1	70 54	9.7	46	1.7	103	40	100	0.2	
JUN 17	2	00 61	11	29	2.1	123	43	66	0.1	
JUL 16		64 20	3.4	· 10	1.6	42	13	19	<0.1	
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI- ED TUENTS, L DIS- SOLVED		NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	AMMON Î A	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA - ORGANIO TOTAL (MG/L AS N)	• •
OCT 1991	11	192	0.010	0.009	0.76	0.76	0.14	0.21	0.56	
JAN 1992 27	8.	6 284	0.019	0.017	0.99	0.95	<0.03	0.05	0.49	ı
APR 06	8.	1 325	0.019	0.018	0.76	0.77	<0.06	0.07	0.56	
JUN 17	14	303	0.024	0.023	0.73	0.74	<0.03	<0.03	0.83	
JUL 16	5.	6 102	0.037	0.034	0.87	0.84	0.16	0.11	0.95	
DATE	NITR GEN,A MONIA ORGAN DIS. (MG/ AS N	O- M- + NITRO- IC GEN, TOTAL L (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	1
OCT 1991	n ·	7 5 1 7	1 1	0.05	<0.02		0.6	7	0.12	
21 JAN 1992	0.		1.1	0.05		4.2				
27 APR		33 1.5	1.3	0.06	0.03	3.8	0.5	4	0.11	
06 JUN 17		29 1.3	1.1	0.05	<0.02	3.1	0.4	6 1/	0.37	
17 JUL		43 1.6	1.2	0.06	<0.02	3.6	0.8	14	0.45	
16	υ.	48 1.8	1.3	0.18	0.08	5.0	1.6	24	1.2	

, RAHWAY RIVER BASIN

01395000 RAHWAY RIVER AT RAHWAY, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
1030	. 14	<1	<10	60	<1	8	5
1130	. 15	<1	<10	90	<1	1	. 3
TOT REC ERA (UG	AL TOT OV- REC BLE ERA /L (UG	ID, NES	SE, MERC TAL TOT COV- REC ABLE ERA G/L (UG	AL TOT OV- REC BLE ERA /L (UG	AL SELE OV- NIUM BLE TOTA /L (UG/	:- TOT I, REC L ERA 'L (UG	AĽ OV <i>-</i> BLE /L
		4			3		<10 <10
	1030 1130 IRO TOT REC ERA (UG AS	IRON, LEATOTAL TOTAL CAS FE) AS FE)	DEMAND, CHEM- ICAL ARSENIC (HIGH TOTAL TIME LEVEL) (UG/L (MG/L) AS AS) 1030 14 <1 1130 15 <1 IRON, LEAD, MAI IRON, LEAD, NES TOTAL TOTAL TOT RECOV- RECOV- ERABLE ERABLE ERA (UG/L (UG/L (UG/L AS FE) AS PB) AS	DEMAND, CHEM- I CAL ARSENIC RECOV- (HIGH TOTAL ERABLE TIME LEVEL) (UG/L (UG/L (MG/L) AS AS) AS BE) 1030 14 <1 <10 1130 15 <1 <10 IRON, LEAD, NESE, MERC TOTAL TOTAL TOTAL TOTAL RECOV- RECOV- RECOV- ERABLE ERABL	DEMAND,	DEMAND, CHEM- CHEM- ICAL ARSENIC RECOV- RECOV- (HIGH TOTAL T	DEMAND,

RAHWAY RIVER BASIN

01396000 ROBINSONS BRANCH AT RAHWAY, NJ

LOCATION.--Lat 40°36'20", long 74°17'57", Union County, Hydrologic Unit 02030104, on right bank of Milton Lake, 2,000 ft upstream from Maple Avenue in Rahway, 3,200 ft downstream from Middlesex Reservoir Dam, and 1.6 mi upstream from mouth.

DRAINAGE AREA. -- 21.6 mi 2.

PERIOD OF RECORD.--September 1939 to current year. September 1939 to September 1978, published as "Robinsons Branch Rahway River at Rahway." October 1978 to September 1985, published as "Robinsons Branch Rahway River at Maple Avenue, at Rahway" (station 01396001).

REVISED RECORDS.--WDR NJ-75-1: 1973(P). WDR NJ-87-1: 1986(M).

GAGE.--Water-stage recorder. Datum of gage is 19.99 ft above sea level (levels from New Jersey Geological Survey bench mark). From Sept. 26, 1978 to Sept. 30, 1985, water-stage recorder 2,000 ft downstream at Maple Avenue at datum 8.69 ft lower.

REMARKS.--No estimated daily discharges. Records fair except those below 2 ft³/s, which are poor. Water diverted for municipal supply by Middlesex Water Co., from Middlesex Reservoir, capacity, 89,000,000 gal, 1.0 mi above station. No diversion this year. Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 450 ft³/s and maximum (*):

Date		Time		Discharg (ft ³ /s)	e)	Gage height (ft)		Date	Time		Discharge (ft ³ /s)	Ga	age height (ft)
June	5	2100		*2,280		*5.62		July 9	0415		1,400		5.27
			DISC	HARGE, C	UBIC FEET	PER SECOND	, WATER LY MEAN	YEAR OCTOBE VALUES	ER 1991	TO SEPTE	MBER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY '	JUN	JUL	AUG	SEP
1 2 3 4 5	٠	4.5 5.3 4.7 4.0 6.1	1.8 2.7 3.4 3.8 4.9	2.7 3.5 177 139 26	5.5 5.0 5.0 27 26	5.8 4.8 4.4 4.5 4.9	6.3 7.7 7.7 8.8 12	16 13 11 10 9.5	5.8 6.4 5.9 5.4 5.9	88 14 6.7 4.6 592	2.2 2.1 6.1 36 6.0	29 7.5 4.7 6.2 4.4	2.0 1.4 5.8 16 5.3
6 7 8 9 10		17 9.7 5.0 4.3 4.8	5.4 5.1 6.1 5.3 4.6	12 9.4 6.8 7.0 32	12 7.6 4.9 8.1	4.4 5.0 5.4 5.7 4.5	13 28 28 16 16	7.1 6.7 8.4 7.6 9.6	7.1 6.4 14 32 22	598 214 54 18 14	24 5.5 2.6 363 75	3.1 2.6 2.4 3.3 5.0	3.5 3.6 4.9 4.0 31
11 12 13 14 15		7.6 12 7.0 6.0 9.0	20 5.9 3.3 2.3 2.4	14 8.3 14 21 12	6.4 5.0 5.0 17 10	4.4 4.5 4.3 5.9 17	64 24 14 9.1 7.8	22 16 9.4 8.4 7.2	16 9.3 7.9 7.8 5.5	7.5 .72 .47 .41 .75	10 4.1 5.2 26 33	15 18 6.0 22 10	45 12 6.2 3.6 .65
16 17 18 19 20	•	17 43 19 4.4 2.2	4.3 3.7 2.7 3.4 6.2	7.5 5.8 5.9 4.5 3.8	6.2 2.9 3.6 2.8 2.8	64 24 18 20 18	6.4 5.9 6.3 15 22	12 24 20 17 12	65 32 9.0 5.4 4.4	1.2 1.6 1.6 4.8 28	38 8.4 6.3 6.3 6.6	16 19 43 13 7.2	.40 .36 .36 .43 .49
21 22 23 24 25		1.9 2.1 1.9 1.9 2.5	7.2 72 78 9.3 3.4	4.5 4.4 5.0 5.3 4.4	3.1 3.1 21 53 18	13 10 9.7 8.9 9.8	20 16 22 20 19	10 11 10 7.8 7.7	3.9 3.6 3.4 5.1 8.2	15 5.2 3.4 10 8.5	5.7 4.0 32 20 6.9	4.4 3.5 3.1 2.9 2.8	.42 2.5 27 2.9 .94
26 27 28 29 30 31		2.8 3.0 3.5 2.4 2.9 2.5	3.2 2.7 2.1 1.9 1.9	4.3 4.3 4.3 24 23 10	10 6.2 5.2 5.0 5.0	41 20 12 11	50 186 46 19 14 24	7.6 7.0 6.6 6.3 5.9	4.4 4.1 3.4 3.0 2.7 153	3.4 4.2 3.4 2.6 2.3	5.0 13 8.3 4.4 4.1 21	4.0 5.8 3.5 3.9 2.7 2.4	63 36 22 6.1 1.7
TOTAL MEAN MAX MIN	•	220.0 7.10 43 1.9	279.0 9.30 78 1.8	605.7 19.5 177 2.7	307.5 9.92 53 2.8	364.9 12.6 64 4.3	754.0 24.3 186 5.9	326.8 10.9 24 5.9	468.0 15.1 153 2.7	1708.35 56.9 598 .41	790.8 25.5 363 2.1	276.4 8.92 43 2.4	309.55 10.3 63 .36
STATI	STI		ONTHLY ME	AN DATA	FOR WATER	YEARS 1940	- 1992	, BY WATER Y	YEAR (W)	()			
MEAN MAX (WY) MIN (WY)		12.9 60.3 1959 .22 1954	25.7 98.8 1973 .48 1965	28.4 142 1984 1.03 1966	29.9 118 1979 .87 1966	35.8 77.0 1973 7.24 1954	44.1 108 1953 8.49 1981	37.6 129 1983 .45 1963	30.9 116 1989 .27 1963	17.5 76.8 1972 .15 1957	18.4 143 1975 .000 1954	17.9 90.9 1942 .13 1953	16.4 118 1975 .020 1955

RAHWAY RIVER BASIN

01396000 ROBINSONS BRANCH AT RAHWAY, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1940 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	9964.0 27.3	6411.00 17.5	26.2 52.2 1984 5.79 1965
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	563 Mar 4 1.8 Nov 1 2.2 Oct 20	598 Jun 6 .36 Sep 17 .44 Sep 15	5.79 1965 1240 Jul 15 1975 .00 Jan 9 1942 .00 Oct 5 1947
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	2.2 000 20	2280 Jun 5 5.62 Jun 5 .34 Sep 17	3110a Jul 15 1975 6.02 Aug 15 1969 .00 Many days
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	56 11 3.9	28 6.3 2.5	58 7.6 .60

a $\,$ From rating curve extended above 750 $\,$ ft $^3/s$ on basis of flow-over-dam computation.

01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ

LOCATION.--Lat 40°45'40", long 74°49'18", Morris County, Hydrologic Unit 02030l05, at bridge on Middle Valley Road in Middle Valley, 6.9 mi downstream from Drakes Brook.

DRAINAGE AREA. -- 47.6 mi².

PERIOD OF RECORD.--Water years 1964-65, 1967, 1976 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	PE- WA FIC WH DN- FI DCT- (ST DCE A	AND - A	TURE Ater s	YGEN, ODIS-OLVED S	DIS- DEN SOLVED B (PER- CI CENT IC SATUR- 5	IO- FO HEM- FI DAL, I DAY BI	DLI- CO DRM, ME ECAL, WA EC TO ROTH (CO	TERO- DCCI E, MF ATER DTAL DL / D ML)
NOV 1991 13	1130	40	255	8.6	6.5	13.6	112	<1.2	50	33
FEB 1992 03	1045	46	280	8.3	0.5	14.8	105	E1.0	20	<10
MAR 17	1230	66	254	8.3	2.0	14.5	107	1.2	20	<10
JUN									460	- 10
02 JUL	1200	84	193	8.0	14.0	10.6	103	E1.1		
22	1030	39	280	8.5	18.5	9.5	103	<1.0	330	90
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L) AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	,
NOV 1991	100	22	11	11	1.8	79	13	22	<0.1	
FEB 1992 03	92	2 21	9.7	15	1.4	63	14	27	0.1	
MAR 17	74	17	7.7	12	1.2	52	15	27	0.1	,
JUN 02	. 61	1 14	6.3	10	1.2	46	12	21	<0.1	
JUL 22	. 100	22	11	14	1.5	80	11	27	<0.1	
Date	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVEI (MG/L AS N)	NITRO- GEN, AMMONÍA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	17
NOV_1991	40	440								
13 FEB 1992	12	149	0.012	0.012	2.06	2.06	0.07		0.32	
03 MAR	- 12	147	0.010	0.013	2.10	2.10	<0.03	<0.03	0.20	
17 Jun	12	131	0.006	0.006	1.60	1.68	0.10	0.10	0.20	
02 JUL	11	108	0.012	0.012	1.13	1.15	<0.03	<0.03	0.49	
22	12	155	0.009	0.012	1.90	1.83	<0.03	<0.03	0.06	
DATE	NITRO- GEN,AM- MONÍA - ORGANIO DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
NOV 1991	0.44	, , ,	2.2	0.45	0.04		0.7	2	0.33	
13 FEB_1992	0.16		2.2	0.15	0.06		0.3	2	0.22	
03 MAR_	0.18		2.3	0.06	0.05	2.0	0.3	1	0.12.	
17 Jun	0.18		E1.9	0.03	0.03	2.0	0.2	8	1.4	
02 JUL	0.42	2 1.6	1.6	0.04	0.10	5.0	0.4	12	2.7	
22	<0.03	3 2.0	• •	0.11	0.12	2.1	0.8	8	0.84	

01396280 SOUTH BRANCH RARITAN RIVER AT MIDDLE VALLEY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		WAIER	WONLILL C	MIN, WALL	K ILAK OC	100CK 177	TI TO SEPT	CHOCK 173	, <u>C</u>	
DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)
NOV 1991 13 13	1130 1130	 12	<1	1	3.7	220	410	0.5		·· <1
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS, CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 13 13	<1	 <10	20	 <1	<1	 <1	5	<5	10	100
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 13 13	5200	 <1	10	 <10	190	 <0.10	<0.01	2	<10 	 <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 13 13	<1	 <10	40	1	<1.0	<0.1 	2.0	0.1	<1.0	0.5
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 13 13	<0.1	<0.1	<0.1 	<0.1	<0.1 	<0.1 	<1.0	<0.1 	<1.00	<10

01396500 SOUTH BRANCH RARITAN RIVER NEAR HIGH BRIDGE, NJ

LOCATION.--Lat 40°40'40", long 74°52'46", Hunterdon County, Hydrologic Unit 02030105, on left bank 1.0 mi northeast of High Bridge, and 4.4 mi upstream from Spruce Run.

DRAINAGE AREA. -- 65.3 mi²

PERIOD OF RECORD.--October 1918 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 601: 1924. WSP 781: Drainage area. WSP 1552: 1919(M), 1920(M), 1921, 1923, 1924(M), 1927-28(M), 1934(M), 1941(M).

GAGE. --Water-stage recorder and crest-stage gage. Concrete control since Sept. 28, 1930. Datum of gage is 282.10 ft above sea level (levels from New Jersey Geological Survey bench mark). Prior to Sept. 30, 1921, reference point at same site and datum.

REMARKS:--Records good. Occasional regulation from unknown source. Several measurements of water temperature were made during the year. New Jersey Water-Supply Authority gage-height and USGS satellite telemeters at station.

EXTREMES OUTSIDE PERIOD OF RECORD. - Outstanding floods occurred on Feb. 6, 1896, in February 1902, and October 1903. At High Bridge, according to reports of the New Jersey State Geologist, the discharges for these floods respectively were 7,560 ft³/s, 3,840 ft³/s, and 2,670 ft³/s.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft³/s and maximum (*):

Date	Time	D	ischarge (ft ³ /s)	G	Gage height (ft)		Date	Time	Di	scharge (ft ³ /s)	Gaç	ge height (ft)
Mar. 27	0900		1,110		8.57		June 5	2345	*1	,850	,	9.32
		DISCH	ARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y. MEAN	YEAR OCTOBE	R 1991	TO SEPTEME	BER 1992	٠	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	43 42 41 40 40	40 40 38 39 38	52 55 360 321 122	58 58 56 66 93	68 60 64 62 61	73 76 73 72 71	147 139 129 120 113	86 86 83 79 78	280 126 90 77 362	70 66 66 85 71	218 84 65 63 60	42 42 47 248 77
6 7 8 9 10	41 43 39 37 37	38 38 39 38 38	91 81 76 75 122	70 62 59 59 69	57 60 61 57 54	69 95 169 101 91	107 103 102 97 102	78 74 78 118 101	1060 290 248 321 167	86 68 62 209 91	54 52 51 85 70	57 57 58 54 55
11 12 13 14 15	38 40 40 37 43	45 56 47 44 42	89 76 77 89 81	61 58 56 125 121	58 56 59 59 63	340 157 119 107 99	135 111 97 92 89	96 83 79 77 72	144 129 118 110 102	70 64 71 121 78	57 73 57 56 56	87 58 49 48 46
16 17 18 19 20	91 89 119 63 52	41 40 39 39 39	69 61 62 56 60	75 68 74 e57 e59	181 98 81 86 87	91 91 91 99 99	89 121 123 111 102	82 85 76 72 67	95 91 87 179 165	87 72 81 67 61	55 79 96 71 58	44 44 43 42 43
21 22 23 24 25	47 46 44 43 42	41 125 274 99 72	59 57 56 56 53	e65 e64 104 296 107	77 72 70 74 77	93 90 91 86 89	97 109 131 106 149	65 62 59 57 63	103 90 85 99 139	58 56 82 94 66	53 50 49 48 47	41 42 53 44 41
26 27 28 29 30 31	41 42 41 40 40	61 56 54 52 51	48 50 48 73 106 71	91 84 78 73 71 72	157 122 92 85	165 724 250 180 158 163	111 102 94 91 88	61 65 61 57 56 296	91 86 81 74 71	60 77 64 56 54 76	55 55 49 57 48 44	54 64 64 49 44
TOTAL MEAN MAX MIN CFSM	1481 47.8 119 37 .73 .84	1703 56.8 274 38 .87 .97	2752 88.8 360 48 1.36 1.57	2509 80.9 296 56 1.24 1.43	2258 77.9 181 54 1.19 1.29	4272 138 724 69 2.11 2.43	3307 110 149 88 1.69 1.88	2552 82.3 296 56 1.26 1.45	5160 172 1060 71 2.63 2.94	2389 77.1 209 54 1.18 1.36	2015 65.0 218 44 1.00 1.15	1737 • 57.9 248 41 .89
STATIST	ICS OF MO		N DATA FO	R WATER		- 1992	, BY WATER Y	EAR (WY	'),			
MEAN MAX (WY) MIN (WY)	73.3 257 1928 21.8 1964	108 335 1928 26.9 1966	131 382 1974 36.5 1966	136 480 1979 31.8 1981	153 301 1925 54.0 1934	200 466 1936 79.5 1965	190 528 1983 70.7 1965	143 337 1989 50.5 1965	98.0 401 1972 27.6 1965	85.6 295 1975 20.7 1965	78.0 285 1942 20.4 1965	72.2 195 1979 20.8 1964

RARITAN RIVER BASIN

01396500 SOUTH BRANCH RARITAN RIVER NEAR HIGH BRIDGE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1919 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	37511 103	32135 87.8	122 213 1928
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	645 Mar 4 31 Sep 18 32 Sep 12	1060 Jun 6 37 Oct 9 38 Oct 8	46.2 1965 3340 Jan 25 1979 13 Aug 11 1966 18 Aug 11 1965
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		1850 Jun 5 9.32 Jun 5 37 Oct 9	6910 Jan 25 1979 12.23a Feb 24 1979 6.6 Oct 11 1930
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.57 21.37 191 75	1.34 18.31 129 71	1.87 25.45 234 86
90 PERCENT EXCEEDS	38	42	,36 ,

a Ice jam. e Estimated.

01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ

LOCATION.--Lat 40°39'49", long 74°53'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi northeast of Mariannes Corner, 1.0 mi downstream from Lake Solitude dam, and 4.3 mi northeast of Norton.

DRAINAGE AREA. -- 68.8 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. CUBIC FEET PER	SPE- WARD CIFIC WARD CON- FOUCT- (STANCE	TAND- ARD	EMPER- ATURE WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- DI SOLVED I (PER- CENT SATUR-	BIO- F CHEM- F ICAL, 5 DAY B	OLI- ORM, ECAL, EC BROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
NOV 1991 14	1100	40	272	8.5	6.5	13.1	108	E1.5	80	33
FEB 1992 03	1330	62	272	8.4	1.5	14.5	104	E1.7	20	<10
MAR 17	1030	93	233	8.4	1.5	13.7	99	1.3	60	10
JUN 02	1000	130		7.8	14.5	10.5		E1.3	490	650
JUL 22	1230	53	267	8.5	21.0	8.8	100	<1.0	40	200
· DATE	HARD NESS TOTA (MG/ AS CACO	G CALCIU L DIS- 'L SOLVE (MG/L	MAGNE- M SIUM, DIS- D SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L AS NA	POTA SIU DIS SOLV	AS- ALKA DM, LINIT S- LAB ZED (MG/ ZL AS	Y SULFATI DIS- L SOLVEI (MG/L	CHLO- E RIDE, DIS- D SOLVED (MG/L	FLUO RIDE DIS SOLV (MG/	- <u>'</u> ED L
NOV 1991	4	100 33	11	11	1	4 97	47	. 24	-0	4
14 FEB 1992		06 22	. 11	11	1.		14	21	<0.	
03 MAR		96 22	10	12	1.		13	22	0.	
17 JUN		80 18 EE 17	8.5	12	1.		16	24	0.	
02 JUL	4	55 13	5.4	8.9			12	17	<0.	
22	'	00 22	11	11	1.	6 84	12	21	0.	2
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI	NITRO- GEN, NITRITE TOTAL O (MG/L	NITRO GEN, NITRIT DIS- SOLVE (MG/L AS N)	NITR E GEN NO2+N D TOTA (MG/	I, NO2+N NO3 DIS NL SOLV 'L (MG/	, NITRO O3 GEN, - AMMONIA ED TOTAL L (MG/L	AMMON Ì A	GEN,A MONIA ORGAN	M- + IC L L
NOV 1991 14	9.	.4 14	8 0.007	0.00	ı 8 1.7	7 1.7	5 0.12	<0.03	0.28	
FEB 1992 03	12	14		0.00				<0.03	0.15	
MAR 17	11	13		0.00		•		0.07	0.14	
JUN 02	11	9		0.01				<0.03	0.57	
JUL 22	11	14		0.01				0.04	0.08	
DATE	NITR GEN,A MONIA ORGAN DIS. (MG/	RO- MM- X + NITRO VIC GEN, TOTAL 'L (MG/L	NITRO-	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORU DIS SOLV	G- CARBO IS ORGAN G- DIS- ZED SOLVE ZL (MG/	CARBON N, ORGANI IC SUS- PENDED D TOTAL L (MG/L	,	SEDI MENT DIS CHARG SUS PEND	: E , - ED
NOV_1991	ē							_		
14 FEB 1992		16 2.1	1.9	<0.02			0.3	1	0.11	
03 MAR_		12 1.9	1.9	0.02			0.2	1	0.17	
17 JUN		12 1.7		0.02			0.2	4	1.0	
02 JUL		44 1.5	1.4	0.07			0.4	5	1.8	
22	<0.	03 1.6	••	0.08	0.07	2.5	0.4	6	0.86	

RARITAN RIVER BASIN

01396535 SOUTH BRANCH RARITAN RIVER AT ARCH STREET AT HIGH BRIDGE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)
NOV 1991 14 14	1100 1100		<1	<1	3.3	210	550	0.7	5.6	 <1
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 14 14	2	 <10		 <1	<1	 <1	20	<5	30	 120 .
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 14 14	9900	4	40	20	740	<0.10.	<0.01	2	10	··- <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 14 14	<1	·- <10	80	4	<1.0	<0.1	6.0	0.1	<1.0	0.4
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 14 14	0.1	<1.0	<1.0	<0.1 	<1.0	<0.1	<10	<0.1	<10.0	<10

01396580 SPRUCE RUN AT GLEN GARDNER, NJ

LOCATION.--Lat 40\\\41'29", long 74\\\56'15", Hunterdon County, Hydrologic Unit 02030105, on right downstream wingwall of bridge on Sanatorium Road in Glen Gardner, 0.8 mi downstream from Alpaugh Brook, and 2.0 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA. -- 12.3 mi².

PERIOD OF RECORD. -- March 1978 to September 1988, December 1991 to September 1992.

REVISED RECORD. -- WDR NJ-86-1: 1983-85(P).

GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage is 389.10 ft above sea level.

REMARKS...Records good except those above 200 ft³/s and for estimated daily discharges, which are fair. Some regulation from unknown sources uptream. Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft³/s and maximum (*):

Date	Time	D	ischarge (ft ³ /s)	ı	Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
Mar. 11 Mar. 26	0500 2400		553 806		4.13 4.51		June 6	0015		*1,390		*5.82
		DISCH	IARGE, CUE	SIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5				18 10 9.5 12 12	10 22 16 14 11	11 10 9.6 9.2 9.1	20 19 17 16 15	11 11 10 9.1 8.8	28 18 9.6 7.1 207	7.7 6.9 8.4 13 8.7	23 9.9 8.3 7.7 7.2	4.3 4.2 5.3 5.6 4.9
6 7 8 9 10				10 9.1 8.4 9.7 11	11 13 6.3 8.1 8.7	8.8 20 22 14 15	14 14 13 13	8.6 8.2 11 17 14	265 42 34 41 23	16 8.8 7.2 51 12	6.3 5.8 5.6 13 8.9	4.9 8.0 6.4 5.3 5.8
11 12 13 14 15			12 9.9 13 15 13	9.5 8.7 8.4 35 e20	7.9 10 10 8.4 12	132 28 21 18 16	25 17 13 12 12	12 9.9 9.3 8.1 7.3	19 16 14 13 12	8.6 7.6 11 53 16	7.3 7.6 6.1 7.6 6.6	10 5.2 4.3 4.1 4.0
16 17 18 19 20			10 17 14 20 19	e8.7 e7.7 e7.9 e6.8 e8.5	37 15 12 16 13	16 15 14 17 16	13 16 16 15 13	12 10 8.7 7.9 6.9	11 10 10 31 23	17 11 21 11 8.8	7.2 12 18 10 8.0	3.9 3.9 3.7 3.5 3.2
21 22 23 24 25			7.9 8.1 8.1 7.4	e8.6 e20 33 44 40	11 9.7 9.6 11 12	15 14 14 13 17	13 17 14 16 34	6.3 5.9 5.5 5.1 5.7	13 11 10 16 13	7.6 6.9 27 17 11	6.6 6.0 5.7 5.4 5.3	3.2 4.8 8.5 4.0 3.8
26 27 28 29 30 31			8.9 6.9 9.6 16 18 13	27 12 9.4 6.3 6.6 7.9	41 19 14 12	103 196 35 25 23 24	17 15 13 12 12	5.9 6.7 5.8 5.2 5.2 83	10 9.9 9.3 8.0 8.3	9.5 16 10 8.0 7.2 31	5.4 6.2 7.4 8.8 5.6 4.8	8.7 9.1 8.7 5.7 4.6
TOTAL MEAN MAX MIN CFSM IN.				445.7 14.4 44 6.3 1.17 1.35	400.7 13.8 41 6.3 1.12 1.21	900.7 29.1 196 8.8 2.36 2.72	470 15.7 34 12 1.27 1.42	341.1 11.0 83 5.1 .89 1.03	942.2 31.4 265 7.1 2.55 2.85	455.9 14.7 53 6.9 1.20 1.38	253.3 8.17 23 4.8 .66 .77	161.6 5.39 10 3.2 .44 .49
STATIST		NTHLY MEA	N DATA FO			- 1992	, BY WATER Y	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	11.0 34.1 1980 3.54 1983	18.0 34.6 1986 5.60 1985	21.8 49.2 1984 6.96 1981	25.3 106 1979 5.66 1981	27.2 44.7 1979 9.93 1980	31.8 51.5 1983 12.8 1981	36.0 73.7 1983 9.74 1985	27.4 61.3 1984 11.0 1992	15.4 31.4 1992 8.34 1987	12.3 46.9 1984 4.97 1983	6.95 11.4 1978 3.35 1980	9.13 29.5 1979 1.88 1980

RARITAN RIVER BASIN

01396580 SPRUCE RUN AT GLEN GARDNER, NJ--Continued

SUMMARY STATISTICS	DECEMBER 1991 TO SEPTEMBER 1992	WATER YEARS 1978 - 1992
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	279 Jun 6 3.2 Sep 20 1390 Jun 6 5.82 Jun 6 3.2 Sep 19	20.7 33.2 1981 13.2 1981 570 Jan 21 1979 1.2 Oct 1 1982 1.5 Oct 1 1982 1820a Jan 24 1979 7.60b Jan 24 1979 1.1 Oct 1 1982 1.1.68 22.82 40 11 4.0

a From rating curve extended above 700 ft³/s on basis of ślope·conveyance computation. b From high-water mark. e Estimated.

01396588 SPRUCE RUN NEAR GLEN GARDNER, NJ

LOCATION.--Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, at site 800 ft downstream of Rocky Run, 0.3 mi above Van Syckel Road bridge, 1.5 mi northwest of High Bridge, and 1.6 mi southeast of Glen Gardner.

DRAINAGE AREA. -- 15.5 mi².

PERIOD OF RECORD. -- Water years 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE NOV_1991	CH I C TIME S	NST. CI UBIC CO FEET DU PER AN ECOND (US	PE- WA IFIC WH DN- FI JCT- (ST NCE A S/CM) UN	TAND- A ARD W HITS) (D	TURE VATER DEG C)	DXYGEN, DIS- SOLVED (MG/L)	DIS- D SOLVED (PER- CENT SATUR- ATION)	BIO- F CHEM- F ICAL, 5 DAY B (MG/L) (OLI- (ORM, N ECAL, N EC T ROTH (MPN) 10	NTERO- COCCI ME,MF WATER TOTAL COL / DO ML)
07 FEB 1992	1100	4.2	185	7.9	5.5	13.0	103	E1.7	20	5
05 MAR	1330	16	197	7.6	1.5	14.5	105	E1.0	50	<10
17	1315	24	185	7.6	3.0	13.8	104	0.4	20	<10
MAY 19	1330	10	184	8.0	17.0	10.3	106	E1.8	110	130
JUL 21	1245	9.5	181	7.9	20.5	9.5	107	<1.0	220	270
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS SOLVE (MG/I	M, LINIT - LAE ED (MG/ L AS	TY SULFAT B DIS- 'L SOLVE (MG/L	DIS- D SOLVED (MG/L	(MG/L)
NOV 1991 07	66	16	6.3	9.7	1.3	3 45	21	18	0.2	
FEB 1992 05	61	15	5.6	9.8	1.	1 32	21	17	0.1	
MAR 17	57	14	5.4	11	1.7	2 25	22	19	0.2	
MAY 19	54	13	5.2	11	1.3	3 33	19	18	<0.1	
JUL 21	58	14	5.6	11	1.5	5 40	19	17	<0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN NO2+NO	, NO2+N 03 DIS L SOLV L (MG/	I, NITRO 103 GEN, 5- AMMONI /ED TOTAL /L (MG/L	AMMONÎA A DIS- SOLVED (MG/L	GEN,AM- MONÍA ORGANIO	- ' +
NOV 1991	19	123	0.003	0.003	0.98	B 0.9	0.06	0.10	0.13	
FEB 1992 	17	113	0.005	0.006	1.54	4 1.5	66 <0.03	<0.03	0.10	
MAR 17	16	111	0.007	0.007	7 1.63	3 1.6	0.05	0.08	0.12	
MAY 19	16	109	0.017	0.018	3 1.14	4 1.1	15 <0.03	0.12	0.21	
JUL 21	16	113	0.003	0.005	1.04	4 1.0	00 <0.03	<0.03	<0.03	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORUS DIS SOLVI (MG/I AS P	S ORGAN - DIS- ED SOLVE L (MG/	NIČ SUS- PENDED ED TOTAL /L (MG/L	Č SEDI- MENT, SUS- PENDED)
NOV 1991 07	0.11	1.1	1.1	0.02	0.08	1.4	0.2	<1		
FEB 1992 05	0.04		1.6	0.02	0.03	1.2	0.1	<1	••	
MAR 17	<0.03			0.02	0.03	1.2	0.1	2	0.13	
MAY 19										
JUL 21	0.20		1.4	0.05	0.07	1.8		6	0.16	
۷۱	0.09	••	1.1	0.06	0.06	1.7	0.2	3	0.08	

01396588 | SPRUCE RUN NEAR GLEN GARDNER, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	OXYO DEMA CHE ICA (HI TIME / LEVE (MG/	AND, MA EM- FA AL DIA IGH % FI EL) TH	T. MA LL SIE M. DIA NER % FI AN TH	T. GEN, VE TOT M. IN B NER MA AN (MG/	NH4 GEN, AL + OR OT. TOT T. BOT KG (MG	G. TOT IN IN B MAT MA J/KG (MG/	US INC AL GAN BOT. TOT IT. BOT KG (G/	OR- INOR IIC, ORGA IN TOT. MAT BOT 'KG (GM/	RG + INIC IN ARSE MAT TOT KG (UG	AL TERIAL
NOV 1991 07 07	1100 - 1100	11 -	.<1 .	.<1 .	5.6	210		0.1	1.8 -	··
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 07 07	 <10	 <10	 <1	<1	 <1	6	40		20	 120
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 07 07	6200	1	<10 	 50		<0.10	<0.01	2	<10 	 <1
DATE NOV 1991	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
07 07	OI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL	<1.0 HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL.	<0.1 LINDANE TOTAL IN BOT- TOM MA- TERIAL	METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	<0.1 MIREX, TOTAL IN BOT- TOM MA- TERIAL	PER- THANE IN BOT- TOM MA- TERIAL	O.2 TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL
NOV 1991	(UG/KG)	(UG/KG)		(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)	(UG/KG)
07 07	<0.1	<0.1 	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	<1.00	<10

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ

LOCATION.--Lat 40°38'51", long 74°58'09", Hunterdon County, Hydrologic Unit 02030105, on left bank downstream side of bridge on Jutland Road, 0.2 mi south of Van Syckel, 0.8 mi north of Perryville, and 0.3 mi upstream from Spruce Run Reservoir.

DRAINAGE AREA. -- 11.8 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1973-77. July 1977 to current year.

REVISED RECORDS.--WDR-NJ 89-1: 1978(P), 1979(P), 1980(P), 1981(P), 1982(P).

GAGE...Water-stage recorder and crest-stage gage. Datum of gage is 280.25 ft above sea level.

REMARKS..-Records fair except for estimated daily discharges, which are poor. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft³/s and maximum (*):

Date	Tim	e	Discharge (ft ³ /s)	e (Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
June 6	010	0 .	* 876		*4.16		No other p	oeak gre	ater than	base disc	harge.	
	e.	DISC	CHARGE, CL	JBIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.7 3.7 3.6 3.6 3.5	3.8 3.8 3.8 3.7 3.6	6.3 7.4 91 35 14	7.4 7.5 7.5 10 9.5	e8.9 9.3 9.2 9.1 9.0	8.2 8.4 8.0 7.6 7.4	17 16 14 14 13	10 10 9.7 8.9 8.7	20 14 9.7 8.0 124	6.8 6.4 8.7 10 7.1	6.4 5.7 5.7 5.8 5.5	3.9 3.8 6.9 5.4 4.4
6 7 8 9 10	3.8 3.5 3.4 3.4 3.5	3.6 3.6 3.7 3.7 3.7	11 9.7 8.6 9.7 25	7.9 7.2 6.8 9.1 9.0	8.6 8.7 8.8 8.2 7.7	7.1 14 13 9.8 16	12 12 12 12 12	8.4 8.1 15 19 14	156 28 20 15 12	9.7 6.7 6.4 39 8.5	5.2 5.2 5.2 11 6.3	4.3 15 6.0 4.8 4.8
11 12 13 14 15	4.1 4.5 3.8 3.6	6.3 4.4 4.0 3.8 3.6	12 9.6 14 15 11	7.6 7.1 6.9 27 14	7.9 7.5 7.6 7.7 15	90 22 16 13 12	20 14 12 11 11	12 10 9.5 8.6 8.4	11 10 9.5 9.0 8.6	6.9 6.8 6.7 9.6 12	6.7 6.0 5.3 6.7 5.7	8.3 4.3 4.0 4.0 3.9
16 17 18 19 20	9.3 35 13 6.1 4.4	3.6 3.5 3.4 3.4 3.3	9.1 8.1 7.7 6.6 6.5	9.1 e8.1 e9.0 e8.9 e12	41 18 11 13 11	11 11 11 14 13	12 14 14 14 13	12 10 9.7 8.6 7.8	8.2 7.9 7.9 24	10 7.4 9.3 6.8 6.2	5.9 15 13 6.7 5.6	3.9 3.9 3.9 3.9 3.6
21 22 23 24 25	4.0 3.9 3.8 3.6 3.6	4.5 47 28 11 7.7	7.3 7.1 7.2 6.9 6.4	e11 e8.8 e13 e51 e11	9.3 8.3 8.4 8.5	12 12 12 12 19	12 19 14 12 12	7.4 7.0 6.5 6.3 7.3	9.6 8.6 8.2 12 9.3	6.0 5.8 17 9.7 7.5	4.8 4.7 4.5 4.4 4.3	3.8 4.3 5.4 3.5 3.6
26 27 28 29 30 31	3.7 3.8 3.8 3.6 3.7 3.8	6.4 5.8 5.5 5.4 5.3	6.0 6.1 5.9 15 14 8.9	e12 e11 e9.2 e9.7 e9.4 e9.4	31 14 11 9.6	64 98 29 21 19	12 13 11 11 10	7.2 7.7 6.7 6.2 6.5 52	8.0 7.5 7.1 6.8 7.3	7.2 18 8.0 6.6 6.2 6.7	4.4 4.3 6.2 5.2 4.3 4.0	10 9.9 6.2 4.4 3.9
TOTAL MEAN MAX MIN CFSM IN.	171.8 5.54 35 3.4 .47 .54	202.9 6.76 47 3.3 .57 .64	408.1 13.2 91 5.9 1.12 1.29	347.1 11.2 51 6.8 .95 1.09	337.3 11.6 41 7.5 .99 1.06	629.5 20.3 98 7.1 1.72 1.98	395 13.2 20 10 1.12 1.25	329.2 10.6 52 6.2 .90 1.04	603.2 20.1 156 6.8 1.70 1.90	289.7 9.35 39 5.8 .79 .91	189.7 6.12 15 4.0 .52 .60	158.0 5.27 15 3.5 .45
STATIS		MONTHLY ME				- 1992	, BY WATER Y	EAR (WY	')			
MEAN MAX (WY) MIN (WY)	11.8 35.6 1990 4.55 1983	16.5 32.6 1986 6.34 1985	20.0 47.9 1984 5.61 1981	23.6 79.2 1979 5.01 1981	24.6 40.2 1979 11.1 1980	28.0 47.9 1978 10.2 1985	35.0 94.1 1984 6.88 1985	28.8 59.2 1984 10.6 1992	18.8 61.1 1989 7.11 1991	13.0 53.2 1984 5.05 1991	9.49 25.3 1990 2.84 1980	9.54 22.8 1989 2.85 1980

RARITAN RIVER BASIN

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1977 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	4990.0 13.7	4061.5 11.1	19.9 35.2 1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	122 Apr 21 2.4 Sep 1 2.5 Sep 9	156 Jun 6 3.3 Nov 20 3.5 Nov 14	11.1 1992 700 Apr 5 1984 1.5 Sep 12 1980 1.6 Sep 7 1980
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		876 Jun 6 4.16 Jun 6 3.0 Nov 19	3590a Sep 20 1989 7.41 Sep 20 1989 1.1 Sep 23 1980
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.16 15.73 28 8.9	.94 12.80 16 8.2	1.69 22.96 37 12
90 PERCENT EXCEEDS	3.1	3.8	4.3

a From rating curve extended above 200 $\mbox{ft}^3/\mbox{s.}$ e Estimated.

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

F	DATE 10V 1991 06 EB 1992 05	CH I C C T I ME S 1100 1045	NST. CI UBIC CO FEET DU PER AN ECOND (US	FIC WHEN FIC CT- (ST CE A/CM) UN	THER TOTAL TER TOTAL TERM TER TOTAL TERM TERM TER TOTAL TERM TERM TERM TERM TERM TERM TERM TERM	MPER- OXY FURE D ATER SC GG C) (N	OX (GEN, (OIS- DIVED S (G/L) A 13.0	YGEN, OX DIS-DEF OLVED B PER-CC CENT II ATUR-5 TION) (I	YGEN MAND, C IO F HEM F CAL, DAY B MG/L) (I	DLI- CO DRM, MM ECAL, WA ECATH (CO ROTH (CO MPN) 100	TERO- DCCI E, MF ATER DTAL DL / D ML)
М	17 IAY		1		7.9	2.0	14.0	,	0.3	50	<10
· J	19 IUL		8.9	217	8.1	15.5	10.8	108	E1.7	310	70
	21	1045	6.3	218	8.0	20.0	9.7	108	<1.0	170	800
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	NOV 1991 06	94	23	8.8	8.2	1.2	81	20	14	0.1	
	FEB 1992 05	80		6.8	8.5	1.1	56	20	14	0.1	
	MAR 17	73		6.2	8.3	1.1	49	19	14	0.2	
	MAY 19	78		6.7	9.1	1.1	59	16	15	<0.1	
	JUL 21	85	,	7.4	9.1	1.3	69	15	14	<0.1	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
	NOV 1991 06	16	144	0.004	0.004	0.88	0.99	0.13	0.09	0.14	
	FEB 1992 05	14	124	0.003	0.003	1.18	1.20	<0.03	0.03	0.17	
	MAR 17	14	117	<0.003	0.003	1.23	1.19	0.09	0.06	0.11	
	MAY 19	14	122	0.007	0.007	0.980	0.960		<0.03	0.28	
	JUL 21	15	130	0.004	0.004	1.04	0.990		<0.03	<0.03	
	DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIĆ	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
	NOV 1991	n 11	1.0	1 1	<0.02	<0.02	1.3	0.1	<1		
	06 FEB 1992	0.11	1.4	1.1	<0.02	<0.02	1.1	0.1		••	
	05 MAR 17				<0.02	0.05	1.4	0.1	<1 3	0.09	
	MAY	0.13		1.3							
	19 JUL 21	0.19		1.2	<0.02	<0.02	2.0	0.2	1	0.02	
	21	<0.03	••		0.04	0.02	1.4	0.2	5	0.08	

01396660 MULHOCKAWAY CREEK AT VAN SYCKEL, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	OXYC DEM CHI IC/ (H) TIME LEVI (MG,	AND, M/ EM- F/ AL DI/ IGH % FI EL) TI	AT. MA ALL SIE AM. DIA INER % FI	AT. GEN, EVE TOT AM. IN E INER MA IAN (MG/	NH4 GEN TAL + OF BOT. TOT AT. BOT YKG (MC	,NH4 PHO RG. TO IN IN MAT M G/KG (MG	TAL GAI BOT. TOT AT. BOT /KG (G,	OR- INOF NIC, ORGA IN TOT MAT BOT /KG (GM)	RG + ANIC . IN ARSE MAT TOI /KG (UC	AL TERIAL
NOV 1991 06	1100		1			40 22		<0.1	2.4	- 4
06 MAY 1992 19	1100 1045	10 ·				· •			· •	1
		.0								-11
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 06	::			<1	·· ·	3	<5	••	3	
06 MAY 1992 19	<10 <10	20 10	<1 <1		<1 <1	••		6	••	40 160
17	110	10	\ 1		``			•		100
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 06	3100		<10		· 170	,	<0.01		<10	
06 MAY 1992		2		10		<0.10		2		. 2
19		<1	• •	40	••	<0.10		1	••	<1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 06	<1		20	3	<1.0	<0.1	<1.0	· <0.1	<0.1	<0.1
06 MAY 1992	••	<10		·.					,	
19	••	<10	••	••	••	••.	••			••
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 06 06 MAY 1992	<0.1	<0.1 	<0.1	<0.1	<0.1	<0.1 	<1.0	<0.1	<1.00	<10
19	••		••	• •	. ••	•-	••			

01396800 SPRUCE RUN AT CLINTON, NJ

LOCATION.--Lat 40°38'21", long 74°54'58", Hunterdon County, Hydrologic Unit 02030105, 1,800 ft downstream from dam at Spruce Run Reservoir, 0.2 mi north of Clinton, 0.3 mi upstream from mouth, and 2.2 mi southwest of High Bridge.

DRAINAGE AREA. -- 41.3 mi².

PERIOD OF RECORD. -- May 1959 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Mar. 15, 1964. Datum of gage is 193.5 ft above sea level. May to Nov. 24, 1959, nonrecording gage; Nov. 25, 1959 to July 23, 1961, water-stage recorder at site 1,800 ft upstream and at datum 1.41 ft lower; July 24, 1961 to Mar. 14, 1964, water-stage recorder at site 1,500 ft upstream at datum 1.41 ft lower.

REMARKS...No estimated daily discharges. Records good. Flow regulated by Spruce Run Reservoir (see Raritan River basin, reservoirs in). Several measurements of water temperature, other than those published, were made during the year. New Jersey Water Supply Authority gage-height telemeter at station.

		DISCHA	RGE, CUBI	C FEET PE	R SECOND, DAILY	WATER YE.	AR OCTOBER	1991 .TO	SEPTEMBE	1992		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	49 54 67 69 76	43 43 41 44 45	25 15 9.4 8.0 7.4	7.4 7.4 7.4 7.4 7.2	50 48 65 64 74	6.5 6.7 7.0 7.4 7.4	6.9 7.0 7.1 7.2 7.0	7.4 7.4 7.3 7.3 7.4	7.7 7.4 7.4 7.4 10	7.6 7.0 7.2 7.0 6.9	7.1 6.9 6.9 6.9	67 76 69 7.5 7.4
6 7 8 9 10	87 82 76 89 95	45 45 47 51 51	7.4 7.4 7.5 7.5	7.4 7.1 6.9 7.2 7.4	93 95 95 100 115	7.2 7.5 7.4 7.4 7.6	7.0 7.4 7.3 7.4 7.4	7.4 7.3 7.6 7.4 7.6	11 7.7 7.9 7.6 7.4	7.0 7.1 30 23 7.1	7.2 13 23 15 6.6	7.4 8.0 7.4 7.4 19
11 12 13 14 15	96 95 95 95 66	48 23 14 9.8 12	7.4 7.5 7.5 7.3	7.4 7.2 7.7 7.1	122 127 124 120 106	8.2 7.7 7.4 6.9 6.8	7.7 7.3 7.2 7.4 7.4	7.4 7.4 7.4 7.3 7.4	7.6 7.4 7.1 6.7 6.6	7.4 7.4 7.8 7.2 7.1	7.6 8.1 6.9 7.1 6.9	8.2 7.4 32 66 74
16 17 18 19 20	8.2 8.9 8.4 8.3 8.1	26 40 39 51 44	7.2 6.9 7.0 66 87	56 98 96 95 94	20 5.9 6.6 7.0 6.9	8.5 5.4 5.1 15	7.4 7.5 7.4 7.4 7.4	7.4 7.4 7.4 6.9 7.0	6.5 6.9 6.6 7.4 6.9	6.9 7.1 7.5 7.4 7.3	6.9 7.4 7.3 6.9 6.9	69 72 76 76 77
21 22 23 24 25	5.3 .89 .68 26	41 20 7.6 7.4 7.1	69 69 56 35 35	92 80 35 8.1 10	6.9 6.9 6.9 6.9	28 28 16 6.9 6.9	7.2 7.2 7.0 5.6 5.1	7.2 7.9 20 35 26	6.8 7.0 7.4 7.8 7.4	7.1 24 19 7.6 7.0	12 24 35 42 63	99 105 82 72 83
26 27 28 29 30 31	64 67 73 73 65 40	8.2 8.0 7.4 7.4 17	35 35 35 25 8.5 7.4	11 12 9.9 7.7 9.8 22	7.0 6.8 6.5 6.3	7.5 8.1 7.0 6.9 6.9	7.1 6.6 6.7 6.9 6.7	16 7.8 7.5 7.4 7.6 9.1	7.4 7.4 7.4 7.6	7.1 7.3 6.9 6.9 7.0 7.6	56 38 23 12 32 63	48 9.0 7.8 24 64
MEAN MAX MIN	1710.77 55.2 96 .68	892.9 29.8 51 7.1	723.1 23.3 87 6.9	846.1 27.3 98 6.9	1505.5 51.9 127 5.9	283.2 9.14 28 5.1	211.9 7.06 7.7 5.1	298.6 9.63 35 6.9	224.8 7.49 11 6.5	290.5 9.37 30 6.9	571.5 18.4 63 6.6	1427.5 47.6 105 7.4
							BY WATER					
MEAN MAX (WY) MIN (WY)	57.8 290 1990 .000 1964	32.3 96.2 1990 .000 1964	45.0 196 1974 .000 1964	60.8 258 1979 .000 1964	64.1 162 1971 .000 1964	78.7 158 1983 .19 1964	97.0 342 1983 .86 1964	72.0 225 1984 .81 1964	59.8 278 1972 2.60 1981	69.5 244 1975 4.24 1964	51.6 132 1983 4.32 1963	76.0 241 1989 .50 1963
SUMMAR	RY STATIST	ICS	FOR	1991 CALE	NDAR YEAR	F	OR 1992 WA	TER YEAR		WATER Y	EARS 1959	- 1992
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN 10 PER 50 PER	TOTAL MEAN T ANNUAL T ANNUAL T ANNUAL T ANIUAL T DAILY ME SEVEN-DA ITANEOUS P ITANEOUS L RCENT EXCE RCENT EXCE	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW EDS EDS		26469.2 72.5 336 5.8 133 67 9.7	Jan 17 8 Oct 23 Oct 17		8986.37 24.6 127 .68 5.8 127 1.97 .65 74 7.5 6.9	Feb 12 Oct 23 Oct 17 Feb 11 Feb 11		63.7 107 3.8 2060 .0 6410 5.1 5.1 145 39 7.0	1 Jul Oa Aug Oa Aug Apr 7 Apr Oa Aug	1983 1964 7 1984 22 1963 22 1963 2 1970 2 1970 2 1963

a Result of reservoir filling.

RARITAN RIVER BASIN 01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ

LOCATION.--Lat 40°34'21", long 74°52'10", Hunterdon County, Hydrologic Unit 02030105, on right bank at downstream side of bridge on Stanton Road at Stanton Station, 0.4 mi upstream from Prescott Brook, and 1.4 mi west of Stanton.

DRAINAGE AREA. -- 147 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1903 to December 1906, July 1919 to current year. Monthly discharge only for some periods published in WSP 1302.

REVISED RECORDS.--WSP 561: Drainage area. WSP 1552: 1904, 1922-24(M), 1928-29(M), 1933-35(M). WDR NJ-88-1: 1982.

GAGE...Water-stage recorder. Datum of gage is 125.01 ft above sea level. Prior to Aug. 17, 1925, nonrecording gage on downstream side of highway bridge at same site and datum.

REMARKS...No estimated daily discharges. Records good. Flow regulated by Spruce Run Reservoir since September 1963 (see Raritan River basin, reservoirs in). Occasional regulation at low flows by ponds above station. Water diverted by Hamden Pumping Station, 4.0 mi upstream, into Round Valley Reservoir since February 1966 (see Raritan River basin, diversions). Water can be released (maximum rate 186 ft³/s) from Round Valley Reservoir at Hamden Pumping Station since July 1990. Several measurements of water temperature were made during the year. New Jersey Water Supply Authority gage-height and National Weather Service telemeters at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES SEP DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL AUG 133 87 129 87 122 100 142 147 270 142 123 81 87 95 87 231 95 98 172 172 145 250 138 114 156 93 135 151 157 131 122 118 93 119 119 125 20 94 127 182 93 123 22 23 24 25 115 137 160 125 124 121 130 128 127 98 27 28 29 30 80 77 140 83 97 95 154 249 74 79 96 139 136 403 87 152 272 102 TOTAL 425 77 608 MEAN 1080 226 96.0 2050 MAX 79 74 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1904 - 1992, BY WATER YEAR (WY) 967 MEAN 750 793 554 1952 46.2 1979 1975 40.7 1904 MAX 30.1 61.2 1967 (WY) 34.1 1964 58.5 1981 MIN 65.1 1966 55.0 61.3 1981 80.3 60.1 (WY)

01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1904 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	84878 233	53677 147	246 413 1952 95.0 1966
HIGHEST DAILY MEAN	1420 Jan 17	2050 Jun 6	8060 Aug 19 1955
LOWEST DAILY MEAN	77 Nov 29	74 May 30	12 Oct 18 1963
ANNUAL SEVEN-DAY MINIMUM	86 Nov 26	_ <u>86</u> Nov 26	25 Sep 4 1957
INSTANTANEOUS PEAK FLOW		3670 Jun 6	18000a Aug 19 1955
INSTANTANEOUS PEAK STAGE		7.75 Jun 6	15.22 Aug 19 1955
INSTANTANEOUS LOW FLOW		66 Oct 24	9.0 Nov 7 1931
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	414	190	485
	176	124	164
	116	87	62

a From rating curve extended above 6,400 ft³/s on basis of computation of flow over Clinton Dam, 6.5 mi upstream, at gage height 10.72 ft, contracted opening measurement 1.7 mi downstream, and slope area measurement 0.4 mi downstream at gage height 15.22 ft, adjusted to present site.

01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-81, 1991 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. COUBIC CONFEET DO PER AN	PE- WA IFIC WA DN- FI JCT- (SI NCE A	TAND- A NRD W	TURE ATER S	(YGEN, DIS- SOLVED	DIS- DE SOLVED B (PER- C CENT I SATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH (NTERO- COCCI ME,MF WATER TOTAL COL / OO ML)
NOV 1991 14	1230	128	230	8.9	9.0	11.9	104	E1.8	50	11
FEB 1992 04	1030	139	249	8.2	1.0	14.5	103	E2.4	<20	20
MAR			233				108	0.7	<20	<10
16 JUN	1300	139		8.5	2.5	14.7				
02 JUL	1330	170	185	7.8	17.0	9.6	100	E1.9	790	
02 JUL 20	1000	85	251	8.5	23.0	9.4	110	E1.4	90	30
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	LINITY LAB	SULFATE DIS- SOLVED (MG/L) AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D
NOV 1991	7	73 17	7.4	8.2	1.5	60	15	16	0.1	
FEB 1992 04	8	35 20	8.5	11	1.5	63	17	19	0.1	
MAR 16	7	77 18	7.7	12	1.3	65	18	23	0.1	
JUN 02	5	55 13	5.5	9.0	1.4	41	13	- 16	<0.1	
JUL 20	9	5 22	9.8	12	1.9	74	14	22	0.1	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- ED TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NO3	NITRO- 3 GEN, AMMONÍA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO GEN, AM MONIA - ORGANIO TOTAL (MG/L AS N)	- •
NOV 1991	3.2	109	0.018	0.018	1.04	0.98	<0.03	-0.07	0.33	
FEB 1992								<0.03		
04 MAR	7.9		0.007	0.007		1.44	0.28	0.27	0.41	
16 JUN_	11	137	0.013	0.016		1.58	0.23	0.19	0.26	
02 JUL	10	97	0.035	0.033		1.02	<0.03	0.07	0.61	
20	11	144	0.055	0.052	1.50	1.48	<0.03	<0.03	0.28	
DATE	NITRO GEN,AM MONIA ORGANI DIS. (MG/L AS N)	+ NITRO- C GEN, TOTAL (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDEL (T/DAY)	·)
NOV 1991	0.2	7 1/	1 2	-0 O3	-0 02	7 /	0.7	2	0.40	
14 FEB 1992			1.2	<0.02	<0.02	3.4	0.3	2	0.69	
04 MAR	0.3		1.7	0.03	0.04	2.0	0.3	3	1.1	
16 Jun	0.2		1.8	0.04	0.03	0.5	0.3	7	2.6	
02 JUL	0.4	9 1.6	1.5	0.09	0.05	5.7	0.6	10	4.6	
20	0.2	6 1.8	1.7	0.11	0.09	2.9	0.3	4	0.92	

01397000 SOUTH BRANCH RARITAN RIVER AT STANTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	CHI I CA	AND, MA EM- FA AL DIA IGH % FI EL) TH	AT. MA ALL SIE AM. DIA INER % FI	T. GEN, VE TOT M. IN B NER MA IAN (MG/	AL + OR OT. TOT T. BOT KG (MG	NH4 PHOR G. TOT IN IN B MAT MA /KG (MG/	US INC AL GAN OT TOT T. BOT KG (G/	R- INOR IC, ORGA IN TOT. MAT BOT KG (GM/	G + NIC IN ARSE MAT TOT KG (UG	AL TER	AL BOT- MA- HAL
14	1991	1230 1230	 12 ·	. <1	<1	4.0 22	0 350		0.1	1.8	<1 ·	6
JUN	1992	1330								•	<1 -	
	DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS-B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	
	NOV 1991 14 14	 <10	60	 <1	<1	 <1	7	<5	•-	20	110	
	JUN 1992 02	<10	20	<1	••	<1	••	• •	2	. • •	450	
	DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	٠
	NOV 1991 14 14 JUN 1992	5600	1	10		800	<0.10	<0.01	2	<10 	 <1	
	02	••.	2	••	70		<0.10	••	1	••	<1	
	DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	NOV 1991 14 14	<1	 20	50	<1	<1.0	<0.1	1.0	0.2	0.4	0.3	
	JUN 1992 02	••	<10	••			• •	••		••		
	DATE .	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	NOV 1991 14 14 JUN 1992 02	<0.1 	<0.1 	<0.1 	<0.1 	<0.1 	<0.1 	<1.0 	<0.1 	<1.00	<10 	

01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ

LOCATION.--Lat 40°31'01", long 74°48'12", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 0.4 mi northeast of Voorhees Corner, 1.3 mi downstream of Bushkill Brook, and 2.2 mi southeast of Darts Mills.

DRAINAGE AREA. -- 181 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

				UALITY D		K TEAK	OCTOR			MBEK 1992 Oxygen		ENTERO-
	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE	PH WATER WHOLE FIELD (STAND- ARD	TEMPE ATUR WATE (DEG	E (YGEN, DIS- OLVED		DEMAND, BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH (MPN)	COCCI ME,MF WATER TOTAL (COL / 100 ML)
NO	V 1991		SECOND	(US/CM)	UNITS)	(DEG	()	MG/L)	ATTON	(MU/L)	(MEN)	100 ML)
	14	1400	120	369	8.0	8	.5	10.9	93.	E2.3	. 20	49
	B 1992 04	1315	160	3 07	8.1	2	.0	14.7	108	E1.8	20	60
MA JU	16	1030	210	328	8.6	2	.5	13.4	99	1.0	20	<10
	01	1200	470 ′	193	7.5	. 15	.5	9.4	96	3.0	9200	
30	້20	1230	96	388	8.3	25	.5	9.0	110	<1.1	130	40
	DATE	HARD NESS TOTA (MG/ AS CACO	CALCI L DIS- L SOLV (MG/	ED SOLV	UM, SODI S· DIS VED SOL\ /L (MC	UM, S- /ED : S/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFA DIS- SOLV (MG/	DIS- ED SOLVEI L (MG/L	(MG/	ED L
	NOV 1991 14		99 25	R	.9 28	ì	3.0	76	45	35	0.	2
	FEB 1992 04		94 23		.8 19		1.9	67	26	26	0.	
	MAR 16		83 20		.0 21		2.0	61	29	32	0.	
	JUN 01		53 13		.1 13		1.9	39	17	20	<0.	
	JUL 20		10 26	10			3.4	87	37	37	0.	
	DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONST ED TUENT L DIS SOLV	F NITH I- GEN S, NITH - TOTA ED (MG)	RO- GE N, NITR ITE DI AL SOL /L (MG	ITE S- NO VED	NITRO- GEN, D2+NO3 TOTAL (MG/L AS N)	NITRO GEN, NO2+NO DIS- SOLVE (MG/L AS N)	NITRO 3 GEN AMMON D TOTAL (MG/	, AMMONÎ/ IA DIS- L SOLVEI L (MG/L	GEN,A MONIA ORGAN	M- IC L
	NOV_1991	-				04.6	4	4 75			,	
	14 FEB 1992	3.				016	1.54	1.35			1.1	
	04 MAR	8.				007	1.85	1.81		_	0.47	
	16 JUN	11				015	2.64	2.36			0.44	
	01 JUL 20	8. 11				025 017	1.24	1.25			1.0	
	20	,,,	۷.	22 0.0	0.	017	2.90	2.87	0.00	6 0.03	0.39	
	DATE	NITR GEN,A MONIA ORGAN DIS. (MG/ AS N	M- + NITRO IC GEN TOTAL L (MG/I	, DIS- L SOLVE L (MG/	N PHO PHOR ED TOT 'L (MG	S- PH US AL S /L (PHOS- HORUS DIS- SOLVED (MG/L AS P)	CARBON ORGANI DIS- SOLVED (MG/L AS C)	Č SUS- PENDEC TOTAL (MG/L	IČ SEDI- D MENT, SUS- PENDEC		E , ED
	NOV 1991	•	04 3		7 ^	77		, .	• •		^ -	2
	14 FEB 1992	0.9						4.1	0.4	1	0.3	
	04 MAR 16	0.7					1.16	2.4	0.2	1	0.4	
	16 JUN 01	0.7	_				1.18	4.7	0.3	5	2.8	
	JUL 20	0.3). 19). 48	6.3 3.4	1.3 0.3	31 3	39 0.78	Ω
	20	U. .	J.J	, J.	_ 0.		0	J.4	0.3	3	0.70	•

01397400 SOUTH BRANCH RARITAN RIVER AT THREE BRIDGES, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG/ AS C)	ARSENIC TOTAL (UG/L AS AS)
NOV 1991	1400	(MG/L)			_	-	·		5.2	N3 N3)
14 14	1400	22	1	4	5.2	390	3200	0.2		<1
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 14 14	26	 <10	 60	 <1	<1	. 1	10	10	30	120
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 14 14	12000	 <1	30	 40	970	 <0.10	0.04	3	10	_. <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 14 14	<1	100	80	7	<1.0	<0.1 ···	2.0	0.6	<1.0 	.1.1
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 14 14	0.1	<0.1	<0.1 	<0.1	<0.1	<0.1	<10	<0.1	<1.00	<10

01398000 NESHANIC RIVER AT REAVILLE, NJ

LOCATION.--Lat 40°28'18", long 74°49'42", Hunterdon County, Hydrologic Unit 02030105, on left bank 50 ft downstream from bridge on Everitts Road, 0.6 mi southwest of Reaville, 1.5 mi downstream from Third Neshanic River, and 2.2 mi upstream from Back Brook.

DRAINAGE AREA. -- 25.7 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1930 to current year.

REVISED RECORDS.--WSP 1552: 1933, 1934(M), 1936(M), 1938, 1940(M), 1942(M), 1945-46, 1951, 1952(M).

GAGE.--Water-stage recorder. Concrete control since Sept. 26, 1935. Datum of gage is 109.46 ft above sea level.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,600 ft³/s and maximum (*):

Date		Time	•	Discharge (ft ³ /s)	• (Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	d	age height (ft)
June	6	0215		*5,440		*10.46		No other	peak gre	ater than	base dis	charge.	
			DIS	CHARGE, CU	BIC FEET	PER SECOND, DAIL	, WATER Y MEAN	YEAR OCTO VALUES	BER 1991	TO SEPTEM	BER 1992	•	
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		8.3 7.3 6.4 5.6 4.8	5.4 5.3 4.9 4.5 4.4	10 13 425 200 63	e16 e15 e20 e25 e23	e10 e9.0 e8.7 e7.7 e7.0	22 21 20 18 17	36 32 27 24 22	11 10 9.2 8.2 7.9	15 9.5 6.6 5.4 326	e3.3 e2.9 14 6.7 3.6	25 7.4 5.2 4.3 3.6	.79 .72 3.8 3.8 1.6
6 7 8 9 10		5.0 4.5 3.7 3.4 3.2	4.2 4.2 4.2 4.2	47 36 29 27 72	e20 e17 e18 e19 e17	e6.8 e7.0 e6.3 e5.4 e5.0	16 47 50 33 38	19 18 17 16 15	7.4 7.0 13 15 19	1260 103 66 46 32	16 4.2 3.2 16 4.4	2.9 2.5 2.2 2.9 2.3	1.3 1.9 2.2 1.6 1.7
11 12 13 14 15		3.6 4.6 3.3 2.8 7.1	8.7 5.9 5.0 4.5 4.2	37 30 40 46 34	e16 e15 e26 e37 e29	e4.8 e4.7 e5.0 e7.1 e16	199 65 48 37 31	21 17 14 13 12	13 9.7 8.9 7.9 6.9	24 19 15 13	3.5 3.6 3.6 3.1	3.5 3.0 2.0 4.1 3.0	12 2.3 1.5 1.3 1.1
16 17 18 19 20		8.2 49 31 19 14	4.2 3.8 3.7 3.7 3.6	26 22 20 e12 e13	e23 e18 e16 e15 e14	75 28 27 38 34	26 24 22 31 30	14 17 18 23 17	25 14 10 8.5 7.3	8.6 7.7 6.9 9.8 9.4	19 4.6 5.2 3.5 2.8	3.3 6.0 9.4 4.0 2.9	1.1 1.0 .94 .91 .82
21 22 23 24 25		11 10 9.0 8.4 8.0	3.6 40 58 24 16	e12 e11 e9.8 e8.2 e7.4	e13 e12 35 80 32	28 24 24 23 22	34 34 39 37 42	16 23 28 18 17	6.7 6.1 5.6 5.2 5.4	6.5 5.8 5.4 6.3 5.6	2.5 2.6 8.6 5.5 3.5	2.3 1.9 1.7 1.5 1.4	.79 1.3 5.4 1.3 .93
26 27 28 29 30 31		7.6 7.3 6.8 5.8 5.8 5.8	13 10 9.2 8.3 7.6	e6.4 e6.1 e11 e24 e20 e15	e19 e18 e16 e15 e14 e12	68 41 34 29	91 240 79 55 45 48	15 14 13 13 11	5.3 5.4 4.7 4.1 3.8 28	4.8 4.3 3.9 3.4 3.1	3.0 19 5.5 3.8 3.0	1.5 1.3 2.2 2.9 1.3	9.8 7.3 3.4 2.4
TOTAL MEAN MAX MIN CFSM IN.	•	280.3 9.04 49 2.8 .35 .41	282.5 9.42 58 3.6 .37 .41	1332.9 43.0 425 6.1 1.67 1.93	665 21.5 80 12 .83	605.5 20.9 75 4.7 .81 .88	1539 49.6 240 16 1.93 2.23	560 18.7 36 11 .73 .81	299.2 9.65 28 3.8 .38 .43	2043.0 68.1 1260 3.1 2.65 2.96	264.2 8.52 67 2.5 .33 .38	118.44 3.82 25 .94 .15	90.00 3.00 15 .72 .12 .13
STATI	STI	ICS OF MO	NTHLY ME	AN DATA F	OR WATER	YEARS 1931	- 1992,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)		13.0 78.8 1956 .67 1965	34.0 139 1933 .90 1966	46.4 162 1984 1.59 1966	51.5 244 1979 1.14 1981	59.2 147 1939 3.92 1934	73.9 179 1936 15.2 1985	55.5 200 1983 7.20 1985	33.4 135 1989 3.78 1963	21.6 119 1972 1.11 1965	18.4 138 1938 .37 1966	19.0 216 1971 .44 1964	16.0 135 1989 .47 1965

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1931 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	11202.8 30.7	8080.04 22.1	36.7 67.1 1979
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	425 Dec 3 1.1 Jul 22 1.4 Jul 16	1260 Jun 6 .72 Sep 2 .95 Sep 15	14.5 1965 4740 Aug 28 1971 .00 Jul 29 1965 .00 Aug 4 1966
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW	1.4 Jul 10	5440 Jun 6 10.46 Jun 6	15900a Aug 28 1971 13.84b Aug 28 1971 .00 Jul 17 1968
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.19 16.22 69	.86 11.70 37	1.43 19.41 75
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	13 2.2	9.4 2.5	12 1.4

From rating curve extended above 1,700 ft³/s on basis of slope-area measurement 0.7 mi downstream (adjusted to present site) at gage height 11.90 ft. From high-water mark in gage house. Estimated.

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957, 1962, 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	NST. CI CUBIC CO FEET DU PER AM	PE- WAIFIC WHON- FI JCT- (SI NCE A	TAND - A ARD W	TURE ATER S	YGEN, DIS- OLVED	DIS- DE SOLVED B (PER- CENT I SATUR- 5	BIO- F CHEM- F CAL, DAY B	OLI- ORM, I ECAL, EC ROTH (NTERO- COCCI ME,MF WATER TOTAL COL / 00 ML)
OCT_1991	1700		72/	• •	0.5	0.7	04	, 7	700	70
29 FEB 1992	1300	5.7	324	8.0	8.5	9.4	81	4.3	700	79
06 MAR	1030	14	672	7.9	0.5	15.2	106	E2.4	110	10
18 May	1045	22	295	8.1	5.5	15.3	121	0.4	790	<10
27 JUL	1300	5.2	468	8.0	14.5	12.1	120	<1.0	3500	70
23	1030	2.8	338	8.0	21.5	5.6	64	<1.0	9200	2000
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/L)
OCT_1991	440	7.	44	47	2.4			40	· <0.1	
29 FEB 1992	140		11	13	2.6	82	· 51			
06 MAR	210		15	45	1.7	65	60,	120	0.1	
18 May_	91		7.6	17	1.5	43	39	30	<0.1	
27 JUL	170		12	26	1.8	69	74	46	0.3	
23	130	34	11	17	2.0	91	58	17	<0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN, NO2+NO DIS- SOLVEI (MG/L AS N)	NITRO- 3 GEN, AMMONIA D TOTAL (MG/L	AMMON Í A	GEN, AM MONIA - ORGANII	- +
ост_1991										
29 FEB 1992	8.2	, 193	0.009	0.009	0.99	1.00	0.05	<0.03	1.3	
06 MAR	10	358	0.011	0.010	1.96	1.97	0.06	0.05	0.29	
18 May	11	166	0.011	0.011	2.39	2.36	0.09	0.07	0.22	
27 JUL	8.0	260	0.034	0.034	0.79	0.82	<0.03	<0.03	0.46	
23	3.1	198	0.014	0.014	0.37	0.41	0.05	<0.03	0.29	
Date	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON ORGANIO DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY))
ост 1991 29	0.47	2.3	1.5	0.03	0.03	5.6	0.3	1	0.02	
FEB 1992 06	0.27		2.2	0.04	<0.02	1.6	0.3	2	0.08	
MAR 18										
MAY	0.19		2.6	0.04	0.02	1.9	0.2	6	0.36	
27 JUL	0.57		1.4	0.07	0.05	4.3	0.3	3	0.04	
23	0.23	0.66	0.64	0.05	0.04	3.7	0.3	3	0.02	

01398000 NESHANIC RIVER AT REAVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME L	EMAND, CHEM- ICAL D (HIGH % EVEL)	MAT. M/ FALL SIE IAM. DI/ FINER % FI THAN TI	AT. GEN, EVE TOT AM. IN B	NH4 GEN, AL + OR BOT. TOT T. BOT KG (MG	G. TOT IN IN B MAT MA J/KG (MG/	RUS INC AL GAN BOT TOT AT BOT YKG (G/	OR- INOR IIC, ORGA IN TOT. MAT BOT KG (GM/	G + NIC IN ARSE MAT TOT KG (UG	AL TERIAL
OCT 1991 29 29	1300 1300	21	6	28 4	0 170	0 190		1.1 1	7 -	- 5 <1
DATE	BERY LIUM TOTA RECO ERAB (UG/ AS B	, BORON L TOTAL V- RECOV LE ERABL L (UG/L	TOTAL RECOV- E ERABLE (UG/L	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 1991 29 29	 < 10		0 <1	<1	· · · <1	9	<5	19	,40	 160
DATE	IRON RECO FM BO TOM M TERI (UG/ AS F	V. LEAD, T- TOTAL A- RECOV AL ERABL G (UG/L	E TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 1991 29 29	78	00	2 ·· ⁴⁰	30	.530	<0.10	- 0.01	2	20	 <1
DATE	SELE NIUM TOTA IN BO TOM M TERI (UG/	, ZINC, L TOTAL T- RECOV A- ERABL AL (UG/L	E TERIAL (UG/G	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 29 29		<1 ₄	0	9	<1.0	<0.1	. 11	0.3	<1.0	0.2
DATE	DI- ELDRI TOTA IN BO TOM M TERI (UG/K	L TOTAL T- IN BOT A- TOM MA AL TERIA	TOTAL - IN BOT TOM MA- L TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 29	0	.4 <0.	1 <0.1	<0.1	<0.1	<0.1	<5.0 	<0.1	<1.00	<10

01398107 HOLLAND BROOK AT READINGTON, NJ

LOCATION.--Lat 40°33'30", long 74°43'50", Somerset County, Hydrologic Unit 02030105, on right bank 15 ft downstream from bridge on Old York Road, 0.9 mi southeast of Readington, and 2.5 mi upstream from mouth.

DRAINAGE AREA. -- 9.00 mi 2.

PERIOD OF RECORD. -- June 1978 to current year.

REVISED RECORDS.--WDR NJ-80-1: 1978, 1979(P). WDR NJ-82-1: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and concrete parking-block control. Datum of gage is 77.65 ft above sea level (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature were made during the year. Gage-height and rainfall radio telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 400 ft³/s and maximum (*):

Date		Time	•	Discharge (ft ³ /s)	(Gage height (ft)		Date	Time	Di	scharge (ft ³ /s)	Ga	ge height (ft)
June	6	0245		*511	٠	*4.83		No other	peak grea	ater than	base disc	harge.	
			DISC	HARGE, CUI	BIC FEET	PER SECOND	, WATER Y MEAN	YEAR OCTOB VALUES	ER 1991 1	TO SEPTEME	IER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		2.5 2.4 2.3 2.0 1.8	2.0 2.0 1.8 1.8	3.6 4.4 131 69 26	9.0 8.8 8.1 11	5.6 5.0 4.6 4.5 4.1	10 9.5 8.4 7.4 6.7	13 12 11 9.7 8.6	4.3 4.3 4.0 3.7 3.7	7.4 5.2 3.8 3.3 46	1.9 1.7 2.2 3.9 2.2	6.7 4.1 3.5 3.3 2.7	1.3 1.1 1.4 2.2 1.4
6 7 8 9 10		2.3 1.8 1.5 1.4 1.6	1.6 1.6 1.5 1.4	19 14 12 11 23	11 9.9 8.6 9.4 9.4	3.7 3.9 3.9 3.2 2.8	6.3 14 17 15 16	7.4 7.1 6.7 6.1 5.8	3.3 3.1 4.8 5.2 4.9	148 30 20 14 10	3.0 1.9 1.6 11 2.7	2.3 2.0 1.9 7.2 3.0	1.3 1.6 1.6 1.3 1.5
11 12 13 14 15		1.9 2.2 1.7 1.6 2.8	2.5 1.9 1.8 1.6 1.6	16 14 15 16 15	8.3 7.7 7.7 16 14	3.0 2.6 2.6 3.1 5.7	44 26 19 15 12	7.4 5.9 4.9 4.7	4.2 3.7 3.7 3.5 3.1	8.5 6.8 5.8 5.1 4.7	2.2 2.0 1.9 2.6 2.6	3.8 3.4 2.7 3.8 2.8	3.8 1.5 1.3 1.4 1.4
16 17 18 19 20		2.8 19 11 7.2 5.3	1.6 1.6 1.6 1.6	13 11 9.9 7.5 6.9	12 11 9.2 7.3 6.9	16 9.6 9.6 11 11	10 9.5 8.5 9.9 9.1	5.0 5.9 6.1 6.0 5.8	6.7 4.4 4.0 3.6 3.2	4.1 3.7 3.5 4.3 4.2	3.7 2.0 2.2 1.8 1.6	2.9 2.9 4.2 3.5 3.0	1.3 1.3 1.1 1.0 .98
21 22 23 24 25		4.2 3.7 3.2 2.9 2.8	1.7 10 16 10 7.3	7.1 6.3 6.1 5.4 4.6	6.5 5.4 11 16 11	11 9.8 9.5 8.9 8.7	9.2 9.8 10 10 14	6.1 6.8 7.6 7.1 6.9	3.0 2.7 2.5 2.3 2.3	3.3 3.1 2.8 3.5 3.1	1.5 1.4 3.8 2.6 1.9	2.6 2.3 2.2 2.0 1.8	.92 1.5 1.5 1.0
26 27 28 29 30 31		2.5 2.5 2.1 2.0 2.0 2.0	5.7 4.7 4.3 3.9 3.7	4.1 3.9 3.7 11 11 9.8	9.7 8.5 7.8 7.2 6.7 6.6	20 17 15 12	30 85 33 23 18	6.3 5.8 5.2 5.0 4.7	2.1 2.2 1.9 1.8 1.7 9.3	2.7 2.5 2.3 2.0 2.0	2.0 6.3 2.6 2.1 1.8	2.3 2.4 1.7 1.6 1.4	3.0 3.1 2.6 1.7 1.5
TOTAL MEAN MAX MIN CFSM IN.		105.0 3.39 19 1.4 .38 .43	101.4 3.38 16 1.4 .38 .42	510.3 16.5 131 3.6 1.83 2.11	292.7 9.44 16 5.4 1.05 1.21	227.4 7.84 20 2.6 .87 .94	532.3 17.2 85 6.3 1.91 2.20	205.5 6.85 13 4.7 .76 .85	113.2 3.65 9.3 1.7 .41	365.7 12.2 148 2.0 1.35 1.51	97.7 3.15 17 1.4 .35 .40	91.4 2.95 7.2 1.4 .33 .38	47.70 1.59 3.8 .92 .18 .20
STATI	STI	CS OF MON	ITHLY ME.	AN DATA FO	R WATER	YEARS 1978	- 1992,	BY WATER	YEAR (WY)	•			
MEAN MAX (WY) MIN (WY)		7.81 25.4 1990 1.10 1983	14.5 34.4 1986 2.85 1983	18.1 56.1 1984 1.93 1981	21.7 102 1979 1.93 1981	22.4 56.4 1979 4.69 1980	23.1 49.5 1983 7.05 1985	23.8 59.4 1983 3.02 1985	20.0 53.3 1989 3.65 1992	9.51 28.1 1989 3.14 1991	6.74 26.4 1984 1.63 1980	6.52 27.5 1990 1.23 1983	5.76 21.8 1989 1.13 1983

01398107 HOLLAND BROOK AT READINGTON, NJ -- Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1978 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	4091.38 11.2	2690.30 7.35	14.9 25.7 1979
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	171 Jan 17 .98 Sep 18 1.1 Sep 12	.92 Sep 21	7.06 1985 504 Jan 21 1979 .37 Aug 28 1980 .61 Oct 11 1980
INSTANTANEOUS PEAK FLOW	1.1 Sep 12	511 Jun 6	1300a Jul 7 1984
INSTANTANEOUS PEAK STAGE		4.83 Jun 6	8.08 Jul 7 1984
INSTANTANEOUS LOW FLOW		.92 Sep 19	.22 Aug 28 1980
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.25	.82	1.65
	16.91	11.12	22.42
	22	14	31
50 PERCENT EXCEEDS	5.4	4.1	6.2
90 PERCENT EXCEEDS	1.5	1.6	1.5

a From rating curve extended above 650 ft³/s.

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ

LOCATION.--Lat 40°46'16", long 74°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi upstream from Burnett Brook, and 3.8 mi east of Chester.

DRAINAGE AREA.--7.57 mi 2 .

PERIOD OF RECORD...Water years 1964-65, 1967, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH I	NST. CI CUBIC CO FEET DU PER AM	PE- WA FIC WH DN- FI JCT- (ST JCE A	TAND- A NRD W	TURE ATER	XYGEN, DIS- SOLVED (MG/L)		BIO- F CHEM- F ICAL, 5 DAY E	COLI- CORM, MECAL, WEC TOROTH (C	TERO- COCCI IE,MF MATER OTAL COL /
NOV 1991 20	1230	3.3	306	8.5	10.0	14.0	125	E2.0	<20	7
FEB 1992 05	1330	4.5			1.5	13.4		E2.0	40	10
MAR 18	1315	9.0	••	8.1	3.0	12.7	••	0.5	<20	<10
JUN 01	1045	21	166	7.5	13.5	10.3	101	E1.7	5400	
JUL 29	1045	2.6	264	7.7	17.5	9.5	101	<1.0	460	130
2,	HARD- NESS	CALCIUM	MAGNE- SIUM,	SODIUM,	POTAS SIUM	- ALKA		CHLO-	FLUO- RIDE,	130
DATE	TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	DIS- SOLVE (MG/L	LAB D (MG/L AS	DIS- SOLVI (MG/	DIS- ED SOLVED L (MG/L	DIS- SOLVED (MG/L	
NOV 1991 20	89	22	8.3	20	3.4	58	17	40	0.1	
FEB 1992 05	71	18	6.4	15	1.6	47	16	37	0.1	
MAR 18 Jun	63	16	5.5	13	1.6	39	15	30	<0.1	
01 JUL	44	. 11	3.9	12	1.6	27	11	25	<0.1	
29	· 84	21	7.6	17	2.2	51	15	33	0.1	
· DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	NO2+NO	NITRO GEN AMMON TOTAL (MG/I	, AMMONÍA IA DIS- L SOLVED L (MG/L	GEN,AM- MONIA + ORGANIC	
NOV 1991 20	13	174	0.052	0.051	3.41	3.45	0.1	1 0.18	0.30	
FEB 1992 05	15	146	0.011	0.010	••	1.87	0.00	6 <0.03	0.19	
MAR 18	13	125	0.010	0.010	1.94	1.72	0.10	0.11	0.15	
JUN 01 JUL	12	96	0.028	0.028	0.63	0.61	0.2	1 0.19	0.84	
29	17	158	0.060	0.061	3.21	3.19	0.03	0.04	0.16	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVEI (MG/L AS P)	CARBON ORGANI DIS- O SOLVED (MG/L AS C)	Č SUS- PENDEI TOTAI (MG/I	IC SEDI- D MENT, SUS- PENDED		
NOV 1991 20	0.26	3.7	3.7	0.23	0.05	2.6	0.3	1	0.01	
FEB 1992 05	0.08		1.9	0.23	0.03	2.7		1		
MAR 18	0.08		2.0	0.05	0.02	2.7	1.0 0.4	2	0.01 0.05	
JUN 01	0.67		1.3	0.07	0.04	6.8	0.4	8	0.45	
JUL 29	0.07		3.5	0.09	0.20	13	0.3	2	0.43	
-/	0.27	3.4	3.5	0.20	0.20	1.5	0.4	۷	3.01	

01398260 NORTH BRANCH RARITAN RIVER NEAR CHESTER, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)
NOV 1991 20 20	1230 1230	20	<1	<1	21	140	340	<0.1	1.5	··· <1
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 20 20	1	 <10	 50	 <1	<1	 <1	5	<5	10	 40
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 20 20	5300	 <1	<10 	 <10	170	0.10	<0.01	1	<10 	 <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 20 20	<1	30	<10 	16	<1.0	<0.1	4.0	0.6	0.6	1.7
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 20 20	0.1	<0.1	<0.1 	<0.1 	<0.1 	<0.1	<10 	<0.1 	<1.00	<10

01398500 NORTH BRANCH RARITAN RIVER NEAR FAR HILLS, NJ

LOCATION.--Lat 40°42'30", long 74°38'11", Somerset County, Hydrologic Unit 02030105, on left bank 75 ft upstream from Ravine Lake Dam, 1.6 mi north of Far Hills, and 2.3 mi upstream from Peapack Brook.

PERIOD OF RECORD. --October 1921 to September 1975, October 1977 to current year. Operated as crest-stage gage, water years 1976-77. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 781: Drainage area. WSP 1552: 1922-23, 1924-25(M), 1935(M). WSP 1902: 1954.

GAGE.--Water-stage recorder and crest-stage gage above masonry dam. Datum of gage is 224.49 ft above sea level (New Jersey Geological Survey bench mark). Prior to June 18, 1925, nonrecording gage in stilling box at left end of dam at same datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Records given herein include diversion by small turbine at dam (average discharge, 3.0 ft³/s) and returned to river 1,000 ft downstream from Ravine Lake Dam. Turbine operating from May 21 to Sept. 30. Flow regulated occasionally by operation of waste gate in dam (no gate openings this year). Recording rain gage, with telemeter, 500 ft downstream of station. Several measurements of water temperature were made during the year. Gage height and rain-gage radio telemeter at

EXTREMES OUTSIDE PERIOD OF RECORD.--Stage of 7.6 ft, from floodmark, occurred July 23, 1919, discharge about $7,000~{\rm ft}^3/{\rm s}$.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 700 ft³/s and maximum (*):

Date	Time	D	ischarge (ft ³ /s)	(Gage height (ft)		Date	Time	Di:	scharge ft ³ /s)	Gag	e height (ft)
Mar. 27	0130		859		3.56		June 5	2300	*	1,480	•	4.21
		DISCH	ARGE, CUBI	C FEET	PER SECOND,	WATER Y MEAN	YEAR OCTOBE VALUES	R 1991 TO	SEPTEMB	ER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.7 8.5 9.0 11	11 13 13 12 12	17 18 140 107 43	20 21 20 40 46	23 18 21 20 19	27 28 27 26 26	63 59 53 50 47	37 37 35 34 35	98 54 44 38 422	34 33 34 48 36	e95 e31 e27 e30 e27	11 11 11 42 19
6 7 8 9 10	16 17 15 15 14	12 12 12 11 11	34 29 26 27 49	32 26 23 24 30	17 19 20 18 14	26 53 68 46 43	44 43 42 41 45	35 32 35 61 45	478 138 148 122 76	38 33 30 101 39	e24 18 17 43 35	17 17 17 e23 e22
11 12 13 14 15	15 19 19 16 17	16 21 16 14 14	34 27 29 35 30	26 23 23 57 46	18 15 15 19 23	112 52 45 43 42	70 49 42 40 38	40 35 34 33 30	65 60 55 51 49	34 33 35 47 36	e26 e26 e21 e27 e23	31 19 15 13
16 17 18 19 20	38 41 48 31 25	14 13 12 13 13	25 21 22 15 18	30 21 25 18 19	83 39 32 34 33	39 39 38 48 44	41 56 53 49 45	35 36 32 29 26	46 45 42 61 54	36 33 40 33 31	e25 e30 e38 e27 e23	e15 e15 e14 e14 e13
21 22 23 24 25	22 22 22 19 19	14 58 87 37 25	19 19 19 19 18	21 20 32 76 34	28 26 25 26 28	41 40 40 37 39	42 48 69 45 67	26 22 21 20 25	42 40 38 46 44	29 25 25 30 19	e21 e20 17 17 15	e12 e14 e21 12 12
26 27 28 29 30 31	20 21 13 11 11	20 17 16 16 16	16 16 16 30 41 27	30 24 26 25 23 24	60 44 36 33	88 310 99 68 65 77	47 44 41 39 38	23 26 23 21 22 170	39 39 37 34 37	16 23 17 14 13 101	15 e20 e21 19 16 14	18 e29 e32 e20 16
TOTAL MEAN MAX MIN CFSM IN.	584.2 18.8 48 8.5 .72 .83	572 19.1 87 11 .73 .81	986 31.8 140 15 1.21 1.40	905 29.2 76 18 1.11 1.28	806 27.8 83 14 1.06 1.14	1776 57.3 310 26 2.19 2.52	1450 48.3 70 38 1.84 2.06	1115 36.0 170 20 1.37 1.58	2542 84.7 478 34 3.23 3.61	1096 35.4 101 13 1.35	808 26.1 95 14 .99	536 17.9 42 11 .68 .76
STATIST				WATER	YEARS 1922	- 1992,	BY WATER YE	EAR (WY)				
MEAN MAX (WY) MIN (WY)	25.6 97.4 1956 6.29 1954	42.4 170 1928 9.22 1965	49.1 124 1974 8.43 1981	53.3 182 1979 6.76 1981	59.6 128 1973 22.1 1934	80.5 207 1936 22.8 1981	81.6 226 1983 26.8 1985	59.8 178 1989 20.0 1965	39.2 190 1972 10.5 1965	30.9 132 1984 4.41 1966	28.7 153 1942 4.55 1965	27.5 134 1971 3.61 1964

01398500 NORTH BRANCH RARITAN RIVER NEAR FAR HILLS, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1922 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	14424.2 39.5	13176.2 36.0	48.1 89.7 1928
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	300 Jan 17 4.7 Aug 7 6.7 Jul 15	478 Jun 6 8.5 Oct 2 12 Oct 29	17.7 1965 1260 Apr 5 1984 .20 Oct 22 1953 .20 Oct 22 1953
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	6.7 Jul 13	1480 Jun 5 4.21 Jun 5 8.5 Oct 1	6390a Aug 28 1971 7.28 Aug 28 1971 .00b
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.51 20.48 74	1.37 18.71	1.84 24.94 95
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	. 29 9.2	56 27 14	33 10

From rating curve extended above 2,000 ${\rm ft}^3/{\rm s}$ on basis of computation of peak flow over dam. Several times when lake was filling. Estimated.

01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'09", long 74°40'56", Somerset County, Hydrologic Unit 02030l05, at bridge on Burnt Mills Road in Burnt Mills, 0.1 mi upstream from Lamington River, and 4.0 mi southwest of Far Hills.

DRAINAGE AREA. -- 63.8 mi².

PERIOD OF RECORD. -- Water years 1964, 1977 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	DI	SIEN, (1 S- VED S		BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
NOV_1991	4770		. 045	,				04	-2.4	700	40
25 FEB 1992	1330	51	215	7.1	5.0		1.6	91	E2.1	790	49
06 MAR	1030	38		8.4	1.5		4.0		E2.1	310	<10
26 Jun	1330	140	310	7.9	4.0		1.0	84	2.6	110	90
01 JUL	1315	150	179	7.5	15.0		9.6	96	E1.5	3500	••
29	1330	32	250	8.3	21.5	1!	0.7	122	E1.2	1100	90
DATE	HARD NESS TOTA (MG/ AS CACO	CALCIU L DIS- L SOLVE (MG/I	DIS D SOLV - (MG/	IM, SODI S- DIS /ED SOLV 'L (MG	UM, S ED SC E/L (M	TAS- IUM, I IS- LVED G/L K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLVI (MG/I	DIS- ED SOLVE L (MG/L	RID DI D SOL (MG	E, S- VED /L
NOV 1991 25 FEB 1992		73 18	6.	9 12		2.8	55	20	23	<0	.1
06 MAR		72 18	6.	.5 13		1.2	65	16	23	0	.1
26 JUN		78 20	6.	7 26		1.5	44	20	54	<0	.1
01 JUL		55 14	4.	.9 11		1.6	38	14	22	<0	.1
29		87 22	7.	.9 13		1.7	62	18	26	0	.1
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI ED TUENTS L DIS- SOLVE	F NITR - GEN S, NITRI - TOTA ED (MG/	I, NITR ITE DI IL SOL 'L (MG	N, NI ITE G S- NO2 VED TO /L (M	TRO- EN, I +NO3 TAL G/L N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO GEN AMMON TOTAI (MG/I AS N	, AMMONĪ. IA DIS- L SOLVE L (MG/L	GEN, A MONI ORGA D TOT, (MG	AM- A + NIC AL /L
NOV_1991	4-										
FEB 1992	13	13				.67	0.70	0.04	0.04	0.5	
06 MAR	8.					.51	1.18	<0.03	0.09	0.2	
26 JUN	10	16				.86	0.87	0.12	0.07	0.4	0
01 JUL	11	10				.64	0.65	0.16	<0.03	0.6	
29	9.	4. 13	9 0.0	113 0.	012 , 0	.72	0.82	<0.03	<0.03	0.1	1
DATE	NITR GEN, A MONIA ORGAN DIS. (MG/ AS N	M- + NITRO IC GEN, TOTAL L (MG/L	DIS- SOLVE (MG/	PHO PHOR D TOT L (MG	S- PHO US D AL SO /L (M	RUS (IS-	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON ORGANI SUS- PENDEL TOTAL (MG/L AS C)	IČ SEDI- D MENT, L SUS- L PENDEI		T, S- GE, S- DED
NOV 1991 25	0.	57 1 2	, 4	7 0	0E 0	ne.	F 0	0.7	•	0.4	, .
FEB 1992							5.9	0.7	1	0.1	
06 MAR 24	0.3						3.2	0.3	2	0.2	
26 JUN 01	0.4						4.0	1.0	16	6.0	
01 JUL 20	0.4						5.5	0.6	13	5.3	•
29	<0.0	0.8	3	0.0	06 0.	U 5 1	11	0.2	1	0.09	y .

01399120 NORTH BRANCH RARITAN RIVER AT BURNT MILLS, NJ WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

· OXYGEN	BERYL-			CHRO-	
DEMAND,	LIUM,	BORON,	CADMIUM	MIUM,	COPPER,
CHEM-	. TOTAL	TOTAL	TOTAL	TOTAL	TOTAL

DATE	TIME .	DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
NOV 1991 25	1330	19	<1	<10	70	<1	, <1	17
DATE	IRON TOTA RECC ERAB (UG/ AS F	NL TOTA DV- RECO BLE ERAB 'L (UG/	L TOTA V- RECO LE ERAE L (UG)	MERCI AL TOTA DV- RECO BLE ERAI /L (UG)	AL TOT OV- REC BLE ERA /L (UG	AL SELI COV- NIUI BLE TOTA	M, REC AL ERA /L (UG	AL OV- BLE
NOV 1001								

30

220

2

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'39", long 74°43'50", Morris County, Hydrologic Unit 02030105, on right bank 1.1 mi upstream from bridge on State Highway 512, 1.2 mi northwest of Pottersville, and 5.5 mi upstream from Cold Brook. Water quality samples collected at bridge 1.1 mi downstream from gage at high flows.

DRAINAGE AREA ... 32.8 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1921 to current year. Monthly discharge only for October and November 1921, published in WSP 1302. Prior to October 1952, published as "Black River near Pottersville".

REVISED RECORDS.--WSP 741: 1932. WSP 781: Drainage area. WSP 1552: 1922, 1924-29(M), 1931(M), 1933-34(M), 1938(P), 1939(M), 1940, 1941(M), 1942-46(P), 1947(M), 1948-49(P), 1951-52(P), 1953(M). WDR-NJ-80-1: Correction 1979(P).

GAGE.--Water-stage recorder. Concrete control since July 1, 1937. Datum of gage is 284.14 ft above sea level (levels from New Jersey Geological Survey bench mark). Prior to July 1, 1922, nonrecording gage on downstream side of highway bridge at Pottersville, 1.1 mi downstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Flow regulated occasionally by pond above station. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 380 ft³/s and maximum (*):

Date		Time	D	ischarge (ft ³ /s)		Gage height (ft)		Date	Time	Di	scharge (ft ³ /s)	Gag	e height (ft)
June	6	0115		400		3.10		Jan. 8	2200		*438	•	3.18
			DISCH	ARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBE	R 1991 .	ГО ЅЕРТЕМВ	ER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		e24 e21 e18 e14 e15	14 14 14 14 13	24 23 101 89 64	55 32 30 37 39	32 e34 e31 e28 e25	41 34 31 30 29	71 63 57 53 49	40 39 37 35 35	108 93 93 74 159	33 30 31 40 33	51 36 39 45 39	19 18 22 23 20
6 7 8 9 10		e16 e17 e16 e16 e16	14 15 15 14 14	67 61 51 44 48	37 37 35 34 33	e27 e25 e24 e25 e26	28 49 57 48 54	47 45 44 42 44	35 34 35 48 48	251 177 211 208 138	36 31 29 87 42	33 28 26 45 34	29 75 72 53 40
11 12 13 14 15		e16 e17 e17 e17 e18	18 18 17 18 18	39 36 38 38 36	29 27 26 51 45	32 29 36 28 36	104 70 65 58 48	61 54 50 47 43	47 42 37 34 32	106 84 70 60 53	36 37 37 53 37	30 30 29 29 27	40 32 28 27 27
16 17 18 19 20		e31 e32 e40 e30 e27	17 16 15 14 15	34 37 28 39 26	45 68 46 58 30	73 47 48 49 44	42 37 36 38 37	42 48 51 53 52	36 38 37 33 29	48 44 42 63 60	34 31 39 33 30	28 38 44 36 33	26 25 24 22 19
21 22 23 24 25		e24 e23 e21 e19 e19	16 47 63 42 44	23 21 22 23 22	26 27 46 79 63	40 37 34 34 35	39 38 37 36 38	49 52 52 51 72	26 24 22 20 22	50 50 48 51 47	28 26 42 40 32	32 30 27 24 22	18 18 20 17 17
26 27 28 29 30 31		e18 e18 e17 e16 e16 e15	44 39 33 28 25	25 23 21 36 41 40	50 66 45 39 44 31	55 47 45 43	69 172 116 117 100 86	60 55 50 46 42	23 24 23 21 20 114	43 42 41 38 36	30 33 30 27 25 47	21 21 22 21 20 19	23 26 24 22 22
TOTAL MEAN MAX MIN CFSM IN	L	624 20.1 40 14 .61 .71	688 22.9 63 13 .70 .78	1220 39.4 101 21 1.20 1.38	1310 42.3 79 26 1.29 1.49	1069 36.9 73 24 1.12 1.21	1784 57.5 172 28 1.75 2.02	1545 51.5 72 42 1.57 1.75	1090 35.2 114 20 1.07 1.24	2588 86.3 251 36 2.63 2.94	1119 36.1 87 25 1.10 1.27	959 30.9 51 19 .94 1.09	848 28.3 75 17 .86
e	Es	timated											
STATI	ST	ICS OF MOI				YEARS 1922	- 1992,	BY WATER YE	AR (WY)				
MEAN MAX (WY) MIN (WY)		34.0 116 1956 5.69 1931	49.8 163 1928 11.2 1965	58.5 171 1974 15.4 1981	64.0 225 1979 11.7 1981	70.6 144 1973 28.0 1934	88.9 230 1936 32.0 1981	87.3 239 1984 25.9 1985	66.8 169 1989 19.0 1965	46.5 191 1972 10.1 1965	37.4 165 1984 5.48 1965	33.9 126 1928 5.61 1966	33.4 123 1971 3.76 1964

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1922 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	17115.4 46.9	14937 40.8	55.8 104 1928 20.5 1965
LOWEST ANDAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	187 Jan 17 6.7 Sep 18 7.4 Sep 12	251 Jun 6 13 Nov 5 14 Oct 31 438 Jun 8 3.18 Jun 8	905 Jan 25 1979 1.5 Oct 4 1930 2.4 Sep 22 1964 3460a Jul 7 1984
INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.43 19.41 94 37 13	3.18 Jun 8 13 Nov 5 1.24 16.94 63 36 18	5.94b Jul 7 1984 1.3 Oct 4 1930 1.70 23.13 112 43 14
	•	s of slope-area measurement a	

RARITAN RIVER BASIN

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1977 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	NST. CI CUBIC CO FEET DU PER AM	PE- WARDEN FINANCE AND THE PROPERTY OF THE PRO	TAND- A ARD W	MPER- C TURE ATER EG C)	DXYGEN, DIS- SOLVED (MG/L)	DIS- DISOLVED (PER-CENT SATUR-	BIO- F CHEM- F ICAL, 5 DAY B	OLI- ORM, I ECAL, N EC BROTH (NTERO- COCCI ME,MF WATER TOTAL COL /
OCT 1991 30	1230	E16	264	7.3	8.0	9.6	81	E1.6	20	6
FEB 1992										
04 MAR_	1300	28	••	8.7	1.0	12.8	••	E2.3	490	<10
17 May	1330	36	••	8.4	1.5	12.9	••	6.8	20	<10
28 JUL	1100	23	263	8.1	12.5	10.4	99	<1.0	70	20
28	1300	29	222	8.1	19.5	9.0	100	<1.0	70	260
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	M, LINITY LAB ED (MG/I L AS	SULFATI DIS- SOLVEI (MG/L	DIS- D SOLVED (MG/L	(MG/L)
OCT 1991 30 FEB 1992	89	21	8.8	24	2.8	3 61	18	42	<0.1	
04 MAR	72	17	7.1	19	2.1	1 42	13	36	0.1	
17 MAY	71	17	7.0	18	2.1	1 44	18	35	0.1	
28 JUL	75	18	7.3	18	2.0	51	17	35	0.1	
28	. 70	17	6.7	16	1.2	2 50	10	32	<0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2+NČ	, NO2+NO 03 DIS- . SOLVE . (MG/L	, NITRO D3 GEN, AMMONI/ ED TOTAL (MG/L	AMMON I A	GEN, AM- MONIA - ORGANIO	- ⊦
OCT 1991 30 FEB 1992	13	169	<0.003	<0.003	0.63	3 0.66	s <0.03	<0.03	0.43	
04	10	137	0.005	0.005	1.88	1.67	0.04	<0.03	0.28	
MAR 17	11	141	0.007	0.006	1.46	1.49	0.07	0.06	0.32	
MAY 28	13	149	0.021	0.020	1.83	1.83	<0.03	<0.03	0.32	
JUL 28	15	131	0.007	0.007	0.63	0.63	<0.03	<0.03	0.21	
Date	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGANI DIS- D SOLVED (MG/L	Ć SUS- PENDED TOTAL (MG/L		SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY))
OCT_1991										
30 FEB 1992	0.46		1.1	0.03	0.03	4.9	0.3	<1	• •	
04 MAR_	0.31	2.2	2.0	0.04	0.03	3.6	0.6	<1	• •	
17 MAY	0.30		1.8	0.09	0.04	3.2	0.2	4	0.39	
28 JUL	0.22	2.2	2.0	0.09	0.04	2.7	0.3	7	0.43	
28	0.18	0.84	0.81	0.07	0.07	14	0.4	4	0.31	

01399500 LAMINGTON (BLACK) RIVER NEAR POTTERSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 30	1230	19	1	<10	90	<1	. 2	3
, DATE	ERA (UG	TAĽ TOT COV- REC ABLE ERA G/L (UG	D, NES	TAL TO COV- RE ABLE ER G/L (U	TAL TO COV- RE ABLE ER/	KEL, TAL SEL COV- NIL ABLE TOI G/L (UC NI) AS	JM, REC AL ERA	AL OV- BLE /L
OCT 1991 30		280	3	<10 <	0.10	2	<1	40 .

01399510 UPPER COLD BROOK NEAR POTTERSVILLE, NJ

LOCATION.--Lat 40°43'16", long 74°45'09", Hunterdon County, Hydrologic Unit 02030105, on right bank along a private dirt road, 400 ft downstream from the former Pottersville Reservoir, and 1.5 mi west of Pottersville.

DRAINAGE AREA. -- 2.18 mi².

PERIOD OF RECORD. -- October 1972 to current year.

REVISED RECORDS.--WDR-NJ-84-1: 1975(P), 1980-83(P). WDR NJ-88-1: 1979.

GAGE.--Water-stage recorder and rock outcrop control. Datum of gage is 451.57 ft above sea level.

REMARKS. - Records good except for estimated daily discharges and those above 20 ft³/s, which are fair. Flow regulated by Pottersville Reservoir, 400 ft above station, until August 1982 when dam was demolished. Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft³/s and maximum (*):

Date		Time		Discharge (ft ³ /s)	1	Gage height (ft)		Date	Time	Dis (1	charge ft ³ /s)	Gag	e height (ft)
June	5	1715		*115		*1.52		July 31	1700		102		1.47
			DISC	HARGE, CUBI	C FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER	1991	TO SEPTEMBE	R 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		1.2 1.2 1.2 1.2 1.3	1.5 1.5 1.4 1.4	2.0 2.1 15 6.0 3.1	2.2 2.3 2.2 3.0 2.7	2.5 e2.4 2.4 e2.3 e2.3	2.9 2.9 2.9 2.7 2.7	4.6 4.4 4.4 4.3	3.5 3.6 3.4 3.2 3.4	5.9 3.9 3.1 2.8 35	2.2 2.0 2.7 3.4 2.3	3.3 2.2 2.8 2.7 2.1	1.4 1.4 4.3 2.2 1.7
6 7 8 9 10		1.5 1.3 1.2 1.2 1.3	1.5 1.5 1.5 1.5	2.7 2.4 2.3 2.4 4.3	2.3 2.3 2.3 2.8 2.6	e2.3 e2.2 e2.2 e2.1 1.9	2.7 6.5 4.6 3.4 4.4	4.1 4.1 4.0 3.9 4.0	3.2 3.2 4.1 4.5 4.4	28 8.1 9.1 7.1 5.1	2.9 2.1 2.0 8.1 2.4	1.9 1.8 1.8 3.9 2.2	1.6 2.0 1.8 1.6 1.8
11 12 13 14 15		1.4 1.4 1.3 1.2 2.6	2.2 1.7 1.5 1.5	2.6 2.3 2.9 2.9 2.9	2.4 2.3 2.3 6.8 3.6	2.1 2.3 2.3 2.3 4.9	11 4.7 4.1 3.7 3.5	6.4 4.3 4.0 3.8 3.8	3.8 3.3 3.2 3.1 2.9	4.5 4.4 4.1 3.8 3.5	2.1 2.2 2.6 7.1 2.9	2.2 1.9 1.8 2.1 1.9	2.4 1.5 1.4 1.4
16 17 18 19 20		2.0 3.6 2.1 1.6 1.5	1.5 1.5 1.4 1.5 1.5	2.7 2.5 2.5 2.2 2.2	2.8 2.8 2.5 2.6 2.7	6.3 3.2 2.9 3.2 2.9	3.3 3.3 3.2 3.9 3.5	4.2 4.5 4.3 4.3	3.6 3.1 3.0 2.8 2.6	3.3 3.3 3.2 6.0 4.3	2.7 2.3 3.3 2.3 2.0	2.0 3.2 3.1 2.1 1.8	1.4 1.4 1.3 1.3
21 22 23 24 25	,	1.5 1.5 1.5 1.5	1.7 7.9 4.6 2.4 2.1	2.6 2.7 2.6 2.5 2.3	2.7 2.7 7.2 5.6 3.7	2.8 2.7 2.7 2.8 3.0	3.4 3.3 3.2 3.1 3.8	4.1 4.4 4.1 4.2 4.6	2.6 2.5 2.4 2.4 2.5	3.1 2.9 2.7 3.8 3.0	1.9 1.8 4.1 2.6 2.2	1.7 1.6 1.6 1.5	1.3 1.6 1.7 1.3
26 27 28 29 30 31		1.5 1.5 1.5 1.3 1.4	1.9 1.8 1.7 1.7	2.2 2.3 2.3 4.5 3.2 2.3	2.8 2.8 2.6 2.5 2.5	5.8 3.5 3.0 2.9	13 18 6.1 5.2 4.9 5.1	4.0 3.9 3.9 3.8 3.7	2.6 2.6 2.4 2.3 2.4	2.6 2.4 2.2 2.4	2.2 2.8 2.1 1.9 1.8 8.7	2.0 1.7 1.7 1.8 1.5	2.4 2.6 1.9 1.5 1.4
TOTAL MEAN MAX MIN CFSM IN.		47.5 1.53 3.6 1.2 .70	58.0 1.93 7.9 1.4 .89	97.5 3.15 15 2.0 1.44 1.66	93.1 3.00 7.2 2.2 1.38 1.59	84.2 2.90 6.3 1.9 1.33	149.0 4.81 18 2.7 2.20 2.54	4.22 6.4 3.7 1.94	11.6 3.60 19 2.3 1.65 1.90	176.2 5.87 35 2.2 2.69 3.01	91.7 2.96 8.7 1.8 1.36 1.56	64.8 2.09 3.9 1.4 .96 1.11	51.5 1.72 4.3 1.2 .79 .88
STATI	STI						- 1992,	BY WATER YE	AR (WY				
MEAN MAX (WY) MIN (WY)		2.05 5.55 1990 .62 1981	3.10 8.37 1973 .93 1981	4.48 10.6 1984 .43 1981	4.72 12.4 1979 .083 1981	4.85 8.46 1984 2.03 1980	5.58 9.30 1978 2.09 1985	15.0 1983 1.72	5.30 10.8 1989 2.30 1985	3.47 6.45 1975 1.49 1985	2.71 12.1 1984 .90 1980	1.69 3.70 1990 .38 1980	1.81 4.58 1975 .16 1980

RARITAN RIVER BASIN

01399510 UPPER COLD BROOK NEAR POTTERSVILLE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1973 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	1326.95 3.64	1151.7 3.15	3.84 7.07 1984 1.74 1985
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	22 Mar 4 .83 Sep 18 .89 Sep 12	35 Jun 5 1.2 Oct 1 1.3 Oct 1 115 Jun 5	125 Jul 7 1984 .03 Aug 28 1980 .06 Aug 28 1980 2000a Jul 7 1984
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.67 22.64 6.3 2.6	1.52 Jun 5 1.1 Sep 20 1.44 19.65 4.5 2.6 1.5	3.91 Jul 7 1984 1.76 23.90 7.2 2.6 .90

a From rating curve extended above 20 ft³/s on basis of slope-area measurement of peak flow. e Estimated.

01399670 SOUTH BRANCH ROCKAWAY CREEK AT WHITEHOUSE STATION, NJ

LOCATION.--Lat 40°37'10", long 74°46'30", Hunterdon County, Hydrologic Unit 02030105, on right bank 1,700 ft upstream from bridge on U.S. Route 22, 0.4 mi northeast of Whitehouse Station, and 0.8 mi upstream from mouth.

DRAINAGE AREA. -- 12.3 mi².

PERIOD OF RECORD. -- October 1986 to current year. March 1977 to September 1986, water-stage recorder 1,700 ft downstream, at datum 8.07 ft lower (sta. 01399690), drainage area 13.2 mi².

REVISED RECORDS.--WDR NJ-88-1: 1987. WDR NJ-90-1: 1988.

GAGE. -- Water-stage recorder. Datum of gage is 121.5 ft above sea level.

REMARKS.--No estimated daily discharges. Records good except those below 5.0 ft³/s, which are fair. Releases from Round Valley Reservoir enter stream directly above station (see Raritan River basin, reservoirs in). Several measurements of water temperature were made during the year.

	-	DISCHA	RGE, CUBI	C FEET PER	SECOND, DAILY	WATER Y	EAR OCTOBER ALUES	1991 то	SEPTEMBE	R 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.1 6.0 5.7 5.7 5.8	4.5 4.6 4.9 4.7 4.4	6.1 7.0 66 44 20	7.8 8.2 8.5 15	6.4 5.2 5.2 5.2 5.0	8.3 8.4 7.8 7.2 7.0	16 15 13 12 11	7.2 7.3 6.6 6.1 7.2	30 16 11 9.1 91	6.9 6.0 7.7 17 7.7	10 4.2 4.0 5.2 4.5	3.1 3.2 12 21 5.5
6 7 8 9 10	6.5 5.6 5.0 5.2 5.2	4.8 5.2 5.5 4.6 4.8	15 12 10 10 24	9.7 8.7 7.6 11	4.5 4.8 5.2 4.4 3.7	6.5 26 25 13 15	9.9 10 10 9.4 10	6.4 5.9 9.8 12 13	252 41 31 24 17	13 7.2 6.5 42 8.7	3.5 3.4 3.2 12 5.0	5.1 7.9 6.7 5.1 5.2
11 12 13 14 15	5.9 7.5 6.2 5.6 11	11 6.0 5.1 5.0 4.2	13 10 15 19 14	7.4 6.4 6.5 35 17	4.2 3.6 3.8 4.8	71 22 16 13 11	14 11 8.8 8.5 8.2	10 7.6 7.3 6.8 6.1	14 12 10 9.2 8.5	6.7 6.2 6.2 8.9 12	8.8 8.2 3.4 8.1 4.2	15 5.1 4.2 4.0 4.0
16 17 18 19 20	14 24 14 7.1 5.4	4.2 5.0 3.9 3.7 3.9	11 8.9 8.7 6.5 6.5	9.8 7.8 7.4 5.1 5.6	36 13 11 14 12	9.6 9.4 9.0 13	9.2 12 13 11 11	12 8.8 7.5 6.6 6.0	7.5 7.2 6.4 12 9.5	16 6.8 11 6.4 5.7	4.5 7.7 16 8.5 6.2	3.8 3.7 3.4 3.7 3.1
21 22 23 24 25	4.9 5.2 4.9 4.6 4.5	5.0 48 45 14 8.6	7.4 7.2 7.2 6.9 5.9	5.7 5.5 16 36 11	9.6 8.4 8.5 8.6 9.0	12 11 12 11 18	10 12 10 9.1 9.2	5.7 5.5 5.3 5.4 5.8	6.1 5.8 5.8 11 7.3	5.1 4.9 10 8.2 5.5	5.0 4.6 4.3 4.1 4.2	3.0 4.2 10 3.1 3.4
26 27 28 29 30 31	4.6 4.5 5.9 4.4 4.4 4.7	6.9 6.0 5.7 5.4 5.0	5.2 5.1 4.8 24 18 9.9	8.9 7.1 7.2 6.9 6.7 7.0	39 18 13 11	44 112 32 22 18 20	8.7 8.4 8.3 7.9 7.5	6.2 7.1 6.2 5.7 6.1	6.3 7.7 6.8 5.9 11	5.3 12 6.1 5.4 5.0 13	8.2 8.1 4.5 7.3 3.8 3.5	16 14 12 5.6 4.1
TOTAL MEAN MAX MIN	210.1 6.78 24 4.4	249.6 8.32 48 3.7	428.3 13.8 66 4.8	326.5 10.5 36 5.1	287.1 9.90 39 3.6	621.2 20.0 112 6.5	314.1 10.5 16 7.5	272.2 8.78 53 5.3	692.1 23.1 252 5.8	289.1 9.33 42 4.9	188.2 6.07 16 3.2	200.2 6.67 21 3.0
							, BY WATER Y					
MEAN MAX (WY) MIN (WY)	31.0 116 1981 6.78 1992	28.1 64.0 1981 6.58 1982	34.2 91.6 1981 12.7 1989	34.7 93.3 1981 8.31 1985	27.6 51.1 1979 9.90 1992	30.7 55.0 1978 10.2 1985	33.1 85.0 1983 3.80 1985	27.3 60.5 1989 8.78 1992	21.0 38.7 1989 9.57 1981	23.5 80.5 1984 7.33 1983	30.5 128 1980 5.49 1983	30.3 146 1980 4.19 1983
SUMMARY	STATISTI	cs	FOR 1	991 CALEN	DAR YEAR	1	FOR 1992 WAT	ER YEAR		WATER YE	ARS 1977	- 1992
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT 10 PERC 50 PERC		AN N MINIMUM AK FLOW AK STAGE W FLOW DS		6466.2 17.7 190 3.1 3.7 33 13 4.4	Jan 17 Sep 1 Aug 29		4078.7 11.1 252 3.0 3.5 846 6.52 2.3 17 7.4	Jun 6 Sep 21 Sep 15 Jun 6 Jun 6 Feb 10		29.7 55.2 11.1 600 1.4 1.8 2190 15.89 .18 68 15	Jan Oct Apr Jul	1981 1992 26 1978 20 1983 25 1985 7 1984 7 1984 3 1984

a Site and datum then in use.

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ

LOCATION.--Lat 40°37'49", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth.

DRAINAGE AREA. -- 37.1 mi 2.

PERIOD OF RECORD.--Water years 1977 to current year.

PERIOD OF DAILY RECORD. --SPECIFIC CONDUCTANCE: April 1977 to September 1978. WATER TEMPERATURES: April 1977 to September 1978. SEDIMENT ANALYSES: October 1976 to September 1978.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC CO FEET DO PER A	PE- WI IFIC WI ON- F JCT- (S' NCE	TAND- A' ARD W	TURE Ater s	YGEN, DIS- OLVED	DIS- DE SOLVED E (PER- CENT I SATUR- 5	HEM- HEM- HEM- HEM- HEM- HEM- HEM- HEM-	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
NOV 1991	1000	40	277		F 0	17.0	103	-1.0	<20	,
19 FEB_1992	1000	18	277		5.0	13.0	102	<1.0		2
03 MAR	1230	52	••	8.2	7.0	13.3	••	E1.5	<20	<10
16 MAY	1300	· 36	••	7.7	3.5	13.0	••	0.4	50	<10
27 JUL	1100	16	242	8.0	13.0	9.8	94	<1.0	700	60
30	1030	17	230	8.0	21.5	8.1	92	E1.8	9200	310
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L) AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	(MG	E, S- VED /L
NOV 1991 19	100	26	9.5	13	2.5	82	26	21	0	.1
FEB 1992 03	7		6.3	10	1.3	65	19	12		.1
MAR 16	7		6.5	10	1.5	11	34	17		.2
MAY 27	8!		7.9	10	1.5	65	20	18		.1
່ງບ ໍ່ 30	8:	•	8.0	11	1.8	67	20	16		.1
DATE	SILICA DIS- SOLVEI (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN.	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN, NO2+NO	NITRO- 3 GEN, AMMONIA D TOTAL (MG/L	NITRO GEN, AMMONIA	NIT GEN, MONI ORGA	RO- AM- A + NIC AL /L
NOV 1991 19	11	168	0.005	0.005	1.88	2.12	0.07	0.12	0.3	2
FEB 1992 03	9.5	121				1.21		0.08	0.3	
MAR ·									0.3	
16 MAY	13	112				1.15		0.22		
27 JU <u>L</u>	13	136				1.17		<0.03	0.3	
30	14	138	0.025	0.024	1.46	1.45	0.03	<0.03	0.2	5

RARITAN RIVER BASIN

01399700 ROCKAWAY CREEK AT WHITEHOUSE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	NITROGEN, AM- GEN, AM- MONIA - ORGANIO DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
19	1991	0.20	5 2.2	2.4	0.31	0.30	2.3	0.3	1	0.05
03	1992 3	0.3	1 2.0	1.5	0.15	0.11	2.3	0.4	8	1.1
MAR 10	5	0.38	3 1.6	1.5	0.09	0.08	2.4	0.2	7	0.68
	7	0.27	7 1.5	1.4	0.13	0.10	2.1	0.2	7	0.30
JUL 30)	0.18	3 1.7	1.6	0.11	0.09	16	0.2	2	0.09
		DATE 1991 9	DEM CH IC (H TIME LEV	IIGH TO /EL) (U	ENIC RETAL EF	DTAĹ TO ECOV- RE RABLE ER JG/L (U	DTAL TO ECOV- RE RABLE ER JG/L (U	MIUM MII TAL TO COV- REG ABLE ER/	TAL TO COV- RE ABLE ER G/L (U	PER, TAL, COV- ABLE G/L CU)
		DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	
		NOV 1991 19	100	5	20	<0.10	3	<1	30	

01399780 LAMINGTON RIVER AT BURNT MILLS, NJ

LOCATION.--Lat 40°38'04", long 74°41'13", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road in Burnt Mills, 1,400 ft upstream from mouth, and 2.4 mi southwest of Greater Cross Roads.

DRAINAGE AREA. -- 100 mi 2.

PERIOD OF RECORD. -- Water years 1964, 1976 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE		TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	. AT	PER- URE TER G C)	SO		OXYGE DIS SOLV (PER CEN SATU ATIO	- DE ED B - C T I R- 5	YGEN MAND, IO- HEM- CAL, DAY MG/L)	COLI FORM FECA EC BROT (MPN	- (L, V H ((ITERO- COCCI NE, MF VATER OTAL COL /
OCT 1991	i	1/00	34	2/4			۰. ۸		0.4		00	53.0		70	
31 FEB 1992	2	1400		246	7.7		8.0		9.6		82	E2.0		30	8
06 MAR		1345	43	••	8.3		2.0		11.8	•		E2.3		20	<10
19 MAY		1300	140		7.6	• .	0.5		11.7	• •		2.2		80	<10
28 JUL		1300	. 48	246	8.9		16.0		12.5	1	27	<1.0	. 1	10	<10
28		1045	70	230	8.1		20.0		9.0	. 1	00	<1.0	7	00	310
	DATE	HARD NESS TOTA (MG/ AS CACO	CALC L DIS L SOL (MG	- DI VED SOL /L (MG	UM, SODI S- DIS VED SOLV /L (MG	S- `	POTA SIL DIS SOLV (MG) AS	JM, S- /ED /L	ALKA LINIT LAB (MG/ AS CACO	Y S L	ULFATE DIS- SOLVED (MG/L S SO4)	DIS- SOLV (MG/	ED L	FLUO- RIDE, DIS- SOLVEI (MG/L AS F))
	1991				*	_	٠.	2							
FEB	1992	1	10 26	10	1,7	7	2.	.5	81		22	26	•	<0.1	
MAR	5		85 21	7	.8 1	5.	1.	.5	64		20	25		0.1	•
19 MAY	·		65 16	6	.0 13	5 .	` 1.	.4	49		18	21		<0.1	
ŽE JUL	3		83 20	8	.0 - : 14	•	1.	.7	63 -		20	25		0.1	
28	3		81 20	7	.5 14	•	1.	.5	62		16	24		0.1	•
•	DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONS ED TUEN L DI SOL	OF NIT TI- GE TS, NITR S- TOT VED (MG	RO- GE N, NITE ITE DI AL SOI /L (MO	IS- VED	NITE GEN NO2+N TOTA (MG/ AS N	1, 103 \L 'L	NITR GEN NO2+N DIS SOLV (MG/ AS N	03 - A ED L	NITRO- GEN, MMONIA TOTAL (MG/L AS N)	AMMON	IA M O ED L	NITRO- EN, AM- ONIA - RGANIO TOTAL (MG/L AS N)	•
ocŢ	1991		_							_					
FEB	1992	9.				.010	0.4		0.4		<0.03	<0.03		0.31	
MAR	5	10		145 0.	007 0.	.008	1.6	88	1.4	3	0.03	0.03		0.25	
19 MAY	·	9.	5	119 0.	009 0.	.009	1.1	15	1.0	7	0.08	0.10	1	0.22	
JUL 28	3	10		142 0.	026 0.	.024	1.1	19	1.2	0	<0.03	<0.03	1	0.29	
. 28	3	13	•	137 0.	015 0.	.014	0.8	37	0.8	7	<0.03	<0.03	-	0.15	
•	DATE	NITR GEN,A MONIA ORGAN DIS. (MG/ AS N	M- L + NITI FIC GEI TOTA L (MG)	N, DIS AL SOLV /L (MG	N PHO - PHOP ED TOT /L (MO	RUS	PHOS PHORU DIS SOLV (MG/ AS F	JS S - /ED 'L	CARBO ORGAN DIS- SOLVE (MG/ AS C	N, OI IC : Pi D L	ARBON, RGANIĆ SUS- ENDED TOTAL (MG/L AS C)	SED I MENT SUS - PEND (MG/	, C ED	SEDI- MENT, DIS- HARGE, SUS- PENDED	
	1991	•	71 ^	90 ^	90 ^	12	0.10		. 4					0.20	
FEB	1992					.12	0.10		4.1					0.28	
MAR	5	•				.06	0.06		2.6		0.3	4		0.46	
MAY	·					.06	0.04		3.0		0.4	7		2.6	
JUL	3	0.	19 1	.5 1	.4 0.	.08	0.06	S	2.4	ı	0.2	4		0.52	
28	3		1	.0 -	- 0.	.21	0.31	1	16		0.2	4	. ' '	0.76	

01399780 LAMINGTON RIVER AT BURNT MILLS, NJ.-Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT FALI DIAM % FINI THAI .004	L SIEV DIAI ER % FII N TH/	T. GEN, VE TOT M. IN B NER MA AN (MG/	NH4 GEN, AL + OR OT. TOT T. BOT KG (MG	NH4 PHORI G. TOT IN IN BO MAT MA /KG (MG/	US INOI AL GAN OT. TOT T. BOT I KG (G/I	R- INORG IC, ORGAN IN TOT. MAT BOT N KG (GM/K	FF FIC IN ARSEN FAT TOTA (G (UG/	L TERIAL 'L (UG/G
OCT 1991 31 31	1400 1400			<1 	.E1 .	4.9 11 -					<1 5
DATE OCT 1991	LI TO RE ER (U	TAL I COV- F ABLE E	BORON, (OTAL RECOV- RABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
31 31	<	10	100	 <1	 (1	·· <1	5	<5	6	10	160
DATE	RE FM TOM TE (U	BOT- 1 MA- F RIAL E		LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G).	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 1991 31 31	•	6300	3	<10	20	430	<0.10	<0.01	3	<10 	 <1
DATE	NI TO IN TOM TE	TAĽ 1 BOT- F MA- E RIAL (ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 31 31		<1	30	30	<1	<1.0	<0.1 	<1.0	<0.1	<0.1	<0.1
I) TO DATE	DI- LDRIN, FOTAL N BOT- DM MA- FERIAL JG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT TOM MA TERIA	TOTA TOTA	DR, CHLO AL EPOX DT- TOT. MA- BOT IAL MA	OR LIND: IDE TOT: IN IN BI TOM TOM I TL. TER	AL CHLO DT- TOT. MA- BOTI IAL MAI	- MIRE OR, TOTA IN IN BO TOM TOM N TL. TERI	AL THAN DT- IN BO MA- TOM M MAL TERIA	E TOTA OT- IN BO IA- TOM M IL TERI	E, TOT REC L FROM BOT- IT- TOM MAT- A- TERIAL AL (UG/G)
OCT 1991 31 31	<0.1	<0.1	<0.	.1 <0).1 <1.		1.58

01400000 NORTH BRANCH RARITAN RIVER NEAR RARITAN, NJ

LOCATION.--Lat 40°34'10", long 74°40'45", Somerset County, Hydrologic Unit 02030105, on right bank, 400 ft upstream from U.S. Highway 202, 1.4 mi upstream from confluence with South Branch, and 2.7 mi west of Raritan.

DRAINAGE AREA . - 190 mi 2 .

PERIOD OF RECORD.--June 1923 to current year. Monthly discharge only for June 1923, published in WSP 1302. Prior to October 1943, published as "at Milltown".

REVISED RECORDS.--WSP 1552: 1924-26, 1928-35. WDR NJ-79-1: 1971-78(P).

GAGE.--Water-stage recorder. Concrete control since Sept. 1, 1936. Datum of gage is 50.43 ft above sea level. Prior to Oct. 17, 1936, nonrecording gage at site 30 ft downstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Releases from Round Valley Reservoir enter basin upstream of gage. Several measurements of water temperature were made during the year. New Jersey Water Supply Authority gage-height telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR..-Peak discharges greater than base discharge of 5,000 ft³/s and maximum (*):

Date		Time	D	ischarge (ft ³ /s)	Ge	ge height (ft)		Date	Time	D	ischarge (ft ³ /s)	G	age height (ft)
June	6	0745		* 6,680		*8.77		No other	peak grea	ter than	base disc	charge.	
			DISCHAR	GE, CUBIC	FEET PER	SECOND, N	NATER Y	EAR OCTOBER ALUES	1991 TO	SEPTEMBE	R 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		95	58	94	132	157	191	346	172	678	139	444	62
2		83	57	102	138	123	190	315	169	293	119	151	61
3		73	57	1560	132	143	177	276	161	238	118	120	70
4		65	55	1190	293	139	168	255	150	197	238	140	239
5		63	54	368	297	142	161	239	153	869	148	124	98
6		78	53	266	192	111	157	220	152	3760	166	105	83
7		69	55	229	171	133	350	212	142	893	127	94	118
8		58	57	194	146	126	557	209	156	1010	108	87	145
9		54	60	178	154	117	289	192	259	1190	697	194	120
10		52	71	440	187	82	265	208	217	582	200	169	104
11		56	73	237	150	120	1030	298	209	425	140	121	160
12		68	88	187	132	100	444	248	169	349	121	141	105
13		58	70	241	127	93	326	208	156	290	136	103	83
14		52	64	298	448	123	286	191	148	255	344	130	75
15		78	61	228	371	131	252	182	132	231	184	109	73
16		155	60	173	211	708	220	182	187	208	228	111	69
17		273	58	144	156	298	210	245	167	191	141	131	67
18		284	56	142	182	236	205	253	147	176	172	200	66
19		128	57	108	133	265	244	241	143	241	139	145	64
20		96	56	117	152	254	238	227	120	307	117	114	59
21		87	58	123	163	215	236	216	112	199	107	102	55
22		84	361	116	141	191	230	229	105	178	100	93	60
23		80	739	111	204	185	238	278	97	173	154	87	107
24		76	222	110	722	186	229	219	92	215	219	82	69
25		70	155	99	281	191	295	305	101	210	131	75	59
26 27 28 29 30 31		67 65 64 60 57 59	132 118 105 97 90	95 98 87 253 298 172	224 194 192 180 192 164	617 348 261 235	557 1960 699 512 424 433	240 223 204 192 177	100 108 101 91 87 579	163 157 155 138 161	111 176 128 103 95 190	72 96 112 93 74 67	114 137 158 96 76
TOTAL	-	2707	3297	8058	6561	6030	11773	7030	4882	14132	5296	3886	2852
MEAN		87.3	110	260	212	208	380	234	157	471	171	125	95.1
MAX		284	739	1560	722	708	1960	346	579	3760	697	444	239
MIN		52	53	87	127	82	157	177	87	138	95	67	55
STAT	ISTI	CS OF M	ONTHLY MEA	N DATA FO	R WATER Y	EARS 1924	- 1992	, BY WATER	YEAR (WY)				
MEAN		171	283	345	377	432	508	470	343	227	185	192	172
MAX		826	824	994	1416	948	1272	1368	1027	1270	1291	1068	672
(WY)		1956	1973	1984	1979	1925	1936	1983	1989	1972	1984	1942	1975
MIN		26.6	46.1	73.1	79.4	109	163	117	84.1	46.4	25.5	22.3	14.8
(WY)		1931	1965	1966	1940	1934	1981	1985	1926	1965	1966	1932	1964

01400000 NORTH BRANCH RARITAN RIVER NEAR RARITAN, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1924 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	100715 276 2620 Jan 17 38 Sep 4 40 Sep 12 582 175 57	76504 209 3760 Jun 6 52 Oct 10 55 Nov 2 6680 Jun 6 8.77 Jun 6 27 Feb 13 331 152 65	308 605 120 1965 15300 Jul 7 1984 7.5 Sep 26 1964 8.9 Sep 22 1964 28600a Aug 28 1971 15.47b Aug 28 1971 3.0c Nov 28 1930 617 184 55

a From rating curve extended above 15,000 ${\rm ft}^3/{\rm s.}$ b From high-water mark in gage house. c Result of freezeup.

01400300 PETERS BROOK NEAR RARITAN, NJ

LOCATION.--Lat 40°35'37", long 74°37'51", Somerset County, Hydrologic Unit 02030105, on left bank 12 ft upstream from bridge on Garretson Road, 1.5 mi north of Raritan, and 2.5 mi from mouth.

DRAINAGE AREA. -- 4.19 mi 2.

PERIOD OF RECORDS. -- May 1978 to current year.

REVISED RECORD. -- WDR NJ-79-1: 1978(P).

GAGE.--Water-stage recorder. Datum of gage is 68.71 ft above sea level (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year. Gage-height and rain-gage radio telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft³/s and maximum (*):

Date		Time	•	Discharg (ft ³ /s)	e (Gage height (ft)		Date	Time		Discharge (ft ³ /s)	G	age height (ft)
Dec.	3	2200	ס	*187		*4.30		No peak	greater t	han base	discharge.		
			DIS	CHARGE, C	UBIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTO VALUES	BER 1991	TO SEPTE	MBER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		1.1 1.0 1.2 .96 1.0	.45 .44 .42 .40 .39	.56 3.0 100 17 3.7	1.2 1.2 1.2 18 4.1	.97 .91 .84 .82 .82	2.5 2.4 2.3 2.2 2.1	3.8 3.5 3.2 3.0 2.8	2.2 2.2 2.1 2.0 2.4	3.2 1.1 .75 .66	.61 .60 2.4 2.0 .76	. 1.6 .76 .64 .59	.53 .52 1.1 .78 .59
6 7 8 9 10		1.9 1.3 .93 .87 .79	.47 .36 .36 .35 .36	2.7 2.1 1.8 2.3 18	2.2 1.5 1.2 2.9 2.3	.72 .73 .84 .75 .65	2.0 14 7.0 3.6 16	2.6 2.4 2.5 2.6	2.0 1.9 4.1 3.7 3.0	35 2.9 6.6 3.0 1.3	2.1 .77 .65 13 1.3	.55 .53 .55 3.1 .84	.55 .61 .60 .55 2.1
11 12 13 14 15		2.7 1.9 1.1 1.1 6.8	1.2 .52 .40 .35 .34	2.8 2.0 7.7 6.7 2.8	1.5 1.2 1.2 18 3.2	.68 .64 .62 .96	32 5.0 3.5 2.9 2.6	6.4 3.0 2.5 2.4 2.3	1.5 1.0 .76 .68 .67	1.0 .96 .87 .80 .81	.90 .86 .74 1.3 3.3	2.1 1.0 .69 1.5 .81	3.3 .68 .58 .54 .52
16 17 18 19 20		2.0 14 2.5 1.1 .87	.31 .28 .29 .29	1.7 1.5 1.2 1.0	1.8 1.4 1.2 .97 .97	19 4.7 3.9 5.9 4.3	2.4 2.2 2.2 4.8 5.9	4.0 4.4 4.0 3.8 2.9	5.7 1.2 .90 .77 .69	.82 .80 .72 .89	1.6 .84 1.1 .72 .66	1.1 1.0 1.9 .83 .68	.52 .52 .51 .48 .47
21 22 23 24 25		.72 .62 .51 .48 .45	.51 30 7.3 1.2 .73	1.0 .93 .94 .91 .79	.95 .88 22 15 2.5	3.3 2.9 2.8 2.8 3.2	6.2 4.8 6.4 5.1 9.4	2.7 4.8 7.3 3.2 2.7	.65 .64 .61 .76 .90	.79 .71 .87 1.4 .94	.67 .61 4.7 1.2 .77	.61 .57 .54 .55	.48 .90 1.2 .52 .58
26 27 28 29 30 31		.44 .43 .41 .38 .37 .42	.56 .50 .44 .42 .39	.71 .71 .69 9.7 4.5 1.9	1.7 1.3 1.2 1.1 1.2	20 5.2 3.6 3.0	28 41 7.2 4.6 3.8 5.9	2.5 2.5 2.3 2.3 2.2	.68 .71 .62 .54 .70	.73 .78 .73 .70 .62	.74 3.6 .84 .70 .68 4.4	.53 2.5 .71 .64 .55 .54	3.1 3.5 1.0 .63 .55
TOTAL MEAN MAX MIN CFSM IN.	•	50.35 1.62 14 .37 .39 .45	50.34 1.68 30 .28 .40 .45	202.27 6.52 100 .56 1.56 1.80	116.17 3.75 22 .88 .89 1.03	107.55 3.71 20 .62 .89 .95	240.0 7.74 41 2.0 1.85 2.13	97.2 3.24 7.3 2.2 .77 .86	67.28 2.17 21 .54 .52 .60	111.45 3.71 40 .62 .89	55.12 1.78 13 .60 .42 .49	29.60 .95 3.1 .53 .23	28.51 .95 3.5 .47 .23
ŞTATI	ST					YEARS 1978							
MEAN MAX (WY) MIN (WY)		3.78 14.2 1990 .59 1987	6.20 15.8 1987 .56 1979	7.36 23.7 1984 .49 1981	9.25 41.2 1979 .24 1981	8.63 17.7 1982 1.39 1980	7.84 18.9 1980 1.37 1985	9.26 25.3 1983 .57 1985	8.33 26.0 1989 1.21 1986	3.90 11.2 1989 .82 1988	4.10 11.8 1984 .28 1983	3.82 15.5 1990 .038 1980	3.47 9.88 1989 .24 1984

RARITAN RIVER BASIN

01400300 PETERS BROOK NEAR RARITAN, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1978 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	1615.49 4.43	1155.84 3.16	6.31 9.37 1984 3.16 1992
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	103 Apr 21 .28 Nov 17 .31 Nov 14	100 Dec 3 .28 Nov 17 .31 Nov 14 187 Dec 3	400 Jan 24 1979 .00 Jul 12 1978 .00 Nov 1 1978 1090 Jul 7 1984
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM)	1.06	4.30 Dec 3 .25 Nov 16 .75	8.15 Jul 7 1984 .00 Many days 1.51
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	14.34 7.4 1.4 .41	10.26 5.9 1.1 .52	20.45 11 1.4 .22

01400350 MACS BROOK AT SOMERVILLE, NJ

LOCATION.--Lat 40°34'26", long 74°37'06", Somerset County, Hydrologic Unit 02030105, on left upstream wingwall of culvert under access road from U.S. Highway 22 west to U.S. Highways 202 and 206, 1,200 ft upstream from Peters Brook, and 0.4 mi north of Somerville.

DRAINAGE AREA. -- 0.77 mi 2.

PERIOD OF RECORD. -- June 1982 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 58.37 ft above sea level.

REMARKS.--Records poor. Several measurements of water temperature were made during the year. Some regulation from detention pond directly upstream.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 150 ft³/s and maximum (*):

Date		Time		Dischar (ft ³ /s	ge (Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
June	5	2015		*83		*2.84		No peak	greater t	han base	discharge.		
·	•		DISC	HARGE,	CUBIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTO	BER 1991	TO SEPTEM	BER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		.20 .18 .16 .16	.13 .13 .13 .13	.26 1.5 19 4.7 .82	.31 .28 .28 3.3	.24 .20 .20 .18 .17	.38 .38 .33 .32 .30	.70 .62 .53 .49 .46	.26 .33 .23 .20 .38	1.7 .54 .35 .30	.16 .15 1.3 1.1 .30	1.1 .32 .25 .25 .23	e.20 e.19 e.76 e.49 e.25
6 7 8 9 10		.18 .16 .14 .13	.13 .13 .13 .09 .15	.45 .32 .26 .58 3.4	.55 .37 .34 .81	.16 .16 .22 .17 .16	.33 2.5 1.2 .71 4.7	.41 .42 .41 .41	.23 .20 1.0 .55 1.0	7.2 .98 1.1 .47 .34	1.6 .29 .23 7.4 .55	.20 .17 .16 1.4 .29	e.24 e.25 e.24 e.23 e1.4
11 12 13 14 15		.48 .22 .17 .16	.54 .26 .17 .15 .13	.70 .45 1.6 1.5 .75	.36 .31 .29 4.4 .90	.16 .16 .16 .29 2.6	6.6 1.1 .65 .50 .42	1.3 .52 .41 .39	.41 .33 .31 .26 .23	.29 .25 .24 .23 .20	.27 .25 .22 .77	1.3 .50 .26 e1.1 e.29	e2.2 e.32 e.24 e.24 e.20
16 17 18 19 20	2	.37 2.9 .44 .16 .14	.13 .12 .11 .11	.44 .34 .30 .25	.47 .36 .29 .25	3.5 .97 .82 1.2 .75	.37 .33 .33 1.2 1.4	1.1 .94 .83 .87 .60	2.3 .46 .33 .29 .25	.19 .17 .16 .60 .29	.75 .27 .52 .25 .23	e.75 e.52 e1.2 e.36 e.25	e.17 .16 .13 .13
21 22 23 24 25		.13 .11 .11 .11	.24 7.9 2.9 .53 .30	.24 .20 .20 .18 .16	.23 .19 4.5 4.0 .74	.50 .41 .48 .39 .53	1.5 1.1 1.7 1.2 1.7	64 1.6 2.2 .70 .53	.24 .22 .20 .25 .25	.23 .20 .16 .72 .28	.20 .20 3.4 .76 .29	e.25 e.23 e.21 e.20 e.19	.11 .54 .45 .20 .33
26 27 28 29 30 31		.09 .09 .10 .11 .11	.25 .20 .20 .17 .16	.13 .13 .13 2.0 1.0 .40	.45 .37 .31 .29 .26 .25	3.6 .95 .64 .49	6.0 8.1 1.4 .84 .70	.46 .40 .38 .31 .31	.26 .22 .19 .16 .29	.24 .26 .20 .19 .17	.33 2.1 .35 .25 .25	e.17 e1.3 e.25 e.24 e.21 e.27	1.9 1.4 .46 .31 .30
TOTAL MEAN MAX MIN CFSM IN.	. 5	.22 .30 2.9 .09 .39	15.96 .53 7.9 .09 .69	42.64 1.38 19 .13 1.79 2.06	27.21 .88 4.5 .19 1.14 1.31	20.46 .71 3.6 .16 .92 .99	49.59 1.60 8.1 .30 2.08 2.40	19.73 .66 2.2 .31 .85	20.13 .65 8.3 .16 .84 .97	33.25 1.11 15 .16 1.44 1.61	29.14 .94 7.4 .15 1.22 1.41	14.42 .47 1.4 .16 .60 .70	14.15 .47 2.2 .11 .61 .68
STATI	STICS	OF MOI	NTHLY ME	AN DATA	FOR WATER	YEARS 1982	- 1992,	BY WATER	YEAR (WY		•		
MEAN MAX (WY) MIN (WY)		.71 2.29 1990 .054 1987	1.76 4.09 1986 .49 1985	1.57 4.33 1984 .39 1990	1.65 3.12 1986 .44 1985	1.82 2.94 1984 .71 1992	1.96 4.26 1983 .41 1985	2.55 6.51 1983 .20 1985	2.02 4.83 1989 .22 1986	1.08 2.90 1989 .25 1988	1.36 3.41 1987 .056 1983	.87 2.08 1987 .072 1983	1.26 6.38 1989 .042 1983

01400350 MACS BROOK AT SOMERVILLE, NJ

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1982 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	448.01 1.23	295.90 .81	1.57 2.29 1989 .81 1992
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN DAY MINIMUM	19 Apr 21	19 Dec 3	97 Apr 16 1986
	.09 Oct 25	.09 Oct 25	.00 Jul 28 1983
	.10 Oct 22	.10 Oct 22	.00 Sep 2 1983
INSTANTANEOUS PEAK FLOW	1.59	83 Jun 5	549 Apr 16 1986
INSTANTANEOUS PEAK STAGE		2.84 Jun 5	5.12 May 16 1990
INSTANTANEOUS LOW FLOW		.04 Nov 9	.00 Many days
ANNUAL RUNOFF (CFSM)		1.05	2.04
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	21.64	14.30	27.67
	2.6	1.5	3.1
	.47	.31	.38
	.16	.14	.07

e Estimated.

01400500 RARITAN RIVER AT MANVILLE, NJ

LOCATION.--Lat 40°33'18", long 74°35'02", Somerset County, Hydrologic Unit 02030105, on left bank at downstream side of bridge on North Main Street (Finderne Avenue) at Manville, and 1.4 mi upstream from Millstone River.

DRAINAGE AREA.--490 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1903 to March 1907 (published as "at Finderne"), August 1908 to April 1915 (gage heights only, published in WSP 521), August 1921 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS.--WSP 1552: 1904, 1906, 1922, 1923(M), 1924-25, 1926-29(M), 1930, 1932-33(M), 1924-54. WDR NJ-75-1: 1964(M), 1969(M), 1970(P), 1971(P), 1972(P), 1973(P).

GAGE.--Water-stage recorder. Datum of gage is 20.61 ft above sea level. Prior to Aug. 15, 1923, nonrecording gage on downstream side of highway bridge at same site and datum. From Oct. 1, 1952 to Sept. 30, 1966, water-stage recorder at station at Bound Brook, above Calco Dam (station 01403000) used as auxiliary gage when stage is above 5.0 ft. In Oct. 1, 1966, water-stage recorder at station at Bound Brook, used as auxiliary gage, was moved downstream to present site (station 01403060). Between June 9, 1978 and June 7, 1979, gage temporarily relocated at site 1.4 mi downstream, just upstream of Millstone River, because of reconstruction of highway bridge.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Records given herein represent flow at gage only. Slight diurnal fluctuation at low flow. Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversion to Round Valley Reservoir since March 1966 (see Raritan River basin, diversions). Prior to Sept. 1, 1986, water diverted 1,500 ft upstream from station by Johns-Manville Corporation and returned to river 600 ft downstream from Millstone River (see Raritan River basin, diversions). Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 10,000 ft3/s and maximum (*):

Date		Time		Dischar (ft ³ /s	ge (Gage height (ft)		Date	Time	Di	ischarge (ft ³ /s)	G	age height (ft)
June	6	1400		*12,300		*13.85		No other p	eak gre	ater than	base disc	harge.	
			DISC	CHARGE,	CUBIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEME	BER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		294	225	213	306	364	425	793	341	1550	297	1280	177
2		262	223	247	317	330	411	708	336	654	262	465	175
3		248	219	2940	301	355	383	629	322	454	262	295	218
4		245	211	3590	455	357	360	575	302	369	451	285	534
5		236	218	1100	620	344	341	537	305	1080	344	259	391
6		260	220	716	448	338	329	488	299	8730	409	216	222
7		262	214	573	370	332	477	462	286	2310	332	187	220
8		240	213	477	323	337	1090	454	312	1370	264	174	274
9		221	214	418	314	316	652	426	467	2000	1140	278	234
10		225	239	861	406	e290	570	434	410	936	516	391	245
11		255	259	623	342	e334	2060	561	410	688	279	278	362
12		266	259	469	296	e331	1220	551	333	588	232	316	281
13		246	211	490	277	e322	797	444	299	518	233	229	195
14		231	206	663	604	358	664	398	285	469	421	259	185
15		272	197	562	882	370	581	382	264	445	379	233	219
16		381	196	432	479	1290	501	380	410	415	491	218	220
17		519	186	357	410	689	465	448	378	402	295	247	209
18		929	194	340	e476	497	438	478	311	389	303	429	205
19		452	213	e300	e410	536	523	432	292	433	287	357	204
20		335	204	e328	e406	554	541	402	255	724	235	257	193
21		285	199	359	e434	480	547	417	235	478	215	216	190
22		252	476	326	e409	424	553	419	223	391	202	193	219
23		250	1570	306	415	408	569	556	214	374	300	192	306
24		240	618	289	1530	402	536	452	218	407	477	193	226
25		224	387	253	754	402	570	507	242	487	300	191	186
26 27 28 29 30 31		240 229 226 220 209 236	307 266 240 219 200	226 223 208 380 708 439	551 451 473 422 387 367	951 842 597 526	976 3960 1750 1180 960 951	432 401 399 372 350	238 239 226 209 198 690	407 336 332 301 301	238 436 328 244 214 319	206 256 235 204 174 161	319 328 336 217 173
TOTAI	-	8990	8803	19416	14635	13676	25380	14287	9549	28338	10705	8874	7463
MEAN		290	293	626	472	472	819	476	308	945	345	286	249
MAX		929	1570	3590	1530	1290	3960	793	690	8730	1140	1280	534
MIN		209	186	208	277	290	329	350	198	301	202	161	173
STAT	STI		ONTHLY ME	AN DATA	FOR WATER	YEARS 1904	- 1992	, BY WATER Y	EAR (WY)			
MEAN		452	678	871	969	1076	1337	1152	802	533	471	470	467
MAX		2433	2460	2383	3856	2406	3260	3507	2707	2581	2542	2552	2068
(WY)		1904	1933	1984	1979	1925	1936	1983	1989	1972	1975	1955	1971
MIN		64.8	87.5	148	188	265	354	259	212	88.8	65.1	50.5	51.2
(WY)		1942	1932	1966	1966	1934	1981	1985	1926	1965	1955	1932	1941

RARITAN RIVER BASIN

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENI	DAR YEAR	FOR 1992 WAT	ER YEAR	WATER YEARS	1904 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	245797 673 6300 184 198	Jan 17 Sep 2 Nov 15	170116 465 8730 161 192 12300 13.85 130 695 339	Jun 6 Aug 31 Aug 28 Jun 6 Jun 6 Feb 2	771 1365 309 21600 17a 29 36300b 23.8c 1580 439	1984 1965 Sep 22 1938 Sep 1964 Aug 27 1944 Aug 28 1971 Aug 28 1971
90 PERCENT EXCEEDS	220		212		134	

Does not include water diverted to Johns-Manville plant.
 From rating curve extended above 14,000 ft³/s on basis of slope-area measurements at gage heights 14.9 and 20.42 ft.
 From floodmark (backwater from Millstone River).
 Estimated.

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.:-Water years 1923-25, 1959, 1962-73, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC C FEET D PER A	SPE- W CIFIC W CON- F DUCT- (S ANCE	TAND- A ARD W	TURE Ater s	YGEN, (DIS- OLVED S	DIS- DE OLVED E PER- C CENT I	BIO- F CHEM- F CAL, DAY B	OLI- COORM, MODEL	TERO- OCCI E,MF ATER OTAL OL / O ML)
NOV 1991 13	1315	207	292	7.6	7.0	9.8	82	>11	140	22
FEB 1992 06	1315	235	281	7.9	2.0	14.8	107	E2.3	<20	<10
MAR 18	1330	431	264		6.0	14.7	118	0.7	<20	10
JUN 03	1045	459	196	8.0 7.5	20.0	8.5	94	0.7 E1.7	330	150
JUL 30	1300	216	262	8.4	25.0	9.8	119	E1.7	110	30
DATE	HARD NESS TOTA (MG/I AS CACO	CALCIUM L DIS- L SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB	SULFATE DIS- SOLVED (MG/L	CHLO- E RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	
NOV 1991 13	;	88 22	8.0	12	2.0	73	30	22	0.1	
FEB 1992 06		95 24	8.5	15	1.7	64	26	24	0.2	٠
MAR 18		85 21	7.8	15	1.7	54	26	27	<0.1	
JUN 03	(64 16	5.8	12	1.7	39	20	20	<0.1	
JUL 30		92 23	8.5	15	1.9	67	24	25	0.1	
DATE	SILICA DIS- SOLVA (MG/I AS SIO2	CONSTI- ED TUENTS, L DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONÍA	AMMON Ì A	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	,
NOV 1991	3.	0 147	0.007	0.009	0.96	0.92	0.17		0.46	
FEB 1992 06	7.0	6 151	0.012	0.012	1.35	1.35	0.06	0.05	0.44	
MAR 18	10	148	0.013	0.012	1.60	1.56	0.16	0.08	0.34	
JUN 03	10	113	0.032	0.033	0.89	0.89	<0.03	0.05	0.64	
JUL 30	9.	7 151	0.013	0.012	0.95	0.93	<0.03	<0.03	0.26	
DATE	NITR GEN, AI MONIA ORGAN DIS. (MG/ AS N	M- / + NITRO- IC GEN, TOTAL L (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIO SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
NOV 1991 13	0.:	51 1/	1 /	0.05	0.06	6.7	0.5	1	0.56	
FEB 1992	0.:		1.4 1.7	0.05		2.2	0.5	12	7.6	
06 MAR 18	0.3		1.7	0.05 0.05	0.08 0.03	2.2	0.4	6	7.0	
JUN 03	0.9		1.4	0.03	0.03	5.4	0.5	12	15	
JUL 30	0.2		1.2	0.12	0.10	17	0.2	2	1.2	
50	٠.,	'		₩	0.10	••		-		

RARITAN RIVER BASIN

01400500 RARITAN RIVER AT MANVILLE, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	Time	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
NOV 1991 13 JUN 1992	1315	36	<1	<10	50	. <1	<1	
03	1045	22	<1	<10 ·	40	<1	<1	2
DATE	I ROP TOTA RECC ERAE (UG) AS	AĽ TOT DV- REC BLE ERA /L (UG	D, NES AL TO OV- REG BLE ER/	TAĽ TO COV- REG ABLE ER/ G/L (U	ABLE ERA G/L (UC	TAL SELI COV- NIUI ABLE TOTA	M, REC AL ERA /L (UG	AĽ OV- BLE /L
NOV 1991 13 JUN 1992			· 3		0.10	3	<1	50
03	4	10	1	80 <	0.10	<1	<1	<10

01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ

LOCATION.--Lat 40°15'44", long 74°25'13", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapan, 5.5 mi east of Hightstown, and 8.4 mi above Rocky Brook.

DRAINAGE AREA. -- 7.37 mi 2.

PERIOD OF RECORD. -- Water years 1960-64, 1981 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH I C	NST. CI UBIC CO FEET DU PER AN	P E- WA FIC WH N- FI CT- (ST	H TER OLE ELD TEI AND A	MPER- OX Ture (Ater s	YGEN, DIS- OLVED	DIS- DEF SOLVED B: (PER- CI CENT I(SATUR- 5	/GEN /AND, CO IO- FO HEM- FI CAL, IO DAY BI	OLI- (ORM, M ECAL, N EC ROTH ((NTERO- COCCI ME,MF WATER FOTAL COL / DO ML)
OCT 1991 16	1000	6.0	111	7.2	13.0	9.1	88	E1.4	110	130
FEB 1992	1000		123				97		<20	10
06 MAR_		6.2		6.4	0.0	14.1	•	E2.3		
25 JUN	1045	14	144	6.8	8.5	11.8	100	<1.0	<20	<10
08 JUL	1000	30	108	6.9	20.0	7.5	83	<1.0	20	60
28	1000	5.6	105	7.6	19.5	7.5	83	<1.0	460	300
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L) AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVEI (MG/L AS F))
OCT 1991 16	30	6.5	3.4	5.9	3.1	14	12	14	0.2	
FEB 1992										
06 MAR 25	31		3.6	6.6	2.3	8.4	17	15	0.2	
JUN	29		3.2	9.0	1.9	4.6	17	18	<0.1	
08 JUL 28	29		3.2	5.8	2.5	6.5	16	13	0.1	
28	39	9.7	3.5	5.5	2.3	13	13	14	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO GEN, NO2+NO3 DIS- SOLVEI (MG/L AS N)	NITRO- 3 GEN, AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA - ORGANIO TOTAL (MG/L AS N)	•
OCT_1991										
16 FEB 1992	9.7	69	0.006	0.005	1.20	1.25	0.07	0.05	0.37	
06 MAR	8.5	73	0.011	0.011	2.00	1.95	0.05	0.10	0.27	
25 JUN	9.0	73	0.008	0.008	1.34	1.36	0.11	0.10	0.18	
08	9.8	. 66	0.010	0.014	1.11	1.09	0.17	0.12	0.52	
JUL 28	9.4	71	0.012	0.011	1.23	1.21	<0.03	0.05	0.19	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY))
ост 1991 16	0.24	1.6	1.5	0.07	<0.02	2.2	0.5	4	0.06	
FEB 1992										
06 MAR_	0.16		2.1	0.06	<0.02	1.0	0.4	6	0.10	
25 JUN	0.08	1.5	1.4	0.03	<0.02	1.2	0.4	5	0.19	
08	0.37	1.6	1.5	0.11	<0.02	2.4	1.1	14	1.1	
28	0.35	1.4	1.6	0.10	0.10	5.1	0.6	6	0.09	

01400540 MILLSTONE RIVER NEAR MANALAPAN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	LI TO RE ER.	TAĽ T(COV- RI ABLE EI G/L (1	ORON, OTAL ECOV- RABLE UG/L S B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 16	1000	<10	<1	<	10	70	<1	<1	<1
DATE	ERA (UG	TAL TOT COV- REC ABLE ERA G/L (UG	D, NE AL TO OV- RE BLE ER /L (U	NGA- SE, TAL COV- ABLE G/L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKE TOTA RECO ERAE (UG) AS N	NL SELE DV- NIUM BLE TOTA 'L (UG/	, REC L ERA L (UG	AĽ OV- BLE /L

60

<0.10

2

<10

OCT 1991 16...

1600

01400650 MILLSTONE RIVER AT GROVERS MILL, NJ

LOCATION.--Lat 40°19'19", long 74°36'31", Mercer County, Hydrologic Unit 02030105, at bridge on Millstone Road in Grovers Mill, 0.3 mi upstream from Cranbury Brook, and 2.7 mi north of Dutch Neck.

DRAINAGE AREA. -- 43.4 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH/ II CU TIME	JBIC CO FEET DU PER AN	P E- WA FIC WH N- FI CT- (ST CE A	H TER OLE ELD TEN AND- AT RD WA	IPER- OXY URE C	OX (GEN, () IS- DLVED S	YGEN, OX'DIS- DEI OLVED B PER- CI CENT II ATUR- 5	YGEN MAND, C IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL /
OCT 1991 16	1200	17	210	6.8	14.0	4.3	42	4.5 >	24000	>2400
FEB 1992 06	1330	23	232	6.9	2.5	13.2	97	E7.2	50 ·	<10
MAR 25	1315	59	374	7.2	6.5	12.2	98	<1.0	<20	<10
JUN 09	1000	81	171	7.2	21.5	6.1	69	E1.9	490	480
JUL 28	1330	16	274	7.4	23.5	7.9	93	<1.0	220	40
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVE (MG/I	ED .
OCT 1991 16 FEB 1992	47	12	4.2	15	4.7	14	21	25	0.3	
06 MAR	52	13	4.8	15	3.6	7.0	26	27	0.2	2
25 Jun	52	13	4.7	38	3.0	22	29	63	<0.	i
09	39	9.3	3.9	14	3.4	18	23	18	0.2	2
JUL 28	55	14	4.8	27	3.9	40	28	24	0.3	\$
Date	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	AMMONÍA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AN MONÍA ORGANI	1- + IC -
OCT_1991										
16 FEB 1992	8.2	118	0.099	0.114	3.94	3.88	1.29	1.28	2.3	
06 MAR	8.9	122	0.043	0.041	3.56	3.60	2.40	2.57	3.1	
25 JUN	7.4	184	0.036	0.035	2.64	2.77	0.45	0.46	0.85	
"JUL 	8.9	105	0.028	0.022	3.05	3.05	0.12	0.14	1.2	
28	7.3	156	0.018	0.017	5.06	5.05	<0.03	0.04	0.41	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)		ED
OCT 1991	2.0	6.2	5.9	0.40	0.30	4.0	0.4	6	0.28	
FEB 1992 06	2.7	6.7	6.3	0.31	0.19	2.1	0.5	13	0.81	
MAR 25	0.59	3.5	3.4	0.08	<0.02	2.1	0.3	. 6	0.96	
JUN										
JUL 28	0.62 0.47	4.2 5.5	3.7 5.5	0.73	0.03	5.5 12	0.5	34 17	7.4 0.73	
28	0.47	2.5	5.5	0.17	0.06	14	0.5	17	0.73	

01400650 MILLSTONE RIVER AT GROVERS MILL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 16	1200	20	<1	<10	110	8	<1	4
DATE	ERA (UG	AL TOT COV- REC BLE ERA	ND, NESTAL TOT COV- REC NBLE ERA G/L (UG	AL TOI COV- REC BLE ERA G/L (UC	AL TOT COV- REC BLE ERA	AL SELE OV- NIUM BLE TOTAL /L (UG/I	, RECO ERAE (UG)	AĹ DV- BLE 'L
ОСТ 1991 16		620	110	50 <0	.10	. 2 .	<1	10

01401000 STONY BROOK AT PRINCETON, NJ

LOCATION.--Lat 40°19'59", long 74°40'56", Mercer County, Hydrologic Unit 02030105, on right bank 10 ft downstream of bridge on U.S. Highway 206, 1.6 mi southwest of Princeton, and 4.0 mi upstream from Carnegie Lake.

DRAINAGE AREA.--44.5 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1953 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 62.23 ft above sea level (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Since July 1959 some regulation by several small reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,800 ft³/s and maximum (*):

Date		Time	D	ischarge (ft ³ /s)	G	age height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
June	6	0645		*3,090		*8.76		No other p	oeak gre	ater than	base disc	harge.	
			DISCH	ARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEM	BER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		5.0 4.5 4.3 3.8 3.6	4.7 4.8 4.8 4.8 4.5	15 25 506 392 98	32 32 30 62 92	27 20 21 20 18	31 30 28 26 25	73 61 49 41 37	21 21 19 16 15	118 43 26 19 550	6.1 5.5 5.5 10 9.7	7.9 5.2 4.1 3.9 4.0	1.3 1.2 2.2 2.6 1.4
6 7 8 9 10		3.6 3.1 2.8 2.5 2.3	4.4 4.3 4.3 4.2	62 47 38 34 120	53 39 32 34 60	16 17 18 15	24 70 132 66 50	32 29 29 27 27	14 13 21 49 36	1450 181 104 74 47	12 13 8.3 21 14	3.1 2.8 2.2 2.2 2.2	1.2 1.9 1.7 1.6 2.1
11 . 12 13 14 15		2.4 3.1 2.5 2.5 5.9	9.5 14 10 8.0 6.9	71 46 44 64 60	43 33 30 82 102	15 11 12 16 25	293 108 68 53 44	65 48 33 27 25	32 22 18 17 14	33 27 23 20 17	8.2 6.0 5.1 6.8 9.2	4.8 15 8.0 7.8 5.9	12 9.0 4.1 2.6 2.3
16 17 18 19 20		13 58 77 23 13	6.3 5.8 5.3 5.2 5.0	· 37 30 28 20 22	44 31 32 21 21	192 81 55 77 72	36 33 32 54 67	25 44 87 119 72	42 41 26 23 18	15 13 11 115 73	20 11 9.1 6.4 5.2	6.5 8.5 14 12 7.0	2.3 1.9 1.7 1.7
21 22 23 24 25		9.7 8.6 8.1 7.4 6.8	5.2 34 180 44 25	22 22 21 21 19	21 20 37 180 66	51 40 37 35 34	101 92 82 82 74	56 53 53 40 37	15 14 12 10 11	25 17 15 13 14	4.8 4.1 7.8 6.5 7.4	4.7 3.6 3.0 2.5 2.4	1.3 1.5 3.4 1.6 2.3
26 27 28 29 30 31		6.5 6.3 5.6 5.5 4.9	18 15 14 13 12	15 16 14 67 119 56	42 33 33 29 28 29	102 80 50 43	104 397 135 90 69 86	33 29 27 23 23	11 12 11 9.2 8.3	13 10 10 7.9 6.9	5.6 7.2 7.6 6.7 4.6 9.3	2.2 4.4 3.0 2.6 1.6 1.4	15 15 15 10 5.9
TOTAL MEAN MAX MIN CFSM IN.	-	310.2 10.0 77 2.3 .22 .26	481.3 16.0 180 4.2 .36	2151 69.4 506 14 1.56 1.80	1423 45.9 180 20 1.03 1.19	1213 41.8 192 11 .94 1.01	2582 83.3 397 24 1.87 2.16	1324 44.1 119 23 .99 1.11	703.5 22.7 112 8.3 .51 .59	3090.8 103 1450 6.9 2.32 2.58	263.7 8.51 21 4.1 .19 .22	158.5 5.11 15 1.4 .11	127.3 4.24 15 1.2 .10
STATI	STI	CS OF MO		N DATA FO			-	BY WATER Y	EAR (WY)			
MEAN MAX (WY) MIN (WY)		25.4 120 1980 1.00 1958	53.4 212 1973 1.50 1966	86.0 244 1987 4.56 1966	89.6 306 1979 3.22 1981	106 203 1971 19.7 1978	125 231 1980 31.3 1985	103 295 1983 20.9 1985	64.0 216 1989 8.95 1963	32.7 164 1989 2.67 1957	31.2 216 1975 .56 1957	31.7 240 1955 .14 1966	28.6 158 1975 1.31 1970

01401000 STONY BROOK AT PRINCETON, NJ -- Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1954 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	18669.7 51.1	13828.3 37.8	64.5 109 _ 1973
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	963 Jan 12 1.8 Aug 7	1450 Jun 6 1.2 Sep 2 1.6 Aug 31	28.5 1966 3410 Aug 27 1971 .00 Aug 5 1966 .00 Aug 5 1966
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	2.4 Sep 12	3090 Jun 6 8.76 Jun 6 1.1 Sep 3	8960a Aug 28 1971 14.26 Aug 28 1971 .00 Many days
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.15 15.61 125	.85 11.56 77	1.45 19.70 138
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	21 3.3	17 2.8	22 2.0

a From rating extended above 4,000 ft^3/s on basis of contracted-opening measurement of peak flow.

01401000 STONY BROOK AT PRINCETON, NJ--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956-75, 1978 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1956 to September 1962, October 1963 to September 1964, October 1965 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: January 1956 to June 1970.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. CUBIC FEET PER	SPE- W CIFIC W CON- F DUCT- (S ANCE	TAND- ARD	EMPER- ATURE Water Deg C)	OXYGEN, DIS- SOLVED (MG/L)	DIS- DI SOLVED I (PER- C CENT SATUR- !	BIO- F CHEM- F ICAL, DAY B	OLI- ORM, ECAL, EC ROTH (NTERO- COCCI ME,MF WATER TOTAL COL / 00 ML)
OCT 1991 31	1130	5.1	282	7.8	9.5	9.6	84	E1.6	20	5
FEB 1992 06	1000	11	257	8.4	0.0	15.2	104	E7.5	70	20
MAR										
24 JUN	1315	78	270	8.9	7.0	14.8	121	<1.0	20	<10
02 JUL 29	1300	39	189	7.7	18.0	9.3	99	2.2	5400	630
29	1100	7.4	268	8.6	19.0	6.7	72	<1.0	170	480
DATE	HARD NESS TOTA (MG/ AS CACO	CALCIU L DIS- L SOLVE (MG/L	DIS- D SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L	, SIL DIS SOLV	JM, LINIT' S- LAB /ED (MG/I /L AS	Y SULFATE DIS- L SOLVEE (MG/L	DIS- SOLVED (MG/L	(MG/L	D
OCT 1991		97 23	9.7	19	·. 3 .	.6 78	32	25	0.1	
FEB 1992 06		84 20	8.2	17	2.	.0 56	28	24	0.1	
MAR 24		63 15	6.2	20	1.	.5 33	26	37	<0.1	
JUN 02		58 14	5.7	12	2.	.1 43	21	18	<0.1	
JUL 29		79 19	7.7	20	2.	.6 69	23	27	0.2	<u>'</u>
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI ED TUENTS L DIS- SOLVE	NITRO- GEN, NITRITE TOTAL D (MG/L	NITRO GEN, NITRITI DIS- SOLVEI (MG/L AS N)	NITE GEN NO2+N	I, NO2+NO NO3 DIS NL SOLVI 'L (MG/I	, NITRO- D3 GEN, - AMMONI/ ED TOTAL - (MG/L	AMMON Ì A	ORGANI	+ C
OCT 1991										
31 FEB 1992	2.	6 16	2 0.007	0.00	8 0.1	11 0.11	<0.03	<0.03	0.37	
06: MAR	7.	7 14	6 0.008	0.00	8 1.1	1.13	0.05	<0.03	0.34	
24 JUN	9.	5 13	8 0.009	0.00	7 0.7	70 0.68	0.09	0.07	0.48	
02 JUL	10	11	1 0.014	0.01	3 0.5	0.54	<0.03	<0.03	0.78	
29	3.	3 14	5 0.007	0.00	6 0.1	7 0.17	<0.03	<0.03	0.39	
DATE	NITR GEN,A MONIA ORGAN DIS. (MG/ AS N	M- + NITRO IC GEN, TOTAL L (MG/L	DIS- SOLVED (MG/L	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORU DIS SOLV (MG/ AS F	JS ORGANI S- DIS- /ED SOLVEI /L (MG/I	PENDED TOTAL (MG/L		SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	D
OCŢ_1991	_	. ,							0.04	
FEB 1992	0.				0.09		0.2	1	0.01	
06 Mar	0.			0.04	0.03		0.3	1	0.03	
24 JUN	0.	28 1.2	0.96	0.04	0.03	3.5	0.5	4	0.84	
02 JUL	0.	51 1.3	1.0	0.11	0.08	3 11	0.5	. 7	0.74	
29	0.	32 0.5	6 0.49	0.11	0.09	19	0.3	2	0.04	

01401000 STONY BROOK AT PRINCETON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE		TIME	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)), M/ F/ DI/ % FI	ALL SIE AM. DIA INER % FI IAN TH	AT. GEN EVE TO AM. IN E	,NH4 GEN FAL + O BOT. TOT AT. BOT FKG (M	,NH4 PHO RG. TO IN IN MAT M G/KG (MG	RUS IN TAL GA BOT. TOT AT. BOT /KG (G	NIC, ORG	RG + ANIC . IN ARSE MAT TOT /KG (UC	AL TER	AL OT- MA- IAL /G
OCT 1991 31 31		1130 1130		3 4 -	. <1			40 74 	0	0.5	5.0	<1	.18
D	ATE	LII TO RE ER/	TAĽ COV- ABLE G/L	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	
OCT 1 31. 31.			 10	70	 <1	<1	 <1	30	20		30	90	
D	ATE	REI FM I TOM TEI (U	BOT- MA- RIAL G/G	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	
OCT 1 31. 31.			5000	1	30	 10	610	<0.10	<0.01	3	20	·· <1	
D	ATE	NII TO IN I TOM TEI	TAĽ BOT- MA- RIAL	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
oet 1 31. 31.			. <1	··· <10	120	19	<1.0 	<1.0 	19	3'.6	2.3	5.3	
D	ATE	ELDI TO IN E TOM TER	RIN, S TAL BOT- I MA- T RIAL	ENDO- ULFAN, TOTAL N BOT- OM MA- TERIAL UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 19			0.3	<0.1	<0.1	<0.1	<1.0	<0.1	<10	< 0 .1	<1.00	<10	

01401600 BEDEN BROOK NEAR ROCKY HILL, NJ

LOCATION.--Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206 at State Route 533, 0.7 mi upstream from Pike Run, 1.2 mi northwest of Rocky Hill, and 4.6 mi north of Princeton.

DRAINAGE AREA.--27.6 mi².

PERIOD OF RECORD. -- Water years 1959-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		WAT	ER QUAL	ITY DA	TA, WAT	TER YE	AR OC	TOBER	1991	TO SEF	TEMBER 19	992	
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM	WA WH FI (ST	AND - .RD	TEMPER ATURE WATER (DEG (s s	YGEN, DIS- OLVED MG/L)	D I SOI (PE CE SA1	IS-É C LVED	DXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT_1991													_
30 FEB 1992	1130	3.4	32		7.8	8.		10.3		87	2.7	70	7
06 MAR	1230	13	26	7	8.6	0.	.5	15.4		107	E2.4	170	100
24 Jun	1045	40	31	9	8.5	5.	0	16.6		130	<1.0	20	<10
02 JUL	1030	35	18	7	7.5	16.	0	9.8		100	2.5	2400	800
29	1300	5.0	33	2	7.9	20.	5	6.5		72	<1.0	460	170
DATE	HARD NESS TOTA (MG/ AS CACO	CALC L DIS L SOL _ (MG	:IUM ;- .VED S i/L (AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIUM DIS- SOLVED (MG/L AS NA	4, D S	POTAS- SIUM, DIS- SOLVED MG/L NS K)	LINI LA (MG AS	TY AB G/L	SULFAT DIS- SOLVE (MG/L AS SO4	DIS- D SOLVE (MG/L	, RID DI ED SOL (MG	E, S- VED
OCT 1991 30	1	20 28	ł	11	21		3.7	77		46	27	n	1.2
FEB 1992 06		86 21		8.2	16		2.0	50		32	20).1
MAR 24		67 16		6.6	26		1.5	31		27	49		.1
JUN 02		58 14		5.6	11		2.1	36		26	16).1
JUL 29		99 24		9.4	21		3.2	70		35	32		.2
27		77 24	,	7.4	21		3.2	70		3)	32	U	. 2
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONS ED TUEN L DI SOL	OF N TI- ITS, NI S- T VED (ITRO- GEN, TRITE OTAL MG/L S N)	NITRO GEN, NITRII DIS- SOLVE (MG/L AS N)	TE NO	ITRO- GEN, 92+NO3 OTAL MG/L IS N)	GE NO2+ DI	NÓ3 S- VED I/L	NITRO GEN, AMMONI TOTAL (MG/L AS N)	AMMONI A DIS- SOLVE (MG/L	GEN, A MONI ORGA D TOT	AM- A + NIC AL
OCT_1991	,	-	40/	0.045									
30 FEB 1992	4.			0.065	0.06		1.26		30	0.03		0.5	
06 MAR	8.	8	146	0.023	0.02	22	1.87	1.	77 .	0.17	0.12	0.4	6
24 JUN	10		160	0.011	0.00	09	1.17	1.	25	0.08	0.07	0.3	2
02 JUL	12		114	0.029	0.02	28	1.24	1.	26	<0.03	<0.03	0.8	3
29	9.	1	182	0.047	0.04	47	1.63		46	<0.03		0.3	6
DATE	NITR GEN,A MONIA ORGAN DIS. (MG/ AS N	M- + NIT IC GE TOT L (MG	RO- N, D AL SO J/L (ITRO- GEN IS- LVED MG/L S N)	PHOS- PHORUS TOTAL (MG/L AS P)	PH S - S	HOS- IORUS DIS- IOLVED MG/L IS P)	CARB ORGA DIS SOLV (MG AS	ON, NIC :- 'ED	CARBON ORGANI SUS- PENDED TOTAL (MG/L AS C)	C SEDI- MENT, SUS- PENDE	CHAR SU D PEN	T, S- GE, S- DED
OCT 1991 30	0.	68 1	.8	2.0	0.30	n 1	.27	6.5	:	0.3	2	0.0	2
FEB 1992 06	0.		.3	2.1	0.11		.21	2.3		0.2	1	0.0	
MAR 24			.5		0.06			2.7			3	0.3	
JUN	0.:			1.5			.03			0.3			
02 JUL	0.		.1	1.9	0.17		.11	6.8	•	0.7	17	1.6	
29	0.4	4U 2	.0	1.9	0.25	, (.23	20			5	0.0	1

01401600 BEDEN BROOK NEAR ROCKY HILL, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	DEM CH IC (H TIME LEV	AND, MARCH FAL DIA IGH % FIEL) TI	ALL SIE AM. DIA INER % FI	ÀT. GEN, EVE TOI AM. IN E INER MA IAN (MG)	,NH4 GEN, TAL + OF BOT. TOT AT. BOT /KG (MC	RG. TO	RUS INC FAL GAP BOT. TOT AT. BOT /KG (G/	VIC, ORGA	RG + NNIC IN ARSE MAT TOT YKG (UG	AL TERIAL
OCT 1991 30 30	1130 1130	22	<1	1 .		720		<0.1 ·	2.0 -	- 21 <1
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	(UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 1991 30 30	<10	 110	 <1	<1	 <1	10	20	5	10	100
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 1991 30 30	14000	3	30	20	810	 <0.10	0.02	2	20	 <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 30 30	,<1	·· <10	100	41	<1.0 ···	<0.1 ••	2.0	0.2	<1.0	0.5
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 30 30	0.2	<0.1 	<0.1 	<0.1 	<0.1 ··	<0.1 ··	<5.0 	<0.1 ··	<1.00	<10

01401650 PIKE RUN AT BELLE MEAD, NJ

LOCATION.--Lat 40°28'05", long 74°38'57", Somerset County, Hydrologic Unit 02030105, on right bank 20 ft upstream of bridge on Township Line Road, 0.7 mi east of Belle Mead, 0.8 mi upstream of Cruser Brook, and 1.0 mi downstream of bridge on U.S. Route 206.

DRAINAGE AREA. -- 5.36 mi 2.

PERIOD OF RECORD. -- July 1980 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete parking-block control. Datum of gage is 58.85 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Several measurements of water temperature were made during the year. Rain-gage and gage-height radio telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1810, 13.5 ft, Aug. 28, 1971, from floodmark, present datum.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft3/s and maximum (*):

Date		Time		Discharge (ft ³ /s)	•	Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
June	6	0145		*363		*5.77		No other	peak gre	ater than	base disc	charge.	
			DIS	CHARGE, CUE	IC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTO VALUES	BER 1991	TO SEPTEM	IBER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		1.2 1.1 .99 .99 .88	1.3 1.3 1.3 1.2	1.8 3.2 105 41 8.7	2.7 2.5 2.5 17 11	2.2 2.3 1.6 1.6 1.7	2.8 2.7 2.5 2.2 2.1	6.3 5.6 4.7 4.2 3.7	2.5 2.5 2.3 2.0 2.0	14 12 3.0 2.0 68	.60 .55 .60 2.7 1.0	4.3 1.1 .76 .64 .57	.28 .25 .29 .71 .37
6 7 8 9 10		1.1 1.0 .97 .91 .89	1.2 1.3 1.3 1.2 1.3	5.3 4.2 3.5 3.2	5.2 3.7 3.0 5.3 6.5	1.7 1.3 1.4 1.4	2.0 20 16 5.9 7.3	3.3 3.1 3.2 2.7 2.8	2.0 1.9 4.5 11 7.6	107 13 5.7 4.1 2.9	9.5 1.2 .85 7.3 1.2	.44 .43 .37 .40 .46	.32 .48 .53 .37 2.2
11 12 13 14 15		1.0 · 1.3 1.1 1.1 5.3	3.1 1.2 .81 .79 .70	5.9 4.2 7.5 11 6.2	4.1 3.4 3.2 20 8.1	1.1 1.2 .92 1.1 5.4	40 9.1 5.3 4.1 3.4	9.2 5.4 3.8 3.3 3.0	5.4 3.5 2.9 2.5 2.0	2.2 2.0 1.6 1.3	.89 .79 .75 .74 2.5	10 2.9 .86 1.9 1.1	5.9 .84 .49 .44 .40
16 17 18 19 20		2.7 13 4.1 1.8 1.5	.68 .60 .62 .69 .65	4.0 3.2 2.9 2.3 1.9	4.6 4.8 2.6 2.9 1.7	26 6.6 5.8 9.8 7.3	2.7 2.5 2.5 3.9 7.4	3.4 6.0 5.9 10 6.1	7.1 4.9 3.0 2.2 1.8	1.1 1.1 1.1 2.1 2.0	2.6 .88 .78 .68	1.2 1.5 3.6 1.4 .98	.36 .33 .31 .26 .25
21 22 23 24 25		1.5 1.8 1.6 1.5	.62 26 22 4.4 2.8	2.0 2.1 1.9 2.0 1.7	1.7 1.6 9.6 29 12	4.8 3.7 3.5 3.3 3.1	11 8.6 11 9.4 11	5.3 5.2 4.8 3.9 3.9	1.6 1.5 1.4 1.5 2.6	1.2 1.1 1.0 1.2 1.1	.51 .44 4.9 1.7 .90	.70 .57 .50 .44 .44	.21 .27 2.8 .43 .34
26 27 28 29 30 31		1.4 1.3 1.3 1.2 1.2	2.2 1.7 1.6 1.5	1.5 1.5 1.4 15 9.5 3.7	3.6 5.9 2.5 2.4 2.3 2.3	21 7.4 4.9 4.0	21 49 14 7.8 5.8	3.5 3.2 2.9 2.7 2.6	1.6 1.6 1.4 1.2 1.1	.96 .89 .86 .76 .62	.71 4.2 1.1 .69 .55 6.9	.44 .37 .37 .33 .31 .29	7.1 3.6 2.3 .87 .56
TOTAL MEAN MAX MIN CFSM IN.	•	58.43 1.88 13 .88 .35 .41	86.66 2.89 26 .60 .54 .60	286.3 9.24 105 1.4 1.72 1.99	187.7 6.05 29 1.6 1.13 1.30	137.52 4.74 26 .92 .88 .95	302.6 9.76 49 2.0 1.82 2.10	133.7 4.46 10 2.6 .83	108.1 3.49 19 1.1 .65 .75	257.09 8.57 107 .62 1.60 1.78	59.29 1.91 9.5 .44 .36 .41	39.67 1.28 10 .29 .24 .28	33.86 1.13 7.1 .21 .21 .23
STATI	ST	ICS OF MO	NTHLY MI	EAN DATA FO	R WATER	YEARS 1980	- 1992,	BY WATER	YEAR (WY)		•	
MEAN MAX (WY) MIN (WY)		3.65 13.4 1990 .83 1987	9.20 22.3 1989 2.09 1985	10.3 33.6 1984 .73 1981	10.6 23.0 1982 .043 1981	12.5 26.0 1982 4.74 1992	11.2 30.2 1983 3.05 1981	14.1 43.1 1983 2.18 1985	10.4 26.2 1989 1.89 1986	5.79 20.9 1989 .81 1986	6.95 26.1 1984 .36 1980	3.54 9.94 1990 .17 1980	3.25 17.1 1989 .51 1983

RARITAN RIVER BASIN

01401650 PIKE RUN AT BELLE MEAD, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1980 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	2758.35 7.56	1690.92 4.62	8.52 14.3 1984 3.79 1981
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	141 Aug 20 .37 Jul 20 .51 Jul 15	107 Jun 6 .21 Sep 21 .28 Sep 16 363 Jun 6	528 Jul 7 1984 .00 Aug 20 1980 .00 Aug 20 1980 2010 Jul 7 1984
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM)	1.41	5.77 Jun 6 .21 Sep 21 .86 11.74	11.76 Jul 7 1984 00 Aug 20 1980 1.59 - 21.61
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	19.14 17 2.8 .69	9.5 2.0 .54	15 2.7 .32

01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ

LOCATION.--Lat 40°28'30", long 74°34'34", Somerset County, Hydrologic Unit 02030105, on left bank 30 ft downstream from highway bridge at Blackwells Mills, and 0.3 mi downstream from Six Mile Run.

DRAINAGE AREA. -- 258 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1903 to December 1904 (gage heights only), August 1921 to current year. 'Monthly discharge only for some periods, published in WSP 1302. Published as "at Millstone" 1903-04.

REVISED RECORDS.--WSP 1552: 1924-25(M), 1926.

GAGE.--Water-stage recorder. Concrete control since Nov. 18, 1933. Datum of gage is 26.97 ft above sea level. June 27, 1903 to Dec. 31, 1904, nonrecording gage at bridge 2.0 mi downstream at Millstone at different datum. Aug. 4, 1921 to Aug. 16, 1928, nonrecording gage at present sité and datum.

REMARKS.--No estimated daily discharges. Records good except those above 1,200 ft³/s, which are fair. Inflow from and losses to Delaware and Raritan Canal above station. Flow slightly regulated by Carnegie Lake, capacity, 310,000,000 gal and several smaller reservoirs, combined capacity, 49,800,000 gal. Several measurements of water temperature were made during the year. National Weather Service and New Jersey Water Supply Authority operate gage-height telemeters at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft³/s and maximum (*):

Date		Time	•	Discharg (ft ³ /s)	e)	Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	. Ga	ge height (ft)
June	6	2145	5	*4,530		*9.19		No other ;	peak grea	ater than	base disc	harge.	
			DIS	CHARGE, C	UBIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTOBE VALUES	ER 1991 .	TO SEPTEM	BER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		102	71	118	236	170	215	371	135	675	84	315	58
2		92	72	144	199	151	185	320	135	429	77	156	49
3		84	70	1250	185	139	174	277	129	275	72	118	50
4		81	69	2130	323	132	167	242	129	181	122	96	63
5		79	69	1240	541	129	158	219	121	512	115	89	59
6		86	69	624	432	121	151	198	109	3400	149	83	60
7		79	69	391	333	117	225	187	103	3200	108	69	64
8		75	69	283	252	119	485	178	133	1100	90	58	68
9		71	67	248	230	120	336	170	263	511	196	58	65
10		68	67	461	276	108	265	166	236	305	138	60	67
11		68	105	453	250	104	735	256	229	228	103	97	148
12		84	118	330	217	102	586	248	207	186	87	206	113
13		81	107	291	195	96	357	201	162	155	80	157	86
14		74	99	319	264	103	280	177	140	134	83	167	74
15		81	92	308	382	118	233	162	117	118	95	154	65
16		116	86	247	266	528	205	157	163	107	176	155	58
17		177	79	206	196	441	189	206	239	97	119	169	50
18		385	77	193	172	322	176	358	202	90	105	245	49
19		221	76	168	147	326	224	452	172	179	87	221	48
20		168	74	152	137	318	319	374	163	844	76	207	48
21		134	75	150	136	288	401	294	129	1180	69	163	46
22		110	165	151	133	234	407	258	106	718	66	114	49
23		96	728	147	172	211	390	245	98	302	88	92	80
24		91	429	147	619	195	381	222	95	173	127	82	72
25		89	265	141	421	187	367	209	107	146	101	79	62
26 · 27 28 29 30 31		84 81 78 75 72 69	190 146 124 114 107	134 129 124 208 423 317	294 226 198 184 174 175	318 376 298 248	421 1330 895 564 388 386	221 195 173 155 145	103 102 98 94 88 348	128 116 112 101 90	91 150 105 80 73 123	71 92 153 100 74 68	175 214 216 151 105
TOTAL	•	3251	3948	11627	7965	6119	11595	7036	4655	15792	3235	3968	2512
MEAN		105	132	375	257	211	374	235	150	526	104	128	83.7
MAX		385	728	2130	619	528	1330	452	348	3400	196	315	216
MIN		68	67	118	133	96	151	145	88	90	66	58	46
CFSM		.41	.51	1.45	1.00	.82	1.45	.91	.58	2.04	.40	.50	.32
IN.		.47	.57	1.68	1.15	.88	1.67	1.01	.67	2.28	.47	.57	.36
STAT	STI	CS OF N				YEARS 1922	-	BY WATER Y	YEAR (WY)				
MEAN		188	334	450	497	573	669	534	361	238	244	218	221
MAX		838	1113	1344	1743	1199	1383	1520	1264	823	1808	1267	1277
(WY)		1928	1973	1984	1979	1925	1936	1983	1989	1989	1975	1971	1938
MIN		42.6	51.2	67.0	62.9	105	158	103	82.8	45.5	19.3	17.3	20.2
(WY)		1942	1966	1966	1981	1934	1985	1985	1963	1963	1966	1981	1980

RARITAN RIVER BASIN

01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENI	DAR YEAR	FOR 1992 WAT	TER YEAR	WATER YEARS	1922 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	120634 331		81703 223		376 690	1975 1985
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	3360 47 52	Jan 13 Aug 8 Sep 12	3400 46 50	Jun 6 Sep 21 Sep 16	165 17400 5.0 6.3	Aug 28 1971 Sep 16 1923 Aug 7 1966
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW			4530 9.19 44	Jun 6 Jun 6 Sep 21	22200 18.68a 5.0	Aug 28 1971 Aug 28 1971 Sep 16 1923
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.28 17.39 727 186 68		.87 11.78 390 150 70		1.46 19.81 803 197 58	

a From high-water mark.

01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1962-1969, 1973, 1976-1980, 1991 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	TIME	INST. COUBIC CONTRACT COURSES	SPE- W CIFIC W CON- F DUCT- (S ANCE	PH ATER HOLE IELD TE TAND- /	EMPER- ATURE WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, OX DIS- DE SOLVED B (PER- C CENT I SATUR- 5	YGEN MAND, CO IO- FO HEM- FI CAL, I DAY BI	OLI- CO ORM, ME ECAL, W/ EC TO ROTH (CO	TERO- DCCI E,MF ATER DTAL DL / D ML)
OCT	1991 9	1100	76	278	7.1	13.5	5.9	56	E1.5	70	4
FEB	1992										
MAR	5	1400	123	295	7.6	2.5	13.0	97	E2.3	20	<10
JUN	6	1045	394	304	7.5	7.0	12.2	100	2.2	270	50
JUL	9	1330	465	161	6.8	21.5	6.5	74	E1.9	90	530
30	0	1000	73	276	7.4	22.5	5.9	68	<1.0	330	140
	DATE	HARD NESS TOTAI (MG/I AS CACO	CALCIUM L DIS- L SOLVEI (MG/L	DIS- SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L	DIS SOLV (MG/	JM, LINIT S- LAE /ED (MG/ 'L AS	Y SULFATE DIS- 'L SOLVED (MG/L	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
	OCT 1991 29	1	38 19	9.9	19	4.	9 52	38	26	0.2	
	FEB 1992 05		79 18	8.3	20	3.		36	34	0.2	
	MAR 26	(67 16	6.6	23	2.	2 32	29	41	<0.1	
	JUN 09	4	47 11	4.7	9.9	2.	8 24	19	16	0.1	
	JUL 30	;	77 18	7.9	21	3.	6 49	32	27	0.3	
	DATE	SILICA DIS- SOLVI (MG/I AS SIO2	CONSTI- ED TUENTS, L DIS- SOLVEI	NITRO- GEN, NITRITE TOTAL (MG/L	NITRIŤ	NITR E GEN NO2+N D TOTA (MG/	I, NO2+N IO3 DIS IL SOLV 'L (MG/	I, NITRO- 103 GEN, 5- AMMONIA 7ED TOTAL 7L (MG/L	AMMON Î A	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
	OCT_1991								.0.07	0.55	
	29 FEB_1992	6.9							<0.03	0.55	
	05 MAR	9.7	2 166			3 3.3			0.16	0.54	
	26 JUN	8.3	3 153	0.012	0.009	9 1.7	'6 1.7	8 0.09	0.06	0.32	
	09 JUL	9.9	9 96	0.025	0.023	3 1.8	1.8	0.14	0.13	0.88	
	30	4.7	7 157	0.022	0.02	1 2.8	8.5	3 0.07	0.09	0.26	
	DATE	NITRO GEN, AM MONIA ORGANI DIS. (MG/L AS NI	1- + NITRO- IC GEN, TOTAL - (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORU DIS SOLV (MG/ AS P	S ORGAN DIS- ED SOLVE L (MG/	IC SUS- PENDED D TOTAL L (MG/L	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	-
	OCT 1991	0.4	.c 27	7 7	0 77	0.07		0.4	2	0.41	
	29 FEB 1992	0.4		3.3	0.37			0.4	2	0.41	
	05 MAR	0.5		3.8	0.25	0.19		0.6	3	1.0	
	26 JUN	0.2		2.0	0.13	0.07		0.5	8	8.5	
	09 JUL	0.6		2.5	0.19	0.10	5.9	1.0	24	30	
	30	0.3	3.1	3.2	0.38	0.31	14	0.4	10	2.0	

01402000 MILLSTONE RIVER AT BLACKWELLS MILLS, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE OCT 1991	TIME LEVE (MG)	AND, MA EM- FA AL DIA IGH % FI EL) TH	NT. MA NLL SIE NM. DIA NER % FI	AT. GEN, EVE TOT MM. IN B NER MA IAN (MG/ 2 MM AS	NH4 GEN, AL + OF OT. TOT IT. BOT IKG (MC N) AS	RG. TOT IN IN E MAT MA G/KG (MG/ N) AS	RUS INC FAL GAN BOT. TOT AT. BOT FKG (G) P) AS	OR- INOR IIC, ORGA IN TOT. MAT BOT (KG (GM/C) AS	RG + NNIC IN ARSE MAT TOT /KG (UG	AL TERIAL G/L (UG/G AS) AS AS)
29 29	1100 · 1100	 	.<1		4.0 25				3.7	- 22 <1
JUN 1992 09	1330	39 -							•	1
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 1991 29 29	<10	100	 <1	<1	 <1	8	10	3	10	220
JUN 1992 09	<10	40	· <1	••	<1	••		3	••	1200
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA-, NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 1991 29 29 JUN 1992	10000	2	20	·· 70	540 	<0.10	0.01	3	20	 <1
09	••	3	••	110	••	<0.10	••	2		<1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 29	<1	••	90	1	<1.0	<0.1	3.0	0.4	<1.0	0.7
29 JUN 1992 09		<10 20	••			••				••
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 29 29	0.1	<0.1	<1.0 	- <0.1	<0.1	<0.1	<5.0 	<0.1	<1.00	<10
JUN 1992 09	••	••			•	••			••	••

01402600 ROYCE BROOK TRIBUTARY NEAR BELLE MEAD, NJ

LOCATION.--Lat 40°29'56", long 74°39'05", Somerset County, Hydrologic Unit 02030105, on right bank 25 ft upstream from bridge on State Highway 514 (Amwell Road), 1,200 ft upstream from mouth, and 2.0 mi north of Belle Mead.

DRAINAGE AREA .-- 1.20 mi 2.

PERIOD OF RECORD. -- October 1966 to September 1974, January 1980 to current year.

REVISED RECORDS. -- WRD NJ-69: 1967, 1968. WDR NJ-85-1: 1980-84(P).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 66.98 ft above sea level. Prior to September 1974 at same site at datum 0.79 ft higher.

REMARKS.--No estimated daily discharges. Records good. Some regulation from storm-water detention basin 542 ft upstream of gage since 1980. Several measurements of water temperature were made during the year. Rain-gage and gage-height radio telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. Peak discharges greater than base discharge of 125 ft³/s and maximum (*):

Date	Time	!	Discharge (ft ³ /s)	• (Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	G	age height (ft)
Aug. 11	1545	i	*202		*4.23		No other	peak grea	iter than	base disc	charge.	
		DIS	CHARGE, CU	BIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTO VALUES	BER 1991 T	O SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.39 .34 .29 .24 .53	.38 .38 .35 .35 .28	.87 2.5 27 8.2 2.6	.83 .72 .65 4.3 2.1	.50 .39 .36 .36	.70 .62 .58 .54 .50	1.3 1.1 .88 .78 .67	.33 .43 .34 .32 .37	2.4 1.2 .71 .54 18	.25 .23 1.2 1.7 .49	1.8 .77 .58 .45 .40	.12 .13 1.1 .39 .22
6 7 8 9 10	.44 .21 .18 .15 .18	.29 .29 .32 .22 .20	1.8 1.4 1.1 1.3 4.7	1.3 .97 .75 1.6 1.2	.29 .28 .37 .33 .24	.48 5.3 2.7 1.5 3.7	.46 .48 .44 .45	.37 .33 2.3 1.3 1.7	17 2.9 1.6 1.1 .86	5.7 .68 .50 6.1 1.0	.33 .31 .28 1.6 .36	.17 .53 .26 .20 5.6
11 12 13 14 15	.82 .30 .16 .15 2.9	1.5 .43 .33 .28 .24	1.7 1.2 2.4 2.6 1.7	.85 .72 .68 4.8 1.8	.26 .24 .25 .47 3.3	8.3 2.3 1.4 1.0	1.7 .53 .36 .32 .27	.85 .69 .61 .81 .43	.65 .51 .47 .40 .41	.72 .65 .49 .87 2.4	1.8 79 2.5 1.1	5.2 .77 .51 .42 .39
16 17 18 19 20	.65 7.5 2.2 1.1 .84	.28 .16 .16 .18 .20	1.1 93 .81 .59 .54	1.2 .85 .71 .53	5.3 1.8 1.5 1.8 1.4	1.2 .62 .54 2.2 2.2	1.1 1.0 1.2 1.4 .78	3.4 1.0 .69 .54 .42	.34 .32 .32 1.2 .68	.90 .47 .38 .31 .28	1.1 1.3 2.7 1.0 .75	.30 .26 .26 .19
21 22 23 24 25	.65 .53 .54 .44 .40	.25 11 5.3 1.9 1.1	.54 .49 .49 .46 .38	.46 .41 4.6 5.7 1.8	.98 .82 .71 .65 .79	2.2 2.0 2.9 2.2 2.0	.66 .74 .56 .49 .51	.36 .30 .31 .67 .70	.42 .34 , .29 .86 .34	.29 .33 4.5 .88 .54	.62 .53 .48 .41	.15 .67 1.2 .17 .88
26 27 28 29 30 31	.41 .38 .44 .38 .38	.83 .63 .50 .44	.33 .33 .32 4.4 2.1 1.1	1.3 .95 .76 .66 .62	3.9 1.6 1.1 .86	5.4 9.0 2.6 1.6 1.2 2.1	.40 .39 .45 .34 .35	.45 .40 .26 .21 .35 7.5	.29 .32 .29 .24 .23	.76 3.6 .72 .49 .48 5.3	.31 .30 .29 .27 .18 .16	4.2 2.9 1.1 .65 .45
TOTAL MEAN MAX MIN CFSM IN.	24.51 .79 7.5 .15 .66	29.21 .97 11 .16 .81	75.98 2.45 27 .32 2.04 2.36	44.89 1.45 5.7 .41 1.21 1.39	31.19 1.08 5.3 .24 .90	70.68 2.28 9.0 .48 1.90 2.19	20.55 .68 1.7 .27 .57	28.74 .93 7.5 .21 .77	55.23 1.84 18 .23 1.53 1.71	43.21 1.39 6.1 .23 1.16 1.34	37.77 1.22 14 .16 1.02 1.17	29.52 .98 5.6 .12 .82 .92
STATIST	ICS OF M				YEARS 1967		•	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	1.46 3.40 1967 .20 1969	2.70 7.55 1986 .57 1974	3.23 8.85 1984 .22 1990	2.64 6.25 1975 .031 1981	3.29 7.37 1981 .69 1980	3.15 7.06 1967 .98 1985	2.92 8.25 1983 .41 1985	2.27 6.34 1989 .42 1986	1.48 5.00 1972 .070 1971	1.96 7.17 1984 .015 1968	2.21 9.71 1971 .008 1972	1.98 12.5 1971 .000 1972

RARITAN RIVER BASIN

01402600 ROYCE BROOK TRIBUTARY NEAR BELLE MEAD, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1967 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	735.42 2.01	491.48 1.34	2.43 3.86 1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	45 Aug 20 .12 Sep 22 .18 Sep 12	27 Dec 3 .12 Sep 1 .21 Aug 27	1.34 1992 160 Aug 28 1971 .00 Jul 10 1968 .00 Jul 10 1968
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	·	202 Aug 11 4.23 Aug 11 .09 Aug 31	1450 Aug 28 1971 7.80 Aug 28 1971
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.68 22.80 3.9 .66	1.12 15.24 2.8 .62	2.03 27.52 5.2 .69
90 PERCENT EXCEEDS	.66 .22	.26	.09

01403060 RARITAN RIVER BELOW CALCO DAM, AT BOUND BROOK, NJ

LOCATION.--Lat 40°33'05", long 74°32'54", Somerset County, Hydrologic Unit 02030105, on right bank 1,000 ft downstream from Calco Dam and Cuckold Brook, 1,400 ft upstream of bridge on Interstate 287, 1.2 mi downstream from Millstone River, and 1.2 mi southwest of Bound Brook.

DRAINAGE AREA.--785 mi 2 (includes 11 mi 2 which drains into the Delaware and Raritan Canal).

PERIOD OF RECORD. -- September 1903 to March 1909, October 1944 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1966 published as "Raritan River at Bound Brook" (station 01403000).

REVISED RECORDS.--WSP 1552: 1903-07, 1946(M), 1949, 1952(P).

GAGE. Water-stage recorder. Datum of gage is sea level. Sept. 12, 1903 to Mar. 31, 1909, nonrecording gages at highway bridge, 1.2 mi downstream at different datum. October 1944 to Sept. 30, 1966, water-stage recorder and concrete control at site 1,000 ft upstream at datum 18.06 ft higher.

REMARKS.--Records good except for estimated daily discharges, which are fair. Water diverted 1.2 mi above station by Elizabethtown Water Co. for municipal supply (see Raritan River basin, diversions). Flow regulated by Spruce Run and Round Valley Reservoirs (see Raritan River basin, reservoirs in). Diversions to and releases from Round Valley Reservoir (see Raritan River basin, diversions and station 01399690). Slight diurnal fluctuations at low flow. Several measurements of water temperature were made during the year. New Jersey Water Supply Authority and National Weather Service gage-height telemeters at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 12,000 ft3/s and maximum (*):

Date		Time	•	Discharge (ft ³ /s)	G	age heigh (ft)	t	Date	Time	Di (scharge ft ³ /s)	G	age height (ft)
June	6	1600)	*15,000		*26.98		No other	peak grea	ater than	base disc	harge.	
			DISCHA	RGE, CUBIC	FEET PE	R SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER VALUES	1991 TO	SEPTEMBER	1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	. SEP
1 2 3 4 5		283 233 210 198 195	163 170 167 149 155	270 328 4290 6230 2510	e452 e422 e415 759 1130	e372 e310 e324 e328 e302	528 477 438 405 375	1060 919 773 694 628	316 310 281 259 259	2160 998 638 448 1400	218 171 194 445 339	1360 534 315 276 242	147 141 171 418 344
6 7 8 9 10		214 230 200 164 166	159 149 147 147 180	1360 984 768 655 1320	848 688 547 520 650	e287 e281 e298 e275 e216	358 556 1480 903 736	505 456 464	233 213 269 563 503	12100 6010 2630 2700 1290	462 318 211 1230 586	199 156 140 231 352	188 183 222 182 222
11 12 13 14 15		191 233 218 191 211	238 282 217 195 191	1070 782 774 1000 871	556 468 420 869 1230	e274 e269 e220 e306 e364	2770 1790 1090 882 750	683 505 457	488 393 306 278 258	896 715 616 532 447	299 228 203 362 349	337 467 307 349 319	414 311 200 152 171
16 17 18 19 20		365 465 1200 589 371	186 169 172 187 180	696 543 481 e317 e363	705 479 e503 e415 e354	1700 1090 753 784 805	600 533 500 623 738	561 719	514 549 427 378 317	390 348 321 349 1270	565 315 297 269 182	293 324 550 480 372	159 135 126 139 126
21 22 23 24 25		275 229 214 200 180	184 651 2340 1050 624	e425 e396 e380 e365 e321	e364 e344 e454 2060 1110	700 559 506 476 474	820 848 843 800 813	543 658 528	249 204 181 208 256	1390 983 532 418 485	165 149 277 483 305	293 227 203 179 169	119 158 289 208 151
26 27 28 29 30 31		195 184 174 161 150 169	447 352 303 262 249	e262 e248 e231 536 1110 730	e720 e525 e529 e457 e405 e403	1160 1130 807 671	1270 5690 2760 1690 1260 1210	342	239 239 215 187 179 915	392 315 305 244 226	228 469 346 211 167 269	173 236 272 217 164 146	382 466 470 291 207
TOTAI MEAN MAX MIN	L	8258 266 1200 150	10065 335 2340 147	30616 988 6230 231	19801 639 2060 344	16041 553 1700 216	34536 1114 5690 358	582 1060	10186 329 915 179	41548 1385 12100 226	10312 333 1230 149	9882 319 1360 140	6892 230 470 119
STAT	ISTI	CS OF M	ONTHLY ME					2, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)		661 2953 1904 113 1958	1057 3684 1973 138 1966	1454 4172 1974 178 1966	1583 5825 1979 179 1981	1721 3232 1971 485 1980	2090 3858 1978 454 1985	1761 5326 1983 230 1985	1292 3862 1989 329 1992	792 3883 1972 117 1965	688 4624 1975 84.7 1955	684 3576 1955 69.9 1957	678 3158 1975 76.1 1957

RARITAN RIVER BASIN

01403060 RARITAN RIVER BELOW CALCO DAM, AT BOUND BROOK, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1903 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	340588 933	215611 589	1201 2046 1975 480 1985
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	9620 Mar 4 124 Sep 24 142 Sep 12	12100 Jun 6 119 Sep 21 137 Sep 16 15000 Jun 6	34100 Aug 28 1971 37 Sep 6 1964 46 Sep 4 1957 46100 Aug 28 1971
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	2020 526 167	26.98 Jun 6 93 Sep 18 1090 368 171	37.47a Aug 28 1971 2590 641 169

From floodmark. Estimated.

01403150 WEST BRANCH MIDDLE BROOK NEAR MARTINSVILLE, NJ

LOCATION.--Lat 40°36'44", long 74°35'28", Somerset County, Hydrologic Unit 02030105, on left bank 150 ft upstream from bridge on Crim Road, 1.4 mi northwest of Martinsville, and 1.8 mi upstream from confluence with East Branch Middle Brook.

DRAINAGE AREA. -- 1.99 mi 2.

PERIOD OF RECORD. -- June 1979 to current year.

REVISED RECORDS .-- WDR NJ-91-1: 1990.

GAGE. -- Water-stage recorder. Datum of gage is 240.48 ft above sea level (levels by Somerset County).

REMARKS.--Records fair except for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Rain-gage and gage-height radio telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 300 ft³/s and maximum (*):

Date		Time	,	Discharge (ft ³ /s)	e (Gage heigh (ft)	t	Date	Time		oischarge (ft ³ /s)	Ga	ge height (ft)
June	5	2045		*452		*4.98		July 9	0230	*	427		4.92
			DISC	CHARGE, CL	JBIC FEET	PER SECON	D, WATER ILY MEAN	YEAR OCTOB VALUES	BER 1991 1	O SEPTE	18ER 1992		,
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		.26 .29 .34 .37 .51	.34 .41 .38 .38 .34	2.4 80 11 1.9	.91 .93 .98 15 2.8	.91 .75 .70 .70	1.1 1.1 1.1 .99 .98	2.0 1.8 1.7 1.6 1.5	1.0 .98 .93 .90	2.9 1.3 .91 .80 80	.49 .49 2.2 1.6 .58	.68 .49 .49 .49 e.44	.34 .76 .46 e.35
6 7 8 9 10		.38 .30 .30 .34 .36	.34 .34 .32 .30 .34	1.5 1.2 1.1 1.5 15	1.6 1.4 1.2 1.7 1.5	.69 .68 .74 .67 .55	.95 5.7 2.6 1.6 13	1.3 1.3 1.2 1.1 1.1	.90 .90 1.3 1.3	25 2.4 25 3.4 1.1	1.2 .52 .47 29	.38 .34 .34 2.2 .43	e.34 e.40 e.40 e.33 e.43
11 12 13 14 15		.59 .34 .33 .48 2.2	.66 .32 .27 .26 .26	1.7 1.5 4.5 3.7 1.9	1.1 .99 .98 15 2.2	.61 .59 .56 .73 8.8	20 2.6 1.8 1.5	2.9 1.5 1.2 1.1	1.1 .92 .90 .88 .82	.80 .65 .61 .60	.59 .55 .58 .82 3.2	.97 .50 .39 e1.4 e.41	e.90 e.37 e.33 e.36 e.35
16 17 18 19 20		.26 9.6 .65 .34	.23 .23 .23 .23	1.4 1.1 1.0 .90 .86	1.4 1.1 .97 .78 .76	9.8 1.7 1.6 2.2 1.6	1.0 1.0 1.0 1.4	1.8 2.3 2.1 2.1 1.7	5.4 1.3 1.0 .91 .87	e.54 e.48 .61 .72 .67	.87 .68 .82 .59 .52	.53 .59 1.1 .51 .42	e.33 e.32 e.28 e.26 e.25
21 22 23 24 25		.33 .30 .30 .28 .32	.39 30 5.5 .86 .69	.86 .90 .90 .84 .74	.74 .66 18 8.8 1.7	1.4 1.1 1.1 1.2	1.8 1.6 1.7 1.6 5.7	1.6 2.4 3.8 1.8 1.5	.82 .84 .80 .87 .88	.61 .61 .63 .63	.49 .49 3.3 .74 .58	.39 .39 .37 .34	e.24 e.60 e.44 e.39 e.55
26 27 28 29 30 31		.44 .36 .32 .32 .34	.61 .61 .61 .61	.68 .68 .68 4.3 1.9 1.1	1.4 1.1 1.0 .98 .98	10 2.1 1.6 1.3	34 32 3.9 2.4 1.9 3.0	1.3 1.3 1.1 1.1	.83 .82 .81 .76 .78	.61 .86 .59 .55	.57 1.8 .58 .55 .55	.34 4.4 .50 .37 .34	e1.8 e1.1 e.53 e.34 e.30
TOTAL MEAN MAX MIN CFSM IN.	L	22.23 .72 9.6 .26 .36 .42	46.90 1.56 30 .23 .79 .88	148.35 4.79 80 .61 2.40 2.77	89.64 2.89 18 .66 1.45 1.68	56.22 1.94 10 .55 .97 1.05	151.82 4.90 34 .95 2.46 2.84	49.4 1.65 3.8 1.1 .83	62.06 2.00 29 .76 1.01 1.16	155.54 5.18 80 .48 2.61 2.91	57.44 1.85 29 .47 .93 1.07	21.22 .68 4.4 .34 .34	14.19 .47 1.8 .24 .24
STAT	ISTI					YEARS 197		BY WATER					
MEAN MAX (WY) MIN (WY)		2.26 9.28 1990 .22 1987	3.79 10.5 1989 .67 1981	4.21 11.5 1984 .18 1981	4.04 9.20 1991 .12 1981	4.52 9.02 1988 .92 1980	4.92 9.29 1980 1.64 1985	6.02 11.6 1983 .74 1985	5.75 19.4 1989 .76 1986	2.55 6.88 1989 .41 1980	2.20 6.40 1984 .083 1980	1.20 5.85 1990 .12 1980	1.72 7.43 1989 .11 1980

RARITAN RIVER BASIN

01403150 WEST BRANCH MIDDLE BROOK NEAR MARTINSVILLE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1979 - 1992
ANNUAL TOTAL ANNUAL MEAN Highest annual mean	1361.80 3.73	875.01 2.39	3.60 5.48 1989 1.88 1981
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	94 Jan 16 .17 Sep 17 .20 Sep 12	80 Dec 3 .23 Nov 16 .24 Nov 14	149 Oct 20 1989 .00 Sep 19 1980 .00 Sep 19 1980
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		452a Jun 5 4.98 Jun 5 .17 Oct 17	1170a May 16 1990 6.21 May 16 1990 .00 Sep 19 1980
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.87 25.46 5.8	1.20 16.36 2.9 .85	1.81 24.59 6.3 .88
90 PERCENT EXCEEDS	.86 .28	.34	.13

From rating curve extended above 200 $\ensuremath{\text{ft}^3/\text{s}}$ on basis of flood insurance study. Estimated.

01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ (National stream-quality accounting network)

LOCATION.--Lat 40°33'34", long 74°31'41", Somerset County, Hydrologic Unit 02030105, at Queens Bridge on Main street in Bound Brook, 1.7 mi upstream of Fieldsville Dam.

DRAINAGE AREA. -- 804 mi 2.

PERIOD OF RECORD.--Water years 1964-69, 1971-73, 1978, 1981 to current year. Published as "at Bound Brook" (station 01403000) 1964-66, and as "below Calco Dam at Bound Brook" (station 01403060) 1967-69.

REMARKS...Instantaneous discharges are determined at Raritan River below Calco Dam at Bound Brook (station 01403060).

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 OXYGEN, COLI-STREP-CHARGE, WATER FORM TOCOCCI INST. CUBIC CIFIC MHOLE SOLVED FECAL, FECAL, KF AGAR OXYGEN, DIS-TEMPER-CON-FIELD TUR-(PER-ATURE DUCT -(STAND-CENT UM-MF (COLS. FEET BID-(COLS./ DATE TIME SOLVED SECOND (US/CM) UNITS) (DEG C) (NTU) (MG/L) ATION) 100 ML) 100 ML) NOV 1991 21... FEB 1992 25... 1100 E160 346 7.7 9.5 1.2 12.6 111 >600 460 1100 E470 310 7.6 3.0 3.0 13.6 101 K980 700 MAY 29... 1130 E170 352 7.5 19.5 2.3 10.8 117 350 **K11** AUG 14... 1230 E340 287 7.5 23.0 2.0 9.6 112 K450 84 HARD -MAGNE -POTAS-BICAR-LINITY, LINITY CHLO-CALCIUM DIS-SODIUM, NESS TOTAL SIUM, DIS-SIUM, DIS-BONATE IT-FLD CARBON-WAT WH TOT FET SULFATE RIDE, DIS-DIS-DIS-ATE SOLVED SOLVED SOLVED SOLVED (MG/L IT-FLD SOLVED SOLVED (MG/L FIELD (MG/L CACO3) MG/L AS CACO3 (MG/L AS SO4) (MG/L AS CA) (MG/L DATE (MG/L (MG/L AS HCO3) (MG/L CACO3) AS MG) AS NA) AS K) AS CL) NOV 1991 21... FEB 1992 25... *63 110 27 9.9 22 4.0 48 32 87 22 7.8 21 *40 1.4 36 38 MAY Ż9... 98 25 8.6 24 3.4 63 . 38 77 63 44 AUG 14... 20 80 7.3 21 3.4 52 42 42 37 29 SOLIDS, NITRO-NITRO-NITRO-NITRO-FLUO-SILICA, SUM OF CONSTI-GEN, NITRITE GEN, NO2+NO3 NITRO-NITRO-GEN AMMON Í A RIDE, DIS-SOLVED GEN, NITRITE GEN, NO2+NO3 GEN, AMMONIA TUENTS, DIS-DIS-DIS-SOLVED (MG/L DIS TOTAL TOTAL TOTAL SOLVED SOLVED SOLVED SOLVED (MG/L DATE (MG/L AS (MG/L (MG/L (MG/L (MG/L SIO2) AS F) (MG/L) AS N) AS N) AS N) AS N) AS N) AS N) NOV 1991 21... FEB_1992 0.3 3.0 197 0.02 0.02 2.7 2.7 0.10 0.09 25... 0.1 6.8 173 0.02 0.02 2.0 2.1 0.39 0.41 MAY ... 0.2 7.0 203 0.04 2.9 0.04 2.9 0.26 0.26 AUG 14... 0.2 5.1 160 0.02 0.02 2.2 0.03 0.03 2.3 NITRO-PHOS-SEDI-SED. GEN,AM-MONIA + ORGANIC MENT, DIS-PHOS-PHOS-**PHORUS** SUSP. NITRO-PHOS-SEDI: SIEVE **PHORUS PHORUS** ORTHO, GEN, TOTAL DIS-PHORUS ORTHO DIS-CHARGE, DIAM. MENT, SOLVED SOLVED % FINER TOTAL TOTAL TOTAL SUS-SUS-DATE (MG/L (MG/L AS N) (MG/L (MG/L (MG/L (MG/L PENDED **PENDED** THAN AS P) .062 MM ÀS N) AS P) ÀS P) ÀS P) (MG/L) (T/DAY) NOV 1991 21... FEB_1992 100 0.70 3.4 0.44 0.36 0.38 0.36 3 - -25... 0.90 2.9 0.24 0.18 0.18 0.18 22 - -86 MAY 29... 0.70 3.6 0.38 0.35 0.37 0.33 68 - -40 AUG

0.40

2.6

0.37

0.35

0.30

0.29

6

^{*}Laboratory determination.

RARITAN RIVER BASIN

01403300 RARITAN RIVER AT QUEENS BRIDGE AT BOUND BROOK, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	TIME	ALUM INUM DIS SOLV (UG/ AS A	I, BAR S- DI /ED SOL 'L (U	IUM, S- VED IG/L BA)	COBALT DIS- SOLVED (UG/L AS CO	D1 SOL (U0	ON, I IS- LVED G/L FE)	DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
21	1991 1992	1100		20 .	31	•	:3	50	<4	33
	1772	1100	•	:10	37	•	:3	62	7	85
	·	1130		30	27	•	:3	67	7	74
	•••	1230		20	32	<	:3	45	<4	33
	DATE	DEI D SOI (U	YB- NUM, IS- VED G/L MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SOL (UC		ILVER, DIS- SOLVED (UG/L AS AG)	STRO TIL DIS SOLV (UG) AS	JM, DIC S- DI /ED SOI /L (UC	
	NOV 1991 21 FEB 1992		<10	2		<1	<1.0	á	200	<6
	25 MAY		<10	1		<1	<1.0	•	150	<6
	29 AUG		<10	2		<1	<1.0	•	180	<6
	14		<10	1		<1	<1.0	3.	150	<6

01403400 GREEN BROOK AT SEELEY MILLS, NJ

LOCATION.--Lat 40°39'53", long 74°24'10", Somerset County, Hydrologic Unit 02030105, on right bank at Seeley Mills, 250 ft downstream from Blue Brook, 300 ft downstream from bridge on Diamond Hill Road, and 0.5 mi northwest of Scotch Plains.

DRAINAGE AREA. -- 6.23 mi².

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1959-64, 1969: annual maximum, water years 1969-79.

June 1979 to current year. Fragmentary records 1944-53 in the files of the Geological Survey. Crest-stage data 1927-38, 1958-68 in files of Union County Park Commission.

REVISED RECORDS.--WDR-NJ 81-1: 1979(M). WDR-NJ 87-1: 1971(M), 1973(M), 1975(M).

GAGE.--Water-stage recorder. Datum of gage is 184.44 ft above sea level. From 1944 to 1953, water-stage recorder and masonry dam about 400 ft downstream above lower Seeley Mills dam at different datum. From July 1969 to May 1979, crest-stage gage about 450 ft downstream below lower Seeley Mills dam (washed out May 29, 1968) at different datum.

REMARKS.--Records good except for estimated daily discharges and from Feb. 24 to Apr. 1, which are fair. Several measurements of water temperature were made during the year. Rain-gage and gage-height radio telemeter at station

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 23, 1938 reached an elevation of 196.5 ft, New Jersey Geological Survey datum, above lower Seeley Mills dam, discharge, 5,840 ft³/s, computed by State Water Policy Commission.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft³/s and maximum (*):

FLAK	0130	MARGES TO	K COKKL	MI IEAK.	reak dis	schalges gi	cater ti	idii base dis	ciiai ge (JI 230 II	•	axiiiwiii (<i>,</i> .
Date		Time		Discharge (ft ³ /s)	(Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
June July	5 9	1945 0245		*1,150 730		*5.29 4.28		Aug. 27	1500		424		3.39
			DISC	CHARGE, CUE	IC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEM	BER 1992		
DAY		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		3.5 3.4 3.1 3.1 4.0	3.1 3.1 3.1 3.1 3.1	4.9 5.1 63 30 8.2	5.7 5.8 5.6 17 9.1	3.6 3.2 3.3 3.3	5.0 4.0 4.0 4.0 4.0	7.0 7.6 7.1 6.7 6.4	5.1 5.2 4.9 4.8 5.3	12 6.8 5.4 4.4 357	3.4 3.2 7.1 7.9 3.9	4.9 2.5 2.8 2.5 2.2	2.6 2.6 4.9 3.3 2.7
6 7 8 9 10		4.7 3.2 2.9 3.0 3.0	3.1 3.1 3.1 3.1 3.2	6.2 5.2 4.7 5.1 13	7.1 6.1 5.1 6.6 6.1	3.2 3.3 3.5 3.2 3.1	4.0 11 8.0 6.0 9.0	6.2 6.0 5.7 5.7 5.6	4.7 4.6 8.2 7.4 7.5	134 29 19 15 12	5.9 3.4 3.2 64 5.2	2.1 2.0 2.0 2.8 2.1	2.6 3.0 2.7 2.6 22
11 12 13 14 15		3.5 3.2 3.0 2.9 4.5	5.5 3.6 3.2 3.1 3.1	6.2 5.1 8.4 8.4 6.9	5.4 5.1 4.8 13 6.7	3.2 3.1 3.0 3.5 15	23 9.0 9.0 7.0 6.0	8.7 6.3 5.6 5.5 5.3	5.8 5.3 5.1 4.8 4.8	9.8 8.4 6.9 6.0 5.5	4.3 4.1 4.6 22 11	2.6 2.1 2.0 3.9 2.4	11 3.5 3.1 3.0 2.9
16 17 18 19 20		3.5 11 4.5 3.0 2.8	3.0 2.8 2.9 2.8 2.8	6.0 5.5 5.4 4.6 4.6	5.1 4.5 4.3 3.9 3.8	22 e5.9 e5.7 e7.1 e6.0	5.0 5.0 7.0 7.0	7.0 7.8 7.3 7.1 6.6	13 5.9 5.3 4.7 4.4	5.0 4.8 4.6 8.0 5.6	11 5.3 5.7 4.5 4.1	2.7 2.6 4.5 2.3 2.0	2.9 2.8 2.8 2.8
21 22 23 24 25		2.8 2.8 2.8 2.8 2.8	2.9 39 16 5.4 4.8	4.9 4.8 4.8 4.5 4.4	3.9 3.9 18 14 4.9	e4.7 e4.3 e4.2 7.0 6.0	6.0 6.0 7.0 6.0 9.0	6.4 6.8 7.6 6.4 6.3	4.2 3.9 3.8 6.1 4.8	4.5 4.2 4.0 5.9 4.2	4.0 3.9 10 4.8 4.1	1.9 1.9 1.9 1.9 2.0	3.0 4.6 4.9 2.8 3.2
26 27 28 29 30 31		2.8 2.9 3.0 3.1 3.1 3.1	4.8 4.5 4.6 4.8	4.2 4.3 4.3 11 8.1 6.3	4.4 4.0 3.8 3.7 3.7	17 7.0 6.0 5.0	55 76 20 11 9.0	5.9 5.8 5.5 5.3 5.2	4.2 4.0 3.7 3.7 3.6 54	4.0 3.9 3.7 3.5 3.4	4.3 4.5 3.9 3.7 3.7	2.0 32 4.3 3.3 2.8 2.7	14 6.2 4.2 3.3 3.1
TOTA MEAN MAX MIN CFSM IN.		107.8 3.48 11 2.8 .56	155.2 5.17 39 2.8 .83 .93	268.1 8.65 63 4.2 1.39 1.60	198.8 6.41 18 3.7 1.03	168.6 5.81 22 3.0 .93 1.01	358.0 11.5 76 4.0 1.85 2.14	192.4 6.41 8.7 5.2 1.03 1.15	212.8 6.86 54 3.6 1.10 1.27	700.5 23.3 357 3.4 3.75 4.18	242.7 7.83 64 3.2 1.26 1.45	109.7 3.54 32 1.9 .57	136.0 4.53 22 2.6 .73 .81
STAT	ISTI	CS OF MON	THLY ME		R WATER	YEARS 1979	- 1992	, BY WATER Y	EAR (WY)	ř			
MEAN MAX (WY) MIN (WY)		7.06 22.8 1990 1.72 1983	10.5 22.4 1986 2.04 1982	12.4 46.9 1984 2.57 1981	10.9 20.6 1991 1.67 1981	12.0 20.9 1984 2.95 1980	15.0 36.5 1983 5.11 1985	19.6 41.1 1983 3.50 1985	14.8 42.0 1989 4.48 1986	8.25 23.3 1992 2.74 1981	7.25 18.9 1984 1.89 1980	5.30 16.1 1990 1.33 1981	6.12 24.6 1989 1.85 1982

RARITAN RIVER BASIN

01403400 GREEN BROOK AT SEELEY MILLS, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1979 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	3316.7 9.09	2850.6 7.79	10.8 18.2 1984 5.16 1981
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	115 Mar 4 2.6 Jul 17 2.7 Jul 14	357 Jun 5 1.9 Aug 21 1.9 Aug 20 1150 Jun 5	407 Apr 5 1984 .00 Sep 11 1981 .05 Sep 24 1981 6240a Aug 2 1973
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	1.46 19.80	5.29 Jun 5 1.8 Aug 7 1.25 17.02	16.10b Aug 2 1973 .00 Sep 11 1981 1.73 23.47
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	15 5.1 3.0	11 4.6 2.8	5.4 1.6

From rating curve extended above 600 ft³/s on basis of slope area measurement of peak flow. Site and datum then in use. Estimated.

01403535 EAST BRANCH STONY BROOK AT BEST LAKE, AT WATCHUNG, NJ

LOCATION.--Lat 40°38'25", long 74°26'52", Somerset County, Hydrologic Unit 02030105, 700 ft upstream of dam on Best Lake in Watchung, 1,400 ft upstream of mouth, and 0.5 mi northeast of Watchung.

DRAINAGE AREA. -- 1.57 mi 2.

PERIOD OF RECORD. -- July 1980 to current year.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 193.87 ft above sea level (levels by Somerset County).

REMARKS.--No estimated daily discharges. Records fair except those less than 2.0 ft³/s, which are poor. Records given herein represent flow over dam and leakage through ports in dam. Several measurements of water temperature were made during the year. Rain-gage and gage height radio telemeter at station.

COOPERATION. -- Gage-height record collected in cooperation with Somerset County.

EXTREMES OUTSIDE PERIOD OF RECORD. Flood of August 2, 1973, reached a stage of 5.4 ft, present datum, from floodmarks, discharge, $2,840\,$ ft $^3/s$, by computation of flow over dam, embankment, and road.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 100 ft3/s and maximum (*):

Date	Time		Discharge (ft ³ /s)	(Gage height (ft)		Date	Time	C	ischarge (ft ³ /s)	Ga	ge height (ft)
Mar. 26 June 5	2200 1500		103 409		1.68 2.42		July 9 Sep. 10	0245 1145		*508 113		*2.60 1.71
		DISC	CHARGE, CUB	IC FEET	PER SECOND	, WATER LY MEAN	YEAR OCTOBE	R 1991	TO SEPTEM	IBER 1992		•
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.50 .53 .49 .54	.75 .94 .87 .79 .93	.70 1.3 24 8.2 3.2	1.0 .94 .84 4.3 2.9	1.1 1.1 .87 .79 .85	.78 1.1 1.1 .94 .94	2.9 2.5 2.1 1.8 1.5	.94 .94 .84 .94	3.3 1.5 .69 .51	.34 .31 .49 1.2 .37	.49 .33 .31 .31 .28	.19 .16 .33 .30 .24
6 7 8 9 10	1.0 .51 .51 .57 .63	1.0 1.1 1.0 .94 .87	2.4 2.0 1.7 2.2 6.6	1.7 1.2 1.1 1.6 1.4	.82 .74 .77 .69 .58	.86 2.6 2.4 1.7 2.5	1.3 1.3 1.2 1.2 1.7	.75 .73 1.3 1.6 1.7	21 6.0 4.1 3.5 3.0	.36 .25 .21 21 .53	.26 .25 .24 .25 .29	.22 .23 .25 .23
11 12 13 14 15	1.0 1.3 .49 .52 1.7	2.5 1.4 1.1 1.1	3.4 2.9 4.4 4.9 3.7	1.1 .94 .94 3.2 1.5	.59 .60 .57 .62 3.2	6.6 3.0 2.2 1.7 1.5	4.0 3.0 1.4 1.3	1.3 1.0 .94 .88 .79	2.3 1.5 1.3 .92 .65	.30 .24 .28 .61 .29	.25 .26 .22 .28 .27	.67 .25 .23 .21
16 17 18 19 20	1.2 3.3 1.0 .58 .49	1.4 .96 .41 .39 .40	3.0 2.6 2.3 1.7	1.2 .94 .85 .66 .66	5.3 1.9 1.5 2.0 1.7	1.3 1.3 1.2 1.9	1.7 2.3 2.1 2.1 2.0	3.9 1.4 1.1 .89 .79	.60 .57 .54 1.0 .80	.39 .55 .63 .55 .46	.31 .40 .46 .32 .29	.20 .20 .19 .19 .18
21 22 23 24 25	.46 .43 .43 .43	.43 13 5.8 1.8 1.0	1.5 1.1 1.1 .97	.64 .60 4.2 5.5 2.5	1.3 1.2 .79 1.1 1.2	1.7 1.5 1.7 1.6 2.9	2.0 2.0 2.1 1.6 1.3	.79 .65 .63 .77	.49 .44 .43 .52 .47	.46 .48 1.9 .59 .46	.22 .21 .21 .20 .19	.19 .23 .35 .22 .21
26 27 28 29 30 31	.43 .43 .47 .61 .68	.78 .71 .66 .62 .59	.89 .88 .70 3.4 2.5	1.7 1.3 1.2 1.1 1.1	4.5 1.9 1.3 1.0	16 16 4.5 3.1 2.9 3.7	1.3 1.3 1.3 1.1	.69 .75 .64 .60 .56	.42 .44 .41 .38 .36	.42 .47 .42 .36 .34	.19 .61 .28 .24 .21	.73 .40 .32 .26 .24
TOTAL MEAN MAX MIN CFSM IN.	23.25 .75 3.3 .43 .48 .55	45.64 1.52 13 .39 .97 1.08	98.38 3.17 24 .70 2.02 2.33	49.91 1.61 5.5 .60 1.03 1.18	40.58 1.40 5.3 .57 .89	93.12 3.00 16 .78 1.91 2.21	53.8 1.79 4.0 1.1 1.14 1.27	43.70 1.41 13 .56 .90 1.04	149.14 4.97 91 .36 3.17 3.53	36.23 1.17 21 .21 .74 .86	8.83 .28 .61 .19 .18 .21	12.73 .42 4.9 .16 .27
STATIS	TICS OF MC	NTHLY ME	AN DATA FO	R WATER	YEARS 1980	- 1992	, BY WATER Y	EAR (WY)			
MEAN MAX (WY) MIN (WY)	1.48 4.91 1990 .24 1987	2.88 5.73 1986 .90 1983	3.14 10.1 1984 .52 1981	2.73 5.62 1991 .068 1981	3.46 5.75 1984 1.40 1992	3.55 9.02 1983 1.67 1981	4.68 10.2 1983 .82 1985	3.94 10.9 1989 1.25 1986	2.06 4.97 1992 .76 1981	1.54 4.53 1984 .36 1980	.94 2.19 1990 .095 1980	1.04 4.65 1989 .25 1983

RARITAN RIVER BASIN

01403535 EAST BRANCH STONY BROOK AT BEST LAKE, AT WATCHUNG, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1980 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	886.93 2.43	655.31 1.79	2.63 4.47 1984 1.48 1981
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	39 Jan 16 .11 Jun 30 .18 Jun 27	91 Jun 5 .16 Sep 2 .19 Sep 15 508 Jul 9	91 Jun 5 1992 .00 Aug 30 1980 .00 Sep 3 1980 508 Jul 9 1992
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM)	1.55	2.60 Jul 9 .14 Sep 3 1.14 15.53	2.60 Jul 9 1992 .00 Aug 30 1980 1.68 22.78
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	21.02 4.7 1.2 .42	3.0 .92 .25	5.2 1.1 .29

01403540 STONY BROOK AT WATCHUNG, NJ

LOCATION.--Lat 40°38'12", long 74°27'06", Somerset County, Hydrologic Unit 02030105, on right bank at Watchung Borough Administration Building, 150 ft downstream from bridge on Mountain Boulevard, and 2.9 mi upstream from confluence with Green Brook.

DRAINAGE AREA...5.51 mi².

PERIOD OF RECORD. -- October 1974 to current year.

REVISED RECORDS. -- WDR NJ-86-1: 1973 (P).

GAGE. Water-stage recorder and crest-stage gage. Datum of gage is 172.24 ft above sea level.

REMARKS.--Records fair. Occasional regulation from Watchung and Best Lakes directly upstream from station. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 2, 1973, reached a stage of 14.5 ft, from floodmark, discharge, 10,500 ft³/s, from slope-area measurements of peak flow.

PEAK DISCHARGES FOR CURRENT YEAR: -- Peak discharges greater than base discharge of 300 ft 3/s and maximum (*):

Date	Time		Discharge (ft ³ /s)	1	Gage heigh (ft)	t	Date	Time	, D	ischarge (ft ³ /s)	Ga	ge height (ft)
Mar. 26 June 5	2230 1515		343 1,540		2.43 3.44		July 9	0300		*1,550		*3.45
		DISC	HARGE, CUB	IC FEET	PER SECONI	, WATER	YEAR OCTO	BER 1991	TO SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.1 2.2 2.0 1.9 2.7	1.5 1.3 1.4 1.4	3.0 4.7 72 22 7.7	4.5 4.4 4.4 22 12	3.5 3.1 3.0 3.0 2.9	3.3 3.2 2.9 2.1 1.4	9.1 8.1 7.2 6.7 6.3	3.8 3.7 3.3 3.2 3.2	12 6.5 4.7 3.7 357	1.4 1.2 2.8 8.0 3.1	4.8 2.3 1.8 1.8	1.1 1.0 3.2 3.6 1.7
6 7 8 9 10	5.5 2.9 2.1 1.9 2.0	1.5 2.0 1.8 1.5 1.6	7.8 7.0 5.6 6.5 26	7.6 6.2 5.5 6.9 6.3	2.8 2.8 2.9 2.8 2.4	.91 5.7 5.1 2.9 4.1	5.9 5.7 5.5 5.2 5.2	3.0 2.8 4.2 6.5 5.7	77 22 16 13 10	4.4 2.5 1.8 87 4.7	1.1 1.1 1.1 1.9 2.0	1.3 1.6 1.6 1.5
11 12 13 14 15	2.1 2.8 1.9 1.8 4.0	4.4 2.8 2.2 2.4 2.4	10 7.7 17 17 11	5.1 4.5 4.3 14 7.4	2.6 2.5 2.2 2.3 17	17 6.9 5.5 4.7 4.2	7.3 6.0 4.9 4.7 4.4	4.5 3.6 3.4 3.3 3.0	9.1 7.8 6.8 5.9 5.1	3.4 2.8 2.5 4.9 4.1	1.5 1.8 1.4 2.9 2.3	8.4 2.7 1.9 1.7 1.6
16 17 18 19 20	4.1 14 5.6 3.0 2.5	1.8 e1.8 e1.7 e1.6 e1.7	7.6 5.5 4.8 4.3 3.9	5.8 5.2 4.9 4.1 4.1	24 3.0 2.4 3.5 2.5	3.6 3.4 3.4 5.2 5.0	5.7 7.7 7.5 6.9 6.5	12 5.7 4.4 3.8 3.3	4.2 3.5 3.1 4.9 5.2	5.0 2.8 3.1 2.6 2.1	2.2 2.4 4.0 2.2 1.7	1.6 1.7 1.4 1.4
21 22 23 24 25	2.2 2.1 2.0 1.9	2.2 39 15 5.4 3.8	4.3 3.6 3.2 2.9 2.3	4.2 3.9 21 23 7.1	2.0 1.7 1.7 1.6 1.9	4.7 4.4 5.0 4.2 6.6	6.3 6.3 7.0 5.8 5.4	3.3 2.9 2.5 2.7 3.7	3.1 2.6 2.7 3.8 3.0	1.7 1.6 7.1 4.2 2.7	1.7 1.5 1.3 1.2	1.1 2.2 4.5 1.7 1.6
26 27 28 29 30 31	1.5 2.2 1.8 1.6 1.7	3.3 3.0 3.0 2.9 2.7	1.8 1.6 1.5 17 8.7 5.5	5.8 4.7 4.1 3.9 3.7 3.7	15 5.2 4.2 3.8	46 48 14 10 8.8	4.9 4.8 4.4 4.1 3.9	2.7 2.6 2.1 1.8 1.8	2.3 2.2 2.0 1.7 1.4	2.3 3.6 2.9 1.9 1.6 4.5	1.0 2.1 1.6 1.1 1.3	11 4.9 3.2 1.8 1.5
TOTAL MEAN MAX MIN CFSM IN.	87.6 2.83 14 1.5 .51	118.8 3.96 39 1.3 .72 .80	303.5 9.79 72 1.5 1.78 2.05	224.3 7.24 23 3.7 1.31 1.51	128.3 4.42 24 1.6 .80 .87	254.21 8.20 48 .91 1.49 1.72	179.4 5.98 9.1 3.9 1.09 1.21	158.5 5.11 46 1.8 .93 1.07	602.3 20.1 357 1.4 3.64 4.07	184.3 5.95 87 1.2 1.08 1.24	57.2 1.85 4.8 1.0 .33	90.8 3.03 17 1.0 .55
STATIST			AN DATA FO		YEARS 1975							
MEAN MAX (WY) MIN (WY)	5.79 17.9 1990 1.31 1983	8.97 22.2 1978 1.94 1977	11.9 37.1 1984 1.79 1981	13.4 37.5 1979 1.08 1981	12.4 20.1 1988 3.60 1980	15.8 31.9 1983 5.60 1985	16.5 38.3 1983 3.89 1985	13.1 37.8 1989 3.42 1986	7.30 20.1 1992 2.27 1980	6.53 32.1 1975 1.27 1977	4.02 11.0 1990 .81 1981	5.16 18.6 1975 .87 1983

RARITAN RIVER BASIN

01403540 STONY BROOK AT WATCHUNG, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1975 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	3002.89 8.23	2389.21 6.53	10.1 16.0 1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	114 Jan 16 .88 Sep 12	357 Jun 5 .91 Mar 6 1.3 Aug 23	5.60 1981 358 Jul 14 1975 .00 Sep 18 1982 .06 Sep 13 1982
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	1.1 Sep 7	1550 Jul 9 3.45 Jul 9 .77 Mar 4	4420a Jul 14 1975 10.40 Jul 14 1975 .00 Sep 13 1982
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.49 20.27 17	1.18 16.13 10	1.82 24.80 20
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	4.4 1.5	3.3 1.6	4.7 1.1

a From rating curve extended above 500 ft³/s on basis of slope-area measurement of peak flow. Estimated.

01405030 LAWRENCE BROOK AT WESTONS MILLS, NJ

LOCATION.--Lat 40°28'59", long 74°24'45", Middlesex County, Hydrologic Unit 02030105, on left bank at dam on Westons Mill Pond at Westons Mills, 200 ft downstream from bridge on State Route 18, and 1.3 mi upstream from mouth.

DRAINAGE AREA. -- 44.9 mi 2.

PERIOD OF RECORD. -- December 1988 to current year. Water-quality records water years 1976-81.

REVISED RECORDS.--WDR NJ-89-1: Drainage area.

GAGE. - Water stage recorder above masonry dam. Datum of gage is sea level.

REMARKS.--Records poor. Records given herein include flow over dam and through bypass gates. No gate openings were reported. Flow regulated by Farrington Lake, capacity, 655,250,000 gal. Diversion at gage by New Brunswick Water Department (records given herein). Several measurements of water temperature were made during the year.

COOPERATION.--Water-stage recorder inspected by and records of gate openings and diversions provided by employees of City of New Brunswick.

		DISC	HARGE,	CUBIC FEET	PER SECOND DAI	, WATER	YEAR OCTOBER VALUES	1991	TO SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.4 5.1 16 18 28	4.9 5.3 5.8 7.0 8.8	21 e51 268 193 e73	22 e12 e10 81 59	e13 e12 e11 e11 e11	20 17 19 19 17	38 34 27 22 21	19 22 18 15 15	112 43 25 18 254	3.7 2.7 5.2 37 16	277 53 25 16 12	8.3 5.3 7.4 15 16
6 7 8 9 10	43 31 16 6.6 4.2	8.1 6.5 6.2 6.3 12	50 53 50 60 88	29 23 15 14 15	e11 e11 e13 e15 e13	16 48 57 34 32	19 18 18 18 19	11 14 43 80 62	491 106 58 39 28	23 11 8.1 108 30	9.0 7.0 5.9 18 15	13 14 15 13 32
11 12 13 14 15	7.2 13 5.3 4.2 6.9	11 17 15 13 8.8	45 29 28 37 33	16 16 18 38 e28	e11 e12 e11 e11 e16	93 51 33 27 22	116 58 35 28 24	45 29 23 21 17	20 18 14 14 11	15 11 11 15 39	96 137 32 48 33	60 23 13 11 9.8
16 17 18 19 20	6.6 35 43 23 17	15 19 e8.1 e8.1 e8.1	26 20 e18 e15 e15	e25 27 34 27 16	e80 e44 e23 e23 e18	19 19 17 44 52	28 59 110 84 55	51 33 23 16 14	9.0 11 10 159 201	76 22 19 15	53 60 108 46 27	9.8 8.6 8.6 9.5 8.3
21 22 23 24 25	6.5 8.6 7.9 5.9 5.0	12 72 59 26 e18	9.0 12 e15 e15 13	12 9.6 71 84 42	e23 e20 e18 e15 18	44 43 53 47 42	45 45 39 52 66	10 10 12 13 13	50 25 17 15 13	11 13 60 47 19	19 16 15 13 12	5.5 12 47 15 12
26 27 28 29 30 31	11 e10 e8.0 e8.0 e8.0	e14 e11 8.3 e11 12	13 e11 10 45 55 28	34 28 e18 e16 e15 e14	58 41 30 25	57 221 88 52 37 47	27 27 24 17 22	11 10 11 11 11 126	11 9.8 9.6 8.4 6.1	15 67 33 18 13	30 40 32 23 13	99 62 48 21 12
TOTAL MEAN MAX MIN (†)	415.4 13.4 43 3.0 2.36	437.3 14.6 72 4.9 1.41	1399.0 45.1 268 9.0 .97	28.0 84 9.6 1.43	618 21.3 80 11 .53	1387 44.7 221 16 .24	116 17 .29	809 26.1 126 10 .38	1805.9 60.2 491 6.1 .57	907.7 29.3 132 2.7 .50	1301.9 42.0 277 5.9 .10	634.1 21.1 99 5.3 .21
STATIST	TICS OF	MONTHLY ME	AN DATA	FOR WATER	YEARS 1989	- 1992,	BY WATER YE	AR (W)	r) .			
MEAN MAX (WY) MIN (WY)	43.2 89.4 1990 13.4 1992	30.4 49.1 1990 14.6 1992	41.0 62.5 1991 15.3 1990	82.1 1991 28.0	43.2 62.6 1990 21.3 1992	63.9 95.0 1991 44.7 1992	89.3 1990 39.8	86.7 169 1989 26.1 1992	58.8 98.9 1989 23.8 1991	47.3 92.7 1989 29.3 1992	55.6 103 1990 28.7 1989	60.7 184 1989 17.0 1991

01405030 LAWRENCE BROOK AT WESTONS MILLS, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1989 - 1992
ANNUAL TOTAL ANNUAL MEAN (†) HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	15486.32 42.4 2.08	11778.9 32.2 .75	47.3 63.5 1990 32.2 1992
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	744 Mar 4 .12 Sep 11 3.9 Sep 8	491 Jun 6 2.7 Jul 2 6.0 Oct 29 850 Jun 5 16.79 Jun 5	2200 Sep 21 1989 .12 Sep 11 1991 1.2 Sep 7 1989 4850a Sep 21 1989 19.20 Sep 21 1989
INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	86 26 6.2	.00 Oct 31 60 18 8.1	.00 Sep 29 1989 102 32 8.4

From rating curve extended above 1,000 $\rm ft^3/s$. Estimated. Diversion, in cubic feet per second, by City of New Brunswick for municipal supply.

01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°22'55", Middlesex County, Hydrologic Unit 02030105, at bridge on Mundy Avenue in Spotswood, 0.2 mi upstream from mouth, 0.5 mi east of De Voe Lake dam, and 3.4 mi southeast of Tanners Corners.

DRAINAGE AREA.--44.1 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION...Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	CH I	NST. COUBIC CONFEET DO	PE- WA IFIC WH DN- FI JCT- (ST ICE A	AND - A'	TURE ATER S	YGEN, DIS- OLVED	DIS- DE SOLVED B (PER- CENT I SATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH (NTERO- COCCI ME,MF WATER TOTAL COL /
	T 1991 17	1030	40	276	6.8	13.0	8.0	76	E1.5	80	17
FEI	B 1992 13	1200	31	359	7.4	1.0	12.4	88		<20	<10
MAI		1330	47	262	5.8	8.5	10.2	87	<1.0	<20	<10
JU	N 03	1300	40	250	6.4	16.0	9.0	91	<1.0	20	230
JU	L 30	1100	18	353	7.2	20.5	7.2	80	<1.1	170	1040
•	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L	E D
	OCT 1991	68	3 21	3.8	20	4.7	11	54	30	0.2	•
	FEB 1992 13	83		3.9	23	4.1	18	58	39	0.2	
	MAR 31	61		3.8	18	2.5	••	51	31	0.2	
	JUN 03	61	19	3.3	15	3.3	7.2	50	24	0.1	
	JUL 30	84	27	4.0	27	6.2	9.5	60	36	0.2	!
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN, NO2+NÓ DIS- SOLVE (MG/L AS N)	NITRO- GEN, AMMONIA D TOTAL (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AM MONIA ORGANI	1- + ∴C -
	OCT 1991	11	177	0.008	0.007	5.88	5.84	0.18	0.10	0.48	
• :	FEB 1992	11	206	0.006	0.007	6.45	6.40	0.22	0.19	0.26	
	MAR 31 JUN	9.9		0.007	0.006	3.55	3.54	0.13	0.16	0.19	
	03 JUL	8.9	143	0.013	0.015	3.50	3.45	0.12	0.09	0.64	
	30	10	213	0.010	0.010	8.58	8.34	0.07	0.05	<0.03	
	DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON ORGANI DIS- SOLVED (MG/L AS C)	Ċ SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED (MG/L)		D
	OCT_1991	0.70			40.00	10.00	2.4	0.3	2	0.33	
	17 FEB 1992 13	0.39 <0.03		6.2	<0.02 0.04	<0.02	2.6 2.2	0.2 0.4	2 4	0.22	
	MAR 31	0.15		3.7	0.04	<0.02 <0.02	2.2	0.4	7	0.89	
	JUN 03	0.13		3. <i>1</i> 4.1	<0.02	<0.02	3.0	0.3	2	0.22	
	JUL 30	<0.03		4.1	0.02	<0.02	4.7	0.4	. 1	0.22	
.6.	<i>3</i> 0	·0.03			0.02	70.02	7.1	0.4	1	0.03	

01405302 MATCHAPONIX BROOK AT MUNDY AVENUE AT SPOTSWOOD, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
OCT 1991 17	1030	10	<1	<10	90	<1	1	3
DATE	IRON TOTA RECO ERAB (UG/ AS F	LL TOT. IV- REC ILE ERAI IL (UG	AĹ TOT/ OV- RECO BLE ERAI /L (UG/	E, MERCI AL TOTA DV- RECI BLE ERAI /L (UG	AL TOTA DV- REC BLE ERAI /L (UG)	AL SELE OV- NIUM, BLE TOTAL /L (UG/L	, RECC ERAB (UG/	AĽ DV- BLE 'L
OCT 1991 17	1	20	6	170 <0	. 10	9 .	<1	20

01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ

LOCATION.--Lat 40°17'46", long 74°23'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Federal Road, 2.6 mi north of Manalapan, 3.1 mi southwest of Matchaponix, 3.3 mi downstream of Still House Brook, and 4.1 mi northeast of Applegarth.

DRAINAGE AREA. -- 20.9 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

			,	NATER QUA	LIIY DAIA	, WATER	YEAR OC	IORE	(1991 I	O SEPIE	MBER 1992		
DATE		TIME	CH/ II Cl	NST. C JBIC C FEET D PER A	PE- W IFIC W ON- F UCT- (S NCE	TAND - ARD	EMPER- ATURE WATER (DEG C)	SOL	GEN, (OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991 31		1030		10	126	6.4	10.0		9.6	85	2.8	. 20	17
FEB 1992 13		1000		30	149	7.9	0.0	,	15.1	104		20	<10
MAR 31		1000		25	135	6.3	7.0		10.7	90	E1.2	<20	<10
JUN 03		0930		15	136	6.6	16.0		8.9	90	E1.4	170	260
JUL 28		1130		10	144	7.3	20.5		7.9	89	<1.0	70	410
C	ATE	HAR NES TOT (MG AS CAC	S AL /L	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	(MG/L	DI SOL (MG	UM, S- VED /L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	DIS- ED SOLVE L (MG/L	RID DI D SOL (MG	E, S- VED /L
OCT 1 31. FEB 1 13.	992		40 38	9.4 8.9	3.9 3.8	10 8.1		.5 .5	13 6.1	21 26	20 18		.3
MAR 31.			34	8.0	3.3	.7.9	2	. 1	3.1	29	18	0	.3
JUN 03.	•••		32	7.8	3.1	6.7	, 2	.4	5.4	22	14	0	.2
JUL 28.			44	12	3.3	7.2	2	.5	11	19	17	0	.2
	ATE	SILI DIS SOL (MG AS SIO	VED /L	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, NITRII DIS- SOLVE (MG/L AS N)	NIT E GE NO2+ D TOT	N, NÓ3 AL /L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITR GEN AMMON	, AMMONÎ ÎA DIS- L SOLVE L (MG/L	GEN, A MONI ORGA D TOT (MG	AM- A + NIC AL /L
OCT 1							_						_
31. FEB_1	992	11		89	0.006				0.53	<0.0		0.2	
13. MAR		11		88					1.26	0.0		0.2	
31. JUN	•		.7	84	0.006				0.78	0.0		0.2	
03. JUL 20		10	.1	70		0.00			0.47	0.0		<0.0 0.1	
28.	•••	y	• 1	80	0.010		19 0.	50	0.67	0.0			4
C	ATE	NIT GEN, MONI ORGA DIS (MG	AM- A + NIC /L	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	S DI SOL (MG	VED VED	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)	CARBO ORGAN SUS- PENDEI TOTAL (MG/ AS C	N, IC SEDI- D MENT, L SUS- L PENDE	SED MEN DI CHAR SU D PEN	T, S- GE, S- DED
OCT 1		n	.29	0.63	0.82	0.07	0.1	4	2.6	0.4	7	0.1	9
FEB 1	1992		.22	1.5	1.5	0.05			1.3	0.4	8	0.6	
MAR 31.			.27	1.0	1.0	0.06		_	2.0	0.7	13	0.8	
JUN 03.			.03			0.08	•		3.4	0.7	12	0.4	
JUL 28.			.10	0.80	0.77				5.0	0.3	8		

01405340 MANALAPAN BROOK AT FEDERAL ROAD NEAR MANALAPAN, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		WATER	WOALITT	ZAIA, WAIS	IN ILAN O	STOBER 17	VI IO SEPI	CHOCK 177	· C	
DATE	CHI I C	AND, M/ EM- F/ AL DI/ IGH % FI EL) TI	AT. M/ ALL SIE AM. DI/ INER % FI HAN TH	AT. GEN EVE TO AM. IN E	,NH4 GEN, TAL + OF BOT. TOT AT. BOT YKG (MC	IN IN E	RUS INC FAL GAM BOT. TOT AT. BOT /KG (G/	IIC, ORGA IN TOT. MAT BOT KG (GM/	RG + ANIC IN ARSE MAT TOT YKG (UG	AL TERIAL
OCT 1991 31 31	1030 1030	 17	11	24	19 150	00 2800)		25 -	- 21 <1 ··
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 1991 31 31	 <10	 50	 <1	1	··· <1	20	<5	1	20	1600
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
ост 1991 31 31	47000	 <1	20	 110	190	<0.10	0.04	4	10	 <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
ост 1991 31 31	<1		70	14	<1.0	<0.1	8.0	10	8.6	1.3
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991 31 31	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<10	<0.1	<1.00	<10

01405400 MANALAPAN BROOK AT SPOTSWOOD, NJ

LOCATION.--Lat 40°23'22", long 74°23'27", Middlesex County, Hydrologic Unit 02030105, on right bank of DeVoe Lake Dam in Spotswood, 0.1 mi upstream from Cedar Brook, and 0.6 mi upstream from confluence with Matchaponix Brook.

DRAINAGE AREA. -- 40.7 mi².

PERIOD OF RECORD. -- January 1957 to current year.

REVISED RECORDS. -- WSP 1722: 1957-60.

GAGE. -- Water-stage recorder above concrete dam. Datum of gage is sea level (levels by Duhernal Water System). January 1957 to September 1966 at datum 17.72 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge given herein includes flow through sluice gate when open. Gate open Dec. 23 to Mar. 16 and June 20, 21. Some regulation by Lake Manalapan, Helmetta Pond, and DeVoe Lake. Several measurements of water temperature were made during the year.

		DISC	HARGE, CL	JBIC FEET	PER SECOND	, WATER	YEAR OCTOBER	R 1991 T	O SEPTEM	BER 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	ÌÙL	AUG	SEP
1 2 3 4 5	23 21 21 21 21	34 37 37 36 36	39 45 140 235 146	8.2 7.1 6.5 32 115	e30 e30 e30 e30 e30	e39 e38 e38 e38 e38	46 44 43 38 35	27 27 26 25 25	103 64 38 28 51	35 19 15 44 23	58 68 57 16 15	17 16 15 16 14
6 7 8 9 10	23 22 20 19 19	35 34 34 34 35	64 50 44 41 72	e60 e20 e20 e20 e25	e30 e30 e30 e29 e29	e38 e38 e20 e7.0 e20	32 31 31 31 31	23 23 29 57 54	252 293 77 48 35	31 16 15 59 29	12 9.9 9.9 20 19	14 14 14 14 21
11 12 13 14 15	19 24 22 20 20	43 49 44 40 38	67 53 45 46 44	e29 e29 e29 e29 e29	e29 e29 e30 e30 e30	e20 e37 e41 e32 e20	36 36 32 29 30	47 38 32 29 26	29 25 22 19 17	27 27 26 19 18	20 40 37 62 28	35 25 18 17 17
16 17 18 19 20	24 38 88 60 42	36 35 34 34 35	35 35 37 31 29	e29 e29 e29 e29 e29	e7.5 e44 e49 e30 e30	e23 23 25 33 60	127 25 28 35 47	36 58 44 · 33 27	17 16 14 23 e221	27 36 34 29 19	26 36 133 160 44	16 15 16 17 16
21 22 23 24 25	35 32 31 31 34	35 58 103 69 51	30 31 e26 e40 e40	e29 e29 e29 e30 e48	e30 e30 e18 e.00 e16	65 53 48 45 45	42 39 37 34 33	24 22 20 18 18	e615 168 57 68 56	19 20 31 37 36	38 36 35 33 18	15 16 21 16 16
26 27 28 29 30 31	37 39 38 36 36 34	43 40 38 36 36	e40 e40 e39 e39 e6.3 6.3	e49 e34 e30 e29 e29 e29	e39 e46 e40 e39	48 124 115 61 47 44	31 31 30 28 27	18 19 19 18 17 39	19 18 23 35 38	38 51 41 20 18 23	17 20 27 38 28 18	48 50 48 43 40
TOTAL MEAN MAX MIN CFSM IN.	950 30.6 88 19 .75 .87	1249 41.6 103 34 1.02 1.14	1635.6 52.8 235 6.3 1.30 1.49	968.8 31.3 115 6.5 .77 .89	864.50 29.8 49 .00 .73	1323.0 42.7 124 7.0 1.05 1.21	1119 37.3 127 25 .92 1.02	918 29.6 58 17 .73 .84	2489 83.0 615 14 2.04 2.27	882 28.5 59 15 .70 .81	1178.8 38.0 160 9.9 .93 1.08	660 22.0 50 14 .54 .60
STATIST	ICS OF MO	NTHLY ME	AN DATA F	OR WATER	YEARS 1957	7 - 1992,	BY WATER YE	EAR (WY)				
MEAN MAX (WY) MIN (WY)	41.3 95.2 1990 13.7 1983	58.9 154 1978 21.7 1966	74.5 156 1984 27.4 1981	77.6 186 1978 21.1 1981	81.3 139 1979 29.8 1992	91.0 164 1958 37.0 1985	86.2 154 1983 31.1 1985	69.2 148 1984 26.5 1977	48.0 109 1968 17.4 1966	45.5 141 1975 4.40 1966	44.8 128 1990 5.56 1966	41.9 137 1989 11.6 1965
SUMMARY	STATISTI	cs	FOR	1991 CALE	ENDAR YEAR	ı	OR 1992 WATE	ER YEAR		WATER Y	EARS 1957	- 1992
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC		AN AN MINIMUM AK FLOW AK STAGE W FLOW FSM) NCHES) OS		19731.2 54.1 383 5.5 18.0 105 40 40 18	Jan 13 00 Sep 11 9 Sep 11		14237.70 38.9 615 .00 14 773a 19.13 .00 .96 13.01 57 31	Jun 21 Feb 24 Sep 3 Jun 21 Jun 21 Feb 24		63.6 101 34.3 1390 0.0 1700a 20.5 0.0 1.5 21.2 120 46 19	May 3 0 Jun 1 Jul 2 Sep 2 0 Sep 2 0 Many	1973 1981 50 1968 66 1957 12 1966 00 1989 10 1989 days

a Sluice gate open.
e Estimated.

RESERVOIRS IN RARITAN RIVER BASIN

01396790 SPRUCE RUN RESERVOIR.--Lat 40°38'37", long 74°55'26", Hunterdon County, Hydrologic Unit 02030105, at dam on Spruce Run, 0.5 mi north of Clinton, and 0.6 mi upstream from mouth. DRAINAGE AREA, 41.3 mi². PERIOD OF RECORD, November 1963 to current year. GAGE, water-stage recorder. Datum of gage is sea level.

REMARKS.--Reservoir is formed by earthfill dam with concrete spillway; dam completed in October 1963 with crest of spillway at elevation 273.00 ft. Usable capacity, 11,000,000,000 gal. Dead storage 300,000 gal. Reservoir used for water supply and recreation. Outflow mostly regulated by gates. Water is released to maintain minimum flow on the South Branch Raritan River and, at times, for municipal supply. Records given herein represent usable capacity.

COOPERATION.--Records provided by New Jersey Water Supply Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 11,820,000,000 gal, Jan. 24, 1979, elevation, 274.72 ft; minimum observed, 3,100,000,000 gal, Oct. 18, 1983, elevation, 246.68 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 10,270,000,000 gal, Aug. 21, elevation, 271.31 ft; minimum observed, 5,350,000,000 gal, Nov. 21, elevation, 256.34 ft.

REVISED RECORDS.--WDR NJ-84-1: (M). WDR NJ-85-1: 1984.

01397050 ROUND VALLEY RESERVOIR.--Lat 40°36'39", long 74°50'42", Hunterdon County, Hydrologic Unit 02030105, at main dam on Prescott Brook, 1.8 mi south of Lebanon, 3.2 mi upstream from mouth, and 4.5 mi west of Whitehouse. DRAINAGE AREA, 5.7 mi². PERIOD OF RECORD, March 1966 to current year. Nonrecording gage read daily. Datum of gage is sea level.

REMARKS.--Reservoir is formed by earthfill dam at main dam on Prescott Brook and two dams on South Branch Rockaway River at Lebanon; storage began in March 1966. Capacity at spillway level, 55,000,000,000 gal, elevation, 385.00 ft. Reservoir is used primarily for storage and is filled by pumping from South Branch Raritan River at Hamden Pumping Station (see following page). Outflow is controlled by operation of gates in pipe in dams. Water is released into South Branch Rockaway Creek and Prescott Brook.

COOPERATION.--Records provided by New Jersey Water Supply Authority.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 55, 400,000,000 gal, June 15, 1975, elevation, 385.63 ft; minimum observed (after first filling), 37,100,000,000 gal, Feb. 9, 1981, elevation, 361.30 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents observed, 52,140,000,000 gal, July 27, elevation, 381.47 ft; minimum observed, 50,910,000,000 gal, Feb. 15, elevation, 379.51 ft.

REVISED RECORDS.--WDR NJ-85-1: 1984.

	MONTHEND EL	EVATION AND C		R OCTOBER 1991 TO SE	PTEMBER 1992	
Date	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	0139679	O SPRUCE RUN	RESERVOIR	01397050	ROUND VALLEY RE	SERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	260.08 257.69 257.14 258.80	6,370 5,750 5,590 6,020	-29.9 -8.3 +21.5	380.95 380.55 379.61 379.67	51,850 51,630 50,960 50,990	-11.0 -34.6 +1.5
CAL YR 1991			-21.5			9
Jan. 31	259.34 258.47 262.65 264.97 265.91 269.69 270.85 270.96 269.42	6,160 5,940 7,140 7,940 8,220 9,640 10,100 10,140 9,530	+7.0 -11.7 +59.9 +41.3 +14.0 +73.2 +23.0 +2.0 -31.5	379.62 379.63 379.82 379.54 381.03 381.27 381.42 381.36 381.26	50,960 50,970 51,060 51,620 51,920 52,110 52,080 52,030	-1.5 +4.5 +4.5 +28.9 +15.0 +6.2 +3.5 -1.5
WTR YR 1992	•	•	+13.4	-	-	+.7

Elevation at 0800 on first day of following month.

DIVERSIONS IN RARITAN RIVER BASIN-

- 01396920 Water is diverted 4.0 mi upstream from the gaging station on South Branch Raritan River at Stanton (see station 01397000), at the Hamden Pumping Station, for storage in Round Valley Reservoir. Water can also be released from Round Valley Reservoir into the South Branch Raritan River at Hamden and are noted as negative discharge. Records provided by New Jersey Water Supply Authority.

 REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01400509 Elizabethtown Water Company diverts water from the Raritan and Millstone Rivers just upstream from the mouth of the Millstone River at Manville. Records given herein represent the total diversion from both rivers. Records provided by the Elizabethtown Water Company.

 REVISION.--The mean diversion for water year 1991 has been revised to 146 ft³/s superceding the figure published in WDR NJ-91-1.
- 01400836 Water is diverted from Carnegie Lake (Millstone River) at Princeton to the Delaware and Raritan Canal at the aqueduct 4.1 mi downstream from the gaging station on the Delaware and Raritan Canal at Port Mercer (station 01460440). Negative discharge indicates flow from Canal to Carnegie Lake. Records provided by New Jersey Water Supply Authority.

 REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01402910 Water is diverted from the Raritan River just below the Millstone River to the Delaware and Raritan Canal at Ten Mile Lock for municipal supply. Negative discharge indicates flow from Canal to Millstone River. Records provided by the New Jersey Water Supply Authority.

 REVISED RECORDS.--WDR NJ-85-1: 1984.
- 01460570 Elizabethtown Water Company diverts water from the Delaware and Raritan Canal 1200 ft downstream from Ten Mile Lock at Manville for municipal supply. Records provided by the Elizabethtown Water Company.

DIVERSIONS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 01400509 RARITAN AND 01400836 CARNEGIE 01402910 TEN MILE 01460570 DELAWARE AND 01396920 HAMDEN MONTH PUMPING MILLSTONE LOCK RARITAN LAKE STATION RIVERS DIVERSION CANAL -5.3 0 0 13.0 146 141 October... November..... -29.4 Ŏ 11.6 143 ŏ -10.7 8.4 December..... 0 CAL YR 1991..... -10.4 -2.9 150 - .1 16.3 9.8 Λ 149 0 -11.4 January..... 153 151 ŏ ŏ 10.6 February..... . 8 9.8 6.9 0 March..... April..... 155 Ó 0 May..... 12.7 156 Ó 0 18.9 30.2 33.4 154 146 136 Õ ñ June..... O July..... ŏ ŏ ŏ 30.6 Ŏ .6 127 September..... 0 0 WTR YR 1992..... -2.1 18.0 0.2 146

SHREWSBURY RIVER BASIN

01407500 SWIMMING RIVER NEAR RED BANK, NJ

LOCATION.--Lat 40°19'10", long 74°06'55", Monmouth County, Hydrologic Unit 02030104, on left bank 50 ft upstream from spillway at Swimming River Reservoir, 3.3 mi southwest of Red Bank, and 4.8 mi upstream from mouth.

DRAINAGE AREA. -- 49.2 mi².

PERIOD OF RECORD. -- August 1922 to current year.

REVISED RECORDS.--WSP 891: 1939. WDR NJ-83-1: Drainage area. WDR NJ-90-1: 1989.

GAGE.--Water-stage recorder above concrete dam. Datum of gage is 30.00 ft above sea level. Prior to Jan. 19, 1962, at site 800 ft upstream at datum 17.67 ft lower. Jan. 19 to Mar. 30, 1962, nonrecording gage, 700 ft upstream at datum 13.87 ft lower.

REMARKS.--Records fair except for estimated daily discharges and those below 10 ft³/s, which are poor. Records given herein represent flow over spillway and flow or leakage through blowoff gates. Diversion above station for municipal supply. Flow regulated by Swimming River Reservoir. Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and record of diversion furnished by New Jersey-American Water Co.

EXTREMES OUTSIDE PERIOD OF RECORD. -- A flood in July 1919 reached a stage of 7.84 ft (site and datum then in use), from floodmark, discharge about 11,800 ft³/s.

• *		DISCHA	RGE, CUBIC	FEET PER	SECOND, DAIL	WATER YE Y MEAN VA	AR OCTOBER	R 1991 T	O SEPTEMBE	R 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	- AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 3.0 93 49	17 15 13 48 87	6.2 5.3 4.6 4.3	e21 e17 e13 e9.7 e7.4	e32 e31 e26 e18 e16	3.4 3.7 3.2 2.5 2.2	26 33 25 17 72	4.5 2.5 1.5 7.1 8.7	42 24 15 11 9.3	1.1 .35 .22 .20 .07
6 7 8 9 10	.00 .00 .00 .00	.00 .00 .00 .00	33 28 23 20 50	40 29 23 19 13	3.8 3.5 3.6 3.9 2.6	e5.1 e18 e29 e23 e21	e15 e12 e14 e13	2.2 2.1 5.1 52 54	274 59 35 29 22	7.2 5.5 3.8 14 17	6.3 3.7 2.0 2.0 3.3	.00 .00 .00 .00
11 12 13 14 15	.00 .00 .00 .00	.00 .00 .00 .00	43 31 27 28 19	12 9.8 8.8 11 9.3	2.2 1.9 1.4 1.8 2.5	e47 e36 e23 e18 e13	13 13 9.9 8.4 7.4	43 30 26 23 17	17 12 8.5 5.5 3.1	12 7.2 5.4 4.0 2.8	4.4 21 17 20 22	.38 .43 .28 .13 .03
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	14 11 10 8.2 7.2	7.7 5.1 3.9 2.2 1.4	14 19 20 22 21	e8.5 e5.8 e7.9 e33 e59	7.1 14 39 40 33	26 35 29 23 18	1.6 .81 .26 98 556	3.9 3.4 2.9 2.1 1.2	108 200 752 122 50	.00 .00 .00 .00
21 22 23 24 25	.00 .00 .00 .00	.00 .00 .00 .00	6.7 6.3 5.7 5.4 4.8	1.0 .84 1.5 14	18 15 13 11 e8.8	e38 e31 e34 e32 e28	28 26 25 20 18	9.5 5.9 3.3 2.3	75 35 29 27 26	.59 .25 .66 3.5 3.3	32 26 22 17 15	.00 .00 .00 .00
26 27 28 29 30 31	.00 .00 .00 .00 .00	.00 .00 .00 .00	4.4 3.8 2.9 6.7 21 22	12 9.3 8.6 7.7 7.2 6.5	e35 e31 e27 e24	e33 e72 e66 e49 e33 e36	17 14 8.5 7.1 4.8	1.8 2.2 1.5 .70 .40 3.9	21 17 14 9.4 6.1	2.7 4.1 4.2 2.9 1.6 4.2	12 11 9.5 6.9 3.9 2.2	2.7 7.5 8.2 7.6 5.7
TOTAL MEAN MAX MIN (†) MEAN*	0.00 .000 .00 .00 38.3 38.3	0.00 .000 .00 .00 40.0 40.0	587.10 18.9 93 .00 47.6 66.5	457.84 14.8 87 .84 37.9 56.2	330.7 11.4 35 1.4 37.8 49.2	867.4 28.0 72 5.1 37.0 65.0	542.2 18.1 40 4.8 34.1 52.3	445.90 14.4 54 .40 37.6 52.0	1554.27 51.8 556 .26 36.2 88.0	144.70 4.67 17 .25 36.8 41.5	1592.5 51.4 752 2.0 32.4 83.8	34.91 1.16 8.2 .00 38.3 39.5
STATIST		ONTHLY ME	AN (UNADJU	STED) DATA	FOR WAT	TER YEARS	1924 - 19	992, BY	WATER YEAR	(WY)		
MEAN MAX (WY) MIN (WY)	40.4 163 1944 .000 1971	56.9 208 1973 .000 1981	68.2 196 1978 .000 1981	78.5 248 1978 .000 1981	91.7 201 1979 1.19 1989	101 184 1984 18.1 1985	92.6 209 1980 2.93 1962	70.8 183 1984 4.07 1985	49.2 135 1972 .000 1985	42.2 187 1938 .000 1966	39.4 128 1955 .000 1957	39.0 210 1938 .000 1980

NAVESINK RIVER BASIN

01407500 SWIMMING RIVER NEAR RED BANK, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1924 - 1992
ANNUAL TOTAL ANNUAL MEAN	11700.89 32.1 Unadjusted 73.9		64.0 Unadjusted 80.6
ANNUAL MEAN* Highest annual mean Lowest annual mean		54.7	123 1928 9.76 1985
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	959 Mar 4 .00 Jun 17 .00 Jun 22	, 752 Aug 18 .00 Many days .00 Oct 1	3050 Oct 27 1943 .00 Apr 29 1925 .00 Jul 16 1955
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		1320 Aug 18 6.02 Aug 18 .00 Many days	8910a Oct 27 1943 8.96 Oct 27 1943 .00 Many days
ANNUAL RUNOFF (CFSM)* ANNUAL RUNOFF (INCHES)	1.50 8.85 Unadjusted	1.11 4.96 Unadjusted	1.64 17.67 Unadjusted
ANNUAL RUNOFF (INCHES)* 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	78 3.5	15.09 34 7.1	22.56 122 46 _
90 PERCENT EXCEEDS	.00	.00	.70

a From rating curve extended above 1,000 ft³/s on basis of weir formula, site and datum then in use.
† Diversion and change in contents, in cubic feet per second, from Swimming River Reservoir.
* Adjusted for diversion and change in contents.
e Estimated.

SHARK RIVER BASIN

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°11'56", long 74°04'14", Monmouth County, Hydrologic Unit 02030104, on left bank 100 ft upstream from bridge on Remsen Mill Road, 0.3 mi downstream from Robins Swamp Brook, and 1.7 mi west of Neptune City.

DRAINAGE AREA. -- 9.96 mi 2.

PERIOD OF RECORD. -- October 1966 to current year.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 7.05 ft above sea level.

REMARKS.--No estimated daily discharges. Records fair. Diversion above station by New Jersey-American Water Co. for municipal supply (records given herein) and by farmers for irrigation. Subsequent to November 1962, entire flow from 0.34 mi of drainage area controlled by Glendola Reservoir (capacity 1,000 million gal) on Robins Swamp Brook, 0.6 mi southwest of gage. Water pumped into Glendola Reservoir from Manasquan River or Reservoir subsequent to July 1990 (see station 01408029). Several measurements of water temperature were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of diversion provided by New Jersey-American Water Co.

		DISC	HARGE, CU	BIC FEET	PER SECONI	WATER	YEAR OCTOB VALUES	BER 1991	TO SEPTEME	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP,
1 2 3 4 5	5.0 4.9 4.6 4.6 7.2	2.3 2.4 2.5 2.1 3.8	5.4 7.9 56 48 16	12 12 11 · 25 21	13 12 11 12 12	11 11 11 10 10	12 17 12 11 9.4	2.6 3.0 2.8 2.8 3.5	22 12 6.9 2.5 23	4.7 5.4 7.8 17 9.6	37 12 9.9 9.1 8.6	3.9 3.7 5.1 4.5 4.1
6 7 . 8 9 10	9.8 6.1 5.3 4.9 4.2	5.9 6.1 4.4 1.4 6.3	10 8.1 7.2 8.2 31	15 13 12 12 12	11 9.4 12 13 11	11 18 16 11 7.6	9.3 8.4 7.8 7.1 7.8	5.7 4.0 30 40 30	35 17 11 11	8.1 5.1 6.9 19 5.7	8.1 6.8 2.4 5.2 3.5	5.7 6.1 6.2 5.8 12
11 12 13 14 15	4.8 6.5 5.8 5.7 6.1	36 16 12 11 9.7	18 14 9.6 6.4 5.9	11 11 11 13 11	7.9 6.5 4.7 7.2 12	28 14 8.6 6.0 5.6	3.8 3.1 2.8 3.3 2.6	23 13 6.0 4.9 3.7	2.8 2.2 1.6 2.1 12	2.9 2.6 5.1 4.5 10	9.7 12 6.0 12 9.5	13 5.0 4.0 3.9 3.9
16 17 18 19 20	7.3 21 18 5.3 3.6	9.6 9.5 10 9.1 8.9	5.7 4.2 4.0 3.0 2.9	9.6 10 10 9.9 9.5	28 14 13 11 8.3	5.0 4.3 9.5 29	5.7 19 24 17 6.3	20 18 10 6.1 4.8	6.0 7.0 6.0 32 56	12 3.6 3.5 4.2 7.1	56 84 473 41 21	3.8 4.6 5.0 4.9 5.0
21 22 23 24 25	3.1 3.0 2.7 2.6 4.1	8.9 12 24 13 10	3.1 3.5 3.7 8.3 9.3	9.8 9.8 17 27 17	7.3 6.6 6.5 6.2 7.3	16 15 13 8.6 9.3	7.2 8.1 4.6 4.8 3.6	3.8 3.8 2.2 4.2 2.8	19 12 10 18 13	6.8 6.9 14 11 4.2	13 10 8.2 7.0 6.5	5.0 5.4 9.2 5.6
26 27 28 29 30 31	5.0 5.7 5.0 5.0 3.4	9.6 7.1 4.5 4.4 4.2	9.6 9.6 9.6 28 21 14	14 13 13 13 13	24 16 13 12	13 34 18 14 9.0	3.2 3.1 2.9 2.7	4.6 2.9 5.0 2.1 3.4 25	5.2 4.5 5.0 3.7 4.7	3.0 3.5 6.9 6.9	6.2 5.9 5.8 5.4 4.8 4.4	73 21 13 9.2 7.7
TOTAL MEAN MAX MIN (†)	185.3 5.98 21 2.6 5.3	266.7 8.89 36 1.4 3.4	391.2 12.6 56 2.9 5.6	410.6 13.2 27 9.5 0	327.9 11.3 28 4.7 3.6	411.5 13.3 34 4.3 4.1	232.8 7.76 24 2.6 6.4	293.7 9.47 40 2.1 6.8	374.2 12.5 56 1.6 4.8	269.0 8.68 58 2.6 5.3	904.0 29.2 473 2.4 5.8	275.3 9.18 73 3.7 5.9
STATIS	TICS OF	MONTHLY ME		OR WATER	YEARS 1967	7 - 1992,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	10.4 34.0 1990 2.81 1982	13.6 31.7 1978 1.73 1982	17.2 44.2 1970 4.11 1981	17.0 41.1 1978 3.57 1981	15.5 32.9 1979 3.79 1974	21.1 50.2 1984 6.53 1986	20.4 48.3 1983 6.39 1985	17.4 46.8 1989 3.51 1986	9.83 21.9 1975 2.13 1986	10.5 30.1 1984 3.47 1985	11.6 29.2 1992 3.47 1988	8.88 22.6 1989 1.28 1988

SHARK RIVER BASIN

01407705 SHARK RIVER NEAR NEPTUNE CITY, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1967 - 1992
ANNUAL TOTAL ANNUAL MEAN (†) HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	4616.26 12.6 6.0	4328.5 11.8 4.8	14.5 24.9 1984 6.80 1981
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	349 Jan 12 .25 Sep 12 1.1 Sep 7	472 Aug 18 1.4 Nov 9 2.8 Apr 28 1170 Aug 18 6.59 Aug 18	560 Dec 26 1969 .00 Sep 20 1981 .70 Sep 26 1988 1170 Aug 18 1992 6.59 Aug 18 1992
INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	24 7.3 1.9	.00a Sep 19 20 8.0 3.2	.00 Many days 28 8.3 2.6

a No flow was also observed on July 7.
 † Diversion, equivalent in cubic feet per second, from Shark River by New Jersey-American Water Company, for municipal supply.

SHARK RIVER BASIN

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ

LOCATION.--Lat 40°12'13", long 74°03'58", Monmouth County, Hydrologic Unit 02030104, on left bank 60 ft downstream from dam on Jumping Brook Reservoir, 0.8 mi upstream from mouth, and 1.4 mi west of Neptune City. Water-quality samples collected at bridge on Corlies Avenue, 600 ft downstream from gaging station.

DRAINAGE AREA. -- 6.46 mi 2.

PERIOD OF RECORD.--October 1966 to current year. Records for water years 1976-83 are unpublished but are available in the files of New Jersey District Office.

REVISED RECORDS.--WDR-84-1: drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 13.76 ft above sea level.

REMARKS.--No estimated daily discharges. Records good except those above 300 ft³/s, which are fair. Diversion above station by New Jersey-American Water Co. for municipal supply (records given herein) and by farmers for irrigation. Several measurements of water temperature, other than those published, were made during the year.

COOPERATION. -- Water-stage recorder inspected by and records of diversion provided by New Jersey-American Water Co.

		DISCHA	RGE, CUBIC	FEET PER	SECOND, DAILY	WATER YE	AR OCTOBER	1991 TO	SEPTEMBE	R 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.9 2.9 2.6 2.6 4.2	2.0 2.1 2.1 2.1 2.0	3.2 5.4 40 26 6.8	3.6 3.3 3.3 12 8.3	4.4 2.6 2.5 2.6 2.6	2.9 2.8 2.8 2.7 2.6	5.2 7.0 4.3 3.9 5.3	2.5 3.0 2.8 2.6 2.6	15 13 4.9 3.6 25	1.6 1.1 1.4 9.4 3.6	30 4.9 3.1 2.5 2.0	2.6 2.0 3.1 2.6 2.4
6 7 8 9	7.4 3.5 2.8 2.6 2.3	1.9 1.9 2.0 2.0 5.5	5.0 4.2 3.7 3.7 19	4.5 3.7 3.3 3.3 3.5	2.4 2.5 3.1 3.0 4.3	2.6 8.2 5.6 3.6 3.8	3.1 3.0 2.9 2.9 2.9	2.3 2.0 20 26 16	31 8.5 5.8 4.6 3.8	2.4 1.5 1.4 14 3.6	1.3 1.1 1.4 3.6 3.6	2.4 2.4 2.4 1.9 8.2
11 12 13 14 15	2.4 3.7 3.0 2.5 2.7	24 6.8 3.9 3.0 2.8	6.2 4.3 3.9 4.2 3.7	3.2 3.0 2.9 4.6 3.4	2.4 2.4 2.3 2.8 6.0	20 6.3 4.1 3.4 3.1	3.0 3.1 2.8 2.6 2.3	10 5.4 4.5 4.0 3.5	3.2 2.7 2.7 2.6 2.1	2.3 2.0 1.9 1.7 4.9	6.7 9.0 3.1 7.7 8.3	11 3.8 2.6 2.4 2.3
16 17 18 19 20	3.1 18 20 5.5 3.8	2.6 2.4 2.3 2.3 2.1	3.2 3.0 3.0 2.6 2.6	2.9 3.0 2.6 2.4 2.3	17 5.4 5.1 5.1 3.8	2.9 2.9 2.9 19 9.7	4.6 9.2 11 9.2 4.6	13 7.6 4.8 3.7 3.2	2.0 1.9 1.8 23 36	8.3 2.7 2.0 1.6 1.4	47 81 288 27 14	2.3 2.0 2.5 2.5 2.3
21 22 23 24 25	3.3 2.8 2.4 2.3 2.4	2.4 5.2 13 4.4 3.1	2.9 2.8 2.8 2.8 2.6	2.4 2.4 7.6 13 5.0	3.2 3.0 2.9 2.8 3.2	5.8 4.6 7.9 5.9 5.4	3.8 3.9 3.5 3.2 3.6	3.0 2.4 2.4 2.2 1.9	7.1 4.7 3.8 11 6.9	.89 .83 8.7 6.4 2.7	9.4 5.5 4.6 3.9 3.2	2.0 2.0 5.9 3.0
26 27 28 29 30 31	2.4 2.4 2.1 2.1 2.1	2.7 2.5 2.4 2.6 2.3	2.6 2.5 2.5 19 11 4.8	3.9 3.5 3.5 3.3 3.3	14 5.6 3.8 3.3	8.2 18 6.4 4.6 4.6 6.9	3.2 3.1 3.1 2.9 3.4	1.7 1.7 1.3 1.6 2.2	3.6 2.7 2.3 1.5	2.0 1.8 1.7 1.2 .87	3.0 3.0 2.7 2.7 2.0 2.2	8.0 5.0 3.8 3.2
TOTAL MEAN MAX MIN (†)	125.2 4.04 20 2.1 .41	116.4 3.88 24 1.9	210.0 6.77 40 2.5 .55	130.5 4.21 13 2.3 0	124.1 4.28 17 2.3 0	190.2 6.14 20 2.6 0	126.6 4.22 11 2.3 .36	177.9 5.74 26 1.3 .56	238.3 7.94 36 1.5 .35	136.89 4.42 41 .83 .55	587.5 19.0 288 1.1 .50	155.6 5.19 49 1.9
STATIST	ICS OF MC	NTHLY MEA	N DATA FO		EARS 1967	- 1992,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	7.17 34.5 1990 1.97 1982	9.25 47.3 1978 1.89 1982	10.9 30.5 1970 2.78 1981	12.5 55.5 1979 1.94 1981	11.7 62.1 1979 3.53 1968	13.7 47.1 1984 3.86 1985	14.7 66.5 1980 3.29 1985	13.1 53.8 1989 2.08 1977	7.28 23.7 1972 2.11 1986	7.07 21.5 1989 2.44 1988	7.61 19.0 1992 1.52 1982	6.60 24.2 1971 1.25 1982

SHARK RIVER BASIN

01407760 JUMPING BROOK NEAR NEPTUNE CITY, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1967 - 1992
ANNUAL TOTAL	2936.0	2319.19	10.1
ANNUAL MEAN	8.04	6.34	
(†)	.13	.34	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	244 Jan 12	288 Aug 18	20.4 1979 4.05 1981 954 Jan 21 1979
LOWEST DAILY MEAN	1.3 Jul 12	.83 Jul 22	.12 Sep 15 1981
ANNUAL SEVEN-DAY MINIMUM	1.6 Sep 12	1.7 Jun 27	.51 Oct 7 1966
INSTANTANEOUS PEAK FLOW		779 Aug 18	1830a Sep 12 1971
INSTANTANEOUS PEAK STAGE		7.43 Aug 18	7.43 Aug 18 1992
INSTANTANEOUS LOW FLOW		.38 Jul 30	.00 Jun 7 1971
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	15	11	18
	4.3	3.1	5.0
	1.9	2.0	1.9

a From rating curve extended above 150 ft³/s.
† Diversion, in cubic feet per second, from Jumping Brook by New Jersey-American Water Co. for municipal supply.

01408000 MANASQUAN RIVER AT SQUANKUM, NJ

LOCATION.--Lat 40°09'47", Long 74°09'21", Monmouth County, Hydrologic Unit 02040301, on right bank 50 ft upstream from northbound bridge on State Highway 547 (Squankum Park Road) in Squankum, and 0.4 mi downstream from Marsh Bog Brook.

DRAINAGE AREA. -- 44.0 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1931 to current year. Monthly discharge only for July 1931, published in WSP 1302. REVISED RECORDS.--WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.82 ft above sea level. Prior to Aug. 13, 1940, water-stage recorder at site 80 ft upstream at same datum.

REMARKS.--No estimated daily discharges. Records good except those above 300 ft³/s, which are fair. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 600 ft3/s and maximum (*):

			· · · · · · · · · · · · · · · · · · ·		- 0 0 -			•	•			
Date	Time	-[oischarge (ft ³ /s)		Gage height (ft)		Date	Time	Dis (f	charge t ³ /s)	Gag	ge height (ft)
June 20	0800		*1,350		*8.37		Aug. 18	1115	•	990		7.16
		DISCH	ARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER	1991 TO	SEPTEMBE	R 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	27 26 26 26 25	23 23 23 23 23	27 33 183 199 71	36 35 35 106 87	34 31 31 31 31	34 34 34 33 33	54 60 49 45 43	34 34 33 31 31	69 42 35 31 75	33 31 30 62 36	96 33 27 31 25	30 29 33 31 29
6 7 8 9 10	26 25 . 24 23 23	23 23 23 23 25	53 46 42 40 94	54 47 42 41 42	30 30 31 32 28	33 44 50 38 36	41 40 40 38 39	31 30 52 133 70	250 75 54 46 40	31 30 28 62 33	23 22 22 27 26	28 28 28 28 42
11 12 13 14 15	23 27 23 22 22	56 36 30 27 26	56 46 43 45 42	38 36 36 46 44	29 29 28 31 33	90 54 43 39 37	40 37 36 36 36	59 46 43 42 37	37 33 31 29 28	29 26 26 26 29	38 131 35 53 47	56 32 28 27 27
16 17 18 19 20	27 60 96 37 29	26 24 24 24 24	37 36 36 33 32	36 33 33 30 30	91 47 43 45 40	35 35 35 87 76	36 56 79 50 44	59 52 41 38 34	27 25 25 112 753	57 29 28 25 25	138 205 719 161 93	27 26 25 25 24
21 22 23 24 25	27 26 26 25 25	24 38 69 34 29	33 33 33 33	31 31 38 80 45	37 35 34 33 33	59 48 57 52 51	43 44 45 39 38	33 31 31 29 28	124 75 60 66 54	24 24 45 50 29	68 55 48 43 40	24 25 36 25 27
26 27 28 29 30 31	25 24 23 23 23 23 23	27 26 26 25 25	30 30 30 62 64 41	39 36 36 35 34 35	68 50 41 39	51 170 74 57 52 65	36 35 36 35 34	29 30 28 27 27 76	45 41 41 37 34	26 26 25 23 22 84	38 69 40 36 33 31	160 56 42 35 31
TOTAL MEAN MAX MIN CFSM IN.	887 28.6 96 22 .65 .75	852 28.4 69 23 .65	1614 52.1 199 27 1.18 1.36	1327 42.8 106 30 .97 1.12	1095 37.8 91 28 .86 .93	1636 52.8 170 33 1.20 1.38	42.8 79 34	1299 41.9 133 27 .95 1.10	2394 79.8 753 25 1.81 2.02	1054 34.0 84 22 .77 .89	2453 79.1 719 22 1.80 2.07	1064 35.5 160 24 .81 .90
STATIST	ICS OF MON	ITHLY MEA	N DATA FO	R WATER	YEARS 1932	- 1992,	BY WATER YE	AR (WY)				
MEAN MAX (WY) MIN (WY)	51.4 130 1972 22.1 1964	70.8 231 1978 22.3 1966	81.4 212 1978 26.4 1966	89.4 218 1979 30.7 1981	96.9 214 1979 37.8 1992	111 221 1984 47.2 1985	1983 40.3	80.1 177 1989 38.8 1955	58.4 126 1968 26.6 1957	53.4 200 1938 19.9 1966	51.9 108 1948 16.7 1932	51.8 183 1938 16.7 1932

01408000 MANASQUAN RIVER AT SQUANKUM, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1932 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	21575 59.1	16959 46.3	74.7 131 1978
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	809 Jan 12 20 Jul 12 20 Sep 12	753 Jun 20 22 Oct 14 23 Oct 28	40.5 1966 1720 Nov 8 1977 14 Aug 24 1932 14 Sep 8 1932
INSTANTANEOUS PEAK FLOW	20 Sep 12	1350 Jun 20	2940 Sep 21 1938
INSTANTANEOUS PEAK STAGE		8.37 Jun 20	12.45 Sep 21 1938
INSTANTANEOUS LOW FLOW		20 Jul 30	8.1 Aug 6 1981
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.34	1.05	1.70
	18.24	14.34	23.06
	102	69	130
50 PERCENT EXCEEDS	41	34	54
90 PERCENT EXCEEDS	23	25	27

01408000 MANASQUAN RIVER AT SQUANKUM, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963-1981, 1991 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH. II CI	NST. CI UBIC CO FEET DU PER AN	FIC WH FIC WH ON- FI OCT- (ST OCE A	AND - A	TURE ATER S	(YGEN, (DIS- SOLVED S	DIS- DI SOLVED I (PER- (CENT SATUR-	BIO- F CHEM- F ICAL, 5 DAY E	COLI- FORM, FECAL, EC BROTH (ENTERO- COCCI ME,MF WATER TOTAL COL /
NOV 1991 20	1000	24	221	6.9	9.0	9.5	82	E1.4	20	11
FEB 1992										
04 APR_	1130	31	217	7.2	2.5	12.3	90	E1.8	50	<10
09 JUN	1045	39 .	211	7.2	9.5	10.8	94	<1.0	70	10
16 JUL	1400	27	200	7.6	18.5	8.9	94	<1.0	790	60
30	1100	22	220	7.5	19.0	7 . 9.	85	E1.3	790	270
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVEE (MG/L) AS SO4	DIS- SOLVED (MG/L	(MG/L	D.
NOV_1991	۰.	20				. 50				
20 FEB 1992	84	29	2.8	6.7	3.1	50	35	16	0.2	
04 APR	81	27	3.2	8.6	2.8	37	37	19	0.2	!
09 Jun	72	. 24	3.0	7.4	2.6	32	36	22	0.2	!
16 JUL	83	28	3.1	7.6	3.1	41	29	16	0.1	
30	82	28	3.0	7.8	2.9	46	34	17	0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NÓ3	NITRO- GEN, AMMONÍA	AMMON Í A	GEN,AM MONÍA ORGANI	+ C
NOV 1991										
20 FEB 1992	14	138	<0.003	<0.003	0.25	0.25	0.06	0.15	0.21	
04 APR	15	138	0.007	0.007	0.70	0.66	0.10	0.13	0.22	
09 JUN	14	131	0.011	0.011	0.52	0.51	<0.03	<0.03	0.13	
16	17	131	0.006	0.005	0.50	0.47	<0.03	<0.03	0.17	
JUL 30	14	137	0.007	0.006	0.50	0.50	<0.03	<0.03	<0.03	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)		, D
NOV 1991										
20 FEB 1992	0.29	0.46	0.54	0.02	<0.02	1.6	0.3	3	0.19	
04 APR	••	0.92		0.06	<0.02	1.3	0.2	4	0.33	
ີ່ 09 JUN	0.11	0.65	0.62	0.03	<0.02	1.3	0.2	4	0.42	
16	0.15	0.67	0.62	0.04	<0.02	1.5	0.2	4	0.29	
JUL 30	<0.03	• •	••	0.05	<0.02	11	0.2	3	0.18	•

01408000 MANASQUAN RIVER AT SQUANKUM, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	OXYG DEMA CHE ICA (HI TIME LEVE (MG/	ND, MA IM- FA IL DIA GH % FI IL) TH	AT. MA ALL SIE M. DIA NER % FI	T. GEN, VE TOT M. IN B NER MA IAN (MG/	NH4 GEN, AL + OR BOT. TOT IT. BOT 'KG (MG	RG. TOT IN IN B MAT MA G/KG (MG/	US INC AL GAN OT TOT IT BOT KG (G/	R- INOR IC, ORGA IN TOT. MAT BOT KG (GM/	RG + INIC IN ARSE MAT TOT KG (UG	AL TERIAL
NOV 1991 20 20	1000 - 1000	10 -	<1	.<1	1.1 12				1.4 -	- 8
JUN 1992 16	1400	<10 -							-	<1
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 20 20	 <10	 <10	 <1	<1	8	. 8	<5	• •	. 10	1200
JUN 1992 16	<10	30	<1		1	••		<1	•	1200
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 20 20 JUN 1992 16	17000	 <1 <1	<10 	90 50	42	<0.10 <0.10	<0.01	 4 7	<10 	<1 <1 <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 20 20 JUN 1992	<1	20	90	<1 	<1.0 ··	<0.1 ···	2.0	0.6	0.3	0.6
16	• •	<10			••		••	••	••	- •
: DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 20 20	0.2	<0.1 	<0.1 	<0.1	<0.1	<0.1	<1.0	<0.1	<1.00	<10
JUN 1992 16								•		••

01408029 MANASQUAN RIVER NEAR ALLENWOOD, NJ

LOCATION.--Lat 40°08'48", long 74°07'23", Monmouth County, Hydrologic Unit 02040301, on left bank just downstream of pumping station of Manasquan Water Supply System, 1400 ft upstream from Hospital Road near Allenwood, 1.2 mi downstream from Mill Run, and 7.9 mi from mouth.

DRAINAGE AREA. -- 63.3 mi².

PERIOD OF RECORD. -- June 1990 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is sea level (New Jersey Water Supply Authority benchmark).

REMARKS.-- Records good except for estimated discharges, which are fair. Diversion by New Jersey-American Water Company from Manasquan Reservoir since 1990 and by Manasquan Water Supply System at gage to Manasquan Reservoir for municipal supply since March 1990. Records of diversions provided by New Jersey Water Supply Authority. Several measurements of water temperature were made during the year.

REVISIONS...The diversions as published in the 1991 report are in error. The diversions from the Manasquan River are published as diversions to Glendola Reservoir and the diversions to Glendola Reservoir are published as diversions from Manasquan River.

		DISCHA	RGE, CUBI	C FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER VALUES	1991	TO SEPTEMBER	1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	18 17 17 17 16	25 16 16 15 15	22 19 196 268 82	39 48 54 138 148	29 24 24 23 24	23 29 28 27 26	e29 e37 e20 e17 e20	25 26 31 26 22	77 33 23 23 42	20 18 18 54 28	163 37 21 22 17	19 18 20 21 18
6 7 8 9 10	22 17 15 13 21	16 15 15 15	56 18 15 26 98	87 56 57 60 63	22 22 24 25 18	26 37 26 14 17	e24 e25 e23 e24 27	21 20 35 107 32	259 60 61 48 37	20 19 17 51 24	17 18 18 22 20	17 17 17 15 36
11 12 13 14 15	24 18 14 15 17	67 44 27 21 16	55 35 31 17 16	57 54 53 65 67	19 20 17 22 26	86 47 27 19 15	30 26 26 14 32	56 42 34 33 26	31 24 18 17 15	18 17 17 18 23	20 145 27 39 26	63 26 18 15 17
16 17 18 19 20	19 46 113 36 19	15 14 15 20 19	26 18 30 20 27	54 48 49 42 44	130 83 56 49 40	13 28 32 89 82	39 49 46 24 37	27 21 33 27 26	16 16 15 77 1030	54 21 17 17 19	92 317 1350 366 149	17 16 15 18 18
21 22 23 24 25	16 17 16 15 15	19 27 50 16 23	26 26 23 28 28	45 45 55 120 74	34 30 29 27 28	40 20 49 43 44	32 33 30 26 15	31 27 36 24 22	170 73 37 42 40	19 19 31 53 21	88 58 46 38 34	17 28 48 25 19
26 27 28 29 30 31	17 16 27 37 33 33	24 22 21 20 20	27 27 26 69 96 53	60 54 54 42 29 30	79 61 40 14	e44 e250 e61 e43 e42 e54	24 30 26 28 27	23 24 22 19 19 50	36 31 31 25 22	18 18 17 17 17 17	31 61 32 27 23 21	242 110 71 58 47
TOTAL MEAN MAX MIN (a) (*)	736 23.7 113 13 21.1 20.8	667 22.2 67 14 21.4 13.4	1504 48.5 268 15 24.6 10.7	1891 61.0 148 29 9.5 18.3	1039 35.8 130 14 25.6 20.8	1381 44.5 250 13 41.4 13.3	14 35.2	967 31.2 107 19 32.8 16.1	1030 15	823 26.5 103 17 23.3 20.7	3345 108 1350 17 23.6 18.7	1086 36.2 242 15 18.6 17.2
STATIST	ICS OF	MONTHLY MEAN	DATA FOR	WATER	YEARS 1990	- 1992,	BY WATER YE	AR (WY	')			
MEAN MAX (WY) MIN (WY)	43.4 63.0 1991 23.7 1992	37.8 53.4 1991 22.2 1992	75.8 103 1991 48.5 1992	126 191 1991 61.0 1992	52.3 69.4 1991 35.8 1992	112 179 1991 44.5 1992	138 1991 28.0	52.4 73.6 1991 31.2 1992	1992 21.5	42.8 66.4 1990 26.5 1992	96.4 131 1990 50.3 1991	32.8 36.2 1992 26.1 1991

J. -

MANASQUAN RIVER BASIN

01408029 MANASQUAN RIVER NEAR ALLENWOOD, NJ.-Continued

SUMMARY STATISTICS	FOR 1991 CALEN	DAR YEAR	FOR 1992 WATE	ER YEAR	WATER YEARS	1990 - 1992
ANNUAL TOTAL ANNUAL MEAN (α)	26825 73.5 18.3		16708 45.7 25.5		64.8 84.0	1991
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	1300 12	Jan 12 Jun 27	1350 13	Aug 18 Oct 9	45.7 1350 12	1992 Aug 18 1992 Jun 23 1990
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	14	Sep 7		Nov 3 Jun 20 Jun 20	14 1930 14.80 .05a	Sep 7 1991 Jan 12 1991 Jan 12 1991 Apr 28 1992
INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	154 35 15		72 26 16	Apr 28	128 35 16	MPI 20 1992

Result of pumping to Manasquan Reservoir.
Estimated.
Diversion from Manasquan River by New Jersey Water Supply Authority, equivalent in cubic feet per second.
These figures include water pumped to Glendola Reservoir for New Jersey-American Water Company.
Water pumped to New Jersey-American Company Glendola Reservoir for municipal supply, equivalent in cubic feet

RESERVOIR DATA

01407965 MANASQUAN RESERVOIR.--Lat 40°10'48", long 74°11'44", Monmouth County, Hydrologic Unit 02040301, at dam on Timber Swamp Brook, 1.6 mi southwest of Farmingdale, and 1.2 mi upstream from the Manasquan River. DRAINAGE AREA, 3.15 mi . PERIOD OF RECORD, March 1990 to current year. GAGE, water-stage recorder. Datum of gage is sea level. REMARKS.--Reservoir is formed by an earthfill dam 4,840 ft long, utilizing a soil-bentonite cut-off wall to control water seepage; dam completed in July 1990 with nominal crest elevation 112.0 ft, but filling began earlier. Usable capacity 4,200,000,000 gal at elevation 103.0 ft, which represents the normal and service spillway elevation; outflow is regulated through an inlet/outlet tower and the reservoir is filled by pumping from the Manasquan River Intake Pumping Station and the Reservoir Pumping Station through 5.25 mi of 66-in. pipeline (see station 01408029). Water is used for municipal supply.

COOPERATION.--Records provided by New Jersey Water Supply Authority.

EXTREMES FOR CURRENT YEAR.--Maximum contents 4,200,000,000 gal, June 7, elevation, 103.0 ft; minimum, 3,180,000,000 gal, Feb. 26, elevation, 97.7 ft.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 4,200,000,000 gal, June 7, 1992, elevation, 103.0 ft; minimum (after first filling), 3,180,000,000 gal, Feb. 26, 1992, elevation 97.7 ft.

Date	Elevation (feet)	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	
	01407	965 MANASQUAN RES	ERVOIR	
Sept. 30	99.40 99.10 98.80 99.90	3,500 3,450 3,390 3,610	-2.5 -3.1 +11.0	
CAL YR 1991			8	
Jan. 31. Feb. 29. Mar. 31. Apr. 30. May 31. June 30. July 31. Aug. 31. Sept. 30.	98.00 97.80 100.20 101.30 102.40 102.80 102.20 102.30 101.80	3,240 3,200 3,670 3,880 4,100 4,170 4,060 4,080 3,980	18.5 -2.1 +23.4 +10.8 +11.0 +3.6 -5.5 +1.0 -5.2	

METEDECONK RIVER BASIN

01408120 NORTH BRANCH METEDECONK RIVER NEAR LAKEWOOD, NJ

LOCATION.--Lat 40°05'30", long 74°09'10", Ocean County, Hydrologic Unit 02040301, on upstream right bank at bridge on State Route 549, 1.0 mi upstream from confluence with South Branch Metedeconk River, and 2.3 mi east of Lakewood.

DRAINAGE AREA .-- 34.9 mi².

PERIOD OF RECORD. -- October 1972 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 3.89 ft above sea level. Prior to Nov. 17, 1977, gage located on upstream left side of bridge. Nov. 17, 1977 to Dec. 19, 1984, gage located on the downstream side of bridge.

REMARKS.--No estimated daily discharges. Récords good. Several measurements of water temperature were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 250 ft³/s and maximum (*):

Date	Time		harge 3/s)	Gage he (ft)	ight		Date	Ti	me	Discharge (ft ³ /s)		height ft)
Aug. 18	0945	*6	24	*7.51			No other	er peak g	reater t	han base di	scharge.	
		DISCHARGE	, CUBIC	FEET PER	SECOND, DAIL	WATER YEA Y MEAN VAL	R OCTOBER UES	1991 TO	SEPTEMBE	R 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	22 21 20 20 22	22 23 22 22 22 22	26 34 93 133 101	35 31 31 54 75	29 27 26 26 26	30 29 28 27 27	46 46 41 36 34	27 27 26 25 24	75 53 39 33 43	22 21 19 39 29	191 80 31 21 19	21 21 22 26 24
6 7 8 9 10	28 22 21 20 19	22 22 22 21 27	68 42 36 34 65	58 43 36 33 33	25 24 26 28 26	26 36 44 36 32	32 31 31 30 30	24 23 42 104 94	116 106 95 59 37	21 18 17 36 28	17 16 15 26 20	23 23 23 22 35
11 12 13 14 15	19 21 19 18 19	72 56 37 31 27	58 44 37 36 35	32 30 29 34 35	25 24 23 25 28	66 56 40 34 31	30 30 29 29 28	67 45 38 35 33	32 29 27 25 24	19 16 16 16 16	19 31 25 30 34	48 32 24 21 20
16 17 18 19 20	25 41 68 43 31	26 25 24 23 23	33 31 30 28 27	31 29 27 26 26	73 57 43 40 36	29 27 28 62 73	30 44 53 45 38	48 56 42 36 32	23 22 22 34 71	30 21 18 17 15	69 140 498 267 123	19 19 18 17 17
21 22 23 24 25	25 24 23 23 22	23 26 53 42 33	27 28 28 28 27	25 24 31 62 50	32 30 29 28 28	52 43 46 42 39	35 35 36 32 31	30 28 27 26 26	97 123 59 34 36	15 15 26 44 26	64 38 32 29 28	17 17 28 22 22
26 27 28 29 30 31	23 23 23 22 22 22 22	28 25 25 24 24	26 26 25 46 65 45	38 34 31 30 29 29	52 50 39 33	40 86 82 59 41 48	30 31 33 30 28	26 27 26 24 23 44	34 29 28 24 22	20 19 17 15 14 73	29 29 30 27 24 23	109 99 54 35 29
TOTAL MEAN MAX MIN CFSM IN.	771 24.9 68 18 .71 .82	872 29.1 72 21 .83 .93	1362 43.9 133 25 1.26 1.45	1111 35.8 75 24 1.03 1.18	958 33.0 73 23 .95 1.02	1339 43.2 86 26 1.24 1.43	1034 34.5 53 28 .99 1.10	1155 37.3 104 23 1.07 1.23	1451 48.4 123 22 1.39	718 23.2 73 14 .66	2025 65.3 498 15 1.87 2.16	907 30.2 109 17 .87
STATIST		ITHLY MEAN	DATA FOI	R WATER Y	EARS 1973	3 - 1992,	BY WATER Y	(EAR (WY)				
MEAN MAX (WY) MIN (WY)	45.5 92.6 1990 24.4 1982	61.1 141 1973 26.1 1982	72.3 129 1978 32.2 1989	76.0 153 1979 25.2 1981	70.7 153 1979 33.0 1992	79.2 160 1984 38.8 1981	83.8 153 1984 34.5 1992	66.9 139 1989 27.1 1977	49.7 89.6 1984 26.0 1986	44.9 107 1984 21.7 1988	42.5 88.8 1990 15.2 1981	39.1 80.9 1989 17.8 1988

METEDECONK RIVER BASIN

01408120 NORTH BRANCH METEDECONK RIVER NEAR LAKEWOOD, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1973 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	18451 50.6	13703 37.4	60.9 91.5 1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	429 Jan 12 15 Sep 11 15 Sep 11	498 Aug 18 14 Jul 30 18 Sep 16	34.7 1981 838 Feb 25 1979 11 Aug 28 1981 12 Aug 24 1981
INSTANTANEOUS PEAK FLOW	13 365 11	624 Aug 18	1370a Nov 8 1977
INSTANTANEOUS PEAK STAGE		7.51 Aug 18	9.28 Nov 8 1977
INSTANTANEOUS LOW FLOW		14 Jul 30	11 Aug 28 1981
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.45	1.07	1.75
	19.67	14.61	23.72
	95	62	111
50 PERCENT EXCEEDS	38	29	46
90 PERCENT EXCEEDS	19	20	22

a From rating curve extended above 600 ft³/s.

METEDECONK RIVER BASIN

01408150 SOUTH BRANCH METEDECONK RIVER NEAR LAKEWOOD, NJ

LOCATION.--Lat 40°05'09", long 74°11'09", Ocean County, Hydrologic Unit 02040301, on right side of dam at Lake Shenandoah, 1.5 mi downstream from Lake Carasaljo, 0.8 mi east of Lakewood, and 2.0 mi upstream from mouth.

DRAINAGE AREA.--27.5 mi².

PERIOD OF RECORD. -- June to September 1992.

GAGE...Water-stage recorder above a concrete dam. Datum of gage is 23.0 ft above sea level.

REMARKS.--Records fair except from July 29 to Sept. 30, which are poor. Regulation from Lakes Carasaljo, Manetta, and Shenandoah.

		DISCH	IARGE, CUB	IC FEET P	ER SECOND DAI	, WATER LY MEAN	YEAR OCTOBER VALUES	1991	TO SEPTEMBER	1992		· 4
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	•••	•••		•••	•••	.' 	•••		•••	21 21	e210 e160	e34 e33
2 3										21	e80	e38
4										29	e40	e37
5	•••	•••	•••	• • •	•••	•••		• • •		31	e30	e36
6	•••			•••					• • •	30	26	e35
7	• • •									28	e25	e33
6 7 8 9 10				• • •			•••		• • •	25	e24	e30
9	• • •			• • •			•••		• • •	33	e29	e28
10			•••	• • •			•••	•••	•••	30	e28	e40
11	• • •			•••	•••		•••			29	e29	e45
12 13	• • •	•••			. •••		• • •		10	28	e39	e42
13		• • •					• • •		17	28	e43	e38
14	• • •			• • •					21	28	e47	e30
15		• • •	•••		• • •			• • •	23	25	e53	e27
16		• • •			• • •				23	21	e67	e25
17									22	21	e160	e23
18				•			•••		22	25	e210	e21
19	• • •		• • •				•••		29	24	e220	e19
20			•••	•••	• • •			•••	51	22	e170	e18
21 22 23 24 25	• • •			•••			• • •		97	22 22 27	e140	e19
22	• • •			• • •			•••		147	22	e100	e22
23		• • •			• • •		• • •		112	27	e80	e24
24									37	35 35	e65	e25
25	• • •		• • •	•••	•••				35	35	e52	e30
26				• • •	•••		•••		37	31	e45	e100
27 28 29 30				• • •			•••		36	29 27	e48	e80
28									34	27	e47	e60
29						• • •			32	e30	e <u>39</u>	e46
30	• • •					• • •	•••		27	e29	e <u>38</u>	e35
31	•••		•••	•••	•••	•••		• • •		e70	e36	•••
TOTAL	• • •		• • •					•••		877	2380	1073
MEAN	• • • · ·	• • • •				• • •	• • •			28.3	76.8	35.8
MAX		• • •					• • •		•••	70	220	100
MIN	• • •			• • •	,	• • •				21	24	. 18
CFSM							• • •			1.03	2.79	1.30
IN.	• • •	•••	•••				• • •			1.19	3.22	1.45
STATIST	CS OF MO	NTHLY MEA	N DATA FO	R PERIOD	JUNE TO S	EPTEMBE	R					
MEAN	•••	•••	• • •							28.3	76.8	35.8
MAX										28.3	76.8	35.8
(WY)						• • •		• • •		1992	1992	1992
MIN				• • •	• • •	• • •	• • •			28.3	76.8	35.8
(WY)	• • •	•••	•••		•••		• • •	•••		1992	1992	1992

SUMMARY STATIST	I C	s
-----------------	-----	---

JUNE TO SEPTEMBER 1992

MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
INSTANTANEOUS LOW FLOW

220 Aug 19 18 Sep 20 289 Aug 18 2.76 Aug 18 7.5 Jun 11

e Estimated.

01408500 TOMS RIVER NEAR TOMS RIVER, NJ (National stream quality accounting network station)

LOCATION. -- Lat 39°59'10", long 74°13'29", Ocean County, Hydrologic Unit 02040301, on left bank 500 ft downstream of bridge on State Route 527 (Oak Ridge Parkway), 1.9 mi downstream from Union Branch, and 2.6 mi northwest of community of Toms River.

DRAINAGE AREA. -- 123 mi 2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1928 to current year. Monthly discharge only for October, November 1928, published in WSP 1302.

REVISED RECORDS. -- WSP 1702: 1938. WDR NJ-76-1: 1975(M). WDR NJ-77-1: 1976.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 8.10 ft above sea level.

REMARKS.--No estimated daily discharges. Records excellent. Diversions by Ciba-Geigy Inc. since July 1966, 800 ft. upstream; the effluent is returned by pipeline directly into the Atlantic Ocean, thus bypassing station. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft³/s and maximum (*):

Date		Time	Di	scharge (ft ³ /s)	(Gage height (ft)		Date	Time	Disc (f	harge t ³ /s)	Gag	e height (ft)
June	8	1130		496		6.37		Aug. 19	1815	*7	726	*	7.70
			DISCHA	ARGE, CUBIC	FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER	1991 то	SEPTEMBER	1992		
DAY	•	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		125 114 106 102 100	91 92 92 91 90	102 114 177 234 258	149 139 133 150 177	121 117 113 112 111	131 124 119 116 114	167 164 156 147 140	114 112 110 106 103	157 167 150 128 137	90 86 86 127 130	268 268 268 201 157	115 111 110 110 110
6 7 8 9 10	:	99 96 93 91 89	89 89 89 89 94	282 254 196 173 191	186 173 155 144 138	109 108 109 111 121	112 121 137 141 135	133 128 125 122 121	103 101 112 153 171	249 341 478 423 287	119 108 97 107 109	126 108 100 102 101	108 108 106 105 108
11 12 13 14 15		89 90 91 89 89	124 134 131 125 118	193 192 178 169 158	134 129 126 130 132	159 111 106 107 110	163 169 163 147 135	122 121 119 116 114	174 161 145 133 123	203 165 140 127 119	99 90 85 81 79	98 112 122 127 138	122 127 120 112 104
16 17 18 19 20		92 112 142 149 142	112 107 103 101 99	149 141 135 129 124	129 121 118 113 109	144 166 188 167 154	126 120 118 148 180	114 125 151 175 164	122 136 136 125 116	110 105 100 113 161	81 81 82 82 82	176 260 562 696 655	100 97 94 93 92
21 22 23 24 25		125 114 108 107 104	98 99 121 130 124	123 123 122 122 120	110 109 116 145 155	138 131 129 95 84	195 187 176 163 153	149 141 143 137 129	111 106 99 98 94	192 247 239 156 132	78 76 87 114 120	497 327 227 186 164	89 89 96 96 99
26 27 28 29 30 31		103 101 98 96 93 91	114 107 102 99 98	118 116 114 131 155 159	150 139 132 127 124 122	136 154 153 143	151 190 204 209 181 171	123 120 121 120 118	95 97 96 95 92 109	122 113 107 99 94	109 99 92 84 77 166	147 141 137 136 130 123	188 209 221 201 171
TOTAL MEAN MAX MIN CFSM IN.		3240 105 149 89 .85 .98	3152 105 134 89 .85	160 282 102 1.30	4214 136 186 109 1.11 1.27	3707 128 188 84 1.04 1.12	4699 152 209 112 1.23 1.42	4025 134 175 114 1.09 1.22	3648 118 174 92 .96 1.10	5361 179 478 94 1.45 1.62	3003 96.9 166 76 .79	6860 221 696 98 1.80 2.07	3611 120 221 89 .98 1.09
STATI	STI	CS OF MON				YEARS 1929	1992,	BY WATER YE	AR (WY)				
MEAN MAX (WY) MIN (WY)		157 325 1972 83.3 1942	200 475 1973 85.5 1966	96.1	244 506 1978 104 1981	252 455 1973 128 1992	288 541 1958 143 1985	281 573 1984 120 1985	245 461 1958 118 1992	188 463 1968 96.8 1977	159 439 1938 77.3 1988	162 359 1990 57.9 1966	153 414 1971 69.7 1943

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1929 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	64985 178	50472 138	212 335 1978
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	765 Jan 14 69 Aug 14 72 Sep 12	696 Aug 19 76 Jul 22 80 Jul 16	130 1981 1910 Sep 23 1938 47 Aug 31 1966 48 Sep 7 1966
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	·	726 Aug 19 7.70 Aug 19 64 Feb 24	2000a Sep 23 1938 12.50b Sep 23 1938 46c Aug 31 1966
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.45 19.65 295 139	1.12 15.26 188 122	1.73 23.46 353 184
90 PERCENT EXCEEDS	87	92	97

a From rating curve extended above 1,500 ft³/s.
 b From floodmark.
 c Also occurred many days in September 1966.
 e Estimated.

TOMS RIVER BASIN

01408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD...

SPECIFIC CONDUCTANCE: November 1974 to September 1981 (discontinued).

WATER TEMPERATURE: November 1963 to May 1966, November 1974 to September 1981 (discontinued).

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

			WATER WO	ALIII DAIA	, WATER	TEAR OCTO	DEK 1991	TO SEPTEM	DEK 1992		
	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)		COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
N	1991	4400	44.	7,	- 0		4.5	44.0	07	K3E	1/0
	26 JAN 1992	1100	114	74	5.9	5.5	1.5	11.9	93	K25	160
N	28 1AR	1130	131	71	5.5	0.5	1.6	14.3	98	25	К9
	30	1200	181	71	5.4	7.5,	2.0	12.5	104	- •	47
	ຶ່26 JUL	1100	94	75	6.3	15.0	2.5	11.0	109	67	K57
	28	1200	91	70	5.6	21.0	2.1	. 8.0	90	87	3800
:	SEP 29	1130	201	67	4.8	16.5	2.4	8.5	87	110	32
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)	TOT FET FIELD MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
N	IOV_1991								_		
J	26 IAN 1992	13	2.9	1.3	6.7	1.3	3.0	2.0	3	10	10
M	28 Iar	. 11	2.6	1.2	5.9	1.3	4.0	3.0	4	10	10
	30	11	2.6	1.2	6.0	0.80	••	• •	••	11	9.5
	ຶ່26 UL	12	2.7	1.2	7.0	1.4	2.0	2.0	3	8.7	11
	28	11	2.5	1.2	6.8	1.2		••	• •	8.1	11
3	SEP 29	10	2.5	0.97	5.5	1.0	2.0	2.0	2	8.2	9.5
	DATE	FLU RID DI SOL E (MG AS	E, DIS S- SOL' VED (MG, /L AS	CONST VED TUENT VL DIS SOLV	F NIT I- GE S, NITR I- TOT ED (MG	N, NITR ITE DI AL SOL /L (MG	N, NIT ITE GE S- NO2+ VED TOT /L (MG	AL SOLV G/L (MG/	I, NITRO 103 GEN 6- AMMONI /ED TOTAL /L (MG/I	, AMMO IA DI SOL (MG	N, NIA S- VED /L
	NOV 199			- ,	2 -0	04 -0	04 0 5		., 0.04	0.00	
	26 JAN 1992	2	.2 5.!			.01 <0.				0.20	
	28 MAR		.2 5.0			.01 <0.	01 0.4	9 0.5	0.23	0.22	
	30	0	.2 3.9	7 3	8 <0	.01 <0.	01 0.3	55 0.3	0.15	0.14	
	26 JUL	<0	.1 3.5	5 4	0 <0	.01 <0.	01 0.6	0.6	0.24	0.24	
	28 SEP	<0	.1 4.9	9 4	1 0	.01 <0.	01 0.7	0 0.7	1 0.14	0.13	
	29	<0	.1 4.9	3	5 <0	.01 <0.	01 0.2	26 0.2	26 0.11	0.10	

O1408500 TOMS RIVER NEAR TOMS RIVER, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

, DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO DIS- SOLVED (MG/L AS P)	, SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 1991 26	0.4	0.95	0.03	<0.01	<0.01	<0.01	2	0.62	80
JAN 1992 28	0.4	0.89	<0.01	<0.01	<0.01	<0.01	3	1.1	68
MAR 30	0.4	0.75	0.01	0.01	0.02	<0.01	5	2.4	64
MAY 26	0.5	1.1	0.04	0.02	0.01	<0.01	54	14	. 14
JUL 28	0.4	1.1	0.02	<0.01	0.02	<0.01	18	4.4	20
SEP 29	0.5	0.76	0.03	<0.01	<0.01	0.02	9	4.9	77
	DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	COBALT, DIS- SOLVED (UG/L AS CO)	IRON, DIS- SOLVED (UG/L AS FE)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	/ 1991 26	1100	100	27	<3	190	<4	39	
3	R 1992 30	1200	210	29	<3	320	<4	43	
	28	1200	60	26	<3	140	<4	28	`
SE	29	1130	170	28	<3	340	<4	43	
	DATE	MOL' DENI SOL' (UG, AS I	JM, NICI S- DIS VED SOI /L (UG	S- DI LVED SOL G/L (UC	JM, SILV IS- DI -VED SOL G/L (UG	ER, T S- D VED SOI JL (U	RON- VANA IUM, DIUI IS- DIS LVED SOLV G/L (UG, SR) AS	M, S- VED /L	
	NOV 1991 26		<10	2	<1 <	1.0	18	<6	
	MAR 1992 30		<10	<1		1.0	18	<6	
	JUL 28 SEP		<10	<1		1.0	17	<6	

01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ

LOCATION.--Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi upstream from Wesickaman Creek.

DRAINAGE AREA. -- 26.7 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. CI CUBIC CO FEET DU PER AP	PE- WA IFIC WH DN- FI JCT- (SI NCE A	AND - A	TURE Ater s	YGEN, DIS- COLVED	DIS- DE SOLVED E (PER- C CENT I SATUR- 5	BIO- F CHEM- F ICAL, DAY B	OLI- C ORM, M ECAL, W EC T ROTH (C	TERO- OCCI E,MF ATER OTAL OL / O ML)
NOV_1991	1070	10	40	F 1	10 5	10.0	00	E1 7	-20	77
25 JAN 1992	1030	19	40	5.1	10.5	10.0	90	E1.3	<20	33
22 Mar	1100	29	40	5.3	3.5	11.8	88	<1.0	<20	<10
17 May	1115	29	46	4.9	4.5	12.3	95	••	<20	<10
27	1300	20	40	4.9	18.0	8.3	88	<1.0	<20	<10
JUL 29	1400	44	35	4.5	24.5	6.0	72	<1.0	<20	<10
DATE	HARD - NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVEE (MG/L) AS SO4)	DIS- SOLVED (MG/L	(MG/L	
NOV_1991										
25 JAN 1992		7 1.7	0.66	2.9	0.80		6.1	6.6	0.2	
22 Mar		7 1.6	0.76	2.8	0.80	2.3	6.9	5.2	0.2	
17 MAY_		7 1.5	0.72	3.2	0.80	<1.0	6.3	4.4	0.1	
 JUL		6 1.2	0.63	3.2	0.70	1.3	5.0	5.2	<0.1	
29		5 1.2	0.60	3.1	0.70	<1.0	4.7	5.4	<0.1	
DÄTE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITROGEN, NO2+NO3 DIS- SOLVEC (MG/L AS N)	NITRO- 3 GEN, AMMONÍA	AMMONÍA	ORGANIC	
NOV 1991										
25 JAN 1992	4.3	26	<0.003	<0.003	0.20	0.22	<0.03	0.12	0.38	
22 MAR	4.7	26	<0.003	<0.003	0.47	0.46	<0.03	<0.03	0.22	
17 MAY	3.4	• •	<0.003	<0.003	0.28	0.30	0.06	0.10	0.24	
27	2.0	20	0.007	<0.003	0.28	0.24	<0.03	<0.03	0.34	
JUL 29	4.2	. • •	0.010	0.005	0.31	0.29	0.05	<0.03	0.54	
DATE	NITRO GEN, AM MONIA ORGANI DIS. (MG/L AS N)	- + NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L) AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
NOV_1991		,						_		
25 JAN 1992	0.2		0.46	0.16	<0.02	3.6	0.7	3	0.15	
22 Mar	0.2		0.67	<0.02	<0.01	3.0	0.2	2	0.16	
17 May	0.20	0.52	0.50	<0.02	<0.02	3.6	0.3	3	0.23	
````27 JUL	0.2	1 0.62	0.45	0.02	<0.02	5.1	0.2	2	0.11	
29	0.43	0.85	0.72	0.02	<0.02	10	2.1	7	0.83	

NOV 1991 25... 25...

<0.1

<0.1

<0.1

## MULLICA RIVER BASIN

## 01409387 MULLICA RIVER AT OUTLET OF ATSION LAKE, AT ATSION, NJ--Continued

		WA	TER QUAL	ITY DATA	, WATER	YEAR OC	TOBER 199	1 TO SEPTE	EMBER 1992	2		
DATE	TIME L	XYGEN EMAND, CHEM- ICAL (HIGH EVEL) MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	(MG/k	HH4 GEN,I AL + ORI DT. TOT T. BOT I G (MG)	NH4 PHORU G. TOT/ IN IN BO MAT MA' /KG (MG/I	US INOR AL GANI OT. TOT I T. BOT N KG (G/N	R- INORG IC, ORGAN IN TOT. MAT BOT N KG (GM/k	S + IIC IN ARSEI IAT TOTA (G (UG)	AL TERIAL 'L (UG/G	
NOV 1991 25 25	1030 1030	15	<1	<1		0.6 120			0.1 1	.5	<1 - 9;	
DATE	BERY LIUM TOTA RECO ERAB (UG/ AS B	, BOR L TOT V- REC LE ERA L (UG	AL TO OV- RE BLE ER /L (L	MIUM R TAL FM CCOV- TO BABLE T UG/L (	DMIUM ECOV. BOT- M MA- ERIAL UG/G S CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	
NOV 1991 25 25	<10		30	 <1	<1	 <1	2	<5	12	8	510	
DATE	IRON RECO FM BO TOM M TERI (UG/ AS F	Ý. LEA T- TOT A- REC AL ERA G (UG	D, RE AL FM OV- TOM BLE TE	COV. N BOT- T I MA- R RIAL E	ANGA- ESE, OTAL ECOV- RABLE UG/L S MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	
NOV 1991 25 25	47	00 -	. 8	<10 		<10 	<0.10	<0.01	 <1	<10 ••	 <1	
DATE	SELE NIUM TOTA IN BO TOM M TERI (UG/	, ZIN L TOT T- REC A- ERA AL (UG	C, RE AL FM OV- TOM BLE TE /L (L	IMA- IN RIAL TO IG/G T	PCB, OTAL BOT- M MA- ERIAL IG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
NOV 1991 25 25	••	<1 -	10	<10 	<1 	<1.0	<0.1	<1.0	0.1	<0.1	0.1	
II TO DATE	LDRIN, S TOTAL N BOT- I OM MA- T TERIAL	ENDO- ULFAN, TOTAL N BOT- OM MA- TERIAL UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLC EPOXI TOT. BOTI MAI	OR LIND/ IDE TOT/ IN IN BO TOM TOM I	AL CHLO DT- TOT. MA- BOT! IAL MA'	MIRE OR, TOTA IN IN BO TOM TOM N TL. TERI	AL THAN DT- IN BC MA- TOM M IAL TERIA	IE TOTA IT- IN BO IA- TOM N IL TERI	IE, TOT REC IL FROM BO' DT- TOM MAT IA- TERIAL IAL (UG/G)	۲-

<0.1

<0.1

<0.1

<1.0

<1.00

<10

0.546

## 01409400 MULLICA RIVER NEAR BATSTO, NJ

LOCATION.--Lat 39°40'28", long 74°39'55", Atlantic County, Hydrologic Unit 02040301, on right bank 2.4 mi upstream from Sleeper Branch, and 2.5 mi north of Batsto.

DRAINAGE AREA. -- 46.7 mi 2.

PERIOD OF RECORD. -- September 1957 to current year.

REVISED RECORDS.--WRD-NJ 1969: 1958(M), 1960(M), 1967-68(M), WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 11.93 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Some regulation from upstream cranberry bogs and Atsion
Lake. Diversions from Sleeper Branch enter river upstream of gage and substantially increase the discharge at the
gage. Several measurements of water temperature were made during the year.

gage.	Several	DISCH	ARGE, CUB	IC FEET F	ER SECOND	, WATER LY MEAN	YEAR OCTOB	ER 1991 T	O SEPTEME	BER 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 · 2 · 3 · 4 · 5	73 64 59 56 54	47 47 46 45 44	48 55 79 108 134	62 66 71 93 106	58 54 57 55 54	70 66 64 80 85	135 122 115 79 60	. 50 49 49 46 45	77 106 98 64 90	53 52 49 79 84	108 146 174 153 96	70 63 72 84 83
6 7 8 9 10	55 54 50 49 51	44 44 44 45	152 145 135 128 132	103 101 97 95 97	54 53 55 54 52	83 86 90 87 62	58 58 62 66 71	44 44 51 59 66	191 188 184 218 168	82 77 73 70 65	83 77 83 80 70	81 89 94 86 86
11 12 13 14 15	66 57 51 50 50	50 59 66 68 75	112 111 129 140 134	100 103 107 113 113	53 51 51 53 56	65 59 55 53 56	70 70 69 59 55	76 78 77 71 64	113 117 94 69 62	66 59 58 53 50	65 63 57 66 74	85 72 65 61 58
16 17 18 19 20	50 62 79 78 73	70 73 85 103 66	126 118 115 104 100	110 66 68 63 61	74 75 75 78 80	58 59 59 78 94	55 58 60 78 78	60 59 60 57 51	58 55 51 61 89	51 49 47 44 42	91 126 299 385 365	56 53 51 50 47
21 22 23 24 25	68 63 63 67 67	40 39 43 42 40	97 91 86 64 55	60 59 59 66 58	80 75 71 69 68	105 108 108 103 95	69 71 68 63 61	47 46 47 46 44	90 64 58 58 72	42 40 59 85 96	237 157 144 117 89	46 47 50 48 54
26 27 28 29 30 31	66 67 58 51 48 47	38 37 39 41 43	53 53 53 63 68 63	63 58 60 59 58 59	77 81 80 75	91 108 113 111 109 121	60 58 54 51 51	43 43 42 40 40 58	66 80 82 67 56	112 145 158 115 71 69	84 89 143 136 116 89	108 119 124 134 139
TOTAL MEAN MAX MIN	1846 59.5 79 47	1567 52.2 103 37	3051 98.4 152 48	2454 79.2 113 58	1868 64.4 81 51	2581 83.3 121 53	2084 69.5 135 51	1652 53.3 78 40	2846 94.9 218 51	2195 70.8 158 40	4062 131 385 57	2275 75.8 139 46
					EARS 1957	-	BY WATER Y					
MEAN MAX (WY) MIN (WY)	68.9 192 1976 24.1 1966	90.3 305 1973 22.0 1966	118 305 1973 29.8 1966	139 311 1978 29.3 1981	139 292 1979 64.4 1992	153 312 1958 59.1 1985	149 358 1983 50.3 1985	125 273 1989 53.3 1992	79.9 159 1979 32.3 1977	73.3 177 1989 21.9 1977	77.3 253 1958 20.2 1977	62.9 223 1975 19.4 1980
SUMMARY	STATISTIC	cs	FOR 1	991 CALEN	DAR YEAR	F	OR 1992 WAT	TER YEAR		WATER YEA	ARS 1957	- 1992
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT 10 PERCI 50 PERCI		AN AN MINIMUM AK FLOW AK STAGE J FLOW DS		37018 101 547 27 30 200 83 39	Jan 13 Jul 12 Jul 6		28481 77.8 385 37 40 401 3.43 37 118 66 47	Aug 19 Nov 27 Nov 22 Aug 19 Aug 19 Nov 27		106 168 50.4 1630 7.5 8.6 1840 6.14 7.0 201 86 32	Sep Sep Feb 2 Feb 2	1973 1966 6 1979 6 1966 5 1966 6 1979 6 1979 6 1966

#### 01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ

LOCATION.--Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road in Wescoatville, 1.1 mi southwest of Nesco, 1.7 mi upstream from Norton Branch, and 3.8 mi southwest of Batsto.

DRAINAGE AREA. -- 9.57 mi², revised.

PERIOD OF RECORD. -- Water years 1974 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	PE- WA IFIC WH DN- FI JCT- (ST	TH TER IOLE ELD TE AND A	MPER- OX TURE ATER S	OX YGEN, ( DIS- OLVED S	DIS- DE SOLVED B (PER- C CENT I SATUR- 5	YGEN MAND, CO IO- F HEM- F CAL, DAY B	OLI CORM, MECAL, W. EC TOROTH (CO	TERO- OCCI E,MF ATER OTAL OL / O ML)
NOV_1991	4470		470							
26 JAN 1992	1130	8.0	139	6.4	6.5	8.0	64	2.9	20	27
15 MAR	1200	9.4	125	6.6	4.0	9.8	75	<1.0	20	20
18 JUN	1130	11	151	6.6	7.0	9.7	79	1.5	40	<10
18	1130	6.7	168	6.0	17.0	3.2	33	<1.0	490	70
JUL 29	1130	11	128	6.2	19.0	4.1	44	<1.0	20	60
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	(MG/L	(MG/L	
NOV 1991 26	20	4.7	1.9	13	3.7	<1.0	14	17	0.2	
JAN 1992 15	20		2.0	11	3.3	10	14	15	0.3	•
MAR 18	23		2.0	12	3.7	11	17	15	0.1	
JUN 18	27		2.0	16	4.1	4.1	14	23	0.4	
JUL 29	24		2.1	13	3.8	7.1	12	16	0.3	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NÓ3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC	
NOV 1991 26	7.7	••	0.068	0.065	3.34	3.45	2.39	2.26	3.3	
JAN 1992 15	7.4	80	0.049	0.047		3.20	1.40	1.46	1.9	•
MAR 18	7.7	85	0.052	0.051	2.78	2.82	1.97	1.79	2.3	
JUN 18	7.1	97	0.086	0.031						
JUL 29						4.41	0.88	0.98	2.0	
29	6.0	80	0.025	0.024	3.52	3.58	0.12	0.18	0.64	
DATE	NITRO- GEN, AM- MONIA + ORGANIO DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
NOV 1991	7 2	4.4		0.47	0.53	/ 1	0.0	,	0.00	•
26 JAN 1992	3.2	6.6	6.6	0.64	0.52	4.1	0.9	4	0.09	
15 MAR	1.9	5.1	5.1	0.51	0.39	4.2	0.7	6	0.15	
18 Jun	2.3	5.0	5.1	0.48	0.35	3.3	••	. 4	0.12	· · · · · · · · · · · · · · · · · · ·
18 JUL	1.8	6.2	6.2	0.52	0.38	5.4	0.4	7	0.13	
29	0.31	4.2	3.9	0.50	0.42	3.9	0.4	4	0.12	•

## 01409416 HAMMONTON CREEK AT WESCOATVILLE, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
NOV 1991 26	1130	26	<1	<10	· <1	1	20
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
NOV 1991 26	390	3	20	<0.10	2	<1	10

#### 01409500 BATSTO RIVER AT BATSTO, NJ

LOCATION.--Lat 39°38'33", long 74°39'00", Burlington County, Hydrologic Unit 02040301, on right bank 30 ft downstream from bridge on State Highway 542 at Batsto, and 1.0 mi upstream from mouth.

DRAINAGE AREA. -- 67.8 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1927 to current year. Monthly discharge only for April to September 1939, published in WSP 1302.

REVISED RECORDS.--WSP 1432: 1930, 1933, 1936, 1938. WDR NJ-83-1: Drainage area. WDR-87-1: 1939 (M).

GAGE.--Water-stage recorder. Concrete control since Oct. 12, 1939; prior to Mar. 24, 1939, wooden control at site 50 ft downstream. Datum of gage is 1.4 ft above sea level.

REMARKS.--No estimated daily discharges. Records fair. Considerable regulation at times by sluice gates prior to December 1954 and by automatic Bascule and sluice gates since July 1959 at Batsto Lake, 300 ft upstream, capacity, about 60,000,000 gal. Several measurements of water temperature, other than those published, were made during the year.

	•	DISCH	ARGE, CUB	IC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEMBE	R 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	103	75	75	99	90	97	110	74	92	72	113	88
2	95	73	83	95	86	93	109	74	106	69	239	85
3	91	74	99	94	84	90	105	74	101	68	296	88
4	85	74	122	101	82	90	102	73	95	88	225	114
5	81	74	138	109	82	88	99	70	109	99	166	136
6	81	73	147	108	81	86	94	68	142	98	134	129
7	82	73	141	107	79	89	90	68	213	90	114	116
8	84	74	130	102	78	95	87	72	234	82	100	108
9	79	73	121	98	80	100	88	80	191	77	92	102
10	74	77	126	95	79	99	86	86	156	73	86	98
11	72	75	131	93	78	105	82	83	128	75	81	101
12	74	76	140	92	78	107	78	86	110	75	81	99
13	73	79	134	90	77	107	78	82	96	72	80	95
14	71	80	128	91	77	103	77	78	88	68	83	91
15	70	79	123	90	80	99	75	75	84	67	91	87
16	69	78	120	88	94	94	76	73	79	69	107	84
17	85	75	114	86	106	90	77	73	75	67	150	83
18	94	74	108	84	110	90	80	72	72	65	317	80
19	100	74	101	83	110	95	83	70	73	64	586	79
20	100	74	96	82	110	106	89	70	89	62	497	75
21	95	74	94	81	107	125	89	67	100	63	353	74
22	91	74	94	80	103	123	93	66	94	62	246	74
23	87	78	94	78	99	117	90	65	87	79	182	75
24	84	80	93	92	95	115	85	63	84	106	144	75
25	83	80	92	98	92	114	80	61	94	140	123	85
26 27 28 29 30 31	82 81 80 78 85 120	78 74 74 74 73	92 91 88 92 100 102	97 92 92 92 90 90	99 103 104 101	111 111 122 125 122 114	77 76 75 75 74	61 61 60 58 69	93 91 87 81 75	146 128 113 99 87 85	111 107 123 118 101 93	130 146 174 157 139
TOTAL	2629	2263	3409	2869	2644	3222	2579	2193	3219	2608	5339	3067
MEAN	84.8	75.4	110	92.5	91.2	104	86.0	70.7	107	84.1	172	102
MAX	120	80	147	109	110	125	110	86	234	146	586	174
MIN	69	73	75	78	77	86	74	58	72	62	80	74
CFSM	1.25	1.11	1.62	1.37	1.34	1.53	1.27	1.04	1.58	1.24	2.54	1.51
IN.	1.44	1.24	1.87	1.57	1.45	1.77	1.42	1.20	1.77	1.43	2.93	1.68
STATIST	ICS OF MC	NTHLY MEA	N DATA FO	R WATER	YEARS 1928	- 1992,	BY WATER Y	EAR (WY	)			
MEAN	88.2	113	124	140	149	168	155	144	105	93.7	104	93.2
MAX	241	307	302	280	361	353	322	279	242	257	332	242
(WY)	1959	1973	1973	1949	1939	1958	1970	1958	1948	1938	1958	1960
MIN	43.9	43.4	48.4	55.6	75.9	79.5	71.8	65.1	50.9	40.6	42.0	44.5
(WY)	1966	1966	1966	1966	1931	1981	1985	1977	1977	1977	1957	1977

MULLICA RIVER BASIN

## 01409500 BATSTO RIVER AT BATSTO, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1928 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	48729 134	36041 98.5	122 193 1958
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	667 Jan 13 54 Jul 11 56 Jul 6	586 Aug 19 58 May 30 61 May 24	66.2 1966 2000 Aug 20 1939 5.7 Oct 4 1959 37 Sep 1 1965
ANNUAL SEVEN-DAT MINIMOM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	36 Jul 6	623 Aug 19 623 Aug 19 4.29 Aug 19 .00b Jan 4	2000 Aug 20 1939 5.70a Aug 20 1939 .00b Many days
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.97 26.74 237 108	1.45 19.77 128 89	1.80 24.50 206 102
90 PERCENT EXCEEDS	70	89 73	57

From floodmark. After gates closed and water below spillway.

#### 01409500 BATSTO RIVER AT BATSTO, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1925, 1956, 1962-63, 1976 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. CUBIC FEET PER	CIFIC V CON- F DUCT- (S ANCE	STAND- / ARD \	ATURE I NATER S	YGEN, ( DIS- OLVED S	DIS- DE SOLVED E CENT ISATUR-	BIO- F CHEM- F CAL, DAY B	OLI- CO ORM, MI ECAL, WA EC TO ROTH (CO	TERO- DCCI E,MF ATER DTAL DL / D ML)
NOV 1991	4770			- ,		40.0				4-
26 JAN 1992	1330	79	44	5.6	7.0	10.0	82	E2.3	<20	17
23 MAR	1200	79	52	5.3	3.5	11.5	87	<1.0	<20	<10
24	1130	115	50	5.1	5.0	11.2	87	<10	<20 ·	<10
MAY 28	1215	62	50	5.8	16.0	9.7	98	<1.0	<20	<10
AUG 13	1130	79	30	5.7	22.0	7.2	81	<1.0	<20	10
DATE	HAR NES TOT (MG AS CAC	S CALCIU AL DIS- /L SOLVE (MG/L	DIS- D SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L	POTAS- , SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L ) AS SO4)	CHLO- E RIDE, DIS- O SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
NOV_1991										
26 JAN 1992		10 2.4		3.0	1.3	2.6	7.5	7.5	0.2	
23 MAR		8 1.9	0.89	2.5	0.90	3.0	8.0	5.6	0.1	
24 MAY		10 2.2	1.1	2.8	0.80	1.3	7.8	4.7	<0.1	
28		4 0.9	4 0.52	2.2	0.50	2.4	3.3	3.6	<0.1	
AUG 13		7 1.5	0.75	2.4	0.60	4.2	3.8	4.0	<0.1	
DATE	SILI DIS SOL (MG AS SIO	- CONSTI VED TUENTS /L DIS- SOLVE	NITRO- GEN, NITRITE TOTAL D (MG/L	NITRIŤE	NITRO- GEN, NO2+NO3	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L. AS N)	NITRO- GEN, AMMONIA TOTAL	AMMONÍA	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
NOV 1991	_	_								
26 JAN 1992	5	.9 3	2 <0.003	0.003	0.21	0.26	0.08	0.19	0.43	
23 MAR	5	.9 3	0 <0.003	<0.003	0.57	0.59	<0.03	0.03	0.16	
24	- 4	.5 2	7 0.004	<0.003	0.47	0.50	0.07	0.08	0.22	
MAY 28	. 4	.6 1	8 0.004	0.043	0.20	0.28	<0.03	<0.03	0.14	
AUG 13	3	.4 1	9 0.010	0.009	0.06	0.07	<0.03	<0.03	0.23	
- DATE	NIT GEN, MONI ORGA DIS (MG AS	RO- AM- A + NITRO NIC GEN, I TOTAL /L (MG/L	NITRO- GEN DIS- SOLVED (MG/L		PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L		SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
NOV_1991			,		.0.00			_	4.4	
26 JAN_1992	•			0.03	<0.02	5.2	0.3	5	1.1	
23 MAR	•	- 0.7	3	<0.02	<0.02	1.7	0.4	5	1.1	
24 MAY	0	.15 0.6	9 0.65	<0.02	<0.02	3.3	0.2	2	0.62	•
28	0	.26 0.3	4 0.54	<0.02	<0.02	1.7	0.4	2	0.33	
AUG 13	0	.22 0.2	9 0.29	<0.02	<0.02	5.8	0.7	2	0.43	

## 01409500 BATSTO RIVER AT BATSTO, NJ--Continued

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)
NOV 1991 26 26	1330 1330		0.9	130	72	<0.1	3.2	 <1	3	 <10
MAY 1992 28	1215	<10	••		••	••	••	<1	••	<10
DATE	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)
NOV 1991 26	••	••	<1	••	3	<5		3		1300
26 MAY 1992	••	1	••	1	••	••	15	••	740	••
28	<10	<1	••	2	••	••	<1		810	••
DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)
NOV 1991		-40		.40		-0.04		-10		
26 26 MAY 1992	2	<10 	20	<10 	0.10	<0.01	2	<10 	··· <1	<1
28	1	••	10	••	<0.10		1		<1	••
DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 26		<10	<1	<1.0	<0.1	<1.0	0.3	0.2	0.4	<0.1
26 MAY 1992	••		`!.	::.0		11.0				
28	20	••	••	••	••	••				••
DATE	END SULF TOT IN B TOM TER (UG/	AN, ENDR AL TOT OT- IN B MA- TOM IAL TER	AL TOTA OT- IN BO MA- TOM I IAL TER	OR, CHL AL EPOX OT- TOT. MA- BOT IAL MA	OR LIND IDE TOT IN IN B TOM TOM TL. TER	AL CHL OT- TOT. MA- BOT IAL MA	- MIR OR, TOT IN IN B TOM TOM TL. TER	AL THA OT- IN B MA- TOM IAL TERI	NE TOT OT- IN B MA- TOM AL TER	NE, AL OT- MA- IAL
NOV 1991 26 26		0.1 <						0.1 <1	.00 <10	
MAY 1992 28										-

### 01409510 BATSTO RIVER AT PLEASANT MILLS, NJ

LOCATION.--Lat 39°37'55", long 74°38'40", Burlington County, Hydrologic Unit 02040301, on right bank, 0.4 mi upstream from Mullica River, and 0.5 mi southeast of Pleasant Mills.

DRAINAGE AREA. -- 73.6 mi 2.

PERIOD OF RECORD. - July 1958 to current year. Annual maximum only published for 1958 to 1965.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 8.6 ft below sea level. Gage-height record converted to elevation above or below (-) sea level for publication.

REMARKS.--No gage-height or doubtful record: Jan. 19-31 and Apr. 16-28. Summaries for months with short periods of no gage-height record have been estimated with negligible or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. - Maximum elevation recorded, 7.2 ft, Mar. 7, 1962; minimum recorded (1966-90), -0.67 ft, Jan. 2, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum elevation recorded, 5.31 ft, Oct. 31; minimum recorded, 0.09 ft, Feb. 12. Summaries of tide elevations during year are as follows:

### TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	5.31	4.29	3.77	5.12	3.70	3.89	3.77	3.64	3.74	3.43	3.52	4.87
high tide	Date	31	10	3	4	8	20	19	6	6	4	29	26
Minimum	Elevation	.59	.36	.42	.28	.09	.19	.39	.10	.30	.38	.59	.52
low tide	Date	14	29	1	18	12	6	24	22	18	10	12	19
Mean high ti	de	2.93	2.76	2.48	• •••	2,58	2.67	3.05	2.87	2.87	2.91	2.95	2.89
Mean water l	.evel	1.91	1.68	1.53		1.53_	1.63	1.89	1.71	1.82	1.81	2.04	1.88
Mean low tid	le	95	.78	.71		.46	.63	.70	.40	.68	.67	1.11	.89

### 01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ

LOCATION.--Lat 39°41'17", long 74°32'54", Burlington County, Hydrologic Unit 02040301, on right bank 900 ft downstream from Godfrey Bridge on Washington-Jenkins Road, 2.2 mi downstream from Hospitality Brook, and 1.2 mi southwest of Jenkins.

DRAINAGE AREA. -- 84.1 mi².

PERIOD OF RECORD.--October 1974 to current year.

REVISED RECORDS.--WDR NJ-77-1: 1976. WDR NJ-81-1: 1975(P), 1976(P), 1977(P), 1978(P), 1979(P), 1980(P). WDR NJ-90-1: 1989 (M, m).

GAGE...Water-stage recorder. Datum of gage is 10.17 ft above sea level.

REMARKS.--Records good except for estimated daily discharges, which are fair. Some regulation by cranberry bogs and small ponds. Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 600 ft 3 /s and maximum (*):

Date	Ti	me	Discharg (ft ³ /s)	e ·	Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	G	age height (ft)
Aug.	19 08	45	*818		*14.80		No other	peak grea	ater than	base disc	harge.	
		DI	SCHARGE, C	UBIC FEET	PER SECOND DAIL	WATER Y MEAN	YEAR OCTOR	BER 1991 1	O SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	89 79 97 97 82	71 85 83 73 65	e63 e72 e110 132 104	101 99 98 129 160	90 81 80 84 85	100 96 93 92 90	232 217 189 164 113	79 69 62 58 57	120 87 73 68 124	54 53 53 116 133	179 159 139 124 121	94 88 113 191 211
6 7 8 9 10	78 65 62 63 75	62 66 68 67 64	91 80 78 79 112	135 120 110 107 107	84 83 82 80 75	99 112 131 143 109	159 134 128 119 143	63 70 74 91 107	398 378 300 232 162	100 84 72 67 61	97 82 73 72 71	215 199 176 149 116
11 12 13 14 15	94 140 124 92 90	78 82 79 77 73	101 93 91 95 104	105 101 99 101 97	73 74 73 78 85	137 131 114 106 101	115 83 81 97 118	119 94 84 79 72	112 98 80 72 69	70 63 60 57 55	66 75 74 122 142	124 123 117 107 93
16 17 18 19 20	86 114 194 161 108	69 65 61 61 60	103 101 99 88 86	93 87 86 86 85	143 141 133 130 122	97 94 93 139 166	97 88 85 82 81	71 70 71 66 63	67 63 59 64 77	63 59 57 54 53	196 279 638 796 681	81 76 94 74 80
21 22 23 24 25	92 95 141 153 130	65 65 95 87 81	89 89 89 89 86	85 83 91 127 102	113 107 101 97 97	151 141 152 180 212	86 77 77 78 73	72 85 69 58 55	69 64 60 69 84	54 50 102 306 286	504 331 222 170 140	78 75 91 72 84
26 27 28 29 30 31	96 81 74 95 83 74	82 79 68 66 58	83 81 80 96 116 107	102 97 95 93 91 91	121 126 116 109	238 297 237 214 180 178	77 74 73 80 86	54 55 53 56 62 80	72 66 62 58 55	206 158 115 79 68 73	120 109 125 168 144 125	273 243 227 206 154
TOTAL MEAN MAX MIN CFSM IN.	100 194 62 1.19 1.37	2155 71.8 95 58 .85	2887 93.1 132 63 1.11 1.28	3163 102 160 83 1.21 1.40	2863 98.7 143 73 1.17 1.27	4423 143 297 90 1.70 1.96	3306 110 232 73 1.31 1.46	2218 71.5 119 53 .85 .98	3362 112 398 55 1.33 1.49	2881 92.9 306 50 1.11 1.27	6344 205 796 66 2.43 2.81	4024 134 273 72 1.59 1.78
STAT	ISTICS OF	MONTHLY N	MEAN DATA	FOR WATER	YEARS 1975	- 1992,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	103 237 1976 50.4 1983	121 261 1978 69.3 1979	121 270 1978 58.7 1981	188 379 1979 54.6 1981	168 313 1979 98.7 1992	199 389 1979 93.0 1985	205 418 1983 98.8 1985	178 326 1979 71.5 1992	112 210 1984 47.5 1986	108 250 1989 29.9 1977	109 278 1978 35.6 1977	84.0 226 1989 38.9 1982

## 01409810 WEST BRANCH WADING RIVER NEAR JENKINS, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1975 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	53122 146	40730 111	141 224 1978
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	1070 Jul 14 38 Jul 11 42 Jul 6	796 Aug 19 50 Jul 22 56 Jul 16	73.9 1985 1260 Feb 27 1979 23 Jul 24 1977 26 Jul 23 1977
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		818 Aug 19 14.80 Aug 19 47 Jul 22	1320 Feb 26 1979 16.14 Feb 26 1979 22 Jul 24 1977
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.73 23.50 276 102	1.32 18.02 177 91	1.68 22.82 270 105
90 PERCENT EXCEEDS	102 52	63	48

e Estimated.

## 01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ (National stream-quality accounting network station)

LOCATION.--Lat 39°40'30", long 74°32'28", Burlington County, Hydrologic Unit 02040301, at bridge on State Highway 563 in Maxwell, 2.2 mi southeast of Washington, 1.8 mi southwest of Jenkins, and 1.6 mi upstream from confluence with Oswego River.

DRAINAGE AREA. -- 85.9 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

REMARKS.--Water-stage recorder located at station 01409810.

			MAILK WOAL	LIII DAIA,	WATER IL	AK OCTOBE		0 021 121101	-177-			
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	(STAND- ARD	EMPER- ATURE WATER DEG C)	BID- ITY	XYGEN, DIS- SOLVED (MG/L)		COLI- FORM, FECAL, 0.7 UM-MF (COLS./	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
NOV 1991 26 JAN 1992	1130	83	39	4.5	6.5	3.0	10.9	88	K4	к18	3	0.64
28	1045	96	38	4.3	2.5	2.5	11.5	83	<b>K1</b>	K7	4	0.82
MAR 30	1230	185	44	4.4	7.5	2.0	11.8	99	к2	40	4	0.79
MAY 26	1120	55	41	4.5	14.0	4.7	8.8	86	<b>K</b> 5	150	3	0.61
JUL 28	1215	120	49	4.2	21.0	4.5	7.2	82	29	970	3	0.55
SEP 29	1130	220	51	4.2	17.0	3.6	7.3	76	36	61		0.52
27	1150	220	31	7.2	17.0	3.0	7.5	70	30	<b>3</b> , ,	J	0.32
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS: SOLVED (MG/L AS NA)	SIUM, N DIS- SOLVED	TOT FET FIELD MG/L AS	ULFATE DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED ( MG/L AS SIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
NOV 1991												
26 JAN 1992	0.43	2.1	0.70	••	4.8	4.9	0.2	5.1	<0.01	<0.01	<0.05	<0.05
28 Mar	0.45	2.3	0.70	<1	5 <b>.</b> 2,	4.2	0.2	5.8	<0.01	<0.01	<0.05	<0.05
30	0.46	2.5	0.50	••	6.0	4.3	0.2	3.5	<0.01	<0.01	<0.05	<0.05
ິ່ດ26 ∕ JUL	0.44	2.3	0.70	<1	5.5	4.1	<0.1	5.4	<0.01	<0.01	<0.05	<0.05
28	0.38	2.2	0.70	••	4.6	4.6	<0.1	4.7	<0.01	<0.01	<0.05	<0.05
SEP 29	0.34	2.0	0.60		3.8	4.7	<0.1	4.2	<0.01	<0.01	<0.05	<0.05
DATE	NITR GEN AMMON TOTA (MG/ AS N	I, AMMONÌ IIA DIS AL SOLVE 'L (MG/L	, GEN,AM IA MONIA - ORGANI ED TOTAL - (MG/L	H- GEN,AM + MONIA IC ORGANI L DIS. L (MG/L	- ► PHOS-	SOLVE (MG/L		IS ORTHO DIS- L SOLVED L (MG/L	S D, SED MEN	T, CHARI - SUS DED PENI	T, SU S- SIE GE, DI S- % FI DED TH	SP. VE AM. NER AN
NOV 1991 26	0.0	11 0 0		• • •	0.02	-0.01	-0.0	1 40 01	•	2 0		0.4
JAN 1992		•			0.02		<0.0			2 0.4		86
28 MAR	0.0				<0.01	<0.01	<0.0					•
30 MAY	0.0				<0.01	0.03	0.0	1 <0.01		4 2.0		59
26 JUL	0.0	0.03			0.03	<0.01	<0.0	1 <0.01	I	6 0.8	39	100 ·
28 SEP	0.0	0.03	0.2	2 <0.20	0.01	<0.01	0.0	1 <0.01	l	13 4.2	2	60
29	0.0	0.03	0.4		0.03	<0.01	0.0	2 0.02	2	7 4.2	2	88

MULLICA RIVER BASIN

01409815 WEST BRANCH WADING RIVER AT MAXWELL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	COBALI DIS- SOLVEI (UG/I AS CO	. D1 D SOI L (UC	IS- D LVED SOI G/L (UI	HIUM I IS- LVED S G/L (	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
NOV 1991 26	1130	160	12		<3	420	<4	15
MAR 1992 30	1230	190	11	•	<3	470	<4	17
JUL 28	1215	190	13		<3	420	<4	13
SEP 29	1130	170	11	•	<3	690	<4	13
DATE	MOLY DENU DIS SOLY (UG/ AS M	JM, NIC S- DI /ED SC 'L (U	KEL, N S- DLVED S IG/L (	ELE- IUM, S DIS- OLVED UG/L S SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA DIUM, DIS- SOLVE (UG/L	ED
NOV 1991		<10	<1	<1	<1.0	6	•	<b>&lt;</b> 6
MAR 1992 30		:10	<1	<1	<1.0	7	•	<b>46</b>
JUL 28	•	:10	<1	<1	<1.0	6	•	<b>46</b> ِ
SEP 29	•	:10	1	<1	<1.0	5	•	<b>4</b> 6

## 01410000 OSWEGO RIVER AT HARRISVILLE, NJ

LOCATION.--Lat 39°39'47", long 74°31'26", Burlington County, Hydrologic Unit 02040301, on right bank 50 ft downstream from bridge on State Highway Spur 563 at Harrisville, and 0.3 mi upstream from confluence with West Branch Wading River.

### WATER-DISCHARGE RECORDS

DRAINAGE AREA. -- 72.5 mi 2.

PERIOD OF RECORD.--October 1930 to current year. Monthly discharge only for some periods, published in WSP 1302. Prior to October 1955, published as "East Branch Wading River at Harrisville".

REVISED RECORDS.--WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since June 23, 1939. Datum of gage is 4.62 ft above sea level.

REMARKS. - No estimated daily discharges. Records fair. Figures given herein represent flow over main spillway and through bypass channel. Flow regulated by Harrisville Pond 200 ft above station, capacity, about 30,000,000 gal and by ponds and cranberry bogs 5 to 10 mi upstream. Flow probably reduced by ground-water outflow to nearby surface drainage basins, such as Oyster Creek. Several measurements of water temperature, other than those published, were made during the year.

		DISCHA	RGE, CUBIC	FEET PER	SECOND, DAILY	WATER YE MEAN VA	EAR OCTOBER ALUES	1991 то	SEPTEMBER	1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	63	45	36	55	47	55	89	38	53	36	98	63
2	60	58	43	52	49	52	85	36	49	36	103	58
3	57	45	64	51	47	51	68	36	44	35	89	65
4	52	39	89	71	46	50	60	36	42	79	71	70
5	47	37	81	88	44	49	55	37	86	76	61	78
6	46	42	70	74	44	47	53	36	201	60	54	77
7	44	45	65	67	45	59	54	36	192	50	50	78
8	43	44	62	64	46	71	53	43	126	43	47	75
9	42	42	63	62	46	65	55	57	102	42	47	71
10	39	42	92	66	45	81	50	64	89	40	47	71
11	40	53	96	62	44	98	49	63	75	48	46	74
12	42	54	87	57	44	90	79	54	69	46	47	73
13	39	49	72	54	44	80	73	50	56	43	46	70
14	39	49	64	55	46	72	49	. 46	48	39	59	65
15	41	49	59	52	51	68	46	. 44	44	37	73	62
16	42	47	54	51	83	64	45	53	40	40	98	59
17	58	43	51	48	79	62	48	57	39	38	152	55
18	76	42	50	47	72	61	50	50	38	36	396	53
19	76	44	45	45	68	84	52	74	41	35	517	51
20	66	42	45	45	67	96	52	81	41	34	446	49
21	56	38	46	45	66	87	53	69	39	34	358	50
22	51	39	47	45	65	84	54	47	37	32	265	55
23	51	48	46	51	60	93	53	40	37	70	160	54
24	47	48	46	67	57	99	56	36	38	151	112	47
25	45	42	44	60	58	66	53	34	52	133	95	42
26 27 28 29 30 31	43 41 42 41 38 38	39 37 36 36 34	43 44 51 64 73 64	59 55 54 51 46 46	72 72 65 59	64 85 85 79 75 76	48 47 45 42 40	35 36 36 35 34 43	46 42 39 37 36	87 74 64 57 51 61	97 90 79 74 72 70	128 158 145 126 107
TOTAL MEAN MAX MIN CFSM IN.	1505 48.5 76 38 .67	1308 43.6 58 34 .60 .67	1856 59.9 96 36 .83	1745 56.3 88 45 .78 .90	1631 56.2 83 44 .78 .84	2248 72.5 99 47 1.00 1.15	1656 55.2 89 40 .76 .85	1436 46.3 81 34 .64	1878 62.6 201 36 .86	1707 55.1 151 32 .76 .88	4019 130 517 46 1.79 2.06	2229 74.3 158 42 1.02 1.14
STATIS	TICS OF	MONTHLY ME	N DATA FOR	WATER Y	EARS 1931	- 1992,	BY WATER Y	EAR (WY	)			
MEAN	64.0	82.7	83.7	101	103	115	112	97.4	71.7	68.5	76.1	62.3
MAX	176	234	200	242	210	220	253	198	155	201	207	163
(WY)	1959	1973	1973	1979	1939	1958	1970	1989	1984	1938	1933	1938
MIN	28.6	30.8	27.1	33.9	53.2	51.9	41.3	43.9	33.7	24.2	23.9	24.4
(WY)	1966	1966	1966	1966	1931	1985	1985	1942	1966	1977	1957	1951

## 01410000 OSWEGO RIVER AT HARRISVILLE, NJ -- Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1931 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	30569 83.8	23218 63.4	86.4 138 1978
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	727 Jul 14 31 Jul 12	517 Aug 19 32 Jul 22	41.4 1966 1220 Aug 20 1939 4.0 Jun 23 1967
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE	35 Jul 6	35 May 24 532 Aug 19 5.01 Aug 19 31 Jul 22	14 Sep 7 1966 1390a Aug 20 1939 9.45b Aug 20 1939 .00c Oct 26 1932
INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.16 15.69 142	.87 11.91 88	1.19 16.20 150
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	65 38	52 38	.71 

From rating curve extended above 640  ${\rm ft}^3/{\rm s.}$  From high-water mark in gage house. While pond filling.

## 01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
NOV 1991	4400	70			7.0	44.0	04	-4 7	-20	-2	,	0.00
26 JAN 1992	1100	39	40	4.1	7.0	11.0	91	E1.7	<20	<2	4	0.82
29 APR	1215	50	43	4.4	4.0	11.6	88	<1.0	<20	<10	, 3	0.67
08 JUN	1130	52	48	4.6	12.0	10.7	100	<1.0	<20	<10	4	0.73
22 AUG	1300	38	42	4.3	19.0	8.3	90	<1.0	20	<10	3	0.65
20	1045	451	49	4.0	21.0	6.6	74	<1.0	50	10	3	0.70
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
NOV 1991	0.40		. 0.00	.4.0			0.00		0.007	-0.007	0.070	0.07
26 JAN 1992		2.3	0.80	<1.0	6.1	4.1	0.20	7.8	<0.003	<0.003	0.070	0.07
29 APR	0.43	2.2	0.60	<1.0	6.1	3.9	0.20	8.0	<0.003	<0.003	0.290	0.24
08 Jun	0.48	2.4	0.70	<1.0	6.5	4.4	<0.10	5.9	0.004	0.003	0.260	0.26
22 AUG	0.37	2.0	0.60	<1.0	5.6	3.9	<0.10	6.9	<0.003	<0.003	0.150	0.23
20	0.31	1.9	0.40	<1.0	4.3	3.1	<0.10	3.1	0.025	0.024	0.170	0.16
DATE	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
NOV 1991 26	<0.030	<0.030	0.18	0.14	0.25	0.21	0.02	0.03	2.1		1	0.11
JAN 1992 29	<0.030	0.040	0.14	••	0.43		0.07	0.10	2.6	0.1	2	0.27
APR 08	<0.030	<0.030	0.12	0.08	0.38	0.34	<0.02	<0.02	2.0	0.2	2	0.28
JUN 22	<0.030	<0.030	0.16	0.28	0.31	0.51	<0.02	<0.02	2.4	0.5	7	0.72
AUG 20	<0.030	<0.030	0.59	0.54	0.76	0.70	0.04	0.03	19	0.4	6	7.3

## 01410000 OSWEGO RIVER AT HARRISVILLE, NJ--Continued

DATE	DEN CH IC (H TIME LEV	MAND, MA NEM- FA CAL DIA NIGH % FI MEL) TI	ALL SIE AM. DIA INER % FI	AT. GEN, EVE TOT AM. IN E INER MA IAN (MG/	NH4 GEN, TAL + OF BOT. TOT T. BOT TKG (MC	RG. TOT IN IN E MAT MA G/KG (MG/	RUS INC FAL GAN BOT. TOT AT. BOT /KG (G/	OR- INOR HIC, ORGA IN TOT. MAT BOT KG (GM/	RG + INIC IN ARSE MAT TOT KG (UG	AL TERIAL
NOV 1991 26	1100		<1	1 . <	:0.2	0 <40	) .	0.1	0.6 -	- 4
26 JUN 1992	1100	<10	••	•	•	• •		•	•	<1
22	1300	<10			• ,	••			•	<1
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 26				<1		2	<b>&lt;</b> 5		4	••
26 JUN 1992	· <10	••	<1	••	<b>&lt;</b> 1		••	13	•• `	260
22	<10.	<10	<1	••	<1	••.	••	<1		680
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	RECOV- ERABLE (UG/L	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 26	2600		<10	••	<10		<0.01		<10	
26		<1		<10		<0.10	10.01	2		<1
JUN 1992 22		1	••	<10	• •	<0.10		3		<1
, DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 26	· <1		<10	<1	<1.0	<0.1	<1.0	0.5	0.1	0.3
26	•••	<10		`	•••		1.0		٠,٠٠٠	
JUN 1992 22	••	<10	••			••			•••.	•• .
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 26 26 JUN 1992	<0.1 	<0.1	<0.1 	<0.1	<0.1 ··	<0.1 	<10 	<0.1 	<1.00	<10
22	••			••	••		<b></b> .			

### 01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ

LOCATION.--Lat 39°37'23", long 74°26'30", Burlington County, Hydrologic Unit 02040301, on left bank upstream of bridge on Stage Road, 0.7 mi west of Lake Absegami, 2.2 mi north of New Gretna, and 5.3 mi upstream from mouth.

DRAINAGE AREA. -- 8.11 mi 2.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1969 to 1974. January 1978 to current year.

REVISED RECORDS. -- WDR NJ-81-1: 1978-80(P).

GAGE. -- Water-stage recorder. Datum of gage is 1.10 ft above sea level.

REMARKS.--Records good. Some regulation by Lake Absegami. Several measurements of water temperature, other than those published, were made during the year.

REVISIONS.--Some peak discharges and annual maximum (*) reported for water years 1978, 1979, 1989, and 1991 have been revised as shown in the following table. They supersede figures published in the reports for those years.

revi	sed as show	an in th	e following	table.	They sup	persede	figures pu	iblished in	the re	ports for t	nose year	`S.
Water year	Date		Discharge (ft ³ /s)	G	age heigh: (ft).	t	Water year	Date		Discharge (ft ³ /s)	Gag	e height (ft)
1978 1979 1979	July 4 Feb. 26 Mar. 6	, 1979	*177 *132 123		*5.87 *5.63 5.58		1989 1991	Sep. 20, July 14,		*123 *198		5.58 5.97
PEAK DI	SCHARGES FO	OR CURRE	NT YEAR P	eak dis	charges g	reater t	han base c	lischarge o	f 65 ft	³ /s and ma	ximum (*)	:
Date	Time		Discharge (ft ³ /s)	G	age heigh (ft)	t	Date	Time	i	Discharge (ft ³ /s)	Gag	e height (ft)
Aug. 18	0900		*104		*5.46		No other	peak grea	ter tha	n base disc	harge.	•
		DISC	HARGE, CUBI	C FEET			YEAR OCTO	BER 1991 T	O SEPTE	MBER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	10 9.8 9.8 9.9	10 10 10 10	10 13 19 23	13 12 12 18	11 10 10 10	10 10 10 10	12 12 12 12	9.9 9.6 9.3 9.0	12 11 9.7 9.1	8.2 8.4 8.5 18	21 16 11 9.6	15 15 15 16

DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 9.8 9.8 9.9	10 10 10 10 9.9	10 13 19 23 18	13 12 12 18 18	11 10 10 10 10	10 10 10 10 9.9	12 12 12 12 12	9.9 9.6 9.3 9.0 9.3	12 11 9.7 9.1 20	8.2 8.4 8.5 18	21 16 11 9.6 9.2	15 15 15 16 16
6 7 8 9 10	10 9.9 9.5 9.4 9.3	9.8 9.9 9.9 9.8 10	14 13 12 12 20	15 13 13 12 12	9.8 9.6 9.9 9.8 9.5	10 13 16 13 12	11 11 11 11	9.1 9.0 13 18 18	36 25 15 13	12 9.9 9.1 8.9 8.5	9.1 8.6 8.4 8.7 8.6	15 17 16 15 15
11 12 13 14 15	9.4 9.5 9.1 9.4	13 13 11 11 10	18 15 14 13 13	12 12 12 13 12	9.2 9.2 9.1 9.3	19 17 13 12 12	14 13 12 11 11	17 13 12 11 11	12 11 11 11 10	8.9 8.8 8.4 8.0 8.1	8.8 9.0 8.7 12 15	19 17 14 14 13
16 17 18 19 20	9.7 16 23 17 12	10 10 9.8 9.8 9.8	12 12 12 12 12	11 11 11 11 11	19 16 13 13	11 11 11 18 19	11 12 12 12 12	11 11 11 11 9.6	10 10 9.8 10	9.6 8.6 8.5 9.1	20 34 88 51 34	13 13 13 13 12
21 22 23 24 25	11 10 10 10 10	9.8 10 11 11	12 12 12 12 12	11 11 12 15 13	11 11 10 10	14 13 15 13 12	. 12, 12 11 11 10	9.4 9.3 9.1 9.2 10	9.8 9.5 9.4 9.5	8.3 8.0 11 17 14	24 19 19 18 17	12 12 13 12 14
26 27 28 29 30 31	10 10 9.9 9.8 10 e11	9.8 9.7 9.6 9.6	11 11 11 16 20 15	12 11 11 11 11	14 14 12 11	13 17 15 13 12 13	10 10 12 11 10	10 11 10 9.5 9.3	10 9.4 9.1 8.8 8.4	10 11 9.8 8.6 8.1	21 31 23 18 16 16	42 32 20 16 14
TOTAL MEAN MAX MIN CFSM IN.	333.5 10.8 23 9.1 1.33 1.53	306.8 10.2 13 9.6 1.26 1.41	431 13.9 23 10 1.71 1.98	383 12.4 18 11 1.52 1.76	323.4 11.2 19 9.1 1.38 1.48	406.9 13.1 19 9.9 1.62 1.87	344 11.5 14 10 1.41 1.58	339.6 11.0 18 9.0 1.35 1.56	362.5 12.1 36 8.4 1.49 1.66	316.3 10.2 18 8.0 1.26 1.45	612.7 19.8 88 8.4 2.44 2.81	483 16.1 42 12 1.99 2.22
STATIS	TICS OF M	ONTHLY MEAN	DATA FOR	WATER	ÝEARS 1978	- 1992,	BY WATER	YEAR (WY	)			
MEAN MAX (WY) MIN (WY)	11.8 24.2 1990 8.13 1983	13.1 23.1 1990 8.75 1982	14.4 23.4 1984 9.78 1986	18.2 35.0 1978 9.28 1981	17.2 29.8 1979 11.2 1992	18.8 36.8 1979 10.5 1981	21.1 38.6 1984 9.06 1985	19.4 30.3 1984 8.95 1985	15.4 27.2 1984 8.11 1986	13.9 25.8 1978 7.80 1985	13.2 24.6 1978 7.97 1986	11.7 21.0 1989 7.18 1986

MULLICA RIVER BASIN

## 01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1978 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	6026.3 16.5	4656.3 12.7	15.2 21.8 1984 9.60 1985
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	128 Jul 14 8.1 Jul 12 9.0 Jun 26	88 Aug 18 8.0 Jul 14 8.5 Jul 9	131 Jul 4 1978 6.3 Jul 21 1985 6.5 Jul 15 1988
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	2.04	104 Aug 18 5.46 Aug 18 7.4 Jul 21 1.57	198a Jul 14 1991 5.97 Jul 14 1991 5.6 Jul 8 1986 1.88
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	27.64 24 14	21.36 18 11	25.52 26 13
90 PERCENT EXCEEDS	9.9	9.2	8.3

Revised. Estimated.

# 01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. .. Water years 1976 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

			WATER	WALIIY DA	IIA, WAIER	TEAR OCI	OREK 133	I TO SEPTE	MBER 1992	•		
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
DEC 1991 02	1200	12	. 43	4.5	11.0	7.8	70	<1.0	20	27	. 3	0.54
JAN 1992 28	1145	11	42	4.5	3.0	10.2	74	<1.0	20	<10	3	0.52
APR 01	1130	13	42	4.5	8.0	9.7	83	E1.2	<20	<10	3	0.51
JUN 17 AUG	1315	10	30	4.5	17.0	6.2	63	<1.0	20	<10	3	0.39
20	1300	33	49	4.1	19.5	4.7	51	E1.1	20	<10	4	0.60
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFÁTE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
DEC 1991 02 JAN 1992	0.52	2.9	0.60	<1.0	5.2	5.2	<0.10	8.7	<0.003	<0.003	0.080	0.08
28 APR	0.53	2.7	0.60	<1.0	4.4	5.0	<0.10	8.1	<0.003	<0.003	0.180	0.15
01 JUN	0.53	3.1	0.50	<1.0	4.9	5.5	<0.10	6.0	<0.003	<0.003	0.140	0.13
17 AUG	0.43	3.0	0.50	<1.0	3.0	4.7	<0.10	6.6	<0.003	0.004	0.210	0.20
20	0.51	2.6	0.50	<1.0	3.0	4.1	<0.10	4.3	0.023	0.022	0.200	0.16
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
DEC 1991 02	<0.030	<0.030	0.19	0.24	0.27	0.32	<0.02	<0.02	2.6	<0.1	1	0.03
JAN 1992 28	<0.030	<0.030	0.11	0.12	0.29	0.27	0.02	0.03	2.2	0.1	<1	• •
APR 01	<0.030	0.050	0.08	0.10	0.22	0.23	<0.02	<0.02	2.8	0.2	5	0.18
JUN 17 AUG	<0.030	<0.030	0.26	0.34	0.47	0.54	<0.02	<0.02	4.1	0.1	2	0.05
20	<0.030	<0.030	0.42	0.38	0.62	0.54	0.03	<0,02	19	0.3	6	0.53

## 01410150 EAST BRANCH BASS RIVER NEAR NEW GRETNA, NJ--Continued

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	(MG/K	H4 GEN, L + OR T. TOT BOT G (MG	NH4 PHOR G. TOT IN IN B MAT MA /KG (MG/	US INOF AL GANI OT. TOT I T. BOT N KG (G/N	R- INOR IC, ORGA IN TOT. MAT BOT (G (GM/	G + NIC IN ARSE MAT TOT KG (UG	AL TERIAL
DEC 1991 02 02 JUN 1992	1200 1200	<10	<1	<1	.1	.0 14				2.6 -	- <1 <1
17	1315	12	••	••		•	- :			-	<1
DATE	L I TO RE EF	DTAL T ECOV- R RABLE E JG/L (	OTAL TO ECOV- RE RABLE EF UG/L (U	OMIUM R OTAL FM ECOV- TO RABLE T JG/L (	DMIUM ECOV. BOT- M MA- ERIAL UG/G S CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
DEC 1991 02					<1		3	<5		9	
02 JUN 1992		<10	50	<1	••	<1		• •		••	7600
17	•	<10	<10	<1		<1	••		<1	• •	290
DATE	RE FM TON TE (L	BOT- T 1 MA- R ERIAL E JG/G (1	EAD, RE OTAL FM ECOV- TOM RABLE TE UG/L (U	ECOV. N BOT- T I MA- R ERIAL E JG/G (		MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
DEC 1991 02 02		230	5	10	10	<10	 <0.10	0.01	2	<10 	 <1
JUN 1992 17		••	<1	••	<10	••	<0.10	• •	<1		<1
DATE	NI TO IN TON	DTAĽ T BOT- R I MA- E ERIAL (!	INC, RE OTAL FM ECOV- TOM RABLE TE UG/L (U	BOT- T I MA- IN RIAL TO IG/G T	M MA- ERIAL	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
DEC 1991 02		<1	••	<10 <	10	<10	<0.1	<10	140	47	140
02 JUN_1992			30	••	••	••					••
17			<10	••	••	••	••	••			
I T DATE	DI- LDRIN, TOTAL N BOT- OM MA- TERIAL UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPT CHLO EPOXI TOT. BOTT MAT (UG/K	R LINDA DE TOTA IN IN BO OM TOM I L. TER	AL CHLO OT- TOT. MA- BOT IAL MA	- MIRE OR, TOTA IN IN BO TOM TOM N TL. TERI	AL THA DT- IN B MA- TOM I MAL TERI	NE TOT OT- IN B MA- TOM AL TER	NE, TOT REC AL FROM BOT- OT- TOM MAT- MA- TERIAL IAL (UG/G)
DEC 1991 02	<1.0	<10	<1.0	<0.1	<0	.1 <	0.1 <10	0 <1	1.0 <10	.0 <10	1.69
02 JUN 1992 17					••					· ·	
11						-	•	• •	-	•	

### 01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ

LOCATION.--Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on Sicklerville-New Freedom Road (Spur 536), 1.5 mi northeast of Sicklerville, and 2.7 mi upstream of New Brooklyn Lake dam.

DRAINAGE AREA. -- 15.1 mi².

PERIOD OF RECORD. -- Water years 1972 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	TIME	CHAR I NS CUE FE PE	ST. BIC ET I	SPE- CIFIC CON- DUCT- ANCE US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	AT WA	IPER- TURE TER EG C)	SOL		DXYGEN, DIS- SOLVEI (PER- CENT SATUR- ATION;	DE C	(YGEN MAND, BIO- CHEM- CAL, DAY	COL FOR FEC EC BRO (MP	I- M, AL, TH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
NOV O	1991 6	1100	7	7.8	56	6.4		5.0	1	0.4	8	l	<1.2		120	130
FEB	1992 5	1200		5.5	68	6.3		4.0		2.0	92		E1.0		2	20
APR	4	1300		5.3	71	6.3		12.0		1.5	106		<1.0		8	220
JUN	9	0930	20		57	4.8		18.5		6.4	68		E1.5		240	20
JUL		1130		6	60	5.9		22.0		6.8	78		<1.0		110	130
	DATE	HAF NES TOT (MC	RD- SS TAL G/L	CALCIUI DIS- SOLVEI (MG/L AS CA	DIS SOLV (MG/	E- M, SOD - DI: ED SOL' L (M	IUM, S-	POTA SIL DIS SOLV (MG/ AS k	M, ED L	ALKA- LINITY LAB (MG/L AS CACO3	Y SUL D1 . SO	FATE S- DLVED IG/L SO4)	CHLO E RIDE DIS- SOLV (MG/	)- ; /ED 'L	FLUO RIDE DIS SOLV (MG/ AS F	- <u>'</u> ED L
	NOV 1991 06 FEB 1992		14	3.4	1.		4 <b>.</b> Í	1.		8.2		3.8	5.	9	<0.	
	05 APR		14	3.4	1.	4 !	5.2	1.		4.8		7.9	8.	8	0.	1
	14 JUN_		15	3.7	1.		4.5	1.		7.2		7.8	8.		<0.	
	09 JUL 15		13	3.1	1.		3.9	1.		2.4		5.9	7.		<0.	
	15		14	3.6	1.	3 .	3.7	1.	4	8.9		5.5	5.	5	<0.	1
	, DATE	SILI DIS SOL (MG AS SIC	VED LVED	SOLIDS SUM OF CONSTI- TUENTS DIS- SOLVEI (MG/L)	NITR GEN NITRI TOTA (MG/	O- GE , NITE TE DI L SOI L (MO	TRO- EN, RITE IS- LVED G/L N)	NITR GEN NO2+N TOTA (MG/ AS N	63 L Ľ	NITRO GEN, NO2+NO DIS- SOLVE (MG/L AS N)	NI 3 G AMM D TO	TRO- EN, IONÍA ITAL IG/L	AMMON	ÍA ED L	NITR GEN, A MONIA ORGAN TOTA (MG/ AS N	M- + IC L L
	NOV 1991			7.	7 00	00 0	00/		-	0.70	0.0		0.47	•	70	
	06 FEB 1992 05		3.5 5.9	37 42			.004	0.7		0.78	0.0		0.14		.38	
	APR 14		5.3	41				0.8			0.0		0.04		.28	
	JUN 09			30			.009	0.6		0.66	0.0		0.09		. 29	
	JUL 15		5.0 5.5	34			.010 .005	0.3		0.27	0.0		0.04		.88 .36	
	13	_		٠.	• 0.0	0) 0.	.003	0.5	,	0.59	<0.0	3	<0.03	U	. 30	
	DATE	NIT GEN, MONI ORGA DIS (MG	A + NIC	NITRO- GEN, TOTAL (MG/L AS N)	NITR GEN DIS- SOLVE (MG/ AS N	PHO PHOR TOT L (MO	RUS FAL G/L	PHOS PHORU DIS SOLV (MG/ AS P	S - ED L	CARBON ORGANI DIS- SOLVED (MG/L AS C)	, ORG C SU PEN TO (M		SEDI MENT SUS- PEND (MG/	, ( ED	SEDI MENT DIS CHARGI SUS PENDI (T/DA	: E , ED
	NOV 1991 06	n	.32	1.1	1.	1 ^	.04	0.03		5.0	0.	1	3		0.06	
	FEB 1992 05		.23	1.1	1.		.03	<0.03		3.3	0.		2		0.03	
	APR 14		.25	0.96			.03	<0.02		3.8	0.		6		0.09	
	JUN 09		.70	1.2	0.9		.10	0.02		24	0.		11		0.59	
	JUL 15		.22	0.93			09	0.06	,	5.6	0.		2		0.02	

## 01410784 GREAT EGG HARBOR RIVER NEAR SICKLERVILLE, NJ--Continued

DATE	CH I C	AND, MAT. EM- FALL AL DIAM. IGH % FINER EL) THAN	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHORUS TOTAL IN BOT. MAT.	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)
NOV 1991 06 06	1100 1100	·· <1 21 ··	1	1.4	160	72	<0.1	3.9	 2	<1
JUN 1992 09	0930	70			••		••		<1	••
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	TOTAL TO RECOV- RE ERABLE ER (UG/L (U	DMIUM REP DTAL FM I ECOV- TOM RABLE TEI JG/L (UI	COV. MI BOT- TO MA- RE RIAL ER G/G (U	UM, MITAL RICOV- FM ABLE TO	IIUM, R ECOV. FM BOT- TO MM MA- T ERIAL (	IBOT: TO M MA: RE ERIAL ER UG/G (L	PPER, REDTAL FM ECOV- TON RABLE TE	BOT- TO 1 MA- RE ERIAL ER JG/G (U	ON, ITAL COV- ABLE IG/L FE)
NOV 1991			••	<1		2	· <5	,	8	740
06 JUN 1992 09	<10 <10	<10 30	<1 <1	••	<1 <1			6 · 3		310 1100
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RE TOTAL FM RECOV- TON ERABLE TE (UG/L (U	ECOV. NE: BOT- TO MA- RE: ERIAL ER. JG/G (U	SE, NE TAL RE COV-FM ABLE TOM G/L TE	COV. T BOT- R MA- E RIAL (	RCURY R OTAL FM ECOV- TO RABLE T UG/L (	BOT- TO M MA- RE ERIAL ER UG/G (L	CKEL, REDTAL FM CCOV- TON RABLE TE JG/L (U	IMA- NI RIAL TO JG/G (U	LE- UM, ITAL IG/L SE)
NOV 1991 06 06 JUN 1992	390	6	<10 	20	<10	<0.10	<0.01	2	<10	<1
09	• •	4	••	50		<0.10		3	••	<1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RE TOTAL FM RECOV- TOM ERABLE TE (UG/L (U	BOT- TO 1 MA- IN I ERIAL TOM JG/G TE	TAĽ TO BOT- IN MA- TOM RIAL TE	TAĽ T BOT- IN IMA- TO RIAL T	DRIN, DOTAL TO BOT- IN MA- TO ERIAL T	OTAL TO BOT- IN M MA- TOM ERIAL TE	OTAĹ TO BOT- IN I MA- TON ERIAL TE	DTAL TO BOT- IN IMA- TOM ERIAL TE	DT, DTAL BOT- I MA- RIAL J/KG)
NOV 1991 06 06	<1	 <10	<10	3 ·	<1.0	<0.1	4.0	17	10	72 •••
JUN 1992 09	· •	30	••	<b></b>			••	••		
II TO DATE (U	LDRIN, SUL FOTAL TO N BOT- IN DM MA- TOM FERIAL TE	DO- FAN, ENDRIN, TAL TOTAL BOT- IN BOT- MA- TOM MA- RIAL TERIAL /KG) (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, TOT. IN BOTTOM MATL.	TOM MA- TERIAL	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ORGANIC HALOGEN TOT REC FROM BOT- TOM MAT- TERIAL (UG/G) AS CL
NOV 1991 06 06		<0.1 <0.1	<0.1	<0.1	<0.1	<10	<0.1 ···	<1.00	<10	0.842
JUN 1992 09	••		••	••				••	• •	

### 01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ

LOCATION.--Lat 39°35'42", long 74°51'06", Atlantic County, Hydrologic Unit 02040302, on left bank 25 ft upstream from bridge on State Highway 54, 1.0 mi south of Folsom, and 2.0 mi upstream from Pennypot Stream.

DRAINAGE AREA. -- 57.1 mi².

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1925 to current year. Prior to October 1947, published as "Great Egg River at Folsom". REVISED RECORDS.--WSP 1432: 1928(M), 1933. WDR NJ-83-1: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Nov. 26, 1934. Datum of gage is 53.32 ft above sea level. Prior to Mar. 6, 1941, water-stage recorder at site 100 ft downstream at same datum. Mar. 6 to Oct. 5, 1941, nonrecording gage at site 145 ft downstream at datum 0.25 ft higher.

REMARKS.--Records good. Several measurements of water temperature were made during the year. Satellite rain gage and gage-height telemeter at station.

	,-9	DISCH	ARGE, CUE	BIC FEET	PER SECOND,	. WATER Y MEAN	YEAR OCTOBER	1991	TO SEPTEME	BER 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	55 50 47 45 44	43 43 43 42 42	47 56 79 102 118	74 68 62 68 78	52 51 49 48 47	59 57 55 54 53	75 72 69 64 61	47 47 46 45 44	93 104 100 76 79	41 43 52 65 72	88 103 78 58 50	44 43 42 48 57
6 7 8 9 10	43 42 41 40 40	42 42 42 42 41	138 128 105 87 94	77 71 65 60 58	47 46 47 47 46	51 52 66 70 65	58 56 55 54 53	43 43 56 99 109	138 223 260 217 161	63 52 46 42 41	45 42 40 38 37	59 54 51 48 . 46
11 12 13 14 15	39 39 39 38 39	53 55 53 51 49	104 110 103 91 86	57 55 54 54 52	45 45 45 45 48	72 82 82 73 64	53 52 51 51 50	117 113 87 71 61	111 76 64 57 53	39 38 40 38 36	36 41 43 46 53	46 46 46 45 43
16 17 18 19 20	44 56 73 84 82	48 46 45 45 44	84 76 70 66 61	51 49 49 48 46	72 84 85 81 77	59 56 55 71 92	49 50 53 55 57	58 59 70 68 59	49 47 44 47 57	e36 37 37 36 35	67 91 130 151 147	42 42 41 41 40
21 22 23 24 25	69 59 54 51 49	43 44 52 53 51	60 60 57 57 56	46 46 48 61 68	71 65 60 57 56	103 104 94 83 77	56 54 54 53 52	53 49 47 44 43	55 49 46 45 77	33 31 36 71 102	115 74 60 53 50	39 39 38 38 40
26 27 28 29 30 31	47 46 45 45 43 43	48 46 46 45 45	55 53 52 57 76 80	65 59 56 54 53	64 73 73 66 	73 87 100 103 89 78	51 50 50 49 48	43 45 43 42 41 56	72 57 50 45 42	140 133 78 56 48 46	47 48 50 48 50 47	78 96 109 114 98
TOTAL MEAN MAX MIN CFSM IN.	1531 49.4 84 38 .86 1.00	1384 46.1 55 41 .81	2468 79.6 138 47 1.39 1.61	1805 58.2 78 46 1.02 1.18	1692 58.3 85 45 1.02 1.10	2279 73.5 104 51 1.29 1.48	1655 55.2 75 48 .97 1.08	1848 59.6 117 41 1.04 1.20	2594 86.5 260 42 1.51 1.69	1663 53.6 140 31 .94 1.08	2026 65.4 151 36 1.14 1.32	1613 53.8 114 38 .94 1.05
							, BY WATER YE					
MEAN MAX (WY) MIN (WY)	60.8 148 1939 27.8 1931	79.3 213 1973 30.1 1966	91.8 212 1973 35.1 1966	102 203 1936 39.3 1981	106 228 1939 50.7 1931	119 229 1958 60.1 1981	114 234 1983 53.9 1985	95.9 199 1958 47.1 1955	72.7 149 1948 34.4 1977	63.0 187 1938 22.1 1966	64.7 182 1967 19.3 1966	61.6 215 1940 25.6 1964
SUMMARY	STATISTIC	cs	FOR 1	991 CALE	NDAR YEAR	F	OR 1992 WATE	R YEAR	!	WATER YE	ARS 1925	- 1992
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC		AN AN I I MINIMUM AK FLOW AK STAGE I FLOW ISM) ISS ISS		28736 78.7 348 31 33 18.7 1.3 18.7 139 64 37	Jan 13 Sep 12 Sep 7		31 35 266 5.06	Jun 8 Jul 22 Jul 16 Jun 8 Jul 22		85.8 133 44.4 1300 15 16 1440 9.09 15 1.50 20.43 148 73	Aug 2 Aug 2 Sep Sep Sep	1973 1931 3 1940 29 1966 26 1966 3 1940 3 1940 6 1957

e Estimated.

# 01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1961-80, 1991 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER ATURE WATER (DEG C)	DIS- SOLVE	CENT CENT	OXYGEN DEMAND, BIO- CHEM- ICAL, DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
NOV 1991 06	0930	42	58	6.1	6.5	11.	.0 89	<1.2	, 	17
FEB 1992 06	1145	46	57	6.1	3.5			E1.9	70	10
APR									5	
14 JUN 10	1100	51	56	6.4	10.0		.4 100	<1.0		<10 - 50
10 JUL_	0830	168	61	4.3	18.0		7 07	E1.7	170	
15	1000	36	53	5.9	21.0	, ,	.7 87	<1.0	27	180
DATE	HAR NES TOT (MG AS CAC	S CALC AL DIS /L SOL	- DI VED SOL /L (MG	UM, SOD S- DIS VED SOL' /L (M	IUM, 5 S- D VED SC G/L (N	SIUM, LI DIS- DLVED ( IG/L	ALKA- INITY SULF LAB DIS (MG/L SOL AS (MC CACO3) AS S	S- DIS- VED SOLVE G/L (MG/L	RIDE DIS D SOLV	, S- /ED /L
NOV 1991 06		11 2	.2 1	.3	5.0	1.2	7.1	5.2. 7.4	<b>&lt;</b> 0.	1
FEB 1992 06			_		5.0	1.1		5.9 8.		
APR 14			_		4.7	1.4		5.5 8.3		
JUN 10					3.8			5.2 6.6	_	
JUL 15	٠				4.5	1.1		5.0 5.9		
13		10 2	.0	• • • •		1.1	J.0 4		, ,,,	
DATE	SILI DIS SOL (MG AS SIO	CONS VED TUEN /L DI SOL	OF NIT TI- GE TS, NITR S- TOT VED (MG	RO- GI N, NITI ITE D AL SOI /L (M	RIŤE ( IS- NO2 LVED T( G/L (N	TRO- SEN, NO SHOOS STAL S IG/L (		TAL SOLVE G/L (MG/L	GEN,/ A MONI/ ORGAN TOT/ (MG/	AM- A'+ NIC AL /L
NOV 1991 06	7	.6	37 0.	005 0	.007	.78	0.76 0.2	23 0.19	0.30	
FEB 1992 06	. 6	.2			.004 1	.00	0.99 0.1	5 0.15	0.44	
APR 14	3	.7		: 009 0	.010	.72	0.72 0.1	1 - 0.12	0.46	
JUN 10	5	.3 -	- 0.	010 0	.011 (	.12	0.09 0.0	7 0.10	1.1	
JUL 15	5	.1	30 0.	009 0	.009	.66	0.68 0.1	0 0.06	0.44	
DATE	NIT GEN, MONI ORGA DIS (MG AS	AM- A + NIT NIC GE TOT /L (MG	N, DIS AL SOLV /L (MG	N PHO - PHOI ED TO	OS- PHO RUS D TAL SO G/L (M	ORUS OR OIS- D OLVED SO OG/L (	CARBARBON, ORGARGANIC SUS-PEND DIS-PEND DLVED TOT (MG/L (MG AS C) AS	NIC S- SEDI- SED MENT, AL SUS- S/L PENDE	CHARG SUS D PEND	;; ;; ;; ;;
NOV 1991	_	74 4	1 1	4 .0	03 -	02 -	, , , , ,			
06 FEB 1992					.02 <0.		3.5 0.3			
O6 APR							3.0 0.5		0.25	
14 Jun					.03 <0.		3.6 0.7		0.83	j
10 JUL						06 34			2.7	
15	0	.29 1	.1 0	.97 0	.05 0.	03 3	5.3 O.6	10	0.97	,

## 01411000 GREAT EGG HARBOR RIVER AT FOLSOM, NJ--Continued

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)
NOV 1991 06 06	0930 0930	••	1	0.5	60	87	0.9	1.9	1	<1
JUN 1992 10	0830	91	••	••	••	••	••	••	<1	••
DATE .	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 06 06	<10	50	 <1	<1	 <1	3	<5		3	460
JUN 1992 10	<10	30	<1	••	4	••	••	19	••	1400
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 06	1100	2	10	20	14	 <0.10	0.13	8	<10 	1
JUN 1992 10	••	3	••	60	••	<0.10	••	5	••	<1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 06 06	<1	 <10	<10 	9	<1.0	<0.1 	4.0	0.1	<1.0	0.2
JUN 1992 10	••	. 30	••				••		••	••
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA - PHENE, TOTAL IN BOT - TOM MA- TERIAL (UG/KG)
NOV 1991 06 06 JUN 1992 10	<0.1 	<0.1 	<0.1 	<0.1 	<0.1	<0.1 	<1.0 	<0.1 	<1.00	<10 ⁻

## 01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ

LOCATION.--Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi upstream from Deep Run, and 20.9 mi upstream from mouth.

DRAINAGE AREA. -- 154 mi².

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH/ II CU TIME	NST. CI JBIC CO FEET DU PER AN	PE- WA FIC WH DN- FI DCT- (ST ICE A	H TER OLE ELD TEI AND A RD W	MPER- O TURE ATER	OXYGEN, DIS- SOLVED	DIS- DI SOLVED I (PER- ( CENT SATUR- !	XYGEN EMAND, C BIO- F CHEM- F ICAL, 5 DAY B	OLI- ORM, ECAL, EC ROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / OO ML)
NOV 1991 06	1045	110	47		7.5	11.8	98	<1.2	7	8
FEB 1992 05		130	53	6.4	1.5	13.0	93	E1.0	<2	10
APR 14		140	54	5.9	11.0	10.8	97	<1.0	2	10
JUN 10		570	56	4.4	18.5			<1.0	240	130
JUL 15	0800	95	47	6.3	23.0	6.6	. <b>77</b>	<1.0	22	160
15	0800	73	41	0.3	23.0	0.0	"	<b>\1.0</b>	22	100
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LINITY LAB D (MG/L AS _	SULFATI DIS- SOLVEI (MG/L ) AS SO4	DIS- DIS- SOLVED (MG/L	(MG/L	
NOV 1991 06 FEB 1992	9	1.8	1.1	4.2	1.2	5.2	4.7	7.8	<0.1	
05 APR	10	2.0	1.1	4.3	1.1	3.4	5.9	7.2	0.1	
14 JUN	10	2.0	1.2	4.0	1.3	3.2	6.1	7.6	<0.1	
10	10	2.2	1.1	3.4	0.9	0 <1.0	5.6	6.3	<0.1	
JUL 15	8	1.7	0.93	4.0	1.0	4.0	4.5	5.7	<0.1	
Date	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	NO2+NÓ3 3 DIS- SOLVEC (MG/L	NITRO 3 GEN, AMMONI/	AMMON Ì A	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	• •
NOV 1991										
06 FEB 1992	7.7	34	0.007	0.007	0.64	0.59	0.07	0.09	0.35	
05 APR	7.0	34	0.004	0.003	0.80	0.77	0.04	0.07	0.29	
14 JUN	4.7	31	0.011	0.007	0.49	0.48	0.11	0.04	0.32	
10 JUL	4.9	••	0.009	0.009	0.07	0.07	0.10	0.07	0.89	
15	5.1	27	0.004	0.003	0.49	0.49	<0.03	<0.03	0.34	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVEI (MG/L AS P)	ORGANIÖ DIS- D SOLVED (MG/L		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDEI (T/DAY	)
NOV_1991	0.74	0.00		-0.00	.0.00	2.0	0 1		0.70	
06 FEB_1992	0.41	0.99	1.0	<0.02	<0.02	2.9	0.4	1	0.30	
05 APR	0.23	1.1	1.0	<0.02	<0.02	2.6	0.6	2	0.70	
14 JUN	0.20	0.81	0.68	<0.02	<0.02	3.7	1.0	6	2.3	
10 JUL_	0.72	0.96	0.79	0.06	0.06	26	0.5	8	14	
15	0.20	0.83	0.69	0.04	0.02	3.8	0.2	4	1.0	

# 01411110 GREAT EGG HARBOR RIVER AT WEYMOUTH, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT. IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)
NOV 1991 06 06	1045 1045		3	0.4	50	66	0.1	0.6	1	. 2
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 06 06	<10	20	 <1	<1	3	2	<5	6	2	500
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991 06 06	260	6	<10 	20	<10 	<0.10	<0.01	6	<10 ··	 <1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 06 06	<1		<10 	<1	<1.0	<0.1 	<1.0	0.1	<0.1 ···	0.1
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 06 06	<0.1	<0.1	<0.1 ···	<0.1 	<0.1 	<0.1 	<1.0	<0.1 ·-	<1.00	<10

### TUCKAHOE RIVER BASIN

#### 01411300 TUCKAHOE RIVER AT HEAD OF RIVER, NJ

LOCATION.--Lat 39°18'25", long 74°49'15", Cape May County, Hydrologic Unit 02040302, on right bank at highway bridge on State Route 49, 0.2 mi upstream from McNeals Branch, 0.4 mi southeast of Head of River, and 3.7 mi west of Tuckahoe.

DRAINAGE AREA. -- 30.8 mi².

PERIOD OF RECORD. -- December 1969 to current year.

REVISED RECORDS.--WDR NJ-78-1: 1975(M), 1976(M). WDR NJ-89-1: (M). WDR NJ-91-1: 1990.

GAGE.--Water-stage recorder, wooden control, and downstream tidal crest-stage gage. Datum of gage is sea level.

REMARKS.--Records fair. Occasional regulation by ponds above station. There is a fish gate in the left control which was open from Apr. 9-13 and Apr. 21 to May 2. Several measurements of water temperature were made during the year.

		DISCH	ARGE, CUE	SIC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER VALUES	1991	TO SEPTEMBER	1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 16 16 16 15	e17 16 15 15 15	19 28 41 53 44	26 25 24 e39 43	22 21 21 21 21	28 27 27 27 26	29 28 27 26 25	23 20 22 20 19	53 38 32 28 43	18 17 17 26 24	22 20 18 17 16	23 22 27 33 31
6 7 8 9 10	15 15 14 14 14	16 16 16 15 e18	30 26 24 23 42	32 28 26 25 25	21 20 19 18 17	26 35 44 35 32	25 25 24 27 30	19 19 45 86 65	103 90 57 42 35	21 20 19 18 17	16 15 15 15 14	30 33 34 30 27
11 12 13 14 15	13 14 13 13	23 20 19 18 18	43 31 28 28 27	24 23 23 23 22	17 17 17 18 21	44 41 36 33 31	34 31 26 23 23	46 37 34 32 30	32 29 27 26 25	27 22 19 17 17	14 15 15 19 28	26 24 23 23 22
16 17 18 19 20	14 20 26 20 17	17 16 16 16 15	25 23 23 22 21	22 21 21 21 20	47 38 34 35 30	30 29 28 45 52	23 25 24 29 29	30 29 28 26 25	24 23 22 24 27	22 20 18 18 20	43 65 253 217 132	22 22 21 21 21
21 22 23 24 25	16 16 15 15 15	15 16 20 19 17	22 21 21 22 21	20 21 23 29 24	27 26 24 25 26	40 35 39 34 30	32 28 29 26 26	24 23 22 21 22	24 23 22 21 21	18 17 19 25 26	80 53 41 32 27	21 21 21 22 40
26 27 28 29 30 31	15 15 15 e14 e21 e20	16 16 16 16	21 20 20 29 41 31	22 21 21 20 20 20	41 44 35 30	31 45 40 34 31 30	25 25 26 24 23	23 24 23 22 21 33	21 20 20 19 18	24 24 22 19 18 18	27 29 36 31 27 25	93 94 63 51 39
TOTAL MEAN MAX MIN CFSM IN.	492 15.9 26 13 .52 .59	504 16.8 23 15 .55	870 28.1 53 19 .91	754 24.3 43 20 .79 .91	753 26.0 47 17 .84 .91	1065 34.4 52 26 1.12 1.29	34 23 .86	913 29.5 86 19 .96	989 33.0 103 18 1.07 1.19	627 20.2 27 17 .66	1377 44.4 253 14 1.44	980 32.7 94 21 1.06 1.18
STATIST	ICS OF MON	NTHLY MEAI	N DATA FO	OR WATER	YEARS 1970	- 1992	, BY WATER YE	AR (W)	()			
MEAN MAX (WY) MIN (WY)	27.0 58.1 1990 15.1 1978	35.0 81.4 1973 16.8 1992	41.8 94.3 1973 19.4 1981	52.6 101 1978 16.0 1981	54.6 101 1973 26.0 1992	63.4 144 1979 30.9 1985	1983 21.3	55.6 111 1983 20.0 1977	41.0 83.7 1984 14.8 1977	28.6 53.0 1989 12.7 1988	26.0 55.6 1971 10.6 1988	23.1 64.7 1989 7.04 1980
SUMMARY	STATISTIC	CS	FOR '	1991 CALE	ENDAR YEAR	1	FOR 1992 WATE	R YEAR	R 1	ATER Y	'EARS 1970 -	1992
LOWEST A	MEAN ANNUAL ME ANNUAL MEA DAILY MEA	AN AN		13029 35.7 210	Jan 13			Aug 18		42.8 64.3 22.4 464 1.3	May 31	1984 1977 1984
ANNUAL : INSTANT INSTANT INSTANT	DAILY MEAN SEVEN-DAY ANEOUS PEA ANEOUS PEA ANEOUS LOW RUNOFF (CF	MINIMUM AK FLOW AK STAGE V FLOW		13 13	Jul 21 Sep 4		13 ( 299 / 5.55a (	Oct 11 Oct 9 Aug 18 Oct 31 Oct 13	<b>)</b> 3	1.9 510 7.0	Sep 9 May 31 11a Mar 29	1980 1984
ANNUAL I 10 PERCI 50 PERCI	RUNOFF (IN ENT EXCEED ENT EXCEED ENT EXCEED	ICHES) OS OS		15.7 66 24 14			12.22 41 23 16			18.8 82 33 15		

a Tide affected.

e Estimated.

## 01411456 LITTLE EASE RUN NEAR CLAYTON, NJ

LOCATION.--Lat 39°39'32", long 75°04'04", Gloucester County, Hydrologic Unit 02040206, on right bank 30 ft downstream from bridge on Academy Road (County Route 610), 0.9 mi west of Fries Mill, 1.3 mi east of Clayton, and 1.4 mi downstream from Beaverdam Branch.

DRAINAGE AREA. -- 9.77 mi 2.

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1966, 1976-84, 1987. February 1988 to current year. GAGE. -- Water-stage recorder. Datum of gage is 100.94 ft above sea level.

REMARKS.--No estimated daily discharges. Records fair. Occasional regulation from unknown sources. Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 50  $\rm ft^3/s$  and maximum (*):

- LAK DI		o rok cokk	Discharge (ft ³ /s)	GE GIS	age height	:			D	ischarge (ft ³ /s)	Ga	ge height
Date		me 30	(ft ³ /s) *52		(ft) *3.50		Date	Time		(ft°/s) base disc	haraa	(ft)
June 6	) 13		ARGE, CUBIC	: FEET PER		WATER YE					illai ye.	
				, , , , , , , , , , , , , , , , , , , ,		MEAN VA		. ,,,,,				
DAY	OCT		DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	2.7	4.0 4.0 4.0	4.0 5.7 16	9.3 8.1 7.4	5.8 5.1	6.2 5.7	9.5 8.7 7.7	4.2 4.1 4.0	8.6 7.5 5.7	2.6 3.6 3.0	3.6 2.9 2.5	2.3 2.2 3.4
2 3 4 5	1.9 1.7 1.5	3.7 3.6	24 23	10 13	4.6 4.2 4.1	5.4 5.2 5.0	7.0 6.4	3.8 3.7	4.4 11	5.5 4.6	2.3	3.7 3.3
	1.5	3.4	20 15	12 10	3.8	4.9		3.5	47	3.6	2.1	3.1
6 7 8 9 10	1.4 1.3 1.2	3.4 3.3 3.3 3.3	15 11 8.5	10 8.4 7.4	3.7 3.7 3.7 3.2	6.6 9.6 8.7	6.0 5.7 5.5 5.3 5.2	3.4 5.8 9.6	42 31 19	3.1 2.7 2.5	2.0 1.9 1.9	3.0 3.0 2.8
			18	6.9	3.2	7.6		10.0	9.2	2.3	1.9	2.8
11 12 13	1.2 1.3 1.2	5.5 5.7	19 17	6.4 5.8	3.1 3.1	13 13	5.2 5.1	8.5 6.6	6.1 4.9	2.2 2.1	1.9 2.0	3.6 3.1
14	1.2	5.6 5.3	14 13	5.8 5.5 5.7	3.1 3.2	10 8.3	4.9 4.8	5.6 5.0	4.3 3.8	2.1 2.0	1.9 2.4	2.7 2.6 2.5
15 16	3.5 6.9		13 11	5.4 5.0	4.4 12	7.0 6.2	4.6 4.6	4.4 4.4	3.4 3.2	2.0 2.3	2.9 4.6	
17 18	12 19	4.1 3.7	9.2 8.3	5.0 4.3 4.1	12 13 12 12	6.2 5.7 5.6	4.9 5.1	5.0 4.7	2.9 2.7	2.3 2.3 2.4	7.8 11	2.3 2.3 2.2 2.2 2.1
19 20	16 13	3.6 3.4	7.1 6.0	3.6 3.1	12 10	12 17	5.8 6.0	4.4 3.9	2.9 3.4	2.4	7.7 5.1	2.2 2.1
21	9.2 6.8	3.3 3.7	5.7 5.7	3.1 3.1	8.4 7.1	16 13	5.8 5.7	3.6 3.4	3.1 2.8	2.3 2.3	3.7 3.1	2.1
21 22 23 24 25	5.2	6.6	5.6	4.2 11	6.3 5.9	11 10	5.8 5.4	3.1 2.9	2.7	2.8 3.9	2.7	2.1 2.1 2.5 2.2 2.5
	4.4		5.6	11	5.6	8.7	5.0	2.8	3.2 7.0	4.6	2.4	
26 27 28 29 30	4.2 4.1 4.3	4.0	4.8 4.5 4.3	9.4 7.8 6.9	8.4 9.4 8.5	8.8 19 19	5.2 · 4.9 4.7	2.9 3.2 3.1	4.6 3.7 3.2	5.0 5.2 5.2	2.7 3.7 3.3	11 11 8.8
29 30	4.5 4.4	3.4	4.3 7.8 12	6.5 6.1	7.2	16 12	4.5 4.4	2.8	2.8 2.5	4.2 2.8	3.2	7.1 4.5
31	4.1	•••	11	6.0	···	11	•••	5.5	•••	2.7	2.7	•••
TOTAL MEAN MAX	147.3 4.75 19	4.22	335.1 10.8	216.5 6.98	184.6 6.37 _13	307.2 9.91 19	169.4 5.65	140.6 4.54	258.6 8.62	96.6 3.12 5.5	102.8 3.32	109.0 3.63
MIN CFSM	1.2	3.3	24 4.0 1.11	13 3.1 .71	3.1 .65	4.9 1.01	9.5 4.4 .58	10 2.7 .46	47 2.5 .88	2.0 .32	11 1.9 .34	11 2.1 .37 .42
IN.	.56		1.28	.82	.70	1.17	.65	.54	.98	.37	.39	.42
			EAN DATA FO									
MEAN MAX (WY)	8.13 19.7 1990	15.0	9.25 11.2 1991	15.2 26.5	11.5 17.2	14.6 18.4	15.4 20.4	14.9 29.3	9.22 15.4	6.79 19.0	6.61 15.2	6.34 20.4 1989
MIN (WY)	1.93 1.93 1989	4.22	7.03 1989	1991 6.98 1992	1990 6.37 1992	1991 9.91 1992	1990 5.65 1992	1989 4.54 1992	1989 2.18 1988	1989 1.83 1988	1989 1.60 1988	1.77 1.88
			FOR 1									
ANNUAL				3539.9			2194.3					
	MEAN T ANNUA ANNUAL			9.70	)		6.00	,		11.0 14.3 6.00		1989 1992
				64 1.1	Jan 12 Sep 11		47 1.2	Jun 6 Oct 9		111	Sep 2	20 1989 16 1988
INSTANT	SEVEN- TANEOUS	PEAK FLOW	М .	1.1	Sep 11		1.2 52	Oct 8 Jun 6		.41 .50 124	Sep 2	10 1988 20 1989
INSTANT	TANEOUS	PEAK STAG	E	~			3.50 1.1	Jun 6 Oct 10		4.27 .35	Sep ( Aug	20 1989 15 1988
ANNUAL	RUNOFF RUNOFF CENT EX	(CFSM) (INCHES) CFFDS		.99 13.48 22			.61 8.35 11			1.13 15.34 23		
50 PERC	CENT EX	CEEDS		6.0 1.4			4.6 2.3			8.3 1.7		
					,					•		

## 01411485 MAURICE RIVER AT BROTMANVILLE, NJ

LOCATION.--Lat 39°31'19", long 75°04'25", Salem County, Hydrologic Unit 02040206, on right bank at downstream side of bridge on Garden Road, 1.3 mi upstream from Blackwater Branch, 2.1 mi downstream from Willow Grove Lake, and 0.5 mi east of Brotmanville.

DRAINAGE AREA. -- 88.1 mi 2.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June to September 1992.

GAGE. -- Water-stage recorder. Datum of gage is 51.98 ft above sea level.

REMARKS.--Records good. Some regulation from Willow Grove Lake and other lakes upstream. Satellite telemeter at station.

DISCHARGE CURIC FEET DED SECOND WATER VEAR OCTORER 1001 TO SERTEMBER 1002

		D	ISCHARGE	E, CUBIC	FEET	PER		, WATER LY MEAN		ER 1991	TO SEPTEMBER	1992		
DAY	OCT	NO	v (	DEC	JAN		FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										·	•••	56	97	. 48
2	• • •				• • •		• • •		• • •			54	92	49
			-		• • •		•••				•••	53	74	59
4	• • •						• • •				• • •	79 ·	65	56
5			-				•••				•••	82	61	49
6							•••				220	75	55	60
7	• • •								• • • .	• • •	270	54	48	59
8	• • •			• • •			• • •			• • •	258	57	46	63
9	• • •	• •		• • •			• • •	• • •	• • •	• • •	226	55	45	44
10	•••		-	• • •			• • •	• • •	•••	• • •	164	53	e43	61
11		• •									97	50	e45	e65
12				• • •			•••				76	47	<u>51</u>	e46
13	• • •			• • •			• • • •		• • •	•	85	e45	<u>47</u>	e48
14	• • •	• •		• • •			•••		• • •		65	e43	53	e48
15	• • • •	• •	•			•	• • •	• • •	• • •		69	44	71	e46
16							•••		•••		78	45	83	e46
17	• • •	• •	-				• • •	• • •		• • •	63	44	99	45
18	•••			• • •			•••	• • •	•••	• • •	61	e43	129	e43
19	• • •			• • •	• • •			• • •		• • •	<u>62</u>	e43	124	e42
20	•	••	•				•••	• • • •	•••		83	e42	116	e41
21 22 23 24	• • •		- ,				•••				60	e41	96	e39
22	• • •	• •			• • •		• • •		•••		70	e41	79	e40
23	• • •	• •					•••	• • •		• • •	63	63	66	e41
24	• • •	• •			•••		•••				<u>53</u>	83	46	e40
25	•••		•						`	• • • •	87	75	51	e48
26					•		• • •				102	82	63	105
27	• • •	• •	•		• • •		• • •		•••	• • •	97	98	55	111
28							•••				86	89	51	113
29				• • •			•••	• • •		• • •	64	75	72	105
30				• • •			•••	-,		• • •	56	58	65	87
31	•••	••	•	•••	• • • •		•••		•••		•••	52	44	•••
TOTAL				• • •	• • •		•••					1821	2132	1747
MEAN	• • •	• •					•••					58.7	68.8	58.2
MAX	• • •						• • •					98	129	113
MIN	• • • •			• • •							• • •	<u>41</u>	43	39
CFSM				• • •	• • •			• • •		•••	•••	. <u>67</u>	.78	.66
IN.		••	•	•••			•••	•••		• • •	•••	.77	.90	.74
STATIST	TICS OF	MONTHLY	MEAN DA	ATA FOR	WATER	YEA	RS 1992	- 1992	BY WATER '	YEAR (W	()			
MEAN			-		• • •							58.7	68.8	58.2
MAX			-					• • •	•••			58.7	68.8	58.2
(WY)			•	• • •				• • •		• • •	• • •	1992	1992	1992
MIN				· · ·			• • •	• • •				58.7	68.8	58.2
(WY)			•				•••	• • •		• • •		1992	1992	1992
SUMMARY	STATIS	TICS							JUNE TO S	SEPTEMBE	R 1992			

SUMMARY STATISTICS

JUNE TO SEPTEMBER 1992

AVERAGE FLOW HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW

270 JUN 6 39 SEP 21 277 JUN 6 6.78 JUN 6

e Estimated.

## 01411485 MAURICE RIVER AT BROTMANVILLE, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- November 1991 to August 1992 (discontinued).

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPBEMBER 1992 OXYGEN, ENTERO-DIS-**OXYGEN** COCCI ME, MF WATER TOTAL CHARGE, WATER DIS-DEMAND, COLI-FORM, FECAL, INST. CUBIC CIFIC WHOLE SOLVED BIO-OXYGEN, CHEM-CON-DUCT-TEMPER -FIELD (PER-ATURE CENT FEET (STAND DIS-ICAL, 5 DAY EC WATER SOLVED BROTH DATE TIME PER ANCE SATUR-(COL / ARD 100 ML) SECOND (US/CM) UNITS) (DEG C) (MG/L) ATION) (MG/L) (MPN) NOV 1991 14... JUN 1992 18... 1100 92 <20 E58 7.5 F2.1 <20 118 6.8 11.1 1130 <20 69 73 6.7 21.0 10.0 112 E1.6 <10 AUG 06... 1100 56 75 6.6 22.0 8.5 97 <1.0 8 <10 HARD -MAGNE . FLUO-POTAS-ALKA-CHLO-NESS TOTAL (MG/L AS RIDE, DIS-SOLVED CALCIUM SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, DIS-SOLVED DIS-SOLVED (MG/L DIS-SOLVED (MG/L LAB (MG/L DIS-SOLVED DIS-SOLVED DIS-SOLVED (MG/L AS MG) (MG/L AS NA) (MG/L AS SO4) (MG/L AS CL) (MG/L DATE AS CACO3) CACO3) AS CA) AS K) AS F) NOV 1991 14 JUN 1992 24 5.3 2.7 9.7 2.6 9.3 9.2 17 <0.1 18... 20 4.4 2.2 4.8 1.7 8.3 7.1 7.8 <0.1 AUG 06... 21 4.7 2.3 4.8 9.4 7.2 8.9 <0.1 1.6 SOLIDS, NITRO-NITRO-NITRO-NITRO-SILICA, SUM OF NITRO-GEN NITRO-GEN, NO2+NO3 NITRO-GEN, AMMONÍA CONSTI-GEN, MONÍA + DIS-GEN, NITRITE NITRITE GEN, NO2+NO3 SOLVED (MG/L DIS-SOLVED (MG/L AMMONÍA TOTAL DIS-SOLVED (MG/L TUENTS, DIS-ORGANIC SOLVED TOTAL DIS-TOTAL TOTAL DATE SOLVED (MG/L (MG/L (MG/L (MG/L (MG/L sío2) (MG/L) AS N) AS N) AS N) AS N) AS N) AS N) AS N) NOV 1991 14. JUN 1992 0.007 5.6 68 0.006 2.17 2.17 0.46 0.57 0.86 18... 4.7 43 0.009 0.008 1.31 1.25 0.06 0.06 0.65 AUG Õ6... 3.1 44 0.007 0.007 1.34 1.23 0.05 <0.03 0.45 NITRO-**CARBON** SEDI -GEN, AM-MONIA + NITRO-PHOS-ORGANIC CARBON MENT, DIS-NITRO-PHOS-PHORUS ORGANIC SUS-GEN SEDI-GEN, TOTAL ORGANIC DIS-**PHORUS** DIS-DIS-PENDED MENT, CHARGE, SOLVED DIS. (MG/L TOTAL **SOL VED** SOLVED TOTAL SUS-SUS-DATE (MG/L (MG/L AS N) (MG/L AS P) (MG/L AS P) (MG/L AS C) (MG/L AS C) PENDED PENDED AS N) ÀS N) (T/DAY) (MG/L) NOV 1991 14... JUN 1992 0.71 3.0 2.9 0.28 <0.02 25 0.2 8 . . 18... 0.51 2.0 1.8 0.03 <0.02 9.4 0.2 13 2.4 AUG 06... 0.26 1.8 1.5 0.13 <0.02 5.1 0.4 3 0.45

# 01411485 MAURICE RIVER AT BROTMANVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPBEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	LI TO RE ER (U	TAĽ 1 COV- F ABLE E G/L (	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 18	1130	23	<1	. <	10	20	<1	<1	<1
. DATE	TO1 REC ER/ (UC	COV- REC ABLE ER/ G/L (UC	AD, NE FAL TO COV- RE ABLE ER G/L (U	NGA- SE, TAL COV- ABLE G/L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOT REC ERA (UG	AL SELI OV- NIU BLE TOT /L (UG	M, REC AL ERA /L (UG	AĽ OV- BLE
JUN 1992 18		1100	<1	50	<0.10	)	3	<1	<10

## 01411495 BLACKWATER BRANCH AT NORMA, NJ

LOCATION.--Lat 39°30'20", long 75°04'22", Salem County, Hydrologic Unit 02040206, on right bank 25 ft upstream from bridge on Maurice River Parkway, 0.7 mi northeast of Norma, and 0.4 mi from mouth.

DRAINAGE AREA. -- 12.5 mi 2.

PERIOD OF RECORD. -- August to September 1992.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 51.58 ft above sea level. REMARKS.--Records good. Satellite telemeter at station.

		DISCH	HARGE, CUB	IC FEET P	ER SECOND DAI	, WATER LY MEAN	YEAR OCTOBER	1 <b>99</b> 1 T	O SEPTEMBER	1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY .	JUN	JUL	AUG	SEP
1												9.0
Ź					• • •	• • •			• • •		•••	8.9
2 3		• • •	• • •	• • •	• • •	• • •	•••	• • •	• • •	• • •		9.1
4		•••		• • •	• • •	• • •	•••	• • •	• • •	• • •		9.9
5		•••	• • •	• • •	•••		•••		•••	•••	•••	9.5
6		•••					•••		•••			8.9
7		• • •		• • •	··· ,	• • •	•••	• • •	• • •	• • •		9.5
8		• • •	• • •				•••	•••	. • • •	• • •	• • •	9.1
.9		• • •		• • •		• • •	• • •	• • •	• • •			8.9
10	•••		•••	• • •	•••		•••	• • •			•••	8.9
11	• • •			• • •	• • •	•••			• • •			9.4
12		• • •				• • •	•••	• • •	• • •		e10	8.6
13		• • •				• • •	•••	• • •	•••		9.6	8.4
14		•••	•••	•••	• • •			• • •	• • •		11	8.3
15	•••	•••		•••	•••	• • •	•••	• • •		• • •	13	8.3
16				• • •	• • •				•••		14	8.3
17				• • •			• • •	• • •			17	8.3 8.2
18				• • •	• • •		•••	• • •	•••		28	8.1
19					• • •	• • •	• • •	• • •	•••	• • •	14	8.1
20	•••	•••	•••	•••	•••	• • •		• • •	•••		12	8.0
21				•••				:	• • •		11	7.9
21 22 23 24											11	8.1
23									• • •		10	8.3
24									• • •	• • •	10	8.1
25	• • •	• • •	•••	• • •	• • •				•••	• • •	9.8	8.7
-26				•••	•••						9.7	23
26 27	• • •								• • •		9.6	23 12
28 29 30											9.8	10
29									•••		9.6	9.8
30											9.2	9.2
31	• • •	• •••	•••	•••	•••	• • •				• • •	9.1	•••
TOTAL												280.5
MEAN	• • •						• • •		•••			9.35
MAX												23
MIN												7.9
CFSM	• • •	'							• • •			. 75
IN.	'	• • •	• • •	• • •	•••			•••	• • •	• • •		.83
STATIST	ICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 1992	- 1992,	BY WATER YE	AR (WY)				
MEAN					.·				•••		• • •	9.35
MAX			•••	•••	•••			•••	•••	• • •	•••	9.35
(WY)							•••		•••			1992
MÏN									• • •			9.35
(WY)	•••	• • •	•••								•••	1992

SUMMARY STATISTICS

AUGUST TO SEPTEMBER 1992

AVERAGE FLOW.
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW

28 AUG 18 7.9 SEP 21 34 AUG 18 4.38 AUG 18 7.7 SEP 24

e Estimated.

## 01411500 MAURICE RIVER AT NORMA, NJ (National stream quality accounting network station)

LOCATION.--Lat 39°29'42", long 75°04'38", Salem County, Hydrologic Unit 02040206, on right bank just upstream from bridge on Almond Road (State Route 540) at Norma, and 0.8 mi downstream from Blackwater Branch.

DRAINAGE AREA. -- 112 mi 2.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1932 to current year. Monthly discharge only for December 1933, published in WSP 1302.

REVISED RECORDS.--WSP 1382: 1933. WDR NJ-79-1: 1967(P). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Dec. 27, 1937. Datum of gage is 46.94 ft above sea level.

REMARKS.--Records good except for estimated daily discharges, which are fair. Occasional regulation by ponds above station. Several measurments of water temperature, other than those published, were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. - Peak discharges greater than base discharge of 380 ft3/s and maximum (*):

Date		Time	l	oischarge (ft ³ /s)		Gage height (ft)		Date	Time	C	)ischarge (ft ³ /s)	Ge	ge height (ft)
June	7	Unknown	1	*390		Unknown		No other	peak grea	ter than	n base dis	charge.	
		,	DISC	HARGE, CUI	SIC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOB VALUES	BER 1991 T	O SEPTEN	18ER 1992	•	
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		101 93 91 78 79	81 82 81 79 77	80 95 137 184 174	126 122 118 129 135	102 100 96 94 93	116 110 106 102 100	141 133 125 120 117	100 97 95 92 90	164 e143 e130 e120 e130	e84 e81 e80 e114 e116	e135 e130 e110 e98 e92	70 70 79 84 70
6 7 8 9 10		82 83 80 79 78	74. 73 73 71 71	172 167 151 132 162	132 129 126 121 117	93 91 92 93 91	98 108 124 126 125	114 105 99 104 104	88 86 99 113 120	e290 e350 e335 e290 e210	e108 e81 e85 e82 e79	e82 e72 e69 e68 e64	82 80 90 62 79
11 12 13 14 15		77 77 75 75 89	84 86 86 82 78	160 156 150 158 139	111 106 104 104 104	89 89 89 89 95	136 137 134 128 122	109 108 106 104 102	124 123 116 109 102	e135 e110 e123 e98 e104	e75 e70 e67 e64 e66	e68 80 74 82 100	92 65 69 68 66
16 17 18 19 20		122 124 154 135 127	75 73 73 72 71	138 133 128 122 113	102 98 96 96 94	128 129 133 134 131	116 112 110 131 144	101 104 106 111 113	99 97 95 93 88	e110 e94 e91 e93 e120	e67 e66 e64 e64 e63	118 135 178 165 154	65 64 62 61 59
21 22 23 24 25		128 108 105 96 89	71 76 91 91 86	111 111 111 111 110	93 93 97 113 116	125 119 115 114 111	148 149 151 145 138	112 111 112 108 106	86 82 66 68 71	e90 e105 e94 e79 e122	e62 e62 e94 e124 e109	132 110 99 70 76	57 57 59 57 64
26 27 28 29 30 31		88 87 85 83 79 77	80 76 75 73 73	109 106 104 118 130 129	115 111 109 106 104 102	122 125 123 121	134 155 155 155 149 146	104 104 103 102 100	72 77 78 76 72 123	e142 e135 e120 e96 e84	e119 e137 e125 e108 e87 e78	85 84 72 97 90 66	143 145 143 136 117
TOTAL MEAN MAX MIN CFSM IN.	-		2334 77.8 91 71 .69 .78	4101 132 184 80 1.18 1.36	3429 111 135 93 .99 1.14	3126 108 134 89 .96 1.04	4010 129 155 98 1.15 1.33	3288 110 141 99 .98 1.09	2897 93.5 124 66 .83 .96	4307 144 350 79 1.28 1.43	2681 86.5 137 62 .77	3055 98.5 178 64 .88 1.01	2415 80.5 145 57 .72 .80
STAT	STIC	CS OF MONT	HLY ME	AN DATA FO	R WATER	YEARS 1933	- 1992,	, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)		48.6	142 330 1973 46.7 1966	167 385 1973 57.1 1966	192 380 1936 64.7 1966	201 418 1939 95.7 1981	228 427 1979 97.2 1981	225 437 1984 90.9 1966	191 387 1958 79.5 1977	149 291 1979 57.7 1966	125 333 1975 35.6 1966	127 327 1958 34.6 1966	125 591 1940 40.6 1965

MAURICE RIVER BASIN

## 01411500 MAURICE RIVER AT NORMA, NJ.-Continued

SUMMARY STATISTICS	FOR 1991 CALEND	AR YEAR	FOR 1992 WAT	ER YEAR	WATER YEAR	s 1933 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	53386 146		38567 105		165 253	1973
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	531 54 60	Jan 13 Aug 14 Sep 7	350 57 59	Jun 7 Sep 21 Sep 18	67.4 5260 23 23	1966 Sep 2 1940 Sep 8 1964 Sep 7 1966
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		оср ,	390e  55	Jun 7 Sep 25	7360a 8.72 23	Sep 2 1940 Sep 2 1940 Sep 8 1964
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.31 17.73 244 128		.94 12.81 140 102		1.48 20.06 .283 145	
90 PERCENT EXCEEDS	74		70		69	

a From rating curve extended above 3,000  $\ensuremath{\text{ft}^3/\text{s}}$  , highest since 1867. e Estimated.

## 01411500 MAURICE RIVER AT NORMA, NJ -- Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923, 1953, 1960-62, 1965 to current year.

PERIOD OF DAILY RECORD...
SPECIFIC CONDUCTANCE: January 1980 to November 1986 (discontinued).
WATER TEMPERATURE: October 1966 to January 1968 (once daily), January 1980 to November 1986 (discontinued).
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to January 1968.

INSTRUMENTATION. -- Water-quality monitor, January 1980 to November 1986.

REMARKS..-Missing continuous water-quality records are the result of malfunction of the instrument.

EXTREMES FOR PERIOD OF DAILY RECORD...
SPECIFIC CONDUCTANCE: Maximum, 151 microsiemens, Jan. 25, 1984; 52 microsiemens, June 16, 1982.
WATER TEMPERATURE: Maximum, 28.0°C, July 21, 1980; minimum 0.0°C on many days during winter months.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)
NOV 1991	1100	73	80	6.5	9.0	1.4	11.0	95	••	K12
JAN 1992 23	1100	93	86	6.4	2.0	2.1	12.0	88	K5	K17
APR 01	1200	141	80	6.4	11.0	1.1	11.7	108	['] K1	K85
MAY 28	1205	77	77	6.5	16.0	1.0	9.6	97	K74	K12
JUL 27	1130	141	72	6.6	22.0	1.9	7.5	87	K210	1000
SEP 16	1100	65	79	7.0	19.0	0.50	8.9	96	32	760
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE IT-FLD (MG/L AS HCO3)	ALKA- LINITY, CARBON- ATE IT-FLD (MG/L - CACO3)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV 1991 19	20	4.2	2.4	4.9	2.0	5.0	4.0	7	7.6	9.8
JAN 1992 23	22	4.6	2.5	5.1	2.0	5.0	4.0	6	10	11
APR 01	21	4.4	2.3	5.3	1.5			*5.3	9.6	8.6
MAY 28	19	4.0	2.3	5.2	1.7	10	8.0	· 8	6.7	8.9
JUL 27	21	5.1	2.0	4.8	1.7				7.2	8.3
SEP 16	19	4.1	2.2	5.0	1.9	9.8	8.0	8	6.4	8.6
DATI	FLU RID DI SOL (MG AS	E, DIS- S- SOLV VED (MG) /L AS	CONS VED TUEN VL DI SOL	OF NIT TI- GE TS, NITR S- TOT VED (MG	N, NITR ITE DI AL SOL /L (MG	N, NIT ITE GE S- NO2+ VED TOT /L (MG	NO3 DI AL SOL L (MG	N, NIT NO3 GE S- AMMO VED TOT /L (MG	N, AMMO NIA DI AL SOL' /L (MG	N, NIA S- VED /L
NOV 1991	1 <0	.1 6.	.3	50 <0.	01 <0.	01 2.	20 2.	20 0.	03 0.	03
JAN 1992 23	2		.4	56 <0.			40 2.			
APR 01	0	.2 5.	.0	48 <0.	01 <0.	01 1.	60 1.	70 0.	02 0.	03
MAY 28	<0	_		38 <0.			05 <0.			
JUL 27	<0	_	.6	43 <0.			00 0.			
SEP 16	<0	.1 3.	.7	44 <0.	01 <0.	01 1.	60 1.	60 0.	02 0.	03

^{*} Laboratory determination.

MAURICE RIVER BASIN 01411500 MAURICE RIVER AT NORMA, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

D/	ATE	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	PHORUS ORTHO D TOTAL (MG/L	ORTHO DIS- SOLVED (MG/L	S SEDI- MENT,		SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
NOV 19.		<0.2		<0.01	<0.01	<0.01	0.01	. 1	0.20	40
JAN 19	992	<0.2	••	<0.01	0.02					44
APR 01.		0.2	1.8	<0.01	<0.01	-				27
MAY 28.		<0.2	•	0.02	0.02		<0.01	_		18
JUL			•							
SEP		0.4	1.4	<0.01	<0.01	0.01			8.0	50
16.	• •	0.2	1.8	<0.01	<0.01	<0.01	<0.01	11	1.9	89
		DATE	TIME	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS- SOLVED (UG/L AS BA)	COBALT, DIS- SOLVED (UG/L AS CO)	IRON, DIS- SOLVED (UG/L AS FE)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
	11	1991	1100	50	51	<3	110	<4	17	
•	0	1992 1	1200	100	64	<3	130	<4	23	
		7	1130	80	48	<3	280	<4	19	
	SEP 1	6	1100	40	50	<3	170	<4	12	
		DATE NOV 1991 19	MOL DENI DI: SOL' (UG, AS I	UM, NICH S- DIS VED SOL /L (UC	CEL, NIC S- D LVED SOI G/L (UI	IS- D LVED SOI G/L (UG SE) AS	VER, T IS- D LVED SO G/L (U AG) AS	RON- VAN. IUM, DIU. IS- DI UVED SOL' G/L (UG	<b>M,</b> S- VED /L	·
		APR 1992			•	·	<1.0		_	
		01 JUL_		<10	1		<1.0	28	<6	
		27 SEP		<10	1		<1.0	25 .	<6	
		16	•	<10	2	<1 ·	<1.0	25	<6 .	

## 01411800 MAURICE RIVER NEAR MILLVILLE, NJ

LOCATION.--Lat 39°26'52", long 75°04'22", Salem County, Hydrologic Unit 02040206, on left bank at downstream side of bridge on Sherman Avenue (State Route 552), 1.1 mi downstream from Muddy Run, 3.2 mi northwest of Millville, and 3.3 mi upstream from Union Lake Dam.

DRAINAGE AREA. -- 191 mi 2.

### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August to September 1992.

GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage is 21.77 ft above sea level (levels by EBASCO Environmental).

REMARKS.--No estimated daily discharges. Records good. Some regulation from Willow Grove and Rainbow Lakes and other lakes above headwaters. Satellite telemeter at station.

		DISCH	ARGE, CUBI	C FEET P	ER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER VALUES	1991 TO	SEPTEMBER	1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1												112
						• • •						112 113
2 3				• • •	• • • •		·		• • •			121
4					• • •	• • •	• • •		• • •	• • •		152
5	• • •		,	:	• • •		• • •		•••		• • •	132
6	• • •					• • •						122
6 7			• • •	• • •			•••		• • • •	• • •		130
8						• • •	•••	:	• • •			139
9										• • •		115
10	•••	•••	,			• • •	•••		•••			115
11	•••	• • •	•••		•••	• • •	•••		•••		• • •	139
12 13						• • •	• • •		• • •		• • •	157
		• • •	•••	•••	• • •		• • •		• • •	• • •		164
14			• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		107
15	•••	•••		•••	•••	• • •	•••	• • •	•••	•••	• • •	101
16					• • •				• • •		• • • •	98
17						• • •	•••					· 98
18		• • •	• • •	• • •	•••	• • •	• • •		•••			96
19	• • •	• • •	• • •		• • •	• • •			•••	• • •		93
20				•••	•••	• • •	• • •	• • •	•••		250	90
21							•••				224	89
. 52	•••			•••	•••	•••	•••	• • •	•••		186	91
22 23											167	<b>8</b> 7
24											127	82
25		• • •	• • •	•••	•••		•••		• • •	• • •	121	98
24	•••										123	299
26	•••	• • • •			• • • •		•••	• • • •			135	271
28							•••				124	249
27 28 29	•••	•••	•••		•••		•••		•••		150	204
30			'						• • •		138	165
31											121	
TOTAL	•••	• • •	• • •				•••		• • •		• • •	4029 134
MEAN							•••					299
MAX MIN				•••			•••				•••	82 82
CFSM							•••		• • • •		•••	02 70
IN.	•••		•••	•••	• • • •		•••		•••			.70 .78
					40			•			•	
STATIST	ICS OF MC	NTHLY MEA	N DATA FOR	WATER Y	EARS 1992	- 1992	BY WATER YE	AR (WY)				•
MEAN		• • •	•••	•••	•••	•••	• • •			• • •	•••	134
MAX		• • •	• • •			• • •	•••	• • •	• • •	• • •		134
(WY)			• • •			• • •	• • •	• • •	• • •	• • •		1992
MIN	• • •	• • •					• • •	• • •				134
(WY)	•••		•••	•••	•••	•••	•••	•••	•••	•••		1992

SUMMARY STATISTICS

AUGUST TO SEPTEMBER 1992

AVERAGE FLOW HIGHEST DAILY MEAN LOWEST DAILY MEAN INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW

299 SEP 26 82 SEP 24 337 SEP 26 6.51 SEP 26 81 SEP 24

## 01411800 MAURICE RIVER NEAR MILLVILLE, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968, 1975-78, 1991 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

DATE	TIME	INST. C CUBIC C FEET D PER A	PE- W/ IFIC WI ON- F UCT- (S NCE /	TAND- A ARD W	TURE ATER S	YGEN, () DIS- OLVED S	DIS- DEPOLVED BOPER- CICENT ICATUR- 5	IO- FO HEM- FE CAL, E DAY BR	DLI- CO DRM, ME ECAL, WA EC TO ROTH (CO	ERO- CCI ,MF TER TAL L / ML)
JAN 1992	1130	E140	112	6.5	8.5	10.7	90	<1.0	60	10
APR 14	1130	E160	124	6.7	12.0	10.4	97	E1.2	<20	<10
DATE	HARD NESS TOTAI (MG/I AS CACO	CALCIUM L DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
JAN 1992 22 APR	;	26 5.5	2.9	6.8	2.3	9.9	12	15	0.2	
714	;	25 5.3	2.9	8.0	2.6	9.0	9.6	14	<0.1	
DATE	SILICA DIS- SOLVI (MG/I AS SIO2)	CONSTI- ED TUENTS, L DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
JAN 1992 22 APR	7.5	5 71	0.005	0.007	2.74	2.84	0.33	0.25	0.62	
14	4.3	3 62	0.014	0.015	2.12	2.12	0.34	0.35	0.58	
DATE	NITRO GEN, AN MONIA ORGANI DIS. (MG/L AS N)	M- + NITRO- IC GEN, TOTAL L (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
JAN 1992 22 APR	0.5	3.4	3.4	<0.02	<0.02	••	0.2	3		
14	0.5	53 2.7	2.6	0.02	<0.02	2.8	0.4	5	••	

### COHANSEY RIVER BASIN

## 01412800 COHANSEY RIVER AT SEELEY, NJ

LOCATION.--Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi south of Seeley, 2.6 mi east of Shiloh, 4.1 mi north of Bridgeton, and 22.5 mi upstream from mouth.

DRAINAGE AREA. -- 28.0 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		VATER QUAL	-		EAK OCTOR					
DATE	CHA IN CU TIME	NST. CI JBIC CO FEET DU PER ÂN	FIC WH FIC WH N- FI CT- (ST CE A	AND - A	TURE Ater s	YGEN, (F DIS- (O OLVED S/	DIS- DE DLVED B PER- C CENT I ATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, I ECAL, ! EC ROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / 00 ML)
NOV_1991	1100	20	220	74.	7.0	44 4	OF	F4 F	/00	20
12 FEB 1992	1100	28	228	7.1	7.0	11.6	95 07	E1.5	490	20
13 APR_	1030	25	234	6.9	1.5	13.2	93	1.2	230	80° 90
27 JUN	1200	24	218	7.3	14.0	11.6	114	E1.6	80 1600	
01 JUL 21	0915	58	192	6.5	16.0	8.2	83 74	E1.4	170	. 530
21	0845	17	247	6.6	20.5	6.7	74	<1.0	170	260
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	(MG/L	
NOV 1991 12	60	12	7.4	14	4.8	16	25	27	0.1	
FEB 1992 13	60	12	7.4	16	4.0	16	27	28	0.1	
APR 27	64	13	7.6	11	3.9	17	27	28	0.1	
JUN 01	55	11	6.7	9.6	3.7	18	23	22	<0.1	
JUL 21	56	11	6.9	21	5.1	24	22	34	<0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NÓ3	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM MONIA ORGANI	+
NOV 1991 12	8.9	132	0.031	0.031	5.31	5.22	0.13	0.21	0.23	
FEB 1992 13	9.0	140	0.018	0.017	6.15	6.15	0.09	0.06	0.07	
APR 27	6.2	126	0.022	0.021	4.40	4.40	<0.03	<0.03	0.16	
JUN 01	6.0	107	0.022	0.019	3.35	3.15	<0.03	<0.03	0.83	
JUL 21	7.2	140	0.027	0.027		4.08	0.06	0.07	0.13	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIĆ DIS-	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)		)
NOV 1991	0 07			~n ns	0.00	2 /	0.4	6	0 45	
12 FEB 1992	<0.03	5.5	••	<0.02	0.08	2.4	0.4		0.45	
13 APR	<0.03	6.2		0.05	<0.02	1.6	0.3	. 16	1.1	
27 JUN	0.06	4.6	4.5	0.03	<0.02	2.1	0.4	9	0.58	
01 JUL	0.20	4.2	3.4	0.07	••	3.8	0.5	14	2.2	
21	<0.03	4.2		0.11	••	2.5	1.7	11	0.50	

## COHANSEY RIVER BASIN

## 01412800 COHANSEY RIVER AT SEELEY, NJ--Continued

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS TOTAL IN BOT. MAT. (MG/KG AS P)	CARBON, INOR- GANIC, TOT IN BOT MAT (G/KG AS C)	CARBON, INORG + ORGANIC TOT IN BOT MAT (GM/KG AS C)	ARSENIC TOTAL (UG/L AS AS)
NOV 1991 12	1100		5	10	2.2	2200	1700	<0.1	19	
JUN 1992 01	0915	19		••	••		••	••		1
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 1991 12	26			<1		3	<5		10	
JUN 1992 01		<10	<1	••	· <1	••		2	••	810
DATE	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 1991	7400		10		46		0.19		<10	
12 JUN 1992 01	7600	2	10	70		<0.10		2		<1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 12	<1		50	1	<1.0	<0.1	3.0	11	27	13
JUN 1992 01	••	<10		•					••	
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 1991 12	0.6	<1.0	<0.1	<0.1	<0.1	<0.1	<1.0	<0.1	<1.00	<10
JUN 1992 01								••		••

#### DELAWARE RIVER BASIN

#### 01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41°22'14", long 74°41'52", Pike County, Pa., Hydrologic Unit 02040104, on right bank 250 ft downstream from bridge (on U.S. Highway 6 and 209) between Port Jervis, N.Y. and Matamoras, Pa., 1.2 mi upstream from Neversink River, and 6.5 mi downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 3,070 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1904 to current year.

REVISED RECORDS.--WSP 1031: 1905-36. WDR NY-71-1: 1970. WDR NY-82-1: Drainage area. WDR NY-86-1: 1979-80.

GAGE.--Water-stage recorder. Datum of gage is 415.35 ft above sea level. October 1904 to August 13, 1928, nonrecording gage at bridge 250 ft upstream at present datum; operated by U.S. Weather Bureau prior to June 20, 1914.

REMARKS.--Records good. Flow regulated by Lake Wallenpaupack and by Toronto, Cliff Lake, and Swinging Bridge Reservoirs (see Reservoirs in Delaware River Basin) and smaller reservoirs. Large diurnal fluctuations at medium and low flows caused by powerplants on tributary streams. Subsequent to September 1954, entire flow from 371 mi² of drainage area controlled by Pepacton Reservoir, and subsequent to October 1963, entire flow from 454 mi² of drainage area controlled by Cannonsville Reservoir (see Reservoirs in Delaware River Basin). Part of flow from these reservoirs diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill) impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master. Telephone gage-height telemeter and satellite gage-height telemeter at station.

EXTREMES FOR PERIOD OR RECORD.--Maximum discharge, 233,000 ft³/s, Aug. 19, 1955, gage height, 23.91 ft, from floodmarks in gage house, from rating curve extended above 89,000 ft³/s, on basis of slope-area measurement of peak flow; maximum gage height, 26.6 ft, Feb. 12, 1981 (ice jam), from floodmarks; minimum observed discharge, 175 ft³/s, Sept. 23, 1908, gage height, 0.6 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--The U.S. Weather Bureau reported a discharge of 205,000 ft³/s, Oct. 10, 1903, gage height, 23.1 ft, from rating curve extended above 70,000 ft³/s, by velocity-area studies; maximum gage height, 25.5 ft, Mar. 8, 1904 (ice jam).

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 26,400 ft³/s, Nov. 23, gage height, 8.08 ft; minimum, 692 ft³/s, Nov. 2, gage height, 1.57 ft; minimum daily, 785 ft⁹/s, Nov. 2.

# DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG .	SEP
1	1600	985	2600	2490	e2900	3290	6010	5130	17600	2130	3650	1440
2	1540	785	2810	2420	e2300	3510	5720	4820	14500	1860	3700	1040
3	1520	945	4760	3010	e2600	3440	5230	5040	9210	1680	3300	1840
4	1560	995	9370	3260	3280	3180	4700	5710	8100	1570	2960	1820
5	1510	1010	7210	3000	2970	3240	4360	5070	6570	1600	2820	1740
6 7 8 9	1570 1660 1820 1520 1610	1080 1380 1480 1450 1290	5690 4450 3910 4050 4490	3940 3880 3530 3220 3150	2960 2930 2290 1600 1830	3620 3630 4500 5720 5550	4090 3800 3720 3620 3620	4710 4620 4600 4400 4100	8970 11600 8710 7140 6180	1660 2060 2140 2170 2440	3060 2520 1870 1780 3040	1720 1610 1690 1660 1690
11	1570	1340	4360	2880	2800	7960	3550	4130	5130	2140	3220	2200
12	1660	1410	3900	2320	2370	16200	4380	3710	3890	1890	2780	2370
13	1510	1550	3950	2430	2210	10500	6640	3370	3090	1440	2370	1760
14	1220	1480	4180	3080	2330	7110	5650	2770	2410	2230	2220	1530
15	1180	1230	5460	5510	2140	5700	5070	2990	2840	2500	1750	1520
16	1460	1240	5190	e5200	1310	4890	4730	2610	2730	2850	1690	1530
17	1750	1170	4550	e4000	2180	4360	5370	2800	2550	3270	1710	1790
18	3140	1140	4070	e3400	3160	4010	11200	2980	2210	2590	1720	1740
19	2520	946	3550	e2900	3110	4210	15400	2720	2400	2340	1870	-1590
20	2150	962	2800	e2700	3150	3730	13300	2490	2090	2600	1610	1520
21	1960	1060	3110	e3000	3680	3180	10200	2040	1740	2750	1800	1560
22	1180	1580	3250	3270	3370	2610	8800	2240	2090	2190	1350	2000
23	1190	15000	2930	3380	2490	2970	9320	1820	2180	2140	1400	2010
24	981	15700	2650	4520	2980	2870	8450	1900	2470	2220	1510	2030
25	920	9140	2360	5180	3530	2690	9130	2200	2570	2110	1650	1900
26 27 28 29 30 31	955 1340 1220 1070 959 914	6410 4940 3780 3400 2950	2510 2150 1850 1880 2470 3210	3850 3460 3920 3800 3640 3420	3560 3670 3650 3470	2820 8080 12500 8300 6630 6120	10500 9350 7800 6620 5860	2620 3060 2960 2780 2230 3180	2460 2030 1700 1920 2180	1610 2510 3030 2380 2410 2730	1880 2030 2110 1650 1390 1680	1590 1400 1640 1750 1690
TOTAL	46759	87828	119720	107760	80820	167120	206190	105800	149260	69240	68090	51370
MEAN	1508	2928	3862	3476	2787	5391	6873	3413	4975	2234	2196	1712
MAX	3140	15700	9370	5510	3680	16200	15400	5710	17600	3270	3700	2370
MIN	914	785	1850	2320	1310	2610	3550	1820	1700	1440	1350	1040
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 196	34 - 1992,	BY WATER	YEAR (WY	<b>'</b> )			
MEAN	3104	3953	4981	4443	5291	7996	8892	6225	3979	2644	2217	2492
MAX	10440	10310	12320	12750	13730	17520	17930	12670	12650	6680	4513	7928
(WY)	1978	1973	1974	1978	1976	1977	1970	1984	1972	1973	1969	1987
MIN	1001	884	1866	1216	1601	2583	2954	1946	993	699	963	1144
(WY)	1965	1965	1965	1981	1980	1981	1985	1965	1965	1965	1965	1965

## 01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

## WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1964 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1313595 3599 18600 Mar 5 785 Nov 2 942 Oct 30 7320 2100 1340	1259957 3443 17600 Jun 1 785 Nov 2 942 Oct 30 6250 2730 1440	4679 7216 2028 1965 78300 Jun 30 1973 385 Jul 6 1965 432 Jul 1 1965 9980 2820 1480

e Estimated.

#### 01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957-60, 1964 to current year.

CHEMICAL DATA: 1958-59 (e), 1964-65 (c), 1966 (a), 1967-68 (c), 1969-76 (d), 1987 (b), 1988-89 (c), 1990-91 (b), 1992 (a).

MINOR ELEMENTS DATA: 1970 (a), 1972-73 (a), 1974-76 (c), 1987 (b), 1988-89 (c), 1990-91 (b), 1992 (a).

PESTICIDE DATA: 1974 (a), 1987 (b), 1988-89 (c), 1990 (b).

ORGANIC DATA: 0C--1974 (b), 1975 (d).

NUTRIENT DATA: 1968 (a), 1969-76 (d), 1987 (b), 1988-89 (c), 1990 (b).

BIOLOGICAL DATA:

Bacteria--1973-76 (d).

Phytoplankton--1976 (b), 1975-76 (c).

Periphyton--1976 (a).

SEDIMENT DATA: 1959 (c), 1976 (c), 1988 (b), 1989 (c), 1990-91 (b), 1992 (a).

PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: January 1973 to September 1973.
WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, June 1974 to current year.
SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976.

INSTRUMENTATION. -- Water-temperature digital recorder since January 1973, provides one-hour-interval punches.

REMARKS.--Water-quality samples were collected by personnel of the New York State Department of Environmental Conservation, and were analyzed by USGS laboratories.

EXTREMES FOR PERIOD OF DAILY RECORD. -WATER TEMPERATURES: Maximum (water years 1957-59, 1973-81, 1983-84, 1988-91), 30.0 C, July 13, 1981; minimum
(water
years 1958-60, 1973, 1975-91), 0.0 C, on many days during winter periods, except 1984.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURES: Maximum, 27.5 C, July 23; minimum, 0.0 C, Jan. 8, 9, 10, 12.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH. I: CI	UBIC COL FEET DUC PER AND	FIC WHO N- :FIE CT- (ST/ CE AF	FER DLE ELD TEMF AND- ATU RD WAT	ME PR PER - SI JRE (1 JER	OF SOL	SOL GEN, (PE IS- CE LVED SAT	IS- IN LVED TO ER- RE ENT ER IUR- (U	UM- IUM, DTAL COV- RABLE IG/L S AL)
ост 30	1200 7	71	92	7.1	10.5	755 1	10.9	99	60
DATE	CADMIU TOTAL RECOV ERABL (UG/L AS CD	TOTAL' - RECOV- E ERABLE (UG/L	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	i
ост 30	<	1 110	50	4	<10	<0.10	2	40	)

## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT 30	1200	771	1	2.1

> 01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		WATER	TEMPERATURE,	DEGREES	CELSIUS,	WATER	YEAR OCTOBER	1991	10 SEPTEMBE	( 1992		
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NOVE	MBER		DECE	MBER			ANUARY	
1 2 3 4 5	14.0 17.0 18.0 19.0 19.0	13.0 14.0 17.0 17.5 18.0	13.5 15.5 17.5 18.5 18.5	12.0 12.5 11.5 10.0 8.0	10.5 11.5 10.0 8.0 6.5	11.5 12.0 10.5 9.0 7.0	7.0 7.0 7.0 6.0 4.0	6.0 7.0 6.0 4.0 2.5	6.5 7.0 6.0 5.0 3.0	0.0 0.5 1.5 1.5	0.0 0.0 0.5 1.5	0.0 0.5 1.0 1.5 1.5
6 7 8 9 10	19.0 17.0 14.5 14.5 15.0	17.0 14.5 13.0 13.0 13.5	18.5 15.5 14.0 14.0 14.5	6.5 6.0 5.5 5.0 4.5	5.5 5.5 5.0 4.0 4.0	6.0 5.5 5.0 4.5 4.0	2.5 2.5 3.0 4.5 5.0	2.5 1.5 2.0 3.0 4.5	2.5 2.0 2.5 4.0 4.5	1.5 1.5 1.0 0.5 1.0	1.5 1.0 0.5 0.5 0.5	1.5 1.5 0.5 0.5 0.5
11 12 13 14 15	15.5 14.0 13.5 12.5 12.0	14.0 13.0 12.5 11.0 11.0	14.5 13.5 13.0 12.0 11.5	5.0 5.0 5.0 6.0 6.0	4.5 4.5 4.5 5.0 5.5	4.5 5.0 5.0 5.5 5.5	4.5 4.5 5.0 6.0 5.5	4.0 4.5 5.0 4.0	4.5 4.5 5.0 5.5 4.5	1.0 0.5 2.0 3.0 2.5	0.5 0.0 0.5 2.0	0.5 0.5 1.0 2.5 1.0
16 17 18 19 20	12.5 12.5 13.0 13.5 12.0	11.5 11.0 10.5 11.5 10.5	12.0 11.5 12.0 12.5	7.0 6.0 4.5 5.5 7.5	6.0 4.5 3.5 4.0 5.5	6.5 5.0 4.5 5.0 6.5	4.0 2.0 1.0 0.0	2.0 1.0 0.0 0.0 0.0	3.0 1.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
21 22 23 24 25	11.0 11.0 12.0 12.5 13.5	9.5 9.5 9.5 11.0 11.5	10.5 10.5 10.5 11.5 12.5	9.0 9.5 10.0 10.0 9.0	7.5 9.0 9.5 9.0 7.0	8.5 9.0 10.0 10.0 8.0	0.5 1.0 0.5 0.5 0.0	0.0 0.5 0.0 0.0	0.5 0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
26 27 28 29 30 31	14.5 15.0 15.0 13.5 12.0 11.0	13.0 14.0 13.5 11.5 10.0 10.5	14.0 14.5 14.5 12.0 10.5 10.5	7.0 5.0 4.0 5.0 6.0	5.0 4.0 3.5 3.5 5.0	6.0 4.0 3.5 4.5 5.5	0.0 0.5 0.5 0.5 1.0	0.0 0.0 0.5 0.5 0.5	0.0 0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.5 0.5	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
MONTH	19.0	9.5	13.5	12.5	3.5	6.5	7.0	0.0	2.5	3.0	0.0	0.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY		MAR			APR				MAY	
1 2 3 4 5	0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	1.0 1.0 2.0 3.5 4.5	0.5 1.0 1.0 1.5 2.5	0.5 1.0 1.5 2.5 3.5	5.0 5.5 4.5 5.5 5.5	4.5 4.0 3.5 3.5 4.0	5.0 4.5 4.0 4.0	13.0 15.0 16.0 15.0 13.5	11.0 12.0 14.5 13.5 11.5	12.0 13.5 15.0 14.5 12.5
6 7 8 9	0.5 0.5 0.5 0.5	0.0 0.5 0.5 0.5	0.0 0.5 0.5 0.5	4.0 3.0 3.5 4.5 5.5	3.0 2.5 2.5 3.5 4.0	3.5 2.5 3.0 4.0 4.5	7.0 7.0 9.5 8.0 10.0	4.5 5.5 6.0 7.0 7.0	5.5 6.5 8.0 7.5 8.5	12.5 12.0 12.0 13.5 14.5	11.0 10.0 11.0 11.5 13.0	11.5 11.0 11.5 12.5 14.0
11 12 13 14 15	0.0 0.5 0.5 0.5	0.0 0.0 0.5 0.5	0.0 0.5 0.5 0.5	6.0 4.5 2.0 1.0	4.5 2.0 1.0 0.5 0.5	5.5 3.0 1.5 1.0 1.0	9.0 9.0 7.5 8.5 9.0	8.0 7.5 6.0 6.0 7.0	8.5 8.0 7.0 7.0 8.0	16.5 18.0 19.5 21.0 19.5	14.0 15.0 16.5 17.5 17.0	15.5 16.5 18.0 19.0 18.5
16 17 18 19 20	2.0	1.0	1.5	1.0 1.0 2.5 2.0 3.0	0.5 0.5 0.5 1.0	1.0 1.0 1.5 1.5 2.0	8.5 7.5 6.5 6.0 8.0	7.5 6.5 6.0 6.0	8.0 7.0 6.0 6.0 6.5	17.0 16.5 17.5 18.5 19.5	16.0 15.5 15.5 15.0 15.0	16.5 16.0 16.5 16.5 17.5
21 22 23 24 25	2.5 1.5 3.0 3.0	1.0 1.0 1.5 1.5	1.5 1.5 2.0 2.0 1.5	3.0 2.0 2.5 3.0 4.0	1.5 1.0 0.5 0.5 1.0	2.0 1.5 1.5 2.0 3.0	10.0 12.0 13.5 13.5 13.0	8.0 10.0 11.5 12.5 11.0	9.0 11.0 12.5 13.0 12.0	20.5 21.5 22.5 22.0 18.5	16.0 18.5 18.0 18.5 16.5	18.5 20.0 20.5 20.5 17.5
26 27 28 29 30 31	2.0 2.5 2.5 2.0	1.5 1.5 1.5 0.5	1.5 2.0 2.0 1.5	4.5 4.5 3.5 3.5 3.5 5.0	3.0 3.5 2.5 2.0 3.0 3.5	4.0 4.0 3.0 2.5 3.5 4.5	11.0 11.0 12.5	10.0 9.5 9.5 10.0	10.5 10.5 10.5 11.0	16.5 15.0 16.0 17.5 16.0	15.0 13.5 13.0 14.0 15.0	16.0 14.0 14.5 15.5 15.5
31		•••	•••	5.0	3.5	4.5	12.0	11.0	11.5	15.0	14.5	15.0

DELAWARE RIVER BASIN

## 01434000 DELAWARE RIVER AT PORT JERVIS, NY--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

						- •						
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE		JU	LY	,	. 1	AUGUSŢ		SEP	TEMBER	
1 2 3 4 5	14.5 15.5 17.0 18.0 17.5	14.0 13.5 14.5 16.5 16.5	14.0 14.5 16.0 17.5 17.0	•••						21.5 21.0 20.5 22.5 21.0	19.5 19.0 19.5 19.5 20.0	20.5 20.0 20.0 21.0 20.5
6 7 8 9 10	16.5 18.5 18.5 19.0 19.0	15.5 16.5 17.5 17.5 17.5	16.0 17.5 18.0 18.5 18.5		•••					21.0 19.5 21.0 22.0 23.0	19.5 19.5 19.5 20.0 20.5	20.0 19.5 20.5 21.0 22.0
11 12 13 14 15	19.5 20.5 21.0 23.5 23.5	17.5 17.5 19.0 19.0 21.0	18.5 19.0 20.0 21.5 22.5				20.5	19.5 18.5	20.0	23.0 21.0 20.0 20.0 20.0	21.0 19.5 18.0 18.0 18.0	22.0 20.5 19.5 19.0 19.0
16 17 18 19 20	22.5 22.5 21.5 20.0 21.0	20.5 20.0 20.0 19.0 19.0	21.5 21.0 21.0 19.5 20.0				18.5 18.5 20.0 20.0 21.0	18.0 18.5 18.5 19.0 18.5	18.5 18.5 19.0 19.5 20.0	21.5 22.5 22.5 21.5 20.5	19.0 20.0 20.5 20.0 18.5	20.0 21.0 21.5 21.0 19.5
21 22 23 24 25	20.5 19.5 18.5 18.5 19.5	19.0 16.5 15.5 17.0 17.5	20.0 18.0 17.0 18.0 18.5				21.5 21.5 23.0 23.5 24.5	18.5 19.5 20.5 21.5 22.0	20.0 21.0 22.0 23.0 23.5	19.5 20.0 19.0 17.5 16.0	18.5 19.0 17.5 15.5 14.0	19.0 19.5 18.0 16.5 15.0
26 27 28 29 30 31		•••					25.5 26.0 25.0 24.5 23.0 22.5	22.5 23.0 22.5 22.0 20.5 21.5	23.5 24.5 23.5 23.5 22.0 22.0	15.5 16.0 17.0 16.5 15.0	14.5 15.0 15.5 15.0 13.5	15.0 15.5 16.0 16.0 14.0
MONTH		•••		. • • •	• • •					23.0	13.5	19.0

#### 01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41°26'28", long 74°36'07", Orange County, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi downstream from Basher Kill, 0.8 mi southeast of Godeffroy, 1.7 mi south of Cuddebackville, and 8.5 mi upstream from mouth.

DRAINAGE AREA. -- 307 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August to October 1903, July 1937 to current year. Gage heights and discharge measurements, August 1909 to April 1914. Twice-daily figures of discharge, January 1911 to December 1912, which do not represent daily mean discharges because of diurnal fluctuation. August to October 1903, published as "Naversink River at Godeffroy, NY."

REVISED RECORDS. -- WSP 1502: 1951 (M). WDR NY-82-1: Drainage area. WDR NY-87-1: 1986.

GAGE.--Water-stage recorder. Datum of gage is 459.66 ft above sea level (levels by Corps of Engineers). Prior to Apr. 30, 1914, nonrecording gages at same site (August to October 1903 at datum 0.98 ft higher).

REMARKS.--Records fair except for estimated daily discharges, which are poor. Prior to 1949, diurnal fluctuation at low and medium flow caused by powerplant at Cuddebackville. Subsequent to June 1953, entire flow from 92.5 mi² of drainage area controlled by Neversink Reservoir (see Reservoirs in Delaware River Basin). Part of flow diverted for New York City municipal supply. Remainder of flow (except for conservation releases and spill), impounded for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 33,000 ft³/s, Aug. 19, 1955, gage height, 12.49 ft, from rating curve extended above 11,000 ft³/s, on basis of slope-area measurement of peak flow; minimum discharge observed, no flow July 21, 22, 28, 1911, result of regulation.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,160 ft³/s, June 6, gage height, 7.87 ft; minimum, 78 ft³/s, Nov. 9, 10.

		DIS	CHARGE,	CUBIC FEET	PER SECO	ND, WATER AILY MEAN	YEAR OCT	OBER 1991	TO SEPTE	MBER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	104	124	398	e290	e280	e310	716	425	1680	243	1140	189
2	101	121	373	e280	e240	e295	632	422	1070	226	469	179
3	e96	102	615	e270	e220	e285	559	546	851	210	363	176
4	93	94	816	e310	e200	e280	499	478	709	299	361	191
5	e93	91	667	364	e190	e300	459	437	769	313	377	178
6	e131	88	582	342	e180	e330	420	429	4780	540	306	179
7	e146	86	531	322	e175	350	394	395	2820	341	267	208
8	e128	82	506	304	e170	431	383	373	1920	271	253	203
9	e122	80	556	296	e165	428	371	393	1480	284	309	182
10	e117	79	561	e285	e160	416	397	370	1140	272	366	202
11	e137	93	503	e280	e155	924	398	328	925	244	295	291
12	e204	138	462	277	e150	864	524	299	745	233	258	211
13	e176	128	520	280	e145	668	488	286	614	239	219	174
14	e152	117	734	338	e170	e500	417	274	520	229	215	158
15	192	111	762	e490	179	e430	386	261	455	232	210	148
16	610	116	612	e290	220	e385	376	293.	392	409	205	144
17	356	111	e490	e240	288	e360	576	291	347	316	243	146
18	451	103	e470	e220	259	e340	951	273	322	325	292	157
19	e332	99	e440	e210	267	e325	1080	259	318	284	276	154
20	275	97	e420	e205	297	e310	828	241	321	253	240	139
21	234	103	411	e200	273	e300	715	229	306	239	223	119
22	203	449	398	e195	253	e290	693	217	277	233	210	e119
23	172	1740	381	e300	249	e285	748	211	259	228	205	e208
24	151	1070	373	e600	253	e280	635	220	353	275	208	e172
25	164	861	e315	e440	252	294	835	287	447	244	198	e146
26 27 28 29 30 31	160 151 145 135 132 130	702 595 520 470 431	e290 e280 e270 316 379 e310	e350 e300 e290 e280 e275 e305	328 374 e330 e320	323 1740 1260 926 792 756	765 672 583 517 467	258 235 232 214 203 847	336 339 310 270 248	232 414 317 259 286 345	531 350 272 260 232 206	e162 234 e204 e186 e165
TOTAL	5793	9001	14741	9428	6742	15777	17484	10226	25323	8835	9559	5324
MEAN	187	300	476	304	232	509	583	330	844	285	308	177
MAX	610	1740	816	600	374	1740	1080	847	4780	540	1140	291
MIN	93	79	270	195	145	280	371	203	248	210	198	119
STATIST	ICS OF	MONTHLY ME		OR WATER	YEARS 1954	- 1992,	BY WATER	YEAR (WY)				
MEAN	300	368	431	343	415	681	817	550	382	234	232	217
MAX	2033	1094	1227	1053	981	1370	1818	1392	1722	652	1327	705
(WY)	1956	1956	1974	1979	1976	1977	1983	1989	1972	1972	1955	1960
MIN	94.9	86.3	119	72.6	118	297	248	180	111	54.2	76.0	71.1
(WY)	1985	1966	1981	1981	1980	1981	1985	1962	1957	1966	1968	1972

## 01437500 NEVERSINK RIVER AT GODEFFROY, NY--Continued

## WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1954 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	115591 317 1750 Mar 4 61 Sep 13 68 Sep 12 600 274 90	138233 378 4780 Jun 6 79 Nov 10 86 Nov 5 696 290 139	414 704 1956 215 1965 15900 Aug 19 1955 32 Aug 17 1965 38 Aug 11 1965 868 270 106

e Estimated.

## 01437500 NEVERSINK RIVER AT GODEFFROY, NY--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--May 1987 to October 1991 (discontinued). Records prior to water year 1989 are unpublished and available in files of the Geological Survey.

CHEMICAL DATA: 1987 (b), 1988-89 (c), 1990-91 (b), 1992 (a).

MINOR ELEMENTS DATA: 1987 (b), 1988-89 (c), 1990-91 (b), 1992 (a).

PESTICIDE DATA: 1988 (b), 1989 (c), 1990 (b).

NUTRIENT DATA: 1988 (b), 1989 (c), 1990 (b).

SEDIMENT DATA: 1988 (b), 1989 (c), 1990-91 (b), 1992 (a).

REMARKS.--Water-quality samples were collected by personnel of the New York State Department of Environmental Conservation, and were analyzed in USGS laboratories.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECON	SPE CIF CON DUC ANC	IC WHO  - FI   T- (ST.  E A	TER OLE ELD AND - RD	TEMPER- ATURE WATER (DEG C)	BARO METR PRES SUR (MM OF HG)	IC - E OXYGI	SOL En, (Pe S- Ce Ved sat	S- VED R- I NT I	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
OCT 30	1100	134		106	7.3	8.0	7	56 12	2.2	103	100
DA	TO RE EF	DTAL ECOV- RABLE JG/L	OPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEA TOT REC ERA (UG AS	D, NI AL TI OV- RI BLE EI /L (I	OTAĹ ECOV- RABLE UG/L	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC TOTAL RECOV ERABI (UG/I AS ZI	/- LE
OCT 30		<1	110	100		3	<10	<0.10	<1	3	30

## SUSPENDED SEDIMENT DISCHARGE, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT 30	1100	134	1	0.36

#### 01438500 DELAWARE RIVER AT MONTAGUE, NJ

LOCATION.--Lat 41°18'33", long 74°47'44", Pike County, PA, Hydrologic Unit 02040104, on right bank 1,500 ft upstream from toll bridge (on U.S. Route 206) between Montague, NJ and Milford, PA, 0.8 mi downstream from Sawkill Creek, and at river mile 246.3.

DRAINAGE AREA. -- 3,480 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March 1936 to September 1939 (gage heights only, published as "at Milford, PA"). October 1939 to current year. Monthly discharge only for some periods, published in WSP 1302.

REVISED RECORDS. -- WDR-NJ-81-2: 1980.

GAGE.--Water-stage recorder. Datum of gage is 369.93 ft above sea level. Prior to Feb. 9, 1940, nonrecording gage on upstream side of left span of subsequently dismantled bridge at present site at datum 70 ft lower.

REMARKS.--Records good except for periods of ice effect, Dec. 19-21 and Jan. 17 to Feb. 20, and periods of shifting control, Oct. 1-15, and July 28 to Sept. 30, which are fair. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, Cliff Lake, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). Several measurements of water temperature were made during the year. Satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of October 10, 1903, reached a stage of 35.5 ft, from floodmark, present datum.

		DIS	CHARGE,	CUBIC FEET	PER SECON	ID, WATER	YEAR OCTO VALUES	BER 1991	TO SEPTEM	IBER 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1740	1040	2940	2830	e3100	3700	7140	5860	17100	2460	4680	1630
2	1680	982	2990	2720	e2400	3790	6740	5520	16200	2280	4500	1080
3	1650	1010	4840	3180	e2500	3800	6170	5710	10600	2020	3640	1720
4	1670	1070	10300	3390	e3500	3490	5480	6400	9230	1800	3370	1880
5	1620	1090	8410	3180	e3000	3490	5060	5730	7720	2020	3370	1880
6	1530	1120	6640	4200	e3100	3910	4630	5250	13700	2110	3340	1710
7	1780	1410	5220	4140	e2900	4020	4410	5180	14900	2570	2820	1720
8	2010	1590	4490	3770	e2600	4880	4210	4980	11400	2420	2390	1690
9	1730	1510	4620	3440	e1600	6200	4110	5120	9420	2540	2110	1760
10	1730	1390	5100	3310	e1500	6140	4110	4600	7960	2780	3120	1690
11	1700	1390	5000	3120	e2900	8170	4090	4500	6640	2620	3650	2540
12	1860	1580	4380	2480	e2400	16600	4750	4120	5120	2330	3210	2560
13	1590	1610	4460	2470	e2200	11800	7350	3700	4280	1530	2680	2050
14	1430	1730	4870	3250	e2300	8630	6350	3160	3340	2530	2490	1590
15	1420	1350	6310	5670	e2400	6970	5670	3110	3370	2810	2160	1700
16	1960	1350	6010	6100	e1400	5950	5170	3100	3360	3430	1890	1580
17	2170	1270	5200	e4400	e2000	5330	5950	3130	3140	3750	1850	1770
18	3770	1270	4570	e4000	e3200	4870	11400	3180	2690	3340	2050	1960
19	3160	1060	e3950	e3400	e3300	4970	15700	3020	2790	2760	2200	1730
20	2630	1030	e3500	e3000	e3400	4630	14400	2710	2810	2820	1990	1590
21	2400	1160	e3400	e3500	3810	4050	11300	2320	2220	3160	1970	1570
22	1540	1910	3570	e3400	3760	3450	9860	2200	2260	2670	1660	2010
23	1310	13400	3330	e3500	2660	3420	10300	2140	2640	2460	1520	2340
24	1290	17400	2880	e4800	2860	3530	9550	1970	2850	2570	1500	2120
25	1130	10500	2580	e5800	3720	3300	9860	2340	3250	2640	1810	2160
26 27 28 29 30 31	1090 1490 1380 1180 1110 1030	7630 5830 4480 3830 3450	2630 2400 2070 2030 2520 3390	e4400 e3700 e4000 e4100 e3900 e3700	3880 4150 4090 4060	3300 8420 13700 10000 8000 7310	11400 10300 8810 7540 6690	2580 3240 3120 2920 2590 3230	2920 2790 2190 2080 2540	1980 2780 3560 2870 2690 3280	2280 2490 2360 1950 1490 1720	1960 1590 1640 2040 1860
TOTAL	53780	95442	134600	3769	84690	189820	228500	116730	181510	81580	78260	55120
MEAN	1735	3181	4342		2920	6123	7617	3765	6050	2632	2525	1837
MAX	3770	17400	10300		4150	16600	15700	6400	17100	3750	4680	2560
MIN	1030	982	2030		1400	3300	4090	1970	2080	1530	1490	1080
STATIS	TICS OF	MONTHLY ME	EAN DATA	FOR WATER		0 - 1992,	, BY WATER	YEAR (WY	<b>')</b> -			
MEAN	3371	5059	6100	5648	6050	10040	11720	7512	4477	3036	2597	2679
MAX	15690	11760	14050	15050	15120	24480	31560	16090	15200	11220	14230	9167
(WY)	1956	1952	1974	1949	1976	1945	1940	1943	1972	1945	1955	1960
MIN	807	995	1968	1318	1748	3191	3322	2215	1214	864	715	892
(WY)	1942	1965	1965	1981	1980	1981	1985	1965	1965	1954	1954	1941

## 01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALEN	DAR YEAR	FOR 1992 WAT	ER YEAR	WATER YEAR	s 1940 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	1483342 4064		1416882 3871		5685 8621 2309	Unadjusted 1952 1965
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	21200 982 1050	Mar 5 Nov 2 Oct 30	17400 982 1050	Nov 24 Nov 2 Oct 30	187000 412 565	Aug 19 1955 Aug 23 1954 Jul 1 1965
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS	8390		25100 11.66 827 7410	Nov 23 Nov 23 Oct 31	250000a 35.15 382 12000	Aug 19 1955 Aug 19 1955 Aug 24 1954
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	2400 1500		3100 1540		3420 1560	

From rating curve extended above 90,000  ${\rm ft}^3/{\rm s}$  on basis of flood-routing study. Estimated.

# 01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1956-73, 1976-78, July 1991.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC CO FEET DO PER A	PE- WAIFIC WHON- FI JCT- (SI NCE A	AND - A	EMPER- ATURE VATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)		BIO- F CHEM- F ICAL, 5 DAY B	OLI- C ORM, M ECAL, W EC T ROTH (C	TERO- OCCI E,MF ATER OTAL OL / O ML)
OCT 1991 21	1145	2550	95	7.5	9.5	10.9	96	<1.0	20	11
FEB 1992 20	1130	3520	103	7.8	1.0	13.8	99	1.5	<20	<10
APR 06	1130	4180	86	7.3	5.0	12.2	96	E1.5	<20	<10
JUN 23	1200	2260	89	8.0	16.0	9.6	99	<1.0	<20	30
AUG 18	1130	1840	88	7.5	18.5	8.7	94	<1.0	270	130
10	1130		00	1.5	10.5	0.7	74	<b>\1.0</b>	. 270	130
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS SOLV (MG/	M, LINIT - LAB ED (MG/ L AS	Y SULFAT DIS- L SOLVE (MG/L	DIS- D SOLVED (MG/L	(MG/L	
OCT 1991		7 00	4.4	4.3	^	00 17	10	43	0.1	
21 FEB 1992		27 8.0	1.6	6.2		80 17	10	12	0.1	
20 APR		27 8.5	1.5	7.2	0.		11	13	0.1	
JUN		22 6.6	1.3	5.3	0.		10	9.6	0.2	
23 AUG		23 6.8	1.4	5.5		70 16	9.5			
18	•	27 8.2	1.6	6.3	0.	80 20	8.7	8.7	<0.1	
Date	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- ED TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITR GEN NO2+N	, NO2+N O3 DIS L SOLV L (MG/	, NITRO O3 GEN, - AMMONI ED TOTAL L (MG/L	AMMONÏA A DIS- SOLVED (MG/L	GEN,AM- MONÍA + ORGANIC	
OCT 1991 21	1.3	<b>3</b> 51	<0.003	0.004	0.1	5 0.13	0.14	0.07	0.37	
FEB 1992 20	2.5		0.004	0.004				0.04	0.39	
APR 06	2.2		0.008	0.009				<0.03	0.29	
JUN 23	1.7		0.005	0.005				<0.03	0.24	•
AUG 18	1.6		0.019	0.020				<0.03	0.20	
10	1.0	, 47	0.019	0.020	0.2	2 0.22	٧٥.05	<b>10.03</b>	0.20	
DATE	NITRO GEN, AN MONIA ORGANI DIS. (MG/L AS N)	1- + NITRO- IC GEN, TOTAL - (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORU DIS SOLV (MG/ AS P	S ORGAN - DIS- ED SOLVE L (MG/	IČ SUS- PENDED D TOTAL L (MG/L	SEDI- MENT, SUS- PENDED	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
OCT_1991	,		A 3.		.0.05			•	24	
21 FEB 1992	0.2		0.34	0.06	<0.02		0.3	3.	21	
20 APR	0.3		0.76	0.31	<0.02		0.5	9	86	
JUN_ 06	0.1		0.55	<0.02	<0.02		0.2	7	79	
23 AUG	0.2		0.50	0.03	0.04		0.2	1	6.1	
18	0.1	17 0.42	0.39	0.03	<0.02	2.1	0.2	• 1	5.0	

# 01438500 DELAWARE RIVER AT MONTAGUE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 23	1200	<10	<1	<10	. <10	<1	<1	2
DATE	IRO TOT REC ERA (UG AS	AĹ TOT OV- REC BLE ERA /L (UG	AL TOTA OV- REC BLE ERAI	E, MERC AL TOT OV- REC BLE ERA /L (UG	AL TOT OV- REC BLE ERA	AL SELE OV- NIUM BLE TOTAL /L (UG/I	RECO ERAE (UG)	AĽ DV- BLE 'L
JUN 1992 23		110	<1	30 <0	.10	<1 .	<1 ·	<10

#### 01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ

LOCATION.--Lat 41°06'24", long 74°57'09", Sussex County, Hydrologic Unit 02040104, on right bank 1.0 mi upstream from Flatbrookville, and 1.5 mi upstream from mouth.

DRAINAGE AREA. -- 64.0 mi².

PERIOD OF RECORD. -- July 1923 to current year.

REVISED RECORDS.--WSP 1432: 1924(M), 1928(M), 1929, 1930(M), 1932, 1933(M), 1936, 1938(M), 1939-40, 1949(M), 1952-53(M). WDR-NJ-80-2: 1970(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since Aug. 19, 1929. Datum of gage is 347.73 ft above sea level. Prior to Jan. 6, 1926, nonrecording gage at same site and datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Flow occasionally regulated by ponds above station. Several measurements of water temperature were made during the year. Satellite telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 650 ft³/s and maximum (*):

					• •			_				
Date	Time	D	ischarge (ft ³ /s)	(	Gage height (ft)		Date	Time	Di	ischarge ( (ft ³ /s)	· Gag	ge height (ft)
Nov. 23 Mar. 27	1000 1430		655 650	•	3.74 3.73		May 31 June 6	2330 1615		690 *981	,	3.81 *4.36
•		DISCH	ARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEME	BER 1992	,	
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 11 10 10 10	18 18 17 16 16	64 62 213 359 218	61 59 56 59 72	82 68 74 66 64	114 111 101 95 90	197 174 155 142 130	134 129 143 135 120	562 328 220 167 162	56 53 47 51 51	174 94 67 60 56	29 28 29 35 32
6 7 8 9 10	14 27 19 15 13	16 15 16 15 16	163 133 116 110 125	69 61 56 53 57	58 61 58 53 46	87 93 127 113 102	120 112 110 103 105	123 110 104 152 141	739 527 339 463 260	63 55 47 61 55	48 46 40 71 103	30 37 39 34 31
11 12 13 14 15	13 20 22 17 . 23	18 30 27 25 23	114 98 92 100 101	55 52 50 64 113	53 53 65 48 51	352 368 235 186 157	126 134 114 102 97	119 105 99 94 88	193 157 134 115 102	45 40 39 44 46	71 77 59 53 51	40 38 30 28 26
16 17 18 19 20	105 78 115 72 50	21 20 19 18 18	90 77 74 68 e66	78 e46 e51 e63 e69	89 94 76 77 85	133 125 118 122 117	93 158 209 234 197	103 111 97 87 76	89 83 76 78 86	82 66 79 65 48	49 53 91 101 75	25 24 25 29 35
21 22 23 24 25	39 34 29 26 24	19 139 527 259 164	64 61 61 64 58	e66 e53 70 305 181	75 70 65 67 73	111 103 102 93 94	168 169 185 154 253	69 64 60 60 81	76 70 66 81 95	41 38 41 68 50	61 53 48 43 40	26 23 38 36 28
26 27 28 29 30 31	23 21 21 20 19	121 97 84 76 70	51 52 47 55 75 74	146 130 120 96 88 87	151 181 149 140 	127 512 385 251 209 216	242 197 170 155 141	74 72 70 63 57 293	72 123 100 73 62	43 124 83 60 49 130	38 37 40 41 35 32	33 40 37 32 27
TOTAL MEAN MAX MIN CFSM IN.	930 30.0 115 10 .47	1938 64.6 527 15 1.01 1.13	3105 100 359 47 1.57 1.80	2586 83.4 305 46 1.30 1.50	2292 79.0 181 46 1.23 1.33	5149 166 512 87 2.60 2.99	4646 155 253 93 2.42 2.70	3233 104 293 57 1.63 1.88	5698 190 739 62 2.97 3.31	1820 58.7 130 38 .92 1.06	1907 61.5 174 32 .96 1.11	944 31.5 40 23 .49
STATIST				R WATER	YEARS 1924		, BY WATER Y	EAR (WY	)			
MEAN MAX (WY) MIN (WY)	55.1 306 1956 9.57 1964	96.5 292 1928 12.2 1965	119 369 1974 20.6 1947	118 367 1979 24.5 1981	134 275 1951 / 37.3 1940	202 513 1936 82.0 1985	203 570 1983 65.9 1946	143 372 1989 44.0 1941	89.0 334 1972 23.7 1965	57.9 333 1928 13.1 1966	52.0 386 1955 9.55 1966	47.7 258 1933 7.01 1964

DELAWARE RIVER BASIN

## 01440000 FLAT BROOK NEAR FLATBROOKVILLE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1924 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	32165.2 88.1	34248 93.6	110 210 1928
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	695 Apr 22 6.6 Sep 14	739 Jun 6 10 Oct 3	43.4 1965 6310 Aug 19 1955 4.1 Sep 11 1966 5.3 Sep 20 1964
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	6.8 Sep 12	13 Oct 1 981 Jun 6 4.36 Jun 6 9.7 Oct 3	9560a Aug 19 1955 12.58b Aug 19 1955 3.6 Sep 25 1964
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.38 18.70 190	1.46 19.91 174	1.71 23.27 234
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	61 10	70 23	70 17

a From rating curve extended above 2,000 ft³/s on basis of slope-area measurement of peak flow. b From high-water mark in gage house. Estimated.

## 01440200 DELAWARE RIVER BELOW TOCKS ISLAND DAMSITE, NEAR DELAWARE WATER GAP, PA

LOCATION.--Lat 41°00'42", long 75°05'09", Warren County, NJ, Hydrologic Unit 02040105, on left bank 40 ft streamward from River Road, 1.0 mi downstream from Tocks Island, 3.7 mi northeast of Delaware Water Gap, PA, 4.0 mi upstream from bridge on Interstate Route 80, and at mile 216.1.

DRAINAGE AREA. -- 3,850 mi 2.

PERIOD OF RECORD. -- May 1964 to current year.

GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage is 293.64 ft above sea level.

REMARKS.--No estimated daily discharges. Records fair. Diurnal fluctuation at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). Several measurements of water temperature were made during the year. Gage height satellite telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD. Flood of Aug. 19, 1955, reached a stage of 37.4 ft, present datum (discharge about 260,000 cfs). Information on stage supplied by Harlan Fish, retired caretaker of Worthington State Forest.

		DISCHA	RGE, CUBİ	C FEET PE	R SECOND, DAIL	WATER YE Y MEAN VA	EAR OCTOBER	1991 то	SEPTEMBE	R 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1500	1190	3650	3480	4930	4560	8790	6870	17600	2990	4520	2190
2	1720	1220	3310	3030	3920	4530	8360	6580	23400	2940	5790	1660
3	1750	1100	4770	3320	3470	4740	7740	6360	14900	2490	4380	1630
4	1700	1180	10900	3490	4150	4620	6990	7070	11400	2130	4130	2280
5	1670	1200	10600	3710	3890	4240	6370	6970	9890	2370	3890	2320
6	1550	1210	8410	4050	3750	4580	5750	6140	15700	2500	3790	1960
7	1830	1290	6750	4750	3830	5030	5480	6080	19500	3140	3560	2200
8	2020	1620	5760	4330	3590	5460	5180	5750	15300	2850	3160	2090
9	1890	1590	5310	4020	2930	6620	4980	6440	12500	3100	2610	2270
10	1690	1560	5930	3570	2290	7260	4870	5600	10300	3130	2940	1990
11	1750	1470	5970	3650	3070	8420	5060	5290	8710	3240	4320	2620
12	1850	1590	5400	3000	3380	18400	5120	5230	7060	2760	3970	2900
13	1660	1690	5010	2680	2650	15000	7330	4610	5840	2160	3340	2810
14	1760	1860	5280	3300	2520	10800	7680	4180	4670	2520	3070	2100
15	1550	1630	6440	5200	3050	8390	6690	3600	4000	3070	2770	2040
16	1840	1440	6960	7240	2440	6980	6030	4050	4510	3540	2290	1850
17	2710	1420	6220	6060	2230	6270	6400	3840	4050	4000	2300	2010
18	3690	1370	5380	4750	3640	5840	10500	3860	3650	4030	2560	2240
19	4030	1320	4650	4070	4180	5640	16300	3860	3410	3080	2650	2100
20	3200	1190	4130	4960	4180	5570	17400	3430	3640	3180	2680	1810
21	2720	1220	3860	5750	4310	4890	13400	3150	2900	3610	2330	1850
22	2130	1840	4040	5700	4690	4220	11400	2630	2700	3270	2320	2100
23	1550	11100	3880	4840	3650	3710	11300	2890	3320	2780	1820	2710
24	1590	24100	3470	6280	3250	4110	11200	2330	3210	2860	1880	2450
25	1330	13400	3170	7560	4380	3850	10600	2660	3910	2930	2110	2590
26 27 28 29 30 31	1260 1330 1580 1430 1360 1210	9480 7220 5900 4650 4320	2650 3040 2780 2280 2520 3420	6730 5450 5450 5950 5600 4960	4890 5280 5220 5240	3830 7530 17700 13300 10100 9200	12700 11800 10500 8880 7780	2950 3810 3760 3580 3340 3690	3750 3950 3000 2640 3130	2350 2620 3970 3740 3070 3610	2280 2910 2720 2740 2090 1960	2440 1910 1920 2490 2190
TOTAL	58850	111370	155940	146930	109000	225390	262580	140600	232540	94030	93880	65720
MEAN	1898	3712	5030	4740	3759	7271	8753	4535	7751	3033	3028	2191
MAX	4030	24100	10900	7560	5280	18400	17400	7070	23400	4030	5790	2900
MIN	1210	1100	2280	2680	2230	3710	4870	2330	2640	2130	1820	1630
							, BY WATER			•		
MEAN	4028	5218	6670	5982	7300	10280	11690	8457	5441	3469	2797	3077
MAX	13030	12870	16730	17960	17320	21490	24100	17970	18150	9455	6242	10310
(WY)	1978	1973	1974	1979	1976	1977	1983	1989	1972	1973	1969	1987
MIN	1193	992	1914	1437	1936	3873	3796	2746	1397	950	1101	1283
(WY)	1965	1965	1965	1981	1980	1981	1985	1965	1965	1965	1965	1965
SUMMARY	Y STATIST	ICS	FOR	1991 CALE	NDAR YEAR	F	OR 1992 WA	TER YEAR		WATER YE	ARS 1964	- 1992
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT 10 PERC	MEAN T ANNUAL M T DAILY ME SEVEN-DA TANEOUS F	MEAN MEAN MEAN MY MINIMUM MEAK FLOW MEAK STAGE MEAK MEAN MEAK MEAK MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN	I	1720530 4714 26300 1100 1190 9480 2780 1590	Mar 5 Nov 3 Oct 31		1696830 4636 24100 1100 1190 30500 11.58 1060 8730 3650 1690	Nov 24 Nov 3 Oct 31 Nov 24 Nov 3		6214 9418 2572 96000 580 620 110000 24.00 13000 3770 1850	Jul Jul Mar	1973 1965 16 1986 7 1965 2 1965 16 1986 16 1986

#### 01443000 DELAWARE RIVER AT PORTLAND, PA

LOCATION.--Lat 40°55'26", long 75°05'46", Northampton County, Hydrologic Unit 02040105, at walkbridge connecting Portland, PA and Columbia, NJ, and 0.5 mi upstream of Paulins Kill.

DRAINAGE AREA. -- 4,165 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC C FEET D PER A	PE- W/ IFIC WI ON- FI UCT- (SI NCE /	TAND - AT ARD W	TURE STEEL S	YGEN, ( DIS- OLVED S	DIS- DE BOLVED BY CENT ISATUR- 5	IO- FI HEM- FI CAL, I DAY BI	DLI- C ORM, M ECAL, W EC T ROTH (C	TERO- OCCI E,MF ATER OTAL OL / O ML)
OCT 1991 22	1130	2100	98	7.6	10.5	10.5	94	E1.6	790	<2
JAN 1992 21	1200	4200	101	8.7	0.5	14.8	103	<1.1	210	40
APR										
Ö7 JUN_	1130	6200	101	8.3	6.5	13.6	112	E1.5	40	<10
23 AUG	1100	3600	117	7.8	17.5	11.2	119	<1.0	<20	<10
18	1200	3000	111	8.6	19.0	9.1	100	<1.0	110	200
DATE	HARD NESS TOTA (MG/I AS CACO	CALCIUM L DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L ) AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1991	:	31 9.4	1.8	7.0	0.80	19	13	10	<0.1	
JAN 1992 21	:	34 11	1.6	5.4	0.80	16	16	11	0.2	
APR 07	i	25 7.4	1.5	5.1	0.60	13	10	9.4	0.2	
JUN 23	:	31 9.5	1.7	5.3	0.60	21	11	8.5	<0.1	
AUG 18	:	33 10	1.9	5.5	0.80	23	10	8.5	<0.1	
DATE	SILIC/ DIS- SOLVI (MG/I AS SIO2	CONSTI- ED TUENTS, L DIS- SOLVED		NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
OCT_1991										
JAN 1992	1.9			0.004	0.12	0.13	0.07	0.09	0.49	
21 APŖ	3.4		0.008	0.003	0.37	0.38	0.04	0.07	0.24	
07 Jun	2.3	3 46	0.011	0.010	0.31	0.32	0.03	<0.03	0.19	
23 AUG	1.4	52	0.005	0.004	0.19	0.20	<0.03	0.05	0.22	
18	2.0	53	0.018	0.019	0.19	0.20	<0.03	<0.03	0.15	
DATE	NITRO GEN, AN MONIA ORGANI DIS. (MG/L AS N)	1- + NITRO- IC GEN, TOTAL - (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
OCT_1991	<u> </u>					• •		٠		
22 JAN 1992	0.3		0.50	0.41	0.03	3.0	0.3	1	5.7	
21 APR_	0.1		0.56	0.03	<0.02	2.9	0.3	2	23	
07 JUN_	0.1		0.49	<0.02	<0.02	2.1	0.2	7	117	
23 AUG	0.2		0.46	0.04	0.02	2.5	0.2	2	19	
18	••	0.34	••	0.04	0.02	2.5	0.3	2	16	

## 01443000 DELAWARE RIVER AT PORTLAND, PA--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	LII TO RE( ER/	TAL TO COV- RI ABLE EI G/L (I	ORON, (OTAL ECOV- RABLE UG/L S B)	CADMIUM M TOTAL T RECOV- R ERABLE E (UG/L (	CHRO- IIUM, OTAL ECOV- RABLE UG/L IS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 23	1100	<10	<1	<'	10	<10	<1	<1	<1
DATE	IRO TOT REC ERA (UG AS	AL TO OV- RE BLE ER /L (U	AD, NE TAL TO COV- RE ABLE ER G/L (U	NGA- SE, TAL COV- ABLE G/L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEI TOTAL RECOV ERABL (UG/L AS NI	SELE- /- NIUM, LE TOTAL _ (UG/L	ZINC TOTA RECO ERAB (UG/ AS Z	Ľ V- LE L
JUN 1992 23		100	<1	, <b>3</b> 0	<0.10		<1 <1	<	10

## 01443280 EAST BRANCH PAULINS KILL NEAR LAFAYETTE, NJ

LOCATION.--Lat 41°04'34", long 74°41'45", Sussex County, Hydrologic Unit 02020007, on right downstream wingwall of bridge on Garrison Road, 1.6 mi south of Lafayette, and 0.8 mi upstream from mouth.

DRAINAGE AREA. -- 13.0 mi².

PERIOD OF RECORD.--August to September 1992

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 555.40 ft above sea level (levels from American Geodetic Survey Co. benchmark).

REMARKS.--Records good. Possible regulation from ponds and golf courses upstream. A significant portion of the base flow is the result of pumpage from a limestone quarry into a tributary approximately 1.5 mi upstream of gage.

DISCHARGE,	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1991	TO	SEPTEMBER	1992
•				DAIL	Y MEAN	VALUE	ES				

DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1				• • •			•••					7.8
Ź				• • •			• • •					7.1
3												7.7
4				• • •								10
5	•••	•••		•••	• • •		•••	• • •				7.6
6				• • •			•••				_† 7.9	7.4
7							• • •				':::	10
8							•••					10
ğ				• • • •		·		• • • •				12
10	• • •			• • •				• • •	• • •	• • •		8.6
11				• • • •								10
iż				• • •								9.0
13				• • •								8.3
14												8.0
15					• • •	• • •	• • •			• • •	• • •	8.4
16		•••		•••								7.8
17				• • • •	• • • •						• • • •	7.8 7.7
18	••••		•••	•••	•••		•••	•••	•••			7.8
19	•••	•••	•••	• • •		•••	•••	•••			e18	8.5
20	•••	•••	•••	•••	•••	•••		•••	•••	•••	12	8.0
21				•••							9.9	7.9
22	•••	•••	•••	•••			•••	•••	•••	•••	8.8	8.0
วัร	•••			• • •	•••			•••		` • • •	8.6	10
24			•••								8.2	8.8
21 22 23 24 25		• • •			•••			• • •		•••	8.0	8.1
26		• • •	• • •	• • • •				•		• • •	7.4	9.1
26 27 28 29		• • •							• • •		8.5	8.4
28	•						• • •				8.1	8.2
29			• • •			• • •					8.6	9.4
30		• • •									8.1	7.9
31		• • •		•••	• • •	•••	•••	·	• • • •		8.0	• • • •
TOTAL	•••					• • •	•••					257.5
MEAN		• • •	• • •	• • •						• • •		8.58
MAX				••• 、	• • •	•••			• • •			_12
MIN		•••	• • •	•••	•••	•••	•••	•••	• • •	•••	• • •	7.1
STATIST	ICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 1992	· 1992,	BY WATER	YEAR (WY)				
MEAN					• • •		•••					8.58
MAX				• • •		• • •	• • •			• • •		8.58
(WY)		• • •		• • •	• • •		•••		• • •			1992
MIN							• • •					8.58
(WY)	• • •	• • •			• • •	• • •		•••	· • • •	• • •		1992

SUMMARY STATISTICS

AUGUST TO SEPTEMBER 1992

ANNUAL MEAN HIGHEST DAILY MEAN
LOWEST DAILY MEAN
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW

18 Aug 19 7.1 Sep 2 21e Aug 19 2.34 Aug 19 6.8 Sep 2

e Estimated. † Result of discharge measurement.

## 01443440 PAULINS KILL AT BALESVILLE, NJ

LOCATION.--Lat 41°06'20", long 74°45'19", Sussex County, Hydrologic Unit 02040105, at bridge on unnamed road at Balesville, 2.2 mi downstream from Dry Brook, and 3.4 mi north of Newton.

DRAINAGE AREA. -- 67.1 mi².

PERIOD OF RECORD. -- January 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	TIME	INST. C CUBIC C FEET D PER A	PE- WI IFIC WI ON- FI UCT- (SI NCE /	TAND- A ARD W	TURE ATER	XYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED B (PER- CENT I SATUR- 5	IO- FO HEM- FI CAL, DAY B	OLI- ORM, ECAL, EC ROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / 00 ML)
	1991	1100	· 48	579	8.0	10.0	10.7	96	C1 1	230	110
JAN	1992	1115	90						E1.1		80
APR	3 	1115		436	8.2	0.5	14.5	102	E1.7	790 770	
JUN			180	352	8.0	7.0	13.2	112	E1.8	330	. 60
AUG	<b>5</b>	1100	60 70	436	8.2	18.5	9.1	98	<1.0	2400	140
	· • •	0930	78	. 381	8.4	19 <b>.</b> 5	8.6	97	E1.3	3500	580
	DATÉ	HARD NESS TOTAL (MG/I AS CACO	CALCIUM L DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVEI (MG/L AS K)	, LINITY LAB	SULFATE DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	FLUO- RIDE, DIS- SOLVE (MG/L AS F)	D
	OCT 1991	20	00 54	17	<b>3</b> 0	3.5	145	65	53	0.2	:
	JAN 1992 28	17	70 43	14	23	. 1.8	118	34	43	0.1	
	APR 01	1	10 28	1Ó	19.	1.3	86	25	37	0.2	
	JUN 16	17	70 44	15	23	1.3	137	26	44	<0.1	
	AUG 11	13	30 35	. 11	22	1.9	122	22	39	0.4	
	DATE	SILIC/ DIS- SOLVI (MG/I AS SIO2)	CONSTI- ED TUENTS, L DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NOI TOTAL (MG/L AS N)	NO2+NČ	NITRO- GEN, AMMONIA D TOTAL (MG/L	AMMON I A	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	+ C
	ост_1991	7									
	17 JAN 1992	7.9			0.018		1.26		0.06	0.72	
	28 APR	6.7			0.009		1.21		0.03	0.51	
	01 JUN	3.7			0.009		0.96		0.08	0.52	
	16 AUG	5.5			0.020	1.02	1.03	<0.03	<0.03	0.47	
	11	5.6	5 212	0.013	0.014	0.54	0.54	<0.03	<0.03	0.47	
	DATE	NITRO GEN, AN MONIA ORGANI DIS. (MG/I AS NI	M- + NITRO- IC GEN, TOTAL L (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVEC (MG/L AS P)	CARBON ORGANI DIS- O SOLVED (MG/L AS C)	C SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	D
	OCT 1991	0 -	70 3 0	2.4	<0.03	<0.03	E 0	0.5	0	1 2	
	17 JAN 1992	0.7		2.1	<0.02	<0.02	5.8	0.5	9	1.2	
	28 APR	0.4		1.7	0.03	<0.02	3.9	0.4	5	1.2	
	01 JUN	0.4		1.4	<0.02	0.03	4.5	0.5	4	1.9	
	16 AUG	0.4		1.5	0.06	0.03	3.4	0.3	4	0.65	
	11	0.4	1.0	0.98	0.07	0.04	7.2	0.6	4	0.84	

## 01443440 PAULINS KILL AT BALESVILLE, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- E ERABLE (UG/L	TOTAL RECOV-	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 16	1100	12	<1	<10	20	<1	<1	1
DATE	ERA (UG	AL TOT OV- REG BLE ER/	AD, NESTAL TOTO COV- RECABLE ER/ G/L (UC	TAĹ TO COV- RE ABLE ER G/L (U	OTAL TO CCOV- RE RABLE ER IG/L (U	KEL, TAL SELI COV- NIUI ABLE TOT, G/L (UG, NI) AS	M, REC AL ERA /L (UG	AĹ OV- BLE /L
JUN 1992 16		260	<1	70	:0.10	<1	<1	<10

#### 01443500 PAULINS KILL AT BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'44", long 74°57'15", Warren County, Hydrologic Unit 02040105, on right bank 1,200 ft upstream from bridge on State Highway 94 in Blairstown, 1,400 ft upstream from Blairs Creek, and 10 mi upstream from mouth. Water-quality samples collected at bridge 1,200 ft downstream from gage at high flows.

DRAINAGE AREA. -- 126 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1921 to September 1976, October 1977 to current year.

REVISED RECORDS.--WSP 971: 1942. WSP 1382: 1952-53(M).

GAGE.--Water-stage recorder and concrete control (Aug. 1, 1931, to Aug. 3, 1941, concrete control at site 280 ft, downstream). Datum of gage is 335.86 ft above sea level. Prior to May 24, 1922, nonrecording gage and May 24, 1922 to July 31, 1931, water-stage recorder, at site of former highway bridge 1,300 ft downstream at different datum. Aug. 1, 1931 to July 28, 1939, water-stage recorder at site 100 ft downstream at present datum.

REMARKS.--No estimated daily discharges. Records good except those above 200 ft³/s, which are fair. Diurnal fluctuations caused by unknown source and flow regulated slightly by Swartswood Lake. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft³/s and maximum (*):

Date		Time	ם	ischarge (ft ³ /s)	I	Gage height (ft)		Date	Time	C	ischarge (ft ³ /s)	Ga	ge height (ft)
June	6	1415		*924	•	*3.18		No peak	greater t	han base	discharge.		
			DISCH	ARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTO VALUES	DBER 1991	TO SEPTEM	IBER 1992		
DAY		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	- MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		29 28 26 25 24	28 62 167 151 130	99 119 230 343 328	92 93 93 97 102	120 102 103 98 94	223 204 182 172 167	426 376 334 303 272	219 202 225 206 187	435 334 251 192 199	94 85 80 93 84	230 137 101 120 100	53 50 72 75 58
6 7 8 9 10		31 34 31 29 33	62 42 23 18 18	313 298 280 264 274	100 98 96 99 120	86 85 84 82 70	157 166 238 216 191	236 213 209 186 180	183 166 158 207 205	745 620 489 478 374	87 83 72 125 115	82 75 66 107 175	51 94 102 87 78
11 12 13 14 15		32 38 43 36 37	22 24 31 31 46	247 231 220 209 217	115 109 83 93 97	78 71 66 75 76	540 595 464 371 321	207 214 186 161 152	175 154 146 132 118	291 223 195 172 147	93 79 84 83 82	134 136 108 92 86	93 86 71 60 54
16 17 18 19 20		68 78 104 86 66	50 49 59 42 36	207 133 126 109 109	94 93 100 117 127	143 154 131 131 137	274 238 225 242 232	155 193 303 327 309	153 170 145 126 109	124 109 101 112 125	135 120 99 90 .79	80 96 294 269 188	52 49 48 67 67
21 22 23 24 25		52 46 42 39 37	35 73 299 315 280	103 101 100 99 96	116 98 108 172 106	139 142 127 126 134	216 198 193 176 170	278 284 381 370 392	99 92 84 83 101	111 94 86 103 120	71 65 76 101 91	141 115 100 89 89	59 55 72 73 61
26 27 28 29 30 31		34 35 34 30 30 31	241 213 188 150 123	91 89 86 91 98 96	86 122 145 133 127	290 389 314 284	248 730 703 568 476 469	372 331 294 256 230	91 91 84 76 70 188	105 183 181 133 105	76 117 117 94 86 95	81 77 72 70 65 58	70 78 73 64 59
TOTAL MEAN MAX MIN CFSM IN.	L	1288 41.5 104 24 .33 .38	3008 100 315 18 .80 .89	5406 174 343 86 1.38 1.60	3354 108 172 83 .86 .99	3931 136 389 66 1.08 1.16	9565 309 730 157 2.45 2.82	8130 271 426 152 2.15 2.40	4445 143 225 70 1.14 1.31	6937 231 745 86 1.84 2.05	2851 92.0 135 65 .73 .84	3633 117 294 58 .93 1.07	2031 67.7 102 48 .54
STATI	ISTI	CS OF MON	THLY MEA	N DATA FO	R WATER	YEARS 1922	- 1992	, BY WATER	YEAR (WY	)			
MEAN MAX (WY) MIN (WY)		105 634 1956 20.5 1964	163 479 1933 22.1 1965	205 588 1974 39.5 1947	215 712 1979 50.5 1981	249 516 1951 67.4 1940	365 963 1936 139 1965	331 930 1983 106 1985	224 650 1989 54.6 1941	155 690 1972 41.0 1965	118 527 1945 19.4 1955	107 663 1955 19.6 1932	107 626 1933 18.2 1964

DELAWARE RIVER BASIN
01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1922 - 1992
ANNUAL TOTAL ANNUAL MEAN Highest annual mean	53211 146	54579 149	195 362 1952
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	769 Apr 22 15 Sep 3 16 Sep 12	18 Nov 9	67.4 1965 5950 Aug 19 1955 5.0 Aug 13 1930 12 Jul 31 1955
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW		924 Jun 6 3.18 Jun 6 18 Nov 9	8750 Aug 19 1955 11.12a Aug 19 1955 2.8 Nov 1 1922
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.16 15.71 313 98 23	1.18 16.11 298 106	1.55 21.00 408 131
90 PERCENT EXCEEDS	23	45	35

a From high-water mark in gage house.

## 01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1921, 1925, 1957-60, 1962-63, 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC C FEET C PER F	SPE- WI SIFIC WI CON- F DUCT- (ST	TAND - A	EMPER- ATURE WATER DEG C)	OXYGEN, DIS- SOLVED (MG/L)		BIO- F CHEM- F ICAL, 5 DAY B	OLI- ORM, ECAL, EC ROTH MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991 07	1245	34	484	7.2	13.5	9.4	· 91	4.5	230	9
JAN 1992 28	1330	147	325	8.1	0.5	14.0	97	<1.1	170	90
APR 01	1315	413	321	8.1	6.5	12.2	102	E1.4	20	10
JUN 16	1330	122	331	8.4	20.5	9.5	107	<1.0	110	30
AUG 11	1200	130	348	8.1	22.0	8.0	93	E1.3	490	140
****	1200	130	340	0.1	22.0	0.0	,3	L1.3	4,0	140
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUN DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L AS NA	DIS SOLV (MG/	M, LINITY - LAB ED (MG/L L AS_	SULFAT DIS- SOLVE (MG/L	DIS- ED SOLVED (MG/L	. (MG/	ED L
OCT 1991	20	0 48	20	26	2.	6 164	- 39	45	0.	1
JAN 1992 28	· 12	0 30	9.9	17	1.	4	26	31	0.	1
APR 01	11	0 27	10	15	1.	0 87	23	29	0.	1
JUN 16	14	0 35	13	14	1.	0 119	23	<b>26</b> .	0.	1
AUG 11	. 13	0 34	12	17	1.	3 114	20	30	0.	4
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO GEN, NITRITI DIS- SOLVEI (MG/L AS N)	NITR E GEN NO2+N	, NO2+NO O3 DIS- L SOLVE L (MG/L	NITRO 3 GEN, AMMONI D TOTAL (MG/L	, AMMONÍA IA DIS- SOLVED . (MG/L	ORGAN	M-   +   IC   L
OCT 1991	1.7	281	0.005	0.00	5 0.1	1 0.14	0.07	0.09	0.59	
JAN 1992 28	4.7	•	. 0.011	0.00	8 0.8	2 0.82	<0.03	<0.03	0.48	
APR 	4.1	165	0.008	0.00	7 0.8	1 0.79	0.10	<0.03	0.41	
JUN 16	3.5	189	0.011	0.01	0 0.3	4 0.35	<0.03	<0.03	0.66	
AUG 11	3.2	187	0.010	0.010	0.2	4 0.22	<0.03	<0.03	0.56	
DATE	NITRO GEN,AM MONIA ORGANI DIS. (MG/L AS N)	+ NITRO- C GEN, TOTAL (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS PHORU DIS SOLV (MG/ AS P	S ORGANI - DIS- ED SOLVED L (MG/L	Ċ SUS- PENDED TOTAL (MG/L	Č SEDI- MENT, SUS- PENDED	SEDI MENT DIS CHARG SUS PEND (T/DA	E , ED
OCT_1991	0.0	0 0 70	0.07	ZO 03	0.00	<b>.</b> /	3.0	2	n 10	•
07 JAN 1992	0.8			<0.02	0.02		2.0	2	0.18	
28 APR	0.4		1.2	0.03			0.5	7 5	2.8 5.6	
01 JUN 14	0.3		1.1	<0.02	<0.02		0.5			
16 AUG	0.3		0.74	0.06	<0.02		0.5	7	2.3	
11	0.2	6 0.80	0.48	0.07	0.02	••	0.8	7	2.5	

## 01443500 PAULINS KILL AT BLAIRSTOWN, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE .	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 16	1330	13	<1	<10	20	<1	1	1
DATE	IRO TOT REC ERA (UG AS	AĽ TOT OV- REC BLE ERA /L (UG	AL TOT OV- REC BLE ERA	E, MERC AL TOT OV- REC BLE ERA /L (UG	AL TOTA OV- REC BLE ERA /L (UG	AL SELE OV- NIUM BLE TOTAI /L (UG/I	, RECO L ERAI L (UG)	AĹ OV- BLE /L
JUN 1992 16		210	<1	80 <0	.10	<1 .	<1 ·	<10

#### 01443900 YARDS CREEK NEAR BLAIRSTOWN, NJ

LOCATION.--Lat 40°58'51", long 75°02'25", Warren County, Hydrologic Unit 02040105, on left bank 100 ft upstream from bridge on Hainesburg-Mount Vernon Road, 1.4 mi downstream of Yards Creek Reservoir, 2.2 mi northeast of Hainesburg, 2.4 mi upstream from mouth, and 4.2 mi west of Blairstown.

DRAINAGE AREA. -- 5.34 mi².

PERIOD OF RECORD. -- October 1966 to current year.

REVISED RECORDS.--WDR NJ-77-2: 1976. WDR NJ-79-2: 1977(m). WDR NJ-82-2: Drainage area.

GAGE. - Water-stage recorder and concrete control. Datum of gage is 606.8 ft above sea level.

REMARKS.--Records good. Flow regulated by the Jersey Central Power and Light Co., at Yards Creek Reservoir 1.4 mi above station. Several measurements of water temperature were made during the year.

above	Station.	Severat	ilicasul eli	iciita UI 1	iarei reiib	ei a tui e	Mei e illade	dui irig tii	e year.			
		DISCH	ARGE, CUB	SIC FEET F	PER SECOND DAI	, WATER LY MEAN	YEAR OCTOB VALUES	BER 1991 T	O SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.3 1.3 1.3 1.4 1.5	1.4 1.6 1.4 1.3	1.9 1.9 9.5 5.5 3.9	2.0 1.9 2.1 2.2 2.0	3.3 4.0 3.2 3.1 2.9	7.9 7.2 7.5 7.5 7.3	19 17 19 20 19	13 13 12 11 11	11 14 19 18 22	6.5 5.8 4.5 4.7 4.3	2.5 2.1 1.8 2.0 1.8	1.6 1.6 2.5 2.0 1.9
6 7 8 9 10	1.9 1.3 1.4 1.4	1.5 1.4 1.4 1.5	3.5 3.2 2.8 2.7 4.1	1.9 1.9 1.9 2.2 2.1	3.1 3.3 3.0 e2.9	7.4 8.3 7.0 6.2 7.1	13 4.4 4.2 4.3 4.1	12 11 11 10 8.9	27 20 20 21 20	4.3 4.1 3.7 5.9 3.0	1.8 1.7 1.8 2.7 1.8	1.8 2.9 2.2 1.9 3.3
11 12 13 14 15	1.8 1.8 1.5 1.4 2.9	1.6 1.6 1.5 1.5	2.9 2.8 3.0 3.0 2.5	2.0 1.9 1.7 3.0 2.2	2.9 3.1 3.6 3.3 3.9	17 20 17 17 15	4.6 4.1 3.8 3.9 3.8	7.8 8.0 8.4 8.8 8.8	20 20 21 19 17	3.0 2.9 2.8 3.1 2.8	1.8 1.7 1.8 1.8	2.3 1.7 1.7 1.6 1.8
16 17 18 19 20	3.0 4.0 3.0 2.3 1.9	1.3 1.2 1.1 1.1	2.3 2.3 2.3 2.2 2.2	2.0 e4.0 e1.9 e2.0 e1.5	4.6 3.4 4.8 7.1 7.0	16 17 16 18 17	4.3 5.1 5.1 4.9 4.4	11 8.7 8.2 8.0 7.9	17 17 17 20 20	2.8 2.7 2.2 2.0 1.8	1.8 2.1 2.4 1.9 1.8	1.7 1.7 1.8 2.4 1.7
21 22 23 24 25	1.7 1.8 1.7 1.6 1.7	1.4 12 9.7 4.1 2.9	2.2 2.0 2.0 2.0 1.9	e1.4 1.8 5.4 4.2 3.0	7.2 7.2 6.6 6.7 7.6	17 15 16 17 17	4.4 5.8 5.4 5.3 5.4	8.4 8.6 8.5 8.6 7.8	18 15 11 6.8 6.5	1.7 1.8 2.6 2.1 2.1	1.8 1.8 1.7 1.6 1.7	1.6 2.0 2.1 1.6 1.8
26 27 28 29 30 31	1.8 1.7 1.5 1.6 1.6	2.5 2.3 2.1 2.0 1.9	1.8 1.9 1.9 2.5 2.4 2.1	2.6 3.5 2.8 3.8 3.6 3.7	11 8.2 7.1 6.7	20 27 23 21 20 19	5.0 4.6 7.0 13 12	5.9 2.4 2.0 2.0 2.3	6.7 9.4 6.5 6.0 6.3	2.1 2.1 1.9 1.8 3.8	1.9 1.7 1.9 2.1 1.6	2.7 2.1 1.8 1.8
TOTAL MEAN MAX MIN	56.0 1.81 4.0 1.3	68.7 2.29 12 1.1	87.2 2.81 9.5 1.8	78.2 2.52 5.4 1.4	143.9 4.96 11 2.9	455.4 14.7 27 6.2	235.9 7.86 20 3.8	274.0 8.84 19 2.0	472.2 15.7 27 6.0	96.8 3.12 6.5 1.7	58.4 1.88 2.7 1.6	59.4 1.98 3.3 1.6
STATIST	ICS OF MON				EARS 1967		BY WATER					
MEAN MAX (WY) MIN (WY)	5.34 33.6 1990 .97 1981	7.87 22.4 1976 1.20 1967	13.7 37.7 1974 .91 1981	14.4 51.0 1979 1.66 1981	14.9 36.4 1979 2.24 1985	16.5 50.1 1977 6.99 1973	17.6 55.3 1983 4.43 1981	14.8 33.7 1989 1.58 1970	9.38 35.2 1972 1.00 1980	4.81 19.9 1984 .89 1980	4.32 21.6 1969 .65 1980	4.70 27.0 1987 .58 1980
SUMMARY	STATISTIC	cs	FOR 1	991 CALEN	IDAR YEAR	F	OR 1992 WA	TER YEAR		WATER YE	ARS 1967	- 1992
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT 10 PERC 50 PERC		AN AN I MINIMUM AK FLOW AK STAGE J FLOW PS		2250.97 6.17 29 .97 1.2 20 2.1 1.3	Jan 4 Sep 7 Sep 6		2086.1 5.70 27 1.1 1.2 54 2.72 .39 17 2.9 1.6	Mar 27 Nov 18 Nov 15 Nov 22 Nov 22		10.7 14.9 3.17 225 .02 .46 583 3.92 .00 24 4.6 1.1	Jan 18 Jun 19 Oct 19 Feb 24 Feb 24 Sep 17	7 1980 4 1977 4 1977

e Estimated.

#### 01445500 PEQUEST RIVER AT PEQUEST, NJ

LOCATION.--Lat 40°49'50", long 74°58'43", Warren County, Hydrologic Unit 02040105, on right bank at Pequest, 100 ft upstream from abandoned Lehigh and Hudson River Railway bridge, and 300 ft downstream from Furnace Brook.

DRAINAGE AREA.--106 mi².

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1302. REVISED RECORDS. --WSP 1902: 1940(M), 1945, 1955(M), 1957, 1959(M).

GAGE. -- Water-stage recorder. Concrete control since Sept. 29, 1929. Datum of gage is 398.78 ft above sea level. Prior to June 22, 1926, nonrecording gage at site 10 ft upstream at same datum.

REMARKS. - No estimated daily discharges. Records good. Several measurements of water temperature were made during the year. Some regulation from unknown sources upstream.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 650 ft³/s and maximum (*):

Date		Tim	ne	Discha (ft ³ /	rge s)		height		Date	Time	Disc (f	harge t ³ /s)	G	age height (ft)
June	6	061	<b>.</b> 5	*652	-	*3	.13		No other	peak gre	ater than ba	se disc	harge.	
			DI	SCHARGE,	CUBIC FE	ET PER	SECOND, DAIL	WATER Y MEAN	YEAR OCTOB VALUES	BER 1991	TO SEPTEMBER	1992		·
DAY		OÇT	NOV	DE	C JA	N	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		38 37 35 35 35	34 36 34 33 33	23	1 7 2 7	6 D	92 81 86 84 79	119 113 108 103 98	232 217 199 186 173	162 154 152 151 143	168 144 112 94 124	78 70 67 74 71	133 94 74 65 59	47 45 59 112 74
6 7 8 9 10		37 37 35 31 31	32 32 32 32 34	132 116 107 106 137	8 7 7 5 7	0 3 7 5	73 75 73 71 53	96 108 142 128 123	161 152 147 140 142	136 131 129 147 142	515 305 233 - 223 165	70 64 59 126 100	54 50 48 54 65	64 87 91 75 66
11 12 13 14 15		32 36 37 34 40	37 43 40 36 35		5 7 2 7 5 9	4	74 56 52 72 67	382 281 217 186 167	151 158 143 132 123	135 127 117 110 103	137 120 108 98 93	82 71 70 84 84	72 65 55 54 53	76 79 65 58 53
16 17 18 19 20		77 78 104 69 56	34 34 34 33 33	89 84 83 59 80	9 5 2 8 6 6	5	117 104 95 98 100	151 143 141 147 157	119 137 167 175 166	125 130 117 108 95	86 81 78 130 144	120 97 87 77 70	55 68 132 127 100	51 50 47 50 60
21 22 23 24 25	. •	46 49 46 40 <b>38</b>	35 96 268 150 106	77 76 75 75	7 65 6 65 8 8 6 26 8 15		93 89 88 90 99	148 140 138 133 129	154 159 242 240 254	88 84 80 76 79	118 97 87 92 99	65 59 62 77 74	85 75 69 65 61	53 52 71 62 56
26 27 28 29 30 31		37 37 39 35 34 34	86 76 71 64 60	68 67 74 93 87	3 120 7 100 3 100 9 90 7 90		186 173 145 133	202 545 378 299 253 246	241 217 200 183 171	80 85 80 71 64 120	86 118 128 105 88	68 72 68 62 56 69	58 56 53 57 52 50	60 69 71 62 54
TOTAL MEAN MAX MIN CFSM IN.		1349 43.5 104 31 .41 .47	1703 56.8 268 32 .54 .60	3163 102 287 58 .96	91.6 260 3 51	) ;	2698 93.0 186 52 .88	5721 185 545 96 1.74 2.01	5281 176 254 119 1.66 1.85	3521 114 162 64 1.07 1.24	4176 139 515 78 1.31 1.47	2353 75.9 126 56 .72 .83	2158 69.6 133 48 .66	1919 64.0 112 45 .60
STATIS	STI	CS OF	MONTHLY				-	1992,	BY WATER	YEAR (WY	)			
MEAN MAX (WY) MIN (WY)	•	86.5 391 1990 18.0 1965	127 409 1928 21.4 1966	157 426 1974 27.0 1966	33.9	) - ·	198 371 1939 60.8 1940	273 750 1936 93.8 1965	257 720 1983 76.9 1985	185 430 1989 55.7 1965	556 1972 35.0	107 487 1945 19.0 1965	93.2 409 1928 15.1 1965	90.7 354 1989 16.6 1964

## 01445500 PEQUEST RIVER AT PEQUEST, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENI	DAR YEAR	FOR 1992 WAT	ER YEAR	WATER YEARS	1922 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	46000 126		36883 101		156 285 45.8	1952 1965
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	559 26 27	Apr 22 Sep 13 Sep 12	545 31 33 652	Mar 27 Oct 9 Nov 3 Jun 6	2040 12 13 2130	Jan 25 1979 Aug 18 1965 Aug 15 1965 Jan 25 1979
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.19 16.14 261 89 33		3.13 26b .95 12.94 167 84 37	Jun 6 Feb 10	5.97a 12 1.47 19.94 326 111 36	Jan 25 1979 Aug 17 1965

a From high-water mark.b Possible regulation.

## 01445500 PEQUEST RIVER AT PEQUEST, NJ--Continued

PERIOD OF RECORD. -- Water years 1958-80, 1991 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC C FEET D PER A	PE- W/ IFIC WI ON- FI UCT- (SI NCE /	TAND- A ARD W	TURE ATER	KYGEN, DIS- SOLVED	DIS- DE SOLVED E (PER- C CENT I SATUR- 5	BIO- F CHEM- F ICAL, DAY B	OLI- ( ORM, N ECAL, N EC ROTH ((	NTERO- COCCI ME,MF WATER FOTAL COL / OO ML)
ОСТ 1991 16	1100	79	542	8.3	12.0	10.2	96	E2.2	2400	920
JAN 1992 29	1045	98	520	8.4	2.0	14.5	106	E1.4	110	10
MAR 31	1045						114		80	40
JUN		250	444	8.5	7.5	13.4		E1.5		
17 AUG	1045	82	501	8.4	18.5	9.3	100	<1.0	230	100
12	1100	64	488	8.7	18.0	9.8	105	E1.6	490	770
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVEI (MG/L AS K)	, LINITY LAB	SULFATE DIS- SOLVED (MG/L ) AS SO4)	DIS- SOLVED (MG/L	(MG/L	)
OCT 1991	22	20 52	22	21	3.6	160	60	38	0.2	
JAN 1992	23	54	24	14	1.6	185	39	29	0.1	
MAR 31	19	0 42	20	12	1.2	158	31	29	0.2	
JUN 17	23	54	24	16	1.4	200	28	31	0.1	
AUG 12	21	0 48	22	14	1.9	184	25	29	0.4	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NO	NITRO- 3 GEN, AMMONIA D TOTAL (MG/L	AMMON I A	ORGANIC	•
OCT_1991										
16 JAN 1992	7.4	`		0.036		1.01	0.17	0.20	0.97	
29 Ma <u>r</u>	7.5		0.014	0.014	1.35	1.32	0.04	0.08	0.53	
31 JUN_	5.5		0.012	0.011	•	1.28	0.03	0.04	0.53	
17 AUG	6.5		0.023	0.023	1.18	.1.17	0.09	0.07	0.71	
12	7.5	261	0.042	0.042	1.07	0.73	<0.03	0.04	0.53	
DATE	NITRO GEN,AM MONIA ORGANI DIS. (MG/L AS N)	+ NITRO- C GEN, TOTAL (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	ı
OCT 1991 16	0.9	3 1.9	1.9	0.11	0.07	7.0	0.7	9	1.9	
JAN 1992 29	0.4									
MAR 31			1.7	0.05	<0.02	3.5	0.4	6 21	1.6 14	
JUN 17	0.3		1.7 1.8	0.03	<0.02 <0.02	4.3	0.7	21 7		
AUG 12	0.6			0.06	0.08	3.4		3	1.5	
16	0.3	5 1.6	1.1	0.16	0.00	3.9	0.4	3	0.52	

## 01445500 PEQUEST RIVER AT PEQUEST, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 17	1045	12	<b>&lt;1</b>	<10	20	<1	<1	1
DATE	ER/	TAL TOT COV- REC ABLE ERA G/L (UG	D, NES	TAĽ TO COV- REA ABLE ER G/L (U	ABLE ERA G/L (UG	AL SELE COV- NIUM ABLE TOTA	I, REC L ERAI L (UG)	AĽ DV- BLE /L
JUN 1992 17		230	<1	40 <	0.10	<1·	<1	<10 .

01446500 DELAWARE RIVER AT BELVIDERE, NJ LOCATION.--Lat 40°49'36", long 75°05'02", Warren County, Hydrologic Unit 02040105, on left bank at Belvidere, 800 ft downstream from Pequest River, and at river mile 197.7.

DRAINAGE AREA. -- 4,535 mi².

(WY)

PERIOD OF RECORD. -- October, 1922 to current year.

REVISED RECORDS. - WSP 781: 1933(M). WSP 951: 1940-41, Drainage area. WSP 1432: 1923, 1924(M).

GAGE: Water-stage recorder. Datum of gage 226.43 ft above sea level. Prior to Jan. 1, 1929, nonrecording gage at site 200 ft upstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are fair. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lake Wallenpaupack, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, and Neversink Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversions from Pepacton, Cannonsville, and Neversink Reservoirs (see Delaware River basin, diversions). Satellite telemeter and National Weather Service gage-height telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 10, 1903, reached a stage of 28.6 ft, from floodmark, discharge, 220,000 ft³/s, from rating curve extended above 170,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAILY MEAN VALUES SEP DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 2140 1730 2720 e5720 18900. 1970 e5750 e5870 3010 12900 8870 8350 1970 1520 2770 e5690 e5290 6900 6510 6300 5630 e5610 e5970 7200 6940 e4360 2190 2310 7430 6780 19100 15700 3330 4200 2620 2590 e4510 1940 e4120 e3480 e6400 e7840 3190 e8390 e2880 e3630 e9530 3500 5950 e3720 e20100 6540 1990 e2990 e3000 9220 e17500 15 3550 e13400 e3380 e10700 17 7530 11200 2150 2380 e2820 e7970 7190 4520 3570 4880 3930 3190 3450 e2800 5040 e4500 e4780 e4850 4880 4480 4120 2150 23 24 25 11700 26200 5120 7720 e5500 e4380 e4020 4910 5190 13700 13700 3630 3160 3260 3460 2330 2200 2980 2930 3710 e5150 10300 20700 17200 3570 3410 3180 5790 5530 6070 5120 4310 3530 1550 1950 2760 2510 27 e5520 e6190 4240 4330 3520 7340 5860 12800 4500 4260 29 e6500 e6410 5940 1480 7190 . . . TOTAL 5040 27000 6250 13500 MEAN MAX MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1923 - 1992, BY WATER YEAR (WY) 19570 1956 1055 1942 MEAN 1974 1949 1683 1981 1976 1928 1017 1955 881 1938 MAX 5243 1226 (WY) MIN 1980 

## 01446500 DELAWARE RIVER AT BELVIDERE, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1923 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	2093250 5735 29500 Mar 5 1370 Nov 21 1440 Nov 1	2035250 5561 27000 Jun 2 1370 Nov 21 1440 Nov 1 31800 Jun 2 10.12 Jun 2 1270 Nov 2 11000 4360 2050	7797 14130 2990 1965 184000 Aug 19 1955 610 Aug 25 1954 782 Aug 14 1954 273000a 30.21b Aug 19 1955 609 16500 5000 1900

From rating curve extended above 170,000  $\rm ft^3/s$  on basis of flood-routing study. From high-water mark in gage house. Estimated.

## 01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA

LOCATION.--Lat 40°41'30", long 75°12'15", Northampton County, Hydrologic Unit 02040105, at bridge on Northampton Street in Easton, 600 ft upstream from Lehigh River, and 0.2 mi downstream from U.S. Route 22 toll bridge in Easton.

DRAINAGE AREA. -- 4,717 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC C FEET D PER A	IPE- WAR IFIC WINCE AND INCE	TAND- A ARD W	TURE ATER S	YGEN, ( DIS- SOLVED S	DIS- DI SOLVED I PER- CENT SATUR-	BIO- F CHEM- F ICAL, 5 DAY B	OLI- ORM, ECAL, EC ROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL /
OCT 1991 23	1345	3300	150	7.8	10.5	10.9	98	E1.5	20	<2
JAN 1992 22	1200	4600	140	8.7	1.0	13.5	95	<1.0	80	20
APR 08	1300	6400	134	7.7	8.5	11.7	101	E1.4	<20	10
JUN 24	1100	3900	144	7.7	19.0	11.0	121	<1.0	80	120
AUG 19	1200	3100	165	7.8	21.0	7.7	87	<1.0	90	90
(7	1200	3100	103	7.0	21.0		O,	11.0	,,	,0
DATE	HARI NESS TOT/ (MG/ AS CACO	S CALCIUM AL DIS- /L SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATI DIS- SOLVEI (MG/L AS SO4)	DIS- D SOLVED (MG/L	(MG/I	ED -
OCT_1991		E4 4/	7.0	0.7	4.4	75	27	45	-0	
23 JAN 1992		51 14	3.9	8.3	1.1	35	24	15	<0.	
22 APR		51 15	3.2	7.Q	1.1	30 24	23	14	0.2	
08 JUN 24		43 12	3.2	6.5	0.20		15	13	<0.	
AUG 19		50 14 69 20	3.7	6.6 8.1	0.80	37 47	16 16	10 12	<0.1	
17		09 20	4.6	0.1	1.0	47	10	12	νο.	l
DATE	SILIC DIS- SOLV (MG, AS SIO2	CONSTI- VED TUENTS, /L DIS- SOLVED		NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO GEN, AMMONIA	AMMON Î A	ORGAN	1- + ∶C -
OCT 1991										
23 JAN 1992	2.		0.003	0.003		0.47	0.06	0.12	0.29	
22 APR	3.	.5 88	0.004	0.004	0.64	0.63	0.05	<0.03	0.30	
08 JUN	2.	.1 70	0.012	0.012	0.56	0.59	<0.03	<0.03	0.22	
24 AUG	1.	.9 77	0.007	0.006	0.49	0.48	<0.03	<0.03	0.26	
19	2.	.8 95	0.018	0.018	0.51	0.51	<0.03	<0.03	0.23	
DATE	NITR GEN,A MONIA ORGAN DIS. (MG/ AS N	AM- A + NITRO- NIC GEN, TOTAL 'L (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIO SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	, D
OCT 1991 23	0	23 0.75	0.70	0.05	0.03	3.5	0.2	2	13	
JAN 1992			•		0.03					
22 APR		25 0.94	0.88	0.17	0.02	2.9	0.3	2	25	
08 JUN 24		21 0.78	0.80	<0.02	<0.02	2.2	0.2	15	259	
24 AUG		17 0.75	0.65	0.07	0.03	2.5	0.2	3	32	
19	U.	24 0.74	0.75	0.04	0.06	3.0	0.3	2	17	

# 01447000 DELAWARE RIVER AT NORTHAMPTON STREET AT EASTON, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYG DEMA CHE ICA (HI LEVE (MG/	ND, M- L GH	TO1	ENIC TAL G/L AS)	LI TO RE ER	RYL- UM, TAL COV- ABLE IG/L BE)	TO RE ER (U	RON, TAL COV- ABLE IG/L B)	CADM TOT, REC ERA (UG AS	AL OV- BLE /L	RE( ER/		COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 24	1100		<10		<b>&lt;1</b>	<	10		<10		<b>&lt;1</b>		<1	2
DATE	REC ER/ (UC	ON, TAL COV- ABLE G/L FE)	LEAD TOTA RECO ERAE (UG/ AS F	NL DV- BLE 'L	MANG NESE TOTA RECC ERAB (UG/ AS M	L V-	MERCL TOTA RECC ERAB (UG/ AS H	L IV- ILE	NICK TOT REC ERA (UG AS	AL OV- BLE /L	SELI NIUI TOTA (UG,	M, AL /L	ZIN TOT REC ERA (UG AS	AĹ OV- BLE /L
JUN 1992		<b>o</b> n		1		20	<b>&lt;</b> 0	10		1		<b>~1</b>		<10

#### 01453000 LEHIGH RIVER AT BETHLEHEM, PA

LOCATION.--Lat 40°36'55", long 75°22'45", Lehigh County, PA, Hydrologic Unit 02040106, on left bank 110 ft upstream from New Street bridge at Bethlehem, and 1,800 ft upstream from Monocacy Creek. Records include flow of Monocacy Creek.

DRAINAGE AREA.--1,279 mi² includes that of Monocacy Creek. At site used prior to Oct. 1, 1928, 1,229 mi².

PERIOD OF RECORD. -- September 1902 to February 1905, April 1909 to current year. Monthly discharge only for some periods, published in WSP 1302. Published as "at South Bethlehem" prior to October 1913.

REVISED RECORDS.--WSP 261: 1903-5, WSP 321: 1910-11. WSO 1051: Drainage area. WSP 1141: 1929-34(M). WSP 1302: 1914(M), 1916(M), 1918, 1921, 1927-28. WSP 1432: 1903, 1919(M), 1920-21, 1929, 1933.

GAGE.--Water-stage recorder. Datum of gage is 210.94 ft above sea level. Prior to October 1928, nonrecording gage at New Street Bridge 120 ft downstream at same datum. Oct. 1, 1928, to Sept. 30, 1962, water-stage recorder at site 4,250 ft downstream at datum 2.49 ft lower. Oct. 1, 1963, to Dec. 14, 1975, water-stage recorder at site 40 ft downstream at same datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Wild Creek Reservoir (station (01449700) since January 1941, Penn Forest Reservoir (station 01449400) since October 1958, Francis E. Walter Reservoir (station 01447780) since February 1961, and Beltzville Lake (station 01449790) since February 1971. Several measurements of water temperature were made during the year.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Feb. 28, 1902, reached a stage of 24.9 ft, from floodmark, present site and datum, discharge, about 88,000 ft³/s.

		DISC	HARGE, CL	JBIC FEET	PER SECON	D, WATER ILY MEAN	YEAR OCTO VALUES	BER 1991	TO SEPTEM	BER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	511	661	1790	1360	1650	2210	4320	2270	7620	1650	1320	691
2	507	573	1790	1420	1430	2300	3800	2170	8140	1420	1210	705
3	505	539	3350	1380	1460	2230	3480	2120	6630	1280	1140	740
4	495	528	4370	1400	1340	2100	3180	2020	4720	1160	1180	962
5	473	522	3600	1390	1300	1940	2930	2230	4840	1140	1150	829
6	685	509	3200	1350	1260	1750	2760	2040	7050	1510	1010	729
7	712	498	2800	1380	1200	2000	2430	1800	5740	1480	955	894
8	576	492	2510	1360	1170	2400	2300	2050	4920	1380	925	865
9	539	486	2410	1250	1090	2150	2280	5040	5290	2440	1340	789
10	534	479	2740	1270	884	2440	2230	5050	4820	2450	1220	790
11	615	592	2400	1200	1040	3480	2190	4480	4040	1700	1330	1430
12	853	557	2090	991	1000	5280	2180	3870	3430	1410	1350	1680
13	830	546	2070	967	891	4550	2030	3270	2970	1400	1270	1480
14	724	532	2300	1480	1030	3560	2200	2910	2780	1650	1040	1420
15	713	527	2280	2350	1160	3160	1910	2660	2400	1570	957	1280
16	766	525	2090	2480	1620	2950	1740	3280	2030	2030	963	951
17	1180	517	1990	2160	1560	2810	1730	3200	1820	2180	1070	745
18	1860	512	1910	1950	1370	2420	1910	2980	1730	2350	1150	743
19	1420	510	1600	1510	1410	2480	1970	3730	2040	1860	1310	885
20	1310	505	1350	1450	1540	2590	1910	3140	2060	1670	1250	1190
21	1200	531	1460	1430	1580	2130	2610	2740	1840	1570	1200	669
22	1090	1350	1380	1470	-1470	1970	2800	2320	1740	1360	1100	724
23	898	5450	1360	1690	1290	1970	3560	2140	1430	1450	850	1020
24	761	3680	1540	2960	1290	1870	3470	2020	1480	1620	827	954
25	684	2870	1500	2450	1490	1810	3730	2030	1650	1630	814	746
26 27 28 29 30 31	670 607 589 573 565 562	2500 2670 2370 2220 1910	1360 1190 993 1260 1550 1440	2130 1950 2170 1800 1630 1640	2150 2620 2510 2420	2330 7490 9200 6650 5250 4700	3380 3200 3300 2670 2330	1980 2030 1920 1710 1710 5390	1590 1900 2170 1880 2190	1680 1980 1930 1860 1620 1400	818 746 771 851 852 725	1640 1850 1600 1430 1320
TOTAL MEAN MAX MIN CFSM IN.	24007 774 1860 473 .61	36161 1205 5450 479 .94 1.05	63673 2054 4370 993 1.61 1.85	51418 1659 2960 967 1.30 1.50	42225 1456 2620 884 1.14 1.23	100170 3231 9200 1750 2.53 2.91	80530 2684 4320 1730 2.10 2.34	86300 2784 5390 1710 2.18 2.51	102940 3431 8140 1430 2.68 2.99	51830 1672 2450 1140 1.31 1.51	32694 1055 1350 725 .82 .95	31751 1058 1850 669 .83
STATIST		MONTHLY MEA					BY WATER	YEAR (WY				
MEAN	1549	2300	2831	2572	2782	3779	3797	3140	2113	1649	1351	1387
MAX	5778	5294	6991	7898	5820	7708	9038	7041	7272	6362	6192	6907
(WY)	1956	1952	1984	1979	1951	1977	1983	1989	1972	1945	1955	1987
MIN	406	474	514	286	1132	1632	1428	1053	681	366	405	334
(WY)	1964	1965	1981	1981	1980	1981	1985	1941	1965	1965	1964	1964

## 01453000 LEHIGH RIVER AT BETHLEHEM, PA--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1941 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	656539 1799	703699 1923	2435 3973 1952 1165 1965
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	7760 Mar 5 361 Sep 17 412 Sep 12	9200 Mar 28 473 Oct 5 502 Nov 4 10400 Mar 27	70400 Aug 19 1955 210 Jan 31 1981 216 Jan 26 1981 92000a May 23 1942
INSTANTANEOUS PEAR STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	1.41 19.10	5.83 Mar 27 466 Oct 5 1.50 20.47	25.90b May 23 1942 125 Jun 28 1965 1 90 25.87
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	3640 1380 515	3440 1620 670	4830 1760 677

From rating curve extended above 48,000  ${\rm ft}^3/{\rm s.}$  From floodmark, present site, and datum.

### 01455200 POHATCONG CREEK AT NEW VILLAGE, NJ

LOCATION.--Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek.

DRAINAGE AREA. -- 33.3 mi².

PERIOD OF RECORD.--Water years 1959, 1962, 1979 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

· DATE	TIME	INST. C CUBIC C FEET D PER A	PE- W/ IFIC WI ON- FI UCT- (SI NCE /	TAND- A ARD W	TURE ATER	XYGEN, DIS- SOLVED	DIS- DE SOLVED E (PER- C CENT I SATUR- 5	BIO- CHEM- CAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991 08	1130	5.3	288	7.7	9.5	11.8	104	E2.1	1100	220
JAN 1992									20	20
29 MAR	1315	20	249	7.9	0.5	14.6	102	E1.3		
31 JUN 17	1330	64	181	8.5	10.5	12.9	118	<1.1	<20 2400	100
17 AUG_	1330	15	188	8.4	22.5	10.0	116	<1.0	2400	740
13	1100	9.2	232	8.8	19.5	11.6	127	<1.0	1400	310
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVE (MG/L	, LINITY LAB D (MG/L AS	SULFATE DIS- SOLVED (MG/L ) AS SO4)	DIS- SOLVEI (MG/L	(MG/	: ED L
OCT 1991 08	86	s 20	8.7	9.9	2.2	••	22	19	0.	
JAN 1992		•	•							
29 MAR 71	7: 54		7.5 5.2	12 9.9	1.6		21 20	22 18	0. 0.	
31 JUN 17					1.3			14		
AUG	67 80		6.6 8.8	9.0 11	1.6	_	18 19	19	<0. 0.	
13	O	20	0.0	- 11	1.9		19	19	0.	4
DATE	SILICA, DIS- SOLVEI (MG/L AS SIO2)	CONSTI-		NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO	NO2+NÓ3 3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONÍA	AMMON I	GEN,A MONIA ORGAN	M- + IC L L
OCT_1991		4								
08 JAN 1992		133		0.029			0.04	0.06	0.41	
29 MAR	14	137		0.025			0.78	0.81	1.0	
31 Jun	12	105		0.019		1.42	0.08	0.09	0.37	
17 AUG	13	113	0.065	0.065	1.72	1.69	0.04	<0.03	0.45	
13	9.6	137	0.038	0.037	2.03	2.07	<0.03	<0.03	0.18	
DATE	NITROGEN, AMMONIA GORGANIC DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVEI (MG/L AS P)	(MG/L		SEDI- MENT, SUS- PENDEC (MG/L)		: E , ED
OCT 1991		. 37	••	0.20	0 22	E 1	0.7	4	0.01	
08 JAN 1992	0.33			0.29	0.22	5.1	0.7	1	0.01	
29 MAR 71	1.1	2.9	2.9	0.24	0.22	2.8	0.3	3	0.16	
31 JUN_	0.25		1.7	0.08	0.06	2.2	0.4	7	1.2	
17 AUG	0.32		2.0	0.20	0.16	2.5	0.3	10	0.41	
1,3	0.09	2.2	2.2	0.27	••	2.6	0.2	2	0.05	

## 01455200 POHATCONG CREEK AT NEW VILLAGE, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	LI TO RE EF	ERYL- IUM, DTAL ECOV- RABLE JG/L S BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 17	1330	12	<1	۱ ۰	<10	20	<1	<1°	. 2
DATE	ERA (U	TAĽ TOT COV- REC ABLE ERA G/L (UC	ND, NE FAL TO COV- RE NBLE ER G/L (L	NGA- SE, OTAL ECOV- RABLE JG/L S MN)	MERCUR TOTAL RECOV ERABL (UG/L	. TOT /- REC .E ERA . (UG	AL SEL OV- NIU BLE TOT	M, REC AL ERA JL (UC	TAL COV- NBLE
JUN 1992 17		330	<1	20	<0.1	0	<1	<1	<10

#### - 01455801 MUSCONETCONG RIVER AT LOCKWOOD, NJ

LOCATION.--Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge in Lockwood, at boundary between Sussex County and Morris County, 0.2 mi southeast of Cage Hill, 0.4 mi south of Jefferson Lake, and 0.9 mi downstream from Lubbers Run.

DRAINAGE AREA. -- 60.1 mi².

PERIOD OF RECORD. -- Water years 1976 to October 1991 (discontinued).

COOPERATION...Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

# WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH I	NST. CI UBIC CO FEET DU PER AN	PE- WA FIC WH DN- FI JCT- (ST JCE A	AND - AT	URE D	(GEN, DIS- DLVED	DIS- DEM SOLVED BI (PER- CH CENT IC SATUR- 5	O- FO IEM- FI IAL, E DAY BI	ENTERO- DLI- COCCI DRM, ME,MF ECAL, WATER EC TOTAL ROTH (COL / MPN) 100 ML)
OCT 1991 17	1230	50	346	7.6	10.0	10.6	95	2.8	5400 >2400
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L ) AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
OCT 1991 17	110	28	10	24	2.4	78	21	52	0.1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN, NO2+NO3 DIS- SOLVEI (MG/L AS N)	NITRO- 3 GEN, AMMONÍA	NITRO- GEN, AMMONÍA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
OCT 1991 17	, 8.7	197	0.053	0.047	0.76	0.78	0.28	0.28	1.2
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON ORGANIO DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
OCT 1991 17	1.1	2.0	1.8	0.04	<0.02	7.1	1.1	3	0.41

#### 01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ

LOCATION.--Lat 40°48'48", long 74°50'32", Warren County, Hydrologic Unit 02040105, at bridge at Beattystown, 1.6 mi upstream of Hanes Brook, 2.1 mi northeast of Stephensburg, and 3.5 mi northeast of Scrappy Corner.

DRAINAGE AREA. -- 90.3 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH/ II CL I TIME	NST. CI JBIC CO FEET DU PER AN	FIC WHEN THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STREET OF THE STR	AND - A	TURE Ater s	YGEN, ( DIS- SOLVED S	DIS- DE SOLVED B PER- C CENT I SATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC BROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / 00 ML)
JAN 1992 29	1100	120 .	336	8.6	2.0	13.7	99	6.1	<20	<10
APR 01	1300	180	267	8.7	8.0	13.1	114	E1.8	20	<10
JUN 17	1030	100	342	8.1	21.0	9.1	102	<1.0	3500	150
AUG ,12	1100	53	392	8.4	21.5	9.4	108	E1.7	2400	770
DATE	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	(MG/L	
JAN 1992 29 APR	100	26	8.7	22	1.1	64	22	48	0.1	
ີ່ 01 JUN	85	21	8.0	18	1.0	58	18	37	0.2	
17 AUG	100	25	10	24	1.4	<b>7</b> 5	20	49	0.1	
. 12	140	31	14	. 25	1.9	107	18	50	0.4	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NÓ3	NITRO- GEN, AMMONÍA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	ORGANI	- + C ,
JAN 1992		. 47/	0.017	0.049	0.47	0.41	0.27	0.24	0.40	
29 APR	5.1	174	0.017	0.018	0.63	0.61	0.23	0.21	0.60	
JUN	5.6	147	0.019	0.019	0.72	0.75	0.18	0.11	0.47	
17	5.4	184	0.044	0.042	0.85	0.88	0.18	0.11	0.64	
12	6.1	215	0.087	0.081	0.92	0.87	0.21	0.16	0.85	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDEI (T/DAY	D
JAN 1992 29 APR	0.75	1.2	1.4	0.07	0.04	3.3	0.5	4	1.3	
01 JUN	0.38	1.2	1.1	0.03	0.04	3.0	0.5	6	2.9	
17	0.52	1.5	1.4	0.05	0.02	3.6	0.3	6	1.6	
AUG 12	0.39	1.8	1.3	0.33	0.03	3.4	1.6	56	8.0	

# 01456200 MUSCONETCONG RIVER AT BEATTYSTOWN, NJ--Continued WATER QUALITY DATA, WATER OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 17	1030	17	<b>&lt;</b> 1	<10	30	<1	· <1	1
DATE	REC ER/ (UC	TAL TOT COV- REC ABLE ERA G/L (UC	ND, NESTAL TOTO COV- RECABLE ER/ G/L (UC	TAL TOT COV- REC ABLE ERA G/L (UG	AL TOT OV- REC BLE ERA /L (UG	AL SELE OV- NIUM BLE TOTA	I REC L ERA L (UG	AĽ OV- BLE /L
JUN 1992 17	;	280	<1	60 <0	.10	<1	<1	<10 ·

#### 01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ

LOCATION.--Lat 40°40'20", long 75°03'40", Warren County, Hydrologic Unit 02040105, on right bank just downstream from bridge on Limekiln Road (Person Road), 1.5 mi upstream from Bloomsbury, and 9.5 mi upstream from mouth.

DRAINAGE AREA. -- 141 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1903 to March 1907, July 1921 to current year.

REVISED RECORDS.--WSP 1051: 1944-45. WSP 1382: 1904-06, 1922, 1923-29(M), 1931(M), 1933-34(M), 1936(M), 1940, 1942(M), 1944-45(M), 1951-52(M). WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Sept. 29, 1932. Datum of gage is 274.83 ft above sea level. July 1903 to Mar. 31, 1907, nonrecording gage at bridge 15 ft upstream at different datum. July 26 to Sept. 12, 1921, nonrecording gage at bridge at present datum.

REMARKS...No estimated daily discharges. Records good. Flow regulated by Lake Hopatcong (see Delaware River basin, reservoirs in). Several measurements of water temperature were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,000 ft 3/s and maximum (*):

Date		Time	, <b>D</b>	ischarge (ft ³ /s)	I	Gage height (ft)		Date	Time	Dis (f	charge t ³ /s)	Ga	age height (ft)
June	6	0345	*	1,200		*3.93		No other p	eak gre	ater than b	ase disc	charge.	
			DISCH	ARGE, CUBI	C FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEMBE	R 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		78	68	119	127	184	138	284	169	278	151	259	78
2		76	69	126	111	173	130	258	166	244	139	161	76
3		75	68	344	106	169	128	239	162	200	132	135	84
4		74	65	473	109	165	123	221	162	177	137	122	188
5		73	65	371	130	163	120	208	158	297	128	114	140
6		74	65	340	130	158	116	194	156	845	140	106	108
7		76	66	320	119	153	132	185	151	598	122	98	112
8		76	67	301	125	129	178	177	153	515	115	93	105
9		72	75	297	136	119	163	170	180	523	227	111	100
10		71	78	330	146	107	147	171	183	418	174	104	105
11		72	87	321	141	108	399	182	176	353	142	106	238
12		78	95	318	135	103	347	175	164	304	123	110	244
13		77	97	316	134	99	269	164	155	266	121	106	235
14		73	89	325	171	105	233	154	147	237	153	103	232
15		82	84	308	190	109	207	148	138	214	130	98	203
16		156	81	297	159	163	187	147	153	196	147	98	150
17		176	78	272	129	155	174	165	181	182	157	106	139
18		186	76	207	126	130	169	182	168	166	154	125	140
19		140	81	159	115	128	183	181	156	216	133	112	141
20		106	76	164	146	132	190	176	142	254	124	108	137
21		92	77	130	118	126	176	170	130	214	118	96	132
22		85	158	116	113	116	165	181	121	184	108	90	135
23		81	325	111	133	112	164	201	115	167	135	83	167
24		79	233	110	341	112	158	209	110	178	144	85	146
25		77	159	108	297	117	154	237	112	192	133	85	137
26 27 28 29 30 31		76 75 73 72 72 70	132 133 129 125 121	113 114 106 113 138 145	241 233 203 196 192 189	172 192 165 151	208 608 507 380 323 307	235 212 195 183 174	115 118 114 106 102 203	169 161 193 177 161	117 121 120 115 102 104	84 84 85 96 82 80	186 197 189 190 247
TOTAL	•	2743	3122	7012	4941	4015	6883	5778	4566	8279	4166	3325	4681
MEAN		88.5	104	226	159	138	222	193	147	276	134	107	156
MAX		186	325	473	341	192	608	284	203	845	227	259	247
MIN		70	65	106	106	99	116	147	102	161	102	80	76
STATI	STI	CS OF MON		N DATA FOR		YEARS 1904	-	, BY WATER Y	EAR (WY				
MEAN		173	226	260	261	277	340	347	274	199	162	153	159
MAX		770	701	686	924	582	935	1027	680	843	659	583	454
(WY)		1904	1928	1974	1979	1973	1936	1983	1989	1972	1975	1928	1960
MIN		41.2	61.2	57.3	73.7	99.4	127	103	98.1	56.8	38.1	38.5	37.3
(WY)		1964	1966	1966	1977	1923	1965	1985	1965	1965	1965	1965	1965

DELAWARE RIVER BASIN
01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1904 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	71440 196 641 Apr 25 65 Nov 4 66 Nov 2	59511 163 845 Jun 6 65 Nov 4 66 Nov 2 1200 Jun 6 3.93 Jun 6 64 Nov 4 267 140	236 425 82.6 5850 Oct 10 1903 27 Sep 8 1966 32 Aug 28 1966 7200a Jan 25 1979 8.50b Jan 25 1979 8.1 Aug 2 1955 454 180 77

a From rating curve extended above 1,800  $\rm ft^3/s$  on basis of slope-area measurement at gage height 6.95  $\rm ft$ . b From floodmark.

#### 01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ--Continued

PERIOD OF RECORD.--Water years 1963-80, 1991 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. C CUBIC C FEET D PER A	PE- WA IFIC WH ON- FI UCT- (SI NCE A	TAND- A ARD W	TURE ATER S	(YGEN, DIS- SOLVED	DIS- DE SOLVED B (PER- C CENT I SATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / 00 ML)
OCT_1991	1100	90	7/0	0.4	0.0	44 /	00	<b>53.0</b>	700	/0
23 JAN 1992	1100	80	368	8.1	9.0	11.4	98	E2.0	790	49
29 APR	1330	194	340	8.5	2.5	14.9	110	E1.8	490	60
02 Jun	1300	253	285	9.0	7.5	13.8	117	E2.0	50	20
17 AUG	1330	179	329	8.5	20.0	10.4	115	<1.0	940	130
13	1045	106	359	8.3	18.0	9.4	100	<1.0	270	180
DATE	HARD NESS TOTA (MG/ AS CACO	CALCIUM L DIS- L SOLVED (MG/L	DIS- SOLVED (MG/L	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM, DIS- SOLVEI (MG/L AS K)	, LINITY LAB	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/L	D
OCT_1991		E0 75	47	45	4.0	437	2/	70	-0.1	
23 JAN 1992		50 35	16	15	1.9	124	24	30	<0.1	
29 . APR_		10 28	10	19	1.4	79 `	22	40	0.1	
. 02 JUN		99 23	10	14	1.1	73	19	32	0.2	
17 AUG	1	20 28	12	18	1.3	90	18	37	0.1	
13	1	40 31	15	16	1.5	117	18	33	0.4	
DATE	SILIC DIS- SOLV (MG/ AS SIO2	CONSTI- ED TUENTS, L DIS- SOLVED	TOTAL (MG/L	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NO	NITRO- 3 GEN, AMMONIA D TOTAL (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	- + C
OCT 1991	•									
23 JAN 1992	8.	6 214	0.011	0.016	1.92	1.94	0.06	0.19	0.40	
29 APR	6.	4 180	0.015	0.016	1.23	1.24	0.05	0.09	0.47	
02	6.	2 156	0.014	0.013	1.46	1.51	0.03	0.07	0.31	
JUN 17	6.	7 182	0.014	0.014	1.53	1.51	<0.00	<0.03	0.54	
AUG 13	6.	5 199	0.018	0.018	1.76	1.71	<0.03	<0.03	0.26	
DATE .	NITR GEN,A MONIA ORGAN DIS. (MG/ AS N	M- L + NITRO- IC GEN, TOTAL L (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVEI (MG/L AS P)	CARBON ORGANI DIS- O SOLVED (MG/L AS C)	Č SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	D
OCT 1991 23	0	24 2.3	2.2	0.02	<0.02	2.6	0.3	2	0.43	
JAN 1992										
29 APR		42 1.7	1.7	0.04	0.04	3.0	0.6	8	4.2	
02 Jun_		17 1.8	1.7	<0.02	<0.02	2.2	0.3	3	2.0	
17 AUG	0.	35 2.1	1.9	<0.02	<0.02	2.7	0.3	14	6.8	
13	0.	16 2.0	1.9	0.04	0.03	2.1	0.3	2	0.57	

01457000 MUSCONETCONG RIVER NEAR BLOOMSBURY, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 17	1330	13	<1	<10	20	<1	<1	1
DATE	IRO TOT REC ERA (UG AS	AL TOT OV- REC BLE ERA /L (UG	TAĹ TOT COV- REC ABLE ERA G/L (UG	E, MERCI AL TOTA OV- RECI BLE ERAI	AL TOTA DV- RECO BLE ERAI /L (UG)	AL SELE- DV- NIUM, BLE TOTAL /L (UG/L		Ĺ V- LE L
JUN 1992 17		260	<1	30 <0	. 10	<1 <	1 <	10

#### 01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ

LOCATION.--Lat 40°35'32", long 75°11'20", Warren County, Hydrologic Unit 02040105, at bridge on State Highway 13 in Riegelsville, 0.2 mi north of Mount Joy, and 0.2 mi upstream from mouth.

DRAINAGE AREA. -- 156 mi2.

PERIOD OF RECORD. -- Water years 1962, 1976 to current year.

REMARKS.--Water-quality samples do not include Riegelsville Paper Company bypass.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. CI CUBIC CO FEET DU PER AN	PE- WA FIC WH DN- FI DCT- (ST DCE A	AND - A	TURE ATER	XYGEN, DIS- SOLVED	DIS- D SOLVED (PER- CENT SATUR-	BIO- F CHEM- F ICAL, 5 DAY B	OLI- C ORM, M ECAL, W EC T ROTH (C	TERO- COCCI IE, MF VATER OTAL COL / IO ML)
OCT 1991	1200	170	357	7.5	9.5	11.6	103	E2.3	>2400	>2400
FEB 1992 05	1030	180	344	7.7	1.5	13.9	101	E1.9	50	10
APR 02	1030	300	290	8.5	7.0	12.4	104	E2.1	20	10
JUN	1100	190	329				95			280 ،
18 AUG				8.5	19.0	8.8		E1.6	1700	
13	1315	120	369	8.3	19.5	8.7	96	<1.0	270	100
DATE	HARD- NESS TOTAL (MG/L AS CACO3	SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	, LINITY LAB D (MG/L AS	SULFAT DIS- SOLVE (MG/L	DIS- D SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	1
OCT 1991 16 FEB 1992	15	0 33	16	14	2.8	121	23	29	0.1	
05	12	0 29	12	20	1.5	89	24	40	0.1	
APR 02	9	9 23	10	14	1.1	75	20	31	0.2	
JUN 18	13	0 29	13	17	1.4	94	19	34	0.1	
AUG 13	15	0 33	16	17	1.8	119	21	32	0.4	•
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI- D TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L	NO2+NÖ 3 DIS- SOLVE (MG/L	NITRO GEN, AMMONI D TOTAL (MG/L	AMMONÍA A DIS- SOLVED (MG/L	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
OCT_1991										
16 FEB_1992			0.033	0.029	1.91				0.90	
05 APR	6.6		0.017	0.017	1.77				1.0	
02 Jun	6.4		0.012	0.012	1.49				0.70	
18 AUG	7.0	185	0.020	0.022	1.76	1.78	0.08	0.06	0.96	
13	6.2	207	0.052	0.049	1.86	1.86	<0.03	<0.03	0.94	
DATE	NITRO GEN,AM MONIA ORGANI DIS. (MG/L AS N)	+ NITRO- C GEN, TOTAL (MG/L	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGANI DIS- D SOLVED (MG/L	C SUS- PENDED TOTAL (MG/L	C SEDI- MENT, SUS- PENDED	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
OCT_1991		,	3.5	40 OS	-0.02			17	7.8	
16 FEB_1992	0.6		2.5	<0.02	<0.02	6.0	0.8	17		
05 APR	0.7	-	2.6	0.03	<0.02	2.5	0.4	5	2.4	
02 JUN	0.6		2.1	<0.02	<0.02	2.4	0.3	8	6.5	
18 AUG	0.5		2.3	0.04	0.03	3.0	0.5	12	6.2	
13	0.7	4 2.8	2.6	0.03	0.05	2.7	0.4	5	1.6	

01457400 MUSCONETCONG RIVER AT RIEGELSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	ARS TO	ENIC TAL IG/L AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 18	1100	1	2	<1.	<10	20	<1	<1	1
DATE	ER/	TAL TO COV- RI ABLE EI G/L (I	EAD, DTAL ECOV- RABLE JG/L S PB)	MANGA NESE TOTAL RECO' ERABI (UG/I	MERCI L TOTA V- RECO LE ERAI L (UG)	AL TOT DV- REC BLE ERA /L (UG	AL SELE OV- NIUM BLE TOTA	1, REC L ERA L (UG	AĽ OV- BLE /L
JUN 1992 18		310	<b>k</b> 1		40 <0.	.10	<1	<1	<10

#### 01457500 DELAWARE RIVER AT RIEGELSVILLE, NJ

LOCATION...Lat 40°35'36", long 75°11'17", Warren County, Hydrologic Unit 02040105, just upstream of suspension bridge at Riegelsville, 600 ft upstream from Musconetcong River (flow of which is included in the records for this station since Oct. 1, 1931). Datum of gage is 125.12 ft. National Geodetic Vertical Datum of 1929. Water-quality samples are collected from the bridge and do not include flow of the Museconetcong River.

DRAINAGE AREA. -- 6,328 mi 2.

PERIOD OF RECORD. -- Water years 1934, 1943, 1950, 1960-79, 1991 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAŢE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN DIS- SOLVE (MG/L	SOL PE CE D SA1	S- DE .VED B .R- C .NT I .UR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991	1100	3400	205	7.8	13.0	9.	3	87	<1.0	40	13
JAN 1992 23	1045	7100	••	7.8	2.5	13.	я -	· •	E1.6	50	10
APR 08	1100	9200	161	7.7				100	E1.4	50	10
JUN 25					9.0	11.		-			
AUG	1100	6600	176	8.4	20.0	8.		96	<1.0	50	130
19	1100	5400	203	8.0	20.5	8.		92	<1.0	130	80
DA	HARI NES TOT, (MG) TE AS CAC	S CALCI AL DIS- /L SOLV _ (MG/	DIS /ED SOLV 'L (MG/	M, SODI 3- DIS ED SOLV L (MG	UM, S ED SOI L/L (M	IUM, LI IS- LVED ( G/L	LKA- NITY LAB MG/L AS ACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	(MG/	<u>'</u> ED L
OCT 19	91	73 19	6.	3 12		1.5 4	9	32	21	<0.	1
JAN 19 23	92 .	52 14	4.				3	22	14	0.	
APR 08	•	52 14	4.	2 7	.9	1.0 3	0	19	15	<0.	1
JUN 25	•	61 16	5.	2 8	.7	1.1 4	2	20	14	<0.	1
AUG 19	•	73 19	6.	1 10		1.5 5	3	23	16	<0.	1
DA	SILII DIS SOL (MG TE AS SIO	- CONST VED TUENT /L DIS SOLV	OF NITR 'I- GEN 'S, NITRI G- TOTA 'ED (MG/	I, NITR TE DI L SOL L (MG	N, NI' ITE GI S- NO2- VED TO' /L (MG	TRO- EN, NO HNO3 TAL S G/L (	ITRO- GEN, 2+NO3 DIS- OLVED MG/L S N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITR GEN, AI MONIA ORGAN TOTA (MG/ AS N	M- + IC L
OCT 19 24. Jan 19	, 3	.1 1	29 0.0	19 0.	016 1	.03	1.01	0.11	0.13	0.52	
23 APR		.2	93 0.0	10 0.	012 1.	.04	1.09	0.06	0.06	0.31	
	. 2	.8	86 0.0	16` 0.	016 0	.98	0.99	<0.03	0.04	0.26	
25 AUG	. 2	.9	97 0.0	10 0.	011 0	.94	0.94	<0.03	<0.03	0.28	
19	. 3	.5 1	15 0.0	22 0.	023 0	.94	0.94	<0.03	<0.03	0.26	
DA	NITI GEN,/ MONI/ ORGAI DIS TE (MG, AS I	AM- A + NITR NIC GEN - TOTA /L (MG/	, DIS- L SOLVE L (MG/	PHO PHOR D TOT L (MG	US DI AL SOI /L (MO	RUS OR IS- D VED SO G/L (	RBON, GANIĆ	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI MENT DIS CHARGI SUS PENDI (T/DA	, , ED
OCT 19	91	.26 1.	5 4	<b>7</b> 0	12 0 0	18 Z	0	0.7	1 .	9.3	•
24 JAN 19	92	.26 1. .22 1.	•		12 0.0 08 0.0		.0 .5	0.3	1	19	•
23 APR 08									7		
JUN		.23 1.					.1	0.3		174	
25 AUG		.17 1.					.4	0.3	1	18	
19	. 0	.17 1.	2 1.	1 0.	11 0.0	J <del>y</del> 2	.6	0.4	4	58	

01457500 DELAWARE RIVER AT RIEGELSVILLE, NJ--Continued
WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSEI TOTA (UG	L T NIC R AL E /L (	RABLE UG/L	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	TOTAL RECOV ERABL (UG/L	TOTAL RECOV- E ERABLE (UG/L
1992 25	1100	1	1	<1	<10 [°]	30	<1	: <b>&lt;</b>	1 2
DATE	ERA (UC	TAL TO COV- RI ABLE EI G/L (I	EAD, DTAL ECOV- RABLE JG/L S PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCUR TOTAL RECOV ERABL (UG/L AS HG	. TOT /- REC .E ERA . (UG	AL SE OV- NI BLE TO	LE- T UM, R TAL E G/L (	INC, OTAL ECOV- RABLE UG/L S ZN)
JUN 1992 25		90	<1	20	<0.1	0	2	<i< td=""><td>20</td></i<>	20

#### 01460440 DELAWARE AND RARITAN CANAL AT PORT MERCER, NJ

LOCATION.--Lat 40°18'16", long 74°41'08", Mercer County, Hydrologic Unit 02040105, on right bank 300 ft upstream from bridge on Province Line (Quaker Bridge) Road at Port Mercer.

PERIOD OF RECORD.--August 1990 to current year. Miscellaneous measurements made 1923, 1937-38, 1942-43, 1945, 1981, 1987-90.

GAGE.--Water-stage recorder and ultrasonic velocity meter. Datum of gage is sea level.

REMARKS.--Records excellent except for estimated daily discharges, which are good. The canal diverts water from the Delaware River at Raven Rock and discharges into Raritan River at New Brunswick. Reverse flow can occur during periods of heavy precipitation due to waste gate operation upstream of gage. Satellite telemeter at station.

		DISCH	ARGĘ, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER VALUES	1991	TO SEPTEMBE	R 1992	•	
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	127 128 130 129 127	109 105 104 105 104	128 121 90 72 84	101 104 108 109 104	96 97 98 99 98	89 98 106 101 99	94 94 94 94 94	104 102 108 110 111	155 155 153 147 111	152 154 153 156 153	152 155 159 157 159	156 155 155 156 161
6 7 8 9	123 130 140 142 134	99 97 100 105 108	99 104 104 108 105	98 93 98 105 105	103 103 100 99 104	100 103 99 96 88	92 92 92 91 91	117 116 115 103 111	43 127 119 120 123	154 156 153 157 154	157 157 153 156 155	164 159 158 158 158
11 12 13 14 15	128 114 114 113 113	107 111 115 112 113	97 101 106 101 101	104 102 99 100 98	104 110 111 109 106	78 81 87 88 95	93 91 95 96 104	115 114 114 110 120	133 138 131 131 139	152 150 154 153 152	148 139 146 151 146	160 158 156 158 156
16 17 18 19 20	98 110 102 100 102	113 111 110 109 108	104 107 106 108 109	98 96 100 107 123	94 95 94 95 106	98 97 100 94 84	103 e104 e95 e93 e91	139 127 126 142 144	149 148 147 126 117	150 147 156 154 155	143 146 149 150 154	157 155 153 152 e151
21 22 23 24 25	104 107 106 105 105	106 106 91 99 97	104 102 103 103 102	116 106 108 102 102	100 96 97 98 98	84 86 87 90 89	e90 84 98 95 100	148 154 160 169 164	140 144 149 140 142	155 156 155 153 156	154 152 153 152 154	e152 162 156 154 157
26 27 28 29 30 31	105 98 107 109 109	99 115 121 123 123	103 102 102 103 102 102	103 104 103 100 96 94	98 94 93 90	91 69 76 85 96 98	104 103 101 105 102	159 155 172 172 170 157	142 143 144 151 149	153 159 157 157 158 153	156 151 151 152 153 155	140 156 156 148 139
TOTAL MEAN MAX MIN	3569 115 142 98	3225 107 123 91	3183 103 128 72	3186 103 123 93	2885 99.5 111 90	2832 91.4 106 69	2875 95.8 105 84	4128 133 172 102	4056 135 155 43	4777 154 159 147	4715 152 159 139	4656 155 164 139
STATIST	ICS OF MO	NTHLY MEAI	N DATA FO	R WATER	YEARS 1990	- 1992	, BY WATER YE	AR (WY	)			
MEAN MAX (WY) MIN (WY)	135 155 1991 115 1992	129 151 1991 107 1992	118 133 1991 103 1992	116 128 1991 103 1992	118 137 1991 99.5 1992	114 136 1991 91.4 1992	95.8	140 148 1991 133 1992	140 145 1991 135 1992	151 154 1992 148 1991	149 152 1992 147 1990	149 155 1992 137 1991
SUMMARY	STATISTI	cs	FOR 1	991 CALE	NDAR YEAR	F	FOR 1992 WATE	R YEAR	. (	JATER Y	EARS 1990 -	1992
LOWEST HIGHEST LOWEST ANNUAL 10 PERCE 50 PERCE		AN AN N . MINIMUM DS DS		48585 133 162 33 94 152 140 104	Jul 29 Mar 4 Dec 3		43	May 28 Jun 6 Mar 23		132 143 120 222 33 84 156 141 98	Aug 22 Mar 4 Mar 23	1991

e Estimated.

#### 01461000 DELAWARE RIVER AT LUMBERVILLE, PA

LOCATION.--Lat 40°24'27", long 75°02'16", Bucks County, Hydrologic Unit 02040105, at pedestrian bridge at Lumberville, 1.4 mi upstream of Lockatong Creek.

DRAINAGE AREA. -- 6,598 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		. 1	MATER QUAL	ITY DATA,	WATER YE	AR OCTOBE	R 1991	TO SEPTEMB	ER 1992		
	DATE	CH/ II CU TIME	NST. CI JBIC CO FEET DU PER AN	FIC WA FIC WH IN- FI ICT- (ST ICE A	AND - AT	TURE D ATER SO	(GEN, OIS- OLVED	DIS- DE SOLVED B (PER- C CENT I SATUR- 5	IO- F HEM- F CAL, DAY B	COLI- CORM, ECAL, EC BROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / 00 ML)
	007 4004	31	ECOND (US	/CM/ UN	IITS) (DE	EG C) (M	1G/L) /	ATTON) (	mu/L) (	MFN) 1	00 ML)
,	OCT 1991	1330	3200	197	8.1	13.5	10.1	96	<1.0	<20	<2
	JAN 1992 23	1330	7600		7.7	2.5	14.5		E2.0	70	30
	APR 09	1100	B800 ·	165	8.0	10.5	12.2	110	E1.2	<20	<10
	JUN 24	1100	5400	184	8.3	19.0	8.8	96	<1.0	<20	50
	AUG 19	1200	5400	212	8.4	20.5	8.7	97	<1.0	490	. 30
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L ) AS SO4)	DIS- SOLVED (MG/L	(MG/L	D
	OCT 1991 24	70	18	6.1	11	1.5	47	31	20	<0.1	
	JAN 1992 23	56	15	4.6	9.3	1.2	35	23	15	0.1	
	APR 09	53	14	4.3	8.1	0.90	32	20	15	<0.1	
	JUN 24	66	17	5.8	9.0	1.2	45	21	14	<0.1	
	AUG 19	73	19	6.3	10	1.7	54	23	16	<0.1	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- 5 GEN, AMMONIA	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM MONIA ORGANI	- +
_	OCT 1991 24	2.7	124	0.015	0.015	1.09	1.10	0.15	0.13	0.45	
	JAN 1992 23	4.0	98	0.014	0.013	1.15	1.14	0.06	0.05	0.36	
	APR 09	2.5	88	0.014	0.019	0.86	0.85	<0.03	<0.03	0.38	
	JUN 24	3.3	103	0.010	0.011	0.91	1.01	<0.03	<0.03	0.30	
	AUG 19	3.6	117	0.021	0.021	1.06	1.04	<0.03	<0.03	0.36	
		3.0	,	, 0.021	0.021	1.00		١٥.03	10.05	0.30	
	DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)		D
	OCT 1991	0 77	4 6	1 5	0.07	0.04	7 3	0.3	4	0.7	
	24 JAN 1992	0.37	1.5	1.5	0.07	0.06	3.2	0.2	1	8.6	
	23 APR C9	0.32	1.5	1.5	0.59	0.57	2.6	0.1	1	21	
	JUN	0.24	1.1	1.1	0.04	0.03	1.8	0.4	7	166	
	24 AUG 19	0.31 0.28	1.2	1.3 1.3	0.06	0.09	2.6	0.3	3	44	
	17	0.28	1.4	1.3	0.10	0.08	2.8	0.5	5 .	73	

# 01461000 DELAWARE RIVER AT LUMBERVILLE, PA--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 24	1100	<10	<1	<10	20	<1	<1	2
DATE	IROI TOTA RECO ERAI (UG, AS	AĹ TOT OV- REC BLE ERA /L (UG	AL TOTA OV- RECO BLE ERAB /L (UG/	MERCU NL TOTA DV- RECO BLE ERAB 'L (UG/	L TOTA DV- RECO BLE ERAI 'L (UG)	AL SELE- DV- NIUM, BLE TOTAL /L (UG/L	REC ERAI	AĹ OV- BLE /L
JUN 1992 24		100	<1	20 <0.	10	2	<b>&lt;1</b>	20

# 01463500 DELAWARE RIVER AT TRENTON, NJ (National stream quality accounting network and Radiochemical program station)

LOCATION.--Lat 40°13'18", long 74°46'42", Mercer County, Hydrologic Unit 02040105, on left bank 450 ft upstream from Calhoun Street Bridge at Trenton, 0.5 mi upstream from Assunpink Creek, and at mile 134.5.

DRAINAGE AREA. -- 6,780 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--February 1913 to current year. October 1912 to February 1913 monthly discharge only, published in WSP 1302. Gage-height records collected in this vicinity since 1904 are contained in reports of the National Weather Service

REVISED RECORDS.--WSP 951: Drainage area. WSP 1302: 1913-20. WSP 1382: 1924, 1928.

GAGE. -- Water-stage recorder. Datum of gage is sea level. Prior to Sept. 30, 1965, at datum 7.77 ft higher. Feb. 24, 1913 to Oct. 2, 1928, nonrecording gage on downstream side of highway bridge at site 450 ft downstream.

REMARKS.--No estimated daily discharges. Records excellent except from June 6 to Sept. 30, which are good. Diurnal fluctuations at medium and low flow caused by powerplants on tributary streams. Flow regulated by Lakes Wallenpaupack and Hopatcong, and by Pepacton, Cannonsville, Swinging Bridge, Toronto, Cliff Lake, Neversink, Wild Creek, and Merrill Creek Reservoirs (see Delaware River basin, reservoirs in) and smaller reservoirs. Diversion from Pepacton, Cannonsville, and Neversink Reservoirs. Diversion to Bradshaw and Merrill Creek Reservoirs and to Delaware and Raritan Canal (see Delaware River basin, diversions). Water diverted just above station by borough of Morrisville, PA, and city of Trenton for municipal supply (see Delaware River basin, diversions). Satellite gage height and water-quality parameter telemeter at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 11, 1903, reached an elevation of about 28.5 ft above National Geodetic Vertical Datum of 1929, discharge estimated, 295,000 ft 3/s. Maximum elevation since 1957, 30.6 ft above National Geodetic Vertical Datum of 1929, Mar. 8, 1904, from floodmark, due to ice jam.

PEAK DISCHARGES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 50,000 ft³/s and maximum (*):

				Disabana		haim	- L.A.		_		Nicobosso	^	ogo boight
Date		Time	•	Discharq (ft ³ /s	ge (	Gage heig (ft)	nτ	Date	Time	•	Oischarge (ft ³ /s)	u	age height (ft)
June	6	0245	j	*46,800	)	*13.98		No peak	greater	than base	discharge	•	
			DISC	CHARGE, O	CUBIC FEET	PER SECO	ND, WATER AILY MEAN	YEAR OCTO VALUES	OBER 1991	TO SEPTE	MBER 1992		
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		2610	2670	7710	6380	8040	9580	17200	12000	21700	5940	6500	3230
2		2760	2670	6990	6260	7260	8660	15900	11000	35300	5320	7640	3230
3		3020	2790	10600	5760	5840	8510	14700	10500	30200	4930	8650	3300
4		3030	2730	19400	6150	5450	8570	13600	10300	21900	4680	7120	3010
5		2990	2390	20700	6690	5830	8220	12400	10800	21000	4230	6660	4000
6		2940	2450	16900	6820	6130	7640	11400	10700	35600	4290	6030	4140
7		3240	2410	14200	6850	5420	7950	10400	9530	33600	4850	5660	3960
8		3140	2390	11900	7540	5540	9640	9850	9370	29600	5100	5490	4070
9		3200	2540	10600	7070	5630	10000	9370	13400	24700	5790	4910	4200
10		3350	2810	11200	6870	4560	11000	9150	15300	21200	7960	5300	3930
11		3070	2840	11800	6420	3370	15000	9110	13600	17900	6710	5250	4040
12		3170	2900	10800	6270	3960	20000	9380	11900	15000	5760	6770	4720
13		3460	2960	9820	5560	4520	27300	9320	10900	12500	5010	6720	6020
14		3590	3010	9950	5390	3930	20500	11500	9730	10900	4720	6000	5730
15		3230	3010	10300	7710	4320	16000	11300	8740	9470	4880	5090	4910
16		3480	3140	11000	9730	5710	13400	10100	8160	8090	6340	4700	4140
17		4240	2800	10900	10700	6320	11800	9520	10000	8040	7320	4320	3850
18		6840	2710	9890	8350	5410	10800	10600	9020	7070	8390	4610	3300
19		7510	2640	8750	7230	6260	10500	16400	8990	7250	8060	5060	3510
20		7060	2580	7230	5860	7230	10400	21700	9220	7750	6270	5550	3790
21		5880	2460	6540	5960	7190	10100	20200	7880	7160	5780	5270	4060
22		5160	2710	6800	6060	7160	9000	17700	7160	5910	5940	4630	3310
23		4590	10300	6840	6760	7280	8310	17200	6180	5370	5580	4390	3340
24		3680	26800	6750	9910	6280	7710	17800	6100	5560	5790	3740	4370
25		3230	25000	6480	12100	5860	7880	17300	5580	5990	5710	3350	4710
26 27 28 29 30 31	,	3130 2860 2700 2910 2970 2800	17100 13500 11400 9740 8370	6000 5320 5190 5120 5710 5970	10900 9610 8270 8420 8380 8130	8010 10600 10400 9960	8350 16400 29200 29300 22200 18400	17500 18600 17100 15400 13300	5890 6230 6850 6620 6240 6950	6650 6320 7990 6560 5720	5610 5640 5870 6900 6980 5910	3300 3610 4040 4490 4520 4090	4670 5500 5990 5190 4750
TOTAL	1	15840	181820	297360	234110	183470	412320	415000	284840	442000	182260	163460	126970
MEAN		3737	6061	9592	7552	6327	13300	13830	9188	14730	5879	5273	4232
MAX		7510	26800	20700	12100	10600	29300	21700	15300	35600	8390	8650	6020
MIN		2610	2390	5120	5390	3370	7640	9110	5580	5370	4230	3300	3010
STATI	STI	CS OF M	ONTHLY ME		FOR WATER	YEARS 19	13 - 1992,	BY WATER	YEAR (W	Y)			
MEAN		6809	10390	12370	12160	12850	20590	22060	14220	9170	7090	5959	5801
MAX		28710	27340	31070	34950	27550	60840	52680	31690	33460	25720	30290	22490
(WY)		1956	1928	1974	1979	1951	1936	1940	1989	1972	1928	1955	1933
MIN		1632	1868	2037	2539	3500	7715	6828	5209	2572	1548	1808	1762
(WY)		1942	1915	1923	1981	1920	1981	1985	1965	1965	1965	1965	1932

# 01463500 DELAWARE RIVER AT TRENTON, NJ -- Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR	R YEAR	FOR 1992 WATER YEAR	WATER YEARS 1913 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	2390	Mar 5 Nov 5 Nov 3	3039450 8305 35600 Jun 6 2390 Nov 5 2530 Nov 3 46800 Jun 6 13.98 Jun 6 2320 Nov 5 16100 6670 3140	11610 19810 4708 1965 279000 Aug 20 1955 1240 Oct 31 1914 1310 Oct 31 1914 329000a Aug 20 1955 28.60b Aug 20 1955 1180 Oct 31 1963 24400 7850 2980

From rating curve extended above 230,000  ${\rm ft}^3/{\rm s},$  maximum flow since 1692. From high-water mark in gage house.

#### 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1945 to current year.

PERIOD OF DAILY RECORD. --

ERIOD OF DAILY RECORD. SET IN RECORD. SPECIFIC CONDUCTANCE: June 1968 to September 1978, May 1979 to current year.

PH: June 1968 to September 1978, May to September 1979, February 1980 to August 1982, April 1983 to current year.

WATER TEMPERATURE: October 1944 to September 1978, May 1979 to current year.

DISSOLVED OXYGEN: October 1962 to September 1978, May 1979 to current year.

SUSPENDED-SEDIMENT DISCHARGE: Water years 1949 to 1981.

INSTRUMENTATION.--Temperature recorder since October 1944, water-quality monitor since October 1962. Monitor probes are located within raw water intake of Trenton Filtration Plant.

REMARKS.--Missing continuous water-quality records are the result of malfunctions of the instrument, or interruptions of flow through the filtration plant. Unpublished records of suspended sediment discharge for the period October 1, 1981 to March 31, 1982 are available in files of the district office.

EXTREMES FOR PERIOD OF DAILY RECORD...
SPECIFIC CONDUCTANCE: Maximum, 377 microsiemens, Feb. 12, 1985; minimum, 63 microsiemens, July 7, 1984.
pH: Maximum, 10.3, Aug. 9,10, 1983; minimum, 5.3, June 22, 1972.
WATER TEMPERATURE: Maximum, 37.0 °C, July 21, 1977; minimum, 0.0 °C, on many days during the winter months.
DISSOLVED OXYGEN: Maximum, 20.0 mg/l, Feb. 11, 1989; minimum, 4.0 mg/l, Nov. 9, 1972.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum, 277 microsiemens, NOV. 10; minimum, 89 microsiemens, June 6.
pH: Maximum, 9.7, Feb. 14; minimum, 6.9, Nov. 24-26, June 5,6.
WATER TEMPERATURE: Maximum, 30.0 °C, July 15; minimum, 0.0 °C, on several days during the winter months.
DISSOLVED OXYGEN: Maximum, 17.9 mg/l, Feb. 14; minimum recorded, 6.0 mg/l, Aug. 29, but may have been lower during instrument malfuntion, July 6-20.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, BOD, and water-phase nutrients for Oct. 24, 1991 and April 9, 1992, were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L)	COLI- FORM, FECAL, EC BROTH (MPN)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT 1991 24	1300	3680	195	7.8	13.5		12.2	116	<1.0	20		<20
NOV 20	1230	9750	236	8.7	10.0	0.80	13.5	120			K7	
JAN 1992												40
27 Mar	1300	9860	143	7.5	1.0	2.5	••	••	£1.7	20	K7	10
12 28 APR	1100 1200	19000 28800	153 166	7.4 7.4	6.0	4.0 38	••	91 92	••	••		••
09 20 JUN	1200 1025	9310 22600	162 120	7.9 7.4	11.0 8.0	5.4	14.2 12.0	128 101	E1.9	5		<10 
02 29	1345 1330	39300 6340	109 172	7.4 7.8	16.0 25.5	25 1.4	9.3 10.8	94 132	 .E1.4	70	28	 <10
AUG 13	1200	6780	178	7.8	26.0	2.0	9.5	117	<1.0	<20	41	<10
	STREP- TOCOCCI	HARD-		MAGNE -		POTAS-	BICAR-	ALKA- LINITY,	ALKA-	ALKA- LINITY	0.41.54.75	CHLO-
DATE	FECAL, KF AGAR (COLS. PER 100 ML)	NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	BONATE IT-FLD (MG/L AS HCO3)	CARBON- ATE IT-FLD (MG/L - CACO3)	LINITY LAB (MG/L AS CACO3)	WAT WH TOT FET FIELD MG/L AS CACO3	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)
DATE OCT 1991 24	KF AGAŘ (COLS. PER	TOTAL (MG/L AS	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	IT-FLD (MG/L AS	ATE IT-FLD (MG/L -	LAB (MG/L AS	TOT FET FIELD MG/L AS	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L
OCT 1991	KF AGAR (COLS. PER 100 ML)	TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L AS K)	IT-FLD (MG/L AS HCO3)	ATE IT-FLD (MG/L - CACO3)	LAB (MG/L AS CACO3)	TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L AS CL)
OCT 1991 24 NOV 20 JAN 1992 27	KF AGAR (COLS. PER 100 ML)	TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L AS K)	IT-FLD (MG/L AS HCO3)	ATE IT-FLD (MG/L - CAC03)	LAB (MG/L AS CACO3)	TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L AS CL)
OCT 1991 24 NOV 20 JAN 1992 27 MAR 12	KF AGAR (COLS. PER 100 ML)	TOTAL (MG/L AS CACO3) 66	DIS- SOLVED (MG/L AS CA) 17 20 12	DIS- SOLVED (MG/L AS MG) 5.7	DIS- SOLVED (MG/L AS NA) 11 14 8.4 8.4	DIS- SOLVED (MG/L AS K) 1.5 1.8 1.0	IT-FLD (MG/L AS HCO3)	ATE IT-FLD (MG/L-CAC03)	LAB (MG/L AS CACO3) 44 61 27	TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 25	DIS- SOLVED (MG/L AS CL)
OCT 1991 24 NOV 20 JAN 1992 27 MAR 12 28	KF AGAŘ (COLS. PER 100 ML)	TOTAL (MG/L AS CACO3)  66 81	DIS- SOLVED (MG/L AS CA) 17 20	DIS- SOLVED (MG/L AS MG) 5.7 7.4 3.6	DIS- SOLVED (MG/L AS NA) 11 14 8.4	DIS- SOLVED (MG/L AS K) 1.5 1.8	IT-FLD (MG/L AS HCO3)  73	ATE IT-FLD (MG/L - CAC03)	LAB (MG/L AS CACO3) 44 61	TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 25 28	DIS- SOLVED (MG/L AS CL) 17 19
OCT 1991 24 NOV 20 JAN 1992 27 MAR 12 28 APR 09	KF AGAŘ (COLS. PER 100 ML)  <1 K16	TOTAL (MG/L AS CACO3)  66 81 45	DIS- SOLVED (MG/L AS CA) 17 20 12	DIS- SOLVED (MG/L AS MG) 5.7 7.4 3.6 3.8	DIS- SOLVED (MG/L AS NA) 11 14 8.4 8.4	DIS- SOLVED (MG/L AS K) 1.5 1.8 1.0	1T-FLD (MG/L AS HCO3)  73 	ATE IT-FLD (MG/L CACO3)	LAB (MG/L AS CACO3) 44 61 27	TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 25 28 17	DIS- SOLVED (MG/L AS CL) 17 19 13 .
OCT 1991 24 NOV 20 JAN 1992 27 MAR 12 28 APR	KF AGAŘ (COLS. PER 100 ML)  <1 K16	TOTAL (MG/L AS CACO3)  66 81 45 48 54	DIS- SOLVED (MG/L AS CA) 17 20 12 13 15	DIS- SOLVED (MG/L AS MG) 5.7 7.4 3.6 3.8 4.0	DIS- SOLVED (MG/L AS NA) 11 14 8.4 9.2 8.3	DIS- SOLVED (MG/L AS K) 1.5 1.8 1.0 1.4 1.2	73 .:	ATE IT-FLD (MG/L- CACO3)	LAB (Mg/L AS CACO3) 44 61 27 30 29	TOT FET FIELD MG/L AS CACO3	DIS- SOLVED (MG/L AS SO4) 25 28 17 16 20	DIS- SOLVED (MG/L AS CL) 17 19 13 . 13 16

DELAWARE RIVER BASIN

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	AMMON Í	AMMON Í A	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)
OCT 1991 24	<0.1	2.7	111	0.009	0.009	0.93	0.94	0.16	0.25	0.39	0.34
NOV 20	0.1		131	0.020	0.010	1.00		<0.01			••.
JAN 1992 27	0.2	4.0	79	<0.010	<0.010	0.73	0.73	0.03			• •
MAR 12	0.2	3.7	82	0.020	0.010	0.73	0.73	0.03			••
28 APR	0.2	4.3	93	0.030	0.020	1.20	1.30	0.11			••
09 20 JUN	<0.1 0.2	2.3 3.0	88 65	0.018 0.010	0.017 0.010	0.80 0.59	0.81 0.59	<0.03 0.03			0.21
02 29 AUG	<0.1 <0.1	3.4 1.8	61 90	0.010 0.010	<0.010 <0.010	0.54 0.61	0.57 0.61	0.05 0.02			· ·
13	0.1	2.7	93	0.010	<0.010	0.67	0.70	0.02	0.01	0.30	• •
DATE	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON ORGANIO SUS- PENDED TOTAL (MG/L AS C)		SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 1991	GEN, TOTAL (MG/L	GEN DIS- SOLVED (MG/L	PHORUS TOTAL (MG/L	PHORUS DIS- SOLVED (MG/L	PHORUS ORTHO TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIO SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED	MENT, DIS- CHARGE, SUS- PENDED	SUSP. SIEVE DIAM. % FINER THAN
OCT 1991 24 NOV 20	GEN, TOTAL (MG/L AS N)	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ORĞANIĆ DIS- SOLVED (MG/L AS C)	ORGANII SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 1991 24 NOV 20 JAN 1992 27	GEN, TOTAL (MG/L AS N)	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 1991 24 NOV 20 JAN 1992 27 MAR 12	GEN, TOTAL (MG/L AS N) 1.3	GEN DIS- SOLVED (MG/L AS N)	PHORUS TOTAL (MG/L AS P) 0.06 0.08	PHORUS DIS- SOLVED (MG/L AS P) 0.06	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ORGANIĆ DIS- SOLVED (MG/L AS C)	ORGANIO SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) 20 79	SUSP. SIEVE DIAM. % FINER THAN .062 MM
OCT 1991 24 NOV 20 JAN 1992 27 MAR 12 28 APR 09	1.3 1.0	GEN DIS- SOLVED (MG/L AS N) 1.3	PHORUS TOTAL (MG/L AS P) 0.06 0.08 0.06	PHORUS DIS- SOLVED (MG/L AS P) 0.06 0.07 0.03	PHORUS ORTHO TOTAL (MG/L AS P)  0.07 0.03	PHORUS ORTHO, SOLVED (MG/L AS P) 0.06 0.02	ORGANIC DIS- SOLVED (MG/L AS C) 3.9	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L) 2 3 5	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) 20 79 133 1690	SUSP. SIEVE DIAM. FINER THAN .062 MM 86 70 89
OCT 1991 24 NOV 20 JAN 1992 27 MAR 12 28 APR 09	1.3 1.3 1.0 1.8 2.3	GEN DIS- SOLVED (MG/L AS N) 1.3   1.0	PHORUS TOTAL (MG/L AS P) 0.06 0.08 0.06 0.15 0.31	PHORUS DIS- SOLVED (MG/L AS P) 0.06 0.07 0.03 0.03 0.03	PHORUS ORTHO TOTAL (MG/L AS P)  0.07 0.03 0.04 0.06	PHORUS ORTHO, SOLVED (MG/L AS P) 0.06 0.02 0.03 0.02	ORGANIĆ DIS- SOLVED (MG/L AS C) 3.9  2.8	ORGANII SUS- PENDED TOTAL (MG/L AS C) 0.3  0.4	SEDI- MENT, SUS- PENDED (MG/L) 2 3 5 33 126	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) 20 79 133 1690 9800	SUSP. SIEVE DIAM. % FINER THAN .062 MM 86 70 89 94 93

DELAWARE RIVER BASIN

# 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
NOV 1991	1230		<10		24				
JAN 1992 27	1300		20		24				
JUN 29	1330	14	30	<1	24	<10	20	· <1	<1
AUG 13	1200		20		24				
13	1200		20		24				
DATE	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
NOV 1991 20	<3	••		6	••	<4		2	
JAN 1992 27	<3	• •		23	••	5		17	••
JUN 29	<3	4	130	22	<1	<4	20	<1	<0.10
AUG 13	<3	••	••	20	• • •	<4		7	••
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
NOV 1991 20	<10	••	<1		<1	<1.0	82	、 <6	
JAN 1992 27	<10	••	<1	••	· <1	<1.0	51	· <6	
JUN 29	<10	2	2	<1	· <1	<1.0	70	<6	30
AUG 13	<10	•••	2	• •	<1	<1.0	74	<6	

DELAWARE RIVER BASIN

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER	•		JANUARY	
1 2	236 249	222 236	230 240	244 252	241 245	242 249	149 152	143 147	146 149	197 190	190 177	194 185
1 2 3 4 5	236 249 254 251 241	249 240 237	230 240 252 247 239	244 252 258 264 265	241 245 252 254 259	242 249 255 261 262	149 152 158 165	142 142	151 155	183 184	176 178	179 182
											•	• .
6 7 8 9	241 238 240 252 245	238 232 232 240 224	240 236 236 248 233	262 263 272 274 277	256 259 264 270 271	261 268	136 141 145 152 159	137 141	132 139 144	180 179	177	178 177
9 10	252 245	240 224	248 233	274 277	270 271	272 275	152 159	145 150	149 156	168 171	165 165	167 167
11 12	224 221	207 211	216 217	270 256	252 243	261 249	164 161	157 158	161 159	176 182 182	171 176	173 180
13 14 15	224 221 228 239 239	207 211 221 229 210	216 217 225 236 232	270 256 249 250 248	242 246 239	244 248 245	164 161 160 167 168	157 160	158 163	182 187 196	176 176 182	173 180 179 182 187
16		216				236	164	152				•
17 18	224 216 216 226 213	186 209 210 192	220 206 212 218 203	239 236		251	152 152 156 158	152 146 146 152	160 147 148	203 172		193 157
19 20		210 192	218 203	239 240	236 237	238 239	156 158	152 156	148 153 157	169 176	153 169	159 172
21 22 23 24 25	191 188 195	181 182	185 186 190	243 239 250 237 111	234 200	241 221	168 179	159 169 173	163 173	183	176	180
23 24	195  212	186	190  206	250 237	210 114 105	234 170 109	179 173 174	173 169 170	176 171 171	194 191 188	186 175 170	189 184 183
27 28	226 233 244 249	212 227 234 243 245	219 230 238 246 248	113 122 133 136	105 113 122	109 117 128 135	179 178 181 185 184	174 174 173 179	178 176 177 182	169 153 165	152 147 153 163	159 150 157 167
26 27 28 29 30 31	250	243	246 248	136 144	122 133 135	135 139	185 184 197	179 180 184	182 181 193	165 172 172 166	163 161 157	166 160
	254	181	225	277			197			203		174
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN FEBRUARY		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
	166 169	FEBRUARY	, 163	171 167	MARCH 167	169 165	. 174	APRIL 133	134 135	134 139	MAY 127 134	130 137
	166 169 171	FEBRUARY	, 163	171 167	MARCH 167	169 165	* 136 137	APRIL 133 134	134 135 137	134 139 144	MAY 127 134 139	130 137 142
1 2 3 4 5	166 169 171 179 185	161 163 165 170 179	163 165 168 175 182	171 167 167 167 171	MARCH 167 163 165 165 166	169 165 166 166 168	r 136 137 139 141 143	APRIL 133 134 135 138 141	134 135 137 140 142	134 139 144  142	MAY 127 134 139  139	130 137 142 
1 2 3 4 5	166 169 171 179 185	161 163 165 170 179	163 165 168 175 182	171 167 167 167 171	MARCH 167 163 165 165 166	169 165 166 166 168	r 136 137 139 141 143	APRIL 133 134 135 138 141	134 135 137 140 142	134 139 144  142	MAY 127 134 139  139	130 137 142  141
	166 169 171 179 185	161 163 165 170 179	163 165 168 175 182	171 167	MARCH 167 163 165 165 166	169 165 166 166	* 136 137	APRIL 133 134 135 138 141	134 135 137 140 142	134 139 144  142	MAY 127 134 139  139	130 137 142 
1 2 3 4 5 6 7 8 9	166 169 171 179 185 187 178 184 186 182	161 163 165 170 179 174 174 179 180 179	163 165 168 175 182 180 176 182 181	171 167 167 167 171 173 177 176 168 161	167 163 165 165 166 168 169 169 161 149	169 165 166 166 168 170 173 173 172 166 155	136 137 139 141 143 147 148 154 160 162	133 134 135 138 141 143 144 148 153 157	134 135 137 140 142 145 147 151 157 159	134 139 144  142 141 146 160 163	MAY 127 134 139 139 137 140 141 145 133	130 137 142  141 139 141 144 147 148
1 2 3 4 5 6 7 8 9	166 169 171 179 185 187 178 184 186 182	161 163 165 170 179 174 174 179 180 179	163 165 168 175 182 180 176 182 181	171 167 167 167 171 173 177 176 168 161	167 163 165 165 166 168 169 169 161 149	169 165 166 166 168 170 173 173 172 166 155	136 137 139 141 143 147 148 154 160 162	133 134 135 138 141 143 144 148 153 157	134 135 137 140 142 145 151 157 159 161 161	134 139 144  142 141 146 160 163	MAY 127 134 139 139 137 140 141 145 133	130 137 142  141 139 141 144 147 148
12345 678910 1123145	166 169 171 179 185 187 178 184 184 182 194 216 211 252	161 163 165 170 179 174 174 179 180 179 181  209 202 199	163 165 168 175 182 180 176 182 182 181 185  213 207 208	171 167 167 167 171 173 177 176 168 161	167 163 165 165 166 168 169 169 161 149	169 165 166 166 168 170 173 172 166 155	136 137 139 141 143 147 148 154 160 162 163 162 160	133 134 135 138 141 143 144 148 153 157 159 160 158	134 135 137 140 142 145 147 151 157 161 161 159	134 139 144  142 142 141 146 160 163 134 135 140 148 153	MAY 127 134 139 137 140 141 145 133 132 136 139 147	130 137 142 141 139 141 144 147 148 133 139 144
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 16 7 18	166 169 171 179 185 187 178 184 184 182 194 216 211 252	FEBRUARY  161 163 165 170 179 174 179 180 179 181 209 202 199	163 165 168 175 182 180 176 182 182 181 185  213 207 208	171 167 167 167 171 173 176 168 161  152 137 118 124	167 163 165 165 166 168 169 169 161 149 111 117	169 165 166 166 168 170 173 172 166 155  149 120 114 119	136 137 139 141 143 147 148 154 160 162 163 162 160 142	133 134 135 138 141 143 144 148 153 157 159 160 158	134 135 137 140 142 145 157 159 161 161 159 140 142 147 153	134 139 144 142 142 141 146 160 163 134 135 148 153	MAY 127 134 139 137 140 141 145 133 132 136 139 147	130 137 142 141 139 141 144 147 148 133 139 144
12345 678910 1123145	166 169 171 179 185 187 178 184 186 182	161 163 165 170 179 174 174 179 180 179 181  209 202 199	163 165 168 175 182 180 176 182 181	171 167 167 167 171 173 177 176 168 161	167 163 165 165 166 168 169 169 161 149  141 112 111 117	169 165 166 166 168 170 173 172 166 155 149 120 114 119	136 137 139 141 143 147 148 154 160 162 163 162 160	133 134 135 138 141 143 144 148 153 157	134 135 137 140 142 145 157 159 161 161 159 140 142 147 153 141	134 139 144 142 142 141 146 160 163 134 135 140 148 153	127 134 139 137 140 141 145 133 132 132 136 139 147 152 160 153 153 153	130 137 142  141 139 141 144 147 148
12345 67890 1123145 16718920	166 169 171 179 185 187 178 184 186 182 194 216 221 252 258 226 222 221 206	FEBRUARY  161 163 165 170 179 174 179 180 179 181 209 202 199 211 219 219 217 186	163 165 168 175 182 180 176 182 182 181 185 207 208 233 2207 208 238 2215 194	171 167 167 167 171 173 177 176 168 161 152 137 118 124 130 135 155 161	167 163 165 165 166 168 169 169 161 149  141 112 111 117 125 130  140 153	169 165 166 166 168 170 173 172 166 155  149 120 114 119	136 137 139 141 143 147 148 154 160 162 163 162 160 142 143 151 154 150 123	133 134 135 138 141 143 144 148 153 157 159 160 158  138 141 143 150 124 107	134 135 137 140 142 145 157 159 161 161 159 140 142 147 153 141	134 139 144 142 142 141 146 160 163 134 135 140 148 153 160 167 167 157 158	127 134 139 137 140 141 145 133 132 132 136 139 147 152 160 153 153 153	130 137 142 141 139 141 144 147 148 133 139 144 150 156 156 156
12345 67890 1123145 16718920	166 169 171 179 185 187 178 184 186 182 211 252 258 226 222 221 206 189 187 178	FEBRUARY  161 163 165 170 179 174 179 180 179 181 209 202 199 221 219 207 186 182 181 177	163 165 168 175 182 180 176 182 182 181 185 207 208 233 2207 208 238 2215 194	171 167 167 167 171 173 177 176 168 161  152 137 118 124	167 163 165 165 166 168 169 169 161 149 111 117 125 130 153	169 165 166 166 168 170 173 172 166 155 149 120 114 119 128 133  148 157	136 137 139 141 143 147 148 154 160 162 163 162 160 142 143 151 154 150 123	133 134 135 138 141 143 144 148 153 157 159 160 158  138 141 143 150 124 107	134 135 137 140 142 145 157 159 161 161 159 140 142 147 153 141	134 139 144 142 142 141 146 160 163 134 135 140 148 153 160 167 167 157 158	127 134 139 137 140 141 145 133 132 132 136 139 147 152 160 153 153 153	130 137 142 141 139 141 144 147 148 133 139 144 150 156 156 156
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 3 24 5	166 169 171 179 185 187 178 184 186 182 194 216 221 258 226 222 221 206 189 187 178 186	161 163 165 170 179 174 174 179 180 179 181  209 202 199 219 219 219 219 219 219 219 219 21	163 165 168 175 182 180 176 182 181 185 207 208 233 2207 208 238 223 215 194 185 184 181 174 182	171 167 167 171 173 177 176 168 161 152 137 118 124 130 135 155 161	167 163 165 165 166 168 169 169 161 149  141 112 111 117 125 130  140 153  178 182	169 165 166 166 168 170 173 172 166 155  149 120 114 119 128 133  148 157	136 137 139 141 143 147 148 154 160 162 163 162 163 162 163 160 123 151 154 150 123 108 114 121 124	133 134 135 138 141 143 144 148 153 157 159 160 158 158 141 143 150 124 107	134 135 137 140 142 145 151 157 151 157 161 161 161 161 161 17 17 17 17 17 122 120	134 139 144 142 142 141 146 160 163 134 135 140 148 153 160 167 167 157 158 153 161 165 176	127 134 139 137 140 141 145 133 132 136 139 147 152 160 153 153 153 153 161 169 173	130 137 142 141 139 141 144 147 148 133 133 139 144 150 156 156 156 156 156 172 174
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 3 24 5	166 169 171 179 185 187 178 184 186 182 194 216 211 252 258 226 222 221 206 189 187 178 186 190 187 188	161 163 165 170 179 174 174 179 180 179 181  209 202 199 219 219 219 219 219 219 219 219 21	163 165 168 175 182 180 176 182 181 185  213 207 208 238 223 215 194 185 181 174 185 181 174 189 183 177	171 167 167 171 173 177 176 168 161 152 137 118 124 130 135 161 181 182 187	167 167 168 169 169 169 161 149 111 117 125 130 153 167 178 180 165 136	169 165 166 166 168 170 173 172 166 155 149 120 114 119 128 133 173 180 184	136 137 139 141 143 147 148 154 160 162 163 162 160 142 143 151 154 150 123 108 114 121 124 122	133 134 135 138 141 143 144 148 153 157 159 160 158  138 141 143 150 124 107	134 135 137 140 142 145 151 157 151 157 161 159 140 142 147 153 141 115 107 117 122 120 124 115	134 139 144 142 142 141 146 163 135 140 148 153 160 167 161 157 158 153 161 165 176	127 134 139 137 140 141 145 133 132 136 139 147 152 160 153 153 153 153 153 153 153 153 173 173	130 137 142 141 139 141 144 147 148 133 133 139 144 150 156 156 156 156 172 174
1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 3 24 5	166 169 171 179 185 187 178 184 186 182 211 252 258 226 222 221 206 189 187 178 186	FEBRUARY  161 163 165 170 179 174 179 180 179 181 209 202 199 221 219 207 186 182 181 177	163 165 168 175 182 180 176 182 182 181 185 207 208 238 220 215 194 185 184 181 174 182 189 183 177	171 167 167 171 173 177 176 168 161 152 137 118 124 130 135 161 181 182 187	167 167 168 169 169 169 161 149 111 117 125 130 153 167 178 180 165 136	169 165 166 166 168 170 173 172 166 155 149 120 114 119 128 133 173 180 184	136 137 139 141 143 147 148 154 160 162 163 162 163 162 163 160 123 151 154 150 123 108 114 121 124	133 134 135 138 141 143 144 148 153 157 159 160 158 158 141 143 150 124 107	134 135 137 140 142 145 151 157 151 157 161 161 161 161 161 17 17 17 17 17 122 120	134 139 144 142 142 141 146 160 163 134 135 140 148 153 160 167 161 157 158 153 161 165 176 176	127 134 139 137 140 141 145 133 132 136 139 147 152 160 153 153 153 153 153 153 153 153 173 173	130 137 142 141 139 144 147 148 133 133 139 144 150 156 156 156 156 172 174 175 177 170 166
12345 67890 1123145 16718920	166 169 171 179 185 187 178 184 186 182 216 211 252 258 226 222 221 206 189 187 178 186 190 187 180 187	161 163 165 170 179 174 174 179 180 179 181  209 202 199 219 207 186 182 181 177 171 176	163 165 168 175 182 180 176 182 181 185 207 208 238 2207 208 238 2215 194 185 181 174 185 181 174 182 183 177 171	171 167 167 171 173 177 176 168 161 152 137 118 124 130 135 155 161	167 163 165 165 166 168 169 169 161 149  141 112 111 117 125 130  140 153  178 182	169 165 166 166 168 170 173 172 166 155  149 120 114 119 128 133  148 157	136 137 139 141 143 147 148 154 160 162 163 162 163 161 151 154 150 123 108 114 121 124 122 126 123 117 119 127	133 134 135 138 141 143 144 148 153 157 159 160 158 138 141 143 150 124 107 106 106 114 120 119	134 135 137 140 142 147 151 157 161 161 157 140 142 147 153 141 115 117 122 120 124 118 115 118 118 118 118	134 139 144 142 142 141 146 163 135 140 148 153 160 167 161 157 158 153 161 165 176	127 134 139 137 140 141 145 133 132 136 139 147 152 160 153 153 153 153 161 169 173	130 137 142 141 139 141 144 147 148 133 139 144 150 156 163 157 156 156 156 172 174 175

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	SPECI	LLIC CONT	JOC I AN	E (MICKUS	I EMENS/ CI	יואו בא טבנ	G. C), WA	IEK TEAK	OCTOBER	1771 10 3	CFILMBLK	.,,_
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	
1 2	173 122	122 94	157 107	183 184	172 172	177 178 175	182 184	177 176	179 181	217 220	213 216	215 217 220
1 2 3 4 5	98 102 109	94 94 102	95 98 106	176 183 191	172 175 181	175 181 186	166 170	157 159	161 165	221  242	218  221	220
	123	89	107	196			179	170			237	
6 7 8 9	108 119	104	107	202 204	189 195 197	191 198 202 192 187	181 178	178 175	173 179 177 179 184	247 237 228 223 222	228	243 232 221 221 220
10	119 119	108 115	114 118	196 193	184 184	192 187	180 187	178 180	179 184	223 222	216 219 216	221 220
11 12 13	121 128	118 120	119 122	190 181	180 173	183 177	202 193	188 186	196 188	223 236	214 222 235	218 226
13 · 14 15	,		•••	181 176 188 194	173 175 187	183 177 175 182 190	187 181 192	181 176 177	196 188 183 178 184	236 242 233 205	204	218 226 240 219 195
15 16	•••	•••	•••	194	187 194	190 201	192 195	177 191	184 193	205 195	191 192	
17 18		•••		195	182	188	198 207 215	192 197	194 200 210	204 207	196	200 206
17 18 19 20	169 183	149 168	163 175	184 175	175 169	180 171	215 217	207 215	210 216	209 215	204 205 204	193 200 206 207 208
21	186 186	181 180	183 182	179 181	171 179	175 180	222 222	216 214	219 218 213	219 229	213 219	
21 22 23 24 25	184 187 188	181 184	183 185	184	180	182	216	212 214 210	213 216	228 217	214 210	215 225 223 212 219
		181	184	202	181	195	217 215		216 213	221	213	
26 27 28 29 30 31	192 189	184 179	189 183	199 203	198 195 193	199 200	219 226	211 221 224 216	215 223 227 222	213 205 225 219	194 202	202 204 218 211 204
28 29	181 176 172	177 173 169	178 175	198 199	191	196 195	226 230 226	216	222	219	206 207	211
30 31	172	109	170	191 180	180 160	185 174	216 218	211 215	214 217	207	202	204
MONTH				207	160	186	230	157	197	247	191	216
MONTH					,,,,		200					
HONTH			. PH			WATER YEAR						
DAY	MAX	MIN	PH MEAN								MIN	MEAN
DAY		MIN OCTOBER		(STANDARD Max	UNITS), MIN NOVEMBE	WATER YEAR MEAN	OCTOBER MAX	1991 TO MIN DECEMBER	SEPTEMBE MEAN	ER 1992 Max	MIN JANUARY	,. MEAN
DAY	8.8	OCTOBER	MEAN	(STANDARD MAX 8.5 8.4	UNITS), MIN NOVEMBE	WATER YEAR MEAN R 8.1	OCTOBER MAX	1991 TO MIN DECEMBER 7.2 7.1	SEPTEMBE MEAN	ER 1992	MIN	 MEAN
DAY 1 2 3	8.8 8.8 8.9	OCTOBER 7.7 7.8 7.9	MEAN 8.2 8.2 8.4	(STANDARD MAX 8.5 8.4 8.6	UNITS), MIN NOVEMBE	WATER YEAR MEAN R 8.1	OCTOBER MAX	1991 TO MIN	SEPTEMBE MEAN	7.9 7.9	MIN JANUARY 7.6 7.5	MEAN , 7.7 7.7
DAY 1 2 3 4 5 6	8.8 8.8 8.9 8.8	7.7 7.8 7.9 8.0	MEAN 8.2 8.2 8.4 8.4	(STANDARD MAX 8.5 8.4 8.6 8.6 8.7	UNITS), MIN NOVEMBE 7.8 7.6 7.6 7.7	WATER YEAR MEAN  R  8.1 7.9 8.0 8.1 8.2 8.2	7.2 7.3 7.3	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1	7.2 7.2 7.2 7.2 7.2 7.2	7.9 7.9 7.7 7.9	MIN JANUARY 7.6 7.5  7.4 7.4	7.7 7.7 7.5 7.6
DAY 1 2 3 4 5 6 7	8.8 8.8 8.9 8.8	7.7 7.8 7.9 8.0	MEAN 8.2 8.2 8.4 8.4	(STANDARD MAX 8.5 8.4 8.6 8.6 8.7 8.7 8.7	UNITS), MIN NOVEMBE 7.8 7.6 7.6 7.7 7.7 7.7	WATER YEAR MEAN  R  8.1 7.9 8.0 8.1 8.2 8.2 8.3 8.3	7.2 7.3 7.3 7.3	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2	7.2 7.2 7.2 7.2 7.2 7.2	7.9 7.9 7.9 7.7 7.9 8.0 8.0	MIN JANUARY 7.6 7.5 7.4 7.4 7.5	7.7 7.7 7.5 7.6 7.7
DAY 1 2 3 4 5 6	8.8 8.8 8.9 8.8	7.7 7.8 7.9 8.0	MEAN 8.2 8.2 8.4 8.4	(STANDARD MAX 8.5 8.4 8.6 8.6 8.7	UNITS), MIN NOVEMBE 7.8 7.6 7.6 7.7 7.7	WATER YEAR MEAN  R  8.1 7.9 8.0 8.1 8.2 8.2	7.2 7.3 7.3	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1	7.2 7.2 7.2 7.2 7.2 7.2	7.9 7.9 7.7 7.9 8.0 8.0	MIN JANUARY 7.6 7.5 7.4 7.4 7.5 7.5	7.7 7.7 7.7 7.5 7.6 7.7
DAY 1 2 3 4 5 6 7 8 9 10	8.8 8.8 8.9 8.8 8.4 8.4 9.1 9.1	7.7 7.8 7.9 8.0 7.9 8.3 8.4 8.4	8.2 8.2 8.4 8.4 8.6 8.7	(STANDARD MAX 8.5 8.4 8.6 8.6 8.7 8.7 8.7 8.7 8.7 8.7	UNITS), MIN NOVEMBE 7.8 7.6 7.7 7.7 7.8 7.8 7.8 8.0 8.0	WATER YEAR MEAN  R  8.1 7.9 8.0 8.1 8.2 8.3 8.3 8.3 8.3	7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3	7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.4	7.9 7.9 7.9 7.7 7.9 8.0 8.0 7.7 7.8	MIN JANUARY 7.6 7.5 7.4 7.4 7.5 7.5 7.4 7.5	7.7 7.7 7.5 7.6 7.7 7.5 7.5
DAY 1 2 3 4 5 6 7 8 9 10	8.8 8.8 8.9 8.8 8.4 8.4 9.1 9.1	7.7 7.8 7.9 8.0 7.9 8.3 8.4 8.4	MEAN 8.228.448.48.678.7	(STANDARD MAX 8.5 8.4 8.6 8.7 8.7 8.7 8.7 8.8 8.5	UNITS), MIN NOVEMBE 7.8 7.6 7.7 7.7 7.8 7.8 7.8 8.0 8.0	WATER YEAR MEAN  R  8.1 7.9 8.0 8.1 8.2 8.3 8.3 8.3 8.3	7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3	7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.4	7.9 7.9 7.9 7.7 7.9 8.0 8.0 7.7 7.8	MIN JANUARY 7.6 7.5 7.4 7.4 7.5 7.5 7.4 7.5	7.7 7.7 7.5 7.6 7.7 7.5 7.5
DAY 12345 6789 10 1123145	8.8 8.8 8.8 8.8 8.4 8.1 9.1 9.1 8.9 9.1 9.1 9.1 9.1	7.7 7.8 7.9 8.0 7.9 8.3 8.4 8.4 7.9 7.8 8.1 7.9	MEAN 8.22 8.4 8.4 8.67 8.7 8.43 8.68 8.6	(STANDARD MAX 8.5 8.4 8.6 8.6 8.7 8.7 8.7 8.8 8.5 8.6 8.6	UNITS), MIN NOVEMBE 7.8 7.6 7.7 7.7 7.8 7.8 7.8 8.0 8.0 7.7 7.6 7.8 7.8	WATER YEAR MEAN  R  8.1 7.9 8.1 8.2 8.3 8.3 8.4 8.3 7.9 8.1 8.2 8.3	7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3	7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.4 7.3 7.3	7.9 7.9 7.7 7.9 8.0 8.0 7.7 7.8 8.2 8.4 8.6 8.5 8.1	MIN JANUARY 7.6 7.5 7.4 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5	7.7 7.7 7.5 7.6 7.7 7.5 7.5 7.5 7.5 7.7
DAY 12345 6789 10 1123145	8.8 8.8 8.8 8.8 8.4 8.1 9.1 9.1 8.9 9.1 9.1 9.1 9.1	7.7 7.8 7.9 8.0 7.9 8.3 8.4 8.4 7.9 7.8 8.1 7.9	MEAN 8.22 8.4 8.4 8.67 8.7 8.43 8.68 8.6	(STANDARD MAX 8.5 8.44 8.6 8.7 8.7 8.7 8.8 8.5 8.6 8.7 8.6 8.8 8.6 8.8 8.6 8.8	UNITS), MIN NOVEMBE 7.8 7.6 7.6 7.7 7.7 7.8 7.8 8.0 8.0 7.7 7.6 7.8 7.7	WATER YEAR MEAN  R  8.1 7.9 8.1 8.2 8.3 8.3 8.3 7.9 8.1 8.3 7.9 8.1 8.3 8.1 8.3	7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3	7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.4 7.3 7.3	7.9 7.9 7.7 7.7 7.8 8.0 8.0 8.0 7.7 7.8 8.2 8.4 8.5 8.1	MIN JANUARY 7.6 7.5 7.4 7.4 7.5 7.5 7.4 7.5 7.5 7.5 7.5 7.5	7.7 7.7 7.5 7.6 7.7 7.5 7.5 7.5 7.5 7.7
DAY 12345 6789 10 1123145	8.8 8.8 8.8 8.8 8.4 8.1 9.1 9.1 8.9 9.1 9.1 9.1 9.1	7.7 7.8 7.9 8.0 7.9 8.3 8.4 8.4 7.9 7.8 8.1 7.9	MEAN	(STANDARD MAX 8.5 8.44 8.6 8.7 8.7 8.7 8.8 8.5 8.6 8.7 8.6 8.8 8.6 8.8 8.6 8.8	UNITS), MIN NOVEMBE 7.8 7.6 7.6 7.7 7.7 7.8 7.8 8.0 8.0 7.7 7.6 7.8 7.7	WATER YEAR MEAN  R  8.1 7.9 8.1 8.2 8.3 8.3 8.3 7.9 8.1 8.0 8.1	7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3	7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.4 7.3 7.3	7.9 7.9 7.7 7.7 7.8 8.0 8.0 8.0 7.7 7.8 8.2 8.4 8.5 8.1	MIN JANUARY 7.6 7.5 7.4 7.4 7.5 7.5 7.4 7.5 7.5 7.5 7.5 7.5	7.7 7.7 7.5 7.6 7.7 7.5 7.5 7.5 7.5 7.7
DAY  1 2 3 4 5 6 7 8 9 10 11 123 134 15 16 17 18 19 20	8.8 8.8 8.8 8.9 8.1 9.1 9.1 8.7 9.9 8.8 8.2 8.8 8.8 8.4 8.5 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	7.7 7.8 7.9 8.0 7.9 8.3 8.4 8.4 7.8 8.0 7.8 8.1 7.8 7.8 7.8	MEAN	(STANDARD MAX 8.5 8.6 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UNITS), MIN NOVEMBE 7.8 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.6 7.7	WATER YEAR MEAN  R  8.1 7.9 8.1 8.2 8.3 8.3 8.3 7.9 8.3 8.3 8.3 8.3 8.3 8.3 8.3	7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.5 7.6 7.5 7.5	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4	7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.5 7.5 7.5	7.9 7.7 7.9 8.0 8.0 7.7 7.8 8.2 8.4 8.6 8.5 8.1 7.9 7.7	MIN JANUARY 7.6 7.5 7.4 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.6	7.7 7.7 7.5 7.6 7.7 7.5 7.5 7.7 7.9 8.0 7.7 7.8 7.8 7.8
DAY  1 2 3 4 5 6 7 8 9 10 11 123 134 15 16 17 18 19 20	8.8 8.8 8.8 8.1 1.1 1.7 1.0 9.1 1.4 8.2 1.2 1.4 1.8 1.8 1.8 1.1 1.1 1.4 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	7.78 7.89 8.9 7.99 8.44 7.88 8.44 7.88 8.19 7.88 7.88 7.88 7.98	MEAN . 22244 14.677 43462 20000 133	(STANDARD MAX 8.5 8.4 8.6 8.7 8.7 8.8 8.5 8.2 8.6 8.8 8.6 8.8 8.9 8.9 8.4 7	UNITS), MIN NOVEMBE 7.8 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.6 7.7	WATER YEAR MEAN  R  8.1 7.9 8.1 8.2 8.3 8.3 8.3 7.9 8.3 8.3 8.3 8.3 8.3 8.3 8.3	7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.5 7.6 7.5 7.5	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4	7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.5 7.5 7.5	7.9 7.7 7.9 8.0 8.0 7.7 7.8 8.2 8.4 8.6 8.5 8.1 7.9 7.7	MIN JANUARY 7.6 7.5 7.4 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.6	7.7 7.7 7.5 7.6 7.7 7.5 7.5 7.7 7.9 8.0 7.7 7.8 7.8 7.8
DAY 12345 6789 10 1123145	8.8 8.8 8.8 8.9 8.1 9.1 9.1 8.7 9.9 8.8 8.2 8.8 8.8 8.4 8.5 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1	7.7 7.8 7.9 8.0 7.9 8.3 8.4 8.4 7.9 7.8 8.1 7.9	MEAN	(STANDARD MAX 8.5 8.6 8.6 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.8 8.6 8.6 8.6 8.6 8.6 8.6 8.6	UNITS), MIN NOVEMBE 7.8 7.6 7.6 7.7 7.7 7.8 7.8 8.0 8.0 7.7 7.6 7.8 7.7	WATER YEAR MEAN  R  8.1 7.9 8.1 8.2 8.3 8.3 8.3 7.9 8.1 8.0 8.1	7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3	7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.4 7.3 7.3	7.9 7.9 7.7 7.7 7.8 8.0 8.0 7.7 7.8 8.2 8.4 8.5 8.1 7.7 7.7	MIN JANUARY 7.6 7.5 7.4 7.4 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.7 7.7 7.5 7.6 7.7 7.5 7.5 7.5 7.7 7.9 8.0 7.7 7.8 7.8 7.8 7.7 7.7
DAY  1 2 3 4 5 6 7 8 9 10 11 23 14 5 16 7 18 9 20 21 22 33 24 5 25 22 35 24 5	8.8 8.8 8.8 8.1 9.1 1 7 0 9.1 4 8.2 2 2 4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.78 7.89 8.44 7.88 8.44 7.88 8.19 7.88 8.19 7.88 7.98 7.88 7.98 7.88 7.99 7.88	MEAN 22244 14.66.77 434.62 20000 1333 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8 8.8	(STANDARD MAX 8.5 8.4 8.6 8.7 7.8 8.8 8.5 8.6 8.8 8.9 8.9 8.9 7.7 7.3 6.9 7.0	UNITS), MIN NOVEMBE 7.8 7.6 7.7 7.8 7.8 7.8 8.0 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	WATER YEAR MEAN  R  8.19 8.12 8.33 8.34 7.91 8.32 7.43 7.69 7.17 7.19 7.11	7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.5 7.4 7.5	7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.5 7.5	7.9 7.9 7.7 7.9 8.0 8.0 7.7 7.8 8.2 8.4 8.5 8.1 7.9 7.7 8.1 8.2 8.2 8.2 8.3	MIN JANUARY 7.6 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.6 7.6 7.6	7.7 7.7 7.5 7.6 7.7 7.5 7.5 7.5 7.7 7.9 8.0 7.7 7.8 7.8 7.8 7.7 7.7
DAY  1 2 3 4 5 6 7 8 9 10 11 123 134 15 16 17 18 19 20	8.8 8.8 8.8 8.1 1.1 1.7 1.0 9.1 1.4 8.2 1.2 1.4 1.8 1.8 1.8 1.1 1.1 1.4 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	7.7 7.8 7.9 8.0 7.9 8.3 8.4 7.8 8.1 7.9 7.8 7.8 7.8 7.8 7.8 7.9	MEAN . 22244 14.677 43462 20000 133	(STANDARD MAX 8.5 8.4 8.6 8.7 8.7 8.7 8.8 8.6 8.6 8.6 8.9 8.9 8.4 77.4 7.3 6.9	UNITS), MIN NOVEMBE 7.8 7.6 7.7 7.7 7.8 7.8 7.8 7.8 7.6 7.6 7.6 7.6 7.7	WATER YEAR MEAN  R  8.1 7.9 8.12 8.3 8.3 7.1 8.2 8.3 7.1 8.1 8.1 7.1 8.2 7.4 7.6 9	7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.5 7.6 7.5 7.5	1991 TO MIN DECEMBER 7.2 7.1 7.1 7.1 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4	7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.4 7.4 7.5 7.5 7.5	7.9 7.7 7.9 8.0 8.0 7.7 7.8 8.2 8.4 8.6 8.5 8.1 7.9 7.7	MIN JANUARY 7.6 7.5 7.4 7.5 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.6	7.7 7.7 7.5 7.6 7.7 7.5 7.5 7.7 7.9 8.0 7.7 7.8 7.8 7.8

7.9

7.1

7.4

8.6

7.3

7.7

MONTH

DELAWARE RIVER BASIN 01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

PH (STANDARD UNITS), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	8.6 8.7 8.9 9.0 9.1	7.7 7.8 7.8 7.9 7.9	8.0 8.2 8.3 8.4 8.4	8.9 8.8 8.9 9.1 9.2	7.9 7.8 7.7 7.9 8.0	8.4 8.2 8.2 8.5 8.6	7.8 8.0 8.2 8.3 8.5	7.5 7.6 7.7 7.7 7.8	7.7 7.8 7.9 8.0 8.1	8.6 8.7 8.7  8.6	7.9 7.9 7.9  7.8	8.1 8.2 8.2 8.1
6 7 8 9	9.2 9.2 9.2 9.3 9.5	8.0 8.0 8.0 8.0	8.6 8.5 8.7 8.8	9.0 8.2 8.8 8.9 8.5	7.8 7.5 7.5 7.8 7.6	8.4 7.8 8.1 8.4 8.1	8.7 8.8 9.0 9.0 9.2	7.8 7.8 7.8 8.0 7.8	8.2 8.2 8.4 8.4 8.5	8.6 8.6	7.8 7.9 7.8 7.7 7.6	8.2 8.2 7.9 7.8 7.7
11 12 13 14	9.6 9.4 9.7 9.5	8.0 8.4 8.1 8.2	8.9 8.8 8.9 8.8	7.5 7.3 7.3 7.5	7.3 7.2 7.1 7.2	7.4 7.2 7.2 7.4	8.7 9.1 9.3  9.3	7.9 7.7 7.9  8.2	8.2 8.3 8.6	7.9 7.9 7.8 8.2 7.9	7.6 7.6 7.5 7.5 7.5	7.7 7.7 7.6 7.7
16 17 18 19 20	9.3 9.5 9.1 9.3 9.2	8.0 8.1 8.0 7.9 7.9	8.5 8.8 8.5 8.5	7.7 7.7 7.8 8.2	7.4 7.5 7.5 7.6	7.5 7.6 7.6 7.8	8.7 9.1 8.7 7.9 7.7	7.7 7.6 7.8 7.6 7.5	8.2 8.1 8.1 7.8 7.6	7.6 7.9 7.8 8.2 8.2	7.4 7.4 7.5 7.5 7.7	7.5 7.6 7.6 7.8 7.9
21 22 23 24 25	9.5 9.4 9.4 9.2 8.7	8.0 8.2 8.0 8.0 7.7	8.7 8.8 8.7 8.5 8.1	8.6 8.8 8.9	7.7 7.9 7.9	8.1 8.3 8.4	7.6 7.8 8.1 7.7 7.7	7.4 7.5 7.5 7.5 7.5	7.5 7.6 7.7 7.7 7.6	8.3 8.4 8.5 8.5 8.4	7.6 7.7 7.6 7.6 7.7	7.9 8.0 8.0 8.0 7.9
26 27 28 29 30 31	8.8 8.7 8.7 8.8	7.6 7.7 7.7 7.7	8.1 8.1 8.1 8.2	8.7 7.8 7.7 7.4 7.5 7.7	7.8 7.5 7.4 7.4 7.4	8.2 7.6 7.5 7.4 7.4 7.5	7.9 7.9 7.9 8.2 8.3	7.6 7.7 7.7 7.7 7.8	7.8 7.8 7.8 7.9 8.0	8.5 8.6 8.8 8.6 7.8	7.8 7.8 7.9 7.8 7.6	8.1 8.2 8.3 8.2 7.7
MONTH	9.7	7.6	8.5	9.2	7.1	7.9	9.3	7.4	8.0	8.8	7.4	7.9
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		MIN SEPTEMBE	
DAY 1 2 3 4 5	7.7 7.4 7.3 7.5 7.5		7.6 7.3 7.2 7.4 7.4	8.8 8.8 7.8 8.6 8.9		MEAN 8.1 8.0 7.5 7.7 8.0	8.9 9.0  8.9 9.0		8.1 8.2  8.1 8.2			
1 2 3 4	7.7 7.4 7.3	JUNE 7.4 7.2 7.1	7.6 7.3 7.2	8.8 8.8 7.8	JULY 7.4 7.3 7.3 7.2 7.3	8.1 8.0 7.5 7.7	8.9 9.0	7.5 7.7 	8.1 8.2  8.1	9.6 9.6 9.2	7.9 8.0 7.9	8.8 8.9 8.5
12345 6789	7.7 7.4 7.3 7.5 7.5 7.4	JUNE 7.4 7.2 7.1 7.4 6.9 6.9 7.3 7.3	7.6 7.3 7.2 7.4 7.4 7.1	8.8 8.8 7.8 8.6 8.9 8.7 8.8 8.8	JULY 7.4 7.3 7.3 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3	8.1 8.0 7.5 7.7 8.0 7.8 8.0 7.9 7.9	8.9 9.0 8.9 9.0 9.2 9.3 9.3	7.5 7.7 7.7 7.6 7.7 7.8 7.8 7.8	8.1 8.2 8.1 8.2 8.4 8.6 8.6 8.4	9.6 9.6 9.2 9.0 9.0 9.4 9.5 9.3	7.9 8.0 7.9 7.9 7.9 7.9 7.8 7.9	8.8 8.9 8.5 8.4 8.4 8.3 8.5 8.6
1 2 3 4 5 6 7 8 9	7.7 7.4 7.3 7.5 7.5 7.4 7.4 7.4 7.7	JUNE 7.4 7.2 7.1 7.4 6.9 6.9 7.3 7.3 7.4 7.4	7.6 7.3 7.2 7.4 7.4 7.1 7.3 7.3 7.4 7.5	8.8 8.8 7.8 8.9 8.7 8.8 8.9 8.2 8.4 7.7 8.8	JULY 7.4 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.3 7.2 7.2 7.2 7.2 7.2 7.3	8.1 8.0 7.5 7.7 8.0 7.8 8.0 7.9	8.9 9.0 8.9 9.2 9.3 9.4 9.3 9.0 8.9 8.9	7.5 7.7 7.6 7.7 7.6 7.7 7.8 7.8 7.8 7.8 7.7	8.1 8.2 8.1 8.2 8.4 8.6 8.4 8.6 8.4 8.5	9.6 9.6 9.2 9.0 9.0 9.4 9.5 9.3 9.4 9.3	7.9 8.0 7.9 7.9 7.9 7.9 7.8 7.9 7.8 7.9 7.8 8.0 8.0	8.8 8.9 8.5 8.4 8.35 8.6 8.6 8.7 8.7 8.5
1 2 3 4 5 6 7 8 9 10 11 12 3 14 5 16 7 18 9 19	7.7 7.4 7.3 7.5 7.5 7.4 7.4 7.7 7.6 7.6 	7.4 7.2 7.1 7.4 6.9 6.9 7.3 7.3 7.4 7.4	7.6 7.3 7.2 7.4 7.4 7.1 7.3 7.3 7.4 7.5	8.8 8.8 7.8 8.6 8.9 8.7 8.8 8.8 8.9 8.2 8.4 7.7 8.5 8.6 8.1	JULY 7.4 7.3 7.3 7.2 7.3 7.3 7.3 7.4 7.3 7.2 7.2 7.2 7.2 7.2 7.3	8.1 8.0 7.5 7.7 8.0 7.8 8.0 7.9 7.9 7.6 7.7 7.4 7.7 7.8 7.7	8.9 9.0 8.9 9.2 9.3 9.3 9.3 9.3 8.8 8.8 9.3 9.4	7.5 7.7 7.7 7.6 7.7 7.8 7.8 7.8	8.1 8.2 8.1 8.2 8.4 8.6 8.4 8.6 8.4 8.3 8.7 9 8.1 8.5 8.5 8.5	9.6 9.6 9.2 9.0 9.0 9.1 9.5 9.3 9.3 9.3 9.3 9.3 9.3	7.9 8.0 7.9 7.9 7.9 7.9 7.8 7.9 7.8 8.0 8.0 7.9	8.95.4 8.35.65 8.67.675 8.55.35 8.67.675 8.67.675 8.68.88.88.88.88.88.88.88.88.88.88.88.88
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	7.7 7.4 7.3 7.5 7.5 7.4 7.4 7.7 7.6 7.6	7.4 7.2 7.1 7.4 6.9 6.9 7.3 7.3 7.3 7.4 7.4	7.6 7.3 7.2 7.4 7.1 7.3 7.3 7.5 7.5 7.5 7.5	8.8 8.8 7.6 8.9 8.7 8.8 8.9 8.7 8.8 8.9 8.7 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	JULY 7.4 7.3 7.3 7.3 7.3 7.3 7.4 7.3 7.2 7.2 7.2 7.2 7.2 7.3 7.4 7.3 7.2 7.2 7.2 7.2 7.2 7.2	8.1 8.0 7.5 7.7 8.0 7.8 8.0 7.9 7.9 7.6 7.7 7.4 7.7 7.7 7.7 7.7 7.7	8.9 9.0 8.9 9.2 9.3 9.4 9.3 9.0 8.9 8.9	7.5 7.7 7.6 7.7 7.8 7.8 7.8 7.7 7.7 7.7 7.7 7.7 7.7	8.1 8.2 8.1 8.2 8.4 8.6 8.4 8.6 8.4 8.5	9.6 9.6 9.2 9.0 9.0 9.4 9.5 9.3 9.4 9.3	7.9 8.0 7.9 7.9 7.9 7.9 7.8 7.9 7.8 8.0 8.0 7.6 7.6 7.6 7.6	8.8 8.9 8.5 8.4 8.35 8.6 8.6 8.7 8.7 8.5

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

			IEMPEKA		K (DEG.		TEAR OC			IEMBER 199		
DAY	MAX	MIN	MEAN	MAX	MIN NOVEMBEI	MEAN	MAX	MIN DECEMBER	MEAN	MAX	MIN JANUARY	MEAN
1	19.5	15.5	17.0	13.0	12.0	12.5	8.0	8.0	8.0	3.0		
1 2 3 4 5	20 5	16.5 18.0	18.5 19.0	14.0 13.5	12.5	13.0 12.5	8.0 8.0	8.0 8.0	8.0	4.0	1.5 2.5	2.5 3.0
4 5	20.5 21.5 21.5	18.0 19.0	20.0 20.5	11.0 11.0	9.0 8.0	10.5 9.0	8.0	6.0	8.0 7.5	4.5 5.5	4.0 4.5	4.5 5.0
6	20.5	17.0	19.5	10.0	7.0	8.5	5.0	4.0	4.5 4.0	5.0 5.0	4.0 3.5	4.5 4.0
6 7 8 9	17.5 17.5	15.5 14.5 14.0 14.5	19.5 16.5 15.5 15.5 16.5	9.0 8.0 8.0	7.0 7.0 7.0 6.5 6.5	8.5 8.0 7.5 7.5 7.0	4.0 4.0 5.0 6.0	4.0 3.5 3.5 4.0 5.0	4.0			
10	17.5 18.0			7.0					5.0	4.0 4.0	4.0 3.5	4.0 4.0
11 12	16.5 16.5	15.0 13.5	15.5 15.0	7.5 8.0	6.5 6.0	7.0 7.0	6.0 6.0	5.0 5.5 6.0	5.5 6.0	3.5 4.0	3.0 3.0	3.5 3.5
13 14 15	15.5 16.0 14.0	13.5 12.5 13.0	14.5 14.0 13.5	8.0 10.0 9.0	6.5 6.5 7.5	7.5 8.0 8.0	7.0 7.5 6.5	6.0 6.5 5.0	6.5 7.0 6.0	5.0 7.0 4.5	3.0 3.5 4.5 3.0	3.5 3.5 4.0 5.5 3.5
				10.0								
16 17 18	15.0 13.5 14.0	13.5 12.0 12.0 13.0	14.0 13.0 13.0	9.5	8.5 7.0	9.0 8.0	3.5 3.0	3.5 3.0 2.0 .5 .0	4.5 3.5 3.0	3.0 1.5	1.5	2.5 1.0
19 20	14.0 15.0 13.5	13.0 12.0	14.0 13.0	10.0 12.0	7.0 8.0	8.5 10.0	5.0 3.5 3.0 2.0 1.0	.5 .0	1.0	.0 .0	.0 .0	.0
21	13.0 14.0	11.0 11.0	12.0 12.5 13.0	12.0 13.5	10.5 12.0	11.5 12.5	2.0	1.0	1.5	.0	.0	.0
21 22 23 24 25	14.0	11.5		12.0 13.5 13.5 12.5 10.0	12.5 10.0 8.5	13.0	2.0 2.5 2.5 3.0 3.0	1.0 1.5 2.0 2.0 2.0	1.5 2.0 2.5 2.5 2.5	3.5 4.0 2.0	1.0	2.0 3.0
	15.5	14.0	14.5			11.5 9.5					2.0	3.0
26 27 28 29 30 31	16.0 17.5 17.5 15.0 14.0	14.0 14.5	15.0 16.0	8.5 7.0 6.0 7.0 7.5	7.0 6.0	7.5 6.5 5.5 6.5 7.0	2.5 3.0 3.0	1.5 1.5 1.5 2.5 3.5 2.5	2.0	1.5 1.0	.5 .5 .5	1.0 .5 1.0 1.5
28 29	17.5	14.5 12.0 10.5	16.0 13.5 12.5	7.0 7.0	5.5 5.5 6.0	5.5 6.5	4.0	2.5	2.5 3.5	2.0	1.0	1.5
31	14.0	10.5	12.5			7.0	4.0 3.5	2.5	4.0 3.0	2.5	1.5	2.0
MONTH	21.5	10.5	15.5	14.0	5.5	9.0	8.0	.0	4.0	7.0	.0	2.5
											•	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN February		MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
	2.5	FEBRUARY	2.0		MARCH	4.5	7.5 7.0	APRIL	7.0 7.0	15.0 17.0	MAY 13.0 14.5	14.0
	2.5	FEBRUARY	2.0 .5 1.0		MARCH  3.5 4.5	4.5 4.5	7.5 7.0	APRIL 6.0 6.5	7.0 7.0	15.0 17.0 18.0	MAY 13.0 14.5 16.5	14.0 16.0 17.5
1 2 3 4 5	2.5 1.0 2.0 2.0 2.0	1.0 .0 .0 .0 .5	2.0 .5 1.0 1.5	5.0 5.0 6.0 6.0	3.5 4.5 4.5 5.0	4.5 4.5 5.0 5.5	7.5 7.0 7.0 7.5 8.0	6.0 6.5 5.5 6.0 6.5	7.0 7.0 6.5 7.0 7.0	15.0 17.0 18.0 	MAY 13.0 14.5 16.5	14.0 16.0 17.5 
1 2 3 4 5	2.5 1.0 2.0 2.0 2.0	FEBRUARY  1.0 .0 .0 .5 .5 .5	2.0 .5 1.0 1.5 1.5	5.0 5.0 6.0 6.0 6.0 6.5	MARCH 3.5 4.5 5.0 5.5 6.0	4.5 4.5 5.0 5.5	7.5 7.0 7.0 7.5 8.0 9.0 9.5	APRIL 6.0 6.5 5.5 6.0 6.5 8.0 9.0	7.0 7.0 6.5 7.0 7.0 8.0 8.5	15.0 17.0 18.0 16.5 16.5	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0	14.0 16.0 17.5 16.0 15.0 14.0
	2.5	1.0 .0 .0 .0 .5	2.0 .5 1.0 1.5 1.5	5.0 5.0 6.0 6.0	3.5 4.5 4.5 5.0	4.5 4.5 5.0 5.5	7.5 7.0 7.0 7.5 8.0	6.0 6.5 5.5 6.0 6.5	7.0 7.0 6.5 7.0 7.0	15.0 17.0 18.0 16.5 16.5	MAY 13.0 14.5 16.5 15.0	14.0 16.0 17.5  16.0
1 2 3 4 5 6 7 8 9	2.5 1.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5	1.0 .0 .0 .5 .5 1.0 1.5 2.0	2.0 1.5 1.5 1.5 2.0 1.5 1.5	5.0 5.0 6.0 6.0 6.5 8.5 8.5	3.5 4.5 5.0 5.5 6.0 7.5 7.5	4.5 4.5 5.0 5.5 5.5 6.0 7.0 8.0 8.0	7.5 7.0 7.5 8.0 9.5 11.5 11.0	6.0 6.5 5.5 6.0 6.5 6.5 8.0 9.0 10.0	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.0 10.5	15.0 17.0 18.0 16.5 16.5 14.5 14.5	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5	14.0 16.0 17.5 16.0 15.0 14.0 13.5 14.0
1 2 3 4 5 6 7 8 9	2.5 1.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5	1.0 .0 .0 .5 .5 .5	2.0 .5 1.5 1.5 1.5 2.0 1.5 1.0	5.0 5.0 6.0 6.0 6.5 8.5 8.5	MARCH 3.5 4.5 5.0 5.5 6.0 7.5 7.5 4.0	4.5 4.5 5.0 5.5 5.5 6.0 7.0 8.0 8.0	7.5 7.0 7.0 7.5 8.0 9.5 11.5 12.5	6.0 6.5 5.5 6.0 6.5 7 6.5 8.0 10.0 10.0 11.0 10.5 9.5	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.5 11.0	15.0 17.0 18.0 16.5 16.5 14.5 14.5 14.5	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5 14.5 17.0	14.0 16.0 17.5 16.0 15.0 14.0 13.5 14.0
1 2 3 4 5 6 7 8 9 10 11 2 3 14 5 15	2.5 1.0 2.0 2.0 2.5 2.5 2.5 2.5 3.0 1.0 3.5	1.0 .0 .0 .5 .5 .5 1.0 1.5 2.0 .5 .0	2.0 1.5 1.5 1.5 1.5 2.0 1.5 1.5 2.0 1.5	5.0 5.0 6.0 6.0 6.5 8.5 8.5 7.0 4.0 3.5	MARCH 3.5 4.5 5.0 5.5 6.0 7.5 6.0 3.0 2.5	4.5 4.5 5.5 5.5 6.0 8.0 6.5 5.5 3.5	7.5 7.0 7.0 7.5 8.0 9.0 9.5 11.5 11.0 12.5	6.0 6.5 5.5 6.0 6.5 8.0 10.0 11.0 10.5 9.5	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.5 11.0	15.0 17.0 18.0 16.5 16.5 14.5 14.5 14.5 17.0 18.5 20.5	MAY 13.0 14.5 16.5 15.0 14.0 13.0 13.0 13.5 13.5 17.0 18.0 18.5	14.0 16.0 17.5 16.0 15.0 14.0 14.0 14.5 16.5 19.5
1 2 3 4 5 6 7 8 9 10 11 12 3 13 4 15 16 17	2.5 1.0 2.0 2.0 2.5 2.5 2.5 2.5 3.0 1.0 3.5	1.0 .0 .0 .5 .5 .5 1.0 1.5 2.0 .5 .0 .5 .5	2.0 1.5 1.5 1.5 1.5 22.0 1.5 1.5 2.5 2.5 3.5	5.00 5.00 6.00 6.55 8.55 7.00 43.5	3.55 4.55 5.00 7.55 6.00 7.55 4.00 2.5	4.5 4.5 5.5 5.5 7.0 8.0 6.5 5.5 3.0	7.5 7.0 7.0 7.5 8.0 9.5 11.5 11.0 12.5 12.0 11.5 12.0	APRIL 6.0 6.5 5.5 6.5 8.0 9.0 10.0 11.0 10.0 10.0	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.0 10.5 11.0 11.5 11.0	15.0 17.0 18.0 16.5 16.5 14.5 14.5 14.5 17.0 18.5 20.0	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5 17.0 18.5	14.0 16.0 17.5 16.0 15.0 14.0 14.0 14.5 16.5 19.5
12345 67890 112345 178	2.5 1.0 2.0 2.0 2.5 2.5 2.5 2.5 3.0 1.0 3.5	1.0 .0 .0 .5 .5 .5 1.0 1.5 2.0 .5 .0 .5 .5	2.0 1.5 1.5 1.5 1.5 22.0 1.5 1.5 2.5 2.5 3.5	5.00 5.00 6.00 6.55 8.55 7.00 4.00 3.55	MARCH 3.5556.0556.0577.5 5.5002.5 2.05	4.55 5.5 5.00 7.8.0 6.55 3.0 3.0 3.5	7.5 7.0 7.0 7.5 8.0 9.5 11.5 11.0 12.5 12.0 11.5 12.0	APRIL 6.0 6.5 5.5 6.5 8.0 9.0 10.0 11.0 10.0 10.0	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.5 11.0 10.5 11.0 10.5 10.0 9.0	15.0 17.0 18.0 16.5 16.5 14.5 14.5 14.5 17.0 18.5 20.0	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5 17.0 18.0 17.0 17.0 17.0 17.0	14.0 16.0 17.5 16.0 15.0 14.0 14.0 14.5 16.0 17.5 19.0 17.5 17.5 18.0
1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 1 8 9 2 0	2.50 2.00 2.55 2.05 2.05 3.0 45 45 45 45 45 45 45	1.0 .0 .0 .5 .5 1.0 1.5 2.0 .5 .0 .5 .0 .5 .2 .0 .5 .5	2.05 1.55 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.55	5.00 6.00 6.00 6.5 8.05 8.5 7.00 4.00 4.5	3.55 4.55 5.00 7.55 6.00 7.55 4.00 2.5 2.5 3.0	4.5 4.5 5.5 5.5 5.0 7.0 8.0 6.5 5.5 3.0 3.0 3.5 4.0	7.5 7.0 7.5 8.0 9.5 11.5 12.0 11.5 12.0 11.5 12.0 10.5 9.5 8.5	APRIL 6.0 6.5 5.0 6.5 8.0 10.0 11.0 10.5 9.5 10.0 10.0 9.5 8.5 8.0	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 11.0 8.0	15.0 17.0 18.0 16.5 16.5 14.5 14.5 14.5 17.0 18.5 20.0 18.0 19.0 19.0	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5 17.0 18.5 17.0 17.0 17.0	14.0 16.0 17.5 16.0 15.0 14.0 14.5 14.0 14.5 16.0 17.5 19.0 17.5 18.0 18.0
1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 1 8 9 2 0	21.0000 55505 0:055 505555 2222 3:1.33 45454	1.0 .0 .0 .5 .5 .5 1.0 1.5 2.0 .5 .0 .0 .5 .5 .0 .0 .0 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2.505.5005.505.5005.5005.5005.5005.5005	5.00 6.00 6.00 6.58.05 8.55 7.00 6.00 4.00 4.05	MARCH 3.55 4.55 5.55 6.00 7.55 6.00 7.55 4.00 2.5 3.00 3.00	4.55 5.5 5.00 7.00 8.00 65.05 3.5 3.00 3.15 4.0	7.5 7.0 7.0 7.5 8.0 9.5 11.5 12.0 11.5 12.0 11.5 12.0 10.5 9.5 8.5	APRIL 6.05 5.50 6.5 6.5 9.00 10.00 11.05 9.5 10.0 10.05 9.5 8.0 8.0 10.00	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 10.0 9.0 8.0	15.0 17.0 18.0 16.5 16.5 14.5 13.5 14.5 14.5 17.0 18.5 20.5 20.0 18.0 19.0 19.0	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5 17.0 18.0 17.0 17.0 17.0 17.0	14.0 16.0 17.5 16.0 15.0 14.0 14.5 14.0 14.5 17.5 19.0 17.5 17.5 18.0 19.5
12345 67890 112345 178	2.50 2.00 2.55 2.05 2.05 3.0 45 45 45 45 45 45 45	1.0 .0 .0 .5 .5 .5 .0 .0 .5 .5 .0 .0 .5 .5 .0 .0 .5 .5 .0 .0 .5 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2.05 1.55 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.50 1.55 1.55	5.00 6.00 6.00 6.58.05 8.55 7.00 6.00 4.00 4.05	MARCH 3.55 4.55 5.55 6.00 7.55 6.00 7.55 4.00 2.5 3.00 3.00	4.5 4.5 5.5 5.5 5.0 7.0 8.0 6.5 5.5 3.0 3.5 4.0	7.5 7.0 7.5 8.0 9.5 11.5 12.0 11.5 12.0 11.5 12.0 10.5 9.5 8.5	APRIL 6.05 5.50 6.5 6.5 9.00 10.00 11.05 9.5 10.0 10.05 9.5 8.0 8.0 10.00	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 10.0 10.0	15.0 17.0 18.0 16.5 16.5 14.5 14.5 14.5 17.0 18.5 20.0 18.0 19.0 19.0	MAY 13.0 14.5 16.5 15.0 14.0 13.0 13.0 13.5 17.0 18.5 17.0 17.0 17.5	14.0 16.0 17.5 16.0 15.0 14.0 14.5 14.0 14.5 19.0 17.5 18.0 19.5 17.5 18.0 19.0 20.0
12345 67890 112345 167890 122345	21.0000 555505 0.055 50555 .5550	1.0 .0 .0 .5 .5 1.0 1.5 2.0 .5 .0 .0 .5 .5 2.0 3.0 4.0 4.0 2.5 	2.5055 1.555 1.2211.0 1.505 1.505 1.505 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.	5.00 6.00 6.00 6.5 8.55 8.55 7.00 6.00 4.55 4.55	MARCH 3.55 4.55 5.55 6.05 7.55 6.00 7.55 4.00 2.55 3.00 3.50 4.55	4.55.5 5.00 8.0 6.50 3.0 6.50 3.0 4.0 6.0 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	7.5 7.0 7.5 8.0 9.5 11.5 12.0 11.5 12.0 11.5 12.0 10.5 8.5 10.5 10.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0	APRIL 6.05 5.50 6.5 6.50 9.00 10.00 11.05 9.55 10.0 10.05 9.55 8.0 8.05 12.00 13.50 14.0	7.0 7.0 6.5 7.0 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 10.0 9.0 8.0 9.0 11.0 13.0 14.5	15.0 17.0 18.0 16.5 16.5 14.5 13.5 14.5 17.0 18.5 20.5 20.0 18.0 19.0 19.0 19.0 20.5 22.0 24.0 24.0 21.0	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5 17.0 18.5 17.0 17.5 17.0 17.5 19.0 20.0	14.0 16.0 17.5 16.0 15.0 14.0 14.5 14.0 14.5 17.5 19.0 17.5 17.5 18.0 19.5
12345 67890 112345 167890 122345	21.0000 555505 0.055 50555 .5550	1.0 .0 .5 .5 .5 .0 .0 .5 .5 .0 .0 .5 .5 .0 .0 .5 .5 .0 .0 .5 .5 .0 .0 .5 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2 1111 12211 1 22 344443 .34544	5.00 6.00 6.00 6.5 8.55 8.55 7.00 6.00 4.55 4.55	MARCH 3.55 4.55 5.55 6.05 7.55 6.00 7.55 4.00 2.55 3.00 3.50 4.55	4.55.5 5.0000	7.50 7.50 9.55 11.05 9.55 11.05 12.0 11.05 12.0 10.55 10.0 14.05 13.5	APRIL 6.05 5.50 6.5 6.50 10.00 11.05 10.0 10.55 10.0 10.55 10.0 10.55 10.0 11.05 11.05 11.05	7.0 7.0 6.5 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 11.0 9.0 8.0 9.0 11.0 13.5 14.0	15.0 17.0 18.0 16.5 16.5 14.5 13.5 14.5 14.5 15.0 18.0 19.0 18.0 19.0 20.5 20.0 24.0 24.0 21.0	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5 17.0 18.0 17.0 17.5 17.0 17.0 17.5 17.0 17.5 17.0	14.0 16.0 17.5 16.0 15.0 14.5 14.0 14.5 16.0 17.5 19.0 17.5 18.0 18.0 19.0 22.0 22.0 19.0 17.0
12345 67890 112345 67890 122345 6789	5.0000 55505 0.055 50555 .550. 21222 22222 3.1.55 45454 .4.55.	1.0 .0 .0 .5 .5 .1.0 1.5 2.0 .5 .0 .5 .0 .5 .0 .5 .2.0 3.0 4.0 4.0 2.5  2.0 3.5 4.0	2.5055 50050 5.505 50055 .5550	5.00 6.00 6.00 6.5 8.55 8.55 7.00 6.00 4.55 4.55	MARCH 3.55.50 5.50 5.50 7.7 5.50 2.5 3.0 3.5 6.0 7.5 4.0 6.0 7.5 4.5 6.0 7.5 6.5 7.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	4.55.5.50000 .505.5.00.50005.5.0000 6.505.5.50000505.5.0005.5.0000	7.50 7.50 7.50 9.55 11.05 12.0 11.05 12.0 12.0 10.55 10.55 14.0 13.5 14.0 13.5	APRIL 6.05 5.00 6.5 6.5 6.5 9.00 10.0 11.05 10.0 19.5 10.0 19.5 10.0 12.5 12.5 12.5 12.5	7.0 7.0 6.5 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.0 9.0 9.0 9.0 11.0 13.5 14.5 14.0 12.5 13.0 12.5 13.0	15.0 17.0 18.0 16.5 16.5 14.5 13.5 14.5 17.0 18.5 20.0 18.0 19.0 19.0 20.5 22.0 24.0 21.0 18.5	MAY 13.0 14.5 16.5 15.0 14.0 13.0 13.0 13.5 17.0 17.0 17.0 17.5 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	14.0 16.0 17.5 16.0 15.0 14.0 14.5 14.0 14.5 17.5 19.0 17.5 17.5 18.0 19.5 22.5 19.5 18.0 18.0
12345 67890 112345 167890 122345	5.0000 55505 0.055 50555 .550000.	FEBRUARY  1.0 .0 .0 .5 .5 1.0 1.5 2.0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2 .05.05.5 .5.00.5.0 .5.5.0 .5.5.0 .5.5.0 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .5.5 .	5.00 6.00 6.00 6.58.05 8.55 7.00 6.00 4.00 4.05	MARCH 3.55 4.55 5.55 6.05 7.55 6.00 7.55 4.00 2.55 3.00 3.50 4.55	4.55.5 5.0000505.5 00005 5000 65333 33.34455 67.65.	7.50 7.50 9.55 11.05 9.55 11.05 12.0 11.05 12.0 10.55 10.05 11.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05 10.05	APRIL 6.05 5.06 6.5 6.5 9.00 10.00 11.05 9.5 10.0 10.05 9.5 10.0 10.05 11.0 11.5 11.5	7.0 7.0 67.0 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 10.0 9.0 13.0 14.5 14.0 13.5 12.5	15.0 17.0 18.0 16.5 16.5 14.5 13.5 14.5 14.5 15.0 18.0 19.0 18.0 19.0 20.5 20.0 24.0 24.0 21.0	MAY 13.0 14.5 16.5 15.0 14.0 13.5 13.0 13.5 17.0 17.0 17.0 17.5 17.0 17.0 17.5 17.0 17.5 17.0 17.5 17.0 17.5 17.0 17.5 17.0	14.0 16.0 17.5 16.0 15.0 14.5 14.0 14.5 16.0 17.5 19.0 17.5 18.0 18.0 19.0 22.0 22.0 19.0 17.0

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued

			TEMPERA	TURE, WATER	(DEG.	C), WATER	YEAR OCT	OBER 1991	TO SEP	TEMBER 199	2	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY	•		AUGUST			SEPTEMBE	R
1 2 3 4	17.0 16.5 17.5 18.5 18.5	16.0 15.5 15.5 16.5 18.0	16.5 16.0 16.5 17.5 18.0	27.0 27.0 25.0 24.5 26.5	24.0 24.5 22.5 22.0 22.5	25.5 25.5 24.0 23.0 24.5	25.0 25.5  25.0 25.0	23.0 23.0  23.5 22.5	24.0 24.0 24.0 24.0 24.0	25.0 24.0 23.5  24.0	22.5 22.0 22.0 23.0	23.5 23.0 23.0 23.5
6 7 8 9 10	18.5 19.5 21.0 21.0	17.0 18.0 19.5 19.5	17.5 19.0 20.0 20.5	26.5 26.5 26.5 27.5 27.0	24.0 23.5 24.0 24.0 25.0	25.0 25.0 25.0 25.5 26.0	26.0 26.0 25.0 26.0 27.0	23.0 23.0 23.0 23.5 24.5	24.0 24.5 24.0 24.5 25.5	23.0 22.5 24.5 25.5 25.5	22.0 22.0 22.0 22.5 23.5	22.5 22.0 23.0 24.0 24.5
11 12 13 14 15	21.5 22.0 	19.5 20.0 	20.5	27.5 26.5 27.5 29.0 30.0	25.5 25.5 25.0 25.5 27.0	26.5 26.0 26.0 27.5 28.0	27.0 26.0 25.0 24.0 23.0	25.0 24.5 24.0 23.0 21.5	26.0 25.0 24.5 23.5 22.0	25.5 24.0 23.5 23.5 23.0	23.5 22.0 21.5 21.0 20.5	24.5 23.0 22.5 22.0 22.0
16 17 18 19 20	22.5 23.5	21.0 21.0	22.0 22.5	27.5 25.5 26.0 27.5	25.5 24.5 24.0 24.5	27.0 25.0 25.0 26.0	21.5 21.5 22.5 23.5 24.0	20.5 20.5 20.5 21.0 21.5	21.0 21.0 21.5 22.5 22.5	23.5 24.5 25.0 23.5 23.5	21.0 21.5 22.0 22.5 21.0	22.0 23.0 23.5 23.0 22.0
21 22 23 24 25	23.0 21.0 21.5 21.5 22.5	21.0 19.0 18.0 19.5 19.5	22.0 20.0 19.5 20.5 21.0	28.5 27.0 24.0 24.5	25.5 25.5 22.5 22.0	27.0 26.5  23.0 23.0	24.5 24.0 25.0 26.0 26.5	21.5 21.5 21.5 22.5 23.5	23.0 23.0 23.5 24.0 25.0	22.0 23.5 23.0 20.5 19.0	21.0 21.5 20.5 18.5 17.5	21.5 22.5 22.0 19.5 18.0
26 27 28 29 30 31	23.5 23.5 24.5 25.5 26.0	20.5 21.5 22.0 22.5 23.0	22.0 22.5 23.0 24.0 24.5	23.5 25.0 24.5 25.0 26.5 26.0	22.5 22.5 23.0 22.0 23.5 24.0	23.0 23.5 23.5 23.5 25.0 24.5	28.0 28.0 28.0 26.5 25.0 25.0	25.0 25.5 26.0 24.0 22.5 23.0	26.0 26.5 27.0 25.0 24.0 24.0	17.5 18.0 18.0 18.5 16.5	17.0 17.0 17.5 17.0 15.0	17.0 17.5 17.5 17.5 16.0
				30.0	22.0	25.0	28.0	20.5	24.0	25.5	15.0	21.5
MONTH												
MONTH			OXYGEN,	DISSOLVED (			YEAR OCT				5.	
DAY	MAX		OXYGEN, MEAN				YEAR OCT				MIN .	MEAN
		, (	•	DISSOLVED (	DO), M	G/L, WATER	MAX	OBER 1991	TO SEP	TEMBER 199		
		, (	•	DISSOLVED (	DO), MO	G/L, WATER	MAX	OBER 1991 MIN	TO SEP	TEMBER 199	MIN	
DAY	MAX 11.4 10.7 11.3	MIN OCTOBER	MEAN	DISSOLVED (	DO), MO MIN OVEMBER	G/L, WATER MEAN R	11.4 11.1 10.7 10.9	MIN DECEMBER 11.0 10.7 10.4	TO SEP MEAN 11.2 10.9 10.5 10.6	TEMBER 1993 MAX 13.5 13.4	MIN JANUARY 12.7 12.7	13.0 13.0
DAY 1 2 3 4 5 6 7 8 9	MAX 11.4 10.7 11.3 10.6 9.5 10.7	MIN OCTOBER  8.3 8.2 8.2 8.2 7.7 8.1	MEAN 9.6 9.2 9.5 9.2 8.5 9.4 10.2	MAX N	DO), MO MIN OVEMBER	G/L, WATER  MEAN	11.4 11.1 10.7 10.9	OBER 1991 MIN DECEMBER 11.0 10.7 10.4 10.4 11.7 12.0	TO SEP MEAN 11.2 10.9 10.5 10.6	13.5 13.5 13.4 12.8 12.9 13.2 13.3  13.1 13.4 14.0 14.0 14.8 13.9	MIN JANUARY 12.7 12.7 12.1 11.9	13.0 13.0 12.5 12.3 12.5 12.6 12.6
DAY  1 2 3 4 5 6 7 8 9 10 11	MAX 11.4 10.7 11.3 10.6 9.5 10.7 11.5 11.8 11.7	MIN OCTOBER 8.3 8.2 8.2 7.7 8.1 9.4 9.6 8.8 9.6	9.69.29.59.28.59.42.10.65.9.79.10.44.10.8	MAX  MAX  10.  11.  11.  11.  11.  11.  11.  11	DO), MO MIN OVEMBER  10.9 10.9 10.9	MEAN  R  11.8 12.1 12.0 11.5	11.4 11.1 10.7 10.9 12.0 12.4 12.2 11.9 11.9 11.6 11.2	TOBER 1991  MIN  DECEMBER  11.0 10.7 10.4 10.4 11.7 12.0 12.1 11.7 11.6 11.5 11.5 11.5 11.9	TO SEP MEAN  11.2 10.9 10.5 10.6 11.9 12.2 12.2 12.0 11.7	13.5 13.5 13.4  12.8 12.9 13.2 13.3  13.1 13.4	MIN JANUARY 12.7 12.7 12.1 11.9 12.0 12.1 12.3 12.3	13.0 13.0 12.5 12.3 12.5
DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 11 15 16 17	MAX 11.4 10.7 11.3 10.6 9.7 11.8 11.7 10.5 11.7 12.2 10.9	MIN OCTOBER 8.3 8.2 8.2 7.7 8.14 9.8 9.6 8.7 9.4 9.4 9.4 9.4 9.4	9.6 9.2 9.5 9.2 9.5 9.4 10.6 10.5 9.7 9.0 10.8 10.1 10.2 10.1	MAX  MAX  13.1  13.6  13.1  12.4  13.6  13.8  14.3  13.6  13.8  14.3	DO), MO MIN OVEMBER 	MEAN  R  11.8 12.1 12.4 12.5 12.1 11.8 12.0	11.4 11.1 10.7 10.9 12.0 12.4 12.2 11.9	MIN DECEMBER 11.0 10.7 10.4 10.4 11.7 12.0 12.1 11.7 11.6	TO SEP MEAN  11.2 10.9 10.5 10.6 11.9 12.2 12.0 11.7 11.7 11.7 11.6 11.1 11.3 11.9 12.3 12.5	13.5 13.4 12.8 12.9 13.2 13.1 13.4 14.0 14.4 14.8 13.9 13.4	MIN  JANUARY  12.7 12.7 12.1 11.9 12.0 12.1 12.3 12.2 12.5 12.7 12.8 11.9 12.0 12.5 13.1	13.0 13.0 12.5 12.5 12.6 12.7 13.4 13.6 12.7 12.6
DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	MAX 11.4 10.7 11.3 10.6 9.7 11.5 11.7 10.5 11.9 10.9 10.8 11.3 11.9 12.45	MIN OCTOBER 8.32 8.22 7.7 8.1 9.4 9.6 8.8 9.6 8.7 9.4 9.4 9.5 9.7 9.8 9.7 9.8	9.6 9.2 9.5 9.2 9.5 9.2 10.6 10.5 9.7 9.9 10.4 10.1 10.2 10.1 10.3	MAX  MAX  N  13.1  13.6  13.1  12.4  13.6  13.8  14.3  13.6  13.8  14.5  14.5  14.1	DO), MO MIN  OVEMBER  10.9 10.9 10.8 10.9 11.3 11.3 11.2 10.7 10.7 11.2 10.9	MEAN  R  11.8 12.1 11.8 12.0 11.5 12.1	11.4 11.1 10.7 10.9 12.0 12.4 12.2 11.9 11.9 11.6 11.2 12.6 12.8 13.8	TOBER 1991  MIN  DECEMBER  11.0 10.7 10.4 10.4 11.7 12.0 12.1 11.7 11.6 11.5 11.5 11.5 11.5 11.5 11.5 11.9 11.9	TO SEP MEAN  11.2 10.9 10.5 10.6 11.9 12.2 12.0 11.7 11.7 11.6 11.1 11.3 11.9 12.3 12.5 13.5 13.3 13.0	13.5 13.5 13.4 12.8 12.9 13.2 13.3 13.1 13.4 14.0 14.4 14.8 13.9 13.4 13.9 13.4	MIN  JANUARY  12.7 12.1 11.9 12.0 12.1 12.3 12.2 12.5 12.7 12.8 11.9 12.0 12.5 13.1 14.4 14.4	13.0 13.0 12.5 12.3 12.6 12.6 12.7 13.1 13.4 13.6 12.7 12.6 13.0 13.4 14.8

401

01463500 DELAWARE RIVER AT TRENTON, NJ--Continued OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	14.3 14.8 15.2 15.4 15.2	12.9 13.2 13.4 13.4 13.1	13.5 14.0 14.2 14.2 14.0	15.0 14.2 14.7 15.3 15.2	12.6 12.4 12.3 12.5 12.5	13.6 13.3 13.3 13.6 13.6	12.5 12.2 12.5 12.8 12.8	11.5 11.3 11.5 11.5 11.6	11.9 11.8 12.0 12.1 12.2	10.9 10.9 10.6  10.5	9.7 9.4 8.9 8.8	10.3 10.1 9.7  9.6
6 7 8 9	15.4 15.5 15.3 15.6 16.8	13.2 13.1 13.0 12.9 13.5	14.2 14.2 13.9 14.2 15.0	14.4 12.9 13.6 13.7 12.8	12.3 11.4 11.2 11.5 11.3	13.1 12.1 12.3 12.6 12.0	13.2 13.1 13.2 13.0 13.7	11.6 11.4 11.0 10.8 10.5	12.3 12.1 12.0 11.7 11.9	11.0 11.2 10.4 10.0 9.6	9.2 9.5 9.7 9.0 8.9	10.1 10.3 10.0 9.6 9.2
11 12 13 14 15	17.7 16.1 17.9 16.0	13.7 13.7 13.0 12.7	15.4 14.6 15.1 14.1	11.5 11.9 12.3 12.9	10.7 11.2 11.9 12.3	11.1 11.7 12.2 12.6	11.9 13.0 14.1	10.5 10.2 10.6 10.8	11.1 11.3 12.2	10.1 10.3 9.7 10.0 9.4	9.2 9.2 8.7 8.3 8.2	9.6 9.7 9.1 9.1 8.8
16 17 18 19 20	15.1 16.1 14.4 15.5 14.9	12.2 12.4 12.4 11.9 12.1	13.4 14.0 13.2 13.3	13.4 13.3 12.8 13.4	12.6 12.7 12.3 12.3	12.9 12.9  12.5 12.8	11.5 13.1 12.3 11.2 11.5	10.5 10.3 10.6 10.6 11.1	11.0 11.3 11.3 11.0 11.3	9.0 10.1 9.7 10.4 10.4	8.4 8.6 8.8 8.9 9.1	8.7 9.2 9.2 9.6 9.7
21 22 23 24 25	15.8 16.1 16.1 14.7 14.1	12.5 12.6 12.4 12.2 12.0	14.0 14.1 14.0 13.3 12.7	13.7 14.2 14.3	12.1 12.3 12.2	12.9 13.2 13.2	11.5 11.2 11.1 10.1 9.7	10.9 10.5 10.1 9.5 9.2	11.2 10.8 10.5	10.4 10.3 10.1 9.9 9.8	8.9 8.7 8.4 8.1 7.9	9.7 9.5 9.2 8.9 8.8
26 27 28 29 30 31	13.9 13.8 14.0 14.1	11.7 12.0 12.0 11.9	12.7 12.7 12.8 12.9	13.3 11.6 11.6 12.0 12.0	11.6 10.9 10.9 11.6 11.8 11.6	12.5 11.1 11.2 11.9 11.9	10.2 10.4 10.7 11.0 10.9	9.4 9.7 9.9 10.1 10.0	9.8 10.0 10.2 10.5 10.4	10.3 11.0 11.2 10.4 9.3	8.5 9.3 9.3 9.3 8.7	9.4 10.2 10.2 9.8 9.0
MONTH	17.9	11.7	13.8	15.3	10.7	12.5	14.1	9.2	11.2	11.2	7.9	9.5
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
1 2 3 4 5	9.1 9.2 9.3 9.1 8.6		8.9 9.2 9.1 8.9 8.5	9.9 10.1 8.3 9.5 9.5		8.5 8.4 7.4 7.6 7.7	9.6 9.6 		8.1 8.2			
	9.1	JUNE 8.9 9.1 8.9	8.9 9.2 9.1	9.9 10.1	JULY 7.0 6.6	8.5 8.4 7.4	9.6 9.6	6.9 7.1	8.1 8.2 	12.0 11.9 10.5	6.8 6.9 6.8 6.7 6.7	9.2 9.2 9.4
1 2 3 4 5 6 7 8 9	9.1 9.2 9.3 9.1 8.6 8.7  8.5 8.3	JUNE 8.9 9.1 8.9 8.6 8.3 8.2	8.9 9.2 9.1 8.9 8.5 8.5 8.4 8.3	9.9 10.1 8.3 9.5 9.5	7.0 6.6 6.5 6.2 6.3	8.5 8.4 7.4 7.6 7.7	9.6 9.6   10.6	6.9 7.1   7.5 7.3	8.1 8.2   8.9 8.7	12.0 11.9 10.5  9.5 10.1 9.9 11.0	6.8 6.9 6.8 6.7 6.7 6.6 6.7	9.2 9.2 8.4 8.0 8.2 8.1 8.7 9.0
1 2 3 4 5 6 7 8 9	9.1 9.2 9.3 9.1 8.6 8.7 8.5 8.3 8.4	JUNE 8.9 9.1 8.9 8.6 8.3 8.2 8.3 8.2 8.1	8.9 9.2 9.19 8.5 8.4 8.3 8.3 8.3	9.9 10.1 8.3 9.5 9.5 	JULY 7.0 6.6 6.5 6.2 6.3	8.5 8.4 7.4 7.7 7.7	9.6 9.6  10.6 10.7 11.2 10.8 10.7 10.3	AUGUST  6.9 7.1 7.5 7.3 7.2 7.1 6.8 7.1	8.1 8.2  8.9 8.7 9.0	12.0 11.9 10.5 9.5 10.1 9.9 11.0 11.6 10.8	6.8 6.9 6.8 6.7 6.7 6.6 6.7 6.9 6.9	9.2 9.2 8.4 8.0 8.2 8.1 9.0 8.4
1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 8 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	9.1 9.2 9.3 9.1 8.6 8.7 8.5 8.3 8.4 8.6 8.6	JUNE 8.9 9.1 8.9 8.6 8.3 8.2 8.3 8.2 8.1 7.8	8.9 9.2 9.1 8.5 8.5 8.3 8.3 8.3	9.9 10.1 8.3 9.5 9.5 	JULY 7.0 6.6 6.5 6.2 6.3	8.5 8.4 7.6 7.7	9.6 9.6 9.6 10.6 10.7 11.2 10.8 10.7 10.3 9.9 9.1 9.7	AUGUST  6.9 7.1 7.5 7.3 7.2 7.1 6.8 7.1 7.1 7.2	8.1 8.2  8.9 8.7 9.0 8.4 8.5 8.5 8.5 8.7	12.0 11.9 10.5 9.5 10.1 9.9 11.0 11.6 10.8 11.2 10.8	6.8 6.9 6.8 6.7 6.6 6.7 6.9 6.7 6.9 7.3 7.5 7.4 7.3 7.3 6.9	8.2 9.22 8.4 8.0 8.21 8.7 9.04 8.5 7 8.1 9.2 9.4 9.3 9.3 9.3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	9.1 9.3 9.3 9.1 8.6 8.7 8.5 8.3 8.6 8.6 8.6	JUNE 8.9 9.1 8.9 8.6 8.3 8.2 8.3 8.2 8.7 8.3 8.2 8.0 8.1	8.9 9.2 9.1 8.5 8.5 8.3 8.3 8.3 8.3	9.9 10.1 8.3 9.5 9.5 	JULY 7.0 6.6 6.5 6.2 6.3 6.7 6.6	8.5 8.4 7.4 7.7 7.7	9.6 9.6  10.6 10.7 11.2 10.8 10.7 10.3 9.1 9.7 10.3 11.6 11.6	AUGUST  6.9 7.1 7.5 7.3 7.2 7.1 6.8 7.1 7.2 7.5 7.6 7.6 7.7 7.7	8.1 8.2  8.9 8.7 9.0 8.4 8.5 8.5 8.5 8.7 9.6 9.8 10.1	12.0 11.9 10.5 9.5 10.1 9.9 11.0 11.6 10.8 11.2 11.6 11.9 12.1 12.0 11.3 12.5	6.8 6.9 6.8 6.7 6.6 6.7 6.9 6.9 6.7 7.3 7.3 7.0 6.9 7.1	8.2 9.2 8.4 8.0 8.2 8.17 9.0 8.4 8.57 8.8 9.1 9.2 9.4 9.4 9.3

#### 01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ

LOCATION.--Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 250 ft upstream from bridge on Quaker Bridge Road, 1.9 south of Clarksville, 2.0 mi upstream from Shipetaukin Creek, and 7.6 mi upstream of mouth.

DRAINAGE AREA. -- 34.3 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements water years 1963-67. October 1972 to September 1981, March to September 1992.

GAGE. -- Water-stage recorder. Datum of gage is 49.28 ft above sea level.

REMARKS.--Records good except from June 22 to Sept. 30, which are fair. Regulation from flood-control dams and ponds upstream.

EXTREMES OUTSIDE PERIOD OF RECORD. Flood of Aug. 28, 1971, reached a stage of 10.9 ft, discharge, 1,500 ft³/s.

PEAK DISCHARGES FOR PERIOD MARCH TO SEPTEMBER. Peak discharges greater than base discharge of 200 ft³/s and maximum (*):

Date	Tin	ne	Dischar (ft ³ /s	ge )	Gage height (ft)		Date	Time		ischarge (ft ³ /s)	Ga	ge height (ft)
June 20	211	15	*196		*5.64		No peak	greater t	than base	discharge.		
		DIS	SCHARGE, (	CUBIC FEET	PER SECOND DAI	, WATER LY MEAN	YEAR OCTO	OBER 1991	TO SEPTEM	BER 1992		
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5					•••		38 35 32 31 29	18 17 16 16 15	22 27 31 30 36	31 27 23 24 22	e23 e20 e19 14 15	10 9.2 8.5 8.2 7.8
6 7 8 9 10			  			†22  	26 25 23 22 21	14 13 14 16 17	105 120 106 81 62	21 19 17 e17 e18	e13 e12 e11 11	7.1 6.9 6.7 6.5 7.7
11 12 13 14 15							22 21 20 19 18	18 19 19 19 18	49 40 33 29 25	e21 e18 e17 e17 e21	15 24 20 19 17	11 9.2 7.6 6.6 5.8
16 17 18 19 20	•••				•••	e21 27 34	18 20 27 30 30	20 21 21 21 19	21 18 16 35 174	e20 e22 e20 e17 e17	18 19 23 26 28	5.3 4.8 4.4 4.7 4.2
21 22 23 24 25				•••		40 41 41 38 36	29 29 28 26 25	18 16 15 14 13	195 184 165 152 116	e16 e15 e17 e18 e19	28 27 23 19 16	3.6 3.6 5.4 4.5 4.2
26 27 28 29 30 31			•••	†27	•••	36 51 55 52 47 44	23 22 21 20 19	12 12 11 10 9.5 15	82 60 48 41 34	e17 e17 e16 e15 e14 e20	15 15 14 13 13	12 15 18 18 16
TOTAL MEAN MAX MIN	•••			•••	•••		749 25.0 38 18	496.5 16.0 21 9.5	2137 71.2 195 16	593 19.1 31 14	553 17.8 28 11	242.5 8.08 18 3.6
STATIST MEAN MAX (WY) MIN (WY)	40.4 87.1 1976 13.7 1981	47.3 112 1973 20.7 1979	69.7 124 1978 20.9 1981	FOR WATER 80.8 151 1979 12.9 1981	YEARS 1972 68.8 132 1979 30.7 1980	74.1 114 1979 33.8 1981	67.1 115 1973 37.8 1976	72.0 72.2 1979 18.3 1977	40.8 76.2 1979 15.8 1977	37.0 142 1975 11.0 1977	29.9 69.8 1978 13.9 1981	35.5 96.9 1975 11.5 1980

# 01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued

SUMMARY STATISTICS	MARCH - SEPTEMBER 1992	WATER YEARS 1972 - 1981
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS	195 Jun 21 3.6 Sep 21 4.4 196 Jun 20 5.64 Jun 20 3.4 Sep 21	53.5 73.4 17.3 832 Feb 26 1979 5.7 Sep 12 1980 6.4 Sep 9 1980 1050 Jul 21 1975 9.36 Jul 21 1975 5.7 Sep 11 1980 104 39 15

Estimated. Result of discharge measurement.

#### - 01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued

LOCATION.--Lat 40°16'11", long 74°40'20", Mercer County, Hydrologic Unit 02040105, on left bank 250 ft upstream from bridge on Quaker Bridge Road, 1.9 south of Clarksville, 2.0 mi upstream from Shipetaukin Creek, and 7.6 mi upstream of mouth.

DRAINAGE AREA ... 34.3 mi 2.

PERIOD OF RECORD. -- Water years 1963, 1965, 1967, 1979 to current year.

COOPERATION. -- Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH IIME	NST. CI UBIC CO FEET DU PER AN	PE- WA FIC WH DN- FI DCT- (ST	TER OLE ELD TEN AND AT	APER- OX Ture	OX YGEN, ( DIS- OLVED S	YGEN, OX DIS- DE OLVED B PER- C CENT I ATUR- 5	YGEN MAND, CO IO- FO HEM- FO CAL, D DAY B	OLI- CO ORM, ME ECAL, WA EC TO ROTH (CO	ERO- CCI MF TER TAL DL /
OCT 1991 03	1430	••	120	6.9	16.5	9.2	94.	5.6	<20	21
JAN 1992 23	1030	••	141	••	2.0	11.9	87	E2.3	<20	<10
APR 07	1130	25	154	6.9	9.0	10.0	87	4.1	<20	<10
JUN										
16 AUG 10	1100	21	133	6.9	24.0	7.0	83	E2.1	20	470
10	1100	11	106	6.4	24.0	4.6	55	E1.7	20	.90
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1991 03	38	8.1	4.3	6.1	2.8	17	18	14	0.2	
JAN 1992 23	46	11	4.4	6.2	3.0	12	23	15	0.2	
APR 07	43	9.3	4.8	9.4	2.3	8.2	26	22	0.2	
JUN 16	40		4.4	7.2	2.3	14	18	15	<0.1	
AUG 10	33		3.5	5.5	2.8	18	12	11	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA	NITRO- GEN, AMMONÍA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
OCT 1991	0.027	(11472)	A3 N7	A3 N7	A3 N7	A3 N7	A3 N7	A3 N7	ήO Nγ	
03	3.6	68	0.006	0.005	0.160	0.17	<0.03	0.04	1.0	
JAN 1992 23	6.5	82	0.006	0.005	1.22	1.29	<0.03	<0.03	0.48	
APR 07	4.7	88	0.012	0.011	1.01	1.01	0.06	0.06	0.55	
JUN 16	4.2	70	0.016	0.014	0.41	0.44	0.09	0.07	0.85	
AUG 10	4.9	59	0.008	0.007	0.18	0.18	0.12	0.13	0.83	
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIĆ	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
OCT_1991		4.0		0.00	0.00	, -	0.5	•		
03 JAN_1992	0.78		0.95	0.08	0.02	6.7	0.5	9	••	
23 APR	0.38	1.7	1.7	0.03	<0.02	3.4	0.6	2	••	
07 Jun	0.35	1.6	1.4	0.03	0.02	3.8	0.4	11	0.74	
16 AUG	0.50	1.3	0.94	0.05	<0.02	5.0	0.9	9	0.51	
10	0.64	1.0	0.82	0.06	<0.02	5.4	1.2	4	0.12	

01463620 ASSUNPINK CREEK NEAR CLARKSVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	LIU TOT REC ER/	TAĽ TO COV- RE ABLE EF G/L (U	ORON, OTAL ECOV- RABLE JG/L S B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 16	1100	13	<1	<	10	20	<1	<1	<1
DATE	ERA (UC	TAL TOT COV- REC ABLE ERA G/L (UC	AD, NES FAL TOT COV- REC ABLE ERA G/L (UC		MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKE TOTAL RECOVERABL (UG/I AS N	L SELE- V- NIUM, LE TOTAL L (UG/L	REC ERA (UG	AĽ OV- BLE ·
JUN 1992 16		580	<1	80	<0.10		1 •	:1	<10

#### 01464000 ASSUNPINK CREEK AT TRENTON, NJ

LOCATION.--Lat 40°13'27", long 74°44'58", Mercer County, Hydrologic Unit 02040105, on left bank 20 ft upstream from bridge on Chambers Street (Lincoln Avenue) in Trenton, and 1.5 mi upstream from mouth.

DRAINAGE AREA. -- 90.6 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1923 to current year.

REVISED RECORDS. -- WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder. Concrete control since July 10, 1932. Datum of gage is 24.76 ft above sea level (levels from New Jersey Geological Survey bench mark).

REMARKS.--No estimated daily discharges. Records good. Records include water diverted from outside the basin since February 1954 for municipal supply which returns to Assunpink Creek through Ewing-Lawrence Sewerage Authority Treatment Plant, 2.4 mi above station (records given herein). In addition there is an average inflow of about 2.0 ft³/s from industrial use of water that originates outside the basin. Some diversion for irrigation in headwater area during summer months. Flow regulated by several flood-control reservoirs upstream of gage since mid-1970's. Several measurements of water temperature were made during the year. National Weather Service gage-height telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900  ${\rm ft}^3/{\rm s}$  and maximum (*):

Date	Tir	пе	Dischar (ft ³ /s	ge )	Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ga	ge height (ft)
June	5 233	30	*1,470	,	*7.43		June 19	1945		1,470		7.42
		DI	SCHARGE, (	CUBIC FEET	PER SECOND	, WATER LY MEAN	YEAR OCTOBE VALUES	ER 1991	TO SEPTEM	BER 1992		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	54	36	66	74	66	67	102	98	150	76	113	39
2	49	36	107	72	62	66	95	99	102	69	59	37
3	46	35	554	71	61	63	87	97	81	69	50	35
4	44	38	448	122	59	62	84	90	71	98	70	38
5	42	36	249	115	57	61	82	86	564	64	69	35
6	42	35	182	103	55	60	78	84	747	59	47	32
7	40	35	143	94	55	150	76	82	369	53	41	37
8	37	34	118	85	55	124	73	134	249	49	39	36
9	36	34	110	97	53	94	69	129	165	87	54	33
10	35	34	182	93	51	106	69	93	128	55	42	69
11	50	89	131	81	51	209	79	99	105	49	130	113
12	47	45	112	75	49	128	70	94	93	46	124	45
13	35	42	107	73	49	108	66	87	84	46	72	37
14	35	40	106	120	52	93	64	56	75	58	100	35
15	66	39	94	90	86	77	63	50	69	78	71	33
16	53	38	86	75	147	73	77	153	61	92	85	32
17	166	36	81	68	90	69	127	89	56	52	88	30
18	91	36	76	64	87	68	136	67	53	54	130	30
19	62	37	71	60	88	191	99	59	462	46	89	36
20	52	37	67	59	82	157	90	54	514	45	77	30
21	50	41	66	58	77	147	93	50	367	43	69	29
22	48	217	64	56	71	126	100	48	321	41	61	41
23	45	172	64	100	68	136	94	45	251	92	55	79
24	44	101	63	148	67	121	111	46	220	66	52	<b>39</b>
25	43	77	58	94	67	119	110	54	194	53	48	54
26 27 28 29 30 31	42 40 40 39 38 37	68 62 56 52 50	57 56 55 141 105 82	84 78 74 72 71 69	112 85 79 73	142 288 179 129 113 119	106 106 105 104 101	46 44 40 40 44 297	141 111 92 83 78	46 46 43 40 38 201	76 79 59 56 43 42	199 106 90 61 49
TOTAL	1548	1688	3901	2595	2054	3645	2716	2554	6056	1954	2190	1559
MEAN	49.9	56.3	126	83.7	70.8	118	90.5	82.4	202	63.0	70.6	52.0
MAX	166	217	554	148	147	288	136	297	747	201	130	199
MIN	35	34	55	56	49	60	63	40	53	38	39	29
(†)	12.5	12.3	13.8	12.5	12.3	16.0	14.2	12.3	15.8	11.9	11.5	11.0
STATI	STICS OF	MONTHLY I	MEAN DATA	FOR WATER	YEARS 1924	- 1992	BY WATER Y	YEAR (WY)	)			
MEAN	77.2	114	142	161	183	203	177	131	97.3	99.3	90.6	89.0
MAX	257	331	386	498	395	426	494	340	267	545	355	327
(WY)	1928	1973	1984	1979	1939	1936	1983	1989	1989	1975	1971	1938
MIN	19.1	27.6	42.1	44.2	52.0	76.7	65.2	40.0	25.9	17.2	17.3	15.8
(WY)	1931	1932	1944	1981	1934	1985	1963	1941	1942	1955	1966	1943

### 01464000 ASSUNPINK CREEK AT TRENTON, NJ -- Continued

SUMMARY STATISTICS	FOR 1991 CALEN	DAR YEAR	FOR 1992 WAT	ER YEAR	WATER YEARS	1924 - 1992
ANNUAL TOTAL ANNUAL MEAN (†)	47114 129 14.9		32460 88.7 13.0		130	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	1270	Jan 12	747	Jun _6	233 69.2 4050	1984 1931 Jul 21 1975
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	29 32	Sep 18 Sep 12	29 31 1470	Sep 21 Sep 15 Jun 5	4.0 9.6 5450	Jul 21 1929 Aug 25 1944 Jul 21 1975
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	271 . 86		7.43 24 141 69	Jun 5 Sep 21	14.61a 1.0 266 86	Jul 21 1975 Aug 21 1931
90 PERCENT EXCEEDS	. 86 37		38		32	

a From high-water mark in gage house.
 † Inflow from outside basin, equivalent in cubic feet per second, 2.4 mi upstream of station through plant of Ewing-Lawrence Sewerage Authority.

# 01464000 ASSUNPINK CREEK AT TRENTON, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1971-75, 1977-80, 1991 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE OCT 1991	TIME	INST. CUBIC FEET PER	SPE- W CIFIC W CON- F DUCT- (S ANCE	PH ATER HOLE IELD 1 TAND- ARD	TEMPER- ATURE WATER- (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, OX DIS- DI SOLVED (PER- CENT SATUR-	CYGEN EMAND, C BIO- F CHEM- F ICAL, D DAY B	OLI- CORM, MECAL, WEC TROTH (C	TERO- OCCI E,MF ATER OTAL OL / O ML)
17	1400	382	. 192	7.1	12.5	10.0	95	E2.0 >	24000	>2400
JAN 1992 23	1230	62	523	7.5	5.5	11.2	90	4.3	9200	750
APR 15	1430	66	384	8.1	12.5	13.3	124	E1.2	1100	<10
JUN 11	1130	110	238	7.3	21.0	7.2	81	E1.5	2400	430
AUG 10	1300	46	316	7.6	23.0	8.7	102		24000	940
DATE	HARD- NESS TOTAL (MG/L AS CACO3	CALCIU DIS- SOLVE (MG/L	MAGNE- M SIUM, DIS- D SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L	POT/ 1, SIU DIS 0 SOU	AS- ALK/ JM, LINII S- LAE /ED (MG) /L AS	A- TY SULFATI B DIS- /L SOLVEI (MG/L	CHLO- E RIDE, DIS- D SOLVED (MG/L	FLUO- RIDE, DIS- SOLVED (MG/L	
OCT_1991		3 11	7 7	47	-	7 22	24	20	0.0	
17 JAN 1992			3.7	13		.3 22	21		0.2	
23 APR_	11		9.9	52		.2 48	40	84	0.3	
15 Jun		4 21	10	29		.8 51	44	37	0.3	
11 AUG		6 16	6.3	17		.6 35	31	24	0.2	
10	7	9 20	7.0	27	5.	.1 43	36	38	0.5	
DATE	SILICA DIS- SOLVE (MG/L AS SIO2)	CONSTI D TUENTS DIS- SOLVE	NITRO- - GEN, , NITRITE TOTAL D (MG/L	NITRO GEN, NITRIT DIS- SOLVE (MG/L AS N)	NITE E GEN NO2+N D TOTA	1, NO2+N 103 DIS NL SOLV 'L (MG/	N, NITRO NO3 GEN, S- AMMONIA /ED TOTAL /L (MG/L	AMMON Ì A	ORGANIC	
OCT_1991		10	1 0 01/	0.01	4 2 3		0 0 07	0.00	4.7	
17 JAN_1992	4.0							0.08	1.3	
23 APR	9.2							0.08	0.77	-
15 Jun	6.1	20	3 0.018	0.01	7 4.4	5 4.4	5 <0.03	0.04	0.60	
11 AUG	7.8	13	6 0.031	0.02	2.0	3 1.9	0.12	0.11	0.90	
10	6.8	18	8 0.027	0.03	5.0	0 4.9	9 <0.03	<0.03	0.61	
DATE	NITRO GEN,AM MONIA ORGANI DIS. (MG/L AS N)	+ NITRO C GEN, TOTAL (MG/L	DIS- SOLVED (MG/L	PHOS- PHORUS TOTAL (MG/L AS P)	DIS SOLV (MG/	JS ORGAN S- DIS- ZED SOLVE ZL (MG/	PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SÜS- PENDED (T/DAY)	
ОСТ 1991 17	0.5	9 4.0	3.3	0.61	0.35	4.4	••	90	93	
JAN 1992									3.2	
23 APR	0.2		5.6	0.64			1.1	19		
15 JUN	0.2		4.7	0.40				5	0.89	
11 AUG	0.6			0.28			0.9	11	3.3	
10	0.7	5 5.6	5.7	0.74	0.67	4.1	0.7	4	0.50	

٠. .

# 01464000 ASSUNPINK CREEK AT TRENTON, NJ -- Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	DEM CH IC (H TIME · LEV	IIGH TO	BERY LIUM TOTA ARSENIC RECC TOTAL ERAB (UG/L (UG/AS AS) AS B		OTAL T ECOV- , R RABLE E UG/L (	DMIUM MOTAL TECOV- REABLE EUG/L (	OTAL TO ECOV- RI RABLE EI UG/L (I	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	
JUN 1992 11	1130	37	1	<10 _.	90	<1	<1	5	
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		
JUN 1992	1100	4	150	<0.10	6	<1	20		

#### 01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ

LOCATION.--Lat 40°08'15", long 74°36'02", Mercer County, Hydrologic Unit 02040201, on right bank upstream from highway bridge in Extonville, 0.5 mi upstream from Pleasant Run, and 0.7 mi downstream from Mercer-Monmouth County line.

DRAINAGE AREA. -- 81.5 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1940 to October 1951, October 1952 to current year.

REVISED RECORDS.--WDR NJ-79-2: 1971(M). WDR NJ-82-2: Drainage area.

GAGE. - Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 24.94 ft above sea level.

REMARKS.--Records good except for estimated daily discharges and those above 300 ft³/s, which are fair. Flow regulated occasionally by lakes above station. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR...Peak discharges greater than base discharge of 750 ft³/s and maximum (*):

Date		Time	D	ischarge (ft ³ /s)	C	Gage height (ft)		Date	Time	D	ischarge (ft ³ /s)	Ge	ge height (ft)
June	6	unknow	n	<b>*982</b>		*7.77		No other	peak gre	ater than	base disc	harge.	
			DISCH	ARGE, CUBI	C FEET	PER SECOND	, WATER Y MEAN	YEAR OCTOR	BER 1991	TO SEPTEM	BER 1992		•
DAY		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		56 50 47 45 44	45 45 45 45 44	60 84 138 e170 e185	85 78 79 98 145	74 69 65 63 62	81 77 75 73 71	118 112 106 97 95	56 55 54 49 47	256 125 93 71 e144	42 42 40 87 85	349 160 107 77 59	43 42 41 44 44
6 7 8 9 10		45 48 45 43 44	44 44 42 42	157 120 106 97 169	121 102 90 84 86	60 59 60 65 59	70 81 113 99 90	91 85 80 75 73	47 45 56 99 95	e770 e576 219 134 105	61 51 44 64 65	47 40 35 42 46	44 45 51 46 49
11 12 13 14 15		42 44 43 41 41	49 87 75 67 61	169 119 108 108 103	82 76 74 81 84	56 57 54 57 64	130 132 105 91 84	73 70 68 65 62	108 84 72 70 69	80 69 46 50 47	49 43 40 39 40	67 289 109 94 96	86 78 59 52 48
16 17 18 19 20		50 64 e160 112 81	58 55 52 51 51	92 82 79 72 74	75 69 65 70 59	134 137 110 116 106	77 74 74 129 216	62 88 108 100 99	78 96 73 62 55	43 40 38 131 685	41 41 38 37 34	136 331 461 548 232	45 44 41 41 42
21 22 23 24 25		68 62 56 53 52	51 52 62 68 73	67 70 68 68 66	59 57 65 139 121	93 86 83 80 78	147 119 117 117 110	90 - 84 - 84 77 73	48 44 43 45 43	268 117 88 79 77	32 30 53 155 81	132 99 83 71 66	39 40 59 53 43
26 27 28 29 30 31		52 52 49 46 45 45	67 61 59 57 56	62 61 61 76 132 102	92 87 78 75 73 73	116 141 107 94	104 235 185 130 114 118	67 64 62 60 57	42 43 42 39 37 95	68 59 52 47 43	59 52 47 40 35 81	62 59 56 54 49 46	212 152 126 106 85
TOTAL MEAN MAX MIN CFSM IN.	L	1725 55.6 160 41 .68 .79	1652 55.1 87 42 .68 .75	3125 101 185 60 1.24 1.43	2622 84.6 145 57 1.04 1.20	2405 82.9 141 54 1.02 1.10	3438 111 235 70 1.36 1.57	2445 81.5 118 57 1.00 1.12	1891 61.0 108 37 .75 .86	4620 154 770 38 1.89 2.11	1648 53.2 155 30 .65 .75	4102 132 548 35 1.62 1.87	1900 63.3 212 39 .78 .87
STAT	ISTI	CS OF MON	THLY MEA	N DATA FOR		YEARS 1941	- 1992	, BY WATER	YEAR (WY	)			
MEAN MAX (WY) MIN (WY)		89.4 207 1972 32.9 1966	129 406 1973 36.7 1966	157 356 1973 46.2 1966	169 452 1978 62.1 1981	178 416 1979 82.9 1992	194 369 1958 86.1 1985	173 388 1983 68.3 1985	133 319 1984 60.8 1955	98.8 251 1968 39.8 1965	103 390 1989 25.8 1955	95.2 299 1971 25.4 1966	89.4 284 1971 31.7 1941

DELAWARE RIVER BASIN

# 01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ.-Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR	YEAR	FOR 1992 WATER YEAR	WATER YEARS	1940 - 1992
ANNUAL TOTAL ANNUAL MEAN Highest Annual Mean	<b>37884</b> 104		31573 86.3	134 225	1978
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	1050 Ja 29 Ju 32 Se		770 Jun 6 30 Jul 22 36 Jul 16	76.9 3930 16 17	1966 Aug 28 1971 Aug 30 1966 Aug 28 1966
ANNUAL SEVEN DAT MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	<i>JL</i> 3e	p o	982 Jun 6 7.77b Jun 6 30 Jul 22	4860 14.18 13.1a	Sep 1 1978 Sep 1 1978 Feb 14 1942
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	1.27 17.29 190 76		1.06 14.41 132 68	1.64 22.30 250 93	
90 PERCENT EXCEEDS	76 37		43	42	

a Result of freezeup. b From crest-stage gage. e Estimated.

# 01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1966 to June 1970.
SUSPENDED-SEDIMENT DISCHARGE: February 1965 to June 1970.

COOPERATION. Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		WATER	QUALITY (	DATA, WAT	TER YE	EAR OCT	OBER	1991	TO SEPTE	MBER 1992		
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	· AT	APER- TURE ATER EG C)	OXYGI DIS SOLV	EN, S- VED	XYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	BIO- CHEM- ICAL, 5 DAY	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT_1991												
01 JAN 1992	1245	55	158	7.0		11.5		8.8	81	E1.5	330	140
27 APR	1100	75	168	7.0	)	4.5	13	3.0	101	<1.0	50	40
02 Jun	1330	149	162	7.1	l	9.5	. 10	0.3	92	2.6	50	<10
18 AUG_	1330	37	183	7.1		21.0	7	7.8	88	E1.6	330	290
12	1400	342	165	6.7	•	22.0		5.5	63	3.8	9200	••
DATE	HARI NES TOT (MG AS CAC	S CALC AL DIS /L SOL (MG	IUM S: - D: VED SOI /L (MG	IS- DI VED SOL G/L (M	IUM, IS- VED IG/L IG/A)	POTA SIL DIS SOLV (MG/ AS K	JM, I S- /ED 'L	ALKA- LINITY LAB (MG/L AS CACO3	SULFA DIS- SOLV (MG/ ) AS SO	DIS- ED SOLVEI L (MG/L	(MG	E, S- VED /L
OCT 1991 01		42 13		2 <b>.</b> 2	7.0	3.	2	20	26	16	0	.1
JAN 1992 27		42 13			8.6	•		19	23	17		.2
APR 02						2.						
JUN -					7.6	2.		. 18	26	16		.3
18 AUG		53 13			11	3.		26	23	18		.2
12		49 16	•	2.1	7.8	3.	. >	19	20	14	U	.2
DATE	SILI DIS SOL (MG, AS SIO	- CONS VED TUEN /L DI SOL	OF NIT TI- GE TS, NITE S- TOT VED (MC	TRO- G EN, NIT RITE D TAL SC G/L (M	TRO- GEN, RITE DIS- DLVED IG/L GN)	NITR GEN NO2+N TOTA (MG/ AS N	1, 1 103 1L 'L	NITRO GEN, NO2+NO3 DIS- SOLVEI (MG/L AS N)	NITR GEN AMMON	, AMMONI/ IA DIS- L SOLVEI L (MG/L	GEN, MONI ORGA	AM- A + NIC AL /L
OCT_1991												
01 JAN 1992		.4	91 0.	.023 0	.020	0.7	<b>'</b> 1	0.71	0.09	0.15	0.80	
27 . APR	7	.9	89 0.	.013 0	.009	0.7	'8	0.71	0.27	0.22	0.64	
02	7	.8	92 0.	.016 0	.015	0.8	10	0.80	0.09	0.07	0.39	
18 AUG	7	.9	103 0.	040 0	.040	1.3	2	1.35	0.12	0.07	0.51	
12	6	.2	<b>85</b> 0.	072 0	.065	0.7	0	0.81	0.25	0.35	1.3	
DATE	NITE GEN, MONIA ORGAI DIS (MG, AS I	AM- A + NIT NIC GEI TOT/ /L (MG)	RO- GE N, DIS AL SOLV /L (MG	:- PHO 'ED TO i/L (M	OS- RUS TAL IG/L P)	PHOS PHORU DIS SOLV (MG/ AS P	ED S	CARBON, DRGANIO DIS- SOLVED (MG/L AS C)		IC SEDI- D MENT, L SUS- L PENDED		T, S- GE, S- DED
OCT 1991 01	0	.72 1	.5 1	.4 0	. 14	0.04		5.2	0.8	8	1.2	
JAN 1992												
27 APR					.10	0.19		3.5	0.8	3	0.6	ı
50 MUL					.06	<0.02		3.2	0.4	6	2.4	
18 AUG					. 15	0.06		4.9	0.5	9	0.9	Ú
12	0.	.70 2	.0 1	.5 0	.47	0.05		5.4	3.0	84	78	

## 01464500 CROSSWICKS CREEK AT EXTONVILLE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 18	1330	19	<1	<10	30	<1	<1	<1
DATE	IRON TOTA RECO ERAE (UG) AS	AĽ TOT. DV- REC BLE ERA /L (UG	AĽ TOT OV- REC BLE ERA /L (UG	E, MERC AL TOT OV- REC BLE ERA /L (UG	AL TOTA OV- RECO BLE ERAI /L (UG)	AL SELE OV- NIUM BLE TOTA /L (UG/	, RÉCO L ERAI L (UG)	AL OV- BLE /L
JUN 1992 18	9	950	<b>&lt;1</b>	150 <0	.10	3	<1 -	<10

This is a blank page

#### 01464515 DOCTORS CREEK AT ALLENTOWN, NJ

LOCATION.--Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond dam.

DRAINAGE AREA. -- 17.4 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Field data and samples for laboratory analyses provided by New Jersey Department of Environmental Protection and Energy. Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	INST. CI CUBIC CO FEET DU PER AM	PE- WA IFIC WH DN- FI JCT- (SI ICE A	TAND- A	MPER- ( TURE ATER EG C)	DXYGEN, DIS- SOLVED	DIS- DE SOLVED B (PER- CENT I SATUR- 5	IO- F CHEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / OO ML)
OCT 1991 03	1100	6.4	168	7.1	15.5	7.7	78	E2.3	2400	>2400
JAN 1992									50	
27 APR	1400	42	174	7.2	4.5	12.7	98	<1.2		30
02 JUN	1045	25	186	7.2	9.5	11.5	102	2.6	40	10
18 AUG 12	1045	4.6	181	7.0	22.0	6.8	78	E2.1	1300	450
12	1100	57	141	8.4	23.0	7.6	89	4.0	9200	••
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVE (MG/L	I, LINITY LAB D (MG/L . AS	SULFATE DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/L	
OCT 1991 03	44	11	4.1	7.9	4.3	23	18	18	0.3	
JAN 1992 27	32	8.0	3.0	6.1	2.2	! 17	16	14	0.2	
APR 02	46	5 11	4.4	9.7	2.5	14	27	23	0.3	
JUN 18	59	19	2.8	9.7	3.1	28	23	17	0.2	
AUG 12	51	14	3.9	6.3	4.0	24	17	14	. 0.3	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2+NC	NO2+NÓ 3 DIS- SOLVE (MG/L	NITRO- 3 GEN, AMMONIA D TOTAL (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L AS N)	- +
OCT 1991 03	7.8	90	0.031	0.025	1.08	0.91	0.39	0.25	1.2	
JAN 1992 27	6.2	71	0.029	0.023				0.28	0.75	
APR 02	5.9	97	0.019	0.012				0.08	0.73	
JUN	11									
18 <i>.</i> AUG 12 <i>.</i>		110 83	0.068	0.065				0.33	1.1	
12	6.3		0.044	0.034	0.54	0.54	0.22	0.22	1.5	
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO-	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGANI DIS- D SOLVED (MG/L		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDEI (T/DAY)	
OCT_1991				۸ ۵۰		, -				
03 JAN 1992	0.77		1.7	0.20	0.10	4.3	0.2	4	0.07	
27 APR	0.53		1.7	0.04	0.03	2.7	0.3	2	0.23	
02 Jun_	0.23		1.4	0.04	<0.02	2.0	0.5	5	0.34	
18 AUG_	0.71		2.2	0.07	<0.02	4.1	0.5	6	0.08	
12	0.88	2.1	1.4	0.61	0.14	4.7	3.7	107	16	

## 01464515 DOCTORS CREEK AT ALLENTOWN, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	10	AND, EM- AL ARSE IGH TO EL) (UC	LI TC ENIC RE TAL ER G/L (U	DTAL TO ECOV- RE RABLE EF JG/L (U	DTAL TO ECOV- RE RABLE ER JG/L (U	MIUM MI TAL TO COV- RE ABLE ER G/L (U	RO- UM, COPPER, ITAL TOTAL COV- RECOV- ABLE ERABLE IG/L (UG/L CR) AS CU)
JUN 1992 18	1045	14	<1 •	:10	40	<1·	<1 <1
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
JUN 1992 18	2400	<1	70	<0.10	2	<1	<10

#### 01464598 DELAWARE RIVER AT BURLINGTON, NJ

LOCATION.--Lat 40°04'42", long 74°52'28", Burlington County, Hydrologic Unit 02040201, on left bank at the intake canal of the Public Service Electric and Gas Company, 0.3 mi downstream from Burlington-Bristol Bridge, 1.4 mi downstream from Assiscunk Creek, and at river mile 117.54.

DRAINAGE AREA. -- 7,160 mi 2.

PERIOD OF RECORD.--July 1964 to current year. March 1921 to July 1926, January 1931 to November 1939, August 1951 to June 1954, July 1957 to June 1964, in files of Philadelphia District Corps of Engineers.

REVISED RECORDS. -- WDR NJ-76-1: 1973(m).

GAGE.--Water-stage recorder. Datum of gage is 12.90 ft below sea level. Prior to May 20, 1971, water-stage recorder at site 0.7 mi upstream at same datum. Gage-height record converted to elevation above or below (-) sea level for publication.

REMARKS.--No gage-height or doubtful record: Oct. 13-14, Oct. 23-25, Nov. 28 to Dec. 12, Feb. 9, Mar. 27 and Apr. 22-29. Summaries for months with short periods of no gage-height record have been estimated with little or no loss of accuracy unless otherwise noted. Some periods cannot be estimated and are noted by dash (--) lines.

EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation recorded, 8.74 ft, Oct. 25, 1980; minimum recorded, -6.86 ft, Nov. 21, 1989.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum elevation known, 10.8 ft, Aug. 20, 1955, from high-water mark at site 1.4 mi upstream; minimum, -9.1 ft, Dec. 31, 1962, at present site.

EXTREMES FOR CURRENT YEAR. -- Maximum elevation recorded, 7.42 ft, June 6; minimum recorded, -4.96 ft, Jan. 16.

Summaries of tide elevations during current year are as follows:

#### TIDE ELEVATIONS, IN FEET, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
Maximum	Elevation	7.34	6.77	e6.15	6.81	5.91	6.37	6.01	6.39	7.42	6.67	6.82	6.87
high tide	Date	31	24	3	4	88	11	30	6	6	3	29	26
Minimum	Elevation	-2.95	-3.15	-4.23	-4.96	-4.22	-3.22	-2.65	-2.82	-2.73	-2.70	-3.11	-3.33
low tide	Date	7	26	19	16	29	2	5	19	22	28	29	23
<u>Mean high ti</u>	de	5.05	4.88		4.54	4.55	4.69	5.16	5.24	5.82	5.59	5.44	5.30
Mean water l	evel	1.60	1.40	• • •	1.06	1.11	1.35	1.86	1.66	2.12	1.90	1.66	1.66
Mean low tid	le	-1.94	-1.94	•••	-2.29	-2.19	-1.85	-1.37	-2.18	·1.61	-1.81	-2.22	-2.30

e Estimated.

#### 01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ

LOCATION.--Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, at bridge on Lumberton-Vincentown Road at Vincentown, 2.9 mi southeast of Lumberton, and 3.1 mi upstream from Southwest Branch.

DRAINAGE AREA. -- 64.5 mi².

PERIOD OF RECORD. -- Water years 1925, 1959-62, 1975 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE  NOV 1991 14 JAN 1992 21 MAR 16 MAY 20	CH/ IN CU TIME	NST. CI JBIC CO FEET DU PER AN	E- WA FIC WH N- FI CT- (ST	H TER OLE ELD TEN AND AT	1PER- OX TURE S	OX YGEN, ( DIS- OLVED S	YGEN, OX DIS- DE OLVED E PER- C CENT I	YGEN MAND, C IO- F CHEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / 00 ML) 46 30 <10
JUL										
16	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLVED (MG/L	(MG/L	D.
NOV 1991 14 JAN 1992 21 MAR 16	20 22 22	5.2 5.9 6.1	1.6 1.7 1.7	5.0 5.3 4.8	2.0 1.7 1.5	4.8 6.8 5.3	14 19 15	9.7 10 8.1	0.2 0.2 0.2	!
MAY 20	16	4.5	1.2	5.0	1.5	4.3	10	8.2	<0.1	
JUL										
16	16	4.4	1.2	4.3	1.5	6.7	10	6.6	<0.1	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONÍA	AMMON Ì A	GEN, AM MONIA ORGANI	-  -  C
NOV 1991 14 JAN 1992	7.4	48	0.006	0.004	0.45	••	0.14	0.15	0.49	
21 MAR	6.3	57	0.014	0.012	0.65	0.64	0.05	0.05	0.54	
16	4.2	48 -	0.010	0.010	0.58	0.62	0.08	0.07	0.48	
MAY 20	3.5	38	0.012	0.010	0.39	0.36	0.07	0.05	0.74	
JUL 16	4.4	. 39	0.016	0.009	0.55	0.52	0.17	0.21	1.0	•
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)			, D
NOV 1991 14	0.44	0.94		0.06	0.05	. 0.4	0.4	4	0.76	
JAN 1992						9.6	0.6			
21 MAR	0.43	1.2	1.1	0.11	0.05	7.1	0.7	5	0.20	
16 MAY	0.41	1.1	1.0	0.08	0.14	6.9	0.3	4	0.65	
20 JUL	0.55	1.1	0.91	0.17	0.09	10	1.0	13	1.5	
16	0.71	1.6	1.2	0.25	0.18	12	2.8	13	1.1	

## 01465850 SOUTH BRANCH RANCOCAS CREEK AT VINCENTOWN, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	(MG/K	14 GEN, I + ORI T. TOT BOT I G (MG)	NH4 PHOR G. TOT IN IN B MAT MA /KG (MG/	US INOI AL GAN OT. TOT T. BOT I KG (G/I	R- INOR IC, ORGA IN TOT. MAT BOT (G (GM/	G + INIC IN ARSE MAT TOT KG (UG	AL TERIAL
NOV 1991 14 MAY 1992 20	1030 0800		<1 _.		6. 	.5 530			).1 	7.3 -	- 3 <1
DAT	L T( RI EI E ((	DTAĽ T ECOV- R RABLE E JG/L (	OTAL TO ECOV- RE RABLE ER UG/L (L	DMIUM R DTAL FM ECOV- TO RABLE T JG/L (	DMIUM ECOV. BOT- M MA- ERIAL UG/G S CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
NOV 199		••	• •		<1	••	7	<5		10	••
MAY 199 20		<10	20	<1		2			2		1800
DAT	RI FM TOI TI E (I	BOT- T M MA- R ERIAL E JG/G (	EAD, RE OTAL FM ECOV- TOM RABLE TE UG/L (L	COV. N BOT- T I MA- R RIAL E IG/G (I		MANGA- NESE, RECOV. FM BOT- FOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
NOV 199 14	1 ·	4200		20		<10		0.04		<10	
MAY 199 20	2	4200	2		50		<0.10		3		<1
DAT	NI TO IN TOM E TE	DTAĹ T BOT- R M MA- E ERIAL (	ZI INC, RE OTAL FM ECOV- TOM RABLE TE UG/L (U	BOT- TO IMA- IN RIAL TO IG/G TI	PCB, OTAL BOT- I M MA- T ERIAL	PCN, TOTAL N BOT- OM MA- TERIAL UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
NOV 199	1	<1		40	24	<1.0	<0.1	4.0	6.0	3,1	0.5
MAÝ 199 20	2		20								
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA CHLOR EPOXID TOT. I BOTTO MATL (UG/KG	E LINDA DE TOTA N IN BO DM TOM N TERI	AL CHLO DT- TOT. MA- BOT' MAL MA'	- MIRE OR, TOTA IN IN BO TOM TOM N TL. TERI	NL THAI DT- IN BO MA- TOM I AL TERI	NE TOT OT- IN B MA- TOM AL TER	NE, TOT REC AL FROM BOT- OT- TOM MAT- MA- TERIAL IAL (UG/G)
NOV 1991 14	0.1	<0.1	<0.1	<0.1	<1.	0 <0	0.1 <10	0 <0	).1 <1	.00 <10	1.73
MAY 1992 20	••				•						

## 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ (Hydrologic bench-mark station)

LOCATION.--Lat 39°53'05", long 74°30'20", Burlington County, Hydrologic Unit 02040202, on right bank in Lebanon State Forest, 25 ft upstream from Butterworth Road Bridge, 3.4 mi upstream from confluence with Cooper Branch, and 7.0 mi southeast of Browns Mills.

DRAINAGE AREA.--2.35 mi².

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1953 to current year. Prior to October 1962, published as "McDonald Branch in Lebanon State Forest".

REVISED RECORDS.--WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 117.73 ft above sea level (levels from New Jersey Geological Survey bench mark).

REMARKS.--Records fair. Gage-height record is collected above concrete control and discharge record, which includes leakage around control, is measured at site 785 ft downstream. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 7.0 ft³/s and maximum (*):

Date	Time	D	ischarge (ft ³ /s)	Gage	height (ft)		Date	Time	Dis	scharge ft ³ /s)	Gaç	ge height (ft)
July 31 Aug. 1	2130 1115		11 12		1.85 1.89		Aug. 18	0915		*15	•	1.97
		DISCH	IARGE, CUBI	C FEET PEI	R SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER	1991	TO SEPTEMBE	R 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.2 1.2 1.1 1.1	1.0 1.0 1.0 1.0	1.0 1.1 1.4 1.6 1.4	1.3 1.2 1.2 1.3 1.4	1.2 1.1 1.1 1.1	1.4 1.4 1.4 1.4	1.6 1.7 1.6 1.6 1.7	1.6 1.6 1.6 1.6	1.4 1.3 1.2 1.2	1.3 1.3 1.3 1.8 1.6	9.3 5.3 3.4 2.7 2.3	2.1 2.0 2.4 2.5 2.3
6 7 8 9 10	1.2 1.1 1.1 1.1	1.0 1.0 1.0 1.0	1.3 1.2 1.2 1.2	1.3 1.3 1.3 1.2	1.1 1.1 1.1 1.1	1.4 1.5 1.4 1.3 1.3	1.6 1.6 1.6 1.6	1.5 1.5 1.5 1.4 1.4	2.2 2.5 2.1 1.8 1.6	1.4 1.3 1.3 1.3	2.1 2.0 1.9 1.9	2.1 2.1 1.9 1.9
11 12 13 14 15	1.1 1.1 1.1 1.1	1.2 1.1 1.1 1.1	1.3 1.3 1.3 1.3	1.2 1.2 1.2 1.2 1.2	1.1 1.1 1.1 1.1 1.1	1.4 1.3 1.3 1.2 1.2	1.6 1.6 1.6 1.6	1.3 1.3 1.2 1.2	1.5 1.4 1.4 1.4 1.3	1.4 1.2 1.1 1.1	1.9 2.1 1.9 2.1 2.3	e2.2 e2.2 e2.1 e2.0 e2.0
16 17 18 19 20	1.1 1.3 1.3 1.2 1.2	1.1 1.0 1.0 1.0	1.3 1.3 1.3 1.3	1.2 1.2 1.2 1.2 1.2	1.3 1.3 1.2 1.2	1.2 1.2 1.5 1.4	1.6 1.6 1.6 1.6	1.3 1.3 1.2 1.2	1.3 1.3 1.3 1.8 1.8	1.1 1.0 1.0 1.0	2.8 4.9 12 6.6 4.1	e2.0 e1.9 e1.9 e1.8 e1.9
21 22 23 24 25	1.1 1.1 1.1 1.1	1.0 1.1 1.2 1.1	1.2 1.2 1.2 1.2	1.1 1.1 1.2 1.3	1.2 1.2 1.2 1.2	1.4 1.3 1.4 1.4	1.6 1.6 1.6 1.6	1.2 1.2 1.2 1.2	1.6 1.4 1.4 1.4	1.8 2.0 2.1 2.2 2.6	3.3 2.8 2.6 2.5 2.4	e1.9 e1.9 e2.0 e1.8 e1.9
26 27 28 29 30 31	1.1 1.1 1.1 1.1 1.0	1.0 1.0 1.0 1.0	1.2 1.2 1.2 1.3 1.4 1.3	1.2 1.2 1.2 1.2 1.2	1.3 1.3 1.4 1.4	1.5 1.7 1.6 1.5 1.6	1.6 1.6 1.6 1.6	1.2 1.2 1.2 1.2 1.1	1.4 1.3 1.3 1.3	2.1 1.8 1.7 1.5 1.4 4.0	2.3 2.5 2.6 2.4 2.3 2.2	e3.0 e3.0 e3.2 2.2 1.9
TOTAL MEAN MAX MIN CFSM IN.	34.9 1.13 1.3 1.0 .48	31.2 1.04 1.2 1.0 .44	39.4 1.27 1.6 1.0 .54	37.8 1.22 1.4 1.1 .52	34.2 1.18 1.4 1.1 .50	43.3 1.40 1.7 1.2 .59	48.2 1.61 1.7 1.6 .68 .76	40.8 1.32 1.6 1.1 .56	45.2 1.51 2.5 1.2 .64	48.7 1.57 4.0 1.0 .67	101.4 3.27 12 1.9 1.39 1.61	64.0 2.13 3.2 1.8 .91
STATIST							BY WATER YE					
MEAN MAX (WY) MIN (WY)	1.62 4.45 1959 .87 1989	1.79 4.82 1973 .95 1986	2.08 5.75 1973 1.00 1966	2.34 4.78 1973 .98 1981	2.45 5.69 1973 1.13 1989	2.86 5.67 1979 1.25 1966	2.93 5.74 1984 1.24 1985	2.66 5.65 1958 1.24 1985	2.24 5.35 1979 1.19 1985	1.93 4.15 1958 1.00 1977	1.91 5.65 1958 .91 1988	1.72 4.31 1958 .89 1988

DELAWARE RIVER BASIN

### 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1954 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	710.1 1.95 10 Jan 12 1.0 Oct 30	569.1 1.55 12 Aug 18 1.0 Oct 30	2.21 3.85 1973 1.19 1966 20 Feb 28 1958 .71 Sep 21 1985 .73 Sep 17 1985
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.0 Oct 30 .83 11.24 3.0 1.5 1.1	1.0 Oct 30 15 Aug 18 1.97 Aug 18 1.0 Jul 18 .66 9.01 2.1 1.3 1.1	.73 Sep 17 1985 35 Aug 25 1958 2.33 Aug 25 1958 .94 12.77 3.7 1.9

e Estimated.

### 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1963 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1968 to September 1992 (discontinued).
PH: October 1984 to September 1992 (discontinued).
WATER TEMPERATURE: October 1960 to September 1992 (discontinued).
DISSOLVED OXYGEN: October 1984 to September 1992 (discontinued).

INSTRUMENTATION. -- Temperature recorder since October 1960, water-quality monitor since October 1968.

REMARKS.--Water-quality samples were collected at the weir. Interruptions in the daily record were due to malfunctions of the instrument. Monitor probes are located about 1.5 ft below water surface about 10 ft upstream of v-notch weir. Chemical analyses are from samples collected as water flows over the weir.

EXTREMES FOR PERIOD OF DAILY RECORD. -SPECIFIC CONDUCTANCE: Maximum, 182 microsiemens, June 16, 1969; minimum, 19 microsiemens, Aug. 25, 1979,
Nov. 14, 1985.
pH: Maximum, 5.4, Nov. 1, 1985; minimum, 3.6, on several days in water years 1987 and 1988.
pH: Maximum, 5.4, Nov. 1, 1985; minimum, 3.6, on several days in water years during winter months.
DISSOLVED OXYGEN: Maximum, 22.0 °C, Aug. 1, 1970; minimum, 0.0 °C, on many days during winter months.
DISSOLVED OXYGEN: Maximum, 11.0 mg/l, Jan. 12, 1991; minimum, 1.0 mg/l, Oct. 12, 1990,
Sep. 18, 1991.

EXTREMES FOR CURRENT YEAR...

SPECIFIC COMDUCTANCE: Maximum, 117 microsiemens, Jun. 8; minimum, 30 microsiemens, Oct. 7-9,11,17.

pH: Maximum, 4.7, Oct. 7; minimum recorded, 3.9, on several days during June and August, but may have been lower during instrument malfunction July 7-Aug. 6.

WATER TEMPERATURE: Maximum recorded, 19.5 °C, Aug. 19, but may have been higher during instrument malfunction July 7-Aug. 6; minimum, 2.0 °C, Jan. 27.

DISSOLVED OXYGEN: Maximum 6.9 mg/l, Mar. 24,26; minimum recorded, 1.6 mg/l, Nov. 2,3, but may have been lower during instrument malfunction July 7-Aug. 6.

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
OCT_1991												
29 NOV	0915	1.1	34	4.4	11.0	2.1	2.1	19	0	40	2	0.31
24	0945	1.0	39	4.3	8.0	0.50	2.8	24	<1	22	2	0.34
DEC 30 JAN 1992	1130	1.4	50	4.2	5.0	0.50	6.3	49	K1	22	3	0.49
20,77	1200	1.2	46	4.2	3.5	0.60	6.3	47	<1	<1	3	0.47
FEB 25	0930	1.2	47	4.3	6.0	0.50	5.1	41	<1	25	4	0.55
30	1600	1.6	68	4.2	6.0	0.70		59	0	38	5	0.79
28	1230	1.6	39	4.3	11.0	0.50	••	43	<1	80	3	0.50
MAY 26	1315	1.2	36	4.4	12.0	0.60	3.3	31	K1	22	2	0.33
JUL 07 28	1115 0830	1.4 1.7	45 55	4.2 4.1	15.5 17.5	0.40 1.0	3.2 2.5	32 26	K3 8	K8 6	3 3	0.45 0.50
AUG 25	1030	2.4	53	4.1	16.0	1.0	2.7	27	К1	0	3	0.52
SEP 29	0820	2.3	53	4.1	15.0	0.30	2.9	. 29	9	30	2	0.35

# 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED	TOT FET FIELD MG/L AS	SULFATE R DIS- D SOLVED S (MG/L (	RIDE, DIS- SOLVED MG/L		SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT 1991	0.31	1.7	0.20	<1	2.2	3.7	<0.1	4.3	<0.01	0.02	<0.05	0.06
NOV 26	0.34	1.7	0.20	<1	3.3	3.2	0.2	4.5	<0.01	<0.01	<0.05	<0.05
DEC 30	0.50	2.0	0.30	<1	6.3	3.5	0.1	4.9	<0.01	<0.01	<0.05	<0.05
JAN 1992 28	0.56	1.9	0.30	<1	4.5	3.2	0.2	4.4	<0.01	<0.01	<0.05	<0.05
FEB 25	0.55	2.0	0.20	<1	4.5	2.8	<0.1	4.5	<0.01	<0.01	<0.05	<0.05
MAR 30	0.73	2.3	0.40	<1	8.5	3.4	0.2	4.3	<0.01	<0.01	<0.05	<0.05
APR 28	0.45	1.8	0.30	<1	4.4	3.7	<0.1	4.1	<0.01	<0.01	<0.05	<0.05
MAY 26 Jul	0.35	1.9	0.20	<1	3.2	3.5	<0.1	4.0	<0.01	<0.01	<0.05	<0.05
07 28	0.41 0.42	2.2 1.8	0.20 0.10	<1 <1	4.1	3.5 3.3	<0.1 <0.1	4.0 3.6	<0.01 <0.01	<0.01 <0.01	<0.05 <0.05	<0.05 <0.05
AUG 25	0.30	1.6	<0.10	<1	2.6	2.9	<0.1	3.3	<0.01	<0.01	<0.05	<0.05
SEP 29	0.29	1.6	<0.10	<1	2.8	3.8	<0.1	3.6	<0.01	<0.01	<0.05	<0.05
DATE	NITI GE AMMOI TOTA (MG AS	N, AMMON NIA DIS AL SOLV /L (MG/	GEN,A IA MONIA - ORGAN ED TOTA L (MG/	M- + PHOS- IC PHORUS L TOTAL L (MG/L	DIS- SOLVED (MG/L	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO DIS- SOLVED (MG/L AS P)	CARBO O, ORGAI DIS	NIC SED - MEN ED SUS /L PEN	T, CHAR - SU: DED PENI	T, SL S- SIE GE, DI S- % FI DED TH	AM. NER IAN
OCT 1991 29	GE AMMOI TOT/ (MG)	RO- GEN N, AMMON NIA DIS AL SOLV /L (MG/ N) AS N	GEN,A IA MONIA - ORGAN ED TOTA L (MG/ ) AS N	M- + PHOS- IC PHORUS L TOTAL L (MG/L ) AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO TOTAL (MG/L	PHORUS ORTHO DIS- SOLVED (MG/L	CARBO ORGA DIS SOLVI (MG, AS	NIC SED - MEN ED SUS /L PEN	MEN I- DI T, CHAR - SU DED PEN /L) (T/D	T, SL S- SIE GE, DI S- % FI DED TH	JSP. EVE AM. NER JAN
OCT 1991 29 NOV 26	GE AMMOI TOT/ (MG AS I	RO- GEN N, AMMON NIA DIS AL SOLV /L (MG/ N) AS N	GEN,A IA MONIA ORGAN TOTA L (MG/ ) AS N	M- + PHOS- IC PHORUS L TOTAL L (MG/L ) AS P)	PHORUS DIS- SOLVED (MG/L AS P)  <0.01	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS ORTHO DIS- SOLVED (MG/L AS P)	CARBO ORGA DIS SOLVI (MG AS	NIČ SED - MEN ED SUS /L PEN C) (MG	I - DI T, CHAR - SU DED PENI /L) (T/D	T, SL S- SIE GE, DI S- % FI DED TH AY) .062	ISP. EVE AM. NER IAN
OCT 1991 29 NOV 26 DEC 30	GE AMMOI TOT. (MG AS I	RO- GEN N, AMMON NIA DIS AL SOLV /L (MG/ N) AS N 04 0.0	GEN, A MONIA ORGAN TOTA L (MG/) AS N 2 <0.	M- + PHOS- IC PHORUS L TOTAL L (MG/L) AS P) 2 <0.01	PHORUS DIS- SOLVED (MG/L AS P)  <0.01  <0.01	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS ORTHO DIS- SOLVED (MG/L AS P)	CARBIO ORGAI DIS SOLVI (MG, AS	NIC SED - MEN ED SUS /L PEN C) (MG	MEN I - DI: T , CHAR: DED PEN /L) (T/D) 2 0 1 0	f, SL S- SIE GE, DI S- % FI DED TH AY) .062	ISP. IVE AM. NER IAN MM 63
OCT 1991 29 NOV 26 DEC 30 JAN 1992 28	GE AMMOI TOT. (MG AS I	RO- GEN AMMON NIA DIS AL SOLV /L (MG/ N) AS N 04 0.0 02 <0.0	GEN, A MONIA ORGAN TOTA L (MG/) AS N  2 <0.1 <0.1	M- + PHOS- IC PHORUS L TOTAL L (MG/L) ) AS P) 2 <0.01 2 <0.01	PHORUS DIS- SOLVED SOLVED (MG/L AS P)  <0.01 <0.01 <0.01	PHORUS ORTHO TOTAL (MG/L AS P) 0.01	PHORUS ORTHO DIS- SOLVED (MG/L AS P) 0.01	CARBO ORGA DIS SOLVI (MG AS	NIC SED - MEN ED SUS /L PEN (C) (MG	I- DI: T, CHARR - SU: DED PENI/L) (T/D) 2 0 1 0	T, SL S- SIE GE, DI S- % FI DED TH AY) .062	ISP. VE AM. NER IAN 63 75
OCT 1991 29 NOV 26 DEC 30 JAN 1992 28 FEB 25	GE AMMOI TOT. (MG AS I	RO- GEN N AMMON NIA DIS AL SOLV /L (MG/ N) AS N 04 0.0 02 <0.0 01 <0.0	GEN, A MONIA ORGAN TOTA (MG/) AS N  2 <0.1 <0.1 <0.1	M- + PHOS- IC PHORUS L TOTAL L (MG/L) ) AS P) 2 <0.01 2 <0.01 2 <0.01	PHORUS DIS- SOLVED (MG/L AS P)  <0.01 <0.01 <0.01 <0.01	PHORUS ORTHO TOTAL (MG/L AS P) 0.01 0.01 <0.01	PHORUS ORTHO DIS- SOLVED (MG/L AS P)  0.01 <0.01	CARBIO ORGAI DIS SOLVI (MG, AS (	NIĆ SED - MEN ED SUS /L PEN (MG	I - DI - T - CHAR - SU - CHAR - SU - CT - CT - CT - CT - CT - CT - CT - C	T, SL S- SIE GE, DI S- % FI DED TH AY) .062	ISP. IVE AM. NER IAN MM 63 75
OCT 1991 29 NOV 26 DEC 30 JAN 1992 28 FEB 25 MAR 30	GE AMMOI TOTI (MG AS I 0.1 0.1	RO- GEN AMMON DIS AL SOLV (MG/N) AS N 04 0.0 02 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 0	GEN, A MONIA ORGAN TOTA (MG/) AS N 2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	M- + PHOS- IC PHORUS L TOTAL L (MG/L) ) AS P) 2 <0.01 2 <0.01 2 <0.01 2 <0.01	PHORUS DIS- SOLVED (MG/L AS P)  <0.01 <0.01 <0.01 <0.01 <0.01	PHORUS ORTHO TOTAL (MG/L AS P) 0.01 0.01 <0.01	PHORUS ORTHO DIS- SOLVED (MG/L AS P) 0.01 <0.01 <0.01	CARBIO ORGAI DIS SOLVI (MG AS (2 2 3	NIĆ SED - MEN ED SUSS /L PEN (C) (MG	I- DI T, CHARR SU PEN PEN PEN PEN PEN PEN PEN PEN PEN PEN	F, SIE GE, SIE GE, FI S- % FI DED TH AY) .062	ISP. IVE AM. NER IAN 63 75 100 67
OCT 1991 29 NOV 26 DEC 30 JAN 1992 28 FEB 25 MAR 30 APR 28	GE AMMOI TOTY (MG AS I 0.1 <0.1	RO- GEN AMMON NIA DIS AL SOLV /L (MG/ N) AS N 04 0.0 02 <0.0 01 <0.0 01 <0.0 01 <0.0	GEN, A MONIA ORGAN TOTA (MG/) AS N  2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	M- + PHOS- IC PHORUS L TOTAL L (MG/L) ) AS P) 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01	PHORUS DIS- SOLVED (MG/L AS P)  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02	PHORUS ORTHO TOTAL (MG/L AS P) 0.01 0.01 <0.01 <0.01	PHORUS ORTHO DIS- SOLVED (MG/L AS P) 0.01 <0.01 <0.01	CARBIO ORGAI DIS SOLVI (MG, AS (	NIĆ SED - MEN SUSS /L PEN (MG .7 .1 .3	I - DI - T - CHAR - SU: DED PENI/L) (T/D)  2 0 1 0 <1 0 1 0 <1 0 1 0 1 0	T, SL SE, SIE GE, DI SS- % FI DED TH AY) .062	ISP. IVE AM. NER IAN MM  63 75 100 67
OCT 1991 29 NOV 26 JAN 1992 28 FEB 25 MAR 30 APR 28 MAY 26	GE AMMOI TOTI (MG AS I 0.1 <0.1 <0.1	RO- GEN AMMON NIA DIS SOLV (MG/N) AS N 04 0.0 02 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0	GEN, A MONIA ORGAN TOTA (MG/) AS N 2 <0.1 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11 <0.11	M- + PHOS- IC PHORUL L (MG/L) ) AS P) 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01	PHORUS DIS- SOLVED SOLVED O O O O O O O O O O O O O O O O O O O	PHORUS ORTHO TOTAL (MG/L AS P) 0.01 0.01 <0.01 <0.01 <0.01	PHORUS ORTHO DIS- SOLVED (MG/L AS P) 0.01 <0.01 <0.01 <0.01	CARBIO ORGAI DIS SOLVI (MG AS 2 2 3 2 3	NIC SED MEN MEN SUSS /L PEN (MG .7 .1 .3 .1 .3 .1 .3 .8	I - DI - T - CHART - SU' - PEN   CT / DI - T - CHART - SU' - PEN   CT / DI - T - CHART - SU' - PEN   CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT / DI - CT /	7, SLE GE, SIE GE, FI DED THAY) .062 .01 .00 .00	ISP. IVE AM. NER IAN 63 75 100 67 100 80
OCT 1991 29 NOV 26 DEC 30 JAN 1992 28 FEB 25 MAR 30 APR 28 MAY 26 JUL 07 28	GE AMMOI TOTY (MG AS I 0.1 <0.1	RO- GEN AMMON DIS SOLV /L (MG/N) AS N 04 0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 0	GEN, A MONIA ORGAN (MG/) AS N  2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.3 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	M- + PHOS- IC PHORUL IC PHORUL I (MG/L) ) AS P) 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01	PHORUS DIS- SOLVED (MG/L AS P)  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	PHORUS ORTHO TOTALL (MG/L AS P) 0.01 0.01 <0.01 <0.01 <0.01 <0.01	PHORUS ORTHO DIS- SOLVED (MG/L AS P)  0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	CARBIO ORGAI DIS SOLVI AS C	NIC SED MEN SUSS PEN (MG .7 .1 .3 .1 .3 .8 .6	I - DI - T - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - SUI - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART - CHART	T, SLE GE, DI S- % FI DED TH AY) .062	ISP. IVE AM. NER IAN 1 MM 63 75 100 67 100 80 100
OCT 1991 29 NOV 26 JAN 1992 28 FEB 25 MAR 30 APR 28 MAY 26 JUL 07	GE AMMOI TOTY (MG AS I 0.1 <0.1 <0.1	RO- GEN AMMON NIA DIS SOLV /L (MG/N) AS N 04 0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0.0 01 <0	GEN, A MONIA ORGAN TOTAL (MG/) AS N  2 <0.1 <0.1 <0.1 <0.1 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	M- + PHOS- IC PHORUS L TOTAL L (MG/L) ) AS P) 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01 2 <0.01	PHORUS DIS- SOLVED (MG/L AS P)  <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	PHORUS ORTHO TOTALL (MG/L AS P) 0.01 0.01 <0.01 <0.01 <0.01 <0.01 <0.01	PHORUS ORTHO DIS- SOLVED (MG/L AS P)  0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	CARBIO ORGAL DIS SOLVI (MG, AS (	NIC SED MEN ED SUSS /L PEN (MG .7 .1 .3 .1 .3 .8 .6 .4	I - MEN DI : T - CHART SU: DED PENI/L) (T/D)  2	T, SLE GE, SIE GE, % FI S- % FI S- % FI OED TH AY) .062 .01 .00 .00 .00 .00 .00	ISP. IVE AM. NER IAN 63 75 100 67 100 80 100 100 60

DELAWARE RIVER BASIN

# 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	1	IME	SOL (UC	JM, IS- LVED	DI: SOL' (U		COBA DIS SOLV (UG AS	ED	IRON, DIS- SOLVED (UG/L AS FE)	SOL (U)	S- VED	MANO NESI DIS SOLY (UG, AS I	E, DI S- I VED SI /L (I	OLYB- ENUM, DIS- OLVED UG/L S MO)	NICK DIS SOL (UG AS	EL, I - VED S	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)
ОСТ 1991 29	C	915		50		8		<3	220		<4		9	<10		<1	<1	<1.0
NOV 26	c	945		50			-		120		-		•		-	•	• •	••
DEC 30	1	130		80			-	•	110		•	•	•		-	-		
JAN 1992 28	1	200		60		10		<3	74		<4		13	10		<1	<1	<1.0
FEB 25	. 0	930		60			-	•	71	-	•	-	-				••	
MAR 30	1	600		140			-	•	94		•	-	-		-	-	••	••
APR 28 MAY	1	230		70		10		<3	100		<4		13	<10		<1	<1	<1.0
26 JUL	1	315		60			-	•	130		•	-	•	••	-	-	••	••
·07 28		115 830		110 210		 13	-	<3	230 530	. •	- <4	-	- 14	 <10	-	- <1	 <1	 <1.0
AUG 25	1	030		20			•	-	690	-	•	•	-		•	•		••
	DATE	9	STRON- TIUM, DIS- SOLVED (UG/L	D : C S()	ANA- IUM, DIS- DLVED JG/L S V)	A S ()	ROSS LPHA, DIS- OLVED UG/L AS	GROS ALPI SUSI TOT/ (UG, AS U-N/	HA, B P. AL S /L (P	ROSS ETA, DIS- OLVED CI/L AS -137)	SOL (PO AS		GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137	BE SU TO (F	ROSS TA, USP. DTAL PCI/L S SR/	RADIL 226, DIS- SOLVED RADON METHO (PCI/L	UR/ NA1 ), [ I SO DD (L	ANIUM FURAL DIS- DLVED JG/L S U)
OCT 1	1991		4		<6					••		. •	••					
NOV 26.								-	•									•••
DEC 30	:::-		••				0.8	<(	0.6	1.0		0.9	<0.6	6	<0.6	0.2	20	0.01
JAN 1 28	1992		5		<6			-				•				••		• •
FEB 25.	• • •		••					-	•	••								
MAR . 30. APR	• • •		••		••		• •	-	-		-	•						••
28. MAY	• • •		6		<6		••		•		-	•	••		••			••
ÜŽ6. JUL	• • •		••		••		• •	•	-	••	•	•	••		••			
07. 28. AUG	• • •		7		··· <6		<0.6	<( -	0.6	<0.6		6.0	<0. <i>6</i>	5	<0.6	0.2	23	<0.01 

DELAWARE RIVER BASIN 425 .

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	SPEC	IFIC CON	DUCTANCE	(MICROSIE	MENS/CM	AT 25 DEG.	C), WATE	ER YEAR	OCTOBER	1991 TO SE	PTEMBER	1992
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	,
1 2 3 4 5	36 35 35 33 32	35 34 32 32 31	35 35 33 32 31	35 35 36 35 35	34 34 34 34 34	34 34 35 35 35	40 56 94 97 72	39 40 54 64 60	39 41 66 76 65	51 50 49 65 56	49 48 48 48 53	50 49 49 55 54
6 7 8 9 10	32 33 33 32 32	31 30 30 30 31	31 32 32 31 31	36 36 37 37 38	34 35 35 36 36	35 35 36 36 37	61 56 53 52 86	55 53 51 50 55	58 54 52 51 65	55 54 52 51 50	53 52 51 50 49	54 52 51 50 49
11 12 13 14 15	31 33 33 35 32	30 31 31 31 31	31 32 32 33 33	41 41 40 40 40	36 40 39 39 39	39 40 40 40 40	60 56 54 60 55	56 54 52 51 53	58 55 53 53 54	49 49 48 49 49	48 48 48 48	49 49 48 48 48
16 17 18 19 20	33 37 38 38 37	31 30 37 36 35	31 33 38 37 36	40 40 40 40 40	39 39 39 39 39	40 40 39 40 40	55 55 53 52 51	53 52 51 50 49	54 54 52 51 50	48 48 47 47 46	47 46 46 45 45	48 47 46 46 45
21 22 23 24 25	37 36 35 35 35	34 34 34 34 33	36 35 34 34 34	40 42 42 41 40	39 39 40 39 39	40 40 41 40 39	50 50 49 48 48	49 48 48 47 47	49 49 48 48 47	46 45 47 48 47	44 44 46 46	45 45 47 47
26 27 28 29 30 31	34 33 33 36 36 36	33 33 32 33 34 34	33 33 32 34 35 35	39 39 39 39 39	38 38 38 38 38	39 38 38 39 39	48 47 47 56 52 52	47 46 46 46 50 50	47 47 46 50 51 51	47 47 47 46 46 46	46 46 45 45 45 45	46 46 46 45 45
				40	-,	38	97	39	53	65	44	48
MONTH	38	30	33	42	34	30	71	3,	,,,	0,	44	40
MONTH	38 MAX	30 Min	33 MEAN	42 MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
			MEAN				MAX					
		MIN	MEAN		MIN		MAX	MIN			MIN	
DAY	MAX	MIN FEBRUARY 45 44 44	MEAN	MAX 48 47 47 47	MIN MARCH 47 46	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY 42 41 41 40 39	MEAN
1 2 3 4 5	MAX 45 45 45 45	MIN FEBRUARY 45 44 44 44 44	MEAN 45 45 45 44 44	48 47 47 47 46 46	MIN MARCH 47 46 46 45 45	MEAN  47 47 47 46 46 46 45	65 63 62 60 59	MIN APRIL 62 61 59 57 56	63 62 61 59	MAX 44 43 42 40 41 39 41	MIN MAY 42 41 41 40	MEAN  43 42 42 41 40 39 39
1 2 3 4 5 6 7 8 9 10	MAX 45 45 45 45 45 44 44 44 43	MIN FEBRUARY 45 44 44 44 43 43 43 43 43	MEAN  45 45 45 44 44 43 43 43 43	48 47 47 47 46 46 49 49	MIN 47 46 46 45 45 45 45 47 46 46	MEAN  47 47 47 46 46 45 47 48 47	65 63 62 60 59 56 55 53	MIN APRIL 62 61 59 57 56 54 53 52 50	63 62 61 59 57 55 54 53 52	MAX 44 43 42 42 40 41 39 41 41 45	MIN MAY 42 41 40 39 38 38 39 40 40	MEAN  43 42 42 41 40 39 39 40 41 42
DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 15	MAX 45 45 45 45 45 44 44 43 43 43 422	MIN FEBRUARY 45 44 44 44 43 43 43 43 43 42 42 42 42 41 41	MEAN 45 45 44 44 44 43 43 43 43 43 43 43 43 43	48 47 47 47 46 46 49 49 47 47 51 50 50	MIN  MARCH  47  46  45  45  45  47  46  47  49  48  47	MEAN  47 47 47 46 46 45 47 47 47 48 47 50 50 49 48	MAX 655 633 620 659 565 555 553 51 522 499 488	MIN APRIL 62 61 59 57 56 54 53 52 50 50 49 48 47 47	MEAN 632 611 597 554 532 51 500 488 488 47	MAX  44 43 42 40 41 39 41 45 44 43 42 42 42	MIN MAY 42 41 41 40 39 38 38 39 40 42 41 41	MEAN  43 42 42 41 40 39 39 40 41 42 43 42 41 41
DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	MAX 455545 444443 433432 649949	MIN FEBRUARY 45 44 44 43 43 43 42 42 42 42 41 41 49 48 48 48	MEAN 45 45 45 44 44 443 433 43 42 42 42 43 49 49	MAX 48 47 47 46 46 49 47 47 47 47 48 48 48 73 54	MIN  MARCH  47 466 455 455 457 466 47 499 488 47 476 456 52	MEAN  47 47 47 46 46 45 47 47 50 50 50 48 47 47 53 53	MAX 65 63 62 65 55 55 55 55 51 52 49 48 48 48 48 48 48	MIN APRIL 62 611 59 57 56 54 532 50 50 49 48 47 46 46 46 46 46 46	MEAN  63 62 61 59 57 554 552 51 50 48 48 47 47 47 47	MAX 44 43 42 40 41 39 41 45 44 43 42 41 41 41 40	MIN MAY 42 41 41 40 39 38 38 39 40 42 41 41 40 40 39 39	MEAN  43 42 42 41 40 39 39 41 42 43 42 41 41 41 40 40 39

MONTH

4.7

4.3

4.4

4.5

4.4

4.4

4.4

4.0

4.3

4.5

4.2

4.4

#### DELAWARE RIVER BASIN

MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ -- Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN JUNE JULY **AUGUST** SEPTEMBER 48 43 41 40 102 42 41 40 39 39 40 44 41 40 40 61 40 39 38 43 51 48 47 51 50 48 47 49 50 49 12345 40 39 52 55 46 46 49 48 40 - - -40 56 61 - - -- - -- - -. . . . . . . . . 51 100 54 48 49 47 48 47 46 45 44 6 7 8 9 106 90 85 99 82 68 48 47 46 45 46 45 44 44 116 117 105 89 104 107 92 76 57 54 54 52 53 52 51 50 55 53 52 51 . . . - - -. . . - - -- - -1Ó 11 12 13 14 15 69 61 57 53 50 . . . - - -. . . 54 54 51 51 55 48 51 48 48 50 50 53 50 50 52 48 47 46 46 45 46 45 45 44 43 47 46 45 45 44 61 57 53 50 48 64 59 55 52 49 . - -... ... . . . ... • • • • • • - - -47 45 44 52 67 16 17 18 19 20 48 46 45 65 70 46 45 43 43 64 58 63 67 66 63 53 58 61 63 59 44 43 42 41 43 42 41 40 43 43 42 41 41 56 60 64 65 61 ... ... - - -- - -... . . . 40 40 40 21 22 23 24 25 71 60 53 49 48 63 56 51 48 47 58 53 49 47 46 57 56 53 52 52 59 57 55 54 53 41 40 41 41 59 40 39 40 40 40 61 59 57 55 54 - - -. . . . . . - - *-*. . . ... - - -. . . . . . 47 45 44 43 42 45 44 42 41 53 55 54 52 51 51 51 50 64 62 59 59 59 55 62 61 57 26 27 28 29 30 31 46 44 43 42 41 ... . . . ... 52 52 52 51 49 48 ... ... ---. . . ... . . . . . . ... 50 49 48 47 40 - - -. . . 57 47 MONTH 117 39 . . . 67 54 64 39 46 PH (STANDARD UNITS), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 DAY MAX MIN MAX MIN MEAN MAX MEAN MEAN MIN MAX MIN MEAN **OCTOBER NOVEMBER DECEMBER JANUARY** 4.4 4.2 4.1 4.2 4.5 4.5 4.6 4.5 4.5 4.5 4.5 4.5 4.6 4.6 4.4 4.4 4.5 4.5 4.5 4.4 4.3 4.2 4.3 4.4 4.3 4.0 4.0 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.2 4.3 4.3 4.3 4.3 4.3 4.4 4.4 12345 4.4 4.5 4.5 4.5 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.4 4.4 4.5 4.4 4.5 4.5 4.5 4.5 4.5 4.3 4.3 4.4 4.4 4.3 4.2 4.3 4.3 4.4 4.1 4.3 4.3 4.4 4.2 4.3 4.3 4.3 4.4 4.4 4.3 4.3 4.3 4.3 4.3 4.6 4.7 4.6 4.3 4.3 4.3 4.6 6 7 8 9 4.6 4.4 4.6 4.6 10 4.5 4.5 4.6 4.6 4.6 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.6 4.5 4.5 4.4 4.4 4.5 4.4 4.4 4.4 4.4 4.3 4.3 4.4 4.4 4.3 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.3 4.4 4.4 4.4 4.4 11 4.4 4.3 4.4 12 13 14 15 4.4 4.3 4.3 4.3 4.3 4.4 4.4 4.4 4.4 4.5 4.4 4.3 4.3 4.4 4.4 4.3 4.3 4.4 4.3 4.3 4.3 4.4 4.5 4.4 4.4 4.4 4.3 4.4 4.4 4.3 4.3 4.3 4.3 4.4 4.3 4.4 4.4 4.4 4.4 4.4 4.5 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 16 17 18 19 20 4.4 4.5 4.5 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.5 4.5 4.3 4.4 4.4 4.5 4.3 4.3 21 22 23 24 25 4.5 4.4 4.4 4.4 4.4 4.4 4.5 4.3 4.4 4.4 4.3 4.3 4.4 4.3 4.4 4.4 4.3 4.4 4.4 4.5 4.5 4.4 4.4 4.5 4.4 4.4 4.5 4.4 4.4 4.5 4.5 4.3 4.4 4.5 4.5 4.5 4.4 4.5 4.5 4.4 4.4 4.3 4.3 4.4 4.5 4.5 4.5 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.4 4.4 4.4 4.4 4.4 4.4 4.3 4.4 4.4 4.4 4.4 26 27 28 29 30 31 4.3 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4.4.4.4.4.4.3 4.4 4.4 4.4 4.3 4.3

DELAWARE RIVER BASIN

# 01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued PH (STANDARD UNITS), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUAR	Y		MARCH			APRIL			MAY	
1 2 3 4 5	4.4 4.5 4.5 4.5	4.4 4.4 4.5 4.5 4.5	4.4 4.5 4.5 4.5	4.3 4.4 4.4 4.4	4.3 4.3 4.4 4.3	4.3 4.4 4.4 4.4	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.5 4.5 4.5 4.5	4.5 4.5 4.5 4.5 4.3	4.5 4.5 4.5 4.4
6 7 8 9 10	4.5 4.5 4.5 4.5	4.5 4.5 4.5 4.5	4.5 4.5 4.5 4.5	4.4 4.4 4.4 4.4	4.4 4.3 4.3 4.4 4.3	4.4 4.4 4.4 4.4	4.3 4.3 4.4 4.4	4.3 4.3 4.4 4.4	4.3 4.3 4.4 4.4	4.4 4.4 4.4 4.4	4.3 4.3 4.3 4.3 4.3	4.3 4.4 4.3 4.3
11 12 13 14 15	4.5 4.6 4.6 4.6	4.5 4.5 4.6 4.5	4.5 4.6 4.6 4.6	4.4 4.4 4.4 4.4	4.3 4.3 4.4 4.4	4.3 4.4 4.4 4.4	4.4 4.4 4.4 4.4	4.4 4.4 4.4 4.4 4.4	4.4 4.4 4.4 4.4	4.3 4.4 4.4 4.4	4.3 4.4 4.4 4.4	4.3 4.4 4.4 4.4
16 17 18 19 20	4.5 4.5 4.5 4.5	4.4 4.5 4.5 4.5 4.5	4.5 4.5 4.5 4.5	4.4 4.4 4.4 4.3	4.4 4.4 4.2 4.3	4.4 4.4 4.3 4.3	4.4 4.5 4.5 4.5	4.4 4.4 4.5 4.4	4.4 4.5 4.5 4.5	4.4 4.4 4.4 4.5	4.4 4.4 4.4 4.4	4.4 4.4 4.4 4.4
21 22 23 24 25	4.5 4.6 4.6 4.6	4.5 4.5 4.5 4.3	4.5 4.6 4.6 4.4	4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.5 4.5 4.5 4.5	4.4 4.4 4.4 4.4	4.5 4.5 4.5 4.5	4.5 4.4 4.5 4.5	4.4 4.4 4.4 4.4	4.5 4.4 4.5 4.5
26 27 28 29 30 31	4.3 4.3 4.3	4.3 4.3 4.3	4.3 4.3 4.3	4.3 4.3 4.3 4.3	4.2 4.1 4.1 4.2 4.3 4.2	4.3 4.1 4.2 4.3 4.3	4.5 4.5 4.5 4.5	4.5 4.5 4.5 4.5	4.5 4.5 4.5 4.5	4.5 4.5 4.5 4.5	4.4 4.4 4.4 4.5 4.2	4.5 4.4 4.5 4.5
MONTH	4.6	4.3	4.5	4.4	4.1	4.3	4.5	4.3	4.4	4.5	4.2	4.4
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN		MIN JULY	MEAN	MAX	MIN AUGUST	MEAN		MIN SEPTEMBE	
1 2 3 4 5	MAX 4.4 4.4 4.4 4.4		MEAN 4.4 4.4 4.4 4.4 4.2	4.3 4.3 4.3 4.2 4.2		4.3 4.3 4.3 4.1 4.1	MAX		MEAN			
1	4.4 4.4 4.4 4.4 4.0 4.0	JUNE 4.3 4.3 4.3	4.4 4.4 4.4		JULY 4.2 4.3	4.3 4.3 4.3 4.1		AUGUST		4.3	SEPTEMBE	R
1 2 3 4 5 6 7 8 9	4.4 4.4 4.4 4.4 4.0 4.0 4.1	JUNE 4.3 4.3 4.4 3.9 3.9 3.9 4.0	4.4 4.4 4.4 4.2 4.0 4.0	4.3 4.3 4.3 4.2 4.2	JULY 4.2 4.3 4.3 4.1 4.1	4.3 4.3 4.3 4.1 4.1	4.2	AUGUST	    4.1 4.2 4.2	4.3 4.3 4.3 4.3 4.3 4.3 4.3	4.3 4.3 4.2 4.2 4.2 4.2 4.3 4.3	R 4.33 4.33 4.33 4.33 4.33 4.33
1 2 3 4 5 6 7 8 9 10	4.4 4.4 4.4 4.4 4.0 4.0 4.1	JUNE 4.3 4.3 4.4 3.9 3.9 3.9 4.0 4.1	4.4 4.4 4.4 4.2 4.0 4.0 4.0	4.3 4.3 4.3 4.2 4.2 4.2	JULY 4.2 4.3 4.3 4.1 4.1	4.3 4.3 4.1 4.1 4.2	4.2 4.2 4.2	AUGUST	4.1 4.2 4.2	4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3	4.3 4.3 4.2 4.2 4.2 4.3 4.3 4.3 4.3	4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3
1 2 3 4 5 6 7 8 9 10 11 23 14 5 15 15 15 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	4.4 4.4 4.4 4.0 4.12 4.33 4.33	JUNE 4.3 4.3 4.3 4.3 3.9 3.9 3.9 4.1 4.2 4.3 4.3 4.3	4.4 4.4 4.4 4.2 4.0 4.0 4.1 4.3 4.3 4.3	4.3 4.3 4.2 4.2 4.2	JULY 4.2 4.3 4.3 4.1 4.1 4.2	4.3 4.3 4.1 4.1 4.2	4.2 4.2 4.2 4.2 4.3 4.3 4.3	AUGUST 4.1 4.2 4.2 4.2 4.2 4.2 4.3 4.1 3.9	4.1 4.2 4.2 4.2 4.2 4.2 4.2	4.33 4.33 4.33 4.33 4.33 4.4 4.4 4.4 4.4	4.3 4.3 4.2 4.2 4.2 4.3 4.3 4.3 4.3 4.3 4.3 4.4	R 4.33333 4.3334 4.3444 4.44
1 2 3 4 5 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 1 8 9 2 0	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	JUNE 4.334.49 4.33.99901 4.23333 4.11 4.24.33 4.4.11	4.4 4.4 4.4 4.0 4.0 4.1 4.3 4.3 4.3 4.3 4.3 4.1	4.3 4.3 4.2 4.2 4.2 	JULY 4.2 4.3 4.1 4.1 4.2	4.3 4.3 4.1 4.1 4.2 	4.22 4.22 4.22 4.22 4.22 4.22 4.22 4.23 4.20 4.10 4.01	AUGUST 4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.1 3.9 3.9 3.9	4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.1 13.9 4.0	4.33 4.33 4.33 4.33 4.44 4.4 4.55 4.55 4	4.3 4.3 4.2 4.2 4.3 4.3 4.3 4.3 4.3 4.4 4.4 4.4 4.4 4.5 5	R 4.33333 333334 4.44 4.55555

DELAWARE RIVER BASIN

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN NOVEMBER DECEMBER JANUARY **OCTOBER** 9.0 9.0 9.0 7.5 6.5 9.0 9.5 9.5 8.5 7.0 4.0 4.5 5.0 5.5 6.0 13.0 13.5 14.0 14.0 14.5 11.0 11.5 10.5 9.5 9.5 9.5 10.0 9.5 7.5 3.0 3.5 4.0 5.0 5.5 3.5 4.0 13.5 14.0 11.0 11.5 12.0 11.0 2 13.0 11.0 13.5 13.5 14.0 14.5 14.5 15.0 10.0 9.0 7.5 11.0 4.5 5.5 10.0 8.5 6.0 14.0 12.0 11.0 11.0 15.0 13.0 12.0 12.0 7.0 6.5 7.0 7.0 6.5 6.5 7.0 7.5 6.5 6.0 6.5 7.5 5.0 5.0 4.5 4.5 5.5 5.5 5.0 5.0 15.0 14.0 13.5 13.5 8.5 9.0 8.5 8.0 8.0 7.5 8.0 7.5 6.0 5.5 6.0 7.0 6.0 5.5 5.5 5.5 6 89 10 13.5 11.5 12.5 8.0 7.5 8.0 7.5 6.5 7.5 5.5 5.0 5.5 13.0 13.0 12.5 12.0 12.5 11.5 10.5 9.5 11.0 8.0 8.5 8.0 8.0 7.5 8.0 7.5 7.0 7.0 7.0 8.0 9.0 8.0 6.5 6.5 7.0 8.0 6.5 7.0 7.0 7.5 8.5 7.5 5.5 5.5 6.0 7.0 5.5 5.0 5.5 6.5 5.5 12.5 12.5 11.5 8.0 8.0 5.0 4.5 5.5 11 12 13 14 15 8.0 6.0 5.0 8.5 8.5 11.0 8.0 12.5 11.5 8.0 6.0 9.0 8.0 8.5 6.5 6.5 5.5 5.5 4.5 4.0 5.5 5.0 4.5 4.0 4.0 3.5 12.0 11.5 12.0 8.5 7.5 7.0 6.0 5.5 5.0 5.0 4.5 16 17 18 19 20 12.5 12.0 4.5 4.5 3.5 3.5 12.0 12.5 12.5 12.0 4.0 8.0 8.5 9.5 6.0 7.5 4.0 3.5 3.0 2.5 3.5 3.0 11.5 12.0 8.0 4.0 12.0 10.5 8.0 8.5 11.5 4.0 9.0 9.5 10.5 11.0 11.5 11.0 11.5 11.5 12.0 10.0 11.5 11.5 11.5 9.5 4.5 4.5 4.5 4.5 4.5 3.5 3.5 4.5 4.0 3.5 3.0 2.5 3.5 3.5 3.0 10.5 10.5 9.5 10.5 4.0 3.0 3.0 21 22 23 24 25 9.0 10.0 4.0 11.0 11.5 12.0 11.0 10.0 4.0 4.0 4.5 4.0 4.0 4.0 3.0 11.0 11.0 4.0 12.0 8.5 3.5 3.5 3.5 4.0 4.0 3.5 2.5 2.0 3.0 3.0 3.0 3.5 26 27 28 29 12.5 12.5 12.5 10.5 8.5 7.0 7.5 8.0 4.0 4.5 4.0 5.0 3.0 3.5 3.5 3.5 3.0 3.0 3.5 3.5 3.5 12.0 7.0 8.0 4.0 13.0 13.0 11.5 11.0 12.0 11.5 9.5 9.0 6.0 6.0 7.0 7.5 4.0 4.0 4.5 4.5 6.5 7.0 7.5 4.0 30 10.0 9.0 8.5 31 11.0 10.0 10.5 4.5 4.0 4.0 MONTH 15.0 9.0 6.0 10.0 3.5 7.0 4.5 12.0 11.5 8.5 6.0 2.0 DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN **FEBRUARY** MARCH APRIL MAY 10.5 12.0 12.5 11.5 5.0 5.5 5.5 5.5 5.5 9.5 4.0 3.5 4.0 4.0 3.5 3.5 3.0 3.5 3.0 3.5 3.5 3.5 3.5 3.5 4.5 5.0 5.5 5.0 6.5 6.5 6.5 6.0 5.5 5.5 5.5 10.0 6.0 123 6.0 5.5 5.5 5.5 6.0 6.0 6.0 11.0 11.5 11.5 11.0 **4** 5 6.0 3.5 6.0 5.0 6.5 6.0 11.0 10.5 11.0 11.5 10.5 10.0 11.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 6.5 7.0 8.0 6.5 6.5 7.5 7.5 9.0 9.5 10.0 3.0 3.0 3.5 6.0 6.0 7.0 6.0 6.5 7.5 7.0 7.0 8.0 6.0 6.0 6.5 7.0 10.0 6 7 8 9 10.0 3.0 7.5 7.5 10.5 8.0 8.0 8.0 10.0 10 3.5 3.0 8.5 8.0 8.5 8.0 10.5 7.0 6.5 6.0 5.5 5.0 2.5 2.5 2.5 3.0 3.5 3.0 3.0 3.5 3.5 8.5 7.0 6.5 6.0 5.5 8.0 7.0 6.0 5.5 5.0 8.5 9.0 8.5 9.0 8.0 8.5 8.0 7.5 7.5 8.5 8.5 8.0 8.0 11.5 11.5 11.5 12.5 10.5 10.5 11.0 11.0 11 4.0 12 13 14 15 3.5 3.0 3.5 11.0 11.0 11.5 4.0 3.0 8.5 12.0 11.5 8.0 4.5 4.5 4.5 5.5 5.0 5.0 5.5 5.0 11.5 12.5 12.5 13.0 3.5 3.5 4.0 4.5 4.0 4.5 5.0 5.5 4.5 4.0 4.5 4.5 4.5 8.0 9.0 8.5 8.5 9.0 8.0 8.0 8.5 8.5 8.5 8.0 8.5 8.5 8.5 8.5 11.5 11.5 11.5 11.5 11.5 11.5 12.0 12.0 4.5 4.5 5.0 16 17 18 19 4.5 20 5.0 5.0 13.0 10.5 11.5 4.5 4.5 5.0 5.5 5.5 4.5 4.5 10.5 10.5 11.5 11.5 11.5 5.5 5.5 5.0 5.0 5.5 9.5 10.5 10.0 21 22 23 24 25 4.0 4.5 9.0 13.0 11.5 4.0 3.5 3.5 3.5 13.0 13.5 14.0 11.0 12.0 12.5 4.0 10.0 4.0 10.5 10.5 10.5 6.0 4.0 11.0 6.0 6.0 4.0 11.0 12.0 13.0 6.0 6.0 4.5 4.0 11.0 12.5 12.0 12.0 12.0 12.0 12.5 12.0 12.0 12.0 26 27 28 29 4.0 5.0 5.0 5.0 11.0 10.5 10.5 10.5 5.5 5.5 5.5 5.5 5.5 5.5 5.0 5.5 11.5 11.5 10.5 6.0 5.5 6.0 10.5 10.5 12.0 10.0 9.5 9.0 11.5 6.0 10.5 5.5 6.5 6.0 10.0 6.5 6.0 11.0 11.5 5.0 5.5 9.5 6.0 9.0 9.5 11.0 11.5 11.5 12.0 30 5.5 5.5 10.5 - - -- - -6.0 6.0 MONTH 6.5 2.5 8.5 3.5 5.5 11.5 5.5 8.5 14.0 9.0 11.5 4.5

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
•		JUNE			JULY	.,_,,,		AUGUST			SEPTEMBE	
1 2 3 4 5	12.5 13.0 13.5 14.0 14.0	12.0 12.0 12.0 12.5 13.0	12.5 12.5 13.0 13.0	16.0 16.0 15.0 15.5 16.0	15.0 15.0 14.5 15.0 15.0	15.5 15.5 15.0 15.5 15.5				16.5 15.5 17.0 17.5 17.5	15.5 15.0 15.5 17.0 17.0	16.0 15.5 16.5 17.0 17.5
6 7 8 9 10	14.5 15.5 16.5 17.0 16.5	14.0 14.5 15.5 16.0 15.5	14.0 15.0 16.0 16.5 16.0	16.0	15.5	15.5	17.0 16.5 17.5 17.5	16.0 15.5 16.5 17.0	16.5 16.0 17.0 17.5	17.0 17.0 17.5 18.0 18.5	17.0 17.0 17.0 17.5 17.5	17.0 17.0 17.5 17.5 18.0
11 12 13 14 15	16.0 16.0 16.0 15.5 16.0	15.0 14.5 14.5 14.5 15.0	15.5 15.0 15.0 15.0		· · · · · · · · · · · · · · · · · · ·		18.0 18.0 17.5 17.0 17.0	17.0 17.5 17.0 17.0 17.0	17.5 18.0 17.0 17.0 17.0	18.5 17.5 16.0 15.0 14.5	17.5 16.0 15.0 14.0 14.0	18.0 16.5 15.5 14.5 14.5
16 17 18 19 20	15.5 15.5 15.5 15.5 16.0	14.5 14.5 14.0 14.5 15.5	15.0 15.0 14.5 15.0 15.5			•••	17.5 18.5 19.0 19.5 19.0	17.0 17.5 18.5 18.5 18.0	17.0 18.0 19.0 19.0 18.5	15.0 15.5 16.0 16.0 15.5	14.5 15.0 15.5 15.5 14.5	15.0 15.5 15.5 16.0 15.0
21 22 23 24 25	15.5 14.5 14.5 14.5 15.0	14.5 13.5 13.0 13.5 14.0	15.5 14.5 13.5 14.0 14.5			•••	17.5 16.5 16.5 16.5 17.0	16.5 15.5 15.5 15.5 16.0	17.0 16.0 16.0 16.0 16.5	15.0 16.0 16.0 14.5 14.5	14.5 15.0 14.5 14.0 13.5	14.5 15.5 15.5 14.0 14.0
26 27 28 29 30 31	15.0 15.0 15.5 15.5	14.0 14.5 14.5 14.0 14.5	14.5 15.0 15.0 15.0				18.0 18.0 19.0 18.5 17.0	17.0 17.0 18.0 17.0 16.0 16.5	17.5 17.5 18.5 18.0 16.5 16.5	15.0 15.5 15.5 	14.5 15.0 15.5	15.0 15.0 15.5
MONTH	17.0	12.0	14.5		•••	•••	19.5	15.5	17.0	18.5	13.5	16.0
			OXÝGEN,	DISSOLVED	(DO), MG	/L, WATER	R YEAR OCT	OBER 199	1 TO SEP	TEMBER 199	2	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	TÉMBER 199 MAX	MIN	MEAN
	•	MIN	MEAN	MAX	MIN NOVEMBER	MEAN	MAX	MIN DECEMBER	MEAN	MAX	MIN JANUARY	
DAY 1 2 3 4 5	MAX 2.9 2.6 2.5 2.4 2.9	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN		MIN	
	2.9 2.6 2.5 2.4	MIN OCTOBER 2.6 2.3 2.1 2.0	MEAN 2.8 2.5 2.3	1.7 1.8 2.0 2.1	MIN NOVEMBER 1.7 1.6 1.6	MEAN 1.7 1.7 1.8 1.9	3.5 4.8 4.4 4.1	MIN DECEMBER 2.3 2.8 3.8 3.6	MEAN 2.9 3.3 4.0 3.9	MAX 5.7 5.7	MIN JANUARY 5.6 5.5 5.3	5.6 5.6 5.5 5.4
1 2 3 4 5 6 7 8 9	2.9 2.5 2.5 2.9 2.5 2.5	MIN OCTOBER 2.6 2.3 2.1 2.0 2.0 2.2 2.2	MEAN 2.8 2.5 2.3 2.3 2.4 2.3	1.7 1.8 2.0 2.1 2.3 2.4	MIN NOVEMBER 1.7 1.6 1.6 1.9 2.1 2.2 2.2	1.7 1.7 1.8 1.9 2.1 2.2 2.3	3.5 4.8 4.4 4.1 4.4 4.5	MIN DECEMBER 2.3 2.8 3.8 3.6 4.0 4.4 4.4	MEAN 2.93.304.094.554.55	5.7 5.7 5.5 5.5 5.2 4.8 4.8	MIN JANUARY 5.6 5.5 5.3 5.2 4.8 4.7 4.6	5.6 5.5 5.4 5.0 4.8 4.7
1 2 3 4 5 6 7 8 9 10	2.9 2.5 2.9 2.5 2.5 2.5 2.3	MIN OCTOBER 2.6 2.3 2.1 2.0 2.0 2.2 2.2 2.2 2.1 2.0	MEAN 2.8 2.5 2.3 2.4 2.3 2.3 2.1	1.7 1.8 2.0 2.1 2.3 2.4 2.5 3.0	MIN NOVEMBER 1.7 1.6 1.8 1.9 2.1 2.2 2.2 2.2	1.7 1.7 1.8 1.9 2.1 2.2 2.3 2.3 2.5	3.5 4.8 4.4 4.1 4.5 4.6 5.0	MIN DECEMBER 2.8 2.8 3.6 4.0 4.4 4.4 4.3 4.1	MEAN 2.9 3.3 4.0 3.9 4.3 4.5 4.5 4.7	MAX 5.77 5.55 5.2 4.8 4.8 4.7	MIN JANUARY 5.6 5.5 5.3 5.2 4.8 4.7 4.6 4.6 4.5 4.4	5.6 5.6 5.5 5.4 5.0 4.8 4.7 4.6 4.6
1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 5 1 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 8 9 1 1 1 2 3 1 4 5 1 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	96549 22222 22222 22222 22222 22222 22222	MIN OCTOBER 2.3 1 2.0 2.2 2.1 2.0 1.9 2.1 1.9 1.8 1.7 2.1 2.5 2.3 2.1 2.1	MEAN  2.8 2.5 2.3 2.2 2.3 2.4 2.3 2.3 2.1 2.3 2.1 2.3 2.2 2.3 2.2 2.3	1.7 1.8 2.0 2.1 2.3 2.4 2.3 2.4 2.5 3.0 4.1 3.5 3.2	MIN NOVEMBER 1.7 1.6 1.6 1.8 1.9 2.1 2.2 2.2 2.2 2.2 2.3 3.1 3.1 2.8	1.7 1.7 1.8 1.9 2.1 2.2 2.3 2.5 3.7 3.3 3.1	3.5 4.8 4.4 4.1 4.5 4.6 4.5 4.6 5.0 4.7 4.4 4.4	MIN DECEMBER 2.3 2.8 3.6 4.0 4.4 4.3 4.1 4.6 4.5 4.1 4.6 4.2 4.1	MEAN 2.93 4.09 4.55 4.7 4.63 4.24	MAX 5.7755.52 4.88 44.77 4.77 44.77 44.77	MIN JANUARY 5.6 5.5 5.2 4.8 4.7 4.6 4.4 4.4 4.4 4.4 4.3 4.3	5.665.40 87.766 44.766 44.54 44.54
1 2 3 4 5 6 7 8 9 1 0 1 1 2 3 1 4 5 1 6 7 1 8 1 9 0	9.65.49 65.5.43 9.43.49 1.29.87 2.22.22 2.22.22 2.42.22	MIN OCTOBER 2.6 2.1 2.0 2.2 2.2 2.1 2.0 1.9 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	MEAN  2.85 2.23 2.33 2.33 2.33 2.32 2.32 2.32 2.3	1.7 1.8 2.1 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	MIN NOVEMBER 1.7 1.6 1.8 1.9 2.1 2.2 2.2 2.2 2.2 2.3 3.1 2.8 2.66 2.8 2.7 2.2	MEAN 1.77 1.89 2.1 2.23 3.33 3.0 8.89 8.6 2.1	MAX 3.58 4.41 4.565 4.77 4.48 5.24 5.67	MIN DECEMBER 2.388.60 4.4.31.6 4.55.5.6	MEAN 23.3093 4.55537 4.6326 03.457	MAX 55.77 55.52 4.88 4.77 4.77 4.88 4.77 4.88 4.77 4.88 4.77 4.88 4.77 4.44 4.77 4.88 55.55	MIN AT STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF TH	5.665.40 877766 4.77765 4.777798 4.77798

01466500 MCDONALDS BRANCH IN LEBANON STATE FOREST, NJ--Continued
OXYGEN, DISSOLVED (DO), MG/L, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	1		MARCH			APRIL	•		MAY	
1 2 3 4 5	5.4 5.3 5.2 5.3 5.4	5.3 5.1 5.1 5.1 5.2	5.3 5.2 5.1 5.2 5.3	5.1 5.0 4.8 4.9 4.9	4.8 4.7 4.6 4.4	4.9 4.8 4.7 4.7 4.6	5.3 5.1 5.0 4.9 4.8	5.0 4.9 4.8 4.7 4.7	5.2 5.1 4.9 4.8 4.8	3.5 3.5 3.3 3.4 3.1	3.0 2.7 2.6 2.6 2.6	3.2 3.1 2.9 2.8 2.8
6 7 8 9 10	5.4 5.5 5.5 5.6	5.3 5.1 5.0 5.3 5.4	5.4 5.2 5.3 5.4 5.5	4.7 5.1 4.7 4.2 4.3	4.3 4.4 4.2 3.9 3.8	4.5 4.7 4.5 4.1 3.9	4.7 4.6 4.3 4.2 4.0	4.5 4.3 4.0 3.8 3.6	4.6 4.4 4.2 4.0 3.8	3.2 3.2 3.2 3.5 3.4	2.6 2.6 2.8 2.8	2.8 2.9 3.0 3.1 3.1
11 12 13 14 15	5.5 5.6 5.6 6.3	5.3 5.4 5.4 5.4	5.4 5.5 5.5 5.6	4.6 4.7 4.9 5.0 5.1	4.1 4.4 4.5 4.7 4.8	4.3 4.5 4.7 4.8 5.0	3.8 3.9 3.9 3.9	3.5 3.5 3.6 3.6	3.6 3.7 3.7 3.7	3.4 3.4 3.2 3.2 3.2	2.9 2.7 2.6 2.5 2.5	3.1 3.0 2.8 2.8 2.8
16 17 18 19 20	6.4 6.1 6.1 5.8 5.5	6.0 6.0 5.8 5.5 5.3	6.2 6.1 5.9 5.7 5.4	5.3 5.6 6.6 6.3	5.0 5.1 5.0 5.5 6.0	5.1 5.2 5.3 6.0 6.2	3.8 4.0 4.0 3.9 3.9	3.6 3.7 3.7 3.6 3.5	3.6 3.8 3.8 3.8 3.7	3.1 3.5 3.3 3.3 3.4	2.7 2.8 2.5 2.5 2.8	2.9 3.0 2.8 2.8 3.0
21 22 23 24 25	5.4 5.2 5.0 4.9	5.3 5.1 4.9 4.8 4.8	5.3 5.3 5.1 4.9 4.8	6.4 6.4 6.6 6.9 6.8	6.2 6.2 6.6 6.6	6.3 6.4 6.7 6.7	3.7 3.4 3.4 3.3 3.3	3.1 3.0 2.9 2.7 2.7	3.5 3.2 3.1 2.9 2.9	3.5 3.5 3.5 3.5 3.3	2.7 2.6 2.5 2.4 2.5	3.1 2.9 2.9 2.8 2.8
26 27 28 29 30 31	5.3 5.0 5.0	4.9 5.0 4.7 4.6	5.2 5.1 4.9 4.9	6.9 6.8 6.0 5.8 5.6	6.3 6.2 6.0 5.7 5.6 5.3	6.5 6.6 6.2 5.9 5.7 5.5	3.4 3.7 3.7 3.7	2.8 3.0 3.1 3.1 3.1	3.1 3.2 3.3 3.3	3.3 3.7 3.7 3.6 3.5 3.7	2.6 2.8 2.8 2.7 2.6	2.9 3.1 3.1 3.0 3.0
MONTH	6.4	4.6	5.4	6.9	3.8	5.3	5.3	2.7	3.8	3.7	2.4	2.9
DAY	MAX	MIN	MEAN	МАХ	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN July	MEAN	MAX	MIN August	MEAN		MIN EPTEMBE	
DAY 1 2 3 4 5	3.2 3.3 3.4 3.3 4.6		MEAN 2.9 2.9 2.9 2.9 2.9 3.1	3.9 3.8 3.5 3.7 3.5		2.9 3.0 3.1 3.0 2.9	MAX		MEAN			
1 2 3	3.2 3.3 3.4	JUNE 2.7 2.7 2.6	2.9 2.9 2.9	3.9 3.8 3.5 3.7	JULY 2.6 2.6	2.9 3.0 3.1 3.0		AUGUST		2.4 2.6 2.9	2.0 2.1 2.1 2.1	2.2 2.3
1 2 3 4 5 6 7 8 9	3.2 3.3 3.3 4.6 2.5 2.7 2.5	JUNE 2.7 2.6 2.6 2.5 2.0 1.8 1.7	2.9 2.9 2.9 2.9 3.1 2.3 2.3 2.1	3.9 3.8 3.5 3.5	2.6 2.6 2.8 2.5 2.5	2.9 3.0 3.1 3.0 2.9 2.8		AUGUST		2.4 22.6 22.5 2.4 2.5 2.4 2.5	2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.0 2.0	2.2 2.3 2.4 2.3 2.2 2.2 2.2
1 2 3 4 5 6 7 8 9 10	3.23 3.43 3.4.6 2.73 2.73 2.7	JUNE 2.7 2.7 2.6 2.6 2.5 2.0 1.8 1.7 2.1	2.9 2.9 2.9 2.9 3.1 2.3 2.1 2.1 2.4	3.9 3.8 3.7 3.5 3.5	JULY 2.6 2.8 2.5 2.5 2.5	2.9 3.0 3.1 3.0 2.9 2.8		AUGUST		2.4 2.6 2.9 2.4 2.4 2.5 2.4 2.3 2.3	2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.0 2.0	2.2 2.3 2.4 2.2 2.2 2.2 2.2 2.1 2.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	3.3 3.3 3.4 3.6 2.5 7 2.7 2.9 2.0 3.1 2.3 3.1 3.5	JUNE 2.7 2.6 2.5 2.0 1.8 1.7 2.1 2.4 2.3 2.3	2.99 2.99 2.99 3.1 2.33 2.01 2.14 2.666 2.666	3.9 3.8 3.5 3.5 3.5	JULY 2.6 2.6 2.8 2.5 2.5 2.5	2.9 3.0 3.1 3.0 2.9 2.8		AUGUST		\$ 2.4 2.6 2.5 2.4 2.5 4.5 2.7 2.8 2.7 2.8 2.9	2.0 2.1 2.1 2.1 2.1 2.1 2.1 2.0 1.9 2.1 2.3 2.5 2.5	2.23 2.34 2.32 2.22 2.22 2.21 2.31 2.34 2.66 2.66
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	3.3 3.4 3.5 3.5 3.6 2.2 2.2 2.5 3.7 2.2 2.2 2.3 3.3 3.4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	JUNE 2.7 2.6 2.5 2.0 1.8 1.7 2.1 2.4 2.3 2.6 2.5 2.6 2.7 2.1 2.4 2.4 2.3	2.99 2.99 2.31 2.33 2.14 2.56 2.66 2.89 2.85	3.9 3.8 3.5 3.5 3.5	JULY 2.6 2.8 2.5 2.5 2.5	2.9 3.0 3.1 3.0 2.9 2.8		AUGUST		\$ 22.69 22.54 2.25.22 2.33 2.57 2.89 2.76 2.46	2.0 2.1 2.1 2.1 2.1 2.1 2.0 2.0 1.9 2.1 2.3 2.5 2.4 2.3 2.1 2.1	2.34.43.2 2.22.11 3.4.6.6.6 5.4.3.2.4 2.2.2.4

431 DELAWARE RIVER BASIN 01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ

LOCATION.--Lat 39°58'10", long 74°41'05", Burlington County, Hydrologic Unit 02040202, on right bank at downstream side of bridge on Hanover Street in Pemberton, 12 mi upstream from confluence with South Branch Rancocas Creek.

DRAINAGE AREA. -- 118 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- September 1921 to current year.

REVISED RECORDS.--WSP 1302: 1922-23. WSP 1382: 1933. WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder above concrete dams. Datum of gage is 31.19 ft above sea level. Prior to June 9, 1923, nonrecording gage and June 9, 1923 to Aug. 9, 1951, water-stage recorder at site 600 ft downstream at datum 6.54 ft lower.

REMARKS.--No estimated daily discharges. Records fair. Flow regulated occasionally by cranberry bogs and ponds above station. Water diverted for water supply at Fort Dix army base upstream of gage. Several measurements of water temperature, other than those published, were made during the year. Gage-height telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR...Peak discharges greater than base discharge of 600 ft³/s and maximum (*):

Date	Time		ischarge (ft ³ /s)	1	Gage height (ft)		Date	Time	, (	Discharge (ft ³ /s)	Ga	ge height (ft)
Aug. 19	1630	)	*590		*2.44		No peak g	reater tha	n base	discharge.		
		DISCH	ARGE, CUBI	C FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOB VALUES	ER 1991 TO	SEPTE	MBER 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	98 75 81 83 75	94 95 86 93 81	67 80 139 220 232	107 99 99 111 139	95 91 88 85 84	116 116 112 113 111	164 161 151 149 126	55 57 59 61 59	169 141 116 101 139	65 77 71 103 100	280 414 404 327 250	99 94 91 92 93
6 7 8 9 10	70 73 69 66 65	74 70 77 80 80	220 180 154 143 159	143 134 124 111 107	83 80 81 84 81	107 111 126 128 123	109 104 107 114 114	60 59 71 99 98	304 338 298 248 203	89 86 79 79 78	183 142 119 111 105	91 91 92 93 105
11 12 13 14 15	70 69 67 66 65	103 111 103 95 88	169 159 143 134 129	99 95 95 99 103	80 79 77 81 92	142 151 150 135 119	103 101 108 110 106	107 120 110 80 69	159 131 107 94 82	99 89 79 73 73	103 110 109 115 121	129 120 104 90 87
16 17 18 19 20	68 92 129 125 107	84 80 77 77 73	124 120 111 101 95	95 91 88 84 84	134 139 141 142 132	110 107 104 148 177	103 108 107 117 122	73 80 77 72 66	70 66 61 83 115	73 70 67 64 68	168 278 468 567 556	84 79 76 75 80
21 22 23 24 25	94 89 85 82 90	73 73 95 99 95	91 91 91 91 91	80 80 100 120 120	122 112 106 103 109	180 172 169 166 156	111 115 119 109 103	61 62 67 68 60	126 115 99 91 88	69 69 84 102 115	425 324 259 208 163	78 90 95 93 103
26 27 28 29 30 31	98 90 78 71 70 73	84 77 70 70 67	88 88 88 95 120 120	112 104 100 99 97 96	133 134 132 126	157 202 209 201 173 164	103 97 87 77 58	58 58 57 55 56 97	86 82 78 75 71	107 102 92 63 57 136	145 139 137 142 126 98	190 234 276 273 286
TOTAL MEAN MAX MIN CFSM IN.	2533 81.7 129 65 .69	2524 84.1 111 67 .71 .80	3933 127 232 67 1.08 1.24	3215 104 143 80 .88 1.01	3026 104 142 77 .88 .95	4455 144 209 104 1.22 1.40	3363 112 164 58 .95 1.06	2231 72.0 120 55 .61 .70	3936 131 338 61 1.11 1.24	2578 83.2 136 57 .70 .81	7096 229 567 98 1.94 2.24	3583 119 286 75 1.01 1.13
STATIST	ICS OF M	ONTHLY MEA	N DATA FOR	WATER	YEARS 1922	- 1992,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	119 365 1928 38.7 1923	152 430 1973 45.7 1923	170 434 1973 54.4 1966	198 479 1979 62.1 1981	215 445 1939 92.2 1931	243 469 1958 105 1985	236 475 1984 85.4 1985	196 397 1958 72.0 1992	144 297 1968 54.8 1942	124 401 1938 44.1 1957	133 426 1958 41.4 1957	118 341 1971 • 40.1 1957

## 01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ -- Continued

	1992
LOWEST ANNUAL MEAN 92.7 19	1978
HIGHEST DAILY MEAN 761 Jan 13 567 Aug 19 1690 Aug 21 19 LOWEST DAILY MEAN 55 Jul 12 55 May 1 9.0 Sep 29 19 ANNUAL SEVEN-DAY MINIMUM 61 Aug 29 58 Apr 30 27 Oct 2 19	1932
INSTANTANEOUS PEAK FLOW 590 Aug 19 1730 Aug 21 19 INSTANTANEOUS PEAK STAGE 2.44 Aug 19 10.77a Aug 21 19 INSTANTANEOUS LOW FLOW 55 May 1	1939
ANNUAL RUNOFF (CFSM) 1.34 .98 1.44 ANNUAL RUNOFF (INCHES) 18.15 13.39 19.62 10 PERCENT EXCEEDS 294 169 310 50 PERCENT EXCEEDS 115 99 140 90 PERCENT EXCEEDS 67 69 63	

a From high-water mark, site and datum then in use.

#### DELAWARE RIVER BASIN

#### 01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ -- Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1923-24, 1958, 1962-69, 1975 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH/ II CI TIME	NST. CI UBIC CO FEET DU PER AN	PE- W/ IFIC WI DN- FI UCT- (SI ICE /	TAND- A ARD W	MPER- OX TURE ATER S	YGEN, ( DIS- OLVED S	DIS- D OLVED PER- CENT SATUR-	BIO- F CHEM- F ICAL, 5 DAY B	OLI- ORM, ECAL, EC ROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
NOV 1991 04	0915	95	49	5.0	11.0	8.6	77	E1.3	240	8
JAN 1992 21	1030	80	51	5.2	0.5	12.5	86	E1.5	<2	<10
MAR 19	1130	154	57	5.9	2.0	13.0	95	0.9	79	330
MAY 20	1015	67	47	5.4	17.0	7.5	76	<1.0	2	20
JUL 16	1030	73	42	5.4	25.0	6.1	. 75	<1.0	110	160
DATE	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L	ALKA- LINITY LAB	SULFAT DIS- SOLVE (MG/L	CHLO- E RIDE, DIS- D SOLVED (MG/L	FLUO RIDE DIS SOLVI	- - ED L
NOV 1991 04 JAN 1992	8	1.8	0.95	3.8	1.0	2.5	6.5		<0.	
21 MAR_	9	2.2	0.97	3.5	0.90		12	6.6	0.3	
19 May	11	2.7	1.1	4.0	1.0	2.4	10	5.6	<0.	
20 JUL	8	1.8	0.87	3.5	0.90	1.6	7.8		<0.	
16	6	1.4	0.71	3.2	0.70	1.7	5.4	4.7	<0.	1
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2+NO3	NO2+NÓ3	NITRO GEN, AMMONI	AMMON Í A	ORGAN	1- + IC -
NOV 1991										
04. JAN 1992	5.3	28	E0.006	0.003	•	0.06	0.05	0.04	0.27	
21 MAR	5.5	34	<0.003	<0.003	0.17	0.14	0.04	0.04	0.26	
19 MAY	4.4	31	0.004	0.003	0.16	0.16	0.08	0.03	0.31	
20 JUL	3.5	26	<0.003	<0.003	0.08	0.07	<0.03	<0.03	0.31	
16	4,.0	22	0.004	<0.003	0.10	0.10	0.05	<0.03	0.47	
, DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)		SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	
NOV 1991	0.00		0.04	0.07	-0.00	<b>.</b> .	4.5	-	A ===	•
04 JAN 1992	0.20	0.33	0.26	0.03	<0.02	5.2	1.2	3	0.77	
21 MAR	0.18	0.43	0.32	0.07	0.14	3.8	0.4	2	0.43	
19 MAY	0.18	0.47	0.34	0.03	<0.02	4.0	0.5	5	2.1	
20 JUL	0.24	0.39	0.31	0.07	<0.02	5.3	1.2	••		
16	0.25	0.57	0.35	0.09	0.05	6.2	1.9	5	0.99	

## 01467000 NORTH BRANCH RANCOCAS CREEK AT PEMBERTON, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1992 20	1015	12	<1	<10	20	<1	<1	2
DATE	ERA (U	TAL TOT COV- REC ABLE ERA G/L (UG	AD, NESTAL TOTAL T	TAĽ TOT COV- REC ABLE ÉRA G/L (UC	AL TOT COV- REC ABLE ERA G/L (UG	AL SEL COV- NIU ABLE TOT	M, REC AL ERA /L (UG	AĽ :OV- :BLE
MAY 1992 20	1	1300	4	30 <0	0.10	1	<1	10

#### DELAWARE RIVER BASIN

#### 01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ

LOCATION.--Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202, at bridge on Kings Highway, 200 ft downstream from outlet of Strawbridge Lake, 0.6 mi northwest of Moorestown Mall, 0.8 mi southeast of Lenola, and 1.8 mi southwest of Moorestown.

DRAINAGE AREA. -- 12.8 mi 2.

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH I	NST. CI UBIC CO FEET DU PER AN	PE- W/IFIC WHON- FI JCT- (SI JCE /	TAND- A NRD W	MPER- ( TURE ATER EG C)	DXYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED E (PER- CENT I SATUR- 5	DIO- F CHEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH (	NTERO- COCCI ME,MF WATER TOTAL COL /'
OCT 1991 24	0930	3.5	245	7.7	14.0	8.7	85	<1.0	1700	270
JAN 1992 15		4.4	302	7.0	3.5	13.1	99	2.9	110	
APR 08		4.5	330			13.4			<20	70
MAY				7.1	12.5	•	126	E1.7		
19 JUL		3.2	274	6.9	17.5	7.5	77	E2.0	700	20
20	0815	3.0	226	6.6	26.0	5.9	73	E1.9	210	200
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	M, LINITY LAB ED (MG/L AS	SULFATE DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/L	)
OCT 1991 24 JAN 1992	76	21	5.7	9.9	4.8	3 19	59	20	0.2	
15 APR	93	26	6.8	13	4.5	5 16	69	30	0.3	
08	95	26	7.2	20	4.2	2 12	72	45	0.3	
MAY 19	80	22	6.1	14	4.2	2 15	56 [°]	29	0.2	
JUL 20	68	19	4.9	11	4.6	5 25	42	22	0.2	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2+NO	, NO2+NÓ 03 DIS- . SOLVE . (MG/L	NITRO- GEN, AMMONIA D TOTAL (MG/L	AMMON Í A	ORGANI	• •
OCT 1991	0.7	4/7	0 000	0.007	0.7/	0.42	0.74	0.45	0.44	
24 JAN 1992	9.3	143	0.009	0.007			0.36	0.15	0.66	
15 APR	12	174	0.011	0.010	0.61	0.61	0.18	0.28	0.73	
08 May	11	195	0.017	0.015	0.45	0.54	0.09	0.10	0.57	
19 JUL	9.9	152	0.021	0.019	0.38	0.36	0.37	0.34	0.90	
20	5.4	125	0.023	0.018	0.20	0.20	0.20	0.21	0.98	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGANI DIS- D SOLVED (MG/L	Č SUS- PENDED TOTAL (MG/L	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDEC (T/DAY)	)
OCT 1991 ·				<u>.</u>		<u>.</u> .				
24 JAN 1992	0.52	1.0	0.94	0.13	0.04	3.4	1.4	15	0.14	
15 APR	0.42	1.3	1.0	0.06	<0.02	2.4	0.1	22	0.26	
08 MAY	0.30	1.0	0.84	0.13	<0.02	2.4	1.4	24	0.29	
 19 JUL	0.59	1.3	0.95	0.15	<0.02	3.3	1.8	19	0.16	
20	0.44	1.2	0.64	0.24	0.03	4.6	2.0	23	0.19	

## 01467069 NORTH BRANCH PENNSAUKEN CREEK NEAR MOORESTOWN, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	LII TO RE( ER/	TAL TO COV- RE ABLE EF G/L (U	DTAL TO ECOV- RI RABLE EI JG/L (1	OMIUM MI OTAL TO ECOV- RE RABLE ER JG/L (L	DTAĽ T ECOV- R RABLE E IG/L (1	PPER, OTAL ECOV- RABLE UG/L S CU)
MAY 1992 19	0730	12	2	. <b>«</b> '	10	30	<1	<1	. 1
DATE	REC ERA (UC	TAĽ TOT COV- REC ABLE ERA G/L (UC	ND, NE TAL TO COV- RE NBLE ER G/L (U	NGA- SE, TAL COV- ABLE G/L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	
MAY 1992 19	3	500	4	-250	<0.10	11	· <1	20	

#### 01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ

LOCATION.--Lat 39°56'30", long 75°00'05", Camden County, Hydrologic Unit 02040202, on left bank on downstream wingwall of bridge on Mill Road in Cherry Hill, 1.1 mi south of Maple Shade and 3.8 mi upstream from confluence with the North Branch Pennsauken Creek.

DRAINAGE AREA. -- 8.98 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1967 to September 1976, October 1977 to current year.

REVISED RECORDS.--WDR NJ-82-2: Drainage area. WDR NJ-90-1: 1968 (P), 1970 (P), 1971 (P).

GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage is 8.12 ft above sea level.

REMARKS.--Records fair. Diurnal fluctuations from unknown source. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300  ${\rm ft}^3/{\rm s}$  and maximum (*):

Date		Time		Discharg (ft ³ /s	je )	Gage height (ft)		Date	Time	C	ischarge (ft ³ /s)	Ga	ge height (ft)
June	5	2230		527		8.59		July 31	1100		*555		*8.83
			DIS	CHARGE, (	CUBIC FEET	PER SECOND	, WATER LY MEAN	YEAR OCTOBE VALUES	R 1991	TO SEPTEM	1BER 1992		
DAY		OCT	NOV	DEC	MAL	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		4.4 4.3 4.5 4.0 3.9	4.7 4.9 5.1 4.9 5.1	17 40 156 66 13	6.2 6.1 5.9 24 10	5.8 5.1 5.1 5.1 5.3	7.4 7.1 7.0 6.9 7.0	9.3 9.6 7.9 7.5 7.0	5.7 5.8 5.4 5.0 4.9	16 7.9 6.6 6.3 172	11 10 24 89 8.6	30 7.8 5.7 5.0 4.5	4.2 4.2 6.7 11 4.5
6 7 8 9 10		4.1 5.2 3.9 4.2 3.9	4.8 5.0 5.2 4.7 5.3	8.9 7.4 6.8 13 58	7.0 6.4 5.5 6.6 6.6	5.1 5.0 6.3 7.0 5.8	6.8 27 12 8.1 17	6.5 6.3 7.0 7.3 6.6	4.8 4.7 71 47 17	184 17 10 9.0 6.2	5.6 5.0 4.5 6.0 17	4.2 6.8 4.2 15 4.3	4.4 4.3 4.3 4.2
11 12 13 14 15		5.2 5.3 3.8 3.6 30	38 7.8 8.2 5.2 4.8	7.3 4.8 5.2 7.0 4.5	5.7 5.3 5.3 11 5.8	5.1 5.1 5.2 7.8 20	50 11 8.5 7.4 7.2	6.4 6.6 6.1 6.0 6.0	10 8.0 7.4 7.0 6.6	5.7 5.2 5.1 4.8 4.8	24 5.2 5.0 7.2 17	27 14 5.2 18 17	63 6.7 4.9 4.2 3.7
16 17 18 19 20		10 89 32 7.9 5.7	4.6 4.7 4.5 4.7	3.6 3.3 3.1 2.8 2.9	5.1 5.1 5.1 5.0 4.7	44 10 18 16 9.3	6.5 7.0 8.4 70 21	9.3 12 10 9.8 6.7	21 9.2 7.2 7.7 6.2	4.7 4.4 4.3 71 21	27 8.7 8.1 7.3 7.6	43 30 30 8.0 5.8	3.6 3.8 4.1 3.8 3.8
21 22 23 24 25		5.2 5.0 4.9 5.0 4.8	4.8 41 24 6.9 5.4	3.1 3.9 3.9 3.7 3.5	4.7 4.6 24 36 8.4	7.7 7.0 6.7 7.2 7.4	11 11 21 11 8.6	6.8 15 32 8.3 7.2	6.4 6.4 5.7 5.7 8.3	6.4 5.2 5.9 6.9	6.8 8.1 115 20 9.6	6.4 4.5 4.3 4.0 4.1	3.5 3.7 13 8.0 20
26 27 28 29 30 31		4.8 5.0 5.0 4.9 4.8 4.9	5.0 4.8 4.7 4.6 4.6	3.2 3.2 3.4 37 15 7.6	7.5 6.6 6.2 6.1 5.9 6.0	45 13 9.4 8.7	28 51 14 10 8.9 16	7.4 8.5 6.5 6.1 5.6	9.4 8.0 6.2 6.2 6.8 70	4.7 4.4 4.2 4.6 5.3	8.1 8.6 7.3 6.0 4.2 181	6.6 36 52 24 6.1 4.7	217 e15 e9.9 e9.8 e6.2
TOTAL MEAN MAX MIN CFSM IN.		289.2 9.33 89 3.6 1.04 1.20	242.7 8.09 41 4.5 .90 1.01	518.1 16.7 156 2.8 1.86 2.15	258.4 8.34 36 4.6 .93 1.07	308.2 10.6 45 5.0 1.18 1.28	493.8 15.9 70 6.5 1.77 2.05	257.3 8.58 32 5.6 .96	400.7 12.9 71 4.7 1.44 1.66	618.8 20.6 184 4.2 2.30 2.56	672.5 21.7 181 4.2 2.42 2.79	438.2 14.1 52 4.0 1.57 1.82	469.5 15.6 217 3.5 1.74 1.94
STATI	STI					YEARS 1968		BY WATER Y	EAR (WY	)		,	
MEAN MAX (WY) MIN (WY)		13.3 26.0 1990 6.08 1969	17.4 48.8 1973 6.99 1977	21.6 40.8 1978 7.05 1981	21.6 50.5 1979 6.55 1981	19.9 44.7 1979 9.19 1968	22.0 41.0 1984 9.29 1985	22.2 49.8 1983 8.08 1985	20.6 47.0 1989 8.57 1969	15.8 33.4 1989 6.65 1971	17.7 46.5 1989 6.92 1982	16.2 58.2 1978 6.22 1968	13.9 38.8 1975 4.71 1968

DELAWARE RIVER BASIN

## 01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ.-Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1968 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	6293.5 17.2 402 Jul 13 2.3 Jul 12 3.2 Jun 26 1.92 26.07 38	4967.4 13.6 217 Sep 26 2.8 Dec 19 3.2 Dec 16 555 Jul 31 8.83 Jul 31 2.4 Jan 19 1.51 20.58 27 6.6	18.6 27.3 12.2 1981 551 2.3 Jul 5 1989 2.3 Jul 12 1991 3.2 Jun 26 1991 868 Aug 28 1978 113.40 Aug 28 1978 2.4 Jan 19 1992 2.07 28.15 35
90 PERCENT EXCEEDS	3.4	4.2	5.1

e Estimated.

#### 01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ .- Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.:-Water years 1970-73, 1975 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH I	NST. CI CUBIC CO FEET DU PER AN	PE- WA IFIC WHON- FI UCT- (SI ICE A	TAND - A'	TURE Ater s	YGEN, DIS- OLVED	DIS- DE SOLVED B (PER- C CENT I SATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, ECAL, EC ROTH (	ENTERO- COCCI ME,MF WATER TOTAL (COL /
OCT 1991 28	0900	4.8	364	7.2	15.0	5.0	49	2.9	3900	4600
JAN 1992 15	1100	11	309	7.2	3.0	••		3.3	500	115
APR 09	1300	6.7	330	7.7	12.5	14.7	138	3.1	1700	1050
MAY 19	1000	8.2	339	6.7	16.0	6.3	63		24000	760
JUL										27000
21	1115	7.3	333	7.2	23.0	6.2	72	<1.0	35000	27000
DATE	HARD - NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB	SULFATE DIS- SOLVED (MG/L ) AS SO4)	DIS- SOLVED (MG/L	(MG/L	ED
OCT 1991 28 JAN 1992	92	25	7.1	28	9.7	54	49	32	0.2	2
15 APR	81	22	6.3	18	6.2	36	. 48	28	0.3	3
09	, 90	25	6.8	19	7.1	38	· 47	34	0.3	5
MAY 19	83	23	6.3	26	8.0	46	42	33	0.3	
JUL 21	88	25	6.2	24	10	64	. 38	28	0.3	5 .
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GÉN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN, NO2+NO3 DIS- SOLVEI (MG/L AS N)	NITRO- 3 GEN, AMMONIA	AMMONÍA	NITRO GEN, AM MONIA ORGANI TOTAL (MG/L	1- + ∶C -
OCT_1991	45									
28 Jan 1992	13	212	0.247	0.251	3.43	3.50	0.31	0.26	1.3	
15 APR	12	175	0.041	0.041	2.76	2.74	0.56	0.54	1.0	
09 May	5.2	184	0.118	0.116	3.60	3.60	0.37	0.40	1.4	
19 JUL	12	193	0.188	0.187	3.18	3.19	0.61	0.51	1.4	
21	9.9	193	0.143	0.142	2.87	2.89	0.17	0.18	0.58	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIO DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE SUS- PENDE (T/DAY	, D
OCT 1991	1.0	, ,	, -	0.51	0.77		٥.5	-	0.04	
28 JAN 1992	1.0	4.7	4.5	0.54		6.4	0.5	5	0.06	
15 APR	0.91		3.6	0.28	0.07	4.2	. • •	5	0.15	
09 MAY	0.68	. 5.0	•	•	0.04	4.3	, <del>- :</del>	8	0.14	
19 JUL	1.1	4.6	4.3	0.43	0.07	5.6	0.7	12	0.27	
21	0.33	3.5	3.2	0.34	••	3.6	0.5	5	0.10	

## 01467081 SOUTH BRANCH PENNSAUKEN CREEK AT CHERRY HILL, NJ--Continued

•	WATER	QUALITY	DATA,	WATER	YEAR	OCTOBER	1991	ΤÒ	SEPTEMBER	1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	LI TO RE ER (U	TAĽ 1 COV- F ABLE E G/L (	BORON, FOTAL RECOV- ERABLE (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
MAY 1992 19	1000	27	1	<	10	120	<1	<1	3
DATE	(UG	AL TOT OV- REC BLE ERA	ND, NE TAL TO COV- RE NBLE ER	NGA- SE, TAL COV- ABLE G/L MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOTA RECO E ERAI (UG)	AL SELE DV- NIUN BLE TOTA /L (UG)	1, REC AL ERA /L (UG	AĽ OV- BLE /L
MAY 1992 19	2	100	2 .	130	<0.10	)	16	<1	30

#### 01467150 COOPER RIVER AT HADDONFIELD, NJ

LOCATION.--Lat 39°54'11", long 75°01'19", Camden County, Hydrologic Unit 02040202, on right bank of Wallworth Lake in Pennypacker Park, 200 ft upstream from bridge on State Highway 41 (Kings Highway) in Haddonfield, 0.6 mi upstream from North Branch Cooper River, and 7.7 mi upstream from mouth.

DRAINAGE AREA. -- 17.0 mi 2.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1963 to current year.

REVISED RECORDS.--WRD-NJ 1969: 1967(M). WDR NJ-82-2: Drainage area.

GAGE..-Water-stage recorder above concrete dam. Datum of gage is 9.29 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Bypass gates were installed on both ends of the dam in August 1987. No gate openings this year. Occasional regulation at low flow from Kirkwood Lake, other small lakes and wastewater treatment plants (prior to summer 1987). Several measurements of water temperature were made during the year. Gage-height telemeter at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft³/s and maximum (*):

Date		. Time		Dischar (ft ³ /s	ge )	Gage height (ft)		Date	Time		ischarge (ft ³ /s)	Ga	ge height (ft)
June	5	2115		*862		*3.24		Sep. 26	0615		541		2.78
			DIS	CHARGE, (	CUBIC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTO	BER 1991	TO SEPTEM	18ER 1992		
DAY		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		11 8.8 8.0 7.8 7.4	7.6 8.0 7.9 7.7 7.6	20 48 200 103 22	11 11 11 30 18	13 12 12 12 12	12 12 12 12 12	15 18 16 16 16	10 11 11 9.5 9.5	24 11 9.3 9.1 220	54 43 35 100 21	25 10 8.9 8.2 7.7	7.4 7.6 13 17 9.7
6 7 8 9 10		7.7 7.7 7.1 7.0 7.1	7.6 7.7 7.8 8.1	16 14 13 15 79	13 11 10 11 12	12 12 14 13 12	12 36 21 14 20	15 15 16 18 19	9.6 9.4 111 88 20	321 32 20 19 13	14 12 10 11 9.3	7.7 7.6 7.6 16 8.3	8.3 9.0 8.6 8.7 16
11 12 13 14 15		7.1 8.7 7.4 7.3 42	34 14 12 9.1 8.3	21 15 15 18 14	11 10 11 16 11	12 12 12 16 35	72 19 14 13 12	16 16 15 15 12	12 10 10 9.4 8.8	11 9.8 9.3 9.2 8.9	23 11 9.9 12 9.6	21 30 12 26 30	92 13 9.4 8.4 8.0
16 17 18 19 20		19 123 69 16 10	8.1 8.1 7.6 7.8 8.3	11 11 11 10 10	10 9.3 9.2 9.2 9.0	64 20 29 24 16	11 11 12 89 33	12 16 15 17 12	76 28 11 10 9.2	8.3 8.0 7.9 72 24	13 10 9.1 8.6 8.7	78 50 46 17 11	7.7 8.3 8.9 7.7 7.3
21 22 23 24 25		9.5 9.2 9.1 8.8 8.8	8.3 34 30 12 9.7	10 10 11 11 10	9.2 9.2 31 58 19	14 14 13 13	17 15 25 16 13	12 20 32 12	9.6 9.3 8.9 8.7 9.1	12 9.4 9.2 9.4 12	9.4 11 77 21 12	9.6 9.1 8.5 7.8 7.7	7.1 8.7 23 8.1 13
26 27 28 29 30 31		8.8 8.8 7.8 8.0 7.9	9.0 8.6 8.0 8.3 8.1	10 10 10 45 24 14	16 14 14 13 13	63 23 16 13	33 73 23 18 16 21	13 9.9 10 11 11	13 15 11 10 11 99	9.1 8.3 8.8 7.6 7.3	10 9.9 9.9 8.9 7.7 86	7.6 30 10 24 8.8 7.7	259 34 20 18 11
TOTAL MEAN MAX MIN CFSM IN.	•	484.6 15.6 123 7.0 .92 1.06	330.9 11.0 34 7.6 .65 .72	831 26.8 200 10 1.58 1.82	453.1 14.6 58 9.0 .86 .99	547 18.9 64 12 1.11 1.20	719 23.2 89 11 1.36 1.57	452.9 15.1 32 9.9 .89	678.0 21.9 111 8.7 1.29 1.48	939.9 31.3 321 7.3 1.84 2.06	687.0 22.2 100 7.7 1.30 1.50	558.8 18.0 78 7.6 1.06 1.22	677.9 22.6 259 7.1 1.33 1.48
STATI	ST	ICS OF MC			FOR WATER	YEARS 1964		, BY WATER	YEAR (WY			•	
MEAN MAX (WY) MIN (WY)		27.7 46.8 1976 9.26 1966	32.6 79.6 1973 11.0 1992	37.9 74.6 1973 14.3 1966	38.8 97.8 1978 14.6 1992	37.9 76.1 1979 18.9 1992	40.8 78.9 1984 23.2 1981	41.8 99.4 1983 15.1 1992	38.5 66.7 1983 14.2 1965	30.4 54.9 1972 10.9 1988	32.1 66.8 1975 14.5 1990	30.3 97.6 1971 7.79 1966	26.9 65.8 1975 13.0 1965

DELAWARE RIVER BASIN

### 01467150 COOPER RIVER AT HADDONFIELD, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1964 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	9683.3 26.5	7360.1 20.1	34.6 50.6 1973
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	407 Jul 13 6.4 Jun 15 7.3 Oct 5	321 Jun 6 7.0 Oct 9 7.3 Oct 5	20.1 1992 1510 Aug 28 1971 1.2 Jun 27 1964 5.6 Aug 24 1966
INSTANTANEOUS PEAK FLOW	7.3 000 3	862 Jun 5	3300 Aug 28 1971
INSTANTANEOUS PEAK STAGE		3.24 Jun 5	5.46 Aug 28 1971
INSTANTANEOUS LOW FLOW		7.0 Oct 8	.80a Nov 13 1972
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS	1.56	1.18	2.04
	21.19	16.11	27.68
	52	34	- 58
50 PERCENT EXCEEDS	15	12	24
90 PERCENT EXCEEDS	7.8	7.8	13

a Regulation from unknown source.

#### 01467150 COOPER RIVER AT HADDONFIELD, NJ -- Continued

#### WATER QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968-79, 1991 to current year.

COOPERATION. - Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		'	WATER WUAL	III DAIA,	WATER I	EAR OCTOB	EK 1771	IO SEPTEMB	CK 1772		
	DATE	CH. I' CI TIME	NST. CI UBIC CO FEET DU PER AI	PE- WA IFIC WH DN- FI JCT- (ST ICE A	AND - A	TURE I	YGEN, DIS- OLVED	DIS- DE SOLVED B (PER- C CENT I SATUR- 5	IO- F HEM- F CAL, DAY E	COLI- FORM, FECAL, EC BROTH	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
0	CT 1991 22	1200	9.2	181	7.0	12.0	10.3	95	E1.3	330	80
J	AN 1992 23	0930	10	206	6.8	3.0	11.9	89	E1.5	70	40
M	AR 19			175			11.7	92		790	670
M	AY		122		7.2	4.5					
J	28 UL_	0945	11	196	6.6	14.0	7.8	75	2.6	2400	240
	22	0930	E13	201	7.0	24.0	6.7	79	2.8	800	100
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3	DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	(MG/I	ED L
	OCT 1991	E/	45	, 1	0.0	, 1	20	25	40 '	0	4
	JAN 1992	54		4.1	9.0	4.1	29	25	19	0.	
	23 MAR	57		4.1	11	3.8	29	29	23	0.7	
	19 MAY_	39		2.7	15	1.9	20	17	24	<0.	
	28 JUL	54		4.1	10	3.6	29	23	21	0.7	
	22	58	16	4.4	10	4.2	29	23	22	0.7	2
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO GEN, NO2+NO DIS- SOLVEI (MG/L AS N)	NITRO- 3 GEN, AMMONIA D TOTAL	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, AI MONIA ORGAN	M- + IC L
	ОСТ 1991 22	11	106	0 011	0.010	0.20		0.27	0.20	0.57	
	JAN 1992			0.011	0.010	0.29	0.30	0.23	0.28	0.57	
	23 MAR	13	119	0.005	0.005	0.45	0.40	0.11	0.11	0.58	
	19 MAY	5.0	91	0.018	0.013	0.47	0.49	0.21	0.22	0.80	
	28 JUL_	10	106	0.027	0.025	0.35	0.36	0.22	0.22	1.2	
	22	12	111	0.026	0.023	0.32	0.33	0.26	0.22	0.93	
	DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS-PHORUS DIS-SOLVED (MG/LAS P)	CARBON ORGANIO DIS- SOLVED (MG/L AS C)		SEDI- MENT, SUS- PENDED (MG/L)		D
	OCT_1991	A = :	2.21		0.40	.0.00		4 -		A 15	
	22 JAN 1992	0.54	0.86	0.84	0.18	<0.02	3.4	1.2	18	0.45	
	23 MAR	0.24	1.0	0.64	0.18	0.02	2.2		8	0.22	
	19 May	0.47	1.3	0.96	0.28	<0.02	4.5	1.6	31	10	
	28	0.60	1.5	0.96	0.31	0.04	5.4	0.1	26	0.77	
	22	0.44	1.2	0.77	0.33	0.05	3.8	2.7	28	••	

### 01467150 COOPER RIVER AT HADDONFIELD, NJ--Continued

## WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE		OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	MAT FAL DIAM X FIN	L SIE' . DIAI ER % FII N TH/	T. GEN, VE TOI M. IN E NER MA AN (MG/	NH4 GEN, TAL + OR BOT. TOT AT. BOT 'KG (MG	RG. TOT IN IN B MAT MA G/KG (MG/	US INC AL GAN OT TOT T. BOT KG (G/	OR- INOR IIC, ORGA IN TOT. MAT BOT /KG (GM/	RG + ANIC , IN ARSE MAT TOT /KG (UG	TAL TERIAL
OCT 1991	1200			<1	-E1 .	4.3 12	0 470		0.6	5.8 -	. 7
MAY 1992 28	0945	2									3
20	. 0743	1.1			· · · · ·						<b>3</b>
	LI TO RE ER	TAL COV- ABLE	BORON, TOTAL RECOV- ERABLE	CADMIUM TOTAL RECOV- ERABLE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL	CHRO- MIUM, TOTAL RECOV- ERABLE	CHRO- MIUM, RECOV. FM BOT- TOM MA-	COBALT, RECOV. FM BOT- TOM MA- TERIAL	COPPER, TOTAL RECOV- ERABLE	COPPER, RECOV. FM BOT- TOM MA- TERIAL	IRON, TOTAL RECOV- ERABLE
DATE			(UG/L AS B)	(UG/L AS CD)	(UG/G AS CD)	(UG/L AS CR)	TERIAL (UG/G)	(UG/G AS CO)	(UG/L AS CU)	(UG/G AS CU)	(UG/L AS FE)
OCT 1991 22				4.	· <1		4	<5		3	
MAY 1992					, \$1	••	4	. 53	••	3	
28	<	10	50	<b>&lt;1</b>	••	2	. ••	••	3	••	5300
	RE FM   TOM	BOT - MA -	RECOV-	LEAD, RECOV. FM BOT- TOM MA- TERIAL	MANGA- NESE, TOTAL RECOV- ERABLE	MANGA- NESE, RECOV. FM BOT- TOM MA-	MERCURY TOTAL RECOV- ERABLE	MERCURY RECOV. FM BOT- TOM MA- TERIAL	NICKEL, TOTAL RECOV- ERABLE	NICKEL, RECOV. FM BOT- TOM MA- TERIAL	SELE- NIUM, TOTAL
DATE		G/G FE)	(UG/L AS PB)	(UG/G AS PB)	(UG/L AS MN)	TERIAL (UG/G)	(UG/L As hg)	(UG/G AS HG)	(UG/L AS NI)	(UG/G AS NI)	(UG/L AS SE)
OCT 1991			• • *								
22		6200	* . P	30	• • •	24	••	0.01		<10	••
MAY 1992 28			7	••	110	••	0.20	. ••	50	••	<1
DATE	NII TO IN I TOM TE	TAĽ BOT- MA- RIAL		ZINC, RECOV. FM BOT- FM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991		. <b>&lt;1</b>	••	30	6	<1.0	<0.1	48	4.1	<2.0	12
MAY 1992 28		•	30	••	••	• •		•			• • ·
II TO DATE	DI- LDRIN, FOTAL N BOT- OM MA- FERIAL JG/KG)	ENDO- SULFAN TOTAL IN BOT TOM MA TERIA (UG/KG	ENDRII TOTAI - IN BO - TOM M/ L TERI/	T- IN BO A- TOM P AL TERI	DR, CHL AL EPOX DT- TOT. MA- BOT IAL MA	OR LIND LIDE TOT LIN IN B TOM TOM LTL. TER	OT- TOT. MA- BOT IAL MA	- MIR OR, TOT IN IN B TOM TOM TL. TER	AL THA OT- IN B MA- TOM IAL TERI	NE TOT OT- IN B MA- TOM AL TER	NE, TOT REC AL FROM BOT- OT- TOM MAT- MA- TERIAL IIAL (UG/G)
OCT_1991				,							
22 MAY 1992 28	0.6	<0.	1	.1 <0		:0.1 < 		•		.00 <10	
LU					_	•		-	-	~	

#### 01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ.

LOCATION.--Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, at bridge on Blackwood-Clementon Road at Blackwood Terrace, 1,000 ft upstream from Bull Run, and 2.0 mi northeast of Fairview. 4.00 1.00

DRAINAGE AREA. -- 19.1 mi².

PERIOD OF RECORD. -- Water years 1976 to current year.

COOPERATION. -- Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	CH/ II CU TIME	NST. CI UBIC CO FEET DU PER AM	PE- W/ IFIC WI DN- FI UCT- (SI ICE /	TAND- A ARD W	TURE IATER S	SGEN, (I DIS- (I OLVED S	DIS- DE DLVED B PER- C CENT I ATUR- 5	IO- FO HEM- FE CAL, E DAY BE	DLI- CORM, NECAL, NEC TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE CORNER TO THE C	ITERO- COCCI IE,MF VATER OTAL COL / OO ML)
OCT 1991 22	1405	23	167	7.3	15.0	10.3	101	E1.3	230	80
JAN 1992 22	0930	11	174	6.4	1.0	14.5	101	E1.4	<20	140
APR 16	1100	22	167	7.5	11.0	11.5	103	E1.3	4	30
MAY 21	0815	20	175	6.6	14.5	8.0	77	<1.0	460	140
JUL 22	0815	18	155		24.0	5.6	66	<1.0	1300	700
			133	6.8	24.0	5.0	<b>00</b>	1.0	1300	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	DIS- SOLVED (MG/L	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	
OCT 1991 22	44	12	3.3	12	3.3	27	10	15	<0.1	
JAN 1992 22	42	12	3.0	11	2.9	28	21	21	0.2	
APR 16	45	13	3.0	12	3.4	30	15	17	0.1	
MAY 21	42	12	2.9	12	2.7	27	13	20	<0.1	
JUL , 22	. 39	11	2.9	11	3.0	28	10	18	<0.1	
DATE OCT 1991	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NO2+NÓ3	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	
22	6.6	84	0.040	0.038	1.06	1.06	0.55	0.51	0.94	. ,
JAN 1992 22	7.4	104	0.010	0.009	1.69	1.72	0.60	0.55	0.86	
APR 16	4.5	91	••	• • •	1.14	1.14	0.07	0.09	0.43	
MAY 21	5.5	89	0.070	0.068	0.95	0.96	0.66	0.60	1.3	. •
JUL 22	4.6	82	0.027	0.025	1.03	1.03	<0.03	0.12	0.49	
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	
OCT 1991 22	0.77	2.0	1 0	0.07	0.07	7.4	0.0	10	1 1	
JAN 1992		2.0	1.8	0.07	0.03	3.6	0.8	18	1.1	
22 APR	0.69	2.6	2.4	0.69	0.02	2.8	0.6	9	0.27	
16 MAY	0.29	1.6	1.4	0.07	<0.02	2.9	0.6	23	1.4	
21 JUL 22	1.1	2.2	2.0	0.14	0.02	4.8	1.4	17	0.92	•
۷۷	0.33	1.5	1.4	0.16	0.05	4.0	0.5	22	1.1	

## 01467329 SOUTH BRANCH BIG TIMBER CREEK AT BLACKWOOD TERRACE, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME L	(HIGH T	LI TO SENIC RE OTAL EF UG/L (U	DTAĽ TO ECOV- RE RABLE ER JG/L (U	DTAL TO CCOV- RE RABLE ER JG/L (U	MIUM MIG TAL TO COV- REG ABLE ERA G/L (UG	RO- UM, COPPER, TAL TOTAL COV- RECOV- ABLE ERABLE G/L (UG/L CR) AS CU)
MAY 1992 21	,0815	23	1 .	<10	120	<1	<1 2
DATE	IRON, TOTAL RECOV ERABL (UG/L AS FE	- RECOV- E ERABLE (UG/L	(UG/L	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAY 1992 21	230	0 4	80	<0.10	19	<1	20

## 01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA (National stream-quality accounting network station)

LOCATION.--Lat 39°58'00", long 75°11'20", Philadelphia County, PA, Hydrologic Unit 02040203, on right bank 150 ft upstream from Fairmount Dam, 1,500 ft upstream from Spring Garden Street bridge in Philadelphia, and 8.7 mi upstream from mouth. Water-quality sampling site 1.6 mi upstream. Water-quality monitor intake at gage. See Pennsylvania report for current year water-quality data.

DRAINAGE AREA. -- 1,893 mi 2.

PERIOD OF RECORD.--September 1931 to current year. Records for January 1898 to December 1912, published in WSP 35, 48, 65, 82, 97, 125, 166, 202, 214, 261, 301, 381 have been found to be unreliable and should not be used.

REVISED RECORDS...WSP 756: Drainage area. WSP 1302: 1936(M). WSP 1432: 1945. See also PERIOD OF RECORD.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 5.74 ft above sea level. Prior to Nov. 25, 1956, water-stage recorder at site on right bank just upstream from Fairmount Dam at same datum. Nov. 26, 1956, to Oct. 6, 1966, water-stage recorder at site on left bank 40 ft upstream from Fairmount Dam at same datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Flow regulated by Still Creek Reservoir (station 01469200) since February 1933, Blue Marsh Reservoir (station 01470870) since April 1979, Green Lane Reservoir (station 01472200) since December 1956, and to some extent by Lake Ontelaunee. Records of discharge do not include diversion above station by city of Philadelphia for municipal water supply.

EXTREMES OUTSIDE PERIOD OF RECORD.: Flood of Oct. 4, 1869, reached a stage of 17.0 ft, discharge, 135,000 ft³/s, from rating extended above 46,000 ft³/s. Flood of Mar. 1, 1902, reached a stage of 14.8 ft, discharge, 98,000 ft³/s.

		DISC	HARGE, C	JBIC FEET	PER SECON	D, WATER ILY MEAN	YEAR OCTO VALUES	BER 1991	TO SEPTEM	IBER 1992		•
DAY	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	576	621	1100	1580	1260	2270	4740	1880	6900	1230	1580	713
2	559	621	1270	1430	1170	1960	4090	1740	5760	944	1220	643
3	543	622	6390	1210	1140	1760	3360	1630	4260	866	1110	620
4	499	639	8590	1310	1080	1590	2870	1550	3170	1280	1070	668
5	476	607	4970	1600	1010	1440	2590	1490	4720	1060	1020	664
· 6	559	589	3370	1620	964	1330	2320	1420	10100	1250	998	699
7	670	616	2770	1370	890	1630	2050	1380	7400	1590	882	839
8	809	620	2380	1190	915	2880	1890	2360	5550	1450	692	942
9	695	582	2230	1160	926	2560	1800	8010	4620	1030	711	788
10	655	568	4040	1240	865	2100	1640	5720	3770	1180	803	820
11	600	676	3840	1230	817	4770	1690	4140	3080	1340	965	977
12	596	732	3020	1190	794	4710	1740	3260	2600	1080	1600	1110
13	756	726	2510	1160	812	3880	1620	2780	2220	1040	1340	1160
14	767	696	2800	1440	794	3290	1450	2480	1950	1060	1150	867
15	892	652	2900	2700	977	2810	1360	2370	1790	1310	1150	756
16	873	627	2410	2250	2670	2500	1330	3180	1600	1870	1060	677
17	1640	581	2100	1530	2410	2190	1410	3560	1430	2070	1280	620
18	2700	614	1700	1410	1910	2010	1750	3030	1300	2340	1350	569
19	1990	568	1480	1160	1730	2660	1530	2560	2330	2190	1400	625
20	1530	568	1280	1030	1780	2980	1600	2310	2510	1600	1660	587
21 ⁻	1250	568	1280	1160	1580	3090	1470	2020	1760	1350	1090	597
22	1060	1210	1320	1200	1390	2730	1630	1710	1370	1240	898	588
23	868	4810	1310	1550	1330	2660	2550	1540	1350	1390	762	802
24	783	5060	1290	2910	1360	2650	2460	1440	1500	1650	748	798
25	743	3590	1240	2840	1360	2390	2380	1490	1420	1540	680	823
26 27 28 29 30 31	701 673 692 642 633 680	2340 1560 1180 1110 1080	1200 1070 977 1230 1940 1960	2000 1680 1500 1310 1260 1230	2050 3240 2870 2520	2610 10800 13700 9380 7120 5690	2900 2590 2310 2120 1960	1390 1620 1730 1350 1190 2610	1430 1170 1040 e1000 1070	1540 1470 1420 1570 1460 2070	804 721 642 701 904 922	2960 3500 3060 2200 1730
TOTAL MEAN MAX MIN CFSM IN.	27110 875 2700 476 .46 .53	35033 1168 5060 568 .62 .69	75967 2451 8590 977 1.29 1.49	47450 1531 2910 1030 .81 .93	42614 1469 3240 794 .78 .84	114140 3682 13700 1330 1.95 2.24	65200 2173 4740 1330 1.15 1.28	74940 2417 8010 1190 1.28 1.47	90170 3006 10100 1000 1.59 1.77	44480 1435 2340 866 . 76 . 87	31913 1029 1660 642 .54 .63	32402 1080 3500 569 .57
STATIST		MONTHLY ME			YEARS 193	-	BY WATER	YEAR (WY)	)			
MEAN	1316	2265	3054	3254	3641	4671	4169	3160	2136	1641	1389	1397
MAX	4771	6272	9569	11400	8136	13320	11620	9943	11640	6434	7980	4863
(WY)	1956	1973	1984	1979	1939	1936	1983	1989	1972	1984	1933	1960
MIN	89.4	223	444	340	647	1552	1237	693	261	116	140	117
(WY)	1942	1932	1981	1981	1934	1981	1985	1965	1965	1966	1966	1932

## 01474500 SCHUYLKILL RIVER AT PHILADELPHIA, PA--Continued

## WATER-DISCHARGE RECORDS--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1932 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	775857 2126	681419 1862	2669 4791 1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	11300 Jan 12 294 Sep 14 343 Sep 13	13700 Mar 28 476 Oct 5 555 Oct 1	1014 1965 93400 Jun 23 1972 .60 Sep 2 1966 24 Sep 28 1941
INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM)	1.12	15100 Mar 28 8.36 Mar 28 .98	103000 Jun 23 1972 14.65 Jun 23 1972 1.41
ANNUAL RUNOFF (INCHÉS) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	15.25 4740 1560 501	13.39 3250 1410 654	19.16 5770 1640 407

e Estimated.

# 01477120 RACCOON CREEK NEAR SWEDESBORO, NJ

LOCATION.--Lat 39°44'28", long 75°15'33", Gloucester County, Hydrologic Unit 02040202, on right bank 25 ft downstream from County Bridge No. 5-F-3 on Harrisonville-Gibbstown Road, 1.8 mi west of Mullica Hill, and 2.8 mi east of Swedesboro.

DRAINAGE AREA. -- 26.9 mi 2.

# WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

REVISED RECORDS.--WDR NJ-82-2: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is sea level. Prior to July 28, 1969, at datum 7.96 ft higher. July 28, 1969 to Sept. 30, 1969, at datum 5.96 ft higher.

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature, other than those published, were made during the year.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300  $\rm ft^3/s$  and maximum (*):

Date		Time	C	ischarge (ft ³ /s)	C	Gage height (ft)		Date	Time	. D	ischarge (ft ³ /s)	Ga	ge height (ft)
Dec.	3	2345		*202		*9.57		No peak gre	eater t	han base	discharge		
			DISCH	IARGE, CUB	IC FEET	PER SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER	R 1991	TO SEPTEM	BER 1992		
DAY		ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5		17 16 16 16 16	18 18 20 22 23	38 54 138 113 39	25 25 24 31 34	22 19 19 19 19	20 20 20 20 20	33 41 38 33 29	19 18 15 13	33 22 18 16 54	12 12 13 18 14	13 11 11 11 11	11 11 19 18 15
6 7 8 9 10		16 16 16 16 16	23 23 24 24 25	29 27 25 26 64	28 25 24 24 25	18 19 20 20 17	19 29 29 23 23	27 26 25 24 25	14 13 36 38 30	62 30 25 21 18	. 13 12 12 11 10	9.9 9.6 9.8 9.3	14 15 15 14 14
11 12 13 14 15		17 19 17 16 28	31 30 29 28 27	37 30 28 28 28	24 23 22 23 22	18 18 17 21 27	75 35 27 24 22	25 24 22 22 21	25 21 19 17 16	16 15 14 14 14	9.7 9.9 10 9.9 10	9.9 11 10 13 17	31 16 14 13 13
16 17 18 19 20		29 58 45 26 22	29 31 30 30 30	25 23 23 22 20	20 19 20 19 17	48 32 32 31 26	21 21 21 73 55	22 25 24 29 26	18 19 17 16 15	13 14 13 31 25	11 11 11 10 9.7	23 23 23 17 14	13 13 13 13 12
21 22 23 24 25		21 21 21 20 19	31 42 48 38 34	22 23 23 23 21	19 19 27 54 31	23 22 21 20 20	33 29 33 30 26	24 25 23 22 22	14 14 13 13	17 15 15 14 18	8.9 8.8 27 22 16	13 12 12 11 11	12 13 16 13 17
26 27 28 29 30 31		19 19 19 18 18	32 31 31 32 31	21 21 21 40 40 28	25 23 23 23 23 23 23	38 31 25 22	34 96 46 36 32 34	27 24 23 23 20	16 18 15 13 13	15 14 13 12 12	14 15 13 12 11	11 16 13 12 11	64 20 16 17 13
TOTAL MEAN MAX MIN CFSM IN.		651 21.0 58 16 .78	865 28.8 48 18 1.07 1.20	1100 35.5 138 20 1.32 1.52	764 24.6 54 17 .92 1.06	684 23.6 48 17 .88 .95	1026 33.1 96 19 1.23 1.42	774 25.8 41 20 .96 1.07	580 18.7 46 13 .70 .80	613 20.4 62 12 .76 .85	388.9 12.5 27 8.8 .47 .54	400.5 12.9 23 9.3 .48 .55	498 16.6 64 11 .62 .69
STATI	STI	CS OF MOR	ITHLY MEA	N DATA FO	R WATER		1992,	BY WATER YE	AR (WY)	)			
MEAN MAX (WY) MIN (WY)		29.1 65.2 1990 15.9 1969	35.6 93.9 1973 18.0 1975	44.5 107 1973 18.8 1981	50.5 123 1978 20.7 1981	49.4 115 1979 23.6 1992	51.0 88.5 1984 22.7 1981	1983 21.3	43.2 72.6 1989 15.9 1977	36.0 77.7 1975 10.7 1966	32.8 112 1975 6.01 1966	30.8 121 1967 5.89 1966	26.0 71.9 1971 11.7 1968

DELAWARE RIVER BASIN

# 01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1966 - 1992
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	12808 35.1	8344.4 22.8	40.3 64.7 1973 22.5 1981
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	364 Jan 12 12 Aug 7 13 Sep 8	138 Dec 3 8.8 Jul 22 9.9 Aug 7 202 Dec 3 9.57 Dec 3 8.7 Jul 20	1260 Aug 28 1971 2.9 Jul 14 1966 3.3 Aug 25 1966 3530 Aug 10 1967 17.44a Aug 10 1967
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1.30 17.71 59 28 15	.85 11.54 33 20 12	1.50 20.36 66 29 14

a Present datum.

# 01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1965 to current year.

PERIOD OF DAILY RECORD...
WATER TEMPERATURES: May 1966 to September 1973.
SUSPENDED-SEDIMENT DISCHARGE: June 1966 to September 1969.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATE WHOL FIEL (STAN ARD UNIT	E D TEI D- A' W/	MPER- ( TURE ATER EG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND BIO- CHEM- ICAL, 5 DAY (MG/L)	FORM, FECAL EC BROTH	TOTAL (COL /
NOV 1991 04	1100	22	228	7	.3	8.0	10.7	89	<1.0	0 13	0 80
FEB 1992		18	215				13.5				
04 APR	1130				.5	3.0		101	E1.8		
23 JUN	1200	24	206		.5	17.0	11.1	114			
08 AUG_	0915	23	179		.8	20.0	6.8	75	<1.		
03	1030	11	217	,	.8	20.5	7.9	88	E1.7	7 54	0 600
DATE	HAR NES TOT (MG AS CAC	S CALC AL DIS /L SOL (MG	IUM S VED SOI	IS- I EVED SI G/L	ODIUM, DIS- OLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	M, LINII LAE ED (MG, AS	TY SUL B DI: /L SO (M	FATE RI S- DI LVED SC G/L (N	IDE, R IS- I OLVED SI MG/L (I	LUO- IDE, DIS- OLVED MG/L S F)
NOV 1991 04		71 22	,	.0	11	4.2	2 50	.3	1 .	19	0.3
FEB 1992 04		73 23		3.8	10	3.6		.3		20	0.3
APR 23		65 20		3.6	9.3	3.6		2		18	0.2
JUN		63 18		4.4	5.8	4.0		2		16	0.2
AUG 03		73 23		3.7	7.1	3.6		2:		16	0.2
03		,,, 2,	•	, . <i>,</i>		3.0	, 40	۲.	•		0.2
DATE	SILI DIS SOL (MG AS SIO	- CONS VED TUEN /L DI SOL	OF NIT	RO- EN, N. RITE FAL S	NITRO- GEN, ITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	, NO2+N 03 DIS . SOLV . (MG/	N, NI' NO3 GI S- AMMO /ED TO' /L (MO	TRO- C EN, AMN ONIA C TAL SC G/L (M	GEN, GEN MONIA MON DIS- ORC DLVED TO MG/L (N	ITRO- N,AM- NIA + GANIC DTAL MG/L S N)
NOV 1991	.=										
04 FEB 1992	13				E0.016	1.12					.25
04 APR				022	0.021	1.78					.33
23 Jun				049	0.049	1.34					.48
08 AUG_				033	0.033	1.98					.67
03	11		119 0.	018	0.019	0.82	2 0.8	33 <0.	.03 0.	04 0.	.26
DATE	NITI GEN, MONIA ORGAI DIS (MG, AS I	AM- A + NIT NIC GE . TOT. /L (MG	RO- GE N, DIS AL SOLV /L (MG	- PI ED 1	PHOS- HORUS FOTAL (MG/L	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGAN DIS- D SOLVE (MG/	IIC SUS PEND D TOT 'L (MC	ANIĈ S- SE DED ME TAL SU G/L PE	DI- DINT, CHA	EDI- ENT, DIS- ARGE, SUS- ENDED (DAY)
NOV 1991	^	10 4	, .	7	0.51	0.07	7 4	^ 4	ı		
04 FEB 1992					0.54	0.03	3.1	0.1			
04 APR					0.09	0.04	2.1	0.3			.10
23 JUN				.8	0.10	0.03	2.6	0.4			84
08 AUG					0.11	0.05	3.6	0.8		35 2.	
03	U,	.13 1	.1. 0	.96	0.14	0.04	2.8	0.1		7 0.	.21

01477120 RACCOON CREEK NEAR SWEDESBORO, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	DE C I ( TIME LE	HIGH TO VEL) (L	LI TO SENIC RE DTAL EF JG/L (U	DTAL TO ECOV- RE RABLE ER JG/L (L	DTAL TO ECOV- RE RABLE ER JG/L (U	MIUM MI TAL TO COV- RE ABLE ER G/L (U	RO- UM, COPPER TAL TOTAL COV- RECOV ABLE ERABL G/L (UG/L CR) AS CU
JUN 1992 08	0915	16	1 .	<10	40	<1	1
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	(UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
JUN 1992 08	1500	1	70	0.10	7	<1	20

## 01477510 OLDMANS CREEK AT PORCHES MILL, NJ

LOCATION.--Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 150 ft downstream of tributary from outflow of lake at Porches Mill, 1.0 mi north of Seven Stars, and 2.1 mi southeast of Auburn.

DRAINAGE AREA. -- 21.0 mi 2.

PERIOD OF RECORD. -- Water years 1975 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	DATE	TIME	INST. C CUBIC CI FEET DI PER A	PE- W/ IFIC WI ON- FI UCT- (SI NCE /	TAND - A	MPER- C TURE ATER EG C)	DXYGEN, DIS- SOLVED (MG/L)	DIS- DE SOLVED B (PER- C CENT I SATUR- 5	IO- F HEM- F CAL, DAY B	OLI- ORM, I ECAL, I EC ROTH (	NTERO- COCCI ME,MF WATER TOTAL COL / OO ML)
OCT 24	1991	1200	14	224	7.4	14.0	9.6	92	E1.2	79	11
FEB	1992	1100	12	222	7.2	1.0	14.2	100	E2.4	20	20
APR		1230	15	187	7.7	11.0	11.1	100	<1.0	50	20
JUN											
AUG 03	•••	0945	16	196	6.7	17.0	7.7	79	E1.8	330	100
03	• • •	1215	6.6	230	8.1	22.5	12.1	140	3.5	33	80
	DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	I, LINITY LAB D (MG/L AS	SULFATE DIS- SOLVED (MG/L	(MG/L	(MG/L	D
(	OCT 1991	81	24	5.0	E 4		-39	72	19	0.2	
	FEB 1992		1	5.0	5.6	4.4		32			
4	06 APR	83		5.1	6.0	3.6		34	22	0.3	
	16 JUN	81		5.0	5.4	3.6		· 31	19	0.3	
	02 AUG_	68		4.5	5.5	3.7		25	17	0.3	
	03	83	25	4.9	5.5	3.4	44	24	21	0.2	
	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	CONSTI-	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO GEN, NO2+NO TOTAL (MG/L AS N)	NO2+NO 3 DIS- SOLVE (MG/L	NITRO- 3 GEN, AMMONÍA D TOTAL (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA - ORGANIO TOTAL (MG/L AS N)	• •
(	OCT_1991	45								- '	
ı	24. FEB 1992	12	134	0.008	0.008	1.45			0.09	0.23	
,	06 APR	, <b>11</b>	137	0.017	0.017				0.09	0.43	
,	16 Jun	4.8	120		•• `	1.61	1.66	0.04	0.04	0.29	
,	02 AUG	9.4	110	0.036	0.034	1.32	1.32	0.05	0.05	0.70	
	03	9.6	124	0.017	0.018	0.93	0.91	<0.03	<0.03	0.40	
	DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVE (MG/L AS P)	ORGANI DIS- D SOLVED (MG/L		SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	)
c	OCT 1991			, <b>-</b>	0.01		<b>~</b> .		_	0.00	
F	24 EB 1992	0.23		1.7	0.04	0.02	3.1	0.3	2	0.08	
A	06 NPR	0.19		2.8	0.05	<0.02	2.0	0.3	••		
J	16 IUN	0.17	1.9	1.8	0.03	<0.02	2.9	0.3	6	0.24	
	02	0.50	2.0	1.8	0.17	0.07	4.5	0.9	27	1.2	
,	03	0.18	1.3	1.1	0.06	0.02	3.4	1.0	4	0.07	

# 01477510 OLDMANS CREEK AT PORCHES MILL, NJ--Continued WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	ARSENIC TOTAL (UG/L AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
JUN 1992 02	0945	14	2	<10	<1	<1	1
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
JUN 1992 02	2400	1	150	<0.10	9	. <1	10

# 01482500 SALEM RIVER AT WOODSTOWN, NJ

LOCATION.--Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memorial Lake Dam at Woodstown, 0.2 mi upstream from small brook, and 0.3 mi downstream from Pennsylvania-Reading Seashore Lines bridge.

DRAINAGE AREA. -- 14.6 mi 2.

PERIOD OF RECORD. -- Water years 1973 to current year.

COOPERATION.--Analyses of fecal coliform by the MPN method, enterococcus bacteria by the membrane filtration method, water-phase nutrients, and BOD were performed by the New Jersey Department of Health, Division of Laboratories and Epidemiology.

WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

	,	HAIER QUAL	LIT DATA	WAIER T	EAR OCTOR	SEK 1991 I	O SELIEMR	EK 1992		
DATE	CH/ II CI TIME	NST. CI JBIC CO FEET DU PER AN	PE- W/ IFIC WH DN- FI JCT- (SI ICE /	AND - A	TURE ATER S	YGEN, ( DIS- GOLVED S	DIS- DE OLVED B PER- C CENT I ATUR- 5	IO- HEM- CAL, DAY	COLI- FORM, FECAL, EC BROTH (MPN)	ENTERO- COCCI ME,MF WATER TOTAL (COL / 100 ML)
OCT_1991									4700	.000
24 FEB 1992	•	15	249	7.3	14.5	9.4	91	3.7	1300	<200
10 APR	1100	5.9	265	7.3	1.5	14.7	102	2.3	<200	<10
13 Jun	1130	5.9	250	7.8	13.0	10.8	101	2.9	20	<10
04 JUL	0830	7.2	232	6.7	21.5	6.3	71	3.9	490	<10
27	0845	7.2	244	7.5	23.5	7.5	89	6.8	800	40
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	L'INITY LAB	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVEI (MG/L AS CL	(MG/	/ED /L
OCT 1991 24	83	18	9.3	6.9	7.7	33	40	23	0.	1
FEB 1992	91	20	9.9	8.7	4.4	26	45	26	0.	
APR 13	93	21	9.9	8.0	4.7	28	41	25	0.	
JUN 04	77	17	8.4	7.3	6.5	30	32	23	0.	
JUL 27	85	20		8.7	6.3	56	20	26	0.	
2/	70	20	8.4	0.7	0.5	30	20	20	0.	2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NO2+NÓ3	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONI/ DIS- SOLVEI (MG/L AS N)	GEN,A MONÍA ORGAN	M-   IC   L   L
OCT_1991	7 (	1/2	0.047	0.0//	4 00	2.07	0.47	0.21	4.	
FEB 1992	7.6	142	0.047	0.044	1.82	2.07	0.13	0.21	1.6	
10 APR_	7.4	153	0.028	0.027	3.54	3.62	0.08	0.11	0.57	
13 JUN	6.6	142	0.038	0.038	2.03	2.02	0.05	0.05	0.99	•
04 JUL	4.3	125	0.092	0.089	1.91	1.88	0.32	0.36	1.4	
27	7.0	131	0.012	0.004	0.12	0.12	0.06	0.07	1.8	
DATE	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	CARBON, ORGANIĆ DIS-	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)		E , ED
OCT 1991 24	0.75	7 /	2 0	0 15	0.07	4 E	2 4	17	0.40	
FEB 1992		3.4	2.8	0.15	0.03	6.5	2.1	17	0.69	
10 APR	0.35	4.1	4.0	0.07	<0.02	3.5		5	0.08	
13 JUN	0.42	3.0	2.4	0.14	<0.02	11	2.2	31	0.49	
04 JUL_	0.85	3.4	2.7	0.14	0.03	6.5	1.9	21	0.41	
27	0.62	2.0	0.74	0.30	0.04	23	••	34	0.66	

# 01482500 SALEM RIVER AT WOODSTOWN, NJ--Continued

# WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	DEM CH IC (H TIME LEV	EM- FA AL DIA IIGH % FI	AT. MA ALL SIE AM. DIA INER % FI HAN TH	AT. GEN, EVE TOT AM. IN B INER MA IAN (MG/	NH4 GEN, AL + OR BOT. TOT AT. BOT KG (MG	RG. TOT IN IN E MAT MA G/KG (MG/	RUS INC FAL GAN BOT. TOT AT. BOT /KG (G/	OR- INOR HIC, ORGA IN TOT. MAT BOT 'KG (GM/	RG + NNIC IN ARSE MAT TOT KG (UG	AL TERIAL
OCT 1991 24	1000		1	1	6.4 29	0 170	) •	:0.1	6.1 -	. 2
JUN 1992	,	20	·	·						3
04	0830	29 -	•	-	-		•	•	<b>-</b> ,	2
DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
OCT 1991				<1		. 3	· <b>&lt;</b> 5		3	
JUN 1992				``			,	_	J	
04	<10	20	<1	••	<1	••	••	2	••	960
Date	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	RECOV- ERABLE (UG/L	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
OCT 1991										
JUN 1992	4500		10	••	74	••	<0.01	••	<10	
04	••	3	••	120	••	<0.10	••	5	••	<1
DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ERABLE (UG/L	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT_1991										
24 JUN 1992	<1	••	10	9	. <1.0	<0.1	10	0.4	<0.1	0.3
04	••	<10	••	••	••	••			••	
DATE	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL IN BOT- TOM MA- TERIAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
OCT 1991		_	_	_	_	_	_			
24 JUN 1992	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<5.0	<0.1	<1.00	<10
04	••	••	••	••	••	••	••	••	••	••

### RESERVOIRS IN DELAWARE RIVER BASIN

O1416900 PEPACTON RESERVOIR.--Lat 42°04'38", long 74°58'04", Delaware County, NY, Hydrologic Unit 02040102, near release chamber at Downsville Dam on East Branch Delaware River, and 1.6 mi east of Downsville, NY. DRAINAGE AREA, 371 mi². PERIOD OF RECORD, September 1954 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam. Storage began Sept. 15, 1954. Usable capacity 140,190 mil gal between minimum operating level, elevation, 1,152.0 ft, and crest of spillway, elevation, 1,280.0 ft. Capacity, at crest of spillway 149,700 mil gal; at minimum operating level, 9,609 mil gal; at still of diversion tunnel, elevation, 1,143.0 ft, 6,098 mil gal; in dead storage below release outlet, elevation, 1,126.50 ft, 1,898 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through East Delaware Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin (see Delaware River Basin, diversions), for water supply to City of New York; for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Jan. 6, 1955.

COOPERATION.--Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 154,027 mil gal, Apr. 5, 1960, elevation, 1,282.27 ft; minimum observed (after first filling), 9,575 mil gal, Dec. 26, 1964, elevation, 1,51.92 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 133,485 mil gal, June 15, elevation, 1,270.86 ft; minimum observed, 60,628 mil gal, Nov. 22, elevation, 1,218.75 ft.

01424997 CANNONSVILLE RESERVOIR.--Lat 42°03'46", long 75°22'29", Delaware County, NY, Hydrologic Unit 02040101, in emergency gate tower at Cannonsville Dam on West Branch Delaware River, and 1.8 mi southeast of Stilesville, NY. DRAINAGE AREA, 454 mi². PERIOD OF RECORD, October 1963 to current year. REVISED RECORDS, WRD-NY 1972: 1966. GAGE, water-stage recorder. Datum of gage is sea level (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam; storage began Sept. 30, 1963, usable capacity 95,706 mil gal between minimum operating level, elevation, 1,040.0 ft and crest of spillway, elevation, 1,150.0 ft. Capacity, at crest of spillway, 98,618 mil gal; at minimum operating level, 2,912 mil gal; at mouth of inlet channel to diversion tunnel, elevation, 1,035.0 ft, 1,892 mil gal; in dead storage below release outlet elevation, 1,020.5 ft, 328 mil gal. Figures given herein represent total contents. Impounded water is diverted for New York City water supply via West Delaware Tunnel to Rondout Reservoir in Hudson River basin (see Delaware River Basin, diversion); is released in Delaware River for downstream low-flow augmentation as directed by Delaware River Master; and is released for conservation flow in the Delaware River. No diversion prior to Jan. 29. 1964.

COOPERATION.--Records provided by Bureau of Water Resources Development, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 109,617 mil gal, Mar. 16, 1986, elevation, 1,156.73 ft; minimum observed (after first filling), 11,901 mil gal, Nov. 7, 1968, elevation, 1,066.24 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 92,183 mil gal, June 16, 17, elevation, 1,165.77 ft; minimum observed, 25,419 mil gal, Oct. 13, elevation, 1,089.58 ft.

01428900 PROMPTON RESERVOIR.--Lat 41°35'18", long 75°19'39", Wayne County, PA, Hydrologic Unit 02040103, at dam on West Branch Lackawaxen River, 0.3 mi north of Prompton, PA, 0.4 mi upstream from highway bridge and 0.5 mi upstream from Van Auken Creek. DRAINAGE AREA, 59.6 mi². PERIOD OF RECORD, December 1960 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earth and rockfill dam with ungated bedrock spillway at elevation 1,205.00 ft; storage began July 1960. Capacity at elevation 1,205.00 ft is 51,700 acre-ft. Ordinary minimum (conservation) pool elevation, 1,125.00 ft capacity, 3,420 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,170 acre-ft, June 29, 1973, elevation, 1,138.40 ft; minimum (after first filling), 2,505 acre-ft, June 5, 1991, elevation, 1,121.46 ft.

EXTREMES FOR CURRENT YEAR.--Maximum content, 4,649 acre-ft, June 1, elevation, 1,129.27 ft; minimum, 2,890 acre-ft, Nov. 8, elevation, 1,122.81 ft.

acre-ft, Nov. 8, elevation, 1,122.81 ft.

01429400 GENERAL EDGAR JADWIN RESERVOIR.--Lat 41°36'44", long 75°15,55", Wayne County, PA, Hydrologic Unit 02040103, at dam on Dyberry Creek, 0.45 mi upstream from unnamed tributary, 2.4 mi north of Honesdale, PA, and 2.9 mi upstream from mouth. DRAINAGE AREA, 64.5 mi PERIOD OF RECORD, October 1959 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earth and rockfill dam with ungated, concrete spillway at elevation, 1,053.00 ft; storage began in October 1959. Capacity at elevation 1,053.00 ft is 24,500 acre-ft. Reservoir is used for flood control. Figures given herein represent total contents. Regulation is accomplished by discharge through an ungated tunnel.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 6,520 acre-ft, June 19, 1973, elevation 1,017.40 ft; no storage many times.

EXTREMES FOR CURRENT YEAR. -- No storage entire year.

01431700 LAKE WALLENPAUPACK.--Lat 41°27'35", long 75°11'10", Wayne County, PA, Hydrologic Unit 02040103, at dam on Wallenpaupack Creek at Wilsonville, PA, 1.2 mi south of and 1.5 mi upstream from mouth. DRAINAGE AREA, 228 mi². PERIOO OF RECORD, January 1926 to current year. GAGE, vertical staff. Datum of gage is sea level (levels by Pennsylvania Power and Light Co.).

REMARKS.--Reservoir formed by concrete gravity-type and earthfill dam with concrete spillway at elevation 1,176.00 ft in two sections. Spillway equipped with roller gate, 14 ft high on each section. Storage began Nov. 3, 1925; water in reservoir first reached minimum pool elevation in January 1926. Total capacity at elevation 1,190.00 ft, top of gates, is 209,300 acre-ft of which 157,800 acre-ft is controlled storage above elevation 1,160.00 ft, minimum pool. Reservoir is used for generation of hydroelectric power. Figures given herein represent usable contents.

COOPERATION.--Records provided by Pennsylvania Power and Light Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 129,300 acre-ft, Aug. 19-21, 1955, elevation, 1,193.45 ft; minimum (after first filling), 12,280 acre-ft, Mar. 28, 1958, elevation, 1,162.60 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 95,260 acre-ft, May 25, elevation, 1,187.8 ft; minimum, 19,160 acre-ft, Oct. 21-26, elevation, 1,173.7 ft.

# RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

01433000 SWINGING BRIDGE RESERVOIR.-Lat 41°34'25", long 74°47'00", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Mongaup River, and 1.8 mi northwest of Fowlersville, NY. DRAINAGE AREA, 118 mi excluding Cliff Lake, Lebanon Lake, and Toronto Reservoir. PERIOD OF RECORD, January 1930 to current year. REVISED RECORDS, WSP 1552: 1951-54. WDR NJ-86-2: 1985. GAGE, water-stage recorder. Datum of gage is sea level (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool

Reckland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,010 ft.

REMARKS.--Reservoir is formed by an earthfill dam. Storage began Jan. 19, 1930. Usable capacity, 1,436.6 mil ft³ between elevations 1,010.0 ft, minimum operating pool, and 1,071.2 ft, top of flashboards. Capacity below elevation 1,010.0 ft, minimum operating pool, about 212.7 mil ft³. Reservoir is used for storage of water for power. Figures given herein represent contents above 1,010.0 ft. Water is received from Cliff Lake, Lebanon Lake, and Toronto Reservoir.

power. Figures given nereth represent section lake, and Toronto Reservoir.

COOPERATION.--Records provided by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,461.6 mil ft³, Mar. 14, 1977, elevation, 1,071.8 ft; minimum (after first filling), -141.4 mil ft³, Dec. 2, 1938, elevation, 987.5 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,383.3 mil ft³, Apr. 3, elevation, 1,069.9 ft; minimum, 1,000.0 mil ft³, Oct. 2, 4, 5, elevation, 1,059.7 ft.

01433100 TORONTO RESERVOIR.--Lat 41°37'15", long 74°49'55", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi southeast of village of Black Lake, NY. DRAINAGE AREA, 23.2 mi². PERIOD OF RECORD, January 1926 to current year. REVISED RECORDS, WSP 1552: 1951-54. WSP 1702: 1959(M). WDR NJ-85-2: 1984. WDR NJ-86-2: 1985. Nonrecording gage. Datum of gage is sea level (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minumum operating pool level, 1,165.0 ft. REMARKS.--Reservoir is formed by an earthfill dam completed July 24, 1926. Storage began Jan. 13, 1926. Usable capacity, 1,098.2 mil ft³ between elevations 1,165.0 ft, minimum operating pool, and operating pool, about 26.8 mil ft³. Reservoir is used for storage of water for power. Figures given herein represent contents above 1,165.0 ft.

COOPERATION.--Records provided by Orange and Rockland Utilities, Inc.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 1,171.2 mil ft³, July 20, 1945, elevation, 1,222.0 ft. minimum observed (after first filling), -26.8 mil ft³, Nov. 15, 1928, elevation, 1,144.5 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 719.8 mil ft³, Aug. 19, 21, elevation, 1,207.8 ft; minimum observed, 191.9 mil ft³, Nov. 20, elevation, 1,183.8 ft.

01433200 CLIFF LAKE.--Lat 41°35'00", long 74°47'40", Sullivan County, NY, Hydrologic Unit 02040104, at dam on Black Lake Creek, and 2.5 mi northwest of Fowlersville, NY. DRAINAGE AREA, 6.46 mi² excluding area above Toronto Reservoir. PERIOD OF RECORD, January 1939 to current year. REVISED RECORDS, WSP 1552: 1951-54. WRD NY-75-1: 1974(m). WDR NJ-86-2: 1985. Nonrecording gage. Datum of gage is sea level (levels by Orange and Rockland Utilities, Inc.). All capacity figures given herein are based on zero storage at minimum operating pool level, 1,043.3 ft.

REMARKS.--Reservoir is formed by a concrete gravity-type dam. Storage began Jan. 6, 1939. Usable capacity,

1,043.3 ft.

REMARKS.--Reservoir is formed by a concrete gravity-type dam. Storage began Jan. 6, 1939. Usable capacity, 136.06 mil ft³ between elevations 1,043.3 ft, minimum operating pool, and 1,072.0 ft, top of permanent flashboards. Capacity below elevation 1,043.3 ft, minimum operating pool, about 6.54 mil ft³. Reservoir is used for storage of water for power. Water is received from Toronto and Lebanon Lake reservoirs and is discharged through a tunnel into Swinging Bridge Reservoir. Figures given herein represent contents above 1,043.3 ft.

COOPERATION.--Records provided by Orange and Rockland Utilities, Inc.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 145.44 mil ft³, July 30, 31, 1945, elevation, 1,073.1 ft; minimum observed (after first filling), about -6.54 mil ft³, Mar. 16, 1963, elevation, 1,038.0 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 118.88 mil ft³, Apr. 3, elevation, 1,069.9 ft; minimum observed, 51.92 mil ft³, Oct. 15, elevation, 1,059.6 ft.

01435900 NEVERSINK RESERVOIR.--Lat 41°49'40", long 74°38'21", Sullivan County, NY, Hydrologic Unit 02040104, at a gate-house at Neversink Dam on Neversink River, and 2 mi southwest of Neversink, NY. DRAINAGE AREA, 91.8 mi². PERIOD OF RECORD, June 1953 to current year. Monrecording gage read daily at 0900. Datum of gage is sea level (levels by Board of Water Supply, City of New York).

REMARKS.--Reservoir is formed by an earthfill rockfaced dam. Storage began June 2, 1953. Usable capacity 34,941 mil gal between minimum operating level, elevation, 1,319.0 ft and crest of spillway, elevation, 1,440.0 ft. Capacity at crest of spillway, 37,146 mil gal; at minimum operating level, 2,205 mil gal; dead storage belowand outlet sill at elevation 1,314.0 ft, 1,680 mil gal. Figures given herein represent total contents. Reservoir impounds water for diversion through Neversink-Grahamsville Tunnel to Rondout Reservoir on Rondout Creek, in Hudson River basin, for water supply of City of New York (see Delaware River basin, diversions); for release during periods of low flow in the lower Delaware River basin, as directed by the Delaware River Master; and for conservation release. No diversion prior to Dec. 3, 1953.

COOPERATION.--Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 37,978 mil gal, Apr. 25, 1961, elevation, 1,441.67 ft; minimum observed (after first filling), 1,985 mil gal, Nov. 25, 1964, elevation, 1,316.98 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 35,603 mil gal, June 12, elevation, 1,436.84 ft; minimum observed, 6,856 mil gal, Nov. 22, elevation, 1,349.77 ft.

01447780 FRANCIS E. WALTER RESERVOIR (formerly published as Bear Creek Reservoir).--Lat 41°06'45", long 75°43'15", Luzerne County, PA, Hydrologic Unit 02040106, at dam on Lehigh River, 2,200 ft downstream from Bear Creek and 5 mi northwest of White Haven, PA. DRAINAGE AREA, 289 mi². PERIOD OF RECORD, February 1961 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earthfill embankment covered with a rock shell, with concrete spillway at elevation 1,450.0 ft; storage began Feb. 17, 1961; water in reservoir first reached conservation pool elevation in June 1961. Total capacity at elevation 1,450.0 ft is 110,700 acre-ft of which 108,700 acre-ft is controlled storage above elevation 1,300.0 ft or (conservation pool). Dead storage is 2,000 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow regulated by three gates and low flow by-pass system

low flow by-pass system.

COOPERATION. --Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD. --Maximum contents, 62,100 acre-ft, Sept. 28, 1985, elevation, 1,417.08 ft; minimum (after establishment of conservation pool), 980 acre-ft, July 6, 1982, elevation, 1,287.70 ft.

EXTREMES FOR CURRENT YEAR. --Maximum contents, 9,850 acre-ft, Nov. 25, 26, elevation, 1,343.83 ft; minimum, 1,601 acre-ft, Apr. 28, elevation, 1,296.13 ft.

#### RESERVOIRS IN DELAWARE RIVER BASIN--Continued

01449400 PENN FOREST RESERVOIR. --Lat 40°55'45", long 75°33'45", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 0.7 mi upstream from Hatchery, 2.6 mi upstream from Wild Creek Dam, 4.4 mi upstream from mouth, and 10 mi northeast of Palmerton, PA. DRAINAGE AREA, 16.5 mi². PERIOD OF RECORD, October 1958 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by city of Bethlehem). REMARKS.--Reservoir formed by an earthfill dam, with ungated concrete spillway at elevation 1,000.00 ft; storage began in October 1958. Capacity at elevation 1,000.00 ft is 19,980 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is done by valves on pipe through dam. Figures given herein include diversion, since October 1969, from Tunkhannock Creek basin into Wild Creek basin. Creek basin

COOPERATION.--Records provided by city of Bethlehem.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 20,800 acre-ft, Apr. 16, 1983, elevation, 1,001.69 ft;
minimum, 176 acre-ft, Oct. 6, 1965, elevation, 902.40 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 19,280 acre-ft, June 21, elevation, 998.52 ft; minimum, 9,773 acre-ft, Feb. 19, 20, 24, elevation, 973.13 ft.

01449700 WILD CREEK RESERVOIR.--Lat 40°53'50", long 75°33'50", Carbon County, PA, Hydrologic Unit 02040106, at dam on Wild Creek near Hatchery, PA, 1.6 mi upstream from mouth, 2.4 mi south of Hatchery, and 7.5 mi northeast of Palmerton, PA. DRAINAGE AREA, 22.2 mi². PERIOD OF RECORD, January 1941 to current year. Nonrecording gage. Datum of gage is sea level (levels by city of Bethlehem).

REMARKS.--Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 820.00 ft; storage began January 27, 1941; water in reservoir first reached minimum pool elevation in February 1941. Total capacity at elevation 820.00 ft is 12,500 acre-ft of which 12,000 acre-ft is controlled storage. Reservoir is used for municipal water supply. Figures given herein represent usable contents. Regulation is accomplished by valves on pipe through dam. Since October 1969 the basin upstream has received diversion from Tunkhannock Creek basin.

COOPERATION.--Records provided by City of Bethlehem.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,880 acre-ft, May 23, 1942, elevation, 822.93 ft; minimum (after first filling), 2,680 acre-ft, Nov. 15, 1966, elevation, 774.10 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,680 acre-ft, Dec. 3, elevation, 818.55 ft; minimum, 10,860 acre-ft, May 25, elevation, 815.56 ft.

01449790 BELTZVILLE LAKE.--Lat 40°50'56", long 75°38'19", Carbon County, PA, Hydrologic Unit 02040106, at dam on Pohopoco Creek, 0.45 mi upstream from gaging station on Pohopoco Creek, 0.55 mi upstream from Sawmill Run and 2.3 mi northeast of Parryville, PA. DRAINAGE AREA, 96.3 mi². PERIOD OF RECORD, February 1971 to current year. GAGE water-stage recorder. Datum of gage is sea level (levels by Corps of Engineers).

REMARKS.--Reservoir formed by an earth and rockfill dam with ungated, partially lined spillway at elevation 651.00 ft; storage began Feb. 8, 1971. Capacity at elevation 651.00 ft is 68,300 acre-ft. Ordinary minimum (conservation) pool elevation, 628.00 ft, capacity, 41,250 acre-ft. Dead storage is 1,390 acre-ft. Reservoir is used for recreation, flood control, low flow augmentation and water supply. Figures given herein represent total contents. Regulation is accomplished by a multi-level water-quality outlet system and two flood-control gates.

COOPERATION.--Records provided by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents 49,730 acre-ft, Jan. 29, 1976, elevation, 636.30 ft; minimum, 15,110 acre-ft, Mar. 31, 1983 elevation, 588.79

EXTREMES FOR CURRENT YEAR.--Maximum contents 42,500 acre-ft, June 1, elevation, 629.26 ft; minimum, 33,380 acre-ft, Oct. 15, elevation, 618.93 ft.

455221 MERRILL CREEK RESERVOIR.--Lat 40°43'42", long 75°06'11", Warren County, Hydrologic Unit 02040105, at dam on Merrill Creek in Harmony Township, 4.5 mi northeast of Phillipsburg, and 2.8 mi upstream from mouth. DRAINAGE AREA, 3.13 mi². PERIOD OF RECORD, March 1988 to current year. GAGE, measurement from reference point. Datum of gage is sea level.

REMARKS.--Reservoir formed by zoned, compacted, earth-rockfill dam constructed in November 1987. Storage began March 1988. Total capacity at spillway elevation, 16,617,000,000 gal, elevation 929.0 ft. Useable capacity, 15,6654,000,000 gal. Reservoir used for storage of water pumped from the Delaware River through a 57-inch diameter pipe 17,000 ft long. Releases are made into the Delaware River through the same pipe. Reservoir is used to augment low flow in the Delaware River. Conservation release of 3 ft³/s made to Merrill Creek.

COOPERATION.--Records provided by the Merrill Creek Reservoir Project.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,710,000,000 gal, Jan. 15, 1990, elevation, 923.3 ft; minimum (after first filling), 14,076,000,000 gal, Jan. 23, 1992, elevation 910.40 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 16,318,000,000 gal, June 7, elevation 921.47 ft; minimum, 14,076,000,000 gal, Jan. 23, elevation 910.40 ft.

01455400 LAKE HOPATCONG.--Lat 40°55'00", long 74°39'50", Morris County, Hydrologic Unit 02040105, in gatehouse of Lake Hopatcong Dam on Musconetcong River at Landing. DRAINAGE AREA, 25.3 mi². PERIOD OF RECORD, February 1887 to current year. Monthend contents only prior to October 1950, published in WSP 1302. REVISED RECORDS, WDR NJ-82-2: Drainage area; WDR NJ-83-2: Corrections 1981 (m/m). GAGE, staff gage. Prior to June 24, 1928, daily readings obtained by measuring from high-water mark to water surface converted to gage height, present datum. Datum of gage is 914.57 ft sea level.

REMARKS.--Lake is formed by concrete spillway and earthfill dam completed about 1828. Crest of spillway was lowered 0.11 ft in 1925. Usable capacity, 7,459,000,000 gal between (gage height -2.6 ft, sills of gates and 9.00 ft, crest of spillway). Flow regulated by four gates (3 by 5 ft, also by one 24-inch pipe with gate valve to recreation fountain 250 ft downstream from dam. Dead storage, about 8,117,000,000 gal. Figures given herein represent usable capacity. Lake used for recreation. CORRECTIONS.--Once-daily staff readings furnished by New Jersey Department of Environmental Protection and Energy.

COOPERATION.--Records provided by New Jersey Department of Environmental Protection and Energy.
EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,777,000,000 gal, August 19, 1955, gage height, 10.55 ft;
minimum, 1,525,000,000 gal, Dec. 29, 1960, gage height, 0.65 ft.
EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,100,000,000 gal, June 7, gage height, 9.76 ft; minimum,
5,709,000,000 gal, Feb. 12-14, gage height, 6.84 ft.

01459350 NOCKAMIXON RESERVOIR.--Lat 40°28'13", long 75°11'10", Bucks County, PA, Hydrologic Unit 02040105, at dam on Tohickon Creek, 6.2 mi upstream from gaging station on Tohickon Creek, 2.9 mi upstream from Mink Run and 1.3 mi east of Ottsville. DRAINAGE AREA, 73.3 mi². PERIOD OF RECORD, December 1973 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Pennsylvania Department of Environmental Resources).

REMARKS.--Reservoir formed by earthfill dam with concrete spillway at elevation 395.0 ft. Storage began Decmeber 1973. Total capacity 66,500 acre-ft at elevation 410 ft. Reservoir is used primarily for recreation, but can be used for water supply and flood control.

COOPERATION.--Records provided by Pennsylvania Department of Environmental Resources.

EXTRMES FOR PERIOD OF RECORD.--Maximum contents, 44,380 acre-ft, Jan. 20, 1979, elevation 397.85 ft; minimum (after first filling) 15,900 acre-ft, around Dec. 31, 1975, elevation 372.78 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 40,410 acre-ft, May 31, Sept. 29, elevation 395.15 ft; minimum, 38,590 acre-ft, Oct. 3, elevation 393.85 ft.

#### RESERVOIRS IN DELAWARE RIVER BASIN--Continued

01469200 STILL CREEK RESERVOIR.--Lat 40°51'25", long 75°59'30". Schuylkill County, PA, Hydrologic Unit 02040106, at dam on Still Creek, 1 mi upstream from mouth and 2.3 mi north of Hometown, PA. DRAINAGE AREA, 8.5 mi². PERIOD OF RECORD, January 1933 to current year. Nonrecording gage. Datum of gage is sea level (levels by Panther Valley Water Co.).

REMARKS.--Reservoir formed by earth fill dam, with ungated concrete spillway at elevation 1,182.00 ft; storage began in February 1933. Capacity at elevation, 1,182.00 ft is 8,290 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on pipe through

COOPERATION.--Records provided by Borough of Tamaqua.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 8,570 acre-ft, Oct. 15, 1955, elevation, 1,182.92 ft, but may have been greater during 1950 and 1951 water years; minimum (after initial filling), 588 acre-ft, Dec. 8, 1944, elevation, 1,136.70 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 8,286 acre-ft, many days May, June, July, elevation, 1,182.0 ft; minimum, 5,763 acre-ft, Feb. 15, elevation, 1,173.0 ft.

01470870 BLUE MARSH LAKE.--Lat 40°22'45", long 76°01'59", Berks County, PA, Hydrologic Unit 02040203, at dam on Tulpehocken Creek, 0.8 mi upstream from gaging station on Tulpehocken Creek, 1.0 mi northeast of Blue Marsh, PA, 1.9 mi upstream from Reber's Bridge, and 5.1 mi southeast of Bernville, PA. DRAINAGE AREA, 175 mi². PERIOD OF RECORD, April 1979 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Corps of Engineers).

REMARKS.--Reservoir formed by earthfill dam, with concrete ungated spillway at elevation 307.00 ft. Storage began April 23, 1979. Capacity at elevation, 307.00 ft is 50,000 acre-ft. Dead storage is 3,000 acre-ft. Reservoir is used for flood control, water supply, and recreation. Figures herein represent total contents. COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 39,480 acre-ft, Apr. 17, 1983, elevation, 301.65 ft; minimum, 15,770 acre-ft, Mar. 21, 1986 elevation, 283.00 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 29,940 acre-ft, Mar. 2, elevation, 295.57 ft; minimum, 15,530 acre-ft, Jan. 27, elevation, 282.74 ft.

472200 GREEN LANE RESERVOIR.--Lat 40°20'30", long 75°28'45", Montgomery County, PA, Hydrologic Unit 02040203, at dam on Perkiomen Creek at Green Lane, PA, 0.4 mi west of Green Lane and 2.1 mi upstream from Unami Creek.
DRAINAGE AREA, 70.9 mi². PERIOD OF RECORD, December 1956 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Philadelphia Suburban Water Co.).

REMARKS.--Reservoir formed by concrete, gravity-type dam, with ungated spillway at elevation 286.00 ft; storage began December 21, 1956. Capacity at spillway level, elevation 286.00 ft, 13,430 acre-ft. Reservoir is used for municipal water supply. Figures given herein represent total contents. Regulation is accomplished by valves on

municipal water supply. Figures given herein represent total contents. Regulation is accomplished by Valves on pipe through dam.

COOPERATION.--Records provided by Philadelphia Suburban Water Co.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 17,030 acre-ft, June 23, 1972, elevation, 290.05 ft; minimum (after first filling), 1,270 acre-ft, Aug. 25, 1957, elevation, 251.60 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 13,900 acre-ft, Mar. 27, elevation, 286.54 ft; minimum, 11,100 acre-ft, Nov. 21, elevation, 283.09 ft.

01480684 MARSH CREEK RESERVOIR. -- Lat 40°03'24", long 75°43'06", Chester County, PA, Hydrologic Unit 02040205, on right bank at dam on Marsh Creek, 0.3 mi upstream from mouth and 3.2 mi north of Downingtown. DRAINAGE AREA, 20.1 mi². PERIOD OF RECORD, November 1973 to current year. GAGE, water-stage recorder. Datum of gage is sea level (levels by Pennsylvania Department of Environmental Resources).

Reservoir formed by earthfill dam with concrete spillway at elevation 359.5 ft. Storage began November 1973. Total capacity 22,190 acre-ft at elevation 373 ft. Reservoir is used for water supply, flood control, and recreation. Figures given herein represent contents above lowest gate sill at elevation 289.5 ft. Records provided by Pennsylvania Department of Environmental Resources.

EXTREMES FOR PERIOD OF RECORD: Maximum contents, 16,380 acre-ft Jan. 25, 1979, elevation, 363.49 ft; minimum (after first filling), 10,410 acre-ft Mar. 3, 1976, elevation, 351.75 ft.

EXTREMES FOR CURRENT YEAR: Maximum contents, 14,889 acre-ft, June 6, elevation, 360.78 ft; minimum, 13,160 acre-ft, Nov. 14, elevation, 357.50 ft.

# MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

Date	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft (equivalent)	Elevation (feet)*	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01416900	PEPACTON R	RESERVOIR	01424997 CAN	NONSVILLE	RESERVOIR	01428900 PR	OMPTON RE	SERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	1,238.02 1,228.54 1,227.47 1,231.82	83,549 71,745 70,482 75,702	-589 -65.1 +261	1,090.27 1,091.41 1,107.11 1,122.13	27,521 28,491 43,352 60,384	+48.4 +766 +850	1,123.06 1,122.94 1,124.81 1,125.08	2,956 2,922 3,445 3,521	-0.6 +8.8 +1.2
CAL YR 1991			+65.2			+116			-2.6
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,239.46 1,242.03 1,250.29 1,264.14 1,266.51 1,268.27 1,261.94 1,256.78 1,249.20	85,446 88,900 100,576 122,156 126,087 129,053 118,568 110,385 98,983	+486 +184 +583 +1,113 +196 +153 -523 -408 -588	1,123.24 1,120.08 1,127.62 1,140.46 1,143.07 1,144.69 1,135.72 1,126.20 1,117.48	61,739 57,881 67,225 84,451 88,223 90,564 77,873 65,417 54,843	+67.6 -206 +466 +888 +188 +121 -633 -622 -545	1,124.96 1,125.65 1,126.07 1,125.61 1,128.35 1,123.95 1,124.55 1,123.97 1,124.12	3,488 3,679 3,799 3,668 4,436 3,205 3,371 3,211 3,252	5 +3.3 +2.0 -2.2 +12.5 -20.7 +2.7 -2.6 +.7
WTR YR 1992			+65.2			+116			+.4

# RESERVOIRS IN DELAWARE RIVER BASIN--Continued

					VEAD 007	onen 1001 to	CENTENDED 100		
Date	Elevation (feet)†		Change in contents (equivalent in ft 3/s)	Elevation (feet)†	Contents (acre- feet)	Change in contents	Elevation (feet)†	Contents (million	Change in contents (equivalent in ft ³ /s)
014294	00 GENERAL E	DGAR JADWII	N RESERVOIR	01431700 LA	KE WALLEN	PAUPACK	01433000 SWING	ING BRIDGE	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	965.31 965.58	0 0 0	0 0 0	1,177.4 1,173.8 1,175.9 1,179.7	36,430 19,680 29,430 50,490	-272 +164 +342	1,059.8 1,061.8 1,066.9 1,066.0	1,003.4 1,073.8 1,229.3 1,229.3	+26.3
CAL YR 199	21		0			-19.4			-1.8
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	969.98 970.07 968.82 975.12 965.60 967.43	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,179.7 1,176.1 1,180.2 1,184.5 1,187.2 1,185.2 1,181.8 1,180.8	50,490 30,280 53,600 77,000 91,840 81,290 61,340 56,380 46,370	0 -351 +379 +379 +241 -177 -324 -80.6 -168	1,061.4 1,062.1 1,065.6 1,067.3 1,064.7 1,065.0 1,065.0 1,063.4 1,064.3	1,059.5 1,084.5 1,214.1 1,279.1 1,180.1 1,191.3 1,191.3 1,131.8 1,165.1	+10.0 +48.4 +25.3 -37.2 +4.3 0
WTR YR 199	)2		0			+13.7		•	+5.1
Date	Elevation (feet)†		Change in contents (equivalent in ft (s)	Elevation (feet)†	Contents (million ft ³ )	Change in contents (equivalent in ft ³ /s)			Change in contents (equivalent s) in ft ³ /s)
	01433100	TORONTO RE	SERVOIR	0143320	O CLIFF LA	<u>AKE</u>	01435900 N	EVERSINK R	ESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 1,185.0 . 1,185.6	231.4 211.4 221.4 298.5	 -7.5 +3.9 +28.8	1,060.0 1,061.9 1,066.9 1,066.0	53.96 64.49 96.47 90.26	+3.9 +12.3 -2.3	1,366.78 1,357.81 1,362.04 1,371.50	10,576 8,517 9,459 11,751	-103 +48.6 +114
CAL YR 199	)1		-8.2			-0.3			- 104
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	1,192.3 1,196.2 1,202.3 1,203.9 1,206.6 1,207.0	333.1 343.1 426.7 574.2 615.6 687.2 698.0 714.3 513.9	+12.9 +4.0 +31.2 +56.9 +15.5 +27.6 +4.0 +6.1 -77.3	1,061.6 1,062.3 1,065.5 1,068.5 1,064.8 1,064.7 1,063.4 1,064.2	62.78 66.86 86.96 108.11 82.38 81.74 83.66 73.54 78.54	-10.3 +1.6 +7.5 +8.2 -9.6 -0.2 +0.7 -3.8 +1.9	1,386.35 1,393.38 1,413.38 1,426.38 1,428.29 1,432.80 1,425.10 1,418.05 1,409.34	15,882 18,098 25,213 30,779 31,690 33,690 30,245 27,232 23,770	+118 +355 +287 +42.4 +106 -172
WTR YR 199	2		+8.9			+0.8			+55.8
Date	Elevation (feet)*	Contents (acre- feet)	Change in contents (equivalent in ft / s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft 3/s)
	01447780 F	RANCIS E. L	ALTER LAKE	01449400 PE	NN FOREST	RESERVOIR	01449700 WI	LD CREEK R	ESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	. 1,299.12	2,220 1,900 5,130 2,620	-5.2 +54.3 -40.8	984.58 979.12 975.33 974.54	13,560 11,660 10,440 10,200	-30.9 -20.5 -3.9	817.80 818.09 818.13 818.04	11,470 11,550 11,560 11,540	+1.3 +.2 3
CAL YR 199	1		3			-13.8			8
Jan. 31 Feb. 29 Mar. 31 Apr. 30 June 30 July 31 Aug. 31 Sept. 30	. 1,308.01 . 1,301.73 . 1,301.22 . 1,318.82 . 1,304.61 . 1,301.55 . 1,302.16	2,200 2,840 2,160 2,110 4,320 2,470 2,150 2,210 2,800	-6.8 +11.1 -11.1 8 +36.0 -31.1 -5.2 +1.0 +9.9	974.20 973.48 981.04 988.15 992.50 997.58 995.88 992.77 989.63	10,090 9,876 12,310 14,900 16,650 18,860 18,110 16,770 15,490	-1.8 -3.7 +39.6 +43.5 +28.5 +37.1 -12.2 -21.8 -21.5	817.96 818.08 817.46 816.16 816.00 817.30 817.76 817.92 818.04	11,520 11,550 11,380 11,020 10,980 11,330 11,460 11,510 11,540	+.5 -2.8 -6.0 7 +5.9 +2.1 +.8 +.5
WTR YR 199	2		+.8			+2.7			+.1

# RESERVOIRS IN DELAWARE RIVER BASIN -- Continued

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

Date	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (million gallons)	Change in contents (equivalent in ft ³ /s)
	01449790	BELTZVIL	LE LAKE	01455221 MER	RILL CREEK	RESERVOIR	<u>014554</u>	00 LAKE HO	PATCONG
Sept. 30 Oct. 31 Nov. 30 Dec. 31	619.55 619.58 621.75 626.73	33,840 33,880 35,690 40,090	+.07 +30.4 +71.5	919.31 919.31 916.21 910.64	15,880 15,880 15,246 14,124	0 -32.7 -56.0	7.90 7.82 7.76 6.90	6,555 6,490 6,442 5,756	-3.2 -2.5 -34.2
CAL YR 1991	,		-1.1			-10.2			+.3
Jan. 31 Feb. 29 Mar. 30 Apr. 30 June 30 July 31 Aug. 31 Sept. 30	627.82 627.99 627.78	41,400 41,200 41,330 41,420 42,180 41,130 41,290 41,090 40,780	+21.3 -3.5 +2.1 +1.5 +12.4 -17.6 +2.6 -3.3 -5.2	910.59 910.50 921.23 921.34 921.33 921.27 921.13 921.03 920.48	14,114 14,096 16,268 16,291 16,289 16,276 16,247 16,226 16,110	5 -1.0 +108 +1.2 1 7 -1.4 -1.0 -6.0	7.08 7.18 8.58 9.19 9.14 9.22 9.08 8.90 7.22	5,897 5,977 7,111 7,619 7,577 7,644 7,526 7,376 6,009	+7.0 +4.3 +56.6 +26.2 -2.1 +3.4 -5.9 -7.5 -70.5
WTR YR 1992			+9.6			+1.0			-2.3

Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01459350	NOCKAMIXON	RESERVOIR	01469200 s	TILL CREEK	RESERVOIR	01470870	BLUE MAR	SH LAKE
Sept. 30 Oct. 31 Nov. 30 Dec. 31	394.80 394.75 394.90 394.95	39,920 39,850 40,060 40,130	-1.1 +3.5 +1.1	1,176.5 1,174.5 1,173.6 1,173.6	6,732 6,179 5,931 5,931	-9.0 -4.2 0	290.06 290.01 289.93 284.83	22,970 22,910 22,820 17,460	-1.0 -1.5 -87.1
CAL YR 1991			-1.7			-3.3			5
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	395.00 295.05 395.10 395.10 395.15 394.95 395.10 394.90 395.15	40,200 40,270 40,340 40,340 40,410 40,130 40,340 40,060 40,410	+1.1 +1.2 +1.1 0 +1.1 -4.7 +3.4 -4.6 +5.9	1,173.3 1,173.3 1,178.5 1,180.8 1,182.0 1,182.0 1,181.9 1,180.8 1,180.3	5,847 7,285 7,932 8,286 8,286 8,256 7,932 7,788	-1.4 0 +23.4 +10.9 +5.8 0 5 -5.3 -2.4	283.20 282.87 282.95 289.98 291.11 290.03 289.90 290.13 289.46	15,940 15,650 15,720 22,870 24,190 22,930 22,780 23,050 22,280	-24.7 -5.0 +1.1 +120 +21.5 -21.2 -2.4 +4.4 -12.9
WTR YR 1992			+.7			+1.5			+.9

Date	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)	Elevation (feet)†	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
	01472200	GREEN LANE	RESERVOIR	01480684	MARSH CREEK	RESERVOIR
Sept. 30 Oct. 31 Nov. 30 Dec. 31	284.50 284.04 284.68 286.00	12,140 11,780 12,290 13,430	-5.9 +8.6 +18.5	359.60 359.25 359.45 357.80	14,240 14,048 14,158 13,310	-3.1 +1.8 -13.8
CAL YR 19	991		6			-1.7
Jan. 31 Feb. 29 Mar. 31 Apr. 30 May 31 June 30 July 31 Aug. 31 Sept. 30	285.92	13,370 13,470 13,480 13,360 13,470 13,310 13,380 13,290 13,380	-1.0 +1.7 +.2 -2.0 +1.8 -2.7 +1.1 -1.5 +1.5	357.67 357.75 360.05 360.13 360.30 359.90 359.87 359.66 359.88	13,245 13,285 14,488 14,532 14,625 14,405 14,388 14,273 14,394	-1.1 +.7 +19.6 +.7 +1.5 -3.7 3 -1.9 +2.0
WTR YR 19	992		+1.7			+.2

Elevation at 0900 hours on first day of following month. Elevation or gage height at 2400 hours.

# DIVERSIONS AND WITHDRAWALS

#### WITHDRAWALS FROM THE DELAWARE RIVER BASIN

- 01415200 Diversion from Pepacton Reservoir, NY, on East Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of City of New York. No diversion prior to Jan. 6, 1955. Records provided by Bureau of Water Resources Development and Department of Environmental Protection, City of New York. REVISED RECORDS.--WRD NY-71: 1970. WRD NJ-72: 1970. WRD NJ-82-2: 1980. WRD NY-81-1: 1980.
- 01423900 Diversion from Cannonsville Reservoir, NY, on West Branch Delaware River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of city of New York. No diversion prior to Jan. 29, 1964.

  Records provided by Board of Water Supply, City of New York.

  REVISED RECORDS. -- WDR NJ-82-2: 1980. WDR NY-81-1: 1980.
- 01435800 Diversion from Neversink Reservoir, NY, on Neversink River to Rondout Reservoir on Rondout Creek, in Hudson River basin, for municipal supply of City of New York. No diversion prior to Dec. 3, 1953. Records furnished by Board of Water Supply and Department of Water Resources, city of New York.

  REVISED RECORDS.--WDR NJ-82-2: 1976, 1977. WDR NY-82-1: 1976, 1977.
- 01436520 Village of Woodridge, NY, diverts water from East Pond Reservoir, tributary to Neversink River, for municipal supply outside of basin. Village of Woodridge has estimated that this year virtually all the withdrawal from East Pond Reservoir was returned to the Neversink River.
- 01437360 Diversion from Bear Swamp Reservoir, NY, tributary to Neversink River, by the New York State Training School, Otisville, NY, for water supply outside of basin. Records provided by Delaware River Basin Commission.
- 01447750 Diversion from Bear Creek, PA, tributary to Lehigh River, by Bear Creek Gas and Water Company for water supply outside of basin. Records provided by Delaware River Basin Commission. Data for this year is not available but, from past records, monthly withdrawal is approximately 0.5 ft³/s.
- 01448830 Diversion from Hazle Creek Watershed by Hazelton Joint Sewerage Authority for municipal water supply.
  Waste effluent from the municipal water system is released to the Susquehanna River. Records provided by Delaware River Basin Commission.
- 01460440 Diversion by Delaware and Raritan Canal from Delaware River at Raven Rock, for municipal and industrial use. Water is discharged into the Raritan River at New Brunswick. Records of discharge are collected on the Delaware and Raritan Canal at Port Mercer since Aug. 1, 1990 (see station 01460440).

# WITHDRAWALS BY CITY OF NEW YORK

DIVERSION, IN	CUBIC FEET PER SECOND,	WATER YEAR OCTOBER 1991 TO S	
Month	01415200	01423900	01435800
	PEPACTON RESERVOIR	CANNONSVILLE RESERVOIR	NEVERSINK RESERVOIR
October	672	39.2	204
November	701	0	149
December	624	155	118
CAL YR 1991	662	182	240
January February March April May June July August September	158	620	0
	204	736	0
	311	743	0
	345	606	89.8
	469	518	187
	371	34.4	205
	609	428	236
	476	459	224
	660	230	230
WTR YR 1992	467	381	137

MISCELLANEOUS WITHDRAWALS FR					R 1992
MONTH	01437360 BEAR SWAMP RESERVOIR	01447750 BEAR CREEK	01448830 HAZLE CREEK	01460440 DELAWARE & RARITAN CANAL	
October November December	.25 .27 .24	0 0 9.19	  5.68*	115 107 103	
CAL YR 1991	.33	.77	5.61	133	
January. February. March. April May. June. July. August. September.	.30 .35 .29 .29 .31 .30 .29 .31	4.71 .62 12.6 7.91 0 0 0	 4.78*  5.35*  5.56*	103 99.5 91.4 95.8 133 135 154 152	
WTR YR 1992	.30	2.92	5.34	120	

^{*} Average diversion for the quarter ending this month.

#### DIVERSIONS WITHIN THE DELAWARE RIVER BASIN

- 01446572 Diversion from Delaware River at Brainards to Merrill Creek Reservoir for storage to augment low flow in the Delaware River. There is a conservation release of 3 ft³/s to lower Merrill Creek, which eventually reaches the Delaware River. Releases other than the conservation release are designated by a minus (·) sign. Records provided by Merrill Creek Reservoir Project.
- 01459005 Diversion from the Delaware River at Point Pleasant, PA by Philadelphia Electric Company to Bradshaw Reservoir on the East Branch Perkiomen Creek, tributary to Schuylkill River, to supplement flow to Limerick Power Station. Diversion began August 1989. Records provided by the Delaware River Basin Commission.
- 01463480 Diversion from the Delaware River at the Morrisville Filtration Plant, by the Borough of Morrisville, PA for municipal supply. The water withdrawn at this site is returned to the basin after treatment, only slightly diminished by consumptive uses and losses in transmission. Records provided by the Borough of Morrisville, PA.
- 01463490 Diversion from the Delaware River just above the Trenton gaging station by the city of Trenton, NJ for municipal supply. The water being withdrawn is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records provided by the City of Trenton.

  REVISED RECORDS.--WDR NJ-82-2: Station number.
- 01467030 Diversion from the Delaware River at the Torresdale Intake, by the City of Philadelphia, PA for municipal supply. The water being withdrawn at this intake is returned to the basin after treatment only slightly diminished by consumptive uses and losses in transmission. Records provided by the Delaware River Basin Commission.
- 01474500 Diversion from the Schuylkill River at the Belmont and Queen Lanes Intakes, by the City of Philadelphia, PA for municipal supply. The water being withdrawn at these intakes is returned after treatment within the Delaware River basin only slightly diminished by consumptive uses and losses in transmission. Records provided by the Delaware River Basin Commission.

WITHDRAWALS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

Month	01446572	01459005	01463480	01463490
	Merrill Creek	POINT	BOROUGH OF	CITY OF
	Reservoir	PLEASANT	MORRISVILLE	TRENTON
October	-27.2	57.6	3.36	54.5
November	-55.4	59.1	3.64	54.0
December	0	43.8	4.31	46.2
CAL YR 1991	35	40.0	3.47	53.2
January	.3	19.9	5.12	43.1
	118	11.7	5.42	43.2
	0	10.8	3.51	42.3
	0	16.2	3.62	44.0
	0	35.4	3.54	46.1
	0	32.0	3.56	50.1
	0	51.0	3.64	53.1
	1	61.7	3.69	51.2
	0	58.5	3.56	50.5
WTR YR 1992	.15	38.1	3.91	48.2

# WITHDRAWALS, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992 -- Continued

	CITY OF PHILADELPHIA					
Month	01467030 Delaware River Torresdale		474500 KILL RIVER QUEEN LANE			
October November December	318 310 300	95.1 93.3 96.1	144 142 1 <u>3</u> 8			
CAL YR 1991	320	97.1	159			
January	296 309 306 311 311 314 324 308 292	98.9 99.7 95.1 96.9 98.2 100 109 107	154 157 150 143 149 157 172 167			
WTR YR 1992	308	99.4	153			

# DIVERSIONS AND WITHDRAWALS -- Continued

#### DIVERSIONS IMPORTED INTO BASIN

- 01367630 Water diverted from Morris Lake, tributary to the Wallkill River (Hudson River basin), by the Newton Water and Sewer Authority for municipal use. After use the water is released into the Paulins Kill (Delaware River basin). Records provided by the Delaware River Basin Commission.
- 01578420 Water diverted from West Branch Octoraro Creek (Susquehanna River basin) at the McCray Plant of the Coatesville Water Authority (formerly Octoraro Water Co.) for municipal use. After use the water is released into the Delaware River basin. Records provided by the Delaware River Basin Commission.
- 01578450 Water divered from Octoraro Lake (Susquehanna River basin) by Chester Water Authority for municipal use.
  After use the water is released into the Delaware River basin. Records provided by the Delaware River Basin
  Commission.

DIVERSIONS IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		OCTORAR	CREEK
MONTH	01367630 MORRIS LAKE	01578420 COATESVILLE WATER AUTHORITY	01578450 CHESTER WATER AUTHORITY
ctoberovemberecember	1.58 1.50 1.16	1.40 1.31 .90	34.1 34.5 32.9
- CAL YR 1991	1.59	1.34	45.4
January	1.45 1.47 1.41 1.37 1.39 1.75 1.62 1.70 1.68	.43 0 0 0 .32 1.34 1.57 1.51	33.4 31.5 28.9 31.0 35.2 32.5 31.9 32.4
WTR YR 1992	1.51	.84	32.6

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations.

#### Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower stages may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. The gage heights are heights on the upstream side of the bridge, above the dam or at the discontinued continuous-record gaging station unless otherwise noted.

			<u>Water</u>	year 1992	maximum	Period	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	Hack	ensack River	basin					
Tenakill Brook at Closter, NJ *(01378385)	Lat 40°58'29", long 73°58'06, Bergen County, Hydrologic Unit 02030103, at bridge on High Street in Closter, 0.7 mi upstream from mouth. Datum of gage is 23.85 ft above sea level, Drainage area is 8.56 mi ² .	1965 - 92	9-03-92	b2.24	440	5-17-90	j3.63	930
Metzler Brook at · Englewood, NJ (01378590)	Lat 40°54'29", long 73°59'13", Bergen County, Hydrologic Unit 02030103, at bridge on Lantana Avenue in Englewood, and 1.6 mi upstream from mouth. Datum of gage is 43.10 ft above sea level Drainage area is 1.54 mi ² .	1965 - 92	9-03-92	b2.37	235	11-08-77	j2.84	470
	Pas	ssaic River b	pasin					
Passaic River near Bernardsville, NJ (01378690)	Lat 40°44'03", long 74°32'26", Somerset County, Hydrologic Unit 02030103, at bridge on U.S. Route 202, 1.8 mi north- east of Bernardsville, and 3.0 mi upstream from Great Brook. Datum of gage is 238.07 ft above sea level. Drainage area is 8.83 mi².	1968-76†, 1977-92	6-06-92	b13.78	870	8-28-71	18.56	3,850
Rockaway River at Warren Street, at Dover, NJ (01379845)	Lat 40°53'08", long 74°33'36", Morris County, Hydrologic Unit 02030103, on left bank, 100 ft upstream from bridge on Warren Street, in Dover, 4.0 mi west of Denville and 6 mi southeast of Lake Hopatcong. Datum of gage is 561.83 ft above sea level. Drainage area is 52.1 mi ² .	1981-92	9-04-92	n6.92	n2,000	4-06-84	7.20	2,170
Pond Brook at Oakland, NJ *(01387880)	Lat 41°01'36", long 74°14'04", Bergen County, Hydrologic Unit 02030103, at bridge on NJ Route 208 in Oakland, 0.2 mi upstream from former site at Franklin Avenue (prior to October 1975), 0.6 mi up- stream from mouth, and 1.5 mi northwest of Franklin Lakes. Datum of gage is 276.97 ft above sea level, Drainage area is 6.76 mi ² .	1968-71, 1976-92	6-05-92	2.00	265	5-29-68	11.64	1,300

			Water	year 1992	maximum	Period	of record	1 maximum
Station name and number	Location and drainage area	Period of record	Date .	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	Passaic R	iver basin-	-Continue	d				
Passaic River below Pompton River, at Two Bridges, NJ (01389005)	Lat40°53'47", long 74°16'10", Passaic County, Hydrologic Unit 02030103, on right bank, in Two Bridges and 400 ft downstream from the Pompton River. Datum of gage is 155.0 ft above sea level. Drainage	1989-92 0	6-07-92	9.99	a	5-18-89	12.65	<b>a</b> .
Preakness (Singac) Brook near Preakness, NJ (01389030)	area is 734 mi ² .  Lat 40°56'55", long 74°13'25", Passaic County, Hydrologic Unit 02030103, at bridge on Ratzer Road, 1.0 mi north of Preakness, and 2.0 mi up-	1979-92	9-03-92	b4.68	780	5-16-90	b6.32	1,570
	stream from Naachtpunkt Brook. Datum of gage is 230.8 ft above sea level. Drainage area is 3.24 mi ² .			•	•			
Beatties Dam, at Little Falls, NJ (01389492)	Lat 40°53'04", long 74°14'05", Passaic County, Hydrologic Unit 02030103, at Little Falls, 600 ft upstream from	1984, 1991-92	6-07-92	11.36	5,980	4-07-84	14.0	18,700
	bridge on Union Boulevard and 1.5 mi upstream from mouth of Peckman River. Datum of gage is 150.00 ft above sea Level. Drainage area is 762 mi ² .				•			
Peckman River at Ozone Avenue, at Verona, NJ (01389534)	Lat 40°50'42", long 74°14'09", Passaic County, Hydrologic Unit 02030103, at bridge on Ozone Avenue in Verona, 4.0	1945, 1979-92	6-05-92	<b>b4.10</b>	1,120	7-23-45		m3,800
,	mi west of Clifton and 1.0 mi southwest of Cedar Grove Reservoir. Datum of gage is 300.08 ft above sea level. Drainage area is 4.45 mi ² .		· -			•		
Molly Ann Brook at North Haledon, NJ (01389765)	Lat 40°57'11", long 74°11'07", Passaic County, Hydrologic Unit 02030103, at bridge on Overlook Avenue in North Haldeon, 1.5 mi west of Hawthorne and 0.5 mi upstream from Oldham Pond Dam. Datum of gage is 209.68 ft above sea level. Drainage area is 3.89 mi ² .	1945, 1979-92	9-03-92	8.12	740	7-23-45	· · · · · · · ·	k3,100
Fleischer Brook at Market Street, at Elmwood Park, NJ (01389900)	Lat 40°53'57", long 74°06'54", Bergen County, Hydrologic Unit 02030103, at culvert on Market Street in Elmwood Park (formerly East Paterson), and 2.0 mi upstream from mouth. Datum of gage is 35.31 ft above sea level. Drainage area is 1.37 mi ² .	1967-92	9-03-92	2.29	130	11-08-77	b6.47	470
Saddle River at Upper Saddle River, NJ *(01390450)	Lat 41°03'32", long 74°05'44", Bergen County, Hydrologic Unit 02030103, at culvert on Lake Street in Upper Saddle	1966-92	6-05-92	b3.25	500	11-08-77	jb5.25	4,150
fr ga se	River, and 1.3 mi downstream from Pine Brook. Datum of gage is 186.11 ft above sea level. Drainage area is 10.9 mi ² .			•				•
Hohokus Brook at Allendale, NJ (01390810)	Lat 41°01'37", long 74°08'44", Bergen County, Hydrologic Unit 02030103, at bridge on Brookside Avenue in Allendale and 0.2 mi downstream from Valentine Brook. Datum of gage is 277.46 ft above sea level. Drainage area is 9.11 mi ² .	1969-92	6-05-92	5.00	310	11-08-77	8.28	1,380

		•	<u>Water</u>	year 1992	2 maximum	Period	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	Passaic R	iver basin-	Continue	d				
Ramsey Brook at Allendale, NJ (01390900)	Lat 41°01'44", long 74°08'07", Bergen County, Hydrologic Unit 02030103, at bridge on Brookside Avenue in Allendale and 0.6 mi upstream from Hohokus Brook. Datum of gage is 270.79 ft above sea level. Drainage area is 2.55 mi ² .	1975-92	9-03-92	e2.2	e140	11-08-77	b5.39	980
Third River at Bloomfield, NJ (01392170)	Lat 40°47'59", long 74°11'18", Essex County, Hydrologic Unit 02030103, on downstream left wingwall of bridge on entrance ramp at Interchange 148 to the Garden State Park- way in Bloomfield 0.6 mi west of Nutley, and 5.1 mi upstream from Passaic Riyer. Drainage area is 7.71 mi ² .	1988-92	6-05-92	b6.58	a	6-05-92	b6.58	a
Second River at Belleville, NJ (01392500)	Lat 40°47'17", long 74°10'19", Essex County, Hydrologic Unit 02030103, on Mill Street in Branch Brook Park at Belle- ville, 300 ft downstream from Franklin Avenue, and 1,100 ft downstream from Hendricks Pond dam. Datum of gage is 62.6 ft above sea level, Drainage area is 11.6 mi ² .		6-05-92	6.78	3,050	8-28-71	9.80	6,500
	Rar	itan River b	pasin					
Walnut Brook near Flemington, NJ (01397500)	Lat 40°30'55", long 74°52'52", Hunterdon County, Hydrologic Unit 02030105, bank 1.2 mi northwest of Flemington, and 2.3 mi upstream from mouth. Datum of gage is 267.33 ft above sea level. Drainage area is 2.24 mi ² .	1936-61†, 1963-92	6-05-92	4.05	1,150	8-28-71	4.61	1,570
Back Brook tributary near Ringoes, NJ (01398045)	Lat 4°25'41", long 74°49'52", Hunterdon County, Hydrologic Unit 02030106, or right upstream wingwall of bridge on Wertsville Road, 2.1 mi east of Ringoes, 1.3 mi upstream from Back Brook, and 2.3 mi southwest of Wertsville. Datum of gage is 161.6 ft above sea level. Drainage area is 1.98 mi ² .	1978-88†, 1989-92	6-05-92	3.27	609	8-03-79	5.05	1,290
Axle Brook near Pottersville, NJ (01399525)	Lat 40°41'40", long 74°43'05", Somerset County, Hydrologic Unit 02030105, on right up- stream wingwall of bridge on Black River Road, 1.3 mi, south of Pottersville, and 0.3 mi upstream from mouth. Datum of gage is 172.74 ft above sea lèvel, Drainage area is 1.22 mi ² .	1977-88†, 1988-92	6-05-92	3.72	350	7-26-88	6.13	914
Rockaway Creek at Whitehouse, NJ (01399700)	Lat 40°37'55", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, on right bank at bridge on Lamington Road, 1.4 mi northeast of White- house, and 1.8 mi upstream from mouth. Datum of gage is 99.64 ft above sea level. Drainage area is 37.1 mi ² .	1959-62, 1964-65, 1977-84†, 1985-92	6-06-92	6.79	2,020	7-07-84	11.33	4,600

		•	Water	year 1992	maximum	Period	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	Raritan R	iver basin-	-Continue	d				
North Branch Raritan River at North Branch, NJ (01399830)	Lat 40°36'00", long 74°40'27", Somerset County, Hydrologic Unit 02030105, on right bank 5 ft upstream from bridge on State Highway 28 in North Branch, 0.1 mi south of River Brook, and 3.6 mi upstream from confluence with South Branch Raritan River. Datum of gage is 56.94 ft above sea level. Drainage area is 174 mi	1977-81†, 1982-92	6-06-92	11.96	6,990	7-07-84	19.31	27,300
Peters Brook at Mercer Street, at Somerville, NJ (01400360)	Lat 40°34'30", long 74°37'07", Somerset County, Hydrologic Unit 02030105, on the left bank on the downstream side of the bridge on Mercer Street, 0.4 mi downstream from Macs Brook and 0.6 mi upstream from Ross Brook. Datum of gage is 42.51 ft above sea level, Drainage area is 7.37 mi ² .	1991-92	12-03-91	b3.81	a	9-25-91	b6.32	a
Millstone River at Southfield Road, near Grovers Mill, NJ (01400630)	Lat 40°18'12", long 74°34'33", Mercer County, Hydrologic Unit 02030105, at bridge on Southfield Road, 0.2 mi southeast at Grovers Mill, 3.5 mi southwest of Cranbury, and 3.0 mi upstream of Bear Brook. Datum of gage is 62.63 ft above sea leyel. Drainage area is 41.0 mi ² .	1971,75, 1979-92	6-06-92	6.03	810	7-03-87	j6.71	1,120
Millstone River at Plainsboro, NJ (01400730)	Lat 40°19'27", long 74°36'51", Mercer County, Hydrologic Unit 02030105, on left bank 30 ft upstream from railroad bridge on AMIRAK (former Penn Central) mainline, 100 ft downstream from Cranbury Brook, 0.2 mi upstream from Bear Brook, and 0.9 mi south- west of Plainsboro. Datum of gage is 53.41 ft sea level. Drainage area is 65.8 mi ² .	1965-75†, 1976-87, 1987-89†, 1990-92	6-06-92	4.64	1,220	7-21-75	8.96	3,970
Bear Brook at Route 535, near Locust Corner, NJ (01400775)	Lat 40°16'41", long 74°34'39", Mercer County, Hydrologic Unit 02030105, at bridge on State Route 535, 0.9 mi southwest of Locust Corner, 2.0 mi east of Hightstown, and 4.2 mi above mouth. Datum of gage is 73.75 ft above sea level, Drainage area is 6.69 mi ² .	1971,75, 1979-92	6-06-92 1-12-91 8-07-90	b5.10 b4.80 b5.96	382 f310 f620	f6-10-89	jb7.95	1,550
Bear Brook at Route 571, near Grovers Mill NJ (01400795)	Lat 40°17'41", long 74°35'34", Mercer County, Hydrologic Unit 02030'105, at bridge on Route 571 (Princeton-Hightstown Road), 1.2 mi upstream of Grovers Mill Pond, 1.4 mi east of Princeton Junction, and 2.9 mi west of U.S. Route 130 and Hightstown. Datum of gage is 62.48 ft above sea level, Drainage area is 9.28 mi ² .	1986-92	6-06-92	8.93	215	6-10-89	11.90	1,325
Little Bear Brook at Penns Neck, NJ (01400822)	Lat 40°19'21", long 74°37'37", Mercer County, Hydrologic Unit 02030'105, at downstream side of bridge on Alexander Road, 0.9 mi southeast of Penns Neck, 2.8 mi southwest of Plainsboro and 1.0 mi above mouth. Datum of gage is 53.96 ft above sea level. Drainage area is 1.84 mi ² .	1971,75, 1979-92	6-06-92	2.56	53	7-03-87	j3.27	107

			Water	year 1992	maximum	Period	of record	d maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	Raritan R	ver basin-	-Continue	d				
Stony Brook at Glenmoore, NJ (01400900)	Lat 40°21'55", long 74°47'14", Mercer County, Hydrologic Unit 02030105, at highway bridge on Spur State Route 518, 200 ft east of tracks of CONRAIL, at Glenmoore, and 2.0 mi southwest of Hopewell. Datum of gage is 159.1 ft above sea level, Drainage area is 17.0 mi ² .	1957-92	6-06-92	b7.49	2,720	8-28-71	ь11.02	6,100
Baldwins Creek (revised) at Pennington, NJ *(01400930)	Lat 40°20'18", long 74°47'50", Mercer County, Hydrologic Unit 02030105, at bridge on State Route 31, 0.8 mi north of Pennington, and 0.9 mi up- stream from Baldwin Lake dam. Datum of gage is 161.69 ft above sea level area is 1.99 mi ² .	1960-92	6-06-92	e3.05	e50	8-27-71	8.64	1,260
Hart Brook near Pennington, NJ (01400950)	Lat 40°19'17", long 74°45'38", Mercer County, Hydrologic Unit 02030105, at culvert on Federa City Road, 1.6 mi upstream of mouth, and 1.7 mi southeast of Pennington. Datum of gage after July 1, 1975 is 163.32 ft above sea level. Drainage area is 0.57 mi ² .	1968-92	6-06-92	2.03	37	7-14-87	j5.27	470
Duck Pond Run near Princeton Junction, NJ (01401160)	Lat 40°17"47", long 74°38'47", Mercer County, Hydrologic Unit 02030105, on right bank upstree from bridge on Clarksville Road 1.5 mi southwest of Princeton Junction, and 4.0 mi south of Princeton. Datum of gage is 72.50 ft above sea level, Drainage area is 1.35 mi ² .	1980-92 am J,	6-06-92	3.93	, <b>91</b>	6-10-89	6.68	275
Millstone River at Carnegie Lake, at Princeton, NJ (01401301)	Lat 40°22'11", long 74°37'15", Middlesex County, Hydrologic Unit 02030105, at right end of Carnegie Lake dam, 2.5 mi northeast of Princeton. Datum of gage is 50.00 ft above sea level. Drainage area is 159 mi ² .	1971, 1973-74†, 1977-87, 1988-89†, 1990-92	6-06-92		4,210	8-28-71	7.09	13,000
Rock Brook near Blawenburg, NJ (01401595)	Lat 40°25'47", long 74°41'05", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Hill Road, 0.7 mi up- stream from mouth, 1.0 mi northeast of Blawenburg, and 2.8 mi northwest of Rocky Hill. Datum of gage is 63.45 ft above sea level. Drainage area is 9.03 mi ² .	1967-92	6-06-92	c<3.24	r<31	8-28-71	10.00	4,530
Beden Brook near Rocky Hill, NJ (01401600)	Lat 40°24'52", long 74°39'02", Somerset County, Hydrologic Unit 02030105, at bridge on U.S. Route 206, 0.7 mi up- stream from Pike Run, 1.2 mi northwest of Rocky Hill, and 4.6 mi north of Princeton. Datum of gage is 38.09 ft above sea level, Drainage area is 27.6 mi ² .	1967-92	6-06-92	b8.18	2,480	8-28-71	b16.83	12,100
Six Mile Run near Middlebush, NJ (01401870)	Lat 40°28'12", long 74°32'42", Somerset County, Hydrologic Unit 02030105, at bridge on South Middlebush Road, 1.6 mi upstream from mouth, and 2.1 mi south of Middlebush. Datum of gage is 39.91 ft above sea level. Drainage area is 10.7 mi ² .	1966-92	6-06-92	c<4.88	r<260	7-14-75	11.77	10,200

	Maximum discharge at c	. Joe Stage			2 maximum	Period	of record	maximum_	
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)		Gage height (ft)	Discharge (ft ³ /s)	
		iver basin-	-Continue					,	
Blue Brook at Seeleys Pond Dam, near Berkeley Heights, NJ (01403395)	Lat 40°40'02", long 74°24'13", Union County, Hydrologic Unit 02030105, on walt on right bank, upstream from Seeleys Pond spillway, 300 ft north of Scotch Plains, 1.0 mi west of Mountainside, and 4.5 mi southeast of Berkeley Heights. Datum of gage is 202.05 ft above sea level Drainage area is 3.59 mi ² .	197 <b>3</b> , 1981-92	e6·05·92		e380	8-02-73	7.55	2,080	
Green Brook at Plainfield, NJ (01403500)	Lat 40°36'53", Long 74°25'55", Union County, Hydrologic Unit 02030105, on left bank 20 ft downstream from bridge on Sycamore Avenue in Plainfield and 1.0 mi upstream from Stony Brook. Datum of gage is 70.37 ft above sea leyel. Drainage area is 9.75 mi ² .		6-05-92	b4.41	1,250	7-23-38	jb5.82	2,890	
Stony Brook at North Plainfield, NJ (01403570)	Lat 40°37'19", long 74°26'11, Somerset County, Hydrologic Unit 02030105, at bridge on Green Brook Road, in North Plainfield, 100 ft downstream of Crab Brook, and 1.4 mi up- stream of mouth. Datum of gage is 71.59 ft above sea leyel. Drainage area is 6.88 mi ² .	1975-82, 1991-92	. 7-09-92	b4.65		9-06-79	jb5.57	1,100	
Green Brook at Rock Avenue, at Plainfield, NJ (01403600)	Lat 40°36'07", long 74°27'28", Somerset County, Hydrologic Unit 02030105, at bridge on Rock Avenue in Plainfield, 0.35 mi north of West Front Street, and 0.65 mi south of Route 22. Datum of gage is 45.70 fe (revised) above sea leyel. Drainage area is 18.2 mi ² .	1972-79, 1992	7-09-92	b6.08	а	8-02-73	b10.65	10,400	
Bound Brook at Middlesex, NJ (01403900)	Lat 40°35'06", long 74°30'29", Somerset County, Hydrologic Unit 02030105, at bridge on Sebrings Mill Road, 0.4 mi downstream of mouth of Green Brook, and 2.3 mi upstream of mouth. Datum of gage is 26.72 ft above sea level, Drainage area is 48.4 mi ² .	1972-77†, 1992	6-06-92	b9.26	a	8-02-73	14.46	7,000	
Lawrence Brook at Farrington Dam, NJ (01405000)	Lat 40°27'00", long 74°27'05", Middlesex County, Hydrologic Unit 02030105, on left bank 300 ft upstream from Farring- ton Dam, 0.7 mi southwest of Milltown, and 5.4 mi upstream from mouth. Datum of gage is 25.73 ft above sea level Drainage area is 34.4 mi ² .	1927-90†, 1992	6-06-92	24.81	· a	7-21-75	26.93	6,400	
	Shrews	sbury River	basin		1				
Big Brook near Marlboro, NJ (01407290)	Lat 40°19'10", long 74°12'52", Monmouth County, Hydrologic Unit 02030104, downstream side of bridge on Hillsdale Road, 1.7 mi east of Marlboro, and 3.0 mi northwest of Colts Neck Drainage area is 64.2 mi ² .	1980-92	6-20-92	b8.53	1,070	09-20-89	b10.16	1,370	

			Water	year 1992	2 maximum	Period	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	Mana	squan River	basin				,	
Manasquan River near Georgia, NJ *(01407830)	Lat 40°12'36", long 74°16'41", Monmouth County, Hydrologic Unit 02040301, at culvert on Jacksons Mill Road near Georgia, and 0.5 mi upstream from Debois Creek. Datum of gage is 70.52 ft (revised) above sea level. Revised recordsWDR NJ-87-1. Drainage area is 10.6 mi ² .	1969-92	6-20-92	13.53	1,150	6-20-92	13.53	1,150
Mingamahone Brook at Farmingdale, NJ *(01408015)	Lat 40°11'38", long 74°09'42", Monmouth County, Hydrologic Unit 02040301, at bridge on Belmar Road in Farmingdale, and 3.0 mi upstream from mouth. Datum of gage is 48.64 ft above sea leyel. Drainage area is 6.20 mi ² .	1969-92	6-20-92	c<3.54	r<70	7-21-75	7.31	425
Manasquan River at Allenwood, NJ *(01408030)	Lat 40°08'35", long 74°07'03", Monmouth County, Hydrologic Unit 02040301, at bridge on Hospital Road at Allenwood, and 1.5 mi downstream from Mill Run. Datum of gage is 3.56 ft above sea level. Drainage area is 63.9 mi ² .	1969-92	6-20-92	b8.32	1,800	9-27-75	b11.24	3,700
	Mau	rice River	basin		•			
Menantico Creek near Millville, NJ (01412000)	Lat 39°25'12", long 74°58'00", Cumberland county, Hydrologic Unit 02040206 on left bank at upstream side of Mays Landing Road (State Route 552), 0.9 mi downstream of Menantico Lake, 4.0 mi northeast of Millville, and 7.0 mi upstream from mouth Datum of gage is 36.63 ft abov sea level. Drainage area is 23.2 mi ² .	•	8-18-92	2.54	146	8-20-39	6.21	1,050
	Coha	nsey River	basin					
West Branch Cohansey River at Seeley, NJ (01412500)	Lat 39°29'06, long 75°15'33", Cumberland County, Hydrologic Unit 02040206, on right bank 15 ft upstream from county bridge, Highway 31 at Seeley, 450 ft upstream from mouth, and 4.1 mi northwest of Bridgeton. Datum of gage is 42.23 ft above sea level, Drainage area is 2.58 mi ² .	1952-67†, 1968-92		c<2.08	r<53	6-20-83	11.17	885
Cohansey River at Seeley, NJ (01412800)	Lat 39°28'21", long 75°15'21", Cumberland County, Hydrologic Unit 02040206, on right bank just downstream from bridge on Silver Lake Road, 0.6 mi south of Seeley, 2.6 mi east of Shiloh, 4.1 mi north of Bridgeton, and 22.5 mi up- stream from mouth. Datum of gage is 26.9 ft above sea leyel. Drainage area is 28.0 mi ² .	1978-88†, 1989-92	6-06-92	4.80	210	6-21-83	8.50	10,000
		ware River I	pasin				٠ .	
Pequest River at Huntsville, NJ *(01445000)	Lat 40°58'52", long 74°46'36", Sussex County, Hydrologic Unit 02040105, on right bank, 20 ft upstream from highway bridge in Huntsville, and 0.4 mi downstream from East Branch. Datum of gage is 553.81 ft above sea level. Drainage area is 31.0 mi ² .	1940-62†, 1963-92	6-06-92	3.24	155	1-25-79	5.44	

			Water	year 1992	maximum	Period	of record	l maximum_
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
	Delaware I	River basin	Continu	ed				
Pequest River at Townsbury, NJ (01445430)	Lat 40°51'06", long 74°56'02", Warren County, Hydrologic Unit 02040105, upstream of highway bridge in Townsbury, 2.8 mi northeast of Pequest, and 8.7	1977-80†, 1981-92	6-06-92	4.38	1,460	2-04-82	5.10	2,570
	mi west of Hackettstown. Altitude of gage is 480 ft, from topographic map. Drainage area is 92.5 mi ² .							
Beaver Brook near Belvidere, NJ *(01446000)	Lat 40°50'40", long 75°02'48, Warren County, Hydrologic Unit 02040105, on right bank, 2,000 ft upstream from mouth,	1922-61†, 1963-92	3-27-92	2.94	209	3-12-36	5.76	1,510
	and 2 mi east Belvidere. Datum of gage is 303.36 ft above sea level Drainage area is 36.7 mi ² .	·	·					
Pohatcong Creek at New Village, NJ *(01455200)	Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison	1960-69†, 1970-92	6-06-92	3.39	470	1-25-79	8.10	3,570
	Road, 0.4 mi southeast of New Village, and 4.3 mi upstream from Merrill Creek. Datum of gage is 308.32 ft above	V · · · ·					• • .	:
	sea level. Drainage area is 33.3 mi ² .							
Musconetcong River at outlet of Lake Hopatcong, NJ	Lat 40°55'00", long 74°39'55", Morris County, Hydrologic Unit 02040105, on left bank just upstream of highway	1929-75†, 1976-92	6-06-92	2.23	556	8-20-55	j3.85	<b>795</b>
(01455500)	bridge 300 ft downstream from Lake Hopatcong Dam in Landing. Datum of gage is 904.99 ft above sea level Drainage area is 25.3 mi ² .	;					• .	
Musconetcong River near Hackettstown, NJ (01456000)	Lat 40°53'17", long 74°47'53", Warren County, Hydrologic Unit 02040105, on right bank	1921-73†, 1974-92	12-04-91	3.11	174	8-19-55	j3.97	2,170
(0.1430000)	75 ft upstream from Šaxton Falls Dam, 0.5 mi upstream from Erie-Lackawanna Railway bridge, and 3.0 mi northeast of Hackettstown. Datum of gage is 630.93 ft above sea level. Drainage area is 68.9 mi ² .		.:					
Delaware River at Riegelsville, NJ	Lat 40°35'36", long 75°11'17",	1906-71†, 1972-92	11-24-91	10.59	34,800	8-19-55	38.85	340,000
(01457500)	of suspension bridge at Riegelsville, 600 ft upstream from Musconetcong River (flow		`.					
	of which is included in the records for this station since Oct. 1, 1931). Datum of gage is 125.12 ft above sea level. Drainage area is							
Crosswicks Creek	6,328 mi ² . Lat 40°04'03", long 74°31'57",	1968-92	8-19-91	p	e410	9-01-78	30.27	4,500
at New Egypt, NJ (01464400)	Ocean County, Hydrologic Unit 02040201, at upstream side of bridge on State Route 528						50.2.	4,500
	in New Egypt, and 300 ft downstream from Oakford Lake Dam. Datum of gage is 43.46 ft above sea leyel. Drainage area is 41.2 mi ² .							
Doctors Creek at Allentown, NJ (01464515)	Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road in Allentown, and	1968-92	10-18-91	b2.20	s100	8-28-71	b7.3	1,250
	Breza Road in Allentown, and 0.8 mi downstream from Conines Millpond Eam. Datum of gage is 50.98 ft above sea level. Drainage area is 17.4 mi ² .							

	Maximum discharge at c				maximum	Period	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)		Date	Gage height (ft)	Discharge (ft ³ /s)
		River basin	Continu					
Blacks Creek at Mansfield Square, NJ (01464530)	Lat 40°07'02", long 74°41'58", Burlington County, Hydrologic Unit 02040201, at bridge on Mansfield Square-Crosswicks Road, 0.4 mi east of Mansfield Square, and 3.4 mi upstream from mouth. Datum of gage is 12.44 ft above sea level, Drainage area is 19.7 mi ² .	1978-92	6-19-92	<b>b6.75</b>	480	8-31-78	b11.20	2,500
Crafts Creek at Columbus, NJ (01464538)	Lat 40°04'44", long 74°43'07", Burlington County, Hydrologic Unit 02040201, at bridge on Columbus-Mansfield road, 0.4 mi north of Columbus, and 6.0 mi northeast of Mount Holly. Datum of gage is 33.71 ft above sea level. Drainage area is 5.38 mi ² .	1978-92	6-19-92	b5.23	а	7-06-89	ь10.25	880
Assiscunk Creek near Columbus, NJ (01464582)	Lat 40°03'13", long 74°44'34", Burlington County, Hydrologic Unit 02040201, at bridge on Petticoat Bridge Road, 1.7 mi southwest of Columbus, 4.0 mi northeast of Mount Holly, and 0.1 mi downstream from Assiscunk Branch. Drainage area is 10.9 mi ² .	1978-92	6-06-92	b5.73	225	8-31-78	ь11.10	1,480
South Branch Rancocas Creek at Vincentown, NJ (01465850)	Lat 39°56'22", long 74°45'50", Burlington County, Hydrologic Unit 02040202, on left bank 150 ft downstream from high- way bridge on Lumberton- Vincentown Road, 0.8 mi west of Vincentown, 2.9 mi south- east of Lumberton, and 3.1 mi upstream from Southwest Branch. Datum of gage is 13.17 ft above sea level, Drainage area is 64.5 mi ² .	1962-75†, 1976-92	12-10-91	4.46	293	8-28-78	7.98	1,320
Southwest Branch Rancocas Creek at Medford, NJ *(01465880)	Lat 39°53'43", long 74°49'26", Burlington County, Hydrologic Unit 02040202, at bridge on Argonne Highway (State Route 541), 0.6 mi south of inter- section of Argonne Highway and State Highway 70 at Medford, and 5.3 mi upstream from mouth. Drainage area is 47.2 mi ² .	1983-92	8-19-92	9.60	740	7-05-89	15.30	3,300
Newton Creek at Collingswood, NJ *(01467305)	Lat 39°54'30", long 75°03'13", Camden County, Hydrologic Unit 02040202, at bridge on Park Avenue in Collingswood, 0.3 mi east of Cuthbert Avenue. Datum of gage is 18.74 ft above sea level Drainage area is 1.33 mi ² .	1964-92	9-26-92	4.79	230	9-01-78	6.40	307
South Branch Newton Creek at Haddon Heights, NJ (01467317)	Lat 39°52'45", long 75°04'26", Camden County, Hydrologic Unit 02040202, at bridge on Haddon Heights Park in Haddon Heights, and 2.6 mi south of Collingswood. Datum of gage is 23.34 ft above sea level. Drainage area is 0.63 mi ² .	1964-92	9-26-92	3.18	88	9-01-78	4.62	295

Maximum discharge at crest-stage partial-record stations Period of record maximum Water year 1992 maximum Period Gage Gage height (ft) Discharge (ft³/s) Station name height (ft) Discharge (ft³/s) Location and of Date Date and <u>number</u> record drainage area Delaware River basin--Continued Lat 39°44'14", long 75°06'53", Gloucester County, Hydrologic Unit 02040202, on left abutment of Wadsworth Dam, 0.9 mi east of Pitman, and 2.0 mi upstream from Porch Branch. Datum of gage is 68.51 ft above sea level Drainage area is 6.05 mi². Mantua Creek at Pitman, (01475000) 1940-76†, 12-03-91 1977-92 4,200 hQ-01-40 1.73 122 6.64 Lat 39°44'10", long 75°13'30", Gloucester County, Hydrologic Unit 02040202, at bridge on State Routes 45 and 77 in Mullica Hill, 1,200 ft down-stream of Mullica Hill Pond, and 5.5 mi west of Pitman. Datum of gage is 21.91 ft above see level. Drainage Raccoon Creek at Mullica Hill, NJ (01477110) 1940, 1978-92 12-03-91, b1.92 9-01-40 2,900 96 above sea level. Drainage area is 15.6 mi². Lat 39°41'20", long 75°18'38", Salem County, Hydrologic Unit 02040206, at bridge on Harrisonville Station Road, 2.4 mi west of Harrisonville, and 2.8 mi north of Woodstown. Datum of gage is 16.58 ft above sea level, Drainage area is 13.8 mi². Oldmans Creek near Harrisonville, NJ 1975-92 7-06-92 308 1-26-78 6.51 800 5.21 (01477480) Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right side of Memorial Lake Dam at Woods-1940†, 1942-84†, 1985-88, 1989-90†, Salem River at 12-03-91 11.38 84 9-01-40 i7.98 22,000 Woodstown, (01482500) Memorial Lake Dam at Woods-town, 0.2 mi upstream from small brook, and 0.3 mi down-stream from Pennsylvania-Reading Seashore Lines bridge. Datum of gage is 19.49 ft above sea level (corrected). Drainage area is 14.6 mi². 1002 Also a low-flow partial-record station. Operated as a continuous record gaging station.
Discharge not determined.
Downstream side of bridge.

C Peak gage height for this period was below minimum recordable level.

Estimated. Revised.

Not previously published. At site and datum then in use.

At site and datum then in use.

Not the maximum gage height for period of record.

Determined at Squaw Lake Dam, 0.2 mi upstream of gage.

Determined at Bradford Avenue, 0.2 mi downstream of gage, adjusted for change in drainage area.

Include flow from small dam break in Heddon Park.

Gage height not recorded due to malfunction of gage.

Peak discharge for this period was less than minimum recordable discharge.

Peak may have been higher June 6.

# Low-flow partial-record stations

Measurements of streamflow in New Jersey made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, will give a picture of the low-flow potentiality of a stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site.

			Dun.:	Da	Measur	ements
Station No.	Station Name	Location	Drainage area (mi ² )	Period of record	Date	Discharge (ft ³ /s)
		Passaic River basin				
01379525	Canoe Brook near Millburn, NJ	Lat 40°44'55", long 74°20'14", Essex County, Hydrologic Unit 02030103, at bridge on Parsonage Hill Road, 0.2 mi downstream from Taylor Lake, 1.0 mi upstream from New Jersey-American Water Company pumping station, and 1.4 mi northwest of Millburn.		1989-92	6-15-92 9-02-92	
01381200	Rockaway River at Pine Brook, NJ	Lat 40°51'42, long 74°20'53", Morris County, Hydrologic Unit 02030103, at bridge on U.S. Route 46, 0.9 mi west of Pine Brook, and 1.1 mi upstream of Whippany River.	136	1963-73, 1979-81, 1983-92	8-22-92	27
01381550	Malapardis Brook at Whippany, NJ	Lat 40°49'22", long 74°25'08", Morris County, Hydrologic Unit 02030103, at bridge on Parsippany Road at Whippany, 400 ft upstream from mouth, and 2.2 mi south of Parsippany.	5.07	1989-92	6-15-92 9-02-92	
01381800	Whippany River near Pine Brook, NJ	Lat 40°50'42", long 74°20'51", Morris County, Hydrologic Unit 02030103, at bridge on Edwards Road, 0.3 mi upstream from mouth, and 1.3 mi south- west of Pine Brook.	68.5	1963-68, 1978-81, 1983-92	8-07-92	41
01382000	Passaic River at Two Bridges, NJ	Lat 40°53'50", long 74°16'23", Essex County, Hydrologic Unit 02030103, at bridge on Two Bridges Road, just upstream of confluence with Pompton River, 0.3 mi northeast of Two Bridges, and 2.6 mi northwest of Little Falls.	361	1963-68, 1983-84, 1986-92	9-21-92	114
01382550	Pequannock River tributary at Kinnelon, NJ	Lat 41°00'12", long 74°22'08", Morris County, Hydrologic Unit 02030103, at culvert on Kinnelon Road, at Kinnelon, 300 ft up- stream from Maple Lake and 1.0 mi west of Butler.	1.18	1992	6-17-92 9-02-92	
01382700	Stone House Brook at Kinnelon, NJ	Lat 40°59'17", long 74°23'10", Morris County, Hydrologic Unit 02030103, at culvert on Kinnelon Road at Kinnelon, 200 ft down- stream from dam on unnamed pond, and 0.3 mi upstream of Butler Reservoir.	3.45	1992	9-02-92	.76
01387490	Masonicus Brook at West Mahwah, NJ	Lat 41°05'53", long 74°08'57" Bergen County, Hydrologic Unit 02030103, at bridge on Eastview Avenue, at West Mahwah, 0.3 mi downstream from Winters Pond and 0.4 mi upstream from mouth.	3.84	1982-83, 1992	6-17-92 9-02-92	
*01387880	Pond Brook at Oakland, NJ	Lat 41°01'45", long 74°14'13", Bergen County, Hydrologic Unit 02030103, at bridge on State Route 208, in Oakland and 0.3 mi upstream from mouth.	7.52	1963-73, 1982-83, 1992	9-10-92	5.5
01388700	Beaverdam Brook at Lincoln Park, NJ	Lat 40°55'29", long 74°18'10", Morris County, Hydrologic Unit 02030103, at bridge on Park Avenue, at Lincoln Park, 0.6 mi downstream from East Ditch and 0.7 mi upstream of mouth.	12.3	1992	6-17-92 9-02-92	9.0 3.2

		Location	Drainage	ge Period	Measur	ements
Station No.	Station Name		area (mi ² )	of record	Date	Discharge (ft ³ /s)
		Passaic River basinContinued				
01389100	Singac Brook at Singac, NJ	Lat 40°53'57", long 74°15'57", Passaic County, Hydrologic Unit 02030103, at bridge on Fairfield Road, between Interstate 80 and US Route 46, 60 ft upstream from mouth, 1.2 mi northwest of Singac, and 1.8 mi northwest of Little Falls.	11.1	1963-67, 1983-84, 1986-92	6-17-92 9-02-92	22 21
01389140	Deepavaal Brook at Two Bridges, NJ	Lat 40°53'14", long 74°16'00", Essex County, Hydrologic Unit 02030103; at bridge on Little Fall Road, 400 ft upstream from Passaic River, and 0.8 mi southeast of Two Bridges.		1970, 1983-84, 1988-92	6-17-92 9-02-92	3.8 1.5
*01390450	Saddle River at Upper Saddle River, NJ	Lat 41°03'32", long 74°05'44", Bergen County, Hydrologic Unit 02030103, at culvert on Lake Street in Upper Saddle River, 1.3 mi downstream from Pine Brook and 1.7 mi downstream from New York-New Jersey State line.	10.9	1964-72, 1975, 1992	9-10-92	4.7
04707750	the a m	Elizabeth River basin	2 57	4000 00	( 45 00	24
01393350	West Branch Elizabeth River near Union, NJ	Lat 40°41'32", long 74°14'38", Union County, Hydrologic Unit 02030104, at bridge on Vauxhall Road, 0.3 mi upstream of mouth, 1.4 mi east of Union, and 2.3 mi northwest of Elizabeth.	2.53	1989-92	6-15-92 9-02-92	.26 0
		Rahway River basin				
01394400	Van Winkle Brook at Springfield, NJ	Lat 40°42'12", long 74°18'15", Union County, Hydrologic Unit 02030104, at railroad bridge in Springfield, 0.4 mi upstream from mouth, 0.4 mi downstream from bridge on Mountain Avenue, and 2.3 mi west of Union.	4.85	1989-92	6-15-92 9-02-92	.72
01394600	Nomahegan Brook near Mountain- side, NJ	Lat 40°40'42", long 74°19'54", Union County, Hydrologic Unit 02030104, at bridge on Springfield Avenue, 0.2 mi downstream of Echo Lake, 1.1 mi upstream of mouth, an 1.4 mi northeast of Mountainside.	3.76 d .	1989-92	6-15-92 9-02-92	1.2 .89
		Raritan River basin			•	
01396220	Stony Brook at Naughright, NJ	Lat 40°48'11", long 74°45'07", Morris County, Hydrologic Unit 02040105, at bridge on Naughright Road, 0.6 mi northwest of Naughright, 0.7 mi upstream from mouth, and 1.9 mi northeast of Long Valley.	3.34	1963-67, 1973, 1991-92	5-29-92 9-01-92	2.0
01396240	Electric Brook at Long Valley, NJ	Lat 40°47'23", long 74°46'36", Morris County, Hydrologic Unit 02030105, at bridge on Fairview Avenue at Long Valley, 0.3 mi upstream of mouth, and 0.8 mi downstream of Camp Washington Pond.	3.17	1991-92	6-15-92 9-03-92	4.3
01396280	South Branch Raritan River at Middle Valley, NJ	Lat 40°45'40", long 74°49'18", Morris County, Hydrologic Unit 02030105, at bridge on Middle Valley Road, at Middle Valley, 200 ft northwest of West Mill Road (State Route 513), and 0.2 mi upstream of abandoned railroad bridge.	47.7	1963-67, 1973, 1975, 1982-83, 1985-92	8-26-92	30
01398260	North Branch Raritan River near Chester, NJ	Lat 40°46'16", long 74°37'34", Morris County, Hydrologic Unit 02030105, at bridge on State Route 24, 0.8 mi upstream from Burnett Brook, and 3.8 mi east of Chester.	7.57	1964-67, 1980-92	8-26-92	4.0

	•		Drainage	Period	<u>Measurements</u>		
Station No.	Station Name	Location	area (mi²)	of record	Date	Discharge (ft ³ /s)	
		Raritan River basinContinued					
01399120	North Branch Raritan River at Burnt Mills, NJ	Lat 40°38'09", long 74°40'56", Somerset County, Hydrologic Unit 02030105, at bridge on Burnt Mills Road, 0.1 mi upstream from Lamington River, 0.3 mi east of Burnt Mills, and 4.0 mi southwest of Far Hills.	63.8	1964, 1975-78, 1981-83, 1985-92	8-25-92	27	
01399190	Lamington (Black) River at Succasunna, NJ	Lat 40°51'03", long 74°38'02", Morris County, Hydrologic Unit 02030105, bridge on Righter Road, 0.7 mi south of Succasunna, and 0.4 mi upstream from Succasunna Brook.	7.37	1977-87a, 1988-92	10-29-91 5-29-92 6-23-92 8-04-92 9-01-92	4.5 2.1 8.7 7.1 3.7	
01399200	Lamington (Black) River near Ironia, NJ	Lat 40°50'07", long 74°38'40", Morris County, Hydrologic Unit 02030105, at bridge on Ironia Road, 1.0 mi downstream of Succasunna Brook, and 1.3 mi northwest of Ironia.	10.9	1964-72, 1976-87a, 1988-92	11-29-91 5-29-92 6-23-92 8-04-92 9-01-92	6.6 3.3 12 10 5.3	
01399295	Tanners Brook near Milltown, NJ	Lat 40°47'17", long 74°43'33", Morris County, Hydrologic Unit 02030105, at bridge on Tanners Brook Road, 0.2 mi upstream of mouth, 0.6 mi north of Milltown and 1.5 mi west of Chester.	2.78	1991-92	5-29-92 9-01-92	1.8 1.4	
01399300	Lamington River at Milltown, NJ	Lat 40°47'13", long 74°43'13", Morris County, Hydrologic Unit 02030105, at bridge on New Furnace Road, 0.1 mi downstream from Tanners Brook, and 0.6 mi north of Milltown.	23.2	1988-92	5-29-92 9-01-92	17 15	
*01 <b>399</b> 700	Rockaway Creek at Whitehouse, NJ	Lat 40°37'49", long 74°44'11", Hunterdon County, Hydrologic Unit 02030105, at bridge on Lamington Road, 1.4 mi northeast of Whitehouse, and 1.8 mi upstream from mouth.	37.1	1959-62, 1964-65, 1973, 1977-84b, 1986-92	8-25-92	15	
01400540	Millstone River near Manalapan, NJ	Lat 40°15'44", long 74°25'13", Monmouth County, Hydrologic Unit 02030105, at bridge on State Route 33, 1.3 mi west of Manalapan 5.5 mi east of Hightstown, and 8.4 mi upstream of Rocky Brook.	7.37	1960-62, 1964, 1971-72, 1985, 1987-92	9-22-92	3.7	
		Matawan Creek basin			ŕ		
01407012	Gravelly Brook at Church Street, at Matawan, NJ	Lat 40°21'25", long 74°05'18", Monmouth County, Hydrologic Unit 02030104, at bridge on Church Street, 0.5 mi east of inter- section of State Routes 34 and 79, and 0.9 mi upstream of the mouth.	2.36	1987-92	6-15-92 9-03-92	1.7	
01407026	Mohingson (Wilkson) Creek at Church Street, at Matawan, NJ	Lat 40°24'24", long 74°14'18", Monmouth County, Hydrologic Unit 02030104, at bridge on Church Street, 0.7 mi east of Matawan, 2.2 mi southeast of Keyport, and 2.6 mi upstream of mouth.	1.37	1987-92	6-15-92 9-03-92	1.5 1.4	
,		East Creek basin					
01407055	East Creek at North Centerville, NJ	Lat 40°25'32", long 74°09'58", Monmouth County, Hydrologic Unit 02030104, at bridge on Middle Road, 0.2 mi west of intersection of Union Road and Middle Road at North Centerville, and 2.0 mi upstream from mouth.	2.56	1969, 1986-92	6-15-92 9-03-92	1.3 1.8	
•		Waackaack Creek basin	•				
01407070	Waackaack Creek at Middle Road, near Keansburg, NJ	Lat 40°25'23", long 74°08'12", Monmouth County, Hydrologic Unit 02030104, at bridge on Middle Road at community of Philips Mills, 1.4 mi south of Keansburg, and 3.1 mi upstream from mouth.	4.30	1987-92	6-15-92 9-03-92	3.6 3.3	

			Drainage	age Period	Measurements		
Station No.	Station Name	Location	Drainage area (mi ² )	Period of record	Date	Discharge (ft ³ /s)	
		Compton Creek basin	•				
01407102	Town Brook at Church Street, at New Monmouth, NJ	Lat 40°24'52", long 74°06'00", Monmouth County, Hydrologic Unit 02030104, at bridge on Church Street, at New Monmouth, 0.2 mi upstream of mouth, and 1.1 mi south of Port Monmouth.	3.35	1987-92	6-15-92 9-03-92	1.7	
		Shrewsbury River basin					
01407532	Poricy Brook at Red Bank, NJ	Lat 40°21'25", long 74°05'18", Monmouth County, Hydrologic Unit 02030104, at bridge on Navesink River Road, 200 ft downstream of Poricy Pond, 0.4 mi upstream of mouth, and 1.0 mi northwest of Re Bank.	2.54 ed	1987-92	6-15-92 9-03-92	1.5 3.1	
		Whale Pond Brook basin					
01407618	Whale Pond Brook near Oakhurst, NJ	Lat 40°16'35", long 74°00'12", Monmouth County, Hydrologic Unit 02030104, at bridge on Norwood Avenue, 0.6 mi upstream of Lake Takanassee, and 0.8 mi northeast of Oakhurst.	6.20	1989-92	6-16-92 9-21-92	3.9 4.0	
		Poplar Brook basin					
01407628	Poplar Brook near Deal, NJ	Lat 40°15'24", long 74°00'42", Monmouth County, Hydrologic Unit 02030104, at bridge on Monmouth Road, 0.7 mi west of Deal, 1.0 mi south of Oakhurst, and 1.3 mi upstream of mouth.	2.49	1989-92	6-16-92 9-21-92	1.9 1.6	
		Harvey (Hog Swamp) Brook basin					
01407636	Harvey (Hog Swamp) Brook at West Allenhurst, NJ	Lat 40°14'36", long 74°00'52", Monmouth County, Hydrologic Unit 02030104, at culvert on Monmouth Road at West Allenhurst, 0.7 mi west of Deal, and 1.6 mi upstream of dam on Deal Lake.	1.99	1989-92	6-16-92 9-21-92	.98 .88	
		Shark River basin		•	•		
01407755	Jumping Brook above reservoir, near Neptune City, NJ	Lat 40°12'30", long 74°04'12", Monmouth County, Hydrologic Unit 02030104, at bridge on State Route 33, 0.25 mi upstream of Jumping Brook Reservoir, and 2.3 mi west of Neptune City.	5.58	1989-92	6-16-92 9-21-92	1.6 1.4	
		Polly Pod Brook basin					
01407780	Polly Pod Brook at South Belmar, NJ	Lat 40°10'00", long 74°01'41", Monmouth County, Hydrologic Unit 02030104, at culvert on F Street at South Belmar, 50 ft upstream of Lake Como, and 0.6 mi upstream of mouth.	.99	1989-92	6-16-92 9-21-92	.50 .63	
		Wreck Pond Brook basin					
01407806	Hannabrand Brook at Old Mill Road, near Spring Lake Heights, NJ	Lat 40°08'29", long 74°03'43", Monmouth County, Hydrologic Unit 02030104, at bridge on Old Mill Road, 300 ft upstream of mouth, and 1.0 mi southwest of Spring Lake Heights.	3.13	1989-92	6-16-92 9-21-92	2.0 1.9	
		Mullica River basin,			•		
01409375	Mullica River near Atco, NJ	Lat 39°47'08", long 74°51'38", Camden County, Hydrologic Unit 02040301, on left bank of small lake 50 ft downstream from bridge on Jackson-Medford Road, 0.7 mi north of intersection of State Route 534 with Jackson-Medford Road, and 1.6 mi east of Atco.	3.22	1974 - 85 , 1991 - 92	10-25-91 11-07-91 12-20=91 1-22-92 2-28-92 3-17-92 4-07-92 5-21-92 6-16-92 7-15-92	.97 2.2 2.0 1.4 2.1 1.5 1.6 .82 1.1 .85	
					8-11-92	.62	

# DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

					Measure	ments
Station No.	Station Name	Location	Drainage area (mi ² )	Period of record	Date	Discharge (ft ³ /s)
		Mullica River basinContinued		•	*.	
01409401	Hays Mill Creek at Atco, NJ	Lat 39°45'32", long 74°53'02", Camden County, Hydrologic Unit 02040301, at bridge on U.S. Route 30, at outlet of Atco Lake in Atco, and 3.3 mi southeast of Berlin.	3.80	1979, 1991-92	10-25-91 11-07-91 12-20-91 1-22-92 2-28-92 3-17-92 4-07-92 5-21-92 6-16-92 7-15-92 8-11-92	2.0 2.3 2.3 2.3 2.3 2.3 2.4 2.5 2.0 6
01409402	Hays Mill Creek near Chesilhurst, NJ	Lat 39°45'02", long 74°50'28", Camden County, Hydrologic Unit 02040301, at bridge on Tremont Avenue in Wharton State Forest, 0.3 mi northeast of Burnt Mill Road and 2.0 mi northeast of Chesilhurst.	7.13	1974-77, 1991-92	10-25-91 11-07-91 12-20-91 1-22-92 2-28-92 3-17-92 4-07-92 5-21-92 6-16-92 8-11-92	7.7 5.9 9.3 7.3 9.1 7.6 7.9 8.5 7.6 6.6
0140940250	Cooper Branch near Atco, NJ	Lat 39°44'44", long 74°50'25", Camden County, Hydrologic Unit 02040301, at bridge on Burnt Mill Road, 700 ft upstream from mouth, 1.6 mi northeast of Waterford Works, and 2.8 mi southeast of Atco.	1.93	1991-92	10-28-91 11-08-91 12-20-91 1-22-92 2-28-92 3-17-92 4-08-92 5-21-92 6-16-92 7-15-92 8-11-92	1.0 .13 1.4 1.0 1.5 1.3 1.4 1.2 1.1 .90
0140940310	Wildcat Branch near Chesilhurst, NJ	Lat 39°44'20", long 74°49'58", Camden County, Hydrologic Unit 02040301, at bridge on Burnt Mill Road, 0.1 mi downstream from outlet of Beaverdam Lake, 1.4 mi northeast of Waterford Works, and 1.9 mi east of Chesilhurst.	2.27	1991 - 92	10-28-91 11-08-91 12-20-91 1-22-92 2-28-92 3-17-92 4-08-92 5-21-92 6-16-92 7-15-92 8-11-92	.07 .87 2.1 1.9 2.1 1.8 1.2 1.2 1.1 1.1
0140940365	Sleeper Branch Diversion (Saltars Ditch) near Atsion, NJ	Lat 39°43'48", long 74°46'09", Camden County, Hydrologic Unit 02040301, at bridge on Burnt House Road, 600 ft downstream of Sleeper Branch, and 2.3 mi west of Atsion.		1991-92	10-28-91 11-08-91 12-20-91 1-22-92 2-28-92 3-17-92 4-08-92 5-21-92 6-16-92 7-15-92 8-11-92	2.1 1.6 3.2 2.0 3.4 2.2 2.6 1.9 2.5 1.7
0140940370	Sleeper Branch near Chesilhurst, NJ	Lat 39°43'42", long 74°46'12", Camden County, Hydrologic Unit 02040301, at bridge on Burnt House Road, 500 ft downstream of Sleeper Branch Diversion (Saltars Ditch) and 2.3 mi west of Atsion.	16.1	1991-92	10-28-91 11-08-91 12-20-91 1-22-92 2-28-92 3-17-92 4-08-92 5-21-92 6-16-92 7-15-92 8-11-92	12 10 17 12 17 17 13 15 15
0140940480	Clark Branch near Atsion, NJ	Lat 39°42'58", long 74°46'25", Camden County, Hydrologic Unit 02040301, at abandoned railroad bridge, 0.2 mi downstream of Price Branch and 2.8 mi west of Atsion.	6.42	1991-92	10-28-91 11-08-91 12-20-91 1-22-92 2-28-92 3-17-92 4-08-92 5-21-92 6-16-92 7-15-92 8-11-92	.31 .14 2.7 1.0 3.1 2.1 2.0 1.0 3.2 .66 2.6

			Drainage Period	Measure	ements	
Station No.	Station Name	Location	orainage area (mi ² )	Period of record	Date	Discharge (ft ³ /s)
		Mullica River basinContinued				
01409408	Pump Branch near Waterford Works, NJ	Lat 39°42'53", long 74°46'25", Camden County, Hydrologic Unit 02040301, at bridge on Old Whitehorse Pike, 0.5 mi down- stream from lake at Camp Ha-Lu-Wa-Sa, and 1.6 mi south of Waterford Works.	9.78	1991-92	10-28-91 11-07-91 12-20-91 1-22-92 2-28-92 3-17-92 4-07-92 5-21-92 6-16-92 7-15-92 8-11-92	6.4 4.2 7.7 7.1 8.4 6.8 6.9 7.3 6.2 6.6 6.1
0140940950	Blue Anchor Brook at Elm, NJ	Lat 39°40'11", long 74°50'06", Camden County, Hydrologic Unit 02040301, at bridge on U.S. Route 30 (Whitehorse Pike) at Elm, at outlet of unnamed lake, and 1.4 mi upstream of confluence with Pump Branch.	4.86	1991-92	10-25-91 11-07-91 12-20-91 1-22-92 2-28-92 3-17-92 4-07-92 5-21-92 6-16-92 7-15-92 8-11-92	.99 2.0 1.6 1.2 1.1 1.8 2.2 2.1 .99 2.6
0140940970	Albertson Branch near Elm, NJ	Lat 39°41'34", long 74°48'24", Camden County, Hydrologic Unit 02040301, at bridge on Fleming Pike, 0.4 mi downstream from confluence of Blue Anchor Brook and Pump Branch, and 1.6 mi northeast of Elm.	17.1	1991-92	10-28-91 11-08-91 12-20-91 1-22-92 2-28-92 3-17-92 4-08-92 5-21-92 6-16-92 7-15-92 8-11-92	14 11 14 18 14 14 15 15 12
0140941050	Great Swamp Branch at Elm, NJ	Lat 39°40'18", long 74°49'31", Camden County, Hydrologic Unit 02040301, at bridge on U.S. Route 30, 0.5 mi southeast of Elm, 1.5 mi north of Rosedale, and 2.4 mi northeast of Winslow.	2.83	1991-92	10-26-91 11-07-91 12-20-91 1-22-92 2-28-92 3-17-92 4-07-92 5-21-92 6-16-92 8-11-92	.45 .13 .23 .14 .29 .21 .09 .30 .21
01410215	Clarks Mill Stream at Port Republic, NJ	Lat 39°30'23", long 74°30'21", Atlantic County, Hydrologic Unit 02040301, at bridge on State Route 575, 0.5 mi upstream of Mill Pond and 1.0 mi east of Port Republic.	8.61	1986-92	6-15-92 9-02-92	7.9 6.6
01410225	Morses Mill Stream at Port Republic, NJ	Lat 39°30'48", long 74°30'30", Atlantic County, Hydrologic Unit 02040301, at bridge on State Alternate Route 561 (Moss Mill Road), 0.6 mi upstream of Mill Pond, and 1.2 mi southwest of Port Republic.	8.25	1986-92	6-15-92 9-02-92	4.7 5.0
		Great Egg Harbor River basin				
01410803	Fourmile Branch at Winslow Crossing, NJ	Lat 39°42'07", long 74°58'11", Camden County, Hydrologic Unit 02040302, at bridge on Andrews Road in Winslow Crossing, 1.4 mi northeast of Williamstown, and 2.1 mi upstream from Great Egg Harbor River.	6.22	1972-80, 1990-92	10-10-91 10-30-91 11-19-91 12-27-91 2-06-92 5-22-92	2.6 3.4 3.5 4.2 3.6 3.0
01410810	Fourmile Branch at New Brooklyn, NJ	Lat 39°41'47", long 74°56'25", Camden County, Hydrologic Unit 02040302; on left bank 70 ft up- stream from bridge on Malaga Road, 0.3 mi northeast of New Brooklyn, and 0.3 mi upstream from mouth.	7.74	1972 - 79, 1989 - 92	10-10-91 10-30-91 11-19-91 12-27-91 2-06-92 5-22-92	3.9 5.1 5.5 6.0 4.8 4.9
	••					

			Danis	Destad	Measur	ements
Station No.	Station Name	Location	Drainage area (mi ² )	Period of record	Date	Discharge (ft ³ /s)
		Great Egg Harbor River basinContin	ued			
01410855	Squankum Branch above sewage plant, at Williamstown, NJ	Lat 39°40'39", long 74°58'34", Gloucester County, Hydrologic Uni 02040302, immediately upstream from sewage treatment plant, 1.2 is southeast of intersection of State Route 42 and New Freedom Road in Williamstown, and 2.1 mi upstream from Hedges Branch.	mi e	1974, 1990-92	10-10-91 11-05-91 11-20-91 12-27-91 2-06-92 5-22-92	0 0 0 0 .
01410865	Squankum Branch at Malaga Road, near Williamstown, NJ	Lat 39°40'04", long 74°57'39", Gloucester County, Hydrologic Unit 02040302, at bridge on Malaga Road 1.0 mi upstream from Hedges Brancl and 2.2 mi east of Williamstown.	d,	1974, 1990-92	10-09-91 11-05-91 11-20-91 12-27-91 2-06-92 5-22-93	.20 .20 .19 .24 .15
01411035	Hospitality Branch at Blue Bell Road, near Cecil, NJ	Lat 39°38'36", long 74°58'40", Gloucester County, Hydrologic Unit 02040302, at bridge on Blue Bell Road, 1.2 mi upstream of Timber Lakes, and 2.0 mi west of Cecil.	4.51 t	1990-92	10-09-91 11-05-91 11-20-91 12-27-91 2-06-92 5-22-92	1.8 1.6
01411040	Hospitality Branch near Cecil, NJ	Lat 39°38'36", long 74°56'48", Gloucester County, Hydrologic Unit 02040302, at bridge on unnamed dirt road off of Yardley Road in Friendly Village trailer park, 0.25 mi downstream from Timber Lakes and 0.8 mi south of Cecil.	8.30	1990-92	10-10-91 11-05-91 11-20-91 12-27-91 2-06-92 5-22-92	4.2 7.0 1.9 6.4 5.4 6.2
01411042	Whitehall Branch near Cecil, NJ	Lat 39°38'05", long 74°59'03", Gloucester County, Hydrologic Unit 02040302, at bridge on Malaga Road 0.3 mi upstream of Sunset Lakes, and 2.2 mi west of Cecil.		1990-92	10-09-91 11-05-91 11-20-91 12-27-91 2-06-92 5-22-92	.57 .26 .33 .64 .75
01411047	Whitehall Branch below Victory Lakes, near Cecil, NJ	Lat 30°37'59", long 74°56'51", Gloucester County, Hydrologic Unit 02040302, and bridge on unnamed dirt road off of Yardley Road in Friendly Village trailer park, 800 ft downstream from Victory Lakes, and 1.0 mi south of Cecil.	4.60	1990-92	10-10-91 11-05-91 11-20-91 12-27-91 2-06-92 5-22-92	1.1 1.6 1.5 1.8 1.9
01411170	Great Egg Harbor River at Mays Landing, NJ	Lat 39°27'13", long 74°44'04", Atlantic County, Hydrologic Unit 02040302, at bridge on Route 559, at outlet of Lake Lenape, and 0.4 mi west of intersection of State Route 50 with U.S. Route 40 in Mays Landing.	205	1988-92	6-15-92	133
01411250	English Creek near Scullville, NJ	Lat 39°22'07", long 74°39'46", Atlantic County, Hydrologic Unit 02040302, at bridge on School House Road, 1.8 mi upstream from State Route 559, at the community of English Creek, and 2.5 mi northwest of Scullville.	3.80	1986-92	6-15-92 9-02-92	2.8
		Tuckahoe River basin				
01411299	Tarkiln Brook near Head of River, NJ	Lat 39°18'19", long 74°49'47", Cape May County, Hydrologic Unit 02040302, at bridge on State Route 548, 0.3 mi upstream from mouth and 0.7 mi west of Head of river.	7.40	1990-92	10-25-91 12-17-91 3-15-92	1.6 3.8 5.2
01411302	Mill Creek near Steelmantown, NJ	Lat 39°17'03", long 74°47'33", Cape May County, Hydrologic Unit 02040302, at bridge on State Route 557, 0.5 mi upstream of Back Run and 1.3 mi north of Steelmantown.	3.82	1990-91	10-25-91 12-17-91 3-15-92	.54 1.4 2.5

		Or	Oneiner	inage Period	Measur	ements
Station No.	Station Name	Location	Drainage area (mi ² )	Period of record	Date	Discharge (ft ³ /s)
		Patcong Creek basin				
01411305	Mill Branch near Northfield, NJ	Lat 39°23'23", long 74°35'37", Atlantic County, Hydrologic Unit 02040302, at bridge on County Rou Route 684 (Spruce Road), 0.4 mi downstream of Cedar Branch, 1.1 m south of Cardiff, and 4.5 mi northwest of Northfield.	7.47 ite i	1986-92	6-15-92 9-02-92	4.1 4.4
		Mill Creek basin				
01411351	Mill Creek at outlet Magnolia Lake at Ocean View, NJ	Lat 39°10'24, long 74°44'12", Cape May County, Hydrologic Unit 02040302, at bridge on U.S. Route 9, at the outlet of Magnolia Lake and 0.25 mi south of Ocean View.		1991-92	10-24-91 12-17-91 3-15-92	1.2 1.3 1.8
		Mill Creek basin				
01411388	Mill Creek at Cold Spring, NJ	Lat 38°58'24", long 74°54'41", Cape May County, Hydrologic Unit 02040302, at culvert under U.S. Route 9, 0.5 mi north of Cold Spring and 1.5 mi south of Erma.	1.34	1991-92	10-24-91 12-17-91 3-16-92	.31 .38 .74
		Fishing Creek basin				
01411400	Fishing Creek at Rio Grande, NJ	Lat 39°01'39", long 74°53'48", Cape May County, Hydrologic Unit 02040206, at bridge on State Rout 47, at Wildwood pumping station a 1.4 mi northwest of Rio Grande.		1965-72, 1990-92	10-25-91 12-17-91 3-16-92	.42 .87 1.4
		Dias Creek basin				
01411408	Dias Creek near Cape May Court House, NJ	Lat 39°04'24", long 74°52'10", Cape May County, Hydrologic Unit 02040302, at culvert on Stagecoac Road, 2.1 mi northwest of Burleig 2.4 mi southwest of Cape May Cour House and 3.0 mi above mouth.	h,	1965-73, 1991-92	10-25-91 12-17-91 3-16-92	.28 .61 .87
		Bidwell Creek basin				
01411410	Bidwell Creek tributary near Cape May Court House, NJ	Lat 39°06'34", long 74°50'16", Cape May County, Hydrologic Unit 02040206, at culvert pipe on Goshen Road, 2.0 mi northwest of Cape May Court House and 3.6 mi upstream from mouth.	.41	1967-72, 1990-92	10-25-91 12-17-91 3-16-92	.05 15 .23
		Goshen Creek basin				
01411418	Goshen Creek at Goshen, NJ	Lat 39°07'39", long 74°50'45", Cape May County, Hydrologic Unit 02040206, at culvert pipe on Goshen Road, 1.0 mi southeast of Goshen and 3.3 mi upstream from mouth.	.33	1967-72, 1990-92	10-25-91 12-17-91 3-15-92	0 .03 .18
		Dennis Creek basin				
01411428	Dennis Creek tributary No. 2 at outlet of Johnson Pond, at Dennisville, NJ	Lat 39°11'34", long 74°49'33", Cape May County, Hydrologic Unit 02040206, at outlet of Johnson Por on State Route 47, and 0.1 mi west of Dennisville.	4.00 nd, t	1990-92	10-25-91 12-16-91 3-15-91	1.1 2.6 3.8
01411434	Sluice Creek at outlet of Clint Millpond near South Dennis, NJ	Lat 39°09'21", long 74°49'06", Cape May County, Hydrologic Unit 02040206, at outlet of Clint Millpond, 1.6 mi south of the intersection of State Routes 47 and 83 at South Dennis, and 2.7 mi west of Cedar Grove.	8.47	1991-92	10-24-91 12-17-91 3-15-92	1.4 6.5 8.0
01411438	Dennis Creek tributary No. 1 near Dennis- ville, NJ	Lat 39°11'41", long 74°50'30", Cape May County, Hydrologic Unit 02040206, at outlet of Ludlams Pond, on State Route 47, 1.1 mi west of Dennisville.	2.74	1990-92	10-25-91 12-16-91 3-15-92	.14 1.3 2.3

		·	Drainage	Period	Measure	ements
Station No.	Station Name	Location	area (mi ² )	of record	Date	Discharge (ft ³ /s)
		East Creek basin	· ·			
01411442	East Creek near Eldora, NJ	Lat 39°13'21", long 74°53'12", Cape May County, Hydrologic Unit 02040206, at outlet of East Creek Pond, on East Creek Mill Road, 1. mi northeast of Eldora.	8.10	1990-92	10-24-91 12-16-91 3-16-92	1.8 3.3 5.5
		West Creek basin				
01411445	West Creek at outlet of Pickle Factory Pond, near Eldora, NJ	Lat 39°13'39", long 74°54'48", Cape May County, Hydrologic Unit 02040206, at bridge on State Rout 548, 0.3 mi upstream from mouth a 0.9 mi north of Eldora.	11.9 e nd	1990-92	10-25-91 12-17-91 3-15-92	3.4 7.6 11
		Maurice River basin				
01411460	Scotland Run near Williamstown, NJ	Lat 39°41'34", long 75°02'28", Gloucester County, Hydrologic Uni 02040206, at bridge on U.S. Route 322, 2.0 mi upstream of Wilson La and 2.7 mi west of Williamstown.		1966, 1990-92	10-10-91 10-30-91 11-19-91 12-27-91 2-06-91 5-22-92	1.8 2.2 1.8 2.5 2.4 2.3
01411461	Scotland Run at Fries Mill, NJ	Lat 39°39'21", long 75°02'28", Gloucester County, Hydrologic Uni 02040206, at bridge on Clayton- Williamstown Road at Fries Mill, at outlet of Wilson Lake, and 2.2 mi east of Clayton.		1990-92	10-10-91 10-30-91 11-19-91 12-27-91 2-06-92 5-22-92	5.7 5.7 1.5 7.0 5.7 6.4
01411880	Maurice River at Sharp Street, at Millville, NJ	Lat 39°24'01", long 75°05'15", Cumberland County, Hydrologic Uni 02040206, at bridge on Sharp Stre 200 ft downstream from Union Lake and 0.9 mi northwest of Millville	et,	1973-76, 1988-92	12-26-91 2-12-92 4-30-92 7-13-92	202 143 170 130
		Delaware River basin				
01443260	East Branch Paulins Kill tributary no. 2 near Woodruffs Gap, NJ	Lat 41°03'42", long 74°39'37", Sussex County, Hydrologic Unit 02040105, at culvert on private road, 0.4 mi upstream from bridge on Houses Corner Road and 0.7 mi south of Woodruffs Gap.	2.81	1992	9-18-92	.50
01443275	East Branch Paulins Kill tributary no. 1 near Lafayette, NJ	Lat 41°04'12", long 74°40'43", Sussex County, Hydrologic Unit 02040105, at culvert on abandoned railroad bed, 0.5 mi upstream of mouth, 1.2 mi west of Woodruffs Gap, and 2.0 mi south of Lafayette	1.81	1992	8-26-92 9-18-92	.04 .02
01443510	Blairs Creek at Blairstown, NJ	Lat 40°59'12", long 74°57'35", Warren County, Hydrologic Unit 02040105, at bridge on Mill Brook Road, at Blairstown, 300 ft upstream from Blair Lake, 0.4 mi upstream of mouth, and 1.2 mi east of Jacksonburg.	13.1	1989-92	6-16-92 9-02-92	13 4.1
01445200	Bear Creek near Johnsonburg, NJ	Lat 40°56'35", long 74°52'31", Warren County, Hydrologic Unit 02040105, at bridge on Bear Creek Road, 1.8 mi upstream of Trout Brook, and 1.5 mi south of Johnsonburg.	12.9	1940-42, 1987-92	6-16-92 9-02-92	12 6.1
01445520	Mountain Lake Brook near Pequest, NJ	Lat 40°51'11", long 74°59'09", Warren County, Hydrologic Unit 02040105, at bridge on Lake Drive South, at outlet of Mountain Lake, 1.5 mi north of Pequest and 1.7 mi upstream of mouth.	4.35	1991-92	6-15-92 9-03-92	6.2
01446520	Pophandusing Brook at Belvidere, NJ	Lat 40°49'14", long 75°04'37", Warren County, Hydrologic Unit 02040105, at bridge on Knowlton Street, at Belvidere, 0.5 mi upstream of mouth, and 1.8 mi west of Hazen.	5.36	1991-92	6-16-92 9-02-92	.63

Discharge measurements made at low-flow partial-record stations during water year 1992 -- Continued

		, , ,		_ , ,	Measur	ements
Station No.	Station Name	Location	Drainage area (mi ² )	Period of record	Date	Discharge (ft ³ /s)
		Delaware River basinContinued				
01446568	Buckhorn Creek at Hutchinson Road, at Hutchinson, NJ	Lat 40°46'18", long 75°07'53", Warren County, Hydrologic Unit 02040105, at bridge on Hutchinson Road at Hutchinson, 50 ft up- stream of unnamed tributary, and 800 ft upstream of mouth.	8.38	1991-92	6-16-92 9-02-92	
01455100	Lopatcong Creek at Phillipsburg, NJ	Lat 40°40'38", long 75°10'13", Warren County, Hydrologic Unit 02040105, at bridge on Alt. U.S. Route 22 in Phillipsburg, 100 ft upstream of railroad bridge of the CONRAIL, and 3,000 ft above mouth.	14.2	1958-64, 1991-92	6-18-92 9-03-92	
01455230	Merrill Creek at Coopersville, NJ	Lat 40°42'25", long 75°06'54", Warren County, Hydrologic Unit 02040105, at bridge on Lows Hollow Road at Coopers- ville, 0.9 mi north of Stewarts- ville, 2.1 mi upstream from mouth, and 3.3 mi east of Phillipsburg.	3.85	1981-92	6-16-92 9-02-92	
01456080	Mine Brook near Hackettstown, NJ	Lat 40°49'58", long 74°49'23", Morris County, Hydrologic Unit 02040105, at bridge on State Route 517 (Schooleys Mountain Road), 600 ft upstream of mouth and 1.0 mi south of Hackettstown.	4.96	1991-92	6-15-92 9-03-92	
01456210	Hances Brook near Beattystown, NJ	Lat 40°48'17", long 74°51'38", Warren County, Hydrologic Unit 02040105, at bridge on State Route 57, 600 ft upstream of mouth and 1.1 mi southwest of Beattystown.	4.13	1991-92	6-15-92 9-03-92	
*01464515	Doctors Creek at Allentown, NJ	Lat 40°10'37", long 74°35'57", Monmouth County, Hydrologic Unit 02040201, at bridge on Breza Road, 0.75 mi west of Allentown and 0.8 mi downstream from Conines Mill Pond.	17.2	1966, 1968-72, 1991-92	1-30-92	11
01467130	Cooper River at Kirkwood, NJ	Lat 39°50'11", long 75°00'06", Camden County, Hydrologic Unit 02040202, at outlet of Kirkwood Lake in Kirkwood, 100 ft east of tracks of Pennsylvania-Reading Seashore Lines, and 1.0 mi north of Laurel Springs.	5.10	1964-72, 1988-92	6-15-92 9-02-92	
01467140	Cooper River at Lawnside, NJ	Lat 39°52'14", long 75°00'59", Camden County, Hydrologic Unit 02040202, on right bank at Melrose Avenue, at Lawnside, 300 ft downstream of former Lawnside sewage treatment plant and 0.2 mi upstream of New Jersey Turnpike.	12.7	1964-72, 1988-92	6-15-92 9-02-92	6.8
01467160	North Branch Cooper River near Marlton, NJ	Lat 39°53'20", long 74°58'08", Burlington County, Hydrologic Unit 02040202, at bridge on Springdale Road, 2.5 mi west of Marlton, and 5.7 mi southwest of Moorestown.	5.34	1965-69, 1971, 1988-92	6-15-92 9-02-92	2.7 1.9
01467180	North Branch Cooper River near Ellisburg, NJ	Lat 39°54'27", long 75°00'42", Camden County, Hydrologic Unit 02040202, at bridge on Brace Road, 0.4 mi south of Ellisburg, and 0.9 mi upstream from confluence with Cooper River.	10.5	1964-69, 1971-72, 1977, 1988-92	6-15-92 9-02-92	5.9 4.4

Also a crest-stage partial-record station. Operated as a continuous-record gaging station by U.S. Geological Survey.

#### DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

#### Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. Those that are measurements of base flow are designated by an asterisk (*).

Discharge measurements made at miscellaneous sites during water year 1992 Measured Measurements Drainage previously Discharge (ft³/s) Stream Tributary to Location (water Date area (mi² years) Hudson River basin 01367770 Rondout Creek Lat 41°11'38", long 74°34'32" 8.03 1977-82. 7-28-92 58 Sussex County, Hydrologic Unit 02020007, at bridge on Glenwood Road, 0.6 mi upstream of Papakating Creek, 1.7 mi southwest of Independence Corner, and 1985, Wallkill River 2.0 mi southeast of Sussex. 01367910 Wallkill River Lat 41°12'02", long 74°35'59" 59.4 1977-80. 7-28-92 52 at 41 12 02", long /4 35 159", Sussex County, Hydrologic Unit 02020007, at bridge on State Route 23, 2.6 mi southwest of Independence Corner, and 3.4 mi northeast of 1982, 1985, 1989-91 Papakating Creek McAfee. Lat 41°15'36", long 74°32'56", 14 Sussex County, Hydrologic Unit 02020007, on right bank on down-stream side of bridge on the Bassetts Bridge Road, 0.6 mi up-stream from small tributary, 2.0 mi south of the New York-New Jersey state line and 3.0 mi south of Unionville. 01368000 Hudson River 140 1938-81a, 7-28-92 146 1991-92 Wallkill River 1977-86, 01368950 **Pochuck** Lat 41°13'21", long 74°28'33" 17.3 7-28-92 24 Sussex County, Hydrologic Unit 02020007, at highway bridge on Maple Grange Road, 0.6 mi upstream of mouth, 0.7 mi northwest of Maple Grange, and 1.7 mi northeast of Vernon. Black Creek 1988, 1990-91 Creek Passaic River basin Lat 40°45'21", long 74°21'43", Essex County, Hydrologic Unit 02030103, just downstream of New Jersey-American Water Company pumping station, 0.5 mi upstream of mouth, and 2.0 mi north of Summit. 1933-60b, 01379530 11.0 10-01-91 Passaic 11-14-91 1-15-92 2-20-92 1961-91c, Canoe River 19 Brook 13 2.2 1.4 1.9 4-02-92 5-13-92 6-23-92 8-13-92 Lat 40°54'12", long 74°34'36", Morris County, Hydrologic Unit 02030103, 500 ft downstream from Main Street at Carpenter Plant, 0.5 mi upstream from Green Pond Brook, and 1.4 mi 01379750 30.8 1963-66, d4-25-63 Passaic 1983, 1985-86 Rockaway River d3-10-64 northwest of Dover. Lat 40°57'56", long 74°32'04", Morris county, Hydrologic Unit 02030103, at bridge on 24th Street in Picatinny Arsenal, 500 ft upstream of Burnt Meadow Brook, and 3.0 mi north of Mount Hope. 1963, 1983-84 01379760 2.92 d4-25-63 .13 Rockaway River Green Pond **Brook** Lat 40°57'52", long 74°31'57", Morris County, Hydrologic Unit 02030'103, 100 ft upstream from mouth, in Picatinny Arsenal 1,200 ft downstream of Lake Denmark, and 3.0 mi north of Mount Hope. 01379769 1963, 1983-84 Green Pond 4.35 d4-25-63 .18 Burnt Brook Meadow **Brook** at 40°57'49", long 74°32'01", Morris County, Hydrologic Unit 02030103, at culvert on Craine Road in Picatinny Arsenal, 0.1 mi downstream of Burnt Meadow Brook and 0.6 mi upstream of Picatinny lake d4-25-63 a0440 .58 d4-25-63 a1300 .57 d3-11-64 12 01379770 Rockaway Lat 40°57'49". 7.30 1963-64 Green River Pond **Brook** 

Picatinny Lake.

Discharge measurements made at miscellaneous sites during water year 1992--Continued

			Drainage	Measured previously	Meas	urements
Stream	Tributary to	Location	area (mi ² )	e (water years)	Date	Discharge (ft ³ /s)
		Passaic River basinContinued	1			
01379800 Green Pond Brook	Rockaway River	Lat 40°54'15", long 74°34'06", Morris County, Hydrologic Unit 02030103, at bridge on State Route 15, 50 ft west of Mount Pleasant Avenue at Dover and 0.2 mi from mouth.	15.1	1963-64, 1984-86	d4-25-63 d3-10-64	6.8
01379880 Rockaway River	Passaic River	Lat 40°54'04", long 74°30'32", Morris County, Hydrologic Unit 02030103, at Conrail railroad bridge at Rockaway, 0.2 mi up- stream of bridge at Beach Street and 0.4 mi downstream of Foxs Pond outlet stream.	64.3	1963-64, 1985-86	d4-25-63 d3-10-64	59 339
01380100 Beaver Brook ,	Rockaway River	Lat 40°54'08", long 74°30'06", Morris County, Hydrologic Unit 02030103, at bridge on Gill Avenue, at Rockaway, and 0.2 mi upstream of the mouth.	22.7	1963-64, 1985-86	d4-25-63 d3-10-64	16 88
01388600 Pompton River	Passaic River	Lat 40°56'36", long 74°16'47", Morris County, Hydrologic Unit 02030103, at bridge on Pompton- Newark Turnpike (State Road 504) 1.2 mi west of Packanack Lake, and 2.0 mi downstream of confluence of Ramapo and Pequannock Rivers.	361	1989-91	8-27-92	106
01389895 Passaic River	Newark Bay	Lat 40°52'45", long 74°07'14", Bergen County, Hydrologic Unit 02030103, at bridge on Outwater Lane at Garfield, 0.4 mi down- stream from Dundee Dam and 1.2 mi upstream from bridge on Passaic Street.	806	1970-71, 1986-87	9-24-92	*333
		Raritan River basin				
01396535 South Branch Raritan River	Raritan River	Lat 40°39'49", long 74°53'52", Hunterdon County, Hydrologic Unit 02030105, at bridge on Arch Street in High Bridge, 0.9 mi northeast of Mariannes Corner, and 4.3 mi northeast of Norton.	68.8	1978-81, 1983, 1985-91	8-04-92	62
01396588 Spruce Run	South Branch Raritan River	Lat 40°40'41", long 74°55'06", Hunterdon County, Hydrologic Unit 02030105, 800 ft down- stream of Rocky Run, 0.3 mi upstream of bridge on Van Syckel Road, and 1.6 mi southeast of Glen Gardner.	15.5	1979, 1981-83, 1985-91	8-04-92	8.6
01397400 South Branch Raritan River	Raritan River	Lat 40°31'01", long 74°48'10", Hunterdon County, Hydrologic Unit 02030105, at bridge on Main Street in Three Bridges, 1.4 mi downstream from Bushkill Brook, and 3.0 mi northeast of Flemington.	181	1976, 1978-81, 1983, 1985-91	8-04-92 ,	119
01399780 Lamington River	North Branch Raritan River	Lat 40°38'09", long 74°41'13", Somerset County, Hydrologic Unit 02030105, at bridge on Walsh Road at Burnt Mills, 0.2 mi upstream from North Branch Raritan River, and 4.4 mi southwest of Far Hills.	100	1964, 1973, 1975-78, 1981-83, 1985-91	8-25-92	*43
01400360 Peters Brook	Raritan River	Lat 40°34'30", long 74°37'07", Somerset County, Hydrologic Unit 02030105, on downstream side of bridge on Mercer Street, 0.4 mi downstream from Macs Brook and 0.6 mi upstream from Ross Brook.	7.37	<del></del> ,	11-22-91 12-03-91	17 102
01400640 Millstone River	Raritan River	Lat 40°18'48", long 74°35'22", Mercer County, Hydrologic Unit 02030105, at bridge on Cranbury Road, 1.0 mi east of Grovers Mill, 1.8 mi upstream from Cranbury Brook, and 1.8 mi east of Princeton Junction.	42.6	1959-65, 1971-72, 1986-87	9-23-92	20

#### DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

Discharge measurements made at miscellaneous sites during water year 1992--Continued

				Measured	Meas	urements
Stream	Tributary to	Location	Drainage area (mi ² )	previously (water years)	Date	Discharge (ft ³ /s)
		Raritan River basinContinued	t			
01401400 Heathcote Brook	Millstone River	Lat 40°22'10", long 74°36'59", Middlesex County, Hydrologic Unit 02030105, at bridge on Mapleton Road at former Penn Central rail- road bridge, 0.3 mi south of Kingston, and 0.4 mi upstream of mouth.	9.0	1971-72, 1979-84, 1989-91	9-23-92	*3.1
01403200 Middle Brook	Raritan River	Lat 40°33'38", long 74°32'56", Middlesex County, Hydrologic Unit 02030105, at bridge on State Route 533 (Talmadge Avenue/Main Street) at Bound Brook, and 0.5 mi above mouth.	17.2	1955, 1975, 1982-83, 1985-87, 1991	d1-17-91 10-08-91 11-22-91 12-03-91	182 *3.7 22 441
01403570 Stony Brook	Green Brook	Lat 40°37'19", long 74°26'11", Somerset County, Hydrologic Unit 02030105, at bridge on Green Brook Road, in North Plainfield, 100 ft downstream of Crab Brook and 1.4 mi upstream of mouth.	6.88	1975-80	10-03-91 11-22-91 12-03-91	2.3 19 130
01403600 Green Brook	Bound Brook	Lat 40°36'07", long 74°27'28", Somerset County, Hydrologic Unit 02030105, at bridge on Rock Ave. in Plainfield, 0.35 mi north of West Front Street, and 0.65 mi south of State Route 22.	18.2	1972-79	10-08-91 11-22-91 12-03-91	*6.0 59 247
01403900 Bound Brook	Raritan River	Lat 40°35'06", long 74°30'29", Somerset County, Hydrologic Unit 02030105, at bridge on Sebrings Mill Road, 0.4 mi downstream from mouth of Green Brook and 2.3 mi upstream from mouth.	48.4	1972 - 77a	10-08-91 11-22-91	*14 496
01405340 Manalapan Brook	South River	Lat 40°17'46", long 74°23'53", Middlesex County, Hydrologic Unit 02030105, at bridge on Federal Ros 2.0 mi west of Englishtown, 2.6 mi north of Manalapan, and 3.0 mi dow stream from Still House Brook.	. •	1979-81, 1986-91	9-22-92	*7.8
01408150 South Branch Metedeconk River	Metedeconk River	Lat 40°05'04", long 74°11'01", Ocean County, Hydrologic Unit 02040301, at outlet of Lake Shenandoah, 0.2 mi upstream from New Hampshire Avenue, and 0.8 mi east of Lakewood.	27.5	,	5-21-92 6-11-92 6-23-92 6-25-92 6-30-92 8-18-92	33 *7.6 113 35 28 256
		Mullica River basin				
01409387 Mullica River	Great Bay	Lat 39°44'25", long 74°43'37", Burlington County, Hydrologic Unit 02040301, at bridge on U.S. Route 206 in Atsion, at outlet of Atsion Lake, and 0.2 mi up- stream of Wesickaman Creek.	26.7	1975-86, 1989-91	9-29-92	70
01409416 Hammonton Creek	Mullica River	Lat 39°38'02", long 74°43'05", Atlantic County, Hydrologic Unit 02040301, at bridge on Chestnut Road, 0.4 mi south of Wescoatville, and 1.6 mi upstream of Norton Branch.	9.57	1974, 1978-81, 1983, 1985-91	9-24-92	6.5
		Absecon Creek basin				
01410500 Absecon Creek	Absecon Bay	Lat 39°25'45", long 74°31'16", Atlantic County, Hydrologic Unit 02040302, on right bank 30 ft downstream from Doughty Pond Dam of Atlantic City Water Department, 1.0 mi west of Absecon, and 3.4 mi upstream of mouth.	17.9	1923-29c, 1933-38c, 1946-85ae, 1987-90e	6-15-92	0.0

Discharge measurements made at miscellaneous sites during water year 1992--Continued

			Drainage	Measured previously	Meas	urements
Stream	Tributary to	Location	area (mi ² )	(water years)	Date	Discharge (ft ³ /s)
		Great Egg Harbor River basir	ı	•		
01410784 Great Egg Harbor River	Great Egg Harbor Bay	Lat 39°44'02", long 74°57'05", Camden County, Hydrologic Unit 02040302, at bridge on New Freedom Road in Winslow Town- ship, 0.7 mi northeast of Blackwood New Brooklyn Road, and 1.5 mi northeast of Sicklerville.	<b>15.</b> 1 ,	1971-81, 1985-87, 1989-91	9-24-92	3.0
01411110 Great Egg Harbor River	Great Egg Harbor Bay	Lat 39°30'50", long 74°46'47", Atlantic County, Hydrologic Unit 02040302, at bridge on U.S. Route 322 in Weymouth, 0.5 mi upstream from Deep Run, and 20.9 mi upstream of mouth.	<b>154</b> .	1978-81, 1985-91	9-24-92	121
		Delaware River basin				
01443440 Paulins Kill	Detaware River	Lat 41°06'20", long 74°45'19", Sussex County, Hydrologic Unit 02040105, at bridge on Kinney Road in Balesville, 2.3 mi up- stream from Paulins Kill Lake, and 3.0 mi north of Newton.	67.1	1979-82, 1985, 1988-91	7-28-92	
01446400 Pequest River	Delaware River	Lat 40°49'45", long 75°04'44", Warren County, Hydrologic Unit 02040105, at bridge on State Route 519, in Belvidere, and 1,400 ft upstream of mouth.	157	1950-53, 1977-82, 1984-91	10-02-91 1-01-92 5-19-92 9-24-92	*56 152 181 82
01455200 Pohatcong Creek	Delaware River	Lat 40°42'57", long 75°04'20", Warren County, Hydrologic Unit 02040105, at bridge on Edison Road, 0.4 mi southeast of New Village, and 4.3 mi upstream of Merrill Creek.	33.3	1960-70a, 1991	5-08-92	*25
01455801 Musconetcong River	Delaware River	Lat 40°55'10", long 74°44'07", Sussex County, Hydrologic Unit 02040105, at bridge on Continenta Drive at Lockwood, 0.2 mi down- stream from Lubbers Run, and 1.5 mi northwest of Stanhope.	60.1	1979-83, 1985-91	,7-28-92 ,	39
01457400 Musconetcong River	Delaware River	Lat 40°35'32", long 75°11'11", Warren County, Hydrologic Unit 02040105, at bridge on County Route 627, at Riegelsville, 0.2 mi north of Mount Joy, and 0.2 mi upstream from mouth.	156	1940-55, 1973, 1977, 1987-91	10-11-91 7-22-92	*74 *119
01457500 Delaware River	Delaware Bay	Lat 40°35'36", long 75°11'17", Warren County, Hydrologic Unit 02040105, just upstream of sus- pension bridge at Riegelsville, 600 ft upstream from Musconetcong River (flow of which is included in the records for this station since Oct. 1, 1931).	6,328	1906-71a, 1981, 1989	10-11-91	3,340
01467069 North Branch Pennsauken Creek	Pennsauken Creek	Lat 39°57'07", long 74°58'10", Burlington County, Hydrologic Unit 02040202 at bridge on State Route 41 (Kings Highway) and 1.7 mi southwest of Moorestown.	12.8	1975-87, 1990-91	9-29-92	12
01467329 South Branch Big Timber Creek	Big Timber Creek	Lat 39°48'05", long 75°04'27", Gloucester County, Hydrologic Unit 02040202, just upstream from Bull Run, 1,000 ft down- stream of Blackwood Avenue, and 0.5 mi southeast of Blackwood Terrace.	19.1	1979-81, 1985-91	9-25-92	13
01477510 Oldmans Creek	Delaware River	Lat 39°41'57", long 75°20'01", Salem County, Hydrologic Unit 02040206, at bridge on Kings Highway in Porches Mill, 1.0 mi north of Seven Stars, and 3.1 mi north of Woodstown.	21.0	1979-83, 1987-91	9-22-92	*7.1

#### Discharge measurements made at miscellaneous sites during water year 1992 -- Continued

		•		Measured	Meas	urements
Stream	Tributary to	Location	Drainage area (mi²)	previously (water years)	Date	Discharge (ft ³ /s)
		Delaware River basinContinu	led			
01482500 Salem River	Delaware River	Lat 39°38'36", long 75°19'52", Salem County, Hydrologic Unit 02040206, on right end of Memoria Lake Dam at Woodstown, 0.2 mi upstream from small brook, and 0.3 mi downstream from Pennsylvar Reading Seashore Lines bridge		1940a, 1942-84a, 1985-88, 1989a, 1990-91	9-22-92	<b>*3.</b> 5

Operated as continuous-recording gaging station.
Discharge records published in reports of the New Jersey Department of Environmental Protection.
Discharge records on file in U.S. Geological Survey Office, West Trenton, New Jersey.
Not previously published.
Tidal crest-stage partial-record station.

The following table contains annual maximum elevations for tidal crest-stage stations. The information is obtained from a crest-stage gage or a water-stage recorder located at each site. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. All stages are elevations above mean sea level unless otherwise noted. Only the maximum elevation is given. Information on some other high elevations may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum elevation has been determined.

Maximum elevation at tidal crest-stage partial-record stations

			Water year	1992 maximum	Period of	record maximum
Station name and number	Location	Period of record	Date	Elevation (ft)	Date	Elevation (ft)
Raritan River at Perth Amboy, NJ (01406700)	Lat 40°30'31", long 74°17'30", Middlesex County, Hydrologic Unit 02030105, on upstream left bridge pier of Victory Bridge on State Route 35 in Perth Amboy, 0.5 mi down- stream from Garden State Parkway bridge, and 1.5 mi upstream from mouth of Raritan River.	1954, 1967-70†, 1980-92	10-31-91	7.25	11-7-53	9.50
Luppatatong Creek at Keyport, NJ (01407030)	Lat 40°26'08", long 74°12'27", Monmouth County, Hydrologic Unit 02030104, on left bank upstream side of Front Street bridge in Keyport, 2.0 mi northwest of Matawan, and 0.1 mi upstream from mouth.	1980-92	10-31-91	7.41	3-29-84	8.03
Manahawkin Bay near Manahawkin, NJ (01409145)	Lat 39°40'13", long 74°12'54", Ocean County, Hydrologic Unit 02040301, at west end of State Route 72 bridge over Manahawkin Bay, 2.5 mi north- west of Ship Bottom, and 3.1 mi southeast of Manahawkin.	1965-92	10-31-91	5.27	3-29-84	5.36
Little Egg Harbor at Beach Haven, NJ (01409285)	Lat 39°33'10", long 74°15'07", Ocean County, Hydrologic Unit 02040301, in Beach Haven at U.S. Coast Guard station, 6.0 mi southeast of Tuckerton and 7.4 mi southeast of Ship Bottom.	1979-92	10-31-91	5.80	3-29-84	6.19
Batsto River at Pleasant Mills, NJ (01409510)	Lat 39°37'55", long 74°38'40", Ocean County, Hydrologic Unit 02040301, on right bank, 1.0 mi southeast of Pleasant Mills, and 0.5 mi upstream from mouth.	1958-92	10-31-91	5.31	3-07-62	7.2
Mullica River near Port Republic, NJ (01410100)	Lat 39°33'12", long 74°27'46", Atlantic County, Hydrologic Unit 02040301, on right bank on bulkhead piling at south end of U.S. Route 9 and Garden State Parkway bridge over Mullica River, 2.8 mi northeast of Port Republic, and 2.8 mi south of New Gretna.	1962, 1965-92	10-31-91	5.56	3-06-62	7.90
Absecon Creek at Absecon, NJ (01410500)	Lat 39°25'45", long 74°31'16", Atlantic County, Hydrologic Unit 02040302, on right abutment of bridge on Mill Road, 50 ft downstream of former gaging station, 1 mi west of Absecon, and 3.4 mi upstream from mouth.	1923-29†, 1933-38†, 1946-84†, 1985-92	1-04-92	6.50	3-29-84	7.77
Beach Thorofare at Atlantic City, NJ (01410570)	Lat 39°21'56", long 74°26'44", Atlantic County, Hydrologic Unit 02040302, on west abutment south side of AMTRAK railroad swivel bridge in Atlantic City, 0.5 mi northeast of Bader Field airport, and 2.7 mi northeast of Ventnor City.	1944, 1950, 1960, 1962, 1978† 1969-92	1-04-92	6.70	3-06-62	8.30

Maximum elevation at tidal crest-stage partial-record stations--Continued

		<b>0</b>	Water year	1992 maximum	Period of	record maximum
Station name and number	Location	Period of record	Date	Elevation (ft)	Date	Elevation (ft)
Tuckahoe River at Head of River, NJ (01411300)	Lat 39°18'25", long 74°49'15", Cape May County, Hydrologic Unit 02040302, downstream right abutment of highway bridge on State Route 49, 0.2 mi upstream from McNeals Branch, 0.4 mi southeast of Head of River, and 3.7 mi west of Tuckahoe.	1979-92†	10-31-91	5.58	3-29-84	7.00
Great Egg Harbor Bay at Ocean City, NJ (01411320)	Lat 39°17'03", long 74°34'41", Cape May County, Hydrologic Unit 02040302, on bulkhead at west end of 7th Street (prior to October 1974, gage was located at 5th Street), Ocean City, and 2.5 mi southeast of Somers Point.	1965-92	1-04-92	7.38	3-29-84	7.53
Great Channel at Stone Harbor, NJ (01411360)	Lat 39°03'26", long 74°45'53", Cape May County, Hydrologic Unit 02040302, on boat-ramp piling near east end of bridge at west end of Boro of Stone Harbor, 3.7 mi southeast of Cape May Court House, and 3.9 mi southwest of Avalon.	1965-92	1-04-92 ·	7.23	3-29-84	7.33
Cohansey River at Greenwich, NJ (01413038)	Lat 39°23"02", long 75°20'58", Cumberland County, Hydrologic Unit 02040206, at Greenwich Pier, 0.7 mi southwest of Greenwich, and 5.8 mi south- west of Shiloh.	1951, 1979-92	1-04-92	6.26	11-25-50	8.80
Delaware River at Marine Terminal, Trenton, NJ (01464040)	Lat 40°11'21", long 74°45'22", Mercer County, Hydrologic Unit 02040202, on left bank at downstream end of wharf at Marine Terminal, Trenton, 1.6 mi downstream from toll bridge on U.S. Route 1, 2.0 mi downstream from Assunpink Creek, and at river mile 131.80.	1921-46†, 1951-55†, 1957-92†a	6-06-92	7.84	8-20-55	17.9

[†] Operated as a continuous-record gaging station. a Operated by National Ocean Service since March 1975.

Water-quality partial-record stations are particular sites where chemical-quality, biological and/or sediment data are collected systematically over a period of years for use in hydrologic analyses. These data are collected usually less than quarterly.

#### WATER QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

			PH			OXYGEN,	ALKA-	ALKA-	
		SPE -	WATER			DIS-	LINITY	LINITY,	BICAR-
1		CIFIC	WHOLE			SOLVED	WAT WH	CARBON -	BONATE
		CON-	FIELD	TEMPER-	OXYGEN,	(PER-	TOT FET	ATE	IT-FLD
		DUCT -	(STAND-	ATURE	DIS-	CENT	FIELD	IT-FLD	(MG/L
DATE	TIME	ANCE	ARD	WATER	SOLVED	SATUR-	MG/L AS	(MG/L -	AS
		(US/CM)	UNITS)	(DEG C)	(MG/L)	ATION)	CACO3	CACO3)	HCO3)

#### HUDSON RIVER BASIN

013677	735	WALLKILL	RIVER NEAR	HAMBURG	NJ (LAT	41 10 02N	LONG 0	74 35	12W)
JUN 1992 23	1032	439	8.1	14.0	9.5	94	265	268	327

#### ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
				MULLICA	A RIVER BA	ASIN .				
		01409375	MU	LLICA RIV	VER NR ATO	O NJ (LAT	39 47 08	N LONG O	74 51 38W	)
DEC 1991 20	1000	2.0	104	6.9	2.0	14.9	106	. 14	19	4.8
MAR 1992 17	· 1030	1.5	101	6.8	4.0	14.9	114	14	21	5.1
JUN 16	0900	1.1	87	6.6	24.5	8.0	96	25	18	4.4
AUG 11	1545	0.62	77	6.4	29.0	7.7	101	32	14	3.1
	01409401	H	AYS MILL C	REEK AT	ATCO,NJ (I	AT 39 45	32N LONG	074 53 0	2W)	
DEC 1991	47/5	2 /	103		2.5	1/ 0	101	42	22	4.7
20 MAR 1992	1345 1430	2.4 2.2	102 88	6.6 6.7	2.5 7.5	14.0 14.7	101 123	12 14	22 20	4.7
17 JUN 16	1045	2.5	80	6.6	25.0	7.6	92	21		4.1
AUG 11	0720	2.6	78	6.3		. 5.5	67	23	17	3.3
	01409402		rs MILL C							3.3
DEC 1991	01407402	1117		NK CHEST	LIIONOT NO	(EAT 3) 4	J OLN LON	14 074 30	LOWY	
20 MAR 1992	1200	9.3	90	6.6	2.0	13.0	92	12	16	3.4
17 JUN	1230	7.6	87	6.5	7.0	14.6	121	14	15	3.3
16 AUG	1230	7.9	84	6.2	18.0	7.7	81	<10	16	3.4
11	1430	7.6	82	6.3		7.9		.17	15	3.2
	014094037	O SLI	EPER BRAN	CH NEAR A	ATSION NJ	(LAT 39 4	3 42N LON	IG 074 46	12W)	
DEC 1991 20	1515	17	58	6.2	2.5	13.0	94	18	10	1.9
MAR 1992 18	1200	14	60	6.7	7.5	12.0	100	14	10	2.1
JUN 16	1700	15	53	6.2	19.5	8.4	91	19	10	1.9
AUG 11	1230	13	52	6.0	19.0	8.7	95	22	10	1.9
									501 106	COL 100
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
	0140937	5 I	MULLICA RI	VER NR AT	TÇO NJ (LA	T 39 47 0	8N LONG C	74 51 381	4)	
DEC 1991 20	1.8	9.2	2.5	8.4	11	15	<0.1	3.3	71	53
MAR 1992 17	1.9	9.6	2.6	5.7	11	15	0.1	1.4	49	50
JUN 16	1.7	8.6	1.7	9.6	7.9	. 12	<0.1	1.5	42	44
AUG 11	1.5	7.7	1.9	7.9	8.1	13	0.1 .	1.6	60	42
	01409401	H	YS MILL C	REEK AT	ATCO,NJ (L	AT 39 45	32N LONG	074 53 0	2W)	
DEC 1991 20	2.5	7.6	0.90	9.5	7.1	14	<0.1	6.6	67	49
MAR 1992 17	2.2	7.4	1.6	7.0	6.4	13	0.1	4.1	49	43
JUN 16	2.2	7.1	1.3	11	4.5	12	<0.1	0.50	46	38
AUG 11	2.1	6.9	1.6	12	4.7	14	<0.1	1.1	52	41

		MYLEK GOV	CITI DAIA	, while i	CAR OCTOB	-K 1771 1	O SEFTEMB			
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
			´ MUL	LICA RIVE	R BASIN	Continued				•
	01409402	НА	YS MILL C	NR CHESI	LHURST NJ	(LAT 39	45 02N LO	NG 074 50	28W)	
DEC 1991		•								
20 MAR 1992	1.8	8.5	1.8	6.7	6.1	14	<0.1	6.3	54	46
17 JUN	1.7	8.8	1.8	5.3	5.8	14	<0.1	, 5 . 1	41	44
16 AUG	1.8	8.2	1.4	8.1	4.5	13	<0.1	4.0	40	41
11	1.7	8.1	1.6	9.9	4.4	14	<0.1	3.8	44	43
	014094037	o sr	EEPER BRA	NCH NEAR	ATSION NJ	(LAT 39	43 42N LO	NG 074 46	12W)	
DEC 1991 20	1.2	5.1	<0.10	3.8	5.2	8.5	<0.1	5.7	52	
MAR 1992 18	1.2	5.4	1.0	3.5	4.7	8.5	<0.1	3.4	34	28
JUN										
16 AUG	1.2	5.6	1.0	4.0	3.2	8.3	<0.1	4.2	48	28
11	1.2	5.0	1.0	5.8	3.4	8.3	<0.1	4.4	30	29
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
	0140937	5 !	MULLICA R	IVER NR A	TCO NJ (L	AT 39 47	08N LONG	074 51 38	W)	
DEC 1991										
20 MAR 1992	<0.01	0.80	0.07	0.3	1.1	<0.01	<0.01	4.8	3	0.02
17 JUN	<0.01	0.77	0.02	<0.2	••	<0.01	<0.01	4.0	4	0.02
16 AUG	<0.01	0.26	0.05	0.4	0.66	<0.01	<0.01	7.9	2	0.01
11	<0.01	0.07	0.03	0.4	0.47	<0.01	<0.01	8.5	1	0.00
	01409401	H	AYS MILL	CREEK AT	ATCO,NJ (	AT 39 45	32N LONG	074 53 0	2W)	
DEC 1991 20	<0.01	1.80	0.10	0.4	2.2	<0.01	<0.01	2.8	2	0.01
MAR 1992 17	<0.01	1.20	0.08	0.2	1.4	<0.01	<0.01	2.8	7	0.04
JUN 16	<0.01	0.27	0.03	0.4	0.67	<0.01	<0.01	5.6	3	0.02
AUG 11	<0.01	0.09	0.03	0.3	0.39	<0.01	<0.01	5.2	1	0.01
	01409402				LHURST NJ				•	
DEC 1991					2	(4	., 02., 00		20",	
20 MAR 1992	<0.01	1.60	0.05	0.3	1.9	<0.01	<0.01	3.7	3	0.08
17 JUN	<0.01	1.60	0.02	<0.2		<0.01	<0.01	2.4	4	0.08
16	<0.01	1.10	0.05	0.4	1.5	0.05	0.03	3.6	12	0.26
AUG 11	<0.01	0.98	0.03	<0.2	••	<0.01	0.01	3.2	1	0.02
•	014094037	0 SLI	EEPER BRA	NCH NEAR	ATSION NJ	(LAT 39	43 42N LO	NG 074 46	12W)	
DEC 1991 20	<0.01	0.81	0.04	0.3	· 1.1	<0.01	<0.01	4.7	í	0.05
MAR 1992 18	<0.01	0.97	0.04	<0.2					3	
JUN						0.02	<0.01	3.0		0.11
16 AUG	<0.01	0.68	0.03	0.2	0.88	<0.01	0.02	5.2	6	0.24
11	<0.01	0.68	0.03	<0.2		<0.01	0.02	4.2	1	0.03

# ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

DATE	TIME 01409404	DIS- CHARGE, INST. CUBIC FEET PER SECOND	ANCE (US/CM)			OXYGEN, DIS- SOLVED (MG/L) Continued		OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
DEC 1991								a.		
20 MAR 1992	1330	2.7	66	••	0.5	9.7	66	21	15	3.0
17 JUN	1630	2.1	71	••	2.0	11.6	85	19	12	2.5
16 AUG	1745	3.2	36	4.9	19.0	5.2	55	33	7	1.6
11	1145	2.6	37	5.0	20.0	5.7	63	44	8	1.7
	09408	PUMP	BRANCH NEAF	R WATERF	ORD WORKS	NJ (LAT	39 41 59N	LONG 074	50 40W)	
DEC 1991	1530	7.7	73	6.7	2.0	13.0	92	16	16	2.7
MAR 1992 17	1615	6.8	77	6.4	6.5	13.8	113	16	·15	2.7
JUN 16	1435	6.2	· 70	6.4	25.5	6.4	78	15	17	2.9
AUG 11	0815	6.1	69	6.2	24.0	3.5	42	32	15	2.7
	01409409	50 B	LUE ANCHOR	BROOK A	T ELM NJ	(LAT 39 4	0 11N LON	G 074 50	06W)	
DEC 1991										
20 M <u>AR</u> 1992	0930	1.6	66	••	1.5	13.7	96	••	12	2.6
17 JUŅ	1100	1.1	80	••	4.5		••	15	12	2.8
16 AUG	1200	2.1	59	6.5	26.0	7.2	88	23	12	2.8
11	0920	2.6	55	6.3	27.0	7.2	91	30	12	2.7
	014094097	O AL	BERTSON BRA	ANCH NEA	R ELM NJ	(LAT 39 4	1 34N LON	G 074 48	24W)	
DEC 1991 20	1230	14	70	••	2.0	12.1	86	16	15	2.8
MAR 1992 17	1400	14	71	6.8	6.5	11.7	96	15	14	2.8
JUN 16	1530	15	61	6.3	23.5	7.1	83	13	15	2.8
AUG 11	1030	13	63	6.2	21.5	6.8	78	49	14	2.8
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, L DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUÉ AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
	01409404	80 C	LARK BRANCH	H NEAR A	TSION NJ	(LAT 39 4	2 53N LON	G 074 46	25W)	
DEC 1991 20	1.8	2.8	1.0	1.5	12	5.6	<0.1	9.3	52	36
MAR 1992 17	1.4	2.8	0.80	1.6	9.4	. 5.1	<0.1	5.2	35	28
JUN 16	0.85	2.8	0.90	1.6	3.1	5.1	<0.1	4.4	52	20
AUG 11	0.85	2.4	0.90	3.3	2.5	4.9	0.1	5.9	43	21
	09408		BRANCH NEAF							
DEC 1991										=-
20 MAR 1992	2.2	5.7	1.6	8.1	4.5.	10	<0.1	3.8	54	35
17 JUN	2.1	6.8	1.8	6.5	4.0 .		<0.1	3.0	30	36
16 AUG	2.3	5.9	1.2	13	2.9	9.6	<0.1	3.1	70	36
11	2.1	5.9	1.4	12	3.3	11	<0.1	3.4	28	37

#### ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS -- Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

SOLIDS, RESIDUÉ AT 180 SOLIDS, ALKA-LINITY SILICA, SUM OF CONSTI-MAGNE -CHLO-FLUO-POTAS-SULFATE DIS-RIDE, DIS-SIUM, DIS-SODIUM, SIUM, DIS-DIS-RIDE, DIS-SOLVED LAB DIS-SOLVED DEG. C TUENTS, DIS-SOLVED SOLVED (MG/L SOLVED SOLVED SOLVED (MG/L DIS-DATE (MG/L (MG/L SOLVED SOLVED (MG/L (MG/L (MG/L (MG/L S102) CACO3) AS MG) AS NA) AS K) AS SO4) AS GL) AS F) (MG/L) (MG/L) MULLICA RIVER BASIN--Continued 0140940950 BLUE ANCHOR BROOK AT ELM NJ (LAT 39 40 11N LONG 074 50 06W) **DEC 1991** 7.9 20... MAR 1992 1.3 5.5 1.5 8.3 7.9 <0.1 3.7 44 35 10 1.9 34 17... 1.3 6.5 1.4 8.0 6.9 < 0.1 36 JUN 16... 1.3 5.6 1.3 11 3.9 7.2 <0.1 3.1 48 32 AUG 11... 1.3 1.4 9.4 5.7 0.1 1.2 31 29 4.6 6.6 0140940970 ALBERTSON BRANCH NEAR ELM NJ (LAT 39 41 34N LONG 074 48 24W) DEC 1991 20... MAR 1992 17... 1.9 5.0 1.7 6.7 9.3 <0.1 4.8 49 36 6.6 1.8 5.4 1.3 5.2 6.0 9.9 <0.1 3.7 31 34 JUN 16... 9.3 8.1 38 2.0 5.2 1.3 <0.1 3.0 32 4.4 AUG 11... 1.8 4.9 1.4 10 4.9 8.6 <0.1 3.6 34 34 SEDI-NITRO-MENT, GEN, AM-MONIA + NITRO-NITRO-NITRO-PHOS-CARBON GEN, NITRITE GEN, NO2+NO3 GEN, AMMONÍA NITRO-PHOS-PHORUS ORGANIC SEDI-DIS GEN, TOTAL MENT, ORGANIC **PHORUS ORTHO** DIS-CHARGE, SOLVED TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL SUS-SUS-PENDED PENDED DATE (MG/L AS N) (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L AS P) AS N) ÁS N) AS N) AS N) ÁS P) AS C) (MG/L) (T/DAY) 0140940480 CLARK BRANCH NEAR ATSION NJ (LAT 39 42 53N LONG 074 46 25W) DEC 1991 20... MAR 1992 <0.01 3 0.062 0.05 0.3 0.36 < 0.01 < 0.01 6.8 0.02 17... <0.01 0.09 0.02 0.59 <0.01 - -5.3 2 0.01 0.5 JUN 16. <0.01 4 <0.05 0.06 <0.01 <0.01 13 0.03 0.4 . . AUG 0.01 0.077 0.06 0.6 0.68 <0.01 <0.01 14 1 0.01 01409408 PUMP BRANCH NEAR WATERFORD WORKS NJ (LAT 39 41 59N LONG 074 50 40W) DEC 1991 20... MAR 1992 17... JUN <0.01 1.00 0.06 0.3 1.3 <0.01 <0.01 4.2 . 2 0.04 <0.01 1.30 0.05 0.2 1.5 <0.01 <0.01 2.5 6 0.11 16... <0.01 0.29 7 0.07 0.3 0.59 <0.01 <0.01 5.7 0.12 AUG <0.01 0.22 0.06 0.4 0.62 0.01 <0.01 5.8 2 0.03 0140940950 BLUE ANCHOR BROOK AT ELM NJ (LAT 39 40 11N LONG 074 50 06W) DEC 1991 20... MAR 1992 <0.01 0.26 0.12 0.5 0.76 0.04 0.01 5 0.02 - -< 0.01 0.27 5 17... 0.26 0.5 0.77 0.03 <0.01 2.3 0.02 JUN 16... <0.01 <0.05 0.17 0.7 0.05 0.03 7.5 . . AUG <0.01 <0.05 0.02 0.4 0.03 <0.01 5.7 2 0.01 0140940970 ALBERTSON BRANCH NEAR ELM NJ (LAT 39 41 34N LONG 074 48 24W) DEC 1991 20... MAR 1992 <0.01 0.96 0.07 0.2 <0.01 <0.01 3.1 2 0.08 1.2 17... <0.01 1.1 0.03 <0.2 <0.01 <0.01 2.2 1 0.04 JUN 0.37 0.05 16... <0.01 0.4 0.77 < 0.01 0.02 5.3 - -AUG <0.01 0.29 0.03 0.3 0.59 <0.01 4.7 3

<0.01

0.11

	Page		Page
Absecon Creek at Absecon	491	Belmont, PA, Schuylkill River	46
miscellaneous measurement		Beltzville Lake	
Accuracy of the records	19	Belvidere, Beaver Brook near	
Acknowledgments	iii	Delaware River at	
Acre-foot, definition of	27	Pophandusing Brook at	48
Adenosine triphosphate, definition of	27	Benthic invertebrate, definition of	
Albertson Branch near Elm		Berkeley Heights, Blue Brook at Seeleys Pond Dam ne	
Algae, definition of		Berkshire Valley, Rockaway River at	
Algal growth potential (AGP), definition of	27	Bernardsville, Passaic River near	
Allendale, Hohokus Brook at		Bethlehem, PA, Lehigh River at	
Ramsey Brook at		Bidwell Creek tributary near Cape May Court House	
Allentown, Doctors Creek at		Big Brook near Marlboro	
Allenwood, Manasquan River at		Big Timber Creek South Branch at Blackwood Terrace	
Manasquan River near		Biochemical oxygen demand, definition of	
Artificial substrate, definition of		Biomass, definition of	
Ash mass, definition of		Black Creek near Vernon	5
Assiscunk Creek near Columbus		Black River: See Lamington River	
Assunpink Creek at Trenton		Blacks Creek at Mansfield Square	
near Clarksville		Blackwater Branch at Norma	
Atco, Cooper Branch near		Blackwells Mills, Millstone River at	
Hays Mill Creek near		Blackwood Terrace, South Branch Big Timber Creek at	
Mullica River near	479,494	Blairs Creek at Blairstown	
Atlantic City, Beach Thorofare at	491	Blairstown, Blairs Creek at	
Atsion, Clark Branch near	480,496	Blairstown, Paulins Kill at	
Mullica River at outlet of Atsion Lake at	297	Yards Creek near	
Sleeper Branch Diversion (Saltars Ditch) near		Blawenburg, Rock Brook near	470
Awosting, Wanaque River at	103	Bloomfield, Third River at	
Axle Brook near Pottersville	468	Bloomsbury, Musconetcong River near	380
		Blue Anchor Brook at Elm	
Back Brook tributary near Ringoes		Blue Brook at Seeleys Pond Dam near Berkeley Height	
Bacteria, definition of	27	Blue green algae, definition of	3
Baldwins Creek at Pennington	470	Blue Marsh Lake, PA	460,462
Balesville, Paulins Kill at		Boonton Reservoir	165,166
Bass River East Branch, near New Gretna		Boonton, Rockaway River above Reservoir, at	
Batsto, Mullica River near		Rockaway River below Reservoir, at	84
Batsto River at Batsto	302	Bottom material	28
at Pleasant Mills	306,491	Bound Brook, Raritan River below Calco Dam, at	
Beach Haven, Little Egg Harbor at		at Middlesex	
Beach Thorofare at Atlantic City		Raritan River at Queens Bridge at	
Bear Brook at Route 535 near Locust Corner		Brotmanville, Maurice River at	
at Route 571 near Grovers Mill	469	Buckhorn Creek at Hutchinson Road at Hutchinson	485
Bear Creek near Johnsonburg	484	Burlington, Delaware River at	417
Bear Creek, PA, diversions	463	Burnt Mills, Lamington River at	226
Bear Swamp Reservoir, NY, diversions	463	North Branch Raritan River at	215,478
Beattystown, Hances Brook near	485		
Musconetcong River at	378	Canistear Reservoir	165,166
Beaver Brook near Belvidere	473	Cannonsville Reservoir4	
Beaverdam Brook at Lincoln Park		Canoe Brook near Millburn	476
Beden Brook near Rocky Hill		Cape May Court House, Bidwell Creek tributary near	
Bedload, definition of		Cape May Court House, Dias Creek near	
Bedload discharge, definition of		Carnegie Lake, diversions	
Bed material, definition of		Cecil, Hospitality Branch at Blue Bell RD near	
Belle Mead, Royce Brook tributary near		Hospitality Branch near	
Pike Run at		Whitehall Branch near	
Belleville, Second River at		Whitehall Branch below Victoria Lakes near	

	Page		Page
Cells/volume, definition of	28	Delaware Riverat Marine Terminal, at Trenton	492
Cfs-day, definition of		at Montague	
Charlotteburg Reservoir		at Northampton Street at Easton, PA	
Chatham, Passaic River near		at Port Jervis, NY	
Chemical oxygen demand, definition of		at Portland, PA	
Cherry Hill, South Branch Pennsauken Creek at		at Riegelsville	
Chesilhurst, Hays Mill Creek near	480,494	at Trenton	
Sleeper Branch near		Delaware River below Tocks Island Damsite, near Delaw	
Wildcat Branch near		Water Gap	354
Chester, North Branch Raritan River near	•	Delaware River basin:	
Chlorophyll, definition of		crest-stage partial-record stations in	472
Clark Branch near Atsion	•	discharge measurements at low-flow partial-record	
Clarks Mill Stream at Port Republic		stations in	
Clarksville, Assunpink Creek near		discharge measurements at miscellaneous sites in	
Clayton, Little Ease Run near		diversions and withdrawals in	
Cliff Lake, NY		reservoirs in,	
Clinton Reservoir		Delaware Water Gap, PA, Delaware River below Tocks Is	
Clinton, Spruce Run at		Dam site, near	354
Closter, Tenakill Brook at		Dennis Creek basin:	
Cohansey River at Greenwich		discharge measurements at low-flow partial-record	
at Seeley		stations in	
West Branch, at Seeley	472	Dennis Creek tributary No. 1 near Dennsiville	483
Cohansey River basin:		Dennis Creek tributary No. 2 at outlet Johnson Pond at	
crest-stage partial-record stations in		Dennisville	
Cold Spring, Mill Creek at		Dennisville, Dennis Creek tributary No. 1 near	
Collingswood, Newton Creek at		Dennis Creek tributary No. 2 at outlet Johnson Pond	
Color unit, definition of		Dias Creek near Cape May Court House	
Columbus, Assiscunk Creek near		Diatoms, definition of	
Crafts Creek at		Discharge, definition of	
Contents, definition of		Discharge measurements at miscellaneous sites	
Continuing record station, definition of		Discontinued continuous Water-Quality stations	
Control, definition of		Discontinued low-flow stations	
Cooperation		Discontinued surface-water discharge stations	
Cooper Branch near Atco		Dissolved, definition of	
Cooper River at Haddonfield		Dissolved-solids concentration, definition of	
at Kirkwood		Doctors Creek at Allentown41	
at Lawnside		Dover, Rockaway River at Warren Street, at	
Cooper River North Branch, near Marlton		Downstream order system	
near Ellisburg		Drainage area, definition of	
Coopersville, Merrill Creek at		Drainage basin, definition of	
Crafts Creek at Columbus		Dry mass, definition of	
Crest-stage partial-record stations		Duck Pond Run near Princeton Junction	470
Crosswicks Creek at Extonville			
at New Egypt		East Creek near Eldora	
Cubic foot per second, definition of	28	at North Centerville	
		Easton, PA, Delaware River at Northampton St., at	
Deal, Poplar Brook near		East Pond Reservoir, NY, diversions	
Deepavaal Brook at Two Bridges		Echo Lake	
Definition of terms		Eldora, East Creek near	
De Forest Lake, NY		West Creek at outlet Pickle Factory Pond near	
Delaware and Raritan Canal at Port Mercer		Electric Brook at Long Valley	
Delaware and Raritan Canal, diversions		Elizabeth River at Ursino Lake at Elizabeth	
Delaware River at Belvidere		Elizabeth River, West Branch, near Union	
at Burlington	417	Elizabethtown Water Company, diversions	
at Lumberville	389	Ellisburg, North Branch Cooper River near	485

	Page		Page
Elm, Albertson Branch near	481,496	Grovers Mill, Bear Brook at Route 571 near	469
Blue Anchor Brook at	481,496	Millstone River at	
Great Swamp Branch at	481	Millstone River at Southfield Road near	469
Elmwood Park, Fleischer Brook at Market Street at	467		
Passaic River at	153	Hackensack River at New Milford	60
Englewood, Metzler Brook at	466	at Rivervale	54
English Creek near Scullville	482	at West Nyack, NY	
Enterococcus Bacteria	27	Hackensack River basin, diversions	
Explanation of the Records		Elevations, reservoir and lake	62
Extractable organic halides, definition of	29	Maximum discharge at crest-stage partial-record stations	466
Far Hills, North Branch Raritan River near	213	Reservoirs in	,
Farmingdale, Mingamahone Brook at		Hackensack Water Co., diversions	
Farrington Dam, Lawrence Brook at		Hackettstown, Musconetcong River near	
Fecal coliform bacteria, definition of		Mine Brook near	
Fecal streptococcal bacteria, definition of		Haddonfield, Cooper River at,	
Fishing Creek at Rio Grande		Haddon Heights, South Branch Newton Creek at	
Flat Brook near Flatbrookville		Hamburg, Wallkill River near	
Fleischer Brook at Market Street at Elmwood Park		Hamden Pumping Station, diversions	
Flemington, Walnut Brook near		Hammonton Creek at Wescoatville	
Folsom, Great Egg Harbor River at		Hances Brook near Beattystown	
Fourmile Branch at New Brooklyn		Hannabrand Brook at Old Mill Road, near Spring Lake	
at Winslow Crossing		Heights	470
Fries Mill, Scotland Run at		Hardness, definition of	
Fries Willi, Scottand Run at	404	Harrisonville, Oldmans Creek near	
Georgia, Manasquan River near	472		
		Harrisville, Oswego River at	
Glen Gardner, Spruce Run at		Hart Brook near Pennington	
Spruce Run near		Harvey (Hog Swamp) Brook at West Allenhurst	
Glenmoore, Stony Brook at		Hays Mill Creek at Atco	
Godeffroy, NY, Neversink River at		near Chesilhurst	
Goshen Creek at Goshen		Hazel Creek, PA, diversions	
Gravelly Brook at Church Street at Matawan		Head of River, Tarkiln Brook near	
Great Channel at Stone Harbor		Tuckahoe River at	
Great Egg Harbor Bay at Ocean City		High Bridge, South Branch Raritan River at Arch Street	
Great Egg Harbor River at Folsom		South Branch Raritan River near	
at Mays Landing		High tide, definition of	
at Weymouth		Hohokus Brook at Allendale	
miscellaneous measurements		at Ho-Ho-Kus	
near Sicklerville		Holland Brook at Readington	
discharge measurements at low-flow partial-record		Hopatcong, Lake	
stations in		Hospitality Branch at Blue Bell Road near Cecil	
Great Swamp Branch at Elm		near Cecil	482
Green algae, definition of		Hudson River basin:	
Green Brook at Plainfield		miscellaneous measurements at	
at Rock Avenue at Plainfield		Huntsville, Pequest River at	
at Seeley Mills		Hutchinson, Buckhorn Creek at Hutchinson Road at	
Green Lane Reservoir, PA		Hydrologic Bench-Mark Network	
Green Pond Brook at Picatinny Arsenal		Hydrologic Bench-Mark station, definition of	
at Wharton		Hydrologic conditions, summary of	
below Picatinny Lake, at Picatinny Arsenal		Hydrologic unit, definition of	
miscellaneous measurements	486		
		Identifying estimated daily discharge	18
Greenwich, Cohansey River at	492	Index	
Greenwood Lake	166,167	Introduction	1
		Ironia, Lamington (Black) River near	478

rage	rag	C
Jadwin, General Edgar, Reservoir, PA457,461	Lakewood, North Branch Metedeconk River near	
Jenkins, West Branch Wading River near307	South Branch Metedeconk River near	
Jersey City, diversion168	Lamington River at Milltown	
Johnsonburg, Bear Creek near484	Lamington (Black) River at Burnt Mills	
Jumping Brook above reservoir, near Neptune City479	at Succasunna	
Jumping Brook near Neptune City479	near Ironia	
	near Pottersville	
Keansburg, Waackaack Creek at Middle Road near478	Latitude - Longitude system	
Keyport, Luppatatong Creek at491	Lawnside, Cooper River at	
Kirkwood, Cooper River at485	Lawrence Brook at Farrington Dam	
Kinnelon, Pequannock River tributary at476	Lawrence Brook at Weston Mills	
Stone House Brook at476	Lebanon State Forest, McDonalds Branch in	
	Lehigh River at Bethlehem, PA	
Lafayette, East Branch Paulins Kill near357,484	Lincoln Park, Beaverdam Brook at	
Lake Hopatcong, Musconetcong River at outlet of473	Little Bear Brook at Penns Neck	
Lakes and reservoirs:	Little Ease Run near Clayton	327
Beltzville Lake	Little Egg Harbor at Beach Haven	
Blue Marsh Lake, PA460,462	Little Falls, Passaic River at	
Boonton Reservoir165,166	Passaic River above Beatties Dam	
Canistear Reservoir	Lockwood, Musconetcong River at	
Cannonsville Reservoir, NY457,460	Locust Corner, Bear Brook at Route 535 near	
Charlotteburg Reservoir165,167	Lodi, Saddle River at	
Cliff Lake, NY	Long Valley, Electric Brook at	
Clinton Reservoir165,167	Lopatcong Creek at Phillipsburg	
De Forest Lake62	Low-flow partial-record stations	
Echo Lake	Low tide, definition of	
Green Lane Reservoir460,462	Lumberville, Delaware River at	
Greenwood Lake166,167	Luppatatong Creek at Keyport	491
Hopatcong, Lake		٠
Jadwin, General Edgar, Reservoir, PA457,461	Macopin Intake Dam, Pequannock River at	99
Merrill Creek Reservoir459,462	Macs Brook at Somerville	
Manasquan Reservoir	Mahwah, Ramapo River near	
Marsh Creek Reservoir460,462	Mahwah River near Suffern, NY	
Monksville Reservoir166,167	Malapardis Brook at Whippany	
Neversink Reservoir, NY458,461	Manahawkin Bay near Manahawkin	
Nockamixon Reservoir, PA459,462	Manalapan Brook at Federal Road near Manalapan	
Oak Ridge Reservoir165,167	Manalapan Brook at Spotswood	
Oradell Reservoir	Manalapan, Millstone River near238,4	
Penn Forest Reservoir, PA459,461	Manasquan River at Allenwood	
Pepacton Reservoir, NY457,460	at Squankum	
Prompton Reservoir, PA457,460	near Allenwood	
Round Valley Reservoir275	near Georgia	
Splitrock Reservoir165,166	Manasquan River basin, crest-stage partial-record stations in4	
Spruce Run Reservoir275	Reservoir in	
Still Creek Reservoir, PA460,462	Mansfield Square, Blacks Creek at	
Swimming River Reservoir277	Mantua Creek at Pitman	
Swinging Bridge Reservoir, NY458,461	Manville, Raritan River at	
Tappan, Lake62	Marlboro, Big Brook near4	
Toronto Reservoir, NY458,461	Marlton, North Branch Cooper River near	
Wallenpaupack, Lake, PA457,461	Marsh Creek Reservoir460,4	
Walter, Francis E., Reservoir, PA458,461	Martinsville, West Branch Middle Brook near	
Wanaque Reservoir166,167	Masonicus Brook at West Mahwah	476
Wild Creek Reservoir, PA459,461	Matawan, Gravelly Brook at Church Street at	478
Woodcliff Lake62	Matawan, Mohingson (Wilkson) Creek at Church Street	
	Matchaponix Brook at Mundy Avenue at Spotswood	

	Page		Page
Maurice River at Brotmanville	328	Morristown, Whippany River at	8
near Millville		Morrisville, PA, Borough of, diversions	
at Norma		Morses Mill Stream at Port Republic	
at Sharp Street at Millville	484	Mountain Lake Brook near Pequest	
Maurice River basin:		Mountainside, Namahegan Brook near	
crest-stage partial-record stations	472	Mulhockaway Creek at Van Syckel	
discharge measurements at lowflow partial-reco		Mullica Hill, Raccoon Creek at	
stations in		Mullica River near Atco	
Maxwell, West Branch Wading River at		at outlet of Atsion Lake at Atsion	
Mays Landing, Great Egg Harbor River at		miscellaneous measurements	
McDonalds Branch in Lebanon State Forest		discharge measurement at low-flow partial-record	
Mean discharge, definition of		stations in	
Mean tide, definition of		near Batsto	
Medford, SW Branch Rancocas Creek at		Mullica River near Port Republic	
Menantico Creek near Millville		Multiple-plate Samplers	
Merrill Creek at Coopersville		Musconetcong River at Beattystown	
Merrill Creek Reservoir		at Lockwood	
Metamorphic stage, definition of		at outlet of Lake Hopatcong	
Metedeconk River, North Branch, near Lakewood		Musconetcong River at Riegelsville	
Metedeconk River, South Branch, near Lakewood		near Bloomsbury	
Methylene blue active substance, definition of		near Hackettstown	
		heat Hacketistown	······································
Metzler Brook at Englewood		National Geodetic Vertical Datum of 1929 (NGVD of 1	020) 2/
Micrograms per gram, definition of		•	
Micrograms per liter, definition of		National stream-quality accounting network (NASQAN	
Middle Brook, West Branch near Martinsville		definition of	
Middlebush, Six Mile Run near		National Trends Network	
Middlesex, Bound Brook at		Natural substrate, definition of	
Middle Valley, South Branch Raritan River at		Naughright, Stony Brook at	
Mill Branch near Northfield		Neptune City, Jumping Brook above reservoir, near	
Mill Creek at Cold Spring		Jumping Brook nearShark River near	
at outlet Magnolia Lake at Oceanville		· ·	
near Steelmanville		Neshanic River at Reaville	
Millburn, Canoe Brook near		Neversink Reservoir, NY	
Milligrams per liter, definition of		Neversink River at Godeffroy, NY	
Millington, Passaic River near		Newark, City of, diversions	
Millstone River at Blackwells Mills		New Brooklyn, Fourmile Branch at	
at Carnegie Lake at Princeton		New Egypt, Crosswicks Creek at	
at Grovers Mill		New Gretna, East Branch Bass River near	
at Southfield Road near Grovers Mill		New Jersey-American Water Company, diversions	
at Plainsboro		New Milford, Hackensack River at	
near Manalapan		New Monmouth, Town Brook, at Church Street, at	
Milltown, Lamington River at		Newton Creek at Collingswood	
Tanners Brook near		South Branch, at Haddon Heights	
Millville, Maurice River at Sharp Street at		New Village, Pohatcong Creek at	
Maurice River near		Nockamixon Reservoir, PA	
Millville, Menantico Creek near		Nomahegan Brook near Mountainside	
Mine Brook near Hackettstown		Norma, Blackwater Branch at	
Mingamahone Brook at Farmingdale		Maurice River at	
Miscellaneous sites, discharge measurement at		North Branch, North Branch Raritan River at	
Mohingson (Wilkson) Creek at Church Street at Mata	awan478	North Centerville, East Creek at	
Molly Ann Brook at North Haledon	467	Northfield, Mill Branch near	
Monksville Reservoir	166,167	North Haledon, Molly Ann Brook at	467
Montague, Delaware River at	348	North Jersey District Water Supply Commission, diversi	ons 168
Moorestown, North Branch Pennsauken Creek near	435	North Plainfield, Stony Brook at	
Morris Lake, diversions		·	

	rage		rage
Oakhurst, Whale Pond Brook near	479	Penns Neck, Little Bear Brook at	
Oakland, Pond Brook at		Pepacton Reservoir, NY	
Oak Ridge Reservoir		Pequannock River at Macopin Intake Dam	
Ocean City, Great Egg Harbor Bay at		Pequannock River tributary at Kinnelon	
Ocean View, Mill Creek at out Magnolia Lake	483	Pequest, Mountain Lake near	484
Octororo Creek, PA, diversions	465	Pequest River at Huntsville	472
Oldmans Creek at Porches Mill	453	at Pequest	365
near Harrisonville	475	at Townsbury	473
Oradell reservoir	62	Percent composition, definition of	31
Organic mass, definition of	28	Periphyton, definition of	31
Organism count/area, definition of	30	Perth Amboy, Raritan River at	491
Organism count/volume, definition of	30	Pesticides, definition of	31
Organism, definition of		Peters Brook near Raritan	230
Oswego River at Harrisville		at Mercer Street, at Somerville	469
		Philadelphia, PA, Schuylkill River at	447
Packanack Lake, Pompton River at	128	Phillipsburg, Lopatcong Creek at	
Papakating Creek at Sussex		Phytoplankton, definition of	
Parameter code		Picatinny Arsenal, Green Pond Brook at	
Partial-record stations, crest-stage		Green Pond Brook below Picatinny Lake at	
Definition of		Picocurie, definition of	
Low-flow		Pike Run at Belle Mead	
Miscellaneous measurements		Pine Brook, Passaic River at	
Tidal Crest-stage		Rockaway River at	
Particle size, definition of		Whippany River near	
classification		Pitman, Mantua Creek at	
Pascack Brook at Westwood		Plainfield, Green Brook at	
Passaic, Third River at		Green Brook at Rock Avenue	
Passaic River at Elmwood Park		Plainsboro, Millstone River at	
at Little Falls		Plankton, definition of	
above Beatties Dam at Little Falls		Pleasant Mills, Batsto River at	
at Pine Brook		Pohatcong Creek at New Village	
at Two Bridges		Point Pleasant diversions	
below Pompton River at Two Bridges		Polly Pond Brook at South Belmar	
low flow		Polychlorinated biphenyls, definition of	
crest-stage gages		Pompton Lakes, Ramapo River at	
miscellaneous measurements		Pompton Plains, Pompton River at	
near Bernardsville		Pompton River at Packanack Lake	
near Chatham		at Pompton Plains	
near Millington		diversions	
<del>-</del>		Pond Brook at Oakland	
Diversions		Pophandusing Brook at Belvidere	
Gaging-station records in			
Reservoirs in,		Poplar Brook near Deal	
Passaic River Basin, miscellaneous measurements		Poricy Brook at Red Bank	
Passaic Valley Water Commission, diversions		Porches Mill, Oldmans Creek at	
Paulins Kill at Balesville		Port Jervis, NY, Delaware River at	
at Blairstown		Port Mercer, Delaware and Raritan Canal at	
East Branch tributary near Lafayette		Portland, PA, Delaware River at	
East Branch tributary 2 near Woodruffs Gap		Port Republic, Clarks Mills Stream at	
Peckman River, at Ozone Avenue at Verona		Morses Mill Stream at	
Pemberton, North Branch Rancocas Creek at		Mullica River near	
Penn Forest Reservoir, PA		Pottersville, Axle Brook near	
Pennington, Baldwins Creek at		Pottersville, Lamington (Black) River near	
Hart Brook near		Upper Cold Brook near	
Pennsauken Creek, North Branch, near Moorestown		Preakness (Singac) Brook near Preakness	
South Branch at Cherry Hill	437	Primary Productivity	31

	Page	•	Page
Princeton Junction, Duck Pond Run near	470	Reservoirs: See Lakes and reservoirs	
Princeton, Millstone River at Carnegie Lake at	470	Return period, definition of	3
Stony Brook at	242	Ridgewood, Saddle River at	15
Prompton Reservoir, PA	457,460	Riegelsville, Delaware River at	386,47
Pump Branch near Waterford Works	481,496	Musconetcong River at	384,48
		Ringoes, Back Brook tributary near	46
Queen Lane, PA, Schuylkill River	464	Ringwood Creek near Wanaque	10
		Rio Grande, Fishing Creek at	
Raccoon Creek at Mullica Hill	475,	River mile, definition of	
near Swedesboro	449	Rivervale, Hackensack River at	
Radiochemical program		Robinsons Branch Rahway River at Rahway	
Rahway River at Rahway	178	Rockaway Creek at Whitehouse	
Robinsons Branch, at Rahway	182	South Branch, at Whitehouse Station	
near Springfield	174`	Rockaway River above Reservoir, at Boonton	8
Rahway River basin:		at Berkshire Valley	7
low-flow partial-record stations in		at Warren Street at Dover	46
at Pompton Lakes	117	at Pine Brook	
at Suffern, NY	109	below Reservoir, at Boonton	
diversions	169	Rock Brook near Blawenburg	47
near Mahwah	113	Rocky Hill, Beden Brook near	246,47
Ramsey Brook at Allendale	467	Round Valley Reservoir data	
Rancocas Creek at Pemberton		Royce Brook tributary near Belle Mead	25
South Branch at Vincentown		Runoff in inches, definition of	
Southwest Branch, at Medford	474	,	
Raritan, Peters Brook near		Saddle River at Lodi	15
North Branch Raritan River near		at Ridgewood	15
Raritan River at Manville		at Upper Saddle River	
at Perth Amboy		Salem River at Woodstown	
at Queens Bridge at Bound Brook		Schuylkill River at Philadelphia, PA	
below Calco Dam, at Bound Brook		at Belment	
miscellaneous measurements		at Queen Lane	
Raritan River North Branch, at Burnt Mills		Scotland Run at Fries Mill	
near Chester		near Williamstown	
near Far Hills	•	Scullville, English Creek near	
at North Branch		Sea level, definition of	
near Raritan		Second River at Belleville	
South Branch at Arch Street at High Bridge		Sediment	
Raritan River, South Branch at Middle Valley		Sediment, definition of	
at Stanton		Sediment discharge, total	
at Three Bridges		Sediment load, total	32
near High Bridge		Seeley, Cohansey River at	
Raritan River basin, crest-stage partial-record stations in		West Branch Cohansey River at	
discharge measurements at low-flow partial-record		Seeley Mills, Green Brook at	
stations in	478	Selected References	
discharge measurements at miscellaneous sites	487	Shark River near Neptune City	
diversions		Shark River basin:	
reservoirs in		low-flow partial-record stations in	.470
Readington, Holland Brook at		Shrewsbury River basin, crest-stage partial-record	
Reaville, Neshanic River at		low-flow partial-record stations in	
Records collected by other agencies		Sicklerville, Great Egg Harbor River near	
Recoverable from bottom material, definition of		Singac Brook at Singac	
Red Bank, Poricy Brook at		Six Mile Run near Middlebush	
Swimming River near		Sleeper Branch near Chesilhurst	
References, selected		near Austin	
Remark Codes for water-quality data		Diversion (Saltars Ditch) near Atsion	
Nomina Coucs for water-quarity train that a second		Diversion (Sanas Diten) hear Assort	+ol

rage	rage
Sluice Creek at outlet Clint Millpond near South Dennis483	Swedesboro, Raccoon Creek near449
Sodium-adsorption-ratio, definition of32	Swimming River near Red Bank27
Solute, definition of32	Swinging Bridge Reservoir, NY458,465
Somerville, Macs Brook at232	
Peters Brook at Mercer Street469	Tanners Brook near Milltown
South Belmar, Polly Pond Brook at479	Tappan, Lake62
South Dennis, Sluice Creek, at outlet Clint Mill Pond near483	Tarkiln Brook near Head of River482
South River, miscellaneous measurements at488	Taxonomy, definition of33
Special networks and programs13	Tenakill Brook at Closter466
Specific conductance, definition of32	Ten Mile Lock, diversions276
Splitrock Reservoir165,166	Terms, definition of
Manalapan Brook at274	Third River at Bloomfield468
Matchaponix Brook at Mundy Avenue270	Third River at Passaic
Spring Lake Heights, Hannabrand Brook, Old Mill Road near479	Three Bridges, South Branch Raritan River at203
Spring Valley Water Company, diversions63	Tidal crest-stage stations491
Springfield, Rahway River near174	Time weighted average, definition of33
Springfield, Van Winkle Brook at477	Tocks Island damsite, Delaware River below, near Delaware
Spruce Run at Clinton198	Water Gap, PA354
at Glen Gardner190	Toms River near Toms River293
near Glen Gardner192	Tons per acre-foot, definition of33
Spruce Run Reservoir275	Tons per day, definition of33
Squankum Branch, above sewage plant at Williamstown482	Toronto Reservoir, NY458,461
at Malaga Road near Williamstown482	Torresdale, PA, Delaware River464
Squankum, Manasquan River at283	Total coliform bacteria, definition of27
Stage and water-discharge records, explanation of14	Total, definition of34
Stage-discharge relation, definition of33	Total discharge, definition of34
Stanton, South Branch Raritan River at199	Total organism count, definition of30
Station Identification numbers13	Total recoverable, definition of34
Steelmanville, Mill Creek near482	Town Brook, at Church Street, at New Monmouth479
Still Creek Reservoir, PA460,462	Townsbury, Pequest River at473
Stone Harbor, Great Channel at492	Trenton, Assunpink Creek at406
Stone House Brook at Kinnelon476	City of, diversions464
Stony Brook, at Glenmoore470	Delaware River at391
at Naughright477	Delaware River at Marine Terminal at492
at North Plainfield471	Tritium Network, definition of34
at Princeton	Tuckahoe River at Head of River326,492
at Watchung266	Tuchahoe River basin:
East Branch, at Best Lake at Watchung264	discharge measurements at low-flow partial-record
Streamflow, definition of	stations in482
Substrate, definition of	Two Bridges, Deepavaal Brook at
Succasunna, Lamington (Black) River at478	Two Bridges, Passaic River at96,476
Suffern, NY, Mahwah River near111	Passaic River below Pompton River at
Ramapo River near	
Surface area, definition of	Union, West Branch Elizabeth River near477
Surficial bed material, definition of33	Unionville, NY, Wallkill River near48
Suspended, definition of33	Upper Cold Brook near Pottersville
Suspended, recoverable, definition of33	Upper Saddle River, Saddle River at
Suspended-sediment concentration, definition of	Ursino Lake, Elizabeth River at, at Elizabeth
Suspended sediment, definition of32	Oldho Dake, Dheacchi Nivel at, at Dheacchi
Suspended sediment, definition of	Van Syckel, Mulhockaway Creek at194
Suspended-sediment load, definition of	Van Winkle Brook at Springfield477
	Vernon, Black Creek near
Suspended-sediment, mean concentration, definition of	Verona, Peckman River at Ozone Avenue at
Suspended, total, definition of	Vincentown, South Branch Rancocas Creek at
Sussex, Papakating Creek at46	VINCENDWII, SOUDI DIANCH KANCOCAS CIECK AL

Page	Pag	ţе
Waackaack Creek, at Middle Road near Keansburg478	West Nyack, NY, Hackensack River at	5
Wading River, West Branch, at Maxwell309	diversions	
near Jenkins307	Weston Mills, Lawrence Brook at	.26
Wallenpaupack, Lake, PA457,461	Westwood, Pascack Brook at	
Wallkill River near Hamburg493	Wet mass, definition of	2
near Sussex44	Weymouth, Great Egg Harbor River at	32
near Unionville, NY48	Whale Pond Brook near Oakhurst	
Walnut Brook near Flemington468	Wharton, Green Pond Brook at	7
Walter, Francis E., Reservoir, PA458,461	Whippany, Malapardis Brook at	47
Wanaque Reservoir166,167	Whippany River at Morristown	8
Wanaque Reservoir diversions167	near Pine Brook92,	
Wanaque, Ringwood Creek near105	Whitehall Branch near Cecil	48
Wanaque River at Awosting103	below Victoria Lakes near Cecil	48
at Wanaque107	Whitehouse, Rockaway Creek at224,468,	,47
Watchung, East Branch Stony Brook at Best Lake at264	Whitehouse Station, South Branch Rockaway Creek at	
Stony Brook at266	Wild Creek Reservoir459,	,46
Water Quality Records, explanation of19	Wildcat Branch near Chesilhurst	48
Water-related Reports23	Williamstown, Scotland Run near	48
Water Resources Projects, current22	Squankum Branch above sewage plant at	48
Vater Year, definition of34	Squankum Branch, Malaga Road near	48
Vaterford Works, Pump Branch near481,496	Winslow Crossing, Fourmile Branch at	48
VATSTORE Data, access to26	Woodcliff Lake	6
WDR, definition of34	Woodruffs Gap, East Branch Paulins Kill tributary 2 near	48
Weighted average, definition of34	Woodstown, Salem River at455,	
Wescoatville, Hammonton Creek at300	WSP, definition of	3
Vest Allenhurst, Harvey Brook at479		
Vest Creek at outlet Pickle Factory Pond near Eldora484	Yards Creek near Blairstown	36
Vest Mahwah, Masonicus Brook at476		
	Zooplankton, definition of	3

# FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI)

The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI).

Multiply inch-pound units	Ву	To obtain SI units
	Length	
inches (in)	2.54x10 ¹	millimeters (mm)
	2.54x10 ⁻²	meters (m)
feet (ft)	3.048x10 ⁻¹	meters (m)
miles (mi)	1.609x10°	kilometers (km)
	Area	
acres	4.047x10 ³	square meters (m ² )
	4.047x10 ⁻¹	square hectometers (hm²)
	$4.047 \times 10^{-3}$	square kilometers (km²)
square miles (mi ² )	2.590x10°	square kilometers (km²)
	Volume	
gallons (gal)	3.785x10°	liters (L)
Burrous (Bur)	3.785x10°	cubic decimeters (dm ³ )
	3.785x10 ⁻³	cubic meters (m³)
million gallons	$3.785 \times 10^{3}$	cubic meters (m ³ )
	3.785x10 ⁻³	cubic hectometers (hm³)
cubic feet (ft ³ )	2.832x10 ¹	cubic decimeters (dm³)
,	2.832x10 ⁻²	cubic meters (m ³ )
cfs-days	$2.447 \times 10^3$	cubic meters (m ³ )
,	2.447x10 ⁻³	cubic hectometers (hm³)
acre-feet (acre-ft)	$1.233 \times 10^3$	cubic meters (m ³ )
	1.233x10 ⁻³	cubic hectometers (hm³)
	1.233x10 ⁻⁶	cubic kilometers (km³)
	Flow	•
cubic feet per second (ft ³ /s)	2.832x10 ¹	liters per second (L/s)
outle feet per second (it 75)	2.832x10 ¹	cubic decimeters per second (dm ³ /s)
•	2.832x10 ²	cubic meters per second (m³/s)
gallons per minute (gal/min)	6.309x10 ⁻²	liters per second (L/s)
Series Les 1117100 (871/11171)	6.309x10 ⁻²	cubic decimeters per second (dm ³ /s)
	6.309x10 ⁻⁵	cubic meters per second (m³/s)
million gallons per day	4.381x10 ¹	cubic decimeters per second (dm ³ /s)
,	4.381x10 ⁻²	cubic meters per second (m³/s)
	Mass	
tons (short)	9.072x10 ⁻¹	megagrams (Mg) or metric tons

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey, Mountain View Office Park 810 Bear Tavern Road, Suite 206 West Trenton, NJ 08628



OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL 4TH CLASS BOOK RATE