

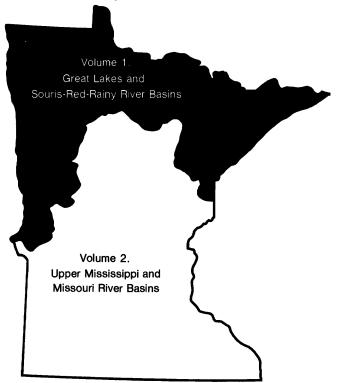
Water Resources Data Minnesota Water Year 1993

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-93-1
Prepared in cooperation with the Minnesota Department of
Natural Resources, Division of Waters; the Minnesota
Department of Transportation; and with other State,
municipal, and Federal agencies

CALENDAR FOR WATER YEAR 1993

1992


		OC	ТОВ	ER					NOV	/EMI	BER					DEC	EMI	BER		
S	M	T	W	T	F	S	S	M	Т	W	T	F	S	S	M	T	W	T	F	S
				1	2	3	1	2	3	4	5	6	7			1	2	3	4	5
4	5	6	7	8	9	10	8	9	10	11	12	13	14	6	7	8	9	10	11	12
11	12	13	14	15	16	17	15	16	17	18	19	20	21	13	14	15	16	17	18	19
18	19	20	21	22	23	24	22	23	24	25	26	27	28	20	21	22	23	24	25	26
25	26	27	28	29	30	31	29	30						27	28	29	30	31		
	441 1 +	9 4								1993			<u></u>	Walt						
		JAI	NUA	RY					FEB	RUA	RY					M	ARC	H		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
					1	2		1	2	3	4	5	6		1	2	3	4	5	6
3	4	5	6	7	8	9	7	8	9	10	11	12	13	7	8	9	10	11	12	13
10	11	12	13	14	15	16	14	15	16	17	18	19	20	14	15	16	17	18	19	20
17	18	19	20	21	22	23	21	22	23	24	25	26	27	21	22	23	24	25	26	27
24 31	25	26	27	28	29	30	28							28	29	30	31			
		A	PRI	L					1	MAY						J	UNE	3		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
				1	2	3							1			1	2	3	4	5
4	5	6	7	8	9	10	2	3	4	5	6	7	8	6	7	8	9	10	11	12
11	12	13	14	15	16	17	9	10	11	12	13	14	15	13	14	15	16	17	18	19
18	19	20	21	22	23	24	16	17	18	19	20	21	22	20	21	22	23	24	25	26
25	26	27	28	29	30		23		25	26	27	28	29	27	28	29	30			
							30	31												
			IULY	,					ΑU	JGU:	ST					SEP	ГЕМ	BER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
				1	2	3	1	2	3	4	5	6	7				1	2	3	4
4	5	6	7	8	9	10	8	9	10	11	12	13	14	5	6	7	8	9	10	11
11	12	13	14	15	16	17	15	16	17	18	19	20	21	12	13	14	15	16	17	18
18	19	20	21	22	23	24	22	23	24	25	26	27	28	19	20	21	22	23	24	25
25	26	27	28	29	30	31	29	30	31					26	27	28	29	30		

Water Resources Data Minnesota Water Year 1993

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

by Gregory B. Mitton, Joseph H. Hess, and Kevin G. Guttormson

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT MN-93-1 Prepared in cooperation with the Minnesota Department of Natural Resources, Division of Waters; the Minnesota Department of Transportation; and with other State, municipal, and Federal agencies

DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

GEOLOGICAL SURVEY

Gordon P. Eaton, Director

For additional information write to:

District Chief, Water Resources Division
U.S. Geological Survey
2280 Woodale Drive
Mounds View, Minnesota 55112

PREFACE

This volume of the annual hydrologic data report of Minnesota is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Minnesota are contained in two volumes:

Volume 1. Great Lakes and Souris-Red-Rainy River Basins

Volume 2. Upper Mississippi and Missouri River Basins

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines.

Most of the data were collected, processed, and tabulated by the following individuals:

Mounds View District Office

Allan D. Amtson Chris A. Sanocki Alex Brietkrietz Brett E. Savage George H. Carlson Todd C. Schmitt Pierce A. Flanagan Charles J. Smith Paul E. Hanson Gregory W. Stratton Mark R. Have Julie A. Tapper Rebecca A. Miller Duane A. Wicklund Shelley L. Morrison Thomas A. Winterstein George A. Roach

Grand Rapids Field Headquarters

Kevin G. Guttormson Howard D. Braden William A. Gothard Gregory R. Melhus

This report was prepared in cooperation with the State of Minnesota and with other agencies under the general supervision of George Garklavs, District Chief, Minnesota.

REPORT DOCUMENTATION PAGE	1. REPORT NO. USGS/WRD/HD-94/307	2.	3. Recipient's Accession No.
4. Title and Subtitle Water Resources for Minnesota, Water Resources Lakes and Souris-			5. Report Date July 1994
Volume 1, Oreal Lakes and Soums-	Acti-Kally Kivel Basilis		6.
7. Author(s) Gregory B. Mitton, Jo	seph H. Hess and Kevin G. Guttormson		8. Performing Organization Rept. No. USGS-WDR-93-1
 Performing Organization Name U.S. Geological Survey, Water Res 			10. Project/Task/Work Unit. No.
2280 Woodale Drive Mounds View, MN 55112			11. Contract (C) or Grant (G) No.
12. Sponsoring Organization Nam	e and Address		13. Type of Report & Period Covered
U.S. Geological Survey, Water Re 2280 Woodale Drive	sources Division		Annual 10/01/92 to 09/30/93
Mounds View, MN 55112			14.
4. 0			

15. Supplementary Notes

Prepared in cooperation with the State of Minnesota and with other agencies.

16. Abstract (Limit: 200 words)

Water-resources data for the 1993 water year for Minnesota consist of records of stage, discharge and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality in wells and springs. This volume contains discharge records for 46 gaging stations; stage and contents for 5 lakes and reservoirs; water quality for 15 stream stations; and water levels for 1 observation well. Also included are 26 high-flow partial-record stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2, represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

17. Document Analysis a. Descriptors

*Minnesota, *Hydrologic data, *Surface water, *Ground water, *Water quality, Flow rate, Gaging stations, Lakes, Reservoirs, Chemical analyses, Sediments, Water temperatures, Sampling sites, Water levels, Water analyses, Data collection

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement: No restriction on distribution	19. Security Class (This Report)	21. No. of Pages
This report may be purchased from:	Unclassified	248
National Technical Information Service	20. Security Class (This Page)	22. Price
Springfield, VA 22161	Unclassified	

CONTENTS

	rage
Preface	ii
List of surface-water stations, in downstream order, for which records are published in this volume	v
List of ground-water wells, by county, for which records are published in this volume.	vii
List of discontinued surface-water discharge or stage-only stations. List of discontinued surface-water-quality stations.	iz xv
Introduction.	^
Cooperation	
Summary of hydrologic conditions	
Precipitation	
Streamflow	
Water quality	
Ground-water levels	
Special networks and programs.	9
Explanation of the records Station identification numbers	
Downstream order system and station number.	
Latitude-longitude system for wells and miscellaneous sites.	
Records of stage and water-discharge.	
Data collection and computation	
Data presentation	
Station manuscript	
Data table of daily mean values	
Statistics of monthly mean data.	
Summary statistics	
Identifying estimated daily discharge	
Other records available.	
Records of surface water-quality	
Classification of records.	
Arrangement of records	
Onsite measurement and sample collection	
Water temperature	14
Sediment	
Laboratory measurements	
Data presentation	
Remark codes	
Dissolved trace-element concentrations	
Records of ground-water levels	
Data collection and computation.	
Data presentation	
Records of ground-water quality	
Data collection and computation.	
Data presentation	17
Access to WATSTORE data	
Definition of terms	. 17 . 24
Station records, surface water	. 27
Low-flow investigations	
Discharge at partial-record stations and miscellaneous sites	. 194
High-flow partial-record stations	. 196
Miscellaneous sites	. 202
Analysis of samples collected at water-quality and miscellaneous sites	
Water-quality at partial-record stations	
Water-quality at miscellaneous sites.	
Station records, ground water	
Ground-water levels	. 216
Quality of ground water	. 219
Index	227

ILLUSTRATIONS

Figure 1.	Map showing precipitation, in inches, during 1993 water year compared with normal annual precipitation.	cipitation for Minnesota	2
	Map showing annual precipitation departure from normal in inches for 1993 water year		3
3.	Graph showing total monthly precipitation compared to average monthly precipitation by climat for a 30-year base period		5
4.	Graph showing comparison of mean discharge for 1993 water year with median of mean discharge representative gaging stations.	ge for 1961-90 at three long-term	6
5.	Graph showing comparison of dissolved solids concentrations in samples collected during water of record at four national network stations.	year 1993 with median for period	7
6.	Graph showing comparison of nitrite plus nitrate concentrations in samples collected during water period of record at four national network stations	er year 1993 with median for	8
7.	Diagram showing system for numbering wells and miscellaneous sites		10
	Map showing location of lake and stream-gaging stations		
	Map showing location of surface-water-quality stations		
	Map showing location of high-flow partial-record stations		
	Map showing location of ground-water wells		
	The state of the s		21,
	GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS AR	E PUBLISHED	
	Note Data for partial-record stations and miscellaneous sites for both surface-water quantity as in separate sections of the data report. See references at the end of this list for page number		
ch	[Letters after station name designates type of data: (d) discharge; (e) gage height, elevation, or cohemical, or pesticides; (b) biological or micro-biological; (p) physical (water temperature, sedimental)	ontents; (c) chemical, radio- ent, or specific conductance)]	
ST. LAWR	RENCE RIVER BASIN	Station Number	
	RENCE RIVER BASIN AMS TRIBUTARY TO LAKE SUPERIOR	Station Number	
STRE	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage(0	i) 04010500	30
STRE	AMS TRIBUTARY TO LAKE SUPERIOR	i) 04010500	30 32
STRE I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage(0	i) 04010500 i - c b p) 04014500	
STRE I I I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage(c Baptism River near Beaver Bay(c	i)04010500 i - c b p)04014500 i)04015330	32
STRE H H H	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage(0 Baptism River near Beaver Bay(0 Knife River near Two Harbors(0	i) 04010500	32 36
STRE H H M S	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i) 04010500	32 36 38
STRE H H M S	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38
STRE H H M S	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38 40
STRE H H M S	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38 40
STRE H H H S S	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38 40
STRE I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38 40
STRE I I I I I I I I I I I I I I I I I I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38 40
STRE H H S H H L A H L A H L A R B R R	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38 40
STRE I I I I I I I I I I I I I I I I I I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i) 04010500	32 36 38 40
STRE I I I I I I I I I I I I I I I I I I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i) 04010500	32 36 38 40 44
STRE I I I I I I I I I I I I I I I I I I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38 40 44 46 48
STRE I I I I I I I I I I I I I I I I I I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i)04010500	32 36 38 40 44 46 48 50
STRE I I I I I I I I I I I I I I I I I I	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i) 04010500	32 36 38 40 44 46 48
STRE H H S N S N H HUDSON Lake V R C C C C Bois de Sio	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i) 04010500	32 36 38 40 44 44 46 48 50 54 56
STRE H H S S N H HUDSON Lake V C C C Bois de Sio	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	i) 04010500	32 36 38 40 44 44 46 48 50 54 56 60
HUDSON Lake V	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	1 04010500	32 36 38 40 44 44 46 48 50 54 56 60 64
HUDSON Lake V	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	1 04010500	32 36 38 40 44 44 46 48 50 54 56 60 64 68
HUDSON Lake V	AMS TRIBUTARY TO LAKE SUPERIOR Pigeon River at Middle Falls, near Grand Portage	1 04010500	32 36 38 40 44 44 46 48 50 54 56 60 64

GAGING STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED--Continued

HUDSON BAY BASIN--Continued

Station	N T	1
Station	Num	iner

Wild Rice River at Twin Valley	(d - c - p) .05062500	78
Wild Rice River at Hendrum	` • • • • • • • • • • • • • • • • • • •	
Red River of the North at Halstad	,	
Marsh River near Shelly	` <u>.</u> .	
Sand Hill River at Climax		
Red Lake River:)	
Lower Red Lake near Red Lake	(- e) 05074000	96
Red Lake River near Red Lake	, ,	
Red Lake River at Highlanding, near Goodridge	, ,	
Thief River near Thief River Falls		
Clearwater River at Plummer		
Lost River at Oklee	· · · · · · · · · · · · · · · · · · ·	
Clearwater River at Red Lake Falls	` ,	
Red Lake River at Crookston.		
Red River of the North at Grand Forks, ND		
Snake River:	(а - с в р) 03082300	110
	(4) 05095000	100
Snake River above Alvardo	• •	
Middle River at Argyle	• •	
Red River of the North at Drayton, ND	(а - с в р) 05092000	130
Two Rivers:	(1) 0500 4000	1.40
South Branch Two Rivers at Lake Bronson	,	
Red River of the North at Emerson, Manitoba		
Roseau River below South Fork near Malung		
Roseau River below State ditch 51, near Caribou	(а - с b р).05112000.	154
LAKE OF THE WOODS BASIN (head of Winnipeg River)		
Namakan River (head of Rainy River):		
Basswood River:	//1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• • • •
Kawishiwi River near Ely		
Kawishiwi River near Winton		
Basswood River near Winton		
Namakan River at outlet of Lac la Croix, Ontario	(d). 05128000.	168
Vermilion River:		
Vermilion River near Crane Lake		
Gold Portage Outlet from Kabetogama Lake near Ray	(d).05129290.	172
Rainy Lake near Fort Frances, Ontario	(- e) 0512940Q.	174
Rainy River:		
Little Fork River:		
Sturgeon River near Chisholm		
Little Fork River at Littlefork		
Big Fork River at Big Falls		
Rainy River at Manitou Rapids		
Lake of the Woods at Warroad	(- e)0514052Q.	186
Lake of the Woods at Springsteel Island near Warroad	(- e)05140521.	188
* * *	*	*
Low -flow investigations		190
Discharge at partial-record stations		194
High-flow partial-record stations		
Miscellaneous sites		
Analysis of samples collected at miscellaneous water-quality sites for Red River of the North N		
	• •	

GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

GROUND-WATER LEVELS

CLAY	
Well 465237096383901 Local number 139N47W05CDC01	218
QUALITY OF GROUND WATER	
COOK	220
	221
PENNINGTON	222
POLK	223
RED LAKE	224
TR AVERSE	225

WATER RESOURCES DATA - MINNESOTA, 1993

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Minnesota have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*)after the station number are currently operated as high-flow partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)]

Station name	Station number	Drainage area (mi²)	Period of record
STREAMS TRIBUTARY	Y TO LAKE SUPERIOR		
Pigeon River above mouth of Arrow River, MN (d)	04010000	256	1924-27
Grand Portage River at Grand Portage, MN (d)	04010510		1991-92
Reservation River near Hovland, MN (d)	04010530		1991-92
Brule River at mouth near Hoveland, MN (e)	04011000	248	1911
Devil Track River at mouth near Grand Marais, MN (e)	04011500	a77	1911
Cascade River at mouth near Grand Marais, MN (e)	04012000	111	1911
Poplar River at Lutsen, MN (d)	04012500*	114	1911†, 1912-17, 1928-47, 1952-61
Cross River at Schroeder, MN (d)	04013000	a91	1931-32
Beaver Creek (Beaver Bay Run) at Beaver Bay, MN (d)	04015000	126	1911-14, 1928-31
South Branch Partridge River near Babbitt, MN (d)	04015455	18.5	1977-80
Partridge River above Colby Lake, at Hoyt Lakes, MN (d)	04015475	106	1979-88
Second Creek near Aurora, MN (d)	04015500	29	1955-80
Partridge River near Aurora, MN (d)	04016000	161	1942-82
St. Louis River near Aurora, MN (d)	04016500	290	1942-87
Embarrass River at Embarrass, MN (d)	04017000	93.8	1942-64
Embarrass River near McKinley, MN (d)	04018000	171	1953-62
St. Louis River at Forbes, MN (d)	04018750	713	1965-90
Cast Two Rivers near Iron Junction, MN (d)	04018900	40.0	1966-79
West Two Rivers near Iron Junction, MN (d)	04019000	65.3	1953-62, 1965-79
Vest Swan River near Silica, MN (d)	04019300	16.3	1963-79

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS.--Continued

Station name	Station number	Drainage area (mi²)	Period of record
STREAMS TRIBUTARY TO LAK			
East Swan River near Toivola, MN (d)	04019500	112	1953-62, 1964-71
Swan River near Toivola, MN (d)	04020000	254	1952-61
Whiteface River below (at) Meadowlands, MN (d)	04021000	453	1909-17
Stoney Brook at Brookston, MN (d)	04021530	97.3	1983-84
Cloquet River at Independence, MN (d)	04023000	a750	1909-17
Simian Creek near Brookston, MN (d)	04023150	-	1983-84
St. Louis River near Cloquet, MN (e)	04023500	a3,400	1903
Squaw Creek near Cloquet, MN (d)	04023600	-	1983-84
Otter Creek near Cloquet, MN (d)	04024015		1983-84
Elim Creek near Holyoke, MN (d)	04024090	1.06	1976-78
Skunk Creek below Elim Creek near Holyoke, MN (d)	04024093	8.83	1976-78
RED RIVER OF THE N	ORTH BASIN		
Otter Tail River near Detroit Lakes, MN (d)	05030000	270	1937-71
Otter Tail River at German Church, near Fergus Falls, MN (d)	05030500	a1,230	1904-17
Pelican River at Detroit Lakes, MN (d)	05033900	-	1968-71,
Pelican River at Detroit Lake outlet near Detroit Lakes, MN (d)	05034100	-	1974-75 1968-71, 1972-75
Long Lake outlet near Detroit Lakes, MN (d)	05035100	-	1968-71
West Branch County Ditch No. 14 near Detroit Lakes, MN (d)	05035200	-	1968-71
Bast Branch County Ditch No. 14 near Detroit Lakes, MN (d)	05035300	-	1968-71
St. Clair Lake outlet near Detroit Lakes, MN (d)	05035500	-	1968-75
Pelican River at Muskrat Lake outlet near Detroit Lakes, MN (d)	05035600	-	1968-75
Pelican River at Sallie Lake outlet near Detroit Lakes, MN (d)	05037100		1968-75
Pelican River at Lake Melissa outlet near Detroit Lakes, MN (d)	05039100	-	1968-75
Pelican River near Detroit Lakes, MN (d)	05040000	123	1942-53
Pelican River near Fergus Falls, MN (d)	05040500	482	1909-12, 1942- 8 0
Otter Tail River (Red River) near Fergus Falls, MN (e)	05045500	a1,690	1909-10

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS.--Continued

Station name	Station number	Drainage area (mi²)	Period of record
RED RIVER OF THE NORTH Otter Tail River near Breckenridge, MN (d)	BASIN-Continued 05046500	a2,040	1931-32,
ran River near precadingge, Mr. (b)	03040300	a2,040	1939-46†
Mustinka River (head of Bois de Sioux River) near Norcross, MN(d	05047000	-	1940-47
Mustinka ditch above West Branch Mustinka River (Twelve Mile	05047500	_	1943-55
Creek) near Charlesville, MN (d)	05047500		1745 55
Mustinka Ditch ditch below West Branch Mustinka River Twelve Mile Creek) near Charlesville, MN (d)	05048000	-	1943-55
Vest Branch Mustinka River (Twelve Mile Creek) below Mustinka	05048500	-	1943-55
itch near Charlesville, MN (d)			
fustinka River above (near) Wheaton, MN (d)	05049000	834	1915- 24, 1930-58
lois de Sioux River below Fairmont, ND (d)	05050500	a1,540	1919-44
abbit River at Cambell, MN (d)	05051000	266	1942-52
ed River of the North below Fargo, ND (d)	05054020	-	1969-78
hiskey Creek at Barnesville, MN (d)	05061200*	25.3	1964-66
Vild Rice River near Ada, MN (d)	05063000	a1,100	1948-54
outh Branch Wild Rice River near Borup, MN (d)	05063500*	254	1944-49
farsh River below Ada, MN (d)	05067000	-	1948-52
and Hill River at Beltrami, MN (d)	05068000	a324	1943-58
and Hill ditch at Beltrami, MN (d)	05068500	-	1943-58
hief River near Gatske, MN (d)	05075500	-	1953-56
ed Lake River at Thief River Falls, MN (d)	05076500	a3,450	1909-18,
learwater River near Pinewood, MN (d)	05077000	132	1920-30 1940-45
learwater River near Leonard, MN (d)	05077500	153	1934-47
uffy Brook near Gonvick, MN (d)	05077700*	45.2	1960-78
•			
ed River of the North at Oslo, MN (d)	05083500	331,200	1936-37, 1941-43,
			1945-60,
			1973-78
nake River at Warren, MN (d)	05085500	a175	1945,
nake River at Alvarado, MN (d)	05086000	309	1953-56 1945,

"DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS.--Continued

	Station	Drainage area	Period of
Station name	number	(mi ²)	record
RED RIVER OF THE NOR	ΓΗ BASINContinued		
Snake River at Alvarado, MN (d)	05086000	309	1945,
		404	1953-56
Snake River near Argyle, MN (d)	05086500	481	1945
Middle River near Strandquist, MN (d)	05087000	-	1953-56
Tamarac River near Strandquist, MN (d)	05090500	-	19 5 3-56
Tamarac River at Stephen, MN (d)	05091000	-	1945
Tamarac River near Stephen, MN (d)	05091500	a320	1945, 1953-55
Two Rivers (Middle Fork Two Rivers) near Hallock, MN (d)	05092500	131	1931-38
South Branch (South Fork) Two Rivers near Pelan, MN (d)	05093000	281	1928-38, 1953-56
South Branch Two Rivers (Two Rivers) at Hallock, MN (d)	05094500	-	1940-47
Two Rivers (South Branch Two Rivers) at Hallock, MN (d)	05095000		1911-14, 1929-30, 1938-39, 1941-43
Two Rivers below Hallock, MN (d)	05095500	644	1945-55
North Branch (North Fork) Two Rivers near Lancaster, MN (d)	05096000	a32	1929-38,
	0,500,550	0,5	1941-55
State Ditch 85 near Lancaster, MN (d)	05096500	a95	1929-38, 1942-55
North Branch Two Rivers at Lancaster, MN (d)	05097000	209	1941-42,
, ,,			1953-56
North Branch Two Rivers near Northcote, MN (d)	05097500	386	1941-42,
Two Rivers below North Branch near Hallock, MN (d)	05098000	a1,060	1945-51 1941-43
Roseau River (at) near Malung, MN (d)	05103000	252	1928-46
South Fork (West Branch) Roseau River near Malung, MN (d)	05104000	312	1911-14,
			1928-46
Roseau River at Roseau, MN (d)	05105000	-	1940-47
Roseau River near Roseau, MN (d)	05105500	-	1930-60
Sprague Creek near Sprague, Manitoba (d)	05106000	176	1928-81
Pine Creek near Pine Creek, MN (d)	05107000	74.6	1928-53
Roseau River at Roseau Lake, MN (e)	05106500		1939-91
Roseau River at Ross, MN (d)	05107500	1,220	1928-91
Roseau River near Badger, MN (d)	05108000	-	1928-69

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS.--Continued

Station name	Station number	Drainage area (mi²)	Period of record
RED RIVER OF THE NORT	H BASINContinued		
Roseau River near Duxby, MN (d)	05108500	-	1929-51,
			1952-56
Badger Creek near Badger, MN (d)	05109000	a2.2	1929-30,
			1931-38
Roseau River near Haug, MN (d)	05109500	-	1932-66
Roseau River at outlet of State Ditch 69 near Oak Point, MN (d)	05110000	-	1939-42
Roseau River at head of State Ditch 51 near Oak Point, MN (d)	05110500	-	1933-42
Roseau River at Oak Point, MN (d)	05111000	-	1933-39,
			1941-60
Roseau River at international boundary, near Caribou, MN (d)	05112500	a1,590	1933-69
LAKE OF THE WO	ODS BASIN		
sabella River near Isabella, MN (d)	05124500	341	1953-61,
			1976-77
ilson Creek near Ely, MN (d)	05124990	9.66	1974-85
outh Kawishiwi River near Ely, MN (d)	05125000	-	1953-61,
			1976-78
tony River near Isabella, MN (d)	05125500	180	1953-64
tony River near Babbitt, MN (d)	05125550	219	1975-80
runka River near Babbitt, MN (d)	05126000	53.4	1951-62,
			1975-80
outh Kawishiwi River above White Iron Lake near Ely, MN (d)	05126210		1975-78
ear Island River near Ely, MN (d)	05126500	68.5	1953-62,
			1975-77
durntside River near Ely, MN (d)	05127 2 05	-	1967-78
sjorkman's Creek near Ely, MN (d)	05127207	1.36	1972-78
rmstrong Creek near Ely, MN (d)	05127210	5.29	1967-78
ongstorff Creek near Ely, MN (d)	05127215	8.84	1967-78
hagawa Lake tributary at Ely, MN (d)	05127219	1.84	1971-78
urgo Creek near Ely, MN (d)	05127220	3.04	1967-78
nagawa River near Ely, MN (d)	05127230	99	1967-78

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS.--Continued

Station name	Station number	Drainage area (mi²)	Period of record
LAKE OF THE WOODS	S BASINContinued		
Vermilion Lake near Soudan, MN (e)	05128200	-	1913-15
			1941-42
			1946-87
Pike River near Biwabik, MN (d)	05128340	-	1977-79
Pike River near Embarrass, MN (d)	05128500	115	1953-64
			1976-79
Vermilion River below Vermilion Lake near Tower, MN (d)	05129000	483	1911-17,
			1928-81
Rainy River at International Falls, MN (d)	05129500	14,900	1905-60
Sturgeon River (Lake) at Side Lake, MN (d)	05130000	-	1938-47
Dark River near Chisholm, MN (d)	05131000	50.6	1942-61,
			1965-79
Deer Lake outlet (Deer Lake) near Effie, MN (d)	05131800	-	1937-39,
			1940-46
Big Fork River at Laurel, MN (d)	05132500	-	1909
Black River near Loman, MN (d)	05133000	-	1909
Rapid River near Baudette, MN (d)	05134200	543	1956-85
Warroad River near Warroad, MN (d)	05139500	162	1946-80
Bulldog Run near Warroad, MN (d)	05140000*	14.2	1946-51,
			1966-77
ast Branch Warroad River near Warroad, MN (d)	05140500*	102	1946-54,
, ,,			1966-77

[†] Stage records only. a Approximately.

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

[The following stations were discontinued as continuous-record or periodic-record stations prior to the 1993 water year. Daily or periodic records of chemical, biological, sediment, temperature, dissolved oxygen, pH, or specific conductance were collected and published for the record shown for each station.]

Discontinued continuous-record and periodic-record surface-water-quality stations

Station name	Station number	Drainage area (sq mi)	Type of record	Period of record (water years)
Baptism River near Beaver Bay, MN	04014500	140	Temp, S.C.	1980-83
Partridge River abv Colby Lake at Hoyt Lakes, MN	04015475	106	Temp, S.C.	1976-85
St. Louis River at Forbes, MN	04018750	713	Sed.	1968-7 0
St. Louis River at Scanlon, MN	04024000	3430	Temp, S.C.	1980-83
Elim Creek near Holyoke, MN	04024090	1.06	Sed.	1976-79
Skunk Creek below Elim Creek near Holyoke, MN	04024093	8.83	C, Sed., Temp, D.O., pH, S.C.	1976-79
Deer Creek near Holyoke, MN	04024098	7.77	C, Bio., Temp, D.O., pH, S.C.	1977-79
•			Sed.	1977-81
Buffalo River near Dilworth, MN	05062000	1040	Sed.	1971-81
Wild River River at Twin Valley, MN	05062500	888	C, Bio., Temp, D.O., pH, S.C.	1971, 73-79
•			Sed.	1976-79
Roseau River below Roseau, MN	05105300		C, Bio., Sed., Temp, D.O., pH, S.C. 1973-83	
Roseau River below State Ditch 51 nr Caribou, MN	05112000	1570	Temp, S.C.	1980-83
Kawishiwi River near Ely, MN	05124480	253	Temp	1966-81
ittle Fork River at Littlefork, MN	05131500	1730	C, Bio., Sed., Temp,	1967, 69, 71,
			D.O., pH, S.C.	73-86
Big Fork River at Big Falls, MN	05132000	1460	C, Bio., Sed., Temp,	1968, 71-77
-			D.O., pH, S.C.	
Rainy River at Manitou Rapids, MN	05133500	19,400	Temp, S.C.	1980-83

This page is blank.

•

INTRODUCTION

Water Resources Division of the U.S Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Minnesota each water year. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Minnesota."

Water resources data for the 1993 water year for Minnesota consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This volume contains discharge records for 46 gaging stations; stage and contents for 5 lakes and reservoirs; water quality for 15 stream stations; and water levels for 1 observation well. Also included are 26 high-flow partial-record stations. These data, together with the data in Volume 2, represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Minnesota.

This series of annual reports for Minnesota began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to introduction of this series and for several water years concurrent with it, water-resources data for Minnesota were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States, Parts 4, 5 and 6A." For the 1961 through 1970 water years, the data were published in two 5-year reports. Data on chemical quality, temperature, and suspended sediment for the 1941 through 1970 water years were published annually under the title "Quality of Surface Waters of the United States," and water levels for the 1935 through 1974 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply papers can be consulted in the libraries of the principal cities of the United States and may be purchased from the books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and volume number. For example, this volume is identified as the "U.S. Geological Survey Water-Data Report MN-93-1. For archiving and general distribution, the reports for 1971-1974 water years also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc-Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (612) 783-3101. A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

COOPERATION

The U.S. Geological Survey and agencies of the State of Minnesota have had cooperative agreements for the systematic collection of streamflow records since 1909, for ground-water levels since 1948, and for water-quality records since 1952. Organizations that assisted in collecting data through cooperative agreement with the Survey are:

Minnesota Department of Natural Resources.

Minnesota Department of Transportation

Minnesota Pollution Control Agency.

Lower Red Lake Watershed Management Board.

Grand Portage Reservation Tribal Council.

Leech Lake Reservation Business Committee.

Mille Lacs Band of Chippewa - Tribal Government.

Beltrami Soil and Water Conservation District.

Elm Creek Conservation Commission.

Lower Red River Management Board.

Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers and the Department of State. Other organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Precipitation

With some exceptions in the north and northwest, all of Minnesota received greater than normal (based on data from 1961-90) (fig. 1) precipitation during the 1993 water year (fig. 2). Precipitation during the first quarter of the 1993 water year was generally above normal in the southern half of Minnesota and below normal in the northern half. The winter season began early when many parts of the State were covered with more than 6 inches of snow that fell November 1-3. The depth of the snow pack was maintained at or above median throughout the winter by numerous relatively small snowfalls. Notable events during the winter included a January ice storm in southern and eastern Minnesota and an unusually cold spell in the entire State in mid-March.

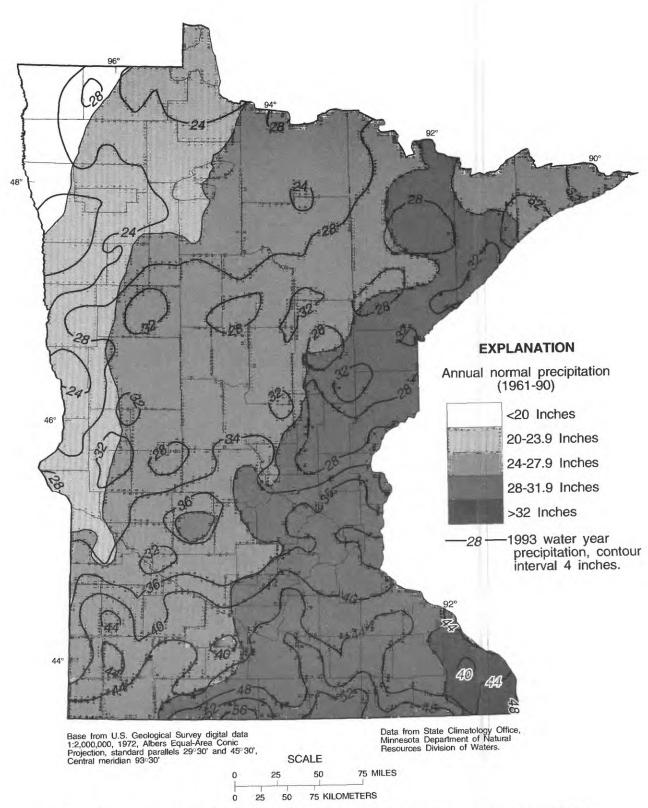


Figure 1.--Precipitation, in inches, during 1993 water year compared to normal annual precipitation in Minnesota.

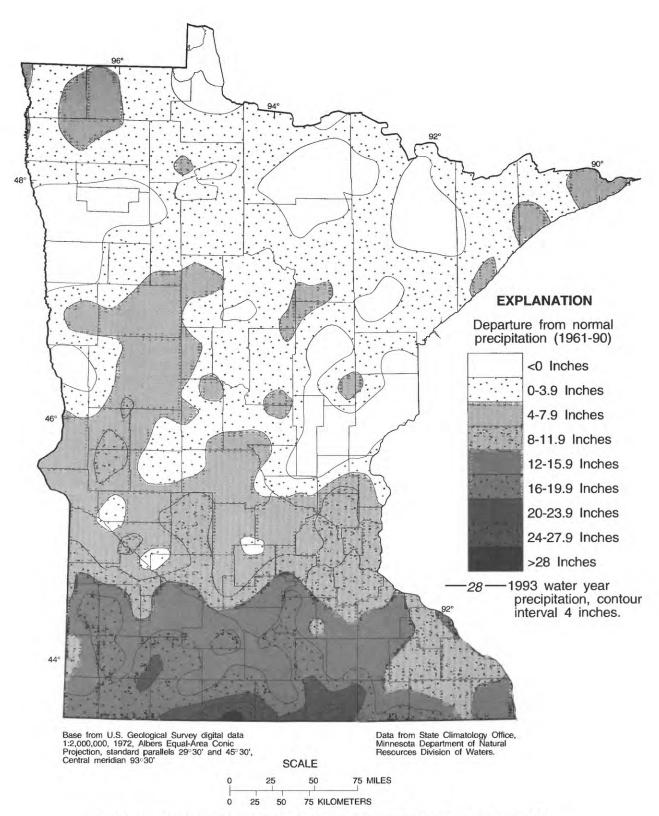


Figure 2.--Precipitation departure from normal, in inches, during 1993 water year in Minnesota.

Spring and early summer was one of the wettest periods in Minnesota's recorded climate history. Thunderstorms on May 7-8 in southern Minnesota left 4.28 inches in Marshall and 4.93 inches in Pipestone. Heavy rains continued during June in the southern one-third of Minnesota. Some locations reported June rainfalls totals exceeding 15 inches. In July and August, the wet weather persisted in southern Minnesota and began to extend into parts of the north and west. West central, northwestern, and northeastern Minnesota had downpours that often dropped many inches of rain in just a few hours. By the end of July, virtually the whole State had received from 125-200 percent of normal precipitation since April 1. In September, precipitation was below normal statewide except in the south-central region where it was above normal. Figure 3 shows total monthly precipitation compared to the normal monthly values.

Streamflow

Streamflow characteristics in the Great Lakes basin in northeast Minnesota and the Souris-Red-Rainy River basins, which extend from the northeast to the west and northwest parts of the state, are described in this volume. Figure 4 shows mean monthly and annual discharges for water year 1993 compared to the median of mean discharges for the period 1961-90 for 3 stations, Baptism River near Beaver Bay, Red Lake River at Crookston, and Little Fork River at Littlefork. The stations are located in 3 major basins - Lake Superior, Red River of the North, and Lake of the Woods River basins, respectively. The 1993 mean-annual discharges for each of the stations were close to the medians.

Monthly-mean discharges for the 3 stations were generally near or below the monthly medians until July. Because of the heavy rains beginning in July in many parts of northem Minnesota, there were notable increases in streamflow at the 3 stations. The July average of 519 ft³/s at the Baptism River near Beaver Bay is a record for that station. The old record was 327 ft³/s set in 1978. The instantaneous peak flow for the Baptism River in 1993 occurred July 4th with a discharge of 3930 ft³/s. Discharge continued above the 75th percentile for August but receded to the normal range in September. Runoff for 1993 was 17.04 inches, 0.58 inches above the average for the period of record.

Monthly-mean discharges in the Red Lake River at Crookston in the Red River of the North basin were below normal through June. However, discharges for July, August, and September were 187, 340, and 247 percents respectively of the monthly medians. The annual runoff for 1993 was 3.49 inches, 0.63 inches above the average for the period of record.

Within the Red River of the North basin (Minnesota portion) the summer rainfall amounts were highest in the Buffalo River subbasin. Discharges in the Buffalo River near Dilworth were in the normal range through June, but in July, August, and September, discharges were 2800, 3600, and 535 percent of the monthly medians, respectively. The mean discharge of 910 ft³/s for August was a record for that month. The instantaneous peak flow in the Buffalo River for 1993 occurred July 20th with a discharge of 3450 ft³/s. The mean discharge for 1993 was 328 ft3/s compared to the 30-year median of 141 ft³/s. The annual runoff for 1993 was 4.29 inches, which was 2.54 inches above the average for the period of record.

Monthly-mean discharges for the Little Fork River at Littlefork in the Lake of the Woods basin were below normal through June except for March, which was slightly above normal. However, discharges for July, August, and September were 414, 352, and 178 percents of the monthly medians, respectively. The instantaneous peak

flow in the Little Fork River for 1993 occurred July 8th with a discharge of 6580 ft3/s. The mean discharge for 1993 in the Little Fork River was near the 30-year median, and the annual runoff for 1993 was 9.00 inches, 0.71 inches above the average for the period of record.

Water Quality

Boxplots for 5 U.S. Geological Survey National Stream-Quality Accounting Network (NASQAN) stations are used to depict variability in concentrations of dissolved solids and nitrate as nitrogen in the Lake Superior, Rainy River, and Red River of the North basins (figs. 5 and 6).

Boxplots display the central tendency, variation, and skewness of a data set as well as the presence or absence of extreme values. A boxplot consists of a centerline (the median) dividing a rectangle whose ends are defined by the 75th and 25th percentiles. Whiskers from the ends of the box to the most extreme observation within 1.5 times the interquartile range (the distance from the 25th to the 75th percentile values) beyond the ends of the box. Values more than 1.5 interquartile ranges from the box ends may indicate extreme hydrologic and chemical conditions or sampling and analytical errors. Observations from 1.5 to 3 interquartile ranges from the box in either-direction are plotted individually with an open circle.

Dissolved-solids concentrations determined in 1993 were generally less than median for Baptism River near Beaver Bay and St. Louis River at Scanlon in the Lake Superior basin. Red Lake River at Crookston in the Red River of the North basin generally had concentrations of dissolved solids higher than the monthly medians in the fall and spring. Winter and summer concentrations were near the median. Rainy River at Manitou Rapids had concentrations of dissolved solids below the 25th percentile in the fall and winter, but the rest of the samples had concentrations near the median.

Nitrate concentrations reported as nitrogen (analyzed for nitrate plus nitrite, with nitrite concentration assumed to be negligible) were above the 75th percentile in the winter and below the 25th percentile in the spring and summer in the St. Louis River at Scanlon. In the Baptism River near Beaver Bay, nitrate concentrations were near the monthly medians in the fall and winter samples and below the medians in the spring and summer. Samples collected in the Rainy River at Manitou Rapids had concentrations near the median. At Red Lake River at Crookston, samples were collected for the National Water-Quality Assessment (NAWQA) Program as well as NASQAN. Nitrate concentrations fell above and below the monthly medians, but appear to average near the medians. Nitrate concentrations for all the stations shown in figure 5 were below 10 milligrams per liter.

Nine ground water wells were sampled in 6 counties. Nitrate concentrations were above the primary drinking-waters standard of 10 mg/L (Minnesota Pollution Control Agency, 1988) in a sample collected from a shallow well in Marshall County. Two samples were above the iron standard of 300 ug/L, and 1 sample was above the manganese standard of 50 ug/L.

Ground-Water Levels

Data from one well, located in a surficial sand aquifer, is presented in this volume. Five wells located in surficial sand aquifers, five in buried sand and gravel aquifers, and one located in the Biwabik Iron-Formation aquifer were phased out from the well network by August of 1992.

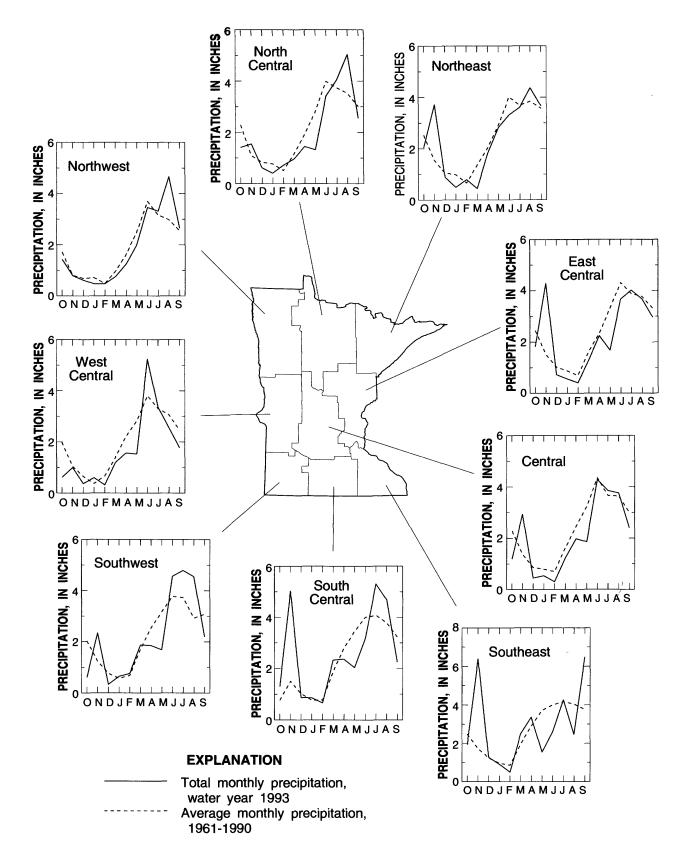


Figure 3.--Total monthly precipitation compared to average monthly precipitation by climatological division for a 30-year base period.

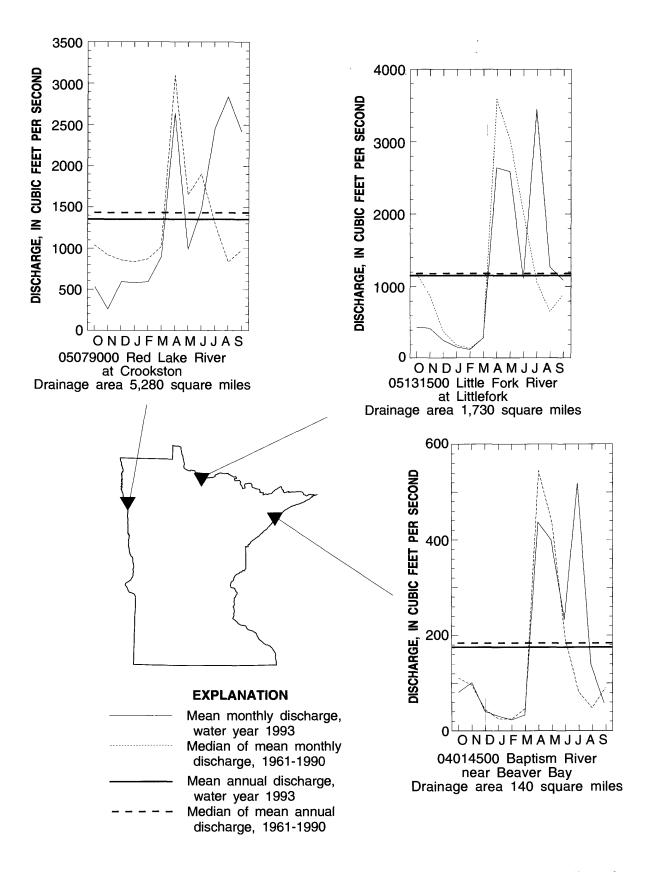


Figure 4.--Comparison of mean discharge for the 1993 water year with the median of mean discharges for 1961-90 at four long-term representative gaging stations.

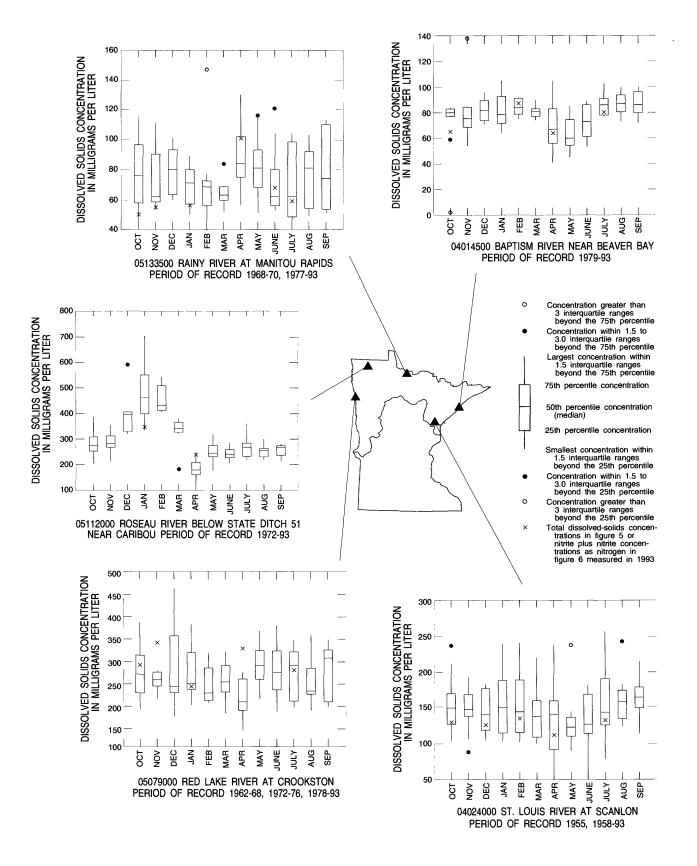


Figure 5--Dissolved-solids concentrations in samples collected during water year 1993 and selected statistics for period of record at five national network stations.

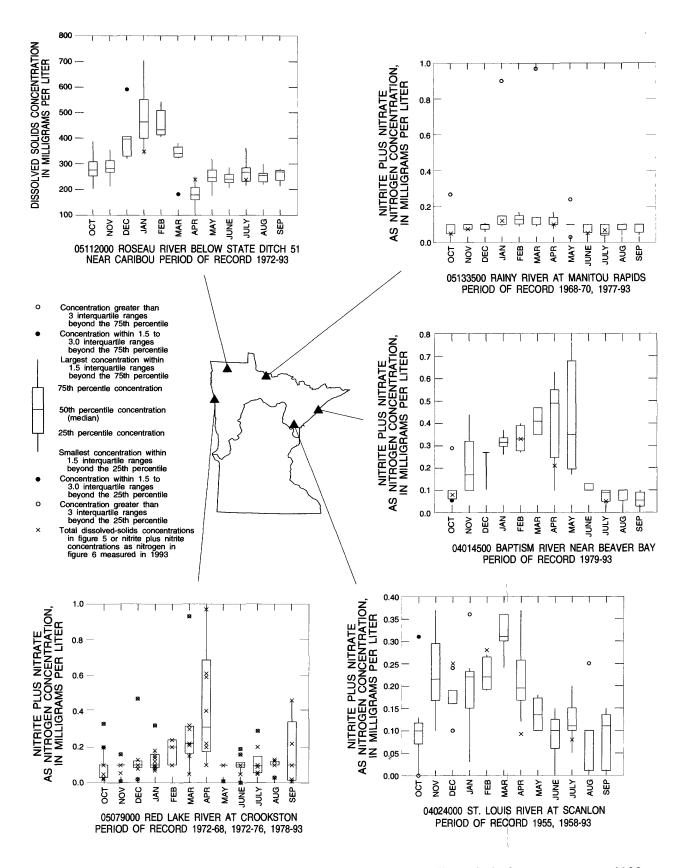


Figure 6--Nitrite plus nitrate concentrations in samples collected during water year 1993 and selected statistics for period of record at five national network stations.

Surficial Sand Aquifer

In late 1992 and continuing through the 1993 water year water levels increased by about 1.4 feet in one observation well located near Moorhead. This well is in an area of traditionally large ground water withdrawals for public supply and irrigation. Water levels at this well declined an average of 0.7 feet per year from 1949 to 1961 due to increased pumping in nearby wells for public supply. Increasingly, public supply water sources were obtained from the Red River. This change in water sources contributed to a water level rise of 5.5 feet during the period, 1962-70. Above normal rainfall and below normal temperatures during the water year along with increased diversion of water from the Red River of the North for public supply have added to these ground water level increases. The water level increases of the past two water years contrast with a long term decline from 1970 to 1991 of between seven and eight feet.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 57 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities.

National Stream Quality Accounting Network (NASQAN) is a national data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of the hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, and aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, diverse, and geographically distributed part of the Nation's ground-and surface-water resources, and to identify, describe, and explain the major natural and human factors that affect these observed conditions and trends.

Assessment activities have begun in more than one-third of the study units and ultimately will be conducted in 60 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surfacewater stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1993 water year that began October 1, 1992, and ended September 30, 1993. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for the surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 8, 9, 10 and 11. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

STATION IDENTIFICATION NUMBERS

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The system used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Minnesota, for surface-water stations where only miscellaneous measurements are made.

Downstream Order System and Station Number

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream sections is listed between them. A similar order is followed by listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indentation in a list of stations in front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 05041000, which appears just to the left of the station name, includes the 2-digit part number "05" plus the 6-digit downstream order number "041000."

Numbering System for Wells and Miscellaneous Sites

The 8-digit downstream order station numbers are not assigned to wells and miscellaneous sites where only random water-quality samples or discharge measurements are taken.

The well and miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells or other sites within a 1-second grid. See figure 7. Each well site is also identified by a local well number which consists of township, range, and section numbers, three letters designating 1/4, 1/4, 1/4 section location, and a two-digit sequential number.

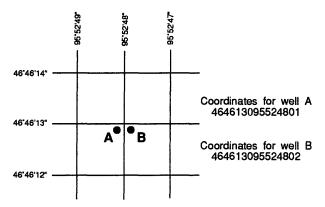


Figure 7. Example of system for numbering wells and miscellaneous sites.

RECORDS OF STAGE AND WATER DISCHARGE

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharge may be computed for any-time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations".

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Highflow partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all complete-record and high-flow partial-record stations for which data are given in this report are shown in figures 8 and 10.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Records of stage are obtained with recorders that trace continuous graphs of stage; or encode stage values at selected time intervals and store on a variety of mediums. Measurements of discharge are made with current meters using methods adapted by the U.S. Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of current-meter measurements, the curves are extended using: (1) logarithmic-plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means, of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves, or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relationship changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relationship. Even when this is done, the contents computed may become increasingly in error as time since the last survey increases. Discharge over lake or reservoir spillways are computed from stage-discharge relationships much as other stream discharges are computed.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surfacewater discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time when the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.—Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all reports in which revisions have been published for the station and water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see glossary), and a condensed history of the types, locations, and datum of previous gages are given under this heading.

REMARKS.—All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is the information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the district office (address given on the back of title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and to the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN"); or in acre-feet (line headed "AC-FT). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figure are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS 19—19—, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS 19__-19__," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date

of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

INSTANTANEOUS PEAK FLOW.—The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)

INSTANTANEOUS PEAK STAGE.—The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF --Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data.

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

- 10 PERCENT EXCEEDS.--The discharge that is exceeded by 10 percent of the flow for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that is exceeded by 50 percent of the flow for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that is exceeded by 90 percent of the flow for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of discharge measurements at low-flow partial-record stations, and the second is a table of annual maximum stage and discharge at crest-stage stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the waterdischarge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated", or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1000 ft³/s; and to 3 significant figures for more than 1000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of all discharge measurement sites in the State as well as an index of records of discharge collected by other agencies but not published by the U.S. Geological Survey. Information on records available at specific sites can be obtained upon request.

RECORDS OF SURFACE-WATER QUALITY

Records of surface water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 9.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

Onsite Measurement and Collection

Water quality data must be representative of the in situ quality of water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. C2; Book 5 Chap. A1, A3, and A4. All of these references are listed on p. of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey district office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating

load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the U.S. Geological Survey district office whose address is given on the back of the title page of this report.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the district office.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Samples for indicator bacteria and specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratories in Arvada, Colo., Doraville, Ga., or Iowa City, Ia. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratories are given in TWRI, Book 1, Chap. D2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, when appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of stage and Water Discharge"; same comments apply.

PERIOD OF RECORD.—This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	<u>REMARK</u>
E	Estimated value
>	Actual value is known to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organisms count less than 0.5 percent (organisms may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant

Dissolved Trace-Element Concentrations

NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Present data above the µg/L level should be used with caution. Such data may actually represent elevated environmental concentrations from natural or human causes. However, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey will begin using new trace-element protocols in water year 1994.

RECORDS OF GROUND-WATER LEVELS

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Minnesota are shown in figure 11.

Although, in this report, records of water levels are presented for fewer than 200 wells, records are obtained through cooperative efforts of many Federal, State, and local agencies for several hundred observation wells throughout Minnesota and are placed in computer storage. Each spring, the Minnesota Department of Natural Resources, Division of Waters publishes a report for the previous water year entitled "Observation Well Data Summary, Water Year 19__." This report contains hydrographs of recorder wells, detailed maps showing the location of active observation wells, and other useful items. Information about the availability of the data in the water-level file may be obtained from the District Chief, Minnesota District. (See address on back of front page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well assure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (eom).

All water-level measurements are reported to the nearest hundredth of a foot. The error of water-level measurements is normally only a hundredth or a few hundredth of a foot.

Hydrographs showing water-level fluctuations are included for 3 representative wells; 1 in a surficial-sand aquifer, 1 in a buried sand aquifer, and 1 in a bedrock aquifer.

Data Presentation

Each well consists of two parts, the station description and the data table of water levels observed during the water year. In addition a graph of water levels for the current year or other selected period is included for several representative wells. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes and seconds); a landline location designation; the hydrologic-unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.-- This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.—This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and includes additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in the top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) sea level; it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that are also water-quality observation wells, and may be used to acknowledge the assistance of local (non-U.S. Geological Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of the publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the U.S. Geological Survey, may be noted.

EXTREMES FOR THE PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, abbreviated tables are published; generally, only water-level lows are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. A hydrograph for a selected period of record follows the water-level table for several representative wells.

RECORDS OF GROUND-WATER QUALITY

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken

at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigation" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the U.S. Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases.

• Station Header File - Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the U.S. Geological Survey collects or has collected data.

- Daily Values File-Contains more than 220 million daily values of stream flows, stages, reservoir contents, water temperature, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
- Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage-height values at surface-water sites.
- Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water.
- Ground-Water Site Inventory Data Base Contains inventory data for more than 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requester will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092

In addition to providing direct access to WATSTORE, data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk; and, as noted in the introduction, on CD-ROM discs. Beginning with the 1990 water year, all water-data reports will also be available on Compact disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices. (See address on the back of the title page.) A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, Colorado 80225.

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting inch-pound units to International System of units (SI) on the inside of back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Adenosine triphosphate (ATP) is the primary energy donor in cellular life process. Its central role in living cells makes it an excellent indicator of the presence of living material in water. A measure of ATP, therefore, provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter of the original water sample.

Aigae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Artesian means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore- forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35°C ±1.0°C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestine or feces of warmblooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C±0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria also found in the intestine of warmblooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35° C $\pm 1.0^{\circ}$ C on M-FS medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

Dry mass refers to the weight of residue present after drying in an oven at 60° C for zooplankton and 105° C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and the ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Bottom material: See Bed Material.

Cells/volume refers to the number of cells or any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, or about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foot per second (FT³/s, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

Discharge is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Annual 7-day minimum is the lowest mean discharge

for 7 consecutive days for a calender year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

Dissolved refers to the amount of substance present in true chemical solution. In practice, however, the term includes all forms of substance that will pass through a 0.45-micrometer membrane filter, and thus may include some very small (colloidal) suspended particles. Analyses are performed on filtered samples.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\tilde{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where 'n.' is the number of individuals per taxon, 'n' is the total number of individuals, and 's' is the total number of taxa in the sample of the community. Diversity index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage", although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egglarva-adult or egg-nymph-adult.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (UG/G, ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per kilogram (MG/KG, mg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of govemment agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases, The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Parameter code numbers are unique five-digit code numbers assigned to each parameter placed into storage. These codes are assigned by the Environmental Protection Agency and are also used to identify data exchanged among agencies.

Partial-record station is a particular site where limited streamflow and (or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis				
Clay	00024- 0.004	Sedimentation				
Silt	004062	Sedimentation				
Sand	.062 - 2.0	Sedimentation or sieve-				
Gravel	2.0 -64.0	Sieve				

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

Periphyton is the assemblage of microorganisms attached to and growing upon solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton is a useful indicator of water quality.

Pesticides are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

Picocurie (PC, pCi) is one trillionth (1×10^{-12}) of the amount of radioactivity represented by a curie (C1). A curie is the amount of radioactivity that yields 3.7×1010 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Piankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organo-chlorine insecticides.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(m² . time) for periphyton and macrophytes and mg (C/(m³ . time) for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume pet unit time

[mg $0_2/(m^2)$. time) for periphyton and macrophytes and mg $0_2/(m^3)$. time) for phytoplankton] are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Radiochemical program is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotypes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Return period is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN, in) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)--a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Mean concentration is the time-weighted

concentration of suspended sediment passing a stream section during a 24-hour day.

Suspended-sediment discharge tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Suspended-sediment load is quantity of suspended sediment passing a section in a specified period.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Total sediment load or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

7-day 10 year low flow (7 Q₁₀) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium-adsorption-ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in micromhos per centimeter at 25°C. Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in micromhos). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as a streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

Natural substrates refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and miltiplate samplers (made of hardboard) for benthic organism

collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest USGS topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a watersediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45 micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 micrometer filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 um membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common.

For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u> is the following:

Kingdom......Animal
Phylum.....Arthropoda
Class.....Insects
Order.....Ephemeroptera
Family.....Ephemeridae
Genus....Hexageria
Species...Hexagenia lambata

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. The term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.)

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total recoverable refers to the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent percent in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in Geological Survey reports dealing with surface-water supply is the 12-month period, October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1992 is called the "1992 water year."

WDR is used as an abbreviation for "Water-Data Report" in reference to published reports beginning in 1975.

Weighted average is used in this report to indicate dischargeweighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir

WRD is used as an abbreviation for "Water-Resources Data" in the REVISED RECORDS paragraph to refer to State annual basicdata reports published before 1975.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resource investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications to Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations".

- 1-D1. Water temperature-influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficken, and G.F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2 Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. Scott Keys and L.M. McCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W. Scott Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and Warren E. Teasdale: USGS-TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3. Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS.-TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-A10. Discharge ratings at gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. Measurement of discharge by moving-boat method, by G.F. Smoot and C.E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A12. 1986. 41 pages.
- 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A13. 1983. 53 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

- 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Anonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathburn, N. Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels of streamflow gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 27 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programmed text for self-instruction, by G.D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-waterflow, by Richard L. Cooley and Richard L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS-TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS-TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transporting round-water systems with uniform flow, by Eliezer J. Wexler: USGS--TWRI Book 3, Chapter B7. 1992. 90 pages.
- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H.C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H.C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman: USGS-TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.,: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS-TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate a quifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI Book 6, Chapter A2. 1991. 68 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffrannek, R.A. Baltzer, and D.E. Goldberg: USGS-TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS--TWRIBook 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

Surface-Water Station Records

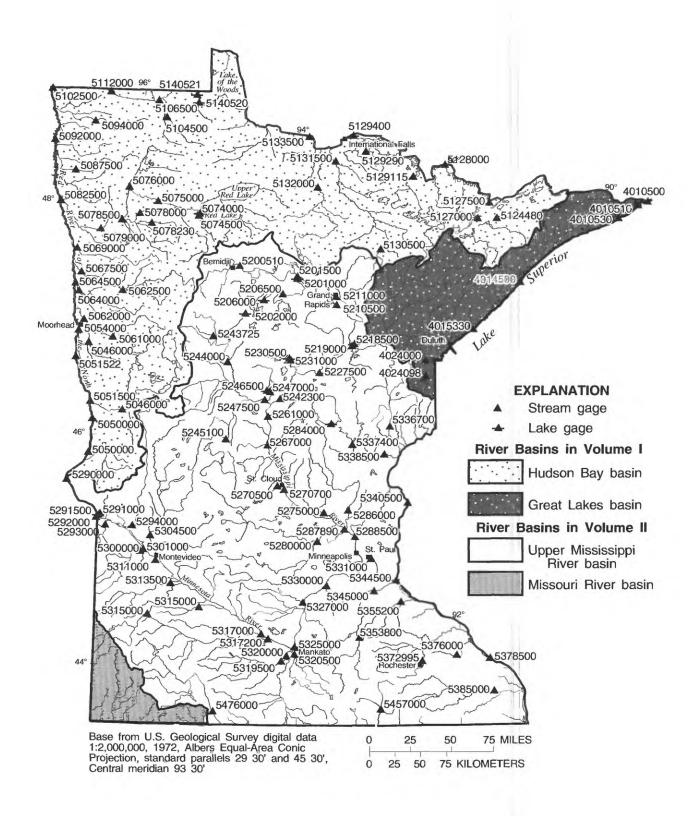


Figure 8.--Location of lake and stream-gaging stations

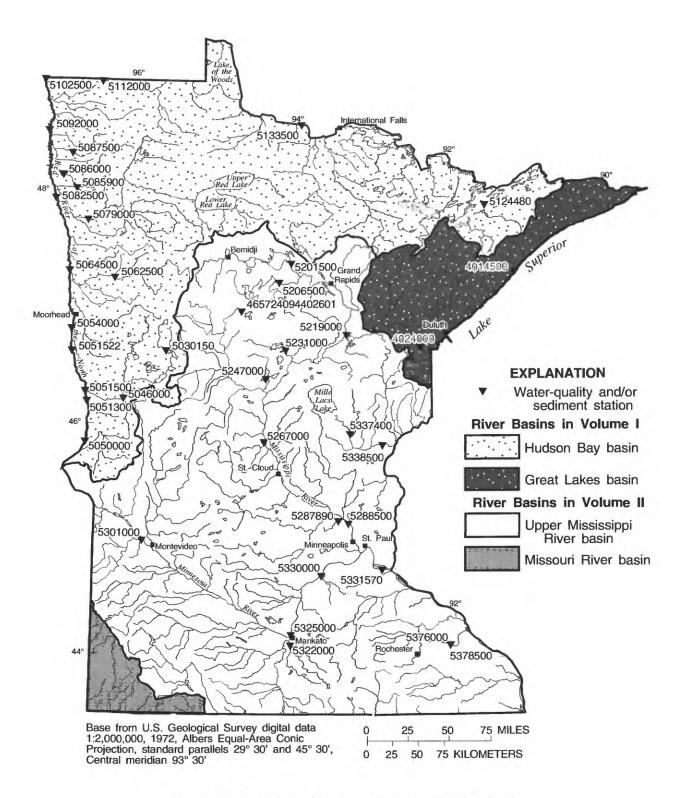


Figure 9.--Location of surface-water quality stations.

04010500 PIGEON RIVER AT MIDDLE FALLS, NEAR GRAND PORTAGE, MN (International gaging station)

LOCATION.—Lat 48°44", long 89°36′58", in SW¹/4NE¹/4 sec. 24, T.64 N., R.6 E., Cook County, Hydrologic Unit 04010101, on the Grand Portage Indian Reservation, on right bank 400 ft upstream from Middle Falls, 2.5 mi upstream from Grand Portage Port of Entry, 3.5 mi upstream from mouth, and 4.7 mi northeast of city of Grand Portage.

DRAINAGE AREA .-- 600 mi².

PERIOD OF RECORD.--June to October 1921, April to November 1922, March 1923 to current year. Published as "at International Bridge" April 1924 to September 1940; as "below International Bridge" October 1940 to September 1965. Monthly discharge only for some periods, published in WSP 1307.

REVISED RECORDS.--WSP 744:1927-28. WSP 804:1934(M). WSP 974: Drainage area. WSP 1337:1924(M), 1925, 1926-28(M), 1931(M), 1938(M), 1941(M), 1945-46(M), 1947, 1948(M), 1950(M).

GAGE.--Water-stage recorder. Datum of gage is 787.58 ft above sea level. Prior to Sept. 30, 1940, nonrecording gage at International Bridge, 5.8 mi upstream at datum 102.24 ft higher. Oct. 1, 1940, to Dec. 31, 1975, at present site at datum 2.00 ft higher.

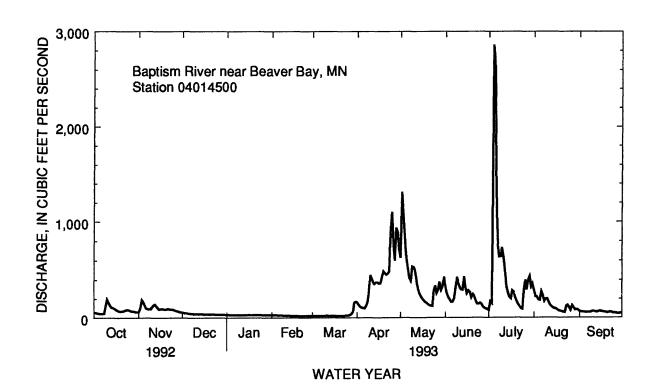
REMARKS .-- Records good except those for estimated daily discharges, which are fair. Satellite telemeter at station.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

EXTREMES FOR CURRENT YEAR.-Peak discharges greater than base discharge of 3,000 ft³/s and maximum (*):

		Discharge	Gage height	
Date	Time	(ft ³ /s)	(ft)	No other peak greater than base discharge.
Jul 29	0500	*3010	*8.15	

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993


					DA	ILY MEAN	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	260	217	e200	e185	e148	e114	e420	1630	1080	323	1330	479
2	244	232	e190	e185	e144	e112	e390	2590	1000	321	1120	464
3	233	336	e180	e185	e140	e112	e360	2710	938	323	999	452
4	223	343	e170	e180	e136	e114	e340	2270	871	370	921	436
5	212	318	e160	e180	e132	e114	e340	2000	808	706	859	418
6	206	272	e160	e180	e132	e116	e350	1800	759	827	821	398
7	200	277	e160	e180	e130	e116	e380	1640	755	690	797	372
8	209	273	e160	e180	e130	e116	e450	1530	769	610	751	350
9	254	272	e170	e180	e128	e118	e600	1440	792	717	733	143
10	333	323	e190	e180	e128	e118	e900	1370	787	962	735	494
11	346	422	e190	e180	e126	e118	e1000	1400	757	1120	708	474
12	329	433	e190	e180	e126	e118	e900	1310	708	1210	665	429
13	302	422	e190	e180	e124	e118	e845	1200	661	1040	632	389
14	298	352	e190	e175	e124	e120	839	1100	651	861	594	382
15	277	337	e190	e175	e124	e120	812	1040	656	746	557	369
16	256	318	e190	e175	e122	e120	761	999	641	669	530	349
17	237	284	e190	e175	e122	e120	708	940	587	623	511	325
18	232	266	e190	e175	e122	e120	700	875	550	591	487	302
19	226	253	e190	e175	e120	e120	673	830	521	569	466	285
20	242	387	e190	e175	e120	e120	691	797	493	549	458	269
21	261	446	e190	e175	e120	e120	729	778	472	527	441	256
22	273	390	e190	e175	e118	e120	795	752	451	491	419	250
23	288	354	e185	e172	e118	e120	905	716	430	455	412	246
24	301	318	e185	e170	e118	e125	1450	934	406	425	401	242
25	291	282	e185	e168	e116	e135	2160	1400	414	477	397	238
26	275	245	e185	e166	e116	e160	1790	1300	420	988	391	229
27	263	e230	e185	e164	el 16	e200	1390	1180	414	1000	419	227
28	254	e220	e185	e162	e114	e250	1710	1450	403	1970	425	220
29	239	e215	e185	e160		e330	1920	1360	374	2930	408	216
30	225	e210	e185	e156		e440	1690	1210	346	2370	445	210
31	218		e185	e152		e470		1160		1690	493	
TOTAL	8007	9247	5685	5400	3514	4814	26998	41711	18914	27150	19325	9913
MEAN	258	308	183	174	125	155	900	1346	630	876	623	330
MAX	346	446	200	185	148	470	2160	2710	1080	2930	1330	494
MIN	200	210	160	152	114	112	340	716	346	321	391	143
AC-FT	15880	18340	11280	10710	6970	9550	53550	82730	37520	53850	38330	19660
CFSM.	43	.51	.31	.29	.21	.26	1.50	2.24	1.05	1.46	1.04	.55
IN.	.50	.57	.35	.33	.22	.30	1.67	2.59	1.17	1.68	1.20	.61

STREAMS TRIBUTARY TO LAKE SUPERIOR 04010500 PIGEON RIVER AT MIDDLE FALLS, NEAR GRAND PORTAGE, MN--Continued

STATIST	TICS OF N	MONTHLY	MEAN D	ATA FOR	WATER Y	EARS 1921	- 1993, BY	Y WATER Y	EAR (W	Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	365	353	204	149	124	174	1201	1621	859	410	242	305
MAX	2095	1461	720	431	300	1169	2701	4016	2801	1127	1029	2985
(WY)	1978	1971	1978	1975	1969	1945	1976	1950	1947	1968	1950	1977
MIN	17.4	11.4	2.85	2.18	8.02	60.0	290	138	125	78.0	57.7	40.2
(WY)	1977	1977	1977	1977	1977	1941	1977	1977	1977	1958	1991	1976
SUMMA	ARY STA	IISTICS F	OR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 192	1 - 1993
ANNIIA	L TOTAI			200178			180678					
	L MEAN	•		547			495			504		
		AL MEAN					.,,			840		1971
		L MEAN								158		1958
HIGHES	T DAILY	MEAN		4140	May 3		2930	Jul 29		10700	Ma	y 5 1934
LOWES	T DAILY	MEAN		130	Apr 1		112	Mar 2,3		1.0a	Jan	15 1977
ANNUA	L SEVEN	-DAY MIN	IIMUM	133	Mar 28		114	Feb 27		1.0	Jan	15 1977
INSTAN	TANEOU	IS PEAK FI	LOW				3010	Jul 29		11000	Ma	y 5 1934
INSTAN	TANEOU	S PEAK S	TAGE				8.15	Jul 29		7.60b	Ma	y 5 1934
ANNUA	L RUNOI	T (AC-FT)	1	396300			358600			365100		
ANNUA	L RUNOI	F (CFSM)		.91			.82			.84		
ANNUA	L RUNOI	F (INCHE	S)	12.38			11.20			11.41		
	CENT EXC	CEEDS		1300			1090			1300 221		
50 PERC				248			325					

145

90 PERCENT EXCEEDS

123

a Also occurred Jan. 16-21, 1977.b Site and datum then in use.

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN

LOCATION.—Lat 47°20'07", long 91°12'06", in SE'/4NE'/4 sec.15, T. 56 N., R. 7 W., Lake County, Hydrologic Unit 04010101, on right bank 400 ft upstream from bridge on U.S. Highway 61, 0.3 mi upstream from mouth, 4 mi northeast of Silver Bay, and 7 mi northeast of city of Beaver Bay. DRAINAGE AREA.—140 mi².

WATER-DISCHARGE RECORDS

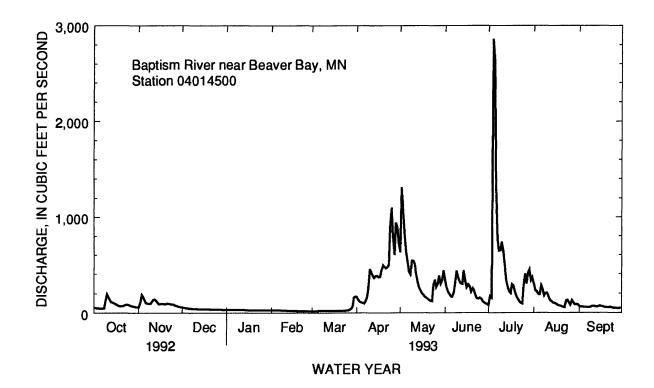
PERIOD OF RECORD.--October 1927 to September 1993 (discontinued). Monthly discharge only for some periods, published in WSP 1307. REVISED RECORDS.--WSP 894: 1939. WSP 1337: 1933-34(M), 1935.

GAGE.--Water-stage recorder. Datum of gage is 613.65 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to Oct. 5, 1934, nonrecording gage, and Oct. 5, 1934 to Nov. 22, 1978, water-stage recorder site 370 ft downstream and at datum 3.68 ft lower.

REMARKS.--Records fair except those for estimated daily discharges, which are poor.

EXTREMES FOR CURRENT YEAR--Peak discharges greater than base discharge of 1,300 ft 3/s and maximum (*).

			Discharge	Gag	ge height					Discharge	. (Gage height
Date		Time	(ft 3/s)		(ft)		Date	:	Time	(ft ³ /s)		(ft)
May 2		1100	1470		9.28		July 4	4	1730	*3930		*11.38
		DISCHAF	RGE, CUBIC	FEET PE	R SECON	D, WATER	YEAR OO	CTOBER 1	992 TO SEI	TEMBER 19	93	
					DAI	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	56	60	e57	e33	e29	e19	e165	629	333	79	298	68
2	53	103	e54	e33	e29	e19	e140	1310	264	173	228	
3	50	190	e52	e32	e29	e20	e120	1060	219	155	223	
4	47	169	e50	e32	e29	e20	e110	795	196	2860	191	e59
5	44	133	e48	e32	e28	e20	e105	633	167	2630	187	
6	44	105	e46	e32	e28	e21	e100	516	166	1310	280	e57
7	44	98	e44	e32	e27	e21	e120	425	204	760	244	
8	48	94	e43	e31	e26	e22	e160	394	299	642	178	e56
9	117	94	e42	e31	e25	e22	e250	540	430	645	201	e61
10	196	111	e42	e31	e25	e22	e450	535	367	734	204	
11	168	135	e41	e31	e24	e23	- 400	501	325	631	164	e 67
12	135	143	e40				e420	394	301	495	133	e65
				e31	e23	e22	e380					
13	113	128	e40	e31	e23	e22	e360	312	296	338	122	
14	107	108	e39	e30	e22	e22	376	262	433	275	105	e66
15	100	92	e39	e30	e22	e22	378	227	324	221	97	e72
16	91	93	e38	e30	e21	e22	365	203	262	203	94	
17	82	96	e38	e30	e21	e22	368	184	291	292	83	e64
18	74	95	e38	e30	e21	e22	429	168	270	275	75	e60
19	68	91	e37	e30	e20	e22	490	156	217	217	71	e56
20	71	91	e37	e30	e20	e22	473	144	252	173	65	e54
21	72	97	e36	e30	e20	e22	458	135	232	144	59	e56
22	77	94	e36	e30	e20	e22	467	126	180	120	56	e60
23	84	92	e36	e30	e20	e22	487	123	147	102	125	e56
24	86	90	e35	e30	e19	e23	888	290	146	94	133	e52
25	84	87	e35	e30	e19	e24	1100	340	156	280	106	e50
26	77	e80	e35	e30	e19	e25	794	265	144	399	81	e47
27	72	e75	e34	e3 0		e32	603	300	118	300	130	44
28	70	e70	e34	e30	e19 e19	e32 e41	938	379	104	407	110	45
29	66	e65	e33	e30			891	298	96	441	84	47
29 30		e60				e65			90 89	334	87	47
	61	600	e33	e30		e160	725	328			85	47
31	60		e33	e30		e170		432		363	83	
TOTAL	2517	3039	1245	952	647	1033	13110	12404	7028	16092	4299	1745
MEAN	81.2	101	40.2	30.7	23.1	33.3	437	400	234	519	139	58.2
MAX	196	190	57	33	29	170	1100	1310	433	2860	298	72
MIN	44	60	33	30	19	19	100	123	89	7 9	56	44
AC-FT	4990	6030	2470	1890	1280	2050	26000	24600	13940	31920	8530	3460
CFSM	.58	.72	.29	.22	.17	.24	3.12	2.86	1.67	3.71	.99	.42
IN.	.67	.81	.33	.25	.17	.27	3.48	3.30	1.87	4.28	1.14	.46


e Estimated.

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued

SIMID.	IIC2 OF W	MONTHE.	I MEVIL D	AIA FOR	WAIEKI	LAKO 1940	- 1993, 191	I MWITH I	PATE (M	1)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	150	135	53.1	29.9	22.2	63.2	544	486	239	110	86.0	122
MAX	558	504	180	65.5	56.0	602	1083	1801	615	519	665	735
(WY)	1983	1933	1971	1969	1984	1945	1976	1950	1943	1993	1972	1977
MIN	7.01	5.20	.51	.036	.000	5.73	138	77.6	31.0	7.52	2.71	3.35
(WY)	1977	1977	1977	1977	1977	1940	1977	1977	1988	1934	1934	1976
SUMMA	ARY STAT	TISTICS	FOR 1992 (CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER YE	ARS 192	28 - 1993
ANNIIA	L TOTAL			58759			64111					
	L MEAN			161			176			170		
_	T ANNU	AI MEAN	ī	.01			1.0			335		1972
	T ANNUA									81.6		1963
	T DAILY			2050	Apr 21		2860	Jul 4		6860	Mav	2 1972
	T DAILY			23	Aug 23			b 24 to Mar 2	;	.00 <u>a</u>		14 1977
ANNUA	LSEVEN	-DAY MI	NIMUM	26	Aug 18		19	Feb 24		.00		14 1977
INSTAN	TANEOU	S PEAK I	LOW				3930	Jul 4		10000b	Sep	24 1977
INSTAN	TANEOU	S PEAK S	TAGE				11.38	Jul 4		11.06c	Apr	12 1965
ANNUA	LRUNOF	F (AC-FT	")	116500			127200			122900	•	
ANNUA	LRUNOF	F (CFSM))	1.15			1.25			1.21		
ANNUA	L RUNOF	F (INCHÉ	ES)	15.61			17.04			16.46		
10 PERC	ENT EXC	CEEDS	-	379			427			430		
50 PERC	ENT EXC	CEEDS		71			83			55		
90 PERC	ENT EXC	EEDS		36			22			15		

a Occurred Jan 14 to Mar 2, 1977.

c From floodmark, site and datum in use (backwater from ice).

b From rating curve extended above 4200 ft³/s on basis of slope-area measurement of peak flow.

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued (National stream-quality accounting network station)

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1968 to current year (discontinued). REMARKS.--Letter K indicates non-ideal colony count.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT 27 FEB	1115	72	80	78	7.8	7.7	3.0	1.6	742	12.8
02	0900	26	120	105	7.7	7.6	2.0	2.1	748	13.5
APR 27 JUL	1445	559	45	47	7.2	7.0	5.0	2.0	742	12.4
20	1745	166	70	69	7.6	7.5	21.0	0.50	745	7.1
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	
OCT 27	K2	42	9.7	3.2	2.4	0.30	31	32	0	38
FEB 02	K61	K31	12	3.8	3.6	0.30	41	43	0	51
APR 27	K4	K21	5.4	1.8	1.7	0.40	12	16	0	15
JUL 20	K11	330	9.5	2.8	2.3	0.20	28	31	0	34
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA	ORGANIC	PHOS-,
ОСТ			0.00	0.6	~*	0.010	0.000	0.040	0.50	0.000
27 FEB	2.5	2.4	0.20	9.6	65	<0.010	0.080	0.040	0.50	0.020
02 AP R	4.4	3.0	0.20	14	87	0.010	0.330	0.080	0.40	0.010
27 JUL	3.2	1.4	0.10	8.2	64	<0.010	0.210	0.050	0.60	0.040
20	2.0	1.5	0.20	9.4	80	<0.010	< 0.050	0.060	0.60	<0.010

04014500 BAPTISM RIVER NEAR BEAVER BAY, MN--Continued

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT 27 FEB	<0.010	<0.010	1	100	70	4	<3	370
02	0.010	<0.010	3	73	60	4	<3	450
APR 27	<0.010	<0.010	3	87	120	3	<3	200
JUL 20	<0.010	<0.010	3	92	100	4	<3	400
DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)
OCT 27	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)
OCT 27 FEB 02	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)
OCT 27 FEB	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)

04015330 KNIFE RIVER NEAR TWO HARBORS, MN

LOCATION.--Lat 46°56'49", long 91°47'32", in SW¹/4NW¹/4 sec.31, T.52 N., R.11 W., Lake County, Hydrologic Unit 04010102, on right bank 600 ft downstream from bridge on U.S. Highway 61, 0.5 mi upstream from bridge on County Highway 102, in town of Knife River, 0.8 mi upstream from Lake Superior, and 7.8 mi southwest of Two Harbors.

Discharge

Gage height

DRAINAGE AREA.--85.6 mi².

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1970-71, July 1974 to current year.

GAGE .-- Water-stage recorder and crest-stage gage. Elevation of gage is 640 ft above sea level from topographic map.

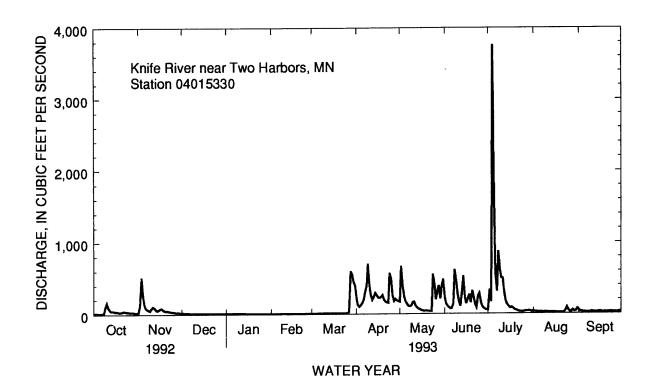
REMARKS.--Records fair except those for estimated daily discharges, which are poor.

Discharge

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft³/s and maximum (*):

Gage height

			Dischar	ge U	age neight					Discharg	50 (age neight
Date		Time	(ft³/s))	(ft)		Date	е	Time	(ft³/s)		(ft)
Apr. 24	4	1330	890		5.59		June	8	0630	911		5.62
May 2		0700	820		5.49		June		2100	946		5.67
May 24		1245	869		5.56		July		0415	*4580		*9.53
May 30		2000	834		5.51		July		0900	1170		5.99
1724) 50	•			C PEPT D		ID MARRIE	-					3.77
		DISCHAI	RGE, CUBI	CFEETP					992 TO SE	PTEMBER 1	993	
							I VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	23	e20	e11	e9.4	e8.0	e240	168	232	54	32	42
2	15	120	e19	e11	e9.4	e8.2	e130	664	145	337	26	29
3	15	513	e17	e10	e9.4	e8.6	e100	390	105	169	24	25
4	14	288	e16	e10	e9.4	e9.2	e120	233	87	3760	22	22
5	14	142	e15	e10	e9.2	e9.6	e150	171	68	1600	22	19
6	14	91	e15	e10	e9.2	e10	e200	134	73	562	22	17
7	15	69	e14	e10	e9.0	e12	e300	109	138	314	20	17
8	21	60	e14	e10	e8.8	el3	e400	106	615	873	18	17
9	95	54	e13	e10	e8.6	e14	e700	115	459	621	19	22
10	160	80	e13	e10	e8.6	el4	e400	161	281	506	23	25
11	99	105	e13	e10	e8.4	e14	e270	168	159	496	18	21
12	67	90	e13	e10	e8.4	e14	e200	111	105	310	16	19
13	50	71	e12	e10	e8.4	e14	229	83	315	172	16	18
14	46	52	e12	e10	e8.4	e13	293	70	526	131	16	23
15	42	61	e12	e9.8	e8.4	e12	259	60	231	99	16	27
16	38	74	e12	e9.8	e8.2	e11	230	49	142	79	15	24
17	38	82	e12	e9.8	e8.2	e11	221	43	207	86	13	22
18	35	70	e12	e9.8	e8.2	e10	236	40	270	75	12	21
19	31	54	e12	e9.8	e8.0	e10	261	44	152	58	12	19
20	32	50	e12	e9.8	e8.0	e10	204	40	324	45	12	18
21	39	e47	e12	e9.8	e8.0	e10	172	39	238	38	10	20
22	41	e42	e11	e9.6	e8.0	e10	158	36	125	31	11	23
23	39	e39	el1	e9.6	e8.0	e10	152	35	88	25	46	24
24	36	e36	el1	e9.6	e8.0	e11	573	553	246	24	86	23
25	33	e33	el1	e9.6	e8.0	e13	493	412	282	24	41	21
26	31	e30	e11	e9.6	e8.0	e16	264	199	157	31	26	19
27	31	e27	ell	e9.6	e8.0	e30	178	312	101	36	27	18
28	28	e25	e11	e9.4	e8.0	e600	206	392	76	34	46	19
29	25	e24	e11	e9.4		e550	186	205	62	37	31	26
30	22	e22	e11	e9.4		e450	175	385	54	32	34	27
31	23		e11	e9.4		e400		482		26	67	
TOTAL	1204	2474	400	305.8	237.6	2325.6	7700	6009	6063	10685	799	667
MEAN	38.8	82.5	12.9	9.86	8.49	75.0	257	194	202	345	25.8	22.2
MAX	160	513	20	11	9.4	600	700	664	615	3760	86	42
MIN	14	22	11	9.4	8.0	8.0	100	35	54	24	10	17
AC-FT	2390	4910	793	607	471	4610	15270	11920	12030	21190	1580	1320
CFSM.	45	.96	.15	.12	.10	.88	3.00	2.26	2.36	4.03	.30	.26
IN.	.52	1.08	.17	.13	.10	1.01	3.35	2.61	2.63	4.64	.35	.29
										1		


e Estimated.

04015330 KNIFE RIVER NEAR TWO HARBORS, MN--Continued

STATIS'	TICS OF	MONTHL	Y MEAN I	DATA FOR	WATER Y	EARS 1974	- 1993, B	Y WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	86.6	72.3	21.2	11.2	9.00	53.0	370	170	91.3	86.1	34.4	86.5
MAX	226	198	60.6	31.4	22.2	136	631	427	240	345	163	314
(WY)	1983	1992	1983	1975	1984	1976	1982	1979	1984	1993	1988	1977
MIN	3.06	1.58	.000	.000	.000	8.65	73.6	16.0	15.5	4.87	2.95	1.43
(WY)	1977	1977	1977	1977	1977	1980	1977	1976	1988	1988	1976	1976
SUMMA	ARY STA	TISTICS	FOR 1992	CALENDA	R YEAR	FOR	1993 WA7	ER YEAR		WATER Y	EARS 19	74 - 1993
ANNUA	L TOTAI			36249.6			38870.0					
	L MEAN			99.0			106			91.6		
HIGHES	T ANNU	AL MEAN	V							147		1986
LOWES	T ANNU	AL MEAN	Į							44.2		1977
	T DAILY			2310	Apr 21		3760	Jul 4		4480	May	10 1979
LOWES	T DAILY	MEAN		4.7	Aug 20		8.0 <u>a</u>			.00 <u>b</u>		
		I-DAY MI	NIMUM	5.9	Aug 18		8.0	Feb 19		.00		c 2 1976
INSTAN	TANEOU	JS PEAK	FLOW		Ū		4580	Jul 4		7440		10 1979
INSTAN	TANEOU	JS PEAK	STAGE				9.53	Jul 4		11.16	May	10 1979
ANNUA	L RUNO	FF (AC-F	Γ)	71900			77100			66340		
		FF (CFSM		1.16			1.24			1.07		
ANNUA	L RUNO	FF (INCH	ĖS)	15.75			16.89			14.53		
	CENT EX		•	214			284			229		
50 PERC	ENT EX	CEEDS		28			26			22		
90 PERC	CENT EX	CEEDS		12			9.5			4.2		

a Feb. 19 to Mar. 1.

b Many days in water year 1977.

04015410 MILLER CREEK NEAR MOUTH AT DULUTH, MN

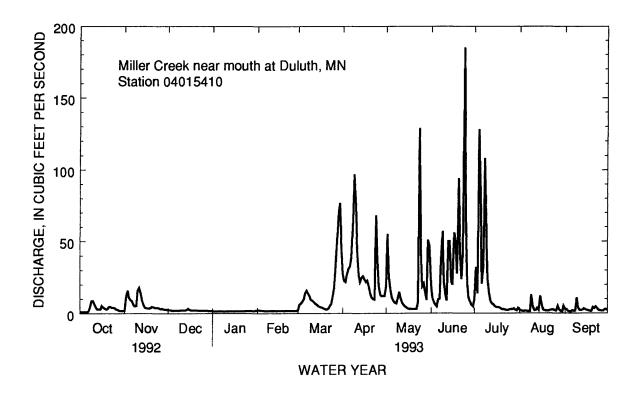
LOCATION.--Lat 46°45'41", long 92°07'45", in NW1/4NW1/4 sec. 4, T. 49 N., R. 14 W., St. Louis County, Hydrologic Unit 04010201, on right bank 150 ft south of intersection of West Michigan St. and 26th Ave., 0.5 mi upstream from mouth at Duluth.

DRAINAGE AREA.--

PERIOD OF RECORD.--October 1992 to September 1993.

GAGE .-- Water-stage recorder. Datum of gage not determined.

REMARKS.--Records good except those for estimated periods, which are poor.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1.4 1.2	2.0 12	2.5 2.4	1.6 1.6	e2.0 e2.2	e2.4	28 23	19 55	20 11	9.3 32	2.5 1.8	2.9 3.0
3	1.2	16	2.4 2.2	e1.6	e2.2 e2.1	e6.0 e7.0	23 22	25	7.6	32 14	1.6	1.6
4	1.1	11	2.1	e1.6	e2.0	e8.0	27	16	6.0	128	1.5	1.3
5	1.1	9.5	e2.1	e1.6	e1.9	e10	31	11	4.7	84	1.7	1.2
6	1.0	e8.8	e2.1	1.6	e1.8	e14	33	8.7	9.6	21	1.6	2.0
7	1.7	5.9	e2.1	e1.6	e1.8	e16	39	7.4	10	32	1.4	1.5
8	5.1	5.2	e2.1	e1.6	e1.8	e14	65	7.0	37	108	1.3	1.7
9 10	8.8 8.6	5.5 16	e2.1 e2.2	e1.6 e1.6	e1.8 e1.8	e12 e9.7	97 75	10 15	57 22	57 24	13 4.4	11 3.7
11	6.5	18	e2.2	e1.6	e1.8	e9.0	44	11	13	14	2.1	2.3
12	4.3	14	e2.2	e1.6	e1.8	e8.0	27	7.5	8.9	8.7	1.9	2.2
13	3.0	9.4	2.2	e1.6	e1.8	e7.0	22	5.8	50	6.8	3.6	2.5
14	3.0	6.0	2.4	e1.6	e1.8	e6.2	25	4.9	50	6.3	2.2	3.4
15	3.0	4.2	3.4	e1.6	e1.8	e5.4	26	4.0	22	4.9	12	2.7
16	5.5	3.8	2.7	e1.6	e1.8	e4.8	24	3.3	20	4.3	6.8	2.3
17	4.2	3.6	e2.3	e1.6	e1.8	e4.3	22	2.9	56	4.2	2.5	1.9
18 19	3.5 2.9	3.5 3.7	e2.3 e2.2	e1.6 1.6	e1.8	e3.9 e3.4	23 19	3.1 3.0	49 28	4.0 3.4	1.9 1.7	1.5 1.5
20	3.2	3.1 4.7	e2.2 e2.2	1.6	e1.8 e1.8	e3.4 e3.0	19	2.9	26 94	2.7	1.7	4.3
20	3.2	4.7	62.2	1.0	61.6	65.0	14	2.9	77	2.7	1.,	7.5
21	4.6	4.4	e2.2	e1.6	e1.8	e2.6	11	3.0	43	3.0	1.8	3.6
22	4.6	4.0	e2.1	e1.6	e1.8	e3.3	10	2.9	24	2.5	2.3	4.6
23	4.0	3.9	e2.1	e1.6	e1.8	e5.0	9.7	7.8	41	2.2	2.5	3.6
24	3.9	4.1	e2.0	e1.7	e1.8	e6.6	68	129	185	2.2	2.8	2.3
25	3.7	3.6	e2.0	e1.7	e1.8	e11	37	43	68	2.7	2.0	1.9
26	2.9	3.1	2.0	e1.7	e1.8	e18	19	19	21	2.9	1.7	1.7
27	2.6	3.3	2.0	e1.7	e1.8	e30	13	21	11	2.6	5.2	1.8
28	2.1	3.0	1.9	e1.7	el.8	e50	12	15	8.0	3.3	2.7	2.6
29	1.8	2.8	1.8	1.7		e70	12	9.4	5.9	2.5	1.6	2.9
30	1.7	2.6	1.8	e1.7		77	12	51	5.0	2.0	1.2	2.3
31	1.7		1.8	e1.9		45		47		3.6	5.1	
TOTAL	103.9	197.6	67.7	50.6	51.6	472.6	889.7	570.6	987.7	598.1	96.1	81.8
MEAN	3.35	6.59	2.18	1.63	1.84	15.2	29.7	18.4	32.9	19.3	3.10	2.73
MAX	8.8	18	3.4	1.9	2.2	77	97	129	185	128	13	11
MIN	10	2.0	1.8	1.6	1.8	2.4	9.7	2.9	4.7	2.0	1.2	1.2
AC-FT	206	392	134	100	102	937	1760	1130	1960	1190	191	162

e Estimated.

04015410 MILLER CREEK NEAR MOUTH AT DULUTH, MN--Continued

SUMMARY STATISTICS	FOR 1993 WATE	R YEAR	WATER YEARS	S 1992 - 1993
ANNUAL TOTAL	4168.0			
ANNUAL MEAN	11.4			
HIGHEST DAILY MEAN	185	Jun 24		
LOWEST DAILY MEAN	1.0	Oct 6		
ANNUAL SEVEN-DAY MIN	MUM 1.2	Oct 1		
INSTANTANEOUS PEAK FL	OW 239	Jun 24	239	Jun 24 1993
INSTANTANEOUS PEAK ST	AGE 3.06	Jun 24	3.06	Jun 24 1993
INSTANTANEOUS LOW FLO	OW .96	Oct 5	.96	Oct 5 1992
ANNUAL RUNOFF (AC-FT)	8270			
10 PERCENT EXCEEDS	29			
50 PERCENT EXCEEDS	3.4			
90 PERCENT EXCEEDS1.6				

04024000 ST. LOUIS RIVER AT SCANLON, MN

LOCATION.--Lat 46°42'12", long 92°25'07", in NW¹/4 sec.30, T.49 N., R.16 W., Carlton County, Hydrologic Unit 04010201, on right bank 25 ft downstream from lower bridge on U.S. Highway 61 at Scanlon, 0.6 mi downstream from Minnesota Power Co. powerplant, 3 mi upstream from Thomson Reservoir, and 3.2 mi upstream from Midway River.

DRAINAGE AREA .-- 3,430 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD,--January 1908 to current year. Monthly discharge only for some periods published in WSP 1307. Published as "near Thomson" 1908-50.

REVISED RECORDS .-- WSP 1337: 1911-12.

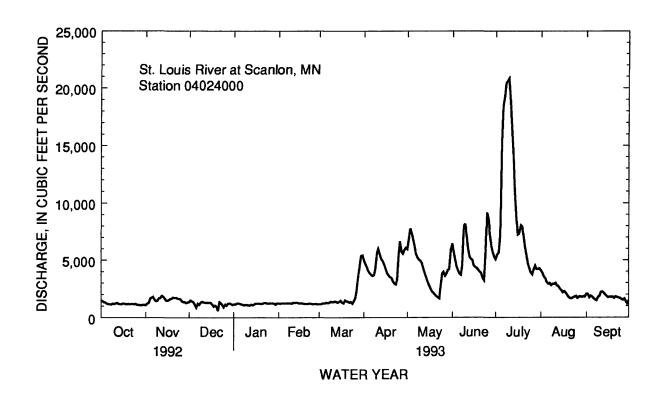
GAGE.--Water-stage recorder. Datum of gage is 1,101.23 ft above sea level. Oct. 5, 1909, to Sept. 5, 1914, nonrecording gage 3 mi downstream and 50 ft below powerplant at datum about 420 ft lower. Sept. 6, 1914, to Aug. 4, 1953, powerplant record at Thomson hydroelectric plant.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diumal fluctuation caused by powerplant upstream. Flow regulated by Whiteface Reservoir and Boulder, Island, Rice and Fish Lakes, combined capacity, 332,160 acre-ft; the water-discharge table shows the monthly change in contents (+).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					D.	AILY MEA	N VALUE	ES				
DAY	OCT	r no	V DE	C JA	N FEB	MAR	APR	MA	Y JU	N JUI	L AUG	SEP
1	1490					1170	5010					
2	1420		149	0 e11:		1160	4710			0 5460		
3	1340					1190	4400					
4	1290					1230	4110					
5	1220) 174	109	00 e120	00 1240	1230	3860	688	0 408	30 15300	3070	1780
6	1150					1300	3720					
7	1160		10 121			1270	3630					
8	1140					1310	3700					
9	1210					1370	4290					1770
10	1180	165	50 139	0 e110	00 1220	1360	5620	494	0 817	0 20800	2910	1840
11	1220					1340	5990					2200
12	1270					1400	5480	427				2240
13	1220					1350	5130					2130
14	1170					1280	4920					2000
15	1170	150	00 131	0 e114	1250	1390	4600	308	0 499	0 8540	2340	1860
16	1200					1470	4270					1750
17	1220	151	0 116	0 e120		1300	3860					
18	1160					1250	3680					1770
19	1150					1500	3510					1790
20	1190	173	0 96	4 e118	30 1190	1410	3470	200	0 397	0 7110	1760	1690
21	1160					1390	3170					1800
22	1180	170	0 135	0 127		1300	2950					1760
23	1180	165	0 126		0 1200	1350	2880					1720
24	1160					1210	3280					1690
25	1190	160	0 e92	0 122	0 1160	1410	5490	3830	917	0 3920	1840	1610
26	1110			0 123	0 1190	1690	6630					1520
27	1110					2330	5740					1630
28	1080	134	0 e120	0 123		3550	5580					1400
29	1080					4520	5870					1210
30	1090					5360	6070					1450
31	1090	-	e110	0 124	0	5420		5890)	- 4270	e1800	
TOTAL	37000	4638	0 3662	4 3650	0 34240	55810	135620	130160	16244	0 294250	75510	52850
MEAN	1194				7 1223	1800	4521	4199	541:	5 9492	2436	1762
MAX	1490			0 127		5420	6630	7760	917	0 20800	4110	2240
MIN	1080	107	0 594		0 1160	1160	2880	1670			1650	1210
+	-48.9	-22	8 -420	0 -46	1 -634	-609	1260	469				-416
MEAN‡	1145	131	8 76:			1191	5781	5168			2407	1346
CFSM‡	.33	.3	8 .22	2 .2	1 .17	.35	1.69	1.5				.39
IN‡	.38	.4	2 .25	5 .2	4 .18	.40	1.89	1.74			.81	.44
CAL YR	'92 T	TOTAL	952907 MI	EAN 2604	MAX 12100	MIN 594	MEAN‡	2566 C	FSM‡ .75	IN‡ 10.16		
WTR YR	'93 T	TOTAL 1	097 <mark>384 M</mark> I	EAN 3007	MAX 20800	MIN 594	MEAN‡	2984 CI	FSM‡ .87	IN‡ 11.81		

⁺ change in contents, equivalent in cubic feet per second, in Whiteface Reservoir, and Boulder, Island, Rice and Fish Lakes; records furnished by Minnesota Power Co.


04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

STATIS	TICS OF	MONTHLY	MEAN I	DATA FOR	WATER	EARS 190	8 - 1993, B	Y WATER '	YEAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1967	1655	1247	1057	1041	1414	5543	5126	3580	2334	1668	1772
MAX	7508	8518	2993	2272	2200	6026	15230	22210	16480	9492	9197	7594
(WY)	1974	1972	1972	1966	1966	1945	1948	1950	1908	1993	1953	1928
MIN	407	473	282	265	249	301	667	593	458	199	377	402
(WY)	1935	1935	1911	1911	1924	1924	1977	1977	1988	1988	1977	1934
SUMMA	ARY STAT	TISTICS F	OR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 190	8 - 1993
ANNUA	L TOTAL			952907			1097384					
	L MEAN			2604			3007			2353		
HIGHES	T ANNU	AL MEAN								4276		1972
LOWES	T ANNUA	AL MEAN								945		1924
HIGHES	T DAILY	MEAN		12100	Jul 3		20800	Jul 10		37900	May	9 1950
LOWES	T DAILY	MEAN		594	Dec 21		594	Dec 21		88	Aug	24 1977
ANNUA	L SEVEN	I-DAY MIN	MUMIN	870	Aug 16		1030	Dec 19		134	Jul	26 1988
INSTAN	ITANEOU	IS PEAK F	LOW				21900	Jul 8		37900	May	9 1950
INSTAN	ITANEOU	IS PEAK S'	TAGE				10.93	Jul 8		15.80	May	9 1950
ANNUA	L RUNOI	FF (AC-FT))	1890000			2177000			1705000		
ANNUA	L RUNOI	FF (CFSM)		.76			.88			.69		
ANNUA	I. RUNOF	F (INCHE	S)	10.33			11.90			9.32		

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued (National stream-quality accounting network station)

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1958-66, 1968 to current year.

REMARKS.--Letter K indicates non-ideal colony count. Samples collected at cableway 0.75 mi downstream from gage.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT	1100	1070	400						F0.0	
26 DEC	1100	1270	192	190	8.2	7.9	8.0	3.7	732	11.3
16 FEB	1315	1190	185	190	7.6	7.7	0.0	3.0	728	13.1
01 APR	1200	1260		196	7.2	7.4	0.5	3.4	743	13.5
26	1245	7420	135	137	7.7	7.4	8.0	10	738	8.8
JUL 22	1445	5400	135	127	7.5	7.4	20.5	2.6	734	6.6
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	DIS IT FIELD MG/L AS	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
OCT 26	K2	68	18	10	5.3	1.2	69	74	0	84
DEC 16	K 7	K8	19	10	6.0	1.2	69	73	0	84
FEB 01 APR	К6	К 6	18	9.1	7.3	1.2	71	75	0	87
26 JUL	49	K520	15	6.8	4.1	1.2	47	51	0	57
22	K5	68	15	6.5	4.0	0.20	46	51	0	55
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA DIS- SOLVEI (MG/L AS SIO2) (00955)	AT 180 D DEG. C DIS- SOLVEI (MG/L)	E GEI O NITR C DIS SOLV D (MG	N, GF ITE NO2- S- DI VED SOL G/L (MG N) AS	IN, +NO3 AM S- VED S G/L N)	NITRO- GEN, MMONIA DIS- OLVED (MG/L AS N) 00608)	-
OCT 26 DEC	14	5.4	0.20	8.4	130	<0	.010	-	0.040	
16 FEB	13	5.6	0.20	10	126	0	.020).250	0.060	
01	12	7.3	0.20	10	135	0	.020	0.280	0.090	
APR 26	9.5	4.9	<0.10	7.1	112	<0	.010	0.092	0.030	
JUL 22	7.7	3.9	0.20	8.1	133	<0	.010 0	0.079	0.040	

04024000 ST. LOUIS RIVER AT SCANLON, MN--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)
OCT 26	0.60	0.040	0.020	<0.010	4	97	50	12	⊲
DEC 16	0.60	0.030	0.020	0.010	3	100			
FEB 01	0.50	0.030	<0.010	<0.010	5	92	40	11	⊲
APR 26	0.80	0.060	0.010	<0.010	30	96	70	12	<3
JUL 22	1.1	0.040	0.030	<0.010	15	99	70	16	⊲
	mov:	LITHIUM	MANGA- NESE.	MOLYB- DENUM,	MOVE	SELE- NIUM.	SILVER,	STRON- TIUM,	VANA- DIUM,
DATE	IRON, DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS LI) (01130)	DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS V) (01085)
OCT 26	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS LI)	DIS- SOLVED (UG/L AS MN)	DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	DIS- SOLVED (UG/L AS SR)	DIS- SOLVED (UG/L AS V)
OCT 26 DEC 16	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS LI) (01130)	DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS V) (01085)
OCT 26 DEC 16 FEB 01	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS LI) (01130)	DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS V) (01085)
OCT 26 DEC 16 FEB	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS LI) (01130)	DIS- SOLVED (UG/L AS MN) (01056)	DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	DIS- SOLVED (UG/L AS SR) (01080)	DIS- SOLVED (UG/L AS V) (01085)

04024098 DEER CREEK NEAR HOLYOKE, MN

LOCATION.--Lat 46°31'30", long 92°23'20", in NE¹/4SE¹/4 sec.29, T.47 N., R.16 W., Carlton County, Hydrologic Unit 04010301, on left bank 179 ft west of State Highway No. 23, 0.9 mi upstream from mouth and 4.0 mi north of Holyoke.

DRAINAGE AREA. -- 7.77 mi².

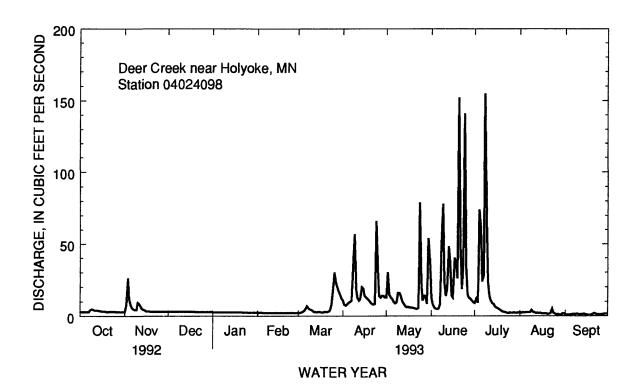
PERIOD OF RECORD.--October 1976 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 786.14 ft above mean sea level.

REMARKS.--Records fair except those for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	2.9 2.9	3.0 7.9	e3.2 e3.2	e2.8 e2.8	e2.4 e2.4	e2.2 e2.3	11 8.0	13 30	13 8.2	9.1 12	2.7 2.2	1.1 .87
3	2.9	26	e3.2	e2.8	e2.4	e2.5	7.4	15	6.0	9.5	2.6	.95
4 5	2.9 2.9	12 7.7	e3.2	e2.8	e2.4	e2.9	8.3	13 12	5.1 4.9	74 61	2.4 2.7	.86 1.2
_	2.9	1.1	e3.2	e2.8	e2.3	e3.5	9.5	12	4.9	61	2.1	1.2
6	2.9	5.7	e3.2	e2.8	e2.3	e5.0	10	9.9	5.2	24	2.8	1.4
7	2.9	4.8	e3.2	e2.8	e2.3	e7.0	11	8.9	8.0	28	2.6	1.4
8 9	4.3 5.0	4.4 4.5	e3.2 e3.2	e2.7	e2.3	e5.8	39 57	9.7 16	50 78	155 67	2.6 4.2	1.3 1.5
10	4.8	4.3 9.4	e3.2	e2.7 e2.7	e2.3 e2.3	e4.8 4.4	19	16	24	24	2.9	1.3
10	4.0	2.4	03.2	02.7	02.5	4.4	17	10		٥.	2.,	
11	4.0	8.4	e3.2	e2.7	e2.3	3.8	13	14	14	14	2.4	1.2
12	4.1	6.5	e3.2	e2.7	e2.3	3.0	11	10	19	11	2.1	1.4
13	3.9	5.1	e3.2	e2.7	e2.2	3.0	12	8.4	48	8.9	2.2	1.4
14	3.7	4.4	3.2	e2.6	e2.2	2.7	20	7.0	37	8.5	1.9	1.5
15	3.5	e3.9	3.2	e2.6	e2.2	2.9	19	6.2	14	6.4	2.2	1.2
16	3.4	e3.4	3.2	e2.6	e2.2	3.0	14	6.4	13	5.8	1.8	.85
17	3.4	e3.3	3.1	e2.6	e2.2	2.6	13	6.0	40	5.4	1.7	.78
18	3.3	e3.3	e3.1	e2.6	e2.2	2.5	12	5.9	37	4.5	1.8	.72
19	3.1	e3.2	e3.1	e2.6	e2.2	2.9	11	5.7	26	3.7 3.2	1.8 1.4	.94 1.5
20	3.0	e3.2	e3.0	e2.6	e2.2	2.9	9.6	5.6	152	3.2	1.4	1.3
21	3.2	e3.2	e3.0	e2.6	e2.2	2.9	8.4	5.3	49	3.0	1.5	2.0
22	3.2	e3.2	e3.0	e2.5	e2.2	3.1	8.1	5.0	19	2.7	1.9	1.4
23	3.1	e3.2	e3.0	e2.5	e2.2	3.9	8.4	5.8	37	2.3	5.2	1.2
24	3.2	e3.2	e3.0	e2.5	e2.2	e8.0	66	79	141	2.1	2.2	1.1
25	3.1	e3.2	e3.0	e2.5	e2.2	e17	32	24	34	2.4	1.5	1.0
26	2.9	e3.2	e2.9	e2.5	e2.2	e30	14	11	15	2.3	1.2	1.2
27	2.9	e3.2	e2.9	e2.5	e2.2	e24	13	14	13	2.3	1.3	1.3
28	3.0	e3.2	e2.9	e2.4	e2.2	e20	14	14	12	2.4	.98	1.6
29 30	2.9 2.9	e3.2 e3.2	e2.9 e2.9	e2.4 e2.4		17 15	14 13	8.6 54	11 9.6	2.3 2.2	.77 1.8	1.5 1.5
31	3.0	e5.2 	e2.9 e2.9	e2.4 e2.4		12		38	9.0	2.4	1.6	1.5
31	5.0		62.9	62.4		12		30	-	2.4	1.,	
TOTAL		162.1	95.9	81.2	63.2	222.6	505.7	477.4	943.0	561.4	67.05	37.27
MEAN	3.33	5.40	3.09	2.62	2.26	7.18	16.9	15.4	31.4	18.1	2.16	1.24
MAX	5.0	26	3.2	2.8	2.4	30	66	79 5.0	152	155 2.1	5.2 .77	2.0 .72
MIN	2.9	3.0	2.9	2.4	2.2	2.2	7.4	5.0 947	4.9 1870	2.1 1110	133	.12 74
AC-FT	205	322	190 .40	161 .34	125 .29	442 .92	1000 2.17	1.98	4.05	2.33	.28	.16
CFSM IN.	.43 .49	.70 .78	.40 .46	.34	.29	.92 1.07	2.17	2.29	4.03	2.69	.32	.18
щ.	.49	./0	.40	.37	.30	1.07	4.44	4.47	4.JI	2.09	.52	.10


e Estimated.

04024098 DEER CREEK NEAR HOLYOKE, MN--Continued

OCT NOV	DEC JA	N FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 6.80 4.60 MAX 21.8 12.2 (WY) 1983 1983 MIN 1.69 1.59 (WY 1988 1977	2.49 1.9 3.86 2.9 1983 199 1.31 .9 1977 197	2 5.87 2 1981 7 1.06	8.46 19.2 1985 2.34 1986	23.3 90.8 1986 4.11 1977	11.1 24.3 1991 2.15 1980	8.52 31.4 1993 1.65 1982	7.33 22.3 1991 1.50 1988	5.10 36.9 1986 .89 1982	8.76 30.4 1986 1.24 1993
SUMMARY STATISTICS	FOR 1992 CALEN	DAR YEAR	FOI	R 1993 WA	TER YEAR		WATER YE	EARS 197	76 - 1993
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY M INSTANTANEOUS PEAK INSTANTANEOUS PEAK INSTANTANEOUS LOW I ANNUAL RUNOFF (AC-F ANNUAL RUNOFF (INCH 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	13 1 INIMUM 1 FLOW STAGE FLOW FLOW F) 488 I) .8	3 9 Jul 2 4 Jul 29 6 Jul 21 0 7 9 6 2		3320.02 9.10 155 .72 1.1 350 16.29 .72 6590 1.17 15.90 19 3.2 1.7	Jul 8 Sep 18 Sep 13 Jul 8 Jul 8 Sep 18		7.58 19.3 3.65 553 .21 .47 2000a 32.76b .20c 5490 .98 13.26 15 2.6 1.4	Ju Aug Ser Ser	1986 1980 5 6 1990 1 2 1976 10 1982 5 3 1985 5 3 1985 13 1982

a From rating curve extended above 1,000 ft³/s on basis of flow through culvert computations.

c Occurred Aug. 13, 16, 1982, July 12, 1989.

b From floodmark.

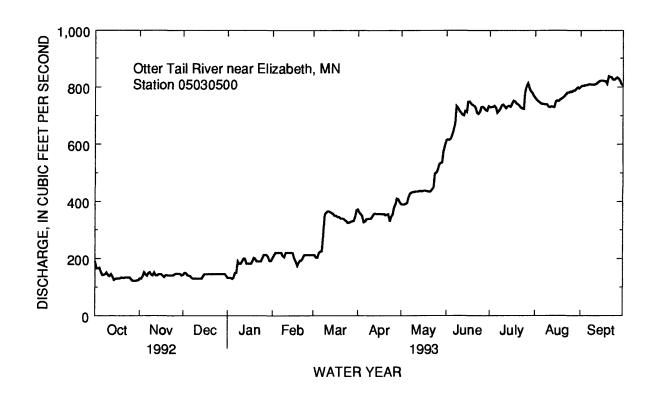
05030500 OTTER TAIL RIVER NEAR ELIZABETH, MN

LOCATION.--Lat 46°22'10", long 96°01'02", in SW1/4SE1/4 sec.31, T.134 N., R.42 W., Ottertail County, Hydrologic Unit 09020103, on right bank, 2.5 miles below Taplin Gorge Dam, 5.0 miles above the Diversion Dam, 5.7 miles east of Elizabeth and 6.6 miles northeast of Fergus Falls. DRAINAGE AREA.--1,230 mi², approximately.

PERIOD OF RECORD.--Nov. 1913 to September 1917, monthly discharge only, published as at German Church near Fergus Falls in WSP 1308. July 1992 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,250 ft above mean sea level, from topographic map. Nonrecording gage at same site Nov. 1913 to September 1917 at datum 1,265 ft from topographic map.

REMARKS.--Records good except those for estimated daily discharge, which are fair. Flow regulated by power plants upstream.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	ILY MEAN	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	190	129	e143	e132	e203	e212	372	391	614	730	762	801
2	165	130	e150	e132	e211	e212	362	389	616	730	755	804
3 4	165 167	140 152	e150	e132	e220	e203	355	390	615 620	731 734	751	804 806
5	154	132	e142 e140	e128 e132	e220 e220	e203 e220	349 326	392 395	632	734 727	746 743	806
,	134	144	6140	6132	e220	e220	320	393	032	121	743	800
6	142	139	e138	e150	e220	e223	330	416	648	711	741	808
7	143	150	e132	e150	e220	e225	337	426	672	717	741	809
8	145	152	e130	e190	e210	e280	338	431	733	724	740	808
9	151	143	e130	e182	e205	e354	338	432	726	736	740	808
10	142	141	e130	e182	e220	e360	340	433	717	738	732	808
11	138	151	e130	e190	e220	e365	347	434	711	732	730	810
12	145	141	e130	e200	e220	e365	356	434	704	726	733	813
13	138	141	e130	e200	e220	e362	357	435	701	733	731	817
14	125	145	e130	e182	e220	e360	356	436	716	734	730	821
15	128	145	e140	e182	e218	e355	356	435	713	731	749	822
16	129	145	e145	e182	e202	e350	356	436	748	743	753	822
17	129	139	e145	e182	e190	e350	356	437	749	752	752	821
18	130	135	e145	e188	e175	e345	355	436	741	749	756	819
19	133	141	e145	e202	e185	e345	356	435	737	743	760	812
20	132	142	e145	e200	e193	e340	352	434	734	740	763	837
21	132	141	e145	e190	e193	e340	354	434	728	735	768	835
22	133	141	e145	e190	e203	e338	355	439	710	728	774	834
23	133	141	e145	e190	e212	334	330	448	706	725	781	826
24	133	141	e145	e190	e212	330	345	497	714	724	781	825
25	133	144	e145	e202	e212	324	355	501	730	779	784	829
26	127	146	e145	e212	e212	325	378	510	731	804	783	833
27	122	146	e145	e212	e212	327	391	530	726	813	787	827
28	122	146	e145	e212	e212	330	410	534	719	796	787	819
29	122	146	e145	e205		332	407	536	717	786	793	810
30	123	141	e145	e192		345	397	574	733	780	798	805
31	124		e138	e192		369		596		771	795	
TOTAL	4295	4278	4358	5605	5860	9723	10716	14046	21061	23102	23539	24499
MEAN	139	143	141	181	209	314	357	453	702	745	759	817
MAX	190	152	150	212	220	369	410	596	749	813	798	837
MIN	122	129	130	128	175	203	326	389	614	711	730	801
AC-FT	8520	8490	8640	11120	11620	19290	21260	27860	41770	45820	46690	48590
CFSM	.11	.12	.11	.15	.17	.25	.29	.37	.57	.61	.62	.66
IN.	.13	.13	.13	.17	.18	.29	.32	.42	.64	.70	.71	.74

e Estimated.

05030500 OTTER TAIL RIVER NEAR ELIZABETH, MN--Continued

SUMMARY STATISTIC	FOR 199	3 WATER YEAR	WATER YEARS 1992 - 1993			
ANNUAL TOTAL	151082					
ANNUAL MEAN	414					
HIGHEST ANNUAL MEAN						
LOWEST ANNUAL MEAN						
HIGHEST DAILY MEAN	837	Sep 20	837	Sep 20 1993		
LOWEST DAILY MEAN	122	Oct 27-29	122	Oct 27-29 1992		
ANNUAL SEVEN-DAY MINIMUM	124	Oct 26				
INSTANTANEOUS PEAK FLOW	842	Sep 20	842	Sep 20 1993		
INSTANTANEOUS PEAK STAGE	8.10	Sep 20	8.10	Sep 20 1993		
ANNUAL RUNOFF (AC-FT)	299700	•		-		
ANNUAL RUNOFF (CFSM)	.34					
ANNUAL RUNOFF (INCHES)	4.57					
10 PERCENT EXCEEDS	789					
50 PERCENT EXCEEDS	350					
90 PERCENT EXCEEDS	138					

05045950 ORWELL LAKE NEAR FERGUS FALLS, MN

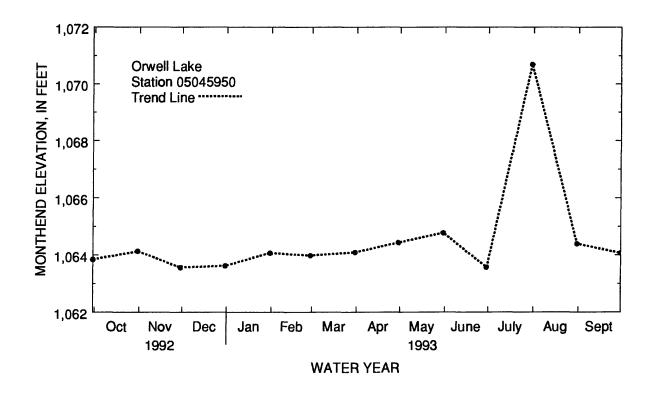
LOCATION.-Lat 46°12'55", long 96°10'40", in SW¹/4 sec.26, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, at dam on Otter Tail River at outlet of Orwell Lake, 7 mi southwest of Fergus Falls.

DRAINAGE AREA.--1,830 mi², approximately.

PERIOD OF RECORD.--March 1953 to current year. Prior to October 1971, published as Orwell Reservoir.

GAGE .-- Water-stage recorder. Datum of gage is in mean sea level, adjustment of 1912.

REMARKS.--Reservoir is formed by earth dam with concrete spillway with one taintor gate; storage began in March 1953. Capacity to elevation 1,070 ft (maximum operating stage) is 14,100 acre-ft of which 13,100 acre-ft is controlled storage above elevation 1,048 ft (minimum operating stage). Dead storage is 210 acre-ft. Figures given herein represent total contents. Reservoir is used for flood control and to increase low flow for water supply and pollution abatement.


COOPERATION.--Records were provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 16,920 acre-ft, June 17, 1962, May 23, 1966, elevation, 1,072.38 ft; minimum (after initial filling), 844 acre-ft, Aug. 26, 27, 1953, elevation, 1,046.96 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 14, 910 acre-ft, Aug. 1 elevation, 1,070.73 ft; minimum, 7,540 acre-ft, July 13, elevation, 1,062.98 ft.

MONTHEND ELEVATION AND CONTENTS, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

Date	Elevation (feet)	Contents (acre-feet)	Change in contents (acre-feet)
Sept. 30	1063.85	8190	
Oct. 31	1064.14	8420	+ 230
Nov. 30	1063.57	7980	-440
Dec. 31	1063.63	8020	+40
CAL YR 1992			-350
Jan. 31	1064.08	8370	+350
Feb. 28	1063.99	8290	-80
Mar. 31	1064.10	8380	+90
Apr. 30	1064.44	8670	+290
May 31	1064.78	8960	+290
June 30	1063.58	7980	-980
July 31	1070.70	14880	+6900
Aug. 31	1064.40	8640	-6240
Sept. 30	1064.07	8360	-280
WTR YR 1993			+170

05046000 OTTER TAIL RIVER BELOW ORWELL DAM, NEAR FERGUS FALLS, MN

LOCATION.--Lat 46°12'35", long 96°11'05", in NE¹/4 sec.34, T.132 N., R.44 W., Otter Tail County, Hydrologic Unit 09020103, on left bank 0.7 mi downstream from Orwell Dam, 6.1 mi downstream from Dayton Hollow Dam, 8 mi southwest of Fergus Falls, and 11.1 mi downstream from Pelican River.

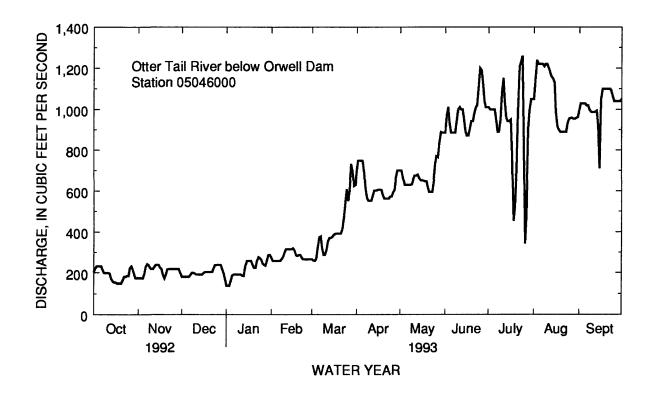
DRAINAGE AREA.--1,830 mi², approximately.

PERIOD OF RECORD.--October 1930 to current year. Prior to October 1952, published as Otter Tail River below Pelican River, near Fergus Falls. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 785: 1934(M). WSP 1208: 1947(M). WSP 1308: 1931(M).

GAGE.--Water-stage recorder. Datum of gage is 1,029.65 ft above sea level, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Oct. 11, 1930, to Nov. 17, 1933, at same site at datum 2.00 ft higher; Nov. 18, 1933, to Mar. 21, 1953, at site 6.1 mi upstream at datum 40.30 ft higher. REMARKS.--Records good. Flow regulated by Orwell Lake (station 05045950) beginning Mar. 21, 1953 and powerplants upstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993


					DA	ILY MEA	N VALUES	S				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	204	173	179	137	271	265	702	699	884	1010	1050	999
2	221	173	179	137	258	259	747	699	964	1000	1160	1030
3	231	173	179	137	258	258	747	661	1010	1000	1240	1030
4	231	173	179	164	258	269	747	629	937	1000	1220	1030
5	231	196	179	186	258	329	747	629	884	1000	1220	1030
6	231	228	179	191	258	373	687	629	884	955	1220	1020
7	215	242	189	191	258	377	609	629	884	890	1220	1020
8	198	237	198	191	266	323	564	629	884	890	1210	1000
9	198	224	198	191	277	287	551	633	952	948	1220	989
10	198	217	195	191	302	287	551	659	1000	1080	1220	988
11	198	217	191	191	316	310	551	675	1010	1150	1200	988
12	196	229	191	185	316	351	578	675	1000	1040	1180	988
13	172	237	191	185	316	370	601	680	1000	957	1160	993
14	160	237	191	233	316	370	601	664	956	942	1150	925
15	154	237	191	258	316	374	605	652	891	942	1130	712
16	154	225	197	258	319	383	606	652	871	949	987	1050
17	149	217	204	258	309	390	606	649	871	77 7	916	1100
18	149	191	204	258	285	391	604	646	909	453	902	1100
19	149	173	204	238	283	391	576	646	942	523	890	1100
20	149	188	204	224	287	391	562	617	942	702	890	1100
21	166	215	204	224	287	391	562	595	980	988	890	1100
22	179	217	204	256	274	416	562	595	1010	1210	890	1100
23	179	217	220	276	265	465	562	596	1020	1230	890	1090
24	185	217	237	272	265	545	572	638	1120	1260	932	1060
25	185	217	237	264	265	607	573	731	1200	924	955	1040
26	222	217	237	245	265	551	592	769	1190	344	958	1040
27	231	217	237	237	265	603	606	765	1130	473	960	1040
28	217	217	237	234	265	731	662	833	1040	903	955	1040
29	190	217	216	264		693	699	888	1010	994	955	1040
30	173	197	198	287		625	699	884	1010	1050	960	1050
31	173		165	287		630		884		1050	962	
TOTAL	5888	6335	6214	6850	7878	13005	18631	21230	29385	28634	32692	30792
MEAN	190	211	200	221	281	420	621	685	979	924	1055	1026
MAX	231	242	237	287	319	731	747	888	1200	1260	1240	1100
MIN	149	173	165	137	258	258	551	595	871	344	890	712
AC-FT	11680	12570	12330	13590	15630	25800	36950	42110	58290	56800	64840	61080
CFSM	.10	.12	.11	.12	.15	.23	.34	.37	.54	.50	.58	.56

e Estimated.

RED RIVER OF THE NORTH BASIN 05046000 OTTER TAIL RIVER BELOW ORWELL DAM, NEAR FERGUS FALLS, MN--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1931 - 1993, BY WATER YEAR (WY)												
	OCT	NOV	DEC	JAN	FE B	MAR	APR	MAY	JUN	JUL	AUG	SEP
) (T) () (222	000	222	214	016	007	450	550	~~1	400	070	200
MEAN	223	233	222	214	216	297	453	553	551	403	273	233
MAX	817	831	706	603	605	653	1051	1427	1425	1246	1080	1026
(WY)	1986	1986	1987	1986	1987	1987	1986	1986	1986	1953	1985	1993
MIN	9.15	8.42	8.10	15.1	10.8	23.5	39.5	14.1	14.2	12.8	11.5	7.99
(WY)	1977	1977	1977	1937	1935	1937	1934	1977	19 34	1936	1934	1934
SUMMA	RY STAT	IISTICS	FOR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 193	1 - 1993
A NINITI A	L TOTAL			109503			207534					
	L TOTAL L MEAN	•		299			207334 569			323		
		AT MEAN	т	299		·	309					100
		AL MEAN AL MEAN								842 20.4		1986 1934
				£71	M 7		1000	T-1 04			T	
	T DAILY T DAILY			571 149	Mar 7 Oct 17		1260 137	Jul 24 Jan 1-3		1670 1.6		1 20 1953 b 7 1937
		MEAN -DAY MT	NITS AT TRA	152	Oct 14		152	Oct 14		5.9		
		IS PEAK I		132	OCI 14			Jul 24,25		1710		p 15 1934 n 17 1953
								•				
		S PEAK S					4.34	Jul 25		5.60 <u>a</u>		17 1953
		IS LOW F		217200			137 <u>b</u>	Dec 31		.70 <u>c</u>	Au	g 5 1970
		T (AC-FT		217200			411600			233900		
		F (CFSM))	.16			.31			.18		
	ENT EXC			434			1040			701		
	ENT EXC			278			551			250		
90 PERC	ENT EXC	EED2		189			190			30		

c Result of regulation.

a Backwater from aquatic vegetation.
b Occurred part or all of each day Dec 31 - Jan 4.

05046000 OTTER TAIL RIVER BL ORWELL DAM NR FERGUS FALLS, MN--Continued (National Water Quality Assessment Station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	CON- DUCT- ANCE (LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPE ATUR WATE (DEG 0	E (MM R OF C) HG)	OXYGEN, DIS- SOLVED (MG/L) (00300)
FEB	1.400	979	400	400	~ 0		•	•	710	
08 APR	1420	272	490	489	7.8	8.0	-5.0	2.0	740	14.2
01	1330	747	439	452	8.2	7.9	3.0	4.0	739	13.8
26	1500	606	432	444	8.6	8.1	15.5	10.0	736	11.5
MAY										
11 JUN	1245	675	420	436	8.5	8.1	22.0	13.0	742	11.2
07	1430	884	435	437	8.4	8.1	12.5	16.0	725	9.2
29 JUL	1500	1010	420		8.4		18.5	19.5	724	6.0
19	1300	711	395	415		7.9	17.5	20.5	739	8.7
AUG	1500	,11	373	415		1.7	17.5	20.5	137	0.7
05	0745	1210	406	422	8.1	8.0	15.0	21.0	736	3.5
19	1300	890	402	422	8.3	8.0	19.5	21.5	735	3.8
DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	WATER DIS IT	E BONA DIS FIEI S MG/L CO	ATE LIP TER WA IT TO LD FIL LAS MG 3 CA	.KA- NITY T DIS VT IT ELD /L AS .CO3 086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
FEB 08 APR	41	32	11	5.1	271	0) 22	2		17
01	38	28	10	5.3	244	0	20	0	202	21
26	41	28	8.7	4.5	207	6			199	24
MAY	71	20	0.7	4.3	201	·	, 10	·	177	4 T
MA 1 11	39	28	8.7	4.8	229	3	19	2	201	20
JUN	27	20	J. 1	7.0	227	,	1,7	-	201	20
07	39	29	8.6	4.5	227	5	19	n	195	23
2 9					237	2				
JUL										
19								· -	194	18
AUG 05	38	27	7.8	20	220	0	18	•	202	16
05 19	38 41	27 28	7.8 8.0	3.8 3.3	230 227	0			202	16
19	41	20	ð.U	3.3	221	U	10	,	200	10

RED RIVER OF THE NORTH BASIN 05046000 OTTER TAIL RIVER BL ORWELL DAM NR FERGUS FALLS, MN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
FEB 08 APR	12	0.10	18	263	0.030	0.450	0.180	0.70	1.2
01	11	0.10	15	265	0.020	0.440	0.080	0.60	0.80
26 MAY	9.9	0.20	11	260	<0.010	<0.050	0.020	0.60	0.50
11 JUN	9.8	0.20	9.3	258	<0.010	<0.050	0.030	0.50	0.50
07	9.2	0.20	11	258	< 0.010	0.140	0.030	0.50	0.50
29					< 0.010	< 0.050	0.020	0.60	0.60
JUL 19	8.2	<0.10		239	<0.010	0.080	0.050	0.80	0.50
AUG 05	6.9	0.10	18 .	254	< 0.010	<0.050	0.060	0.70	0.60
19	8.2	0.10	18	246	< 0.010	< 0.050	0.050	0.80	0.50
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
FEB	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.040	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26	PHORUS TOTAL (MG/L AS P) (00665) 0.020	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.040	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.040	DIS- SOLVED (UG/L AS FE) (01046) 8	NESE, DIS- SOLVED (UG/L AS MN) (01056) 24 32	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26 MAY 11 JUN 07	PHORUS TOTAL (MG/L AS P) (00665) 0.020 0.020 0.030 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.040 0.020 <0.010 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.040 0.030 <0.010 0.010	DIS- SOLVED (UG/L AS FE) (01046) 8 19	NESE, DIS- SOLVED (UG/L AS MN) (01056) 24 32 8	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154) 16 20 40	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26 MAY 11 JUN	PHORUS TOTAL (MG/L AS P) (00665) 0.020 0.020 0.020 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.040 0.020 0.020 <0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.040 0.030 <0.010	DIS- SOLVED (UG/L AS FE) (01046) 8 19 9	NESE, DIS- SOLVED (UG/L AS MN) (01056) 24 32 8 6	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154) 16 20 40 20	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 86 92 95 100
FEB 08 APR 01 26 MAY 11 JUN 07 29	PHORUS TOTAL (MG/L AS P) (00665) 0.020 0.020 0.030 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.040 0.020 <0.010 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.040 0.030 <0.010 0.010	DIS- SOLVED (UG/L AS FE) (01046) 8 19 9	NESE, DIS- SOLVED (UG/L AS MN) (01056) 24 32 8 6	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154) 16 20 40	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26 MAY 11 JUN 07 29 JUL 19	PHORUS TOTAL (MG/L AS P) (00665) 0.020 0.020 0.030 0.020 0.020	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.040 0.020 0.020 <0.010 0.020 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.040 0.030 <0.010 <0.010 <0.010	DIS- SOLVED (UG/L AS FE) (01046) 8 19 9	NESE, DIS- SOLVED (UG/L AS MN) (01056) 24 32 8 6 4	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154) 16 20 40 20	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 86 92 95 100

05050000 BOIS DE SIOUX RIVER NEAR WHITE ROCK, SD

LOCATION.--Lat 45°51'45", long 96°34'25", in SW¹/₄SW¹/₄ sec.27, T.128 N., R.47 W., Roberts County, Hydrologic Unit 09020101, on Sisseton Indian Reservation, on left bank just downstream from Big Slough Outlet, 300 ft downstream from White Rock Dam, 4 mi south of White Rock, SD and 5 mi northwest of Wheaton.

DRAINAGE AREA.--1,160 mi², approximately.

PERIOD OF RECORD .-- October 1941 to current year.

GAGE.--Water-stage recorder. Datum of gage is 960.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Jan. 14, 1943, nonrecording gage at same site at datum 0.11 ft lower. Jan. 15, 1943, to Sept. 30, 1963, water-stage recorder at same site at datum 0.11 ft lower. REMARKS.--Records poor. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project (available capacity for flood control, 137,000 acre-ft).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.04	.12	e4.5	e5.2	e4.4	e4.1	e90	619	175	717	e1000	1150
	.06	.50	e4.5	e5.2	e4.4	e4.1	e80	603	202	697	1220	1140
2 3 4	.06	2.0	e4.5	e5.1	e4.4	e4.1	e66	528	199	640	1250	1140
4	.05	3.0	e4.5	e5.1	e4.4	e4.1	57	417	176	632	1290	1130
5	.07	1.3	e4.4	e5.1	e4.3	e4.1	159	314	150	617	1280	1120
6	.11	3.6	e4.4	e5.0	e4.3	e4.1	406	264	152	653	1260	1120
7	.14	3.9	e4.4	e5.0	e4.3	e4.2	410	267	152	759	1250	1110
8	.11	3.6	e4.4	e5.0	e4.3	e4.7	410	279	153	823	1240	1110
9	.21	2.8	e4.4	e5.0	e4.2	e4.8	530	286	204	879	1150	1100
10	.29	3.7	e4.4	e4.9	e4.2	e5.0	696	293	273	958	1180	1090
11	.21	4.3	e4.4	e4.9	e4.2	e5.0	700	297	233	997	1180	1090
12	.17	5.4	e4.4	e4.9	e4.2	e5.0	696	302	194	1020	1170	1080
13	.19	5.6	e4.4	e4.9	e4.2	e5.0	689	295	193	1040	1160	1070
14	.05	4.6	e4.4	e4.9	e4.1	e5.0	682	293	190	1050	1170	1070
15	e.04	4.8	e4.5	e4.9	e4.1	e5.0	774	287	182	1060	1170	1070
16	e.03	4.3	e4.5	e4.9	e4.1	e5.0	873	283	144	1070	1160	1060
17	e.03	3.7	e4.6	e4.8	e4.1	e5.0	865	221	89	999	1150	1050
18	e.03	3.7	e4.6	e4.8	e4.1	e7.0	861	154	115	572	1180	1040
19	e.03	3.7	e4.7	e4.8	e4.1	e12	865	130	145	e75	1180	1040
20	e.03	4.3	e4.8	e4.7	e4.1	e23	885	95	142	e200	1180	1040
21	e.03	4.5	e4.8	e4.7	e4.1	e40	872	83	127	e700	1180	1040
22	.24	4.3	e4.9	e4.7	e4.1	e80	858	65	113	e950	1190	1030
23	e.03	4.3	e4.9	e4.6	e4.1	e150	809	67	143	e950	1180	1020
24	e.03	4.4	e5.0	e4.6	e4.1	e220	728	102	304	e1030	1180	1020
25	e.03	4.3	e5.0	e4.6	e4.1	e250	709	146	431	e1050	1170	1010
26	e.03	e4.8	e5.0	e4.6	e4.1	e290	684	147	445	e600	1160	1000
27	e.03	e4.7	e5.1	e4.5	e4.1	e320	675	148	459	e9 0	1150	997
28	e.03	e4.6	e5.1	e4.5	e4.1	e340	663	147	513	e88	1160	984
29	e.03	e4.6	e5.2	e4.5		e250	651	145	576	e86	1160	979
30	e.03	e4.6	e5.2	e4.5		e170	637	150	639	e150	1150	970
31	e.03		e5.2	e4.5		el 10		150		e900	1140	
TOTAL	2.49	114.02	145.1	149.4	117.3	2340.3	18080	7577	7213	22052	36640	31870
MEAN	.080	3.80	4.68	4.82	4.19	75.5	603	244	240	711	1182	1062
MAX.	29	5.6	5.2	5.2	4.4	340	885	619	639	1070	1290	1150
MIN.	03	.12	4.4	4.5	4.1	4.1	57	65	89	75	1000	970
AC-FT	4.9	226	288	296	233	4640	35860	15030	14310	43740	72680	63210
CFSM	.00	.00	.00	.00	.00	.07	.52	.21	.21	.61	1.02	.92
IN.	.00	.00	.00	.00	.00	.08	.58	.24	.23	.71	1.18	1.02

e Estimated.

.072

.98

249

1.8

.00

RED RIVER OF THE NORTH BASIN 05050000 BOIS DE SIOUX RIVER NEAR WHITE ROCK, SD--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 - 1993, BY WATER YEAR (WY)

.011

.15

15

3.7

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	16.0	11.6	4.84	2.52	3.24	25.5	199	244	230	157	73.7	37.6
MAX	363	258	57.5	36.0	53.0	227	1322	1310	1103	1035	1182	1062
(WY)	1987	1985	1985	1987	1966	1985	1969	1969	1986	1962	1993	1993
MIN.	000	.000	.000	.000	.000	.000	.000	.23	.010	.000	.000	.000
(WY)	1942	1942	1942	1942	1942	1942	1942	1977	1977	1961	1970	1960
SUMM	ARY STAT	TISTICS	FOR 1992	CALENDA	R YEAR	FOR	1993 WAT	ER YEAR		WATER YEA	ARS 194	2 - 1993
ANNUA	AL TOTAL	,		4763.94		12	6300.61					
ANNUA	AL MEAN			13.0			346			84.0 <u>a</u>		
HIGHE	ST ANNU	AL MEAN	1							346		1993
LOWES	T ANNU	L MEAN	Ī							.38		1977
HIGHES	ST DAILY	MEAN		138	Aug 1		1290	Aug 4		3380	Apr	20 1969
LOWES	T DAILY	MEAN		.03	Oct 16		.03 <u>b</u>	Oct 16		.00	Ma	any days
ANNUA	AL SEVEN	-DAY MI	NIMUM	.03	Oct 23		.03	Oct 23		.00		1 1941
INSTAN	TANEOU	S PEAK	FLOW				1300	Aug.4		3770 <u>c</u>		19 1969
INSTAN	NTANEOU	S PEAK S	STAGE				11.52	Aug 4		15.07 <u>c,d</u>	Apr	19 1969
ANNUA	LRUNOI	F (AC-F)	Γ)	9450			250500	_		60830		
		•	-							0.70		

.30

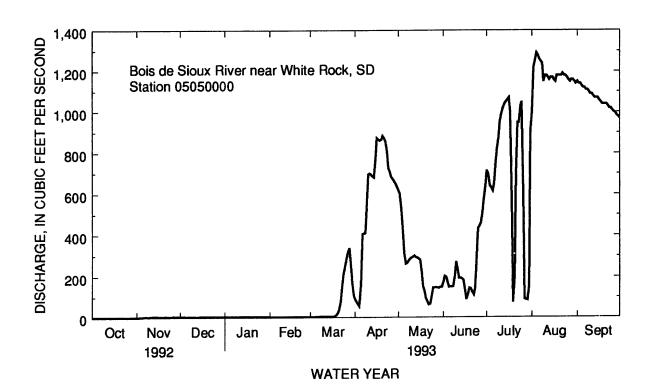
4.05

1110

89

2.9

ANNUAL RUNOFF (CFSM)


10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

ANNUAL RUNOFF (INCHES)

d From floodmark.

a Median of annual mean discharges is 54 ft³/s.

b Occurred Oct 16-21, 23-31.

c Occurred during period Apr 19-21, 1969.

05051300 BOIS DE SIOUX RIVER NEAR DORAN, MN

LOCATION.--Lat 46°09'08", long 96°34'44", in NE¹/4NE¹/4 sec.21, T.131 N., R.47 W., Wilkin County, Hydrologic Unit 09020101, on right bank, 10 ft downstream from bridge on County Highway 6, 3 miles downstream from Rabbit River, 4.3 mi southwest of Doran.

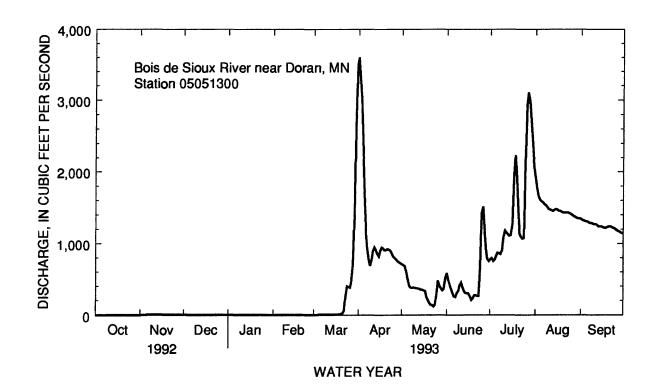
DRAINAGE AREA .-- 1,880 mi², approximately.

PERIOD OF RECORD.--October 1989 to current year.

GAGE.--Water-stage recorder. Datum of gage is 943.90 ft above mean sea level (elevation data obtained from Wilkin County Highway Engineer). REMARKS.--Records good except for estimated daily discharges which are fair. Flow regulated by Lake Traverse-Boise de Sioux Flood Control and Water Conservation project near White Rock, SD.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					D	AILY MEAI	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.21	.36	e4.9	e2.1	e2.8	e4.0	e3600	708	583	778	1920	1340
2	.20	1.9	e4.9	e2.1	e2.8	e4.2	e3300	696	498	793	1760	1330
3	.17	4.0	e4.7	e2.1	e2.9	e4.4	3030	681	420	754	1660	1320
4	.15	e4.3	e4.5	e2.1	e3.0	e4.6	2450	599	367	773	1610	1310
5	.13	e4.5	e4.3	e2.1	e3.0	e4.8	1690	500	304	828	1590	1310
6	.12	e4.8	e4.2	e2.1	e3.1	e5.1	1140	406	257	868	1570	1300
7	.11	e5.1	e4.1	e2.1	e3.2	e5.3	932	379	249	861	1550	1290
8	.09	e5.1	e4.0	e2.1	e3.2	e5.5	770	377	298	852	1530	1290
9	.08	e4.7	e3.9	e2.1	e3.3	e5.8	688	379	331	905	1510	1280
10	.06	e5.0	e3.8	e2.1	e3.4	e6.0	771	375	406	1080	1480	1270
11	.04	e6.0	e3.7	e2.1	e3.4	e6.2	896	374	445	1180	1470	1270
12	.02	e7.0	e3.6	e2.1	e3.5	e6.5	950	365	390	1160	1460	1260
13	.03	e6.8	e3.5	e2.1	e3.5	e6.8	913	363	329	1130	1450	1240
14	.00	e6.6	e3.4	e2.1	e3.6	e7.1	856	351	304	1110	1470	1240
15	.01	e6.4	e3.3	e2.1	e3.7	e7.5	818	349	298	1120	1480	1240
16	.03	e6.2	e3.2	e2.1	e3.7	e8.0	897	341	301	1290	1470	1230
17	.03	e6.1	e3.1	e2.1	e3.8	e8.8	944	333	254	1890	1450	1220
18	.05	e6.1	e3.0	e2.1	e3.9	e9.5	932	246	205	2230	1450	1220
19	.06	e6.0	e2.9	e2.2	e3.9	e11	907	201	231	2000	1440	1230
20	.07	e5.8	e2.8	e2.2	e3.9	e15	910	172	272	1470	1430	1240
21	.06	e5.6	e2.7	e2.3	e3.9	e20	922	142	272	1140	1430	1240
22	.07	e5.4	e2.6	e2.3	e3.9	e60	914	135	263	1090	1430	1230
23	.09	e5.3	e2.6	e2.3	e3.9	e247	902	120	261	1070	1430	1220
24	.09	e5.2	e2.5	e2.4	e3.9	e400	865	135	671	1080	1420	1210
25	.09	e5.1	e2.5	e2.4	e3.9	e390	815	301	1420	2130	1410	1200
26	.09	e5.0	e2.4	e2.4	e3.9	e380	799	474	1510	2930	1400	1180
27	.08	e4.9	e2.3	e2.5	e3.9	e450	776	407	1230	3100	1380	1170
28	.08	e4.9	e2.2	e2.5	e3.9	e700	755	372	929	2980	1370	1160
29	.09	e4.9	e2.2	e2.6		e1400	737	342	784	2720	1360	1150
30	.09	e4.9	e2.1	e2.7		e2600	722	360	754	2390	1350	1140
31	.14		e2.1	e2.7		e3500		507		2090	1350	
TOTAL	2.63	153.96	102.0	69.3	98.8	10283.1	35601	11490	14836	45792	46080	37330
MEAN	.085	5.13	3.29	2.24	3.53	332	1187	371	495	1477	1486	1244
MAX	.21	7.0	4.9	2.7	3.9	3500	3600	708	1510	3100	1920	1340
MIN	.00	.36	2.1	2.1	2.8	4.0	688	120	205	754	1350	1140
AC-FT	5.2	305	202	137	196	20400	70610	22790	29430	90830	91400	74040
CFSM	.00	.00	.00	.00	.00	.18	.63	.20	.26	.79	.79	.66
IN.	.00	.00	.00	.00	.00	.20	.70	.23	.29	.91	.91	.74


e Estimated.

05051300 BOIS DE SIOUX RIVER NEAR DORAN, MN--Continued

STATIS	TICS OF	MONTHLY	MEAN DA	ATA FOR	WATER Y	EARS 1990) - 1993, B	Y WATER Y	EAR (W	Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX	23.7 74.5	5.28 8.54	3.70 8.48	1.05 2.24	1.96 4.10	125 332	324 1187	119 371	234 495	619 1477	422 1486	417 1244
(WY)	1992	1990	1990	1993	1992	1993	1993	1993	1993	1993	1993	1993
MIN (WY)	.026 1991	1.97 1991	.65 1991	.077 1991	.000 1990	25.5 1990	12.6 1990	11.8 1990	12.6 1990	4.37 1990	.000 1990	.000 1990
SUMMA	ARY STAT	TISTICS F	OR 1992 C	ALENDAF	R YEAR	FOR	1993 WAT	TER YEAR		WATER Y	EARS 199	0 - 1993

ANNUAL TOTAL	11173.10		201838.79			
ANNUAL MEAN	30.5		. 553		192	
HIGHEST ANNUAL MEAN					553	1993
LOWEST ANNUAL MEAN					8.77	1990
HIGHEST DAILY MEAN	422	Jun 18	3600	Apr 1	3600	Apr 1 1993
LOWEST DAILY MEAN	.00	Oct 14	.00	Oct 14	.00	Many days
ANNUAL SEVEN-DAY MINIMUM	.02	Oct 11	.02	Oct 11	.00	Jan 7 1990
INSTANTANEOUS PEAK FLOW			3660	Apr 1	3660	Apr 1 1993
INSTANTANEOUS PEAK STAGE			21.39 <u>a</u>	Apr 1	21.39 <u>a</u>	Apr 1 1993
INSTANTANEOUS LOW FLOW			.00	Oct 11-15		-
ANNUAL RUNOFF (AC-FT)	22160		400300		139300	
ANNUAL RUNOFF (CFSM)	.016		.29		.10	
ANNUAL RUNOFF (INCHES)	.22		3.99		1.39	
10 PERCENT EXCEEDS	120		1450		783	
50 PERCENT EXCEEDS	5.1		247		7.1	
90 PERCENT EXCEEDS	.42		2.1		.00	
50 PERCENT EXCEEDS	5.1		247		7.1	

a Backwater from ice.

05051300 BOIS DE SIOUX RIVER NEAR DORAN, MN--Continued (National Water Quality Assessment Station)

		DIS- CHARGE, INST. CUBIC FEET	DIS- CHARGE, IN CUBIC FEET	SPE- CIFIC CON- DUCT-	SPE- CIFIC CON- DUCT- ANCE	PH WATER WHOLE FIELD (STAND-	PH WATER WHOLE LAB (STAND-	TEMPER- ATURE	TEMPER ATURE	BARO- METRIC PRES- - SURE (MM
DATE	TIME	PER SECOND (00061)	PER	ANCE (US/CM) (00095)	LAB (US/CM) (90095)	ARD UNITS) (00400)	ARD UNITS) (00403)	AIR	WATER (DEG C) (00010)	OF
MAR										
27 APR	0930		E450	1870	1890	7.8	7.6	1.0	0.5	736
02	0830		E3300	496	500	7.9	7.3	1.0	3.0	740
26 MAY	1700	797	**	892	910	8.9	7.7	12.5	10.0	737
11 JUN	1400	373		1080	1090	8.0	7.6	24.5	16.0	741
02	1150	502		1130	1050	7.7	8.0	14.0	15.5	737
14	1600	298		1340	1340	8.2	7.9	13.0	19.0	734
25	1330	1510		575	579	6.8	7.2	20.5	20.0	734
JUL	0.500									
20	0630	1600		536	575	7.8	7.7	17.5	20.5	
AUG 20	0630	1440		737	742	7.7	7.5	14.5	20.0	741
20	0030	1440		131	142	1.1	1.5	14.5	20.0	741
DATE	OXYGEN, DIS- SOLVED	CALCIUM DIS- SOLVED	DIS- SOLVED	SODIUM, DIS- SOLVED	DIS- SOLVED	BICAR- BONATE WATER DIS IT FIELD	WATER DIS IT FIELD	ALKA- LINITY WAT DIS TOT IT FIELD	ALKA- LINITY LAB (MG/L	SULFATE DIS- SOLVED
	(MG/L) (00300)	(MG/L AS CA) (00915)	(MG/L AS MG) (00925)	(MG/L AS NA) (00930)	(MG/L AS K) (00935)	MG/L AS HCO3 (00453)	MG/L AS CO3 (00452)	MG/L AS CACO3 (39086)	AS CACO3) (90410)	(MG/L AS SO4) (00945)
MAR	(00300)	AS CA) (00915)	ÀS MG) (00925)	AS NA) (00930)	AS K) (00935)	HCO3 (00453)	CO3 (00452)	CACO3 (39086)	CACO3) (90410)	AS SO4) (00945)
MAR 27 APR		AS CA)	AS MG)	ÀS NA)	AS K) (00935)	HCO3	CO3 (00452)	CACO3 (39086) 260	CACO3)	AS SO4)
27 APR 02	(00300)	AS CA) (00915) 140 46	AS MG) (00925) 120 21	AS NA) (00930)	AS K) (00935) 19 8.1	HCO3 (00453)	CO3 (00452)	CACO3 (39086)	CACO3) (90410)	AS SO4) (00945) 740 130
27 APR 02 26	(00300)	AS CA) (00915) 140	AS MG) (00925)	AS NA) (00930)	AS K) (00935)	HCO3 (00453) 317	CO3 (00452)	CACO3 (39086) 260	CACO3) (90410) 268	AS SO4) (00945) 740
27 APR 02 26 MAY 11	(00300) 11.8 11.8	AS CA) (00915) 140 46	AS MG) (00925) 120 21	AS NA) (00930) 100 16	AS K) (00935) 19 8.1	HCO3 (00453) 317 91	CO3 (00452) 0	CACO3 (39086) 260 75	CACO3) (90410) 268 86	AS SO4) (00945) 740 130
27 APR 02 26 MAY 11 JUN	(00300) 11.8 11.8 13.4 12.8	AS CA) (00915) 140 46 76 95	AS MG) (00925) 120 21 43 63	AS NA) (00930) 100 16 28 46	AS K) (00935) 19 8.1 9.1 13	HCO3 (00453) 317 91 161 228	CO3 (00452) 0 0 0 14 0	CACO3 (39086) 260 75 154 187	CACO3) (90410) 268 86 161 198	AS SO4) (00945) 740 130 310 380
27 APR 02 26 MAY 11 JUN 02	(00300) 11.8 11.8 13.4 12.8 7.4	AS CA) (00915) 140 46 76 95	AS MG) (00925) 120 21 43 63 64	AS NA) (00930) 100 16 28 46 47	AS K) (00935) 19 8.1 9.1 13	HCO3 (00453) 317 91 161 228 232	CO3 (00452) 0 0 14 0	CACO3 (39086) 260 75 154 187	CACO3) (90410) 268 86 161 198	AS SO4) (00945) 740 130 310 380 400
27 APR 02 26 MAY 11 JUN 02 14	(00300) 11.8 11.8 13.4 12.8 7.4 7.4	AS CA) (00915) 140 46 76 95 100 120	AS MG) (00925) 120 21 43 63 64 82	AS NA) (00930) 100 16 28 46 47 60	AS K) (00935) 19 8.1 9.1 13 12 25	HCO3 (00453) 317 91 161 228 232 295	CO3 (00452) 0 0 14 0 0	CACO3 (39086) 260 75 154 187 190 242	CACO3) (90410) 268 86 161 198 196 233	AS SO4) (00945) 740 130 310 380 400 510
27 APR 02 26 MAY 11 JUN 02 14 25	(00300) 11.8 11.8 13.4 12.8 7.4	AS CA) (00915) 140 46 76 95	AS MG) (00925) 120 21 43 63 64	AS NA) (00930) 100 16 28 46 47	AS K) (00935) 19 8.1 9.1 13	HCO3 (00453) 317 91 161 228 232	CO3 (00452) 0 0 14 0	CACO3 (39086) 260 75 154 187	CACO3) (90410) 268 86 161 198	AS SO4) (00945) 740 130 310 380 400
27 APR 02 26 MAY 11 JUN 02 14	(00300) 11.8 11.8 13.4 12.8 7.4 7.4	AS CA) (00915) 140 46 76 95 100 120	AS MG) (00925) 120 21 43 63 64 82	AS NA) (00930) 100 16 28 46 47 60	AS K) (00935) 19 8.1 9.1 13 12 25	HCO3 (00453) 317 91 161 228 232 295	CO3 (00452) 0 0 14 0 0	CACO3 (39086) 260 75 154 187 190 242	CACO3) (90410) 268 86 161 198 196 233	AS SO4) (00945) 740 130 310 380 400 510

05051300 BOIS DE SIOUX RIVER NEAR DORAN, MN--Continued

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
MAR									
27	47	0.20	8.8	1500	0.010	0.140	0.250	1.9	1.5
APR 02	8.9	<0.10	16	343	0.280	5.10	0.270	1.4	1.4
26	17	0.20	12	661	< 0.010	<0.050	0.020	1.2	1.0
MAY									
11 JUN	18	0.30	7.6	810	<0.010	0.052	0.080	1.3	1.2
02	18	0.30	11	852	0.030	1.40	0.040	1.3	1.0
14	26	0.20	6.8	1040	< 0.010	<0.050	0.030	1.2	1.1
25	7.4	0.20	15	408	0.030	0.860	0.090	0.90	0.90
JUL 20	7.8	0.10		393	0.010	0.076	0.070	1.1	0.90
AUG	7.0	0.10		393	0.010	0.070	0.070	1.1	0.90
20	13	0.20	25	510	0.060	0.120	0.130	1.4	1.2
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
DATE MAR	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
MAR 27	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
MAR 27 APR	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAR 27 APR 02	PHORUS TOTAL (MG/L AS P) (00665) 0.130 0.490	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.100 0.490	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.070	DIS- SOLVED (UG/L AS FE) (01046) 7	NESE, DIS- SOLVED (UG/L AS MN) (01056) 470	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAR 27 APR 02 26	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAR 27 APR 02 26 MAY	PHORUS TOTAL (MG/L AS P) (00665) 0.130 0.490 0.070	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.100 0.490 0.050	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.070 0.450 0.010	DIS- SOLVED (UG/L AS FE) (01046) 7 44 22	NESE, DIS- SOLVED (UG/L AS MN) (01056) 470 29 31	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAR 27 APR 02 26	PHORUS TOTAL (MG/L AS P) (00665) 0.130 0.490	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.100 0.490	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.070	DIS- SOLVED (UG/L AS FE) (01046) 7	NESE, DIS- SOLVED (UG/L AS MN) (01056) 470	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAR 27 APR 02 26 MAY 11 JUN 02	PHORUS TOTAL (MG/L AS P) (00665) 0.130 0.490 0.070 0.160 0.350	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.100 0.490 0.050 0.130 0.280	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.070 0.450 0.010 0.110	DIS- SOLVED (UG/L AS FE) (01046) 7 44 22 40	NESE, DIS- SOLVED (UG/L AS MN) (01056) 470 29 31 150 60	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 99 93
MAR 27 APR 02 26 MAY 11 JUN 02 14	PHORUS TOTAL (MG/L AS P) (00665) 0.130 0.490 0.070 0.160 0.350 0.200	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.100 0.490 0.050 0.130 0.280 0.180	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.070 0.450 0.010 0.110 0.260 0.150	DIS- SOLVED (UG/L AS FE) (01046) 7 44 22 40 19	NESE, DIS- SOLVED (UG/L AS MN) (01056) 470 29 31 150 60 71	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 99 93 76
MAR 27 APR 02 26 MAY 11 JUN 02 14 25	PHORUS TOTAL (MG/L AS P) (00665) 0.130 0.490 0.070 0.160 0.350	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.100 0.490 0.050 0.130 0.280	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.070 0.450 0.010 0.110	DIS- SOLVED (UG/L AS FE) (01046) 7 44 22 40	NESE, DIS- SOLVED (UG/L AS MN) (01056) 470 29 31 150 60	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 99 93
MAR 27 APR 02 26 MAY 11 JUN 02 14	PHORUS TOTAL (MG/L AS P) (00665) 0.130 0.490 0.070 0.160 0.350 0.200	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.100 0.490 0.050 0.130 0.280 0.180	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.070 0.450 0.010 0.110 0.260 0.150	DIS- SOLVED (UG/L AS FE) (01046) 7 44 22 40 19	NESE, DIS- SOLVED (UG/L AS MN) (01056) 470 29 31 150 60 71	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 99 93 76

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND

LOCATION.--Lat 46°15'55", long 96°35'40", in NE'14 sec.8, T.132 N., R.47 W., Richland County, Hydrologic Unit 09020104, on left bank in Wahpeton, 800 ft downstream from confluence of Bois de Sioux and Otter Tail Rivers, and at mile 548.6.

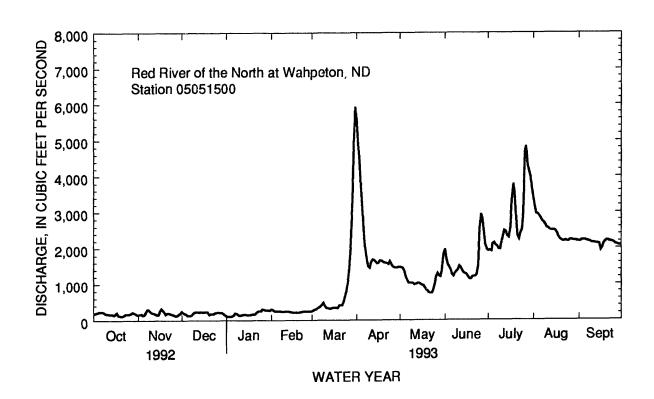
DRAINAGE AREA .-- 4,010 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—April 1942 to October 1942, March 1943 to current year. Gage-height records collected in this vicinity since 1917 are contained in reports of the U.S. Weather Bureau.

GAGE.--Water-stage recorder and concrete and wooden dam. Datum of gage is 942.97 ft above sea level. Prior to Aug. 6, 1943, U.S. Weather Bureau nonrecording gage 800 ft upstream, converted to present datum. Aug. 6, 1943, to Oct. 27, 1950, nonrecording gage at present site and datum.

REMARKS.--Records good except those for periods of estimated daily discharges, which are poor. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at elevation 1,070 ft above National Geodetic Vertical Datum of 1929, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control; numerous other controlled lakes and ponds, and several powerplants.


EXTREMES OUTSIDE PERIOD OF RECORD.--A stage of 17.0 ft, discharge, 10,500 ft³/s, occurred in the spring of 1897 and has not been exceeded since.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	JILY MEA	N VALUES	;				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	184	161	e251	e120	e300	e250	5610	1480	1970	1930	3380	2190
2	195	174	e213	e105	e290	e270	5010	1470	1720	1950	3120	2190
3	208	176	e189	e110	e260	e290	4430	1450	1540	1920	2960	2220
4	227	143	e176	e110	e250	e300	3750	1360	1480	2120	2940	2220
5	229	161	e130	e120	e248	e325	3110	1220	1400	2150		2220
,	22)	101	6130	C120	C2-10	6323	3110	1220	1400	2150	2090	2220
6	228	216	e135	e140	e245	e350	2400	1100	1260	2090	2820	2210
7	233	292	e130	e200	e244	e385	1990	1030	1220	2050	2760	2200
8	226	304	e150	e190	e243	e420	1690	1030	1300	1980	2710	2190
9	196	257	e200	e160	e242	e480	1500	1030	1350	1970	2660	2170
10	182	225	e220	e130	e240	e410	1460	1020	1390	2140	2570	2150
11	178	204	e230	e145	e239	e340	1610	989	1500	2340	2550	2150
12	174	204	e230	e150	e238	e325	1690	993	1470	e2490	2520	2140
13	174	165	e236	e160	e237	e320	1680	1020	1380	e2460	2500	2130
	169	148						1020	1320	2350	2500	2130
14			e231	e160	e235	e315	1640					
15	148	159	e230	e150	e225	e325	1580	996	1290	2300	2500	2120
16	181	244	e226	e150	e215	e340	1590	966	1270	2580	2480	1950
17	216	318	e228	e150	e215	e340	1660	958	1210	3320	2420	2010
18	146	289	e235	e160	e215	e335	1660	910	1140	3780	2320	2130
19	132	230	e235	e170	e210	e330	1630	838	1140	3510	2250	2180
20	125	165	e160	e160	e210	e410	1600	814	1200	2810	2220	2210
21	127	201	e180	e180	e220	e410	1590	755	1210	2350	2200	2210
22	142	e198	e180	e215	e230	e410	1580	746	1220	2260	2200	2190
23	165	e185	e180	e250	e240	e500	1560	743	1260	2420	2210	2180
24	171	e170	e205	e250	e240	e675	1640	833	1530	2520	2200	2170
25	173	e160	e215	e245	e240	e820	1560	1010	2550	2990	2200	2150
26	177	e140	e220	e300	e240	el 100	1490	1200	2940	4680	2230	2110
27 27	194	e125	e220	e290	e240	e1450	1470	1300	2810	4840	2230	2100
28	218	e140	e215	e280	e240	2170	1460	1240	2430	4310	2220	2080
28 29	209	e170	e205	e278		3370	1460	1210	2120	4160	2210	2070
				e276 e275		4890	1480	1380	1960	3980	2210	2070
30	189	e200	e175	e275 e270		4890 5930		1840		3660	2210	2070
31	159		e140	e270		3930		1640		3000	2200	
TOTAL	5675	5921	6160	5773	6691	28585	62580	33951	47580	86410	77380	64440
MEAN	183	197	199	186	239	922	2086	1095	1586	2787	2496	2148
MAX	233	318	251	300	300	5930	5610	1840	2940	4840	3380	2220
MIN	125	125	130	105	210	250	1460	743	1140	1920	2200	1950
AC-FT	11260	11740	12220	11450	13270	56700	124100	67340	94370	171400	153500	127800

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--Continued

STATIS	TICS OF I	MONTHL	Y MEAN I	DATA FOR	WATER Y	EARS 1942	- 1993, B	y Water y	EAR (W	YY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	295	285	265	252	262	577	1206	998	1021	760	415	333
MAX	1247	952	820	678	687	1679	4436	3085	2675	2787	2496	2148
(WY)	1987	1987	1987	1986	1987	1986	1969	1986	1962	1993	1993	1993
MIN	5.72	7.40	6.60	8.81	18.0	84.3	138	22.5	90.0	65.6	53.5	2.18
(WY)	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1976
SUMMA	RY STA	ristics 1	FOR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 194	1 2 - 1993
ANNUA	L TOTAL	•		123650			431146					
ANNUA	L MEAN			338			1181			551		
HIGHES	T ANNU.	AL MEAN	Ī							1477		1986
LOWES	T ANNU	AL MEAN								54.0		1977
HIGHES	T DAILY	MEAN		1900	Mar 8		5930	Mar 31		8940		10 1969
LOWES	T DAILY	MEAN		120	Jan 17		105	Jan 2		1.7		28 1976
		I-DAY MI		126	Jan 15		121	Dec 31		1.7		28 1976
INSTAN	TANEOU	JS PEAK F	LOW				6080	Mar 31		9200		10 1969
		JS PEAK S					14.33	Mar 31		17.95		r 5 1989
		JS LOW F								1.7	Aug	28 1976
		FF (AC-FI	")	245300			855200			398900		
	CENT EXC			535			2510			1290		
	CENT EXC			309			910			350		
90 PERC	CENT EXC	CEEDS		165			160			101		

05051500 RED RIVER OF THE NORTH AT WAHPETON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	(STAND- ARD	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	(MG/L AS	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- M SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
NOV											
19	0940	232	512		1.0	0.5					
JAN 07 FEB	0905	201	507		1.0	1.0					
16	1600	221	555		-2.0	0.0					
23	1200	242	667		-15.0	0.5					
APR	1610	4100	400								
03	1610	4190	499	7.6	6.0	4.5	260	151	56		14
06 13	1300 0800	2420 1650	570	7.6	3.0	5.5	260	151	56	28	14
MAY	0000	1030	780		3.0	4.5					
26 JUL	1230	1220	908		16.5	15.0					
08	0715	1980	732	_	17.5	19.0					
27	1225	4850	364	••	27.0	22.0					
AUG	1		501		27.0						
04	0830	2970	558		21.0	20.5					
11	1445	2520	607		31.0	25.0					
SEP											
15	0925	2120	705	7.6	12.0	12.0	340	218	64	44	20
DATE		SODIUM AD- SORP- TION	DIS-	SULFATE DIS- SOLVED	DIS-	FLUO- RIDE, DIS- SOLVED	DIS-	SOLIDS, SUM OF CONSTI- TUENTS, DIS-	RESIDUE AT 180	SOLIDS, DIS- SOLVED (TONS	SOLIDS, DIS- SOLVED (TONS
	SODIUM PERCENT (00932)	RATIO (00931)	(MG/L AS K) (00935)	(MG/L AS SO4) (00945)	(MG/L AS CL) (00940)	(MG/L AS F) (00950)	AS SIO2) (00955)	SOLVED (MG/L) (70301)	SOLVED (MG/L) (70300)	PER AC-FT) (70303)	PER DAY) (70302)
APR	PERCENT (00932)	(00931)	(MG/L AS K) (00935)	AS SO4) (00945)	(MG/L AS CL) (00940)	(MG/L AS F) (00950)	SIO2) (00955)	(MG/L) (70301)	(MG/L) (70300)	AC-FT) (70303)	DAY) (70302)
06	PERCENT	RATIO	(MG/L AS K)	AS SO4)	(MG/L AS CL)	(MG/L AS F)	SIO2)	(MG/L)	(MG/L)	AC-FT)	DAY)
06 SEP	PERCENT (00932)	(00931) 0.4	(MG/L AS K) (00935) 7.8	AS SO4) (00945)	(MG/L AS CL) (00940)	(MG/L AS F) (00950)	SIO2) (00955) 17	(MG/L) (70301) 345	(MG/L) (70300) 344	AC-FT) (70303) 0.47	DAY) (70302) 2250
06	PERCENT (00932)	(00931)	(MG/L AS K) (00935)	AS SO4) (00945)	(MG/L AS CL) (00940)	(MG/L AS F) (00950)	SIO2) (00955)	(MG/L) (70301)	(MG/L) (70300)	AC-FT) (70303)	DAY) (70302)
06 SEP	PERCENT (00932)	(00931) 0.4	(MG/L AS K) (00935) 7.8 8.8 8.8 J. IRON DIS- O SOLVE (UG/L AS FE	AS SO4) (00945) 120 150 LEA DIS D SOLV (UG)	(MG/L AS CL) (00940) 11 15 D, LITHI G- DIS VED SOLV /L (UG/PB) AS L	(MG/L AS F) (00950) 0.10 0.20 MAI UM NE - D ED SOL /L (U-	SIO2) (00955) 17 18 NGA- ISE, ME IS- IVED SO G/L (MN) A	(MG/L) (70301) 345 451 RCURY I DIS- DLVED S UG/L	(MG/L) (70300) 344 481 MOLYB-SDENUM, P. DIS-SOLVED SOLVED	AC-FT) (70303) 0.47 0.65 SELE- ST. NIUM, TI DIS- I OLVED SOI (UG/L (U	DAY) (70302) 2250 2750 RON- IUM, DIS-
06 SEP 15 DATE	PERCENT (00932) 10 11 ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	RATIO (00931) 0.4 0.5 BORON DIS- SOLVEI (UG/L AS B) (01020)	(MG/L AS K) (00935) 7.8 8.8 8.8 1, IRON DIS- O SOLVE (UG/L AS FE (01046)	AS SO4) (00945) 120 150 LEA DIS DISOLV (UG) AS F () (010	(MG/L AS CL) (00940) 11 15 D, LITHI G- DIS VED SOLV /L (UG, /B) AS L (49) (0113	(MG/L AS F) (00950) 0.10 0.20 MAI UM NE - D ED SOL L (UI I) AS 0) (010	SIO2) (00955) 17 18 NGA- SSE, ME IS- VED SC G/L (MN) A 056) (7	(MG/L) (70301) 345 451 RCURY DIS- DLVED S UG/L S HG) (71890)	(MG/L) (70300) 344 481 MOLYB- DENUM, M DIS- SOLVED SO (UG/L ((01060) (0	AC-FT) (70303) 0.47 0.65 SELE- ST. NIUM, TI DIS- I DLVED SOI (UG/L (USSE) AS 01145) (01	DAY) (70302) 2250 2750 RON- IUM, DIS- LVED IG/L S SR) 1080)
06 SEP 15 DATE	PERCENT (00932) 10 11 ARSENIC DIS- SOLVED (UG/L AS AS)	RATIO (00931) 0.4 0.5 BORON DIS- SOLVEI (UG/L AS B)	(MG/L AS K) (00935) 7.8 8.8 8.8 1, IRON DIS- O SOLVE (UG/L AS FE	AS SO4) (00945) 120 150 LEA DIS D SOLV (UG	(MG/L AS CL) (00940) 11 15 D, LITHI G- DIS VED SOLV /L (UG/PB) AS L	(MG/L AS F) (00950) 0.10 0.20 MAI UM NE - D ED SOL /L (U-	SIO2) (00955) 17 18 NGA- ISE, ME IS- VED SO G/L (MN) A 056) (7	(MG/L) (70301) 345 451 RCURY DIS- DLVED SUG/L S HG)	(MG/L) (70300) 344 481 MOLYB- DENUM, 1 DIS- SOLVED SO (UG/L (AS MO) A (01060) (0	AC-FT) (70303) 0.47 0.65 SELE- ST. NIUM, TI DIS- I OLVED SOI (UG/L (U	DAY) (70302) 2250 2750 RON- IUM, DIS- LVED JG/L 5 SR) 1080)

This page is blank.

05051522 RED RIVER OF THE NORTH AT HICKSON, ND

LOCATION.--Lat 46°39'35", long 96°47'44", in SW¹/₄ sec.19, T.137 N., R.48 W., Clay County, MN, Hydrologic Unit 09020104, on right bank 60 ft downstream from bridge on township road, and 1 mi southeast of Hickson, ND.

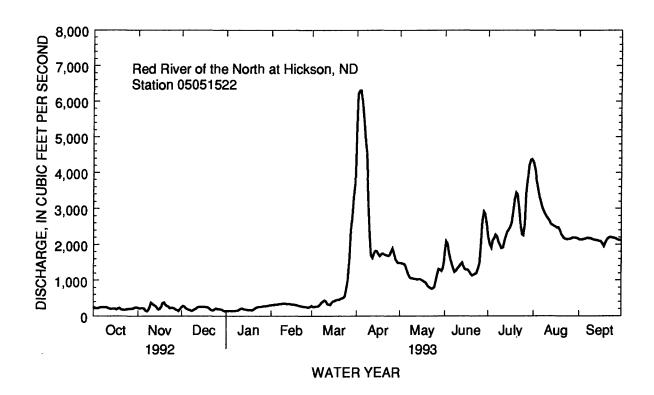
DRAINAGE AREA.--4,300 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1975 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 877.06 ft above sea level.

REMARKS.--Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at 1,070 ft above sea level, adjustment of 1912; Lake Traverse, capacity, 137,000 acre-ft, available for flood control, numerous other controlled lakes and ponds, and several powerplants.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	ILY MEA	N VALUES	;				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	259	225	e245	e135	e300	276	e5000	1480	1820	2230	4290	2150
2	227	210	e280	e140	e305	254	e6200	1480	2090	2010	4090	2140
3	215	215	e260	e140	e310	255	e6300	1460	2020	1920	3790	2140
4	220	215	e220	e140	e315	260	e6300	1450	1770	2110	3550	2150
5	230	207	e195	e140	e320	261	e6000	1400	1560	2180	3350	2160
6	244	155	e175	e140	e325	282	e5500	1270	1460	2270	3180	2170
7	247	133	e165	e140	e330	328	e5000	1170	1320	2220	3040	2180
8	245	154	e140	e145	e335	368	4540	1080	1230	2080	2930	2170
9	247	256	e155	e150	e340	408	3320	1050	1270	1980		2170
10	244	372	e180	e170	e340	429	2250	1050	1330	1900	2770	2160
11	225	339	e200	e200	e340	403	1690	1040	1370	1920	2710	2140
12	209	297	e235	e210	e338	337	1620	1040	1440	2080	2650	2130
13	204	282	e250	e195	e335	318	1740	1020	1490	2240	2580	2120
14	201	223	e250	e185	e330	312	1820	1030	1400	2340	2540	2110
15	203	182	e250	e175	e325	372	1810	1030	1310	2410	2510	2100
16	201	192	e250	e165	e320	402	1740	1010	1300	2500	2500	2100
17	187	257	e250	e165	e315	418	1680	981	1290	2610	2470	2030
18	210	351	e248	e165	e306	442	1720	954	1240	2930	2480	1950
19	229	e380	e245	e160	e295	451	1750	929	1180	3240	2400	2040
20	190	e320	e220	e180	e290	453	1730	866	1130	3440	2290	2130
21	177	e285	e180	e210	e280	476	1710	825	1150	3390	2220	2170
22	172	e260	e160	e235	e270	490	1690	792	1180	3030	2170	2200
23	174	e220	e160	e245	e260	504	1680	757	1200	2600	2160	2200
24	184	e230	e195	e250	e255	556	1710	772	1320	2280	2150	2190
25	198	e230	e210	e250	e250	756	1810	812	1450	2250	2160	2180
26	204	e210	e195	e265	242	e1000	1890	982	2080	2580	2160	2170
27	204	e185	e190	e275	235	e1500	1750	1180	2660	3410	2170	2150
28	204	e165	e185	e275	257	e2400	1600	1310	2910	3820	2190	2130
29	219	e140	e170	e280		e2800	1520	1290	2850	4190	2190	2120
30	236	e190	e150	e285		e3300	1480	1260	2580	4350	2180	2110
31	235		e130	e295		e3700		1360		4370	2170	
TOTAL	6644	7080	6338	6105	8463	24511	84550	34130	48400	82880	82890	64060
MEAN	214	236	204	197	302	791	2818	1101	1613	2674	2674	2135
MAX	259	380	280	295	340	3700	6300	1480	2910	4370	4290	2200
MIN	172	133	130	135	235	254	1480	757	1130	1900	2150	1950
AC-FT	13180	14040	12570	12110	16790	48620	167700	67700	96000	164400	164400	127100

e Estimated.

05051522 RED RIVER OF THE NORTH AT HICKSON, ND--Continued

STATIS	TICS OF	MONTHL	Y MEAN	DATA FOR	WATER Y	EARS 1975	5 - 1993, B	Y WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MERANI	222	204	261	240	206	711	1624	020	026	701	507	450
MEAN	323	284	261	249	286	711	1634	938	926	791	507	453
MAX	1312	900	817	747	745	1543	4165	3394	2485	2674	2674	2135
(WY)	1987	1987	1986	1986	1987	1986	1978	1986	1986	1993	1993	1993
MIN	2.02	.000	.000	4.95	14.0	75.9	165	22.0	86.4	73.4	35.6	12.6
(WY)	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1976
SUMMA	RY STAT	TISTICS	FOR 1992	CALENDA	AR YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 197	75 - 1993
ANNIIA	L TOTAL			139280			456051					
	L MEAN	•		381		,	1249			614		
		AL MEAN	r	201			1245			1604		1986
		L MEAN								53.1		1977
	TDAILY			1700	Mar 10		6300	A 2		12000	۸	r 7 1989
	T DAILY			125				Apr 3 Dec 31				26 1976
			NTT (T 1) (Jan 21		130			.00.		
		-DAY MI		132	Jan 17		138	Dec 31		.00		26 1976
		S PEAK I					6400	Apr 3		12900		r 7 1989
		S PEAK S					28.30	Apr 3		35.81	Ap:	r 7 1989
		Ŧ (AC-FI	")	276300			904600			444500		
	ENT EXC			633			2650			1430		
	ENT EXC			330			929			340		
90 PERC	ENT EXC	CEEDS		181			183			74		

05051522 RED RIVER OF THE NORTH AT HICKSON, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1976 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	DIS- CHARGE IN CUBIC FEET PER SECOND (00060)	CIFIC CON- DUCT- ANCE		TEMPER ATURE AIR (DEG C) (00020)	WATER	(MG/L AS	LINITY LAB (MG/L AS) CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT											
01 NOV	0845	258		627		15.5	8.0				
12 JAN	1110	294		658		3.0	2.0				
13 FEB	1320	195		563		-8.0	0.5				
18 APR	1000	307		575		-3.0	0.0				
03	1150	6370		486		11.0	1.0				
05	1000		6000	492		8.0	5.0				
MAY	1000	1160					4.50				
27 JUL	1030	1160		801		12.5	15.0				
08	1325	2080		751		22.5	20.0				
17	0905	2560		606		27.0	22.0				
18	1300	2970		592		29.0	23.5				
23	1600	2510		616		22.5	22.0				
27	0650	3440		500		27.0	22.5				
AUG											
03	1455	3710		530		24.0	22.0				
12	0910	2640		608		22.0	24.0				
SEP 15	1600	2110		600	0.0	160	155	240	218	64	43
13	1000	2110		688	8.0	16.0	15.5	340	218	64	43
DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	SIUM, DIS-	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS-		SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)
SEP									1		
15	19	11	0.5	8.8	150	15	0.20	18	449	478	0.65
SOLIDS, DIS- SOLVED (TONS DATE DAY) (70302)	ARSENIC DIS- SOLVED PER AS AS) (01000)	BORON DIS- SOLVEI (UG/L AS B) (01020)	DIS-	DI D SOL' (UC) AS I	S- DIS VED SOLV G/L (UG PB) AS I	UM NI G- D PED SOI /L (U .I) AS	DIS- I LVED SO IG/L (I MN) AS	RCURY I DIS- LVED ! UG/L	DENUM, M DIS- SOLVED SO (UG/L AS MO)	NIUM, TI DIS- D DLVED SOI (UG/L (U AS SE) AS	RON- UM, DIS- LVED IG/L SSR) 080)
SEP 15	2720	4	60	10	<1	4	0 1	10	<0.1	1 28	0

This page is blank.

05054000 RED RIVER OF THE NORTH AT FARGO, ND

LOCATION.--Lat 46°51'40", long 96°47'00", in NW¹/4NE¹/4 sec.18, T.139 N., R.48 W., Cass County, Hydrologic Unit 09020104, at waterplant on 4th St. S. in Fargo, 25 mi upstream from mouth of Sheyenne River, and at mi 453.

DRAINAGE AREA.--6,800 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1901 to current year. Published as "at Moorhead, Minn.", 1901. Monthly discharge only for some periods, published in WSP 1308.

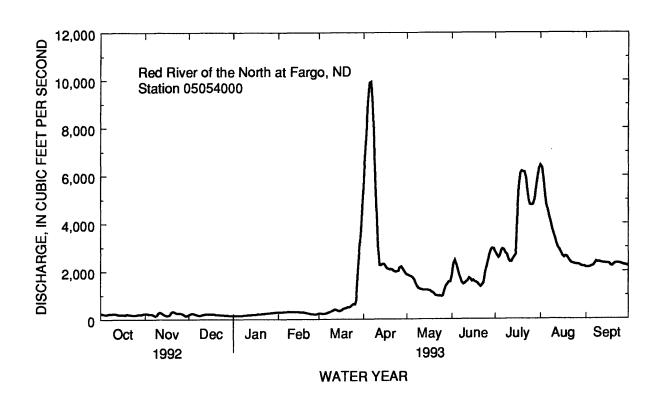
REVISED RECORDS.--WSP 1308: 1902-4, 1906-7, 1910-14, 1916, 1918, 1924. WSP 1388: 1905-6, 1917-20(M), 1935(M), 1938-39(M), 1943. GAGE.--Water-stage recorder and concrete control. Datum of gage is 861.8 ft above sea level. Oct. 1, 1960, to Sept. 30, 1962, water-stage recorder at present site at datum 5.6 ft higher. See WSP 1728 or 1913 for history of changes prior to Oct. 1, 1960.

REMARKS.--Records good except those for periods of estimated daily discharges, which are fair. Flow regulated by Orwell Reservoir, capacity, 14,100 acre-ft at 1,070 ft above sea level, adjustment of 1912; Lake Traverse, capacity 137,000 acre-ft, available for flood control, other controlled lakes and ponds, and several power-plants. Some small diversions for municipal supply. Figures of daily discharge do not include diversions to cities of Fargo and Moorhead and from Sheyenne River.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 7, 1897, reached a stage of 39.1 ft present datum, discharge, 25,000 ft³/s at site 1.5 mi downstream.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL AUG SEP e160 e300 e250 e160 e300 e245 e155 e300 e240 e155 e305 e240 e157 e310 e240 e160 e315 e250 e160 e320 e270 e165 e320 e300 Q e165 e320 e320 e170 e320 e340 e175 e320 e370 e180 e315 e410 e390 e185 e315 e190 e315 e370 e340 e195 e310 e200 e305 e360 e380 e210 e300 e295 e215 e430 e285 e220 e450 e225 e275 e470 e195 e230 e265 e190 e240 e250 e185 e245 e235 e250 e180 e225 e175 e255 e215 e170 e260 e210 e620 e165 e270 e210 e800 e165 e280 e220 e2000 e160 e285 e3000 e160 e290 e3500 e160 e295 TOTAL MEAN MAX MIN AC-FT AC-FT


⁺ Diversion in acre-feet to cities of Fargo and Moorhead.

e Estimated.

05054000 RED RIVER OF THE NORTH AT FARGO, ND--Continued

STATIS	TICS OF I	MONTHLY	MEAN I	OATA FOR	WATER Y	EARS 1901	- 1993, B	Y WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	290	261	217	198	197	638	1663	975	999	828	407	316
MAX	1435	942	800	740	778	3756	9924	4589	5122	5692	3293	2280
(WY)	1987	1907	1987	1986	1987	1966	1969	1986	1962	1962	1993	1993
MIN	.000	.000	.000	.000	.18	26.8	102	8.12	2.87	.000	.000	.000
(WY)	1935	1937	1938	1933	1933	1937	1934	1934	1936	1934	1932	1934
SUMMA	RY STAT	LISTICS F	OR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 190)1 - 1993
ANNUA	L TOTAL			152895			574308					
ANNUA	L MEAN			418(<u>a</u> 4	1 28)		1573(<u>a</u> 1	586) 584				
		AL MEAN								1928		1986
		AL MEAN								17.5		1934
	T DAILY			2570	Jun 19		9940	Apr 6		24800		14 1969
	T DAILY			150	Jan 20		150	Nov 8		.00		25 1932
		-DAY MIN		152	Jan 18		158	Dec 30		.00		25 1932
		S PEAK F					10100	Apr 5		25300		15 1969
		S PEAK S					28.27	Apr 5		37.34 .00		15 1969 25 1932
		IS LOW FL		402400	,		1200000	1151000\		422800	Jul	23 1932
		FF (AC-FT))	303300 701	1		3650	1151000)		1280		
	ENT EXC			350			3030 994			293		
	ENT EXC ENT EXC			183			185			38		
90 PERC	ENI EN	-EED3		103			103			,,,		

a Adjusted for diversions to cities of Fargo and Moorhead.

05054000 RED RIVER OF THE NORTH AT FARGO, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1956 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	(STAND- ARD	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	(MG/L AS	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	(MG/L	MAGNE- 1 SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
OCT											
01	1130	250	588		23.0	8.5					
NOV 10	0920	246	524		2.0	1.5					
JAN	0,20	2.0			2.0	1.5					
05	1320	157	640		-14.0	1.0					
FEB 18	1620	295	650		11.0	0.0					
APR											
04	1025	8780			2.0	1.5					
05	1450	9820	436		12.0	3.0					
13 MAY	1510	2250	735		6.5	6.0					
27	0820	1250	665		10.0	15.0					••
JUL											
09	0825	2700	724		25.0	19.5					
17	1430	5610	355		28.5	22.0					
20	1005	6100	522		22.5	22.0					
22	1810	5760	505		18.5	21.0					
29	1805	5620	394		30.0	24.0					
AUG											
03	0825	5960	518		15.5	21.5					
04	1340	5150	556		26.0	22.5					
12	1515	3120	673		24.0	24.0					
SEP											
17	0840	2300	728	7.7	10.0	9.0	360	224	68	45	22
DATE	SODIUM PERCENT (00932)	SODIUM AD- SORP- TION RATIO (00931)	DIS-	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	CONSTI-	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)
	(00932)	(00931)	(00333)	(00943)	(00940)	(00930)	(00333)	(10301)	(70300)	(70303)	(10302)
SEP											
17	12	0.5	9.1	160	16	0.20	18	473	490	0.67	3040
							NGA-		MOLYB- S		RON-
	ARSENIC	BORON,			•	UM NI	ESE, MEI	CURY D	DENUM, N	IUM, T	IUM,
	DIS-	DIS-	DIS-	DIS				DIS-			DIS-
	SOLVED	SOLVED			ED SOLV				OLVED SC		
DATE	(UG/L	(UG/L	(UG/L			•	•				U G/L
	AS AS)	AS B)	AS FE								S SR)
	(01000)	(01020)	(01046	(0104	19) (0113	(01	056) (7	1890) ((01060) (0	1145) (0	1080)
SEP											
17	5	60	20	<1	40	10) <	:0.1	1 .	<1 34	10

This page is blank.

05061000 BUFFALO RIVER NEAR HAWLEY, MN

LOCATION.--Lat 46°51'00", long 96°19'45", in NW¹/4SE¹/4 sec.14, T.139 N., R.45 W., Clay County, Hydrologic Unit 09020106, near left downstream end of bridge on farm lane, 2 mi southwest of Hawley.

DRAINAGE AREA.--322 mi².

PERIOD OF RECORD.--March 1945 to current year, WY 1981 (annual maximum only), March 1982 to September 1985 (no winter records). REVISED RECORDS.--WSP 1308: 1945-46(M), 1948(M).

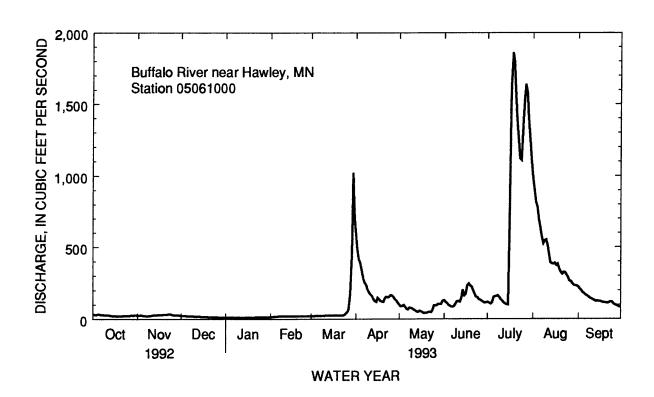
GAGE.--Water-stage recorder. Datum of gage is 1,111.91 ft above sea level. Prior to Jan. 29, 1953, nonrecording gage at bridge 1,800 ft upstream at datum 3.17 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, about 11.3 ft, present datum, spring of 1921, from information by local resident.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	34 32	25 25	e24 e23	e12 e12	e15	e21 e21	589 486	101 90	132 120	120 114	989 900	224 212
3 4	29 31	26 25	e23 e22	e12 e12	e16 e17	e21 e22	415 393	91 99	112 100	108 117	819 783	201 188
5	34	23	e21	e12	e18	e22	341	88	91	153	698	178
6	32	22	e21	e12	e18	e23	283	71	86	158	634	169
7 8	30 29	e21 e21	e20 e19	e12 e12	e19 e19	e23 e23	256 239	68 81	84 92	159 164	577 527	162 155
ğ	27	e22	e19	e12	e20	e23	210	79	109	152	545	147
10	26	e23	e18	e12	e20	e23	187	73	124	138	552	142
11	26	e24	e18	e12	e20	e24	173	68	125	128	507	136
12	26 24	e26	e17	e12	e20	e24	162	59 51	120 152	117 108	450 393	131 125
13 14	24 22	e27 e28	e17 e17	e12 e12	e20 e20	e24 e24	144 128	51 50	204	103	385	126
15	21	e29	e16	e12	e20	e24	119	58	165	101	383	124
16	23	e30	e16	e12	e20	e24	149	53	173	843	389	125
17	21	30	e16	e12	e20	e24	137	46	234	1630	374	121
18	21	30	e15	e12	e20	e24	128	41	247	1860	382 347	117 115
19 20	21 21	31 32	e15 e14	e12 e12	e20 e20	e24 e24	122 121	43 42	234 225	1800 1560	347 328	113
20	2-1	32	014	CIZ	020	024	121	72	223	1500	320	115
21	21	32	e14	e12	e20	e24	146	47	202	1390	315	112
22	22	33	e14	e13	e20	e24	156	49	175	1240	325	115
23 24	22 22	33 33	e13	e13	e20	e25	151	48 60	155 151	1120 1110	322 310	120 119
24 25	22 23	33 30	e13 e13	e13 e13	e20 e20	e30 e37	156 167	96	131	1300	290	109
2	4.5	30	613	613	620	637	107	<i>,</i>	130	1500	270	107
26	22	28	e13	e13	e20	e50	165	95	133	1520	267	101
27	24	e27	e12	e13	e20	e70	154	96	126	1640 1580	262	96 91
28 29	26 25	e26 e26	e12 e12	e13 e13	e20	e180 e440	140 130	104 104	120 114	1400	250 237	85
30	26	e25	e12	e13		1020	116	105	117	1250	234	82
31	27		e12	el4		697		127		1120	231	
TOTAL	790	813	511	383	537	3059	6263	2283	4360	24303	14005	4041
MEAN	25.5	27.1	16.5	12.4	19.2	98.7	209	73.6	145	784	452	135
MAX	34	33	24	14	20	1020	589	127	247 84	1860	989	224
MIN AC-FT	21 1570	21 1610	12 1010	12 760	15 1070	21 6070	116 12420	41 4530	84 8650	101 48200	231 27780	82 8020
CFSM	.08	.08	.05	.04	.06	.31	.65	.23	.45	2.43	1.40	.42
IN.	.09	.09	.06	.04	.06	.35	.72	.26	.50	2.81	1.62	.47
		-										

e Estimated.

RED RIVER OF THE NORTH BASIN 05061000 BUFFALO RIVER NEAR HAWLEY, MN--Continued

STATIST	ICS OF 1	MONTHLY	MEAN D	ATA FOR V	WATER Y	EARS 1945	i - 1993, B	Y WATER '	YEAR (W	YY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX (WY) MIN (WY)	36.3 151 1974 11.6 1979	33.8 176 1972 12.2 1977	23.4 63.8 1972 10.6 1977	19.8 54.7 1981 9.94 1962	20.7 99.6 1981 9.87 1949	80.7 434 1966 15.0 1969	251 792 1978 33.3 1981	123 372 1985 21.5 1977	98.3 530 1962 12.7 1977	99.0 784 1993 10.1 1976	52.4 472 1955 5.87 1976	37.9 182 1957 8.52 1976
SUMMAR	RY STAT	TISTICS F	OR 1992 C	ALENDAR	R YEAR	FOR	1993 WAT	TER YEAR		WATER Y	EARS 194	5 - 1993
ANNUAL	TOTAL			15367			61348					

ANNUAL TOTAL	15367		61348			
ANNUAL MEAN	42.0		168		72.7	
HIGHEST ANNUAL MEAN					168	1993
LOWEST ANNUAL MEAN					16.7	1977
HIGHEST DAILY MEAN	231	Jul 11	1860	Jul 18	1970	Jul 1 1975
LOWEST DAILY MEAN	12	Dec 27	12	Dec 27	3.2	Aug 25 1976
ANNUAL SEVEN-DAY MINIMUM	12	Dec 25	12	Dec 27	4.3	Aug 22 1976
INSTANTANEOUS PEAK FLOW			2010	Jul 18	2050	Jul1 1975
INSTANTANEOUS PEAK STAGE			10.40	Jul 18	10.40	Jul 18 1993
INSTANTANEOUS LOW FLOW					2.8	Aug 26 1977
ANNUAL RUNOFF (AC-FT)	30480		121700		52640	•
ANNUAL RUNOFF (CFSM)	.13		.52		.23	
ANNUAL RUNOFF (INCHES)	1.78		7.09		3.07	
10 PERCENT EXCEEDS	76		391		170	
50 PERCENT EXCEEDS	30		49		30	
90 PERCENT EXCEEDS	19		13		13	

05061500 SOUTH BRANCH BUFFALO RIVER AT SABIN, MN

LOCATION.--Lat 46°46'20", long 96°37'40", in SW¹/4SW¹/4 sec. 9, T. 138 N., R. 47 W., Clay County, Hydrologic Unit 09020106, near center of span on downstream side of highway bridge, 0.3 mi downstream from Stony Creek and 1 mi east of Sabin.

DRAINAGE AREA, -- 522 mi².

PERIOD OF RECORD.--March 1945 to current year, WY 1981 (annual maximum only), March 1982 to September 1985 (no winter records). REVISED RECORDS.--WSP 1308: 1949 (M).

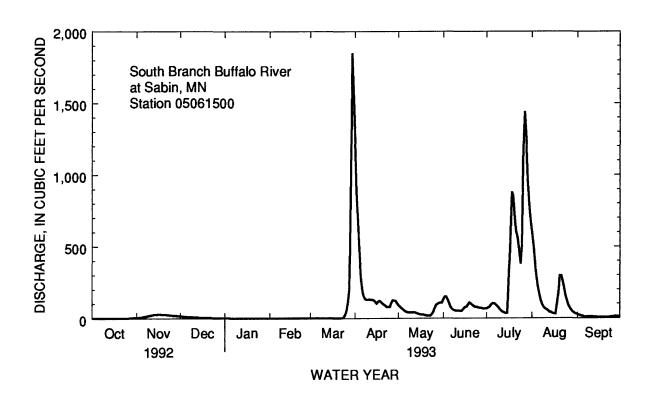
GAGE.--Water-stage recorder. Datum of gage is 902.39 ft above mean sea level (levels by Soil Conservation Service).

Prior to Aug. 17, 1948, nonrecording gage at site 1 mi downstream at different datum. Aug. 17, 1948, to Oct. 4, 1989, nonrecording gage at present site and datum

REMARKS.--Records poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e2.0 e2.0 e2.0 e2.0 e2.0	e7.2 e8.0 e9.1 e10 e11	e16 e15 e14 e14 e13	e4.0 e3.9 e3.8 e3.7 e3.6	e2.3 e2.3 e2.3 e2.3 e2.3	e2.2 e2.2 e2.2 e2.2 e2.2	1230 883 671 482 290	92 82 72 62 54	131 149 149 132 104	68 75 81 94 102	595 493 388 291 223	28 22 18 16 13
6 7 8 9	e2.0 e2.0 e1.9 e1.9 e1.9	e13 e14 e16 e18 e20	e12 e12 e11 e11 e10	e3.5 e3.4 e3.4 e3.3 e3.2	e2.2 e2.2 e2.2 e2.2 e2.2	e2.2 e2.2 e2.2 e2.3 e2.3	193 154 134 129 130	47 43 41 40 39	80 65 58 53	102 94 84 73 59	168 125 94 76 65	10 10 12 12
11 12 13 14	el.9 el.9 el.9 el.9 el.9	e22 e24 e26 e28 e28	e9.5 e9.1 e8.7 e8.3 e7.9	e3.2 e3.1 e3.0 e3.0 e3.0	e2.2 e2.2 e2.2 e2.2 e2.2	e2.3 e2.3 e2.3 e2.3 e2.3	131 128 129 125 113	40 41 38 34 30	51 51 50 51 65	50 42 37 33 35	58 51 42 39 34	11 9.8 8.5 8.8 8.1
16 17 18 19	el.8 el.8 el.8 el.8	e29 e29 e28 e28 e27	e7.6 e7.2 e6.9 e6.5 e6.2	e2.9 e2.9 e2.8 e2.8 e2.7	e2.2 e2.2 e2.2 e2.2 e2.2	e2.3 e2.3 e2.3 e2.3 e2.3	103 117 121 112 102	27 25 25 23 21	77 79 95 107 101	314 539 880 854 696	32 30 96 173 296	7.8 7.9 7.3 6.9 6.9
21 22 23 24 25	e2.0 e2.2 e2.4 e2.6 e2.9	e26 e25 e24 e23 e22	e6.0 e5.8 e5.6 e5.3 e5.1	e2.7 e2.7 e2.6 e2.6 e2.5	e2.2 e2.2 e2.2 e2.2 e2.2	e2.3 e2.5 e3.5 e6.0 e20	95 88 79 78 79	18 17 18 26 42	92 83 78 78 74	604 558 478 380 511	295 261 208 155 116	6.7 6.7 7.4 8.5 9.5
26 27 28 29 30	e3.3 e3.8 e4.3 e4.9 e5.7	e21 e20 e19 e18 e17	e4.9 e4.7 e4.6 e4.5 e4.3	e2.5 e2.5 e2.4 e2.4 e2.4	e2.2 e2.2 e2.2	e50 e100 e200 e1000 1850	102 125 123 121 107	68 91 98 104 106	72 71 68 65 67	1200 1440 1250 972 796	86 66 53 42 36	12 13 13 12 13
TOTAL MEAN MAX MIN AC-FT CFSM	78.8 2.54 6.4 1.8 156	610.3 20.3 29 7.2 1210	e4.2 260.9 8.42 16 4.2 517 .02	e2.4 92.9 3.00 4.0 2.4 184 .01	62.1 2.22 2.3 2.2 123	1530 4809.5 155 1850 2.2 9540 .30	6474 216 1230 78 12840 .41	108 1572 50.7 108 17 3120	2447 81.6 149 50 4850	13187 425 1440 33 26160 .81	32 4719 152 595 30 9360 .29	337.8 11.3 28 6.7 670

e Estimated.

RED RIVER OF THE NORTH BASIN
05061500 SOUTH BRANCH BUFFALO RIVER AT SABIN, MN--Continued

STATIS	TICS OF	MONTH	LY MEAN	DATA FO	R WATER	YEARS 194	15 - 1993. I	BY WATER	YEAR (V	WY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MITANI	140	140	4.00	1.57	1.50	100	255	76 0	04.0	78.4	12.2	140
MEAN	14.0	14.3	4.92	1.57 13.1	1.52	102	255	76.8 580	94.8 1068	78.4 1112	152	14.0 173
MAX	51.1	76.7	23.5 1978	1978	14.0	581	928 1969	1962	1962	1975	1993	1986
(WY) MIN	1978 .023	1972 2.05	.006	.000	1987 .000	1966 .000	27.9	8.28	1.30	.000	.000	.000
(WY)	1977	1977	1961	1946	1946	1951	1973	1980	1.30	1988	.000 1976	1976
(W 1)	1977	1977	1901	1940	1940	1931	1973	1960	1970	1700	1970	1970
SUMMA	RY STA	TISTICS	FOR 1992	CALEND	AR YEAR	FOR	2 1993 WA	TER YEAR		WATER Y	EARS 194	15 - 1993
ANNUA	L TOTAI			10170.8			34651.3					
ANNUA	L MEAN			27.8			94.9			56.0 <u>a</u>		
HIGHES	T ANNU	AL MEA	N							198		1962
LOWEST	r annu	AL MEAN	1							12.2		1977
HIGHES	T DAILY	MEAN		410	Jun 20		1850	Mar 30		8200	Ju	1 1 1975
LOWES	F DAILY	MEAN		1.8	Oct 16-19		1.8	Oct 16-19		.00	Dec	13 1945
ANNUA	L SEVEN	I-DAY M	INIMUM	1.8	Oct 13		1.8	Oct 13		.00	Dec	13 1945
		JS PEAK		414	Jun 20		1910	Mar 30		8500		1 2 1975
INSTAN				10.94	Jun 20		14.57	Mar 30		19.90	Ju	1 2 1975
		FF (AC-F		20170			68730			40570		
		FF (CFSM	•	.053			.18			.11		
		FF (INCH	ES)	.72			2.47			1.46		
10 PERC				60			170			101		
50 PERC				11			18			7.0		
90 PERC	ENT EX	CEEDS		4.6			2.2			.00		

a Median of annual mean discharges is 41 ft³/s.

05062000 BUFFALO RIVER NEAR DILWORTH, MN

LOCATION:-Lat 46° 57'40", long 96° 39'40", in SW¹/4 SE¹/4 sec. 6, T.140 N., R.47 W., Clay County, Hydrologic Unit 09020106, on left bank 4.5 mi southeast of Kragnes, 6.5 mi northeast of Dilworth, and 9 mi downstream from South Branch.

DRAINAGE AREA.--1,040 mi², approximately.

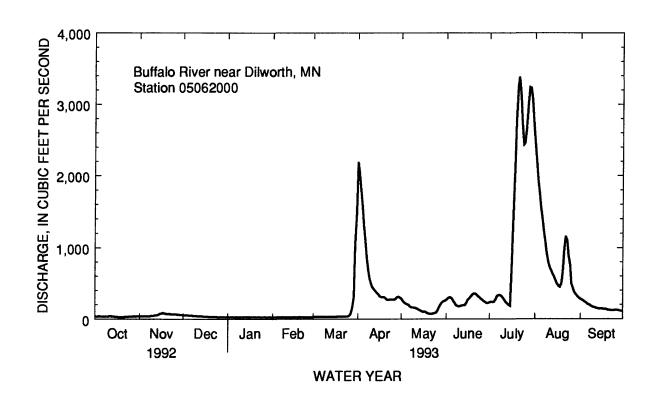
PERIOD OF RECORD.--March 1931 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS .-- WSP 1308: 1931(M).

GAGE.--Water-stage recorder. Datum of gage is 878.31 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to April 5, 1937, nonrecording gage at same site and datum.

REMARKS .-- Records good except those for estimated daily discharges, which are fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993


					DA	ILY MEAN	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38	40	e53	e25	e27	e28	2190	284	263	228	2470	280
2	35	e37	e52	e25	e27	e28	2060	257	282	237	2200	269
3	35	e36	e51	e25	e27	e28	1800	229	298	235	1950	257
4	36	e36	e49	e25	e27	e29	1620	209	299	236	1750	240
5	34	e37	e47	e25	e27	e29	1310	202	284	273	1560	223
6	32	e38	e46	e25	e27	e30	1090	192	253	316	1390	208
7	33	e39	e45	e25	e27	e30	875	170	217	333	1240	196
8	35	e40	e44	e25	e27	e30	686	156	188	332	1080	184
9	35	e42	e43	e25	e27	e31	570	156	174	318	929	172
10	33	e44	e42	e25	e27	e31	492	153	172	296	802	163
11	36	e46	e40	e25	e27	e31	442	149	179	266	723	156
12	37	e49	e39	e25	e27	e31	418	138	186	234	682	151
13	35	e52	e38	e25	e27	e31	394	127	188	210	638	146
14	32	60	e36	e25	e27	e31	367	117	188	192	592	141
15	31	74	e35	e25	e27	e31	342	104	225	179	539	139
16	29	75	e34	e25	e27	e31	317	97	263	826	494	138
17	27	81	e33	e25	e27	e31	303	98	287	1460	462	136
18	26	e76	e32	e25	e27	e32	304	90	312	2090	447	136
19	27	e73	e31	e25	e27	e32	302	80	338	2770	490	129
20	26	e71	e30	e26	e27	e32	289	74	354	3260	650	124
21	27	e69	e30	e26	e27	e32	271	71	353	3380	1000	122
22	29	e68	e29	e26	e27	e32	265	68	337	3100	1160	120
23	29	e67	e28	e26	e27	e32	271	72	318	2730	1090	119
24	30	e66	e28	e26	e27	e33	271	77	299	2440	885	120
25	32	e65	e27	e26	e27	e34	269	85	283	2460	756	124
26	33	e63	e26	e26	e27	e45	271	110	265	2680	492	124
27	35	e61	e26	e26	e27	e70	280	159	245	2970	427	117
28	37	e59	e25	e26	e27	e150	301	194	232	3240	377	112
29	35	e57	e25	e26		e300	308	222	220	3230	340	108
30	37	e55	e25	e27		e1050	300	241	220	3060	314	106
31	38		e25	e27		e1500		252		2770	295	
TOTAL	1014	1676	1114	789	756	3885	18978	4633	7722	46351	28224	4760
MEAN	32.7	55.9	35.9	25.5	27.0	125	633	149	257	1495	910	159
MAX	38	81	53	27	27	1500	2190	284	354	3380	2470	280
MIN	26	36	25	25	27	28	265	68	172	179	295	106
AC-FT	2010	3320	2210	1560	1500	7710	37640	9190	15320	91940	55980	9440
CFSM	.03	.05	.03	.02	.03	.12	.61	.14	.25	1.44	.88	.15
IN.	.04	.06	.04	.03	.03	.14	.68	.17	.28	1.66	1.01	.17

e Estimated.

05062000 BUFFALO RIVER NEAR DILWORTH, MN--Continued

STATIS	TICS OF	MONTHLY	MEAN D	ATA FOR	WATER Y	EARS 1931	- 1993, B	Y WATER	YEAR (W	Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	49.9	47.6	28.6	18.8	19.0	169	535	214	198	185	73.0	54.1
MAX	186	305	97.0	53.5	61.1	1308	1984	909	2138	2814	910	517
(WY)	1958	1972	1972	1987	1984	1966	1978	1986	1962	1975	1993	1944
MIN	5.48	8.74	4.75	.87	.76	2.26	33.5	27.2	15.1	2.23	.000	.79
(WY	1940	1937	1938	1940	1940	1940	1931	1931	1934	1936	1936	1936
SUMMA	ARY STAT	ristics f	OR 1992 C	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 193	1 - 1993
ANNUA	L TOTAL			29373			119902					
ANNUA	L MEAN			80.3			328			134		
HIGHES	T ANNU	AL MEAN								441		1975
LOWES	T ANNUA	L MEAN								25.6		1934
HIGHES	T DAILY	MEAN		491	Jun 22		3380	Jul 21		13500	Ju	1 2 1975
LOWES	T DAILY	MEAN		16	Aug 21		25	Dec 28	to Jan 20	.00 <u>a</u>	<u>Jul</u>	22 1936
ANNUA	L SEVEN	-DAY MIN	MUMI	21	Aug 17		25	Dec 28		.00	Jul	28 1936
INSTAN	ITANEOU	S PEAK F	LOW		_		3450	Jul 20		13600	Ju	1 2 1975
INSTAN	ITANEOU	S PEAK S	TAGE				22.88	Jul 20		27.10	Ju	1 2 1975
INSTAN	ITANEOU	IS LOW FL	.OW									
ANNUA	L RUNOF	F (AC-FT))	58260			237800			97260		
ANNUA	L RUNOF	F (CFSM)		.077			.32			.13		
ANNUA	L RUNOF	F (INCHE	S)	1.05			4.29			1.75		
	ENT EXC			161			879			283		
50 PERC	ENT EXC	CEEDS		49			80			34		
90 PERC	ENT EXC	CEEDS		30			26			9.3		

a At times in 1936.

05062500 WILD RICE RIVER AT TWIN VALLEY, MN

LOCATION.--Lat 47°16'00", long 96°14'40", in NW¹/4NE¹/4 sec.27, T.144 N., R.44, Norman County, Hydrologic Unit 09020108, on left bank 100 ft upstream from highway bridge, 0.8 mi northeast of Twin Valley, and 2 mi upstream from small tributary.

DRAINAGE AREA.--88 mi².

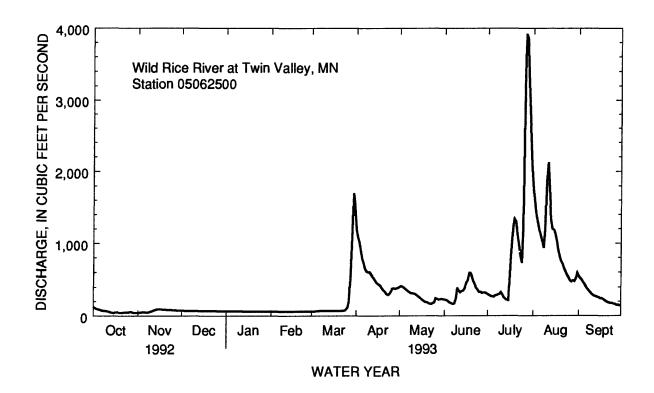
PERIOD OF RECORD.--June 1909 to September 1917, July 1930 to September 1983, October 1989 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1983 to September 1989, annual maximums only.

REVISED RECORDS.--WSP 955: 1941. WSP 1308: 1915(M), 1917(M).

GAGE.--Water-stage recorder. Datum of gage is 1,008.16 ft above mean sea level (U.S. Army Corps of Engineers bench mark). June 1909 to September 1917, nonrecording gage at site 0.2 mi downstream at different datum. July 23, 1930, to Nov. 24, 1934, nonrecording gage at highway bridge 100 ft downstream from present site at present datum. Nov. 25, 1934, to Aug. 2, 1950, water-stage recorder 80 ft upstream from present site at present datum.

REMARKS.--Records fair. Flow slightly regulated by Rice Lake and many other small lakes above station. Satellite telemeter at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993


					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	124	43	e76	e68	e64	e64	e1200	407	226	302	1760	550
2	112	49	e76	e68	e64	e65	e1100	422	223	289	1540	524
3	102	52	e75	e68	e64	e66	1020	410	215	277	1400	504
4	95	56	e75	e68	e64	e68	913	399	199	272	1280	473
5	89	e54	e74	e68	e64	e69	789	381	184	269	1190	440
6	82	e52	e74	e68	e64	e69	716	360	175	285	1110	409
7	<i>7</i> 7	e50	e73	e67	e64	e70	651	343	168	292	1030	379
8	73	e52	e73	e67	e64	e70	614	329	175	299	941	3 5 6
9	72	e58	e72	e67	e64	e70	604	319	248	306	1190	332
10	67	e66	e72	e67	e64	e70	607	317	394	331	1870	308
11	64	e74	e72	e67	e64	e70	580	314	355	295	2120	291
12	59	e80	e72	e67	e64	e70	545	304	329	259	1760	279
13	52	e87	e72	e66	e64	e70	528	288	349	239	1340	270
14	46	e93	e72	e66	e64	e70	490	272	351	225	1200	263
15	43	e95	e71	e66	e64	e70	461	254	384	218	1190	257
16	49	e95	e71	e66	e63	e70	448	238	458	671	1140	248
17	50	e94	e7l	e66	e63	e70	435	219	498	968	1030	244
18	49	e92	e71	e66	e63	e70	416	204	594	1230	907	233
19	46	e91	e71	e66	e63	e70	378	194	590	1340	815	218
20	47	e89	e71	e66	e63	e70	359	194	532	1300	759	202
21	47	e88	e70	e65	e63	e70	335	182	483	1130	711	193
22	51	e86	e70	e65	e63	e71	308	172	432	976	658	185
23	49	e85	e70	e65	e63	e73	294	164	392	835	612	180
24	50	e84	e70	e65	e63	e78	307	180	365	736	567	177
25	51	e82	e70	e65	e63	e92	340	189	334	1220	534	171
26	54	e81	e69	e65	e63	e120	383	244	335	3180	497	164
27	57	e80	e69	e65	e63	e200	389	239	323	3920	483	155
28	52	e79	e69	e65	e63	e600	382	228	324	3850	493	151
29	46	e78	e69	e65		e1200	388	233	327	3240	485	149
30	44	e77	e69	e65		e1700	395	238	318	2600	527	146
31	44		e69	e65		e1500		230		2100	591	
TOTAL	1943	2242	2218	2053	1779	7085	16375	8467	10280	33454	31730	8451
MEAN	62.7	74.7	71.5	66.2	63.5	229	546	273	343	1079	1024	282
MAX	124	95	76	68	64	1700	1200	422	594	3920	2120	550
MIN	43	43	69	65	63	64	294	164	168	218	483	146
AC-FT	3850	4450	4400	4070	3530	14050	32480	16790	20390	66360	62940	16760
CFSM	.07	.08	.08	.07	.07	.26	.61	.31	.39	1.22	1.15	.32
IN.	.08	.09	.09	.09	.07	.30	.69	.35	.43	1.40	1.33	.35

e Estimated.

05062500 WILD RICE RIVER AT TWIN VALLEY, MN--Continued

31A113	IICS OF I	MON I TIL	INEAN	DATA FOR	WAIEKI	EAKS 1903	7 - 1993, B	I WAIEK	(BAK (W	(Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	83.8	73.1	49.1	37.5	34.7	126	561	413	303	231	105	84.4
MAX	614	488	123	100	80.0	747	1543	2259	1560	1923	1024	788
(WY)	1974	1972	1972	1910	1910	1945	1979	1950	1943	1909	1993	1973
MIN	6.10	9.31	6.00	4.00	4.00	12.8	73.8	30.9	26.4	8.04	3.02	2.96
(WY)	1933	1933	1933	1933	1933	1940	1931	1977	1977	1934	1932	1936
SUMMA	ARY STAT	TISTICS	FOR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER YI	EARS 190	9 - 1993
ANNUA	L TOTAL			51664			126077					
ANNUA	L MEAN			141			345			172 <u>a</u>		
	T ANNU									500		1950
	T ANNUA									22.7		1977
	TDAILY			750	Mar 7		3920	Jul 27		9100		22 1909
	T DAILY			34	Feb 8		43	Oct 15		1.1	Aug	13 1932
	L SEVEN			36	Feb 7		47	Oct 14		1.3	Aug	11 1932
	TANEOU						3980	Jul 28		9200 <u>b</u>	Jul	22 1909
	TANEOU						11.74	Jul 28		20.00 <u>c</u>		22 1909
	TANEOU		-				39	Oct 16		.50	Nov	<i>i</i> 4 1939
	LRUNOF			102500			50100			124600		
	L RUNOF	•	,	.16			.39			.19		
	LRUNOF		ES)	2.16			5.28			2.63		
	ENT EXC			272			924			445		
	ENT EXC			87			164			64		
90 PERC	ENT EXC	EEDS		39			63			15		

c Site and datum then in use.

a Median of annual mean discharges is 150 ft³/s.
 b From rating curve extended above 3,300 ft³/s.

05062500 WILD RICE RIVER AT TWIN VALLEY, MN--Continued (National Water Quality Assessment Station)

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
FEB										
10	1100		E64	698	690	7.9	7.6	-11.5	0.0	748
MAR										
31	1100		E1700	398	435	7.6	7.5	4.0	1.0	738
APR										
05	1105	791		458	485	7.7	7.7	11.5	4.5	738
14	1105	494		511	497	8.3	8.1	14.0	5.0	736
26	1015	383		474	476	8.4	8.1	12.5	7.5	741
MAY										
06	1050	360		467	464	8.1	8.2	24.0	3.5	735
18	0930	206		507	496	8.3	8.2	10.5	13.0	738
25	0930	180		502	493	8.1	8.3	16.0	13.5	736
26	1045	248		544	556	8.3	8.0	13.0	13.0	738
JUN										
01	1120	228		547	536	8.2	8.4	17.0	15.0	734
14	1200	345		536	516	7.7	7.5	12.5	19.0	734
17	1215	482		507	522	7.7	8.0	19.5	17.0	739
23	1000	394		512	520	7.9	8.2	19.0	22.0	731
JUL										
98	1110	299		499		7.8		20.5	18.0	732
17	0800	948		420		8.2		17.5	19.5	
28	0830	4400		393	392	7.8	7.7	16.0	21.0	728
AUG										
06	1040	1120		488	473	7.8	7.9	20.0	18.0	736
17	1100	1050		510	479	7.7	7.9	22.0	21.0	734
30	1120	533		474	477	8.3	8.2	16.5	19.0	734
SEP										
24	1020	179		547	543	8.1	8.3	10.0	10.5	737

05062500 WILD RICE RIVER AT TWIN VALLEY, MN--Continued (National Water Quality Assessment Station)

DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
FEB										
10	7.2	78	34	11	3.3	558	0	458		23
MAR										
31	12.0	47	18	5.0	7.8	147	0	120	134	56
APR										
05	11.6	57	23	6.5	7.1	220	0	180	184	55
14	11.3	63	25	7.7	5.1				220	51
26	10.4	60	24	7.5	3.6	266	10	232	218	34
MAY										
06	8.8	62	23	7.0	3.3	286	3	237	224	26
18	9.2	61	24	8.0	2.9	266	17	246	249	22
25	9.5	61	24	8.5	2.8	268	12	240	247	24
26	9.5	67	29	11	3.1	286	10	252	268	38
JUN										
01	10.7	64	27	11	2.7	284	8	245	257	37
14	7.6	64	27	8.0	2.9	278	0	228	245	35
17	8.3	62	27	9.4	5.6	283	0	232	234	40
23	7.1	61	28	8.1	2.8	286	0	234	242	38
JUL	0.7		25	0.4		***	•	226		
08	8.7	61	27	8.4	2.2	288	0	236		
17										
28	6.8								166	37
AUG	0.0		25			251	•	206		24
06	8.0	56	25 25	5.7	4.3	251	0	206	228	26
17	7.4	64	25	6.0	4.9	250			229	27
30	8.1	65	27	6.5	4.0	259	0	212	231	19
SEP 24	10.0	67	20	11	2.4			260	272	25
24	10.2	67	29	11	3.4			260	273	25

05062500 WILD RICE RIVER AT TWIN VALLEY, MN--Continued (National Water Quality Assessment Station)

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
FEB									
10	5.4	0.30	23	398	0.030	0.130	0.100	0.90	0.80
MAR									
31	11	0.20	13	278	0.130	4.80	0.270	2.0	1.3
APR 05	8.6	0.20	14	299	0.080	1.90	0.100	1.3	1.0
14	7.1	0.20	13	329	0.020	0.540	0.040	0.80	0.80
26	5.3	0.20	6.4	293	< 0.020	< 0.050	0.020	0.30	0.60
MAY	5.5	0.20	0.4	2,5	\0.010	<0.050	0.020	0.70	0.00
06	4.4	0.20	6.0	290	< 0.010	< 0.050	0.020	0.80	0.60
18	4.7	0.20	8.1	309	< 0.010	< 0.050	0.020	0.70	0.80
25	4.2	0.20	7.9	306	< 0.010	< 0.050	0.020	0.60	0.70
26	5.5	0.20	7.1	340	< 0.010	< 0.050	0.020	0.70	0.70
JUN									
01	6.6	0.20	8.4	336	<0.010	< 0.050	0.030	0.90	0.70
14	4.7	0.20	13	339	<0.010	0.160	0.020	0.90	0.70
17	6.6	0.20	15	346	0.010	0.230	0.040	1.0	0.80
23	3.8	0.20	16	342	<0.010	0.085	0.040	0.90	0.80
JUL						0.060			0.00
08					<0.010	0.063	0.020	1.1	0.80
17	5.0	0.20		250	-0.010				
28 AUG	3.0	0.20		250	<0.010	0.081	0.090	1.4	1.0
06	4.2	0.20	22	310	<0.010	< 0.050	0.010	1.2	0.90
17	5.8	0.20	23	313	<0.010	0.030	0.010	1.2	0.90
30	4.7	0.20	26	313	<0.010	0.074	0.030	0.80	0.80
SEP	٦./	0.20	20	313	₹0.010	0.110	0.050	0.00	0.80
24	6.1	0.20	18	326	<0.010	<0.050	0.020	0.70	0.70

05062500 WILD RICE RIVER AT TWIN VALLEY, MN--Continued (National Water Quality Assessment Station)

DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB									
10	0.040	0.010	0.010	25	270	13	0.4		~~
MAR									
31	0.140	0.090	0.070	110	85	14	1.3		
APR									
05	0.120	< 0.010	0.040	67	38	15	3.6		
14	0.030	0.030	0.020	41	43				
26	0.020	0.030	<0.010	38	30	11	1.1		
MAY									
06	0.030	0.010	<0.010	36	21	12	0.8		
18	0.030	0.010	0.010	38	42	14	0.7		
25	0.020	<0.010	<0.010	33	41	13	0.4		
26	0.030	0.030	0.010	43	28	14	0.6		
JUN	0.040								
01	0.040	0.020	0.010	43	31	15	0.3		
14	0.050	0.040	0.010	42	25	17	0.7		
17	0.080	0.050	0.040	58	26	16	1.2		
23	0.060	0.030	0.050	98	27	18	0.7	53	88
JUL	0.100	0.050	0.040			• •	0.7	•	00
08	0.100	0.050	0.040	68	22	16	0.7	28	98
17								57	90
28	0.170	0.090	0.030			14		60	99
AUG	0.000	0.070	0.000	0.4		• •	0.6	74	00
06	0.080	0.070	0.060	24	<1	16	0.6	74 57	83
17	0.180	0.090	0.090	55	19	16	0.3	57 62	90 05
30	0.090	0.070	0.060	57	25	14	0.3	63	95
SEP	0.000	0.020	0.010	£1	40	1.4	0.3	<	92
24	0.020	0.030	0.010	51	40	14	0.3	5	82

05064000 WILD RICE RIVER AT HENDRUM, MN

LOCATION.--Lat 47°16′05", long 96°47′50", in SE¹/₄SE¹/₄ sec.19, T.144 N., R.48 W., Norman County, Hydrologic Unit 09020108, on right bank 30 ft downstream from highway bridge, 0.5 mi east of Hendrum and 4 mi upstream from mouth.

DRAINAGE AREA.--1,600 mi², approximately.

PERIOD OF RECORD.--March 1944 to September 1984 and May 1985 to current year. Operated as a high-flow partial-record station October 1984 to April 1985.

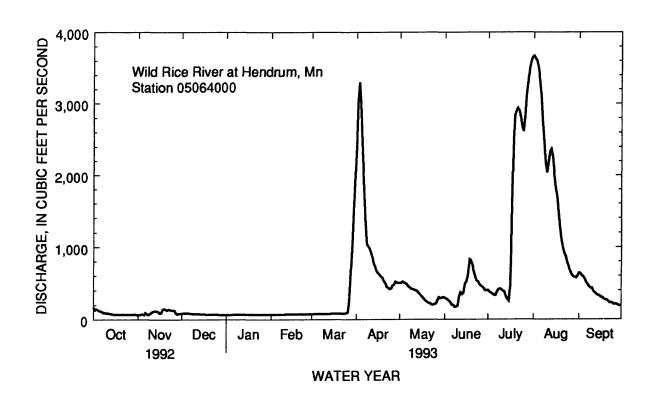
REVISED RECORDS.--WSP 1728: 1958.

GAGE.--Water-stage recorder. Datum of gage is 836.75 ft above mean sea level (levels by U.S. Army Corps of Engineers). Prior to July 18, 1989, nonrecording gage at same site and datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Large part of high flow diverted into Marsh River basin at overflow section 3.5 mi east of Ada. Another diversion into the Marsh River basin formed in 1947, 1.5 mi southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent. Amount of diversion not known.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	ILY MEAN	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	171	68	e86	e68	e72	e76	e2400	504	298	406	3670	643
2	134	69	e88	e68	e72	e77	e3000	504	289	380	3630	638
2 3	146	73	e90	e68	e72	e78	e3300	523	275	365	3600	605
4	132	75	e90	e68	e72	e78	e3000	510	259	352	3500	592
5	122	68	e88	e68	e72	e80	2350	500	236	334	3340	555
6	115	92	e88	e70	e73	e80	1820	481	207	334	3120	511
7	106	76	e86	e70	e73	e81	1400	455	202	385	2780	482
. 8	96	69	e84	e70	e73	e82	1050	438	175	414	2470	452
9	93	81	e82	e70	e73	e82	1020	424	180	423	2190	431
10	90	95	e80	e70	e73	e82	984	418	186	412	2040	434
11	88	112	e80	e72	e74	e83	934	410	327	393	2210	386
12	84	e115	e78	e72	e74	e83	864	401	376	389	2340	369
13	79	e118	e78	e72	e74	e83	771	390	347	323	2370	348
14	75	el15	e76	e72	e74	e83	726	367	365	286	2260	334
15	72	e105	e74	e72	e74	e84	663	344	492	260	1990	329
16	70	90	e74	e72	e75	e84	641	319	518	475	1830	312
17	70	93	e74	e72	e75	e84	614	298	599	1590	1700	303
18	71	144	e72	e72	e76	e84	590	275	834	2510	1480	284
19	73	151	e72	e72	e76	e84	573	252	819	2840	1260	272
20	73	144	e72	e72	e76	e85	531	238	752	2910	1110	270
21	72	130	e72	e72	e76	e85	498	231	670	2940	989	255
22	71	143	e70	e72	e76	e85	450	223	588	2900	920	232
23	72	138	e70	e72	e76	e86	437	207	533	2820	861	233
24	73	129	e70	e72	e76	e86	418	204	521	2670	789	226
25	72	128	e70	e72	e76	e88	429	213	484	2620	727	211
26	70	-120	-70	-70	-76	00	466	210	463	2050	674	212
26	72	e130	e70	e72	e76	e99	466	218		2850		212
27	71 71	e95	e68	e72	e76	e240	482	269 306	448	3120	622 597	
28	71 72	e75	e68	e72	e76	e650	520	300	429	3320		198
29 30	73	e80	67	e72		e1050	505	294 299	402 401	3490 3600	581 <i>5</i> 76	194 186
30	71	e84	e68	e72		e1500	501	299				
31	69		e68	e72		e2000		308		3650	597	
TOTAL	2747	3085	2373	2202	2081	7602	31937	10823	12675	49761	56823	10707
MEAN	88.6	103	76.5	71.0	74.3	245	1065	349	422	1605	1833	357
MAX	171	151	90	72	76	2000	3300	523	834	3650	3670	643
MIN	69	68	67	68	72	76	418	204	175	260	576	186
AC-FT	5450	6120	4710	4370	4130	15080	63350	21470	25140	98700	112700	21240
CFSM	.06	.06	.05	.04	.05	.15	.67	.22	.26	1.00	1.15	.22
IN.	.06	.07	.06	.05	.05	.18	.74	.25	.29	1.16	1.32	.25


e Estimated.

RED RIVER OF THE NORTH BASIN 05064000 WILD RICE RIVER AT HENDRUM, MN--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1944 - 1993, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	114	104	62.1	45.1	43.7	270	1079	561	413	322	145	108
MAX	744	784	160	121	124	1485	3261	2074	1776	3136	1833	824
(WY)	1972	1972	1972	1986	1984	1966	1978	1985	1962	1975	1993	1973
MIN	.44	3.32	1.08	.092	.22	.46	106	56.1	9.15	8.82	1.07	.18
(WY)	1949	1949	1977	1977	1977	1949	1981	1977	1952	1951	1977	1948
SUMMA	RY STAT	TISTICS F	OR 1992 C	ALENDA	R YEAR	FOR	1993 WAT	TER YEAR		WATER Y	EARS 19	944 - 1993
ANNUA	L TOTAL			78177			192816					
ANNUA	L MEAN			214			528			264 <u>a</u>		
HIGHES	T ANNU	AL MEAN								682		1975
LOWES'	T ANNUA	L MEAN								28.9		1977
	T DAILY			1910	Jul 3		3670	Aug 1		9220		or 10 1978
LOWES	T DAILY	MEAN		33	Jun 15		6 7	Dec 29		.00		p 13 1948
		-DAY MIN		34	Feb 7		68	Dec 27		.00		p 27 1948
		S PEAK FI					3680	Aug 1		9350		or 10 1978
		S PEAK S					27.15 <u>b</u>	Aug 2		32.30 <u>b</u>	Aŗ	or 21 1979
		S LOW FL					61	Nov 5				
		Ŧ (AC-FT)	ı	155100			382500			191000		
		F (CFSM)		.13			.33			.16		
		F (INCHE	S)	1.82			4.48			2.24		
	ENT EXC			455			1820			663		
	ENT EXC			123			198			80		
90 PERC	ENT EXC	CEEDS		37			72			15		

a Median of annual mean discharges is 219 ft³/s.
 b Backwater from Red River of the North.

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN

(National stream quality accounting network station and radiochemical program station)

LOCATION.—Lat 47°21'10", long 96°50'50", on line between secs.24 and 25, T.145 N., R.49 W., Traill County, Hydrologic Unit 09020107, on left bank on upstream side of highway bridge, 0.5 mi west of Halstad, 2.5 mi downstream from Wild Rice River, and at mile 375.2. DRAINAGE AREA.—21,800 mi², approximately, including 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1936 to June 1937 (no winter records), April 1942 to September 1960 (spring and summer months only), May 1961 to current year.

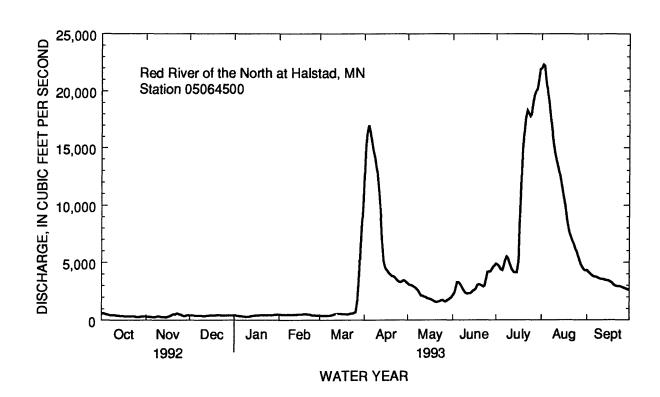
REVISED RECORDS.--WSP 1388: 1936, 1950. WSP 1728: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 826.65 ft above sea level. Prior to July 17, 1961, nonrecording gage at same site and datum.

REMARKS.--Records good except those for Nov. 2 to Apr. 3, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1897 reached a stage of about 38.5 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993


					D/	AILY MEA	N VALUES	3				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	548	352	e430	e405	e490	e390	e12500	3200	e2200	4880	22000	4330
2	611	e320	e420	e405	e490	e380	e15000	3100	e2360	4820	22300	4210
3	581	e310	e410	e400	e480	e380	e16500	3060	e2800	4630	22200	4070
4	543	e295	e405	e380	e470	e380	17000	3000	e3290	4410	20700	3950
5	496	e285	e400	e370	e470	e380	16400	2920	3290	4330	20100	3850
6	463	e280	e400	e360	e480	e380	15600	2830	3170	4650	19100	3780
7	444	e285	e395	e350	e480	e390	14800	2730	2940	5220	17900	3760
8	440	e300	e385	e340	e480	e400	14200	2590	2720	5490	16700	3720
9	448	e340	e380	e320	e480	e410	13400	2380	2510	5350	15600	3650
10	439	e330	e375	e300	e480	e460	12600	2140	2360	5000	14600	3590
11	419	e310	e370	e320	e480	e500	11400	2140	2300	4620	13900	3560
12	402	e295	e370	e340	e480	e540	9570	2070	2350	4350	13400	3550
13	393	e285	e385	e360	e480	e550	7130	2030	2330	4170	12900	3520
14	369	e275	e400	e380	e490	e560	5310	1960	2430	4130	12400	3480
15	357	e270	e410	e400	e500	e560	4670	1900	2570	4130	11500	3450
16	358	e300	e415	e410	e510	e550	4410	1860	2610	5030	10800	3410
17	351	e350	e420	e420	e520	e540	4250	1810	2770	9000	10000	3350
18	351	e400	e425	e430	e530	e540	4080	1740	3070	12300	9100	3250
19	346	e470	e430	e440	e540	e530	394 0	1670	3110	14900	8240	3110
20	330	e540	e440	e450	e540	e520	3850	1620	3060	16600	7640	3000
21	335	e500	e440	e450	e520	e540	3810	1600	3020	17700	7220	2980
22	344	e580	e440	e450	e500	e560	3720	e1620	2920	18300	6880	2960
23	334	e600	e435	e450	e470	e580	3570	e1660	3020	18100	6 590	2960
24	323	e500	e435	e450	e430	e600	3420	e1720	3620	17800	e6200	2920
25	295	e500	e430	e450	e420	e640	3340	e1740	4180	18000	5910	2870
26	289	e420	e430	e450	e410	e700	3320	1680	4200	19000	5490	2810
27	293	e370	e420	e450	e400	e1500	3370	1610	4220	19600	5150	2750
28	302	e360	e420	e460	e400	e3500	3460	e1720	4410	20000	4830	2700
29	327	e410	e415	e470		e6000	3420	e1800	4620	20200	4560	2660
30	335	e440	e415	e480		e8000	3310	e1900	4770	21100	4370	2610
31	336		e410	e490		e10000		e2000		21900	4310	
TOTAL	12202	11272	12755	12630	13420	41960	241350	65800	93220	339710	362590	100810
MEAN	394	376	411	407	479	1354	8045	2123	3107	10960	11700	3360
MAX	611	600	440	490	540	10000	17000	3200	4770	21900	22300	4330
MIN	289	270	370	300	400	380	3310	1600	2200	4130	4310	2610
AC-FT	24200	22360	25300	25050	26620	83230	478700	130500	184900	673800	719200	200000

e Estimated.

RED RIVER OF THE NORTH BASIN 05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued

STATIST	TICS OF I	MONTHLY	MEAN D	ATA FOR	WATER Y	EARS 1961	l - 1993, B	Y WATER	YEAR (W	Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	665	626	493	418	431	1985	6556	3015	2516	2451	1089	668
MAX	2188	1771	1253	1023	1052	9429	20080	8994	10310	20060	11700	3360
(WY)	1987	1972	1987	1987	1987	1966	1969	1979	1962	1975	1993	1993
MIN	61.5	92.3	51.2	32.1	45.9	249	705	449	242	153	59.5	38.4
(WY)	1977	1977	1977	1977	1977	1962	1981	1977	1977	1988	1977	1976

SUMMARY STATISTICS FOR 1992	CALENDA	AR YEAR	FOR 1993 WAT	ER YEAR	WATER YEA	ARS 1961 - 1993
ANNUAL TOTAL ANNUAL MEAN	353845 967		1307719 3583		1757	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	707		. 5505		3968 214	1975 1977
HIGHEST DAILY MEAN LOWEST DAILY MEAN	5000 260	Mar 10 Jan 20	22300 270	Aug 2 Nov 15	41500 10	Apr 22 1979 Sep 2 1976
ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	270	Jan 16	295	Nov 10	17	Aug 28 1976
INSTANTANEOUS PEAK STAGE			22500 30.56	Aug 2 Aug 2	42000 39.00	Apr 22 1979 Apr 22 1979
INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT)	701900		2594000		5.4 1273000	Oct 8 1936
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	2230 699		12400 1660		3790 686	
90 PERCENT EXCEEDS	320		351		200	

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued (National stream quality accounting network station and radiochemical program station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1961-67, 1972 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)		TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
OCT												
14 NOV	1045	378	685		8.2	2.0	5.0	19	11.8	95	280	254
20 JAN	1105	600	848	8.4		1.0	1.0	7.7	16.2	118	340	291
04 FEB	1315	382	825			-10.0	0.5					
	1420	478	771	7.6		-13.0	0.5		8.7	61	320	332
24	1215	430	747	7.8		-11.5	0.5	6.7			320	280
APR												
	1100	17300	419	8.1		5.0	2.0		11.2	83	170	
	1200	16600	434			9.0	4.0					
	1145	4410	714	8.2		6.5	7.0		10.7	91	310	195
MAY	1015	2020	740			00.0	10.0	60		C 7	070	001
14 JUN	1215	2030	748	8.2		23.0	19.0	60	6.0	67	370	231
	1410	2360	876	6.9		17.5	17.0					
	1115	2580	790	7.8		20.0	19.5		6.5	73	350	222
JUL		2000	,,,,	7.0		20.0	17.0		0.0	15	550	
	1020	5200	678	7.9								
18	1000	12100	314	8.0		18.5	19.0		5.0	56	130	100
	1010	18400	378	7.8		20.0	20.0		3.2	36	160	
	1200	19100		7.4		20.5	21.0		2.9			
	1145	20000	453			27.0	24.0					
	0900	22000		7.7		19.5	21.5		1.9		220	160
AUG	1700	10700	205			00.0	01.5			I		
04 13		19700 13000	305 638			23.0	21.5 22.0					
18		9240	633			21.0 29.0	24.0 24.0					
26		5400	680			21.5	23.0					
SEP	- 200	2 100				21.5	20.0					
09	1000	3630	1220	8.2		13.5	15.0	73	7.8	80	320	220

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued

DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	KF AGAR	CALCIUM	DIS-	SODIUM DIS- SOLVED (MG/L)	AD- SORP- TION M RATIO	SOLVED (MG/L AS K)	WATE DIS IT FIELD	TE BONATI R WATER DIS IT FIELD AS MG/L AS CO3	SULFATI DIS- SOLVED S (MG/L AS SO4)	DIS- SOLVED (MG/L
OCT	K13	K16	5 9	31	25	16	0.7	6.8	290	10	72	18
NOV 20		89	72	39	48	23	1	7.4	323	16	120	37
FEB 10			65	38	31	17	0.8	7.0	405	0	83	19
24	37	K28	65	38	33	18	0.8	6.4	341	ő	78	18
APR 04			39	18	15	15	0.5	9.9			60	11
16 MAY			68	35	29	16	0.7	9.8	238	0	160	16
14 JUN	29	95	78	42	36	17	0.8	11	282	0	180	22
15			71	42	33	17	0.8	9.9	271	0	170	18
JUL 18			30	13	10	14	0.4	6.2	122	0	44	6.8
22 31		 	39 50	16 22	10 15	11 13	0.3 0.4	8.2 10	 196	0 0	53 64	7.5 9.4
SEP	-		30	22	13	13	0.4	10	190	U	04	9.4
09	110	180	67	37	27	15	0.7	8.1			130	14
DATE	FLUC RIDE DIS- SOLVE (MG/I AS F (00950	, DIS- SOLVE ED (MG/I L AS) SIO2)	A, SUM CON: ED TUEN L DI: SOLV) (MG	STI- AT NTS, DEC S- DI /ED SOL /L) (MC	DUÉ SOL 180 DI G. C SOL S- (TC VED PI G/L) AC	IS- VED SO DNS (ER -FT)	PER DAY)	NITRO- (GEN, NI IITRITE I IOTAL SO (MG/L (I AS N) A	DIS-	NITRATE DIS-N SOLVED (MG/L AS N)	O2+NO3	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
OCT 14	0.20	12	378	421	0).57	430	0.010	<0.010		0.240	0.240
NOV 	0.30	12	514	525	0	.71	850	<0.010	<0.010		0.180	0.200
FEB 10	0.20	20	466	453	0	.62	585		0.030	0.530		0.560
24 APR	0.20	21	430			.59	507		0.020	0.550		0.570
04	0.20	15	266			.38 13200		0.190	3.41		3.60	
16 MAY	0.20	17	456	503	0	.68 5	199 0		0.020	0.900		0.920
14 JUN	0.30	10	523	546	0	.74 2	990		0.070	0.740		0.810
15 JUL	0.20	12	494	525	0	.71 3	6660		0.060	0.880		0.940
18	0.10	16	189				470		0.030	0.460		0.490
22 31	0.20 0.10	20 27	238 295			.34 12500 .44 19200		0.020 0.030	0.210 0.068		0.230 0.098	
SEP 09	0.20	22	458				470		0.010	0.330		0.340

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, AMMONIA A DIS- SOLVED (MG/L AS N) (00608)	ORGANIC	GEN, ORGANIC DIS-	NITRO- GEN,AM- C MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	MONIA +	NITRO-	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
ОСТ 14	0.020	0.020	0.88		0.90		1.1	0.220	0,10	0 0.110	0.100
NOV											
20 FEB	1.10	1.20	1.4		2.5		2.7	0.470	0.370	0.400	0.360
10		0.310		0.59	1.0	0.90		0.100	0.080)	0.080
24		0.240			0.90			0.090	0.060)	0.060
APR											
04		0.250		1.0	1.4	1.3		0.280	0.260)	0.240
16		0.050		0.75	1.4	0.80		0.280	0.120		0.100
MAY		5.555		0.75		0.00		0.200		-	
14		0.080			1.0			0.240	0.130)	0.130
JUN		0.000			1.0			0.240	0.150	,	0.150
15		0.050	••	0.75	0.80	0.80		0.170	0.130)	0.130
JUL		0.050		0.73	0.00	0.80		0.170	0.130	,	0.150
		0.000		0.41	25	0.50		0.040	0.240	,	0.250
18		0.090		0.41	2.5	0.50		0.840	0.240		0.250
22		0.070		0.63	1.1	0.70		0.350	0.250		0.220
26					1.3			0.340			
31		0.090		0.81	1.1	0.90		0.380	0.330)	0.290
SEP											
09		0.060			0.80			0.350	0.220)	0.210
DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	DIS-	DIS-	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
OCT	•		_			_	4.0	•		• •	210
14	20	51	⋖3	12	27	7	<10	3	<1	<1.0	210
FEB				_							
10				5		39					
APR											
04				110		87					
16		••		25		6					
MAY											
14	20	79	<3	11	46	2	<10	4	<1	<1.0	320
JUN	_•		-			-		•	.=		•
15	•-			5		<1					
JUL	-		-	3		1					
				120							
18				130		6					
22				70		11					
21											
31				44		14					
SEP						14					
	20	63	 ⊲		 37		 <10	 4	 <1	 <1.0	 280

05064500 RED RIVER OF THE NORTH AT HALSTAD, MN--Continued

DATE	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ALPHA COUNT, 2 SIGMA WAT DIS AS TH-230 (PCI/L) (75987)	2 SIGMA SED SUS	ALPHA, COUNT, 2 SIGMA WAT DIS AS NAT U (UG/L) (75986)	ALPHA, DIS-	GROSS ALPHA, SUSP. TOTAL (UG/L AS U-NAT) (80040)	BETA, 2 SIGMA WATER, DISS, AS CS-137 (PCI/L) (75989)	GROSS BETA, DIS- SOLVED (PCI/L AS CS-137) (03515)	GROSS BETA, SUSP. TOTAL (PCI/L AS CS-137) (03516)	BETA, 2 SIGMA WATER, DISS, AS SR90 /Y90 (PCI/L (75988)	GROSS BETA, DIS- SOLVED (PCI/L AS SR/ YT-90) (80050)
OCT 14 MAY 14	<6 <6										
JUL 07 SEP		2.5	6.7	3.6	5.3	13	2.5	13	11	1.8	9.9
09	<6							-			
DATE	GROSS BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90) (80060)	RA-226 2 SIGMA WATER, DISS, (PCI/L) (76001)	RADIUM 226, DIS- SOLVED, RADON METHOD (PCI/L) (09511)	2 SIGMA SED, SUSP, TOT DRY	NATURAL 2 SIGMA	URANIUM NATURAI DIS- SOLVED (UG/L AS U) (22703)	ICARBON,		SUS-	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 14 FEB	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	2 SIGMA WATER, DISS, (PCI/L)	226, DIS- SOLVED, RADON METHOD (PCI/L)	2 SIGMA SED, SUSP, TOT DRY SR90Y90 (PCI/L)	NATURAL 2 SIGMA WATER, DISS, (UG/L)	NATURAI DIS- SOLVED (UG/L AS U)	ICARBON, LORGANIC DIS- SOLVED (MG/L AS C)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 14	BETA, SUSP. TOTAL (PCI/L AS SR/ YT-90)	2 SIGMA WATER, DISS, (PCI/L)	226, DIS- SOLVED, RADON METHOD (PCI/L)	2 SIGMA SED, SUSP, TOT DRY SR90Y90 (PCI/L)	NATURAL 2 SIGMA WATER, DISS, (UG/L)	NATURAI DIS- SOLVED (UG/L AS U)	ICARBON, LORGANIC DIS- SOLVED (MG/L AS C)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)

05067500 MARSH RIVER NEAR SHELLY, MIN

LOCATION.--Lat 47°24'45", long 96°45'50", in NE¹/4NW¹/4 sec.3, T.145 N., R.48 W., Norman County, Hydrologic Unit 09020107, near center of span on downstream truss of bridge, 3.8 mi southeast of Shelly and 10 mi upstream from mouth.

DRAINAGE AREA.--151 mi².

PERIOD OF RECORD.--March 1944 to September 1983 and April 1985 to current year (no winter records since 1989). Monthly discharge only for March 1944, published in WSP 1308. Operated as a high-flow partial-record station October 1983 to March 1985.

GAGE.--Water-stage recorder. Datum of gage is 841.14 ft above mean sea level (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1965, nonrecording gage at datum 3.0 ft higher. Oct. 1, 1965, to May 17, 1989, nonrecording gage at present site and datum.

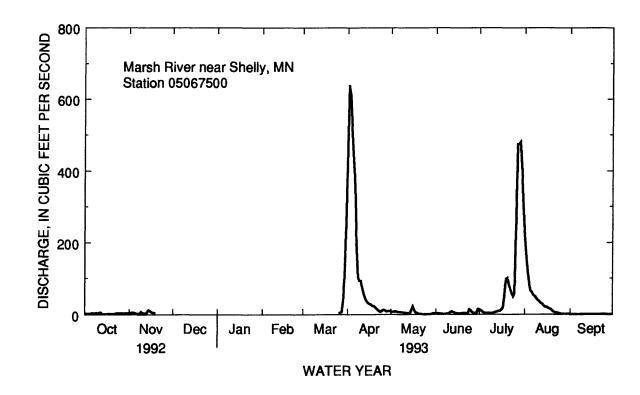
REMARKS.--Records fair. Large part of high flow of Wild Rice River diverted into Marsh River basin at overflow section 4.6 mi east of Ada. Another diversion from Wild Rice River basin formed in 1947, 1.5 mi southeast of Ada and diverted water at all stages 1947-51, after which it was closed except for a small regulated flow diverted for abatement of pollution from Ada sewage plant effluent.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	ILY MEAI	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.5	3.8					e460	8.7	3.0	14	e220	.91
2	3.1	4.8					e640	8.0	3.3	11	e160	.68
3	3.1	6.1					e610	7.4	3.5	7.4	e100	.72
4	2.8	5.4								7.4 5.3	e120 e85	
							e520	8.2	2.8			.70
5	3.4	4.4		-=-			e430	7.9	2.0	4.2	e66	.77
6	4.2	3.5					357	7.3	1.6	4.6	e60	.87
7	4.0	3.0					198	6.6	1.4	4.4	e53	.88
8	3.6	2.6					104	5.8	1.5	3.8	e49	.73
9	4.8	8.0					93	5.6	2.5	3.5	e44	.90
10	4.6	5.1					93	5.4	1.9	3.8	e39	.77
11	5.0	4.2					78	5.1	7.0	4.9	e35	.71
12	5.8	4.4					59	4.5	8.4	7.3	e31	.66
13	2.5	5.3					47	4.3	7.0	7.6	29	.62
14	1.9	12					37	3.8	5.1	9.5	24	.55
15	1.9	11					32	13	3.6	10	20	.49
13	1.9	11					32	15	5.0	10	20	.42
16	1.8	8.1					29	22	3.2	14	20	.38
17	2.0	6.2					27	11	3.5	18	17	.29
18	2.0	5.1					24	6.0	3.2	54	16	.26
19	2.1	4.9					23	4.1	3.1	98	14	.30
20	2.4						20	2.4	4.2	101	10	.23
20	2.4						20	2.4	4.2	101	10	.23
21	2.2						16	1.4	3.8	85	7.3	.21
22	2.5						12	.95	3.0	70	5.8	.19
23	3.7						8.4	.91	3.2	59	5.0	.25
24	3.9						8.0	.79	14	50	4.4	.23
25	3.9						11	.75	11	57	3.0	.14
26	3.7					e4.1	13	.64	6.2	272	1.8	.15
27	3.7					e5.0	11	.60	4.4	473	1.5	.20
28	3.6					e7.8	8.6	.74	4.0	474	1.1	.22
29	4.0					e47	9.6	1.9	4.3	e480	.96	.20
30	4.2					e130	10	3.1	15	e400	1.2	.19
31	4.0					e290		3.4		e300	1.0	
TOTAL	104.0	107.0				401.0	2000 €	160 00	1407	2104 2	1145.06	14.40
TOTAL	104.0	107.9				483.9	3988.6	162.28	140.7	3106.3		14.40
MEAN	3.35	5.68				80.6	133	5.23	4.69	100	36.9	.48
MAX	5.8	12			***	290	640	22	15	480	220	.91
MIN	1.8	2.6				4.1	8.0	.60	1.4	3.5	.96	.14
AC-FT	206	214				960	7910	322	279	6160	2270	29
CFSM	.02	.04				.53	.88	.03	.03	.66	.24	.00
IN.	.03	.03				.12	.98	.04	.03	.77	.28	.00

e Estimated.

05067500 MARSH RIVER NEAR SHELLY, MN--Continued


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1944 - 1993, B	Y WATER YEAR (WY)
--	-------------------

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	12.4	10.7	5.60	3.79	3.29	69.5	292	128	81.3	72.6	21.1	11.6
MAX	130	102	<i>7</i> 7.1	64.5	62.1	437	1537	2617	1030	820	363	144
(WY)	1952	1952	1951	1951	1951	1945	1950	1950	1950	1950	1949	1944
MIN	.000	.000	.000	.000	.000	.000	.078	.87	.000	.000	.000	.000
(WY)	1955	1956	1956	1946	1946	1964	1981	1980	1980	1961	1959	1954
SUMMA	RY STAT	TISTICS F	OR 1992 C	ALENDA	R YEAR	FOR	1993 WAT	TER YEAR		WATER Y	EARS 194	4 - 1993

ANNUAL MEAN					63.3a	
HIGHEST ANNUAL MEAN					543	1950
LOWEST ANNUAL MEAN					1.24	1977
HIGHEST DAILY MEAN	390	Mar 8	640	Apr 2	4740	Apr 19 1979
LOWEST DAILY MEAN			.14	Sep 25	.00	Many days
ANNUAL SEVEN-DAY MINIMUM				-	.00	Many times
INSTANTANEOUS PEAK FLOW			660	Apr 2	4880	Apr 19 1979
INSTANTANEOUS PEAK STAGE			13.78 <u>b</u>	Apr 2	23.36 <u>c</u>	Apr 19 1979
ANNUAL RUNOFF (AC-FT)					45850	
ANNUAL RUNOFF (CFSM)					.42	
ANNUAL RUNOFF (INCHES)					5.69	
10 PERCENT EXCEEDS					105	
50 PERCENT EXCEEDS					1.0	
90 PERCENT EXCEEDS					.00	

a Median of annual mean discharges is 46 ft³/s.
 b Backwater from ice.

c From floodmark.

05069000 SAND HILL RIVER AT CLIMAX, MN

LOCATION.--Lat 47°36'43", long 96°48'52", in NE¹/₄NE¹/₄ sec.30, T.148 N., R.48 W., Polk County, Hydrologic Unit 09020301, on left bank 25 ft upstream from bridge on U.S. Highway 75 in Climax and 3.7 mi upstream from mouth.

DRAINAGE AREA.--426 mi².

PERIOD OF RECORD.--March 1943 to September 1984, June 1985 to current year (winter records incomplete prior to 1947). Monthly discharge only for some periods, published in WSP 1308 and 1728. October 1984 to May 1985, operated as a high-flow partial-record station.

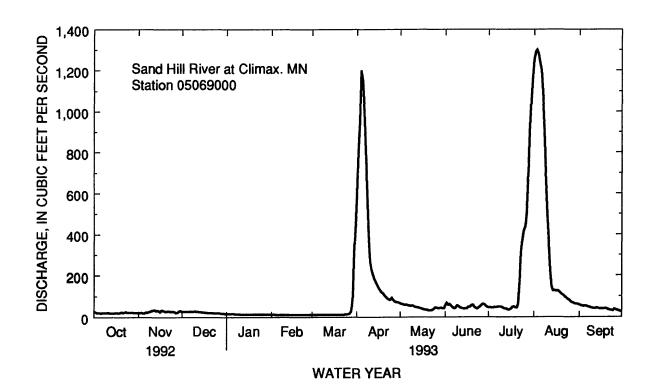
REVISED RECORDS.--WSP 1388: 1943(M), 1944, 1947(M). WSP 1728: 1951(M), 1960 (Average discharge).

GAGE.--Water stage recorder. Datum of gage is 820.10 ft above mean sea level (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1966, nonrecording gage at site 3.2 mi upstream at datum 12.78 ft higher. Oct. 1, 1966, to Sept 5, 1989, nonrecording gage at present site and datum. REMARKS.--Records good except those for estimated daily discharges, which are fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27	21	28	e17	e13	e12	e600	66	58	46	e1250	58
2	25 22	22	27	e17	e13	e12	e800	64	67 50	46	e1290	56 54
3 4	22 22	23 20	28 27	e16 e16	e13 e12	e12	e950 e1200	61 59	59 61	45 44	e1300 e1280	52
5	21	19	e27	e16	e12	e12 e12	e1200	60	53	48	e1240	53
3	21	19	621	CIO	612	612	61130	00	33	70	C1240	33
6	20	24	27	e16	e12	e12	e1000	57	48	48	e1200	52
7	21	23	28	e15	e12	e12	e810	55	42	49	1100	49
8	21	25	28	e15	e12	e12	e600	53	43	50	e900	47
9	21	28	28	e15	e12	e12	e400	55	56	49	e700	45
10	22	30	e29	e15	e12	e12	e270	54	53	47	e500	43
11	23	34	e28	e14	e12	e12	e230	50	46	43	e350	41
12	20	35	e27	e14	e12	e12	205	48	45	39	227	41
13	20	30	e26	e14	e12	e12	184	46	42	39	150	44
14	20	32	e25	el4	e12	e12	169	44	40	36	127	41
15	20	31	e24	e14	e12	e12	153	41	41	35	128	40
16	21	25	e24	e14	e12	e12	141	39	42	39	126	40
17	22	34	e23	e14	e12	e12	129	37	49	47	127	39
18	19	32	e23	e14	e12	e12	121	35	5 0	51	123	39
19	21	29	e22	e14	e12	e12	114	35	57	46	116	41
20	24	27	e22	e13	e12	e12	106	33	59	45	110	38
21	21	29	e21	e13	e12	e12	98	32	50	61	105	36
22	23	29	e21	e13	e12	e12	90	32	43	171	99	34
23	26	28	e20	e13	e12	e12	85	34	40	307	93	32
24	23	28	e20	e13	e12	e13	84	38	46	e380	87	31
25	23	27	e19	e13	e12	e14	93	46	51	e420	82	38
26	23	e26	e19	e13	e12	e15	83	45	59	e440	75	35
27	23	22	e19	e13	e12	e17	76	42	63	e500	70	32
28	23	23	e18	e13	e12	e27	73	43	60	e700	67	30
29	22	29	e18	e13		e100	72	45	53	e900	63	28
30	21	30	e18	e13		e310	69	41	48	e1050 .	63	26
31	21		e17	e13		e450		42		el 150	62	
TOTAL	681	815	731	440	339	1222	10155	1432	1524	6971	13210	1235
MEAN	22.0	27.2	23.6	14.2	12.1	39.4	338	46.2	50.8	225	426	41.2
MAX	27	35	29	17	13	450	1200	66	67	1150	1300	58
MIN	19	19	17	13	12	12	69	32	40	35	62	26
AC-FT	1350	1620	1450	873	672	2420	20140	2840	3020	13830	26200	2450
CFSM	.05	.06	.06	.03	.03	.09	.79	.11	.12	.5 3	1.00	.10
IN.	.06	.07	.06	.04	.03	.11	.89	.13	.13	.61	1.15	.11

e Estimated.


05069000 SAND HILL RIVER AT CLIMAX, MN--Continued

OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
31.8	27.2	16.7	12.3	12.2	74.7	345	118	94.0	61.4	37.7	25.2
223	209	48.7	30.1	46.8	385	946	1156	596	298	426	93.9
1972	1972	1972	1986	1984	19 66	1978	1950	1984	1962	1993	1985
9.43	8.64	5.11	2.02	3.55	5.81	25.3	23.7	11.5	8.95	6.30	6.49
1977	1956	1964	1962	1962	1948	1981	1958	1980	1980	1961	1955
	31.8 223 1972 9.43	31.8 27.2 223 209 1972 1972 9.43 8.64	31.8 27.2 16.7 223 209 48.7 1972 1972 1972 9.43 8.64 5.11	31.8 27.2 16.7 12.3 223 209 48.7 30.1 1972 1972 1972 1986 9.43 8.64 5.11 2.02	31.8 27.2 16.7 12.3 12.2 223 209 48.7 30.1 46.8 1972 1972 1972 1986 1984 9.43 8.64 5.11 2.02 3.55	31.8 27.2 16.7 12.3 12.2 74.7 223 209 48.7 30.1 46.8 385 1972 1972 1986 1984 1966 9.43 8.64 5.11 2.02 3.55 5.81	31.8 27.2 16.7 12.3 12.2 74.7 345 223 209 48.7 30.1 46.8 385 946 1972 1972 1986 1984 1966 1978 9.43 8.64 5.11 2.02 3.55 5.81 25.3	31.8 27.2 16.7 12.3 12.2 74.7 345 118 223 209 48.7 30.1 46.8 385 946 1156 1972 1972 1972 1986 1984 1966 1978 1950 9.43 8.64 5.11 2.02 3.55 5.81 25.3 23.7	31.8 27.2 16.7 12.3 12.2 74.7 345 118 94.0 223 209 48.7 30.1 46.8 385 946 1156 596 1972 1972 1972 1986 1984 1966 1978 1950 1984 9.43 8.64 5.11 2.02 3.55 5.81 25.3 23.7 11.5	31.8 27.2 16.7 12.3 12.2 74.7 345 118 94.0 61.4 223 209 48.7 30.1 46.8 385 946 1156 596 298 1972 1972 1972 1986 1984 1966 1978 1950 1984 1962 9.43 8.64 5.11 2.02 3.55 5.81 25.3 23.7 11.5 8.95	31.8 27.2 16.7 12.3 12.2 74.7 345 118 94.0 61.4 37.7 223 209 48.7 30.1 46.8 385 946 1156 596 298 426 1972 1972 1972 1986 1984 1966 1978 1950 1984 1962 1993 9.43 8.64 5.11 2.02 3.55 5.81 25.3 23.7 11.5 8.95 6.30

SUMMARY STATISTICS FOR	1992 CALENDA	R YEAR	FOR 1993 WATE	ER YEAR	WATER YEA	RS 1943 - 1993
ANNUAL TOTAL	13877.9		38755			
ANNUAL MEAN	37.9		106		70.6 <u>a</u>	
HIGHEST ANNUAL MEAN					204	1950
LOWEST ANNUAL MEAN					18.4	1977
HIGHEST DAILY MEAN	270	Aug 25	1300	Aug 3	4360	Apr 14 1965
LOWEST DAILY MEAN	5.8	Aug 6	12 Feb	4 - Mar 23	1.0	Jan 17 1962
ANNUAL SEVEN-DAY MINIMU	U M 6.8	Aug 15	12	Feb	41.1	Jan 12 1962
INSTANTANEOUS PEAK FLOY	V	•	1320	Aug 3	4560	Apr 14 1965
INSTANTANEOUS PEAK STAG	Ε		16.13 <u>b</u>	Aug 3	32.79 <u>c</u>	Apr 23 1979
INSTANTANEOUS LOW FLOW	•		5.6	Oct 19		_
ANNUAL RUNOFF (AC-FT)	27530		76870		51160	
ANNUAL RUNOFF (CFSM)	.089		.25		.17	
ANNUAL RUNOFF (INCHES)	1.21		3.38		2.25	
10 PERCENT EXCEEDS	78		176		139	
50 PERCENT EXCEEDS	27		32		22	
90 PERCENT EXCEEDS	10		12		8.6	

a Median of annual mean discharges is 51 ft³/s.

c From floodmark (backwater from Red River of the North).

b Backwater from ice.

05074000 LOWER RED LAKE NEAR RED LAKE, MN

LOCATION.--Lat 47°57'27", long 95°16'34", in SW1/4NW1/4 sec. 28, T. 152 N., R. 36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank just upstream from dam at outlet, 13 mi northwest of city of Red Lake.

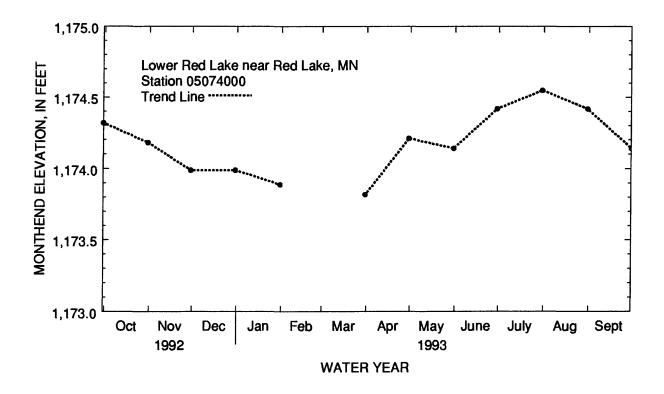
DRAINAGE AREA.--1,950 mi², approximately.

PERIOD OF RECORD.--June 1930 to November 1932 and May 1933 to current year. Published as "Red lake at Redby" prior to May 1933 and as "Red Lake near Red Lake" May 1933 to September 1940. Records on Upper Red Lake published as Red Lake at Waskish, April 1930 to September 1933, all in reports of Geological Survey. October 1921 to September 1929 gage heights at Redby and on Upper Red Lake at Waskish in files of Minnesota Department of Natural Resources (fragmentary).

GAGE.--Water-stage recorder. Datum of gage is 1,100.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers); gage readings have been reduced to elevations based on adjustment of 1912. May 1933 to Sept. 6, 1934, nonrecording gage and Sept. 7, 1934 to Sept. 30, 1986, recording gage at same site at datum 69.00 ft higher. Nonrecording gages at Waskish and Redby.

REMARKS .-- Water level subject to fluctuation caused by change in direction and velocity of wind and by seiches.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 1,178.53 ft, June 25, 1950; minimum recorded, 1,169.80 ft, Nov. 20, 1936.


EXTREMES FOR CURRENT YEAR.--Maximum daily, 1,174.65 ft, July 27; minimum daily, 1,173.35 ft, Oct. 12.

MONTHEND ELEVATION, IN FEET, OCTOBER 1992 TO SEPTEMBER 1993

Oct. 311174.18	Feb. 28	June 301174.42
Nov. 301173.99	Mar. 311173.82	July 311174.55
Dec. 31 1173.99	Apr. 301174.21	Aug. 311174.42
Jan. 31 1173.89	May 311174.14	Sept. 301174.14

NOTE.--Mean daily gage heights are available.

05074000 LOWER RED LAKE NEAR RED LAKE, MN--Continued

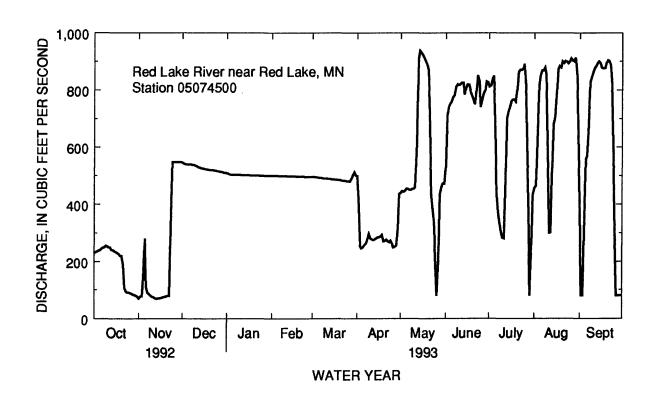
05074500 RED LAKE RIVER NEAR RED LAKE, MN

LOCATION.--Lat 47°57'27", long 95°16'35", in SW1/4NW1/4 sec. 28, T. 152 N., R. 36 W., Clearwater County, Hydrologic Unit 09020302, on Red Lake Indian Reservation, on left bank 50 ft downstream from dam at outlet of Lower Red Lake and 13 mi northwest of city of Red Lake. DRAINAGE AREA.--1,950 mi², approximately.

PERIOD OF RECORD.--May 1933 to current year. Monthly discharge only for May 1933, published in WSP 1308.

GAGE.--Water-stage recorder. Datum of gage is 1,100.00 ft, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 7, 1934, nonrecording gage at site 50 ft upstream at datum 69.00 ft higher. Sept. 7, 1934, to Nov. 26, 1951, water-stage recorder at present site at datum 69.00 ft higher. Nov. 27, 1951 to Sept. 30, 1986, water-stage recorder at present site at datum 67.00 ft higher.

REMARKS.--Records poor. Flow completely regulated by outlet dam on Lower Red Lake.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e230	70	e545	e508	e499	e495	498	439	536	812	456	e360
2	e233	76	e542	e506	e499	e495	418	445	711	815	464	e80
3	e235	77	e540	e504	e499	e494	255	443	741	840	618	e80
4	e238	142	e540	e503	e499	e494	246	447	751	848	816	e300
5	e240	280	e540	e503	e499	e493	249	454	760	654	851	556
6	e245	110	e539	e503	e498	e492	258	453	774	443	868	571
7	e248	88	e539	e503	e498	e492	263	449	781	373	867	678
8	e250	85	e537	e503	e498	e491	280	449	811	337	878	827
9	255	79	e537	e503	e498	e490	296	453	820	303	854	846
10	253	76	e535	e503	e498	e490	281	454	816	283	e575	861
11	249	e74	e533	e502	e498	e489	277	460	821	281	e300	876
12	250	e71	e530	e502	e497	e488	275	613	825	440	e300	883
13	241	e68	e528	e502	e497	e488	277	907	825	700	e490	894
14	239	e69	e526	e502	e497	e487	281	937	784	723	680	900
15	235	e70	e525	e502	e497	e486	284	930	810	740	706	893
16	233	e71	e524	e502	e497	e486	285	923	819	762	775	877
17	230	e72	e523	e501	e497	e485	287	911	818	766	872	875
18	226	e74	e522	e501	e496	e485	293	901	793	766	883	876
19	220	e75	e521	e501	e496	e484	271	887	781	759	878	893
20	219	e76	e520	e501	e496	e484	272	870	765	806	900	903
21	187	e78	e520	e501	e496	e483	276	720	749	864	894	901
22	106	e78	e519	e501	e496	e482	271	436	799	871	901	886
23	93	e320	e518	e501	e496	e482	267	380	851	869	898	818
24	89	e547	e517	e500	e495	e481	273	e340	829	874	893	565
25	89	e547	e516	e500	e495	e480	262	e185	741	891	899	313
26	87	e547	e515	e500	e495	e479	249	e80	765	815	909	e80
27	85	e547	e514	e500	e495	478	252	e200	785	608	902	e80
28	83	e547	e513	e500	e495	490	255	435	7 97	366	900	e80
29	81	e547	e512	e500		503	316	459	829	e80	912	e80
30	79	e547	e510	e499		512	435	472	826	e260	848	e80
31	75		e509	e499		499		471		433	637	
TOTAL	5823	6108	16309	15556	13916	15157	8702	17003	23513	19382	23624	17912
MEAN	188	204	526	502	497	489	290	548	784	625	762	597
MAX	255	547	545	508	499	512	498	937	851	891	912	903
MIN	75	68	509	499	495	478	246	80	536	80	300	80
AC-FT	11550	12120	32350	30860	27600	30060	17260	33730	46640	38440	46860	35530
CFSM	.10	.10	.27	.26	.25	.25	.15	.28	.40	.32	.39	.31
IN.	.11	.12	.31	.30	.27	.29	.17	.32	.45	.37	.45	.34

e Estimated.

05074500 RED LAKE RIVER NEAR RED LAKE, MN--Continued

STATIS	TICS OF I	MONTHI	Y MEAN I	DATA FOR	R WATER Y	EARS 1933	3 - 1993, B	Y WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	465	454	451	464	450	40.4	225	407	E71	£20	465	450
				464	458	424	335	487	571	538	465	459
MAX	2071	1649	1498	1418	1342	1396	1199	1624	2025	1840	1464	1712
(WY)	1951	1951	1951	1951	1951	1951	1951	1950	1950	1950	1975	1950
MIN	5.10	3.57	.95	.35	.40	.60	4.00	.60	2.15	4.63	2.73	1.6
(WY)	1934	1934	1934	1934	1934	1936	1936	1933	1933	1934	1936	1934
SUMMA	RY STAT	TISTICS	FOR 1992	CALENDA	R YEAR	FOR	1993 WAT	TER YEAR		WATER Y	EARS 193	3 - 1993
ANNUA	L TOTAL			48554			183005					
ANNUA		•		133			501			468		
	T ANNU	AT. MEAT	V	133			501			1292		1951
	T ANNUA									5.55		1936
	T DAILY		•	547	Nov 24		937	May 14		2240	Oct	6 1950
	Γ DAILY			54	Jul 9		68	Nov 13		.00		19 1933
	L SEVEN		MIMIM	54	Jul 9		71	Nov 11		.00		1 1934
	TANEOU			54	Jul)		955	Aug 30		3600		25 1950
	TANEOU						73.81	Aug 30		78.19		25 1950
	LRUNOF			96310			363000	Aug 50		338900	Juii	25 1950
	LRUNOF			.068			.26			.24		
	L RUNOF			.93			3.49			3.26		
	ENT EXC		,	511			870			1010		
	ENT EXC			72			499			377		
	ENT EXC			60			49 9 91			35		
30 LEVC	THAT TAKE	LIEUS		60			91			33		

05075000 RED LAKE RIVER AT HIGH LANDING, NEAR GOODRIDGE, MN

LOCATION.--Lat 48°02'34", long 95°48'28", in NW¹/4NW¹/4 sec.28, T.153 N., R.40 W., Pennington County, Hydrologic Unit 09020303, on left bank 50 ft upstream from highway bridge at High Landing, 7 mi south of Goodridge and 33 mi upstream from Thief River.

DRAINAGE AREA.--2,300 mi², approximately.

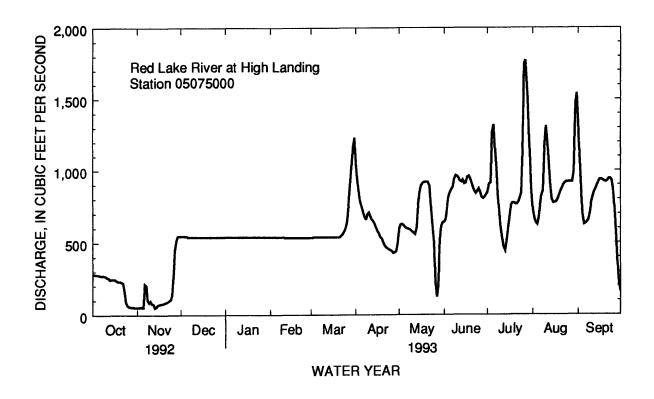
PERIOD OF RECORD.--September 1929 to current year. Prior to October 1930, published as "at Kratka".

GAGE.--Water-stage recorder. Datum of gage is 1,141.57 ft above sea level, adjustment of 1912 (levels by U.S. Army Corps of Engineers). See WSP 1308 or 1738 for history of changes prior to Oct. 1, 1949.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by outlet dam on Lower Red Lake.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	285	52	e545	e540	e540	e535	e1050	594	643	846	728	1330
2	280	53	e545	e540	e540	e535	e950	624	659	904	666	1110
3 4	278	54	e545	e540	e540	e540	e860	627	746	912	637	877
4	277	52	e545	e540	e540	e540	795	619	815	1270	623	693
5	277	53	e545	e540	e540	e540	749	608	846	1320	667	626
6	272	213	e540	e540	e540	e540	709	598	866	1170	759	629
7	271	202	e540	e540	e540	e540	679	597	883	1010	823	642
8	272	101	e540	e540	e540	e540	659	592	939	834	860	654
9	270	86	e540	e540	e540	e540	694	585	963	694	1160	703
10	265	97	e540	e540	e540	e540	708	574	960	597	1310	772
11	259	77	e540	e540	e535	e540	684	568	945	524	1190	816
12	254	75	e540	e540	e535	e540	660	559	925	470	1050	848
13	244	51	e540	e540	e535	e540	649	605	920	444	912	870
14	246	e56	e540	e540	e535	e540	630	752	931	504	800	894
15	246	e68	e540	e540	e535	e540	602	845	906	600	771	918
16	245	e73	e540	e540	e535	e540	581	890	910	690	774	934
17	240	e75	e540	e540	e535	e540	561	911	953	756	778	934
18	233	e77	e540	e540	e535	e540	539	917	960	771	795	928
19	229	e80	e540	e540	e535	e540	528	919	942	773	825	921
20	229	e84	e540	e540	e535	e540	504	918	911	765	852	919
21	226	e88	e540	e540	e535	e540	480	917	880	763	876	925
22	220	e92	e540	e540	e535	e550	468	890	852	776	898	941
23	154	e98	e540	e540	e535	e560	458	728	839	801	913	942
24	88	e105	e540	e540	e535	e580	451	618	854	839	918	928
25	65	e140	e540	e540	e535	e600	447	499	871	1130	920	869
26	58	e300	e540	e540	e535	e6 5 0	442	224	843	1750	918	721
27	56	e450	e540	e540	e535	e750	427	124	811	1770	919	530
28	55	e520	e540	e540	e535	e900	432	195	804	1600	918	349
29	54	e545	e540	e540		e1050	441	519	811	1380	988	220
30	53	e545	e540	e540		e1150	489	611	830	1120	1470	156
31	52		e540	e540		e1230		638		877	1540	
TOTAL	6253	4562	16765	16740	15030	19350	18326	19865	26018	28660	28258	23599
MEAN	202	152	541	540	537	624	611	641	867	925	912	787
MAX	285	545	545	540	540	1230	1050	919	963	1770	1540	1330
MIN	52	51	540	540	535	535	427	124	643	444	623	156
AC-FT	12400	9050	33250	33200	29 810	38380	36350	39400	51610	56850	56050	46810
CFSM	.09	.07	.24	.23	.23	.27	.27	.28	.38	.40	.40	.34
IN.	.10	.07	.27	.27	.24	.31	.30	.32	.42	.46	.46	.38


e Estimated.

RED RIVER OF THE NORTH BASIN

05075000 RED LAKE RIVER AT HIGH LANDING, NEAR GOODRIDGE, MN--Continued

STATIST	FICS OF I	MONTHLY	MEAN E	ATA FOR	WATER Y	EARS 1930) - 1993, BY	WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	518	490	445	444	440	476	658	662	657	566	491	512
MAX	1955	1730	1539	1424	1366	1453	1980	3179	2161	2474	1478	1733
(WY)	1951	1951	1951	1951	1951	1951	1951	1950	1950	1975	1975	1950
MIN	2.11	1.61	.000	.000	.000	.000	24.7	5. <i>5</i> 8	1.04	5.92	.026	.000
(WY)	1934	1934	1934	1934	1934	1936	1933	1933	1936	1934	1934	1934
SUMMA	RY STAT	TISTICS F	OR 1992	CALENDA	R YEAR	FOR	1993 WAT	ER YEAR		WATER Y	EARS 19	30 - 1993
				60.400			000 406					
	L TOTAL	•		63428			223426			530		
	L MEAN			173			612			1407		1951
		AL MEAN								6.21		1934
		L MEAN		545	Nov 29		1770	Jul 27		4040	Ţ.	1 7 1975
	TDAILY			545 51	Nov 29 Nov 13		51	Nov 13		.00		lany days
	I DAILY		TTA 4T TA 4TT	53	Oct 30		53	Oct 30		.00		16 1933
		-DAY MIN IS PEAK F		33	OCI 30		1860	Jul 26		4060		1 7 1975
		S PEAK S					10.74a	Mar 31		13.44		1 3 1975
		F (AC-FT)		125800			443200	17101 31		383800		
		F (CFSM)		.075			.27			.23		
		F (INCHE		1.03			3.61			3.13		
	ENT EXC		٠,	374			929			1160		
	ENT EXC			101			540			410		
	ENT EXC			61			209			32		

a Backwater from ice.

05076000 THIEF RIVER NEAR THIEF RIVER FALLS, MN

LOCATION.--Lat 48°11'08", long 96°10'11", in NW¹/4SW¹/4 sec.3, T.154 N., R.43 W., Marshall County, Hydrologic Unit 09020304, on right bank, 0.2 mi upstream from highway bridge, 5 mi north of Thief River Falls, 7 mi upstream from mouth, and 9 mi downstream from Mud Lake National Wildlife Refuge.

DRAINAGE AREA. -- 959 mi².

PERIOD OF RECORD.--July 1909 to September 1917, April 1920 to September 1921, October 1922 to September 1924, October 1928 to September 1981, March 1982 to current year. Monthly discharge only for some periods, annual maximums for water years 1919, 1922, 1925, 1926, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station.

REVISED RECORDS.--WSP 925: Drainage area. WSP 1308: 1917(M), 1924(M), 1929(M), 1931-33(M), 1935(M), 1937(M).

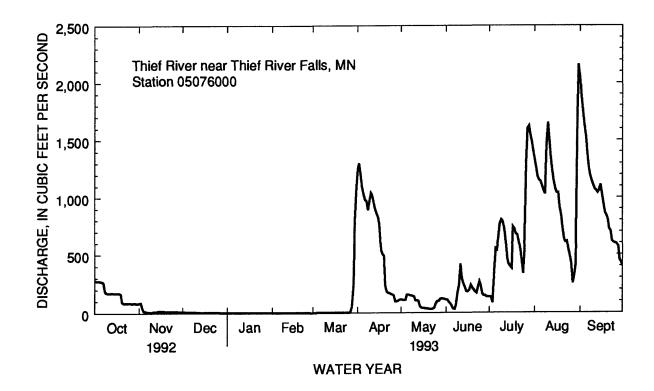
GAGE.--Water-stage recorder and control of grouted boulders. Datum of gage is 1,112.33 ft above mean sea level (levels by Minnesota Department of Transportation). Prior to May 4, 1939, nonrecording gages at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation by Thief and Mud Lakes.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					D	AILY MEAI	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	278 275	86 87	9.5 9.0	1.7 1.8	e1.7 e1.8	e.39 e.37	e1250 e1300	112 111	111 110	135 132	1330 1250	2040 1870
3	273	42	7.9	1.9	e1.8	e.41	e1200	107	89	85	1180	1730
4	273	17	7.1	1.8	e1.7	e.48	el 100	109	81	311	1150	1630
5	272	16	6.6	1.7	e1.6	e.53	1030	153	53	550	1140	1520
6	269	9.9	7.4	1.7	e1.5	e.58	977	154	32	537	1100	1380
7 8	260	8.8	6.9	1.7	e1.4	e.63	970	150	31	654 765	1060	1250
9	188 174	8.3 7.4	6.8 7.1	1.6 1.6	e1.3 e1.2	e.68 e.78	890 962	147 143	65 176	802	1030 1460	1190 1140
10	172	8.6	6.8	1.6	e1.2	e.86	1040	137	230	789	1650	1110
11	172	8.9	5.2	1.6	e1.1	e.95	1020	105	416	728	1470	1070
12	172	11	4.7	1.6	e1.0	e1.0	955	103	293	636	1340	1060
13	173	11	4.9	1.6	e.98	e.98	903	98	245	466	1240	1040
14	172	16	5.1	1.6	e.94	e.96	860	56	222	419	1140	1060
15	172	16	5.1	1.6	e.89	e.94	823	42	182	397	1070	1110
16	172	16	5.1	1.6	e.83	e.92	761	39	181	379	1040	1040
17	172	15	4.9	1.6	e.78	e.90	540	39	194	741	1040	950
18	171	15	4.6	1.6	e.74	e.89	505	36	234	722	918	862
19 20	164 94	14 13	4.6 4.5	1.6 1.6	e.70 e.66	e.88 e.89	487 235	34 33	213 196	680 668	844 740	840 8 06
20	74	15	4.5	1.0	0.00	0.07	233	33	1,0	000	, 10	000
21	86	12	4.2	1.6	e.62	e.90	180	30	181	613	639	722
22	86	14	4.1	1.6	e.58	e.94	170	29	169	539	607	701
23 24	85 85	14 13	3.9 3.6	1.6 1.6	e.55	e.97 e1.2	165 161	32	214 266	452 336	614 546	615 601
24 25	83 84	14	3.4	1.6	e.52 e.49	e1.2 e1.4	156	42 78	233	537	480	597
23	04	14	3.4	1.0	U. 47	61.4	150					
26	84	14	3.1	1.6	e.46	e2.1	147	95	159	1300	420	591
27	83	12	2.7	1.6	e.44	e5.0	95	100	146	1600	252	565
28	84 84	11	2.3	1.6	e.41	e50 e250	96 100	116 121	140 134	1620 1550	308 411	448 436
29 30	83	10 9.6	2.0 1.8	1.6 1.6		e230 e800	102 111	118	134	1480	1730	394
31	82		1.8	e1.6		e1100		115		1410	2160	
TOTAL	4994	550.5	156.7	50.7	27.89	2227.53	19191	2784	5131	22033	31359	30368
MEAN	161	18.3	5.05	1.64	1.00	71.9	640	89.8	171	711	1012	1012
MAX	278	87	9.5	1.9	1.8	1100	1300	154	416	1620	2160	2040
MIN	82	7.4	1.8	1.6	.41	.37	95	29	31	85	252	394
AC-FT	9910	1090	311	101	55	4420	38070	5520	10180	43700	62200	60230
CFSM	.17	.02	.01	.00	.00	.07	.67	.09	.18	.74	1.05	1.06
IN.	.19	.02	.01	.00	.00	.09	.74	.11	.20	.85	1.22	1.18

e Estimated.


RED RIVER OF THE NORTH BASIN 05076000 THIEF RIVER NEAR THIEF RIVER FALLS, MN--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1909 - 1993, BY WAT	TER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JOL	AUG	SEP
MEAN	84.6	61.9	19.2	5.57	3.53	66.5	579	458	285	199	93.9	97.5
MAX	637	844	206	100	45.0	609	2827	4274	1774	2103	1012	1012
(WY)	1986	1972	1945	1910	1910	1983	1966	1950	1962	1975	1993	1993
MIN	.000	.000	.000	.000	.000	.000	7.75	1.83	.032	.000	.000	.000
(WY)	1911	1911	1911	1911	1911	1930	1981	1990	1980	1932	1932	1929

SUMMARY STATISTICS	FOR 1992 CALENDA	R YEAR	FOR 1993 WAT	ER YEAR	WATER YEA	RS 1909 - 1993
ANNUAL TOTAL	57704.9		118873.32			
ANNUAL MEAN	158		326		162 <u>a</u>	
HIGHEST ANNUAL MEAI	N				607	1966
LOWEST ANNUAL MEAN	I				1.28	1939
HIGHEST DAILY MEAN	1210	Apr 22	2160	Aug 31	5580	May 13 1950
LOWEST DAILY MEAN	1.8	Dec 30	.37	Mar 2	.00 <u>b</u>	
ANNUAL SEVEN-DAY M	NIMUM 2.4	Dec 25	.42	Feb 26	.00	Oct 1 1910
INSTANTANEOUS PEAK	FLOW		2180	Aug 31	5610	May 13 1950
INSTANTANEOUS PEAK	STAGE		11.90 <u>c</u>	Apr 3	17.38	May 13 1950
ANNUAL RUNOFF (AC-F	Γ) 114500		235800	•	117300	
ANNUAL RUNOFF (CFSM	n) .16		.34		.17	
ANNUAL RUNOFF (INCH	ÉS) 2.24		4.61		2.29	
10 PERCENT EXCEEDS	464		1080		512	
50 PERCENT EXCEEDS	43		98		6.9	
90 PERCENT EXCEEDS	2.7		.98		.00	

<sup>a Median of annual mean discharges is 110 ft³/s.
b Many days, several years.
c Backwater from ice.</sup>

05078000 CLEARWATER RIVER AT PLUMMER, MN

LOCATION.--Lat 47°55′24", long 96°02′46", in SE¹/4SW¹/4 sec. 4, T.151 N., R.42 W., Red Lake County, Hydrologic Unit 09020305, on right bank 200 ft downstream from Soo Line Railroad bridge, 300 ft downstream from bridge on U.S. Highway 59, 0.9 mi northwest of railroad depot in Plummer, and 8 mi upstream from Hill River.

DRAINAGE AREA. -- 512 mi².

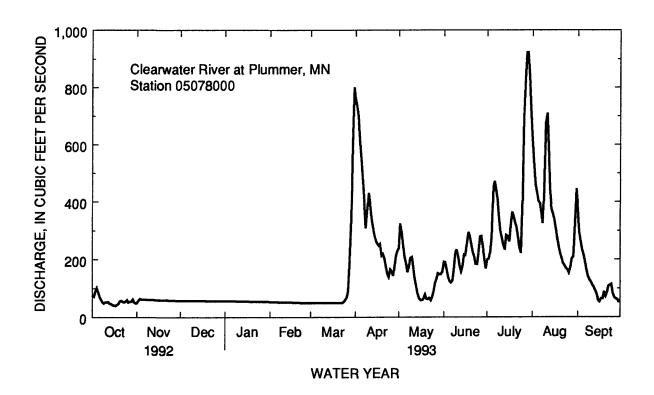
PERIOD OF RECORD.--April 1939 to September 1979, March 1982 to current year. Annual maximums only, October 1979 to February 1982. GAGE.--Water-stage recorder. Datum of gage is 1,098.57 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Nov. 10, 1939, nonrecording gage at site 100 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Since 1968, undetermined amounts of water diverted for the flooding of wild rice paddies upstream.

EXTREMES FOR CURRENT YEAR.-Peak discharges greater than base discharge of 500 ft³/s and maximum (*):

LA INE	ILO I OF	COMMENT	I LEAKFE		_	mian Dase	mscharge o	1 200 11/8	and maximi			
			Discharge	e G	age height					Dischar	ge	Gage height
Date		Time	(ft³/s)		(ft)		Date	:	Time	(ft³/s)	1	(ft)
					• •					,		. ,
Mar. 31			800		*8.63 <u>a</u>		Aug.	11	0100	724		6.42
July 28		2100	*954		7.20							
		DISCUAL	OCE CUDIC	pppy n	ED SECON	NATE OF	VEAD O	TODED 1	000 TO CE	DELET AD ED	1002	
		DISCHAI	RGE, CUBIC	PEEI P	EK SECONI), WAIER	C LEAR OC	TOBEK I	992 IU SE	PIEMBEK	1993	
					DAI	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUC	SEP SEP
1	77	50	e58	e57	e53	e50	e760	239	191	199	617	372
2	72	59	e58	e57	e53	e50	e740	325	190	202	524	
3	88	65	e58	e57	e53	e50	e700	294	163	228	461	
4	102	e62	e58						139	277 ·	430	
5	89			e57	e53	e50	e620	244				
3	89	e62	e58	e57	e53	e50	e550	209	124	451	402	214
6	71	e62	e58	e57	e53	e50	e470	184	120	471	394	193
7	62	e62	e58	e57	e52	e50	401	157	128	437	369	162
8	52	e61	e58	e57	e52	e50	310	179	163	405	327	
9	49	e61	e58	e56	e52	e50	364	204	224	345	445	
10	52	e61	e58	e56	e52	e50	430	208	233	300	675	
10	J 2	CO1	C 50	030	032	C30	450	200	255	500	013	120
11	52	e61	e58	e56	e52	e50	398	176	209	273	710	
12	53	e61	e58	e56	e52	e50	348	132	180	250	594	104
13	48	e60	e58	e56	e52	e50	318	103	159	233	446	92
14	47	e60	e58	e56	e52	e50	288	80	175	285	374	82
15	42	e60	e58	e56	e52	e50	267	64	217	280	359	58
16	41	e60	e58	e56	e52	e50	256	59	215	262	341	
17	40	e60	e58	e56	e51	e50	248	59	256	316	307	64
18	43	e60	e58	e55	e51	e50	253	65	295	365	276	65
19	47	e60	e57	e55	e51	e50	213	79	282	351	245	
20	56	e60	e57	e55	e51	e50	219	64	251	329	222	
21	58	e60	e57	e55	e51	e50	203	62	227	314	203	84
22	54	e60	e57	e55	e50	e50	178	67	209	278	187	109
23	52	e59	e57	e54	e50	e50	150	59	184	242	179	111
24	54	e59	e57	e54	e50	e54	140	70	183	222	170	114
25	60	e59	e57	e54	e50	e60	166	90	221	370	164	84
26	52	e59	e57	e54	e50	e70	160	118	279	696	154	
27	55	e59	e57	e54	e50	e90	144	135	281	803	174	63
28	55	e58	e57	e54	e50	e200	170	152	245	923	202	62
29	62	e58	e57	e54		e340	212	149	206	923	210	53
30	52	e58	e57	e54		e600	228	149	169	839	324	57
31	49		e57	e54		e800		158		727	444	
TOTAL	1786	1796	1785	1721	1443	3364	9904	4333	6118	12596	10929	3728
MEAN	57.6	59 .9	57.6	55.5	51.5	109	330	140	204	406	353	124
MAX	102	65	58	57	53	800	760	325	295	923	710	372
MIN	40	50	57	54	50	50	140	59	120	199	154	53
AC-FT	3540	3560	3540	3410	2860	6670	19640	8590	12140	24980	21680	7390
CFSM	.11	.12	.11	.11	.10	.21	.64	.27	.40	.79	.69	.24

a Backwater from ice.


e Estimated.

RED RIVER OF THE NORTH BASIN 05078000 CLEARWATER RIVER AT PLUMMER, MN--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1939 - 1993, BY WATER YEAR (WY) JUN JUL AUG SEP OCT NOV DEC JAN **FEB** MAR APR MAY **MEAN** 114 91.7 63.4 50.7 46.9 110 522 348 252 198 122 105 MAX (WY) MIN 507 1974 1140 666 483 503 140 90.1 98.4 1391 844 351 1972 1972 1978 1952 1974 1945 1966 1950 1962 1975 1985 1973 30.1 21.5 23.8 24.4 19.0 22.8 26.8 7.52 16.0 13.3 14.1 18.4 (WY) 1941 1991 1990 1940 1940 1940 1977 1977 1991 1940 1940 1940

SUMMARY STATISTICS FOR 1992	CALENDA	R YEAR	FOR 1993 WAT	ER YEAR	WATER YEA	RS 1939 - 1993
ANNUAL TOTAL	45558		59503			
ANNUAL MEAN	124		. 163		169	
HIGHEST ANNUAL MEAN					354	1950
LOWEST ANNUAL MEAN					57.0	1990
HIGHEST DAILY MEAN	767	Aug 26	923	Jul 28	3840	Apr 25 1979
LOWEST DAILY MEAN	27	Mar 19	40	Oct 17	2.6	May 16 1977
ANNUAL SEVEN-DAY MINIMUM	31	Jan 22	44	Oct 13	2.9	May 10 1977
INSTANTANEOUS PEAK FLOW			954	Jul 28	3940	Apr 25 1979
INSTANTANEOUS PEAK STAGE			8.63	Mar 31	12.37 <u>a</u>	Apr 18 1979
INSTANTANEOUS LOW FLOW			34	Oct 19	2.5	May 16 1977
ANNUAL RUNOFF (AC-FT)	90360		118000		122800	
ANNUAL RUNOFF (CFSM)	.24		.32		.33	
10 PERCENT EXCEEDS	332		369		400	
50 PERCENT EXCEEDS	61		65		74	
90 PERCENT EXCEEDS	35		50		32	

a Backwater from ice.

05078230 LOST RIVER AT OKLEE, MIN

LOCATION.--Lat 47°50'35", long 95°51'30", in SE¹/₄NE¹/₄ sec.2, T.150 N., R.41 W., Red Lake County, Hydrologic Unit 09020305, on downstream side of bridge on State Highway 222 at northwest edge of Oklee, 12 mi upstream from mouth.

DRAINAGE AREA .-- 266 mi2.

PERIOD OF RECORD.--April 1960 to September 1981, February 1982 to current year. Monthly and daily figures for April 1960, to June 1960, published in WSP 2113.

GAGE.--Water-stage recorder. Datum of gage is 1,126.94 ft above sea level, adjustment of 1912 (levels by U.S. Army Corps of Engineers). Prior to Sept. 9, 1960, reference points at same site at datum 8.00 ft higher. Sept. 9, 1960, to Sept. 30, 1964, nonrecording gage at same site at datum 8.00 ft higher. Oct. 1, 1964, to Sept. 30, 1981, and Feb. 24, 1982, to Sept. 6, 1989, nonrecording gage at same site and datum.

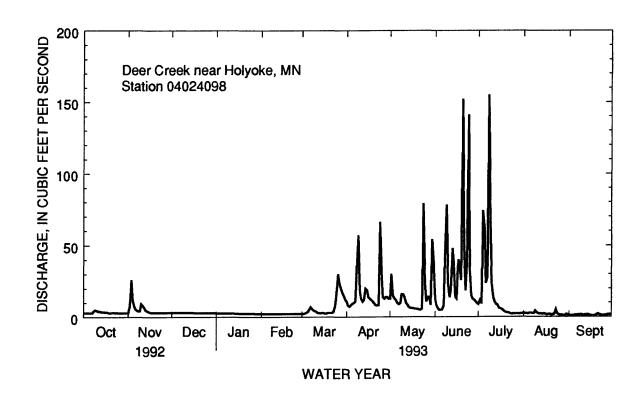
REMARKS.--Records good except those for estimated daily discharges, which are poor.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1897, 18.39 ft, present datum, Apr. 21, 1950, from floodmarks, discharge, 2,790 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES

					DA	ULI MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	21	19	21	e13	e10	e8.5	439	113	88	81	186	126
2 3	20	18	21	e13	e10	e8.4	310	105	84	106	158	118
3	19	20	21	e13	e10	e8.4	240	103	81	161	139	112
4	18	21	21	e12	e9.9	e8.4	215	99	71	297	130	102
5	19	25	21	e12	e9.9	e8.4	201	95	52	423	130	91
6	19	28	21	e12	e9.8	e8.4	190	85	41	299	136	79
7	18	40	21	e12	e9.8	e8.4	172	60	32	221	129	70
8	18	40	21	e12	e9.7	e8.4	173	51	67	183	121	61
9	19	38	21	e12	e9.7	e8.4	199	48	142	150	532	55
10	19	40	21	e12	е9.6	e8.4	189	46	137	125	556	51
11	19	43	21	e12	e9.5	e8.4	170	43	112	108	367	48
12	19	50	e21	e12	e9.5	e8.4	157	38	95	96	258	45
13	18	42	e21	e11	e9.4	e8.4	150	29	91	92	200	40
14	18	e43	e21	e11	e9.4	e8.4	146	20	94	85	167	38
15	18	43	e21	e11	e9.3	e8.4	140	18	107	79	160	37
16	19	43	e20	e11	e9.2	e8.4	133	18	114	86	150	36
17	20	43	e20	e11	e9.2	e8.4	127	17	140	120	133	35
18	20	42	e19	e11	e9.1	e8.4	123	16	145	148	114	34
19	20	41	e19	e11	e9.0	e8.4	121	16	130	137	100	32
20	21	41	e19	e11	e9.0	e8.4	118	13	112	126	91	35
21	23	43	e18	e11	e8.9	e8.4	115	16	100	114	85	36
22	24	43	e18	e11	e8.9	e8.4	110	18	88	102	78	46
23	27	41	e17	e11	e8.8	e10	106	15	87	93	73	73
24	28	20	e17	e11	e8.8	e20	105	16	109	90	69	71
24 25	26	21	e16	e11	e8.7	e30	108	41	133	191	65	52
26	24	20	e16	e11	e8.7	e80	105	74	135	524	60	43
27	22	21	e15	e10	e8.6	e200	103	77	134	646	59	38
28	20	21	e15	e10	e8.6	e400	107	87	128	538	64	38
29	19	21	e14	e10		e800	113	85	109	403	68	36
30	18	21	e14	e10		e1000	115	82	93	294	86	34
31	19		e14	e10		899		83		227	131	
TOTAL	632	992	586	351	261.0	3623.9	4800	1627	3051	6345	4795	1712
MEAN	20.4	33.1	18.9	11.3	9.32	117	160	52.5	102	205	155	57.1
MAX	20.4	50 50	21	13	10	1000	439	113	145	646	556	126
MIN	18	18	14	10	8.6	8.4	103	13	32	79	59	32
AC-FT	1250	1970	1160	696	518	71 9 0	9520	3230	6050	12590	9510	3400
CFSM	.08	.12	.07	.04	.04	.44	.60	.20	.38	.77	.58	.21
IN.	.09	.12	.07	.05	.04	.51	.67	.23	.43	.89	.56 .67	.24
TIA.	.09	.14	.00	.03	.04	.51	.07	.23	.73	.07	.07	.27


e Estimated.

05078230 LOST RIVER AT OKLEE, MN--Continued

STATIS	TICS OF	MONTHL	Y MEAN I	OATA FOR	WATER Y	EARS 1960) - 1993, B	Y WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	45.4	30.1	13.2	7.81	7.55	69.4	302	129	82.2	70.0	40.6	36.5
MAX	470	232	56.6	19.8	25.8	242	745	622	657	442	351	330
(WY)	1972	1972	1978	1986	1984	1986	1966	1962	1962	1962	1985	1973
MIN	1.02	1.11	.050	.002	.000	.19	29.5	10.5	8.20	1.99	1.17	.000
(WY)	1991	1977	1977	1977	1977	1964	1991	1980	1980	1961	1961	1990
SUMMA	ARY STA	TISTICS	FOR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER YI	EARS 190	50 - 1993
ANNUA	L TOTAL			16523.0			28775.9					
ANNUA	L MEAN			45.1			78.8			69.0		
HIGHES	ST ANNU.	AL MEAN	1							177		1962
LOWES	T ANNUA	AL MEAN	[18.2		1990
HIGHES	T DAILY	MEAN		400	Mar 7		1000	Mar 30		3040	Apr	11 1969
LOWES	T DAILY	MEAN		9.3	Jun 14		8.4 <u>a</u>	Mar 2-22		.00 <u>b</u>		16 1963
ANNUA	L SEVEN	I-DAY MI	NIMUM	10	Jun 11		8.4	Mar 2		.00		16 1963
INSTAN	ITANEOU	JS PEAK	FLOW				1000	Mar 30		3210		11 1969
INSTAN	ITANEOU	JS PEAK S	STAGE				12.47 <u>c</u>			16.72 <u>d</u>	May	24 1962
	ITANEOU						8.4 <u>a</u>	Mar 2				
	L RUNOI			32770			57080			49970		
	L RUNO!			.17			.30			.26		
	L RUNOI		ES)	2.31			4.02			3.52		
	CENT EXC			105			160			161		
	CENT EXC			21			38			17		
90 PERC	CENT EXC	CEEDS		15			9.4			2.2		

a Minimum observed.

d Present datum.

b Many days, several years.
c Backwater from ice.

05078500 CLEARWATER RIVER AT RED LAKE FALLS, MN

LOCATION.--Lat 47°53'15", long 96°16'25", in NW¹/4NE¹/4 sec.22, T.151 N., R.44 W., Red Lake County, Hydrologic Unit 09020305, on left bank 40 ft downstream from Great Northern Railroad bridge in Red Lake Falls, 1.4 mi upstream from mouth, and 3 mi downstream from Badger Creek. DRAINAGE AREA.--1,370 mi², approximately.

PERIOD OF RECORD.—June 1909 to September 1917, October 1934 to September 1981, March 1982 to current year. Monthly discharge only for October, November, 1934, published in WSP 1308. October 1981 to February 1982, operated as a high-flow partial-record station.

REVISED RECORDS.—WSP 355: 1911-12. WSP 1438: 1910-11, 1917(M). WDR MN-84-1:1983.

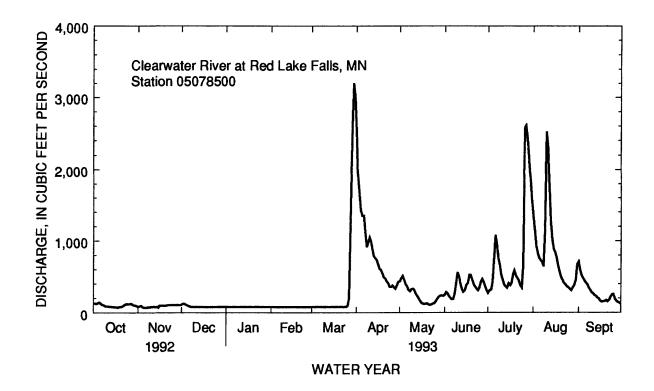
GAGE.--Water-stage recorder. Datum of gage is 948.94 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Sept. 12, 1911, nonrecording gage at site 0.5 mi upstream, and Sept. 12, 1911, to Sept. 30, 1917, nonrecording gage at site 40 ft upstream at different datum. REMARKS.--Records good except those for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

			•									
					DA	ILY MEA	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	132	86	e115	e82	e83	e83	2530	436	250	277	1350	714
2	129	89	e127	e83	e83	e83	1930	478	288	314	1130	603
2 3 4	124	97	e127	e83	e83	e83	1650	512	268	322	935	523
	134	e82	e117	e83	e83	e83	1430	456	233	433	835	487
5	145	e74	e105	e83	e83	e83	1350	402	206	787	771	447
6	130	e74	e 94	e83	e83	e83	1350	364	189	1080	732	418
7	115	e74	e85	e83	e83	e83	1130	323	191	929	713	391
8	107	e76	e80	e83	e83	e83	919	301	258	768	645	350
9	96	e79	e80	e83	e83	e83	974	328	431	653	1150	317
10	90	e81	e80	e83	e83	e83	1050	334	561	532 -	2520	287
11	91	e83	e81	e83	e83	e83	996	320	506	456	2290	269
12	85	e85	e81	e83	e83	e83	882	269	405	395	1740	244
13	87	e83	e81	e83	e83	e83	793	232	328	366	1290	235
14	83	e80	e81	e83	e83	e83	763	205	289	347	1020	211
15	81	e75	e81	e83	e83	e83	734	166	314	409	883	197
1.0	~~	100						100	0.00	205	045	1.00
16	79	e100	e81	e83	e83	e83	675	138	383	385	845	165
17	77	e100	e81	e83	e83	e83	611	128	412	413	767	155
18	73	e100	e81	e83	e83	e83	596	122	528	539	660	159
19	81	e100	e81	e83	e83	e83	543	126	526	587	569	160
20	81	e100	e81	e83	e83	e83	494	132	461	518	503	174
21	92	e105	e81	e83	e83	e83	475	116	401	488	456	158
22	101	e110	e82	e83	e83	e83	437	108	363	445	416	177
23	117	e110	e82	e83	e83	e83	405	116	340	388	393	219
24	122	e110	e82	e83	e83	e83	363	126	312	353	370	256
25	121	el 10	e82	e83	e83	e83	363	134	347	640	352	258
26	123	el 10	e82	e83	e83	e100	377	157	431	2580	335	195
27 27	125	el 10	e82	e83	e83	e200	350	199	469	2610	314	161
28	116	el 10	e82	e83	e83	e1500	336	220	425	2420	347	148
29 29	106	el 10	e82	e83		e2600	386	238	371	2190	386	140
30	103	el 10	e82	e83		e3200	428	242	315	1870	460	126
31	93		e82	e83		e3000	420	235		1590	672	
31	93		602	603		23000		233		1390	072	
TOTAL	3239	2813	2721	2572	2324	12675	25320	7663	10801	26084	25849	8344
MEAN	104	93.8	87.8	83.0	83.0	409	844	247	360	841	834	278
MAX	145	110	127	83	83	3200	2530	512	561	2610	2520	714
MIN	73	74	80	82	83	83	336	108	189	277	314	126
AC-FT	6420	5580	5400	5100	4610	25140	50220	15200	21420	51740	51270	16550
CFSM	.08	.07	.06	.06	.06	.30	.62	.18	.26	.61	.61	.20
IN.	.09	.08	.07	.07	.06	.34	.69	.21	.29	.71	.70	.23

e Estimated.

05078500 CLEARWATER RIVER AT RED LAKE FALLS, MN--Continued


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1909 - 1993, BY WATER YEAR (WY)

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	179	135	85.0	67.8	62.7	226	1131	664	478	348	203	177
MAX	1350	1233	260	220	150	993	3458	5059	3042	1613	1686	1267
(WY)	1972	1972	1910	1910	1984	1946	1966	1950	1962	1962	1985	1973
MIN	10.0	19.0	21.4	21.4	19.1	13.6	61.0	32.2	26.5	8.34	1.49	2.92
(WY)	1935	1935	1937	1940	1937	1937	1981	1977	1980	1936	1936	1936

SUMMARY STATISTICS FOR 1992	CALENDA	AR YEAR	FOR 1993 WAT	ER YEAR	WATER YEA	RS 1909 - 1993
ANNUAL TOTAL	84466		130405			
ANNUAL MEAN	231		357		310 <u>a</u>	
HIGHEST ANNUAL MEAN					855	1950
LOWEST ANNUAL MEAN					64.4	1939
HIGHEST DAILY MEAN	1610	Aug 25	3200	Mar 30	9930	Apr 25 1979
LOWEST DAILY MEAN	55	Feb 8	73	Oct 18	.10	Sep 15 1936
ANNUAL SEVEN-DAY MINIMUM	61	Feb 6	77	Nov 4	.24	Sep 12 1936
INSTANTANEOUS PEAK FLOW					10300	Apr 25 1979
INSTANTANEOUS PEAK STAGE			9.88 <u>b</u>	Mar 30	15.85 <u>c</u>	Mar 6 1983
INSTANTANEOUS LOW FLOW			-		.00	Sep 15 1936
ANNUAL RUNOFF (AC-FT)	167500		258700		224300	•
ANNUAL RUNOFF (CFSM)	.17		.26		.23	
ANNUAL RUNOFF (INCHES)	2.29		3.54		3.07	
10 PERCENT EXCEEDS	567		810		769	
50 PERCENT EXCEEDS	116		132		104	
90 PERCENT EXCEEDS	70		82		36	

a Median of annual mean discharges is 273 ${\rm ft^3/s}$.

c Highwater mark, backwater from ice.

b Backwater from ice.

05079000 RED LAKE RIVER AT CROOKSTON, MN

LOCATION.--Lat 47°46'32", long 96°36'33", in SW¹/4SW¹/4 sec.30, T.150 N., R.46 W., Polk County, Hydrologic Unit 09020303, on right bank 100 ft upstream from Sargent Street bridge in Crookston, 0.3 mi downstream from Interstate Power Co.'s dam, 0.6 mi downstream from bridge on U.S. Highway 75, and 53 mi upstream from mouth.

DRAINAGE AREA.--5,280 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1901 to current year. Monthly discharge only for some periods, published in WSP 1308. Figures of daily discharge for Apr. 3-30, 1904, published in WSP 130, have been found unreliable and should not be used.

REVISED RECORDS.--WSP 1115: 1906, 1915-16, 1919-20, 1922, 1925, 1927, 1929. WSP 1308: 1916(M), 1919(M), 1928(M), 1930(M). See also PERIOD OF RECORD.

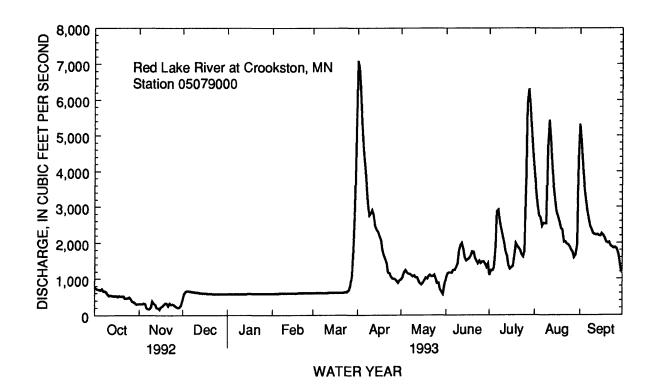
GAGE.--Water-stage recorder. Datum of gage is 832.72 ft above sea level. May 18, 1901, to June 30, 1909, nonrecording gage at bridge 300 ft upstream at same datum. July 1, 1909, to Sept. 25, 1911, nonrecording gage, Sept. 26, 1911, to Sept. 30, 1919, water-stage recorder, Oct. 1, 1919, to Sept. 30, 1930, nonrecording gage, at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation prior to 1975 caused by powerplant 1,000 ft upstream. Runoff from 1,950 mi2 in the headwaters of Red Lake River is completely controlled by dam at outlet of Lower Red Lake. Flow partially affected by occasional regulation at Thief and Mud Lakes in Thief River basin (see station 05076000).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	JLY MEA	N VALUES	;				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	773	303	e450	e575	e588	e604	e7080	987	1040	1100	3970	5310
2	725	304	e580	e575	e588	e604	e6900	1040	1140	1240	3440	4850
3	709	311	e640	e575	e588	e604	e6200	1180	1170	1230	3060	4090
4	698	323	e660	e575	e588	e604	e5400	1240	1170	1310		3600
5	677	303	e650	e575	e588	e604	e4600	1180	1160	1900	2710	3200
6	720	196	e645	e575	e590	e606	e4100	1130	1240	2870	2470	2900
7	654	166	e640	e575	e590	e606	3640	1130	1240	2910	2540	2660
8	654	162	e630	e575	e590	e606	3030	1100	1310	2610	2530	2470
9	629	215	e625	e575	e590	e606	2760	1060	1420	2380	2530	2360
10	563	381	e620	e575	e590	e606	2820	1090	1770	2210	4660	2260
11	531	318	e615	e575	e590	e606	2900	1040	1930	1990	5430	2240
12	535	288	e610	e575	e592	e608	2760	1040	1990	1760	4920	2220
13	527	205	e605	e575	e592	e608	2470	940	1820	1630	4240	2240
14	523	190	e600	e577	e592	e608	2370	880	1600	1380	3580	2200
15	522	160	e5 9 5	e580	e592	e608	2300	840	1510	1280	3180	2190
16	517	218	e590	e582	e594	e608	2190	878	1540	1320	2870	2250
17	504	244	e590	e582	e594	e608	2080	963	1570	1360	2720	2210
18	519	283	e585	e582	e594	e608	1800	1030	1640	1680	2590	2120
19	510	326	e585	e582	e596	e608	1640	999	1760	1990	2400	2020
20	514	329	e580	e582	e596	e608	1560	1070	1750	1900	2360	2000
21	513	259	e580	e584	e596	e610	1430	1110	1590	1850	2020	2010
22	457	328	e575	e584	e598	e610	1170	1060	1500	1790	2030	1910
23	462	290	e575	e584	e598	e615	1150	1070	1430	1680	1970	1890
24	472	301	e575	e584	e598	e620	1050	1110	1500	1610	1950	1860
25	482	281	e575	e584	e600	e640	1000	973	1440	1760	1890	1870
26	442	242	e575	e586	e600	e680	998	879	1480	3500	1810	1840
27	382	218	e575	e586	e602	e800	970	882	1480	5890	1740	1720
28	360	199	e575	e586	e602	el 100	936	713	1410	6310	1600	1520
29	335	e220	e575	e586		e2000	882	625	1330	5860	1670	1270
30	301	e290	e575	e586		e3000	950	573	1430	5170	1970	1150
31	310		e575	e586		e5000		837		4560	4340	
TOTAL		7853	18425	17978	16616	27803	79136	30649	44360	76030	87930	72430
MEAN	533	262	594	580	593	897	2638	989	1479	2453	2836	2414
MAX	773	381	660	586	602	5000	7080	1240	1990	6310	5430	5310
MIN	301	160	450	5 75	588	604	882	573	1040	1100	1600	1150
AC-FT	32770	15580	36550	35660	32960	55150	157000	60790	87990	150800	174400	143700
CFSM	.10	.05	.11	.11	.11	.17	.50	.19	.28	.46	.54	.46
IN.	.12	.06	.13	.13	.12	.20	.56	.22	.31	.54	.62	.51

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued


STATIS'	TICS OF	MONTHI	LY MEAN	DATA FOR	WATER Y	EARS 190	1 - 1993, B	Y WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	801	659	545	493	469	934	2944	2039	1641	1252	811	804
MAX	2836	3172	1900	1663	1464	3626	10260	15290	7205	6851	3868	3009
(WY)	1972	1972	1904	1951	1951	1910	1966	19 5 0	1962	197 5	1985	1905
MIN	8.02	10.1	5.34	15.6	17.8	24.9	232	154	80.4	26.2	12.3	8.87
(WY)	1937	1937	1937	1934	1937	1936	1981	1934	1934	1936	1934	1934
SUMMA	ARY STAT	TISTICS	FOR 1992	CALENDA	AR YEAR	FOR	1993 WAT	TER YEAR		WATER YI	EARS 19	01 - 1993
ANNUA	L TOTAL	•		230915			495730					
ANNUA	L MEAN			631			1358			1112		
HIGHES	T ANNU	AL MEA	N							3129		19 5 0
LOWES	T ANNUA	L MEAN	1							83.6		1934
HIGHES	T DAILY	MEAN		2370	Apr 23		7080	Apr 1		27100	Ap	r 12 196 9
LOWES	T DAILY	MEAN		100	Feb 3		160	Nov 15		2.5		29 1936
	L SEVEN			139	Jan 28		227	Nov 12		3.9		28 1936
	TANEOU						7400	Apr 1		28400		r 12 1969
INSTAN	TANEOU	S PEAK	STAGE				18.24 <u>a</u>	Apr 1		27.33		r 12 19 69
	TANEOU						98	Nov 13		.00 <u>ь</u>	Ju	l 13 1960
	L RUNOI			458000			983300			805400		
	L RUNOI			.12			.26			.21		
ANNUA	L RUNOI	F (INCH	ES)	1.63			3.49			2.86		

a Backwater from ice.

10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 1350

523

145

2840

840

447

2490

650 109

b Caused by regulation of powerplant upstream.

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued (National stream-quality accounting network station) (National water-quality assessment station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1962, 1974-76, 1979 to current year REMARKS.--Letter K indicates non-ideal colony count.

WATER QUALITY DATA COLLECTED THROUGH THE NATIONAL STREAM-QUALITY ACCOUNTING NETWORK WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER ATURE WATER (DEG C) (00010)	- TUR BID ITY (NTU (0007	(MM OF J) HG)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT	1215	574	420	401	0.2	0.4	2.0	26	740	12.2
21 NOV	1315	574	438	421	8.3	8.4	3.0	3.6		13.3
24 JAN	0845	303	540	547	8.2	8.2	0.0	2.4	742	14.1
12 APR	1400	562	400	395	7.7	7.8	1.0	3.1	744	10.6
13 JUL	1530	2160	465		8.1	7.6	6.5	11	741	11.8
28	1400	7030	420	399	7.8	7.8	22.0	60	735	6.2
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA LINIT LAB (MG/I AS CACO (90410	DIS IT L FIELD MG/L AS 3) CO3	WATER DIS IT FIELD
OCT	****	91			. .		100	100	•	000
21 NOV	K14	31	56	21	5.0	2.7	183	186	0	223
24 JAN	24	К9	64	26	9.5	3.5	245	237	0	299
12 APR	K7	20	46	17	5.2	<0.10	195	195	0	238
13 JUL	К3	75	57	20	5.1	1.4	170	145	0	207
28	K170	K190	49	18	4.3	5.6	161	152	0	196
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA DIS- SOLVEI (MG/L AS SIO2) (00955)	AT 180 D DEG. 0 DIS- SOLVE (MG/L	JÉ GE 0 NITR C DIS SOLV ED (MC 1) AS	N, C ITE NO. S- I VED SO. I/L (N N) A	DIS- LVED 1G/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 21	40	3.3	0.10	6.5	293	<0	.010 <	<0.050	0.020	0.90
NOV 24	55	7.2	0.10	7.9	342	<0	.010	0.056	0.020	0.70
JAN 12 APR	14	3.4	0.10	11	244	0	.020	0.150	0.110	0.90
13	61	7.3	0.10	11	329	0	.040	0.610	0.080	1.1
JUL 28	49	6.0	0.20	16	281	0	.010	0.200	0.080	1.3

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

WATER QUALITY DATA COLLECTED THROUGH THE NATIONAL STREAM-QUALITY ACCOUNTING NETWORK WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ALUMI- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT 21 NOV	0.020	0.020	<0.010	5	100	<10	42	<3	18
24	0.010	0.010	<0.010	48	76				
JAN 12	0.040	0.020	0.010	10	86	<10	52	<3	15
APR 13	0.080	0.020	0.020	45	93	20	48	⊲3	58
JUL 28	0.270	0.090	0.060	250	94	20	51	<3	70
DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	
DATE OCT 21 NOV	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	DENUM, DIS- SOLVED (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	DIS- SOLVED (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	
OCT 21 NOV 24	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	
OCT 21 NOV 24 JAN 12	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	
OCT 21 NOV 24 JAN	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) <10	DIS- SOLVED (UG/L AS NI) (01065)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	DIS- SOLVED (UG/L AS AG) (01075) <1.0	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	

07...

27...

AUG

7.9

8.0

58

63

21

21

5.1

4.5

4.4

3.6

RED RIVER OF THE NORTH BASIN

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

WATER QUALITY DATA COLLECTED THROUGH THE NATIONAL WATER-QUALITY ASSESSMENT PROGRAM WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER ATURE WATER (DEG C) (00010)	(MM OF
FEB										
10 APR	0900		E590	382	392	7.9	7.8	-14.5	0.0	75 0
03	1000		E6200	345	357	7.6	7.5	3.0	3.5	748
MAY 07	1045	1150		443	454	8.3	8.1	12.5	10.5	731
19	0915	989		354	366	8.3	8.1	9.5	11.5	743
JUN										
15 JUL	1500	1500		439	445	8.0	7.8	23.5	18.5	744
07	1240	2810		444	450		7.8	17.0	16.5	738
AUG					150					
27	1035	1740		453	435	7.8	8.0	17.5	21.5	743
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
FEB	11.0	40	17	4.5	0.7	220	0	101		10
10 APR	11.9	38	16	4.5	2.7	220	0	181		12
03	12.6	39	14	3.8	7.8	131	0	108	117	43
MAY 07	10.2	57	22	5.6	3.7	234	0	192	185	56
07 19	10.2	37 44	22 17	3.6 4.5	3.7 2.9	234 199	0	163	170	21
JUN					,					
15 JUL	8.8	53	22	5.6	3.8	217	0	178	183	48

191

214

0

0

157

175

160

185

68

39

05079000 RED LAKE RIVER AT CROOKSTON, MN--Continued

WATER QUALITY DATA COLLECTED THROUGH THE NATIONAL WATER-QUALITY ASSESSMENT PROGRAM

WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOL VED (MG/L AS N) (00631)	NITROGEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
FEB 10 APR	3.7	0.10	9. 5	227	0.020	0.150	0.180	0.80	0.70
03 MAY	8.7	0.20	10	237	0.090	2.40	0.300	1.6	1.3
07 19 JUN	4.6 4.0	0.20 0.20	3.1 5.9	289 217	<0.010 <0.010	0.077 <0.050	0.020 0.020	0.80 0.70	0.60 0.70
15 JUL	4.8	0.20	7.9	289	<0.010	0.055	0.020	0.80	0.70
07 AUG	5 .9	0.20	13	266	0.020	0.3 5 0	0.080	0.90	1.0
27	3.9	0.20	16	286	<0.010	0.096	0.030	0.90	0.90
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 10	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
FEB 10 APR 03	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIC SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
FEB 10 APR 03 MAY 07 19	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 10 APR 03 MAY 07 19 JUN 15	PHORUS TOTAL (MG/L AS P) (00665) 0.040 0.180 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.010 0.120 <0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.010 0.120 <0.010	DIS- SOLVED (UG/L AS FE) (01046) 14 110	NESE, DIS- SOLVED (UG/L AS MN) (01056) 18 54	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 10 APR 03 MAY 07 19 JUN	PHORUS TOTAL (MG/L AS P) (00665) 0.040 0.180 0.030 0.020	PHORUS DIS- SOLVED (MG/L AS P) (00666) 0.010 0.120 <0.010 <0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.010 0.120 <0.010 0.020	DIS- SOLVED (UG/L AS FE) (01046) 14 110	NESE, DIS- SOLVED (UG/L AS MN) (01056) 18 54 15 8	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND

LOCATION.--Lat 47°55'38", long 97°01'34", in sec.2, T.151 N., R.50 W., Grand Forks County, Hydrologic Unit 09020301, on the right bank 200 ft upstream from the DeMers Avenue bridge, 0.4 mi downstream from Red Lake River, and at mile 293.8.

DRAINAGE AREA.--30,100 mi², approximately, including 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1882 to current year. Prior to January 1904 monthly discharge only, published in WSP 1308.

REVISED RECORDS.--WSP 855: 1936(M). WSP 1115: 1942. WSP 1175: 1897(M). WSP 1388: 1904, 1914-15, 1917-19, 1921-22, 1927, 1950. WSP 1728: Drainage area. WRD-ND-81-1: 1882, 1897 (M).

GAGE.--Water-stage recorder. Datum of gage is 779.00 ft above sea level. Oct. 1, 1983, to Sept. 30, 1986, datum of gage was 780.00 ft at same site. Apr. 14, 1965, to Sept. 30, 1983, water-stage recorder 1.9 mi downstream at a datum of 778.35 ft. Nov. 3, 1933, to Apr. 13, 1965, water-stage recorder 0.3 mi upstream at 778.35 ft datum. See WSP 1728 or 1913 for history of changes prior to Nov. 3, 1933.

REMARKS.--Records good except those for period of estimated daily discharges, which are fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	AILY MEA	N VALUES	3				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1540	681	754	e840	e1000	e1050	17700	4570	3130	6210	25900	8220
2	1480	689	1020	e830	e1000	e1080	20100	4490	3410	6090		9400
3	1440	726	e1000	e800	e1000	el 100	22200	4420	3580	6070		9680
4	1380	752	e990	e760	e1000	e1120	23000	4440	3910	5900		9170
5	1330	765	e960	e750	e1000	1140	25200	4460	4260	5730		8440
6	1280	752	e880	e750	1050	1140	25500	4350	4430	6100	25900	7660
7	1250	673	e810	e740	1050	1140	25200	4210	4360	7130	25500	7080
8	1220	609	e800	e730	1040	1140	24500	4110	4230	7780	25000	6830
9	1190	648	e830	e740	e1050	1130	23500	3960	4060	8030	24400	6630
10	1150	743	e860	e7 5 0	e1050	1160	22600	3750	3970	7810	23600	6420
	1.00	, ,,	5555	0.50	01050	1100	22000	3.50	37.0	,010	25000	0.20
11	1120	775	e890	e775	e1100	1190	21700	3610	4060	7320	22900	6230
12	1040	812	e900	e780	e1150	e1200	20700	3440	4200	6760	22200	6140
13	1010	668	e900	e780	e1150	e1250	19300	3370	4360	6270	20900	6070
14	989	619	e900	e780	e1150	e1300	17100	3240	4290	5880	19900	6050
15	973	596	e900	e780	e1150	e1300	14200	3120	4160	5590	18800	5970
16	954	554	e900	e790	e1150	e1300	11300	3030	4170	5510	17500	5860
17	941	659	e900	e790	e1150	e1300	8750	2970	4220	6340	16100	5850
18	916	757	e900	e790	e1200	e1300	7110	2970	4360	9580	14800	5790
19	921	897	e900	e790	e1200	e1300	6500	3000	4620	12900	13500	5620
20	915	948	e900	e790	e1200	e1300	6160	2900	4830	15100	12700	5420
21	932	990	e880	e800	el 190	e1300	5950	2860	4820	16600	11900	5290
22	903	985	e860	e800	e1170	e1320	5720	2880	4680	17600	11100	5240
23	908	977	e850	e800	e1150	e1340	5400	2880	4590	18300	10400	5120
24	901	1070	e850	e800	e1100	e1350	5180	2880	4590	18900	9360	5090
25	870	1060	e850	e820	e1050	e1400	4930	2860	4960	19700	9010	5050
26	901	906	e850	e840	e1030	1530	4740	2830	5480	20500	8340	4950
27	846	694	e860	e860	e1000	1880	4670	2760	5610	21600	7500	4860
28	808	556	e850	e900	e1000	2970	4670	2680	5680	22900	6850	4710
29	745	540	e840	e960		5520	4690	2660	5790	24100	6640	4470
30	730	600	e840	e980		10600	4640	2770	5980	24900	6550	4220
31	713		e840	e1000		14800		2880		25500	6800	
TOTAL		22701	27264	25095	30530	67950	412910	105350	134790	378700	528650	187530
MEAN	1042	757	879	810	1090	2192	13760	3398	4493	12220	17050	6251
MAX	1540	1070	1020	1000	1200	14800	25500	4570	5980	25500	26200	9680
MIN	713	540	754	730	1000	1050	4640	2660	3130	5510	6550	4220
AC-FT	64060	45030	54080	49780	60560	134800	819000	209000	267400	751200	1049000	372000

e Estimated.

1280

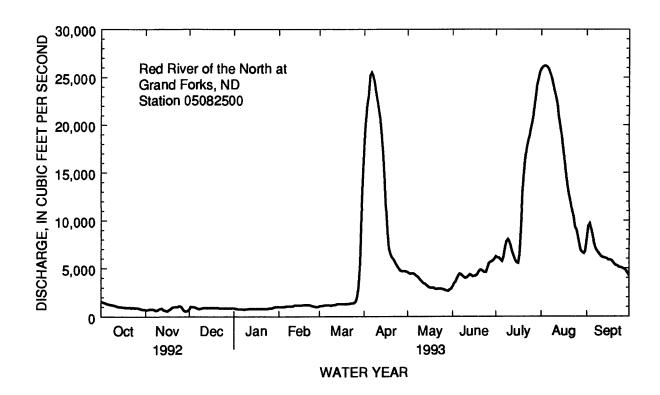
260

RED RIVER OF THE NORTH BASIN

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

STATIS	TICS OF	MONTHLY	MEAN	DATA FOR	WATER Y	EARS 190	4 - 1993, B	Y WATER '	YEAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1312	1139	920	788	757	2310	9127	4871	3837	3123	1708	1392
MAX	4290	5218	3073	1929	1869	10250	31480	36510	19340	25270	17050	6251
(WY)	1972	1972	1972	1951	1952	1966	1979	1950	1962	1975	1993	1993
MIN	12.1	30.5	17.8	18.8	2.87	42.1	954	373	151	88.8	30.6	20.3
(WY)	1937	1937	1937	1937	1937	1937	1938	1934	1934	1936	1934	1936
SUMMA	RY STAT	TISTICS I	FOR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 190	14 - 1993
ANNUA	L TOTAL			637444			1953766					
ANNUA	L MEAN			1742			5353			2586		
HIGHES	T ANNU	AL MEAN								7580		1950
LOWES	T ANNUA	L MEAN								244		1934
HIGHES	T DAILY	MEAN		7940	Mar 13		26200	Aug 3		80900	Apr	23 1979
LOWES	FDAILY	MEAN		442	Jan 1		540	Nov 29		1.8 <u>a</u>		2 1977
ANNUA	L SEVEN	-DAY MIN	MUMI	469	Jan 1		666	Nov 12		2.5	Feb	12 1937
INSTAN	TANEOU	S PEAK F	LOW				26200	Aug 3		85000 <u>b</u>	Apr	10 1897
INSTAN	TANEOU	S PEAK S	TAGE				36.39	Aug 3		50.20c	•	10 1897
ANNUA	LRUNOI	F (AC-FT))	1264000		:	3875000			1873000	•	
	ENT EXC			3690			17900			5770		
#A 252 A	T) III D316			4400						4000		

2830


780

1190

526

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

a Caused by unusual regulating during repair of dam at Grand Forks

b Estimated, from rating curve extended above 58,000 ft3/s.

c Site and datum then in use.

05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1949, 1956 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	ATURE WATER	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
NOV											
13	1515	628		645		-3.0	1.0				
DEC											
16	1425	920		583			1.5				
JAN											
11	1430	773		561		-10.0	0.0				
29 FEB	1030	964				-10.0	0.0				
08	1515	1050		577	7.7	-5.5	0.5	14.5	103	240	256
25	1215	1050		585					105	240	250
MAR		1000		505							
16	1715	1300		760		-4.0	0.0		 '		
APR											
04	1500	22400		371	7.8	9.5	5.0	11.8	94	160	114
06	1600	26700		370		9.0	2.0				
09	1620	22700		498		9.0	4.0				
19	1215	6470		668	8.4	9.0	8.0	10.1	88	300	212
MAY											
03	1110	4270		770	8.4	14.0	10.0	10.5	96	350	205
JUN	00.45	0.400					450	7.0	00	200	0.5
02	0945	3490		655	8.1	16.5	15.0	7.8	80	290	217
28 JUL	1600	5920				27.0	19.0				
12	1030	6720		611	8.0	18.5	19.0	7.4	82	290	186
28	1445	23400		445	7.8	20.5	21.5	5.2	61	200	150
AUG	1772	25400		775	7.0	20.5	21.5	5.2	01	200	150
03	0900	25800		466	7.5	15.0	21.0	3.9	45	240	174
05	1435	26100		266			21.0				
13	1545	20600		600		22.0	21.5				
19	0930	13600		659		23.5	22.5				
24	1200	9660		**		33.0	24.5				
SEP											
03	0910		9680	648	7.9	11.0	19.0	6.9	77	260	182
22	1315	5400		652		10.0	12.0			**	
23	1300		5120	520	8.1	14.0	11.0	10.9	101	250	177

RED RIVER OF THE NORTH BASIN 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)				POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)			SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
FEB 08	53	27	17	13	0.5	4.6	312	0	44	10	0.10
APR											
04	38	16	11	12	0.4	9.8	140	0	50	11	0.20
19 MAY	67	31	23	14	0.6	8.6	258	0	140	12	0.20
03 JUN	77	38	27	14	0.6	7.8	247	2	170	15	0.20
02 JUL	63	33	25	15	0.6	6.5	264	0	110	15	0.20
12	65	31	22	14	0.6	7.2	227	0	120	11	0.20
28	48	20	12	11	0.4	7.6	183	0	61	5.0	0.20
AUG											
03 SEP	61	22	4.7	4	0.1	5.6	212	0	57	5.6	0.10
03	60	27	16	11	0.4	8.4	222	0	83	12	0.30
23	58	26	12	9	0.3	5.9	216	0	73	7.8	0.20
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	AT 180	DIS-	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	GEN, NITRITE DIS-	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	DIS-	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	DIS- (NITRO- GEN,AM- C MONIA + DRGANIC TOTAL (MG/L AS N) (00625)
DATE FEB	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, ORGANIO DIS- (SOLVED (MG/L AS N)	GEN,AM- C MONIA + DRGANIC TOTAL (MG/L AS N)
FEB 08	DIS- SOLVED (MG/L AS SIO2)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	DIS- SOLVED (TONS PER AC-FT)	DIS- SOLVED (TONS PER DAY)	GEN, NITRITE DIS- SOLVED (MG/L AS N)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN, ORGANIO DIS- O SOLVED (MG/L AS N) (00607)	GEN,AM- C MONIA + DRGANIC TOTAL (MG/L AS N)
FEB 08 APR	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, ORGANIC DIS- (SOLVED (MG/L AS N) (00607)	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625)
FEB 08 APR 04	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45	DIS- SOLVED (TONS PER DAY) (70302) 944	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 0.63	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5
FEB 08 APR 04 19	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (TONS PER AC-FT) (70303)	DIS- SOLVED (TONS PER DAY) (70302)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 0.63	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625)
FEB 08 APR 04 19 MAY 03	DIS- SOLVED (MG/L AS SIO2) (00955)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45	DIS- SOLVED (TONS PER DAY) (70302) 944	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320	GEN, ORGANIC DIS- (SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5
FEB 08 APR 04 19 MAY 03 JUN	DIS- SOLVED (MG/L AS SIO2) (00955) 15	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 326 235 427	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 333 248 447	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45 0.34 0.61	DIS- SOLVED (TONS PER DAY) (70302) 944 15000 7810	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020 0.180 0.020	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680 0.220	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60 0.700	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320 0.040	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5 1.2
FEB 08 APR 04 19 MAY 03	DIS- SOLVED (MG/L AS SIO2) (00955) 15 13 15	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 326 235 427 470	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 333 248 447 504	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45 0.34 0.61 0.69	DIS- SOLVED (TONS PER DAY) (70302) 944 15000 7810	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020 0.180 0.020 0.010	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680 0.220	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60 0.700 0.230	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320 0.040 0.060	GEN, ORGANIC DIS- (SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5 1.2 1.0
FEB 08 APR 04 19 MAY 03 JUN 02 JUL 12	DIS- SOLVED (MG/L AS SIO2) (00955) 15 13 15	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 326 235 427 470 394 388	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 333 248 447 504	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45 0.34 0.61 0.69	DIS- SOLVED (TONS PER DAY) (70302) 944 15000 7810	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020 0.180 0.020 0.010 0.020 <0.010	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680 0.220 0.430	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60 0.700 0.230 0.450 0.190	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320 0.040 0.060 0.030	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86 0.84 0.57	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5 1.2 1.0 0.70 0.90
FEB 08 APR 04 19 MAY 03 JUN 02 JUL 12 28	DIS- SOLVED (MG/L AS SIO2) (00955) 15 13 15 10	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 326 235 427 470 394	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 333 248 447 504 426	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45 0.34 0.61 0.69	DIS- SOLVED (TONS PER DAY) (70302) 944 15000 7810 5810 4010 7820	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020 0.180 0.020 0.010	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680 0.220 0.430	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60 0.700 0.230 0.450	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320 0.040 0.060 0.030	GEN, ORGANIC DIS- (SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86 0.84	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5 1.2 1.0 0.70
FEB 08 APR 04 19 MAY 03 JUN 02 JUL 12 28 AUG	DIS- SOLVED (MG/L AS SIO2) (00955) 15 13 15 10 9.2	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 326 235 427 470 394 388 264	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 333 248 447 504 426 431 293	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45 0.34 0.61 0.69 0.58 0.59 0.40	DIS- SOLVED (TONS PER DAY) (70302) 944 15000 7810 5810 4010 7820 18500	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020 0.180 0.020 0.010 0.020 <0.010 0.0220	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680 0.220 0.430	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60 0.700 0.230 0.450 0.190 0.200	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320 0.040 0.060 0.030	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86 0.84 0.57	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5 1.2 1.0 0.70 0.90 0.90
FEB 08 APR 04 19 MAY 03 JUN 02 JUL 12 28 AUG 03	DIS- SOLVED (MG/L AS SIO2) (00955) 15 13 15 10 9.2	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 326 235 427 470 394 388	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 333 248 447 504 426 431	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45 0.34 0.61 0.69 0.58	DIS- SOLVED (TONS PER DAY) (70302) 944 15000 7810 5810 4010 7820 18500	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020 0.180 0.020 0.010 0.020 <0.010	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680 0.220 0.430	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60 0.700 0.230 0.450 0.190	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320 0.040 0.060 0.030	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86 0.84 0.57	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5 1.2 1.0 0.70 0.90
FEB 08 APR 04 19 MAY 03 JUN 02 JUL 12 28 AUG 03 SEP	DIS- SOLVED (MG/L AS SIO2) (00955) 15 13 15 10 9.2 19 19	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 326 235 427 470 394 388 264 282	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 333 248 447 504 426 431 293 325	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45 0.34 0.61 0.69 0.58 0.59 0.40	DIS- SOLVED (TONS PER DAY) (70302) 944 15000 7810 5810 4010 7820 18500 22600	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020 0.180 0.020 0.010 0.020 <0.010 0.020 0.030	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680 0.220 0.430 0.180 0.150	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60 0.700 0.230 0.450 0.190 0.200 0.180	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320 0.040 0.060 0.030 0.040 0.080	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86 0.84 0.57 0.86 0.82	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5 1.2 1.0 0.70 0.90 0.90 1.4
FEB 08 APR 04 19 MAY 03 JUN 02 JUL 12 28 AUG 03	DIS- SOLVED (MG/L AS SIO2) (00955) 15 13 15 10 9.2	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 326 235 427 470 394 388 264	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 333 248 447 504 426 431 293	DIS- SOLVED (TONS PER AC-FT) (70303) 0.45 0.34 0.61 0.69 0.58 0.59 0.40	DIS- SOLVED (TONS PER DAY) (70302) 944 15000 7810 5810 4010 7820 18500	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) 0.020 0.180 0.020 0.010 0.020 <0.010 0.0220	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) 0.330 3.42 0.680 0.220 0.430 0.180 0.150	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) 0.350 3.60 0.700 0.230 0.450 0.190 0.200	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.170 0.320 0.040 0.060 0.030	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) 0.63 0.98 0.86 0.84 0.57 0.86 0.82	GEN,AM-C MONIA + DRGANIC TOTAL (MG/L AS N) (00625) 0.90 1.5 1.2 1.0 0.70 0.90 0.90

RED RIVER OF THE NORTH BASIN 05082500 RED RIVER OF THE NORTH AT GRAND FORKS, ND--Continued

	NITRO-			PHOS-				CARBON,		SEDI-	SED.
	GEN, AM-		PHOS-	PHORUS		MANGA-	CARBON,	ORGANIC		MENT,	SUSP.
	MONIA +	PHOS-	PHORUS	ORTHO,	IRON,	NESE,	ORGANIC	SUS-	SEDI-	DIS-	SIEVE
	ORGANIC	PHORUS	DIS-	DIS-	DIS-	DIS-	DIS-	PENDED	MENT,	CHARGE,	DIAM.
	DIS.	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	SUS-	SUS-	% FINER
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(MG/L	(MG/L	PENDED	PENDED	THAN
	AS N)	AS P)	AS P)	AS P)	AS FE)	AS MN)	AS C)	AS C)	(MG/L)	(T/DAY)	.062 MM
	(00623)	(00665)	(00666)	(00671)	(01046)	(01056)	(00681)	(00689)	(80154)	(80155)	(70331)
FEB											
08	0.80	0.070	0.040	0.050	7	21					
APR		2	3.5.0		•						
04	1.3	0.260	0.200	0.170	69	130					
19	0.90	0.220	0.100	0.070	24	11					
MAY											
03	0.90	0.120	0.080	0.050	30	7			161	1860	98
JUN											
02	0.60	0.140	0.110	0.100	150	22			181	1710	99
JUL											
12	0.90	0.180	0.150	0.090	32	3	14	1.2	253	4590	100
28	0.90	0.280	0.200	0.160	50	19			101	6380	98
AUG											
03	1.5	0.140	0.120	0.100	70	20					
SEP											
03	1.0	0.180	0.170		70	11	12	3.2	 .		
23	0.80	0.090	0.070	0.080	17	10	9.2	1.4	66	912	100

This page is blank.

05085900 SNAKE RIVER ABOVE ALVARADO, MN (National Water Quality Assessment Station)

LOCATION .-- Lat 48°10'27", long 96°59'55", in SW1/4SW1/4NW1/4 sec. 8, T. 154 N. R. 49 W., Marshall County, Hydrologic Unit 09020309, on right bank 100 ft upstream from bridge on Minnesota State Highway 220, 1/2 south of Alvarado. DRAINAGE AREA.--28 mi2.

WATER-DISCHARGE RECORDS

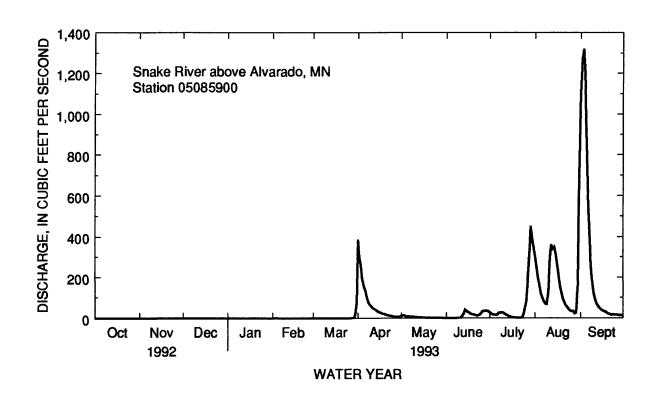
PERIOD OF RECORD.--October 1992 to September 1993. Annual maximum discharges, water years 1945, 1954-56 and 1978-81. Records of daily discharges for period March to September 1945, and October 1953 to July 1956, that were collected at a location 1/2 mi downstream (station 05086000, Snake River at Alvarado, MN) are not considered to be equivalent because of the controlled releases from the city's sewage treatment facility. This discharge enters the river between the two sites. Records for annual maximum discharges for these periods and thosefor the 1978-81 water years, when the station was operated as a high flow site can be considered to be equivalent.

EXTREMES FOR PERIOD OF RECORD.--Maximum observed discharge, 3,410 ft3/s, April 20, 1979.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DATES AND AND UATTIES

					DA	ILY MEAI	n values	}				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e.00	e.00	e.00	e.00	e.10	e.00	e385	12	e.05	27	301	e1100
2	e.00	e.00	e.00	e.00	e.20	e.00	e300	14	e.00	21	246	e1270
3	e.00	e.00	e.00	e.00	e.30	e.00	e256	13	e.00	17	198	e1320
4	e.00	e.00	e.00	e.00	e.25	e.00	e192	9.4	e.00	16	152	e1200
5	e.00	e.00	e.00	e.00	e.20	e.00	e153	9.2	e.00	15	119	e850
_								7				-
6	e.00	e.00	e.00	e.00	e.20	e.00	e133	8.3	e.00	17	97	597
7	e.00	e .00	e.00	e.00	e.15	e.00	104	7.7	e.00	26	81	420
8	e.00	e.00	e.00	e.00	e.10	e.00	78	7.2	.20	26	70	254
9	e.00	e.00	e.00	e.00	e.10	e.00	66	6.8	1.4	27	67	167
10	e .00	e .00	e.00	e.00	e.10	e.00	58	6.0	1.2	26	125	121
•							40				200	•
11	e.00	e.00	e.00	e.00	e.05	e .00	49	5.0	.80	21	300	90
12	e.00	e.00	e.00	e.00	e.05	e.00	44	4.4	9.7	17	360	71
13	e.00	e.00	e.00	e.00	e.05	e.00	41	4.3	22	13	340	58
14	e.00	e.00	e.00	e.00	e.05	e.00	36	3.7	40	e8.5	350	50
15	e.00	e.00	e.00	e.00	e .00	e.00	31	2.6	34	e6.5	313	42
16	e.00	e.00	e.00	e.00	e.00	e.00	28	2.1	29	e4.0	270	37
17	e.00	e.00	e.00	e.00	e.00	e.00	25	1.7	25	e3.0	209	33
18	e.00	e.00	e.00	e .00	e.00	e.00	22	1.3	20	e2.2	155	30
19	e.00	e.00	e.00	e.00	e.00	e.00	21	1.3	18	e1.5	122	25
20	e.00	e.00	e.00	e.00	e .00	e.00	18	1.7	17	e1.0	94	22
21	e .00	e.00	e .00	e.00	e.00	e .00	15	1.0	15	e.70	75	19
22	e.00	e.00	e.00	e.00	e.00	e.00	13	1.4	12	e.55	62	15
23	e.00	e.00	e .00	e.00	e.00	e.10	12	1.0	14	e3.0	52	18
24	e.00	e.00	e.00	e.00	e.00	e.12	11	1.3	16	e20	43	17
25	e.00	e.00	e .00	e .00	e .00	e.14	8.4	e1.0	24	e50	36	17
26	- 00	e.00	- 00	e.00	e.00	e.17	7.8	e.70	34	e85	33	16
26 27	e.00		e.00	e.00	e.00	e.17 e.20	7.8 7.0	e. 70 e. 50	33	e190	34	14
27	e.00	e.00	e.00	e.00	e.00	e.25	7.0 6.4	e.35	36	e310	23	15
28 29	e.00	e.00	e.00 e.00	e.00		el.5	7.0	e.25	35	e450	26	13
29 30	e.00	e.00		e.00		e1.5	6.9	e.25	32	390	170	12
31	e.00 e.00	e.00	e.00 e.00	e.05		e75		e.12		349	e700	
31	E. 00		E. 00	6.03		613		6.12		347	6700	
TOTAL	0.00	0.00	0.00	0.05	1.90	92.48	2134.5	129.47	469.35	2143.95	5223	7913
MEAN	.000	.000	.000	.002	.068	2.98	71.1	4.18	15.6	69.2	168	264
MAX	.00	.00	.00	.05	.30	75	385	14	40	450	700	1320
MIN	.00	.00	.00	.00	.00	.00	6.4	.12	.00	.55	23	12
AC-FT	.00	.00	.00	.1	3.8	183	4230	257	931	4250	10360	15700

e Estimated.


05085900 SNAKE RIVER ABOVE ALVARADO, MN--Continued

STATISTICS O	F MONTHLY	MEAN D	ATA FOR V	VATER Y	EARS 1993	- 1993, B	Y WATER	YEAR (WY)	
0.00	11011	200	* * * * *	-	2	4.00		***	

	OCT	NOV	DEC	JAN	FEB	MAK	APK	MAY	JUN	JOL	AUG	SEP
MEAN.	000	.000	.000	.002	.068	2.98	71.1	4.18	15.6	69.2	168	264
MAX	.000	.000	.000	.002	.068	2.98	71.1	4.18	15.6	69.2	168	264
(WY)	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993
MIN	.000	.000	.000	.002	.068	2.98	71.1	4.18	15.6	69.2	168	264
(WY)	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993	1993

SUMMARY STATISTICS FOR 1993 WATER YEAR

ANNUAL TOTAL	18107.70	
ANNUAL MEAN	49.6	
HIGHEST DAILY MEAN	1320	Sep 3
LOWEST DAILY MEAN	.00	Oct 1
ANNUAL SEVEN-DAY MINIMUM	.00	Oct 1
INSTANTANEOUS PEAK FLOW	1320	Sep 3
INSTANTANEOUS PEAK STAGE	21.33	Sep 3
ANNUAL RUNOFF (AC-FT)	35920	-
10 PERCENT EXCEEDS	121	
50 PERCENT EXCEEDS	.20	
90 PERCENT EXCEEDS	.00	

05085900 SNAKE RIVER ABOVE ALVARADO, MN (National Water Quality Assessment Station)

WATER-QUALITY RECORDS

PERIOD OF DAILY RECORD .--

WATER TEMPERATURE:June 1993 to September 1993.

SPECIFIC CONDUCTANCE:June 1993 to September 1993.

INSTRUMENTATION.--Water-quality sensors since June 1993.

REMARKS.--Records fair.Interruptions in record due to malfunction of recording instruments. Water quality data for period, Feb. 9 to Apr. 28 collected from site 2 miles downstream from present location and listed as 'Snake River at Alvarado, MN (05086000)' in this report. EXTREMES FOR CURRENT PERIOD.--

WATER TEMPERATURE:Maximum recorded, 24.5C, June 21; minimum recorded, 7.0C, Sept. 30.

SPECIFIC CONDUCTANCE:Maximum recorded, 1,000 microsiemens, June 10; minimum recorded, 310 microsiemens, Aug. 11.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN	MEAN	MAX	MIN EMBER	MEAN
_									~			
1				17.5	15.5	16.5	22.0	21.0	21.5	15.5	15.0	15.0
2				20.5	16.0	18.5	21.0	20.0	20.5	15.5	15.5	15.5
3				21.0	18.5	19.5	20.0	19.0	19.5	16.0	15.0	15.5
4				21.5	19.5	20.5	20.0	18.5	19.0	16.0	15.5	16.0
5				20.5	18.5	19.0	19.5	18.5	19.0	16.0	15.0	15.5
6				19.0	18.0	18.0	19.5	18.0	19.0	15.5	14.0	15.0
7				18.0	17.5	17.5	20.5	18.0	19.5	15.0	14.0	14.5
8				19.0	16.5	18.0	22.0	19.0	20.5	15.0	14.5	15.0
9	19.0	16.0	17.0	21.5	17.5	19.5	23.5	20.5	22.0	15.5	14.5	15.0
10	21.5	16.5	18.5	21.5	19.5	20.5	23.5	21.5	22.5	15.0	13.0	14.0
11	23.0	18.0	20.0	20.5	18.5	19.5	22.0	20.5	21.0	15.5	13.0	14.0
12	23.0	20.0	22.0	20.0	17.0	18.5	20.5	19.5	20.0	15.5	14.5	15.0
13	22.0	20.5	22.0				19.5	18.0	18.5	15.0	12.0	13.0
14	20.5	17.5	19.0				19.0	17.5	18.0	12.0	10.5	11.5
15	18.5	16.0	17.5			***	19.5	18.5	18.5	12.0	10.0	11.0
16	17.5	16.0	16.5				20.0	18.0	19.0	12.0	10.5	11.0
17	18.5	15.0	17.0				19.5	18.5	19.0	12.0	10.0	11.0
18	20.0	16.5	18.5				20.0	18.0	19.0	12.5	10.5	11.5
19	21.0	17.5	19.5	***			19.5	18.0	19.0	12.5	11.0	12.0
20	22.5	18.0	20.5				19.5	17.5	18.5	12.5	11.5	12.0
21	24.5	20.0	22.5				20.0	18.0	19.0	12.5	11.5	12.0
										12.5	11.0	12.0
22	24.0 23.5	22.0 20.5	23.0 22.5				19.5	18.5 18.5	19.0 19.5	12.5	9.0	10.5
23							21.0		20.5	12.0	10.0	11.0
24	23.0	20.5	21.5				22.0	19.0 20.0	20.3	12.5	11.0	12.0
25	20.5	17.0	18.0				22.0	20.0	21.0	12.3	11.0	12.0
26	17.5	16.5	16.5				22.0	19.5	20.0	12.5	10.0	11.0
27	16.5	15.5	16.0				20.0	18.0	19.0	10.0	8.5	9.0
28	16.5	15.0	15.5				19.0	17.0	18.0	9.5	8.5	9.5
29	16.0	15.0	15.5			•••	18.5	16.5	17.5	8.5	7.0	8.0
30	15.5	15.0	15.5				16.5	15.5	16.0	10.0	7.0	8.5
31				22.5	21.5	22.0	16.0	14.5	15.0			
MONTH					***		23.5	14.5	19.3	16.0	7.0	12.5

05085900 SNAKE RIVER ABOVE ALVARADO, MN--Continued

SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		A	UGUST		SEPT	EMBER	
1				699	684	692	544	541	543	346	326	334
2				708	684	695	549	542	545	361	337	348
3				720	703	715	558	547	552	387	361	375
4				733	709	720	564	557	560	409	387	397
5				738	732	734	564	559	562	437	409	422
6				749	737	743	563	559	561	463	437	448
7				747	737	744	561	556	559	497	463	479
8				754	737	746	561	550	557	516	497	507
9	980	896	922	755	748	751	553	541	549	540	516	527
10	1000	835	926	750	725	736	554	471	541	560	540	548
11	882	796	852	765	745	759	491	310	366	580	560	568
12	882	830	865	768	761	765	412	391	401	600	580	591
13	830	745	798				413	409	411	611	599	603
14	964	734	800				422	409	414	628	611	617
15	906	858	889				438	422	431	646	628	635
16	887	783	808				453	433	443	651	642	646
17	811	774	799				473	453	463	665	649	655
18	774	690	732				496	473	483	678	663	669
19	690	660	670				506	494	500	690	677	681
20	681	658	664				522	506	512	702	690	696
21	735	681	711				537	520	528	708	698	701
22	748	722	740				549	536	543	717	708	713
23	734	700	722				567	549	558	721	712	716
24	727	693	716				586	566	575	730	720	724
25	723	689	712				599	584	591	741	729	734
26	734	662	703				605	593	597	747	741	744
27	757	679	734				610	596	601	748	739	742
28	710	674	692				607	563	581	751	743	748
29	709	683	700				619	579	605	749	738	742
30	700	690	694				595	419	533	766	749	758
31				543	527	535	452	342	390			
-												
MONTH							619	310	518	766	326	602

05085900 SNAKE RIVER ABOVE ALVARADO, MN--Continued

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
MAY										
11	1000	5.0	862	838	7.8	8.1	22.0	15.5	747	6.7
24	0900	1.3	948	929	7.6	8.0	12.0	12.0	737	6.2
JUN										
08	1000	0.0	899		7.6			16.0	723	4.9
09	0930	0.70	884	903	8.1	7.9	15.0	15.5	729	3.5
11	1045	0.76	920	878	7.8	8.1	25.0	18.5	738	4.4
16	1145	30	788	798	7.6	7.9	12.5	16.5	737	9.7
24	0930	17	739	706	7.5	7.9	14.0	21.0	733	5.0
JUL										
06	1020	15	744	724	7.8	8.1	15.0	18.0	729	6.2
19	0730	1.5	664		7.8		16.0	20.5		
27	1200	187	520		7.8		17.0	20.0		6.2
30	1335	379	532		7.6		25.5	21.5	738	4.7
AUG										
03	1200	198	580	565	7.6	7.7	18.5	19.0	744	5.2
10	1015	103	638	545	8.0	7.7	21.0	21.5	739	5.2
13	0830	349	415	422	7.9	7.7	12.0	18.0	746	5.2
31	1115	658	328	355	7.9	7.1	12.5	15.0	744	5.6
SEP										
02	0930	1300	339	353	7.8	7.1	16.0	15.5	736	5.0
08	1125	249	528		7.6		17.5	14.5	732	7.7

05085900 SNAKE RIVER ABOVE ALVARADO, MN--Continued

DATE	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
MAY									
11		46	17	7.9	397	3	32 9	322	130
24	98	51	23	8.4		0		312	140
JUN									
08									
09		50	27	7.9	410	0	33 6	323	130
11		50	21	7.9	384	3	320	333	120
16	88	48	12	6.5	353	0	289	301	130
24		41	11	6.7	305	0	25 0	254	120
JUL									
06		43	12	6.9	315	0	258	272	110
19									
27.					238	0	195		
30								207	
AUG									
03.	69	28	6.7	8.3	271	0	222	245	55
10.		21	21	11		0		186	75
13.	55	21	4.6	8.5	198	0	162	168	35
31.		14	5.7	11	131	0	107	148	27
SEP									
02.	37	15	3.4	5.3	144	0	118	129	30
08.					237	0	194		

05085900 SNAKE RIVER ABOVE ALVARADO, MN--Continued

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
MAY									
11	21	0.30	2.7	545	< 0.010	< 0.050	0.020	0.90	0.90
24	34	0.30	4.0	608	0.020	0.150	0.050	1.5	1.2
JUN									
08									
09	38	0.20	4.5	582	< 0.010	0.140	0.050	1.1	0.90
11	29	0.20	5.8	576	< 0.010	<0.050	0.050	1.0	0.90
16	14	0.20	14	434	0.010	0.058	0.040	1.2	1.1
24	13	0.20	18	478	0.040	0.097	0.080	1.2	1.2
JUL									
06	13	0.20	20	502	0.020	0.200	0.060	1.4	1.2
19									
27								1.7	
30	••							1.3	
AUG									
03	8.9	0.20	38	396	0.020	0.100	0.090	1.7	1.4
10	15	0.20	28	362	0.060	0.300	0.090	1.7	1.6
13	7.1	0.20	27	283	0.030	0.170	0.090	1.4	1.2
31	9.7	0.20	15	211	0.040	0.820	0.120	1.0	1.9
SEP									
02	7.3	0.20	17	219	0.020	0.210	0.060	0.80	0.90
08					0.020	0.180	0.080	1.1	1.2

RED RIVER OF THE NORTH BASIN 05085900 SNAKE RIVER ABOVE ALVARADO, MN--Continued

DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAY									
11	0.120	0.090	0.080	13	52	16	0.4		
24	0.170	0.110	0.070	32	220	17	1.1		
JUN									
08									
09	0.100	0. 09 0	0.070	18	190	17	0.4		••
11	0.120	0.110	0.080	9	110	16	0.5		
16	0.140	0.110	0.100	22	36	19	0.9	28	97
24	0.200	0.180	0.180	33	79	19	1.1		-
JUL									
06	0.180	0.140	0.130	44	60	20	0.7	31	100
19									
27	0.260							171	99
30	0.180							81	100
AUG									
03	0.260	0.190	0.150	110	37	12	1.1	59	100
10	0.230	0.200	0.180	39	38	22	0.9	76	100
13	0.280	0.160	0.130	120	29	16	0.6	88	99
31	0.240	0.150	0.130	120	66	11	>6.6	331	99
SEP									
02	0.140	0.120	0.100	18	<1	13	1.1	140	99
08	0.200	0.130	0.120			16	0.6	90	100

05086000 SNAKE RIVER AT ALVARADO, MN

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	CIFIC CON- DUCT- ANCE	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	WHOLE FIELD (STAND- ARD	ARD UNITS)	TEMPI - ATUR - AIR	RE ATUR WATI C) (DEG	ER OF C) HG)	OXYGE DIS- SOLVE (MG/L	SOLVED D (MG/L) AS CA)	MAGNE- M SIUM, DIS- SOLVED (MG/L AS MG) (00925)
FEB 09 APR	. 0900	0.20	1620	1560	7.2	7.6	-6.0	0.5	736	0.6	130	70
	1100	368	325	353	7.6	7.7	4.5	0.5	736	11.5	36	14
03	1050	256	359	383	7.7	6.9	4.0	0.5	748	13.4	38	16
06	1105	119	382	405	7.5	7.6	12.5	0.5	743	11.1	42	18
15	1430	31	566	588	8.0	7.9	17.0	8.0	740	11.0	67	30
28	1520	6.4	748	758	8.1	8.1	17.5	13.0	732	10.5	89	41
	SODIUM, DIS-	POTAS- SIUM, DIS-		CAR- BONATE WATER DIS IT	ALKA- LINITY WAT DIS TOT IT	ALKA- LINITY LAB	SULFA'		, RIDE,	DIS-	, RESIDUE	NITRO- GEN, NITRITE DIS-
	SOLVED	SOLVED		FIELD	FIELD	(MG/L			ED SOLVED			SOLVED
	(MG/L			MG/L AS	MG/I AS	AS	(MG/I			AS	SOLVED	(MG/L
DAIL	AS NA)	AS K)	HCO3	CO3	CACO3			4) AS CI		SIO2)	(MG/L)	AS N)
	(00930)	(00935)	(00453)	(00452)	(39086)	(90410)						(00613)
	(00)50)	(00/33)	(00-55)	(00-152)	(39000)	(50410)	(00)45) (OO)+N	, (00/30)	(00/33)	(10300)	(00013)
FEB 09	86	9.4	563	0	461		130	20	0.20	28	1010	0.020
APR												
01	5.0	12	124	0	102	101	48	9.2	0.20	11	224	0.120
03	5.3	11	137	0	112	124	53	10	0.20	12	249	0.130
06	5.5	9.9	152	0	124	135	54	9.9	0.20	12	267	0.070
15		8.8	256	0	210	214	84	14	0.20	16	380	0.010
28	14	7.9	334	0	274	278	110	19	0.20	7.2	498	<0.010
	NITRO)- NITR	O- NIT	RO- NITI	RO-			PHOS-				CARBON,
	GEN,			AM- GEN		P	HOS- 1	PHORUS	N	IANGA-C	ARBON,OR	
	NO2+N	O3 AMMO						ORTHO,	IRON,	NESE, C	RGANIC	SUS-
	DIS-	DIS-	· ORGA	ANICORGA	ANIC PHO	RUS 1	DIS-	DIS-	DIS-	DIS-	DIS-	PENDED
	SOLVE	D SOLV	ED TO	TAL DI	S. TOT	AL SO	LVED S	SOLVED S	SOLVED S	OLVED S	SOLVED	TOTAL
DATE	(MG/I	_ (MG/	L (MO	G/L (MC	G/L (MC	3/L (1	MG/L	(MG/L	(UG/L	(UG/L	(MG/L	(MG/L
	AS N) ASN) AS	N) AS	N) AS	P) A	(SP)	AS P)	AS FE)	AS MN)	AS C)	AS C)
	(00631) (9060	8) (006	(006	23) (006	65) (0	0666)	(00671)	(01046)	(01056)	(00681)	(00689)
	•			•	, ,	. `	-	•	-	•	-	•
FEB												
09	<0.050) 1.4	ю :	2.6 2.	7 0.	570	0.380	0.380	870	1600	20	0.9
APR				_	_							
01	2.60	0.3		1.7 1.		320	0.260	0.240	130	72	16	1.5
03	2.60	0.2		1.6 1.		210	0.210	0.170	120	72	18	1.3
06	1.50	0.1		1.4 1.		160	0.040	0.070	97	100	15	2.3
15	0.360			1.4 1.		100	0.060	0.030	63	28	15	0.9
28	<0.050	0.0	20	1.1 0.	90 0.	080	0.050	0.030	19	36	15	0.7

This page is blank.

05087500 MIDDLE RIVER AT ARGYLE, MN

LOCATION.--Lat 48°20'25", long 96°48'58", in NE¹/4NW¹/4 sec. 15, T.156 N., R.48 W., Marshall County, Hydrologic Unit 09020309, on left bank 30 ft upstream of bridge on County Highway 4 in Argyle and 14 mi upstream from mouth.

DRAINAGE AREA.--265 mi²

PERIOD OF RECORD.--March to September 1945, October 1950 to September 1981, February 1982 to current year. Monthly discharge only for some periods, published in WSP 1728. October 1981 to January 1982, operated as a high-flow partial-record station.

GAGE.--Water-stage recorder. Datum of gage is 828.53 ft above mean sea level. Prior to Nov. 8, 1951, nonrecording gage and Nov. 8, 1951, to Sept. 18, 1952, water-stage recorder at site 800 ft downstream at datum 1.0 ft higher. Sept. 19, 1952, to June 28, 1982, recording gage at site 800 feet downstream at present datum. June 29, 1982, to Sept. 20, 1983, nonrecording gage at present site and datum.

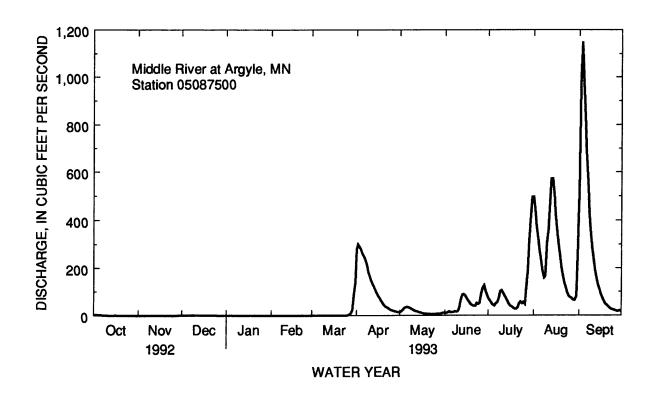
REMARKS.--Records fair except those for estimated daily discharges, which are poor.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of April 1950 reached a stage of 15.25 ft present datum, site then in use, from floodmarks, discharge, 2,790 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	4.5 3.8	. 26 .27	e2.0 e1.8	e.86 e.84	e.72 e.72	e.65 e.65	e280 e300	15 17	11 11	73 63	497 443	511 963
3	3.4	.31	e1.6	e. 82	e.72 e.72	e.63 e.64	e290	24	14	53	376	1150
4	2.9	.32	e1.6	e. 81	e.72 e.72	e.64	e280	33	17	46	326	1010
5	2.9	.32	e1.5	e.80	e.72	e.64	e260	35	14	42	276	835
6	2.4	.32	e1.5	e.78	e.72	e.64	248	36	15	50	231	686
7	2.1	.32	e1.5	e.76	e.71	e.64	236	35	15	55	191	560
8	1.9	.32	e1.4	e.76	e.71	e.64	213	33	18	70 ·	160	435
9	1.6	.33	e1.4	e.76	e.71	e.64	186	29	16	102	167	345
10	1.0	.51	e1.4	e.76	e .70	e.64	164	26	17	106	308	287
11	.87	.46	e1.4	e.75	e.70	e.64	148	22	33	95	361	234
12	.50	.37	e1.3	e.75	e .70	e.64	133	19	63	84	472	192
13	.70	.33	e1.3	e.74	e.70	e.64	121	17	87	73	572	155
14	.78	.33	e1.3	e.74	e.69	e.64	106	15	90	61	572	130
15	.82	.33	e1.2	e.74	e.69	e.64	92	13	84	48	507	111
16	1.1	.33	e1.2	e.74	e.69	e.64	81	12	75	40	423	91
17	.88	.33	e1.2	e.74	e.69	e.64	72	10	63	38	353	75
18	.71	.33	e1.2	e.74	e.68	e.64	62	8.7	55	32	304	60
19	.69	.33	e1.1	e.74	e.68	e.64	52	8.0	47	28	251 203	50 44
20	.69	.39	e1.1	e.74	e.68	e.64	44	7.0	43	29	203	44
21	.85	.53	e1.1	e.74	e.67	e.68	38	6.3	40	34	166	39
22	.82	.62	e1.0	e.74	e.67	e.73	35	6.3	41	51	138	39 32
23	.27	.65	e1.0	e.73	e.67	e.80	31	5.8	52	58	116	29
24	.27	.67	e1.0	e.73	e.66	e.88	27	7.3	48	51	96	26
25	.26	.60	e1.0	e.73	e.66	e.95	23	6.0	52	56	81	24
26	.26	.38	e.98	e.73	e.66	e1.6	22	6.3	93	48	76	21
27	.26	.33	e.95	e.72	e.65	e4.0	19	7.9	115	118	72	19
28	.26	.37	e.93	e.72	e.65	e10	18	8.7	127	198	66	19
29	.26	e1.2	e.92	e.72		e23	16	7.7	106	319	65	21
30	.26	e1.8	e.90	e.72		e84	15	9.5	87	419	79	18
31	.26		e.88	e.72		e140		12		496	253	
TOTAL	38.27	13.96	38.66	23.37	19.34	279.46	3612	498.5	1549	3036	8201	8172
MEAN	1.23	.47	1.25	.75	.69	9.01	120	16.1	51.6	97.9	265	272
MAX	4.5	1.8	2.0	.86	.72	140	300	36	127	496	57 2	1150
MIN	.26	.26	.88	.72	.65	.64	15 71 6 0	5.8 9 89	11 3070	28 6020	65 16270	18 16210
AC-FT CFSM	76 .00	.00	<i>7</i> 7 .00	46 .00	.00	554 .03	.45	.06	.19	.37	1.00	1.03
IN.	.00 .01	.00	.00 .01	.00	.00	.03	.43 .51	.07	.22	.43	1.15	1.15
	.01			.00	.00							

e Estimated.


05087500 MIDDLE RIVER AT ARGYLE, MN--Continued

STATIS	TICS OF	MONTHLY	MEAN D	ATA FOR	WATER Y	EARS 1943) - 1993, B	YWATEK	YEAR (W	()		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	8.83	5.05	2.25	.98	.74	24.6	203	70.9	71.3	52.0	10.7	13.5
MAX	94.1	33.4	15.8	4.65	3.32	217	747	330	660	688	265	272
(WY)	1983	1957	1983	1983	1983	1983	1966	1970	1970	1975	1993	1993
MIN	.000	.000	.000	.000	.000	.000	.20	2.12	.37	.000	.000	.000
(WY)	1954	1954	1954	1953	1953	1954	1991	1981	1973	1961	1961	1952

SUMMARY STATISTICS FOR 19	92 CALENDA	AR YEAR	FOR 1993 WAT	ER YEAR	WATER YEA	RS 1945 - 1993
ANNUAL TOTAL	7627.49		25481.56			
ANNUAL MEAN	20.8		69.8		38.5 <u>a</u>	
HIGHEST ANNUAL MEAN					112	1966
LOWEST ANNUAL MEAN					1.60	1977
HIGHEST DAILY MEAN	300	Mar 9	1150	Sep 3	3790	Jul 4 1975
LOWEST DAILY MEAN	.14	Sep 4	.26Oc	t 25 - Nov 1	.00	Many days
ANNUAL SEVEN-DAY MINIMUN	M .17	Aug 31	.26	Oct 25	.00	Aug 18 1952
INSTANTANEOUS PEAK FLOW			1180	Sep 3	4260	Jul 3 1975
INSTANTANEOUS PEAK STAGE			14.18	Sep 3	16.59 <u>b</u>	Jul 3 1975
INSTANTANEOUS LOW FLOW			.25	Nov 1		
ANNUAL RUNOFF (AC-FT)	15130		50540		27870	
ANNUAL RUNOFF (CFSM)	.079		.26		.15	
ANNUAL RUNOFF (INCHES)	1.07		3.58		1.97	
10 PERCENT EXCEEDS	<i>7</i> 2		235		78	
50 PERCENT EXCEEDS	1.2		6.3		1.9	
90 PERCENT EXCEEDS	.26		.63		.00	

a Median at annual mean discharges is 25 ft 3/s.

b Present datum.

05087500 MIDDLE RIVER AT ARGYLE, MN--Continued (National water quality assessment station)

		DIS-		PH			BARO-		NITRO-			SED.
		CHARGE,	SPE-	WATER			METRIC		GEN,AM-			SUSP.
		INST.	CIFIC	WHOLE			PRES-		MONIA +	PHOS-	SEDI-	SIEVE
		CUBIC	CON-	FIELD	TEMPER-	TEMPER-	SURE	OXYGEN	ORGANIC	PHORUS	MENT,	DIAM.
		FEET	DUCT-	(STAND-	ATURE	ATURE	(MM	DIS-	TOTAL	TOTAL	SUS-	% FINER
DATE	TIME	PER	ANCE	ARD	AIR	WATER	OF	SOLVED	(MG/L	(MG/L	PENDED	THAN
		SECOND	(US/CM)	UNITS)	(DEG C)	(DEG C)	HG)	(MG/L)	AS N)	AS P)	(MG/L)	.062 MM
		(00061)	(00095)	(00400)	(00020)	(00010)	(00025)	(00300)	(00625)	(00665)	(80154)	(70331)
AUG												
18	0950	312	493	7.8	18.0	21.0	738	5.6	1.7	0.250	49	53

This page is blank.

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND

LOCATION.--Lat 48°34'20", long 97°08'50", in SE¹/4SE¹/4SE¹/4 sec.24, T.159 N., R.51 W., Pembina County, Hydrologic Unit 09020311, on downstream side of bridge on North Dakota State Highway 11, at the North Dakota-Minnesota border, 1.5 mi northeast of Drayton, and at mile 206.7.

DRAINAGE AREA.--34,800 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- April 1936 to June 1937, April 1941 to current year (fragmentary prior to April 1949).

REVISED RECORDS.-WSP 1388: 1949-50. WSP 1728: Drainage area.

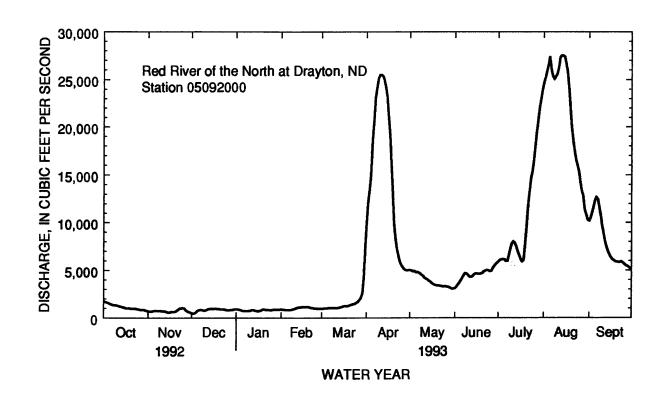
GAGE.--Water-stage recorder and concrete control. Datum of gage is 755.00 ft above sea level (Minnesota highway bench mark). Prior to Nov. 30, 1954, nonrecording gage at site 1.5 mi upstream at datum 1.59 ft higher.

REMARKS.--Records good except those for period Oct. 30 to Mar. 4, which are fair and those for Mar. 5-13, which are poor.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of April 1897 reached a stage of about 41 ft, at site and datum in use prior to Nov. 30, 1954.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

					DA	JLY MEA	N VALUES	3				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1770	712	497	910	e900	e980	e10000	5020	3150	5940	24700	10200
2	1680	679	474	894	e880	e980	e12000	5000	3270	6100		10500
3	1630	663	479	879	e860	e1000	e13500	4900	3490	6150	25900	11100
4	1560	685	579	818	e840	e1000	e15000	4930	3700	6170		11700
5	1490	718	725	757	e820	e1010	18600	4790	3920	6140	27400	12400
6	1420	731	801	726	e830	e1020	20800	4820	4210	5970		12700
7	1370	731	818	742	e840	e1020	23100	4760	4490	5990	25400	12500
8	1340	723	821	742	e850	e1020	24300	4670	4700	6530	25100	11700
9	1320	722	789	742	e900	e1020	25100	4550	4660	7260	25300	10700
10	1300	717	779	742	e950	e1020	25500	4430	4520	7790	25600	9640
11	1260	695	793	772	e1000	e1020	25500	4240	4350	7990	26300	8780
12	1210	695	868	833	e1050	e1040	25400	4130	4290	7900	27300	8040
13	1180	683	930	821	e1100	e1060	25100	4030	4380	7530	27500	7450
14	1130	601	949	771	e1100	e1100	24300	3890	4520	7070	27500	7000
15	1070	573	956	726	e1150	e1150	23200	3810	4660	6590	27400	6650
16	1020	576	954	709	el150	e1200	21400	3680	4670	6170	26800	6380
17	1010	622	957	725	e1150	e1230	19100	3570	4650	5940	25800	6180
18	996	646	963	784	el 150	e1220	16200	3480	4650	6060	24300	6040
19	990	640	952	861	el 150	e1250	13000	3420	4670	7450	e22000	5930
20	971	659	932	910	el 150	e1300	9840	3400	4750	9500	e20000	5900
21	978	776	908	882	e1100	e1350	8180	3400	4890	11500	e18500	5880
22	963	911	911	835	e1050	e1390	7280	3360	4970	13100	e17500	5870
23	960	987	897	817	e1050	e1430	6480	3320	5030	14500	e16500	5950
24	941	1010	861	818	e1000	e1480	5940	3310	4990	15300	e16000	5830
25	889	1020	818	810	e990	e1570	5560	3320	4900	16300	15300	5690
26	881	989	805	840	e975	e1680	5320	3310	4940	17900	14200	5540
27	854	835	806	863	e980	e1840	5150	3280	5210	19300	13300	5470
28	839	691	819	864	e980	e2080	5030	3230	5460	20700	12900	5360
29	835	622	840	869		e2570	4990	3150	5640	21900	11400	5240
30	796	563	880	e860		e4120	5020	3080	5810	23000	10800	5030
31	743		891	e880		e7570		3080		23900	10300	***
TOTAL		21875	25452	25202	27945	48720	449890	121360	137540	333640	668900	237350
MEAN	1142	729	821	813	998	1572	15000	3915	4585	10760	21580	7912
MAX	1770	1020	963	910	1150	7570	25500	5020	5810	23900	27500	12700
MIN	743	563	474	709	820	980	4990	3080	3150	5940	10300	5030
AC-FT	70210	43390	5048 0	49990	55430	96640	892400	240700	272800	661800	1327000	470800


e Estimated.

RED RIVER OF THE NORTH BASIN 05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--Continued

STATIS	TICS OF	MONTHLY	MEAN:	DATA FOR	WATER Y	EARS 194	9 - 1993, B	Y WATER '	YEAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1687	1451	1160	1024	1000	2514	13530	8153	5186	4323	2378	1778
MAX	4463	5653	3072	2065	1876	9329	38390	58890	23420	28240	21580	7912
(WY)	1972	1972	1972	1966	1952	1983	1966	1950	1962	1975	1993	1993
MIN	317	277	149	174	201	280	1275	938	676	348	243	329
(WY)	1991	1977	1977	1990	1977	1962	1981	1977	1977	1988	1977	1988
SUMMA	RY STA	IISTICS I	OR 1992	CALENDA	R YEAR	FOR	. 1993 WAT	TER YEAR		WATER Y	EARS 194	19 - 1993
ANNUA	L TOTAL			756089			2133270					
ANNUA	L MEAN			2066			5845			3696		
HIGHES	T ANNU	AL MEAN								1 0 510		1950
LOWES	T ANNUA	L MEAN								536		1977
HIGHES	T DAILY	MEAN		8600	Mar 16		27500	Aug 13		91000	Apr	28 1979
LOWES	T DAILY	MEAN		449	Feb 2		474	Dec 2		110	Dec	23 1989
ANNUA	L SEVEN	-DAY MIN	MUMI	455	Jan 30		<i>55</i> 8	Nov 28		118	Dec	28 1989
INSTAN	TANEOU	S PEAK F	LOW				27600	Aug 14		92900	Apr	28 1979
INSTAN	TANEOU	S PEAK S	TAGE				36.48	Aug 14		43.66	Apr	28 1979
INSTAN	TANEOU	S LOW FL	.OW					_		7.7	Oct	16 1936
ANNUA	LRUNO	T (AC-FT))	1500000			4231000			2677000		

 10 PERCENT EXCEEDS

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

RED RIVER OF THE NORTH BASIN 05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
NOV											
12	1505	726	928			0.0	1.0				
DEC											
21	1505	921	910				0.0				
30	1430	892	766				0.0				
JAN											
12,	1600	833	610			-10.0	0.0				
21	1220	880	835			-3.5	0.5				
FEB 01	1210	000				4.0	0.0				
12	1310 1105	900 1000	500			-4.0	0.0				
26	1610	973	590				0.5 0.0				
MAR	1010	913					0.0				
05	1120	1010	755			5.0	0.0				
16	1235	1210	650			-4.0	0.0				
APR	1233	1210	050			-4.0	0.0				
08	1000	24000	410			6.5	2,0				
09	1230	25200	451			7.0	3.5				
13	1705	24900	458		8.0	12.0	6.0	200	135	47	21
20	1420	9700	751			11.0	8.0	-i-			
MAY	;										
06	1435	4800	7 7 0			30.0					
, JUN											
09	1600	4660	788			21.5	28.5				
JUL											
14	1250	7100				23.5	20.0				`
23	1450	14500	338			20.0	18.5				
28	1100	20700	362			16.5	19.5				. ≐- . ≥
AUG	1050	07400				10.5	01.5				
05	1050	27400	535			17.5	21.5				
12	0920	27400	450			25.0 26.0	22.0				
20	1230	19800	628			26.0	22.5				
25 SEP	1610	15100	690			29.0	23.0				
01	1150	10300	687			20.0	19.5				·
10	1320	9570	687			20.0 19.5	17.5		<u> </u>	<u></u>	
23	1345	5960	748	7.8		18.0	14.0	320	233	69	36
≈ J	1373	5,00	, 10	7.0		10.0	1-7.0	J20		-	-

05092000 RED RIVER OF THE NORTH AT DRAYTON, ND--Continued

									SOLIDS,	SOLIDS,	
			SODIUM			CHLO-	FLUO-	SILICA,	SUM OF	RESIDUE	SOLIDS,
	SODIUM,		AD-		SULFATE	RIDE,	RIDE,	DIS-	CONSTI-	AT 180	DIS-
	DIS-		SORP-	DIS-	DIS-	DIS-	DIS-	SOLVED	TUENTS,		SOLVED
	SOLVED		TION	SOLVED		SOLVED	SOLVED	(MG/L	DIS-	DIS-	(TONS
DATE	(MG/L	SODIUM	RATIO	(MG/L	(MG/L	(MG/L	(MG/L	SOLVED	SOLVED	SOLVED	PER
	AS NA)	PERCENT		AS K)	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	(MG/L)	(AC-FT)()
	(00930)	(00932)	(00931)	(00935)	(00945)	(00940)	(00950)	(00955)	(70301)	(70300)	(70303)
APR											
13	16	14	0.5	8.5	80	16	0.20	10	280	301	0.41
SEP											
23	32	17	0.8	7.7	120	29	0.20	16	450	472	0.64
	SOLIDS,						MANGA-		MOLYB-	SELE-	STRON-
	DIS-	ARSENIC	BORON,	IRON,	LEAD,	LITHIUM	NESE,	MERCURY	DENUM,	NIUM,	TIUM,
	DIS- SOLVED	DIS-	DIS-	DIS-	DIS-	DIS-	NESE, DIS-	MERCURY DIS-	DENUM, DIS-	NIUM, DIS-	TIUM, DIS-
	DIS- SOLVED (TONS	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	NESE, DIS- SOLVED	MERCURY DIS- SOLVED	DENUM, DIS- SOLVED	NIUM, DIS- SOLVED	TIUM, DIS- SOLVED
DATE	DIS- SOLVED (TONS PER	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	MERCURY DIS- SOLVED (UG/L	DENUM, DIS- SOLVED (UG/L	NIUM, DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L
DATE	DIS- SOLVED (TONS PER DAY)	DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	NIUM, DIS- SOLVED (UG/L AS SE)	TIUM, DIS- SOLVED (UG/L AS SR)
DATE	DIS- SOLVED (TONS PER	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	NESE, DIS- SOLVED (UG/L	MERCURY DIS- SOLVED (UG/L	DENUM, DIS- SOLVED (UG/L	NIUM, DIS- SOLVED (UG/L	TIUM, DIS- SOLVED (UG/L
	DIS- SOLVED (TONS PER DAY)	DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	NIUM, DIS- SOLVED (UG/L AS SE)	TIUM, DIS- SOLVED (UG/L AS SR)
APR	DIS- SOLVED (TONS PER DAY) (70302)	DIS- SOLVED (UG/L AS AS) (01000)	DIS- SOLVED (UG/L AS B) (01020)	DIS- SOLVED (UG/L AS FE) (01046)	DIS- SOLVED (UG/L AS PB) (01049)	DIS- SOLVED (UG/L AS LI) (01130)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)
	DIS- SOLVED (TONS PER DAY)	DIS- SOLVED (UG/L AS AS)	DIS- SOLVED (UG/L AS B)	DIS- SOLVED (UG/L AS FE)	DIS- SOLVED (UG/L AS PB)	DIS- SOLVED (UG/L AS LI)	NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	DENUM, DIS- SOLVED (UG/L AS MO)	NIUM, DIS- SOLVED (UG/L AS SE)	TIUM, DIS- SOLVED (UG/L AS SR)

05094000 SOUTH BRANCH TWO RIVERS AT LAKE BRONSON, MN

LOCATION.—Lat 48°43'50", long 96°39'50", in SW¹/₄SW¹/₄ sec.30, T.161 N., R.46 W., Kittson County, Hydrologic Unit 09020312, on left bank 70 ft upstream from culvert on U.S. Highway 59 at Lake Bronson and 3.4 mi downstream from dam at outlet of Bronson Lake.

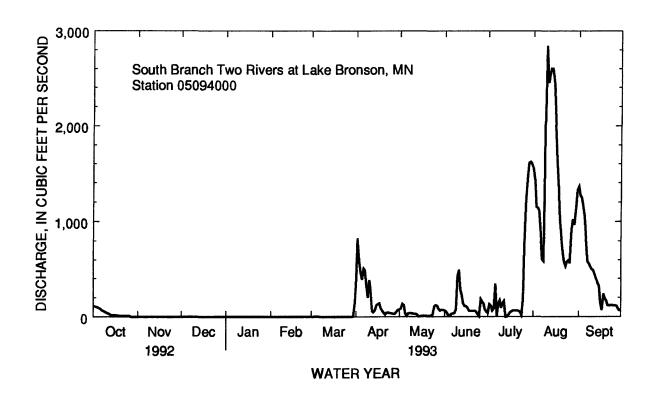
DRAINAGE AREA.—444 mi².

PERIOD OF RECORD.--September 1928 to November 1936, April to September 1937, April 1941 to October 1943, April to December 1944, April 1945 to September 1947, October 1953 to September 1981, April 1985 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1981 to March 1985, annual maximums only. Published as South Fork Two Rivers at Bronson prior to 1941. REVISED RECORDS.--WSP 1308: 1929(M), 1931(M), 1936(M), 1944(M), 1947(M).

GAGE.--Water-stage recorder. Datum of gage is 928.53 ft above mean sea level (Mimesota Department of Transportation bench mark). Prior to Nov. 23, 1953, nonrecording gage at bridge 100 ft downstream at datum 2.00 ft higher. Nov 23, 1953, to Oct. 5, 1963, water-stage recorder at same site at datum 2.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow partly regulated since 1937 by Bronson Lake, usable capacity, 3,700 acre-ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993


					DA	ILY MEAN	N VALUES	S				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	113	.45	.43	e.45	.52	e.60	e400	78	64	39	1550	1360
2	108	.45	e.43	e.45	.52	e1.5	826	83	58	130	1420	1270
3	104	.59	.44	e.45	.52	e2.8	599	134	33	115	1150	1240
4	97	.59	.44	e.45	.52	e4.8	477	122	9.3	65	1140	1160
5	89	.56	e.44	.45	e.52	e4.0	391	35	13	86	1110	1050
6	80	.52	e.44	.45	e.52	e3.0	508	10	30		874	822
7	6 7	.52	e.44	.45	e.52	e2.0	487	35	33		608	579
8	60	.52	e.44	.45	e.52	e1.4	317	37	36		587	563
9	52	.52	e.44	.45	e.52	e.90	204	36	76		1960	528
10	44	.70	e.44	e.45	e.52	e.70	379	34	422	95	2840	501
11	37	.63	e.44	e.45	e.52	e.65	273	32	492		2450	487
12	30	.58	e.44	e.46	e.52	e.55	57	30	288		2540	446
13	22	.53	e.44	e.46	e.52	e.50	47	24	225		2600	398
14	18	.52	e.44	e.46	e.52	e.45	67	3.5	140		2600	356
15	18	.50	e.44	e.46	e.52	e.40	122	5.0	109	22	2440	317
16	16	.58	e.44	e.47	e.52	e.30	129	7.5	111		2080	150
17	14	.56	e.44	e.47	e.52	e.32	139	9.0	95		1650	72
18	13	.52	e.44	e.47	e.52	e.29	95	9.1	59		1400	241
19	12	.53	e.44	e.48	e.52	e.27	63	9.1	62		1030	194
20	12	.59	e.44	e.48	e.52	.24	43	9.4	62	64	863	166
21	12	.59	e.45	e.48	e.52	.21	23	9.6	62	63	686	119
22	11	.53	e.45	e.49	e.52	.23	40	9.5	62		588	117
23	11	.52	e.45	e.49	e.52	.25	43	14	52	50	533	119
24	11	.52	e.45	e.49	e.52	e.30	41	24	25	16	581	119
25	10	.52	e.45	e.49	e.52	.37	38	107	7.6	172	598	118
26	9.0	.47	e.45	e.50	e.52	.53	34	122	183	850	568	116
27	1.7	.45	e.45	e.50	e.52	e.80	32	115	161	1240	921	114
28	.61	.44	e.45	e.50	e.52	e1.2	34	84	138	1470	1020	88
29	.51	.41	e.45	e.50		e1.7	54	65	77	1610	967	67
30	.40	e.41	e.45	e.51		e2.5	71	7 0	50	1620	1140	71
31	.39		e.45	e.51		e150		70		1600	1320	***
	1073.61	15.82	13.73	14.62	14.56	183.76	6033	1432.73	234.9	10552.35	41814	12948
MEAN	34.6	.53	.44	.47	.52	5. 93	201	46.2	108	340	1349	432
MAX	113	.70	.45	.51	.52	150	826	134	492	1620	2840	1360
MIN	.39	.41	.43	.45	.52	.21	23	3.5	7.6	.95	53 3	67
AC-FT	2130	31	27	29	29	364	11970	2840	6420	20930	829 40	25680
CFSM.	08	.00	.00	.00	.00	.01	.45	.10	.24	.77	3.04	.97
IN.	.09	.00	.00	.00	.00	.02	.51	.12	.27	.88	3.50	1.08

e Estimated.

RED RIVER OF THE NORTH BASIN
05094000 SOUTH BRANCH TWO RIVERS AT LAKE BRONSON, MN--Continued

STATIS	TICS OF	MONTHL	Y MEAN	DATA FOR	WATER Y	EARS 1929	- 1993, B	Y WATER Y	EAR (W	VY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	18.7	10.9	4.49	2.74	3.19	56.9	403	193	164	107	48.7	42.3
MAX	153	87.5	34.5	12.1	23.6	362	1977	1338	1336	1136	1349	525
(WY)	1958	1957	1992	1992	1981	1986	1966	1970	1970	1956	1993	1957
MIN	.40	.38	.13	.12	.12	.66	.54	.98	1.43	.44	.089	.000
(WY)	1991	1990	1987	1987	1987	1934	1991	1991	1980	1988	1988	1937
SUMMA	RY STAT	TISTICS	FOR 1992	CALENDA	AR YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 19	29 - 1993
ANNUA	L TOTAL			47625.36		7	7331.05					
ANNUA	L MEAN			130			212			88.1 <u>a</u>		
HIGHES	T ANNU.	AL MEAN	1							312		1966
LOWES	T ANNUA	LL MEAN	Ī							2.89		1934
HIGHES	T DAILY	MEAN		1830	Apr 2		2840	Aug 10		5290	Ap	r 5 1966
LOWES	T DAILY	MEAN		.39	Oct 31		.21	Mar 21		.00		lany days
ANNUA	L SEVEN	-DAY MI	NIMUM	.43	Nov 28		.26	Mar 18		.00	Au	g 2 1937
INSTAN	TANEOU	S PEAK	FLOW				3050	Aug 10		5410		r 5 1966
INSTAN	TANEOU	S PEAK S	STAGE				12.87	Aug 10		18.23	Ap	r 5 1966
ANNUA	L RUNO!	Ŧ (AC-F1	r)	94460			153400			63850	_	
	LRUNO			.29			.48			.20		
	L RUNO!		ES)	3.99			6.48			2.70		
	ENT EXC			382			740			215		
	ENT EXC			12			16			4.4		
90 PERC	ENT EXC	CEEDS		.45			.45			.72		

a Median of annual mean discharges is 56 fr³/s.

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA (International gaging station)

(National stream-quality accounting network station)

LOCATION.--Lat 49°00'30", long 97°12'40", in sec.2, T.1, R.2 E., Hydrologic Unit 09020311, on right bank 1,500 ft downstream from Canadian National Railway bridge in Emerson, 0.8 mi downstream from international boundary, 3.6 mi downstream from Pembina River, and at mile 154.3.

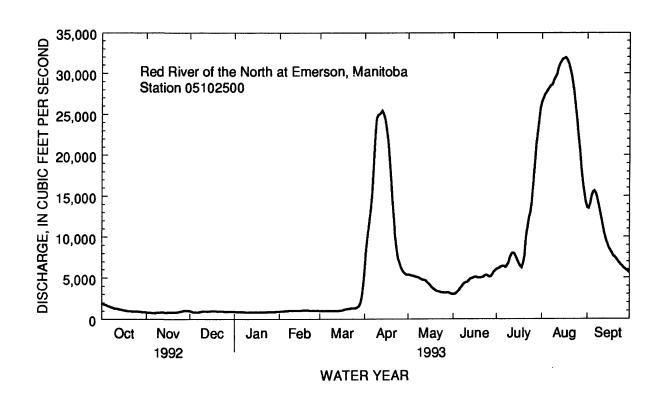
DRAINAGE AREA.--40,200 mi², approximately, includes 3,800 mi² in closed basins.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--March to November 1902 (gage heights only), May 1912 to September 1929 (monthly discharge only, published in WSP 1308), October 1929 to current year.

GAGE.--Water-stage recorder. Datum of gage is Geodetic Survey of Canada Datum of 1929. See WSP 1728 or 1913 for history of changes prior to Apr. 10, 1953.

COOPERATION.--This station is one of the international gaging stations maintained by Canada under agreement with the United States. Records provided by Water Survey of Canada.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES

DAY OCT NOV DEC JAN **FEB** IIIN пп. **AUG** SEP MAR APR MAY e985 e893 e936 e999 e6320 e946 e879 e946 e1000 e8370 e886 e876 e953 e999 e10100 e855 e876 e964 e999 e11600 e837 e869 e975 e999 e13200 e759 e837 e862 e985 e999 e15300 e763 e851 e862 e992 e996 e18500 e777 e879 e855 e1010 e992 e22400 e787 e925 e848 e1010 e989 e946 e809 e844 e1010 e985 e823 e840 e950 e1010 e982 e826 e950 e840 e1010 e982 e823 e950 e837 e985 e1020 e805 e957 e833 e1020 e992 e964 e816 e830 e1030 e1010 e826 e975 e830 e1040 e1030 e830 e975 e830 e1060 e1080 e975 e830 e833 e1070 e1140 e833 e975 e837 e1070 e1190 e1240 e833 e844 e1070 e967 e833 e964 e1060 e844 e1260 e840 e957 e851 e1050 e1280 e862 e855 e1290 e946 e1040 e897 e946 e858 e1030 e1290 e939 e865 e1030 e946 e1310 e1350 e989 e936 e869 e1020 e1010 e932 e872 e1020 e1420 e922 e876 e1020 e1010 e1590 e1020 e915 e883 e1990 e1010 e893 e907 --e2830 e907 e925 e4410 TOTAL 37616 MEAN MAX MIN AC-FT

e Estimated.

RED RIVER OF THE NORTH BASIN 05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued

STATIST	STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1912-1992, BY WATER YEAR (WY)													
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
MEAN	1424	1268	936	777	740	2014	12490	8306	4891	3807	2010	1572		
MAX	4533	5163	2760	2053	1914	9361	45820	72820	25430	28020	27000	10010		
(WY)	1986	1972	1966	1951	1952	1983	1966	1950	1962	1975	1993	1993		
MIN	28.6	23.7	33.3	7.05	1.21	2.25	1282	663	196	121	46.6	23.6		
(WY)	1937	1937	1937	1937	1937	1937	1938	1934	1934	1936	1934	1934		
` .														
SUMMA	RY STAT	WATER Y	EARS 19	12 - 1993										
ANNUAL TOTAL 1073089 2368490														
	L MEAN			2932		,	6489			3361				
	T ANNU	AL MEA	N	-,,,			0.02			12100		1950		
	T ANNUA									333		1934		
HIGHES	T DAILY	MEAN		15700	Apr 4		31900	Aug 17		94400	May	13 1950		
LOWES	T DAILY	MEAN		501	Jan 4		759	Nov 6		.90	Fe	b 6 1937		
ANNUA	L SEVEN	-DAY M	INIMUM	515	Jan 1		775	Nov 3		.97		ь 4 1937		
	ITANEOU						31900	Aug 16		95500	May	13 1950		
INSTAN	ITANEOU	S PEAK	STAGE				779.02	Aug 16		791.19		y 1 1979		
	ITANEOU									.90	Fel	b 6 1937		
	L RUNO!		Γ)	2128000			4698000			2435000				
	CENT EXC			8100			22500			7400				
	CENT EXC			1440			3020			1370				
90 PERC	CENT EXC	CEEDS		557			846			254				

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD .-- Water years 1978 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1977 to current year.

WATER TEMPERATURE: October 1977 to current year.

REMARKS.--Records of daily mean values of water temperature and specific conductance are furnished by Water Survey of Canada.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily mean, 2,180 microsiemens, Dec. 8, 1989; minimum daily mean, 259 microsiemens, Apr. 14, 1989. WATER TEMPERATURES: Maximum daily mean, 26.7C, Aug. 16, 1988; minimum daily mean, 0.0C, on many days during winter months.

EXTREMES FOR CURRENT YEAR.--

SPECIFIC CONDUCTANCE: Maximum daily mean, 1,100 microsiemens, Dec. 9; minimum daily mean, 351 microsiemens, July 23.

WATER TEMPERATURES: Maximum daily mean, 21.9 C, Aug. 28; minimum daily mean, 0.0C, on many days during the winter months.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED	CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)
OCT											
15	1215	1150		710	8.8	7.0	6.0	33	7.9	65	290
NOV											
19	1130		833	1020	8.6	-5.0	3.0	6.4	14.6	110	310
FEB	10.10	4000		505						100	200
09	1340	1020		735	7.7	-6.0	0.5	 0.5	14.4	103 88	280 290
23 APR	1130		1040	896	7.7	-14.0	0.0	3.5	12.6	88	290
07	1115		E18500	383	8.0		0.5		11.8	84	160
13	1035	25500		438	7.7		5.0		9.9	79	180
20	1120		14600	699	8.0	5.0	9.5		10.3	92	270
27	1115		5900	792	8.1	16.5	10.5	65	10.4	97	310
MAY			0,00		•••						
04	1105		5230	771	8.2	19.5	12.5		10.0	98	330
10	1305		4840	789	7.9	23.5	17.0		8.4	89	330
20	1030		3450	850	8.0	10.5	14.5		9.6	97	330
JUN											
03	1115		3120	807	8.1	17.0	16.5		9.5	99	320
16	1515		5090	736	7.9	15.5	19.0		7.7	86	300
JUL											
01	1020		6040	753	7.8	19.5	18.5		7.7	85	310
15	1110	7240		696	7.6	18.0	20.5	230	6.6	75 25	280
23	0900		12300	321	7.8	19.0	18.5		3.2	35 51	
29	1050		22600	545	7.7	23.5	21.0		4.4	51	200
AUG	1020		27700	536	7.4	100	20.5		2.1	24	210
04 09	1030 1015		27700 29100	330 	7.4 7.8	18.0 18.0	20.5 19.5		2.1 2.8		310
09 16	1140		31800	565	7.8 7.5	22.0	21.5		1.3	16	260
SEP	1140		21000	505	7.3	44.U	21.5		1.5	•0	200
07	1130		15300	600	8.0	17.0	15.0	54	6.2	63	260
20	1145		7520	693	8.1	15.5	14.5		5.4	55	300
20			, , , ,	-,,							

RED RIVER OF THE NORTH BASIN 05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	KF AGAR (COLS. PER	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	(MG/L	•	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
OCT											
15		232	K6	K2	68	29	34	20	0.9	5.5	
NOV											
19	227		<1	K13	68	35	80	35	2	9.6	233
FEB											
09	255				62	30	37	22	1	5.5	311
23	260		K7	K240	66	30	58	30	1	6.0	317
APR											
07	112				36	16	12	13	0.4	9.8	136
13	128				44	18	15	14	0.5	9.5	155
20	187				62	27	36	22	1	9.9	228
27	214				71	32	39	21	ĩ	9.2	262
MAY											
04	219				73	35	37	19	0.9	8.3	260
10	208				74	36	35	18	0.8	8.5	252
20	226				74	36	46	23	1	8.8	264
JUN											
03	216				70	35	44	22	1	8.6	257
16	200				66	34	37	20	0.9	7.2	244
JUL											
01	212				69	34	39	21	1	8.8	258
15	183				64	30	32	19	0.8	7.1	224
29	129				48	20	30	23	0.9	8.9	157
AUG											
04		164			51	20	21	17	0.6	10	
09		276			73	31	7.5	5	0.2	8.8	
16		207			64	24	22	15	0.6	10	
SEP	175		1707	140	60	26	22	15	0.6	0.2	21.4
07 20	175		K37	140	60	26 33	22	15 17	0.6	9.2	214
20	215		K3/ 	140	68	32	22 29	17	0.6	9.2 8.3	262

RED RIVER OF THE NORTH BASIN 05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

	CAR-				SOLIDS,	SOLIDS.					NITRO-
	BONATE	CHLO-	FLUO-	SILICA,		RESIDUE	SOLIDS,	SOLIDS,	SOLIDS,	NITRO-	GEN,
	WATER	SULFATE	RIDE,	RIDE,	DIS-	CONSTI-		DIS-	DIS-	GEN,	NITRITE
	DIS IT	DIS-	DIS-	DIS-	SOLVED	TUENTS,	DEG. C	SOLVED	SOLVED	NITRITE	DIS-
	FIELD	SOLVED	SOLVED	SOLVED	(MG/L	DIS-	DIS-	(TONS	(TONS	TOTAL	SOLVED
DATE	MG/L AS	(MG/L	(MG/L	(MG/L	AS	SOLVED	SOLVED	PER	PER	(MG/L	(MG/L
	CO3	AS SO4)	AS CL)	AS F)	SIO2)	(MG/L)	(MG/L)	AC-FT)	DAY)	AS N)	AS N)
	(00452)	(00945)	(00940)	(00950)	(00955)	(70301)	(70300)	(70303)	(70302)	(00615)	(00613)
OCT											
15		79	42	0.20	10	408	466	0.63	1450	0.030	< 0.010
NOV											
19	22	110	110	0.20	5.4	555	578	0.79	1300	<0.010	0.010
FEB											
09	0	63	41	0.10	15	409	407	0.55	1120		0.020
23	0	69	81	0.20	16	485	498	0.68	1400	~-	0.020
APR											
07	0	46	11	0.10	13	228	245	0.33			0.170
13	0	73	13	0.20	14	276	291	0.40	20000		0.140
20	0	120	40	0.20	16	429	448	0.61	17700		0.040
27	0	150	38	0.20	13	483	478	0.65	7610		<0.010
MAY											
04	4	150	31	0.20	9.4	477	503	0.68	7100		< 0.010
10	1	160	28	0.20	9.4	477	513	0.70	6700		< 0.010
20	6	170	44	0.30	9.9	526	547	0.74	5100		< 0.010
JUN											
03	7	140	38	0.20	9.2	480	504	0.69	4250		< 0.010
16	0	140	31	0.20	12	451	487	0.66	6690		< 0.010
JUL											
01	0	130	33	0.20	14	459	480	0.65	7830		< 0.010
15	0	120	25	0.20	18	409	451	0.61	8820		< 0.010
29	0	82	30	0.20	21	319	337	0.46	20600		0.030
AUG											
04		70	17	0.20	26	315	342	0.47	25600		0.020
09		44	11	0.20	38	380	423	0.58	33200		0.010
16		7 3	15	0.20	28	362	375	0.51	32200		0.020
SEP											
07	0	80	24	0.20	20	349	371	0.50	15300		0.010
20	0	110	21	0.20	19	418	452	0.61	9180		<0.010

RED RIVER OF THE NORTH BASIN

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	NITRO- GEN, NO2+NO3 DIS- A SOLVED (MG/L AS N) (00631)	AMMONI	NITRO- GEN, AMMONIA A DIS- SOLVED (MG/L AS N) (00608)	ORGANIC		CMONIA + ORGANIC	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)		PHOS- PHORUS TOTAL (MG/L AS P) (00665)
OCT											
15		0.130	0.150	0.050	0.040	1.0		1.1		1.2	0.210
NOV											
19		<0.050	<0.050	0.020	0.020	0.78		0.80			0.110
FEB											0.000
09	0.340		0.360		0.200		0.60	0.80	0.80		0.070
23	0.440		0.460		0.190			0.90			0.070
APR	3.53		2 70		0.200		1.0	1.6	1.5		0.490
07 13	3.55 2.56		3.70		0.300 0.200	••	1.2	1.6	1.3		0.490
			2.70				1.1	1.3			0.330
20	1.16		1.20		0.120 0.020		0.98	0.80	1.1		
27 MAY			0.370		0.020			0.80			0.120
MA 1 04			0.190	**	0.030		0.67	1.0	0.70		0.140
10			0.120		0.030		1.2	0.90	1.2		0.140
20			0.120		0.030		0.57	0.80	0.60		0.090
JUN			0.290		0.050		0.57	0.00	0.00		0.070
03			0.400		0.040		0.56	1.0	0.60		0.240
16			0.400		0.020		0.68	1.9	0.70		0.360
JUL			0.020		0.020		0.00	1.7	0.70		0.500
01			0.920		0.030		0.67	0.70	0.70		0.180
15		**	0.360		0.030		0.77	1.1	0.80		0.390
29	0.230		0.260		0.090		0.81	0.90	0.90		0.330
AUG											
04	0.120		0.140		0.070		0.83	1.1	0.90		0.360
09	0.057		0.067		0.070		0.73	1.1	0.80		0.330
16	0.120		0.140		0.120		0.88	1.4	1.0		0.450
SEP											
07	0.290		0.300		0.040			0.90			0.190
20			0.260		0.050		1.4	1.4	1.4		0.250

RED RIVER OF THE NORTH BASIN 05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

			PHOS-								
		PHOS-	PHORU	S	ALUM-					MANGA-	MOLYB-
	PHORUS	PHORUS	ORTHO),	INUM,	BARIUM,	COBALT,	IRON,	LITHIUM		DENUM,
	DIS-	ORTHO	DIS-		DIS-						
	SOLVED	TOTAL	SOLVE	D	SOLVED	SOLVED	SOLVED	SOLVED		SOLVED	SOLVED
DATE	(MG/L	(MG/L	(MG/L		(UG/L						
	AS P)	AS P)	AS P)		AS AL)	AS BA)	AS CO)	AS FE)	AS LI)	AS MN)	AS MO)
	(00666)	(70507)	(00671))	(01106)	(01005)	(01035)	(01046)	(01130)	(01056)	(01060)
OCT											
15	0.110	0.150	0.100	30	51	<	3 17	27	4	<10	
NOV	0.110	0.150	0.100	30	21		, 17	21	7	<10	
19	0.090	0.070	0.070			_					
FEB	0.070	0.070	0.070								
09	0.040		0.050				- 4		31		
23	0.050		0.050		65			28	35	<10	
APR	0.050		0.050	110	w.	~	,	20	33	110	
07	0.200		0.180				- 260		47		
13	0.150		0.110						31		
20	0.120		0.140				~~		5		
27	0.090		0.050	20	60	<3		38	1	<10	
MAY											
04	0.060		0.050				. 7		1		
10	0.050		0.050				. 4		1		
20	0.070		0.070				. 7		1		
JUN										•	
03	0.090		0.080				23		2		
16	0.100		0.100				. 8		<1		
JUL											
01	0.160		0.150				22		1		
15	0.170		0.150								
29	0.210		0.170				49		10		
AUG											
04	0.250		0.210				٠,		26		
09	0.280		0.270						36		
16	0.290		0.280				43		85		
SEP											
07	0.170		0.160	20	54	<3		26	9	<10	
20	0.150		0.140				16		4		

RED RIVER OF THE NORTH BASIN 05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA—Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SUS-	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	% FINER THAN
ост										
15	3	<1	<1.0	240	<6					
NOV										
19								63	142	84
FEB										
09						14	0.3			
23	2	<1	<1.0	280	<6			89	250	96
APR										
07						12	8.6			
13						12	1.3			
20	=					12	1.4			
27	2	1	<1.0	280	<6			190	3030	99
MAY										
04						11	3.9			
10						11	2.2			
20						11	1.7			
JUN						10	• •			
03						10	1.4			
16						12	3.5			
JUL 01						12	2.7			
15								334	6530	99
29						 8.7	3.2			
AUG						0.7	3.2		**	
04						22				
09						12	1.1			
16						13	0.5			
SEP						13	0.5			
07	4	<1	<1.0	210	<6			125	5160	100
20			~1.0	210	~~	14		12		
										

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

SPECIFIC CONDUCTANCE, US/CM @ 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES

					~							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	742	770	1030	753	743	734	709	751	684	620	526	564
2	731	752	1010	746	736	730	696	751	696	580	521	556
3	738	736	1020	745	721	733	680	750	691	562	496	575
4	722	727	1010	737	704	737	656	739	699	647	475	588
5	716	717	1020	718	698	743	614	729	693	639	481	510
6 7	725	721	1040	675	704	744	590	729	666	635	494	512
7	735	719	1070	657	707	747	566	737	631	610	506	499
8 9	741	736	1090	655	698	755	533	747	629	595	516	519
9	741	764	1100	671	689	765	509	732	726	595	516	550
10	740	809	1050	677	683	769	489	735	714	593	521	558
11	739	862	1020	658	677	763	452	724	668	600	531	582
12	734	949	994	644	677	760	428	709	681	588	540	552
13	728	1020	974	643	680	746	450	712	671	601	590	579
14	724	991	958	621	671	721	464	744	665	594	586	599
15	729	958	943	621	666	699	474	796	678	616	589	576
16	718	954	924	618	712	671	509	729	657	629	598	595
17	690	957	909	613	819	654	550	723	657	632	606	600
18	743	969	912	622	831	651	580	772	627	713	610	591
19	828	972	904	678	826	658	620	759	603	691	619	635
20	831	1010	884	756	860	722	662	785	619	681	626	627
21	831	991	871	744	887	737	700	814	645	671	642	609
22	801	965	848	732	865	793	747	815	646	536	645	591
23	787	936	834	730	821	840	778	815	629	351	652	648
24	784	983	829	734	773	845	788	813	618	356	665	632
25	806	1040	820	743	745	850	782	788	579	373	675	650
26	817	1010	813	752	720	722	771	761	538	389	632	635
27	809	1030	806	764	720	679	773	758	625	410	648	623
28	808	1020	804	755	719	674	772	725	641	447	667	633
29	823	1010	798	750		666	766	715	659	495	666	728
30	818	1010	793	757		646	759	711	647	488	668	725
31	816		797	758		641		706		501	585	
MEAN	764	903	931	701	741	729	629	751	653	563	584	595

05102500 RED RIVER OF THE NORTH AT EMERSON, MANITOBA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES

DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13.5	4.6	.0	.0	.0	.0	.1	8.9	12.6	15.3	21.2	17.8
2	13.9	3.8	.0	.0	.0	.0	.4	9.1	13.1	15.7	20.7	16.6
2 3	14.3	2.5	.0	.0	.0	.0	.5	9.5	13.5	14.8	19.9	15.9
4 5	14.5	1.4	.0	.0	.0	.0	.9	10.2	14.4	17.5	19.3	16.3
5	14.8	.8	.0	.0	.0	.0	1.3	11.7	15.4	18.6	19.2	16.0
6	14.4	.4	.0	.0	.0	.0	1.9	12.7	15.7	16.4	19.3	14.5
7	13.6	.2	.0	.0	.0	.0	2.3	13.4	15.4	16.1	19.6	13.0
8	12.8	.0	.0	.0	.0	.0	2.6	13.9	14.5	16.0	19.9	13.1
9	12.6	.0	.0	.0	.0	.0	2.8	14.2	15.3	16.0	20.3	12.8
10	12.6	.0	.0	.0	.0	.0	3.0	14.6	16.2	15.9	20.7	13.4
11	10.7	.0	.0	.0	.0	.0	3.3	15.4	17.2	17.6	21.2	13.1
12	10.3	.0	.0	.0	.0	.0	3.5	15.1	17.1	16.1	21.4	11.9
13	9.8	.0	.0	.0	.0	.0	4.1	15.5	18.4	16.6	20.5	11.7
14	8.3	.0	.0	.0	.0	.0	4.7	16.3	17.6	17.0	20.5	12.0
15	7.9	.0	.0	.0	.0	.0	5.1	15.5	17.5	17.9	20.6	12.1
16	7.5	.0	.0	.0	.0	.0	5.9	14.4	17.2	17.9	20.7	12.3
17	6.9	.0	.0	.0	.0	.0	6.0	13.0	16.9	17.9	20.9	12.2
18	6.4	.0	.0	.0	.0	.0	6.6	13.0	17.0	20.4	20.7	11.0
19	4.5	.0	.0	.0	.0	.0	6.8	12.0	18.3	19.1	20.7	10.9
20	3.9	.0	.0	.0	.0	.0	6.2	12.4	18.1	18.9	20.6	10.9
21	4.4	.0	.0	.0	.0	.0	6.2	12.7	18.4	18.9	20.8	11.8
22	5.4	.0	.0	.0	.0	.0	6.8	13.1	19.1	19.2	20.8	10.7
23	6.2	.0	.0	.0	.0	.0	7.5	13.2	18.7	19.3	20.8	10.5
24	6.6	.0	.0	.0	.0	.0	7.9	13.1	19.3	19.3	21.1	9.8
25	7.0	.0	.0	.0	.0	.0	7.7	12.5	16.8	19.6	21.2	10.0
26	6.7	.0	.0	.0	.0	.0	7.8	12.5	14.0	19.5	21.3	10.1
27	6.3	.0	.0	.0	.0	.0	8.5	12.7	15.8	19.8	21.4	9.8
28	6.3	.0	.0	.0	.0	.0	8.6	12.8	15.4	19.6	21.9	9.4
29	6.4	.1	.0	.0		.0	8.9	12.8	15.9	19.9	20.8	10.5
30	5.8	.0	.0	.0		.0	9.0	13.3	15.3	20.5	20.5	10.2
31	5.7		.0	.0		.0		13.3		21.0	19.2	
MEAN	9.0	.5	.0	.0	.0	.0	4.9	13.0	16.3	18.0	20.6	12.3

05104500 ROSEAU RIVER BELOW SOUTH FORK NEAR MALUNG, MN

LOCATION.--Lat 48°47'30", long 95°44'40", in NW¹/4SW¹/4 sec.6, T.161 N., R.39 W., Roseau County, Hydrologic Unit 09020314, on left bank 0.3 mi downstream from South Fork and 1.5 mi northwest of Malung.

DRAINAGE AREA. -- 573 mi².

PERIOD OF RECORD .-- October 1946 to current year.

REVISED RECORDS.--WSP 2113:1948, 1950, 1951, 1956(M), 1957(M), 1962(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,029.67 ft, adjustment of 1912.

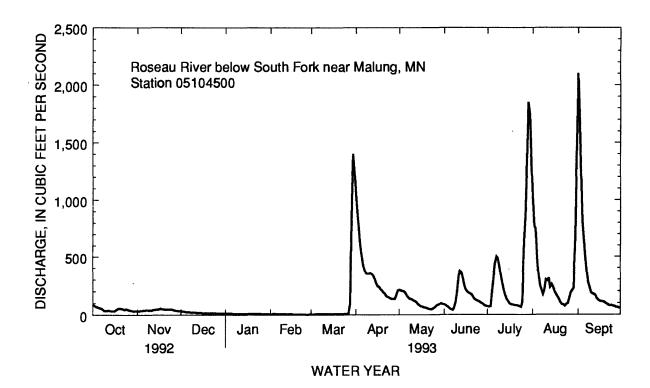
REMARKS.--Records good except those for estimated daily discharges, which are poor. Some flow bypasses the gaging station through a natural overflow channel 0.8 mi upstream and returns to river 0.5 mi downstream. Overflow begins at stage of about 13.0 ft, discharge, 1,800 ft /s. These records include any flow in the overflow channel.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	88 79 72 67 63	33 32 35 36 38	e31 e30 e28 e26 e25	el2 el2 el2 el2 el2	8.6 8.6 8.8 8.9 e8.7	3.5 4.0 4.6 5.1 5.6	e1050 e900 e750 e610 e510	210 207 202 199 189	88 83 72 64 52	70 68 71 196 324	1030 770 743 484 354	2100 1740 1230 812 632	
6 7 8 9	58 54 45 35 35	38 40 39 38 40	e24 e23 e22 e21 e20	e11 e11 e11 e11 e11	e8.5 e8.2 e7.9 e7.5 e7.2	6.1 6.5 6.8 7.4 e7.4	421 384 352 352 352	168 151 137 136 128	46 41 56 109 189	435 498 484 414 343	250 214 173 208 298	498 369 275 226 187	
11 12 13 14 15	36 38 34 33 31	38 43 43 45 45	e20 e19 e19 e18 e18	e11 e11 e10 e10 e10	e7.0 e6.7 e6.5 e6.2 e5.8	e7.4 e7.3 7.1 6.4 e6.2	354 345 335 304 267	121 115 105 91 79	329 372 361 316 250	268 214 166 137 116	290 313 236 257 230	176 173 163 137 124	
16 17 18 19 20	33 41 50 54 54	49 53 49 48 47	e17 e16 e16 e16 e15	e10 e10 e9.9 e9.8 e9.7	e5.5 e5.0 4.6 3.6 e3.5	e6.2 e6.2 e6.3 e6.4 e6.5	244 235 218 203 190	72 68 63 59 56	216 195 184 179 172	96 87 86 81 78	196 171 153 130 105	116 112 110 106 97	
21 22 23 24 25	51 48 44 50 46	47 47 46 46 45	e15 e15 e14 e14 e14	e9.6 e9.5 e9.4 e9.0 e8.8	e3.4 e3.3 e3.2 e3.1 e3.0	e6.6 e6.6 e6.7 e6.8 e7.0	178 161 152 145 138	52 48 45 48 58	155 131 126 118 114	78 75 71 67 106	87 84 75 87 97	91 80 77 78 75	
26 27 28 29 30 31	40 38 35 33 32 31	39 e37 e35 e34 e33	e13 e13 e13 e13 e13	e8.7 8.7 8.6 8.5 8.6 8.6	e2.9 2.8 3.0 	e8.5 e11 e100 e1000 e1400 e1240	135 134 135 169 203	67 80 85 90 95	105 99 91 78 75	637 846 1340 1850 1740 1410	135 187 203 223 681 1350	70 63 62 58 57	
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1448 46.7 88 31 2870 .08	1238 41.3 53 32 2460 .07	574 18.5 31 13 1140 .03	314.4 10.1 12 8.5 624 .02	162.0 5.79 8.9 2.8 321 .01	3916.2 126 1400 3.5 7770 .22	9926 331 1050 134 19690 .58 .64	3316 107 210 45 6580 .19	4466 149 372 41 8860 .26 .29	12452 402 1850 67 24700 .70	9814 317 1350 75 19470 .55	10094 336 2100 57 20020 .59 .66	

e Estimated.

RED RIVER OF THE NORTH BASIN 05104500 ROSEAU RIVER BELOW SOUTH FORK NEAR MALUNG, MN--Continued


STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1993, BY WATER YEAR (WY) OCT NOV DEC **FEB** MAR APR JUN JUL AUG SEP JAN MAY MEAN 67.6 44.3 14.3 7.02 5.24 56.1 592 301 225 153 62.6 77.7 MAX 351 229 51.1 21.0 14.4 345 2035 1589 1140 1152 585 710 (WY) 1983 1957 1978 1966 1986 1986 1966 1950 1968 1968 1968 1957 MIN .029 .16 .013 .000 .000 .83 5.60 8.77 4.16 .092 .000 .025 (WY) 1991 1977 1977 1980 1991 1977 1977 1991 1990 1980 1961 1988 SUMMARY STATISTICS FOR 1992 CALENDAR YEAR FOR 1993 WATER YEAR WATER YEARS 1947 - 1993 ANNUAL TOTAL 60945.57 57720.6 ANNUAL MEAN 167 158 134a HIGHEST ANNUAL MEAN 304 1950 LOWEST ANNUAL MEAN 7.28 1990 Sep 1 Feb 27 HIGHEST DAILY MEAN 1600 Mar 31 2100 5670 Jul 18 1968 LOWEST DAILY MEAN .45 2.8 .00 Jul 23 1961 Aug 13 ANNUAL SEVEN-DAY MINIMUM Feb 22 Jul 23 1961 .83 Aug 11 3.0 .00 INSTANTANEOUS PEAK FLOW 2220 Sep 1 5750 Jul 18 1968 23.37b Apr 3 1966 INSTANTANEOUS PEAK STAGE 14.69 Sep 1 Jan 15 1952 INSTANTANEOUS LOW FLOW 1.7 Feb 19 .00 ANNUAL RUNOFF (AC-FT) 120900 114500 96820 ANNUAL RUNOFF (CFSM) .29 .28 .23 ANNUAL RUNOFF (INCHES) 3.96 3.75 3.17 10 PERCENT EXCEEDS 529 309 354

39

9.8

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

58

6.9

16

1.3

a Median of annual mean discharges is 114 ft 3/s.

b Backwater from ice.

05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN (International gaging station)

LOCATION.--Lat 48°58'54", long 96°27'46", in SE¹/₄SW ¹/₄ sec.34, T.164 N., R.45 W., Kittson County, Hydrologic Unit 09020314, on left bank 400 ft downstream from State ditch 51 (known locally as Caribou cutoff ditch) and 0.6 mi west of Caribou.

DRAINAGE AREA.--1,570 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April to October 1917, April 1920 to current year (no winter records in water years 1931, 1932, 1934-36, 1938-40, 1944-72). Published as "at Caribou," prior to April 1929; as "below Cutoff ditch, near Caribou" April 1929 to September 1936. Records published for both sites April 1929 to September 1930. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1938(M). WSP 1508: 1917(M), 1920, 1932(M), 1934-35(M). WSP 1913: 1954(M).

GAGE.--Water-stage recorder. Datum of gage is 1,002.31 ft above sea level (levels by Geodetic Survey of Canada). Prior to Apr. 1, 1929, nonrecording gage at site at Caribou 0.6 mi upstream at datum 0.95 ft lower.

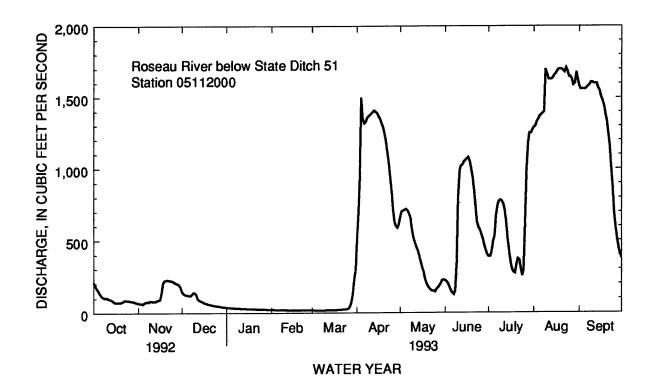
REMARKS.--Records good except those for estimated daily discharges, which are poor. Satellite telemeter at station. Occasionally, at high stages, there is some natural diversion of flow above station to headwaters of Two Rivers.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1916 is reported to have reached a stage of about 15.5 ft at former site.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES												
	ОСТ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	210	68	e150	e39	e24	e19	e500	664	222	390	1290	1580
2	190	67	e135	e38	e24	e19	e650	702	214	388	1300	1560
3	172	66	e130	e37	e24	e18	e950	708	199	428	1330	1560
4	155	63	e125	e36	e23	e18	e1500	716	178	494	1350	1560
5	139	72	e125	e36	e23	e18	e1350	719	151	533	1370	1560
3	137	12	0123	630	62.5	C10	61550	719	151	333	1570	1500
6	122	75	e120	e35	e23	e18	1320	710	138	668	1380	1570
7	114	78	e120	e34	e23	e18	1330	692	126	746	1390	1580
8	106	77	e130	e34	e22	e18	1360	660	149	775	1400	1590
9	104	81	e140	e33	e22	e18	1370	586	362	783	1700	1610
10	107	81	e140	e33	e22	e18	1380	525	800	776	1670	1610
10	10,	U1	0140	033	022	010	1500	323		,,,	10.0	1010
11	101	80	e130	e32	e22	e19	1390	491	988	754	1630	1600
12	96	80	e100	e32	e21	e19	1400	459	1020	718	1630	1600
13	94	81	e90	e31	e21	e19	1410	431	1030	628	1630	1600
14	87	90	e85	e31	e21	e20	1400	398	1050	520	1640	1570
15	78	88	e80	e30	e21	e20	1390	351	1060	424	1660	1550
16	74	93	e75	e30	e21	e20	1370	313	1070	341	1670	1510
17	73	140	e70	e29	e20	e21	1350	281	1080	297	1690	1480
18	73	205	e66	e29	e20	e21	1320	235	1050	277	1700	1440
19	73	223	e62	e29	e20	e22	1290	202	1000	272	1700	1390
20	75	224	e60	e28	e20	e22	1250	184	935	336	1700	1330
21	80	226	e58	e28	e20	e23	1190	171	845	374	1690	1250
22	86	224	e56	e27	e20	e24	1120	158	729	364	1680	1150
23	88	221	e54	e27	e20	e24	1040	152	630	310	1710	1020
24	87	e220	e52	e27	e19	e25	947	151	590	254	1690	861
25	86	e215	e50	e26	e19	e26	840	147	575	288	1650	710
										1		
26	84	e210	e48	e26	e19	e29	725	159	543	620	1650	589
27	83	e205	e46	e26	e19	e40	632	174	513	965	1630	504
28	82	e200	e44	e26	e19	e70	602	185	467	1180	1590	445
29	78	e195	e42	e25		e130	590	202	433	1250	1600	406
30	75	e180	e41	e25		e220	608	221	401	1250	1680	373
31	72		e40	e24		e300		224		1270	1630	
31			0.0	02.		0500						
TOTAL	3144	4128	2664	943	592	1296	33574	11971	18548	18673	49030	38158
MEAN	101	138	85.9	30.4	21.1	41.8	1119	386	618	602	1582	1272
MAX	210	226	150	39	24	300	1500	719	1080	1270	1710	1610
MIN	72	63	40	24	19	18	500	147	126	254	1290	373
AC-FT	6240	8190	5280	1870	1170	2570	66590	23740	36790	37040	97250	75690
CFSM	.06	.09	.05	.02	.01	.03	.71	.25	.39	.38	1.01	.81
IN.	.07	.10	.06	.02	.01	.03	.80	.28	.44	.44	1.16	.90
114.	.57	.10	,00	.02	.01	.05	.00	.20				.,,


e Estimated.

RED RIVER OF THE NORTH BASIN 05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN--Continued

STATIS	TICS OF	MONTHI	Y MEAN	DATA FOR	WATER Y	EARS 1917	7 - 1993, B`	Y WATER Y	EAR (W	YY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
	4.50	400	44.5	20.0	10.0	100	900	015	570	391	159	175
MEAN	163	109	44.5	23.9	19.2	100	800	915 3029	2588	1653	1582	1451
MAX	1302	382	226	134	75.1	446	2167	3029 1950	1970	1968	1993	1968
(WY)	1942	1927	1927	1927	1927	1946	1966		6.70	.65	2.09	.30
MIN	.12	.26	.53	.090	.060	1.57	38.2	26.9	1980	1980	1936	1990
(WY)	1991	1991	1991	1991	1991	1989	1981	1988	1980	1980	1930	1990
SUMMA	RY STA	FISTICS	FOR 1992	CALENDA	R YEAR	FOR	. 1993 WAT	TER YEAR		WATER Y	LARS 19	17 - 1993
ANDITTA	TATOTAL		,	173914			182721					
	L TOTAL L MEAN			475			501			286		
		A T - 3.617.A1	NT.	4/3			201			683		1927
	T ANNU. T ANNU.									3 5 .9		1977
			N	2460	A 20		1710	Aug 23		4020	Max	19 1950
	TDAILY			2460 22	Apr 28		1710	Mar 3-10		.00 <u>a</u>		13 1936
	T DAILY		DID (11) (Aug 22		18	Mar 3		.00 <u>a</u> .04		12 1990
	LSEVEN			26	Aug 18					4080		19 1950
	TANEOU						1730	Aug 9		11.81		19 1950
	TANEOU						8.87 <u>b</u>	Apr 4		.00c		13 1936
	TANEOU			0.444.00			0.0000			207200	Aug	3 13 1930
	L RUNO			344100			363000					
	L RUNO			.30			.32			.18		
	L RUNO		ES)	4.11			4.33			2.47		
	ENT EX			1880			1560			1200		
	ENT EX			125			199			74		
90 PERC	ENT EXC	CEEDS		36			22			8.2		

a Also occurred Sep 15-17, 1990.

c Also occurred Sep 15-17, 1990 and part of each day Oct 12,13, and Nov 13, 1990.

b Backwater from ice.

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1972 to current year. REMARKS.--Letter K indicates non-ideal colony count.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
OCT 21	0830	78	495	421	8.2	8.1	2.5	9.7	737	12.3
JAN 12	0900	30	580	551	7.5	7.3	1.0	4.4	741	3.3
APR 13	0930	1370	340		7.6	7.8	6.0	2.4	737	9.7
JUL 28	0830	1150	320	332	7.8	7.7	16.5	5.9	728	5.6
DATE	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)		WATER DIS IT FIELD	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
OCT 21	23	180	57	21	8.4	1.4	210	211	0	256
JAN 12	К3	K5	67	24	10	<0.10	287	281	0	350
APR 13	K5	K12	43	16	4.0	5.9	137	172	0	167
JUL 28	K91	K310	40	16	4.3	3.4	147	155	0	179
DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUC RIDI DIS SOLV (MG, AS F (0095	E, - So ED (/L F)	SILICA, DIS- OLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO GEN, NITRI DIS- SOLVE (MG/I AS N, (00613	TE NO	IITRO- GEN, 02+NO3, DIS- DLVED (MG/L AS N) 00631)	
OCT 21	16	5,9	0.1	0	9.9	302	<0.01	10	<0.050	
JAN 12	17	5.2	0.1		18	348	0.03		0.160	
APR 13	26	7.1	. 0.2		9.8	238	0.01		0.320	
JUL 28	16	4.0	0.2		12	238	<0.01		0.140	

05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN--Continued (National Water Quality Assessment station)

DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS PHOR S DIS SOLVY (MG/ AS P (0066	S- PH US OF - I ED SO L (M	HOS- ORUS RTHO, DIS- LVED MG/L S P) 0671)	SEI MEI SU PENI (MC) (801	SDI- SI NT, D: S- % I DED T: I/L) .06	EVE IAM. FINER S HAN 2 MM	ALUM- INUM, DIS- OLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)
OCT 21 JAN	0.040	1.1	0.060	0.0	30 .	0.020	17	7 9	99	30	35
12	0.300	1.1	0.060	0.0	30	0.030	17	7 9	95	<10	41
APR 13 JUL	0.040	1.1	0.080	0.0	40	0.020	16	5	72	20	32
28	0.080	1.3	0.120	0.0	80	0.050	-	-		20	34
DATE	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB DENUM DIS- SOLVEI (UG/L AS MO) (01060)	, NIC D SOL (U AS	KEL, IS- VED G/L NI) 065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)
ОСТ 21 JAN	⋖	130	9	17	<10	2	2	<1	<1.0	110	<6
12 APR	ও	200	9	150	<10	1	l	<1	<1.0	140	<6
13 JUL	∢	97	8	9	<10	1	l	<1	<1.0	83	<6
28	⋖	91	13	3	10		1	<1	<1.0	94	<6
DATE	DIS-	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	CHARGE, IN CUBIC FEET PER SECOND (00060)	SPE- SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	WA WH FIE (STA AI UN	PH TER OLE ELD AND- RD ITS)	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- TEMPER- ATURE WATER (DEG C) (00010)	METRIC PRES- SURE (MM OF HG) (00025)
FEB 16 APR	1130		E21	672	657	7	1.5	7.3	-21.5	0.0	745
09 MAY	0830	1370		330	336	7	1.7	7.5	-0.5	3.0	729
05 21	1130 1300	719 172		384 409	386 417		7.8 3.1	7.9 8.0	 14.5	12.5 13.0	740 736
JUN 17	1300	1080		370	377	7	.8	7.8	19.0	16.5	728
JUL 09	1030	785		366	375	8	.0	7.9	17.5	18.0	730

RED RIVER OF THE NORTH BASIN 05112000 ROSEAU RIVER BELOW STATE DITCH 51, NEAR CARIBOU, MN--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

						BICAR-	CAR-	ALKA-		
			MAGNE-		POTAS-	BONATE	BONATE	LINITY	ALKA-	
		CALCIUM	SIUM,	SODIUM,	SIUM,	WATER	WATER	WAT DIS	LINITY	SULFATE
	OXYGEN,	DIS-	DIS-	DIS-	DIS-	DIS IT	DIS IT	TOT IT	LAB	DIS-
	DIS-	SOLVED	SOLVED	SOLVED	SOLVED	FIELD	FIELD	FIELD	(MG/L	SOLVED
DATE	SOLVED	(MG/L	(MG/L	(MG/L	(MG/L	MG/L AS	MG/L AS	MG/L AS	AS	(MG/L
	(MG/L)	AS CA)	AS MG)	AS NA)	AS K)	HCO3	CO3	CACO3	CACO3)	AS SO4)
	(00300)	(00915)	(00925)	(00930)	(00935)	(00453)	(00452)	(39086)	(90410)	(00945)
FEB										
16	0.4	78	32	11	2.6	404	0	331		16
APR										
09	11.4	39	14	3.8	6.5	154	0	126	130	28
MAY										
05	10.0	50	18	5.0	2.4	230	0	189	180	21
21	9.8	54	20	5.4	1.7	238	0	195	203	22
JUN										
17	5.5	50	18	5.3	2.3	222	0	182	183	13
JUL										
09	7.5	51	19	4.5	2.4	233	0	191	184	12

05112000 ROSEAU RIVER BELOW STATE DITCH 51 NEAR CARIBOU, MN--Continued (National Water Quality Assessment station)

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
FEB									
16 APR	38	0.10	23	369	0.060	0.180	0.300	1.3	1.2
09 MAY	7.3	0.20	9.2	222	0.030	0.970	0.030	1.2	1.0
05	3.9	0.10	6.8	259	< 0.010	< 0.050	0.030	1.1	1.0
21	2.9	0.20	6.4	279	< 0.010	< 0.050	0.010	1.1	0.80
JUN		0.00					0.000		0.00
17 JUL	3.3	0.20	12	267	< 0.010	< 0.050	0.030	1.1	0.90
09	3.3	0.20	11	259	<0.010	0.068	0.040	1.2	1.1
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 16	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
FEB 16 APR 09	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
FEB 16 APR 09 MAY 05	PHORUS TOTAL (MG/L AS P) (00665) 0.150 0.140 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010 0.090	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.020 0.060 <0.010	DIS- SOLVED (UG/L AS FE) (01046) 360 150	NESE, DIS- SOLVED (UG/L AS MN) (01056) 620 13	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 16 APR 09 MAY 05 21	PHORUS TOTAL (MG/L AS P) (00665) 0.150 0.140	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.020 0.060	DIS- SOLVED (UG/L AS FE) (01046) 360	NESE, DIS- SOLVED (UG/L AS MN) (01056) 620	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 16 APR 09 MAY 05	PHORUS TOTAL (MG/L AS P) (00665) 0.150 0.140 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010 0.090	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) 0.020 0.060 <0.010	DIS- SOLVED (UG/L AS FE) (01046) 360 150	NESE, DIS- SOLVED (UG/L AS MN) (01056) 620 13	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)

LAKE OF THE WOODS BASIN

05124480 KAWISHIWI RIVER NEAR ELY, MN (Hydrologic bench-mark station)

LOCATION.--Lat 47°55'22", long 91°32'06", in SE¹/4SE¹/4 sec.24, T.63 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on left bank upstream from rapids, 2 mi upstream from South Kawishiwi River, 2.2 mi southwest of Fernberg Lookout Tower and 14 mi east of Ely.

DRAINAGE AREA.--253 mi².

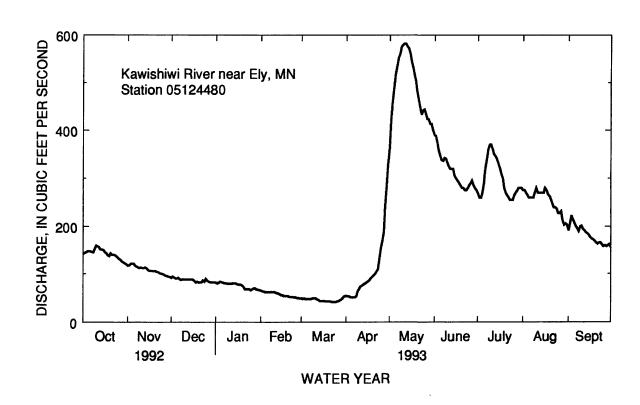
WATER-DISCHARGE RECORDS

PERIOD OF RECORD .-- June 1966 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,450 ft above sea level, from topographic map.

REMARKS.--Records good, except for estimated period, which is fair.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993


					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FE B	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	142	117	91	81	65	49	54	363	389	e270	e275	191
2	144	118	94	80	64	48	53	420	388	e260	e275	205
3	145	121	92	81	63	49	5 3	461	372	e260	e270	223
4	147	121	90	83	62	48	51	491	357	e270	e265	215
5	147	121	90	82	62	48	51	518	345	e290	e260	207
6	147	117	91	81	62	48	51	536	337	e320	e260	201
7	146	115	88	80	62	48	51	551	336	e340	e260	195
8	145	114	87	80	62	48	5 3	5 61	342	e360	e260	190
9	152	112	88	79	62	49	63	575	340	e370	e270	200
10	159	113	88	79	62	49	69	579	332	e370	e280	201
11	158	112	88	79	61	49	73	582	324	e360	e270	194
12	156	112	88	79	60	47	75	582	319	e350	e270	191
13	151	113	88	80	59	46	7 7	575	319	e345	e270	187
14	151	111	88	80	58	44	79	572	319	e340	e270	185
15	150	108	88	79	56	44	81	560	e305	e330	e270	182
16	146	106	88	78	56	44	83	545	e300	e320	e280	177
17	143	106	85	77	54	44	86	531	e295	e310	e275	174
18	139	106	82	77	54	43	90	518	e290	e300	267	172
19	137	105	83	76	54	43	93	503	e285	e280	263	169
20	143	106	82	73	53	43	96	482	e280	e270	257	165
21	140	104	82	68	52	43	99	467	e280	e265	247	163
22	140	103	82	68	52	42	104	449	e275	e260	240	166
23	139	101	86	68	52	42	109	433	e275	e255	240	166
24	137	100	83	68	51	42	129	442	e280	e255	237	161
25	134	99	89	66	51	42	154	444	e285	e255	228	158
26	131	98	85	67	50	43	168	435	e290	e265	228	160
27	129	96	83	69	50	44	188	424	e295	e270	232	158
28	126	95	82	70	49	46	243	423	e285	e275	214	160
29	124	94	82	67		48	285	413	e280	e280	203	162
30	122	93	82	67		51	327	413	e275	e280	206	156
31	120		82	66		54		399		e280	203	
TOTAL	4390	3237	2677	2328	1598	1428	3188	15247	9394	9255	7845	5434
MEAN	142	108	86.4	75.1	57.1	46.1	106	492	313	299	253	181
MAX	159	121	94	83	65	54	327	582	389	370	280	223
MIN	120	93	82	66	49	42	51	363	275	255	203	156
AC-FT	8710	6420	5310	4620	3170	2830	6320	30240	18630	18360	15560	10780
CFSM	.56	.43	.34	.30	.23	.18	.42	1.94	1.24	1.18	1.00	.72
IN.	.65	.48	.39	.34	.23	.21	.47	2.24	1.38	1.36	1.15	.80

e Estimated.

LAKE OF THE WOODS BASIN
05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued

STATIS	TICS OF	MONTHL	Y MEAN D	ATA FOR	WATER Y	YEARS 1960	5 - 1993, I	BY WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	159	170	135	92.3	67.8	56.3	243	664	386	199	148	150
MAX	881	684	345	163	107	85.2	785	1133	1069	467	758	698
(WY)	1978	1971	1983	1984	1971	1969	1976	1979	1970	1968	1988	1988
MIN	12.1	9.43	7.25	5.32	4.77	5.87	8.95	13.3	115	74.5	46.7	18.5
(WY)	1977	1977	1977	1977	1977	1977	1977	1977	1977	1980	1976	1976
SUMMA	ARY STAT	TISTICS	FOR 1992 (CALENDA	AR YEAR	FOR	1993 WA	TER YEAR		WATER YI	EARS 196	66 - 1993
ANNUA	L TOTAL			72771			66021					
ANNUA	L MEAN			199			181			207		
HIGHES	T ANNU	AL MEAN	1							313		1971
LOWES	T ANNUA	L MEAN								94.5		1977
HIGHES	T DAILY	MEAN		1010 N	1ay 14-16		582	May 11,12		1710	Apr	24 1976
	T DAILY			55	Apr 2,4		42	Mar 22-25		4.5	Jan	31 1977
ANNUA	L SEVEN	-DAY MI	NIMUM	56	Mar 30		42	Mar 19		4.6	Jan	29 1977
INSTAN	TANEOU	S PEAK I	FLOW				585	May 11		1720	Apr	24 1976
	TANEOU						4.68	May 11,12		5.92	Apr	24 1976
	TANEOU						41	Mar 24-26		4.5 <u>a</u>		
	L RUNOF			144300			131000			150000		
	L RUNOF			.79			.71			.82		
	L RUNOF		ES)	10.70			9.71			11.12		
	ENT EXC			496			361			525		
	ENT EXC			117			137			108		
90 PERC	ENT EXC	EEDS		68			51			37		

a Occurred Jan. 30 to Feb. 2, 1977.

LAKE OF THE WOODS BASIN

05124480 KAWISHIWI RIVER NEAR ELY, MN--Continued (Hydrologic bench-mark station)

WATER QUALITY RECORDS

PERIOD OF RECORD.--Water years 1966 to current year. REMARKS.--Letter K indicates non-ideal colony count.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	TEMPER- ATURE WATER (DEG C) (00010)	TUR- BID- ITY (NTU) (00076)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)
OCT 28 JAN	0900	128	30	31	7.2	7.4	6.0	2.0	719	11.0	K 4
20 MAY	1100	75	30	33	6.5	6.9	1.0	0.90	732	13.5	K10
05 JUL	1315	532		32	6.8	6.6	9.0	2.0	725	11.0	K1
19	1230	272	28	31	7.2	6.7	20.5	0.50	718	7.1	K10
DATE	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS-	SODIUM, DIS-	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	LINITY LAB (MG/L AS	WATER DIS IT FIELD	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
OCT 28 JAN 20 MAY 05 JUL 19	52 K3 K2 550	3.0 3.2 2.9 3.0	1.4 1.5 1.3	1.1 1.0 1.0 1.1	0.30 0.40 0.40 0.30	10 8 9	10 12 12 13	0 0 0	12 10 11	2.6 2.6 2.6 2.4	0.50 0.60 0.40 0.40
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, NITRITE DIS- SOLVED	NITRO- GEN, N02+N03 DIS- SOLVED (MG/L ASN) (00631)	AMMONIA	GEN,AM- MONIA + ORGANIC		PHOS- PHORUS DIS- SOLVED (MG/L AS P (00666)	DIS-	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT 28	<0.10	3.1	30	<0.010	<0.050	0.030	0.40	0.020	<0.010	<0.010	2
JAN 20	<0.10	3.3	41	0.010	0.067	0.050	0.40	0.010	<0.010	<0.010	2
MAY 05	0.20	3.7	39	<0.010	0.053	0.030	0.40	0.010	<0.010	<0.010	72
JUL 19	<0.10	3.3	40	<0.010	<0.050	0.040	0.40	<0.010	<0.010	<0.010	1

05124480 KAWISHWI RIVER NEAR ELY, MN--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	SED. SUSP. SIEVE DIAM. % FINER THAN 062 MM (70331)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS-	COBALT DIS- SOLVED (UG/L AS CO) (01035)	, IRON, DIS- SOLVED (UG/L AS FE) (01046)	DIS-	NESE, DIS- SOLVED (UG/L AS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS M0) (010600)	DIS-	DIS-	SILVER, DIS- SOLVED (UG/L AS AG) (01075)
OCT 28	94	20	3	⊲	180	<4	3	<10	2	<1	<1.0
JAN 20	93	30	4	⊲	160	<4	5	<10	1	<1	<1.0
MAY 05	20	40	<2	<3	180	<4	13	<10	2	<1	<1.0
JUL 19	100	70	4	<3	160	<4	2	<10	1	<1	<1.0
DATE	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS-	ALPHA, SUSP.	ALPHA, COUNT, 2 SIGMA WAT DIS AS NAT U (UG/L) (75986)	COUNT, 2 SIGMA	ALPHA, 2 SIGMA SED SUS TOT DRY AS TH-230 (PCI/L) (76004)	BETA, DIS-	GROSS BETA, SUSP. TOTAL PCI/L AS CS-137) (03516)	GROSS BETA, DIS- SOLVED PCI/L AS SR YT-90) (80050)	GROSS BETA, SUSP. TOTAL PCI/L AS SR YT-90 (80060)
OCT 28	13	<6	<0.6	<0.6	0.19	0.12	0.37	1.2	0.8	1.1	0.7
JAN 20	13	<6									
MAY 05 JUL	11	<6	<0.6	<0.6	0.19	0.12	0.33	1.2	<0.6	1.2	<0.6
19	12	<6									
	DATE	BE' 2 SIC WAT DIS AS S /Y' (PC	GMA FER, SS, ER90 90 EVL	BETA, 2 SIGMA WATER, DISS, AS CS-137 (PCI/L) (75989)	BET 2 SIG SEI SUS TOT I SR90' (PCI (7600	MA), P, S DRY I Y90 M L)	ADIUM 226, DIS- OLVED, RADON IETHOD (PCI/L) (09511)	RA-22 2 SIGM WATE DISS (PCI/I (7600)	6 NA IA R, SC , (ANIUM TURAL DIS- DLVED UG/L AS U) 22703)	
	OCT 28 JAN	0.5	52	0.58	0.54	4	<0.02	<0.00)	0.01	
	20 MAY 05	0.4		0.51	0.46	5	0.03	0.010		 <0.01	
	ЛUL 19		-								

05127000 KAWISHIWI RIVER NEAR WINTON, MN

LOCATION.--Lat 47°56'05", long 91°45'50", in NE¹/4NW¹/4 sec.20, T.63 N., R.11 W., Lake County, Hydrologic Unit 09030001, Superior National Forest, at powerplant of Minnesota Power Co., just upstream from Fall Lake, and 1.8 mi east of Winton.

DRAINAGE AREA .-- 1,229 mi².

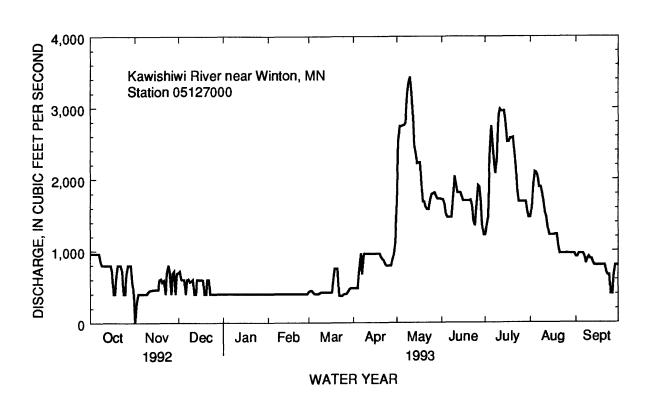
PERIOD OF RECORD.—June 1905 to June 1907, October 1912 to September 1919 (fragmentary), September 1923 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WDR MN-77-1: Drainage area.

REMARKS.--No estimated daily discharges. Records fair. Daily discharge computed from powerplant records. Flow regulated by powerplant and by Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, South Farm, and Garden Lakes.

COOPERATION.--Records collected by Minnesota Power Co., under general supervision of Geological Survey, in connection with a Federal Power Commission project.

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAF	R APR	MAY	JUN	JUL	AUG	SEP
1	960	.00	698	398	398	428	3 480	1670	1720	1220	1470	915
2	960	278	712	398	398	443		2520	1720		1600	916
3	960		599	398	398	443	3 480	2740	1650	1470	1930	959
4	960	399	599	398	398	421		2740	1520	2320	2100	958
5	960	399	597	398	398	399		2750	1470	2740	2090	958
,	700	377	371	370	370	397	7 142	2130	1470	2170	2090	950
6	960	399	399	398	398	399	960	2760	1470	2530	2020	958
7	959	399	598	398	398	399	674	2790	1470	2250	1890	910
8	852	399	605	398	398	399		3180	1470	2080	1890	822
9	800	399	569	398	399	415		3340	1780	2290	1810	888
10	795		574	398	399	422		3430	2040	2860	1690	914
11	794	445	599	398	399	422		3260	1910	2980	1530	883
12	794	452	398	398	399	422	954	2950	1810	2960	1470	882
13	794	457	399	398	399	421	954	2470	1810		1330	823
14	794	457	599	398	399	421	954	2370	1810	2960	1220	794
15	794	458	599	398	399	421	954	2220	1750	2750	1220	794
16	714	458	594	398	399	421	954	2230	1700	2520	1220	794
17	398	458	597	398	399	421		2230	1700	2520	1220	794
18	398	600	590	398	399	544	955	1930	1700	2570	1230	793
19	661	606	398	398	399	749		1690	1700	2570	1230	793
20	795	563	398	398	399	749		1690	1700	2580	1070	792
20	,,5	505	370	370	3//	,47	711	10,0	1,00	2500	10/0	.,2
21	794	585	597	398	398	749	879	1620	1710	2400	959	793
22	794	400	599	398	398	378		1580	1630	2170	960	694
23	716	686	398	398	398	374		1580	1420	1860	960	660
24	397	800	398	398	398	374		1700	1350	1690	960	662
25	398	717	398	398	398	389		1790	1600	1690	960	397
26	665	399	398	398	399	397		1800	1910	1690	961	398
27	795	682	398	398	399	397	791	1810	1890	1690	960	680
28	793	715	398	398	399	427	873	1770	1680	1690	960	795
29	793	399	398	398		467		1730	1360	1690	960	795
30	594	684	398	398		480		1730	1220	1550	959	789
31	395		398	398		480		1730		1470	959	
		14518.00	15899	12338	11159	14071	25328	69800	49670	68060	41788	24003
MEAN	750	484	513	398	399	454	844	2252	1656	2195	1348	800
MAX	960	800	712	398	399	749		3430	2040	2980	2100	959
MIN	395	.00	398	398	398	374		1580	1220	1220	959	397
+	-93.7	23.7	-77	-64.5	-161	-170	355	131	7.5	9.4	-23.9	-18.3
MEAN ‡		508	436	334	238	284		2383	1663	2205	1324	782
CFSM ‡	.53	.41	.35	.27	.19	.23	.98	1.94	1.35	1.79	1.08	.64
IN ‡.	.61	.46	.40	.31	.20	.27	1.09	2.24	1.51	2.06	1.25	.71
CAL YR.		TOTAL 38		EAN 1042	MAX. 4		MIN. 0.0	MEAN ‡		CFSM ‡.85	IN ‡1	1 54
WTR YR		TOTAL 36	1204 IV	EAN 1042	MAX. 3	1000 1/20	MIN. 0.0	MEAN ‡	1007	CFSM ‡.82	IN ‡1	1 12
WIKIK	1772	101AL30	70/U IVI	EWIA 1012	IVIAA. 3	743U	IATTIA" O'O	INTRAIN ±	1007	CLOIM 4.07	TA \$1	1.13


⁺ Change in contents, equivalent in cubic feet per second, in Camp Six, Bald Eagle, Gabbro, Little Gabbro, Birch, White Iron, Farm, South Farm and Garden Lakes.

[‡] Adjusted for change in reservoir content.

LAKE OF THE WOODS BASIN
05127000 KAWISHIWI RIVER NEAR WINTON, MN--Continued

STATIS	TICS OF	MONTHL	Y MEAN D	OATA FOR	WATER Y	EARS 1905	i - 1993, B`	Y WATER Y	EAR (W	YY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
									40.40	4400	<0 .	7.50
MEAN	898	749	586	449	344	370	1183	3121	1949	1139	697	758
MAX	4277	3572	1422	862	<i>77</i> 0	844	5020	9278	5661	2748	3775	3149
(WY)	1947	1971	1983	1978	1927	1945	1945	1950	1968	1944	1988	1928
MIN	66.5	8.97	76.1	80.3	74.5	103	19.3	111	519	217	51.7	38.1
(WY)	1924	1924	1977	1977	1977	1924	1924	1924	1980	1961	1919	1919
								man III i n		WARD W	1 D C 100	£ 1002
SUMMA	RY STA	TISTICS	FOR 1992	CALENDA	R YEAR	FOR	1993 WAT	TER YEAR		WATER YE	ARS 190	1993 - 51
ANNUA	L TOTAI		3	81304.00		36	9870.00					
ANNUA	L MEAN			1042			1013			1031		
HIGHES	T ANNU	AL MEAI	N							1967		1950
LOWES'	T ANNUA	AL MEAN	I							240		1924
HIGHES	T DAILY	MEAN		4880	May 19		3430	May 10		16000	May	18 1950
	T DAILY			.00	Nov 1		.00	Nov 1		.00 <u>a</u>	-	
		-DAY M	INIMUM	324	Oct 31		324	Oct 31		.00	Oct	13 1923
		FF (AC-F		756300			733600			747000		
		FF (CFSM		.85			.82			.84		
		FF (INCH		11.54			11.20			11.40		
	ENT EXC		,	2320			2080			2440		
	ENT EXC			789			793			593		
	CENT EX			397			398			190		

a Many times, several years.

05127500 BASSWOOD RIVER NEAR WINTON, MN (International gaging station)

LOCATION.--Lat 48°04'57", long 91°39'09", in SE¹/₄SE¹/₄ sec.30, T.65 N., R.10 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, on island in Jackfish Bay of Basswood Lake, used to determine discharge at outlet [lat 48°06'21", long 91°38'51", in sec.19, T.65 N., R.10 W., on international boundary 14 mi northeast of Winton].

DRAINAGE AREA .-- 1,740 mi², approximately (above outlet of Basswood Lake).

PERIOD OF RECORD.--March to June 1924, September 1925 to March 1928, January 1930 to current year. Monthly discharge only for some periods, published in WSP 1308.

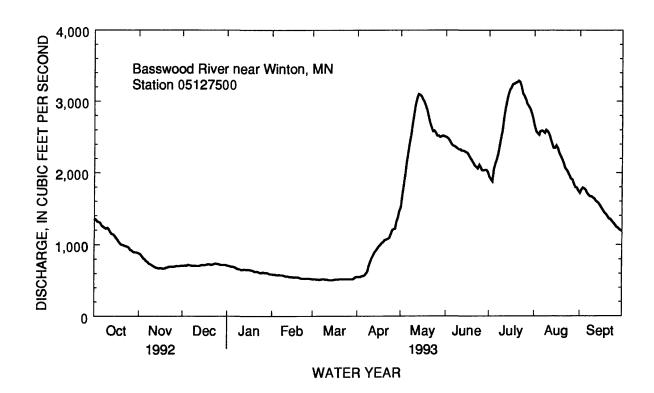
REVISED RECORDS.--WSP 955: Drainage area. WSP 1145: 1935, 1937.

GAGE.--Water-stage recorder. Datum of gage is 1,296.80 ft above sea level, 1928 datum, (levels by Geodetic Survey of Canada). Prior to Oct. 27, 1938, nonrecording gages at several sites in vicinity of gage, at datum 3.0 ft higher. Oct. 28, 1938, to Sept. 30, 1966, water-stage recorder at datum 3.0 ft higher.

REMARKS.--No estimated daily discharges. Records good. Satellite telemeter at station. Some regulation by powerplant on Kawishiwi River at Winton, and by many lakes located upstream from station.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 DAILY MEAN VALUES


						TIDE WILLIAM	· WILLOU	•				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1360	882	706	711	592	520	552	1520	2500	1950	2660	1720
2	1340	866	704	704	587	520	552	1670	2490	1910	2580	1760
3	1320	838	710	700	584	519	552	1820	2470	1880	2560	1790
4	1310	811	708	695	580	514	560	1990	2440	2050	2530	1780
5	1300	796	717	693	578	514	563	2150	2400	2130	2580	1760
,	1500	7,0	,,,	093	370	314	505	2130	2400	2130	. 2500	1700
6	1260	773	713	686	583	512	574	2300	2380	2190	2590	1720
7	1250	758	709	677	578	514	594	2420	2370	2280	2580	1690
8	1230	739	708	668	576	519	628	2540	2360	2380	2560	1670
9	1220	729	708	662	571	517	701	2680	2340	2510	2600	1670
10	1230	713	705	659	566	513	764	2820	2330	2600	2580	1650
11	1210	703	706	655	560	513	806	2940	2330	2780	2540	1640
12	1170	689	705	651	558	509	850	3040	2310	2890	2480	1610
13	1150	680	704	658	553	508	888	3100	2310	3010	2420	1590
14	1140	676	713	651	552	506	919	3090	2300	3090	2350	1570
15	1120	672	718	651	552	507	951	3070	2290	3160	2350	1540
13	1120	072	/10	031	332	307	931	3070	2290	3100	2330	1340
16	1090	675	716	651	548	509	976	3030	2280	3200	2380	1510
17	1070	671	720	650	544	513	998	2990	2240	3240	2340	1470
18	1040	668	724	642	544	515	1020	2940	2200	3250	2280	1440
19	1010	670	729	640	544	516	1040	2870	2170	3260	2230	1420
20	1000	682	729	625	542	520	1060	2790	2130	3270	2190	1390
21	996	684	720	624	534	520	1070	2710	2100	3290	2130	1360
22	985									3270		
22		694	725	625	528	520	1080	2640	2080		2070	1350
23	976	692	730	618	528	520	1090	2580	2060	3210	2040	1330
24	975	692	738	609	528	520	1140	2590	2110	3110	2010	1300
25	957	694	733	608	528	520	1200	2560	2080	3080	1960	1280
26	928	698	730	618	528	517	1210	2520	2030	3030	1920	1250
27	918	702	725	608	528	520	1220	2520	2030	2970	1900	1230
28	903	702	717	608	524	520	1310	2500	2040	2930	1850	1210
29	894	703	719	607		522	1380	2510	2040	2900	1800	1200
30	891	704	719	598		530	1460	2520	2010	2840	1790	1190
31	888		721	592		551		2510	2010	2770	1750	
31	000		721	372		221		2510		2110	1750	
TOTAL		21656	22229	20044	15518	16038	27708	79930	67220	86430	70600	45090
MEAN	1101	722	717	647	554	517	924	2578	2241	2788	2277	1503
MAX	1360	882	738	711	592	551	1460	3100	2500	3290	2660	1790
MIN	888	668	704	592	524	506	552	1520	2010	1880	1750	1190
AC-FT	67700	42950	44090	39760	30780	31810	54960	158500	133300	171400	140000	89440
CFSM	.63	.41	.41	.37	.32	.30	.53	1.48	1.29	1.60	1.31	.86
· IN.	.73	.46	.48	.43	.33	.34	.59	1.71	1.44	1.85	1.51	.96

e Estimated.

LAKE OF THE WOODS BASIN
05127500 BASSWOOD RIVER NEAR WINTON, MN--Continued

STATIS'	TICS OF 1	MONTHLY	MEAN	DATA FOR	WATER Y	EARS 193	1 - 1993, 1	BY WATER Y	EAR (W	/Y)			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
MEAN	1094	1004	862	7 17	591	566	1201	3751	2897	1809	1115	1015	
MAX	5320	3879	2510	1475	1229	1143	5069	9114	7332	4453	3487	5034	
(WY)	1978	1971	1983	1966	1966	1966	1945	1950	1950	1944	1944	1988	
MIN	65.1	60.2	76.2	86.2	95.0	135	269	225	696	512	323	120	
(WY)	1977	1977	1977	1977	1977	1977	1977	1977	1980	1980	1980	1976	
SUMMA	ARY STAT	FISTICS F	OR 1992	CALENDA	AR YEAR	FOR	1993 W	ATER YEAR		WATER Y	EARS 19	31 - 1993	
ANNUA	L TOTAL			522369			506594						
ANNUA	L MEAN			1427			1388			1394			
HIGHES	T ANNU	AL MEAN								2643		1950	
LOWES	T ANNUA	L MEAN								557		1958	
HIGHES	T DAILY	MEAN		5720	May 23		3290	Jul 21		15200	May	24 1950	
LOWES	T DAILY	MEAN		625	Mar 5		506	Mar 14		58		v 3 1976	
ANNUA	L SEVEN	-DAY MIN	IMUM	636	Mar 1		509	Mar 10		58	No	v 7 1976	
INSTAN	TANEOU	S PEAK FI	LOW				3300	Jul 19,21,22		15600	May	24 1950	
INSTAN	TANEOU	S PEAK ST	ΓAGE				5.08	Jul 19,21,22		9.94 <u>a</u>	May	24 1950	
INSTAN	TANEOU	S LOW FL	OW				505	2		55	Nov	18 1976	
ANNUA:	L RUNOF	Ŧ (AC-FT)		1034000		1	006000		1010000				
ANNUA	L RUNOF	F (CFSM)		.82			.80		.80				
ANNUA	LRUNOF	F (INCHES	S)	11.14			10.83			10.88			
10 PERC	ENT EXC	CEEDS		3180			2620			3250			
50 PERC	ENT EXC	CEEDS		964	1040					855			
90 PERC	ENT EXC	CEEDS		689			529			377			
a Present	datum.												

b Occurred Oct. 1, 2, 3, 5, 9, 11.

05128000 NAMAKAN RIVER AT OUTLET OF LAC LA CROIX, ONTARIO (International gaging station)

LOCATION.--Lat 48°21'14", long 92°13'01", at Campbell's Camp, on Lac La Croix Lake, used to determine discharge at outlet [Lat 48°23'00", long 92°10'40", 2.5 mi east of Campbell's Camp].

DRAINAGE AREA.--5,170 mi².

PERIOD OF RECORD.--September 1921 to January 1922, April 1922 to current year, in reports of Geological Survey. Monthly discharge only for some periods, published in WSP 1308. August 1921 to current year, in reports of Water Survey of Canada.

GAGE.--Water-stage recorder. Gage readings have been reduced to elevations, United States and Canada Boundary Survey datum. Prior to October 1933, nonrecording gages at various sites on Lac la Croix. October 1933 to Mar. 13, 1963, nonrecording gage at present site and datum. REMARKS.--Records good. Satellite telemeter at station.

COOPERATION.--This station is one of the international stations maintained by Canada under agreement with the United States.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES DAY OCT NOV DEC JAN **FEB** JUN JUL AUG SEP APR MAY MAR e5540 e5510 e5470 e5540 e5650 e5720 e5790 e5620 e5580 e5540 ---**TOTAL 134230** MEAN MAX MIN AC-FT 266200 1.08 1.33 1.54 .84 .55 .43 .38 .32 .44 1.18 1.20 **CFSM** .44 IN. .97 .62 .51 .50 .39 .37 .49 1.37 1.34 1.53 1.77 1.21

e Estimated.

LAKE OF THE WOODS BASIN 05128000 NAMAKAN RIVER AT OUTLET OF LAC LA CROIX, ONTARIO--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1921 - 1993, BY WATER YEAR (WY) NOV AUG SEP OCT DEC JAN **FEB** MAR APR MAY JUN JUL **MEAN** 3082 2886 2565 1873 8032 4039 3210 2169 1662 2544 7669 6116 10610 MAX 14200 7189 4568 3432 2996 9071 16900 22120 15930 11200 13140 (WY) 1978 1978 1972 1978 1966 1966 1945 1938 1950 1968 1944 1988 MIN 835 624 567 547 540 535 614 899 1475 1263 1141 1223 1977 1977 1977 (WY) 1977 1924 1924 1977 1977 1924 1924 1980 1933 SUMMARY STATISTICS FOR 1992 CALENDAR YEAR FOR 1993 WATER YEAR WATER YEARS 1921 - 1993 ANNUAL TOTAL 1585990 1537120 ANNUAL MEAN 3839 4333 4211 HIGHEST ANNUAL MEAN 7270 1950 LOWEST ANNUAL MEAN 964 1924 May 31 1950 HIGHEST DAILY MEAN 11700 May 28 8720 Aug 6 28200 LOWEST DAILY MEAN 1730 Apr 3 1560 Mar 25 535 Feb 4 1924 ANNUAL SEVEN-DAY MINIMUM 1740 Mar 29 1570 Mar 23 535 Feb 4 1924 INSTANTANEOUS PEAK FLOW 8790 Aug 9 28200a May 31 1950 INSTANTANEOUS PEAK STAGE Aug 9 1193.30a May 31 1950 1186.79

1560

.81

11.06

7270

3480

1750

3049000

Mar 25

535b

.74

10.09

8330

2650

1180

2782000

Feb 1 1924

b Occurred at times in Feb., Mar., and Apr. 1924.

INSTANTANEOUS LOW FLOW

3146000

.84

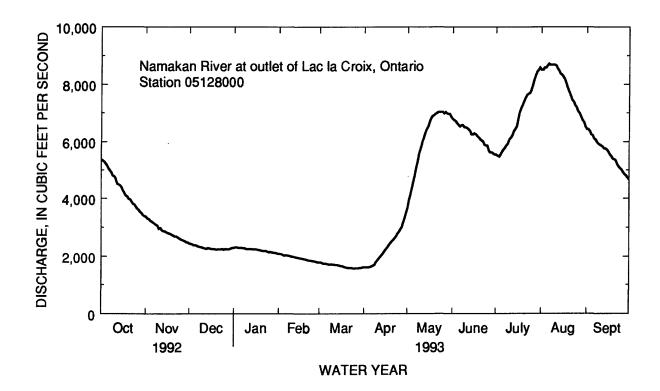
11.41

8650

3600

1900

ANNUAL RUNOFF (AC-FT)


ANNUAL RUNOFF (CFSM)

10 PERCENT EXCEEDS

50 PERCENT EXCEEDS

90 PERCENT EXCEEDS

ANNUAL RUNOFF (INCHES)

a Occurred May 31 to June 2, 1950.

05129115 VERMILION RIVER NEAR CRANE LAKE, MN

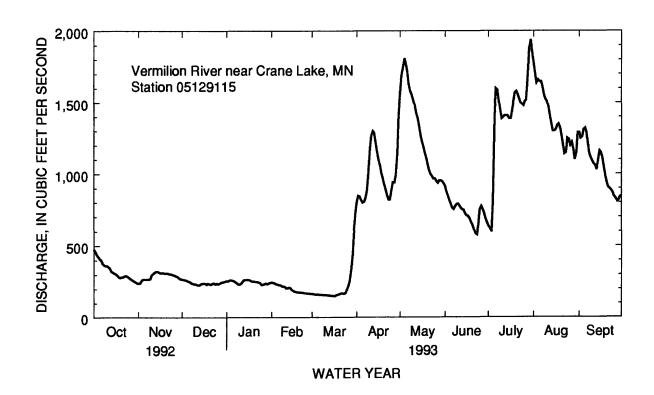
LOCATION.—Lat 48°15'53", long 92°33'57", in NE¹/4NE¹/4 sec. 30, T.67 N., R.17 W., St. Louis County, Hydrologic Unit 09030002, in Superior National Forest, on left bank 350 ft downstream from bridge on Forest Route 491, 3.5 mi upstream from mouth, and 3.5 mi west of city of Crane Lake.

PERIOD OF RECORD.--August 1979 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,180 ft above sea level, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 1979 reached a stage of 15.15 ft, from high-water mark, discharge, about 4,600 ft³/s.


					DA	ILY MEA	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	477	239	270	258	246	e167	810	1570	914	639	1780	1290
2	458	243	268	256	245	e165	847	1690	878	623	1700	1250
3	438	262	265	262	242	e163	842	1750	846	598	1640	1260
4	422	269	262	262	237	e162	820	1810	819	802	1660	1310
5	411	269	256	260	234	e162	801	1770	791	1400	1650	1320
6	399	269	254	256	230	e161	806	1710	764	1600	1650	1290
7	<i>37</i> 7	269	247	250	230	e160	831	1630	753	1590	1620	1210
8	367	269	240	243	222	e159	889	1580	772	1520	1560	1140
9	363	273	238	235	218	e158	1010	1560	788	1440	1530	1110
10	362	298	237	234	217	e157	1180	1520	794	1390	1510	1090
11	356	309	233	239	207	e157	1270	1490	779	1400	1470	1070
12	346	318	230	253	206	e156	1300	1430	762	1410	1410	1060
13	324	322	230	264	211	e155	1290	1390	752	1410	1360	1030
14	318	322	236	264	209	e154	1220	1340	749	1410	1300	1090
15 -	312	319	240	267	196	e153	1150	1270	723	1390	1300	1160
16	306	315	241	265	189	e152	1100	1230	710	1390	1310	1150
17	298	315	239	263	183	e151	1060	1190	704	1440	1340	1110
18	288	314	234	257	e180	158	1010	1150	687	1510	1350	1040
19	281	312	241	254	e178	160	968	1110	664	1570	1320	985
20	284	311	237	253	e177	165	930	1070	642	1580	1270	935
21	285	311	234	251	e176	170	890	1030	613	1560	1200	908
22	291	307	239	251	e175	170	851	1000	584	1530	1140	896
23	293	306	242	248	e173	168	819	982	578	1500	1150	887
24	291	303	236	244	e172	171	822	967	644	1490	1250	868
25	283	299	241	232	e171	191	893	968	752	1480	1240	843
26	276	297	236	231	e170	219	943	952	774	1510	1200	830
27	267	292	241	237	e169	251	940	938	753	1520	1220	809
28	262	286	247	239	e168	331	990	953	725	1700	1180	818
29	255	278	249	237		445	1140	953	690	1880	1100	838
30	250	272	252	239		609	1420	949	660	1940	1150	846
31	243		257	244		738		937		1860	1290	
TOTAL		8768	7572	7748	5631	6638	29842	39889	22064	44082	42850	31443
MEAN	328	292	244	250	201	214	995	1287	735	1422	1382	1048
MAX	477	322	270	267	246	738	1420	1810	914	1940	1780	1320
MIN	243	239	230	231	168	151	801	937	578	598	1100	809
AC-FT	20200	17390	15020	15370	11170	13170	59190	79120	43760	87440	84990	62370

e Estimated.

LAKE OF THE WOODS BASIN 05129115 VERMILION RIVER NEAR CRANE LAKE, MN--Continued

STATIS	TICS OF I	MONTHLY	MEAN D	ATA FOR	WATER Y	EARS 1979) - 1993, B	Y WATER	YEAR (W)	()		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	552	496	398	279	231	270	1117	1383	996	795	510	523
MAX	1175	1138	872	460	368	465	1641	2249	1840	1609	1612	1880
(WY)	1986	1983	1983	1984	1984	1987	1986	1982	1985	1985	1988	1988
MIN	181	152	116	97.8	94.1	89.5	627	507	205	113	60.0	103
(WY)	1980	1988	1988	1988	1988	1988	1987	1980	1980	1980	1980	1984

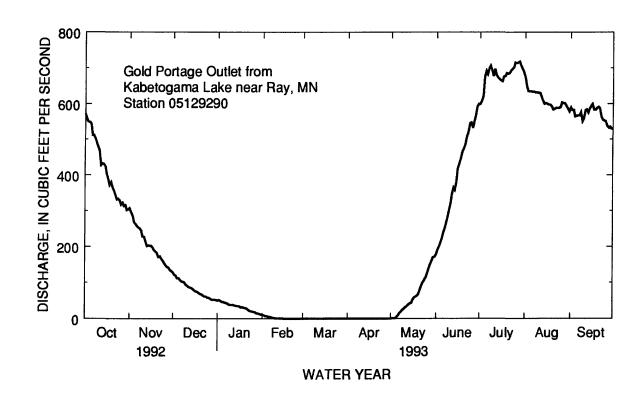
SUMMARY STATISTICS FOR 199	2 CALENDA	R YEAR	FOR 1993 WAT	ER YEAR	WATER YEA	ARS 1979 - 1993
ANNUAL TOTAL	199392		256710			
ANNUAL MEAN	545		703		633	
HIGHEST ANNUAL MEAN					806	1986
LOWEST ANNUAL MEAN					326	1980
HIGHEST DAILY MEAN	1730	Apr 21	1940	Jul 30	4300	Apr 25 1985
LOWEST DAILY MEAN	230	Dec 12	151	Mar 17	38	Aug 13 1980
ANNUAL SEVEN-DAY MINIMUM	235	Dec 8	154	Mar 11	40	Aug 10 1980
INSTANTANEOUS PEAK FLOW			1960	Jul 29	4360	Apr 25 1985
INSTANTANEOUS PEAK STAGE			11.13	Jul 29	15.20	Apr 25 1985
INSTANTANEOUS LOW FLOW					38	Aug 13 1980
ANNUAL RUNOFF (AC-FT)	395500		509200		458300	
10 PERCENT EXCEEDS	1150		1490		1420	
50 PERCENT EXCEEDS	399		598		416	
90 PERCENT EXCEEDS	266		187		160	

05129290 GOLD PORTAGE OUTLET FROM KABETOGAMA LAKE NEAR RAY, MN

LOCATION.--Lat 48°31'28", long 93°04'29", in SW¹/4NE¹/4 sec.30, T.70 N., R.21 W., St. Louis County, Hydrologic Unit 09030003, on right bank in bay at head of Gold Portage Outlet from Kabetogama Lake, 9.8 mi northeast of Ray.

PERIOD OF RECORD .-- October 1982 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,100 ft above sea level, adjustment of 1912 (U.S. Army Corps of Engineers benchmark), water surface transfer.


REMARKS.--Records good except those for estimated discharge, which are fair. Flow completely regulated by outlet dam on Nomaken Lake.

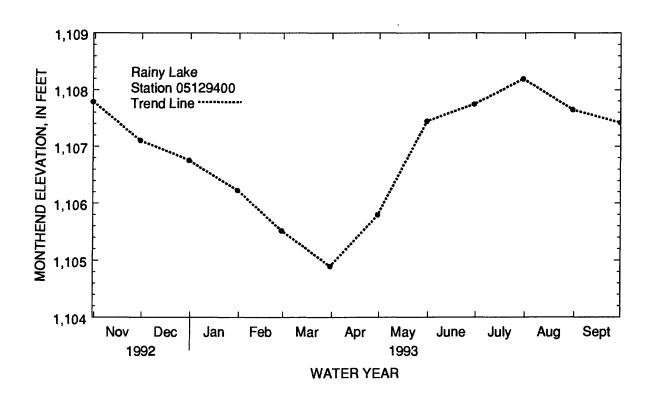
					DA	LY MEAN	VALUES	5				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	571	307	128	50	10	.00	.00	.00	178	599	e673	589
2	557	296	122	51	9.2	.00	.00	.30	190	608	e647	582
3	549	286	119	49	7.3	.00	.00	.60	200	622	e635	582
3 4	548	268	112	46	6.4	.00	.00	.90	209	675	e634	564
5	544	263	112	46	4.9	.00	.00	4.2	e223	692	e634	566
6	512	258	107	44	4.7	.00	.00	8.3	e238	683	e633	567
7	512	253	103	43	3.0	.00	.00	15	e252	700	e633	567
8	503	251	102	41	2.4	.00	.00	19	e266	706	e632	576
9	492	244	100	39	1.8	.00	.00	24	e284	693	e632	551
10	478	228	94	38	.69	.00	.00	27	e301	678	e631	558
11	470	227	91	38	.31	.00	.00	31	322	e697	e630	581
12	427	212	88	38	.22	.00	.00	34	347	e681	e620	584
13	432	201	86	36	.19	.00	.00	39	365	e673	e 610	575
14	430	203	85	35	.16	.00	.00	41	359	e6 70	e 600	585
15	424	201	82	34	.14	.00	.00	43	382	e665	e602	594
16.	403	202	78	34	.12	.00	.00	51	417	e66 3	e 600	599
17	387	197	75	31	.10	.00	.00	58	432	e676	e597	583
18	372	190	74	32	.10	.00	.00	60	448	e678	e597	583
19	380	186	71	30	.08	.00	.00	64	464	e686	e592	588
20	367	182	68	29	.04	.00	.00	68	474	e684	584	591
21	356	170	67	28	.01	.00	.00	79	485	e686	585	586
22	345	172	64	25	.00	.00	.00	91	507	e694	588	562
23	332	166	61	22	.00	.00	.00	101	522	e697	588	555
24	334	160	61	20	.00	.00	.00	106	545	e702	588	552
25	329	153	57	19	.00	.00	.00	114	547	e715	591	551
26	318	147	57	18	.00	.00	.00	124	532	e713	603	538
27	323	143	55	17	.00	.00	.00	139	549	e715	602	532
28	313	141	52	15	.00	.00	.00	149	569	e718	602	535
29	316	135	52	14		.00	.00	160	592	e707	593	529
30	302	131	52	13		.00	.00	169	600	e697	585	530
31	304		51	11		.00		170		e689	578	
TOTAL		6173	2526	986	51.86	0.00	0.00	1990.30	11799	21162	18919	17035
MEAN	417	206	81.5	31.8	1.85	.000	.000	64.2	393	683	610	568
MAX	571	307	128	51	10	.00	.00	170	600	718	673	599
MIN	302	131	51	11	.00	.00	.00	.00	178	599	578	529
AC-FT	25650	12240	5010	1960	103	.00	.00	3950	23400	41970	37530	33790

e Estimated.

LAKE OF THE WOODS BASIN 05129290 GOLD PORTAGE OUTLET FROM KABETOGAMA LAKE NEAR RAY, MN--Continued

STATIS	TICS OF	MONTHI	Y MEAN	DATA FOR	WATER Y	EARS 1983	- 1993,	BY WATER	YEAR (V	VY)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	399	199	78.8	16.8	1.12	.000	.32	120	378	586	592	560
MAX	530	267	149	45.1	7.34	.002	1.66	307	583	683	686	787
(WY)	1986	1990	1992	1990	1990	1990	1985	1986	1985	1985	1988	1988
MIN	285	115	16.5	1.10	.000	.000	.000	.000	96.0	432	519	431
(WY)	1985	1988	1988	1988	1983	1983	1983	1987	1987	1987	1986	1984
SUMMA	RY STA	TISTICS	FOR 1992	CALENDA	R YEAR	FOR	1993 W	ATER YEAR		WATER Y	EARS 198	3 - 1993
	L TOTAL	4		92992.04		9	3572.16					
	L MEAN			254			256			246		
	T ANNU									280		1986
	T ANNUA		Ī							192		1987
	T DAILY			724	Sep 9		718	Jul 28		876	Sep	22 1988
	T DAILY			.00	Feb 23			Feb 22 to Ma		.00		s in each yr
	L SEVEN			.00	Feb 23			Feb 22 to Ma	y 1	.00		21 1983
	TANEOU						721	Jul 8		897		21 1988
	TANEOU						18.50	Jul 8		19.23	Sep	21 1988
	LRUNO		Γ)	184400			185600			178000		
	ENT EXC			596			632			594		
	ENT EXC			172			147			159		
90 PERC	CENT EX	CEEDS		.00			.00			.00		

05129400 RAINY LAKE NEAR FORT FRANCES, ONTARIO (International gaging station)


- LOCATION .-- Lat 48°38'30", long 93°20'00", at Five Mile dock, approximately 5 mi northeast of city of Fort Frances.
- PERIOD OF RECORD.—January 1910 to September 1917 and October 1934 to current year, in reports of Geological Survey. August 1911 to current year, in reports of Water Survey of Canada. Prior to October 1949, published as "at Ranier, Minn.", and as "at Fort Frances, Ontario" October 1949 to September 1964.
- GAGE.--Water-stage recorder. Datum of gage is sea level (United States and Canadian Boundary Survey). January 1910 to December 1949, nonrecording gage 3 mi northeast at Ranier, Minn., at same datum. January 1950 to October 1964, water-stage recorder on Government dock at Pither's Point at Fort Frances, and supplementary gage in town pumping station, 0.5 mi south, used during winter months, at same datum.
- COOPERATION.--This station is one of the international gaging stations maintained by Canada under agreement with the United States. EXTREMES FOR PERIOD OF RECORD.--Maximum elevation observed, 1,112.97 ft, July 5, 1950; minimum observed, 1,101.26 ft, Apr. 17, 1923, Apr. 2, 1930.
- EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,108.22 ft, July 31; maximum daily elevation, 1,108.20 ft, July 30; minimum, 1,104.85 ft, Mar. 27; minimum daily, 1,104.86 ft, Mar. 27.

MONTHEND ELEVATION, IN SEA LEVEL, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

Oct. 311,107.79	Feb. 28 1,105.52	June 301,107.75
Nov. 30 1,107.11	Mar. 31 1,104.90	July 31 1,108.20
Dec. 311,106.76	Apr. 301,105.80	Aug. 311,107.65
Jan. 311,106.23	May 31 1,107.45	Sept. 301,107.42

NOTE.--Elevations other than those shown are available.

05129400 RAINY LAKE NEAR FORT FRANCES, ONTARIO--Continued

Date

LAKE OF THE WOODS BASIN

05130500 STURGEON RIVER NEAR CHISHOLM, MN

LOCATION.--Lat 47°40'25", long 92°54'00", in NE¹/4NW¹/4 sec.20, T.60 N., R.20 W., St. Louis County, Hydrologic Unit 09030005, on left bank 1,000 ft upstream from highway bridge, 0.6 mi downstream from East Branch Sturgeon River, and 11.5 mi north of Chisholm.

DRAINAGE AREA.--187 mi².

PERIOD OF RECORD.--August 1942 to current year.

REVISED RECORDS .-- WSP 1438: 1946.

Time

GAGE.--Water-stage recorder. Datum of gage is 1,305.7 ft above sea level. Prior to Aug. 24, 1944, nonrecording gage at site 1,000 ft downstream at different datum. Aug. 25, 1944, to Sept. 30, 1975, at present site at datum 1.00 ft higher.

Date

Discharge

(ft³/s)

Time

Gage height

(ft)

REMARKS.--Records good except those for estimated daily discharges, which are fair.

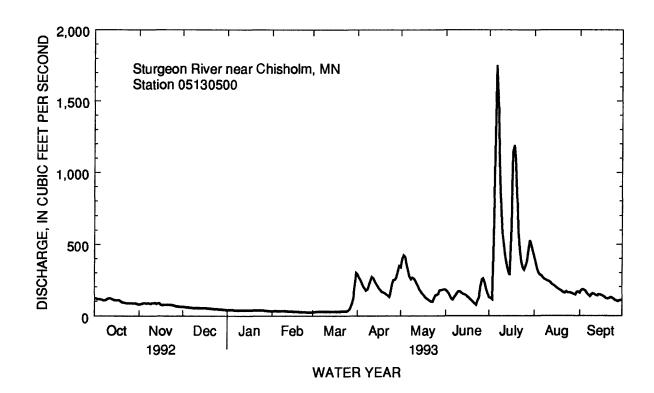
Discharge

(ft3/s)

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base of 500 ft³/s and maximum (*):

Gage height

(ft)


Date		Time	(ft³/s)	•	(ft)		Date	е	Time	(ft³/s	3)	(ft)
*July 6	i	1200	*1800)	*6.15		July 2	20	0100	538	1	3.99
July 18		1100	120		5.29		July .	-	0100	550		3.77
July 10	•	1100	120	•	3.27							
		DISCHA	RGE, CUBI	C FEET PI	ER SECON	D, WATER	R YEAR O	CTOBER 1	992 TO SE	PTEMBER	1993	
					DA	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	122	78	e61	e39	e34	e25	e2 90	339	177	127	411	158
2	119	79	e60	e39	e34	e26	e270	395	169	123		174
3	116	84	e59	e39	e34	e27	e250	424	155	112	326	183
4	115	87	e58	e39	e34	e28	230	411	135	538	297	178
5	113	86	e57	e39	e34	e28	205	362	116	1260	285	171
6	110	84	e56	e38	e34	e29	185	316	111	1750	280	156
7	107	86	e55	e38	e34	e29	172	275	128	1510	267	143
8	107	84	e54	e38	e33	e29	180	255	140	1070	255	134
9	109	82	e54	e38	e33	e29	210	267	155	75 7	251	147
10	118	87	e53	e38	e32	e29	24 7	260	166	583	245	153
11	119	87	e53	e38	e32	e29	270	246	167	492	239	149
12	119	88	e53	e38	e31	e29	262	224	161	414	232	142
13	115	81	e53	e38	e 31	e29	242	2 02	150	356	223	137
14	110	87	e53	e37	e30	e29	223	180	145	316	214	146
15	107	86	e53	e37	e30	e29	204	163	142	284	206	144
16	106	75	e52	e37	e29	e29	188	150	133	622	198	141
17	105	74	e52	e37	e29	e29	175	138	125	1140	188	136
18	105	75	e51	e 37	e28	e29	165	126	113	1190	182	129
19	100	75	e50	e 37	e28	e29	159	117	103	1090	176	121
20	94	75	e50	e37	e27	e29	156	110	93	817	168	118
21	90	76	e49	e37	e2 7	e30	147	103	84	581	161	119
22	89	75	e48	e 37	e26	e30	140	98	76	450	158	126
23	86	76	e4 7	e 37	e26	e30	130	98	102	380	166	125
24	85	72	e46	e37	e26	e 31	157	120	128	335	161	117
25	85	71	e45	e 37	e25	e33	219	141	196	321	160	109
26	87	65	e44	e37	e25	e40	249	143	254	350	157	104
27	86	e63	e43	e36	e25	e50	250	150	259	384	154	100
28	83	e63	e43	e35	e25	e80	265	172	228	473	149	104
29	87	e62	e42	e34		e120	313	176	185	529	144	105
30	84	e62	e41	e 34		e200	348	178	150	491	162	103
31	79		e40	e34		e300		181		455	163	
TOTAL	3157	2325	1575	1153	836	1513	6501	6520	4446	19300	6742	4072
MEAN	102	<i>7</i> 7.5	50.8	37.2	29.9	48.8	217	210	148	623	217	136
, MAX	122	88	61	39	34	300	348	424	259	1750	411	183
MIN	79	62	40	34	25	25	130	98	76	112	144	100
AC-FT	6260	4610	3120	2290	1660	3000	12890	12930	8820	38280	13370	8080
CFSM	.54	.41	.27	.20	.16	.26	1.16	1.12	.79	3.33	1.16	.73
IN.	.63	.46	.31	.23	.17	.30	1.29	1.30	.88	3.84	1.34	.81

e Estimated.

LAKE OF THE WOODS BASIN 05130500 STURGEON RIVER NEAR CHISHOLM, MN--Continued

STATIS	TICS OF	MONTHLY	Y MEAN I	DATA FOR	WATER Y	EARS 1942	2 - 1993, B	Y WATER	YEAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	111	88.9	45.8	27.9	22.4	48.4	367	305	184	115	70.9	91.5
MAX	369	264	115	66.0	47.7	337	868	1451	528	623	268	424
(WY)	1974	1978	1978	1966	1984	1945	1948	1950	1944	1993	1988	1977
MIN	7.85	8.90	4.82	3.98	4.54	10.0	41.0	22.9	14.7	5.99	12.6	4.60
(WY)	1977	1977	1977	1977	1977	1957	1977	1977	1988	1988	1961	1976
SUMMA	RY STA	TISTICS I	FOR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER YI	EARS 194	42 - 1993
ANNUA	L TOTAL			38363			58140					
ANNUA	L MEAN			105			159			123		
HIGHES	T ANNU	AL MEAN								208		1950
LOWES	T ANNUA	L MEAN								63.1		1977
HIGHES	T DAILY	MEAN		430	Apr 22		1750	Jul 6		3530	May	y 8 1950
LOWES	T DAILY	MEAN		25	Jun 15		25	Feb 25	-Mar 1	2.5	Jul	30 1988
ANNUA	L SEVEN	-DAY MI	MUMIN	31	Jun 10		25	Feb 23		3.0	Jul	24 1988
INSTAN	TANEOU	S PEAK F	LOW				1800	Jul 6		3630 <u>a</u>	May	y 7 1950
INSTAN	TANEOU	S PEAK S	TAGE				6.15	Jul 6		7.41 <u>b</u>	May	y 7 1950
ANNUA	LRUNOF	F (AC-FT)	76070			115200			89110		
ANNUA	LRUNOF	F (CFSM)	'	.56			.85			.66		
ANNUA	LRUNOF	F (INCHE	S)	7.63			11.55			8.93		
10 PERC	ENT EXC	CEEDS	•	223			316			294		
50 PERC	ENT EXC	CEEDS		75			110			56		
90 PERC	ENT EXC	CEEDS		40			30			17		

a From rating curve extended above 1,600 $\rm ft^3/s$, on basis of slope-area measurement of peak flow. b Present datum.

05131500 LITTLE FORK RIVER AT LITTLEFORK, MN

LOCATION.--Lat 48°23'45", long 93°32'57", in NE¹/4SE¹/4 sec.9, T.68 N., R.25 W., Koochiching County, Hydrologic Unit 09030005, on right bank at town of Littlefork, 0.9 mi upstream from bridge on State Highway 217, 2.8 mi upstream from Beaver Creek, and 19 mi upstream from mouth.

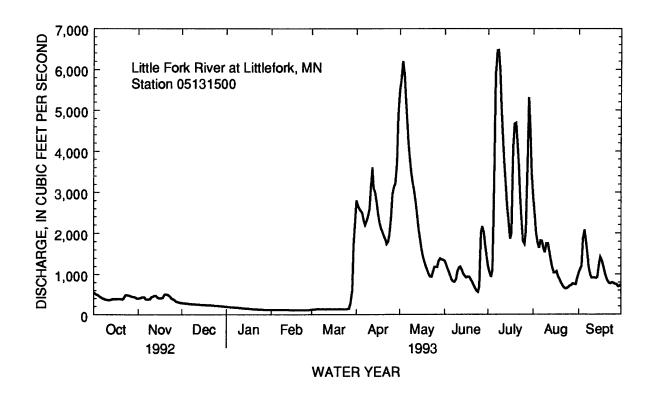
DRAINAGE AREA.--1,730 mi², approximately.

PERIOD OF RECORD.—June to November 1909, April to November 1910, April 1911 to June 1917, September 1917, October 1917 to March 1919 (gage heights only), June 1928 to current year.

REVISED RECORDS.--WSP 955: Drainage area. WSP 1508: 1913, 1916, 1928-32, 1934. WRD MN-74: 1963.

GAGE.--Water-stage recorder. Datum of gage is 1,083.59 ft above sea level. June 23, 1909, to Mar. 4, 1917, nonrecording gage and July 21, 1937, to Oct. 23, 1979, water-stage recorder at site 1.2 mi downstream at datum 10.53 ft lower; Mar. 5 to Sept. 30, 1917, and June 22, 1928, to July 20, 1937, non-recording gage at site 1.18 mi downstream at datum 10.53 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair.


					DA	ILY MEA	N VALUES	3				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	546	398	e285	e192	e120	e118	e2800	5500	1340	1210	2890	1040
2	526	407	e280	e190	e120	e123	e2700	5730	1260	1050	2410	1120
3	498	422	e280	e186	e118	e128	e2600	6200	1150	943	2000	1210
4 5	482	431	e275	e182	el18	e132	e2550	5900	1070	1110	1760	1860
3	451	429	e270	e180	e118	e132	e2500	534 0	967	3190	1650	2080
6	427	386	e265	e178	e115	e132	e2300	4730	876	5900	1820	1830
7	401	376	e262	e175	e115	e132	e2200	4210	824	6460	1810	1510
8	391	370	e260	e170	el 15	e132	e2300	3780	817	6470		1180
9	376	380	e258	e167	el 15	e132	e2400	3480	886	5960	1540	992
10	364	427	e255	e163	e115	e132	e2600	3220	1070	5100	1750	922
11	362	445	e252	e160	e115	e132	e3100	3050	1170	4330	1750	918
12	362	466	e250	e157	e115	e132	e3600	2760	1190	3750	1580	918
13	367	470	e250	e154	e115	e132	e3100	2410	1110	3210	1390	911
14	385	426	e245	e150	e113	e132	3000	2110	1020	2700	1180	934
15	383	406	e245	e148	el 12	e132	2740	1850	963	2280	1040	1250
16	382	407	e24 0	e145	e112	e132	2470	1640	925	1870	1040	1420
17	378	403	e238	e140	e112	e132	2250	1450	946	2010	1070	1340
18	380	416	e235	e140	e111	e132	2120	1330	940	4090	959	1180
19	378	493	e232	e135	e110	e132	2030	1200	884	4670	880	1040
20	378	508	e230	e135	e110	e132	1940	1120	817	4690	797	913
21	375	494	e230	e132	e110	e132	1850	1030	750	4250	731	835
22	411	473	e228	e130	e110	e132	1740	953	664	3630	677	784
23	482	446	e228	e128	e110	e132	1800	946	603	2900	648	781
24	481	e400	e222	e125	e110	e132	2000	1050	572	2250	652	798
25	477	e380	e220	e123	e110	e132	2420	1180	701	1810	681	785
26	466	e360	e215	e122	el 10	e138	2950	1180	2010	1740	714	766
27	451	e330	e210	e120	e110	e150	3140	1180	2160	2040	72 7	758
28	434	e315	e208	e120	e115	e300	3210	1330	2020	3650	769	700
29	433	e300	e203	e120		e600	3690	1390	1740	5310	762	706
30	417	e290	e200	e120		e1700	4890	1370	1450	4450	757	748
31	399		e195	e120		e2300		1360		3480	896	
TOTAL		12254	7466	4607	3179	8461	78990	79979	32895	106503	38970	32229
MEAN	421	408	241	149	114	273	2633	2580	1096	3436	1257	1074
MAX	546	508	285	192	120	2300	4890	6200	2160	6470	2890	2080
MIN	362	290	195	120	110	118	1740	946	572	943	648	700
AC-FT	25870	24310	14810	9140	6310	16780	156700	158600	65250	211200	77300	63930
CFSM.	24	.24	.14	.09	.07	.16	1.52	1.49	.63	1.99	.73	.62
IN.	.28	.26	.16	.10	.07	.18	1.70	1.72	.71	2.29	.84	.69

e Estimated.

LAKE OF THE WOODS BASIN 05131500 LITTLE FORK RIVER AT LITTLEFORK, MN--Continued

STATIS	TICS OF	MONTHLY	MEAN I	OATA FOR	WATER Y	EARS 1909	- 1993, B	Y WATER Y	EAR (W	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	857	677	301	142	108	269	3179	2885	1798	956	553	749
MAX	3320	3044	972	477	270	3022	8421	12190	5490	3643	2679	5189
(WY)	1947	1972	1983	1966	19 69	1945	1966	1950	1944	1944	1988	1977
MIN	43.4	60.8	52.6	43.5	42.2	50.2	292	173	182	75.4	34.3	29.2
(WY)	1977	1977	1977	1931	1963	1940	1977	1977	1988	1988	1936	1976
SUMMA	RY STAT	TISTICS F	OR 1992	CALENDA	R YEAR	FOR	1993 WA	TER YEAR		WATER YE	ARS 190	9 - 1993
ANNUA	L TOTAL			290662			418576					
ANNUA	L MEAN			794			1147			1055		
HIGHES	T ANNU	AL MEAN								1912		1966
LOWES'	T ANNUA	L MEAN								306		1931
HIGHES	T DAILY	MEAN		4680	Apr 22		6470	Jul 8		25000	Apr	18 1916
LOWES	T DAILY	MEAN		161	Jun 16		110	Feb 19-27		21	Aug 26	-27 1936
ANNUA	L SEVEN	-DAY MIN	IMUM	180	Feb 25		110	Feb 19		22	Aug	21 1936
INSTAN	TANEOU	S PEAK FI	LOW				6580	Jul 8		25000a	Apr	18 1916
		S PEAK S					9.15	Jul 8		37.00 <u>a</u>	Apr	18 1916
ANNUA	LRUNOI	Ŧ (AC-FT)		<i>5</i> 76500			830200			764500		
ANNUA	L RUNO!	F (CFSM)		.46			.66			.61		
ANNUA	L RUNO!	F (INCHE	S)	6.25			9.00			8.29		
	ENT EXC			1990			3020			2800		
50 PERC	ENT EXC	CEEDS		393			64 8			352		
90 PERC	CENT EX	CEEDS		201			123			85		

a Occurred Apr. 18, 1916, May 11, 1950, site and datum then in use.

05132000 BIG FORK RIVER AT BIG FALLS, MN

LOCATION.—Lat 48°11'45", long 93°48'25", in SW¹/₄SE¹/₄ sec.35, T.155 N., R.25 W., Koochiching County, Hydrologic Unit 09030006, on left bank at village of Big Falls, 700 ft downstream from falls, 0.3 mi downstream from bridge on U.S. Highway 71, and 4.8 mi upstream from Sturgeon River.

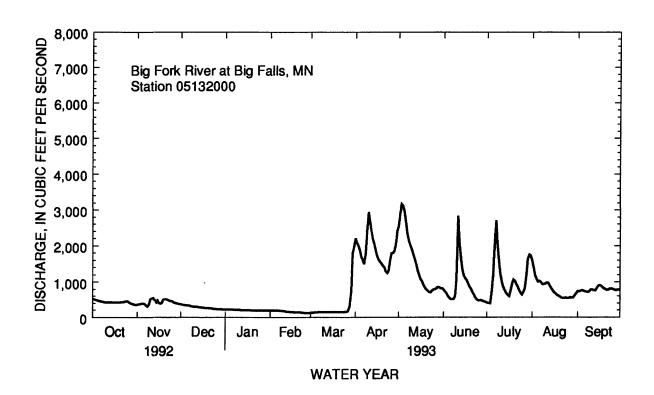
DRAINAGE AREA.--1,460 mi², approximately.

PERIOD OF RECORD.--August to November 1909, April to November 1910. April 1911 to September 1912 (gage heights and discharge measurements only). June 1928 to September 1979. October 1979 to September 1982, annual maximums only. October 1982 to current year. REVISED RECORDS.--WSP 1308:1935 (M).

GAGE.--Water-stage recorder. Datum of gage is 1,144.71 ft above sea level. Prior to June 10, 1911, nonrecording gage at railroad bridge about 0.4 mi upstream at different datum. June 10, 1911, to Sept. 30, 1912, and June 22, 1928, to Dec. 17, 1937, nonrecording gage at site 200 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Prior to 1971, a powerplant, located 0.3 mi upstream, caused some diurnal fluctuation at low flows.

					DA	ILY MEA	N VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	521	e360	e370	e220	e195	e125	e2200	2560	786	411	1590	742
2	e508	e370	e360	e220	e195	e130	e2100	2890	738	406	1370	734
3	e490	e380	e350	e215	e195	e130	e2000	3170	680	395	1180	754
4	e485	e390	e345	e215	e195	e135	e1900	3120	613	663	1070	769
5	e470	384	e340	e215	e195	e140	e1700	2930	554	1190	1010	751
,	C470	204	6540	C21J	6193	6140	E1700	2930	334	1170	1010	751
6	e460	375	e335	e215	e190	e140	e1600	2600	509	1970	1030	735
7	e450	336	e330	e210	e190	e145	e1500	2320	512	2700	992	727
8	e440	310	e320	e210	e185	e145	e1800	2120	513	2080	939	719
9	e430	361	e310	e210	e180	e150	e2400	2010	592	1580	937	748
10	e425	513	e300	e210	e175	e150	2940	1900	1070	1240	957	787
10	0425	313	C300	C210	C175	6150	2770	1900	1070	12-10	751	707
11	e420	538	e295	e210	e170	e150	2690	1780	2820	1010	982	792
12	e420	543	e295	e205	e165	e150	e2400	1640	2110	873	979	768
13	e420	483	e290	e205	e160	e150	e2200	1480	1670	772	904	760
14	e420	424	e285	e205	e155	e150	e2050	1340	1370	697	824	820
15	e420	475	e280	e205	e150	e150	1850	1190	1180	635	764	889
10	0.120	475	0200	C2 05	0150	0150	1050	1170	1100		,,,	007
16	e425	402	e275	e200	e145	e150	1720	1090	1110	604	711	915
17	e425	390	e270	e200	e145	e150	1610	1020	1050	740	669	892
18	e425	407	e265	e200	e140	e150	1560	929	946	957	638	854
19	e425	503	e260	e195	e140	e150	1510	844	871	1060	607	826
20	425	514	e260	e195	e135	e150	1450	795	798	1030	581	799
20	720	314	0200	C175	CISS	C150	1450	7,55	,,,,	1000	501	.,,,
21	e430	509	e255	e195	e135	e150	1400	758	716	949	557	781
22	e435	495	e250	e195	e135	e150	1300	720	634	859	543	789
23	e440	477	e245	e195	e130	e150	1250	710	558	771	547	812
24	e450	461	e240	e195	e130	e150	1310	755	507	690	556	811
25	e460	455	e235	e195	e125	e150	1610	793	479	647	550	807
20	C-100	433	C233	CIJS	0125	C150	1010	7,5		01.	550	•
26	e430	e420	e230	e195	e125	e160	1790	797	474	729	545	787
27	404	e410	e230	e195	e125	e170	1800	813	482	835	569	773
28	e390	e400	e225	e195	e125	e320	1850	861	461	1220	555	777
29	e370	e390	e225	e195		e740	2050	848	447	1640	569	787
30	364	e380	e220	e195		e1800	2400	821	433	1760	628	791
31	e355		e220	e195		e2000	2400	826		1730	684	
31	E333		e220	6193		62000		620		1730	004	
TOTAL		12855	8710	6305	4430	8830	55940	46430	25683	32843	25037	23696
MEAN	433	428	281	203	158	285	1865	1498	856	1059	808	790
MAX	521	543	370	220	195	2000	2940	3170	2820	2700	1590	915
MIN	355	310	220	195	125	125	1250	710	433	395	543	719
AC-FT	26640	25500	17280	12510	8790	17510	111000	92090	50940	65140	49660	47000
CFSM	.30	.29	.19	.14	.11	.20	1.28	1.03	.59	.73	.55	.54
IN.	.34	.33	.22	.16	.11	.22	1.43	1.18	.65	.84	.64	.60
**	.54				•	•						


e Estimated.

LAKE OF THE WOODS BASIN
05132000 BIG FORK RIVER AT BIG FALLS, MN--Continued

STATIST	TICS OF	MONTHLY	MEAN I	DATA FOR	WATER Y	EARS 190	9 - 1993, 1	BY WATER Y	EAR (V	/Y)		
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	659	524	277	171	134	242	1899	2001	1173	640	401	560
MAX	2247	2034	685	399	335	1928	5186	7496	2890	2321	1799	2989
(WY)	1970	1972	1970	1969	1969	1945	1966	1950	1974	1944	1978	1937
MIN	38.3	44.5	31.6	22.2	22.9	32.9	175	138	180	46.0	26.7	22.4
(WY)	1932	1935	1935	1935	1935	1940	1931	1931	1934	1931	1934	1934
SUMMA	RY STAT	ristics f	OR 1992	CALENDA	R YEAR	FOR	1993 WA	ATER YEAR		WATER Y	EARS 190	09 - 1993
ANNUA	L TOTAL			217058			264191					
ANNUA	L MEAN			593		*	724			724		
HIGHES	T ANNU	AL MEAN								1362		1950
LOWEST	r annu <i>a</i>	L MEAN								92.0		1931
HIGHES	T DAILY	MEAN		2990	Apr 21		3170	May 3		14800	May	y 9 19 50
LOWEST	T DAILY	MEAN		127	Jun 16		125	Feb 25 to Mar	1	14	Jan	10 1940
ANNUA	L SEVEN	-DAY MIN	IMUM	146	Feb 23		126	Feb 23		18	Jan	22 1935
INSTAN	TANEOU	S PEAK FI	LOW .				3190	May 3		14800	May	y 8 19 5 0
INSTAN	TANEOU	S PEAK ST	Γ AG E				7.68 <u>a</u>	Apr 1		17.08	May	8 19 5 0
INSTAN	TANEOU	S LOW FL	OW					-		7.0	Au	7 1939
ANNUA	L RUNO!	F (AC-FT)		430500			524000			524200		
ANNUA	L RUNOI	FF (CFSM)		.41			.50			.50		
ANNUA	L RUNOI	F (INCHES	S)	5.53			6.73			6.73		
10 PERC	ENT EXC	CEEDS	-	1400			1740			1810		
40 DED 0	775 WY 777.			0.00								

a Backwater from ice.

50 PERCENT EXCEEDS 90 PERCENT EXCEEDS

05133500 RAINY RIVER AT MANITOU RAPIDS, MN (International gaging station)

LOCATION.-Lat 48°38'04", long 93°54'47", in NW¹/4SE¹/4 sec.36, T.160 N., R.26 W., Koochiching County, Hydrologic Unit 09030004, on left bank at Manitou Rapids, 4 mi west of Indus.

DRAINAGE AREA.--19,400 mi², approximately.

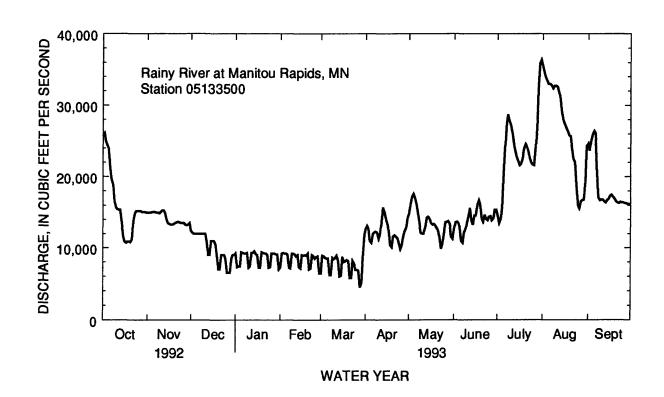
WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—July 1928 to current year. Monthly discharge only for some periods, published in WSP 1308. October 1911 to October 1924 (gage heights only) at site near Birchdale in files of U.S. Army Corps of Engineers. Published as "near Birchdale" 1932-34.

GAGE.--Water-stage recorder. Datum of gage is 1,062.48 ft above sea level. Prior to Nov. 10, 1934, nonrecording gage at site near Birchdale, 7 mi. downstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Satellite telemeter at station. Diurnal fluctuation caused by powerplant at International Falls. Some regulation at low and medium flows by Rainy and Namakan Lakes.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.


					DA	AILY MEA	N VALUES	5				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	25700	15000	12400	e9200	e7300	e6400	12700	14900	12800	14700	35600	24700
2	26100	15000	12200	e7300	e9200	e8900	13100	16100	13600	13500	34600	23700
3	24900	15000	e12000	e7400	e9300	e8800	12700	17200	13700	14100	33900	25200
4	24400	15100	e12000	e7400	e9200	e8600	11000	17600	13500	15700	33400	25900
5	24000	15100	e12000	e9400	e9200	e8500	10700	17100	12800	20500	33000	26400
6	21100	15100	e12000	e9300	e9100	e8500	12000	16200	11000	23900	33000	26100
7	19600	15000	e12000	e9200	e7200	e6200	12200	15100	10700	27500	32800	20400
8	18900	15000	e12000	e9200	e7100	e6200	12300	13700	12200	28700	32400	17100
9	16600	14900	e12000	e9300	e9200	e8600	12200	12200	12700	27800	32700	16700
10	15700	15100	e12000	e7200	e9200	e8400	11300	12000	13600	27300	32700	16800
11	15500	15300	e12000	e7400	e9100	e8600	11900	12000	14600	26100	32600	16800
12	15400	15300	e11000	e9300	e8800	e8900	13800	12800	15600	24800	31900	16600
13	15400	14900	e9000	e9300	e9000	e8200	15700	14300	13800	23700	31200	16400
14	13600	13900	e9000	e9500	e7300	e6000	15100	14400	13300	22900	29100	16700
15	11600	13500	e11000	e9100	e7100	e6100	14000	14100	14600	22200	27900	16900
16	10900	13400	e11000	e9000	e9000	e8700	13400	13500	14600	21600	27400	17300
17	10700	13300	e11000	e7200	e8900	e8000	12400	13300	16000	21800	26800	17500
18	10900	13300	e10500	e7200	e9000	e8100	10400	13400	16700	22500	26400	17200
19	10900	13400	e9000	e9400	e8900	e8300	10100	13100	16100	23900	25800	17000
20	10800	13500	e7000	e9300	e9200	e8100	11600	12800	14100	24600	25700	16600
21	11200	13600	e7000	e9200	e7000	e5800	11800	12600	13700	24300	23800	16400
22 23	13800	13700	e9000	e9200	e7100	e5800	11600	11600	14700	23600	22500	16300
23	14900	13600	e9000	e9000	e9000	e8200	11400	9850	14100	22700	22000	16500
24	15200	13500	e9000	e7200	e8800	e7800	10700	10500	13900	22000	18900	16400
25	15200	13500	e8500	e7300	e8500	e6900	9820	11900	14400	21700	16000	16400
26	15200	13500	e6500	e9200	e8700	e6900	10300	13600	14500	21600	15600	16300
27	15200	13300	e6500	e9200	e8800	e6800	11600	13700	13900	23700	16600	16300
28	15100	13200	e6500	e9200	e6400	e4500	12300	13800	14200	26700	16700	16200
29	15100	13300	e8500	e9100		e5100	12800	13400	15400	32100	16800	16200
30	15100	13500	e9000	e9100		e8600	14200	11600	15400	35900	19300	16200
31	15000		e9000	e7000		11800		11300		36400	24300	
	503700	424800	309600	266300	236600	236300	365120	419650	420200	738500	831400	555200
MEAN	16250	14160	9987	8590	8450	7623	12170	13540	14010	23820	26820	18510
MAX	26100	15300	12400	9500	9300	11800	15700	17600	16700	36400	35600	26400
MIN	10700	13200	6500	7000	6400	4500	9820	9850	10700	13500	15600	16200
	999100	842600	614100	528200	469300	468700	724200	832400		1465000	1649000	1101000
CFSM	.84	.73	.51	.44	.44	.39	.63	.70	.72	1.23	1.38	.95
IN.	.97	.81	.59	.51	.45	.45	.70	.80	.81	1.42	1.59	1.06

e Estimated.

RED RIVER OF THE NORTH BASIN

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued

STATISTICS OF MONTHI	Y MEAN DATA FOR	WATER Y	EARS 1929	- 1993, BY	Y WATER Y	EAR (W	Y)		
OCT NOV	DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 11870 11090	10030 9088	8749	8992	15430	19570	20150	16450	11430	11270
MAX 42410 37280	27790 18430	17240	16640	38100	52880	49480	47970	33700	30620
(WY) 1942 1972	1972 1972	1969	1945	1966	1950	1950	1950	1944	1988
MIN 4728 3796	3190 2900	3129	2926	4378	4106	3676	3483	3422	4168
(WY) 1981 1977	1930 1931	1931	1931	1977	1977	1980	1980	1980	1958
SUMMARY STATISTICS	FOR 1992 CALENDA	AR YEAR	FOR	1993 WA	TER YEAR		WATER Y	EARS 192	29 - 1993
ANNUAL TOTAL	5654220		:	5307370					
ANNUAL MEAN	15450			14540			12860		
HIGHEST ANNUAL MEA	N						23260		1950
LOWEST ANNUAL MEAN	V						4470		1931
HIGHEST DAILY MEAN	36700	Sep 11		36400	Jul 31		71300	May	11 1950
LOWEST DAILY MEAN	6500	Dec 26		4500	Mar 28		928		26 1929
ANNUAL SEVEN-DAY M		Dec 23		6600	Mar 23		1500	Dec	24 1929
INSTANTANEOUS PEAK	FLOW			36500	Jul 31		71600	May	12 1950
INSTANTANEOUS PEAK				13.57	Jul 31		21.04	May	12 1950
ANNUAL RUNOFF (AC-F			10	0530000			9315000		
ANNUAL RUNOFF (CFSM				.75			.66		
ANNUAL RUNOFF (INCH				10.18			9.00		
10 PERCENT EXCEEDS	25700			24800			25400		
50 PERCENT EXCEEDS	13300			13400			10300		
90 PERCENT EXCEEDS	9000			7920			5000		

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1968-70, 1978 to current year. REMARKS.--Letter K indicates non-ideal colony count.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	CIFIC CON- DUCT- ANCE (US/CM) (SPE- CIFIC CON- DUCT- ANCE LAB US/CM) (90095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	WATER	BID- ITY (NTU)	BARO- METRIO PRES- SURE (MM OF HG) (00025)	OXYGE DIS- SOLVE (MG/L	ED L)
OCT 20	1245	10800	86	79	7.6	7.4	5.0	2.5	720	11.0	0
NOV 23	1400	13500	80	73	7.6	7.5	0.5	1.9	732	13.0	0
JAN 11	1230	14700	80	76	6.9	7.2	0.5	1.5	744	13.2	2
APR 12	1245	13400	115	116	7.8	7.4	1.0	23	737	7.0)
JUN 02	1300	13400		83	7.7	7.2	14.0	3.8	730	9.0	0
JUL 27	1030	23600	87	73	7.3	7.4	19.0	1.6	727	6.0	
DATE	COLI FORM FECA1 0.7 UM-M (COLS 100 MI (31625	I, TOCOCC L, FECAL, KF AGAI IF (COLS. J./ PER L) 100 ML)	CALCIUM C DIS- SOLVED (MG/L AS CA)	DIS	M, SODIU S- DIS- VED SOLVI G/L (MG/ MG) AS N	M, SI ED SOI L (MA) A:	TAS- I UM, W DIS- ' LVED IG/L M S K) (ALKA- LINITY /AT DIS FOT IT FIELD IG/L AS CACO3 (39086)	CACO3)	WATER DIS IT FIELD	
OCT 20	K56	53	8.8	2.:	5 3.6	ı	0.80	26	28	0	32
NOV 23	31	K18	7.6	2.:	3 3.3	(0.70	23	25	0	28
JAN 11	88	50	7.0	1.9	9 4.2	<	0.10	25	26	0	31
APR 12	210	61	13	4.:	3 3.4		1.4	44	47	0	54
JUN 02	K16	300	9.1	3.	1 3.2	(0.70	28	32	0	34
JUL 27	24	61	7.9	2.	4 2.7	(0.80	27	27	0	33

05133500 RAINY RIVER AT MANITOU RAPIDS, MN--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625
OCT 20	5.2	2.8	<0.10	2.9	50	<0.010	<0.050	0.050	0.50
NOV 23	4.6	2.5	<0.10	2.4	55	<0.010	0.074	0.030	0.50
JAN 11	5.4	3.2	<0.10	3.1	5 6	0.020	0.120	0.080	0.50
APR 12	6.3	3.2	<0.10	5.8	101	<0.010	0.100	0.070	0.70
JUN 02	4.6	2.8	<0.10	3.1	68	<0.010	<0.050	0.040	0.50
JUL 27	4.2	1.9	<0.10	2.9	59	<0.010	0.067	0.110	0.50
DATE	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	PHOS PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	SEDI- MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	BARIUM, DIS SOLVED (UG/L AS BA)	COBALT, DIS- SOLVED (UG/L AS CO)	IRON, DIS SOLVED (UG/L AS FE)
	(00665)	(00666)	(00671)	(80154)	(70331)	(01106)	(01005)	(01035)	(01046)
OCT 20 NOV	0.020	0.020	<0.010	3	100	5 0	10	<3	97
23	0.030	0.020	<0.010	9	95				
JAN 11 APR	0.020	0.020	0.020	1	100	30	8	<3	83
12 JUN	0.090	0.020	<0.010	81	98	100	15	<3	250
02 JUL	0.070	<0.010	<0.010	5	100		-		
27	0.040	0.050	<0.010	26	32	50	9	<3	110
DATE	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	
ОСТ 20	<4	7	<10	<1	<1	<1.0	25	<6	
NOV 23									
JAN									
11 APR	<4	5	<10	<1	<1	<1.0	22	<6	
12 JUN	<4	42	<10	<1	<1	<1.0	29	<6	
02 JUL									
27	<4	2	10	1	<1	<1.0	23	<6	

05140520 LAKE OF THE WOODS AT WARROAD, MN (International gaging station)

LOCATION.—Lat 48°54'15", long 95°18'57", in SW¹/₄SE¹/₄ sec.29, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, on left bank of Warroad River in Warroad, 300 ft downstream from Canadian National railroad bridge, 1,000 ft downstream from bridge on State Highway 11, and 4,000 ft upstream from mouth of Warroad River.

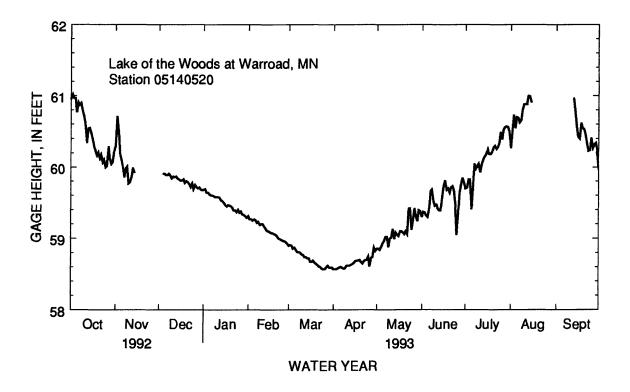
DRAINAGE AREA .-- 27,200 mi2.

PERIOD OF RECORD.--April to September 1978 (monthend elevations only), October 1978 to current year. Records collected prior to April 1978 are in reports of the Water Survey of Canada.

GAGE .-- Water-stage recorder. Datum of gage is 1,000.00 ft above sea level, Lake of the Woods datum.

REMARKS.--Runoff conditions of the Warroad River can affect water levels obtained at this station. Water level subject to fluctuation caused by change in direction and velocity of wind and seiches.

COOPERATION .-- This station is one of the international gaging stations maintained by the United States under agreement with Canada.


EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 62.38 ft, July 15, 1989; maximum daily, 61.84 ft, Sept. 12, 1978; minimum gage height recorded, 55.94 ft, Sept. 4, 1980; minimum daily recorded, 56.52 ft, Apr. 15, 1981.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, 61.38 ft, Aug. 3; maximum daily, 61.02 ft, Oct. 2; minimum, 58.35 ft, May 9; minimum daily, 58.57 ft, Mar. 25, 26, Apr. 1-3.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP JAN **FEB** MAR APR MAY 1 60.95 60.30 59.68 59.31 58.90 58.57 58.86 59.30 59.70 60.27 2 61.02 60.71 ---59.69 59.27 58.91 58.57 58.86 59.37 59.71 60.53 ___ 3 60.97 60.49 ---59.64 59.27 58.90 58.57 58.84 59.36 59.83 60.73 ---4 60.97 60.20 59.91 59.64 59.25 58.86 58.58 58.89 59.32 59.83 60.55 5 60.77 60.11 59.91 59.62 59.27 58.87 58.59 58.93 59.30 59.41 60.70 58.97 6 60.91 60.02 59.89 59.60 59.70 59.26 58.84 58.60 59.39 60.69 7 60.87 59.86 59.89 59.60 59.02 60.05 60.63 59.22 58.81 58.59 59.66 8 60.90 59.98 59.98 59.91 59.59 59.23 58.58 59.02 59.68 60.66 58.81 ---9 60.80 60.01 59.88 59.58 59.19 58.80 58.58 58.88 59.52 60.02 60.80 10 60.71 59.77 59.84 59.58 58.62 59.46 60.05 60.88 59.20 58.78 59.00 59.79 59.93 11 60.61 59.87 59.58 59.20 58.62 59.01 59.48 60.88 58.77 60.34 59.87 59.86 59.57 59.42 60.03 60.88 12 59.17 58.74 58.62 59.13 13 58.99 60.97 60.54 59.99 59.87 59.54 59.14 58.74 58.63 59.39 60.11 61.00 14 60.55 59.92 59.84 59.52 59.11 58.72 58.64 59.08 59.39 60.15 60.99 60.81 15 60.47 59.50 59.05 59.58 60.18 60.91 60.57 59.83 59.10 58.72 58.66 60.39 59.81 59.47 59.09 58.67 58.68 59.03 59.72 60.25 60.43 16 ---17 60.28 59.81 59.45 59.07 58.69 59.10 59.81 60.19 ___ 60.40 58.67 58.69 59.10 60.19 60.62 60.23 59.83 59.47 59.07 58.69 59.68 18 ---19 60.17 59.78 59.46 59.06 58.66 58.70 59.08 59.70 60.21 60.55 59.64 60.28 60.53 20 59.80 59.45 59.05 58.67 59.06 60.21 58.64 59.03 59.10 59.71 60.30 60.46 21 60.13 ---59 79 59 43 58.63 58.65 60.18 59.76 59.39 59.00 58.68 59.06 59.73 60.26 ---60.32 22 58.61 23 59.42 59.68 60.28 60.23 60.07 59.72 59.39 58.99 58.60 58.70 ---24 60.11 59.77 59.37 58.98 58.58 58.70 59.42 59.46 60.34 60.24 58.97 25 60.00 59.69 59.40 58.57 58.75 59.12 59.05 60.4960.41 ---59.25 59.36 60.39 60.27 26 60.02 59.75 59.36 58.96 58.57 58.61 ------59.72 59.38 58.95 58.59 58.73 59.42 59.64 60.53 60.32 27 60.29 60.34 58.93 59.31 59.77 60.56 28 60.13 ---59.70 59.34 58.62 58.74 ---29 58.87 59.24 59.85 60.57 60.25 60.05 59.71 59.33 58.59 59.97 59.39 59.78 60.56 30 60.07 ---59.68 59.31 ---58.59 58.83 ---31 60.23 59.67 59.29 58.59 59.38 60.50 ---___ 59.49 58.71 58.66 59.10 59.54 60.15 MEAN 59.12 60.45 ---MAX 59.69 59.31 58.91 58.87 59.42 59.85 60.57 ---61.02 ---58.57 58.84 59.05 59.41 MIN 59.29 58.93 58.57 60.00 ---

05140520 LAKE OF THE WOODS AT WARROAD, MN--Continued

MIN

59.93

59.78

59.68

LAKE OF THE WOODS BASIN

05140521 LAKE OF THE WOODS AT SPRINGSTEEL ISLAND NEAR WARROAD, MN

LOCATION .-- Lat 48°56'45", long 95°18'24", in SW1/4SW1/4 sec.9, T.163 N., R.36 W., Roseau County, Hydrologic Unit 09030009, at Springsteel Resort on Springsteel Island, 2.8 mi north of Warroad.

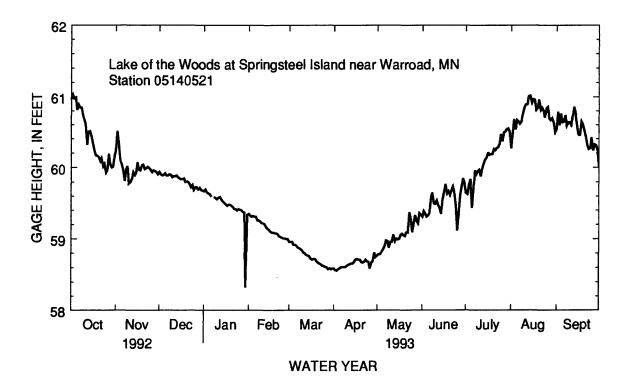
DRAINAGE AREA.--27,200 mi².

PERIOD OF RECORD.--June 1985 to current year.

GAGE.--Water-stage recorder. Datum at gage is 1,000.00 ft above sea level, Lake of the Woods datum.

REMARKS.--Satellite telemeter at station. Water level subject to fluctuation caused by changes in direction and velocity of wind and seiches.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 62.24 ft, July 5, 1989; maximum daily, 61.81 ft, July 6, 7, 1985; minimum, 57.22 ft, Nov. 22, 1990; minimum daily, 57.43 ft, Mar. 18, 19, 20, 1988.


EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 61.37 ft, Aug. 9; maximum daily, 61.03 ft, Oct. 2; minimum, 58.47 ft, May 9; minimum daily, 58.56 ft, Apr. 3.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DAILY MEAN VALUES DAY OCT NOV DEC JAN **FEB** MAR APR MAY JUN JUL **AUG** SEP 1 60.97 60.24 59.94 59.67 59.35 58.96 58.59 58.77 59.31 59.65 60.27 60.55 2 61.03 60.51 59.91 59.70 59.33 58.96 58.57 58.79 59.39 59.63 60.50 60.79 3 60.98 60.31 59.77 60.60 59.89 59.66 59.31 58.96 58.56 58.79 59.35 60.68 4 60.99 60.10 59.90 59.64 58.58 59.31 59.84 60.54 60.76 59.32 58.92 58.83 5 60.82 60.04 59.92 59.63 59.31 58.92 58.59 58.86 59.33 59.44 60.67 60,64 6 60.89 59.97 59.89 58.91 59.36 59.67 60.65 60.65 59.60 59.31 58.91 58.61 7 59.96 60.85 59.82 59.89 59.26 58.88 58.61 58.98 59.58 60.62 60.74 8 60.85 59.59 59.91 60.59 59.97 59.91 59.26 58.87 58.61 58.97 59.65 60.65 9 60.75 60.02 59.58 59.50 59.95 60.64 59.90 59.24 58.86 58.61 58.88 60.77 10 60.68 59.78 59.87 59.56 59.22 58.84 58.63 58.96 59.49 59.97 60.86 60.64 59.80 11 60.61 59.88 59.58 59.22 58.81 58.64 58.96 59.54 59.88 60.90 60.60 12 60.32 59.85 59.88 59.59 59.21 58.80 58.65 59.06 59.48 59.98 60.90 60.71 60.50 59.94 59.89 59.43 60.06 60.86 13 59.56 59.17 58.78 58.66 58.97 61.01 60.78 14 60.51 59.90 59.53 58.66 59.35 60.11 59.87 59.15 58.77 59.01 61.02 15 60.43 59.93 59.85 59.51 59.13 58.76 58.68 58.99 59.56 60.14 60.92 60.59 60.34 60.07 59.84 59.49 58.73 58.71 59.00 59.65 60.21 60.97 60.47 16 59.11 17 60.23 59.97 59.84 59.47 59.09 58.71 58.72 59.06 59.77 60.18 60.96 60.45 60.17 59.96 59.85 59.48 58.72 58.71 59.07 59.64 60.19 60.82 60.65 18 59.09 60.85 60.61 19 60.16 60.03 59.80 59.48 59.08 58.72 58.71 59.05 59.67 60.19 20 59.08 58.69 58.68 59.04 59.62 60.26 60.96 60.52 60.15 60.04 59.81 59.47 60.44 59.68 60.24 60.82 21 60.09 59.98 59.80 59.45 59.07 58.67 58.67 59.09 22 59.99 59.77 59.42 58.66 58.68 59.09 59.74 60.27 60.85 60.31 60.13 59.04 23 59.73 58.65 58.71 59.66 60.28 60.80 60.26 60.02 60.01 59.42 59.03 59.37 60.33 59.47 60.71 60.27 24 60.05 59.99 59.76 59.40 59.02 58.63 58.69 59.30 25 59.93 59.97 59.42 58.63 58.68 59.10 59.12 60.47 60.84 60.42 59.69 59.01 59.96 59.73 59.35 60.37 60.86 60.24 26 59.94 59.41 59.01 58.61 58.59 59.21 27 59.96 59.40 59.33 59.60 60.49 60.70 60.32 60.19 59.73 59.00 58.61 58.67 59.26 59.74 60.51 60.67 60.31 28 60.05 59.95 59.70 59.38 59.00 58.58 58.69 29 60.00 59.94 59.72 59.37 58.59 58.81 59.22 59.85 60.54 60.70 60.26 59.78 60.55 60.01 30 60.01 59.91 59.69 58.33 58.58 58.75 59.36 60.63 ---60.51 59.34 60.50 31 60.16 59.68 59.34 58.59 MEAN 60.41 60.00 59.82 59.16 58.75 58.66 59.05 59.53 60.11 60.76 60.52 59.85 60.55 60.86 MAX 61.03 60.51 59.94 59.35 58.96 58.81 59.37 61.02 59.12 59.44 60.27 60.01 59.00 58.56

58.58

58.77

LOW FLOW INVESTIGATIONS

LOW-FLOW INVESTIGATIONS

Low-flow investigations in the Buffalo River basin

A series of discharge measurements were made in the Buffalo River basin (Buffalo aquifer study) during February 8-10, 1993 to determine base flow variations. Conditions were excellent, and all measurements are considered base flow.

The measurements were made during constant base flow of the stream; the stream was completey ice covered.

Discharge measurements made in the Buffalo River basin, MN, Feb 8-10, 1993

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Buffalo River basin	-			
aBuffalo River	Red River of the North	Lat 46°53'59", long 96°36'34", in SW¹/4NW¹/4 sec. 34, T. 140 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County 68, 1.6 miles north of State Highway 10, about 2.1 miles northwest of Glyndon, MN (05061020).		1948, 1977-78, 1980, 1988, 1993	b2-9-93	24.2
aSouth Branch Buffalo River	Buffalo River	Lat 46°34'21", long 96°30'23", on section line between secs. 20 and 29, T. 136 N., R. 46 W., Wilkin County, Hydrologic Unit 09020106, at bridge on township road 186, 6.8 miles northwest of Lawndale, MN.		1977-78, 1993	b2-8-93	0
aDeerborn Creek	Buffalo River	Lat 46°34'45", long 96°29'17", on line between secs. 20 and 21, T. 136 N., R. 46 W., Wilkin County, Hydrologic Unit 09020106, at bridge on county road, 1.2 miles west of State Highway 9 about 6 miles southwest of Barnesville, and 6.4 miles northwest of Lawndale, MN (05061080).	48.4	1970-73, 1976, 1977-78, 1988, 1993	b2-8-93	1.48
aSouth Branch Buffalo River	Buffalo River	Lat 46°37'50", long 96°33'52", on section line between secs. 36 and and 1, T. 137 N., R. 47 W., on line between Clay County and Wilkin County, Hydrologic Unit 09020106, at bridge on county road, 5.9 miles south of Baker, MN.	-	1977-78, 1993	b2-8-93	0
aSouth Branch Buffalo River	Buffalo River	Lat 46°38'44", long 96°34'43", on line between secs. 26 and 35, T. 137 N., R. 47 W., Wilkin County, Hydrologic Unit 09020106, at bridge on County Road 51, 4.9 miles southwest of Baker, 7.7 miles west of Barnesville.		1978, 1993	b2-8-93	0.49

[&]quot;See footnotes at end of the table."

LOW-FLOW INVESTIGATIONS

Discharge measurements made in the Buffalo River basin, MN Feb 8-10, 1993

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Buffalo River basinContinued	 I			
aSouth Branch Buffalo River	Buffalo River	Lat 46°39'35", long 96°34'57", on line between secs. 23 and 26, T. 137 N., R. 47 W., Clay County, at bridge on County Highway 2, 4 miles south of Baker, and 7.4 miles west of Barnesville (05061100).	c185	1964-66, 1970-73, 1976-77, 1988, 1993	b2-8-93	1.0
aSouth Branch Buffalo River	Buffalo River	Lat 46°41'28", long 96°36'37", in SE' ₄ SE' ₄ sec. 9, T. 137 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 57, 3.4 miles southwest of Baker, MN.		1977-78, 1993	b2-9-93	0.79
aStony Creek	South Branch Buffalo River	Lat 46°44'48", long 96°36'26", on line between secs. 22 and 27, T. 138 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 65, 3 miles southeast of Sabin, MN, and 2.4 miles above mouth (05061490).	c145	1964-66*, 1970-73. 1976-78, 1988, 1993	b2-9-93	0.52
aSouth Branch Buffalo River	Buffalo River	Lat 46°46'20", long 96°37'40", in SW¹/4SW¹/4 sec. 9, T. 138 N., R. 47 W., Clay County, Hydrologic Unit 09020106, near center of span on downstream side of highway bridge, 0.3 mile downstream from Stony Creek and 1 mile east of Sabin (0506150	522 00).	1945-93#	b2-9-93	2.23
aSouth Branch Buffalo River	Buffalo River	Lat 46°49'09", long 96°37'12", on section line between secs. 28 and 33, T. 139 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 12, 3.2 miles northeast of Sabin, MN.	-	1977-78, 1993	b2-9-93	1.82
aBuffalo River	Red River of the North	Lat 46°54'19", long 96°37'09", in NW¹/₄NE¹/₄ sec. 33, T. 140 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 18, 3.0 miles northwest of Glyndon, MN.	-	1978, 1993	b2-9-93	28.1
aBuffalo River	Red River of the North	Lat 46°56'03", long 96°38'39", on section line between secs. 17 and 20, T. 140 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 91, 5 miles southwest of Averill, MN.	-	1931, 1947, 1978, 1993	b2-9-93	24.8
aBuffalo River	Red River of the North	Lat 46°57'40", long 96°39'40", in SW¹/4SE¹/4 sec. 6, T. 140 N., R. 47 W., Clay County, Hydrologic Unit 09020106, on left bank 4.5 miles southeast of Kragnes, 6.5 miles northeast of Dilworth, and 9 miles downstream from South Branch.	1,040	1931-93#	b2-9-93	27.0

[&]quot;See footnotes at end of the table."

LOW-FLOW NVESTIGATIONS Discharge measurements made in the Buffalo River basin, MN, Feb 8-10, 1993

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Buffalo River basinContinued	********			
aBuffalo River	Red River of the	Lat 46°58'20", long 96°41'22", in SW¹/4NW¹/4, sec. 1, T.140 N., R.48 W., Clay County, Hydrologic	-	1978, 1993	ь2-10-93	24.8
	North	Unit 09020106, at 1st county bridge below gaging station (05062000) near Dilworth, MN.				
aBuffalo River	Red River of the North	Lat 47°00'18", long 96°43'53", in NE¹/4NE¹/4 sec. 27, T. 141 N., R. 48 W., Clay County, Hydrologic Unit 09020106, at County Highway 5, 1.5 miles northeast of Kragnes. MN.	-	1948, 1977-78, 1993	b2-10-93	25.3

[#] operated as a continuous record gaging station.
a also published as a miscellaneous site.
b total ice cover.
c approximately.

Partial-Record Stations and Miscellaneous Sites

Figure 10.--Location of high-flow partial-record stations.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at partial-record stations or miscellaneous sites are presented in two tables. The first is a table of discharge at high-flow partial-record stations and the second is a table of discharge measurements made at miscellaneous sites.

High-flow partial-record stations

The following table contains annual maximum discharge for high-flow stations. A high-flow partial-record station is equipped with a crest-stage gage, a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, and discharge measurements may have been made for purposes of establishing the stage-discharge relation, but these are not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at high-flow partial-record stations during water year 1993

Station name and number	Location and drainage area	Period of record	Water year 1993 maximum			Period of record maximum		
			date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	St	reams tributa	ry to Lake S	uperior	-			
Cascade River near Grand Marais, MN 04011990	Lat 47°47'24", long 90°31'35", in SE¹/4sec.1, T.61 N., R.2 W., Cook County, Hydrologic Unit 04010101, at bridge on Forest Road 45, 6.6 miles upstream from mouth, 9.5 miles west of Grand Marais. Drainage area is mi².	1985-93	7-4-93	al1.33	752	4-29-90	11.95	1210
Silver Creek tributary near Two Harbors, MN 04015250	Lat 47°04'40", long 91°36'49", in SW¹/ ₄ NE¹/ ₄ sec.16, T.53 N., R.10 W., Lake County, Hydroogic Unit 04010102, at culvert on County Highway 3, 1.0 mile upstream from mouth, 4.5 miles northeast of Two Harbors. Drainage area is 3.72 mi².	1965-93	7-4-93	11.20	1090	9-20-72	17.08	1880
Little Stewart River near Two Harbors, MN 04015300	Lat 47°03'52", long 91°40'03", in SE¹/ ₄ NE¹/ ₄ sec.24, T.53 N., R.11 W., Lake County, Hydrologic Unit 04010102, at culvert on County Highway 2, 2.0 miles upstream from mouth, 2.7 miles north of Two Harbors. Drainage area is 5.54 mi².	1960-93	7-4-93	11.31	255	9-20-72	15.18	598

[&]quot;See footnotes at end of the table."

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Annual maximum discharge at high-flow partial-record stations during water year 1993—Continued

			Water	r year 1993	3 maximum	Perio	d of record	maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	Streams	tributary to L	ake Superio	rContinu	ed			
Talmadge River at Duluth, MN 04015370	Lat 46°53'20", long 91°55'21", in SE¹/ ₄ NE¹/ ₄ sec.24, T.51 N., R.13 W., St. Louis County, Hydrologic Unit 04010102, at culvert on U.S. Highway 61, 0.6 mile upstream from mouth, 0.5 mile northeast of Duluth city limits. Drainage area is 5.79 mi².	1964-93	7-4-93	15.99	420	5-9-79	21.76	1180
St. Louis River near Aurora, MN 04016500	Lat 47°29'30", long 92°14'20", in NW¹/ ₄ SW¹/ ₄ sec.22, T.58 N., R.15 W., St. Louis County, Hydrologic Unit 04010201, at bridge on County Highway 100, 0.8 mile downstream from Partridge River and 1.5 mile south of Aurora. Drainage area is 290 mi².	1942-87# 1988-93	7-5-93	4.32	1510	5-14-50	8.37	5380
North Branch Whiteface River near Fairbanks, MN 04020480	Lat 47°22'20", long 91°56'28", in NW¹/₄NW¹/₄ sec.1, T.56 N., R.13 W., St. Louis County, Hydrologic Unit 04010201, at culvert on County Highway 16, 2 miles upstream from the mouth of Jenkins Creek, 0.7 mile west of Fairbanks. Drainage area is 17.1 mi²	1979-93	7-4-93	12.44	215	4-23-79	13.67	660
Bug Creek at Shaw, MN 04020700	Lat 47°06'40", long 92°21'03", in SW¹/ ₄ SE¹/ ₄ sec.34, T.54 N., R.16 W., St. Louis County, Hydrologic Unit 04010201, at culverts on County Road 15 at Shaw, 7.5 miles upstream from mouth. Drainage area is 24.0 mi².	1979-93	7-5-93	14.91	535	4-23-79	15.12	590
Cloquet River near Toimi, MN 04021690	Lat 47°21'00", long 91°39'30", in NE¹/ ₄ SW ¹/ ₄ sec.7, T.56 N., R.10 W., Lake County, Hydrologic Unit 04010202, at bridge on County Highway 2, 5.8 miles southeast of Toimi, 23 miles north of Two Harbors. Drainage area is mi².	1986-93	7-4-93	9.06	1540	7-4-93	9.06	1540

[&]quot;See footnotes at end of the table."

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Annual maximum discharge at high-flow partial-record stations during water year 1993--Continued

Station name and number	Location and drainage area	Period of record	Water year 1993 maximum			Period of record maximum		
			date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	Streams	tributary to L	ake Superio	rContinu	ıed			
Nemadji River near Holyoke, MN 04024095	Lat 46°31'04", long 92°23'22", in NE¹/ ₄ NE¹/ ₄ sec.32, T.47 N., R.16 W., Carlton County, Hydro- logic Unit 04010301, at bridge on State Highway 23, 3.5 miles north of Holyoke, 7 miles south of Wrenshall. Drainage area is 118 mi².	1972-93	6-24-93	10.57	1200	9-3-85	17.38	4420
]	Red River of	the North b	asin				
Ottertail River near Foxhome, MN 05046250	Lat 46°12'48", long 96°18'24", in SW¹/ ₄ SW¹/ ₄ sec.26, T.132 N., R.45 W., Wilkin County, Hydrologic Unit 09020103, at bridge on County Road 19, 4 miles south of Foxhome, 10.8 miles below Orwell Dam. Drainage area is mi².	1990-93	b7-2-91 7-25-93	15.63 16.38	b1140 1400	7-25-93	16.38	1400
Mustinka River above Wheaton, MN 05049000	Lat 45°49'15", long 96°29'25", in SW¹/4 sec. 8, T.127 N., R.46 W., Traverse County, Hydrologic Unit 09020102, at bridge on U.S. Highway 75, 1 mile upstream from Chicago, Milwaukee and St. Paul railroad bridge, 0.5 mile north of Wheaton, about 8 miles above Lake Traverse. Drainage area is 834 mi².	1915-24#, 1930-58#, 1985-93	3-30-93	c18.07	4400	4-10-52	16.56	7320
Eighteenmile Creek near Wheaton, MN 05049200	Lat 45°47'18", long 96°31'52", in NW¹/4NW¹/4 sec.25, T.127 N., R.47 W., Traverse County, Hydro- logic Unit 09020102, at culvert on County Highway 7, 1.4 miles upstream from mouth, 2.0 miles southwest of Wheaton. Drainage area 68.5 mi².	1965-93	7-25-93	d9.87	960	4-9-69		e2400
Rabbit River near Nashua, MN 05050700	Lat 46°04'30", long 96°18'24", in SE¹/4NE¹/4 sec. 15, T.130 N., R.45 W., Wilkin County, Hydrologic Unit 09020101, at bridge on County Road 19, 2.6 miles north of Nashua, 4.8 miles upstream from mouth of South Fork Rabbit River. Drainage area is 56.1 mi².	1979-93	3-30-93	c14.06	720	9-21-86	14.27	1280

[&]quot;See footnotes at end of the table."

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Annual maximum discharge at high-flow partial-record stations during water year 1993—Continued

			Wate	r year 199	3 maximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	Red R	iver of the No	orth basin	Continued				
Buffalo River near Callaway, MN 05060800	Lat 47°01'17", long 95°54'43", in SW1/ ₄ SW1/ ₄ sec. 17, T.141 N., R.41 W., Becker County, Hydro- logic Unit 09020106, at culvert on U.S. Highway 59, 2.7 miles north of Callaway. Drainage area is 94.5 mi ² .	1960-93	7-16-93	24.90	1630	7-16-93	24.90	1630
Whiskey Creek at Bamesville, MN 05061200	Lat 46°39'35", long 96°23'54", in SE¹/ ₄ SW¹/ ₄ sec.20, T.137 N., R.45 W., Clay County, Hydro- logic Unit 09020106, at cul- vert on State Highway 34, 0.7 mile upstream from Blue Eagle Lake, 1.0 mile northeast of Bamesville. Drainage area is 25.3 mi².	1961-64, 1965-66#, 1967-93	3-29-93	c6.88	410	5-31-85	7.12	660
Spring Creek above Downer, MN 05061400	Lat 46°44'37", long 96°25'12", in NW¹/4NW¹/4 sec.30, T.138 N., R.45 W., Clay County, Hydro- logic Unit 09020106, at cul- vert on county road, 3.1 miles east of Downer. Drainage area is 5.81 mi².	1961-93	7-24-93	11.56	265	6-29-75	13.52	1460
Marsh River Ditch near Ada, MN 05067050	Lat 47°17'46", long 96°26'09", in NE¹/ ₄ NE¹/ ₄ sec.13, T.144 N., R.46 W., Norman County, Hydro- logic Unit 09020108, at bridge on County Highway 24, 3.5 miles southeast of Ada. Drainage area ismi².	1985-93	7-27-93	df14.44	140	4-6-89	16.74	1070
Mud River near Grygla, MN 05075700	Lat 48°19'31", long 95°44'35", in NE¹/ ₄ NE¹/ ₄ sec.23, T.156 N., R.40 W., Hydrologic Unit 09020304, Marshall County, at bridge on State Highway 89, 6 miles west of Grygla. Drain- age area is 170 mi².	1979-93	7-26-93	f17.95	1240	4-26-79	18.49	1480
Ruffy Brook near Gonvick, MN 05077700	Lat 47°44′50″, long 95°24′45″, in SE¹/ ₄ SE¹/ ₄ sec.5, T.149 N., R.37 W., Clearwater County, Hydrologic Unit 09020305, at culvert on County Highway 67, 4.0 miles upstream from mouth, 4.8 miles east of Gonvick. Drainage area is 45.2 mi².	1960-78#, 1979-85, 1986,# 1987-93	3-29-93	3.74	169	3-30-67	6.35	453

[&]quot;See footnotes at end of the table."

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES Annual maximum discharge at high-flow partial-record stations during water year 1993---Continued

			Water	r year 199	3 maximum	Perio	od of record	maximum
Station name and number	Location and drainage area	Period of record	date	gage height (ft)	discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)
	Red Ri	ver of the N	orth basin	Continued				
Burnham Creek near Crookston, MN 05079901	Lat 47°43'59", long 96°39'52", in SE¹/ ₄ SW¹/ ₄ sec. 10, T.149 N., R.47 W., Polk County, Hydrologic Unit 09020303, at triple box culvert on U.S. Highway 75, 0.75 mile northeast of Girard, 3 miles southwest of Crookston, 7 miles above mouth. Drainage area is g111 mi².	1986-93	3-29-93	c17.50	880	4-4-89	20.44	1900
Middle River near Newfolden, MN 05086900	Lat 48°22'04", long 96°16'47", in NE¹/ ₄ NE¹/ ₄ sec.3, T.156 N., R.44 W., Marshall County, Hydro- logic Unit 09020309, at bridge on township road, 2.0 miles northeast of Newfolden. Drain- age area is 91.1 mi².	1979-93	8-31-93	f16.67	550	4-25-79	17.10	1000
		Lake of the	Woods basi	n				
Stony River near Babbitt, MN 05125550	Lat 47°41'36", long 91°45'38", in SW1/4SW1/4 sec.8, T.60 N., R.11 W., Lake County, Hydrologic Unit 09030001, in Superior National Forest, at bridge on Forest Road 424, 4.7 miles upstream from mouth, 8.5 miles southeast of Babbitt. Drainage area is 219 mi ² .	1975-80#, 1986-93	7-5-93	6.28	945	4-19-76	8.71	2490
Big Fork River near Bigfork, MN 05131750	Lat 47°44'56", long 93°46'31", in SW¹/₄NE¹/₄ sec.27, T.61 N., R.27 W., Itasca County, Hydro- logic Unit 09030006, at bridge on State Highway 6, 5.5 miles west of Bigfork. Drainage area is 602 mi².	1973-93	7-7-93	f12.38	995	4-22-79	15.48	2830

[&]quot;See footnotes at end of the table."

Annual maximum discharge at high-flow partial-record stations during water year 1993--Continued

			Water	year 199	3 maximum	Perio	d of record	maximum
Station name and number	Location Period gage and of height dischard drainage area record date (ft) (ft ³ /s)		discharge (ft³/s)	date	gage height (ft)	discharge (ft³/s)		
	Lak	e of the Woo	ds basinCo	ntinued				
Bowerman Brook near Craigville, MN 05131878	Lat 47°55′29", long 93°45′34", in NE¹/4NW¹/4 sec.26, T.63 N., R.27 W., Koochiching County, Hydrologic Unit 09030006, at culvert on State Highway 6, 2.4 miles upstream from mouth, 7.0 miles west of Craigville. Drainage area is 25.0 mi².	1979-93	3-30-93	c13.10	190	4-21-79	14.73	650
North Branch Rapid River near Baudette, MN 05134100	Lat 48°31'56", long 94°38'50", in NW¹/ ₄ SW¹/ ₄ sec.4, T.158 N., R.31 W., Lake of the Woods County, Hydrologic Unit 09030007, at bridge on County Highway 1, 12.7 miles south- west of Baudette. Drainage area is g180 mi².	1986-93	8-30-93	6.61	270	3-31-86	11.16	1000
Winter Road River near Baudette, MN 05137000	Lat 48°42'39", long 94°41'52", in NW¹/4NE¹/4 sec.1, T.160 N., R.32 W., Lake of the Woods County, Hydrologic Unit 09030008, at bridge on State Highway 11, 4.5 miles west of Baudette, 1.8 miles east of Pitt, 5 miles upstream of mouth. Drainage area is g145 mi².	1986-93	7-4-93	9.72	390	3-31-86	14.30	1400

[#] Operated as a continuous-record gaging station.
a Affected by shifting control.

b Revised.

c Backwater from ice.

d Not annual maximum gage height.

e Estimated.

f Backwater from aquatic growth or debris.

g Approximate.

Discharge measurements at miscellaneous sites

Measurements of streamflow at points other than gaging stations are given in the following table. The measurements of base flow are designated by an asterisk (*); measurements of peak flow by a dagger (†).

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Streams tributary to Lake Superior				
Whiteface River	St. Louis River	Lat 47°10'49", long 92°28'47", in SW¹/4NE¹/4 sec.10, T. 54 N., R.17 W., St. Louis County, Hydrologic Unit 04010201, at North bound bridge on Trunk Highway 53, 0.75 mile north of Cotton, 1 mile above mouth of Paleface River.		1974, 1993	11-2-92 11-3-92 11-4-92 7-13-93	105 66 254 818
Cloquet River	St. Louis River	Lat 46°57'09", long 92°19'48", in NW¹/4NE¹/4 sec.35, T.52 N., R. 16 W., St. Louis County, Hydrologic Unit 04010202, at railroad bridge, 4.2 miles northwest of Twig, MN, 0.6 mile downstream of mouth of Beaver River outlet from Fish Lake Reservoir, high measurements made from County Road 15 bridge 0.5 mile downstream.		1965, 1993	11-2-92 11-3-92 11-4-92 7-14-93	262 481 †866 †2160
Cloquet River	St. Louis River	Lat 46°57'29", long 92°27'34", in NW¹/ ₄ SE¹/ ₄ sec. 26, T. 52 N., R. 17 W., St. Louis County, Hydrologic Unit 04010202, at bridge #3232, on U.S. Highway 53 at Independence, 12 miles north of Cloquet, 1.7 miles northeast of Brooksto (04023000).	a750 on	1909-17#, 1993	11-2-92 11-3-92 11-4-92 7-14-93	281 509 †1040 †2880
		Red River of the North basin				
Bois de Sioux River	Red River of the North	Lat 46°03'04", long 96°33'58", in SE¹/4SW¹/4 sec. 22, T. 130 N., R.47 W., Wilkin County, Hydrologic Unit 09020101, at bridge on Trunk Highway 55, 1.5 miles east of Fairmount, N.D.		1993	5-12-93	313
Rabbit River	Bois de Sioux River	Lat 46°05'12", long 96°23'26", in NE'/ ₄ SE'/ ₄ sec. 12, T. 130 N., R. 46 W., Wilkin County, at Trunk Highway 9, 0.3 mile above mouth of the South Fork Rabbit River, 1 mile south of Cambell, 4 miles downstream of site 05050700.		1993	7-9-93	143
Otter Tail River	Red River of the North	Red River of the North basin Lat 46°17'06", long 96°02'58", in SW1/4SW1/4 sec. 36, T. 133 N., R. 43 W., Otter Tail County, Hydrologic Unit 09020103, at bridge on east Mount Faith Street, in Fergus Falls.		1993	6-22-93	759

[&]quot;See footnotes at end of the table."

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
	·· ·	Red River of the North basinC	ontinued		· · · · · · · · · · · · · · · · · · ·	
bBuffalo River	Red River of the North	Lat 46°53'59", long 96°36'34", in SW¹/₄NW¹/₄ sec. 34, T. 140 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County 68, 1.6 miles north of State Highway 10, about 2.1 miles northwest of Glyndon, MN (05061020).		1948, 1977-78, 1980, 1988, 1993	c2-9-93	*24.2
bSouth Branch Buffalo River	Buffalo River	Lat 46°34'21", long 96°30'23", on section line between secs. 20 and 29, T. 136 N., R. 46 W., Wilkin County, Hydrologic Unit 09020106, at bridge on township road 186, 6.8 miles northwest of Lawndale, MN.		1977-78, 1993	c2-8-93	*0
bDeerbom Creek	Buffalo River	Lat 46°34'45", long 96°29'17", on line between secs. 20 and 21, T. 136 N., R. 46 W., Wilkin County, Hydrologic Unit 09020106, at bridge on county road, 1.2 miles west of State Highway 9 about 6 miles southwest of Barnesville, and 6.4 miles northwest of Lawndale, MN (05061080).	48.4	1970-73, 1976, 1977-78, 1988, 1993	c2-8-93	*1.48
bSouth Branch Buffalo River	Buffalo River	Lat 46°37'50", long 96°33'52", on section line between secs. 36 and and 1, T. 137 N., R. 47 W., on line between Clay County and Wilkin County, Hydrologic Unit 09020106, at bridge on county road, 5.9 miles south of Baker, MN.	-	1977-78, 1993	c2-8-93	*0
bSouth Branch Buffalo River	Buffalo River	Lat 46°38'44", long 96°34'43", on line between secs. 26 and 35, T. 137 N., R. 47 W., Wilkin County, Hydrologic Unit 09020106, at bridge on County Road 51, 4.9 miles southwest of Baker, 7.7 miles west of Barnesville.		1978, 1993	c2-8-93	*0.49
bSouth Branch Buffalo River	Buffalo River	Lat 46°39'35", long 96°34'57", on line between secs. 23 and 26, T. 137 N., R. 47 W., Clay County, at bridge on County Highway 2, 4 miles south of Baker, and 7.4 miles west of Bamesville (05061100).	a185	1964-66, 1970-73, 1976-77, 1988, 1993	c2-8-93	*1.0

[&]quot;See footnotes at end of the table."

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Red River of the North basinCont	inued			
bSouth Branch Buffalo River	Buffalo River	Lat 46°41'28", long 96°36'37", in SE¹/₄SE¹/₄ sec. 9, T. 137 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 57, 3.4 miles southwest of Baker, MN.		1977-78, 1993	c2-9-93	*0.79
bStony Creek	South Branch Buffalo River	Lat 46°44'48", long 96°36'26", on line between secs. 22 and 27, T. 138 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 65, 3 miles southeast of Sabin, MN, and 2.4 miles above mouth (05061490).	a145	1964-66,* 1970-73. 1976-78, 1988, 1993	c2-9-93	*0.52
bSouth Branch Buffalo River	Buffalo River	Lat 46°46'20", long 96°37'40", in SW'/4SW'/4 sec. 9, T. 138 N., R. 47 W., Clay County, Hydrologic Unit 09020106, near center of span on downstream side of highway bridge, 0.3 mile downstream from Stony Creek and 1 mile east of Sabin (05061500).	522	1945-93*	c2-9-93	*2.23
bSouth Branch Buffalo River	Buffalo River	Lat 46°49'09", long 96°37'12", on section line between secs. 28 and 33, T. 139 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 12, 3.2 miles northeast of Sabin, MN.		1977-78, 1993	c2-9-93	*1.82
bBuffalo River	Red River of the North	Lat 46°54'19", long 96°37'09", in NW¹/4NE¹/4 sec. 33, T. 140 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 18, 3.0 miles northwest of Glyndon, MN.	-	1978, 1993	c2-9-93	*28.1
oBuffalo River	Red River of the North	Lat 46°56'03", long 96°38'39", on section line between secs. 17 and 20, T. 140 N., R. 47 W., Clay County, Hydrologic Unit 09020106, at bridge on County Highway 91, 5 miles southwest of Averill, MN.	-	1931, 1947, 1978, 1993	c2-9-93	*24.8
bBuffalo River	Red River of the North	Lat 46°57'40", long 96°39'40", in SW¹/₄SE¹/₄ sec. 6, T. 140 N., R. 47 W., Clay County, Hydrologic Unit 09020106, on left bank 4.5 miles southeast of Kragnes, 6.5 miles northeast of Dilworth, and 9 miles downstream from South Branch.	1,040	1931-93#	c2-9-93	*27.0

[&]quot;See footnotes at end of the table."

Stream	Tributary	Location	Drainage area (mi²)	Period of record	Date	Discharge (ft³/s)
		Red River of the North basinConti	nued			
bBuffalo River	Red River of the North	Lat 46°58'20", long 96°41'22", in SW¹/4NW¹/4 sec. 1, T. 140 N., R. 48 W., Clay County, Hydrologic Unit 09020106, at 1st county bridge below gaging station (05062000) near Dilworth, MN.	-	1978, 1993	c2-10-93	*24.8
bBuffalo River	Red River of the North	Lat 47°00'18", long 96°43'53", in NE¹/4NE¹/4 sec. 27, T. 141 N., R. 48 W., Clay County, Hydrologic Unit 09020106, at County Highway 5, 1.5 miles northeast of Kragnes, MN.	•	1948, 1977-78, 1993	c2-10-93	*25.3
South Branch Wild Rice River	Wild Rice River	Lat 47°05'10", long 96°15'28", in SW¹/4NW¹/4 sec. 27, T. 142 N., R. 44 W., Clay County, Hydrologic Unit 09020108, at bridge on north edge of Ulen, MN.	-	1993	7-17-93 7-26-93	†939 †1130
Tamarac River	Red River of the North	Lat 48°26'56", long 96°53'22", in NE¹/ ₄ SE¹/ ₄ sec. 6, T. 157 N. R. 48 W., Marshall County, Hydrologic Unit 09020311, at County Highway bridge 5 at Steven (05091000), measurement made 1 mile upstream at Trunk Highway 75 bridge.	254	1945*, 1946-47, 1949-51, 1964, 1980, 1993	8-12-93	†1280
Two Rivers	Red River the North	Lat 48°46'30", long 96°55'52", in SE¹/ ₄ SE¹/ ₄ sec. 12, T. 161 N., R. 49 W., Kittson County, Hydrologic Unit 09020312, at bridge on State Highway 175 at east edge of Hallock, MN, and 0.2 mile downstream from South Branch Two Rivers, measurement made 1 mile. downstream at Trunk Highway 75 bridge (05095000).	625	1911-14*, 1929-30*, 1941-43*- 1967-71*- 1974, 1976, 1978-80, 1987-88, 1993	8-18-93	†2260
North Branch Two Rivers	Two Rivers	Lat 48°50'58", long 97°00'19" in SW¹/ ₄ SE¹/ ₄ sec. 16, T. 162 N., R. 49 W., Kittson County, Hydrologic Unit 09020312, at bridge on U.S. Highway 75, 0.5 mile northwest of Northcote.	-	1980, 1993	8-18-93	† 46 7

[#] operated as a continuous record gaging station.
a approximately.
b also published as low flow investigations.
c total ice cover.

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

WATER QUALITY

PARTIAL-RECORD STATIONS

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS

Water-quality partial-record stations are particular sites where chemical-quality, biological and (or) sediment data are collected systematically over a period of years for use in hydrologic analyses. Letter E indicates estimated value. Letter K indicates non-ideal colony count.

05030150 OTTER TAIL RIVER NEAR PERHAM, MINN (National Water Quality Assessment Station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

CHARGE, SPE- CIFIC WATER WATER	BARO- METRIC PRES- TEMPER- SURE OXYGEN, ATURE (MM DIS- WATER OF SOLVED (DEG C) HG) (MG/L) (00010) (00025) (00300)
FEB	0.0 700 11.0
08 1130 96 442 461 7.4 7.6 -8.0 APR	0.0 732 11.2
01 1010 133 333 352 8.0 7.8 -2.0	0.5 732 9.6
26 1210 223 340 349 8.1 8.0 13.0	9.0 731 12.1
MAY 11 0930 275 380 392 8.1 7.7 16.5	12.0 735 11.8
II 0930 273 380 392 6.1 7.7 10.3 IUN	12.0 /33 11.0
07 1115 197 365 370 8.0 8.2 11.0	14.5 720 7.9
29 0945 225 355 8.0 14.0	17.0 727 5.5
JUL 19 0900 354 360 7.9 7.8 15.5	18.0 729 6.1
19 0900 334 300 7.9 7.8 13.3 AUG	16.0 729 0.1
04 1100 541 344 344 7.7 7.9 19.0	17.0 732 2.6
19 0930 649 343 327 7.8 7.6 18.0	19.5 728 2.2
MAGNE-	.KA- NITY ALKA- T DIS LINITY SULFATE OF IT LAB DIS- ELD (MG/L SOLVED //L AS AS (MG/L CO3 CACO3) AS SO4) (086) (90410) (00945)
FEB	
08 48 27 6.5 3.0 293 0 24 APR	0 4.1
01 38 19 4.5 2.6 210 0 17	2 179 3.8
26 41 19 4.4 2.2 210 0 17	2 177 3.2
MAY	
11 43 22 5.0 2.5 236 0 19 JUN	3 204 2.6
07 42 22 4.8 1.8 231 0 18	
29 232 0 19	0
JUL	6 194 1.7
	6 194 1.7
JUL 19 41 21 4.2 1.4 227 0 18	8 184 1.2

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY PARTIAL-RECORD STATIONS 05030150 OTTER TAIL RIVER NEAR PERHAM, MINN WATER-QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
FEB									
08 APR	5.0	0.10	16	246	0.020	0.290	0.140	0.70	0.60
01	4.1	<0.10	12	198	< 0.010	0.220	0.070	0.80	0.50
26 MAY	3.5	0.10	9.0	203	<0.010	0.058	0.040	0.60	0.50
11 JUN	3.7	0.10	10	237	<0.010	0.092	0.060	0.60	0.50
07	2.9	0.10	7.9	215	< 0.010	< 0.050	0.030	0.60	0.50
29 JUL					<0.010	<0.050	0.030	0.60	0.50
19 AUG	2.4	0.20	16	218	<0.010	<0.050	0.030	0.90	0.50
04	3.2	0.20	19	214	< 0.010	< 0.050	0.040	0.80	0.60
19	2.2	0.10	18	203	<0.010	<0.050	0.040	0.80	0.70
DATE	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)	NESE, DIS- SOLVED (UG/L AS MN)	ORGANIC DIS- SOLVED (MG/L AS C)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C)	MENT, SUS- PENDED (MG/L)	SUSP. SIEVE DIAM. % FINER THAN .062 MM
FEB 08 APR	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01	PHORUS TOTAL (MG/L AS P) (00665) 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.010	DIS- SOLVED (UG/L AS FE) (01046) 53	NESE, DIS- SOLVED (UG/L AS MN) (01056) 71 78	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26 MAY 11	PHORUS TOTAL (MG/L AS P) (00665) 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.010	DIS- SOLVED (UG/L AS FE) (01046) 53	NESE, DIS- SOLVED (UG/L AS MN) (01056) 71 78	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26 MAY	PHORUS TOTAL (MG/L AS P) (00665) 0.030 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010 <0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.010 <0.010	DIS- SOLVED (UG/L AS FE) (01046) 53 100 45	NESE, DIS- SOLVED (UG/L AS MN) (01056) 71 78 53	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26 MAY 11 JUN	PHORUS TOTAL (MG/L AS P) (00665) 0.030 0.030 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010 <0.010 <0.020 <0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.010 <0.010 0.010	DIS- SOLVED (UG/L AS FE) (01046) 53 100 45	NESE, DIS- SOLVED (UG/L AS MN) (01056) 71 78 53	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
FEB 08 APR 01 26 MAY 11 JUN 07 29 JUL 19	PHORUS TOTAL (MG/L AS P) (00665) 0.030 0.030 0.030 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010 <0.010 0.020 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.010 <0.010 0.010 <0.010	DIS- SOLVED (UG/L AS FE) (01046) 53 100 45 29 36	NESE, DIS- SOLVED (UG/L AS MN) (01056) 71 78 53 100 40	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 93 97 81
FEB 08 APR 01 26 MAY 11 JUN 07 29 JUL	PHORUS TOTAL (MG/L AS P) (00665) 0.030 0.030 0.030 0.030 0.030	PHORUS DIS- SOLVED (MG/L AS P) (00666) <0.010 <0.010 0.020 0.010 0.020 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.010 <0.010 <0.010 <0.010 <0.010	DIS- SOLVED (UG/L AS FE) (01046) 53 100 45 29 36	NESE, DIS- SOLVED (UG/L AS MN) (01056) 71 78 53 100 40	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIĆ SUS- PENDED TOTAL (MG/L AS C) (00689)	MENT, SUS- PENDED (MG/L) (80154) 64 4 17 3	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)

WATER QUALITY MISCELLANEOUS SITES

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

Samples are collected at sites other than gaging stations and partial-record stations to give better areal coverage in a river basin. Such sites are referred to as miscellaneous sites. Letter K indicates non-ideal colony count.

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	CIFIC CON- DUCT- ANCE (US/CM) (00095)	(90095)	FIELD (STAND- ARD UNITS) (00400)	WHOLE LAB (STAND ARD UNITS) (00403)	TEMPER- ATURE AIR (DEG C) (00020)	(00010)	(MM OF HG) (00025)	3	DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- M SIUM, DIS- SOLVED (MG/L AS MG) (00925)
AUG 1993		4000					·	•			·	
12 18	1130 1115	1280	27 38	277 	7.3 7.1	7.6 	19.0 2 0.0	20.5 21.0	743 738	3.0 2.2	34	12
			050955	000 TWO	RIVERS B	ELOW H	ALLOCK, M	IN (LAT 48	46 50N L	ONG 097 02	2 25W)	
AUG 1993 18	1115	2260	33		7.6		20.0	19.0	740	4.0		
		050960	000 NOR	TH BRANC	CH TWO R	IVERS N	EAR LANC	ASTER, MI	N (LAT 48	3 53 21N LO	NG 096 4	0 01W)
AUG 1993 18	0900	467	40		7.7		18.5	19.5	740	3.2		
		4816060970	141001 SI	NAKE RIV	ER NR AL	VARADO), MN (5MI	N. AND 3M	1I W.) (LA	AT 48 16 06N	I LONG 0	97 04 10W)
AUG 1993 31	1140		50		7.8		13.0	14.0	744	6.7		
DATE	SODIU DIS SOLV (MG, AS N (0093	- DIS ED SOLV /L (MC A) AS	M, LINI S- LA /ED (MC G/L A K) CAC	TTY SULF SB DI G/L SOL' S (MC SO3) AS S	FATE RII S- DI VED SOL G/L (MG GO4) AS	DE, I IS- VED SO G/L (CL)	RIDE, I DIS- SO DLVED (M MG/L AS F) S	LICA, RES DIS- AT LVED DE MG/L I AS SOI IO2) (M	SIDUÉ F 180 N EG. C DIS- S LVED IG/L)	GEN, OUTRITE NO DIS-OLVED SO (MG/L (IAS N)	DIS-	NITRO- GEN, MMONIA DIS- SOLVED (MG/L AS N) (00608)
			050910	00 TAM	ARAC RIV	ER AT S	ГЕРНЕМ, М	N (LAT 48	26 58N L	ONG 096 53	22W)	
AUG 1993 12 18	1.7 	7.0 	119	8.	7 4	.3	0.10 1	6 1: 	82	0.020 	0.098	0.080
			050955	00 TWO I	RIVERS B	ELOW HA	ALLOCK, M	IN (LAT 48	46 50N L	ONG 097 02	25W)	
AUG 1993 18												
		050960	00 NORT	H BRANC	H TWO R	IVERS NI	EAR LANC	ASTER, MN	I (LAT 48	53 21N LO	NG 096 40	001W)
AUG 1993 18			_									
	4	1816060970	41001 SN	AKE RIVI	ER NR AL	VARADO	, MN (5MI)	N. AND 3M	II W.) (LA	T 48 16 06N	LONG 0	97 04 10 W)
AUG 1993 31				. <u></u>			•-			0.110	1.10	0.100

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

	NITRO-	NITRO-			PHOS-				CARBON,		SED.
	GEN, AM-	GEN,AM-		PHOS-	PHORUS		MANGA-	CARBON,	ORGANIC	:	SUSP.
	MONIA +	MONIA +	PHOS-	PHORUS	ORTHO,	IRON,	NESE,	ORGANIC	SUS-	SEDI-	SIEVE
	ORGANIC	ORGANIC	PHORUS	DIS-	DIS-	DIS-	DIS-	DIS-	PENDED	MENT,	DIAM.
	TOTAL	DIS.	TOTAL		SOLVED		SOLVED	SOLVED	TOTAL	SUS-	% FINER
DATE	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(MG/L	(MG/L	PENDED	THAN
	AS N)	AS N)	AS P)	AS P)	AS P)	ÀS FE)	AS MN)		AS C)	(MG/L)	.062 MM
	(00625)	(00623)	(00665)	(00666)	(00671)	(01046)	(01056)	(00681)	(00689)	(80154)	(70331)
		0:	5091000	TAMARAG	CRIVER A	T STEPHEN	, MN (LA	T 48 26 58N	LONG 096	53 22W)	
AUG 1993											
12	1.1	0.80	0.260	0.180	0.170	130	41	13	0.9	70	87
18	1.3		0.210		0.170	150				28	83
10	1.5		0.210							20	05
		05	095500 Т	rwo rive	RS BELOW	HALLOCK	K, MN (LA	T 48 46 50N	LONG 097	7 02 25W)	
AUG 1993											
18	1.3		0.230							30	94
		05096000 N	NORTH BE	RANCH T	WO RIVERS	S NEAR LA	NCASTER	R, MN (LAT	48 53 21N	LONG 096	40 01 W)
AUG 1993								,			•
18	1.4		0.110							8	98
10	1.4		0.110							o	70
481606	097041001	SNAKE RIV	ER NR AI	LVARADO	, MN (5MI	N. AND 3M	I W.) (LA'	T 48 16 06N	LONG 097	04 10W)	
AUG 1993											
31	1.0		0.430		0.420						

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	DEPTH AT SAMPLI LOC- ATION, TOTAL (FEET) (81903)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	(00076)	ARD UNITS) (00400)	WHOLE LAB (STAND- ARD UNITS) (00403)	ICAL (HIGH LEVEL) (MG/L) (00340)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN DIS- SOLVED (MG/L) (00300)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
			47:	5730089393	001 GRA	ND PORTA	AGE BAY	AT GRANI	D PORTAC	GE MN (SI'I	TE 1)	
AUG 1993	3											
16			23.3		99	0.20		8.2		 1 <i>c</i> c		14
16 16		22.0 18.0		91 91			8.8 8.7	 		15.5 16.0	10.7 9.4	
16		14.0		90			8.5			16.5	9.4	
16	1704	10.0		90			8.5			16.5	9.4	
16		6.0		90			8.5			17.0	9.2	
16	1706	2.0	0	91			8.4			17.0	9.8	
			475	57300894000	001 GRA	ND PORTA	GE BAY	AT GRANI	PORTAG	E MN (SIT	E 2)	
AUG 1993	,											
16	1200		13.8		98	0.20		8.0				15
16	1201	11.0		92			8.8			15,0	10.1	
16	1202	9.0	0	92			8.6			15.5	9.8	
16	1203	7.0		92			8.5			15.5	10.0	
16 16	1204 1205	5.0 3.0		92 92			8.4 8.4			16.0 16.0	9.8 9.6	
16	1205	1.0		92 91			8.4			16.0	9.8	
			-				•				2	
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	(MG/L AS NA)	LAB (MG/L AS CACO3) (90410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 7300893930	DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	(UG/L AS AL) (01106)	ANTI- MONY, TOTAL (UG/L AS SB) (01097)
A 11/C 1000												
AUG 1993 16	2.7	1.4	42	3.4	1.5	<0.10	2.3	61	1	<10	<10	<1
16												
16												
16												
16		 										
16 16												
16 16			 	 	 	 	 	 	 	 	 	
16			 	 	 	 	 	 	 	 	 	
16 AUG 1993 16 16	 	 	 475	 7300894000	 01 GRAN	 ID PORTA	 GE BAY A	 AT GRAND	 PORTAGI	 E MN (SITI	 E 2)	
16 AUG 1993 16 16	2.7	1.4	 475	 7300894000	 01 GRAN	 TD PORTA	 GE BAY A	 T GRAND	 PORTAGI	 E MN (SITI	 E 2)	
16 AUG 1993 16 16 16	2.7	1.4	 475	 7300894000	 01 GRAN 1.5	 TD PORTA	 GE BAY A 2.2	 T GRAND	 PORTAGI	 E MN (SITI	 E 2)	
16 AUG 1993 16 16 16 16	2.7	1.4	 475	 7300894000	 01 GRAN 1.5	 TD PORTA	 GE BAY A 2.2	 T GRAND	 PORTAGI	 E MN (SITI	 E 2)	=======================================
16 AUG 1993 16 16 16	2.7	1.4	 475	 7300894000	 01 GRAN 1.5	 TD PORTA	 GE BAY A 2.2	 T GRAND	 PORTAGI	 E MN (SITI	 E 2)	=======================================

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC TOTAL (UG/L AS AS) (01002)	SOLVED (UG/L AS AS) (01000)	(UG/L AS BA) (01007)	BARIUM DIS- SOLVED (UG/L AS BA) (01005)	RECOV- ERABLE (UG/L AS BE) (01012)	(UG/L AS BE) (01010)	DIS-	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	RECOV- ERABLE (UG/L AS CD) (01027)	TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)
AUG 1993	3											
16		<1	<	<100	9	<10	<0.5	<10	<1.0	<1	<1	
16 16												
16												
16 16												
16 16												
			47.5	700000 400	001 CD 4	NID DODGE	OF BAN	. T. CD . NE	DODEL C	E MAT COME	W 0\	
			4/3	/30089400	OOI GRA	ND PORTA	AGE BAY	AT GRANE	PORTAG	E MN (SII	E 2)	
AUG 1993	\											
16	<1	<l< td=""><td><</td><td><100</td><td>10</td><td><10</td><td><0.5</td><td><10</td><td><1.0</td><td><1</td><td><1</td><td></td></l<>	<	<100	10	<10	<0.5	<10	<1.0	<1	<1	
16												
16 16												
16												
16										••		
16		-							-+			
DATE	RECOV-	DIS-	RECOV- ERABLE (UG/L AS CU) (01042)	(UG/L AS CU) (01040)	RECOV- ERABLE (UG/L AS FE) (01045)	(UG/L AS FE) (01046)	RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	RECOV- ERABLE (UG/L AS MN) (01055)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY DIS-
	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	DIS- SOLVED (UG/L AS CU) (01040)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	TOTALM RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY DIS- SOLVED (UG/L AS HG)
	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	DIS- SOLVED (UG/L AS CU) (01040)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046)	TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	NESE, DIS- SOLVED (UG/L AS MN) (01056)	TOTALM RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 201 GRAI	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 201 GRAI	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 201 GRAI	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOVERABLE (UG/L AS FE) (01045) OOI GRAD 4	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA	TOTAL RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOVERABLE (UG/L AS FE) (01045) OI GRAI	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA <1 ND PORTA	TOTAL RECOV- RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOVERABLE (UG/L AS FE) (01045) OOI GRAD 4	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA <1 ND PORTA	TOTAL RECOV- RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOVERABLE (UG/L AS FE) (01045) OOI GRAD 4	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA <1 ND PORTA	TOTAL RECOV- RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)
AUG 1993 16 16 16 16 16 16 16 16 16	TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	DIS- SOLVED (UG/L AS CO) (01035)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) 4757	DIS- SOLVED (UG/L AS CU) (01040) 7300893930	TOTAL RECOVERABLE (UG/L AS FE) (01045) OOI GRAD 4	DIS- SOLVED (UG/L AS FE) (01046) ND PORTA <1 ND PORTA	TOTAL RECOV- RECOV- ERABLE (UG/L AS PB) (01051) GE BAY A	LITHIUM DIS- SOLVED (UG/L AS LI) (01130) AT GRAND	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) PORTAG	NESE, DIS- SOLVED (UG/L AS MN) (01056) E MN (SIT	TOTALM RECOV- ERABLE (UG/L AS HG) (71900) E 1)	MERCURY DIS- SOLVED (UG/L AS HG)

MOLYB-

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	DENUM, DIS-	RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145) GRAND PO	(UG/L AS AG) (01077)	DIS- SOLVED (UG/L AS AG) (01075)	(UG/L AS SR) (01080)	(UG/L AS V) (01085)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
AUG 1993											
16	<1	<10	<	<1	<1	<1	<1.0	23	<6	<10	<3
16											
16											
16											
16											
16											
16											
			475730089	9400001	GRAND POI	RTAGE BA	Y AT GRA	ND PORTA	AGE MN (S	ITE 2)	
AUG 1993											
16	<1	<10	<	<1	<1	<1	<1.0	23	<6	10	17
16											
16											
16											
16											
16											
16											

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

BED MATERIAL COLLECTED IN GRAND PORTAGE BAY AT GRAND PORTAGE, MN

WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

DATE	ТІМЕ	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01108)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (01003)	BARIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS BA) (01008)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01013)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) (01038)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) (01028)
AUG 1993			•				
16	1930	6300	3	20	<1	ර	<1
		47571708939	2001 T63NR06	E03DDC (LAT 4	7 57 17N LONG	G 089 39 20W)	
AUG 1993							
16	1800	8600	6	20	<1	ర	<1
		47574008941	0001 T63NR06	E09ABB (LAT 4	17 57 40N LONG	G 089 41 00W)	
AUG 1993							
16	1900	8700	5	30	<1	10	<1
		47575708939	4001 T63NR06	E03DBC (LAT 4	7 57 57N LONG	6 089 3 9 40W)	
AUG 1993							
16	1830	7500	5	20	<1	ৰ	<1
DATE	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) (01029)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) (01043) 475710089413	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) (01052)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG) (71921) E09BDB (LAT 4	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI) (01068) 7 57 10N LONG	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G) (01148)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)
AUG 1993							
16	10	10	<10	<0.01	10	<1	30
		475717089392	2001 T63NR06	E03DDC (LAT 4	7 57 17N LONG	(089 39 20W)	
AUG 1993 16	20	9	<10	<0.01	10	<1	50
		475740089410	0001 T63NR06	E09ABB (LAT 4	7 57 40N LONG	089 41 00W)	
AUG 1993 16	20	10 475757089394	<10 1001 T63NR06	<0.01 E03DBC (LAT 4	20 7 57 57 N LONG	<1 8 089 39 40W)	50
AUG 1993							
16	10	8	<10	<0.01	10	<1	40

GROUND-WATER LEVELS

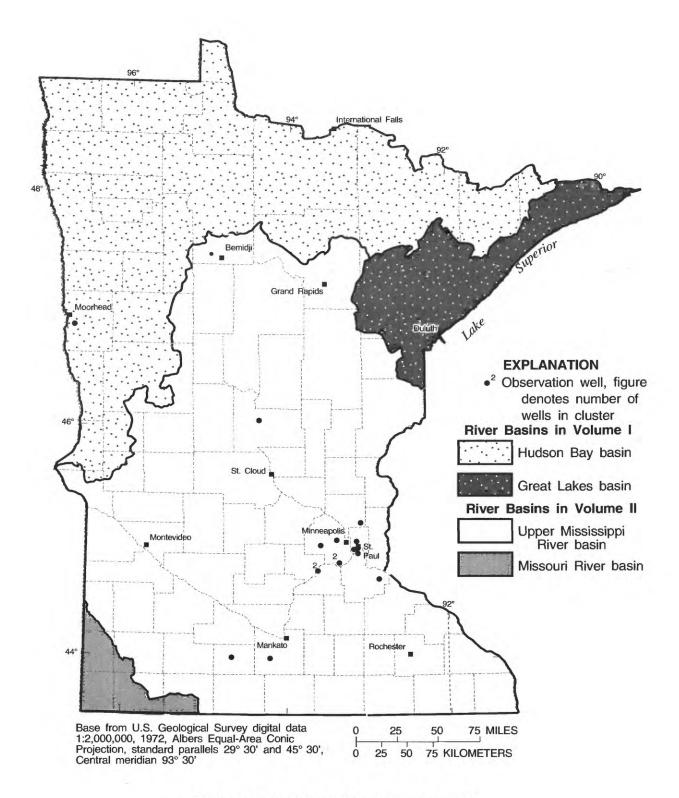


Figure 11.--Location of ground-water wells.

CLAY COUNTY

465237096383901. Local number, 139N47W05DCD0.

LOCATION .-- Lat 46 52'37", long 96 38'39", in SW SE SW sec. 5, T.139 N., R.47 W., Hydrologic Unit 09020104, 2.4 mi east of Dilworth. Owner: City of Moorhead, MS-1.

AQUIFER. -- Surficial sand of Pleistocene Age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in., depth 131 ft, slotted 91 to 107 ft.

DATUM. --. Land-surface datum is 916.7 ft National Geodetic Vertical Datum of 1929. Measuring point: Top of recorder floor, 3.60 ft above landsurface datum.

REMARKS.--Water level affected by pumping from nearby wells. PERIOD OF RECORD.--January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level, 12.19 ft below land-surface datum, July 15m 1947; lowest, 32.94 ft below landsurface datum, Aug. 24, 1988.

WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

	WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
JUL 30	30.49	AUG 31	31.16	SEP 28	30.90

GROUND-WATER QUALITY

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 COOK COUNTY

STATION NUMBER	LOCAL IDENT- I- FIER	DATE	ттімі	3	DEPTH OF WELL, TOTAL (FEET) (72008)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
475618089423801	T63NR6E17CAI	B 08-17-93	1300		350.00	322	7.9	33
STATION NUMBER	MAGNE- SIUM, DIS- SOLVED MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY LAB (MG/L AS CACO3) (90410)	DIS- SOLVED (MG/L	DIS-	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
475618089423801	3.1	33	0.10	115	4.9	30	0.20	204

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 MARSHALL COUNTY

STATION NUMBER	LOCAL IDENT- I- FIER I	DATE T	DEH O WE IME TOT (FE.	OF TH SUI F DA LL, (TAL AI ET) No	(FT. BOVE GVD) (CON- DUCT-	LAB (STAND- S ARD UNITS)	ALCIUM S. DIS- I OLVED SO (MG/L (N AS CA) AS	DIS-
481807096430801 156N4 482634096324101 157-46			1130 32 1254 16			829 	7.4 	-	54
STATION NUMBER	SODIUM, SIU DIS- DI SOLVED SOLV (MG/L (MC AS NA) AS (00930) (009	M, WAT WI S- TOT FET VED FIELD G/L MG/L AS K) CACO3	H SULFATE T DIS- SOLVED S (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	RESIDUE AT 180	NITRITE DIS- SOLVED	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
481807096430801 482634096324101	6.5	3.6 428	24 	2.9	0.20 	22	485 	 0.110	38.0
STATION NUMBER	NITRO- GEN, PHO AMMONIAPHOI DIS- DE SOLVED SOLV (MG/L (MC AS N) AS (00608) (006	RUS ORTHO S- DIS- /ED SOLVED //L (MG/L P) AS P)	BARIUM, DIS-	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS-	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	DIS-	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)
481807096430801 482634096324101	<0.010		250 	<0.5 	30 	1.0	ර 	⊲ 	<10
STATION NUMBER	IRON, LEADIS-DIS-SOLVED SOLVED (UG/L (UG/AS FE) AS FE) (01046)	VED SOLVED /L (UG/L VB) AS LI)	DIS-	DIS-	DIS-	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
481807096430801 482634096324101	23 <10		1 5 0 	20	<10 	<1.0 	180	<6 	16

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 PENNINGTON COUNTY

STATION NUMBER	LOCAL IDENT- I- FIER	DATE	DEF O WE TIME TOT (FEI (720	LL, (FT TAL ABOY ET) NGV	ND CIFICACE CON DUM DUC'. ANC. VE LAED) (US/CI	C WATI I- WHOI I- LAE E (STAN B ARI M) UNIT	LE 3 ID-) S)
480540096263000	153-45-04DCDD	11-12-92	1009 95.	00 102	6 890	7.9	
STATION NUMBER	CALCIUM SIUM, DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS CA) AS MG) (00915) (00925)	SODIUM, SIUM, DIS- DIS-	WAT WH TOT FET FIELD MG/L AS	SULFATE DIS- SOLVED (MG/L SO4) A (00945)	(MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
480540096263000	43 33	84 6.8	246	220	20	0.50	20
STATION NUMBER	SOLIDS, RESIDUE AT 180 BARIUM, DEG. C DIS- DIS- SOLVED SOLVED (UG/L) (MG/L) AS BA) (70300) (01005)	BERYL- LIUM, BORON, DIS- DIS- SOLVED SOLVED (UG/L (UG/L AS BE) AS B) (01010) (01020)	DIS-	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS-	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	DIS-
480540096263000	572 67	<0.5 230	<1.0	<5	⊲	<10	570
STATION NUMBER	LEAD, LITHIUM DIS- DIS- SOLVED SOLVED (UG/L (UG/L AS PB) AS LI) (01049) (01130)	MANGA- MOLYB- NESE, DENUM, DIS- DIS- SOLVED SOLVED (UG/L (UG/L AS MN) AS MO) (01056) (01060)	NICKEL, DIS-	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
480540096263000	<10 19	28 10	<10	<1.0	420	<6	6

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 POLK COUNTY

STATION NUMBER	LOCAL IDENT- I- FIER DATE	E TIME	DEPTH S	(FT. ABOVE NGVD) (CON- DUCT-	LAB (STAND- SC ARD (UNITS) A	ALCIUM SI DIS- D DLVED SOI (MG/L (M AS CA) AS	IS-
	W05BBBB 10-30-9 W28CDD 11-12-9			1125 1050	 426	 7.8	51 18	- B
SODIU DIS- SOLVI STATION NUMBER (MG/ AS N/ (0093)	DIS- TOT ED SOLVED FIE L (MG/L MG/L A) AS K) CAC	TTY "WH SULFATE FET DIS- LD SOLVED L AS (MG/L CO3 AS SO4)	RIDE, R DIS- I SOLVED SO (MG/L (I AS CL)	IDE, DI	VED DEG G/L DIS S SOLV (MG)	OUÉ 80 BARIUI . C DIS- 6- SOLVE 'ED (UG/L /L) AS BA	DIS- D SOLVED (UG/L) AS BE)	BORON, DIS- SOLVED (UG/L AS B) (01020)
474537096195200 474629096180400	205 .3 1.3 170		 0.90	 0.10 13	246	 44	 <0.5	 20
STATION NUMBER 474537096195200	CHRO- ADMIUM MIUM, DIS- DIS- OLVED SOLVED (UG/L (UG/L AS CD) AS CR) (01025) (01030)	DIS- DI	S- DIS- VED SOLVI G/L (UG/ CU) AS FI	DIS- ED SOLVED L (UG/L E) AS PB)	LITHIUM DIS- DISOLVED (UG/L AS LI) (01130)	DIS-	DENUM, DIS-	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)
STATION NUMBER	STRON- ILVER, TIUM, DIS- DIS- OLVED SOLVED (UG/L (UG/L AS AG) AS SR) 01075) (01080)	VANA- DIUM, ZIN DIS- DIS	C, S- /ED 2, 4-D /L TOTA N) (UG/I	P 2,4,5-T L TOTAL .) (UG/L)	2,4-D, TOTAL (UG/L) (39730)	DICAMBA (MED- IBEN) (BAN-		SILVEX, TOTAL (UG/L) (39760)
474537096195200 474629096180400	 <1.0 61	 <6 43	< 0.0	0.01 	<0.01 	<0.01 	<0.01	<0.01

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 RED LAKE COUNTY

STATION NUMBER	LOCAL IDENT- I- FIER	DA'	ГЕ	ТІМЕ	DEPTH OF WELL, TOTAL (FEET) (72008)	ELE OF LA SURFA DATU (FT ABO) NGV (7200	ND ACE JM : VE D) (SPE- CIFIC CON- DUCT- ANCE LAB US/CM) (90095)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)
474537096134400 474537096160300	150-44-36DD 150-44-34DD			1450 1434	165.00 172.00	110: 109:		633 541	7.8 8.7
STATIONNUMBER	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3 (00410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
474537096134400 474537096160300	51 45	28 17	34 41	2.4 5.0	360 245	2.4 34	5.0 5.8	0.30 0.50	20 15
STATION NUMBER	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS-	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	DIS-
474537096134400 474537096160300	343 300	110 54	<0.5 <0.5	130 90	<1.0 <1.0	ර ර	♂	<10 <10	670 11
STATION NUMBER	DIS-	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	DENUM, DIS-	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
474537096134400 474537096160300	<10 <10	16 15	29 48	<10 <10	<10 <10	<1.0 1.0	360 110	<6 <6	

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993 TRAVERSE COUNTY

STATION NUMBER	LOCAL IDENT- I- FIER	DATE	TIME	DEPTH OF WELL, TOTAL (FEET) (72008)	ELE OF LA SURF. DATI (F1 ABO NGV (720	AND S ACE C UM C T. D VE A TD) (US	TIFIC CON- UCT- (NCE S/CM)	STAND- A ARD V UNITS) (1	VATER SO DEG C) (M	DIS- LVED
455138096314701	128N-47W-36BAB	09-28-93	1440	58.00	1001	107	70	7.3	11.0	0.2
STATION NUMBER	NITRO- NITRO GEN, GEN, NITRITE NO2+N DIS- DIS- SOLVED SOLVE (MG/L (MG/L AS N) AS N) (00613) (00631	GEN, D3AMMONI DIS- D SOLVED (MG/L AS N)	PHORUS AORTHO, DIS-	TETRA- CHLORO	1,1,1- TRI- -CHLORO	E WAT U REC (UG/L	2 1,1,2 A- TRI RO-CHLO INF ETHA TOTA L) (UG/	- 1,1-DI RO-CHLOR NE ETHAI AL TOTA L) (UG/L	L TOTAL (UG/L)	BENZENE WAT, WH
455138096314701	<0.010 <0	050 1.50	<0.010	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.20
(BENZENE 1,2- 1,2,4- DIBROM TRI- ETHAN CHLORO- WATE WAT UNF WHOL REC TOTAL (UG/L) (UG/L) (34551) (77651	IO O- E CHLORO- R WATER E UNFLTRD L REC (UG/L)	1,2-DI- CHLORO	CHLORO-	CHLORC	D- WATE E UNFLTI REC (UG/L	I- 1,3-D RO-CHLOI R PROPA RDWAT. ' TOTA) (UG/I	II- 1,4-DI RO-CHLOR INE WATE WHUNFLT IL REC L) (UG/L	RD WHOLE TOTAL) (UG/L)	-CHLORO- E PRO- PANE
455138096314701	<0.20 <0.	2 <0.20	<0.2	<0.2	<0.2	<0.20	<0.2	<0.2	<0.2	<0.2
STATION NUMBER	ETHER I TOTAL TO (UG/L) (CRO- ACR LEIN NITH DTAL TOT JG/L) (UC 4210) (342	RILE BENZ FAL TO' G/L) (UC	BEN WAZENE WI FAL TO G/L) (U	HOLE, I DTAL T IG/L) (ROMO- FORM OTAL UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L) (32102)	CHLORO-	CHLORO- DI- BROMO- METHANE TOTAL (UG/L) (32105)	CHLORO- ETHANE TOTAL (UG/L) (34311)
455138096314701	<1.0	20 <20	<0	.2	<0.2	<0.2	<0.2	<0.20	<0.2	<0.2
STATION NUMBER	CHLORO-CH FORM PROTOTAL TO (UG/L) (U	3-DI- CHLO LORO- ETH OPENE WA	OI- CHL ORO-PROI ENE WA FER WH FAL TOT G/L) (UC	PANE CHI TER BR OLE MET REC TO G/L) (U	LORO- OMO- FL THANEM)TAL T IG/L) (ETHANE OTAL UG/L)		WATER	HEXA- CHLORO- BUT- DADIENE UI TOTAL (UG/L) (39702)	MESIT- YLENE WATER NFLTRD REC (UG/L) (77226)
455138096314701	<0.2	<0.2 <0	.2 <1	.0	<0.2	<0.2	<0.2	<0.5	<0.2	<0.20

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

TRAVERSE COUNTY--Continued

STATION NUMBER	METHYL- BROMIDE TOTAL (UG/L) (34413)	METHYL- CHLO-		P-ISOBENZENE N-BUTYL WATER UNFLTRD REC (UG/L) (77342)	N-PROPY WATER	NAPHTH-	TOLUENE	PROPYL- P-CHLOR' WATER UNFLTRD' REC (UG/L) (77277)	TOLUEN WATER	
455138096314701	<0.2	<0.2	<0.2	<0.20	<0.20	<0.2	<0.2	<0.20	<0.20	<0.20
	BENZENE SEC BUTYL-		BENZENI TERT- BUTYL-	TETRA-		TRANS- 1,3-DI-	TRI- CHLORO-	TRI- CHLORO-	VINYL	XYLENE
	WATER		WATER	ETHYL-		CHLORO-		FLUORO-	CHLO-	WATER
STATION NUMBER	REC (UG/L) (773 5 0)	TOTAL (UG/L) (77128)	REC (UG/L) (77353)	D ENE TOTAL (UG/L) (3447 5)	TOLUENE TOTAL (UG/L) (34010)	TOTAL (UG/L) (34699)	ENE TOTAL (UG/L) (39180)	METHANE TOTAL (UG/L) (34488)	RIDE TOTAL (UG/L) (39175)	UNFLTRD REC (UG/L) (81551)
455138096314701	<0.20	<0.2	<0.20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.20

Index

	Page		Page
Access to WATSTORE data	17	Chlorophyll, definition of	18
Accuracy of the records, stage and water		Classification of records, surface-water quality	14
discharge records	13	Clearwater River at Plummer	104-105
Acre-foot, definition of	17	at Red Lake Falls	108-109
Ada, Marsh River Ditch near	199	Climax, Sand Hill River at	9495
Adenosine Triphosphate, definition of	17	Cloquet, River near Toimi	197
Algae, definition of	17	Color, unit, definition of	18
Algal growth potential, definition of	18	Contents, definition of	18
Alvarado, Snake River above	122-129	Control, definition of	18
Snake River at	130	Cooperation	1
Analyses of samples collected at miscellaneous sites	210-215	Craigville, Bowerman Brook near	201
Annual 7-day minimum, definition of	18	Crane Lake, Vermilion River near	170-171
Aquifer, definition of	18	Crookston, Burham Creek near	200
Argyle, Middle River at	132-134	Red Lake River at	110-115
Arrangement of records, water quality	14	Cubic feet per second per square mile, definition of	18
Artesian, definition of	18	Cubic foot per second	18
Artificial substrate, definition of	21	i	
Ash mass, definition of	18	Data collection and computation	10-16
Aurora, St. Louis River near	197	Data collection and computation, ground-water levels	16
		ground-water quality	16
Babbitt, Stony River near	200	surface-water rstage and water discharge ecords	10
Bacteria, definition of	18	Data presentation, ground-water levels	16
Baptism River near Beaver Bay	32–35	stage and water discharge	10
Barnesville, Whiskey Creek at	199	surface-water quality	13-15
Basswood River near Winton	166–167	Data table of daily mean values	12
Baudette, North Branch Rapid River near	201	Deer Creek near Holyoke	44-45
Winter Road River near	201	Definition of terms	17-23
Beaver Bay, Baptism River near	32–35	Diatoms, definition of	20
Bed load, definition of	21	Dilworth, Buffalo River near	76 <u>-</u> 77
discharge, definition of	21	Discharge at, partial-record stations, and miscellaneous	10-11
Bed material, definition of	18	sites	194
Big Falls, Big Fork River at	180–181	high-flow partial-record stations	196-201
Big Fork River at Big Falls	180–181	miscellaneous sites	202-205
near Big Fork	200	Discharge, definition of	18
Big Fork, Big Fork River near	200	Discontinued gaging stations	ix-xv
Biochemical oxygen demand, definition of	18	Discontinued surface-water-quality stations	XV XV
Biomass, definition of	18	Dissolved trace-element concentrations	15
Blue-green algae, definition of	20	Dissolved definition of	19
Bois de Sioux River near Doran	56-59	Dissolved-solids concentration, definition of	19
near White Rock, SD	54–55	Diversity index, definition of	19
Bottom material, definition of	18	Doran, Bois de Sioux River near	56-59
Bowerman Brook near Craigville	201	Downer, Spring Creek above	199
Buffalo River near Callaway	199	Downstream order system and station number	9
near Dilworth	76–77		
near Hawley	72–73	Drainage area, definition of	19
South Branch at Sabin	74–75	Drainage basin, definition of	19
Bug Creek at Shaw	197	Drayton, ND, Red River of the North at	136-139
Burnham Creek near Crookston	200	Dry mass, definition of	18
		Duluth, Miller Creek near mouth at	38-39
Callaway, Buffalo River near	199	Duluth, Talmadge River at	197
Caribou, Roseau River below State ditch 51, near	154–159	71.4	400
Cascade River near Grand Marais	196	Eighteenmile Creek near Wheaton	198
Cells/volume, definition of	18	Elizabeth, Otter Tail River near	46-47
Cfs-day, definition of	18	Ely, Kawishiwi River near	160–163
Chemical oxygen demand, definition of	18	Emerson, Manitoba, Red River of the North at	142–151
Chisholm, Boriin Creek near		Explanation of the records	9
Sturgeon River near	176–177		

	Page		Page
Factors for converting Inch-Pound Units to Inter		Lake Superior, gaging-station records on streams	
	I nside back cover	tributary to	30-45
Fairbanks, North Branch Whiteface River near		high-flow partial-record stations on streams	
Fargo, ND, Red River of the North at		tributary to	196-198
Fecal coliform bacteria, definition of		Lakes and Reservoirs	
Fecal streptococall bacteria, definition of		Lake of the Woods at Springsteel Island near	
Fergus Falls, Orwell Lake near		Warroad	188-189
Otter Tail River below Orwell Dam near	. 50–53	at Warroad	186-187
Fort Frances, Ontario, Rainy Lake near		Lower Red Lake near Red Lake	96–97
Foxhome, Ottertail River near		Orwell Lake near Fergus Falls	48-49
Positonie, Ottertan River near	. 190	List of counties for which ground-water-level records	10 47
Combine definition of	10	are published	viii
Gage height, definition of		List of gaging stations, in downstream order, for which	VIII
Gaging station, definition of		records are published	vi-vii
records		Little Fork River at Littlefork	178–179
Gaging stations, discontinued		Little Stewart River near Two Harbors	176-179
Gold Portage outlet from Kabetogama Lake near Ray			178–179
Gonvick, Ruffy Brook near		Littlefork, Little Fork River at	106-107
Goodridge, Red Lake River at High Landing near		Lost River at Oklee	
Grand Forks, ND, Red River of the North at		Low-flow investigations	190-193
Grand Marais, Cascade River near	. 196	Min D. Die Lie C. de Perken	150 150
Grand Portage		Malung, Roseau River below South Fork, near	152–153
Pigeon River at Middle Falls near	30-31	Manitou Rapids, Rainy River at	182–185
Graph showing comparison of dissolved solids conce	n-	Map of Minnesota, annual precipitation	2
trations	7	departure from normal	3
showing comparison of nitrate concentrations	8	ground-water wells	217
showing discharge of three long-term stream		high-flow partial-record stations	195
gaging stations	6	lake and stream-gaging stations	28
showing total monthly precipitation		surface-water quality stations	29
Green algae, definition of		Marsh River Ditch near Ada	199
Ground-water, level-data by county		Marsh River near Shelly	92–93
quality data, by county		Mean concentration, definition	21
Grygla, Mud River near		Mean discharge, definition of	18
Ciygia, Mac River near	199	Metamorphic stage, definition of	19
Halstad, Red River of the North at	86-91	Methylene blue active substance, definition of	19
Hardness of water, definition of	19	Micrograms per gram, definition of	19
maidless of water, definition of	19	Micrograms per kilogram, definition of	19
Harriary Duffala Discourage	72–73	Micrograms per liter, definition of	19
Hawley, Buffalo River near		Middle River at Argyle	132-134
Hendrum, Wild Rice River at	84–85	near Newfolden	200
Hickson, ND, Red River of the North at	64-66	Miller Creek near mouth at Duluth,	38-39
High-flow partial-record stations	194-201	Milligrams of carbon per area or volume per unit time,	
Holyoke, Deer Creek near	44-45	definition of	20
Nemadji River near	198	Milligrams of oxygen per area or volume per unit time,	
Hydrologic benchmark network, definition of	9	definition of	20
Hydrologic conditions, summary of	1–9	Milligrams per liter, definition of	19
Hydrologic unit, definition of	19	Miscellaneous sites, numbering system for	10
		Mud River near Grygla	199
Identifying estimated daily discharge	13	Mustinka River above Wheaton	198
Illustrations, in table of contents	vi		
Instantaneous discharge, definition of	18	Namakan River at outlet of Lac la Croix, Ontario	168-169
Introduction	1	Nashua, Rabbit River near	198
Investigations, low-flow	190-193	National Geodetic Vertical Datum of 1929	-,-
		(NGVD), definition of	19
Kawishiwi River near Ely	160-163	National stream-quality accounting network	17
near Winton	164–165		9, 19
Knife River near Two Harbors	36-37	(NASQAN), definition of	•
WHILE KIACI HEST I MO HSHOOIS	30-31	National trends network (NTN)	9, 20
[]	1.5	National Water-Quality Assessment (NAWQA)	•
Labatory measurements, surface-water quality	15	Program	9
Lac la Croix, Ontario, Namakan River at outlet of	168–169	Natural substrate, definition of	21
Lake Bronson, South Branch Two Rivers at	140–141	Nemadji River near Holyoke	198
Lake of the Woods at Springsteel Island near Warroad		Newfolden, Middle River near	200
at Warroad	186–187	North Branch Whiteface River near Fairbanks	197
Lake of the Woods basin, gaging station records in	160-189	Rapid River near Baudette	201
high-flow partial-record stations in	194-201	Numbering system for wells and miscellaneous sites.	10

Index 229

	rage		rage
		Roseau River below South Fork, near Malung	152-153
Oklee, Lost River at	106-107	below State Ditch 51, near Caribou	154–159
Onsite measurement and collection, surface-water		Ruffy Brook near Gonvick	199
quality	14	Runoff in inches, definition of	21
Organic mass, definition of	18	at streamflow stations	21
Organism, definition of	20	O.1. Court D. J. D. Co. J. D	74 75
count/area, definition of	20	Sabin, South Branch Buffalo River at	74–75
count/volume, deinition of	20	Sand Hill River at Climax	94-95
Orwell Lake near Fergus Falls Other records available	48-49	Scanlon, St. Louis River at	40-43 21
Otter Tail River below Orwell Dam, near Fergus Falls	13 50–53	Sea level, definition of	21
near Elizabeth	30-33 46-47	surface-water quality	14
Otter Tail River near Elizabeth	46-47	Seven-day 10-year low flow, definition of	21
near Foxhome	198	Shaw, Bug Creek at	197
	170	Shelly, Marsh River near	92-93
Parameter code numbers, definition of	20	Silver Creek tributary near Two Harbors	196
Partial-record station, definition of	20	Snake River above Alvarado	122-129
discharge records at	195-201	at Alvarado	130
Particle-size classification, definition of	20	Sodium-adsorption-ratio, definition of	21
Particle-size, definition of	20	Solute, definition of	21
Percent composition, definition of	20	South Branch Buffalo River at Sabin	74–75
Periphyton, definition of	20	South Branch Two Rivers at Lake Bronson	140-141
Pesticides, definition o	20	Special networks and programs	9
Phytoplankton, definition of	20	Specific conductance, definition of	21
Picocurie, definition of	20	Spring Creek above Downer	199
Plankton, definition of	20	Springsteel Island, Lake of the Woods at, near	
Plummer, Clearwater River at	104-105	Warroad	188–189
Polychlorinated biphenyls, definition of	20	St. Louis River at Scanlon	40-43
Precipitation in summary of hydrologic		near Aurora	197
conditions	1	Stage-discharge relation, definition	21
Preface	iii	Station identification numbers, explanation of	9
Primary productivity, definition of	20	Station manuscript	11-12
Publications on techniques of water-resources		Statistics of monthly mean data	12
investigations	24–26	Stony River near Babbitt	200
Data Diagram Nata	100	Streamflow, definition of	21
Rabbit River near Nashua	198	in summary of hydrologic conditions	4
Radiochemical program, definition of	9, 21 174–175	Streams tributary to Lake Superior, gaging station records in	30-45
Rainy Lake near Fort Frances, Ontario	182–185	high-flow partial-record stations in	196-201
Ray, Gold Portage outlet from Kabetogama Lake near	172-173	Sturgeon River near Chisholm	176-177
Records of ground-water levels	1/2-1/5	Substrate, definition of	21
ground-water quality	16	Summary of hydrologic conditions	
stage and water discharge	10	streamflow in	1
surface-water quality	13–15	Summary statistics	12
Recoverable from bottom material, definition of	21	Surface area, definition of	22
Red Lake Falls, Clearwater River at	108-109	Surficial bed material, definition of	22
Red Lake River at Crookston	110-115	Suspended recoverable, definition of	22
at High Landing, near Goodridge	100-101	Suspended sediment concentration, definition of	21
near Red Lake	98 -9 9	Suspended sediment discharge, definition of	21
Red Lake, Lower Red Lake near	96-97	Suspended sediment, definition of	21
Red Lake River near	98 -9 9	Suspended total, definition of	22
Red River of the North at Drayton, ND	136-139	Suspended, definition of	22
at Emerson, Manitoba	142-151	Suspended-sediment load, definition of	21
at Fargo, ND	68–70		
at Grand Forks, ND	116-120	Table of contents	v-viii
at Halstad	86-91	Talmadge River at Duluth	197
at Hickson, ND	64-66	Taxonomy, definition of	22
at Wahpeton, ND	60-62	Terms, definition of	17–23
Red River of the North basin, gaging-station		Thermograph, definition of	22
records in	46–159	Thief River Falls, Thief River near	102-103
high-flow partial-record stations in	196-201	Thief River near Thief River Falls	102-103
Remark Codes	15	Time-weighted average, definition of	22
Reservoir (see lakes and reservoirs)		Toimi, Cloquet River near	197 22
Return period, definition of	21	Tons per acre-foot, definition of	22

	Page		Page
Tons per day, definition of	22	Water year, definition of	23
Total coliform bacteria, definition of	18	Water-quality records, arrangement of	14
Total in bottom material, definition of	22	classification of	14
Total load, definition of	22	data presentation	10
Total organism count, definition of	20	labatory measurements	15
Total recoverable, definition of	22	WDR, definition of	23
Total sediment discharge, definition of	21	Weighted average, definition of	23
sediment load	21	Well number, definition of	10
Total, definition of	22	Wet mass, definition of	18
Tritium network, definition of	9, 22	Wheaton, Eigteenmile Creek near	
Twin Valley, Wild Rice River at	78-83	Mustinka River above	198
Two Harbors, Knife River near	36-37	Wheaton, Mustinka River above	
Little Stewart River near	196	Eighteenmile Creek near	198
Silver Creek tributary near	196	Whiskey Creek at Barnesville	199
Two Rivers, South Branch, at Lake Bronson	140-141	White Rock, SD, Bois de Sioux River near	54-55
		Wild Rice River at Hendrum	84-85
Vermilion River near Crane Lake	170-171	at Twin Valley	78-83
		Winter Road River near Baudette	201
Wahpeton, ND, Red River of the North at	60-62	Winton, Basswood River near	166-167
Warroad, Lake of the Woods at	186-187	Kawishiwi River near	164-165
Lake of the Woods at Springsteel Island near	188-189	WRD, definition of	23
Water temperature, surface-water quality	14	WSP, definition of	23
		Zoonlankton definition of	20

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain	
	Length		
inch (in.)	2.54×10^{1} 2.54×10^{-2}	millimeter meter	
foot (ft)	3.048×10^{-1}	meter	
mile (mi)	1.609×10^{0}	kilometer	
	Area		
acre	4.047×10^3	country meter	
acre	4.047×10^{-1}	square meter	
	4.047×10^{-3}	square hectometer	
		square kilometer	
square mile (mi ²)	2.590×10^{0}	square kilometer	
	Volume		
gallon (gal)	3.785×10^{0}	liter	
8 (8)	3.785×10^{0}	cubic decimeter	
	3.785×10^{-3}	cubic meter	
million gallons (Mgal)	3.785×10^3	cubic meter	
minon gunons (vigur)	3.785×10^{-3}	cubic hectometer	
cubic foot (ft ³)	2.832×10^{1}	cubic decimeter	
cubic foot (it)	2.832×10^{-2}	cubic meter	
cubic-foot-per-second day [(ft ³ /s) d]	2.447×10^3	cubic meter	
cubic-root-per-second day [(it 7s) d]	2.447×10^{-3}	cubic hectometer	
core foot (core ft)	1.233×10^3	cubic meter	
acre-foot (acre-ft)	1.233×10^{-3}		
	1.233×10^{-6}	cubic hectometer cubic kilometer	
•	1.255×10	cubic knometer	
	Flow		
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter per second	
(1018)	2.832×10^{1}	cubic decimeter per second	
	2.832x10 ⁻²	cubic meter per second	
gallon per minute (gal/min)	6.309×10^{-2}	liter per second	
6 F (B)	6.309×10^{-2}	cubic decimeter per second	
	6.309×10^{-5}	cubic meter per second	
million gallons per day (Mgal/d)	4.381×10^{1}	cubic decimeter per second	
	4.381x10 ⁻²	cubic meter per second	
	Mass		
Acm (ch - A)		107222240330000142300	
ton (short)	9.072×10^{-1}	megagram or metric ton	

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first–order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey 2280 Woodale Drive Mounds View, MN 55112

