

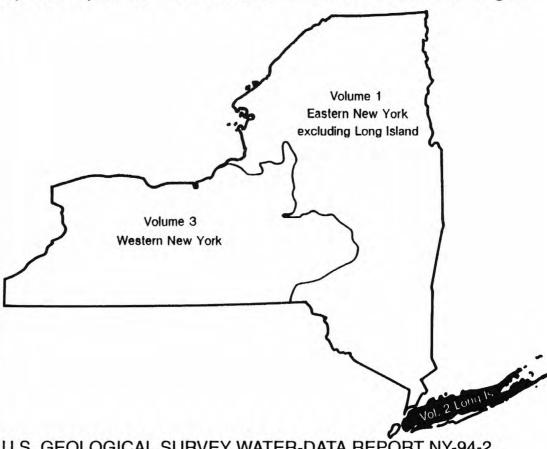
Water Resources Data New York Water Year 1994

Volume 2. Long Island

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NY-94-2 Prepared in cooperation with the State of New York and with other agencies

CALENDAR FOR WATER YEAR 1994

1993


		OC	ТОВ	ER					NO	VEM	BER					DE	CEM	IBER	2		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S	
					1	2		1	2	3	4	5	6				1	2	3	4	
3	4	5	6	7	8	9	7	8	9	10	11	12	13	5	6	7	8	9	10		
10	11	12	13	14	15	16	14	15	16	17	18	19	20	12	13	14	15	16	17	18	
17	18	19	20	21	22	23	21	22	23	24	25	26	27	19	20	21	22	23	24	25	
24	25	26	27	28	29	30	28	29	30					26	27	28	29	30	31		
31																					
										1994	1										
		JA	NUA	RY					FEE	BRUA	ARY					N	IARC	CH			-
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S	
						1			1	2	3	4	5			1	2	3	4	5	
2	3	4	5	6	7	8	6	7	8	9	10	11	12	6	7	8	9	10	11	12	
9	10	11	12	13	14	15	13	14	15	16	17	18	19	13	14	15	16	17	18	19	
16	17	18	19	20	21	22	20	21	22	23	24	25	26	20	21	22	23	24	25	26	
23	24	25	26	27	28	29	27	28						27	28	29	30	31			
30	31																				
		A	APRI	L					1	MAY						J	UNE				
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S	
					1	2	1	2	3	4	5	6	7				1	2	3	4	
3	4	5	6	7	8	9	8	9	10	11	12	13	14	5	6	7	8	9	10	11	
10	11	12	13	14	15	16	15	16	17	18	19	20	21	12	13	14	15	16	17	18	
		19		21	22	23	22	23		25	26	27	28	19		21			24	25	
24	25	26	27	28	29	30	29	30	31					26	27	28	29	30			
			JULY	7					AU	JGUS	ST				- (SEPT	EMI	BER			
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S	
					1	2		1	2	3	4	5	6					1	2	3	
3	4	5	6	7	8	9	7	8	9	10	11	12	13	4	5	6	7	8	9	10	
10	11	12	13	14	15	16	14	15	16	17	18	19	20	11	12	13	14	15	16	17	
17	18	19	20	21	22	23	21	22	23	24	25	26	27	18	19	20	21	22	23	24	
24	25	26	27	28	29	30	28	29	30	31				25	26	27	28	29	30		
31																					

Water Resources Data New York Water Year 1994

Volume 2. Long Island

by A.G. Spinello, G. Peña-Cruz, K. McGrath, and V.K. Eagen

U.S. GEOLOGICAL SURVEY WATER-DATA REPORT NY-94-2 Prepared in cooperation with the State of New York and with other agencies U.S. DEPARTMENT OF THE INTERIOR
BRUCE BABBITT, Secretary
U.S. GEOLOGICAL SURVEY
Gordon P. Eaton, Director

For information on the water program in New York write to District Chief, Water Resources Division U.S. Geological Survey 425 Jordan Road Troy, New York 12180

For information on the water program in Long Island write to Subdistrict Chief, Water Resources Division

U.S. Geological Survey

2045 Route 112 Ste 4

Coram, New York 11727-3085

PREFACE

This volume of the annual hydrologic data report of New York is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New York are contained in 3 volumes:

Volume 1. Eastern New York excluding Long Island Volume 2. Long Island Volume 3. Western New York.

The data contained in these three volumes were collected, computed, and processed from three subdistrict offices and one area field office. The offices, and personnel in charge, are:

Volume 1. Albany, Ward O. Freeman, Acting Subdistrict Chief Potsdam, Howard G. Lent, Jr., Technician-in-charge Volume 2. Syosset, Bronius Nemickas, Acting Subdistrict Chief Volume 3. Ithaca, Edward Bugliosi, Subdistrict Chief

The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the collection, processing, and tabulation of the data:

> R. Busciolano D. M. Mutter L. A. Chapman G. A. Felipe C. E. Schubert R.B. Winowitch

J. A. Pitt typed the text of the report.

This report was prepared in cooperation with the State of New York and with other agencies under the general supervision of L. G. Moore, District Chief, New York.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0186

Public reporting burden for this collection of intermation is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jetterson Davis Highway, Suite 1204, Attington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (9704-9183), Washington, DC 20503.

collection of information, including suggestion Davis Highway, Suite 1294, Arlington, VA 22	ns for reducing this burden, to Washington 1202-4302, and to the Office of Managem	n Headquarters Services, Directorate for Info east and Budget, Paperwork Reduction Proje	mation Operations and Reports, 1215 Jefferson of (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE June 1995	3. REPORT TYPE AND D Annual—October 1.	ATES COVERED 1993 to September 30, 1994
TITLE AND SUBTITLE Water Resources Data - New Yolume 2, Long Island	v York, Water Year 1994		FUNDING NUMBERS
s. AUTHOR(s) A.G. Spinello, G. Pena-Cruz	., K. McGrath, and V.K. E	agen	
7. PERFORMING ORGANIZATION NAM U.S. Geological Survey Water Resources Division 2045 Route 112, Bldg. 4 Coram, New York 11727	E(S) AND ADDRESS(ES)		PERFORMING ORGANIZATION REPORT NUMBER USGS/WDR-NY-94-2
9. SPONSORING / MONITORING AGEN U.S. Geological Survey Water Resources Division 425 Jordan Road Troy, New York 12180	CY NAME(S) AND ADDRESS(ES)		D. SPONSORING / MONITORING AGENCY REPORT NUMBER USGS/WRD/HD-95/302
11. SUPPLEMENTARY NOTES Prepared in cooperation with	the State of New York an	d other agencies.	
12a DISTRIBUTION / AVAILABILITY ST	TAYEMCAIT	[1:	2b. DISTRIBUTION CODE
This report may be purchase National Technical Informat Springfield, VA 22161	d from		a. Sich isonich debt
quality of streams; stage, co ground-water wells. This vol- ing stations, and 32 wells; ar record stations. Additional v program, and are published a	ntents, and water quality of lume contains records for water levels at 754 observater data were collected at as miscellaneous measurement of the National Water D	f lakes and reservoirs; and way vater discharge at 20 gaging struction wells. Also included a t various sites not involved intents and analyses. These data total system operated by the U	of stage, discharge, and water atter levels and water quality of ations; water quality at 19 gagre data for 78 low-flow partial the systematic data collection at together with the data in Vol. S. Geological Survey in coop-
		ce waters, *Water quality, Ga, Chemical analysis, Sedimen	
Water temperature, Water ar	nalysis, Water levels, Wate	r wells, Data collections, Site	es
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT SAR

	NTENT	

		rage
Preface		11
List of su	rface-water stations, in downstream order, for which records are published in	
this volu	mescontinued surface-water discharge stations	٧
_ist of di	scontinued surface-water discharge stations	VII
	on	
coperation	hydrologic conditions	
Special ne	tworks and programs	3
	n of the records	3
	identification numbers.	3
	ream order system	3
	de-longitude system	3
	of stage and water discharge	4
Data c	ollection and computation	4
	resentation	5
	ton manuscripttable of daily mean values	ě
	istics of monthly mean data	ě
	ary statistics	ě
Identi	fying estimated daily discharge	ě
Accura	cy of the records.	8
	records available.	8
Records	of surface-water quality	8
Classi	fication of records	8
Arrang	mement of records	8
	e measurements and sample collection	ç
	temperature	9
Sedime	int	
Labora	tory measurements	10
Pomar	presentation	10
Pecorde	s codesof ground-water levels	11
Data	ollection and computation	- 11
Data	resentation	13
Records	of ground-water quality	12
Data o	ollection and computation	12
Data p	presentation	12
Access to	WATSTORE data	12
Definition	of terms	14
Publicatio	ons on Techniques of Water-Resources Investigationsecords, surface waterecords, surface wateree at partial-record stations and miscellaneous sites	2:
Station re	cords, surface water	38
Dischard	ow partial-record stations	88
Station re	cords, ground water	92
Ground-v	rater levels	9
Quality	of ground-water	23
Index		239
	ILLUSTRATIONS	
Figure 1.	System for numbering wells	
2.	Discharge data, East Meadow Brook at Freeport	25
3.	Discharge data, Nissequogue River near Smithtown	20
5.	Hydrograph of water-table observation well S4271 at Riverhead	21
6A.	Map showing location of surface-water data collection stations in Kings	20
on.	Queens, and Nassau Counties	29
6B.	Map showing location of surface-water data collection stations in west	2.
	nait of Suffolk County	31
6C.	Map showing location of surface-water data collection stations in east	
	half of Suffolk County	3:
7A.	Map showing location of water-level data collection stations in Kings,	
	Queens, and Nassau Counties	33
78.	Map showing location of water-level data collection stations in west	
7C.	half of Suffolk County	33
16.	Map showing location of water-level data collection stations in east	
8A.	half of Suffolk County	34
OA.	in Kings Queens and Nassau Counties	35
88.	in Kings, Queens, and Nassau Counties	3
00.	in west half of Suffolk County	36
8C.	Map showing location of quality of ground-water data collection stations	
	in east half of Suffolk County	37
	TABLE	
Table .	Control for annual to the control of	inside
Table 1.	Factors for converting inch-pound units to International System Units (SI)	of back
		COVAL

vi SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

NOTE. -- Data for partial-record stations and miscellaneous sites for surface-water discharge are published in separate sections of the data report. See references at the end of this list for page numbers for these sections.

[Letter after station name designates type of data: (d) discharge, (e) contents and/or elevation, (c) chemical, (b) biological, (m) microbiological, (t) water temperature, (s) sediment]

STREAMS ON LONG ISLAND Stationumber	
Alley Creek near Oakland Gardens (d)	38
Glen Cove Creek at Glen Cove (dct)	500 40
Mill Neck Creek at Mill Neck (dct)	000 42
Cold Spring Brook at Cold Spring Harbor (dct)	500 44
Nissequogue River near Smithtown (dct)	000 46
Peconic River at Riverhead (dct)	500 49
Carmans River at Yaphank (dct)	200 52
Swan River at East Patchogue (dct)	500 55
Patchogue River at Patchogue (ct)	000 57
Connetquot Brook at Central Islip (d)	440 58
Connetquot Brook near Central Islip (d)	460 59
Connetquot River near Oakdale (dct)	500 60
Champlin Creek at Islip (ct)	000 64
Penataquit Creek at Bay Shore (ct)	500 65
Sampawams Creek at Babylon (dct)	000 66
Carlls River at Babylon (dct)	500 69
Santapogue Creek at Lindenhurst (ct)	000 72
Massapequa Creek at Massapequa (dct)01309	500 73
Seaford Creek at Massapequa (d)	580 75
Belimore Creek at Belimore (dct)	000 76
East Meadow Brook at Freeport (dct)	500 78
Pines Brook at Malverne (dct)	000 80
Valley Stream at Valley Stream (d)	500 82
Conselyeas Pond Tributary at Rosedale (d)	810 83
	•
Discharge at partial-record stations and miscellaneous sites	85
Low-flow partial-record stations	85

DISCONTINUED SURFACE-WATER DISCHARGE STATIONS

The following continuous-record surface-water discharge stations on Long Island have been discontinued. Daily streamflow records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as partial record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)]

Station name	Station number	Drainage area (sq mi)	Period of record
Patchoque River at Patchoque (d)	01306000*	13.5	1946-69, 1974-76
hamplin Creek at Islip (d)	01307000*	8.5	1945-69
Penataquit Creek at Bay Shore (d)	01307500*	5	1945-76
Santapoque Creek at Lindenhurst (d)	01309000*	7	1947-69

WATER RESOURCES DATA - NEW YORK, 1994 Volume 2.--Long Island

INTRODUCTION

Water resources data for the 1994 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; water quality of precipitation; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 20 gaging stations; water quality at 19 gaging stations, 32 wells; and water levels at 754 observation wells. Also included are data for 78 low-flow partial-record stations. Locations of these sites are shown on pages 29-37. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements and analyses. These data together with the data in Volumes 1 and 3 represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in New York.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

Since the 1961 water year, streamflow data and since the 1964 water year, water-quality data have been released by the Geological Survey in annual reports on a State-boundary basis. These reports provided rapid release of water data in each state shortly after the end of the water year. Through 1970 the data were also released in the water-supply paper series mentioned above.

Streamflow and water-quality data beginning with the 1971 water year, and ground-water data beginning with the 1975 water year are published only in reports on a State-boundary basis. Beginning with the 1975 water year, these Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NY-94-2." Water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc.

Additional information, including current prices, for ordering specific reports may be obtained from the district chief at the address given on the back of the title page or by telephone (518) 285-5600. A limited number of CD-ROM discs will be available for sale by the Books and Open-File Services Section, U.S. Geological Survey, Federal Center, Box 25286, MS 517, Denver, Colorado 80225.

COOPERATION

The U.S. Geological Survey and organizations of the State of New York and other agencies have had cooperative programs for the systematic collection of water records since 1900. Organizations that assisted in collecting the data included in Volume 2 through cooperative agreements with the U.S. Geological Survey are:

New York State Department of Environmental Conservation, Michael D. Zagata, Commissioner. County of Nassau, Department of Public Works, John M. Waltz, Commissioner. County of Suffolk, Department of Health Services, Dr. Mary Hibberd, Commissioner. Suffolk County Water Authority, Michael A. LoGrande, Chairman.

The following organizations aided in collecting records:

Nassau County Department of Health, Nassau County Department of Public Works, Suffolk County Department of Health Services, and Suffolk County Water Authority.

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow and ground-water levels on Long Island ranged from near to slightly below average at the beginning of the 1994 water year and increased gradually through the spring, then began to decline through the remainder of the water year (figs. 3-5). The lowered water table in the highly urbanized area in southern Nassau County caused below average stream discharge for the entire water year except during periods of high runoff (fig. 2).

Most maximum stream discharges for the 1994 water year occurred on January 28, although some occurred in southeastern Suffolk County on December 5. The January storm caused discharge of Pines Brook at Malverne (57 years of record) to reach a new peak. Runoff was generally less than in the previous water year and ranged from near average to below average for the year. Maximum monthly mean discharges at most stations occurred in January or March, and minimum monthly discharges occurred mostly in July.

Water levels in most wells screened in the upper glacial aquifer were near to slightly below average at the beginning of the water year, then began a normal rise that lasted until the end of April. Most wells then showed a normal decline in water level that lasted until the end of the water year.

Water levels in most wells screened in the Magothy and Lloyd aquifers were also near average at the beginning of the water year and showed a similar normal trend, as in the upper glacial aquifer, although these water levels at some wells showed greater variability as a result of changes in local pumpage.

Record high water levels were measured in three wells screened in the upper glacial, Magothy, and Jameco aquifers in southwestern Nassau and northeastern Queens Counties, in April and May. No record low water levels were measured in any wells during the water year.

Concentrations of inorganic constituents in surface-water and ground-water samples collected during the 1994 water year did not differ significantly from those of the previous year. Specific conductance of surface-water samples ranged from 85 to 568 uS/cm (microsiemens per centimeter at 25 degrees Celsius); the median was 193 uS/cm. Unusually high specific conductance values in stream-water samples collected during the winter are attributed to salt from road deicing. The pH of water samples from streams ranged from 5.7 to 9.1; the median was 6.8. Annual median stream pH was highest in north-shore streams of Nassau County and generally decreased southward and eastward into Suffolk County. Specific conductance of water samples from the Magothy aquifer ranged from 27 to 352 uS/cm, with a median of 40 uS/cm, and specific conductance of samples from the Lloyd aquifer ranged from 33 to 166 uS/cm, with a median of 67 uS/cm. The pH of water samples from the upper glacial aquifer ranged from 5.0 to 8.2, with a median of 6.1; pH of samples from the Magothy aquifer ranged from 5.1 to 7.8, with a median of 5.8. The pH of samples from the Lloyd aquifer ranged from 5.0 to 7.0, with a median of 6.5.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Bench-Mark Network is a network of 53 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National stream-quality accounting network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 284 sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, diverse, and geographically distributed part of the Nation's ground- and surface-water resources, and to identify, describe, and explain the major natural and human factors that affect these observed conditions and trends.

Assessment activities have begun in about two-thirds of the study units and ultimately will be conducted in 60 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

<u>Radiochemical Programs</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Tritium Network is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1994 water year that began October 1, 1993, and ended September 30, 1994. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface water, and ground-water level data. The locations of the stations and wells where the data were collected are shown in figures 6A, B, C, 7A, B, C, and 8A, B, C. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a "List of Stations" in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations, miscellaneous sites, and other stations; therefore, the station number for a partial-record station or a miscellaneous site indicates downstream-order position in a list made up of all types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01300500 includes the 2-digit part number "01" plus the 6-digit downstream order number "300500". The part number designates the major river basin. (In a few instances where no gaps were left in the 8-digit numbering sequence, one or two digits were added (making a 9- or 10-digit station number) and (or) a latitude-longitude number was used for identification.)

Latitude-Longitude System

The identification numbers for wells are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells within a 1-second grid. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description. See figure 1.

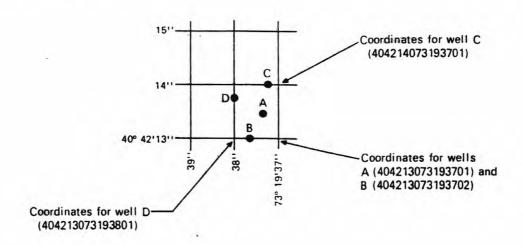


Figure 1. System for numbering wells (latitude and longitude).

A local well-numbering system is also used. It is a 2-part identifier, assigned by the New York State Department of Environmental Conservation, consisting of the abbreviation of county name and the serial number of the well within the county.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Locations of all gaging stations and observations wells in this report are shown in figures 6A, B, C, and 7A, B, and C.

Data Collection and Computation

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at

selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations, Book 3, chapter A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for some stations, were determined and used by the U.S. Army Corps of Engineers of other agencies.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see Definitions of Terms), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented at the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, AND EXTREMES FOR CURRENT YEAR have been depleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges and the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN."); or in acre-feet (line headed "AC-FI"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") or monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS - BY WATER YEAR (WY)" and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years indicated in the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS - ," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. At least 5 complete years of record must be available before this statistic is published for the designated period.

HIGHEST ANNUAL MEAN. -- The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN. -- The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN. -- The minimum daily mean discharge for the year or for the designated period.

- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)
- INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF (AC-FT).--Indicates the depth, in acre-feet, to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it.

- ANNUAL RUNDFF (CFSM).--Indicates the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area for the year.
- ANNUAL RUNOFF (INCHES). -- Indicates the depth to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it.
- 10 PERCENT EXCEEDS.--The discharge that is exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that is exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good," within 10 percent; and "fair," within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 $\rm ft^3/s$; to tenths between 1.0 and 10 $\rm ft^3/s$; to whole numbers between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures above 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where large adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. $\underline{\underline{A}}$ continuing record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, unless otherwise footnoted under "REMARKS". Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. Data for precipitation-quality stations appears next. The table of ground-water quality follows ground-water level records. Data for quality of ground water is listed alphabetically by County, and is identified by well number.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are detailed in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These references are listed in the PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS section of this report. These methods are consistent with ASTM standards and generally follow ISO standards.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

Historical and current (1994) dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water Temperatures

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures and/or maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross-section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These methods are consistent with ASTM standards and generally follow ISO standards.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Laboratory Measurements

Samples for indicator bacteria and daily samples for specific conductance are analyzed locally. Sediment samples are analyzed in the Geological Survey laboratory in Harrisburg, Pa. All other samples are analyzed in the Geological Survey laboratories in Arvada, Colo., or Doraville, Ga. Methods used to analyze sediment samples and to compute sediment records are described in the TWRI Book 5, Chapter C1. Methods used by the U.S. Geological Survey laboratories are given in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, A4, and A5. These methods are consistent with ASTM standards and generally follow ISO standards.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION. -- Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial record stations and miscellaneous sampling sites are published in a separate table following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is known to be greater than the value shown
(Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)

Dissolved Trace-Element Concentrations

Note.—Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (ug/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Present data above the ug/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey will begin using new trace-element protocols in water year 1994. Full implementation of the protocols will take place during the 1995 water year.

Records of Ground-Water Levels

Although over 950 wells are measured at annual or more frequent intervals, only ground-water level data from a basic network of 754 observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figure 1.

Data Collection and Computation

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet in reference to sea level. National Geodetic Vertical Datum of 1929 is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum in reference to National Geodetic Vertical Datum of 1929 is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported as mean daily values, and the extremes are instantaneous values selected from the digital record. Water levels in wells not equipped with recording gages are read periodically or measured periodically with a weighted tape by U.S. Geological Survey personnel and/or an observer.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot.

Data Presentation

Most well records consist of three parts, the station description, the data table of water levels observed during the current water year, and a graph of the water levels for the current water year or other selected period. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings of the well description.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); a landline location designation; the hydrologic unit number; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) sea level; it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.—This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD. -- This entry contains the highest and lowest water levels of the period of record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet above (or below) sea level and all taped measurements of water level are listed. For wells equipped with recorders, only abbreviated tables are published; generally, only water-level means are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. A hydrograph of water levels follows the data table for some wells. The current year and the previous 9 years of record are plotted in feet above (or below) sea level. If the period of record is less than 10 years, the water levels for the entire record are plotted.

A hydrograph of water levels follows the data table for some wells. The current year and the previous 9 years of record are plotted in feet above (or below) sea level. If the period of record is less than 10 years, the water levels for the entire record are plotted.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as part of a special study in a specific area. Consequently, a number of chemical analyses are presented for one county, but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey TWRI publications referred to in the "On-site Measurements and Sample Collection" and the "Laboratory Measurements" sections in this data report. In addition, the TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, data of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO WATSTORE DATA

The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As part of the Geological Survey's program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the U.S. Geological Survey and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses such as Log Pearson Type III, can be produced using WATSTORE. The system resides on the central computer facilities of the U.S. Geological Survey at its National Center in Reston, Virginia, and consists of related files and data bases.

- * Station Header File Contains descriptive information on more than 440,000 sites throughout the United States and its territories where the U.S. Geological Survey collects or has collected data.
- Daily Values File Contains more than 220 million daily values of stream flows, stages, reservoir contents, water temperatures, specific conductances, sediment concentrations, sediment discharges, and ground-water levels.
- Peak Flow File Contains approximately 500,000 maximum (peak) streamflow and gage-height values at surface-water sites.
- * Water Quality File Contains approximately 2 million analyses of water samples that describe the chemical, physical, biological, and radio-chemical characteristics of both surface and ground water.
- Ground-Water Site Inventory Data Base Contains inventory data for more than 900,000 wells, springs, and other sources of ground water. The data includes site location, geohydrologic characteristics, well-construction history, and one-time filed measurements such as water temperature.

In 1976, the U.S. Geological Survey opened WATSTORE to the public for direct access. The signing of a Memorandum of Agreement with the Survey is required to obtain direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requestor will be expected to pay all computer costs he/she incurs. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, Virginia 22092

In addition to providing direct access to WATSTORE, data can be provided in various machine-readable formats on magnetic tape or 5-1/4 inch floppy disk; and, as noted in the introduction, on CD-ROM discs. Beginning with the 1990 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD-ROM). All data reports published for the current water year for the entire Nation, including Puerto Rico and the Trust Territories, will be reproduced on a single CD-ROM disc. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division's District offices. (See address on the back of the title page.) A limited number of CD-ROM discs will be available for sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25286, MS 517, Denver, Colorado 80225.

DEFINITION OF TERMS

Terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting inch-pound system units to International System of units (SI) on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot \overline{and} is equivalent to 43,560 cubic feet or about 325,000 gallons or 1,233 cubic meters.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present as stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies within 24 hours when incubated at 35° C $\pm 1.0^{\circ}$ C on M-endo median (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5° C $\pm 0.2^{\circ}$ C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found also in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°±1.0°C on KF Streptococcus agar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material: See Bottom material.

Biochemical oxygen demand (BDD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

Dry mass refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same units as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same units as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

Biomass pigment ratio is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.

Bottom material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material".

Cells/volume refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

Cfs-day is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.

Chemical oxygen demand (CDD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

Chlorophyll refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

Colloid is any substance with particles in such a fine state of subdivision dispersed in a medium, for example water, that they do not settle out; but not in so fine a state of subdivision that they can be said to be truly dissolved.

Color unit is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is the term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table (it can also be above ground level). Formerly called artesian aquifer.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Control designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

Cubic foot per second (FT 3 /S, ft 3 /s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

 $\frac{\text{Discharge}}{\text{passes a given point within a given period of time.}}$

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The data shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

Dissolved is that material in a representative water sample which passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

Diversity index is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{8} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

Where n; number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontribution areas, within the area unless otherwise noted.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram (ug/g) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, ug/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

Organic carbon (OC) is a measure of the organic matter present in aqueous solution and (or) suspension. May be reported in any of three categories (DOC, dissolved organic carbon; SOC, suspended organic carbon; TOC, total organic carbon).

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (\mathfrak{m}^2), acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Total organism count is the total number of organisms collected and enumerated in any particular sample.

Partial-record station is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

Particle-size is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay Silt Sand	0.00024 - 0.004 .004082 .062 - 2.0	Sedimentation. Sedimentation. Sedimentation or sieve.
Gravel	2.0 - 64.0	Sieve.

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Percent composition is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

Periphyton is the assemblage of algae, fungi, and bacteria which are attached to or live upon submerged objects in lakes or rivers.

Pesticides are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

Picocurie (PC, pCi) is one trillionth (1 x 10^{12}) of the amount of radioactivity represented by a curie $\overline{\text{(Ci)}}$. A curie is the amount of radioactivity that yields 3.7 x 10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open $\overline{\text{water of}}$ lakes and rivers.

Phytoplankton is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

Blue-green algae are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

Euglenoids (Euglenophyta) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark.

Fire algae (Pyrrhophyta) are free-swimming unicells characterized by a red spot.

Green-algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated napthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated napthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg $C/(m^2$.time) for periphyton and macrophytes and mg $C/(m^3$.time)] for phytoplankton are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

Milligrams of oxygen per area or volume per unit time [mg $0_2/(m^2$.time) for periphyton and macrophytes and mg $0_2/(m^3$.time) for phytoplankton are the units for expressing primary productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

Sea level refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) -- a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

Suspended-sediment discharge (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

Total sediment discharge (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentrations of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lived.

Natural substrates refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

Surface area of a lake is that area outlined on the latest U.S.G.S. topographic map as a boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

Surficial bed material is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water—suspended sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total".

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) $\underline{\text{dissolved}}$ and (2) $\underline{\text{total}}$ concentrations of the constituent.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata is the following:

Kingdom...Animal
Phylum...Arthropoda
Class...Insecta
Order...Ephemeroptera
Family...Ephemeridae
Genus...Hexageria
Species..Hexagenia limbata

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

Tons per acre-foot indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total (as used in tables of chemical analyses):

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total". (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample).

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

When virtually all of a constituent is present in the dissolved phase, the reported value for the dissolved constituent may appear slightly greater than that for the total determination. The difference is within the standard laboratory error for the analytical methods used.

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

<u>Total organic carbon</u> (TOC) is a measure of all organic matter present in aqueous solution and suspension.

Water table is the surface of a ground-water body at which the water is at atmospheric pressure. It is defined by the levels at which water stands in wells that penetrate the water body just far enough to hold standing water.

Water-table aquifer is an unconfined aquifer whose upper boundary is the water table.

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to state annual basic-data reports published beginning in 1975.

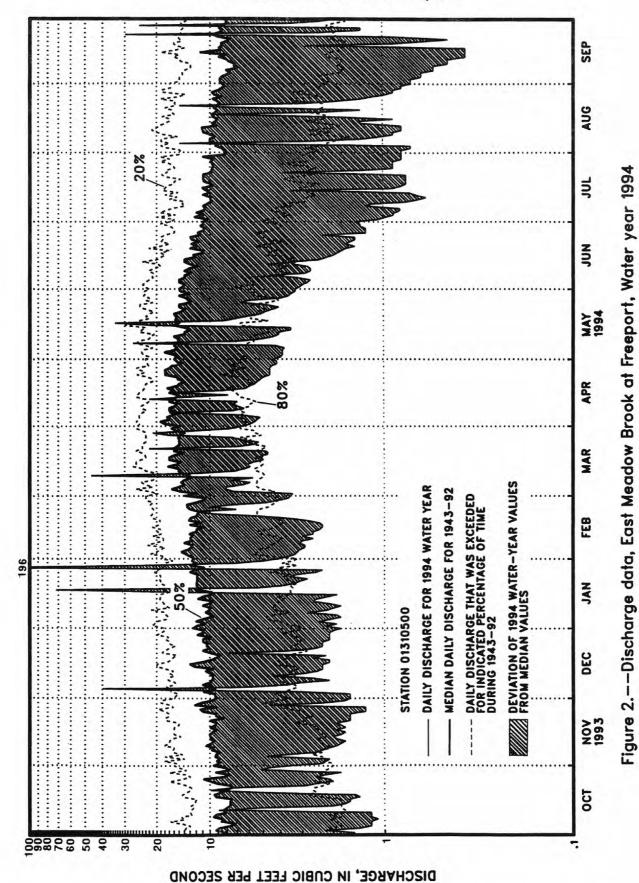
Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

WRD is used as an abbreviation for "Water Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."


- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L.M. MacCary: USGS--TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W. S. Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W. E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. *Measurement of peak discharge by the slope-area method,* by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. *Measurement of peak discharge at culverts by indirect methods*, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3, 1968, 60 pages.
- 3-A4. *Measurement of peak discharge at width contractions by indirect methods,* by H. F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3. Chapter A5. 1967. 29 pages.
- 3-A6. *General procedure for gaging streams,* by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurement at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.

- 3-A9. *Measurement of time of travel in streams by dye tracing,* by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-Al0. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. *Measurement of discharge by the moving-boat method,* by G. F. Smoot and C. E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, Revised, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A12. 1986. 34 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. *Use of flumes in measuring discharge,* by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. *Measurement of discharge using tracers*, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathbun, Nobuhiro Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 31 pages.
- 3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F. A. Kilpatrick: USGS--TWRI Book 3, Chapter A20. 1993. 38 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS-- TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by R. L. Cooley and R. L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B4. Supplement 1. Regression modeling of ground-water flow Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R. L. Cooley: USGS-TWRI Book 3, Chapter B4. 1993. 8 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6, 1987, 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E. J. Wexler: USGS--TWRI Book 3, Chapter B7. 1992. 190 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.

- 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages.
- Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1, 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L. C. Friedman, editors: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS--TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S. A. Leake and D. E. Prudic: USGS--TWRI Book 6, Chapter A2. 1991. 68 pages.
- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L. J. Torak: USGS--TWRI Book 6, Chapter A3. 1993. 136 pages
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R. L. Cooley: USGS--TWRI Book 6, Chapter A4. 1992. 108 pages.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L. J. Torak: USGS--TWRI Book 6, Chapter A5, 1993. 243 pages.

24 PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS--Continued

- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages.

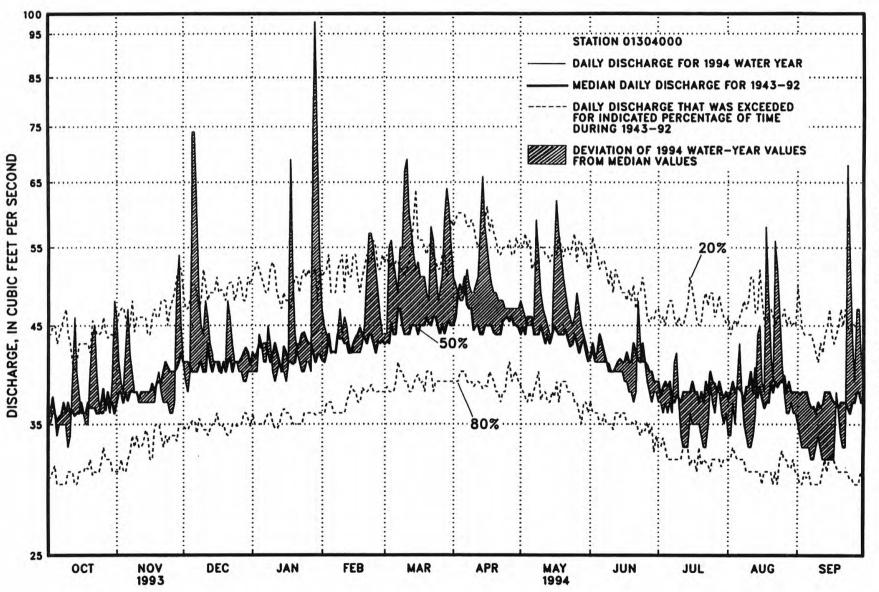


Figure 3.—Discharge data, Nissequogue River near Smithtown, Water year 1994.

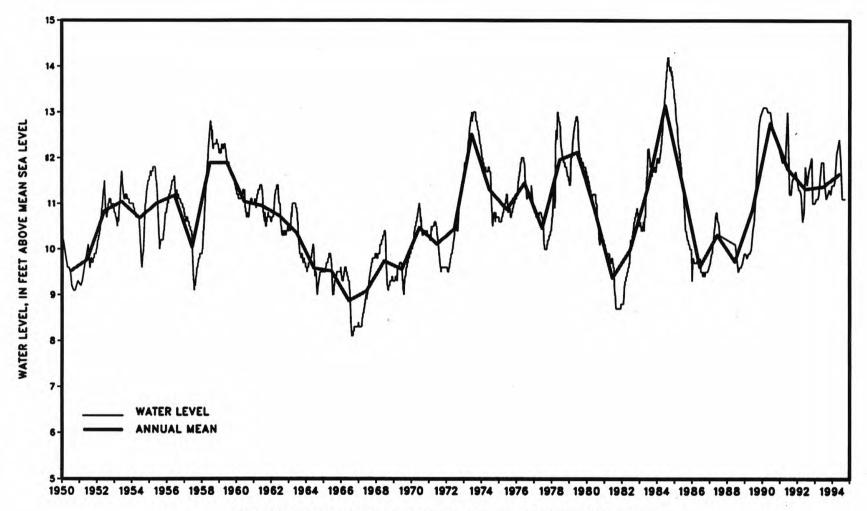


Figure 4.——Hydrograph of water—table observation well \$4271 at Riverhead, N.Y.

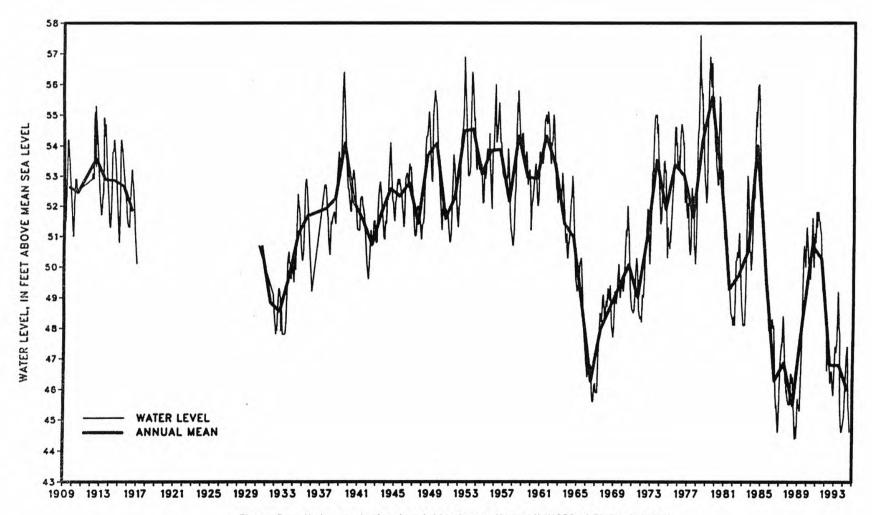


Figure 5.--Hydrograph of water-table observation well N1259 at Plainedge, N.Y.

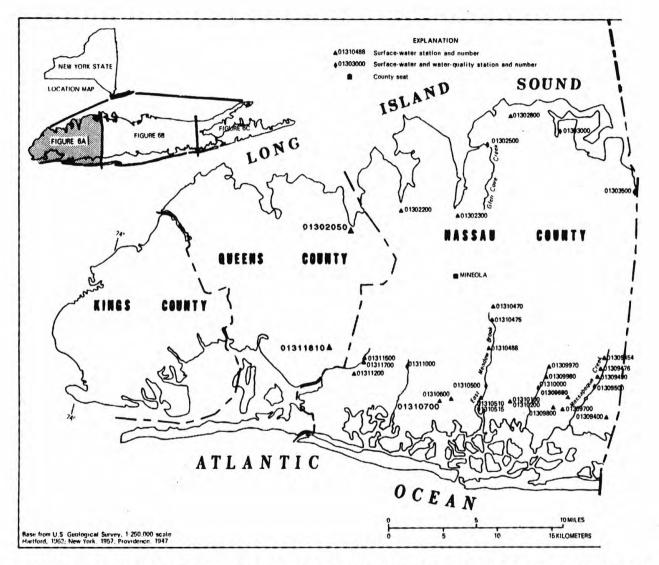


FIGURE 6A.-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

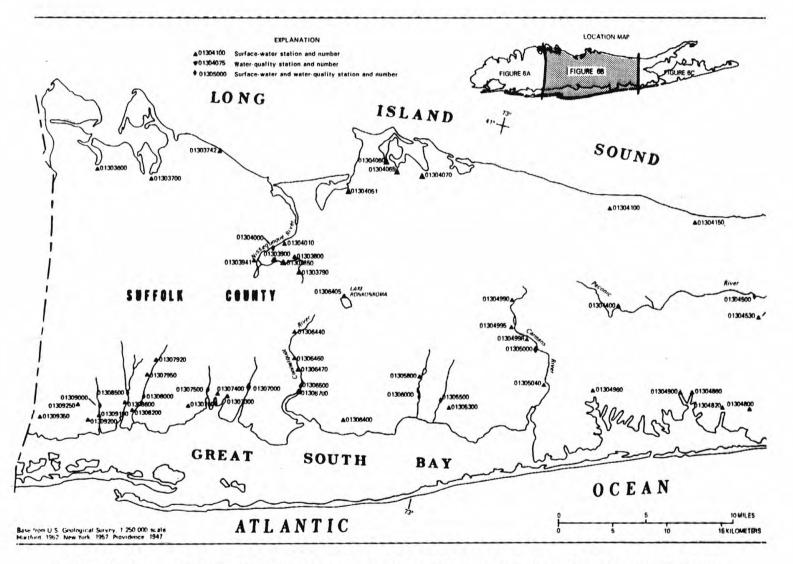


FIGURE 6B .-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

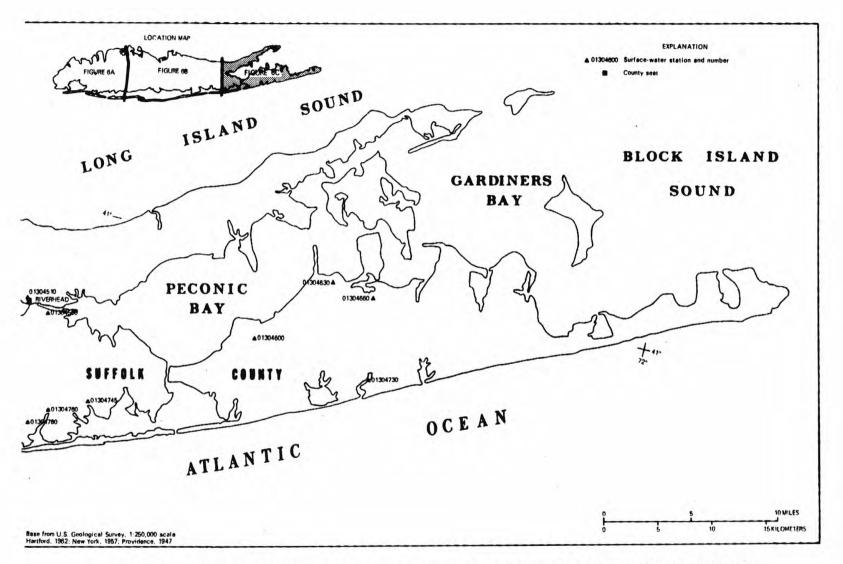


FIGURE 6C .-- LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

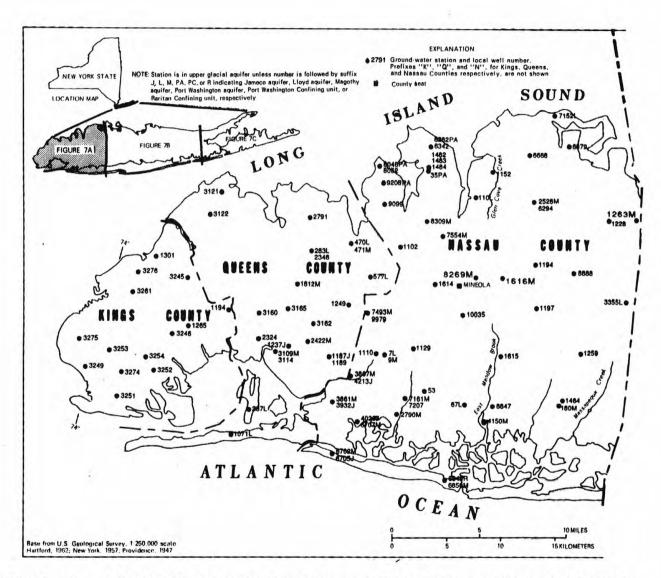


FIGURE 7A.-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

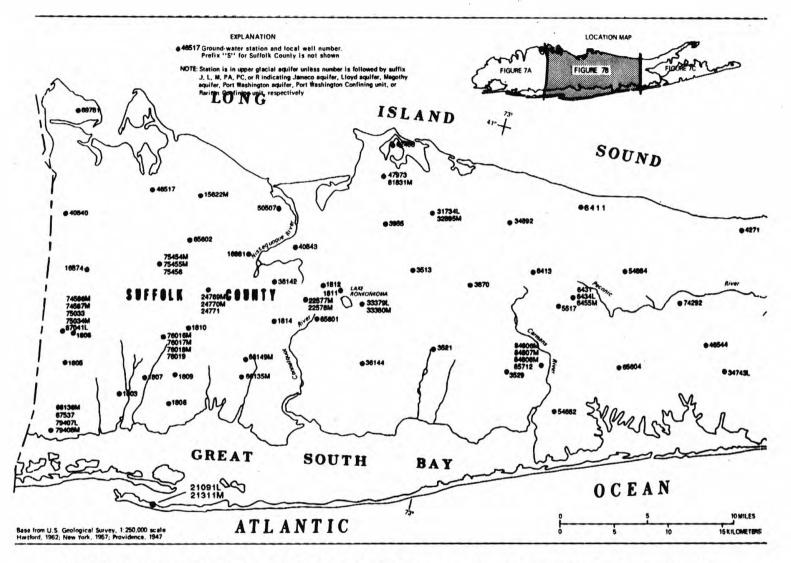


FIGURE 7B .-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

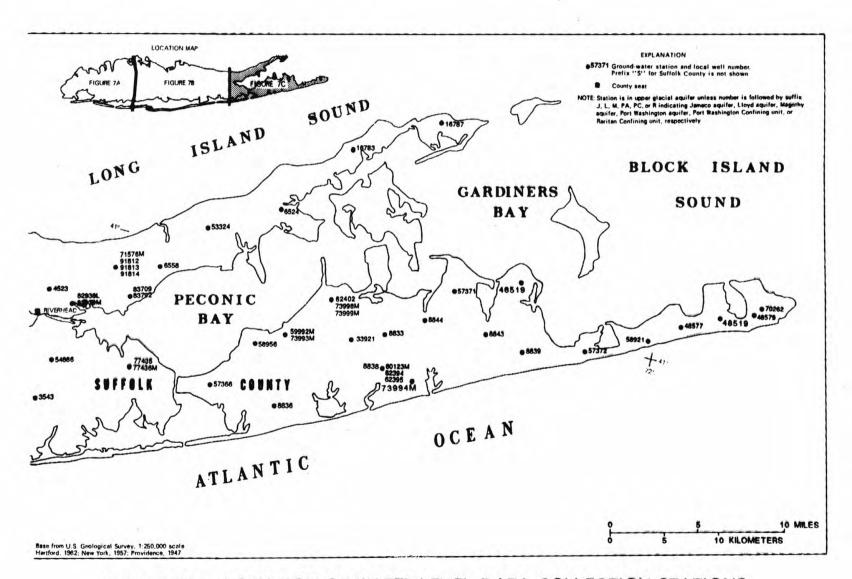


FIGURE 7C .-- LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

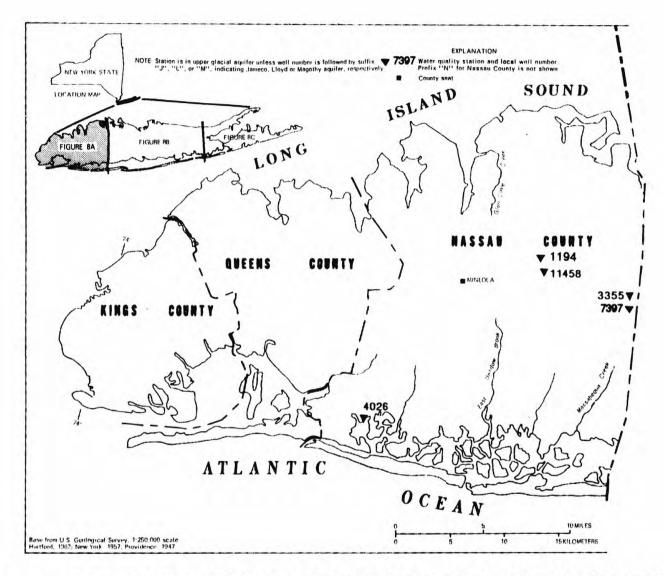


FIGURE 8A .-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

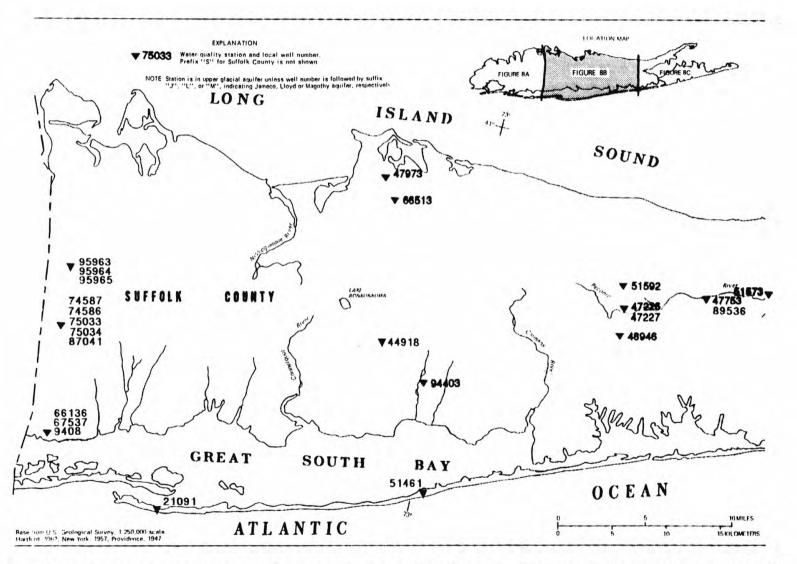


FIGURE 8B.-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

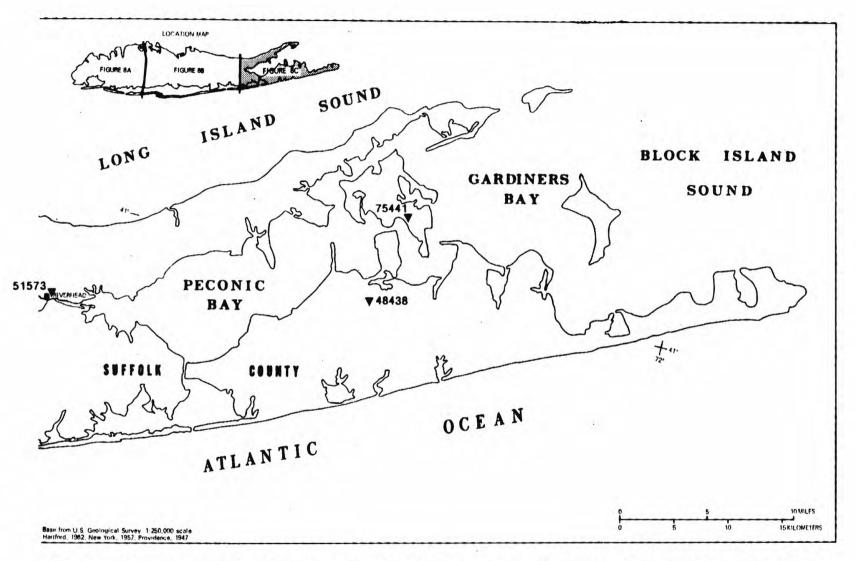


FIGURE 8C .-- LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

01302050 ALLEY CREEK NEAR OAKLAND GARDENS, NY

LOCATION.--Lat 40°41'19", long 73°30'37", Queens County, Hydrologic Unit 02030201, on right bank just upstream from Cross Island Parkway entrance ramp, at upstream side of 6- by 9- foot concrete culvert in Alley Pond Park, about 4.0 mi north east of Oakland Gardens.

DRAINAGE AREA. -- About 1.6 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1993 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 4.0 ft above sea level, from topographic map.

REMARKS .-- Records poor.

		DISCHARGE,	CUBIC	FEET	PER	SECOND, DAIL	WATER Y MEAN	YEAR OCTOBER VALUES	1992 TO	SEPTEMBER	1993		
DAY	OCT	NOV	DEC	JAN	ı	FEB	MA	R APR	MAY	JUN	JUL	AUG	SEP
1										e2.5	.85	.85	.94
ž										.85	1.5	.86	.99
2 3										.95	1.9	.87	.96
4										. 95	.82	.89	.96 1.7
5										1.1	.81	.91	.85
6								222		.95	.84	1.5	.88
7										. 95	. 85	1.0	.94
8										. 98	.84	. 87	. 97
9										1.1	.83	.87	1.0
10										.92	.84	.93	.97 1.0 1.8
11 12 13 14 15										.93	.85	. 95	.85
12										. 96	. 85	2.7	.88
13										. 96	. 85	.96 .79	.95
14										.92	.87	.79	. 96
15										. 87	.82	.75	.95 .96 .97
16										. 87	.80	1.9	1.2 2.3 1.9
17										. 88	.85	2.6	2.3
18										. 87	.85	.85 .75	1.9
19					•					. 87	.95	.75	.95
20										1.2	.85	.95	.95
21		422								.97	.85	.75	1.3
22 23										. 86	. 85	.75	. 97
23										.82	.85	.85	1.0
24										. 83	.88	. 85	. 96
25										.82	.85	1.4	1.1
26 27 28 29 30										.84	.88	.78	3.5
27										. 85	1.3	.81	7.4
28										. 83	.89	.88	.98 .95
29										.85	1.1	.83	.95
30										.85	.80	.85	. 96
31											.82	.90	
TOTAL										29.10	28.69	32.40	42.06
MEAN										.97	. 93	1.05	1.40
MAX										2.5	1.9	2.7	7.4
MIN										.82	.80	.75	.85

e Estimated

STREAMS ON LONG ISLAND 01302050 ALLEY CREEK NEAR DAKLAND GARDENS, NY--Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES SEP DAY OCT NOV DEC MAR JUN JUL AUG JAN FEB APR MAY 1.1 1.0 1.0 1.0 .95 .85 .86 1.1 1.2 1.2 2.1 1.2 89 .91 12345 .91 2.1 1.6 .95 1.0 .88 .94 .94 .90 .93 .93 .98 .93 .90 .95 1.3 .95 .93 .86 2.4 1.1 .88 .85 .96 .96 2.1 2.3 .85 1.6 1.0 1.3 2.6 .95 .95 1.2 2.2 2.9 .95 1.2 1.1 .95 .95 .95 1.2 5.2 .90 1.2 1.3 2.1 1.2 1.1 .85 .87 .88 1.1 1.1 1.1 1.1 .78 .75 .80 .85 .85 .85 .90 6 .88 1.1 .95 .92 .91 .95 89 1.6 1.7 7.6 .93 .90 .85 .85 10 .90 .85 1.1 1.4 .95 .95 . 85 .92 .93 .89 2.3 1.3 1.1 1.1 1.1 1.5 1.3 1.2 1.1 1.7 1.2 1.1 1.1 1.3 .94 .95 .95 .92 .85 .95 .96 .97 .95 .84 .93 1.1 1.1 1.1 1.1 12 13 14 15 3.2 .85 .85 1.6 3.2 1.2 1.0 1.0 1.0 1.0 .91 .85 .89 .82 .98 .85 1.1 .85 .94 .95 .95 .85 .95 .87 .95 .89 .97 .98 .96 1.2 1.7 2.8 .93 .97 .89 .90 16 17 18 .98 6.3 3.4 3.1 2.7 1.0 .85 1.7 5.0 .96 1.1 2.1 .85 .95 1.0 .85 1.0 1.6 .95 1.2 1.1 .95 .95 .85 .85 .85 .89 2.4 .85 .96 2.1 .85 1.2 .86 .85 19 20 .92 .85 .87 1.0 94 1.3 .88 .95 .95 .88 .85 2.9 1.5 1.2 2.5 .99 .95 1.1 1.1 1.1 4.4 .95 .95 1.0 1.1 1.7 3.5 1.0 .95 21 2.5 .87 .88 95 .87 2.7 .93 .92 .95 .85 .92 22 23 24 25 .87 3.6 .93 .95 .95 14 .85 1.3 .92 1.3 .85 .95 2.0 .85 .95 .94 .95 .89 .93 .95 3.8 .95 .86 .95 26 27 28 29 .96 2.2 2.8 3.0 1.2 1.0 .95 .95 .95 1.9 .90 .95 .95 .91 .95 2.9 2.3 2.7 1.1 1.1 1.1 1.2 1.1 .95 .95 1.7 .95 1.5 4.4 .95 .95 .91 .85 1.8 .95 .85 .85 16 .92 .93 .90 .86 1.4 .85 . 95 .86 ---.85 30 .85 .95 ---.95 97 .86 .95 31 1.0 ---------42.29 1.36 6.1 37.67 1.22 3.2 33.13 1.18 2.9 35.12 1.17 3.2 TOTAL 29.30 59.19 51.36 42.19 30.04 37.00 39.65 1.32 .98 2.7 .75 1.91 7.6 1.00 1.19 MEAN 1.36 MAX 3.8 .85 .82 .85 .85 .85 .87 .85 .95 .85 .84 .85 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1994, BY WATER YEAR (WY) 1.22 1.22 1994 1.91 1.91 1994 1.91 1.35 1.66 1994 1.05 MEAN 1.00 1.18 1.66 1.36 1.06 1.36 MAX (WY) MIN .98 1.36 1994 1.36 1.18 1.66 1.17 1994 1.17 1994 1.36 1.19 1.40 1994 1.18 1.22 . 98 1.66 1.36 93 1.32 1994 (WY) 1994 1994 1994 1994 1994 1993 1993 1993 1994 SUMMARY STATISTICS FOR 1994 WATER YEAR WATER YEARS 1993 - 1994 ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
HIGHEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS PEAK STAGE
INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS 488.50 1.34 1.34 1.34 1.34 1994 1994 Jan 28 1994 Aug 15 1993 Nov 6 1993 Jul 8 1994 Mar 3 1994 Nov 4 1993 Jan 28 Nov 7 Nov 6 16 .75 Nov Jul Mar Nov .82 .82 131a 3.39b 131a 3.39b 834 Nov 75 . 75 2.2 2.1 .85 .85

a From rating curve extended above 60 ${\rm ft^3/s.}$ b Backwater from high tide.

01302500 GLEN COVE CREEK AT GLEN COVE, NY

LOCATION.--Lat 40°51'48", long 73°38'05", Nassau County, Hydrologic Unit 02030201, on right bank just downstream from Glen Cove Road, at 8- by 10-foot concrete culvert in Pratt Park, one block west of post office, in Glen Cove. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 11 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1938 to current year. Prior to October 1967, published as Cedar Swamp Creek. REVISED RECORDS (WATER YEARS).--WSP 971: 1939-42. WDR NY-86-2: 1960 (M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 15.68 ft above sea level. Prior to Oct. 31, 1977, at datum 0.15 ft higher. Prior to June 17, 1965, at datum 0.19 ft higher.

REMARKS.--No estimated daily discharges. Records good except those above 200 ft3/s, which are fair.

		DISCHARG	E, CUBIC	FEET PER	SECOND, V	MEAN VA	AR OCTOBER	1993 TO	SEPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.4 4.8 6.1 4.3 4.1	7.9 5.9 5.2 4.8	4.8 4.7 4.6 8.9	4.5 4.6 4.4 5.2 4.6	7.5 5.8 5.2 4.9	4.9 4.7 8.0 9.7	5.7 5.3 5.2 5.0 4.9	5.2 4.1 4.0 4.1 4.3	3.8 3.8 3.8 3.8 3.8	3.8 3.7 3.6 3.6 3.6	3.5 3.5 3.5 3.5 8.9	3.7 3.7 3.6 3.6
6 7 8 9	4.0 4.0 4.0 4.0 3.9	6.1 5.1 4.7 4.5 4.4	8.8 6.8 5.8 7.2	4.4 4.4 4.7 4.3 4.3	5.1 5.1 4.8 4.7 4.5	7.7 10 12 9.7	5.7 11 5.3 4.9 6.9	5.3 8.7 16 5.2 5.0	3.8 4.0 3.8 3.9 3.8	3.6 3.5 22 4.6 4.6	3.8 3.8 3.5 3.4 3.4	3.7 3.7 3.7 3.7 3.6
11 12 13 14 15	3.9 15 5.7 5.3 4.6	4.2 4.2 4.2 4.3 4.2	15 8.2 6.3 5.9 5.6	4.4 4.4 4.9 4.8 4.4	4.5 4.6 4.7 4.7 4.7	27 15 13 9.5 9.9	5.3 8.7 16 7.7 5.6	4.6 4.7 4.3 4.1 4.0	3.8 3.8 3.7 3.7	3.9 3.6 3.4 4.0 3.9	3.4 3.5 13 16 6.7	3.6 3.6 3.6 3.6
16 17 18 19 20	4.1 4.0 4.0 4.6	4.2 4.3 4.2 4.4 4.3	5.2 4.9 4.8 6.9 4.6	4.2 29 25 7.6 7.6	4.7 4.9 6.0 7.2	7.9 6.2 5.9 6.1 5.4	12 5.8 5.2 6.1 5.1	20 17 6.2 7.0 5.7	3.7 3.7 3.8 3.7 3.7	3.4 3.4 8.4 3.5 3.4	5.2 8.9 36 6.9 5.7	3.7 4.0 12 4.3 4.3
21 22 23 24 25	15 7.1 6.1 5.0 4.5	4.2 4.2 4.2 4.3 4.2	21 6.9 5.5 5.0 4.7	7.5 7.4 7.4 7.1 5.3	21 16 7.3 13 7.9	7.7 25 8.4 6.6 5.6	4.6 4.5 4.4 4.3 4.2	5.0 4.6 4.5 4.2 9.1	3.7 3.9 3.6 13 4.0	3.4 3.3 11 3.8 3.7	10 32 8.4 6.0 5.0	4.4 15 35 8.8 6.5
26 27 28 29 30 31	4.3 4.6 4.1 4.1 15	4.2 4.2 16 5.2 4.9	4.5 4.4 4.4 4.4 4.4	4.9 4.7 126 37 16 11	6.0 5.2 5.0	5.3 12 16 19 8.8 6.6	4.2 9.6 4.5 4.4 4.1	5.7 4.4 4.0 3.9 3.9 3.8	3.6 3.8 3.7 8.3 4.3	6.2 5.7 7.4 4.0 3.6 3.5	4.3 4.0 3.7 7.1 3.9 3.8	5.3 22 7.6 6.0 5.0
TOTAL MEAN MAX MIN	187.6 6.05 15 3.9	158.7 5.29 16 4.2	249.6 8.05 49 4.4	376.0 12.1 126 4.2	194.9 6.96 21 4.5	382.6 12.3 79 4.7	186.2 6.21 16 4.1	192.6 6.21 20 3.8	127.6 4.25 13 3.6	151.1 4.87 22 3.3	234.3 7.56 36 3.4	198.6 6.62 35 3.6
				R WATER			BY WATER					
MEAN MAX (WY) MIN (WY)	6.38 11.7 1990 3.18 1966	7.06 15.4 1978 3.23 1966	7.20 12.4 1984 3.48 1966	7.66 29.8 1979 3.27 1970	7.83 16.2 1941 3.48 1967	8.52 14.7 1980 4.32 1981	8.18 23.5 1983 3.90 1966	7.54 21.2 1989 3.87 1965	6.77 16.0 1984 3.07 1971	6.84 19.1 1984 3.14 1970	7.41 20.5 1955 3.25 1965	6.78 13.7 1975 2.84 1967
SUMMAR	Y STATIST	ics	FOR :	1993 CALE	IDAR YEAR	F	OR 1994 WA	TER YEAR		WATER Y	EARS 1939	- 1994
ANNUAL ANNUAL HIGHES: LOWEST HIGHES: LOWEST ANNUAL INSTAN: INSTAN: INSTAN: 10 PER: 90 PER:	TOTAL MEAN T ANNUAL M ANNUAL M T DAILY ME SEYEN-DA TANEOUS P TANEOUS P TANEOUS P TANEOUS L CENT EXCE CENT EXCE CENT EXCE	MEAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE DW FLOW EDS EDS		2393.0 6.56 63 3.9 3.9 3.9	Sep 27 Jun 28 Jul 30		2639.8 7.23 126 3.3 3.5 460a 5.21 3.3b 12 4.7 3.7	Jan 28 Jul 22 Aug 6 Aug 18 Aug 18 Jul 17		7.3 12.8 4.2 455 2.2 2.3 728a 7.1 2.1 11 5.8 3.5	2 Jan 2 Oct Oct Sep 1 2 Sep 1	1979 1966 21 1967 8 1967 2 1967 2 1960 2 1960 5 1967

a From rating curve extended above 110 $\rm ft^3/s$ on basis of step-backwater method. b Also occurred on Jul 21-23.

01302500 GLEN COVE CREEK AT GLEN COVE, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT	3	1215	5.5	263	6.7	12.0	766	10.6	20	7.0
FEB 0	1	0935	7.6	364	6.8	4.5	768		19	6.2
APR 2	8	1000	4.5	356	6.9	11.5	767	9.9	24	7.9
JUL 1	1	. 1235	3.9	321	6.7	14.5	770		23	7.8
	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SD4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
	3	20	2.3	38	24	32	0.10	15	0.007	3.3
FEB	1	42	2.3	36	22	69	⟨0.10	12	0.011	2.9
APR	в	25	2.4	52	28	49	⟨0.10	15	0.020	3.9
JUL 1	1	24	2.4	43	26	44	<0.10	16	0.008	3.5
	DATE	NITRO- GEN AMMONÍA DIS- SOLVED (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
OCT 13	3	0.07	0.30	0.057	0.030	470	280	60	56	0.03
FEB 0:	1	0.23	0.40	0.081	0.020	510	370	70	72	0.02
APR 28	B	0.05	0.30	0.11	0.005	5400	170	200	120	0.02
JUL 1	1	0.06	0.20	0.037	0.017	440	260	60	45	⟨0.02

01303000 MILL NECK CREEK AT MILL NECK, NY

LOCATION.--Lat 40°53'15", long 73°33'51", Nassau County, Hydrologic Unit 02030201, on right bank at Beaver Lake, 30 ft upstream from Feeks Lane (Cleft Road) bridge in Mill Neck, and 1.5 ml southwest of Bayville. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 11.5 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- January 1937 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.--Water-stage recorder and steel sheet-piling control. Datum of gage is 6.49 ft above sea level. Prior to June 23, 1965, at datum 0.06 ft higher.

REMARKS.--No estimated daily discharges. Records good . Slight regulation by ponds above station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 32 ft³/s and maximum (*):

	2.	Discharge (ft ³ /s)	Gage height			Discharge (ft ³ /s)	Gage height (ft)
Date Jan. 28	Time 1800	*58	(ft) *1.02	Date Mar. 10	1630	35	0.75

		DISCHA	RGE, CUBI	C FEET PE	ER SECOND,	WATER YE	AR OCTOBER	R 1993 TO	SEPTEMBE	R 1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 6.6 7.0 6.6 5.9	8.0 7.1 6.7 8.0	6.8 6.6 6.5 6.9 21	6.8 7.0 7.1 8.7 7.8	8.4 7.6 7.2 7.0 7.0	7.3 7.6 18 11 8.2	9.4 8.6 8.4 8.1 8.0	6.4 5.9 5.6 5.6 5.6	6.0 5.8 5.8 5.9 6.0	6.6 5.9 5.6 5.5 5.4	6.3 6.2 6.2 7.0	6.3 5.9 5.8 5.6 5.5
6 7 8 9	5.8 5.9 5.9 6.1 5.7	9.5 7.7 7.1 7.0 6.9	16 10 8.3 7.6 7.5	7.1 7.2 8.2 7.2 6.6	7.0 7.0 7.8 9.3 8.0	7.3 7.2 8.4 8.8 23	8.3 10 9.5 8.6 8.4	6.3 6.7 14 11 7.9	6.3 6.6 6.4 6.1 5.9	5.5 5.5 10 16 10	8.7 7.3 6.6 6.3 6.3	5.6 5.6 5.4 5.7
11 12 13 14 15	5.6 7.8 11 8.0 7.0	6.7 6.6 6.6 6.8 6.8	9.8 9.4 8.3 7.7	6.5 7.1 7.4 7.2 6.8	8.9 8.9 8.0 7.4 7.3	22 13 11 11 11	9.0 9.2 12 13 10	6.9 6.2 5.8 5.6 5.7	5.9 6.1 6.2 6.0 5.7	7.5 6.5 6.2 6.0 8.3	6.3 6.5 7.9 13	5.6 5.6 5.8 5.8
16 17 18 19 20	7.0 7.1 6.6 6.1 8.8	6.5 6.7 6.6 7.0 7.1	7.2 7.0 8.7 7.6 7.5	6.2 7.8 21 11 8.1	7.1 7.0 7.1 7.5 8.7	9.6 9.0 8.9 8.5	10 10 8.5 8.3 8.5	9.6 17 12 10 9.2	5.6 5.7 5.6 5.5 5.3	7.8 8.7 7.0 7.2 6.6	9.7 8.3 18 12 9.2	5.6 5.7 8.7 7.6 6.5
21 22 23 24 25	9.9 11 7.9 6.9 6.5	6.6 6.3 6.6 6.6	12 10 8.1 7.4 7.3	6.9 6.5 6.8 6.7 7.0	12 13 12 11 10	8.8 16 13 11 9.7	7.9 7.5 7.4 7.2 7.2	7.9 7.2 6.7 6.7 8.2	5.4 5.8 5.6 9.8	6.2 5.8 7.5 10 8.1	7.8 13 15 10 8.1	6.2 5.9 20 13 9.6
26 27 28 29 30 31	6.3 6.8 6.9 6.6 7.5	6.6 6.5 9.7 9.8 7.6	6.7 6.3 6.3 6.5 7.1 6.8	7.5 7.1 29 32 15	8.8 7.8 7.4 	8.9 9.8 14 16 14	8.0 7.6 8.1 6.9 6.7	11 8.2 6.6 5.9 5.8 5.8	7.5 6.4 5.8 6.4 7.3	7.7 8.5 10 8.9 7.5 6.6	7.1 6.6 6.4 7.3 7.2 6.7	7.7 10 11 8.6 6.7
TOTAL MEAN MAX MIN	224.7 7.25 11 5.6	219.0 7.30 11 6.3	263.9 8.51 21 6.3	297.1 9.58 32 6.2	236.2 8.44 13 7.0	353.8 11.4 23 7.2	260.3 8.68 13 6.7	243.0 7.84 17 5.6	188.4 6.28 10 5.3	232.4 7.50 16 5.4	267.3 8.62 18 6.2	218.2 7.27 20 5.4
STATIS	TICS OF	MONTHLY ME	AN DATA F	OR WATER	YEARS 1937	7 - 1994,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	8.34 12.9 1956 5.22 1966	9.20 12.3 1978 5.48 1967	9.24 14.5 1974 5.20 1967	9.18 16.4 1979 5.36 1967	9.41 13.4 1979 5.66 1968	10.0 13.8 1953 6.59 1966	9.75 14.9 1980 5.19 1966	9.27 13.9 1984 5.45 1965	8.57 14.1 1984 4.53 1966	8.45 17.9 1984 4.10 1966	8.63 15.7 1955 4.54 1966	8.39 13.3 1960 4.64 1965

STREAMS ON LONG ISLAND 01303000 MILL NECK CREEK AT MILL NECK, NY--Continued

SUMMARY STATISTICS	FOR 1993 CALENDAR YEAR	FOR 1994 WATER YEAR	WATER YEARS 1937 - 1994
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	2956.8 8.10	3004.3 8.23	9.04 12.1 1984 5.59 1966
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	23 Sep 27 5.3 Jul 17 5.8 Jul 13	32 Jan 29 5.3 Jun 20 5.5 Jun 15 58 Jan 28 1.02 Jan 28 5.04 Jun 20	105 Aug 12 1955 3.6 Sep 11 1965 3.7 Oct 7 1966 137a Sep 12 1960 4.85b Sep 21 1938 .09c Dec 11 1941
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	11 7.3 6.1	11 7.2 5.8	12 8.4 5.9

a From rating curve extended above 70 ft³/s. b From hurricane wave. c Result of freezeup. d Also occurred on Jul 23.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARD- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 13	1000	11	223	7.4	9.0	766	10.3	11	6.1
JAN 05	1305	7.7	161	7.1	0.5	758	12.9	11	4.8
APR 28	0845	8.4	568	7.4	16.5	768	9.0	13	11
JUL 11	1005	7.7	170	9.1	25.0	771	10.4	10	4.4
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	NITRO- GEN. NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
13	25	1.7	24	21	37	⟨0.10	8.8	0.008	0.84
JAN 05	12	1.3	25	18	17	⟨0.10	11	0.007	1.9
APR 28	72	3.3	28	32	130	⟨0.10	4.9	0.010	0.71
JUL 11	13	1.7	28	16	20	<0.10	11	0.002	⟨0.05
DATE	NITRO- GEN AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONÍA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SQLYCD (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
13	0.06	(0.20	0.081	0.006	660	180	30	12	0.02
JAN 05	0.10	(0.20	0.011	0.006	190	82	20	19	(0.02
APR 28	0.02	0.20	0.059	0.002	510	130	60	24	(0.02
JUL 11	0.01	0.50	0.11	0.003	980	150	100	9	0.02

01303500 COLD SPRING BROOK AT COLD SPRING HARBOR, NY

LOCATION.--Lat 40°51'26", long 73°27'50", Nassau County, Hydrologic Unit 02030201, on left bank 270 ft upstream from State Highway 25Å, at Cold Spring Harbor Fish Hatchery, and 1.0 mi southwest of village of Cold Spring Harbor. Water-qualiy sampling site at discharge station.

DRAINAGE AREA. -- About 7.3 mi2.

PERIOD OF RECORD. -- July 1950 to current year.

REVISED RECORDS.--WDR NY-81-2: 1954 (M), 1958 (M), 1962-63 (M), 1971 (M), 1978-79, 1980 (M).

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 5.38 ft above sea level.

REMARKS.--No estimated daily discharges. Records good except those above 100 ft³/s, which are poor . Flow occasionally regulated at outlet of pond 40 ft above station. Diversion from this pond by New York Fish Hatchery bypasses station, except during the 1979 water year.

		DISCHARG	E, CUBIC	FEET PER	SECOND, N	MATER YEA	AR OCTOBER LUES	1993 TO S	SEPTEMBE	R 1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.5 1.5 1.6 1.6	3.0 2.3 1.9 1.7	1.8 1.6 1.6 1.8 5.9	1.6 1.8 1.8 2.4 2.1	2.1 1.9 1.8 1.8	1.8 1.9 3.2 2.8 2.7	2.2 2.1 2.0 1.9 2.0	2.1 2.0 1.8 1.8	1.6 1.5 1.6 1.4 1.4	1.4 1.3 1.3 1.3 1.2	1.3 1.2 .98 .79 1.4	1.3 1.2 1.1 1.1 1.3
6 7 8 9	1.4 1.3 1.3 1.4 1.4	1.7 1.4 1.3 1.3	4.5 2.7 2.1 1.9 2.0	1.8 1.9 2.4 1.9	1.8 1.7 2.0 2.6 2.1	2.6 2.4 2.5 2.4 6.2	2.2 3.2 2.9 2.4 2.2	2.0 2.1 3.8 3.2 2.4	1.5 1.6 1.6 1.6 1.5	1.3 1.3 1.7 1.9 1.6	1.7 1.0 .98 .98	1.3 1.3 1.3 1.1
11 12 13 14 15	1.4 2.0 3.6 2.5 2.0	1:4	2.8 2.6 2.0 2.0 1.8	1.5 1.8 1.9 1.8	2.5 2.3 2.0 1.8 1.8	5.7 3.2 2.5 2.4 2.4	2.3 2.4 3.1 3.8 2.9	2.0 1.8 1.7 1.6 1.7	1.4 1.4 1.5 1.5	1.4 1.2 1.3 1.0	.98 1.1 1.6 3.3 3.2	1.1 .98 .98 1.1 1.1
16 17 18 19 20	1.8 1.6 1.6 1.5 2.6	2.3 2.8 2.0 1.8 1.9	1.8 1.7 1.8 1.8	1.6 1.9 6.0 3.4 2.2	1.7 1.7 1.8 1.8 2.0	2.5 2.2 2.2 2.2 2.1	3.1 3.0 2.5 2.3 2.3	2.9 5.4 3.7 2.9 2.6	1.4 1.4 1.4 1.3	1.5 1.3 1.4 1.3 1.1	1.8 1.4 3.6 2.2 1.6	1.1 1.1 2.0 1.5 1.2
21 22 23 24 25	3.1 4.0 2.5 1.9 1.8	1.6 1.6 1.5 1.5	3.0 3.1 2.3 1.9 1.8	1.8 1.7 1.6 1.7 1.8	2.9 4.1 3.7 3.3 2.9	2.0 3.4 3.0 2.5 2.3	2.2 2.1 2.0 2.0 2.0	2.2 2.0 1.8 1.8 2.0	1.3 1.8 1.6 1.6	1.3 1.2 1.5 2.0 1.7	1.5 4.2 4.6 2.2 1.6	.98 .98 7.3 2.9 1.7
26 27 28 29 30 31	1.6 1.8 1.7 1.6 2.0 3.0	1.4 1.5 2.6 2.9 2.2	1.7 1.6 1.6 1.6 1.8 1.7	2.0 1.8 19 11 3.8 2.5	2.4 2.0 1.8	2.1 2.4 3.5 4.0 3.5 2.6	2.0 2.2 2.2 2.0 2.0	2.4 2.2 1.8 1.7 1.6 1.6	1.4 1.2 1.2 1.4 1.5	1.5 1.7 1.7 1.9 1.7	1.4 1.3 1.3 1.4 1.4	1.3 5.1 3.7 2.0 1.6
TOTAL MEAN MAX MIN	59.8 1.93 4.0 1.3	53.7 1.79 3.0 1.3	68.1 2.20 5.9 1.6	91.9 2.96 19 1.5	62.1 2.22 4.1 1.7	87.2 2.81 6.2 1.8	71.5 2.38 3.8 1.9	70.4 2.27 5.4 1.6	44.1 1.47 1.8 1.2	44.9 1.45 2.0 1.0	54.29 1.75 4.6 .79	51.82 1.73 7.3 .98
		NTHLY MEAN										5 74
MEAN MAX (WY) MIN (WY)	2.48 6.02 1980 .38 1966	2.66 6.35 1980 .29 1967	2.62 5.95 1980 .29 1967	2.82 8.56 1979 .27 1967	2.91 6.85 1979 .29 1967	2.92 6.56 1979 .46 1967	2.90 7.25 1980 .45 1966	2.75 6.60 1979 .41 1967	2.63 6.37 1979 .67 1967	2.59 6.17 1979 .63 1968	2.70 6.11 1979 .59 1988	2.50 6.35 1979 .63 1965
	STATISTI		FOR 1	1993 CALEN	DAR YEAR	F	OR 1994 WA	TER YEAR		WATER Y	EARS 1950	- 1994
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT INSTANT 10 PERC	TOTAL MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY ANEOUS PE ANEOUS PE ANEOUS PE ENT EXCEE ENT EXCEE	MEAN EAN IN IN MINIMUM AK FLOW EAK STAGE DS DS EDS		788.7 2.16 6.1 1.2 1.3	Apr 1 Jul 26 Jul 20		759.81 2.08 19 .79 1.1 58 2.42 2.39 3.1 1.8 1.3	Jan 28 Aug 4 Sep 9 Jan 28 D Mar 3 C Aug 5		2.7 6.3 .5 53 .1 .2 181a 5.3 4.4 2.5	2 1 8 Dec 2 Dec Jan 4b Aug 0d Jan	1979 1967 21 1979 7 1983 3 1983 21 1979 31 1954 24 1967

a Result of regulation, from rating curve extended above 70 ft 3 /s. b Backwater from high tide, from high water mark. c Result of regulation. d Also occurred on Jan 25, 26, 27, 1967.

01303500 COLD SPRING BROOK AT COLD SPRING HARBOR, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
OCT 13	0845	4.0	93	7.3	12.0	765	9.8	4.7	2.1
JAN 05	1145	2.2	111	6.7	3.0	759	11.7	5.1	2.1
APR 25	0950	2.0	174	8.0	14.5	759		5.7	2.2
JUL 11	. 0850	1.4	126	7.9	24.5	771	7.0	4.9	2.3
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLU0- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
0CT 13	8.1	0.90	14	5.5	13	(0.10	1.5	0.001	0.45
JAN 05	10	1.0	14	6.2	14	⟨0.10	9.0	0.003	1.1
APR 25	20	1.0	16	6.1	32	(0.10	4.0	0.011	0.39
JUL 11	12	0.80	17	5.2	20	(0.10	3.9	0.002	0.05
DATE	NITRO- GEN AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
OCT 13	0.04	(0.20	0.013	0.002	310	200	10	17	⟨0.02
JAN 05	0.05	(0.20	0.006	0.001	350	210	20	15	(0.02
APR 25	0.04	0.30	0.027	0.23	410	200	20	11	⟨0.02
JUL 11	0.04	(0.20	0.025	<0.001	550	270	20	9	⟨0.02

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY

LOCATION.--Lat 40°50'58", long 73°13'29", Suffolk County, Hydrologic Unit 02030201, on left bank 0.5 mi downstream from New Mill Pond, 1.0 mi southwest of Smithtown, and 1.5 mi southwest of village of Smithtown Branch. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 27 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1943 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 9.59 ft above sea level.

REMARKS.--No estimated daily discharges. Records excellent. Occasional regulation caused by cleaning of fish screens and trash racks at outlets of New Mill Pond on main stream and ponds on tributaries above station.

		DISCHARGE	, CUBIC	FEET PER	SECOND, DAILY	WATER YEAR	AR OCTOBER LUES	1993 TO	SEPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	36 35 36 38 34	46 41 39 38 42	41 39 38 40 74	40 40 40 44 43	47 45 44 43 42	44 44 55 56 53	51 50 49 48 48	48 47 46 45 45	42 42 41 41 41	37 37 36 37 36	34 34 37 35 39	35 34 33 33 33
6 7 8 9	35 35 35 35 33	47 42 40 38 38	74 58 49 45	41 41 45 43 40	42 42 44 47 44	51 49 55 55 67	49 52 50 49 49	45 46 59 54 49	41 41 41 40 40	37 36 41 42 37	43 38 35 34 33	33 32 32 33 34
11 12 13 14 15	34 39 46 40 38	37 37 37 37 37	48 46 43 42 41	39 40 41 40 40	46 45 43 42 42	69 60 57 54 52	50 51 58 66 58	47 46 45 44 44	40 40 40 40 40	34 33 33 33 36	33 34 36 44 45	33 32 32 32 32
16 17 18 19 20	36 36 35 35 40	37 37 37 39 40	41 40 40 41 41	39 41 69 52 44	42 42 42 43 45	53 51 51 51 49	55 52 50 49 49	54 62 57 54 51	39 39 38 38 37	35 35 35 35 34	39 38 58 48 42	32 32 38 36 34
21 22 23 24 25	44 45 40 37 36	38 37 37 37 36	48 46 43 41 41	42 41 40 40 41	51 57 57 55 52	48 58 56 52 49	48 48 48 47 47	49 47 46 45 46	38 48 43 41 41	33 33 35 39 37	39 56 52 46 41	33 33 68 54 44
26 27 28 29 30 31	36 37 37 36 39 48	36 37 49 54 45	40 40 39 39 40 40	41 40 75 98 68 53	49 46 44 	48 51 59 64 61 55	47 47 47 47 47	49 47 45 44 43 42	39 38 37 38 38	36 38 38 36 35 36	38 36 36 37 36 36	39 47 47 41 38
TOTAL MEAN MAX MIN	1164 37.5 48 33	39.7 54 36	1382 44.6 74 38	1441 48.5 98 39	1283 45.8 57 42	1677 54.1 69 44	1506 50.2 66 47	1491 48.1 62 42	1202 40.1 48 37	1115 36.0 42 33	1232 39.7 58 33	1109 37.0 68 32
STATIST				R WATER Y							-13.2	2200
MEAN MAX (WY) MIN (WY)	38.7 76.1 1991 23.5 1967	40.6 70.0 1956 24.3 1967	42.4 63.8 1991 24.0 1967	43.8 75.5 1979 23.3 1967	44.8 66.2 1979 23.4 1967	47.0 70.1 1979 29.2 1966	48.1 73.7 1983 27.3 1966	46.0 63.0 1989 30.8 1966	43.0 69.2 1984 25.6 1966	40.0 70.4 1984 22.4 1966	39.7 59.0 1984 22.1 1966	38.4 55.3 1984 24.2 1966
SUMMARY	STATIST	ICS	FOR 1	993 CALEN	DAR YEAR	F	DR 1994 WA	TER YEAR		WATER	YEARS 1944 -	- 1994
ANNUAL ANNUAL HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT 10 PERC 90 PERC 90 PERC	TOTAL MEAN ANNUAL M ANNUAL M ANNUAL M DAILY ME SEVEN-DA' TANEOUS PI ANEOUS PI TANEOUS L ENT EXCE ENT EXCE ENT EXCE	MEAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW EDS EDS		16610 45.5 90 32 33 58 44 35	Apr 2 Sep 6 Sep 2		98 32 32 32 119 1.13 31c 54 41	Jan 29 Sep 7 Sep 11 Jan 28 Jan 28 Sep 13		42. 58. 27. 334. 19. 21. 95.2. 16. 56. 41.	9 0 Jan 23 Jul 33 Jan 23	1991 1966 2 1979 1 1967 1 1966 2 1979 2 1979 5 1967

a Result of dam failure, from rating curve extended above 600 ft $^3/\rm s.$ b Also occurred on Jun 6 1967. c Also occurred on Sep 14.

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- February 1967 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: December 1978 to September 1981. WATER TEMPERATURES: January 1978 to September 1981.

COOPERATION. -- Some water-quality analyses for this station were collected and analyzed by Suffolk County of Health Services. They are identified in the table by an asterisk (*).

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

D	ATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARD- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV 23.		1000	37	131	6.4	6.5	773	11.2	8.4	3.3	11
FEB 22.		1030	57	195	6.9	4.5		12.1	7.9	2.7	20
APR +05.		1500	48	131	6.4	14.0		9.6	5.1	2.3	13
#25. 31. AUG		1500 1210	45 42	126 128	6.5 6.9	20.0 18.5	772	8.2 8.9	6.5 7.0	2.9 2.6	16 14
16.		1320	38	134	7.0	20.0	774	9.5	6.9	2.6	12
D	ATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN AMMONÍA TOTAL (MG/L AS N)
NOV 23. FEB		1.2	17	13	16	0.10	14	0.011		1.8	
22.		1.6	17	11	31	<0.10	11	0.018		2.0	
*05.		1.2		5	22				2.1		<0.02
#25. 31. AUG	::	1.5	17	8 11	25 21	⟨0.10	6.8	0.010	2.0	1.6	0.06
16.	• •	1.1	19	9.1	17	0.10	8.6	0.005	1.75	1.1	
0	ATE	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN AMMONÍA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)
NOV		40.0	0.00	0.000		0.000					
FEB		⟨0.2	0.02	0.006		0.002					
22. APR +05.		0.4 0.37	0.20	0.018	40 00E	0.003					/10
MAY *25.		0.37		0.027	(0.005	-	⟨50 ⟨50	<20 <20	(20 (20	<50 <50	<10 <10
31. AUG		0.3	0.08	0.017		0.002	(20	(20	(20		(10
16.		<0.2	0.08	0.012	77	0.008		- ((==)		

STREAMS ON LONG ISLAND
01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY--Continued

	DATE	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVEI (UG/L AS PB)	(UG/L	MANGA- NESE, DIS-	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)
NOV						410	130		80	57	
FEB 2 APR	2	44				280	100		690	630	
*0	5	⟨20	<20	⟨20	(20	140	70	(2)	80	60	⟨20
	5	<20	_<20 	<20	<20	210	140 71	<20	140	110 84	_<20
AUG 1	6					150	53		90	41	
	DATE	NICKE DIS- SOLV (UG AS	/FD 501	JM, SIL [S- D LVED SO G/L (U	IS- DIS	ICON TI S- DI VED SOL	UM, LIU S- DIS VED SOLV	JM, N: S- I /ED SI	IUM DI DIS- D DLVED SO	NA- LI UM, BI IS- AC LVED SI G/L ST	THY- ENE LUE TIVE JB- ANCE G/L)
	NOV23	-		2				_		1	0.02
	FEB 22	1.4		-				_		1	0.02
	*05		(20	(20 (20	2300	40	⟨50	⟨20	(20 (0.025
	#25 31		(20	<20 <	20	2800	_70	<50	<20		0.02
	16	-	3	-				- :		<	0.02

01304500 PECONIC RIVER AT RIVERHEAD, NY

LOCATION.--Lat 40°54'49", long 72°41'14", Suffolk County, Hydrologic Unit 02030202, on right bank 200 ft downstream from Long Island Lighting Co. dam, 0.4 mi west of Riverhead, and 1.2 mi upstream from outlet of Sweezy Pond. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 75 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1942 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 6.54 ft above sea level.

REMARKS. -- No estimated daily discharges. Records good. Flow regulated by ponds above station.

		DISCHARG	E, CUBIC	FEET PER	SECOND, Y	MEAN VAL	AR OCTOBER LUES	1993 TO S	SEPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	21 20 20 20 19	26 24 23 23 24	34 32 32 30 41	31 31 31 36 37	47 47 46 45 42	40 39 45 50 48	74 71 70 68 66	52 51 50 47 46	40 38 38 37 35	26 25 23 23 22	13 13 14 14 15	21 20 19 19 18
6 7 8 9	19 18 18 18 18	26 25 24 24 23	52 49 44 42 42	35 35 39 39 38	40 39 39 42 42	46 47 51 52 67	65 65 63 62 61	46 46 49 50 49	35 35 34 34 33	22 22 21 22 21	18 18 18 18 17	18 18 18 17 17
11 12 13 14 15	17 18 23 23 22	23 23 22 22 22	45 45 42 40 40	37 36 35 35 34	42 42 40 38 37	73 69 69 70 70	61 65 68 67	48 47 47 45 44	30 30 30 31 33	19 19 19 18 20	17 17 17 17 19	17 17 17 17 17
16 17 18 19 20	21 21 21 20 21	22 21 22 22 23	38 37 36 37 37	34 33 41 42 41	37 36 37 38 38	70 70 69 67 65	67 65 64 63 62	46 49 48 47 47	34 34 25 26 27	20 19 19 19	18 19 21 21 20	17 17 18 18 18
21 22 23 24 25	23 24 23 22 21	22 22 21 21 21	39 42 43 42 39	38 37 37 36 34	40 43 44 48 48	61 65 65 63 61	60 59 57 56 54	46 44 43 43 42	28 28 27 27 28	18 18 18 18	20 28 29 27 26	17 17 24 26 25
26 27 28 29 30 31	20 22 22 22 23 26	21 20 27 34 34	38 31 35 33 33	34 34 39 47 47	47 45 40 	61 65 69 77 80	54 54 54 54 54	44 44 42 41 40 40	27 27 26 26 26	18 17 18 16 13	26 24 22 22 22 21	24 23 23 23 22
TOTAL MEAN MAX MIN	848 20.8 26 17	707 23.6 34 20	1201 38.7 52 30	1150 37.1 47 31	1169 41.7 48 36	1905 61.5 80 39	1864 62.1 74 54	1423 45.9 52 40	929 31.0 40 25	602 19.4 26 12	611 19.7 29 13	582 19.4 26 17
		INTHLY MEAN		R WATER Y			BY WATER					
MEAN MAX (WY) MIN (WY)	26.6 69.6 1990 12.5 1967	30.8 80.6 1990 13.3 1967	34.8 63.8 1984 13.2 1967	39.1 106 1979 14.7 1966	42.5 105 1979 16.4 1967	48.4 109 1979 22.8 1966	51.6 96.4 1984 17.1 1968	46.4 96.3 1958 18.7 1966	40.2 104 1984 17.1 1986	30.5 84.7 1984 13.5 1966	28.8 83.4 1989 10.8 1966	25.6 62.6 1954 11.1 1966
SUMMARY	STATIST	cs	FOR 1	1993 CALEN	DAR YEAR	F	OR 1994 WAT	TER YEAR		WATER YE	ARS 1942 -	- 1994
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT INSTANT 10 PERC 90 PERC 90 PERC	TOTAL MEAN ANNUAL MA ANNUAL ME DAILY ME SSEVEN-DAT ANEOUS PE ANEOU	MEAN EAN IN		13031 35.7 81 11 13 62 36 16	Apr 3 Jul 18 Jul 16		80 12 13 90 1.6c 61 34 18	Mar 31 Jul 31 Jul 31 Mar 10 Mar 10 Dec 27		37.1 67.9 16.1 173 3.7 5.8 225a 2.33 1.46 622 32	Jan 30	2 1944

a Result of regulation.
b Backwater from high tide.
c Result of freezeup.
d Also occurred on Jan 31 1967, Dec 6 1969, Jan 27 1972 and Dec 10,11 1977. Result of freezeup.

01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: June 1975 to September 1980. WATER TEMPERATURES: June 1975 to September 1980.

COOPERATION. --Water-quality analyses for this station identified by an asterisk (*) were collected and analysed by Suffolk County Department of Health Services.

All other analyses for this station were collected and analysed by the U.S. Geological Survey.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
DEC 06	0945	49	96	6.6	6.0	769	10.8	6.1	2.2	7.5
JAN *03	0840	31	104	6.7	3.5		10.8	5.8	2.2	8.1
MAR 30	1120	74	90	6.7	6.5	768	11.9	4.8	1.7	8.0
APR +04	0915	68	85	6.3	10.5		9.5	4.8	1.9	8.2
MAY 23 *24	0915 0915	43 43	113 93	6.7 6.3	17.5 20.0	756 	10.0 8.3	6.0 5.5	2.1 2.3	9.0 9.2
AUG 10	1020	17	120	7.1	22.0	773	8.5	7.3	2.6	11
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUD- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN AMMONÍA TOTAL (MG/L AS N)
DEC	1.3	13	11	13	0.10	5.0	0.003		0.21	
JAN *03	1.1		15	14	0.10			0.30		0.05
MAR 30	1.0	10	10	12	(0.10	4.0	0.001		0.16	
APR *04	1.2		12	36				(0.2		0.03
MAY 23 *24	1.5	13	10 17	14 16	⟨0.10	3.7	0.006	0.2	0.22	<0.02
AUG 10	1.1	19	10	15	⟨0.10	3.4	0.002	-	⟨0.05	
DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN AMMONÍA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)
DEC 06	(0.2	0.06	0.055	427	0.020					44
JAN *03				45		(50	<20	⟨20	⟨20	⟨10
MAR 30	0.4	0.05	0.060		0.012					
APR *04	0.53		0.066	0.015		60	⟨20	⟨20	⟨50	<10
MAY 23 *24	0.4	0.05	0.075	=	0.036	==	 <20	- <u>-</u> <20	 (50	<10
AUG 10	0.2	0.02	0.060	145	0.013					

STREAMS ON LONG ISLAND 01304500 PECONIC RIVER AT RIVERHEAD, NY--Continued WATER-QUALITY RECORDS

0	ATE	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD DIS SOLV (UG/I	FD FRAR	MAN L NES IV- DI BLE SOL	E, DEN S- DI VED SOL	UM, S- VFD
DEC 06.						420	220			50	41	_
JAN *03.		⟨20	⟨20	⟨20	<20	410	270	(20 1	.00	100	(20
MAR 30.						620	210		3	40	110	_
APR *04. MAY		⟨20 '	<20	⟨20	⟨20	660	440	(20 1	.10	100	<20
23. #24. AUG		⟨20	₹20	 <20	 <20	850 720	460	-(80 80	65 90	_ <20
10.	••	++				400	170			60	35	-
	DATE	NICKE DIS- SOLV (UG/I	ED SOL	M, SILV S- DI VED SOL /L (UC	S- DIS	S- DI	S- DI VED SOL	UM, I S- VED : G/L	NIUM DIS- SOLVED (UG/L	VANA- DIUM, DIS- SOLVED (UG/L AS V)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)	
	EC 06		-				_	_			0.02	
	AN ≠03	<	20	(20 (2	0 3	3200	30	⟨50	⟨20	⟨20		
	#03 AR 30 PR		-	-	-		-				<0.02	
	PR *04	<	20	(20 (2	20 2	2000	20	<50	<20	(20	<0.025	
	23	-	20 -	(20 (2		1800	30	₹50	 <20	 (20	<0.02	
· ·	*24 UG 10		-				-				0.04	

01305000 CARMANS RIVER AT YAPHANK, NY

LOCATION.--Lat 40°49'49", long 72°54'24", Suffolk County, Hydrologic Unit 02030202, on left bank 50 ft upstream from Long Island Railroad bridge, 0.6 mi northeast of Yaphank Station, and 0.7 mi southeast of Yaphank. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 71 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1942 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 17.95 ft above sea level. Prior to Feb. 2, 1967, at datum 1.00 ft higher.

REMARKS.--No estimated daily discharges. Records good. Some regulation by two lakes above station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994
DAILY MEAN VALUES APR DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP 19 22 21 20 19 19 20 19 20 22 22 25 23 27 21 21 21 20 20 19 24 24 24 24 18 18 18 22 25 28 27 24 27 25 19 20 20 20 19 19 19 27 25 24 24 24 24 24 23 24 26 25 33 21 21 21 21 20 17 17 17 19 22 27 18 18 20 23 20 19 25 24 23 23 18 17 17 17 17 13 14 15 18 19 19 22 22 21 27 27 28 20 20 20 20 23 23 23 23 23 23 29 19 17 18 19 18 19 19 22 21 20 27 19 20 20 20 22 21 19 19 18 20 23 22 23 23 21 28 25 23 27 27 27 25 22 22 22 23 17 19 18 17 25 21 20 22 23 21 20 18 18 25 23 31 28 25 25 18 19 23 22 17 28 22 22 22 22 22 26 26 27 27 25 18 23 21 21 20 20 20 21 24 22 27 28 29 22 22 22 22 27 31 33 24 18 18 18 20 19 18 20 23 28 31 24 25 24 19 22 22 22 ------24.0 27 22 TOTAL MEAN MAX MIN 19.5 25 17 23.7 35 19 20.5 19.7 24 18 18.5 27.4 26.3 23.6 18.9 20 18 19.6 17 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1942 - 1994, BY WATER YEAR (WY) 22.3 37.9 1990 10.6 22.1 38.7 23.7 26.5 25.3 49.2 23.6 23.2 42.6 1979 9.35 44.0 1979 9.74 MAX 38.6 35.0 45.4 42.5 41.8 46.6 (WY) 9.48 13.7 10.6 10.9 13.1 14.1 13.8 10.5 (WY) SUMMARY STATISTICS FOR 1993 CALENDAR YEAR FOR 1994 WATER YEAR WATER YEARS 1942 - 1994 ANNUAL TOTAL
ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN
HIGHEST DAILY MEAN
LOWEST DAILY MEAN
ANNUAL SEVEN-DAY MINIMUM
INSTANTANEOUS PEAK FLOW
INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS 23.2 24.1 37.7 12.9 1978 Dec 5 Nov 27 Sep 7 Dec 5 Dec 5 27 21 17 17 Jan 26 Feb 28 Feb 25 Jul Nov 6.2 7.4 . 2ab 1967 Nov 1.52 143c 2.09 2.8b 11 1989 11 1989 24 1967 Aug Aug 15d 27 22 18 Jun 20 23 19 16

a Also occurred on Mar 3 1967. b Result of temporary construction upstream. c From rating curve extended above 80 ft³/s. d Result of regulation.

01305000 CARMANS RIVER AT YAPHANK, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE.--December 1979 to September 1981. WATER TEMPERATURES.--December 1979 to September 1981.

COOPERATION.--Some water-quality analyses for this station were collected and analyzed by Suffolk County Department of Health Services. They are identified in the table by an asterisk (*).

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARD- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
NOV	1220	18	132	6.8	6.5	770	11.3	7.4	2.7	13
JAN *03	1010	22	134	6.6	5.0		10.1	7.7	3.3	9.9
MAR 01	1000	23	142	6.8	3.0	773	12.3	8.1	3.1	11
*04	1030	26	112	6.4	11.0		10.8	7.4	3.4	11
*24 31	1030 0910	22 22	132 135	6.5 6.8	18.0 16.5	772	8.5 9.3	7.2 7.8	3.4 3.1	12 11
AUG 16	0950	20	141	6.7	17.5	774	8.5	7.9	3.2	11
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN AMMONÍA TOTAL (MG/L AS N)
NOV 22	1.8	17	11	16	0.10	8.4	0.002		1.5	
JAN *03	1.0		15	17				1.9		(0.02
MAR 01	1.1	16	13	18	(0.10	13	0.005		1.7	
*04	1.3		12	18				1.7		(0.02
#24 31	1.3	18	19 13	20 19	⟨0.10	9.8	0.006	1.4	1.3	<0.02
AUG 16	1.0	19	12	16	0.10	9.9	0.010		0.96	
DATE	NITRO- GEN AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AMMONÍA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)
NOV 22	(0.2	0.02	0.013		0.003					
JAN +03		0.02	0.013		0.003	<50	(20	<20	<50	(10
MAR 01	(0.2	0.04	0.022		0.005	, au		(20	(30	(10
APR	0.53	1000	(0.01	0.005		⟨50	(20	(20	<50	(10
MAY *24						⟨50	(20	⟨20	(50	(10
31	(0.2	0.04	0.015		0.003				-2	
16	⟨0.2	0.03	0.012		0.009					

STREAMS ON LONG ISLAND 01305000 CARMANS RIVER AT YAPHANK, NY--Continued

	DATE	CADMIUM DIS- SOLVED (UG/L AS CD)	SOLVED S	OBALT, DIS- OLVED (UG/L AS CO)	DIS- SOLVED (UG/I	RECOV- ERABLE S (UG/L (DIS- DLVED S UG/L	LEAD, DIS- F SOLVED E	TOTAL I RECOV- ERABLE S (UG/L	MANGA- NESE, DIS- SOLVED (UG/L NS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)
1	10V 22	4-		-		120	34		50	24	
	JAN *03	⟨20	(20	⟨20	⟨20	200	120	<20	60	60	⟨20
	01					720	140		120	93	
	NPR *04	⟨20	⟨20	⟨20	⟨20	240	160	<20	60	50	⟨20
	*24 31	<20	<20	₹20	<20 	240 300	270 120	<20	50 60	60 53	_<20
'	16				7	310	130		70	64	
	DATE	NICKEL DIS- SOLVE (UG/L AS NI	DIS- D SOLVE	SILVE DIS- D SOLVE	DIS- ED SOLVED (UG/L	DIS-	DIS-	TITA- NIUM DIS- SOLVED (UG/L AS TI)	(UG/L	METH LEN BLU ACTI SUB STAN (MG/	E VE CE
	NOV 22 JAN			**						0.	02
	*03	(2	0 (2	0 (20	520	0 40	<50	(20	(20		
	01 APR						4.5		- 11	<0.	02
	*04 MAY	(2		0 (20	450	0 40	(50	(20			025
	*24 31	<2	0 <2	0 <20	480	040	 	(20	<20	⟨0.	
	16									<0.	02

01305500 SWAN RIVER AT EAST PATCHOGUE, NY

LOCATION.--Lat 40°48'01", long 72°59'39", Suffolk County, Hydrologic Unit 02030202, on left bank 94 ft downstream from Montauk Highway in East Patchogue, 200 ft downstream from outlet of Swan Lake, and 1.2 mi upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA . -- About 8.8 mi2.

WATER-DISCHARGE RECORDS

DISCHARGE CURIC FEET BED SECOND WATER VEAR OCTORED 1002 TO SERTEMBER 1004

PERIOD OF RECORD. -- October 1946 to current year.

REVISED RECORDS.--WSP 1622: Drainage area. WDR NY-81-2: 1952-77 (M), 1978, 1979-80 (M).

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 2.84 ft above sea level.

REMARKS.--No estimated daily discharges. Records good. Flow regulated at outlet of Swan Lake.

	DISCHAF	RGE, CUBI	C FEET PER	SECOND, N	MEAN VAL	R OCTOBER UES	1993 TO	SEPTEMBE	R 1994		
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
8.8 8.7 9.1 9.0 8.9	9.4 8.8 8.5 8.5 9.7	8.5 8.5 8.7 9.2 20	9.0 9.4 9.3 12	11 10 10 10 10	11 11 18 14 12	14 14 13 13	12 12 12 12 12	12 10 10 10 9.7	8.5 8.1 8.0 7.7 8.0	7.1 7.1 7.7 7.5	7.7 7.7 7.7 7.7 7.6
8.6 8.7 8.6 8.9 8.8	9.5 8.6 8.5 8.7 8.4	13 10 9.8 9.8 9.9	9.4 9.4 12 10 9.4	10 10 10 11 11	12 12 13 13	14 15 14 14 15	12 12 15 12 11	10 10 9.4 9.6 9.6	8.1 7.8 8.2 8.0 7.7	9.0 8.0 7.5 7.3 7.3	7.5 7.3 7.3 7.3 7.2
8.5 11 11 9.0 8.8	8.1 8.3 8.1 8.5 8.5	9.7 9.4 9.5 9.4	9.4 9.9 9.8 9.8 9.8	11 11 11 10 10	15 13 13 13 13	14 14 17 16 14	11 11 11 11 11	9.8 9.3 10 9.6 9.4	7.5 7.5 7.5 7.2 7.4	7.3 7.4 8.1 11	7.3 7.2 7.2 7.2 7.3
8.5 8.2 8.4 8.4 9.2	8.1 8.3 8.3 8.3	9.4 10 9.0 9.5 9.1	9.5 11 18 11 10	10 10 10 10 11	13 13 13 13 13	14 14 14 14 14	13 13 11 11 11	9.1 9.8 8.5 8.6 9.6	7.3 7.0 7.4 7.3 7.1	8.4 8.2 10 8.7 8.4	7.3 7.3 8.4 7.7 7.3
9.3 9.0 8.2 8.1 8.1	8.1 8.0 8.0 8.1 7.7	15 10 9.8 9.4 9.4	9.8 9.8 9.8 10 9.8	12 13 11 12 12	13 16 13 13	13 13 13 13 13	11 11 11 11 12	8.9 9.7 9.4 9.0 8.7	6.7 6.6 6.8 7.0 7.1	8.8 10 8.7 8.7 8.4	7.3 8.4 16 9.2 8.3
8.1 9.1 8.8 8.5 10	7.7 7.7 14 11 8.8	9.7 9.4 9.4 9.7 9.2	9.8 9.8 19 15 11	11 11 11 	13 13 16 16 14 13	13 13 12 12 12	9.6 9.3 9.0 10	6.9 10 8.8 8.5 8.3	7.0 7.0 7.0 7.4 7.1 7.1	8.5 8.4 8.1 8.4 8.2 7.9	8.3 9.1 8.8 8.5 8.4
276.3 8.91 11 8.1	260.3 8.68 14 7.7	313.8 10.1 20 8.5	332.9 10.7 19 9.0	300 10.7 13 10	420 13.5 19 11	13.7 17 17 12	354.9 11.4 15 9.0	282.2 9.41 12 6.9	230.1 7.42 8.5 6.6	261.1 8.42 11 7.1	241.5 8.05 16 7.2
										9675	
11.3 17.3 1980 7.26 1989	11.5 17.7 1956 7.67 1966	11.7 16.4 1984 7.64 1967	12.2 18.6 1979 7.64 1967	12.7 18.3 1973 8.03 1967	13.4 19.6 1984 9.49 1966	14.2 21.7 1984 8.85 1966	13.9 21.5 1984 9.30 1966	13.2 21.6 1984 8.01 1981	12.3 20.7 1979 7.42 1994	11.9 20.1 1984 7.31 1981	11.2 19.7 1984 7.64 1988
Y STATIST	ICS	FOR	1993 CALEN	DAR YEAR	F	OR 1994 WA	TER YEAR		WATER Y	EARS 1947	- 1994
TOTAL MEAN T ANNUAL ANNUAL T DAILY ME SEVEN-DA TANEOUS P TANEOUS L CENT EXCE CENT EXCE	MEAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW EDS		4016.0 11.0 20 7.1 7.3	Mar 24 Aug 11 Aug 9		5.6c	Dec 5 Jul 22 Jul 21 Sep 23 Sep 23 Jun 26		18.5 8.6 40 4.3 5.8 77b 2.7	Jan Jan Jan Oct Jan Oct Aug	1984 1966 26 1978 1966 25 1988 24 1990 24 1990 2 1964
	8.8 8.7 9.0 8.9 8.6 8.7 8.8 8.7 8.8 8.8 8.5 111 9.0 8.8 8.9 8.8 8.9 8.8 8.9 8.9 8.1 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	0CT NOV 8.8 9.4 8.7 8.8 9.1 8.5 9.0 8.5 8.9 9.7 8.6 8.6 8.5 8.7 8.8 8.4 8.5 8.1 11 8.3 11 8.3 11 8.1 9.0 8.5 8.8 8.5 8.8 8.5 8.1 8.1 8.2 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.4 8.3 9.2 8.3 9.3 8.1 8.7 7.7 8.8 14 8.3 9.1 7.7 8.8 14 8.5 11 7.7 8.8 14 8.5 11 7.7 8.8 14 8.5 11 7.7 8.8 14 8.5 11 7.7 8.8 14 8.5 11 7.7 8.8 14 8.5 11 7.7 8.8 14 8.5 11 7.7 8.8 14 8.5 11 10 8.8 11 7.7 8.8 14 8.5 11 10 8.8 11 7.7 8.8 14 8.5 11 10 8.8 11 7.7 8.8 14 8.5 11 10 8.8 11 7.7 8.8 14 8.6 8.9 19.6 8.9 19.6 8.9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9 19.6 9	OCT NOV DEC 8.8 9.4 8.5 8.7 8.8 8.5 9.1 8.5 8.7 9.0 8.5 9.2 8.9 9.7 20 8.6 9.5 13 8.7 8.6 10 8.8 8.5 9.8 8.9 8.7 9.8 8.8 8.4 9.9 8.5 8.1 11 11 8.3 9.7 11 8.1 9.4 9.0 8.5 9.5 8.8 8.5 9.4 8.5 8.1 9.7 9.0 8.5 9.5 8.8 8.5 9.4 8.5 8.1 11 11 8.3 9.7 11 8.1 9.4 9.0 8.5 9.5 8.8 8.5 9.4 8.5 8.1 9.4 8.2 8.1 10 8.4 8.3 9.0 8.4 8.3 9.5 9.2 8.3 9.1 9.3 8.1 15 9.0 8.5 9.1 9.3 8.1 15 9.0 8.6 10 8.2 8.0 9.8 8.1 9.4 8.1 7.7 9.4 8.1 7.7 9.4 8.1 7.7 9.4 8.1 7.7 9.4 8.8 14 9.4 8.5 11 9.4 10 9.2 276.3 260.3 313.8 8.91 8.8 19 9.7 10 9.2 276.3 260.3 313.8 8.91 8.8 19 9.7 10 9.2 276.3 260.3 313.8 8.91 8.8 19 9.7 10 9.2	OCT NOV DEC JAN 8.8 9.4 8.5 9.0 8.7 8.8 8.5 9.4 9.1 8.5 8.7 9.3 9.0 8.5 9.2 12 8.9 9.7 20 10 8.6 9.5 13 9.4 8.7 8.6 10 9.4 8.6 8.5 9.8 12 8.9 8.7 9.8 10 8.8 8.4 9.9 9.4 8.5 8.1 11 9.4 8.1 8.3 9.7 9.9 11 8.3 9.7 9.8 8.5 8.1 9.4 9.8 8.5 9.5 9.8 8 8.0 8.5 9.5 9.8 8.8 8.5 9.4 9.8 8.5 8.1 10 11 8.4 8.3 9.5 11 <td>OCT NOV DEC JAN FEB 8.8 9.4 8.5 9.0 11 8.7 8.8 8.5 9.4 10 9.1 8.5 8.7 9.3 10 9.0 8.5 9.2 12 10 8.9 9.7 20 10 10 8.6 9.5 13 9.4 10 8.7 8.6 10 9.4 10 8.6 8.5 9.8 12 10 8.6 8.5 9.8 12 10 8.9 8.7 9.8 10 11 8.8 8.4 9.9 9.4 11 8.5 8.1 11 9.4 11 11 8.3 9.7 9.8 10 8.5 8.1 11 9.4 9.8 11 9.0 8.5 9.5 9.8 10 8.2 8.1 10</td> <td>OCT NOV DEC JAN FEB MAR 8.8 9.4 8.5 9.0 11 11 8.7 8.8 8.5 9.4 10 11 9.1 8.5 8.7 9.3 10 18 9.0 8.5 9.2 12 10 14 8.9 9.7 20 10 10 12 8.6 9.5 13 9.4 10 12 8.7 8.6 10 9.4 10 12 8.6 8.5 9.8 12 10 13 8.6 8.5 9.8 10 11 13 8.8 8.4 9.9 9.4 11 19 8.8 8.4 9.9 9.4 11 19 8.5 8.1 11 9.4 9.8 11 13 11 8.3 9.7 9.9 11 13 8.8<td>OCT NOV DEC JAN FEB MAR APR 8.8 9.4 8.5 9.0 11 11 14 8.7 8.8 8.5 9.4 10 11 14 9.1 8.5 8.7 9.3 10 14 13 9.0 8.5 9.2 12 10 14 13 8.9 9.7 20 10 10 12 14 8.6 9.5 13 9.4 10 12 15 8.6 8.5 9.8 12 10 13 14 8.7 9.8 10 11 13 14 8.9 8.7 9.8 10 11 19 15 8.5 8.1 11 9.9 9.4 11 19 15 8.5 8.1 11 19 15 12 13 14 11 8.3 9.7</td><td>OCT NOV DEC JAN FEB MAR APR MAY 8.8 9.4 8.5 9.0 11 11 11 14 12 9.1 8.5 8.7 9.3 10 18 13 12 9.0 8.5 9.2 12 10 14 13 12 8.9 9.7 20 10 10 10 12 14 11 8.6 9.5 13 9.4 10 12 14 12 8.7 8.8 10 9.4 10 12 15 12 8.8 8.5 9.8 12 10 13 14 12 8.8 9.9 7 9.8 10 11 13 14 12 8.9 9.7 8.8 10 9.4 11 19 15 11 8.5 8.1 11 9.4 9.8 11 13 14 11 11 8.1 9.4 9.8 11 13 14 11 8.5 8.1 9.4 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.1 8.8 8.8 8.9 9.5 11 10 13 14 11 9.3 8.4 8.3 9.0 18 10 13 14 11 9.3 8.4 8.3 9.0 18 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.0 9.8 9.8 11 13 13 13 11 9.0 8.5 9.0 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 9.8 9.8 9.8 11 13 13 13 11 9.0 8.8 9.7 11 10 11 10 13 14 11 9.0 8.8 9.7 11 10 11 11 10 13 14 11 9.0 8.8 9.7 11 10 11 10 13 14 11 9.0 8.8 9.7 11 10 11 13 14 11 9.0 8.8 9.8 9.8 9.8 11 13 13 13 12 9.0 8.8 9.8 9.8 9.8 11 13 13 13 12 9.0 9.0 9.0</td><td>OCT NOV DEC JAN FEB MAR APR MAY JUN 8.8 9.4 8.5 9.0 11 11 14 12 10 9.1 8.5 8.7 9.3 10 18 13 12 10 9.0 8.5 9.2 12 10 14 13 12 10 8.7 9.8 13 9.4 10 12 14 11 9.7 8.6 9.5 13 9.4 10 12 14 11 9.7 8.6 9.5 13 9.4 10 12 14 12 10 8.7 9.8 10 9.4 10 12 14 12 10 8.6 9.5 9.8 12 10 13 14 15 9.4 8.8 8.1 11 9.4 11 15 14 11 9.4</td><td>8.8 9.4 8.5 9.0 11 11 11 14 12 12 8.5 8.5 8.7 8.8 8.5 9.4 100 110 12 11 14 12 100 8.0 9.0 8.5 9.2 12 100 10 10 12 14 11 9.7 8.0 8.6 9.7 9.3 100 18 13 12 100 7.7 8.0 9.0 8.5 9.2 12 100 10 10 12 14 11 9.7 8.0 8.1 8.6 9.5 13 9.4 100 12 14 11 9.7 8.0 9.7 8.0 8.6 9.5 13 9.4 100 12 15 12 10 7.8 8.6 8.6 8.5 9.8 12 10 11 13 14 12 9.6 8.1 8.8 8.4 9.9 9.8 10 11 13 14 12 9.6 8.8 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 8.0 8.8 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 8.2 8.8 8.5 8.1 11 9.4 11 19 15 11 9.6 7.7 8.1 11 8.3 9.7 9.9 11 13 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 17 11 10 7.2 8.8 8.8 8.5 9.4 9.8 10 13 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 17 11 10 7.5 8.5 8.1 9.4 9.8 10 13 14 11 9.4 7.4 8.5 8.8 8.5 9.4 9.8 10 13 14 11 9.4 7.4 8.5 8.7 8.8 8.5 9.4 9.8 10 13 14 11 9.4 9.6 7.2 8.8 8.5 8.1 9.4 9.8 10 13 14 11 9.4 7.4 8.4 8.3 9.5 11 10 11 13 14 11 9.4 9.6 7.1 8.5 8.2 8.1 10 11 13 14 11 9.6 7.0 8.7 8.5 9.0 8.0 10 13 14 11 8.5 7.4 8.4 8.4 8.3 9.5 11 10 11 13 14 11 9.6 7.0 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7</td><td> OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 8.8 9.4 8.5 9.0 11 11 14 12 12 8.5 7.1 8.7 8.8 8.5 9.4 10 11 11 14 12 10 8.0 7.7 9.1 8.5 8.7 9.3 10 18 13 12 10 7.7 7.5 9.0 8.5 9.7 12 10 10 12 14 11 19.7 8.0 10 10 12 14 11 11 14 12 10 8.0 7.7 7.5 8.9 9.7 20 10 10 10 12 14 11 10 7.8 8.0 10 10 12 14 11 10 7.8 8.0 10 10 12 14 11 10 7.8 8.0 10 10 12 15 12 10 7.8 8.0 10 8.6 8.5 9.8 12 10 13 14 15 10 7.8 8.0 7.3 8.6 8.5 9.8 12 10 13 14 15 9.6 8.0 7.3 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 7.3 8.5 8.1 11 9.4 9.8 11 13 14 11 9.8 7.5 7.4 11 8.3 9.7 9.9 11 13 14 11 9.3 7.5 7.4 11 8.8 8.8 8.4 9.8 10 13 14 11 9.3 7.5 7.4 11 8.8 8.8 8.5 9.4 9.8 10 13 14 11 9.8 7.5 7.3 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.8 8.4 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.5 7.4 10 12 13 13 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 15 15 15 15 15 15 1</td></td>	OCT NOV DEC JAN FEB 8.8 9.4 8.5 9.0 11 8.7 8.8 8.5 9.4 10 9.1 8.5 8.7 9.3 10 9.0 8.5 9.2 12 10 8.9 9.7 20 10 10 8.6 9.5 13 9.4 10 8.7 8.6 10 9.4 10 8.6 8.5 9.8 12 10 8.6 8.5 9.8 12 10 8.9 8.7 9.8 10 11 8.8 8.4 9.9 9.4 11 8.5 8.1 11 9.4 11 11 8.3 9.7 9.8 10 8.5 8.1 11 9.4 9.8 11 9.0 8.5 9.5 9.8 10 8.2 8.1 10	OCT NOV DEC JAN FEB MAR 8.8 9.4 8.5 9.0 11 11 8.7 8.8 8.5 9.4 10 11 9.1 8.5 8.7 9.3 10 18 9.0 8.5 9.2 12 10 14 8.9 9.7 20 10 10 12 8.6 9.5 13 9.4 10 12 8.7 8.6 10 9.4 10 12 8.6 8.5 9.8 12 10 13 8.6 8.5 9.8 10 11 13 8.8 8.4 9.9 9.4 11 19 8.8 8.4 9.9 9.4 11 19 8.5 8.1 11 9.4 9.8 11 13 11 8.3 9.7 9.9 11 13 8.8 <td>OCT NOV DEC JAN FEB MAR APR 8.8 9.4 8.5 9.0 11 11 14 8.7 8.8 8.5 9.4 10 11 14 9.1 8.5 8.7 9.3 10 14 13 9.0 8.5 9.2 12 10 14 13 8.9 9.7 20 10 10 12 14 8.6 9.5 13 9.4 10 12 15 8.6 8.5 9.8 12 10 13 14 8.7 9.8 10 11 13 14 8.9 8.7 9.8 10 11 19 15 8.5 8.1 11 9.9 9.4 11 19 15 8.5 8.1 11 19 15 12 13 14 11 8.3 9.7</td> <td>OCT NOV DEC JAN FEB MAR APR MAY 8.8 9.4 8.5 9.0 11 11 11 14 12 9.1 8.5 8.7 9.3 10 18 13 12 9.0 8.5 9.2 12 10 14 13 12 8.9 9.7 20 10 10 10 12 14 11 8.6 9.5 13 9.4 10 12 14 12 8.7 8.8 10 9.4 10 12 15 12 8.8 8.5 9.8 12 10 13 14 12 8.8 9.9 7 9.8 10 11 13 14 12 8.9 9.7 8.8 10 9.4 11 19 15 11 8.5 8.1 11 9.4 9.8 11 13 14 11 11 8.1 9.4 9.8 11 13 14 11 8.5 8.1 9.4 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.1 8.8 8.8 8.9 9.5 11 10 13 14 11 9.3 8.4 8.3 9.0 18 10 13 14 11 9.3 8.4 8.3 9.0 18 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.0 9.8 9.8 11 13 13 13 11 9.0 8.5 9.0 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 9.8 9.8 9.8 11 13 13 13 11 9.0 8.8 9.7 11 10 11 10 13 14 11 9.0 8.8 9.7 11 10 11 11 10 13 14 11 9.0 8.8 9.7 11 10 11 10 13 14 11 9.0 8.8 9.7 11 10 11 13 14 11 9.0 8.8 9.8 9.8 9.8 11 13 13 13 12 9.0 8.8 9.8 9.8 9.8 11 13 13 13 12 9.0 9.0 9.0</td> <td>OCT NOV DEC JAN FEB MAR APR MAY JUN 8.8 9.4 8.5 9.0 11 11 14 12 10 9.1 8.5 8.7 9.3 10 18 13 12 10 9.0 8.5 9.2 12 10 14 13 12 10 8.7 9.8 13 9.4 10 12 14 11 9.7 8.6 9.5 13 9.4 10 12 14 11 9.7 8.6 9.5 13 9.4 10 12 14 12 10 8.7 9.8 10 9.4 10 12 14 12 10 8.6 9.5 9.8 12 10 13 14 15 9.4 8.8 8.1 11 9.4 11 15 14 11 9.4</td> <td>8.8 9.4 8.5 9.0 11 11 11 14 12 12 8.5 8.5 8.7 8.8 8.5 9.4 100 110 12 11 14 12 100 8.0 9.0 8.5 9.2 12 100 10 10 12 14 11 9.7 8.0 8.6 9.7 9.3 100 18 13 12 100 7.7 8.0 9.0 8.5 9.2 12 100 10 10 12 14 11 9.7 8.0 8.1 8.6 9.5 13 9.4 100 12 14 11 9.7 8.0 9.7 8.0 8.6 9.5 13 9.4 100 12 15 12 10 7.8 8.6 8.6 8.5 9.8 12 10 11 13 14 12 9.6 8.1 8.8 8.4 9.9 9.8 10 11 13 14 12 9.6 8.8 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 8.0 8.8 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 8.2 8.8 8.5 8.1 11 9.4 11 19 15 11 9.6 7.7 8.1 11 8.3 9.7 9.9 11 13 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 17 11 10 7.2 8.8 8.8 8.5 9.4 9.8 10 13 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 17 11 10 7.5 8.5 8.1 9.4 9.8 10 13 14 11 9.4 7.4 8.5 8.8 8.5 9.4 9.8 10 13 14 11 9.4 7.4 8.5 8.7 8.8 8.5 9.4 9.8 10 13 14 11 9.4 9.6 7.2 8.8 8.5 8.1 9.4 9.8 10 13 14 11 9.4 7.4 8.4 8.3 9.5 11 10 11 13 14 11 9.4 9.6 7.1 8.5 8.2 8.1 10 11 13 14 11 9.6 7.0 8.7 8.5 9.0 8.0 10 13 14 11 8.5 7.4 8.4 8.4 8.3 9.5 11 10 11 13 14 11 9.6 7.0 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7</td> <td> OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 8.8 9.4 8.5 9.0 11 11 14 12 12 8.5 7.1 8.7 8.8 8.5 9.4 10 11 11 14 12 10 8.0 7.7 9.1 8.5 8.7 9.3 10 18 13 12 10 7.7 7.5 9.0 8.5 9.7 12 10 10 12 14 11 19.7 8.0 10 10 12 14 11 11 14 12 10 8.0 7.7 7.5 8.9 9.7 20 10 10 10 12 14 11 10 7.8 8.0 10 10 12 14 11 10 7.8 8.0 10 10 12 14 11 10 7.8 8.0 10 10 12 15 12 10 7.8 8.0 10 8.6 8.5 9.8 12 10 13 14 15 10 7.8 8.0 7.3 8.6 8.5 9.8 12 10 13 14 15 9.6 8.0 7.3 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 7.3 8.5 8.1 11 9.4 9.8 11 13 14 11 9.8 7.5 7.4 11 8.3 9.7 9.9 11 13 14 11 9.3 7.5 7.4 11 8.8 8.8 8.4 9.8 10 13 14 11 9.3 7.5 7.4 11 8.8 8.8 8.5 9.4 9.8 10 13 14 11 9.8 7.5 7.3 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.8 8.4 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.5 7.4 10 12 13 13 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 15 15 15 15 15 15 1</td>	OCT NOV DEC JAN FEB MAR APR 8.8 9.4 8.5 9.0 11 11 14 8.7 8.8 8.5 9.4 10 11 14 9.1 8.5 8.7 9.3 10 14 13 9.0 8.5 9.2 12 10 14 13 8.9 9.7 20 10 10 12 14 8.6 9.5 13 9.4 10 12 15 8.6 8.5 9.8 12 10 13 14 8.7 9.8 10 11 13 14 8.9 8.7 9.8 10 11 19 15 8.5 8.1 11 9.9 9.4 11 19 15 8.5 8.1 11 19 15 12 13 14 11 8.3 9.7	OCT NOV DEC JAN FEB MAR APR MAY 8.8 9.4 8.5 9.0 11 11 11 14 12 9.1 8.5 8.7 9.3 10 18 13 12 9.0 8.5 9.2 12 10 14 13 12 8.9 9.7 20 10 10 10 12 14 11 8.6 9.5 13 9.4 10 12 14 12 8.7 8.8 10 9.4 10 12 15 12 8.8 8.5 9.8 12 10 13 14 12 8.8 9.9 7 9.8 10 11 13 14 12 8.9 9.7 8.8 10 9.4 11 19 15 11 8.5 8.1 11 9.4 9.8 11 13 14 11 11 8.1 9.4 9.8 11 13 14 11 8.5 8.1 9.4 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 8.5 8.1 9.4 9.5 10 13 14 11 9.0 8.5 9.5 9.8 10 13 14 11 9.1 8.8 8.8 8.9 9.5 11 10 13 14 11 9.3 8.4 8.3 9.0 18 10 13 14 11 9.3 8.4 8.3 9.0 18 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.5 11 10 13 14 11 9.3 8.4 8.3 9.0 9.8 9.8 11 13 13 13 11 9.0 8.5 9.0 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 8.6 9.8 9.8 9.8 11 13 13 13 11 9.0 9.8 9.8 9.8 11 13 13 13 11 9.0 8.8 9.7 11 10 11 10 13 14 11 9.0 8.8 9.7 11 10 11 11 10 13 14 11 9.0 8.8 9.7 11 10 11 10 13 14 11 9.0 8.8 9.7 11 10 11 13 14 11 9.0 8.8 9.8 9.8 9.8 11 13 13 13 12 9.0 8.8 9.8 9.8 9.8 11 13 13 13 12 9.0 9.0 9.0	OCT NOV DEC JAN FEB MAR APR MAY JUN 8.8 9.4 8.5 9.0 11 11 14 12 10 9.1 8.5 8.7 9.3 10 18 13 12 10 9.0 8.5 9.2 12 10 14 13 12 10 8.7 9.8 13 9.4 10 12 14 11 9.7 8.6 9.5 13 9.4 10 12 14 11 9.7 8.6 9.5 13 9.4 10 12 14 12 10 8.7 9.8 10 9.4 10 12 14 12 10 8.6 9.5 9.8 12 10 13 14 15 9.4 8.8 8.1 11 9.4 11 15 14 11 9.4	8.8 9.4 8.5 9.0 11 11 11 14 12 12 8.5 8.5 8.7 8.8 8.5 9.4 100 110 12 11 14 12 100 8.0 9.0 8.5 9.2 12 100 10 10 12 14 11 9.7 8.0 8.6 9.7 9.3 100 18 13 12 100 7.7 8.0 9.0 8.5 9.2 12 100 10 10 12 14 11 9.7 8.0 8.1 8.6 9.5 13 9.4 100 12 14 11 9.7 8.0 9.7 8.0 8.6 9.5 13 9.4 100 12 15 12 10 7.8 8.6 8.6 8.5 9.8 12 10 11 13 14 12 9.6 8.1 8.8 8.4 9.9 9.8 10 11 13 14 12 9.6 8.8 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 8.0 8.8 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 8.2 8.8 8.5 8.1 11 9.4 11 19 15 11 9.6 7.7 8.1 11 8.3 9.7 9.9 11 13 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 17 11 10 7.2 8.8 8.8 8.5 9.4 9.8 10 13 14 11 9.3 7.5 11 8.3 9.7 9.9 11 133 17 11 10 7.5 8.5 8.1 9.4 9.8 10 13 14 11 9.4 7.4 8.5 8.8 8.5 9.4 9.8 10 13 14 11 9.4 7.4 8.5 8.7 8.8 8.5 9.4 9.8 10 13 14 11 9.4 9.6 7.2 8.8 8.5 8.1 9.4 9.8 10 13 14 11 9.4 7.4 8.4 8.3 9.5 11 10 11 13 14 11 9.4 9.6 7.1 8.5 8.2 8.1 10 11 13 14 11 9.6 7.0 8.7 8.5 9.0 8.0 10 13 14 11 8.5 7.4 8.4 8.4 8.3 9.5 11 10 11 13 14 11 9.6 7.0 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 8.8 9.4 8.5 9.0 11 11 14 12 12 8.5 7.1 8.7 8.8 8.5 9.4 10 11 11 14 12 10 8.0 7.7 9.1 8.5 8.7 9.3 10 18 13 12 10 7.7 7.5 9.0 8.5 9.7 12 10 10 12 14 11 19.7 8.0 10 10 12 14 11 11 14 12 10 8.0 7.7 7.5 8.9 9.7 20 10 10 10 12 14 11 10 7.8 8.0 10 10 12 14 11 10 7.8 8.0 10 10 12 14 11 10 7.8 8.0 10 10 12 15 12 10 7.8 8.0 10 8.6 8.5 9.8 12 10 13 14 15 10 7.8 8.0 7.3 8.6 8.5 9.8 12 10 13 14 15 9.6 8.0 7.3 8.8 8.4 9.9 9.4 11 19 15 11 9.6 7.7 7.3 8.5 8.1 11 9.4 9.8 11 13 14 11 9.8 7.5 7.4 11 8.3 9.7 9.9 11 13 14 11 9.3 7.5 7.4 11 8.8 8.8 8.4 9.8 10 13 14 11 9.3 7.5 7.4 11 8.8 8.8 8.5 9.4 9.8 10 13 14 11 9.8 7.5 7.3 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.8 8.4 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.8 8.5 9.5 9.8 10 13 14 11 9.6 7.2 11 8.5 7.4 10 12 13 13 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 11 9.6 7.1 14 15 15 15 15 15 15 1

a Also occurred on Oct 14 1968. b From rating curve extended above 55 ft³/s. c Result of regulation.

01305500 SWAN RIVER AT EAST PATCHOGUE, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

COOPERATION.--All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	TIME	CHARGE INST	C DI	PE- IFIC IN- ICT- ICE ELD S/CM)	PH WAT WHO FIE (STA AR UNI	LE LD TEMP ND- ATU D WAT	ER	OXYGE DIS SOLV (MG/	N	ALCIU DIS- SOLVE (MG/L AS CA	DIS	JM, SOI S- D	DIUM, IS- _VED :	POTAS SIUM DIS- SOLVE (MG/L AS K)	DIS- D SOLVED
JAN 03	1240	9	3.4 12		6	. 5	4.0	12.0		6.8	2	.4 :	12	1.5	10
APR 04 MAY	1230	13	111	1	6	.4 1	1.0	12.0		7.2	2	.6	13	1.6	9
24	1230	1	139)	6	.6 1	.8.0	11.4		7.5	2	.8	13	1.6	16
DATE	R. D.	HLO- IDE, IS- OLVED WG/L S CL)	NITRO GEN NITRAT TOTAL (MG/L AS N)	NIT GE AMMO TOT (MG AS	N NIA	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	PHOP PHOP TOT (MC AS	RUS	PHOS- PHORUS ORTHO TOTAL (MG/I AS P	S	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVEI (UG/L AS SB	ARSEN DIS DIS O SULV (UG/I	IC B ED S	BARIUM, DIS- OLVED (UG/L AS BA)
JAN 03		19	2.7	0	. 11	44		-			⟨50	(2)) (20	⟨50
APR 04		19	2.5	0	.03	0.42	(0	0.01	0.0	05	⟨50	(2	3 (20	(50
MAY 24	- 3	22	2.0	0	.02						<50	<2) (20	<50
DATE	D	ERYL- IUM, IS- OLVED UG/L S BE)	CADMIUI DIS- SOLVE (UG/L AS CD	DIS SOL	M, VFD	COBALT, DIS- SOLVED (UG/L AS CO)	COPE DIS SOL (UC	PER, S- VED VL CU)	IRON TOTAL RECO ERABI (UG/I	V_	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVE (UG/L AS PB	MANG. NESE TOTAL RECO ERABI (UG/I	, V-	MANGA- NESE, DIS- SOLYED (UG/L AS MN)
JAN 03		<10	(20		⟨20	⟨20		⟨20		90	40	(2	0 1	20	110
APR 04		(10	⟨20		⟨20	(20		(20	1	50	80	⟨2	0 1	50	140
MAY 24		<10	<20		⟨20	⟨20		<20	2	60	260	⟨2	0 1	80	210
DATE	M D S	OLYB- ENUM, DIS- OLYED UG/L S MO)	NICKEL DIS- SOLVE (UG/L AS NI	DI	M,	SILVER, DIS- SOLVED (UG/L AS AG)	SILI DIS SOLV (UC	/ED	STRO TIU DIS SOLV (UG// AS S	M, ED S	THAL- LIUM, DIS- OLVED (UG/L S TL)	TITA- NIUM DIS- SOLVE (UG/L AS TI	VANA DIUM DIS D SOLV (UG/	ED.	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
JAN 03		⟨20	⟨2	1	⟨20	⟨20		4700		40	⟨50	<2	0 (20	
APR 04		⟨20	(2		(20	⟨20		4700		40	⟨50	⟨2		20	⟨0.025
MAY 24		⟨20	<2	0	⟨20	<20		5200		50	⟨50	<2	0 (20	

01306000 PATCHOGUE RIVER AT PATCHOGUE, NY

LOCATION.--Lat 40°45'56", long 73°01'16", Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from Montauk Highway in Patchogue, and 1.0 mi upstream from mouth.

DRAINAGE AREA. -- About 13.5 square miles.

PERIOD OF RECORD. -- May 1966 to current year.

REMARKS.--Partial-record discharge data included in this report.

COOPERATION. -- All water-quality samples were collected and analyzed by Suffolk County Department of Health Services.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SULVED (MG/L AS SU4)
JAN 03	1125	191	6.6	4.0	10.6	10	3.5	18	3.1	13
03 APR 04 MAY	1130	198	6.5	11.0	10.2	9.7	3.4	20	3.3	12
MAY 24	1130	202	6.7	20.0	8.4	10	4.0	22	3.3	19
24	1130	202	0.1	20.0	0.4	10	4.0	22	3.3	13
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN NITRATE TOTAL (MG/L AS N)	NITRO- GEN AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN.AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)
JAN 03	30	3.2	0.76				(50	(20	(20	⟨50
APR 04	36	2.8	0.61	0.99	(0.01	(0.005	(50	(20	(20	⟨50
MAY 24	36	2.6	0.32				(50	⟨20	⟨20	⟨50
			0.02				,,,,	,	,	,,,,
DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 03	(10	(20	(20	<20	⟨20	330	130	(20	480	460
APR 04	(10	(20	(20	(20	(20	480	270	(20	500	440
MAY										
24	<10	⟨20	⟨20	<20	⟨20	440	340	⟨20	170	190
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	SILICON DIS- SOLVED (UG/L AS SI)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	THAL- LIUM, DIS- SOLVED (UG/L AS TL)	TITA- NIUM DIS- SOLVED (UG/L AS TI)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
JAN 03 APR	⟨20	⟨20	⟨20	⟨20	4800	60	⟨50	⟨20	⟨20	
04	(20	⟨20	<20	⟨20	3700	60	<50	⟨20	(20	(0.025
MAY 24	⟨20	<20	<20	(20	4000	80	⟨50	⟨20	(20	14.4

01306440 CONNETQUOT BROOK AT CENTRAL ISLIP, NY

LOCATION.--Lat 40°47'33", long 73°09'58", Suffolk County, Hydrologic Unit 02030202, 200 ft downstream from culvert on Veterans Memorial Highway, 2.0 mi northeast of Central Islip, and 3.8 mi upstream from gaging station 01306499.

DRAINAGE AREA . -- About 12 mi2.

PERIOD OF RECORD. -- Occasional low-flow measurements, water years 1968, 1971-78. May 1979 to current year.

GAGE. -- Water-stage recorder and Parshall flume. Datum of gage is 29.93 ft above sea level.

REMARKS .-- No estimated daily discharges. Records good.

		DISCHARGE	E, CUBIC	FEET PER	SECOND, DAILY	MATER YE	EAR OCTOBER ALUES	1993 TO	SEPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.9 2.9 3.0 2.8 2.7	3.6 3.3 3.3 4.1	3.5 3.5 3.4 3.7	4.1 4.2 4.2 4.4 4.2	5.6 5.4 5.2 5.2	5.4 5.4 7.3 6.8 6.5	8.8 8.6 8.3 8.1 7.8	7.0 6.9 6.8 6.7 6.8	6.0 5.8 5.8 5.6	3.6 3.5 3.5 3.4	2.1 2.1 2.5 2.2 3.2	2.5 2.4 2.4 2.4 2.4
6 7 8 9	2.6 2.6 2.6 2.5	3.7 3.4 3.3 3.3 3.3	8.4 6.8 6.1 5.6 5.5	4.0 4.6 4.3 4.2	5.1 5.0 5.1 5.1 5.0	6.4 6.6 8.0 7.5	8.0 9.2 8.2 7.8 8.0	6.8 6.7 8.8 7.5 7.0	5.7 5.8 5.4 5.4 5.3	3.4 3.3 3.4 3.4 3.1	3.0 2.7 2.5 2.3 2.1	2.2 2.2 2.2 2.4 2.4
11 12 13 14 15	2.5 3.4 3.2 2.9 2.8	3.2 3.1 3.0 3.0	6.1 5.5 5.4 5.2 5.2	4.3 4.4 4.4 4.3	5.0 5.0 4.8 4.8 4.7	9.3 8.9 8.9 8.8	7.9 8.0 10 11 9.3	6.8 6.8 6.7 6.6 6.6	5.3 5.2 5.1 4.9 4.8	3.0 2.9 2.8 2.8 3.3	2.1 2.1 2.3 2.8 2.9	2.3 2.2 2.1 2.1 2.1
16 17 18 19 20	2.8 2.8 2.7 2.7 3.1	2.9 2.9 2.8 3.2 3.1	5.0 5.0 5.0 5.0	4.1 4.6 6.6 5.2 5.0	4.6 4.6 4.7 5.0	8.6 8.1 7.8 7.7 7.5	9.0 8.8 8.4 8.3 8.1	7.6 8.0 7.6 7.4 7.2	4.8 4.7 4.5 4.4 4.2	2.9 2.7 2.9 2.7 2.3	2.5 2.6 3.6 2.9 2.8	2.1 2.1 2.8 2.4 2.2
21 22 23 24 25	3.4 3.3 3.2 3.0 3.0	2.9 2.8 2.8 2.8 2.7	5.8 5.3 5.0 4.8 4.8	4.8 4.8 4.6 4.6	5.6 6.3 6.1 6.4 6.1	7.4 10 8.8 8.1 8.0	8.0 7.8 7.7 7.6 7.5	6.9 6.6 6.3 6.2 6.7	4.1 4.5 4.1 4.1 4.1	2.2 2.1 2.6 2.6 2.3	3.0 4.0 3.3 3.1 3.0	2.1 2.1 5.4 3.3 3.1
26 27 28 29 30 31	3.0 3.1 3.0 2.9 3.7 3.8	2.7 2.8 4.7 3.9 3.6	4.7 4.4 4.4 4.4 4.4 4.3	4.5 4.4 8.7 8.9 6.5 5.9	5.8 5.5 5.4 	7.8 8.0 9.4 10 9.4 8.8	7.4 7.3 7.2 7.0 6.9	7.9 7.0 6.5 6.3 6.1 6.0	4.0 4.0 3.9 4.0 3.8	2.3 2.5 2.4 2.3	2.9 2.8 2.7 2.8 2.6 2.6	3.0 3.5 3.5 3.3 3.2
TOTAL MEAN MAX MIN	91.5 2.95 3.8 2.5	3.22 4.7 2.7	162.2 5.23 11 3.4	151.8 4.90 8.9 4.0	147.1 5.25 6.4 4.6	253.0 8.16 11 5.4	246.0 8.20 11 6.9	214.8 6.93 8.8 6.0	145.1 4.84 6.0 3.8	88.4 2.85 3.6 2.1	84.1 2.71 4.0 2.1	78.4 2.61 5.4 2.1
							, BY WATER Y					6.71
MEAN MAX (WY) MIN (WY)	5.67 14.3 1991 .93 1989	5.98 14.0 1991 1.69 1982	6.47 13.4 1991 2.29 1983	6.12 14.7 1991 2.16 1989	6.38 13.1 1991 2.53 1989	7.30 15.0 1991 3.41 1989	8.60 14.9 1984 3.79 1988	8.12 14.7 1984 3.14 1981	8.02 17.8 1984 1.99 1988	6.23 18.8 1984 .94 1988	5.97 15.6 1984 .62 1988	5.44 16.0 1984 .76 1988
SUMMARY	STATISTI	cs	FOR 1	993 CALEN	DAR YEAR	1	FOR 1994 WAT	TER YEAR		WATER Y	EARS 1978 -	1994
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT 10 PERC 50 PERC 90 PERC	TOTAL MEAN ANNUAL ME TOAILY MEA SEVEN-DAY ANEOUS PE TANEOUS PE TAN	MEAN AN A		2207.9 6.05 15 1.9 2.0	Mar 24 Sep 7 Sep 1		1758.9 4.82 11 2.1 2.1 16 .85 2.0a 8.0 4.4 2.4	Dec 5 Jul 22 Sep 11 Dec 5 Dec 5 Aug 10		6.5 12.3 2.5 27 .4 40 1.5 3 5.7 2.2	5 Jun 2 1 Aug 22 3 Aug 17 Aug 4 6 Aug 4	1984 1988 1984 1988 1988 1979 1979

a Also occurred on Aug 11, Sep 13, 14, 21, 22. b Result of regulation.

01306460 CONNETQUOT BROOK NEAR CENTRAL ISLIP, NY

LOCATION.--Lat 40°48'19", long 73°09'33", Suffolk County, Hydrologic Unit 02030202, 200 ft upstream from bridge on dirt road in Connetquot River State Park Preserve, and 1.8 mi upstream from gaging station 01306499.

DRAINAGE AREA . -- About 18 mi2.

PERIOD OF RECORD. --Occasional low-flow measurements, water years 1968, 1973-77. November 1977 to current year. GAGE. -- Water-stage recorder and wooden stoplog control. Datum of gage is 15.10 ft above sea level. REMARKS . -- Records good .

		DISCHARG	E, CUBIC	FEET PER	SECOND, W	ATER YEA	R OCTOBER	1993 TO S	SEPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 19 19 19 18	25 24 23 23 26	20 20 20 21 48	23 23 23 26 24	28 27 27 26 26	26 26 31 30 30	34 33 32 32 31	27 26 25 26 26	26 25 25 24 24	19 19 19 18 18	16 17 18 17 24	17 17 17 17 17
6 7 8 9	18 18 18 18	23 20 20 20 20	39 33 30 28 27	23 23 25 23 23	26 24 26 26 25	30 30 33 33 38	31 33 32 31 31	26 26 31 28 27	24 23 23 23 23 23	17 17 17 17 17 16	24 19 18 17 15	16 16 16 16 16
11 12 13 14 15	18 22 23 20 20	19 19 18 18	30 27 26 26 26 26	22 24 23 23 21	23 23 23 23 23	40 37 35 35 35	31 31 36 37 34	26 26 26 26 26	22 23 22 22 21	16 15 15 15 18	15 16 17 19 21	16 16 16 16
16 17 18 19 20	20 20 19 19 22	18 18 18 19	26 26 25 25 25	21 22 32 28 e26	23 22 22 24 24	35 34 33 32 32	33 32 31 30 29	29 31 29 27 27	21 21 20 20 19	16 16 17 16 16	18 18 26 20 19	16 16 18 16 16
21 22 23 24 25	24 27 25 24 23	18 18 18 18 17	29 26 26 26 26	e25 e25 e24 e24 23	26 27 28 29 29	32 40 36 33 32	29 29 28 28 28	27 26 26 26 27	19 21 19 19	15 16 19 18 17	20 30 24 21 20	15 16 31 19 17
26 27 28 29 30 31	22 24 23 23 25 27	17 17 24 23 21	24 23 23 23 23 23 23	23 23 36 36 31 28	28 26 26 	32 33 37 39 37 35	28 27 27 27 27	30 27 28 26 26 26	18 18 19 20 20	17 17 18 17 17	19 19 18 19 18	16 18 18 16 16
TOTAL MEAN MAX MIN	854 21.1 27 18	599 20.0 26 17	820 26.5 48 20	776 25.0 36 21	710 25.4 29 22	1041 33.6 40 26	922 30.7 37 27	834 26.9 31 25	643 21.4 26 18	525 16.9 19 15	600 19.4 30 15	509 17.0 31 15
		NTHLY MEAN										
MEAN MAX (WY) MIN (WY)	24.0 43.0 1991 13.0 1989	25.8 38.8 1990 17.1 1988	28.6 37.0 1990 18.4 1988	28.6 45.4 1979 18.1 1981	29.0 49.4 1979 20.2 1989	31.9 52.0 1979 21.3 1988	34.0 48.6 1983 20.2 1988	31.5 44.1 1979 18.0 1986	30.6 46.2 1984 15.8 1988	25.7 47.8 1984 13.5 1988	25.4 43.5 1979 11.5 1988	23.0 37.2 1984 12.3 1988
SUMMARY	STATIST	cs	FOR 1	993 CALEN	IDAR YEAR	F	R 1994 WA	TER YEAR		WATER YE	ARS 1978 -	- 1994
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANT INSTANT 10 PERC 90 PERC 90 PERC	TOTAL MEAN ANNUAL ME ANNUAL ME T DAILY ME SEVEN-DAY ANEOUS PE TANEOUS LO CHANEOUS LO CHANE	MEAN EAN EAN ON ON ON EAK FLOW EAK FLOW EDS EDS		9833 26.9 56 16 17 39 26 18	Mar 24 Jul 26 Jul 31		8633 23.7 48 15 16 70 2.36 14 32 23 17	Dec 5 Jul 18 Dec 5 Dec 5 Jul 14		27.8 39.8 17.1 85.11 11 154 2.82 11a 41 27	Jan 2 Aug 1 Aug 1 Aug 1 Aug 1	1979 1988 1 1979 7 1988 7 1988 9 1991 9 1991 7 1988

a Also occurred on Aug 8-14, Sept 29 to Oct 2 1988, minimum recorded. e Estimated

01306500 CONNETQUOT RIVER NEAR DAKDALE, NY

LOCATION.--Lat 40°44'51", long 73°09'03", Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from bridge on State Highway 27, 1.0 mi west of Oakdale. Water-quality sampling sites at base and supplementary gage.

DRAINAGE AREA.--About 24 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1943 to current year (monthly means estimated October 1974 to September 1975). REVISED RECORDS. --WSP 1141: Drainage area.

GAGE.--Base gage (01306499): Water-stage recorder and wooden stoplog control. Datum of gage is 1.56 ft above sea level.
Supplementary gage (01306495): Water-stage recorder with concrete control on left bank of secondary channel
0.25 mi northeast of base gage at datum of 4.74 ft sea level. Prior to Aug. 10, 1965, at datum 1.0 ft higher.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow at both gages occasionally regulated by cleaning operations at outlets of ponds above stations. Discharge figures are those of combined flows in main and secondary channels.

		DISCHARG	E, CUBIC	FEET PER	SECOND, DAILY	WATER YE	AR OCTOBER LUES	1993 TO	SEPTEMBER	1994			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	29 29 29 28 25	42 32 33 33 37	35 34 34 37 79	34 36 37 43 40	e41 e40 e40 e39 e38	38 37 53 50 45	49 47 48 45 44	e42 e41 e40 40 41	41 40 e40 e39 e39	31 30 30 29 29	28 28 e30 e29 e35	29 28 27 29 31	
6 7 8 9	24 24 24 27 27	43 36 34 33 35	70 55 47 44 46	32 34 41 35 e32	e39 e38 e38 e42 e39	43 45 49 48 63	46 49 45 44 45	43 40 52 47 44	e39 39 37 38 37	31 30 31 34 33	e41 e37 e35 e34 33	31 28 27 28 27	
11 12 13 14 15	25 34 39 30 30	36 35 33 34 34	51 46 44 47 45	e32 e35 e36 e38 e36	e40 e41 e41 e37 e35	63 55 52 53 e52	44 44 55 59 51	41 41 40 37 38	35 36 36 36 35	31 31 31 28 35	31 30 32 39 40	23 22 22 27 28	
16 17 18 19 20	30 29 30 28 33	32 32 31 36 34	46 47 43 42 39	e36 e33 e46 e40 e39	e36 e35 e35 e35	e52 e50 e49 e48 e47	51 48 47 45 44	45 50 49 47 47	33 33 33 32 32	34 31 32 33 31	33 33 45 37 37	24 25 28 26 23	
21 22 23 24 25	36 34 29 31 29	32 30 30 31 31	52 45 38 38 40	e38 e38 e37 e37 e35	39 44 46 49 45	e47 e63 50 48 47	42 42 42 42 43	46 44 43 45 47	33 38 34 35 37	30 32 32 33 31	39 47 43 39 36	23 23 50 36 32	*
26 27 28 29 30 31	30 36 37 33 35 45	31 31 49 47 36	39 34 35 36 38 34	e36 e37 e53 e57 e46 e42	41 40 38 	46 47 55 58 55 49	44 44 e44 e42 e42	54 48 45 43 41 41	37 36 36 34 34	32 32 36 32 29 28	34 32 32 32 29 29	31 34 35 33 27	
TOTAL MEAN MAX MIN	949 30.8 45 24	1043 34.8 49 30	1360 43.9 79 34	1191 38.4 57 32	1107 39.5 49 35	1557 50.2 63 37	1377 45.9 59 42	1362 43.9 54 37	1084 36.1 41 32	972 31.4 36 28	1079 34.8 47 28	857 28.6 50 22	
	ICS OF M	ONTHLY MEAN		R WATER Y	EARS 1944		BY WATER	YEAR (WY)					
MEAN MAX (WY) MIN (WY)	33.9 65.2 1956 22.0 1967	36.3 67.3 1956 17.3 1983	38.5 55.2 1991 21.8 1967	39.4 65.1 1979 24.0 1967	40.8 62.3 1979 23.8 1967	43.7 70.3 1979 29.4 1966	44.4 69.7 1980 25.8 1966	42.2 62.2 1958 28.2 1966	40.2 64.1 1984 25.6 1988	36.1 64.3 1984 20.0 1966	34.9 52.1 1984 19.5 1966	32.9 48.6 1984 21.2 1986	
	STATIST		FOR 1	993 CALEN	DAR YEAR	F	OR 1994 WA	TER YEAR		WATER YEA	NRS 1944 -	1994	
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL 10 PERC	TOTAL MEAN ANNUAL M ANNUAL M DAILY ME SEVEN-DA ENT EXCE	MEAN EAN EAN AN Y MINIMUM EDS EDS EDS		13831 37.9 79 22 25 50 38	Dec 5 Aug 27 Aug 22		13938 38.2 79 22 24 49 37 29	Dec 5 Sep 12 Sep 11		38.6 52.5 24.9 263 9.3a 13 52 37 27	Oct 16 Nov 25 Nov 22	1984 1966 1955 1982 1982	
90 PERC	ENT EXCE	EDS		26			29			27			

a Result of regulation. Also occurred on Nov 27 1982 e Estimated

01306500 CONNETQUOT RIVER NEAR DAKDALE, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- 01306499 (Base gage): May 1966 to current year.

COOPERATION. --Water-quality analyses for this station identified by an asterisk (*) were collected and analysed by Suffolk County Department of Health Services.

All other analyses for this station were collected and analysed by the U.S. Geological Survey.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
DEC 06	1240	41	97	5.7	7.0	769	.11.0	5.8	2.6	7.6
MAR _30	1245	30	125	8.9	8.0	768	12.0	7.0	3.0	11
APR +06	0905	24	137	6.3	11.0		9.1	7.0	3.5	13
MAY *25	0850	30	138	6.4	19.0		7.1	7.4	4.2	16
JUN 02	0925	24	136	7.1	16.0	766	11.3	7.8	3.5	11
AUG 16	1200	20	131	7.6	18.0	775	12.0	7.4	3.3	9.7
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUD- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN. NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN. AMMONÍA TOTAL (MG/L AS N)
DEC 06	1.3	11	9.1	11	0.10		0.008		1.3	22
MAR 30	1.3	16	10	15	(0.10	10	0.011		1.9	
APR +06	1.5		11	20	(0.10			2.4		0.04
MAY *25	1.6		10	26			42	2.1		(0.02
JUN 02	1.2	21	9.7	15	<0.10	11	0.013		2.0	
AUG 16	1.4	20	9.9	14	0.10	11	0.012		1.8	
		2.50			7.55					
DATE	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN AMMONÍA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)
DEC06	0.3	0.11	0.043		0.010					
MAR 30	0.3	0.08	0.028		0.008					
*06	0.45		0.034	0.007		⟨50	⟨20	⟨20	⟨50	<10
MAY *25						⟨50	(20	⟨20	⟨50	(10
JUN 02	0.4	0.04	0.019		0.005			12		
AUG 16	⟨0.2	0.04	0.018		0.010					

STREAMS ON LONG ISLAND 01306500 CONNETQUOT RIVER NEAR OAKDALE, NY--Continued

WATER-QUALITY RECORDS

DATE	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L	TOTAL N RECOV- ERABLE S (UG/L (ANGA- ESE, DIS- OLVED UG/L S MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)
DEC 08					460	310		300	270	
MAR 30					260	140		190	140	
APR *06	<20	<20	(20	<20	320	110	⟨20	140	120	⟨20
₩AY *25	⟨20	<20	<20	⟨20		140	⟨20		140	⟨20
JUN 02 AUG					230	110		130	120	
16		22			240	120		70	67	-
DAT	NICKE DIS- SOLV E (UG AS	/ED SOL	W, SILVI S- DIS VED SOLV	S- DIS- VED SOLVE /L (UG	DIS- D SOLVE	DIS- D SOLVE	, NIUM DIS- D SOLVE	DIUM, DIS- D SOLVED (UG/L	METH LEN BLU ACTI SUE STAN (MG/	E VE CE
DEC	_								0.	03
MAR 30	-		-						<0 .	02
APR *06 MAY		(20	<20 <2 !	0 45	500 5	0 (50 <2	0 (20	(0.	025
*25 JUN		(20	(20 (2)	0 47	700 6	0 (50 (2	0 (20		
02 AUG	-								<0.	02
16			-						(0.	02

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- 01306495 (Supplementary gage): March 1988 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	TIME	CHAR INS CUB FE PE SEC	I. (IC II ET / R F)	PE- IFIC ON- OUCT- NCE ELD IS/CM)	PH WAT WHO FIE (STA AR UNI	ER LE LD ND-	TEMP ATU WAT (DEG	RE ER	OXYO DI SOL (MO	SEN IS- VE	, D	LCI IS- OLV MG/ S C	FD	MAGI SIL SOL (MG AS	JM, VED	SODIU DIS- SOLVE (MG/ AS	JM, S	TAS SIUM DIS- ILVE IG/L K)	, SULFATE
DEC 02	1015	1	9 9	14	6	. 8		7.0		3.8		7.	2	3	. 3	9.	. 8	1.3	12
APR 06	1030	2	1 13	0	6	.6	1	0.0	8	3.4		6.	8	3	.6	11		1.4	11
MAY 25	1015	1	9 13	1	6	. 5	1	8.0		3.6		7.	9	3	. 9	11		1.5	9
DATE		CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRI GEN NITRA TOTAL (MG/L AS N	F AM	ITRO- GEN MONÍA DTAL MG/L S N)	MON. ORG.	TRO- AM- TA + ANIC TAL G/L N)	PHO	OS- RUS TAL G/L P)	0	PHOS- HORUS RTHO TOTAL (MG/L AS P)		IN D SO	UM- UM, IS- LVED G/L AL)	MC	NTI- INY, DIS- DLVED JG/L S SB)	ARSENIC DIS- SOLVED (UG/L AS AS)) 5	ARIUM, DIS- OLVED (UG/L AS BA)
DEC 02		16	2.4		0.07						<0.00	5		(50		⟨20	(20		(50
APR 06		16	2.		0.04		0.30	(0.01		0.00			(50		⟨20	⟨20		⟨50
MAY 25		17	2.3	1	0.02									<50		⟨20	<20		(50
DATE		BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMII DIS SOLVI (UG/I AS CI	D SI	HRO- IUM, IS- OLVED UG/L S CR)	SOL	ALT, S- VED G/L CO)	DI	PER, S- LVED G/L CU)		IRON, TOTAL RECOV ERABL (UG/L AS FE	Ē	SO	ON, IS- LVED G/L FE)	S	EAD, DIS- DLVED JG/L S PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)		MANGA- NESE, DIS- SOLVED (UG/L AS MN)
DEC			⟨20		⟨20		⟨20		⟨20		19	0		100		⟨20	30	1	300
APR 06		<10	⟨20		⟨20		⟨20		⟨20		17	0		80		⟨20	150	1	130
MAY 25		<10	⟨20		<20		⟨20		<20					100		⟨20			130
DATE		MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEI DIS- SOLVI (UG/I AS N	D 5	ELE- IUM, DIS- DLVED UG/L S SE)	SO	VER, IS- LVED G/L AG)	SIL DI SOL (U	ICON S- VED G/L SI)		STRON TIUM DIS- SOLVE (UG/L AS SR	,	TH LI DI SOL (U	AL- UM, S- VED G/L TL)	SI	ITA- IUM DIS- DLVED JG/L S TI)	VANA- DIUM, DIS- SOLVEI (UG/L AS V))	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
DEC 02 APR		⟨20		20	(20		20		5200			0		⟨50		⟨20	(20	1	
06 MAY		<20	<	20	<20	(20		4600		5	0		<50		⟨20	(20)	⟨0.025
25		⟨20	<:	20	⟨20	(20		4800		6	0		⟨50		⟨20	(20	1	

01307000 CHAMPLIN CREEK AT ISLIP, NY

LOCATION.--Lat 40°44'13", long 73°12'08", Suffolk County, Hydrologic Unit 02030202, on right bank just upstream from Long Island Railroad bridge, 220 ft downstream from Moffit Boulevard, at Islip, and 1.8 mi upstream from mouth.

DRAINAGE AREA. -- About 6.5 square miles.

PERIOD OF RECORD. -- Water years 1966 to current year.

REMARKS. -- Partial - record discharge data included in this report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 03	1355	306	6.3	8.5	8.2	13	4.3	39	2.1	22
APR	1345	301	6.1	14.5	9.9	13	4.1	40	2.5	19
MAY 24	1345	313	6.3	20.0	9.9	13	4.8	41	2.5	26
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN NITRATE TOTAL (MG/L AS N)	NITRO- GEN AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)
JAN 03	76	3.0	0.36				(50	⟨20	⟨20	⟨50
APR 04	79	3.4	0.36	0.92	0.024	0.006	⟨50	⟨20	⟨20	<50
MAY 24	78	3.0	0.25				(50	⟨20	⟨20	⟨50
DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN 03	<10	⟨20	⟨20	⟨20	⟨20	330	170	⟨20	530	490
APR 04	<10	<20	⟨20	⟨20	⟨20	290	180	⟨20	430	370
MAY 24	<10	<20	⟨20	<20	⟨20	300	220	⟨20	360	430
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	SILICON DIS- SOLVED (UG/L AS SI)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	THAL- LIUM, DIS- SOLVED (UG/L AS TL)	TITA- NIUM DIS- SOLVED (UG/L AS TI)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
JAN 03	(20	⟨20	⟨20	⟨20	4600	110	⟨50	⟨20	⟨20	
APR 04	⟨20	⟨20	⟨20	⟨20	4200	110	<50	⟨20	⟨20	(0.025
MAY 24	⟨20	⟨20	⟨20	⟨20	4800	130	<50	⟨20	⟨20	

01307500 PENATAQUIT CREEK AT BAY SHORE, NY

LOCATION.--Lat $40^{\circ}43^{\circ}37^{\circ}$, long $73^{\circ}14^{\circ}41^{\circ}$, Suffolk County, Hydrologic Unit 02030202, on right bank just upstream from Union Avenue in Bay Shore, and 4,500 ft upstream from mouth.

DRAINAGE AREA . -- About 5 square miles.

PERIOD OF RECORD. -- May 1966 to current year.

REMARKS.--Partial-record discharge data included in this report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

SPE- PH CIFIC WATER CON- WHOLE DUCT- FIELD TEMPER- DXYGEN, DIS- DIS- DIS- ANCE (STAND- ATURE DIS- SOLVED SOLVED SOLVED DATE TIME FIELD ARD WATER SOLVED (MG/L (MG/L (MG/L (US/CM) UNITS) (DEG C) (MG/L) AS CA) AS MG) AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)
JAN 03 1455 303 6.5 8.0 9.4 14 3.7 36	2.5	26
APR 04 1500 293 6.3 15.0 11.2 14 3.6 34	2.8	22
MAY 24 1445 298 6.5 18.0 9.6 15 4.0 37	2.8	30
CHLO- NITRO- NITRO- GEN.AM- RIDE, GEN GEN. MONIA + PHOS- PHORUS INUM, MONY, DIS- NITRATE AMMONIA ORGANIC PHORUS ORTHO DIS- SOLVED TOTAL TOTAL TOTAL TOTAL TOTAL SOLVED SOLVED DATE (MG/L (MG/L (MG/L (MG/L (MG/L (UG/L (UG/L (UG/L (UG/L (AS CL) AS N) AS N) AS N) AS P) AS P) AS AL) AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)
JAN 03 85 3.8 0.30 <50 <20	⟨20	⟨50
APR 04 62 3.8 0.26 0.84 <0.01 <0.005 <50 <20	⟨20	<50
MAY 24 62 3.3 0.24 <50 <20	⟨20	₹50
BERYL- LIUM, CADMIUM MIUM, COBALT, COPPER, TOTAL IRON, LEAD, DIS- DIS- DIS- SOLVED SOLVED SOLVED SOLVED SOLVED ERABLE SOLVED SOLVED DATE (UG/L	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
JAN	830	770
APR 04 <10 <20 <20 <20 <20 300 150 <20	690	610
MAY 24 <10 <20 <20 <20 <20 350 190 <20	630	730
MOLYB- DENUM, NICKEL, NIUM, SILVER, SILICON TIUM, LIUM, NIUM DIS- SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED DATE (UG/L	VANA- DIUM, DIS- SOLVED (UG/L AS V)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
JAN 03 <20 <20 <20 <20 4300 100 <50 <20 APR	⟨20	
U4 (20 (20 (20 (20 3800 100 (50 (20	⟨20	⟨0.025
MAY 24 <20 <20 <20 <20 4800 120 <50 <20	⟨20	

01308000 SAMPAWAMS CREEK AT BABYLON, NY

LOCATION.--Lat 40°42'15", long 73°18'52", Suffolk County, Hydrologic Unit 02030202, on left bank at upstream side of John Street Bridge in Babylon, 180 ft downstream from Long Island Railroad, and 0.6 mi upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 23 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1944 to current year (monthly means estimated December 1966 to November 1967).

REVISED RECORDS.--WSP 1141: Drainage area. WSP 1702: 1955(M), 1956(M). WRD NY 1974: 1970(P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 6.36 ft above sea level. October 1944 to December 1966, water-stage recorder at site 100 ft east at datum 0.34 ft higher.

REMARKS.--No estimated daily discharges. Records good except those for Oct. to Dec., Aug. and Sept., which are fair. Flow regulated slightly by pumping operations at railroad and occasionally by ponds above station. Indeterminate effect caused by ground-water pumpage for water-supply purposes at Smith Street substation 0.2 mi northwest of gage. Prior to November 1950, slight diurnal fluctuation caused by power operations.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 88 ft3/s and maximum (*):

Date Jan. 18 Aug. 18	Time 0015 0030	Discl (f	harge t ³ /s) 104 99	Gage h (f *1. 1.	eight t) 69 62		Ja	Date n. 28	Time 1615	Discharge (ft ³ /s) *104	Ga	ge height (ft) *1.69
		DISCHA	RGE, CUB	IC FEET PE	R SECOND,	WATER YEA	AR OCTOBE	R 1993 T	O SEPTEMB	ER 1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.7 3.8 4.6 4.6 4.3	6.3 4.7 4.9 4.7	4.8 4.7 4.6 9.0 42	8.2 6.5 6.0 9.6 6.9	9.3 8.8 8.6 8.4 8.4	10 10 28 20 17	15 14 14 14 13	13 12 11 11	8.6 8.2 7.9 7.4 8.1	4.1 4.0 3.9 3.8 3.8	2.7 2.7 3.6 3.2 9.5	4.2 3.8 3.8 3.8 3.8
6 7 8 9	4.1 4.4 4.3 4.1 3.7	7.2 5.9 5.3 5.3	16 11 8.3 7.7 8.4	6.1 6.2 12 6.8 5.9	8.3 8.1 8.5 8.9 8.0	14 12 19 15 28	14 19 14 13 16	11 12 21 13 12	7.9 8.2 7.4 7.1 6.9	3.9 3.6 4.7 4.0 3.4	4.8 3.6 3.5 3.4 3.2	3.6 3.5 3.4 3.2 3.2
11 12 13 14 15	3.6 14 5.0 3.5 3.7	5.0 5.2 5.0 5.2 5.0	8.6 7.4 7.1 6.8	5.7 7.2 7.5 6.9 5.9	8.9 8.2 8.0 7.5 7.8	20 16 14 14 14	14 15 27 22 18	11 11 10 10 9.7	6.8 6.5 6.4 6.2 5.9	3.2 3.2 3.2 3.4 7.1	3.2 3.2 3.4 10 7.9	3.1 3.2 3.2 3.2 3.2
18 17 18 19 20	3.7 3.8 3.6 3.8	4.4 5.1 4.9 7.8 5.9	6.5 6.1 6.1 6.8 5.7	5.1 14 34 11 8.4	7.7 7.8 8.1 9.0	13 13 12 13 13	17 16 15 16 16	16 21 14 12 11	5.7 5.7 5.6 5.2 5.0	3.2 3.0 3.2 3.0 2.8	4.0 6.5 21 6.4 4.9	3.3 3.8 7.3 4.2 4.1
21 22 23 24 25	8.2 5.0 3.6 3.8 3.7	4.7 5.0 5.0 5.3 4.5	18 10 9.0 8.2 8.3	7.6 7.1 6.8 8.4 7.2	20 18 14 19 14	12 20 14 13 13	15 15 15 15 14	11 10 9.9 9.5	5.0 6.8 4.8 5.2 5.5	2.7 2.6 9.4 3.9 2.9	9.3 13 7.7 5.7 4.9	4.1 5.2 18 4.7 4.4
26 27 28 29 30 31	3.5 6.2 4.7 4.5 13 8.3	4.6 4.6 21 5.9 4.8	7.5 6.7 6.6 6.9 6.7 6.2	6.8 6.5 49 25 12	13 11 11 	12 15 19 21 17 15	14 14 13 13 13	12 10 9.3 9.0 8.8 8.6	4.8 4.7 4.5 4.4 4.4	3.6 3.5 3.5 2.7 2.7 2.6	5.3 4.7 4.4 4.7 4.4 4.4	4.4 9.7 8.9 5.7 4.4
TOTAL MEAN MAX MIN	161.8 5.22 14 3.5	181.5 6.05 21 4.4	283.5 9.15 42 4.6	324.3 10.5 49 5.1	291.3 10.4 20 7.5	486 15.7 28 10	463 15.4 27 13	362.8 11.7 21 8.6	186.8 6.23 8.6 4.4	114.6 3.70 9.4 2.6	179.2 5.78 21 2.7	142.4 4.75 18 3.1
STATIST	ICS OF I	MONTHLY ME	AN DATA F	OR WATER		5 - 1994,	BY WATER	YEAR (W	Y)			
MEAN (WY) MIN (WY)	7.27 22.5 1991 3.95 1988	8.25 19.8 1956 4.30 1951	9.48 14.2 1984 4.23 1966	10.3 19.6 1978 5.13 1981	10.9 16.6 1979 5.77 1947	12.5 20.1 1958 6.97 1988	13.4 23.7 1983 5.98 1968	11.7 20.7 1989 5.79 1986	9.98 24.3 1989 4.70 1986	8.66 21.9 1975 3.38 1966	8.17 20.5 1989 3.42 1993	7.34 16.3 1989 3.79 1986

STREAMS ON LONG ISLAND 01308000 SAMPAWAMS CREEK AT BABYLON, NY--Continued

SUMMARY STATISTICS	FOR 1993 CALENDAR YEAR	FOR 1994 WATER YEAR	WATER YEARS 1945 - 1994
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	3347.3 9.17	3177.2 8.70	9.80 15.4 1984 5.55 1988
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	42 Dec 5 2.9 Aug 22 3.1 Aug 9	49 Jan 28 2.6 Jul 22 2.9 Jul 29 104a Jan 18	93 Oct 13 1990 1.7 May 29 1976 2.6 Aug 17 1988 212b Oct 13 1990
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	18 7.7 3.7	1.69 Jan 18 2.4c Jul 22 15 7.1 3.5	3.28 Feb 7 1971 1.3d Sep 13 1986 16 8.7 4.7

a Also occurred on Jan 28. b From rating curve extended above 110 ft³/s. c Also occurred on Jul 23, 31. d Result of regulation, also occurred on Sept 14 1986.

01308000 SAMPAWAMS CREEK AT BABYLON, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	TIME	CHAR INS CUE FE PE	T. BIC ET R	SPE- CIFI CON- DUCT ANCE FIELD (US/O	C WAT WHO FIE (STA AR	ER LE LD TEMI ND- ATI D WA	PER- URE TER G C)	OXYGEN DIS- SOLVE (MG/L	D (MG	VED S	AGNE- SIUM, DIS- OLVED MG/L S MG)	SODIU DIS- SOLVE (MG AS	JM, S D SOI	TAS- IUM, IS- LVED G/L K)	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 05	1130	1	3	203	6	.3	11.0	8.2	12		3.1	17		2.8	22
MAY 25	1130		9.2	207	6	.3	17.0	7.0	13		3.7	19		2.9	22
DA		CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NIT GE NITR TOT (MG AS	N ATE	NITRO- GEN AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN, AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	PHOR PHOR TOT (MG AS	S- P US 0	PHOS- HORUS RTHO TOTAL (MG/L AS P)	ALUM- INUM, DIS- SOLVE (UG/L AS AL	D SI	NTI- ONY, DIS- OLVED UG/L S SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	SOL	RIUM, IS- JYED JG/L S BA)
APR 05		29	2	.3	0.91	1.5	0.0	28	0.006	(50		⟨20	⟨20		⟨50
MAY 25		32	1	.8	0.78	:	-	•		(50		⟨20	⟨20		⟨50
DA		BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADM DI SOL (UG AS	S- VED	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPP DIS SOL (UG AS	ER, VED	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVE (UG/L AS FE	D SI	EAD, DIS- OLVED UG/L S PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NE NE	NGA- SE, IS- DLYED JG/L MN)
APR 05		<10	(2	0	(20	(20		<20	720	39	0	⟨20	970		800
MAY 25		<10	(2		⟨20	⟨20		⟨20		69	0	⟨20			930
DA		MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICK DIS SOL (UG AS	VED	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	SILI DIS SOLV (UG AS S	H()	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	THAL- LIUM, DIS- SOLVED (UG/L AS TL)	5	ITA- IUM DIS- OLVED UG/L S TI)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	AC	ETHY- ENE LUE TIVE GUB- ANCE IG/L)
APR 05 MAY		⟨20		⟨20	⟨20	⟨20	3	000	70	〈 5	0	<20	⟨20	<0	1.025
25		⟨20		⟨20	(20	⟨20	4	000	80	(5	0	<20	⟨20		

01308500 CARLLS RIVER AT BABYLON, NY

LOCATION.--Lat 40°42'31", long 73°19'44". Suffolk County, Hydrologic Unit 02030202, on left bank 130 ft downstream from outlet of Southards Pond in Babylon, and 0.9 mi upstream from mouth. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 35 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1944 to current year.

REVISED RECORDS. -- WSP 1141: Drainage area. WRD NY 1972: 1947(m), 1952(m), 1954(m), 1958(m), 1960-63(m).

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 10.63 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges; which are poor. Occasional regulation at outlet of Southards Pond.

		DISCHARGE	, CUBIC	FEET PER	SECOND, W	ATER YEA	AR OCTOBER	1993 TO S	EPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	14 14 16 14 13	27 19 18 18 24	17 16 16 18 76	18 20 19 23 22	24 24 23 23 22	e26 24 41 41 36	32 31 30 29 29	25 24 23 23 24	19 17 18 18 18	12 11 11 11 14	10 10 11 11 11	13 12 12 11 11
6 7 8 9	12 13 13 13 12	31 21 18 17 17	45 29 25 24 23	19 19 27 21 19	21 21 22 24 24	33 30 40 38 51	30 37 29 28 31	25 24 40 30 25	18 20 18 17 17	10 9.8 11 13 11	26 14 12 11 11	11 11 10 10 10
11 12 13 14 15	11 19 27 16 14	17 17 16 16 16	30 26 22 21 21	18 20 22 21 19	24 24 23 20 20	49 34 34 33 33	33 30 43 50 35	23 23 23 21 21	16 16 17 19 18	9.3 8.7 8.5 8.5	10 10 11 19 27	9.7 9.4 9.6 10 9.5
16 17 18 19 20	14 13 13 14 28	15 15 16 17 17	20 19 19 21 21	18 e35 e65 e35 e25	19 19 21 26 28	32 30 30 30 28	34 32 30 30 30	30 47 32 30 27	14 15 15 14 13	14 11 11 12 11	16 14 55 25 15	9.0 9.2 16 12 9.8
21 22 23 24 25	26 26 16 15	15 14 14 14 13	36 25 22 20 20	e20 e20 e20 e25 e20	37 41 36 37 35	29 47 33 28 30	28 26 26 26 26	25 24 24 23 22	13 15 14 14 14	9.9 9.6 17 22 14	17 46 32 21 18	9.3 13 39 20 15
26 27 28 29 30 31	16 22 17 13 18 32	13 14 30 28 20	17 20 18 18 19 18	e21 e21 e80 e50 e35	29 26 27 	32 32 43 46 38 31	26 26 25 24 25	30 27 22 21 20 19	13 12 12 12 12 12	12 14 14 12 11	18 16 15 16 15 14	13 25 22 15 13
TOTAL MEAN MAX MIN	519 16.7 32 11	547 18.2 31 13	742 23.9 76 16	825 26.6 80 18	720 25.7 41 19	1082 34.9 51 24	911 30.4 50 24	797 25.7 47 19	468 15.6 20 12	375.3 12.1 22 8.5	564 18.2 55 10	399.5 13.3 39 9.0
		DNTHLY MEAN										
MEAN MAX (WY) MIN (WY)	20.9 52.0 1991 10.5 1966	24.3 50.3 1956 11.3 1966	27.2 48.8 1978 12.3 1966	28.5 55.8 1978 13.6 1966	29.9 49.3 1979 15.1 1967	33.1 54.5 1979 18.5 1966	34.1 64.3 1983 13.2 1966	30.2 53.8 1989 14.1 1986	26.1 50.7 1989 11.8 1986	22.2 49.6 1984 8.57 1966	21.8 40.7 1990 9.66 1966	20.1 36.4 1960 9.67 1965
SUMMARY	STATIST	ICS	FOR :	1993 CALEN	DAR YEAR	F	OR 1994 WA	TER YEAR		WATER YEA	RS 1945	- 1994
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT 10 PERC 90 PERC 90 PERC	TOTAL MEAN ANNUAL I ANNUAL I DAILY ME SEVEN-DA ANEOUS PI	MEAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW EDS EDS		8379.6 23.0 91 8.1 9.0	Apr 1 Aug 2 Sep 2		7949.8 21.8 80 8.5 9.5 106b 1.43 .23 34 20	Jan 28 Jul 13 Sep 11 Dec 5 b Dec 5 f Feb 28		26.5 39.9 14.1 205 4.5 7.4 300a 2.39 .05c	Aug	1978 1966 26 1978 6 1966 4 1966 24 1990 24 1990 4 1963

a From rating curve extended above 190 $\rm ft^3/s$. b May have been higher on Jan 28. c Result of regulation. Also occurred on Jul 6 1966 and Aug 29 1972. d Result of freezeup. e Estimated.

01308500 CARLLS RIVER AT BABYLON, NY--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

COOPERATION. --Water-quality analyses for this station identified by an asterisk (*) were collected and analysed by Suffolk County Department of Health Services.

All other analyses for this station were collected and analysed by the U.S. Geological Survey.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

		WILL GOVE	til bala,	WAILN IL	WIL OCLODE	1 1330 10	OCI I LINDL	11 1337		
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
DEC 14	1100	22	209	6.3	4.0	769	11.7	12	3.0	18
MAR 02	1015	24	270	6.8	2.5	772	11.4	13	3.1	31
APR *05	1350	29	209	6.4	12.0		9.8	11	3.0	18
MAY 24 ≉25	0815 1350	26 20	228 208	8.8 6.5	17.0 21.0	771	8.1 8.2	13 12	3.2 3.4	19 20
AUG 11	0815	11	193	7.0	19.5	775	8.0	11	2.8	17
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN. NITRATE TOTAL (MG/L AS N)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN AMMONÍA TOTAL (MG/L AS N)
DEC 14	2.9	19	27	24	(0.10	8.7	0.013		2.1	
MAR 02	2.9	16	26	44	(0.10	8.7	0.014		2.2	
APR *05	2.8		25	29	-			3.1		0.93
MAY 24 *25	3.1 3.2	18	25 26	25 30	<0.10	7.9	0.050	2.4	2.5	0.55
AUG 11	2.5	19	21	21	<0.10	6.1	0.010		1.5	
DATE	NITRO- GEN AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN AMMONTA DIS- SOLVED (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)
DEC 14	1.3	1.4	0.018	-	0.003					
MAR 02	1.6	1.5	0.013		0.003	-		72		
APR *05	1.23		0.023	(0.005		⟨50	(20	(20	⟨50	<10
MAY 24 *25	1.1	0.74	0.020		0.001	(50	 (20	 <20	 (50	(10
AUG 11	(0.2	0.07	0.014		0.002					

STREAMS ON LONG ISLAND 01308500 CARLLS RIVER AT BABYLON, NY--Continued WATER-QUALITY RECORDS

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

	DATE	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)
DE	14					460	210		970	930	
MA	02					480	200		1000	1000	
AF MA	05	. <20	<20	⟨20	⟨20	570	210	⟨20	1200	950	<20
	24	⟨20	₹20	₹20	- - <20	660	160 220	- - (20	1400	1200 1200	₹20
AC	11					370	130		570	560	
	DAT	NICKI DIS- SOL' E (UG AS	VED SOLV	A, SILVE S- DIS VED SOLV	VED SOLVE	DIS D SOLV	M, LIU 5- DIS ED SOLV	M, NIUM - DIS ED SOLV	A DIUN S- DIS /ED SOLV	A, BLI 5- ACT: /ED SUI /L STAI	NE UE IVE B- NCE
	DEC 14	-				-	-			. 0	. 04
	02	-		-			-		-	. 0	. 03
	*05		(20	(20 (2)	32	00	70	<50	(20	(20 <0	.025
	24 *25 AUG			(20 (20		00		<50 - <		(20	
	11						-			. 0	.03

01309000 SANTAPOGUE CREEK AT LINDENHURST, NY

LOCATION.--Lat 40°41'30°, long 73°21'20°, Suffolk County, Hydrologic Unit 02030202, on left bank just upstream from East Hoffman Avenue bridge, 1.0 mi east of Long Island Railroad station in Lindenhurst, and 1.5 mi upstream from mouth.

DRAINAGE AREA. -- About 7 square miles.

PERIOD OF RECORD. -- Water years 1966 to current year.

REMARKS.--Partial-record discharge data included in this report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 05	1240	319	6.4	12.5	9.1	19	4.2	31	4.1	28
MAY 25	1240	314	8.4	17.0	5.1	19	4.7	31	4.0	28
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN NITRATE TOTAL (MG/L AS N)	NITRO- GEN AMMONÍA TOTAL (MG/L AS N)	NITRO- GEN.AM- MONÍA + ORGANIC TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ANTI- MONY, DIS- SOLVED (UG/L AS SB)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, DIS- SOLVED (UG/L AS BA)
APR 05	56	0.5	1.3	1.9	⟨0.01	⟨0.005	⟨50	⟨20	⟨20	<50
MAY 25	54	0.9	1.3		-		(50	<20	⟨20	⟨50
DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLYED (UG/L AS FE)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR 05	<10	<20	⟨20	⟨20	⟨20	1400	930	⟨20	2100	1900
MAY 25	<10	<20	<20	⟨20	⟨20		670	⟨20		2500
DATE	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER, DIS- SOLVED (UG/L AS AG)	SILICON DIS- SOLVED (UG/L AS SI)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	THAL- LIUM, DIS- SOLVED (UG/L AS TL)	TITA- NIUM DIS- SOLVED (UG/L AS TI)	VANA- DIUM, DIS- SOLVED (UG/L AS V)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
APR 05	⟨20	⟨20	(20	<20	3100	130	(50	⟨20	(20	⟨0.025
MAY 25	⟨20	⟨20	(20	⟨20	3900	130	(50	⟨20	<20	

Gage height

Discharge

STREAMS ON LONG ISLAND

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY

LOCATION.--Lat 40°41'20", long 73°27'19", Nassau County, Hydrologic Unit 02030202, on left bank 3000 ft upstream from Clark Boulevard Bridge in Massapequa, and 350 ft west of Lake Shore Drive at Garfield Street in Massapequa Park. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 38 mi2.

WATER-DISCHARGE RECORDS

Date

Time

PERIOD OF RECORD. -- June to October 1903, December 1936 to current year (monthly means estimated December 1959 to February 1961). Published as Massatayun Creek at Massapequa, December 1936 to September 1941.

REVISED RECORDS. -- WSP 1411: Drainage area. WRD NY 1970: 1966-69 (M).

Discharge

GAGE.--Water-stage recorder and concrete control. Datum of gage is 18.31 ft above sea level. Prior to October 1903, non-recording gage at different datum. December 1936 to March 1961, at datum 1.0 ft higher.

REMARKS . -- Records good .

Time

Date

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 110 ft3/s and maximum (*):

Gage height

Jan. 18	011	5	125 (ft3/s)		(ft) 1.56		J	Date I an. 28 1	615	*194		*1.77
		DISCHA	RGE, CUBI	C FEET PE	R SECOND	WATER YE Y MEAN VA	AR OCTOBE	R 1993 TO	SEPTEMBE	₹ 1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.3 2.2 2.7 2.2 2.2	5.4 2.5 2.1 2.0 7.0	1.7 1.7 1.7 3.9 27	2.3 2.3 2.3 3.2 2.6	3.9 3.7 3.7 3.7 3.7	3.7 3.5 13 8.3 7.4	7.4 7.0 8.8 6.7 6.2	4.9 4.7 4.4 4.4	3.7 3.6 3.5 3.5 3.3	1.9 1.8 1.8 1.7	1.2 1.3 1.3 1.3	1.5 1.4 1.3 1.3
6 7 8 9	2.2 2.2 2.4 2.3 2.3	4.4 2.6 2.1 2.0 2.0	5.6 3.9 3.5 3.3 3.1	2.2 2.2 4.0 2.7 2.1	3.7 3.3 2.8 3.1 2.9	5.7 6.4 11 7.0 21	9.3 11 6.8 6.4 8.7	4.3 4.5 14 5.7 5.0	4.1 5.2 3.4 3.2 3.2	1.7 1.7 2.7 2.0 1.6	4.6 2.1 1.9 1.7 1.7	1.0 1.0 1.0 1.0
11 12 13 14 15	2.3 5.8 3.6 2.3 2.5	1.9 1.8 1.7 1.8 1.9	5.4 3.5 3.0 2.9 2.9	2.0 2.5 3.5 3.1 2.4	2.9 2.9 2.9 2.9 2.9	9.6 8.0 7.5 7.4 7.4	8.0 7.7 18 11 7.9	4.6 4.6 4.4 4.6 4.0	3.2 3.2 3.1 2.7 4.5	1.6 1.6 1.5 1.6 2.1	1.7 1.7 1.7 3.5 3.3	1.0 1.0 1.0 1.0
16 17 18 19 20	2.0 2.3 2.5 6.5	1.9 2.0 1.8 2.0 1.9	2.9 2.5 2.3 3.1 2.4	2.0 e3.7 29 4.6 e3.7	2.9 2.9 3.1 3.6 6.3	7.2 6.3 6.1 5.8 5.6	8.9 7.2 7.1 7.3 6.6	12 18 7.3 7.1 5.9	2.9 2.5 2.3 2.2 1.9	1.4 1.4 1.5 1.4 1.3	1.9 2.3 10 2.7 2.0	1.0 1.0 3.2 1.4 1.2
21 22 23 24 25	6.7 4.8 2.1 2.2 2.3	1.7 1.7 1.7 1.7 1.8	8.6 3.5 3.1 2.9 2.9	e2.9 2.9 2.9 e3.0 2.9	9.6 8.2 5.6 9.1 6.0	5.7 17 7.5 6.8 6.4	7.0 5.7 5.7 5.7 6.1	5.2 4.7 4.6 4.5 5.5	2.1 1.9 1.9 2.0 1.9	1.2 1.2 4.3 2.1 1.4	4.6 12 3.4 2.3 1.9	1.0 1.5 26 3.1 2.3
26 27 28 29 30 31	2.3 4.1 3.3 3.3 7.1 6.1	1.7 1.7 7.6 2.6 2.0	2.4 2.3 2.3 2.3 2.3 2.3	2.9 2.9 76 12 5.9 4.4	4.7 4.1 4.0 	5.7 8.5 13 14 9.2 7.8	5.4 5.3 5.4 5.0	7.7 5.3 4.1 3.9 3.8 3.7	1.8 1.8 1.9 2.0 1.9	1.4 1.4 1.3 1.2	1.7 1.7 1.7 1.7 1.6 1.5	2.0 23 4.5 2.9 2.3
TOTAL S MEAN S MAX MIN	99.1 3.20 7.1 2.0	75.0 2.50 7.6 1.7	121.2 3.91 27 1.7	201.1 6.49 76 2.0	119.1 4.25 9.6 2.8	259.5 8.37 21 3.5	222.3 7.41 18 5.0	181.8 5.86 18 3.7	84.4 2.81 5.2 1.8	52.1 1.68 4.3 1.2	95.0 3.06 13 1.2	93.1 3.10 26 1.0
STATISTICS	S OF N	ONTHLY ME	AN DATA F	OR WATER	YEARS 193	7 - 1994,	BY WATER	YEAR (WY)			
MAX (WY) MIN	7.36 18.6 1956 1.95 1.95	8.78 24.5 1956 2.01 1968	9.52 18.8 1973 2.12 1966	10.8 33.2 1979 2.71 1966	11.6 25.7 1973 3.72 1989	13.8 28.7 1939 3.85 1966	14.9 33.3 1953 2.91 1966	13.0 32.5 1979 2.92 1986	10.7 28.7 1952 1.95 1986	8.67 25.7 1984 1.68 1994	8.39 22.9 1955 1.73 1966	7.04 18.2 1938 1.47 1986

STREAMS ON LONG ISLAND 01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY--Continued

SUMMARY STATISTICS	FOR 1993 CALENDAR YEAR	FOR 1994 WATER YEAR	WATER YEARS 1937 - 1994
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	1888.2 5.17	1603.7 4.39	10.5 19.4 3.19 1966
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	48 Apr 1 1.7 Aug 24 1.7 Nov 21	76 Jan 28 1.0 Sep 6 1.0 Sep 6 194 Jan 28	191 Jan 21 1979 1.0 Nov 5 1987 1.0 Sep 6 1994 510a Jul 29 1980
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	10 3.8 1.9	1.77 Jan 28 1.0 Many days 7.7 2.9 1.5	2.40 Jul 29 1980 .48b Nov 21 1987 19 8.6 3.4

a From rating curve extended above 200 $\rm ft^3/s$. b Result of regulation. e Estimated.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1986 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	: TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARD- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
0CT 18	0910	2.6	244	6.6	12.0	760	6.8	17	3.4
FEB 02	1105	3.7	288	6.6	2.5	770	11.5	19	3.5
MAY 04	0930	4.5	301	6.5	12.5	769	9.3	18	3.5
JUL 13	0820	1.7	260	6.4	18.5	769	6.4	18	3.6
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N)
0CT 18	22	2.4	23	29	33	(0.10	8.8	0.048	2.3
FEB 02	30	3.2	21	28	48	⟨0.10	9.8	0.013	2.7
MAY 04	24	2.9	24	26	40	⟨0.10	7.3	0.028	2.1
JUL 13	22	2.7	27	25	35	<0.10	7.0	0.030	1.6
DATE	NITRO- GEN, AMMONIA DIS- SOLVE (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	IRON TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
OCT		0.00	0.000	0.000	000	0.5	100		
18 FEB	0.16	0.30	0.029	0.003	260	95	490	460	0.04
02	0.61	0.80	0.045	0.005	410	96	740	740	0.03
JUL 04	0.37	0.50	0.032	0.002	430	93	470	390	⟨0.02

01309680 SEAFORD CREEK AT MASSAPEQUA, NY

LOCATION.--Lat 40°40'08", long 73°28'55", Nassau County, Hydrologic Unit 02030202, on left bank 15 ft downstream from concrete foot bridge, in Tackapausha Preserve in Massapequa.

DRAINAGE AREA.--About 3.3 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --Occasional low-flow measurements 1989, 1991. March 1992 to current year.

GAGE. --Water-stage recorder. Elevation of gage is 3.0 ft above sea level, from topographic map.

REMARKS. --No estimated daily discharges. Records fair.

		DISCHAR	GE, CUBIC	FEET PER	SECOND, V	MEAN VAL	R OCTOBER	1993 TO	SEPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.44 .44 .58 .46 .43	1.2 .73 .76 .70 2.1	.84 .87 .87 1.6 7.6	1.4 1.6 1.4 3.9	.98 .95 .94 .97 .98	1.1 1.0 2.6 1.8 1.5	2.2 1.9 1.9 1.6 1.5	1.1 1.0 1.0 1.0 .99	.82 .75 .73 .68	.33 .36 .35 .34 .35	.38 .37 .34 .33	.31 .30 .30 .30
6 7 8 9	.44 .45 .47 .47 .43	1.3 .87 .76 .84 .83	1.8 1.3 1.2 1.0	1.1 1.2 2.0 1.3 1.2	.92 .89 .99 .99	1.2 1.4 2.2 1.3 4.4	2.2 2.6 1.5 1.5	1.0 1.2 3.5 1.4 1.3	1.2 1.3 .59 .54 .50	.35 .34 .53 .44 .36	.54 .40 .39 .37 .33	.30 .30 .31 .33 .33
11 12 13 14 15	1.5 .57 .44 .49	.80 .83 .75 .78 .79	2.1 1.3 1.2 1.1 1.0	1.1 1.4 1.5 1.2	.93 .90 .89 .82 .91	2.3 1.9 1.9 1.9	1.6 1.7 4.3 3.1 1.9	1.1 1.1 1.0 .96 .97	.49 .47 .47 .46 .88	.33 .32 .32 .38 1.0	.32 .32 .33 .88 .59	.33 .31 .30 .31 .31
16 17 18 19 20	.48 .50 .49 .48 1.7	.72 .73 .75 .86 .78	.94 .89 .89 1.1 .90	.95 2.9 7.9 1.3 1.2	.88 .91 .93 1.0 1.5	1.7 1.8 1.8 1.8 1.5	2.0 1.4 1.3 1.3	2.8 3.2 1.5 1.3	.49 .43 .42 .39 .37	.39 .34 .43 .36 .35	.35 .54 2.4 .36 .33	.33 .34 .85 .36 .32
21 22 23 24 25	2.1 .90 .57 .58 .57	.70 .67 .69 .74 .69	2.9 1.2 1.1 1.0 1.0	1.3 1.3 1.3 1.5	2.2 2.1 1.7 2.4 1.7	1.5 4.2 2.2 2.0 1.9	1.3 1.3 1.2 1.3	.97 .97 .98 1.0 1.5	.45 .39 .37 .55 .39	.35 .35 2.0 .54 .43	1.3 1.8 .46 .36	.32 .48 4.2 .46 .42
26 27 28 29 30 31	.58 .96 .71 .60 2.1 1.9	.70 .77 5.0 1.1 .88	.97 .95 .94 1.0 1.1 1.2	1.0 1.1 17 3.1 1.4 1.1	1.4 1.3 1.2	1.6 2.5 3.7 3.9 2.7 2.3	1.2 1.2 1.1 1.1 1.1	1.7 1.1 .89 .89 .89	.34 .37 .36 .39 .35	.43 .43 .48 .42 .40	.33 .33 .33 .31 .31	4.3 .53 .45 .40
TOTAL MEAN MAX MIN	23.22 .75 2.1 .41	29.82 .99 5.0 .67	42.96 1.39 7.6 .84	67.69 2.18 17 .95	33.05 1.18 2.4 .77	85.5 2.11 4.4 1.0	50.8 1.69 4.3 1.1	40.30 1.30 3.5 .89	16.60 .55 1.3 .34	14.19 .46 2.0 .32	19.37 .62 3.3 .31	18.81 .63 4.3 .30
		ONTHLY MEA			EARS 1992							
MEAN MAX (WY) MIN (WY)	.73 .75 1994 .70 1993	1.17 1.36 1993 .99 1994	1.62 1.86 1993 1.39 1994	1.80 2.18 1994 1.41 1993	1.18 1.19 1993 1.18 1994	2.21 2.30 1993 2.11 1994	1.58 1.99 1993 1.00 1992	1.07 1.30 1994 .87 1993	.84 .98 1993 .55 1994	.58 .78 1992 .46 1994	.73 1.12 1992 .46 1993	.61 .63 1994 .58 1992
SUMMARY	Y STATIST	ICS	FOR	1993 CALEN	DAR YEAR	F	DR 1994 WA	TER YEAR		WATER Y	'EARS 1992	- 1994
ANNUAL ANNUAL HIGHES: LOWEST HIGHES: ANNUAL INSTAN' INSTAN' INSTAN' 10 PERC 90 PERC	TOTAL MEAN T ANNUAL ANNUAL M T DAILY ME SEVEN-DA TANEOUS P TANEOUS P TANEOUS L CCENT EXCE CENT EXCE CENT EXCE	MEAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW EDS EDS		409.28 1.12 9.2 .29 .31 2.1 .87	Apr 1 Jul 23 Jul 30		422.31 1.16 17 .30 .30 47 1.66 .29 2.1 .93	Jan 28 Sep 2 Sep 1 Jan 28 Jan 28		36 3.3	.9 Jan 2 29 Jul 3 30 Sep Nov 4 34a Dec 3 75 Jul 3	1993 1994 28 1994 23 1993 1 1994 23 1992 11 1992 23 1993

a Result of high tide.
b Also occurred on Jul 24, 25, 26, 30, 31, Aug 3, 4.
c Also occurred on Jul 11-14, Sep 2, 4-7, 13,15.

01310000 BELLMORE CREEK AT BELLMORE, NY

LOCATION.--Lat 40°40'43", long 73°30'58", Nassau County, Hydrologic Unit 02030202, on right bank 40 ft east of intersection of Valentine Place and Mill Road, in Bellmore, 0.5 mi north of Sunrise Highway, and 0.5 mi northwest of Wantagh. Water-quality sampling site at base gage.

DRAINAGE AREA. -- About 17 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to October 1883 (fragmentary), July to October 1903, published in Professional Paper 44, September 1937 to current year. Prior to October 1957, published as Wantagh Stream at Wantagh. October 1957 to October 1967, published as Wantagh Stream at Bellmore.

GAGE.--Base gage (01309950): Water-stage recorder. Concrete control since July 24, 1974. Datum of gage is 15.06 ft above sea level. June to October 1883, determination of flow by various methods at different site and datum. July to October 1903, nonrecording gages on two channels near present site at different datum. Sept. 23, 1937, to Aug. 1, 1958, water-stage recorder with concrete control on right bank of present secondary channel about 1,000 ft east at datum 1.88 ft higher (used as supplementary gage since Aug. 1, 1958).

Supplementary gage (01309990): Water-stage recorder with concrete control on right bank of secondary channel about 1,000 ft east of base gage at datum of 16.96 ft sea level. Prior to July 28, 1965, at datum 2.00 ft higher. From July 28, 1965 to Oct. 6, 1965, at datum 1.00 ft higher.

REMARKS.--Records good, except those for estimated daily discharges, which are poor. Prior to Nov. 4, 1955, flow at all stages regulated intermittently at outlet of Wantagh Reservoir, 1.0 mi above station, and prior to November 1953 by Browning Pond, 0.5 mi above station. Subsequent to Nov. 3, 1955, permanent diversion of a substantial portion of the flow through west branch of Bellmore Creek. Discharge figures given are those of combined flows in main and secondary channels. flow at

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994
DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2.4 2.3 2.3 2.2 2.1 1.4 1.3 1.3 1.4 1.4 1.7 1.6 1.5 2.2 1.7 e.83 1.2 e2.4 e2.2 2.5 4.4 4.1 4.2 4.0 e1.3 2.3 3.1 1.2 1.2 1.2 4.2 17 1.8 1.6 1.6 5.5 2.9 1.0 e.83 e2.0 2.1 2.1 1.2 8.4 5.5 el.1 e.83 5 .93 4.5 4.0 3.0 e1.0 e9.4 2.7 3.2 2.3 2.1 2.0 2.1 2.2 2.9 2.5 3.3 3.0 2.4 2.2 2.2 2.6 .91 .91 .97 1.6 1.5 2.9 1.7 5.9 6.4 4.2 4.0 3.0 3.4 9.3 67 1.8 1.7 1.8 3.3 3.6 5.5 1.2 1.1 1.1 1.0 e1.0 e1.8 e.95 el.1 el.1 e1.4 e1.2 e1.2 e1.1 8 91 3.9 10 5.7 e.99 1.0 4.2 4.7 14 6.0 5.1 11 1.8 3.7 2.9 2.7 3.0 1.8 1.7 1.7 1.7 5.2 4.4 4.3 4.0 3.1 3.3 3.2 3.1 2.0 e1.1 e1.0 e1.0 .96 86 e1.7 e.88 4.0 1.3 1.1 1.0 .88 13 14 15 1.6 1.3 1.4 e1.8 e1.7 2.3 2.0 2.1 e.89 e1.1 e3.7 .89 e1.1 e1.2 3.0 e1.6 4.1 3.0 .91 2.8 2.8 2.5 2.5 2.0 18 17 18 1.0 1.0 1.1 1.9 1.8 e2.0 7.4 4.5 4.2 1.3 1.5 1.3 4.3 4.5 3.9 10 .91 e1.2 1.9 e1.2 e1.0 1.8 e3.1 6.8 2.2 2.0 9.7 e.91 e.91 .91 e6.2 6.8 5.2 4.7 e22 1.8 19 20 e2.7 3.9 1.1 1.6 e.91 .95 e2.0 e2.2 e.91 .91 2.1 2.4 2.4 1.8 1.7 3.9 3.4 3.1 3.1 4.2 e2.2 e2.2 e2.2 1.6 1.6 1.4 1.5 95 21 22 23 24 25 5.8 2.1 2.2 1.7 6.5 3.2 3.6 2.7 e3.8 4.7 4.0 e.83 5.3 e4.5 3.4 6.6 11 5.2 4.6 4.3 3.9 3.9 3.8 3.5 1.5 e.83 e3.6 6.5 12 1.5 e2.2 e1.5 2.0 e1.9 e1.1 2.0 3.3 1.8 26 27 1.1 1.6 1.8 e1.8 3.0 4.0 3.4 4.1 1.4 e1.0 1.6 1.4 3.4 3.2 1.6 1.6 1.6 1.6 1.5 12 2.1 2.2 1.1 1.8 5.9 8.3 1.4 e1.8 2.7 e1.2 28 1.5 e63 2.5 e1.1 1.3 1.8 8.1 e1.4 e1.3 29 1.3 e1.1 30 1.8 e3.8 ---5.4 e1.0 4.5 3.2 1.8 31 2.6 a2 5 e.91 57.4 1.91 3.2 1.3 TOTAL 93.7 3.02 17 68.3 2.44 162.4 5.24 14 141.0 37.22 1.20 3.7 59.08 61.3 2.04 5.5 1.1 51.98 157.2 5.07 125.3 67.64 4.04 1.68 2.18 MAX 5.8 63 6.6 10 9.4 2.5 2.6 .86 1.2 3.2 .83 .88 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1937 - 1994, BY WATER YEAR (WY) 10.6 19.9 1956 2.44 12.5 26.2 8.31 24.4 1956 9.00 9.75 21.8 1978 12.1 9.19 26.5 7.62 19.5 1975 MEAN 8 98 10.7 7.63 6.68 MAX (WY) MIN 20.8 1978 1.71 24.4 1961 18.9 1958 1959 1952 1961 1960 1953 1.02 1987 1988 1988 1989 1994 1992 1988 1986 1986 1986 1986 1986

STREAMS ON LONG ISLAND
01310000 BELLMORE CREEK NEAR BELLMORE, NY--Continued

SUMMARY STATISTICS	FOR 1993 CALENDAR YEAR	FOR 1994 WATER YEAR	WATER YEARS 1937 - 1994
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1174.17 3.22 30 Apr 1 .66 Sep 7 .73 Sep 3 6.4 2.5	1082.50 2.97 63 Jan 28 .75 Aug 4 .89 Jul 29 5.2 2.1 1.0	9.25 19.7 1961 2.41 1986 162 Sep 12 1960 .00a Jul 24 1986 .18 Jul 20 1986 17 7.5 2.6

a Also occurred on Jul 25 1986. e Estimated.

WATER-QUALITY RECORDS

PERIOD OF RECORD.--01309950 (Base gage): April 1966 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

QCT	3.4
18 1015 1.0 267 6.6 13.5 759 7.8 19	
FEB 02 1000 2.0 283 6.6 4.0 770 20	
MAY	3.7
JUL 13 0920 .91 293 6.9 22.5 769 9.0 19	3.6
DIS- DIS- LAB DIS- DIS- DIS- SOLVED DIS- SOLVED SOLVED (MG/L SOLVED SOLVED (MG/L SOLVED DATE (MG/L (MG/L AS (MG/L (MG/L (MG/L AS (MG/L AS NA) AS K) CACO3) AS SO4) AS CL) AS F) SIO2) AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
OCT 18 27 1.7 36 26 37 <0.10 5.4 0.024	1.8
FEB 02 31 2.6 37 26 42 (0.10 9.4 0.020	2.8
MAY 04 33 2.3 36 24 52 (0.10 8.1 0.022	1.7
JUL . 13 31 2.3 40 22 49 (0.10 9.4 0.030	0.45
NITRO- NITRO- PHOS- MANGA- GEN, GEN, AM- PHOS- ORTHO, TOTAL IRON, TOTAL NESE, DIS- ORGANIC PHORUS DIS- RECOV- DIS- RECOV- DIS- SOLVED DIS. TOTAL SOLVED ERABLE SOLVED DATE (MG/L (MG/L (MG/L (UG/L (U	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
OCT18 0.05 0.20 0.019 0.001 270 80 260 260	0.02
FEB 02 0.16 0.40 0.026 0.007 430 180 740 770	0.02
MAY 04 0.03 (0.20 0.018 0.001 670 86 240 220	⟨0.02
JUL 13 0.11 0.40 0.056 0.001 1400 160 380 330	0.04

01310500 EAST MEADOW BROOK AT FREEPORT, NY

LOCATION.--Lat 40°39'56", long 73°34'13", Nassau County, Hydrologic Unit 02030202, on right bank 24 ft upstream from bridge on Hempstead-Babylon Turnpike and 400 ft west of Meadowbrook Parkway, in Freeport. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- About 31 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1851 to December 1852, June to October 1883, September and October 1885 (fragmentary), June to October 1903, published in Professional Paper 44, January 1937 to current year (monthly means estimated November 1962 to December 1963).

REVISED RECORDS. -- WRD NY 1972: 1967-71 (P). WDR NY 1977: 1973-76 (P).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 10.45 ft above sea level. Prior to October 1885, determinations of flow by various methods at different site and datum. June to October 1903, weir in swamp at head of Brooklyn waterworks supply pond. January 1937 to November 1962, water-stage recorder and concrete control at site 81 ft east at datum 0.47 ft higher.

REMARKS --Records good except those below 5 ft3/s, which are fair, and those for estimated daily discharges,

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 250 ft³/s and maximum (*):

Date Jan. 18	Time 013	Dische (ft ³	arge /s)	Gage height (ft) 2.10				Date Jan. 28	Time 1800	Discharg (ft ³ /s) *569	e Ga	ge height (ft) 2.81
		DISCHA	RGE, CUE	BIC FEET PER	SECOND,	WATER YI	EAR OCTOBER	1993 TO	SEPTEMBER	R 1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.7 1.6 2.3 1.5 1.3	3.5 2.4 2.3 2.2 4.8	1.7 1.7 1.7 3.2 40	1.9 2.3 2.0 2.5 2.2	4.2 3.7 3.4 3.3 3.2	3.6 3.5 7.5 8.2 8.2	6.7 6.0 5.7 5.5 5.3	4.5 4.1 4.0 4.0 4.0	3.4 3.2 3.1 2.9 2.8	1.8 1.2 1.1 1.0	e.90 e.90 e.80 e.80	e.80 e.80 e.70 e.70
6 7 8 9	1.3 1.3 1.2 1.3 1.3	3.6 2.6 2.4 2.2 2.0	6.6 3.8 3.2 2.7 2.7	1.9 2.0 2.9 2.3 2.1	3.0 3.0 3.2 3.1 2.7	6.6 6.0 7.6 5.8 46	6.7 17 7.6 6.5 7.1	3.9 4.4 27 6.9 5.2	3.3 4.6 3.0 2.8 2.8	.92 .91 1.4 1.3 .85	e3.0 e1.5 e1.2 e1.0 e1.0	e.70 e.60 e.60 e.50
11 12 13 14 15	1.3 9.0 5.3 2.1 1.8	1.9 1.8 2.0 2.1 1.9	4.5 3.1 2.6 2.4 2.4	1.9 2.2 2.7 2.6 2.3	3.1 2.7 2.7 2.5 2.4	12 7.4 6.5 6.0 6.2	7.5 7.1 22 14 8.0	4.5 4.2 4.2 3.6 3.6	2.9 3.5 3.6 2.5 2.3	.73 .66 .74 .81 e3.5	e.90 e.90 e.90 e1.5 e1.5	e.50 e.50 e.40 e.40 e.40
16 17 18 19 20	1.7 1.7 1.5 1.6 5.6	1.8 2.0 1.8 1.9 2.0	2.4 2.2 2.2 2.7 2.3	2.0 15 72 5.4 4.0	2.4 2.5 2.9 3.7 5.4	5.8 5.1 5.2 5.1 4.8	17 8.8 6.4 6.1 5.7	21 34 8.6 7.3 6.3	2.1 2.0 1.9 1.8 1.6	e1.0 e.90 e.85 e.85 e.85	e1.0 e2.5 e10 e2.5 e1.5	e.40 e.40 e3.0 e1.0 e.70
21 22 23 24 25	10 7.8 3.0 2.6 2.1	1.7 1.7 1.7 1.7 1.4	8.0 3.7 2.7 2.4 2.4	3.4 3.2 2.9 3.6 3.3	9.7 12 7.2 10 7.8	4.9 22 7.0 5.7 5.4	5.5 5.3 5.1 4.7 4.7	5.3 5.0 4.6 4.2 4.9	1.8 1.7 1.6 1.6 2.4	e.85 e.85 e4.0 e1.5 e1.0	e6.0 e15 e3.0 e2.0 e1.5	e.50 e1.0 e30 e2.5 e1.5
26 27 28 29 30 31	2.2 2.6 2.3 1.9 5.2 4.7	1.4 1.4 4.7 2.4 1.8	2.4 2.2 2.2 2.2 2.2 2.1	2.6 2.4 196 22 7.4 5.1	4.9 4.2 3.7 	6.2 7.6 17 21 12 7.8	4.7 4.7 4.6 4.3 4.3	6.8 6.1 4.1 3.7 3.6 3.4	1.4 1.4 1.5 1.5	e1.0 e1.0 e1.0 e.90 e.90 e.90	e1.3 e1.1 e1.0 e1.0 e.90 e.90	e1.5 e25 e4.0 e2.5 e2.0
TOTAL MEAN MAX MIN	90.8 2.93 10 1.2	67.1 2.24 4.8 1.4	126.6 4.08 40 1.7	384.1 12.4 198 1.9	122.6 4.38 12 2.4	283.7 9.15 46 3.5	224.6 7.49 22 4.3	217.0 7.00 34 3.4	72.4 2.41 4.6 1.4	36.05 1.16 4.0 .66	83.00 2.68 15 .80	85.00 2.83 30 .40
STATISTI	CS OF	MONTHLY ME	AN DATA	FOR WATER Y	EARS 193	7 - 1994	, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	10.4 27.3 1956 .75 1987	11.6 29.6 1956 .66 1966	12.3 23.8 1955 1.36 1966	13.4 37.0 1978 1.72 1967	14.4 28.8 1949 2.03 1967	16.2 31.7 1953 2.98 1992	17.8 36.2 1980 2.02 1966	16.1 34.2 1958 2.93 1992	13.9 34.3 1984 1.56 1988	12.3 34.7 1984 .21 1968	11.9 39.6 1955 .48 1966	10.5 34.0 1960 .42 1965

STREAMS ON LONG ISLAND 01310500 EAST MEADOW BROOK AT FREEPORT, NY--Continued .

SUMMARY STATISTICS	FOR 1993 CALENDAR YEAR	FOR 1994 WATER YEAR	WATER YEARS 1937 - 1994
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	1706.34 4.67 59 Apr 1	1792.95 4.91 196 Jan 28	13.4 23.3 1961 2.51 1966 375 Sep 12 1960
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW	.14 Aug 5 .25 Sep 2	.40 Sep 13 .43 Sep 11 569 Jan 28 2.81 Jan 28 .40b Sep 13	.00 Aug 26 1971 .00 Aug 15 1988 Jul 29 1980 4.38a Sep 12 1960 .00c Aug 26 1971
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	8.3 3.2 .63	7.8 2.6 .90	24 11 2.1

a Datum then in use.
b Also occurred on Sep 14-17, 22.
c Also occurred on Aug 15-23 1988.
e Estimated.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1966 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARD- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
00	18	1105	1.5	296	6.5	13.5	760	7.3	14	3.5
FE	B 01	1330	4.3	394	6.5	3.5	766	8.2	15	3.7
MA		1130	4.0	540	6.5	13.0	772	10.2	19	4.4
JU	03 IL 13	1015	0.73	536	6.6	18.5	769	6.7	19	4.5
	DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2÷NO3 DIS- SOLVED (MG/L AS N)
00	18	39	1.3	27	24	58	0.10	6.3	0.007	0.78
FE	01	58	2.1	25	22	90	⟨0.10	6.8	0.013	1.3
MA	03	76	2.1	31	24	120	(0.10	6.8	0.010	1.3
JU	13	76	2.4	33	24	120	<0.10	7.3	0.043	0.67
	DATE	NITRO- GEN AMMONÍA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
00	18	0.08	⟨0.20	0.012	(0.001	300	180	190	180	0.05
FE	B 01	0.21	0.30	0.024	0.005	520	340	290	290	0.03
MA.		0.06	0.20	0.015	0.001	530	86	330	300	(0.02
JL	03 JL 13	0.22	0.40	0.018	0.003	680	150	160	140	0.03

01311000 PINES BROOK AT MALVERNE, NY

LOCATION.--Lat 40°39'59", long 73°39'35", Nassau County, Hydrologic Unit 02030202, on left bank 300 ft downstream from Lakeview Avenue and southern boundary of Malverne. Water-quality sampling site at discharge station.

DRAINAGE AREA.--About 10 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --1851-52, 1858-57, 1885, 1894 (fragmentary in Professional Paper 44); December 1936 to current year (monthly means estimated March to September 1970).

REVISED RECORDS .-- WSP 1432: 1937, 1940.

GAGE.--Water-stage recorder with steel plate V-notch weir and concrete controls. Datum of gage is 7.11 ft above sea level (Nassau County Bench mark). Prior to 1894, determinations of flow by varios methods, at different sites and datums. December 1936 to Oct. 1, 1970, at site 200 ft upstream at datum 2.31 ft higher. Oct. 1, 1970 to May 31, 1972, supplementary gage on secondary channel 10 ft downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Discharge during Nov. and Dec. was affected by dewatering activities connected with construction. Prior to Feb. 20, 1956, flow occasionally regulated by Pines Pond. Indeterminate diversion from Pines Pond for emergency municipal water supply for City of New York, August 1953 to September 1954.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*):

Date Jan. 17 Aug. 22 Sep. 27	Time 2330 1445 0730	Discharge (ft ³ /s) 290 276 334	Gage height (ft) 4.15 4.11 4.27	Date Jan. 28 Sep. 23	Time 2330 0045	Discharge (ft ³ /s) *866 212	Gage height (ft) *5.28 3.92
Sep. 21	0730	334	4.27				

		DISCHAR	GE, CUB	IC FEET PE	R SECOND, DAILY	WATER YE	EAR OCTOBER	1993 TO	SEPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.05 .05 .77 .06 .05	1.3 .13 .13 .13 5.8	2.0 1.9 1.7 3.9	. 28 . 30 . 24 . 41 . 25	.37 .36 .34 .32 .31	.42 .41 6.6 e7.0 e2.5	1.0 .94 .94 .94	.82 .70 .70 .76 .82	.69 .59 .54 .54	.13 .11 .10 .09 .08	.01 .00 .00 .00	. 27 . 24 . 22 . 22 . 20
8 9 10	.05 .05 .05 .05	.78 .43 .14 .14	2.8 2.6 2.3 2.1 2.2	. 22 . 24 . 44 . 23 . 22	. 29 . 28 . 27 . 28 . 25	e1.0 e.80 e.90 e.80	1.5 8.3 .95 .94 3.6	.78 2.2 13 .87 .75	.89 1.4 .51 .50 .45	.07 .04 .26 .07	. 29 . 09 . 07 . 08 . 05	.17 .17 .17 .18 .15
11 12 13 14 15	7.7 .15 .06 .05	.16 .14 .14 .15 .14	4.9 3.1 2.7 2.3 2.1	. 23 . 29 . 54 . 43 . 24	.24 .24 .24 .24 .24	e2.0 .76 .73 .74 .85	1.3 2.3 11 2.3 1.2	.71 .77 .66 .64 .68	.44 .44 .44 .41 .38	.04 .02 .01 .02 .05	.05 .04 .09 .35	.11 .09 .09 .09
16 17 18 19 20	.05 .06 .06 .06 2.8	.13 .14 .16 .15 2.8	2.0 2.0 1.9 2.4 2.0	.20 33 25 e.50 e.40	. 25 . 25 . 42 . 66 3 . 6	.75 .70 .73 .74 .66	6.3 1.2 1.1 1.1	14 12 1.3 3.6 2.6	.35 .32 .30 .27 .26	.04 .01 .19 .03 .01	.04 .50 4.0 .07 .07	.08 .11 2.0 .08 .08
21 22 23 24 25	6.6 .30 .57 .08 .09	3.1 3.1 2.6 2.3 2.0	11 3.2 2.5 2.0 1.9	e.40 e.35 e.35 e.30 e.30	6.1 1.9 .49 6.3 .58	1.4 7.1 .92 .89 .87	1.0 1.0 .94 .94	2.5 1.9 1.5 1.1 5.0	. 24 . 22 . 23 . 22 . 33	.00 13 .15 .05	3.8 65 2.9 .90 .59	.07 4.1 24 .23 .20
26 27 28 29 30 31	.09 .16 .09 .09 7.8 1.8	2.2 2.0 5.6 2.4 2.2	2.0 2.3 1.8 1.8 1.1	e. 25 . 23 247 52 . 56 . 43	.46 .43 .44	.74 3.2 5.7 6.4 1.1	.88 1.0 .82 .76 .76	4.6 2.2 1.6 1.6 1.0	. 17 . 15 . 15 . 15 . 14	.35 .16 .24 .05 .04	. 46 . 40 . 36 . 32 . 38 . 28	.18 .77 .29 .21
TOTAL MEAN MAX MIN	29.93 .97 7.8 .04	40.73 1.36 5.8 .13	88.81 2.86 12 .31	365.83 11.8 247 .20	26.15 .93 6.3 .24	78.41 2.53 20 .41	57.83 1.93 11 .76	82.17 2.65 14 .64	12.22 .41 1.4 .14	15.49 .50 13 .00	106.28 3.43 65 .00	83.85 2.79 49 .07
STATIST	TICS OF	MONTHLY MEA	N DATA	FOR WATER	YEARS 1937	- 1994	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	2.60 9.41 1939 .000 1983	3.08 7.49 1952 .050 1966	3.22 7.22 1945 .019 1986	3.64 11.8 1994 .051 1987	3.71 10.9 1949 .099 1983	4.36 12.2 1939 .21 1981	4.70 14.0 1939 .31 1966	4.28 10.3 1939 41 1987	3.63 11.7 1984 .027 1971	3.22 11.0 1948 .001 1966	3.12 11.7 1955 .002 1981	2.74 11.2 1938 .002 1965

STREAMS ON LONG ISLAND 01311000 PINES BROOK AT MALVERNE, NY--Continued

SUMMARY STATISTICS	FOR 1993 CALENDAR YEAR	FOR 1994 WATER YEAR	WATER YEARS 1937 - 1994
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	561.76 1.54	987.70 2.71	3.50 8.35 1939 .52 1966
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEYEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW	29 Apr 1 .00 Many days .00 Jul 30	247 Jan 28 .00 Many days .02 Jul 29 866a Jan 28	247 Jan 28 1994 .00 Many years .00 Many years 866a Jan 28 1994
INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	3.1 .69 .01	5.28 Jan 28 .00 Many days 3.8 .44 .06	5.28 Jan 28 1994 .00 Many years 8.0 2.0 .00

a From rating curve extended above 220 $\mathrm{ft}^3/\mathrm{s}_{\cdot}$ e Estimated

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1966 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

POTAS- ALKA- CHLO- FLUO- SILICA, GEN. SODIUM. SIUM. LINITY SULFATE RIDE. RIDE. DIS- NITRITE NO	AGNE- SIUM, DIS- OLVED MG/L S MG)
01 1240 .35 434 7.0 5.0 766 10.5 25 MAY 03 0900 .70 387 6.8 11.5 772 8.8 26 AUG 25 0825 .54 259 7.1 17.5 775 8.5 20	5.3
03 0900 .70 387 6.8 11.5 772 8.8 28 AUG 25 0825 .54 259 7.1 17.5 775 8.5 20 POTAS ALKA CHIO FILID STLICA GEN	5.6
25 0825 .54 259 7.1 17.5 775 8.5 20 POTAS ALKA CHIO FILID STLTCA GEN	5.9
POTAS- ALKA- CHID- FLUD- STLTCA GEN	4.3
013- 015- LAB 015- 015- 015- 015- 015- 015- 015- 015-	ITRO- GEN, 2+NÓ3 DIS- OLVED MG/L S N)
OCT 14 28 5.4 66 28 26 (0.10 7.6 0.005	2.1
FEB	2.5
MAY 03 37 4.2 56 32 54 (0.10 7.5 0.018 AUG	2.5
25 19 4.1 49 22 24 <0.10 6.9 0.008	2.4
GEN, GEN, AM- PHORUS IRON, NESE, MANGA- AMMONIA MONIA + PHOS- ORTHO, TOTAL IRON, TOTAL NESE, DIS- ORGANIC PHORUS DIS- RECOV- DIS- RECOV- SOLVED DIS. TOTAL SOLVED ERABLE SOLVED ERABLE SOLVED DATE (MG/L (MG/L (MG/L (UG/L (UG/L (UG/L (UG/L SOLVED)))))	ETHY- LENE BLUE CTIVE SUB- TANCE MG/L)
OCT 14 0.03 (0.20 0.039 0.022 120 35 40 30	0.03
FEB 0.00 0.000 0.002 0.007 110 57 150 150	0.02
MAY 03 0.15 0.60 0.033 0.002 480 56 380 250 AUG	⟨0.02
25 0.10 0.30 0.026 0.016 160 89 90 98	0.04

01311500 VALLEY STREAM AT VALLEY STREAM, NY

LOCATION.--Lat 40°39'49", long 73°42'18", Nassau County, Hydrologic Unit 02030202, on right bank 40 ft upstream from West Valley Stream Boulevard in Valley Stream.

DRAINAGE AREA. -- About 4.5 mi2.

e Estimated

PERIOD OF RECORD.--1851-52, 1854, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44), July 1954 to current year. Prior to October 1956, published as Watts Creek at Valley Stream.

REVISED RECORDS .-- WRD NY 1971: 1962-63(M), 1966-69(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 7.49 ft above sea level. Prior to 1894, determinations of flow by various methods, at different sites and datums. July 1954 to July 16, 1964 at same site at datum 1.0 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated occasionally by cleaning operation at outlet of Valley Stream Pond above station.

		DISCHAR	RGE, CUB	IC FEET PER	SECOND, DAILY	WATER YE	AR OCTOBER	1993 TO	SEPTEMBER	1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.21 .04 .01 .00 .71	.00 .00 .00 .16	.03 .08 .04 .10	e.50 e.50 e.50 e.40 e.40	.36 .39 2.5 2.8 1.8	.97 .81 .88 1.1 1.0	.99 .82 .65 .50	.35 .32 .24 .18	.05 .00 .00 .00	.00 .00 .00 .00	.31 .14 .10 .27 .14
8 9 10	.00 .00 .02 .09 .00	.86 .13 .06 .00	1.0 .21 .10 .01	.00 .01 .08 .02 .02	e.30 e.30 .32 .42 .30	.90 .67 .79 .67	1.8 6.2 1.8 1.3	.55 .85 12 1.2 .68	.30 .52 .08 .04 .23	.02 .01 .05 .05	2.1 .11 .01 .00 .00	.01 e.20 e.00 e.00
11 12 13 14 15	2.7 1.4 .08 .00	.00 .00 .00 .00	1.1 .34 .16 .14 .20	.06 .09 .12 .09 .07	.29 .29 .16 .10	2.2 .87 .77 .71 .70	3.4 1.6 7.9 3.2 1.1	. 54 . 56 . 48 . 45 . 51	. 25 . 20 . 26 . 26 . 18	.00 .00 .00 .00	.00 .00 .00 .00	e.00 e.00 e.00 e.00
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.13 .05 .01 .06	.03 12 31 .84 e.50	.10 .09 .12 .27 3.0	.74 .57 .62 .78 .63	5.9 1.6 .96 .92 .87	9.1 13 .85 1.7 .64	.07 .11 .11 .08 .06	.00 .00 .00 .00	.00 .05 3.6 .18 .02	e.00 e.05 e2.0 e.10 e.00
21 22 23 24 25	3.5 2.2 .11 .00	.00 .00 .00 .00	8.1 .53 .20 .09 .10	e.40 e.30 e.30 e.20 e.20	4.4 2.3 .89 4.0 1.6	7.7 7.7 .99 .80 .73	.77 .79 .79 .80	.29 .36 .38 .39	.08 .21 .17 .06 .00	.00 .00 6.1 1.3	.24 64 7.0 .93 .63	e.00 .36 26 .71 .25
26 27 28 29 30 31	.00 .00 .00 .00 .75	.00	.09 .07 .05 .04 .04	e.10 e.05 e100 e20 e1.0 e.60	.54 .40 .36	.54 2.6 6.2 6.2 2.0	.93 1.0 1.1 .91 .87	3.0 1.3 .40 .27 .29 .24	.00 .01 .00 .06 .09	.19 .22 .00 .00	. 52 . 36 . 28 . 39 . 24 . 28	35 1.8 .58 .38
TOTAL MEAN MAX MIN	12.55 .40 3.5 .00	2.02 .067 .86 .00	26.03 .84 15 .00	168.36 5.43 100 .00	22.91 .82 4.4 .06	87.94 2.19 19 .36	55.48 1.85 7.9 .77	54.94 1.77 13 .24	4.70 .16 .52 .00	8.12 .26 6.1 .00	94.95 3.08 64 .00	68.69 2.29 35 .00
STATIS	TICS OF MO		N DATA		EARS 1954	- 1994,	BY WATER					
MEAN MAX (WY) MIN (WY)	1.61 10.8 1959 .000 1966	1.94 10.9 1956 .000 1966	1.85 9.18 1956 .000 1966	2.15 9.37 1956 .000 1966	2.06 9.91 1955 .000 1980	2.37 10.2 1956 .000 1981	2.88 12.0 1958 .000 1981	2.42 12.3 1958 .000 1981	1.90 8.43 1956 .000 1966	1.61 8.32 1956 .000 1966	2.03 16.8 1955 .000 1965	1.79 11.6 1954 .000 1982
SUMMAR	Y STATIST	cs	FOR	1993 CALEN	DAR YEAR	F	OR 1994 WA	TER YEAR		WATER YE	ARS 1954	- 1994
ANNUAL ANNUAL HIGHES LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' INSTAN' INSTAN' INSTAN' INSTAN' INSTAN' INSTAN' INSTAN' INSTAN' INSTAN' INSTAN' INSTAN'	TOTAL MEAN I ANNUAL MANUAL MANUAL MEA ANNUAL MEA DAILY MEA DAILY MEA TANEOUS PE TANEOUS	HEAN AN A		355.74 .97 25 .00 .00	Apr 1 Many da Many da	ays ays	586.69 1.61 100 .00 .00 245 4.29 .00 2.2 .20	Jan 28 Many da Many da Jan 28	ys	2.02 8.86 .11 140 .00 .00 294 5.78 .00 6.3	Aug Many Many Jun Jun Many	1956 1986 12 1955 years years 30 1984 30 1984 years

01311810 CONSELYEAS POND TRIBUTARY AT ROSEDALE, NY

LOCATION.--Lat 40°39'43", long 73°44'38", Queens County, Hydrologic Unit 02030202, on right end of upstream side of reinforced-concrete bridge in Brookville Park, opposite 144th Ave and 1300 ft southwest of South Conduit Ave, in Rosedale.

DRAINAGE AREA . -- About 10 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1993 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 7.0 ft above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records fair.

DISCHARGE,	CUBIC	FEET	PER	SECOND,	WATER	YEAR	OCTOBER	1992	TO	SEPTEMBER	1993
Contract to the Contract of				DATE	V MEAN	VALUE	=6				

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							444					. 05
2												.06
3												.06
4												.07
5												.08
6												.08
7												.08
8												.09
9												.12
10												.12
11 12 13											442	.09 .07 .05
12												.07
13												.05
14												.04
15												.03
16 17												.02
17												1.9
18												1.9
19												.44
20												.12
21												.09
22												.08
21 22 23 24												.08
24												.10
25											.13	.11
26 27 28 29 30											.09	3.9
27											10	21
28											.10 .09 .08	. 46
29											0.8	.30
30											.07	.48
31											.06	
TOTAL												35.67
MEAN												1.19
MAX												21
MIN												. 02

STREAMS ON LONG ISLAND
01311810 CONSELYEAS POND TRIBUTARY AT ROSEDALE, NY--Continued

		DISCHA	RGE, CUB	IC FEET PE	ER SECOND,	WATER YE	AR OCTOBER	R 1993 TO S	SEPTEMBE	R 1994		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.82 .39 1.3 .17 .12	1.4 1.8 1.2 1.2 3.8	.22 .19 .17 .75	1.3 1.6 1.4 2.0	2.2 1.9 1.4 1.0 .57	.35 .40 4.0 5.0 3.8	2.6 2.1 1.7 1.5 1.6	.70 .50 .51 .55	.54 .52 .50 .48 .46	.18 .21 .23 .18 .13	.20 .18 .18 .18 .18	. 52 . 47 . 47 . 47 . 48
6 7 8 9	.10 .10 .10 .12 .13	1.0 .27 .25 .24 .19	.57 .92 1.5 1.3 1.3	.87 1.3 2.4 1.4 1.2	.50 .47 .58 .60 .45	1.9 2.3 2.6 1.6 22	2.0 5.4 .92 .85 2.0	.60 .90 9.6 1.5 1.5	.59 .75 .38 .34	.20 .20 .21 .31 .23	.85 .30 .62 2.1 1.5	.45 .37 .31 .17
11 12 13 14 15	.13 4.5 1.0 .29 .55	.20 .23 .37 .26 .14	4.8 .47 .18 .73 1.2	1.3 1.7 1.4 .98 .32	. 56 . 47 . 52 . 60 . 78	2.3 1.6 1.5 1.4 1.6	2.1 3.8 9.2 1.9 1.3	1.4 .81 .58 .56 .58	.30 .31 .31 .31 .30	.15 .13 .13 .10 .17	.30 .26 .24 .25 .43	. 18 . 21 . 21 . 21 . 25
16 17 18 19 20	.18 .19 .26 .28 3.3	.18 .14 .17 .18 .18	.87 .35 .20 .31	.13 11 24 .97 1.5	.88 1.0 1.2 1.4 6.3	1.6 .87 .80 .71 .63	6.2 1.1 1.0 .93 1.0	8.4 11 3.1 6.3 3.0	.48 .36 .22 .21 .23	.17 .13 .10 .10	.21 .22 11 2.9 .91	. 23 . 28 1.2 . 29 . 26
21 22 23 24 25	8.9 1.8 .39 .54 .35	.16 .17 .17 .15 .16	10 2.5 1.2 .32 .39	1.7 .67 .28 2.1 1.0	7.0 3.7 2.1 7.3 1.8	.85 6.9 .66 .83	.73 .70 .78 .95	2.1 .92 1.6 .74 2.4	.33 .24 .23 .24 .23	.11 .10 5.0 .71 .25	1.3 41 3.8 2.2 2.2	.55 .90 20 1.4 1.3
26 27 28 29 30 31	.20 .15 .17 .25 2.8 2.0	.15 .17 1.4 .33 .16	.46 1.0 .85 .93 1.2 1.1	.39 .81 70 5.0 2.7 2.4	1.2 .90 .44 	.83 3.1 5.4 5.7 1.0 2.4	.89 .85 .74 .66	3.7 2.1 .64 .62 .62 .59	.20 .15 .16 .15 .16	2.8 1.4 1.7 .42 .32 .24	1.9 1.1 .98 .63 .47	.76 23 .78 1.6 .72
TOTAL MEAN MAX MIN	31.58 1.02 8.9 .10	16.42 .55 3.8 .14	53.99 1.74 18 .17	144.77 4.67 70 .13	47.82 1.71 7.3 .44	86.03 2.78 22 .35	57.10 1.90 9.2 .62	68.70 2.22 11 .50	9.99 .33 .75 .15	16.42 .53 5.0 .10	86.62 2.79 41 .18	58.21 1.94 23 .17
STATIS	TICS OF W	ONTHLY ME	AN DATA	FOR WATER	YEARS 199	3 - 1994,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	1.02 1.02 1994 1.02 1994	.55 .55 1994 .55 1994	1.74 1.74 1994 1.74 1994	4.67 4.67 1994 4.67 1994	1.71 1.71 1994 1.71 1994	2.78 2.78 1994 2.78 1994	1.90 1.90 1994 1.90 1994	2.22 2.22 1994 2.22 1994	.33 .33 1994 .33 1994	.53 .53 1994 .53 1994	2.79 2.79 1994 2.79 1994	1.56 1.94 1994 1.19 1993
	Y STATIST				FOR 1	1994 WATER	YEAR			WATER Y	EARS 1993	- 1994
ANNUAL ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN 10 PER 50 PER 90 PER	TOTAL MEAN T ANNUAL A ANNUAL A T DAILY ME SEYEN-DA TANEOUS F TANEOUS F TANEOUS L CENT EXCE CENT EXCE CENT EXCE CENT EXCE	MEAN MEAN MEAN MEAN MEAN MEAN MINIMUM MEAK MEAK MEAK MEAK MEAK MEAK MEAK MEA				.10 0 .11 0 204a J	an 28 ct 6 ct 5 an 28 an 28			1.8 1.8 70 .0 204a 4.4 .0 3.6 .5	6 Jan 2 Sep 6 Sep Jan 8 Jan 2 Sep	1994 1994 28 1994 16 1993 10 1993 28 1994 28 1994 16 1993

a From rating curve extended above 110 $\mathrm{ft^3/s}$.

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site. Where "Drainage area" column is blank, drainage area was not available at time of publication. publication.

			Drainage	Period	Measurements		
Station No.	Station name	Location	(mi ²)	of record	Date	Discharge (ft ³ /s)	
		Streams on Long Island					
01302200	Whitney Lake Outlet at Manhasset, N.Y.	Lat 40°47'30", long 73°42'32", Nassau County, at bridge on Creek Road, at Manhasset, 0.25 mi northwest of State Highway 25A.		1953-94	5-31-94 9-29-94	0.86	
01302300	Roslyn Brook at Roslyn, N.Y.	Lat 40°47'55", long 73°38'51", Nassau County, at Roslyn, 200 ft downstream from dam in Roslyn Park.		1953-94	5-31-94 9-20-94	.40 .23	
01302800	Island Swamp Brook at Lattingtown, N.Y.	Lat 40°53'25", long 73°37'10", Nassau County, at bridge on Lattingtown Road, 0.3 mi southwest of Lattingtown, and 1.5 mi northwest of Locust Valley.		1953-94	5-31-94 9-20-94	.81 .86	
01303600	Mill Creek near Huntington, N.Y.	Lat 40°52'56", long 73°25'17", Suffolk County, at culvert on Creek Road, 300 ft west on New York Ave., 1 mi northeast of Huntington.		1953-94	6- 1-94 9-22-94	2.4 1.7	
01303700	Stony Hollow Run at Centerport, N.Y.	Lat 40°53'05", long 73°21'41", Suffolk County, at culvert on State Highway 25A, 0.25 mi east of Centerport, and 1.5 mi southwest of Northport.		1953-94	6- 1-94 9-22-94	1.2	
01303742	Fresh Pond Outlet at Fort Salonga, N.Y.	Lat 40°55'26", long 73°17'43", Suffolk County, 200 ft down- stream from Fresh Pond outlet, 0.75 mi north of Fort Salonga.		1977-94	9-22-94	. 36	
01303790	Northeast Branch Nissequogue River near East Hauppauge, N.Y.	Lat 40°50'27", long 73°10'41", Suffolk County, at culvert on State Highway 347, 1.5 mi northwest of East Hauppauge, and 4.0 mi upstream from gaging station near Smithtown.	.	1972-87 1989-94	7-12-94	.11	
01303800	Northeast Branch Nissequogue River at Smithtown, N.Y.	Lat 40°51'05", long 73°11'15", Suffolk County, 300 ft upstream from culvert on State Highway 111, 0.75 mi southeast of Smithtown, and 3.0 mi upstream from gaging station near Smithtown.		1948-49 1951-76 1979-94	7-12-94	. 82	
01303850	Northeast Branch Nissequogue River near Hauppauge, N.Y.	Lat 40°50'43", long 73°11'50", Suffolk County, at culvert on Maple Avenue, 0.75 mi south of Smithtown, and 2.5 mi upstream from gaging station near Smithtown.		1972-94	7-12-94	. 22	

			Drainage	Period	Measu	rements
Station No.	Station name	Location	(mi ²)	of record	Date	(ft ³ /s)
		Streams on Long Island				
01303900	Northeast Branch Nissequogue River near Smithtown, N.Y.	Lat 40°50'45", long 73°12'29", Suffolk County, 10 ft upstream from culvert at Brooksite Driv 0.75 mi southwest of Smithtown and 2.0 mi upstream from gagin station near Smithtown.	,	1953-94	7-12-94	1.2
01303941	Nissequogue River near Hauppauge, N.Y.	Lat 40°50'30", long 73°13'43", Suffolk County, 30 ft downstre from dam at New Mill Road, 2 m northwest of Hauppauge, and 0.5 mi upstream from gaging station near Smithtown.	am i	1972-94	7-12-94	20.
01304010	Nissequogue River at Smithtown, N.Y.	Lat 40°51'48", long 73°12'05", Suffolk County, at culvert on Landing Ave., at Smithtown, an 1.5 mi downstream from gaging station near Smithtown.	 d	1974-94	7-12-94	38.
01304051	Stony Brook at Stony Brook, N.Y.	Lat 40°54'53", long 73°08'52", Suffolk County, 100 ft down- stream from Harbor Road, at Stony Brook.		1977-94	6- 2-94	3.8
01304060	Unnamed tributary to Conscience Bay at Setauket, N.Y.	Lat 40°56'49", long 73°07'01", Suffolk County, 30 ft downstre from pond below Old Field Road at Setauket.	 am ,	1977-94	6- 2-94	1.9
01304065	Unnamed tributary to Setauket Harbor at East Setauket, N.Y.	Lat 40°56'35", long 73°06'08", Suffolk County, at culvert on State Highway 6/15A, at East Setauket.	7	1977-94	6- 2-94	. 21
01304070	Unnamed tributary to Port Jefferson Harbor at Port Jefferson, N.Y.	Lat 40°56'41", long 73°04'18", Suffolk County, at culvert on Barnum Ave., at Port Jefferson		1977-94	6- 2-94	. 45
01304100	Wading River at Wading River, N.Y.	Lat 40°57'20", long 72°51'19" Suffolk County, at pond outlet 0.25 mi west of Wading River.	,	1953-62 1964-83 1985-86 1989-94	7-13-94	.68
01304150	Fresh Pond Outlet, at Baiting Hollow, N.Y.	Lat 40°57'43", long 72°46'17", Suffolk County, 25 ft downstre from dirt road at outlet of Fresh Pond, 0.7 mi northwest o Baiting Hollow.		1977-94	7-13-94	. 50
01304400	Peconic River at Manorville, N.Y.	Lat 40°52'38", long 72°49'42", Suffolk County, at bridge on Schultz Road, 1 mi northwest o Manorville, and 8.5 mi upstrea from gaging station at Riverhead.	f m	1948-49 1951-94	7- 7-94	. 52
01304510	Peconic River at Nugent Drive, at Riverhead, N.Y.	Lat 40°55'03", long 72°40'11", Suffolk County, at bridge on Nugent Drive, at Riverhead, an 1.4 mi downstream from gaging station at Riverhead.	 d	1976-94	7- 7-94	27.
01304530	Little River near Riverhead, N.Y.	Lat 40°53'52", long 72°40'30", Suffolk County, at Wildwood La outlet, 500 ft east of Moriche Riverhead Road, 1.5 mi southwe of Riverhead.	ke s- st	1952-94	7-13-94	4.2
01304560	White Brook at Riverhead, N.Y.	Lat 40°54'40", long 72°38'37", Suffolk County, at culvert on State Highway 24, 1 mi southea of Riverhead.	 st	1953-69 1973-94	7-13-94	2.2

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Drainage	Period	Measu	rements
Station No.	Station name	Location	(mi ²)	of record	Date	(ft ³ /s)
		Streams on Long Island				
01304600	Big Fresh Pond Outlet at North Sea, N.Y.	Lat 40°55'49", long 72°25'04", Suffolk County, at culvert on Noyack Road, at North Sea, 3.5 mi northwest of Southampton.	 5	1951-69 1971-94	8-19-94	. 39
01304630	Mill Creek at Noyack, N.Y.	Lat 40°59'35", long 72°21'00", Suffolk County, 50 ft upstream from culvert on Noyack Road, 0.25 mi west of Noyack.	1- 37	1958-94	8-19-94	.71
01304660	Ligonee Brook at Sag Harbor, N.Y.	Lat 40°59'21", long 72°18'12", Suffolk County, at culvert on Brick Kiln Road, 0.75 mi southwest of Sag Harbor.		1953-69 1973-94	8-19-94	.01
01304730	Poxabogue Pond Outlet at Sagaponack, N.Y.	Lat 40°55'48", long 72°17'16" Suffolk County, at culvert on Sagg St., at Sagaponack, and 1 mi southeast of Bridgehampton.	++	1953-78 1980-86 1988-94	9-30-94	2.2
01304745	Weesuck Creek at East Quogue, N.Y.	Lat 40°50'52", long 72°34'42", Suffolk County, at culvert on State Highway 27A, 0.5 mi northeast of East Quogue.		1974-94	9-13-94	.94
01304760	Quantuck Creek at Quogue, N.Y.	Lat 40°49'57", long 72°37'06", Suffolk County, at culvert in Old Meeting House Road, 1 mi northwest of Quogue.		1953-69 1974-94	9-13-94	.93
01304780	Aspatuck Creek near Westhampton Beach, N.Y.	Lat 40°49°04", long 72°38'13", Suffolk County, at culvert on Brook Road, at Westhampton Beach.		1959-88 1990-94	9-13-94	.95
01304800	Beaverdam Creek at Westhampton Beach, N.Y.	Lat 40°49'23", long 72°39'42", Suffolk County, at culvert on Old Country Road, 100 ft north west of State Highway 27A, and 1 mi northwest of Westhampton		1953-88 1990-94	9-13-94	1.7
01304820	Speonk River at Speonk, N.Y.	Lat 40°49'06", long 72°41'29", Suffolk County, at culvert on State Highway 27A, 0.75 mi east of Speonk.	-	1974-94	9-13-94	. 51
01304860	Seatuck Creek at Eastport, N.Y.	Lat 40°49'30", long 72°43'43", Suffolk County, 15 ft downstream from culvert on State Highway 27A, at Eastport	 b.	1953-94	9-13-94	3.3
01304900	Little Seatuck Creek at Eastport, N.Y.	Lat 40°49'12", long 72°44'23", Suffolk County, at culvert on Moriches Blvd., 0.75 mi southwest of Eastport.		1955-69 1974-94	9-13-94	2.4
01304960	Forge River at Moriches, N.Y.	Lat 40°48'22", long 72°50'00", Suffolk County, at culvert on State Highway 27A, at Moriches	 s.	1948-50 1952-94	9-14-94	5.1

			Drainage	Period	Measu	rements
Station No.	Station name	Location	area (mi²)	of record	Date	Discharge (ft ³ /s)
		Streams on Long Island				
01304990	Carmans River at Middle Island, N.Y.	Lat 40°51'47", long 72°56'35", Suffolk County, at culvert on East Bartlett Road, 0.75 mi south of Middle Island, and 3.0 mi upstream from gaging station at Yaphank.		1947-94	9-28-94	. 36
01304995	Carmans River near Yaphank, N.Y.	Lat 40°50'29", long 72°56'13", Suffolk County, 25 ft downstre from Mill Road, 1.2 mi northwe of Yaphank, and 1.9 mi upstrea from gaging station at Yaphank	 eam est em	1973-94	9-28-94	7.7
01304998	Carmans River, below Lower Lake, at Yaphank, N.Y.	Lat 40°50'07", long 72°55'01", Suffolk County, at culvert on Yaphank Avenue, at Yaphank, an 0.7 mi upstream from gaging station at Yaphank.	 nd	1973-94	9-28-94	14.
01305040	Carmans River at South Haven, N.Y.	Lat 40°48'09", long 72°53'09", Suffolk County, 75 ft upstream from culvert on State Highway 27A, at South Haven, and 2.6 m downstream from gaging station at Yaphank.	i)	1973-94	9-28-94	47.
01305300	Mud Creek at East Patchogue, N.Y.	Lat 40°45'47", long 72°58'59", Suffolk County, at culvert on South Country Road, at East Patchogue, 2 mi east of Patchogue.		1947-69 1971-94	9-14-94	2.9
01305800	Patchogue River near Patchogue, N.Y.	Lat 40°46'55", long 73°01'19", Suffolk County, at bridge on discontinued road, 300 ft west of North Ocean Ave., and 1 mi north of State Highway 27A and gaging station at Patchogue.		1945-50 1952-94	9-14-94	7.1
01306000 <u>c</u> /	Patchogue River at Patchogue, N.Y.	Lat 40°45'56", long 73°01'16", Suffolk County, at State Highw 27A, at Patchogue.	b _{13.5}	1946-69* 1970-73 1974-76* 1977-94	9-14-94	15.
01306400	Green Creek at West Sayville, N.Y.	Lat 40°43'51", long 73°05'32", Suffolk County, 30 ft upstream from State Highway 27A at West Sayville.		1953-94	6-29-94	3.6
01306405	Lake Ronkonkoma Inlet at Lake Ronkonkoma, N.Y.	Lat 40°49'57", long 73°07'34", Suffolk County, 300 ft souther of Smithtown Blvd., 0.2 mi wes of Lake Ronkonkoma.	st st	1948-49 1953-54 1977-79 1981-86 1988-89 1991-94	5- 7-94 9-30-94	1.0
01306470	Connetquot Brook near Oakdale, N.Y.	Lat 40°45'47", long 73°09'10", Suffolk County, 100 ft downstream from fish hatchery, and 1.1 mi upstream from gaging station 01306499.	**	1968 1973-94	6-29-94 9-15-94	26. 19.
01306700	Rattlesnake Brook near Oakdale, N.Y.	Lat 40°44'52", long 73°08'45", Suffolk County, 50 ft downstre from State Highway 27, 1.5 mi northwest of Dakdale.	 eam	1944-69 1971-94	6-29-94 9-21-94	20. 17.

^{*} Operated as a continuous-record gaging station. b About c/ Water-quality data included in this report.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Drainage	Period of	Measu	rements Discharge
Station No.	Station name	Location	(mi ²)	record	Date	(ft3/s)
		Streams on Long Island				
01307000 <u>c</u> /	Champlin Creek at Islip, N.Y.	Lat 40°44'13", long 73°12'08", Suffolk County, at Long Island Railroad Railroad bridge, 220 downstream from Moffitt Boulevard, at Islip.		1948-69* 1970-86 1991-94	9-28-94	2.0
01307300	Pardees Ponds Outlet at Islip, N.Y.	Lat 40°43'40", long 73°13'16", Suffolk County, at culvert on State Highway 27A, at Islip.		1948-72 1974-94	9-21-94	. 45
01307400	Awixa Creek at Islip, N.Y.	Lat 40°43'39", long 73°13'51", Suffolk County, at culvert on State Highway 27A, 0.75 mi wes of Islip.	 t	1948-94	9-21-94	.41
01307500 <u>c</u> /	Penataguit Creek at Bay Shore, N.Y.	Lat 40°43'37", long 73°14'41", Suffolk County, at Union Avenu at Bayshore.	b ₅	1945-76* 1977-94	5- 4-94 9-21-94	5.3 5.5
01307600	Cascade Lakes Outlet at Brightwaters, N.Y.	Lat 40°42'40", long 73°15'38", Suffolk County, at culvert on Montauk Highway, at Brightwaters.		1958-94	9-26-94	. 66
01307920	Sampawams Creek near Deer Park, N.Y.	Lat 40°44'27", long 73°18'24", Suffolk County, 30 ft down- stream from Bay Shore Road, and 2.5 mi upstream from gaging station at Babylon.		1965-66 1973-94	9-16-94	. 54
01307950	Sampawams Creek near North Babylon, N.Y.	Lat 40°43'37", long 73°18'46", Suffolk County, 120 ft down- stream from Hunter Avenue, and 1.6 mi upstream from gaging station at Babylon.		1967 1971-94	9-16-94	.65
01308200	Sampawams Creek below Hawleys Lake, at Babylon, N.Y.	Lat 40°41'48", long 73°19'04", Suffolk County at pond outlet, 200 ft upstream from State Highway 27A, at Babylon, and 0.5 mi downstream from gaging station at Babylon.	370	1953-67 1969-94	9-16-94	3.1
01308600	Carlls River at Park Avenue, Babylon, N.Y.	Lat 40°42'06", long 73°19'43", Suffolk County, at culvert on Park Avenue, at Babylon, and 0.5 mi downstream from gaging station at Babylon.		1968-85 1987-94	5- 4-94 9-16-94	24. 10.
01309000 <u>c</u> /	Santapogue Creek at Lindenhurst, N.Y.	Lat 40°41'30", long 73°21'20", Suffolk County, at culvert on East Hoffman Avenue, 1 mi east of Long Island Railroad statio at Lindenhurst.	b ₇	1947-69* 1970-94	9-28-94	. 47
01309100	Santapogue Creek at State Highway 27A, Lindenhurst, N.Y.	Lat 40°41'02", long 73°21'06", Suffolk County, at culvert on State Highway 27A, 0.5 mi downstream from discontinued gaging station at Lindenhurst.		1953-69 1971-94	9-28-94	5.4

^{*} Operated as a continuous-record gaging station. b About \underline{c} / Water-quality data included in this report.

Station No.	Station name	Location	Drainage area (mi²)	Period of record	Measu Date	rements Discharge (ft ³ /s)
Station No.	Station name	Streams on Long Island	(111-)	record	Dave	(10-75)
01309200	Neguntatogue Creek at Lindenhurst, N.Y.	Lat 40°40'47", long 73°21'40", Suffolk County, 20 ft upstream from State Highway 27A, in Lindenhurst.		1948-50 1952-94	9-28-94	4.0
01309250	Strongs Creek at Lindenhurst, N.Y.	Lat 40°40'22", long 73°22'40", Suffolk County, 30 ft upstream from State Highway 27A, at Lindenhurst.	*	1953-69 1971-94	9-28-94	. 80
01309350	Amityville Creek at Amityville, N.Y.	Lat 40°40'13", long 73°24'51", Suffolk County, 100 ft upstream from State Highway 27A, at Amityville.		1953-94	9-28-94	1.3
01309400	Carman Creek at Amityville, N.Y.	Lat 40°40'09", long 73°26'02", Nassau County, at bridge on State Highway 27A, 0.75 mi west of Amityville.	## N	1949 1953-69 1971-88 1990-94	9-29-94	7.3
01309454	Massapequa Creek at South Farmingdale, N.Y.	Lat 40°42'55", long 73°27'00", Nassau County, 75 ft upstream from Tomes Avenue, 0.2 mi south of South Farmingdale, and 1.9 mi upstream from gaging station at Massapequa.		1962-65 1973-78 1980-94	6-14-94 9-13-94	0
01309476	Massapequa Creek at Southern State Parkway, at South Farmingdale, N.Y.	Lat 40°42'21", long 73°27'05", Nassau County, 30 ft upstream from culvert at Southern State Parkway, 0.8 mi south of South Farmingdale, and 1.2 mi upstream from gaging station at Massapequa.		1962-65 1973-94	6-14-94 9-13-94	0 .14
01309490	Massapequa Creek at North Massapequa, N.Y.	Lat 40°41'55", long 73°27'08", Nassau County, opposite Franklin Street, at North Massapequa, and 0.55 mi upstream from gaging station at Massapequa.		1962 1964 1973-94	6-14-94 9-13-94	1.6 .13
01309700	Seaford Creek at Seaford, N.Y.	Lat 40°40'00", long 73°28'57", Nassau County, at bridge on State Highway 27A, in Seaford.		1953-94	9-29-94	1.1
01309800	Seamans Creek at Seaford, N.Y.	Lat 40°39'56", long 73°29'37", Nassau County, at culvert on State Highway 27Å, 0.2 mi west of Seaford.		1953-67 1971-81 1983-94	9-29-94	2.6
01309970	Bellmore Creek tributary near North Wantagh, N.Y.	Lat 40°41'52", long 73°30'33", Nassau County, at culvert on Duck Pond Drive North, 0.3 mi north of North Wantagh, and 1.2 mi upstream from gaging station 01309990.	-	1973-94	9-13-94	0
01309980	Bellmore Creek tributary at North Wantagh, N.Y.	Lat 40°41'20", long 73°30'37", Nassau County, at culvert on Beltagh Avenue, at North Wantagh, and 0.6 mi upstream from gaging station 01309990.	-	1973-94	9-13-94	0
01310100	Newbridge Creek at Merrick, N.Y.	Lat 40°39'42", long 73°32'02", Nassau County, downstream from bridge on Merrick Road in Merrick.		1963-94	9-29-94	. 57

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

			Drainage	Period	Measu	rements
Station No.	Station name	Location	(mi ²)	of record	Date	Discharge (ft ³ /s)
		Streams on Long Island				
01310200	Cedar Swamp Creek at Merrick, N.Y.	Lat 40°39'39", long 73°32'24", Nassau County, at bridge on State Highway 27A, in Merrick 2.5 mi east of Freeport.	,	1953-62 1965-94	9-29-94	3.2
01310470	East Meadow Brook near Westbury, NY.	Lat 40°44'01", long 73°35'06", Nassau County, 50 ft downstream from culvert on Meadowbrook State Parkway, 1. mi south of Westbury, and 4.8 mi upstream from gage at Freeport.	 0	1973-94	7-11-94 9-22-94	0 . 69
01310475	East Meadow Brook at Uniondale, N.Y.	Lat 40°43'17", long 73°35'00", Nassau County, at bridge on Hempstead Turnpike, 0.9 mi northeast of Uniondale, and 3.9 mi upstream from gage at Freeport.		1973-94	7-11-94 9-22-94	0 ^{.78}
01310488	East Meadow Brook at East Meadow, N.Y.	Lat 40°41'56°, long 73°34'37°, Nassau County, 300 ft west of Luddington Road, 1.4 mi southwest of East Meadow, and 2.3 mi upstream from gage at Freeport.	-	1973-94	7-11-94 9-22-94	0
01310510	East Meadow Pond Outlet at Freeport, N.Y.	Lat 40°39'32", long 73°34'01", Nassau County, 50 ft down- stream from culvert at Sunris Highway, and 0.5 mi down- stream from gaging station 01310500.	 e	1975-80 1986 1990-94	7-11-94 9-22-94	1.3 1.4
01310515	Freeport Creek at Freeport, N.Y.	Lat 40°39'28", long 73°34'22", Nassau County, 20 ft upstream from culvert at Sunrise High- way, and 0.5 mi downstream from gaging station 01310500.		1975-80 1986 1990-94	7-11-94 9-22-94	.95 .77
01310600	Milburn Creek at Baldwin, N.Y.	Lat 40°39'04", long 73°36'13", Nassau County, 50 ft down- stream from bridge on State Highway 27A, 0.5 mi east of Baldwin.	-	1953-94	7-22-94 9-29-94	2.0
01310700	Parsonage Creek at Baldwin, N.Y.	Lat 40°38'48", long 73°36'59", Nassau County, 20 ft down- stream from bridge on Foxhurs Road, at Baldwin.	 t	1953-69 1971-81 1983-84 1986-88 1991-94	7-22-94 9-29-94	1.1
01311200	Motts Creek at Valley Stream, N.Y.	Lat 40°39'01", long 73°42'45", Nassau County, 50 ft down- stream from bridge on Rosedal Road, 1 mile southwest of Valley Stream.	 e	1954-94	7-22-94 9-21-94	.06 .10
01311700	Valley Stream, below West Branch, at Valley Stream, N.Y.	Lat 40°39'47", long 73°42'21", Nassau County, 200 ft down- stream from West Branch, 500 ft downstream from bridge on West Valley Stream Blvd., at village park in Valley Stream and 500 ft downstream from gaging station.		1953-94	7-22-94 9-21-94	0

404931073382101. Local number, N 110.1 LOCATION.--Lat 40°49'31", long 73°38'21", Hydrologic Unit 02030201, at Jericho Water District storage garage, 27 ft south of Scudders Lane, 32 ft west of Motts Cove Road, in recorder shelter, Glenwood Landing. Owner: Jericho Water District.

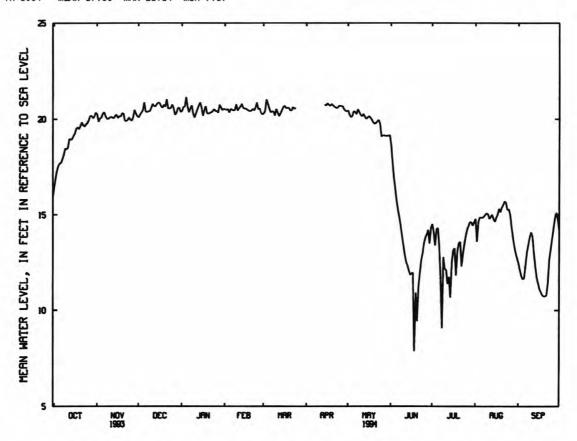
AQUIFER .-- Lloyd (confined) .

WELL CHARACTERISTICS .-- Drilled steel observation well, diameter 16 in., reported depth 519 ft, measured depth 324 ft, screened 445 to 515 ft.

INSTRUMENTATION. -- Digital water-level recorder -- 30-minute punch.

DATUM. -- Land-surface datum is 56.2 ft above sea level. Measuring point: Top of 4-in. steel nipple, 0.44 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation and nearby pumping.


PERIOD OF RECORD.--January 1946 to current year. Unpublished records for 1946-48, 1952, 1955, 1961, 1965, 1970-75, are available in files of Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 27.99 ft above sea level, December 15, 1970; lowest measured, 9.05 ft below sea level, May 22, 1957.

ELEVATION (FEET MSL), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES

DAY	DCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	17.68	20.28	20.86	20.63	20.52	20.54		20.40	15.72	14.31	14.86	11.69
10	18.43	20.07	20.57	20.08	20.44	20.52		20.21	13.40	12.18	15.03	14.08
15	19.11	20.22	20.85	20.59	20.54	20.60	20.69	20.07	11.86	12.51	14.64	11.41
20	19.63	20.28	20.64	20.28	20.43	20.44	20.70	19.75	9.44	13.52	15.38	10.73
25	19.78	19.96	20.75	20.41	20.50		20.70	19.08	13.52	13.91	15.29	13.78
EOM	20.33	20.15	20.37	20.53	20.24		20.40	19.16	14.31	14.61	12.72	14.20
MEAN	18.96	20.11	20.56	20.49	20.51	20.48	20.64	19.89	13.44	13.10	14.74	12.61
MAX	20.33	20.47	21.03	21.14	20.85	21.01	20.82	20.50	18.69	14.62	15.70	15.10
MIN	16.44	19.86	20.08	20.08	20.24	20.15	20.40	19.08	7.87	9.07	12.72	10.73

WTR YR 1994 MEAN 17.80 MAX 21.14 MIN 7.87

403805073395301. Local number, N 2790.2

LOCATION.--Lat 40°38'05", long 73°39'53", Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, in recorder shelter, Bay Park. Owner: Nassau County Department of Public Works.

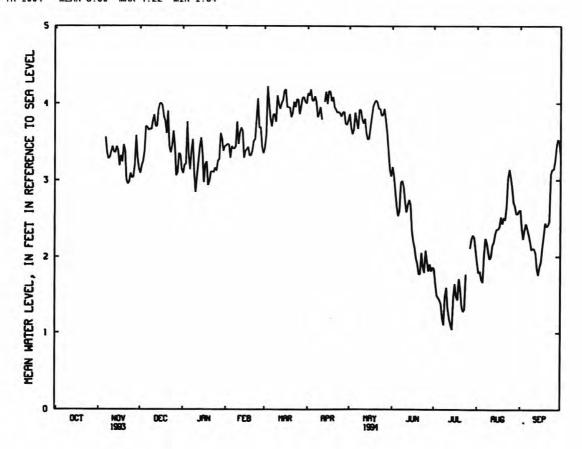
AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 571 ft, screened 538 to 560 ft. INSTRUMENTATION.--Digital water-level recorder -- 30-minute punch.

DATUM.--Land-surface datum is 6.0 ft above sea level. Measuring point: Base of steel recorder shelf,

3.82 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation and nearby pumping.


PERIOD OF RECORD. -- February 1950 to current year. Unpublished records from February 1950 to September 1975 are available in files of Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.50 ft above sea level, April 6, 1958; lowest measured, 0.36 ft below sea level, July 20, 1977.

ELEVATION (FEET MSL), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES

DCT	MOV	444									
7.7	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
(222)		3.70	3.33	3.44	3.80	4.03	3.88	2.53	1.43	1.66	2.43
	3.37	3.77	2.84	3.47	4.10	3.95	3.79	2.71	1.59	1.97	2.11
	3.38	3.99	3.35	3.38	4.16	3.99	3.54	2.34	1.45	2.36	1.87
	3.38	3.61	2.99	3.38	3.82	3.95	4.04	1.77	1.57	2.51	2.39
	3.03	3.64	3.12	3.68	4.05	3.83	3.85	2.08		3.03	3.14
	3.15	3.14	3.44	3.35	4.00	3.78	3.05	1.86	2.08	2.60	3.31
	3.27	3.57	3.25	3.50	3.94	3.96	3.74	2.34	1.56	2.35	2.50
	3.58	4.00	3.76	4.06	4.22	4.18	4.04	3.17	2.28	3.14	3.53
	2.95	3.06	2.84	3.29	3.42	3.72	3.05	1.77	1.04	1.66	1.76
		3.37 3.38 3.03 3.15 3.27 3.58	3.70 3.37 3.77 3.38 3.99 3.38 3.61 3.03 3.64 3.15 3.14 3.27 3.57 3.58 4.00	3.70 3.33 3.37 3.77 2.84 3.38 3.99 3.35 3.38 3.61 2.99 3.03 3.64 3.12 3.15 3.14 3.44 3.27 3.57 3.25 3.58 4.00 3.76	3.70 3.33 3.44 3.37 3.77 2.84 3.47 3.38 3.99 3.35 3.38 3.38 3.61 2.99 3.38 3.03 3.64 3.12 3.68 3.15 3.14 3.44 3.35 3.27 3.57 3.25 3.50 3.58 4.00 3.76 4.06	3.70 3.33 3.44 3.80 3.37 3.77 2.84 3.47 4.10 3.38 3.99 3.35 3.38 4.16 3.38 3.61 2.99 3.38 3.82 3.03 3.64 3.12 3.68 4.05 3.15 3.14 3.44 3.35 4.00 3.27 3.57 3.25 3.50 3.94 3.58 4.00 3.76 4.06 4.22	3.70 3.33 3.44 3.80 4.03 3.37 3.77 2.84 3.47 4.10 3.95 3.38 3.99 3.35 3.38 4.16 3.99 3.38 3.61 2.99 3.38 3.82 3.95 3.03 3.64 3.12 3.68 4.05 3.83 3.15 3.14 3.44 3.35 4.00 3.78 3.27 3.57 3.25 3.50 3.94 3.96 3.58 4.00 3.76 4.06 4.22 4.18	3.70 3.33 3.44 3.80 4.03 3.88 3.37 3.77 2.84 3.47 4.10 3.95 3.79 3.38 3.99 3.35 3.38 4.16 3.99 3.54 3.38 3.61 2.99 3.38 3.82 3.95 4.04 3.03 3.64 3.12 3.68 4.05 3.83 3.85 3.15 3.14 3.44 3.35 4.00 3.78 3.05 3.27 3.57 3.25 3.50 3.94 3.96 3.74 3.58 4.00 3.76 4.06 4.22 4.18 4.04	3.70 3.33 3.44 3.80 4.03 3.88 2.53 3.37 3.77 2.84 3.47 4.10 3.95 3.79 2.71 3.38 3.99 3.35 3.38 4.16 3.99 3.54 2.34 3.38 3.61 2.99 3.38 3.82 3.95 4.04 1.77 3.03 3.64 3.12 3.68 4.05 3.83 3.85 2.08 3.15 3.14 3.44 3.35 4.00 3.78 3.05 1.86 3.27 3.57 3.25 3.50 3.94 3.96 3.74 2.34 3.58 4.00 3.76 4.06 4.22 4.18 4.04 3.17	3.70 3.33 3.44 3.80 4.03 3.88 2.53 1.43 3.37 3.77 2.84 3.47 4.10 3.95 3.79 2.71 1.59 3.38 3.99 3.35 3.38 4.16 3.99 3.54 2.34 1.45 3.38 3.61 2.99 3.38 3.82 3.95 4.04 1.77 1.57 3.03 3.64 3.12 3.68 4.05 3.83 3.85 2.08 3.15 3.14 3.44 3.35 4.00 3.78 3.05 1.86 2.08 3.27 3.57 3.25 3.50 3.94 3.96 3.74 2.34 1.56 3.58 4.00 3.76 4.06 4.22 4.18 4.04 3.17 2.28	3.70 3.33 3.44 3.80 4.03 3.88 2.53 1.43 1.66 3.37 3.77 2.84 3.47 4.10 3.95 3.79 2.71 1.59 1.97 3.38 3.99 3.35 3.38 4.16 3.99 3.54 2.34 1.45 2.36 3.38 3.61 2.99 3.38 3.82 3.95 4.04 1.77 1.57 2.51 3.03 3.64 3.12 3.68 4.05 3.83 3.85 2.08 3.03 3.15 3.14 3.44 3.35 4.00 3.78 3.05 1.86 2.08 2.60 3.27 3.57 3.25 3.50 3.94 3.96 3.74 2.34 1.56 2.35 3.58 4.00 3.76 4.06 4.22 4.18 4.04 3.17 2.28 3.14

WTR YR 1994 MEAN 3.09 MAX 4.22 MIN 1.04

404418073434101. Local number, Q 577.1 LOCATION.--Lat 40°44'18", long 73°43'41", Hydrologic Unit 02030201, at Creedmoor State Hospital, near the intersection of Hillside Avenue and Cross Island Parkway, in recorder shelter, Bellerose. Owner: State of New York.

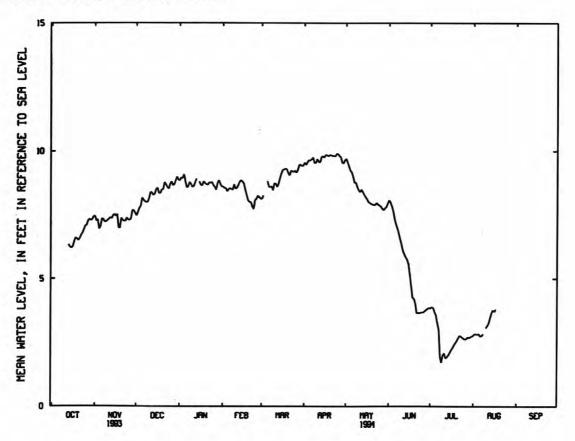
AQUIFER .-- Lloyd (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 12 in., depth 640 ft, screen assumed at bottom. INSTRUMENTATION. -- Digital water-level recorder -- 60-minute punch.

DATUM. -- Land-surface datum is 113.5 ft above sea level. Measuring point: Top of 12-in. steel casing, 0.22 ft above land-surface datum.

REMARKS. -- Water level affected by nearby pumping.

PERIOD OF RECORD. -- February 1946 to current year. Unpublished records from February 1946 to September 1975 are


available in files of Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.34 ft above sea level, January 14, 1992; lowest measured, 18.66 ft below sea level, July 30, 1954.

ELEVATION (FEET MSL), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	222	7.04	8.16	8.80	8.50	8.82	9.63	9.16	7.31	3.54	2.81	222
10		7.28	8.15	8.59	8.52	8.72	9.68	8.46	6.31	1.99	3.05	
15	6.21	7.52	8.50	8.80	8.79	9.10	9.74	8.19	5.55	2.08	3.75	
20	6.50	7.37	8.49	8.70	8.00	9.14	9.83	7.90	4.01	2.55		
25	7.06	7.30	8.71	8.66	8.12	9.22	9.88	7.86	3.66	2.63		
E0M	7.43	7.57	8.87	8.61	8.13	9.42	9.65	7.94	3.83	2.72		
MEAN	6.78	7.33	8.36	8.74	8.39	8.98	9.70	8.33	5.36	2.64	3.12	
MAX	7.43	7.68	8.99	9.08	8.85	9.45	9.89	9.69	8.06	3.86	3.78	
MIN	6.21	6.95	7.47	8.48	7.73	8.12	9.46	7.68	3.63	1.70	2.72	

WTR YR 1994 MEAN 7.24 MAX 9.89 MIN 1.70

GROUND-WATER LEVELS: SUFFOLK COUNTY

CONTINUOUS RECORDING STATIONS

403727073154601. Local number, S 21091.1

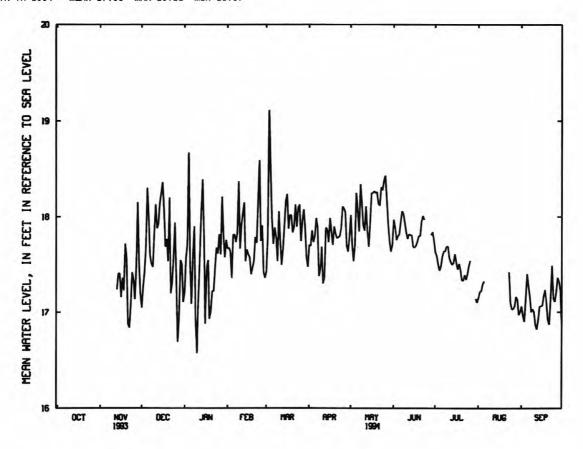
LOCATION.--Lat 40°37'27", long 73°15'48", Hydrologic Unit 02030202, at Robert Moses State Park, in water treatment building, Fire Island. Owner: Long Island State Park Commission.

AQUIFER .-- Lloyd (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 1,921 ft, screened 1,918 to 1,921 ft. INSTRUMENTATION. -- Digital water-level recorder -- 15-minute punch.

DATUM. -- Land-surface datum is 10.0 ft above sea level. Measuring point: Top of 6-in. steel casing,

13.68 ft above land-surface datum.


REMARKS.--Water level affected by tidal fluctuation.
PERIOD OF RECORD.--September 1962 to current year. Unpublished records from September 1962 to September 1975 are available in files of Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 22.10 ft above sea level, March 16, 1976; lowest measured, 15.13 ft above sea level, June 2, 1972.

ELEVATION (FEET MSL), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		1222	18.30	17.52	17.81	17.98	17.80	18.25	17.82	17.49	17.32	17.40
10		222	17.84	16.57	17.67	18.06	17.69	17.91	17.84	17.69		17.00
15		17.41	18.25	17.79	17.66	18.17	17.74	17.95	17.69	17.61		17.06
20		17.57	17.54	17.00	17.54	17.84	17.83	18.26	17.80	17.33		16.92
25		17.35	17.94	17.62	17.75	18.13	18.11	18.38		17.49	17.03	17.11
EOM		17.20	17.11	17.76	17.36	17.48	17.79	17.71	17.75	17.10	17.00	16.87
MEAN		17.34	17.66	17.54	17.76	17.93	17.78	18.04	17.85	17.49		17.10
MAX		18.15	18.36	18.67	18.59	19.11	18.11	18.43	18.06	17.69		17.49
MIN		16.84	16.69	16.57	17.36	17.43	17.30	17.54	17.68	17.10		16.82

WTR YR 1994 MEAN 17.63 MAX 19.11 MIN 16.57

403727073154503. Local number, S 21311.1

LOCATION.--Lat 40°37'28", long 73°15'48", Hydrologic Unit 02030202, at Robert Moses State Park, in water treatment building, Fire Island. Owner: Long Island State Park Commission.

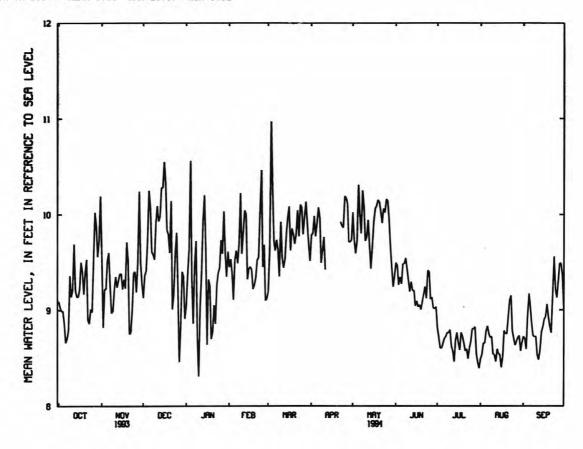
AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 721 ft, screened 711 to 721 ft.

INSTRUMENTATION. -- Digital water-level recorder -- 15-minute punch.

DATUM.--Land-surface datum is 10.0 ft above sea level. Measuring point: Top of 6-in. steel casing, 20.01 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.


PERIOD OF RECORD.--November 1962 to current year. Unpublished records from November 1962 to September 1975 are available in files of Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13.04 ft above sea level, January 25, 1979; lowest measured, 5.35 ft above sea level, February 23, 1972.

ELEVATION (FEET MSL), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	8.86	9.51	10.25	9.35	9.52	9.73	9.91	10.31	9.27	8.65	8.78	9.17
10	9.14	9.21	9.91	8.31	9.59	9.92	9.76	9.72	9.31	8.79	8.54	8.72
15	9.14	9.38	10.28	9.63	9.43	9.97		9.66	9.04	8.76	8.53	8.82
20	9.39	9.51	9.60	8.77	9.34	9.69		10.13	9.08	8.65	8.75	8.83
25	8.98	9.40	9.81	9.44	9.45	10.07	10.19	10.16	9.40	8.67	8.70	9.13
E0M	10.19	9.28	8.91	9.61	9.12	9.51	9.73	9.35	9.03	8.39	8.66	9.01
MEAN	9.25	9.30	9.65	9.35	9.56	9.81	9.84	9.87	9.23	8.65	8.68	8.95
MAX	10.19	10.24	10.55	10.56	10.46	10.97	10.19	10.31	9.54	8.82	9.15	9.56
MIN	8.66	8.75	8.46	8.31	9.10	9.19	9.42	9.24	9.00	8.39	8.40	8.48

WTR YR 1994 MEAN 9.33 MAX 10.97 MIN 8.31

404935073055901. Local number, S 33379.1

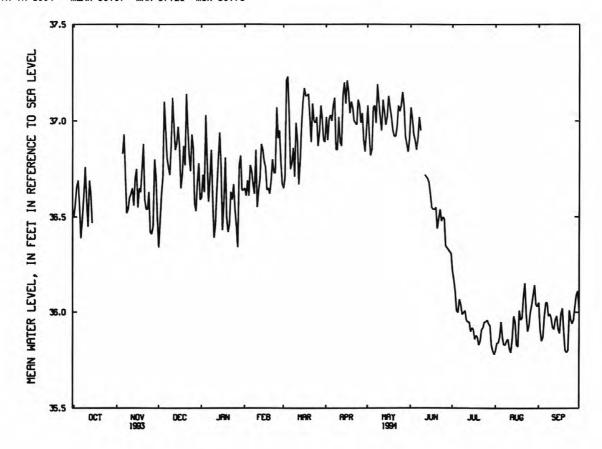
LOCATION.--Lat 40°49'32", long 73°05'59", Hydrologic Unit 02030202, at Duncan Avenue and Portion Road, in pumping center, in recorder shelter, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 1,305 ft, screened 1,290 to 1,300 ft. INSTRUMENTATION.--Digital water-level recorder -- 15-minute punch.

DATUM.--Land-surface datum is 134.0 ft above sea level. Measuring point: Top of 4-in. steel casing, 2.34 ft above land-surface datum.

REMARKS. -- Water level affected by nearby pumping.


PERIOD OF RECORD. --October 1968 to current year. Unpublished records from October 1968 to September 1975 are available in files of Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 40.92 ft above sea level, June 5, 1979; lowest measured, 33.84 ft above sea level, September 29, 1988.

ELEVATION (FEET MSL), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994
DAILY MEAN VALUES

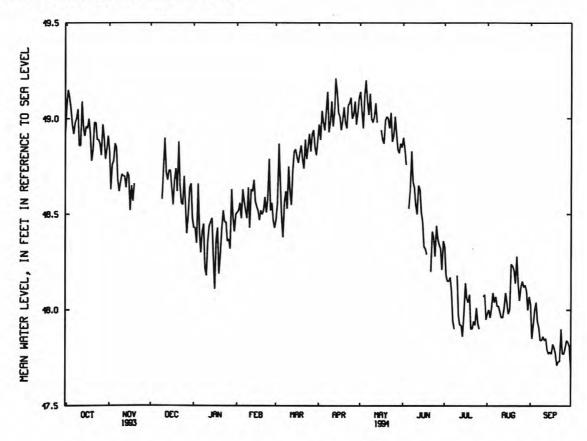
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	36.56	36.83	37.10	36.80	36.77	37.03	37.00	37.07	36.85	36.00	35.95	35.98
10	36.59	36.60	36.88	36.39	36.55	36.99	37.02	37.02		36.01	35.86	35.97
15		36.75	36.97	36.76	36.79	37.10	37.09	37.02	36.62	35.92	35.95	35.91
20		36.88	36.77	36.42	36.69	37.02	37.07	36.92	36.44	35.83	35.97	35.80
25		36.42	36.93	36.54	36.91	37.02	37.08	37.08	36.49	35.95	35.93	35.94
EOM		36.50	36.59	36.64	36.67	36.89	36.95	36.91	36.31	35.78	36.03	36.01
MEAN		36.63	36.80	36.64	36.74	36.96	37.02	37.01	36.64	35.95	35.93	35.96
MAX		36.93	37.14	37.03	37.07	37.23	37.21	37.19	37.07	36.22	36.15	36.11
MIN		36.41	36.34	36.34	36.55	36.65	36.84	36.82	36.31	35.78	35.79	35.79

WTR YR 1994 MEAN 36.57 MAX 37.23 MIN 35.78

404932073055902. Local number, S 33380.1 LOCATION.--Lat 40°49'32", long 73°05'59", Hydrologic Unit 02030202, at Duncan Avenue and Portion Road, in pumping center, in recorder shelter, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

AQUIFER .-- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 855 ft, screened 840 to 850 ft. INSTRUMENTATION. -- Digital water-level recorder -- 15-minute punch, changed to 30-minute on August 16, 1990. DATUM. -- Land-surface datum is 133.5 ft above sea level. Measuring point: Top of 4-in. steel casing, 2.13 ft above land-surface datum.


REMARKS.--Water level affected by nearby pumping.
PERIOD OF RECORD.--October 1968 to current year. Unpublished records from October 1968 to September 1975 are available in files of Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 54.30 ft above sea level, April 27, 1979; lowest measured, 45.16 ft above sea level, December 5, 1969.

ELEVATION (FEET MSL), WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	48.97	48.87		48.42	48.63	48.49	48.94	49.20	48.53	48.17	48.09	48.04
10	48.86	48.71	48.74	48.18	48.43	48.75	49.09	48.98	48.55	48.18	47.99	47.86
15	48.96	48.70	48.73	48.28	48.54	48.84	49.03		48.46	47.98	48.04	47.78
20	48.84		48.62	48.29	48.52	48.79	48.98	49.01		47.90	48.21	47.71
25	48.87		48.70	48.36	48.52	48.92	49.00	48.91	48.44	47.93	48.12	47.77
EOM	48.91		48.48	48.50	48.43	48.89	49.11	48.85	48.36	47.95	48.07	47.69
MEAN	48.94	48.70	48.65	48.39	48.55	48.74	49.03	48.98	48.49	48.02	48.07	47.83
MAX	49.15	48.87	48.90	48.66	48.79	48.94	49.21	49.20	48.90	48.33	48.28	48.04
MIN	48.78	48.52	48.40	48.11	48.43	48.38	48.89	48.82	48.20	47.86	47.96	47.69

MEAN 48.53 MAX 49.21 MIN 47.69 WTR YR 1994

404059073520702. Local number, K 1194.4 LOCATION.--Lat 40°40'59°, long 73°52'07°, Hydrologic Unit 02030202, at east side of Nichols Avenue, 100 ft north of Atlantic Avenue, New Lots. Owner: City of New York.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Driven steel observation well, diameter 2 in., depth 55 ft, screened 52 to 55 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 32.1 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.34 ft below land-surface datum.

REMARKS. -- Replaced well K 1194.3 in July 1970.

PERIOD OF RECORD. --November 1970 to current year. Records for November 1970 to September 1987 are unpublished and are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 14.92 ft above sea level, October 28, 1992; lowest measured, 0.83 ft below sea level, November 2, 1970.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27 NOV 18	9.41 9.32	DEC 27 FEB 22	9.21 11.26	MAR 24 APR 26	12.76 11.26	MAY 16 JUL 27	10.78 11.27	AUG 24	10.32	SEP 21	10.03

403939073542901. Local number, K 1265.1

LOCATION.--Lat 40°39'39", long 73°54'29", Hydrologic Unit 02030202, at west side of Thatford Avenue, 30 ft south of Riverdale Avenue, Brownsville. Owner: City of New York.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Driven steel observation well, diameter 2 in., depth 44 ft, screened 42 to 43 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel. DATUM .- Land-surface datum is 23.3 ft above sea level. Measuring point: Hole in top of 2-in. steel plug,

0.01 ft below land-surface datum.

PERIOD OF RECORD. --April 1933 to current year. Unpublished records for 1933-35, 1941-78 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 21.53 ft above sea level, June 12, 1991; lowest measured, 11.55 ft below sea level, August 22, 1942.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 18	18.72 17.90	DEC 27	16.59	APR 26	14.03	MAY 17	13.67	AUG 24	9.22	SEP 21	8.11

404236073574601. Local number, K 1301.1

LOCATION. -- Lat 40°42'35", long 73°57'48", Hydrologic Unit 02030201, at Williamsburgh Savings Bank, in basement, 84 ft north of Broadway and 178 ft west of Driggs Avenue, Williamsburgh. Owner: Williamsburg Savings Bank. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled unused steel well, diameter 8 in. to 6 in., depth 92 ft, screened 72 to 92 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 52.5 ft above sea level. Measuring point: Hole in top of 4-in. steel plug, 9.03 ft below land-surface datum.

PERIOD OF RECORD .-- January 1961 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.08 ft above sea level, October 2, 1978; lowest measured, 7.72 ft below sea level, January 19, 1961.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 18	4.49	DEC 27 FEB 2	4.33	FEB 22 MAR 25	4.38 4.57	APR 26 MAY 17	4.56 4.56	JUN 20 JUL 27	4.09 4.17	AUG 24 SEP 21	4.15

404155073552108. Local number, K 3245.1

LOCATION.--Lat 40°41'55°, long 73°55'22°, Hydrologic Unit 02030201, at west side of Wilson Avenue, 54 ft north of Stanhope Street, Bushwick. Owner: United States Geological Survey.

AQUIFER .-- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Augered steel observation well, diameter 2 in., depth 24 ft, screened 21 to 24 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 24.5 ft above sea level. Measuring point: Top of 2-in. steel coupling,

0.05 ft below land-surface datum.

PERIOD OF RECORD. -- June 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 11.52 ft above sea level, September 23, 1980; lowest measured, 5.80 ft above sea level, June 1, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 18	6.70 6.46	DEC 27 FEB 2	6.28 6.47	MAR 25 APR 26	6.95 7.19	MAY 17 JUN 20	7.23 7.17	JUL 27 AUG 24	7.24 7.16	SEP 21	7.06

403902073552801. Local number, K 3246.1

LOCATION.--Lat 40°39'02", long 73°55'28", Hydrologic Unit 02030202, at north side of Snyder Avenue, 86 ft west of East 56th Street, East Flatbush. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 30 ft, screened 27 to 30 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 25.7 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.04 ft below land-surface datum.

PERIOD OF RECORD. -- April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 9.62 ft above sea level, June 27, 1984; lowest measured, 7.27 ft above sea level, May 5, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 18	7.69 7.61	DEC 27 MAR 24	7.56 8.32	APR 26 MAY 17	8.48 8.46	JUN 20 JUL 27	8.25 8.13	AUG 24	8.08	SEP 21	8.00

403623074002101. Local number, K 3249.1 LOCATION.--Lat 40°36'23", long 74°00'23", Hydrologic Unit 02030202, at east side of Bay 16th Street, 42 ft north of Benson Avenue, Bath Beach. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table). WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 34 ft, screened 31 to 34 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 31.0 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.02 ft below land-surface datum.

PERIOD OF RECORD. -- April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 5.09 ft above sea level, January 24, 1991; lowest measured, 3.16 ft above sea level, May 21, 1985.

DATE	WATER LEVEL										
OCT 28	4.16	DEC 27	3.84	FEB 22	4.21	APR 26	4.16	JUN 20	4.05	AUG 24	4.45
NOV 18	3.90	FEB 2	4.31	MAR 24	4.25	MAY 17	4.19	JUL 27	4.08	SEP 21	4.03

403520073575501. Local number, K 3251.1

LOCATION.--Lat 40°35'20", long 73°57'55", Hydrologic Unit 02030202, at north side of Avenue Y, 115 ft west of East 6th Street, Brighton Beach. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 23 ft, screened 20 to 23 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 9.5 ft above sea level. Measuring point: Top of 2-in. steel coupling,

0.06 below land-surface datum.

PERIOD OF RECORD. -- April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 3.36 ft above sea level, June 26, 1984, and June 21, 1989; lowest measured, 2.56 ft above sea level, March 25, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 28	3.10	DEC 27	2.85	FEB 22	3.17	APR 26	3.24	JUN 20	2.89	AUG 24	3.15
NOV 18	3.04	FEB 2	3.03	MAR 24	3.34	MAY 17	3.28	JUL 27		SEP 21	2.93

403702073555808. Local number, K 3252.1 LOCATION.--Lat 40°37'04", long 73°55'59", Hydrologic Unit 02030202, at east side of Hendrickson Street, 46 ft north of Quentin Avenue, Flatlands. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 30 ft, screened 27 to 30 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 12.7 ft above sea level. Measuring point: Top of 2-in. steel coupling,

0.02 ft below land-surface datum.

PERIOD OF RECORD. -- June 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.68 ft above sea level, February 11, 1981; lowest measured, 0.68 ft above sea level, October 6, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
DCT 28 NDV 18	1.25 1.26	DEC 27 FEB 2	1.31	FEB 22 MAR 24	1.40 1.87	APR 26 MAY 17	1.76 1.66	JUN 20 JUL 27	1.50 1.33	AUG 24 SEP 21	1.46

403728073590708. Local number, K 3253.2

LOCATION.--Lat 40°37'28", long 73°59'07", Hydrologic Unit 02030202, at north side of 56th Street, 55 ft west of 18th Avenue, Borough Park. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 55 ft, screened 52 to 55 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 46.5 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.03 ft below land-surface datum.

REMARKS. -- Replaced well K 3253.1 in April 1981.

PERIOD OF RECORD. -- April 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.07 ft above sea level, October 3, 1984; lowest measured, 4.33 ft above sea level, December 21, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 28 NOV 18	5.06 5.37	DEC 27 FEB 22	5.31 5.18	MAR 24 APR 26	5.47 5.64	MAY 17 JUN 20	5.56 5.50	JUL 27 AUG 24	5.17 5.13	SEP 21	5.10

403737073564908. Local number, K 3254.1

LOCATION.--Lat 40°37'36", long 73°56'46", Hydrologic Unit 02030202, at east side of East 31st Street, 46 ft south of Avenue J, Flatbush. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .- Drilled steel observation well, diameter 2 in., depth 29 ft, screened 26 to 29 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 26.9 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.09 ft below land-surface datum.

PERIOD OF RECORD. -- April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.91 ft above sea level, June 27, 1984; lowest measured, 4.64 ft above sea level, July 15, 1992.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 28	4.85	DEC 27	4.84	FEB 22	5.04	APR 26	5.72	JUN 20	5.38	AUG 24	5.17
NOV 18	4.79	FEB 2	5.07	MAR 24	5.61	MAY 17	5.56	JUL 27	5.13	SEP 21	5.12

404036073584008. Local number, K 3261.1

LOCATION.--Lat 40°40'37", long 73°58'41", Hydrologic Unit 02030201, at east side of Lincoln Place, 122 ft north of 6th Avenue, northern most well, Park Slope. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 45 ft, screened 42 to 45 ft. INSTRUMENTATION . -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 64.8 ft above sea level. Measuring point: Top of 2-in. steel coupling.

0.01 ft above land-surface datum. PERIOD OF RECORD. -- April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 31.86 ft above sea level, March 16, 1984; lowest measured, 24.03 ft above sea level, March 29, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER								
OCT 28 NOV 18	25.49 25.21	DEC 27 FEB 22	24.83 25.49	MAR 25 APR 26	25.46 25.71	MAY 17 JUN 20	26.23 26.70	JUL 27 AUG 24	26.83 26.78	SEP 21	26.44

403635073580108. Local number, K 3274.1 LOCATION.--Lat 40°36'35", long 73°58'01", Hydrologic Unit 02030202, at west side of East 7th Street, 49 ft north of Avenue P, Gravesend. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 34 ft, screened 31 to 34 ft.

INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 27.0 ft above sea level. Measuring point: Top of 2-in. steel casing,

0.28 ft above land-surface datum.

PERIOD OF RECORD .-- June 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 5.88 ft above sea level, October 3, 1984; lowest measured, 3.53 ft above sea level, October 6, 1982.

DATE	WATER LEVEL										
OCT 28	4.49	DEC 27	4.30	FEB 22	4.51	APR 26	5.07	JUN 20	4.53	AUG 24	4.60
NOV 18	4.43	FEB 2	4.57	MAR 24	5.03	MAY 17	4.93	JUL 27	4.46	SEP 21	4.53

403737074011701. Local number, K 3275.1

LOCATION.--Lat 40°37'37", long 74°01'15", Hydrologic Unit 02030202, at east side of 6th Avenue, 19 ft south of 76th Street, Bay Ridge. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 76 ft, screened 73 to 76 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 67.2 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.05 ft below land-surface datum.

PERIOD OF RECORD.--June 1981 to current year. Unpublished records from June 1981 to September 1982 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.65 ft above sea level, January 5, 1984; lowest measured, 3.20 ft above sea level, April 28, 1989.

WATER LEVEL. IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 28 NOV 18	4.42	DEC 27 FEB 22	4.01 4.11	MAR 24 APR 26	4.55 4.48	MAY 17 JUN 20	4.53 4.48	JUL 27 AUG 24	4.43 4.38	SEP 21	4.43

404135073584001. Local number, K 3276.1

LOCATION.--Lat 40°41'34", long 73°58'41", Hydrologic Unit 02030201, at east side of St. Edwards Street, 75 ft south of Myrtle Avenue, Fort Greene. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 2 in., depth 54 ft, screened 51 to 54 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 38.0 ft above sea level. Measuring point: Top of 2-in. steel coupling.

0.02 ft below land-surface datum. PERIOD OF RECORD. -- April 1981 to current year. Unpublished records from April 1981 to September 1982 are

available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.71 ft above sea level, January 5, 1984; lowest measured, 4.30 ft above sea level, October 1, 1985.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 18	5.52 5.50	DEC 27 MAR 25	5.46 6.11	APR 26 MAY 17	6.20 6.25	JUN 20 JUL 27	5.96 5.83	AUG 24	5.78	SEP 21	5.77

404043073413108. Local number, N 7.1

LOCATION.--Lat 40°40'43", long 73°41'31", Hydrologic Unit 02030202, at Valley Stream State Park, 150 ft west of Corona Avenue, 130 ft north of Remsen Street, Valley Stream. Owner: Long Island State Park Commission. AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS.--Drilled unused steel well, diameter 6 in., depth 911 ft, screened 851 to 911 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 20.9 ft above sea level. Measuring point: Top of 1/4-in. hole drilled in 4-in. steel plug, 2.17 ft above land-surface datum.

REMARKS. -- Water level affected by nearby pumping.

PERIOD OF RECORD. -- March 1941 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 12.75 ft above sea level, March 9, 1941; lowest measured, 6.84 ft below sea level, August 25, 1970.

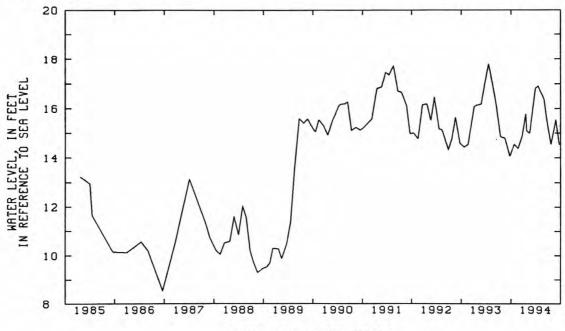
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 22	6.96	DEC 23 JAN 25	8.38 8.25	FEB 17 MAR 30	8.29 8.15	APR 19 JUN 1	8.63	JUN 20 JUL 20	6.73 4.12	AUG 26 SEP 21	5.11 5.20

404048073412602. Local number, N 9.1

LOCATION. -- Lat 40°40'48", long 73°41'26", Hydrologic Unit 02030202, at Valley Stream State Park, 30 ft west of Corona Avenue, 650 ft north of Remsen Street, Valley Stream. Owner: Long Island State Park Commission.

AQUIFER. -- Magothy (confined).
WELL CHARACTERISTICS. -- Drilled unused steel well, diameter 4 in. to 6 in., depth 138 ft, screened 98 to 138 ft.


INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 22.6 ft above sea level. Measuring point: Top of 6-in. steel casing, 2.08 ft above land-surface datum.

PERIOD OF RECORD.--July 1936 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.57 ft above sea level, September 23, 1938; lowest measured, 5.95 ft above sea level, March 22, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 22	14.56 14.38	JAN 19 25	15.79 15.08	FEB 17 MAR 30	15.00 16.84	APR 19 JUN 1	16.90 16.37	JUN 20 JUL 20	15.57 14.55	AUG 26 SEP 21	15.54 14.54
DEC 23	14.30	25	15.00	MAR 30	10.04	JUN 1	10.57	JOL 20	14.55	36 21	14.04

TIME, IN WATER YEARS

405010073414901. Local number, N 35.1

LOCATION.--Lat 40°50'10", long 73°41'51", Hydrologic Unit 02030201, at Port Washington Water District Pumping Center, 115 ft south of Sandy Hollow Road, in recorder shelter, Port Washington. Owner: Port Washington Water District.

AQUIFER .-- Port Washington (confined) .

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 16 in. to 6 in., depth 387 ft, screened 287

INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 13.6 ft above sea level. Measuring point: Top of steel recorder shelter flange 3.64 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD. -- April 1946 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.02 ft above sea level, January 31, 1958; lowest measured, 16.15 ft below sea level, July 29, 1954.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 5 18 NOV 16	5.34 6.63 6.88	DEC 14 29 JAN 25	5.80 3.72 3.41	FEB 28 MAR 31	3.34 4.07	APR 28 MAY 25	4.41 3.97	JUN 7 22	0.48 -1.87	AUG 23 SEP 19	1.68 0.83
	6			1			M		MA		
FEET 1 LEVEL	. 5	M	M	\mathbb{N}	M	MI	\ \ \ \ \ \	MI		Λ -	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	2 -	1	1 4	1		$/ \parallel$			V		
ARTER LE REFERENC	0	1	\setminus			v 1		٧	V	VA.	
Z	-2		V	ı						7]	
	-4 19	85 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

403929073382908. Local number, N 53.1

LOCATION. -- Lat 40°39'29", long 73°38'29", Hydrologic Unit 02030202, at Rockville Centre Municipal Power Plant. in battery room, Maple Avenue and Morris Avenue, Rockville Centre. Owner: Village of Rockville Center. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 8 in., depth 50 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 26.2 ft above sea level. Measuring point: Top of 2-in, steel casing. 5.24 ft below land-surface datum.

PERIOD OF RECORD. -- August 1934 to current year. Unpublished records from August 1934 to September 1975 are

available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 16.49 ft above sea level, April 15, 1939; lowest measured, 7.85 ft above sea level, August 30, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 26 NOV 22 DEC 27	9.63 9.60 9.77	JAN 19 25	10.00 10.03	FEB 17 MAR 30	10.25 11.47	APR 19 MAY 27	11.98 11.79	JUN 20 JUL 20	11.31 10.36	AUG 26 SEP 21	10.88 10.37
	18	7	7	T	-	1	-	-	r		
	16										
VEL	-									-	
FEE:	14 -									-	
L, IN FEET TO SEA LEVEL	12 7				\cap	ΛΛ.	M		٨		

1988 1989 1990 1991 1992 1993 1994

TIME, IN WATER YEARS

10

8

Z

403922073353501. Local number, N 67.1 LOCATION.--Lat 40°39'22", long 73°35'35", Hydrologic Unit 02030202, at Freeport Power Station, in battery room, 105 ft north of Sunrise Highway (Rt. 27), west of Long Beach Avenue, Freeport. Owner: Village of Freeport. AQUIFER. -- Lloyd (confined).

WÈLL CHARACTERISTICS.--Drilled steel observation well, diameter 12 in., depth 1052 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 22.0 ft above sea level. Measuring point: Top of 12-in. steel casing, 1.0 ft below land-surface datum.

PERIOD OF RECORD. -- December 1946 to current year.

1986

1987

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 15.95 ft above sea level, May 8, 1957; lowest measured, 3.76 ft below sea level, March 23, 1983.

DATE	WATER LEVEL										
OCT 18	9.07	DEC 20	10.59	FEB 17	10.52	APR 26	10.45	JUN 15	9.63	AUG 22	7.45
NOV 17	9.62	JAN 31	10.25	MAR 31	10.16	MAY 16	10.77	JUL 26	6.95	SEP 22	7.70

WATER

LEVEL

35.74

DATE

404030073293703. Local number, N 180.2

LOCATION.--Lat 40°40'30", long 73°29'37", Hydrologic Unit 02030202, at Long Island Railroad track embankment, 200 ft north of Sunrise Highway (Rt. 27), west of Seaford-Oyster Bay Expressway (Rt. 135), Seaford. Owner: Nassau County Department of Public Works.

AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled unused steel well, diameter 4 in. to 6 in., depth 723 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 16.0 ft above sea level. Measuring point: Top of 4-in. steel coupling,

13.69 ft above land-surface datum.

PERIOD OF RECORD. -- October 1945 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.08 ft above sea level, June 6, 1952; lowest measured, 10.63 ft above sea level, July 1, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 22	14.57 13.92	DEC 20 FEB 1	15.13 15.42	APR 1 20	15.65 15.38	MAY 18 JUN 17	15.72 14.17	JUL 20 AUG 24	11.64 14.44	SEP 20	13.14

404609073421602. Local number, N 1102.2

LOCATION.--Lat 40°46'09", long 73°42'16", Hydrologic Unit 02030201, at southwest corner of Community Drive and Long Island Expressway westbound service road, Lake Success. Owner: Nassau County Department of Public Works. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 166 ft, screened 161 to 166 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 184.0 ft above sea level. Measuring point: Top of 4-in. steel coupling,

0.32 ft below land-surface datum.

REMARKS.--Replaced well N 1102.1 in March 1963 at same location, which has a period of record from October 1937 to March 1963.

PERIOD OF RECORD. -- April 1963 to current year.

DATE

WATER

LEVEL

WATER

LEVEL

DATE

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 47.02 ft above sea level, April 24, 1963; lowest measured, 28.90 ft above sea level, January 19, 1983.

WATER

LEVEL

DATE

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE

WATER

LEVEL

WATER

LEVEL

DATE

OCT 26 NOV 22	38 38	.10		DEC	23 31		37 37	62 64	i	APR MAY	19 25	37 37	. 89 . 49		JUN	8 20	37 36	. 05		JUL	20 26	36. 36.	29 05	SEP	20 21
	46			1			1		- 1			1		1.		ı			T		1		-		
	44	-																						-	
LEVEL	42	-																^						3	
TO SEA	40															~	ſ	1	~	1				14	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL															1	/				1		7			
MATE IN REFI	38	-	<u></u>	_	_				,	_	`			/	/							,	\wedge	_/_	
	36					\	_	-			1	\ <u>\</u>		ر							ī			7	
	34	15	985	-	98	36	1	198	7	19	88	1	98	9	199	0	19	91	1	992	1	993	1	994	

TIME, IN WATER YEARS

404039073420001. Local number, N 1110.1 LOCATION.--Lat 40°40'40", long 73°42'01", Hydrologic Unit 02030202, at Valley Stream State Park, southeast corner of North Fletcher Avenue and park entrance, Valley Stream. Owner: Nassau County Department of Public Works. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Driven steel observation well, diameter 1 1/4 in., depth 27 ft, screened 24 to 27 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 31.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing. 0.80 ft below land-surface datum.

PERIOD OF RECORD. -- October 1936 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 21.81 ft above sea level, September 28, 1938; lowest measured, 5.78 ft above sea level, September 15, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA	TER VEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 22	12	.75 .61	DEC 23 MAR 30	12.95 14.61	APR 19 MAY 25	14.93 14.85	JUN 20 JUL 20	13.93 12.75	AUG 26	13.30	SEP 21	12.83
	18		1	1	1	1		Ţ		1		
	1.0							9				
_	16	Ī						1		٨		
ET.								17	,	$\int \int$	Λ	
ER L	14					M	NA 1	N	1	\ /	/ _	
10 5							1. M	h	240	W	V	
SVEL CE 1	12	1		Λ							1	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL		1	1	/\	^4						1	
MATE	10	E			\	N					1	
Z			N,		~ /	1					1	
	8		V	\bigvee							1	
											1	
	6	198	5 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

404125073394802. Local number, N 1129.2

LOCATION.--Lat 40°41'25", long 73°39'48", Hydrologic Unit 02030202, at east side of Euclid Avenue, 30 ft south of Hawthorne Street, West Hempstead. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Driven steel observation well, diameter 1 1/4 in., depth 44 ft, screened 41 to 44 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 51.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.46 ft below land-surface datum.

REMARKS.--Replaced well N 1129.1 in October 1966 at same location, unpublished record from August 1937 to October 1966 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. --October 1966 to current year. Unpublished records from October 1966 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 29.46 ft above sea level, July 23, 1984; lowest measured, 21.49 ft above sea level, October 29, 1986.

WATER LEVEL. IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA.	TER VEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATE
OCT 26 NOV 22		.60 .45	MAR 30 APR 19	26.74 27.25	JUN 1 20	27.56 26.92	JUL 20	26.14	AUG 26	27.02	SEP 21	26.2
	32			Т	1	1	- т			1		
	30										-	
FEET IA LEVEL	28	-				^	\mathcal{M}	M		٨	4	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	26	4						\	W]_	\ \d	
WATER LE	24	['	Jy	1	1]	
Z	22	-		4	\~	\mathcal{N}					3	
	20	1989	5 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

405104073375201. Local number, N 1152.1 LOCATION.--Lat 40°51'04", long 73°37'52", Hydrologic Unit 02030201, at northwest corner of Sea Cliff Avenue and Center Street, Glen Cove. Owner: Nassau County Department of Public Works. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 130 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 154.0 ft above sea level. Measuring point: Top of 4-in. PYC coupling, 0.15 ft below land-surface datum.

PERIOD OF RECORD. -- August 1940 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 52.39 ft above sea level, July 13, 1961; lowest measured, 44.33 ft above sea level, April 12, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
0CT 18 NOV 15 DEC 14	48.37 48.20 48.19	DEC 27 JAN 25	48.12 48.16	MAR 30 APR 28	48.80 49.10	MAY 26 JUN 9	49.41 49.35	JUN 21 JUL 21	49.27 49.05	AUG 19 SEP 20	48.73 48.73

404659073332601. Local number, N 1194.2

LOCATION.--Lat 40°46°59", long 73°33°26", Hydrologic Unit 02030202, at north side of Long Island Expressway westbound service road, just west of Jericho Turnpike (Rt. 25), Jericho. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 100 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 168.0 ft above sea level. Measuring point: Top of 4-in. steel casing,

0.02 ft below land-surface datum.

REMARKS.--Replaced well N 1194.2 in December 1961.

PERIOD OF RECORD. -- December 1961 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 92.18 ft above sea level, June 7, 1979; lowest measured, 74.59 ft above sea level, July 17, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 25	80.39	DEC 29	80.12	MAR 30	80.25	MAY 18	80.54	JUN 17	80.18	AUG 24	79.49
NOV 22	80.13	FEB 17	80.06	APR 20	80.39	JUN 7	80.46	JUL 20	79.56	SEP 20	79.00
DEC 20	80.03										

404453073323902. Local number, N 1197.4

LOCATION.--Lat 40°44'53", long 73°32'39", Hydrologic Unit 02030202, at west side of Abode Lane, 41 ft north of Stewart Avenue, Hicksville. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 69 ft, screened 64 to 69 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 117.0 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.95 ft below land-surface datum.

REMARKS.--Replaced well N 1197.3 in July 1975.

PERIOD OF RECORD. -- July 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 80.13 ft above sea level, June 7, 1979; lowest measured, 64.40 ft above sea level, October 27, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER								
OCT 25	66.30	DEC 20	66.21	FEB 17	66.86	APR 20	68.06	JUN 17	68.03	AUG 24	66.75
NOV 22	65.98	FEB 1	67.19	MAR 30	67.62	MAY 18	68.43	JUL 20	67.10	SEP 20	66.10

405000073293301. Local number, N 1228.3

LOCATION. --Lat 40°50'00", long 73°29'33", Hydrologic Unit 02030201, at south side of Cold Spring Road, 332 ft west of Townsend Road, Syosset. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 176 ft, screened 173 to 176 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 227.0 ft above sea level. Measuring point: Top of 4-in. steel casing, 0.12 ft above land-surface datum.

REMARKS. -- Replaced well N 1228.2 in February 1962.

PERIOD OF RECORD. -- February 1962 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 70.69 ft above sea level, May 29, 1980; lowest measured, 52.22 ft above sea level, July 18, 1967.

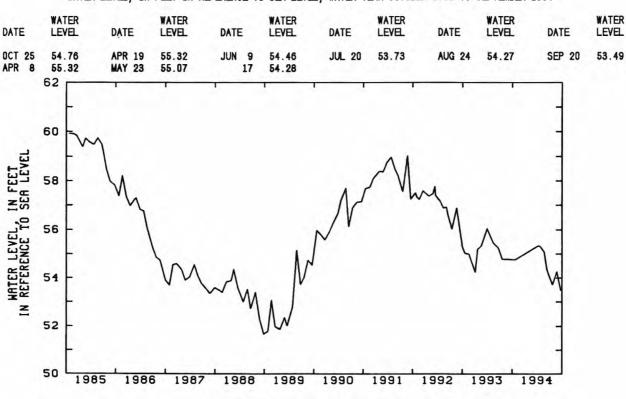
DATE	WATER LEVEL										
OCT 25	62.47	DEC 20	62.27	MAR 30	62.26	MAY 19	62.24	JUN 17	62.14	AUG 24	60.41
NOV 22	62.35	FEB 25	62.12	APR 19	62.16	JUN 10	62.19	JUL 20	61.77	SEP 20	61.27

405027073272602. Local number, N 1243.5

LOCATION.--Lat 40°50'26", long 73°27'20", Hydrologic Unit 02030201, at south side of Stillwell Road, 98 ft west of Harbor Road, Cold Spring Harbor. Owner: Nassau County Department of Public Works.

AQUIFER.--Magothy (water-table).
WELL CHARACTERISTICS.--Driven steel observation well, diameter 1 1/4 in., depth 28 ft, screened 25 to 28 ft.

INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.


DATUM.--Land-surface datum is 64.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.92 ft below land-surface datum.

REMARKS.--Replaced well N 1243.4 in September 1975 at same location, unpublished records from November 1939 to September 1975 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- September 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 60.70 ft above sea level, March 21, 1978; lowest measured, 51.66 ft above sea level, September 26, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

TIME, IN WATER YEARS

404317073291105. Local number, N 1259.5

LOCATION.--Lat 40°43'16", long 73°29'10", Hydrologic Unit 02030202, at south side of Mary Lane, 79 ft east of Hicksville Road (Rt. 107), Plainedge. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Driven steel observation well, diameter 1 1/4 in., depth 41 ft, screened 38 to 41 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 78.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.08 ft above land-surface datum.

REMARKS.--Replaced well N 1259.4 in June 1961 at same location, unpublished records from January 1909 to June 1961 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- June 1961 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 57.60 ft above sea level, February 21, 1978; lowest measured, 44.41 ft above sea level, September 26, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 16	44.64 44.75 56	DEC 22 JAN 24	44.98 45.13	FEB 16 MAR 31	45.58 46.65	APR 18 MAY 23	47.19 47.42	JUN 16 JUL 20	46.85 45.58	AUG 26 SEP 20	45.03 44.64
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	54 -	\			^	W	~				
WATER LEVE IN REFERENCE	48 -	my .		m			ή.	\			

TIME, IN WATER YEARS

404042073292601. Local number, N 1464.1

LOCATION.--Lat 40°40'42°, long 73°29'26°, Hydrologic Unit 02030202, at north side of Franklin Avenue, 102 ft east of Grant Avenue, in sidewalk, Seaford. Owner: Nassau County Department of Public Works.

AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 1 1/4 in. to 6 in., depth 42 ft, screened 32 to 42 ft.

INSTRUMENTATION . -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 28.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing extension, 0.37 ft below land-surface datum.

PERIOD OF RECORD. -- May 1943 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 20.43 ft above sea level, March 25, 1975; lowest measured, 12.22 ft above sea level, January 26, 1950.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 22	14.85 15.09	DEC 20 FEB 1	16.23 16.44	APR 1 20	16.49 16.70	MAY 18 JUN 17	16.10 15.65	JUL 20 AUG 24	14.96 14.96	SEP 20	14.78

405019073415301. Local number, N 1482.1

LOCATION.--Lat 40°50'19°, long 73°41'53°, Hydrologic Unit 02030201, at north side of Mill Pond Road, 55 ft west of Pleasant Avenue, eastern most well, Port Washington. Owner: Nassau County Department of Public Works.

AQUIFER.--Port Washington (confining unit).
WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 1/2 in., depth 151 ft, screened 148 to 151 ft.

INSTRUMENTATION . -- Measurement with chalked tape by USGS personnel .

DATUM.--Land-surface datum is 11.0 ft above sea level. Measuring point: Top of 2 1/2-in. steel casing, 0.23 ft below land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- November 1945 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.31 ft above sea level, January 18, 1991; lowest measured, 19.18 ft below sea level, July 7, 1955.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 5	4.82	NOV 16 DEC 14	5.77 6.04	DEC 29 FEB 28	5.98 5.54	MAR 31 APR 28	7.27 6.86	MAY 25 JUN 7	6.30	JUN 22	4.85

405019073415302. Local number, N 1483.1

LOCATION.--Lat 40°50'19", long 73°41'53", Hydrologic Unit 02030201, at north side of Mill Pond Road, 58 ft west of Pleasant Avenue, middle well, Port Washington. Owner: Nassau County Department of Public Works.

AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 1/2 in., depth 99 ft, screened 96 to 99 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 11.0 ft above sea level. Measuring point: Top of 2 1/2-in. steel casing, 0.55 ft below land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- February 1946 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 13.94 ft above sea level, September 9, 1955; lowest measured, 7.13 ft below sea level, September 3, 1970.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE		WATER LEVEL	DATE	WATER LEVEL								
OCT	5	7.96	DEC 14	7.95	FEB 28	8.02	APR 28	8.97	JUN 7	8.59	AUG 23	7.78
NOV 1	18 16	7.85 7.88	29	7.89	MAR 31	8.94	MAY 25	8.83	JUL 21	7.72	SEP 19	7.55

405019073415303. Local number, N 1484.1

LOCATION.--Lat 40°50'19", long 73°41'53", Hydrologic Unit 02030201, at north side of Mill Pond Road, 61 ft west of Pleasant Avenue, western most well, Port Washington. Owner: Nassau County Department of Public Works. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 1/2 in., depth 52 ft, screened 50 to 52 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 11.0 ft above sea level. Measuring point: Top of 2 1/2-in. steel casing, 0.88 ft below land-surface datum.

REMARKS .-- Water level affected by tidal fluctuation.

PERIOD OF RECORD .-- April 1955 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 15.11 ft above sea level, September 7, 1955; lowest measured, 6.19 ft above sea level, June 27, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 5	8.44 8.38	DEC 14 29	8.53 8.39	MAR 31 APR 28	9.59 9.50	MAY 25 JUN 7	9.38 9.07	JUN 22 JUL 21	8.67 8.48	AUG 23 SEP 19	8.65 8.30
NOV 16	8.35	FFB 28	8 57		7227	377	34,349	357-77	12.5.5.	22 71	7.57

404446073392904. Local number, N 1614.4 LOCATION.--Lat 40°44'46", long 73°39'29", Hydrologic Unit 02030202, at west side of Herricks Road, 135 ft north of Birchwood Drive, North Hempstead. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 1 1/4 in., depth 53 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 101.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 1.16 ft below land-surface datum.

REMARKS.--Replaced well N 1614.3 in April 1966 at same location, unpublished records from December 1933 to September 1975 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD .-- April 1966 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 60.78 ft above sea level, July 23, 1984; lowest measured, 48.42 ft above sea level, December 21, 1970.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE		TER VEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 16 DEC 22	54	.98 .74 .40	DEC 29 JAN 24 FEB 16	54.34 54.25 55.69	MAR 31 APR 18 MAY 23	56.75 57.52 56.26	JUN 7 16	56.28 56.23	JUL 18 20	55.85 55.80	AUG 26 SEP 20	55.09 54.74
	62			1	1	1	· · ·	-	-1			
	60	-					1				4	
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	58	1					M	~~~	\		1	
LEVEL, ENCE TO	56	F \	L,	4		Î	o v] \	/\	
WATER	54		W~	\ \ \ \	\					V	-	
N	52			\bigvee	M	\bigvee						
	50	198	35 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	
					TIME	E, IN	MATER YE	ARS				

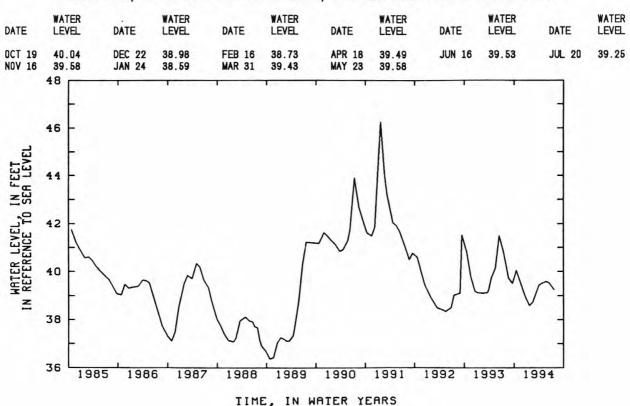
404209073340601. Local number, N 1615.3

LOCATION.--Lat 40°42'09°, long 73°34'06°, Hydrologic Unit 02030202, at east side of Merrick Avenue, 100 ft south of Van Buren Avenue, Freeport. Owner: Nassau County Department of Public Works.

AQUIFER .-- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 1 1/4 in., depth 33 ft, screened 30 to 33 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 61.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing;


0.13 ft below land-surface datum.

REMARKS.--Replaced well N 1615.2 in August 1966 at same location, unpublished record from March 1913 to August 1966 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD.--August 1966 to current year. Unpublished records from August 1966 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.25 ft above sea level, January 25, 1991; lowest measured, 36.37 ft above sea level, October 26, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL. WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404554073351502. Local number, N 1616.2

LOCATION.--Lat 40°45'54", long 73°35'15", Hydrologic Unit 02030202, at south side of Argyle Road, southern entrance, 40 ft west of Post Avenue, Old Westbury. Owner: Nassau County Department of Public Works. AQUIFER.--Magothy (water-table).

WELL CHARACTERISTICS. -- Driven steel observation well, diameter 2 in., depth 68 ft, screened 65 to 68 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 122.5 ft above sea level. Measuring point: Top of 2-in. steel casing, 0.42 ft below land-surface datum.

REMARKS.--Replaced well N 1616.1 in October 1965 at same location, it was previously screened in Upper Glacial Aquifer, which has a period of record from March 1913 to October 1965.

PERIOD OF RECORD. -- October 1965 to current year. Unpublished record from October 1965 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 82.14 ft above sea level, June 20, 1980; lowest measured, 68.28 ft above sea level, February 28, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 16 DEC 22	71.27 71.03 70.72	DEC 29 JAN 24 FEB 16	70.65 70.50 70.81	MAR 31 APR 18 MAY 23	71.29 71.55 71.98	JUN 7 16	72.00 71.82	JUL 18 20	71.25 71.22	AUG 26 SEP 20	70.78 70.40
I FEET EA LEVEL	78 -			ī	1	~	~				
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	74 - 72 - 70 -		V			<i>ل</i> ــر			\bigwedge		

TIME, IN WATER YEARS

1990

1991

1989

1992

1993

1994

405101073343401. Local number, N 2528.2

LOCATION.--Lat 40°50'01°, long 73°34'32°, Hydrologic Unit 02030201, at south side of Chicken Valley Road, 83 ft west of Wolver Hollow Road, eastern most well, Upper Brookville. Owner: Nassau County Department of Public Works.

AQUIFER. -- Magothy (confined).

1985

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in. to 4 in., depth 328 ft, screened 278 to 282 ft.

1988

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

1987

DATUM.--Land-surface datum is 93.0 ft above sea level. Measuring point: Top of 4-in. steel reducer, 0.86 ft above land-surface datum.

REMARKS. -- Replaced well N 2528.1 in November 1947.

1986

PERIOD OF RECORD. -- December 1947 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 79.92 ft above sea level, July 25, 1957; lowest measured, 59.12 ft above sea level, February 24, 1967.

DATE	WATER LEVEL										
OCT 25	66.60	DEC 20	66.23	FEB 25	66.66	APR 19	67.32	JUN 23	67.17	AUG 24	66.62
NOV 22	66.40	FEB 2	67.07	MAR 30	67.26	MAY 19	67.29	JUL 20	66.83	SEP 20	66.34

404619073270601. Local number, N 3355.2

LOCATION.--Lat 40°46'18", long 73°27'04", Hydrologic Unit 02030202, at former site of Nassau County Sanitarium, 336 ft west of Round Swamp Road, south of Locust Road, in wooden recorder shelter, Plainview. Owner: United States Geological Survey.

AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in. to 8 in., depth 1,093 ft, screened 1,070 to 1,090 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 183.0 ft above sea level. Measuring point: Top of 8-in. steel casing, 0.28 ft below land-surface datum.

PERIOD OF RECORD. -- January 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 36.17 ft above sea level, April 10, 1957; lowest measured, 23.18 ft above sea level, April 11, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 25	30.67	DEC 20	31.55	FEB 18	31.50	APR 20	31.65	JUN 17	30.95	AUG 24	29.54
NOV 22	29.97	FEB 2	31.58	APR 1	31.53	MAY 19	31.68	JUL 20	29.61	SEP 20	29.43

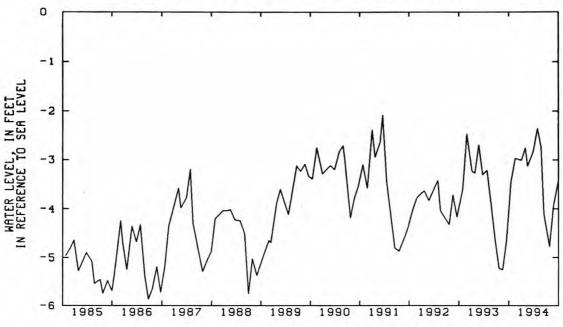
403751073440201. Local number, N 3861.1

LOCATION. --Lat 40°37'51", long 73°44'01", Hydrologic Unit 02030202, at Cedarhurst Water Pollution Control Plant, 28 ft east of Arlington Place, north of Peninsula Boulevard, Cedarhurst. Owner: United States Geological Survey.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 530 ft, screened 519 to 530 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.


DATUM.--Land-surface datum is 7.0 ft above sea level. Measuring point: Top of 6-in. steel casing, 2.37 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. --April 1952 to current year. Unpublished records from April 1952 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.09 ft below sea level, March 20, 1991; lowest measured, 7.57 ft below sea level, August 7, 1955.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18	-3.44	JAN 3	-3.01	FEB 17	-3.13	APR 29	-2.36	JUN 15	-4.10	AUG 23	-3.94
NOV 19	-2.97	31	-2.76	MAR 28	-2.82	MAY 25	-2.73	JUL 26	-4.77	SEP 28	-3.43

TIME, IN WATER YEARS

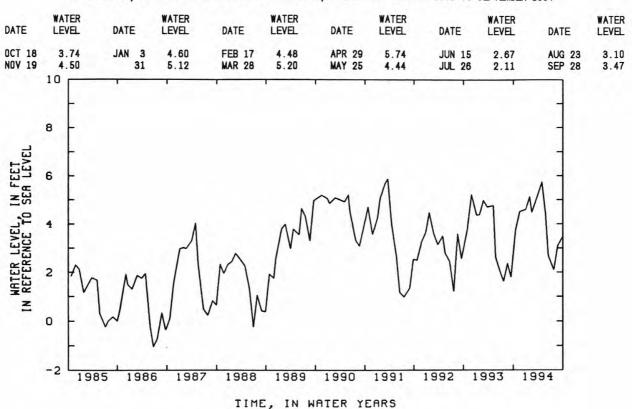
403911073432701. Local number, N 3867.2

LOCATION.--Lat 40°39'12", long 73°43'20", Hydrologic Unit 02030202, at Brook Road Park, 35 ft south of Brook Road, 41 ft east of stream, eastern most well, Green Acres. Owner: United States Geological Survey.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 517 ft, screened 505 to 517 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 7.7 ft above sea level. Measuring point: Top of 6-in. steel casing,


1.54 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--January 1953 to current year. Unpublished records from January 1953 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 7.99 ft above sea level, January 28, 1953; lowest measured, 2.61 ft belowe sea level, July 19, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

403751073440202. Local number, N 3932.1

LOCATION.--Lat 40°37'51", long 73°44'01", Hydrologic Unit 02030202, at Cedarhurst Water Pollution Control Plant, 37 ft east of Arlington Place, north of Peninsula Boulevard, Cedarhurst. Owner: Nassau County Department of Public Works.

AQUIFER. -- Jameco (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 178 ft, screened 172 to 176 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 7.0 ft above sea level. Measuring point: Top of 4-in. steel nipple,

3.24 ft above land-surface datum.

REMARKS .-- Water level affected by tidal fluctuation.

PERIOD OF RECORD.--June 1952 to current year. Unpublished records from June 1952 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 7.13 ft above sea level, November 10, 1975; lowest measured, 0.30 ft above sea level, September 20, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18	3.80	JAN 3	4.17	FEB 17	3.97	APR 29	4.89	JUN 15	2.81	AUG 23	3.27
NOV 19	4.48	31	4.63	MAR 28	4.71	MAY 25	4.51	JUL 26	2.65	SEP 28	3.66

403713073415901. Local number, N 4026.1

LOCATION.--Lat 40°37'12", long 73°41'59", Hydrologic Unit 02030202, at Woodsburgh Town Dock parking field, south end of Woodmere Boulevard, on west side of sewer treatment substation, Woodsburgh. Owner: Nassau County Department of Public Works.

AQUIFER. -- Jameco (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 153 ft, screened 149 to 153 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 6.0 ft above sea level. Measuring point: Top of 6-in. steel casing at yellow arrow, 3.00 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuations.

PERIOD OF RECORD. --February 1968 to current year. Unpublished records from February 1968 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 5.27 ft above sea level, March 21, 1984; lowest measured, 0.26 ft below sea level, September 30, 1985.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DÁTE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18 NOV 19	4.45 4.73	JAN 3 31	4.63	MAR 28 APR 29	4.97 4.98	MAY 27 JUN 15	4.55 3.16	JUL 26 AUG 23	2.74 3.70	SEP 28	3.80

403844073340801. Local number, N 4150.2

LOCATION.--Lat 40°38'43", long 73°34'07", Hydrologic Unit 02030202, at south side of Albany Avenue, in driveway of Nassau County Department of Public Works building, Freeport. Owner: United States Geological Survey.

AQUIFER.--Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 8 in., depth 765 ft, screened 729 to 745 ft. INSTRUMENTATION.--Measurement with clear plastic tube extension and stadia rod by USGS personnel.

DATUM.--Land-surface datum is 6.5 ft above sea level. Measuring point: Top of 1/2-in. steel valve, 0.55 ft below land-surface datum.

REMARKS .-- Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- January 1968 to current year. Unpublished records from January 1968 to September 1987 are available in files of Long Island sub-district Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.25 ft above sea level, July 1, 1975; lowest measured, 5.24 ft above sea level, July 29, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18 NOV 17	7.68 7.75	DEC 20 MAR 31	7.76 8.15	APR 26	8.39	JUL 26	6.73	AUG 23	7.81	SEP 22	6.94

403911073432001. Local number, N 4213.1

LOCATION.--Lat 40°39'12", long 73°43'20", Hydrologic Unit 02030202, at Brook Road Park, 34 ft south of Brook Road, 32 ft east of stream, western most well, Green Acres. Owner: Nassau County Department of Public Works.

AQUIFER.--Jameco (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 134 ft, screened 130 to 134 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 5.0 ft above sea level. Measuring point: Top of 6-in. steel casing, 3.42 ft above land-surface datum.

REMARKS .-- Water level affected by tidal fluctuation.

PERIOD OF RECORD.--February 1968 to current year. Unpublished records from February 1968 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.33 ft above sea level, June 30, 1975; lowest measured, 2.40 ft below sea level, March 22, 1972.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 18	3.68	JAN 3	4.59	FEB 17	4.32	APR 29	5.72	JUN 15	2.07	AUG 23	2.79
NOV 19	4.75	31	5.13	MAR 28	5.23	MAY 25	4.31	JUL 26	1.92	SEP 28	

WATER LEVEL, REFERENCE TO

Z

0

-8

405125073420702. Local number, N 6282.2

LOCATION.--Lat 40°51'25", long 73°42'07", Hydrologic Unit 02030201, at Helen Keller National Center for Deaf-Blind Youths and Adults, 300 ft north of Middle Neck Road, western most well, Sands Point. Owner: United States Geological Survey.

AQUIFER. -- Port Washington (confined).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 6 in., depth 396 ft, screened 378 to 388 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 100.9 ft above sea level. Measuring point: Top of 6-in. steel casing,

1.32 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.
PERIOD OF RECORD.--August 1957 to current year. Unpublished records from August 1957 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 11.49 ft above sea level, May 31 and June 1, 1983; lowest measured, 28.36 ft below sea level, February 17, 1982.

WATER LEVEL. IN FEET IN REFERENCE TO SEA LEVEL. WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 5	5.65	DEC 14	6.55	FEB 28	5.69	MAY 25	0.14	JUN 22	-8.61	AUG 23	-4.60
18	2.39	29	5.72	APR 1	6.67	JUN 7	-4.94	JUL 21	-7.89	SEP 19	-2.38
NOV 16	5.85	JAN 25	5.60	28	-0.79						
	12	T	T.		1	г г	- 1			=	
	8 -						_		Á	=	
FEET A LEVEL	H'	М	~	\cap .	\sim 1	M		~ N	1 1	1 =	
E	4 1		1	111		1 1 1			1 11		

1986 1987 1988 1989 1991 1992

1990

TIME, IN WATER YEARS

405001073343205. Local number, N 6294.2

LOCATION.--Lat 40°50'01", long 73°34'32", Hydrologic Unit 02030201, at south side of Chicken Valley Road, 85 ft west of Wolver Hollow Road, western most well, Upper Brookvile. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Driven steel observation well, diameter 1 1/4 in., depth 37 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 93.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.30 ft above land-surface datum.

PERIOD OF RECORD. -- September 1982 to current year. Unpublished records from September 1982 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 73.07 ft above sea level, December 18, 1984; lowest measured, 63.81 ft above sea level, March 21, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
0CT 25 NOV 22 DEC 20	66.55 66.36 66.19	FEB 2 25	66.72 67.13	MAR 30 APR 19	68.20 67.66	MAY 19 JUN 10	67.43 67.36	JUN 20 JUL 20	67.23 66.85	AUG 24 SEP 20	66.49 66.32

405125073420705. Local number, N 6342.1

LOCATION.--Lat 40°51'25°, long 73°42'07°, Hydrologic Unit 02030201, at Helen Keller National Center for Deaf-Blind Youths and Adults, 300 ft north of Middle Neck Road, eastern most well, Sands Point. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 1 1/4 in., depth 185 ft, screened 183 to 185 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 97.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing,

3.99 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD.--August 1957 to current year. Unpublished records from August 1957 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 24.99 ft above sea level, September 14, 1984; lowest measured, 14.06 ft above sea level, February 28, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 5	20.24	DEC 14	18.80	FEB 28	18.45	MAY 25	20.25	JUN 22	20.81	AUG 23	20.00
18	19.79	29	18.64	MAR 31	18.91	JUN 7	20.61	JUL 21	21.03	SEP 19	20.65
NOV 16	19.24	JAN 25	18.38	APR 28	19.46						

405212073354002. Local number, N 6668.1

LOCATION.--Lat 40°52'12", long 73°35'40", Hydrologic Unit 02030201, at east side of Piping Rock Road, 58 ft south of Underhill Road, southern entrance, Matinecock. Owner: United States Geological Survey.

AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 1 1/4 in., depth 43 ft, screened 41 to 43 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 103.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing,

0.35 ft above land-surface datum.

PERIOD OF RECORD. --April 1968 to current year. Unpublished records from April 1968 to September 1982 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 74.80 ft above sea level, February 2, 1979; lowest measured, 63.30 ft above sea level, April 22, 1968.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 22	66.22 65.92	DEC 20 APR 7	65.61 67.55	APR 19 MAY 19	67.29 66.99	JUN 10 20	66.94 66.87	JUL 20 AUG 24	66.93 67.12	SEP 20	66.82

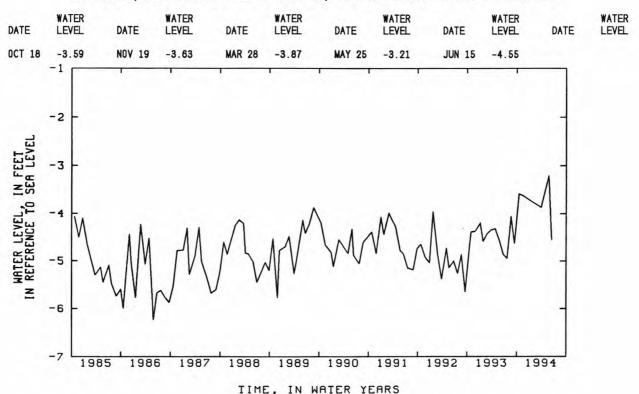
403517073430702. Local number, N 6702.1

LOCATION.--Lat 40°35'17", long 73°43'06", Hydrologic Unit 02030202, at pumping center, 0.1 miles west of end of Park Street, 300 ft north of Beech Street, in eastern most recorder shelter, Atlantic Beach. Owner: United States Geological Survey.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 677 ft, screened 666 to 677 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 11.0 ft above sea level. Measuring point: Top of 4-in. steel coupling,


1.04 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD.---September 1959 to current year. Unpublished records from September 1959 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.50 ft below sea level, April 13, 1961; lowest measured, 6.58 ft below sea level, November 30, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

403517073430705. Local number, N 6705.1

LOCATION.--Lat 40°35'17", long 73°43'06", Hydrologic Unit 02030202, at pumping center, 0.1 miles west of end of Park Street, 300 ft north of Beech Street, in western most recorder shelter, Atlantic Beach. Owner: United States Geological Survey.

AQUIFER.--Jameco (confined).
WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 157 ft, screened 147 to 157 ft.
INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 10.0 ft above sea level. Measuring point: Top of 4-in. steel coupling, 2.45 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD.--February 1968 to current year. Unpublished records from February 1968 to September 1968 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 3.12 ft above sea level, March 3, 1969; lowest measured, 2.77 ft below sea level, April 5, 1973.

	WATER		WATER								
DATE	LEVEL	DATE	LEVEL								
DCT 18	1 93	NOV 19	1.80	MAR 28	1 95	MAY 25	2.15	JUN 15	1 30		

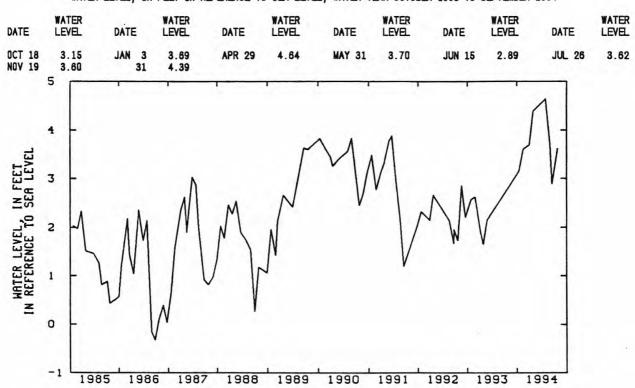
403713073415902. Local number, N 6707.1

LOCATION.--Lat 40°37'12", long 73°41'59", Hydrologic Unit 02030202, at Woodsburgh Town Dock parking field, south end of Woodmere Boulevard, on north side of sewage treatment substation, Woodsburgh. Owner: United States Geological Survey.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 503 ft, screened 493 to 503 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 6.0 ft above sea level. Measuring point: Top of 4-in. steel coupling,


1.08 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. --October 1959 to current year. Unpublished records from October 1959 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 4.64 ft above sea level, April 29, 1994; lowest measured, 1.33 ft below sea level, July 19, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

TIME, IN WATER YEARS

403533073353201. Local number, N 6849.1

LOCATION.--Lat 40°35'33", long 73°35'32", Hydrologic Unit 02030202, at pumping center, north of Lido Boulevard, 0.3 miles west of Loop Parkway, in southern most recorder shelter, Lido Beach. Owner: United States Geological Survey.

AQUIFER. -- Raritan (confining unit).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 1,040 ft, screened 1,027 to 1,037 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 7.0 ft above sea level. Measuring point: Top of 6-in. steel casing,

2.36 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

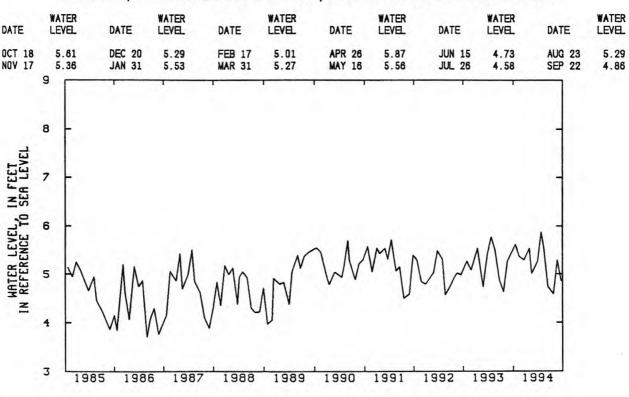
PERIOD OF RECORD. -- February 1968 to current year. Unpublished records from February 1968 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 7.01 ft above sea level, May 21, 1993; lowest measured, 3.88 ft above sea level, December 22, 1971.

DATE	WATER LEVEL										
OCT 18	6.32	DEC 20	6.14	FEB 17	5.84	APR 26	6.47	JUN 15	6.44	AUG 23	6.18
NOV 17	5.97	JAN 31	6.16	MAR 31	6.11	MAY 16	6.48	JUL 26	6.36	SEP 22	5.81

403533073353202. Local number, N 6850.2 LOCATION.--Lat 40°35'33", long 73°35'32", Hydrologic Unit 02030202, at pumping center, north of Lido Boulevard, 0.3 miles west of Loop Parkway, in northern most recorder shelter, Lido Beach. Owner: United States Geological Survey.

AQUIFER .-- Magothy (confined) .


WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 6 in., depth 913 ft, screened 898 to 909 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 6.6 ft above sea level. Measuring point: Top of 6-in. steel coupling, 2.58 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Replaced well N 6850.1 in May 1960. PERIOD OF RECORD. -- June 1960 to current year. Unpublished records from June 1960 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 8.00 ft above sea level, April 13, 1961; lowest measured, 2.69 ft above sea level, October 27, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

TIME, IN WATER YEARS

405311073331801. Local number, N 6879.1
LOCATION.--Lat 40°53'11", long 73°33'18", Hydrologic Unit 02030201, at west side of private road, 165 ft south of Cleft Road, opposite Horse Shoe Road, Mill Neck. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 1 1/4 in., depth 131 ft, screened 129 to 131 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 131.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.47 ft above land-surface datum.

PERIOD OF RECORD. --April 1962 to current year. Unpublished records from April 1962 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 32.97 ft above sea level, June 22, 1979; lowest measured, 24.82 ft above sea level, October 21, 1966.

DATE	WATER LEVEL										
OCT 18	28.33	DEC 14	27.95	MAR 29	27.98	MAY 26	28.22	JUN 21	28.44	AUG 19	28.39
NOV 15	28.10		27.93	APR 28	27.97	JUN 8	28.34	JUL 21	28.47	SEP 20	28.23

405432073345001. Local number, N 7152.1 LOCATION.--Lat 40°54'33°, long 73°34'46°, Hydrologic Unit 02030201, at Oak Neck Beach, 35 ft north of Bayville Avenue, east of beach parking field, Bayville. Owner: United States Geological Survey.

AQUIFER .-- Lloyd (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in. to 6 in., depth 370 ft, screened 360 to 370 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 14.5 ft above sea level. Measuring point: Top of 6-in. steel nipple,

3.63 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD. -- September 1961 to current year. Unpublished records from September 1961 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 15.74 ft above sea level, February 5, 1962; lowest measured, 5.50 ft below sea level, June 27, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

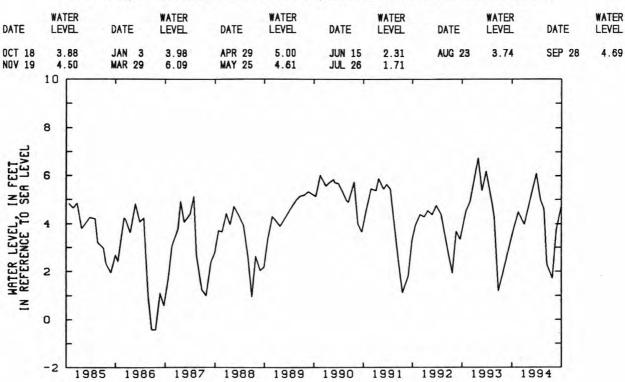
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18 NOV 15	13.96 14.56	DEC 14 17	12.31 12.44	JAN 25 FEB 29	10.82 14.36	APR 28 MAY 26	13.30 13.04	JUN 8 21	8.11 3.23	JUL 21 AUG 19	8.14 10.82
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	16 - 12 - 198 - 198	35 1980	1987		1989 E. IN A	1990	1991 :ARS	1992 1	993 1	994	*

403856073392603. Local number, N 7161.2

LOCATION.--Lat 40°38'56", long 73°39'26", Hydrologic Unit 02030202, at Rockville Centre Village Dump, south of the end of Riverside Road, 79 ft north of the end of Roxbury Road, northern most well, Rockville Centre.

Owner: Village of Rockville Centre.

AQUIFER .-- Magothy (confined) .


WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 666 ft, screened 661 to 665 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 7.0 ft above sea level. Measuring point: Top of 6-in. steel casing, 2.78 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping. Replaced well N 7161.1 in September 1961. PERIOD OF RECORD.--October 1961 to current year. Unpublished records from October 1961 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 8.03 ft above sea level, March 13, 1962; lowest measured, 2.81 ft below sea level, July 13, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

TIME, IN WATER YEARS

403855073392402. Local number, N 7207.1

LOCATION.--Lat 40°38'55", long 73°39'24", Hydrologic Unit 02030202, at Rockville Centre Village Dump, south of the end of Riverside Road, 44 ft north of the end of Roxbury Road, southern most well, Rockville Centre.

Owner: Village of Rockville Centre.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 98 ft, screened 95 to 98 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 8.0 ft above sea level. Measuring point: Top of 4-in. to 2-in. steel reducer, 2.39 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.--January 1968 to current year. Unpublished records from January 1968 to September 1987 are available in files of Long Island Subdistrict Office.

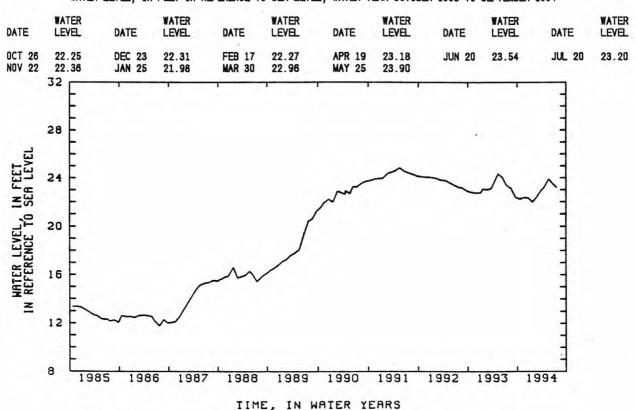
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.33 ft above sea level, June 30, 1975; lowest measured, 1.47 ft above sea level, January 30, 1970.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18 NOV 19	3.79 3.52	JAN 3 MAR 29	3.65 4.26	APR 29 MAY 15	5.23 3.33	MAY 25 JUL 26	4.39 3.48	AUG 23	4.17	SEP 28	3.67

404237073433701. Local number, N 7493.1

LOCATION.--Lat 40°42'36°, long 73°43'35°, Hydrologic Unit 02030202, at west side of Cross Island Parkway exit ramp (Hempstead Turnpike eastbound), 21 ft south of Hempstead Turnpike, Elmont. Owner: Nassau County Department of Public Works.

AQUIFER .-- Magothy (confined) .


WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 353 ft, screened 349 to 353 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 75.0 ft above sea level. Measuring point: Top of 4-in. steel flange, 2.59 ft above land-surface datum.

PERIOD OF RECORD. --April 1964 to current year. Unpublished records from April 1964 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 24.84 ft above sea level, May 17, 1991; lowest measured, 3.52 ft above sea level, August 8, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404705073394902. Local number, N 7554.2

LOCATION.--Lat 40°47'05", long 73°39'49", Hydrologic Unit 02030202, at Christopher Morley Park, 55 ft east of Searingtown Road, just north of main entrance to park, North Hills. Owner: Port Washington Water District. AQUIFER.--Magothy (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 12 in. to 8 in., depth 484 ft, screened 454 to 464 ft.

INSTRUMENTATION .-- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 190.0 ft above sea level. Measuring point: Top of 2-in. steel coupling, 5.57 ft above land-surface datum.

REMARKS. -- Replaced well N 7554.1 in May 1964.

PERIOD OF RECORD. -- March 1964 to current year. Unpublished records from March 1964 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 50.62 ft above sea level, April 28, 1965; lowest measured, 21.52 ft above sea level, July 18, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 22 DEC 23 28	33.14 34.10 34.24	JAN 19 25	35.21 33.79	FEB 17 MAR 31	34.83 35.38	APR 19 MAY 25	36.14 34.50	JUN 20 JUL 18	36.99 34.97	AUG 26 SEP 21	35.27 34.64

404947073450301. Local number, N 8046.1

LOCATION. --Lat 40°49'47", long 73°45'03", Hydrologic Unit 02030201, at south side of Pond Road, 85 ft west of Hayworth Drive, eastern most well, Kings Point. Owner: Nassau County Department of Public Works. AQUIFER. --Port Washington (confined). Previously reported as Jameco Aquifer.

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 4 in., depth 189 ft, screened 184 to 189 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 9.3 ft above sea level. Measuring point: Top of 4-in. steel casing, 2.36 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- May 1966 to current year. Unpublished records from May 1966 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.60 ft above sea level, February 6, 1978; lowest measured, 1.20 ft below sea level, July 19, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	LE	ATER EVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 19 NOV 16 DEC 14		1.66 1.46 5.10	DEC 28 JAN 25 FEB 28	3.92 3.89 3.92	MAR 30 APR 28 29	4.59 4.59 4.50	MAY 25 JUN 8 22	4.71 3.97 3.86	JUL 21 AUG 23	3.65 4.23	SEP 19 20	3.90 4.18
	7	_			,							
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	6	-									-]	
NCE TO S	5	1,	1 11	٨٨		Λ	. 🔥	Λ	٨ ٨	A A	M	
WATER I	4	1/	1/\/\\	$\mathcal{W}^{\mathcal{V}_{\mathcal{V}_{\mathcal{V}}}}$	\\ \\ \\ \\	$\sqrt{\ }$	M_{Λ}	7 W	M	$V \setminus V$	<i>J</i> (M	
_	3	-	V								-	

TIME, IN WATER YEARS

404947073450201. Local number, N 8052.1

LOCATION. --Lat 40°49'47", long 73°45'03", Hydrologic Unit 02030201, at south side of Pond Road, 91 ft west of Hayworth Drive, western most well, Kings Point. Owner: Nassau County Department of Public Works. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 94 ft, screened 90 to 94 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 12.0 ft above sea level. Measuring point: Top of 2-in. steel casing, 0.65 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD.--May 1966 to current year. Unpublished records from May 1966 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 8.35 ft above sea level, June 20, 1974; lowest measured, 1.70 ft above sea level, January 22, 1981.

WATER			WATER		WATER				WATER	WATE		
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	WATER LEVEL	DATE	LEVEL	DATE	WATER	
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEAGT	DATE	LEVEL	DATE	LEVEL	
OCT 19	5.21	DEC 28	4.58	MAR 30	5.35	MAY 25	5.13	JUL 21	4.37	SEP 19	4.63	
NOV 16	5.13	JAN 25	4.61	APR 28	5.30	JUN 8	4.91	AUG 23	4.86	20	4.86	
DEC 14	5.74	FEB 28	4.42	29	5.05	22	3.73	1427 27		-		

404535073370002. Local number, N 8269.2

1986

Location.--Lat 40°45'35", long 73°37'00", Hydrologic Unit 02030202, at east side of Bacon Road, 106 ft north of Hillside Avenue, south of school entrance, Old Westbury. Owner: Nassau County Department of Public Works. AQUIFER .-- Magothy (water-table) .

WELL CHARACTERISTICS.--Driven steel observation well, diameter 4 in., depth 86 ft, screened 81 to 86 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 111.7 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.15 ft below land-surface datum.

REMARKS.--Prior to April 1967, well was screened in Upper Glacial Aquifer. Well N 1258.1 was replaced by well N 8269.1 in April 1967, which was replaced by well N 8269.2 in June 1976.

PERIOD OF RECORD. -- June 1976 to current year. Unpublished records from June 1936 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.18 ft above sea level, May 21, 1980;

lowest measured, 62.74 ft above sea level, March 16, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA	TER VEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 16 DEC 22	64 64	.13 .95 .82	DEC 29 JAN 24 FEB 16	64.76 64.69 64.99	MAR 31 APR 18 MAY 23	65.59 65.81 66.10	JUN 7 16	65.99 65.82	JUL 18 20	65.24 65.23	AUG 26 SEP 20	64.86 64.52
	74		1				1	1	T			
	72	-									4	
T. EVEL		M									-	
N FEE	70	['					رہ	\mathcal{N}			1	
HATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	68	-	1				M	,			4	
R LEV		-	4	^		1	J		1	1	-	
WATE	66			\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		- 1			V		Λ	
N.	64	-			h						-	
	60	-				W					-	

1987 1988 1989 1990 1991

TIME, IN WATER YEARS

1992 1993 1994

404742073410301. Local number, N 8309.1 LOCATION.--Lat 40°47'42", long 73°41'03", Hydrologic Unit 02030201, at east side of Manhasset Woods Road, 73 ft north of Northern Boulevard, Munsey Park. Owner: Nassau County Department of Public Works.

AQUIFER. -- Magothy (water-table).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 4 in., depth 199 ft, screened 194 to 199 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 143.2 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.15 ft below land-surface datum.

REMARKS.--Replaced well N 1121.2 in March 1967 at same location, unpublished records from March 1940 to March 1967 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- March 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 42.81 ft above sea level, June 20, 1980; lowest measured, 33.07 ft above sea level, September 27, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATE	R L D	ATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 5 26 NOV 22	36.8 36.9 36.9	16	EC 23 29	37.78 38.02	FEB 17 MAR 31	38.39 38.97	APR 19 JUN 7	39.24 39.45	JUN 20 JUL 18	38.47 38.06	AUG 26 SEP 21	37.71 37.37
	44	1	-	-1	Í	ī	1 1			- 1		
	42										1	
FEET EA LEVEL	40	. 1	M					Λ	/\	\sim		
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	38	M	\ \		Λ		M					
WATER	36			_		\wedge					-	
Z	34				W \	$\sqrt{}$						
	32	1985	198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

403942073334401. Local number, N 8847.1

LOCATION.--Lat 40°39'42", long 73°33'44", Hydrologic Unit 02030202, at north side of Bedford Avenue, 38 ft east of Babylon Turnpike, Merrick. Owner: Nassau County Department of Public Works. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 1 1/4 in., depth 26 ft, screened 21 to 26 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 16.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.37 ft below land-surface datum.

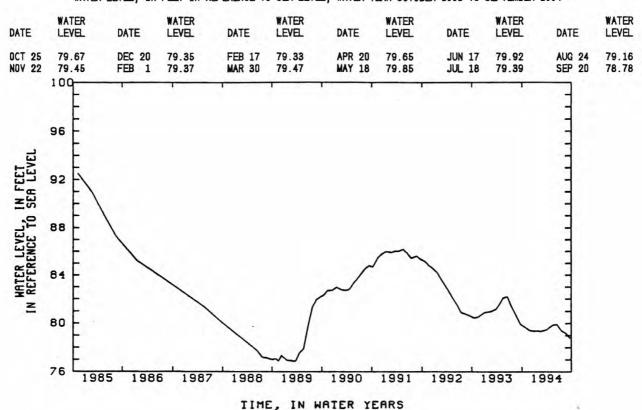
REMARKS.--Replaced well N 3943.2 in April 1972, which replaced well N 1185.1 in June 1939.
PERIOD OF RECORD.--June 1972 to current year. Unpublished records from June 1972 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 9.62 ft above sea level, March 26, 1993; lowest measured, 1.04 ft below sea level, June 11, 1974.

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26 NOV 22	8.14 8.12	DEC 27 JAN 25	8.45 8.41	MAR 30 APR 19	9.36 9.10	MAY 27 JUN 21	8.69 8.03	JUL 20 AUG 26	7.49 8.20	SEP 21	7.57

404702073305601. Local number, N 8888.1 LOCATION.--Lat 40°47'03", long 73°30'56", Hydrologic Unit 02030202, at north side of Miller Place, 59 ft east of Vincent Road, Hicksville. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).


WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 111 ft, screened 106 to 111 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 174.0 ft above sea level. Measuring point: Top of 4-in. steel casing, 0.49 ft above land-surface datum.

REMARKS.--Replaced well N 1213.1 in October 1972.
PERIOD OF RECORD.--October 1972 to current year. Unpublished records from October 1972 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 94.22 ft above sea level, September 14, 1979; lowest measured, 76.86 ft above sea level, March 21, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404757073440401. Local number, N 9099.1 LOCATION.--Lat 40°47'57", long 73°44'04", Hydrologic Unit 02030201, at west side of Middle Neck Road, 33 ft north of Preston Road, Great Neck. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 71 ft, screened 66 to 71 ft.

INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 60.0 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.37 ft below land-surface datum.

REMARKS.--Replaced well N 1479.1 in February 1976, which has a period of record from September 1944 to February 1976 unpublished and are available in files of Long Island Subdistrict Office. PERIOD OF RECORD. -- February 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 24.45 ft above sea level, June 7, 1976; lowest measured, 14.90 ft above sea level, November 26, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA	TER VEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 16 DEC 14	19	.52 .48 .40	DEC 28 MAR 30	19.30 19.40	APR 28 29	19.77 19.83	MAY 25 JUN 8	20.16 20.27	JUN 22 JUL 21	20.31 20.14	AUG 23 SEP 19	19.92 19.84
	28		-1	-1	1		i		- 1	1		
	26											
T		-									-	
FEE EA LE	24	-									1	
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	22	4					\wedge	1				
ATER LE EFERENC	20	- 4	1			(M	\wedge	$\overline{\wedge}$	
Z.	18		V/	/	~							
		-		\bigvee		~					-	
	16	1985	1986	1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

WATER

LEVEL 13.21 13.21

404901073443004. Local number, N 9208.2 LOCATION.--Lat 40°49'01", long 73°44'30", Hydrologic Unit 02030201, at pumping field, 174 ft south of Wildwood Road, east of Catalina Drive, Kings Point. Owner: Nassau County Department of Public Works. AQUIFER. -- Port Washington (confined).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 4 in., depth 96 ft, screened 91 to 96 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 18.0 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.82 ft below land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

1986

1987

PERIOD OF RECORD.--June 1977 to current year. Unpublished records from June 1977 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 16.50 ft above sea level, May 23, 1983; lowest measured, 5.68 ft above sea level, April 21, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL. WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	V
0CT 19 NOV 16 DEC 14	13.71 13.88 13.90	DEC 28 MAR 30 APR 28	14.13 14.89 15.26	APR 29 MAY 25	14.27 14.74	JUN 8 22	14.27 13.69	JUL 21 AUG 23	13.51 14.09	SEP 19 20	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	15 - 14 - 13 - 12 - 11 -	m		M		· M		· //	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

TIME, IN WATER YEARS

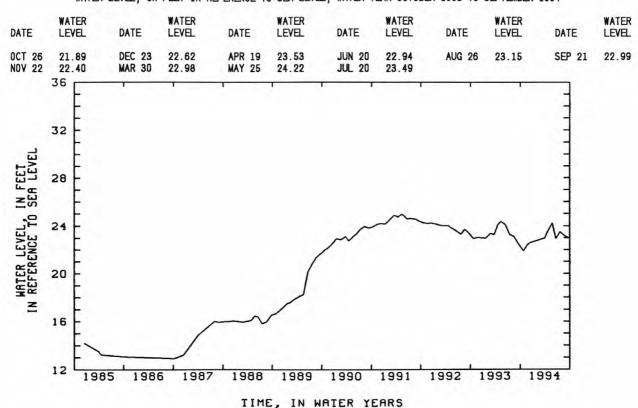
1988 1989 1990 1991 1992 1993 1994

404232073432501. Local number, N 9979.1 LOCATION.--Lat 40°42'32", long 73°43'25", Hydrologic Unit 02030202, at west side of Wellington Road, 279 ft south of Hempstead Turnpike, Elmont. Owner: Nassau County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled PVC observation well, diameter 4 in., depth 95 ft, screened 87 to 92 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.


DATUM.--Land-surface datum is 71.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.36 ft below land-surface datum.

REMARKS. -- Replaced well N 1622.4 in June 1982.

PERIOD OF RECORD.--December 1982 to current year. Unpublished records from December 1982 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 24.98 ft above sea level, May 17, 1991; lowest measured, 5.39 ft above sea level, April 8, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404338073371502. Local number, N 10035.1 LOCATION.--Lat 40°43'38", long 73°37'15", Hydrologic Unit 02030202, at north side of Commercial Avenue, 60 ft east of Clinton Avenue, Garden City. Owner: Nassau County Department of Public Works. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 4 in., depth 56 ft, screened 48 to 53 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 77.6 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.38 ft below land-surface datum.

REMARKS.--Replaced well N 1255.2 in October 1982, records from May 1913 to October 1982 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- October 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 57.04 ft above sea level, August 8, 1984; lowest measured, 47.07 ft above sea level, September 26, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA	TER VEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 16 DEC 22	49	.99 .17 .03	JAN 24 FEB 16	49.00 49.32	MAR 31 APR 18	50.20 50.59	MAY 23 JUN 16	50.92 51.18	JUL 18 20	48.74 48.71	AUG 26 SEP 20	48.74 48.40
	58		1	1	ı	1	1 1	-	1	•		
	56	_									4	
N FEET SEA LEVEL	54	_					^ \	$ \overline{} $			-	
VEL, I	52	-	7				7 ~	/	\	٨	4	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	50	-	M	\bigwedge	١.				W	\mathcal{I}_{\sim}		
=	48			\bigvee	~	\mathcal{N}						
	46	19	85 1986	1987	1988	1989	1990	1991	1992 1	993 1	994	
					TIME	E, IN	WATER YE	ARS				

404451073475003. Local number, Q 283.2

LOCATION.--Lat 40°44'51", long 73°47'50", Hydrologic Unit 02030201, at City of New York storage facility, 50 ft south of Underhill Avenue, west of Fresh Meadow Lane, eastern most well, Flushing. Owner: City of New York. AQUIFER .-- Lloyd (confined) .

WELL CHARACTERISTICS. -- Drilled steel abandoned public supply well, diameter 26 in., depth 409 ft, screened 309 to 352 ft and 367 to 409 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 27.0 ft above sea level. Measuring point: Top of hole cut in welded steel plate, 0.37 ft above land-surface datum.

PERIOD OF RECORD. -- June 1946 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 9.68 ft above sea level, February 23, 1993; lowest measured, 27.40 ft below sea level, September 14, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 29	7.09	FEB 22 MAR 30	7.80 8.73	APR 22	9.10	JUN 30	5.82	AUG 25	6.07	SEP 22	6.18

403624073491601. Local number, Q 287.1

LDCATION.--Lat 40°36'24", long 73°49'16", Hydrologic Unit 02030202, at Broad Channel School, west side of Shad Creek Road, 131 ft south of 9th Road, Broad Channel. Owner: City of New York. AQUIFER .-- Lloyd (confined) .

WELL CHARACTERISTICS.--Drilled steel abandoned public supply well, diameter 8 in., depth 725 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 8.5 ft above sea level. Measuring point: Top of 8-in. to 4-in. steel reducer bushing, 0.52 ft below land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- January 1944 to current year. Unpublished records from January 1944 to September 1987 are

available in files of Long Island Subdistrict Office. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.79 ft above sea level, January 1, 1945; lowest measured, 0.96 ft below sea level, September 5, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 17	6.98 7.19	JAN 3 FEB 18	7.08 5.63	APR 13 MAY 17	7.26 7.71	JUN 20	7.44	JUL 27	5.57	SEP 19	6.05

404541073452601. Local number, Q 470.1

LOCATION. -- Lat 40°45'41", long 73°45'26", Hydrologic Unit 02030201, at southbound side of Cross Island Parkway, 325 ft south of Northern Boulevard (Rt. 25A), southern most well, Bayside. Owner: City of New York. AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS.--Drilled steel abandoned public supply well, diameter 6 in., depth 379 ft, screened 347 to 375 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 13.0 ft above sea level. Measuring point: Top of 6-in. steel coupling, 0.73 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD .-- January 1934 to current year. Unpublished records from January 1934 to January 1935, January 1940 to December 1940, and July 1954 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 11.23 ft above sea level, February 20, 1992; lowest measured, 7.44 ft below sea level, July 29, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 28 NOV 17	7.61 8.10	DEC 14 FEB 23	8.84 7.98	MAR 28 APR 29	10.62 10.55	MAY 27 JUN 22	8.36 4.94	JUL 21 AUG 24	4.20 6.72	SEP 22	6.22

404541073452602. Local number, Q 471.1

LOCATION.--Lat 40°45'41", long 73°45'26", Hydrologic Unit 02030201, at southbound side of Cross Island Parkway, 313 ft south of Northern Boulevard (Rt. 25A), northern most well, Bayside. Owner: City of New York.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.-- Drilled steel observation well, diameter 8 in., depth 118 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 23.7 ft above sea level. Measuring point: Top of steel flange,

5.22 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. --March 1939 to current year. Unpublished records from March 1939 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 18.15 ft above sea level, April 3, 1991; lowest measured, 12.83 ft above sea level, April 19, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 17	17.76 17.63	DEC 14 FEB 23	17.78 17.70	MAR 28 APR 29	18.07 17.93	MAY 27 JUL 21	17.91 17.82	AUG 24	17.66	SEP 22	17.63

403454073495602. Local number, Q 1071.2

LOCATION.--Lat 40°34°54°, long 73°49°56°, Hydrologic Unit 02030202, at abandoned pump house, 142 ft north of Rockaway Beach Boulevard (Marks Avenue), between 109th Street and 110th Street, Rockaway Park. Owner: City of New York.

AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS.--Drilled steel abandoned public supply well, diameter 12 in. to 2 in., depth 836 ft, screened 771 to 836 ft.

INSTRUMENTATION .-- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 9.0 ft above sea level. Measuring point: Top of 2-in. steel extension, 2.24 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD.--December 1976 to current year. Unpublished records from December 1976 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.73 ft above sea level, March 20, 1992; lowest measured, 1.17 ft above sea level, October 11, 1985.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 17	6.53 6.32	JAN 3 FEB 18	6.85 5.87	MAR 29 APR 13	6.39 6.78	MAY 17 JUN 20	7.27 7.18	JUL 27 AUG 22	5.35 5.70	SEP 19	5.41

403958073445801. Local number, Q 1187.1

LOCATION.--Lat 40°39'58*, long 73°44'58*, Hydrologic Unit 02030202, at south side of North Conduit, 1775 ft west of 225th Street, western most well, in ravine, Rosedale. Owner: City of New York.

AQUIFER.--Jameco (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 8 in., depth 130 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 10.0 ft above sea level. Measuring point: Top of small hole in 8-in. steel cap, 4.71 ft above land-surface datum.

PERIOD OF RECORD.--November 1968 to current year. Unpublished records from November 1968 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 8.79 ft above sea level, April 22, 1994; lowest measured, 2.26 ft above sea level, June 22, 1981.

DATE	WATER LEVEL										
OCT 28	7.37	DEC 28	7.62	FEB 25	8.20	APR 22	8.79	JUN 29	7.90	AUG 25	7.94
NOV 23	7.32	FEB 1	8.08	MAR 24	8.65	MAY 19	8.75	JUL 25	7.40	SEP 22	7.58

403958073445801. Local number, Q 1189.1 LOCATION.--Lat 40°39'58", long 73°44'58", Hydrologic Unit 02030202, at southside of North Conduit, 1790 ft west of 225th Street, eastern most well, in ravine, Rosedale. Owner: City of New York.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 6 in., depth 50 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 13.0 ft above sea level. Measuring point: Top of small hole in 6-in. steel cap, 1.76 above land-surface datum.

PERIOD OF RECORD. --November 1968 to current year. Unpublished records from November 1968 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 7.81 ft above sea level, June 21, 1989; lowest measured, 1.86 ft above sea level, December 15, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 23	6.06 6.04	DEC 28 FEB 1	6.40	FEB 25 MAR 24	6.99 7.37	APR 22 MAY 19	7.43 7.23	JUN 29 JUL 25	6.60 6.21	AUG 24 SEP 22	6.71

403959073474401. Local number, Q 1237.1 LOCATION.--Lat 40°39'59", long 73°47'44", Hydrologic Unit 02030202, at south side of exit ramp from John F. Kennedy International Airport, just east of Van Wyck Expressway approach ramp, South Dzone Park. Dwner: City of New York.

AQUIFER. -- Jameco (confined)

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 8 in., depth 227 ft, screen assumed at bottom. INSTRUMENTATION .-- Measurement with chalked tape by USGS personnel .

DATUM. -- Land-surface datum is 27.0 ft above sea level. Measuring point: Top of 4-in. to 1 1/4-in. steel reducer, 0.88 ft below land-surface datum.

PERIOD OF RECORD.--December 1950 to current year. Unpublished records from December 1950 to September are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.24 ft above sea level, April 16, 1991; lowest measured, 4.55 ft below sea level, July 1, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 DEC 28	4.26 4.19	FEB 22 MAR 24	2.06 3.52	APR 22	5.21	JUN 29	3.31	AUG 25	6.12	SEP 22	5.37

404240073443401. Local number, Q 1249.1 LOCATION.--Lat 40°42'40", long 73°44'34", Hydrologic Unit 02030202, at west side of 216th Street, 42 ft north of 106th Avenue, Queens Village. Owner: City of New York. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 1 1/4 in., depth 88 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel. DATUM.--Land-surface datum is 72.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel coupling,

0.36 ft above land-surface datum.

PERIOD OF RECORD. --October 1940 to current year. Unpublished records from October 1940 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 33.41 ft above sea level, September 26, 1946; lowest measured, 5.67 ft below sea level, March 8, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28	20.77	DEC 28	17.92	FEB 1	17.82	MAR 24	19.27	APR 22	19.71	MAY 19	20.38

404302073481601. Local number, Q 1812.1

LOCATION. -- Lat 40°43'02", long 73°48'16", Hydrologic Unit 02030202, at west side of 164th Street, 670 ft south of Goethals Avenue, at Queens General Hospital, Jamaica. Owner: Queens General Hospital. AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled unused steel diffusion well, diameter 12 in., depth 250 ft, screened 195 to 245 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 115.4 ft above sea level. Measuring point: Top of coupling at end of 2-in. steel extension, 0.93 ft below land-surface datum.

PERIOD OF RECORD. -- January 1982 to current year. Unpublished records from January 1982 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 17.11 ft above sea level, April 15, 1992; lowest measured, 12.80 ft below sea level, December 17, 1984.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 28	15.55	DEC 28	15.28	FEB 22	15.48	APR 22	15.56	JUN 30	16.08	AUG 25	16.34
NOV 23	15.58	FEB 1	15.54	MAR 23	15.59	MAY 19	15.77	JUL 22	16.34	SEP 22	16.40

403957073495001. Local number, Q 2324.1 LOCATION.--Lat 40°39'57", long 73°49'50", Hydrologic Unit 02030202, at north side of North Conduit Avenue, 66 ft east of entrance to Aqueduct Race Track, South Ozone Park. Owner: New York Racing Association.

AQUIFER. -- Upper Glacial (water-table). WELL CHARACTERISTICS.--Driven steel observation well, diameter 2 1/2 in., depth 91 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

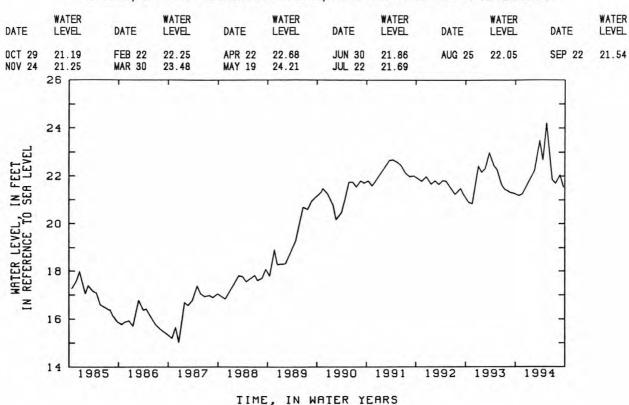
DATUM. -- Land-surface datum is 22.0 ft above sea level. Measuring point: Top of 2 1/2-in. steel coupling, 0.04 ft above land-surface datum.

PERIOD OF RECORD.--March 1959 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.19 ft above sea level, June 20, 1989; lowest measured, 3.40 ft below sea level, May 25, 1959.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 17	4.24 4.09	JAN 3 MAR 29	4.12 4.73	APR 13 MAY 17	4.73 4.87	JUN 20 JUL 27	4.59 4.53	AUG 22	4.60	SEP 19	4.50

404451073475002. Local number, Q 2346.1 LOCATION.--Lat 40°44'51", long 73°47'50", Hydrologic Unit 02030201, at City of New York storage facility, 55 ft south of Underhill Avenue, west of Fresh Meadow Lane, western most well, Flushing. Owner: City of New York. AQUIFER. -- Upper Glacial (water-table).


WELL CHARACTERISTICS.--Driven steel observation well, diameter 1 1/4 in., depth 17 ft, screened 12 to 17 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 29.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.98 ft above land-surface datum.

PERIOD OF RECORD.--August 1960 to current year. Unpublished records from August 1960 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 24.21 ft above sea level, May 19, 1994; lowest measured, 13.18 ft above sea level, February 25, 1983.

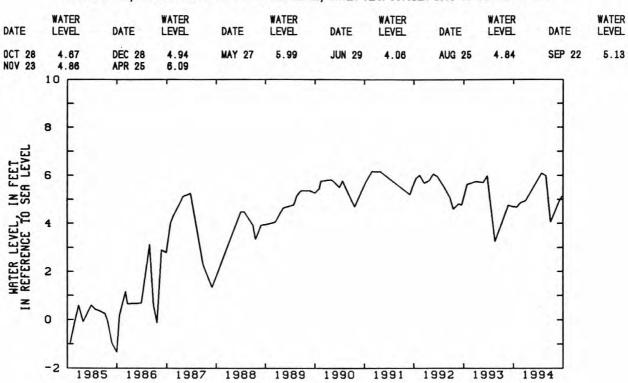
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404025073463801. Local number, Q 2422.1

LOCATION. -- Lat 40°40'25", long 73°46'38", Hydrologic Unit 02030202, at Jamaica Water Supply Pumping Center, 140 ft west of Guy R. Brewer Boulevard, just south of 132nd Avenue, Jamaica. Owner: Jamaica Water Supply Company. AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 8 in., depth 370 ft, screened 342 to 362 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.


DATUM.--Land-surface datum is 21.0 ft above sea level. Measuring point: Top of 8-in. steel nipple at yellow arrow, 1.21 ft above land-surface datum.

PERIOD OF RECORD.--May 1964 to current year. Unpublished records from May 1964 to September 1975 are available

in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.16 ft above sea level, November 28, 1990; lowest measured, 5.65 ft below sea level, September 7, 1970, and September 9, 11, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404624073483501. Local number, Q 2791.1

LOCATION.--Lat 40°46'24", long 73°48'35", Hydrologic Unit D2030201, at Saint Mel's Roman Catholic Church, north side of 27th Avenue, 173 ft east of 154th Street, under steel doors, Flushing. Owner: Saint Mel's Roman Catholic Church.

TIME, IN WATER YEARS

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled steel public supply well, diameter 6 in., depth 76 ft, screened 68 to 76 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 90.9 ft above sea level. Measuring point: Edge of 1/4-in. access hole in steel cap, 3.27 ft below land-surface datum.

PERIOD OF RECORD. -- May 1981 to current year. Unpublished records from May 1981 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 58.23 ft above sea level, June 27, 1984; lowest measured, 50.17 ft above sea level, April 2, 1986.

	WATER										
DATE	LEVEL										
NOV 24	54.63	DEC 28	54.76	FEB 22	54.67	MAR 25	55.74	APR 22	56.84	MAY 19	56.80

403932073482901. Local number, Q 3109.1

LOCATION.--Lat 40°39'32", long 73°48'29", Hydrologic Unit 02030202, at John F. Kennedy International Airport, in grassy area at Federal Cricle, 160 ft west of Federal Circle Loop Road, near Bergan Road split, just east of Van Wyck Expressway, northern most well, South Dzone Park. Owner: New York Port Authority. AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS. -- Drilled PVC observation well, diameter 4 in., depth 400 ft, screened 290 to 310 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 22.7 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 1.30 ft below land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD. --December 1981 to current year. Unpublished records from December 1981 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 3.83 ft above sea level, October 26, 1990; lowest measured, 1.32 ft below sea level, September 26, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28	3.07	JAN 3	2.66	JUN 20	2.02	JUL 27	1.96	AUG 22	2.60	SEP 19	3.14

403932073482902. Local number, Q 3114.1 LOCATION.--Lat 40°39'32°, long 73°48'29°, Hydrologic Unit 02030202, at John F. Kennedy International Airport, in grassy area at Federal Circle, 160 ft west of Federal Circle Loop Road, near Bergan Road split, just east of Van Wyck Expressway, southern most well, South Ozone Park. Owner: New York Port Authority. AQUIFER. -- Upper Glacial (water-table)

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 31 ft, screened 29 to 31 ft. INSTRUMENTATION .-- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 21.0 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.26 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. --December 1981 to current year. Unpublished records from December 1981 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.30 ft above sea level, April 30, 1984; lowest measured, 0.48 ft above sea level, October 4, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 17	2.85 2.59	JAN 3 MAR 29	2.61 3.47	APR 13 MAY 17	3.19 3.31	JUN 20 JUL 27	3.06 2.97	AUG 22	3.04	SEP 19	2.99

404631073543901. Local number, Q 3121.1 LOCATION.--Lat 40°46'31", long 73°54'39", Hydrologic Unit 02030201, at south side of 24th Avenue, 62 ft west of 32nd Street, Astoria. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 2 in., depth 47 ft, screened 44 to 47 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 50.5 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.14 ft above land-surface datum.

PERIOD OF RECORD.--September 1980 to current year. Unpublished records from September 1980 to September 1982 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 26.54 ft above sea level, June 27, 1984; lowest measured, 19.83 ft above sea level, October 15, 1985.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
MAR 25 APR 22		MAY 18	24.64	JUN 30	24.49	JUL 22	24.39	AUG 25	24.45	SEP 22	24.29

WATER

404516073550201. Local number, Q 3122.1

LOCATION. -- Lat 40°45'16", long 73°55'02", Hydrologic Unit 02030201, at east side of 29th Street, 42 ft south of 38th Avenue, Long Island City. Owner: United States Geological Survey. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 47 ft, screened 44 to 47 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 45.5 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.09 ft above land-surface datum.

PERIOD OF RECORD. -- September 1980 to current year. Unpublished records from September 1980 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 15.27 ft above sea level, December 22, 1980; lowest measured, 11.72 ft above sea level, September 22, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 29 NOV 24	13.50 13.50	DEC 28 FEB 25	13.44 13.62	MAR 25 APR 22	13.95 14.27	MAY 19 JUN 30	14.45 14.56	JUL 22 AUG 25	14.62 14.63	SEP 22	14.66

404112073500901. Local number, Q 3160.1 LOCATION.--Lat 40°41'12", long 73°50'09", Hydrologic Unit 02030202, at west side of 108th Street, 196 ft south of 101st Avenue, Woodhaven. Owner: City of New York.

AQUIFER. -- Upper Glacial (water-table). WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 65 ft, screened 60 to 65 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

WATER

DATUM. -- Land-surface datum is 45.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling,

0.22 ft below land-surface datum.

WATER

PERIOD OF RECORD. -- March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 12.31 ft above sea level, June 13, 1991; lowest measured, 6.08 ft above sea level, March 2, 1984.

WATER

WATER LEVEL. IN FEET IN REFERENCE TO SEA LEVEL. WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

WATER

WATER

DATE	LE	VEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 28 NOV 23	10 10	. 48 . 33	DEC 28 MAR 24	10.33 11.00	APR 22 MAY 19	11.40 11.72	JUN 29 JUL 25	11.79 11.53	AUG 25	11.32	SEP 22	11.24
	18		ì	-	ı	r	т т		-	- 1		
	16	-										
EET	14											
IN F		-										
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	12					/	∼	Λ	\ ~	\wedge	\wedge	
INTER	10	-							~	\vee		
N.	8	-									1	
	•	- /	~	<u> </u>		1						
	6	1985	5 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

404119073463601. Local number, Q 3162.1

LOCATION.--Lat 40°41'19°, long 73°46'36°, Hydrologic Unit 02030202, at east side of 172nd Street, 66 ft north of 116th Avenue, Rochdale Village. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 44 ft, screened 39 to 44 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 27.2 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.32 ft below land-surface datum.

PERIOD OF RECORD. -- March 1984 to current year. Unpublished records from March 1984 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 15.53 ft above sea level, June 21, 1989; lowest measured, 9.62 ft above sea level, May 15, 1985.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 28 NOV 23	13.19 12.96	DEC 28 FEB 25	13.32 14.18	MAR 24 APR 22	14.67 14.65	MAY 19 JUN 29	14.24 13.71	JUL 25 AUG 25	13.56 14.22	SEP 22	13.55

404143073482701. Local number, Q 3165.1

LOCATION.--Lat 40°41'43", long 73°48'27", Hydrologic Unit 02030202, at east side of Liverpool Street, 54 ft north of 101st Avenue, Jamaica. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 65 ft, screened 60 to 65 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 41.6 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.59 ft below land-surface datum.

PERIOD OF RECORD.--March 1984 to current year. Unpublished records from March 1984 to September 1987 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 17.27 ft above sea level, June 13, 1991; lowest measured, 7.28 ft above sea level, March 2, 1984.

DATE	WATER LEVEL	DATE	WATER								
OCT 28	15.85	DEC 28	15.68	FEB 22	16.11	APR 22	16.98	JUN 29	16.99	AUG 25	17.22
NOV 23	15.66	FEB 1	15.99	MAR 24	16.61	MAY 19	17.17	JUL 25	16.74	SEP 22	16.81

404213073201001. Local number, S 1803.4 LOCATION.--Lat 40°42'13°, long 73°20'10°, Hydrologic Unit 02030202, at north side of State Route 109, west of Little East Neck Road, on grass median, Babylon. Owner: New York State Department of Transportation. AQUIFER .-- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Driven steel observation well, diameter 1 1/4 in., depth 19 ft, screened 16 to 19 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 23.7 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.08 ft above land-surface datum.

REMARKS.--Replaced well S 1803.3 in November 1975 at same location. Unpublished records from October 1912 to November 1914, August and September 1932, and June 1936 to September 1975, for wells S 1803.1 to S 1803.3 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 19.87 ft above sea level, May 23, 1983; lowest measured, 13.06 ft above sea level, July 26, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WAT	er El	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 16	15.5 15.6 20		DEC 22 JAN 24	16.38 16.38	FEB 16 MAR 31	16.27 17.56	APR 18 MAY 23	17.38 16.62	JUN 16 JUL 20	15.96 15.09	AUG 26 SEP 20	15.64 15.05
	19										-	
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	18			1		Λ	N . A M			٨		
EVEL, II	17	- M	ΛΛ	M	M	W \	W	W ₁	1	1	Λ	
MATER L	16		\	() ($\sqrt{\ }$,	VW	M		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
£	15	-		•						\bigvee_{i}	VV	
	14	1985	1986	1987	1988	1989	1990	1991	1992 1	993 1	994	

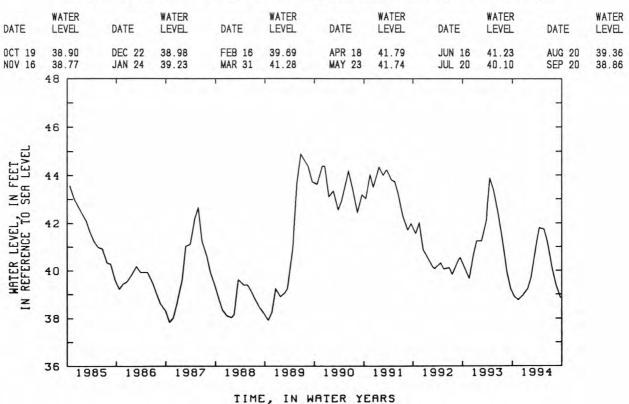
TIME, IN WATER YEARS

404301073240901. Local number, S 1805.4

LOCATION.--Lat 40°43'01", long 73°24'09", Hydrologic Unit 02030202, at south side of State Route 109, west of Albany Avenue, Maywood. Owner: New York State Department of Transportation.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Driven steel observation well, diameter 2 in., depth 33 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.


DATUM.--Land-surface datum is 57.2 ft above sea level. Measuring point: Top of 2-in. steel casing,

2.02 ft above land-surface datum.

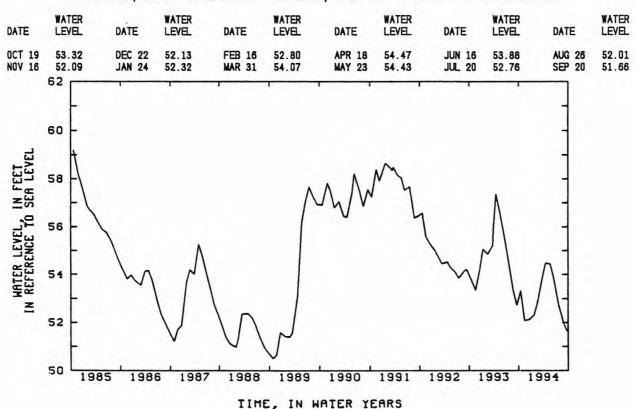
REMARKS.--Replaced well S 1805.3 in October 1953 at same location. Unpublished records from October 1912 to September 1975 for wells S 1805.1 to S 1805.3 are available in files of Long Island Subdistrict Office. PERIOD OF RECORD.--October 1953 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 46.47 ft above sea level, August 27, 1984; lowest measured, 35.79 ft above sea level, December 28, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404442073240501. Local number, S 1806.3 LOCATION.--Lat 40°44'42", long 73°24'05", Hydrologic Unit 02030202, at west side of Wellwood Avenue, north of Conklin Street, south of railroad tracks, Pinelawn. Owner: Suffolk County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).


WELL CHARACTERISTICS. -- Augered PVC observation well, diameter 1 1/4 in., depth 45 ft, screened 41 to 45 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 85.7 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.19 ft below land-surface datum.

REMARKS.--Replaced well S 1806.2 in August 1977 at same location. Unpublished records for October 1912 to November 1914, and May to September 1975, for wells S 1806.1 to S 1806.2 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD.--August 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 62.37 ft above sea level, June 20, 1984; lowest measured, 50.50 ft above sea level, October 26, 1988.

404319073184601. Local number, S 1807.5

LOCATION.--Lat 40°43'19", long 73°18'46", Hydrologic Unit 02030202, at east side of Higbie Lane, north of Martin Drive, West Islip. Owner: Town of Islip.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Driven steel observation well, diameter 1 1/4 in., depth 21 ft, screened 19 to 21 ft.

INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 23.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel coupling,

0.21 ft above land-surface datum.

REMARKS.--Replaced well S 1807.4 in July 1976 at same location. Unpublished records for October 1912 to November 1914, August 1932 to June 1933, and June 1936 to September 1975, for wells S 1807.1 to S 1807.4 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD .-- July 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 22.30 ft above sea level, January 24, 1979; lowest measured, 19.26 ft above sea level, July 26, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA	TER VEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 19 NOV 16	20	.85 .08	DEC 22 JAN 24	21.01 20.49	FEB 16 MAR 31	20.41 20.40	APR 18 MAY 23	21.09 20.70	JUN 16 JUL 20	20.46 20.12	SEP 20	19.77
	25		T	1-	1-	1	-1	i.				
_	24	-									-	
N FEET ER LEVE	23	-									+	
CE TO S	22	-		٨٨		Λ				٨	+	
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	21		1	\int_{0}^{∞}	١ ٨.		\bigvee	M		$^{\prime}$	1	
N.	20	-	V A		1	JOV		٧Ŋ	my	W.	7	
	19	198	5 1986	5 1987	1988	1989	1990	1991	1992 1	993 1	994	
					TIMI	E, IN W	ATER YE	ARS				

404221073164901. Local number, S 1808.4

LOCATION.--Lat 40°42'21", long 73°16'49", Hydrologic Unit 02030202, at Manor and Bardolier Lanes, West Islip.
Owner: Town of Islip.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Driven steel observation well, diameter 1 1/4 in., depth 11 ft, screened 10 to 11 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 13.6 ft above sea level. Measuring point: Top of 1 1/4-in. steel coupling, 0.29 ft below land-surface datum.

REMARKS.--Replaced well S 1808.3 in July 1984 at same location. Unpublished records from October 1912 to September 1975, for wells S 1808.1 to S 1808.3 are available in files of Long Island Subdistrict Office. PERIOD OF RECORD.--July 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.40 ft above sea level, April 26, 1989; lowest measured, 9.07 ft above sea level, August 23, 1993.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA	ter Vel	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 16 DEC 22	9 10	.32 .62 .30	JAN 21 24	10.30 10.14	FEB 16 MAR 31	9.95 10.91	APR 18 MAY 23	10.57 10.14	JUN 16 JUL 20	9.67 9.26	AUG 26 SEP 20	9.77 9.22
	15		1	ľ		1	,		ı	ī		
٠	14	- 1									+	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	13	-									-	
EVEL, I	12			-							+	
HATER L REFEREN	11	-		^ \	٨	. 1	۱ م ۱	4.1		٨	, -	
N.	10	₩	1	$\int V$	\mathcal{J}_{h}	M 1	WY	\mathbb{W}	M	$/ \setminus f$	$/\sqrt{1}$	
	9	198	5 1986	V 1987	1988	1989	1990	1991	1992 1	993 1	994	

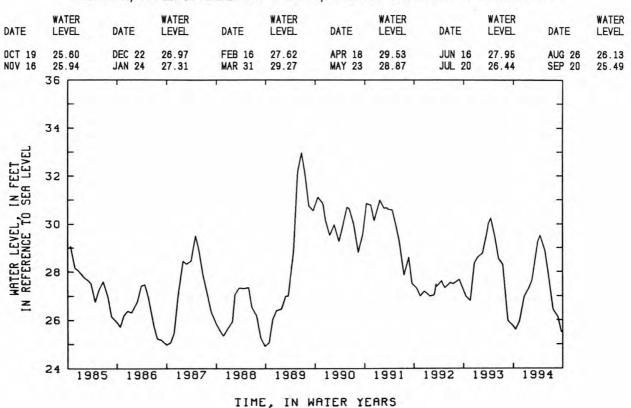
TIME, IN WATER YEARS

404351073164901. Local number, S 1809.4 LOCATION.--Lat 40°43'51°, long 73°16'49°, Hydrologic Unit 02030202, at south east corner of Muncey Road and Manor Lane, in recharge basin, Bay Shore. Owner: Town of Islip.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Augered PVC observation well, diameter 2 in., depth 29 ft, screened 26 to 29 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 42.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling,


0.45 ft below land-surface datum.

REMARKS.--Replaced well S 1809.3 in March 1981 at same location. Unpublished records for October 1912 to November 1914, and August 1932 to September 1975, for wells S 1809.1 to S 1809.3 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- March 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 32.97 ft above sea level, June 23, 1989; lowest measured, 24.92 ft above sea level, September 26, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404614073164401. Local number, S 1810.4

LOCATION.--Lat 40°46'14", long 73°16'44", Hydrologic Unit 02030202, at west side of North Gardiner Drive, south of Pine Aire Drive, in front of house 1712, Pine Aire. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Augered PVC observation well, diameter 2 in., depth 55 ft, screened 52 to 55 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 90.8 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 1.00 ft below land-surface datum.

REMARKS.--Replaced well S 1810.3 in November 1975 at same location. Unpublished records from October 1912 to November 1914, and August 1932 to September 1975, for wells S 1810.1 to S 1810.3 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD .-- Highest water level measured, 56.28 ft above sea level, July 23, 1984; lowest measured, 46.86 ft above sea level, October 26, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA	TER /EL	DATE	WATER LEVEL								
OCT 19 NOV 16	49 49 58		DEC 22 JAN 24	49.53 49.35	FEB 16 MAR 31	49.70 50.57	APR 18 MAY 23	51.02 51.33	JUN 16 JUL 20	50.85 50.02	AUG 26 SEP 20	49.87 49.62
ET	56					^	Λ <i>\</i>	M				
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	54		٧,						\	\int		
WATER L REFEREN	50		/	\bigwedge					\sim			
Z	48	_			\bigvee	لر					-	
	46	1985	1986	1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

404957073073401. Local number, S 1811.2

LOCATION. -- Lat 40°49'57", long 73°07'37", Hydrologic Unit 02030202, at end of Shore Road, south of Smithtown Boulevard, in county park north of Lake Ronkonkoma, Lake Ronkonkoma. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 31 ft, screend 28 to 31 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 57.7 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.17 ft below land-surface datum.

REMARKS.--Replaced well S 1811.1 in March 1987 at same location. Unpublished records form April 1937 to September 1978 for well S 1811.1 are available in files of Long Island Subdistrict Office. PERIOD OF RECORD. -- March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 57.92 ft above sea level, June 6, 1991; lowest measured, 53.29 ft above sea level, September 30, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 26	54.94	DEC 29	55.16	FEB 25	55.85	APR 20	56.02	JUN 21	55.13	AUG 26	53.81
NOV 23	54.85	JAN 25	55.37	MAR 31	56.14	MAY 20	55.72	JUL 27	54.70	SEP 26	54.59

404958073085001. Local number, S 1812.3

LOCATION.--Lat 40°49'58", long 73°08'50", Hydrologic Unit 02030202, at southwest corner of Smithtown Boulevard and Nichols Road, Ronkonkoma. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Driven steel observation well, diameter 1 1/4 in., depth 50 ft, screened 46 to 50 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 69.9 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.68 ft below land-surface datum.

REMARKS.--Replaced well S 1812.2 in May 1982 at same location. Unpublished records from April 1937 to September 1975 are available in files of Long Island Subdistrict Office.
PERIOD OF RECORD.--May 1982 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 51.34 ft above sea level, July 23, 1984;

lowest measured, 42.23 ft above sea level, October 20, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 26 NOV 23	45.08 44.90	DEC 29 MAR 31	45.10 46.41	APR 20 MAY 20	46.77 46.77	JUN 21 JUL 27	45.45 44.68	AUG 26	44.94	SEP 26	44.71
	54	,	T		1	1	1	, C	1		
	52 -									-	140
ET EVEL	-										
IN FE SEA L	50					. /	\sim		٨]	
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	48 -				\sim	\mathcal{N}	N		\wedge	-	
ER LE	46	1	Λ					~~\		Λ1	
N REF	-	1								√	
	44 -	7	\bigvee	~ \							
	42	005 100	6 1007	1000	V	1000	1001	1002 1	007 1	004	
		985 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

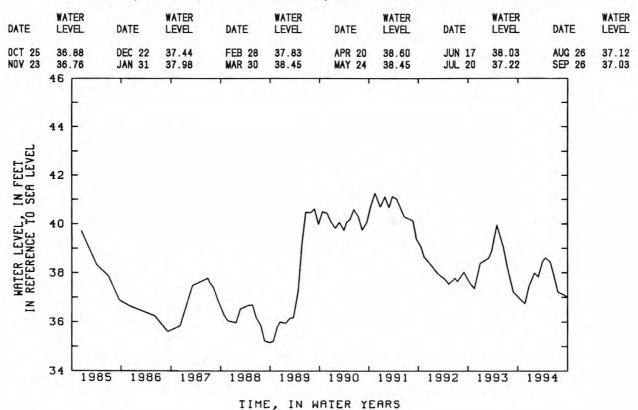
TIME, IN WATER YEARS

404737073112303. Local number, S 1814.3

LOCATION.--Lat 40°47'37", long 73°11'23", Hydrologic Unit 02030202, at northwest corner of Suffolk Avenue and Dovecott Lane, Central Islip. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 54 ft, screened 51 to 54 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.


DATUM.--Land-surface datum is 63.5 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.35 ft below land-surface datum.

REMARKS.--Replaced well S 1814.2 in May 1982 at same location, unpublished records from November 1939 to September 1975 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 41.50 ft above sea level, June 12, 1984; lowest measured, 35.15 ft above sea level, September 27, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405146073031801. Local number, S 3513.1 LOCATION.--Lat 40°51'46", long 73°03'18", Hydrologic Unit 02030202, at south side of State Route 25, 235 ft west of High View Drive, Selden. Owner: New York Department of Transportation.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled unused steel well, diameter 8 in. to 4 in., depth 65 ft, screened 63 to 65 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 101.0 ft above sea level. Measuring point: Top of 4-in. to 1 1/4-in. steel reducer, 1.31 ft above land-surface datum. PERIOD OF RECORD.--April 1942 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 69.91 ft above sea level, May 29, 1979; lowest measured, 56.06 ft above sea level, March 1, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 23	64.54 64.19	DEC 29 MAR 31	64.04 64.76	APR 20 MAY 20	64.94 65.22	JUN 21	65.08	JUL 27	64.61	AUG 26	64.26
	72	T	1		1	1	1	L	ľ		
	70									-	
EVEL	1									-	
SEA L	68 - 1	`					1			1	
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	66 -	1				5	<i>/</i> /	\m	\bigwedge	-	
R LEV		N			^					\wedge	
WATE REF	64 -			M						1	
ž	62 -		V	M							
	-									-	
	60 198	5 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	
				TIME	E, IN W	ATER YE	ARS				

404812073004101. Local number, S 3521.1 LOCATION.--Lat 40°48'12", long 73°00'41", Hydrologic Unit 02030202, at west side of Old Medford Avenue, 237 ft north of Cedar Avenue, Medford. Owner: Town of Brookhaven.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Driven steel observation well, diameter 2 in., depth 50 ft, screen assumed at bottom.

INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 71.8 ft above sea level. Measuring point: Top of 2-in. steel casing,

0.77 ft above land-surface datum. PERIOD OF RECORD.--January 1907 to current year. Unpublished records from January 1907 to July 1909, April 1942 to September 1975, are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 40.75 ft above sea level, March 27, 1979; lowest measured, 34.38 ft above sea level, October 26, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	36.22 36.06 40	DEC 22 JAN 31	36.37 36.65	FEB 28 APR 1	36.87 37.68	APR 20 MAY 24	37.88 37.71	JUN 17 AUG 26	37.35 36.28	SEP 26	36.07
IN FEET SEA LEVEL	38 -	`\	۸		\bigcap	M			Λ	V]	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	37 -	\bigvee		\bigvee				\sim	V		
Ē	35 -				\bigvee					1	
	34 198	5 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

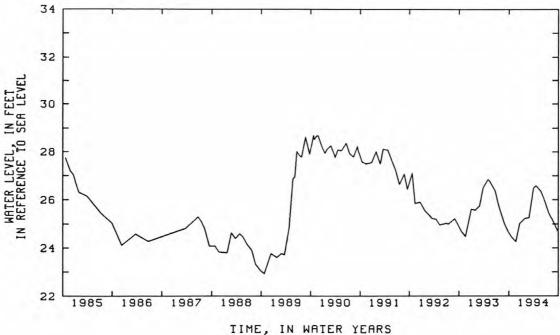
404806072553802. Local number, S 3529.2

LOCATION.--Lat 40°48'01", long 72°55'38", Hydrologic Unit 02030202, at entrance to Brookhaven Landfill, south of Horseblock Road, South Yapank. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 2 in., depth 45 ft, screened 41 to 45 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 34.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 3.11 ft above land-surface datum.


PERIOD OF RECORD. -- December 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 29.59 ft above sea level, June 14, 1984; lowest measured, 22.94 ft above sea level, October 24, 1988.

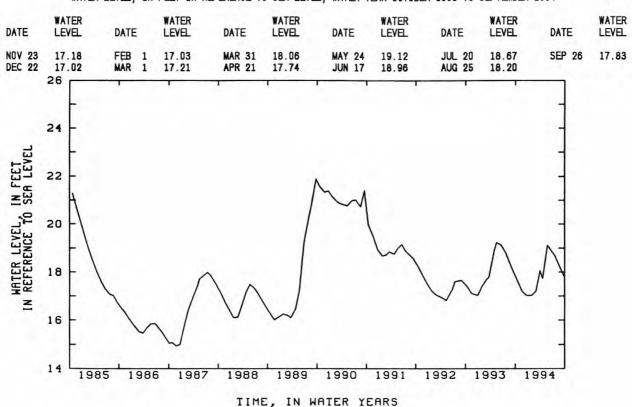
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	24.42 24.26	JAN 31 FEB 28	25.23 25.25	MAR 29 APR 1	26.41 G 26.49	APR 20 MAY 24	26.58 26.34	JUN 17 JUL 20	26.07 25.47	AUG 26 SEP 26	25.08 24.70
DEC 22	25.02	, 25 20	20.20	711.11	20.40	MIX.1 2-4	20.04	JOL 20	20.47	3L1 20	24.10

G MEASUREMENT BY ANOTHER AGENCY

405037072390301. Local number, S 3543.1

LOCATION. -- Lat 40°50'37°, long 72°39'03°, Hydrologic Unit 02030202, at Stewart Avenue, 0.25 miles west of Old Riverhead Road, 226 ft north on dirt path, West Hampton. Owner: City of New York.


AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Driven steel observation well, diameter 2 in., depth 58 ft, screened 56 to 58 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 64.1 ft above sea level. Measuring point: Top of 2-in. steel casing, 0.34 ft above land-surface datum.

PERIOD OF RECORD.--March 1907 to December 1909, April 1942 to April 1943, January 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 22.53 ft above sea level, July 23, 1984; lowest measured, 14.94 ft above sea level, November 25, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405145072592501. Local number, S 3870.1 LOCATION.--Lat 40°51'45", long 72°59'25", Hydrologic Unit 02030202, at south side of Coram Yapank Road, 115 ft west of Overton Road, Coram. Owner: Town of Brookhaven. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 43 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 87.0 ft above sea level. Measuring point: Top of 2-in. steel casing,

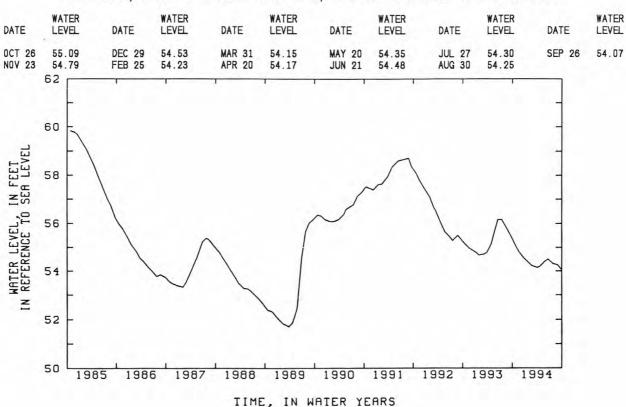
1.11 ft above land-surface datum.

PERIOD OF RECORD. -- January 1954 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 61.86 ft above sea level, June 27, 1979; lowest measured, 49.54 ft above sea level, October 26, 1966.

DATE	WATER LEVEL										
OCT 26	55.56	DEC 29	55.07	FEB 25	55.41	APR 20	55.89	JUN 21	55.95	AUG 26	55.29
NOV 23	55.28	JAN 25	54.97	MAR 31	55.58	MAY 20	56.11	JUL 27	55.64	SEP 26	54.92

405343073055004. Local number, S 3955.4 LOCATION.--Lat 40°53'43", long 73°05'50", Hydrologic Unit 02030201, at west side of Mark Tree Road, south of Pond Path, Setauket. Owner: United States Geological Survey. AQUIFER.--


WELL CHARACTERISTICS. -- Augered PVC observation well, diameter 2 in., depth 80 ft, screened 76 to 80 ft. ${\tt INSTRUMENTATION.--Measurement\ with\ chalked\ tape\ by\ USGS\ personnel.}$

DATUM. -- Land-surface datum is 123.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.24 ft below land-surface datum.

REMARKS.--Replaced well S 3955.3 in April 1975 at same location. Unpublished records from September 1944 to September 1975 are available in files of Long Island Subdistrict Office. PERIOD OF RECORD. -- April 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 60.23 ft above sea level, June 21, 1979; lowest measured, 51.70 ft above sea level, March 22, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405743072425701. Local number, S 4271.1

LOCATION.--Lat 40°57'43", long 72°42'57", Hydrologic Unit 02030202, at Long Island Research Farm, east of Horton Avenue, south of Sound Avenue, Riverhead. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 105 ft, screened 100 to 105 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 100.3 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.04 ft above land-surface datum.

PERIOD OF RECORD. -- August 1945 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 14.25 ft above sea level, August 12, 1984; lowest measured, 8.16 ft above sea level, September 5, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATE
OCT 26 NOV 26	11.33 11.24 15	DEC 22 FEB 1	11.45 11.48	FEB 22 APR 1	11.58 12.11	APR 21 MAY 25	12.29 12.43	JUN 21 JUL 27	12.02 11.17	SEP 1 28	11.16 11.14
_	14									-	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	13					~				1	
EVEL, II	12 -					`	7	1	Λ	\bigwedge	
WATER L Referen	11		^				V	YL) W	Ţ	
Z.	10 -	/	السا		البر					<u>-</u>	
	9 19	85 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

405607072393502. Local number, S 4523.2

LOCATION.--Lat 40°56°07°, long 72°39°35°, Hydrologic Unit 02030202, at west side of Northville Turnpike, 94 ft south of Old Country Road, Riverhead. Owner: United States Geological Survey.

TIME, IN WATER YEARS

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 13 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

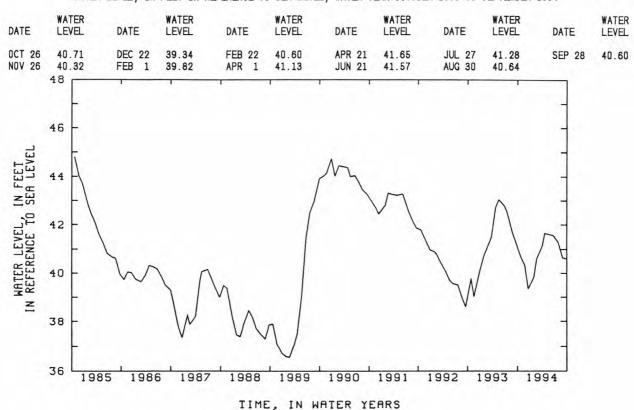
DATUM.--Land-surface datum is 17.4 ft above sea level. Measuring point: Top of 2-in. PVC casing, 0.01 ft below land-surface datum.

PERIOD OF RECORD. -- September 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 12.43 ft above sea level, June 22, 1984; lowest measured, 6.79 ft above sea level, September 14, 1981.

DATE	WATER LEVEL										
OCT 26	9.27	DEC 21	11.08	FEB 22	10.21	APR 21	10.45	JUN 21	9.42	AUG 30	9.24
NOV 26	9.30	FEB 1	10.16	APR 1	10.73	MAY 24	9.97	JUL 27	8.82	SEP 28	9.22

405149072532201. Local number, S 5517.1 LOCATION.--Lat 40°51'49", long 72°53'22", Hydrologic Unit 02030202, at Brookhaven National Laboratory, northwest corner of Princeton Avenue and Upton Road, 77 ft south of parking field. Owner: Brookhaven National Laboratory AQUIFER. -- Upper Glacial (water-table).


WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 91 ft, screened 85 to 91 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 115.0 ft above sea level. Measuring point: Top of 4-in. steel casing, 0.04 ft above land-surface datum.

PERIOD OF RECORD. -- April 1948 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 48.93 ft above sea level, June 25, 1958; lowest measured, 33.34 ft above sea level, March 1, 1967.

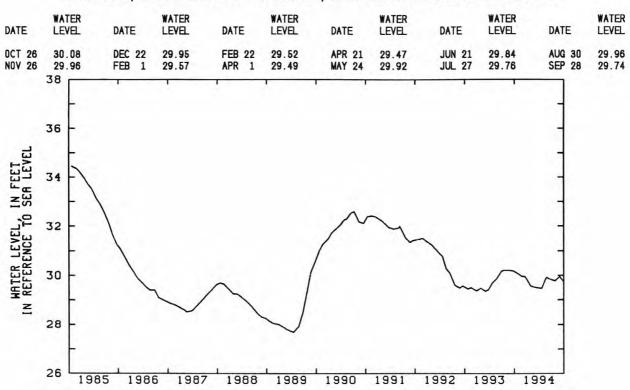
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405650072541801. Local number, S 6411.1

LOCATION. -- Lat 40°56'50°, long 72°54'18°, Hydrologic Unit 02030202, at south side of State Route 25A, 86 ft east of Ridge Road, Shoreham. Owner: Brookhaven National Laboratory.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 149 ft, screened 143 to 149 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.


DATUM .-- Land-surface datum is 138.4 ft above sea level. Measuring point: Top of 4-in. steel casing,

1.73 ft above land-surface datum.

PERIOD OF RECORD. --November 1948 to current year. Unpublished records from November 1948 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 34.49 ft above sea level, July 26 and August 28, 1979; lowest measured, 25.15 ft above sea level, December 28, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405308072553101. Local number, S 6413.1 LOCATION.--Lat 40°53'08*, long 72°55'31*, Hydrologic Unit 02030202, at south side of State Route 25, 70 ft east of Woodville Road, Middle Island. Owner: New York State Department of Transportation. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 108 ft, screened 103 to 108 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 93.8 ft above sea level. Measuring point: Top of steel meter box rim at yellow arrow, 0.13 ft above land-surface datum.

TIME, IN WATER YEARS

PERIOD OF RECORD. -- January 1954 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 54.16 ft above sea level, April 12, 1979; lowest measured, 42.40 ft above sea level, March 1, 1967.

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 26	50.67	DEC 22	50.38	FEB 22	51.23	APR 21	51.03	JUN 21	50.93	AUG 30	50.79
NOV 26	50.53	FEB 1	51.18	MAR 31	51.05	MAY 24	50.98	JUL 27	50.86	SEP 28	50.72

405222072523301. Local number, S 6431.1 LOCATION.--Lat 40°52'23", long 72°52'36", Hydrologic Unit 02030202, at Brookhaven National Laboratory, northwest corner of Thomson Road and Forth Avenue, Upton. Owner: Brookhaven National Laboratory.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .--Drilled steel observation well, diameter 4 in., depth 125 ft, screened 121 to 125 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 87.7 ft above sea level. Measuring point: Top of 4-in. steel casing at yellow arrow, 1.48 ft below land-surface datum.

PERIOD OF RECORD. -- January 1953 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 48.98 ft above sea level, April 12, 1979; lowest measured, 39.14 ft above sea level, September 16, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
DCT 26	42.04	DEC 22	42.24	FEB 22	43.21	APR 21	44.83	JUN 21	44.60	AUG 30	42.73
NDV 26	41.49	FEB 1	42.78	APR 6	44.01	MAY 24	45.57	JUL 27	43.06	SEP 28	41.87

405223072523401. Local number, S 6434.1

LOCATION.--Lat 40°42'23", long 72°52'34", Hydrologic Unit 02030202, at Brookhaven National Laboratory, northeast corner of Thomson Road and Forth Avenue, in pump shed, Upton. Owner: Brookhaven National Laboratory. AQUIFER . -- Lloyd (confined) .

WELL CHARACTERISTICS. -- Drilled steel public supply well, diameter 10 in., depth 1,395 ft, screened 1,312 to 1,392 ft.

INSTRUMENTATION . -- Measurement with chalked tape by USGS personnel .

DATUM. -- Land-surface datum is 85.0 ft above sea level. Measuring point: Hole in flange at yellow arrow, 2.07 ft above land-surface datum.

PERIOD OF RECORD. -- August 1949 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 36.11 ft above sea level, July 12, 1979; lowest measured, 28.74 ft above sea level, March 1, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 26	31.71	FEB 1	31.74	APR 6	32.39	MAY 24	32.60	JUL 27	31.88	SEP 28	31.69
DEC 22	32.03	22	31.84	21	32.44	JUN 21	32.20	AUG 3D	31.69		

corner of Thomson Road and Forth Avenue, under manhole cover, Upton. Owner: Brookhaven National Laboratory. AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 4 in., depth 962 ft, screened 952 to 962 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 85.0 ft above sea level. Measuring point: Top of 4-in. steel casing,

0.45 ft below land-surface datum.

PERIOD OF RECORD .-- July 1949 to June 1952, January 1954 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 42.50 ft above sea level, April 2, 1979; lowest measured, 33.82 ft above sea level, December 27, 1966 and March 1, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 26	37.47 37.17	FEB 1	37.74 37.89	APR 1	39.00 39.10	APR 21 MAY 24	39.22 39.17	JUN 21 JUL 27	38.71 38.13	AUG 30 SEP 28	37.71 37.64
DEC 22	37.74		01.00		00.10			JOL Z.	00.10	02 20	01.01

410247072261101. Local number, S 6524.1

LOCATION. -- Lat 41°02'47°, long 72°26'11°, Hydrologic Unit 02030202, at Bayview Avenue and Route 25, Southold.

Owner: Southold Fire Department.

AQUIFER. -- Upper Glacial (water-table)

WELL CHARACTERISTICS.--Driven steel fire-protection well, diameter 6 in., depth 40 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 5.8 ft above sea level. Measuring point: Top edge of 6-in. steel casing, inside elbow extension, 2.99 ft above land-surface datum.

PERIOD OF RECORD .-- July 1949 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 3.43 ft above sea level, May 7, 1958; lowest measured, 1.99 ft below sea level, October 2, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	1.51	FEB 1	1.97	MAR 14	1.78 G	APR 21	1.91	JUN 21	1.48	SEP 1	1.23
NOV 26	1.19	22	1.73	30	2.22	MAY 25	2.16	JUL 27	1.46	28	1.40
DEC 21	2.34										

G MEASUREMENT BY ANOTHER AGENCY

405835072325601. Local number, S 6558.1 LOCATION.--Lat 40°58'35", long 72°32'56", Hydrologic Unit 02030201, at Route 25, 244 ft east of railroad tracks, Mattituck. Owner: Mattituck Fire Department.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Driven steel fire-protection well, diameter 6 in., depth 38 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 14.5 ft above sea level. Measuring point: Top edge of 6-in. steel casing, inside elbow extension, 1.04 ft above land-surface datum.

PERIOD OF RECORD. -- July 1949 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 7.45 ft above sea level, March 29, 1973; lowest measured, 1.06 ft above sea level, September 22, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26	4.23	DEC 22	4.74	FEB 22	5.20	APR 21	5.98	JUN 21	5.22	SEP 1 28	4.29
NOV 26	4.21	FEB 1	5.09	MAR 30	6.02	MAY 25	5.64	JUL 27	4.43		4.14

405756072173501. Local number, S 8833.1

LOCATION.--Lat 40°57'56", long 72°17'35", Hydrologic Unit 02030202, at west side of Toppings Path, near Crooked Pond, Bridgehampton. Owner: Town of Southampton.

AQUIFER .-- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Driven steel observation well, diameter 2 in., depth 13 ft, screened 10 to 13 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 20.0 ft above sea level. Measuring point: Top of 2-in. steel casing, 1.63 ft above land-surface datum.

PERIOD OF RECORD. --October 1950 to current year. Unpublished records from October 1950 to September 1977 are available in files of Long Island Subdistrict Office.

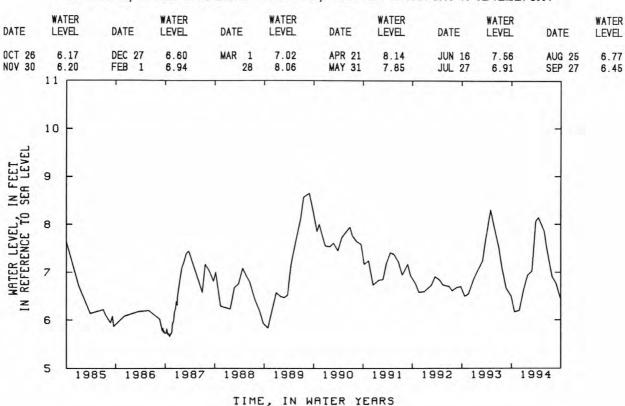
EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 19.33 ft above sea level, April 27, 1990; lowest measured, 12.84 ft above sea level, March 29, 1982.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	16.23	DEC 28	16.17	MAR 1 28	16.61	APR 21	18.32	JUN 16	18.03	AUG 25	17.12
NOV 30	16.03	FEB 1	16.49		17.94	MAY 31	18.34	JUL 27	17.38	SEP 27	16.64

405309072233101. Local number, S 8836.1

LOCATION.--Lat 40°53'09", long 72°23'31", Hydrologic Unit 02030202, at south side of Nugent Street, 399 ft east of Windmill Lane, Southampton. Owner: Southampton Fire Department.

AQUIFER.--Upper Glacial (water-table).


WELL CHARACTERISTICS.--Drilled steel fire-protection well, diameter 8 in., depth 37 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 18.0 ft above sea level. Measuring point: Top edge of 8-in. steel casing, inside elbow extension, 0.87 ft above land-surface datum.

PERIOD OF RECORD. -- July 1950 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.12 ft above sea level, June 21, 1984; lowest measured, 4.93 ft above sea level, August 30, 1968.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405628072164701. Local number, S 8838.1

LOCATION.--Lat 40°56'28", long 72°16'47", Hydrologic Unit 02030202, at west side of Sagg Road, 153 ft north of Montauk Highway (State Route 27), Bridgehampton. Owner: Bridgehampton Fire Department.

AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel fire-protection well, diameter 6 in., depth 46 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 28.0 ft above sea level. Measuring point: Top edge of 6-in. steel casing, inside elbow extension, 0.40 ft above land-surface datum.

PERIOD OF RECORD. -- July 1950 to current year.

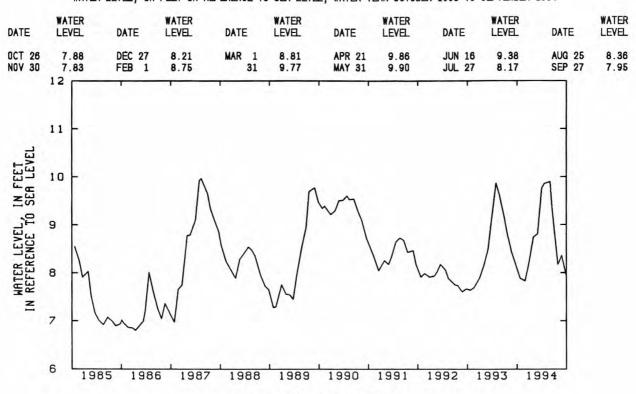
EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 13.89 ft above sea level, March 16, 1971; lowest measured, 8.84 ft above sea level, August 8, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	10.35	DEC 28	10.57	MAR 1 28	11.07	APR 21	12.09	JUN 16	11.62	AUG 25	10.83
NOV 30	10.36	FEB 1	11.02		11.96	MAY 31	11.92	JUL 27	10.99	SEP 27	10.57

405840072082301. Local number, S 8839.1

LOCATION.--Lat 40°58'40", long 72°08'23", Hydrologic Unit 02030202, at west side of Windmill Lane, 0.1 miles north of State Route 27, behind third house, Amaganset. Owner: D. Toler

AQUIFER. -- Upper Glacial (water-table).


WELL CHARACTERISTICS.--Driven steel observation well, diameter 1 1/4 in., depth 37 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 39.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.97 ft above land-surface datum.

PERIOD OF RECORD. -- August 1950 to current year. Unpublished records from August 1950 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.55 ft above sea level, February 27, 1979; lowest measured, 6.10 ft above sea level, October 27, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405908072110001. Local number, S 8843.1

LOCATION. --Lat 40°59'08", long 71°11'00", Hydrologic Unit 02030202, at east side of Three Mile Harbor Road, 0.35 miles north of Morris Park Lane, behind house, East Hampton. Owner: Conklin. AQUIFER. -- Upper Glacial (water-table).

TIME, IN WATER YEARS

WELL CHARACTERISTICS.--Dug unused well, diameter 30 in., depth 25 ft, screen assumed at bottom.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 32.5 ft above sea level. Measuring point: Top of steel grill, 3.12 ft above land-surface datum.

PERIOD OF RECORD.--July 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.38 ft above sea level, June 20, 1984; lowest measured, 6.59 ft above sea level, December 17, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	9.32	DEC 28	9.10	MAR 1	9.37	APR 21	10.80	JUN 16	10.66	AUG 25	9.72
NOV 30	9.08	FEB 1	9.34		10.17	MAY 31	10.92	JUL 27	10.11	SEP 27	9.37

405907072172101. Local number, S 8844.1 LOCATION.--Lat 40°59'07°, long 72°15'12°, Hydrologic Unit 02030202, at south side of Hempstead Street, 91 ft east of Hampton Street, Sag Harbor. Owner: Sag Harbor Fire Department.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel fire-protection well, diameter 6 in., depth 85 ft, screen assumed at bottom. INSTRUMENTATION . -- Measurement with chalked tape by USGS personnel .

DATUM. -- Land-surface datum is 19.0 ft above sea level. Measuring point: Top edge of 6-in. steel casing, inside elbow extension, 1.48 ft above land-surface datum.

PERIOD OF RECORD. -- August 1950 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 7.47 ft above sea level, July 18, 1989; lowest measured, 4.43 ft above sea level, December 26, 1950.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 26	5.41	DEC 28	5.82	MAR 1	5.94	APR 21	7.04	JUN 16	6.25	AUG 25	5.40
NOV 30	5.46	FEB 1	5.98	31	7.08	MAY 31	6.69	JUL 27	5.60	SEP 27	5.39

405250073180801. Local number, S 15622.1 LOCATION.--Lat 40°52'50", long 73°18*08", Hydrologic Unit 02030201, at north side of Pulaski Road, 17 ft east of Rowena Lane, Northport. Owner: Rottkamp.

AQUIFER. -- Magothy (confined). WELL CHARACTERISTICS.--Drilled steel unused domestic supply well, diameter 10 in., depth 458 ft, screened 437 to 457 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 205.0 ft above sea level. Measuring point: Top of hole in steel plate at yellow arrow, 0.19 ft below land-surface datum.
PERIOD OF RECORD.--January 1958 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 47.09 ft above sea level, January 7, 1980; lowest measured, 34.33 ft above sea level, April 14, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 26	40.96	DEC 29	41.05	FEB 25	40.51	APR 21	40.49	JUN 21	39.77	AUG 30	40.19
NOV 23	41.14	JAN 25	40.59	MAR 30	40.47	MAY 23	40.50	JUL 27	39.67	SEP 26	40.32

410634072223601. Local number, S 16783.2 LOCATION.--Lat 41°06'34", long 72°22'36", Hydrologic Unit 02030202, at south side of North Road, east of Moore Lane, Greenport. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 28 ft, screened 20 to 24 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 16.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.13 ft below land-surface datum.

REMARKS.--Replaced well S 16783.1 in May 1982, which has a period of record from August 1958 to September 1981. PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 3.79 ft above sea level, March 18, 1983; lowest measured, 1.56 ft above sea level, July 22, 1991.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	1.86	DEC 21 FFB 22	2.91	MAR 30 APR 21	3.39	MAY 25	2.25	JUL 27 AUG 30	1.61	SEP 28	1.86

410858072171501. Local number, S 16787.1 LOCATION.--Lat 41°08'58", long 72°17'15", Hydrologic Unit 02030201, at south side of State Route 25, east of Platt Road, Orient. Owner: Suffolk County Department of Public Works.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Driven steel observation well, diameter 1 1/4 in., depth 44 ft, screened 41 to 44 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 22.3 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.14 ft above land-surface datum.

PERIOD OF RECORD. -- August 1958 to current year. Unpublished records from August 1958 to September 1977 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 5.16 ft above sea level, June 22, 1984; lowest measured, 1.12 ft above sea level, August 8, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26 NOV 26	2.43 2.43	DÉC 21 FEB 22	3.49 3.87	MAR 30 APR 21	4.24 4.36	MAY 25 JUN 21	3.86 3.36	JUL 27 AUG 30	2.64	SEP 28	2.15

404747073241501. Local number, S 16874.1

LOCATION.--Lat 40°47'47", long 73°24'15", Hydrologic Unit 02030202, at northeast corner of Old Country Road and New York Avenue, Huntington. Owner: Town of Huntington.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Driven steel observation well, diameter 1 1/4 in., depth 82 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 141.0 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.25 ft below land-surface datum.

PERIOD OF RECORD. -- July 1958 to current year. Unpublished records from July 1958 to May 1959, August 1971 to September 1975, are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 80.14 ft above sea level, May 21, 1980; lowest measured, 66.95 ft above sea level, October 20, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 23	71.19 71.07	DEC 29 FEB 25	70.99 71.46	MAR 30 APR 21	72.06 72.27	MAY 23 JUN 21	72.39 71.67	JUL 28 AUG 30	70.68 70.55	SEP 29	70.35
	80	1	т —	т	-			1	1		
	78									1	
13	/ \)					
IN FEET SEA LEVEL	76 -						,				
O SEF		1						/	٨	-	
WATER LEVEL, IN REFERENCE TO	74 -)			1	/			$\int \setminus$	1	
TER L	72 -		\ \					•		\wedge	
IN RE	+		V/						\vee	\ \{	
	70 -			M						1	
	68 1985	5 1986	6 1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

405034073140401. Local number, S 16881.1

LOCATION.--Lat 40°50'34", long 73°14'04", Hydrologic Unit 02030201, at east side of Old Willets Path, north of Bridge Branch Road, Commack. Owner: Town of Smithtown.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 47 ft, screen assumed at bottom.

INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 58.0 ft above sea level. Measuring point: Top of 2-in. steel casing,

0.34 ft below land-surface datum.

PERIOD OF RECORD. -- July 1958 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 33.05 ft above sea level, January 23, 1974; lowest measured, 29.26 ft above sea level, October 20, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 23	30.53	DEC 28	7.7.6.7.7.	MAY 20	- 2 5 1 L L L	JUL 27	30.35	AUG 26	30.36	SEP 26	30.29

404902073094001. Local number, S 22577.1

LOCATION.--Lat 40°49'02", long 73°09'40", Hydrologic Unit 02030202, at north side of Motor Parkway, west of Parkway Gardens Boulevard, Hauppauge. Owner: United States Geological Survey.

AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 736 ft, screened 724 to 734 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 60.0 ft above sea level. Measuring point: Top of 4-in. steel coupling. 2.63 ft above land-surface datum.

PERIOD OF RECORD.--August 1964 to current year. Unpublished records from August 1964 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 45.04 ft above sea level, March 28, 1979; lowest measured, 36.19 ft above above sea level, March 2, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 26	40.26	DEC 29	40.91	FEB 25	40.86	APR 20	41.53	JUN 21	40.45	AUG 26	40.38
NOV 23	40.41	JAN 25	40.88	APR 1	41.42	MAY 20	41.49	JUL 27	39.94	SEP 26	40.26

404902073094002. Local number, S 22578.1 LOCATION.--Lat 40°49'02", long 73°09'40", Hydrologic Unit 02030202, at north side of Motor Parkway, west of Parkway Gardens Boulevard, Hauppauge. Owner: United States Geological Survey. AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 402 ft, screened 392 to 402 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 60.0 ft above sea level. Measuring point: Top of 4-in. steel coupling, 2.89 ft above land-surface datum.

PERIOD OF RECORD. -- August 1964 to current year. Unpublished records from August 1964 to September 1975 are in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 45.25 ft above sea level, March 28, 1979; lowest measured, 36.35 ft above sea level, March 1, 1967.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 23	40.35	DEC 29 JAN 25	41.16 41.16	FEB 25 APR 1	41.41	APR 20 MAY 20	41.97 41.61	JUN 21 JUL 27	40.84 40.33	AUG 26 SEP 26	40.67 40.46

404819073160303. Local number, S 24769.1

LOCATION. --Lat 40°48'19", long 73°16'03", Hydrologic Unit 02030202, at south side of Vanderbilt Parkway, 600 ft east of Wicks road, western most well, Brentwood. Owner: United States Geological Survey.

AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 810 ft, screened 800 to 810 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 139.0 ft above sea level. Measuring point: Top of 4-in. steel casing, 1.17 ft below land-surface datum.

PERIOD OF RECORD. --August 1965 to current year. Unpublished records from August 1965 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 57.33 ft above sea level, March 21, 1991; lowest measured, 45.31 ft above sea level, March 7, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 26 NOV 23	51.14 51.36	DEC 28	51.05	JUN 21	50.80	JUL 27	50.96	AUG 26	51.07	SEP 26	51.16

404829073161502. Local number, S 24770.1

LOCATION.--Lat 40°48'19°, long 73°16'03°, Hydrologic Unit 02030202, at south side of Vanderbilt Parkway, 606 ft east of Wicks Road, middle well, Brentwood. Owner: United States Geological Survey.

AQUIFER.--Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 434 ft, screened 424 to 434 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 139.0 ft above sea level. Measuring point: Top of 4-in. steel casing, 0.88 ft below land-surface datum.

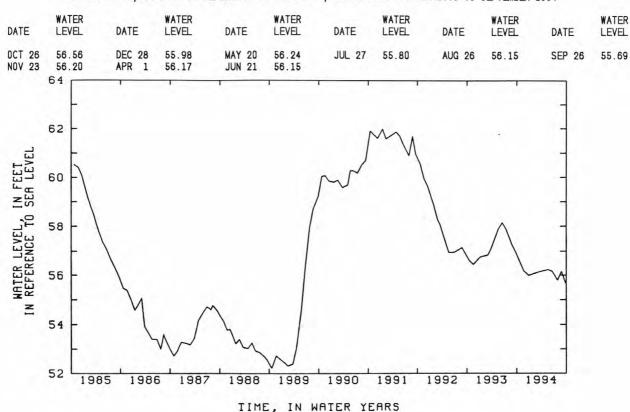
PERIOD OF RECORD.--August 1965 to current year. Unpublished records from August 1965 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 57.93 ft above sea level, March 21, 1991; lowest measured, 45.66 ft above sea level, March 7, 1966.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 23	52.38 52.25	DEC 28 APR 1	52.32 52.97	APR 20 MAY 20	52.96 52.76	JUN 21 JUL 27	51.56 51.56	AUG 26	51.72	SEP 26	51.76

404820073160303. Local number, S 24771.1 LOCATION.--Lat 40°48'20", long 73°16'03", Hydrologic Unit 02030202, at south side of Vanderbilt Parkway, 612 ft east of Wicks Road, eastern most well, Brentwood. Dwner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).


WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 127 ft, screened 117 to 127 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 139.0 ft above sea level. Measuring point: Top of 4-in. steel coupling. 1.06 ft below land-surface datum.

PERIOD OF RECORD.--August 1965 to current year. Unpublished records from August 1965 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 62.01 ft above sea level, January 18, 1991; lowest measured, 43.50 ft above sea level, November 30, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405455073025802. Local number, S 31734.1 LOCATION.--Lat 40°54'51", long 73°02'57", Hydrologic Unit 02030202, at west side of Jayne Boulevard, 0.7 miles south of Nesconset Road (Rt. 347), eastern most well, Terryville. Owner: Suffolk County Water Authority. AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 1,095 ft, screened 1,070 to 1,090 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 164.7 ft above sea level. Measuring point: Top of 2-in. steel coupling welded to casing cap, 1.92 ft above land-surface datum.

PERIOD OF RECORD. --December 1970 to current year. Unpublished records from December 1970 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 44.52 ft above sea level, May 30, 1979; lowest measured, 36.63 ft above sea level, August 23, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26 NOV 23	40.91 40.86	DEC 29 JAN 25	40.81 40.77	FEB 25 APR 20	41.23 41.22	MAY 20 JUN 21	40.76 38.38	JUL 27 AUG 26	38.81 39.77	SEP 26	39.46

405452073025701. Local number, S 32895.1

LOCATION.--Lat 40°54'51", long 73°02'57", Hydrologic Unit 02030202, at west side of Jayne Boulevard, 0.7 miles south of Nesconset Road (Rt. 347), western most well, Terryville. Owner: Suffolk County Water Authority. AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 845 ft, screened 840 to 845 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 164.7 ft above sea level. Measuring point: Top of 4-in. steel coupling, 2.49 ft above land-surface datum.

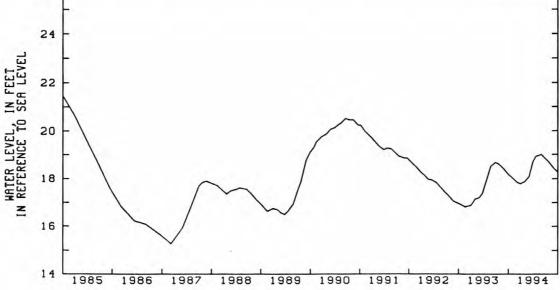
PERIOD OF RECORD. --March 1970 to current year. Unpublished records from March 1970 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 46.54 ft above sea level, December 11, 1984; lowest measured, 37.97 ft above sea level, August 23, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	42.78	DEC 29	42.55	FEB 25	42.98	APR 20	43.05	JUN 21	39.29	AUG 26	41.22
NOV 23	42.70	JAN 25	42.39	MAR 31	42.93	MAY 20	42.51	JUL 27	40.37	SEP 26	40.86

405715072193701. Local number, S 33921.1 LOCATION.--Lat 40°57'15", long 72°19'37", Hydrologic Unit 02030202, at north side of Scuttlehole Road, near Millstone Road, Bridgehampton. Owner: Suffolk County Water Authority. AQUIFER. -- Upper Glacial (water-table).


WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 174 ft, screened 159 to 174 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 110.0 ft above sea level. Measuring point: Top of 4-in. to 2-in. steel reducer, 2.42 ft above land-surface datum.

PERIOD OF RECORD. -- January 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 24.30 ft above sea level, March 30, 1978; lowest measured, 15.17 ft above sea level, December 17, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	18.08 17.87	DEC 28 FEB 1	17.78 17.88	MAR 1 29	18.09 18.70	APR 21 MAY 31	18.93 19.01	JUN 16 JUL 27	18.90 18.67	AUG 25 SEP 27	18.47 18.27
	26	ı	1	-	1	, , ,		1			
	24									-	

TIME, IN WATER YEARS

405040072414801. Local number, S 34743.1

LOCATION.--Lat 40°50'40", long 72°41'48", Hydrologic Unit 02030202, at north side of dirt road, 120 ft east of Speonk Riverhead Road, 0.8 miles south of Sunrise Highway (Rt. 27), northern most well, Speonk. Owner: Suffolk County Water Authority.

AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS .- Drilled steel observation well, access pipe diameter 4 in., casing diameter 12 in., depth 1,226 ft, screened 1,077 to 1,117 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 64.0 ft above sea level. Measuring point: Top of 4-in. steel coupling, 2.94 ft above land-surface datum.

PERIOD OF RECORD. -- March 1970 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 22.24 ft above sea level, April 2, 1979; lowest measured, 16.18 ft above sea level, March 18, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	18.77 20.44	DEC 22 FEB 1	18.71 18.46	MAR 31 APR 21	19.01 19.32	MAY 24 JUN 17	19.73 19.53	JUL 20 AUG 25	19.30 19.08	SEP 26	18.89

405517072574902. Local number, S 34892.1 LOCATION.--Lat 40°55'19", long 72°57'49", Hydrologic Unit 02030202, at east side of Radio Avenue, 1.3 miles south of Nesconset Road (Rt. 25A), northern most well, Rocky Point. Owner: Suffolk County Water Authority. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 138 ft, screened 124 to 138 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 122.4 ft above sea level. Measuring point: Top of 6-in. steel casing,

0.78 ft above land-surface datum.

PERIOD OF RECORD. -- July 1970 to current year. Unpublished records from July 1970 to September 1975 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 52.82 ft above sea level, September 15, 1984; lowest measured, 42.17 ft above sea level, March 21, 1972.

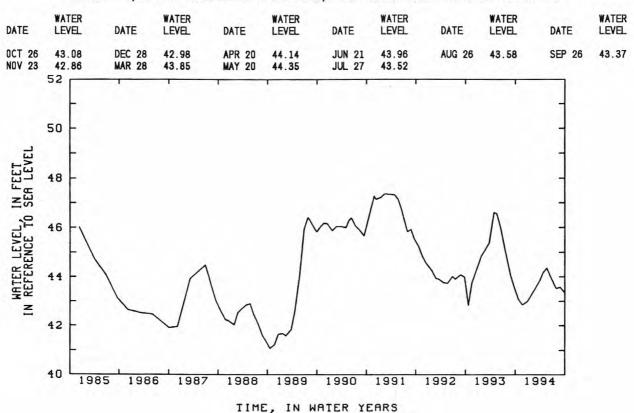
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 26	47.24 46.94	DEC 22 FEB 1	46.87 46.78	FEB 22 MAR 31	46.66 46.99	APR 21 MAY 24	47.30 47.70	JUN 21 JUL 27	47.47 47.06	AUG 30	46.86
	54	-	-	1	г	-			-		
	52									-	
MATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	50						~]	
LEVEL, I	48 -				1			/	\bigwedge	\overline{A}	
WATER N REFERE	46 -							~			
=	44									-	
	12 198	5 1986	1987	1988	1989	1990	1991	1992 1	993 1	994	

TIME, IN WATER YEARS

404930073120002. Local number, S 36142.2
LOCATION.--Lat 40°49°30°, long 73°12°00°, Hydrologic Unit 02030202, at east side of Lincoln Boulevard, 266 ft south of Townline Road, Islip. Owner: Hauppauge School District.

AQUIFER.--Upper Glacial (water-table).


WELL CHARACTERISTICS.--Augered PVC observation well, diameter 2 in., depth 73 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 81.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.29 ft below land-surface datum.

PERIOD OF RECORD.--July 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 47.71 ft above sea level, June 12, 1984; lowest measured, 41.07 ft above sea level, October 20, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404640073050201. Local number, S 36144.1 LOCATION.--Lat 40°46'40", long 73°05'02", Hydrologic Unit 02030202, at east side of Lincoln Avenue, south of Veterans Memorial Highway (Rt. 454), Bohemia. Owner: Town of Islip.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 53 ft, screen assumed at bottom. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 54.0 ft above sea level. Measuring point: Top of 2-in. steel casing,

1.84 ft above land-surface datum.

PERIOD OF RECORD. --October 1969 to current year. Unpublished records from October 1969 to September 1977 are available in files of Long Island Subdistrict Office. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.96 ft above sea level, March 29, 1979;

lowest measured, 31.88 ft above sea level, December 15, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WA	TER VEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23		.27	DEC 22 JAN 31	34.43 34.76	FEB 28 APR 1	34.91 35.77	APR 20 MAY 24	36.05 35.89	JUN 17 JUL 20	35.48 34.69	AUG 26 SEP 26	34.50 34.14
	44		ı	1	-i		ı ı	Ţ	Į.	1		
	42]	
VEL		-									-	
FEE.	40	-					Λ				-	
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL	38					\wedge	M	1				
WATER L	36	[\	\					/	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\bigwedge		
Z	34		/		\bigvee				•	\vee		
	32	198	5 198	6 1987	1988	1989	1990	1991	1992 1	993 1	994	
					22.4			22/2				

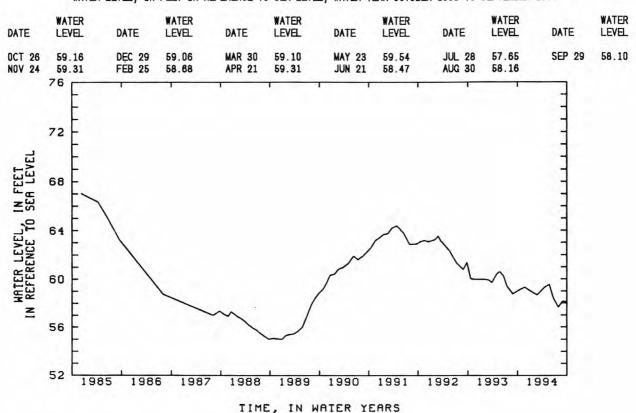
TIME, IN WATER YEARS

405013073263601. Local number, S 40840.1 LOCATION.--Lat 40°50'13", long 73°26'36", Hydrologic Unit 02030201, at intersection of Cold Spring Hill Road,

Ledgewood Drive, and West Rogues Path, on grass island, Huntington. Owner: Town of Huntington.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Augered PVC observation well, diameter 2 in., depth 79 ft, screened 77 to 79 ft.


INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel. DATUM.--Land-surface datum is 131.5 ft above sea level. Measuring point: Top of 2-in. PVC coupling,

0.03 ft below land-surface datum.

PERIOD OF RECORD. -- August 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 67.02 ft above sea level, December 10, 1984; lowest measured, 54.98 ft above sea level, December 29, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

405124073111501. Local number, S 40843.1

LOCATION.--Lat 40°51'24", long 73°11'15", Hydrologic Unit 02030201, at intersection of Nissequogue River Road and North Country Road (Rt. 25A), just north of Middle Country Road (Rt. 25), on grass island, Smithtown. Owner: Town of Smithtown.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Augered steel observation well, diameter 2 in., depth 44 ft, screened 41 to 44 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 66.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling,

0.01 ft below land-surface datum.

PERIOD OF RECORD. -- July 1971 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 37.93 ft above sea level, March 27, 1979; lowest measured, 33.84 ft above sea level, July 9, 1971.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 23	34.76 34.63	DEC 29 FEB 25	35.08 35.36	APR 1 21	36.05 36.17	MAY 20 JUN 21	35.97 35.15	JUL 27 AUG 30	34.64 35.21	SEP 26	34.93

405230073212101. Local number, S 46517.1

LOCATION.--Lat 40°52'30", long 73°21'21", Hydrologic Unit 02030201, at southeast corner of Stony Hollow Road and Maple Road, Huntington. Owner: Town of Huntington.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 66 ft, screened 63 to 66 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 123.5 ft above sea level. Measuring point: Top of 2-in. steel casing, 0.03 ft above land-surface datum.

PERIOD OF RECORD.--September 1979 to current year. Unpublished records from September 1979 to September 1982 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 69.61 ft above sea level, June 11, 1984; lowest measured, 66.87 ft above sea level, August 23, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26 NOV 23	67.53 67.37	DEC 29 FEB 25	67.28 67.58	MAR 30 APR 21	67.50 67.83	MAY 23 JUN 21	68.13 68.04	JUL 27 AUG 30	67.96 67.78	SEP 26	67.69

410218072093301. Local number, S 46519.1

LOCATION.--Lat 41°02'08", long 72°09'32", Hydrologic Unit 02030202, at northwest corner of Hog Creek Lane and White Birch Drive, East Hampton. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 33 ft, screened 30 to 33 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 32.5 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.08 ft below land-surface datum.

PERIOD OF RECORD. --November 1972 to current year. Unpublished records from November 1972 to September 1982 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 9.45 ft above sea level, January 13, 1983; lowest measured, Dry, September 16, 1985.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

	WATER		WATER		WATER		WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 26	2.39	NOV 30	2.39	DEC 28	2.93	FEB 1	3.07				

405139072432401. Local number, S 46544.1

LOCATION.--Lat 40°51'39°, long 72°43'24°, Hydrologic Unit D2030202, at southwest corner of County Road 51 and service road entrance to recharge basin 33, Eastport. Owner: Suffolk County Department of Public Works. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 107 ft, screen assumed at bottom. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM. --Land-surface datum is 102.9 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.19 ft below land-surface datum.

PERIOD OF RECORD.—December 1972 to current year. Unpublished records from December 1972 to September 1976 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 31.28 ft above sea level, June 28, 1979; lowest measured, 23.76 ft above sea level, March 18, 1982.

DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25		DEC 22	26.83	MAR 1		APR 21		JUN 16	27.49	AUG 25	27.33
NOV 23	27.02	FEB 1	26.57	31	26.72	MAY 24	27.38	JUL 20	27.43	SEP 26	27.17

405604073064301. Local number, S 47973.1

LOCATION. -- Lat 40°56'04", long 73°06'43", Hydrologic Unit 02030201, at north side of State Route 25A, 189 ft west of Ridgeway Avenue, Setauket. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Drilled steel observation well, diameter 6 in., depth 90 ft, screened 78 to 88 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 94.0 ft above sea level. Measuring point: Top of 6-in. steel flange,

2.43 ft below land-surface datum.

PERIOD OF RECORD. -- January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 28.14 ft above sea level, April 26, 1991; lowest measured, 20.83 ft above sea level, March 5, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 26 NOV 23	24.94 24.74	DEC 29 FEB 25	24.86 24.95	MAR 29 31	25.44 G 25.45	APR 20 MAY 20	25.74 25.97	AUG 30	25.24	SEP 26	24.93

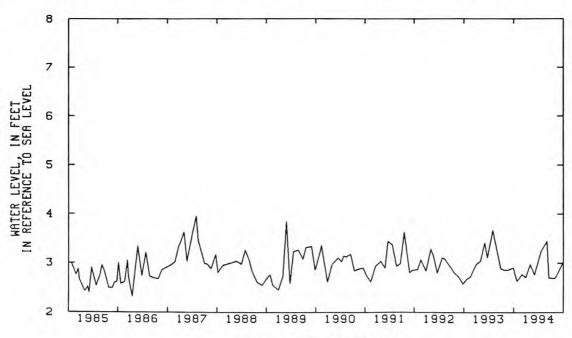
G MEASUREMENT BY ANOTHER AGENCY

410243071560101. Local number, S 48519.1 LOCATION.--Lat 41°02'42", long 71°56'05", Hydrologic Unit 02030202, at southwest corner of South Fairview Avenue and South Federal Street, Montauk. Owner: Suffolk County Department of Health Services. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 82 ft, screened 68 to 78 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.5 ft above sea level. Measuring point: Top of 6-in. steel flange,


1.68 ft below land-surface datum.

PERIOD OF RECORD. -- January 1974 to current year. Unpublished records from January 1974 to September 1983 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.59 ft above sea level, March 15, 1983;

lowest measured, 2.07 ft above sea level, December 22, 1976.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	2.63	DEC 28 FEB 1	2.71	MAR 1 APR 21	2.76 3.25	MAY 31 JUN 16	3.44	JUL 27 AUG 25	2.69	SEP 27	3.02

TIME, IN WATER YEARS

410149071583201. Local number, S 48577.1

LOCATION.--Lat 41°01'49°, long 71°58'32°, Hydrologic Unit 02030202, at north side of Montauk Point State Parkway (Rt. 27), 19 ft east of entrance to East Hampton Disposal and Recycling Center, Montauk. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 189 ft, screened 173 to 183 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 168.1 ft above sea level. Measuring point: Top of 6-in. steel flange,

1.61 ft below land-surface datum.

PERIOD OF RECORD.--January 1974 to current year. Unpublished records from January 1974 to September 1983 are

available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.50 ft above sea level, September 18, 1979; lowest measured, 0.54 ft below sea level, May 5, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	3.50	FEB 1	3.45	MAR 10	3.85 G	APR 21	3.70	JUN 16	3.77	AUG 25	3.49
NOV 30	3.30	MAR 1	3.22	30	3.44	MAY 31	4.20	JUL 27	3.54	SEP 27	3.67
DEC 28	3.58										

G MEASUREMENT BY ANOTHER AGENCY

410316071535501. Local number, S 48579.1

LOCATION.--Lat 41°03'16", long 71°53'54", Hydrologic Unit 02030202, at north side of Montauk Point State Parkway (Rt. 27), adjacent to intersection with Old Montauk Highway, Montauk. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 6 in., depth 66 ft, screened 53 to 56 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 38.6 ft above sea level. Measuring point: Top of 6-in. steel flange, 1.55 ft below land-surface datum.

PERIOD OF RECORD.--January 1974 to current year. Unpublished records from January 1974 to September 1983 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.18 ft above sea level, June 5, 1984; lowest measured, 2.46 ft above sea level, December 22, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	3.01 3.12	FEB 1 MAR 1	3.14 3.04	MAR 10 31	3.46 G 3.65	APR 21 MAY 31	3.73 3.89	JUN 16 JUL 27	3.35	AUG 25 SEP 27	3.25
DEC 28	2.92	MAN I	3.04	31	3.00	WYI ST	3.09	JUL 21	3.21	3L1 21	3.32

G MEASUREMENT BY ANOTHER AGENCY

405309073125401. Local number, S 50507.1

LOCATION.--Lat 40°53'09*, long 73°12'54*, Hydrologic Unit 02030201, at east side of Landing Avenue, 1.5 miles north of Spruce Street, San Remo. Owner: United States Geological Survey.

AQUIFER.--Upper Glacial (water-table).
WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 80 ft, screened 76 to 80 ft.
INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 90.3 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.01 ft above land-surface datum.

PERIOD OF RECORD. -- December 1973 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 46.23 ft above sea level, September 19, 1984; lowest measured, 41.51 ft above sea level, December 14, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 23	44.08 43.88	DEC 29 FEB 25	43.71 43.63	MAR 28 APR 21	43.83 43.90	MAY 20 JUN 21	44.02 43.95	JUL 27 AUG 30	43.83 43.70	SEP 26	43.58

410104072303301. Local number, S 53324.1 LOCATION.--Lat 41°01'04*, long 72°30'33*, Hydrologic Unit 02030202, at east side of Alvahs Lane, 200 ft north of Middle Road (Rt. 27), Southold. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 6 in., depth 62 ft, screened 49 to 59 ft.

INSTRUMENTATION .-- Measurement with chalked tape by USGS personnel.

DATUM .- Land-surface datum is 42.0 ft above sea level. Measuring point: Top of 6-in. steel flange, 0.51 ft above land-surface datum.

PERIOD OF RECORD .-- October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.32 ft above sea level, September 28, 1989; lowest measured, 3.52 ft above sea level. November 20, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26	5.67	DEC 22	5.56	MAR 15	7.35 G	APR 21	8.16	JUN 21	7.36	SEP 1 28	5.67
NOV 26	5.45	FEB 22	6.39	30	7.93	MAY 25	7.92	JUL 27	6.33		5.35

G MEASUREMENT BY ANOTHER AGENCY

404642072520001. Local number, S 54882.1

LOCATION.--Lat 40°46'42", long 72°52'00", Hydrologic Unit 02030202, at grassy divide between Margin Drive West and William Floyd Parkway, 156 ft south of Ranch Avenue, Center Moriches. Owner: United States Geological

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 34 ft, screened 30 to 34 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 33.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.43 ft below land-surface datum.

PERIOD OF RECORD. -- July 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 13.62 ft above sea level, August 23, 1989; lowest measured, 6.48 ft above sea level, December 15, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	7.98 7.76	DEC 22 MAR 1	8.25 9.25	APR 1 21	10.58 10.88	MAY 24 JUN 17	10.56 10.19	JUL 20 AUG 25	9.56 8.93	SEP 26	8.57

405418072494401. Local number, S 54884.1

LOCATION.--Lat 40°54'18", long 72°49'44", Hydrologic Unit 02030202, at northeast corner of Wading River Road and Grumman Boulevard, Manorville. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled PVC observation well, diameter 2 in., depth 45 ft, screened 41 to 45 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.22 ft below land-surface datum.

PERIOD OF RECORD. -- June 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 47.63 ft above sea level, February 1, 1979; lowest measured, 40.50 ft above sea level, November 21, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 26 NOV 26	41.86 41.72	DEC 22 FEB 1	42.98 43.59	APR 1 21	45.21 45.57	MAY 24 JUN 21	45.21 44.52	JUL 27 AUG 30	43.67 42.91	SEP 28	42.46

405241072381801. Local number, S 54886.1 LOCATION.--Lat 40°52'41°, long 72°38'18°, Hydrologic Unit 02030202, at intersection of Old Riverhead Road and Riverhead-Quogue Road, on grass island, Riverhead. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 55 ft, screened 51 to 55 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 59.4 ft above sea level. Measuring point: Top of 2-in. PVC coupling. 0.36 ft below land-surface datum.

PERIOD OF RECORD. -- October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 22.41 ft above sea level, September 25, 1984; lowest measured, 15.25 ft above sea level, December 29, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25	18.08 17.72	DEC 22 FFB 1	17.57 17.41	MAR 31 APR 21	18.05 18.51	MAY 24 JUN 17		JUL 20 AUG 25	18.89 18.55	SEP 26	18.22

405326072275601. Local number, S 57366.1

LOCATION. -- Lat 40°53'26", long 72°27'56", Hydrologic Unit 02030202, at west side of Hill Station Road, 172 ft south of railroad trestle, Southampton. Owner: Town of Southampton.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Augered PVC observation well, diameter 2 in., depth 64 ft, screened 60 to 64 ft.

INSTRUMENTATION . -- Measurement with chalked tape by USGS personnel .

DATUM.--Land-surface datum is 55.4 ft above sea level. Measuring point: Top of 2-in. PVC coupling,

0.04 ft below land-surface datum.

PERIOD OF RECORD. -- November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 5.50 ft above sea level, August 30, 1989; lowest measured, 3.19 ft above sea level, March 13, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	3.82 3.71	DEC 27 FEB 1	3.64 3.62	MAR 28 MAY 23	4.38	JUN 16 JUL 27	4.32	AUG 25	4.02	SEP 27	3.99

410052072134001. Local number, S 57371.1

LOCATION.--Lat 41°00'55", long 72°13'42", Hydrologic Unit 02030202, at west side of Old Northwest Road, 0.95 miles south of Alewive Brook Road, Grassy Hollow. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Augered PVC observation well, diameter 2 in., depth 62 ft, screened 58 to 62 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 24.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling,

0.30 ft below land-surface datum.

PERIOD OF RECORD. -- November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.31 ft above sea level, April 4, 1979; lowest measured, 5.80 ft above sea level, December 17, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	6.96	FEB 1	7.47	MAR 9	7.73 G	APR 21	9.32	JUN 16	8.75	AUG 25	7.49
NOV 30 DEC 28	6.80 7.14	MAR 1	7.64	31	9.00	MAY 31	9.14	JUL 27	7.94	SEP 27	7.07

405927072041901. Local number, S 57372.1

LOCATION: --Lat 40°59'27", long 72°04'19", Hydrologic Unit 02030202, at south side of Montauk Highway (Rt. 27), 2.4 miles east of Bluff Road, Napeague State Park. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 12 ft, screened 8 to 12 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 8.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling,

0.03 ft above land-surface datum.

PERIOD OF RECORD. -- January 1976 to current year. Unpublished records from January 1976 to September 1983 are available in files of Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.23 ft above sea level, July 18, 1989; lowest measured, 2.16 ft above sea level, July 22, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	2.74	DEC 27	3.53	MAR 1 31	3.18	APR 21	3.12	JUN 16	2.41	AUG 25	2.93
NOV 30	3.27	FEB 1	3.30		2.99	MAY 31	2.85	JUL 27	2.29	SEP 27	3.01

410040072002501. Local number, S 58921.1

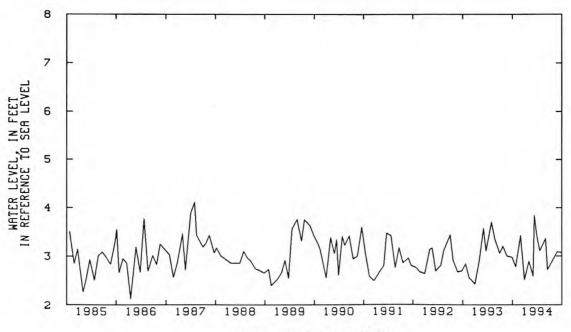
LOCATION.--Lat 41°00'40", long 72°00'24", Hydrologic Unit 02030202, at north side of Montauk Highway (Rt. 27), east of Hither Hills State Park entrance, Hither Hills. Owner: Nassau-Suffolk Regional Planning Board. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 4 in., depth 75 ft, screened 67 to 72 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 48.0 ft above sea level. Measuring point: Top of 4-in. PVC casing,

0.25 ft below land-surface datum.


PERIOD OF RECORD. -- October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.11 ft above sea level, April 30, 1987; lowest measured, 2.11 ft above sea level, January 26, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

	WATED		WATER		WATER		WATER		WATED		WATED
12/12/2	WATER	200	WATER	2000	WATER	2.144	WATER	0422	WATER	27.22	WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 26	2.78	DEC 27	2.52	MAR 1	2.59	MAR 30	3.40	MAY 31	3.36	AUG 25	3.09
NOV 30	3.42	FEB 1	2.89	10	3.83 G	APR 21	3.11	JUN 16	2.72	SEP 27	3.07

G MEASUREMENT BY ANOTHER AGENCY

TIME, IN WATER YEARS

405558072252401. Local number, \$ 58956.1

LOCATION.--Lat 40°55'57", long 72°25'43", Hydrologic Unit 02030202, at west side of North Sea Road, 107 ft north of Jennings Road, North Sea. Owner: Nassau-Suffolk Regional Planning Board.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled PVC observation well, diameter 4 in., depth 43 ft, screened 35 to 40 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .- Land-surface datum is 5.0 ft above sea level. Measuring point: Top of 4-in. PVC casing,

0.61 ft below land-surface datum.

PERIOD OF RECORD .-- October 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.51 ft above sea level, September 16, 1982; lowest measured, 0.19 ft above sea level, January 17, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	2.01 1.87	DEC 28 FEB 1	1.33	MAR 1	1.36	APR 21 MAY 23	1.57	JUN 16 JUL 27	1.07	AUG 25 SEP 27	1.47

405642072240001. Local number, S 59992.1

LOCATION.--Lat 40°56'42", long 72°24'00", Hydrologic Unit 02030202, at southwest corner of of Noyack Road and Majors Path, Noyack. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 292 ft, screened 268 to 278 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 24.2 ft above sea level. Measuring point: Top of 4-in. PVC casing,

0.31 ft below land-surface datum. PERIOD OF RECORD. -- November 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.52 ft above sea level, April 17, 1984; lowest measured, 4.46 ft above sea level, June 23, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	4.95	FEB 1 MAR 1	5.11 5.03	MAR 8	5.51 G 5.85	APR 21 MAY 31	5.60 5.66	JUN 16 JUL 27	5.22 5.09	AUG 25 SEP 27	5.11 5.11
DEC 28	4 97	mirit 1	0.00		0.00	MITTI OI	0.00	JUL 21	0.00	OL 21	0.11

G MEASUREMENT BY ANOTHER AGENCY

405559072145901. Local number, S 60123.1

LOCATION. -- Lat 40°56'00", long 72°15'00", Hydrologic Unit 02030202, at southwest corner of Wainscott Hollow Road and Wainscott Main Street, northern middle well, Wainscott. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 4 in., depth 280 ft, screened 270 to 280 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 12.0 ft above sea level. Measuring point: Top of 4-in. PVC casing at yellow arrow, 0.02 ft above land-surface datum. PERIOD OF RECORD.--March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 8.69 ft above sea level, June 20, 1984; lowest measured, 6.16 ft above sea level, November 18, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	6.78	DEC 27	6.51	MAR 1 28	7.20	APR 21	7.75	JUN 16	7.41	AUG 25	7.09
NOV 30	6.62	FEB 1	7.17		8.17	MAY 31	7.80	JUL 27	7.17	SEP 27	7.05

405600072150003. Local number, S 62394.1 LOCATION.--Lat 40°56'00", long 72°15'00", Hydrologic Unit 02030202, at southwest corner of Wainscott Hollow Road and Wainscott Main Street, southern middle well, Wainscott. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Augered PVC observation well, diameter 2 in., depth 74 ft, screened 70 to 74 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 12.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.46 ft below land-surface datum.

PERIOD OF RECORD. -- March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 8.47 ft above sea level, July 18, 1989; lowest measured, 5.84 ft above sea level, July 2, 1985.

WATER LEVEL. IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

	WATER	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER	DATE	WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL		LEVEL
OCT 26	6.36	DEC 27	6.57	MAR 1	7.09	APR 21	7.81	JUN 16	7.01	AUG 25	6.47
NOV 30	6.13	FEB 1	7.01	28	8.21	MAY 23	7.30	JUL 27	6.53	SEP 27	6.41

405600072150002. Local number, S 62395.1 LOCATION.--Lat 40°56'00°, long 72°15'00°, Hydrologic Unit 02030202, at southwest corner of Wainscott Hollow Road and Wainscott Main Street, southern most well, Wainscott. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Driven PVC observation well, diameter 2 in., depth 14 ft, screened 10 to 14 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 12.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.51 ft below land-surface datum.

PERIOD OF RECORD. -- March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.45 ft above sea level, July 18, 1989; lowest measured, 5.90 ft above sea level, October 28, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	6.35	DEC 27 FEB 1	6.56 7.00	MAR 1 28	7.08 8.26	APR 21 MAY 31	7.79 7.26	JUN 16 JUL 27	6.97 6.50	AUG 25 SEP 27	6.43 6.39

415843072213401. Local number, S 62402.1 LOCATION.--Lat 40°58'58", long 72°21'36", Hydrologic Unit 02030202, at south end of Club Lane, 587 ft east of Wildwood Road, Noyack. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 2 in., depth 84 ft, screened 80 to 84 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 99.3 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.22 ft below land-surface datum.

PERIOD OF RECORD.--May 1977 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.32 ft above sea level, June 20, 1984; lowest measured, 32.58 ft above sea level, December 5, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	34.99 34.93	DEC 28 MAR 14	34.57 35.42 G	MAR 29 APR 21	36.20 36.68	MAY 31 JUN 16	36.79 36.52	JUL 27 AUG 25	36.04 35.67	SEP 27	35.29

G MEASUREMENT BY ANOTHER AGENCY

405740073064501. Local number, S 62405.1

LOCATION.--Lat 40°57'40°, long 73°06'45°, Hydrologic Unit 02030201, at Conscience Circle, on southwest corner of grass island, west of Maple Road, Strong's Neck. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Augered PVC observation well, diameter 2 in., depth 55 ft, screened 51 to 55 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 38.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling,

0.29 ft below land-surface datum.

PERIOD OF RECORD. -- October 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.85 ft above sea level, June 25, 1982; lowest measured, 2.79 ft above sea level, March 26, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 26	3.59	DEC 29	3.86	MAR 29	4.24 G	APR 20	4.09	JUN 21	3.90	AUG 26	4.16
NOV 23	3.55	FEB 25	4.36	31	4.14	MAY 20		JUL 27	3.70	SEP 26	3.80

G MEASUREMENT BY ANOTHER AGENCY

404813073084102. Local number, S 65601.1

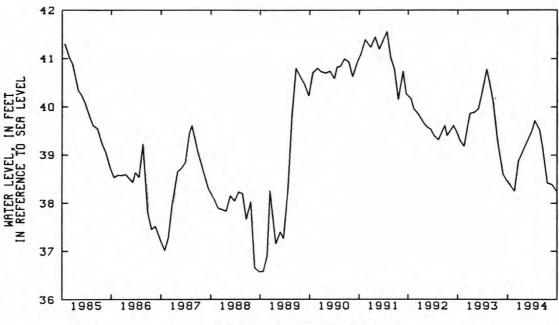
LOCATION.-Lat 40°48'13", long 73°08'41", Hydrologic Unit 02030202, at northside of Johnson Avenue, 70 ft east of Terry Road, Ronkonkoma. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 41 ft, screened 38 to 41 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 62.6 ft above sea level. Measuring point: Top of 2-in. PVC coupling,


0.20 ft below land-surface datum.

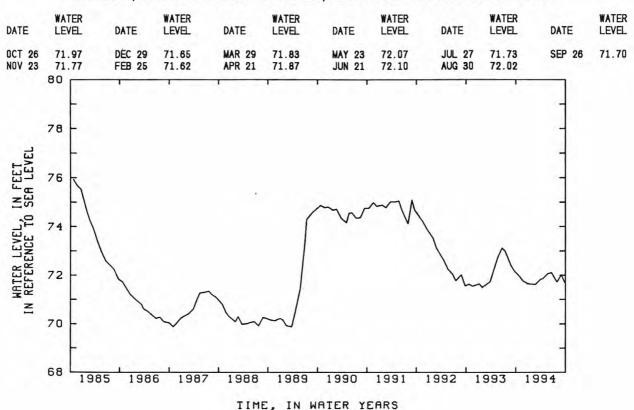
REMARKS.--Replaced well S 1813.2 in September 1978. Record from November 1939 to September 1978 are available in files of Long Island Subdistrict Office.

PERIOD OF RECORD. -- September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 42.39 ft above sea level, July 23, 1984; lowest measured, 36.57 ft above sea level, September 27, 1988.

DATE	WATER LEVEL										
OCT 25	38.37 38.26	DEC 22	38.88 39.51	APR 20	39.72 39.52	JUN 17	39.17 38.42	AUG 26	38.39	SEP 26	38.26

TIME, IN WATER YEARS


405030073180601. Local number, S 65602.1
LOCATION.--Lat 40°50'30", long 73°18'06", Hydrologic Unit 02030202, at southwest corner of Wilshire Drive and Renee Place, Commack. Owner: United States Geological Survey.

AQUIFER.--Upper Glacial (water-table).
WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 96 ft, screened 91 to 96 ft.
INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.
DATUM.--Land-surface datum is 146.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling,
0.19 ft below land-surface datum.

REMARKS.--Replaces well S 3514.1 in September 1978, which has a period of record from May 1942 to September 1978.
PERIOD OF RECORD.--September 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 76.41 ft above sea level, August 28, 1979; lowest measured, 69.74 ft above sea level, January 25, 1982.

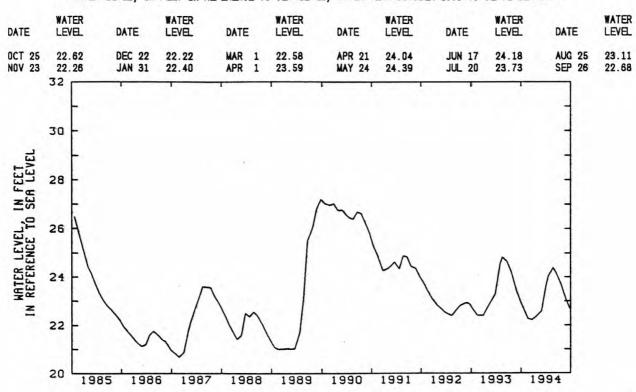
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404936072483501. Local number, S 85604.1

LOCATION. -- Lat 40°49'36", long 72°48'35", Hydrologic Unit 02030202, at northwest corner of Sunrise Highway Service Road and Wading River Road, Manorville. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 56 ft, screened 51 to 56 ft.


INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 64.5 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 0.32 ft below land-surface datum.

REMARKS.--Replaces well S 6439.1 in October 1978, which has a period of record from January 1949 to October 1978. PERIOD OF RECORD. -- October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 28.14 ft above sea level, July 23, 1984; lowest measured, 20.48 ft above sea level, December 21, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

404430073123301. Local number, S 66135.1

LOCATION. --Lat 40°44'30", long 73°12'33", Hydrologic Unit 02030202, at south side of Sunrise Highway (Rt. 27), west of Great Neck Road, in grassy area of entrance ramp cloverleaf, Copiague. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, casing diameter 6 in., screen diameter 4 in., depth 168 ft, screened 127 to 137 ft.

TIME, IN WATER YEARS

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 30.0 ft above sea level. Measuring point: Top of 6-in. steel casing, 3.99 ft above land-surface datum.

PERIOD OF RECORD. -- January 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 23.55 ft above sea level, November 27, 1989; lowest measured, 18.19 ft above sea level, August 30, 1993.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 25 NOV 23	18.52 18.63	JAN 31 FEB 28	19.99 20.12	MAR 23 30	21.03 G 21.19	APR 20 MAY 24	21.33 20.71	JUN 17 JUL 20	19.88 18.49	AUG 26 SEP 26	18.89 18.69
DEC 22	18.41										

403935073235001. Local number, S 66136.1

LOCATION.--Lat 40°39'37", long 73°23'50", Hydrologic Unit 02030202, at Tanner Park, south side of Kerrigan Road across from Harding Road, eastern most well, Copiague. Owner: Suffolk County Department of Health Services. AQUIFER.--Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, casing diameter 6 in., screen diameter 4 in., depth 134 ft, screened 124 to 134 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 5.0 ft above sea level. Measuring point: Top of 6-in. PVC casing,

2.43 ft above land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.79 ft above sea level, March 4, 1991; lowest measured, 3.37 ft above sea level, September 13, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 19 NOV 19	3.93 4.04	FEB 2 MAR 1	3.77 3.64	APR 13 18	3.90 3.65	MAY 25 JUN 15	4.27 3.68	JUL 28 AUG 25	3.79 3.89	SEP 20	3.61

404524073123401. Local number, S 66149.1

LOCATION.--Lat 40°45'24", long 73°12'34", Hydrologic Unit 02030202, at southeast corner of Islip Avenue (Rt. 111) and Spur Drive North, near Southern State Parkway exit ramp, Islip. Owner: Suffolk County Department of Environmental Conservation.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 167 ft, screened 157 to 167 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 40.0 ft above sea level. Measuring point: Top of 4-in. PVC casing, 2.33 ft below land-surface datum.

PERIOD OF RECORD. -- January 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 25.92 ft above sea level, May 22 and June 22, 1989; lowest measured, 20.55 ft above sea level, March 7, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 25	22.75	JAN 31	24.10	MAR 24	24.70 G	APR 20	24.82	JUN 17	23.61	AUG 26	23.23
NOV 23	22.80	FEB 28	24.12	30	24.74	MAY 24	24.19	JUL 20	22.79	SEP 26	21.93
DEC 22	23.74										

G MEASUREMENT BY ANOTHER AGENCY

403935073235002. Local number, S 67537.1

LOCATION.--Lat 40°39'37", long 73°23'50", Hydrologic Unit 02030202, at Tanner Park, south side of Kerrigan Road, across from Harding Road, eastern middle well, Copiague. Owner: Suffolk County Department of Health Services. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 61 ft, screened 56 to 61 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 7.8 ft above sea level. Measuring point: Top of 2-in. PVC casing,

0.28 ft below land-surface datum.

REMARKS.--Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- December 1985 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.48 ft above sea level, August 21, 1990; lowest measured, 1.28 ft above sea level, December 16, 1986.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 19	1.90 1.82	FEB 2 MAR 1	1.58 1.33	APR 13 18	1.45 1.41	MAY 25 JUN 15	2.16 1.54	AUG 25	2.02	SEP 20	1.68

405529073272901. Local number, S 69781.1

LOCATION.--Lat 40°55'29", long 73°27'29", Hydrologic Unit 02030201, at Caumsett State Park, 1 mile northeast of parking field, on park service road, Lloyd Neck. Owner: Suffolk County Department of Health Services. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled PVC observation well, diameter 4 in., depth 155 ft, screened 139 to 149 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 109.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.66 ft below land-surface datum.

PERIOD OF RECORD. -- April 1986 to current year.

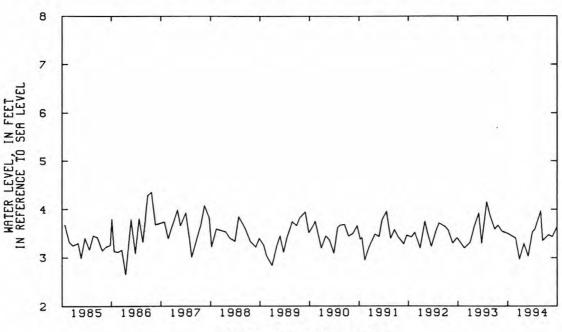
EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 9.85 ft above sea level, July 13, 1990; lowest measured, 6.44 ft above sea level, March 22, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 26	7.86	DEC 29	7.36	MAR 21	7.23 G	APR 21	7.76	JUN 21	7.40	AUG 30	8.03
NOV 24	7.60	FEB 25	7.06	30	7.57	MAY 23	8.25	JUL 28	8.28	SEP 29	7.85

G MEASUREMENT BY ANOTHER AGENCY

410343071533101. Local number, S 70262.1 LOCATION.--Lat 41°03'43", long 71°53'31", Hydrologic Unit 02030202, at south side of Montauk Point State Parkway (Rt. 27), 110 ft west of Highway Marker 27 0705 19.02, Montauk. Owner: United States Geological Survey. AQUIFER. -- Upper Glacial (water-table).


WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 168 ft, screened 158 to 163 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 50.5 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.32 ft below land-surface datum.

PERIOD OF RECORD. -- June 1981 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.94 ft above sea level, May 23, 1983; lowest measured, 2.62 ft above sea level, November 3, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 30 DEC 28	3.40	FEB 1	3.29	MAR 31 APR 21	3.52	MAY 31 JUN 16	3.97 3.35	JUL 27 AUG 25	3.47	SEP 27	3.63

TIME, IN WATER YEARS

405801072354401. Local number, S 71576.1

LOCATION.--Lat 40°58'01", long 72°35'44", Hydrologic Unit 02030202, at east side of Manor Lane, 1.6 miles north of Main Road (Rt. 25), southern middle well, Jamesport. Owner: Suffolk County Department of Health Services. AQUIFER.--Magothy (confined).

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 4 in., depth 448 ft, screened 443 to 448 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 53.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 1.16 ft below land-surface datum.

PERIOD OF RECORD. -- February 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 13.02 ft above sea level, September 27, 1984; lowest measured, 7.31 ft above sea level, July 22, 1992.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	7.78	FEB 1	8.40	MAR 16	9.41 G	APR 21	9.53	JUN 21	8.85	SEP 1	7.86
NOV 26 DEC 22	7.69 8.04	22	8.50	30	9.50	MAY 25	9.44	JUL 27	8.06	28	7.77

G MEASUREMENT BY ANOTHER AGENCY

405642072240003. Local number, S 73993.1

LOCATION.--Lat 40°56'42", long 72°24'00", Hydrologic Unit 02030202, at southwest corner of Noyack Road and Majors Path, North Sea. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 1 1/4 in., depth 238 ft, screened 230 to 235 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 24.2 ft above sea level. Measuring point: Top of 1 1/4-in. PVC casing, 0.51 ft below land-surface datum.

PERIOD OF RECORD. -- April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.47 ft above sea level, April 17, 1984; lowest measured, 4.43 ft above sea level, September 23, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	4.93	DEC 28	4.97	MAR 1 29	5.03	APR 21	5.59	JUN 16	5.21	AUG 25	5.09
NOV 30	4.95	FEB 1	5.10		5.85	MAY 31	5.64	JUL 27	5.08	SEP 27	5.09

405600072150005. Local number, S 73994.1

LOCATION.--Lat 40°56'00", long 72°15'00", Hydrologic Unit 02030202, at southwest corner of Wainscott Hollow Road and Wainscott Main Street, northern most well, Wainscott. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 1 1/4 in., depth 303 ft, screened 298 to 303 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 12.0 ft above sea level. Measuring point: Top of 1 1/4-in. PVC casing,

at land-surface datum.

PERIOD OF RECORD. -- March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.52 ft above sea level, June 20, 1984; lowest measured, 4.30 ft above sea level, October 28, 1988

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	4.75	DEC 27	4.45	MAR 1 28	5.13	APR 21	5.67	JUN 16	5.35	AUG 25	5.02
NOV 30	4.59	FEB 1	5.10		6.10	MAY 31	5.71	JUL 27	5.09	SEP 27	4.99

405858072213501. Local number, S 73998.1

LOCATION.--Lat 40°58'58", long 72°21'35", Hydrologic Unit 02030202, at south end of Club Lane, 624 ft west of Wildwood Road, near Highway Department entrance, southern most well, Noyack. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 1 1/4 in., depth 803 ft, screened 795 to 800 ft. INSTRUMENTATION . -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 99.7 ft above sea level. Measuring point: Top of 1 1/4-in. steel casing, 0.2 ft below land-surface datum.

PERIOD OF RECORD. -- April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.73 ft above sea level, August 30, 1989; lowest measured, 4.00 ft above sea level, December 5, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	5.10	DEC 28	4.59	MAR 1	4.78	APR 21	5.33	JUN 16	5.18	AUG 25	5.33
NOV 30	5.06	FEB 1	5.01		5.46	MAY 31	5.70	JUL 27	5.20	SEP 27	5.53

405858072213602. Local number, S 73999.1

LOCATION.--Lat 40°58'58", long 72°21'35", Hydrologic Unit 02030202, at south end of Club Lane, 624 ft west of Wildwood Road, near Highway Department entrance, northern most well, Noyack. Owner: Suffolk County Department of Helath Services.

AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 3 in., depth 597 ft, screened 584 to 594 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .-- Land-surface datum is 99.7 ft above sea level. Measuring point: Top of 3-in. steel casing,

0.35 ft below land-surface datum.

PERIOD OF RECORD. -- April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 11.63 ft above sea level, April 17, 1984; lowest measured, 8.73 ft above sea level, December 18, 1990.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 30	10.33 10.06	FEB 1 MAR 1	10.15	MAR 14 29	10.39 G 10.33	APR 21 MAY 31	10.32 10.72	JUN 16 JUL 27	10.24 10.30	AUG 25 SEP 27	10.43 10.45
DEC 28	9.80			20	10.00			002 2.	10,00		20.10

G MEASUREMENT BY ANOTHER AGENCY

405322072454101. Local number, S 74292.1

LOCATION. -- Lat 40°53'23", long 72°45'43", Hydrologic Unit 02030202, at south side of Mill Road, opposite Primrose Path, Brookhaven. Owner: United States Geological Survey.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 2 in., depth 56 ft, screened 52 to 56 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 73.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling, 1.20 ft above land-surface datum.

PERIOD OF RECORD. -- May 1983 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 42.22 ft above sea level, June 21, 1984; lowest measured, 33.64 ft above sea level, December 29, 1988.

DATE	WATER LEVEL										
OCT 26	36.41	DEC 22	35.89	FEB 22	36.22	APR 21	37.91	JUN 21	38.19	AUG 30	37.28
NOV 26	35.92	FEB 1	35.94	APR 1	37.32	MAY 24	38.38	JUL 27	37.79	SEP 28	36.80

404433073244903. Local number, S 74586.1

LOCATION.--Lat 40°44'33", long 73°24'49", Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, western most well, Pinelawn. Owner: Suffolk County Department of Health Services.

AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 441 ft, screened 433 to 438 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 86.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling,

0.90 ft below land-surface datum.

PERIOD OF RECORD. -- April 1983 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 60.33 ft above sea level, June 5, 1984; lowest measured, 50.58 ft above sea level, October 24, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 25	52.61	JAN 31	52.79	MAR 23	54.53 G	APR 20	54.35	JUN 17	53.41	AUG 26	52.30
NOV 23	52.21	FEB 28	53.02	30	54.05	MAY 24	54.11	JUL 20	52.33	SEP 26	51.79
DEC 22	52.38										

G MEASUREMENT BY ANOTHER AGENCY

404433073244904. Local number, S 74587.1

LOCATION.--Lat 40°44'43", long 73°24'49", Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, middle well, Pinelawn. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 4 in., depth 196 ft, screened 188 to 193 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 86.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling,

0.22 ft below land-surface datum.

PERIOD OF RECORD. -- April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 61.94 ft above sea level, June 5, 1984; lowest measured, 50.80 ft above sea level, September 27, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	53.44 53.07	JAN 31 FEB 28	53.68	MAR 23	54.74 G	APR 20 MAY 24	55.33	JUN 17	54.62	AUG 26 SEP 26	53.25 52.70
DEC 22	53.23	FEB 28	53.92	30	54.95	MAT 24	55.27	JUL 20	53.53	3EP 20	52.70

G MEASUREMENT BY ANOTHER AGENCY

404433073244905. Local number, S 75033.1

LOCATION.--Lat 40°44'33", long 73°24'49", Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, eastern most well, Pinelawn. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 4 in., depth 62 ft, screened 47 to 52 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 86.5 ft above sea level. Measuring point: Top of 4-in. PVC coupling,

0.51 ft below land-surface datum.

PERIOD OF RECORD. -- April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 62.19 ft above sea level, June 5, 1984; lowest measured, 51.81 ft above sea level, October 24, 1988.

DATE	WATER LEVEL										
OCT 25	53.54	JAN 31	53.76	MAR 23	54.88 G	APR 20	56.46	JUN 17	54.76	AUG 26	53.35
NOV 23	53.19	FEB 28	54.03	30	55.04	MAY 24	55.40	JUL 20	53.66	SEP 26	52.81

404433073244902. Local number, S 75034.2

LOCATION.--Lat 40°44'33", long 73°24'49", Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, northern middle well, Pinelawn. Owner: Suffolk County Department of Health Services.

AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 698 ft, screened 688 to 693 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 86.5 ft above sea level. Measuring point: Top of 4-in. steel coupling,

0.26 ft below land-surface datum.

PERIOD OF RECORD. -- April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 59.57 ft above sea level, June 9, 1984; lowest measured, 50.12 ft above sea level, August 22, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 25	52.04	JAN 31	52.24	MAR 23	53.40 G	APR 20	53.79	JUN 17	52.74	AUG 26	51.68
NOV 23	51.68	FEB 28	52.47	30	53.51	MAY 24	53.45	JUL 20	51.63	SEP 26	51.20
DEC 22	51.88										

G MEASUREMENT BY ANOTHER AGENCY

404859073194002. Local number, S 75454.2

LOCATION.--Lat 40°48'59", long 73°19'40", Hydrologic Unit 02030202, at Dix Hills Park and Golf Course, 180 ft west of DeForest Road, 154 ft north of parking lot, northern most well, Dix Hills. Owner: Suffolk County Department of Health Services.

AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 740 ft, screened 730 to 735 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 230.7 ft above sea level. Measuring point: Top of 4-in. steel casing,

0.14 ft below land-surface datum.

PERIOD OF RECORD .-- March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.05 ft above sea level, March 21, 1991; lowest measured, 63.34 ft above sea level, August 23, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER								
OCT 26	68.90	JAN 25	68.87	MAR 22	69.04 G	APR 21	68.96	JUN 21	68.08	AUG 30	67.40
NOV 23	68.93	FEB 25	68.91	29	69.00	MAY 23	68.78	JUL 28	67.45	SEP 29	67.41
DEC 29	68.94										

G MEASUREMENT BY ANOTHER AGENCY

404859073194003. Local number, S 75455.1

LOCATION.--Lat 40°48'59°, long 73°19'40°, Hydrologic Unit 02030202, at Dix Hills Park and Golf Course, 180 ft west of DeForest Road, 144 ft north of parking lot, middle well, Dix Hills. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 508 ft, screened 500 to 505 ft. INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 230.2 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.32 ft below land-surface datum.

PERIOD OF RECORD. -- March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.45 ft above sea level, March 21, 1991; lowest measured, 63.86 ft above sea level, August 23, 1988.

	WATER		WATER	WATER			WATER		WATER		WATER
DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL	DATE	LEVEL
OCT 26	69.30	JAN 25	69.28	MAR 22	69.45 G	APR 21	69.38	JUN 21	68.57	AUG 30	67.82
NOV 23	69.34	FEB 25	69.31	29	69.43	MAY 23	69.22	JUL 28	67.95	SEP 29	67.80
DEC 29	69 36										

404859073194004. Local number, S 75456.1

LOCATION.--Lat 40°48'59", long 73°19'40", Hydrologic Unit 02030202, at Dix Hills Park and Golf Course, 180 ft west of DeForest Road, 134 ft north of parking lot, southern most well, Dix Hills. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 203 ft, screened 195 to 200 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM .- Land-surface datum is 230.5 ft above sea level. Measuring point: Top of 4-in. PVC coupling,

0.98 ft below land-surface datum.

PERIOD OF RECORD. -- March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 78.96 ft above sea level, November 20, 1991; lowest measured, 71.50 ft above sea level, September 16, 1987.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 23	74.85 74.85	JAN 25 FEB 25	74.72 74.67	MAR 22	74.77 G 74.85	APR 21 MAY 23	74.62 74.44	JUN 21 JUL 28	74.15 73.94	AUG 30 SEP 29	73.67 73.71
DEC 29	74.92								17171	75.5	15105

G MEASUREMENT BY ANOTHER AGENCY

404530073181102. Local number, S 76016.2

LOCATION.--Lat 40°45'30", long 73°18'11", Hydrologic Unit 02030202, at south side of Burt Drive, 150 ft west of West Jefryn Boulevard, western most well, Deer Park. Owner: Suffolk County Department of Health Services. AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 762 ft, screened 752 to 757 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 63.5 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.33 ft below land-surface datum.

PERIOD OF RECORD. -- June 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 46.77 ft above sea level, November 16, 1990; lowest measured, 38.98 ft above sea level, August 22, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 25	42.36	DEC 22	42.73	MAR 24	43.24 G	APR 20	43.39	JUN 17	40.96	AUG 26	41.94
NOV 23	42.64	JAN 31	42.75	30	43.61	MAY 24	42.75	JUL 20	40.52	SEP 26	42.36

G MEASUREMENT BY ANOTHER AGENCY

404530073181103. Local number, S 76017.1

LOCATION.--Lat 40°45'30", long 73°18'11", Hydrologic Unit D2030202, at south side of Burt Drive, 150 ft west of West Jefryn Boulevard, eastern middle well, Deer Park. Owner: Suffolk County Department of Health Services. AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 503 ft, screened 495 to 500 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.2 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.35 ft below land-surface datum.

PERIOD OF RECORD. -- June 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 46.50 ft above sea level, November 16, 1990; lowest measured, 39.22 ft above sea level, August 22, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	42.16 42.33	JAN 31 FEB 28	42.39 42.68	MAR 24 30	43.46 G 43.12	APR 20 MAY 24	43.03 42.43	JUN 17 JUL 20	40.59 40.21	AUG 26 SEP 26	41.78 41.15
DEC 22	42.36	. 25 25	12.00	00	10.11		12.10	002 20	10.22	011 20	11.10

404530073181104. Local number, S 76018.1

LOCATION.--Lat 40°45'30", long 73°18'11", Hydrologic Unit 02030202, at south side of Burt Drive, 150 ft west of West Jefryn Boulevard, western middle well, Deer Park. Owner: Suffolk County Department of Health Services. AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS .-- Drilled PVC observation well, diameter 4 in., depth 194 ft, screened 186 to 191 ft.

INSTRUMENTATION .-- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 63.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling,

0.24 ft below land-surface datum.

PERIOD OF RECORD. -- June 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 47.08 ft above sea level, November 16, 1990; lowest measured, 38.46 ft above sea level, August 22, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER	DATE	WATER LEVEL
OCT 25	42.59	DEC 22	42.95	MAR 24	42.87 G	APR 20	43.36	JUN 17	41.16	AUG 26	42.64
NOV 23	42.58	JAN 31	42.65	30	43.49	MAY 24	42.86	JUL 20	40.76	SEP 26	42.79

G MEASUREMENT BY ANOTHER AGENCY

404530073181105. Local number, S 76019.1 LOCATION.--Lat 40°45'30", long 73°18'11", Hydrologic Unit 02030202, at south side of Burt Drive, 150 ft west of West Jefryn Boulevard, eastern most well, Deer Park. Owner: Suffolk County Department of Health Services. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 2 in., depth 62 ft, screened 57 to 62 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 63.0 ft above sea level. Measuring point: Top of 2-in. PVC coupling,

0.14 ft below land-surface datum.

PERIOD OF RECORD. -- September 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 56.11 ft above sea level, October 16, 1990; lowest measured, 50.44 ft above sea level, January 24, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25	52.11	JAN 31	52.30	MAR 24	52.71 G	APR 20	53.05	JUN 17	52.74	AUG 26	53.24
NOV 23 DEC 22	51.65 52.07	FEB 28	52.25	30	52.99	MAY 24	53.03	JUL 20	52.58	SEP 26	52.59

G MEASUREMENT BY ANOTHER AGENCY

405317072331902. Local number, S 77435.1

LOCATION.--Lat 40°53'17", long 72°33'18", Hydrologic Unit 02030202, at south side of dirt road, 145 ft east of Riverhead-Hampton Bays Road (Rt. 24), 195 ft south of Bellows Pond Road, eastern most well, Rampasture. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 2 in., depth 27 ft, screened 25 to 27 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 18.8 ft above sea level. Measuring point: Top of 2-in. steel coupling,

0.36 ft below land-surface datum.

PERIOD OF RECORD. -- March 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.04 ft above sea level, April 19, 1990; lowest measured, 6.77 ft above sea level, October 28, 1986.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	7.87 7.95	DEC 22 FEB 1	8.79 8.85	MAR 30 APR 21	9.85 9.64	MAY 24 JUN 16	9.35 9.03	JUL 20 AUG 25	8.42 8.21	SEP 26	7.92

405317072331903. Local number, S 77436.2

LOCATION.--Lat 40°53'17", long 72°33'18", Hydrologic Unit 02030202, at south side of dirt road, 138 ft east of Riverhead-Hampton Bays Road (Rt. 24), 195 ft south of Bellows Pond Road, western most well, Rampasture.

Owner: Suffolk County Department of Health Services.

AQUIFER .-- Lloyd (confined) .

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 508 ft, screened 500 to 505 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 18.7 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.41 ft below land-surface datum.

PERIOD OF RECORD. -- March 1985 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 10.24 ft above sea level, August 23, 1989; lowest measured, 6.94 ft above sea level, September 22, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	7.87 7.81	DEC 22 FEB 1	8.28 8.41	MAR 30 APR 21	9.34 9.48	MAY 24 JUN 16	9.33	JUL 20 AUG 25	8.47 8.21	SEP 26	7.98

403935073235003. Local number, S 79407.1

LOCATION. --Lat 40°39'37", long 73°23'50", Hydrologic Unit 02030202, at Tanner Park, south side of Kerrigan Road, across from Harding Road, western middle well, Copiaque. Owner: Suffolk County Department of Health Services. AQUIFER.--Lloyd (confined).

WELL CHARACTERISTICS. -- Drilled PVC observation well, diameter 4 in., depth 1,219 ft, screened 1,192 to 1,214 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 7.8 ft above sea level. Measuring point: Top of 4-in. removable PVC extension, 10.39 ft above land-surface datum.

REMARKS.--Water level affected by tidal fluctuation. Flowing well, measurement taken from top of removable calibrated PVC extension.

PERIOD OF RECORD. -- December 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.29 ft above sea level, February 24, 1992, and April 7, 1992; lowest measured, 14.07 ft above sea level, September 30, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 19	17.35	MAR 28	17.71 G	JUL 28	16.44	AUG 25	15.88	SEP 20	15.92		

G MEASUREMENT BY ANOTHER AGENCY

403935073235004. Local number, S 79408.1

LOCATION.--Lat 40°39'37", long 73°23'50", Hydrologic Unit 02030202, at Tanner Park ,south side of Kerrigan Road, across from Harding Road, western most well, Copaique. Owner: Suffolk County Department of Health Services. AQUIFER.--Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 4 in., depth 680 ft, screened 670 to 675 ft. INSTRUMENTATION.--Measurement with clear plastic tube extension and stadia rod by USGS personnel.

DATUM.--Land-surface datum is 7.8 ft above sea level. Measuring point: Top of 4-in. steel coupling, 0.58 ft below land-surface datum.

REMARKS. -- Water level affected by tidal fluctuation.

PERIOD OF RECORD. -- December 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.22 ft above sea level, March 4, 1991; lowest measured, 5.28 ft above sea level, July 16, 1986.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 19	6.03 6.31	FEB 2 MAR 1	6.16 6.12	APR 13 18	6.56 6.29	MAY 25 JUN 15	6.53 5.83	JUL 28 AUG 25	5.68 5.96	SEP 20	5.58

405604073064302. Local number, S 81831.1 LOCATION.--Lat 40°56'04", long 73°06'43", Hydrologic Unit 02030201, at north side of North Country Road (Rt. 25A), 199 ft west of Ridgeway Avenue, East Setauket. Owner: Suffolk County Department of Environmental Consevation. AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 470 ft, screened 462 to 467 ft.

INSTRUMENTATION .-- Measurement with chalked tape by USGS personnel .

DATUM. -- Land-surface datum is 94.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.96 ft below land-surface datum.

PERIOD OF RECORD. -- March 1986 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 24.03 ft above sea level, February 13, 1991; lowest measured, 18.77 ft above sea level, August 23, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL										
OCT 26	21.11	DEC 29	21.28	MAR 29	22.05 G	APR 20	21.46	JUN 21	19.69	AUG 30	20.41
NOV 23	21.13	FEB 25	21.40	31	21.52	MAY 20	21.73	JUL 27	20.57	SEP 26	20.49

G MEASUREMENT BY ANOTHER AGENCY

405536072375301. Local number, S 82938.1

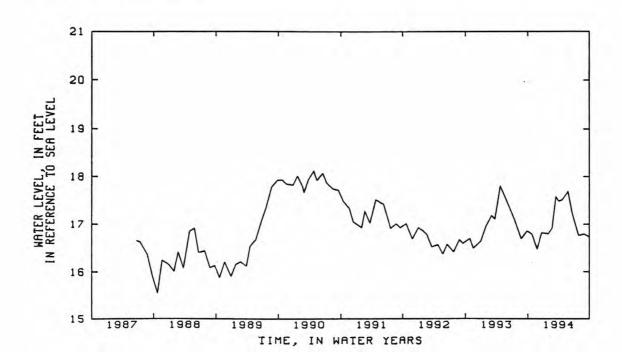
LOCATION.--Lat 40°55'36", long 72°37'53", Hydrologic Unit 02030202, at Indian Island County Park, north side of main entrance road, 107 ft east of restroom facilities, Riverhead. Owner: Suffolk County Department of Health Services.

AQUIFER .-- Lloyd (confined)

WELL CHARACTERISTICS. -- Drilled steel observation well, diameter 2 in., depth 1,022 ft, screened 1,010 to 1,022 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 21.0 ft above sea level. Measuring point: Top of 2-in. steel coupling,

0.14 ft below land-surface datum.


PERIOD OF RECORD. -- June 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 18.11 ft above sea level, April 27, 1990; lowest measured, 15.55 ft above sea level, October 23, 1987.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

OCT 26 16.79 NOV 26 16.48	FEB 1 22	16.80 16.92	MAR 16 APR 1	17.58 G 17.49	APR 21 MAY 25	17.51 17.69	JUN 21 JUL 27	17.24 16.76	SEP 1 28	16.79 16.73

G MEASUREMENT BY ANOTHER AGENCY

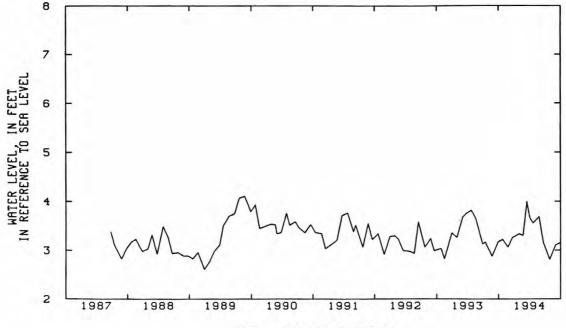
405536072375302. Local number, S 82939.1

LOCATION.--Lat 40°55'36", long 72°37'53", Hydrologic Unit 02030202, at Indian Island County Park, north side of main entrance road, 107 ft east of restroom facilities, Riverhead. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 162 ft, screened 155 to 162 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM. -- Land-surface datum is 21.0 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.03 ft below land surface datum.


PERIOD OF RECORD .-- June 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.11 ft above sea level, August 22, 1989; lowest measured, 2.61 ft above sea level, December 29, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	3.22	FEB 1	3.34	MAR 16	3.99 G	APR 21	3.56	JUN 21	3.17	SEP 1	3.11
NOV 26	3.07	22	3.31	APR 1	3.67	MAY 25	3.68	JUL 27	2.82	28	3.16
DEC 22	3.26										

G MEASUREMENT BY ANOTHER AGENCY

TIME, IN WATER YEARS

405641072341602. Local number, S 83709.1 LOCATION.--Lat 40°56'41", long 72°34'16", Hydrologic Unit 02030202, at east side of state boat ramp, 118 ft south of Peconic Bay Boulevard, western most well, Jamesport. Owner: Suffolk County Department of Health Services. AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 161 ft, screened 153 to 158 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 6.0 ft above sea level. Measuring point: Top of 2-in. steel coupling,

0.06 ft below land-surface datum. PERIOD OF RECORD .-- June 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 5.02 ft above sea level, August 22, 1989; lowest measured, 1.55 ft above sea level, April 27, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26	4.20	DEC 22	3.53	FEB 22	4.14	APR 21	4.61	JUN 21	4.28	SEP 1 28	3.96
NOV 26	3.85	FEB 1	4.17	MAR 30	4.70	MAY 25	4.91	JUL 27	3.88		4.02

405841072341604. Local number, S 83792.1

LOCATION.--Lat 40°56'41", long 72°34'16", Hydrologic Unit 02030202, at east side of state boat ramp, 118 ft south of Peconic Bay Boulevard, eastern most well, Jamesport. Owner: Suffolk County Department of Health Services. AQUIFER.--Upper Glacial (water-table).

WELL CHARACTERISTICS.--Augered steel observation well, diameter 2 in., depth 18 ft, screened 16 to 18 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 6.0 ft above sea level. Measuring point: Top of 2-in. steel coupling, 0.29 ft above land-surface datum.

PERIOD OF RECORD. -- August 1988 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.49 ft above sea level, July 21, 1989; lowest measured, 0.92 ft above sea level, December 29, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26 NOV 26	1.97 1.64	DEC 22 FEB 1	1.40 1.67	FEB 22 MAR 30	1.66 1.83	APR 21 MAY 25	1.73 2.18	JUN 21 JUL 27	1.60	SEP 1 28	1.67 1.73

404846072533204. Local number, S 84806.1

LOCATION.--Lat 40°48'46", long 72°53'32", Hydrologic Unit 02030202, at Southhaven County Park, north side of dirt road leading from picnic area to Carman's River, 227 ft west of river, eastern most well, Yaphank.

Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (confined).

WELL CHARACTERISTICS.--Drilled PVC to steel observation well, diameter 8 in. from surface to 75 ft, and 2 in. from 75 ft to bottom, depth 849 ft, screened 839 to 849 ft.

INSTRUMENTATION. -- Measurement with clear plastic tube extension and stadia rod by USGS personnel.

DATUM.--Land-surface datum is 17.6 ft above sea level. Measuring point: Top of steel meter box rim, 0.01 ft above land-surface datum.

PERIOD OF RECORD. -- March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 25.81 ft above sea level, June 15, 1990; lowest measured, 21.74 ft above sea level, March 23, 1987, and September 30, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	22.92 23.02	DEC 22 MAR 28	23.63 23.95 G	APR 1 MAY 25	23.96 24.20	JUN 21	23.86	JUL 28	23.35	SEP 26	23.19

G MEASUREMENT BY ANOTHER AGENCY

404846072533201. Local number, S 84807.1

LOCATION.--Lat 40°48'46", long 72°53'32", Hydrologic Unit 02030202, at Southhaven County Park, north side of dirt road leading from picnic area to Carman's River, 253 ft west of river, western most well, Yaphank.

Owner: Suffolk County Department of Health Services.

AQUIFER .-- Magothy (confined) .

WELL CHARACTERISTICS.--Drilled PVC to steel observation well, diameter 8 in. from surface to 94 ft, and 4 in. from 94 ft to bottom, depth 556 ft, screened 545 to 556 ft.

INSTRUMENTATION. -- Measurement with clear plastic tube extension and stadia rod by USGS personnel.

DATUM .- Land-surface datum is 17.7 ft above sea level. Measuring point: Top of steel meter box rim,

0.03 ft below land-surface datum.

PERIOD OF RECORD. -- March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 23.45 ft above sea level, June 15, 1990; lowest measured, 19.50 ft above sea level, September 30, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER
OCT 25 NOV 23	20.34	DEC 22 MAR 28	20.56 21.86 G	APR 1 20	21.87 21.85	MAY 25 JUN 21	21.43 21.35	JUL 28	20.72	SEP 26	20.63

404846072533203. Local number, S 84808.1

LOCATION.--Lat 40°48'46", long 72°53'32", Hydrologic Unit 02030202, at Southhaven County Park, north side of dirt road leading from picnic area to Carman's River, 240 ft west of river, eastern middle well, Yaphank.

Owner: Suffolk County Department of Health Services.

AQUIFER. -- Magothy (water-table).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 109 ft, screened 101 to 106 ft.

INSTRUMENTATION.--Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 17.5 ft above sea level. Measuring point: Top of 4-in. PVC coupling,

0.21 ft above land-surface datum.

PERIOD OF RECORD. -- March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 11.73 ft above sea level, March 4, 1991;

lowest measured, 10.31 ft above sea level, August 22, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	10.69 10.63	DEC 22 MAR 28	10.99 11.58 G	APR 1 20	11.56 11.46	MAY 24 JUN 17	11.19 10.99	JUL 20 AUG 26	10.73 10.68	SEP 26	10.63

G MEASUREMENT BY ANOTHER AGENCY

404846072533202. Local number, S 85712.1

LOCATION.--Lat 40°48'46", long 72°53'32", Hydrologic Unit 02030202, at Southhaven County Park, north side of dirt road leading from picnic area to Carman's River, 246 ft west of river, western middle well, Yaphank.

Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS.--Drilled steel observation well, diameter 2 in., depth 22 ft, screened 21 to 22 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 17.5 ft above sea level. Measuring point: Top of 2-in. steel coupling,

0.52 ft below land-surface datum.

PERIOD OF RECORD. -- March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.19 ft above sea level, June 9, 1988; lowest measured, 10.17 ft above sea level, August 22, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23	10.55 10.51	DEC 22 MAR 28	10.86 11.47 G	APR 1 20	11.42 11.29	MAY 24 JUN 17	11.05 10.86	JUL 20 AUG 26	10.61 10.57	SEP 26	10.53

G MEASUREMENT BY ANDTHER AGENCY

404433073244906. Local number, S 87041.1

LOCATION.--Lat 40°44'33", long 73°24'49", Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, northern most well, Pinelawn. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Lloyd (confined).

WELL CHARACTERISTICS.--Drilled PVC observation well, diameter 4 in., depth 983 ft, screened 968 to 978 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 86.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling,

0.28 ft above land-surface datum.

PERIOD OF RECORD. -- June 1987 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 28.63 ft above sea level, March 20, 1991; lowest measured, 22.84 ft above sea level, August 22, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 23 DEC 22	25.63 25.88 26.74	JAN 31 FEB 28	26.63 26.49	MAR 23 30	26.63 G 26.48	APR 20 MAY 24	26.61 26.76	JUN 17 JUL 20	26.23 25.14	AUG 26 SEP 26	24.96 24.99

405801072354405. Local number, S 91812.1

LOCATION. -- Lat 40°58'01", long 72°35'44", Hydrologic Unit 02030202, at east side of Manor Lane, south of Sound Avenue, 168 ft north of power lines, northern middle well, Jamesport. Owner: Suffolk County Department of

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled PVC observation well, diameter 4 in., depth 99 ft, screened 91 to 96 ft.

INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 53.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.20 ft below land-surface datum.

REMARKS.--Prior to October 1993 the location, datum, extremes, and water-level data listed for well S 91812.1 was actually that of well S 91813.1.

PERIOD OF RECORD. -- September 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.78 ft above sea level, November 21, 1989; lowest measured, 5.75 ft above sea level, November 4, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26	8.75	DEC 22	8.82	FEB 22	9.49		10.75	JUN 21	10.09	SEP 1	8.73
NOV 26	8.55	FEB 1	9.27	MAR 30	10.70	MAY 25	10.62	JUL 27	8.96	28	8.54

405801072354404. Local number, S 91813.1

LOCATION .-- Lat 40°58'01", long 72°35'44", Hydrologic Unit 02030202, at east side of Manor Lane, south of Sound Avenue, 175 ft north of power lines, northern most well, Jamesport. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS. -- Drilled PVC observation well, diameter 4 in., depth 199 ft, screened 191 to 196 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 53.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.41 ft below land-surface datum.

REMARKS.--Prior to October 1993 the location, datum, extremes, and water-level data listed for well S 91813.1 was actually that of well S 91812.1.

PERIOD OF RECORD. -- September 1988 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 11.73 ft above sea level, May 15, 1990; lowest measured, 7.56 ft above sea level, July 22, 1992.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

DATE	WATER LEVEL	DATE	WATER LEVEL								
OCT 26	8.13	DEC 22	8.32	FEB 22	8.89	APR 21	10.01	JUN 21	9.31	SEP 1 28	8.20
NOV 26	8.00	FEB 1	8.77	MAR 30	9.96	MAY 25	9.89	JUL 27	8.44		8.03

410038072284202. Local number, S 91814.1 LOCATION.--Lat 40°58'01", long 72°35'44", Hydrologic Unit 02030202, at east side of Manor Lane, south of Sound Avenue, 155 ft north of power lines, southern most well, Jamesport. Owner: Suffolk County Department of Health Services.

AQUIFER. -- Upper Glacial (water-table).

WELL CHARACTERISTICS .-- Augered PVC observation well, diameter 4 in., depth 77 ft, screened 67 to 72 ft. INSTRUMENTATION. -- Measurement with chalked tape by USGS personnel.

DATUM.--Land-surface datum is 53.0 ft above sea level. Measuring point: Top of 4-in. PVC coupling, 0.04 ft above land-surface datum.

PERIOD OF RECORD. -- September 1988 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 12.69 ft above sea level, June 18, 1990; lowest measured, 5.77 ft above sea level, October 31 and November 4, 1988.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 26	8.75	FEB 1	9.27	MAR 16	10.49 G	APR 21	10.75	JUN 21	10.10	SEP 1	8.73
NOV 26 DEC 22	8.55 8.82	22	9.49	30	10.70	MAY 25	10.63	JUL 27	8.95	28	8.56

GROUND-WATER LEVELS: KINGS COUNTY

STATION NUMBER	LOCAL NU	ARER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW URFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
STATION NOMBER	LUCAL NO	noch (LATTIONL	LUNGTTODL	ONIT CODE	KLCUKD	(ri, mor)	101	DOTTOM	DATE	(11, 1102)
404057073583701	K 19). 1	404058	735840	112JMC0	1954	46.9	144		11-22-93 06-28-94	8.35 8.97
403451073585601	K 2859	9. 1	403451	735856	211LLYD	1981	8.0	474	500	03-30-94	4.97
403750073571701	K 313	2. 1	403750	735717	112JMC0	1982	31.0	259	300	03-24-94	6.00
403612073573208	K 3159	. 1	403612	735732	112GLCLU	1970	20.0	32	35	03-24-94	4.47
403605073571201	K 3247	7. 1	403605	735712	112GLCLU	1980	18.6	21	24	11-22-93 03-24-94 06-29-94	3.83 4.31 3.64
403712074001608	K 3248	3. 1	403712	740016	112GLCLU	1980	40.4	42	45	11-22-93 03-24-94 06-30-94	4.81 5.25 5.21
403442073575401	K 3250). 1	403443	735755	112GLCLU	1980	9.2	21	24	11-22-93 03-24-94 06-29-94	1.46 1.90 1.70
403827073535201	K 325	5. 1	403827	735352	112GLCLU	1980	16.8	21	24	11-22-93 03-24-94 06-29-94	4.42 4.95 4.42
403949073532108	K 3256	3. 1	403949	735321	112GLCLU	1980	27.0	26	29	11-22-93 03-24-94 06-29-94	5.28 6.01 5.69
404017073544501	K 325	7. 1	404017	735445	112GLCLU	1980	49.0	47	50	11-22-93 03-24-94 06-29-94	9.94 10.42 10.58
404057073585901	K 3259	9. 1	404056	735900	112GLCLU	1980	23.0	27	30	11-22-93 03-25-94 06-28-94	12.15 14.42 13.99
404325073563508	K 326). 1	404325	735635	112GLCLU	1980	28.7	20	23	11-22-93 06-28-94	9.93 10.89
404025073515101	K 327	1. 1	404025	735151	112GLCLU	1981	22.4	31	34	03-24-94	4.52
403817073580101	K 327	3. 1	403817	735801	112GLCLU	1981	33.5	36	39	11-22-93 03-24-94 06-30-94	6.94 7.65 7.75
404037073584001	K 330	l. 1	404036	735840	112GLCLU	1984	60.6	65	70	10-28-93 11-18-93 12-27-93 02-22-94 03-25-94 04-26-94 05-17-94 06-20-94 07-27-94 08-24-94 09-21-94	16.30 15.68 15.00 15.29 15.83 16.30 16.81 16.79 17.01 16.44 16.49

STATION NUMBER	LOCAL NUMBER	LATITUDE LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)		INTERVAL BELOW URFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405110073430401	N 36. 2	405109 734303	112PGQF	1936	46.0	200	214	04-28-94	4.81
405244073352301	N 119. 1	405243 733524	211LLYD	1945	79.7	497	571	04-27-94	37.54
405355073355901	N 124. 1	405355 733600	211LLYD	1946	9.7			05-25-94	15.44
404940073392701	N 662. 1	404940 733927	211LLYD	1977	10.6	347	363	10-06-93 03-31-94 06-07-94 09-19-94	14.50 15.68 13.47 12.36
404527073353301	N 845. 1	404527 733533	211MGTY	1941	110.0		204	04-19-94	67.18
405036073391201	N 906. 1	405035 733912	211LLYD	1946	11.1	319	419	05-24-94	15.93
403748073422603	N 1115. 3	403748 734226	112GLCLU	1990	22.0		-	10-18-93 11-19-93 01-03-94 03-28-94 04-29-94 05-25-94 06-15-94 07-26-94 08-23-94	8.72 8.66 8.93 10.81 11.01 10.77 10.54 9.69 10.16 10.42
405048073404303	N 1118.21	405048 734043	112GLCLU	1961	147.0	73	82	10-06-93 12-29-93 03-31-94 06-07-94 09-19-94	79.19 78.09 78.89 80.64 79.65
404835073404004	N 1120. 4	404835 734040	112GLCLU	1976	116.0	95	100	10-05-93 10-18-93 11-16-93 12-14-93 12-29-93 02-28-94 03-31-94 04-28-94 05-25-94 06-07-94 06-22-94 07-21-94 09-19-94	46.95 46.93 46.74 46.72 46.76 46.70 46.89 46.94 47.20 47.25 47.17 46.98 46.73 46.62
403942073371301	N 1147. 2	403942 733713	112GLCLU	1966	27.0	21	24	03-30-94	14.59
405318073375501	N 1149. 1	405318 733755	112PGFG	1941	89.0	77	82	10-18-93 11-15-93 12-14-93 03-30-94 04-28-94 05-26-94 06-09-94 06-21-94 07-21-94 08-19-94	41.71 41.39 41.14 40.76 41.11 41.82 41.89 41.90 41.98 42.17
405007073373101	N 1153. 1	405007 733731	211MGTY	1940	122.0		86	12-27-93 03-30-94 06-09-94	54.70 55.25 56.33

GROUND-WATER LEVELS: NASSAU COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	R LATITUDE LONGITUD	AQUIFER E UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404800073371201	N 1155. 1	404800 733712	211MGTY	1941	261.0	•	230	10-25-93 11-22-93 12-20-93 12-22-93 02-02-94 02-25-94 04-19-94 05-19-94 06-07-94 06-20-94 07-20-94 08-24-94	64.98 64.97 64.94 64.89 64.96 64.92 65.07 65.17 65.14 64.98 64.49 64.29 64.12
404736073353101	N 1176. 1	404736 733531	211MGTY	1940	195.0	193	198	12-27-93 03-30-94 06-09-94	75.10 74.93 74.78
404037073335303	N 1184. 3	404036 733351	112GLCLU	1969	32.0	26	31	03-30-94	20.31
405246073343301	N 1189. 1	405246 733433	112PGFG	1941	67.0			12-17-93 03-29-94 06-08-94	58.28 61.23 61.21
404614073330504	N 1195. 5	5 404614 733305	211MGTY	1976	148.0	111	116	10-25-93 11-22-93 12-20-93 02-01-94 03-30-94 04-20-94 05-18-94 06-17-94 07-20-94 08-24-94 09-20-94	76.32 76.05 75.88 76.14 76.35 76.80 76.66 76.41 75.65 75.81 75.11
404202073315105	N 1201. 3	3 404202 733151	112GLCLU	1961	56.0	26	30	10-25-93 11-22-93 12-20-93 02-01-94 02-18-94 03-30-94 05-18-94 05-18-94 06-17-94 07-20-94 08-24-94	34.54 34.38 34.79 35.62 35.17 36.82 37.39 38.36 36.99 35.42 35.51 34.46
404015073312702	N 1204. 2	404015 733127	112GLCLU	1975	21.0	37	40	04-01-94	12.65
405228073322901	N 1207. 1	405228 733229	112GLCLU	1938	23.0		44	03-29-94	23.63
404542073282803	N 1232. 3	3 404542 732828	211MGTY	1975	111.0	52	57	10-25-93 11-22-93 12-20-93 02-18-94 04-20-94 05-19-94 06-17-94 07-20-94 08-24-94 09-20-94	69.56 69.46 69.52 70.77 70.82 70.58 70.20 69.39 69.17 68.77

STATION NUMBER	LOCAL NUMBER	LATITUDE LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404447073282201	N 1233. 3	404447 732822	112GLCLU	1961	89.0	37	40	04-07-94	62.52
404301073275104	N 1236. 3	404301 732751	112GLCLU	1975	70.0	47	52	04-01-94	43.07
404133073253802	N 1252. 3	404133 732538	112GLCLU	1958	31.0	21	24	04-07-94	22.93
404102073283401	N 1260. 1	404102 732834	112GLCLU	1936	33.0			04-01-94	20.49
403948073272704	N 1278. 2	403948 732727	112GLCLU	1965	13.0	11	14	10-18-93 11-17-93 12-20-93 03-29-94 04-26-94 05-16-94 06-15-94 07-26-94 08-22-94	5.16 5.31 5.81 6.22 5.81 5.50 5.25 4.91 5.27
404024073272804	N 1280. 2	404024 732728		1965	20.0	1.55		04-01-94	11.22
404713073410501	N 1328. 2	404713 734105	211LLYD	1946	182.0	652	742	04-28-94	9.66
403637073434502	N 1422. 2	403637 734345	112GLCLU	1964	16.0	-		10-18-93 11-19-93 01-03-94 03-28-94 04-29-94 05-25-94 06-15-94 07-26-94 08-23-94	6.37 6.30 6.43 7.87 7.41 7.39 7.07 6.58 7.36 7.65
404008073380501	N 1438. 2	404009 733804	112GLCLU	1981	35.0			03-30-94	17.29
403926073381601	N 1439. 2	403925 733817	112GLCLU	1984	27.0	26	29	03-30-94	11.96
404032073360603	N 1442. 3	404032 733606	112GLCLU	1967	29.0	21	24	10-26-93 11-22-93 12-27-93 03-30-94 04-19-94 05-27-94 06-20-94 07-20-94 08-26-94 09-21-94	18.41 18.37 18.86 20.99 21.03 20.71 19.96 18.89 19.29 18.55
404038073400101	N 1459. 2	404038 734001	112GLCLU	1956	36.0	26	29	03-30-94	17.26
404512073295902	N 1461. 2	404512 732959		1983	131.0	81	86	04-01-94	69.20
404052073414201	N 1613. 1	404052 734142	211MGTY	1968	25.0		495	03-30-94	13.73
404908073410901	N 1715. 2	404907 734111	211LLYD	1945	102.0	430	480	04-26-94	-1.01
404516073343401	N 2602. 2	404518 733433	211LLYD	1953	116.0	760	800	04-19-94	18.84
404943073415201	N 2635. 1	404943 734152	112GRDR	1948	41.0	150	154	10-05-93 12-29-93 03-31-94 06-07-94 09-19-94	25.04 24.54 24.94 25.38 24.98

GROUND-WATER LEVELS: NASSAU COUNTY--Continued

								00055	THEFT		
STATION NUMBER	LOCAL	NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(F)	N INTERVAL T BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404445073365101	N	2748. 3	404445	733651	211MGTY	1982	94.0	460	510	04-14-94	59.60
404850073344501	N	3475. 1	404849	733445	211MGTY	1955	208.0	432	482	04-12-94	71.89
404359073283601	N	3554. 1	404359	732836	211MGTY	1968	90.0	265	269	10-25-93 11-22-93 12-20-93 02-18-94 04-01-94	53.26 53.05 53.19 53.59 54.40
										04-20-94 05-18-94 06-17-94 07-20-94 08-24-94 09-20-94	54.91 55.15 53.99 52.81 52.94 52.34
403842073420201	N	3707. 3	403842	734202	112GLCLU	1968	8.0	15	17	03-28-94	2.62
403823073422301	N	3710. 1	403823	734322	112GLCLU	1968	6.0	15	18	03-28-94	1.28
403859073430501	N	3711. 3	403859	734305	112GLCLU	1968	8.0	21	24	03-28-94	2.08
403621073441801	N	3862. 2	403621	734418	211MGTY	1968	8.0	295	306	03-28-94	3.84
403621073441702	N	4062. 1	403621	734418	112JMC0	1968	8.0	137	142	03-28-94	3.90
403904073324101	N	4149. 2	403904	733241	211MGTY	1968	4.8	546	562	04-13-94	9.40
404855073404701	N	4223. 2	404855	734034	112GLCLU	1955	192.0	273	326	04-26-94	25.84
404753073440303	N	4266. 2	404752	734403	211LLYD	1954	57.0	377	393	12-28-93 03-30-94 06-08-94 09-20-94	5.75 6.55 -0.49 -2.83
405221073300701	N	4400. 2	405154	732958	211MGTY	1965	36.0	214	302	04-27-94	29.50
404306073332901	N	4448. 1	404307	733328	211MGTY	1964	79.0	500	550	04-14-94	42.71
403547073300901	N	4547. 1	403547	733009	211MGTY	1968	15.0	216	256	05-19-94	6.06
405325073351401	N	5152. 1	405326	733514	112PGQF	1955	44.1	305	355	04-27-94	24.04
404941073403101	N	5210. 1	404941	734031	112GLCLU	1955	200.0	292	302	04-26-94	21.35
405129073361501	N	5762. 2	405129	733615	211MGTY	1956	145.0	221	280	05-27-94	56.74
404820073381401	N	5883. 1	404820	733814	211MGTY	1956	208.0	210	215	10-05-93 03-31-94 06-07-94	49.05 49.43 49.77
404707073305301	N	6190. 2	404707	733053	211MGTY	1961	177.0	550	600	04-19-94	77.63
404517073310201	N	6192. 2	404517	733102	211MGTY	1961	132.0	575	626	04-19-94	65.76
403601073390703	N	6366. 3	403601	733907	112GLCLU	1966	7.0			03-29-94	1.09
403642073433201	N	6510. 1	403642	734332	211MGTY	1958	8.0	455	461	03-28-94	-2.05
404630073293801	N	6580. 2	404630	732938	211MGTY	1964	158.0	523	596	05-06-94	72.47
405242073352201	N	6670. 1	405242	733522	112GLCLU	1968	81.0		7,5	12-27-93 03-30-94 06-09-94	73.47 74.35 74.61

STATION NUMBER	LOCAL NUME	BER LATITUD	E LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
403517073430610	N 6701.	2 403517	734306	211RCNF	1959	11.0	822	832	10-18-93 11-19-93 03-28-94 05-25-94 06-15-94	8.73 8.65 8.76 9.26 8.57
403517073430703	N 6703.	1 403517	734306	211MGTY	1968	10.0	468	478	03-28-94	2.15
403517073430704	N 6704.	1 403517	734306	211MGTY	1968	10.0	284	294	03-28-94	5.42
403713073415905	N 6793.	1 403712	734159	112GLCLU	1992	6.0	9	11	10-18-93 11-19-93 01-31-94 04-29-94 05-31-94 06-15-94	4.64 4.99 5.13 5.08 4.98 5.00
403533073353203	N 6851.	1 403533	733532	211MGTY	1968	7.0	551	556	03-31-94	5.55
403533073353204	N 6852.	1 403533	733532	211MGTY	1968	7.0	258	263	03-31-94	0.95
403533073353205 403805073395302	N 6853.		733532 733953	211MGTY 211RCNF	1968 1987	7.0 6.0	716	132 726	10-18-93 11-17-93 12-20-93 01-31-94 02-17-94 03-31-94 04-26-94 05-16-94 06-15-94 07-26-94 08-23-94 09-22-94	4.76 4.34 4.21 4.42 3.80 4.06 4.64 4.29 3.87 4.07 4.70 4.26
404635073331001	N 7030.	1 404635	733311	211MGTY	1964	158.0	480	530	04-12-94	78.67
405433073344602	N 7190.			112PGQF	1961	14.0	237	240	10-18-93 11-15-93 12-14-93 12-17-93 01-25-94 03-29-94 04-28-94 05-26-94 06-08-94 06-21-94 08-19-94	10.89 11.36 10.27 10.23 9.43 12.02 12.00 11.52 10.61 7.71 5.91 7.85
403838073405502	N 7235.	2 403838	734055	112GLCLU	1968	25.0	43	45	03-29-94	7.08
405018073395301	N 7244.	1 405018	733954	112PGQF	1981	13.9	292	302	10-05-93 12-29-93 03-31-94 04-27-94 06-07-94 09-19-94	13.05 13.99 14.11 14.43 12.19 11.18
404544073265502	N 7397.	2 404544	732655	112GLCLU	1984	154.0	96	101	04-01-94	67.35
404855073360102	N 7450.	2 404855	733601	211MGTY	1975	176.0		134	12-27-93 03-30-94 06-09-94	71.71 71.87 72.01

GROUND-WATER LEVELS: NASSAU COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE LONGI	AQUIFER FUDE UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW URFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404751073321901	N 7478. 1	404751 7332	19 211MGTY	1968	217.0	160	165	12-27-93 03-30-94 06-09-94	80.93 81.25 80.18
404852073372802	N 7513. 1	404652 7337	27 211MGTY	1964	154.0	420	470	04-19-94	64.52
404652073394602	N 7553. 2	404652 73394	46 211MGTY	1964	153.0	396	406	12-28-93 03-31-94 06-07-94	26.40 27.53 41.43
404531073415401	N 7593. 1	405045 73283	30 211MGTY	1970	253.0	408	468	05-06-94	45.67
404345073411901	N 7650. 1	404344 73413	21 211MGTY	1967	97.0	400	440	05-04-94	41.82
404611073401005	N 7651. 2	404611 7340	10 211MGTY	1970	162.0	321	405	04-28-94	43.80
405204073345401	N 7665. 1	405203 73350	00 112GLCLU	1970	218.0	320	370	05-05-94	49.26
403805073395303	N 7675. 1	403805 7339	3 112GLCLU	1974	6.0	28	34	03-29-94	2.15
403805073395304	N 7676. 1	403805 7339	3 112GLCLU	1974	5.5	7	10	03-29-94	2.35
405010073305901	N 7773. 1	405010 7330	59 211MGTY	1969	230.0	500	560	04-12-94	62.28
404757073283301	N 8043. 1	404754 73283	31 211MGTY	1969	222.0	515	688	04-12-94	76.18
403910073341701	N 8203. 1	403909 7334	16 112GLCLU	1973	7.0	13	16	03-29-94	3.33
404156073262004	N 8214. 2	404156 73265	20 211MGTY	1969	37.0	605	686	04-14-94	24.49
404039073303201	N 8412. 1	404039 73303	32 112GLCLU	1968	26.0	25	28	04-07-94	16.74
403637073431101	N 8644. 1	403637 7343	9 112GLCLU	1970	18.0	21	24	03-28-94	6.55
404144073285201	N 8669. 1	404143 7328	50 112GLCLU	1970	42.0	30	35	04-01-94	29.99
403522073371903	N 8698. 1	403522 7337	19 112GLCLU	1970	9.0	16	20	10-18-93 11-17-93 12-20-93 01-31-94 03-31-94 04-26-94 05-16-94 06-15-94 07-26-94 08-23-94 09-22-94	3.84 3.74 3.64 3.77 3.68 3.66 3.62 3.58 3.50 3.45
403631073391002	N 8715. 1	403631 7339	10 112GLCLU	1971	7.0	16	18	03-29-94	3.24
405145073372901	N 8716. 1	405145 7337	29 112GLCLU	1970	47.0			03-30-94 06-09-94	40.14 39.95
403936073303501	N 8717. 1	403936 73303	35 112GLCLU	1974	9.0	11	15	10-18-93 11-17-93 12-20-93 01-31-94 03-29-94 04-26-94 05-16-94 06-15-94 07-26-94 08-22-94 09-22-94	3.59 3.80 4.34 4.45 5.23 4.47 4.15 3.77 3.44 3.85 3.39
405124073421002	N 8766, 2	405124 7342	10 112PGQF	1982	92.5	320	360	04-28-94	0.70

STATION NUMBER	LOCAL NUMBER	LATITUDE LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	SCREEN IN (FT BE LAND SUR TOP	LOW	DATE	WATER LEVEL (FT, MSL)
403925073261101	N 8876. 1	403923 732611	112GLCLU	1972	5.0	30	35	03-29-94	2.59
404730073423101	N 8877. 1	404730 734231	112GLCLU	1972	12.0	71	76	10-18-93 11-16-93 12-14-93 12-28-94 03-30-94 04-28-94 05-25-94 06-08-94 06-22-94 07-21-94 08-23-94 09-19-94	9.76 10.40 9.89 8.83 9.58 10.19 10.33 10.06 10.38 10.21 10.47 10.20
405055073430701	N 8891. 1	405047 734314	112GLCLU	1972	60.0	67	72	10-05-93 12-29-93 03-31-94 06-07-94 09-19-94	7.94 8.02 9.06 9.94 8.37
404723073443501	N 8933. 1	404723 734435	112PGQF	1973	32.0	143	148	12-28-93 03-30-94 06-08-94- 09-20-94	9.62 12.88 12.10 11.33
404313073352201	N 8944. 1	404313 733522	112GLCLU	1974	80.0	50	55	03-30-94	51.11
404606073434101	N 8970. 1	404606 734341	112GLCLU	1973	154.0	188	193	03-30-94 03-31-94 06-22-94 09-20-94	29.00 25.21 29.43 28.58
405153073420601	N 8994. 1	405152 734206	112PGQF	1981	21.0	298	308	10-05-93	5.44
403822073363302	N 9054. 1	403822 733633	112GLCLU	1974	14.0	35	40	10-18-93 11-17-93 12-20-93 01-31-94 03-29-94 04-26-94 05-16-94 06-15-94 07-26-94 08-22-94 09-22-94	4.29 4.52 4.88 5.27 6.22 5.96 5.63 5.28 4.52 4.74
405204073363403	N 9086.3	405204 733634	211MGTY	1983	143.0	220	270	04-07-94 06-10-94	38.87 50.28
404324073342201	N 9078. 1	404324 733422	112GLCLU	1975	84.0	60	65	10-26-93 11-22-93 12-27-93 01-25-94 03-30-94 04-19-94 05-27-94 06-21-94 07-20-94 08-26-94 09-21-94	51.21 50.99 50.85 50.90 52.42 52.91 53.00 52.45 51.64 51.41 50.90
404740073285701	N 9089. 1	404719 732857	211MGTY	1975	173.0	173	178	10-25-93 11-22-93 12-20-93 02-01-94 03-30-94	77.87 77.83 77.73 77.78 77.92

GROUND-WATER LEVELS: NASSAU COUNTY--Continued

				AQUIFER	START OF	ALTITUDE OF LAND SURFACE	(FT LAND S	INTERVAL BELOW URFACE)		WATER LEVEL
STATION NUMBER	LOCAL NUMBE	R LATITUDE	ELONGITUDE	UNIT CODE	RECORD	(FT, MSL)	TOP	BOTTOM	DATE	(FT, MSL)
404740073285701	N 9089.	1 404719	732857	211MGTY	1975	173.0	173	178	04-20-94 05-19-94 06-17-94 07-20-94 08-24-94 09-20-94	78.07 78.04 77.50 76.80 76.68 76.27
404828073444501	N 9098.	1 404828	734445	112GLCLU	1976	59.0	67	72	12-28-93 03-30-94 06-08-94 09-20-94	18.91 19.85 20.61 19.71
405113073361301	N 9115.	1 405113	733613	211MGTY	1970	145.0	105	110	12-27-93 03-30-94 06-10-94	57.35 57.81 58.21
405131073405802	N 9116.	1 405131	734058	112GLCLU	1976	15.0	26	31	10-05-93 12-29-93 03-31-94 06-07-94 09-19-94	8.12 7.82 7.50 8.81 8.31
405144073432902	N 9118.	1 405144	734329	112GLCLU	1976	51.0	95	100	10-05-93 12-29-93 03-31-94 06-07-94 09-19-94	3.65 3.87 4.86 4.87 3.80
405416073325701	N 9127.	1 405416	733257	112GLCLU	1976	10.0	36	41	12-17-93 02-29-94 06-08-94	4.25 3.24 2.36
405158073300101	N 9154.	1 405158	733001	112PGFG	1976	34.0	61	66	10-18-93 11-15-93 12-14-93 12-17-93 03-29-94 04-28-94 05-26-94 06-08-94 06-21-94 07-21-94	23.98 23.39 23.58 23.71 23.90 24.15 24.40 23.63 23.25 22.89
									08-19-94 09-20-94	23.16 22.41
404633073345401	N 9168.	1 404633	733454	211MGTY	1976	165.0	212	217	12-29-93 06-07-94	86.43 86.91
405148073320201	N 9189.	1 405148	733202	112GLCLU	1981	59.0	37	42	12-17-93 03-29-94 06-08-94	43.96 44.45 44.32
404703073370202	N 9190.	1 404703	733702	211MGTY	1977	156.0	128	133	10-25-93 11-22-93 12-20-93 12-28-93 02-25-94 03-30-94 05-19-94 06-07-94 06-20-94 07-20-94 08-24-94 09-20-94	67.10 67.09 66.92 67.02 66.94 66.90 67.29 67.15 67.66 66.96 66.97 67.66

STATION NUMBER	LOCAL NUMBER	LATITUDE LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)		INTERVAL BELOW URFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404331073330801	N 9225. 1	404331 733308	112GLCLU	1980	90.0	39	44	03-30-94	53.36
404430073331001	N 9234. 1	404430 733310	211MGTY	1980	107.0	200	205	03-30-94	63.93
404430073331002	N 9235. 1	404430 733310	211MGTY	1980	107.0	100	105	03-30-94	64.01
404430073331003	N 9236. 1	404430 733310	112GLCLU	1980	107.0	45	50	03-30-94	64.06
404735073424101	N 9308. 2	404735 734240	211LLYD	1981	15.2	307	410	05-05-94	4.58
404112073421003	N 9309. 1	404112 734210	112GLCLU	1977	42.7	54	59	03-30-94	18.85
404748073385705	N 9313. 1	404748 733857	112GLCLU	1977	58.0	140	59	10-05-93 12-29-93 03-31-94 06-07-94 09-19-94	44.98 45.96 46.29 46.05 44.71
405350073345401	N 9314. 1	405350 733454	112GLCLU	1977	32.0	49	54	12-17-93 04-08-94 06-08-94	20.08 23.11 22.63
405326073302102	N 9316. 1	405326 733021	112GLCLU	1977	25.0	53	58	10-18-93 11-15-93 12-14-93 12-17-93 03-29-94 04-28-94 05-26-94 06-08-94 06-21-94 07-21-94 08-19-94 09-20-94	3.86 3.66 4.28 4.23 4.14 4.07 4.48 3.86 3.76 3.72 3.60 3.54
404928073313401	N 9317. 1	404928 733134	211MGTY	1977	218.0	189	194	10-25-93 11-22-93 12-20-93 04-19-94 05-19-94 06-10-94 07-20-94 08-24-94 09-20-94	68.82 68.92 69.02 69.42 69.38 69.05 68.97 68.15 67.79 67.51
404934073334801	N 9353.1	404934 733348	211MGTY	1978	143.0	96	101	10-25-93 11-22-93 12-20-93 03-30-94 04-19-94 05-19-94 06-09-94 06-20-94 07-20-94 08-24-94 09-20-94	76.07 75.86 75.61 75.51 75.88 75.89 75.93 75.73 75.54 76.11 75.10
405126073421002	N 9446. 2	405127 734210	112PGQF	1982	97.0	327	367	04-28-94	-0.09
404125073325006	N 9473. 1	404125 733250	112GLCLU	1990	42.0	37	42	03-30-94	29.79
403526073441301	N 9474. 1	403526 734413	112GLCLU	1990	9.0	28	33	03-28-94	3.18
404208073433401	N 9476. 1	404208 734334	112GLCLU	1978	59.0	73	78	11-24-93 03-30-94	20.17 20.85

GROUND-WATER LEVELS: NASSAU COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	SCREEN IN (FT BE LAND SUR TOP	LOW	DATE	WATER LEVEL (FT, MSL)
405428073350302	N 9478. 1	405428 733503	112GLCLU	1978	9.0	19	24	10-18-93 11-15-93 12-14-93 12-17-93 03-29-94 04-28-94 05-26-94 06-08-94 06-21-94 07-21-94 08-19-94	5.43 5.40 6.11 6.18 6.91 6.30 6.60 5.63 4.74 5.02 5.53 5.00
404944073393603	N 9608. 2	404944 733936	112GLCLU	1983	17.0	132	151	10-05-93 12-29-93 03-31-94 06-07-94 09-19-94	13.69 14.01 17.48 16.76 15.18
404154073374003	N 9648. 1	404154 733740	112GLCLU	1979	53.0	46	51	03-30-94	31.64
404219073293402	N 9658. 1	404219 732934	112GLCLU	1988	56.0	47	52	04-01-94	38.36
404347073260702	N 9662. 1	404347 732607	112GLCLU	1981	68.8	52	57	10-25-93 11-22-93 12-20-93 02-18-94 04-01-94 04-20-94 05-18-94 06-17-94 07-20-94 08-24-94 09-20-94	49.78 49.56 49.88 49.38 51.73 52.16 51.87 51.27 50.10 49.76 49.14
404136073303801	N 9664. 1	404136 733038		1987	36.0	26	31	04-01-94	26.31
404202073354306	N 9666. 1	404202 733543	112GLCLU	1979	55.0	42	47	03-30-94	37.82
404320073305602	N 9667. 1	404320 733056	112GLCLU	1985	76.0	50	55	04-01-94	49.47
404111073353303	N 9668. 1	404111 733533	112GLCLU	1979	49.0	45	50	03-30-94	28.63
405142073375603	N 9670. 1	405142 733756	112GLCLU	1979	33.0	37	42	12-27-93 03-30-94 06-09-94	23.89 24.45 23.96
404707073385003	N 9711. 1	404707 733850	112GLCLU	1979	145.0	-	146	10-26-93 11-22-93 12-23-93 12-28-93 01-25-94 03-30-94 04-19-94 05-25-94 06-07-94	56.01 56.14 56.51 56.50 56.48 57.26 57.48 57.72 57.66
404707073385003	N 9711. 1	404707 733850	112GLCLU	1979	145.0	-	146	06-20-94 07-18-94 08-26-94 09-21-94	57.28 56.44 56.15 55.68
404846073440901	N 9776. 1	404846 734410	211LLYD	1982	30.5	268	279	12-28-93 06-01-94 06-08-94 09-20-94	-0.50 -8.05 -8.77 -11.18

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404817073443901	N 9820. 1	404816	734450	211LLYD	1982	68.9	308	313	12-28-93 03-30-94 06-08-94 09-20-94	11.82 12.78 11.29 10.65
404901073443005	N 9909. 1	404901	734430	112GLCLU	1990	17.9	18	40	12-28-93 03-30-94 06-08-94 09-20-94	9.43 10.11 9.70 9.56
404435073305701	N 9918. 1	404435	733057	211MGTY	1982	112.0	70	75	10-25-93 11-22-93 12-20-93 02-17-94 04-20-94 05-18-94 06-17-94 07-20-94 08-24-94 09-20-94	63.05 62.84 62.63 62.53 63.79 64.25 64.09 63.43 63.19 62.70
404253073395601	N 9945. 1	404253	733956	112GLCLU	1982	76.0	59	64	10-26-93 11-22-93 12-23-93 02-17-94 03-31-94 04-19-94 06-01-94 06-20-94 07-20-94 08-26-94 09-21-94	39.00 38.80 38.68 38.96 39.76 40.12 40.46 40.08 39.45 39.21 38.88
404319073432901	N 9947. 1	404319	734329	112GLCLU	1982	81.7	101	106	11-24-93	28.12
404446073372401	N 9962. 1	404446	733724	112GLCLU	1982	111.0	60	65	03-30-94	60.82
404404073363101	N 9967. 1	404404	733631	112GLCLU	1982	82.0	48	54	03-30-94	57.61
404421073262301	N 9980. 1	404421	732623	112GLCLU	1986	81.0	50	55	04-01-94	55.69
404404073420201	N 9983. 1	404404	734202	211MGTY	1982	108.0	91	96	10-26-93 11-22-93 12-23-93 03-30-94 04-19-94 05-25-94 06-20-94 07-20-94 08-26-94 09-21-94	42.10 41.93 41.71 41.82 42.00 42.45 42.58 42.30 42.21 42.02
403959073434301	N 10001. 1	403959	734343	112GLCLU	1990	16.0		-	11-24-93 03-30-94	7.21 8.87
403810073381201	N 10006. 1	403810	733812	112GLCLU	1990	11.0	21	26	03-29-94	5.42
403926073333001	N 10007. 1	403926	733330		1981	12.0			03-30-94	8.59
403847073401101	N 10010. 1	403847	734011	112GLCLU	1990	23.0	35	40	03-29-94	8.93
403950073361403	N 10011. 1	403950	733614	112GLCLU	1981	18.5	21	26	03-30-94	12.93
404855073444801	N 10100. 1	404855	734448	112PLSC	1985	28.9	300	310	12-28-93 03-30-94 06-08-94 09-20-94	9.81 10.51 9.04 8.47

GROUND-WATER LEVELS: NASSAU COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)		INTERVAL BELOW JRFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404845073440901	N 10101. 1	404845	734409	211LLYD	1985	35.2	270	280	03-30-94 06-01-94	-1.96 -8.02
403518073344401	N 10134. 1	403518	733444	112GLCLU	1990	11.0			03-31-94	4.29
404821073430501	N 10192. 1	404821	734305	211LLYD .	1985	24.0		47	12-28-93 03-30-94 06-08-94 09-20-94	3.82 3.35 -8.95 -10.61
405320073370101	N 10199. 1	405320	733630	112GLCLU	1909	70.0	46	56	10-18-93 11-15-93 12-14-93 12-27-93 03-30-94 04-28-94 05-26-94 06-09-94 06-21-94 07-21-94 08-19-94	57.94 58.31 58.75 58.99 62.22 61.43 60.17 60.65 60.20 59.22 58.64 58.47
405001073372301	N 10245. 1	405001	733723		1990	96.0	-		03-30-94 06-09-94	45.56 46.52
404900073373301	N 10246. 1	404900	733733		1990	159.0			12-27-93 03-30-94 06-09-94	56.88 57.34 57.47
404539073400407	N 10291. 1	404539	734004	211MGTY	1991	124.8	+	+	12-29-93 03-31-94 06-07-94	47.32 47.45 48.05
403738073375001	N 10425. 1	403738	733750	211MGTY	1987	6.0	702	707	03-29-94	4.90
404813073310301	N 10605. 1	404813	733103		1990	188.0			10-25-93 11-22-93 12-20-93 02-01-94 02-17-94 03-30-94 04-20-94 05-18-94 06-09-94 06-17-94 07-20-94 09-20-94	80.45 80.39 80.45 80.40 79.91 80.94 81.17 81.15 81.02 80.90 80.22 79.81 79.58
405057073325102	N 10606. 1	405057	733251	112GLCLU	1990	130.0		÷	10-25-93 11-22-93 12-20-93 02-25-94 03-30-94 04-19-94 05-19-94 06-10-94 06-20-94 07-20-94 09-20-94	65.70 65.58 65.34 65.02 65.33 65.69 65.75 65.70 65.57 65.46 66.36 65.25
404823073265901	N 10607. 1	404823	732659	211MGTY	1990	260.5	1-23	4-	10-25-93 11-22-93 12-20-93 02-01-94 02-18-94	75.91 75.87 75.78 75.68 75.55

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404823073265901	N 10607. 1	404823	732659	211MGTY	1990	260.5	-		03-30-94 04-20-94 05-19-94 06-09-94 06-17-94 07-20-94 08-24-94 09-20-94	75.41 75.59 75.50 75.45 75.46 75.16 74.75 74.51
404842073291401	N 10609. 1	404842	732914		1990	239.0	-		12-22-93 03-30-94 06-09-94	73.76 73.79 73.56
403511073450901	N 10620. 1	403511	734509	211LLYD	1987	4.0	1,140	1,150	04-13-94	8.10
403505073401301	N 11002. 1	403505	734013	211LLYD	1987	11.0	1,240	1,250	10-18-93 11-17-93 12-20-93 01-31-94 02-17-94 03-29-94 04-26-94 05-16-94 06-15-94 07-26-94 08-23-94 09-22-94	3.52 3.25 3.54 3.11 3.25 2.10 4.60 4.62 2.73 0.57 1.21 1.56
403503073402401	N 11109. 1	403505	734013	211MGTY	1987	11.0	785	790	10-18-93 11-17-93 12-20-93 01-31-94 02-17-94 03-29-94 04-26-94 05-16-94 06-15-94 07-26-94 08-23-94	-3.49 -3.58 -3.51 -3.27 -3.75 -3.52 -3.04 -3.22 -4.02 -4.25 -3.50 -3.85
404031073382701	N 11166. 1	404031	733827	211MGTY	1993	36.0	620	640	03-30-94	16.58
404202073401801	N 11168. 1	404202	734018	211MGTY	1992	49.5	500	520	03-30-94	28.48
404355073401801	N 11172. 1	404355	734018	211MGTY	1993	77.5	435	455	04-07-94	45.59
405122073360601	N 11279. 1	405122	733606	211LLYD	1991	131.0	475	495	10-25-93 11-22-93 12-20-93 02-02-94 02-25-94 03-30-94 04-19-94 05-19-94 06-10-94 06-20-94 07-20-94	24.71 23.20 25.75 25.44 25.54 25.67 25.82 24.31 14.87 12.50 14.83 18.58
AUEU3EU33304001	N 11000 1	ADED3E	733248	211LLYD	1990	187.0	ROE	645	09-20-94	12.45 59.07
405035073324801 405035073324601	N 11280. 1 N 11281. 1	405035 405035	733246	112PGQF	1990	187.0	625 498	518	06-10-94 12-22-93 06-10-94	59.65 59.16

GROUND-WATER LEVELS: NASSAU COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FI	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405005073353401	N 11304. 1	405005	733534	211MGTY	1992	143.0	323	343	06-10-94	69.02
404327073341701	N 11396. 1	404327	733417	211MGTY	1990	83.0	560	580	10-26-93 11-22-93 12-27-93 01-25-94 03-30-94 04-19-94 05-27-94 08-21-94 07-20-94 08-26-94 09-21-94	49.50 49.39 49.35 49.26 51.07 51.34 51.24 50.09 49.30 49.54 48.95
404328073341601	N 11397. 1	404328	733416	211MGTY	1990	83.0	260	280	10-26-93 11-22-93 12-27-93 01-25-94 03-30-94 04-19-94 05-27-94 06-21-94 07-20-94 08-26-94 09-21-94	50.69 50.53 50.46 50.45 52.10 52.44 52.45 51.55 50.82 50.82
404818073293001	N 11453. 1	404818	732930	112PGQF	1991	207.5	840	860	10-25-93 11-22-93 12-20-93 02-17-94 03-30-94 04-20-94 05-18-94 06-09-94 07-18-94 08-24-94 09-20-94	45. 20 45. 40 45. 79 45. 85 43. 39 43. 73 43. 91 40. 15 39. 86 39. 01 39. 24 39. 07
404818073293101	N 11454. 1	404818	732931	211MGTY	1991	207.5	570	590	10-25-93 11-22-93 12-20-93 02-02-94 03-30-94 04-20-94 05-18-94 06-09-94 07-18-94 08-24-94 09-20-94	75.87 75.90 75.83 75.93 75.99 76.10 76.04 75.52 75.35 74.63 74.45 74.13
404636073270902	N 11455. 1	404636	732709	211LLYD	1990	194.5	961	981	04-07-94	32.54
404636073271001	N 11456. 1	404636	732710	211MGTY	1990	194.5	815	835	04-07-94	75.60
404622073330701	N 11457. 1	404622	733307	211LLYD	1991	153.0	840	860	10-25-93 11-22-93 12-20-93 02-02-94 02-17-94 03-30-94 04-20-94 05-18-94 06-17-94 07-20-94 08-24-94 09-20-94	24.90 25.26 26.12 25.55 25.86 26.00 26.20 26.17 26.41 22.71 23.21 23.13

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW URFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404625073330701	N 11458. 1	404625	733307	211MGTY	1994	153.5	600	620	02-02-94 02-17-94 03-30-94 04-20-94 05-18-94 06-17-94 07-20-94 08-24-94 09-20-94	76.71 76.62 76.83 77.07 77.20 77.45 76.33 76.44 76.12
404326073341801	N 11570. 1	404326	733418	211LLYD	1990	83.5	850	870	10-26-93 11-22-93 12-27-93 01-25-94 03-30-94 04-19-94 05-27-94 06-21-94 07-20-94 08-26-94 09-21-94	15.32 15.95 16.91 17.12 16.42 16.69 16.67 15.80 12.90 13.36 13.54
403732073443402	N 11573. 1	403731	734441	211LLYD	1991	8.0	775	795	03-28-94	6.60
404012073314101	N 11576. 1	404012	733141	211LLYD	1992	15.0	930	950	04-01-94	13.95
404324073414401	N 11577. 1	404324	734144	211LLYD	1991	45.5	700	720	03-30-94	16.99
404012073314102	N 11579. 1	404012	733141	211MGTY	1992	15.5	670	690	04-01-94	14.87
404323073414401	N 11580. 1	404323	734144	211MGTY	1991	44.5	430	450	03-30-94	7.65
403732073443403	N 11634. 1	403733	734443	211MGTY	1991	8.5	535	555	03-28-94	-2.11
404123073291601	N 11643. 1	404123	732916	211MGTY	1993	41.5	680	700	04-07-94	25.24
404511073402501	N 11659. 1	404511	734025	211MGTY	1992	104.0	502	522	10-26-93 11-22-93 12-23-93 12-28-93 01-25-94 02-17-94 03-31-94 04-19-94 05-25-94 06-07-94 06-20-94 07-20-94	45.16 47.07 47.14 45.23 44.81 47.39 47.99 48.16 46.31 48.14 45.34 44.66 44.43
404233073325801	N 11720. 1	404233	733258	211MGTY	1993	63.0	229	249	04-07-94	42.45
404233073325901	N 11721. 1	404233	733259	211MGTY	1993	63.0	600	624	04-07-94	42.16
405004073353401	N 11798. 1	405004	733534	211LLYD	1992	143.0	620	640	12-27-93 06-10-94	31.30 26.34
405030073282101	N 12075. 1	405030	732821	211LLYD	1993	198.0	830	850	12-22-93 04-07-94 06-10-94	36.90 37.03 36.01
405146073420701	N 12151. 1	405146	734207	112PGQF	1993	73.0	-	==	10-05-93 12-29-93 03-31-94 06-07-94 09-19-94	5.07 5.29 5.86 -0.83 0.30

GROUND-WATER LEVELS: QUEENS COUNTY

STATION NUMBER	LOCA	L NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404550073500802	Q	34. 2	404553	735008	211LLYD	1946	36.0	1,24	44	04-25-94	8.69
404257073493701	Q	273. 1	404257	734937	211LLYD	1952	26.0	308	438	11-18-93 06-28-94	12.07 12.44
404141073471702	Q	562. 2	404140	734716	211LLYD	1946	29.0	499	589	04-25-94	7.97
404253073481302	Q	567. 2	404254	734810	211LLYD	1946	130.0	538	618	04-25-94	8.71
404113073501102	Q	1254. 1	404113	735011	112GLCLU	1940	56.0	63	65	03-24-94	12.97
404116073505901	Q	1255. 1	404116	735059	112GLCLU	1911	40.0			03-24-94	33.64
404547073524401	Q	1326. 1	404547	735244	112GLCLU	1950	27.0			03-25-94	17.10
404656073503701	Q	1373. 1	404656	735037	211LLYD	1962	50.5	194	206	04-25-94	5.00
404515073500401	Q	2416. 1	404504	735018	211LLYD	1982	8.0	228	273	04-25-94	10.65
404504073501801	Q	2418. 1	404504	735018	112GLCLU	1967	6.4	48	60	11-18-93 04-25-94 06-30-94	1.03 1.39 1.43
404503073501901	Q	2419. 1	404503	735019	211LLYD	1972	7.0	221	271	11-18-93 04-25-94 06-30-94	10.00 10.56 10.27
404135073440102	Q	2443. 1	404135	734402	211MGTY	1984	55.6	320	360	04-25-94	15.58
404511073485201	Q	2814. 1	404511	734852	112GLCLU	1982	45.0	70	79	11-18-93 03-25-94 06-28-94	13.71 14.02 14.37
404040073445001	Q	2955. 1	404040	734450	211MGTY	1967	25.0	405	445	05-04-94	11.30
403940073443601	Q	2994. 1	403940	734436	112GLCLU	1968	10.0	10	66	03-29-94	6.63
403940073443501	Q	2995. 1	403940	734435	112GLCLU	1968	10.0	10	83	11-18-93 03-29-94	4.71 5.58
404403073485801	Q	3015. 1	404403	734858	211MGTY	1982	102.0	170	210	05-19-94	16.32
404254073520001	Q	3036. 1	404354	735200	211LLYD	1982	20.0	249	269	04-25-94	9.41
404202073491704	Q	3069. 2	404202	734917	211LLYD	1977	65.0	510	550	05-04-94	8.44
403845073475701	Q	3110. 1	403845	734757	112JMC0	1981	10.0	306	326	11-18-93 03-29-94 06-30-94	4.18 5.08 4.07
403939073472801	Q	3112. 1	403939	734728	112JMC0	1981	11.3	290	300	11-18-93 03-29-94 06-30-94	3.06 5.17 4.22
403845073475702	Q	3115. 1	403845	734757	112GLCLÚ	1981	10.0	25	28	11-18-93 03-29-94 06-30-94	2.37 3.60 3.07
403939073472802	Q	3117. 1	403939	734728	112GLCLU	1981	11.0	11	23	11-18-93 03-29-94 06-30-94	4.33 4.84 4.18
404654073465901	Q	3119. 1	404654	734659	112GLCLU	1980	38.0	37	40	11-18-93 03-25-94 06-28-94	18.93 19.63 19.54

GROUND-WATER LEVELS: QUEENS COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	SCREEN INTERVAL (FT BELOW LAND SURFACE) TOP BOTTOM	DATE	WATER LEVEL (FT, MSL)
404112073500901	Q 3160. 1	404112 735009	112GLCLU	1984	45.0	60 65	10-28-93 11-23-93 12-28-93 03-24-94 04-22-94 05-19-94 06-29-94 07-25-94 08-25-94 09-22-94	10.48 10.33 10.33 11.00 11.40 11.72 11.79 11.53 11.32 11.24
404226073303201	Q 3163. 1	404226 734533	112GLCLU	1984	50.0	61 66	11-18-93 03-24-94 06-28-94	12.64 15.01 15.87

GROUND-WATER LEVELS: SUFFOLK COUNTY

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)		INTERVAL BELOW JRFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405410073281401	S 9.1	405418	732816	211LLYD	1955	128.1	505	565	04-28-94	15.13
405327073184301	S 49. 1	405326	731844	211LLYD	1946	132.0	747	762	05-04-94	31.71
404659073141801	S 1815. 3	404659	731418	112GLCLU	1984	72.5	50	54	03-30-94	47.27
405109072513001	S 2485. 1	405109	725130	112GLCLU	1948	69.0	65	75	04-06-94	36.75
404509073152301	S 3516. 1	404509	731523	112GLCLU	1942	60.0			03-30-94	38.17
404918072560301	S 3530.1	404918	725603	112GLCLU	1907	65.6			04-01-94	33.28
405121072415601	S 3539. 1	405121	724156	112GLCLU	1942	79.0			03-31-94	23.95
405223072493201	S 6441. 1	405223	724932	112GLCLU	1949 :	46.8			06-21-94 07-28-94 08-30-94 09-28-94	34.91 33.67 33.93 33.67
405010072580901	S 3871. 1	405010	725809	112GLCLU	1958	128.2		+=	03-31-94	47.58
405507072244402	S 8831. 2	405511	722445	112GLCLU	1976	20.0			03-29-94	7.90
405307072323503	S 8835. 2	405307	723235	112GLCLU	1981	30.5	227	44	03-30-94	9.75
404915072531801	S 9129. 1	404914	725317	112GLCLU	1982	34.0			04-01-94	14.55
404831072530501	S 9130. 1	404829	725305	112GLCLU	1952	26.0	25	28	04-01-94	10.83
404446073191801	S 9646. 1	404446	731918	112GLCLU	1958	51.0			03-30-94	41.11
404049073241201	S 10075. 1	404049	732412	112GLCLU	1958	25.0	33	43	03-30-94	14.67
404128073220201	S 10142. 1	404128	732202		1958	16.8	144		03-31-94	13.07
404225073234201	S 10314. 1	404225	732342	112GLCLU	1958	48.0			03-30-94	32.53
404115073225901	S 10342. 1	404115	732259	112GLCLU	1958	25.0	12	**	03-30-94	18.24
404347073195501	S 10370. 1	404347	731955		1958	38.0		77	03-30-94	26.90
404433073212701	S 11204. 1	404433	732127		1958	53.0	1,227		03-30-94	43.39
404540073211001	S 11240. 1	404540	732110	112GLCLU	1958	61.0			03-30-94	53.88
404527073220901	S 12035. 1	404527	732209	112GLCLU	1958	70.0			03-30-94	56.26
404423073222601	S 12069. 1	404423	732226		1958	65.0	1144	44	03-30-94	45.66
404527073191501	S 14119. 1	404527	731915	112GLCLU	1958	70.0	1	++	03-30-94	54.59
404425073200701	S 14471. 1	404425	732007	112GLCLU	1958	44.0		++	03-30-94	38.09
410034072094701	S 15048. 1	410035	720948	112GLCLU	1974	20.0	31	46	03-31-94	7.88
405308073175101	S 15514. 1	405308	731751	211MGTY	1984	200.0	533	593	04-05-94	36.36
410008072015901	S 16118. 1	410008	720159	112GLCLU	1974	4.8	31	46	03-31-94	3.19
404200073252701	S 16480. 1	404200	732527	112GLCLU	1958	39.0	35	45	03-31-94	31.07
405336073073001	S 16612. 1	405336	730730		1968	146.0		==	03-31-94	45.76
405843072352902	S 16756. 2	405843	723529	112GLCLU	1975	61.0	59	62	05-03-94	8.82
410356072260301	S 16780. 1	410356	722603	112GLCLU	1958	43.0	47	50	05-03-94	4.08

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)		INTERVAL BELOW JRFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405355073174801	S 16883. 1	405355	731748	112GLCLU	1958	56.8	-2-		03-30-94	27.82
405446073180701	S 16884. 1	405446	731807	112GLCLU	1958	34.0	40	43	03-30-94	19.32
405040073175801	S 19057. 1	405040	731758	211MGTY	1970	150.0	604	676	04-28-94	57.58
405159073085501	S 21945. 1	405200	730856	211MGTY	1970	123.0	664	726	04-26-94	41.54
404902073094003	S 22579. 1	404902	730940	112GLCLU	1964	60.0	200	210	10-26-93 11-23-93 12-29-93 01-25-94 02-25-94 04-01-94 04-20-94 05-20-94 06-21-94 07-27-94 08-26-94 09-26-94	40.35 40.60 41.18 41.18 41.44 42.01 42.03 41.66 40.93 40.38 40.67 40.47
404828073114002	S 22580. 1	404828	731140	211MGTY	1964	123.0	792	802	03-30-94	39.33
404828073114003	S 22581. 1	404828	731140	211MGTY	1964	123.2	440	450	03-30-94	40.38
404828073114004	S 22582. 1	404828	731140	112GLCLU	1964	123.7	105	115	03-30-94	40.96
404902073094004	S 23133. 1	404902	730940	112GLCLU	1964	60.3	26	29	10-26-93 11-23-93 12-29-93 01-25-94 02-25-94 04-01-94 05-20-94 05-21-94 07-27-94 08-26-94 09-26-94	40.40 40.63 41.21 41.28 41.57 42.12 42.20 41.83 41.09 40.54 40.71 40.47
405047073120601	S 23631. 1	405047	731207	211MGTY	1977	40.0	494	595	04-12-94	31.87
405050073214501	S 23997. 1	405044	732147	211MGTY	1970	200.0	540	621	04-28-94	65.04
405140073222101	S 23998. 1	405140	732221	211MGTY	1970	220.0	525	597	04-28-94	59.27
404818073135904	S 24773. 1	404813	731356	211MGTY	1966	118.4	412	422	03-30-94	45.85
405716072505701	S 26780. 1	405716	725057	112GLCLU	1970	21.7		4	04-01-94	19.19
404120073221601	S 29491. 1	404121	732246	211MGTY	1978	25.0	390	493	04-07-94	16.41
404703073264201	S 29776. 1	404710	732640	211MGTY	1967	193.0	710	720	03-30-94	74.39
404703073264202	S 29777. 1	404710	732640	211MGTY	1967	193.0	387	397	03-30-94	74.51
404703073264205	S 29778. 1	404710	732640	211MGTY	1967	193.0	158	168	03-30-94	75.32
405124072353701	\$ 30230. 1	405124	723537	211MGTY	1970	45.0	805	825	03-31-94	12.36
404515073225501	S 30506. 1	404520	732244	211MGTY	1969	75.0	546	618	04-05-94	56.99
405411072232901	S 31037. 1	405411	722329	211MGTY	1980	36.0		287	04-19-94	9.82
405000072464301	S 31462. 1	405000	724643	112GLCLU	1983	67.9	67	73	04-26-94	24.80
405838072114201	S 31653. 1	405837	721137	211MGTY	1974	68.0	420	460	04-21-94	10.98

GROUND-WATER LEVELS: SUFFOLK COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404046073252101	S 32501. 1	404047	732521	211MGTY	1972	26.0	560	630	04-05-94	14.45
405336073073601	S 33500. 1	405340	730735	211MGTY	1970	148.0	485	548	04-12-94	43.76
404908072473003	S 33919. 1	404908	724730	112GLCLU	1970	64.0			04-01-94	19.80
405512073010502	S 34007. 1	405512	730105	211MGTY	1984	142.0	270	345	04-28-94	39.07
405246073142801	S 34460. 1	405250	731429	211MGTY	1970	153.0	531	596	04-07-94	35.72
405143073105801	S 34733. 1	405144	731057	211MGTY	1984	126.0	350	421	04-26-94	27.01
404918073253201	S 35007. 1	404918	732532	211MGTY	1970	232.0	575	660	04-28-94	69.87
405505072432201	S 36013. 1	405505	724322	112GLCLU	1970	47.0	24		01-04-94	22.95
404656073081401	S 36143. 1	404656	730814	112GLCLU	1969	72.0	59	62	03-30-94	32.68
404707073023401	S 36145. 1	404707	730234	112GLCLU	1969	44.6	30	43	04-01-94	31.77
405259072465601	\$ 36147. 1	405259	724656	112GLCLU	1970	47.8		74.	03-22-94 04-01-94	37.27 37.38
405117072490301	S 36150. 1	405117	724903	112GLCLU	1951	50.0	0241		04-01-94	34.45
405010072443501	S 36152. 2	405014	724438		1975	65.0	62	66	04-01-94	21.43
405715072413201	S 36153. 1	405715	724132	112GLCLU	1969	75.2			04-01-94	16.26
404627073070901	S 36460. 1	404537	731635	211MGTY	1976	76.0	, - -	611	04-05-94	40.83
404717072595603	S 37494. 1	404717	725958	211MGTY	1976	60.0		313	04-19-94	26.47
404236073225001	S 37681. 1	404232	732256	211MGTY	1976	42.0		574	04-05-94	28.54
410400072195301	S 38461. 1	410400	721953	112GLCLU	1970	12.0	=		03-08-94 03-31-94	5.58 7.55
404921073122703	\$ 38491. 1	404920	731225	211MGTY	1984	61.0	320	383	04-28-94	38.70
405256073045602	S 38784. 1	405256	730456	211MGTY	1984	100.9	528	600	04-12-94	55.16
405418073064902	S 38916. 1	405418	730647	211MGTY	1976	227.0	4-	724	04-19-94	40.94
405924072321501	S 39269. 1	405924	723215	112GLCLU	1983	13.6			03-15-94 03-30-94 03-30-94	3.50 4.25 4.25
405206073153002	S 40842. 2	405206	731530		1975	91.6	60	63	03-28-94	48.65
405510073063401	S 40849. 1	405510	730634	112GLCLU	1971	80.5			03-31-94	42.12
405555073060101	S 40850. 1	405555	730601		1971	60.7	122		03-31-94	26.99
405744072571902	S 40851. 2	405744	725719	112GLCLU	1976	32.0	47	50	04-08-94	16.30
405646072564301	S 40852. 1	405656	725643	112GLCLU	1971	114.6	95	97	03-31-94	31.42
405610072562501	S 40853. 2	405610	725625	112GLCLU	1985	100.2	74	78	03-31-94	38.26
405223073021301	S 41050. 1	405222	730213	112GLCLU	1972	89.4	67	69	03-31-94	69.04
405119073123702	S 42473. 1	405119	731236	211MGTY	1977	76.0	574	645	04-07-94	30.76
405357073194802	S 42681. 2	405354	731948	112GLCLU	1983	83.5	75	80	03-30-94	30.53

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405016073200101	S 42682. 1	405016	732001	112GLCLU	1972	159.2			03-29-94	74.39
405335073073201	S 42683. 1	405335	730732	112GLCLU	1972	145.7		2,2	03-31-94	57.05
404756073025501	S 42761. 1	404753	730249	211MGTY	1984	75.0	166	333	04-21-94	38.75
404305073161401	S 42762. 1	404305	731615	211MGTY	1976	26.0	650	710	04-05-94	19.15
404511073112301	S 42827. 1	404513	731124	211MGTY	1976	35.0	598	660	04-05-94	23.61
404820073073402	S 43641. 1	404820	730734	211MGTY	1984	99.9	C-4-C	706	04-07-94	42.35
404124073241601	S 43809. 1	404124	732416	112GLCLU	1974	34.0	24	34	03-23-94 03-30-94	21.19 21.39
404124073241602	S 43810. 1	404124	732416	112GLCLU	1974	33.8	61	71	03-23-94 03-30-94	21.28 21.45
404503073010801	S 44466. 1	404503	730108	112GLCLU	1974	4.3	15	20	04-01-94	2.17
405132073181401	S 45207. 1	405132	731814	112GLCLU	1974	165.0	134	144	03-22-94 04-26-94	62.85 62.67
405005073233701	S 45208. 1	405005	732337	112GLCLU	1974	185.3	123	133	03-21-94 05-03-94	77.69 77.95
404945073174501	S 45210. 1	404945	731745	112GLCLU	1974	130.2	97	107	03-22-94 03-28-94	64.39 64.32
404508073080902	S 45636. 1	404508	730809	112GLCLU	1974	14.1	17	27	03-15-94 03-30-94	9.54 9.74
404503073131201	S 45839. 1	404502	731315	211MGTY	1976	40.0	650	722	04-07-94	26.22
405231073250500	S 46281. 1	405231	732505	112GLCLU	1974	34.0	38	50	03-21-94 03-30-94	20.32 20.50
404823073211800	S 46283. 1	404823	732118	112GLCLU	1974	275.0	225	235	03-22-94 05-06-94	71.46 71.47
405913072064600	S 46518. 1	405914	720645	112GLCLU	1972	27.5	4=		03-10-94 03-31-94	5.72 6.64
410123072130304	S 46521. 2	410123	721303	112GLCLU	1981	65.0	82	85	03-31-94	6.89
405915072121501	S 46522. 1	405915	721215	112GLCLU	1972	91.2			03-31-94	10.41
405828072115101	S 46523. 1	405828	721150	112GLCLU	1972	64.5	94	97	03-31-94	11.09
405906072153501	S 46524. 1	405907	721534	112GLCLU	1972	15.7			03-31-94	11.63
405741072144800	S 46525. 1	405741	721448	112GLCLU	1972	41.5		24	03-28-94	13.24
405843072180801	S 46526. 1	405843	721808	112GLCLU	1972	56.5		90	03-28-94 04-01-94 07-13-94	19.62 19.72 19.24
405746072175901	S 46527. 1	405747	721800	112GLCLU	1972	75.0			03-28-94 04-01-94 07-13-94	23.67 23.91 25.61
405842072211401	S 46528. 1	405843	722115	112GLCLU	1972	125.5	99	102	03-29-94	38.90
405602072221802	S 46529. 2	405602	722248	112GLCLU	1983	70.0	77	81	03-29-94	15.89
405418072233800	S 46530. 1	405418	722338	112GLCLU	1972	36.8	38	42	03-28-94	9.68

GROUND-WATER LEVELS: SUFFOLK COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405332072262201	S 46531. 1	405332	722622	112GLCLU	1972	36.4		42	03-28-94	5.47
405147072305001	S 46532. 1	405147	723050	112GLCLU	1972	24.0			03-30-94	4.86
405302072313501	S 46533. 1	405302	723135	112GLCLU	1972	84.7			03-30-94	6.65
405230072341901	S 46534. 1	405230	723419	112GLCLU	1973	82.0	81	84	03-30-94	11.85
405144072333701	S 46535. 1	405144	723337	112GLCLU	1972	44.5	124	49	03-30-94	8.66
405324072352101	S 46536.,1	405324	723521	112GLCLU	1976	24.7			03-09-94 03-31-94	12.08 13.14
405130072353101	S 46537. 1	405130	723531	112GLCLU	1972	56.2			03-31-94	13.34
405348072370401	S 46538. 1	405340	723709	112GLCLU	1972	61.3			03-30-94	28.90
405222072370701	S 46539. 1	405222	723707	112GLCLU	1972	100.0			03-30-94	16.03
405020072355801	S 48540. 1	405020	723558	112GLCLU	1972	37.8			03-31-94	10.27
405353072403801	\$ 46541. 1	405342	724057	112GLCLU	1972	27.3			03-31-94	18.21
405301072415101	\$ 46542. 1	405301	724151	112GLCLU	1972	163.0			03-31-94	25.36
405131072455701	S 46546. 1	405131	724557	112GLCLU	1972	127.0			04-01-94	29.12
405716072591701	S 46548. 1	405715	725916	112GLCLU	1972	71.0	80	84	03-31-94	10.08
405620073022001	S 46549. 1	405624	730221	112GLCLU	1972	97.0	97	101	03-31-94	24.86
404804072484101	S 46713. 1	404804	724841	211MGTY	1977	20.0	385	440	04-19-94	13.27
404606073174601	S 46830. 1	404606	731746	211MGTY	1976	76.0	550	651	04-07-94	47.32
405230073164400	\$ 46965. 1	405230	731644	112GLCLU	1974	166.0	138	148	03-16-94 03-29-94	45.91 45.89
404759073251600	S 47220. 1	404759	732516	112GLCLU	1974	172.3	79	89	03-21-94 03-30-94	107.72 107.89
405407073001101	S 47310. 1	405407	730011	211MGTY	1976	135.0	623	693	04-21-94	52.39
405110072531503	S 47438. 1	405123	725407	211MGTY	1983	105.0	214	265	04-26-94	37.34
404804073051300	\$ 47453. 1	404804	730513	211MGTY	1975	100.0	380	440	04-12-94	42.76
405111073065801	S 47675. 1	405111	730658	112GLCLU	1974	119.5	78	88	03-30-94 03-31-94	57.49 57.47
404607072594701	S 47752. 1	404607	725947	112GLCLU	1974	24.0	88	98	03-22-94 04-01-94	8.14 8.22
404423073084101	S 49396. 1	404423	730841	112GLCLU	1973	6.3	8	13	03-30-94	3.16
405335072562903	S 49606. 1	405337	725629	211MGTY	1983	75.0	307	367	04-28-94	48.28
405120073085101	S 50500. 1	405120	730851	112GLCLU	1974	118.0	81	85	01-01-94 03-16-94	70.23 70.07
405059073085601	S 50501. 1	405059	730856	112GLCLU	1974	73.6	60	64	04-01-94	71.87
404937073063901	S 50502. 1	404937	730639	112GLCLU	1973	84.6			03-31-94	52.83
405010073103101	S 50505. 1	405010	731031	112GLCLU	1973	50.0	6	10	04-01-94	46.75

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405146073141001	S 50512. 1	405146	731410	112GLCLU	1973	84.5	**		03-28-94	38.94
405100073152601	S 50513. 1	405100	731526	112GLCLU	1974	93.0	57	61	03-28-94	47.53
410430072202301	S 51176. 1	410430	722023	112GLCLU	1974	39.6	47	57	03-08-94 03-31-94	3.98 5.26
410147072184101	S 51184. 1	410147	721841	112GLCLU	1974	11.8	20	30	03-07-94 03-31-94	2.19 2.67
410047072184701	S 51186. 1	410047	721847	112GLCLU	1974	24.1	30	40	03-07-94 03-31-94	2.39 3.10
405808072385401	S 51568. 1	405808	723854	112GLCLU	1974	56.0	58	68	03-16-94 03-30-94 03-30-94	10.97 10.75 10.73
405544072411801	S 51575. 1	405544	724118	112GLCLU	1974	27.0	22	32	03-16-94	18.43
405630072442001	S 51577. 1	405630	724420	112GLCLU	1974	80.0	83	93	03-21-94 04-01-94	20.55 20.57
405542072463001	S 51579. 1	405542	724630	112GLCLU	1974	78.0	75	85	10-26-93 11-26-93 12-22-93 02-01-94 02-22-94 03-21-94 04-01-94 05-24-94 06-21-94 07-27-94 08-30-94 09-28-94	28.73 28.37 29.36 28.69 28.93 29.69 29.98 30.41 30.80 30.72 30.27 29.78 29.35
405722072342001	S 51581. 1	405722	723420	112GLCLU	1974	32.0	32	42	03-16-94 03-30-94	9.05 9.23
405634072380501	S 51588. 1	405634	723805	112GLCLU	1974	38.0	47	57	03-16-94	10.26
404225073193001	S 51673. 1	404225	731930	211MGTY	1976	22.0	669	760	04-21-94	19.05
410516072200901	S 52084. 1	410516	722009	112GLCLU	1974	28.4	62	72	03-08-94 03-31-94	3.07 4.18
404357072515701	S 52162. 1	404357	725157	211LLYD	1976	18.0	1,670	1,690	10-19-93 11-19-93 03-28-94 05-03-94 05-25-94 06-15-94 07-28-94 08-25-94 09-20-94	23.74 23.45 22.35 23.22 23.98 23.40 23.12 22.59 22.33
404357072515702	S 52163. 1	404357	725157	211MGTY	1974	17.0	1,279	1,300	10-19-93 11-19-93 03-28-94 05-03-94 05-25-94 06-15-94 07-28-94 08-25-94 09-20-94	15.70 15.92 15.86 16.02 16.63 15.86 15.49 15.36

GROUND-WATER LEVELS: SUFFOLK COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404357072515703	\$ 52164. 1	404357	725157	211MGTY	1974	17.0	709	730	10-19-93 11-19-93 03-28-94 05-03-94 05-25-94 06-15-94 07-28-94 08-25-94 09-20-94	14.65 14.83 14.93 14.89 15.54 14.71 14.33 14.24
405354073021202	S 52490. 1	405355	730212	211MGTY	1978	137.0	480	554	04-19-94	51.99
404944072380901	S 52551. 1	404944	723809	112GLCLU	1974	27.8	20	25	03-09-94 03-31-94	9.78 10.61
404948072372601	S 52554. 1	404948	723726	112GLCLU	1974	18.4			03-09-94 03-31-94	6.45 7.24
410753072205501	S 53331. 1	410747	722053	112GLCLU	1975	47.0	58	68	03-14-94 03-30-94 03-30-94	3.25 3.98 3.98
405032073162802	S 53360. 1	405034	731618	211MGTY	1984	141.0	551	667	04-12-94	48.96
404950073085002	S 53498. 1	404948	730847	211MGTY	1977	90.0	663	718	04-05-94	43.92
405230072430002	S 53851. 1	405230	724300	211MGTY	1983	167.0	244	294	04-19-94	26.36
404759073122501	S 54308. 1	404759	731225	211MGTY	1984	109.0	722	792	04-07-94	39.54
405123072533701	S 54883. 1	405049	725310	112GLCLU	1975	79.9	-		04-01-94	33.83
405706072345601	S 54885. 1	405706	723456	112GLCLU	1975	11.1	16	20	05-03-94	10.25
405120073231801	S 55049. 1	405120	732318	112GLCLU	1975	207.0	175	179	03-02-94 05-04-94	55.25 58.04
405502072254701	S 57367. 1	405502	722616	112GLCLU	1975	32.5	75	79	03-29-94	5.45
405824072220601	S 57368. 1	405825	722205	112GLCLU	1976	74.0	87	91	03-29-94	27.86
405900072192901	S 57369. 1	405855	721926	112GLCLU	1975	76.0	93	97	03-08-94 03-29-94	13.97 14.81
405852072192401	S 57370. 1	405854	721927	112GLCLU	1976	88.0	96	100	03-29-94	18.76
404722073093401	S 57458. 1	404722	730934		1976	47.4	**	**	03-30-94	32.41
404722073093402	S 57459. 1	404722	730934		1976	47.2			03-30-94	32.38
404651073095701	S 57470. 1	404651	730957		1976	28.0			03-30-94	25.17
404651073095702	S 57471. 1	404651	730957		1976	28.0			03-30-94	25.16
404616073093401	S 57480. 1	404616	730934		1976	18.7			03-30-94	17.31
404616073093402	S 57481. 1	404616	730934		1976	18.6	7		03-30-94	17.07
405123073125101	S 57484. 1	405123	731251	112GLCLU	1975	15.5	15	19	03-16-94 03-28-94	11.69 11.90
405458073005301	S 57486. 1	405458	730053	112GLCLU	1975	130.5			03-31-94	53.51
405246072573601	S 57487. 1	405246	725736	112GLCLU	1975	83.5		221	04-01-94	68.33

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW URFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405048073122801	S 57488. 1	405048	731228	112GLCLU	1975	30.0			03-16-94 03-28-94	28.55 28.58
405514073050103	S 57980. 1	405514	730501	211MGTY	1977	187.0	630	700	04-12-94	39.92
410356071544201	S 58922. 1	410355	715444	112GLCLU	1976	47.8	51	56	03-10-94 03-31-94	2.29 2.35
410404071565901	S 58923. 1	410401	715701	112GLCLU	1976	57.3	65	70	03-30-94	8.84
410401071570202	S 58923. 2	410401	715701	112GLCLU	1976	57.6	87	92	03-30-94	3.66
405933072093401	S 58924. 1	405934	720932	112GLCLU	1976	110.3	132	137	03-10-94 03-31-94	8.42 9.03
405950072124501	S 58925. 1	405952	721245	112GLCLU	1976	72.0	85	90	03-09-94 03-31-94	9.46 10.28
405607072225801	S 58957. 1	405606	722308	112GLCLU	1976	188.8	196	201	03-14-94 03-29-94	12.96 12.56
405737072215801	S 58958. 1	405738	722159	112GLCLU	1976	190.0	203	208	03-08-94 03-29-94	26.28 26.58
405816072162801	\$ 58959. 1	405808	722035	112GLCLU	1976	187.5	195	200	03-07-94 03-29-94	16.68 16.76
405827072190501	S 58960. 1	405827	721905	112GLCLU	1976	134.2	150	155	03-23-94	22.49
405615072182301	S 59793. 1	405616	721823	211MGTY	1984	34.0	512	522	03-28-94 04-01-94 07-13-94	11.95 11.96 11.14
404524073044801	S 60812. 1	404524	730448	211MGTY	1984	38.0	404	484	04-12-94	25.75
405616072182301	S 62393. 1	405616	721823	112GLCLU	1984	34.0	30	34	03-28-94 04-01-94 07-13-94	16.35 16.41 15.05
410111072010101	S 62397. 1	410111	720101	112GLCLU	1980	57.2	61	65	03-31-94	4.67
405033072560001	\$ 62404. 1	405033	725600	112GLCLU	1977	55.0	41	45	03-22-94 03-31-94	35.59 35.33
405700073080301	S 62406. 1	405700	730803	112GLCLU	1977	42.0	41	45	03-31-94	3.64
405604073080001	S 62407. 1	405604	730800	112GLCLU	1977	40.0	41	45	03-31-94	14.14
405144073081001	S 63606. 1	405144	730810	112GLCLU	1978	97.7			03-16-94 04-01-94	69.36 69.66
404415073114001	S 63618. 1	404416	731137	211MGTY	1984	20.0	490	550	04-12-94	19.85
404426073181201	S 63747. 1	404426	731812		1990	50.0	1,440		03-30-94	37.01
404520073102001	S 63814. 1	404520	731020		1978	38.0	-		03-15-94	18.51
404356073105501	S 63830. 1	404356	731055		1978	17.7	17-1	77	03-30-94	14.01
404303073112801	S 63832. 1	404303	731128		1978	7.3			03-15-94 03-30-94	5.90 6.01
404345073124001	S 63835. 1	404345	731240		1978	13.5			03-15-94 03-30-94	9.05 9.09
404331073141701	S 63841. 1	404331	731417		1978	12.1			03-16-94 03-30-94	6.46 6.62

GROUND-WATER LEVELS: SUFFOLK COUNTY--Continued

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FT	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
405652072590003	S 64023. 1	405643	725859	211MGTY	1984	160.0	709	791	04-26-94	25.63
404210073182501	S 64192. 1	404210	731825		1978	17.6			03-15-94 03-30-94	10.35 10.35
404116073204201	S 64209. 1	404116	732042		1978	10.0		44.	03-23-94 03-30-94	6.09 6.34
404116073204301	S 64210. 1	404116	732043		1978	10.0			03-23-94 03-30-94	6.12 6.40
404859073202001	S 64313. 1	404659	732020	112GLCLU	1979	89.4	25	30	03-22-94 03-30-94	72.76 73.01
404746073221901	S 64316. 1	404746	732219	112GLCLU	1979	160.1	58	63	03-22-94 04-08-94	111.06 110.92
404900073242801	S 64317. 1	404900	732428	112GLCLU	1978	149.6	78	83	03-21-94 05-03-94	75.75 75.95
404436073135601	S 64525. 1	404436	731356		1978	26.0	144		03-30-94	22.25
404217073215601	S 64853. 1	404217	732156		1990	33.2			03-29-94 03-30-94	23.09 23.69
404713072575701	S 65603. 1	404718	725749	112GLCLU	1978	54.0	65	70	04-01-94	26.18
410104072303001	S 65605. 1	410104	723030		1978	41.0	41	44	03-30-94 03-30-94	7.82 7.81
405003073155201	S 65607. 1	405003	731552	112GLCLU	1978	138.0	97	102	03-28-94	51.77
404944073104001	S 65609. 1	404944	731040		1978	52.7	10	15	04-01-94	48.17
405351072535101	S 65855. 1	405351	725351	112GLCLU	1978	77.6	28	32	03-31-94	49.32
405548072593501	S 65861. 1	405549	725936	112GLCLU	1978	143.9	106	110	04-08-94	45.46
405058073050901	S 66496. 1	405058	730509	211MGTY	1984	127.0		766	04-07-94	55.39
405245072573702	S 66506. 1	405245	725737	112GLCLU	1979	83.0	55	60	03-30-94 03-31-94	52.45 52.45
405345072591101	S 66507. 1	405345	725911	112GLCLU	1979	100.0	68	72	03-30-94 03-31-94	55.71 54.44
405014072564001	S 66508. 1	405013	725640	112GLCLU	1979	66.0	55	60	03-22-94 03-31-94	39.15 39.04
405002073043501	S 66509. 1	405002	730435	112GLCLU	1979	139.7	109	114	03-30-94	53.14
405441073043501	S 66510. 1	405350	730316	112GLCLU	1979	137.8			03-29-94 03-31-94	54.21 54.11
405644073051201	S 66511. 1	405644	730512	112GLCLU	1979	105.0	1/2/2	22/	03-29-94 03-31-94	12.96 12.97
405504073011201	S 66512. 1	405504	730112	112GLCLU	1979	120.6	99	104	03-22-94 03-31-94	51.82 51.82
405333072241701	S 66825. 1	405333	722417	211MGTY	1984	50.0	(42)	259	04-21-94	8.25
404949073215101	S 66847. 1	404949	732151	112GLCLU	1978	170.8	97	102	03-29-94	77.41
404922073071201	S 66848. 1	404922	730744	112GLCLU	1979	98.0	67	72	03-31-94	47.18
404632073070802	S 67074. 1	404632	730706	211MGTY	1984	70.0	765	825	04-07-94	37.66

STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	START OF RECORD	ALTITUDE OF LAND SURFACE (FT, MSL)	(FI	INTERVAL BELOW SURFACE) BOTTOM	DATE	WATER LEVEL (FT, MSL)
404652073120301	S 67197. 1	404652	731203	211MGTY	1984	65.0		749	04-05-94	33.89
405255073044301	S 67564. 1	405255	730443	112GLCLU	1980	103.0	80	85	03-31-94	58.66
404612073055003	S 68552. 1	404612	730550	211MGTY	1984	57.0		838	04-12-94	30.42
405551072561601	S 69364. 1	404551	725616	211MGTY	1983	32.8	25	529	04-19-94	19.48
405504073282501	S 69780. 1	405504	732825	112GLCLU	1981	110.9	139	150	03-21-94 03-30-94	5.20 5.33
405556073274201	S 69934. 1	405556	732742		1981	18.1	44	46	03-21-94 03-30-94	6.10 6.86
410137071590201	S 70255. 1	410137	715902	112GLCLU	1980	169.6	315	320	03-30-94	4.02
410108071590003	S 70257. 1	410108	715900	112GLCLU	1981	50.1	104	109	03-30-94	2.58
410233071553801	S 70259. 1	410233	715538	112GLCLU	1981	38.7	92	97	03-30-94	2.53
410213071572202	S 70263. 1	410213	715722	112GLCLU	1981	27.8	40	45	03-30-94	4.18
405155073045203	S 70488. 1	405158	730448	211MGTY	1984	95.6	344	437	04-07-94	56.98
410159072001601	S 70613. 1	410159	720016	112GLCLU	1981	65.8	70	75	03-31-94	2.79
410219071591101	S 70614. 1	410219	715911	112GLCLU	1981	86.0	90	95	03-31-94	4.55
410108071590002	S 70615. 1	410108	715900	112GLCLU	1981	51.2	50	55	03-30-94	2.54
410149071571601	S 70616. 1	410149	715716	112GLCLU	1981	30.0	35	40	03-31-94	2.77
410320071570601	S 70617. 1	410320	715706	112GLCLU	1982	72.7	93	97	03-30-94	9.44
410330071563901	S 70618. 1	410330	715639	112GLCLU	1981	85.6	100	105	03-30-94	3.61
410414071515901	S 70627. 1	410414	715159	112GLCLU	1981	90.1	90	95	03-31-94	15.07
405728072342402	S 71570. 1	405728	723424	112GLCLU	1988	29.3	50	52	05-03-94	9.13
404807072590801	S 71785. 1	404807	725908	211MGTY	1984	71.9		357	04-21-94	34.70
410322071523901	S 72283. 1	410322	715239	112GLCLU	1982	58.6	84	89	03-31-94	5.58
410118072001501	S 72415. 1	410118	720015	112GLCLU	1982	94.0	99	103	03-31-94	5.27
410211071560001	S 72416. 1	410211	715600	112GLCLU	1982	44.2	93	97	03-30-94	1.42
410235071564301	S 72417. 1	410235	715643	112GLCLU	1982	59.6	71	75	03-30-94	4.02
410319071555901	S 72418. 1	410319	715559	112GLCLU	1982	11.6	51	55	03-30-94	3.21
410420071551901	S 72871. 1	410420	715519	112GLCLU	1982	5.4	33	38	03-31-94	1.35
405616072182302	\$ 73990. 1	405616	721823	211MGTY	1984	34.0	540	545	03-28-94 04-01-94 07-13-94	9.96 9.98 9.17
404750073225302	S 74284. 2	404750	732253	211MGTY	1984	154.0	699	704	03-22-94 03-30-94 04-21-94 05-23-94 06-21-94 07-28-94 08-30-94 09-29-94	70.11 68.62 68.65 68.68 68.48 67.79 67.63 67.49

GROUND-WATER LEVELS: SUFFOLK COUNTY--Continued

				10117550	START	ALTITUDE OF LAND	(FT	INTERVAL BELOW		WATER LEVEL
STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	AQUIFER UNIT CODE	OF RECORD	SURFACE (FT, MSL)	TOP S	BOTTOM	DATE	(FT, MSL)
404750073225303	S 74285. 1	404750	732253	211MGTY	1984	154.3	440	445	03-22-94 04-21-94 05-23-94 06-21-94 07-28-94 08-30-94 09-29-94	71.39 70.04 70.41 69.02 68.44 68.17 68.11
404750073225304	S 74286. 1	404750	732253	211MGTY	1984	154.6	107	112	03-22-94 04-21-94 05-23-94 06-21-94 07-28-94 08-30-94 09-29-94	73.07 71.97 72.20 71.91 71.20 69.71 70.49
405201072544301	S 74287. 1	405200	725434	112GLCLU	1983	58.7	31	35	03-31-94	45.58
405418072511201	S 74289. 1	405417	725116	112GLCLU	1983	76.8	40	44	04-08-94	46.89
405421072474501	S 74291. 1	405421	724745	112GLCLU	1983	44.4	15	19	04-01-94	39.69
405017072495001	S 74293. 1	405017	724950	112GLCLU	1983	83.6	67	71	04-01-94	29.28
405213072481101	S 74294. 1	405213	724808	112GLCLU	1983	56.5	32	36	04-01-94	38.12
405347072385501	S 74296. 1	405347	723855	112GLCLU	1983	23.5	20	24	03-31-94	17.41
405338072430501	S 74297. 1	405338	724305	112GLCLU	1983	103.8	96	100	03-30-94	34.83
405348072370501	S 74298. 1	405340	723709	112GLCLU	1983	61.3	74	78	03-30-94	14.73
405340072340601	S 74299. 1	405334	723408	112GLCLU	1983	22.6	20	24	03-30-94	11.30
405115072370501	S 74300. 1	405127	723643	112GLCLU	1983	75.0	68	72	03-31-94	15.74
405434072421401	S 74302. 1	405422	724233	112GLCLU	1983	36.5	40	44	03-30-94	20.66
405435072421401	S 74303. 1	405431	724110	112GLCLU	1983	19.2	20	24	03-30-94	16.58
405419072381201	S 74304. 1	405417	723810	112GLCLU	1983	25.3	25	29	03-30-94	9.83
405256072392301	S 74308. 1	405255	724019	112GLCLU	1983	98.5	100	104	04-01-94	21.26
404849073261201	S 74585. 1	404849	732612	211MGTY	1984	365.0	452	455	03-30-94	69.02
410427072213601	S 75436. 1	410427	722134	112GLCLU	1983	57.4	60	62	03-31-94 07-13-94	11.68 12.30
410309072205601	S 75438. 1	410319	722055	112GLCLU	1983	11.0	18	23	03-09-94 03-31-94 07-13-94	2.01 2.30 1.50
410303072194401	S 75439. 1	410304	721942	112GLCLU	1983	14.0	24	29	03-08-94 03-31-94 07-13-94	2.92 3.82 2.17
404852073024202	S 76478. 1	404852	730242	112GLCLU	1984	104.8	70	75	01-04-94	47.29
404944073075001	S 76566. 1	404944	730750	112GLCLU	1984	63.8	10	12	03-31-94	56.89
404942073175502	S 76673. 2	404942	731755	211MGTY	1984	130.0	625	630	03-22-94 03-28-94	62.64 63.50
404942073175503	S 76674. 1	404942	731755	211MGTY	1984	130.0	455	460	03-22-94 03-28-94	62.89 63.17

GROUND-WATER LEVELS: SUFFOLK COUNTY--Continued

SECONDARY WELLS

				AQUIFER	START OF	ALTITUDE OF LAND SURFACE	(FT	INTERVAL BELOW SURFACE)		WATER LEVEL
STATION NUMBER	LOCAL NUMBER	LATITUDE	LONGITUDE	UNIT CODE	RECORD	(FT, MSL)	TOP	BOTTÓM	DATE	(FT, MSL)
404942073175504	S 76675. 1	404942	731755	211MGTY	1984	130.0	245	250	03-22-94 03-28-94	63.97 64.01
405446072524801	S 76834. 1	405446	725248	112GLCLU	1984	87.9	44	48	03-31-94	49.43
403741073215202	S 90161. 1	403741	732152	112GLCLU	1992	12.3	40	45	03-31-94	1.34
403741073215203	S 90162. 1	403741	732152	112GLCLU	1992	12.3	65	70	03-31-94	1.22
403741073215204	S 90163. 1	403741	732152	112GLCLU	1992	12.3	80	85	03-31-94	1.21
410801072205701	S 95423. 1	410748	722054	112GLCLU	1989	47.9	103	108	03-30-94 03-30-94	4.09 4.09
410753072205301	S 95424. 1	410800	722059	112GLCLU	1989	47.9	68	70	03-30-94 03-30-94	3.64 3.64
410759072205601	S 95727. 1	410757	722057	112GLCLU	1990	50.0	136	138	03-30-94 03-30-94	2.43 2.44

Hydrogeologic unit:

112GLCLU - Upper glacial aquifer, Pleistocene age.

112PLSC - Pleistocene deposit, undifferentiated.

112PGGG - Port Washington confining unit, Pleistocene age.

112PGQF - Port Washington aquifer, Pleistocene age.

112GRDR - Gardiners Clay, Pleistocene age.

112JMCO - Jameco Gravel, Pleistocene age.

211MGTY - Magothy aquifer, Cretaceous age.

211RCNF - Raritan confining unit, Cretaceous age.

211LLYD - Lloyd aquifer, Cretaceous age.

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 NASSAU COUNTY

All samples were collected and analyzed by U.S. Geological Survey.

STATION	NUMBER		LOCA IDENT I- FIER		GEI LOG: UN:	IC	DEPTH OF WELL, TOTAL (FEET)	SPE- CIFIC CON- DUCT- ANCE FIELD (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)
404736073	353101		N 117	8. 1	211MG	TY 06-30-9	94 198	47	6.1	11.5
404659073	332601		N 119	4. 2	112GL	CLU 10-26-9	93 100	232	6.4	13.5
404619073	270601		N 335	5. 2	211LL	YD 06-15-9	94 1093	38	6.3	13.0
404544073	265502		N 739	7. 2	112GL	CLU 08-30-9	94 101	316	5.3	11.5
4035580733	302704		N 841	4. 2	211LL	YD 07-07-9	1080	166	6.5	16.0
404622073	330701		N 1145	7. 1	211LL	YD 09-06-9	94 865	67	7.0	13.0
DATE	OXYGEN, DIS- SOLVED (MG/L)	CALCIUN DIS- SOLVED (MG/L AS CA)	DIS SOLV (MG/	M, SODI - DIS ED SOLV - (MG	- DIS	UM, LINITY S- LAB	Y SULFATE DIS- SOLVED (MG/L	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SI02)
06-30-94	9.2	1.8	0.	76 3		.70 7.3	0.30	4.0	0.20	9.1
10-26-93	7.2	14	3.	7 22	1	.6 21	14	43	⟨0.10	12
06-15-94	3.4	1.4	0.	82 2	.9 0	. 50 11	1.0	3.2	⟨0.10	6.9
08-30-94	10.6	5.8	6.	0 42	2	.0 7.9	5.5	83	<0.10	7.4
07-07-94	4.4	0.11	0.	24 31	2	.6 37	26	7.6	<0.10	8.7
09-06-94	4.4	5.6	0.	74 4	.6 3	.0 27	1.8	3.7	0.10	7.2
	NITI GE NITR DI SOL	N ITE NO S- VED SO	EN +NO3 A IS- LVED	SOLVED	DIS.	PHOS- I PHORUS I TOTAL SI	II VED SOI	ON, NES IS- DI VED SOI	S- ACT	NE UE IVE B-
DATI	E (MG	N) AS	IG/L N)	(MG/L AS N)	AS N)	AS P) AS	MG/L (UC	FE) AS	MN) (MG	/L)
06-30-	-94 0.1	034	1.1	0.05	⟨0.20	0.045	0.001	1200	36 (0	.02
10-26-	-93 0.1	004	1.8	0.08	(0.20	0.008	(0.001 1	1600	64 (0	.02
06-15-	-94 0.1	001	0.06	0.02	<0.20	0.005	0.001	1400	61 (0	.02
08-30-	-94 0.1	001	3.9	0.02	⟨0.20	0.006	(0.001	490	75 (0	.02
07-07	-94 (0.1	001 (0.05	0.04	⟨0.20	0.009	0.010	240	3 <0	.02
09-06-	-94 0.1	003	0.07	0.04	⟨0.20	0.013	0.002	680	42 0	. 04

Hydrogeologic unit (aquifer): 112GLCLU - Upper glacial aquifer, Pleistocene age. 211LLYD - Lloyd aquifer, Cretaceous age. 211MGTY - Magothy aquifer, Cretaceous age.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

NASSAU COUNTY (Continued)

The following wells were sampled for water quality during the 1994 water year by the agency listed below. For further information, contact:

Nassau County Department of Health New Office Building 240 Old Country Road Mineola, NY 11501

| Local |
|------------|------------|------------|------------|------------|------------|------------|
| identifier |
N 14	N 1958	N 4388	N 5655	N 7298	N 8196	N 9151
N 17	N 2028	N 4389	N 5656	N 7353	N 8214	N 9173
N 22	N 2030	N 4390	N 5672	N 7377	N 8216	N 9180
N 36	N 2052	N 4393	N 5695	N 7407	N 8217	N 9210
N 37	N 2214	N 4394	N 5696	N 7414	N 8218	N 9211
N 46	N 2239	N 4400	N 5703	N 7421	N 8233	N 9212
N 68	N 2400	N 4405	N 5710	N 7445	N 8248	N 9308
N 69	N 2414	N 4411	N 5762	N 7446	N 8249	N 9334
N 72	N 2565	N 4425	N 5767	N 7482	N 8250	N 9338
N 75	N 2578	N 4450	N 5792	N 7512	N 8251	N 9463
N 79	N 2597	N 4512	N 5852	N 7513	N 8253	N 9488
N 80	N 2602	N 4602	N 5876	N 7516	N 8264	N 9514
N 81	N 2613	N 4623	N 5884	N 7521	N 8279	N 9520
N 82	N 2920	N 4756	N 5994	N 7522	N 8313	N 9521
N 83	N 3185	N 4757	N 6042	N 7523	N 8321	N 9613
N 95	N 3443	N 4758	N 6076	N 7526	N 8339	N 9768
N 97	N 3474	N 4759	N 6077	N 7549	N 8342	N 9792
N 103	N 3475	N 4860	N 6087	N 7551	N 8354	N 9809
N 104	N 3520	N 5007	N 6092	N 7552	N 8355	N 9846
N 118	N 3603	N 5099	N 6093	N 7561	N 8409	N 9878
N 119	N 3604	N 5121	N 6146	N 7562	N 8414	N 9910
N 133	N 3605	N 5129	N 6148	N 7593	N 8420	N 9976
N 134	N 3668	N 5145	N 6149	N 7649	N 8426	N 10033
N 152	N 3672	N 5147	N 6150	N 7650	N 8474	N 10103
N 198	N 3673	N 5148	N 6190	N 7665	N 8475	N 10149
N 199	N 3687	N 5152	N 6192	N 7720	N 8480	N 10195
N 570	N 3720	N 5153	N 6442	N 7772	N 8497	N 10206
N 578	N 3745	N 5155	N 6443	N 7773	N 8525	N 10207
N 585	N 3878	N 5156	N 6450	N 7776	N 8526	N 10208
N 650	N 3895	N 5187	N 6580	N 7781	N 8557	N 10211
N 651	N 3905	N 5193	N 6651	N 7785	N 8576	N 10286
N 687	N 3934	N 5194	N 6744	N 7796	N 8595	N 10401
N 693	N 3935	N 5195	N 6745	N 7831	N 8603	N 10408
N 700	N 3937	N 5201	N 6817	N 7855	N 8657	N 10451
N 1298	N 3953	N 5209	N 6866	N 7857	N 8658	N 10555
N 1328	N 4043	N 5227	N 6867	N 7873	N 8664	N 10557
N 1346	N 4077	N 5260	N 6893	N 7892	N 8665	N 10612
N 1601	N 4082	N 5302	N 6945	N 7957	N 8713	N 10863
N 1602	N 4095	N 5303	N 6956	N 8007	N 8778	N 10889
N 1603	N 4096	N 5304	N 7030	N 8010	N 8779	N 11037
N 1618	N 4097	N 5308	N 7058	N 8011	N 8818	N 11107
N 1651	N 4118	N 5528	N 7076	N 8031	N 8837	N 11144
	N 4132	N 5596	N 7104	N 8043	N 8976	N 11295
N 1697	N 4243	N 5603	N 7117	N 8054	N 8979	N 11509
N 1715	N 4245	N 5653	N 7126	N 8183	N 9068	N 11647
N 1716	N 4245	N 5654	N 7157	N 8195	N 9076	N 11909
N 1802	N 4298	14 3034	111101			99000000
N 1870	N 4230					

QUALITY OF GROUND WATER

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 NASSAU COUNTY (Continued)

The following wells were sampled for water quality during the 1994 water year by the agency listed below. For further information, contact:

Nassau County Department of Public Works Water Supply Unit 170 Cantiague Rock Road Hicksville, NY 11801

| Local |
|------------|------------|------------|------------|------------|------------|------------|
| identifier |
N 1118	N 6853	N 9117	N 9926	N 10607	N 11574	N 12076
N 1120	N 6928	N 9152	N 9927	N 10608	N 11633	N 12082
N 1130	N 7161	N 9188	N 9930	N 10609	N 11634	N 12102
N 1152	N 7207	N 9191	N 9931	N 10620	N 11643	N 12112
N 1190	N 7397	N 9208	N 9932	N 10667	N 11644	N 12113
N 1194	N 7450	N 9309	N 9933	N 10730	N 11659	N 12114
N 1197	N 8052	N 9313	N 9934	N 10731	N 11675	N 12156
N 1231	N 8204	N 9317	N 9935	N 10733	N 11720	N 12191
N 1236	N 8309	N 9354	N 9936	N 10977	N 11721	N 12238
N 1278	N 8414	N 9355	N 9938	N 10979	N 11724	N 12250
N 2790	N 8550	N 9356	N 9939	N 10980	N 11725	N 12251
N 3498	N 8646	N 9358	N 9940	N 10981	N 11725	N 12254
N 3710	N 8718	N 9468	N 9941	N 10982	N 11730	N 12255
N 3862	N 8849	N 9471	N 9942	N 11002	N 11731	N 12256
N 3864	N 8857	N 9474	N 9943	N 11067	N 11732	N 12257
N 3865	N 8863	N 9475	N 9944	N 11109	N 11778	N 12258
N 3866	N 8873	N 9647	N 9946	N 11169	N 11779	N 12259
N 3867	N 8888	N 9648	N 9979	N 11170	N 11784	N 12260
N 3932	N 8891	N 9650	N 9982	N 11172	N 11822	N 12275
N 4026	N 8933	N 9711	N 9983	N 11279	N 11823	N 12276
N 4062	N 8938	N 9802	N 10002	N 11280	N 11824	N 12318
N 4213	N 8939	N 9803	N 10003	N 11281	N 11830	N 12319
N 4547	N 8940	N 9899	N 10006	N 11310	N 11865	N 12320
N 5227	N 8943	N 9903	N 10010	N 11397	N 11866	N 12321
N 5250	N 8944	N 9907	N 10094	N 11453	N 11962	N 12338
N 6581	N 9030	N 9917	N 10290	N 11454	N 11964	N 12343
N 6657	N 9054	N 9918	N 10291	N 11457	N 11987	N 12430
N 6701	N 9059	N 9919	N 10390	N 11458	N 12004	N 12465
N 6703	N 9079	N 9920	N 10425	N 11570	N 12038	Q 287
N 6704	N 9089	N 9921	N 10430	N 11572	N 12039	Q 1237
N 6849	N 9098	N 9922	N 10604	N 11573	N 12075	Q 3109
N 6850	N 9099	N 9925	N 10606			

QUALITY OF GROUNDWATER WATER QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 SUFFOLK COUNTY

All samples were collected and analyzed by U.S. Geological Survey.

STATION NUMBER	LOCAL IDENT- I- FIER	GEO- LOGIC UNIT	DEP OF WEL DATE TOT (FE	DUCT- L, ANCE AL FIELD	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)
403727073154601	S 21091. 1	211LLYD 06-	-27-94 19	21 132	6.6	14.5
404812073041201	S 44918. 1	112GLCLU 03-	-16-94	85 176	6.1	10.5
405240072491402	S 47226, 1	112GLCLU 10-	-25-93	30 77	6.6	10.5
405240072491401	S 47227. 1	112GLCLU 10-	-25-93 1	00 104	7.4	10.0
405412072441401	\$ 47753. 1	112GLCLU 11-	-02-93 1	02 55	6.1	9.5
405604073064301	S 47973. 1	112GLCLU 03-	-15-94	90 192	6.2	
405844072191601	\$ 48438. 1	112GLCLU 06-	-22-94	82 187	5.8	8.5
405121072490601	\$ 48946. 1	112GLCLU 10-	-25-93	45 165	6.3	11.5
404119072593501	S 51461. 1	211MGTY 07-	-20-94 4	67 58	6.4	13.5
405512072395201	S 51573. 1	112GLCLU 11-	-02-93	90 134	8.2	13.5
405349072494101	S 51592. 1	112GLCLU 10-	-25-93	42 160	5.9	10.0
403935073235001	S 66136. 1	211MGTY 03-	-23-94 1	34 36	6.3	12.0
405508073054201	S 66513. 1	112GLCLU 07-	-19-94 1	23 289	5.8	13.0
403935073235002	S 67537. 1	112GLCLU 03-	-23-94	61 137	7.8	12.0
404433073244903	S 74586. 1	211MGTY 08-	-24-94 4	41 29	5.1	13.0
404433073244904	S 74587. 1	211MGTY 08-	-23-94 1	96 240	5.4	14.0
404433073244905	S 75033. 1	112GLCLU 08-	-23-94	62 176	5.6	15.0
404433073244902	S 75034. 2	211MGTY 08-	-24-94 6	98 27	5.7	13.5
410323072182001	S 75441. 1	112GLCLU 06-	-22-94	33 85	6.1	10.0
403935073235004	S 79408. 1	211MGTY 03-	-23-94 6	80 40	6.0	12.0
404433073244906	S 87041. 1	211LLYD 08-	-29-94 9	83 33	5.0	13.0
405405072442703	S 89536. 1	211MGTY 11-	-02-93 2	73 127	7.8	9.5
404641073005301	S 94403. 1	112GLCLU 03-	-21-94 1	00 75	6.7	11.0
404759073251701	S 95963. 1	112GLCLU 06-	-08-94 1	93 68	5.0	11.5
404759073251702	\$ 95964. 1	211MGTY 06-	-09-94 4	11 32	5.8	11.5
404759073251703	S 95965. 1	211MGTY 07-	-26-94 6	19 352	5.5	11.5

235

QUALITY OF GROUND WATER

WATER QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

SUFFOLK COUNTY--Continued

DATE	DXYGEN, DIS- SOLVED (MG/L)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CAC03)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLU0- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)
06-27-94		3.0	0.82	10	1.3	3.7	15	12	0.10	10
03-16-94	8.0	7.8	2.2	16	2.1	40	14	28	<0.10	7.8
10-25-93	1.5	4.1	0.72	4.1	0.50	13	3.4	5.4	0.10	11
10-25-93	0.9	12	2.5	3.9	0.40	40	4.0	4.2	0.10	14
11-02-93	6.2	2.8	1.3	3.8	0.60	9.9	8.1	5.7	⟨0.10	10
03-15-94		15	5.2	9.0	1.3	25	34	9.6	⟨0.10	12
06-22-94		8.2	4.1	16	1.1	12	5.1	40	(0.10	8.7
10-25-93	3.0	13	3.8	9.0	3.5	15	30	11	0.10	8.6
07-20-94	1.0	15	7.5	23	1.8	17	23	45	<0.10	16
11-02-93	1.7	18	2.3	5.3	0.70	63	0.50	5.3	0.10	46
10-25-93	4.7	2.6	0.96	25	0.50	4.7	10	37	⟨0.10	6.5
03-23-94	0.9	0.87	1.0	2.2	1.0	4.3	3.8	3.5	(0.10	5.4
07-19-94	9.5	0.09	0.12	9.0	3.7	16	5.0	3.9	<0.10	10
03-23-94	0.8	23	1.5	2.9	0.40	61	3.5	3.7	<0.10	9.7
08-24-94	2.2	0.90	0.33	2.8	0.30	2.7	1.7	4.5	<0.10	6.6
08-23-94	3.2	15	5.6	8.5	1.6	8.6	36	13	0.20	11
08-23-94	3.3	14	2.4	11	2.7	16	23	15	0.20	5.3
08-24-94	4.1	0.39	0.23	2.5	0.30	3.8	1.0	4.1	(0.10	6.4
06-22-94	10.5	3.0	2.0	7.4	1.2	10	8.9	11	<0.10	12
03-23-94	0.6	0.42	0.34	2.7	0.30	6.1	3.3	3.6	(0.10	7.5
08-29-94	2.9	0.24	0.18	3.3	0.30	9.2	3.8	3.1	<0.10	8.4
11-02-93	1.0	16	2.4	4.4	0.60	49	8.1	5.1	0.10	16
03-21-94	3.0	5.6	1.4	4.4	1.0	24	3.0	4.2	<0.10	13
06-08-94	10.0	1.7	1.5	7.2	0.90	7.2	0.20	8.7	<0.10	7.3
06-09-94	12.3	1.0	0.36	2.8	0.40	9.8	0.30	4.4	⟨0.10	5.8
07-26-94	4.6	0.82	0.33	3.1	0.30	5.4	1.2	4.2	<0.10	6.5

WATER QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 SUFFOLK COUNTY--Continued

			20FF	LK CUUNII	continu	ed			
DATE	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN AMMONÍA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	METHY- LENE BLUE ACTIVE SUB- STANCE (MG/L)
06-27-94	0.002	<0.05	0.02	<0.20	0.005	<0.001	14000	130	<0.02
03-16-94	0.007	1.6	0.20	0.40	0.008	<0.001	2000	690	⟨0.02
10-25-93	0.002	(0.05	0.23	0.30	0.126	0.077	6900	140	⟨0.02
10-25-93	<0.001	<0.05	0.11	<0.20	0.220	0.21	680	250	⟨0.02
11-02-93	<0.001	0.12	0.02	<0.20	0.010	0.006	53	11	<0.02
03-15-94	0.008	3.0	0.14	0.30	0.038	0.014	1400	180	⟨0.02
06-22-94	<0.001	0.41	0.02	<0.20	<0.001	<0.001	820	120	⟨0.02
10-25-93	0.002	2.7	0.18	⟨0.20	0.058	0.029	2500	290	(0.02
07-20-94	<0.001	(0.05	0.04	(0.20	0.096	0.10	3	1	(0.02
11-02-93	(0.001	0.05	0.32	0.30	0.122	0.10	95	48	0.02
10-25-93	0.001	0.29	0.02	⟨0.20	0.001	<0.001	400	47	(0.02
03-23-94	0.002	(0.05	0.23	0.50	0.022	0.010	420	24	<0.02
07-19-94	<0.001	6.8	0.02	⟨0.20	0.012	0.011	400	6	⟨0.02
03-23-94	0.001	⟨0.05	0.02	<0.20	0.048	0.043	46	230	<0.02
08-24-94	(0.001	0.31	<0.01	(0.20	0.002	0.002	8	2	<0.02
08-23-94	<0.001	5.1	0.01	⟨0.20	0.001	<0.001	⟨3	1	0.03
08-23-94	(0.001	3.7	0.01	<0.20	0.001	<0.001	5	4	0.02
08-24-94	⟨0.001	0.05	0.02	⟨0.20	(0.001	<0.001	2000	42	<0.02
06-22-94	<0.001	⟨0.05	0.01	(0.20	<0.001	<0.001	100	14	<0.02
03-23-94	0.001	<0.05	<0.01	<0.20	(0.001	<0.001	250	6	⟨0.02
08-29-94	<0.001	<0.05	<0.01	⟨0.20	0.001	<0.001	130	22	⟨0.02
11-02-93	<0.001	<0.05	0.09	(0.20	0.176	0.17	260	30	⟨0.02
03-21-94	0.002	<0.05	0.16	0.20	0.036	0.011	2100	160	⟨0.02
06-08-94	<0.001	3.2	0.02	⟨0.20	0.002	0.001	⟨3	6	⟨0.02
06-09-94	<0.001	0.28	0.02	(0.20	0.002	<0.001	15	24	⟨0.02
07-26-94	0.004	0.43	0.03	<0.20	<0.001	0.001	2600	32	<0.02

Hydrogeologic unit (aquifer): 112GLCLU - Upper glacial aquifer, Pleistocene age. 211LLYD - Lloyd aquifer, Cretaceous age. 211MGTY - Magothy aquifer, Cretaceous age.

QUALITY OF GROUND WATER

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994 SUFFOLK COUNTY (Continued)

The following wells were sampled for water quality during the 1994 water year by the agency listed below. For further information, contact:

Suffolk County Water Authority Sunrise Highway Oakdale, NY 11769

Local	Local	Local	Local	Local	Local	Local
identifier	identifier	identifier	identifier	identifier	identifier	identifier
S 871	S 20566	S 29732	S 37141	S 46713	S 55028	S 68666
S 872	S 20635	S 30088	S 37174	S 46830	S 55463	S 68690
S 1340	S 20688	S 30117	S 37301	S 46928	S 55502	S 68880
S 1341	S 20689	S 30118	S 37351	S 47035	S 55733	S 69024
S 2415	S 20839	S 30207	S 37494	S 47219	S 55734	S 39364
S 4372	S 20955	S 30208	S 37681	S 47310	S 56038	S 69511
S 5565	S 21121	S 30227	S 37847	S 47435	S 56039	S 70008
S 6513	S 21244	S 30228	S 37861	S 47436	S 56133	S 70155
S 7570	S 21247	S 30234	S 37963	S 47437	S 56674	S 70459
S 8265	S 21366	S 30506	S 37991	S 47438	S 57008	S 70488
S 8439	S 21376	S 30762	S 38192	S 47453	S 57354	S 70767
S 9893	S 21632	S 31037	S 38194	S 47673	S 57357	S 71038 S 71083
S 11105	S 21945	S 31038	S 38320	S 47886	S 57871	S 71533
S 11484	S 22048	S 31039	S 38321	S 47887	S 57979 S 57980	S 71715
S 11810	S 22351	S 31104	S 38491	S 48014 S 48193	S 58708	S 71785
S 12130	S 22362	S 31624	S 38701	S 48719	S 58761	S 71881
S 14326	S 22389	S 31653	S 38784 S 38785	S 49018	S 59347	S 71882
S 14710	S 22471	S 31913	S 38916	S 49422	S 59744	S 71892
S 14792	S 22547 2 22584	S 32180 S 32287	S 38917	S 49606	S 60127	S 72245
S 14828 S 14921	S 22640	S 32325	S 39024	S 50546	S 60486	S 72271
S 15500	S 22711	S 32326	S 39347	S 50630	S 60812	S 72300
S 15501	S 23184	S 32359	S 39531	S 51214	S 61910	S 72326
S 15514	S 23185	S 32501	S 39536	S 51266	S 61937	S 72917
S 15746	S 23186	S 32551	S 40161	S 51274	S 62022	S 73144
S 15576	S 23256	S 32552	S 40330	S 51275	S 62240	S 73332
S 15776	S 23255	S 32552	S 40330	S 51275	S 62240	S 73332
S 15898	S 23371	S 33005	S 40331	S 51298	S 62855	S 73492
S 15923	S 23440	S 33006	S 40497	S 51457	S 63205	S 73847
S 16129	S 23445	S 33308	S 40498	S 51519	S 63256	S 74505
S 16256	S 23524	S 33500	S 40709	S 51609	S 63618	S 74573
S 16309	S 23631	S 33820	S 40710	S 51673	S 63966	S 74865
S 16892	S 23715	S 33826	S 40711	S 51953	S 64023	S 77010
S 16893	S 23827	S 33922	S 40837	S 52126	S 64062	S 78310
S 17037	S 23828	S 33970	S 40838	S 52451	S 64609	S 78612
S 17241	S 23832	S 34007	S 40980	S 52490	S 64716	S 79293
S 17474	S 23848	S 34030	S 42226	S 52943	S 64847	S 81473
S 17630	S 24047	S 34031	S 42227	S 52944	S 65341	S 82174
S 17689	S 24323	S 34300	S 42270	S 52945	S 65505	S 82422
S 17835	S 24545	S 34301	S 42473	S 53074	S 65766	S 83096
S 18003	S 24663	S 34460	S 42499	S 53291	S 65905	S 83707 S 84848
S 18261	S 25617	S 34522	S 42504	S 53360 S 53361	S 66183	S 88463
S 18621	S 25674	S 34595	S 42505	S 53497	S 66184 S 66366	S 90674
S 18729	S 25776	S 35033	S 42760	S 53498	S 66429	S 93519
S 18762	S 26535	S 35446 S 35494	S 42761 S 42762	S 53522	S 66496	S 93702
S 19048	S 27070 S 27192	S 35939	S 42827	S 53593	S 66657	S 94138
S 19198 S 19399	S 27259	S 36166	S 43001	S 53747	S 66733	S 94286
S 19399	S 27533	S 36459	S 43117	S 53850	S 66758	S 96232
S 19465	S 27784	S 36460	S 43641	S 53851	S 66825	S 96352
S 19565	S 28408	S 36711	S 44640	S 54162	S 66881	S 96482
S 19584	S 28503	S 36714	S 44774	S 54305	S 67074	S 96673
S 20057	S 28767	S 36748	S 45610	S 54308	S 67197	S 98322
S 20300	S 28819	S 36791	S 45839	S 54473	S 67656	S 98350
S 20369	S 28928	S 36869	S 45840	S 54568	S 67819	S 98523
S 20460	S 29411	S 36965	S 46235	S 54730	S 67925	S 99960
S 20479	S 29491	S 36976	S 46400	S 54957	S 68552	S100069
A STATE OF THE PARTY OF THE PAR	S 29492	S 37140	S 46712			

WATER-QUALITY DATA, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994

SUFFOLK COUNTY (Continued)

The following wells were sampled for water quality during the 1994 water year by the agency listed below. For further information, contact:

Suffolk County Department of Health Services 225 Rabro Drive East Hauppauge, NY 11788

Local identifier	Local identifier	Local identifier	Local identifier	Local identifier	Local identifier	Local identifier
	S 45447	S 47227	S 47945	S 51180	S 51589	S 66508
S 6524	S 45447 S 45636	S 47227 S 47228	S 47973	S 51182	S 51509	S 66509
S 13204		7271222	S 47974	S 51183	S 51592	S 66511
S 22660	S 45637	S 47229	S 47975	S 51184	S 52050	S 66512
S 43809	S 45717	S 47230			S 52084	S 66513
S 43810	S 45718	S 47231	S 47977	S 51185		S 73357
S 43811	S 45719	S 47233	S 48426	S 51186	S 52164	
S 43812	S 45720	S 47234	S 48427	S 51566	S 52383	S 75435
S 43813	S 45721	S 47437	S 48428	S 51567	S 52449	S 75438
S 43815	S 45722	S 47675	S 48438	S 51568	S 53323	S 75439
S 43816	S 46281	S 47698	S 48439	S 51571	S 53324	S 75441
S 43817	S 46284	S 47718	S 48440	S 51572	S 53325	S 75454
S 43818	S 46286	S 47720	S 48442	S 51573	S 53327	S 75455
S 43819	S 46287	S 47724	S 48759	S 51575	S 53328	S 75456
S 43820	S 46502	S 47743	S 48946	S 51576	S 53329	S 76673
S 43821	S 46911	S 47745	S 48958	S 51577	S 53330	S 76674
S 43822	S 46912	S 47746	S 51169	S 51578	S 53331	S 76675
S 44914	S 46913	S 47747	S 51170	S 51579	S 53332	S 78323
S 44918	S 46914	S 47748	S 51171	S 51580	S 53333	S 88716
S 45053	S 46962	S 47749	S 51172	S 51581	S 53334	S 88718
S 45207	S 46963	S 47750	S 51174	S 51582	S 53335	S 90279
S 45208	S 46964	S 47751	S 51175	S 51583	S 53336	S 90280
S 45210	S 46965	S 47752	S 51176	S 51586	S 53338	S 95963
S 45210	S 46966	S 47756	S 51177	S 51587	S 53539	S 95964
S 45212 S 45402	S 47225	S 47757	S 51179	S 51588	S 66506	S 95965
S 45446	S 47226	S 47758	551110		100	

INDEX 239

	Page		Page
Access to WATSTORE data	13	Drainage area, definition of	16
Accuracy of the records		Drainage basin, definition of	16
(stage and water-discharge records)	8	Dry mass, definition of	14
AcknowledgmentsAcre-foot, definition of	14	East Meadow Brook, at East Meadow	91
Algae, definition of	14	at Freeport	78-79
Algal growth, definition of	14	at Uniondale	91
Alley Creek, near Dakland Gardens	38	near Westbury	91
Amityville Creek, at Amityville	90	East Meadow Pond Outlet, at Freeport	91
Annual 7-day minimum, definition of	15 14	East Patchogue, Swan River at	55-56 17
Arrangement of records (water quality)	9	Lagrenorus, der interent of	
Artificial substrate, definition of	19	Fecal coliform bacteria, definition of	14
Ash mass, definition of	14	Fecal streptococcal bacteria, definition of	14
Aspatuck Creek, near Westhampton Beach	87	Fire algae, definition of	17
Awixa Creek, at Islip	89	Forge River, at Moriches	87
Dahulan Carlla Divar at	69-71	Freeport, East Meadow Brook at	78-79 91
Babylon, Carlls River at	66-68	Freeport Creek, at FreeportFresh Pond Outlet, at Baiting Hollow	86
Bacteria, definition of	14	at Fort Salonga	85
Bay Shore, Penataquit Creek at	65, 89		
Beaverdam Creek, at Westhampton Beach	87	Gage height, definition of	16
Bed material, definition of	14	Gaging station, definition of	16
Bellmore Creek, at Bellmore	76-77	Gaging station records	38-84
tributary, at North Wantagh	90	Gaging stations, List of, in downstream order	40-41
near North Wantagh Big Fresh Pond Outlet, at North Sea	90 87	Glen Cove Creek, at Glen CoveGreen algae, definition of	17
Biochemical oxygen demand, definition of	14	Green Creek, at West Sayville	88
Biomass, definition of	14	Ground water, level data	92-229
Biomass pigment ratio, definition of	14	quality of	231-238
Blue-green algae, definition of	17	Ground-water levels, explanation of records	11-12
Bottom material, definition of	14	Handana Jakinia ak	10
Calandar (1004 water weer) inside of free		Hardness, definition of	16 25
Calendar (1994 water year)inside of from Carlls River, at Babylon	69-71	Hydrograph, East Meadow Brook at Freeport Nissequogue River near Smithtown	26
at Park Avenue, Babylon	89	Well N 1259 at Plainedge	28
Carmen Creek, at Amityville	90	Well S 4271 at Riverhead	27
Carmans River, at Middle Island	88	Hydrologic unit, definition of	16
at South Haven	88		
at Yaphank	52-54	Identifying estimated daily discharge	8
below Lower Lake, at Yaphanknear Yaphank	88 88	Inch-pound units to	neida of
Cascade Lakes Outlet, at Brightwaters	89	International System units (SI), Factors for convertingba	ck cover
Cedar Swamp Creek, at Merrick	91	Instantaneous discharge, definition of	15
Cells/volume, definition of	15	Introduction	1
Central Islip, Connetquot Brook at	58	Island Swamp Brook, at Lattingtown	85
Connetquot Brook near	59	Islip, Champlin Creek at	64, 89
Cfs-day, definition of	64 80	Kings County, ground-water levels in99-	103 201
Chemical oxygen demand, definition of	64, 89 15	Kings country, ground-water revers in	100, 201
Chlorophyll, definition of	15	Laboratory measurements (water quality)	10
Classification of records (water quality)	8	Lake Ronkonkoma, at Lake Ronkonkoma	88
Cold Spring Brook, at Cold Spring Harbor	44-45	Latitude-longitude system, station identifica-	
Colloid, definition of	15	tion numbersLigonee Brook, at Sag Harbor	4 87
Confined aquifer, definition of	15 15	Lindenhurst, Santapogue Creek at	72, 89
Connetquot Brook, at Central Islip	58	Little River, near Riverhead	86
near Central Islip	59	Little Seatuck Creek, at Eastport	87
near Oakdale	88	Location of data collection stations (maps)	29-37
Connetquot River, near Dakdale	60-63	Low-flow partial-record stations,	05 01
Conselyeas Pond Tributary, at Rosedale Contents, definition of	83 15	discharge at	85-91
Control, definition of	15	Malverne, Pines Brook at	80-81
Control structure, definition of	15	Massapegua, Seaford Creek at	75
Cooperation	2	Massapequa Creek, at Massapequa	73-74
Cubic feet per second per square mile,		at North Massapequa	90
definition of	15 15	at South Farmingdale	90 90
caste 1000 per second, derinitation of	13	Mean concentration (sediment), definition of	18
Data collection and computation		Mean discharge, definition of	15
(ground-water levels)	11-12	Methylene blue active substance, definition of.	16
(ground-water quality)	12	Micrograms per gram, definition of	16
(stage and water-discharge)	4-8	Micrograms per liter, definition of	16
Data presentation (ground-water levels)	11	Mill Čreek, at Noyack,near Huntington	87 85
(ground-water quality)	12	Mill Neck Creek, at Mill Neck	42-43
(surface-water quality)	10	Millburn Creek, at Baldwin	91
Definition of terms	14-20	Milligrams per liter, definition of	16
Diatoms, definition of	17	Motts Creek, at Valley Stream	91
Discharge, definition of	15	Mud Creek, at East Patchogue	88
Dissolved, definition of	15	Nassau County, ground-water levels in92-93,	104-135
Diversity index, definition of	16	naces county, ground water levels in	202-216
Downstream order and station numbers	3	quality of ground water in	231-233

	Page		Page
National Geodetic Vertical Datum of 1929,		Seaford Creek, at Massapequa	7.
definition of	16	Seaford Creek, at Seaford	90
National stream-quality accounting network		Seamans Creek, at Seaford	90
definition of		Seatuck Creek, at Eastport	87
Natural substrates, definition of	19 90	SedimentSediment, definition of	9-10 18
Neguntatogue Creek, at Lindenhurst Newbridge Creek, at Merrick	90	Smithtown, Nissequogue River near	46-48
Nissequogue River, near Hauppauge	86	Solute, definition of	18
at Smithtown	86	Special networks and programs	3
near Smithtown	46-48	Specific conductance, definition of	18
Northeast branch, near East Hauppauge	85	Speonk River, at Speonk	88
near Hauppaugeat Smithtown	85 85	Stage and water-discharge records,	3-8
near Smithtown	86	explanation ofStage-discharge relation, definition of	18
Numbering system for wells	4	Station identification numbers	- 3
		Stony Brook at Stony Brook	86
Dakdale, Connetquot River near	60-63	Stony Hollow Run, at Centerport	88
Oakland Gardens, Alley Creek near	38	Streamflow, definition of	19
On-site measurements and sample collection (water quality)	9	Strongs Creek, at LindenhurstSubstrate, definition of	19
Organic Carbon, definition of	16	Suffolk County, ground-water levels in95-98,	
Organic mass, definition of	14		219-230
Organism, definition of	16	quality of ground-water in	234-238
Organism count/area, definition of	16	Summary of hydrologic conditions	
Organism count/volume, definition of	17	Surface area, definition of	19
Other records available (stage and water-discharge records)	8	Surface-water quality, explanation of records Surficial bed material, definition of	8-10 19
discharge records)	· ·	Suspended, definition of	19
Pardees Ponds Outlet, at Islip	89	Suspended, recoverable, definition of	19
Parsonage Creek, at Baldwin	91	Suspended sediment, definition of	18
Partial-record station, definition of	17	Suspended-sediment concentration.	
Partial-record stations and miscellaneous	0F 01	definition of	18
sites, Discharge at	85-91 17	Suspended-sediment discharge, definition of Suspended, total, definition of	18 19
Particle-size classification, definition of	17	Swan River, at East Patchogue	55-56
Patchogue River, at Patchogue	57, 88		
near PatchoguePeconic River, at Manorville	88	Taxonomy, definition of	19
Peconic River, at Manorville	86	Time-weighted average, definition of	19
at Nugent Drive, at Riverhead	86 49-51	Tons per acre-foot, definition of	20 20
at Riverhead Penataquit Creek, at Bay Shore	65, 88	Tons per day, definition of	20
Percent composition, definition of	17	definition of	20
Periphyton, definition of	17	lotal colliorm pacteria, definition of	14
Pesticides, definition of	17	Total in bottom material, definition of Total load, definition of	14
Phytoplankton, definition of	17 17	Total organic carbon, definition of	20 20
Pines Brook, at Malverne	80-81	Total organism count, definition of	17
Plankton, definition of	17	Total, recoverable, definition of	20
Polychlorinated biphenyls, definition of	18	Total sediment discharge, definition of	18
Polychlorinated napthalenes, definition of	18	Hannad bathubanu ba Canadiana Bau ab	
Poxabogue Pond Outlet, at Sagaponack	87 111	Unnamed tributary, to Conscience Bay at Setauket	86
Primary productivity, definition of	18	to Port Jefferson Harbor at Port Jefferson	86
Publications on techniques of water-resources		to Setauket Harbor at East Setauket	85
investigations	21-24	V II A	
Quantuck Creek at Quague	87	Valley Stream, at Valley Stream	84 91
Quantuck Creek, at QuogueQueens County, ground-water levels in94,		below West Branch, at Valley Stream	91
question country, greating master reference interesting	217-218	Wading River, at Wading River	87
		Water analysis	8
Rattlesnake Brook, near Oakdale	88	Water-discharge records, explanation of,	
Records, Explanation of	3-13 11-12	<pre>(see Stage and water-discharge records, explanation of)</pre>	
(ground-water quality)	12	Water table	20
(stage and water discharge)	4-8	Water-table aquifer	20
(surface-water quality)	8-10		
Recoverable from bottom material,	15	Water temperatures	0 10
definition of	15 10	Water-quality records, explanation Weesuck Creek, at East Quogue	8-10 87
Riverhead, Peconic River at	49-51	Weighted average, definition of	20
Riverhead, Peconic River at	83	Wells, system for numbering	3-4
Roslyn Brook, at Roslyn	85	Wet mass, definition of	14
Runoff in inches, definition of	18	White Brook, at Riverhead	86 85
Sampawams Creek, at Babylon	66-68	Whitney Lake Outlet, at Manhasset	20
below Hawleys Lake, at Babylon	89	WSP, definition of	20
near Deer Park	89		
near North Babylon	72 89	Yaphank, Carmans River at	52-54
Santapogue Creek, at Lindenhurstat State Highway 27A, Lindenhurst	72, 89 89	Zooplankton, definition of	18
Car areas in Sucas and Caracana	-		10

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.)	2.54×10^{1}	millimeter
4.54.0	2.54×10^{-2}	meter
foot (ft)	3.048×10^{-1}	meter
mile (mi)	1.609×10^0	kilometer
	Area	
acre	4.047×10^3	square meter
	4.047×10^{-1}	square hectometer
	4.047×10^{-3}	square kilometer
square mile (mi ²)	2.590×10^{0}	square kilometer
	Volume	
gallon (gal)	3.785×10^{0}	liter
Barron (gan)	3.785×10^{0}	cubic decimeter
	3.785×10^{-3}	cubic meter
million gallons (Mgal)	3.785×10^3	cubic meter
mmon gamone (mgan)	3.785×10^{-3}	cubic hectometer
cubic foot (ft ³)	2.832×10^{1}	cubic decimeter
	2.832×10^{-2}	cubic meter
cubic-foot-per-second day [(ft ³ /s) d]	2.447×10^3	cubic meter
P	2.447×10^{-3}	cubic hectometer
acre-foot (acre-ft)	1.233×10^3	cubic meter
	1.233×10^{-3}	cubic hectometer
	1.233×10^{-6}	cubic kilometer
	Flow	
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter per second
cubic root per second (it 18)	2.832×10^{1}	cubic decimeter per second
	2.832×10^{-2}	cubic meter per second
gallon per minute (gal/min)	6.309×10^{-2}	liter per second
ganon per minute (gan min)	6.309×10^{-2}	cubic decimeter per second
	6.309×10^{-5}	cubic meter per second
million gallons per day (Mgal/d)	4.381×10^{1}	cubic decimeter per second
miner garrens per only (magaine)	4.381×10^{-2}	cubic meter per second
	Mass	
ton (short)	9.072×10^{-1}	megagram or metric ton

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey 2045 Route 112, Building 4 Coram, NY 11727

