Water Resources Data Iowa Water Year 1998

Volume 1. Surface Water—Mississippi River Basin

By J.E. May, J.G. Gorman, R.D. Goodrich, V.E. Miller, M.J. Turco, and S.M. Linhart

Water-Data Report IA-98-1

UNITED STATES DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For information on the water program in Iowa write to:

District Chief, Water Resources Division U.S. Geological Survey P.O. Box 1230 Iowa City, Iowa 52244

PREFACE

This volume of the annual hydrologic data report of Iowa is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico and, the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by local, State, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines.

Personnel in charge of the field units are:

Joseph G. Gorman, Western Field Unit

Robert D. Goodrich, Eastern Field Unit

The data were collected, computed and processed by the following personnel:

This report was prepared in cooperation with the State of Iowa and with other agencies under the general supervision of Jayne E. May, Chief Hydrologic Surveillence Section, and Robin G. Middlemis-Brown, District Chief, Iowa.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

	,	• , ,	, , , , , , , , , , , , , , , , , , , ,	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 26 March 1999	3. REPORT TYPE AND DATES COVERED Annual, 1 Oct. 1997 - 30 Sept. 1998		
4 TITLE AND QUETTIE	20 Water 1999	Ailliuai, i Oct. 13		
4. TITLE AND SUBTITLE Water Resources Data, Iowa, Surface Water - Mississippi I		1:	5. FUNDING NUMBERS	
6. AUTHOR(S) J.E. May, J.G. Gorman, R.D. S.M. Linhart	Goodrich, V.E. Miller, M.J.	. Turco, and	,	
7. PERFORMING ORGANIZATION NAME U.S. Geological Survey, Wat P.O. Box 1230 Iowa City, IA 52244			8. PERFORMING ORGANIZATION REPORT NUMBER USGS-WRD-IA-98-1	
9. SPONSORING / MONITORING AGENC	CY NAME(S) AND ADDRESS(ES)		10. SPONSORING / MONITORING	
U.S. Geological Survey, Wat P.O. Box 1230	er Resources Division		USGS-WRD-IA-98-1	
Iowa City, IA 52244				
11. SUPPLEMENTARY NOTES Prepared in cooperation with Department of Transportation			ical Survey Bureau), Iowa	
12a. DISTRIBUTION / AVAILABILITY STA			12b. DISTRIBUTION CODE	
No restrictions on distribution	n. This report may be purch	ased from:		
National Technical Service Springfield, VA 22161				
This report volume contains and 3 streams; water quality precipitation record for 10 pre	s of lakes and reservoirs; gro discharge records for 90 gag for 1 stream-gaging station; ecipitation stations. Also in ollected at various sites, but	und water levels and wat ing stations; stage or cor sediment records for 10 cluded are data for 61 creare are not part of the system	est-stage partial record stations. natic data collection program and	
14 CURIECT TEDME			16 NUMBER OF PAGE	
14. SUBJECT TERMS *Iowa, *Hydrological data, *Surface water, *Water quality, Flow rates, Gaging			15. NUMBER OF PAGES 388	
stations, Lakes, Reservoirs, C Sampling sites, Water levels,	16. PRICE CODE			
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	ON 20. LIMITATION OF ABSTRACT	
OF REPORT Unclassified	of this page Unclassified	OF ABSTRACT Unclassified		

CONTENTS

Preface	Page
Surface-water stations, in downstream order, for which records are published in this volume	
Discontinued surface-water discharge or stage-only stations	
Discontinued surface-water-quality stations	
Introduction	
Cooperation	
Summary of hydrologic conditions	
Surface Water	
Suspended Sediment	
Ground-Water-Level Observation Network	
Surface-Water Quality	
Ground-Water Quality	
Ground-Water Monitoring Network	
Trends in Groundwater Quality	
Special networks and programs	
Explanation of the records	
Station Identification Numbers	
Downstream Order System	
Latitude-Longitude System	
Numbering System For Wells	
Records of Stage and Water Discharge	
Data Collection and Computation	
Data Presentation	
Identifying Estimated Daily Discharge	
Accuracy of the Records	
Other Records Available	
Records of Surface-Water Quality	
Classification of Records	
Arrangement of Records	
On-Site Measurements and Sample Collection	
Water Temperature and Specific Conductance	
Laboratory Measurements	
Data Presentation	
Remarks Codes	
Water Quality-Control Data	
Dissolved Trace-Element Concentrations	
Records of Ground-Water Levels	
Data Collection and Computation	
Data Presentation	
Records of Ground-Water Quality	
Data Presentation	
Explanation of Quality of Ground-Water Data Tables Descriptive Headings	
Access to USGS water data	
Definition of terms	
Publications on Techniques of Water-Resources Investigations	
Station records, surface water	
Crest-stage partial-record stations	
Miscellaneous water-quality data	
Index	. 3/0

ILLUSTRATIONS

—		Page
Figure 1.	Precipitation record for the National Weather Service's designated Climatological Districts	2
Eigung 2	for water year 1998	
Figure 2.		
Figure 3.	Location of active, continuous-record gaging stations in Iowa, water year 1998	
Figure 4.	Location of active, crest-stage gaging stations in Iowa, water year 1998	
Figure 5. Figure 6.	Location of active sediment and surface-water-quality stations in Iowa, water year 1998	10
riguie o.	Comparison of annual sediment discharge for water year 1998 with mean, previous maximum, and previous minimum annual sediment discharges for periods of record at four long-term daily	
	sediment stations in Iowa	11
Figure 7.	Location of wells in the ground-water-level observation network in Iowa, water year 1998	
Figure 8.	Location of surface-water quality gaging stations in Iowa	
Figure 9.	Location of active ground-water-quality monitoring wells in Iowa	
	TABLES	
Table 1.	Monthly and annual precipitation during the 1998 water year as a percentage of normal	
	precipitation (1961-90)	4
Table 2.	Historical high water level measured during the 1998 water year in a well completed in an	
	unconsolidated aquifer	12
Table 3.	Historical high water level measured during the 1998 water year in wells completed in	
	bedrock aquifers	13
Table 4.	Historical low water level measured during the 1998 water year in wells completed in bedrock	
	aquifers	14
Table 5.	Summary of nitrogen species and herbicides detected in samples from the Ground-Water-	
Table 5.		
Table 6.	Quality Monitoring project, water year 1998	

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

{Letter after station name designates types of data: (d) discharge, (c) chemical, (p) precipitation, (s) sediment, (t) temperature, (e) elevations, gage heights, or contents}

	Station Number	Page
UPPER MISSISSIPPI RIVER BASIN	rumber	1 age
(Map of Mississippi River basin gaging stations—northeast Iowa)		. 50
Mississippi River:		. 50
Upper Iowa River near Dorchester (d)	. 05388250	52
Bloody Run Creek near Marquette (dtsp)		54
Mississippi River at McGregor (dts)		62
Sny Magill Creek near Clayton (dtsp)		68
Mississippi River at Clayton (e)		
(Map of Turkey and Maquoketa River basin gaging stations)	. 	. 78
TURKEY RIVER BASIN		
Turkey River:		
Roberts Creek:		
Silver Creek near Luana (d)		80
Roberts Creek above Saint Olaf (d)	05412100	82
Turkey River at Garber (d)	05412500	84
MAQUOKETA RIVER BASIN		
Maquoketa River near Maquoketa (d)		
(Map of Mississippi and Wapsipinicon River basin gaging stations)		
Beaver Slough at Third Street Clinton (d)		
Mississippi River at Clinton (dcts)	05420500	92
WAPSIPINICON RIVER BASIN	0#180700	400
Wapsipinicon River near Tripoli (dp)		100
Wapsipinicon River at Independence (d)		104
Wapsipinicon River near De Witt (d)		106
Crow Creek at Bettendorf (d)		108
Duck Creek at 110th Avenue, Davenport (d)		110
Duck Creek at Duck Creek Golf Course, Davenport (d)		112 114
(Wap of fowa River bashi gaging stations)	• • • • • • • •	114
Iowa River near Rowan (d)	05449500	116
South Fork Iowa River northeast of New Providence (dp)		118
Iowa River at Marshalltown (d)		122
Timber Creek near Marshalltown (d)		124
Richland Creek near Haven (d)		126
Salt Creek near Elberon (d)		128
Walnut Creek near Hartwick (d)		130
Big Bear Creek at Ladora (d)		132
Iowa River at Marengo (d)		134
Coralville Lake near Coralville (e)	05453510	136
Iowa River below Coralville Dam near Coralville (d)		138
Rapid Creek below Morse (p)		140
Rapid Creek near Iowa City (d)		142
Clear Creek near Oxford (d)		144
Clear Creek near Coralville (d)	05454300	146

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

	Station	_
	Number	Page
UPPER MISSISSIPPI RIVER BASINContinued		
IOWA RIVER BASINContinued		
Iowa River at Iowa City (d)		148
South Branch Ralston Creek at Iowa City (e)		150
Old Mans Creek near Iowa City (d)		152
English River at Kalona (d)		154
Iowa River near Lone Tree (d)		156
(Map of Cedar River basin gaging stations)		158
(CEDAR RIVER BASIN)		
Cedar River at Charles City (e)		160
Little Cedar River near Ionia (d)		162
Cedar River at Janesville (d)		164
West Fork Cedar River at Finchford (d)	. 05458900	166
Shell Rock River:		
Winnebago River at Mason City (d)	. 05459500	168
Willow Creek: Clear Creek:		
Clear Lake at Clear Lake (e)	. 05460000	170
Flood Creek near Powersville (dp)	. 05461390	172
Shell Rock River at Shell Rock (d)		176
Beaver Creek at New Hartford (d)	. 05463000	178
Cedar River at Waterloo (d)		180
Wolf Creek near Dysart (dp)	. 05464220	182
Cedar River at Cedar Rapids (d)	. 05464500	186
Cedar River near Conesville (d)	. 05465000	188
Iowa River at Wapello (dts)	. 05465500	190
(Map of Skunk River basin gaging stations)		196
SKUNK RIVER BASIN		
South Skunk River near Ames (d)	. 05470000	198
Squaw Creek at Ames (d)	. 05470500	200
South Skunk River below Squaw Creek near Ames (d)	. 05471000	202
Squaw Creek near Colfax (dtsp)	. 05471040	204
South Skunk River at Colfax (d)	. 05471050	212
Indian Creek near Mingo (d)	. 05471200	214
South Skunk River near Oskaloosa (d)	. 05471500	216
North Skunk River near Sigourney (d)	. 05472500	218
Cedar Creek near Oakland Mills (d)	. 05473400	220
Big Creek near Mt. Pleasant (d)	. 05473450	222
Skunk River at Augusta (dts)	. 05474000	224
Mississippi River at Keokuk (d)	. 05474500	230
DES MOINES RIVER BASIN		222
(Map of Upper Des Moines River basin gaging stations)		232
Des Moines River at Humboldt (d)		234
East Fork Des Moines River at Dakota City (d)		236
Des Moines River at Fort Dodge (d)		238
Boone River near Webster City (d)		240
Des Moines River near Stratford (d)		242
Saylorville Lake near Saylorville (e)		244
Des Moines River near Saylorville (dts)		246
Beaver Creek near Grimes (d)		252
Des Moines River at Second Avenue at Des Moines (d)	. 05482000	254

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

TODDISHDS IIV TIMS VODENIE		
	Station	
	Number	Page
UPPER MISSISSIPPI RIVER BASINContinued		
DES MOINES RIVER BASINContinued		
(Map of Raccoon River basin gaging stations)		256
North Raccoon River near Sac City (d)		258
Black Hawk Lake at Lake View (e)		260
North Raccoon River near Jefferson (d)		262
Middle Raccoon River near Bayard (d)		264
Lake Panorama at Panora (e)		266
Middle Raccoon River at Panora (d)		268
South Raccoon River at Redfield (d)		270
Raccoon River at Van Meter (d)		272
Raccoon River at 63rd Street, Des Moines (d)		274
Walnut Creek at Des Moines (d)	. 05484800	276
Raccoon River at Fleur Drive, Des Moines (d)		278
(Map of Lower Des Moines River basin gaging stations)		280
Des Moines River below Raccoon River at Des Moines (d)	. 05485500	282
Fourmile Creek at Des Moines (d)	. 05485640	284
North River near Norwalk (d)		286
Middle River near Indianola (d)	. 05486490	288
South River near Ackworth (d)	. 05487470	290
Des Moines River near Runnels (d)	. 05487500	292
Walnut Creek near Prairie City (dtsp)	. 05487540	294
Walnut Creek near Vandalia (dtsp)	. 05487550	302
White Breast Creek near Dallas (d)	. 05487980	310
Lake Red Rock near Pella (e)	. 05488100	312
Des Moines River near Pella (d)	. 05488110	314
English Creek near Knoxville (d)	. 05488200	316
Des Moines River near Tracy (d)	. 05488500	318
Cedar Creek near Bussey (d)		320
Des Moines River at Ottumwa (d)		322
Des Moines River at Keosauqua (d)		324
Fox River at Bloomfield (d)	. 05494300	326

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Iowa have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[(d), discharge station; (e), elevation (stage only) station; *, currently operated as crest-stage partial-record station]

Q		Drainage area	Bart 1 (
Station name	Station number	(mi ²)	Period of record
Jpper Iowa River at Decorah, Ia. (d)	05387500	511	1952-8
Jpper Iowa River near Decorah, Ia. (d)	05388000	568	1913-14; 1919-27, 1933-5
aint Creek at Waterville, la. (d)	05388500	42.8	1952-7
Yellow River at Ion, Ia. (d)	05389000	221	1934-5
Mississippi River at Clayton, Ia. (d)	05411500	79,200	1930-3
urkey River at Spillville, Ia. (d)	05411600	177	1957-73; 1978-9
Big Springs near Elkader, la. (d)	05411950	103	1938; 1982-83; 1988-9
urkey River at Elkader, Ia. (d)	05412000	891	1932-4
ilver Creek near Luana, Ia (d)	05412060	4.39	1986-9
Innamed Creek near Luana, Ia. (d)	05412070	1.15	1986-9
ittle Maquoketa River near Durango, Ia. (d)	05414500*	130	1934-8
Maquoketa River near Manchester, Ia. (d)	05417000	305	1933-7
Maquoketa River near Delhi, Ia. (d)	05417500	347	1933-4
sear Creek near Monmouth, Ia. (d)	05417700	61.3	1957-7
Maquoketa River above North Fork Maquoketa River near Maquoketa, Ia. (d)	05418000	938	1913-1
North Fork Maquoketa River at Fulton, Ia. (d)	05418450	516	1977-9
ilk River near Almont, Ia. (d)	05420300	55.9	1995-9
Vapsipinicon River near Elma, Ia. (d)	05420560	95.2	1958-9
Vapsipinicon River at Stone City, Ia. (d)	05421500	1,324	1903-1
Crow Creek at Eldridge, Ia. (d)	05422420	2.20	1977-8
Crow Creek at Mt. Joy, Ia. (d)	05422450	6.90	1977-8
rine Creek near Muscatine, Ia. (d)	05448150	38.9	1975-8
agle Lake Inlet near Britt, Ia. (e)	05448285	3.83	1975-8
Eagle Lake Outlet near Britt, Ia. (e)	05448290	11.3	1975-8
Vest Branch (West Fork) Iowa River near Klemme, Ia. (d)	05448500	112	1948-5
East Branch (East Fork) Iowa River near Klemme, Ia. (d)	05449000	133	1948-76; 1977-9
owa River near Iowa Falls, Ia. (d)	05450000	665	1911-1
Jpper Pine Lake at Eldora, Ia. (e)	05450500	14.9	1936-7
ower Pine Lake at Eldora, Ia. (e)	05451000	15.9	1936-7
owa River near Belle Plaine, Ia. (d)	05452500	2,455	1939-5
ake Macbride near Solon, Ia. (e)	05453500	27.0	1937-7
Ralston Creek at Iowa City, Ia. (d)	05455000	3.01	1924-8
Cedar River at Mitchell, Ia. (d)	05457500	826	1933-4
Shell Rock River near Northwood, Ia. (d)	05459000	300	1945-8
Shell Rock River at Marble Rock, Ia. (d)	05460500	1,318	1933-5
Shell Rock River at Greene, Ia. (d)	05461000	1,357	1933-4
Shell Rock River near Clarksville, Ia. (d)	05461500	1,626	1915-27; 1932-3
Black Hawk Creek at Hudson, Ia. (d)	05463500	303	1952-9
Fourmile Creek near Lincoln, Ia. (d)	05464130	13.8	1962-67; 1969-74; 1976-8
Half Mile Creek near Gladbrook, Ia. (d)	05464133	1.33	1962-67; 1969-74; 1976-8
Fourmile Creek near Traer, Ia. (d)	05464137	19.5	1962-74; 1975-8
Prairie Creek at Fairfax, Ia. (d)	05464640	178	1966-8
Lake Keomah near Oskaloosa, Ia. (e)	05472000	3.06	1936-7
Skunk River at Coppock, Ia. (d)	05473000	2,916	1930-7
		106	1915-7
Big Creek near Mount Pleasant, Ia. (d) Des Moines River at Estherville (d)	05473500 05476500	1,372	1951-9

Discontinued Surface-Water Discharge or Stage-Only Stations—continued

Station name	Station number	Drainage area (mi ²)	Period of record
East Fork Des Moines River near Burt, Ia. (d)	05478000	462	1951-74
Des Moines River near Fort Dodge, Ia. (d)	05479500	3,753	1911-13
Lizard Creek near Clare, Ia. (d)	05480000	257	1940-82
Des Moines River near Boone, Ia. (d)	05481500	5,511	1920-68
North Raccoon River near Newell, Ia. (d)	05482135	233	1982-95
Storm Lake at Storm Lake, Ia. (e)	05482140	28.3	1970-75
Big Cedar Creek near Varina, Ia. (d)	05482170	80.0	1960-91
East Fork Hardin Creek near Churdan, Ia. (d)	05483000	24.0	1953-91
Hazelbrush Creek near Maple River, Ia. (d)	05483343	9.22	1990-94
Springbrook Lake near Guthrie Center, Ia. (e)	05483460	5.18	1936-71
Raccoon River at Des Moines, Ia. (e)	05485000	3,628	1902-03
Lake Ahquabi near Indianola, Ia. (e)	05487000	4.93	1936-71
White Breast Creek near Knoxville, Ia. (d)	05488000	380	1945-62
Muchakinock Creek near Eddyville, Ia. (d)	05489190	70.2	1975-79
Lake Wapello near Drakesville, Ia. (e)	05490000	7.75	1936-71
Sugar Creek near Keokuk, Ia. (d)	05491000	105	1922-31; 1958-73
Fox River at Cantril, Ia. (d)	05494500	161	1940-51
Rock River at Rock Rapids, Ia. (d)	06483270	788	1959-74
Ory Creek at Hawarden, Ia. (d)	06484000	48.4	1948-69
West Branch Floyd River near Struble, Ia. (d)	06600300*	108	1955-95
Monona-Harrison Ditch near Blencoe, IA (d)	06602410	4,440	1939-42
Loon Creek near Orleans, Ia. (d)	06603920	31.0	1971-74
Spirit Lake Outlet at Orleans, Ia. (e)	06604100	75.6	1971-74
Milford Creek at Milford, Ia. (d)	06604400	146	1971-74
Little Sioux River at Spencer, Ia. (d)	06605100	990	1936-42
Little Sioux River at Gillett Grove, Ia. (d)	06605600	1,334	1958-73
Little Sioux River near Kennebeck, Ia. (d)	06606700	2,738	1939-69
Odebolt Creek near Arthur, Ia. (d)	06607000	39.3	1957-75
Maple River at Turin, Ia. (d)	06607300	725	1939-41
Little Sioux River near Blencoe, Ia. (d)	06607510	4,440	1939-42
Steer Creek near Magnolia, Ia. (d)	06609200	9.26	1963-69
Γhompson Creek near Woodbine, Ia. (d)	06609590	6.97	1963-69
Willow Creek near Logan, Ia. (d)	06609600	129	1972-75
Indian Creek at Council Bluffs, Ia. (d)	06610500	6.92(revised)	1954-76
Mosquito Creek near Earling, Ia. (d)	06610520	32.0	1965-79
Waubonsie Creek near Bartlett, Ia. (d)	06806000	30.4	1946-69
West Nishnabotna River at Harlan, Ia. (d)	06807320	316	1977-82
West Nishnabotna River at (near) White Cloud, Ia. (d)	06807500	967	1918-24
Mule Creek near Malvern, Ia. (d)	06808000	10.6	1954-69
Spring Valley Creek near Tabor, Ia. (d)	06808200	7.6	1955-64
Davids Creek near Hamlin, Ia. (d)	06809000	26.0	1952-73
Farkio River at Stanton, Ia. (d)	06811840	49.3	1958-91
Farkio River at Stanton, ia. (d)	06812000	200	1934-40
West Nodaway River at Villisca, Ia. (d)	06816500	342	1918-25
•	06818750*	217	1969-91
Platte River near Diagonal, Ia. (d)		92.1	1959-83
East Fork One Hundred and Two River near Bedford, Ia. (d)	06819190	92.1 52.5	1968-94
Elk River near Decatur City, Ia. (d)	06897950*		
Weldon River near Leon, Ia. (d)	06898400	104	1959-91
Honey Creek near Russell, Ia. (d)	06903500	13.2	1952-62
Chariton River near Centerville, Ia. (d)	06904000	708	1938-59

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following water-quality stations have been discontinued in Iowa. Continuous daily records of water temperature, specific conductance, or sediment and monthly or periodic samples of chemical quality or biological data were collected and published for the period of record shown for each station.

[Type of record: Chem.-chemical quality, Cond.-specific conductance, Temp.-water temperature, Sed.-sediment, Bio.-biological; *, periodic data available subsequent to period of daily record]

Station name	Station number	Drainage area (mi ²)	t Type of record	Period of record
Jpper Iowa River at Decorah, Ia.	05387500	511	Sed.	1963-68
			Temp.	1963-83
Jpper Iowa River near Dorchester, Ia.	05388250	770	Sed., Temp.*, Cond.*	1975-81
Paint Creek at Waterville, Ia.	05388500	42.8	Temp. Sed.	1952-56 1952-57
Jnnamed Creek near Luana	05412070	1.15	Chem.	1986-92
urkey River at Garber, Ia.	05412500	1,545	Temp.*, Sed.*	1957-62
Mississippi River at Dubuque, Ia.	05414700	81,600	Chem.	1969-73
Maquoketa River near Maquoketa, Ia	05418500	1,553	Sed., Temp., Cond.	1995-97
lk River near Almont, Ia	05420300	55.9	Sed., Temp., Cond.	1995-97
lississippi River at Clinton, Ia	05420500	85,600	Sed.	1995-97
Vapsipinicon River at Independence, Ia.	05421000	1,048	Cond.* Temp.*, Sed.*	1968-70 1967-70
Crow Creek at Bettendorf, Ia.	05422470	17.8	Cond.*, Temp.*, Sed.	1978-82
owa River near Rowan, Ia.	05449500	429	Temp.*, Sed.*	1957-62
owa River at Marshalltown, Ia	05451500	1,532	Temp., Sed.	1988-95
owa River at Iowa City, Ia.	05454500	3,271	Chem Temp.*, Sed. Cond.	1906-07; 1944-54 1944-87 1968-87
Ralston Creek at Iowa City, Ia.	05455000	3.01	Cond Sed. Temp.	1968-87 1952-87 1967-87
Shell Rock River at Shell Rock, Ia.	05462000	1,746	Temp.*	1953-68
edar River at Cedar Falls, Ia	05463050	4,734	Chem.	1975-79; 1984; 1986-1995
Cedar River near (at) Gilbertville, Ia.	05464020	5,234	Chem.	1971; 1975-81
ourmile Creek near Lincoln, Ia.	05464130	13.78	Chem., Temp., Sed.	1969-74
lalf Mile Creek near Gladbrook, Ia.	05464133	1.33	Chem., Temp., Sed.	1969-74
ourmile Creek near Traer, Ia.	05464137	19.51	Chem., Temp., Sed.	1969-74
Cedar River near Palo, Ia.	05464450	6,380	Chem.	1975-79
Cedar River at Cedar Rapids, Ia.	05464500	6,510	Chem.* Temp.* Sed.	1906-07; 1944-54 1944-54 1943-54
Cedar River near Bertram, Ia.	05464760	6,955	Chem.	1975-81
owa River at Wapello, Ia	05465500	12, 499	Chem.	1977-95
dississippi River at Burlington, Ia.	05469720	114,000	Chem.	1969-73
outh Skunk River at Colfax, Ia	05471050	803	Cond.*, Temp.*, Sed.	1989-93
kunk River at Augusta, Ia	05474000	4,303	Chem.	1977-95
Aississippi River at Keokuk, Ia.	05474500	119,000	Chem.	1974-87
Des Moines River at Fort Dodge, Ia.	05480500	4,190	Chem.	1972-73
Des Moines River at 2nd Avenue at Des Moines, Ia.	05482000	6,245	Chem. Temp.*, Sed.	1954-55 1954-61
ast Fork Hardin Creek near Churdan, Ia.	05483000	24.0	Temp.*, Sed.*	1952-57
azelbrush Creek near Maple River, Ia	05483343	9.22	Cond., Temp., Sed.	1991-94
Aiddle Raccoon River near Bayard, Ia.	05483450	375	Cond.*, Temp.*, Sed.	1979-85
fiddle Raccoon River at Panora, Ia.	05483600	440	Cond.*, Temp.*, Sed.	1979-85
Raccoon River at Van Meter, Ia	05484500	3,441	Chem. Bio.	1974-79; 1986-94 1974-79
	05485000	3,590	Chem., Temp.	1945-47

Discontinued Surface-Water Quality Stations—continued

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record
	Station number		71 -	
Des Moines River below Raccoon River at Des Moines, Ia.	05485500	9,879	Chem.* Temp.*, Sed.	1944-45 1944-47
Des Moines River below Des Moines, Ia.	05485520	9,901	Chem.	1971; 1974-81
Middle River near Indianola, Ia.	05486490	503	Temp.*, Sed.	1962-67
White Breast Creek near Dallas, Ia.	05487980	342	Chem. Temp.*, Sed.	1969-73 1967-73
Big Sioux River at Sioux City, Ia.	06485950	9,410	Chem.	1969-73
Missouri River at Sioux City, Ia.	06486000	314,600	Chem.	1972-86
Floyd River at James, Ia.	06600500	886	Temp.*, Sed., Cond.*	1968-73
Floyd River at Sioux City, Ia.	06600520	921	Chem.	1969-73
Missouri River at Decatur, Neb.	06601200	316,160	Chem.	1974-81
Spirit Lake near Orleans, Ia.	06604000	75.6	Temp.	1968-75
Little Sioux River at Correctionville, Ia.	06606600	2,500	Chem.* Temp.* Sed.	1954-55 1951-62 1950-62
Little Sioux River near Kennebec, Ia.	06606700	2,738	Temp. Sed.	1951-55 1950-57
ittle Sioux River at River Sioux, Ia.	06607513	3,600	Chem.	1969-73
foldier River near Mondamin, Ia.	06608505	440	Chem.	1970-73
teer Creek near Magnolia, Ia.	06609200	9.26	Temp., Sed., Cond.	1963-69
Thompson Creek near Woodbine, Ia.	06609590	6.97	Temp., Sed., Cond.	1963-69
Villow Creek near Logan, Ia.	06609600	129	Cond., Temp. Sed.	1972-75 1971-75
Missouri River at Omaha, Nebr.	06610000	322,800	Cond.*	1969-86
Mule Creek near Malvern, Ia.	06808000	10.6	Temp. Sed.	1958-69 1954-69
Davids Creek near Hamlin, Ia.	06809000	26.0	Temp.* Sed.	1952-53; 1965-68 1952-68
East Nishnabotna River at Red Oak, Ia.	06809500	894	Temp.*, Sed., Cond.*	1962-73
Nishnabotna River above Hamburg, Ia.	06810000	2,806	Chem. Temp.*, Cond. Bio.	1979-93 1979-81 1979-81
Nodaway River at Clarinda	06817000	762	Cond.*, Temp.*, Sed.	1976-92
Platte River near Diagonal, Ia.	06818750	217	Chem.	1969-73
Elk Creek near Decatur City, Ia.	06897950	52.5	Bio. Chem.	1970-72 1968-94
Thompson River at Davis City, Ia.	06898000	701	Chem. Temp.*, Sed., Cond.*	1967-73 1968-73
Weldon River near Leon, Ia.	06898400	104	Chem.	1968-73
Chariton River near Chariton, Ia.	06903400	182	Temp.*, Sed., Cond.*	1969-73
Honey Creek near Russell, Ia.	06903500	13.2	Sed.	1952-62
Chariton River near Rathbun, Ia.	06903900	549	Temp.*, Sed.*, Cond.*	1962-69

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside of the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Iowa" as part of the National Water Data System.

Water resources data for water year 1998 for Iowa consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report in two volumes contains stage or discharge records for 130 gaging stations; stage or contents for 9 lakes and reservoirs; water quality records for 2 gaging stations; sediment records for 12 gaging stations; and water levels for 185 ground-water observation wells. Also included are data for 93 crest-stage partial-record stations and water-quality data from 45 municipal wells. Additional water data were collected at various sites not included in the systematic data-collection program and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they were published in 5-year series. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or they may be purchased from Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official U.S. Geological Survey reports on a State-boundary basis. These official reports carry an identification number consisting of the two-letter State postal abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report IA-98-1." These water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

Additional information for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone, (319) 337-4191.

COOPERATION

The U.S. Geological Survey and organizations in the State of Iowa have had cooperative agreements for the systematic collection of streamflow records since 1914, for ground-water levels since 1935, and for water-quality records since 1943. Organizations that assisted in collecting data through cooperative agreements with the U.S. Geological Survey in Iowa during water year 1998 are:

Iowa Department of Natural Resources (Geological Survey Bureau) Iowa Department of Transportation Iowa Highway Research Board

Iowa State University University of Iowa, Institute of Hydraulic Research University of Iowa, Hygienic Laboratory University of Iowa

Appanoose County Board of Supervisors Davis County Board of Supervisors Van Buren County Board of Supervisors

City of Ames

City of Bloomfield

City of Cedar Rapids

City of Charles City

City of Clear Lake

City of Clinton

City of Coralville

City of Davenport

City of Des Moines

City of Des Moines Water Works

City of Fort Dodge

City of Iowa City

City of Marshalltown

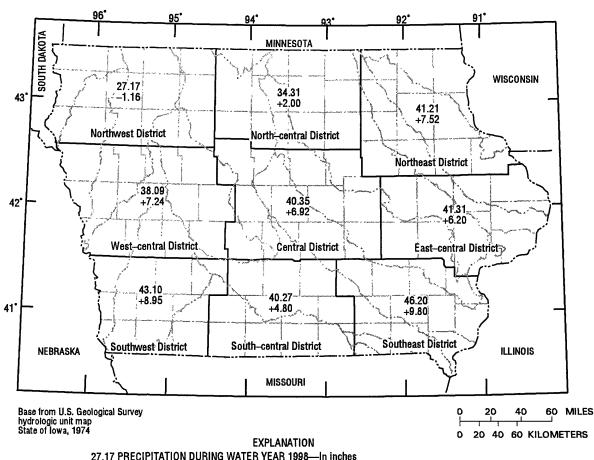
City of Mt. Pleasant

City of Sioux City

City of Waterloo Sewage Treatment Plant

City of West Des Moines

Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers in collecting streamflow records for 74 stream gaging stations. Assistance was also furnished by NOAA-National Weather Service, U.S. Department of Commerce, and National Biological Survey Division of U.S. Geological Survey.


The following organizations aided in collecting records: Milford Municipal Utilities, Central Iowa Energy Cooperative, Union Electric Company,

Organizations that supplied data are acknowledged in the station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

For water year 1998 (October 1, 1997 to September 30, 1998) climatological conditions were generally wetter than normal and warmer than normal. Recorded precipitation for the year ranged from 2.00 inches above normal in the North-central Iowa Climatological District to 9.80 inches greater than normal in the Southeast Iowa Climatological District (fig. 1). The Northwest District was the only District to report below normal precipitation for the year. Precipitation recorded for the State averaged 30.77 inches, which was 5.68 inches greater than normal, or 117 percent of the normal 33.11 inches for 1961-90 (table 1). Overall, water year 1998 was the 9th wettest and the 13th warmest for 125 years of record. [In this summary of hydrologic conditions, all data and statistics pertaining to precipitation and temperature in Iowa were provided by Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, (oral and written commun., 1998)].

27.17 PRECIPITATION DURING WATER YEAR 1998—In inches
-1.16 PRECIPITATION DEVIATION FROM LONG-TERM AVERAGE (1961-90)—In inches

Figure 1. Precipitation record for the National Weather Service's designated Climatological Districts for water year 1998 (source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written commun., 1998).

Table 1. Monthly and annual precipitation during the 1998 water year as a percentage of normal precipitation (1961-90).

[Source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written commun., 1998]

Service Climatological		1997						1998					
District	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Annual
Northwest	80	51	43	166	107	145	168	86	110	85	102	34	96
North-central	104	35	53	139	129	125	135	106	178	44	143	54	106
Northeast	147	31	5 3	114	212	190	128	114	209	41	177	56	122
West-central	107	64	55	146	122	140	175	112	206	126	127	25	123
Central	160	58	80	122	174	171	93	120	230	60	119	42	121
East-central	117	48	81	111	241	199	121	96	169	42	150	98	118
Southwest	170	129	103	118	261	169	112	123	193	149	65	32	126
South-central	178	60	133	86	173	199	113	119	143	82	89	58	114
Southeast	128	73	111	161	258	201	135	112	183	55	134	103	127
Statewide	133	59	80	128	186	171	131	110	182	74	125	55	117

Precipitation was above normal for October. Average precipitation was 139 percent of normal throughout the state with all Climatological District reports above normal except for the Northwest District, which reported an average precipitation 80 percent of normal. October snowfall was the 2nd highest in 111 years of record and the greatest since 1925. For the three index surface-water stations in Iowa, mean monthly discharge for 05464500 Cedar River at Cedar Rapids (East-central District), 05480500 Des Moines River at Fort Dodge (Central District), and 06810000 Nishnabotna River above Hamburg (Southwest District) were all in the normal range (fig. 3). For the remainder of this section, these stations will be referred to as "Cedar Rapids," "Fort Dodge," and "Hamburg," respectively.

During November, the statewide average precipitation was 59 percent of normal. Most Climatological Districts reported below normal precipitation ranging from 31 percent of normal in the Northeast District to 73 percent of normal in the Southeast District. The exception was the Southwest District which reported precipitation 129 percent of normal. Mean monthly discharge for the three index stations was within the normal range.

Below normal precipitation continued in December with statewide average precipitation 80 percent of normal. However, the Southwest, South-central, and Southeast Districts reported precipitation 103, 133, and 111 percent of normal. The mean discharge at Cedar Rapids and Fort Dodge was in the normal range while the discharge at Hamburg was above normal.

The month of January saw an increase in precipitation statewide to 128 percent of normal. Precipitation amounts ranged from 111 percent in the East-central District to 166 percent of normal in the Northwest District. The South-central District precipitation was 86 percent of normal and the only district that was below normal. Mean monthly discharges for Cedar Rapids and Fort Dodge remained in the normal range, while Hamburg was above normal for the 2nd consecutive month.

February was the 15th wettest month and the 4th warmest in 126 years of record. All Climatological District precipitation was above normal. The Southeast District recorded precipitation amounts that totalled 258 percent of normal while the state wide average was 186 percent of normal. Index stations Cedar Rapids and Fort Dodge mean discharge continued in the normal range but discharge for Hamburg was above normal.

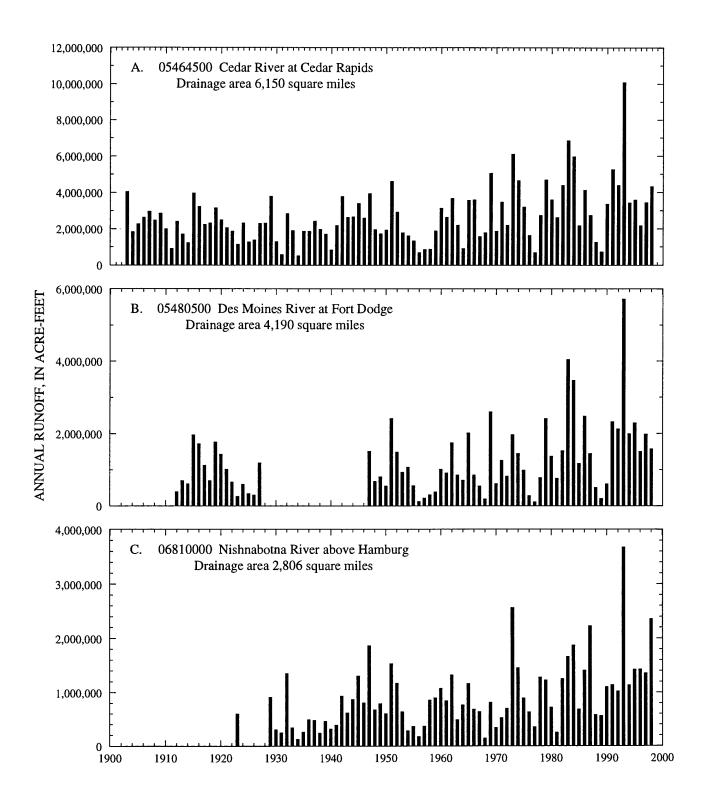


Figure 2. Annual runoff for period of record at index stations.

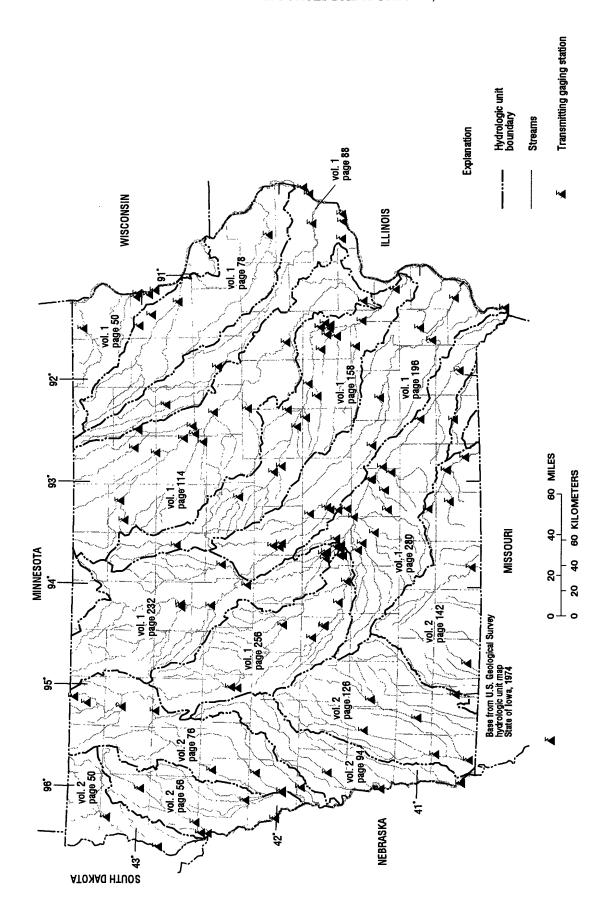


Figure 3. Location of active, continuous-record gaging stations in lowa, water year 1998. [See indicated volume and page number for gaging-station identification.]

Statewide precipitation for March was 171 percent of normal with all Climatologic Districts again reporting above normal precipitation. Despite statewide precipitation above normal, the mean discharge continued in the normal range at Cedar Rapids and Fort Dodge while mean discharge for Hamburg remained in the above normal range. This was the 9th wettest March for 126 years of record.

Precipitation in April was 131 percent of normal. Eight Climatological Districts received precipitation above normal, but the Central District was 93 percent of normal. Cedar Rapids, Fort Dodge, and Hamburg all reported mean daily discharges above normal.

May precipitation was above normal for the 5th consecutive month. Overall precipitation was 110 percent of normal in the state with the Northwest District and the East Central District reporting below normal precipitation for the month, and the remaining districts reporting above normal precipitation. Average temperature for the month was the 13th warmest for 126 years of record. Mean daily discharge for index stations at Cedar Rapids, Fort Dodge, and Hamburg was above normal for the month.

Above normal precipitation continued in June, resulting in high flow and flooding in many streams and rivers throughout the state. The most significant flooding occurred in the Southwest District resulting in record flows for the East Nisnabotna River near Atlantic (06809210), East Nishnabotna River at Red Oak (06809500), and Nishnabotna River above Hamburg (06810000). Flooding at these stations occurred as a result of a record 24-hour rainfall total of 13.18 inches near Atlantic, Iowa on June 14. Statewide precipitation was 182 percent of normal with all Climatological Districts reporting above normal precipitation. This June was the 5th wettest for 126 years of record. Above normal mean daily discharge was determined at all index stations with the mean flow at station Nishnabotna River above Hamburg at 721 percent of normal.

After six consecutive months of above normal precipitation, July statewide average precipitation was 74 percent of normal. The Southwest and West Central Districts reported above normal precipitation 149 percent and 126 percent of normal respectively. The remaining Districts reported precipitation that ranged from 85 percent of normal in the Northwest District to 41 percent in the Northeast District. The mean daily discharge at all three index stations remained above normal for the month.

The statewide average precipitation increased to above normal for August. The statewide average was 125 percent of normal with all districts reporting above normal precipitation except the South-central and Southeast Districts, which were 65 percent and 89 percent of normal precipitation respectively. Once again, all index stations reported flow above the monthly normal flow.

September ended the water year as the 28th driest on record with precipitation 55 percent of normal. All districts, except the Southeast District, which reported precipitation 103 percent of normal, reported below normal precipitation. Precipitation in these districts ranged from 98 percent in the East Central District to 25 percent of normal precipitation in the West-central District. The mean daily discharge continued above normal for the index station at Hamburg for the ninth consecutive month, while flow for stations at Cedar Rapids and Fort Dodge receded into the normal range.

The water-year 1998 runoff at Cedar Rapids was 4,309,000 acre-feet, which is greater than the mean annual runoff for the period of record, 2,688,000 acre-feet. The water-year 1998 runoff at Fort Dodge was 1,571,000 acre-feet, which is greater than the mean for the period of record, 1,278,000 acre-feet. The water-year 1998 runoff at Hamburg was 2,355,000 acre-feet, which is greater than the mean for the period of record, 912,100 acre-feet.

The location of all active continuous-record gaging stations is shown in figure 3, and the location of all active crest-stage gaging stations is shown in figure 4.

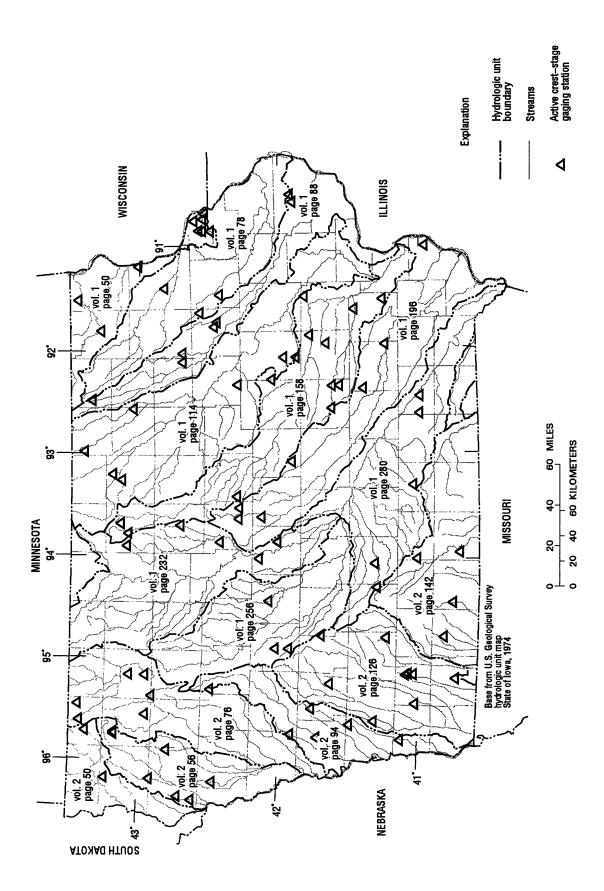


Figure 4. Location of active, crest-stage gaging stations in lowa, water year 1998. [See indicated volume and page number for gaging-station identification.]

Suspended Sediment

Daily suspended-sediment discharge data (hereafter referred to as sediment discharge in this report) were collected at 12 streamflow-gaging stations in Iowa during the 1998 water year. Four stations have 20 years or more of record: 05389500 Mississippi River at McGregor, 05465500 Iowa River at Wapello, 05474000 Skunk River at Augusta, and 05481650 Des Moines River near Saylorville; three stations on the Missouri River have 12 years of record: 06486000 Missouri River at Sioux City, Iowa, 06610000 Missouri River at Omaha, Nebraska, and 06807000 Missouri River at Nebraska City, Nebraska; two stations in northeast Iowa have 7 years of record: 05389400 Bloody Run Creek near Marquette and 05411400 Sny Magill Creek near Clayton; and three stations in central Iowa have 3 years of record: 05471040 Squaw Creek near Colfax, 05487540 Walnut Creek near Prairie City, and 05487550 Walnut Creek near Vandalia. Three other sediment stations were discontinued at the end of the 1997 water year in east-central Iowa as the associated project was completed: 05418500 Maquoketa River near Maquoketa, 05420300 Elk River near Almont, and 05420500 Mississippi River at Clinton. The locations of active sediment and surface water-quality stations are shown in figure 5.

The peak daily sediment discharge on 5 of 12 stations occurred between March 30 and April 3, at the end of the winter period and after a significant rain event. Five others peaked between May 25 and June 25.

Mississippi River at McGregor, which has most of its drainage basin in Minnesota and Wisconsin, had an annual sediment discharge of 721,000 tons, which was the third lowest sediment discharge in 23 years of record, and 41.1 percent of the average mean sediment discharge (fig. 6).

The sediment station on the Des Moines River near Saylorville in central Iowa is downstream from a major flood-control reservoir (Saylorville Reservoir). The annual sediment discharge at this station for water year 1998 was 115,000 tons, which was the sixth smallest discharge in 21 years since the dam was completed. The mean annual sediment discharge since dam completion is 254,000 tons (fig. 6).

Sediment discharges for Iowa River at Wapello and Skunk River at Augusta in southeast Iowa were indicative of the above-normal precipitation in central and eastern Iowa. The Iowa River basin drainage includes parts of the Southeast, East-central, Central, Northeast, and North-central Climatological Districts, and drains an area nearly three times as large as the Skunk Basin. These Districts had about 119 percent of normal precipitation. Wapello had an annual sediment discharge of 2.82 million tons. This represents 101 percent of the 20-year mean sediment discharge of 2.79 million tons (fig. 6). The headwaters of the Skunk River basin are in central Iowa, and flow is southeasterly to the confluence with the Mississippi River. A substantial part of the drainage basin is located in the Southeast Climatological District. The annual precipitation for this District was 127 percent of normal for water year 1998. The 1998 annual sediment discharge for Skunk River at Augusta was 5.37 million tons, which is 189 percent of the 23-year mean sediment discharge of 2.83 million tons (fig. 6).

The 1998 annual sediment discharge for the two small drainage area stations located in northeast Iowa reflect the effect of precipitation patterns on small drainage basins. The annual sediment discharge for Bloody Run Creek near Marquette (05489400) was 2,254 tons, of which approximately 53 percent was measured during the month of March. This runoff was 44.7 percent of the 7-year mean sediment discharge of 5,030 tons. The annual sediment discharge for Sny Magill Creek near Clayton (05411400) was 7,315 tons. This runoff represents 149 percent of the 7-year mean sediment discharge of 4,924 tons. Fifty-six percent of Sny Magill's annual sediment discharge was measured in March and approximately 45 percent of the yearly total was measured on March 30. These stations are paired in a study on sediment reduction techniques, with the Sny Magill Basin having the techniques implemented and the Bloody Run Basin not implemented.

The annual sediment discharge for the three stations located in central Iowa with less than approximately 20 square miles of drainage reflect precipitation patterns on small drainage basins. The 1998 sediment discharge for Squaw Creek near Colfax (05471040) was 20,460 tons. The 1998 sediment discharge for Walnut Creek near Prairie City (05487540) was 2,757 tons, while Walnut Creek near Vandalia (05487550) was 18,370 tons of annual sediment discharge. Vandalia has a drainage area approximately three times the size of Prairie City, but had about 6.7 times the amount of sediment discharge of Prairie City.

The three Missouri River stations (fig. 5) have large drainage areas, which the sediment discharges reflect. The annual sediment discharge at Sioux City was 12.1 million tons, which was 93 percent of the 12-year mean of 13.0 million tons. The sediment discharge at Omaha was 23.0 million tons, which was equal to the 12-year mean of 23.0 million tons. The annual sediment discharge at Nebraska City was 38.7 million tons, which was 109 percent of the 12-year mean of 35.4 million tons.

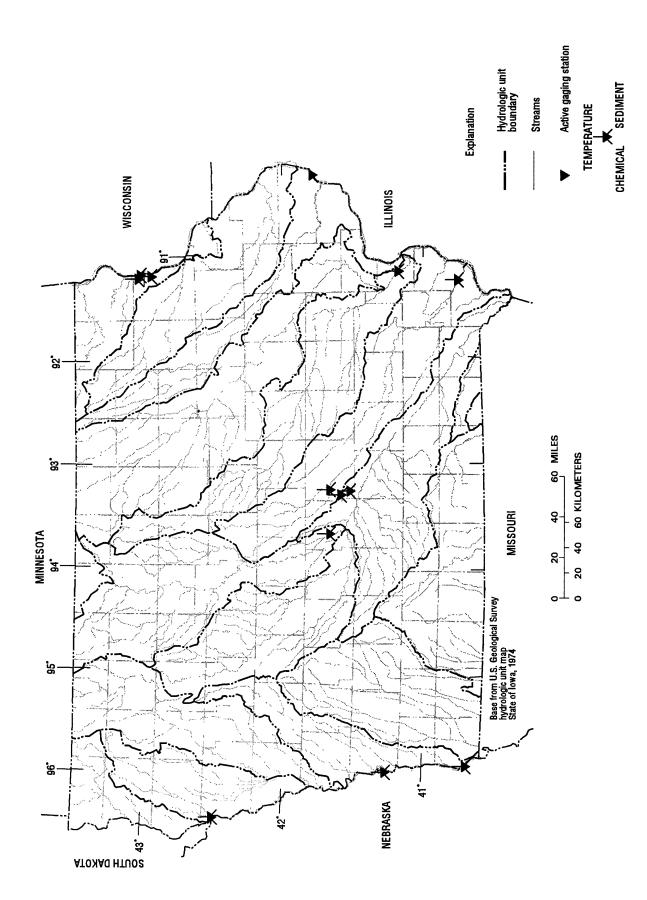
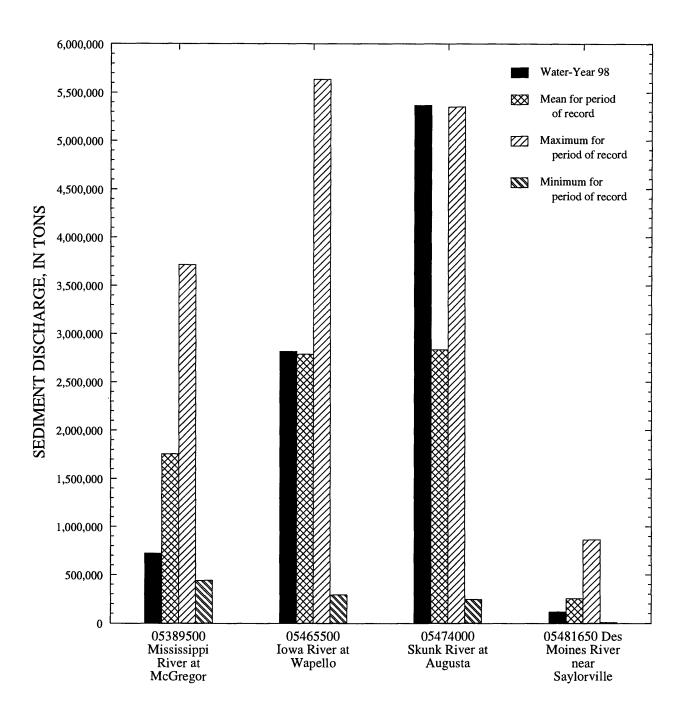



Figure 5. Location of active sediment and surface-water-quality stations in lowa, water year 1998.

Figure 6. Comparison of annual sediment discharge for water year 1998 with mean, previous maximum, and previous minimum annual sediment discharges for periods of record at four long-term daily sediment stations in Iowa.

Ground-Water-Level Observation Network

The ground-water-level observation network in Iowa provides a historical record of the water-level changes in the State's most important aquifers. The locations of the 176 wells monitored on a quarterly, monthly, or intermittent basis during water year 1998 are shown in figure 7.

In this report, records of water levels are presented for a network of observation wells. However, many other water levels are measured through Federal, State, and local agency cooperative projects and entered into computer storage. Information for specific projects may be obtained from the District Chief, Iowa District.

Measurements of water levels are made in many types of wells under various techniques, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The principal identification number for a specific well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number derived from the township-range-section location of the well.

Water-level records are obtained from direct measurements with a steel tape or from an airline. The water-level measurements in this report are given in feet with reference to land-surface datum. Land-surface datum is a datum plane that is approximately at land surface at each well. The measuring point is the height above or below the land-surface datum and the point where the water level is measured. Both the measuring point and land-surface datum are listed for each well.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement to a depth of water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

Ground-water supplies in Iowa are withdrawn from unconsolidated and bedrock aquifers. There are three types of unconsolidated aquifers: (1) alluvial aquifers, which consist of sand-and-gravel deposits associated with present-day fluvial systems; (2) glacial-drift aquifers, which consist of shallow, discontinuous, permeable lenses of sand and gravel interbedded with less-permeable glacial drift; and (3) buried-channel aquifers. Buried-channel aquifers are formed in areas where coarse sand and gravel were deposited in bedrock valleys and overlain by a thick layer of glacial drift.

One well completed in an unconsolidated aquifer recorded a new measured historical high water level during the 1998 water year (table 2). There were no recorded historical low water levels.

Table 2. Historical high water level measured during the 1998 water year in a well completed in an unconsolidated aquifer.

			New historical high water level (ft below		Previous historical high water level (ft below	
County	Well number	Aquifer type	land surface)	Date measured	land surface)	Date measured
Harrison	413524095490601	Alluvial	1.68	07-07-1998	2.71	04-12-1983

The five major bedrock-aquifer units in Iowa are the Cambrian-Ordovician, Silurian-Devonian, Mississippian, Pennsylvanian, and Dakota. The Cambrian-Ordovician aquifer system consists of aquifers in sandstone of Early Cambrian age and dolomite and sandstone of Late Cambrian to Early Ordovician age. The Dresbach is the basal aquifer of the Cambrian-Ordovician aquifer system and is present locally in northeastern and east-central Iowa. Overlying the Dresbach aquifer is the more areally extensive Jordan-St. Peter aquifer. A confining shale unit separates the Jordan-St. Peter aquifer from the Galena aquifer, the uppermost aquifer in the Cambrian-Ordovician aquifer system. Overlying the Cambrian-Ordovician aquifer system is the Silurian-Devonian aquifer, which yields water from fractures in Silurian dolomite and Devonian limestone. Overlying the Silurian-Devonian aquifer is the Mississippian aquifer, which is composed of limestone and dolomite of Mississippian age and underlies about 60 percent of Iowa. Overlying the Mississippian aquifer are discontinuous lenses of sandstone in the Cherokee and Kansas City Groups of Pennsylvanian age, which form small, localized aquifers. The Dakota aquifer is the youngest bedrock-aquifer unit in the State and yields water from sandstone of Cretaceous age in northwest and western Iowa.

Twenty-nine wells completed in bedrock aquifers recorded new historical water levels during the 1998 water year. Twenty-one wells recorded historical low water levels (table 4), and eight wells recorded historical high water levels (table 5).

Table 3. Historical high water level measured during the 1998 water year in wells completed in bedrock aquifers.

County	Well number	Aquifer type	New historical high water level (ft below land surface)	Date measured	Previous historical high water level (ft below land surface)	Date measured
Audubon	415023094593801	Cretaceous	159	08-05-1998	159.73	05-07-1997
Calhoun	422339094375101	Cambrian/Ordovician	199	10-07-1997, 02-10-1998	205	02-14-1997
Delaware	423648091335701	Silurian	81.41	05-18-1998	84.32	08-07-1997
Linn	420200091363001	Cambrian/Ordovician	260	04-21-1998	283	08-12-1997
Linn	421207091312201	Silurian	12	05-04-1998, 08-03-1998	16	08-07-1998
Muscatine	412740090503201	Silurian	104.79	01-06-1998, 02-03-1998	122.79	06-10-1997
Plymouth	424833096324201	Cretaceous	136.54	05-05-1998	136.95	08-08-1998
Pottawattamie	412407095391201	Cambrian/Ordovician	72.86	08-06-1998	73.60	02-28-1997

Table 4. Historical low water level measured during the 1998 water year in wells completed in bedrock aquifers.

County	Well number	Aquifer type	New historical low water level (ft below land surface)	Date measured	Previous historical low water level (ft below land surface)	Date measured
Bremer	424224092133901	Silurian	92	05-05-1998	89	08-07-1997
Clinton	414921090450401	Silurian	95	08-07-1998	43	08-06-1997
Dallas	413613093530401	Cambrian/Ordovician	428	02-09-1998	398	08-05-1997
Greene	420146094272301	Cretaceous	19.57	11-06-1997	19.23	10-07-1985
Jackson	420433090502401	Devonian	63.19	08-04-1998	62.89	08-06-1997
Jackson	420842090165701	Cambrian/Ordovician	9.23	09-02-1998	8.25	01-08-1996, 05-13-1996
Johnson	413929091322401	Cambrian/Ordovician	216	04-30-1998	195	03-13-1996
Johnson	413950091322402	Cambrian/Ordovician	340	04-30-1998	279	01-02-1997
Johnson	414107091322901	Silurian	153.24	07-30-1998	152.21	09-05-1995
Johnson	414132091345502	Silurian	252.30	07-30-1998	251.34	07-22-1994
Lee	404306091270201	Cambrian/Ordovician	264.74	08-06-1998	263.99	08-07-1997
Linn	420200091363001	Cambrian/Ordovician	293	07-24-1998	283	08-12-1997
Linn	420219091344101	Cambrian/Ordovician	351	08-10-1998	343	08-12-1997
Linn	421207091312201	Silurian	22	02-23-1998	16	08-07-1997
Mitchell	432156092484103	Devonian	12.69	02-11-1998	12.65	05-07-1996
Muscatine	412740090503201	Silurian	160.79	09-01-1998	127.80	09-02-1997
Muscatine	412833090482001	Devonian/Silurian	260	04-07-1998	257	09-02-1997
Muscatine	412839090472601	Silurian	236.42	04-07-1998	224.28	09-02-1997
Muscatine	412952090501101	Devonian/Silurian	160	09-01-1998	142	09-02-1997
Osceola	432828095283611	Cretaceous	350.68	11-05-1997	347.02	02-07-1996
Washington	411813091411202	Cambrian/Ordovician	256	05-06-1998	251	01-31-1997

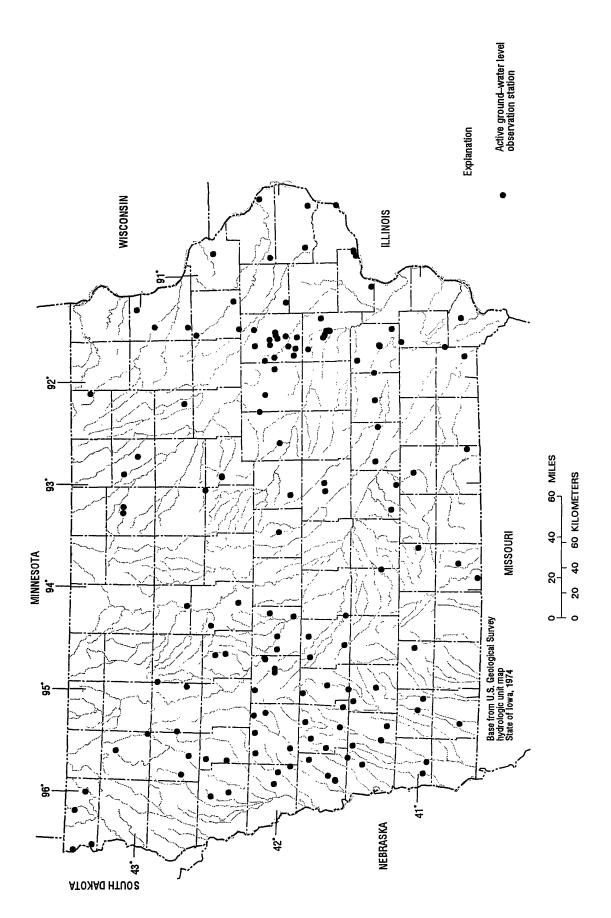


Figure 7. Location of wells in the ground-water-level observation network in lowa, water year 1998.

Surface-Water Ouality

Surface-water-quality data were collected in Iowa during water year 1998 at two National Stream-Quality Accounting Network (NASQAN) stations. The NASQAN stations in Iowa are the Mississippi River at Clinton (station number 05420500) and Missouri River at Omaha (06610000). The combined drainage area of the two stations is approximately 408,000 sq. miles. Land use throughout the two drainage basins is primarily agricultural. Fifteen water samples were collected at Missouri River at Omaha and thirteen water sample were collected at Mississippi River at Clinton during the 1998 water year.

Nearly all the samples collected at the two stations contained detectable concentrations of agricultural chemicals. Dissolved nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) were common during the 1998 water year, with all samples containing concentrations greater than the detection level of 0.05 mg/L (milligrams per liter). Nitrate concentrations at Clinton ranged from 0.629 to 2.81 mg/L, and 0.233 to 3.08 mg/L at Omaha. Nitrate concentrations in these samples did not exceed 10 mg/L, which is the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) for public drinking water (USEPA, 1990 Maximum contaminant levels, subpart B of part 141, National primary drinking-water regulations: U.S.Code of Federal Regulations, Title 40, Parts 100 to 149, revised as of July 1, 1990, p.553-677).

Pesticide analysis were completed for 28 water samples collected at the NASQAN stations. Atrazine and Metolachlor, two of the most commonly used herbicides in Iowa, were detected throughout the year at both NASQAN stations. Acetochlor and cyanazine were detected at least 8 times at both sites. The largest herbicide concentration was 2.20 ug/L (micrograms per liter) of atrazine in the water sample collected from the Missouri River on June 10. The largest overall concentration of these compounds in a single event was also on the Missouri River on June 10. This water contained the 2.20 ug/L of atrazine, 1.06 ug/L of metolachlor, 0.880 ug/L of cyanazine 0.378 ug/L of acetochlor, and 0.038 ug/L of alachlor. No concentrations for any herbicides exceeded USEPA MCL's (USEPA,1992, Fact sheet: EPA 570/9-91-012FS, December 1992). Herbicide concentrations were generally larger in samples collected during May, June, and July than in samples collected at other times during water year 1998. Water samples collected in November through February had the lowest overall concentrations of the five herbicides during the 1998 water year.

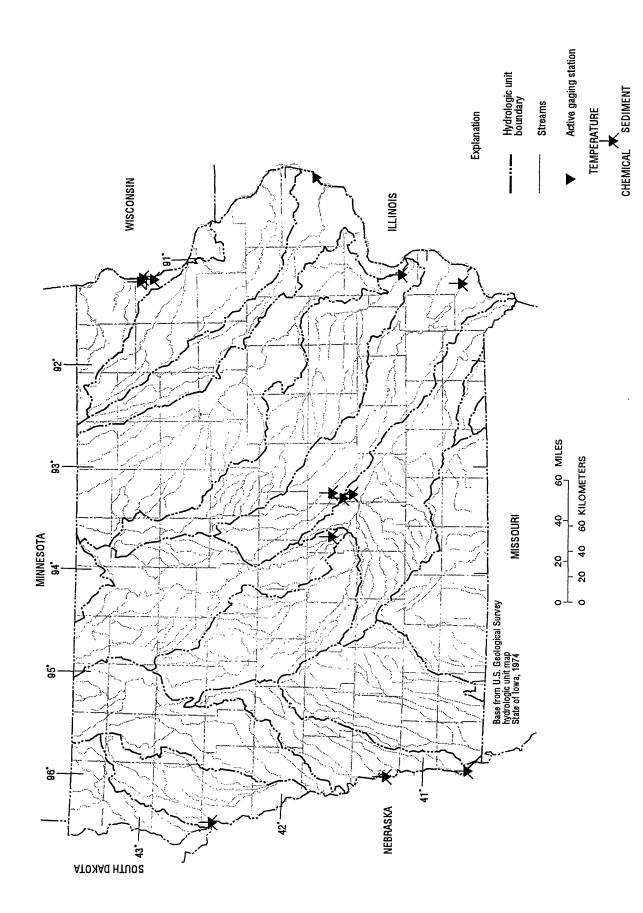


Figure 8. Location of surface-water quality gaging stations in lowa.

Ground-Water Quality

The Iowa ground-water-quality monitoring program has been operated since 1982 by the U.S. Geological Survey in cooperation with the University of Iowa Hygienic Laboratory and the Iowa Department of Natural Resources, Geological Survey Bureau. The purpose of the program is twofold: (1) provide consistent and representative data describing the chemical water quality of the principal aquifers of the State; and (2) determine possible trends in both water quality and spatial distribution of water quality.

The ground-water-quality monitoring program was initiated to continue a program begun in 1950 by the State Health Department that consisted of periodic, nonspecific sampling of untreated water from municipal supply wells. Each year, approximately 250 wells, primarily municipal supply, were randomly-selected for sampling between April and November. Between 1985 and 1989, the emphasis of the program was on the analysis of nitrate and herbicide concentrations in samples from wells less than 200 feet in depth. Because of the random pattern of sampling both spatially (different wells each year) and seasonally (different times during the year), trends in ground-water quality were difficult to determine from the data. Therefore, in 1990, to provide year-to-year continuity of data and a more statistically sound basis for the study of long-term water-quality trends, a sampling strategy based on a random selection of wells weighted by aquifer vulnerability was implemented. Aquifer vulnerability was determined by the frequency of atrazine detections in water samples collected from wells in the respective aquifers. In 1990 and 1991, a fixed network of 50 wells was selected to be sampled annually, and approximately 200 wells continued to be selected on a rotational basis.

In 1992, the investigation of water-quality trends became the primary focus of the program, and a 10-year work plan was designed to eliminate spatial and seasonal variance, yet allow flexibility within the schedule to address additional data needs. For sampling site selection in 1992, the well inventory was divided into categories based on aquifer type and again on well depth for surficial aquifers, and into categories designated "vulnerable to contamination" and "not vulnerable to contamination" based on the map *Groundwater Vulnerability Regions of Iowa* (Hoyer, B.E., and Hallberg, G.R., 1991, Special Map Series 11: Iowa Department of Natural Resources, scale 1:500,000) for bedrock aquifers. Vulnerability was determined by the combination and interpretation of factors including geologic and soil data, thickness of Quaternary cover, proximity to agricultural injection wells and sinkholes through which contaminants can be introduced to the aquifer, and evaluation of historical ground water and well contamination. A total of 90 sites were selected for sampling from a well inventory comprising approximately 1,640 public supply wells. From the 90 sites in the fixed network, 45 wells from two surficial aquifer types were selected to be sampled annually. The other 45 wells (from the bedrock aquifers) were selected to be sampled on a rotational schedule based on aquifer vulnerability to contamination. The wells determined to be vulnerable to contamination would be sampled every 2 years and those wells categorized as not vulnerable to contamination would be sampled every 4 years. All 90 wells were sampled in the first 2 years (1992 and 1993) and the sampling rotation began in 1994. The sampling effort during the 1998 water year is the seventh year of this 10-year program to determine possible ground-water-quality trends.

During the 1998 water year, a total of 45 ground-water samples were collected from municipal wells located in two types of surficial aquifers throughout the State (fig. 9). These wells were sampled as part of the Iowa ground-water monitoring (GWM) program to determine water-quality trends.

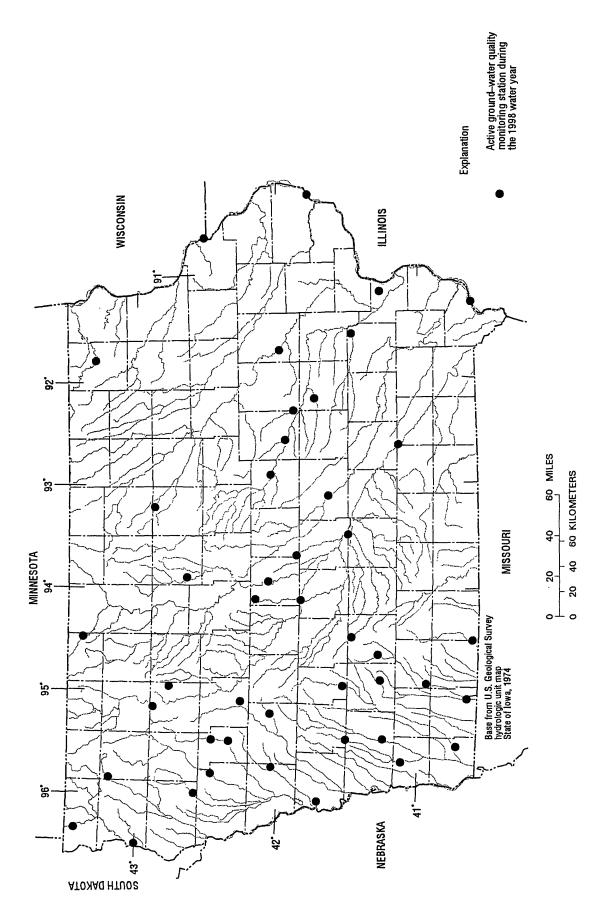


Figure 9. Location of active ground-water-quality monitoring wells in lowa.

Ground-Water Monitoring Network

The forty-five wells that were sampled as part of the ground-water monitoring network are distributed throughout the State (fig. 9). Aquifer types include: (1) alluvial aquifers comprising sand and gravel associated with present-day fluvial systems; and (2) glacial drift and buried-channel aquifers associated with previous glaciation. Samples were collected during June, July, and August 1998. All samples were analyzed by the University of Iowa Hygienic Laboratory. Constituents analysed for include: common ions, nutrients, herbicides, and volatile organic compounds (VOC's). Results for all constituents are published in this report. Discussion of analytical results will be limited to the nitrogen species nitrate and ammonia, and herbicides.

A summary of results for nutrient and herbicide analyses are listed by compound in table 5. Nitrate or ammonia was detected in 43 of the 45 samples analyzed for these compounds, and one or more herbicides were detected in 8 of the 45 samples. The laboratory minimum reporting level (MRL) for ammonia and nitrate is 0.10 mg/L. The MRL's for the herbicides listed below are 0.10µg/L. The MRL is the lowest concentration reliably measured by the laboratory.

Table 5. Summary of nitrogen species and herbicides detected in samples from the Ground-Water-Quality

Monitoring project, water year 1998

[μg/L, micrograms per liter; mg/L, milligrams per liter; <, less than detection limit]

Compound	Number of samples analyzed	Number of samples in which compound was detected	Median value	Maximum concentration detected
Acetochlor	45	0	<0.10 μg/L	<0.10 μg/L
Ammonia	45	20	< .10 mg/L	6.8 mg/L
Alachlor	45	0	< .10 μg/L	< .10 μg/L
Atrazine	45	7	< .10 μg/L	.34 μg/L
Butylate	45	0	< .10 μg/L	< .10 μg/L
Cyanazine	45	0	< .10 μg/L	< .10 μg/L
Deethylatrazine	45	3	< .10 μg/L	.22 μg/L
Deisopropylatrazine	45	2	< .10 μg/L	.19 µg/L
Metolachlor	45	3	< .10 μg/L	.94 μg/L
Metribuzin	45	0	< .10 μg/L	< .10 μg/L
Nitrate	45	27	1.10 mg/L	13.0 mg/L
Prometone	45	2	< .10 μg/L	.13 μg/L
Trifluralin	45	0	< .10 μg/L	< .10 μg/L

Concentrations of nitrate greater than 3.0 mg/L generally can be attributed to human activities, whereas concentrations less than 3.0 mg/L may indicate ambient concentrations from naturally occurring soil nitrogen or geologic deposits (Madison,

R.J., and Brunett, J.O., 1984, Overview of the occurrence of nitrate in ground water of the United States, in National Water Summary 1984 -- Water quality trends: U.S. Geological Survey Water-Supply Paper 2275, p. 93-105). Nitrate concentrations were greater than 3.0 mg/L in 16 of 45 samples. Concentrations in four samples exceeded 10 mg/L, which is the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) for public drinking water. Of the 27 samples that contained detectable concentrations of nitrate, 89 percent were from wells completed in alluvial aquifers and 11 percent were from glacial drift and buried-channel aquifers. The median concentration of the 27 samples with detections was 4.1 mg/l. The median concentration of all samples was 1.1 mg/L. However when all the wells are separated into categories based on well depth, the median nitrate concentrations vary from 2.4 mg/L in wells less than 50 feet deep to 3.0 mg/L in wells from 50 to 100 feet deep to <0.10 mg/L in wells greater than 100 feet deep. The maximum nitrate concentration was 13.0 mg/L. Twenty samples had detectable ammonia concentrations. Of these samples, 50 percent were collected from alluvial aquifers and 50 percent were from glacial drift and buried-channel aquifers.

Nine commonly used herbicides and two atrazine degradation products were sampled for during the 1998 water year. Water from 8 of the 45 wells sampled for herbicides contained detectable concentrations of one or more herbicides or herbicide degradation products. No sample contained herbicide concentrations that exceeded the MCL or proposed MCL of any of the analytes. Seven of the eight samples contained atrazine or its degradates, deethylatrazine and deisopropylatrazine. Meto-lachlor and/or prometone were also detected in four of the samples. No detectable amounts of cyanazine, metribuzin, butylate, trifluralin, alachlor, or acetochlor were found in any of the samples. All samples with detectable herbicide concentrations were from wells completed in alluvial aquifers and with depths less than 100 ft. The detection frequency in wells less than 100 feet deep was 23 percent. The rate of occurrence during the same period of the previous six years was 15 percent in 1992; 11 percent in 1993; 20 percent in 1994; 25 percent in 1995; 25 percent 1996; 20 percent in 1997; and a 22-percent rate described for the same periods prior to 1988 (Detroy, M.G., 1988, Ground-water-quality-monitoring program in Iowa: Nitrate and pesticides in shallow aquifers: U.S. Geological Survey Water-Resources Investigations Report 88-4123, 32 p.). A direct comparison of detection frequency between 1988 and 1998 may be misleading because each year different wells were sampled. Comparison is feasible between years 1992 through 1998 because essentially the same wells were used, see table 6. Variance in detection frequency may reflect several factors including changes in agricultural practices concerning use of herbicides, and climatic conditions.

Trends in Groundwater Quality

Table 6. Trends in herbicide detection frequencies (in percent) (--, no wells sampled)

						- '		
	Water Year							
Well Type	1992	1993	1994	1995	1996	1997	1998	
All Wells (<100ft.)	15%	11%	20%	25%	25%	20%	23%	
Vulnerable Bedrock	14%	14%		13%		9%		
Non-Vulnerable Bedrock	9%	5%				5%		

SPECIAL NETWORKS AND PROGRAMS

<u>Hydrologic Benchmark Network</u> is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins--the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 39 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to accomplish the following objectives; (1) Provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 191 precipitation chemistry monitoring sites. (2) Provide the mechanism to evaluate the effectiveness of the significant reduction in SO2 emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) Provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO2 and NOx scheduled to begin in 2000.

Data from the network, as well as information about individual sites, are available through the world wide web at:

http://nadp.nrel.colostate.edu/NADP

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of wet atmospheric deposition, which includes snow, rain, sleet and hail. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 53 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportuni-

ties to collaborate efforts among the agencies.

Additional information about the NAWQA Program is available through the world wide web at:

http://wwwrvares.er.usgs.gov/nawqa/nawqa_home.html

<u>Radiochemical Programs</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1998 water year that began October 1, 1997, and ended September 30, 1998. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 3-5, 7, 9, 10. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 05388250, which appears just to the left of the station name, includes the two-digit Part number "05" plus the six-digit downstream-order number "388250." The Part number designates the major river basin; for example, Part "05" is the Mississippi River Basin.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of lati-

tude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCA-TION paragraph of the station description. (See figure below.)

Latitude and longitude coordinates for wells:

- 1. 414315091252001
- 2. 414315091252002
- 3. 414316091251901

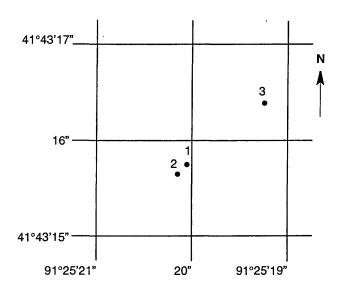


Figure 9. Latitude-longitude well number.

Numbering System For Wells

Each well is identified by means of (1) a 15-digit number that is based on the grid system of latitude and longitude, and (2) a local number that is provided for continuity with older reports and for other use as dictated by local needs. For maximum utility, latitude and longitude code numbers are determined to seconds in order that each well may have a unique number. The first six digits denote degrees, minutes, and seconds of north latitude; the next seven digits are degrees, minutes, and seconds of west longitude; and the last two numbers are a sequential number assigned in the order in which the wells are located in a 1-second quadrangle.

The local well numbers are in accordance with the Bureau of Land Management's system of land subdivision. Each well number is made up of three segments. The first segment indicates the township, the second the range, and the third the section in which the well is located (fig. 12). The letters after the section number which are assigned in a counter-clockwise direction (beginning with "A" in the northeast quarter), represent subdivisions of the section. The first letter denotes a 160-acre tract, the second a 40-acre tract, the third a 10-acre tract, and the fourth a 2.5 acre tract. Numbers are added as suffixes to distinguish wells in the same tract. Thus, the number 96-20-3CDBD1 designates the well in the SE 1/4 NW 1/4 SE 1/4 SW 1/4 sec.3, T.96 N., R.20 W.

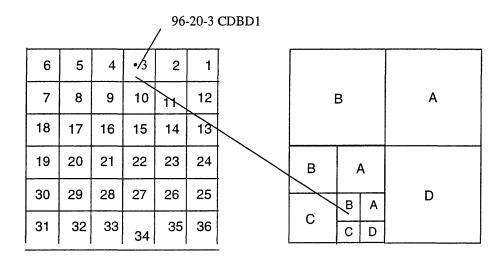


Figure 10. Local well-numbering system for well 96-20-3 CDBD1.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." Location of all complete-record surface water stations which are given in this report are shown in figure 3

Partial records are obtained through discrete measurements without using a continuous stage-recording device and generally pertain only to a characteristic of either high, medium or low flow. The location of all active, crest-stage gaging stations are shown in figure 4.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consist of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-capacity curves or tables to compute lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and

stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed using stage-discharge relations.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For these periods, the daily discharges are estimated from the recorded range in stage, discharge computed before and after the missing record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preference.

The records published for each continuous-record surface-water discharge station (gaging station) consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. For the first time this year, we are also including a hydrograph for the water year.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.-- because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Extremes are published only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did no occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. EXTREMES FOR PERIOD OF RECORD are now presented only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. No changes have been made to the data presentations of lake contents or reservoir storage.

Data table of daily mean values

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR PERIOD OF RECORD, BY WATER YEAR (WY)," for unregulated streams for the water years listed in the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams the first and last water years of the range of years will be given for the post-regulation period.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "PERIOD OF RECORD," for unregulated streams, will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the

statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams the period selected will be designated as "WATER YEARS ____ - ____," for the post regulation period. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- HIGHEST ANNUAL MEAN .-- The maximum annual mean discharge occurring for the designated period.
- LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.
- HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.
- LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.
- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)
- INSTANTANEOUS PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

- Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
- Cubic feet per second per square mile (CSFM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
- Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS.--The discharge that is exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that is exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified by listing the dates of the estimated record in the REMARKS paragraph of the station description, and are flagged "e" in tables.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures for more than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in various field offices of the Iowa District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near streamgaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 5.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, alkalinity and dissolved oxygen, are made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures of onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. C2; Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4. All of these references are listed on p. 54-56 of this report. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain the representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

Water Temperature and Specific Conductance

Water temperatures are measured at most of the water-quality stations. The measurement of temperature and specific conductance is performed during each regular site visit (usually at a six week interval) to streamgaging stations. Records of stream temperature indicate significant thermal characteristics of the stream when analyzed over a long period of record. Large streams have small daily temperature variations while shallow streams may have a daily range of several degrees and may closely follow the changes in air temperature. Furthermore, some streams may be affected by waste-heat discharge.

Specific conductance can be used as a general indicator of stream quality. This determination is easily made in the field with a portable meter, and the results are very useful as general indicators of dissolved-solids concentration or as a base for extrapolating other analytical data. Records for temperature and specific conductance appear in the section "Analyses of samples collected at miscellaneous sites".

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samples. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended-sediment, records of the periodic measurements of the particlesize distribution of the suspended-sediment and bed material are included. Miscellaneous suspended-sediment samples were collected during flood events have been included with the station's water quality data or in the section "Analyses of samples at miscellaneous sites".

Laboratory Measurements

Sediment samples, samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado and the University of Iowa Hygienic Laboratory. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratories are given in TWRI, Book 1, Chap. D2, Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remarks Codes

The following remarks codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
Е	Estimated value
>	Actual value is know to be greater than the value shown
<	Actual value is known to be less than the value shown
K	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant
V	Analyte was detected in both the environmental sample and the associated blank

Water Quality-Control Data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collect in this district are:

Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district

are: Sequential samples - a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Dissolved Trace-Element Concentrations

NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).

Records of Ground-Water Levels

Ground-water level data from a network of observation wells in Iowa are published in this report. These data provide a limited historical record of water-level changes in the State's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 6. Information about the availability of the data in the water-level files and reports of the U.S. Geological Survey may be obtained from the Iowa District Office (see address on back of title page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensures that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are arranged alphabetically by counties. The site identification number, based on latitude and longitude, for a given well is the 15-digit numeric value that appears in the upper left corner of the station description. The secondary identification number is the local well number, an alphanumeric value, derived from the township, range, and section location of the well (fig. 15).

Water-level records are obtained from direct measurements with a chalked steel tape, electric line, airline, or from the graph of a water-level recorder. The water-level measurements in this report are in feet with reference to land-surface datum. Land-surface datum is a plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water-level measurements are reported to the nearest hundredth of a foot. Estimates, indicated by an "e" may be reported in tenths of a foot. Adjustments to the water level recorder chart are indicated by an "a". The error of water-level measurements may be, at most, a few hundredths of a foot.

Data Presentation

Each well record consists of two parts, the station description and the table of water levels observed during the water year. The description of the well is presented by headings preceding the tabular data. The following explains the information presented under each heading.

LOCATION.--This paragraph follows the well identification number and includes the latitude and longitude (given in degrees, minutes, and seconds), the hydrologic unit number, the distance and direction from a geographic point of reference, and the well owner's name.

AQUIFER.--This entry is the aquifer(s) name (if one exists) and geologic age of the strata open to the well.

WELL CHARACTERISTICS.--This entry describes the well depth, casing diameter, casing depth, opening or screened interval(s), method of construction, and use of water from the well.

INSTRUMENTATION.--This paragraph provides information on the frequency of measurement and the collection method used.

DATUM.--This entry includes the land-surface elevation and the measuring point at the well. The elevation of the land-surface datum is describe in feet above (or below) sea level; it is reported with a precision depending on the method of determination. The measuring point is described physically and in relation to land surface.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level and any information not presented in the other parts of the station description but considered useful.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the beginning of publication of water-level records by the U.S. Geological Survey.

REVISED RECORDS.--If any revisions of previously published data were made for water-levels, the Water Data Report in which they appeared and year published would appear here.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels for the period of record, below land-surface datum, and the dates of their occurrence.

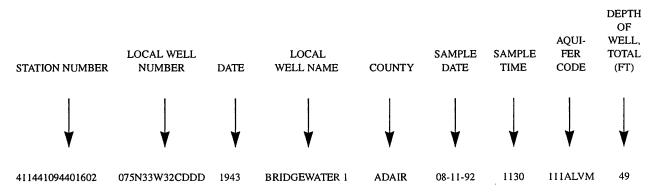
A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum. For wells equipped with recorders, only abbreviated tables are published. The highest and lowest water levels of the water year and the dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Hydrographs are included for 59 wells which are representative of hydrologic conditions in the important aquifers in Iowa.

Only water-level data from a national network of observation wells are given in this report. These data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 7.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.


The records of ground-water quality in this report were obtained as a part a statewide ground-water quality monitoring network operated by the Iowa District. All samples were obtained from municipal wells throughout Iowa. This program is conducted in cooperation with the University of Iowa Hygienic Laboratory (UHL) and the Iowa Department of Natural Resources (Geological Survey Bureau). All samples are collected by USGS personnel, field-preserved and submitted to UHL for analysis. Chemical analyses include common constituents (major ions), nutrients, organic compounds, radionuclides and pesticides. Approximately 10 percent of the samples receive additional analyses for about 90 organic priority pollutants, however these analyses are not presented in this report but are on file in the Iowa District Office.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material comprising the casings. The samples collected represent raw water

Data Presentation

The records of ground-water quality are published in a section titled GROUND-WATER QUALITY DATA immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by county, and are identified by station number. The prime identification number for wells sampled is the 15-digit station number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the station number, date and time of sampling, depth of well, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

Explanation of Quality of Ground-Water Data Tables -- Descriptive Headings

STATION NUMBER: 15-digit number based on grid system of latitude and longitude.

LOCAL WELL NUMBER: Refers to the Bureau of Land Management System of land subdivision.

DATE: The date that construction on the well was completed.

LOCAL WELL NAME: Name used by community to identify well.

COUNTY: The name of the county where the well is located.

SAMPLE DATE: Date the well was sampled.

SAMPLE TIME: Time the sample was collected.

AQUIFER CODE: Refers to the lithologic unit in which the well is completed. Derived from two digits of the GEO-LOGIC UNIT, the principal unit which provides the majority of water to the well.

11 - Quaternary33- Mississippian36 - Ordovician21 - Cretaceous34 - Devonian37 - Cambrian22 - Population25 - Silvaion

32 - Pennsylvanian 35 - Silurian

The third digit and remaining alphabetic characters refer to the more specific lithologic unit which the well is tapping. The following examples are commonly used units:

CodeGeneralSpecific111ALVMQuaternary(alluvium)217DKOTCretaceous(Dakota sandstone)344CDVLDevonian(Cedar Valley limestone)

DEPTH OF WELL, TOTAL (FT): Total depth of well in feet.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at

http://www.usgs.gov

Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.)

The Iowa District maintains a web site highlighting many of the District's activities. Many of the continuous stream gages presented in these reports have near-real-time data available, and all gages have historic data available. These data may be accessed at

http://diaiwc.cr.usgs.gov

DEFINITION OF TERMS

Terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

<u>Artesian</u> means confined and is used to describe a well in which the water level stands above the top of the aquifer tapped by the well. A flowing artesian well is one in which the water level is above the land surface.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

<u>Fecal coliform bacteria</u> are bacteria that are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 Cplus or minus 0.2 Con M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

<u>Fecal streptococcal bacteria</u> are bacteria found also in the intestine of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as Gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35 Cplus or minus 1.0 Con KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Bottom material: See Bed material.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of salt water.

<u>Cubic foot per second</u> (ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Cubic foot per second day</u> is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons, or 2,445 cubic meters.

<u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused withe the 7-day 10-year low-flow statistic).

<u>Instantaneous discharge</u> is the discharge at a particular instant of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

<u>Dissolved</u> refers to that material in a representative water sample which passes through a 0.45 mm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Dissolved-solids concentration</u> of water is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change.

<u>Drainage area</u> of a stream at a specified location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the stream above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

<u>Hydrologic Benchmark Network</u> is a network of 53 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an eight-digit number.

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Micrograms per gram ($\mu g/g$) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per liter (μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represents the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.

<u>National Geodetic Vertical Datum of 1929</u> (NGVD of 1929) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

National Stream Quality Accounting Network (NASQAN) is a nationwide data-collection network designed by the U.S. Geological Survey to meet many of the information needs of government agencies and other groups involved in natural or regional water-quality planning and management. The 500 or so sites in NASQAN are generally located at the downstream ends of hydrologic accounting units designated by the U.S. Geological Survey Office of Water Data Coordination in consultation with the Water Resources Council. The objectives of NASQAN are (1) to obtain information on the quality and quantity of water moving within and from the United States through a systematic and uniform process of data collection, summarization, analysis, and reporting such that the data may be used for, (2) description of the areal variability of water quality in the Nation's rivers through analysis of data from this and other programs, (3) detection of changes or trends with time in the pattern of occurrence of water-quality characteristics, and (4) providing a nationally consistent data base useful for water-quality assessment and hydrologic research.

The National Trends Network (NTN) is a 150-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of atmospheric deposition, which includes snow, rain, dust particles, aerosols, and gases. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

<u>Parameter Code</u> is a 5-digit number used in the U.S. Geological Survey data system, National Water Information System (NWIS),, to uniquely identify a specific constituent. The codes used in NWIS are the same as those used in the U.S. Environmental Protection Agency data system, STORET.

<u>Partial-record station</u> is a particular site where limited streamflow and/or water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle size</u> is the diameter, in millimeters (mm), of a particle determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual- accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size	(mm)	Method of analysis
Clay	0.00024	- 0.004	Sedimentation
Silt	.004	062	Sedimentation
Sand	.062	- 2.0	Sedimentation or sieve
Gravel	2.0	- 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native-water analysis.

<u>Pesticides</u> are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7 x 10 radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Radiochemical program</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Return period</u> is the average time interval between occurrences of a hydrological event of a given or greater magnitude, usually expressed in years. May also be called recurrence interval.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Sea level</u>. In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) -- a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

Bed load is the sediment that is transported in a stream by rolling, sliding, or skipping along the bed and very close to it. In this report, bed load is considered to consist of particles in transit within 0.25 ft of the streambed.

Bed load discharge (tons per day) is the quantity of bed load measured by dry weight that moves past a section as bed load in a given time.

<u>Suspended sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

<u>Mean concentration</u> is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry mass of sediment passes a section of a stream or is the quantity of sediment, as measured by dry mass or volume, that passes a section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge ft³/s x 0.0027.

<u>Suspended-sediment load</u> is a general term that refers to material in suspension. It is not synonymous with either discharge or concentration.

<u>Total sediment discharge</u> (tons/day) is the sum of the suspended sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry mass or volume, that passes a section during a given time.

<u>Total-sediment load</u> or total load is a term which refers to the total sediment (bed load plus suspended-sediment load) that is in transport. It is not synonymous with total-sediment discharge.

 $\underline{7\text{-day }10\text{-year low flow}}$ (7 Q_{10}) is the discharge at the 10-year recurrence interval taken from a frequency curve of annual values of the lowest mean discharge for 7 consecutive days (the 7-day low flow).

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Waters range in respect to sodium hazard from those which can be used for irrigation on almost all soils to those which are generally unsatisfactory for irrigation.

Solute is any substance that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 C.Specific conductance is related to the type and concentration of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65-percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water, per unit of time, flowing in a channel.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

<u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as the boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is the part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is associated with the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspended sediment sample that is retained on a 0.45 mm membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95-percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total recoverable</u> concentrations of the constituent.

Suspended, total is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45 mm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95-percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total."

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent.

<u>Thermograph</u> is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table headings and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

<u>Tons per acre-foot</u> indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY) is the quantity of a substance in solution or suspension that passes a stream section during a 24-hour period.

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95-percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined all of the constituent in the sample.)

<u>Total discharge</u> is the total quantity of any individual constituent, as measured by dry mass or volume, that passes through a stream cross-section per unit of time. This term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95-percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

Water year in U.S. Geological Survey reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 1992, is called the "1992 water year."

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976).

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

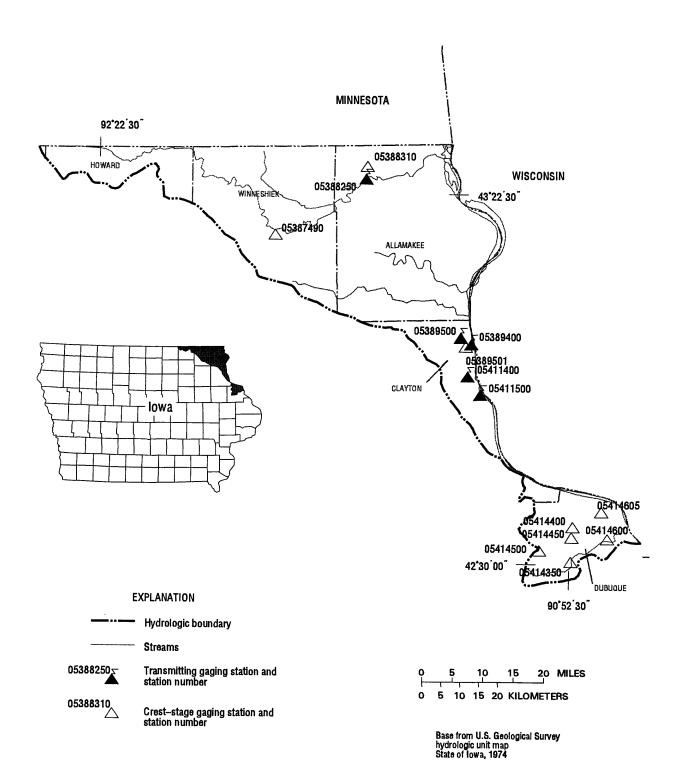
WSP is used as an abbreviation for "Water-Supply Paper" in reference to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

- 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages.
- 2-D1. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F. P. Haeni: USGS--TWRI Book 2, Chapter D2. 1988. 86 pages.
- 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L.M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W. S. Keys: USGS--TWRI Book 2, Chapter E2. 1990. 150 pages.
- 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W. E. Teasdale: USGS--TWRI Book 2, Chapter F1. 1989. 97 pages.
- 3-A1. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages.


- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS--TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.
- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3. Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurement at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F. A. Kilpatrick and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-Alo. Discharge ratings at gaging stations, by E. J. Kennedy: USGS-TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. Measurement of discharge by the moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, Revised, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS-TWRI Book 3, Chapter A12. 1986. 34 pages.
- 3-A13. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F. A. Kilpatrick, R. E. Rathbun, Nobuhiro Yotsukura, G. W. Parker, and L. L. DeLong: USGS--TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS--TWRI Book 3, Chapter A19. 1990. 31 pages.
- 3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F. A. Kilpatrick: USGS-TWRI Book 3, Chapter A20. 1993. 38 pages.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS--TWRI Book 3, Chapter A21. 1995. 56 pages.
- 3-B1. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G. D. Bennett: USGS-- TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS--TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by R. L. Cooley and R. L. Naff: USGS--TWRI Book 3, Chapter B4. 1990. 232 pages.

- 3-B4. Supplement I. Regression modeling of ground-water flow Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R. L. Cooley: USGS--TWRI Book 3, Chapter B4. 1993. 8 pages.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS-TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E. J. Wexler: USGS--TWRI Book 3, Chapter B7. 1992. 190 pages.
- 3-C1. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by Thomas K. Edwards and G. Douglas Glysson: USGS--TWRI Book 3, Chapter C2. 1988. 80 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages.
- 4-A1. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages.
- 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H. C. Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4, Chapter B3. 1973. 15 pages.
- 4-D1. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS--TWRI Book 4, Chapter D1. 1970. 17 pages.
- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L. C. Friedman, editors: USGS--TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS-TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R. L. Wershaw, M. J. Fishman, R. R. Grabbe, and L. E. Lowe: USGS-TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L. J. Britton and P. E. Greeson, editors: USGS--TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages.
- 5-C1. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter C1. 1969. 58 pages.
- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S. A. Leake and D. E. Prudic: USGS--TWRI Book 6, Chapter A2. 1991. 68 pages.
- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part I: Model Description and User's Manual, by L. J. Torak: USGS--TWRI Book 6, Chapter A3. 1993. 136 pages

- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2:

 Derivation of finite-element equations and comparisons with analytical solutions, by R. L. Cooley: USGS--TWRI
 Book 6, Chapter A4. 1992. 108 pages.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L. J. Torak: USGS-TWRI Book 6, Chapter A5, 1993. 243 pages.
- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1996. 125 pages.
- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffranek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages.
- 8-A1. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS--TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS--TWRI Book 8, Chapter A2. 1983. 57 pages.
- 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2, 1968, 15 pages.
- 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F. D. Wilde and D.B. Radtke: USGS--TWRI Book 9, Chapter A6. 1998. Variously paginated.
- 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, by D. N. Myers and F. D. Wilde: USGS--TWRI Book 9, Chapter A7. 1997. 49 pages.
- 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom Material Samples, by D.B. Radtke: USGS-TWRI Book 9, Chapter A8. 1998. 48 pages.
- 9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, by S.L. Lane and R.G. Fay: USGS--TWRI Book 9, Chapter A9. 1998. 60 pages.

THIS PAGE IS INTENTIONALLY BLANK

Gaging Stations

05388250	Upper Iowa River near Dorchester, IA										•	.52
05389400	Bloody Run Creek near Marquette, IA.											.54
05389500	Mississippi River at McGregor, IA											.62
05411400	Sny Magill Creek near Clayton, IA											.68
05411500	Mississippi River at Clayton, IA	•	•			•	•	•	•	•		.76

Crest Stage Gaging Stations

05387490	Dry Run Creek near Decorah, IA
05388310	Waterloo Creek near Dorchester, IA
05389501	Mississippi River Tributary at McGregor, IA
05414350	Little Maquoketa River near Graf, IA
05414400	Middle Fork Little Maquoketa River near Rickardsville, IA 330
05414450	North Fork Little Maquoketa River near Rickardsville, IA 331
05414500	Little Maquoketa River near Durango, IA
05414600	Little Maquoketa River Tributary at Dubuque, IA
05414605	Bloody Run Tributary near Sherrill, IA

05388250 UPPER IOWA RIVER NEAR DORCHESTER, IA

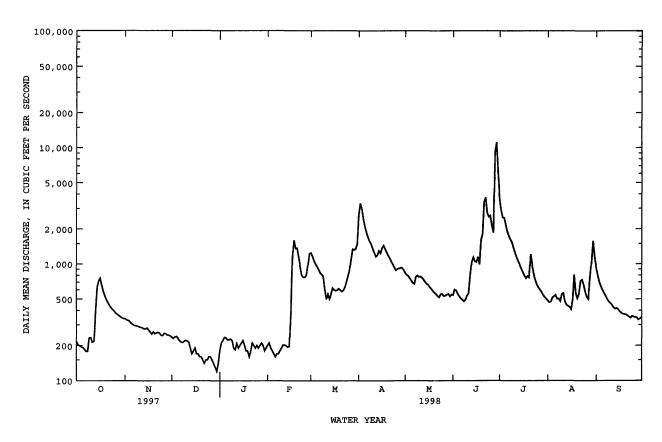
LOCATION.--Lat $43^{\circ}25^{\circ}16^{\circ}$, long $91^{\circ}30^{\circ}31^{\circ}$, in $SW^{1}/_{4}$ NW $^{1}/_{4}$ sec.1, T.99 N., R.6 W., Allamakee County, Hydrologic Unit 07060002, on right bank at upstream side of bridge on State Highway 76, 650 ft. upstream from Mineral Creek, 0.5 mi upstream from Bear Creek, 3.5 mi south of Dorchester, and 18.1 mi upstream from mouth.

DRAINAGE AREA .-- 770 mi²

PERIOD OF RECORD.--September 1936 to September 1938 and October 1939 to June 1975(discharge measurements only), October 1938 to September 1939, July 1975 to current year.

GAGE.--Water-stage recorder. Datum of gage is 660.00 ft. above sea level. Prior to Jan. 6, 1938, nonrecording gage on old bridge at site 0.2 mi upstream at datum 5.91 ft. higher. Jan. 6, 1938 to Apr. 26, 1948, nonrecording gage at datum 60.00 ft. lower, Apr. 27, 1948 to August 1963, nonrecording gage on old bridge and August 1963 to June 1975 nonrecording gage on new bridge at same datum.

REMARKS.--Estimated daily discharges: Dec. 13 to Jan. 3, Jan. 10, Jan. 13 to Feb. 8, and Mar. 10-14. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey satellite and telephone modem data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 30, 1941, reached a stage of 21.8 ft., from flood profile, discharge, 30,400 ${\rm ft}^3/{\rm s}$ on basis of slope-area determination of peak flow.

		DISCHAR	GE, CUB	IC FEET PE		WATER YELY MEAN V	EAR OCTOBER	1997 TC	SEPTEMBER	1998		
DAY	OCT	Nou	DEC	****				103.17	7777		2110	SEP
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	216	338	235	e180	e200	1250	2600	840	542	3680	484	933
2	201	330	230	e210	e210	1160	3320	806	601	2910	468	805
3	199	327	237	e220	e190	1060	2990	790	592	2510	475	701
4	195	318	239	235	e180	996	2420	754	555	2490	516	645
5	191	307	230	232	e170	949	2080	720	528	2160	529	599
6	185	300	220	223	e160	896	1860	688	507	1880	542	562
7	178	295	214	224	e170	838	1690	674	493	1740	503	532
8	178	293	212	227	e170	813	1570	773	477	1620	505	500
9	232	292	217	220	e180	782	1480	795	493	1530	479	476
10	233	288	221	e190	e190	e600	1350	772	535	1360	553	462
11	213	285	218	184	202	e500	1250	777	558	1240	561	446
12	217	283	213	208	202	e550	1160	761	798	1130	478	426
13	398	277	e190	e190	199	e500	1190	731	1040	1050	447	412
14	625	277	e170	e200	194	e550	1300	698	1140	981	436	418
15	710	282	e180	e210	196	621	1240	672	1050	916	428	409
16	752	272	e190	e220	376	599	1370	661	1040	852	408	391
17	652	260	e170	e200	1150	590	1440	630	1150	797	497	380
18	579	250	e170	e180	1600	596	1350	610	989	753	806	374
19	529	261	e160	e180	1360	614	1260	585	1620	786	558	370
20	489	252	e160	e160	1370	596	1180	566	1820	764	507	368
21	461	257	e150	e180	1150	580	1120	552	3420	1210	553	360
22	438	258	e140	e210	952	592	1050	531	3720	984	710	352
23	419	256	e150	e200	804	626	989	517	2740	823	730	345
24	404	244	e150	e190	768	693	938	550	2540	725	663	358
25	392	243	e160	e200	769	785	883	551	2600	665	577	351
26	377	254	e160	e190	798	879	905	531	2130	627	522	351
27	369	252	e150	e200	973	1100	913	534	1860	598	499	346
28	359	245	e140	e210	1230	1340	922	545	9150	573	755	333
29	352	245	e130	e200		1320	927	552	11100	540	1050	339
30	344	241	e120	e180		1350	888	528	6100	522	1580	348
31	340		e140	e190		1490		547		502	1140	
TOTAL	11427	8282	5666	6243	16113	25815	43635	20241	61888	38918	18959	13692
MEAN	369	276	183	201	575	833	1455	653	2063	1255	612	456
MAX	752	338	239	235	1600	1490	3320	840	11100	3680	1580	933
MIN	178	241	120	160	160	500	883	517	477	502	408	333
AC-FT	22670	16430	11240	12380	31960	51200	86550	40150	122800	77190	37610	27160
CFSM	.48	.36	.24	.26	. 75	1.08	1.89	.85	2.68	1.63	.79	.59
IN.	.55	.40	.27	.30	. 78	1.25	2.11	.98	2.99	1.88	.92	.66
STATIST	rics of M	ONTHLY MEA	N DATA I	FOR WATER	YEARS 193	9 - 1998,	BY WATER	YEAR (WY	.)			
MEAN	421	445	369	276	402	1085	1043	800	797	634	563	457
MAX	2045	1476	1421	836	1400	1922	39 7 3	2066	2765	3318	3702	1334
(WY)	1987	1983	1983	1983	1984	1983	1993	1991	1993	1993	1993	1986
MIN	116	125	99.9	96.7	112	386	225	175	123	92.9	112	77.5
(WY)	1990	1990	1990	1977	1978	1981	1977	1977	1977	1939	1989	1939

05388250 UPPER IOWA RIVER NEAR DORCHESTER, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEAR	S 193	9 -	1998a
ANNUAL TOTAL	196570		270879					
ANNUAL MEAN	539		742		611			
HIGHEST ANNUAL MEAN					1726			1993
LOWEST ANNUAL MEAN					178			1977
HIGHEST DAILY MEAN	4110	Mar 23	11100	Jun 29	15100	Aug	17	1993
LOWEST DAILY MEAN	120	Dec 30	120	Dec 30	30			1939
ANNUAL SEVEN-DAY MINIMUM	143	Dec 25	143	Dec 25	49			1939
INSTANTANEOUS PEAK FLOW			12600	Jun 29	22000			1993
INSTANTANEOUS PEAK STAGE			16.65		20.00			1993
ANNUAL RUNOFF (AC-FT)	389900		537300		442600			
ANNUAL RUNOFF (CFSM)	.70		.96		.79			
ANNUAL RUNOFF (INCHES)	9.50		13.09		10.78			
10 PERCENT EXCEEDS	1040		1360		1310			
50 PERCENT EXCEEDS	352		528		367			
90 PERCENT EXCEEDS	193		190		140			

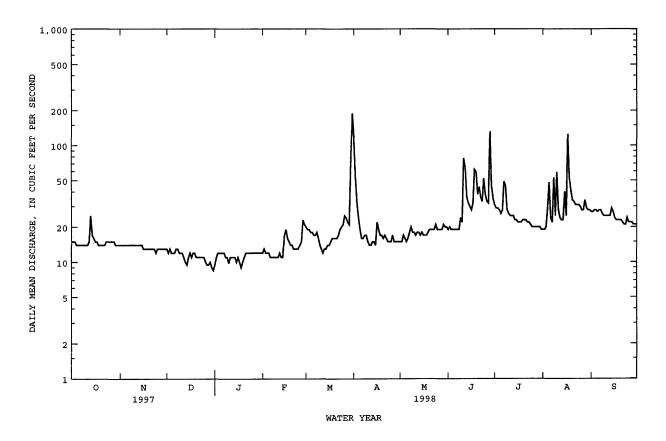
05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA

LOCATION.--Lat 43°02'27", long 91°12'23", in Basil Giard Claim #1, sec.16, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, on right bank 50 ft downstream from State Highway 18 bridge, 1.5 miles upstream from mouth at Mississippi River, and 1.5 miles west of Marquette.

DRAINAGE AREA. -- 34.1 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1991 to current year.


GAGE.--Water-stage recorder. Datum of gage is 624.818 ft above mean sea level.

REMARKS.--Estimated daily discharges: Dec. 12-15, Dec. 26 to Jan. 2, Jan. 15-20, and Mar. 10-15. Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and satellite data collection platform at station

		DISCHA	RGE, CUBI	C FEET PER		WATER YE		1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15 15 15 14 14	14 14 14 14	13 12 13 12 12	e9.5 e11 12 12 12	12 13 12 12 12	20 19 19 18 18	116 53 32 24 19	15 15 17 16 15	19 20 19 19 19	31 29 29 28 26	19 19 20 29 48	27 27 28 28 27
6 7 8 9 10	14 14 14 14	14 14 14 14 14	12 13 13 12 12	12 12 11 11 9.8	11 11 11 11 11	17 17 18 16 e14	16 16 17 17 15	16 18 20 18 18	19 19 19 24 22	28 49 45 28 26	24 22 53 25 59	28 28 26 25 25
11 12 13 14 15	14 15 25 17 16	14 14 14 14 14	12 e11 e10 e9.5 e11	11 11 11 11 e10	11 12 11 11 17	e13 e12 e13 e13 e14	14 14 15 15 14	17 18 18 17 18	78 64 36 32 30	25 25 25 23 23	28 24 23 23 40	25 25 25 29 27
16 17 18 19 20	15 15 14 14 14	13 13 13 13 13	12 11 12 12 11	e11 e10 e9.0 e10 e11	19 16 15 14 14	14 15 16 16 16	22 19 17 17 16	17 17 17 18 19	28 32 62 59 38	22 22 22 23 23	25 125 53 41 34	24 23 23 23 23 23
21 22 23 24 25	14 14 15 15	13 13 13 12 13	11 11 11 11 11	12 12 12 12 12	13 13 13 13 14	16 17 19 20 21	17 16 15 15 15	19 19 19 21 19	44 36 33 52 38	23 22 22 21 20	33 31 31 31 30	22 21 21 24 22
26 27 28 29 30 31	15 15 15 14 14	13 13 13 13 13	e10 e9.5 e9.5 e10 e9.0 e8.5	12 12 12 12 12 12	15 23 21 	25 24 22 21 69 189	17 15 15 15 15	19 19 19 21 20 20	33 32 132 45 35	20 20 20 20 20 20 19	28 28 34 29 28 28	22 22 21 21 21
TOTAL MEAN MAX MIN AC-FT CFSM IN.	462 14.9 25 14 916 .44	404 13.5 14 12 801 .39 .44	347.0 11.2 13 8.5 688 .33 .38	349.3 11.3 12 9.0 693 .33	381 13.6 23 11 756 .40 .42	761 24.5 189 12 1510 .72 .83	643 21.4 116 14 1280 .63	559 18.0 21 15 1110 .53 .61	1138 37.9 132 19 2260 1.11 1.24	779 25.1 49 19 1550 .74 .85	1065 34.4 125 19 2110 1.01 1.16	733 24.4 29 21 1450 .72 .80
				OR WATER Y		•						
MEAN MAX (WY) MIN (WY)	20.3 30.9 1994 14.9 1998	22.4 35.3 1992 13.5 1998	18.6 26.0 1992 11.2 1998	16.8 22.3 1992 11.3 1998	22.9 33.6 1994 13.6 1998	34.2 87.6 1993 20.0 1996	28.8 55.3 1993 15.2 1997	28.9 65.7 1993 17.3 1997	30.9 55.4 1993 16.4 1997	29.1 54.2 1993 15.9 1997	26.3 48.9 1993 12.9 1997	22.7 36.4 1993 13.7 1997
SUMMARY	STATISTI	CS	FOR	1997 CALEN	DAR YEAR	F	OR 1998 WAS	PER YEAR		WATER YE	ARS 1992	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC		AN AN N MINIMUM AK FLOW AK STAGE (C-FT) FSM) NCHES) DS		242 7.3 8.3 12030 .49 6.61 21 14			7621.3 20.9 189 8.5 9.4 530 6.39 15120 .61 8.31 31 17	Aug 17 Aug 17		25.2 42.1 17.2 550 7.3 8.3 1820 7.68 18240 .74 10.02 38 21 13	Mar : Feb Feb Feb Feb	1993 1997 31 1993 17 1997 11 1997 18 1997 18 1997

e Estimated

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- October 1991 to current year.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1991 to current year.

WATER TEMPERATURES: October 1991 to current year.
SUSPENDED-SEDIMENT DISCHARGE: October 1991 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 670 microsiemens Sept. 27, 1994; minimum daily, 140 microsiemens Oct. 14, 1997.

WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 17, 1998; minimum daily, 0.0°C Jan. 7, 18-21, 1994, Jan. 5,7,8, Feb. 21, 1997.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,780 mg/L Mar. 31, 1993; minimum daily mean, 1 mg/L Oct. 30, 1994.

SEDIMENT LOADS: Maximum daily, 4,500 tons Mar. 31, 1993; minimum daily, 0.08 tons Oct. 30, 1994, Nov. 23-24, 1997, and Dec.

EXTREMES FOR CURRENT YEAR .--

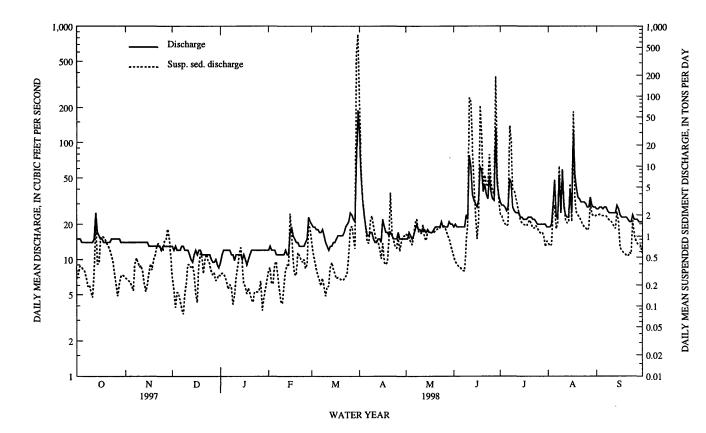
TREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 628 microsiemens Sept. 4; minimum daily, 140 microsiemens Oct. 14.
WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 17; minimum daily, 2.0°C Feb. 13, 19, 24.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,300 mg/L Mar. 31; minimum daily mean, 2 mg/L Dec. 8.
SEDIMENT LOADS: Maximum daily, 773 tons Mar. 31; minimum daily, 0.08 tons Dec. 8.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE		TIME	TEMPER- ATURE WATER (DEG C) (00010)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 22		1145	7.0	14	11	. 42	36
DEC 02		1315	5.8	13	13	.45	40
JAN 13		1445	1.4	11	8	.24	54
FEB 24		1530	9.7	14	32	1.2	27
MAY 19		1610	18.6	19	12	. 60	42
JUN 23 AUG		1530	18.1	32	58	5.0	66
04 SEP		1610	15.8	33	29	2.6	53
29		0820	13.3	21	26	1.5	44
DATE	TIME		F SIE M- DIA NG % FI NTS TE NT) .062	T. MA VE SIE M. DIA NER % FI IAN TH	T. MA VE SIE M. DIA NER % FI	T. MA VE SIE M. DIA NER % FI AN TH MM .500	T. MAT. VE SIEVE M. DIAM. NER % FINER IAN THAN MM 1.00 MM
OCT 22 SEP	1000	1	4	. 5	9	27	32
29	0820	1	2	. 3	8	38	49
DATE	ያ 2 .	BED MAT. SIEVE DIAM. FINER THAN (00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)
OCT 22 SEP		33	34	36	46	60	100
29		53	56	62	71	100	

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


	SPECIF	TC CONDOC	JIIIIOD IIIO		AILY INST	PANTANEOUS		COCTOBER				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	467		434	424			446	451	622	399		491
2	450		443	445	519	536	439	431	596	399		497
3	399	411	408		573	566	443		570	382	528	538
4		424	401		564	507		462	527		527	628
5		408	442	422	510	499		423	520		527	
6	473	442		428	467	500	55 4	460		400	468	
7	583	443		462			459	420		386	481	472
8	582		4 21	406			438		555	418		445
9	434		418	400	546	523	520		529	419		491
10		418	471		471	624	424		435	398	477	468
11	392	418	487		508	540		5 4 8	524		501	
12		441	500	448		553		471	584		505	
13		426		449	537	537	447	513		434	438	
14	140	414		487			429	443		381	507	442
15	466		408	443			475	521	561			470
16	462		409	420	484	401	425		432			519
17	250	544	436		460	421	463	427	4 13 571		522	521
18	233	470	403		553				544		516	474
19 20		436 498	4 22 41 9	481 454	532 4 35		456	431		388	531 4 53	
21	247	456	403	4 12			440			483	493	412
22	414		428	405			406		543	400		418
23	421		463	468	522		416			391		412
24	420	513	465		554	480	468			430	426	481
25		442	436								460	
26		447	420	434							509	519
26 27	408	485		436			407			411	568	219
28	411	470		410			437			402	550	564
29	427		459	537		498	447			397		536
30	441		433	529		497	422			439		512
31	424		462			498				404	473	
31	•••		102			100				-01		
		TEMPE	ERATURE, W					97 TO SE	PTEMBER 1	998		
DAY	OCM			E	AILY INST	ANTANEOUS	VALUES				AUC	CED
DAY	OCT	TEMPE NOV	DEC					97 TO SE	JUN	JUL	AUG	SEP
1	14.0	NOV	DEC	JAN 4.0	FEB	PANTANEOUS MAR	APR 5.0	MA Y 6.0	JUN 23.0	JUL 19.0		27.0
1 2	14.0 15.0	NOV	DEC 6.0 5.0	JAN 4.0 3.0	FEB 3.0	MAR 7.0	APR 5.0 6.0	MAY 6.0	JUN 23.0 23.0	JUL 19.0 20.0		27.0 29.0
1 2 3	14.0 15.0 17.0	NOV 7.0	DEC 6.0 5.0 6.0	JAN 4.0 3.0	FEB 3.0 4.0	MAR 7.0 7.0	APR 5.0 6.0 5.0	MAY 6.0 	JUN 23.0 23.0 23.0	JUL 19.0 20.0 19.0	30.0	27.0 29.0 28.0
1 2 3 4	14.0 15.0 17.0	NOV 7.0 8.0	DEC 6.0 5.0 6.0 5.0	JAN 4.0 3.0	FEB 3.0 4.0 4.0	MAR 7.0 7.0 7.0	5 VALUES APR 5.0 6.0 5.0	MAY 6.0 7.0	JUN 23.0 23.0 23.0 23.0 20.0	JUL 19.0 20.0 19.0	30.0 31.0	27.0 29.0 28.0 28.0
1 2 3	14.0 15.0 17.0	NOV 7.0	DEC 6.0 5.0 6.0	JAN 4.0 3.0	FEB 3.0 4.0	MAR 7.0 7.0	APR 5.0 6.0 5.0	MAY 6.0 	JUN 23.0 23.0 23.0	JUL 19.0 20.0 19.0	30.0	27.0 29.0 28.0
1 2 3 4	14.0 15.0 17.0	NOV 7.0 8.0	DEC 6.0 5.0 6.0 5.0	JAN 4.0 3.0	FEB 3.0 4.0 4.0	MAR 7.0 7.0 7.0	5 VALUES APR 5.0 6.0 5.0	MAY 6.0 7.0	JUN 23.0 23.0 23.0 23.0 20.0	JUL 19.0 20.0 19.0	30.0 31.0	27.0 29.0 28.0 28.0
1 2 3 4 5	14.0 15.0 17.0	NOV 7.0 8.0 9.0	DEC 6.0 5.0 6.0 5.0	JAN 4.0 3.0 4.0	FEB 3.0 4.0 4.0 4.0	MAR 7.0 7.0 7.0 7.0 6.0	5.0 6.0 5.0 	MAY 6.0 7.0 6.0	JUN 23.0 23.0 23.0 23.0 23.0 22.0	JUL 19.0 20.0 19.0	30.0 31.0 29.0	27.0 29.0 28.0 28.0
1 2 3 4 5	14.0 15.0 17.0 17.0	NOV 7.0 8.0 9.0	DEC 6.0 5.0 6.0 5.0 5.0	JAN 4.0 3.0 4.0	FEB 3.0 4.0 4.0 4.0 3.0	MAR 7.0 7.0 7.0 6.0	5 VALUES APR 5.0 6.0 5.0 5.0	MAY 6.0 7.0 6.0	JUN 23.0 23.0 23.0 20.0 20.0	JUL 19.0 20.0 19.0 20.0	30.0 31.0 29.0	27.0 29.0 28.0 28.0
1 2 3 4 5	14.0 15.0 17.0 17.0 16.0	NOV 7.0 8.0 9.0	DEC 6.0 5.0 6.0 5.0 5.0	JAN 4.0 3.0 4.0 4.0 5.0	FEB 3.0 4.0 4.0 4.0 3.0	MAR 7.0 7.0 7.0 6.0	S VALUES APR 5.0 6.0 5.0 5.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 21.0 22.0	JUL 19.0 20.0 19.0 20.0 19.0	30.0 31.0 29.0 30.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0
1 2 3 4 5 6 7 8	14.0 15.0 17.0 17.0 16.0 11.0	NOV 7.0 8.0 9.0 8.0 6.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0	FEB 3.0 4.0 4.0 4.0 3.0	MAR 7.0 7.0 7.0 6.0 6.0	S VALUES APR 5.0 6.0 5.0 5.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 21.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0	30.0 31.0 29.0 30.0 29.0	27.0 29.0 28.0 28.0 29.0 30.0
1 2 3 4 5 6 7 8 9	14.0 15.0 17.0 17.0 16.0 11.0 15.0	NOV 7.0 8.0 9.0 8.0 6.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 3.0 4.0	MAR 7.0 7.0 6.0 6.0 7.0	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 21.0 22.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0 25.0	30.0 31.0 29.0 30.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0
1 2 3 4 5 6 7 8 9	14.0 15.0 17.0 17.0 16.0 11.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0	4.0 3.0 4.0 4.0 5.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0	MAR 7.0 7.0 7.0 6.0 6.0 7.0 6.0 6.0	5 VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 21.0 22.0 20.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0 25.0 24.0	30.0 31.0 29.0 30.0 29.0 29.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0
1 2 3 4 5 6 7 8 9 10	14.0 15.0 17.0 17.0 16.0 11.0 15.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 3.0	MAR 7.0 7.0 7.0 6.0 6.0 7.0 6.0 7.0	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 22.0 21.0 22.0 20.0 22.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0 25.0 24.0	30.0 31.0 29.0 30.0 29.0 29.0 28.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0
1 2 3 4 5 6 7 8 9 10	14.0 15.0 17.0 17.0 16.0 11.0 15.0 	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 5.0 4.0 4.0	FEB 3.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 3.0	MAR 7.0 7.0 7.0 6.0 6.0 7.0 6.0 7.0	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0	JUN 23.0 23.0 23.0 20.0 22.0 21.0 22.0 20.0 22.0 21.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0 25.0 24.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 28.0 30.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0
1 2 3 4 5 6 7 8 9 10	14.0 15.0 17.0 17.0 16.0 11.0 15.0 	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0	4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 2.0	**************************************	5 VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 5.0	MAY 6.0 7.0 6.0 5.0 7.0 8.0 8.0	JUN 23.0 23.0 23.0 20.0 20.0 21.0 22.0 22.0 21.0 22.0 21.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0 25.0 24.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 28.0 30.0 31.0	27.0 29.0 28.0 28.0 29.0 30.0 30.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	14.0 15.0 17.0 17.0 16.0 11.0 15.0 13.0 12.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 6.0 6.0	4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0	MAR 7.0 7.0 7.0 6.0 6.0 7.0 6.0 6.0	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 5.0 5.0 5.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0	JUN 23.0 23.0 20.0 20.0 22.0 21.0 22.0 20.0 21.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0	30.0 31.0 29.0 30.0 29.0 29.0 28.0 30.0 31.0 31.0	27.0 29.0 28.0 28.0 28.0 29.0 30.0 29.0 30.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	14.0 15.0 17.0 17.0 16.0 11.0 15.0 13.0 12.0 10.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 5.0	4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 2.0 3.0	**************************************	5 VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 5.0 5.0 7.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 22.0 21.0 22.0 20.0 21.0 20.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0 25.0 24.0 20.0 21.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 28.0 30.0 31.0 31.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	14.0 15.0 17.0 17.0 16.0 11.0 15.0 13.0 12.0 10.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	MAR 7.0 7.0 7.0 6.0 6.0 6.0 6.0 7.0 6.0 6.0	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 5.0 6.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 22.0 21.0 22.0 21.0 20.0 21.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0	30.0 31.0 29.0 30.0 29.0 29.0 28.0 30.0 31.0 31.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0 30.0 28.0 29.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	14.0 15.0 17.0 17.0 16.0 11.0 15.0 13.0 12.0 10.0 12.0 11.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 6.0 5.0 6.0 4.0 4.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0	FEB 3.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 4.0 3.0	**************************************	5 VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 21.0 22.0 21.0 21.0 22.0 21.0 22.0 21.0 22.0 24.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 29.0 30.0 31.0 31.0 32.0 30.0 30.0	27.0 29.0 28.0 28.0 28.0 29.0 30.0 29.0 30.0 29.0 29.0 29.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 4.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 3.0 4.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 2.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	**************************************	5 VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 22.0 21.0 22.0 21.0 21.0 21.0 21.0 21.0 22.0 21.0 22.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0 25.0 24.0 20.0 21.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 31.0	27.0 29.0 28.0 28.0 30.0 30.0 30.0 30.0 29.0 30.0 29.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	14.0 15.0 17.0 17.0 16.0 11.0 15.0 13.0 12.0 10.0 12.0 11.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 4.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0	FEB 3.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 4.0	MAR 7.0 7.0 7.0 6.0 6.0 6.0 7.0 6.0 6.0 7.0 4.5	5 VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 21.0 22.0 21.0 21.0 22.0 21.0 22.0 21.0 22.0 24.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 29.0 30.0 31.0 31.0 32.0 30.0 30.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0 29.0 30.0 29.0 29.0 30.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0 10.0 11.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 5.0 4.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 3.0	**************************************	5 VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 5.0 7.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 22.0 21.0 22.0 21.0 21.0 22.0 21.0 21	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0 17.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 32.0 30.0 30.0 29.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0 29.0 29.0 29.0 30.0 29.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	14.0 15.0 17.0 17.0 16.0 11.0 15.0 13.0 12.0 10.0 10.0 11.0 10.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 4.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0	4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0	FEB 3.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0 6.0 6.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0 7.0	JUN 23.0 23.0 23.0 20.0 22.0 21.0 22.0 21.0 20.0 21.0 22.0 21.0 20.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0 17.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 28.0 30.0 31.0 31.0 31.0 30.0 30.0 30.0 29.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0 29.0 30.0 29.0 29.0 30.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0 11.0 12.0 11.0 11.0 11.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 4.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	JAN 4.0 3.0 4.0 5.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 5.0 5.0 5.0	FEB 3.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 8.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 24.0 25.0 24.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0 17.0 19.0 20.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 30.0 30.0 29.0 29.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 30.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0 10.0 11.0 12.0 10.0 10.0 11.0 	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 5.0 4.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 3.0 4.0 5.0 6.0 5.0 4.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 2.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 6.0 7.0 6.0 6.0 7.0 6.0 7.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0	JUN 23.0 23.0 23.0 23.0 20.0 22.0 21.0 22.0 20.0 21.0 21.0 22.0 24.0 26.0 26.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0 17.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 31.0 30.0 30.0 30	27.0 29.0 28.0 28.0 30.0 30.0 30.0 30.0 29.0 30.0 29.0 29.0 29.0 29.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0 10.0 11.0 10.0 10.0 10.0 10.	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 5.0 4.0 5.0 6.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 3.0 4.0 5.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 2.0 3.0	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0	JUN 23.0 23.0 23.0 23.0 20.0 22.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 24.0 25.0 24.0 25.0 24.0 25.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0 17.0 19.0 20.0 23.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 31.0 31.0 30.0 30	27.0 29.0 28.0 28.0 30.0 30.0 30.0 30.0 29.0 30.0 29.0 29.0 29.0 29.0 29.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	14.0 15.0 17.0 17.0 16.0 11.0 15.0 10.0	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 5.0 4.0 5.0 4.0	DEC 6.0 5.0 6.0 5.0 5.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 5.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 3.0 3.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 4.0	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0 8.0 7.0 8.0 7.0 8.0	JUN 23.0 23.0 23.0 20.0 20.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 24.0 25.0 24.0 2 26.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0 17.0 19.0 20.0 21.0 21.0 17.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 30.0 30.0 30.0 29.0 29.0 29.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0 12.0 11.0 12.0 10	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 4.0 5.0 4.0 5.0 6.0 9.0	DEC 6.0 5.0 6.0 5.0 5.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 2.0 3.0	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 7.0	JUN 23.0 23.0 23.0 23.0 20.0 22.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 24.0 25.0 24.0 25.0 24.0 25.0	JUL 19.0 20.0 19.0 20.0 25.0 24.0 20.0 21.0 17.0 19.0 20.0 21.0 21.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 32.0 30.0 29.0 29.0 29.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 5.0 4.0 5.0 4.0	DEC 6.0 5.0 6.0 5.0 5.0 6.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 3.0 4.0 4.0 3.0 4.0 5.0 6.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 4.0 3.0 4.0	FEB3.0 4.0 4.0 4.0 3.04.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 8.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 24.0 25.0 24.0 26.0	JUL 19.0 20.0 19.0 20.0 19.0 20.0 25.0 24.0 20.0 21.0 17.0 19.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 30.0 30.0 30.0 29.0 29.0 29.0	27.0 29.0 28.0 28.0 30.0 29.0 30.0 29.0 30.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0 10.0 10.0 11.0 10.0 10.0 10	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 5.0 4.0 5.0 6.0 5.0 6.0 9.0 9.0 9.0	DEC 6.0 5.0 6.0 5.0 5.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	JAN 4.0 3.0 4.0 4.0 5.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 2.0 3.0	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 8.0 7.0 8.0 7.0	JUN 23.0 23.0 23.0 23.0 20.0 22.0 22.0 21.0 22.0 21.0 22.0 21.0 25.0 24.0 25.0 24.0 25.0 26.0	JUL 19.0 20.0 19.0 20.0 25.0 24.0 20.0 21.0 17.0 19.0 20.0 21.0 21.0	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 31.0 30.0 30.0 29.0 29.0 29.0 29.0	27.0 29.0 28.0 28.0 30.0 29.0 30.0 29.0 30.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 29 29 20 20 21 22 22 23 24 24 25 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	14.0 15.0 17.0 17.0 16.0 11.0 15.0 12.0 10.0 10.0 10.0 10.0 10.0 10.0 10	NOV 7.0 8.0 9.0 8.0 6.0 7.0 6.0 5.0 7.0 6.0 5.0 4.0 5.0 4.0 5.0 6.0	DEC 6.0 5.0 6.0 5.0 5.0 4.0 4.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	JAN 4.0 3.0 4.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 5.0 4.0 3.0 4.0 3.0	FEB 3.0 4.0 4.0 4.0 4.0 3.0 4.0 3.0 3.0 2.0 3.0 4.0 3.0 2.0 3.0 2.0 3.0 2.0 3.0 4.0	**************************************	S VALUES APR 5.0 6.0 5.0 5.0 6.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0 7.0 6.0	MAY 6.0 7.0 6.0 5.0 7.0 7.0 8.0 8.0 7.0 7.0 8.0 7.0	JUN 23.0 23.0 23.0 20.0 20.0 22.0 21.0 22.0 21.0 22.0 21.0 22.0 24.0 25.0 24.0 25.0 26.0	JUL 19.0 20.0 19.0 20.0 19.0 25.0 24.0 20.0 21.0 17.0 19.0 20.0 21.0 21.0 21.0 21.0 21.0 21.0 21	30.0 31.0 29.0 30.0 29.0 29.0 29.0 30.0 31.0 31.0 31.0 30.0 30.0 30.0 29.0 29.0 29.0 29.0	27.0 29.0 28.0 28.0 29.0 30.0 29.0 30.0 29.0 29.0 29.0 29.0 29.0 27.0 27.0 30.0 27.0 27.0 27.0 27.0 27.0

MISSISSIPPI RIVER BASIN

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

			SUSPEND	FD-SEDIM	ENI, WATER	I LAR OC	TOBER 1997	TO SEPTI	EMBER 1998			
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	Н
1 2 3 4 5	6 7 9 9	.25 .29 .37 .36	7 6 6 6 5	.25 .24 .23 .22	8 5 3 5 5	.26 .17 .09 .16	10 9 9 8 7	. 27 . 30 . 29 . 27 . 22	10 10 7 7 13	.32 .35 .21 .21	15 11 8 7 6	.80 .55 .43 .34
6 7 8 9 10	8 7 5 5 4	.31 .26 .19 .20	4 11 13 11 10	.17 .41 .48 .42	4 3 2 4 7	.12 .09 .08 .15 .21	5 6 6 4 5	.17 .20 .19 .11	14 9 6 4 4	.43 .28 .18 .12	5 4 5 4 3	.23 .20 .25 .19
11 12 13 14 15	4 6 27 9 10	.13 .29 2.0 .40 .41	10 8 6 4 5	.38 .31 .21 .16 .20	13 13 14 14 10	.40 .39 .36 .38	8 12 19 23 16	. 24 . 35 . 54 . 69 . 43	7 10 13 12 35	.19 .32 .39 .37 2.1	5 6 10 12 9	.19 .19 .35 .42
16 17 18 19 20	23 25 25 24 21	.93 1.0 .96 .89	8 11 9 13 15	.29 .40 .33 .47	5 4 12 18 16	.15 .11 .38 .57	7 7 6 6 5	.21 .19 .15 .18 .15	18 10 7 7 16	1.1 .44 .29 .28 .58	8 6 6 6	.29 .25 .26 .25 .24
21 22 23 24 25	19 16 13 10 7	.72 .62 .52 .42 .29	20 22 23 23 21	.71 .79 .68 .62	10 15 18 15 13	.29 .48 .55 .44	4 4 5 5 5	.12 .11 .16 .16	15 13 12 13 9	.53 .47 .43 .47	5 5 6 10	.23 .24 .26 .30 .57
26 27 28 29 30 31	5 4 5 7 7 7	.20 .14 .20 .26 .28	25 26 36 27 14	.87 .90 1.3 .93 .50	12 11 11 9 11	.32 .28 .30 .23 .25	5 7 3 4 5 7	.17 .23 .09 .13 .17	10 24 22 	.40 1.5 1.2 	19 21 16 12 576 1300	1.3 1.4 .95 .66 416 773
TOTA	L	14.44		14.18		8.84		7.02		14.02		1201.10
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
DAY	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)
DAY 1 2 3 4 5	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY) T	CONCEN- TRATION (MG/L)	(TONS/ DAY)
1 2 3 4	CONCEN- TRATION (MG/L) APR 212 62 40 33	(TONS/DAY) IL 71 9.3 3.5 2.1	CONCEN- TRATION (MG/L) MAY 26 25 22 19	1.1 1.0 .98 .83	CONCEN- TRATION (MG/L) JUNE 10 8 8 8 7	(TONS/DAY) .51 .43 .39 .37	CONCEN- TRATION (MG/L) JULY 24 25 21 20	(TONS/DAY) 2.1 1.9 1.6 1.5	CONCEN- TRATION (MG/L) AUGUS' 15 14 14 29	(TONS/DAY) T .79 .72 .76 2.5	CONCEN- TRATION (MG/L) SEPTEM 27 27 26 26	(TONS/DAY) BER 2.0 2.0 2.0 2.0 2.0
1 2 3 4 5 6 7 8 9	CONCEN- TRATION (MG/L) APR 212 62 40 33 25 19 19 35 42	(TONS/DAY) IL 71 9.3 3.5 2.1 1.3 .82 .79 1.6 1.9	CONCENTRATION (MG/L) MAY 26 25 22 19 18 24 31 32 24	(TONS/DAY) 1.1 1.0 .98 .83 .75 1.0 1.5 1.7 1.2	CONCENTRATION (MG/L) JUNE 10 8 8 7 7 6 6 12	(TONS/DAY) .51 .43 .39 .37 .36 .34 .32 .32	CONCENTRATION (MG/L) JULY 24 25 21 20 20 133 143 62	(TONS/DAY) 2.1 1.9 1.6 1.5 1.4 1.5 37 21 4.7	CONCEN- TRATION (MG/L) AUGUS 15 14 14 29 19 20 26 63 35	(TONS/DAY) T .79 .72 .76 2.5 2.7 1.3 1.5 10 2.4	CONCEN- TRATION (MG/L) SEPTEM 27 26 26 26 26 25 25 24	(TONS/DAY) BER 2.0 2.0 2.0 2.0 1.9 2.0 1.9 1.9 1.7
1 2 3 4 5 6 7 8 9 10 11 12 13 14	CONCEN- TRATION (MG/L) APR 212 62 40 33 25 19 19 35 42 34 27 22 20 17	(TONS/DAY) IL 71 9.3 3.5 2.1 1.3 .82 .79 1.6 1.9 1.4 1.1 .83 .82 .66	CONCENTRATION (MG/L) MAY 26 25 22 19 18 24 31 32 24 23 30 19 19	(TONS/DAY) 1.1 1.0 .98 .83 .75 1.0 1.5 1.7 1.2 1.1 1.5 .96 .86	CONCEN- TRATION (MG/L) JUNE 10 8 8 7 7 6 6 12 28 363 466 189 69	(TONS/DAY) .51 .43 .39 .37 .36 .34 .32 .80 1.6 95 83 19 6.0	CONCEN- TRATION (MG/L) JULY 24 25 21 20 20 20 33 143 62 63 53 42 33 26	(TONS/DAY) 2.1 1.9 1.6 1.5 1.4 1.5 37 21 4.7 4.4 3.6 2.8 2.2 1.7	CONCEN- TRATION (MG/L) AUGUS' 15 14 14 29 19 20 26 63 35 49 41 26 25 26	(TONS/DAY) T .79 .72 .76 2.5 2.7 1.3 1.5 10 2.4 8.3 3.0 1.7 1.5 1.6	CONCEN- TRATION (MG/L) SEPTEM 27 27 26 26 26 26 25 25 25 24 24 22 20 18	(TONS/DAY) BER 2.0 2.0 2.0 2.0 1.9 2.0 1.9 1.8 1.7 1.7 1.5 1.4 1.3 2.2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	CONCEN- TRATION (MG/L) APR 212 62 40 33 25 19 19 35 42 34 27 22 20 17 13 13 8 9 10	(TONS/DAY) IL 71 9.3 3.5 2.1 1.3 .82 .79 1.6 1.9 1.4 1.1 .83 .82 .66 .47 .79 .42 .39 .43	CONCENTRATION (MG/L) MAY 26 25 22 19 18 24 31 32 24 23 30 19 19 24 25 25 24 23	(TONS/DAY) 1.1 1.0 .98 .83 .75 1.0 1.5 1.7 1.2 1.1 1.1 1.5 .96 .86 1.1 1.2 1.1 1.1	CONCEN- TRATION (MG/L) JUNE 10 8 8 7 7 6 6 12 28 363 466 189 69 25 12 20 266 119	(TONS/DAY) .51 .43 .39 .37 .36 .34 .32 .80 1.6 95 83 19 6.0 2.1 .91 1.7 74 25	CONCENTRATION (MG/L) JULY 24 25 21 20 20 20 133 143 62 63 53 42 33 26 25 25 24 23 25	(TONS/DAY) 2.1 1.9 1.6 1.5 1.4 1.5 37 21 4.7 4.4 3.6 2.8 2.2 1.7 1.5 1.5 1.4 1.6	CONCEN- TRATION (MG/L) AUGUS 15 14 14 29 19 20 26 63 35 49 41 26 25 26 51 24 122 27 22	(TONS/DAY) T .79 .72 .76 2.5 2.7 1.3 1.5 10 2.4 8.3 3.0 1.7 1.5 1.6 5.6 1.6 60 3.5 2.2	CONCENTRATION (MG/L) SEPTEM 27 27 26 26 26 26 25 25 24 24 22 20 18 26 21	(TONS/DAY) BER 2.0 2.0 2.0 2.0 1.9 2.0 1.9 1.8 1.7 1.7 1.5 1.4 1.3 2.2 1.6 .69 .62 .58 .57
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 24	CONCENTRATION (MG/L) APR 212 62 40 33 25 19 19 35 42 34 27 22 20 17 13 13 8 9 10 20 92 25 21 17	(TONS/DAY) IL 71 9.3 3.5 2.1 1.3 .82 .79 1.6 1.9 1.4 1.1 .83 .82 .66 .47 .79 .42 .39 .43 .89 4.1 1.1 .86 .71	CONCENTRATION (MG/L) MAY 26 25 22 19 18 24 31 32 24 23 30 19 24 25 25 24 23 24	(TONS/DAY) 1.1 1.0 .98 .83 .75 1.0 1.5 1.7 1.2 1.1 1.1 1.5 .96 .86 1.1 1.2 1.1 1.1 1.2 1.2 1.3 1.3	CONCENTRATION (MG/L) JUNE 10 8 8 7 7 6 6 12 28 363 466 189 9 25 12 20 266 119 49 63 56 57 98 57	(TONS/DAY) .51 .43 .39 .37 .36 .34 .32 .80 1.6 95 83 19 6.0 2.1 .91 1.7 74 25 5.1 7.4 5.5 15	CONCENTRATION (MG/L) JULY 24 25 21 20 20 20 133 143 62 63 53 42 33 26 25 25 24 21 22 22 25	(TONS/DAY) 2.1 1.9 1.6 1.5 1.4 1.5 37 21 4.7 4.4 3.6 2.8 2.2 1.7 1.5 1.5 1.4 1.6 1.7	CONCEN- TRATION (MG/L) AUGUS' 15 14 14 29 19 20 26 63 35 49 41 26 25 26 51 24 122 27 22 23 22 20 18 17	(TONS/DAY) T .79 .72 .76 2.5 2.7 1.3 1.5 10 2.4 8.3 3.0 1.7 1.5 1.6 5.6 1.6 60 3.5 2.2 2.0 1.9 1.6 1.5 1.4	CONCENTRATION (MG/L) SEPTEM 27 27 26 26 26 26 25 25 24 24 22 20 18 26 21 10 9 9 9 8 8 10 9 25	(TONS/DAY) BER 2.0 2.0 2.0 2.0 1.9 2.0 1.7 1.7 1.5 1.4 1.3 2.2 1.6 .69 .62 .58 .57 .52 .58 1.7

05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued PRECIPITATION RECORDS

PERIOD OF RECORD. -- December 1991 to current year.

INSTRUMENTATION. -- Tipping bucket rain gage.

REMARKS.--Water years 1992-1995 in files at the District office. Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting.

EXTREME FOR PERIOD OF RECORD. -- Maximum daily accumulation, 2.92 in., June 20, 1994.

EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation, 2.51 in., Mar. 30.

ACCUMULATED PRECIPITATION, IN INCHES, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY SUMMATION VALUES

		PREC	IPITATION,	TOTAL,		WATER YEAD LY SUM VAI		1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.22	. 08	.20	.00	.04	.00	.00	.01
2	.01	.04	.00	.01	.09	. 03	. 00	.03	.01	.00	.00	.00
3	.01	.06	.43	.00	.00	.06	. 0 0	.02	.00	.32	. 19	.06
3 4	.00	.00	.01	.09	.00	.01	.01	.02	.00	.00	1.77	.01
5	.00	.04	.00	.41	. 00	.00	.00	.00	.10	.01	.85	.01
6	.00	.08	.00	.02	.00	.07	.01	.00	.07	.17	.02	.01
7	.00	.00	.04	.00	.00	.00	.10	.00	.01	. 64	.14	.00
8	.31	.00	.00	.00	.00	.01	.60	.01	.14	.01	.01	.01
9	.14	.08	.03	.00	.00	.00	.02	.00	1.25	.00	. 93	.00
10	.01	.00	.02	.00	. 03	.00	.00	.00	.01	.01	.00	.01
11	.00	.00	.00	.00	.05	.00	.00	.00	2.15	.00	.01	.00
12	2.15	.00	.00	.00	.00	.00	.00	.00	.00	.01	.01	.01
13	.42	. 0 0	.00	.00	. 02	.15	.37	.00	.00	.00	.00	.00
14	.00	.01	.00	.00	.00	.00	.00	.00	. 03	.00	.90	1.46
15	.00	.04	.01	.00	.00	.03	.33	.00	.00	.00	.01	.01
16	.01	.00	.00	.00	.10	.03	. 67	.00	.02	.00	.00	.01
17	.00	.00	.01	.00	. 05	. 35	. 01	.00	.01	.01	1.61	.01
18	.01	.01	.00	.00	.00	.39	. 0 0	.00	1.64	.00	.00	.01
19	.00	.00	.00	.01	.00	. 03	.00	.00	.01	. 43	.00	.00
20	.01	. 01	.00	.00	.00	.00	.27	.00	.62	. 65	.41	.03
21	.00	.00	.01	.00	.01	.00	.02	.00	.01	.01	.00	.00
22	.00	.00	. 02	.00	.01	.00	.00	.09	.00	.21	.01	.00
23	.02	.0 0	.01	.00	.14	.00	.00	.08	.01	.01	.00	.54
24	.00	.00	.01	.09	.00	.00	.00	.71	. 92	.01	.15	.12
25	.00	.00	.00	.09	.04	.00	. 53	.00	.00	.00	.01	.01
26	.15	.00	.01	.04	1.21	.00	.16	.00	.00	.01	.01	.02
27	.17	.00	.00	.06	. 62	.00	.00	.00	. 84	.00	. 83	.01
28	.01	.00	.01	.00	.05	.00	.00	.60	.64	.00	.24	.01
29	.01	.03	. 0 0	.00		.12	.03	.07	.02	.02	.01	. 22
30	.02	. 0 0	.00	.00		2.51	.00	.05	.01	. 00	.01	. 43
31	.01		.00	. 0 0		. 88		.20		.01	.01	
TOTAL	3.47	0.40	0.62	0.82	2.64	4.75	3.33	1.88	8.56	2.54	8.14	3.02
MEAN	. 11	.01	.02	.03	. 09	.15	.11	.06	.29	.08	.26	.10
MAX	2.15	.08	. 43	.41	1.21	2.51	. 67	. 71	2.15	. 65	1.77	1.46
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

MISSISSIPPI RIVER BASIN
05389400 BLOODY RUN CREEK NEAR MARQUETTE, IA--Continued

MISSISSIPPI RIVER MAIN STEM

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA

LOCATION.--Lat $43^{\circ}01^{\circ}29^{\circ}$, long $91^{\circ}10^{\circ}21^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.22, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, on right bank in city park at east end of Main Street in McGregor, 2.6 mi upstream from Wisconsin River, 4.3 mi downstream from Yellow River, and at mile 633.4 upstream from Ohio River.

DRAINAGE AREA.--67,500 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1936 to current year.

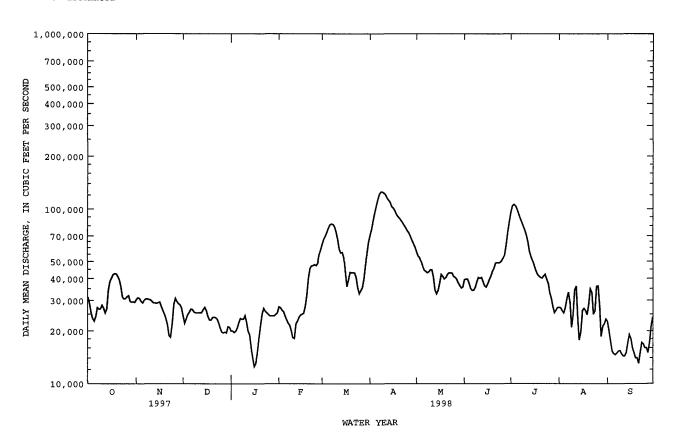
REVISED RECORDS. -- WDR IA-75-1: 1974.

GAGE.--Water-stage recorder. Datum of gage is 604.84 ft above sea level. Prior to June 1, 1937, and since June 2, 1939, auxiliary water-stage recorder; June 1, 1937 to June 1, 1939, auxiliary nonrecording gage 14.1 mi upstream in tailwater of dam 9, at datum 5.30 ft lower.

REMARKS.--Estimated daily discharges: Dec. 31 to Jan. 2, Jan. 10-31, April 26, 27, and Sept. 13-22, 25-28. Records good except those for estimated daily discharges, which are poor. Minor flow regulation caused by navigation dams. U.S. Geological Survey satellite and telephone modem data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1828, that of Apr. 24, 1965.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES


					DAI	LY MEAN V	ALUES					
DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	31300	30300	24400	e20000	27500	62500	70000	57200	39400	95400	27300	22700
2	28800	31000	22200	e20000	27200	66800	76400	53900	39700	104000	27100	20000
3	25600	30700	23500	19600	26300	69700	85800	52700	39700	106000	26100	17400
4	23600	29600	24900	19900	25800	73400	94700	50000	37700	104000	25400	15300
5	22800	29000	25600	20800	24400	77600	104000	46900	35100	99300	27200	14800
,	22000	25000	25000	20000	24400	77000	104000	40300	33200	33300	27200	14000
6	24200	30000	26700	22400	23200	81000	113000	44600	34200	93500	30600	14600
7	27200	30500	26600	23600	22200	82000	121000	43800	34300	88000	33300	14900
8	26700	30600	25700	23400	21600	81400	125000	43100	35500	83800	29000	15300
9	26800	30300	25400	23400	20100	79000	125000	43600	38300	79400	21000	15400
10	28100	30200	25400	e24500	18300	73900	123000	44800	40500	75000	24700	14800
11	27100	29600	25400	e22500	18100	66900	120000	44700	40100	70500	34300	14400
12	25400	29000	25500	e20000	22000	58900	115000	40700	40500	64400	36100	14300
13	26800	29000	25500	e19000	22800	56000	112000	34500	38400	56900	24100	e15000
14	34300	28800	26500	e16000	24000	56300	109000	32700	36300	53300	17700	e17000
15	38500	29100	27300	e14000	24700	52800	103000	34100	35700	50300	19800	e19000
16	40200	29300	26200	e12500	25000	43200	101000	37600	37200	47200	26200	e18000
17	42000	27600	24300	e13000	25300	36000	97500	42100	39300	44400	26900	e16000
18	42600	26200	23200	e15000	27700	39500	93200	41100	41100	42200	26200	e15000
19	42400	25000	23100	e18000	32200	43300	90300	39800	43800	41200	24800	e14000
20	41100	23500	23900	e21500	40100	43100	88400	40400	45700	40500	28300	e14000
21	39300	21700	24000	e25000	45600	43200	85800	42100	48800	40200	34800	e13000
22	36000	18800	23900	e27000	47100	43000	83400	43000	49100	41200	33200	e15000
23	31400	18400	23400	e26000	47300	40600	80400	43000	48900	42200	25000	17100
24	30600	22000	22200	e25500	47900	35500	77900	42900	49300	39700	26100	16800
25	30700	28400	20800	e25000	47300	32800	74900	41100	50300	37400	36100	e16000
	30700	20400	20000	CESCOO	47500	32000	, 1500	11100	30300	37.200	30200	020000
26	31400	30800	19700	e24500	48700	34100	e73000	40600	52100	33000	36200	e16000
27	31900	29500	19500	e24500	54700	35400	e70000	39700	54200	30800	28200	e15000
28	29600	28700	19700	e24500	58100	39900	66400	37800	62000	27600	18600	e17000
29	29300	28300	19500	e24500		47700	63700	36500	73100	25500	21300	21100
30	29400	27100	21200	e25000		54600	60 6 00	35300	84000	26300	22000	24000
31	29200		e21000	e25500		63800		35700		27200	23400	
moma.r	054300	022000	72.6000	666100	005000	1512000	0.003.400	1206000	1244200	1810400	0.41.000	492900
TOTAL	974300	833000	736200	666100	895200	1713900	2803400	1306000 42130	1344300 44810	58400	841000 27130	16430
MEAN	31430	27770	23750	21490	31970	55290	93450					
MAX	42600	31000	27300	27000	58100	82000	125000	57200	84000	106000	36200	24000 13000
MIN	22800	18400	19500	12500	18100	32800	60600	32700	34200	25500	17700	
	1933000	1652000	1460000	1321000	1776000	3400000	5561000	2590000	2666000	3591000	1668000	977700
CFSM	.47	. 41	.35	.32	. 47	. 82	1.38	. 62	.66	.87	. 40	.24
IN.	.54	.46	.41	.37	. 49	.94	1.54	.72	.74	1.00	. 4 6	.27
STATI	STICS OF	MONTHLY N	MEAN DATA	FOR WATER	YEARS 19	36 - 1998	, BY WATE	R YEAR (W	Y)			
MEAN	28920	29340	22300	19220	19900	39640	75660	61090	48880	40820	27920	28820
MAX	114600	64840	59200	35700	48540	103800	164800	119200	112600	142200	84430	72890
(WY)	1987	1983	1992	1983	1984	1983	1965	1975	1993	1993	1993	1986
MIN	9874	10870	9506	7665	9934	13190	27780	18240	13420	11220	10330	10650
(WY)	1937	1938	1937	1940	1940	1940	1990	1977	1988	1988	1964	1940

MISSISSIPPI RIVER MAIN STEM 63

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEAR	S 1936 - 1998
ANNUAL TOTAL	18189400		14416700			
ANNUAL MEAN	49830		39500		36930	
HIGHEST ANNUAL MEAN					64720	1993
LOWEST ANNUAL MEAN					17400	1977
HIGHEST DAILY MEAN	200000	Apr 16	125000	Apr 8	276000	Apr 24 1965
LOWEST DAILY MEAN	18400	Nov 23	12500	Jan 16	6200	Dec 9 1936
ANNUAL SEVEN-DAY MINIMUM	20200	Dec 25	14800	Sep 6	6490	Dec 7 1936
INSTANTANEOUS PEAK FLOW			126000	Apr 8		
INSTANTANEOUS PEAK STAGE			17.33	Apr 9	25.38	Apr 24 1965
ANNUAL RUNOFF (AC-FT)	36080000		28600000	•	26750000	
ANNUAL RUNOFF (CFSM)	.74		.59		.55	
ANNUAL RUNOFF (INCHES)	10.02		7.95		7.43	
10 PERCENT EXCEEDS	92500		77700		75700	
50 PERCENT EXCEEDS	35600		30700		27300	
90 PERCENT EXCEEDS	25600		18700		13200	

e Estimated

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued

WATER-QUALITY RECORDS

LOCATION.--Samples collected from right bank dock 0.3 mi downstream from discharge station. Prior to April 1981, and March 7 to Sept. 30, 1997, samples collected at bridge on U.S. Highway 18, 1.2 mi upstream from gage.

PERIOD OF RECORD. -- July 1975 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: July 1975 to current year.
WATER TEMPERATURES: July 1975 to current year.
SUSPENDED-SEDIMENT DISCHARGE: July 1975 to current year.

REMARKS. -- Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: Maximum daily, 633 microsiemens Nov. 3, 1996; minimum daily, 190 microsiemens Sept. 29, 1980.
WATER TEMPERATURES: Maximum daily, 30.0°C July 7, 1977; minimum daily, 0.0°C on many days during winter periods.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,350 mg/L Mar. 19, 1986; minimum daily mean, 1 mg/L on many days in 1977-92.
SEDIMENT LOADS: Maximum daily, 363,000 tons Mar. 19, 1986; minimum daily, 31 tons Dec. 25, 1976.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 513 microsiemens Apr. 27; minimum daily, 337 microsiemens April 1.
WATER TEMPERATURES: Maximum daily, 29.0°C, Sept. 9; minimum daily, 2.0°C Nov. 19, 21, and Jan. 1, 9, 14.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 74 mg/L Mar. 27; minimum daily mean, 3 mg/L Jan. 13, 14, and 22-30.
SEDIMENT LOADS: Maximum daily, 9,770 tons Apr. 3; minimum daily, 136 tons Jan. 16.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

			DIS-		SEDI-	SED.
			CHARGE,		MENT,	SUSP.
			INST.	SEDI-	DIS-	SIEVE
		TEMPER-	CUBIC	MENT.	CHARGE.	DIAM.
		ATURE	FEET	SUS-	SUS-	% FINER
DATE	TIME	WATER	PER	PENDED	PENDED	THAN
Dill	11110	(DEG C)	SECOND	(MG/L)	(T/DAY)	.062 MM
		(00010)	(00061)	(80154)	(80155)	(70331)
		(00010)	(00001)	(90134)	(00133)	(70331)
OCT						
23	1245	9.6	48800	12	1580	86
NOV	1243	5.0	40000	14	1300	00
18	1215	. 9	41700	22	2480	52
	1215	.9	41/00	22	2400	52
APR	1215		00000	100	20400	0.4
01	1315		82200	128	28400	84
MAY						
19	1245	21.3	48000	43	5570	96
JUN						
23	1230	24.6	58600	48	7590	95
AUG						
04	1210		35200	33	3140	91
SEP						
30	1130	20.8	36100	77	7510	98
		0				

SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES

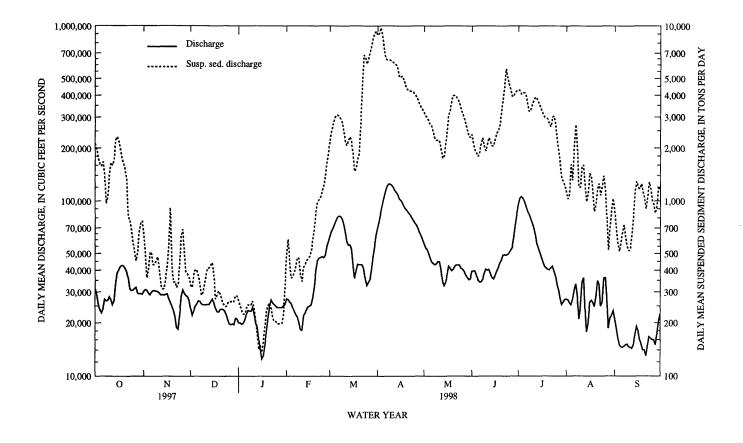
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	390 404 	453 434	432 426 440	469 470	426 448	464 470	337 342 	487 476	428 426 484	416 416 	 422 421	419 422
6 7 8 9	399 403 	418 420	422 	468 472	446 424 	472 470 	492 494 490	476 478 	428 486	414 415 406	425 424	422 420
11 12 13 14 15	401 403	414 413	442 446	486 481 476	424 426 	475 470 	 490 492	479 478 	430 431	404 	419 430	408 416
16 17 18 19 20	420 427 	425 420 448	448 456 456	 469	420 422 424	466 466 450	493 490		430 430	 406	424 421	418 414
21 22 23 24 25	418 397 360 423	436 436 	464 469	466 468 	423 	442 450	492 494 		432	406 407	428 423 	415 416 412
26 27 28 29 30 31	443 440 461	441 431 	464 469 460	465 477 476		444 438	513 480 			407 349 350	424 421 424	414 413

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES

				L	WIDI INDI	MIMEOUS	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17.0		4.0	2.0			4.0	8.0	22.0	22.0		
2 3	21.0	5.0	5.0		4.0	5.0	3.0		21.0	23.0	24.0	27.0
4	21.0		5.0		5.0	6.0	3.0	7.0	21.0	23.0	24.0	28.0
5		7.0	3.0	3.0					22.0		26.0	
6	20.0				5.0	5.0	4.0	8.0		22.0		
7 8	21.0	6.0	4.0	4.0			5.0	9.0	20.0	21.0		28.0
9				2.0	5.0	6.0						29.0
10		5.0					5.0		21.0	26.0		
11	17.0				4.0	6.0		7.0				25.0
12		4.0	4.0	3.0					22.0			
13 14	15.0	5.0		2.0	3.0	5.0	4.0	8.0		23.0		23.0
15			4.0				6.0		23.0			
16	12.0		3.0		4.0	5.0						22.0
17		3.0	4.0				4.0		24.0			
18 19	14.0	2.0	5.0		5.0	5.0			23.0			23.0
20					4.0	6.0	5.0			22.0		
21	11.0	2.0		4.0								22.0
22	10.0		4.0				6.0		24.0	23.0		
23	9.5			4.0	4.0	5.0						20.0
24 25	7.0	3.0	4.0			6.0	5.0			25.0		21.0
23						0.0						21.0
26		4.0	2.5	3.0								
27	9.0					5.0	5.0			25.0		
28		5.0		3.0						21 0		19.0
29 30	8.0		5.0	3.0		8.0	7.0			21.0		19.0
31	9.0		4.0							20.0		
_												

YEAR


721407

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	осто	BER	NOVEMB	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	:H
1 2 3 4 5	25 25 25 26 26	2120 1950 1750 1620 1580	8 6 4 5 7	642 483 363 401 510	5 5 6 6 6	329 320 373 403 401	5 5 4 4 4	269 252 233 225 225	7 8 6 5 6	510 603 445 360 368	13 14 14 15 15	2160 2480 2710 2940 3060
6 7 8 9 10	26 19 13 15 19	1670 1430 969 1060 1410	6 5 5 6	496 431 433 456 477	5 5 4 4 5	375 331 288 300 336	4 4 4 4	243 255 252 253 267	6 7 8 9 8	389 425 473 469 381	14 14 13 13	3090 3040 2940 2780 2510
11 12 13 14 15	23 23 24 24 22	1660 1600 1720 2220 2320	5 4 4 4 5	408 329 313 314 359	6 6 6 6	377 412 413 430 443	4 4 3 3 4	242 207 174 141 149	7 7 7 7 7	345 417 431 455 466	12 13 15 15	2200 2070 2210 2320 2220
16 17 18 19 20	20 18 15 14 14	2190 2000 1760 1650 1520	5 8 13 7 5	421 558 916 446 341	5 4 5 5 5	381 274 288 304 294	4 5 5 5 4	136 155 192 235 250	7 8 8 8 8	482 520 599 699 870	16 15 14 15	1840 1480 1530 1730 1870
21 22 23 24 25	13 8 9 8 7	1350 812 780 688 586	6 6 7 7 8	344 319 333 436 631	4 4 4 5	274 259 252 247 258	4 3 3 3 3	260 242 212 204 204	8 8 9 9	985 1020 1040 1140 1210	24 39 63 70 69	2790 4570 6840 6680 6070
26 27 28 29 30 31	6 5 6 8 9 10	514 454 506 667 745 768	8 5 5 5	689 499 391 382 366	5 5 5 5 5	265 264 267 264 286 285	3 3 3 3 5	198 198 198 199 224 330	10 11 12 	1340 1630 1860 	71 74 71 66 62 54	6520 7060 7670 8550 9110 9350
TOTAL	,	42069		13487		9993		6824		19932		122390
D AY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
DAY	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/	CONCEN- TRATION	(TONS/	CONCEN- TRATION	(TONS/	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY) BER
DAY 1 2 3 4 5	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/	CONCEN- TRATION (MG/L)	(TONS/	CONCEN- TRATION (MG/L)	(TONS/	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)
1 2 3 4	CONCEN- TRATION (MG/L) APR 47 44 42 35	(TONS/ DAY) IL 8870 9070 9770 8940	CONCEN- TRATION (MG/L) MAY 21 21 21 21	(TONS/DAY) 3220 3060 2990 2830	CONCEN- TRATION (MG/L) JUNE 22 20 18 18	(TONS/ DAY) 2390 2130 1950 1880	CONCEN- TRATION (MG/L) JULY 17 15 14 15	(TONS/DAY) 4310 4250 4060 4140	CONCEN- TRATION (MG/L) AUGUST 15 14 16 24	(TONS/ DAY) T 1120 1030 1100 1620	CONCENTRATION (MG/L) SEPTEM 15 13 12 12	(TONS/DAY) BER 890 700 580 515
1 2 3 4 5 6 7 8 9	CONCEN- TRATION (MG/L) APR 47 44 42 35 27 21 20 19 19	(TONS/DAY) IL 8870 9070 9770 8940 7670 6560 6410 6440 6400	CONCEN- TRATION (MG/L) MAY 21 21 21 21 21 21 21 21 21 21 21 21 21	3220 3060 2990 2830 2700 2650 2460 2260 2210	CONCEN- TRATION (MG/L) JUNE 22 20 18 18 19 21 23 24 20	(TONS/DAY) 2390 2130 1950 1880 1790 1900 2120 2280 2060	CONCEN- TRATION (MG/L) JULY 17 15 14 15 15 16 15 14 15 15	(TONS/DAY) 4310 4250 4060 4140 4130 3970 3550 3230 3300	CONCEN- TRATION (MG/L) AUGUS: 15 14 16 24 18 24 30 26 21	(TONS/DAY) 1120 1030 1100 1620 1310 2010 2710 2000 1200	CONCENTRATION (MG/L) SEPTEM 15 13 12 12 14 17 18 15 13	(TONS/DAY) BER 890 700 580 515 576 664 727 629 547
1 2 3 4 5 6 7 8 9 10 11 12 13	CONCEN- TRATION (MG/L) APR 47 44 42 35 27 21 20 19 19 20 20 19	(TONS/DAY) IL 8870 9070 9770 8940 7670 6560 6410 6440 6400 6300 6220 6070 6070 6000 5660	CONCEN- TRATION (MG/L) MAY 21 21 21 21 21 21 21 8 18 18 18 18 19 20	3220 3060 2990 2830 2700 2650 2460 2210 2230 2180 2010 1750	CONCEN- TRATION (MG/L) JUNE 22 20 18 19 21 23 24 20 18 19 21 21 21	2390 2130 1950 1880 1790 2120 2280 2060 1930 2090 2290 2170 2060	CONCEN- TRATION (MG/L) JULY 17 15 14 15 15 16 15 17 20 23 25 25	4310 4250 4060 4140 3550 3550 3230 3300 3530 3770 3910 3820 3640	CONCEN- TRATION (MG/L) AUGUS: 15 14 16 24 18 24 30 26 21 18 17 17 19 21	(TONS/DAY) T 1120 1030 1100 1620 1310 2010 2710 2000 1200 1200 1200 1560 1600 1990	CONCENTRATION (MG/L) SEPTEM 15 13 12 12 14 17 18 15 13 13 14 17 20 25	(TONS/DAY) BER 890 700 580 515 576 664 727 629 547 517 534 633 821 1130
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	CONCEN- TRATION (MG/L) APR 47 444 42 35 27 21 20 19 19 20 20 19 18 19 20 19 18	(TONS/DAY) IL 8870 9070 9770 8940 7670 6560 6410 6440 6400 6300 6220 6070 6000 5660 5090 5120 5180 4990 4590	CONCEN- TRATION (MG/L) MAY 21 21 21 21 21 21 21 22 21 19 18 18 18 18 19 20 22 25 27 30 35	(TONS/DAY) 3220 3060 2990 2830 2700 2650 2460 2210 2230 2180 2010 1750 1800 2070 2510 3080 3290 3290	CONCEN- TRATION (MG/L) JUNE 22 20 18 19 21 23 24 20 18 19 21 21 21 21 21 22 23 22 23	2390 2130 1950 1880 1790 2120 2280 2060 1930 2090 2290 2270 2060 2050 2230 2430 2430 2490	CONCEN- TRATION (MG/L) JULY 17 15 14 15 17 20 23 25 26 26 26 26 26 27	4310 4250 4060 4140 3350 3230 3330 3530 3770 3910 3640 3470 3280 3120 300 300 2960	CONCENTRATION (MG/L) AUGUS: 15 14 16 24 18 24 30 26 21 18 17 17 19 21 21 20 19 16 13	(TONS/DAY) 1120 1030 1100 1620 1310 2010 2710 2000 1200 1200 1200 1200 1110 1440 1380 1100 872	CONCENTRATION (MG/L) SEPTEM 15 13 12 14 17 18 15 13 13 14 17 20 25 25 24 27 31	(TONS/DAY) BER 890 700 580 515 576 664 727 629 547 517 534 633 821 1130 1290 1170 1250 1130
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 30 30 30 30 30 30 30 30 30 30 30 30 30	CONCEN- TRATION (MG/L) APR 47 444 42 35 27 21 20 19 19 20 20 19 18 19 20 19 18 19 20 20 19 18 19 20 20 20 20 20 20 20 20 20 2	(TONS/DAY) IL 8870 9070 9770 8940 7670 6560 6410 6440 6400 6300 6220 6070 6000 5660 5090 5120 5180 4900 4590 4340 4250 4250 4250 4200 4180	CONCEN- TRATION (MG/L) MAY 21 21 21 21 21 21 21 22 21 30 35 37 35 37 35 37 35 37 35 36 37 37 36 37 37 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	(TONS/DAY) 3220 3060 2990 2830 2700 2650 2460 2210 2230 2180 2010 1750 1800 3290 3790 4000 4000 3920 3770 3620 3340 3170 2980 2730 2560	CONCEN- TRATION (MG/L) JUNE 22 20 18 18 19 21 23 24 20 18 19 21 21 21 21 21 21 21 21 21 21 21 22 23 25 29 34 43 39	2390 2130 1950 1880 1790 2120 2280 2060 1930 2090 2290 2270 2060 2050 230 2490 2490 2490 2490 3140	CONCEN- TRATION (MG/L) JULY 17 15 14 15 17 20 23 25 26 26 26 26 27 27 27 25 24 26 28	4310 4250 4060 4130 3970 3550 3230 3350 3530 3770 3910 3640 3470 3280 3120 2960 2940 2730 2650 3000	CONCENTRATION (MG/L) AUGUS: 15 14 16 24 18 24 30 26 21 18 17 17 19 21 21 21 20 19 16 13 12 14 16 17	(TONS/DAY) 1120 1030 1100 1620 1310 2010 2710 2000 1200 1200 1200 1200 1440 1380 1100 872 950 1170 1260 1080 1210	CONCENTRATION (MG/L) SEPTEM 15 13 12 14 17 18 15 13 13 14 17 20 25 25 24 27 31 30 28 26 26 26 26 27 26	(TONS/DAY) BER 890 700 580 515 576 664 727 629 547 517 534 633 821 1130 1290 1170 1250 1130 1040 899 1060 1280
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	CONCENTRATION (MG/L) APR 47 444 42 35 27 21 20 19 19 19 19 20 20 19 18 18 19 20 20 20 20 20 20 20 20 20 20 20 20 20	(TONS/DAY) IL 8870 9070 9770 8940 7670 6560 6410 6440 6400 6300 6220 6070 6000 5060 5120 5180 4900 4250 4250 4250 4250 4200 4180 4070 3940 33780 33570 3440 3330	CONCEN- TRATION (MG/L) MAY 21 21 21 21 21 21 21 22 21 19 19 18 18 18 19 20 22 25 27 30 35 37 35 34 33 31 30 29 28 27 26	(TONS/DAY) 3220 3060 2990 2830 2700 2650 2460 2260 2210 2230 2180 2070 2510 3080 3090 3790 4000 4000 3290 3770 3620 3340 3170 2980 2730	CONCEN- TRATION (MG/L) JUNE 22 20 18 19 21 23 24 20 18 19 21 21 21 21 21 21 21 21 21 21 21 21 21	2390 2130 1950 1880 1790 2120 2280 2060 1930 2090 2290 2170 2660 2050 2430 2490 2430 2430 2490 250 260 2430 2430 2490 260 3140 4450 5690 5130 4426 3930 3990 4170 4250	CONCEN- TRATION (MG/L) JULY 17 15 14 15 15 17 20 23 25 26 26 26 26 26 26 27 27 27 25 24 26 28 27 27 25 24 26 28 27 27 25 24 26 28 27 27 25 21 20 18	4310 4250 4060 4140 4130 3550 3230 3300 3530 3770 3910 3820 3640 3470 2950 2940 2730 2250 3000 2940 2700 2230 1610 1610 1290	CONCENTRATION (MG/L) AUGUS: 15 14 16 24 18 24 30 26 21 18 17 17 19 16 13 12 12 14 16 17 17 19 16 13 12 12 14 16 17 17 19 16 17 17 19 16 11 10 12 11 10 12 15	TONS/DAY) T 1120 1030 1100 1620 1310 2010 2710 2000 1200 1200 1200 1200 1110 1440 1380 11100 872 950 1170 1260 1080 12170 1260 1080 1218 1170 1390 1160 817 527 711 874	CONCENTRATION (MG/L) SEPTEM 15 13 12 14 17 18 15 13 13 14 17 20 25 25 24 27 31 30 28 26 26 27 26 27 26 23 22 21 20 21 18	(TONS/DAY) BER 890 700 580 515 576 664 727 629 547 517 534 633 821 1130 1290 1190 1170 1250 1130 1040 899 1060 1280 1170 1010 956 851 932 1210 1160

05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued

05411400 SNY MAGILL CREEK NEAR CLAYTON, IA

LOCATION.--Lat $42^{\circ}56^{\circ}55^{\circ}$, long $91^{\circ}11^{\circ}10^{\circ}$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 22, T.94 N., R.3 W. Clayton County, Hydrologic Unit 07060003, on right bank 130 ft downstream from bridge on county highway, 4.9 mi northwest of Clayton, and 0.9 mi upstream of county highway X56.

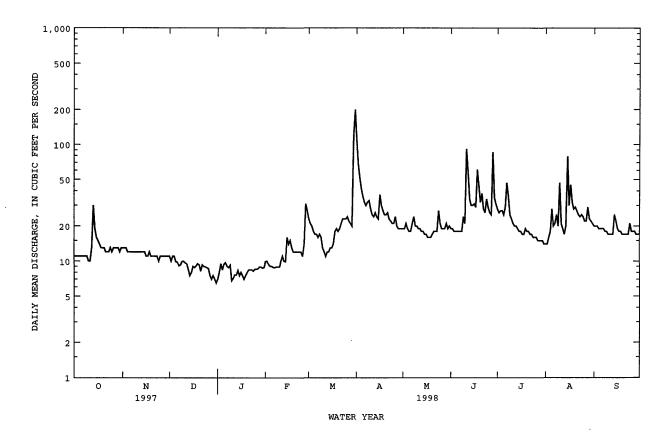
DRAINAGE AREA.--27.6 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. --October 1991 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 622.704 ft.

REMARKS.--Estimated daily discharge: Dec. 13-15, Dec. 27 to Jan. 2, Jan. 15-20, and Mar. 10-14. Records good except those for estimated daily discharges and discharges greater than 600 ft³/s, which are poor. U.S. Geological Survey rain gage and data collection platform at station.


AUG SEP
14 20 14 20 16 20 18 19 28 19
20 19 · 21 19 25 18 20 18 47 17
21 17 19 17 17 17 20 25 79 22
30 19 45 18 32 18 28 17 29 17
27 17 25 17 24 17 25 21 24 18
22 18 22 18 29 17 23 17 22 17 21
807 553 26.0 18.4 79 25 14 17 1600 1100 .94 .67 1.09 .75
21.4 17.3 46.5 32.4 1993 1993 12.0 9.36 1992 1996
YEARS 1992 - 1998
.3 .6 . 1993 .7 . 1997 Mar 31 1993 .3 . Sep 30 1996 .1 . Sep 29 1996 .Aug 23 1993 .60 . Aug 23 1993 .0 . Jan 10 1998a .77 .46

a Result of freeze up

e Estimated

MISSISSIPPI RIVER BASIN

05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued

05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1991 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1991 to current year.

WATER TEMPERATURES: April 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1991 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Maximum daily, 660 microsiemens Oct. 23, 1996; minimum daily, 266 microsiemens Mar. 16, 1993.
WATER TEMPERATURES: Maximum daily, 33.0°C June 21, 1997; minimum daily, 0.5°C Jan. 9, 1997.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,180 mg/L Mar. 30, 1998; minimum daily mean, 0 mg/L Mar. 21, 22, 1993.
SEDIMENT LOADS: Maximum daily, 3,310 tons Mar. 30, 1998; minimum daily, 0.01 tons Mar. 22, 1993.

EXTREMES FOR CURRENT YEAR. --

SPECIFIC CONDUCTANCE: Maximum daily, 588 microsiemens Jan. 12; minimum daily, 270 microsiemens Mar. 30. WATER TEMPERATURES: Maximum daily, 26.0°C June 25,26; minimum daily, 1.0°C Jan. 20. SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,180 mg/L Mar. 30; minimum daily mean, 4 mg/L Oct. 25. SEDIMENT LOADS: Maximum daily, 3,310 tons Mar. 30; minimum daily, 0.12 tons Dec. 18 and Feb. 9.

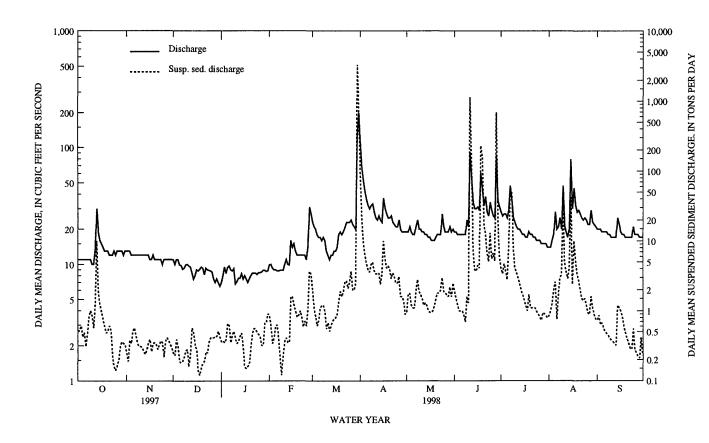
WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

ير نوا	A TE	TIME	ATU WAS (DEC	PER- (URE IER G C) S	DIS- HARGE, INST. CUBIC FEET PER SECOND	ME SU PE (M	DI- INT, IS- INDED IG/L)	MEI D: CHAI SI PEI (T/I	NT, SIS- SIRGE, DUS- % FNDED TO DAY) .06	SED. SUSP. SEVE DIAM. FINER THAN 12 MM
OCT 22.		1440	6	.8 1	L 2	1	.2		40 7	4
DEC 03.		1105	3	.6 1	.1	1	.0	.:	29 6	9
JAN 14.		1415		. 1	8.7		8	.:	19 7	4
FEB 25 MAY	• •	1300	6	. 3 1	.1		7	.:	21 8	5
20 JUN	••	1425	15	.0 1	.8	1	9	. :	93 4	6
22 AUG		14 35	16.	.9 2	19	5	7	4.	4 9	0
03 SEP		1310	16.		.6	_	0		-	4
29.	• •	1445	16.	.7]	.8	1	7	. 8	80 5	4
DATE	TIME	NUMI OI SAI PLII POII (COUI	F 11- NG NTS NT)	BED MAT. FALL DIAM. % FINEF THAN .004 MN (80157)	M SI DI % F T	ED AT. EVE AM. INER HAN 2 MM 164)	BEI MAT SIEV DIAM * FIN THA .125 (8016	P. VE I. VER VER VIN MM	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)
OCT 22 SEP	1440	1				5	6		7	11
29	1445	1		1		5	5		9	23
DATE	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	тни 1 2.00	r. Ve M. Ner An MM	BED MAT. SIEVE DIAM. % FINEF THAN 4.00 MM (80170)	M SI DI % F T 1 8.0	ED AT. EVE AM. INER HAN 0 MM	BEI MAT SIEV DIAM % FIN THA 16.0 (8017	P. VE I. IER AN MM	BED MAT. SIEVE DIAM. % FINER THAN 32.0 MM (80173)	BED MAT. SIEVE DIAM. % FINER THAN 64.0 MM (80174)
ОСТ 22	13	15		20	3	7	55		100	
SEP 29	26	27		28	3		34		67	100

MISSISSIPPI RIVER BASIN

05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued

WATER-QUALITY RECORDS--Continued


DAY		SPECIE	FIC CONDUC	TANCE MIC			Y RECORDS: 5 DEG C, 1			1997 TO :	SEPTEMBER	1998	
1					I	DAILY INS	TANTANEOU:	S VALUES					
2	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 516 436 497 495 527 486 448 386 400 39 405 56 414 421 418 421 537 504 396 399 408 56 444 421 418 421 537 504 396 399 408 56 444 421 418 421 418 421 537 504 396 399 408 485 417 417 448 421 465 373 399 408 485 417 418 418 421 465 373 399 408 487 418 390 408 418 470 448 470 448 470 448 470 448 470 448 470 448 470 448 470 448 470 448 470 448 470 448 470 448 470 448 380 448 380 448 380 448 380 448 380 448 380 448 380 448 380 448 380 489 480 480 480 489 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480 480													
4													
5													
7 481 507 533 471 416 462 467 407 329 9 427 4 467 407 3 471 416 462 1 367 407 3 472 466 434 430 534 405 1 386 442 401 1 392 527 466 434 429 534 431 1 437 381 477 417 381 477 3 417 381 477 3 417 381 477 3 417 381 477 3 417 381 477 3 417 381 477 3 417 381 477 3 417 381 477 3 417 381 477 3 417 381 527 400 386 482 483 404 485 1 417 481 482 481 481 481 481 481 482 3 411 411 411 411 411 411 411 411 411													
8													
9 427 422 460 430 534 405 386 442 401 10 489 527 456 434 429 534 431 437 381 477 11 415 471 434 461 447 515 420 282 386 483 404 13 527 420 575 440 426 487 413 411 440 386 13 527 420 575 440 426 487 413 411 441 411 411 15 411 441 411 15 431 527 420 575 440 426 487 413 411 411 411 15 431 527 420 575 440 426 487 413 411 441 411 15 431 541 543 436 412 399 466 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 397 166 462 442 477 167 167 167 167 167 167 167 167 167 1													
10													
12													
13													
14													
15 411 543 436 412 399 406 462 442 397 16 521 424 423 462 461 454 432 414 18 426 417 461 487 407 404 380 465 389 19 431 449 447 434 469 427 419 426 467 470 431 380 20 419 468 422 504 419 426 467 471 31 390 21 452 478 439 437 516 448 447 371 396 322 22 476 470 426 455 439 437 516 448 432 371 396 322 23 477 470 426 455 439 437 516 448 432 380 407 428 24 476 470 426 455 439 431 400 388 38 405 407 3390 25 436 448 489 433 463 442 389 477 429 488 398 407 458 25 436 448 489 433 463 442 380 407 458 26 466 426 440 418 447 463 463 452 380 401 26 466 426 440 418 447 463 463 452 380 401 27 28 424 485 411 470 461 442 409 530 410 378 385 401 28 424 485 411 470 461 442 409 530 410 370 370 370 370 370 370 370 370 370 37													
17												442	
188 456 447 434 469 429 446 470 437 20 419 489 447 434 469 429 446 470 437 390 21 485 427 434 469 439 426 467 431 390 22 472 470 426 455 437 437 400 398 374 390 22 472 470 426 455 437 437 400 398 374 390 22 4 479 445 449 437 429 488 398 407 458 25 436 448 489 433 463 452 380 407 458 25 436 448 489 433 463 452 380 407 458 25 436 448 489 437 409 398 374 395 25 436 448 489 437 499 437 429 488 398 407 458 25 436 448 489 437 550 517 431 463 47 491 451 452 380 407 458 27 491 491 491 491 491 491 491 491 491 491													
19													
20													
22													
22	21	452	4 78		439	437	516	448		487	371	396	392
24	22			426					398				395
25													
27													
27	26		466	426	440	418		497	465	385			
29											432		
30													
Temperature, Water (Deg. C), Water year october 1997 To September 1998 Temperature, Water (Deg. C), Water year october 1997 To September 1998 Temperature, Water (Deg. C), Water year october 1997 To September 1998 Temperature, Water (Deg. C), Water year october 1997 To September 1998 Temperature, Water (Deg. C), Water year october 1997 To September 1998 Temperature, Water (Deg. C), Water year october 1997 To September 1998 Temperature, Water (Deg. C), Water year october 1998 Temperature, Water (Deg. C), Water (Deg													
DATY NOT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			TEMPE	RATURE, W					997 TO SEI	PTEMBER 1	998		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DYA				Ι	DAILY INS	PANTANEOU:	S VALUES					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	DAI	OCT	NOV	DEC					MAY	JUN	JUL	AUG	SEP
4 19.0 16.0 4.0 6.0 5.0 8.0 17.0 17.0 21.0 24.0 23.0 6 21.0 16.0 6.0 4.0 6.0 14.0 15.0 20.0 21.0 23.0 7 21.0 4.0 8.0 9.0 15.0 16.0 20.0 20.0 24.0 19.0 15.0 16.0 20.0 20.0 24.0 10.0 17.0 16.0 4.0 8.0 3.0 8.0 12.0 16.0 21.0 24.0 10.0 17.0 16.0 4.0 4.0 4.0 6.0 6.0 6.0 17.0 20.0 25.0 24.0 10.0 17.0 17.0 20.0 25.0 24.0 24.0 11.0 17.0 24.0 24.0 24.0 24.0 12.0 17.0 24.0 24.0 12.0 12.0 </td <td></td> <td></td> <td></td> <td></td> <td>JAN</td> <td>FEB</td> <td>MAR</td> <td>APR</td> <td>17.0</td> <td></td> <td>23.0</td> <td></td> <td>17.0</td>					JAN	FEB	MAR	APR	17.0		23.0		17.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2	16.0 18.0	15.0 16.0	9.0	JAN 	FEB 5.0	MAR 6.0	APR 9.0 9.0	17.0 14.0	16.0	23.0 24.0	22.0	17.0 21.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3	16.0 18.0 18.0	15.0 16.0 17.0	9.0 3.0	JAN 6.0	FEB 5.0 5.0	MAR 6.0	APR 9.0 9.0 10.0	17.0 14.0 14.0	16.0 	23.0 24.0 21.0	22.0 20.0	17.0 21.0 23.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4	16.0 18.0 18.0 19.0	15.0 16.0 17.0 16.0	9.0 3.0 4.0	JAN 6.0 6.0	FEB 5.0 5.0 5.0	MAR 6.0 8.0	APR 9.0 9.0 10.0	17.0 14.0 14.0 17.0	16.0 17.0	23.0 24.0 21.0	22.0 20.0 21.0	17.0 21.0 23.0 24.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5	16.0 18.0 18.0 19.0 18.0	15.0 16.0 17.0 16.0 16.0	9.0 3.0 4.0 4.0	JAN 6.0 6.0 7.0	FEB 5.0 5.0 5.0 4.0	MAR 6.0 8.0 7.0	9.0 9.0 9.0 10.0	17.0 14.0 14.0 17.0 18.0	16.0 17.0	23.0 24.0 21.0	22.0 20.0 21.0 21.0	17.0 21.0 23.0 24.0 23.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5	16.0 18.0 18.0 19.0 18.0	15.0 16.0 17.0 16.0 16.0	9.0 3.0 4.0 4.0	JAN 6.0 6.0 7.0 6.0 5.0	FEB 5.0 5.0 5.0 4.0	MAR 6.0 8.0 7.0 6.0 5.0	APR 9.0 9.0 10.0 14.0 13.0	17.0 14.0 14.0 17.0 18.0	16.0 17.0 15.0	23.0 24.0 21.0 20.0 20.0	22.0 20.0 21.0 21.0	17.0 21.0 23.0 24.0 23.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8	16.0 18.0 18.0 19.0 18.0 21.0 21.0 21.0	15.0 16.0 17.0 16.0 16.0	9.0 3.0 4.0 4.0 4.0 4.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0	FEB 5.0 5.0 5.0 4.0 4.0	MAR 6.0 8.0 7.0 6.0 5.0	9.0 9.0 10.0 14.0 13.0 9.0	17.0 14.0 14.0 17.0 18.0	16.0 17.0 15.0 16.0	23.0 24.0 21.0 20.0 20.0 20.0	22.0 20.0 21.0 21.0	17.0 21.0 23.0 24.0 23.0 23.0 20.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9	16.0 18.0 19.0 19.0 21.0 21.0 21.0	15.0 16.0 17.0 16.0 16.0	9.0 3.0 4.0 4.0 4.0 4.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0	17.0 14.0 14.0 17.0 18.0	16.0 17.0 15.0 16.0 16.0	23.0 24.0 21.0 20.0 20.0 20.0 21.0	22.0 20.0 21.0 21.0 24.0	17.0 21.0 23.0 24.0 23.0 23.0
14 15.0 8.0 2.0 5.0 4.0 16.0 17.0 17.0 21.0 15 13.0 6.0 3.0 4.0 12.0 17.0 20.0 23.0 21.0 16 4.0 2.0 4.0 6.0 6.0 12.0 19.0 21.0 17 6.0 7.0 6.0 6.0 12.0 20.0 24.0 24.0 21.0 18 6.0 6.0 7.0 13.0 23.0 19.0 24.0 19.0 20.0 19 18.0 4.0 3.0 6.0 5.0 13.0 23.0 19.0 24.0 19.0 20.0 21 17.0 4.0 1.0 12.0 18.0 18.0 24.0 21.0 21.0 21.0 21.0 13.5 23.0 17.0 21	1 2 3 4 5 6 7 8 9	16.0 18.0 18.0 19.0 18.0 21.0 21.0 21.0 17.0	15.0 16.0 17.0 16.0 16.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0	17.0 14.0 14.0 17.0 18.0	16.0 17.0 15.0 16.0 19.0	23.0 24.0 21.0 20.0 20.0 20.0 21.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0	17.0 21.0 23.0 24.0 23.0 23.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10	16.0 18.0 18.0 19.0 18.0 21.0 21.0 21.0 17.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 15.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0	16.0 17.0 15.0 16.0 19.0 20.0 21.0	23.0 24.0 21.0 20.0 20.0 20.0 21.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0	17.0 21.0 23.0 24.0 23.0 23.0 20.0 24.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13	16.0 18.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	JAN 6.0 6.0 7.0 6.0 8.0 8.0 4.0 6.0 2.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 5.0	MAR 6.0 7.0 6.0 5.0 8.0 4.0 6.0 5.0	APR 9.0 9.0 10.0 13.0 9.0 14.0 13.0 9.0 14.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 18.0	16.0 17.0 15.0 16.0 19.0 20.0 21.0	23.0 24.0 21.0 20.0 20.0 20.0 21.0 24.0 25.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0	17.0 21.0 23.0 24.0 23.0 23.0 20.0 24.0 24.0 24.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14	16.0 18.0 18.0 19.0 18.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 12.0 8.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 6.0 2.0 2.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 6.0 5.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 5.0 4.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 16.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 18.0 17.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 17.0	23.0 24.0 21.0 20.0 20.0 20.0 21.0 24.0 25.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0	17.0 21.0 23.0 24.0 23.0 23.0 20.0 20.0 24.0 24.0 24.0 21.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16.0 18.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 8.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 6.0	JAN 6.0 6.0 7.0 6.0 8.0 8.0 4.0 6.0 2.0 2.0 3.0	FEB 5.0 5.0 4.0 4.0 3.0 6.0 6.0 5.0 5.0	MAR 6.0 7.0 6.0 5.0 8.0 4.0 6.0 5.0 4.0	APR 9.0 9.0 10.0 10.0 11.0 13.0 9.0 12.0 14.0 13.0 15.0 16.0 12.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 17.0 17.0	16.0 17.0 15.0 16.0 19.0 20.0 21.0 17.0 20.0	23.0 24.0 21.0 20.0 20.0 20.0 21.0 24.0 25.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 23.0	17.0 21.0 23.0 24.0 23.0 23.0 23.0 24.0 24.0 24.0 24.0 24.0 21.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 12.0 8.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 6.0 2.0 2.0 3.0 4.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 5.0 5.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 4.0 4.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 16.0 12.0 12.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 17.0 17.0 18.0 17.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 17.0 20.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 23.0	17.0 21.0 23.0 24.0 23.0 23.0 23.0 20.0 24.0 24.0 24.0 21.0 21.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	16.0 18.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 4.0 6.0 6.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 6.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 5.0 6.0 6.0 6.0 6.0	MAR 6.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 5.0 4.0 6.0 7.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 16.0 12.0 12.0 12.0 13.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 17.0 17.0 17.0 20.0 23.0	16.0 17.0 15.0 16.0 19.0 20.0 21.0 17.0 20.0 19.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	17.0 21.0 23.0 24.0 23.0 23.0 23.0 24.0 24.0 24.0 21.0 21.0 21.0 21.0 20.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	16.0 18.0 18.0 19.0 18.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 12.0 8.0 12.0 8.0 6.0 6.0 4.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 5.0 4.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 3.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 4.0 4.0 6.0 6.0 7.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 16.0 12.0 12.0 12.0 13.0 13.0 13.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 17.0 17.0 23.0 21.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 17.0 20.0 19.0 19.0 18.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	17.0 21.0 23.0 24.0 23.0 23.0 23.0 20.0 24.0 24.0 21.0 21.0 21.0 20.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	16.0 18.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0 18.0 16.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 4.0 6.0 6.0 4.0 4.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 6.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 5.0 5.0 6.0 6.0 6.0 6.0	MAR 6.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 6.0 6.0 7.0 6.0 6.0 7.0 6.0 7.0 6.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 16.0 12.0 12.0 13.0 12.0 13.0 12.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 18.0 17.0 17.0 20.0 23.0 21.0 18.0	16.0 17.0 15.0 16.0 19.0 20.0 21.0 17.0 20.0 19.0 19.0 18.0 18.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 21.0 21.0	17.0 21.0 23.0 24.0 23.0 23.0 24.0 24.0 24.0 24.0 21.0 21.0 21.0 20.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	16.0 18.0 18.0 19.0 18.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0 18.0 16.0 17.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 12.0 8.0 4.0 6.0 6.0 4.0 4.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 7.0 2.0 7.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 3.0 1.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 10.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 12.0 12.0 12.0 13.0 12.0 13.0 13.0 13.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 20.0 23.0 21.0 18.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 17.0 20.0 19.0 19.0 18.0 18.0 21.0	23.0 24.0 21.0 20.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	17.0 21.0 23.0 24.0 23.0 23.0 23.0 20.0 21.0 21.0 21.0 21.0 21.0 20.0 21.0 21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	16.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 13.0 18.0 16.0 17.0 17.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 15.0 8.0 4.0 6.0 6.0 4.0 4.0 7.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 5.0 6.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 3.0 1.0 4.0 3.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 6.0 6.0 7.0 6.0 6.0 10.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 16.0 12.0 12.0 13.0 13.0 13.0 12.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 17.0 17.0 23.0 21.0 18.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 20.0 19.0 19.0 18.0 21.0 21.0 21.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	17.0 21.0 23.0 24.0 23.0 23.0 23.0 20.0 24.0 24.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	16.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0 18.0 16.0 17.0 17.0 17.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 12.0 8.0 12.0 8.0 4.0 4.0 4.0 4.0 4.0 4.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 5.0 4.0 7.0 6.0 2.0 7.0 8.0 8.0 6.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 3.0 1.0 4.0 3.0 5.0	FEB 5.0 5.0 5.0 4.0 4.0 4.0 3.0 6.0 6.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 10.0 11.0 11.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 12.0 12.0 12.0 13.0 12.0 13.0 15.0 15.0 17.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 20.0 23.0 21.0 18.0 17.0 15.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 20.0 19.0 17.0 20.0 19.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 21.0 21.0 21.0 22.0	17.0 21.0 23.0 24.0 23.0 23.0 23.0 23.0 24.0 24.0 24.0 21.0 21.0 21.0 20.0 21.0 20.0 21.0 21
28 18.0 12.0 5.0 6.0 13.0 13.0 22.0 24.0 24.0 21.0 29 17.0 8.0 4.0 7.0 12.0 16.0 20.0 20.0 15.5 30 17.0 7.0 6.0 15.0 17.0 20.0 24.0 24.0 16.0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	16.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0 18.0 16.0 17.0 17.0 17.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 12.0 8.0 12.0 8.0 4.0 4.0 4.0 4.0 4.0 4.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 5.0 4.0 7.0 6.0 2.0 7.0 8.0 8.0 6.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 3.0 1.0 4.0 3.0 5.0	FEB 5.0 5.0 5.0 4.0 4.0 4.0 3.0 6.0 6.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 10.0 11.0 11.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 12.0 12.0 12.0 13.0 12.0 13.0 15.0 15.0 17.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 20.0 23.0 21.0 18.0 17.0 15.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 20.0 19.0 17.0 20.0 19.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 21.0 21.0 21.0 22.0	17.0 21.0 23.0 24.0 23.0 23.0 23.0 23.0 24.0 24.0 24.0 21.0 21.0 21.0 20.0 21.0 21.0 21.0 20.0 21.0 21
29 17.0 8.0 4.0 7.0 12.0 16.0 20.0 20.0 15.5 30 17.0 7.0 6.0 15.0 17.0 20.0 24.0 24.0 16.0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	16.0 18.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 15.0 16.0 15.0 17.0 17.0 17.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	15.0 16.0 17.0 16.0 16.0 16.0 16.0 15.0 12.0 8.0 12.0 8.0 4.0 4.0 4.0 4.0 7.0 7.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 5.0 6.0 7.0 6.0 7.0 7.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 3.0 1.0 4.0 5.0	FEB 5.0 5.0 5.0 4.0 4.0 4.0 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 6.0 7.0 6.0 10.0 11.0 11.0 12.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 12.0 12.0 12.0 13.0 12.0 13.0 15.0 15.0 17.0 13.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 17.0 23.0 21.0 18.0 15.0 19.0 18.0	16.0 17.0 15.0 16.0 19.0 20.0 21.0 20.0 19.0 17.0 20.0 19.0 21.0 21.0 21.0 21.0 21.0 21.0 26.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 21.0 21.0 21.0 22.0 22.0 23.0 24.0	17.0 21.0 23.0 24.0 23.0 23.0 23.0 24.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21
30 17.0 7.0 6.0 15.0 17.0 20.0 24.0 24.0 16.0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27	16.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 15.0 13.0 18.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 15.0 8.0 4.0 6.0 4.0 4.0 4.0 7.0 7.0 7.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 7.0 7.0 8.0 8.0 6.0 7.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 3.0 1.0 4.0 5.0 5.0	FEB 5.0 5.0 5.0 4.0 4.0 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 6.0 7.0 10.0 11.0 11.0 12.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 12.0 12.0 12.0 13.0 12.0 13.0 12.0 13.0 13.0 15.0 15.0 15.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 18.0 17.0 17.0 17.0 20.0 23.0 21.0 18.0 17.0 19.0 18.0 20.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 20.0 19.0 19.0 18.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 23.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	17.0 21.0 23.0 24.0 23.0 23.0 23.0 20.0 24.0 24.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21
31 16.0 8.0 16.0 20.0 24.0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	16.0 18.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 16.0 15.0 16.0 17.0 17.0 17.0 16.0 17.0 17.0 17.0 18.0	15.0 16.0 17.0 16.0 16.0 16.0 16.0 15.0 12.0 8.0 4.0 6.0 6.0 4.0 4.0 7.0 4.0 7.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 6.0 2.0 7.0 8.0 8.0 6.0 7.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0	FEB 5.0 5.0 4.0 4.0 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 9.0 9.0 9.0 7.0 6.0	MAR 6.0 8.0 7.0 6.0 5.0 8.0 4.0 6.0 6.0 6.0 7.0 6.0 7.0 10.0 11.0 11.0 12.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 13.0 12.0 13.0 12.0 13.0 12.0 13.0 13.0 15.0 16.0 17.0 13.0 15.0 16.0 17.0 15.0 16.0 17.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 17.0 17.0 17.0 20.0 23.0 21.0 18.0 15.0 19.0 18.0 20.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 17.0 20.0 19.0 18.0 21.0 21.0 21.0 21.0 21.0 26.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 21.0 21.0 21.0 22.0 22.0 22.0 22.0 23.0 24.0 24.0	17.0 21.0 23.0 24.0 23.0 23.0 24.0 24.0 24.0 24.0 21.0 21.0 21.0 20.0 20.0 19.0 13.5 18.0 18.0
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	16.0 18.0 18.0 19.0 19.0 21.0 21.0 21.0 17.0 17.0 17.0 16.0 15.0 17.0 17.0 17.0 16.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17	15.0 16.0 17.0 16.0 16.0 16.0 16.0 16.0 15.0 15.0 12.0 8.0 15.0 4.0 4.0 4.0 4.0 7.0 7.0 7.0 7.0 7.0 8.0	9.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 5.0 4.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	JAN 6.0 6.0 7.0 6.0 5.0 8.0 8.0 4.0 2.0 2.0 2.0 3.0 4.0 4.0 5.0 5.0 5.0 5.0 6.0	FEB 5.0 5.0 5.0 4.0 4.0 4.0 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	MAR 6.0 8.0 7.0 6.0 5.0 4.0 6.0 6.0 6.0 4.0 4.0 10.0 11.0 11.0 12.0 13.0 12.0	APR 9.0 9.0 10.0 14.0 13.0 9.0 12.0 14.0 12.0 12.0 13.0 12.0 13.0 12.0 13.0 15.0 15.0 16.0 17.0	17.0 14.0 14.0 17.0 18.0 15.0 15.0 15.0 17.0 17.0 23.0 21.0 18.0 17.0 17.0 18.0 20.0 20.0 20.0	16.0 17.0 15.0 16.0 16.0 19.0 20.0 21.0 20.0 19.0 17.0 20.0 18.0 21.0 21.0 21.0 21.0 21.0 22.0 24.0	23.0 24.0 21.0 20.0 20.0 21.0 24.0 25.0 24.0 24.0 24.0 24.0 24.0 23.0 24.0 24.0	22.0 20.0 21.0 21.0 21.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24	17.0 21.0 23.0 24.0 23.0 23.0 23.0 20.0 24.0 24.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21

05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued WATER-QUALITY RECORDS--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	Н
1 2 3 4 5	17 18 20 15 17	.50 .53 .61 .42 .49	8 6 11 11 16	.25 .19 .38 .34 .50	10 10 14 11 7	.25 .23 .39 .30	19 16 14 17 26	.36 .37 .35 .39	33 22 14 17 25	.87 .60 .34 .41 .61	32 19 16 12 16	2.0 1.1 .83 .61
6 7 8 9 10	11 16 29 34 31	.31 .48 .83 1.0 .84	18 14 11 10 10	.57 .45 .34 .31	7 8 9 10 10	.18 .19 .22 .27 .28	23 14 19 21 22	.61 .35 .45 .51	27 16 8 5 10	.63 .38 .20 .12	24 28 26 23 17	1.1 1.2 1.2 .99 .55
11 12 13 14 15	21 29 116 36 28	.57 1.3 10 1.8 1.2	10 9 8 10 12	.30 .26 .24 .28 .35	6 10 25 24 15	.16 .25 .57 .49 .32	18 18 21 22 14	.34 .37 .43 .48	13 14 13 14 30	.37 .41 .35 .37	22 19 21 24 24	.68 .51 .62 .71 .78
16 17 18 19 20	24 20 16 14 15	.96 .74 .59 .48 .51	14 10 12 12 12	.39 .26 .34 .35 .33	12 6 5 6 7	.28 .14 .12 .15 .18	8 7 8 9 15	.16 .15 .16 .17	40 31 29 24 27	1.6 1.2 1.0 .81	22 24 28 36 32	.80 .90 1.4 1.9 1.6
21 22 23 24 25	19 16 7 5 4	.61 .52 .22 .16	10 12 14 14 8	.28 .33 .37 .35 .22	9 10 10 15 17	.19 .26 .25 .35	21 25 24 22 20	.47 .56 .55 .49	33 26 18 22 20	1.0 .83 .59 .71 .61	37 46 45 34 42	1.9 2.6 2.7 2.1 2.6
26 27 28 29 30 31	5 6 9 11 11 10	.16 .20 .32 .36 .34	14 16 14 13 11	.37 .41 .37 .33	18 19 21 23 27 24	.42 .41 .43 .43 .51	18 14 14 28 30 38	.42 .32 .32 .67 .69	27 44 47 	1.1 3.7 3.4 	56 34 35 46 4180 1370	
TOTA	L	27.52		10.07		9.24		13.17		24.92		4164.31
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
DAY	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY)	CONCEN- TRATION	(TONS/ DAY) BER
DAY 1 2 3 4 5	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)
1 2 3 4	CONCEN- TRATION (MG/L) APR 264 103 69 55	(TONS/ DAY) IL 84 19 9.7 6.3	CONCEN- TRATION (MG/L) MAY 19 34 31 24	.97 1.7 1.8 1.2	CONCEN- TRATION (MG/L) JUNE 37 29 25 21	1.9 1.5 1.2	CONCEN- TRATION (MG/L) JULY 54 48 66 52	(TONS/DAY) 4.1 3.4 4.7 3.8	CONCENTRATION (MG/L) AUGUS 23 27 32 40	(TONS/DAY) T .85 1.0 1.3 2.0	CONCEN- TRATION (MG/L) SEPTEM 17 21 15 17	(TONS/DAY) BER .73 .86 .63 .67
1 2 3 4 5 6 7 8 9	CONCEN- TRATION (MG/L) APR. 264 103 69 55 50 45 44 53 56	(TONS/DAY) IL 84 19 9.7 6.3 4.8 3.9 3.6 4.6 5.0	CONCEN- TRATION (MG/L) MAY 19 34 31 24 23 22 32 44 35	(TONS/DAY) .97 1.7 1.8 1.2 1.1 1.1 1.9 2.8 1.9	CONCEN- TRATION (MG/L) JUNE 37 29 25 21 21 22 18 15 24 24	1.9 1.5 1.2 1.0 1.0 1.0 1.0 1.0	CONCENTRATION (MG/L) JULY 54 48 66 52 42 88 352 459 117	(TONS/DAY) 4.1 3.4 4.7 3.8 2.8 7.4 59 47 8.2	CONCEN- TRATION (MG/L) AUGUS 23 27 32 40 34 14 30 37 40	(TONS/DAY) 1 .85 1.0 1.3 2.0 2.6 .76 1.7 3.0 3.3	CONCEN- TRATION (MG/L) SEPTEM: 17 21 15 17 15 12 12 12 12	(TONS/DAY) BER .73 .86 .63 .67 .56 .50 .47 .44
1 2 3 4 5 6 7 8 9 10 11 12 13	CONCEN- TRATION (MG/L) APR: 264 103 69 55 50 45 44 53 56 49 49 51 50 38	(TONS/DAY) IL 84 19 9.7 6.3 4.8 3.9 3.6 4.6 5.0 3.7 3.4 3.4 3.5 2.4	CONCEN- TRATION (MG/L) MAY 19 34 31 24 23 22 32 44 23 29 23 26 25	(TONS/DAY) .97 1.7 1.8 1.2 1.1 1.1 1.9 2.8 1.9 1.7 1.5 1.2 1.3 1.2	CONCEN- TRATION (MG/L) JUNE 37 29 25 21 21 21 22 18 15 24 24 1780 596 79 48 45 54 53	(TONS/DAY) 1.9 1.5 1.2 1.0 1.0 1.0 87 .69 1.6 1.3 1130 129 7.3 3.9	CONCENTRATION (MG/L) JULY 54 48 66 52 42 88 352 459 117 67 62 55 47 40	(TONS/DAY) 4.1 3.4 4.7 3.8 2.8 7.4 59 47 8.2 4.1 3.6 3.0 2.5 2.0	CONCEN- TRATION (MG/L) AUGUS 23 27 32 40 34 14 30 207 85 71 61 63	(TONS/DAY) 1 .85 1.0 1.3 2.0 2.6 .76 1.7 3.0 3.3 33 4.9 3.6 2.9 4.3	CONCEN- TRATION (MG/L) SEPTEM 17 21 15 17 15 12 12 12 11 11 11 11 21	(TONS/DAY) BER .73 .86 .63 .67 .56 .50 .47 .44 .40 .38 .36 .34 .32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	CONCEN- TRATION (MG/L) APR: 264 103 69 55 50 45 44 53 56 49 49 51 50 38 55	(TONS/DAY) IL 84 19 9.7 6.3 4.8 3.9 3.6 4.6 5.0 3.7 3.4 3.4 3.5 2.4 3.4 10 5.6 4.1 4.4	CONCEN- TRATION (MG/L) MAY 19 34 21 24 23 22 32 44 35 32 29 23 26 25 21 21 22 23 28	(TONS/DAY) .97 1.7 1.8 1.2 1.1 1.1 1.9 2.8 1.9 1.7 1.5 1.2 .99 .95 .95	CONCEN- TRATION (MG/L) JUNE 37 29 25 21 21 21 22 18 15 24 24 1780 596 79 48 45 53 769 1220	1.9 1.5 1.2 1.0 1.0 1.0 1.6 1.3 1130 129 7.3 3.9 3.7 4.5 4.1 229 158	CONCENTRATION (MG/L) JULY 54 48 66 52 42 88 352 459 117 67 62 55 47 40 34 29 25 23 33	(TONS/DAY) 4.1 3.4 4.7 3.8 2.8 7.4 59 47 8.2 4.1 3.6 3.0 2.5 2.0 1.7 1.4 1.2 1.0 1.7	CONCEN- TRATION (MG/L) AUGUS 23 27 32 40 34 14 30 207 85 71 61 63 123 37 84 78 85 57	(TONS/DAY) 1 .85 1.0 1.3 2.0 2.6 .76 1.7 3.0 3.3 33 4.9 3.6 2.9 4.3 42 2.4 10 5.4 3.4	CONCEN- TRATION (MG/L) SEPTEM 17 21 15 17 15 13 12 12 11 11 11 21 21 21 21 21 21 21 21	(TONS/DAY) BER .73 .86 .63 .67 .56 .50 .47 .44 .40 .38 .36 .34 .32 1.2 1.1 1.0 .82 .60 .48
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	CONCEN- TRATION (MG/L) APR: 264 103 69 55 50 45 444 53 56 49 49 51 103 70 57 64 59 42 56 53 43	(TONS/DAY) IL 84 19 9.7 6.3 4.8 3.9 3.6 4.6 5.0 3.7 3.4 3.5 2.4 3.4 10 5.6 4.1 4.4 4.0 2.9 3.5 3.1 2.5	CONCEN- TRATION (MG/L) MAY 19 34 21 24 23 22 32 44 35 32 29 23 26 25 21 21 22 23 33 37 37 37	(TONS/DAY) .97 1.7 1.8 1.2 1.1 1.1 1.9 2.8 1.9 1.7 1.5 1.2 .99 .95 .95 .95 .95 .95 .95 .95 .95 .95	CONCENTRATION (MG/L) JUNE 37 29 25 21 21 22 18 15 24 24 1780 596 79 48 45 53 769 1220 189 125 91 73 131 71 94 78	(TONS/DAY) 1.9 1.5 1.2 1.0 1.0 1.0 1.6 1.3 1130 129 7.3 3.9 3.7 4.5 4.1 229 158 16 13 6.8 5.1 13	CONCENTRATION (MG/L) JULY 54 48 66 52 42 88 352 459 117 67 62 55 47 40 34 29 25 23 33 24 23 24 24	(TONS/DAY) 4.1 3.4 4.7 3.8 2.8 7.4 59 47 8.2 4.1 3.6 3.0 2.5 2.0 1.7 1.4 1.2 1.0 1.7 1.1 1.1 1.1 1.1 1.98	CONCEN- TRATION (MG/L) AUGUS 23 27 32 40 34 14 30 207 85 71 61 63 123 37 84 78 78 40 23 29 27	(TONS/DAY) 1	CONCEN- TRATION (MG/L) SEPTEM 17 21 15 17 15 13 12 12 11 11 11 10 21 25 27 23 17 14 12 10 9 9 13	(TONS/DAY) BER .73 .86 .63 .67 .56 .50 .47 .44 .40 .38 .36 .34 .32 1.2 1.1 1.0 .82 .60 .48 .40 .34 .29 .28 .55
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	CONCENTRATION (MG/L) APR. 264 103 69 55 50 45 444 53 56 49 49 51 103 70 57 64 59 42 56 53 43 44 48 30 30 30 30 30 28 17	(TONS/DAY) IL 84 19 9.7 6.3 4.8 3.9 3.66 4.6 5.0 3.7 3.4 3.5 2.4 3.5 2.4 3.4 10 5.6 4.1 4.0 2.9 3.5 3.1 2.5 2.5 3.1 1.6 1.6 1.4 .89	CONCEN- TRATION (MG/L) MAY 19 34 21 24 23 22 32 44 23 25 21 21 22 23 28 33 37 37 41 40 35 32 31 39 30	(TONS/DAY) .97 1.7 1.8 1.2 1.1 1.1 1.9 2.8 1.9 1.7 1.5 1.2 1.3 1.2 .99 .95 .99 1.2 1.5 1.8 2.0 3.0 1.9 1.8 2.1 1.6 2.2 1.6	CONCEN- TRATION (MG/L) JUNE 37 29 25 21 21 22 18 15 24 24 1780 596 79 48 45 53 769 1220 189 125 91 73 131 71 94 78 1820 196 72	(TONS/DAY) 1.9 1.5 1.2 1.0 1.0 1.0 1.0 1.6 1.3 1130 129 7.3 3.9 3.7 4.5 4.1 229 158 16 13 6.8 5.1 13 5.6 6.7 5.2 692	CONCENTRATION (MG/L) JULY 54 48 66 52 42 88 352 459 117 67 62 55 47 40 34 29 25 23 24 24 24 24 24 23 21 19 18 23 22 21	(TONS/DAY) 4.1 3.4 4.7 3.8 2.8 7.4 59 47 8.2 4.1 3.6 3.0 2.5 2.0 1.7 1.4 1.2 1.0 1.7 1.1 1.1 1.1 9.8 89 .81 .73 .94 .90 .85	CONCEN- TRATION (MG/L) AUGUS 23 27 32 40 34 14 30 207 85 71 61 63 123 37 84 78 74 40 207 20 21 19 26 22 20	(TONS/DAY) T .85 1.0 1.3 2.0 2.6 .76 1.7 3.0 3.3 33 4.9 3.6 2.9 4.3 42 2.4 10 5.4 3.4 2.7 2.0 1.5 1.2 .93 .89 1.6 1.1 .89 .76	CONCEN- TRATION (MG/L) SEPTEM 17 21 15 17 15 13 12 12 11 11 10 21 25 27 23 17 14 12 10 9 9 13 8 7 7 6 9	(TONS/DAY) BER .73 .86 .63 .67 .56 .50 .47 .444 .33 .32 .12 .1.1 1.0 .82 .60 .48 .40 .34 .29 .28 .55 .27 .25 .22 .21 .41 .23

05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued WATER-QUALITY RECORDS--Continued

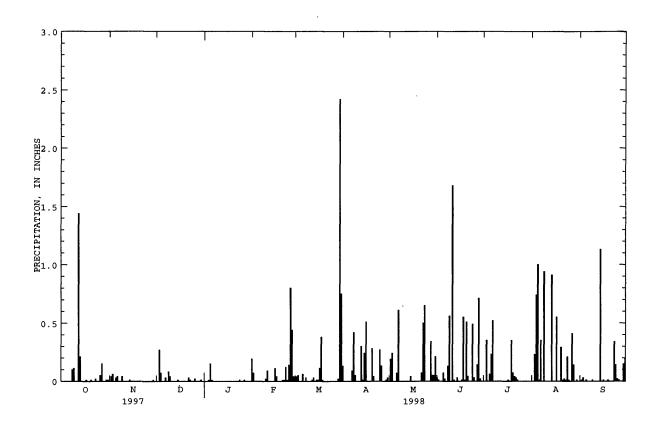
05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- April 1992 to current year.

INSTRUMENTATION. -- Tipping bucket rain gage.

REMARKS.--Water years 1992-1995 in files at the District office. Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting.


EXTREME FOR PERIOD OF RECORD.--Maximum daily accumulation, 2.42 in., Mar. 30, 1998.

EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation, 2.42 in., Mar. 30.

		PREC	PITATION,	TOTAL,	INCHES, DAI	WATER YEAR LY SUM VAL	OCTOBER UES	1997 то	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.00	.19	.04	.13	.00	.03	.00	.00	.00
2	.00	.04	.00	.00	.07	.04	.00	.19	.01	.00	.00	.01
3	.00	.06	.27	.00	.00	. 05	.00	.24	.00	.35	.23	. 03
4	.00	.00	.07	.01	.00	.00	.00	.00	.00	.00	.74	.00
5	.00	. 03	.00	. 15	.00	.00	.00	.00	.07	.06	1.00	.01
6	.00	.04	.00	.01	.00	.06	.00	.07	.02	.23	.01	.00
7	.00	.00	. 03	.00	.00	.00	.09	.61	.00	. 52	.35	.00
8	.10	.00	.00	.00	.00	. 03	.42	.00	.13	.00	.00	.00
9	.11	.04	.08	.00	.00	.00	.05	.00	.56	.00	.94	.01
10	.00	.00	.04	.00	.02	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.09	.00	.00	.00	1.68	.00	.00	.00
12	1.44	.00	.00	.00	.00	.01	.00	.00	.01	.00	.00	.00
13	.21	.00	.00	.00	.00	. 03	.30	.00	.00	.00	.00	.00
14	.00	.01	.00	.00	.00	.00	.01	.00	.03	.00	.91	1.13
15	.00	.00	.01	.00	.00	.01	. 24	.04	.00	.00	.00	.00
16	.00	.00	.00	.00	.11	.01	. 51	.00	.00	.00	.00	.01
17	.01	.00	.00	.00	.04	.11	.00	.00	.01	.01	.55	.00
18	.00	.00	.00	.00	.00	.38	.00	.00	. 55	.00	.00	.00
19	.00	.00	.00	.00	.00	.01	.00	.00	.01	.35	.00	.01
20	.01	.00	.00	.00	.00	.00	.28	.00	.51	.07	. 29	.00
21	.00	.00	.00	.00	.01	.00	.04	.00	.04	.04	.01	.00
22	.00	.00	.03	.00	.01	.00	.00	.07	.00	.03	.02	.00
23	.02	.00	.01	.00	.12	.00	.00	.50	.00	.01	.01	.34
24	.00	.00	.00	.01	.01	.00	.00	.65	.49	.00	.21	.14
25	.00	.00	.00	.00	.14	.00	. 27	.00	. 03	.00	.01	.02
26	.05	.00	.02	.00	.80	.00	.13	.00	.00	.00	.00	.01
27	.15	.00	.00	.01	.44	.00	.00	.00	.14	.00	.41	.00
28	.00	.00	.00	.00	.04	.00	.00	.34	.71	.00	.14	.00
29	.00	.01	.00	.00		.02	.01	.05	.02	.00	.00	.15
30	.01	.00	.01	.00		2.42	.03	.05	.00	.00	.01	.20
31	.01		.00	.00		. 75		.21		.00	.00	
TOTAL	2.12	0.23	0.57	0.19	2.09	3.97	2.51	3.02	5.05	1.67	5.84	2.07
MEAN	. 07	.01	.02	.01	.07	. 13	.08	.10	.17	.05	.19	.07
MAX	1.44	.06	.27	.15	.80	2.42	.51	.65	1.68	.52	1.00	1.13
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

05411400 SNY MAGILL CREEK NEAR CLAYTON, IA--Continued

PRECIPITATION RECORDS--Continued

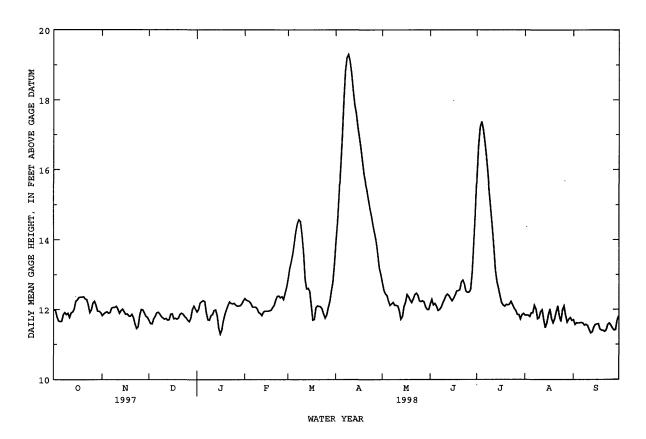
76 MISSISSIPPI RIVER MAIN STEM

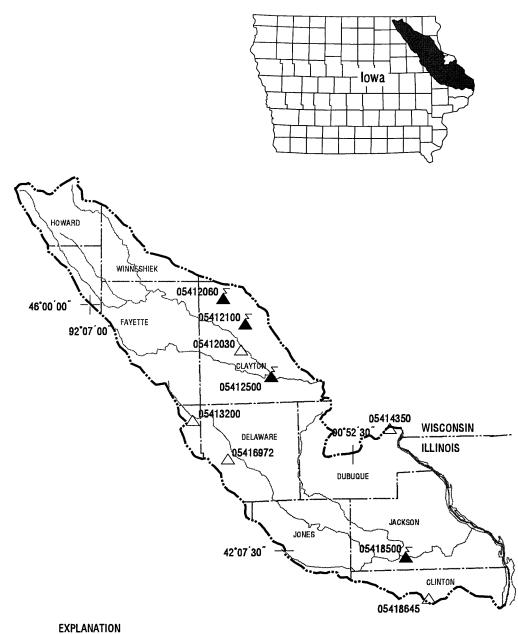
05411500 MISSISSIPPI RIVER AT CLAYTON, IA

LOCATION.--Lat $42^{\circ}54^{\circ}13^{\circ}$, long $91^{\circ}08^{\circ}45^{\circ}$, $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 1, T.93 N., R.3 W., Clayton County, Hydrologic Unit 07060003,6 miles below the Wisconsin River.

DRAINAGE AREA. -- 79,200 mi².

PERIOD OF RECORD. -- April 1930 to June 1936, January 1992 to current year.


GAGE.--Water-stage recorder. Datum of gage is 602.60 ft.


REMARKS.--Records good. U.S. Geological Survey satellite data collection platform with telephone modem at station.

EXTREMES FOR CURRENT WATER YEAR. -- Maximum gage height 19.36 ft Apr. 9; minimum gage height 11.26 ft Jan. 16.

			GAGE HEI	GHT, FEET		EAR OCTOB Y MEAN VA		TO SEPTEME	ER 1998			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	11.98	11.82	11.68	11.93	12.32	12.87	13.92	12.77	12.16	15.73	11.83	11.70
2	11.98	11.87	11.59	12.00	12.27	13.17	14.50	12.55	12.29	16.66	11.83	11.56
3	11.79	11.91	11.58	12.19	12.25	13.36	15.26	12.45	12.13	17.22	11.83	11.61
4	11.67	11.93	11.73	12.23	12.23	13.60	16.11	12.40	12.17	17.38	11.79	11.60
5	11.65	11.89	11.80	12.26	12.16	13.90	16.98	12.24	12.09	17.17	11.90	11.61
6	11.66	11.91	11.90	12.23	12.07	14.24	18.00	12.12	11.97	16.82	11.90	11.62
7	11.85	12.04	11.92	11.90	12.07	14.46	18.83	12.16	12.00	16.42	12.12	11.60
8	11.91	12.06	11.86	11.70	12.07	14.57	19.21	12.20	12.06	15.93	12.01	11.54
9	11.85	12.06	11.79	11.69	12.02	14.52	19.31	12.12	12.18	15.37	11.73	11.56
10	11.89	12.09	11.75	11.82	11.91	14.16	19.11	12.12	12.28	14.85	11.76	11.53
11	11.77	12.01	11.72	11.85	11.88	13.61	18.76	12.10	12.39	14.34	11.93	11.42
12	11.90	11.89	11.74	11.97	11.82	12.85	18.28	11.97	12.44	13.76	11.99	11.32
13	11.93	11.97	11.69	11.99	11.92	12.59	17.88	11.72	12.40	13.12	11.71	11.35
14	12.02	12.01	11.70	11.82	11.95	12.61	17.63	11.79	12.32	12.79	11.47	11.49
15	12.24	11.94	11.86	11.46	11.95	12.52	17.25	12.08	12.25	12.60	11.61	11.56
16	12.28	11.86	11.87	11.29	11.95	12.12	16.93	12.21	12.32	12.38	11.85	11.57
17	12.35	11.87	11.73	11.41	11.96	11.69	16.62	12.43	12.41	12.19	12.01	11.58
18	12.36	11.81	11.74	11.67	11.98	11.71	16.25	12.37	12.53	12.12	11.73	11.43
19	12.36	11.80	11.72	11.85	12.06	12.05	15.88	12.27	12.54	12.09	11.61	11.40
20	12.37	11.86	11.75	12.00	12.12	12.10	15.63	12.20	12.57	12.14	11.73	11.39
21	12.31	11.77	11.85	12.12	12.28	12.09	15.42	12.31	12.79	12.13	11.92	11.36
22	12.29	11.58	11.89	12.22	12.38	12.08	15.15	12.43	12.84	12.15	12.10	11.41
23	12.13	11.45	11.86	12.18	12.39	12.02	14.88	12.47	12.73	12.23	11.80	11.56
24	11.91	11.50	11.79	12.16	12.34	11.87	14.66	12.41	12.53	12.14	11.65	11.60
25	11.99	11.83	11.75	12.18	12.37	11.75	14.40	12.25	12.49	12.03	11.99	11.54
26 27 28 29 30 31	12.19 12.24 12.12 11.95 11.95	12.00 11.99 11.90 11.80 11.77	11.69 11.65 11.75 12.00 12.10 12.01	12.13 12.10 12.10 12.11 12.16 12.25	12.29 12.46 12.63 	11.84 12.05 12.23 12.52 12.79 13.29	14.18 13.95 13.61 13.20 13.00	12.23 12.25 12.22 12.07 12.00 12.00	12.50 12.57 13.05 13.85 14.71	11.97 11.85 11.85 11.72 11.84 11.88	12.10 11.83 11.63 11.72 11.76 11.68	11.46 11.40 11.41 11.68 11.80
MEAN	12.03	11.87	11.79	11.97	12.15	12.81	16.16	12.22	12.52	13.64	11.82	11.52
MAX	12.37	12.09	12.10	12.26	12.63	14.57	19.31	12.77	14.71	17.38	12.12	11.80
MIN	11.65	11.45	11.58	11.29	11.82	11.69	13.00	11.72	11.97	11.72	11.47	11.32

MISSISSIPPI RIVER MAIN STEM 05411500 MISSISSIPPI RIVER AT CLAYTON, IA--Continued

Hydrologic boundary Streams O 6 12 18 24 30 MILES station number O 6 12 18 24 30 KILOMETERS O5388310 Crest-stage gaging station and station number Base from U.S. Geological Survey hydrologic unit map State of lowa, 1974

Gaging Stations

05412060 05412100 05412500 05418500	Silver Creek near Luana, IA
	Crest Stage Gaging Stations
05412030	French Hollow Creek near Elkader, IA
05416200	Lamont Creek Tributary near Lamont, IA
05416972	Sand Creek near Manchester, IA
05418645	Williams Creek near Charlotte, IA

80 TURKEY RIVER BASIN

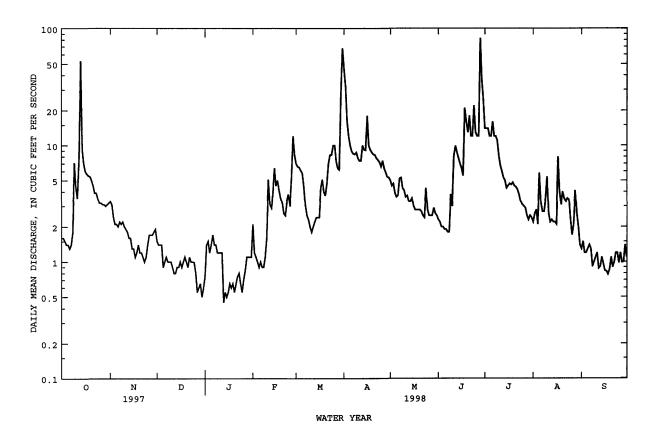
05412060 SILVER CREEK NEAR LUANA, IA

LOCATION.--Lat $43^{\circ}01^{\circ}19^{\circ}$, long $91^{\circ}29^{\circ}21^{\circ}$, in $NE^{1}/_{4}$ sec.25, T.95 N., R.6 W., Clayton County, Hydrologic Unit 07060004, on right upstream bank at bridge on county road W70, 2.3 miles south of Highway 52 and 18, and 3.2 miles south of Luana.

DRAINAGE AREA. -- 4.39 mi².

PERIOD OF RECORD. -- May 1986 to September 30, 1998 (discontinued).

GAGE. -- Water-stage recorder. Datum of gage is 1027.57 ft above sea level.


REMARKS.--Estimated daily discharges: Nov. 15-25, Dec. 5-21, Dec. 26 to Jan. 1, Jan. 13-27, Feb. 2-9, and Mar. 6-14. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform at station.

		DISCHA	RGE, CUBI	C FEET PEF		WATER YE MEAN VA	AR OCTOBER	1997 TO	SEPTEMBER	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 1.6 1.5 1.4	3.3 3.1 2.4 2.1 2.1	1.5 1.4 1.4 1.4 e.90	e.75 1.4 1.5 1.2	2.1 e1.2 e1.1 e1.0 e.90	7.0 6.6 6.5 6.1 5.8	46 32 16 12	5.0 4.5 4.7 3.9 3.6	2.3 2.2 2.0 2.0 1.9	14 14 14 12 12	2.2 2.6 2.8 2.1 5.8	1.3 1.5 1.2 1.2
6 7 8 9 10	1.3 1.4 1.8 7.1 4.4	2.0 2.2 2.1 2.2 2.0	e1.0 e1.1 e1.0 e1.0	1.7 1.4 1.4 1.2	e1.0 e.90 e.90 e1.1 1.6	e4.4 e3.0 e2.5 e2.3 e2.0	8.9 8.5 8.4 8.7 7.8	3.7 5.2 5.3 4.3 4.1	1.9 1.8 1.8 3.8 3.0	16 12 12 11 8.1	3.2 2.7 2.7 3.5 5.4	1.4 1.3 .91 1.0 1.1
11 12 13 14 15	3.5 7.9 53 9.3 7.0	1.9 1.8 1.6 1.6 e1.3	e.90 e.80 e.80 e.90	1.2 1.2 e.45 e.55 e.50	5.1 3.1 2.9 3.8 6.4	e1.8 e2.0 e2.2 e2.4 2.4	7.4 7.4 10 9.2 9.1	3.6 3.7 3.3 3.3 3.5	8.1 9.9 8.7 7.8 7.0	6.7 6.0 5.3 5.0 4.3	2.6 2.2 2.3 2.2 2.2	1.2 .88 .91 1.1 .96
16 17 18 19 20	6.0 5.7 5.5 5.4 5.0	e1.3 e1.1 e1.2 e1.4 e1.2	e1.0 e.90 e1.0 e1.1 e1.0	e.55 e.65 e.60 e.65 e.55	4.5 5.0 4.1 3.5 3.2	2.4 4.3 5.1 4.0 3.7	18 10 9.2 8.7 8.4	3.0 2.8 2.8 2.8 2.8	6.4 5.5 21 16 13	4.5 4.7 4.6 4.8 4.5	2.1 8.0 4.1 3.1 4.0	.84 .83 .78 .86 1.1
21 22 23 24 25	4.5 3.9 3.9 3.5 3.2	e1.2 e1.1 e1.0 e1.1 e1.4	e.90 1.1 1.0 1.0 .99	e.65 e.75 e.80 e.65 e.55	2.6 2.5 3.3 3.8 3.0	4.7 7.0 8.3 8.3	8.3 7.8 7.5 7.2 6.6	2.7 2.5 2.4 4.3 2.8	18 12 12 22 13	4.4 4.2 3.8 3.3	3.5 3.3 3.5 3.4 2.3	.90 1.0 1.2 1.2
26 27 28 29 30 31	3.2 3.1 3.1 3.0 3.1 3.2	1.7 1.7 1.7 1.8 1.9	e.80 e.55 e.60 e.65 e.50 e.60	e.70 e.85 1.1 1.1 1.1	5.3 12 8.3 	10 7.3 6.4 6.2 28 68	7.4 6.4 5.9 5.4 5.3	2.5 2.5 2.5 2.9 2.6 2.5	12 12 83 37 25	3.0 2.9 2.5 2.3 2.5 2.4	1.7 2.1 4.1 2.6 2.0 1.4	1.2 .99 1.0 1.4 1.1
TOTAL MEAN MAX MIN AC-FT CFSM IN.	169.5 5.47 53 1.3 336 1.25 1.44	52.5 1.75 3.3 1.0 104 .40	29.69 .96 1.5 .50 59 .22	29.40 .95 1.7 .45 58 .22	94.20 3.36 12 .90 187 .77	240.7 7.76 68 1.8 477 1.77 2.04	323.5 10.8 46 5.3 642 2.46 2.74	106.1 3.42 5.3 2.4 210 .78 .90	372.1 12.4 83 1.8 738 2.83 3.15	209.9 6.77 16 2.3 416 1.54 1.78	95.7 3.09 8.0 1.4 190 .70	32.64 1.09 1.5 .78 65 .25
STATIST	rics of MC	NTHLY ME	an data f	OR WATER Y	EARS 1986	- 1998,	BY WATER	YEAR (WY)	ı			
MEAN MAX (WY) MIN (WY)	1.51 5.47 1998 .12 1990	2.17 11.1 1992 .11 1990	1.83 9.34 1992 .023 1990	1.42 5.21 1992 .006 1990	2.78 12.4 1997 .18 1990	5.90 17.7 1993 2.06 1996	4.84 12.1 1993 .12 1989	3.08 8.17 1993 .20 1989	6.53 32.3 1991 .16 1989	2.92 14.0 1993 .14 1989	2.30 6.74 1993 .18 1988	2.23 8.65 1992 .24 1989
SUMMAR	Y STATISTI	:CS	FOR	1997 CALEN	IDAR YEAR	F	OR 1998 WAS	rer year		WATER YE	ARS 1986	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL	MEAN F ANNUAL ME F DAILY ME DAILY ME SEVEN-DAY FANEOUS PE FANEOUS PE FANEOUS LC RUNOFF (C RUNOFF (C	CAN CAN IN MINIMUM CAK FLOW CAK STAGE W FLOW CC-FT) CFSM) CNCHES)		.40 .47 2560 .80 10.92	Feb 18) Jan 20) Jan 15		.56 367 12.17 .44 3480 1.10 14.88	Jan 13 Jan 13		3.18 7.90 .76 431 .00 .3300 14.97 2310 .72 9.85	Jun 1 Aug 2 Dec 1 Jun 1	1993 1989 15 1991 21 1989a 12 1989 15 1991 15 1991
50 PERG	CENT EXCEE CENT EXCEE CENT EXCEE	DS		4.5 1.4 .69)		9.9 2.6 .90			6.2 1.3 .22		

a Also Dec 12, 1989 to Jan 7, 1990, Jan 12-15, Jan 24 to Feb 4, 1990 e Estimated

81

05412060 SILVER CREEK NEAR LUANA, IA--Continued

82 TURKEY RIVER BASIN

05412100 ROBERTS CREEK ABOVE SAINT OLAF, IA

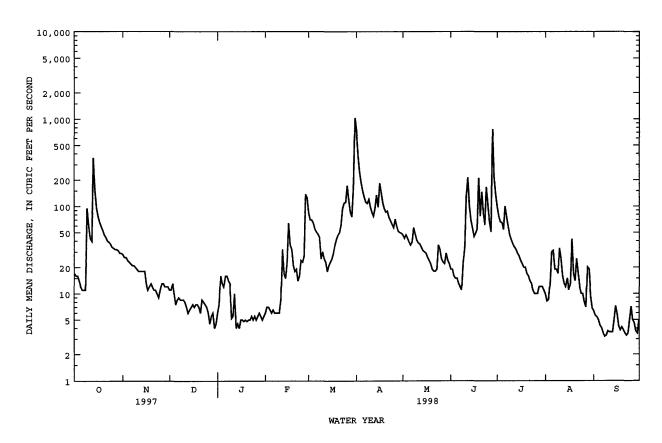
LOCATION.--Lat $42^{\circ}5^{\circ}49^{\circ}$, long $91^{\circ}23^{\circ}03^{\circ}$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec.25, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, on left downstream bank at bridge on road X28, 0.1 mi north of county road B65, on north edge of Saint Olaf.

DRAINAGE AREA. -- 70.7 mi².

PERIOD OF RECORD.--September 1957 to July 1977 (operated as a low-flow station only), March 1986 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 826.73 ft above sea level.

REMARKS.--Estimated daily discharges: Nov. 16-25, Dec. 4 to Jan. 2, Jan. 11 to Feb. 11, Mar. 10-19, May 31, and Sept. 24.


Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem at station.

DISCULARCE CURTS FERRI DER CECONE MARIER VEAR OCTORER 1007 TO CERTIFICATE 1008

		DISCHA	RGE, CUBI	C FEET PER		NATER YEA MEAN VAI	AR OCTOBER LUES	1997 TO :	SEPTEMBE	R 1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 16 16 14 12	28 26 26 24 23	11 11 13 e10 e7.5	e6.0 e7.5 16 13	e6.0 e7.0 e7.0 e6.5 e6.0	84 70 70 64 55	726 377 247 187 151	47 43 47 43 39	19 19 16 15 15	99 77 66 65 54	9.9 8.2 8.5 13 30	6.3 5.6 5.4 5.0 4.3
6 7 8 9 10	11 11 11 95 61	22 21 21 20 19	e8.5 e9.0 e8.5 e8.5 e8.5	16 16 14 13 5.2	e6.5 e6.0 e6.0 e6.0	51 48 44 25 e30	128 112 108 120 98	36 39 57 48 41	13 12 11 23 33	100 76 59 47 41	31 19 19 17 33	4.0 3.5 3.2 3.3 3.7
11 12 13 14 15	43 40 358 153 97	18 18 18 18	e8.0 e7.0 e6.0 e6.5 e7.0	e5.5 e10 e4.0 e4.5 e4.0	e8.5 32 17 15 23	e25 e23 e18 e21 e23	85 77 96 134 98	38 37 34 31 30	128 213 101 69 56	37 34 32 29 27	25 16 13 12 15	3.6 3.6 3.6 5.0 7.2
16 17 18 19 20	77 66 59 53 47	e13 e11 e12 e13 e12	e7.5 e7.0 e7.5 e7.5 e7.0	e5.0 e5.0 e4.8 e5.0 e4.8	64 36 32 21 18	e25 e29 e36 e42 47	184 143 110 94 86	29 26 24 22 19	45 49 55 211 77	24 22 20 20 17	11 13 42 17 14	5.8 4.2 3.8 4.1 3.8
21 22 23 24 25	44 40 39 37 34	e11 e11 e10 e9.0 e11	e6.0 e8.5 e8.0 e7.5 e7.0	e5.0 e5.0 e5.5 e5.0 e5.5	19 14 16 24 23	50 61 94 109 111	88 75 68 62 57	18 18 19 36 32	146 84 61 166 105	16 14 13 11 10	25 17 12 10 10	3.5 3.3 3.5 e5.0 7.1
26 27 28 29 30 31	33 32 32 31 29 29	13 13 12 12 12	e6.0 e4.5 e5.5 e6.0 e4.0 e4.5	e5.0 e5.5 e6.0 e5.5 e5.0	27 137 126 	173 118 86 76 161 1030	71 59 52 50 49	25 23 22 29 24 e22	65 51 769 217 138	10 10 12 12 12 11	8.0 7.0 20 19 9.4 6.8	5.0 4.6 3.7 3.5 4.9
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1637 52.8 358 11 3250 .75 .86	495.0 16.5 28 9.0 982 .23 .26	234.0 7.55 13 4.0 464 .11	229.8 7.41 16 4.0 456 .10	715.5 25.6 137 6.0 1420 .36	2899 93.5 1030 18 5750 1.32 1.53	3992 133 726 49 7920 1.88 2.10	998 32.2 57 18 1980 .46 .53	2982 99.4 769 11 5910 1.41 1.57	1077 34.7 100 10 2140 .49	510.8 16.5 42 6.8 1010 .23 .27	133.1 4.44 7.2 3.2 264 .06
STATIST	CICS OF M	ONTHLY ME	an data f	OR WATER Y	EARS 1986	- 1998,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	12.5 52.8 1998 .075 1990	18.2 82.5 1992 .003 1990	14.5 65.7 1992 .000 1990	8.69 38.9 1992 .11 1991	17.9 63.5 1997 .15 1991	61.0 198 1993 23.3 1996	54.4 167 1993 1.63 1989	28.6 88.5 1993 .86 1989	54.1 313 1991 .29 1989	26.3 192 1993 .098 1989	17.0 87.4 1993 .86 1988	15.6 49.9 1993 .53 1989
SUMMARY	STATIST	rics	FOR	1997 CALEN	DAR YEAR	F	OR 1998 WA	rer year		WATER Y	EARS 1986	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ANNUAL DAILY ME SEVEN-DA TANEOUS P	EAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS		11463.5 31.4 900 2.0 2.4 22740 .44 6.03 54 19 4.5			15903.2 43.6 1030 3.2 3.5 1500 15.86 2.5 31540 .62 8.37 98 19 5.0	Mar 31 Sep 8 Sep 7 Jun 28 Jun 28 Jan 10		28.0 85.6 4.3 7090 .00 19600 27.8 20270 .4 5.3 59	Jun () Mai) Mai Jun (3 Jun (1993 1989 15 1991 1991 1991 1991 15 1991

e Estimated

TURKEY RIVER BASIN 05412100 ROBERTS CREEK ABOVE SAINT OLAF, IA--Continued

84 TURKEY RIVER BASIN

05412500 TURKEY RIVER AT GARBER, IA

LOCATION.--Lat 42°44'24", long 91°15'42", in SE¹/₄ NW¹/₄ sec.36, T.92 N., R.4 W., Clayton County, Hydrologic Unit 07060004, on right bank 10 ft. upstream from bridge on county highway C43, 800 ft. upstream from Wayman Creek, 1,000 ft. southeast of Garber, 2,000 ft. downstream from Elk Creek, 1 mi downstream from Volga River, and 21.2 mi upstream from mouth.

DRAINAGE AREA, -- 1,545 mi².

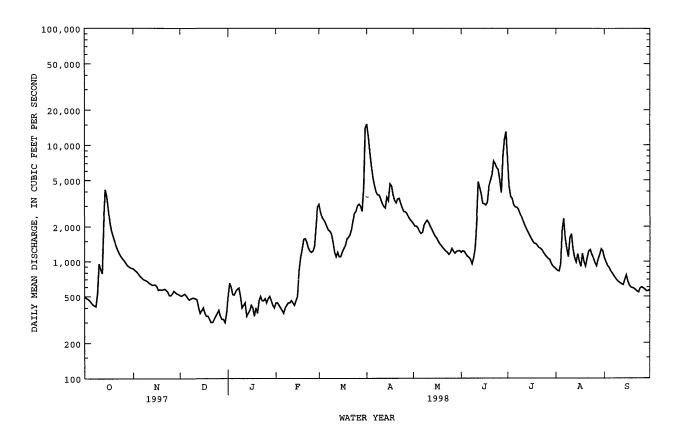
PERIOD OF RECORD.--August 1913 to November 1916, May 1919 to September 1927, April 1929 to September 1930, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1922-25 (M), 1927 (M). WSP 1438: Drainage area; WDR IA-95-1: location.

GAGE.--Water-stage recorder. Datum of gage is 634.46 ft. above sea level. Prior to Feb. 7, 1935, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Dec. 13 to Jan. 3, Jan. 9 to Feb. 15, Mar. 11-16, and May 23 to June 11. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1890, that of June 15, 1991.

		DISCHA	RGE, COD.	IC FEEL FE		Y MEAN V	ALUES	K 1997 I	J SEFIEMD	ER 1996		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	497	868	511	e500	e440	3100	15100	2120	e1200	7570	863	1070
2	482	840	504	e650	e440	2660	11700	2020	e1230	4440	836	994
3	474	820	517	e600	e420	2390	8590	2020	e1220	3620	827	922
4 5	462	789 757	525 507	519 515	e400	2280	65 7 0	1950	e1160	3470	942 1850	889 831
5	443	757	507	212	e380	2160	5230	1820	e1110	3070	1650	931
6	426	733	484	554	e360	2000	4500	1750	e1080	2940	2340	793
7	418	709	468	577	e400	1870	3970	1780	e1040	2930	1600	754
8	411	695	478	590	e420	1830	3740	2060	e953	2820	1290	720
9 10	530 956	686 6 74	484 485	e500 e400	e440 e440	1730 1480	3 7 30 3 4 30	21 7 0 22 6 0	e1070 e1290	2590 2 41 0	1100 1600	689 669
10	930	074	400	6400	6440	1400	3430	2200	61230	2410	1000	005
11	857	654	478	e420	e460	e1200	3160	2150	e2090	2220	1730	655
12	791	640	467	e440	e440	e1100	2970	2010	4850	2050	1280	639
13	2210	626	e400	e340	e420	e1200	2890	1900	4310	1920	1080	629 693
14 15	4160 3630	626 631	e360 e380	e360 e380	e460 e500	e1100 e1100	35 7 0 33 4 0	1770 1670	3 7 90 3 16 0	1800 1700	989 1160	764
1.5	3030	031	C300	6300	6300	61100	3340	1070	3100	1700	1100	704
16	2810	611	e400	e420	833	e1200	4640	1600	3130	1600	999	675
17	2150	566	e360	e400	1080	1290	4480	1510	3050	1510	907	624
18	1840	573	e340	e340	1280	1370	3 7 50	1430	3220	1440	1170	598
19 20	1650 1490	567 572	e340 e320	e400 e3 6 0	1560 1580	1560 1 6 20	3350 3190	1380 1320	4480 4980	1430 1380	993 914	592 585
20	1430	372	C320	6300	1500	1020	3130	1320	4200	1300	214	505
21	1350	580	e300	e460	1470	1700	3450	1270	5550	1320	1070	569
22	1250	567	e300	e500	1310	1880	3480	1230	7280	1300	1230	553
23	1170	550	e320	e460	1230	2250	3130	e1200	6920	1260	1260	543
24 25	1110 1060	512 509	e340 e360	e460 e480	1200 1230	2590 2700	2880 2680	e1150 e1190	6390 6180	1200 1140	1150 1070	587 600
23	1000	309	6300	6400	1230	2700	2000	61190	0100	1140	1070	000
26	1020	528	e380	e440	1350	3010	2670	e1290	4990	1100	9 7 9	588
27	979	556	e340	e480	2020	3110	2580	e1220	3910	1060	916	575
28	934	541	e320	e500	2940	2990	2400	e1180	7980	1040	1040	557
29 30	906 88 7	529 522	e320 e300	e460 e420		2700 4330	2290 2210	e1220 e1230	11200 13000	962 9 14	1150 1280	555 569
31	876		e360	e400		14000	2210	e1240		889	1230	
TOTAL	38229	19031	12448	14325	25503	75500	129670	50110	121813	65095	36845	20481
MEAN MAX	1233 4160	634 868	402 525	462 650	911 2940	2435 14000	4322 15100	1616 2260	4060 13000	2100 7570	1189 23 4 0	683 1070
MIN	411	509	300	340	360	1100	2210	1150	953	889	827	543
AC-FT	75830	37750	24690	28410	50590	149800	257200	99390	241600	129100	73080	40620
CFSM	.80	. 41	.26	.30	.59	1.58	2.80	1.05	2.63	1.36	.77	.44
IN.	.92	. 46	.30	.34	. 61	1.82	3.12	1.21	2.93	1.57	. 89	.49
STATIST	rics of M	ONTHLY ME	AN DATA	FOR WATER	YEARS 191	3 - 1998	, BY WATER	YEAR (W	<i>(</i>)			
MEAN	568	609	482	517	826	2056	1713	1291	1376	946 5772	844	639 3011
MAX (WY)	252 7 1987	2834 1962	2889 1983	3306 1916	4265 1922	4832 1979	6382 1951	3896 1983	5316 1947	1993	5119 1993	1938
MIN	88.2	92.2	78.5	62.0	60.9	188	288	95.7	103	121	140	108
(WY)	1950	1950	1959	1940	1959	1934	1957	1934	1934	1936	1964	1958
SUMMARY	Y STATIST	ics	FOR	1997 CALE	NDAR YEAR	. :	FOR 1998 W	ATER YEAL	₹	WATER Y	EARS 1913	- 1998
ANNUAL	moma t			202271			600050					
ANNUAL				393371 1078			609050 1669			992		
	r ANNUAL	MEAN		1070			1005			2905		1993
	ANNUAL M									249		1934
	r daily m			6850	Mar 10		15100	Apr :		33700		15 1991
	DAILY ME			240	Feb 13		300		1,22,30	49		28 1940
		Y MINIMUM PEAK FLOW		319	Jan 12		323 15500	Dec 18		51 49900		25 1940 15 1991
		EAK FLOW EAK STAGE						2 Apr :		30.1		15 1991
ANNUAL	RUNOFF (AC-FT)		780300			1208000			718900		
	RUNOFF (.7			1.0			. 6		
	RUNOFF (9.4	7		14.6	6		8.7	3	
	CENT EXCE			2220 770			3 47 0 11 00			2090 520		
	CENT EXCE			386			420			169		
				500			440			100		

e Estimated

TURKEY RIVER BASIN

05412500 TURKEY RIVER AT GARBER, IA--Continued

86 MAQUOKETA RIVER BASIN

05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IA

LOCATION.--Lat $42^{\circ}05^{\circ}00^{\circ}$, long $90^{\circ}37^{\circ}58^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.17, T.84 N., R.3 E., Jackson County, Hydrologic Unit 07060006, on right downstream bank at State Highway 62 bridge, 900 ft. upstream from Prairie Creek, 2.0 mi northeast of Maquoketa, 2.2 mi downstream from North Fork, and 26.7 mi upstream from mouth.

DRAINAGE AREA. -- 1,553 mi².

PERIOD OF RECORD.--September 1913 to current year. Prior to October 1939, published as "below North Fork near Maquoketa". Monthly discharge only for some periods, published in WSP 1308.

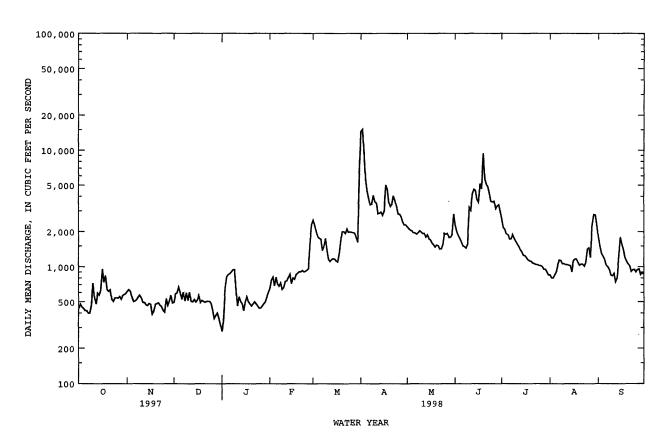
REVISED RECORDS.--WSP 405: 1914. WSP 1438: Drainage area. WSP 1508: 1914-17, 1919-25, 1926 (M), 1929, 1933-34 (M), 1943.

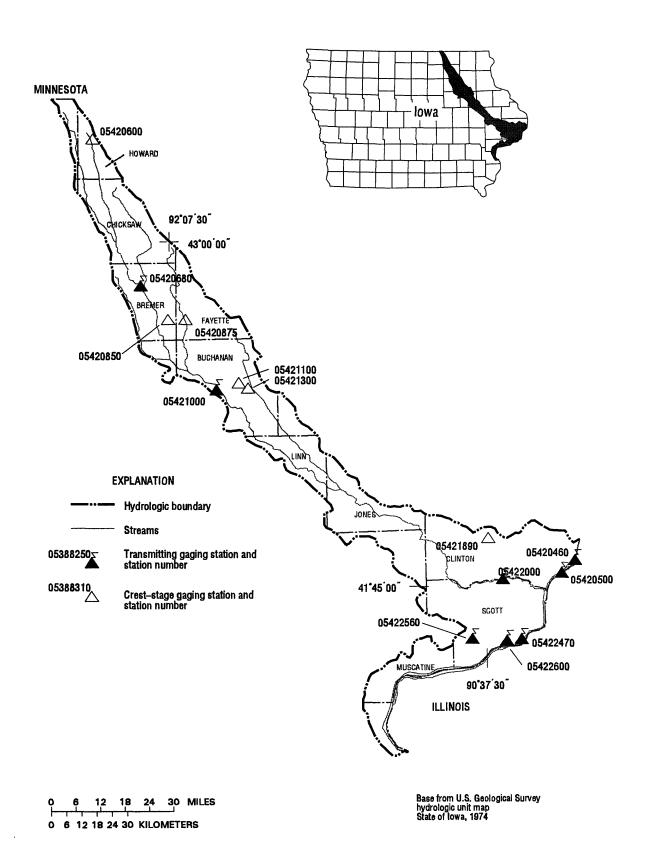
GAGE.--Water-stage recorder. Datum of gage is 625.96 ft. above sea level. Prior to July 14, 1924, nonrecording gage, and July 15, 1924 to Sept. 30, 1972, recording gage at site 300 ft. upstream from State Highway 62 bridge at datum 10.00 ft. higher. On Aug. 3, 1995 the gage was moved to the current location.

REMARKS.--Estimated daily discharges: Oct. 5-8, Dec. 25 to Jan. 2, Jan. 10 to Feb 1, and July 27 to Aug 5. Records good except those estimated daily discharges, which are poor. Diurnal fluctuation caused by power plant 4 mi upstream of station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--A flood, probably in 1903, reached a stage of 23.5 ft., discharge, 43,000 ft.3/s, at datum in use prior to Oct. 1, 1972.

		DISCH	HARGE, CUI	BIC FEET P		, WATER YI LY MEAN V		ER 1997 TO	SEPTEMBE	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	438	612	495	e280	e650	2500	14500	2200	2270	2560	e850	1790
2	475	636	584	e340	771	2280	15100	2120	2020	2170	e800	1490
3	450	617	595	649	816	2040	9440	2050	1840	2090	e800	1300
4	438	547	667	820	688	1800	5580	2030	1740	1910	e850	1230
5	e420	501	603	855	814	1740	4450	1950	1620	1880	e900	1160
6	e420	506	526	873	711	1720	3860	1950	1500	1720	1030	1030
7	e400	523	602	903	682	1370	3400	1900	1480	1730	11 4 0	995
8	e400	549	508	939	725	1490	3450	1950	1440	1880	1130	9 42
9	467	567	597	9 44	640	1740	4080	2030	1560	1740	1060	8 4 6
10	722	535	51 4	e650	662	1390	3620	1990	3220	1640	1060	837
11	542	493	603	e460	750	1150	3520	1920	3040	1560	1040	878
12	479	493	504	e550	756	1110	2840	1930	4200	1480	1040	743
13	593	470	499	e500	810	1150	2860	1790	4600	1390	1030	802
14	571	463	523	e480	861	1170	2930	1870	4500	1330	1020	1190
15	626	483	498	e420	718	1160	2750	1730	3770	1250	903	1790
16	9 4 9	475	516	e500	801	1120	2990	1690	3570	1240	1120	1560
17	735	391	565	e550	782	1100	5000	1590	5140	1190	1160	1410
18	837	415	493	e500	858	1320	4620	1540	4660	1140	1160	1210
19	637	475	513	e480	882	1750	3590	1470	9400	1120	1090	1120
20	613	483	503	e460	905	2000	3280	1530	5620	1110	1030	1060
21	631	489	495	e480	903	2000	3430	1510	5090	1070	1050	1020
22	522	466	503	e500	927	1930	4040	1410	4840	1060	1050	910
23	503	455	504	e480	90 4	2110	3670	1410	4240	1040	1010	941
24	539	422	503	e460	913	1970	3270	1540	3630	1040	1080	950
25	540	407	e480	e440	935	1990	2830	1930	3590	1020	1410	901
26 27 28 29 30 31	537 55 4 526 563 576 586	531 465 508 568 487	e420 e360 e380 e400 e360 e320	e440 e460 e480 e500 e550 e600	96 4 1600 2290 	1970 1960 19 4 0 1760 1620 6530	2810 2670 2420 2280 2280	1890 1920 1770 1790 1890 2820	3640 3140 3320 3390 2980	1020 e1000 e950 e950 e900 e850	1450 1200 2230 2790 2770 2290	9 44 957 857 889 86 4
TOTAL MEAN MAX MIN AC-FT CFSM IN.	17289	15032	15633	17543	24718	56880	131560	57110	105050	43030	38543	32616
	558	501	504	566	883	1835	4385	1842	3502	1388	1243	1087
	949	636	667	944	2290	6530	15100	2820	9400	2560	2790	1790
	400	391	320	280	640	1100	2280	1410	1440	850	800	743
	34290	29820	31010	34800	49030	112800	260900	113300	208400	85350	76450	64690
	.36	.32	.32	.36	.57	1.18	2.82	1.19	2.25	.89	.80	.70
	.41	.36	.37	.42	.59	1.36	3.15	1.37	2.52	1.03	.92	.78
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	14 - 1998,	BY WATE	R YEAR (W)	()			
MEAN	720	785	659	693	1105	1868	1374	1233	1458	1060	831	886
MAX	2486	4983	2397	2851	4161	4798	4843	4267	6670	8835	3340	307 4
(WY)	1987	1962	1983	1960	1971	1993	1973	1974	1947	1993	1924	1981
MIN	210	198	177	150	196	241	305	198	170	177	227	182
(WY)	1957	1959	1959	19 4 0	1936	1934	1934	1934	1934	1936	1958	1958


MAQUOKETA RIVER BASIN


87

05418500 MAQUOKETA RIVER NEAR MAQUOKETA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WA	TER YEAR	WATER YEAR	RS 1914 - 1998
ANNUAL TOTAL	390449		555004			
ANNUAL MEAN	1070		1521		1055	
HIGHEST ANNUAL MEAN					2874	1993
LOWEST ANNUAL MEAN					306	1958
HIGHEST DAILY MEAN	18800	Feb 22	1 51 00	Apr 2	34800	Jun 27 1944
LOWEST DAILY MEAN	290	Jan 18	280	Jan 1	105	Feb 11 1936
ANNUAL SEVEN-DAY MINIMUM	347	Jan 12	349	Dec 27	105	Feb 11 1936
INSTANTANEOUS PEAK FLOW			15600	Apr 2	48000	Jun 27 1944
INSTANTANEOUS PEAK STAGE			25.85	Apr 2	24.70	Jun 27 1944
ANNUAL RUNOFF (AC-FT)	774500		1101000		764200	
ANNUAL RUNOFF (CFSM)	. 69		. 98		. 68	
ANNUAL RUNOFF (INCHES)	9.35		13.29		9.23	
10 PERCENT EXCEEDS	1870		3270		1990	
50 PERCENT EXCEEDS	629		1030		650	
90 PERCENT EXCEEDS	438		480		300	

e Estimated

Gaging Stations

05420460 05420500 05420680 05421000 05422000 05422470 05422560 05422600	Beaver Slough at 3rd Street at Clinton, IA
	Crest Stage Gaging Stations
05420600 05420850 05420875	Little Wapsipinicon River Tributary near Riceville, IA

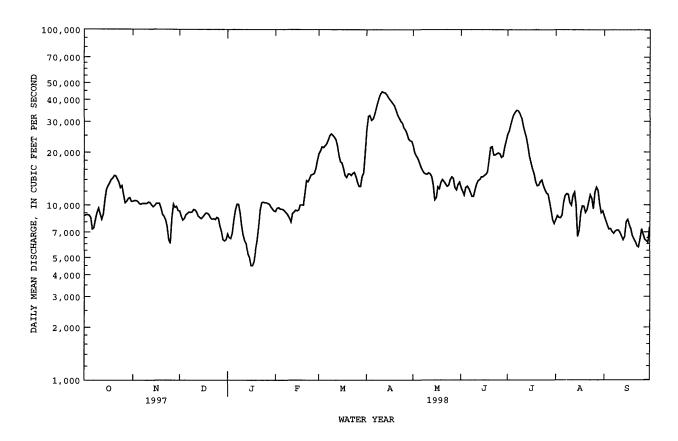
05420460 BEAVER SLOUGH AT THIRD STREET CLINTON, IA

LOCATION.--Lat $41^{\circ}49^{\circ}38^{\circ}$, long $90^{\circ}11^{\circ}25^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec.18, T.81 N., R.7 E., Clinton County, Hydrologic Unit 07080101, at river end of 3rd street, at downstream end of ADM repair dock, 10.3 miles upstream from Wapsipinicon River, 4.8 miles upstream from Camanche gage, 5.9 miles downstream from Lock and Dam 13, and at mile 516.6 upstream from Ohio River.

DRAINAGE AREA. --85,600 mi², approximately, at Fulton-Lyons Bridge at Clinton.

PERIOD OF RECORD. -- October 1992 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 562.68 ft above sea level.


REMARKS.--Estimated daily discharges: Jan. 11-21, June 12-16, and June 21. Records good except those for estimated daily discharges, which are poor. Minor flow regulation caused by navigation dams. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey satellite data collection platform at station.

		DISCH	ARGE, CUE	SIC FEET P		, WATER T		BER 1997 '	ro septem	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8700 8780 8800 8750 8480	10500 10600 10600 10500 10200	9230 8630 8200 8350 8780	6830 6500 6430 6880 8180	9180 9580 9650 9450 9450	19600 20400 21500 21300 21800	27000 32000 32500 30500 31000	21800 19900 19100 185 0 0 17600	12600 12000 11400 12600 12800	25300 26500 29000 31300 32800	8250 8680 8480 8450 8730	8650 8130 7650 7280 7330
6 7 8 9 10	7280 7400 8280 9050 9580	10100 10200 10200 10200 10200	8930 9100 9050 9100 9400	9380 10100 10100 9030 7630	9400 9200 9000 8750 8430	22400 23500 24900 25500 25000	32500 35000 38000 41000 43300	16600 15800 15300 15100 15000	12400 11800 11200 11200 12200	34000 34800 34500 33300 31300	10300 11300 11600 11500 10300	7030 6880 7100 7180 7180
11 12 13 14 15	8900 8300 8880 10700 12300	10400 10300 10000 9780 9930	9350 9080 8630 8480 8350	e6750 e6250 e6000 e5250 e5000	8000 8950 9100 9330 9250	24400 23600 21700 19200 17700	44500 44000 43800 42800 41300	15300 15100 14600 13100 10700	13200 e13800 e14000 e14500 e14500	28300 26000 24200 21600 18900	9950 11300 11800 10000 6600	6980 6650 6330 6600 8030
16 17 18 19 20	12900 13400 14000 14300 14800	10200 10200 10200 9600 8830	8550 8780 8980 8950 8780	e4500 e4500 e4750 e5500 e6250	9350 10000 10000 9980 11700	17400 16200 14800 14400 15100	40000 39000 38000 36800 34800	11000 12700 12400 13500 14000	e14800 15000 15500 18200 21300	17400 16100 15100 13600 12900	7180 9050 9850 9800 9050	8250 7680 7300 6680 6380
21 22 23 24 25	14700 14100 13500 12600 12900	8600 8230 7550 6330 6030	8430 8280 8350 8250 8480	e7500 9380 10300 10400 10300	13800 13600 14200 14900 15000	15100 14800 15200 15400 14600	32800 31300 30000 29300 27500	13600 13200 12800 13000 14000	e21500 19300 19300 19600 19800	13000 13600 13900 12900 12200	9380 10400 11400 10900 9500	6150 5830 5750 6430 7280
26 27 28 29 30 31	11400 10300 10500 10900 11000 10500	8430 10100 9680 9800 9280	8400 7580 7080 6350 6230 6330	10300 10200 10100 9750 9480 9250	15200 16200 18000 	13500 12800 12800 14600 15300 19900	26800 25500 23800 23300 23100	14500 14200 12600 12200 13100 13500	19600 18700 19000 21300 23200	11700 11500 10400 9280 8230 7830	11800 12600 12100 10100 9000 9230	6800 6350 6250 6100 7450
TOTAL MEAN MAX MIN AC-FT CFSM IN.	335980 10840 14800 7280 666400 .13 .15	286770 9559 10600 6030 568800 .11 .12	260460 8402 9400 6230 516600 .10	242770 7831 10400 4500 481500 .09	308650 11020 18000 8000 612200 .13 .13	574400 18530 25500 12800 1139000 .22 .25	1021200 34040 44500 23100 2026000 .40 .44	453800 14640 21800 10700 900100 .17 .20	476300 15880 23200 11200 944700 .19 .21	631440 20370 34800 7830 1252000 .24 .27	308580 9954 12600 6600 612100 .12 .13	209680 6989 8650 5750 415900 .08
STATIS	TICS OF 1	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	93 - 1998	3, BY WATI	ER YEAR (V	ĮΥ)			
MEAN MAX (WY) MIN (WY)	12390 15960 1996 7741 1997	13890 18320 1996 9559 1998	10800 11680 1997 8402 1998	10210 12780 1995 7831 1998	11020 14510 1994 8358 1993	17140 19900 1995 13260 1993	31980 43980 1997 21540 1994	26140 34520 1993 14640 1998	19810 35240 1993 13010 1997	21780 49690 1993 11950 1995	15070 28330 1993 8985 1996	12500 21640 1993 6083 1996
SUMMAR	Y STATIS	rics	FOR	1997 CAL	ENDAR YEA	R	FOR 1998	WATER YEA	AR.	WATER	YEARS 1993	- 1998
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN	T ANNUAL I ANNUAL I T DAILY I DAILY M SEVEN-DA TANEOUS I TANEOUS I	MEAN MEAN EAN AY MINIMUN PEAK FLOW PEAK STAGI	3	5882290 16120 59300 6030 7210	Apr 1 Nov 2 Dec 2	5 5		Jan 1 Jan 1 Apr 1 .07 Apr 1	.6,17 .3 .1 .1,12	16910 23060 14000 59500 4370 4860	Sep	1993 1998 7 1993 22 1996 18 1996
ANNUAL ANNUAL 10 PER 50 PER	RUNOFF RUNOFF RUNOFF CENT EXCL CENT EXCL	(CFSM) (INCHES) EEDS EEDS		11670000 2.! 28300 13000 8820	19		10140000 2 26200 10700 7060	.16 .22			20 68	

e Estimated

MISSISSIPPI RIVER MAIN STEM

05420460 BEAVER SLOUGH AT THIRD STREET CLINTON, IA--Continued

05420500 MISSISSIPPI RIVER AT CLINTON, IA

(National stream-quality accounting network station)

LOCATION.--Lat $41^{\circ}46!50$ ", long $90^{\circ}15!07$ ", in $NW^{1}/_{4}$ sec.34, T.81 N., R.6 E., Clinton County, Hydrologic Unit 07080101, on right bank at end of Eighth Avenue in Camanche, 5.0 mi upstream from Wapsipinicon River, 6.4 mi downstream from Clinton, 10.6 mi downstream from Lock and Dam 13, and at mile 511.8 upstream from Ohio River.

DRAINAGE AREA.--85,600 mi^2 , approximately, at Fulton-Lyons Bridge at Clinton.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June to August 1873 (fragmentary), October 1873 to current year (October 1932 to September 1939, published as "at Le Claire") (June 1873 to December 1932 published in the Iowa State Planning Board report "Stream-flow records of Iowa, 1873-1932").

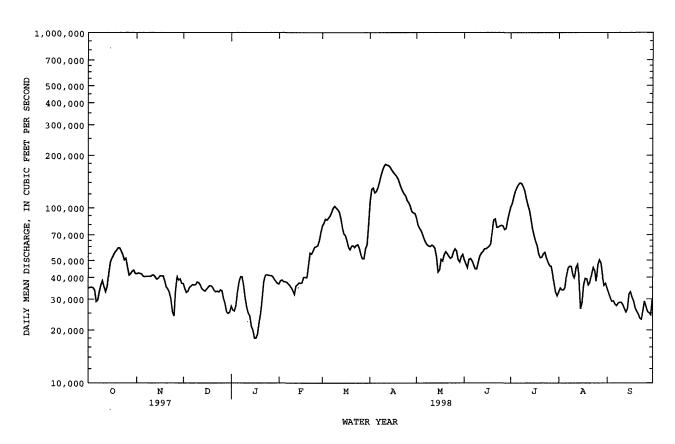
REVISED RECORDS. -- WDR IA-75-1: 1974.

GAGE.--Water-stage recorder. Datum of gage is 562.68 ft above sea level. June 6, 1969 to Sept. 16, 1988, water-stage recorder at site 400 ft upstream at same datum. Auxiliary water-stage recorder at Lock and Dam 13 since Oct. 1, 1958. See WSP 1728 for history of changes prior to Oct. 1, 1955.

REMARKS.--Estimated daily discharges: Jan. 11-21, June 12-16, and June 21. Records good except those for estimated daily discharges, which are poor. Minor flow regulation caused by navigation dams. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known since at least 1828, that of Apr. 28, 1965.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES


					2411	DI 1111111 V	· HOLD					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	34800	42000	36900	27300	36700	78500	108000	87300	50200	101000	33000	34600
2	35100	42400	34500	26000	38300	81500	128000	79500	47800	106000	34700	32500
3	35200	42200	32800	25700	38600	85900	130000	76300	45400	116000	33900	30600
4	35000	41900	33400	27500	37800	85000	122000	73900	50500	125000	33800	29100
5	33900	40700	35100	32700	37800	87300	124000	70200	51100	131000	34900	29300
6	29100	40400	35700	37500	37600	89700	130000	66400	49600	136000	41200	28100
7	29600	40600	36400	40400	36800	94100	140000	63000	47100	139000	45200	27500
8	33100	40600	36200	40300	36000	99600	152000	61200	44600	138000	46300	28400
9	36200	40600	36400	36100	35000	102000	164000	60200	44600	133000	46000	28700
10	38300	40600	37600	30500	33700	99800	173000	59900	48600	125000	41200	28700
11	35600	41400	37400	e27000	22000	97600	178000	61000	52800	113000	39800	27900
					32000				e55000	104000	45300	26600
12	33200	41100	36300	e25000	35800	94300	176000	60300				
13	35500	40100	34500	e24000	36400	86600	175000	58500	e56000	96900	47300	25300
14	42600	39100	33900	e21000	37300	76800	171000	52300	e58000	86300	40000	26400
15	49100	39700	33400	e20000	37000	70700	165000	42900	e58000	7570 0	26400	32100
16	51600	40900	34200	e18000	37400	69400	160000	44000	e59000	69400	28700	33000
17	53700	40800	35100	e18000	40000	64700	156000	50600	60000	64300	36200	30700
18	55900	40800	35900	e19000	40100	59300	152000	49500	61900	60400	39400	29200
19	57300	38400	35800	e22000	39900	57600	147000	53900	72900	54200	39200	26700
20	59000	35300	35100	e25000	46700	60300	139000	55900	85100	51700	36200	25500
21	58800	34400	33700	e30000	55100	60500	131000	54500	e8 6 000	52100	37500	24600
22	5 6 500	32900	33100	37500	54400	59200	125000	52700	77000	54500	41700	23300
23	53900	30200	33400	41100	56600	60800	120000	51300	77100	55500	45400	23000
24	50400	25300	33000	41400	59400	61400	117000	52100	78400	51400	43500	25700
25	51400	24100	33900	41100	59900	58500	110000	55800	79000	48600	38000	29100
26	45600	33700	33600	41000	60600	53800	107000	58000	78400	46600	47100	27200
2 7	41300	40300	30300	40900	64800	51100	102000	56600	74900	46100	50200	25400
28	42000	38700	28300	40300	71900	51100	95200	50400	75900	41400	48200	25000
29	43500	39200	25400	39000		58500	93300	48900	85000	37100	40500	24400
30	44000	37100	24900	37900		61100	92500	52400	92800	32900	36000	29800
31	42100		25300	37000		79500		54000		31300	36900	
TOTAL	1343300	1145500	1041500	970200	1233600	2296200	4083000	1813500	1902700	2523400	1233700	838400
MEAN	43330	38180	33600	31300	44060	74070	136100	58500	63420	81400	39800	27950
MAX	59000	42400	37600	41400	71900	102000	178000	87300	92800	139000	50200	34600
MIN	29100	24100	24900	18000	32000	51100	92500	42900	44600	31300	26400	23000
	2664000	2272000	2066000	1924000	2447000	4555000	8099000	3597000	3774000	5005000	2447000	1663000
CFSM	.51	.45	.39	.37	.51	.87	1.59	.68	.74	.95	.46	.33
IN.	.58	.50	.45	. 42	.54	1.00	1.77	.79	.83	1.10	.54	.36
114.	. 50	. 50	.43	. 42	.54	1.00	1.,,	.,,	.05	1.10	.54	.50
STATI	STICS OF	MONTHLY I	EAN DATA	FOR WATER	YEARS 18	74 - 1998	, BY WATE	R YEAR (W	Y)			
MEAN	41090	39300	27910	25740	27970	50760	90230	81660	68210	55780	37950	38080
MAX	203600	146800	73590	54100	65680	127500	175900	212400	182100	198900	113400	92410
(WY)	1882	1882	1882	1973	1966	1973	1997	1888	1892	1993	1993	1938
MIN	13490	13760	11120	11390	14000	17600	26040	23190	15420	14690	12460	13870
(MA)	1934	1934	1934	1890	1893	1934	1931	1977	1988	1988	1936	1933
/ M T)	1934	1934	1934	1090	1033	1934	1931	13//	1900	1906	1930	1933

MISSISSIPPI RIVER MAIN STEM 93

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	IDAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEAR	s 1874 - 1998
ANNUAL TOTAL	23480300		20425000			
ANNUAL MEAN	64330		55960		48770	
HIGHEST ANNUAL MEAN					94690	1882
LOWEST ANNUAL MEAN					18870	1934
HIGHEST DAILY MEAN	237000	Apr 19	178000	Apr 11,12	307000	Apr 28 1965
LOWEST DAILY MEAN	24100	Nov 25	18000	Jan 16,17	6500	Dec 25 1933
ANNUAL SEVEN-DAY MINIMUM	28800	Dec 25	20300	Jan 13	7430	Dec 24 1933
INSTANTANEOUS PEAK FLOW			178000	Apr 11,12		
INSTANTANEOUS PEAK STAGE			18.21	Apr 11,12	24.65	Apr 28 1965
ANNUAL RUNOFF (AC-FT)	46570000		40510000		35330000	
ANNUAL RUNOFF (CFSM)	.75		. 65		. 57	
ANNUAL RUNOFF (INCHES)	10.20)	8.88		7.74	
10 PERCENT EXCEEDS	113000		105000		94300	
50 PERCENT EXCEEDS	51400		42600		37500	
90 PERCENT EXCEEDS	35300		28200		19000	

e Estimated

MISSISSIPPI RIVER MAIN STEM

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

WATER QUALITY RECORDS

PERIOD OF RECORD.--October 1974 to September 1987, October 1994 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

OCT 15 0930 50500 378 7.5 170 39 NOV 21 0930 36000 349 7.8 1.0 1.3 2.8 13.8 99 748 170 39 JAN 30 1030 39000 426 8.0 .5 .0 1.8 180 43 MAR 25 1030 57500 387 8.2 4.5 16.5 3.8 14.1 111 746 180 43 APR 07 1230 139000 316 7.6 7.5 9.0 27 8.6 75 735 140 33 MAY 11 1145 57700 450 8.2 19.0 24.0 7.1 9.0 100 743 210 45 27 0935 56500 461 7.6 20.5 20.5 9.4 5.0 57 745 200 45 JUN 10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
21 0930 36000 349 7.8 1.0 1.3 2.8 13.8 99 748 170 39 JAN 30 1030 39000 426 8.0 .5 .0 1.8 180 43 MAR 25 1030 57500 387 8.2 4.5 16.5 3.8 14.1 111 746 180 43 APR 07 1230 139000 316 7.6 7.5 9.0 27 8.6 75 735 140 33 MAY 11 1145 57700 450 8.2 19.0 24.0 7.1 9.0 100 743 210 45 27 0935 56500 461 7.6 20.5 20.5 9.4 5.0 57 745 200 45 JUN 10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 48 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
30 1030 39000 426 8.0 .5 .0 1.8 180 43 MAR 25 1030 57500 387 8.2 4.5 16.5 3.8 14.1 111 746 180 43 APR 07 1230 139000 316 7.6 7.5 9.0 27 8.6 75 735 140 33 MAY 11 1145 57700 450 8.2 19.0 24.0 7.1 9.0 100 743 210 45 27 0935 56500 461 7.6 20.5 20.5 9.4 5.0 57 745 200 45 JUN 10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
25 1030 57500 387 8.2 4.5 16.5 3.8 14.1 111 746 180 43 APR 07 1230 139000 316 7.6 7.5 9.0 27 8.6 75 735 140 33 MAY 11 1145 57700 450 8.2 19.0 24.0 7.1 9.0 100 743 210 45 27 0935 56500 461 7.6 20.5 20.5 9.4 5.0 57 745 200 45 JUN 10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
07 1230 139000 316 7.6 7.5 9.0 27 8.6 75 735 140 33 MAY 11 1145 57700 450 8.2 19.0 24.0 7.1 9.0 100 743 210 45 27 0935 56500 461 7.6 20.5 20.5 9.4 5.0 57 745 200 45 JUN 10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
11 1145 57700 450 8.2 19.0 24.0 7.1 9.0 100 743 210 45 27 0935 56500 461 7.6 20.5 20.5 9.4 5.0 57 745 200 45 JUN 10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
27 0935 56500 461 7.6 20.5 20.5 9.4 5.0 57 745 200 45 JUN 10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
JUN 10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
10 1230 47500 478 7.4 18.5 23.3 10 6.5 71 745 210 48 JUL 01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
01 0920 97000 440 7.4 25.7 28.0 59 4.7 59 746 190 46 09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
09 1230 131000 363 6.8 26.8 29.0 19 4.4 56 750 160 38 28 0930 43500 425 8.0 25.5 30.2 7.4 7.6 95 746 190 45 AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
AUG 25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
25 0925 34700 409 8.1 25.7 27.7 15 6.3 79 745 180 42 SEP 23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
23 0930 22500 442 7.8 20.1 21.1 12 7.3 81 753 200 43
ALVA. CAD. DICAD.
MAGNE
OCT
15 18 10 11 .3 2.5 143 0 175 22 15 .15 7.9 NOV
21 17 10 12 .3 2.1 150 0 183 20 15 <.10 8.9 JAN
30 18 12 12 .4 2.2 154 0 188 26 17 .14 8.2 MAR
25 17 9.0 10 .3 2.8 156 19 151 28 16 .13 9.3 APR
07 13 7.0 10 .3 2.8 118 0 144 23 13 .12 8.6 MAY
11 23 9.7 9 .3 2.6 142 3 167 59 15 .16 1.0
27 22 9.9 9 .3 2.7 161 0 197 51 15 .14 4.1
JUN 10 22 10 10 .3 2.5 170 0 207 43 17 .21 8.2
JUL
01 18 8.4 9 .3 2.9 152 0 185 31 14 .20 11
01 18 8.4 9 .3 2.9 152 0 185 31 14 .20 11 09 15 7.3 9 .3 2.7 130 0 159 22 12 .13 15
01 18 8.4 9 .3 2.9 152 0 185 31 14 .20 11 09 15 7.3 9 .3 2.7 130 0 159 22 12 .13 15

MISSISSIPPI RIVER MAIN STEM 95 05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	SOLIDS, DIS- SOLVED (TONS PER DAY) (70302)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
OCT 15 NOV	218	204	.30	29700	.56	. 629	.021	. 074	. 64	.085	. 089	.140
21 JAN	211	208	.29	20500		1.30	<.010	<.020	. 52	.056	.043	. 057
30	260	226	.35	27400	.35	1.55	.016	.085	.43	.017	<.010	.010
MAR 25	245	231	.33	38000		2.81	.032	<.020	.79	.002	.015	.092
APR 07	203	183	.28	76200	.79	2.69	.022	.046	.84	.047	.058	.183
MAY												
11	276	249	.38	43000	. 68	1.89	.024	.066	.75	.012	.019	. 103
27	262	253	.36	40000	. 57	1.17	.063	. 033	. 60	.065	.026	.129
JUN												
10 JUL	287	262	.39	36800	. 61	2.00	.051	.138	.75	.007	.048	.134
01	261	235	.35	68400		2.80	.146	<.020	1.2	.141	.132	.446
09	225	199	.31	79600	.89	1.94	.087	.075	.96	.113	.100	.232
28	260	236	.35	30500		1.53	.023	<.020	.74	.126	.090	.151
AUG	200	250	. 55	30300		1.23	.023	<.020	. / 4	.120	.030	. 131
25	236	214	.32	22100	.75	. 698	.019	.126	.88	.128	.118	.199
SEP 23	251	247	.34	15200		.869	.027	.125		.115	.121	.177
23	231	247	.54	13200		.009	.027	.123		.113	.121	.1//
DATE	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
DATE	MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM	DIS- SOLVED (UG/L AS AS)	INUM, DIS- SOLVED (UG/L AS AL)	DIS- SOLVED (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L AS CO)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)
	MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM	DIS- SOLVED (UG/L AS AS)	INUM, DIS- SOLVED (UG/L AS AL)	DIS- SOLVED (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)	DIS- SOLVED (UG/L AS CD)	MIUM, DIS- SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L AS CO)	DIS- SOLVED (UG/L AS CU)	DIS- SOLVED (UG/L AS FE)
OCT 15 NOV	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	DIS- SOLVED (UG/L AS AS) (01000)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 15 NOV 21	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	DIS- SOLVED (UG/L AS AS) (01000)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 15 NOV 21 JAN 30	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	DIS- SOLVED (UG/L AS AS) (01000)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)	DIS- SOLVED (UG/L AS CD) (01025)	MIUM, DIS- SOLVED (UG/L AS CR) (01030)	DIS- SOLVED (UG/L AS CO) (01035)	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 15 NOV 21 JAN 30 MAR 25	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	DIS- SOLVED (UG/L AS AS) (01000)	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0	DIS- SOLVED (UG/L AS CU) (01040)	DIS- SOLVED (UG/L AS FE) (01046) 7.4
OCT 15 NOV 21 JAN 30 MAR 25 APR 07	MENT, SUS- PENDED (MG/L) (80154) 32 13	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 98 93 74	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9	DIS- SOLVED (UG/L AS BA) (01005) 39 31	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0	DIS- SOLVED (UG/L) (AS CD) (01025) <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6	DIS- SOLWED (UG/L AS CO) (01035) <1.0 <1.0	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.4 <1.0	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33
OCT 15 NOV 21 JAN 30 MAR 25 APR 07	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300	SUSP. SIEVE DIAM. FINER THAN .062 M(70331) 98 93 74 96 98	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CU) (01040) 1.4 	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158 41	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300 6390	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 98 93 74 96 98 98	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35 36 43	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5 1.6	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.4 <1.0 1.4 4.0 1.3	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66 <10
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300	SUSP. SIEVE DIAM. FINER THAN .062 M(70331) 98 93 74 96 98	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CU) (01040) 1.4 	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158 41 40	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300 6390 6100	SUSP. SIEVE DIAM. FINER THAN (70331) 98 93 74 96 98 96 96	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1 <1 <1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4 1.7	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35 36 43 50	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5 1.6	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	DIS- SOLVED (UG/L AS CU) (01040) 1.4 	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66 <10 <10
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158 41	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300 6390	SUSP. SIEVE DIAM. FINER THAN .062 MM (70331) 98 93 74 96 98 98	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35 36 43	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5 1.6	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.4 <1.0 1.4 4.0 1.3	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66 <10
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158 41 40	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300 6390 6100	SUSP. SIEVE DIAM. FINER THAN (70331) 98 93 74 96 98 96 96	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1 <1 <1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4 1.7	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35 36 43 50	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5 1.6	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	DIS- SOLVED (UG/L AS CU) (01040) 1.4 	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66 <10 <10
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUN	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158 41 40 35	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300 6390 6100 4490 59500	SUSP. SIEVE DIAM. FINER THAN .062 M(70331) 98 93 74 96 98 96 97 99	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4 1.7 1.7 3.6 1.9	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35 36 43 50 51	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5 1.6 1.4 2.0 2.2	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	DIS- SOLVED (UG/L AS CU) (01040) 1.4 	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66 <10 <10 <10
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158 41 40 35	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300 6390 6100 4490 59500 42800	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 98 93 74 96 98 96 97	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4 1.7 1.7	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35 36 43 50	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5 1.6	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.4 <1.0 1.4 4.0 1.3 1.4 1.3	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66 <10 <10
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 JUN 10 JUL 01 09	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158 41 40 35 227 121	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300 6390 6100 4490 59500	SUSP. SIEVE DIAM. FINER THAN (70331) 98 93 74 96 98 96 97 99 99	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4 1.7 1.7 3.6	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35 36 43 50 51	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5 1.6 1.4 2.0 2.2	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.4 <1.0 1.4 4.0 1.3 1.4 1.3	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66 <10 <10 <10
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL 01 01	MENT, SUS- PENDED (MG/L) (80154) 32 13 19 32 158 41 40 35 227 121	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 4360 1260 2000 4970 59300 6390 6100 4490 59500 42800	SUSP. SIEVE DIAM. FINER THAN (70331) 98 93 74 96 98 96 97 99 99	DIS- SOLVED (UG/L AS AS) (01000) 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	INUM, DIS- SOLVED (UG/L AS AL) (01106) 1.5 2.9 3.4 2.5 6.4 1.7 1.7 3.6	DIS- SOLVED (UG/L AS BA) (01005) 39 31 34 35 36 43 50 51	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	DIS- SOLVED (UG/L AS CD) (01025) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	MIUM, DIS- SOLVED (UG/L AS CR) (01030) 1.5 2.6 4.1 1.5 1.6 1.4 2.0 2.2	DIS- SOLVED (UG/L AS CO) (01035) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.	DIS- SOLVED (UG/L AS CU) (01040) 1.4 1.4 <1.0 1.4 4.0 1.3 1.4 1.3	DIS- SOLVED (UG/L AS FE) (01046) 7.4 33 60 58 66 <10 <10 <10

MISSISSIPPI RIVER MAIN STEM

$05420500\ \mbox{MISSISSIPPI}$ RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)
OCT 15 NOV	<1.0	4	6.3	1.2	1.7	<1	<1.0	86	<6	<1.0	1.2	E.0367
21	<1.0	<4	16	<1.0	1.3	<1	<1.0	78	<6	2.8	<1.0	E.0215
JAN 30	<1.0	4	17	<1.0	1.1	<1	<1.0	84	<10	7.9	<1.0	E.0209
MAR 25	<1.0	6	5.0	<1.0	1.3	<1	<1.0	85	<10	4.5	1.7	E.0274
APR 07	1.7	<4	6.2	<1.0	1.5	<1	<1.0	69	<10	47	1.1	E.0320
MAY				4.5		_	.1 0	101	-10	2 2	2.2	T 0103
11	<1.0	11	1.8	1.3	1.9	<1	<1.0	121	<10	2.3	3.3	E.0183
27	<1.0	9	14	1.3	1.9	<1	<1.0	117	<10	4.7	2.5	E.0276
JUN 10 JUL	<1.0	9	16 ·	1.3	1.7	<1	<1.0	117	<10	3.9	2.3	E.0379
01	<1.0	8	<1.0	1.2	1.6	<1	<1.0	102	<10	21	1.8	E.130
09	<1.0	6	4.5	1.1	1.7	<1	<1.0	85	<10	4.1	1.2	E.0940
28	<1.0	7	2.0	1.4	1.6	<1	<1.0	102	<10	2.8	1.9	E.0592
AUG	-11.0	•	2.0	2.2	0		-2.0	-0-		2.0		
25 SEP	<1.0	6	1.7	1.3	1.4	<1	<1.0	90	<10	2.1	1.3	E.0391
23	<1.0	5	1.8	1.3	1.6	<1	<1.0	86	<10	2.0	1.2	E.0512
DATE	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	NITRO- GEN DIS- SOLVED (MG/L AS N) (00602)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	HARD- NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	HARD- NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	GEN, TOTAL (MG/L AS N) (00600)	GEN DIS- SOLVED (MG/L AS N) (00602)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 15 NOV	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	GEN, TOTAL (MG/L AS N) (00600)	GEN DIS- SOLVED (MG/L AS N) (00602)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, NITRATE DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
ОСТ 15	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	GEN, TOTAL (MG/L AS N) (00600)	GEN DIS- SOLVED (MG/L AS N) (00602)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 15 NOV 21 JAN 30	WATER WHOLE LAB (STAND- ARD UNITS) (00403)	GEN, TOTAL (MG/L AS N) (00600)	GEN DIS- SOLVED (MG/L AS N) (00602)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 15 NOV 21 JAN 30 MAR 25	WATER WHOLE LAB (STAND- ARD UNITS) (00403) 8.1	GEN, TOTAL (MG/L AS N) (00600) 1.3	GEN DIS- SOLVED (MG/L AS N) (00602)	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660)	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689)	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904)	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905)	MONY, DIS- SOLVED (UG/L AS SB) (01095)
OCT 15 NOV 21 JAN 30 MAR 25 APR 07	WATER WHOLE LAB (STAND-ARD UNITS) (00403) 8.1 8.1 8.2	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .4032	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY	WATER WHOLE LAB (STAND- ARD UNITS) (00403) 8.1 8.1 8.2 8.3	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .403240	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28	NESS NONCARB DISSOLV LAB AS CACC3 (MG/L) (00905)	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY	WATER WHOLE LAB (STAND- ARD UNITS) (00403) 8.1 8.1 8.2 8.3 8.0 8.3	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6 3.5	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3 3.1	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .403240 .47	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66 1.86	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44 .44	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50 .80 2.9 2.5	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28 22 18	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13 13 26 17	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0 <1.0 <1.0
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11	WATER WHOLE LAB (STAND- ARD UNITS) (00403) 8.1 8.1 8.2 8.3	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .403240	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50 .80 2.9	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28 28 22	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13 13 26	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0 <1.0 <1.0
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY	WATER WHOLE LAB (STAND- ARD UNITS) (00403) 8.1 8.1 8.2 8.3 8.0 8.3	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6 3.5	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3 3.1	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .403240 .47	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66 1.86	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44 .44	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50 .80 2.9 2.5	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28 22 18	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13 13 26 17	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0 <1.0 <1.0
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL	WATER WHOLE LAB (STAND- ARD UNITS) (00403) 8.1 8.1 8.2 8.3 8.0	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6 3.5 2.6 1.8	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3 3.1 2.4 1.8 2.5	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .403240 .47	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66 1.86 1.10 1.95	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44 .54	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01 .14	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50 .80 2.9 2.5 .80	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28 22 18 66 42	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13 13 26 17 58 43	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUN	WATER WHOLE LAB (STAND-ARD UNITS) (00403) 8.1 8.1 8.2 8.3 8.0 8.1 7.9	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6 3.5 2.6 1.8 2.7	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3 3.1 2.4 1.8 2.5 3.3	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .40 .32 .40 .47 .56	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66 1.86 1.10	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44 .54 .59 .52	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01 .14 .04 .20	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5 5.9 6.5	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50 .80 2.9 2.5 .80	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28 22 18 66 42 38	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13 13 26 17 58 43	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL 01 09	WATER WHOLE LAB (STAND-ARD UNITS) (00403) 8.1 8.1 8.2 8.3 8.0 8.1 7.9	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6 3.5 2.6 1.8 2.7	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3 3.1 2.4 1.8 2.5	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .403240 .47 .56	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66 1.86 1.10 1.95 2.65 1.85	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44 .54 .59 .52 .47 .58	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01 .14 .20 .02	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5 5.9 6.5 5.9 6.5	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50 .80 2.9 2.5 .80 1.0	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28 22 18 66 42 38	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13 26 17 58 43 34	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 JUN 10 JUN 10 JUL 01 09	WATER WHOLE LAB (STAND-ARD UNITS) (00403) 8.1 8.1 8.2 8.3 8.0 8.1 7.9 7.8 8.2	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6 3.5 2.6 1.8 2.7 4.0 2.9 2.3	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3 3.1 2.4 1.8 2.5 3.3 2.5	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .403240 .47 .56 .3851	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66 1.86 1.10 1.95 2.65 1.85 1.50	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44 .54 .59 .52 .47 .58 .46	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01 .14 .04 .20 .02	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5 5.9 6.5 5.2	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50 .80 2.9 2.5 .80 1.0	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28 22 18 66 42 38 36 26	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13 13 26 17 58 43 34	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL 01 01	WATER WHOLE LAB (STAND-ARD UNITS) (00403) 8.1 8.1 8.2 8.3 8.0 8.1 7.9	GEN, TOTAL (MG/L AS N) (00600) 1.3 1.8 2.0 3.6 3.5 2.6 1.8 2.7	GEN DIS- SOLVED (MG/L AS N) (00602) 1.1 1.8 2.0 3.3 3.1 2.4 1.8 2.5	GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607) .403240 .47 .56 .3851	GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) .608 1.54 2.77 2.66 1.86 1.10 1.95 2.65 1.85	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) .47 .45 .40 .44 .54 .59 .52 .47 .58	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) (00660) .26 .17 .05 .01 .14 .04 .20 .02 .43 .35 .39	ORGANIC DIS- SOLVED (MG/L AS C) (00681) 5.8 5.6 5.7 .80 6.5 5.9 6.5 5.2 5.0 6.9 6.4	ORGANIC SUS- PENDED TOTAL (MG/L AS C) (00689) .50 .40 .50 .80 2.9 2.5 .80 1.0 >10 1.6 .80	NESS NONCARB DISSOLV FLD. AS CACO3 (MG/L) (00904) 28 16 28 22 18 66 42 38 36 26 14	NESS NONCARB DISSOLV LAB AS CACO3 (MG/L) (00905) 21 13 26 17 58 43 34 29 20 18	MONY, DIS- SOLVED (UG/L AS SB) (01095) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

DATE	PROP- CHLOR, WATER, DISS, REC (UG/L) (04024)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	FONOFOS WATER DISS REC (UG/L) (04095)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	P,P' DDE DISSOLV (UG/L) (34653)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	LINDANE DIS- SOLVED (UG/L) (39341)
OCT 15	<.0070	<.0020	.0059	E.0068	.0117	<.0030	150	<.0020	<.0060	<.0040	<.004
NOV 21	<.0070	<.0020	.0052	<.0180	<.0040	<.0030	150	<.0020	<.0060	<.0040	<.004
JAN 30	<.0070	<.0020	E.0032	E.0031	<.0040	<.0030	170	<.0020	E.0008	<.0040	<.004
MAR 25	<.0070	<.0020	<.0050	<.0180	<.0090	<.0030	150	<.0020	E.0016	<.0040	<.004
APR 07 MAY	<.0070	<.0020	.0069	<.0180	.0082	<.0030	120	<.0020	E.0014	<.0040	<.004
11 27 JUN	<.0070 <.0070	<.0020 <.0020	<.0050 .0126	<.0180 E.0049	.0116 .0707	<.0030 <.0030	150 160	<.0020 <.0020	<.0060 <.0060	<.0040 .0047	<.004 <.004
10 JUL	<.0070	<.0020	.0138	E.0088	.0948	<.0030	170	<.0020	<.0060	<.0040	<.004
01	<.0070	<.0020	.0162	<.0180	.110	<.0030	160	<.0020	<.0060	<.0040	<.004
09	<.0070	<.0020	.0119	E.0072	.117	<.0030	140	<.0020	<.0060	<.0040	<.004
28	<.0070	<.0020	.0106	<.0180	.0405	<.0030	170	<.0020	<.0060	<.0040	<.004
AUG 25 SEP	<.0070	<.0020	<.0050	<.0180	<.0040	<.0030	170	<.0020	<.0060	<.0040	<.004
23	<.0070	<.0020	E.0033	<.0180	<.0040	<.0030	180	<.0020	<.0060	<.0040	<.004
DATE	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	MALA- THION, DIS- SOLVED (UG/L) (39532)	PARA- THION, DIS- SOLVED (UG/L) (39542)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856)
OCT	ELDRIN DIS- SOLVED (UG/L) (39381)	LACHLOR WATER DISSOLV (UG/L) (39415)	THION, DIS- SOLVED (UG/L) (39532)	THION, DIS- SOLVED (UG/L) (39542)	AZINON, DIS- SOLVED (UG/L) (39572)	ZINE, WATER, DISS, REC (UG/L) (39632)	CHLOR, WATER, DISS, REC, (UG/L) (46342)	CHLOR, WATER FLTRD REC (UG/L) (49260)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856)
OCT 15 NOV	ELDRIN DIS- SOLVED (UG/L) (39381)	LACHLOR WATER DISSOLV (UG/L) (39415)	THION, DIS- SOLVED (UG/L) (39532)	THION, DIS- SOLVED (UG/L) (39542)	AZINON, DIS- SOLVED (UG/L) (39572)	ZINE, WATER, DISS, REC (UG/L) (39632)	CHLOR, WATER, DISS, REC, (UG/L) (46342)	CHLOR, WATER FLTRD REC (UG/L) (49260)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)
OCT 15 NOV 21 JAN	ELDRIN DIS- SOLVED (UG/L) (39381) <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016	THION, DIS- SOLVED (UG/L) (39532) <.005	THION, DIS- SOLVED (UG/L) (39542) <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002	ZINE, WATER, DISS, REC (UG/L) (39632)	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	CHLOR, WATER FLIRD REC (UG/L) (49260) <.0020	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856)
OCT 15 NOV 21 JAN 30	ELDRIN DIS- SOLVED (UG/L) (39381)	LACHLOR WATER DISSOLV (UG/L) (39415)	THION, DIS- SOLVED (UG/L) (39532)	THION, DIS- SOLVED (UG/L) (39542)	AZINON, DIS- SOLVED (UG/L) (39572)	ZINE, WATER, DISS, REC (UG/L) (39632)	CHLOR, WATER, DISS, REC, (UG/L) (46342)	CHLOR, WATER FLTRD REC (UG/L) (49260)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .07
OCT 15 NOV 21 JAN 30	ELDRIN DIS- SOLVED (UG/L) (39381) <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016	THION, DIS- SOLVED (UG/L) (39532) <.005	THION, DIS- SOLVED (UG/L) (39542) <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002	ZINE, WATER, DISS, REC (UG/L) (39632)	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	CHLOR, WATER FLIRD REC (UG/L) (49260) <.0020	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846)	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851)	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856)
OCT 15 NOV 21 JAN 30 MAR 25	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016 .011 .007	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002 <.002	ZINE, WATER, DISS, REC (UG/L) (39632) .066 .041	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002	CHLOR, WATER FLTR REC (UG/L) (49260) <.0020 <.0020	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) .1011	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .07
OCT 15 NOV 21 JAN 30 MAR 25 APR 07	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016 .011 .007	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002 <.002 <.002	ZINE, WATER, DISS, REC (UG/L) (39632) .066 .041 .029	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002	CHLOR, WATER FLITED REC (UG/L) (49260) <.0020 <.0020 <.0020	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) .1011	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .0705
OCT 15 NOV 21 JAN 30 MAR 25 APR 07	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016 .011 .007 .230	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002 <.002 <.002 <.002	ZINE, WATER, DISS, REC (UG/L) (39632) .066 .041 .029 .042	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002	CHLOR, WATER FLITRD REC (UG/L) (49260) <.0020 <.0020 <.0020 .0026 .0048	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) .101106	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8 12	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .0705 .11
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016 .011 .007 .230 .074	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002 <.002 <.002 <.002 <.002 <.002 <.002	ZINE, WATER, DISS, REC (UG/L) (39632) .066 .041 .029 .042 .039	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002	CHLOR, WATER FLITED REC (UG/L) (49260) <.0020 <.0020 <.0020 .0020 .0026 .0048	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) .101106 .08	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8 12 12 8.2	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .0705 .11 .07
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016 .011 .007 .230 .074 .174 .161	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002 <.002 <.002 <.002 <.002 <.002 <.002	ZINE, WATER, DISS, REC (UG/L) (39632) .066 .041 .029 .042 .039 .056 .400	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 .002	CHLOR, WATER FLITTD REC (UG/L) (49260) <.0020 <.0020 <.0020 .0206 .0048 .0307 .252 .152	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) .101106 .08 .04	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8 12 12 4.9 8.6	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .0705 .11 .07 .08 .21
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL 01	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016 .011 .007 .230 .074 .174 .161 .141 .368	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	ZINE, WATER, DISS, REC (UG/L) (39632) .066 .041 .029 .042 .039 .056 .400	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.029 .028 .028	CHLOR, WATER FLITRD REC (UG/L) (49260) <.0020 <.0020 <.0020 .0026 .0048 .0307 .252 .152	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) .101106 .08 .04 .18	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8 12 12 8.2 4.9 8.6	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .0705 .11 .07 .08 .21
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016 .011 .007 .230 .074 .174 .161	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002 <.002 <.002 <.002 <.002 <.002 <.002	ZINE, WATER, DISS, REC (UG/L) (39632) .066 .041 .029 .042 .039 .056 .400	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 .002	CHLOR, WATER FLITTD REC (UG/L) (49260) <.0020 <.0020 <.0020 .0206 .0048 .0307 .252 .152	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) .101106 .08 .04	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8 12 12 4.9 8.6	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .0705 .11 .07 .08 .21 .17
OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL 01	ELDRIN DIS- SOLVED (UG/L) (39381) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	LACHLOR WATER DISSOLV (UG/L) (39415) .016 .011 .007 .230 .074 .174 .161 .141 .368 .267	THION, DIS- SOLVED (UG/L) (39532) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	THION, DIS- SOLVED (UG/L) (39542) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	AZINON, DIS- SOLVED (UG/L) (39572) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	ZINE, WATER, DISS, REC (UG/L) (39632) .066 .041 .029 .042 .039 .056 .400 .386	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	CHLOR, WATER FLITED REC (UG/L) (49260) <.0020 <.0020 <.0020 .0206 .0048 .0307 .252 .152 .138 .0608	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) (71846) .101106 .08 .04 .1810	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) (71851) 2.7 6.8 12 12 8.2 4.9 8.6 12 8.2 8.6	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) (71856) .0705 .11 .07 .08 .21 .17 .48 .29

MISSISSIPPI RIVER MAIN STEM

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

Corr	DATE	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)
21.	15	<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0060	<.0020	<.0040	<.0100
30	21	<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0060	<.0020	<.0040	<.0100
25.	30	<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0060	<.0020	<.0040	<.0100
NOTE	25	<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0060	<.0020	<.0040	<.0100
11	07	<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0060	<.0020	<.0040	<.0100
		- 004	~ 0030	~ 0020	- 0040	~ 0020	~ 0070	- 0020	- 0060	E 0025	- 0040	- 0100
Marter M												
STATE						1.0020					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
OPE		<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0060	E.0025	<.0040	<.0100
AUS AUS												
AUG SEP 25 <.004 <.0030 <.0020 <.0040 <.0020 <.0070 <.0020 <.0020 <.0020 <.0040 <.0020 <.0070 <.0020 <.0060 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0060 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0020 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040												
SEP SEP		<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0000	<.0020	<.0040	<.0100
MOL	25	<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0060	<.0020	<.0040	<.0100
NATE PROP FLUR- ALIN WATER		<.004	<.0030	<.0020	<.0040	<.0020	<.0070	<.0020	<.0060	<.0020	<.0040	E.0042
15												
15	DATE	INATE WATER FLTRD 0.7 U GF, REC (UG/L)	PROP WATER FLTRD 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	LATE WATER FLTRD 0.7 U GF, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L)
21		INATE WATER FLTRD 0.7 U GF, REC (UG/L)	PROP WATER FLTRD 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L)	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L)	LATE WATER FLTRD 0.7 U GF, REC (UG/L)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L)	BARYL WATER FLTRD 0.7 U GF, REC (UG/L)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L)
30	OCT 15	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)
25	OCT 15 NOV 21	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	LATE WATER FLITRD 0.7 U GF, REC (UG/L) (82678)	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680)	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)
O7 <.0040 <.0030 <.0020 <.0030 <.0130 <.0010 <.0010 <.0040 <.0030 <.0020 MAY 11 <.0040	OCT 15 NOV 21 JAN 30	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.0030	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.0130	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.0030	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.0170	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.0010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.0040	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.0030	BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.0020
11	OCT 15 NOV 21 JAN 30 MAR 25	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030	FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030	BENCARB WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020
27	OCT 15 NOV 21 JAN 30 MAR 25 APR 07	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040 <.0040	PROP WATER FLITRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020 <.0020	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030 <.0030	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130 <.0130	AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030 <.0030	FOTON WATER FITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170	LATE WATER FITRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010 <.0010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040 <.0040	BARYL WATER FIJTRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030 <.0030	BENCARB WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020 <.0020 <.0020
JUN 10 <.0040 <.0030 <.0020 <.0030 <.0130 <.0030 <.0170 <.0010 <.0040 <.0030 <.0030 <.0020 JUL 01 <.0040 <.0030 <.0020 E.0248 <.0130 <.0030 <.0170 <.0010 <.0040 <.0040 <.0030 <.0020 09 <.0040 <.0030 <.0020 <.0030 <.0130 <.0030 <.0170 <.0010 <.0040 <.0040 <.0030 <.0020 28 <.0040 <.0030 <.0020 <.0030 <.0130 <.0030 <.0170 <.0010 <.0040 <.0040 <.0030 <.0020 28 <.0040 <.0030 <.0020 <.0030 <.0130 <.0030 <.0170 <.0010 <.0040 <.0040 <.0030 <.0020 AUG 25 <.0040 <.0030 <.0020 <.0030 <.0130 <.0030 <.0170 <.0010 <.0040 <.0040 <.0030 <.0020 SEP	OCT 15 NOV 21 JAN 30 MAR 25 APR 07	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040 <.0040 <.0040	PROP WATER FITTED 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020 <.0020 <.0020	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030 <.0030 <.0030	BUFOS WATER FITTED 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130 <.0130 <.0130 <.0130	AMIDE WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030 <.0030 <.0030	FOTON WATER FITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170	LATE WATER FITRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010 <.0010 <.0010	PANIL WATER FLITED 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040 <.0040 <.0040	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030 <.0030 <.0030	BENCARB WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020 <.0020 <.0020 <.0020
01	OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040 <.0040 <.0040 <.0040	PROP WATER FLITRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020 <.0020 <.0020 <.0020	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030 <.0030 <.0030 <.0030	BUFOS WATER FLITED 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130 <.0130 <.0130	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FOTON WATER FILTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	LATE WATER FITRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010 <.0010 <.0010 <.0010 <.0010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040 <.0040 <.0040 <.0040	BARYL WATER FIJTRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030 <.0030 <.0030	BENCARB WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020
09	OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	PROP WATER FITTED 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BUFOS WATER FITTED 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130	AMIDE WATER WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FOTON WATER FITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	LATE WATER FITRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010	PANIL WATER FLITED 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BENCARB WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020
28 <.0040 <.0030 <.0020 <.0030 <.0130 <.0030 <.0170 <.0010 <.0040 <.0030 <.0020 AUG 25 <.0040 <.0030 <.0020 <.0030 <.0130 <.0030 <.0170 <.0010 <.0040 <.0030 <.0020 <.0020 SEP	OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130	AMIDE WATER FLIRD 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FOTON WATER FLITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BENCARB WATER WATER 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020
AUG 25 <.0040 <.0030 <.0020 <.0030 <.0130 <.0030 <.0170 <.0010 <.0040 <.0030 <.0020 SEP	OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL 01	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	PROP WATER FITRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 E.0248	BUFOS WATER FITTED 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130	AMIDE WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FOTON WATER FITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	LATE WATER FITRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	BARYL WATER FLITRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BENCARB WATER WATER FLITRD 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020
SEP	OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUL 01 09	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	PROP WATER FITRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	FURAN WATER FLITRD 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BUFOS WATER FIJTRD 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130	AMIDE WATER FLITRD 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FOTON WATER FIJTRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	LATE WATER FITRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	BARYL WATER FIJTRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BENCARB WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020
	OCT 15 NOV 21 JAN 30 MAR 25 APR 07 MAY 11 27 JUN 10 JUN 01 09	INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	PROP WATER FITRD 0.7 U GF, REC (UG/L) (82672) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020	FURAN WATER FLITED 0.7 U GF, REC (UG/L) (82674) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BUFOS WATER FITTED 0.7 U GF, REC (UG/L) (82675) <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130 <.0130	AMIDE WATER FLITED 0.7 U GF, REC (UG/L) (82676) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	FOTON WATER FITRD 0.7 U GF, REC (UG/L) (82677) <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170 <.0170	LATE WATER FITRD 0.7 U GF, REC (UG/L) (82678) <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010 <.0010	PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679) <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040 <.0040	BARYL WATER FITRD 0.7 U GF, REC (UG/L) (82680) <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030 <.0030	BENCARB WATER WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020 <.0020

MISSISSIPPI RIVER MAIN STEM

05420500 MISSISSIPPI RIVER AT CLINTON, IA--Continued (National stream-quality accounting network station)

DATE	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063)	TERBUTH YLAZINE SURROGT WAT FLT 0.7 U GF, REC PERCENT (91064)	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065)	BORON, DIS- SOLVED (UG/L AS B) (01020)
OCT											
15 NOV	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	378	113	147	111	28
21 JAN	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	388	131	122	120	24
30 MAR	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	433	92.9	96.3	96.3	24
25 APR	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	413	105	100	86.2	19
07	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	347	97.2	110	90.3	18
MAY 11	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	447	102	108	97.3	30
27	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	446	107	125	104	33
JUN											
10	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	469	112	121	92.3	30
JUL											
01	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	432	116	125	98.0	27
09	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	357	106	118	78.6	43
28 AUG	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	419	98.6	107	110	25
25	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	407	93.6	101	89.0	26
SEP	1.0020	1.0040	1.0050	1.0130	1.0010	1.0050	207	23.0	101	05.0	20
23	<.0020	<.0040	<.0030	<.0130	<.0010	<.0050	434	92.9	106	89.3	22

05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA

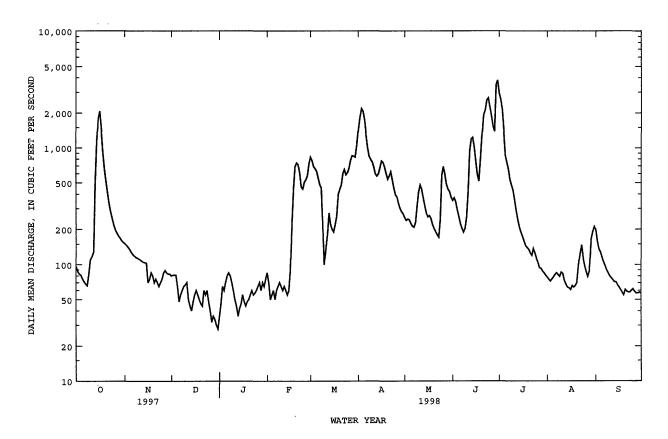
LOCATION.--Lat $42^{\circ}50'10"$, long $92^{\circ}15'26"$, in $NW^1/_4$ $SW^1/_4$ sec. 27, T.93 N., R.12 W., Bremer County, Hydrologic Unit 07080102, 1.0 mile upstream of the mouth of the East Fork of the Wapsipinicon River, and 2.0 miles north of Tripoli.

DRAINAGE AREA. -- 343 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD.--September 1957 to July 1977 (operated as a partial-record low flow measurement site), April 1996 to September 30, 1998. (discontinued)

REVISIONS.--The maximum discharge for the water year 1997 has been revised to 3,080 cfs, March 12, 1997, gage height, 13.79 ft. GAGE.--Water stage recorder. Datum of gage is 1,000 ft above sea level, from map.


REMARKS.--Estimated daily discharges: Nov. 16-26, Dec. 5 to Feb. 16, Mar. 9-16, 18-23, and June 29, 30. Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.

		DISCHARGE	, CUBIC	FEET PER		WATER Y	TEAR OCTOBER VALUES	R 1997 TO	SEPTEMBER	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	96 87 83 81 75	151 147 142 136 129	80 81 81 81 e65	e36 e46 e65 e60 e70	e85 e70 e50 e55 e60	832 780 692 662 626	1440 1860 2180 2070 1740	251 238 244 240 224	353 371 342 293 255	2970 2630 2140 1400 860	78 75 72 75 78	198 157 136 128 115
6 7 8 9 10	71 68 66 82 109	123 119 116 114 112	e48 e55 e60 e65 e67	e80 e85 e80 e70 e60	e50 e60 e65 e70 e65	549 481 451 e200 e100	1300 1010 850 796 756	212 208 228 313 416	222 203 189 204 253	750 656 531 478 426	82 85 82 79 86	106 98 90 85 80
11 12 13 14 15	117 129 490 1090 1800	110 107 105 104 103	e70 e50 e44 e40 e48	e50 e44 e36 e42 e46	e60 e65 e60 e55 e60	e140 e180 e275 e220 e200	684 598 573 596 673	478 441 373 317 274	417 939 1190 1230 1030	350 286 240 209 189	84 73 68 64 63	77 74 71 71 67
16 17 18 19 20	2070 1470 941 658 514	e70 e75 e85 e80 e70	e55 e60 e55 e50 e46	e55 e48 e44 e48 e50	e90 225 454 692 741	e190 218 e260 e400 e440	772 749 681 602 538	255 261 247 219 203	774 592 517 809 1300	174 159 145 140 135	61 66 64 66 70	64 61 58 55 61
21 22 23 24 25	408 331 280 247 217	e75 e70 e65 e70 e75	e44 e60 e55 e60 e48	e55 e60 e55 e57 e60	714 611 460 443 510	e480 e600 e650 588 613	574 623 525 447 395	190 179 171 2 43 581	1940 2110 2570 2690 2270	126 120 137 126 113	98 125 147 114 98	59 58 58 60 62
26 27 28 29 30 31	197 185 175 168 160 155	e85 89 85 83 	e40 e32 e36 e34 e30 e28	e65 e70 e60 e70 e65 e75	533 579 728 	672 786 854 849 833 1050	377 333 302 283 270	689 595 486 440 419 376	1890 1540 1390 e3480 e3810	105 94 93 88 85 81	87 79 88 165 190 210	59 57 57 58 57
TOTAL MEAN MAX MIN AC-FT CFSM IN.	12620 407 2070 66 25030 1.18 1.36	99.3 151 65	1668 53.8 81 28 3310 .16 .18	1807 58.3 85 36 3580 .17 .19	7710 275 741 50 15290 .80 .83	15871 512 1050 100 31480 1.48 1.71	24597 820 2180 270 48790 2.37 2.64	10011 323 689 171 19860 .93 1.08	35173 1172 3810 189 69770 3.39 3.78	16036 517 2970 81 31810 1.50 1.72	2872 92.6 210 61 5700 .27	2437 81.2 198 55 4830 .23 .26
STATIST	rics of Mo	NTHLY MEAN	DATA FOR	R WATER Y	EARS 1996	5 - 1998	, BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	217 407 1998 27.1 1997	99.3 1998 92.7	69.2 84.5 1997 53.8 1998	67.7 77.0 1997 58.3 1998	261 275 1998 246 1997	933 1354 1997 512 1998	622 820 1998 425 1997	326 481 1997 174 1996	721 1172 1998 188 1997	264 517 1998 109 1996	75.6 92.6 1998 49.1 1996	78.2 128 1997 25.3 1996
SUMMAR	7 STATISTI	CS	FOR 19	97 CALEN	DAR YEAR		FOR 1998 WA	ATER YEAR		WATER YE	ARS 1996	- 1998
LOWEST HIGHES' LOWEST ANNUAL INSTAM INSTAM ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		AN AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS DS		2910 28 35 224900 .90 12.19 929 131 59	Mar 12 Dec 31 Dec 25		3810 28 34 4730 14.91 265400 1.06 14.38 839 136 55	5		323 367 280 3810 16 18 4730 14.91 234400 .93 12.70 794 116 44	Oct Oct Jun 2 Jun 2 Oct	1998 1997 0 1998 7 1996 5 1996 9 1998 9 1998 7 1996

e Estimated

WAPSIPINICON RIVER BASIN

05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA--Continued

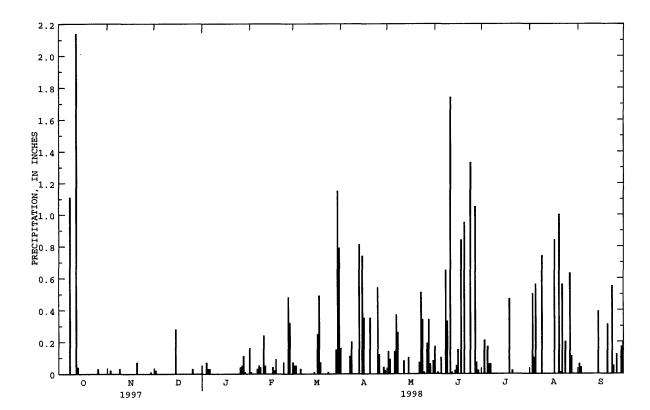
05420680 WAPSIPINICON RIVER NEAR TRIPOLI, IA

PRECIPITATION RECORDS

PERIOD OF RECORD. -- April 10, 1995 to current year.

INSTRUMENTATION. -- Tipping bucket rain gage.

REMARKS.--Estimated totals: Mar. 18-23, and May 14. Estimated values taken from National Weather Service rain gage at Tripoli.


Records good except for estimated days, and the winter period due to intermittent snow accumulation and subsequent melting, which are poor.

EXTREME FOR PERIOD OF RECORD. -- Maximum daily accumulation 2.40 in., June 21, 1997.

EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation, 2.14 in., Oct. 12.

		PREC	IPITATION,	TOTAL,		WATER YEAR LY SUM VAL		1997 то	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.05	.16	.07	.16	.00	.17	.00	.00	.00
2	.00	.00	.02	.00	.01	.05	.00	.14	.00	.00	.00	.06
2 3	.00	. 02	.00	.00	.00	.05	.00	. 09	.01	.21	.50	.04
4	.00	.00	.00	.07	.00	.00	.00	.00	.00	.00	.10	.00
5	.00	.00	.00	.03	.00	.00	.00	.00	.10	.17	.56	.00
6	.00	.00	.00	.03	. 03	. 03	.00	.14	.00	.06	.00	.00
7	.00	.00	.00	.00	.05	.00	. 1'1	.37	.00	.06	.00	.00
8	1.11	.00	.00	.00	.04	.00	.20	.26	. 65	.00	.00	.00
9	.00	. 03	.00	.00	.00	.00	.00	.00	. 33	.00	.74	.00
10	.00	.00	.00	.00	.24	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	.05	.00	.00	.00	1.74	.00	.00	.00
12	2.14	.00	.00	.00	.00	.00	.00	.08	.01	.00	.00	.00
13	.04	.00	.00	.00	.00	.00	.81	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.00	.00	.00	e.00	. 02	.00	.00	.39
15	.00	.00	.28	.00	.00	.01	.74	.10	. 05	.00	.00	.00
16	.00	.00	.00	.00	.04	.00	.35	.00	.15	.00	.00	.00
17	.00	.00	.00	.00	.02	.25	.00	.00	.00	.00	.84	.00
18	.00	.00	.00	.00	.09	e.49	.00	.00	.84	.00	.00	.00
19	.00	.00	.00	.00	.00	e.07	.00	.00	.00	. 47	.00	.00
20	.00	.07	.00	.00	.00	e.00	.35	.00	. 95	.00	1.00	.31
21	.00	.00	.00	.00	.00	e.00	.00	.00	.00	.02	.01	.00
22	.00	.00	.00	.00	.00	e.00	.00	.07	.00	.00	.56	.00
23	.00	.00	.00	.00	.07	e.00	.00	.51	.00	.00	.00	. 5 5
24	.00	.00	.00	.00	.00	.01	.00	.34	1.33	.00	.20	.05
25	.00	.00	.00	.00	.00	.00	.54	.01	.00	.00	.00	.00
26	.03	.00	.03	.04	.48	.00	.12	.00	.00	.00	.00	.12
27	.00	.00	.00	.05	.32	.00	.00	.19	1.05	.00	. 63	.00
28	.00	.00	.00	.11	.00	.00	.00	.34	.07	.00	.11	.00
29	.00	.01	.00	.01		.15	.04	.06	.02	.00	.00	.17
30	.00	.00	.00	.00		1.15	.02	.00	.00	.00	.00	.20
31	.00		.00	.00		. 79		.08		.00	.00	
TOTAL	3.32	0.13	0.33	0.39	1.60	3.12	3.44	2.78	7.49	0.99	5.25	1.89
MEAN	.11	.00	.01	.01	.06	.10	.11	.09	. 25	.03	.17	.06
MAX	2.14	.07	.28	.11	.48	1.15	.81	.51	1.74	. 47	1.00	.55
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

e Estimated

05421000 WAPSIPINICON RIVER AT INDEPENDENCE, IA

LOCATION.--Lat $42^{\circ}27^{\circ}49^{\circ}$, long $91^{\circ}53^{\circ}42^{\circ}$, in $SE^{1}/_{4}$ sec.4, T.88 N., R.9 W., Buchanan County, Hydrologic Unit 07080102, on right bank at Sixth Street in Independence, 1,800 ft downstream from dam at abandoned hydroelectric plant, 4.9 mi downstream from Otter Creek, 9.7 mi upstream from Pine Creek, and at mile 142.5.

DRAINAGE AREA. -- 1,048 mi².

PERIOD OF RECORD. -- July 1933 to current year.

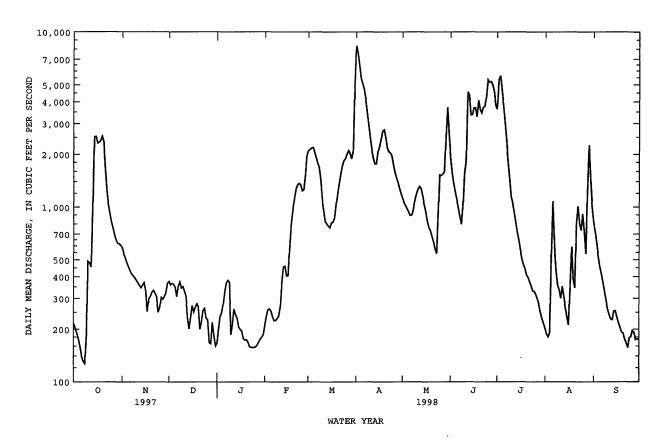
REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1938-39, 1940 (M), 1947.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 882.85 ft above sea level. Prior to May 24, 1941 nonrecording gage in tailrace of powerplant 1,800 ft upstream at datum 80.00 ft lower.

REMARKS.--Estmated daily discharges: March 11-16. Records good except those for estimated daily discharges, which are poor.

Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage since at least 1901, that of July 18, 1968.


		DISCHA	RGE, CUBIO	C FEET PER		WATER Y	EAR OCTOBER	R 1997 TO	SEPTEMBE	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	215 202 189 175 157	584 541 512 479 455	376 360 367 362 348	166 200 235 248 277	210 236 258 261 254	2100 2140 2180 2190 2070	8350 7640 6520 5470 5080	1120 1060 1020 976 938	1920 1570 1360 1220 1100	3640 5380 5660 4670 3830	202 187 181 191 539	817 716 615 518 455
6 7 8 9 10	139 131 127 181 490	433 415 404 395 381	308 352 373 344 351	331 369 381 371 186	236 224 224 230 237	1930 1790 1690 1440 1110	4720 4150 3500 2940 2470	895 901 964 1110 1200	987 883 796 1020 1560	3100 2430 1830 1480 1140	1080 598 434 357 337	411 368 327 291 261
11 12 13 14 15	482 455 1040 2520 2530	369 356 346 358 370	330 309 234 201 234	214 261 242 232 206	268 379 455 460 404	e950 e825 e800 e780 e760	2120 1910 1770 1770 2060	1270 1310 1270 1150 1030	1820 4560 4340 3370 3380	1060 935 820 718 649	301 351 311 268 236	243 229 227 254 255
16 17 18 19 20	2320 2340 2390 2530 2360	333 252 299 309 326	273 251 266 280 270	199 195 177 173 174	405 595 808 956 1130	e810 819 864 1030 1200	2240 2450 2720 2760 2490	944 832 765 734 680	3690 3710 3300 4090 3630	571 510 469 446 410	212 352 592 387 3 4 5	235 218 206 193 190
21 22 23 24 25	1690 1240 1040 926 823	334 322 307 250 265	200 220 256 263 231	169 159 157 157 157	1270 1340 1370 1340 1240	1370 1550 1720 1840 1890	2170 2080 2040 1970 1750	630 575 543 929 1530	3460 3720 3770 4330 5360	396 374 354 331 329	797 1010 807 735 912	175 167 157 179 181
26 27 28 29 30 31	757 690 645 621 616 604	304 297 308 323 366	227 167 165 218 183 160	158 162 169 175 180 186	1260 1510 1960 	2010 2100 2030 1890 2080 5010	1590 1470 1390 1280 1190	1520 1550 1590 2570 3720 2570	5190 5240 5000 4580 3820	315 297 277 250 230 216	722 542 1230 2260 1440 1000	196 192 174 175 176
TOTAL MEAN MAX MIN AC-FT CFSM IN.	30625 988 2530 127 60740 .94 1.09	10993 366 584 250 21800 .35 .39	8479 274 376 160 16820 .26 .30	6666 215 381 157 13220 .21	19520 697 1960 210 38720 .67 .69	50968 1644 5010 760 101100 1.57 1.81	90060 3002 8350 1190 178600 2.86 3.20	37896 1222 3720 543 75170 1.17 1.35	92776 3093 5360 796 184000 2.95 3.29	43117 1391 5660 216 85520 1.33 1.53	18916 610 2260 181 37520 .58 .67	8801 293 817 157 17460 .28 .31
STATIST	rics of M	ONTHLY ME	an data fo	OR WATER Y	EARS 193	84 - 1998	, BY WATER	YEAR (WY	<u>r</u>)			
MEAN MAX (WY) MIN (WY)	388 2306 1973 29.3 1989	442 2280 1992 42.2 1977	305 1962 1992 26.9 1977	227 1411 1946 12.6 1977	353 1698 1984 19.0 1956	1443 3201 1986 68.4 1934	1364 5578 1993 199 1957	917 3860 1991 45.3 1934	949 4721 1947 12.4 1934	689 4836 1993 18.9 1936	551 5443 1993 21.5 1934	376 1940 1981 20.5 1976
SUMMARY	Y STATIST	ics	FOR :	1997 CALEN	DAR YEAR	R 1	FOR 1998 W	ATER YEAR	3	WATER Y	EARS 1934	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC	MEAN F ANNUAL ANNUAL M F DAILY M DAILY ME SEVEN-DA FANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS EDS		288672 791 3860 96 107 572600 .75 10.25 2300 395 165		?	418817 1147 8350 127 157 8990 11.79 830700 14.87 2830 584 188)	3 5 L	668 2304 74.5 23500 7.0 7.1 26800 21.1 484000 .64 8.66 1650 271 51	Oct Jan Jul L Jul	1993 1934 18 1968 1 1933a 24 1977 18 1968 18 1968

a Many days in 1934, when power plant shutdown, Jan 25-30, 1977

e Estimated

WAPSIPINICON RIVER BASIN

05421000 WAPSIPINICON RIVER AT INDEPENDENCE, IA--Continued

WAPSIPINICON RIVER BASIN

05422000 WAPSIPINICON RIVER NEAR DE WITT, IA

LOCATION.--Lat $41^{\circ}46^{\circ}01^{\circ}$, long $90^{\circ}32^{\circ}05^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.6, T.80 N., R.4 E., Clinton County, Hydrologic Unit 07080103, on left bank 5 ft upstream from bridge on Highway 956, 0.9 mi downstream from Silver Creek, 4.0 mi south of water tower in De Witt, 6.2 mi upstream from Brophy Creek, and 18.2 mi upstream from mouth.

DRAINAGE AREA. -- 2,330 mi².

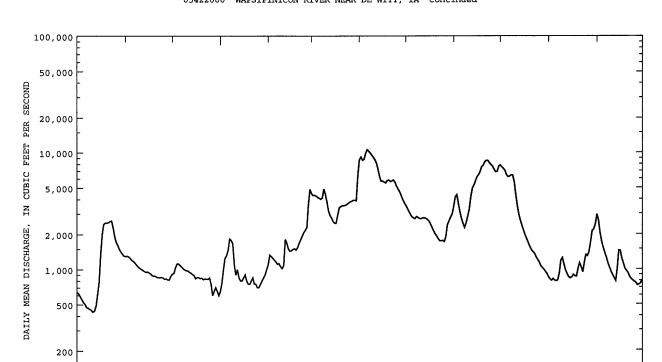
PERIOD OF RECORD. -- July 1934 to current year.

REVISED RECORDS.--WSP 1308: 1937 (M). WSP 1438: Drainage area. WSP 1708: 1951.

GAGE. -- Water-stage recorder. Datum of gage is 598.81 ft above sea level.

REMARKS.--Estimated daily discharges: Dec. 26 to Jan. 1, and Jan. 10 to Feb. 1. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U. S. Army Corps of Engineers rain gage and satellite data collection platform at station.

		DISCHA	RGE, CUBI	C FEET PE		WATER Y Y MEAN V		ER 1997 TO	SEPTEMB	ER 1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	636	1300	919	e650	e1100	4470	8700	3550	3450	7810	856	2950
2	622	1310	928	765	1330	4310	9160	3350	4170	7520	819	2630
3	587	1290	1040	1000	1290	4330	8630	3150	4340	7280	798	2060
4	555	1250	1120	1250	1250	4260	8770	2980	3670	7010	827	1740
5	524	1200	1120	1310	1200	4150	9860	2830	3080	6440	799	1540
6	505	1180	1090	1470	1160	4080	10600	2760	2720	6200	792	1380
7	474	1140	1060	1830	1110	4010	10300	2720	2470	6260	801	1260
8	469	1100	1020	1780	1120	4110	9940	2830	2280	6 420	926	1130
9	458	1060	997	1670	1060	4900	9550	2780	2490	6400	1190	1040
10	451	1030	983	ell00	1020	4410	9140	2720	2820	5550	1250	959
11	434	1010	979	e900	1080	3780	8730	2710	3250	4290	1100	895
12	444	989	95 5	e1000	1810	3190	8170	2760	4200	3480	978	843
13	489	970	939	e850	1690	2920	7270	2760	4970	2940	912	792
14	613	951	911	e800	1510	2770	6310	2730	5240	2610	856	1010
15	786	959	893	e800	1440	2580	5720	2670	5720	2370	837	1450
16	1350	942	837	e850	1450	2500	5710	2590	6190	2160	854	1440
17	2020	925	856	e900	1490	2490	5610	2450	6440	1970	899	1230
18	2450	889	854	e800	1510	2930	5510	2290	6820	1820	872	1120
19	2520	881	838	e750	1470	3380	5780	2140	7580	1690	868	1010
20	2520	881	847	e750	1550	3460	5830	2020	7760	1570	1010	966
21	2540	861	822	e800	1680	3520	5660	1930	8310	1470	1130	928
22	2590	856	832	e850	1800	3520	5730	1830	8530	1410	1040	863
23	2620	854	827	e750	1930	3550	5840	1760	8540	1370	943	823
24	2310	862	826	e750	2070	3610	5570	1750	8170	1280	1140	799
25	1940	852	848	e700	2180	3710	5160	1770	7870	1210	1330	780
26 27 28 29 30 31	1720 1620 1500 1420 1360 1310	827 837 818 817 877	e750 e600 e650 e700 e650 e600	e700 e750 e800 e850 e900 e1000	2290 3640 4860 	3800 3840 3920 3920 3890 6320	4890 4630 4300 3990 3740	1730 1910 2410 2600 2790 2970	7640 7170 6840 6890 7620	1150 1070 1030 998 956 917	1300 1410 1700 2140 2200 2430	764 727 735 751 807
TOTAL	39837	29718	27291	30075	47090	116630	208800	78240	167240	104651	35007	35422
MEAN	1285	991	880	970	1682	3762	6960	2524	5575	3376	1129	1181
MAX	2620	1310	1120	1830	4860	6320	10600	3550	8540	7810	2430	2950
MIN	434	817	600	650	1020	2490	3740	1730	2280	917	792	727
AC-FT	79020	58950	54130	59650	93400	231300	414200	155200	331700	207600	69440	70260
CFSM	.55	. 42	.38	. 42	.72	1.61	2.98	1.08	2.39	1.45	.48	.51
IN.	.63	. 47	.43	. 48	.75	1.86	3.33	1.25	2.66	1.67	.56	.56
STATIS	TICS OF M	ONTHLY MEA	AN DATA F	OR WATER	YEARS 1935	5 - 1998	, BY WATER	R YEAR (WY)			
MEAN	903	1111	923	842	1252	3012	3029	2317	2351	1727	1131	1043
MAX	3549	6435	4945	4086	3798	7137	9768	6351	10950	14280	8550	5647
(WY)	1973	1962	1983	1946	1984	1986	1993	1974	1947	1993	1993	1993
MIN	137	159	104	59.4	104	301	453	323	234	165	103	133
(WY)	1977	1965	1977	1977	1940	1954	1977	1977	1977	1936	1936	1976
SUMMAR	Y STATIST	ICS	FOR	1997 CALE	NDAR YEAR		FOR 1998 W	WATER YEAR		WATER YE	ARS 1935	- 1998
LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	MEAN I ANNUAL M I DAILY M DAILY ME SEVEN-DA TANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS		671744 1840 16400 434 460 1332000 10.77 3980 1060 600	9		920001 2521 10600 434 460 10800 12.6 424 1825000 14.6 6280 1470 792			1637 5461 374 25400 46 47 31100 14.19 1186000 9.52 3900 907 229	Jan Jan Jun Jun	1993 1989 22 1973 22 1977 18 1977 17 1990 17 1990


e Estimated

м 1998

WATER YEAR

J

107

100

0

N 1997

D

108 CROW CREEK BASIN

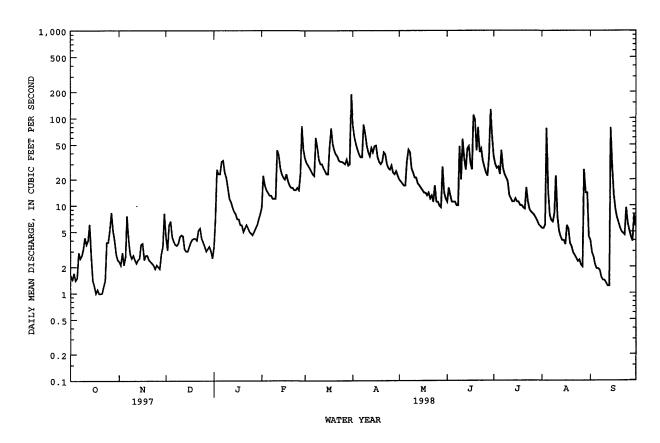
05422470 CROW CREEK AT BETTENDORF, IA

LOCATION.--Lat $41^{\circ}33^{\circ}03^{\circ}$, long $90^{\circ}27^{\circ}15^{\circ}$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec.24, T.78 N., R.4 E., Scott County, Hydrologic Unit 07080101, on left bank 200 ft upstream from bridge on Valley Road (old U.S. Highway 67), 3.5 mi east of U.S. Highway 6, and 0.7 mi upstream from mouth.

DRAINAGE AREA. -- 17.8 mi².

PERIOD OF RECORD. -- October 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 576.23 ft above sea level.


REMARKS.--Estimated daily discharges: Dec. 13-17, Dec. 24 to Jan. 2, Jan. 10 to Feb. 1, and Aug. 1-3. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey satellite data collection platform at station

		DISCHA	RGE, CUBI	C FEET PE	R SECOND, N	WATER YE MEAN VA		1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.6 1.4 1.7 1.4	2.3 2.1 2.9 2.1 2.6	4.3 3.1 6.0 6.6 4.4	e3.4 e7.5 26 23 23	e9.5 22 17 15 14	35 31 29 27 25	85 61 51 44 39	20 19 18 17	11 16 13 11	37 30 27 28 23	e5.5 e5.5 e6.0 77 15	4.0 2.9 2.6 2.1 1.9
6 7 8 9 10	2.9 2.5 2.7 3.2 4.3	7.6 4.1 2.8 2.5 2.7	3.9 3.6 3.5 3.7 4.4	32 33 24 21 e16	13 13 12 12 12	23 22 60 47 34	36 36 85 67 49	32 44 41 27 24	11 10 10 48 20	43 27 23 21 19	7.9 6.8 6.5 8.1	1.9 1.8 1.5 1.4
11 12 13 14 15	3.6 4.0 6.1 2.6 1.4	2.4 2.2 2.4 2.5 3.6	4.6 4.5 e3.2 e3.0 e3.0	e12 e11 e9.5 e8.5 e8.0	43 38 27 23 21	30 30 27 25 23	41 37 46 41 48	21 21 18 17 16	58 34 26 4 5 48	13 12 11 11 12	7.3 5.1 4.4 4.0 4.0	1.3 1.2 1.2 78 28
16 17 18 19 20	1.2 1.0 1.1 .99	3.7 2.4 2.7 2.7 2.4	e3.4 e3.8 4.1 4.2 4.2	e7.0 e7.0 e6.0 e6.0 e5.0	20 23 19 17 16	23 47 77 51 43	49 36 32 30 32	15 14 14 13	31 26 109 97 43	11 11 10 10 9.4	3.6 5.9 5.4 3.7 3.4	13 9.1 7.3 6.4 5.5
21 22 23 24 25	1.0 1.2 1.4 3.8 3.8	2.3 2.2 2.1 1.9 2.1	4.0 5.2 5.5 e4.2 e3.8	e5.5 e6.0 e5.5 e5.0 e4.8	16 15 15 16 15	39 37 33 32 32	41 39 30 27 26	12 13 11 17 11	79 41 45 33 28	9.1 16 11 9.0 8.4	2.9 2.7 2.5 2.3 2.4	5.0 4.8 4.6 9.4 6.3
26 27 28 29 30 31	5.3 8.3 5.2 4.0 2.8 2.4	2.0 1.9 2.8 3.4 8.1	e3.4 e3.0 e3.2 e3.4 e3.0 e2.5	e4.6 e5.0 e5.5 e6.0 e7.0 e8.0	23 82 44 	31 30 34 29 30 189	29 24 23 25 22	11 9.9 9.5 28 14 12	24 22 36 126 63	8.1 7.7 7.2 6.6 6.0 5.8	2.1 2.0 26 14 14 4.4	5.2 4.4 3.9 7.8 5.8
TOTAL MEAN MAX MIN AC-FT CFSM IN.	85.38 2.75 8.3 .99 169 .15	87.5 2.92 8.1 1.9 174 .16	122.7 3.96 6.6 2.5 243 .22 .26	351.8 11.3 33 3.4 698 .64	612.5 21.9 82 9.5 1210 1.23 1.28	1225 39.5 189 22 2430 2.22 2.56	1231 41.0 85 22 2440 2.31 2.57	570.4 18.4 44 9.5 1130 1.03 1.19	1175 39.2 126 10 2330 2.20 2.46	483.3 15.6 43 5.8 959 .88 1.01	282.4 9.11 77 2.0 560 .51	229.7 7.66 78 1.2 456 .43 .48
STATIST	TICS OF MC	NTHLY ME	an data f	OR WATER	YEARS 1978	- 1998,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	10.3 50.9 1982 .67 1989	12.2 45.4 1993 1.19 1990	12.8 44.1 1983 .77 1990	7.88 25.0 1988 1.18 1979	13.1 42.1 1985 .76 1989	22.4 54.6 1979 3.45 1989	20.5 61.3 1983 2.33 1989	24.0 111 1996 1.68 1989	26.3 157 1990 3.17 1988	14.8 65.4 1992 .74 1988	16.6 99.8 1990 .85 1978	7.46 34.7 1992 .49 1988
SUMMAR!	Y STATISTI	:cs	FOR	1997 CALE	NDAR YEAR	F	OR 1998 WA	TER YEAR		WATER Y	EARS 1978	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		EAN EAN IN MINIMUM EAK FLOW EAK STAGE OW FLOW IC-FT) EFSM) INCHES) EDS		. 5:	Feb 21 3 Aug 2 7 Jul 27		1.1 612 6.12	Oct 19, Oct 16 Jun 29 Jun 29 Oct 17a		15.7 31.7 3.39 1660 .11.02 7700 11.01 11370 .84 11.96 33 7.3 1.4	Jun 1 3 Aug 1 1 Aug 1 Jun 1 3 Jun 1	1990 1989 .6 1990 .6 1988 .3 1988 .6 1990 .6 1990

a Also Oct 18,19,21

e Estimated

05422470 CROW CREEK AT BETTENDORF, IA--Continued

05422560 DUCK CREEK AT 110th AVENUE, DAVENPORT, IA

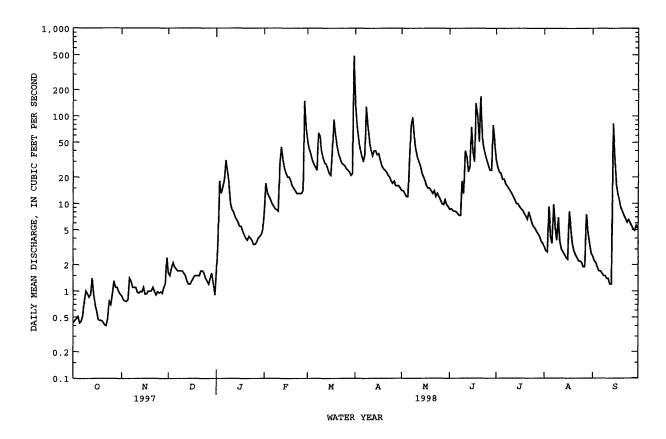
LOCATION.--Lat $41^{\circ}33^{\circ}24^{\circ}$, long $90^{\circ}41^{\circ}15^{\circ}$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$, Sec. 13, T.78 N., R.2 E., Scott County, Hydrologic Unit 07080101, on left bank 20 ft. downstream from the bridge on County Road Y48 (110th Street), 0.3 miles downstream from unnamed creek, 3 miles west of Davenport, and 13.95 miles from the mouth.

DRAINAGE AREA.--16.1 mi²

PERIOD OF RECORD. -- March 1994 to current year.

GAGE. -- Water stage recorder. Datum of gage is 659.00 ft above sea level.

REMARKS.--Estimated daily discharges: Dec. 13-17, Dec. 24 to Jan. 2, and Jan. 10 to Feb. 1. Records good except those for estimated daily discharge, which is poor. Periodic observations of water temperature and specific conductance are published in this report as Miscellaneous Water Quality data. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.


	35	DISCHA	RGE, CUBI	C FEET PE	R SECOND, W	VATER YEA MEAN VAI		1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	. 43 . 46 . 48 . 51 . 43	.88 .80 .77 .76 .80	1.6 1.5 1.8 2.1 1.9	e1.7 e3.8 18 13	e8.5 17 13 12 11	51 42 37 31 28	139 76 53 42 35	14 14 13 12 12	8.6 8.7 8.3 8.2 8.1	32 26 23 22 19	3.2 2.9 2.8 9.2 4.3	2.5 2.2 2.1 1.9 1.7
6 7 8 9 10	.45 .52 .77 1.0 .93	1.4 1.3 1.1 1.1	1.8 1.7 1.7 1.7	19 31 23 17 e10	9.9 9.3 8.7 8.5 8.2	26 24 64 59 40	30 36 128 75 51	32 79 97 57 42	7.7 7.3 7.3 18	19 17 16 15	3.5 9.7 5.4 3.8 6.9	1.7 1.6 1.5 1.5
11 12 13 14 15	.85 .91 1.4 .89 .70	.97 .95 .99 .98 1.1	1.6 1.5 e1.3 e1.2 e1.2	e8.5 e8.0 e7.0 e6.5 e6.0	29 44 31 25 22	33 29 28 25 22	41 35 40 40 36	34 30 27 22 20	40 34 23 26 75	13 12 11 10 9.9	3.7 3.0 2.8 2.6 2.4	1.4 1.2 1.2 83 34
16 17 18 19 20	.59 .47 .46 .46 .44	.92 .93 1.0 1.0	e1.3 e1.4 1.5 1.5	e5.5 e5.5 e4.8 e4.4 e4.0	20 20 18 16 15	21 39 91 60 46	37 31 27 25 24	18 16 15 15	39 30 141 101 51	9.2 8.7 8.3 7.7 7.2	2.3 8.1 5.3 3.5 2.9	17 13 11 9.0 8.1
21 22 23 24 25	.41 .40 .48 .76 .70	1.1 .99 .90 .98 .95	1.5 1.7 1.7 e1.6 e1.4	e3.8 e4.2 e4.0 e3.8 e3.4	14 13 13 13 13	37 33 29 28 27	23 21 20 18 17	13 14 12 13 12	168 56 43 36 31	6.6 8.0 6.9 6.0 5.5	2.6 2.4 2.2 2.2 2.1	7.3 6.7 6.1 6.5 6.0
26 27 28 29 30 31	.94 1.3 1.1 1.1 .99 .92	.98 .94 1.1 1.2 2.4	e1.3 e1.2 e1.4 e1.6 e1.2 e.90	e3.4 e3.6 e4.0 e4.2 e4.4 e5.0	14 149 71 	25 24 23 21 22 487	18 16 16 16 15	11 10 9.7 11 9.7 9.2	27 24 24 79 50	5.2 4.8 4.5 4.2 3.7 3.5	1.9 1.9 7.5 4.7 3.5 2.7	5.6 5.1 4.9 5.6 5.2
TOTAL MEAN MAX MIN AC-FT CFSM IN.	22.25 .72 1.4 .40 .44 .04	31.39 1.05 2.4 .76 62 .06	47.00 1.52 2.1 .90 93 .09	255.5 8.24 31 1.7 507 .51	646.1 23.1 149 8.2 1280 1.43 1.49	1552 50.1 487 21 3080 3.11 3.59	1181 39.4 139 15 2340 2.45 2.73	707.6 22.8 97 9.2 1400 1.42 1.63	1193.2 39.8 168 7.3 2370 2.47 2.76	358.9 11.6 32 3.5 712 .72 .83	122.0 3.94 9.7 1.9 242 .24	256.0 8.53 83 1.2 508 .53
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER	YEARS 1995	- 1998,	BY WATER	YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	.86 1.27 1996 .30 1995	1.49 2.86 1996 .97 1995	1.36 1.67 1995 .74 1997	3.09 8.24 1998 .73 1997	14.6 24.8 1997 4.30 1995	16.5 50.1 1998 3.28 1996	21.5 39.4 1998 2.60 1996	40.1 68.8 1996 14.0 1997	22.6 39.8 1998 9.13 1997	7.56 11.6 1998 3.03 1997	2.87 3.94 1998 1.31 1997	2.89 8.53 1998 .75 1997
SUMMARY	STATIST	ICS	FOR	1997 CALE	NDAR YEAR	F	OR 1998 WA	TER YEAR	₹.	WATER YE	ARS 1995	- 1998
ANNUAL HIGHEST LOWEST HIGHEST LOWEST ANNUAL INSTANT	JUMMARY STATISTICS FOR 1997 CALENDAR YEAR NNUAL TOTAL 2054.23 NNUAL MEAN 5.63 IGHEST ANNUAL MEAN 300 Feb 21 OWEST DAILY MEAN .40 Oct 22 NNUAL SEVEN-DAY MINIMUM .45 Oct 17 NSTANTANEOUS PEAK FLOW NSTANTANEOUS LOW FLOW NSTANTANEOUS LOW FLOW NNUAL RUNOFF (AC-FT) 4070 NNUAL RUNOFF (CFSM) .35				Feb 21 0 Oct 22 5 Oct 17		.40 .45 1290 17.31	Mar 33 Oct 22 Oct 17 Mar 33 Mar 33	2 7 1 1	11.3 17.5 5.60 648 .22 .24 1870 18.44 8150	May Oct Oct May May	1998 1997 28 1996 16 1994 11 1994 28 1996 28 1996
ANNUAL 10 PERC 50 PERC		JS PEAK STAGE JS LOW FLOW FF (AC-FT) 4070 FF (CFSM) .35 FF (INCHES) 4.75 EXCEEDS 10 EXCEEDS 1.7					1.06 14.73 40 8.1 .95			9.50 29 2.9 .70)	

a Several days in Oct

e Estimated

MISSISSIPPI RIVER BASIN

05422560 DUCK CREEK AT 110th AVENUE, DAVENPORT, IA--Continued

MISSISSIPPI RIVER BASIN

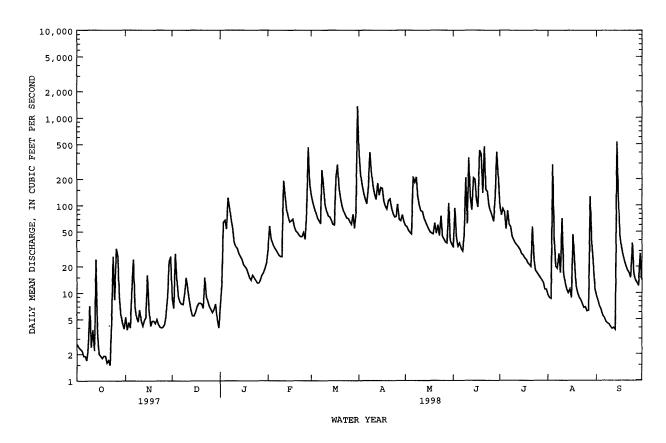
05422600 DUCK CREEK AT DUCK CREEK GOLF COURSE, DAVENPORT, IA

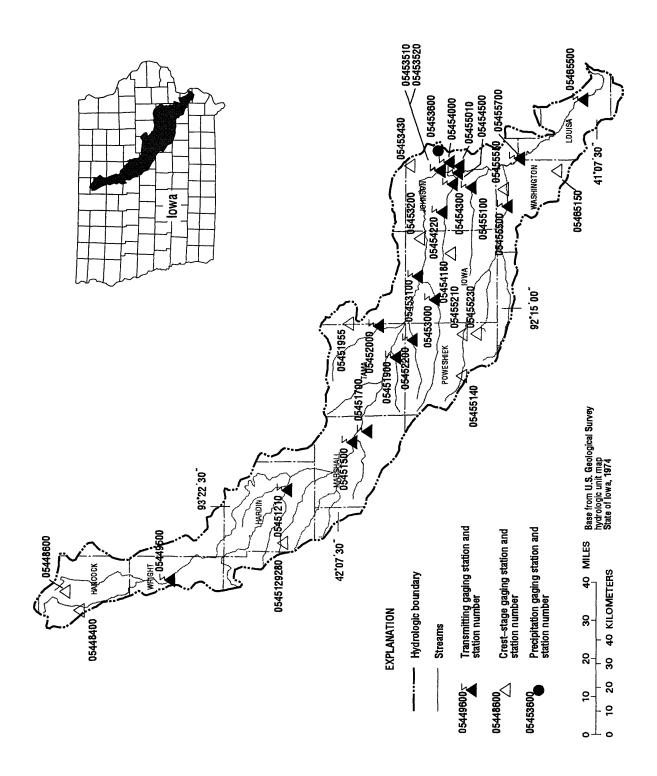
LOCATION.--Lat $41^{\circ}32^{\circ}46^{\circ}$, long $90^{\circ}31^{\circ}26^{\circ}$, in SW $^{1}/_{4}$ SE $^{1}/_{4}$, NW $^{1}/_{4}$, Sec. 20, T.78 N., R.4 E., Scott County, Hydrologic Unit 07080101, on right bank 500 feet upstream from Kimberly Road, 100 feet upstream of golf cart bridge, 0.5 miles downstream from Pheasant Creek, in Davenport, and 4.45 miles from the mouth.

DRAINAGE AREA. -- 53.0 mi².

PERIOD OF RECORD. -- November 1993 to current year.

GAGE. -- Water stage recorder. Datum of gage is 597.00 ft above sea level.


REMARKS.--Estimated daily discharges: Dec. 13-17, Dec. 24 to Jan. 2, and Jan. 10 to Feb. 1. Records good except those for periods of estimated daily discharges, which are poor. Periodic observations of water temperature and conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.


		DISCHA	RGE, CUBI	C FEET PER		WATER YE MEAN VA	AR OCTOBER	1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.6 2.4 2.3 2.2 1.9	5.3 3.8 4.6 4.0	8.6 6.7 28 14 9.0	e7.0 e13 65 68 54	e32 58 41 37 33	131 108 94 82 72	398 223 169 137 118	59 57 52 49 47	33 93 44 34 37	106 78 92 84 54	9.5 8.8 8.6 292 42	9.3 8.2 7.1 6.5 5.5
6 7 8 9 10	1.9 1.7 2.4 7.1 2.4	24 7.1 5.3 4.7 6.4	7.9 7.5 7.4 10 15	122 94 69 55 e38	31 29 27 26 26	67 62 255 161 103	104 163 405 237 166	213 184 211 126 101	32 30 45 208 62	87 61 57 44 40	20 19 28 17 71	5.2 4.7 4.5 4.4 4.1
11 12 13 14 15	3.8 2.2 24 3.5 2.0	4.8 4.2 4.9 5.3	11 8.3 e6.5 e5.5 e5.5	e34 e32 e28 e26 e24	192 131 90 74 65	86 76 74 68 61	134 117 179 131 160	87 85 72 65 59	351 124 89 206 198	37 35 33 31 28	17 13 11 10 11	3.9 4.0 3.8 532 117
16 17 18 19 20	1.9 1.8 1.9 1.9	6.6 4.2 4.8 4.8 4.5	e6.0 e7.0 7.6 7.7 7.5	e21 e20 e19 e17 e15	67 70 57 51 4 9	60 202 293 156 120	156 112 98 91 113	54 50 48 47 63	116 96 426 387 139	27 25 24 22 21	8.8 46 23 12 10	46 33 27 23 20
21 22 23 24 25	1.7 1.5 4.5 26 8.4	5.0 4.4 4.1 4.0 4.1	6.7 15 9.0 e8.0 e7.0	e14 e16 e15 e14 e13	46 44 44 49 41	98 86 78 72 71	118 96 80 74 75	48 60 45 76 44	472 151 144 101 86	20 57 24 18 17	8.9 8.3 7.5 6.8 6.9	18 17 15 37 17
26 27 28 29 30 31	32 26 8.8 5.6 4.5 3.9	4.4 5.7 9.3 23 26	e6.5 e6.5 e7.5 e5.0 e4.0	e13 e14 e16 e17 e19 e22	91 461 173 	65 61 79 55 84 1350	103 69 67 78 65	41 38 37 106 40 36	76 66 123 410 219	16 15 14 13 11	6.2 6.3 126 35 21	14 13 12 28 14
TOTAL MEAN MAX MIN AC-FT CFSM IN.	194.4 6.27 32 1.5 386 .12 .14	226.3 7.54 26 3.8 449 .14	267.9 8.64 28 4.0 531 .16 .19	994.0 32.1 122 7.0 1970 .60	2135 76.3 461 26 4230 1.44 1.50	4430 143 1350 55 8790 2.70 3.11	4236 141 405 65 8400 2.66 2.97	2300 74.2 213 36 4560 1.40 1.61	4598 153 472 30 9120 2.89 3.23	1202 38.8 106 11 2380 .73 .84	921.6 29.7 292 6.2 1830 .56	1054.2 35.1 532 3.8 2090 .66
STATIST	rics of M	ONTHLY ME	AN DATA F	OR WATER Y	EARS 1995	- 1998,	BY WATER Y	EAR (WY)				
MEAN MAX (WY) MIN (WY)	6.73 11.6 1997 3.26 1995	13.0 19.8 1995 6.52 1997	6.83 9.32 1995 3.74 1997	12.8 32.1 1998 4.78 1996	48.5 77.8 1997 13.8 1995	53.7 143 1998 16.0 1996	78.8 141 1998 16.5 1996	143 250 1996 56.3 1997	79.0 153 1998 41.0 1997	29.2 38.8 1998 10.4 1997	28.6 34.6 1995 23.7 1996	14.4 35.1 1998 4.96 1995
SUMMAR	Y STATIST	ics	FOR	1997 CALEN	DAR YEAR	F	OR 1998 WAT	ER YEAR		WATER Y	EARS 1995	5 - 1998
LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' ANNUAL ANNUAL ANNUAL 10 PERG 50 PERG	MEAN I ANNUAL ANNUAL M I DAILY ME DAILY ME SEVEN-DA IANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS					22559.4 61.8 1350 1.5 1.8 2040 10.93 1.1 44750 1.17 15.83 138 30 4.5	Oct 16 Mar 31 Mar 31		42.8 61.8 25.3 2250 10.5 320 14.9 30990 8: 10.9 98 14 3.2	May 6 Oct Oct May 4 May	1998 1997 28 1996 4 1994 41 1994 28 1996 28 1996

e Estimated

MISSISSIPPI RIVER BASIN

05422600 DUCK CREEK AT DUCK CREEK GOLF COURSE, DAVENPORT, IA--Continued

Gaging Station	on	s	3	5
----------------	----	---	---	---

05449500	Iowa River near Rowan, IA
05451210	South Fork Iowa River NE of New Providence, IA
05451500	Iowa River at Marshalltown, IA
05451700	Timber Creek near Marshalltown, IA
05451900	Richland Creek near Haven, IA
05452000	Salt Creek near Elberon, IA
05452200	Walnut Creek near Hartwick, IA
05453000	Big Bear Creek at Ladora, IA
05453100	Iowa River at Marengo, IA
05453510	Coralville Lake near Coralville, IA
05453520	Iowa River below Coralville Dam near Coralville, IA
05453600	Rapid Creek below Morse, IA (precipitation)
05454000	Rapid Creek near Iowa City, IA
05454220	Clear Creek near Oxford, IA
05454300	Clear Creek near Coralville, IA
05454500	Iowa River at Iowa City, IA
05455010	South Branch Ralston Creek at Iowa City, IA
05455100	Old Mans Creek near Iowa City, IA
05455500	English River at Kalona, IA
05455700	Iowa River near Lone Tree, IA
	(Cedar River Basin Stations
05465500	Iowa River at Wapello, IA
Crest Stage	Gaging Stations
05448400	West Main Drainage Ditch 1 & 2 at Britt, IA

05448400	West Main Drainage Ditch 1 & 2 at Britt, IA	•	332
05448600	East Branch Iowa River above Hayfield, IA		332
0545129280	Honey Creek tributary near Radcliffe, IA		333
05451955	Stein Creek near Clutier, IA		333
05453200	Price Creek at Amana, IA		333
05453430	North Fork Tributary to Mill Creek near Solon, IA		333
05454180	Clear Creek Tributary near Williamsburg, IA		333
05455140	North English River near Montezuma, IA		333
05455210	North English River at Guernsey, IA		333
05455230	Deep River at Deep River, IA		333
05455550	Bulgers Run near Riverside, IA		33 4
05465150	North Fork Long Creek at Ainsworth, IA		335
05469350	Haight Creek at Kingston, IA		335

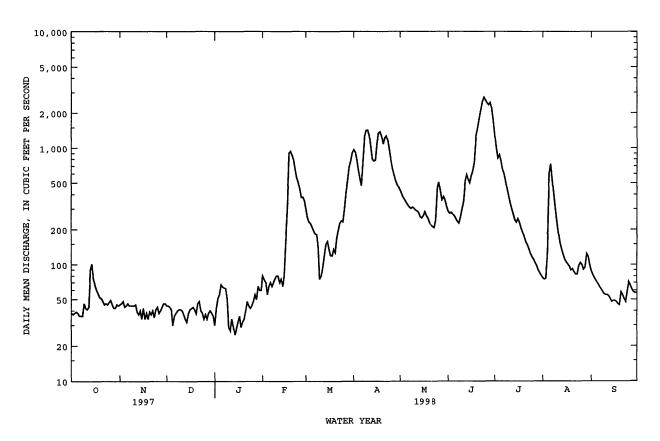
05449500 IOWA RIVER NEAR ROWAN, IA

LOCATION.--Lat 42°45'36", long 93°37'23", in NW¹/₄ NE¹/₄ sec.25, T.92 N., R.24 W., Wright County, Hydrologic Unit 07080207, on left bank 10 ft downstream from bridge on county highway C38, 0.9 mi downstream from drainage ditch 123, 3.8 mi northwest of Rowan, 10.7 mi downstream from confluence of East and West Branches, and at mile 316.4.

DRAINAGE AREA. -- 429 mi2.

PERIOD OF RECORD. -- October 1940 to September 1976, June 1977 to current year.

REVISED RECORDS.--WSP 1308: 1942-43 (M). WSP 1438: Drainage area. WDR IA-80-1: 1978.


GAGE.--Water-stage recorder. Datum of gage is 1,143.35 ft above sea level. Prior to Oct. 14, 1948, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 16-19, Dec. 5-8, 13-15, Dec. 27 to Jan. 2, Jan. 9 to Feb. 17, and March 9-14. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corp of Engineers rain gage and satellite data collection platform at station.

		DISCHARGE	, CUBIC	FEET PER		WATER Y	TEAR OCTOBER	1997 TO	SEPTEMBER	1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	38 37 38 39 38	45 46 48 43 44	44 44 43 41 e30	e30 e42 51 55 67	e80 e75 e70 e55 e65	301 254 233 226 211	971 922 789 6 4 7 551	435 404 377 360 341	288 276 281 271 263	1340 1020 822 875 779	77 75 76 128 598	88 82 77 73 69
6 7 8 9 10	36 36 36 46 42	46 44 44 44	e36 e38 e40 41 41	64 63 62 e50 e29	e70 e65 e70 e75 e80	196 184 181 e140 e75	479 786 1250 1420 1430	326 312 304 312 305	249 235 227 255 301	659 604 525 447 387	728 535 396 301 235	65 62 59 56 55
11 12 13 14 15	41 43 90 101 76	45 39 37 40 34	40 37 e34 e32 e38	e27 e34 e29 e25 e28	e80 e70 e75 e65 e80	e80 e95 e120 e150 158	1290 1020 804 776 788	294 289 280 258 252	347 520 591 539 504	338 300 271 243 231	186 154 136 123 111	55 54 51 48 49
16 17 18 19 20	66 60 56 52 51	e42 e34 e38 e34 39	41 42 43 41 38	e32 e36 e29 e32 e34	e160 e300 912 942 869	136 120 119 135 127	1130 1350 1380 1270 1090	263 284 264 252 232	577 638 757 1270 1480	247 231 206 190 173	105 101 97 90 92	49 48 46 45 58
21 22 23 24 25	48 45 46 45 47	37 40 35 41 43	46 48 40 38 34	e40 e48 e44 e42 e44	792 658 560 513 44 1	172 195 227 238 234	1220 1270 1160 965 788	218 213 208 242 454	1780 2120 2490 2730 2600	157 148 137 125 117	87 83 83 98 104	55 51 48 59 71
26 27 28 29 30 31	49 45 42 42 45 44	38 40 43 46 46	37 e34 e38 e40 e38 e36	e48 e55 e50 e65 e60 e60	378 381 354 	304 426 523 692 776 913	668 596 534 491 462	508 427 361 383 357 317	2450 2360 2460 2220 1760	111 104 98 90 85 81	100 91 95 124 117 99	66 61 58 57 57
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1520 49.0 101 36 3010 .12 .14	41.3 48 34 2460 .10	1213 39.1 48 30 2410 .09	1375 44.4 67 25 2730 .11 .12	8335 298 942 55 16530 .71 .74	7941 256 913 75 15750 .61 .71	28297 943 1430 462 56130 2.26 2.52	9832 317 508 208 19500 .76 .88	32839 1095 2730 227 65140 2.62 2.92	11141 359 1340 81 22100 .86 .99	5425 175 728 75 10760 .42 .48	1772 59.1 88 45 3510 .14 .16
MEAN MAX (WY) MIN (WY)	137 720 1987 8.14 1990	134 695 1993 9.49	86.9 588 1983 5.62 1990	56.3 298 1983 3.63 1959	113 931 1984 3.54 1959	404 1415 1973 23.9 1968	480 2439 1965 32.4 1957	349 1793 1991 44.3 1989	480 2452 1984 19.2 1989	296 1922 1993 14.9 1989	160 1684 1979 14.3 1948	145 1213 1965 8.83 1958
ANNUAL ANNUAL HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		EAN AN AN N MINIMUM AK FLOW AK STAGE C-FT) FSM) NCHES) DS	:	997 CALENI 113278 310 1860 30 37 224700 .74 10.08 937 113 40	Mar 13 Dec 5 Nov 17		FOR 1998 WAT 110929 304 2730 25 29 2750 11.79 220000 .73 9.87 811 95 38	Jun 24 Jan 14 Jan 10 Jun 24		238 869 30.4 7640 2.8 3.0 8460 14.88 172100 .57 7.72 600 84 17	Dec 2 Jan 1 Jun 2	- 1998 1993 1956 1 1954 2 1989 9 1959 1 1954 1 1954

e Estimated

05449500 IOWA RIVER NEAR ROWAN, IA--Continued

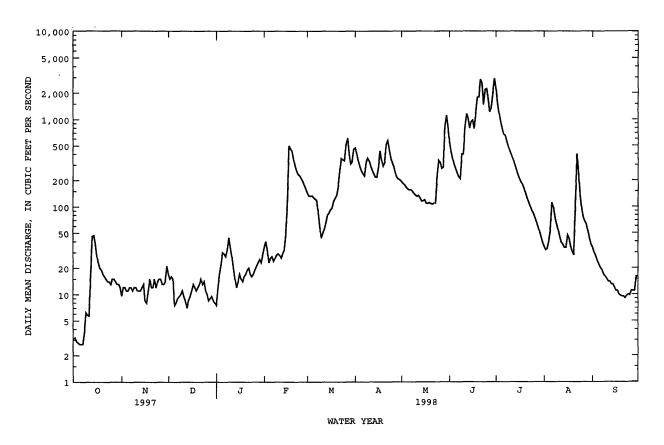
05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA

LOCATION.--Lat 42°18'55", long 93°09'07", in SE¹/₄ NW¹/₄ Sec. 26, T.87 N., R.20 W., Hardin County, Hydrologic Unit 07080207, located 15 ft from the left bank downstream side of the bridge on County Road, 4.0 miles upstream of the confluence with the Iowa River, and 2.0 miles NE of New Providence.

DRAINAGE AREA.--230 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1995 to current year.


GAGE.--Water stage recorder. Datum of gage is 945 ft above sea level, from map.

REMARKS.--Estimated daily discharges: Nov. 24, 25, Dec. 5 to Feb. 16, March 8-15, June 20-22, June 24, 25, and June 29 to July 1. Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.

		DISCHA	RGE, CUBI	C FEET PER		WATER YE MEAN VA	AR OCTOBER LUES	19 9 7 TO	SEPTEMBE	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.1 3.2 2.9 2.8 2.7	9.6 12 12 11	17 15 16 15 e7.5	e7.5 e12 e17 e22 e30	e34 e40 e32 e23 e26	142 132 132 133 127	470 402 333 285 257	194 185 178 167 160	550 429 357 305 270	e2280 1540 1170 948 792	35 32 33 40 54	34 30 27 24 22
6 7 8 9 10	2.7 2.7 3.7 6.2 5.8	12 12 11 12 12	e8.0 e9.0 e9.5 e10 e11	e29 e27 e32 e44 e34	e27 e24 e26 e28 e29	122 119 e85 e60 e44	239 225 321 359 334	155 156 150 142 136	242 219 209 403 400	680 656 555 487 434	111 98 75 63 54	20 19 17 16 15
11 12 13 14 15	5.7 16 46 47 38	11 11 11 12 13	e9.5 e8.5 e7.0 e8.5 e9.5	e27 e20 e15 e12 e14	e28 e26 e29 e32 e50	e50 e55 e65 e80 e85	290 260 238 219 217	131 134 126 116 117	826 1160 1020 796 943	388 349 307 269 237	45 39 37 34 34	14 14 13 13
16 17 18 19 20	28 23 20 19 17	e8.5 e8.0 e11 15 12	e11 e13 e12 e11 e12	e17 e15 e14 e16 e17	e110 500 460 431 350	93 96 115 125 135	284 435 343 292 318	120 110 109 111 109	982 786 1160 1790 e1800	212 194 179 161 143	47 43 35 31 28	11 11 10 9.7 9.5
21 22 23 24 25	16 15 14 14 13	12 15 12 e14 e15	e13 e15 e13 e14 e11	e19 e20 e17 e16 e17	291 256 234 226 209	172 263 357 345 337	518 573 451 367 316	107 110 110 226 339	e2840 e2600 1480 e2190 e2230	126 114 102 91 84	101 401 244 137 96	9.5 9.1 9.7 10 9.8
26 27 28 29 30 31	15 15 14 13 13	15 13 13 14 21	e10 e8.5 e9.0 e9.5 e8.5 e8.0	e19 e21 e23 e25 e23 e28	195 175 157 	521 611 412 310 329 458	284 241 217 207 203	318 273 282 833 1110 832	1670 1220 1360 e2020 e2920	75 67 59 52 45 39	76 68 63 52 43 37	11 11 11 16 16
TOTAL MEAN MAX MIN AC-FT CFSM IN.	449.5 14.5 47 2.7 892 .06	371.1 12.4 21 8.0 736 .06	339.5 11.0 17 7.0 673 .05	649.5 21.0 44 7.5 1290 .09	4048 145 500 23 8030 .65 .67	6110 197 611 44 12120 .88 1.01	9498 317 573 203 18840 1.41 1.58	7346 237 1110 107 14570 1.06 1.22	35177 1173 2920 209 69770 5.23 5.84	12835 414 2280 39 25460 1.85 2.13	2286 73.7 401 28 4530 .33 .38	454.3 15.1 34 9.1 901 .07
STATIST	rics of M	ONTHLY ME.	an data f	OR WATER Y	EARS 1996	- 1998,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	18.3 22.0 1997 14.5 1998	76.3 199 1997 12.4 1998	48.1 119 1997 11.0 1998	33.4 65.7 1997 13.6 1996	167 250 1997 110 1996	203 334 1997 77.3 1996	192 317 1998 51.0 1996	231 312 1997 145 1996	666 1173 1998 353 1996	245 414 1998 59.9 1996	41.4 73.7 1998 19.9 1997	11.4 15.1 1998 7.40 1997
SUMMAR	Y STATIST	ICS	FOR	1997 CALEN	DAR YEAR	F	OR 1998 WA	rer year		WATER YEA	RS 1996	- 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS				59587.0 163 2330 2.7 2.9 118200 .73 9.90 416 65 8.0	Jun 22 Oct 5a Oct 1		79563.9 218 2920 2.7 2.9 3550 11.59 2.1 157800 .97 13.21 507 45	Jun 30 Oct 56 Oct 1 Jun 21 Jun 21 Oct 6		203 218 188 2920 2.7 2.9 3550 11.59 2.1 147200 .91 12.32 395 60 9.7	Oct Oct Jun 2 Jun 2	1998 1997 30 1998 5 1997a 1 1997 21 1998 21 1998 6 1997b

a Also Oct 6, 7 b Also Oct 7

Estimated

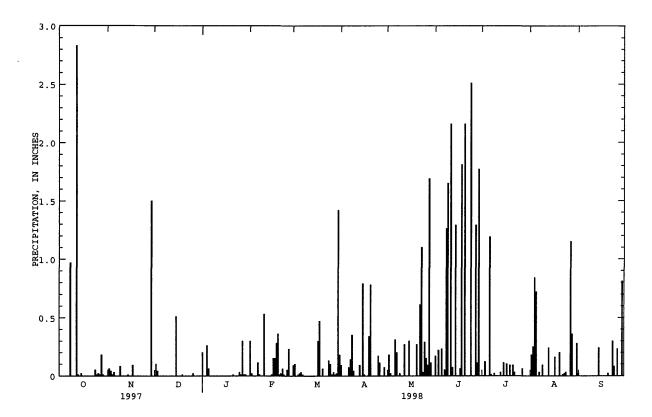
05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA

PRECIPITATION RECORDS

PERIOD OF RECORD.-- October 1995 to current year.

INSTRUMENTATION. -- Tipping bucket rain gage.

REMARKS.-- Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting.


EXTREME FOR PERIOD OF RECORD. -- Maximum daily accumulation, 5.37 in., June 21, 1997.

EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation 2.83 in., Oct. 12.

		PRECI	PITATION,	TOTAL,	INCHES, W.	ATER YEAR Y SUM VALI		1997 то	SEPTEMBER	1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .06 .04 .01	.00 .10 .04 .00	.20 .00 .00 .26 .06	.30 .02 .00 .00	.09 .10 .00 .01	.09 .00 .00 .00	.00 .18 .02 .00	.17 .00 .22 .00	.00 .00 .12 .00	.00 .18 .25 .84 .72	.02 .00 .00 .00
6 7 8 9 10	.00 .00 .97 .00	.00 .00 .00 .08	.00 .00 .00 .00	.00 .00 .00 .00	.11 .01 .00 .00	.03 .01 .00 .00	.07 .14 .35 .04	.31 .20 .00 .02	.00 .05 1.26 1.65	1.19 .01 .00 .02 .00	.00 .03 .00 .09	.00 .00 .00 .00
11 12 13 14 15	.00 2.83 .01 .00	.00 .00 .00 .01	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .09 .00 .79	.00 .27 .00 .00	2.16 .07 .00 1.29	.00 .00 .03 .00	.00 .00 .24 .00	.00 .00 .00 .24 .00
16 17 18 19 20	.00 .00 .00 .00	.00 .09 .00 .00	.00 .00 .00 .01	.00 .00 .00 .00	.15 .15 .28 .36	.00 .30 .47 .00	.01 .00 .00 .34 .78	.00 .00 .00 .00	.00 .06 1.81 .00 2.16	.00 .10 .00 .09	.00 .16 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.00 .00 .00 .05	.00 .00 .00 .00	.00 .00 .00 .00	.01 .00 .00 .00	.02 .06 .01 .00	.00 .00 .00 .13 .10	.00 .00 .00 .00 .17	.00 .61 1.10 .03 .29	.00 .00 .00 2.51 .00	.09 .03 .00 .00	.00 .01 .02 .03 .00	.00 .00 .30 .08
26 27 28 29 30 31	.02 .01 .18 .01 .00	.00 .00 .00 1.50 .00	.02 .00 .00 .00 .00	.01 .30 .01 .01 .00	.23 .00 .00 	.01 .03 .01 .02 1.42 .18	.11 .00 .00 .07 .00	.15 .09 1.69 .11 .00	.00 1.29 .11 1.77 .00	.00 .06 .00 .00 .00	.00 1.15 .36 .00 .00	.23 .00 .00 .81 .00
TOTAL MEAN MAX MIN	4.11 .13 2.83 .00	1.82 .06 1.50 .00	0.68 .02 .51 .00	0.89 .03 .30 .00	2.30 .08 .53 .00	2.99 .10 1.42 .00	3.05 .10 .79 .00	5.64 .18 1.69 .00	16.81 .56 2.51 .00	1.85 .06 1.19 .00	4.56 .15 1.15 .00	1.70 .06 .81 .00

IOWA RIVER BASIN

05451210 SOUTH FORK IOWA RIVER NORTHEAST OF NEW PROVIDENCE, IA--Continued

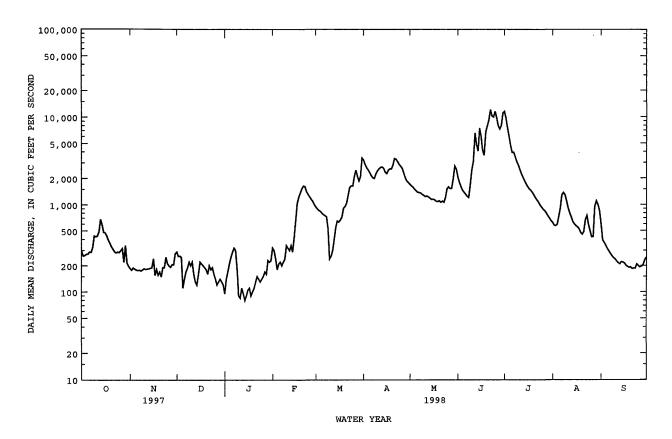
05451500 IOWA RIVER AT MARSHALLTOWN, IA

LOCATION.--Lat 42°03'57", long 92°54'27", in SE¹/₄ SE¹/₄ sec.23, T.84 N., R.18 W., Marshall County, Hydrologic Unit 07080208, on right bank 10 ft downstream from bridge on State Highway 14, 1,500 ft upstream from Burnett Creek, 2.2 mi upstream from Linn Creek, and at mile 222.8.

DRAINAGE AREA. -- 1,532 mi².

PERIOD OF RECORD.--October 1902 to September 1903, October 1914 to September 1927, October 1932 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1915-18, 1919 (M), 1920, 1921-23 (M), 1924-27, 1933, 1934 (M), 1936, 1938, 1947 (M)


GAGE.--Water-stage recorder. Datum of gage is 853.10 ft above sea level. See WSP 1728 for history of changes prior to Sept. 21, 1934.

REMARKS.--Estimated daily discharges: Dec. 5 to Feb. 16, Mar. 10-14, and Aug. 28 to Sept. 1. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

		DISCHA	RGE, CUBIC	FEET PER		WATER Y	YEAR OCTOBER VALUES	1997 TO	SEPTEMBE	IR 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	292 259 263 271 274	186 178 188 183 178	289 257 259 251 e110	e95 e140 e170 e210 e250	e320 e300 e240 e180 e210	948 897 861 839 798	3230 2870 2650 2490 2320	1710 1640 1590 1510 1450	2080 1800 1610 1470 1390	11600 9740 7470 5960 4700	621 578 570 589 726	e600 393 369 343 315
6 7 8 9 10	289 286 326 438 430	176 178 174 179 185	e140 e170 e190 e220 e200	e290 e320 e300 e180 e90	e220 e200 e220 e240 e340	769 748 725 521 e240	2150 2030 2000 2260 2440	1390 1380 1360 1310 1280	1320 1250 1210 1680 2480	3930 3960 3510 3090 2820	902 1290 1370 1290 1100	294 277 259 247 239
11 12 13 14 15	437 491 676 587 482	181 183 184 187 189	e220 e160 e130 e120 e160	e85 e110 e95 e80 e90	e320 e300 e340 e290 e420	e260 e300 e400 e550 649	2570 2670 2700 2610 2350	1240 1260 1230 1190 1150	3090 6560 4840 4080 7450	2500 2240 2050 1880 1730	913 800 720 635 596	226 216 209 222 219
16 17 18 19 20	476 441 396 363 332	241 155 180 156 169	e220 e210 e200 e190 e180	e105 e110 e90 e100 e110	e650 1040 1230 1370 1530	632 665 723 911 952	2270 2480 2570 2570 2830	1160 1140 1100 1090 1110	6000 41 60 3660 6800 79 20	1610 1520 1460 1380 1290	569 549 525 477 455	213 201 195 190 192
21 22 23 24 25	311 291 282 288 285	149 190 190 251 211	e160 e200 e180 e190 e160	e130 e150 e140 e130 e140	1640 1620 1410 1320 1230	1040 1270 1570 1640 1640	3360 3300 3090 2880 2750	1070 1100 1070 1210 1520	9300 12100 10300 10000 11600	1200 1130 1070 988 930	487 666 744 587 498	184 186 186 207 199
26 27 28 29 30 31	299 315 220 341 216 197	199 192 206 205 276	e140 e120 e130 e140 e130 e120	e150 e170 e160 e230 e220 e230	1160 1100 1010 	2100 2480 2110 1870 2090 3400	2600 2300 2040 1870 1790	1600 1530 1530 1990 2750 2560	9760 7990 7310 8000 11100	881 849 797 738 697 650	426 429 e950 e1100 e1000 e850	192 196 203 230 248
TOTAL MEAN MAX MIN AC-FT CFSM IN.	10854 350 676 197 21530 .23 .26	5699 190 276 149 11300 .12 .14	.12	4870 157 320 80 9660 .10	20450 730 1640 180 40560 .48 .50	34598 1116 3400 240 68630 .73 .84	76040 2535 3360 1790 150800 1.65 1.85	44220 1426 2750 1070 87710 .93 1.07	168310 5610 12100 1210 333800 3.66 4.09	84370 2722 11600 650 167300 1.78 2.05	23012 742 1370 426 45640 .48 .56	7450 248 600 184 14780 .16
							B, BY WATER			4.005		
MEAN MAX (WY) MIN (WY)	499 2721 1987 39.2 1940	498 2593 1973 46.2 1940	362 2139 1983 31.0 1990	306 2231 1973 10.2 1977	635 3424 1915 20.9 1940	1593 4206 1973 98.4 1934	1494 6796 1965 99.3 1934	1301 5559 1991 49.9 1934	1768 7619 1918 16.0 1934	1025 8389 1993 41.8 1977	565 7062 1993 35.9 1934	502 3362 1993 27.5 1939
SUMMARY	STATIST	ICS	FOR 1	.997 CALENI	DAR YEAR		FOR 1998 WA	TER YEAR		WATER YE	ARS 1903	- 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				390478 1070 8180 81 100 774500 .70 9.48 2770 500 140	Jun 22 Aug 24 Aug 19		485419 1330 12100 80 94 12600 19.66 962800 .87 11.79 2850 587 160			879 3456 77.3 39400 4.7 5.2 42000 20.77 636800 .57 7.80 2160 396 73	Jan Jan Jun Aug	1993 1934 4 1918 25 1977 20 1977 4 1918 17 1993

e Estimated

IOWA RIVER BASIN
05451500 IOWA RIVER AT MARSHALLTOWN, IA--Continued

05451700 TIMBER CREEK NEAR MARSHALLTOWN, IA

LOCATION.--Lat $42^{\circ}00^{\circ}32^{\circ}$, long $92^{\circ}51^{\circ}08^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.8, T.83 N., R.17 W., Marshall County, Hydrologic Unit 07080208, on left bank 20 ft upstream from bridge on Shady Oaks Road, 3.0 mi upstream from mouth, and 3.0 mi southeast of Marshalltown.

DRAINAGE AREA. -- 118 mi².

PERIOD OF RECORD. -- October 1949 to current year.

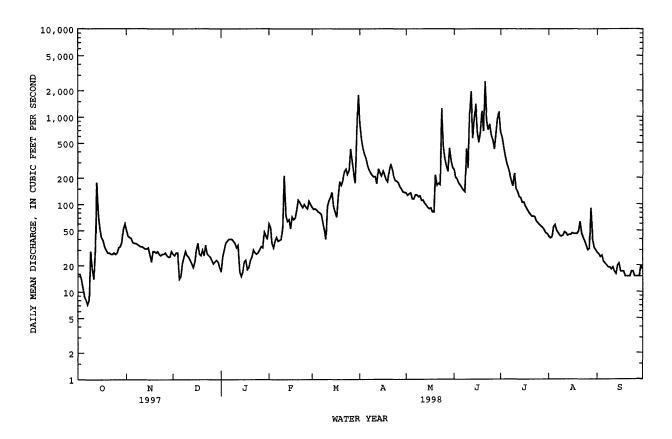
REVISED RECORDS. -- WSP 1708: 1950-55, 1957-59.

GAGE.--Water stage recorder. Datum of gage is 849.44 ft above sea level. Prior to Oct. 1, 1991 at site 1/8 mile upstream at same datum.

REMARKS.--Estimated daily discharges: Nov. 16, 17, Dec. 5-8, 13-17, 21, Dec. 25 to Jan. 4, Jan. 9 to Feb. 7, Mar. 9-12, and Aug. 22-25. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of 16.8 ft, discharge, 5,700 ft³/s.


DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	16 16	50 44	27 26	e17 e25	e60	93 88	861 553	135 127	248 205	676 589	43 41	28 27
3	14	42	28	e30	e55 e36	89	433	132	196	445	42	25
4	11	41	28	e36	e32	86	372	135	176	353	55	26
5	8.9	37	e14	38	e38	82	334	115	166	292	58	22
6	8.1	36	e15	40	e42	80	275	115	155	257	50 47	21
7 8	7.2 8.1	36 35	e21 e25	40 40	e38 39	77 62	246 228	128 128	146 140	218 185	47	20 19
9	29	34	29	e38	40	e50	215	122	433	162	43	19
10	18	33	26	e36	5 7	e40	206	125	260	224	44	18
11	14	33	25	e32	213	e95	208	111	1060	150	48	19
12 13	29 178	32 31	23 e21	e34 e17	74 64	e110 120	173 254	112 103	1960 572	139 122	47 44	17 16
14	74	31	e19	e15	67	137	229	98	927	118	45	20
15	51	32	e22	e17	5 3	95	212	92	1410	105	45	21
16	42	e27	e30	e22	72	82	240	89	684	106	47	17
17 18	39 33	e22 29	e36 27	e23 e18	67 70	72 122	218 192	91 82	511 662	95 88	46 46	17 17
19	30	29	26	e19	86	182	181	82	1170	82	46	15
20	28	28	30	e23	112	165	240	216	692	77	49	15
21	28	29	e26	e25	106	186	288	165	2550	73	63	15
22 23	27 27	27 26	34 27	e30 e28	98 92	238 253	250 208	174 168	916 715	73 72	e46 e42	15 17
24	28	27	26	e27	100	220	188	1250	827	64	e38	17
25	27	27	e25	e28	93	247	184	457	620	61	e34	15
26	28	28	e23	e30	89	428	177	332	543	58	30	15
27 28	32 33	26 25	e21 e22	e33 e32	109 100	310 228	160 150	275 238	429 652	56 5 4	31 90	15 15
29	37	25	e23	e48		176	139	438	956	51	40	20
30 31	5 3 60	29 	e22 e19	e44 e40		671 1780	137	315 262	1150	47 46	32 30	18
TOTAL MEAN	1034.3 33.4	951 31.7	766 24.7	925 29.8	2102 75.1	6664 215	7751 258	6412 207	21131 704	5138 166	1406 45.4	561 18.7
MAX	178	50	36	48	213	1780	861	1250	2550	676	90	28
MIN AC-FT	7.2 2050	22 1890	14 1520	15 1830	32 4170	40 13220	137 15370	82 12720	140 41910	46 10190	30 2790	15 1110
CFSM	.28	.27	.21	.25	.64	1.82	2.19	1.75	5.97	1.40	.38	.16
IN.	.33	.30	.24	.29	.66	2.10	2.44	2.02	6.66	1.62	. 44	.18
STATIS'	TICS OF MC	ONTHLY MEA	N DATA FO	OR WATER Y	EARS 1950	- 1998,	BY WATER	YEAR (WY)				
MEAN	37.3	39.8	36.2	36.8	87.9	145	109	128	153	95.0	59.5	39.3
MAX	286	265	183	200	351	597	385	447	704	866 1993	6 3 5 1993	341 1986
(WY) MIN	1987 .76	1984 1.11	1984 .60	1973 .054	1971 3.07	19 7 9 5.11	1993 2.84	1974 3.08	1998 1.09	1.03	1.16	1.21
(WY)	1951	1951	1956	1977	1954	1956	1956	1977	1977	1956	1956	1950
SUMMAR	Y STATIST	cs	FOR 1	1997 CALEN	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YEA	RS 1950	- 1998
ANNUAL	TOTAL			24591.7			54841.3					
ANNUAL				67.4			150			80.5		1003
	N JAUNNAL T M JAUNNA									299 2.84		199 3 1956
HIGHES'	T DAILY ME	EAN		900	Feb 19		2550	Jun 21		6570		6 1977
	DAILY MEA SEVEN-DAY			10	Oct 7		7.2 10			.00		4 1956a 4 1956
INSTAN	TANEOUS PE	EAK FLOW					3160	Jun 21		12000	Aug 1	6 1977
	TANEOUS PE TANEOUS LO						14.71 6.1	Jun 21 Oct 8		17.69	Aug 1	6 1977
ANNUAL	RUNOFF (A	AC-FT)		48780			108800			58330		
	RUNOFF (.57 7.75			1.27 17.29			.68 9.27		
10 PER	CENT EXCE	EDS		132			333			175		
	CENT EXCES			41 19			49 19			33 3.1		

a Several days in July, Oct 1956; Jan, Feb, July 1977

e Estimated

IOWA RIVER BASIN

05451700 TIMBER CREEK NEAR MARSHALLTOWN, IA--Continued

05451900 RICHLAND CREEK NEAR HAVEN, IA

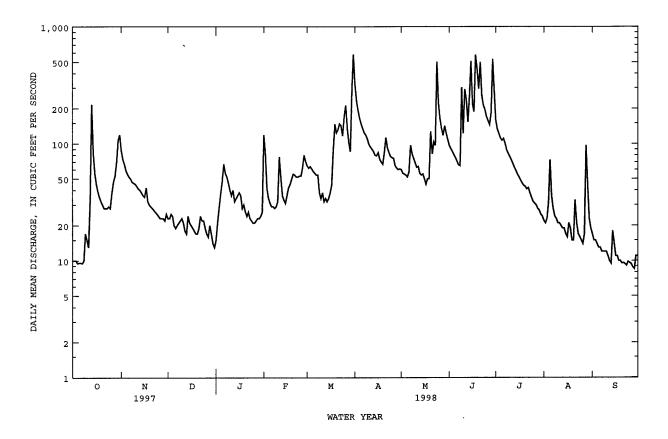
LOCATION.--Lat $41^{\circ}53^{\circ}58^{\circ}$, long $92^{\circ}28^{\circ}27^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.21, T.82 N., R.14 W., Tama County, Hydrologic Unit 07080208, on right bank 5 ft upstream from bridge on county highway, 0.5 mi northeast of Haven, and 3.0 mi upstream from mouth.

DRAINAGE AREA. -- 56.1 mi².

PERIOD OF RECORD. -- October 1949 to current year.

REVISED RECORDS. -- WSP 1708: 1950-55, 1956 (M), 1957, 1958 (M), 1959.

GAGE.--Water-stage recorder. Datum of gage is 788.69 ft above sea level. Prior to Oct. 1, 1971, at datum 10.00 ft higher.


REMARKS.--Estimated daily discharges: Dec. 5-9, 12-21, Dec. 25 to Jan. 3, Jan. 10-31, Mar. 9-18, May 16, 17, and June 21.
Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1918 reached a stage of 24.3 ft present datum, discharge not determined.

		DISCHAR	GE, CUBIC	FEET PER		WATER Y	EAR OCTOBER	1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	10 10 10 9.5 9.6	88 7 4 6 7 59 55	23 23 25 24 e20	e15 e21 e28 37 47	119 82 41 34 31	65 62 64 61 58	325 232 192 165 148	60 56 55 54 52	97 91 86 81 76	159 134 122 112	22 21 23 31 73	17 15 15 14 13
6 7 8 9 10	9.6 9.5 10 17 15	52 50 47 46 45	e19 e20 e21 e22 23	67 56 52 46 e40	29 29 28 29 32	56 54 54 e38 e34	135 124 119 110 99	57 97 82 75 69	71 66 65 304 123	111 101 89 83 78	36 28 24 23 21	13 12 12 12 12
11 12 13 14 15	13 32 217 85 56	43 41 40 38 36	21 e18 e17 e24 e21	e36 e40 e32 e34 e36	77 51 36 33 31	e38 e32 e34 e32 e34	94 90 86 80 79	63 64 56 54 55	293 234 154 255 509	73 68 63 59 55	21 20 19 19 17	11 10 9.5 18 14
16 17 18 19 20	45 39 35 32 30	35 42 32 30 29	e20 e19 e18 e17 e17	e38 e36 e28 e30 e26	36 42 45 50 55	e38 e44 e90 147 124	84 74 70 67 84	e50 e45 50 50 127	221 188 576 430 296	52 49 46 44 43	16 21 19 15 15	11 11 10 10 9.5
21 22 23 24 25	28 28 28 29 28	28 27 26 25 24	e19 24 22 22 e19	e24 e26 e23 e22 e21	54 52 52 53 53	132 148 143 117 171	113 93 84 78 76	82 104 97 504 223	e500 260 215 197 172	41 42 38 35 32	33 21 17 16 15	9.6 9.4 9.1 9.8 9.6
26 27 28 29 30 31	38 47 53 69 107 119	23 23 23 22 25	e17 e16 e20 e17 e14 e13	e21 e22 e23 e23 e24 e26	62 80 71 	213 136 103 86 274 580	75 65 62 60 61	164 136 118 142 123 109	157 146 184 530 287	31 30 28 27 25 24	14 17 97 44 23 19	9.4 8.8 8.5 11 11
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1268.2 40.9 217 9.5 2520 .73 .84	1195 39.8 88 22 2370 .71 .79	615 19.8 25 13 1220 .35	1000 32,3 67 15 1980 .58 .66	1387 49.5 119 28 2750 .88 .92	3262 105 580 32 6470 1.88 2.16	3224 107 325 60 6390 1.92 2.14	3073 99.1 504 45 6100 1.77 2.04	6864 229 576 65 13610 4.08 4.55	2001 64.5 159 24 3970 1.15 1.33	800 25.8 97 14 1590 .46	345.2 11.5 18 8.5 685 .21 .23
STATIS	STICS OF MC	NTHLY MEA	N DATA FO	R WATER Y	EARS 1950	- 1998	, BY WATER Y	TEAR (WY)				
MEAN MAX (WY) MIN (WY)	18.0 105 1987 .24 1957	22.7 122 1984 .31 1951	17.5 85.8 1983 .25 1957	19.9 104 1960 .020 1977	43.7 165 1965 .32 1989	67.9 270 1979 1.05 1956	58.4 323 1991 .85 1956	61.4 337 1974 2.04 1956	66.9 270 1990 .25 1956	46.0 463 1993 .66 1977	32.3 427 1993 .76 1955	20.2 159 1993 .58 1950
SUMMAR	RY STATISTI	ics	FOR 1	.997 CALENI	DAR YEAR		FOR 1998 WAT	ER YEAR		WATER YEA	RS 1950	- 1998
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	TOTAL MEAN TANNUAL ME TANUAL ME TANNUAL ME TANUAL ME TANNUAL ME TANUAL ME TANNUAL ME TANNUAL ME TANNUAL ME TANNUAL ME TANUAL ME TANU	EAN AN MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) EFSM) ENCHES) EDS	•	13950.2 38.2 700 8.0 8.4 27670 .68 9.25 67 25	Feb 18 Sep 1 Aug 31		9.2 2760	Jun 29 Jun 29		39.5 162 2.49 2880 .00 12200 26.71 28630 .70 9.57 80 14	Jan 2 Jan 2 Apr 2	1993 1956 16 1977 22 1977a 22 1977a 12 1991 12 1991

a Also Jan 23 to Feb 2, 1977, July 9 and 10, 1989

e Estimated

05452000 SALT CREEK NEAR ELBERON, IA

LOCATION.--Lat $41^{\circ}57^{\circ}51^{\circ}$, long $92^{\circ}18^{\circ}47^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec.36, T.83 N., R.13 W., Tama County, Hydrologic Unit 07080208, on left bank 20 ft upstream from bridge on U.S. Highway 30, 2.0 mi upstream from Hog Run, 3.0 mi south of Elberon, and 9.0 mi upstream from mouth.

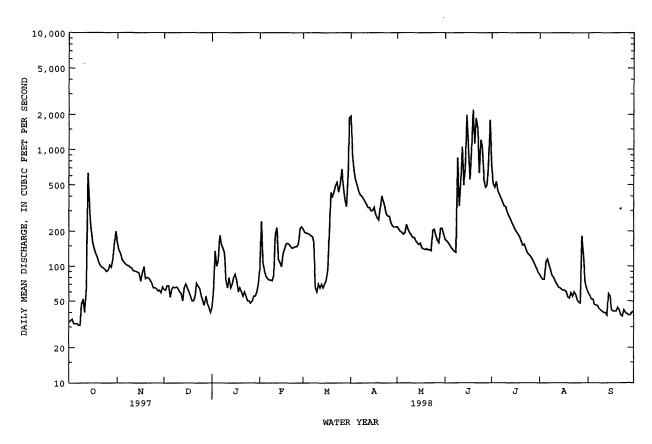
DRAINAGE AREA. -- 201 mi2.

PERIOD OF RECORD. -- October 1945 to current year.

REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1558: 1946.

GAGE.--Water-stage recorder. Datum of gage is 781.58 ft above sea level (Iowa Highway Commission bench mark). Prior to Oct. 15, 1945 and June 14, 1947 to Feb. 10, 1949, nonrecording gage on upstream side of bridge at present datum.

REMARKS.--Estimated daily discharges: Nov. 24, Dec. 13-21, Dec. 25 to Jan. 2, Jan. 10 to Feb. 1, Mar. 9-18, Apr. 11-22, and June 9. Records good except those for estimated daily discharge, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 16, 1944 reached a stage of 19.9 ft, from floodmark at downstream side of bridge, discharge, about $30,000 \text{ ft}^3/\text{s}$.

		DISCHAR	GE, CUB	IC FEET PEF		WATER Y Y MEAN V	EAR OCTOBER ALUES	к 1997 то	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	33 34	160 138	63 62	e44 e65	e95 243	208 196	1930 872	218 208	170 166	712 511	85 80	59 56 52
3 4	35 32	129 114	68 68	135 100	105 91	193 191	641 551	199 196	160 1 5 3	476 534	77 77	52 52
5	32	109	54	112	82	188	497	188	144	441	109	47
6	32	105	63	184	78	183	442	194	139	413	115	46
7	31	102	66	154	76	179	411	228	134	383	102	46
8 9	31 47	101 98	65	143 130	76	163	401 380	207 194	132	355	92 83	43 42
10	52	98 97	66 64	e75	75 83	e65 e60	360	186	e850 330	329 323	80	42
				e/5	63	660	360					
11	40	92	60	e65	190	e70	e340	176	523	293	74	40
12	65	91	58	e80	214	e65	e320	177	1050	273	70	40
13 14	632 329	90 89	e50	e65 e70	114	e70	e320	167 159	497 736	256 238	66	38 5 8
15	213	89 87	e65 e70	e70 e80	107 99	e65 e70	e300 e300	159	1980	238	65 63	58 55
13	213	01	e70	600	79	e/0	e300	134	1300	223	63	25
16	166	74	e65	e85	127	e75	e320	158	1030	208	62	42
17	144	88	e60	e75	140	e90	e280	144	555	197	62	41
18	130	99	e55	e60	155	e190	e260	141	973	188	60	41
19	120	78	e50	e65	157	431	e250	139	2190	178	54	41
20	108	80	e50	e60	154	398	e320	141	1120	166	53	44
21	101	79	e55	e55	148	436	e400	138	1860	152	59	42
22	98	76	71	e60	143	492	e360	139	1530	155	55	38
23	97	72	67	e55	145	525	320	136	632	143	60	37
24	94	e65	64	e50	148	434	279	203	1210	131	57	42
25	90	65	e55	e50	148	505	270	207	1030	126	51	40
26	92	64	e50	e48	15 6	681	268	182	553	122	49	39
27	102	61	e46	e50	211	490	236	167	476	116	48	38
28	98	62	e55	e55	218	377	222	159	495	109	182	38
29 30	114 153	59 66	e48	e55 e60		326	217 217	211 210	812 1800	101 95	12 4 73	40 41
31	199		e44 e40	e70		539 1870	21/	187	1800	89	73 64	41
31	177		640	e/0				107		65	04	
TOTAL	3544	2690	1817	2455	3778	9825	12284	5513	23430	8036	2351	1319
MEAN	114	89.7	58.6	79.2	135	317	409	178	781	259	75.8	44.0
MAX	632	160	71	184	243	1870	1930	228	2190	712	182	59
MIN	31	59 5340	40	44	75 7 49 0	60	217 24370	136 10940	132 46470	89	48	37 2620
AC-FT CFSM	7030 .57	.45	3600 .29	4870 .39	.67	19490 1.58	24370	.88	3.89	15940 1.29	4660 .38	.22
IN.	.66	.50	.34	. 45	.70	1.82	2.27	1.02	4.34	1.49	. 44	.24
114.	.00	. 50	.34	.45	. 70	1.02	2.21	1.02	4.34	1.43	. 44	.24
STATIST	ICS OF M	ONTHLY MEA	N DATA E	FOR WATER Y	EARS 1946	5 - 1998	, BY WATER	YEAR (WY	.)			
MEAN	64.9	80.5	65.3	73.5	142	269	196	195	265	196	104	68.6
MAX	250	425	314	337	607	844	652	573	1826	1803	1157	441
(WY)	1978	1983	1983	1973	1982	1993	1983	1982	1947	1993	1993	1993
MIN	4.85	4.08	2.29	1.14	7.02	11.7	11.0	5.75	7.79	3.84	5.65	5.43
(WY)	1951	1951	1977	1977	1977	1954	1989	1977	1977	1989	1949	1950

05452000 SALT CREEK NEAR ELBERON, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENT	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEAR	S 1946 - 1998
ANNUAL TOTAL	41259		77042			
ANNUAL MEAN	113		211		143	
HIGHEST ANNUAL MEAN					569	1993
LOWEST ANNUAL MEAN					23.2	1989
HIGHEST DAILY MEAN	1800	Feb 19	2190	Jun 19	14000	Jul 9 1993
LOWEST DAILY MEAN	21	Sep 6	31	Oct 7,8	.85	Jan 31 1977
ANNUAL SEVEN-DAY MINIMUM	22	Sep 1	32	Oct 2	.95	Jan 25 1977
INSTANTANEOUS PEAK FLOW			2650	Mar 31	41800	Jul 9 1993
INSTANTANEOUS PEAK STAGE			16.09	Mar 31	20.85	Jul 9 1993
INSTANTANEOUS LOW FLOW			29	Oct 5,8		
ANNUAL RUNOFF (AC-FT)	81840		152800		103800	
ANNUAL RUNOFF (CFSM)	.56		1.05		.71	
ANNUAL RUNOFF (INCHES)	7.64		14.26		9.69	
10 PERCENT EXCEEDS	199		482		282	
50 PERCENT EXCEEDS	83		109		56	
90 PERCENT EXCEEDS	32		47		9.0	

e Estimated

05452200 WALNUT CREEK NEAR HARTWICK, IA

LOCATION.--Lat $41^{\circ}50^{\circ}06^{\circ}$, long $92^{\circ}23^{\circ}10^{\circ}$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.8, T.81 N, R.13 W., Poweshiek County, Hydrologic Unit 07080208, on right bank 5 ft downstream from bridge on county highway V21, 1.2 mi downstream from North Walnut Creek, 4.0 mi northwest of Hartwick, and 6.5 mi upstream from mouth.

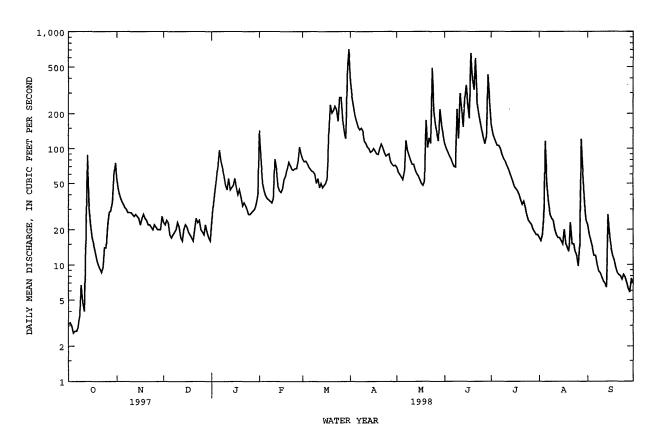
DRAINAGE AREA. -- 70.9 mi².

PERIOD OF RECORD. -- October 1949 to current year.

REVISED RECORDS. -- WSP 1558: 1950 (P), 1951-57.

GAGE. -- Water-stage recorder. Datum of gage is 786.59 ft above sea level.

REMARKS.--Estimated daily discharges: Nov. 24, Dec. 5-9, 12-21, Dec. 25 to Jan. 3, Jan. 10-31, Mar. 9-18, April 8, 16-18, July 25 to Aug. 4, and Aug. 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of 17.7 ft, from information by local residents, discharge not determined.

		DISCHAR	GE, CUB	IC FEET PI	ER SECOND, DAILY	WATER YE MEAN VA		R 1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.1 3.2 3.0 2.6 2.7	53 43 38 35 33	23 22 24 23 e18	e23 e32 e42 53 70	143 82 50 43 39	81 77 78 74 69	382 275 227 190 170	69 63 60 57 54	111 101 94 87 82	163 136 124 114 106	e17 e16 e18 e26 116	22 18 16 14 12
6 7 8 9 10	2.7 2.9 3.7 6.7 4.7	31 30 28 28 28	e17 e18 e19 e20 23	97 77 68 58 e 4 8	37 36 35 34 37	66 64 63 e60 e50	153 145 e150 142 116	62 117 96 87 79	75 70 69 217 122	106 100 89 82 78	48 34 27 e25 24	12 10 8.8 8.5 7.8
11 12 13 14 15	4.0 17 88 32 22	27 26 27 26 25	21 e17 e16 e20 e22	e44 e55 e44 e46 e48	81 67 47 43 42	e55 e46 e50 e46 e48	111 103 100 93 95	73 73 65 61 58	296 219 153 265 347	72 67 62 57 52	20 18 17 17 16	7.2 6.9 6.4 27
16 17 18 19 20	17 15 13 11 9.9	22 25 27 25 24	e21 e19 e18 e17 e16	e55 e46 e40 e44 e38	45 54 58 67 76	e50 e55 e140 237 202	e100 e95 e90 89 100	54 50 48 52 175	239 182 652 395 319	47 45 43 40 36	15 20 15 14 13	14 12 11 9.5 8.5
21 22 23 24 25	9.2 8.6 9.5 14	22 22 21 e20 22	e20 25 23 24 e20	e32 e34 e32 e30 e27	71 66 65 67 67	212 230 216 172 274	109 102 92 86 88	102 123 111 491 210	593 247 201 169 143	33 35 31 27 e24	23 15 15 13 12	8.2 8.0 7.5 8.2 7.8
26 27 28 29 30 31	22 28 29 35 59 75	21 20 20 20 26	e19 e18 e22 e19 e17 e16	e27 e28 e29 e30 e34 e40	78 103 89 	274 175 139 122 428 707	90 77 73 71 72	162 136 116 217 158 132	125 110 126 430 262	e23 e22 e20 e19 e18 e18	9.7 15 121 59 33 24	7.0 6.3 5.8 7.6 6.9
TOTAL MEAN MAX MIN AC-FT CFSM IN.	567.5 18.3 88 2.6 1130 .26	815 27.2 53 20 1620 .38 .43	617 19.9 25 16 1220 .28	1371 44.2 97 23 2720 .62 .72	1722 61.5 143 34 3420 .87 .90	4560 147 707 46 9040 2.07 2.39	3786 126 382 71 7510 1.78 1.99	3411 110 491 48 6770 1.55 1.79	6501 217 652 69 12890 3.06 3.41	1889 60.9 163 18 3750 .86	855.7 27.6 121 9.7 1700 .39 .45	322.9 10.8 27 5.8 640 .15
STATIST	FICS OF 1	MONTHLY MEA	N DATA	FOR WATER	YEARS 1950	- 1998,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	18.9 137 1987 .003 1957	27.5 171 1984 .29 1956	23.3 109 1993 .060 1977	26.4 179 1960 .006 1956	51.1 191 1971 1.40 1954	83.7 300 1993 1.64 1954	77.1 365 1991 1.03 1957	79.3 452 1974 1.62 1977	81.5 450 1990 .76 1956	55.4 461 1993 1.01 1954	36.3 498 1993 .38 1955	25.2 185 1993 .28 1953

05452200 WALNUT CREEK NEAR HARTWICK, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1950 - 1998
ANNUAL TOTAL	13378.6	26418.1	
ANNUAL MEAN	36.7	72.4	48.7
HIGHEST ANNUAL MEAN			200 1993
LOWEST ANNUAL MEAN			4.76 1956
HIGHEST DAILY MEAN	800 Feb 18	707 Mar 31	4840 Jul 2 1983
LOWEST DAILY MEAN	2.6 Oct 4	2.6 Oct 4	.00 Many days a
ANNUAL SEVEN-DAY MINIMUM	2.9 Oct 1	2.9 Oct 1	.00 Aug 27 1955
INSTANTANEOUS PEAK FLOW		1610 Jun 29	7900 Apr 29 1991
INSTANTANEOUS PEAK STAGE		12.11 Jun 29	16.93 Apr 29 1991
INSTANTANEOUS LOW FLOW		2.0 Oct 5	-
ANNUAL RUNOFF (AC-FT)	26540	52400	35300
ANNUAL RUNOFF (CFSM)	.52	1.02	. 69
ANNUAL RUNOFF (INCHES)	7.02	13.86	9.34
10 PERCENT EXCEEDS	64	165	103
50 PERCENT EXCEEDS	25	43	17
90 PERCENT EXCEEDS	6.0	11	1.2

a Many days in 1954, 55, 56, 57, and 77 e Estimated

05453000 BIG BEAR CREEK AT LADORA, IA

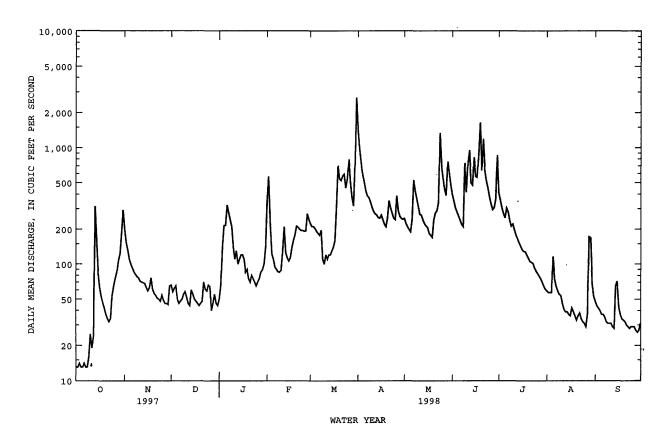
LOCATION.--Lat 41°44'58", long 92°10'55", in SW¹/₄ SW¹/₄ sec.7, T.80 N., R.11 W., Iowa County, Hydrologic Unit 07080208, on left bank 10 ft downstream from bridge on county highway V52, 0.4 mi south of Ladora, 1.2 mi downstream from Coats Creek, 2.8 mi upstream from Little Bear Creek, and 8.1 mi upstream from mouth.

DRAINAGE AREA. -- 189 mi2.

PERIOD OF RECORD. -- October 1945 to current year. Prior to October 1966, published as "Bear Creek at Ladora".

REVISED RECORDS.--WSP 1308: 1947 (M). WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 744.94 ft above sea level. Oct. 1945 to June 26, 1946, non-recording gage and June 27, 1946 to Sept. 30, 1980, water-stage recorder at datum 10.00 ft higher.


REMARKS.--Estimated daily discharges: Oct. 26-27, Dec. 5-9, 12-21, Dec. 27 to Jan. 3, Jan. 10-31, Feb. 22-24, and Mar. 9-18. Records good except those for periods of estimated daily discharge, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

		DISCHA	RGE, CUB	IC FEET P		WATER Y	EAR OCTOBE ALUES	R 1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	13	201	66	e50	350	224	1380	247	398	411	59	48
2	13	154	58	e65	566	211	930	224	349	355	57	44
3	14	131	62	e140	219	211	714	210	304	303	57	42
4	13	109	65	215	122	203	589	199	281	271	57	40
5	13	99	e50	215	110	192	507	190	258	250	116	37
6	14	92	e46	322	94	184	428	241	238	303	75	37
7	13	86	e48	277	90	178	387	527	219	282	65	35
8	13	82	e50	241	86	196	375	425	210	238	59	32
9	16	78	e55	211	85	e110	342	365	736	212	5 5	31
10	25	76	58	e140	88	e100	308	313	415	221	54	31
11	19	71	52	e110	129	e120	285	268	720	197	46	31
12	24	70	e46	e130	209	e110	271	264	951	178	41	29
13	315	69	e44	e100	125	e120	265	240	498	166	39	28
14	161	68	e60	e110	113	e120	252	223	478	153	39	65
15	84	63	e55	e120	106	e130	249	213	824	143	37	71
16	63	59	e50	e120	113	e140	264	206	566	133	36	43
17	53	63	e48	e110	138	e160	241	184	556	128	42	37
18	47	76	e46	e85	161	e320	221	177	857	127	39	34
19	42	61	e44	e90	179	701	210	170	1640	119	36	33
20	37	56	e46	e75	212	541	251	240	639	112	33	32
21	34	54	e48	e70	208	523	351	276	1190	105	36	30
22	32	51	70	e80	e200	572	305	288	641	103	38	29
23	34	50	61	e75	e195	593	274	337	520	101	34	28
24	53	48	59	e70	e195	452	249	1340	452	92	32	29
25	64	54	66	e65	192	541	242	707	380	87	31	29
26 27 28 29 30 31	e75 e85 107 122 185 292	49 46 46 45 65	64 e40 e46 e55 e46 e44	e70 e75 e85 e90 e100 e140	193 271 244 	794 508 375 318 763 2690	387 287 258 247 243	550 443 390 759 616 481	328 294 305 362 860	83 79 75 70 65 61	29 37 172 169 68 53	29 27 26 27 31
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2075 66.9 315 13 4120 .35 .41	2272 75.7 201 45 4510 .40 .45	1648 53.2 70 40 3270 .28 .32	3846 124 322 50 7630 .66	4993 178 566 85 9900 .94	12400 400 2690 100 24600 2.12 2.44	11312 377 1380 210 22440 2.00 2.23	11313 365 1340 170 22440 1.93 2.23	16469 549 1640 210 32670 2.90 3.24	5223 168 411 61 10360 .89 1.03	1741 56.2 172 29 3450 .30	1065 35.5 71 26 2110 .19
STATIST	ICS OF	MONTHLY MEA	AN DATA E	FOR WATER	YEARS 194	6 - 1998,	BY WATER	YEAR (WY)			
MEAN	57.0	73.9	63.4	75.1	123	237	200	213	225	141	92.9	75.7
MAX	375	341	294	432	543	895	704	1185	1136	1011	1537	559
(WY)	1987	1993	1983	1960	1971	1979	1973	1974	1947	1993	1993	1993
MIN	.49	1.68	.33	.021	2.07	5.99	4.17	2.25	2.94	5.00	2.36	1.34
(WY)	1957	1956	1956	1977	1977	1957	1956	1956	1956	1988	1955	1956

05453000 BIG BEAR CREEK AT LADORA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENI	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEARS	1946 - 1998
ANNUAL TOTAL	37497		74357			
ANNUAL MEAN	103		204		131	
HIGHEST ANNUAL MEAN					516	1993
LOWEST ANNUAL MEAN					8.26	1956
HIGHEST DAILY MEAN	2150	Feb 21	2690	Mar 31	9480	Mar 30 1960
LOWEST DAILY MEAN	13	Sep 12	13	Oct 1b	.00	Jan 22 1956a
ANNUAL SEVEN-DAY MINIMUM	13	Sep 29	13	Oct 1	.00	Jan 22 1956
INSTANTANEOUS PEAK FLOW		_	4040	Mar 31	10500	Mar 30 1960
INSTANTANEOUS PEAK STAGE			21.89	Mar 31	15.32c	Sep 8 1977
INSTANTANEOUS LOW FLOW			12	Oct 8		_
ANNUAL RUNOFF (AC-FT)	74380		147500		95240	
ANNUAL RUNOFF (CFSM)	. 54		1.08		.70	
ANNUAL RUNOFF (INCHES)	7.38		14.64		9.45	
10 PERCENT EXCEEDS	193		488		280	
50 PERCENT EXCEEDS	63		112		46	
90 PERCENT EXCEEDS	18		34		5.2	

Jan 22 to Feb 8, 1956, Jan 19 to Feb 3, 1977 Many days Oct Datum in use prior to Oct 1, 1980 Estimated a b c e

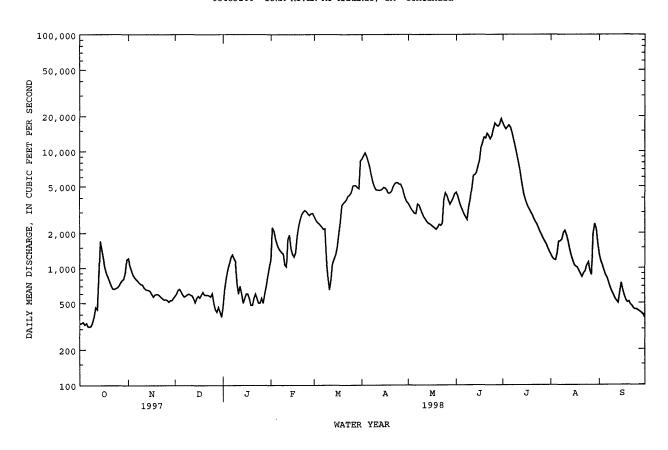
05453100 IOWA RIVER AT MARENGO, IA

LOCATION.-- Lat $41^{\circ}48^{\circ}48^{\circ}$, long $92^{\circ}03^{\circ}51^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec.24, T.81 N., R.11 W., Iowa County, Hydrologic Unit 07080208, on left bank 5 ft upstream from bridge on county highway V66, 1.0 mi downstream from Big Bear Creek, 0.8 mi north of Marengo, 4.6 mi upstream from Hilton Creek, and at mile 139.1.

DRAINAGE AREA. -- 2,794 mi².

PERIOD OF RECORD. --October 1956 to current year. Monthly discharge only for some periods, published in WSP 1728.

REVISED RECORDS. -- WSP 1558: 1957.


GAGE. -- Water-stage recorder. Datum of gage is 720.52 ft above sea level.

REMARKS.--Estimated daily discharges: Dec. 26 to Jan. 4, Jan. 10 to Feb. 1, Mar. 9-16, and Sep. 24-28. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

		DISCHA	RGE, CUB	IC FEET PI		WATER Y	TEAR OCTOBE	R 1997 TO	SEPTEMB	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	333	1210	578	e470	e1200	2780	8590	3580	4450	17700	1300	1290
2	337	1060	601	e650	2230	2600	9170	3390	4170	16500	1220	1130
3	343	955	647	e800	2070	2480	9690	3190	3700	15600	1180	1050
4	327	875	660	e950	1780	2410	9040	3080	3380	16200	1170	952
5	336	831	628	1070	1600	2330	8200	2950	3120	16800	1340	870
6	316	801	590	1230	1480	2250	7310	2930	2900	16100	1690	820
7	313	775	568	1300	1410	2160	6240	3530	2740	14500	1700	742
8	318	750	577	1210	1360	2180	5470	3460	2600	12600	1760	674
9	344	728	592	1140	1320	e1200	4950	3190	3300	11000	2000	624
10	384	721	601	e750	1070	e850	4680	2950	3860	9430	2090	587
11	460	682	587	e600	1030	e650	4660	2750	4790	8070	1920	545
12	442	658	581	e700	1770	e800	4640	2630	6210	6870	1710	523
13	831	650	548	e600	1920	e1100	4650	2500	6290	5570	1460	501
14	1710	646	508	e500	1470	e1200	4740	2410	6580	4660	1280	614
15	1440	633	552	e550	1310	e1300	4910	2380	7440	4110	1150	747
16	1200	598	575	e600	1250	e1500	4840	2320	8280	3710	1060	646
17	1010	568	556	e600	1360	1940	4650	2260	10700	3410	1030	579
18	902	589	590	e550	1880	2480	4400	2210	11800	3200	1010	531
19	835	596	621	e480	2280	3430	4400	2150	13200	3010	948	506
20	767	595	588	e480	2600	3590	4500	2230	13000	2850	892	513
21	709	581	585	e550	2880	3700	4930	2360	14200	2650	840	485
22	666	562	587	e600	3020	3840	5230	2320	13600	2490	906	471
23	661	548	580	e550	3120	4120	5390	2410	12800	2370	940	449
24	672	534	568	e500	3050	4210	5380	3830	13500	2200	1060	e440
25	681	538	604	e500	2910	4410	5230	4400	15500	2040	1120	e440
26 27 28 29 30 31	706 751 786 806 902 1180	529 513 529 529 553	e500 e440 e420 e460 e420 e380	e550 e500 e600 e700 e850 e1000	2830 2920 2940 	5030 5110 5080 4900 4800 8300	5210 4880 4440 3990 3710	4190 3810 3520 3730 3970 4310	17400 16700 16400 17000 19000	1910 1790 1690 1600 1480 1380	961 872 1960 2390 2170 1620	e430 e420 e410 399 374
TOTAL MEAN MAX MIN AC-FT CFSM IN.	21468	20337	17292	22130	56060	92730	168120	94940	278610	213490	42749	18762
	693	678	558	714	2002	2991	5604	3063	9287	6887	1379	625
	1710	1210	660	1300	3120	8300	9690	4400	19000	17700	2390	1290
	313	513	380	470	1030	650	3710	2150	2600	1380	-840	374
	42580	40340	34300	43890	111200	183900	333500	188300	552600	423500	84790	37210
	.25	.24	.20	.26	.72	1.07	2.01	1.10	3.32	2.46	.49	.22
	.29	.27	.23	.29	.75	1.23	2.24	1.26	3.71	2.84	.57	.25
STATIST	rics of M	ONTHLY ME	an data i	FOR WATER	YEARS 195	7 - 1 9 98	, BY WATER	YEAR (WY	7)			
MEAN	1021	1164	986	859	1416	3244	3391	2970	3309	2733	1536	1047
MAX	5078	3878	3633	4194	5424	8227	11310	9340	9287	19620	15290	7901
(WY)	1987	1973	1983	1973	1984	1979	1993	1991	1998	1993	1993	1993
MIN	80.8	90.0	63.0	31.3	79.0	256	259	179	114	116	108	123
(WY)	1957	1957	1990	1977	1977	1964	1977	1977	1977	1977	1989	1988
SUMMARY	STATIST	ics	FOR	1997 CALE	ENDAR YEAR		FOR 1998 W	ATER YEAR	l.	WATER Y	EARS 1957	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN TANNUAL ANNUAL M TOAILY ME DAILY ME SEVEN-DA TANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS EDS		9000 288 311 1281000 8.6 3970 1160 386	53		19000 313 327 19500 18.9 2076000 1.0 13.9 6410 1340 504	3	' !)	1974 7192 283 35600 24 25 38000 20.3 1430000 9.6 4880 1010 200	Jul Jan Jan Jul 1 Jul	1993 1989 12 1993 29 1977 28 1977 19 1993 19 1993

e Estimated

05453100 IOWA RIVER AT MARENGO, IA--Continued

05453510 CORALVILLE LAKE NEAR CORALVILLE, IA

LOCATION.--Lat $41^{\circ}43^{\circ}29^{\circ}$, long $91^{\circ}31^{\circ}40^{\circ}$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec.22, T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080208, at outlet works at left end of Coralville Dam on Iowa River, 2.3 mi upstream from Rapid Creek, 4.3 mi northeast of Coralville post office, and at mile 83.3.

DRAINAGE AREA.--3,115 mi²

PERIOD OF RECORD. -- October 1958 to current year.

GAGE.--Water-stage recorder. Datum of gage is at sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--Estimated daily discharges: Dec. 1. Reservoir is formed by earthfill dam completed in 1957. Storage began in September 1958. Releases controlled by three gates, 8.33 ft wide and 20 ft high, into forechamber of 23-ft diameter concrete conduit through dam. Inlet invert elevation at 646.0 ft. No dead storage. Maximum design discharge through gates is 20,000 ft³/s. Ungated spillway is concrete overflow section 500 ft in length at elevation 712 ft above sea level, contents, 469,000 acre-ft, surface area, 24,800 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Normal operation will lower the elevation from 683 ft. (surface area 5,430 acres) on Feb. 15 to 679 ft (surface area 3,270 acres) on Mar 1, maintaining 679 ft. Mar. 1 to June 15, 683 ft June 15 to Sept. 15, 686 ft. (surface area 7,000 acres) Sept. 15 to Dec. 15, and 683 ft Dec. 15 to Feb. 15, with a minimum release of 150 ft³/s and maximum release of 10,000 ft³/s Dec. 15 to May 1 and 6,000 ft³/s May 1 to Dec. 15.

COOPERATION .-- Records provided by U.S. Army Corps of Engineers.

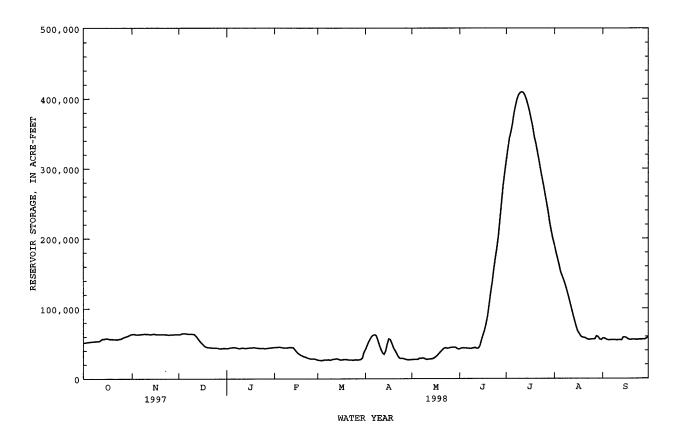
EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 586,000 acre-ft July 20, 1993, maximum elevation, 716.75 ft July 24, 1993; minimum daily contents, 456 acre-ft Jan. 15, 1975; minimum elevation, 658.77 ft Mar. 10, 1959.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 410,000 acre-ft July 11; maximum elevation, 709.85 ft June 12; minimum daily contents, 26,060 acre-ft Mar. 4; minimum elevation, 678.87 ft Mar. 10.

REVISIONS.--Extremes for 1997 water year; maximum daily contents, 84,700 acre-ft Feb. 25; maximum elevation, 688.99 ft Feb. 26; minimum daily contents, 25,600 acre-ft Mar. 15; minimum elevation, 678.72 ft Mar. 15.

Capacity table	(elevation	in feet,	contents	in acre-feet))
----------------	------------	----------	----------	---------------	---

655	55	675	15,100	692	115,000	704	287,000	712	461,000
660	621	680	29,600	696	160,000	706	327,000	714	512,000
665	2,770	684	52,800	700	215,000	708	370,000	716	566,000
670	7,230	688	81,200	702	251,000	710	413,000	718	622,000


RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	51700 51900	63700 64100	e63700 63700	43300 43500	45000 44800	26800 26400	41800 47700	27200 27300	42400 43500	311000 327000	191000 181000	57700 57700
3	52400	63700	64800	44100	45100	26100	52800	27500	43900	344000	172000	56400
4	52600	63300	64900	44400	45300	26100	57000	27500	43700	353000	163000	55300
5	52900	63500	64800	44700	45100	26700	60700	27400	43600	365000	153000	55000
6	53100	63600	64800	44800	44500	27000	62400	29100	43300	380000	147000	55200
7	53200	63900	64300	44400	44100	26600	63100	28800	43300	391000	141000	55400
8 9	53500 54000	63900 64400	64200 64200	43800 43300	44100 44200	27300 26500	61500 54700	29400 28800	42700 43400	400000 406000	134000 126000	55200 55200
10	54000	64200	64200	43500	44200	27100	47700	27900	43400	409000	118000	55100
10	34000	04200	04200	43000	44300	27100	47700	27500	43700	40,000	110000	33100
11	54100	64100	63900	44000	44800	27800	41700	27300	44300	410000	109000	55200
12	55700	63900	61800	43900	44600	27900	37000	27700	43100	409000	100000	55300
13	57300	63600	59100	43400	44700	28600	34900	28100	43400	405000	91000	55000
14	57100	64000	55900	43700	42000	28300	39500	28100	46600	399000	82800	58900
15	57600	64400	52900	44000	39300	27300	49300	28800	54700	391000	74200	59100
16	57600	63900	50700	44200	36800	26700	56900	30400	62100	382000	67400	58300
17	57400	63700	48300	44400	35200	27100	56000	32200	68800	371000	64200	56500
18	56700	63700	46200	44600	33700	27400	50800	34400	77800	360000	60400	55700
19	56800	63700	45200	44600	32700	27500	44700	36800	89700	346000	59000	55400
20	56700	63700	44800	44100	31600	27300	40400	39300	106000	337000	58600	56000
21	56500	63500	44700	43800	31100	26800	36800	41700	123000	325000	58000	55900
22	56300	63500	44500	43600	30000	26700	32200	43600	138000	313000	56400	55700
23	56500	63400	44200	43500	29200	26600	29300	44200	156000	300000	55800	55500
24 25	57100	63100	44200	43500	28500	26500	28700	43200	172000	288000	55800 56400	55800 55800
25	57400	63100	44100	43400	28100	26900	29000	43700	186000	276000	36400	55800
26	58800	63300	43900	43100	28400	26900	28300	44400	204000	263000	56300	56000
27	59700	63300	43300	43400	28200	26800	27500	44500	228000	251000	56700	56100
28	60400	63400	43100	43800	27500	27000	27000	44700	252000	238000	60700	56100
29	61100	63500	43300	44000		27600	26700	44800	276000	223000	59700	57400
30 31	62100	63700	43600	44400		29600	26900	43400	294000	211000	56300	59300
31	63400		43500	44600		37800		42100		200000	55400	
MEAN	56300	63700	53400	43900	38000	27500	43100	34700	103000	335000	94200	56200
MAX	63400	64400	64900	44800	45300	37800	63100	44800	294000	410000	191000	59300
MIN	51700	63100	43100	43100	27500	26100	26700	27200	42400	200000	55400	55000

CAL YR 1997 MEAN 45700 MAX 84700 MIN 25600 WTR YR 1998 MEAN 79600 MAX 410000 MIN 26100

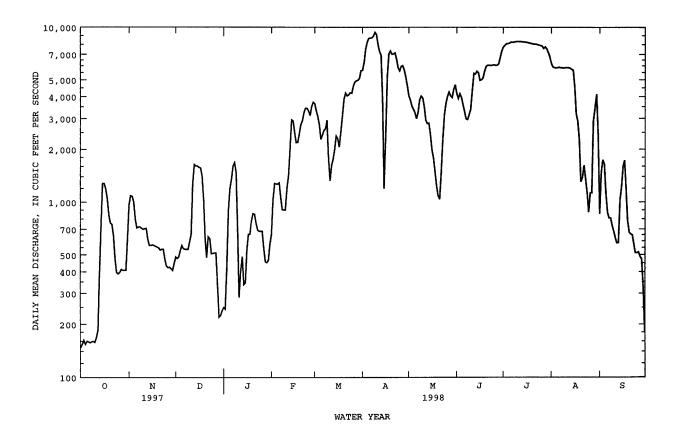
e Estimated

137

05453520 IOWA RIVER BELOW CORALVILLE DAM NEAR CORALVILLE, IA

LOCATION.--Lat $41^{\circ}43^{\circ}23^{\circ}$, long $91^{\circ}31^{\circ}47^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.22, T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080208, on left bank about 500 ft downstream of Coralville Dam control house, 2.3 miles upstream from Rapid Creek, 4.3 miles northeast of Coralville post office, and at mile 83.2.

DRAINAGE AREA. -- 3, 115 mi².


PERIOD OF RECORD. -- October 1992 to current year.

GAGE.--Water-stage recorder. Datum of gage is 600.00 ft above sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--Estimated daily discharges: Aug. 17-19, and Aug. 28. Records good except those for estimated daily discharges, which are fair. Periodic observations of water temperatures and specific conductance are published in this report as miscellaneous water-quality data. U.S. Army Corps of Engineers satellite data collection platform at station.

		DISCHA	RGE, CUBI	C FEET PE		WATER Y Y MEAN V	EAR OCTOBER ALUES	199 7 T C	SEPTEMBE	R 19 98		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	147	965	486	249	655	3660	5670	4060	4190	7720	6210	857
2	154	1090	477	244	1030	3330	6300	3830	3910	7910	5930	1480
3	162	1080	486	411	1280	3090	7550	3540	4160	8080	5890	1740
4	154	996	529	889	1270	2760	8260	3390	3980	8110	5850	1650
5	160	796	565	1190	1270	2290	8680	3250	3610	8150	5880	1110
6	159	713	543	1360	1290	2420	8710	3000	3300	8270	5910	867
7	157	721	539	1610	1060	2580	8740	3270	3000	8240	5870	810
8	159	721	539	1680	905	2630	8930	3850	2970	8270	5870	809
9	160	710	538	1490	903	2940	9380	4030	3160	8310	5840	734
10	158	699	594	701	903	1820	9100	3940	3390	8330	5880	682
11	167	706	656	285	1200	1330	7980	3520	4320	8330	5880	628
12	185	708	1280	401	1410	1630	7270	2950	5440	8320	5870	585
13	402	617	1640	488	2020	1760	6920	2810	5390	8310	5840	586
14	742	567	1610	338	2950	2000	3850	2830	5590	8290	5750	1030
15	1280	566	1610	345	2910	2390	1200	2440	5490	8270	5680	1230
16	1280	570	1580	530	2510	2310	2410	2000	4970	8240	4580	1600
17	1200	566	1570	656	2190	2070	5230	1790	5010	8200	e3200	1730
18	1060	559	1420	656	2200	2540	7040	1500	5120	8160	e2900	1170
19	847	554	1050	781	2460	3130	7330	1250	5620	8120	e2300	784
20	760	549	628	859	2780	3870	7020	1090	5970	8080	1310	670
21	746	533	483	853	2920	4200	7030	1040	6060	8050	1380	656
22	644	539	634	758	3240	4050	7140	1480	6060	8050	1620	650
23	476	538	621	694	3440	4100	6550	2250	6050	8000	1360	577
24	397	473	508	682	3440	4220	5860	3140	6060	7950	1130	513
25	389	432	510	682	3310	4200	5630	3650	6100	7900	877	513
26 27 28 29 30 31	397 413 408 408 408 619	423 425 417 408 446	513 513 3 4 2 220 225 239	682 546 457 452 465 576	3130 3520 3720 	4610 4860 4950 4980 5100 5640	5970 6020 5710 5210 4630	4010 4260 4060 3960 4410 4680	6060 6060 6160 6700 7310	7840 7590 7760 7550 7190 6780	1130 1130 e2900 3480 4130 2470	519 489 472 334 181
TOTAL MEAN MAX MIN AC-FT CFSM IN.	14798 477 1280 147 29350 .15 .18	19087 636 1090 408 37860 .20 .23	23148 747 1640 220 45910 .24 .28	22010 710 1680 244 43660 .23 .26	59916 2140 3720 655 118800 .69 .72	101460 3273 5640 1330 201200 1.05 1.21	197320 6577 9380 1200 391400 2.11 2.36	95280 3074 4680 1040 189000 .99 1.14	151210 5040 7310 2970 299900 1.62 1.81	248370 8012 8330 6780 492600 2.57 2.97	124047 4002 6210 877 246000 1.28 1.48	25656 855 1740 181 50890 .27
MEAN	1238	1352	1676	937	2104	3697	3996	4315	4768	6621	4284	2583
MAX	4012	2771	4229	1723	3006	6587	7776	9347	7203	20610	18500	13050
(WY)	1994	1993	1993	1993	1997	1993	1993	1993	1993	1993	1993	1993
MIN	331	636	643	311	1424	1105	965	1305	2362	2318	581	275
(WY)	1997	1998	1996	1996	1995	1996	1996	1994	1994	1995	1997	1997
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL INSTANI INSTANI ANNUAL ANNUAL ANNUAL 50 PERC 50 PERC	MEAN TANNUAL ANNUAL M TOAILY ME SEVEN-DA TANEOUS P	MEAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS EDS		704435 1930 9040 147 155 1397000 .67 8.41 4880 1150 313	Feb 27 Oct 1 Sep 30		FOR 1998 WA 1082302 2965 9380 147 156 9460 56.22 2147000 .95 12.93 7570 1790 424	Apr 9 Oct 1 Oct 1 Apr 9 Apr 9		3138 7910 1541 25000 136 146 25800 63.3 2274000 13.4 7420 1560 401	Sep Oct Jul 95 Jul	1993 1996 21 1993 3 1995 16 1996 19 1993 19 1993

e Estimated

05453600 RAPID CREEK BELOW MORSE, IA

LOCATION.--Lat 41°43'45", long 91°25'38", in NE corner of sec. 21, T.80 N., R.5 W., Johnson County, Hydrologic Unit 07080209, at bridge on county highway 1, 1.5 miles southwest of Morse.

DRAINAGE AREA. -- 8.12 mi².

MIN

.00

.00

.00

.00

.00

PERIOD OF RECORD.--March 1994 to current year. Operated May 1951 to September 1992 as a crest-stage partial record station. GAGE.--Tipping bucket rain gage.

REMARKS.--Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting. EXTREME FOR PERIOD OF RECORD.--Maximum daily accumulation, 2.65 in., May 9, 1996.

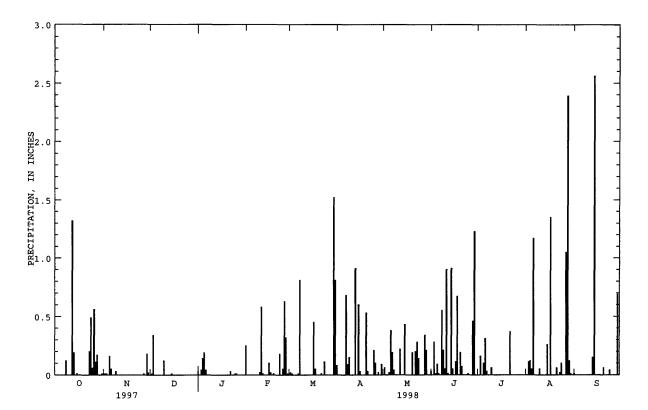
EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation, 2.56 in., Sept. 14.

PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY SUM VALUES SEP DAY OCT FEB APR MAY JUN JUL AUG NOV DEC JAN MAR . 01 .00 .01 00 . 03 .25 .01 0.8 00 .03 . 00 0.0 . 01 .00 .00 .00 .00 .00 .01 . 00 .02 .00 .06 .00 .01 .34 .01 .00 .28 .00 .04 .00 .00 .16 .00 4 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 5 .00 .16 .00 .19 .00 .00 .00 .02 .09 .10 .05 .00 .00 . 05 .00 .04 .00 .01 .00 .00 .00 .00 .00 .00 .00 .01 .68 .19 .00 .03 .00 .00 .00 8 .12 .00 .00 .00 .00 .81 .09 .04 .55 .00 .00 .21 .00 .03 .00 .00 .15 .00 .00 .00 .00 .00 .00 10 .00 .00 .12 .00 .02 .00 .00 .00 .05 .06 .05 .00 .00 .00 . 00 .00 11 .00 .00 .00 . 58 .00 . 00 .00 .90 .01 .01 .00 .00 .00 1.32 .00 .00 .00 .00 .00 .22 12 .00 .00 .00 .00 .00 .00 .00 .00 14 .00 .00 .00 .00 .00 .00 .00 .91 .00 .00 2.56 15 .05 .00 .00 .01 .00 .01 .00 . 00 .00 . 60 .43 .26 16 .00 .00 .00 .00 .10 .00 .03 .00 .00 .00 .00 .00 17 18 .00 .00 .00 .00 .02 .45 .00 .00 .11 .00 1.35 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .00 .00 20 .00 .00 .00 .00 .00 .00 .53 .19 .19 .00 .00 .06 21 .00 .00 .00 .00 .00 .00 . 03 .00 .07 .00 .06 .00 22 .00 .00 .00 .03 .00 .01 .00 .20 .00 .00 .00 23 .20 .00 .00 .00 .18 .00 .00 .28 .00 .00 .02 .00 24 .00 .00 .14 .00 .04 .00 .00 .00 .11 .00 .00 .00 .00 .06 .00 .01 . 05 .00 .00 .01 .00 26 .00 .00 .00 .00 . 01 .10 .00 .00 .00 .56 . 63 .00 27 .11 .01 .00 .00 .32 .00 .00 .00 .00 .00 1.05 .00 28 .00 .00 .00 .01 .00 .02 .46 .00 2.39 .00 29 .00 .18 .00 .00 .00 .00 . 21 1.23 .00 .12 69 ---30 .00 .00 .02 .00 .00 1.52 . 09 .00 .00 .01 .00 .01 .00 .00 .00 31 .00 .81 .00 TOTAL 3.24 0.48 0.48 0.49 2.18 3.52 2.70 5.84 1.03 6.86 3.51 3.81 MEAN .10 .02 .02 .02 .09 .19 .12 .08 .12 .03 .12 MAX . 63 .91 .43 1.23 .37 2.39 2.56

.00

.00

.00


.00

.00

.00

.00

IOWA RIVER BASIN
05453600 RAPID CREEK BELOW MORSE, IA--Continued

05454000 RAPID CREEK NEAR IOWA CITY, IA

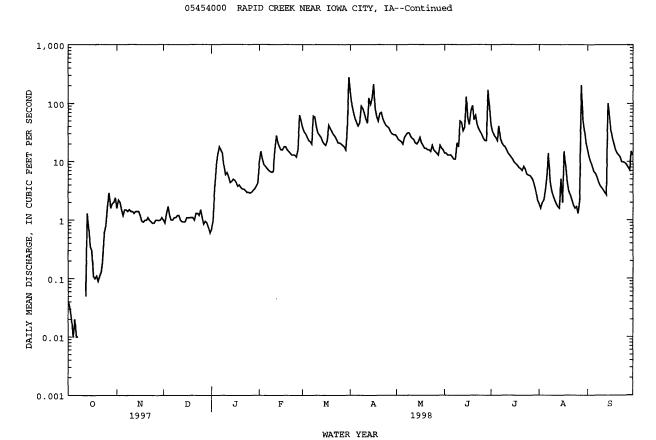
LOCATION.--Lat 41°41'19", long 91°29'15", in NE¹/₄ NE¹/₄ sec.36. T.80 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on left bank 80 ft upstream from bridge on State Highway 1, 3.5 mi northeast of Iowa City, and 4.7 mi upstream from mouth.

DRAINAGE AREA.--25.3 mi².

PERIOD OF RECORD. -- October 1937 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1558: 1941 (M), 1943 (P), 1944 (M), 1946. WSP 1708: 1951 (P), 1952. WDR IA-67-1: Drainage area.

GAGE.--Water-stage recorder and concrete control with sharp-crested weir. Datum of gage is 673.72 ft above sea level.


REMARKS.--Estimated daily discharges: Dec. 26 to Jan. 5 and Jan. 9-30. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem, and U.S. Army Corps of Engineers rain gage and data collection platform.

		DISCHA	RGE, CUBI	C FEET PER		WATER YEAN VAL	AR OCTOBER	1997 TO :	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.04 .03 .02 .01	1.6 2.2 2.0 1.5	1.0 .89 1.3 1.7	e.70 e.95 e3.4 e8.0 e13	9.7 15 11 8.9 8.2	39 33 30 26 23	153 91 69 55 47	27 24 23 22 20	14 14 13 13	43 33 28 26 23	1.9 1.6 2.0 2.2 3.1	16 12 10 8.2 6.8
6 7 8 9 10	.01 .01 .00 .00	1.5 1.5 1.4 1.5	1.0 1.0 1.1 1.1	18 16 14 e8.5 e6.0	7.6 7.1 6.8 6.6 6.8	22 20 61 58 40	41 46 90 81 67	26 29 31 31 27	12 11 11 21 18	41 25 21 19 18	5.5 14 4.7 3.3 2.6	6.3 5.4 4.5 3.9 3.6
11 12 13 14 15	.00 .05 1.3 .72 .35	1.4 1.3 1.4 1.4	1.2 1.0 .94 .93 .94	e6.5 e5.5 e4.4 e4.6 e5.0	16 28 21 18 16	31 28 26 22 20	54 46 124 97 118	25 24 21 20 22	50 47 34 39 130	16 14 13 12 11	2.2 1.9 1.7 1.6 5.1	3.3 3.0 2.7 101 61
16 17 18 19 20	.30 .11 .10 .11	1.2 .96 .92 .99	1.1 1.1 1.1 1.1	e4.8 e4.4 e3.8 e4.0 e3.6	16 18 18 16 15	19 23 42 37 33	212 81 60 50 67	26 21 19 17 17	56 44 75 92 53	9.9 9.2 8.6 7.9 7.6	2.0 15 8.5 4.6 3.2	34 25 20 16 14
21 22 23 24 25	.11 .13 .22 .63 .78	1.1 1.0 .94 .88 .89	1.0 1.3 1.3 1.2	e3.4 e3.4 e3.2 e3.0 e3.0	14 13 13 13 12	29 27 24 21 21	70 55 47 42 40	16 16 15 19 16	62 44 37 33 29	7.1 8.3 7.5 6.2 5.9	2.7 2.2 1.8 1.6 1.7	13 12 10 9.9 9.6
26 27 28 29 30 31	1.8 2.9 1.6 1.9 2.0 2.4	1.0 1.0 .98 1.0 1.1	e1.1 e.85 e.95 e.90 e.75 e.60	e2.9 e3.0 e3.2 e3.4 e3.8 4.3	16 63 50 	20 19 18 16 37 278	38 33 30 29 29	15 14 13 19 17 16	25 23 23 169 83	5.8 5.4 4.8 3.9 3.1 2.2	1.3 2.2 206 52 34 21	8.9 8.0 7.2 15 13
TOTAL MEAN MAX MIN AC-FT CFSM IN.	17.74 .57 2.9 .00 35 .02	37.65 1.25 2.2 .88 .75 .05	33.45 1.08 1.7 .60 66 .04	171.75 5.54 18 .70 341 .22 .25	463.7 16.6 63 6.6 920 .65 .68	1143 36.9 278 16 2270 1.46 1.68	2062 68.7 212 29 4090 2.72 3.03	648 20.9 31 13 1290 .83	1288 42.9 169 11 2550 1.70 1.89	446.4 14.4 43 2.2 885 .57 .66	413.2 13.3 206 1.3 820 .53 .61	463.3 15.4 101 2.7 919 .61
STATIST	CICS OF MO	ONTHLY MEA	an data f		EARS 1938	- 1998,	BY WATER Y					
MEAN MAX (WY) MIN (WY)	6.51 36.5 1942 .000 1954	10.1 84.0 1993 .000 1956	9.11 66.6 1983 .000 1956	9.74 56.8 1946 .000 1940	22.4 77.5 1953 .22 1989	29.4 106 1979 .42 1956	24.1 98.6 1973 1.25 1956	27.2 167 1974 1.13 1977	24.5 134 1990 .21 1956	16.0 105 1969 .000 1957	12.1 176 1993 .032 1955	8.19 66.6 1965 .000 1955
SUMMARY	STATIST:	ics	FOR	1997 CALEN	DAR YEAR	FO	OR 1998 WAT	ER YEAR		WATER YE	ARS 1938	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN TANNUAL MANNUAL MANNUAL MANNUAL MANNUAL MEATLY MEATLY MEATER SEVEN-DATER OF THE PROPERTY	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) LINCHES) EDS EDS			Oct 8 Oct 5		7188.19 19.7 278 .00 .01 958 9.93 14260 .78 10.57 48 9.9			16.6 63.8 1.09 1720 .00 6700 15.61 12000 .65 8.89 34 4.9	May () Mar) Jan Aug (Aug (1993 1957 17 1986 ny days 1 1940 10 1993 10 1993

a Also Oct 9-11

e Estimated

IOWA RIVER BASIN

05454220 CLEAR CREEK NEAR OXFORD, IA

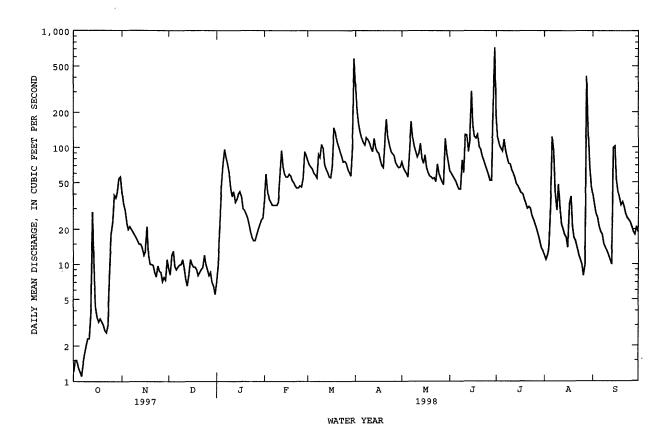
LOCATION.--Lat $41^{\circ}43^{\circ}06^{\circ}$, long $91^{\circ}44^{\circ}24^{\circ}$, in $Sw^{1}/_{4}$ $SE^{1}/_{4}$ sec. 23, T.80 N., R.8 W., Johnson County, Hydrologic Unit 07080209, on left bank 15 ft. downstream of bridge on NW Eagle Avenue, 0.2 miles west of Kent Park, 2.6 miles upstream of Buffalo Creek, 2.8 miles east of Oxford, and 4.2 miles west of Tiffin.

DRAINAGE AREA. -- 58.4 mi².

PERIOD OF RECORD. -- November 1993 to current year.

GAGE.--Water stage recorder. Datum of gage is 696.50 ft., above sea level.

REMARKS.--Estimated daily discharge: Dec. 6,7, Dec. 12-22, Dec. 25 to Jan. 5, and Jan. 10-30. Records good except for those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	٠.	DISCHA	RGE, CUB.	IC FEET PER		MEAN VA		(1997 10	SEFIEMBE	AR 1990		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.2 1.5 1.5 1.3	42 33 29 23 20	9.1 8.1 12 13 9.6	e7.0 e10 e21 e46 e70	36 59 42 36 34	77 71 68 65 60	338 207 159 135 120	75 67 63 60 56	63 60 57 54 51	182 120 105 98 93	12 11 12 14 32	39 32 27 25 21
6 7 8 9 10	1.1 1.4 1.7 2.0 2.3	21 20 19 18 17	e9.0 e9.5 9.9 10	96 82 72 61 e46	32 32 32 32 34	58 55 87 82 106	110 105 121 116 109	91 167 121 102 92	47 44 44 78 61	117 94 82 73 72	123 91 39 29 48	19 18 15 14 13
11 12 13 14 15	2.3 3.9 28 9.7 4.2	16 15 15 14 12	9.4 e7.5 e6.5 e8.0 e11	e38 e42 e34 e36 e40	59 94 68 59 56	98 71 65 61 56	99 92 119 99 92	83 89 108 80 73	129 128 92 114 304	64 60 55 49 47	30 22 20 18 17	12 11 10 99 102
16 17 18 19 20	3.5 3.2 3.4 3.2 3.0	13 21 12 10 10	e10 e9.5 e9.5 e9.0 e8.0	e42 e38 e30 e29 e27	56 59 57 52 50	55 69 147 134 112	89 78 70 67 115	86 67 61 57 56	155 124 120 129 101	44 41 40 36 33	14 33 38 21 17	53 42 37 32 34
21 22 23 24 25	2.7 2.6 3.0 8.3 18	9.8 8.5 7.8 9.7 8.7	e8.5 e9.0 9.4 12 e 1 0	e25 e22 e19 e17 e16	47 45 45 47 46	102 92 84 75 76	174 120 103 92 88	54 55 51 72 60	96 84 77 70 64	30 31 30 26 24	16 14 12 11	31 27 25 24 23
26 27 28 29 30 31	23 39 37 41 54 56	8.5 7.1 7.7 7.3 11	e9.0 e8.0 e8.5 e7.0 e6.5 e5.5	e16 e18 e20 e22 e24 25	54 92 85 	73 65 61 57 98 579	85 74 70 67 68	55 51 48 119 90 75	58 52 52 229 721	22 20 18 16 14 13	8.0 10 409 135 67 46	21 19 18 21 19
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	364.2 11.7 56 1.1 3.2 722 .20 .23	466.1 15.5 42 7.1 14 925 .27	283.0 9.13 13 5.5 9.1 561 .16	1091.0 35.2 96 7.0 29 2160 .60	1440 51.4 94 32 49 2860 .88 .92	2959 95.5 579 55 73 5870 1.63 1.88	3381 113 338 67 101 6710 1.93 2.15	2384 76.9 167 48 72 4730 1.32 1.52	3458 115 721 44 78 6860 1.97 2.20	1749 56.4 182 13 44 3470 .97 1.11	1379.0 44.5 409 8.0 20 2740 .76	883 29.4 102 10 24 1750 .50
STATIST	TICS OF M	ONTHLY ME	AN DATA E	OR WATER Y	EARS 1995	- 1998,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	6.16 11.7 1998 1.74 1996	9.71 15.5 1998 4.28 1997	8.20 16.2 1995 3.07 1996	14.3 35.2 1998 4.02 1996	49.0 104 1997 18.4 1995	42.9 95.5 1998 11.6 1996	61.2 113 1998 8.16 1996	142 269 1996 49.1 1997	74.4 115 1998 32.0 1997	28.0 56.4 1998 10.4 1997	15.2 44.5 1998 4.14 1996	9.85 29.4 1998 2.18 1996
SUMMARY	STATIST	rics	FOR	1997 CALEN	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER Y	EARS 1995	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC	MEAN ANNUAL ANNU	EAN EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES)		9220.9 25.3 1810 1.1 1.3 18290 .43 5.87 42	Sep 30		.95 39350 .93 12.64 108	Oct 1 Aug 28 Aug 28 Oct 1		38.3 54.3 23.4 2400 .7 1.3 4230 14.8 27780 .6 8.9 92	May 4 Dec 5ep May 9 May	1998 1997 10 1996 11 1995a 30 1997 10 1996 10 1996
90 PERC	CENT EXCE CENT EXCE affected	EDS		11 2.4			41 8.2			14 2.3	i	

a Ice affected e Estimated

IOWA RIVER BASIN

05454220 CLEAR CREEK NEAR OXFORD, IA--Continued

05454300 CLEAR CREEK NEAR CORALVILLE, IA

LOCATION.--Lat $41^{\circ}40^{\circ}36^{\circ}$, long $91^{\circ}35^{\circ}55^{\circ}$, in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec.1, T.79 N., R.7 W., Johnson County, Hydrologic Unit 07080209, on left bank about 15 ft upstream from bridge on county highway, 1.1 mi west of post office in Coralville, 1.5 mi downstream from Deer Creek, and 2.7 mi upstream from mouth.

DRAINAGE AREA. -- 98.1 mi2.

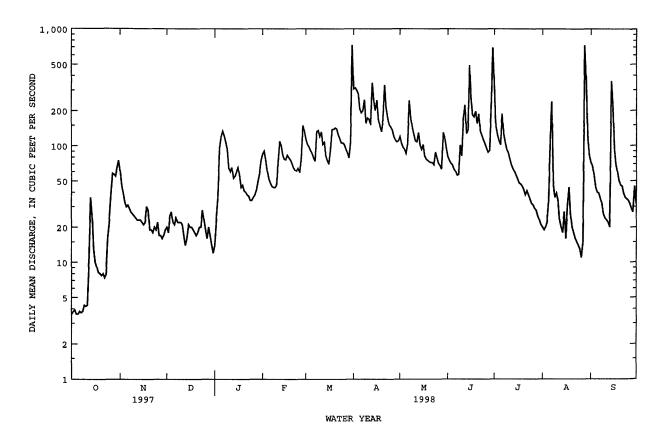
PERIOD OF RECORD. -- October 1952 to current year. Monthly discharge only for some periods, published in WSP 1728.

REVISED RECORDS. -- WDR IA-93-1: 1974 (M), 1982 (M), 1990 (M).

GAGE.--Water-stage recorder. Datum of gage is 647.48 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Jan. 7, 1957, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Dec. 12-22, Dec. 25 to Jan. 4, and Jan. 10 to Feb. 4. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem and U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


		DISCHAR	GE, CUBIC	FEET PER		WATER YE MEAN VA	EAR OCTOBER LUES	1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	3.6 3.8	61 46	20 18	e14 e23	e85 e90	114 103	308 314	119 105	81 75	326 147	20 19	72 67
3 4	3.9 3.6	39 33	25 27	e36 e95	e75 e60	98 91	299 278	97 93	71 69	123 110	20 22	55 44
5	3.6	30	22	119	52	86	207	86	63	102	33	40
6 7	3.8 3.7	31 29	21 24	133 121	48 45	79 7 4	192 200	104 244	60 56	187 126	112 238	39 35
8	3.8	27	22	107	44	132	248	174	57	107	46	32
9 10	4.3 4.2	26 25	22 22	93 e 6 5	44 46	135 120	156 173	143 124	101 82	93 87	36 39	26 24
11 12	4.3 11	2 4 23	21 e17	e60 e65	71 109	131 103	169 151	110 108	170 223	77 69	34 23	23 22
13	36	23	e14	e53	100	107	346	129	127	64	20	20
14 15	25 13	23 22	e16 e21	e 55 e60	84 77	82 75	246 201	101 93	137 488	60 56	18 27	355 224
16 17	10 9.1	21 22	e20 e20	e65 e55	76 83	70 92	246 170	102 82	255 184	52 48	16 30	93 69
18	8.2	30	e19	e44	79	138	147	77	177	47	44	5 9
19 20	8.0 7.7	28 19	e18 e17	e46 e41	76 71	138 142	132 168	75 73	197 155	45 42	26 20	50 46
21 22	8.0 7.4	19 18	e18 e20	e40 e38	65 62	139 124	332 214	72 72	187 133	38 41	18 16	45 39
23	7.9	20	20	e37	61	115	175	69	122	38	15	36
24 25	16 22	19 22	28 e23	e34 e34	64 59	106 10 6	151 144	88 79	112 104	35 32	14 13	35 34
26	38	17	e19	e36	78	102	136	71	95	31	11	32
27 28	58 57	17 16	e16 e20	e38 e42	149 133	93 87	119 112	68 63	88 91	29 28	15 724	29 27
29 30	55 65	17 19	e17 e14	e50 e58		79 108	108 110	129 115	226 696	25 23	3 4 1 113	45 32
31	75		e12	e75		729		95		21	82	
TOTAL MEAN	579.9 18.7	766 25.5	613 19.8	1832 59.1	2086 74.5	3898 126	5952 198	3160 102	4682 156	2309 74.5	2205 71.1	1749 58.3
MAX	75	61	28	133	149	729	346	244	696	326	724	355
MIN AC-FT	3.6 11 5 0	16 1520	12 1220	14 3630	44 4140	70 7730	108 11810	63 6270	56 9290	21 4580	11 4 370	20 3 4 70
CFSM IN.	.19 .22	.26 .29	.20 .23	. 6 0 . 6 9	.76 .79	1.28 1.48	2.02 2.26	1.04 1.20	1.59 1.78	.76 .88	.73 .84	. 59 . 66
							BY WATER 3			.00	.04	.00
MEAN	29.1	44.0	39.1	39.8	71.2	113	103	113	104	92.6	61.9	44.9
MAX	143	246	162	206	229	402	452	589	566	991	759	337
(WY) MIN	1987 .55	1962 .95	1993 .54	1960 .10	1959 2.79	1979 4.49	1973 4.15	1974 3.79	1990 .83	1993 1.69	1993 1.94	1965 .69
(WY)	1958	1956	1956	1977	1954	1954	1956	1956	1956	1954	1953	1953
SUMMARY	Y STATISTI	cs	FOR 1	.997 CALEN	DAR YEAR	F	OR 1998 WAT	TER YEAR		WATER YE	ARS 1953 ·	- 1998
ANNUAL ANNUAL		(EAN)		15193.3 41.6			29831.9 81.7			71.3 327		1993
	ANNUAL ME									6.57		1957
	DAILY ME DAILY MEA			2690 3.0	Feb 21 Feb 14		729 3.6	Mar 31 Oct 1,		7310 .00		7 1990 8 1977a
	SEVEN-DAY FANEOUS PE			3.7	Feb 10		3.7 1160	Oct 1 Aug 28		.00 .00 10200	Jan 1: Jun 1:	8 1977a 7 1990
INSTAN	TANEOUS PE	AK STAGE					8.77	Aug 28		16.36		7 1990
ANNUAL	RUNOFF (A	C-FT)		30140			3.3 59170	Oct 4,		51630		
	RUNOFF (C			.42 5.76			.83 11.31			.73 9.87		
10 PERG	CENT EXCEE	DS .		71 20			170 5 9			148 27		
	CENT EXCEE			4.9			17			2.8		

a Also Jan 19 to Feb 4, 1977

e Estimated

IOWA RIVER BASIN

05454300 CLEAR CREEK NEAR CORALVILLE, IA--Continued

05454500 IOWA RIVER AT IOWA CITY, IA

LOCATION.--Lat $41^{\circ}39^{\circ}24^{\circ}$, long $91^{\circ}32^{\circ}27^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.9, T.79 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on right bank 25 ft downstream from Hydraulics Laboratory of University of Iowa in Iowa City, 175 ft downstream from University Dam, 0.8 mi upstream from Ralston Creek, 3.6 mi downstream from Clear Creek, and at mile 74.2.

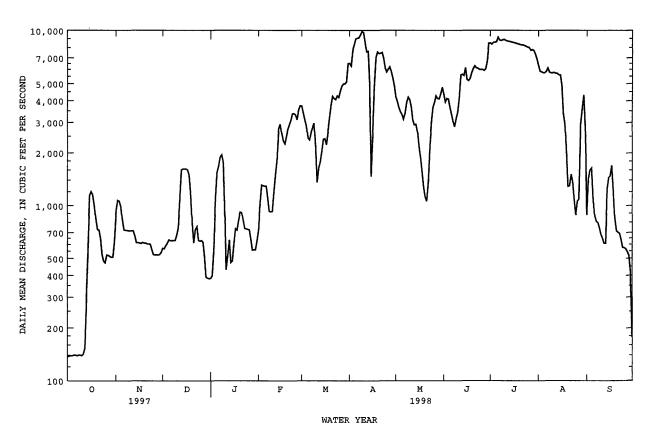
DRAINAGE AREA. -- 3, 271 mi².

PERIOD OF RECORD. -- June 1903 to current year. Monthly discharge only for some periods, published in WSP 1308.

GAGE.--Water-stage recorder. Datum of gage is 29.00 ft above Iowa City datum, and 617.27 ft above sea level. Oct. 1, 1934 to Sept. 30, 1972, at datum 10.00 ft higher. See WSP 1708 for history of changes prior to Oct. 1, 1934.

REMARKS.--No estimated daily discharge. Records good. Slight fluctuation at low stages caused by powerplant above station. Flow regulated by Coralville Lake (station 05453510), 9.1 mi upstream, since Sept. 17, 1958. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers raingage and satellite data collection platform and U.S. Geological Survey data collection platform with telephone modem backup at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 42,500 ft³/s June 8, 1918, gage height, 19.6 ft, from graph based on gage readings, site and datum then in use; minimum daily discharge, 29 ft³/s Oct. 21, 22, 1916, regulated.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 17, 1881, reached a stage of 21.1 ft, from floodmarks at site and datum in use 1913-21, from information by local resident, discharge, 51,000 ft³/s. Maximum stage known since at least 1850, about 3 ft higher than that of July 17, 1881, occurred in June 1851, discharge, 70,000 ft³/s, estimated

		DISCH	HARGE, CU	BIC FEET E		O, WATER	YEAR OCTOE VALUES	BER 1997 T	O SEPTEMB	ER 1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	137	922	569	385	725	3730		4200	4360	8510	6320	879
2	138	1070	567		1020	3410	6290	3950	3940	8370	5870	1430
3	13 9	1060	591		1310	3120	7720	3650	4120	8570	5830	1600
4	139	988	610	1070	1300	2860		3460	4090	8590	5770	1640
5	140	823	636	1540	1290	2440	8970	3340	3660	8640	5770	1110
6	140	725	630	1680	1290	2380	9040	3140	3350	9160	5850	868
7	139	721	629		1100	2610		3400	3050	8840	6110	808
8	140	720	632	1950	925	2780	9420	3920	2840	8790	5800	797
9	140	717	632		920	2970		4190	3150	8850	5750	742
10	139	716	677	973	924	2180	9760	4050	3430	8920	5750	683
11	142	716	744		1210	1360		3690	4120	8790	5780	649
12	154	715	1060	516	1520	1640		3110	5600	8730	5720	609
13	296	670	1600	636	1870	1780	7620	2910	5640	8690	5710	608
14	548	614	1620	474	2750	2040	4950	2930	5550	8650	5610	1240
15	1140	615	1620	484	2930	2400	1470	2650	6140	8600	5590	1450
16	1200	611	1620	610	2600	2420	2620	2160	5280	8550	4860	1480
17	1150	608	1600	736	2350	2230	4910	1870	5200	8510	3380	1700
18	1010	616	1490	723	2260	2630	7030	1550	5330	8450	2960	1230
19	832	610	1170	816	2500	3180		1280	5770	8400	2020	842
20	728	611	787	915	2740	3760		1120	6080	8350	1290	715
21	723	604	613	912	2910	4230	7420	1060	6290	8290	1300	703
22	649	604	727	820	3090	4120		1360	6130	8300	1510	692
23	528	601	756	739	3370	4060	6940	2170	6100	8220	1360	641
24	483	558	633	734	3380	4260		2980	6010	8140	1080	577
25	473	525	626	729	3320	4170		3660	6010	8070	880	574
26	522	524	631	726	3120	4540	6020	3900	6000	8010	1060	568
27	521	524	617	638	3560	4830		4260	5930	7740	1090	546
28	512	523	511	557	3740	4970	5860	4120	6070	7800	2860	521
29	507	526	391	560		4980	5400	4100	6690	7700	3580	426
30	509	539	386	560		5110	4840	4380	8470	7340	4310	177
31	632		383	629		6480		4750		6890	2860	
TOTAL	14650	20376	25758	26169	60024	103670	206810	97310	154400	259460	123630	26505
MEAN	473	679	831	844	2144	3344	6894	3139	5147	8370	3988	884
MAX	1200	1070	1620	1950	3740	6480		4750	8470	9160	6320	1700
MIN	137	523	383	385	725	1360		1060	2840	6890	880	177
AC-FT	29060	40420	51090	51910	119100	205600		193000	306300	514600	245200	52570
CFSM								.96	1.57	2.56	1.22	.27
	.14	.21	. 25	.26	. 66	1.02	2.11					
IN.	.17	.23	.29	.30	. 68	1.18	2.35	1.11	1.76	2.95	1.41	.30
STATIST	CICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	59 - 199	8, BY WATE	R YEAR (W	Y)			
MEAN	1150	1485	1470	1104	1799	3474		3246	3555	3498	2280	1523
MAX	4277	5395	4580	5381	57 89	7988	9764	9763	11590	22220	20060	13760
(WY)	1994	1987	1983	1973	1973	1971	1979	1993	1991	1993	1993	1993
MIN	135	121	130	141	125	366	348	184	99.1	72.8	162	147
(WY)	1990	1967	1989	1990	1977	1977	1989	1977	1977	1977	1989	1976

05454500 IOWA RIVER AT IOWA CITY, IA--Continued

SUMMARY STATISTICS	FOR 1997 CAL	ENDAR YE	EAR	FOR 1998 WA	TER Y	ÆAR	WATER YE	ARS 195	9 -	1998a
ANNUAL TOTAL	723106			1118762						
ANNUAL MEAN	1981			3065			2372			
HIGHEST ANNUAL MEAN							8502			1993
LOWEST ANNUAL MEAN							304			1989
HIGHEST DAILY MEAN	9980	Mar	1	9870	Apı	: 9	26200	Jul	21	1993
LOWEST DAILY MEAN	137	Oct	1	137	Oct	: 1	49	Aug	1	1977b
ANNUAL SEVEN-DAY MINIMUM	139	Sep	30	139	0ct	. 1	50	Jul	31	1977
INSTANTANEOUS PEAK FLOW				9960	Apı	: 9	28200	Aug	10	1993
INSTANTANEOUS PEAK STAGE				20.36	Apı	: 9	28.52	Aug	10	1993
ANNUAL RUNOFF (AC-FT)	1434000			2219000			1719000			
ANNUAL RUNOFF (CFSM)		51		.94	ļ		.73			
ANNUAL RUNOFF (INCHES)	8.	22		12.72	!		9.85			
10 PERCENT EXCEEDS	5010			7760			6000			
50 PERCENT EXCEEDS	1100			1890			1320			
90 PERCENT EXCEEDS	351			525			211			

a Post regulation b Also Aug 2, 1977

150

IOWA RIVER BASIN

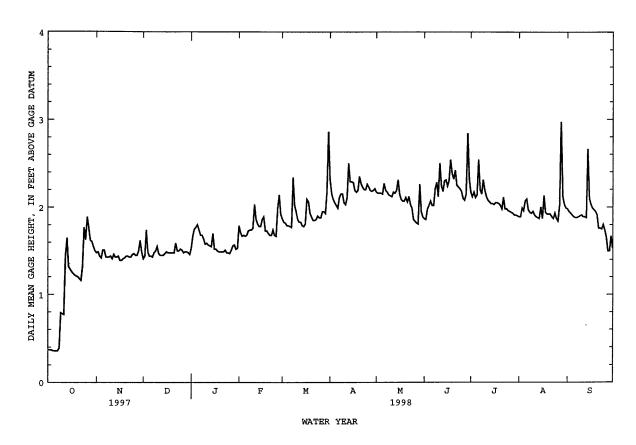
05455010 SOUTH BRANCH RALSTON CREEK AT IOWA CITY, IA

LOCATION.--Lat $41^{\circ}39^{\circ}05^{\circ}$, long $91^{\circ}30^{\circ}27^{\circ}$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec.14, T.79 N., R.6 W., Johnson County, Hydrologic Unit 07080209, on right bank 60 ft downstream from bridge on Muscatine Avenue in Iowa City, and 1.2 mi upstream from mouth.

DRAINAGE AREA. -- 2.94 mi².

PERIOD OF RECORD.--Discharge records from October 1963 to September 1995. Stage-only records from October 29, 1996 to present year.

REVISED RECORDS. -- WDR IA-66-1: Drainage area.


GAGE.--Water-stage recorder and V-notch sharp-crested weir. Datum of gage is 678.03 ft above sea level.

REMARKS.--Minor regulation from retention dam 2 miles upstream may affect peaks. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 14, 1962, reached a stage of 10.5 ft, from flood profile, discharge not determined.

EXTREMES FOR CURRENT YEAR.--Maximum instantaneous gage height 7.75 ft on June 29. Minimum gage height of .36 on Oct. 4-7.

			GAGE HEIG	HT, FEET,		EAR OCTOBE Y MEAN VAI		O SEPTEMBE	R 1998			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.37 .37 .37 .36	1.48 1.49 1.44 1.42	1.41 1.44 1.74 1.49 1.44	1.53 1.67 1.75 1.77	1.79 1.71 1.67 1.68 1.67	1.87 1.83 1.82 1.79 1.79	2.32 2.15 2.09 2.05 2.02	2.17 2.16 2.16 2.16 2.15	1.87 1.86 1.98 2.02 2.07	2.17 2.12 2.17 2.11 2.14	1.89 1.89 1.99 1.96 2.07	1.98 1.95 1.93 1.91 1.89
6 7 8 9 10	.36 .36 .39 .79	1.51 1.43 1.43 1.43	1.44 1.43 1.48 1.50 1.55	1.74 1.68 1.68 1.64 1.58	1.68 1.73 1.74 1.74	1.78 1.77 2.34 2.02 1.95	1.99 2.11 2.15 2.15 2.05	2.27 2.19 2.17 2.14 2.13	2.02 2.02 2.21 2.28 2.12	2.54 2.20 2.15 2.31 2.19	2.09 1.97 1.94 1.93 1.95	1.88 1.89 1.90 1.91
11 12 13 14 15	.77 -1.44 1.65 1.32 1.29	1.41 1.46 1.43 1.43	1.47 1.45 1.45 1.45 1.47	1.59 1.57 1.56 1.55 1.70	2.03 1.86 1.81 1.78 1.78	1.86 1.83 1.83 1.79 1.78	2.03 2.11 2.50 2.29 2.29	2.12 2.17 2.16 2.19 2.31	2.50 2.24 2.18 2.30 2.31	2.12 2.08 2.06 2.04 2.04	1.91 1.89 1.88 1.87 2.00	1.89 1.89 1.88 2.66 2.10
16 17 18 19 20	1.26 1.24 1.22 1.21 1.20	1.39 1.39 1.41 1.42 1.44	1.49 1.48 1.48 1.48 1.48	1.52 1.52 1.50 1.49 1.49	1.86 1.89 1.73 1.73	1.81 2.09 2.06 1.93 1.89	2.28 2.19 2.17 2.19 2.35	2.15 2.09 2.07 2.07 2.11	2.24 2.30 2.54 2.38 2.32	2.03 2.05 2.05 2.04 2.02	1.87 2.13 1.94 1.92 1.92	2.03 1.99 1.97 1.95 1.91
21 22 23 24 25	1.18 1.16 1.32 1.77 1.63	1.44 1.43 1.43 1.46 1.47	1.48 1.59 1.50 1.50	1.49 1.49 1.51 1.48 1.48	1.68 1.68 1.74 1.68 1.67	1.85 1.85 1.86 1.90 1.88	2.27 2.23 2.20 2.20 2.26	2.06 2.12 2.03 1.99 1.86	2.42 2.25 2.23 2.21 2.18	1.98 2.11 1.98 1.98 1.96	1.92 1.89 1.87 1.93 1.87	1.76 1.76 1.75 1.80 1.74
26 27 28 29 30 31	1.89 1.76 1.62 1.61 1.55 1.50	1.45 1.45 1.50 1.62 1.49	1.51 1.48 1.49 1.49 1.48	1.47 1.51 1.56 1.57 1.52	1.99 2.14 1.92 	1.88 1.95 1.95 1.93 2.19 2.86	2.23 2.19 2.18 2.19 2.21	1.84 1.82 1.81 2.26 1.95 1.89	2.10 2.08 2.15 2.84 2.32	1.95 1.94 1.93 1.91 1.91	1.84 2.02 2.97 2.12 2.03 1.99	1.66 1.50 1.50 1.67 1.53
MEAN MAX MIN	1.10 1.89 .36	1.45 1.62 1.39	1.49 1.74 1.41	1.58 1.80 1.47	1.78 2.14 1.67	1.93 2.86 1.77	2.19 2.50 1.99	2.09 2.31 1.81	2.22 2.84 1.86	2.07 2.54 1.90	1.98 2.97 1.84	1.87 2.66 1.50

05455100 OLD MANS CREEK NEAR IOWA CITY, IA

LOCATION.--Lat. 41°36'23", long. 91°36'56", in SE¹/₄ SW¹/₄ NW¹/₄ sec. 36, T.79 N., R.7 W., Johnson County, Hydrologic Unit 07080209, on left bank 10 ft downstream from bridge on county highway W62, 5 miles southwest of Iowa City, 5.9 miles upstream of Dirty Face Creek, and 8.6 miles upstream from mouth.

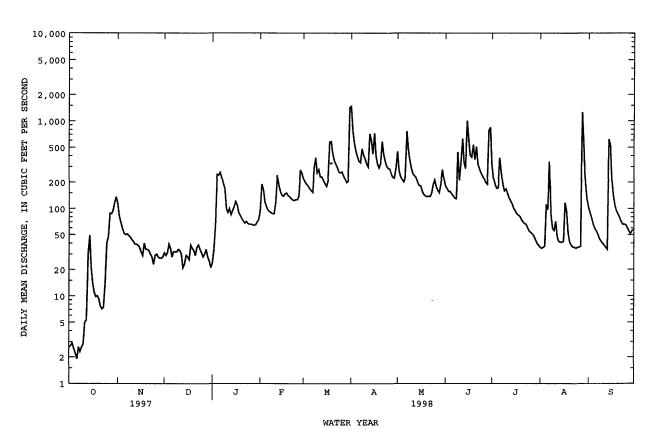
DRAINAGE AREA. -- 201 mi².

PERIOD OF RECORD.--October 1950 to September 1964, published in WSP 1914. Annual maximum, water years 1965-84. Occasional low-flow measurements, water years 1964-77; October 1984 to current year.

GAGE.--Water-stage recorder. Datum of gage is 637.49 ft above sea level. Prior to Nov. 16, 1984, nonrecording gage at same site at datum 2.00 ft higher. Prior to Oct. 1, 1987, at datum 2.00 ft higher.

REMARKS.--Estimated daily discharges: Dec. 13-17, Dec. 24 to Jan. 3, Jan. 10 to Feb. 2, and June 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

COOPERATION.--Gage height record and discharge measurements for water years 1951-64 were collected by the U.S. Army Corps of Engineers and computed by the U.S. Geological Survey.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 13,500 ft³/s, on the basis of contracted-opening of peak flow, June 15, 1982, gage height, 17.25 ft, present datum.

		DISCHAF	RGE, CUBI	C FEET PE		WATER Y	EAR OCTOBE ALUES	IR 1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	2.6 2.7	11 4 82	31 29	e24 e34	e95 e190	219 200	1 4 70 7 5 9	447 272	180 169	320 221	36 35	10 4 89
3 4	2.9 2.5	6 9 5 9	31 39	e65 245	163 118	189 180	555 453	233 214	156 156	187 170	36 37	78 66
5	2.2	52	35	240	105	168	391	201	146	172	111	59
6	1.9	50	28	259	96	160	348	225	139	378	97	55
7	2.6	51	32	225	92	153	335	758	131	261	3 4 3 86	50 4 5
8 9	2.3 2.6	49 4 7	32 32	193 168	90 8 7	296 3 8 1	480 404	462 352	129 e 44 0	188 159	59	42
10	2.8	44	34	e100	87	256	369	288	209	167	56	40
11	5.0	42	33	e90	117	278	322	250	328	148	71	38
12 13	5.3	39 39	30 e21	e100 e85	240 184	230	299 708	237 226	625 332	132 122	47 42	36 34
14	30 4 9	39	e21 e23	e85 e95	156	231 207	708 599	197	286	113	41	616
15	21	36	e29	e105	142	192	421	183	1000	101	41	521
16	14	32	e28	e120	138	179	723	180	619	94	42	204
17	11	29	e26	e110	147	208	398	156 144	406	87 84	116	138 108
18 19	9 [.] .8 10	40 34	38 35	e90 e83	150 140	57 4 582	324 292	139	386 533	84 81	93 52	108 9 4
20	9.2	34	33	e77	136	424	325	136	362	75	41	86
21	7.6	33	29	e72	130	357	581	138	505	70	38	79
22	7.1	30	36	e68	125	323	415	137	324 284	67 66	36	71 66
23 24	7.4 14	28 23	38 e3 4	e71 e67	123 126	295 263	3 44 302	149 188	28 4 255	60	36 35	66
25	40	29	e31	e66	126	256	287	211	235	55	36	65
26	48	30	e28	e66	139	262	283	176	217	53	36	60
27 28	88 87	28 27	e30 e34	e65 e64	275 254	238 216	249 228	161 151	197 1 8 9	51 48	37 1250	55 51
29	95	27	e28	e65	254	198	221	194	776	44	498	56
30	117	28	e25	e70		206	288	277	840	40	196	57
31	135		e21	e75		1430		216		38	128	
TOTAL MEAN	835.5 27.0	1263 42.1	953 30.7	3257 105	3971 142	9351 302	13173 4 39	7298 235	1055 4 352	3852 124	3808 123	3129 104
MAX	135	114	30.7	259	275	1430	1470	758	1000	378	1250	616
MIN	1.9	23	21	24	87	153	221	136	129	38	35	34
AC-FT	1660	2510	1890	6460	7880	18550	26130	14480	20930	7640	7550	6210
CFSM	.13	.21	.15	. 52	.71	1.50	2.18	1.17	1.75	. 62	. 61	. 52
IN.	.15	. 23	.18	. 60	.73	1.73	2.44	1.35	1.95	.71	.70	. 58
STATIST	rics of M	ONTHLY MEA	N DATA F	OR WATER	YEARS 195	1 - 1998	, BY WATER	YEAR (WY)			
MEAN	47.6	92.0	56.4	63.1	118	247	168	235	181	158	112	65.7
MAX	307	636	337	436	346	793	625	1071	907	1515	1190	598
(WY)	1987	1962	1993	1960	1953	1962	1993	1996	1990	1993	1993	1993
MIN (WY)	.21 1958	.39 1956	.35 1956	.26 1956	2.50 1954	2.12 1954	1.29 1 956	4.97 1956	5.34 1956	1.43 1954	2.97 1988	.36 1957
(AAT)	1330	1930	1930	1930	1334	1334	1930	1930	1,50	1734	1700	1/3/

05455100 OLD MANS CREEK NEAR IOWA CITY, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1951 - 1998
ANNUAL TOTAL	29969.5	61444.5	
ANNUAL MEAN	82.1	168	129
HIGHEST ANNUAL MEAN			607 1993
LOWEST ANNUAL MEAN			10.3 1954
HIGHEST DAILY MEAN	3490 Feb 21	1470 Apr 1	8780 Jul 6 1993
LOWEST DAILY MEAN	1.9 Oct 6	1.9 Oct 6	.10 Sep 6 1957
ANNUAL SEVEN-DAY MINIMUM	2.4 Oct 4	2.4 Oct 4	.10 Sep 6 1957
INSTANTANEOUS PEAK FLOW		2510 Jun 29	13000 Jul 6 1993
INSTANTANEOUS PEAK STAGE		12.89 Jun 29	17.61 Jul 6 1993
INSTANTANEOUS LOW FLOW		1.2 Oct 6	
ANNUAL RUNOFF (AC-FT)	59440	121900	93290
ANNUAL RUNOFF (CFSM)	. 41	. 84	.64
ANNUAL RUNOFF (INCHES)	5.55	11.37	8.70
10 PERCENT EXCEEDS	174	379	280
50 PERCENT EXCEEDS	34	104	38
90 PERCENT EXCEEDS	7.4	28	1.6

e Estimated

05455500 ENGLISH RIVER AT KALONA, IA

LOCATION.--Lat $41^{\circ}28^{\circ}11^{\circ}$, long $91^{\circ}42^{\circ}52^{\circ}$, (revised) in $SE^{1}/_{4}$ sec.13, T.77 N., R.8 W., Washington County, Hydrologic Unit 07080209, on right bank 30 ft upstream from bridge on State Highway 1, 0.8 mi south of Kalona, 1.1 mi upstream from Camp Creek, 4.5 mi downstream from Smith Creek, and 14.5 mi upstream from mouth.

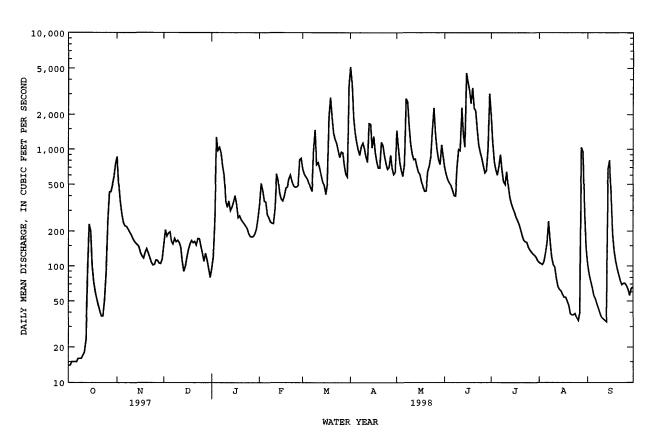
DRAINAGE AREA. -- 573 mi².

PERIOD OF RECORD. -- September 1939 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1940 (M), 1941. WSP 1708: 1956, 1957 (P), 1958 (P).

GAGE.--Water-stage recorder. Datum of gage is 633.45 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Dec. 27, 1939, nonrecording gage 30 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Dec. 13-17, Dec. 26 to Jan. 3, Jan. 10 to Feb. 4, and Aug. 13-20. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in June 1930 reached a stage of 19.9 ft, from floodmark, from information by local residents, discharge, $18,500 \, \mathrm{ft}^3/\mathrm{s}$.

		DISCHAR	RGE, CUBI	C FEET PE		WATER YE Y MEAN VA		R 1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	14 14	862 509	153 205	e95 e120	e340 e510	683 6 14	5110 3640	1450 1040	699 609	1990 1160	107 105	104 85
3	15	353	181	e250	e440	582	1870	773	551	789	103	74
4	15	280	193	1270	e360	555	1380	657	517	672	109	65
5	15	236	197	978	353	511	1140	587	487	602	129	56
6	15	2 2 2	163	1º 040	276	468	986	740	444	711	157	52
7	16	219	155	930	259	436	887	2730	400	900	242	47
8	16	209	173	721	240	999	1060	2560	397	664	162	43
9	16	197	162	602	234	1470	1130	1 570	713	534	120	39
10	17	186	167	e360	232	740	1010	1100	994	499	103	36
11	18	174	160	e320	313	769	861	910	974	641	98	35
12	23	164	146	e360	616	688	775	814	2290	481	79	3 <u>4</u> 33
13 14	86	158	e110	e300	544	599	1670	824 7 1 7	1350	386 343	e67 e63	675
15	229 200	153 147	e90 e100	e320	420 374	528 484	1650 1030	636	1050 4540	313	e61	803
				e355								
16	101	131	e120	e400	362	412	1290	609	3770	290	e57	39 1
17	73	122	e140	e340	398	509	939	530	3230	263	e54	188
18	60	117	156	e260	466	1 910	782	471	2490	245	e54	136
19	52	131	166	e270	477	2800	693	436	3380	228	e50	111
20	46	141	159	e250	556	1910	692	439	2280	205	e46	95
21	41	130	163	e240	600	1380	1150	642	2150	183	39	84
22	37	119	152	e230	537	1220	1080	714	1490	167	38	75
23	37	108	173	e220	486	1130	874	857	1090	162	38	69
24	51	102	172	e210	473	979	754	1470	944	160	39	71
25	87	103	148	e190	477	85 1	675	2280	839	145	36	71
26	246	113	e129	e180	492	947	699	1370	720	137	34	68
27	432	112	e110	e178	814	933	888	998	629	132	39	63
28	433	106	e129	e180	836	728	687	823	657	127	1040	56
29	496	105	e114	e190		61 1	609	740	1040	124	947	64
30	576	114	e95	e210		580	637	1090	3030	119	296	66
31	747		e80	e260		3540		869		111	145	
TOTAL	4224	5823	4561	11829	12485	30566	36648	31446	43754	13483	4657	3789
MEAN	136	194	147	382	446	986	1222	1014	1458	435	150	126
MAX	747	862	205	1270	836	3540	5110	2730	4540	1990	1040	803
MIN	14	102	80	95	232	412	609	436	397	111	34	33
AC-FT	8380	11550	9050	23460	24760	60630	72690	62370	86790	26740	9240	7520
CFSM	.24	.34	.26	. 66	.78	1.72	2.13	1.77	2.54	.76	.26	.22
IN.	.27	.38	.30	.77	. 81	1.98	2.38	2.04	2.84	. 87	.30	. 25
STATIST	ICS OF	MONTHLY MEA	N DATA F	OR WATER	YEARS 194	0 - 1998,	BY WATER	YEAR (WY)			
MEAN	147	247	190	213	365	698	646	680	587	419	279	239
MAX	1004	2060	1085	1429	1066	2 95 7	2736	3529	2570	4207	3696	3169
(WY)	1987	1962	1983	1946	1984	1979	1973	1974	1990	1993	1993	1965
MIN	2.98	2.38	2.19	.76	13.8	10.8	5.35	9.62	21.7	7.31	6.34	3.10
(WY)	1954	1956	1956	1977	1954	1954	1956	1956	1940	1954	1955	1955

05455500 ENGLISH RIVER AT KALONA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	IDAR YEAR	FOR 1998	WATE	ER YE	AR	WATER YEAR	s 19 4 0	- 1998
ANNUAL TOTAL	89847		203265						
ANNUAL MEAN	246		557				392		
HIGHEST ANNUAL MEAN							1721		1993
LOWEST ANNUAL MEAN							41.7		1954
HIGHEST DAILY MEAN	7810	Feb 22	5110		Apr	1	22300	Jul	6 1993
LOWEST DAILY MEAN	12	Jan 12	14		Oct	1	.66	Feb	5 1977
ANNUAL SEVEN-DAY MINIMUM	14	Jan 11	15		Oct	1	. 68	Feb	1 1977
INSTANTANEOUS PEAK FLOW			5170		Apr	1	36100	Jul	6 1993
INSTANTANEOUS PEAK STAGE			15		Apr	1	22.55	Jul	6 1993
INSTANTANEOUS LOW FLOW			14		Oct	1,2,3			
ANNUAL RUNOFF (AC-FT)	178200		403200				284200		
ANNUAL RUNOFF (CFSM)	.43	3		. 97			.68		
ANNUAL RUNOFF (INCHES)	5.82	2	13	.17			9.29		
10 PERCENT EXCEEDS	493		1140				865		
50 PERCENT EXCEEDS	120		320				120		
90 PERCENT EXCEEDS	19		54				11		

e Estimated

05455700 IOWA RIVER NEAR LONE TREE, IA

LOCATION.--Lat $41^{\circ}25^{\circ}15^{\circ}$, long $91^{\circ}28^{\circ}25^{\circ}$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec.6, T.76 N., R.5 W., Louisa County, Hydrologic Unit 07080209, on left bank 2,000 ft downstream from tri-county bridge on county highway W66, 5 mi southwest of Lone Tree, 6.2 mi downstream from English River, and at mile 47.2.

DRAINAGE AREA, --4, 293 mi².

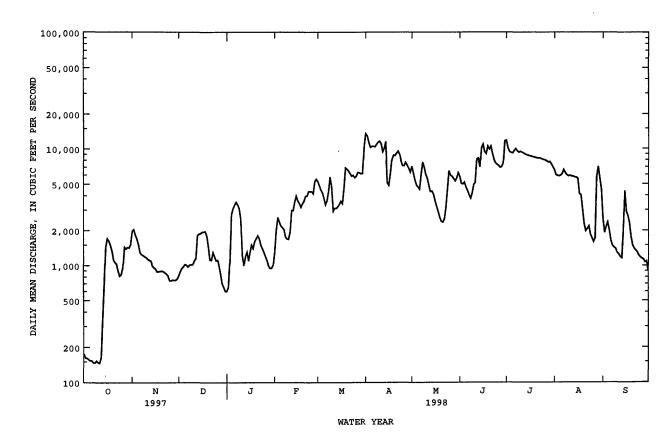
PERIOD OF RECORD. -- October 1956 to current year.

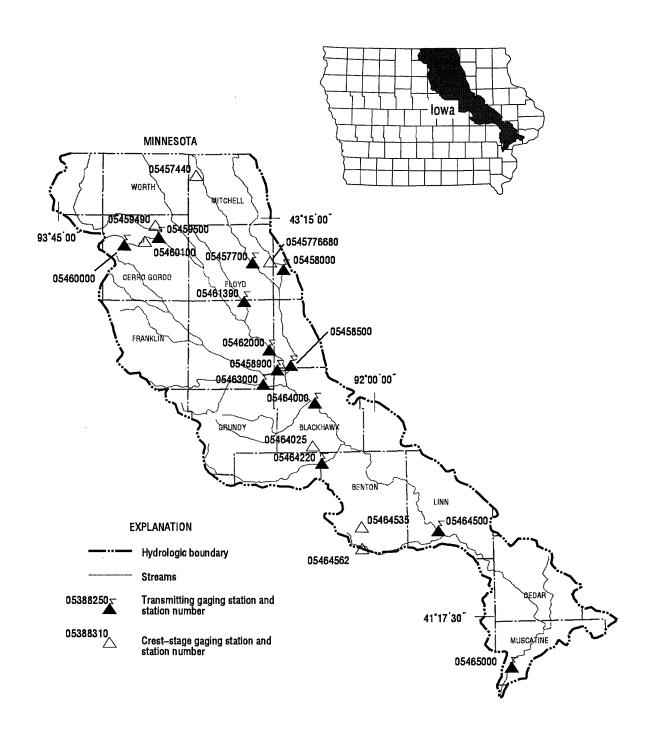
GAGE.--Water-stage recorder. Datum of gage is 588.16 ft above sea level. Prior to Dec. 28, 1956, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Dec. 27 to Jan. 3, and Jan. 10 to Feb. 1. Records good except those for estimated daily discharges, which are fair. Flow regulated by Coralville Lake (station 05453510), 36.1 mi upstream, since Sept. 17, 1958. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 25, 1944, reached a stage of 19.94 ft, discharge not determined, from information by U.S. Army Corps of Engineers.


	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	175	1980	816	e600	e1300	5270	13500	7060	5830	11800	6600	2520
2 3	162 161	2040 1820	886 944	e650 e1100	1980 2590	4870 4460	12900 11300	6200 5 4 30	5070 5010	10200 9 4 20	6010 5900	1910 2 1 50
3 4	157	1690	975	2750	2380	4220	10300	4920	5180	9240	5860	2350
5	153	1510	1020	3070	2190	3770	10500	4720	4700	9170	5930	2020
6	153	1290	1010	3320	2120	3330	10500	4520	4380	9630	6110	1630
7	147	1240	975	3500	2050	3620	10400	6090	4040	9990	6620	1480
8	147	1220	1010	3330	1760	4300	10900	7670	3780	9570	6230	1430
9 10	153 148	1190 1170	1020 1020	3080 e2500	1690 1680	5740 4790	11400 11600	6970 6060	4200 4970	9310 9460	5970 5860	1400 1290
11	146	1130	1100	e1200	1950	2940	11000	5610	5140	9280	5930	1260
12	163	1110	1150	e1000	2980	3110	9430	4870	8170	9150	5830	1190
13	338	1090	1810	e1200	2980	3100	10100	4320	8300	8960	5810	1160
14	652	994	1860	e1300	3510	3210	11500	4340	6980	8840	5730	2040
15	1430	959	1880	e1100	3950	3350	5140	4090	10200	8750	5700	4340
16	1700	938	1940	e1300	3600	3570	4890	3580	10900	8670	5550	2890
17	1630	883	1940	e1500	3420	3410	6090	3220	9410	8590	4120	2670
18 19	1500 1330	887 893	1960 1800	e1400 e1600	3170 3390	4620 6860	8120 8790	2920 2600	9060 10500	8510 8440	4030 3040	2330 1780
20	1110	894	1460	e1700	3560	6710	8740	2400	9910	8360	2280	1490
21	1060	890	1120	e1800	3940	6460	9160	2360	10500	8290	1980	1400
22	1030	868	1110	e1700	3960	6170	9520	2510	9090	8320	2070	1350
23	901	849	1290	e1500	4310	5860	8900	3150	8070	8250	2170	1300
24	814	818	1190	e1400	4320	5940	7840	4510	7580	8130	1840	1220
25	835	743	1100	e1300	4320	5670	7170	6480	7360	8040	1720	1180
26	956	740	1110	e1200	4150	5860	7170	5940	7180	7970	1600	1150
27	1440	751	e1000	e1100	5240	6280	7640	5830	6940	7830	1720	1130
28	1390	745	e850	e1000	5510	6260	7240	5560 5300	7000	7670	5720	1070
29 30	1430 1420	746 764	e700 e650	e950 e950		6130 6150	6820 6340	5320 5640	7530 11700	7740 7430	7040 5610	1090 914
31	1520		e600	e1000		10400		6230		7040	4490	
TOTAL	24351	32842	37296	51100	88000	156430	274900	151120	218680	272050	145070	51134
MEAN	786	1095	1203	1648	3143	5046	9163	4875	7289	8776	4680	1704
MAX	1700	2040	1960	3500	5510	10400	13500	7670	11700	11800	7040	4340
MIN	146	740	600	600	1300	2940	4890	2360	3780	7040	1600	914
AC-FT	48300	65140	73980	101400	174500	310300	545300	299700	433800	539600	287700	101400
CFSM IN.	.18 .21	.26 .28	.28 .32	.38 .44	.73 .76	1.18 1.36	2.13 2.38	1.14 1.31	1.70 1.89	2.04 2.36	1.09 1.26	.40 .44
ርጥልጥፐ ርሳ	מדרים חוד א	ONTHI V ME	מיד במיד ואב	משתמש מחש	VEADC 195	.a _ 1000	BA MYUE.	R YEAR (WY	7)			
							•					
MEAN	1509 6115	2022 63 47	1937 6678	1554 7814	2495 7205	4805	5221 12230	4640 14030	4660 13150		2932 26150	2148 18150
MAX (WY)	1994	1962	1983	1973	1973	10410 1993	1979	1993	1974	1993	1993	1993
MIN	192	190	168	154	158	539	533	282	147	180	186	210
(WY)	1989	1967	1989	1977	1977	1977	1989	1977	1977	1977	1989	1988
SUMMARY	Y STATIST	ics	FOR	1997 CALE	INDAR YEAR	t	FOR 1998	WATER YEAR	ι		YEARS 1959	9 - 1998a
ANNUAL				938963			1502973	Apr 1 Oct 11 Oct 5 Apr 1 15 Apr 1 96				
ANNUAL				2573			4118			3200		4000
	PANNUAL ANNUAL M									11900		1993 1989
	ANNUAL M M YJIAO 1			20100	Feb 22	,	13500	Anr 1		55100	Jul	7 1993
	DAILY ME			146	Feb 22 Oct 11 Oct 5		146	Oct 11		69	Aug	4 1977
ANNUAL	SEVEN-DA	Y MINIMUM		146 150	Oct 5	5	146 150 13800	Oct 5	i	75	Jul	30 1977
		EAK FLOW					13800	Apr 1	•	57100	Jul	7 1993
	raneous p Runoff (EAK STAGE		1062000			14. 2981000	15 Apr 1		22.	94 Jul	7 1993
	RUNOFF (CESM)		1862000 .6 8.1 5750	50		730T000	96		Z310000	75	
ANNUAL	RUNOFF (INCHES)		8.1	4		13.	02		10.	13	
10 PERC	CENT EXCE	EDS		5750			9110			7660		
	CENT EXCE			1700			3220			1800		
90 PERC	CENT EXCE	EDS		488			892			319		


a Post regulation

e Estimated

IOWA RIVER BASIN

05455700 IOWA RIVER NEAR LONE TREE, IA--Continued

IOWA RIVER BASIN (CEDAR RIVER BASIN)

Gaging Stations

05457700	Cedar River at Charles City, IA
05458000	Little Cedar River near Ionia, IA
05458500	Cedar River at Janesville, IA
05458900	West Fork Cedar River at Finchford, IA
05459500	Winnebago River at Mason City, IA
05460000	Clear Lake at Clear Lake, IA
05461390	Flood Creek near Powersville, IA
05462000	Shell Rock River at Shell Rock, IA
05463000	Beaver Creek at New Hartford, IA
05464000	Cedar River at Waterloo, IA
05464220	Wolf Creek near Dysart, IA
05464500	Cedar River at Cedar Rapids, IA
05465000	Cedar River near Conesville, IA
	Crest Stage Gaging Stations
05457440	Deer Creek near Carpenter, IA
0545776680	Gizzard Creek Tributary near Bassett, IA
05459490	Spring Creek near Mason City, IA
05460100	Willow Creek near Mason City, IA
05464025	Miller Creek near Eagle Center, IA
05464310	Pratt Creek near Garrison, IA
05464535	Prairie Creek Tributary near Van Horne, IA
05464562	Thunder Creek at Blairstown, IA

05457700 CEDAR RIVER AT CHARLES CITY, IA

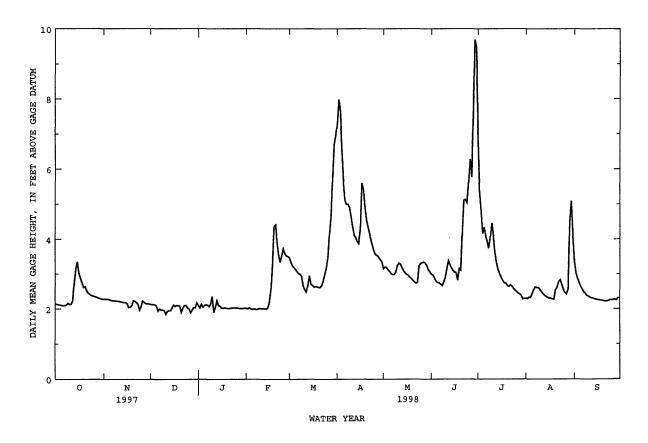
LOCATION.--Lat $43^{\circ}03^{\circ}45^{\circ}$, long $92^{\circ}40^{\circ}23^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$, sec.12, T.95 N., R.16 W., Floyd County, Hydrologic Unit 07080201, on right bank 800 ft downstream from bridge on U.S. Highway 18 (Brantingham Street) in Charles City, 10.6 mi upstream from Gizzard Creek, and at mile 252.9 upstream from mouth of Iowa River.

DRAINAGE AREA. -- 1.054 mi².

PERIOD OF RECORD. --Discharge records from October 1964 to September 1995. Stage-only records from October 1995 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 973.02 ft above sea level.

REMARKS.--Occasional minor regulation by dam 0.2 mi upstream from gage. Daily wire-weight gage readings available in district office for period Sept. 13, 1945 to June 30, 1954, at same site and datum. Discharge not published for this period because of extreme regulation of streamflow by power dam 0.2 mi upstream. U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES FOR PERIOD OF RECORD.--Maximum instantaneous discharge 21,000 ft³/s, Apr. 7, 1965, gage height 19.14 ft; maximum gage height, 21.64 ft Mar. 2, 1965, backwater from ice; minimum daily discharge, 60 ft³/s Nov. 23, 1977 and Jan. 7, 1978.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 27, 1961, reached a stage of 21.6 ft, from flood marks, discharge, 29,200 ft³/s

EXTREMES FOR CURRENT YEAR.--Maximum gage height 9.89 ft. on June 29, minimum gage height 1.73 ft. on Dec. 6.

			GAGE HEIO	SHT, FEET		EAR OCTOBI MEAN VA		TO SEPTEMBE	ER 1998			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.14	2.28	2.13	2.10	2.02	3.47	7.28	3.15	2.99	7.14	2.29	3.37
2	2.13	2.27	2.12	2.03	2.00	3.34	7.98	3.20	2.97	5.44	2.29	3.02
2 3 4	2.12	2.27	2.12	2.13	2.03	3.23	7.63	3.19	2.88	4.84	2.33	2.87
	2.11	2.27	2.12	2.05 •		3.18	6.50	3.12	2.79	4.16	2.32	2.75
5	2.10	2.25	2.08	2.10	1.99	3.13	5.66	3.07	2.75	4.34	2.42	2.64
6	2.09	2.24	1.94	2.11	2.00	3.06	5.11	3.01	2.74	4.10	2.54	2.56
7 8	2.09	2.23	2.00	2.11	1.99	3.01	4.99	2.98	2.70	3.95	2.62	2.49
8	2.11	2.23	1.97	2.07	1.98	2.99	5.00	2.98	2.66	3.74	2.60	2.44
9	2.16	2.22	1.97	2.15	2.00	2.92	4.89	3.06	2.77	4.04	2.60	2.38
10	2.13	2.22	1.95	2.35	2.01	2.65	4.62	3.24	2.90	4.46	2.55	2.36
11	2.13	2.21	1.85	1.90	2.01	2.55	4.33	3.31	3.15	4.08	2.49	2.33
12	2.22	2.20	1.93	2.04	2.01	2.48	4.11	3.28	3.38	3.61	2.43	2.31
13	2.77	2.19	1.95	2.23	2.00	2.68	4.05	3.19	3.26	3.32	2.38	2.30
14	3.15	2.18	1.95	2.10	2.00	2.95	3.93	3.09	3.18	3.13	2.35	2.28
15	3.35	2.18	2.03	2.08	2.02	2.70	3.87	3.03	3.10	3.01	2.32	2.27
16	3.02	2.15	2.11	2.02	2.17	2.67	4.38	2.99	3.05	2.91	2.30	2.26
17	2.88	2.04	2.07	2.02	2.50	2.62	5.60	2.96	3.04	2.81	2.30	2.25
18	2.74	2.05	2.10	2.03	3.24	2.64	5.43	2.91	2.82	2.74	2.28	2.24
19	2.61	2.09	2.10	2.02	4.37	2.63	4.89	2.87	3.16	2.73	2.27	2.24
20	2.63	2.23	2.08	2.01	4.41	2.61	4.54	2.82	3.11	2.66	2.53	2.22
21	2.53	2.22	1.90	2.01	3.92	2.61	4.34	2.77	4.23	2.64	2.63	2.22
22	2.45	2.18	2.02	2.02	3.55	2.67	4.15	2.73	5.11	2.68	2.78	2.22
23	2.42	2.14	2.10	2.03	3.34	2.80	3.96	2.76	5.13	2.64	2.83	2.23
24	2.38	1.97	2.10	2.03	3.51	2.99	3.79	3.23	5.04	2.58	2.68	2.26
25	2.37	2.07	2.03	2.03	3.72	3.19	3.63	3.30	5.61	2.53	2.55	2.25
26	2.35	2.22	2.00	2.03	3.59	3.48	3.55	3.32	6.28	2.49	2.47	2.26
27	2.34	2.19	1.89	2.02	3.52	4.17	3.53	3.34	5.77	2.45	2.42	2.27
28	2.32	2.15	1.96	2.01	3.50	4.67	3.48	3.31	7.69	2.42	2.54	2.25
29	2.30	2.15	2.04	2.01		5.74	3.41	3.24	9.70	2.38	4.52	2.31
30	2.29	2.14	2.03	2.01		6.70	3.35	3.12	9.48	2.28	5.09	2.31
31	2.28		2.17	2.02		6.95		3.06		2.29	4.10	
MEAN	2.41	2.18	2.03	2.06	2.69	3.34	4.73	3.08	4.11	3.37	2.67	2.41
MAX	3.35	2,28	2.17	2.35	4.41	6.95	7.98	3.34	9.70	7.14	5.09	3.37
MIN	2.09	1.97	1.85	1.90	1.98	2.48	3.35	2.73	2.66	2.28	2.27	2.22

05457700 CEDAR RIVER AT CHARLES CITY, IA--Continued

05458000 LITTLE CEDAR RIVER NEAR IONIA, IA

LOCATION.--Lat $43^{\circ}02^{\circ}05^{\circ}$, long $92^{\circ}30^{\circ}05^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.21, T.95 N., R.14 W., Chickasaw County, Hydrologic Unit 07080201, on left bank 12 ft downstream from bridge on county highway B57, 2.4 mi west of Ionia, 6.4 mi upstream from mouth, and 7.6 mi downstream from Beaver Creek.

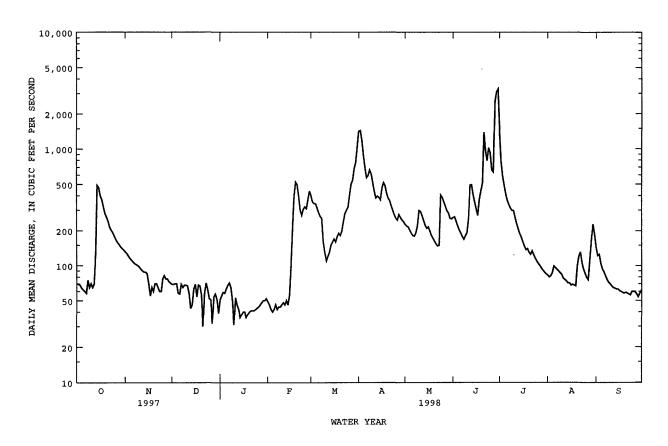
DRAINAGE AREA. -- 306 mi².

PERIOD OF RECORD. -- October 1954 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1708: 1959.

GAGE.--Water-stage recorder. Datum of gage is 973.35 ft above sea level.

REMARKS.--Estimated daily discharges: Oct. 8-16, 18-21, Nov. 3, 12, 15-24, Jan. 12-20, Feb. 2-17, and Mar. 9-16. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 22, 1954, reached a stage of 11.37 ft, discharge, 4,600 ft³/s.

		DISCHAR	GE, CUBIC	FEET PEF		WATER Y	YEAR OCTOBER VALUES	1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	70	131	69	51	49	401	1420	227	259	1440	83	144
2	69	127	69	5 5	e46	352	1440	220	263	785	80	122
3	68	e120	70	59	e42	342	1180	216	242	583	82	125
4	64	115	70	58	e40	339	880	203	220	488	87	105
5	62	111	58	63	e42	311	698	191	203	414	99	94
6	60	107	57	68	e46	284	569	182	191	364	96	88
7	58	104	69	71	e42	265	592	180	178	335	93	82
8	e75	102	65	65	e44	255	662	193	169	313	90	76
9 10	e65 e70	100 97	68 68	50 31	e44 e46	e160 e130	61 4 517	221 298	181 192	299 298	87 84	72 70
11	e65	93	67	53	e48	e110	437	292	250	260	78	67
12	e70	e90	58	e46	e46	e120	382	269	492	230	76	65
13	e130	88	43	e42	e50	e130	396	245	495	208	74	64
14 15	e490 e470	88 e85	46 63	e36 e38	e46 e55	e150 e160	387 369	223 210	409 3 5 2	189 177	71 71	63 63
16	e400	e70	69	e40	e95	e170	467	216	309	161	68	61
17 18	370	e55	5 4	e40	e200	160	516 487	200 183	270 368	148 137	69 68	60 5 9
19	e320 e280	e65 e60	68 67	e36 e38	395 521	178 190	419	173	440	140	67	58
20	e260	e70	56	e40	496	182	381	163	509	130	100	59
21	e240	e70	30	41	396	198	362	154 148	1390 960	125 134	120	58 57
22 23	214 202	e65 e60	58 71	41 41	301 271	237 280	327 297	150	794	124	131 106	56
24	192	e60	62	42	305	299	273	404	1020	116	93	60
25	179	77	52	43	321	319	256	386	926	109	86	60
0.6	165				24.0		0.45	254	660	104	70	60
26 27	167 158	82 77	51 32	44 46	310 369	404 502	247 275	35 4 326	660 637	104 100	79 76	60 57
28	152	77	54	48	438	542	260	299	2580	95	112	54
29	145	73	57	50	450	681	248	284	3100	91	170	58
30	140	71	51	50		763	239	256	3270	88	228	61
31	136		39	52		1040		253		85	186	
TOTAL	5441	2590	1811	1478	5104	9654	15597	7319	21329	8270	3010	2178
MEAN	176	86.3	58.4	47.7	182	311	520	236	711	267	97.1	72.6
MAX	490	131	71	71	521	1040	1440	404	3270	1440	228	144
MIN	58	55	30	31	40	110	239	148	169	85	67	54
AC-FT	10790	5140	3590	2930	10120	19150	30940	14520	42310	16400	5970	4320
CFSM	. 57	.28	.19	.16	. 60	1.02	1.70	.77	2.32	.87	.32	.24
IN.	.66	.31	.22	.18	. 62	1.17	1.90	. 89	2.59	1.01	.37	.26
STATIST	TICS OF MO	ONTHLY MEA	N DATA FO	R WATER Y	TEARS 1955	- 1998	B, BY WATER	YEAR (WY)			
MEAN	146	123	79.1	49.0	85.0	379	356	233	270	173	173	138
MAX	902	632	503	265	644	1056	1466	906	1136	959	1744	807
(WY)	1987	1983	1983	1973	1984	1961	1965	1991	1969	1993	1993	1965
MIN	9.64	12.4	4.93	4.20	3.40	34.5	47.3	30.5	18.4	14.2	7.23	12.7
(WY)	1990	1990	1990	1959	19 5 9	1964	1957	1958	1989	1964	1989	1988
SUMMAR'	Y STATIST	ics	FOR 1	997 CALEN	DAR YEAR		FOR 1998 WA	TER YEAR		WATER YEA	RS 1955	- 1998
ANNUAL	TOTAL			71289			83781					
ANNUAL				195			230			184		
	T ANNUAL N									584		1993
	ANNUAL ME			0400			2050	True 2.2		32.0	**	1977
	T DAILY ME			2480 30	Mar 12		3270 30	Jun 30 Dec 21		9930		27 1961 4 1959a
	DAILY MEA SEVEN-DAY			44	Dec 21 Jan 23		30	Jan 14		3.0 3.0		4 1959a 3 19 5 9
	TANEOUS PI			33	Uqui 23		4270	Jun 29		14000		16 1993
	TANEOUS PE							Jun 29		18.99		16 1993
	TANEOUS LO						15	Jan 10				
	RUNOFF (A			141400			166200			133300		
	RUNOFF (C			. 64			. 75			.60		
	RUNOFF ()			8.67	'		10.19			8.17		
	CENT EXCEI CENT EXCEI			396 101			487 122			388 72		
	CENT EXCE			54			50			18		
		-										

a Also Feb 5-9, 1959

e Estimated

05458000 LITTLE CEDAR RIVER NEAR IONIA, IA--Continued

05458500 CEDAR RIVER AT JANESVILLE, IA

LOCATION.--Lat 42°38'54", long 92°27'54", in $NE^1/_4$ SW $^1/_4$ sec.35, T.91 N., R.14 W., Bremer County, Hydrologic Unit 07080201, on left bank 300 ft downstream from bridge on county highway at Janesville, 3.6 mi upstream from West Fork Cedar River, and at mile 207.7 upstream from mouth of Iowa River.

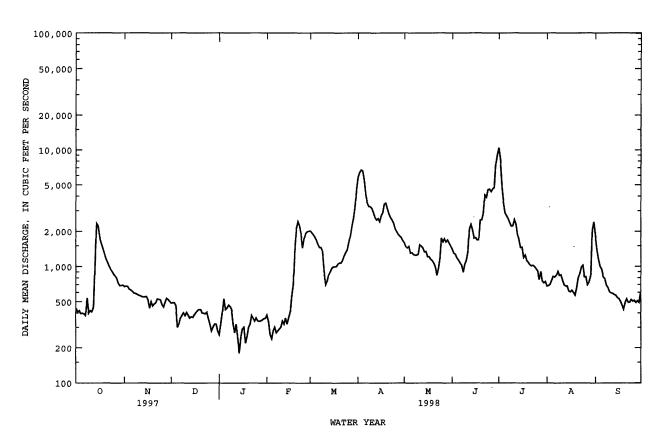
DRAINAGE AREA. -- 1,661 mi2.

PERIOD OF RECORD.--October 1904 to Sept. 1906, October 1914 to September 1927, October 1932 to September 1942, October 1945 to current year. Monthly discharge only for some periods, published in WSP 1308. Published as "Red Cedar River at Janesville", 1905-06.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1906 (M), 1915-16 (M), 1917, 1918-19 (M), 1920-27, 1933-37 (M), 1940-42 (M), WDR IA-97-1:1996.

GAGE.--Water-stage recorder. Datum of gage is 868.26 ft above sea level. Prior to July 26, 1919, nonrecording gage at site 1,000 ft downstream at datum 4.0 ft lower. July 26, 1919 to Sept. 30, 1927, Nov. 14, 1932 to Sept 30, 1942, and Apr. 26, 1946 to Nov. 10, 1949, nonrecording gage at county bridge 300 ft upstream at same datum.

REMARKS.--Estimated daily discharges: Nov. 17-19, Dec. 4-10, Dec. 25 to Jan. 3, 10-24, Feb. 2-18, and Mar. 10-14. Records good except those for estimated daily discharges, which are poor. Diurnal fluctuation during low water caused by powerplant at Waverly, 10 mi upstream. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 17, 1945, reached a stage of 16.2 ft, from floodmark at site 300 ft upstream, discharge, 34,300 ft³/s. Flood of Mar. 16, 1929, reached a stage of about 16 ft, from information by City of Waterloo, discharge not determined.

		DISCHA	ARGE, CUI	BIC FEET P		, WATER YI LY MEAN V		ER 1997 TO	SEPTEMB	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	437	674	485	e260	383	2010	5790	1590	1400	10400	680	1820
2	406	680	491	e320	e340	1940	6380	1470	1300	8330	685	1370
3	418	676	488	e400	e260	1860	6680	1440	1270	4750	704	1140
4	395	641	e460	529	e240	1770	6570	1480	1180	3530	758	997
5	398	629	e300	428	e280	1680	5460	1300	1130	2870	822	944
6	393	614	e320	442	e300	1540	4070	1310	1070	2720	812	813
7	380	593	e360	466	e270	1450	3500	1260	1020	2560	837	787
8	537	587	e380	453	e280	1450	3260	1250	892	2370	903	692
9	397	579	e400	429	e290	1340	3260	1250	1040	2210	838	662
10	418	568	e380	e320	e300	e900	3140	1270	1120	2220	849	607
11	409	562	404	e270	e340	e700	2890	1530	1310	2510	770	592
12	450	553	384	e320	e320	e750	2620	1490	2110	2290	700	587
13	989	548	362	e240	e360	e850	2500	1440	2280	1850	680	573
14	2330	548	371	e180	e320	e900	2570	1330	2040	1710	682	566
15	2220	552	367	e250	e360	963	2420	1340	1740	1450	616	540
16	1780	523	386	e290	e400	992	2730	1210	1760	1460	604	529
17	1590	e440	403	e300	e550	994	2890	1210	1680	1190	625	503
18	1440	e500	421	e220	e700	1000	3430	1150	1680	1250	599	467
19	1300	e460	428	e250	1320	1050	3490	1120	2490	1120	567	430
20	1170	478	427	e300	2120	1070	3130	1070	2510	1080	650	490
21	1090	489	400	e320	2420	1070	2820	988	2850	1030	785	525
22	1010	528	398	e380	2230	1130	2620	840	4090	1010	872	493
23	949	524	392	e360	1910	1230	2490	956	3920	1020	984	494
24	905	518	406	e340	1440	1310	2340	1170	4540	995	1020	520
25	862	472	e360	362	1730	1390	2090	1740	4590	951	813	504
26 27 28 29 30	831 795 719 687 688	450 494 535 522 502	e320 e280 e300 e320 e320	341 339 342 349 357	1920 1980 2000	1600 1830 2210 2570 3170	1980 1870 1810 1760 1660	1620 1720 1620 1680 1580	4380 4600 4730 7560 9080	910 773 903 751 724	818 699 732 830 2070	511 491 507 491 595
31 TOTAL MEAN MAX	693 27086 874 2330	16439 548 680	e280 11793 380 491	360 10517 339 529	25363 906 2420	4560 47279 1525 4560	98220 3274 6680	1490 41914 1352 1740	81362 2712 9080	742 67679 2183 10400	2400 26404 852 2400	20240 675 1820
MIN	380	440	280	180	240	700	1660	840	892	724	567	430
AC-FT	53730	32610	23390	20860	50310	93780	194800	83140	161400	134200	52370	40150
CFSM	.53	.33	.23	.20	.55	.92	1.97	.81	1.63	1.31	.51	.41
IN.	.61	.37	.26	.24	.57	1.06	2.20	.94	1.82	1.52	.59	.45
STATIST	TICS OF N	MONTHLY ME	EAN DATA	FOR WATER	YEARS 190	05 - 1998,	BY WATER	YEAR (W	()			
MEAN	617	580	435	345	548	1866	1826	1214	1288	976	780	629
MAX	3793	2672	2404	1293	3393	4851	8966	5668	6223	6024	7762	2805
(WY)	1987	1983	1983	1983	1984	1973	1993	1991	1993	1993	1993	1993
MIN	101	121	75.2	80.3	61.2	124	247	134	95.2	84.7	83.6	117
(WY)	1935	1934	1934	1917	1959	1934	1957	1934	1934	1934	1934	1934

05458500 CEDAR RIVER AT JANESVILLE, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENI	DAR YEAR	FOR 1998 WA	TER YEAR	WATER YEAR	s 1905 - 1998
ANNUAL TOTAL	445546		474296			
ANNUAL MEAN	1221		1299		926	
HIGHEST ANNUAL MEAN					3454	1993
LOWEST ANNUAL MEAN					187	1934
HIGHEST DAILY MEAN	10500	Mar 25	10400	Jul 1	34800	Mar 28 1961
LOWEST DAILY MEAN	280	Dec 27	180	Jan 14	28	Oct 21 1922
ANNUAL SEVEN-DAY MINIMUM	311	Dec 25	247	Jan 13	50	Feb 1 1918
INSTANTANEOUS PEAK FLOW			10700	Jul 1	37000	Mar 28 1961
INSTANTANEOUS PEAK STAGE			8.83	Jul 1	16.33	Mar 28 1961
ANNUAL RUNOFF (AC-FT)	883700		940800		671200	
ANNUAL RUNOFF (CFSM)	.73		.78	}	.56	
ANNUAL RUNOFF (INCHES)	9.98		10.62	!	7.58	
10 PERCENT EXCEEDS	2480		2620		2040	
50 PERCENT EXCEEDS	688		838		470	
90 PERCENT EXCEEDS	418		341		160	

e Estimated

05458900 WEST FORK CEDAR RIVER AT FINCHFORD, IA

LOCATION.--Lat 42°37'50", long 92°32'24", in SW¹/₄ SE¹/₄ sec.6, T.90 N., R.14 W., Black Hawk County, Hydrologic Unit 07080204, on left bank 100 ft downstream from bridge on county highway C55 at Finchford, 3.2 mi upstream from Shell Rock River, and 5.0 mi upstream from mouth.

DRAINAGE AREA. -- 846 mi2.

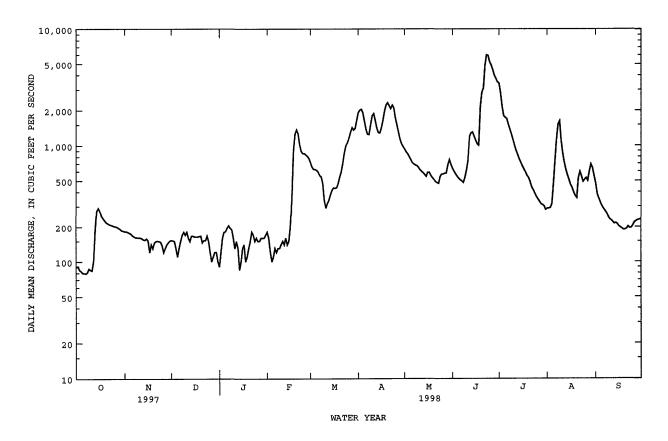
PERIOD OF RECORD. --October 1945 to current year. Prior to October 1955, published as "West Fork Shell Rock River at Finchford."

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946 (M), 1947.

GAGE.--Water-stage recorder. Datum of gage is 867.54 ft above sea level. Prior to June 10, 1955, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 17-19, 26, 27, Dec. 3-13, Dec. 25 to Jan. 3, Jan. 10 to Feb. 17, and Mar. 10-14.

Records good except those for estimated daily discharges, which are poor. An authorized diversion of 2,100 acre-ft is made into Big Marsh, 16 mi upstream from gage, each year between September 1 and November 15. Net effect on daily flows at gage is unknown. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey Data Collection platform with telephone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in March 1929 reached a stage of about 14 ft, from information by local resident, discharge, about $12,800 \, \mathrm{ft}^3/\mathrm{s}$.

		DISCHAF	RGE, CUI	BIC FEET P		, WATER YE LY MEAN VA		R 1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	90	182	153	e90	e180	718	1910	935	636	3420	287	476
2	91	182	152	e120	e160	657	2010	883	602	2840	288	382
3	85	180	e150	e160	e120	627	2040	847	571	2150	291	350
4	83	177	e130	180	e100	625	1900	804	545	1790	313	324
5	80	174	e 1 10	182	e 11 0	616	1610	759	523	1730	456	301
6	80	168	e130	196	e130	594	1380	716	508	1690	707	285
7	79	165	e150	205	e120	555	1250	693	496	1510	1100	273
8	81	162	e170	195	e130	542	1240	679	482	1380	1520	261
9	87	162	e180	189	e 1 30	479	1510	669	53 1	1250	1610	245
10	.85	161	e170	e160	e140	e340	1800	649	611	1120	1100	234
11	84	161	e180	e130	e150	e290	1870	620	736	1000	854	228
12	102	159	e160	e150	e140	e320	1630	600	1190	903	717	221
13	183	155	e150	e130	e160	e340	1410	585	1280	834	624	213
14	275	154	167	e85	e140	e380	1290	564	1300	767	559	216
15	290	158	167	e100	e150	414	1280	543	1200	715	506	211
16	272	152	164	e130	e200	434	1430	588	1110	667	461	202
17	252	e120	164	e140	e360	431	1650	588	1030	627	433	198
18	239	e140	164	e100	911	437	1970	552	1000	592	397	193
19	229	e130	166	e110	1260	475	2220	530	2160	552	369	188
20	219	145	167	e130	1360	539	2320	512	2850	529	355	189
21	215	150	146	e150	1260	596	2190	492	3100	491	523	192
22	211	151	153	e180	1020	705	2070	481	4860	441	595	201
23	208	150	152	e170	896	865	2210	474	5990	417	543	195
24	206	148	167	e150	854	998	2100	542	5920	391	490	196
25	203	138	e 1 50	e160	854	1060	1740	568	5220	363	511	205
26	202	e120	e120	e150	832	1160	1510	569	4870	346	526	218
27	200	e130	e100	e150	810	1300	1320	578	4450	330	499	224
28	196	140	e110	e160	778	1420	1150	580	3980	314	596	228
29	192	146	e120	e160		1360	1040	682	3750	309	687	230
30	186	151	e120	e160		1400	980	753	3490	302	641	233
31	185		e100	e170		1640		688		280	550	
TOTAL	5190	4611	4582	4642	13455	22317	50030	19723	64991	30050	19108	7312
MEAN	167	154	148	150	481	720	1668	636	2166	969	616	244
MAX	290	182	180	205	1360	1640	2320	935	5990	3420	1610	476
MIN	. 79	120	100	85	100	290	980	474	482	280	287	188
AC-FT	10290	9150	9090	9210	26690	44270	99230	39120	128900	59600	37900	14500
CFSM	.20	.18	.17	.18	. 57	.85	1.97	.75	2.56	1.15	.73	. 29
IN.	.23	.20	.20	. 20	.59	. 98	2.20	.87	2.86	1.32	.84	.32
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1946 - 1998, BY WATER YEAR (WY)												
MEAN	314	315	249	170	309	1025	1043	794	978	718	381	315
MAX	1412	1502	1165	995	2303	2456	4170	3434	3358	3995	3023	2149
(WY)	1973	1973	1983	1973	1984	1961	1965	1991	1984	1993	1993	1965
MIN	14.9	22.3	14.2	9.35	6.37	86.2	81.8	80.1	39.5	26.6	15.2	16.9
(WY)	1990	1959	1959	1959	1959	1954	1957	1957	1977	1977	1989	1989

05458900 WEST FORK CEDAR RIVER AT FINCHFORD, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1946 - 1998
ANNUAL TOTAL	251051	246011	
ANNUAL MEAN	688	674	551
HIGHEST ANNUAL MEAN			1800 1993
LOWEST ANNUAL MEAN			65.5 1956
HIGHEST DAILY MEAN	5460 Jun 26	5990 Jun 23	25100 Jun 27 1951
LOWEST DAILY MEAN	79 Oct 7	79 Oct 7	5.9 Feb 26 1959a
ANNUAL SEVEN-DAY MINIMUM	82 Oct 3	82 Oct 3	6.1 Feb 23 1959
INSTANTANEOUS PEAK FLOW		6250 Jun 23	31900 Jun 27 1951
INSTANTANEOUS PEAK STAGE		12.93 Jun 23	18.45 Jul 29 1990
INSTANTANEOUS LOW FLOW		78 Oct 7	
ANNUAL RUNOFF (AC-FT)	498000	488000	399500
ANNUAL RUNOFF (CFSM)	.81	. 80	. 65
ANNUAL RUNOFF (INCHES)	11.04	10.82	8.86
10 PERCENT EXCEEDS	1890	1610	1330
50 PERCENT EXCEEDS	315	360	240
90 PERCENT EXCEEDS	108	130	46

a Also Feb 27, 1959 e Estimated

05459500 WINNEBAGO RIVER AT MASON CITY, IA

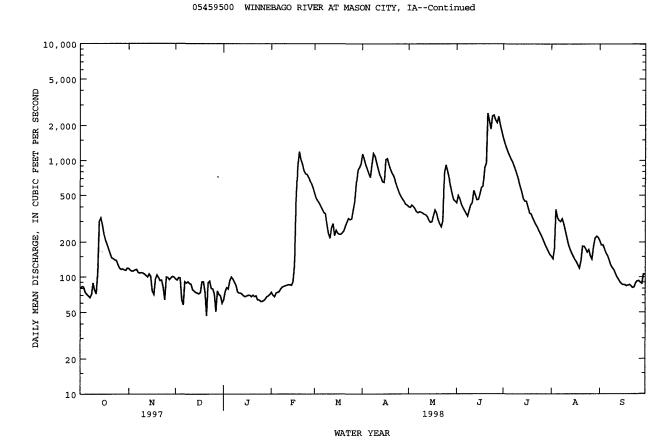
LOCATION.--Lat 43°09'54", long 93°11'33", in NE¹/₄ NW¹/₄ sec.3, T.96 N., R.20 W., Cerro Gordo County, Hydrologic Unit 07080203, on right bank 650 ft upstream from Thirteenth Street Bridge in Mason City, 0.1 mi downstream from Calmus Creek, 1.0 mi upstream from Willow Creek, and at mile 275.8 upstream from mouth of Iowa River.

DRAINAGE AREA. -- 526 mi².

PERIOD OF RECORD. --October 1932 to current year. Prior to December 1932, monthly discharge only, published in WSP 1308. Prior to October 1959, published as "Lime Creek at Mason City".

REVISED RECORDS.--WSP 825: 1935-36. WSP 1438: Drainage area. WSP 1558: 1933-37, 1943 (M), 1945, 1948.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,069.59 ft above sea level. Prior to Oct. 15, 1934, nonrecording gage at datum 6.47 ft lower. Oct. 15 to Nov. 6, 1934, nonrecording gage at different datum, and Nov. 7, 1934, to Mar. 22, 1935, nonrecording gage at present datum.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

REMARKS.--Estimated daily discharges: Dec. 14-16, and Jan. 14-21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem at station.

		DISCHAR	GE, CUBIC	C FEET PE		WATER Y		ER 1997 TO	SEPTEMBI	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	80	118	96	64	74	523	1140	402	433	1570	151	206
2 3	83 82	114 112	9 4 99	75 81	70 68	473 450	1030 919	396 414	498 468	1410 1280	144 177	189 190
4	74	113	98	79	73	429	844	403	422	1180	381	175
5	71	115	64	93	74	403	774	387	393	1100	324	161
6	69	116	58	100	75	381	715	365	373	1030	308	152
7 8	67 71	109 108	91 89	96 90	79 82	358 350	922 1150	357 364	353 334	971 891	300 317	139 126
9	89	109	91	85	83	282	1090	360	373	816	287	120
10	77	108	88	75	84	237	963	355	415	737	252	115
11	72	106	87	73	85	216	853	347	432	663	219	107
12 13	111 302	103 100	78 76	73	86 86	265	759	343	552	594 534	191	100
14	302	106	76 e74	71 e69	85	287 228	709 657	332 308	505 460	534 469	174 162	95 90
15	280	101	e73	e68	91	253	650	295	462	448	151	87
16	235	76	e72	e69	127	239	1020	299	512	447	142	86
17	209	71	74	e70	459	234	1040	338	583	400	135	86
18 19	192 174	96 104	91 91	e70 e68	915 1190	234 241	926 841	376 355	603 871	355 348	127 119	84 85
20	159	99	74	e70	1020	250	780	312	949	322	138	86
21	146	93	47	e68	930	275	742	286	2550	302	185	84
22	144	94	89	69 64	816	297	678	270	2200	283	184	81
23 24	140 139	82 64	92 80	64 64	769 759	319 312	613 562	303 792	1870 2420	269 251	175 164	82 89
25	128	100	79	62	713	316	518	914	2460	236	172	92
26	119	99	72	62	667	375	489	808	2230	221	153	93
27	116	95	51	63	632	444	464	704	2120	205	143	90
28 29	117 115	98 101	76 71	65 68	581 	635 828	445 421	602 517	2390 2030	190 178	183 217	88 106
30	114	100	69	69		871	413	460	1780	167	225	106
31	119		60	71		934		447		157	220	
TOTAL	4216	3010	2444	2264	10773	11939	23127	13211	32041	18024	6220	3390
MEAN	136	100	78.8	73.0	385	385	771	426	1068	581	201	113
MAX MIN	322 67	118 64	99 47	62	1190 68	934 216 23680	1150 413	914 270	2550 334	1570 157	381 119	206 81
AC-FT	8360	5970	4850	73.0 100 62 4490		25000	45870	26200	63550	35750	12340	6720
CFSM IN.	.26 .30	.19 .21	.15 .17	.14 .16	.73 .76	. 73 . 84	1.47 1.64	.81 .93	2.03 2.27	1.11 1.27	.38 .44	.21 .24
										1.27	. 44	, 24
STATIST	ICS OF MO	ONTHLY MEA	N DATA FO	OR WATER	YEARS 1933	- 1998	, BY WATER	YEAR (WY)				
MEAN	172	167	112	75.5	119	528	597	404	474	301	214	182
MAX (WY)	840 1966	811 1942	72 4 1983	378 1983	1002 1984	1707 1973	2880 1965	1807 1991	2160 1993	1915 1993	2054 1979	1073 1938
MIN	11.3	12.7	7.45	6.61	7.50	17.6	61.0	16.1	21.9	7.29	4.89	12.6
(WY)	1935	1934	1934	1977	1959	1934	1957	1934	1934	1934	1934	1933
SUMMARY	STATIST	rcs	FOR 1	1997 CALE	NDAR YEAR	1	FOR 1998 W	ATER YEAR		WATER YEA	ARS 1933	- 1998
ANNUAL	TOTAL			134522			130659					
ANNUAL		4E231		369			358			279 947		1993
	ANNUAL M ANNUAL ME									28.1		1934
HIGHEST	DAILY ME	EAN		2930	Mar 21		2550	Jun 21		9370	Mar :	27 1961
	DAILY MEA SEVEN-DAY	AN 7 MINIMUM		47 68	Dec 21 Dec 25		47 64	Dec 21		1.2 3.1		19 1989 29 1933
INSTANT	ANEOUS P	EAK FLOW		00	200 23		2750	Jan 23 Jun 24		10800	Mar	30 1933
		EAK STAGE					8.0	1 Jun 24		15.70		30 1933
	ANEOUS LO RUNOFF (2			266800			32 259200	Dec 6		.86 202200	Aug	18 1988a
ANNUAL	RUNOFF (CFSM)		.7			.6	8		.53		
	RUNOFF (1 ENT EXCE			9.5 793	1		9.2 871	4		7.21 705		
50 PERC	ENT EXCE	EDS		164			189			111		
90 PERC	ENT EXCE	EDS		76			72			20		

a Also Aug 19, 1988

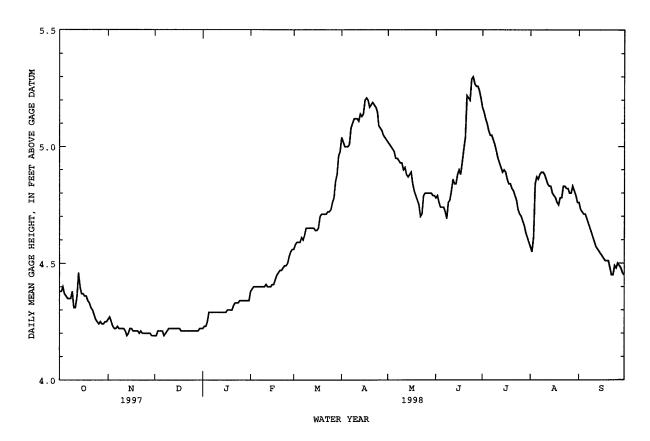
e Estimated

05460000 CLEAR LAKE AT CLEAR LAKE, IA

LOCATION.--Lat $43^{\circ}08^{\circ}01^{\circ}$, long $93^{\circ}22^{\circ}57^{\circ}$, in $SE^{1}/_{4}$ NE $^{1}/_{4}$ sec.13, T.96 N., R.22 W., Cerro Gordo County, Hydrologic Unit 07080203, at the public bathing beach in the town of Clear Lake, near dam across Clear Creek.

DRAINAGE AREA. -- 22.6 mi².

PERIOD OF RECORD.--May 1933 to current year. No winter records 1933-52. Record fragmentary November 1952 to June 1959.


GAGE.--Water-stage recorder. Datum of gage is 1,222.24 ft above sea level, and 4.60 ft below crest of spillway of dam at outlet. See WSP 1708 for history of changes prior to June 25, 1959.

REMARKS.--Lake is formed by concrete dam on Clear Creek with ungated overflow spillway 50 ft long at elevation 1,226.84 ft above sea level. Dam constructed in 1903. A previous outlet works had been constructed in 1887. Lake is used for conservation and recreation. Area of lake is approximately 3,600 acres. U.S. Geological Survey satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD. -- Maximum gage height observed, 5.94 ft July 3, 1951; minimum observed, 0.76 ft Oct. 26, 1989.

EXTREMES FOR CURRENT YEAR.--Maximum gage height, (a) 5.41 ft June 23; minimum, 4.19 ft Nov. 13, Nov. 29 to Dec. 2, and Dec. 7 as affected by wind.

			GAGE HEIG	HT, FEET,		ear octobe Mean Vai		O SEPTEMBE	ER 1998			
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	4.38 4.38	4.26 4.27	4.19 4.19	4.22 4.23	4.38	4.56 4.58	5.04 5.02	5.02 5.01	4.78 4.79	5.17 5.15	4.57 4.55	4.76 4.73
3	4.40	4.25	4.21	4.23	4.40	4.59	5.00	5.00	4.76	5.12	4.61	4.72
4 5	4.37 4.36	4.23	4.21 4.21	4.25 4.29	4.40	4.59 4.59	5.00 5.00	4.99 4.98	4.74 4.74	5.10 5.07	4.84 4.87	4.71 4.71
J	4.30	4.22	4.21	4.29	4.40	4.39	5.00	4.70	4.74	3.07	4.07	4.71
6	4.35	4.22	4.21	4.29	4.40	4.61	5.01	4.95	4.74	5.05 5.05	4.86	4.69 4.67
7 8	4.35 4.35	4.23 4.22	4.19 4.20	4.29 4.29	4.40 4.40	4.60 4.62	5.08 5.10	4.95 4.94	4.72	5.03	4.88 4.89	4.65
9	4.38	4.22	4.21	4.29	4.40	4.65	5.12	4.93	4.76	5.01	4.89	4.63
10	4.31	4.22	4.22	4.29	4.40	4.65	5.12	4.93	4.77	4.98	4.88	4.61
11	4.31	4.22	4.22	4.29	4.41	4.65	5.12	4.90	4.81	4.95	4.86	4.59
12 13	4.36 4.46	4.21 4.19	4.22 4.22	4.29 4.29	4.40 4.40	4.65 4.65	5.11 5.14	4.91 4.88	4.86 4.84	4.93 4.91	4.84 4.83	4.57 4.56
14	4.40	4.19	4.22	4.29	4.40	4.65	5.14	4.87	4.84	4.89	4.83	4.55
15	4.37	4.22	4.22	4.29	4.41	4.64	5.14	4.88	4.88	4.90	4.80	4.54
16	4.37	4.22	4.22	4.29	4.41	4.64	5.20	4.89	4.90	4.89	4.79	4.53
17 18	4.36 4.36	$\frac{4.21}{4.21}$	4.22 4.21	4.30 4.30	4.43 4.45	4.65	5.21 5.20	4.84 4.81	4.88 4.93	4.86 4.84	4.78 4.76	4.52 4.51
19	4.34	4.21	4.21	4.30	4.45	4.70	5.17	4.81	4.93	4.84	4.75	4.51
20	4.33	4.21	4.21	4.30	4.47	4.71	5.18	4.77	5.04	4.82	4.78	4.51
21	4.31	4.20	4.21	4.32	4.47	4.71	5.19	4.75	5.22	4.81	4.78	4.48
22 23	4.30 4.28	4.21	4.21 4.21	4.33	4.48	4.71 4.72	5.18 5.17	4.70 4.71	5.21 5.20	4.79 4.77	4.83	4.45 4.45
23	4.28	4.20	4.21	4.33	4.49 4.49	4.72	5.17	4.71	5.29	4.73	4.82	4.45
25	4.25	4.20	4.21	4.34	4.50	4.73	5.09	4.80	5.30	4.71	4.82	4.48
26	4.24	4.20	4.21	4.34	4.53	4.76	5.08	4.80	5.27	4.70	4.80	4.50
27 28	4.25 4.24	4.20 4.20	4.21 4.21	4.34 4.34	4.55 4.56	4.78 4.85	5.07 5.05	4.80 4.80	5.26 5.26	4.68 4.66	4.80	4.49 4.48
29	4.24	4.19	4.21	4.34	4.56	4.83	5.04	4.80	5.24	4.63	4.83	4.46
30	4.25	4.19	4.22	4.34		4.96	5.03	4.79	5.21	4.61	4.79	4.45
31	4.25		4.22	4.34		4.98		4.79		4.59	4.76	
MEAN	4.33	4.21	4.21	4.30	4.44	4.69	5.10	4.86	4.96	4.88	4.80	4.57
MAX	4.46	4.27	4.22	4.34	4.56	4.98	5.21	5.02	5.30	5.17	4.89	4.76
MIN	4.24	4.19	4.19	4.22	4.38	4.56	5.00	4.70	4.69	4.59	4.55	4.45

05461390 FLOOD CREEK NEAR POWERSVILLE, IA

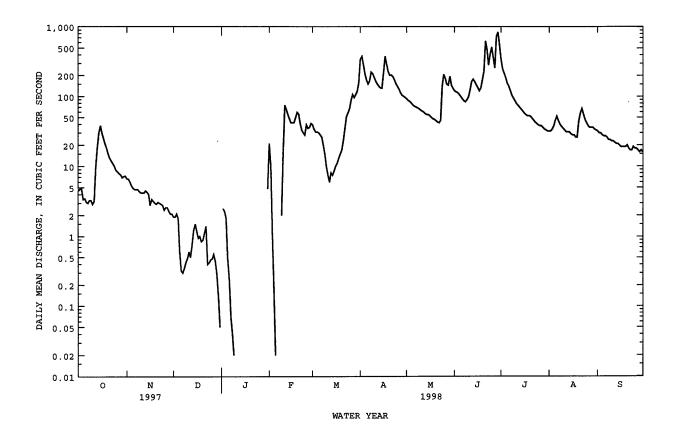
LOCATION.--Lat $42^{\circ}54^{\circ}26^{\circ}$, long $92^{\circ}43^{\circ}14^{\circ}$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.34, T.94 N., R.16 W., Butler County, Hydrologic Unit 07080202, on left bank 20 ft downstream of bridge on Floyd Line Road, 5.0 miles upstream of the confluence with the Shell Rock River, and 4.0 miles east of Greene.

DRAINAGE AREA. -- 127 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD. --October 24, 1995 to September 30, 1998. (discontinued)

GAGE. --Water-stage recorder. Datum of gage is 965 ft above sea level, from map.


REMARKS.--Estimated daily discharges: Nov. 16-20, 25, Dec. 5-13, 21-31, Jan. 5-30, Feb. 5-15, and Mar. 8-18. Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and data collection platform with telephone modem at station.

		DISCHAF	GE, CUBIC	FEET PE		WATER Y Y MEAN V	YEAR OCTOBER	1997 TO	SEPTEMBER	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.5 4.8 4.8 3.4 3.5	6.7 6.6 6.0 5.3 4.9	1.9 1.9 2.1 1.8 e.60	.00 2.5 2.3 1.8 e.50	21 9.9 1.0 .17 e.02	39 34 31 31 30	344 377 285 211 172	93 88 85 81 76	121 117 114 108 100	351 252 216 187 156	32 32 34 38 46	32 30 30 28 27
6 7 8 9 10	3.1 3.0 3.3 3.3 2.9	4.7 4.7 4.7 4.4 4.2	e.32 e.30 e.35 e.42 e.48	e.23 e.07 e.04 e.02 e.00	e.00 e.00 e.00 e2.0 e15	28 26 e20 e15 e10	152 167 224 212 187	73 71 69 67 64	93 87 84 90 98	141 122 105 95 87	52 45 40 37 35	27 26 24 24 23
11 12 13 14 15	3.2 9.9 18 30 38	4.2 4.2 4.5 4.3 4.0	e.60 e.50 e.75 1.2 1.5	e.00 e.00 e.00 e.00	e75 e65 e55 e48 e42	e7.5 e6.0 e8.1 e7.5 e8.5	165 151 141 133 132	62 60 57 55 55	123 164 177 163 148	79 75 70 66 62	33 31 31 31 29	23 22 21 21 20
16 17 18 19 20	30 25 21 18 15	e2.8 e3.4 e3.2 e3.0 e2.9	1.2 .95 1.0 .85 .89	e.00 e.00 e.00 e.00	42 42 50 59 56	e10 e11 e13 15 17	221 380 291 228 202	53 50 48 47 45	134 121 132 173 229	58 55 53 53 52	28 28 26 26 44	19 19 19 19 20
21 22 23 24 25	13 12 11 10 8.8	3.1 3.0 2.9 2.8 e2.4	e1.1 e1.4 e.40 e.42 e.46	e.00 e.00 e.00 e.00	41 33 30 28 39	23 34 51 58 67	204 194 174 154 140	43 42 45 139 207	627 482 283 406 515	49 46 43 41 39	57 67 56 47 42	18 17 17 19 18
26 27 28 29 30 31	8.4 7.9 7.6 6.9 7.2 7.3	2.6 2.6 2.3 2.1 2.1	e.48 e.55 e.44 e.28 e.13 e.05	e.00 e.00 e.00 e.00 e.00	35 36 41 	89 107 97 107 119 158	128 114 105 101 97	182 150 146 194 145 131	365 258 727 843 559	38 38 36 34 33 32	38 36 36 36 34 33	18 17 16 17 16
TOTAL MEAN MAX MIN AC-FT CFSM IN.	344.8 11.1 38 2.9 684 .09	114.6 3.82 6.7 2.1 227 .03	25.32 .82 2.1 .05 50 .01	12.26 .40 4.8 .00 24 .00	866.09 30.9 75 .00 1720 .25 .26	1277.6 41.2 158 6.0 2530 .33 .38	5786 193 380 97 11480 1.56 1.74	2723 87.8 207 42 5400 .71 .82	7641 255 843 84 15160 2.05 2.29	2764 89.2 351 32 5480 .72 .83	1180 38.1 67 26 2340 .31 .35	647 21.6 32 16 1280 .17
STATIST	CICS OF M	ONTHLY MEA	n data fo	R WATER	YEARS 199	6 - 1998	, by water y	EAR (WY)				
MEAN MAX (WY) MIN (WY)	5.59 11.1 1998 .065 1997	2.80 4.30 1996 .27 1997	.69 1.00 1996 .25 1997	.19 .40 1998 .082 1997	12.9 30.9 1998 .77 1996	147 396 1997 2.53 1996	103 193 1998 4.83 1996	80.0 142 1997 10.7 1996	155 255 1998 65.8 1997	81.0 120 1997 33.7 1996	28.0 38.1 1998 9.20 1996	11.4 21.6 1998 2.75 1996
SUMMARY	STATIST:	ics	FOR 1	997 CALE	NDAR YEAR		FOR 1998 WAT	ER YEAR		WATER YEA	NRS 1996	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL M DAILY ME SEVEN-DA TANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS EDS			Mar 11 0 Jan 6 0 Jan 6		.00 1130	Jun 29 Jan 1a Jan 10 Jun 28 Jun 28		69.5 75.0 64.1 843 .00 .00 1130 8.49 50360 .56 7.62 150 8.8	Jan Jan Jun 2 Jun 2	1997 1998 29 1998 6 1996a 6 1996 28 1998 28 1998

a Many days

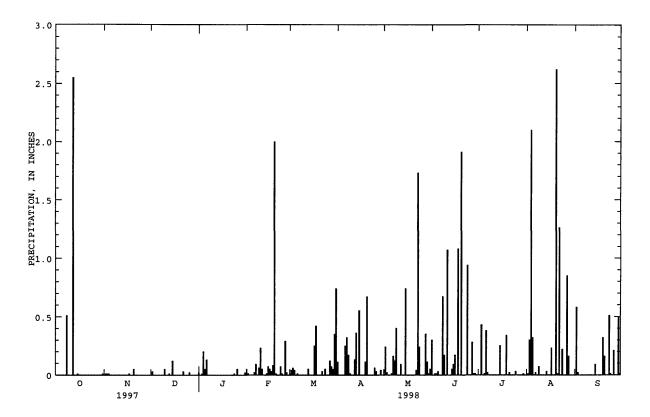
e Estimated

IOWA RIVER BASIN 173
05461390 FLOOD CREEK NEAR POWERSVILLE, IA--Continued

05461390 FLOOD CREEK NEAR POWERSVILLE, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- October 1995 to current year.


INSTRUMENTATION. -- Tipping bucket rain gage.

REMARKS.--Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting. EXTREME FOR PERIOD OF RECORD. -- Maximum daily accumulation, 4.65 in., June 20, 1977.

EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation, 2.62 in., Aug. 20.

1011 0014	on conduct that. Institute declinate of the second of the											
		PREC	IPITATION,	TOTAL,		ATER YEAR Y SUM VAL		1997 TO S	EPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.02	. 05	.01	.11	.00	.30	.00	.00	.00
2	.00	.01	.03	.00	.01	.04	.00	.24	.00	.00	.01	.58
3	.00	.01	.00	.01	.00	.06	.00	.02	.01	. 43	.30	.02
4	.00	.01	.00	.20	.00	.04	.00	.00	.01	.00	2.10	.00
5	.00	.00	.00	.05	.00	.00	.00	.00	.03	.01	.32	.00
6	.00	.00	.00	.13	. 02	.01	.25	.01	.00	.38	.00	.00
7	.00	.00	.00	.00	.09	.00	. 32	.16	.00	.02	.02	.00
8	. 51	.00	.00	.00	.00	.00	.17	.12	.67	.00	.00	.00
9	.00	.00	.00	.00	.06	.00	.01	.40	.17	.00	.07	.00
10	.00	.00	.05	.00	.23	.00	.00	.00	.00	.00	.00	.00
11	.00	.00	.00	.00	. 05	.00	.00	.00	1.07	.00	.00	.00
12	2.55	.00	.00	.00	.00	.00	.13	.09	.00	.00	.00	.00
13	.00	.00	.01	.00	.00	. 05	.36	.00	.00	.00	.00	.00
14	.00	.00	.00	.00	.01	.00	.00	.00	.05	.00	.03	.09
15	.01	.00	.12	.00	. 07	.00	. 55	.74	.09	.25	.00	.00
16	.00	.00	.00	.00	. 05	.00	.00	.00	.17	.00	.00	.00
17	.00	.01	.00	.00	.03	.25	.00	.00	.00	.00	.23	.00
18	.00	.00	.00	.00	.08	.42	.00	.00	1.08	.00	.00	.00
19	.00	.00	.00	.00	2.00	.00	.11	.00	.00	.34	.00	.32
20	.00	. 05	.00	.00	.01	.00	. 67	.00	1.91	.00	2.62	.16
21	.00	.00	.00	.00	.00	.00	.00	.00	.00	. 02	.01	.00
22	.00	.00	.03	.00	.00	.03	.00	.04	.00	.00	1.26	.00
23	.00	.00	.00	.00	.07	.00	.00	1.73	.00	.00	.00	. 51
24	.00	.00	.00	.01	.01	.05	.00	.24	.94	.00	.22	.01
25	.00	.00	.00	.00	.00	.00	.06	.00	.00	.03	.00	.00
26	.00	.00	.02	.05	.29	.00	.03	.00	.00	.00	.00	.21
27	.00	.00	.00	.00	.02	.12	.00	.00	.28	.00	.85	.00
28	.00	.00	.00	.00	.00	.07	.00	.35	.01	.00	.16	.00
29	.00	.00	.00	.00		. 05	.04	.11	.01	.00	.00	.50
30	.00	.00	.00	.00		.35	.00	.01	.00	.01	.00	.01
31	.01		.00	.02		.74		. 05		.00	.00	
TOTAL	3.08	0.09	0.26	0.49	3.15	2.29	2.81	4.31	6.80	1.49	8.20	2.41
MEAN	.10	.00	.01	.02	.11	.07	.09	.14	.23	. 05	. 26	.08
MAX	2.55	.05	.12	.20	2.00	.74	. 67	1.73	1.91	.43	2.62	. 58
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

IOWA RIVER BASIN
05461390 FLOOD CREEK NEAR POWERSVILLE, IA--Continued

05462000 SHELL ROCK RIVER AT SHELL ROCK, IA

LOCATION.--Lat $42^{\circ}42^{\circ}43^{\circ}$, long $92^{\circ}34^{\circ}58^{\circ}$, in $NW^{1}/_{4}$ NE $^{1}/_{4}$ sec.11, T.91 N., R.15 W., Butler County, Hydrologic Unit 07080202 on right bank 400 ft upstream from bridge on county highway C45 in Shell Rock, 2.2 mi downstream from Curry Creek, and 10.4 mi upstream from mouth.

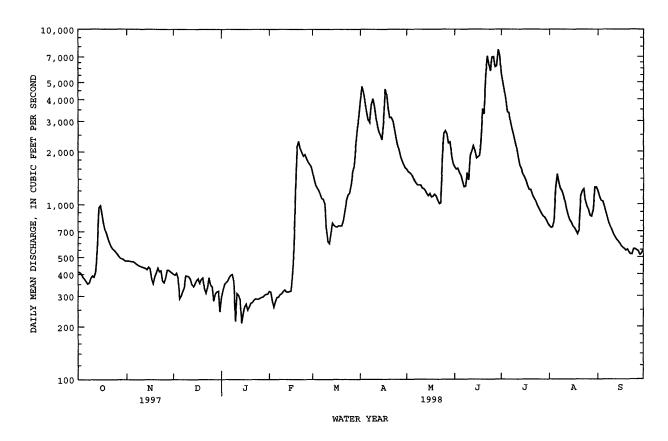
DRAINAGE AREA.--1,746 mi².

PERIOD OF RECORD. -- June 1953 to current year. Prior to July 1953, monthly discharge only, published in WSP 1728.

REVISED RECORDS.--WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Rockfill dam since Oct. 19, 1957. Datum of gage is 885.34 ft above sea level.

REMARKS.--Estimated daily discharges: Dec. 4-6, Jan. 14-19, and Feb. 3-5. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1856 reached a stage of 17,7 ft at bridge 400 ft downstream, from information provided by U.S. Army Corps of Engineers, discharge, about 45,000 ft³/s.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	412	478	400	297	319	1530	3970	1590	1640	5620	753	1190
2	409	478	395	325	316	1390	4740	1540	1590	5030	734	1110
3	401	475	405	351	e280	1290	4390	1520	1610	4490	739	1050
4	384	473	e380	357	e260	1240	3840	1490	1530	3950	7 98	1040
5	375	473	e290	364	e280	1200	3410	1430	1460	3400	1240	9 7 5
,	262	460	- 200	201	225		2060	1270	1250	2260	1.400	001
6 7	363 353	468 460	e300 318	381 394	295 297	1140 1080	3060 2950	1370 1320	1350 1260	3360 2950	1490 1330	901 839
8	357	453	337	398	306	1070	3720	1290	1270	2700	1230	781
9	379	447	391	364	309	998	4040	1290	1520	2490	1190	741
10	391	443	390	215	318	718	3690	1290	1380	2270	1120	707
11	385	440	386	310	325	612	3210	1240	1900	2070	1030	672
12 13	412 544	437 432	375 349	304 287	317 316	598 691	2820 2600	1230 1200	2030 2160	18 4 0 1670	934 866	649 627
14	961	425	349	e210	318	782	2490	1150	2020	1600	816	614
15	984	440	353	e240	320	758	2350	1120	1840	1480	789	598
16	882	430	368	e260	383	746	3040	1150	1870	1430	752	578
17	782	376	376	e270	547	742	4590	1100	1900	1360	732	566
18	721	354	355	e250	1280	754	4250	1110	2250	1270	706	558
19 20	680 636	38 7 408	373 380	e260 274	2140 2300	753 754	3530 3150	1140 1120	3540 3310	1210 1210	675 712	546 553
20	036	400	300	2/4	2300	/54	3130	1120	3310	1210	/12	333
21	603	434	331	276	2080	802	3160	1060	5510	1140	1110	534
22	576	414	312	284	1980	918	3030	1010	7060	1090	1190	519
23	559	419	338	290	1890	1050	2700	1020	6370	1050	1220	519
24	549	366	382	288	1930	1130	2420	1890	5810	994	1040	556
25	537	358	346	288	1830	1160	2190	2560	6970	953	972	556
26	523	380	338	292	1750	1300	2040	2640	7010	916	930	547
27	506	422	281	295	1700	1540	1870	2530	6140	881	862	541
28	494	422	309	297	1650	1660	1770	2250	6220	855	851	515
29	491	415	317	304		2170	1690	2280	7680	841	931	524
30	485	407	320	307		2720	1620	1880	7080	814	1250	543
31	478		244	308		3160		1710		780	1250	
TOTAL	16612	12814	10 7 79	9340	26036	36456	92330	46520	103280	61714	30242	20649
MEAN	536	427			930	1176	3078	1501	3443	1991	976	688
MAX	984	478 354	405	398	2300	3160	4740	2640	7680	5620	1490	1190
MIN	353	354	348 405 244	301 398 210	260	598	1620	1010	1260	780	675	515
AC-FT	32950	25420	21380	18230	51640	72310	183100	92270	204900	122400	59990	40960
CFSM	.31	.24	.20	.17	. 53	. 67	1.76	.86	1.97	1.14	.56	. 39
IN.	.35	.27	. 23	.20	. 55	. 78	1.97	.99	2.20	1.31	. 64	. 44
STATIST	CICS OF M	ONTHLY M	ean data	FOR WATER	YEARS 1954	- 1998	, BY WATER	YEAR (W)	?)			
MEAN	744	687	525	352	495	1699	2027	1555	1691	1250	893	719
MAX	2544	2326	2381	1375	2833	5426	85 4 0	5889	6239	6461	5637	2816
(WY)	1987	1983	1983	1983	1984	1992	1965	1991	1993	1993	1979	1993
MIN	74.1	77.7	39.8	45.6	44.7	193	226	243	138	114	66.7	96.6
(WY)	1990	1990	1990	1959	1959	1968	1957	1958	1977	19 7 7	1989	1989
SUMMARY	STATIST	ics	FOR	R 1997 CALI	ENDAR YEAR		FOR 1998 W	ATER YEAR	E	WATER Y	EARS 1954	- 1998
							466					
ANNUAL				501614			466772			1055		
ANNUAL	MEAN ANNUAL	MEAN		1374			1279			1055 3231		1993
	ANNUAL M									171		1977
	DAILY M			10900	Mar 12		7680	Jun 29)	32100	Mar	28 1961
	DAILY ME			244	Dec 31		210	Jan 14	l	171 32100 27	Dec	22 1989a
ANNUAL	SEVEN-DA	Y MINIMU	4	308	Dec 25		252	Jan 14	1	29	Dec	16 1989
	ANEOUS P						7860	Jun 29		33500		28 1961
	ANEOUS P		E					3 Jun 29		16.2	6 Mar	28 1961
	ANEOUS L			995000			168 925800	Jan 10)	764200		
	RUNOFF (. 7	3		.6	0	
	RUNOFF (10.			9.9	4		8.2		
	ENT EXCE			3010			2980			2470		
50 PERC	ENT EXCE	EDS		710			802			537		
90 PERC	ENT EXCE	EDS		374			314			151		
a Too	affected											
e Esti		i										

e Estimated

05462000 SHELL ROCK RIVER AT SHELL ROCK, IA--Continued

05463000 BEAVER CREEK AT NEW HARTFORD, IA

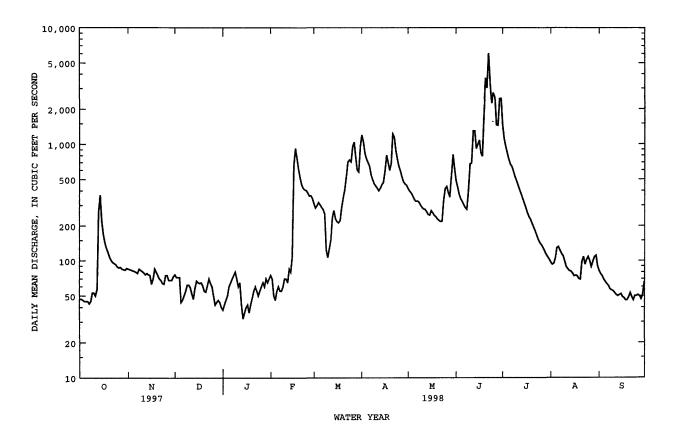
LOCATION.--Lat 42°34'22", long 92°37'04", in $SE^1/_4$ $SE^1/_4$ sec.28, T.90 N., R.15 W., Butler County, Hydrologic Unit 07080205, on right bank 5 ft. from right end of bridge on county highway T55, 0.2 mi north of New Hartford, and 8 mi upstream from mouth.

DRAINAGE AREA. -- 347 mi².

PERIOD OF RECORD.--October 1945 to current year. Prior to April 1948, monthly discharge only, published in WSP 1308.

REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1558: 1948-49. WSP 1708: 1947 (M).

GAGE.--Water-stage recorder. Datum of gage is 882.44 ft. above sea level. Prior to July 14, 1959, nonrecording gage at same site and datum.


REMARKS.--Estimated daily discharges: Nov. 2-6, Dec. 5-8, Dec. 26 to Feb. 15, and Apr. 4-13. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem at station.

		DISCHARG	E, CUBIC	FEET PER			YEAR OCTOBE	R 1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	47 47 46 45 45	85 e84 e83 e82 e81	76 72 72 72 e44	e38 e42 e46 e50 e60	e75 e70 e50 e46 e55	311 286 299 318 304	1040 835 e750	417 397 383 364 339	490 432 374 342 324	1470 1120 949 840 743	97 93 95 105 129	82 77 74 69 66
6 7 8 9 10	45 43 45 53 53	e80 78 85 83 81	e46 e50 e55 62 62	e65 e70 e75 e80 e70	e60 e55 e55 e60 e70	289 277 254 124 107	e550 e500 e460	325 327 321 303 290	304 287 278 400 680	677 645 588 531 487	132 123 115 110 99	63 61 57 56 55
11 12 13 14 15	50 57 266 367 220	79 76 78 76 75	59 52 47 58 67	e60 e65 e42 e32 e36	e70 e65 e85 e80 e110	128 152 235 272 231	e400 e420 450	280 278 266 251 247	692 1300 1300 918 998	445 407 375 343 314	89 85 82 81 78	53 51 50 51 52
16 17 18 19 20	170 144 129 119 108	63 70 85 80 75	65 64 65 61 55	e40 e42 e36 e42 e48	679 920 750 609 521	218 213 222 287 348	807 699 601	270 259 246 240 230	1080 848 792 1780 3690	289 261 240 227 210	74 75 74 70 69	49 48 46 46 49
21 22 23 24 25	101 97 95 93 89	70 68 64 63 75	54 61 70 64 60	e55 e60 e55 e50 e55	454 422 409 404 382	408 530 709 735 709	1150 876 741	223 218 219 331 418	3040 6030 3510 2250 2760	195 181 167 153 143	98 108 93 102 108	53 49 46 50 50
26 27 28 29 30 31	87 88 85 84 83 86	75 68 68 68 73	e50 e42 e44 e46 e44 e40	e60 e65 e60 e70 e65 e70	361 364 345 	95 4 1040 775 603 58 1 95 4	525 478 457 447	435 386 354 550 818 622	2540 1460 1450 2450 2470	137 130 122 114 108 103	100 89 98 108 111 90	51 50 47 51 66
TOTAL MEAN MAX MIN AC-FT CFSM IN.	3087 99.6 367 43 6120 .29 .33	2271 75.7 85 63 4500 .22 .24	1779 57.4 76 40 3530 .17 .19	1704 55.0 80 32 3380 .16 .18	7626 272 920 46 15130 .78 .82	12873 415 1040 107 25530 1.20 1.38	660 1220 400 39290 1.90	10607 342 818 218 21040 .99 1.14	45269 1509 6030 278 89790 4.35 4.85	12714 410 1470 103 25220 1.18 1.36	2980 96.1 132 69 5910 .28 .32	1668 55.6 82 46 3310 .16 .18
MEAN MAX (WY) MIN (WY)	117 495 1987 4.98 1957	125 673 1973 8.80 1957	87.4 514 1983 7.13 1990	74.6 403 1946 2.88 1956	154 651 1983 3.84 1956	468 1606 1993 28.1 1954	389 1578 1993 33.8 1954	321 1606 1991 23.2 1977	409 2213 1947 12.5 1956	263 1686 1993 4.47 1956	145 1368 1993 4.22 1989	109 1028 1965 6.02 1988
ANNUAL ANNUAL HIGHEST LOWEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		IEAN IAN IAN IAN IAN IAN IAN IAN IAN IAN I	FOR 1	94983 260 4580 40 45 188400 .75 10.18 52	Jun 24 Dec 31 Oct 2		FOR 1998 W 122386 335 6030 32 39 7010 12.0° 242800 .9° 13.1: 760 107 50	Jun 22 Jan 14 Jan 13 Jun 22 7 Jun 22		222 874 21.8 16300 2.0 2.3 18000 13.50 160800 64 8.69 480 88 16	Jun 1: Sep 3: Jan 1: Jun 1:	1993

e Estimated

IOWA RIVER BASIN

05463000 BEAVER CREEK AT NEW HARTFORD, IA--Continued

05464000 CEDAR RIVER AT WATERLOO, IA

LOCATION.--Lat $42^{\circ}29^{\circ}44^{\circ}$, long $92^{\circ}20^{\circ}03^{\circ}$, in NW $^{1}/_{4}$ NW $^{1}/_{4}$ sec.25, T.89 N., R.13 W., Black Hawk County, Hydrologic Unit 07080205, on left bank at foot of East Seventh Street, 0.3 mi upstream from Eleventh Avenue bridge in Waterloo, 1.1 mi downstream from Black Hawk Creek, and at mile 187.9 upstream from mouth of Iowa River.

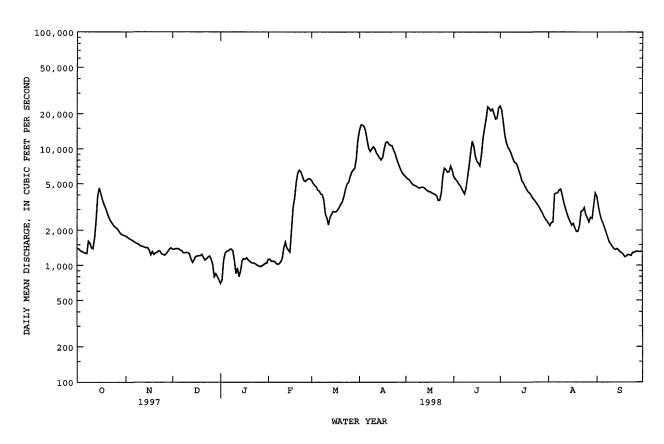
DRAINAGE AREA. -- 5,146 mi².

PERIOD OF RECORD. --October 1940 to current year. Prior to April 1941, monthly discharge only, published in WSP 1308.

REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1558: 1950.

GAGE. -- Water-stage recorder. Datum of gage is 824.14 ft above sea level.

REMARKS.--Estimated daily discharges: Dec. 28 to Jan. 3, and Jan. 10-15. Records good except those for estimated daily discharges, which are poor. Slight diurnal fluctuation during low flow caused by powerplant upstream from station. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector (LARC) and U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 16, 1929, reached a stage of about 20 ft, determined by U. S. Army Corps of Engineers, from information by City of Waterloo, discharge, 65,000 ft³/s. Flood of Apr. 2, 1933, reached a stage of about 19.5 ft from information by City of Waterloo, discharge, 61,000 ft³/s.

		DISCH	ARGE, CUE	BIC FEET PE		, WATER LY MEAN	YEAR OCTOBE VALUES	ER 1997 T	O SEPTEMBE	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	R APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1400 1380 1330 1310 1290	1780 1740 1700 1670 1640	1380 1370 1390 1390 1390	e700 e750 e1100 1270 1320	1130 1130 1080 1080 1080	5330 5050 4830 4700 4410	16000 16000 15500	5710 5530 5460 5250 5020	5770 5490 5320 5040 4830	23200 21400 16700 13100 11300	2290 2180 2320 2340 4070	3890 3230 2750 2460 2290
6 7 8 9 10	1270 1260 1610 1550 1410	1600 1570 1540 1520 1480	1350 1340 1280 1280 1290	1330 1370 1380 1320 e1100	1040 1020 1030 1070 1140	4330 4090 4040 3620 2760	10100 9500 10000	4880 4820 4730 4640 4590	4570 4320 4080 4600 5640	10300 9810 9170 8400 7720	4140 4170 4430 4490 3940	2080 1900 1730 1580 1510
11 12 13 14 15	1390 1720 2460 3960 4580	1460 1450 1430 1410 1420	1280 1250 1130 1060 1120	e850 e950 e800 e900 e1100	1410 1580 1410 1350 1300	2530 2220 2580 2730 2900	9200 8790 8360	4650 4670 4620 4470 4360	7060 9280 11600 10600 8710	7560 7230 6510 5940 5290	3420 3070 2770 2530 2360	1440 1390 1360 1390 1350
16 17 18 19 20	4110 3640 3340 3080 2830	1350 1230 1310 1240 1280	1190 1200 1210 1210 1240	1140 1130 1160 1110 1080	1980 3110 3810 5120 6180	2870 2880 3000 3150 3360	9920 11300 11500	4260 4260 4150 4110 4040	7840 7500 7120 9080 12400	5080 4740 4490 4260 4150	2200 2280 2090 1950 1950	1300 1280 1240 1180 1200
21 22 23 24 25	2590 2420 2310 2210 2130	1290 1330 1320 1250 1240	1170 1110 1140 1180 1200	1050 1050 1040 1020 1000	6540 6340 5830 5330 5240	3520 3910 4490 4970 5150	10700 9840 9180	3940 3590 3620 4190 5830	15200 18300 22800 22100 21100	3960 3760 3620 3470 3300	2180 2910 2940 3110 2710	1230 1230 1210 1280 1290
26 27 28 29 30 31	2080 2010 1920 1850 1830 1800	1220 1260 1310 1370 1410	1130 1010 e800 e850 e800 e750	984 975 992 1010 1040 1040	5420 5530 5500 	5770 6310 6590 6800 8270 11800	7020 6490 6140 5910	6790 6590 6280 6350 7090 6550	21900 20000 18000 18300 22400	3160 2980 2840 2650 2510 2410	2540 2350 2570 2520 3250 4160	1310 1320 1310 1310 1320
TOTAL MEAN MAX MIN AC-FT CFSM IN.	68070 2196 4580 1260 135000 .43 .49	42820 1427 1780 1220 84930 .28 .31	36490 1177 1390 750 72380 .23 .26	33061 1066 1380 700 65580 .21 .24	83780 2992 6540 1020 166200 .58 .61	138960 4483 11800 2220 275600 .87 1.00	10210 16000 5910 607600 1.98	155040 5001 7090 3590 307500 .97 1.12	340950 11370 22800 4080 676300 2.21 2.46	221010 7129 23200 2410 438400 1.39 1.60	90230 2911 4490 1950 179000 .57 .65	49360 1645 3890 1180 97910 .32 .36
STATIS	TICS OF	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	41 - 199	8, BY WATER	YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	2119 8499 1987 364 1990	2055 7434 1973 370 1990	1559 6891 1983 266 1990	1242 5479 1973 252 1959	1778 9448 1984 188 1959	5710 13760 1973 687 1964	24940 1993 741	4528 19010 1991 732 1977	5128 18320 1993 474 1977	3866 21210 1993 455 1989	2680 18770 1993 328 1989	2067 9258 1993 387 1955

05464000 CEDAR RIVER AT WATERLOO, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEARS	S 1941 - 1998
ANNUAL TOTAL	1474760		1566091			
ANNUAL MEAN	4040		4291		3252	
HIGHEST ANNUAL MEAN					10580	1993
LOWEST ANNUAL MEAN					636	1977
HIGHEST DAILY MEAN	22400	Mar 14	23200	Jul 1	74000	Mar 29 1961
LOWEST DAILY MEAN	750	Dec 31	700	Jan 1	152	Jan 28 1959
ANNUAL SEVEN-DAY MINIMUM	934	Dec 25	809	Dec 27	173	Feb 13 1959
INSTANTANEOUS PEAK FLOW			23300	Jun 23,30	76700	Mar 29 1961
INSTANTANEOUS PEAK STAGE			11.79	Jun 30	21.86	Mar 29 1961
ANNUAL RUNOFF (AC-FT)	2925000		3106000		2356000	
ANNUAL RUNOFF (CFSM)	.79		. 83		. 63	
ANNUAL RUNOFF (INCHES)	10.66		11.32		8.59	
10 PERCENT EXCEEDS	8950		9870		7430	
50 PERCENT EXCEEDS	2460		2730		1780	
90 PERCENT EXCEEDS	1250		1120		552	

e Estimated

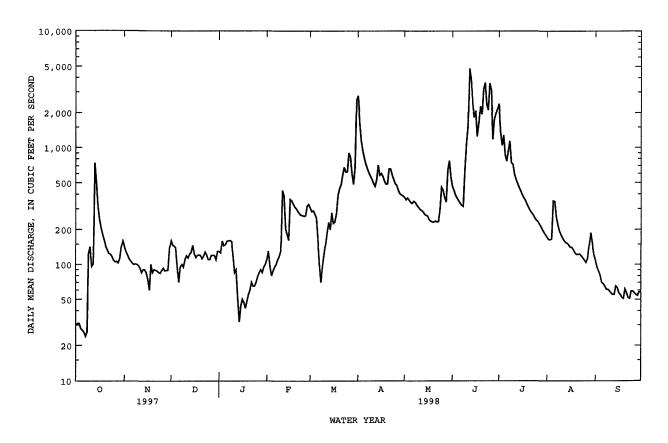
05464220 WOLF CREEK NEAR DYSART, IA

LOCATION.--Lat $42^{\circ}15^{\circ}06^{\circ}$, long $92^{\circ}17^{\circ}55^{\circ}$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.24, T.86 N., R.13 W., Tama County, Hydrologic Unit 07080205, on bank 20 ft upstream of right bank side of bridge on County Highway V37, 10.0 miles upstream of confluence with the Cedar River, and 5.0 miles north of Dysart.

DRAINAGE AREA. -- 299 mi².

WATER DISCHARGE RECORDS.

PERIOD OF RECORD. -- October 24, 1995 to September 30, 1998. (discontinued)


GAGE.--Water stage recorder. Datum of gage is 835 ft above sea level, from map.

REMARKS.--Estimated daily discharges: Nov. 12-18, Dec. 5-10, Dec. 25 to Jan. 1, Jan. 10 to Feb. 8, and Mar. 4-14. Records good except those for estimated daily discharges, which is poor. U.S. Geological Survey rain gage and satellite data collection platform at station.

		DISCHARG	E, CUBIC	FEET PER		WATER Y MEAN V	EAR OCTOBER ALUES	. 1997 то	SEPTEMBE	IR 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	30 31 31 28 27	144 130 121 112 107	160 147 144 140 e95	e130 126 159 145 148	e110 e130 e95 e80 e88	305 284 289 e270 e250	2800 1610 1140 938 811	376 358 371 356 341	467 431 392 371 351	2380 1390 1050 1280 865	171 164 163 166 348	109 95 88 81 70
6 7 8 9	26 24 26 124 142	103 100 101 100 98	e70 e95 e100 e95 e110	159 160 161 158 e120	e95 e100 e110 117 131	e160 e100 e70 e95 e120	723 662 610 569 534	333 347 340 322 311	334 322 315 636 1060	766 938 1140 744 720	345 254 217 193 179	68 65 61 61 59
11 12 13 14 15	96 101 737 501 314	93 e85 e90 e90 e85	119 114 123 127 146	e85 e90 e50 e32 e44	429 386 203 181 162	e150 e190 e230 e200 277	493 468 533 707 582	298 292 284 270 264	1520 4810 3810 2320 1830	592 536 494 458 428	168 160 154 152 146	57 55 55 65 63
16 17 18 19 20	245 207 182 162 144	e75 e60 e100 85 90	124 115 120 121 120	e50 e47 e42 e48 e55	360 351 329 311 300	226 232 274 392 446	602 567 519 488 490	260 243 236 232 232	2080 1250 1600 2270 1950	397 373 354 330 309	141 140 134 126 122	57 55 52 51 61
21 22 23 24 25	134 125 123 118 109	89 88 85 84 89	112 118 128 121 e110	e60 e70 e65 e65 e70	285 273 264 263 259	481 580 678 619 623	658 658 584 533 491	236 233 234 300 457	3200 3630 2360 2110 3590	291 278 268 253 240	122 123 119 114 109	57 52 51 59 59
26 27 28 29 30 31	105 106 103 112 142 159	93 88 89 89 137	e110 e120 e120 e120 e110 e130	e78 e85 e90 e85 e95 e100	263 318 327 	900 825 600 487 680 2600	475 433 404 393 386	430 375 343 643 770 563	3090 1180 1760 1970 2170	235 223 212 199 189 180	104 112 145 187 151 122	57 55 54 58 58
TOTAL MEAN MAX MIN AC-FT CFSM IN.	4514 146 737 24 8950 .49	2900 96.7 144 60 5750 .32 .36	3684 119 160 70 7310 .40 .46	2872 92.6 161 32 5700 .31 .36	6320 226 429 80 12540 .75	13633 440 2600 70 27040 1.47 1.70	20861 695 2800 386 41380 2.33 2.60	10650 344 770 232 21120 1.15 1.33	53179 1773 4810 315 105500 5.93 6.62	18112 584 2380 180 35930 1.95 2.25	5051 163 348 104 10020 .54 .63	1888 62.9 109 51 3740 .21 .23
STATIST	ICS OF MC	NTHLY MEAN	DATA FO	R WATER Y	EARS 1995	- 1998	, BY WATER	YEAR (WY	()			
MEAN MAX (WY) MIN (WY)	94.0 146 1998 42.5 1997	78.2 101 1997 36.6 1996	77.4 119 1998 17.2 1996	60.7 92.6 1998 19.9 1996	279 513 1997 104 1996	240 440 1998 71.9 1996	302 695 1998 51.8 1996	277 344 1998 200 1996	840 1773 1998 327 1997	298 584 1998 149 1996	89.9 163 1998 45.1 1997	46.5 62.9 1998 38.2 1997
SUMMARY	STATISTI	cs	FOR 1	997 CALEN	DAR YEAR	:	FOR 1998 WA	TER YEAR	t .	WATER Y	EARS 1995	- 1998
LOWEST ANIUAL INSTANT. INSTANT. INSTANT. ANNUAL I ANNUAL I ANNUAL I 10 PERCI 50 PERCI		AN AN AN AN MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS		65008 178 3770 24 28 128900 .60 8.09 314 122 36			143664 394 4810 24 28 5800 13.33 24 285000 1.32 17.87 786 162 61	Jun 12 Oct 7 Oct 2 Jun 12 Jun 12 Oct 7		281 394 168 4810 10 12 5800 13.3: 18 203400 .9 12.77 450 110 28	Dec 1 Jan Jun 1 Jun 1 Oct 1	1998 1997 2 1998 0 1995 5 1996 2 1998 2 1998 9 1996

e Estimated

IOWA RIVER BASIN 05464220 WOLF CREEK NEAR DYSART, IA--Continued

184 CEDAR RIVER BASIN

05464220 WOLF CREEK NEAR DYSART, IA--Continued

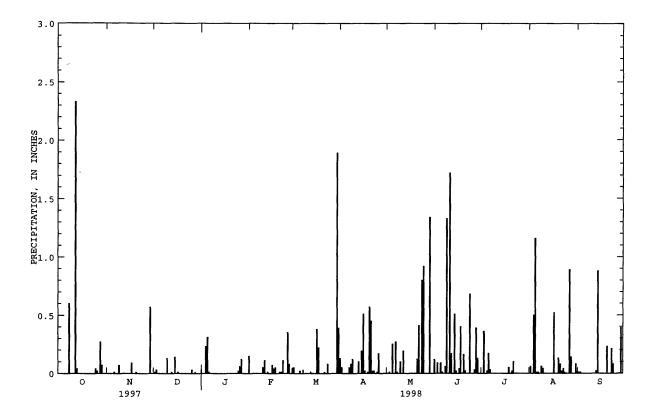
PRECIPITATION RECORDS

PERIOD OF RECORD. -- October 1995 to current year.

INSTRUMENTATION. -- Tipping bucket rain gage.

REMARKS.--Estimated totals Apr. 4, and Apr. 16 to June 12. Estimated values taken from U.S. Geological Survey gage at Waterloo.

Records good except for estimated days, and the winter period due to intermittent snow accumulation and subsequent melting, which are poor.


EXTREME FOR PERIOD OF RECORD. -- Maximum daily accumulation, 2.33 in., Oct. 12, 1998.

EXTREME FOR CURRENT YEAR. -- Maximum daily accumulation, 2.33 in., Oct. 12.

		PRECI	PITATION,	TOTAL,		WATER YEAR LLY SUM VAI		1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	. 03	. 15	.04	.13	e.00	e.12	.00	.00	.01
	.00	.00	.01	.00	.00	. 05	.05	e.00	e.00	.00	.06	.01
2 3	.00	.00	.03	.00	.00	.00	.00	e.01	e.09	.36	.00	.01
4	.00	.00	.00	.23	.00	.00	e.00	e.00	e.00	.00	.50	.00
5	.00	.00	.00	.31	.00	.00	.00	e.25	e.09	. 02	1.16	.00
6	.00	.01	.00	.01	.00	. 02	.00	e.00	e.01	. 17	.01	.00
7	.00	.00	.00	.00	.00	.00	.05	e.27	e.00	. 03	.01	.00
8 9	.60	.00	.00	.00	.00	. 03	.08	e.01	e.06	.00	.00	.00
	.00	. 07	.00	.00	.00	.00	.12	e.00	e1.33	.00	.06	.00
10	.00	.00	.13	.00	. 05	.00	.00	e.10	e.00	.00	.04	.00
11	.00	.00	.00	.00	. 11	.00	.00	e.00	e1.72	.00	.00	.00
12	2.33	.00	.00	.00	.00	.00	.00	e.19	e.17	.00	.00	.00
13	.04	.00	.01	.00	.01	.01	.10	e.00	.00	.00	.00	.02
14	.00	.00	.00	.00	.00	.00	.00	e.00	.51	.00	.00	.88
15	.00	.00	.14	.00	.00	.00	.19	e.00	. 02	.00	.00	.00
16	.00	.00	.00	.00	.07	.00	e.51	e.00	.00	.00	.00	.00
17	.00	.09	.01	.00	.04	.38	e.02	e.00	.04	.00	.52	.00
18	.00	.00	.00	.00	. 05	. 22	e.00	e.00	.40	.00	.00	.00
19	.00	.00	.00	.00	.00	.00	e.01	e.00	.00	. 05	.00	.00
20	.00	.01	.00	.00	.00	.00	e.57	e.00	.16	.00	.13	. 23
21	.00	.00	.00	.00	.01	.00	e.45	e.12	.02	.02	.08	.00
22	.00	.00	.00	.00	.01	.01	e.02	e.41	.00	.10	.02	.00
23	.00	.00	.00	.00	.11	.00	e.02	e.00	.00	.00	.04	.21
24	.00	.00	.00	.00	.00	.08	e.00	e.80	.68	.00	.01	.08
25	.04	.00	.00	.02	.00	.00	e.01	e.92	.00	.00	.00	.00
26	.02	.00	.03	.06	.35	.00	e.17	e.00	.00	.00	.00	.00
27	.00	.00	.00	.12	.08	.00	e.00	e.00	.03	.00	. 89	.00
28	.27	.00	.01	.00	.00	.00	e.00	e.00	.39	.00	.14	.00
29	.07	.57	.00	.00		.00	e.00	e1.34	.13	.00	.00	.39
30	.00	.00	.00	.00		1.89	e.00	e.00	.00	.00	.00	.00
31	.00		.00	.00		.39		e.00		.00	.08	
TOTAL	3.37	0.75	0.37	0.78	1.04	3.12	2.50	4.42	5.97	0.75	3.75	1.84
MEAN	. 11	. 03	.01	. 03	.04	.10	. 08	.14	.20	.02	.12	.06
MAX	2.33	. 57	.14	.31	.35	1.89	. 57	1.34	1.72	.36	1.16	.88
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00

e Estimated

CEDAR RIVER BASIN
05464220 WOLF CREEK NEAR DYSART, IA--Continued

05464500 CEDAR RIVER AT CEDAR RAPIDS, IA

LOCATION.--Lat $41^{\circ}58^{\circ}14^{\circ}$, long $91^{\circ}40^{\circ}01^{\circ}$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ sec.28, T.83 N., R.7 W., Linn County, Hydrologic Unit 07080205, on right bank 400 ft upstream from bridge on Eighth Avenue in Cedar Rapids, 2.7 mi upstream from Prairie Creek, and at mile 112.7 upstream from mouth of Iowa River.

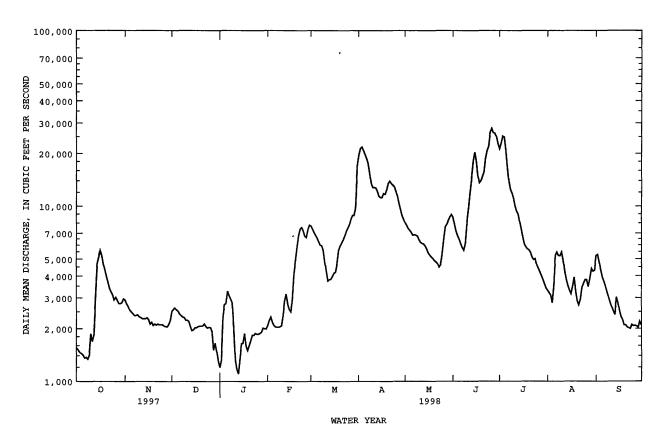
DRAINAGE AREA. -- 6,510 mi².

PERIOD OF RECORD. --October 1902 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 955: 1924. WSP 1308: 1904, 1906-13, 1915, 1917, 1919-24, 1928, 1930,. WSP 1438: Drainage area. WSP 1558: 1915-18 (M), 1920 (M), 1922 (M), 1929, 1933, 1943.

GAGE.--Water-stage recorder. Datum of gage is 700.47 ft above sea level. Prior to Aug. 20, 1920, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Dec. 31 to Jan. 1, Jan. 13, 18-21, and July 24 to Aug. 3. Records good except those for estimated daily discharges, which are poor. Flow affected by city hydroelectric dam 0.5 mile upstream since June 1979. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U. S. Army Corps of Engineers rain gage and satellite data collection platform and U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1851 reached a stage of about 20 ft, discharge, 65,000 ft³/s, estimated.

		DISC	HARGE, CUE	BIC FEET F		, WATER LY MEAN	YEAR OCTOB VALUES	ER 1997 TO) SEPTEMBEF	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	1 5 50 1510	2920 2780	2520 2580	e1200 1320	2080 2220	7680 7370		8020 7750	8620 7770	21300 22900	e3300 e3 2 00	5220 5280
3	1460	2680	2630	2320	2330	7080		7430	7140	25200	e3100	4800
4	1440	2550	2560	2750	2180	6800		7260	6760	24900	2810	4300
5	1410	2490	2520	2780	2090	6560		7070	6440	20900	3530	3930
6	1360	2440	2420	3270	2050	6260	18800	6820	6090	16800	5220	3710
7	1370	2380	2380	3090	2040	6000		6860	5780	13900	5450	3470
8	1340	2380	2330	2950	2040	5950		6820	55 90	12500	5210	3230
9	1410	2400	2320	2820	2050	5600		6730	6110	11900	5210	3020
10	1870	2340	2240	1990	2080	4840		6430	8010	11100	5 4 60	2830
11	1690	2320	2240	1320	2390	4230	12800	6210	9610	10000	4900	2660
12	1850	2280	2200	1170	2880	3750		6130	12100	9350	4240	2520
13	3010	2280	2060	e1100	3150	3810		6070	14600	9000	3820	2400
14	4660	2280	1950	1350	2790	3830		5930	18100	8120	3520	3020
15	5080	2310	1970	1640	2570	3980	11200	5690	20300	7370	3310	2810
16	5590	2260	2030	1650	2500	4150	11200	5410	18000	6660	3160	2520
17	5260	2130	2030	1870	2870	4210	11800	5260	15000	6090	3480	2340
18	4710	2180	2060	e1600	4130	4700	11700	5130	13600	5840	3920	2250
19	4310	2090	2070	e1500	4850	5590		5030	14000	5690	3290	e2100
20	3980	2130	2070	e1600	5780	5920		4900	14700	5620	2890	2100
21	3690	2100	2080	e1700	6780	6160	13900	4810	15600	5440	2730	2040
22	3400	2130	2130	1830	7400	6410		4700	18800	5120	2940	e2020
23	3250	2110	2060	1830	7540	6750		4490	20800	e4950	3430	2000
24	3130	2110	2020	1880	7230	7180		4630	22000	e5000	3620	2110
25	2920	2110	2040	1860	6740	7520	12100	5290	26400	e4600	3800	2080
26	3020	2070	2030	1860	6630	7870	11400	6450	27900	e4400	3800	2090
27	2910	2060	1920	1880	7320	8350	10400	7600	26400	e4200	3470	2070
28	2790	2050	1510	1910	7770	8820	9600	7860	26200	e4000	3850	2030
29	2780	2120	1650	2020		8810		8270	25000	e3800	4400	2200
30	2820	2230	1470	2000		9810		8630	22800	e3600	4250	2100
31	2960		e1300	1990		17000		8920		e3400	4300	
TOTAL	88530	68710 2290	65390	60050	112480	202990		198600	450220	303650 979 5	119610	852 5 0 2842
MEAN MAX	2856	2920	2109	1937 3270	4017	6548		6406	15010 27900	25200	3858 5460	5280
MIN	5590 1340	2920	2630 1300	1100	7770 2040	17000		8920 4490	27900 5 5 90	3400	2730	2000
AC-FT	175600	136300	129700	119100	223100	3750		393900	893000	602300	237200	169100
CFSM	.44	.35	.32	.30	.62	402600		.98	2.31	1.50	.59	.44
IN.	.51	.35	.32	.34	.64	1.01 1.16		1.13	2.57	1.74	.68	.44
STATIS	TICS OF	MONTHLY 1	MEAN DATA	FOR WATER	YEARS 19	03 - 199	8, BY WATE	R YEAR (WY	? }			
MEAN	2337	2406	1868	1587	2483	6759	6811	5130	5663	4098	2955	2405
MAX	10570	9327	8675	8529	12230	17420		24500	23420	33910	28700	13990
(WY)	1987	1973	1983	1973	1984	1929		1991	1947	1993	1993	1993
MIN	463	410	290	299	304	664		527	350	533	377	466
(WY)	1990	1990	1990	1911	1940	1934		1934	1934	1989	1934	1934

05464500 CEDAR RIVER AT CEDAR RAPIDS, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WA	PER YEAR	WATER YEAR	s 1903 - 1998
ANNUAL TOTAL	1735720		2172230			
ANNUAL MEAN	47 55		5951		3711	
HIGHEST ANNUAL MEAN					15130	1993
LOWEST ANNUAL MEAN					689	1934
HIGHEST DAILY MEAN	23000	Mar 17	27900	Jun 26	71500	Mar 31 1961
LOWEST DAILY MEAN	1300	Dec 31	1100	Jan 13	140	Nov 18 1989
ANNUAL SEVEN-DAY MINIMUM	1400	Oct 3	1400	Oct 3	224	Dec 20 1989
INSTANTANEOUS PEAK FLOW			28400	Jun 26	73000	Mar 31 1961
INSTANTANEOUS PEAK STAGE			11.31	Jun 26	20.00	Mar 18 1929
ANNUAL RUNOFF (AC-FT)	3443000		4309000		2688000	
ANNUAL RUNOFF (CFSM)	.73		.91		.57	
ANNUAL RUNOFF (INCHES)	9.92		12.41		7.75	
10 PERCENT EXCEEDS	10100		13500		8250	
50 PERCENT EXCEEDS	3370		3830		2120	
90 PERCENT EXCEEDS	1790		1920		670	

e Estimated

05465000 CEDAR RIVER NEAR CONESVILLE, IA

LOCATION.--Lat $41^{\circ}24^{\circ}36^{\circ}$, long $91^{\circ}17^{\circ}06^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.2, T.76 N., R.4 W., Muscatine County, Hydrologic Unit 07080206, on right bank 10 ft downstream from bridge on county highway G28, 3.4 mi northeast of Conesville, 5.2 mi downstream from Wapsinonoc Creek, 10.7 mi upstream from mouth, and at mile 39.8 upstream from mouth of Iowa River.

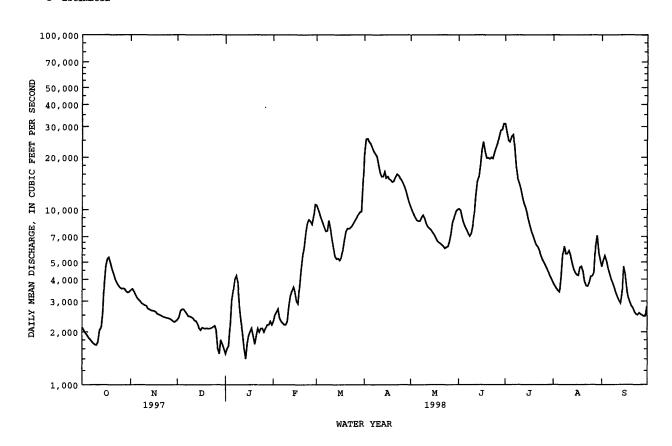
DRAINAGE AREA. -- 7,785 mi².

PERIOD OF RECORD. -- September 1939 to current year.

REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1708: 1956.

GAGE.--Water-stage recorder. Datum of gage is 581.95 ft above sea level. Prior to Feb. 2, 1940, and Apr. 11, 1952, to July 1, 1954, nonrecording gage, Feb. 2, 1940, to Apr. 10, 1952, and July 2, 1954, to Sept. 16, 1963, water-stage recorder, at site 150 ft downstream on left bank at same datum.

REMARKS.-- Estimated daily discharges: Oct.7, Dec. 27 to Jan. 2, Jan. 10 to Feb. 18, and July 28. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1929 reached a stage of 15.8 ft, from information by local residents to U.S. Army Corps of Engineers.

		DISCH	ARGE, CUI	BIC FEET F		, WATER '	YEAR OCTOB VALUES	ER 1997 T	O SEPTEMB	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2120	3470	2350	e1500	e2300	10600	20700	10300	10100	31200	3790	4720
2	2040	3520	2430	e1600	e2500	10000	25400	9760	9940	27900	3660	5130
3	1970	3420	2640	1660	e2600	9430	25500	9350	9190	25000	3530	5440
4	1920	3270	2690	2140	e2700	8860	24500	8990	8470	24500	3450	5110
5	1850	3140	2700	3010	e2400	8370	23900	8680	8010	26300	3390	4630
6	1810	3060	2630	3450	e2300	7910	22700	8580	7690	26900	4120	4280
7	e1760	3000	2550	4010	e2250	7510	21600	8600	7320	23300	5460	3990
8	1720	2920	2460	4190	e2200	7550	20900	9020	7050	17700	6150	3790
9	1690	2880	2460	3820	e2200	8640	20200	9280	7260	15200	5590	3560
10	1680	2840	2430	e2800	e2300	7780	18100	8910	7970	14200	5590	3360
11	1750	2830	2400	e2300	e2800	6670	16300	8320	9500	13200	5810	3180
12	2040	2720	2330	e2000	e3200	5940	15500	7970	12100	11900	5510	3030
13	2110	2700	2310	e1600	e3400	5390	15500	7810	14500	10900	4990	2920
14	2550	2660	2220	e1400	e3600	5220	16500	7670	15500	10300	4590	3330
15	3760	2650	2100	e1700	e3400	5260	15200	7410	18100	9540	4360	4720
16	4740	2640	2050	e1900	e3000	5120	15500	7210	22000	8720	4240	4290
17	5200	2610	2120	e2000	e2900	5310	15000	6930	24500	8050	4200	3550
18	5320	2540	2100	e2100	e3700	5930	14800	6630	21700	7420	4660	3170
19	4940	2520	2090	e1900	4560	6730	14400	6480	19800	7040	4720	2980
20	4560	2500	2100				14600	6390	19900	6590	4430	2820
	4560	2500	2100	e1700	5410	7500	14600					
21	4290	2470	2090	e1900	6200	7800	15400	6270	19600	6250	3880	2750
22	4000	2440	2090	e2100	7400	7770	16000	6150	20000	6110	3670	2610
23	3820	2430	2110	e2000	8340	7890	15700	5980	19700	5820	3650	2530
24	3690	2410	2140	e2100	8750	8070	15200	6090	21200	5460	3850	2510
25	3590	2400	2170	e2100	8560	8380	14800	6150	22600	5170	4160	2570
26	3530	2380	2060	e2000	8240	8690	14200	6560	24000	4970	4180	2530
27	3550	2350	e1600	e2100	9100	8990	13500	7270	26300	4770	4370	2500
28	3520	2310	e1500	e2200	10700	9380	12700	8410	28500	e4560	6130	2460
29	3420	2280	e1800	e2200		9680	11700	8950	28800	4360	7120	2470
30	3360	2310	e1700	e2300		9740	10900	9700	31200	4150	5720	2800
31	3380		e1600	e2200		13800		10000		3990	5190	
TOTAL	95680	81670	68020	69980	127010	245910	516900	245820	502500	381470	144160	103730
MEAN	3086	2722	2194	2257	4536	7933	17230	7930	16750	12310	4650	3458
MAX	5320	3520	2700	4190	10700	13800	25500	10300	31200	31200	7120	5440
MIN	1680	2280	1500	1400	2200	5120	10900	5980	7050	3990	3390	2460
AC-FT	189800	162000	134900	138800	251900	487800	1025000	487600	996700	756600	285900	205700
CFSM	.40	.35	.28	.29	.58	1.02	2.21	1.02	2.15	1.58	. 60	.44
IN.	.46	.39	.32	.33	.61	1.17	2.47	1.17	2.40	1.82	. 69	.50
STATIS	TICS OF 1	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	40 - 1998	8, BY WATE	R YEAR (W	Y)			
MEAN	3088	3296	2616	2418	3248	8175	9550	7355	7901	6252	4176	3326
MAX	12380	10240	11110	11860	12000	17590	36790	24440	27780	42110	34190	19530
MAX (WY)	12380	1973	1983	1973	12000			1991	1993	1993	1993	19530
						1948	1993					
MIN	599	590	429	365	359	1056	1244	1219	768	815	700	620
(WY)	1957	1956	1990	1977	1940	1954	1957	1940	1977	1989	1989	1955

05465000 CEDAR RIVER NEAR CONESVILLE, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WA	TER YEAR	WATER YEAR	S 1940 - 1998
ANNUAL TOTAL	2120270		2582850			
ANNUAL MEAN	5809		7076		5121	
HIGHEST ANNUAL MEAN					18710	1993
LOWEST ANNUAL MEAN					1176	1956
HIGHEST DAILY MEAN	31700	Feb 22	31200	Jun 30b	69800	Apr 6 1993
LOWEST DAILY MEAN	1500	Dec 28	1400	Jan 14	250	Nov 28 1955a
ANNUAL SEVEN-DAY MINIMUM	1750	Oct 5	1610	Dec 27	329	Jan 30 1940
INSTANTANEOUS PEAK FLOW			33400	Jul 1	74000	Apr 6 1993
INSTANTANEOUS PEAK STAGE			14.74	Jul 1	17.11	Apr 6 1993
ANNUAL RUNOFF (AC-FT)	4206000		5123000		3710000	=
ANNUAL RUNOFF (CFSM)	.75		.91		.66	
ANNUAL RUNOFF (INCHES)	10.13		12.34		8.93	
10 PERCENT EXCEEDS	12000		16100		11700	
50 PERCENT EXCEEDS	3690		4560		3140	
90 PERCENT EXCEEDS	2130		2100		914	

Result of freeze-up Also July 1 Estimated a b e

05465500 IOWA RIVER AT WAPELLO, IA

LOCATION.--Lat $41^{\circ}10^{\circ}41^{\circ}$, long $91^{\circ}10^{\circ}55^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.27, T.74 N., R.3 W., Louisa County, Hydrologic Unit 07080209, on right bank, 1200 ft. downstream from bridge on State Highway 99 at east edge of Wapello, 13.2 mi downstream from Cedar River, and at mile 15.8.

DRAINAGE AREA. -- 12, 499 mi².

WATER-DISCHARGE RECORDS

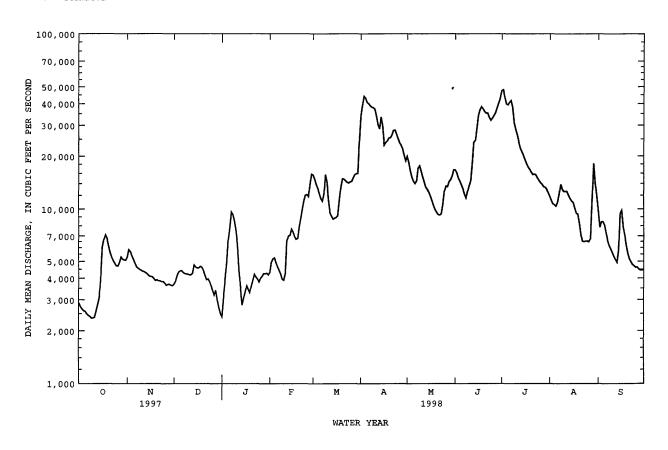
PERIOD OF RECORD. --October 1914 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1917, 1923-30, 1932. WSP 1438: Drainage area. WSP 1558: 1918, 1923-25 (M), 1929. WSP 1708: 1955(P), 1956. WDR IA-95-1:location.

GAGE.--Water-stage recorder. Datum of gage is 538.17 ft above sea level; Oct. 1, 1914 to Apr. 15, 1934, nonrecording gage and Apr. 16, 1934 to Sept. 30, 1972, water-stage recorder at datum 10.00 ft higher.

REMARKS.--Estimated daily discharges: Dec. 24 to Jan. 3, and Jan. 12-27. Records good except those for estimated daily discharges, which are poor. Flow regulated by Coralville Lake (station 05453510) 67.3 mi upstream, since Sept. 17, 1958. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


EXTREMES FOR PERIOD OF RECORD.--Maximum instantaneous discharge, 111,000 ft³/s, July 8, 1993, gage height, 29.53 ft; minimum daily discharge, 300 ft³/s, Nov. 28, 1955.

	DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	2880	5280	3700	e2400	4310	15600	34200	19900	16700	47500	11800	9800	
2	2740	5830	3840	e3000	4930	14800	39400	18400	16100	48000	11200	7850	
3	2660	5700	4130	e4000	5170	13800	44000	16500	15000	43400	10700	8430	
4	2600	5360	4330	4870	5230	13100	43000	15200	14400	39900	10600	8460	
5	2570	5130	4400	6610	4910	12300	40700	14400	13700	39400	10400	8090	
	2370	2130	4400	0010	4910	12300	40/00	14400	13/00	39400	10400	8090	
6	2490	4870	4420	7880	4640	11500	40000	14000	13000	40700	10900	7240	
7	2440	4640	4310	9590	4440	11100	38900	14500	12200	41600	12100	6580	
8	2410	4560	4250	9280	4230	12100	38200	17100	11600	38200	13800	6170	
9	2360	4490	4230	8500	3940	15700	37900	17600	12600	30900	12900	5900	
10	2360	4430	4220	7500	3890	14300	37100	16400	13600	28200	12600	5620	
11	2380	4380	4180	6260	4260	11300	33800	15200	14500	26300	12600	5340	
12	2590	4350	4180	e4400	6550	9490	30200	14200	18300	24000	12600	5130	
13	2820	4290	4270	e3500	6990	9090	28600	13300	24000	22200	12000	4940	
14													
	3070	4220	4760	e2800	7060	8760	33400	12900	24600	21200	11500	5740	
15	4110	4120	4630	e3050	7640	8860	29800	12500	28800	20200	11100	9430	
16	6030	4090	4570	e3300	7370	8950	23100	11900	34100	19100	10900	9800	
17	6680	4070	4580	e3600	6920	9170	23900	11200	36800	18100	10100	7830	
18	7070	3980	4670	e3450	6700	11200	24400	10500	38300	17300	9450	7080	
19	6760	3880	4610	e3300	6780	13400	25400	9930	37200	16800	9320	6270	
20	6150	3910	4430	e3600	7900	14900	25500	9580	35900	16200	8210	5560	
		3910		63000	7900	14900	25500		35300	10200	0210	3300	
21	5610	3860	4150	e3900	8850	14800	26400	9280	35200	15700	7030	5170	
22	5290	3860	3920	e4200	9960	14500	28000	9230	35200	15800	6520	4970	
23	5060	3820	3950	e4050	11100	14200	28100	9350	33200	15600	6490	4790	
24	4880	3830	e3800	e3950	12000	14100	26600	10600	32000	15000	6520	4710	
25	4710	3750	e3600	e3800	12100	14300	25000	12600	32900	14500	6540	4610	
26	4690	3640	e3400	e4000	11800	14400	23900	13500	34100	14100	6470	4630	
2 7	4940	3680	e3200	e4100	14100	15100	23100	13400	35400	13800	6720	4510	
28	5290	3690	e3400	4250	15800	15700	22100	14300	37800	13400	10700	4440	
29	5140	3640	e3000	4240		15900	20300	14700	40200	13300	18100	4440	
30	5100	3620	e2700	4270		16000	18800	15400	42600	12900	13800	4470	
31	5080		e2500	4180		24700		16700		12400	12100		
TOTAL	128960	128970	124330	145830	209570	413120	913800	424270	790000	755700	325770	188000	
MEAN		4299										6267	
	4160		4011	4704	7485	13330	30460	13690	26330	24380	10510		
MAX	7070	5830	4760	9590	15800	24700	44000	19900	42600	48000	18100	9800	
MIN	2360	3620	2500	2400	3890	8760	18800	9230	11600	12400	6470	4440	
MED	4690	4110	4180	4050	6850	14100	28400	14000	30400	19100	10900	5680	
AC-FT	255800	255800	246600	289300	415700	819400	1813000	841500	1567000	1499000	646200	372900	
CFSM	.33	.34	.32	.38	. 60	1.07	2.44	1.09	2.11	1.95	.84	.50	
IN.	.38	.38	.37	. 43	.62	1.23	2.72	1.26	2.35	2.25	.97	.56	
STATIS	TICS OF	MONTHLY N	ÆAN DATA	FOR WATER	YEARS 19	59 - 1998	B, BY WATE	R YEAR (W	Y)				
MEAN	5377	6099	5393	4592	6284	13860	16510	13510	13380	12150	7996	6222	
MAX	17200	16080	18150	20420	17080	26130	45840	33030	36630	77320	61750	37270	
(WY)	1987	1993	1983	1973	1984	1982	1993	1993	1993	1993	1993	1993	
							2536	1709	1022	1019	873	982	
MIN	926	882	664	533	661	2273	2536 1977	1977	1977	1989	1989	1988	
(WY)	1990	1990	1990	1977	1977	1977	19//	19//	19//	1303	1303	1708	

05465500 IOWA RIVER AT WAPELLO, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENI	DAR YEAR	FOR 1998 WAT	TER YE	AR	WATER YEAR	S 195	9 -	1998a
ANNUAL TOTAL	3359160		4548320						
ANNUAL MEAN	9203		12460			9290			
HIGHEST ANNUAL MEAN						30550			1993
LOWEST ANNUAL MEAN						1908			1989
HIGHEST DAILY MEAN	71500	Feb 23	48000	Jul	2	106000	Jul	8	1993
LOWEST DAILY MEAN	2360	Oct 9	2360	Oct	9,10	460	Jan	21	1977
ANNUAL SEVEN-DAY MINIMUM	2430	Oct 5	2430	Oct	5	470	Jan	20	1977
INSTANTANEOUS PEAK FLOW			49000	Jul	1	111000	Jul	8	1993
INSTANTANEOUS PEAK STAGE			22.97	Jul	1	29.53	Jul	7	1993
ANNUAL RUNOFF (AC-FT)	6663000		9022000			6730000			
ANNUAL RUNOFF (CFSM)	.74		1.00			.74			
ANNUAL RUNOFF (INCHES)	10.00		13.54			10.10			
10 PERCENT EXCEEDS	19100		30500			20900			
50 PERCENT EXCEEDS	6000		9230			6010			
90 PERCENT EXCEEDS	3220		3700			1700			

Post regulation Estimated

05465500 IOWA RIVER AT WAPELLO, IA--Continued

WATER-QUALITY RECORDS

LOCATION --Samples collected at bridge on State Highway 99, 1200 ft. upstream of gage. PERIOD OF RECORD.--January 1978 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: January 1978 to current year.

WATER TEMPERATURE: January 1978 to current year. SUSPENDED-SEDIMENT DISCHARGE: April 1978 to current year.

REMARKS.--During periods of ice effect samples are collected in open water channel or through ice cover. Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 920 microsiemens Dec. 17, 1988; minimum daily, 168 microsiemens June 21, 1990. WATER TEMPERATURES: Maximum daily, 33.0°C July 25, 1987; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,970 mg/L June 25, 1981; minimum daily mean, 1 mg/L Jan. 21, 22, 1981. SEDIMENT LOADS: Maximum daily 604,000 tons June 20, 1990; minimum daily, 4.7 tons Dec. 23, 24, 1989.

EXTREMES FOR CURRENT YEAR . --

TREMES FOR CURRENT YEAR. -SPECIFIC CONDUCTANCE: Maximum daily, 641 microsiemens Nov. 15, 17; minimum daily, 384 microsiemens Apr. 1.
WATER TEMPERATURES: Maximum daily, 30.0°C, Aug. 22; minimum daily, 0.0°C Jan. 23.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 750 mg/L Apr. 1; minimum daily mean, 11 mg/L Jan. 22.
SEDIMENT LOADS: Maximum daily, 68,300 tons July 2; minimum daily, 125 tons Jan. -22.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
NOV						
06	1200	5.6	4900	114	1510	71
MAR						
10	1435	1.8	14600	314	12400	81
APR						
03	1515		41900	252	28500	2
27	1310	13.6	23000	181	11200	75
JUN						
08	1220	18.7	11100	112	3360	92
JUL						
20	1245	29.2	11100	146	4380	93
AUG						
31	1215	21.6	12300	201	6680	94

DATE	TIME	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)	
NOV												
06	1245	4	1	3	23	60	75	91	98	100		
MAR												
10	1510	3		0	5	58	96	100				
APR												
27	1405	4	0	4	7	43	82	91	96	99	100	
JUN												
08	1305	3		0	5	48	87	99	100			
JUL												
20	1335	3		0	3	40	84	97	100	- -		
AUG												
31	1300	3	0	1	13	83	99	100				

05465500 IOWA RIVER AT WAPELLO, IA--Continued SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES DAY OCT NOV DEC FEB MAY JAN MAR APR JUIN $\pi\pi$ AUG SEP 509 398 384 528 ---2 ---599 ---___ 393 465 ___ ___ 458 590 551 420 417 520 603 455 581 530 5 ---554 ---526 529 553 6 526 612 545 525 538 ------552 ---~--------544 ---------8 516 626 606 576 ---_---569 449 ---512 540 520 10 554 627 601 544 511 535 530 521 11 624 ---___ 516 ------528 447 ---_---12 ---498 ------634 ---504 ------13 618 ---545 449 ---552 630 ---------483 477 ---------------454 ---15 553 641 536 477 423 ---637 ---478 ---17 641 615 567 ---___ 466 393 ---___ _------___ 547 631 ---18 636 19 551 619 572 551 455 393 436 20 553 531 548 408 430 21 472 543 568 530 551 542 447 22 586 640 535 407 521 ---460 ---476 23 ---------501 553 ---549 ___ ---24 ---484 553 468 527 531 25 628 525 515 549 26 552 472 492 ---___ ---___ ---------27 545 525 514 550 476 ---28 ------535 486 496 ---29 ------------549 390 551 ---515 30 ___ ------507 385 ---------494 31 495 TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 25.0 9.0 22.5 5.5 16.0 1 2 ---2.0 ___ ___ 9.0 25.0 ___ ------___ 3 ---6.0 1.0 9.0 27.0 25.0 ___ ---14.5 19.0 2.0 9.0 5 5.5 10.0 18.0 18.0 29.0 6 5.0 29.0 21.0 8.0 ---4.0 ___ 18.0 ___ ------___ 3.0 ---8 7.0 2.0 3.0 18.5 29.0 --**-**------2.5 20.0 ---24.0 10 7.0 2.0 4.0 13.0 ---------2.0 ---27.0 20.0 11 ---7.0 ---5.0 20.0 27.0 ---------20.0 ---12 4.0 20.0 13 13.0 28.0 ---___ . 5 ___ ---4.0 14.0 23.0 ---28.0 15 ___ 3.0 ---___ ___ 14.0 23.0 20.0 ------16 . 5 24.0 ------3.0 1.0 4.5 ---24.0 24.0 ---___ ---15.0 18 3.0 . 5 ---------24.0 28.0 24.0 19 15.0 5.0 14.0 2.0 ---___ 20 11.0 7.0 24.0 15.0 14.0 15.0 21 ---------7.0 23.0 29.0 21.0 22 ---. 5 ---22.0 24.0 30.0 ---15.0 ---23 ___ . 0 ---9.0 15.0 20.0 24 25 ---4.0 18.0 20.0 29.0 18.0 ---1.0 17.0 29.0 18.0 26 ___ ___ ---___ ---14.0 20.0 ___ ---21.0 ------22.0 29.0 ---15.0 20.0 27 ------------14.0 28 15.0 24.0 22.0 29 ------15.0 ---25.0 ___ 29.0 ___ 25.0 ------------17.0

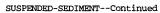
25.0

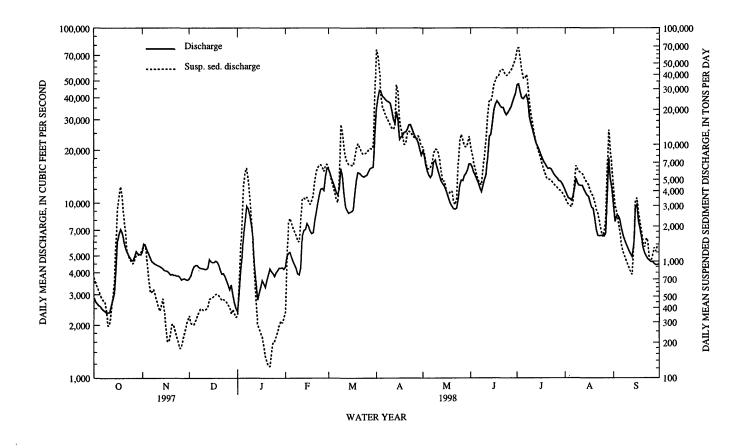
25.0

25.0

30

31




05465500 IOWA RIVER AT WAPELLO, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB	ER	DECEMB:	ER	JANUA	RY	FEBRUA	RY	MARC	H
1 2 3 4 5	93 88 84 79 75	726 653 600 556 518	89 92 89 68 51	1270 1440 1370 989 705	34 28 26 24 26	342 295 287 286 308	53 75 112 166 244	343 608 1210 2210 4390	30 72 146 143 137	373 972 2170 2340 2110	134 127 119 114 109	6280 5580 4880 4360 3880
6 7 8 9 10	71 70 69 57 44	480 462 448 365 278	41 44 47 43 39	539 546 577 527 463	28 31 34 34 33	340 363 391 392 380	269 243 204 156 115	5740 6290 5110 3590 2340	132 127 122 118 116	1920 1780 1650 1500 1470	104 102 148 347 325	3410 3200 5100 14900 12600
11 12 13 14 15	46 54 65 78 124	293 382 494 654 1400	35 32 36 42 33	413 376 417 481 372	34 35 36 37 38	381 394 416 479 482	85 63 47 38 32	1450 748 444 287 264	168 167 161 155 149	2290 3430 3510 3410 3560	308 301 295 289 282	9280 7580 7160 6790 6720
16 17 18 19 20	168 198 230 197 145	2740 3590 4390 3600 2420	24 19 19 23 27	268 204 207 242 290	40 41 42 42 43	491 507 524 524 510	27 23 20 17 14	241 224 186 151 136	143 143 157 174 192	3300 3090 3290 3690 4760	276 270 265 259 253	6630 6620 7870 9380 10200
21 22 23 24 25	120 89 82 80 78	1820 1270 1120 1050 986	27 24 22 19 18	279 250 222 200 178	43 44 44 45 46	485 464 474 462 447	12 11 15 19 20	126 125 164 203 205	209 204 192 181 170	5810 6350 6660 6740 6380	236 225 217 217 219	9480 8830 8340 8250 8450
26 27 28 29 30 31	76 77 79 81 84 86	958 1030 1130 1130 1160 1190	19 22 25 28 32	187 215 246 277 314	46 47 47 48 49	422 406 355 389 357 331	21 22 24 25 26 28	227 247 282 307 295 333	161 151 143 	5890 6550 6820 	221 222 219 214 230 415	8580 9060 9260 9160 9910 26800
TOTAL	L	37893		14064		12684		38476		101815		258540
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	CONCEN- TRATION (MG/L)	(TONS/ DAY) IL	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L) JUNE	(TONS/ DAY)	CONCEN- TRATION (MG/L) JULY	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY) T	CONCEN- TRATION (MG/L) SEPTEM	(TONS/ DAY) BER
DAY 1 2 3 4 5	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)
1 2 3 4	CONCEN- TRATION (MG/L) APR 750 567 371 231	(TONS/ DAY) IL 65600 57800 43700 26500	CONCENTRATION (MG/L) MAY 182 171 160 152	(TONS/ DAY) 9520 8330 7070 6260	CONCEN- TRATION (MG/L) JUNE 212 188 173 159	(TONS/ DAY) 9480 8160 7040 6180	CONCEN- TRATION (MG/L) JULY 512 516 462 409	(TONS/DAY) 66800 68300 53700 42600	CONCEN- TRATION (MG/L) AUGUS 111 110 109 108	(TONS/ DAY) T 3490 3260 3080 3020	CONCEN- TRATION (MG/L) SEPTEM 168 140 117 97	(TONS/DAY) BER 4390 3010 2660 2230
1 2 3 4 5	CONCEN- TRATION (MG/L) APR 750 567 371 231 196 187 178 170 162	(TONS/DAY) IL 65600 57800 43700 26500 20900 19500 17900 16700 15800	CONCEN- TRATION (MG/L) MAY 182 171 160 152 159 168 177 186 196	9520 8330 7070 6260 6190 6350 6930 8510 9180	CONCEN- TRATION (MG/L) JUNE 212 188 173 159 146 142 141 145 179	9480 8160 7040 6180 5410 4930 4630 4520 6060	CONCEN- TRATION (MG/L) JULY 512 516 462 409 362 349 363 333 393	(TONS/DAY) 66800 68300 53700 42600 37000 37300 40000 32900 22800	CONCEN- TRATION (MG/L) AUGUS 111 110 109 108 106 112 144 177 176	(TONS/DAY) T 3490 3260 3080 3020 2930 3240 4680 6610 66130	CONCEN- TRATION (MG/L) SEPTEM 168 140 117 97 81 71 66 63 60	(TONS/DAY) BER 4390 3010 2660 2230 1790 1430 1230 1120 1040
1 2 3 4 5 6 7 8 9 10 .11 12 13 14	CONCEN- TRATION (MG/L) APR 750 567 371 231 196 187 178 170 162 155 162 181 203 384	(TONS/DAY) IL 65600 57800 43700 26500 20900 19500 17900 15800 14700 13900 13900 13400 14400 32700	CONCEN- TRATION (MG/L) 182 171 160 152 159 168 177 186 205 206 190 164 139	9520 8330 7070 6260 6190 6350 6930 8510 9180 9060 8440 7290 5870 4830	CONCEN- TRATION (MG/L) JUNE 212 188 173 159 146 142 141 145 179 228 290 367 389 376	9480 8160 7040 6180 5410 4930 4630 4620 6060 8390 11400 17900 23700 23400	CONCEN- TRATION (MG/L) 512 516 462 409 362 349 363 333 258 227 204 186 172	(TONS/DAY) 66800 68300 53700 42600 37000 37300 40000 32900 22800 18100 14900 12400 10600 9450	CONCEN- TRATION (MG/L) AUGUS 111 110 109 108 106 112 144 177 176 173 170 167 164 161	TONS/DAY) 3490 3260 3080 3020 2930 3240 4680 6610 6130 5860 5760 5280 4960	CONCEN- TRATION (MG/L) SEPTEM 168 140 117 97 81 71 66 63 60 58 55 53 51 78	(TONS/DAY) BER 4390 3010 2660 2230 1790 1430 1120 1040 956 880 817 768 1320
1 2 3 4 5 6 7 8 9 10	CONCEN- TRATION (MG/L) APR 750 567 231 196 187 178 170 162 155 162 181 203 384 373 271 225 187	(TONS/DAY) IL 65600 57800 43700 26500 20900 19500 17900 16700 15800 14700 13600 13400 32700 28400 16000 13700 11600 9980	CONCENTRATION (MG/L) 182 171 160 152 159 168 177 186 205 206 190 164 139 146 134 123 134 153	9520 8330 7070 6260 6190 6350 6930 8510 9180 9060 8440 7290 5870 4830 4900	CONCEN- TRATION (MG/L) JUNE 212 188 173 159 146 142 141 145 179 228 290 367 389 376 369 376 389 376 389 376 389 376 389 376 389 376 389	9480 8160 7040 6180 5410 4930 4630 4520 6060 8390 11400 17900 23700 23400 26600 32600 36100 38800 38800 39200	CONCENTRATION (MG/L) 512 516 462 409 362 349 363 3293 258 227 204 186 172 162 152 143 135 127	(TONS/DAY) 668800 68300 53700 42600 377000 37300 40000 32900 22800 18100 14900 12400 10600 9450 8550 7680 6910 6240 5690	CONCEN- TRATION (MG/L) AUGUS 111 110 109 108 106 112 144 177 176 173 170 167 164 161 158 156 153 150 147	TONS/DAY) T 3490 3260 3080 3020 2930 3240 4680 6610 6130 5860 5760 5660 5280 4960 4690 4520 4080 3760 3650	CONCEN- TRATION (MG/L) SEPTEM 168 1400 117 97 81 71 666 63 60 58 55 53 51 78 128 128 129 98	(TONS/DAY) BER 4390 3010 2660 2230 1790 1430 1220 1040 956 880 817 768 1320 3280 3500 2590 2150 1760
1 2 3 4 5 7 8 9 10 	CONCENTRATION (MG/L) APR 750 567 231 196 187 178 170 162 155 162 181 203 384 373 271 225 187 156 163	(TONS/DAY) IL 65600 57800 43700 26500 20900 19500 16700 15800 14700 13900 13400 28400 16000 13700 11600 9980 10400 12500 13100 12500 12800 12200	CONCENTRATION (MG/L) 182 171 160 152 159 168 177 186 205 206 190 164 139 146 134 123 134 153 157	9520 8330 7070 6260 6190 6350 6930 8510 9180 9060 8440 7290 5870 4830 4900 4270 33670 3770 3070 3070 3230 3070 3420 7030	CONCEN- TRATION (MG/L) JUNE 212 188 173 159 146 142 141 145 179 228 290 367 389 376 369 376 389 376 369 481 475	9480 8160 7040 6180 5410 4930 4520 6060 8390 11400 23700 23400 26600 32600 36100 38800 43500 44500 43800 40800 40800 40800 40900	CONCEN- TRATION (MG/L) 512 516 462 409 362 349 363 3293 258 227 204 186 172 162 152 143 135 127 119 118 119 118	(TONS/DAY) 668800 68300 53700 42600 377000 37300 440000 32900 22800 18100 14900 12400 10600 9450 8550 7680 6910 6240 5690 5170 5020 5040 4950 4730	CONCEN- TRATION (MG/L) AUGUS 111 110 109 108 106 112 144 177 176 173 170 167 164 161 158 156 153 150 147 145 142 139 120 99	TONS/DAY) T 3490 3260 3080 3020 2930 3240 4680 6610 6130 5860 5760 5660 5280 4960 4690 4520 4080 3760 33650 3230 2800 2580 2220 1830	CONCEN- TRATION (MG/L) SEPTEM 168 1400 117 97 81 71 666 63 60 58 55 53 51 78 128 134 121 109 98 88 86 105 100 71	(TONS/DAY) BER 4390 3010 2660 2230 1790 1430 1120 1040 956 880 817 768 1320 3280 3500 2150 1760 1440 1330 1580 1470 1030
1 2 3 4 4 5	CONCENTRATION (MG/L) APR 750 567 371 231 196 187 178 170 162 155 162 181 203 384 373 271 225 187 156 163 190 188 183 184 185 185 187 208 208 195	(TONS/DAY) IL 65600 57800 43700 26500 20900 19500 17900 16700 13800 14700 13900 13600 14400 28400 16000 13700 211600 9980 10400 12500 113100 12800 12200 11700 11300 11900 11900 11900 9700	CONCENTRATION (MG/L) MAY 182 171 160 152 159 168 177 186 205 206 190 164 139 146 134 123 134 153 157 131 125 137 245 324 334 300 252 239 245	9520 8330 7070 6260 6190 6350 6930 8510 9060 8440 7290 5870 4830 4900 4270 3670 3720 4010 3970 3230 3070 3420 7030 11000 12200 10900 9710 9540 10200	CONCEN- TRATION (MG/L) JUNE 212 188 173 159 146 142 141 145 179 228 290 367 389 376 369 376 389 376 369 411 475 496 489 486 485 485 484 484 484 484 483 493	9480 8160 7040 6180 5410 4630 4630 4630 4630 4630 23700 23700 23700 23400 23400 23400 23400 23400 23400 23400 43500 44500 43800 40800 40800 40800 40900 40900 50900 50900	CONCENTRATION (MG/L) 512 516 462 409 362 349 363 333 258 227 204 186 172 162 152 143 135 127 119 118 119 118 119 118 117 116	(TONS/DAY) 668800 68300 537000 37300 40000 32900 18100 14900 12400 10600 9450 8550 7680 6910 6240 5690 5170 5020 5040 4950 4730 4730 47400 4390 4270 4100 4030 3890	CONCEN- TRATION (MG/L) AUGUS 111 110 109 108 106 112 144 177 176 173 170 167 164 161 158 156 153 150 147 145 142 139 120 99 88 97 119 201 277 228	(TONS/DAY) T 3490 3260 3080 3020 2930 3240 4680 6610 5860 5760 5280 4960 4990 4520 4080 3760 3650 3230 2800 22580 2220 1830 1630 1790 2270 6130 13400 8490	CONCEN- TRATION (MG/L) SEPTEM 168 140 117 97 81 71 666 63 60 58 555 53 51 78 128 134 121 109 98 88 86 105 100 71 77 94 88 96 93	(TONS/DAY) BER 4390 3010 2660 2230 1790 1430 1120 1040 956 880 817 768 1320 3280 3500 2590 2150 1760 1440 1330 1470 1030 1010 1100 1310 1220 13300 13300

05465500 IOWA RIVER AT WAPELLO, IA--Continued

Gaq	ing	Sta	ti	ons

05470000	South Skunk River near Ames, IA			•	•	•		•	•	198
05470500	Squaw Creek at Ames, IA									200
05471000	South Skunk River below Squaw Creek near	Ames,	IA.							202
05471040	Squaw Creek near Colfax, IA			•						204
05471050	South Skunk River at Colfax, IA									212
05471200	Indian Creek near Mingo, IA									214
05471500	South Skunk River near Oskaloosa, IA									216
05472500	North Skunk River near Sigourney, IA									218
05473400	Cedar Creek near Oakland Mills, IA			•						220
05473450	Big Creek near Mt. Pleasant									222
05474000	Skunk River at Augusta, IA					•				224
05474500	Mississippi River at Keokuk, IA			•						230

Crest Stage Gaging Stations

05469860	Mud Lake Drainage Ditch 71 at Jewell, IA
05469970	Long Dick Creek near Ellsworth, IA
05469990	Keigley Branch near Story City, IA
0547209280	Snipe Creek Tributary at Melbourne, IA
05472090	North Skunk River near Baxter, IA
05472390	Middle Creek near Lacey, IA
05472555	Skunk River Tributary near Richland, IA

05470000 SOUTH SKUNK RIVER NEAR AMES, IA

LOCATION.--Lat $42^{\circ}04^{\circ}06^{\circ}$, long $93^{\circ}37^{\circ}09^{\circ}$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec.23, T.84 N., R.24 W., Story County, Hydrologic Unit 07080105, on left bank 2.5 mi north of Ames, 3.5 mi downstream from Keigley Branch, 5.2 mi upstream from Squaw Creek, and at mile 228.1 upstream from mouth of Skunk River.

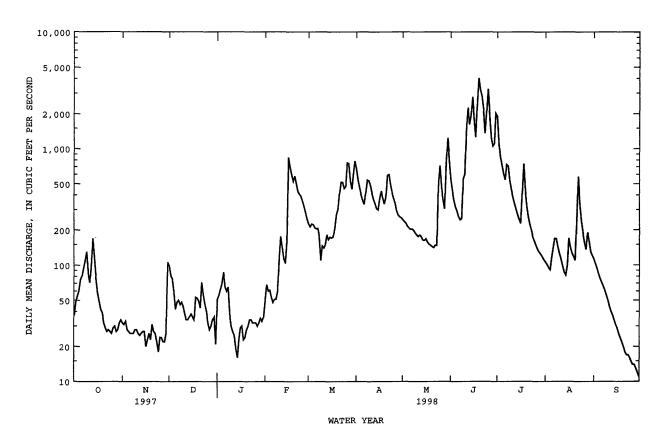
DRAINAGE AREA. -- 315 mi².

PERIOD OF RECORD.--July 1920 to September 1927, October 1932 to September 1995, October 1, 1996 to current year. Monthly discharge only for some periods, published in WSP 1308. Prior to October 1966, published as "Skunk River near Ames".

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1921, 1925-26, 1934-35 (M), 1937 (M), 1939 (M), 1947-50 (M). WDR IA-67-1: 1965. WDR IA-74-1: 1973 (P).

GAGE.--Water-stage recorder. Concrete control since July 21, 1934. Datum of gage is 893.61 ft above sea level (Iowa Highway Commission benchmark). Prior to Aug. 25, 1921, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Dec. 4-17, 23-31, and Jan. 6-28. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with phone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 17, 1996 reached about 14,000 ft³/s, from rating curve extension, gage height 15.89 ft, from highwater mark.

	_													
	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	37	32	98	51	50	225	673	245	538	1900	106	112		
2	48	31	81	55	68	213	533	236	437	1080	101	102		
3	54	33	77	62	60	225	460	229	362	851	95	93		
4	60	28	e60	69	61	222	402	215	318	719	91	83		
5	75	27	e42	87	53	209	360	208	290	611	115	77		
6	81	26	e48	e65	48	205	334	203	260	542	140	71		
7	95	26	e50	e60	51	206	419	204	245	730	169	66		
8	110	26	e46	e65	51	178	5 37	198	251	710	168	61		
9	130	28	e48	e38	59	110	530	188	554	532	143	55		
10	84	28	e44	e30	110	146	480	182	601	443	125	50		
11	71	26	e38	e27	176	140	414	176	1460	383	112	44		
12	106	25	e34	e25	142	150	368	181	2250	340	98	40		
13	169	26	e3 4	e19	113	182	339	176	1620	304	87	37		
14	115	27	e36	e16	104	166	307	164	1920	27 2	82	34		
15	76	27	e38	e23	155	174	299	163	2780	248	100	31		
16	58	20	e36	e29	842	171	370	168	1800	228	170	29		
17	49	23	e34	e30	696	174	433	158	1260	408	142	26		
18	42	26	53	e23	596	208	377	151	2430	740	126	24		
19	39	23	52	e24	525	270	336	148	4040	440	118	22		
20	32	31	49	e28	581	301	382	144	3200	318	110	20		
21	29	27	43	e30	500	408	590	141	2820	256	234	18		
22	27	26	71	e34	429	516	599	148	2180	221	576	17		
23	28	22	e55	e34	409	515	485	147	1360	197	334	17		
24	27	18	e46	e32	394	456	420	504	2050	173	236	16		
25	26	24	e40	e32	357	473	377	713	3260	159	189	15		
26	29	24	e32	e32	321	756	343	464	1920	146	156	14		
27	30	22	e28	e30	283	746	294	364	1240	135	136	14		
28	. 27	22	e30	e32	248	526	269	305	1060	128	190	13		
29	' 28	26	e34	35		450	260	768	1110	123	159	12		
30	32	106	e36	33		609	255	1240	2010	117	129	11		
31	34		e21	36		781		791		111	120			
TOTAL	1848	856	1434	1186	7482	10111	12245	9322	45626	13565	4857	1224		
MEAN	59.6	28.5	46.3	38.3	267	326	408	301	1521	438	157	40.8		
MAX	169	106	98	87	842	781	673	1240	4040	1900	576	112		
MIN	26	18	21	16	48	110	255	141	245	111	82	11		
AC-FT	3670	1700	2840	2350	14840	20060	24290	18490	90500	26910	9630	2430		
CFSM	.19	.09	.15	.12	.85	1.04	1.30	.95	4.83	1.39	.50	.13		
IN.	.22	.10	.17	.14	.88	1.19	1.45	1.10	5.39	1.60	.57	.14		
										1.00	.57	.14		
STATIST	ICS OF	MONTHLY M	EAN DATA F	OR WATER	YEARS 192	1 - 1998,	BY WATER	YEAR (WY)					
MEAN	96.5	99.8	71.8	50.8	120	318	279	275	387	228	116	97.5		
MAX	723	726	537	315	623	1034	1208	1193	1900	2628	1782	577		
(WY)	1987	1973	1983	1973	1984	1979	1965	1944	1947	1993	1993	1926		
MIN	.12	.14	.000	.000	.31	6.35	6.67	2.28	.011	.017	.087	.081		
(WY)	1954	1956	1977	1977	1956	1981	1956	1934	1977	1977	1934	1976		

05470000 SOUTH SKUNK RIVER NEAR AMES, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1921 - 1998
ANNUAL TOTAL	69344.3	109756	
ANNUAL MEAN	190	301	178
HIGHEST ANNUAL MEAN			752 1993
LOWEST ANNUAL MEAN			5.58 1956
HIGHEST DAILY MEAN	1860 Jun 22	4040 Jun 19	8980 Jul 9 1993
LOWEST DAILY MEAN	5.0 Sep 5	11 Sep 30	.00 Jun 20 1934a
ANNUAL SEVEN-DAY MINIMUM	6,1 Aug 31	14 Sep 24	.00 Jun 20 1934
INSTANTANEOUS PEAK FLOW	-	4760 Jun 18	11200 Aug 16 1993
INSTANTANEOUS PEAK STAGE		8.70 Jun 18	14,23 Aug 16 1993
INSTANTANEOUS LOW FLOW		6.1 Nov 24	_
ANNUAL RUNOFF (AC-FT)	137500	217700	129200
ANNUAL RUNOFF (CFSM)	.60	. 95	. 57
ANNUAL RUNOFF (INCHES)	8.19	12.96	7.70
10 PERCENT EXCEEDS	434	682	435
50 PERCENT EXCEEDS	99	128	58
90 PERCENT EXCEEDS	19	26	2.3

a Many days in 1934, 1953-56, 1976-1977 e Estimated

05470500 SQUAW CREEK AT AMES, IA

LOCATION.--Lat 42°01'21", long 93°37'45", in NE¹/₄ NW¹/₄ sec.10, T.83 N., R.24 W., Story County, Hydrologic Unit 07080105, on left bank 65 ft downstream from Lincoln Way Bridge in Ames, 0.2 mi downstream from College Creek, and 2.4 mi upstream from mouth.

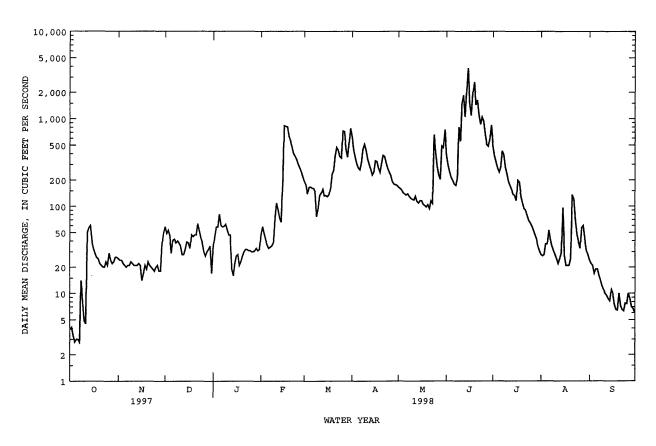
DRAINAGE AREA. -- 204 mi².

PERIOD OF RECORD.--May 1919 to September 1927, May 1965 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: Drainage area, 1920-22 (M), 1923, 1924-25 (M), 1926, 1927 (M), WDR IA-66-1: 1965, WDR IA-71-1: 1970 (M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 881.00 ft. above sea level (levels by Iowa State University). Prior to Mar. 11, 1925, nonrecording gage at site 0.6 mi upstream at different datum. Mar. 11, 1925 to Apr. 30, 1927, nonrecording gage at site 65 ft. upstream at datum about 4 ft. higher.

REMARKS.--Estimated daily discharges: Dec. 25-28, and Jan. 13-21. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with phone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 4, 1918 reached a stage of 14.5 ft. from floodmarks, site and datum used 1919-25, discharge, 6,900 ft³/s. Flood of Mar. 1, 1965 reached a stage of 10.7 ft. from graph based on gage readings, at present site and datum, discharge, 4,200 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 3.9 4.1 317 17 3.3 2.8 3.0 3.0 2.8 8 4 4.9 4 5 57 9.5 8.7 e19 e16 e22 e27 e28 7.5 19 1.8 e21 6.5 e23 6.4 56 7.2 e30 6.5 6.3 7.6 e38 8.7 7.0 e2.7 179 e30 6.0 ___ ጥር ጥል፣. 652.7 336.5 MEAN 22.2 11.2 21.1 39.4 38.4 42.5 MIN 2.8 6.0 AC-FT .05 CFSM .10 .19 5.03 .11 .19 1.27 1.37 1.53 1.00 . 87 .21 1.32 5.61 .24 .12 1.58 1.70 1.15 .06 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1920 - 1998. BY WATER YEAR (WY) MEAN 84.0 88.5 63.6 88.2 84.4 1973 1979 1975 MAX (WY) .36 1989 .000 2.51 MIN . 63 .093 4.32 1.42 3.61 (WY).

05470500 SQUAW CREEK AT AMES, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1920 - 1998
ANNUAL TOTAL	43952.3	73198.2	
ANNUAL MEAN	120	201	143
HIGHEST ANNUAL MEAN			528 1993
LOWEST ANNUAL MEAN			13.6 1981
HIGHEST DAILY MEAN	2130 Feb 19	3810 Jun 15	12200 Jul 9 1993
LOWEST DAILY MEAN	2.8 Oct 4	2.8 Oct 4	.00 Jul 31 1925a
ANNUAL SEVEN-DAY MINIMUM	3.3 Oct 1	3.3 Oct 1	.00 Oct 7 1971
INSTANTANEOUS PEAK FLOW		5290 Jun 15	24300 Jul 9 1993
INSTANTANEOUS PEAK STAGE		11.57 Jun 15	18.54 Jul 9 1993
INSTANTANEOUS LOW FLOW		2.3 Oct 3	
ANNUAL RUNOFF (AC-FT)	87180	145200	103700
ANNUAL RUNOFF (CFSM)	. 59	.98	.70
ANNUAL RUNOFF (INCHES)	8.01	13.35	9.53
10 PERCENT EXCEEDS	228	486	350
50 PERCENT EXCEEDS	57	58	48
90 PERCENT EXCEEDS	8.6	16	1.8

a Many days in 1925, 1971, 1972, 1976, 1977, 1988 e Estimated

05471000 SOUTH SKUNK RIVER BELOW SQUAW CREEK NEAR AMES, IA

LOCATION.--Lat $42^{\circ}00^{\circ}24^{\circ}$, long $93^{\circ}35^{\circ}43^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.13, T.83 N., R.24 W., Story County, Hydrologic Unit 07080105, on right bank 500 ft downstream from bridge on county highway, 0.2 mi downstream from Squaw Creek, 200 ft upstream from bridge on U.S. Highway 30, 2 mi southeast of Ames, and at mile 222.6 upstream from mouth of Skunk River.

DRAINAGE AREA. -- 556 mi².

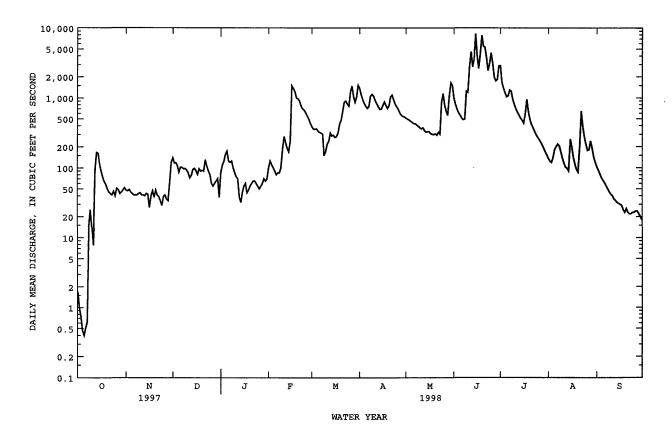
PERIOD OF RECORD.--October 1952 to December 1979, October 1991 to current year. Prior to October 1966, published as "Skunk River below Squaw Creek near Ames".

REVISED RECORDS. -- WDR IA-95-1: Location.

GAGE.--Water-stage recorder. Datum of gage is 857.10 ft above sea level. Prior to Oct. 1, 1973, at datum 10.00 ft higher. Prior to Oct. 1991, at site 500 ft upstream at same datum.

REMARKS.--Estimated daily discharges: Dec. 21 to Jan. 1, Jan. 6 to Feb. 15, and Mar. 9-12. Records good except those for estimated daily discharges, which are poor. Low flows are affected by pumpage by City of Ames from surficial aquifer and do not represent the natural flow of the stream. Several observations of water temperature were made during the year. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 19, 1944, reached a stage of 13 ft, from floodmarks, discharge, 10,000 ft³/s, datum then in use.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DISCHARGE, CODIC FEET FER SECOND, WATER TEAR OCTOBER 1997 TO SEFTEMBER 1998 DAILY MEAN VALUES												
DAY	OCT	NOV	, DEC	jan	FEB	MAR	. APR	MAY	JUN	JUL	AUG	SEP
1	1.7	48	139	e85	e100	388	1370	513	996	2900	135	103
2	1.0	47			e125	358		498	805	1670	124	92
3	.74	49			e110	356		483	693	1360	119	81
4	.47	45			e100	360		464	611	1180	139	72
5	.40	43			e90	334		446	567	1040	182	66
6	.51	41	102	e125	e80	321	713	428	512	1070	200	61
7	.62	41			e85	315		428	487	1290	217	55
8	14	41	. 9'		e85	302		407	498	1240	204	50
9	25	43	98	e100	e100	e150	1130	390	1250	943	168	45
10	14	44	93	e85	e180	e1 70	1060	374	1200	798	137	42
11	7.8	41			e280	e220	919	361	2770	696	117	40
12	92	41			e230	e240		372	4600	622	102	36
13	167	40			e190	315		342	2780	563	98	34
14	162	43			e170	285		324	3600	510	90	32
15	113	42	98	e45	e240	293	691	329	8240	4 78	256	31
16	90	27			1490	272	788	328	4050	434	197	30
17	74	40			1360	278	874	30 7	2640	575	139	29
18	64	47			1220	317		301	4190	946	113	25
19	58	38			997	423		297	7880	640	95	23
20	50	48	92	e55	974	478	779	306	5520	494	87	26
21	45	41			897	642	1040	293	5350	416	192	23
22	43	39			764	869		322	3810	375	644	22
23	41	34			701	903		301	2460	333	386	22
24	46	29			670	821		871	3080	297	276	23
25	40	39	e80	e55	609	767	744	1150	4420	273	217	23
26	51	41			553	1230		795	3110	253	177	24
27	49	36			495	1480		645	1970	232	181	24
28	43	34			434	1050	565	562	1750	210	241	22
29	45	61				872		1080	1820	188	187	20
30	48	120				1030		1640	2880	168	142	18
31	52		e38	8 e70		1520		1500		151	119	
	1439.24	1323			13329	17359		16857	84539	22345	5681	1194
MEAN	46.4	44.1			476	560	837	544	2818	721	183	39.8
MAX	167	120			1490	1520		1640	8240	2900	644	103
MIN	.40	27			80	150		293	487	151	87	18
MED	45	41			260	358		407	2710	563	168	31
AC-FT	2850	2620			26440	34430		33440	16 7 700	44320	11270	2370
CFSM	.08	.08			. 86	1.01		.98	5.07	1.30	.33	.07
IN.	.10	. 09	.19	.16	.89	1.16	1.68	1.13	5.66	1.50	.38	.08
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	53 - 199	8, BY WATE	ER YEAR (W	Y)			
MEAN	175	189			190	558		513	825	521	303	171
MAX	1079	1270		599	919	2026	2037	1421	2818	5220	3921	1157
(WY)	1974	1973			1973	1979		1974	1998	1993	19 93	1993
MIN	.000	.005			.000	8.71		6.71	.000	.000	.032	.16
(WY)	1957	1977	197	1956	1956	1956	1956	1967	1977	1956	1956	1976

05471000 SOUTH SKUNK RIVER BELOW SQUAW CREEK NEAR AMES, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDA	AR YEAR	FOR 1998 WAT	ER YEAR	WATER YEARS	1953 - 1998
ANNUAL TOTAL	119378.74		194354.24			
ANNUAL MEAN	327		532		350	
HIGHEST ANNUAL MEAN					1475	1993
LOWEST ANNUAL MEAN					5.95	1956
HIGHEST DAILY MEAN	3100	Feb 19	8240	Jun 15	20500	Jul 9 1993
LOWEST DAILY MEAN	. 40	Oct 5	.40	Oct 5	.00	Dec 17 1953a
ANNUAL SEVEN-DAY MINIMUM	.78	Oct 1	.78	Oct 1	.00	Jan 11 1954
INSTANTANEOUS PEAK FLOW			9970	Jun 15	26500	Jul 9 1993
INSTANTANEOUS PEAK STAGE			22.81	Jun 15	25.57	Jun 27 1975
INSTANTANEOUS LOW FLOW			.31	Oct 5		
ANNUAL RUNOFF (AC-FT)	236800		385500		253300	
ANNUAL RUNOFF (CFSM)	.59		.96		. 63	
ANNUAL RUNOFF (INCHES)	7.99		13.00		8.54	
10 PERCENT EXCEEDS	745		1190		834	
50 PERCENT EXCEEDS	150		173		114	
90 PERCENT EXCEEDS	26		37		1.3	

Many days in 1953-56, 1963-68, 1976-77 Estimated

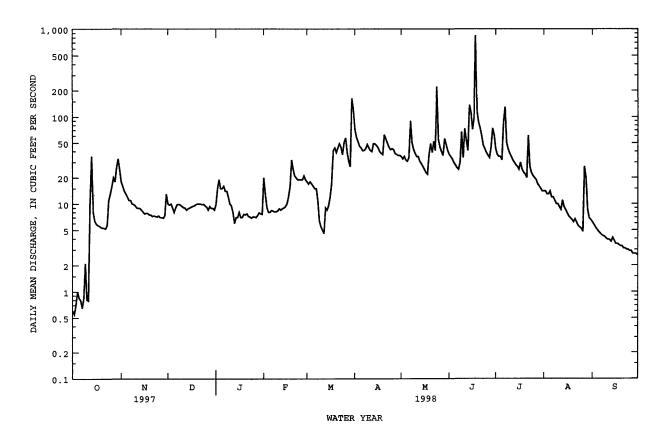
05471040 SQUAW CREEK NEAR COLFAX, IA

LOCATION.--Lat $41^{\circ}39^{\circ}33^{\circ}$, long $93^{\circ}16^{\circ}14^{\circ}$, in $NE^{1}/_{4}$ Nec.15, T.79 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on right bank at downstream side of bridge on county road S44 Ave. W.

DRAINAGE AREA.--18.4 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1995 to current year.


GAGE. -- Water-stage recorder. Datum of gage is 785.96 ft above sea level.

REMARKS.--Estimated daily discharges: Oct. 1-7, Dec. 4-6, 13, 27, 31, Jan. 10-18, Feb. 4, 5, 13, 14, and Mar. 2, 6, 10-16. Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and satellite data collection platform at station.

		DISCHA	RGE, CUBI	C FEET PEF		WATER YE MEAN VA	AR OCTOBER LUES	1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e.60 e.55 e.70 e1.0 e.85	18 16 14 13 12	10 9.7 10 e9.0 e8.0	9.8 15 19 15 15	20 13 9.1 e8.0 e8.0	18 e17 18 17 16	73 58 52 46 44	35 33 35 32 31	37 35 33 30 28	43 37 35 35 32	14 14 13 13	6.2 5.8 5.4 5.1 4.8
6 7 8 9 10	e.80 e.65 .84 2.1 .81	11 11 10 9.9 9.5	e9.0 9.8 9.9 9.7 9.4	16 14 14 12 e10	8.4 8.3 8.1 8.1 8.3	e15 15 11 6.4 e5.5	41 41 43 48 44	34 90 50 42 38	26 25 30 67 34	88 130 51 43 38	12 12 11 10 10	4.6 4.4 4.3 4.2 4.0
11 12 13 14 15	.79 11 35 8.0 6.4	9.0 8.9 8.9 8.5 8.1	9.1 9.0 e8.5 8.8 9.0	e9.5 e8.0 e6.0 e7.0 e7.0	8.8 8.5 e8.8 e9.0 9.3	e5.0 e4.6 e9.0 e8.5 e9.5	41 40 49 49 47	35 35 31 29 27	73 53 41 137 113	35 32 30 28 27	9.2 8.6 11 9.2 8.5	3.9 3.9 3.7 4.1 3.8
16 17 18 19 20	5.9 5.7 5.6 5.4 5.3	7.7 7.8 7.8 7.5 7.5	9.2 9.4 9.5 9.8 10	e8.0 e7.0 e7.0 7.6 7.5	10 12 16 32 25	e12 17 41 44 39	44 40 38 37 62	25 23 22 37 49	72 96 847 114 86	25 30 25 23 22	7.8 7.2 6.9 6.6 6.2	3.5 3.5 3.4 3.3 3.3
21 22 23 24 25	5.3 5.2 5.7 11 13	7.2 7.3 7.2 7.1 7.3	10 10 9.8 9.9 9.5	7.7 7.2 7.1 6.9 7.1	21 20 19 19	44 49 45 37 51	56 50 45 42 43	39 52 41 222 55	74 60 47 43 39	20 61 27 23 21	6.7 6.1 5.6 5.4 5.2	3.1 3.0 3.0 2.9
26 27 28 29 30 31	16 20 18 26 33 25	7.0 7.0 6.9 7.3	9.2 e8.5 9.3 8.9 8.9 e8.5	7.1 7.0 7.4 7.9 7.7 7.6	19 21 19 	57 39 31 27 164 123	42 38 37 36 36	45 40 36 56 48 41	36 34 45 74 62	20 19 17 16 15 14	4.8 27 20 8.6 6.9 6.6	2.9 2.7 2.7 2.7 2.6
TOTAL MEAN MAX MIN AC-FT CFSM IN.	276.19 8.91 35 .55 548 .48 .56	283.4 9.45 18 6.9 562 .51	289.3 9.33 10 8.0 574 .51	295.1 9.52 19 6.0 585 .52 .60	395.7 14.1 32 8.0 785 .77	995.5 32.1 164 4.6 1970 1.75 2.01	1362 45.4 73 36 2700 2.47 2.75	1408 45.4 222 22 2790 2.47 2.85	2491 83.0 847 25 4940 4.51 5.04	1062 34.3 130 14 2110 1.86 2.15	307.1 9.91 27 4.8 609 .54	113.9 3.80 6.2 2.6 226 .21 .23
							BY WATER Y					
MEAN MAX (WY) MIN (WY)	3.88 8.91 1998 .90 1996	4.64 9.45 1998 1.44 1996	4.49 9.33 1998 1.31 1996	5.22 9.52 1998 1.72 1996	35.5 65.0 1996 14.1 1998	15.4 32.1 1998 5.14 1996	19.5 45.4 1998 4.40 1996	45.7 65.7 1996 25.9 1997	36.8 83.0 1998 12.5 1997	16.1 34.3 1998 7.96 1997	5.30 9.91 1998 2.90 1997	1.86 3.80 1998 1.03 1995
SUMMAR	Y STATIST	ics	FOR 3	1997 CALEN	DAR YEAR	F	OR 1998 WAT	CER YEAR		WATER YE	EARS 1995	- 1998
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	T ANNUAL ANNUAL M T DAILY ME DAILY ME SEVEN-DA TANEOUS P	EAN EAN EAN Y MINIMUM Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EEDS		. 55	Feb 18 0ct 2 Sep 27		.74 7020	Oct 2 Oct 1		16.8 25.4 8.76 847 .30 .54 7020 13.94 12180 .91 12.41 38 7.1	Jun : Jun : Jan Jun : Jun : Jun :	1998 1997 18 1998 7 1996 3 1996 18 1998 18 1998

e Estimated

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1995 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: May 1995 to current year.
WATER TEMPERATURES: May 1995 to current year.
SUSPENDED-SEDIMENT DISCHARGE: May 1995 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 620 microsiemens Oct.2, 1995; minimum daily, 170 microsiemens May 24, 1996. WATER TEMPERATURES: Maximum daily, 29.5°C Aug. 25, 1995; minimum daily, 0.0°C many days during winter. SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,270 mg/L May 24, 1996; minimum daily mean, 6.0 mg/L Apr. 22, 1996. SEDIMENT LOADS: Maximum daily, 11,400 tons June 18, 1998; minimum daily, 0.01 tons Jan. 6, 7, 1996.

EXTREMES FOR CURRENT YEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 586 microsiemens Jan. 6; minimum daily, 214 microsiemens June 18.
WATER TEMPERATURES: Maximum daily, 22.5°C Sept. 28; minimum daily, 2.5°C Jan. 8.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,250 mg/L March 30; minimum daily mean, 14.0 mg/L Oct. 6.
SEDIMENT LOADS: Maximum daily, 11,400 tons June 18; minimum daily, 0.03 tons Oct. 2, 3, 6, 7.

SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUC	JUL	AUG	SEP
1			564			475				537		
2			569		515		525		529			
3			478				560					545
4	527								499			
5		554			485	550						
6				586		500		535		513		
	557			286						428		
7								540				
8	571			551			545	549	508	534		
9	500			545			549	550	548	534		
10												
11		547			522	529			381	473	454	
12		548			538						544	
13		548				522					494	
14												
15	574				535			554				547
16				468	524					455		
17		557		400	524	528	527			400	462	535
18		227	469	446		528 527	475		214		402	541
19		487	407	496		538	4/5	497	214		468	475
												564
20		541			555	550		441	510			264
21		546		466		546				467		448
22	520		569						523	511		573
23				451	550				535			432
24	559										453	
25	568	498				447	534			519		548
26		543			520	415	547					
27	567				529	512	474				376	571
28				451	487	538						479
29	556		500	401		236		526				
30	548		J00			290					545	
31	240			526		470					242	
JI	~			220		4.70						

SKUNK RIVER BASIN 207 05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

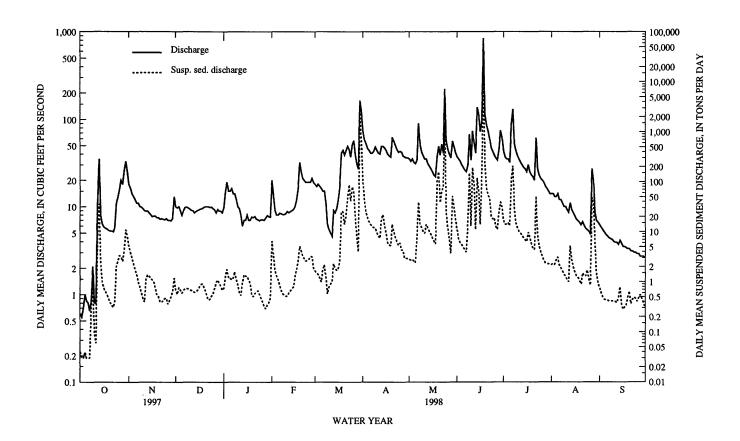
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES

				-			***************************************					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										17.5		
2							6.5					
3												
4												
5												
6				4.5								
7	19.5											
8				2.5								
9												
10												
11											22.0	
12												
13												
14												
15												
16												
17												
18												
19								14.0				
20		7.0			4.0							
21												16.5
22												12.5
23												11.5
24												
25												
26												
27												
28												22.5
29												
30												
31												
21												

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)										
	OCTO	BER	NOVEMB	ER	DECEMBI	ER	JANUA	RY	FEBRUAL	RY	MARCI	н
1	23	.04	103	5.1	26	.70	29	.76	88	6.5	35	1.7
2	20	. 03	89	3.9	22	. 57	31	1.3	95	3.4	33	1.5
3	18	. 03	77	3.0	28	.78	35	1.8	73	1.8	29	1.4
4	16	.04	66	2.3	29	.70	30	1.2	60	1.3	26	1.2
5	15	.03	56	1.8	28	. 60	28	1.2	50	1.1	23	1.0
6	14	. 03	45	1.4	28	.68	27	1.1	39	.88	41	1.7
7	19	.03	36	1.0	28	.74	31	1.2	30	.68	54	2.2
8	125	.33	29	.81	28	.75	43	1.6	27	. 59	42	1.3
9	133	. 87	23	.61	28	.73	35	1.1	25	. 54	33	. 58
10	40	.09	18	.47	28	.70	32	.86	23	. 52	53	.79
11	30	.06	16	.40	28	.68	24	. 62	22	.52	67	.90
12	116	7.9	51	1.2	27	. 67	25	. 54	27	. 61	83	1.0
13	331	36	60	1.4	27	.62	62	1.0	28	. 67	94	2.3
14	127	2.8	56	1.3	27	. 65	73	1.4	30	. 73	83	1.9
15	58	1.0	5 5	1.2	28	.68	67	1.3	32	. 81	67	1.7
16	48	.77	5 5	1.1	31	.77	61	1.3	47	1.3	55	1.8
17	42	. 65	49	1.0	35	.88	57	1.1	52	1.7	55	2.5
18	37	.56	35	.75	36	.92	49	.93	56	2.5	214	25
19	32	. 47	27	.54	30	.80	27	. 55	60	5.1	205	25
20	28	.40	25	.51	24	. 67	25	. 51	61	4.2	134	14
21	25	.35	21	.41	19	.53	28	. 59	57	3.3	163	20
22	22	.31	20	.39	16	. 44	33	. 63	53	2.9	342	46
23	24	.40	22	. 43	17	. 45	35	. 67	50	2.6	703	87
24	65	2.0	25	. 47	20	. 52	30	. 56	52	2.7	411	41
25	74	2.6	24	. 48	23	.58	25	.48	56	2.8	566	79
26	77	3.4	19	.36	30	.75	21	.40	60	3.2	390	61
27	59	3.2	22	. 42	43	.99	17	.33	56	3.2	190	21
28	53	2.6	27	.50	44	1.1	15	.29	37	1.9	95	7.9
29	57	4.1	32	.64	40	. 95	16	.34			55	4.0
30	127	11	34	1.2	34	. 82	19	.38			3250	
31	119	7.9			30	. 69	23	. 48			1 4 60	574
TOTAL	L	89.99		35.09		22.11		26.52		58.05		3960.37

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued


SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEA CON TRA (MG	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)
	7	APRIL	M	AY	J	UNE	JUI	LY	AU	GUST	SEPT	EMBER
1 2 3 4 5	483 256 174 148 135	96 40 24 19 16	30 30 30 29 29	2.8 2.7 2.8 2.6 2.4	108 75 68 67 64	11 7.0 6.0 5.5 4.9	151 144 147 164 155	17 14 14 15 13	61 62 62 74 82	2.2 2.3 2.2 2.7 3.1	45 39 33 33 33	.75 .60 .49 .45
6 7 8 9 10	123 112 102 89 81	14 13 12 12 9.5	72 151 107 104 102	7.5 39 14 12 10	61 58 153 653 138	4.3 3.9 16 148 13	414 474 198 130 113	106 203 28 15 12	67 62 57 52 49	2.2 1.9 1.7 1.4	34 35 36 37 38	.43 .41 .41 .41
11 12 13 14 15	74 68 120 165 114	8.3 7.4 17 22 14	99 143 146 133 121	9.3 14 12 10 8.9	660 567 100 220 160	190 86 11 118 59	110 106 103 99 95	10 9.3 8.3 7.5 6.8	46 44 161 112 86	1.1 1.0 5.2 2.8 2.0	38 37 48 71 36	.40 .38 .48 .79
16 17 18 19 20	79 56 53 53 81	9.3 6.0 5.4 5.3	112 104 96 570 1290	7.4 6.5 5.7 97 157	74 418 2680 680 304	14 144 11400 227 71	93 120 110 93 79	6.3 9.7 7.5 5.8 4.6	76 66 62 59 53	1.6 1.3 1.2 1.1	29 33 37 54 73	.28 .31 .34 .48 .64
21 22 23 24 25	67 57 52 47 52	10 7.6 6.3 5.4 6.0	366 434 407 1380 162	38 64 85 1520 24	274 293 161 157 182	54 47 21 18 19	83 283 115 83 70	4.4 51 8.5 5.2 4.0	84 79 83 118 80	1.5 1.3 1.3 1.7	43 52 60 56 50	.36 .44 .49 .46
26 27 28 29 30 31	38 42 30 30 30	4.3 4.3 3.0 2.9 2.9	99 61 38 305 246 156	12 6.6 3.7 51 32 18	136 118 190 190 185	13 11 23 39 31	61 53 51 53 56 58	3.2 2.7 2.4 2.3 2.3 2.2	65 448 655 250 72 52	.85 48 36 6.0 1.4	61 75 63 52 42	.48 .55 .46 .38 .30
TOTAL		416.9		2277.9		12815.6		601.0		139.27		13.58

YEAR 20456.38

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

SUSPENDED-SEDIMENT--Continued

05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- July 1995 to current year.

INSTRUMENTATION .-- Tipping bucket rain gage.

MIN

.00

.00

.00

.00

.00

REMARKS.--Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting. EXTREMES FOR PERIOD OF RECORD.--Maximum daily accumulation, 2.69 in., July 17, 1996.

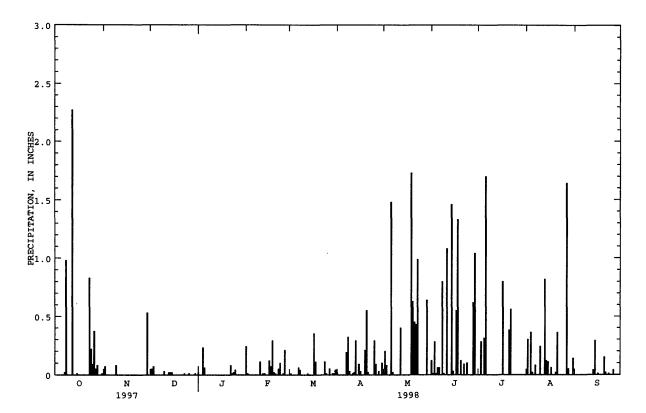
EXTREMES FOR CURRENT YEAR. -- Maximum daily accumulation, 2.27 in., Oct. 12.

PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY SUM VALUES DAY OCT DEC MAY JUL AUG SEP NOV JAN FEB MAR APR JUN .00 .00 .00 .02 .00 .02 .00 .12 .00 .00 .00 2 .07 .05 .00 .00 .00 .01 .01 .00 .20 .01 .00 .30 .00 .00 . 00 00 .00 . 08 . 28 . 28 . 00 .00 .00 .00 .00 .00 .00 .00 .01 .00 . 36 .00 5 .00 .00 .00 .06 .00 .00 .00 .00 .06 .31 .02 .00 .00 1.70 .00 .00 .00 .00 .00 .00 1.48 .06 .00 .00 .00 .00 .00 .00 .02 .00 .00 .00 .06 .19 .08 8 .98 .00 .00 .00 . 00 .04 .32 .00 .80 .00 .00 .00 .00 .08 .03 .00 .01 .00 .00 .00 .00 .00 .00 .00 10 .00 .00 .03 .00 .11 .00 .00 .00 .00 .24 .00 .00 11 .00 .00 .00 .00 .00 00 .01 .00 1.08 . 00 . 00 00 12 2.27 .00 .00 .00 .00 .00 .00 .01 .00 .02 .40 .00 .00 .00 .02 .00 .01 .01 .00 .00 .00 .82 .04 14 .00 .00 .02 .00 .00 .00 .00 .00 1.46 .00 .29 15 .01 .00 .02 .00 .00 .00 .09 .00 .03 .00 .11 .00 .00 .00 .00 .00 .01 17 .00 .00 .00 .00 .07 .35 .00 .00 . 55 .80 .06 .00 18 .00 .00 .00 .00 1.33 .00 .00 .00 .00 . 29 . 11 .00 .00 .00 .00 .00 .00 .02 .00 .21 1.73 .00 .00 .00 20 .00 .00 .00 .00 .01 . 55 . 63 .00 .02 . 15 .00 21 .00 .00 .00 .00 .45 .00 .38 . 02 .00 .00 .02 .36 22 .00 .09 .00 .00 .08 .05 .00 .00 .43 .00 .00 23 .83 .00 .01 .01 .10 .00 .00 .99 .00 .00 .00 .01 24 .22 . 00 . 00 .02 .00 .11 .00 .00 . 10 . 00 . 00 .00 .00 .00 .09 .00 .00 .04 .01 .29 .00 .00 .00 .01 .01 .00 .21 .00 26 .37 .00 .00 .00 .09 .00 .00 .04 27 .00 .00 .00 .00 .00 .00 .00 .00 .00 1.64 .05 . 05 .08 .00 .00 .00 .00 .00 .03 .00 .00 . 05 .00 29 .00 .53 .00 .00 .01 .00 . 64 1.04 .00 .00 .00 30 ___ .00 .00 .00 .01 .00 . 01 .10 .00 .00 .00 .00 .01 .00 .00 .00 .00 .14 .04 7.77 4.03 TOTAL 4.93 7.05 0.56 0.68 0.24 0.46 1.26 0.81 2.29 4.32 MEAN .16 2.27 .02 .01 .01 .04 .03 .08 .23 .26 .13 1.70 .14 .02 .53 .07 .23 .29 .55 1.73 1.46 1.64 . 29 .35

.00

.00

.00


.00

.00

.00

.00

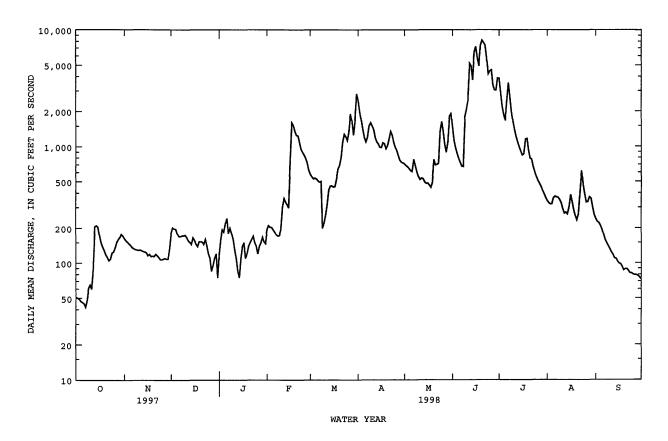
SKUNK RIVER BASIN
05471040 SQUAW CREEK NEAR COLFAX, IA--Continued

05471050 SOUTH SKUNK RIVER AT COLFAX, IA

LOCATION.--Lat $41^{\circ}40^{\circ}55^{\circ}$, long $93^{\circ}14^{\circ}47^{\circ}$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec.1, T.79 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on left bank 15 ft downstream of bridge on State Highway 117 at north edge of Colfax, 1 mi downstream from Sugar Creek, 2.8 mi upstream from Indian Creek, and at mile 191 upstream from mouth of Skunk River.

DRAINAGE AREA. -- 803 mi².

PERIOD OF RECORD.--June 1974 to June 1977, (operated as a partial-record low-flow measurement site), October 1985 to current


GAGE.--Water-stage recorder. Datum of gage is 770.00 ft above sea level.

REMARKS.--Estimated daily discharges: Dec. 23 to Jan. 1, Jan. 7-28, Mar. 9-12, and April 3-13. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published as miscellaneous water quality data in this report. U.S. Geological Survey data collection platform with telephone modem at

		DISCHARG	E, CUBIC	FEET PER		WATER Y	YEAR OCTOBER	1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	51 50 49 47 46	162 156 151 146 142	180 201 197 196 179	e120 162 194 185 218	194 210 204 203 193	584 552 531 538 527	2500 1980 e1680 e1400 e1200	710 686 672 649 623	1460 1130 97 6 875 790	3860 2960 2210 1890 1670	343 328 320 321 362	241 227 222 211 195
6 7 8 9	45 42 48 61 65	136 133 131 130 129	170 169 172 172 174	242 e180 e200 e180 e160	185 175 171 173 194	508 496 503 e200 e220	e1100 e1200 e1500 e1600 e1500	611 775 688 611 552	730 678 673 1800 2070	2490 3520 2650 19 9 0 1610	372 368 364 348 327	175 158 148 140 132
11 12 13 14 15	60 90 205 210 205	130 128 126 125 123	166 156 151 145 165	e130 e110 e85 e75 e110	305 358 334 317 299	e260 e320 427 459 461	e1400 e1200 e1100 1060 989	521 536 529 496 482	2460 5170 4910 3740 6470	1380 1210 1090 993 909	291 267 273 263 304	124 118 110 109 103
16 17 18 19 20	173 150 138 128 118	116 119 114 115 114	157 145 139 153 153	e140 e150 e110 e120 e140	746 1600 1510 1350 1250	450 455 531 643 690	983 1080 1060 962 1020	485 467 446 490 771	7230 5930 4930 7390 8180	845 866 1160 1170 927	384 333 285 255 234	99 98 93 87 89
21 22 23 24 25	112 105 108 122 125	119 116 112 107 107	152 145 e160 e140 e120	e150 e160 e170 e150 e140	1240 1090 955 897 848	800 1090 1280 1220 1130	1160 1350 1250 1090 991	694 704 716 1370 1630	7850 7450 5830 4210 4460	795 779 676 608 548	262 412 618 466 388	89 86 82 82 80
26 27 28 29 30 31	136 151 160 167 177 171	108 110 108 108 132	e110 e85 e95 e110 e120 e75	e120 e140 e150 167 152 147	794 726 631 	1350 1900 1640 1260 1680 2830	928 840 765 734 722	1340 1050 892 1100 1810 1910	4550 3390 3070 3050 3870	508 480 451 420 393 365	333 336 368 357 302 261	79 79 78 76 73
TOTAL MEAN MAX MIN AC-FT CFSM IN.	3515 113 210 42 6970 .14	3753 125 162 107 7440	4652 150 201 75 9230 .19 .22	4657 150 242 75 9240 .19 .22	17152 613 1600 171 34020 .76	25535 824 2830 200 50650 1.03	36344 1211 2500 722 72090 1.51 1.68	25016 807 1910 446 49620 1.00	115322 3844 8180 673 228700 4.79 5.34	41423 1336 3860 365 82160 1.66 1.92	10445 337 618 234 20720 .42 .48	3683 123 241 73 7310 .15
		.17 NTHLY MEAN			.79 EARS 1986	1.18 5 - 1998	1.00 B, BY WATER Y	1.16 EAR (WY)		1.32	.40	.17
MEAN MAX (WY) MIN (WY)	357 1807 1987 11.9 1989	323 981 1997 17.5 1989	296 626 1993 12.4 1989	189 451 1992 12.3 1989	368 849 1997 16.2 1990	857 2094 1993 168 1989	893 2435 1991 62.1 1989	1089 2481 1991 182 1989	1457 3844 1998 96.7 1988	1122 5640 1993 31.8 1988	601 3549 1993 12.6 1988	344 1911 1993 6.75 1988
SUMMARY	STATISTI	cs	FOR 1	997 CALEN	DAR YEAR		FOR 1998 WAT	ER YEAR		WATER YE	ARS 1986	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT. INSTANT. INSTANT. ANNUAL ANNUAL ANNUAL 10 PERC. 50 PERC.		AN AN N MINIMUM AK FLOW AK STAGE W FLOW C-FT) FSM) NCHES) DS DS		3400 42 47 350800 .60 8.19 1050 270 65	Feb 19 Oct 7 Oct 2		291497 799 8180 42 47 8340 18.68 41 578200 .99 13.50 1730 321 108	Jun 20 Oct 7 Oct 2 Jun 20 Jun 20 Oct 6		659 1831 69.6 13100 1.4 3.2 14200 21.53 477600 .82 11.15 1580 39	Aug 1 Sep Jul 1 Jul 1 Aug 1	1993 1989 12 1993 18 1988 8 1988 12 1993 12 1993 18 1988b

b Also Aug 19, 1988 e Estimated

SKUNK RIVER BASIN
05471050 SOUTH SKUNK RIVER AT COLFAX, IA--Continued

05471200 INDIAN CREEK NEAR MINGO, IA

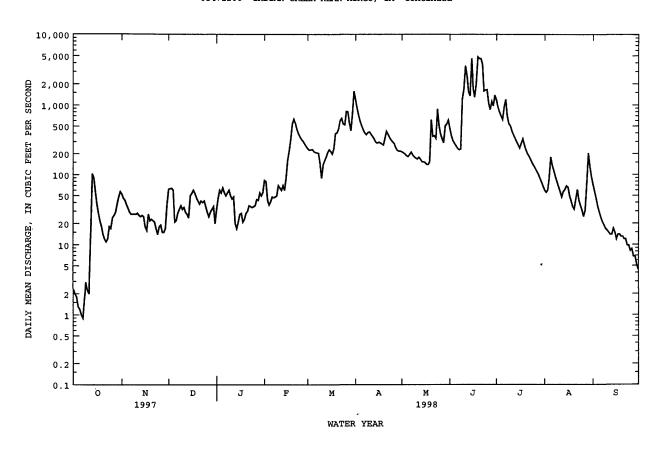
LOCATION.--Lat $41^{\circ}48^{\circ}17^{\circ}$, long $93^{\circ}18^{\circ}36^{\circ}$, in $NW^{1}/_{4}$ NW $^{1}/_{4}$ sec. 28, T.81 N., R.21 W., Jasper County, Hydrologic Unit 07080105, on right bank 30 ft downstream from bridge on State Highway 117, 0.7 mi downstream from Wolf Creek, 2.2 mi upstream from Byers Branch, 2.9 mi northwest of Mingo, and 11.3 mi upstream from South Skunk River.

DRAINAGE AREA. -- 276 mi².

PERIOD OF RECORD. -- May 1958 to September 1975; October 1985 to current year.

REVISED RECORDS.--WSP 1728: 1958 (M), 1959 (M).

GAGE. -- Water-stage recorder. Datum of gage is 810.47 ft above sea level.


REMARKS.--Estimated daily discharges: Nov. 17-19, Dec. 4 to Feb. 17, Mar. 10-15, and June 16-18. Records good except those for estimated daily discharge, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 20, 1944, reached a stage of 21.4 ft, from information by local resident, discharge not determined.

	·	DISCHAR	GE, CUBIO	C FEET PER		WATER Y	EAR OCTOBER ALUES	1997 TO	SEPTEMBE	IR 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.3 2.0 1.8 1.3	53 46 43 37 33	62 63 64 e60 e21	e32 e46 e60 e55 e65	e83 e80 e43 e37 e41	239 227 229 232 216	1200 898 709 585 507	214 207 200 188 183	465 364 311 283 260	1180 942 794 700 625	60 56 60 92 179	72 57 45 35 29
6 7 8 9 10	1.0 .90 1.7 2.9 2.2	29 27 27 27 27	e22 e28 e32 e36 e32	e55 e50 e55 e60 e50	e48 e47 e48 e50 e70	210 207 205 146 e90	443 401 379 407 415	195 211 193 181 174	240 230 235 1210 1670	943 1200 698 544 506	136 114 93 79 67	24 21 19 17 16
11 12 13 14 15	2.0 13 103 91 57	28 26 25 26 25	e34 e29 e27 e24 e50	e45 e48 e20 e17 e21	e65 e60 e70 e60 e90	e140 e160 e180 e210 e230	383 357 330 297 287	169 178 168 154 154	3560 2580 1540 1360 4600	427 376 335 300 270	57 48 57 61 69	15 14 14 17 15
16 17 18 19 20	38 28 22 18 14	18 e16 e27 e22 23	e54 e60 e54 e47 e42	e27 e28 e21 e23 e28	e160 e220 330 541 631	217 200 242 396 403	295 289 278 269 333	150 141 140 154 619	e1700 e1300 e2000 4800 4570	242 282 328 268 228	66 50 42 35 32	12 14 14 13 13
21 22 23 24 25	12 11 12 18 17	22 21 17 14 18	e38 e42 e40 e42 e35	e30 e36 e35 e34 e35	553 454 394 354 324	458 603 647 540 525	423 386 344 317 298	359 366 335 882 512	4570 3820 1590 1640 1650	200 184 166 148 134	44 61 43 36 31	12 12 9.8 9.8 8.2
26 27 28 29 30 31	24 26 29 38 48 57	19 15 15 17 37	e29 e25 e29 e32 e35 e20	e36 e44 e43 e55 e50 e56	305 280 257 	817 806 555 434 765 1570	282 245 225 219 219	388 328 290 503 538 610	1060 867 1120 980 1370	123 111 102 89 79 69	25 31 74 205 129 92	8.7 6.8 6.9 5.3 4.4
TOTAL MEAN MAX MIN AC-FT CFSM IN.	695.30 22.4 103 .90 1380 .08	780 26.0 53 14 1550 .09	1208 39.0 64 20 2400 .14 .16	1260 40.6 65 17 2500 .15	5695 203 631 37 11300 .74 .77	12099 390 1570 90 24000 1.41 1.63	12020 401 1200 219 23840 1.45 1.62	9084 293 882 140 18020 1.06 1.22	51945 1732 4800 230 103000 6.27 7.00	12593 406 1200 69 24980 1.47 1.70	2224 71.7 205 25 4410 .26 .30	559.9 18.7 72 4.4 1110 .07
STATIS	STICS OF MO	ONTHLY MEA	N DATA FO	OR WATER Y	EARS 1959	- 1998	, BY WATER Y	ÆAR (WY	·)			
MEAN MAX (WY) MIN (WY)	112 689 1987 1.11 1972	100 549 1973 4.12 1968	82.3 319 1973 2.05 1990	63.1 289 1973 1.87 1968	125 619 1971 2.25 1967	320 816 1993 10.9 1968	287 834 1965 8.07 1989	379 936 1974 5.58 1967	509 1732 1998 10.9 1989	328 2809 1993 3.49 1988	163 1500 1993 1.44 1988	88.8 678 1993 .91 1988
SUMMAF	RY STATIST	ICS	FOR 1	1997 CALEN	DAR YEAR	1	FOR 1998 WAT	TER YEAR		WATER YEA	RS 1959	- 1998
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN INSTAN ANNUAL ANNUAL ANNUAL ANNUAL 10 PEF 50 PEF	TOTAL MEAN TOTAL MEAN TOTANUAL ME TOTALLY ME SEVEN-DA TTANEOUS PI TTANEOUS PI TTANEOUS LO RUNOFF (C RUNOFF (C RUNOFF (C CENT EXCEL RECENT EXCEL RECENT EXCEL	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS		.90	Jun 30 Oct 7 Oct 2		110163.20 302 4800 .90 1.4 4900 14.83 .78 218500 1.09 14.85 699 70			213 751 11.9 12000 01 15 23500 19.16 154700 .77 10.51 500 74 4.7	Aug Aug Jun	1993 1989 10 1993 18 1989 16 1989 4 1991 4 1991

e Estimated

05471200 INDIAN CREEK NEAR MINGO, IA--Continued

05471500 SOUTH SKUNK RIVER NEAR OSKALOOSA, IA

LOCATION.--Lat 41°21'21", long 92°39'24", in NW¹/₄ SW¹/₄ sec.25, T.76 N., R.16 W., Mahaska County, Hydrologic Unit 07080105, on left bank downstream from bridge on U.S. Highway 63, 0.3 mi downstream from Painter Creek, 4.0 mi north of Oskaloosa, 52.0 mi upstream from confluence with North Skunk River, and at mile 147.3 upstream from mouth of Skunk River. Gage was moved to the left bank on downstream side of the Highway 63 bridge on May 3, 1995.

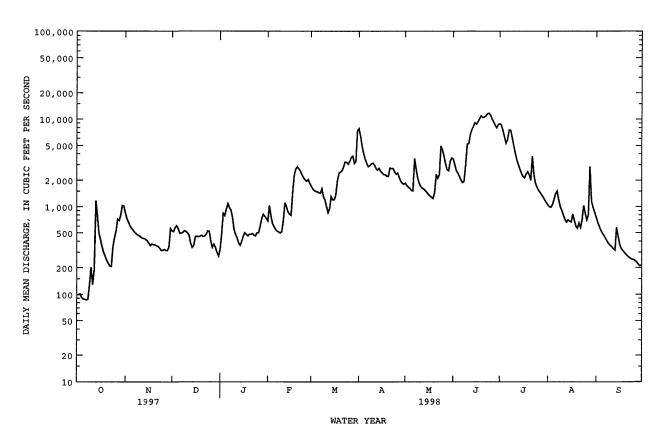
DRAINAGE AREA. -- 1,635 mi².

PERIOD OF RECORD.--October 1945 to current year. Prior to October 1966, published as "Skunk River near Oskaloosa." Prior to October 1948, monthly discharge only, published in WSP 1308.

REVISED RECORDS. -- WSP 1438: Drainage area. WDR IA-95-1: Location.

GAGE.--Water-stage recorder. Datum of gage is 685.50 ft above sea level. Prior to Nov. 21, 1947, nonrecording gage at site 400 ft downstream at same datum. Accubar pressure sensor installed at site on May 3, 1995.

REMARKS.--Estimated daily discharges: Dec. 13-15, Dec. 26 to Jan. 2, Jan. 9-27, Mar. 8, Mar. 10-16, Aug. 5-11, and Aug. 18, 19. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.—Flood in May 1944 reached a stage of 25.8 ft, from floodmarks, discharge, 37,000 ft 3 /s, from rating curve extended above 18,000 ft 3 /s on basis of velocity-area study.

		DISCHARGE	E, CUBI	C FEET PE	R SECOND, DAII	, WATER LY MEAN	YEAR OCTOB VALUES	ER 1997 T) SEPTEMBER	1998		
DAY	OCŢ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	99	842	527	e320	686	1720	7790	1850	3490	8840	1050	754
2	99	726	517	e480	1030	1600		1740	3000	8570	997	656
3	101	662	579	835	764	1530	4850	1670	2560	7420	982	590
4	92	598	606	787	634	1490	4010	1620	2410	6240	e1050	534
5	88	565	562	932	591	1480	3480	1530	2200	5320	e1200	492
6	88	534	495	1080	545	1440		1510	2010	5830	e1400	461
7	86	507	495	977	522	1430		3530	1880	7490	e1500	429
8	88	486	507	911	512	e1600		2680 2120	1950	7470	e1200	399 373
9 10	129 202	471 461	530 518	e750 e550	498 514	1300 e1200		1850	3010 5170	6160 4920	e1000 e900	358
11	129	444	499	e480	706	e1000		1690	5240	4050	e800	344
12	192	434	470	e440	1100	e850		1620	6760	3400	713	328
13	1170	430	e380	e380	998	e950		1590	7620	3010	661	315
14	782	421	e340	e360	866	e1300		1520	8270	2660	699	575
15	502	406	e360	e4 00	818	e1200	2540	1450	9060	2400	681	459
16	423	381	453	e460	795	e1200	2410	1380	8740	2200	667	370
17	352	357	457	e500	1430	1340		1320	9320	2130	814	331
18	302	373	452	e480	2280	1960		1280	10100	2350	e700	315
19	270	3 65	456	e460	2680	2400		1240	10900	2500	e600	299
20	243	363	469	e480	2850	2480	2210	1440	10400	2300	566	285
21	223	355	456	e480	2700	2560	2750	2320	10500	2000	646	272
22	209	349	459	e490	2550	2830	2710	2100	10800	3750	575	263
23	206	335	482	e47 0	2310	3220		2290	11500	2320	709	254
24	342	316	526	e460	2150	3200		4910	11700	1860	1030	249
25	436	315	520	e500	2020	3040	2340	4440	11100	1660	838	247
26	528	323	e400	e500	1950	3290	2410	3760	10000	1530	704	240
27	719	314	e340	e600	2040	3670		3090	9240	1450	797	231
28	693	314	e370	736	1860	3770		2640	8510	1360	2860	218
29	801	343	e340	813		3110	1850	2560	7960	1280	1140	209
30	1030	562	e 300	771		3270		3280	8660	1190	979	212
31	1020		e270	728		7350		3590		1110	859	
TOTAL	11644		4135	18610	38399	68780		69610	214060	114770	29317	11062
MEAN	376	445	456	600	1371	2219		2245	7135	3702	946	369
MAX	1170	842	606	1080	2850	7350		4910	11700	8840	2860	754
MIN	86	314	270	320	498	850		1240	1880	1110	566	209
AC-FT	23100		8040	36910	76160	136400		138100		227600	58150	21940
CFSM	.23	.27	.28	.37	.84	1.36		1.37 1.58	4.36	2.26	.58	.23 .25
IN.	.26	.30	.32	.42	.87	1.56	2.04	1.58	4.87	2.61	. 67	.25
STATIST	CICS OF N	MONTHLY MEAN	DATA F	OR WATER	YEARS 194	16 - 199	8, BY WATER	R YEAR (W	<i>(</i>)			
MEAN	508	559	465	472	834	1641		1697	2154	1454	675	485
MAX	3646	3576	2322	3906	3587	4841		6168	9222	11770	7772	5140
(WY)	1987		1983	1973	1973	1979		1974	1947	1993	1993	1993
MIN	8.47	14.5	7.55	5.30	42.9	45.9		74.2	39.4	27.3	43.3	27.8
(WY)	1957	1957	1956	1956	1954	1954	1956	1956	1977	1977	1988	1956

05471500 SOUTH SKUNK RIVER NEAR OSKALOOSA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEND	AR YEAR	FOR 1998 WAS	TER YEAR	WATER YEAR	S 194 6 - 1998
ANNUAL TOTAL	344317		693499			
ANNUAL MEAN	943		1900		1049	
HIGHEST ANNUAL MEAN					3884	1993
LOWEST ANNUAL MEAN					40.1	1956
HIGHEST DAILY MEAN	4600	Feb 21	11700	Jun 24	20400	Jul 15 1993
LOWEST DAILY MEAN	86	Oct 7	86	Oct 7	1.8	Oct 11 1956a
ANNUAL SEVEN-DAY MINIMUM	92	Oct 2	92	Oct 2	2.0	Oct 7 1956
INSTANTANEOUS PEAK FLOW			11900	Jun 24	20700	Jul 15 1993
INSTANTANEOUS PEAK STAGE			22.84	Jun 24	24.78	Jul 15 1993
ANNUAL RUNOFF (AC-FT)	683000		1376000		759800	
ANNUAL RUNOFF (CFSM)	.58		1.16		.64	
ANNUAL RUNOFF (INCHES)	7.83		15.78		8.72	
10 PERCENT EXCEEDS	1880		4600		2600	
50 PERCENT EXCEEDS	650		979		458	
90 PERCENT EXCEEDS	164		315		55	

Also Oct 12, 13, 1956 Estimated

05472500 NORTH SKUNK RIVER NEAR SIGOURNEY, IA

LOCATION.--Lat $41^{\circ}18^{\circ}03^{\circ}$, long $92^{\circ}12^{\circ}16^{\circ}$, in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec.14, T.75 N., R.12 W., Keokuk County, Hydrologic Unit 07080106, on right bank 10 ft downstream from bridge on State Highway 149, 1.2 mi downstream from Cedar Creek, 2.2 mi south of Sigourney, 4.0 mi upstream from Bridge Creek, and 16.2 mi upstream from confluence with South Skunk River.

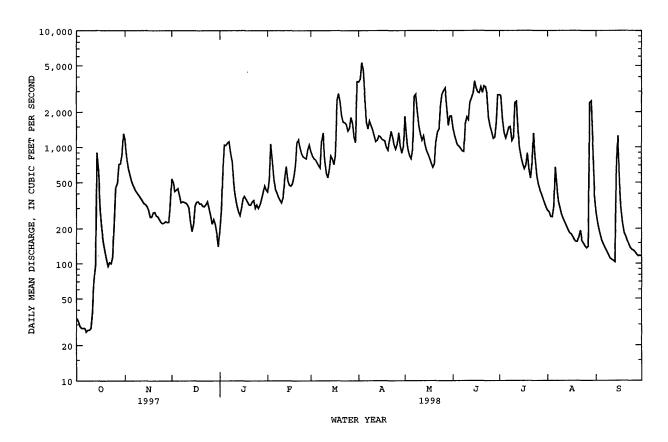
DRAINAGE AREA. -- 730 mi².

PERIOD OF RECORD. -- October 1945 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1558: 1946-47 (M).

GAGE.--Water stage recorder. Datum of gage is 651.53 ft above sea level. Prior to June 10, 1953, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Dec. 13-15, Dec. 25 to Jan. 3, Jan. 10-27, and March 11-13. Records good except those estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in May 1944 reached a stage of 22.8 ft, from floodmark, discharge, 14,500 ft³/s.

		DISCHA	ARGE, CUB	IC FEET P		WATER Y Y MEAN V	EAR OCTOBE ALUES	ER 1997 T	SEPTEMBE	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	NUC	JUL	AUG	SEP
1	34	1160	539	e200	416	925	3620	1840	1460	2810	287	276
2	32	825	497	e290	528	846	3840	1210	1270	2770	279	224
3	29	663	420	e650	1070	800	5310	964	1140	1710	254	192
4	28	585	432	1050	762	781	4560	848	1050	1330	253	169
5	28	517	444	1040	525	739	2710	797	1020	1200	308	154
6	28	473	389	1090	440	697	1640	956	976	1320	673	143
7	26	447	335	1120	409	665	1440	2720	930	1480	462	134
8	27	420	342	889	375	1120	1680	2840	919	1500	343	126
9	27	402	338	754	352	1330	1530	2020	1600	1140	300	118
10	28	384	333	e480	334	784	1410	1520	1810	1210	264	111
11	38	366	323	e380	371	e600	1250	1290	1720	2400	244	108
12	75	348	303	e320	550	e550	1120	1150	2420	2460	227	106
13	95	330	e230	e280	685	e650	1150	1250	2610	1360	212	103
14	899	324	e190	e260	518	842	1250	1060	2870	985	197	680
15	628	312	e220	e300	475	791	1230	933	3680	822	184	1250
16	291	291	314	e360	466	712	1170	871	3220	718	180	504
17	201	253	339	e380	490	861	1150	801	2960	653	171	298
18	155	253	342	e360	570	2500	1130	729	2920	703	162	224
19	128	275	327	e340	707	2870	997	673	3280	891	155	185
20	109	277	328	e320	1090	2450	942	715	2930	645	154	171
21	95	258	313	e320	1160	1850	1160	1140	3350	544	169	158
22	102	254	310	e340	1000	1640	1370	1360	3300	734	193	147
23	100	240	323	e350	883	1630	1200	1430	2850	1320	157	137
24	114	227	342	e300	831	1570	1050	2260	1790	824	149	132
25	229	222	e300	e320	812	1380	963	2860	1510	570	141	130
26 27 28 29 30 31	457 496 716 723 862 1310	225 231 227 228 317	e260 e220 e240 e220 e180 e140	e300 e320 357 404 467 434	797 952 1050 	1450 1800 1610 1210 1100 3650	1060 1330 1030 890 1010	3060 3210 2240 1540 1840 1850	1350 1190 1220 1630 2800	480 433 400 365 335 308	136 140 2400 2480 990 382	126 120 116 117 116
TOTAL MEAN MAX MIN AC-FT CFSM IN.	8110 262 1310 26 16090 .36 .41	11334 378 1160 222 22480 .52 .58	9833 317 539 140 19500 .43 .50	14775 477 1120 200 29310 .65 .75	18618 665 1160 334 36930 .91 .95	40403 1303 3650 550 80140 1.79 2.06	50192 1673 5310 890 99560 2.29 2.56	47977 1548 3210 673 95160 2.12 2.44	61775 2059 3680 919 122500 2.82 3.15	34420 1110 2810 308 68270 1.52 1.75	12646 408 2480 136 25080 .56 .64	6575 219 1250 103 13040 .30
STATIST	CICS OF M	ONTHLY ME	EAN DATA	FOR WATER	YEARS 194	6 - 1998	, BY WATER	YEAR (W	Y)			
MEAN	212	289	233	267	424	860	787	826	785	564	298	294
MAX	1603	1890	1208	1767	1311	2996	2826	4170	4145	5098	3668	2708
(WY)	1987	1962	1983	1946	1973	1979	1993	1974	1947	1993	1993	1993
MIN	.13	3.38	2.58	2.26	12.8	17.0	11.2	14.4	20.1	11.2	7.90	4.35
(WY)	1957	1957	1956	1954	1954	1954	1956	1956	1977	1977	1955	1956

05472500 NORTH SKUNK RIVER NEAR SIGOURNEY, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YE	AR	FOR 1998 WAT	ER YE	AR	WATER YEAR	3 194	6 -	1998
ANNUAL TOTAL	123735			316658						
ANNUAL MEAN	339			868			486			
HIGHEST ANNUAL MEAN							2041			1993
LOWEST ANNUAL MEAN							27.7			1956
HIGHEST DAILY MEAN	5000	Feb	22	5310	Apr	3	23200	Mar	31	1960
LOWEST DAILY MEAN	26	0ct	7	26	Oct	7	.10	0ct	7	1956a
ANNUAL SEVEN-DAY MINIMUM	27	Oct	4	27	Oct	4	.10	0ct	7	1956
INSTANTANEOUS PEAK FLOW				5510	Apr	3	27500	Mar	31	1960
INSTANTANEOUS PEAK STAGE				18.11	Apr	3	25.33	Mar	31	1960
INSTANTANEOUS LOW FLOW				25	Oct	5a				
ANNUAL RUNOFF (AC-FT)	245400			628100			352400			
ANNUAL RUNOFF (CFSM)	.46			1.19			. 67			
ANNUAL RUNOFF (INCHES)	6.31			16.14			9.05			
10 PERCENT EXCEEDS	673			1920			1200			
50 PERCENT EXCEEDS	228			550			171			
90 PERCENT EXCEEDS	49			140			18			

a Also Oct 7, 8 to Nov 15, 1956 e Estimated

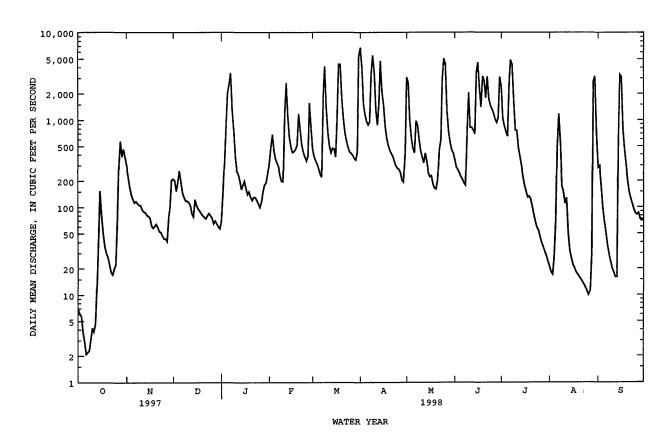
05473400 CEDAR CREEK NEAR OAKLAND MILLS, IA

LOCATION.--Lat. $40^{\circ}55^{\circ}20^{\circ}$, long $91^{\circ}40^{\circ}10^{\circ}$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ sec.28, T.71 N., R.7 W., Henry County, Hydrologic Unit 07080107, on left bank 30 ft upstream from bridge on county highway H46, 3.0 mi west of Oakland Mills, 2.9 mi upstream from Wolf Creek, and 4.3 mi upstream from mouth.

DRAINAGE AREA. -- 530 mi².

PERIOD OF RECORD. --Occasional low-flow measurements, water years 1957 to 1977. July 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 565.07 ft above sea level.


REMARKS.--Estimated daily discharges: Dec. 17 to Jan. 4, Jan. 10 to Feb. 2, and Aug. 4, 19-26. Records good except those for estimated daily discharges, which are poor. Occasional high-water measurements were made by U.S. Army Corps of Engineers in 1965, 1966, 1970, and 1974 and by U.S. Geological Survey in 1966 and 1967. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 22, 1973 reached a stage of 24.09 ft, discharge not determined. Flood of June 1905 reached a stage approximately 2 feet higher from information by local resident.

		DISCHARGE	CUBIC	FEET PER		WATER Y	YEAR OCTOBER VALUES	1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 6.1 5.7 3.8 2.9	306 230 172 141 125	211 202 153 193 261	e70 e140 e320 e850 2020	e320 e480 684 442 357	471 381 343 312 274	6740 4180 1540 1160 972	3080 2680 965 622 477	351 287 269 249 224	2450 1050 843 732 653	21 18 17 e28 67	284 298 179 101 70
6 7 8 9 10	2.1 2.2 2.3 3.1 4.2	113 117 111 106 105	198 148 130 118 118	2570 3440 1280 751 e380	321 292 232 199 197	241 222 1820 4100 1350	883 953 3220 5470 3590	421 979 868 598 445	209 190 179 773 2050	2450 4880 4350 1700 766	491 1180 527 173 149	51 37 29 24 20
11 12 13 14 15	3.8 4.7 13 42 154	94 89 87 81 79	114 106 85 78 122	e260 e240 e200 e160 e180	1180 2640 1100 636 492	704 500 422 476 465	1330 878 1530 4760 2090	373 323 416 332 248	822 819 763 695 3450	756 477 378 298 225	110 127 51 32 26	18 16 16 640 3300
16 17 18 19 20	79 50 36 30 27	76 61 58 61 64	105 e96 e91 e85 e80	e200 e165 e140 e150 e130	424 434 462 521 1180	378 1100 4350 4350 1790	1480 850 624 514 451	223 229 186 165 161	4570 2330 1420 3160 2830	181 152 130 133 123	22 20 18 e17 e16	3110 760 452 305 201
21 22 23 24 25	22 18 17 20 22	59 53 52 47 44	e77 e74 e80 e85 e80	e120 e130 e130 e120 e110	773 523 429 381 339	1040 722 578 490 432	412 381 331 296 279	204 451 585 2950 5050	1800 3120 1760 1480 1350	101 82 68 58 54	e15 e14 e13 e12 e11	149 126 109 95 85
26 27 28 29 30 31	69 293 573 381 465 374	44 41 76 103 206	e75 e65 e70 e65 e60 e57	e100 e115 e150 e180 e190 e240	384 1570 831 	414 394 362 348 430 5240	270 252 205 195 443	4410 1290 744 552 454 419	1200 1030 937 1070 3110	45 39 35 31 28 24	e10 11 29 2750 3170 658	82 86 73 73 72
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2732.8 88.2 573 2.1 5420 .17 .19	3001 100 306 41 5950 .19 .21	3482 112 261 57 6910 .21	15231 491 3440 70 30210 .92 1.06	17823 637 2640 197 35350 1.19 1.24	34499 1113 5240 222 68430 2.09 2.41	46279 1543 6740 195 91790 2.89 3.23	30900 997 5050 161 61290 1.87 2.16	42497 1417 4570 179 84290 2.66 2.97	23292 751 4880 24 46200 1.41 1.63	9803 316 3170 10 19440 .59 .68	10861 362 3300 16 21540 .68 .76
STATIS	TICS OF MO	ONTHLY MEAN	DATA FO	R WATER Y	EARS 1978	3 - 1998	, BY WATER Y	(WY))			
MEAN MAX (WY) MIN (WY)	211 1711 1987 5.93 1989	1993 10.2	256 1364 1983 4.43 1990	104 545 1993 9.42 1997	330 1091 1985 6.36 1989	633 1987 1979 32.3 1989	647 1863 1983 37.7 1989	731 3116 1996 33.3 1988	537 2199 1990 14.6 1988	608 4565 1993 3.52 1988	212 2186 1993 5.35 1983	250 1245 1986 6.28 1991
SUMMAR	Y STATIST	tCS	FOR 1	997 CALEN	DAR YEAR		FOR 1998 WAT	PER YEAR		WATER YE	ARS 1978	3 - 1998
ANNUAL HIGHES LOWEST	TOTAL MEAN TANNUAL M ANNUAL ME TOAILY ME	EAN		80031.6 219 5780	Feb 22		240400.8 659 6740	Apr 1		402 1424 73.0 11500	May	1993 1989 28 1996
LOWEST ANNUAL INSTAN INSTAN INSTAN	DAILY MEA SEVEN-DAY TANEOUS PE TANEOUS PE TANEOUS LO	AN / MINIMUM EAK FLOW EAK STAGE DW FLOW		2.1 2.9	Oct 6 Oct 4		2.1 2.9 7150 18.39 1.8	Oct 6 Oct 4 Apr 1		.42 .55 12300 21.27	Sep Sep May	17 1988 14 1988 28 1996 9 1993
ANNUAL ANNUAL 10 PER 50 PER	RUNOFF (A RUNOFF (C RUNOFF (C CENT EXCER CENT EXCER CENT EXCER	CFSM) INCHES) EDS EDS		158700 .41 5.59 495 71 7.3			476800 1.24 16.78 1900 229 22			291200 .75 10.25 953 82 8.7		

e Estimated

05473400 CEDAR CREEK NEAR OAKLAND MILLS, IA--Continued

05473450 BIG CREEK NEAR MT. PLEASANT, IA

LOCATION.--Lat. $45^{\circ}00'26"$, long $91^{\circ}33'05"$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.28, T.72 N., R.6 W., Henry County, Hydrologic Unit 07080107, on right bank 20 ft upstream from bridge on old U.S. highway 218 (Mt. Pleasant business route) about 2 miles north of Mt. Pleasant, 1.6 miles upstream from Brandy Wine Creek, and 2.3 miles upstream from Lynn Creek.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1957 to 1977. Oct. 1, 1997 to Sept. 30, 1998.

GAGE. -- Water-stage recorder. Datum of gage is 643.00 ft above sea level.

REMARKS.--Estimated daily discharges: Dec. 13-16, Dec. 19 to Jan. 4, Jan. 12-26, and Jan. 29 to Feb. 1. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data.

EXTREMES OUTSIDE PERIOD OF RECORD. -- None are known at this time.

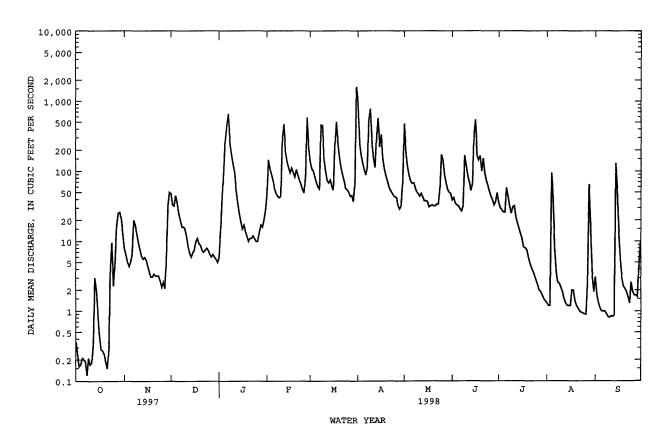
		DISCHAF	RGE, CUBI	C FEET PER		WATER YE Y MEAN VA	AR OCTOBER LUES	1997 то	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.36 .23 .16 .17 .21	7.9 6.5 5.0 4.4 5.1	48 33 32 45 36	e6.0 e15 e42 e100 277	e44 145 107 89 72	139 109 101 83 68	991 261 172 132 106	478 189 118 88 73	39 42 35 33 32	36 30 28 26 26	1.3 1.2 1.2 95 42	3.1 1.7 1.3 1.1
6 7 8 9 10	.20 .19 .12 .21 .17	6.6 20 17 13 9.6	25 20 16 16 15	460 657 252 176 128	56 48 44 42 44	60 56 456 449 151	89 115 531 782 263	67 68 59 51 48	29 27 32 169 120	58 44 32 25 31	8.1 3.6 2.6 2.5 2.2	1.0 1.0 .92 .83
11 12 13 14 15	.18 .35 3.0 2.0 .90	7.6 6.1 5.6 5.9 5.4	8.5 e6.8 e6.0 e6.9	99 e55 e36 e25 e19	301 466 189 138 113	100 73 68 75 62	155 114 313 573 222	44 48 43 38 38	85 68 53 68 338	32 22 18 15 13	1.9 1.5 1.3 1.2	.85 .84 .88 131 51
16 17 18 19 20	.45 .28 .27 .24 .19	4.4 3.6 3.1 3.1 3.4	e7.6 10 11 e9.3 e8.8	e15 e17 e14 e12 e10	95 111 96 83 106	54 216 503 252 159	332 151 108 86 72	37 31 32 33 32	546 169 145 166 101	11 8.3 8.1 7.6 6.0	1.2 2.0 2.0 1.4 1.2	13 5.4 3.0 2.3 2.1
21 22 23 24 25	.15 .28 4.1 9.6 2.3	3.2 3.2 3.2 2.7 2.2	e7.5 e7.0 e7.5 e8.0 e7.5	e11 e11 e12 e11 e10	88 74 65 56 49	112 89 72 57 54	60 54 49 45 43	32 34 34 56 173	153 94 73 62 52	4.9 4.2 3.7 3.3 2.8	1.1 1.0 .96 .94	1.9 1.6 1.3 2.6 1.9
26 27 28 29 30 31	5.2 17 25 26 21 13	2.6 2.1 6.2 32 50	e6.5 e6.0 e6.5 e6.0 e5.5 e5.0	e10 13 17 e16 e20 e27	89 588 223 	50 44 45 37 66 1600	42 32 29 32 76	143 89 67 55 50 48	44 39 33 37 49	2.4 2.0 1.9 1.7 1.5	.90 2.4 65 14 3.3 1.9	1.7 1.7 1.6 4.9
TOTAL MEAN MAX MIN AC-FT CFSM IN.	133.51 4.31 26 .12 265 .07 .09	250.7 8.36 50 2.1 497 .14	445.9 14.4 48 5.0 884 .25	2573.0 83.0 657 6.0 5100 1.43 1.65	3621 129 588 42 7180 2.23 2.32	5460 176 1600 37 10830 3.04 3.50	6030 201 991 29 11960 3.47 3.87	2396 77.3 478 31 4750 1.33 1.54	2933 97.8 546 27 5820 1.69 1.88	506.8 16.3 58 1.4 1010 .28 .33	267.01 8.61 95 .90 530 .15	252.33 8.41 131 .81 500 .15 .16
STATIS	TICS OF M	ONTHLY MEA	IN DATA F	OR WATER YI	EARS 199'	7 - 1998,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	4.31 4.31 1998 4.31 1998	8.36 8.36 1998 8.36 1998	14.4 14.4 1998 14.4 1998	83.0 83.0 1998 83.0 1998	129 129 1998 129 1998	176 176 1998 176 1998	201 201 1998 201 1998	77.3 77.3 1998 77.3 1998	97.8 97.8 1998 97.8 1998	16.3 16.3 1998 16.3 1998	8.61 8.61 1998 8.61 1998	8.41 8.41 1998 8.41 1998
SUMMAR	Y STATIST	ICS			FOR 1	998 WATER	YEAR			WATER Y	EARS 1997	- 1998
LOWEST HIGHES' LOWEST ANNUAL INSTAN' INSTAN' INSTAN' ANNUAL ANNUAL		EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM)			160 222 3 4933	.12 C .18 C 80 M 11.97 M	lar 31 loct 8 loct 3 lar 31 lar 31 loct 3a			68.1 68.1 1600 .1 .1 2280 11.5 49360	Mar 2 Oct 8 Oct Mar 97 Mar	1998 1998 31 1998 8 1997 3 1997 31 1998 31 1998
10 PER 50 PER	CENT EXCE CENT EXCE CENT EXCE	EDS EDS			1:	54 26 1.2				153 25 1.0		

a Many days in Oct e Estimated

Water Resources Data Iowa Water Year 1998

Volume 1. Mississippi River Basin

Water-Data Report IA-98-1



CALENDAR FOR WATER YEAR 1998

1997

		OC	TOB	ER					NO	VEM	BER					DE	CEM	BER		
S	M	Т	W	T	F	S	S	M	T	W	Т	F	S	S	M	T	W	Т	F	S
			1	2	3	4							1		1	2	3	4	5	6
5	6	7	8	9	10	11	2	3	4	5	6	7	8	7	8	9	10	11	12	13
12	13	14	15	16	17	18	9	10	11	12	13	14	15	14	15	16	17	18	19	20
19	20	21	22	23	24	25	16	17	18	19	20	21	22	21	22	23	24	25	26	27
26	27	28	29	30	31		23	24	25	26	27	28	29	28	29	30	31			
							30													
										1998	3									
		JAI	NUA	RY					FEI	BRUA	RY					N	IARC	CH		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
				1	2	3	1	2	3	4	5	6	7	1	2	3	4	5	6	7
4	5	6	7	8	9	10	8	9	10	11	12	13	14	8	9	10	11	12	13	14
11	12	13	14	15	16	17	15	16	17	18	19	20	21	15	16	17	18	19	20	21
18	19	20	21	22	23	24	22	23	24	25	26	27	28	22	23	24	25	26	27	28
25	26	27	28	29	30	31								29	30	31				
		A	PRII	L					1	MAY						J	UNE			
S	M	Т	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	Т	F	S
			1	2	3	4						1	2		1	2	3	4	5	6
5	6	7	8	9	10	11	3	4	5	6	7	8	9	7	8	9	10	11	12	13
12	13	14	15	16	17	18	10	11	12	13	14	15	16	14	15	16	17	18	19	20
19	20	21	22	23	24	25	17	18	19	20	21	22	23	21	22	23	24	25	26	27
26	27	28	29	30			24	25	26	27	28	29	30	28	29	30				
							31													
			IULY							IGUS										
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
				2									1			1		3		5
	6			9			2							6				10		12
12	13		15	16	17				11				15		14					19
19	20	21	22	23	24	25	16			19		21	22	20		22		24	25	26
26	27	28	29	30	31				25	26	27	28	29	27	28	29	30			
							30	31												

05473450 BIG CREEK NEAR MT. PLEASANT, IA--Continued

05474000 SKUNK RIVER AT AUGUSTA, IA

LOCATION.--Lat 40°45:13", long 91°16'40", in NE¹/₄ NE¹/₄ sec.26, T.69 N., R.4 W., Des Moines County, Hydrologic Unit 07080107, on left bank 300 ft upstream from bridge on State Highway 394 at Augusta, 2.0 mi upstream from Long Creek, and at mile 12.5.

DRAINAGE AREA.--4.303 mi².

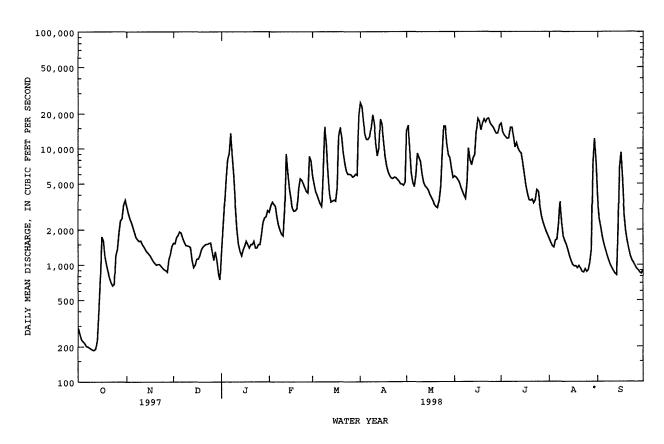
WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- September to November 1913, October 1914 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1915 (M), 1919-27 (M), 1932-34 (M), 1936, 1937-38 (M), 1942 (M). WSP 1438: Drainage area. WDR IA-71-1: 1966 (M).

GAGE.--Water-stage recorder. Datum of gage is 521.24 ft above NGVD. Prior to Nov. 15, 1913, nonrecording gage at site 400 ft upstream at datum about 0.7 ft higher. May 27, 1915 to Jan. 14, 1935, nonrecording gage at site 400 ft upstream at present datum.

REMARKS.--Estimated daily discharges: Oct. 27 to Nov. 13, Dec. 13 - 15, Dec. 26 to Jan. 4, and Jan. 10 - 27. Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1, 1903, reached a stage of about 21 ft, discharge, about 45,000 ft³/s. Stage and discharge for flood of April 1973 are believed to be the greatest since 1851.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES JAN DAY OCT NOV DEC FEB MAR APR MAY JUN ıπ. AUG SEP e1300 e2800 e2050 e2500 e3300 e2310 e5450 e2100 e1900 e1720 e1650 e1600 e1610 e3200 e1500 e2000 e1430 e1500 e1350 e1100 e1300 e950 e1200 e1000 e1350 e1450 e1600 e1500 e1400 e1500 e1500 23 5010 5670 1090 e1600 e1400 e1500 e1300 e1500 e1900 e1100 e1850 e2400 e1300 e2500 e1100 ---e3250 e840 e3600 e750 TOTAL MEAN MAX MIN .34 .22 .32 .72 1.66 1.77 2.05 .49 CESM .95 2.49 2.64 .46 2.78 2.95 .51 IN. .25 .38 .37 . 83 .99 1.86 1.92 .57 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1915 - 1998, BY WATER YEAR (WY) MEAN MAX (WY) MIN 15.5 20.5 21.2 21.3 56.5 92.5 25.8 71.4

05474000 SKUNK RIVER AT AUGUSTA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEARS	1915	- 1998
ANNUAL TOTAL	753474		1790723				
ANNUAL MEAN	2064		4906		2581		
HIGHEST ANNUAL MEAN					10200		1993
LOWEST ANNUAL MEAN					152		1934
HIGHEST DAILY MEAN	14900	Feb 22	24800	Apr 1	62600		3 1973
LOWEST DAILY MEAN	186	Oct 11	186	Oct 11	7.0		7 1934a
ANNUAL SEVEN-DAY MINIMUM	194	Oct 6	194	Oct 6	7.4		6 1934
INSTANTANEOUS PEAK FLOW			25400	Apr 1	66800		3 1973
INSTANTANEOUS PEAK STAGE			17.47	Apr 1	27.05	Apr 2	3 1973
INSTANTANEOUS LOW FLOW			179	Oct 11			
ANNUAL RUNOFF (AC-FT)	1495000		3552000		1870000		
ANNUAL RUNOFF (CFSM)	.48	1	1.14		.60		
ANNUAL RUNOFF (INCHES)	6.50	l	15.45		8.13		
10 PERCENT EXCEEDS	4680		13400		6780		
50 PERCENT EXCEEDS	1470		3170		1080		
90 PERCENT EXCEEDS	420		915		147		

Also Aug 28 to Sep 1, 1934 Estimated

WATER QUALITY RECORDS

LOCATION.--Samples collected at bridge on State Highway 394, 300 ft downstream from gage.

PERIOD OF RECORD. -- October 1975 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1975 to current year.
WATER TEMPERATURES: October 1975 to current year.
SUSPENDED-SEDIMENT DISCHARGE: October 1975 to current year.

REMARKS.--During periods of ice effect, sediment samples are collected in open water channel. Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens Dec. 20, 1979, Feb. 12, 1980; minimum daily, 149 microsiemens Mar. 6, 1993.

WATER TEMPERATURES: Maximum daily, 34.0°C July 20, 1980, Aug. 15-17, 1988, July 10-13, 1989, and July 15, 1995; minimum daily, 0.0°C on many days during winter periods.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,550 mg/L June 25, 1981; minimum daily mean, 1 mg/L Mar. 8, 9,12, 1978, Jan. 5,

6, 1984.

SEDIMENT LOADS: Maximum daily, 499,000 tons Mar. 21, 1978; minimum daily, 1.4 tons Dec. 11, 1989.

EXTREMES FOR CURRENT YEAR. --

TREMES FOR CURRENT YEAR.-
SPECIFIC CONDUCTANCE: Maximum daily, 652 microsiemens Jan. 24; minimum daily, 219 microsiemens Aug. 30.

WATER TEMPERATURES: Maximum daily, 31.0°C Aug. 23, 26; minimum daily, 0.5°C Dec. 7 and Jan. 24.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 4,670 mg/L May 25; minimum daily mean, 9 mg/L Jan. 24.

SEDIMENT LOADS: Maximum daily, 197,000 tons May 25; minimum daily, 33 tons Jan. 24.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	DIS- CHARGE INST. CUBIC FEET PER SECON (00061	SED MEN SUS PEN D (MG	T, CHAF SU DED PEN (L) (T/I	TT, ST SS- FI RGE, DI JS- % FI JDED TI DAY) .002	ED. SED. USP. SUSP. ALL FALL IAM. DIAM. INER % FINER HAN THAN 2 MM .004 MM 337) (70338)
OCT 02	1020		248	10	6	71 -	
NOV 07	1440	6.6	1710	5	6 2	:59	
APR 03 28	1215 1210	8.7 13.3	16400 4950			000 44	4 48
JUN 09	1050	16.6	4220	32	8 . 37	40	
JUL 21	1030	28.7	3660	25	2 24	190 -	
SEP 01	1030	23.4	3880	124	0 130	100 -	
DATE	ያ 1 % 1 . 00	SUSP. : FALL I DIAM. I FINER % I THAN	THAN 16 MM .	SED. SUSP. FALL DIAM. FINER THAN 062 MM 70342)	SED. SUSP. FALL DIAM. % FINER THAN .125 MM (70343)	SED. SUSP. FALL DIAM. % FINER THAN .250 MM (70344)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 02 NOV							100
07 APR							98
03 28 JUN	!	52 	65 	89	92 	97 	 94
09 JUL							94
21 SEP							95
01							99

227

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

			WATER-Q	OALITY DA	MATER	YEAR OC	TOBER 19	97 TO SEP	LEMBER 1998	5		
DATE		TIME	POINTS (COUNT)	BED MAT. SIEVE DIAM. FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	THAN	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)
NOV 07 APR		1525	3		0	3	50	92	100			
28		1250	2	1	5	35	63	88	97	99	100	
JUN 09		1135	3	4	7	16	37	64	80	89	94	100
JUL 21		1100	2	1	2	12	68	87	95	98	100	
SEP 01		1100	3	1	3	31	78	94	98	99	100	
	SPEC	IFIC CON	DUCTANCE 1	MICROSIEN		25 DEG NSTANTAN			DBER 1997 :	TO SEPTEM	BER 1998	
DAY	OCT	NOV	DEC	JAN	J FEB	MA:	R A	PR MA	Y JUI	יחנ וי	L AUG	G SEP
1	489	494			400			72 37				
2	477	508		608				08				
3	468	485			525			36				
4	471	504	560	430	405	55	3 3	98 46	53 539	37	57:	2 468
5	465		522	407	442		- 4:	31 51	17 533	3 38:	5 53'	7 505
6	483	540	538	440	514	56	4 4	49		- 40	6	
7	505	570						82 52	9 560			7 496
8	532	556						58 42				
9	552	550						42 42				
10	568	558			561	36	2 3	61 40	06 375	5 40	6 37	8 405
11								-0 45			5 43	4 400
11		559						50 45				
12	590	565			358		-	95 49				
13	583	575			3,33			51				
14	603	577			-50			32 52				
15	604	575	588		491	56	4 3	56 52	20 329	45	52:	2 306
							_					
16	573	578				54		19				
17	426	580			91,			81 53				
18	390	580	614		525	33	6 5	03 53		7 49:		
19	407	579	609		528	33	6 5:	23 53	37 323	3 50:	5 450	0 400
20	462	582	606		528	36	0 5:	31 54	18	- 50'	7 44'	7 447
• •							_					
21	518	586						43 55				
22	515	592			-/-			54 50				
23	511	590						33 43				
24		585		652				12 39				
25	613				558	51	8 -	29	5 339	39:	3	- 497
26		589			560		_ 5	51	- 349	9 41	0 40	8 452
27	512	585					٠.	63 34				
28	455	532						60 39			-	
29	421					51		43 45				
30	468	552						34 48		-		
31				443		31	8 -	51	.1		- 22	5

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

				I	DAILY INS	PANTANEOU:	S VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19.5 21.5 26.0 26.0 23.0	9.0 6.5 6.5 7.0	6.0 6.0 5.0 4. 0	4.0 5.0 5.0	5.0 3.0 3.0 2.0 3.0	6.0 6.0 5.0 5.0	12.0 11.0 10.0 11.0	15.0 15.0 17.0 21.0	20.0 24.0 21.0 21.0 20.0	22.0 27.0 27.0 28.0 26.0	29.0 28.0 26.0 28.0 26.0	23.0 26.0 29.0 27.0 30.0
6 7 8 9 10	23.5 23.5 24.0 22.0 21.5	6.5 6.5 7.0 7.0 6.5	1.0 .5 	3.5	4.0 4.5 4.0 5.0	5.0 6.0 8.0 1.0	13.0 13.0 13.0 12.0 12.0	18.0 20.0 19.0 19.0	21.0 20.0 20.0	27.0 27.0 28.0 28.0	29.0 27.0 28.0 30.0	28.0 25.0 25.0 25.0
11 12 13 14 15	22.0 16.0 14.0 14.0	5.0 4.5 3.5 5.0 3.0	1.0 3.0 2.5		4.0 5.0 5.0 6.0	4.0 3.0	13.0 15.0 14.0 15.0	21.0 21.0 23.0 24.0 25.0	20.0 20.0 22.0 21.0 22.0	28.0 28.0 28.0 29.0 29.0	29.0 28.0 29.0 30.0 30.0	25.0 28.0 21.0 24.0 23.0
16 17 18 19 20	14.5 16.0 14.0 13.0 13.5	2.0 3.0 4.0 4.5 5.0	1.5 5.0 5.0 2.0		6.0 6.0 6.0 7.0	4.0 4.0 4.0 5.0	13.0 14.0 15.0 15.0	24.0 28.0 26.0 25.0	22.0 22.0 23.0 24.0	30.0 29.0 30.0 30.0	29.0 28.0 30.0 30.0 30.0	24.0 25.0 25.0 26.0 25.0
21 22 23 24 25	11.5 9.0 9.0 10.0	3.5 3.0 3.0 3.0	2.0 2.0 4.0	.5	7.0 8.0 7.0 8.0 10.0	1.0 7.0 7.0 7.0 10.0	14.0 16.0 16.0 15.0	24.0 21.0 21.0 21.0 19.0	25.0 25.0 21.0 21.0 27.0	32.0 29.0 28.0 28.0	30.0 30.0 31.0	22.0 24.0 22.0 22.0 24.0
26 27 28 29 30 31	6.5 7.0 7.0 8.0	6.5 5.0 10.0 7.0		3.0	10.0 7.0	12.0 12.0 15.0 15.0 18.0	17.0 16.0 15.0 15.0 14.0	20.0 21.0 23.0 24.0 26.0	29.0 29.0 30.0 28.0	27.0 28.0 29.0 28.0	31.0 21.0 25.0 25.0	27.0 26.0 27.0 25.0 25.0

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB	ER	DECEMB:	ER	JANUA	RY	FEBRUA	RY	MARC	Н
1	140	108	423	3650	110	457	339	1190	565	4320	1260	19900
2	132	91	516	3900	66	273	388	2150	432	3710	816	11000
3	142	89	369	2490	77	358	684	6100	455	4260	535	6200
4	122	73	180	1120	139	680	1360	20000	392	3510	417	4440
5	105	60	150	851	135	697	2210	47800	338	2910	325	3160
6	92	51	119	610	79	402	722	18000	465	3220	259	2350
7	83	45	60	280	58	269	1230	45500	288	1720	327	2810
8	80	42	88	390	57	241	786	18700	136	731	887	18800
9	77	40	123	530	58	229	427	6600	93	463	1670	69600
10	74	38	59	255	58	230	335	2900	82	396	1070	32500
11	71	36	74	298	59	233	281	1520	442	4700	923	15000
12	118	61	109	419	60	229	235	953	2360	58400	836	9180
13	279	174	162	590	61	181	194	680	2420	41000	757	7090
14	447	482	170	593	62	159	147	476	1020	12700	683	6530
15	657	1330	125	423	61	166	110	402	700	7050	594	5780
16	872	4130	116	376	50	152	83	324	621	5140	572	5450
17	569	2510	119	365	42	128	62	268	529	4140	1060	14000
18	315	1020	123	355	61	199	47	188	367	2910	2100	74300
19	172	463	126	349	60	218	35	132	545	4540	2780	115000
20	155	363	124	333	69	268	26	106	866	10800	1980	68200
21	134	280	116	315	85	335	20	80	1140	16900	2060	51000
22	131	249	77	211	106	431	15	64	1530	22100	1910	38600
23	129	230	49	129	131	534	11	42	1070	14500	985	17100
24	196	365	43	108	149	617	9	33	1080	13600	783	12700
25	324	1070	40	99	165	687	13	53	711	8240	627	10200
26 27 28 29 30 31	462 660 1140 810 618 485	1700 3380 7380 5470 5420 4710	44 129 283 235 151	107 304 866 777 584	183 202 225 249 276 306	641 601 788 739 626 619	23 39 68 119 205 356	92 197 430 811 1450 2830	790 1020 1310 	8920 24000 27500 	727 896 997 1080 1170 2590	11700 13700 15600 17500 18600 140000
TOTAL	·	41460		21677		12387		180071		312380		837990

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	APF	RIL	MA	7	JUNE	Ε	JULY	?	AUGUS	T	SEPTEM	BER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2750 2230 1040 841 790 870 1090 1230 1880 1350 1020 785 1330 2390 2500 1230 907 689 526 408	184000 140000 481000 481000 25500 283000 371000 504000 605500 304000 1170000 1170000 110000 396000 212000 133000 89600 6440 48800 50000 73330	MAY 1970 1840 1310 974 755 924 1250 1130 1370 1690 975 487 468 505 479 472 468 306 306	79700 78600 36700 16300 10400 11700 20300 27800 30900 35600 16100 6770 6030 6290 5700 5130 4800 4100 3290 2630 2410 7110 27800	3570 3570 3570 3570 378 3794 486 435 551 1900 1130 1360 1570 3770 3770 3770 3700 1320 895 816 743 676 604	13400 11600 10800 10100 8930 6940 5210 4420 7980 53000 40900 30600 38100 172000 172000 172000 39900 39500 33900 32800 29800	983 778 628 510 416 407 433 455 459 461 462 464 466 467 469 471 473 501 422 362 296 263 333	43700 29700 22200 17400 13700 13500 17700 18700 16000 12900 14000 12500 11800 9550 7630 6130 5510 4120 3480 2920 2410 3340	241 190 154 171 291 270 418 1100 616 413 398 330 209 157 145 143 142 148 147 156	1090 796 604 653 1270 1210 2600 10400 3910 1970 1710 1330 761 504 424 387 373 373 390 373 411 354 392 391	5EPTEM 677 444 269 211 165 159 154 101 69 55 128 562 1110 1180 800 536 363 230 143 102 101	6840 3010 1530 994 672 572 500 296 187 140 138 170 282 3350 21200 29400 12000 3930 1910 989 528 330 296
24 25	507 496	7680 7280	3340 4670	81800 197000	538 479	23900 20400	655 1070	7900 12300	159 150	394 353	107 93	301 246
26 27 28 29 30 31	475 379 314 482 589	6720 5100 4190 6280 8540	3200 2000 2410 1490 1060 884	135000 60300 57700 33500 19300 13400	431 411 397 436 1050	17600 15800 14400 16200 45100	906 552 416 337 309 275	7860 3940 2610 1930 1620 1340	144 158 384 1860 2490 1460	352 450 1560 43000 81900 32100	117 110 111 155 167	294 266 258 350 402
TOTAL YEAR		1170600 5368988		1044160		1124580		339890		192412		91381

MISSISSIPPI RIVER MAIN STEM

05474500 MISSISSIPPI RIVER AT KEOKUK. IA

LOCATION.--Lat $40^{\circ}23'37"$, long $91^{\circ}22'27"$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec.30, T.65 N., R.4 W., Lee County, Hydrologic Unit 07080104, near right bank in tailwater of dam and powerplant of Union Electric Co. at Keokuk, 0.2 mi upstream from bridge on U.S. Highway 136, 2.7 mi upstream from Des Moines River, and at mile 364.2 upstream from Ohio River.

DRAINAGE AREA. -- 119,000 mi², approximately.

PERIOD OF RECORD. -- January 1878 to current year.

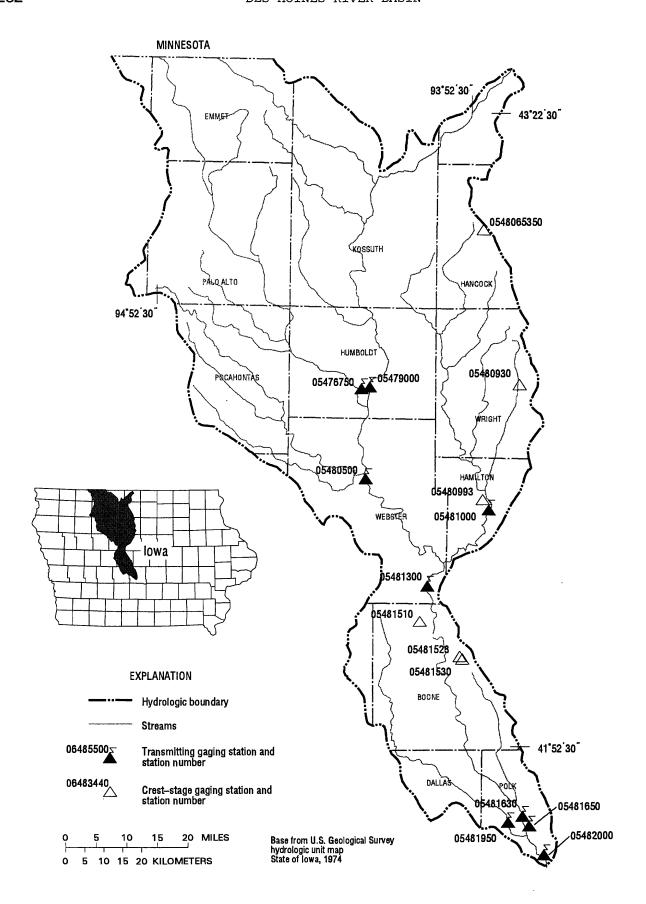
GAGE.--Water-stage recorder. Datum of gage is 477.41 ft above sea level (levels by U.S. Army Corps of Engineers). Jan. 1, 1878 to May 1913, nonrecording gage at Galland (formerly Nashville), 8 mi upstream; zero of gage was set to low-water mark of 1864, or 496.52 ft above sea level.

REMARKS.--Discharge computed from records of operation of turbines in powerplant and spillway gates in dam. Minor flow regulation caused by powerplant since 1913 and navigation dams. Records for May 1913 to September 1937 adjusted for change in contents in Keokuk Reservoir, those after September 1937 unadjusted.

COOPERATION .-- Records provided by Union Electric Co.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 6, 1851, reached a stage of 21.0 ft, present site and datum, estimated as 13.5 ft at Galland, discharge, $360,000 \text{ ft}^3/\text{s}$.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES


					DAI	LI MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42400	53800	50000	22600	48800	155400	157400	154900	87700	161900	48300	61900
2	35800	51200	48100	30000	51900	118100	173000	157100	89100	170400	47600	51700
3	42200	5 3800	45400	45300	58900	119900	184700	145700	82100	171700	48000	50400
4	37300	55600	48100	55700	59900	119700	196300	128000	77500	174000	48700	45400
5	36600	53400	43500	60200	57300	121600	201200	115400	78600	175500	55900	44900
6	36500	52900	45200	61500	57100	118500	199300	116800	78700	182400	5 5 100	41200
7	37500	51000	47900	86900	55500	121600	198500	109200	78100	194300	56300	40800
8	30600	51500	47500	86300	53100	131200	206300	108600	75800	198000	70000	37600
9	33100	51500	47900	77300	49100	150500	220100	118900	74700	198700	73600	38500
10	38100	51600	49100	63700	50600	1 5 5 500	228800	114400	77800	195700	71800	38400
11	38800	49500	49200	47400	49700	148900	232800	113200	88000	189900	69400	37600
12	39200	49300	47300	37800	69100	139400	234300	109000	88900	179200	61900	37300
13	32700	49400	48400	34600	69000	128300	241200	109500	109200	16 8800	63000	35500
14	36700	49500	43900	33600	67200	122600	252900	103700	114200	15 570 0	70800	37200
15	49600	47500	43300	30500	66300	109100	253400	93900	133800	141100	57400	53700
16	55600	47000	39600	30800	66000	100600	249100	82600	140100	122200	46300	58100
17	63300	44700	43500	32500	62300	101400	237400	76200	134000	106900	35500	59400
18	61100	47600	42400	33500	66800	115600	224400	81600	135500	98600	61100	50 5 00
19	67500	48400	45900	34000	65500	117700	216100	84800	142900	92000	55900	41500
20	65000	47800	46500	34400	65700	115400	210000	83700	148700	82500	52900	3860 0
21	69300	44200	46700	36100	69300	108300	206200	85900	155500	79100	52500	38600
22	68400	44600	45000	40700	83400	107100	200800	87800	159800	80300	49000	37400
23	64300	41900	43800	43200	85900	102500	185300	79100	163000	82900	55200	34400
24	64800	38600	41300	47800	82700	98400	189100	90700	151800	83800	57400	32200
25	62000	35600	41900	48900	92100	98700	183900	97400	147200	81100	57700	33400
23	02000	33600	41300	46900	92100	30700	103300	37400	14/200	01100	37700	22400
26	61900	30200	43900	48300	89500	96100	178600	103400	144500	72300	48100	37900
27	59800	37700	40700	46900	103700	91700	173300	97600	144000	66600	53400	33200
28	49800	48600	39800	47100	115700	88400	164200	95700	143900	65500	71000	32400
29	56300	55900	38200	49300	~	85500	159200	88600	146800	67900	74700	32400
30	51000	48000	30000	53100		94600	151700	80800	162800	59500	75600	33900
31	54700		28000	50000		131600		86700		54200	66700	
	31700		20000	30000		131000		00700		31200	00700	
	1541900	1432300	1362000	1450000	1912100	3613900	6109500	3200900	3554700	3952700	1810800	1246000
MEAN	49740	47740	43940	46770	68290	116600	203700	103300	118500	127500	58410	41530
MAX	69300	55900	50000	86900	116000	156000	253000	157000	163000	199000	75600	61900
MIN	30600	30200	28000	22600	48800	85500	152000	76200	74700	54200	35500	32200
MED	49800	49000	45000	46900	65900	118000	201000	97600	134000	122000	56300	38500
	3058000	2841000	2702000	2876000	3793000		12120000	6349000	7051000	7840000	3592000	2471000
CFSM	.42	.40	.37	.39	.57	.98	1.71	.87	1.00	1.07	.49	.35
IN.	.48	.45	.43	.45	.60	1.13	1.91	1.00	1.11	1.24	.57	.39
										1.44	,	
STATI	STICS OF	MONTHLY N	EAN DATA	FOR WATER	YEARS 18	79 - 1998	B, BY WATE	R YEAR (W	Y)			
MEAN	50900	51050	38510	35960	42320	80700	119900	107600	92680	74140	49420	47380
MAX	221100	211300	125600	101600	95660	185400	250100	260700	227300	385800	223000	163300
(WY)	1882	1882	1983	1973	1984	1973	1993	1888	1892	1993	1993	1993
MIN	16060	16020	13450	14650	15790	21780	32930	27600	17400	16280	13030	15530
(WY)	1934	1934	1934	1940	1899	1934	1895	1934	1934	1988	1936	1976
(AAI)	1234	1234	1234	1240	1033	1234	1093	1934	1234	1200	1930	1310

05474500 MISSISSIPPI RIVER AT KEOKUK, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WA	TER YEAR	WATER YEAR	S 1879 - 1998
ANNUAL TOTAL	31194500		31186800			
ANNUAL MEAN	85460		85440		65930	
HIGHEST ANNUAL MEAN					162500	1993
LOWEST ANNUAL MEAN					21540	1934
HIGHEST DAILY MEAN	251000	Apr 22	253000	Apr 15	434000	Jul 10 1993
LOWEST DAILY MEAN	28000	Dec 31	22600	Jan 1	5000	Dec 27 1933
ANNUAL SEVEN-DAY MINIMUM	35600	Oct 8	32800	Dec 27	8270	Dec 25 1933
INSTANTANEOUS PEAK FLOW					446000	Jul 10 1993
Instantaneous peak stage					27.58	Jul 10 1993a
ANNUAL RUNOFF (AC-FT)	61870000		61860000		47760000	
ANNUAL RUNOFF (CFSM)	.72		.72		.55	
ANNUAL RUNOFF (INCHES)	9.75		9.75		7.53	
10 PERCENT EXCEEDS	164000		171000		132000	
50 PERCENT EXCEEDS	65000		65000		50300	
90 PERCENT EXCEEDS	43900		37600		23000	

a From floodmark

Gaging Stations

05 4 76750	Des Moines River at Humboldt, IA
05479000	East Fork Des Moines River at Dakota City, IA
05480500	Des Moines River at Fort Dodge, IA
05481000	Boone River near Webster City, IA
05481300	Des Moines River near Stratford, IA
05481630	Saylorville Lake near Saylorville, IA
05481650	Des Moines River near Saylorville, IA
05481950	Beaver Creek near Grimes, IA
05482000	Des Moines River at Second Avenue at Des Moines, IA
	Crest Stage Gaging Stations
	create beage daging beactoms
0548065350	Drainage Ditch 97 Tributary near Britt, IA
05480930	White Fox Creek at Clarion, IA
05480993	Brewers Creek Tributary near Webster City, IA
05481510	Bluff Creek at Pilot Mound, IA
05481528	Peas Creek Tributary at Boone, IA
05481530	Peas Creek at Boone, IA

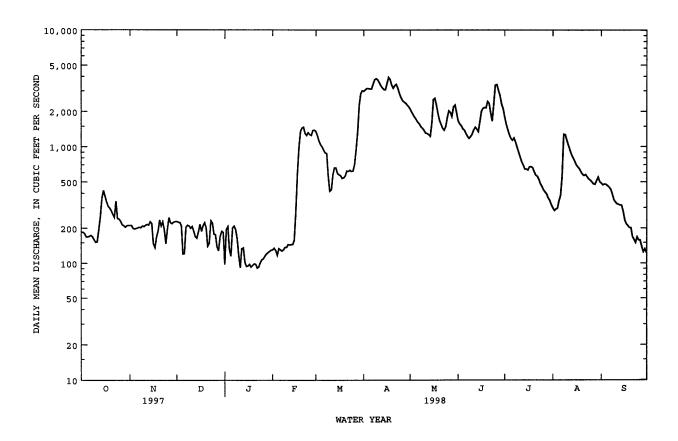
234 DES MOINES RIVER BASIN

05476750 DES MOINES RIVER AT HUMBOLDT, IA

LOCATION.--Lat 42°43'12", long 94°13'06", in SE¹/₄ SW¹/₄ sec.1, T.91 N., R.29 W., Humboldt County, Hydrologic Unit 07100002 on left bank 5 ft downstream from First Avenue in city of Humboldt, .84 mi downstream of Reasoner Dam, about 700 ft downstream from City of Humboldt water plant, 3.2 mi upstream from Indian Creek, 3.9 mi upstream from East Fork Des Moines River, and at mile 334.3 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 2.256 mi².

PERIOD OF RECORD. --October 1964 to current year. Prior to October 1970, published as "West Fork Des Moines River at Humboldt."


GAGE.--Water stage recorder. Datum of gage is 1,053.54 ft above sea level. Prior to Oct. 3, 1966, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Daily nonrecording gage readings made from Mar. 7, 1940 to Sept. 30, 1964, but discharge not published for this period because of extreme regulation at dam 700 ft upstream from gage. Power generation and streamflow regulation discontinued August 1964. Low-flow discharges occasionally affected by minor regulation at Reasoner Dam. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23, 1947, reached a stage of 12.2 ft, discharge, 11,000 ft³/s at present site and datum.

		DISCHAR	GE, CUBI	C FEET PER		WATER '		BER 1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	185 185 179 168 168	211 211 199 197 199	229 225 224 210 120	98 195 206 131 115	130 134 128 117 133	1350 1240 1120 1040 995	3070 3150 3140	2090 1970 1870 1780 1700	1670 1570 1520 1430 1390	1810 1570 1400 1270 1180	298 284 292 297 344	489 472 480 477 465
6 7 8 9 10	170 173 168 159 151	201 204 202 209 206	121 204 212 209 200	201 208 194 161 117	130 127 130 136 136	934 884 876 557 416	3830	1620 1560 1480 1440 1380	1300 1230 1180 1220 1280	1140 1190 1100 993 896	380 558 1280 1270 1140	450 432 395 353 335
11 12 13 14 15	152 196 256 366 423	212 216 213 227 219	207 189 169 164 186	92 133 135 102 94	144 143 144 144 157	429 575 657 658 590	3190	1310 1300 1270 1230 1590	1390 1470 1420 1350 1650	811 741 693 642 643	1030 938 858 803 750	324 320 316 314 279
16 17 18 19 20	378 336 309 298 283	147 136 168 189 235	216 188 211 223 201	95 98 93 96 99	277 578 992 1360 1450	576 566 537 542 561		2530 2590 2260 1920 1680	2010 2120 2160 2150 2430	631 671 673 660 611	697 671 648 611 580	235 218 210 202 201
21 22 23 24 25	263 248 341 243 240	209 227 195 147 198	140 148 232 222 178	98 91 93 101 107	1470 1300 1250 1320 1270	618 613 629 614 619	3330 3420 3150 2850 2630	1550 1440 1390 1490 1780	2350 1950 1660 2300 3370	570 560 527 483 456	567 578 552 529 519	168 160 150 167 158
26 27 28 29 30 31	229 214 210 204 210 211	247 223 219 226 228	175 138 128 169 188 184	109 115 120 123 126 129	1250 1380 1390 	700 932 1330 2250 2840 3010	2480 2410 2360 2270 2200	2020 1960 1810 2200 2270 1940	3410 3030 2740 2320 2120	426 409 394 364 346 319	500 482 477 514 549 502	157 138 125 132 123
TOTAL MEAN MAX MIN AC-FT CFSM IN.	7316 236 423 151 14510 .10	6120 204 247 136 12140 .09	5810 187 232 120 11520 .08 .10	3875 125 208 91 7690 .06	17320 619 1470 117 34350 .27 .29	29258 944 3010 416 58030 .42 .48	31 44 3920	54420 1755 2590 1230 107900 .78 .90	57190 1906 3410 1180 113400 .85 .94	24179 780 1810 319 47960 .35 .40	19498 629 1280 284 38670 .28 .32	8445 282 489 123 16750 .12 .14
STATIST	CICS OF 1	MONTHLY MEA	N DATA FO	OR WATER Y	EARS 1965	- 199	8, BY WATE	R YEAR (WY)				
MEAN MAX (WY) MIN (WY)	660 3768 1987 20.4 1977	662 2656 1980 28.8 1977	418 1675 1983 19.9 1977	238 1078 1983 13.5 1977	335 1571 1983 19.8 1977	1329 5110 1983 78.9 1968	2731 8454 1969 94.4 1968	1913 6261 1993 77.6 1968	1941 9126 1993 72.3 1977	1604 11540 1993 81.0 1976	727 4477 1993 42.4 1976	549 3097 1979 30.1 1976
SUMMARY STATISTICS			FOR 1	1997 CALENI	DAR YEAR		FOR 1998	WATER YEAR		WATER Y	EARS 1965	- 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS			-	549084 1504 7300 120 163 1089000 67 9.05 3980 574	Apr 7 Dec 5 Oct 5		56 650100	Apr 17 Jan 22 Jan 17 Apr 17 51 Apr 17 Dec 5		1094 4136 74.3 17800 13 19000 15.4 792400 .4 6.5 2860 468	Apr 1 Nov 1 Jan 1 Jul 1 0 Apr 1	1993 1977 14 1969 12 1976 12 1977 13 1993 14 1969
	ENT EXC			198			133			67		

DES MOINES RIVER BASIN 235

236 DES MOINES RIVER BASIN

05479000 EAST FORK DES MOINES RIVER AT DAKOTA CITY, IA

LOCATION.--Lat $42^{\circ}43^{\circ}26^{\circ}$, long $94^{\circ}11^{\circ}30^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.6, T.91 N., R.28 W., Humboldt County, Hydrologic Unit 07100003, on right bank 50 ft upstream from old mill dam, in city park at east edge of Dakota City, 500 ft upstream from bridge on county highway P56, 0.6 mi downstream from bridge on State Highway 3, 3.4 mi upstream from confluence with Des Moines River, and at mile 333.8 upstream from mouth of Des Moines River.

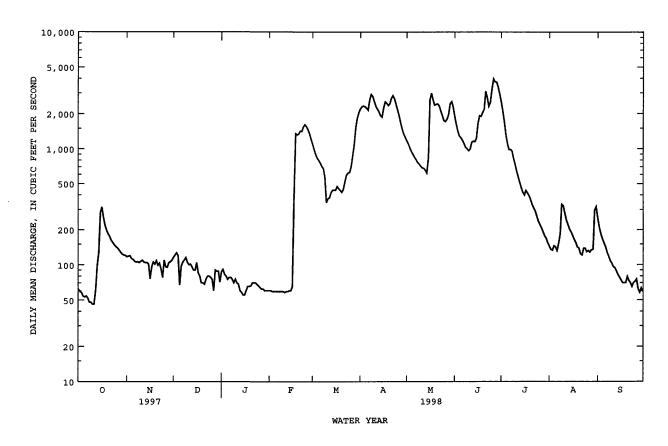
DRAINAGE AREA. -- 1,308 mi².

PERIOD OF RECORD. -- March 1940 to current year. Prior to October 1954, published as "near Hardy".

REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1944, 1945-47 (M).

GAGE.--Water-stage recorder. Datum of gage is 1,038.71 ft above sea level. Prior to Oct. 1, 1954, nonrecording gage at site 8 mi upstream at different datum.

REMARKS.--Estimated daily discharges: Dec. 7-11, 14, 15, 17-20, 22-28, Jan. 5 to Feb. 18, Mar. 12-16, and June 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of September 1938 reached a stage of 17.4 ft, discharge, about 22,000 ft³/s, site and datum in use during the period 1940-54.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	62	117	116	87	e60	1100	2190	1170	1900	2520	144	253
2	59	118	121	91	e60	986	2290	1100	1620	2110	135	210
3	58	119	126	83	e59	897	2320	1020	1420	1690	133	184
4	54	113	119	80	e59	831	2290	950	1290	1320	145	167
5	53	111	67	e75	e59	794		899	1240	1110	142	154
J	33	111	07	e75	633	134	2220	033	1240	1110	142	134
6	54	107	97	e78	e59	753	2140	851	1180	983	132	142
7	52	105	e105	e78	e59	706	2620	810	1110	990	152	127
8	48	106	e110	e75	e59	677	2910	763	1030	953	184	118
9	48	104	e115	e70	e59	567	2790	741	e1000	827	333	108
10	46	107	e105	e75	e59	345	2520	710	964	729	324	103
11	46	109	e100	e70	e58	372	2300	685	994	640	279	96
12	61	105	101	e68	e59	e380	2180	681	1140	570	243	94
13	98	104	96	e60	e59	e420	2070	656	1160	512	223	88
14	128	104	e90	e58	e60	e440	1920	618	1150	460	204	82
15	283	101	e90	e55	e60	e440	1870	830	1230	422	191	78
16	315	76	104	e55	e65	e440	2240	2630	1650	399	178	74
17	256	96	e85	e60	e380	473	2510	2970	1910	437	165	70
18	220	105	e80	e65	e1350	454	2440	2610	1890	415	155	70
19	197	101	e70	e65	1320	438	2340	2360	2040	394	142	70
20	184	108	e70	e66	1340	422	2420	2390	2170	364	139	79
21	175	99	68	e70	1420	448	2600	2410	3090	331	124	72
22	162	103	e75	e70 e70	1420 1410	519	2690 2840	2410		309	124	73 70
					1410		2840	2310	2730			
23 24	155 148	92	e80	e70	1540	590	2670	2100	2300	291	138	65 70
25		78	e80	e68	1610	618	2390	1920	2480	262	138	
25	143	109	e78	e6 6	1550	625	2140	1740	3200	236	129	72
26	139	96	e75	e6 4	1460	700	1920	1710	3950	222	132	75
27	134	95	e60	e62	1350	873	1670	1790	3730	207	128	62
28	128	104	e90	e62	1210	1090	1480	1940	3720	192	134	58
29	123	106	88	e60		1520	1340	2420	3360	177	135	63
30	121	109	88	e60		1830	1250	2520	2930	169	297	59
31	120		71	e60		2040		2270		154	317	
TOTAL	3870	3107	2820	2126	16893	22788	66970	48574	59578	20395	5536	3034
MEAN	125	104	91.0	68.6	603	735	2232	1567	1986	658	179	101
MAX	315	119	126	91	1610	2040	2910	2970	3950	2520	333	253
MIN	46	76	60	55	58	345	1250	618	964	154	121	58
AC-FT	7680	6160	5590	4220	33510	45200	132800	96350	118200	40450	10980	6020
CFSM	.10	.08	.07	. 05	.46	. 56	1.71	1.20	1.52	.50	.14	. 08
IN.	.11	.09	.08	.06	.48	. 65	1.90	1.38	1.69	.58	.16	.09
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 1998, BY WATER YEAR (WY)												
MEAN	320	316	224	128	238	921	1399	1028	1260	848	392	333
MAX	1713	2042	1340	836	1602	4033	7004	5031	5908	6777	4114	2666
(WY)	1983	1942	1992	1992	1984	1983	1993	1991	1993	1993	1979	1979
MIN	12.0	14.2	8.45	5.12	10.4	39.4	58.8	75.7	36.3	13.7	15.5	7.40
(WY)	1959	1959	1977	1977	1959	1968	1977	1977	1977	1977	1976	1976

05479000 EAST FORK DES MOINES RIVER AT DAKOTA CITY, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEAR	S 1941 - 1998
ANNUAL TOTAL	252099		255691			
ANNUAL MEAN	691		701		618	
HIGHEST ANNUAL MEAN					2744	1993
LOWEST ANNUAL MEAN					29.7	1977
HIGHEST DAILY MEAN	3940	Mar 19	3950	Jun 26	17800	Jun 21 1954
LOWEST DAILY MEAN	46	Oct 10	46	Oct 10	4.8	Jan 11 1977a
ANNUAL SEVEN-DAY MINIMUM	50	Oct 5	50	Oct 5	4.8	Jan 8 1977
INSTANTANEOUS PEAK FLOW			4050	Jun 26	18800	Jun 21 1954
INSTANTANEOUS PEAK STAGE			13.94	Jun 26	24.02	Jun 21 1954
INSTANTANEOUS LOW FLOW			31	Nov 24		
ANNUAL RUNOFF (AC-FT)	500000		507200		447600	
ANNUAL RUNOFF (CFSM)	.53		.54		.47	
ANNUAL RUNOFF (INCHES)	7.17		7.27		6.42	
10 PERCENT EXCEEDS	1820		2280		1680	
50 PERCENT EXCEEDS	220		177		214	
90 PERCENT EXCEEDS	72		61		23	

Also Jan 12-14, 1977 Estimated

05480500 DES MOINES RIVER AT FORT DODGE, IA

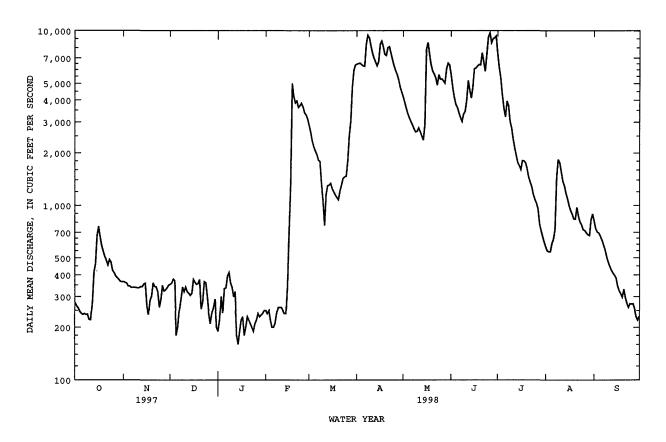
LOCATION.--Lat $42^{\circ}30^{\circ}22^{\circ}$, long $94^{\circ}12^{\circ}04^{\circ}$, in $NW^{1}/_{4}$ Sw $^{1}/_{4}$ sec.19, T.89 N., R.28 W., Webster County, Hydrologic Unit 07100004, on right bank 400 ft upstream from Soldier Creek, 1,800 ft downstream from Illinois Central Railroad bridge in Fort Dodge, 2,000 ft downstream from Lizard Creek, and at mile 314.6.

DRAINAGE AREA. -- 4.190 mi²

PERIOD OF RECORD.--April 1905 to July 1906 (no winter records), October 1913 to September 1927 (published as "at Kalo"), October 1946 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1308: 1924, 1925 (M).

GAGE.--Water-stage recorder. Datum of gage is 969.38 ft above sea level. See WSP 1728 for history of changes prior to Dec. 8, 1949.


REMARKS.--Estimated daily discharges: Dec. 5-12, Dec. 25 to Jan. 3, Jan. 9 to Feb. 19, and Mar. 13, 14. Records good except those for estimated daily discharges, which are poor. Occasional minor regulation caused by dam 0.8 mi upstream from gage. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform, U.S. National Weather Service Limited Automatic Remote Collector (LARC) and City of Fort Dodge gage-height telemeter at station.

		DISCHARGE	, CUBIC	C FEET PE		WATER	YEAR OCTOBE	R 1997 T	O SEPTEMBE	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR		MAY	JUN	JUL	AUG	SEP
1	277	366	353	e190	e250	2870		4170	5590	7420	575	813
2	265	362	360	e220	e240	2620		3870	4740	6190	548	736
3	258	359	378	e300	e250	2340		3580	4160	5320	543	704
4	247	345	370	242	e220	2160		3350	3790	4260	544	694
5	241	345	e180	334	e200	2050	6320	3170	3630	3590	606	666
6	237	338	e200	337	e200	1960		3020	3390	3220	639	632
7	240	339	e250	394	e210	1820		2890	3180	3950	725	593
8	237		e290	413	e240	1790		2740	3030	3730	1440	556
9	238		e340	e360	e260	1340	9100	2640	3340	3030	1840	507
10	222	336	e320	e340	e260	1060	8200	2660	3450	2770	1760	473
11	221		e340	e300	e260	770		2780	4000	2390	1560	447
12	280		e320	e320	e250	1160	7000	2650	5190	2130	1380	426
13	416	342	314	e180	e240	e1300		2510	4550	1930	1300	410
14	464	355	305	e160	e240	e1310		2370	4120	1760	1180	399
15	672	358	314	e190	e350	1340	6670	2920	4830	1690	1090	384
16	760	265	376	e220	e700	1250	8410	7880	6080	1610	997	345
17	662	237	363	e230	e1300	1200		8560	6130	1810	933	324
18	591	286	353	e180	e5000	1150		7360	6290	1800	893	312
19	545	302	357	e200	e4200	1110		6420	6430	1760	837	298
20	509	360	376	e230	3860	1080		5910	6390	1620	835	330
21	484	343	255	e220	3960	1210	8030	5660	7470	1450	974	296
22	455	341	278	e210	3640	1310	8110	5380	6710	1360	865	275
23	489	320	366	e200	3720	1430		4890	5880	1280	803	261
24	473	261	361	e190	3840	1460		5610	7360	1160	775	273
25	425	289	e300	e210	3650	1470	6300	5290	9190	1080	726	272
26	411	348	e240	e220	3390	1790	5930	5310	9730	1030	719	273
27	394	323	e210	e240	3300	2500		5180	8550	956	698	255
28	385		e240	e230	3120	3060	5260	5020	9000	785	680	231
29	376		e260	e235		4780		6110	9130	717	673	220
30	367	349	e290	e240		5960	4460	6540	9340	664	827	231
31	365		e200	e250		6390		6380		617	894	
TOTAL	12206		9459	7785	47350	63040		142820	174670	73079	28859	12636
MEAN	394	330	305	251	1691	2034		4607	5822	2357	931	421
MAX	760	366	378	413	5000	6390		8560	9730	7420	1840	813
MIN	221	237	180	160	200	770	4460	2370	3030	617	543	220
AC-FT	24210		8760	15440	93920	125000		283300	346500	145000	57240	25060
CFSM	.09	. 08	.07	. 06	. 40	. 49		1.10	1.39	.56	.22	.10
IN.	.11	. 09	.08	. 07	. 42	.56	1.87	1.27	1.55	. 65	.26	. 11
STATIST	CICS OF MO	ONTHLY MEAN	DATA FO	OR WATER	YEARS 191	4 - 199	8, BY WATER	YEAR (W	Y)			
MEAN	940	866	605	391	761	2617		2926	3391	2374	1106	921
MAX	6120	4447	3698	2257	4352	11070	17530	10540	16150	21530	9264	6206
(WY)	1987	1983	1983	1983	1984	1983	1993	1991	1993	1993	1993	1979
MIN	32.8		34.7	24.0	35.5	141		149	138	75.2	69.0	49.9
(WY)	1957	1959	1977	1977	1959	1968	1968	1926	1977	1926	1976	1976

05480500 DES MOINES RIVER AT FORT DODGE, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	idar ye	AR	FOR 1998 WAT	TER YEAR	WATER YEAR	RS 1914	-	1998
ANNUAL TOTAL	929770			792195					
ANNUAL MEAN	2547			2170		1764			
HIGHEST ANNUAL MEAN						7882			1993
LOWEST ANNUAL MEAN						143			1977
HIGHEST DAILY MEAN	10200	Apr	7	9730	Jun 26	35100	Apr	8	1965
LOWEST DAILY MEAN	180	Dec	5	160	Jan 14a	14	Nov	3	1955
ANNUAL SEVEN-DAY MINIMUM	234	Oct	5	194	Jan 13	23	Jan	13	1977
INSTANTANEOUS PEAK FLOW				10900	Jun 26	35600	Apr	8	1965
INSTANTANEOUS PEAK STAGE				8.37	Jun 26	19.62		23	1947
INSTANTANEOUS LOW FLOW				148	Nov 17				
ANNUAL RUNOFF (AC-FT)	1844000			1571000		1278000			
ANNUAL RUNOFF (CFSM)	. 61			.52		.42			
ANNUAL RUNOFF (INCHES)	8.25	i		7.03		5.72			
10 PERCENT EXCEEDS	7230			6420		4640			
50 PERCENT EXCEEDS	1000			760		650			
90 PERCENT EXCEEDS	304			240		102			

a Ice affected e Estimated

05481000 BOONE RIVER NEAR WEBSTER CITY, IA

LOCATION.--Lat $42^{\circ}26^{\circ}01^{\circ}$, long $93^{\circ}48^{\circ}12^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 18, T.88 N., R.25 W., Hamilton County, Hydrologic Unit 07100005, on right bank 100 ft upstream from bridge on State Highway 17, 2.5 mi south of Webster City, and 3.2 mi downstream from Brewers Creek.

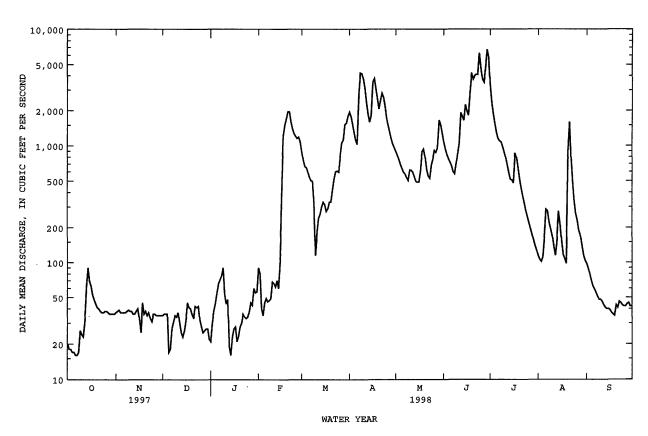
DRAINAGE AREA. --844 mi².

PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1308: 1940 (M), WSP 1708: 1956.

GAGE.--Water-stage recorder. Datum of gage is 989.57 ft above sea level. Prior to June 26, 1940, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Nov. 16-19, Dec. 5-21, Dec. 25 to Jan. 5, Jan. 9 to Feb. 19, Mar. 11-14, May 4, June 4, 5, and July 11, 12. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1896, 19.1 ft about June 10, 1918, from floodmarks, from information by local resident, discharge, 21,500 ft³/s. Flood of June 18, 1932, reached a stage of 16.0 ft, discharge, 15,000 ft³/s.

		DISCHARGE	, CUBI	C FEET PI	ER SECOND, DAIL	WATER Y Y MEAN V	EAR OCTOBER ALUES	R 1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	37	35	e21	e 90	901	1940	897	1090	3300	114	98
2	18	38	36	e30	e80	754	1770	831	952	2350	106	89
3	18	39	36	e38	e40	666	1520	758	854	1860	102	80
4	17	37	36	e44	e35	648	1300	e689	e775	1540	112	70
5	17	37	e17	e54	e45	592	1120	639	e721	1310	167	63
6	16	37	e1 8	66	e49	539	1030	594	672	1160	286	59
7	16	37	e27	71	e46	504	2760	570	602	1100	277	55
8	17	38	e31	7 7	e4 7	499	4230	535	575	1080	222	51
9	26	39	e35	e 90	e4 9	328	4150	505	711	988	195	48
10	24	38	e34	e54	e 68	115	3700	619	831	882	171	48
11	23	38	e37	e44	e66	e180	3050	617	1030	e785	138	46
12	32	36	e 30	e4 8	e62	e240	2320	593	1920	e681	115	43
13	62	36	e25	e 19	e 70	e260	1860	544	1780	587	152	41
14	90	38	e23	e16	e60	e300	1590	496	1650	517	276	40
15	69	40	e26	e23	e100	329	1810	488	2250	511	214	40
16	63	e33	e32	e27	e350	315	3540	490	1990	480	152	39
17	53	e25	e45	e 28	e1200	275	3780	607	1820	866	116	37
18	48	e45	e41	e21	e1500	290	3100	880	2830	782	108	36
19	44	e36	e4 0	e23	e1700	330	2540	934	4230	637	98	35
20	41	38	e36	e2 8	1960	331	2070	797	3740	5 15	825	43
21	40	35	e33	e30	1950	421	2440	619	3990	434	1600	41
22	38	37	42	e36	1600	520	2820	548	4110	372	793	46
23	37	33	41	e34	1410	600	2590	527	4090	325	499	45
24	37	31	42	e33	1280	608	2160	685	6280	280	339	43
25	38	36	e32	e34	1210	594	1720	773	4730	247	263	42
26	38	36	e2 8	e37	1160	823	1500	909	3720	219	232	42
27	37	35	e25	e45	1190	1060	1320	87 6	3510	196	190	44
28	36	35	e26	e43	1090	1120	1160	954	4670	175	172	45
29	36	35	e27	e 60		1520	1040	1650	6730	155	139	42
30	36	35	e 27	e55		1560	965	1510	5800	138	115	42
31	36		e22	e56		1780		1290		126	104	
TOTAL	1123	1090	985	1285	18507	19002	66895	23424	78653	24598	8392	1493
MEAN	36.2		31.8	41.5	661	613	2230	756	2622	793	271	49.8
MAX	90	45	45	90	1960	1780	4230	1650	6730	3300	1600	98
MIN	16	25	17	16	35	115	965	488	575	126	98	35
AC-FT	2230		1950	2550	36710	37690	132700	46460	156000	48790	16650	2960
CFSM	.04	.04	.04	. 05	.78	. 73	2.64	.90	3.11	.94	.32	.06
IN.	.05	. 05	.04	.06	. 82	.84	2.95	1.03	3.47	1.08	.37	.07
STATIST	ICS OF M	ONTHLY MEAN	DATA FO	OR WATER	YEARS 194	1 - 1998	, BY WATER	YEAR (WY	")			
MEAN	243	222	147	100	254	816	915	780	1055	578	254	220
MAX	1771	1395	1181	56 8	1847	2826	4307	4315	4239	4715	2942	2501
(WY)	1987		1983	1983	1984	1973	1965	1991	1984	1993	1993	1965
MIN	6.66		4.62	.32	3.60	32.5	33.7	46.0	14.1	8.66	9.79	6.48
(WY)	1950	1950	1977	1977	1950	196 8	1957	196 8	1977	1977	1949	1976

05481000 BOONE RIVER NEAR WEBSTER CITY, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENI	DAR YEAR	FOR 1998 WA	TER YEAR	WATER YEAR	S 1941 - 1998
ANNUAL TOTAL	198099		245447			
ANNUAL MEAN	543		672		465	
HIGHEST ANNUAL MEAN					1861	1993
LOWEST ANNUAL MEAN					36.1	1956
HIGHEST DAILY MEAN	5510	Jun 22	6730	Jun 29	19500	Jun 22 1954
LOWEST DAILY MEAN	16	Oct 6	16	Oct 6,7a	.00	Feb 7 1977
ANNUAL SEVEN-DAY MINIMUM	17	Oct 2	17	Oct 2	.01	Feb 1 1977
INSTANTANEOUS PEAK FLOW			8270	Jun 29	20300	Jun 22 1954
INSTANTANEOUS PEAK STAGE			11.41	Jun 29	18.55	Jun 22 1954
ANNUAL RUNOFF (AC-FT)	392900		486800		337100	
ANNUAL RUNOFF (CFSM)	. 64		. 80		.55	
ANNUAL RUNOFF (INCHES)	8.73		10.82		7.49	
10 PERCENT EXCEEDS	1710		1880		1200	
50 PERCENT EXCEEDS	150		139		140	
90 PERCENT EXCEEDS	26		31		16	

05481300 DES MOINES RIVER NEAR STRATFORD, IA

LOCATION.--Lat $42^{\circ}15^{\circ}04^{\circ}$, long $93^{\circ}59^{\circ}52^{\circ}$, in $NW^{1}/_{4}$ NE $^{1}/_{4}$ sec.21, T.86 N., R.27 W., Webster County, Hydrologic Unit 07100004, on right bank 6 ft downstream from bridge on State Highway 175, 0.1 mi downstream from Skillet Creek, 4.0 mi southwest of Stratford, 7.3 mi downstream from Boone River, and at mile 276.7.

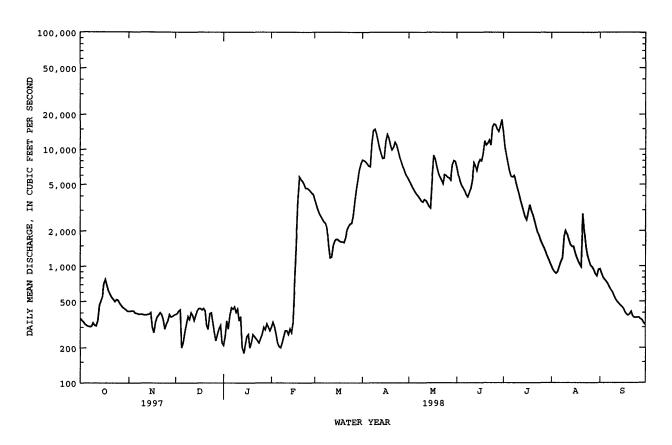
DRAINAGE AREA. -- 5,452 mi².

PERIOD OF RECORD.--October 1967 (revised) to current year in reports of U.S. Geological Survey. Replacement station for 05481500 "near Boone", which operated April 1920 to September 1968. Records not necessarily equivalent.

GAGE. -- Water-stage recorder. Datum of gage is 894.00 ft above sea level.

REMARKS.--Estimated daily discharges: Nov. 16, 17, 23-25, Dec. 5-12, Dec. 24 to Jan. 4, Jan. 10 to Feb. 17, and Mar. 12-14, 28, 29. Records good except those for estimated daily discharges, which are poor. Occasional minor regulation caused by dam at Fort Dodge. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 30, 1903, reached a stage of 25.4 ft, from high-water mark, site and datum then in use, discharge, 43,600 ft³/s.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

DAILY MEAN VALUES												
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	358	412	387	e210	e300	3710	8110	5 4 30	7000	14200	994	944
2	343	412	393	e250	e330	3350	8020	5130	6010	10600	928	867
3	332	415	413	e340	e300	3040	7820	4800	5360	8830	889	800
4	317	414	424	e290	e260	2800	7530	4530	4910	7510	866	767
5	311	397	e200	377	e220	2650	7220	4310	4660	6510	896	739
6	306	396	e220	443	e205	2510	7100	4120	4400	5830	991	706
7	304	390	e270	430	e200	2380	11200	3970	4090	5800	1090	664
8	306	390	e320	450	e220	2320	14500	3790	3920	5960	1170	625
9 10	327 312	389 387	e370 e350	403	e250 e280	2120	14900 13500	3600 3520	4260 4640	5210 4620	1800 2000	595 554
10	312	367	6330	e430	e 280	1530	13300	3320	4040	4020	2000	224
11	. 309	383	e400	e340	e280	1180	11700	3710	5500	4140	1860	520
12	343	383	e380	e370	e260	e1200	10200	3640	7680	3650	1680	497
13	466	387	343	e200	e290	e1500	9190	3450	7190	3270	1530	479
14 15	50 4 550	389 · 401	381 420	e180 e210	e270 e330	e1650 1700	8370 8450	3230 3130	6590 7630	2930 2630	1470 1470	463 451
13	330	401	420	6210	6330	1700	0430	3130	7030	2030	1470	431
16	710	e300	435	e250	e700	1690	11700	5640	8190	2470	1310	434
17	771	e270	436	e260	e1500	1640	13400	8890	7980	2860	1190	404
18	687	331	423	e200	3600	1610	12500	8310	9110	3330	1110	387
19 20	612 571	367 381	436 417	e220 e260	5800 5510	1610	10900 9930	7210 6360	11800 10900	2960 27 4 0	1040 988	379 388
20	3/1	361	41/	e200	2210	1590	3330	0300	10300	2/40	300	300
21	541	401	312	e250	5330	1750	10400	5 77 0	11300	2450	2790	408
22	521	387	288	e240	5030	2030	11500	5450	12000	2180	1930	374
23	499	e350	392	e230	4640	2180	10900	5080	10900	1950	1460	363
2 4 25	520 513	e290	e400 e330	e220	4640	2280	9730 8610	6080 5990	15700 16500	1810 1640	1230 1110	362 365
25	513	e320	e330	e240	454 0	2310	8610	3990	16300	1040	1110	202
26	483	341	e270	e260	4390	2700	7870	5760	16200	1530	1010	364
27	464	386	e230	e300	4220	3590	7180	5690	14900	1440	980	354
28	446	368	e260	e285	4110	e4600	6670	5460	14200	1340	933	346
29 30	435 426	372 382	e290 e310	e320 e300		e5620 6700	6130 5750	7370 8020	15800 18000	1230 1150	859 824	328 3 1 5
31	413		e220	e280		7550		7910		1070	933	
	4 4 4 4 4 4		40000					4.55050	0=0000	102010	20221	15040
TOTAL MEAN	14000 452	11191 373	10720 346	9038 292	58005 2072	83090 2680	290980 9699	165350 5334	277320 92 44	123840 3995	39331 1269	15242 508
MAX	771	415	436	450	5800	7550	14900	8890	18000	14200	2790	944
MIN	304	270	200	180	200	1180	5750	3130	3920	1070	824	315
AC-FT	27770	22200	21260	17930	115100	164800	577200	328000	550100	245600	78010	30230
CFSM	.08	. 07	.06	.05	.38	. 49	1.78	.98	1.70	.73	.23	. 09
IN.	.10	.08	.07	.06	.40	. 57	1.99	1.13	1.89	. 84	.27	.10
STATIST	rics of M	ONTHLY ME	AN DATA	FOR WATER	YEARS 196	8 - 1998	, BY WATE	ER YEAR (WY	')			
MEAN	1730	1753	1285	778	1315	4460	6516	5361	5952	4433	2055	1413
MAX	8763	5745	5267	3267	7061	13920	22020	16010	21310	27250	13500	7546
(WY)	1987	1993	1983	1992	1984	1983	1993	1991	1993	1993	1993	1993
MIN	69.4	96.3	44.4	18.7	57.7	204	355	296	177	156	122	69.5
(WY)	1977	1977	1977	1977	1977	1968	1968	1968	1977	1977	1976	1976
SUMMAR	Y STATIST	rics	FOF	R 1997 CAL	ENDAR YEAR		FOR 1998	WATER YEAR		WATER	YEARS 1968	3 - 1998
ANNUAL				1204567			1098107					
ANNUAL				3300			3009			3092		1000
	I ANNUAL									10400 254		1993 1977
	ANNUAL M M DAILY T			14600	Mar 14		18000	Jun 30		41400	Apr	2 1993
	DAILY ME			200	Dec 5		180	Jan 14		13		23 1977a
ANNUAL	SEVEN-DA	MUMINIM Y		273	Dec 25		217	Jan 13		14	Jan	22 1977
		PEAK FLOW					18700			423000		2 1993
		PEAK STAGE		2200000				. 44 Jun 30	1	25.		2 1993
	RUNOFF (2389000	61		2178000			2240000		
	RUNOFF (8.:				. 4 9			71	
	CENT EXCE			9480			8330			8310	-	
	CENT EXCE			1120			1040			1400		
90 PER	CENT EXCE	EEDS		350			287			186		

a Jan 24, 1977

e Estimated

DES MOINES RIVER BASIN
05481300 DES MOINES RIVER NEAR STRATFORD, IA--Continued

05481630 SAYLORVILLE LAKE NEAR SAYLORVILLE, IA

LOCATION.--Lat $41^{\circ}42^{\circ}13^{\circ}$, long $93^{\circ}41^{\circ}21^{\circ}$, in SE $^{1}/_{4}$ SW $^{1}/_{4}$ sec.30, T.80 N., R.24 W., Polk County, Hydrologic Unit 07100004, in control tower of Saylorville Dam, 3.2 mi northwest of Saylorville, 4.2 mi upstream from Beaver Creek, and at mile 213.7.

DRAINAGE AREA. -- 5,823 mi²

PERIOD OF RECORD. -- April 1977 to current year.

GAGE. -- Water-stage recorder. Datum of gage is at sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--Estimated daily discharges: Dec. 1. Reservoir is formed by earthfill dam completed in 1976. Storage began in April 1977. Release controlled at intake structure to forechamber of 22 ft diameter concrete conduit through dam. Ungated chute spillway 430 ft in length at right end of dam at elevation 884 ft, contents, 570,000 acre-ft. Conservation pool at elevation 836 ft, contents, 90,000 acre-ft, surface area, 5,950 acres. Flood pool elevation at 890 ft, contents, 586,000 acre-ft, surface area, 16,700 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage.

COOPERATION. -- Records provided by U.S. Army Corps of Engineers.

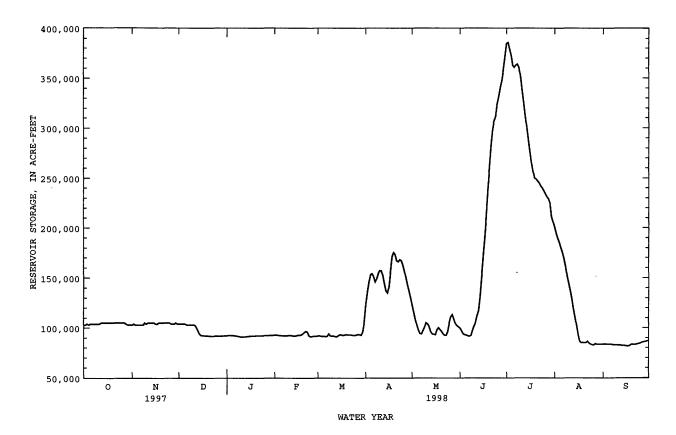
EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents,717,000 acre-ft July 13, 1993; maximum elevation, 892.00 ft July 14, 1993; minimum daily contents, 45,000 acre-ft May 15, 1985; minimum elevation, 832.61 ft Jan. 19, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 386,000 acre-ft July 2; maximum elevation, 870.18 July 2; minimum daily contents, 81,600 acre-ft Sept. 17; minimum elevation, 836.09 ft Sept. 17.

Canacity	table	(elevation	in	feet	contents	in	acro-foot)	
Cabacity	Labre	refevacion	111	reet.	Contents	TII	acre-reer)	

800	0	820	18,500	840	112,000	860	274,000	880	507,000
805	260	825	34,300	845	147,000	865	324,000	885	582,000
810	2,140	830	55,600	850	186,000	870	380,000	890	672,000
815	7.460	835	80.500	855	229,000	875	440,000		

RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY OBSERVATION AT 2400 HOURS


DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	103000 103000 104000 103000 104000	103000 104000 103000 103000 103000	e104000 104000 104000 104000 104000	92200 92600 92600 92400 92300	92900 92800 92600 92400 92200	92000 92100 91600 91500 91600	123000 136000 146000 153000 154000	123000 116000 109000 103000 97800	99700 96800 94000 93100 92600	385000 386000 379000 373000 363000	200000 194000 189000 185000	83500 83500 83500 83300 83300
6 7 8 9	104000 104000 104000 104000 104000	103000 103000 103000 105000 104000	103000 103000 103000 103000 103000	92200 91900 91600 91300 90900	92100 92100 92100 92100 92500	91200 91700 93900 92000 91900	151000 146000 149000 154000 157000	94300 93900 97400 101000 105000	91900 91600 92300 97600 102000	361000 363000 364000 361000 351000	175000 169000 161000 151000 144000	83300 83100 82700 82600 82600
11	104000	105000	103000	90900	92500	91900	157000	104000	105000	338000	137000	82500
12	105000	105000	101000	91100	92200	91300	152000	101000	112000	326000	129000	82500
13	105000	105000	97700	91100	91900	90900	144000	96100	117000	313000	119000	82100
14	105000	105000	94400	91300	91900	92000	137000	93800	131000	301000	111000	82200
15	105000	105000	92600	91600	92200	93000	135000	93500	151000	289000	102000	82000
16	105000	104000	92400	91700	92800	93100	141000	93200	170000	277000	92900	81700
17	105000	104000	92200	91900	92700	92500	156000	98000	189000	266000	86500	81600
18	105000	105000	92100	91900	93000	92700	171000	100000	210000	257000	85000	82000
19	105000	105000	92100	91900	93900	93300	175000	98200	238000	250000	85100	83100
20	105000	105000	91900	92100	95400	93100	173000	96400	260000	249000	85000	83300
21	105000	105000	91800	92200	96500	93100	167000	93800	282000	247000	85000	83100
22	105000	105000	91700	92200	95900	93000	166000	92600	298000	245000	86300	83300
23	105000	105000	91600	92200	92200	92800	168000	92500	307000	242000	84600	83800
24	105000	105000	91800	92200	91100	92500	167000	96400	311000	240000	83500	84100
25	105000	105000	91800	92300	91400	92500	163000	105000	324000	237000	82900	84600
26 27 28 29 30 31	105000 105000 104000 103000 103000 103000	104000 104000 104000 105000 104000	91900 91700 91900 91900 92100 92000	92300 92300 92400 92500 92500 92700	91700 91600 91600 	93000 93400 93200 92800 96300 106000	157000 150000 143000 137000 130000	111000 113000 109000 104000 102000 101000	332000 341000 348000 359000 372000	234000 231000 229000 225000 211000 206000	82500 84000 83400 83300 83300 83300	85400 85800 86100 86600 87000
MEAN	104000	104000	96600	92000	92700	93000	152000	101000	197000	294000	119000	83500
MAX	105000	105000	104000	92700	96500	106000	175000	123000	372000	386000	200000	87000
MIN	103000	103000	91600	90900	91100	90900	123000	92500	91600	206000	82500	81600

CAL YR 1997 MEAN 99700 MAX 166000 MIN 90100 WTR YR 1998 MEAN 128000 MAX 386000 MIN 81600

e Estimated

DES MOINES RIVER BASIN

05481630 SAYLORVILLE LAKE NEAR SAYLORVILLE, IA--Continued

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA

LOCATION.--Lat $41^{\circ}40^{\circ}50^{\circ}$, long $93^{\circ}40^{\circ}05^{\circ}$, $SW^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec.5, T.79 N., R.24 W., Polk County, Hydrologic Unit 07100004, on left bank 5 ft upstream of Fisher Bridge on county highway R6F, 2.0 mi west of Saylorville, 2.1 mi downstream from Rock Creek, 2.3 mi downstream from Saylorville Dam, 2.3 mi upstream from Beaver Creek, and at mile 211.4.

DRAINAGE AREA. -- 5,841 mi2.

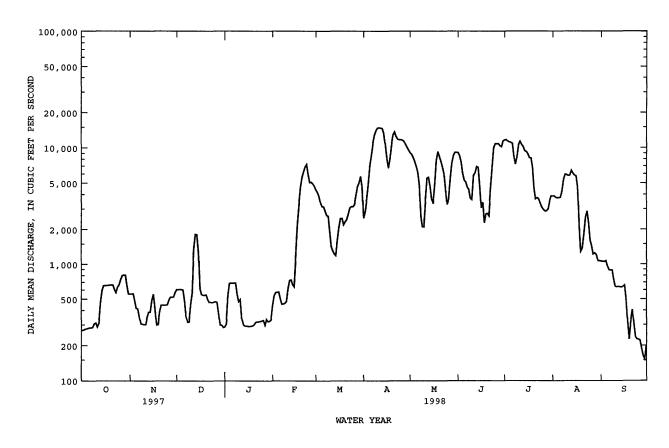
WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1961 to current year.

GAGE.--Water-stage recorder. Datum of gage is 787.42 ft above NGVD (levels by U. S. Army Corps of Engineers). Prior to Aug. 6, 1970, nonrecording gage at same site and datum.

REMARKS.-- Estimated daily discharges: Jan. 10-12, 27, 28, and June 15-21. Records good except those for estimated daily discharges, which are poor. Flow regulated by Saylorville Lake (Station 05481630) 2.3 mi upstream since Apr. 12, 1977. U.S. Army Corps of Engineers satellite data collection platform and U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $47,400 \text{ ft}^3/\text{s Apr. } 10,\ 1965,\ \text{gage height, } 24.02 \text{ ft; minimum daily discharge, } 13 \text{ ft}^3/\text{s Jan. } 25,\ 1977.$


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1893, 24.5 ft June 24, 1954, from floodmarks, discharge, 60,000 ft³/s.

		DISC	HARGE, CU	BIC FEET P		, WATER LY MEAN	YEAR OCTOBI	ER 1997 T	O SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAF	R APR	MAY	JUN	JUL	AUG	SEP
1	270	555	606	288	438	4390	2510	9070	9090	11600	3870	1060
2 3	270	555	604	306	534	4170	2850	8800	8550	11700	3870	1060
3	275	557	608	534	571	3870	3660	8280	7600	11400	3760	1050
4	277	484	606	684	574	3370	4920	7660	6070	11200	3720	1070
5	280	417	601	689	576	3150		6980	5280	11100	3740	962
6	283	41 2	489	687	504	3130	8660	6250	5110	10900	3760	892
7	283	350	357	689	452	2860	10900	4850	4620	8450	4240	887
8	285	306	316	689	454	2640	12800	2610	4390	7250	5390	887
9	307	304	318	549	461	2610		2110	3700	8340	5940	739
10	312	301	447		475	1930		2100	3600	10700	5900	6 4 3
11	288	302	563	e496	620	1420	14800	3540	5800	11300	5780	638
12	311	349	1340		726	1310		5510	6120	10600	5840	6 41
13	463	386	1810		731	1230	14600	5600	6900	10200	6410	638
14	593	386	1800		667	1190		4670	6790	9410	6060	635
15	653	489	1280		640	1620		3660	e4750	9280	5840	642
16	656	552	617	291	1160	2090	8020	3330	e3070	8870	5740	658
17	657	414	549		2160	2490		4910	e3400	8230	4580	500
18	659	299	541		3240	2490		7860	e2280	8180	2130	315
19	663	301	541		4560	2200		9250	e2720	6840	1290	226
20	663	388	545		5580	2330		8420	e2740	4540	1370	331
21	665	443	498	316	6250	2430	13600	7620	e2610	3650	1800	404
22	608	444	470		6880	2700		6800	4450	3740	2540	304
23	571	444	470		7210	3050		5960	6710	3660	2860	236
24	634	444	467	321	5940	3150		4410	10000	3340	2270	227
25	666	449	471		5060	3140		3280	10800	3080	1620	225
26	740	493	474	328	5100	3260	11600	3620	10800	2960	1440	221
27	799	522	471		4930	3890		5420	10800	2870	1220	187
28	805	520	379	e334	4710	4660	10700	7350	10400	2890	1250	163
29	806	523	299	319		5010	10100	8610	10200	2990	1210	152
30	655	573	298	322		5690	9550	9140	11300	3480	1070	201
31	556		285			4620		9120		3870	1070	
TOTAL	15953	12962	19120		71203	92090		186790		226620	107580	16794
MEAN	515	432	617	397	2543	2971		6025	6355	7310	3470	560
MAX	806	573	1810		7210	5690		9250	11300	11700	6410	1070
MIN	270	299	285		438	1190		2100	2280	2870	1070	152
AC-FT	31640	25710	37920		141200	182700		370500		449500	213400	33310
CFSM	. 09	. 07	.11	. 07	.44	.51		1.03	1.09	1.25	. 59	.10
IN.	.10	.08	.12	.08	.45	.59	1.98	1.19	1.21	1.44	.69	.11
STATIS:	rics of	MONTHLY I	ÆAN DATA	FOR WATER	YEARS 19	78 - 199	8, BY WATER	R YEAR (W	Y)			
MEAN	1973	2214	1800	1010	1654	4680	6961	6389	7094	6610	3330	2295
MAX	7161	6210	5345	3605	6591	13800	17790	18170	19540	32820	15440	13450
(WY)	1987	1987	1983	1983	1984	1983		1993	1991	1993	1993	1993
MIN	194	190	205	190	209	362	623	1305	877	254	212	225
(WY)	1990	1990	1990		1978	1981		1989	1988	1988	1989	1988

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WAS	rer year	WATER YEAR	s 1978 - 1998a
ANNUAL TOTAL	1233268		1263015			
ANNUAL MEAN	3379		3460		3842	
HIGHEST ANNUAL MEAN					11320	1993
LOWEST ANNUAL MEAN					487	1989
HIGHEST DAILY MEAN	13600	Mar 15	14800	Apr 11	44300	Jul 21 1993
LOWEST DAILY MEAN	190	Sep 16	152	Sep 29	144	Nov 29 1977
ANNUAL SEVEN-DAY MINIMUM	216	Sep 16	197	Sep 24	165	Mar 5 1978
INSTANTANEOUS PEAK FLOW		-	14900	Apr 11	45700	Jul 21 1993
INSTANTANEOUS PEAK STAGE			13.95	Apr 11	24.22	Jul 21 1993
ANNUAL RUNOFF (AC-FT)	2446000		2505000	_	2783000	
ANNUAL RUNOFF (CFSM)	.58		.59		. 66	
ANNUAL RUNOFF (INCHES)	7.85		8.04		8.94	
10 PERCENT EXCEEDS	8990		10000		10800	
50 PERCENT EXCEEDS	1350		1800		2050	
90 PERCENT EXCEEDS	299		304		270	

Post regulation Estimated

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD: October 1961 to current year.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: December 1967 to current year.

WATER TEMPERATURES: October 1961 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1961 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis. During periods of partial ice cover, sediment samples are collected in open water channel.

EXTREMES FOR PERIOD OF DAILY RECORD .--

TREMES FOR PERIOD OF DAILY RECORD.—

SPECIFIC CONDUCTANCE: Maximum daily, 1,400 microsiemens Feb. 18, 1977; minimum daily, 90 microsiemens Feb. 19, 1971.

WATER TEMPERATURES: Maximum daily, 36.0°C June 29, 1971; minimum daily, 0.0°C on many days during winter periods.

SEDIMENT CONCENTRATIONS: Maximum daily mean, 5,400 mg/L May 14, 1970; minimum daily mean, 1 mg/L Jan. 8, 1965, Sept. 1, 1988, Feb. 9, July 8, 1990.

SEDIMENT LOADS: Maximum daily, 148,000 tons June 12, 1966; minimum daily, 0.56 tons Sept. 1, 1988.

EXTREMES FOR CURRENT YEAR . --

REFINES FOR CURRENT FEAR.-SPECIFIC CONDUCTANCE: Maximum daily, 779 microsiemens Jan. 23; minimum daily, 446 microsiemens Aug. 3.
WATER TEMPERATURES: Maximum daily, 29.5°C Aug. 23, 28; minimum daily, 1.5°C Dec. 28, and Jan. 3.
SEDIMENT CONCENTRATIONS: Maximum daily mean, 167 mg/L June 12; minimum daily mean, 3 mg/L Dec. 2-6.
SEDIMENT LOADS: Maximum daily, 2,930 tons June 13; minimum daily, 4.4 tons Dec. 6.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

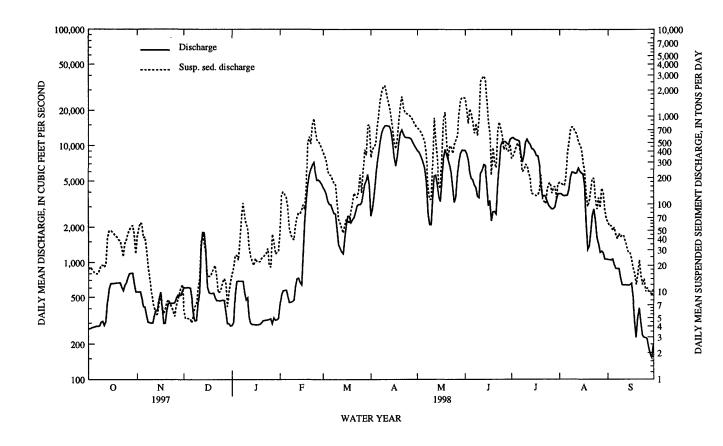
		DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)		
	00	T								
	DE	31	1100	9.4	546	14	21	92		
		17	1345	1.6	550	10	15	96		
	JA	N 28	1200	2.3	319	16	14	82		
	MA		0030	1.4	2210	9	56	94		
	AF		0930	1.4	2310	9	30	24		
		20	1545	11.1	14200	33	1270	75		
		06	1330	23.0	11600	14	438	91		
		25	1310	26.9	1700	34	156	94		
	SE	P 29	1215	21.5	155	20	8.4	97		
DATE	TIME	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)
SEP 29	1130	3	0	1	22	58	79	89	98	100

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued

	SPECIE	FIC CONDUC	CTANCE MIC		S/CM AT 2: DAILY INS			r october	1997 TO	SEPTEMBER	1998	
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	607	592	629		606		664		528	583		563
2	615		635	648	617		620		561	572	451	558
3	622			625		554	547	513	632	567	446	561
4		575				563	589	528	535		458	557
5	631	597		671			621	532		548	536	558
											•	•••
6	629	579			610		565	652	535	546	447	
7	638		660		608		630	542	580	542	469	562
8	634		650	607			662		577	562		564
9	632						662		547			564
10	632				696		604		518	577		567
11							637	536				563
12		625					640	553	538	574		
13	632	620	625		617	622	653	539	580	573		
14	632		646				645	524	537	582	400	568
15				641	599		647	534	508	490	492	572
16				601	610	626	674		E10	537	E40	E70
17		617	595	601 618	612	626			518 529	23/	548 569	572 567
18		622	621	010	607	647		544	609		587	572
19		628	579		620	655	663	545	586	491	538	581
20			581		585	692	655	602	583	585	570	576
					•••	052		***			-,-	
21			582		647	663	566	610	544	596	574	591
22			624	680	582	650	537	599	606	583		595
23	636		669	779	553	655	541		535	594	572	584
24	640	636		647	527	654	526		602	595	572	580
25		628		616		671		569	609		569	590
26		628		630		691	547	572	595	547	549	604
27				641		679	524	651	594	592	561	594
28			623	608		671	565	581	593	508	546	598
29	597		587	626		693	516	541	587	526		594
30	601	644	611			655	513		578	600		594
31	656					572				576	564	
		TEMPE	ERATURE, W		G. C), WAT DAILY INST			997 TO SE	PTEMBER 19	998		
DAY	OCT	TEMPE NOV	DEC					997 TO SE	PTEMBER 19	JUL	AUG	SEP
DAY 1	OCT 19.0			Ι	DAILY INST	TANTANEOU:	S VALUES				AUG 	SEP 27.0
		NOV 10.5	DEC	JAN	PAILY INST	MAR	APR	MAY	JUN	JUL		27.0 27.0
1	19.0	NOV 10.5	DEC 5.0	JAN	FEB 3.5	MAR	APR 9.0	MAY	JUN 22.0	<i>J</i> UL 25.5		27.0
1 2	19.0 20.0	NOV 10.5	DEC 5.0 5.0	JAN 6.0	FEB 3.5 3.5	MAR	APR 9.0 10.5	MAY 	JUN 22.0 23.5	JUL 25.5 25.5	 26.0	27.0 27.0
1 2 3	19.0 20.0 24.0	NOV 10.5	DEC 5.0 5.0	JAN 6.0 1.5	FEB 3.5 3.5	MAR 4.0	9.0 10.5 10.5	MAY 15.5	JUN 22.0 23.5 20.0	JUL 25.5 25.5 25.5	26.0 26.5	27.0 27.0 27.0
1 2 3 4 5	19.0 20.0 24.0 23.0	NOV 10.5 8.0 9.5	DEC 5.0 5.0	JAN 6.0 1.5	FEB 3.5 3.5	MAR 4.0 4.5	APR 9.0 10.5 10.5 10.5 10.5	MAY 15.5 15.0 16.5	JUN 22.0 23.5 20.0 20.0	JUL 25.5 25.5 25.5 24.5	26.0 26.5 27.0 26.0	27.0 27.0 27.0 27.5 26.0
1 2 3 4 5	19.0 20.0 24.0 23.0	NOV 10.5 8.0	DEC 5.0 5.0	JAN 6.0 1.5 3.5	FEB 3.5 3.5 5.0	MAR 4.0 4.5	9.0 10.5 10.5 10.5 10.0	MAY 15.5 15.0 16.5	JUN 22.0 23.5 20.0 20.0	JUL 25.5 25.5 25.5 24.5 25.0	26.0 26.5 27.0 26.0	27.0 27.0 27.0 27.5 26.0
1 2 3 4 5 6 7	19.0 20.0 24.0 23.0 22.0 23.5	NOV 10.5 8.0 9.5	DEC 5.0 5.0 3.0	JAN 6.0 1.5 3.5	FEB 3.5 3.5	MAR 4.0 4.5	9.0 10.5 10.5 10.5 10.0	MAY 15.5 15.0 16.5 17.0 18.0	JUN 22.0 23.5 20.0 20.0 19.0 20.0	JUL 25.5 25.5 25.5 24.5 25.0 26.5	26.0 26.5 27.0 26.0 25.5 26.0	27.0 27.0 27.0 27.5 26.0
1 2 3 4 5	19.0 20.0 24.0 23.0 22.0 23.5 21.0	NOV 10.5 8.0 9.5	DEC 5.0 5.0	JAN 6.0 1.5 3.5	FEB 3.5 3.5 5.0 5.0	MAR 4.0 4.5	9.0 10.5 10.5 10.5 10.0 10.0	MAY 15.5 15.0 16.5	JUN 22.0 23.5 20.0 20.0 19.0 20.0 23.0	JUL 25.5 25.5 25.5 24.5 25.0	26.0 26.5 27.0 26.0	27.0 27.0 27.0 27.5 26.0
1 2 3 4 5 6 7	19.0 20.0 24.0 23.0 22.0 23.5	Nov 10.5 8.0 9.5	DEC 5.0 5.0 3.0 2.0	JAN 6.0 1.5 3.5 5.5	FEB 3.5 3.5 5.0 5.0	MAR 4.0 4.5	9.0 10.5 10.5 10.5 10.0 10.0 11.5 10.0	MAY 15.5 15.0 16.5 17.0 18.0	JUN 22.0 23.5 20.0 20.0 19.0 20.0	JUL 25.5 25.5 25.5 24.5 25.0 26.5 27.0	26.0 26.5 27.0 26.0 25.5 26.0	27.0 27.0 27.0 27.5 26.0
1 2 3 4 5 6 7 8 9	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0	NOV 10.5 8.0 9.5 8.0	DEC 5.0 5.0 3.0 2.0	JAN 6.0 1.5 3.5	FEB 3.5 3.5 5.0 5.0	MAR 4.0 4.5	9.0 10.5 10.5 10.5 10.0 10.0	MAY 15.5 15.0 16.5 17.0 18.0	JUN 22.0 23.5 20.0 20.0 19.0 20.0 23.0 19.0	JUL 25.5 25.5 25.5 24.5 25.0 26.5 27.0	26.0 26.5 27.0 26.0 25.5 26.0	27.0 27.0 27.0 27.5 26.0
1 2 3 4 5 6 7 8 9 10	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 	5.0 5.0 3.0 2.0	JAN 6.0 1.5 3.5 5.5	FEB 3.5 3.5 5.0 5.0 4.5	MAR 4.0 4.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0	JUN 22.0 23.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0	27.0 27.0 27.0 27.5 26.0
1 2 3 4 5 6 7 8 9 10	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 7.0	DEC 5.0 5.0 3.0 2.0	JAN 6.0 1.5 3.5 5.5	FEB 3.5 3.5 5.0 5.0 4.5	MAR 4.0 4.5	9.0 10.5 10.5 10.0 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0	JUN 22.0 23.5 20.0 20.0 19.0 20.0 23.0 19.0 20.0	JUL 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0	27.0 27.0 27.5 26.0 28.0 27.0 24.0 24.5
1 2 3 4 5 6 7 8 9 10 11 12 13	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 	DEC 5.0 5.0 3.0 2.0 3.0	JAN 6.0 1.5 3.5 5.5	FEB 3.5 3.5 5.0 5.0 4.5	MAR 4.0 4.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0	JUN 22.0 23.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	JUL 25.5 25.5 25.5 24.5 24.5 25.0 26.5 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0	27.0 27.0 27.0 27.5 26.0 28.0 27.0 24.5 25.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0	JAN 6.0 1.5 3.5 5.5	FEB 3.5 3.5 5.0 5.0 5.0 4.5	MAR 4.0 4.5 4.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5	JUN 22.0 23.5 20.0 20.0 19.0 20.0 23.0 19.0 20.0 20.5 21.5 20.0	25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 26.5 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0	27.0 27.0 27.0 27.5 26.0 28.0 27.0 24.0 24.5
1 2 3 4 5 6 7 8 9 10 11 12 13	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 7.0	DEC 5.0 5.0 3.0 2.0 3.0	JAN 6.0 1.5 3.5 5.5	FEB 3.5 3.5 5.0 5.0 4.5	MAR 4.0 4.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0	JUN 22.0 23.5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	JUL 25.5 25.5 25.5 24.5 24.5 25.0 26.5 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0	27.0 27.0 27.0 27.5 26.0 28.0 27.0 24.5 25.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0	JAN 6.0 1.5 3.5 5.5 2.0	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 4.5 6.0	MAR 4.0 4.5 4.5 4.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5	JUN 22.0 23.5 20.0 20.0 20.0 20.0 23.0 19.0 20.0 20.0 21.5 20.0 22.0	JUL 25.5 25.5 25.5 24.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 	27.0 27.0 27.5 26.0 28.0 27.0 24.0 24.5 25.0 24.5 24.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0	FEB 3.5 3.5 5.0 5.0 5.0 4.5 4.5 6.0 5.0	MAR 4.0 4.5 4.1 4.5 4.5 4.5 4.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5	JUN 22.0 23.5 20.0 20.0 19.0 20.0 23.0 19.0 20.0 20.0 20.0 22.0	25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 27.0	27.0 27.0 27.5 26.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 24.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0	5.0 5.0 3.0 2.0 3.0 3.0 3.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0	FEB 3.5 3.5 5.0 5.0 4.5 6.0 5.0	MAR 4.0 4.5 4.5 4.0	9.0 10.5 10.5 10.5 10.0 10.0 10.0 11.5 10.0 10.5 10.0 10.0	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5	JUN 22.0 23.5 20.0 20.0 19.0 20.0 23.0 19.0 20.0 20.0 20.0 20.5 21.5 20.0 22.0 22.0	25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 27.0	27.0 27.0 27.5 26.0 28.0 27.0 24.0 24.5 25.0 24.5 24.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5	MAR 4.0 4.5 4.0 4.5 4.0 3.0	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 21.5 20.0 22.0 22.0 20.5 22.0	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 27.0	27.0 27.0 27.5 26.0 28.0 27.0 24.0 24.5 25.0 24.5 24.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 4.5	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0	FEB 3.5 3.5 5.0 5.0 5.0 4.5 4.5 6.0 5.0 5.0 5.0	MAR 4.0 4.5 4.1 4.0 4.5 4.0 4.5 4.0 4.5 4.5 4.0 4.0	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 23.0 19.0 20.0 22.0 22.0 22.0 24.0	25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 	27.0 27.0 27.5 26.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 24.5 25.5 25.0 23.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5	MAR 4.0 4.5 4.0 4.5 4.0 3.0	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 21.5 20.0 22.0 22.0 20.5 22.0	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 27.0	27.0 27.0 27.5 26.0 28.0 27.0 24.0 24.5 25.0 24.5 24.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 3.0 4.5 4.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0	PAILY INST FEB 3.5 3.5 3.5 5.0 5.0 4.5 4.5 6.0 5.0 5.0 5.0 5.0 5.0	MAR 4.0 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 23.0 19.0 20.0 22.0 22.0 22.0 24.0	JUL 25.5 25.5 25.5 24.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 28.0 27.0 28.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 	27.0 27.0 27.5 26.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 24.5 25.5 25.0 23.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 4.5	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0	FEB 3.5 3.5 5.0 5.0 5.0 4.5 4.5 6.0 5.0 5.0 5.0	MAR 4.0 4.5 4.1 4.0 4.5 4.0 4.5 4.0 4.5 4.5 4.0 4.0	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 21.5 20.0 22.0 22.0 24.0 25.0	25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 27.0 27.0 27.0 27.0 26.5 29.0	27.0 27.0 27.5 26.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 24.5 25.5 23.5 23.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 4.5 4.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0	PAILY INST FEB 3.5 3.5 5.0 5.0 5.0 4.5 6.0 5.0 5.0 4.5 4.5 4.5 4.5 5.0 4.5	MAR 4.0 4.5 4.5 4.6 4.7 4.0 4.5 4.5 4.0 4.0 4.0 4.5 3.5 4.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 23.0 20.0 20.0 20.5 21.5 20.0 22.0 22.0 24.0 25.0	25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 27.0 27.0 27.0 27.0 28.0	27.0 27.0 27.0 27.5 26.0 28.0 24.0 24.5 25.0 24.5 24.5 25.5 24.5 25.5 23.5 23.0 23.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5 14.5 14.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0 5.5	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 4.5 4.0 2.0 3.0 4.5	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0 2.5 3.0 4.0	PAILY INST FEB 3.5 3.5 5.0 5.0 5.0 4.5 6.0 5.0 4.5 6.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5	MAR 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.5 3.5 4.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 11.5 10.0 10.5 13.5 13.5 13.0 12.5 12.0 13.5 13.0 14.0	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 23.0 20.0 20.5 21.5 20.0 22.0 22.0 24.0 25.0 24.0 22.0 23.0 23.0 23.0	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 28.0 27.0 28.0 27.0 27.0 28.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 	27.0 27.0 27.5 26.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 24.5 25.5 23.0 23.0 23.0 23.0 23.0 21.0 21.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5 14.5	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 4.5 4.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0 2.5 3.0	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 5.0	MAR 4.0 4.5 4.5 4.6 4.7 4.0 4.5 4.5 4.0 4.0 4.0 4.5 3.5 4.5	9.0 10.5 10.5 10.5 10.0 10.0 11.5 10.0 10.5 12.5 13.0 12.5 12.0	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 23.0 20.0 20.5 21.5 20.0 22.0 24.0 25.0 24.0 25.0	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 	27.0 27.0 27.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 25.5 23.0 23.0 23.0 23.0 23.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5 14.5 14.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0 5.5 8.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 4.5 4.0 2.0 3.0 4.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0 2.5 3.0 4.0 4.5	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 6.0 5.0 5.0 4.5 4.5 4.5 4.5 5.0 4.5 4.5	MAR 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.5 3.0 4.0	9.0 10.5 10.5 10.5 10.0 10.0 11.5 10.0 10.5 10.0 10.5 13.5 13.0 12.5 12.0 12.5 13.0 12.5	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0 22.0	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 21.5 20.0 22.0 22.0 24.0 25.0 24.0 25.0 24.0 23.0 23.0 24.0 23.0 24.5	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 28.0 27.0 28.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 	27.0 27.0 27.0 27.5 26.0 28.0 24.0 24.5 25.0 24.5 25.5 23.5 23.0 23.0 21.0 21.5 24.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5 14.5 14.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0 5.5 8.0 5.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 4.5 4.0 2.0 3.0 4.5	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0 2.5 3.0 4.0 4.5	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 6.0 5.0 4.5 6.0 5.0 4.5 6.0	MAR 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 3.0 4.0 4.0 4.5 3.5 4.5 4.5 5.0	9.0 10.5 10.5 10.5 10.0 10.0 10.0 11.5 10.0 10.5 13.5 13.5 13.0 12.5 12.0 13.5 13.0 14.0 14.0 14.0	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0 22.0 22.5	JUN 22.0 23.5 20.0 20.0 20.0 21.0 22.0 20.0 22.0 22.0	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 28.0 27.0 28.0 27.0 27.0 28.0 27.0 27.0 28.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 25.5 26.0 27.0 27.0 27.0 27.0 28.0 29.5 28.0 27.0 28.5	27.0 27.0 27.5 26.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 24.5 25.5 23.0 23.0 23.0 21.0 21.5 24.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5 14.5 14.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0 5.5 8.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 4.5 4.0 2.0 3.0 4.5	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0 2.5 3.0 4.5 5.0 5.0	PAILY INST FEB 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	MAR 4.0 4.5 4.0 4.5 4.0 4.5 4.5 4.5 5.0 4.0 4.5 8.0 9.5	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0 22.0	JUN 22.0 23.5 20.0 20.0 20.0 19.0 23.0 19.0 20.0 22.0 22.0 22.0 24.0 25.0 24.0 23.0 24.5 25.0 25.0	25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 25.5 26.0 27.0 27.0 27.0 28.0 29.5 28.0 27.0 28.5 26.0	27.0 27.0 27.5 26.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 25.5 25.5 23.5 23.0 23.0 21.0 21.5 24.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5 14.5 14.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0 5.5 8.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 4.5 4.0 2.0 3.0 4.5 4.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0 2.5 3.0 4.0 4.5 5.0 5.0 5.0	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 6.0 5.0 5.0 4.5 4.5 4.5 5.0 4.5 4.5 5.0	MAR 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 8.0 9.5 8.0	9.0 10.5 10.5 10.5 10.0 10.0 11.5 10.0 10.5 10.0 10.5 13.5 13.0 12.5 12.0 12.5 13.0 14.0 15.0 14.0 15.0 14.0	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0 22.0 22.5	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 21.5 20.0 22.0 22.0 24.0 25.0 24.0 25.0 24.0 23.0 24.5 25.0 27.0	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 25.5 26.0 27.0 27.0 27.0 27.0 28.0 29.5 28.0 27.0 28.5 28.0 27.0	27.0 27.0 27.0 27.5 26.0 28.0 27.0 24.5 25.0 24.5 24.5 25.5 23.5 23.0 23.0 21.0 21.5 24.0 23.0 21.5 24.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5 14.5 14.0 13.5	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0 5.5 8.0 5.0	DEC 5.0 5.0 5.0 3.0 2.0 3.0 3.0 3.0 3.0 3.0 4.5 4.0 2.0 3.0 4.5 4.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0 2.5 3.0 4.0 4.5 5.0 5.0 5.0 4.5	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 6.0 5.0 4.5 6.0 5.0 4.5 6.0	MAR 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 8.0 4.0 4.5 8.0 8.0 8.0	9.0 10.5 10.5 10.5 10.0 10.0 10.0 10.0 10	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0 22.0 22.5 22.0 21.0	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 21.5 20.0 22.0 22.0 24.0 25.0 24.0 23.0 24.5 25.0 24.0 26.0	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 28.0 27.0 27.0 27.0 27.0 28.0 27.0 27.0 27.0 27.0 28.0 27.0 27.0 27.0 27.0 28.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 27.0 27.0 27.0 27.0 28.0 29.5 28.0 27.0 28.5 26.0 29.5 29.5 29.5	27.0 27.0 27.5 26.0 27.5 26.0 27.0 24.0 24.5 25.0 24.5 24.5 23.5 23.0 23.0 21.5 24.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	19.0 20.0 24.0 23.0 22.0 23.5 21.0 20.0 19.0 19.0 16.5 14.5 14.0	NOV 10.5 8.0 9.5 8.0 7.0 7.0 7.0 6.5 4.0 5.5 8.0	DEC 5.0 5.0 3.0 2.0 3.0 3.0 3.0 4.5 4.0 2.0 3.0 4.5 4.0	JAN 6.0 1.5 3.5 5.5 2.0 2.0 5.0 2.5 3.0 4.0 4.5 5.0 5.0 5.0	PAILY INST FEB 3.5 3.5 5.0 5.0 4.5 6.0 5.0 5.0 4.5 4.5 4.5 5.0 4.5 4.5 5.0	MAR 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0 8.0 9.5 8.0	9.0 10.5 10.5 10.5 10.0 10.0 11.5 10.0 10.5 10.0 10.5 13.5 13.0 12.5 12.0 12.5 13.0 14.0 15.0 14.0 15.0 14.0	MAY 15.5 15.0 16.5 17.0 18.0 20.0 20.0 21.5 22.5 24.0 23.5 22.5 23.0 21.0 22.0 22.5	JUN 22.0 23.5 20.0 20.0 20.0 23.0 19.0 20.0 21.5 20.0 22.0 22.0 24.0 25.0 24.0 25.0 24.0 23.0 24.5 25.0 27.0	JUL 25.5 25.5 25.5 25.5 24.5 25.0 26.5 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0	26.0 26.5 27.0 26.0 25.5 26.0 25.5 26.0 27.0 27.0 27.0 27.0 28.0 29.5 28.0 27.0 28.5 28.0 27.0	27.0 27.0 27.0 27.5 26.0 28.0 27.0 24.5 25.0 24.5 24.5 25.5 23.5 23.0 23.0 21.0 21.5 24.0 23.0 21.5 24.0

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998


	SUSPENDED SEDIMENT, WALLA TEAR OCTOBER 1997 TO SEPTEMBER 1990											
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OC T O	BER	NOVEMBI	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	Н
1 2 3 4 5	24 26 24 23 21	18 19 18 17 16	28 34 41 45 36	43 52 61 59 41	4 3 3 3 3	6.0 4.9 4.9 4.9	20 23 18 14 12	16 19 26 26 23	41 87 90 83 77	49 127 138 129 120	33 31 30 27 26	390 354 313 243 218
6 7 8 9 10	21 21 24 24 24	16 16 18 20 20	38 31 23 17 13	42 30 19 14 10	3 6 8 8	4.4 5.3 6.7 7.2	20 35 55 53 46	37 65 103 78 59	68 44 36 33 31	94 53 45 41 39	25 25 25 24 21	214 192 175 170 110
11 12 13 14 15	25 25 32 31 28	19 21 41 49 50	9 7 5 5 5	7.6 6.5 5.4 5.5 7.3	9 10 10 7 8	14 35 47 36 27	40 35 31 27 25	54 32 25 22 20	33 36 40 43 48	56 71 79 78 84	18 17 16 15 13	67 60 53 47 58
16 17 18 19 20	27 26 24 23 22	48 46 43 42 39	6 7 8 7	8.5 6.7 5.6 6.3 7.6	9 10 10 12 12	15 15 15 17 18	31 28 28 28 29	24 22 22 22 24	38 15 16 38 39	98 88 146 488 582	12 10 9 14 16	67 65 60 81 102
21 22 23 24 25	21 19 16 21 22	38 32 25 35 39	7 6 6 5 4	8.0 7.3 6.7 6.0 5.2	15 12 8 8 9	20 15 9.7 9.9	30 30 32 35 23	25 26 27 31 20	29 43 49 41 39	483 802 945 668 534	20 17 14 17 26	134 125 119 143 218
26 27 28 29 30 31	23 24 25 26 26 18	46 51 54 57 46 27	5 6 7 8 8	6.7 8.2 9.5 11 12	10 11 12 8 13 17	13 14 12 6.7 10	21 56 41 31 32 33	19 45 37 27 28 29	37 36 34 	515 477 436 	15 23 33 27 51 64	135 243 416 363 787 801
TOTAL	L	1026	 SUSPENDEI	518.6 D-SEDIMEN	T, WATER	433.5 YEAR OCTO	 DBER 1997 '	1033 TO SEPTEM	 ÆER 1998	7465		6523

SUSPENDED-SEDIMENT,	WATER	YEAR	OCTOBER	1997	TO	SEPTEMBER	1998
---------------------	-------	------	---------	------	----	-----------	------

DAY	MEA CON TRA (MG	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)	MEAN CONCE TRATI (MG/L	LOAD (TON DAY)	MEAN CONCE TRATI (MG/L	LOAD (TON DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)
	1	APRIL	MA	Y	JU	NE	JUL	Υ .	AUGU	ST	SEPTE	MBER
1	51	343	30	734	66	1620	11	333	17	176	21	62
2	54	417	30	713	52	1200	11	356	17	173	20	56
3	46	451	30	671	41	834	13	398	16	166	20	57
4	37	484	30	621	75	1220	15	449	16	162	17	50
5	38	730	30	565	75	1070	16	491	20	198	21	54
6	45	1050	29	490	62	851	16	460	39	394	19	45
7	52	1540	25	330	52	642	15	338	45	512	17	40
8	55	1910	22	152	70	831	12	236	49	714	19	46
9	58	2190	20	114	58	604	11	245	47	760	21	42
10	57	2260	20	113	84	960	10	287	45	716	25	44
11	47	1880	28	290	161	2550	9	272	43	664	25	44
12	38	1520	64	959	167	2760	8	232	39	608	22	38
13	32	1270	33	507	157	2930	7	204	30	513	19	33
14	28	1000	26	335	148	2710	5	133	29	471	17	28
15	26	731	17	165	121	1550	5	130	27	420	16	28
16	24	511	17	151	106	879	5	129	19	294	14	24
17	23	427	27	371	71	652	6	124	20	239	14	19
18	25	548	43	934	35	215	6	128	23	132	19	16
19	30	861	45	1120	60	441	8	139	27	94	19	12
20	38	1320	22	508	4 0	296	18	216	29	107	18	16
21	46	1690	16	334	37	261	12	114	30	144	21	23
22	38	1280	25	461	55	666	11	107	28	196	18	15
23	35	1100	28	446	48	859	10	101	26	197	19	12
24	34	1080	33	379	27	721	16	146	19	114	22	14
25	33	1050	54	476	21	601	20	170	20	88	17	10
26 27 28 29 30 31	33 32 31 31 30	1020 991 909 838 781	56 39 55 66 67 67	536 597 1090 1540 1650 1650	14 16 14 15 16	418 472 402 403 476	22 17 20 20 13 16	175 133 154 159 118 169	30 28 44 40 30 23	118 91 151 134 88 67	18 20 22 22 21	11 10 9.9 8.9 11
TOTAL YEAR		32182 114902.9		19002		30094		6846		8901		878.8

05481650 DES MOINES RIVER NEAR SAYLORVILLE, IA--Continued

SUSPENDED-SEDIMENT--Continued

05481950 BEAVER CREEK NEAR GRIMES, IA

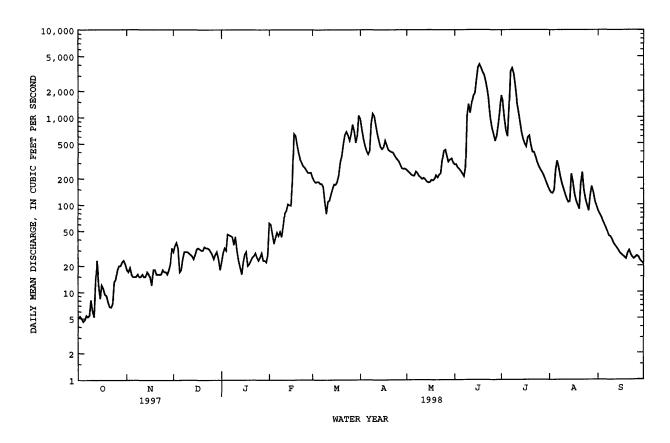
LOCATION.--Lat $41^{\circ}41^{\circ}18^{\circ}$, long $93^{\circ}44^{\circ}06^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec.35, T.80 N., R.25 W., Polk County, Hydrologic Unit 07100004, on left bank 10 ft upstream from bridge on Northwest 70th Avenue, 0.5 mi downstream from Little Beaver Creek, 2.5 mi east of Grimes, and 6 mi upstream from mouth.

DRAINAGE AREA. -- 358 mi².

PERIOD OF RECORD. -- April 1960 to current year.

REVISED RECORDS. -- WDR IA-77-1: 1974 (P), WDR IA-95-1:location.

GAGE.--Water stage recorder. Datum of gage is 806.98 ft above sea level. Prior to Aug. 31, 1966, nonrecording gage at same site and datum.


REMARKS.--Estimated daily discharges: Nov. 17, Dec. 4-7, 13-15, Dec. 26 to Jan. 2, 11-26, Feb. 3-7, June 15, and Sept. 10-14. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

	DISC	HARGE, CUB	IC FEET PER		WATER YI	EAR OCTOBER	1997 T O	SEPTEMBE	ER 1998		
DAY 0	CT NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	lar	AUG	SEP
2 5 3 5 4 4	.1 18 .3 17 .0 19 .6 16 .8 15	29 34 37 e32 e17	e22 e28 32 30 46	62 60 e46 e36 e42	206 188 180 183 183	960 718 562 471 412	252 241 233 222 217	288 291 267 257 243	1780 1520 965 704 605	147 137 135 147 248	85 78 72 66 60
7 5 8 5 9 8	.4 15 .2 15 .4 16 .1 15 .1 15	e18 e24 29 29 29	45 44 43 35 43	e48 e44 49 43 56	174 174 161 108 79	378 413 839 1110 1040	215 240 230 214 206	227 212 268 1050 1420	1320 3390 3680 3200 2270	316 267 208 174 152	54 49 44 43 e40
12 13 13 23 14 12	15	28 27 e26 e24 e27	e30 e23 e19 e16 e22	80 86 102 99 98	109 112 131 151 171	812 644 538 457 433	197 203 196 184 180	1130 1460 1770 1910 e2690	1510 1180 899 681 563	132 117 107 109 225	e36 e34 e32 e30 28
19 9		31 32 31 30 30	e27 e29 e20 e21 e23	191 649 616 477 388	169 182 216 297 370	456 541 480 425 412	181 192 190 197 218	3750 4070 3720 3330 3060	499 461 588 615 479	181 132 111 99 89	27 26 25 24 28
22 6		33 32 32 31 29	e25 e26 e28 e25 e23	331 304 278 268 249	500 634 687 624 542	401 397 368 344 329	205 221 229 329 412	2560 2040 1510 993 765	399 398 352 312 279	171 234 146 115 98	30 27 25 24 25
26 18 27 20 28 20 29 22 30 23 31 21	17 16 18 21 32	e27 e24 e27 e29 e24 e18	e25 28 23 23 22 27	233 232 234 	647 827 694 514 618 1050	314 287 262 258 260	424 355 310 328 337 306	643 534 608 804 1140	256 239 221 200 179 162	85 127 162 137 109 96	26 25 23 22 21
MIN 4 AC-FT 6 CFSM .		870 28.1 37 17 1730 .08	873 28.2 46 16 1730 .08 .09	5401 193 649 36 10710 .54 .56	10881 351 1050 79 21580 .98 1.13	15321 511 1110 258 30390 1.43 1.59	7664 247 424 180 15200 .69 .80	43010 1434 4070 212 85310 4.00 4.47	29906 965 3680 162 59320 2.69 3.11	4713 152 316 85 9350 .42 .49	1129 37.6 85 21 2240 .11
STATISTICS	OF MONTHLY	MEAN DATA I	OR WATER Y			BY WATER Y	EAR (WY)				
	58 .63	104 486 1983 .77 1977	64.1 305 1974 .002 1977	127 526 1973 .35 1977	360 1171 1979 3.98 1981	383 1275 1965 3.26 1981	418 1419 1974 1.11 1981	466 1434 1998 1.41 1977	291 2160 1993 .24 1977	112 695 1993 .73 1988	76.1 654 1993 .26 1988
SUMMARY STA	ristics	FOR	1997 CALENI	DAR YEAR	F	FOR 1998 WAT	ER YEAR		WATER YEA	RS 1961	- 1998
ANNUAL TOTA ANNUAL MEAN HIGHEST ANN LOWEST ANNU HIGHEST DAIL LOWEST DAIL ANNUAL SEVE INSTANTANEO INSTANTANEO INSTANTANEO ANNUAL RUNO ANNUAL RUNO ANNUAL RUNO DERCENT 50 PERCENT	UAL MEAN AL MEAN LY MEAN Y MEAN Y MEAN N-DAY MINIM US PEAK FLOO US PEAK STAO US LOW FLOW FF (AC-FT) FF (CFSM) FF (INCHES) EXCEEDS	v.	3.9	May 3 Sep 20 Sep 16		120611.8 330 4070 4.6 5.1 4280 13.20 4.0 239200 .92 12.53 781 117 16	0ct 1 Jun 17 Jun 17		219 575 17.3 11500 .00 .00 14300 16.58 158900 .61 8.32 560 76 2.1	Jul 1 Sep Oct Jul 1	1993 1981 10 1993 8 1970a 7 1971 10 1993 10 1993

a Also Sep 11-13, 1970, Sep 17, 18, Oct 7-17, 1971; many days during 1977

e Estimated

05481950 BEAVER CREEK NEAR GRIMES, IA--Continued

05482000 DES MOINES RIVER AT SECOND AVENUE AT DES MOINES, IA

LOCATION.--Lat $41^{\circ}36^{\circ}45^{\circ}$, long $93^{\circ}37^{\circ}15^{\circ}$, in $NE^{1}/_{4}$ NE $^{1}/_{4}$ sec.34, T.79 N., R.24 W., Polk County, Hydrologic Unit 07100004, on right bank 5 ft upstream from 2nd Avenue or State Highway 60 bridge in Des Moines, 1.8 miles upstream from Des Moines Electric Company dam, 2.8 miles upstream from Raccoon River, and 4.5 miles downstream from Beaver Creek.

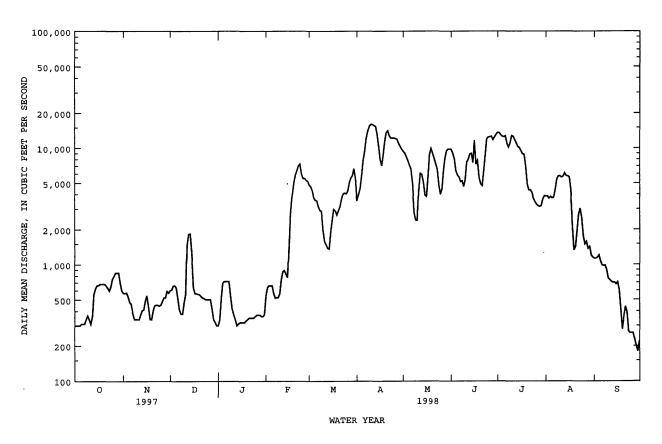
DRAINAGE AREA. -- 6,245 mi².

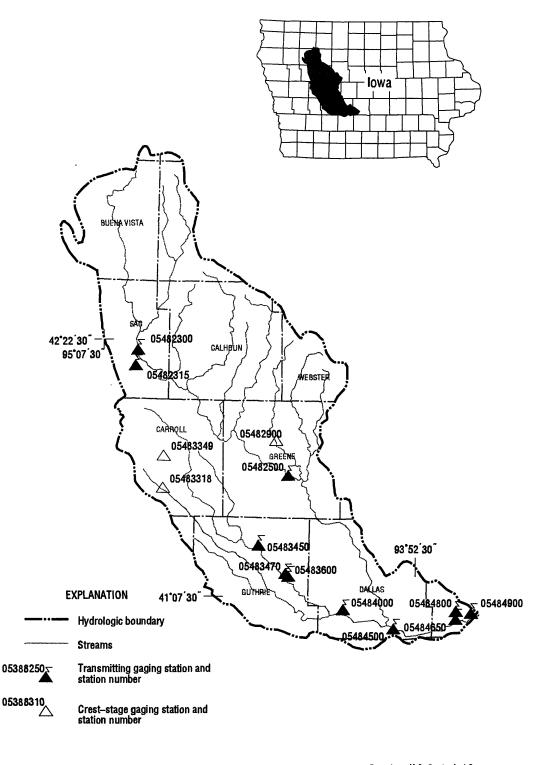
PERIOD OF RECORD.--October 1902 to August 1903, October 1914 to February 1915 (gage heights and discharge measurements only);
March 1915 to September 1961, October 1996 to current year.

REVISED RECORDS-- WSP 1308: 1915-19, 1921, 1923, 1933, 1943(M). WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 773.68 ft above sea level and at city datum. Prior to August 21, 1941, staff, chain, or recording gages at several sites within 3 mi of present site at various datums.

REMARKS.--Estimated daily discharges: Oct. 1-12, 22-29, Nov. 6-8, Dec. 29 to Jan. 2, Jan. 12-25, 29, 30, Mar. 30, 31, May 29, 30, June 12-15, and Sept. 2-4, 19, 23-30. Records good except those for estimated daily discharges, which are poor. Flow regulated by Saylorville Dam 6.8 mi. upstream, since Apr. 12, 1977. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform and U.S. Weather Service Limited Automated Remote Collector (LARC) at station.


EXTREMES FOR PERIOD OF RECORD--Maximum discharge 60,200 ft³/sec on June 24, 1954, gage height 30.16; minimum unregulated daily discharge 24 ft³/sec Jan. 29, 30, 1940.


		DISCHA	ARGE, CUE	BIC FEET P		, WATER Y LY MEAN V		ER 1997 T	O SEPTEMB	ER 1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	YAM	JUN	ur	AUG	SEP
1 2 3 4 5	e300 e300 e300 e300 e310	571 567 573 530 476	601 609 657 660 634	e300 e340 512 692 719	538 635 660 660 660	4820 4670 4290 3750 3570	3520 4020 4510 5830 7850	9400 9070 8430 7810 7170	9750 9060 8130 6390 5850	13600 13600 13000 12600 12500	3860 3870 3710 3830 3730	1130 e1130 e1150 e1200 1060
6 7 8 9 10	e310 e310 e340 e365 e340	e460 e380 e340 341 339	514 412 379 378 473	719 719 719 534 417	569 518 522 522 565	3530 3140 2920 2870 1970	9350 12000 13900 15500 16000	6620 4940 2800 2410 2390	5650 5160 5230 4680 5350	12700 11000 10200 11000 12800	3760 4420 5420 5770 5780	989 977 982 898 761
11 12 13 14 15	e310 e360 557 621 660	339 374 405 411 486	554 1480 1830 1840 1230	374 e340 e300 e310 e320	751 870 890 829 779	1570 1480 1380 1360 1890	16000 15700 15400 13600 10700	4340 6060 5930 5060 3940	7580 e8000 e8900 e9000 e7500	12600 11800 11100 10300 10100	5620 5730 6110 5810 5760	739 714 700 703 679
16 17 18 19 20	664 679 679 679	541 438 341 339 402	637 565 565 558 554	e320 e320 e320 e330 e340	1400 2850 3960 5040 5880	2390 2980 2890 2670 2890	7980 7070 8790 11400 13600	3850 5720 8830 9900 9050	11600 7280 7780 5550 4920	9510 8920 8820 6930 4860	5630 4330 2150 1330 1420	705 608 412 e280 369
21 22 23 24 25	658 e630 e600 e650 e750	446 451 451 444 452	533 519 512 502 501	e350 e350 e350 e350 e360	6390 7050 7310 6000 5490	3120 3620 4030 4110 4050	14100 12800 12200 12200 12200	8100 7290 6550 4780 4010	4760 6370 8670 12000 12400	4360 4360 4160 3710 3460	1940 2700 3030 2530 1750	436 391 e270 e260 e260
26 27 28 29 30 31	e800 e850 e850 e850 695 595	486 520 522 591 572	501 501 419 e340 e320 e300	370 370 370 e360 e360 374	5500 5300 5200 	4290 5060 5550 5800 e6660 e5500	12100 11900 11000 10400 9810	4480 6390 8190 e9500 e9800 9780	12500 12600 11800 12400 13100	3290 3190 3150 3190 3600 3880	1500 1570 1370 1420 1200 1150	e260 e230 e200 e180 e220
TOTAL MEAN MAX MIN AC-FT CFSM IN.	16991 548 850 300 33700 .09	13588 453 591 339 26950 .07 .08	20078 648 1840 300 39820 .10	12909 416 719 300 25610 .07	77338 2762 7310 518 153400 .44 .46	108820 3510 6660 1360 215800 .56 .65	331430 11050 16000 3520 657400 1.77 1.97	202590 6535 9900 2390 401800 1.05 1.21	249960 8332 13100 4680 495800 1.33 1.49	258290 8332 13600 3150 512300 1.33 1.54	108200 3490 6110 1150 214600 .56 .64	18893 630 1200 180 37470 .10
STATIST	rics of M	MONTHLY ME	AN DATA	FOR WATER	YEARS 19	97 - 1998	, BY WATE	R YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	663 778 1997 548 1998	1662 2871 1997 453 1998	1672 2696 1997 648 1998	823 1231 1997 416 1998	2768 2775 1997 2762 1998	6448 9385 1997 3510 1998	10050 11050 1998 9045 1997	7037 7539 1997 6535 1998	6642 8332 1998 4952 1997	6622 8332 1998 4913 1997	2559 3490 1998 1627 1997	469 630 1998 308 1997

05482000 DES MOINES RIVER AT SECOND AVENUE AT DES MOINES, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	IDAR YEAR	FOR 1998 WA	TER YEAR	WATER YEA	RS 1997 - 1998
ANNUAL TOTAL	1322993		1419087			
ANNUAL MEAN	3625		3888		3952	
HIGHEST ANNUAL MEAN					4017	1997
LOWEST ANNUAL MEAN					3888	1998
HIGHEST DAILY MEAN	13700	Mar 15	16000	Apr 10	16000	Apr 10 19 9 8
LOWEST DAILY MEAN	210	Sep 17	180	Sep 29	180	Sep 29 1998
ANNUAL SEVEN-DAY MINIMUM	229	Sep 16	230	Sep 24	229	Sep 16 19 9 7
INSTANTANEOUS PEAK FLOW			16000	Apr 10,11		
INSTANTANEOUS PEAK STAGE			19.59	Apr 10,11		
ANNUAL RUNOFF (AC-FT)	2624000		2815000		2863000	
ANNUAL RUNOFF (CFSM)	. 58		. 62	!	. 63	
ANNUAL RUNOFF (INCHES)	7.88	}	8.45	i	8.60	
10 PERCENT EXCEEDS	9520		11000		10100	
50 PERCENT EXCEEDS	1480		1890		2620	
90 PERCENT EXCEEDS	339		340		365	

e Estimated

0 6 12 18 24 30 MILES 0 6 12 18 24 30 KILOMETERS Base from U.S. Geological Survey hydrologic unit map State of Iowa, 1974

DES MOINES RIVER BASIN (RACCOON RIVER BASIN)

Gaging Stations

05483349

05482300	North Raccoon River near Sac City, IA
05482315	Black Hawk Lake at Lake View, IA
05482500	North Raccoon River near Jefferson, IA
05483450	Middle Raccoon River near Bayard, IA
05483470	Lake Panorama at Panora, IA
05483600	Middle Raccoon River at Panora, IA
05484000	South Raccoon River at Redfield, IA
05484500	Raccoon River at Van Meter, IA
05484650	Raccoon River at 63rd Street, Des Moines, IA
05484800	Walnut Creek at Des Moines, IA
05484900	Raccoon River at Fleur Drive, Des Moines, IA
Contract Character	Garina Ghabiana
crest Stage	Gaging Stations
05482900	Hardin Creek near Farlin, IA
05483318	Brushy Creek near Templeton, IA

05482300 NORTH RACCOON RIVER NEAR SAC CITY, IA

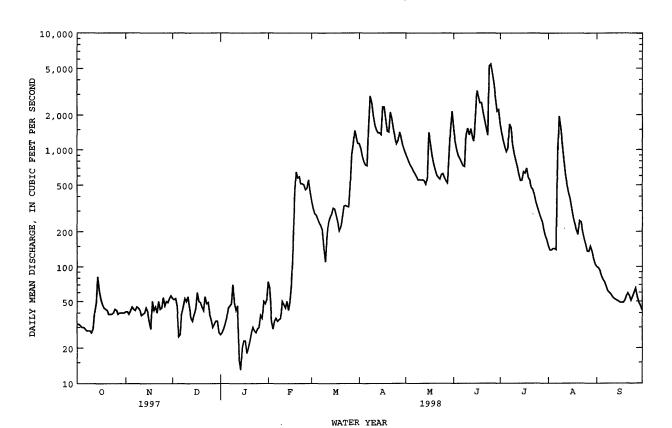
LOCATION.--Lat 42°21'16", long 94°59'26", in NW¹/₄ NW¹/₄ sec.13, T.87 N., R.36 W., Sac County, Hydrologic Unit 07100006, on right bank 5 ft downstream from bridge on county highway, 2.1 mi upstream from Indian Creek, 0.3 mi upstream from Drainage Ditch 73, 4.6 mi south of Sac City, 167.1 miles upstream of mouth of Raccoon River, and at mile 367.6 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 700 mi2.

PERIOD OF RECORD. -- June 1958 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,146.03 ft above sea level. Prior to Oct. 1, 1987 at site 1.7 miles downstream at datum 1.43 ft lower.

REMARKS.--Estimated daily discharges: Nov. 16-19, Dec. 5 to Feb. 18, Mar. 9-13, and Sept. 28, 29. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1954, reached a stage of 15.61 ft, from floodmark, discharge, 7,000 ft3/s.

		DISCHAR	GE, CUBIC	FEET PER		WATER Y	YEAR OCTOBER VALUES	1997 TC	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	32 32 31 30 30	41 41 39 42 45	.53 52 53 45 e25	e26 e27 e29 e32 e36	e74 e65 e34 e29 e34	367 316 285 275 254	1130 1020 871 788 743	922 857 791 738 704	1510 1180 1000 893 839	1680 1390 1210 1070 965	151 139 139 143 143	100 98 93 84 78
6 7 8 9 10	29 28 28 28 27	43 42 45 44 42	e26 e40 e46 e53 e50	e44 e46 e48 e70 e48	e36 e34 e35 e36 e50	236 225 207 e145 e110	735 1640 2910 2540 1970	658 624 589 553 556	784 733 722 1360 1540	1030 1670 1560 1130 932	140 873 1950 1550 1140	74 68 62 60 58
11 12 13 14 15	29 41 49 82 62	38 39 40 44 41	e55 e44 e36 e34 e39	e42 e46 e16 e13 e20	e47 e44 e50 e42 e50	e180 e240 e265 283 317	1640 1490 1410 1410 1360	552 555 544 509 582	1350 1520 1300 1190 1960	815 719 617 548 551	827 614 510 434 379	55 53 52 51 50
16 17 18 19 20	52 47 44 43 42	e34 e29 e50 e42 45	e44 e60 e50 e49 e45	e23 e23 e18 e20 e23	e70 e140 e420 647 577	312 276 239 204 219	2340 2340 1840 1450 1430	1410 1140 905 768 679	3220 2890 2540 2550 2110	651 632 697 584 552	313 262 232 207 189	49 49 49 51 56
21 22 23 24 25	39 39 39 40 43	40 50 43 44 54	e42 e55 e48 e49 e39	e27 e30 e28 e27 e29	589 514 514 505 458	268 330 335 329 326	2110 1860 1500 1280 1130	609 584 565 617 626	1810 1550 1340 5270 5450	479 462 416 359 320	248 241 200 174 155	59 56 51 55 60
26 27 28 29 30 31	42 39 40 40 40	46 50 49 53 56	e35 e30 e32 e34 e34 e27	e30 e38 e36 e50 e48 e52	469 554 447 	496 902 1110 1470 1290 1140	1200 1420 1280 1110 1000	579 545 522 913 1550 2150	4510 3680 2780 2150 2210	290 265 244 213 186 171	136 135 149 135 116 105	65 55 e49 e46 42
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1227 39.6 82 27 2430 .06	1311 43.7 56 29 2600 .06	1324 42.7 60 25 2630 .06	1045 33.7 70 13 2070 .05	6564 234 647 29 13020 .33 .35	12951 418 1470 110 25690 .60	44947 1498 2910 735 89150 2.14 2.39	23896 771 2150 509 47400 1.10 1.27	61941 2065 5450 722 122900 2.95 3.29	22408 723 1680 171 44450 1.03 1.19	12129 391 1950 105 24060 .56 .64	1828 60.9 100 42 3630 .09
STATIST	ICS OF MC	NTHLY MEA	N DATA FO	R WATER Y	EARS 1959	- 1998	8, BY WATER	YEAR (WY	7)			
MEAN MAX (WY) MIN (WY)	250 1782 1983 6.39 1959	219 1005 1984 9.44 1959	139 641 1983 4.39 1959	95.3 498 1983 .87 1977	181 1038 1984 1.16 1959	651 2723 1983 27.2 1968	789 2726 1983 25.6 1967	645 2077 1991 31.9 1967	859 3344 1984 24.7 1977	507 3096 1993 23.0 1977	236 1188 1993 9.29 1976	239 1966 1962 7.80 1976
SUMMARY	STATISTI	cs	FOR 1	997 CALEN	DAR YEAR		FOR 1998 WA	rer year	ι	WATER Y	EARS 1959	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		EAN EAN IN		138284 379 2070 25 28 274300 .54 7.35 1000 150 37			191571 525 5450 13 19 6180 17.27 380000 .75 10.18 1490 149 33	Jun 25 Jan 14 Jan 13 Jun 24 Jun 24		401 1331 25.3 12400 .0 13100 20.1 290700 .5 7.7 1030 138 16	Mar : 0 Jan : 1 Jan : Mar : 4 Jun :	1983 1977 23 1979 1977a 29 1977 23 1979 17 1990

a Also Jan 31 to Feb 4, 1977

e Estimated

DES MOINES RIVER BASIN 05482300 NORTH RACCOON RIVER NEAR SAC CITY, IA--Continued

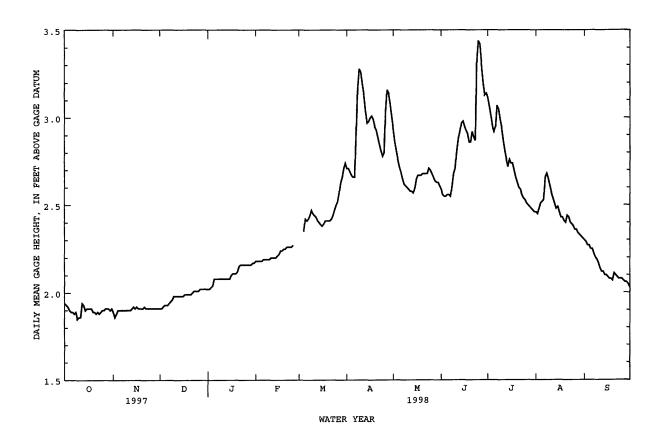
05482315 BLACK HAWK LAKE AT LAKE VIEW, IA

LOCATION.--Lat 42°18'15", long 95°02'30", in $NW^1/_4$ SE $^1/_4$ sec.33, T.87 N., R.36 W., Sac County, Hydrologic Unit 07100006, on south shore across from swimming beach at Lake View and 2 mi. upstream from lake outlet.

DRAINAGE AREA. -- 23.3 mi².

PERIOD OF RECORD.--April 1970 to September 1975; April 1978 to September 1992, October 1994 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,218.50 ft above sea level and 2.00 ft below crest of spillway of dam at outlet. Prior to June 25, 1970, nonrecording gage at lake outlet.


REMARKS.--Gage height was considered reliable for the year, except Feb. 26 to Mar. 3. Lake is formed by concrete dam with ungated overflow spillway at elevation 1,220.50 ft. above sea level. Lake is used for conservation and recreation. Area of lake is approximately 957 acres. U.S. Geological Survey satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD. --Maximum gage height, 4.34 ft June 22, 1996; minimum, 0.02 ft Sept. 26, 1981.

EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 3.44 ft June 25; minimum, 1.85 ft Oct 9.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.94 1.93 1.92 1.90 1.89	1.89 1.86 1.88 1.90 1.90	1.91 1.91 1.92 1.93 1.93	2.02 2.02 2.03 2.04 2.08	2.18 2.18 2.18 2.18 2.18	2.35 2.42	2.71 2.71 2.69 2.67 2.66	2.93 2.86 2.81 2.76 2.72	2.59 2.56 2.55 2.55 2.56	3.12 3.07 3.01 2.95 2.92	2.46 2.45 2.48 2.51 2.52	2.30 2.29 2.27 2.27 2.25
6 7 8 9 10	1.89 1.88 1.89 1.85 1.86	1.90 1.90 1.90 1.90 1.90	1.93 1.94 1.95 1.96 1.98	2.08 2.08 2.08 2.08 2.08	2.19 2.19 2.19 2.19 2.19	2.41 2.42 2.44 2.47 2.45	2.66 2.92 3.17 3.28 3.26	2.69 2.65 2.62 2.61 2.60	2.56 2.55 2.61 2.68 2.71	2.95 3.07 3.05 2.99 2.94	2.53 2.66 2.68 2.65 2.61	2.25 2.22 2.20 2.19 2.17
11 12 13 14 15	1.86 1.94 1.93 1.90 1.91	1.90 1.90 1.91 1.92 1.91	1.98 1.98 1.98 1.98 1.98	2.08 2.08 2.08 2.08 2.08	2.20 2.20 2.20 2.20 2.21	2.44 2.43 2.41 2.40 2.39	3.19 3.13 3.04 2.97 2.98	2.59 2.58 2.58 2.57 2.60	2.81 2.88 2.92 2.97 2.98	2.87 2.81 2.76 2.72 2.76	2.57 2.54 2.51 2.48 2.49	2.14 2.12 2.12 2.10 2.10
16 17 18 19 20	1.91 1.91 1.91 1.89 1.89	1.92 1.91 1.91 1.91 1.91	1.98 1.99 1.99 1.99	2.10 2.11 2.11 2.11 2.12	2.22 2.24 2.24 2.25 2.25	2.38 2.39 2.41 2.41 2.41	3.00 3.01 2.99 2.95 2.93	2.65 2.67 2.67 2.67 2.68	2.95 2.93 2.91 2.86 2.86	2.74 2.74 2.70 2.66 2.63	2.46 2.43 2.43 2.41 2.40	2.09 2.08 2.08 2.07 2.11
21 22 23 24 25	1.88 1.89 1.88 1.89	1.92 1.91 1.91 1.91 1.91	1.99 2.00 2.01 2.01 2.01	2.15 2.16 2.16 2.16 2.16	2.26 2.26 2.26 2.26 2.27	2.41 2.42 2.44 2.47 2.50	2.89 2.85 2.81 2.78 2.80	2.68 2.68 2.68 2.71 2.70	2.92 2.89 2.87 3.33 3.44	2.60 2.59 2.56 2.54 2.53	2.44 2.43 2.40 2.39 2.38	2.10 2.09 2.08 2.08 2.08
26 27 28 29 30 31	1.90 1.91 1.91 1.91 1.90 1.91	1.91 1.91 1.91 1.91 1.91	2.01 2.02 2.02 2.02 2.02 2.02 2.02	2.16 2.16 2.16 2.16 2.17 2.17		2.52 2.57 2.63 2.66 2.71 2.74	3.04 3.16 3.14 3.08 3.00	2.68 2.66 2.64 2.63 2.63 2.61	3.42 3.30 3.20 3.13 3.14	2.51 2.50 2.49 2.48 2.47 2.46	2.36 2.36 2.34 2.33 2.32 2.31	2.07 2.06 2.06 2.05 2.03
MEAN MAX MIN	1.90 1.94 1.85	1.90 1.92 1.86	1.98 2.02 1.91	2.11 2.17 2.02			2.95 3.28 2.66	2.67 2.93 2.57	2.89 3.44 2.55	2.75 3.12 2.46	2.46 2.68 2.31	2.14 2.30 2.03

05482500 NORTH RACCOON RIVER NEAR JEFFERSON, IA

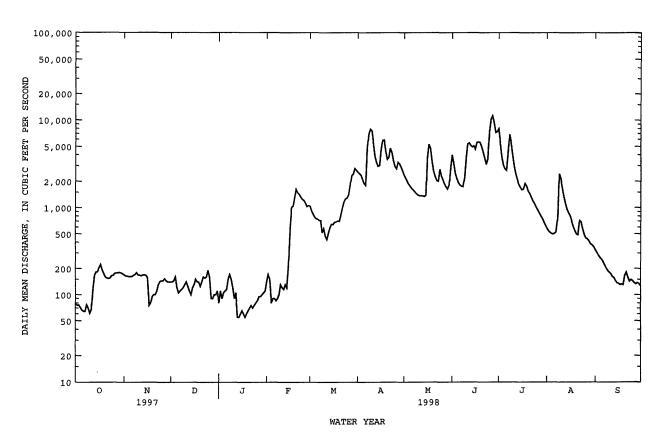
LOCATION.--Lat 41°59'17", long 94°22'36", in SW¹/₄ NW¹/₄ sec.20, T.83 N., R.30 W., Greene County, Hydrologic Unit 07100006, on right bank 20 ft downstream from bridge on State Highway 4, 0.1 mi downstream from Drainage Ditch 33 and 40, 1.9 mi south of Jefferson, 4.7 mi upstream from Hardin Creek, 92.0 miles upstream of mouth of Raccoon River, and at mile 292.5 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 1,619 mi².

PERIOD OF RECORD.--March 1940 to current year. Prior to April 1940, monthly discharge only, published in WSP 1308. Prior to October 1955, published as "Raccoon River near Jefferson".

REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1940 (M), 1950-51.

GAGE.--Water-stage recorder. Datum of gage is 967.09 ft above sea level. Prior to Apr. 22, 1946, nonrecording gage at site 4 mi upstream at different datum. Apr. 22 to June 25, 1946, nonrecording gage, June 26, 1946 to Sept. 30, 1955, water-stage recorder, Oct. 1, 1955 to Apr. 30, 1958, nonrecording gage, at present site and datum.


REMARKS.--Estimated daily discharges: Nov. 17-23, and Nov. 28 to Feb. 16. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

		DISCH	ARGE, CUI	BIC FEET E), WATER LY MEAN	YEAR OCTOB VALUES	BER 1997 TO	O SEPTEMBI	ER 1998		
DAY	OCT	NOV	DEC	Jan	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	78	169	e140	e80	e140	1040		2320	3980	7940	587	327
2	75	164	e140	e110	e170	919	2450	2150	3160	5490	547	305
3	76	163	e145	e90	e150	844		1990	2440	3740	522	284
4	71	161	e160	e105	e 80	778	2080	1850	2130	3030	506	268
5	66	161	e120	e110	e90	745	1910	1750	1940	2760	498	256
6	64	161	e105	e115	e90	740	1810	1650	1820	2660	506	240
7	64	166	e110	e150	e85	716	4680	1580	1760	4160	527	221
8	76	170	e115	e170	e90	713		1510	1740	6820	779	203
9	70	179	e120	e150	e100	517		1440	2200	5490	2420	190
10	61	168	e130	e120	e130	576		1390	3630	3890	2140	181
11	67	167	e140	e90	e120	471	5430	1370	5330	2910	1670	175
12	118	165	e125	e105	e115	432		1370	5470	2390	1330	162
13	167	168	e110	e55	e130	510		1360	5130	2070	1110	157
14	182	169	e100	e55	e120	588		1340	4920	1840	951	145
15	183	167	e120	e60	e200	647		1380	5070	1710	865	137
16	204	158	e130	e65	e460	642	4640	3700	4650	1600	802	135
17	221	e75	e150	e60	1010	679		5270	5530	1630	694	130
18	192	e80	e140	e55	1010	687		4760	5620	1880	609	133
19	174	e95	e140	e60	1290	705		3350	5550	1770	546	130
20	159	e100	e125	e65	1620	699	3570	2580	4970	1550	499	167
21	155	e100	e140	e70	1490	830		2240	4300	1450	488	181
22	153	e110	e160	e75	1420	990	4760	2030	3660	1320	709	159
23	155	e130	e155	e70	1330	1160		2010	3120	1200	685	143
24	165	142	e160	e75	1250	1260	3390	2740	3600	1120	574	149
25	166	144	e190	e80	1210	1290	2930	2290	7320	1020	493	145
26	175	144	e160	e85	1130	1400		2070	10300	947	449	138
27	177	152	e90	e95	1030	1810	3280	1890	11200	876	439	133
28	178	e145	e90	e95	1060	2330	3150	1740	9420	810	416	137
29	180	e140	e100	e100		2420	2900	1630	7230	755	383	135
30	178	e140	e100	e105		2790		1800	7380	694	372	127
31	174		e110	e110		2670		2840		640	355	
TOTAL	4224	4353	4020	2830	17150	32598	116920	67390	144570	76162	23471	5393
MEAN	136	145	130	91.3	613	1052		2174	4819	2457	757	180
MAX	221	179	190	170	1620	2790		5270	11200	7940	2420	327
MIN	61	75	90	55	80	432		1340	1740	640	355	127
AC-FT	8380	8630	7970	5610	34020	64660		133700	286800	151100	46550	10700
CFSM	.08	.09	.08	.06	.38	. 65		1.34	2.98	1.52	.47	.11
IN.	.10	.10	.09	.07	.39	. 75		1.55	3.32	1.75	.54	.12
										1.75	.54	.12
STATIST	CICS OF	MONTHLY M	EAN DATA	FOR WATER	R YEARS 19	41 - 199	8, BY WATE	R YEAR (W	Y)			
MEAN	440	390	273	205	413	1287	1499	1395	1867	1054	502	402
MAX	3654	2011	1228	1045	2407	4990	5650	4702	6831	7584	3007	2823
(WY)	1974	1974	1974	1973	1984	1983	1983	1984	1984	1993	1993	1962
MIN	5.04	19.8	13.4	3.58	6.89	68.5		54.7	61.9	18.1	12.1	16.6
(WY)	1957	1956	1977	1977	1977	1956		1967	1977	1956	1956	1955
(AAT)	1931	1936	1711	17//	1911	1930	1,30	1707	1711	1950	1730	1733

05482500 NORTH RACCOON RIVER NEAR JEFFERSON, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	IDAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEAR	s 1941 - 1998
ANNUAL TOTAL	293523		499081			
ANNUAL MEAN	804		1367		811	
HIGHEST ANNUAL MEAN					2615	1993
LOWEST ANNUAL MEAN					32.8	1956
HIGHEST DAILY MEAN	3700	Jun 23	11200	Jun 27	23200	Jun 24 1947
LOWEST DAILY MEAN	61	Oct 10	55	Jan 13,14,18	.60	Oct 5 1956
ANNUAL SEVEN-DAY MINIMUM	67	Oct 5	59	Jan 13	.91	Oct 4 1956
INSTANTANEOUS PEAK FLOW			11600	Jun 27	29100	Jun 23 1947
INSTANTANEOUS PEAK STAGE			15.68	Jun 27	22.30	Jun 23 1947
INSTANTANEOUS LOW FLOW			34	Oct 10		
ANNUAL RUNOFF (AC-FT)	582200		989900		587500	
ANNUAL RUNOFF (CFSM)	.50)	. 84		.50	
ANNUAL RUNOFF (INCHES)	6.74	ı	11.47		6.81	
10 PERCENT EXCEEDS	1920		3930		2040	
50 PERCENT EXCEEDS	380		506		292	
90 PERCENT EXCEEDS	114		90		42	

e Estimated

05483450 MIDDLE RACCOON RIVER NEAR BAYARD, IA

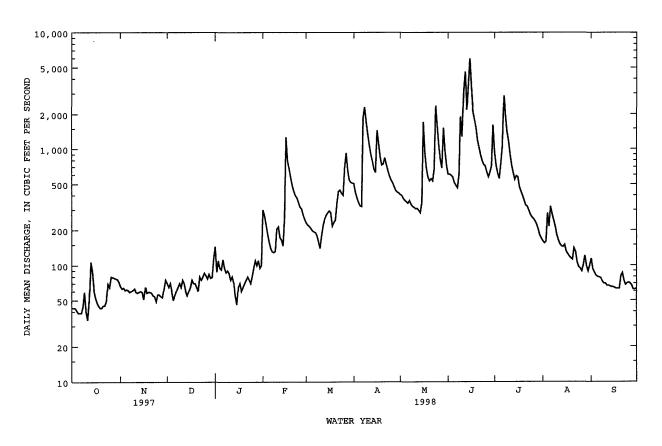
LOCATION.--Lat $41^{\circ}46^{\circ}43^{\circ}$, long $94^{\circ}29^{\circ}33^{\circ}$, in $SW^{1}/_{4}$ sec. 32, T.81 N., R.31 W., Guthrie County, Hydrologic Unit 07100007, on left bank 15 ft downstream from bridge on State Highway 25, 0.2 mi downstream from Battle Run Creek, 1.8 mi upstream from Springbrook Creek, 5.8 mi southeast of Bayard, 10.3 mi upstream from dam at Lake Panorama, at mile 78.0 mi. upstream from mouth of Raccoon River, and at mile 279.2 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 375 mi².

PERIOD OF RECORD. -- March 1979 to current year. Occasional low-flow measurements, water years 1976, 1977.

GAGE.--Water-stage recorder. Datum of gage is 1,040.00 ft above sea level. Prior to June 23, 1979, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Nov. 30 to Dec. 24, Jan. 9 to Feb. 2, and Mar. 8-13. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Geological Survey data collection platform with telephone modem and U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 3, 1973 reached a stage of 21.63 ft, from contracted-opening measurement, discharge, $14,600 \, \text{ft}^3/\text{s}$.

		DISCHARGE	, CUBI	C FEET PE		WATER Y Y MEAN V	EAR OCTOBER ALUES	1997 TO	SEPTEMBER	1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	43	66	e70	145	e300	233	506	406	606	943	161	114
1 2	43	63	e65	88	e270	223	423	399	607	721	155	93
3	43	64	e70	110	224	217	380	378	594	614	160	87
4	41	61	e60	95	186	208	348	363	575	556	282	82
5	39	62	e50	92	159	198	325	353	515	745	216	80
6	39	61	e55	112	140	194	321	343	487	1050	321	79
7	39	59	e 60	95	131	191	1850	360	465	2860	278	78
8	44	60	e65	87	129	e180	2290	336	594	1980	244	73
9	59	61	e70	e90	132	e160	1700	321	1890	1420	215	70
10	40	63	e65	e85	205	e140	1340	315	1280	1170	182	70
11	34	59	e75	e75	214	e180	1080	307	3090	890	164	67
12	51	58	e70	e80	173	e220	894	309	4590	720	152	67
13	107	59	e60	e70	165	e250	786	297	2170	623	146	66
14	88	60	e55	e55	147	269	671	284	3560	547	144	65
15	61	59	e60	e46	255	283	630	351	5960	586	150	65
16	53	51	e65	e65	1270	294	1450	1710	3390	576	131	64
17	48	65	e75	e70	786	285	1120	920	2100	476	125	63
18	45	58	e70	e60	672	218	855	677	1810	432	119	63
19	43	59	e70	e65	568	234	728	575	1540	397	115	63
20	43	59	e65	e70	487	245	742	534	1200	362	112	81
21	45	58	e60	e75	435	342	837	555	1030	328	140	86
22	45	55	e80	e80	399	433	737	534	889	321	130	74
23	49	54	e75	e75	384	444	650	671	793	298	106	68
24	69	49	e80	e70	351	419	587	2350	734	274	97	70
25	65	56	86	e80	318	402	544	1580	714	259	94	71
26	80	56	82	e95	307	690	517	1080	631	251	89	70
27	79	54	77	e110	274	923	479	808	576	239	101	67
28	78	53	84	e100	250	656	443	686	630	225	121	62
29	77	63	78	e110		542	428	1520	707	204	98	62
30	76	e75	79	e95		518	420	957	1610	181	89	63
31	72		114	e100		510		718		170	100	
TOTAL	1738		2190	2645	9331	10301	24081	20997	45337	20418	4737	2183
MEAN	56.1		70.6	85.3	333	332	803	677	1511	659	153	72.8
MAX	107	75	114	145	1270	923	2290	2350	5960	2860	321	114
MIN	34	49	50	46	129	140	321	284	465	170	89	62
AC-FT	3450		4340	5250	18510	20430	47760	41650	89930	40500	9400	4330
CFSM	.15	. 16	.19	. 23	. 89	. 89	2.14	1.81	4.03	1.76	.41	. 19
IN.	.17	.18	.22	.26	.93	1.02	2.39	2.08	4.50	2.03	. 47	.22
STATIST	ICS OF	MONTHLY MEAN	DATA F	OR WATER	YEARS 198	0 - 1998	, BY WATER Y	YEAR (WY)			
MEAN	120	127	128	94.6	205	302	391	461	549	440	193	118
MAX	587	3 76	347	175	645	907	1035	993	1667	2653	673	466
(WY)	1987	1993	1993	1993	1983	1993	1991	1984	1990	1993	1993	1993
MIN	20.1		12.5	13.8	27.4	23.3	22.9	51.6	106	40.2	35.6	18.8
(WY)	1981		1981	1981	1990	1981	1981	1981	1981	1980	1985	1980

05483450 MIDDLE RACCOON RIVER NEAR BAYARD, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEARS	3 1980 - 1998
ANNUAL TOTAL	80479		145738			
ANNUAL MEAN	220		399		261	
HIGHEST ANNUAL MEAN					677	1993
LOWEST ANNUAL MEAN					54.1	1981
HIGHEST DAILY MEAN	2700	Feb 19	5960	Jun 15	18100	Jul 9 1993
LOWEST DAILY MEAN	34	Oct 11	34	Oct 11	5.5	Jun 13 1981a
ANNUAL SEVEN-DAY MINIMUM	41	Oct 1	41	Oct 1	7.3	Jun 8 1981
INSTANTANEOUS PEAK FLOW			7200	Jun 15	27500	Jul 9 1993
INSTANTANEOUS PEAK STAGE			22.37	Jun 15	29.02	Jul 9 1993
INSTANTANEOUS LOW FLOW			30	Oct 11		
ANNUAL RUNOFF (AC-FT)	159600		289100		188900	
ANNUAL RUNOFF (CFSM)	.59		1.06		. 70	
ANNUAL RUNOFF (INCHES)	7.98		14.46		9.45	
10 PERCENT EXCEEDS	433		904		573	
50 PERCENT EXCEEDS	110		160		121	
90 PERCENT EXCEEDS	49		59		33	

a Also June 14, 1981 e Estimated

05483470 LAKE PANORAMA AT PANORA, IA

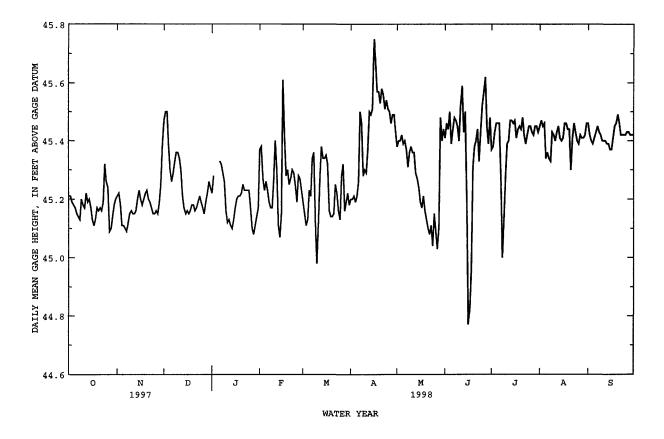
LOCATION.--Lat $41^{\circ}41^{\circ}44^{\circ}$, long $94^{\circ}22^{\circ}53^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.31, T.80 N., R.30 W., Guthrie County, Hydrologic Unit 07100007, in gate control building of dam on Middle Raccoon River, 0.5 mi upstream from State Highway 44, 1.0 mi west of Panora, 4.4 mi upstream from Bay Branch, 67.7 mi. upstream from mouth of Raccoon River, and at mile 268.8 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 433 mi².

PERIOD OF RECORD. -- May 1979 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 1,000.00 ft above sea level.

REMARKS.--Missing gage height record Jan. 3-5. Lake is formed by earthfill dam with 100 ft bascule gate and concrete chute spillway, and 300 ft earthen emergency spillway. Low-flow outlet is 30-inch conduit and gate valve through dam. Dam was completed in August, 1970 and began filling April 27, 1971. Total storage, 60,000 acre-ft, surface area, 2,900 acres, at top of dam, elevation 1,068 ft. Storage unknown at top of spillway, elevation 1,048 ft. Normal storage, 19,700 acre-ft, surface area, 1,270 acres with bascule gate closed, elevation 1,045 ft. Dead storage unknown with bascule gate open, elevation 1,036 ft. Present lake classification is utility (industrial) but is also used for recreation. U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES FOR PERIOD OF RECORD. -- Maximum gage height, 50.68 ft July 9, 1993; minimum, 41.56 ft Oct. 15, 1989.

EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 46.20 ft July 6; minimum recorded, 44.63 ft June 15 and 18.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	45.21 45.21	45.21 45.22	45.47 45.50	45.22 45.28	45.37 45.38	45.19 45.15	45.20 45.20	45.38 45.40	45.41 45.46	45.37 45.38	45.45 45.47	45.46 45.42
3	45.19	45.18	45.50		45.27	45.11	45.21	45.40	45.44	45.43	45.45	45.40
4	45.18	45.11	45.38		45.23	45.13	45.19	45.42	45.50	45.46	45.46	45.39
5	45.17	45.11	45.30		45.26	45.23	45.21	45.39	45.39	45.46	45.34	45.41
6	45.15	45.10	45.26	45.33	45.23	45.21	45.26	45.40	45.44	45.46	45.36	45.43
7	45.14	45.09	45.29	45.32	45.19	45.34	45.50	45.37	45.48	45.28	45.34	45.45
8 9	45.13 45.20	45.12 45.15	45.33 45.36	45.29 45.26	45.17 45.17	45.36 45.12	45.46 45.28	45.31 45.36	45.47 45.45	45.00 45.13	45.33 45.43	45.43 45.42
10	45.18	45.16	45.36	45.26	45.17	44.98	45.26	45.38	45.40	45.13	45.43	45.40
10	45.10	45.10	45.50	45.10	45.20	44.70	45.50	45.50	43.40	43.20	43.42	45.40
11	45.17	45.15	45.34	45.12	45.40	45.13	45.29	45.36	45.52	45.39	45.40	45.40
12	45.22	45.15	45.30	45.13	45.30	45.28	45.37	45.36	45.59	45.40	45.43	45.40
13	45.19	45.16	45.21	45.11	45.11	45.38	45.50	45.29	45.43	45.47	45.45	45.39
14	45.20	45.20	45.17	45.10	45.07	45.34	45.49	45.27	45.50	45.47	45.41	45.39
15	45.17	45.23	45.15	45.13	45.15	45.34	45.51	45.24	45.19	45.46	45.40	45.37
16	45.13	45.20	45.16	45.17	45.61	45.35	45.75	45.19	44.77	45.47	45.41	45.37
17	45.11	45.18	45.15	45.20	45.42	45.32	45.67	45.17	44.82	45.41	45.46	45.41
18	45.13	45.20	45.16	45.21	45.28	45.16	45.57	45.21	44.95	45.44	45.46	45.45
19	45.17	45.22	45.18	45.21	45.30	45.14	45.57	45.16	45.31	45.45	45.44	45.46
20	45.16	45.23	45.18	45.22	45.25	45.14	45.53	45.13	45.38	45.44	45.44	45.49
21	45.17	45.20	45.16	45.25	45.27	45.15	45.58	45.10	45.40	45.48	45.30	45.46
22	45.16	45.19	45.17	45.23	45.30	45.25	45.56	45.08	45.44	45.42	45.41	45.42
23	45.19	45.17	45.19	45.23	45.29	45.22	45.51	45.11	45.33	45.39	45.46	45.42
24	45.32	45.15	45.21	45.23	45.25	45.16	45.54	45.04	45.43	45.42	45.43	45.42
25	45.26	45.15	45.19	45.23	45.19	45.13	45.51	45.15	45.52	45.45	45. 4 0	45.42
26	45.24	45.16	45.17	45.17	45.28	45.28	45.50	45.09	45.57	45.45	45.39	45.43
27	45.09	45.15	45.15	45.10	45.27	45.32	45.46	45.03	45.62	45.43	45.42	45.43
28	45.10	45.19	45.19	45.08	45.23	45.16	45.49	45.10	45.45	45.42	45.41	45.42
29	45.14	45.25	45.22	45.11		45.19	45.49	45.48	45.39	45.45	45.41	45.42
30	45.18	45.38	45.26	45.14		45.22	45.43	45.40	45.48	45.45	45.42	45.42
31	45.20		45.24	45.17		45.18		45.44		45.43	45.46	
MEAN	45.18	45.18	45.25		45.27	45.21	45.44	45.26	45.38	45.40	45.41	45.42
MAX	45.32	45.38	45.50		45.61	45.38	45.75	45.48	45.62	45.48	45.47	45.49
MIN	45.09	45.09	45.15		45.07	44.98	45.19	45.03	44.77	45.00	45.30	45.37

05483470 LAKE PANORAMA AT PANORA, IOWA--Continued

05483600 MIDDLE RACCOON RIVER AT PANORA, IA

LOCATION.--Lat $41^{\circ}41^{\circ}14^{\circ}$, long $94^{\circ}22^{\circ}15^{\circ}$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec.5, T.79 N., R.30 W., Guthrie County, Hydrologic Unit 07100007, on left bank 15 ft downstream from bridge on Soldier Trail, 0.2 mi southwest of Panora, 1.5 mi upstream from Andy's Branch, 1.6 mi downstream from Lake Panorama, 18.1 mi upstream from mouth, 66.1 mi. upstream from mouth of Raccoon River, and at mile 267.2 upstream from mouth of Des Moines River.

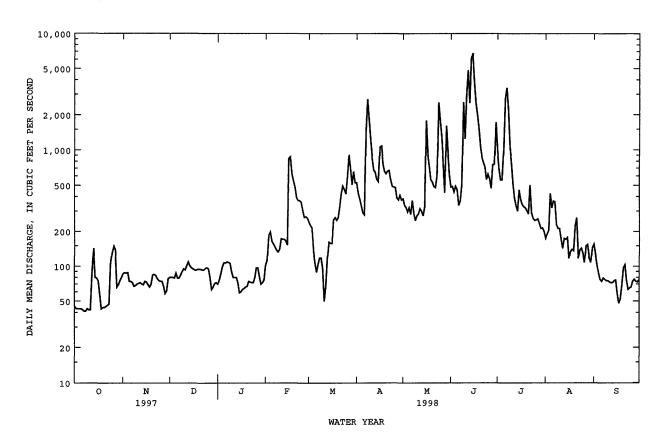
DRAINAGE AREA. -- 440 mi2.

PERIOD OF RECORD. -- June 1958 to current year.

REVISED RECORDS.--WDR IA-74-1: 1973 (P).

GAGE. -- Water-stage recorder and concrete control. Datum of gage is 991.20 ft above sea level.

REMARKS.--Estimated daily discharges: Feb. 1, 2, and 16. Records good except those for estimated daily discharges, which are poor. City of Panora diverts approximately 100 acre-ft/yr upstream of station. Flow regulated by dam on Lake Panorama since August 1970. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and data collection platform at station. U.S. Geological Survey data collection platform with telephone modem at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 10, 1953, reached a stage of 14.3 ft, from floodmark, discharge, about 14,000 ${\rm ft}^3/{\rm s}$.

		DISCHAR	GE, CUBIC	FEET PEF		WATER YE Y MEAN VA	EAR OCTOBER LUES	. 1997 то	SEPTEMBE	R 1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	45 43 43 43	86 88 87 88 74	80 80 80 79 87	70 76 86 99 107	e102 e112 186 198 164	243 226 215 133 107	527 426 380 333 290	383 335 322 295 321	483 489 439 490 459	996 702 555 557 1050	175 191 205 426 321	155 127 103 88 77
6 7 8 9 10	42 41 41 43 42	74 72 67 68 70	79 79 84 90 95	107 109 108 106 89	156 147 138 133 140	89 104 118 118 97	279 1470 2710 1760 1190	282 370 287 249 274	336 366 502 2550 1240	2750 3410 2210 1070 779	366 360 228 212 212	74 79 77 75 75
11 12 13 14 15	42 87 143 80 79	71 72 70 69 74	93 101 109 101 97	80 80 80 72 59	173 171 171 166 153	50 67 117 162 158	845 675 647 563 539	284 315 300 274 325	2930 4840 2520 6090 6760	522 386 336 300 456	171 143 174 171 177	73 72 72 75 76
16 17 18 19 20	75 57 43 44 44	73 69 66 70 84	95 93 92 94 94	60 63 64 66 67	e845 872 626 545 483	158 253 264 251 264	1060 1080 759 658 630	1780 920 732 559 534	3880 2530 2000 1490 1040	378 342 327 320 303	117 134 140 136 223	58 48 52 68 97
21 22 23 24 25	45 46 47 107 131	85 83 78 75 74	94 93 93 96 97	74 73 72 72 80	392 371 371 359 304	326 424 493 462 423	661 669 554 491 484	489 479 603 2540 1780	861 782 716 561 621	284 503 290 261 250	263 117 139 143 129	103 75 63 65 66
26 27 28 29 30 31	149 138 66 69 75 80	74 67 58 61 78	95 80 63 66 71 72	97 97 81 70 72 76	265 269 262 	592 907 700 506 654 526	480 389 375 411 375	1290 764 433 1600 932 613	565 471 748 756 1720	253 257 235 213 215 201	108 150 154 118 108 145	74 77 74 73 76
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2073 66.9 149 41 4110 .15 .18	2225 74.2 88 58 4410 .17 .19	2722 87.8 109 63 5400 .20	2512 81.0 109 59 4980 .18 .21	8274 296 872 102 16410 .67	9207 297 907 50 18260 .68	21710 724 2710 279 43060 1.64 1.84	20664 667 2540 249 40990 1.51 1.75	49235 1641 6760 336 97660 3.73 4.16	20711 668 3410 201 41080 1.52 1.75	5856 189 426 108 11620 .43 .50	2367 78.9 155 48 4690 .18 .20
STATIST	ICS OF	MONTHLY MEA	N DATA FO	R WATER Y	EARS 197	1 - 1998,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	131 670 1987 19.5 1981	151 588 1973 12.8 1971	129 356 1993 7.60 1971	105 439 1973 6.95 1971	232 838 1971 27.8 1972	386 1479 1979 20.2 1981	389 1222 1984 26.4 1977	495 1458 1974 20.0 1977	492 1646 1990 9.40 1977	400 2731 1993 5.56 1977	172 668 1996 22.2 1971	145 528 1973 19.3 1980

05483600 MIDDLE RACCOON RIVER AT PANORA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENI	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YEAR	S 1971 - 1998a
ANNUAL TOTAL	88624		147556			
ANNUAL MEAN	243		404		269	
HIGHEST ANNUAL MEAN					701	1973
LOWEST ANNUAL MEAN					38.6	1977
HIGHEST DAILY MEAN	4050	Feb 19	6760	Jun 15	17500	Jul 10 1993
LOWEST DAILY MEAN	41	Oct 7	41	Oct 7	.00	Jun 9 1977b
ANNUAL SEVEN-DAY MINIMUM	42	Oct 5	42	Oct 5	3.1	Jul 8 1977
INSTANTANEOUS PEAK FLOW			11400	Jun 14	22400	Jul 9 1993
INSTANTANEOUS PEAK STAGE			13.51	Jun 14	20.04	Jul 9 1993
INSTANTANEOUS LOW FLOW			40	Oct 8		
ANNUAL RUNOFF (AC-FT)	175800		292700		194700	
ANNUAL RUNOFF (CFSM)	.55		.92		.61	
ANNUAL RUNOFF (INCHES)	7.49		12.48		8.30	
10 PERCENT EXCEEDS	470		845		589	
50 PERCENT EXCEEDS	143		153		113	
90 PERCENT EXCEEDS	57		67		31	

a b e

Post regulation Also June 10, 1977, result of gate operation at Lake Panorama Estimated $\,$

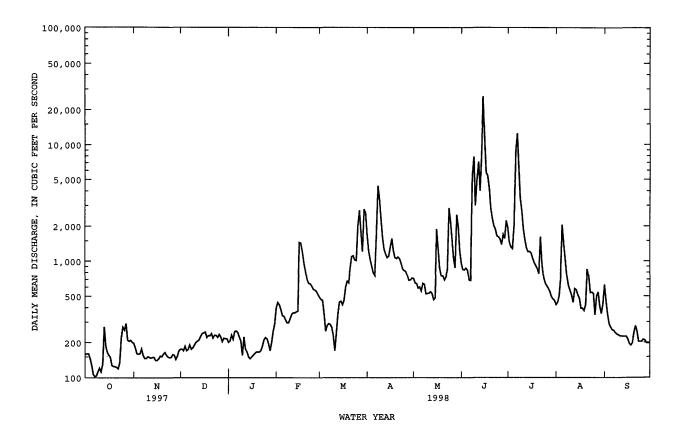
05484000 SOUTH RACCOON RIVER AT REDFIELD, IA

LOCATION.--Lat $41^{\circ}35^{\circ}22^{\circ}$, long $94^{\circ}09^{\circ}04^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 2, T.78 N., R.29 W., Dallas County, Hydrologic Unit 07100007, on right bank 20 ft upstream from bridge on H Avenue, 3.4 mi. (revised) downstream from bridge on U.S. Highway 6, 3.4 mi. downstream from Middle Raccoon River, 14.3 mi. upstream from mouth, 44.6 miles upstream of mouth of Raccoon River, and at mile 245.6 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 994 mi².

PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1940, WDR IA-87-1:datum.


GAGE.--Water-stage recorder. Datum of gage is 888.88 ft above sea level. Prior to June 12, 1946, nonrecording gage, June 12, 1946 to Sept. 30, 1986, water-stage recorder at site 2.4 mi upstream at datum 7.55 ft higher.

REMARKS.--Estimated daily discharges: Nov. 2, 3, 5, 15, 16, Nov. 30 to Dec. 5, Dec. 7-14, Jan. 12 to Feb. 3, Feb. 10-13, and Mar. 4-11. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

		DISCHA	RGE, CUBI	IC FEET PE		WATER Y	EAR OCTOBER ALUES	1997 TO	SEPTEMBE	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	158	197	e175	200	e400	490	1720	711	952	1940	422	628
2	160	e180	e175	206	e440	470	1220	650	844	1460	441	456
3	160	e160	e170	231	e420	462	1030	641	839	1320	500	350
4	146	159	e185	213	381	e350	904	587	868	1280	726	290
5	127	e160	e170	248	339	e250	793	600	830	2010	2050	270
6 7	106 102	176 155	174 e190	251 243	335 313	e280 e290	751 1660	555 643	685 682	8690 12500	1420 1040	256 253
8	102	146	e175	222	295	e285	4400	632	5400	6240	733	242
ğ	112	146	e180	205	296	e270	3350	525	7850	3460	613	235
10	120	151	e190	155	e320	e230	2270	529	3010	2680	560	232
11	112	149	e200	222	e350	e170	1590	530	4960	1890	510	227
12	130	147	e205	e175	e360	242	1260	545	7120	1530	442	227
13	272	149	e210	e165	e360	352	1150	527	4010	1300	580	225
14	186	149	e225	e150	367	445	1070	466	8530	1200	568	225
15	164	e140	239	e145	372	452	1100	483	26000	1210	511	225
16	156	e140	242	e150	1450	422	1320	1880	10900	1170	479	213
17	149	145	246	e155	1430	459	1560	1280	5730	1060	393	195
18 19	127	153 151	221 229	e160 e165	1200 964	602 672	1230 1070	873 746	5400 4200	966 914	393 375	189 197
20	124 124	151	228	e165	823	651	1050	746	2850	859	421	244
21 22	122 119	164	238 218	e165 e170	694 645	862	1080	691 735	2350 2020	777 1620	850 735	277 248
23	134	155 150	231	e170 e185	640	1090 1110	1050 956	838	1880	955	536	203
24	220	148	230	e210	611	1020	855	2850	1650	727	541	203
25	271	149	221	e220	574	1010	829	2220	1620	646	526	203
26	256	157	234	e215	565	2030	814	1540	1550	613	345	212
27	291	155	223	e195	550	2730	751	1060	1390	584	500	209
28	210	143	203	e170	518	1770	685	874	1690	547	541	198
29	205	152	217	e200		1210	689	2500	1570	494	410	197
30	209	e170	215	e250		2780	716	1980	2230	473	354	198
31	201		215	e290		2600		1220		458	430	
TOTAL	5076	4655	6474	6096	16012	26056	38923	30657	119610	61573	18945	7527
MEAN	164	155	209	197	572	841	1297	989	3987	1986	611	251
MAX	291	197	246	290	1450	2780	4400	2850	26000	12500	2050	628
MIN AC-FT	102 10070	140 9230	170 12840	145 12090	295 31760	170 51680	685 77200	466 60810	682 237200	458 122100	345 37580	189 14930
CFSM	.16	.16	.21	.20	.58	.85	1.31	.99	4.01	2.00	.61	.25
IN.	.19	.17	.24	.23	. 60	.98	1.46	1.15	4.48	2.30	.71	.28
ርጥ <u>አ</u> ጥፐ ርሳ	דרכים חובי ואינ	AUTURI V ME	ו בידוברו ואם	י ע מישית בועו מריב	/₽λDC 10//1		, BY WATER	VEAR /WV	r)			
MEAN	236	238	196	178	404	842	750	866	1034	646	376	291
MAX	1501	1162	826	565	1785	3112	2474	3005	5017	5494	2745	1385 1993
(WY) MIN	1987 28.6	1973 36.2	1993 32.4	1983 30.4	1971 35.5	1979 74.2	1984 50.0	1974 62.9	1947 43.2	1993 57.4	1993 37.8	36.0
(WY)	1941	1956	1956	1950	1956	1981	1956	1967	1977	1954	1955	1955
SUMMAR	Y STATIST	cs	FOR	1997 CALEN	IDAR YEAR	1	FOR 1998 WA	TER YEAR	L	WATER Y	EARS 1941	- 1998
ANNUAL	TOTAL			199531			341604					
ANNUAL				547			936			505		
	r annual i									1632		1993
	ANNUAL M									91.4		
	r DAILY M			7000	Feb 19		26000	Jun 15		33600		10 1993
	DAILY MEX SEVEN-DAY			102 112	0ct 7 0ct 5		102 112	Oct 7		17 20		4 1977 24 1954
	PANEOUS PI			112	000		35100	Jun 15		44000		10 1993
	PANEOUS PI						24.67			29.04		2 1958
INSTAN	TANEOUS LO	OW FLOW					93	Oct 8				
	RUNOFF (A			395800			677600			365600	•	
	RUNOFF (.55 7.47	7		.94 12.78			.53		
	RUNOFF () CENT EXCE			1040	•		1880			6.90 1110	,	
	CENT EXCE			340			422			207		
	CENT EXCE			150			154			59		

e Estimated

05484000 SOUTH RACCOON RIVER AT REDFIELD, IA--Continued

05484500 RACCOON RIVER AT VAN METER, IA

LOCATION.--Lat 41°32'02", long 93°56'59", in SW¹/₄ SW¹/₄ sec.22, T.78 N., R.27 W., Dallas County, Hydrologic Unit 07100006, on right bank 10 ft downstream from bridge on county highway R16, 0.3 mi northeast of Van Meter, 0.7 mi upstream from small left bank tributary, 1.1 mi downstream from confluence of North and South Raccoon Rivers, 29.1 mi upstream from mouth, and at mile 230.5 upstream from mouth of Des Moines River.

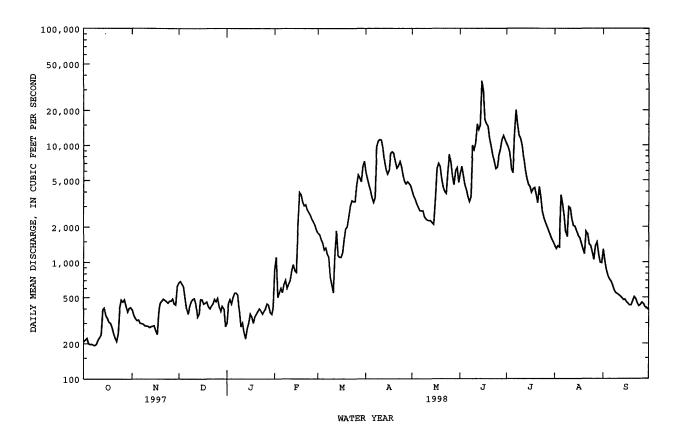
DRAINAGE AREA. -- 3,441 mi².

PERIOD OF RECORD. --April 1915 to current year. Prior to October 1934, monthly discharge only, published in WSP 1308.

REVISED RECORDS.--WSP 1308: 1927 (M), WSP 1438: Drainage area, WSP 1508: 1915 (M), 1925 (M), 1926, 1933 (M), 1939 (M), 1947 (M), 1949 (M).

GAGE.--Water-stage recorder. Datum of gage is 841.16 ft above sea level. See WSP 1308 for history of changes prior to Aug. 8, 1934.

REMARKS.--Estimated daily discharges: Nov. 16-17, Dec. 4-9, 12-15, 17, 20-23, 25, Dec. 27 to Jan. 1, Jan. 3-5, 9-27, Feb. 2-12, Mar. 8-12, and June 8-9.


		DISCHAL	RGE, CUBI	C FEET PE	R SECOND, DAIL	WATER Y Y MEAN V	MEAR OCTOBE	ER 1997 TO	SEPTEMB	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	209 216 222 200 197	390 351 329 317 321	670 687 652 e620 e500	e300 443 e480 e440 e500	877 e1100 e500 e550 e600	1760 1710 1560 1450 1270	5870 5100 4520 4070 3540	4050 3650 3430 3140 2950	5710 6560 5460 4610 4150	10400 9710 8680 6260 5780	1380 1300 1370 1340 3730	1280 1020 857 766 715
6 7 8 9 10	198 195 193 198 214	300 298 295 286 284	e400 e360 e420 e460 483	545 547 525 e380 e280	e550 e650 e700 e600 e650	1320 1170 e1100 e750 e650	3230 3550 9720 10900 11200	2750 2730 2740 2440 2330	3620 3280 e3600 e10000 9160	12300 20100 15100 12200 11400	3150 2520 1800 1640 2960	684 635 578 548 538
11 12 13 14 15	225 239 391 406 350	283 276 281 283 286	489 e440 e340 e360 e480	e300 e250 e220 e270 e300	e700 e850 953 845 819	e550 e1200 1850 1140 1100	11100 9510 7250 6190 5650	2270 2250 2260 2160 2090	10400 15200 13600 14900 35700	9920 7690 6080 5190 4620	2890 2320 2040 2010 1840	526 512 497 476 481
16 17 18 19 20	333 308 301 277 245	e260 e240 380 448 466	479 e440 449 459 e420	e360 e340 e300 e340 e360	1990 3930 3760 3270 3030	1100 1200 1600 1920 2000	6100 8510 8790 8540 7190	3460 6330 6960 6560 5160	29000 16600 15300 14600 11500	4410 3940 4230 4320 3770	1670 1600 1440 1290 1170	457 443 428 428 467
21 22 23 24 25	224 209 243 405 477	485 475 464 448 467	e400 e420 e440 483 e460	e380 e400 e380 e360 e380	3100 2810 2660 2530 2330	2430 3020 3350 3280 3280	6360 6650 7230 6490 5500	4380 4000 3860 6030 8320	9900 8350 7180 6280 6480	3200 4400 3590 2720 2380	1820 1730 1420 1370 1210	505 487 446 422 433
26 27 28 29 30 31	459 480 426 377 404 411	466 486 441 432 628	492 e420 e380 e420 e400 e280	e400 e440 431 369 358 413	2200 2070 1880 	4580 5550 5240 4870 6620 7260	4900 4660 4850 4700 4490	6980 5400 4590 6050 6410 4800	8180 9300 11200 12100 11200	2170 2010 1860 1690 1570 1480	1050 1370 1470 1170 994 985	452 440 413 409 390
TOTAL MEAN MAX MIN AC-FT CFSM	9232 298 480 193 18310	11166 372 628 240 22150	14203 458 687 280 28170	11791 380 547 220 23390 .11	46504 1661 3930 500 92240 .48	75880 2448 7260 550 150500 .71	196360 6545 11200 3230 389500 1.90	130530 4211 8320 2090 258900 1.22	323120 10770 35700 3280 640900 3.13	193170 6231 20100 1480 383200 1.81	54049 1744 3730 985 107200 .51	16733 558 1280 390 33190
IN. STATIST	.10 TICS OF M	.12 ONTHLY MEA	.15 AN DATA F	.13 OR WATER	.50 YEARS 191	.82 6 - 1998	2.12 B. BY WATER	1.41 R YEAR (WY	3.49	2.09	.58	.18
MEAN MAX (WY) MIN (WY)	835 6840 1974 48.6 1940	778 4774 1973 51.5 1938	575 3085 1983 31.0 1938	495 3461 1932 17.2 1940	1004 5438 1984 31.5 1940	2634 10480 1979 146 1931	2605 10630 1983 125 1956	2583 9257 1984 121 1934	3288 13970 1947 112 1977	1890 17260 1993 68.1 1936	999 7414 1993 28.1 1936	874 6692 1926 43.1 1939
SUMMARY	STATIST	PICS	FOR	1997 CALE	NDAR YEAR		FOR 1998 V	VATER YEAR		WATER Y	YEARS 1916	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTAMI INSTAMI ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL M DAILY ME SEVEN-DA TANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS		658332 1804 8500 193 199 1306000 .5: 7.1: 4430 950 282			1082738 2966 35700 193 199 47400 23.2 180 2148000 11.7 8240 1210 300			1547 5717 166 57500 10 70100 26.3 1121000 3880 603 114	Jul Jan Jan Jul 34 Jul	1993 1956 10 1993 22 1940a 22 1940 10 1993 10 1993
	Jan 23-			202			300			114		

a Also Jan 23-31, 1940

b Also Oct 6, 8-10

e Estimated

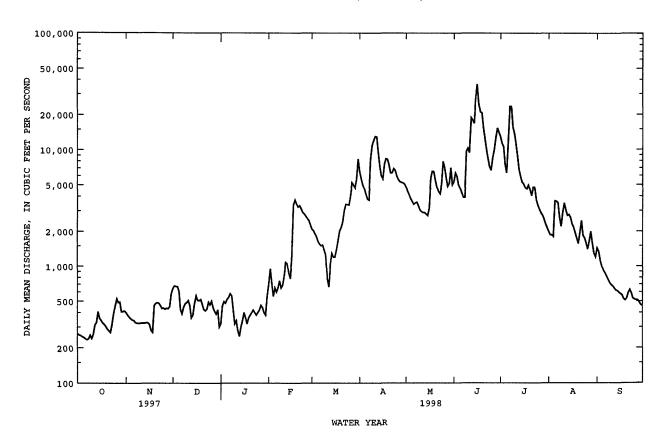
05484500 RACCOON RIVER AT VAN METER, IA--Continued

05484650 RACCOON RIVER AT 63RD STREET, DES MOINES, IA

LOCATION.--Lat $41^{\circ}33^{\circ}49^{\circ}$, long $93^{\circ}42^{\circ}13^{\circ}$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec.14, T.78 N., R.25 W., Polk County, Hydrologic Unit 07100006, on left bank, at upstream side of bridge on State Highway 28, 2.9 mi. upstream from Walnut Creek, 8.6 mi. upstream from mouth of Raccoon River, and at mile 210.0 upstream from mouth of Des Moines River.

DRAINAGE AREA. -- 3529 mi2.

PERIOD OF RECORD. -- October 1991 to current year. October 1991 to September 1996 gage height record only.


GAGE.--Water-stage recorder. Datum of gage is 774.91 ft above sea level.

REMARKS.--Estimated daily discharges: Nov. 17, 18, Dec. 12-14, 31, Jan. 1, 4, Jan. 9 to Feb. 9, Mar. 15, 16, Apr. 13-15, and Apr. 28 to May 13. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector (LARC) and U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

SEP 1430
1430
1340 1120 998 919
869 815 765 719 689
673 645 620 612 593
579 562 525 510 530
591 625 586 530 519
513 512 492 467 457
20805 694 1430 457 41270 .20
512 694 1998 331 1997
7 - 1998
1998 1997 16 1998 7 1997 4 1997 16 1998 11 1993

e Estimated

DES MOINES RIVER BASIN
05484650 RACCOON RIVER AT 63RD STREET, DES MOINES, IA--Continued

05484800 WALNUT CREEK AT DES MOINES, IA

LOCATION.--Lat $41^{\circ}35^{\circ}14^{\circ}$, long $93^{\circ}42^{\circ}11^{\circ}$, in $Sw^1/_4$ SE $^1/_4$ sec.2, T.78 N., R.25 W., Polk County, Hydrologic Unit 07100006, on left bank, 25 ft downstream from bridge on 63rd Street in Des Moines, and 2.2 mi upstream from Raccoon River.

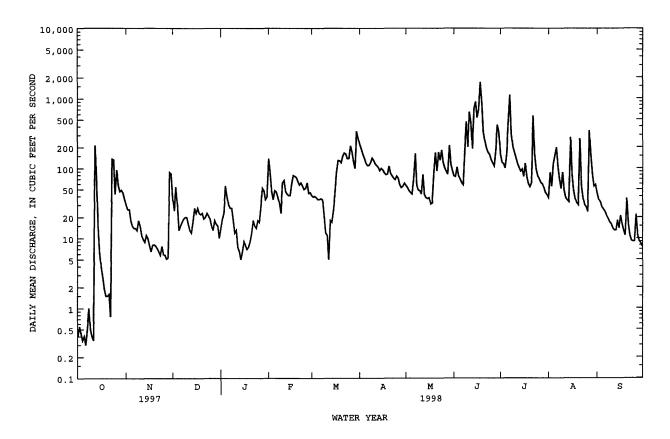
DRAINAGE AREA. -- 78.4 mi².

PERIOD OF RECORD. -- October 1971 to current year.

REVISED RECORDS.--WDR IA-73-1: 1972. WDR IA-75-1: 1973-74.

GAGE.--Water-stage recorder. Datum of gage is 801.04 ft above sea level (levels by Iowa Natural Resources Council).

REMARKS.--Estimated daily discharges: Oct. 1-11, Nov. 17, 18, Dec. 5, 6, 12-14, 21, 22, Dec. 26 to Jan 1, Jan. 9-27, Feb. 3-6, Mar. 9-15, and Apr. 2-10. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.


		DISCHAR	GE, CUBIO	FEET PER		WATER YI Y MEAN V	EAR OCTOBER	1997 то	SEPTEMBER	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e.40 e.55 e.44 e.35 e.40	30 26 26 18 15	37 25 54 30 e13	e14 19 23 56 40	137 87 e46 e36 e48	41 39 40 38 36	222 e190 e160 e140 e120	57 53 48 45 43	78 76 10 4 78 70	159 123 116 101 161	38 86 55 115 152	44 36 33 28 26
6 7 8 9 10	e.30 e.50 e1.0 e.50 e.40	14 14 13 18 15	e15 17 19 20 20	30 27 27 e18 e12	e46 39 32 23 62	36 37 36 e21 e12	e110 e110 e120 e140 e130	70 163 57 49 48	62 58 188 465 203	447 1120 309 203 167	197 106 69 51 87	24 21 19 17 16
11 12 13 14 15	e.35 215 81 15 6.4	11 9.7 8.8 11 9.9	16 e13 e12 e17 27	e13 e7.5 e6.5 e5.0 e6.5	67 47 43 41 41	e11 e5.0 e18 e17 e25	116 110 104 93 100	43 81 42 38 37	643 452 192 719 898	139 116 102 91 97	48 38 35 33 275	14 13 13 18 14
16 17 18 19 20	3.9 2.8 1.9 1.5	8.0 e6.5 e8.0 8.1 7.8	23 27 23 22 23	e9.0 e8.0 e7.0 e7.5 e9.0	60 79 77 7 4 65	42 87 130 129 121	95 86 81 83 107	38 31 32 84 168	535 704 1720 859 331	76 117 75 60 54	81 48 37 32 30	21 16 13 11 37
21 22 23 24 25	1.6 .76 137 134 43	7.2 6.5 5.8 7.7 5.9	e19 e20 23 21 19	e12 e18 e15 e14 e18	58 62 56 50 52	150 166 161 138 139	85 78 72 69 77	92 170 131 182 122	244 193 169 157 133	61 563 155 97 77	263 56 38 30 28	16 11 9.3 9.0 9.1
26 27 28 29 30 31	95 57 47 49 45 37	5.8 5.1 5.3 88 84	e15 e13 e18 e16 e15 e10	e17 e30 52 48 36 39	62 44 45 	210 171 125 100 340 272	72 58 53 55 61	102 91 82 212 114 93	119 108 184 420 330	70 62 59 53 45 42	24 345 152 81 55 58	22 11 9.1 8.5 7.6
TOTAL MEAN MAX MIN AC-FT CFSM IN.	980.55 31.6 215 .30 1940 .40	499.1 16.6 88 5.1 990 .21	642 20.7 54 10 1270 .26	644.0 20.8 56 5.0 1280 .26	1579 56.4 137 23 3130 .72 .75	2893.0 93.3 340 5.0 5740 1.19 1.37	3097 103 222 53 6140 1.32 1.47	2618 84.5 212 31 5190 1.08 1.24	10492 350 1720 58 20810 4.46 4.98	5117 165 1120 42 10150 2.11 2.43	2743 88.5 345 24 5440 1.13 1.30	546.6 18.2 44 7.6 1080 .23 .26
STATIS	TICS OF M	ONTHLY MEA	N DATA FO	R WATER Y	EARS 197	2 - 1998,	BY WATER Y	EAR (WY)				
MEAN MAX (WY) MIN (WY)	32.6 166 1974 1.33 1972	38.7 147 1973 .88 1977	32.8 119 1983 .17 1977	23.6 123 1974 .001 1977	46.1 172 1973 .48 1977	75.9 214 1990 3.17 1981	100 310 1973 2.71 1981	122 390 1996 6.36 1977	125 385 1990 7.63 1977	86.5 427 1993 2.96 1985	49.2 329 1993 4.37 1976	31.8 214 1993 .57 1976
SUMMAR	Y STATIST	ics	FOR 1	.997 CALENI	DAR YEAR	F	OR 1998 WAT	ER YEAR		WATER YEA	ARS 1972	- 1998
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN HOHEST DAILLY MEAN LOWEST DAILLY MEAN LOWEST DAILLY MEAN LOWEST DAILLY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS					Feb 18 Sep 20 Oct 1		31851.25 87.3 1720 .30 .42 4910 15.85 63180 1.11 15.11 170 45 7.8	Oct 6 Oct 1 Jun 18		63.8 158 10.3 4280 .00 .00 12500 18.32 46190 .81 11.05 150 25 2.5	Jul Jan Jan May :	1993 1989 1 1973 1977a 3 1977a 3 1977a 10 1986

a Many days 1977, Aug 21, 1994

e Estimated

277

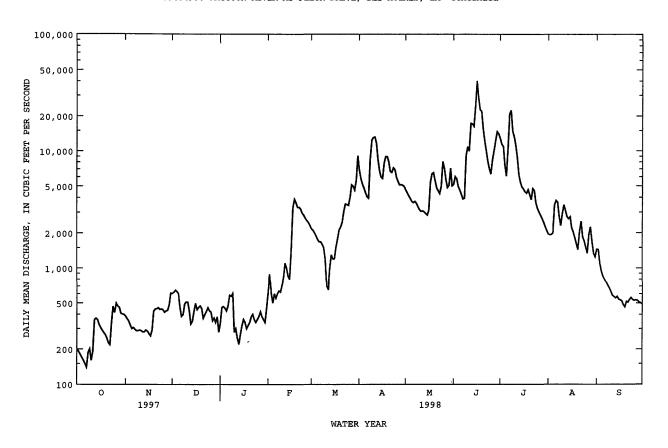
05484800 WALNUT CREEK AT DES MOINES, IA--Continued

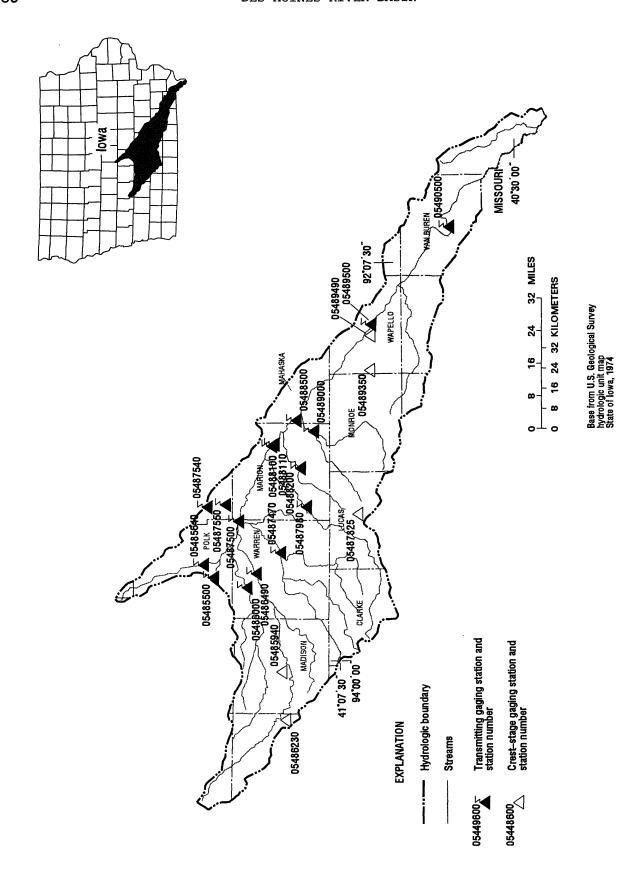
05484900 RACCOON RIVER AT FLEUR DRIVE, DES MOINES, IA

LOCATION.--Lat 41°34′54″, long 93°38′34″, in NW¹/₄ NE¹/₄ sec.8, T.78 N., R.24 W., Polk County, Hydrologic Unit 07100006, on downstream side of Fleur Drive bridge(SW 18th St.) attached to handrail 465 ft. from right edge of bridge, 3.0 miles downstream from Walnut Creek, 2.6 miles upstream from mouth, and at mile 204.1 above mouth of Des Moines River.

DRAINAGE AREA. -- 3, 625 mi².

PERIOD OF RECORD. -- June 1984 to current year; June 1984 to September 1996 gage-height record only.


GAGE.--Water-stage recorder. Datum of gage is 780.70 ft above sea level.


REMARKS.--Estimated daily discharges: Oct. 1-7, Jan. 10-30, Feb. 3-7, 12-15, Mar. 8-16, and Aug. 11-12. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in the report as miscellaneous water quality data. Discharges are affected by withdrawal by Des Moines Water Works. U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.

		DISCHARG	E, CUBI	C FEET PE		WATER Y MEAN	YEAR OCTOB VALUES		SEPTEME	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e200	386	603	333	617	2170		4660	5160	12900	1960	1450
2	e190	366	618	457	883	2110		4390	6030	11500	1930	1440
3	e180	349	643	466	e600	2010		4130	5790	10900	1940	1100
4	e170	322	625	451	e500	1890		3930	4960	7490	1990	942
5	e160	300	601	427	e600	1760	4400	3700	4620	6110	3450	850
6	e150	307	459	475	e550	1680		3620	4240	10600	3760	797 755
7	e140	297 288	383	583	e600 635	1680 e1600		3700 3560	3890 3950	21000 22400	36 4 0 2760	712
8 9	186 200	288	398 49 0	571 60 4	622			3330	9140	14900	2310	673
10	160	292	509	e280	712	e1500 e1200		3150	10900	13200	2910	628
10			303	e 260	112	e1200						
11 12	189 3 5 9	288 281	509 430	e300	817 e1100	e700 e650		3060 3080	10000 17400	11100 8730	e3450 e3100	582 569
13	359 369	281	329	e250 e220	e1100 e1000	e1000		3030	17200	6290	2760	552
14	359	292	347	e270	e850	e1300		2930	16400	5420	2640	570
15	327	285	425	e320	e800	e1200		2840	24500	4920	2740	539
16	308	272	496	e360	1450	e1200		3120	40100	4730	2200	532
17	291	260	438	e340	3270	1500		5410	29000	4480	2030	523
18	278	292	458	e300	3860	1780		6370	22800	4350	1820	484 463
19	267	425	472	e320	3600 3300	2120		6500 5620	21900 15500	4650 4230	1620 1440	517
20	249	443	447	e340	3300	2250	8050	3020	13300	4230	1440	
21	227	446	369	e380	3310	2470		4830	12300	3840	2020	508
22	218	455	396	e400	3200	3050		4560	10100	4760	2510	536
23	336	440	423	e360	2960	3510		4320	8220	4580	1850	556
24	467	444	455	e340	2840	3490		4980	7080	3610	1700	536
25	414	437	428	e360	2670	3430	5940	8070	6340	3220	1520	527
26	498	416	417	e380	2550	4020	5490	7130	8420	3010	1340	532
27	470	427	351	e420	2460	5120	5120	5730	10100	2830	1930	529
28	459	431	370	e380	2330	4990		4860	12300	2660	2240	512
29	407	479	339	e360		4630		5080	14700	2470	1670	504
30	402	608	379	e340		5580		7070	14100	2270	1340	494
31	399		280	450		9070		5030		2100	1250	
TOTAL	9029	10897	13887	11837	48686	80660	213960	141790	377140	225250	69820	19912
MEAN	291	3 6 3	448	382	1739	2602		4574	12570	7266	2252	664
MAX	498	608	643	604	3860	9070		8070	40100	22400	3760	1450
MIN	140	260	280	220	500	650		2840	3890	2100	1250	463
AC-FT	17910		27540	23480	96570	160000		281200	748100	446800	138500	39500
CFSM	.08	.10	.12	.11	. 48	.72		1.26	3.47	2.00	. 62	.18
IN.	.09	.11	.14	. 12	.50	. 83	2.20	1.46	3.87	2.31	.72	.20
STATIST	rics of M	ONTHLY MEAN	DATA F	OR WATER	YEARS 199	7 - 199	8, BY WATE	R YEAR (WY	')			
MEAN	715	1445	1160	808	2509	3063	5410	4362	7722	4378	1396	464
MAX	1139	2527	1873	1235	3280	3525		4574	12570	7266	2252	664
(WY)	1997	1997	1997	1997	1997	1997		1998	1998	1998	1998	1998
MIN	291	363	448	382	1739	2602		4151	2872	1489	540	263
(WY)	1998	1998	1998	1998	1998	1998	1997	1997	1997	1997	1997	1997
SUMMAR	Y STATIST	rics	FOR	1997 CALE	NDAR YEAR		FOR 1998	WATER YEAR	:	WATER	EARS 1997	- 1998
ANNUAL	TOTAL			669495			1222868					
ANNUAL				1834			3350			2778		
	I ANNUAL									3350		1998
	ANNUAL M			0620	- 1 00		40100	T 10		2205	*	1997
	r DAILY M			9630	Feb 20		40100	Jun 16		40100 140		16 1998 7 1997
	DAILY ME	AN Y MINIMUM		140 167	Oct 7		140 167	Oct 7		167		4 1997
		EAK FLOW		107	OCL 4		45000	Jun 16		107	000	- 1JJ/
		EAK STAGE					20.			26.	30 Jul	11 1993
	RUNOFF (1328000			2426000			2012000		
	RUNOFF (. 5				92				
	RUNOFF (6.8	7		12.	55		10.4	11	
	CENT EXCE			4290			8460			5840		
	CENT EXCE			1050			1520			1840		
90 PER	CENT EXCE	EDS		271			300			320		

e Estimated

05484900 RACCOON RIVER AT FLEUR DRIVE, DES MOINES, IA--Continued

Gaging Stations

05485500	Des Moines River blw Raccoon River at Des Moines, IA 282
05485640	Fourmile Creek at Des Moines, IA
05486000	North River near Norwalk, IA
05486490	Middle River near Indianola, IA
05487470	South River near Ackworth, IA
05487500	Des Moines River near Runnells, IA
05487540	Walnut Creek near Prairie City, IA
05487550	Walnut Creek near Vandalia, IA
05487980	White Breast Creek near Dallas, IA
05488100	Lake Red Rock near Pella, IA
05488110	Des Moines River near Pella, IA
05488200	English Creek near Knoxville, IA
05488500	Des Moines River near Tracy, IA
05489000	Cedar Creek near Bussey, IA
05489500	Des Moines River at Ottumwa, IA
05490500	Des Moines River at Keosauqua, IA
05494300	Fox River at Bloomfield, IA
	Crest Stage Gaging Stations
05485940	Cedar Creek Tributary No. 2 near Winterset, IA
05486230	Bush Branch Creek near Stanzel, IA
05487825	Little White Breast Creek Tributary near Chariton, IA
05489350	South Avery Creek near Blakesburg, IA
05489490	Bear Creek at Ottumwa, IA

05485500 DES MOINES RIVER BELOW RACCOON RIVER AT DES MOINES, IA

LOCATION.--Lat $41^{\circ}34^{\circ}40^{\circ}$, long $93^{\circ}36^{\circ}19^{\circ}$, in SW $^{1}/_{4}$ NE $^{1}/_{4}$ sec. 10, T.78 N., R.24 W., Polk County, Hydrologic Unit 07100008, on left bank 40 ft downstream from bridge on Southeast 6th Street at Des Moines, 0.5 mi downstream from Raccoon River and Scott Street Dam, and at mile 201.0 (revised).

DRAINAGE AREA, --9,879 mi².

PERIOD OF RECORD. -- April 1940 to current year.

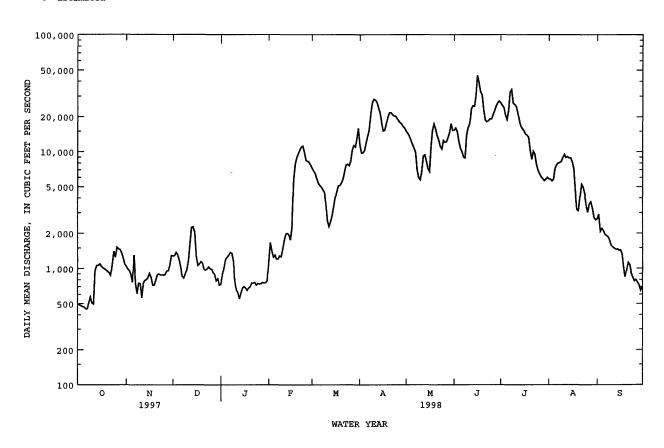
REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1943 (P).

GAGE.--Water-stage recorder. Datum of gage is 762.52 ft above sea level. Prior to Oct. 1, 1951, and Oct. 1, 1953 to Sept. 30, 1959, water-stage recorder upstream of Scott Street Dam, 0.8 mi upstream at datum 11.16 ft higher. Oct. 1, 1951 to Sept. 30, 1953, Oct. 1, 1959 to April 24, 1997 water-stage recorder .3 mi downstream at current datum, and Oct. 1, 1959 to Sept. 30, 1961, nonrecording gage at present site and datum.

REMARKS.--Estimated daily discharges: Jan. 4-6, 12-21, 24, Feb. 3-7, and Sept. 24-29. Records good except those for estimated daily discharges, which are poor. Des Moines municipal water supply is taken from infiltration galleries on Raccoon River, 3.5 mi upstream from station. Average daily pumpage was about 44 ft¹/s. At times, water is pumped from Raccoon River into recharge basins, or into Waterworks Reservoir, capacity 4,800 acre-ft. Effluent from sewage treatment plant enters the river 2.3 mi downstream from station. Net effect diversions not know. Flow regulated by Saylorville Lake (station 05481630) 12.7 mi upstream, since Apr. 12, 1977. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and data collection platform, U.S. National Weather Service Limited Automatic Remote Collector (LARC), and U.S. Geological Survey data logger at station.

COOPERATION .-- Average monthly pumpage from galleries provided by Des Moines Water Works.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 116,000 ft³/s July 11,1993, gage height, 34.29; minimum daily discharge, 26 ft³/s Jan. 16-29, 1977.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1893, that of June 26, 1947, site and datum then in use. Flood of May 31, 1903, reached a stage of 20.9 ft, from flood profile, at Scott Street site and datum, by office of Des Moines City Engineer.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e1400 e1200 e1250 e1250 e1300 e1300 e1200 e1200 e620 e550 e680 e700 e680 e650 e680 e750 758 e720 e840 e780 e800 e760 e720 2730 e650 ---TOTAL. MEAN MAX MIN AC-FT .09 CFSM . 09 .08 1.87 1.17 2.14 1.63 .60 .14 .48 . 65 .74 2.08 1.35 2.38 1.88 IN. .11 .10 .10 .69 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978 - 1998, BY WATER YEAR (WY) 35250 55960 MEAN MAX MIN (WY)

DES MOINES RIVER BASIN 283 05485500 DES MOINES RIVER BELOW RACCOON RIVER AT DES MOINES, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR Y	ÆAR	FOR 1998 W	ATER YEAR	WATER YEARS	5 1978 - 19	98a
ANNUAL TOTAL	2174863		2715267				
ANNUAL MEAN	5959		7439		6790		
HIGHEST ANNUAL MEAN					19180	199	93
LOWEST ANNUAL MEAN					1036	19	89
HIGHEST DAILY MEAN	20200 Mar	: 15	45000	Jun 16	113000	Jul 11 19	93
LOWEST DAILY MEAN	450 Oct	. 7	450	Oct 7	200	Mar 12 19	78b
ANNUAL SEVEN-DAY MINIMUM	472 Oct	: 1	472	Oct 1	236	Mar 7 19	7 8
INSTANTANEOUS PEAK FLOW			49600	Jun 16	116000	Jul 11 19:	93
INSTANTANEOUS PEAK STAGE			28.65	Jun 16	34.29	Jul 11 199	93
ANNUAL RUNOFF (AC-FT)	4314000		5386000		4919000		
ANNUAL RUNOFF (CFSM)	.60		. 75	5	. 69		
ANNUAL RUNOFF (INCHES)	8.19		10.22	2	9.34		
10 PERCENT EXCEEDS	16000		20200		18200		
50 PERCENT EXCEEDS	3200		3620		3590		
90 PERCENT EXCEEDS	627		745		642		

Post regulation Also Mar 13, 1978 Estimated

05485640 FOURMILE CREEK AT DES MOINES, IA

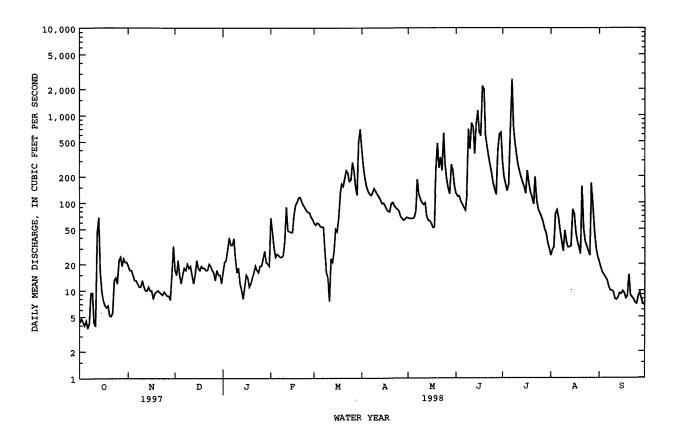
LOCATION.--Lat 41°36'50", long 93°32'43", in NE¹/₄ NE¹/₄ sec.32, T.79 N., R.23 W., Polk County, Hydrologic Unit 07100008, on right bank 20 ft downstream from bridge on Easton Blvd., 4.4 mi downstream from Muchikinock Creek, and 5.0 mi upstream from Des Moines River.

DRAINAGE AREA. -- 92.7 mi².

PERIOD OF RECORD. -- October 1971 to current year.

REVISED RECORDS. -- WDR IA-75-1: 1974 (P).

GAGE.--Water-stage recorder. Datum of gage is 795.87 ft above sea level.


REMARKS.--Estimated daily discharges: Nov. 17, 18, Dec. 4-11, 13, 14, 21, 22, Dec. 26 to Jan. 1, Jan. 9-29, Feb. 4, 12, Mar. 8-14, Apr. 25, 26, and Aug. 30 to Sept. 4. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES												
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.3 4.8 4.4 4.0 4.5	19 17 1 7 15	17 15 22 e15 e12	e16 21 22 29 40	67 47 31 e24 26	59 56 59 58 54	419 266 196 156 138	67 66 66 66 68	127 118 119 104 96	297 200 163 136 161	25 29 31 75 82	e21 e18 e16 e15
6 7 8 9 10	3.7 4.2 9.3 9.4 4.3	13 12 11 11 13	e15 e18 e17 e20 e18	33 33 39 e23 e16	25 24 24 25 36	53 53 e29 e16 e14	126 121 129 145 136	80 184 123 108 100	88 82 125 697 411	695 2600 750 489 351	67 48 36 28 48	13 11 10 10 9.6
11 12 13 14 15	3.9 45 68 16 9.7	11 10 10 11 10	e19 15 e12 e15 22	e18 e12 e10 e8.0 e11	89 e48 47 46 46	e7.5 e23 e21 e28 50	124 117 108 98 99	95 99 70 63 62	819 737 363 819 1140	268 226 194 170 151	36 31 31 32 83	8.0 7.8 8.3 9.3 9.1
16 17 18 19 20	7.7 6.8 6.4 6.7 5.2	10 e8.0 e9.3 9.7	18 17 19 18 18	e15 e14 e11 e12 e14	73 94 102 114 115	47 66 125 163 154	92 84 80 7 9 98	58 52 53 226 4 7 6	643 583 2170 1970 592	127 231 167 132 112	75 46 36 31 26	9.8 9.3 8.1 8.5 15
21 22 23 24 25	5.1 5.6 13 14 12	9.6 9.2 8.9 9.7 9.1	e17 e17 20 19 17	e16 e19 e17 e16 e19	103 94 88 82 78	188 233 222 176 183	101 92 87 84 e80	249 329 233 629 269	445 341 271 220 168	96 196 103 83 7 5	152 50 36 32 28	8.8 8.3 7.9 7.2 7.0
26 27 28 29 30 31	22 24 19 23 21 21	8.7 8.7 7.8 15 32	e16 e13 e17 e15 e15 e12	e19 e23 e28 e21 20	77 69 65 	288 233 153 122 502 694	e70 66 63 65 68	186 147 126 272 233 157	142 123 403 612 636	68 60 50 45 35 30	25 166 88 45 e30 e24	8.5 9.5 8.0 7.0 6.8
TOTAL MEAN MAX MIN AC-FT CFSM IN.	408.0 13.2 68 3.7 809 .14 .16	358.7 12.0 32 7.8 711 .13 .14	520 16.8 22 12 1030 .18 .21	614.0 19.8 40 8.0 1220 .21 .25	1759 62.8 115 24 3490 .68 .71	4129.5 133 694 7.5 8190 1.44 1.66	3587 120 419 63 7110 1.29 1.44	5012 162 629 52 9940 1.74 2.01	15164 505 2170 82 30080 5.45 6.09	8461 273 2600 30 16780 2.94 3.40	1572 50.7 166 24 3120 .55 .63	309.8 10.3 21 6.8 614 .11
STATIST	rics of M	ONTHLY MEA	n data f	OR WATER Y	EARS 19 7 2	2 - 1998	, by water y	EAR (WY)				
MEAN MAX (WY) MIN (WY)	42.0 258 1987 1.36 1989	47.0 317 1984 1.57 1977	36.5 124 1983 .25 1977	24.9 118 1974 .001 1977	50.9 206 1973 .55 1977	102 292 19 7 9 4.04 1981	125 354 1973 3.67 1981	145 462 1974 6.67 1977	161 505 1998 .73 1977	108 607 1993 .074 1977	50.0 363 1993 1.66 1988	38.5 270 1993 1.37 1988
SUMMARY	STATIST	ics	FOR 3	199 7 CALEN	dar year		FOR 19 9 8 WAT	ER YEAR		WATER YE	ARS 1972	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN TANNUAL M TANNUAL M TOAILY M DAILY ME SEVEN-DA TANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS		3.4	Feb 18 Aug 24 Sep 1		41895.0 115 2600 3.7 4.3 5600 15.00 2.7 83100 1.24 16.81 239 36 8.9	Oct 1 Jun 18 Jun 18		77.6 204 7.97 3570 .00 .00 5600 15.00 56190 .84 11.37 183 28 2.8	Jun Jan Jan Jun Jun	1993 1981 9 1974 2 1977a 2 1977a 18 1998 18 1998

a No flow many days in 1977 e Estimated

DES MOINES RIVER BASIN

05485640 FOURMILE CREEK AT DES MOINES, IA--Continued

286 DES

DES MOINES RIVER BASIN

05486000 NORTH RIVER NEAR NORWALK, IA

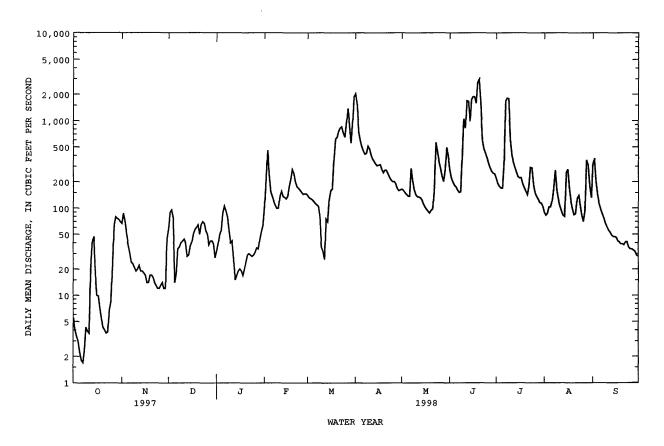
LOCATION.--Lat $41^{\circ}27^{\circ}25^{\circ}$, long $93^{\circ}39^{\circ}10^{\circ}$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec.20, T.77 N., R.24 W., Warren County, Hydrologic Unit 07100008, on left bank 10 ft downstream from bridge on county highway R57, 1.7 mi southeast of Norwalk, 5.2 mi upstream from Middle Creek, and 6.2 mi downstream from Badger Creek.

DRAINAGE AREA. -- 349 mi².

PERIOD OF RECORD. -- February 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1946. WDR IA-76-1: 1975 (P).

GAGE.--Water-stage recorder. Datum of gage is 788.45 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to June 12, 1946, nonrecording gage at same site and datum. Jan. 7 to Oct. 11, 1960, nonrecording gage at site 2.1 mi upstream at different datum.


REMARKS.--Estimated daily discharges: Oct. 1-5, Dec. 5-8, 13, 14, 21, 22, 25-28, Dec. 31 to Jan. 1, Jan. 3, 9-26, 28, and Mar. 9-14. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCURDED CUIDIC EEEM DED CECOND WAMED VEND OCHODED 1007 MO CEDMENDED 1000

		DISCHARG	E, CUB	IC FEET PE		WATER Y Y MEAN V	YEAR OCTOBEF VALUES	R 1997 TC) SEPTEMBEI	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e5.5	67	59	e32	102	139	2030	165	275	220	89	312
2	e4.0	87	90	39	210	131	1510	160	222	191	83	370
3	e3.4	70	95	e50	456	128	738	151	199	177	87	200
4	e3.0	50	78	56	239	124	591	144	183	170	103	141
5	e2.2	38	e14	88	154	119	503	138	175	170	103	113
6	1.8	31	e18	105	136	113	449	137	161	318	121	97
7	1.7	24	e34	93	120	109	418	284	152	1680	168	86
8	2.4	23	e36	79	108	105	426	205	154	1810	270	77
9	4.3	21	40	e55	99	e80	512	162	394	1780	158	67
10	3.9	19	42	e40	100	e36	474	143	1050	605	124	61
11	3.7	20	44	e42	137	e32	404	135	827	400	105	56
12	22	22	40	e26	155	e26	363	134	1690	336	92	53
13	42	19	e28	e15	136	e75	344	131	1660	292	83	49
14	47	19	e29	e17	133	e70	321	124	985	259	80	47
15	17	18	37	e19	128	128	306	112	1740	229	252	47
16	10	17	41	e20	137	160	310	. 103	1880	221	277	46
17	9.8	14	51	e19	177	166	314	97	1880	223	168	42
18	7.0	14	57	e17	215	366	278	92	1590	189	120	41
19	5.2	17	60	e20	276	616	255	88	2740	171	98	39
20	4.3	17	64	e24	249	647	272	94	2970	156	84	39
21	4.0	16	e50	e29	199	756	271	98	1590	143	86	38
22	3.7	14	e65	e30	176	823	248	168	600	180	129	41
23	3.8	13	70	e29	169	852	225	562	474	291	139	41
24	6.8	12	67	e28	161	729	209	439	425	288	108	36
25	8.4	12	e55	e29	151	651	201	343	377	182	83	34
26 27 28 29 30 31	23 64 79 76 74 70	13 14 12 12 45	e50 e38 e42 42 39 e27	e31 35 e34 44 54 63	144 146 146 	935 1380 905 556 936 1880	202 191 169 159 162	288 233 201 272 493 389	329 290 264 251 246	148 135 126 116 114 105	70 93 354 312 179 132	34 33 32 29 28
TOTAL MEAN MAX MIN AC-FT CFSM IN.	612.9 19.8 79 1.7 1220 .06	770 25.7 87 12 1530 .07	1502 48.5 95 14 2980 .14 .16	1262 40.7 105 15 2500 .12 .13	4759 170 456 99 9440 . 49 . 51	13773 444 1880 26 27320 1.27 1.47	12855 429 2030 159 25500 1.23 1.37	6285 203 562 88 12470 .58 .67	25773 859 2970 152 51120 2.46 2.75	11425 369 1810 105 22660 1.06 1.22	4350 140 354 70 8630 .40 .46	2329 77.6 370 28 4620 .22 .25
STATIST	rics of i	MONTHLY MEAN	DATA E	FOR WATER	YEARS 194	1 - 1998	3, BY WATER	YEAR (WY	7)			
MEAN	79.2	102	76.5	79.8	164	340	349	356	383	198	117	95.2
MAX	593	747	567	739	911	1041	1401	1699	3260	1722	1185	1007
(WY)	1987	1973	1993	1973	1973	1965	1973	1996	1947	1993	1993	1993
MIN	.20	.37	.36	.38	3.21	3.90	1.22	3.71	1.58	1.10	.21	.26
(WY)	1950	1956	1956	1954	1956	1954	1956	1967	1977	1977	1968	1957

05486000 NORTH RIVER NEAR NORWALK, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1941 - 1998
ANNUAL TOTAL	47789.2	85695.9	
ANNUAL MEAN	131	235	195
HIGHEST ANNUAL MEAN			709 1993
LOWEST ANNUAL MEAN			8.08 1968
HIGHEST DAILY MEAN	2300 Feb 20	2970 Jun 20	21600 Jun 13 1947
LOWEST DAILY MEAN	1.7 Oct 7	1.7 Oct 7	.00 Jul 20 1954a
ANNUAL SEVEN-DAY MINIMUM	2.6 Oct 2	2.6 Oct 2	.00 Jul 25 1954a
INSTANTANEOUS PEAK FLOW		3220 Jun 20	32000 Jun 13 1947b
INSTANTANEOUS PEAK STAGE		21.21 Jun 20	25.30 Jun 13 1947c
INSTANTANEOUS LOW FLOW		1.5 Oct 6	.00 Jul 20 1954a
ANNUAL RUNOFF (AC-FT)	94790	170000	141100
ANNUAL RUNOFF (CFSM)	.38	. 67	.56
ANNUAL RUNOFF (INCHES)	5.09	9.13	7.58
10 PERCENT EXCEEDS	278	507	445
50 PERCENT EXCEEDS	60	109	45
90 PERCENT EXCEEDS	6.9	17	2.3

Many days 1954-58 From rating curve extended above 9,100 ${\rm ft}^3/{\rm s}$ on basis of velocity-area studies From floodmark Estimated

05486490 MIDDLE RIVER NEAR INDIANOLA, IA

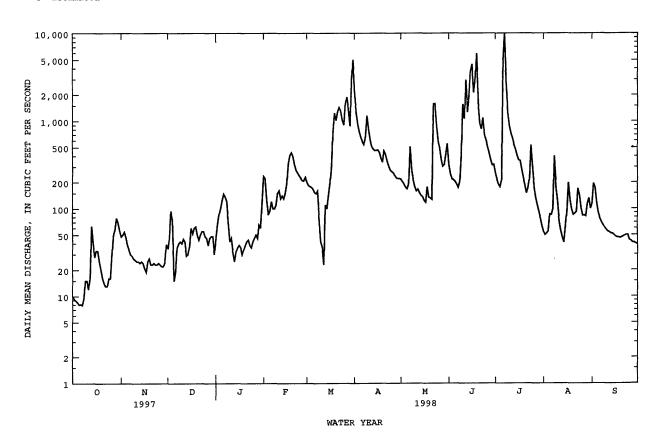
LOCATION.--Lat $41^{\circ}25^{\circ}27^{\circ}$, long $93^{\circ}35^{\circ}09^{\circ}$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.35, T.77 N., R.24 W., Warren County, Hydrologic Unit 07100008, on right bank 10 ft downstream from bridge on county highway, 0.4 mi upstream from Cavitt Creek, 1.5 mi upstream from bridge on U.S. Highway 69, and 4.6 mi northwest of Indianola.

DRAINAGE AREA. -- 503 mi2.

PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1940 (M), 1941, 1944, 1946, 1949 (M).

GAGE.--Water-stage recorder. Datum of gage is 776.15 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to June 11, 1946, June 9, 1947 to Nov. 23, 1948, and Sept. 8, 1951 to Oct. 30, 1952, nonrecording gage; and June 11, 1946 to June 8, 1947 (destroyed by flood), Nov. 24, 1948 to Sept. 7, 1951, Oct. 31, 1952 to Sept. 30, 1962, water-stage recorder at site 1.6 mi downstream at datum 2.81 ft lower.


REMARKS.--Estimated daily discharges: Nov. 16-18, Dec. 5-10, 13-15, Dec. 20 to Jan. 4, Jan. 9-31, Feb. 2-15, Mar. 9-16, and June 8, 9. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

		DISC	HARGE, C	JBIC FEET		, WATER LY MEAN		OBER 1997 T	O SEPTEMBE	ER 1998		
DAY	OCT	NOV	DE	C JAN	FEB	MAI	R API	R MAY	JUN	JUL	AUG	SEP
1	10	48	3!	5 e46	233	203	3 2070	216	314	256	54	115
2	9.2	50	4	7 e65	e220	189			246	217	50	194
3	8.9	54	94	1 e85	e120	179	925		218	189	52	174
4	8.5	47	73	e100	e85	179	5 753	1 76	213	177	55	115
5	8.0	38	e15	5 123	e95	167	7 653	168	204	210	86	89
6	8.1	34	e19			153	5 84		191	51 70	85	77
7	7.9	30	e36			149	544	511	174	9990	99	70
8	9.3	29	e4			159			e200	2780	401	65
9	15	27	e42			e75			e400	1270	175	61
10	15	26	e40) e42	e150	e42	2 800	177	1560	883	121	58
11	12	25	45	e46	e160	e36	609	159	1070	724	72	55
12	17	25	42	e32	e130	e23			2960	637	56	54
13	63	24	e29			e110	483		1270	537	47	52
14	39	25	e30			e100			2050	478	41	52
15	28	24	e38	3 e36	e150	e140	465	137	3780	407	63	50
16	33	e21	60) e38	192	e190) 468	3 124	4470	359	97	48
17	33	e19	52	e36	328	289		118	2120	353	198	47
18	25	e25	60	e30	409	777		177	3010	277	125	47
19	20	27	62	e34	437	1240	340	135	5930	223	97	46
20	16	23	e50	e38	395	1020	456	132	1580	185	85	47
21	14	23	e44	e42	318	1280	417	127	943	150	88	48
22	13	24	e50			1430			811	172	92	49
23	13	23	e55			1310			1090	223	169	50
24	16	23	e55			1030			689	531	144	50
25	16	24	e48	e42		909			606	286	101	44
26	30	23	e46			1620	256		508	172	83	43
27	50	22	e38			1880	238	375	431	130	84	41
28	58	22	e46			1340			360	109	82	41
29	78	24	e48			882			313	91	114	40
30	69	39	e48			2910			319	77	131	39
31	56		e30	e120		5040)	- 551		63	100	
TOTAL	798.9	868	1417			25043			38030	27326	3247	1961
MEAN	25.8	28.9	45.7			808			1268	881	105	65.4
MAX	78	54	94			5040			5930	9990	401	194
MIN	7.9	19	15			23			174	63	41	39
AC-FT	1580	1720	2810			49670			75430	54200	6440	3890
CFSM	.05	.06	.09			1.61			2.52	1.75	.21	.13
IN.	.06	.06	.10	.14	. 43	1.85	1.24	. 82	2.81	2.02	.24	.15
STATIST	TICS OF	MONTHLY 1	MEAN DATA	FOR WATE	R YEARS 194	41 - 199	8, BY WAT	ER YEAR (W	Y)			
MEAN	116	136	119	108	236	476	488	510	51 5	278	172	180
MAX	928	961	1070			1417			4094	3121	1419	1460
(WY)	1974	1973	1983			1962			1947	1993	1993	1992
MIN	4.28	2.80	1.62			7.35			3.81	5.20	4.47	3.92
(WY)	1969	1956	1956			1954	1956		1977	1977	1968	1968

05486490 MIDDLE RIVER NEAR INDIANOLA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDA	R YE	AR	FOR 1998 WAT	ER YE	EAR	WATER YEA	RS 194	1 -	1998
ANNUAL TOTAL	76676.2			134169.9						
ANNUAL MEAN	210			368			278			
HIGHEST ANNUAL MEAN							1006			1993
LOWEST ANNUAL MEAN							17.8			1968
HIGHEST DAILY MEAN	6110 I	May	8	9990	Jul	7	21400	Jun	13	1947
LOWEST DAILY MEAN	7.9	Oct	7	7.9	Oct	7	.11	Jul	. 2	1977
ANNUAL SEVEN-DAY MINIMUM	8.6	0ct	2	8.6	Oct	2	.51	Jun	. 29	1977
INSTANTANEOUS PEAK FLOW				11500	Jul	7	34000	Jun	. 13	1947
INSTANTANEOUS PEAK STAGE				22.27	Jul	7	28.27	Jun	. 13	19 4 7a
INSTANTANEOUS LOW FLOW				7.1	Oct	4b				
ANNUAL RUNOFF (AC-FT)	152100			266100			201100			
ANNUAL RUNOFF (CFSM)	. 42			.73			. 55			
ANNUAL RUNOFF (INCHES)	5.67			9.92			7.50			
10 PERCENT EXCEEDS	468			893			615			
50 PERCENT EXCEEDS	69			115			72			
90 PERCENT EXCEEDS	16			25			8.6			

From floodmark Also Oct. 5-8 Estimated

05487470 SOUTH RIVER NEAR ACKWORTH, IA

LOCATION.--Lat $41^{\circ}20^{\circ}14^{\circ}$, long $93^{\circ}29^{\circ}10^{\circ}$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec.34, T.76 N., R.23 W., Warren County, Hydrologic Unit 07100008, on right bank 15 ft downstream from bridge on county highway, 0.5 mi downstream from Otter Creek, and 2.2 mi southwest of Ackworth.

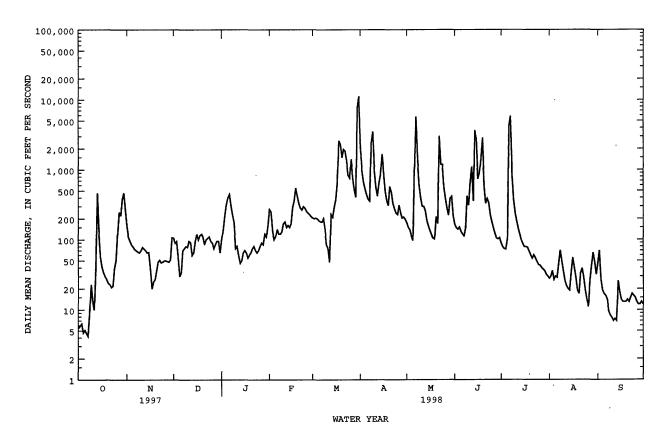
DRAINAGE AREA. -- 460 mi².

PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS. -- WSP 1438: Drainage area. WSP 1508: 1941, 1945 (M), 1946.

GAGE.--Water-stage recorder. Datum of gage is 769.97 ft above sea level. Prior to June 12, 1946, nonrecording gage, June 13, 1946 to Apr. 13, 1960, water-stage recorder, and Apr. 14, 1960 to Sept. 30, 1961, nonrecording gage, all at site 4.0 mi downstream at datum 8.06 ft lower.

REMARKS.--Estimated daily discharges: Nov. 16-21, Dec. 4-10, Dec. 13 to Jan. 3, Jan. 10 to Feb. 15, Mar. 9-15, Aug. 5-10, 13-18, Aug. 28 to Sept. 2, and Sept. 11-15. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1930 reached a stage of $24.5~\mathrm{ft}$, from information by local residents, discharge, about $30,000~\mathrm{ft}^3/\mathrm{s}$, at site $4.0~\mathrm{mi}$ downstream.

		DISC	HARGE, CUI	BIC FEET P		, WATER LY MEAN	YEAR OCTOBE VALUES	IR 1997 TO	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	5.5 5.9 6.3 4.7	154 109 95 84	89 9 4	e100 e140 e220 317	e270 e250 e130 e100	205 200 204 200	963 663 532	174 149 138 113	165 148 141 151	90 79 74 73	28 30 36 27	e46 e70 27 19
5	5.1	79	e30	397	e110	187	441	97	130	100	e30	17
6 7 8 9 10	4.6 4.2 8.7 23 13	73 70 67 65 70	e70 e75 e80	445 306 226 176 e75	e140 e120 e120 e130 e170	181 179 200 e145 e85	359 2430 3510	952 5720 1420 607 401	119 113 148 420 312	4240 5830 888 372 235	e29 e44 e70 e50 e36	16 14 9.5 8.4 7.8
11 12 13 14 15	10 42 463 122 56	78 74 70 65 66	91 e60 e65	e80 e60 e46 e50 e65	e180 e150 e160 e150 e170	e75 e48 e230 e210 e290	421 632 840	301 299 261 186 155	636 1100 359 3670 2720	180 141 116 99 87	26 22 e20 e19 e34	e7.0 e7.5 e7.0 e26 e18
16 17 18 19 20	41 34 30 27 24	e40 e20 e25 e27 e36	e100 e115 e120	e70 e65 e55 e60 e65	287 359 547 423 333	368 612 2600 2310 1500	498 365 309	133 116 105 102 213	739 885 1430 2860 591	79 79 77 68 60	e55 e40 e29 19 17	14 13 13 13 14
21 22 23 24 25	23 21 22 39 50	e48 51 47 48 50	e100 e105 e110	e75 e80 e70 e65 e70	283 267 297 283 254	1950 1850 1360 846 766	335 275 240	170 3030 1190 1190 572	331 384 338 224 179	54 60 55 49 44	33 39 29 19 14	13 15 17 16 15
26 27 28 29 30 31	124 248 221 384 466 264	50 49 48 52 107	e75 e85 e95 e95	e80 e90 e85 e120 e110 e160	240 228 214 	1410 764 520 407 7620 11200	244 204 210 195	390 283 224 389 413 218	144 119 105 102 106	43 40 38 36 32 30	11 26 e42 e65 e48 e32	13 12 12 13 12
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2792.0 90.1 466 4.2 5540 .20	1917 63.9 154 20 3800 .14	86.5 120 30 5320 .19	4023 130 445 46 7980 .28 .33	6365 227 547 100 12620 .49	38722 1249 11200 48 76810 2.72 3.13	727 3510 195 43230 1.58	19711 636 5720 97 39100 1.38 1.59	18869 629 3670 102 37430 1.37 1.53	13448 434 5830 30 26670 .94 1.09	1019 32.9 70 11 2020 .07	505.2 16.8 70 7.0 1000 .04
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	41 - 199	8, BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	113 1283 1974 .35 1957	128 906 1962 1.05 1957	1022 1983 .88	106 901 1974 1.05 1956	222 1209 1973 3.70 1989	456 1568 1960 3.61 1957	1937 1973 1.70	470 1962 1959 7.14 1980	483 4305 1947 1.79 1977	266 3870 1993 1.48 1977	132 1546 1993 2.02 1957	158 1332 1993 1.05 1957

05487470 SOUTH RIVER NEAR ACKWORTH, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR			FOR 1998 WAT	ER YEAR	WATER YEAR	5 1941 - 1998	
ANNUAL TOTAL	62343.7			131849.2				
ANNUAL MEAN	171			361		258		
HIGHEST ANNUAL MEAN						966	1993	
LOWEST ANNUAL MEAN						16.1	1989	
HIGHEST DAILY MEAN	6810	May	8	11200	Mar 31	31400	Jun 17 1990	
LOWEST DAILY MEAN	4.2	0ct	7	4.2	Oct 7	.00	Sep 19 1956a	1
ANNUAL SEVEN-DAY MINIMUM	5.2	Oct	1	5.2	Oct 1	.00	Sep 19 1956a	i
INSTANTANEOUS PEAK FLOW				21700	Mar 30	38100	Jun 17 1990	
INSTANTANEOUS PEAK STAGE				25.91	Mar 30	32.85	Jul 5 1981	
INSTANTANEOUS LOW FLOW				3.6	Oct 6,7	.00	Sep 19 1956a	Ł
ANNUAL RUNOFF (AC-FT)	123700			261500		187200		
ANNUAL RUNOFF (CFSM)	.37			.79		. 56		
ANNUAL RUNOFF (INCHES)	5.04			10.66		7.63		
10 PERCENT EXCEEDS	337			693		493		
50 PERCENT EXCEEDS	63			100		42		
90 PERCENT EXCEEDS	10			17		3.1		

Also Sept 30 to Oct 13, 1956 Estimated

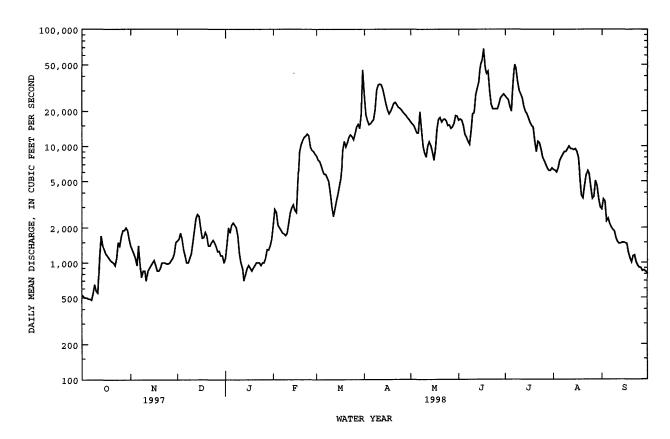
05487500 DES MOINES RIVER NEAR RUNNELLS, IA

LOCATION.--Lat $41^{\circ}29^{\circ}19^{\circ}$, long $93^{\circ}20^{\circ}17^{\circ}$, in $SE^{1}/_{4}$ NW $^{1}/_{4}$ sec.12, T.77 N., R.22 W., Polk County, Hydrologic Unit 07100008, on left bank 10 ft downstream from bridge on State Highway 316, 0.2 mi downstream from South River River, 0.5 mi upstream from Camp Creek, 2.2 mi southeast of Runnells, 37.2 mi upstream from Red Rock Dam, and at mi 179.5.

DRAINAGE AREA. -- 11,655 mi².

PERIOD OF RECORD. -- October 1985 to current year.

GAGE.--Water-stage recorder. Datum of gage is 700.00 ft above sea level (U.S. Army Corps of Engineers bench mark).


REMARKS.--Estimated daily discharges: Oct. 1 to Dec. 15, Dec. 20-23, 27, 29, 31, Jan. 1, 3-28, 30, 31, Feb. 1, 3-7, Mar. 10-14, 31, May 4-6, June 18 to Aug. 20, and Aug. 27. Records good except those for estimated daily discharge, which are poor. Flow regulated by Saylorville Lake (station 05481630) 34.2 mi upstream. Stage-discharge relation is affected at times by backwater from Lake Red Rock (05488100). U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Floods occurred on May 31, 1903; June 14, 1947; June 26, 1947; and June 24, 1954. No gage height or discharge was determined. Gage height and discharge information is available for these floods at other sites on the Des Moines River

		DISCHAI	RGE, CUBI	C FEET PE		, WATER LY MEAN	YEAR OCTOI VALUES	BER 1997 T	O SEPTEME	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4	e530 e510 e500 e500	e1400 e1300 e1200 e1100	e1550 e1600 e1800 e1600	e1100 1450 e2000 e1800	e2100 2870 e2700 e2100	8250 7630 7420 6 790	18600 16600	16100 15500 15000 e14000	16700 17100 16700 15100	e27000 e26000 e25000 e22000	e6300 e6200 e6000 e6500	2890 3520 3370 2280
5	e490	e950	e1300	e2100	e2000	6130	15600	e13000	12600	e20000	e7500	2400
6 7 8 9 10	e490 e480 e550 e650 e570	e1400 e950 e750 e850 e850	e1150 e1000 e1000 e1100 e1200	e2200 e2100 e2000 e1700 e1200	e1900 e1800 1770 1710 1790	5780 5760 5390 4990 e4000	16900 20600 30500	e13000 19700 13700 10000 8730	11900 11000 10400 13400 19000	e34000 e50000 e46000 e36000 e30000	e8000 e8500 e9000 e9000 e9500	2150 2010 1920 1860 1630
11 12 13 14 15	e550 e1100 e1700 e1400 e1300	e700 e850 e900 e950 e1000	e1500 e1900 e2400 e2600 e2500	e1000 e900 e700 e800 e900	2200 2680 2970 3140 2830	e3000 e2500 e2900 e3400 3900	33600 30800 26800	8050 10000 10900 10100 8940	19300 27700 31600 35700 50100	e28000 e26000 e22000 e20000 e19000	e10000 e9500 e9500 e9300 e9500	1510 1460 1470 1490 1490
16 17 18 19 20	e1200 e1150 e1100 e1050 e1020	e1050 e950 e850 e850 e900	1980 1630 1650 1820 e1700	e950 e900 e850 e900 e950	2700 4940 9000 10300 11200	4600 5360 9270 11000 9900	19000 20000 21500	7580 9500 14000 17000 17600	54700 68500 e48000 e42000 e44000	e17500 e16000 e15000 e14500 e11000	e9000 e8000 e5500 e3800 e3600	1480 1460 1220 1100 1010
21 22 23 24 25	e1000 e950 e1100 e1500 e1400	e1000 e1000 e1000 e980 e980	e1400 e1400 e1500 1570 1490	e1000 e1000 e1000 e950 e1000	11900 12200 12700 12300 9830	10700 11900 12500 12100 11400	22800 21600 21200	16100 16900 17100 16500 15000	e30000 e23000 e21000 e21000 e21000	e9000 e11000 e10700 e9500 e8000	4560 5650 6170 5770 4500	1140 1160 1010 946 907
26 27 28 29 30 31	e1700 e1900 e1900 e2000 e1900 e1600	e1000 e1050 e1100 e1200 e1500	1380 e1250 1260 e1150 1150 e1000	e1000 e1100 e1300 1290 e1400 e1600	9230 9070 8580 	12800 14600 15400 14200 18800 e45100	18900 18300 17500 16900	15200 14200 14600 15700 18300 18100	e21000 e23000 e26000 e27000 e28000	e7500 e7000 e6500 e6200 e6200 e6500	3560 e3700 5070 4570 3530 2990	903 848 863 838 817
TOTAL MEAN MAX MIN AC-FT CFSM IN.	33790 1090 2000 480 67020 .09	30560 1019 1500 700 60620 .09	47530 1533 2600 1000 94280 .13 .15	39140 1263 2200 700 77630 .11	158510 5661 12700 1710 314400 .49 .51	297470 9596 45100 2500 590000 .82 .95	22200 34200 15300	430100 13870 19700 7580 853100 1.19 1.37	806500 26880 68500 10400 1600000 2.31 2.57	593100 19130 50000 6200 1176000 1.64 1.89	204270 6589 10000 2990 405200 .57 .65	47152 1572 3520 817 93530 .13 .15
STATIST	rics of M	ONTHLY MEA	N DATA F	OR WATER	YEARS 198	36 - 199	8, BY WATE	ER YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	4205 18040 1987 621 1990	4238 12660 1993 524 1990	3929 10000 1992 473 1990	2201 6237 1992 450 1990	3735 8557 1997 500 1990	9977 18390 1993 1805 1989	30380 1993 1151	14620 32740 1993 2372 1989	16410 40530 1991 1777 1988	15240 68140 1993 840 1988	7541 32990 1993 534 1988	4655 26320 1993 506 1988
SUMMAR	Y STATIST	rics	FOR	1997 CALE	NDAR YEAR	₹.	FOR 1998	WATER YEA	R	WATER	YEARS 1986	- 1998
				2503974 6860			335 4 122 9189			8365 22980 1200		1993 1989
LOWEST ANNUAL INSTAN INSTAN ANNUAL	TANEOUS F TANEOUS F RUNOFF (EAN AY MINIMUM PEAK FLOW PEAK STAGE AC-FT)		3 4 900 480 500 4967000	May 8 Oct 7 Oct 1	7	68500 480 500 71700 68. 6653000		7 1 7	133000 390 407 134000 82. 6060000	Jan Jan Jul 88 Jul	11 1993 10 1990 6 1990 11 1993 11 1993
ANNUAL 10 PERC 50 PERC	RUNOFF (RUNOFF (CENT EXCE CENT EXCE CENT EXCE	INCHES) EDS EDS		.59 7.99 17800 3600 750			10. 22900 4560 950			9. 21000 4390 712		

e Estimated

DES MOINES RIVER BASIN 05487500 DES MOINES RIVER NEAR RUNNELLS, IA--Continued

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA

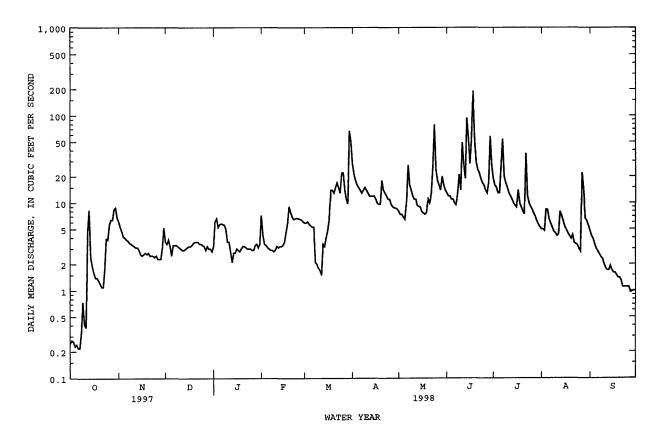
LOCATION.--Lat $41^{\circ}36'05$ ", long $93^{\circ}16'14$ ", in $NE^{1}/_{4}$ NE $^{1}/_{4}$ sec. 5, T.78 N., R.21 W., Jasper County, Hydrologic Unit 07100008, on left bank downstream side of bridge on Highway 163.

DRAINAGE AREA. -- 6.78 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1995 to current year.

GAGE.--Water-stage recorder. Concrete control. Datum of gage is 828.33 ft above sea level.


REMARKS.--Estimated daily discharges: Dec. 4, 5, 27, 31, Jan. 9-19, Mar. 9-15, and June 18, 19. Records good except those for estimated daily discharge, which are poor. Periodic observations of water temperature and specific conductance are published in report as miscellaneous water quality data. U.S. Geological Survey rain gage and satellite data collection platform at station.

		DISCHAR	GE, CUBI	C FEET PER		WATER YE MEAN VA	AR OCTOBER	1 9 9 7 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.25 .27 .26 .23 .24	6.1 5.3 4.7 4.1 4.0	3.6 3.4 3.8 e3.2 e2.5	3.2 6.1 6.6 5.3 5.7	7.2 4.3 3.4 3.3	5.9 5.9 6.1 5.7 5.5	28 21 18 16 15	8.0 7.4 7.4 6.9 6.5	13 12 12 11 11	19 16 15 13	5.0 5.0 4.8 8.4 8.3	4.8 4.2 3.9 3.4 3.0
6 7 8 9 10	.22 .22 .33 .74 .41	3.8 3.7 3.5 3.4 3.3	3.3 3.3 3.3 3.2 3.1	5.8 5.7 5.6 e5.0 e3.6	3.0 2.9 2.9 2.8 2.9	5.3 5.3 2.1 e2.0 e1.8	14 13 14 15	9.7 27 16 14 12	10 9.5 13 21 14	26 54 20 17 15	6.5 5.8 5.2 4.7 4.5	2.8 2.6 2.4 2.3 2.0
11 12 13 14 15	.38 4.7 8.3 2.4 1.9	3.2 3.1 3.1 2.9 2.6	3.0 2.9 2.9 3.0 3.1	e3.6 e2.8 e2.1 e2.7 e2.7	3.2 3.1 3.2 3.2 3.3	e1.7 e1.5 e3.4 e3.2 e4.0	13 12 12 12 12	11 11 9.4 9.1 8.9	49 27 19 94 56	13 12 11 10 9.4	4.2 4.4 7.9 7.1 6.1	1.8 1.7 1.7 1.9
16 17 18 19 20	1.6 1.4 1.4 1.3	2.5 2.6 2.7 2.6 2.7	3.2 3.2 3.3 3.5 3.6	e3.0 e2.9 e2.8 e3.0 3.2	3.6 4.6 5.9 9.1 7.8	4.8 6.4 14 14 13	11 10 9.7 9.7 18	7.9 7.6 7.4 7.7	28 53 e192 e53 29	8.9 14 10 9.0 8.1	5.3 4.9 4.5 4.2 3.9	1.6 1.6 1.5 1.4
21 22 23 24 25	1.1 1.1 1.8 3.9 3.8	2.5 2.5 2.5 2.4 2.5	3.6 3.6 3.4 3.4 3.3	3.2 3.1 3.0 3.0 3.0	6.9 6.5 6.6 6.7 6.6	15 17 15 13 22	14 13 12 11	10 13 26 79 24	24 22 19 17 16	7.4 37 12 10 9.1	4.3 3.5 3.4 3.3 3.0	1.3 1.1 1.1 1.1
26 27 28 29 30 31	5.7 6.4 6.4 8.4 8.8 6.8	2.3 2.3 2.3 3.1 5.2	3.2 e2.9 3.2 3.0 3.0 e2.8	2.9 2.9 3.3 3.4 3.1	6.5 6.4 6.1	22 14 11 9.8 67 51	9.8 9.1 8.8 8.7 8.5	18 16 14 20 16	14 13 17 58 27	8.4 7.6 7.0 6.2 5.7 5.3	2.8 22 14 6.6 6.2 5.5	1.1 .96 .98 1.0
TOTAL MEAN MAX MIN AC-FT CFSM IN.	81.95 2.64 8.8 .22 163 .39	97.5 3.25 6.1 2.3 193 .48	99.8 3.22 3.8 2.5 198 .47	115.7 3.73 6.6 2.1 229 .55 .63	135.1 4.83 9.1 2.8 268 .71	368.4 11.9 67 1.5 731 1.75 2.02	393.3 13.1 28 8.5 780 1.93 2.16	455.9 14.7 79 6.5 904 2.17 2.50	953.5 31.8 192 9.5 1890 4.69 5.23	429.1 13.8 54 5.3 851 2.04 2.35	185.3 5.98 22 2.8 368 .88 1.02	58.44 1.95 4.8 .96 116 .29
STATIST	CICS OF MC	NTHLY MEA	N DATA FO	OR WATER Y	EARS 19 9 6	- 1998,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	1.12 2.64 1998 .20 1996	1.48 3.25 1998 .40 1996	1.55 3.22 1998 .54 1996	1.93 3.73 1998 .68 1997	10.7 19.8 1996 4.82 1998	5.58 11.9 1998 1.59 1996	6.14 13.1 1998 1.41 1996	17.8 25.0 1996 13.6 1997	16.9 31.8 1998 6.61 1997	7.34 13.8 1998 3.79 1997	2.96 5.98 1998 1.26 1997	.94 1.95 1998 .43 1996
SUMMARY	7 STATISTI	CS	FOR 1	1997 CALENI	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YE	ARS 1996	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTAMI INSTAMI ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		AN A			Feb 18 Oct 6 Oct 1		.24 1350 9.66	Jun 18 Oct 6 Oct 1 Jun 18 Jun 18 Oct 7		6.17 9.24 3.56 210 .04 .16 1350 9.66 .00 4470 .91 12.37 14 .26 .32	May 2 Jan Oct 2 Jun 1 Jun 1 Nov 1	1998 1997 44 1996 7 1996 00 1995 8 1998 8 1998 00 1995a

a Also Nov 11, 27, and Nov 29

e Estimated

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- April 1995 to current year.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: April 1995 to current year. WATER TEMPERATURES: April 1995 to current year. SUSPENDED-SEDIMENT DISCHARGE: May 1995 to current year.

REMARKS.--Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 801 microsiemens Feb. 17, 1997; minimum daily, 159 microsiemens May 24, 1996. WATER TEMPERATURES: Maximum daily, 30.0°C Aug. 28 and 30, 1995; minimum daily, 0.0°C many days during winter. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,130 mg/L July 22, 1998; minimum daily mean, 7 mg/L Apr. 24, 1996. SEDIMENT LOADS: Maximum daily, 1,080 tons May 24, 1996; minimum daily, 0.003 tons Nov. 28, 1995.

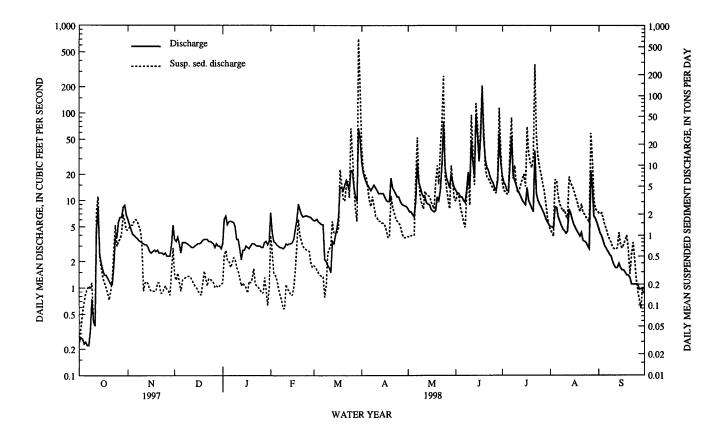
EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum daily, 626 microsiemens Oct. 10; minimum daily, 318 microsiemens Mar 30. WATER TEMPERATURES: Maximum daily, 19.0°C Aug. 11; minimum daily, 1.0°C Dec. 4. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,130 mg/L July 22; minimum daily mean, 12 mg/L Feb. 9, 10. SEDIMENT LOADS: Maximum daily, 654 tons Mar. 30; minimum daily, 0.03 tons Oct. 1.

SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			561			534	497		556	538		
2			544		533				541			
3						532	550					482
4	597		555						536			
5					518							
6		383		558		534		509		534		
7	562			550			540			521		
8	568			553			546	541	548	542		
9	596						537	544	548	508		
10	626	441									529	
11		554	510		612				381	514	500	
12		512			561						503	
13	572					523	541				445	
14												
15	595				551			551		521		548
16					549					541		
17						596	540				558	554
18			530	467	601	546	492					
19		509		447		552	507	501			514	541
20	617	517	564		554	530		495	511	542		520
21		556		466		541				543		512
22	603	505	530			520	534	493	529	514		541
23			505		493				528			490
24	553										537	
25	592	451				358	536				553	512
26		503			543	382	537					
27	612				540	510	543				466	
28				563	539	527				538		
29	544		493					544				451
30	542					318					475	
31				548		489				523		

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued


TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES

				_			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										18.0		
2												
3												
4			1.0									
5												
6												
7				3.0								
8				2.0								
9												
10												
							•					
11											19.0	
12					~#							
13												
14												
15												
16												
17												
18					4.5			10.5				
19					4.0			12.5				
20					4.0							
21												17.0
22												13.0
23												
24					~							
25												
26												
27												
28					~							
29												
30												
31						8.0						

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

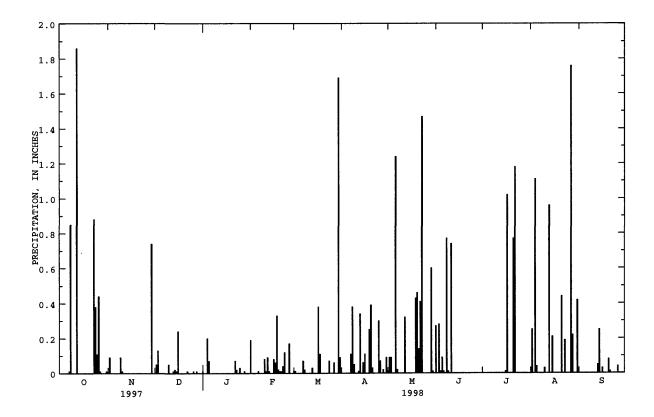
			5051 1111	ED-SEDIM	CMI, MAIER	IEAN OC	TOBER 1997	IO SEFI	EMBER 1996			
DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEME	ER	DECEMBI	ER	JANUA	RY	FEBRUA	RY	MARC	н
1 2 3 4 5	39 66 110 181 239	.03 .05 .08 .11	76 91 108 128 152	1.2 1.3 1.4 1.4	26 25 28 24 24	. 26 . 23 . 29 . 21 . 16	24 30 34 31 28	.21 .53 .61 .44	47 46 31 30 28	1.0 .55 .29 .27 .23	23 22 20 19 18	.37 .35 .32 .29 .27
6 7 8 9 10	291 317 195 103 57	.17 .19 .17 .21	170 158 146 134 88	1.7 1.6 1.4 1.2	26 27 29 30 32	. 23 . 24 . 25 . 26 . 26	23 25 32 34 36	.35 .39 .48 .46	23 19 15 12 12	.18 .14 .12 .09	18 18 24 36 115	.26 .26 .13 .19
11 12 13 14 15	45 107 126 74 66	.05 2.2 3.6 .49 .34	19 25 26 25 25	.16 .21 .22 .20 .17	32 29 26 23 21	.26 .23 .21 .19 .18	32 32 34 29 26	.31 .24 .19 .21 .19	22 20 18 17 16	.20 .17 .16 .14	139 180 169 131 103	.64 .73 1.6 1.1 1.1
16 17 18 19 20	59 53 47 42 39	.25 .21 .18 .15	24 23 23 24 29	.16 .16 .16 .16	19 17 16 23 31	.16 .15 .14 .21	22 19 29 26 28	.18 .15 .22 .21	19 25 42 68 49	.18 .32 .72 1.7	81 76 219 1 4 2 98	1.1 1.3 8.8 5.4 3.4
21 22 23 24 25	53 85 138 135 67	.16 .25 .64 1.4 .70	30 22 23 26 29	.21 .15 .15 .17 .19	25 20 26 26 25	.24 .19 .24 .24	38 24 23 22 21	.33 .20 .19 .18 .17	44 40 36 35 34	.81 .70 .64 .63	75 105 146 98 4 56	3.1 4.9 6.0 3.5 34
26 27 28 29 30 31	54 52 65 87 65 64	.83 .89 1.1 2.0 1.6 1.2	27 25 23 35 46	.17 .16 .14 .32 .66	24 23 23 22 24 26	.21 .18 .19 .18 .19 .20	20 19 27 17 12 19	.15 .15 .25 .16 .10	33 24 21 	.59 .41 .35 	243 134 73 62 2090 868	15 5.2 2.3 1.6 654 141
TOTAL	ւ	19.58		17.72		6.71		8.45		12.43		898.77
	MEAN CONCEN- TRATION	LOAD (TONS/	MEAN CONCEN- TRATION	LOAD (TONS/	MEAN CONCEN- TRATION	LOAD (TONS/	MEAN CONCEN- TRATION	LOAD (TONS/	MEAN CONCEN- TRATION	LOAD (TONS/	MEAN CONCEN- TRATION	LOAD (TONS/
DAY	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)		CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)
	CONCEN- TRATION (MG/L)	(TONS/ DAY) IL	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L) JUNE	(TONS/ DAY)	CONCEN- TRATION (MG/L) JULY	(TONS/ DAY)	CONCEN- TRATION (MG/L) AUGUS	(TONS/ DAY) T	CONCEN- TRATION (MG/L) SEPTEM	(TONS/ DAY) BER
DAY 1 2 3 4 5	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)	CONCEN- TRATION (MG/L)	(TONS/ DAY)
1 2 3 4	CONCEN- TRATION (MG/L) APR 243 153 151 162	(TONS/ DAY) IL 19 8.8 7.4 7.0	CONCEN- TRATION (MG/L) MAY 45 48 51 54	(TONS/DAY)	CONCEN- TRATION (MG/L) JUNE 88 127 111 81	(TONS/DAY) 3.1 4.2 3.6 2.5	CONCEN- TRATION (MG/L) JULY 113 103 105 107	(TONS/DAY) 5.7 4.4 4.2 3.9	CONCEN- TRATION (MG/L) AUGUS 88 81 74 205	(TONS/DAY) r 1.2 1.1 .97 6.3	CONCEN- TRATION (MG/L) SEPTEM 165 180 196 189	(TONS/DAY) BER 2.1 2.0 2.1 1.7
1 2 3 4 5 6 7 8 9	CONCEN- TRATION (MG/L) APR 243 153 151 162 118 87 73 94 64	(TONS/DAY) IL 19 8.8 7.4 7.0 4.7 3.2 2.6 3.6 2.7	CONCEN- TRATION (MG/L) MAY 45 48 51 54 58 162 326 137 93	(TONS/DAY) .97 .95 1.0 1.0 25 6.0 3.5	CONCEN- TRATION (MG/L) JUNE 88 127 111 81 67 58 50 85 125	(TONS/DAY) 3.1 4.2 3.6 2.5 2.0 1.6 1.3 3.8 7.7	CONCEN- TRATION (MG/L) JULY 113 103 105 107 110 219 239 123 220	(TONS/DAY) 5.7 4.4 4.2 3.9 3.9 19 48 6.5	CONCEN- TRATION (MG/L) AUGUS 88 81 74 205 265 203 178 175 172	(TONS/DAY) 1	CONCEN- TRATION (MG/L) SEPTEM 165 180 196 189 174 161 148 136 125	(TONS/DAY) BER 2.1 2.0 2.1 1.7 1.4 1.2 1.0 .88 .79
1 2 3 4 5 6 7 8 9 10 11 12 13 14	CONCEN- TRATION (MG/L) APR 243 153 151 162 118 87 73 94 52 51 50 48 47	(TONS/DAY) IL 19 8.8 7.4 7.0 4.7 3.2 2.6 3.6 2.7 1.9 1.8 1.6 1.6 1.5	CONCEN- TRATION (MG/L) MAY 45 48 51 54 58 162 326 137 93 86 82 147 151	(TONS/DAY) .97 .95 1.0 1.0 1.0 6.0 25 6.0 3.5 2.8 2.4 4.3 3.8 3.7	CONCEN- TRATION (MG/L) JUNE 88 127 111 81 67 58 50 85 125 72 276 213 106 238	(TONS/DAY) 3.1 4.2 3.6 2.5 2.0 1.6 1.3 3.8 7.7 2.7 53 16 5.3 78	CONCEN- TRATION (MG/L) JULY 113 103 105 107 110 219 239 123 220 133 112 136 178 234	(TONS/DAY) 5.7 4.4 4.2 3.9 3.9 19 48 6.5 10 5.4 4.0 4.5 5.4 6.5	CONCEN- TRATION (MG/L) AUGUS 88 81 74 205 265 203 178 175 172 191 172 146 276 290	(TONS/DAY) 1.2 1.1 .97 6.3 6.0 3.6 2.8 2.5 2.2 2.3 1.9 1.7 6.9 5.5	CONCEN- TRATION (MG/L) SEPTEM 165 180 196 189 174 161 148 136 125 123 130 138 146 208	(TONS/DAY) BER 2.1 2.0 2.1 1.7 1.4 1.2 1.0 .88 .79 .67 .64 .63 .66 1.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	CONCEN- TRATION (MG/L) APR 243 153 151 162 118 87 73 94 64 52 51 50 48 47 47 47 46 45 35 39	(TONS/DAY) IL 19 8.8 7.4 7.0 4.7 3.2 2.6 3.6 2.7 1.9 1.8 1.6 1.5 1.5 1.4 1.2 .93 1.0	CONCENTRATION (MG/L) MAY 45 48 51 54 58 162 326 137 93 86 82 147 151 151 151 143 131 121 271	(TONS/DAY) .97 .95 1.0 1.0 1.0 6.0 25 6.0 3.5 2.8 2.4 4.3 3.7 3.6 3.7 2.4 5.9	CONCEN- TRATION (MG/L) JUNE 88 127 111 81 67 58 50 85 125 72 276 213 106 238 226 158 211 272 243	(TONS/DAY) 3.1 4.2 3.6 2.5 2.0 1.6 1.3 3.8 7.7 2.7 53 16 5.3 78 37 12 36 141 35	CONCEN- TRATION (MG/L) JULY 113 103 105 107 110 219 239 123 220 133 112 136 178 234 295 206 852 244 460	(TONS/DAY) 5.7 4.4 4.2 3.9 3.9 19 48 6.5 10 5.4 4.0 4.5 5.4 6.5 7.5 5.0 36 15	CONCEN- TRATION (MG/L) AUGUS 88 81 74 205 265 203 178 175 172 191 172 146 276 290 311 307 284 254	TONS/DAY) 1.2 1.1 .97 6.3 6.0 3.6 2.5 2.2 2.3 1.9 1.7 6.9 5.5 5.1 4.4 3.7 3.1 2.5	CONCEN- TRATION (MG/L) SEPTEM 165 180 196 189 174 161 148 136 125 123 130 138 146 208 160 151 170 218	(TONS/DAY) BER 2.1 2.0 2.1 1.7 1.4 1.2 1.0 .88 .79 .67 .64 .63 .66 1.1 .73 .66 .74 .87
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	CONCEN- TRATION (MG/L) APR 243 153 151 162 118 87 73 94 64 52 51 50 48 47 47 46 45 35 39 77 68 60 57 55	(TONS/DAY) IL 19 8.8 7.4 7.0 4.7 3.2 2.6 3.6 2.7 1.9 1.8 1.6 1.5 1.5 1.4 1.2 .93 1.0 3.7 2.6 2.1 1.8 1.6 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	CONCENTRATION (MG/L) MAY 45 48 51 54 58 162 326 137 93 86 82 147 151 151 151 143 131 121 271 357 199 516 378 558	(TONS/DAY) .97 .95 1.0 1.0 1.0 6.0 25 6.0 3.5 2.8 2.4 4.3 3.8 3.7 3.6 3.0 2.7 2.4 5.9 10 5.4 19 43 192	CONCENTRATION (MG/L) JUNE 88 127 111 81 67 58 50 85 125 72 276 213 106 238 226 158 211 272 243 121 109 111 112 112	(TONS/DAY) 3.1 4.2 3.6 2.5 2.0 1.6 1.3 3.8 7.7 2.7 53 16 5.3 78 37 12 36 141 35 9.5 6.9 6.5 5.8	CONCEN- TRATION (MG/L) JULY 113 103 105 107 110 219 239 123 220 133 112 136 178 234 295 206 852 544 460 425 640 2130 766 462	(TONS/DAY) 5.7 4.4 4.2 3.9 3.9 19 48 6.5 10 5.4 4.0 4.5 5.4 6.5 7.5 5.0 36 11 9.3 13 281 26 13	CONCEN- TRATION (MG/L) AUGUS 88 81 74 205 265 203 178 175 172 191 172 146 276 290 311 307 284 254 213 242 228 213 200	(TONS/DAY) T 1.2 1.1 .97 6.3 6.0 3.6 2.8 2.5 2.2 2.3 1.9 1.7 6.9 5.5 5.1 4.4 3.7 3.1 2.5 2.2 2.8 2.1 2.0 1.8	CONCEN- TRATION (MG/L) SEPTEM 165 180 196 189 174 161 148 136 125 123 130 138 146 208 160 151 170 218 281 162 81 176 263 150	(TONS/DAY) BER 2.1 2.0 2.1 1.7 1.4 1.2 1.0 .88 .79 .67 .64 .63 .66 1.1 .73 .66 .74 .87 1.0 .60 .28 .52 .79 .46
1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 4 15 16 17 18 9 20 21 22 23 4 25 26 27 28 9 30	CONCEN- TRATION (MG/L) APR 243 153 151 162 118 87 73 94 64 52 51 50 48 47 47 46 45 35 39 77 68 60 57 55 53 52 44 40 39 42	(TONS/DAY) IL 19 8.8 7.4 7.0 4.7 3.2 2.6 3.6 2.7 1.9 1.8 1.6 1.5 1.5 1.4 1.2 .93 1.0 3.7 2.6 2.1 1.8 1.6 1.5 1.9 1.8 1.0 3.7	CONCENTRATION (MG/L) MAY 45 48 51 54 58 162 326 137 93 86 82 147 151 151 151 121 271 357 199 516 378 558 518 577 64 189 129	(TONS/DAY) .97 .95 1.0 1.0 6.0 25 6.0 3.5 2.8 2.4 4.3 3.8 3.7 3.6 3.0 2.7 2.4 5.9 10 5.4 19 43 192 7.3 4.7 3.3 2.4 10 5.7 3.3	CONCENTRATION (MG/L) JUNE 88 127 111 81 67 58 50 85 125 72 276 213 106 213 243 121 109 111 112 111 111 111 111 157 279 212	(TONS/DAY) 3.1 4.2 3.6 2.5 2.0 1.6 1.3 3.8 7.7 2.7 53 16 5.3 78 37 12 36 141 35 9.5 6.9 6.5 5.8 5.2 4.7 4.3 4.0 7.1 67 16	CONCEN- TRATION (MG/L) JULY 113 103 105 107 110 219 239 123 220 133 112 136 178 234 295 206 852 544 460 425 640 2130 766 462 387 324 272 227 172 125	TONS/DAY) 5.7 4.4 4.2 3.9 3.9 19 48 6.5 10 5.4 4.0 4.5 5.4 6.5 7.5 5.0 36 15 11 9.3 13 281 26 13 9.5 7.4 5.6 4.3 2.9 1.9	CONCEN- TRATION (MG/L) AUGUS 88 81 74 205 265 203 178 175 172 191 172 146 276 290 311 307 284 254 213 242 228 213 242 213 242 213 242 213 242 218 217 219 211 228 218 219 219 219 219 219 219 219 219 219 219	TONS/DAY) T 1.2 1.1 .97 6.3 6.0 3.6 2.8 2.5 2.2 2.3 1.9 1.7 6.9 5.5 5.1 4.4 3.7 3.1 2.5 2.2 2.8 2.1 2.0 1.8 1.7 1.5 29 12 3.1 2.4	CONCEN- TRATION (MG/L) SEPTEM 165 180 196 189 174 161 148 136 125 123 130 138 146 208 160 151 170 218 281 162 81 176 263 150 80 56 45 366 66	(TONS/DAY) BER 2.1 2.0 2.1 1.7 1.4 1.2 1.0 .88 .79 .67 .64 .63 .66 1.1 .73 .66 .74 .87 1.0 .60 .28 .52 .79 .46 .24 .16 .12 .09 .18 .14

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. -- July 1995 to current year.

 ${\tt INSTRUMENTATION.--Tipping\ bucket\ rain\ gage.}$


REMARKS.--Records good except for winter period, which is poor due to intermittent snow accumulation and subsequent melting. EXTREMES FOR PERIOD OF RECORD.--Maximum daily accumulation, 2.53 in., July 17, 1996.

EXTREMES FOR CURRENT YEAR. -- Maximum daily accumulation, 1.86 in., Oct. 12.

					02011, 2100							
		PREC	IPITATION,	TOTAL,		ATER YEAR Y SUM VAL		1997 TO S	EPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.00	.00	.00	.01	.19	.01	.00	.01	.27	.00	.00	.00
2	.00	.09	.05	.00	.00	.01	.00	.09	. 00	.00	.25	.00
3	.00	.00	.13	.00	.00	.00	.00	.09	.28	.00	.00	.00
4	.00	.00	.00	.20	.00	.00	.00	.00	.01	.00	1.11	.00
5	.00	.00	.00	.07	.00	.00	.00	.00	.09	.00	.04	.00
6	.00	.00	.00	.00	.01	.00	.00	1.24	.01	.00	.00	.00
7	.01	.00	.00	.00	.00	.07	.11	.02	.00	.00	.00	.00
8	.85	.00	.00	.00	.00	. 02	.38	.00	.77	.00	.00	.00
ğ	.00	.09	.00	.00	.00	.00	.05	.00	.01	.00	.00	.00
10	.00	.01	.05	.00	.08	.00	.00	.00	.00	.00	.03	.00
11	.00	.00	.00	.00	.01	.00	.00	.00	.74	.00	.00	.00
12	1.86	.00	.00	.00	.09	.00	.01	.32	.00	.00	.00	.00
13	.00	.00	.01	.00	.01	.03	.34	.00	.00	.00	.96	.05
14	.00	.00	.02	.00	.00	.00	.00	.00	.00	.00	.00	.25
15	.00	.00	.01	.00	.00	.00	.06	.00	.00	.00	.21	.00
		.00			.00	.00						
16	.00	.00	.24	.00	.08	.00	.11	.00	.00	.01	.00	.03
17	.00	.00	.00	.00	.06	.38	.00	.00	.00	1.02	.00	.00
18	.00	.00	.00	.00	.33	. 11	.00	.00	.00	.00	.00	.00
19	.00	.00	.00	.00	.02	.00	.25	. 43	.00	.00	.00	.00
20	.00	.00	.00	.00	.01	.00	.39	.46	.00	.00	.00	.08
21	.00	.00	.00	.00	.01	.00	. 03	.14	.00	.77	. 44	.01
22	.00	.00	.01	.07	.04	.00	.00	.41	.00	1.18	.00	.00
23	.88	.00	.00	.02	. 12	.00	.00	1.47	.00	.00	.19	.00
24	.38	.00	.00	.00	.00	.07	.00	.00	.00	.00	.00	.00
25	.11	.00	.00	. 03	.00	.00	.30	.00	.00	.00	.00	.00
26	. 44	.00	.01	.00	. 17	.00	.07	.00	.00	.00	.00	.04
27	.01	.00	.00	.00	.00	.06	.00	.00	.00	.00	1.76	.00
28	.00	.00	.01	.01	.00	.00	.02	.00	.00	.00	.22	.00
29	.00	.74	.00	.00		.00	.00	.60	.00	.00	.00	.00
30	.00	.00	.00	.00		1.69	.09	.01	.00	.00	.00	.00
31	.01		.00	.00		.09		.00		.00	.42	
TOTAL	4.55	0.93	0.54	0.41	1.23	2.54	2.21	5.29	2.18	2.98	5.63	0.46
MEAN	. 15	.03	.02	.01	.04	.08	.07	.17	.07	. 10	.18	. 02
MAX	1.86	.74	.24	.20	.33	1.69	.39	1.47	.77	1.18	1.76	.25
MIN	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00
TITIA	.00	.00	.00	.00	.00	.00	.00	.00	.00	.00		.00

301

05487540 WALNUT CREEK NEAR PRAIRIE CITY, IA--Continued

05487550 WALNUT CREEK NEAR VANDALIA, IA

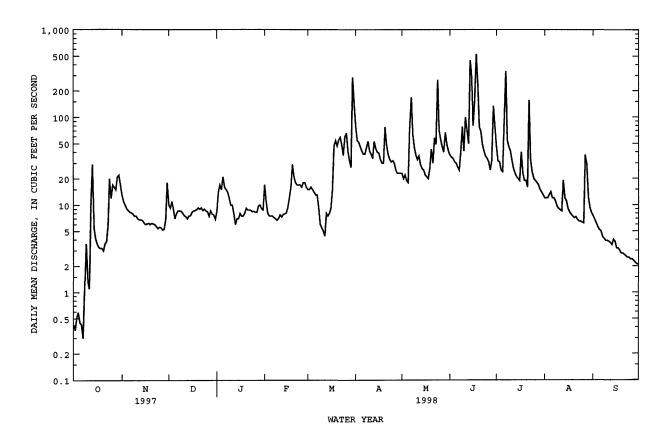
LOCATION.--Lat 41°32'13", long 93°15'32", in $NW^1/_4$ $NE^1/_4$ Sec. 27, T.78 N., R.21 W., Jasper County, Hydrologic Unit 07100008, on right bank downstream side of bridge.

DRAINAGE AREA. -- 20.3 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1994 to current year.

GAGE.--Water-stage recorder. Concrete control. Datum of gage is 785.15 ft above sea level.


REMARKS.--Estimated daily discharges: Dec. 4-6, 13, 14, 27, Jan. 10-19, Mar. 9-15, and Sept. 15-22, 24-29. Records good except those for estimated daily discharge, which are poor. Periodic observations of water temperature and specific conductance are published in report as miscellaneous water quality data. U.S. Geological Survey rain gage and satellite data collection platform at station.

		DISCHA	RGE, CUBI	C FEET PER		WATER YE Y MEAN VA	AR OCTOBER LUES	1997 TO	SEPTEMBE	R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.43 .37 .51 .59	13 11 10 9.1 8.7	10 9.3 11 e9.0 e7.0	8.4 14 17 15 21	17 11 8.0 7.5 7.5	15 15 16 15 14	81 54 52 46 41	23 20 22 19 18	37 35 34 31 30	47 32 31 25 24	12 12 12 13 14	7.5 6.8 6.2 5.6 5.2
6 7 8 9 10	.43 .30 1.1 3.6 1.4	8.3 8.2 7.9 7.5 7.5	e8.0 8.6 8.6 8.5 8.1	16 15 14 12 e10	7.5 7.2 7.0 6.7 7.0	13 13 9.3 e6.0 e5.5	38 38 45 53 41	74 167 64 45 37	27 25 40 78 41	92 336 55 46 41	12 12 11 9.6 9.1	5.0 4.3 4.1 3.9 3.9
11 12 13 14 15	1.1 11 29 5.4 4.1	7.0 6.8 6.8 6.7 6.3	7.6 7.4 e7.0 e7.5 7.6	e10 e8.0 e6.0 e7.0 e7.0	7.7 7.3 7.8 7.9 8.1	e5.0 e4.4 e8.0 e7.5 e8.0	38 34 53 44 40	33 36 29 26 25	100 71 50 447 286	32 26 23 21 20	8.8 8.5 19 12 11	3.8 3.7 3.5 4.0 e3.8
16 17 18 19 20	3.6 3.3 3.2 3.2	6.0 6.1 6.2 6.0 6.2	8.3 8.6 8.7 8.9 9.3	e8.0 e7.5 e7.5 e8.0 9.2	9.3 12 16 29 21	9.2 15 47 54 47	39 33 30 30 77	22 21 20 26 43	80 159 526 229 77	19 40 23 19 19	9.0 8.3 7.8 7.4 7.1	e3.2 e3.2 e3.0 e2.8 e2.8
21 22 23 24 25	3.6 3.8 5.9 20	6.1 6.0 5.7 5.4 5.6	9.0 9.3 8.7 9.0 8.6	8.8 8.8 8.7 8.4 8.5	18 17 17 17 16	55 59 49 37 60	48 38 33 31 32	30 58 49 266 71	69 49 41 36 34	16 156 32 24 20	7.3 6.8 6.5 6.5	e2.7 e2.6 2.5 e2.5 e2.4
26 27 28 29 30 31	17 16 15 21 22 17	5.5 5.2 5.3 6.8 18	8.4 e7.5 8.6 7.9 7.7 6.9	8.3 8.3 9.8 10 9.1 8.8	18 18 16 	66 41 32 27 284 142	30 25 23 23 23	56 46 40 67 49 41	31 25 32 134 80	19 18 17 15 14 13	6.2 37 29 12 9.2 8.1	e2.4 e2.3 e2.2 e2.1 2.1
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	229.38 7.40 29 .30 3.6 455 .36 .42	224.9 7.50 18 5.2 6.8 446 .37 .41	260.6 8.41 11 6.9 8.6 517 .41	318.1 10.3 21 6.0 8.8 631 .51	349.5 12.5 29 6.7 10 693 .61	1178.9 38.0 284 4.4 15 2340 1.87 2.16	1213 40.4 81 23 38 2410 1.99 2.22	1543 49.8 266 18 37 3060 2.45 2.83	2934 97.8 526 25 45 5820 4.82 5.38	1315 42.4 336 13 24 2610 2.09 2.41	350.5 11.3 37 6.2 9.2 695 .56	110.1 3.67 7.5 2.1 3.3 218 .18
STATIS	TICS OF M	ONTHLY MEA	AN DATA F	OR WATER Y	EARS 199	5 - 1998,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	2.39 7.40 1998 .21 1995	3.54 7.50 1998 .49 1995	3.85 8.41 1998 1.02 1995	4.69 10.3 1998 1.47 1995	28.3 58.8 1996 4.67 1995	16.0 38.0 1998 6.22 1996	26.5 47.4 1995 5.62 1996	61.6 86.1 1996 49.8 1998	40.1 97.8 1998 15.2 1995	18.0 42.4 1998 7.12 1997	5.36 11.3 1998 2.44 1997	1.63 3.67 1998 .89 1997
SUMMAR	Y STATIST	ics	FOR	1997 CALEN	DAR YEAR	. F	OR 1998 WA	TER YEAR		WATER YE	ARS 1995	5 - 1998
(WY) 1995 1995				.30	Feb 18 Oct 7 Oct 1		1380 10.85	Jun 18 Oct 7 Oct 1 Jun 14 Jun 14 Oct 7		17.6 27.5 12.3 573 .10 1380 10.85 .01 12730 .87 40 5.9	May Dec Oct Jun Jun Jan	1998 1997 24 1996 7 1994 9 1994 14 1998 14 1998 8 1996a

a Result of freeze up

e Estimat**ed**

05487550 WALNUT CREEK NEAR VANDALIA, IA--Continued

05487550 WALNUT CREEK AT VANDALIA, IA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- March 1995 to current year.

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: March 1995 to current year.

WATER TEMPERATURES: March 1995 to current year. SUSPENDED-SEDIMENT DISCHARGE: March 1995 to current year.

REMARKS. -- Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 771 microsiemens Oct. 10, 1995; minimum daily, 137 microsiemens Feb. 18, 1997. WATER TEMPERATURES: Maximum daily, 32.0°C Aug. 13, 1995; minimum daily, 0.0°C many days in winter. SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,120 mg/L Mar. 30, 1998; minimum daily mean, 6.0 mg/L Feb. 9, 1997. SEDIMENT LOADS: Maximum daily, 4,600 tons Mar. 30, 1998; minimum daily, 0.01 tons Feb. 2-3, 1996.

EXTREMES FOR CURRENT YEAR.-
SPECIFIC CONDUCTANCE: Maximum daily, 556 microsiemens Oct. 4; minimum daily, 210 microsiemens Mar. 30.

WATER TEMPERATURES: Maximum daily, 25.0°C Aug. 11; minimum daily, 1.5°C Jan. 8.

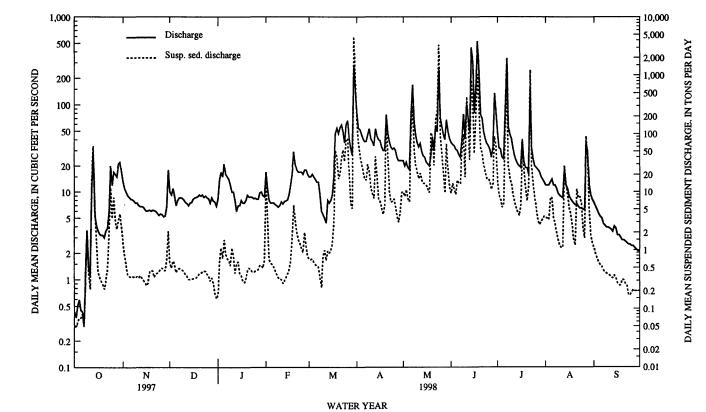
SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,120 mg/L Mar. 30; minimum daily mean, 8.0 mg/L Dec. 31 to Jan. 1.

SEDIMENT LOADS: Maximum daily, 4,600 tons Mar. 30; minimum daily, 0.05 tons Oct. 1, 2, and Oct. 7.

SPECIFIC CONDUCTANCE	MICROSIEMENS/CM A	T 25	DEG C,	WATER	YEAR	OCTOBER	1997	TO	SEPTEMBER	1998
	י ע.זדגע	TNICTO	A NULL A VIEW I	IC WALL	TEC					

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1			512			485				489		
2			509		468	482			495			
3			484		503		483			496		507
4	556	515	524						498			
5				487	493	485						
3				40,	400	403						
6	530			499		480		444		455		
7							485	430	499	428		
8	531			508			464	458	448	471		
9	449			502			470	471	476	464		
10						475					464	
11		523	478		480	476			264	477	430	
12		496			509						480	
13		497		470		457	419		481		342	
14												
15	539			482	486			486		487		497
16				426	483					492		
17		471	502			468	474			422	502	503
18				455		409	478					517
19		520		406		445	478	378			512	425
20	529	466	482			454	343	416	466	496		428
21	527	504		400		469				501		401
22	543	444	457				458	341	477	354		422
23			490	458	490				482			434
24	462										505	
25	484	502			489	423	460				509	504
26		511			460	389	476	483				
27	506			454	485	452			499	495	266	
28					477	472				483		
29	483		471	509		477		466			499	524
30	477		485			210					493	
31				471		385				492		
				-/-		203						

05487550 WALNUT CREEK AT VANDALIA, IA--Continued


TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										17.5		
2												
3							6.0					
4	12.0											
5												
•												
6				4.0								
7								12.5				
8				1.5						22.5		
9												
10												
11									19.0		25.0	
12												
13												
14												
15												
	•											
16												
17												
18					4.0							
19		2.5						18.0				
20												
21												
22												17.5
23												17.5
24												
25												23.5
26												
27												
28												
29												24.0
30												
31												

05487550 WALNUT CREEK AT VANDALIA, IA--Continued

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

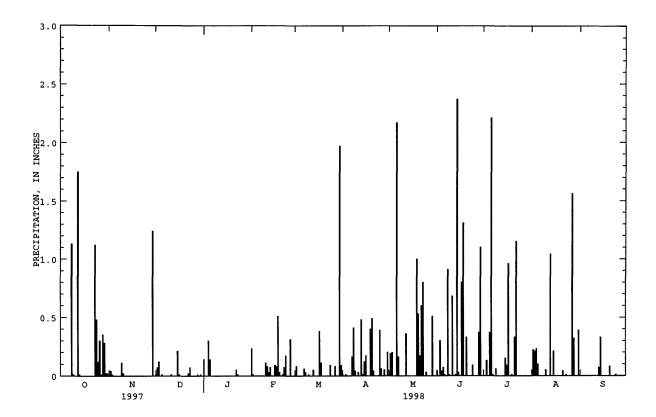
	MEAN CONCEN- TRATION (MG/L)	(TONS/	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	
	OCTO:	BER	NOVEMBE	R	DECEMBI	≅R	JANUAI	RY	FEBRUA	RY	MAF	RCH
1 2 3 4 5	47 46 45 45 57	.05 .05 .06 .07	39 28 20 16 15	1.3 .82 .56 .38	22 20 23 23 22	.62 .50 .66 .56	8 14 23 18 27	.18 .62 1.1 .73 1.5	298 93 32 30 28	16 3.2 .70 .61 .57	17 17 16 16	.69 .71 .63
6 7 8 9 10	67 60 76 160 114	.08 .05 .27 1.6 .43	16 16 17 17 17	.35 .36 .35 .34	22 21 21 20 19	.48 .49 .48 .46 .43	19 18 18 16 42	.86 .72 .67 .55	26 23 21 19 17	.52 .45 .39 .34	15 14 14 14 52	.52 .35 .23
11 12 13 14 15	73 287 694 340 136	.22 18 62 5.1 1.5	18 20 18 17 16	.34 .37 .34 .31	19 18 17 16 16	.39 .36 .32 .32	30 19 36 34 21	.81 .41 .58 .64 .40	15 14 14 16 18	.32 .27 .30 .34 .39	74 56 45 44	.67 .97 .89
16 17 18 19 20	45 40 35 30 27	.44 .35 .30 .26	16 17 26 28 27	.25 .28 .43 .45	15 14 15 15 16	.33 .33 .34 .37 .40	17 15 14 15 18	.37 .30 .28 .32 .44	18 19 32 75 53	.46 .65 1.6 5.9 3.1	50 69 359 274 132	3.0 52 41
21 22 23 24 25	31 45 92 204 98	.31 .46 2.0 12 3.5	21 25 27 29 32	.35 .40 .41 .43 .48	17 17 19 18 17	.40 .43 .44 .44	21 20 18 19 19	.50 .47 .43 .42 .44	40 33 27 23 21	2.0 1.5 1.3 1.1	135 223 394 337 474	36 53 34
26 27 28 29 30 31	158 66 56 59 69 53	8.1 3.1 2.3 3.3 4.2 2.4	34 32 31 35 41	.50 .46 .45 .71 2.1	16 15 15 13 9 8	.37 .30 .34 .27 .18	20 21 21 20 20 27	. 45 . 47 . 55 . 55 . 50 . 67	40 26 18 	2.0 1.2 .78 	460 174 74 71 3120 1730	20 6.4 5.2 4600
TOTAL		132.79		14.97		12.29		18.03		47.23		5845.15
DAY	MEA CON TRA (MG	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS DAY)
DAY	CON TRA (MG	(TONS/	CONCEN TRATIO (MG/L)	(TONS/	CONCE TRATI (MG/L	(TONS/	CONCEN TRATIO (MG/L)	(TONS/	CONCE TRATI	(TONS DAY)	CONCE TRATI	(TONS DAY)
DAY 1 2 3 4 5	CON TRA (MG 7 1 748 2 478 3 323 4 258	(TONS/ DAY)	CONCEN TRATIO (MG/L)	(TONS/ DAY) MAY	CONCE TRATI (MG/L 96 1 140 122 5 110	(TONS/ DAY)	CONCEN TRATIO (MG/L) JU 120 100 89	(TONS/ DAY)	CONCE TRATI (MG/L	(TONS DAY)	CONCE TRATI (MG/L	(TONS DAY)
1 2 3 4	CON TRA (MG) (MG	(TONS/ DAY) APRIL 165 70 45 32	CONCEN TRATIO (MG/L) 170 159 174 150	(TONS/DAY) MAY 10 8.4 11 7.6 6.8 107 301 58 30	CONCE TRATI (MG/L 96 1 140 122 5 110	(TONS/ DAY) JUNE 9.6 14 11 9.1	CONCEN TRATIO (MG/L) JT 120 100 89 81	(TONS/DAY) LLY 15 8.8 7.5 5.4	CONCE TRATI (MG/L AUGU 110 107 103 183	(TONS DAY) UST 3.6 3.5 3.3 7.8	CONCE TRATI (MG/L SEPTE 53 48 43 41	(TONS DAY) MBER 1.1 .87 .72 .63
1 2 3 4 5 6 7 8 8	CON TRA (MG / MG	(TONS/DAY) APRIL 165 70 45 32 23 17 16 30 22	CONCEN TRATIO (MG/L) 170 159 174 150 144 305 663 332 245	(TONS/DAY) MAY 10 8.4 11 7.6 6.8 107 301 58 30	CONCE TRATI (MG/L) 96 140 122 120 100 100 100 100 100 100 100 10	(TONS/DAY) JUNE 9.6 14 11 9.1 16 14 14 14 999	CONCEN TRATIO (MG/L) JU 120 100 89 81 97 273 485 176 138	(TONS/DAY) LY 15 8.8 7.5 5.4 6.4 127 551 27 17	CONCE TRATI (MG/L 110 107 103 183 211 109 88 71 58 48	(TONS DAY) UST 3.6 3.5 3.3 7.8 8.0 3.6 2.8 2.0 1.5	CONCE TRATI (MG/L SEPTE 53 48 43 41 41 40 39 38 37	(TONS DAY) MBER 1.1 .87 .72 .63 .56 .53 .46 .42 .40
1 2 3 4 4 5 6 7 8 9 10 11 12 13	CON TRA (MG / MG	(TONS/DAY) APRIL 165 70 45 32 23 17 16 30 22 12 9.3 7.8 41 18	CONCEN TRATIO (MG/L) 170 159 174 150 144 305 663 332 245 216	(TONS/DAY) MAY 10 8.4 11 7.6 6.8 107 301 58 30 22 17 21 16 14 14 13 11 9.8	CONCE TRATI (MG/L) 966 1400 1222 1100 8 2006 425 425 425 425 1600 9444 887 2655 551 334 427	(TONS/DAY) UNE 9.6 14 11 9.1 16 14 14 52 99 18 427 180 36 830	CONCEN TRATIO (MG/L) JU 120 100 89 81 97 273 485 176 138 125	(TONS/DAY) LY 15 8.8 7.5 5.4 6.4 127 551 27 17 14 8.9 6.6 5.3 4.4	CONCE TRATI (MG/L 110 107 103 183 211 109 88 71 58 48 47 364 408 321 224 190 127 78	(TONS DAY) UST 3.6 3.5 7.8 8.0 3.6 2.8 2.0 1.5 1.2 1.1 1.1 28 14	CONCE TRATI (MG/L SEPTE 53 48 43 41 41 40 39 38 37 37 37	(TONS DAY) MBER 1.1 .87 .72 .63 .56 .53 .46 .42 .40 .39 .37 .35 .33 .37
1 2 3 4 5 6 7 8 8 9 10 11 12 13 14 15 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	CON TRA (MG / MG	(TONS/DAY) APRIL 165 70 45 32 23 17 16 30 22 12 9.3 7.8 41 18 7.7 6.8 5.3 4.1 6.0	CONCEN TRATIO (MG/L) 170 159 174 150 144 305 663 332 245 216 194 220 204 203 217 210 195 182 1040	(TONS/DAY) MAY 10 8.4 11 7.6 6.8 107 301 58 30 22 17 21 16 14 14 13 11 9.8 105 89 29 172 245 3310	CONCE TRATI (MG/L) 96 140 122 110 8 206 425 421 160 944 887 265 551 334 427 570 416	(TONS/DAY) UNE 9.6 14 11 9.1 16 14 14 52 99 18 427 180 36 830 334 46 216 1040 303	CONCEN TRATIO (MG/L) JU 120 100 89 81 97 273 485 176 138 125 104 93 85 73 73 118 522 383 228	(TONS/DAY) LY 15 8.8 7.5 5.4 6.4 127 551 27 17 14 8.9 6.6 5.3 4.4 3.9 6.1 60 24 12	CONCE TRATI (MG/L 110 107 103 183 211 109 88 47 71 58 48 47 364 408 321 224 190 127 78 61 513 425 471 360	(TONS DAY) UST 3.6 3.5 3.3 7.8 8.0 3.6 2.8 2.0 1.5 1.2 1.1 1.1 2.8 14 9.3 5.4 4.2 2.7 1.5	CONCE TRATI (MG/L SEPTE 53 48 43 41 41 40 39 38 37 37 37 36 35 34 33 31 43 41	(TONS DAY) MBER 1.1 .87 .72 .63 .56 .53 .46 .42 .40 .39 .37 .35 .33 .37 .34 .27 .25 .25 .31
1 2 3 4 5 6 7 8 8 9 10 11 12 13 13 14 15 16 17 18 19 20 20 21 22 22 23 24 24 24 25 26 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	CON TRA (MG / MG	(TONS/DAY) APRIL 165 70 45 32 23 17 16 30 22 12 9.3 7.8 41 18 7.7 6.8 5.3 4.1 6.0 178 46 10 6.7 6.9	CONCEN TRATIO (MG/L) 170 159 174 150 144 305 663 332 245 216 194 220 204 203 217 210 195 182 1040 827 358 876 2700	(TONS/DAY) MAY 10 8.4 11 7.6 6.8 107 301 58 30 22 17 21 16 14 13 11 9.8 105 89 29 172 245 3310 94 49 22 9.6 68 24	CONCE TRATI (MG/L) 96 140 120 199 205 425 421 160 944 887 265 551 334 213 427 570 416 275 246 236 198 180 181	(TONS/DAY) JUNE 9.6 14 11 9.1 14 14 52 99 18 427 180 36 830 334 46 216 1040 303 58 47 31 22 17	CONCEN TRATIO (MG/L) 120 100 100 89 81 97 273 485 176 138 125 104 93 85 78 73 118 522 383 228 140 275 1530 298 204	(TONS/DAY) JLY 15 8.8 7.5 5.4 6.4 127 551 27 17 14 8.9 6.6 3.4.4 3.9 6.1 60 24 12 7.0 12 1230 26 13	CONCE TRATI (MG/L AUGI 110 107 103 183 211 109 88 48 47 364 48 47 364 190 127 78 61 513 425 471 360 142 94 585 427 142 71 142 71	(TONS DAY) UST 3.6 3.5 3.3 7.8 8.0 3.6 2.8 2.0 1.5 1.2 1.1 1.1 28 14 9.3 5.4 4.2 2.7 1.5 1.2 11 7.9 8.3 6.3	CONCE TRATI (MG/L SEPTE 53 48 43 41 41 40 39 38 37 37 36 35 34 33 31 29 31 41 41 36 35 25 25	(TONS DAY) MBER 1.1 .87 .72 .63 .56 .56 .46 .42 .40 .39 .37 .34 .27 .25 .25 .31 .31 .26 .25 .17
11 22 33 4 55 66 77 88 9 10 11 12 13 14 15 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	CON TRA (MG / MG	(TONS/DAY) APRIL 165 70 45 32 23 17 16 30 22 12 9.3 7.8 41 18 7.7 6.8 5.3 4.1 6.0 178 46 10 6.7 6.9 7.6	CONCEN TRATIO (MG/L) 170 159 174 305 663 3322 245 216 194 220 204 420 203 217 210 195 182 1040 827 358 876 2700 486 87 342 176	(TONS/DAY) MAY 10 8.4 11 7.6 6.8 107 301 58 30 22 17 21 16 14 14 13 11 9.8 105 89 172 245 3310 94 49 22 96 68 24 12	CONCE TRATII (MG/L 122 110 122 110 122 110 122 110 122 110 122 110 122 110 122 123 125 125 125 125 125 125 125 125 125 125	(TONS/DAY) JUNE 9.6 14 11 9.1 16 14 12 99 18 427 180 36 830 334 46 216 1040 303 58 47 31 22 17 17 15 11 14 90 61	CONCEN TRATIO (MG/L) 120 100 100 89 81 97 273 485 176 138 125 104 93 85 73 118 522 383 228 140 275 1530 298 204 140 96 67 60 72 93 112	(TONS/DAY) JLY 15 8.8 7.5 5.4 6.4 127 17 14 8.9 6.6 5.3 4.4 12 7.0 12 1230 26 13 7.7 5.0 3.2 2.7 3.0 3.4	CONCE TRATI (MG/L 110 107 103 183 211 109 88 48 47 364 408 321 224 190 127 78 61 513 425 471 360 142 94 585 427 142 71 59	(TONS DAY) UST 3.6 3.5 3.3 7.8 8.0 3.6 2.8 2.0 1.5 1.2 1.1 1.1 28 14 9.3 5.4 4.2 2.7 1.5 1.2 11 7.9 8.3 6.3 2.4 1.6 91 38 4.5 1.8	CONCE TRATI (MG/L SEPTE 53 48 43 41 41 40 39 38 37 37 36 35 35 44 33 34 41 41 36 35 25 25 30 33 34 35 36	(TONS DAY) MBER 1.1 .87 .72 .63 .56 .53 .46 .42 .40 .39 .37 .35 .33 .37 .34 .27 .25 .25 .31 .31 .26 .25 .17 .17 .19 .21 .20 .20 .20 .20

05487550 WALNUT CREEK AT VANDALIA, IA--Continued

PRECIPITATION RECORDS

PERIOD OF RECORD. --April 1995 to current year.

INSTRUMENTATION. -- Tipping bucket rain gage.


REMARKS.--Records good except for the winter period, which is poor due to intermittent snow accumulation and subsequent melting.

EXTREMES FOR PERIOD OF RECORD. -- Maximum daily accumulation, 4.72 in., May 9, 1996.

EXTREMES FOR CURRENT YEAR. -- Maximum daily accumulation, 2.37 in., June 14.

		PREC:	PITATION,	TOTAL,	INCHES, W.	ATER YEAR Y SUM VALU		1997 TO S	EPTEMBER :	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.00 .00 .00 .00	.00 .04 .01 .00	.01 .07 .12 .00	.14 .00 .00 .30	.23 .01 .00 .00	.00 .08 .00 .00	.01 .00 .01 .00	.01 .19 .20 .00	.04 .00 .30 .04 .07	.00 .00 .13 .00	.00 .22 .21 .23	.00 .00 .00 .00
6 7 8 9 10	.00 .00 1.13 .01	.00 .00 .00 .11	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .06 .03 .00	.00 .16 .41 .04	2.17 .16 .00 .00	.01 .00 .91 .01	2.21 .01 .00 .06	.00 .00 .00 .00	.00
11 12 13 14 15	.00 1.75 .01 .00	.00 .00 .00 .00	.01 .00 .00 .00	.00 .00 .00 .00	.08 .03 .07 .00	.00 .00 .05 .00	.03 .00 .48 .01	.00 .36 .00 .00	.68 .00 .01 2.37 .03	.00 .00 .00 .00	.00 .00 1.04 .00	.00 .00 .07 .33
16 17 18 19 20	.00 .00 .00 .00	.00 .00 .00 .00	.01 .00 .00 .00	.00 .00 .00 .00	.09 .08 .51 .03	.00 .38 .11 .00	.17 .00 .00 .40 .49	.00 .00 .00 1.00	.00 .80 1.31 .00	.09 .96 .00 .01 .00	.00 .00 .00 .00	.00 .00 .00 .00
21 22 23 24 25	.00 .00 1.12 .48 .12	.00 .00 .00 .00	.00 .02 .07 .00	.00 .05 .01 .00	.01 .07 .17 .00	.00 .00 .00 .09	.04 .00 .00 .00	.17 .60 .80 .00	.00 .00 .00 .09	.33 1.15 .00 .00	.04 .00 .01 .00	.00 .00 .00 .01
26 27 28 29 30 31	.30 .01 .35 .28 .02	.00 .00 .00 1.24 .00	.00 .00 .01 .00 .01	.00 .00 .00 .00	.31 .00 .00 	.00 .08 .00 .00 1.97 .09	.06 .00 .05 .00	.00 .00 .00 .51 .00	.00 .00 .37 1.10 .00	.00 .00 .00 .00 .00	.00 1.56 .32 .00 .00	.00 .00 .00 .00
TOTAL MEAN MAX MIN	5.60 .18 1.75 .00	1.42 .05 1.24 .00	0.55 .02 .21 .00	0.64 .02 .30 .00	1.80 .06 .51 .00	2.95 .10 1.97 .00	3.07 .10 .49 .00	6.73 .22 2.17 .00	8.47 .28 2.37 .00	5.47 .18 2.21 .00	4.38 .14 1.56 .00	0.49 .02 .33 .00

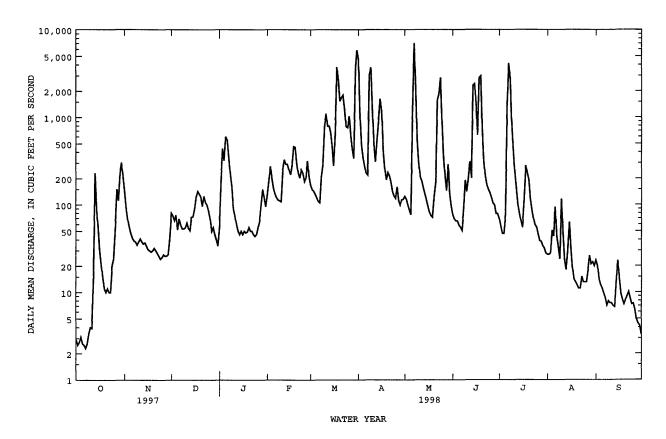
DES MOINES RIVER BASIN 05487550 WALNUT CREEK AT VANDALIA, IA--Continued

05487980 WHITE BREAST CREEK NEAR DALLAS, IA

LOCATION.--Lat 41°14'41", long 93°16'08", in NW¹/₄ NW¹/₄ sec.3, T.74 N., R.21 W., Marion County, Hydrologic Unit 07100008, on left bank 15 ft downstream from bridge on county highway, 0.5 mi downstream from Kirk Branch, and 1.7 mi northwest of Dallas. DRAINAGE AREA.--342 mi².

PERIOD OF RECORD. --October 1962 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 759.21 ft above sea level.


REMARKS.--Estimated daily discharges: Dec.26 to Jan. 6, Jan. 10 to Feb. 2, and July 10-19. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 11, 1962 reached a stage of 28.87 ft, from floodmark, discharge, about 12,000 ft³/s. Flood of June 6, 1947 may have been slightly higher.

		DISCHAR	GE, CUBIC	FEET PER		WATER YE Y MEAN VA	EAR OCTOBER LLUES	1997 TO	SEPTEMBE	ER 1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.9 2.5 2.7 3.1 2.6	142 92 67 55 47	80 75 66 76 52	e55 e180 e440 e320 e600	e130 e190 275 196 153	168 150 1 44 131 119	4640 988 477 347 278	124 116 100 87 77	78 69 65 65 58	70 57 4 7 4 7 75	27 27 28 51 44	23 20 14 12 11
6 7 8 9 10	2.5 2.3 2.6 3.4 4.0	42 39 38 35 38	69 59 53 53 55	e550 35 4 22 4 161 e90	132 120 113 111 108	109 105 219 278 785	230 219 3080 3710 1190	1090 7090 2210 538 305	55 51 85 190 141	1310 4150 2740 838 e420	94 44 33 24 116	9.6 8.5 7.1 7.9 7.5
11 12 13 14 15	3.9 15 231 92 54	41 38 36 37 34	62 54 51 72 73	e75 e60 e50 e 4 6 e50	254 327 291 291 253	1100 79 4 797 67 2 46 9	493 311 560 928 1630	207 187 156 132 113	201 309 203 2330 2420	e230 e150 e100 e80 e65	47 24 18 29 63	7.5 7.0 6.8 14 23
16 17 18 19 20	30 21 15 11	31 30 29 30 32	89 123 142 132 123	e46 e50 e48 e49 e55	223 272 463 456 303	281 638 3750 2610 1540	1160 414 258 194 234	95 82 75 72 123	1530 630 2840 2970 736	e55 e110 e280 e230 192	32 19 14 13	9.6 8.2 7.3 8.2
21 22 23 24 25	11 10 10 20 24	30 28 26 24 25	96 125 106 99 85	e50 e50 e46 e44 e46	230 204 252 230 185	1680 1790 1270 784 763	215 183 141 126 118	183 1580 1830 2850 895	321 213 170 150 137	116 88 70 59 55	11 11 15 13	9.0 10 8.5 7.3 7.4
26 27 28 29 30 31	55 151 112 226 304 207	27 26 26 27 42	e70 e50 e55 e46 e40 e34	e55 e65 e100 e150 e120 e95	205 318 208 	1030 618 433 340 3310 5870	160 112 99 113 115	363 215 145 288 133 97	120 104 99 79 79	46 39 38 34 32 28	13 18 26 21 22 20	6.4 4.9 4.4 4.2 3.3
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1641.5 53.0 304 2.3 3260 .15 .18	1214 40.5 142 24 2410 .12	2365 76.3 142 34 4690 .22 .26	4324 139 600 44 8580 .41 .47	6493 232 463 108 12880 .68 .71	32747 1056 5870 105 64950 3.09 3.56	22723 757 4640 99 45070 2.21 2.47	21558 695 7090 72 42760 2.03 2.34	16498 550 2970 51 32720 1.61 1.79	11851 382 4150 28 23510 1.12 1.29	942 30.4 116 11 1870 .09	291.6 9.72 23 3.3 578 .03
STATIS	TICS OF MC	NTHLY MEAN	DATA FO	R WATER Y	EARS 1963	3 - 1998,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	123 1153 197 4 1.16 1990	115 757 1984 1.35 1977	114 718 1983 .80 1964	67.0 601 1974 .49 1977	174 718 1973 1.82 1964	348 1056 1998 4.05 1964	454 1592 1991 3.85 1989	401 1823 1996 6.44 1980	274 1146 1967 5.13 1977	300 3641 1993 1.47 1988	123 1202 1993 2.09 1971	195 1903 1992 1.11 1968
SUMMAF	Y STATISTI	cs	FOR 1	997 CALEN	DAR YEAR	F	OR 1998 WA	TER YEAR		WATER YEA	ARS 1963	- 1998
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	TOTAL MEAN T ANNUAL ME ANNUAL ME T DAILY ME DAILY ME SEVEN-DAY TANEOUS PE TTANEOUS PE TANEOUS PE TANEOUS PE CENTOFF (C RUNOFF	EAN EAN IN		57594.0 158 3980 2.3 2.6 114200 .46 6.26 302 36 5.8			122648.1 336 7090 2.3 2.6 9640 22.19 243300 .98 13.34 789 87 11			224 816 17.1 24700 .02 .05 37300 33.45 162300 .65 8.90 446 36 2.5	Oct : Aug Jul :	1993 1989 16 1992 14 1989 9 1989 16 1982 16 1982

e Estimated

DES MOINES RIVER BASIN
05487980 WHITE BREAST CREEK NEAR DALLAS, IA--Continued

05488100 LAKE RED ROCK NEAR PELLA, IA

LOCATION.--Lat $41^{\circ}22^{\circ}11^{\circ}$, long $92^{\circ}58^{\circ}48^{\circ}$, in $NE^{1}/_{4}$ NW $^{1}/_{4}$ sec.19, T.76 N., R.18 W., Marion County, Hydrologic Unit 07100008, at outlet works near right end of Red Rock Dam on Des Moines River, 1.4 mi upstream from Lake Creek, 4.5 mi southwest of Pella, and at mile 142.3.

DRAINAGE AREA. -- 12,323 mi².

PERIOD OF RECORD. -- March 1969 to current year.

GAGE. --Water-stage recorder. Datum of gage is at sea level (levels by U.S. Army Corps of Engineers).

REMARKS.--Estimated daily discharges: Nov. 10, 20. Reservoir is formed by earthfill dam completed in 1969. Storage began in March 1969. Releases controlled through 14 concrete conduits extending through the concrete ogee spillway section into the stilling basin. Inlet invert elevation at 690 ft above sea level. Maximum design discharge through the conduits is 37,500 ft³/s but normal flood control operation limits maximum outflow to 30,000 ft³/s. Spillway section consists of 5 tainter gates, 41 ft wide and 45 ft high, on concrete ogee crest at elevation 736 ft. The storage capacity of the reservoir at full flood-control pool level, 780 ft, is 1,489,900 acre-ft, surface area, 65,440 acres. Conservation pool level, 742 feet, is 265,500 acre-feet, surface area, 19,100 acres. Reservoir is used for flood control, low-flow augmentation, conservation and recreation. Normal operation will maintain an elevation of 742 ft with minimum release of 300 ft³/s and maximum release of 30,000 ft³/s during the non-growing season, providing discharges at Ottumwa and Keosauqua do not exceed 30,000 ft³/s and 35,000 ft³/s respectively. Storage tables for water years 1985-1986 published as day second-feet instead of acre-feet storage.

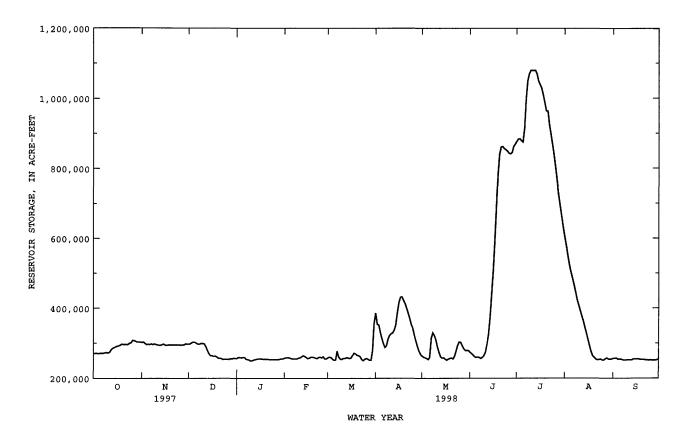
COOPERATION .-- Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily contents, 1,933,000 acre-ft July 12, 13, 1993; maximum elevation, 782.67 ft July 13, 1993; minimum daily contents, 43,900 acre-ft May 24, 1985, minimum elevation, 719.68 ft Feb. 17, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum daily contents, 1,080,000 acre-ft July 10-13; maximum elevation, 768.57 ft July 12,13; minimum daily contents, 249,000 acre-ft Jan. 10; minimum elevation, 742.10 ft Jan 10.

Capacity table	(elevation	in feet,	contents	in	acre-fe	et)
----------------	------------	----------	----------	----	---------	----	---

700	300	720	27,700	740	226,000	760	754,000	780	1,751,000
705	1,200	725	50,700		324,000	765	948,000	785	2,109,000
710	3,940	730	89,200	750	445,000	770	1,178,000		• • •
715	11.900	735	149.000	755	589.000	775	1.444.000		


RESERVOIR STORAGE (ACRE-FEET), WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY OBSERVATION AT 2400 HOURS

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	270000	302000	297000	256000	257000	258000	386000	263000	274000	876000	605000	256000
2	271000	303000	298000	259000	258000	260000	354000	260000	270000	883000	579000	256000
3	271000	299000	301000	259000	258000	259000	352000	258000	266000	884000	551000	257000
4	270000	296000	303000	258000	258000	254000	331000	256000	261000	879000	525000	254000
5	271000	297000	302000	259000	256000	251000	314000	253000	259000	875000	504000	254000
6	271000	296000	300000	259000	255000	252000	299000	259000	260000	914000	487000	254000
7	271000	298000	297000	254000	255000	277000	288000	315000	259000	997000	467000	252000
8	272000	296000	297000	253000	255000	261000	292000	329000	256000	1050000	446000	251000
9	273000	298000	299000	252000	255000	255000	312000	322000	259000	1070000	424000	251000
10	272000	e296000	299000	249000	257000	253000	322000	309000	264000	1080000	408000	252000
11	273000	295000	298000	250000	258000	256000	327000	289000	274000	1080000	393000	252000
12	280000	294000	291000	252000	261000	256000	329000	274000	297000	1080000	377000	252000
13	285000	294000	280000	253000	264000	258000	337000	261000	324000	1080000	363000	252000
14	287000	296000	270000	254000	262000	258000	352000	257000	374000	1070000	345000	255000
15	289000	297000	264000	255000	259000	256000	387000	258000	439000	1050000	327000	255000
16	291000	294000	264000	255000	256000	257000	416000	254000	502000	1040000	309000	255000
17	292000	294000	262000	255000	257000	264000	431000	251000	586000	1030000	291000	255000
18	294000	295000	263000	254000	260000	271000	432000	254000	681000	1010000	275000	254000
19	297000	295000	261000	254000	260000	269000	422000	256000	785000	988000	263000	253000
20	296000	e295000	257000	254000	259000	265000	413000	257000	841000	964000	259000	253000
21	296000	295000	256000	254000	257000	264000	400000	255000	861000	964000	254000	253000
22	296000	295000	256000	253000	256000	261000	386000	262000	862000	924000	252000	252000
23	296000	295000	253000	253000	259000	253000	370000	277000	856000	898000	253000	252000
24	300000	295000	254000	253000	260000	250000	353000	293000	853000	869000	254000	251000
25	301000	295000	254000	253000	258000	254000	343000	303000	849000	836000	252000	252000
26 27 28 29 30 31	308000 307000 305000 303000 303000 303000	294000 295000 295000 298000 297000	254000 253000 256000 255000 257000 256000	253000 253000 253000 254000 255000 255000	261000 255000 255000 	256000 254000 251000 251000 279000 356000	324000 307000 292000 278000 268000	302000 293000 284000 279000 279000 279000	843000 841000 845000 862000 869000	801000 763000 724000 693000 663000 633000	251000 255000 257000 254000 254000 254000	251000 251000 251000 252000 254000
MEAN	288000	296000	274000	254000	258000	262000	347000	276000	542000	925000	354000	253000
MAX	308000	303000	303000	259000	264000	356000	432000	329000	869000	1080000	605000	257000
MIN	270000	294000	253000	249000	255000	250000	268000	251000	256000	633000	251000	251000

CAL YR 1997 MEAN 274000 MAX 425000 MIN 228000 WTR YR 1998 MEAN 362000 MAX 1080000 MIN 249000

e Estimated

05488100 LAKE RED ROCK NEAR PELLA, IA--Continued

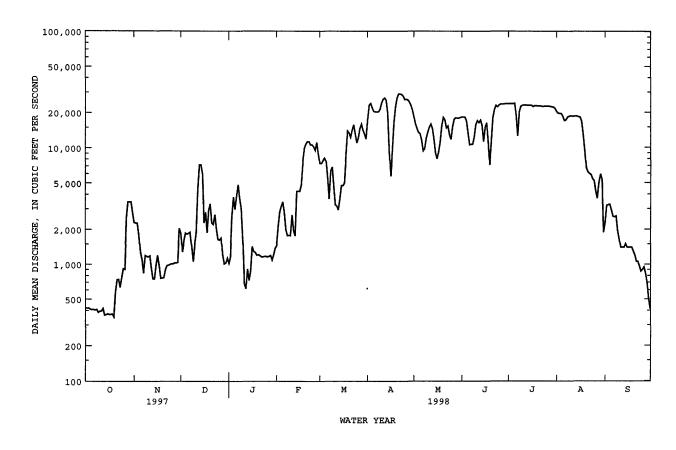
05488110 DES MOINES RIVER NEAR PELLA, IA

LOCATION.--Lat $41^{\circ}21^{\circ}38^{\circ}$, long $92^{\circ}58^{\circ}23^{\circ}$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec.19, T.76 N., R.18 W., Marion County, Hydrologic Unit 07100009, on right bank, 0.4 mile downstream of outlet of Red Rock Reservoir, and 0.75 mile upstream of Lake Creek.

DRAINAGE AREA. -- 12,330 mi².

PERIOD OF RECORD. -- October 1992 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 600.00 ft above sea level.


REMARKS.--Estimated daily discharges: Sept. 11-20. Records good except those for estimated daily discharges, which are fair. Flow regulated by Lake Red Rock (station 05488100) 0.4 mi upstream. Periodic observations of water temperature and specific conductance are published as in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

11100 000	ou correc	DISCHA			PER SECOND,			BER 1997 T	O SEPTEME	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	Y MEAN Y MAR	VALUES	MAY	JUN	JUL	AUG	SEP
1	421	2300	1860	1020	1 4 50	7360	17300	18300	18300	23800	20300	2270
2	419	2270	1280	1160	2090	7350	23200	16000	18300	23800	19700	3200
3	421	2260	1590	2600	2830	7750	23900	14600	18200	23900	19600	3240
4 5	410 408	1800 1270	1860 1820	3770 2970	3160	81 4 0 7650	21800 20400	13500 13200	16900 13200	23800 24000	19500 18500	3270 2930
					3430							
6	409	1100	1850	3870	2780	5520	20300	11700	10600	18900	17000	2580
7 8	404	841	1890 1 42 0	4810	2000	3660	20200	9420	10700 10700	12600	17200 18200	2550
9	409 386	1190 1170	1060	3680 3030	1770 1780	6310 6810	20300 21300	9860 12100	12400	20300 22600	18500	2590 1950
10	395	1160	1490	1670	1770	4750	24200	13600	15800	23100	18700	1650
11	396	1180	1880	678	2650	3260	26000	15000	17000	23200	18600	e1400
12	416	918	4440	616	1960	3180	26700	15900	16400	23200	18500	e1400
13	367	749	7130	906	1760	2940	25500	14600	17200	23100	18600	e1400
14	369	750	7110	726	4240	3630	19600	11700	15500	23100	18600	e1500
15	375	985	5910	871	4250	4 760	9430	8990	11300	23100	18300	e1400
16	370	1190	2280	1420	4240	4750	5710	8060	15000	23000	18200	e1400
17	371	962	2800	1290	4830	4990	9340	9160	16300	22500	16700	e1400
18	374	756	1880	1270	7690	8680	16400	11200	11600	22900	13000	e1400
19	353	761	2920	1200	9950	13900	22200	15300	7130	22800	9530	e1300
20	580	766	3310	1210	10800	13400	26700	18100	11200	22800	6640	e1200
21	734	899	2270	1190	11300	12300	29000	17200	18000	22700	6170	1060
22	741	973	2210	1160	11300	14100	28900	14800	21200	22700	5970	1060
23	633	982	2670	1160	10600	15700	28700	15300	23000	22500	5850	965
24	768	1000	2020	1170	10600	13200	27700	12900	22400	22600	5400	872
25	915	1010	16 4 0	1170	10200	11000	25900	11800	23200	22600	5190	900
26	903	1010	1620	1160	9530	12200	26100	15100	23700	22600	4250	943
27 28	2490	1030	1680	1170	11100	14600	25700	17500	23700	22600	3690 5040	831
29 29	3440 3440	1030 10 4 0	1200 1010	1190 1090	89 4 0	15900	24600 23100	18000 17900	23700 23800	22500 22300	5900	687 50 4
30	3450	2040	1010	1210		14100 13100	20900	17900	23800	22200	5280	413
31	2800		1130	1380		11900	20300	18100	25000	21600	1890	
TOTAL	28367	35392	74260	51817	159000	276890	661080	436790	510230	693400	398500	48265
MEAN	915	1180	2395	1672	5679	8932	22040	14090	17010	22370	12850	1609
MAX	3450	2300	7130	4810	11300	15900	29000	18300	23800	24000	20300	3270
MIN	353	749	1010	616	1450	2940	5710	8060	7130	12600	1890	413
AC-FT	56270	70200	147300	102800	315400	549200	1311000	866400	1012000	1375000	790400	95730
CFSM	.07	.10	.19	.14	.46	.72	1.79	1.14	1.38	1.81	1.04	.13
IN.	.09	.11	.22	.16	.48	.84	1.99	1.32	1.54	2.09	1.20	.15
STATIST	CICS OF M	ONTHLY ME	EAN DATA	FOR WATER	YEARS 199	3 - 199	B, BY WATE	R YEAR (W	Y)			
MEAN	4370	4706	5069	2 4 12	4989	10 4 90	1 4 190	15310	17390	25500	12470	6781
MAX	11150	11990	12380	3997	8246	17480	22040	28520	27950	79340	44600	33490
(WY)	1994	1993	1993	1993	1997	1993	1998	1993	1993	1993	1993	1993
MIN	915	1180	2395	1410	2310	2892	5051	6361	9395	7039	2412	491
(WY)	1998	1998	1998	1996	1995	1996	1996	1994	1997	1997	1997	1997
SUMMARY	STATIST	ICS	FOR	1997 CAI	ENDAR YEAR		FOR 1998	WATER YEA	R	WATER	YEARS 199	3 - 1998
ANNUAL	TOTAL			2452233			3373991					
ANNUAL				6718			9244			10340		
HIGHEST	ANNUAL	MEAN								24360		1993
LOWEST	ANNUAL M	EAN								6168		1994
	DAILY M			24200	Feb 25		29000	Apr 2		104000		12 1993
	DAILY ME			344	Sep 6		353	Oct 1		344		6 1997
		Y MINIMUM EAK FLOW		368	Oct 13		368	Oct 1		368		13 1997 12 1993
		EAK STAGE					29200	Apr 2 92 Apr 2		105000 109.		12 1993
	RUNOFF (•	4864000			6692000	- npr 2	·, 21	7493000	,	
	RUNOFF (4004000	54		0032000	75			84	
	RUNOFF (40		10.			11.	40	
	ENT EXCE			18400			22800			22600		
	CENT EXCE			4080			5400			5430		
90 PERC	CENT EXCE	EDS		429			837			1300		

e Estimated

DES MOINES RIVER BASIN

05488110 DES MOINES RIVER NEAR PELLA, IA--Continued

05488200 ENGLISH CREEK NEAR KNOXVILLE, IA

LOCATION.--Lat $41^{\circ}18^{\circ}02^{\circ}$ (revised), long $93^{\circ}02^{\circ}43^{\circ}$ (revised), in NE $^{1}/_{4}$ SE $^{1}/_{4}$ sec.16, T.75 N., R.19 W., Marion County, Hydrologic Unit 07100009, on left bank 30 ft from left upstream abutment of bridge on State Highway 92, 3 mi east of Knoxville, and 11.4 mi upstream from mouth at Des Moines River.

DRAINAGE AREA. -- 90.1 mi².

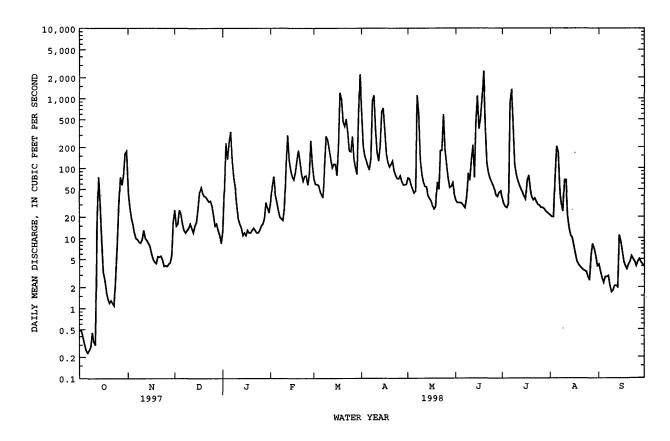
PERIOD OF RECORD. -- July 1985 to current year.

REVISED RECORDS .-- WDR IA-97: (M)

GAGE.--Water-stage recorder. Datum of gage is 721.79 ft above sea level.

REMARKS.--Estimated daily discharges: Oct. 17-27, Dec. 12-14, Dec. 25 to Jan. 3, Jan. 10 to Feb. 2, Aug. 19-23, and Sept. 11-30. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 16, 1982 reached a stage of 30.28 ft, gage datum, discharge 28,000 ft³/s, from contracted-opening indirect computations.


		DISCHA	RGE, CUBIC	C FEET PER		WATER YE Y MEAN VA	AR OCTOBER	1997 T O	SEPTEMBE	R 1998		
DAY	OCT	Nov	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.48 .49 .39 .31	51 30 20 16 12	25 15 16 25 22	e13 e50 e230 135 229	e32 e55 76 42 33	71 59 59 57 4 7	672 207 150 128 108	. 73 71 58 50 44	35 32 32 32 31	38 31 28 27 31	21 20 20 77 206	4.2 3.3 2.7 2.3 2.8
6 7 8 9 10	.23 .25 .28 .45	10 9.7 8.9 8.6 9.7	16 13 12 13	335 130 73 53 e30	25 20 19 18 27	42 38 111 288 256	95 141 913 1110 348	47 1110 605 133 83	29 27 37 85 67	854 1360 418 113 80	172 49 31 24 68	2.8 2.9 2.1 1.7 1.8
11 12 13 14 15	5	13 10 9.4 8.5 7.7	16 e14 e12 e15 17	e19 e16 e14 e11 e12	115 297 130 93 76	186 134 102 115 114	168 127 211 644 726	63 55 54 41 37	129 214 74 447 1090	66 57 50 4 5 4 0	68 21 14 11	e2.1 e2.1 e2.0 e11 e9.0
17 e2 18 e2 19 e2	3.3 2.6 1.8 1.4	6.1 5.0 4.6 4.4 5.5	26 45 53 44 40	e11 e13 e12 e12 e13	69 87 132 181 124	79 200 1210 974 463	340 160 121 105 114	34 29 26 28 63	366 520 986 2470 427	36 66 79 4 9 39	7.7 5.9 4.6 e4.2 e3.9	e6.5 e4.6 e4.0 e3.6 e4.2
22 ei 23 ei 24 ei	1.3 1.2 1.1 3.0 8.0	5.4 5.6 5.0 4.0 4.1	39 36 33 34 e29	e14 e13 e12 e12 e13	83 66 77 78 58	401 508 328 179 173	127 92 79 71 71	50 181 180 592 185	120 87 72 64 57	35 37 33 30 29	e3.7 e3.5 e3.4 3.3 2.8	e4.6 e5.5 e5.0 e4.6 e4.0
26 e30 27 e75 28 58 29 80 30 164 31 17	5 8 0 4	4.0 4.3 4.5 5.7	e21 e15 e16 e13 e11 e8.5	e15 e16 e19 e32 e27 e23	82 249 112 	285 135 100 82 592 2220	78 65 58 58 59	114 72 53 55 62 43	49 41 39 45 47	27 27 26 24 23 22	2.5 5.5 8.2 7.0 5.5 4.0	e4.6 e5.0 e4.5 e4.2 e3.9
MEAN 2 MAX MIN	8.56 24.1 177 .23 1480 .27	309.7 10.3 51 4.0 614 .11 .13	708.5 22.9 53 8.5 1410 .25 .29	1607 51.8 335 11 3190 .58 .66	2456 87.7 297 18 4870 .97	9608 310 2220 38 19060 3.44 3.97	7346 245 1110 58 14570 2.72 3.03	4291 138 1110 26 8510 1.54 1.77	7751 258 2470 27 15370 2.87 3.20	3820 123 1360 22 7580 1.37 1.58	887.7 28.6 206 2.5 1760 .32 .37	121.6 4.05 11 1.7 241 .04
STATISTICS	s of Mon	THLY ME	AN DATA FO	OR WATER YE	ARS 1985	5 - 1998,	BY WATER Y	TEAR (WY)				
MAX (WY) 1 MIN	24.5 161 1987 .48 1995	23.5 100 1993 .76 1989	28.1 112 1993 .31 1989	15.7 51.8 1998 .66 1989	43.1 134 1997 .50 1989	102 335 1993 2.05 1989	122 476 1991 1.03 1989	153 514 1996 2.27 1989	82.1 258 1998 2.27 1992	101 1039 1993 .18 1988	35.7 285 1993 .17 1988	40.7 159 1992 .026 1991
SUMMARY ST	TATISTIC	cs	FOR 1	997 CALEND	AR YEAR	F	OR 1998 WAT	ER YEAR		WATER YE	ARS 1985	- 1998
ANNUAL TOTANNUAL MEATHIGHEST DATANNUAL SEVEN INSTANTANIAN ANNUAL RUMANNUAL R	AN NNUAL ME NUAL MEA AILY MEA ILY MEA VEN-DAY EOUS PEA EOUS PEA NOFF (AC NOFF (IN T EXCEEI T EXCEEI T EXCEEI	AN MINIMUM MINIMUM AK FLOW AK STAGE C-FT) FSM) WCHES) OS OS		.13 32990 .51 6.87 77 9.4 .31	Sep 4 Sep 1		.30 2830	Oct 6 Oct 5 Jun 19 Jun 19		65.4 214 6.71 8610 .00 18900 27.88 47370 .73 9.86 105 10	Jul Sep Sep Jul Jul	1993 1989 5 1993 12 1988a 25 1991 5 1993 5 1993

a Also Sep 13-17, 1988, Aug 8-13, 1989, Sep 6-10, 21, and Sep 25 to Oct 3, 1991

e Estimated

DES MOINES RIVER BASIN

05488200 ENGLISH CREEK NEAR KNOXVILLE, IA--Continued

318 IOWA RIVER BASIN

05488500 DES MOINES RIVER NEAR TRACY, IA

LOCATION.--Lat $41^{\circ}16^{\circ}53^{\circ}$, long $92^{\circ}51^{\circ}34^{\circ}$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec.19, T.75 N., R.17 W., Mahaska County, Hydrologic Unit 07100009, on right bank 250 ft upstream from abandoned Bellefountaine Bridge, 0.8 mi east of Tracy, 3.1 mi upstream from Cedar Creek, 3.8 mi downstream from bridge on newly located State Highway 92, 6.4 mi downstream from English Creek, and at mile 130.4.

DRAINAGE AREA. -- 12,479 mi².

PERIOD OF RECORD. --March 1920 to current year. Monthly discharge only for some periods, published in WSP 1308.

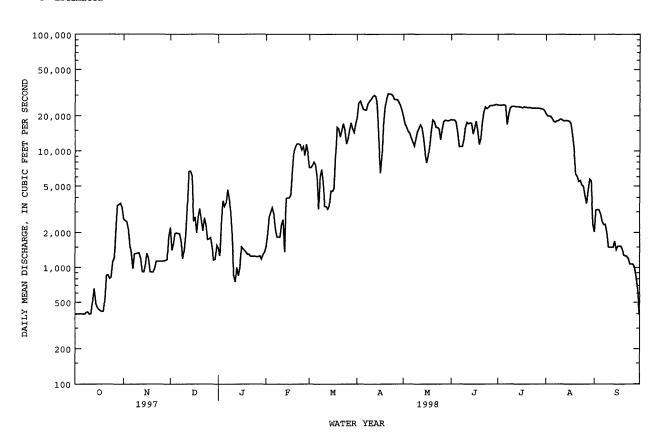
REVISED RECORDS.--WSP 1438: Drainage area. WSP 1508: 1920 (M), 1922 (M), 1933.

GAGE.--Water-stage recorder. Datum of gage is 670.91 ft above sea level. Prior to June 26, 1940 and June 30, 1952 to Nov. 4, 1960 nonrecording gage, and June 27, 1940 to June 29, 1952 water-stage recorder, at site 250 ft downstream at same datum.

REMARKS.--Estimated daily discharges: Jan. 10-25. Records good except those for periods of estimated daily discharges, which are poor. Flow regulated by Lake Red Rock (station 05488100) 11.9 mi upstream, since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers gage-height telemeter and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 155,000 ${\rm ft^3/s}$, June 14, 1947, gage height, 26.5 ft; minimum daily discharge, 40 ${\rm ft^3/s}$ Jan. 29 to Feb. 2, 1940.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1851, that of June 14, 1947. Flood of May 31, 1903, reached a stage of about 25 ft, discharge, about 130,000 ft³/s. Minimum daily discharge since at least 1910, that of Jan. 29 to Feb. 1, 1940.


		DISC	ARGE, CUI	BIC FEET P		, WATER Y LY MEAN V	YEAR OCTOBI JALUES	ER 1997 T	O SEPTEMB	ER 1998		
DAY	0.00	31011	DEG	7337				2022			1110	a=5
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	397	2600	2210	1460	1520	7210	19200	19700	18500	24800	20900	2030
2	396	2540	1410	1260	1920	7180	25800	17000	18400	24700	20000	3120
3	397	2480	1600	2370	2730	7480	26700	16000	18400	24700	19900	3140
4	398	2130	1960	3740	2980	8010	24800	14800	17700	24700	19800	3130
5	398	1520	1980	3350	3260	7620	22700	14200	14400	24900	19000	2900
6	396	1330	1960	3600	2900	5960	22500	13000	10900	24400	18000	2490
7	396	977	1960	4650	2160	3170	22500	11900	10900	16900	17700	2340
8	409	1310	1670	3880	1830	5980	25300	11000	10900	20600	18100	2350
9	413	1320	1190	3050	1820	6920	26800	12700	12500	23300	18200	1990
10	396	1330	1410	e1900	1830	5410	27800	14600	15800	24100	18700	1500
11	397	1330	1940	e850	2360	3360	29200	15600	17600	24100	18700	1490
12	513	1190	3360	e750	2570	3340	30000	16700	17100	24100	18200	1490
13	654	919	6660	e1000	1360	3170	29200	15800	17400	24000	18200	1490
14	494	914	6710	e850	3940	3380	24700	12800	17300	24000	18300	1680
15	456	1050	6120	e1000	3970	4540	12600	9620	14000	23900	18200	1430
16	435	1320	2500	e1500	3970	4520	6470	7890	15500	23800	18000	1530
17	425	1200	2720	e1450	4240	4750	8790	9010	18000	23400	17200	1530
18	417	916	1990	e1400	6870	9100	16700	11100	15100	23900	13700	1530
19	418	914	2720	e1350	9970	15900	23300	14900	11400	23700	10400	1430
20	539	914	3200	e1300	10900	15400	28000	18400	12800	23600	6360	1280
21	857	988	2580	e1300	11500	13200	30900	17800	17600	23500	6080	1260
22	860	1130	2070	e1250	11500	14900	30800	15900	21500	23600	5500	1250
23	806	1130	2670	e1250	11300	17100	30600	15900	23800	23300	5600	1190
24	826	1130	2320	e1250	10200	15100	29700	15400	23100	23300	5110	1070
25	1110	1130	1740	e1250	10900	11500	27700	12500	23700	23300	4980	1070
26	1210	1130	1760	1240	9140	12700	27500	15300	24500	23300	4140	1070
27	2150	1140	1800	1240	11400	15100	27500	17800	24500	23300	3560	996
28	3420	1150	1490	1260	9670	17400	26100	18300	24600	23200	4610	819
29	3470	1170	1160	1180		15400	24800	18200	24800	23000	5730	641
30	3560	1840	1180	1280		14400	22300	18100	25000	22900	5550	393
31	3290		1550	1360		17000		18300		22300	2370	
TOTAL	30303	40142	75590	54570	158710	296200	730960	460220	537700	726600	400790	49629
MEAN	978	1338	2438	1760	5668	9555	24370	14850	17920	23440	12930	1654
MAX	3560	2600	6710	4650	11500	17400	30900	19700	25000	24900	20900	3140
MIN	396	914	1160	750	1360	3170	6470	7890	10900	16900	2370	393
AC-FT	60110	79620	149900	108200	314800	587500	1450000	912800	1067000	1441000	795000	98440
CFSM	.08	.11	.20	.14	. 45	.77	1.95	1.19	1.44	1.88	1.04	.13
IN.	.09	.12	.23	.16	. 47	.88	2.18	1.37	1.60	2.17	1.19	. 15
STATIS	TICS OF	MONTHLY M	IEAN DATA	FOR WATER	YEARS 19	70 - 1998	B, BY WATER	R YEAR (W	Y)			
MEAN	3804	4793	4018	2675	4586	9510	11950	11890	13100	13810	8250	4512
MAX	17190	19160	12540	11510	15560	21520	24370	28280	30260	80800	45240	33670
(WY)	1974	1987	1983	1973	1973	1983	1998	1993	1984	1993	1993	1993
MIN	318	341	344	305	276	746	866	425	277	220	591	342
(WY)	1977	1977	1977	1977	1977	1977	1977	1977	1977	1977	1989	1976

319 IOWA RIVER BASIN

05488500 DES MOINES RIVER NEAR TRACY, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WAT	TER YEAR	WATER YE	ARS 1970 - 1998a
ANNUAL TOTAL	2587291		3561414			
ANNUAL MEAN	7088		9757		7757	
HIGHEST ANNUAL MEAN					24450	1993
LOWEST ANNUAL MEAN					898	1977
HIGHEST DAILY MEAN	26600	Feb 25	30900	Apr 21	107000	Jul 12 1993
LOWEST DAILY MEAN	391	Sep 6	393	Sep 30	16 5	Feb 20 1977
ANNUAL SEVEN-DAY MINIMUM	397	Oct 1	397	Oct 1	210	Oct 9 1980
INSTANTANEOUS PEAK FLOW			31000	Apr 21	109000	Jul 12 1993
INSTANTANEOUS PEAK STAGE			13.57	Apr 21	24.16	Jul 12 1993
ANNUAL RUNOFF (AC-FT)	5132000		7064000	-	5620000	
ANNUAL RUNOFF (CFSM)	. 57		.78		. 62	
ANNUAL RUNOFF (INCHES)	7.71		10.62		8.45	
10 PERCENT EXCEEDS	19500		23900		19100	
50 PERCENT EXCEEDS	4160		5500		4100	
90 PERCENT EXCEEDS	448		984		582	

Post regulation Estimated

05489000 CEDAR CREEK NEAR BUSSEY, IA

LOCATION.--Lat 41°13'09", long 92°54'38", at SW corner sec.11, T.74 N., R.18 W., Marion County, Hydrologic Unit 07100009, on left bank 10 ft downstream from bridge on State Highway 156, 0.8 mi downstream from North Cedar Creek, 1.6 mi northwest of Bussey, 3.0 mi upstream from Honey Creek, and 8.9 mi upstream from mouth.

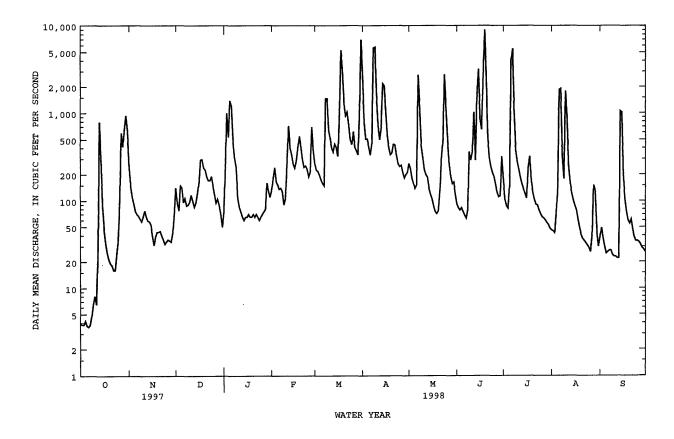
DRAINAGE AREA. -- 374 mi².

PERIOD OF RECORD. -- October 1947 to current year.

REVISED RECORDS. -- WSP 1438: Drainage area.

GAGE.--Water stage recorder. Datum of gage is 682.15 ft above sea level (levels by U.S. Army Corps of Engineers). Prior to Feb. 21, 1949, nonrecording gage at same site and datum.

REMARKS.--Estimated daily discharges: Dec. 12-14, Dec. 25 to Jan. 3, Jan. 10 to Feb. 2, and Sept. 1-8. Records good except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1946 reached a stage of 28.45 ft on upstream side and 28.05 ft on downstream side of bridge, levels to floodmarks by U.S. Army Corps of Engineers, discharge, 31,500 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

		DISCHA	KGE, CUB.	IC FEET PE		WATER YE MEAN V		R 1997 TO	SEPTEMBE	£R 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.9 3.8 3.8 4.2 3.7	253 151 112 93 76	141 94 77 149 142	e75 e230 e1000 536 1390	e130 e180 240 163 151	266 225 218 197 173	2850 781 508 509 415	266 232 180 156 139	92 83 78 83 75	178 105 87 82 148	46 45 43 74 124	e38 e49 e38 e30 e25
6 7 8 9	3.6 3.8 4.8 6.6 8.1	70 67 62 58 66	96 107 88 90 97	1210 474 309 242 e110	136 140 128 90 106	158 149 1470 1470 640	334 438 5630 5740 1630	153 2740 1180 422 316	68 63 78 363 290	4070 5520 1080 383 276	1850 1910 314 178 1790	e26 e27 e27 24 23
11 12 13 14 15	6.5 28 793 288 84	77 65 59 58 53	117 e100 e85 e95 121	e85 e75 e65 e60 e65	280 717 405 342 265	508 400 362 445 411	728 499 669 2170 2060	226 199 187 138 119	358 1020 290 1700 3190	225 182 154 136 121	944 251 161 124 102	23 22 22 1050 1020
16 17 18 19 20	46 32 25 21 19	40 31 39 44 44	164 295 296 238 227	e65 e70 e65 e65 e70	237 282 399 545 421	322 872 5280 2970 1300	1040 543 404 337 352	105 87 75 71 76	843 649 2540 9030 2690	107 236 321 168 125	88 78 61 49 41	190 105 75 60 55
21 22 23 24 25	18 16 16 24 34	45 40 36 32 34	190 171 171 191 e150	e65 e70 e65 e60 e65	298 242 250 231 189	937 1030 745 496 441	441 435 324 263 246	124 301 467 2760 1160	530 310 244 211 189	104 91 89 78 70	37 35 33 31 29	61 47 39 35 35
26 27 28 29 30 31	107 596 416 659 940 638	36 35 34 42 70	e120 e95 e105 e90 e70 e50	e70 e75 e80 e160 e130 e110	212 692 383 	616 409 374 336 973 7000	254 211 183 200 211	511 274 192 157 164 120	151 · 125 111 114 320	65 63 60 56 53 48	26 39 151 130 45 30	34 32 29 28 26
TOTAL MEAN MAX MIN AC-FT CFSM IN.	4852.8 157 940 3.6 9630 .42 .48	1922 64.1 253 31 3810 .17 .19	4222 136 296 50 8370 .36 .42	7211 233 1390 60 14300 .62 .72	7854 281 717 90 15580 .75 .78	31193 1006 7000 149 61870 2.69 3.10	30405 1014 5740 183 60310 2.71 3.02	13297 429 2760 71 26370 1.15 1.32	25888 863 9030 63 51350 2.31 2.57	14481 467 5520 48 28720 1.25 1.44	8859 286 1910 26 17570 .76 .88	3295 110 1050 22 6540 .29 .33
STATIS	TICS OF M	ONTHLY MEA	IN DATA E	FOR WATER Y	EARS 1948	- 1998,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	97.5 950 1974 .18 1957	127 1331 1962 .33 1956	93.4 844 1983 .39 1956	88.9 894 1974 .20 1956	231 952 1949 2.29 1954	415 1371 1960 3.78 1954	418 1553 1973 .79 1956	420 1797 1996 7.19 1956	300 1258 1967 2.74 1977	292 3846 1982 2.26 1988	112 1070 1993 2.51 1953	158 1384 1992 .60 1953
SUMMAR	Y STATIST	ics	FOR	1997 CALE	IDAR YEAR	F	OR 1998 W	ATER YEAR		WATER YE	EARS 1948	- 1998
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL INSTAN INSTAN ANNUAL ANNUAL ANNUAL ANNUAL 10 PER 50 PER	T ANNUAL M ANNUAL M T DAILY M DAILY ME SEVEN-DA TANEOUS P	EAN EAN AN Y MINIMUM EAK FLOW EAK STAGE AC-FT) CFSM) INCHES) EDS EDS EDS	11 11 11 11 11 11 11 11 11 11 11 11 11	3.8 132700 .45 6.66 357 59 6.9) 5		153479.8 420 9030 3.6 3.8 10900 23.57 304400 1.12 15.27 956 136	Jun 19 7 Jun 19		229 768 29.4 42000 .00 96000 34.61 166000 .61 8.32 410 37 2.5	Sep Sep Jul Jul	1993 1989 3 1982 6 1955a 6 1955 3 1982 3 1982

a Also Sep 7-20, 1955, Oct 11, 12, 1956, Aug 12, 13, 1989

e Estimated

05489500 DES MOINES RIVER AT OTTUMWA, IA

LOCATION.--Lat 41°00'39", long 92°24'40", in SE¹/₄ NE¹/₄ sec.25, T.72 N., R.14 W., Wapello County, Hydrologic Unit 07100009, on right bank 15 ft downstream from Colorado and Eastern Railroad Bridge at Ottumwa, 0.4 mi downstream from Ottumwa powerplant, 6.5 mi upstream from Village Creek, 9.5 mi downstream from South Avery Creek, and at mile 94.1.

DRAINAGE AREA. -- 13.374 mi².

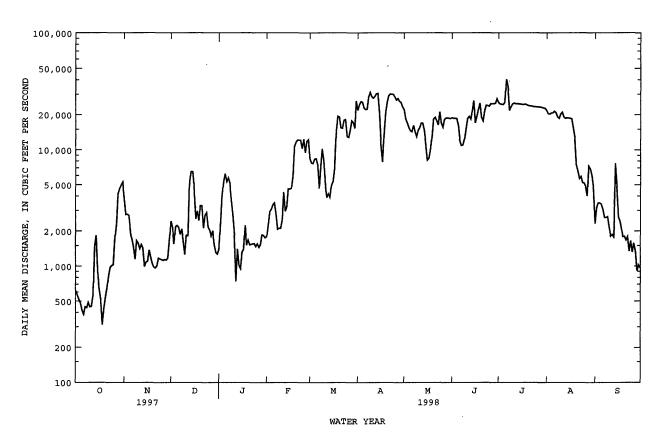
PERIOD OF RECORD.--March 1917 to current year (published as "at Eldon" October 1930 to March 1935). Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 525: 1917-20. WSP 1308: 1917-23 (M), 1925-27 (M), 1931. WSP 1438: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 622.00 ft above sea level. Prior to Sept. 30, 1930, nonrecording gage at Market Street Bridge 1,700 ft upstream at datum 0.83 ft higher. Oct. 1, 1930 to Mar. 31, 1935, nonrecording gage at Eldon 15 mi downstream at different datum. Apr. 1, 1935 to Oct. 25, 1963, water-stage recorder at site 1,100 ft downstream at Vine Street Bridge at datum 0.77 ft higher.

REMARKS.--No estimated daily discharge. Records good. Prior to Dec. 12, 1958 and since Nov. 30, 1960, diurnal fluctuation at low and medium stages are caused by powerplant upstream of station about \(^1/2\) mile. Flow regulated by Lake Red Rock (station 05488100) 48.2 mi upstream since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 135,000 ft³/s June 7, 1947, gage height, 20.2 ft, site and datum then in use; minimum daily discharge, 26 ft³/s Oct. 25, 1990, when gates at dam in Ottumwa were closed.


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1850, that of June 7, 1947. Flood of May 31, 1903, reached a stage of 19.4 ft, former site and datum at Vine Street Bridge or about 22 ft at Market Street Bridge, from information by U.S. Army Corps of Engineers and U.S. National Weather Service, discharge, about 140,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES DAY OCT DEC SEP NOV FEB MAR APR MAY JUN JUL AUG JAN 7 13000 7650 1170 2740 1550 TOTAL MEAN MAX MIN .10 CFSM 1.87 .19 .84 1.86 1.49 1.05 IN. .11 . 13 . 22 . 20 .48 .97 2.08 1.37 1.66 2.15 1.21 . 20 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1970 - 1998, BY WATER YEAR (WY) MEAN MAX (WY) MIN

05489500 DES MOINES RIVER AT OTTUMWA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALEND	AR YEAR	FOR 1998 WA	TER YEAR	WATER YEAR	S 1970 - 1998a
ANNUAL TOTAL	2672990		3877077			
ANNUAL MEAN	7323		10620		8346	
HIGHEST ANNUAL MEAN					26350	1993
LOWEST ANNUAL MEAN					1120	1977
HIGHEST DAILY MEAN	28700	May 8	40400	Jul 6	110000	Jul 12 1993
LOWEST DAILY MEAN	161	Sep 28	313	Oct 18	26	Oct 25 1990b
ANNUAL SEVEN-DAY MINIMUM	421	Sep 24	438	Oct 5	182	Jul 7 1977
INSTANTANEOUS PEAK FLOW			46200	Jul 6	112000	Jul 12 1993
INSTANTANEOUS PEAK STAGE			13.40	Jul 6	22.15	Jul 12 1993
ANNUAL RUNOFF (AC-FT)	5302000		7690000		6047000	
ANNUAL RUNOFF (CFSM)	.55		.79)	. 62	
ANNUAL RUNOFF (INCHES)	7.43		10.78	}	8.48	
10 PERCENT EXCEEDS	19200		24700		20100	
50 PERCENT EXCEEDS	4600		6200		4620	
90 PERCENT EXCEEDS	560		1110		689	

Post regulation Gates at dam in Ottumwa closed

05490500 DES MOINES RIVER AT KEOSAUQUA, IA

LOCATION.--Lat $40^{\circ}43^{\circ}40^{\circ}$, long $91^{\circ}57^{\circ}34^{\circ}$, in $SE^{1}/_{4}$ SW $^{1}/_{4}$ sec.36, T.69 N., R.10 W., Van Buren County, Hydrologic Unit 07100009, on right bank 10 ft upstream from bridge on State Highway 1 at Keosauqua, 4.0 mi downstream from Chequest Creek, and at mile 51.3.

DRAINAGE AREA. -- 14,038 mi².

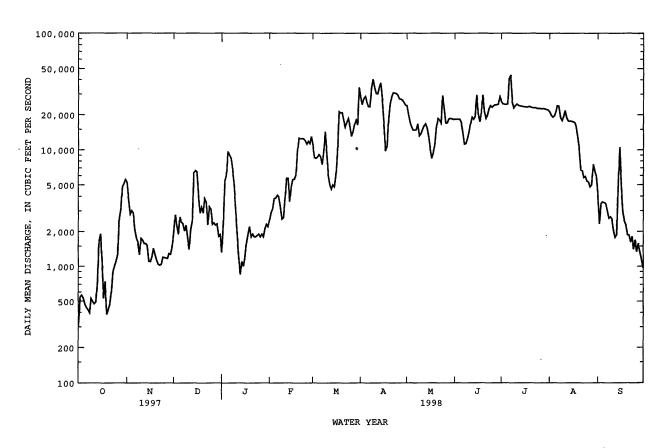
PERIOD OF RECORD.--May 1903 to July 1906, April to December 1910, August 1911 to current year. Monthly discharge only for some periods, published in WSP 1308.

REVISED RECORDS.--WSP 525: 1913-20. WSP 1438: Drainage area. WSP 1508: 1903, 1905-6, 1915- 18 (M), 1922 (M), 1924-26 (M), 1932-34 (M), 1937, 1942 (M).

GAGE.--Water-stage recorder. Datum of gage is 547.36 ft above sea level. Prior to Dec. 24, 1933, nonrecording gage, and Dec. 25, 1933, to Sept. 30, 1972, water-stage recorder, at same site at datum 10.00 ft higher.

REMARKS.--Estimated daily discharges: Jan 9 to Feb. 1, and Mar. 10-16. Records good except those for estimated daily discharges, which are poor. Prior to Dec. 21, 1958, and since Nov. 30, 1960, some diurnal fluctuation at medium and low stages caused by power plant at Ottumwa. Flow regulated by Lake Red Rock (station 05488100) 91.0 mi upstream, since March 12, 1969. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $146,000 \text{ ft}^3/\text{s}$ June 1, 1903, gage height, 27.85 ft, from floodmark, datum then in use; minimum daily discharge, $40 \text{ ft}^3/\text{s}$ Jan. 30, 1940.


EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 1, 1851, reached a stage of 24 ft, discharge not determined.

		DISC	HARGE, CU	BIC FEET		O, WATER	YEAR OCTOR VALUES	BER 1997 T	O SEPTEME	ER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
· 1	300	5300	2000	1320	e2500	11000		23900	18300	26100	21300	4010
2	542	3810	2780	2300	2900	8580		19900	18300	24800	19800	2320
3	564	2820	2260	5420	3140	8440		17100	18300	24600	19100	3460
4	535	3010	1900	6030	3820	8660		15800	18300	24500	19500	3570
5	472	2870	2660	9670	3850	9090	25700	14700	17200	24700	21000	3520
6	441	2080	2400	9010	4080	8740		14700	14200	40700	23800	3460
7	421	1760	2340	8460	3940	7510		14900	11200	43800	23700	2990
8	397	1620	2020	6730	3230	9460		16700	11300	25700	19000	2590
9	527	1260	2260	e5000	2550	14300	40300	13200	12400	22900	17900	2660
10	498	1740	1770	e3000	2620	e9500	34100	13700	14100	24000	19300	2540
11	475	1680	1400	e1900	3850	e6000	30400	14900	16600	24700	21700	2040
12	493	1570	2070	e1200	5700	e5000	30300	16000	19100	24100	18800	1780
13	721	1570	2420	e850	5680	e4600	34300	16700	18300	23800	17700	1870
14	1640	1520	6370	e1100	3610	e5000		15500	19400	23700	17600	5150
15	1900	1100	6620	e1000	4800	e4800		12900	29500	23500	17600	10500
16	1120	1100	6400	e1200	5530	e6000	16300	10200	20200	23400	17400	4820
17	531	1220	3980	e1600	5560	9320	9750	8440	17400	23300	17200	2900
18	740	1430	2880	e1900	6030	21200		9350	20700	23300	16100	2460
19	384	1260	3220	e2200	9860	20700		11300	29500	23600	13000	2280
20	422	1130	2880	e1800	12600	20800		15400	21300	23200	10200	1870
21	470	1040	3820	e1900	12400	17800	28500	18500	18600	23000	6670	1860
22	599	1020	3580	e1800	12500	15700	30800	18000	19900	22900	6570	1620
23	879	1040	2280	e1800	12400	17300	30700	17000	22500	23000	5780	1810
24	1010	1200	3250	e1850	12000	18600		29200	23900	22700	5900	1410
25	1110	1190	3100	e1900	11200	15900		22900	23200	22600	5390	1690
26	1260	1180	2300	e1800	11800	13100	27300	17000	23900	22600	5270	1340
27	2590	1170	2370	e1900	11300	14300	27200	17000	24300	22500	4800	1580
28	3090	1290	2270	e1800	13000	16500		18400	24300	22600	4990	1340
29	4800	1270	2320	e2100		18000		18600	24600	22400	7480	1160
30	5110	1460	1820	e2300		16400		18400	28500	22200	6490	970
31	5530		1880	e2200		34200		18200		22000	5970	
TOTAL	39571	51710	89620	93040	192450	396500	808650	508490	599300	766900	437010	81570
MEAN	1276	1724	2891	3001	6873	12790		16400	19980	24740	14100	2719
MAX	5530	5300	6620	9670	13000	34200		29200	29500	43800	23800	10500
MIN	300	1020	1400	850	2500	4600		8440	11200	22000	4800	970
MED	564	1360	2370	1900	5550	11000		16700	19300	23400	17400	2300
AC-FT	78490	102600	177800	184500	381700	786500		1009000	1189000	1521000	866800	161800
CFSM	.09	.12	.21	.21	.49	.91		1.17	1.42	1.76	1.00	.19
IN.	.10	.14	.21	.25	.51	1.05		1.35	1.59	2.03	1.16	.22
										2.03	1.10	
STATIST	CICS OF	MONTHLY N	MEAN DATA	FOR WATE	R YEARS 19	70 - 199	8, BY WATE	ER YEAR (W	Y)			
MEAN	4341	5321	4705	3225	5339	10860	13490	13730	14070	15120	8894	5362
MAX	19850	19320	14510	13120	17370	22200		31260	30900	86150	47320	35210
(WY)	1974	1987	1983	1973	1973	1983	1973	1993	1984	1993	1993	1993
MIN	383	333	385	291	331	1170	1224	696	300	258	528	362
(WY)	1977	1977	1977	1977	1977	1981		1977	1977	1977	1989	1976

05490500 DES MOINES RIVER AT KEOSAUQUA, IA--Continued

SUMMARY STATISTICS	FOR 1997 CALENDAR	YEAR	FOR 1998 WA	TER YE	AR	WATER YE	ARS 197	0 -	1998a
ANNUAL TOTAL	2840533		4064811						
ANNUAL MEAN	7782		11140			8721			
HIGHEST ANNUAL MEAN						26920			1993
LOWEST ANNUAL MEAN						1303			1977
HIGHEST DAILY MEAN	28200 M	lay 1	43800	Jul	7	108000	Jul	13	1993
LOWEST DAILY MEAN	295 S	ep 30	300	Oct	1	115	0ct	27	1990
ANNUAL SEVEN-DAY MINIMUM	442 S	ep 27	462	Oct	5	204	Jul	3	1977
INSTANTANEOUS PEAK FLOW			51700	Jul	6	111000	Ju1	12	1993
INSTANTANEOUS PEAK STAGE			23.54	Jul	6	32.66	Jul	13	1993
ANNUAL RUNOFF (AC-FT)	5634000		8063000			6318000			
ANNUAL RUNOFF (CFSM)	.55		.79			. 62			
ANNUAL RUNOFF (INCHES)	7.53		10.77			8.44			
10 PERCENT EXCEEDS	19800		24400			21100			
50 PERCENT EXCEEDS	4840		6730			4900			
90 PERCENT EXCEEDS	603		1190			740			

Post-regulation Estimated

326 FOX RIVER BASIN

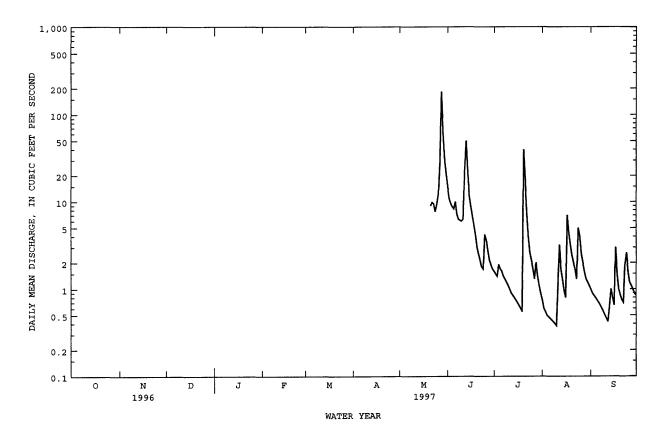
05494300 FOX RIVER AT BLOOMFIELD, IA

LOCATION.--Lat $40^{\circ}46^{\circ}10^{\circ}$, long $92^{\circ}25^{\circ}05^{\circ}$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.13, T.69 N., R.14 W, Davis County, Hydrologic Unit 0711000, on left bank 15 ft. downstream from bridge on county road V20, 1.3 miles north of county courthouse at Bloomfield, and 8.6 miles downstream from North Fox Creek.

DRAINAGE AREA. -- 87.7 mi²

PERIOD OF RECORD. --October 1957 to September 1973, May 21 to September 30, 1997.

GAGE. -- Water-stage recorder. Datum of gage is 755.57 ft above sea level.


REMARKS.--Estimated daily discharges: May 23, June 16 to July 21, and July 23 to Sept. 30. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 9, 1905 and June 18, 1946, exceeded all other known floods at this location, stage and discharge unknown. Also flood of May 6, 1960 reached a stage of 24.02 ft., gage datum; discharge 8,600 cfs (Slope-Area Measurement).

		DISCHARO	E, CUBI	C FEET PE		WATER Y	EAR OCTOBER	1996 TO	SEPTEMBE	ER 1997		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									15	e1.6	e.75	e1.0
2									11	e1.5	e.60	e.90
3									9.6	e1.4	e.55	e.85
4									8.8	e1.9	e.50	e.80
5									8.3	e1.7	e.48	e.75
-									10	-1.6	- 46	- 70
6 7									10 7.2	e1.6 e1.4	e.46 e.44	e.70 e.65
8									6.3	e1.4	e.44 e.42	e.60
9									6.1	e1.2	e. 40	e.55
10									6.0	e1.1	e.38	e.50
11									6.3	e1.0	e1.0	e.46
12									25	e.90	e3.2	e.42
13									50 22	e.85	e1.7	e.65 e1.0
14 15									12	e.80 e.75	e1.3 e.95	e.80
13									12	6.75	6.73	0.00
16									e9.0	e.70	e.80	e.65
17									e7.0	e.65	e7.0	e3.0
18									e5.5	e.60	e4.4	e1.5
19									e4.2	e.55	e3.2	e1.0
20									e3.0	e40	e2.4	e.85
21								0.0	-2 E	-10	-2.0	. 75
21 22								9. 0 9.8	e2.5 e2.1	e18 7.6	e2.0 e1.7	e.75 e.70
23								e9.5	e1.8	e4.0	e1.7	e1.9
24								7.7	e1.7	e2.6	e5.0	e2.6
25								9.2	e4.2	e2.1	e4.0	e1.6
26								12	e3.6	e1.7	e2.5	e1.2
27								28	e2.7	e1.3	e2.0	e1.1
28 29								184 61	e2.1 e1.9	e2.0 e1.4	e1.6 e1.3	e1.0 e.90
30								31	e1.7	e1.1	e1.3	e.85
31								21		e.90	e1.1	
TOTAL									256.6	104.20	54.63	30.23
MEAN									8.55	3.36	1.76	1.01
MAX									50	40	7.0	3.0
MIN MED									1.7 6.2	.55 1.4	.38 1.3	. 42 . 85
AC-FT									509	207	108	60
CFSM									.10	.04	.02	.01
IN.									.11	.04	.02	. 01
STATIST	ICS OF MC	NTHLY MEAN	DATA F	OR WATER	EARS 1958	- 1997	, BY WATER	YEAR (WY)			
MEAN	32.3	24.2	23.4	29.8	61.3	102	98.6	71.1	30.3	29.1	36.3	46.9
MAX	178	222	115	127	158	291	370	325	179	163	254	377
(WY)	1960	1962	1971	1973	1959	1960	1973	1973	1967	1969	1970	1970
MIN	.21	.53	.32	.59	. 67	1.07	8.48	2.35	.73	1.09	.20	.78
(WY)	1964	1965	1964	1964	1964	1964	1971	1964	1963	1972	1961	1969
SUMMARY	STATISTI	:CS		WATER Y	EARS 1958	- 1997						
ANNUAL I				49.4	l							
	ANNUAL M			117		1973						
	ANNUAL ME			8.4		1964						
	DAILY ME DAILY MEA			4370 .(6 1960 1 1957						
	SEVEN-DAY			. (1 1957						
	ANEOUS PE			8600		6 1960						
INSTANT	ANEOUS PE	AK STAGE		24.0		6 1960						
ANNUAL 1	RUNOFF (A	C-FT)		35770	_							
ANNUAL 1	RUNOFF (C	FSM)		5								
	RUNOFF (I			7.6	55							
	ENT EXCEE			73								
	ENT EXCEE			4.4	! !0							
JU FINC.		د س										

e Estimated

05494300 FOX RIVER AT BLOOMFIELD, IA--Continued

328 FOX RIVER BASIN

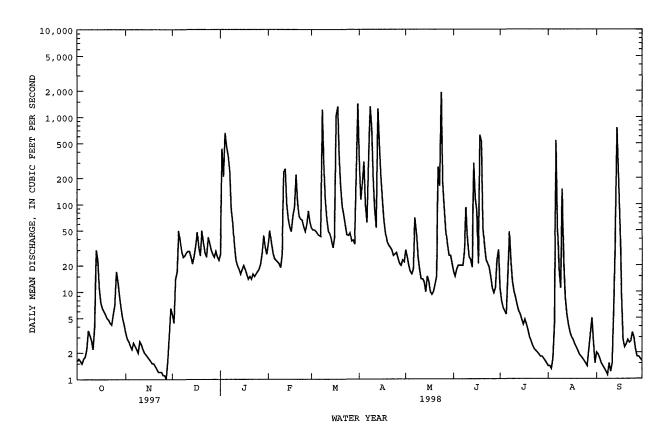
05494300 FOX RIVER AT BLOOMFIELD, IA

LOCATION.--Lat $40^{\circ}46^{\circ}10^{\circ}$, long $92^{\circ}25^{\circ}05^{\circ}$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec.13, T.69N., R.14W, Davis County, Hydrologic Unit 0711000, on left bank 15 ft. downstream from bridge on county road V20, 1.3 miles north of county courthouse at Bloomfield, and 8.6 miles downstream from North Fox Creek.

DRAINAGE AREA. -- 87.7 mi² (227 km2)

PERIOD OF RECORD. -- October 1957 to September 1973, May 1997 September 30, 1998.

GAGE. -- Water-stage recorder. Datum of gage is 755.57 ft above sea level.


REMARKS.--Estimated daily discharges: Oct. 1-12, Oct. 14 to Nov. 30, Dec. 5 to Jan. 1, Jan. 5 to Feb. 9, June 28, 29, July 3-6, July 11 to Aug. 3, Aug. 13 to Sept. 12, and Sept. 17-30. Records fair except those for estimated daily discharges, which are poor. Periodic observations of water temperature and specific conductance are published in this report as miscellaneous water quality data.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 9, 1905 and June 18, 1946, exceeded all other known floods at this location, stage and discharge unknown. Also flood of May 6, 1960 reached a stage of 24.02 ft., gage datum; discharge 8600 CFS (Slope-Area Measurement).

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e1.6 e1.7 e1.6 e1.5 e1.7	e3.4 e2.9 e2.7 e2.4 e2.2	e5.5 e4.4 e14 e17 e50	e27 434 208 655 462	e36 e50 e36 e28 e24	54 51 51 49 46	322 114 175 308 98	30 25 20 17 16	17 15 18 20 20	11 7.9 e6.5 e6.0 e5.5	e1.4 e1.4 e1.3 e1.7 e4.2	e2.0 e1.9 e1.7 e1.5 e1.4
6 7 8 9 10	e1.8 e2.2 e3.6 e3.2 e2.8	e2.6 e2.4 e2.2 e2.0 e2.7	e38 e29 e25 e26 e28	359 243 88 61 e34	e23 e22 e21 e19 27	44 43 1220 285 115	62 310 1330 732 195	18 . 70 47 25 18	20 20 29 92 38	e15 48 22 13 10	539 56 18 11 149	e1.3 e1.2 e1.1 e1.5 e1.2
11 12 13 14 15	e2.2 e4.0 e30 e23 e11	e2.5 e2.2 e2.0 e1.9 e1.8	e29 e29 e25 e21 e26	e23 e20 e18 e16 e18	235 256 101 68 55	67 49 e46 e38 e32	86 54 1250 478 208	14 14 13 10 15	25 23 19 298 118	e8.5 e7.0 e6.0 e5.5 e4.8	22 8.5 e5.5 e4.2 e3.4	e1.5 e7.0 54 754 214
16 17 18 19 20	e7.5 e6.5 e6.0 e5.5 e5.0	e1.7 e1.6 e1.5 e1.5 e1.4	e34 e48 e32 e26 e50	e20 e18 e16 e14 e15	49 73 93 220 107	43 1040 1330 340 158	111 64 46 37 34	13 10 9.3 10 12	85 21 621 524 54	e4.2 e4.8 e4.2 e3.6 e3.0	e3.0 e2.8 e2.5 e2.3 e2.1	59 e8.5 e2.8 e2.3 e2.5
21 22 23 24 25	e4.8 e4.4 e4.2 e5.5 e7.0	e1.3 e1.2 e1.2 e1.2 e1.1	e36 e28 e25 e42 e36	e14 e16 e15 e16 e17	73 68 66 56 49	95 76 58 45 44	32 30 26 27 28	15 269 163 1930 178	33 23 21 19 15	e2.7 e2.4 e2.2 e2.1 e2.0	e1.9 e1.8 e1.7 e1.6 e1.5	e2.8 e2.6 e2.7 e3.4 e3.0
26 27 28 29 30 31	e17 e13 e9.0 e6.5 e5.0 e4.2	e1.1 e1.0 e1.6 e3.2 e6.5	e30 e27 e25 e29 e25 e23	e18 e21 e28 e44 e32 e27	59 84 63 	47 38 39 35 212 1430	24 21 20 23 22	92 50 35 26 26 21	11 9.7 11 23 30	e1.9 e1.8 e1.7 e1.6 e1.5	e1.4 e2.1 e3.2 e5.0 e2.6 e1.5	e2.2 e1.8 e1.8 e1.7 e1.6
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	203.0 6.55 30 1.5 4.8 403 .07	63.0 2.10 6.5 1.0 2.0 125 .02	882.9 28.5 50 4.4 28 1750 .32 .37	2997 96.7 655 14 21 5940 1.10 1.27	2061 73.6 256 19 58 4090 .84 .87	7220 233 1430 32 51 14320 2.66 3.06	6267 209 1330 20 63 12430 2.38 2.66	3211.3 104 1930 9.3 20 6370 1.18 1.36	2272.7 75.8 621 9.7 22 4510 .86 .96	218.2 7.04 48 1.5 4.8 433 .08	863.6 27.9 539 1.3 2.6 1710 .32 .37	1144.0 38.1 754 1.1 2.1 2270 .43 .49
			AN DATA FO			·						
MEAN MAX (WY) MIN (WY)	30.8 178 1960 .21 1964	22.9 222 1962 .53 1965	23.7 115 1971 .32 1964	33.7 127 1973 .59 1964	62.0 158 1959 .67 1964	110 291 1960 1.07 1964	105 370 1973 8.48 1971	73.0 325 1973 2.35 1964	32.9 179 1967 .73 1963	27.8 163 1969 1.09 1972	35.9 254 1970 .20 1961	46.5 377 1970 .78 1969
SUMMARY	STATISTI	cs			FOR 19	98 WATER	YEAR			WATER Y	EARS 1958	- 1998
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC		EAN EAN MINIMUM EAK FLOW EAK STAGE (C-FT) EFSM) ENCHES) EDS			193 440 1 5436 1	75.1 30 Ma 1.0 No 1.2 No 00 Ma 1.7.32 Ma	ay 24 ov 27 ov 21 ay 24 ay 24			50.9 117 8.4 4370 .0 8600 24.0 36870 .5 7.8 76 4.8	May 0 Oct 0 Oct May 2 May 8	1973 1964 6 1960 1 1957 1 1957 6 1960 6 1960

e Estimated

FOX RIVER BASIN
05494300 FOX RIVER AT BLOOMFIELD, IA--Continued

WATER RESOURCES DATA FOR IOWA, 1998

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years up to the current year for which the annual maximum has been determined.

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

[+--Not determined, a--peak stage did not reach bottom of gage, b--ice affected, c--old gage datum, d--estimate, e--peak affected by backwater]

			Water	year 1998 m	aximum	Period	of record n	naximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	1	UPPER IO	WA RIVER I	BASIN				
Dry Run Creek near Decorah, IA (05387490)	Lat 43°17'29",long 91°48'33", in SE1/4, sec. 20, T.98 N., R.8 W., Winneshiek County, Hydrologic Unit 07060002, on State Highway 9, 0.5 mi west of Decorah. Drainage area is 21.0 mi ² .	1978-	06-28-98	18.81	2220	08-16-93	20.80	4,620
Waterloo Creek near Dorches- ter, IA (05388310)	Lat 43°27'04", long 91°30'18", in NW1/4, sec. 25, T.100 N., R.6 W., Allamakee County, Hydrologic Unit 07060002, on State Highway 76, 1.4 mi south of Dorchester Drainage area is 46.6 mi ² .	1966-	06-28-98	12.22	4160	07-01-78	14.80	9,380
		MISSISSII	PPI RIVER B	BASIN				
Mississippi River tributary at McGregor, IA (05389501)	Lat 43°01'12", long 91°11'25", in N1/4, sec.27, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, at culvert on county road X50, at intersection with U.S. Highway 18 (Business Route), in McGregor. Drainage area is 0.72 mi ² .	1991-	03-30-98	11.58	(+)	03-31-93	13.13	(+)
		TURKE	Y RIVER BA	SIN				
French Hollow Creek near Elkader, IA (05412030)	Lat 42°50'19", long 91°24'25", in SW1/4, sec.26, T.93 N., R.5 W., Clayton County, Hydrologic Unit 07060004, at culvert on State Highway 13, 1.1 mi south of Elkader. Drainage area is 3.56 mi ² .	1991-	03-31-98	12.24	769	06-15-91	16.32	d1,900
	LITT	LE MAQU	OKETA RIV	ER BASIN				
Little Maquoketa River at Graf, IA (05414350)	Lat 42°30'09", long 90°51'50", in SE1/4 NW1/4, sec.20, T.89 N., R.1 E., Dubuque County, Hydrologic Unit 07060003, at bridge on county highway, 300 ft downstream from Illinois Central railroad bridge, 0.5 mi northeast of Graf. Drainage area is 39.6 mi ² .	1951-	03-31-98	9.35	2,090	07-08-51	15.78	7,220
Middle Fork Little Maquoketa Rivernear Rickardsville, IA (05414400)	Lat 42°33'38", long 90°51'35", in SE1/4, sec. 32, T.90 N., R.1 E., Dubuque County, Hydrologic Unit 07060003, at bridge on county highway, 2 mi southeast of Rickardsville. Drainage area is 30.2 mi ² .	1951-	03-31-98	16.56	1,270	08-02-72	27.70	23,000

			Water	year 1998 m	aximum	Period	Period of record maximum	
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	LITTLE MA	AQUOKE:	TA RIVER B	ASINCon	tinued			
North Fork Little Maquoketa River near Rickardsville, IA (05414450)	Lat 42°35'09", long 90°51'20", near NW corner, sec.28, T.90 N., R.1 E., Dubuque County, Hydrologic Unit 07060003, at bridge on county highway, 1 mi northeast of Rickardsville. Drainage area is 21.6 mi ² .	1951-	03-31-98	8.55	1,590	08-02-72	14.02	7,180
Little Maquoketa River near Durango, IA (05414500) (continuous site Oct. 1934 to Jan. 1982)	Lat 42°33'18", long 90°44'46", 19: in NW 1/4 NE 1/4, sec. 5, T.89 N., R.2 E., Dubuque County, Hydrologic Unit 07060003, on left bank 10 ft. upstream from bridge on county highway 300 ft. upstream from Cloie Branch, 1.7 mi. east of Durango, 5.6 mi. north west of court house at Dubuque, and 6.4 mi. upstream from mouth Drainage area is 130 mi ² .	34-1993 1996-	03-31-98	16.37	8,790	08-02-72	23.13	40,000
Little Maquoketa River tributary at Dubuque, IA (05414600)	Lat 42°32'38", long 90°41'38", near NW corner, sec.11, T.89 N., R.2 E, Dubuque County, Hydrologic Unit 07060003, at bridge on State Highway 386, near north city limits of Dubuque. Drainage area is 1.54 mi ² .	1951-	06-19-98	14.10	795	07-31-57	c7.98	d1,650
Bloody Run tributary near Sherrill, IA (05414605)	Lat 42°37'13", long 90°45'44", in SE1/4, sec.7, T.90 N., R.2 E., Dubuque County, Hydrologic Unit 07060003, at culvert on county road 1.6 mi northeast of Sherrill. Drainage area is 0.59 mi ² .	1991-	03-31-98	12.32	98.3	06-15-91	19.27	d692
		LAMON'	T CREEK BA	ASIN				
Lamont Creek tributary at Lamont, IA (05416200)	Lat 42°35'22", long 91°38'52", in SE1/4, sec.22, T.90 N., R.7 W., Buchanan County, Hydrologic Unit 07060006, at culvert on State Highway 187, 0.8 mi southwest of Lamont. Drainage area is 1.78 mi ² .	1991-	06-11-98	19.95	d610	06-11-98	19.95	d610
	M	IAQUOKI	ETA RIVER	BASIN				
Sand Creek near Manchester, IA (05416972)	Lat 42°26'57", long 91°28'50", in SE1/4, sec.12, T.88 N., R.6 W., Delaware County, Hydrologic Unit 07060006, at culvert on State Highway 13, 2.7 mi southwest of Manchester. Drainage area is 11.0 mi ² .	1991-	03-31-98	12.59	1,150	07-11-93	(+)	(+)
Williams Creek near Charlotte, IA (05418645)	Lat 41°55'55", long 90°31'44", in SE1/4, sec.6, T.82 N., R.4 E., Clinton County, Hydrologic Unit 07060006, at culvert on county road Y70, 5 mi southwest of Charlotte, 2.1 mi north of county highway E63. Drainage area is 1.77 mi ² .	1990-	03-31-98	9.45	(+)	05-29-96	13.02	(+)

			Water	year 1998 m	aximum	Period	of record m	naximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	•	WAPSIPINI	CON RIVER	BASIN				
Little Wapsi- pinicon River tributary near Riceville, IA (05420600)	Lat 43°21'31", long 92°29'08", near SW1/4 corner, sec. 27, T.99 N., R.14 W., Howard County, Hydrologic Unit 07080102, at culvert on county highway, 3.5 mi east of Riceville. Drainage area is 1.10 mi ² .	1953-	06-28-98	4.86	612	03-11-97	5.91	d3,300
Little Wapsi- pinicon River near Oran, IA (05420850)	Lat 42°42'53", long 92°02'29", near NW corner, sec.9, T.91 N., R.10 W., Fayette County, Hydrologic Unit 07080102, at bridge on State Highway 3, 2 mi northeast of Oran. Drainage area is 94.1 mi ² .	1966-	03-31-98	88.27	2,030	08-30-79	91.81	d5,000
Buck Creek near Oran, IA (05420875) (revised)	Lat 42°42'53", long 92°07'33", in NE1/4, sec.10, T.91 N., R.11 W., Bremer County, Hydrologic Unit 07080102, at bridge on State Highway 3, 2.5 mi northwest of Oran. Drain- age area is 37.9 mi ² .	1966-	03-31-98	88.14	790	06-15-91	90.18	1,720
Pine Creek tributary near Winthrop, IA (05421100)	Lat 42°29'17", long 91°47'10", in SW1/4, sec. 27, T.89 N., R.8 W., Buchanan County, Hydrologic Unit 07080102, at culvert on county road, 2.5 mi northwest of Winthrop. Drainage area is 0.33 mi ² .	1953-	08-18-98	4.34	46.6	07-17-68	8.97	334
Wapsipinicon River tributary at Winthrop, IA (05421300) (formerly published as: "Pine Creek trib. no. 2 at Winthrop")	Lat 42°28'06", long 91°44'33", at N1/4 corner sec.2, T.88 N., R.8 W., Buchanan County, Hydrologic Unit 07080102, at culvert on State Highway 939, near west city limits of Winthrop. Drainage area is 0.70 mi ² .	1953-	1998	(a)	<6.50	07-17-68	7.26	570
Silver Creek at Welton, IA (05421890)	Lat 41°54′54″, long 90°36′00″, in NW1/4, sec.15, T.82 N., R.3 E., Clinton County, Hydrologic Unit 07080103, at bridge on U.S. Highway 61, at north edge of Welton. Drainage area is 9.03 mi².	1966-	03-31-98	88.43	973	05-17-74	89.77	d4,820
		IOWA	RIVER BAS	IN				
Westmain drainage ditch 1 & 2 at Britt, 1A (05448400) Low-flow site April 1958 to Sept. 1976	Lat 43°06'09", long 93°47'04", in SW1/4, sec.27, T.96 N., R.25 W., Hancock County, Hydrologic Unit 07080207, at bridge on U.S. Highway 18, near east city limits of Britt. Drainage area is 21.2 mi ² .	1966-	06-24-98	82.62	(+)	04-28-75	83.59	372
East Branch Iowa River above Hayfield, Ia. (05448600)	Lat 43°09'21", long 93°41'21", at \$1/4 corner sec.4, T.96 N., R.24 W., Hancock County, Hydrologic Unit 07080207, at bridge on county highway, 1.5 mi southeast of Hayfield. Drainage area is 2.23 mi ² .	1953-	06-24-98	5.11	(+)	04-06-65	7.31	250

			Water	year 1998 m	aximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	IO	WA RIVEI	R BASINC	ontinued				
Honey Creek tributary near Radcliffe, IA (0545129280)	Lat 42°19'44", long 93°25'28", in SW1/4, sec.21, T.87 N., R.22 W., Hardin County, Hydrologic Unit 07080207, at culvert on county road highway S27, 1.1 mi northeast of Radcliffe. Drainage area is 3.29 mi ² .	1991-	06-15-98	98.08	(+)	05-10-95	100.14	(+)
Stein Creek near Clutier, IA (05451955)	Lat 42°04'46", long 92°18'00", in NE1/4, sec.24, T.84 N., R.13 W., Tama County, Hydrologic Unit 07080208, at bridge on county highway E36, 5 mi east of Clutier. Drainage area is 23.4 mi ² .	1971-	06-19-98	74.86	1,280	06-15-82	77.92	11,400
Price Creek at Amana, IA (05453200)	Lat 41°48'18", long 91°52'23", in SE1/4, sec.22, T.81 N., R.9 W., Iowa County, Hydrologic Unit 07080208, at bridge on State Highway 151, near north edge of Amana. Drainage area is 29.1 mi ² .	1966-	03-31-98	85.04	1,790	06-17-90	88.80	(+)
North Fork tributary to Mill Creek near Solon, IA (05453430)	Lat 41°50'24", long 91°30'04" 199 in NW1/4, sec.12, T.81 N., R.6 W., Johnson County, Hydrologic Unit 07080208, at culvert on State Highway 1, 2 mi north of Solon. Drainage area is 0.78 mi ² .	90-1993, 1994-	1998	(+)	(+)	07-16-92	(+)	(+)
Clear Creek tributary near Williamsburg, IA (05454180)	Lat 41°41′16", long 91°57′02", in SE1/4, sec.36, T.80 N., R.10 W., Iowa County, Hydrologic Unit 07080209, at culvert on county road, 4 mi northeast of Williamsburg, 1 mi south of county highway F35. Drainage area is 0.37 mi ² .	1990-	08-28-98	45.13	<17.8	06-17-90	48.76	291
North English River near Montezuma, IA (05455140)	Lat 41°38'51", long 92°34'16", in SW1/4, sec.14, T.79 N., R.15 W., Poweshiek County, Hydrologic Unit 07080209, at bridge on county highway, 5.0 mi northwest of Montezuma. Drainage area is 31.0 mi ² .	1972-	03-31-98	20.59	1160	07-20-78	28.18	4,640
North English River at Guernsey, IA (05455210)	Lat 41°38'42", long 92°21'28", at NW corner sec.22, T.79 N., R.13 W., Poweshiek County, Hydrologic Unit 07080209, at bridge on State Highway 21, 1 mi southwest of Guernsey. Drainage area is 81.5 mi ² .	1960, 1966-	03-31-98	83.80	3,390	06-15-82	87.43	7,460
Deep River at Deep River, IA (05455230)	Lat 41°35'29", long 92°21'18", in SW1/4, sec.3, T.78 N., R.13 W., Poweshiek County, Hydrologic Unit 07080209, at bridge on State Highway 21, 1 mi northeast of Deep River. Drainage area is 30.5 mi ² .	1960, 1966-	06-15-98	77.94	(+)	c05-14-70	83.85	6,200

			Water	year 1998 m	naximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	10	OWA RIVE	R BASINC	ontinued				
Bulgers Run near Riverside, IA (05455550)	Lat 41°29'02", long 91°37'36", in SE1/4, sec. 11, T.77 N., R.7 W., Washington County, Hydrologic Unit 07080209, at bridge on State Highway 22, 2.5 mi west of Riverside, Drainage area is 6.31 mi ² .	1965-	1998	(a)	<425	09-21-65	89.04	3,080
Deer Creek near Carpenter, IA (05457440)	Lat 43°24'54", long 92°59'05", in NW1/4 sec.9, T.99 N., R.18 W., Mitchell County, Hydrologic Unit 07080201, at bridge on State Highway 105, 1.5 mi east of Carpenter. Drainage area is 91.6 mi ² .	1966-	1998	(a)	<1270	07-18-93	84.65	3,460
Gizzard Creek tributary near Bassett, IA (0545776680)	Lat 43°04'01",long 92°34'31", in SE1/4, sec. 2, T.95 N., R.15 W., Floyd County, Hydrologic Unit 07080201, at culvert on U.S. Highway 18, 3.3 mi west of Bassett. Drainage area is 3.42 mi ² .	1990-	06-28-98	99.27	(+)	08-10-91	100.59	(+)
Spring Creek near Mason City, IA (05459490)	Lat 43°12'48", long 93°12'38", in SE1/4, sec.16, T.97 N., R.20 W., Cerro Gordo County, Hydrologic Unit 07080203, at bridge on U.S. Highway 65, 4 mi north of Mason City. Drainage area is 29.3 mi ² .	1966-	1998	(a)	<115	05-30-80	90.32	(+)
Willow Creek near Mason City, IA (05460100)	Lat 43°08'55", long 93°16'07", near center sec. 12, T.96 N., R.21 W., Cerro Gordo County, Hydrologic Unit 07080203, at bridge on U.S. Highway 18, 3.5 mi west of Mason City. Drainage area is 78.6 mi ² .	1966-	06-21-98	90.96	840	07-08-69 04-01-93	91.30 91.75	d1,100 1,090
Miller Creek near Eagle Center, IA (05464025) (revised)	Lat 42°19'22", long 92°20'50", in NW1/4, sec.27, T.87 N., R.13 W., Black Hawk County, Hydrologic Unit 07080205, at culvert on State Highway 21, 1.3 mi southeast of Eagle Center. Drainage area is 9.14 mi ² .	1991-	06-11-98	47.60	(+)	06-11-98	47.60	(+)

			Water ye	ar 1998 m	aximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	IC	WA RIVEI	R BASINCon	tinued				
Pratt Creek near Garrison, IA (05464310) (discontinued in 1993)	Lat 42°10'53", long 92°11'10", in SE 1/4, sec. 12, T.85 N. R.12 W., Benton County, Hydrologic Unit 07080205, at bridge on U.S. Highway 218, 3.5 mi northwest of Garrison. Drainage area is 23.4 mi ² .	1966-19	94 Revised 1966 03-20-67 08-05-68 07-18-69 03-03-70 1971 1972 02-01-73 05-28-74 03-19-75 1976 09-18-77 03-18-78 07-14-79 1980 1981 06-15-82 11-02-82 04-29-84 02-22-85 05-27-86 1987 1988 1989 06-16-90 04-29-91 07-07-92 07-08-93 1994	d Records 89.37 87.09 88.14 92.03 91.46 (a) (a) 89.79 90.70 90.08 (a) 91.23 88.10 91.93 (a) (a) (a) 96.17 88.69 90.44 90.69 87.71 (a) (a) (a)	1,160 507 739 2,830 2,350 <610 <610 1,340 1,820 1,480 <610 2,170 727 2,740 <610 <610 10,800 905 1,670 1,820 630 <580 <580 <580 6,220 1,010 2,610 12,300 <580	07-08-93	96.86	12,300
Prairie Creek tributary near Van Horne, IA (05464535)	Lat 41°59'33", long 92°05'06", in NW1/4, sec.24, T.83 N., R.11 W., Benton County, Hydrologic Unit 07080205, at culvert on county highway V66, 1.1 mi south of Van Horne. Drainage area is 0.94 mi ² .	1991-	06-19-98	(a) 13.77	135	05-26-97	18.14	d571
Thunder Creek at Blairstown, IA (05464562)	Lat 41°54'12", long 92°05'03", in NE1/4, sec.23, T.82 N., R.11 W., Benton County, Hydrologic unit 07080205, at culvert on county highway V66, near city limits of Blairstown. Drainage area is 0.96 mi ² .	1991-	08-28-98	15.43	407	08-16-93	16.12	d540
North Fork Long Creek at Ainsworth, IA (05465150)	Lat 41°16'51", long 91°32'16", in SW1/4, sec.22, T.75 N., R.6 W., Washington County, Hydrologic Unit 07080209, at bridge on U.S. Highway 218, 1 mi southeast of Ainsworth. Drainage area is 30.2 mi ² .	1951, 1965-	06-15-98 Revise 02-19-97	88.93 d Record 90.44	1,300 5,000	05-10-96	93.40	(+)
Haight Creek at Kingston, IA (05469350)	Lat 40°58'14", long 91°02'30", in NW1/4, sec.12, T.71 N., R.2 W., Des Moines County, Hydrologic Unit 07080104, at culvert on State Highway 99, 0.5 mi south of Kingston. Drainage area is 2.67 mi ² .	1990-	07-07-98	(+)	(+)	06-16-90	15.18	(+)

			Water	year 1998 n	naximum	Period of record maximum			
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)	
		SKIINK	RIVER BAS	SIN					
Mud Lake drainage ditch 71, at Jewell, IA (05469860)	Lat 42°18'52", long 93°38'23", in SW1/4, sec.27, T.87 N., R.24 W., Hamilton County, Hydrologic Unit 07080105, at bridge on U.S. Highway 69, in Jewell. Drainage area is 65.4 mi ² .	1966-	06-15-98	89.36	1,770	07-09-93	91.32	3,700	
Long Dick Creek near Ellsworth, IA (05469970)	Lat 42°18'37", long 93°32'06", in NW1/4, sec.33, T.87 N., R.23 W., Hamilton County, Hydrologic Unit 07080105, at culvert on State Highway 175, 2.2 mi east of Ellsworth. Drainage area is 6.08 mi ² .	1991-	06-15-98	93.74	(+)	08-17-93	94.73	(+)	
Keigley Branch near Story City, IA (05469990)	Lat 42°09'01", long 93°37'13", in NW1/4, sec.26, T.85 N., R.24 W., Story County, Hydrologic Unit 07080105, at bridge on U.S. Highway 69, 3 mi south of Story City. Drainage area is 31.0 mi ² .	1966-	06-15-98	88.47	488	06-17-96	92.26	d3,440	
Snipe Creek tributary at Melbourne, IA (0547209280)	Lat 41°56'08", long 93°05'08", in SE1/4, sec.5, T.82 N., R.19 W., Marshall County, Hydrologic Unit 07080106, at culvert on county highway E63, 0.5 mi east of Melbourne. Drainage area is 1.61 mi ² .	1990-	06-15-98	17.42	(+)	06-17-90	17.39	d492	
North Skunk River near Baxter, IA (05472090) (discontinued in 1993)	Lat 41°49'13", long 93°03'41", in NE 1/4, sec. 21, T.81 N., R.19 W., Jasper County, Hydrologic Unit 07080106, at bridge on State Highway 223, 4.5 mi east of Baxter. Drainage area is 52.2 mi ²	1966-19	94 Revis 06-12-66 06-10-67 1968 03-69 03-02-70 02-19-71 06-13-72 02-02-73 06-09-74 07-11-75 03-05-76 1977 1978 03-19-79 1980 1981 07-04-82 1983 07-08-84 03-03-85 09-21-86 08-26-87 1988 1989 06-17-90 03-03-91 07-25-92 07-09-93 06-08-94	sed Records 84.42 79.45 (a) 80.55 78.51 79.14 79.79 82.05 83.60 81.93 79.32 (a) (a) (a) 83.32 (a) 80.12 76.84 79.80 78.31 (a) (a) 81.53 74.87 77.78 82.84 77.83	3,800 2,150 <1,050 2,500 1,830 2,050 2,300 3,100 3,550 3,020 2,300 1,180 1,180 <1,180 <1,180 <1,180 <2,520 1,610 2,400 1,990 <1,220 <870 2,950 1,270 1,990 3,320 2,010	06-12-66	84.42	3,800	
Middle Creek near Lacey, IA (05472390)	Lat 41°25'17", long 92°23'04", at N1/4 corner sec. 1, T.76 N., R.16 W., Mahaska County, Hydrologic Unit 07080106, at bridge on U.S. Highway 63, 1.5 mi northwest of Lacey. Drainage area is 23.0 mi ² .	1966-	08-28-98	87.52	1,450	04-24-76	90.06	9,650	

			Water y	ear 1998 ma	ximum	Period o	od of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)	
	SKU	NK RIVE	R BASINC	ontinued					
Skunk River tributary near Richland, IA (05472555)	Lat 41°15′50″, long 91°57′52″, in NE1/4, sec.35, T.75 N., R.10 W., Keokuk County, Hydrologic Unit 07080107, at culvert on county highway W15, 4.9 mi north of Richland, 5.1 mi south of State Highway 92. Drainage area is 0.19 mi².	1990-	06-15-98	15.62	(+)	06-15-98	15.62	(+)	
	DI	ES MOIN	ES RIVER B	ASIN					
Drainage Ditch 97 tributary near Britt, IA (0548065350)	Lat 43°06'42", long 93°54'22", in SW1/4, sec.22, T.96 N., R.26 W., Hancock County, Hydrologic Unit 07100005, at culvert on county road, 5.4 mi northwest of Britt, Drainage area is 0.94 mi ² . (Revised)	1991-	06-24-98	93.17	(+)	07-09-93	94.53	(+)	
White Fox Creek at Clarion, IA (05480930)	Lat 42°43'55", long 93°42'26", in NW1/4, sec.5, T.91 N., R.24 W., Wright County, Hydrologic Unit 07100005, at bridge on State Highway 3, 1.5 mi east of Clarion. Drainage area is 13.3 mi ² .	1966-	06-28-98	91.57	613	06-29-95	92.91	e1,700	
Brewers Creek tributary near Webster City, IA (05480993)	Lat 42°26'57", long 93°51'59", in NW1/4, sec.10, T.88 N., R.26, W., Hamilton County, Hydrologic Unit 07100005, at culvert on U.S. Highway 20, 2.5 mi southwest of Webster City. Drainage area is 1.58 mi ² .	1990-	06-28-98	97.02	(+)	06-04-91	99.25	(+)	
Bluff Creek at Pilot Mound, IA (05481510)	Lat 42°09'59", long 94°01'11", in NW 1/4, sec.20 T.85 N., R.27 W., Boone County, Hydrologic Unit 07100004, at bridge on county road E18 at northwest edge of Pilot Mound. Drainage area is 23.5 mi ² (Revised)	1966-	06-15-98	86.19	728	07-09-93	89.25	1,450	
Peas Creek tributary at Boone, IA (05481528)	Lat 42°02'06", long 93°51'13", in SW1/4, sec.35, T.84 N., R.26 W., Boone County, Hydrologic Unit 07100004, at culvert on Corporal Rodger Snedden Drive, at intersection with U.S. Highway 30, at the south edge of Boone city limits. Drainage area is 0.30 mi ² .	1990-	06-15-98	92.66	(+)	06-17-96	94.59	(+)	
Peas Creek at Boone, IA (05481530)	Lat 42°02'04", long 93°51'25", in SE1/4, sec.34, T.84 N., R.26 W., Boone County, Hydrologic Unit 07100004, at culvert on U.S. Highway 30, at the southeast side of Boone city limits. Drainage area is 1.69 mi ² .	1990-	06-15-98	103.05	(+)	06-15-98	103.05	(+)	
Hardin Creek near Farlin, IA (05482900)	Lat 42°05'34, long 94°25'39", in NE1/4 NW1/4 NW1/4, sec. 14, T.84 N., R.31 W., Greene County, Hydrologic Unit 0710006, at bridge on county highway, 1.5 mi northeast of Farlin. Drainage area is 101 mi ² .	1951-	06-15-98	9.37	672	07-09-93	13.97	3,010	

			Water yea	ar 1998 m	aximum	Period	of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	DES MO	INES R	IVER BASIN	Continue	i			
Brushy Creek near Templeton, IA (05483318)	Lat 41°56'45", long 94°52'45", in SW1/4 NW 1/4 NW 1/4, sec.1, T.82 N., R.35 W., Carroll County, Hydrologic Unit 07100007, at bridge on U.S. Highway 71, 4 mi northeast of Templeton. Drainage area is 45.0 mi ² .	1966-	04-16-98	79.19	(+)	07-09-93	93.48	19,000
Middle Raccoon River tributary at Carroll, Ia. (05483349)	Lat 42°02'30", long 94°52'43", in NW1/4 NW1/4 SW1/4, sec. 36, T. 84 N, R.35 W, Carroll County Hydrologic Unit 07100007, at bridge on U.S. Highway 71, 1.1 mi south of Carroll. Drainage area is 6.58 mi ² .	1966-	04-16-98	24.14	1,860	06-17-96	25.88	4,600
Cedar Creek tributary No.2 near Winterset, Ia. (05485940)	Lat 41°19'49", long 94°03'05", in SW1/4, sec.35, T.76 N., R.28 W., Madison County, Hydrologic Unit 07100008, at culvert on State Highway 92, 0.5 mi west of U.S. Highway 169, 1 mi west of Winterset. Drainage area is 1.02 mi ² .	1990-	06-18-98	94.32	(+)	05-24-96	98.58	(e)
Bush Branch Creek near Stanzel, Ia. (05486230)	Lat 41°18'57", long 94°16'42", in SW1/4, sec.2, T.75 N., R.30 W., Adair County, Hydrologic Unit 07100008, at culvert on State Highway 92, 1 mi west of Stanzel. Drainage area is 3.02 mi ² .	1990-	06-15-98	94.90	(+)	09-15-92	97.06	(+)
Little White Breast Creek tributary near Chariton, Ia. (05487825)	Lat 41°03'36", long 93°18'12", in SW1/4, sec. 5, T.72 N., R.21 W., Lucas County, Hydrologic Unit 07100008, at culvert on State Highway 14, 2.0 mi north of Chariton, Drainage area is 0.05 mi ² .	1990-	06-18-98	18.01	33.9	08-19-93	18.93	d56.2
South Avery Creek near Blakesburg, Ia. (05489350)	Lat 41°00'59", long 92°37'32", in SE1/4, sec. 19, T.72 N., R.15 W., Wapello County, Hydrologic Unit 07100009, at bridge on U.S. Highway 34, 3.5 mi north of Blakesburg. Drainage area is 33.1 mi ² .	1965-	06-19-98 Revised 09-15-92	84.45 Record 84.71	4,960 5,300	07-03-82	90.20	(+)
Bear Creek at Ottumwa, Ia. (05489490)	Lat 41°00'52", long 92°27'44", in NW1/4, sec.27, T.72 N., R.14 W., Wapello County, Hydrologic Unit 07100009, at bridge on U.S. Highway 34, near west edge of Ottumwa. Drainage area is 22.9 mi ² .	1965-	06-18-98	87.12	1,940	09-21-65	92.80	4,000

⁽⁺⁾⁻⁻Not determined
(a)--peak stage did not reach bottom of gage
b--ice affected
c--old gage datum
d--estimate
e--peak affected by backwater

The following water temperature and specific conductance measurements were made at the indicated sites during water year 1998.

DA	TE TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			05388	250 Upper	Iowa River near Dorchester, IA				
OCT 21	. 1240	460	7.2	609	MAR 30	1420	1400	13.0	493
DEC 02	. 0850	230	3.0	583	MAY 20	0740	557	20.1	552
JAN 13	. 1020	207	.1	675	JUN 24	0810	2310	19.2	508
FEB 24	. 1035	779	4.9	482	AUG 05	0900	546	19.4	540
		o	5389200 B	loody Run	Trib at Spook Cave near Froelic	h, IA			
OCT	0020	2 1	<i>c</i> 1	725	MAY	0050	c 1	14.0	720
DEC		3.1 2.3	6.1 6.1	735 731	18 JUN	0950 1048	5.1	14.0 14.6	720 663
02 JAN 13		2.3	3.5	745	22 JUL 14	0715	8.0 6.1	13.8	729
FEB 24		2.8	10.1	707	AUG 03	1050	6.0	15.1	737
MAR 18		3.7	5.7	680	SEP 29	1000	5.5	12.7	735
APR 02		15	7.1	595	23	2000	3.3		,55
			05300	250 Bloody	Run Site No. 2 near Giard, IA				
OCT			03369	230 Bloody	MAY				
22 DEC	. 1035	4.9	4.4	717	18 JUN	1110	11	15.9	696
02 JAN	. 1105	4.4	3.6	714	22 JUL	1126	19	14.9	652
13 FEB	. 1325	5.8	.0	608	14 AUG	0625	15	15.1	719
24 MAR	. 1240	5.7	7.3	683	03 SEP	1135	13	16.5	715
18	. 1620	9.0	3.8	538	29	1130	12	13.9	715
02	. 0930	48	6.8	57 4					
			0538	9400 Blood	y Run Creek near Marquette, IA				
OCT 22	. 1145	14	7.0	625	MAY 19	1610	19	18.6	
DEC 02		13	5.8	721	JUN 23	1530	32	18.1	640
JAN 13		11	1.5	641	AUG 04	1610	33	15.8	643
FEB 24		14	9.7	608	SEP 29	0820	21	13.3	657
MAR 31		171	9.4	396					
			053	DOEND Wiss	dissippi River at McGregor, IA				
OCT			V 33	03300 MISS	JUN				
23 NOV	. 1245	48800	9.6	364	23 SEP	1230	58600	24.6	459
18 MAY	. 1335	29200	.9	402	30	1225	24200	20.8	417
19	. 1245	48000	21.3	649					
			05411200	Sny Magill	Creek No. 3 Site near Clayton,	IA			
OCT 22	. 1230	2.4	6.8	6 76	MAY 18	1300	3.5	18.9	619
NOV 17		2.4	1.1	678	JUN 22	1400	5.1	18.1	622
DEC 03		2.2	2.7	652	JUL 13	1107	4.0	17.0	670
JAN 14		1.3	. 0	712	AUG 03	1320	3.5	17.6	667
FEB 23	. 1305	1.6	6.2	655	SEP 29	1320	4.1	18.5	65 5
MAR 18	. 1215	3.5	2.4	611					

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		
05411230 West Fork Sny Magill Creek near Clayton, IA											
OCT 22	1145	1.8	5.9	664	MAR 18	1125	2.4	3.7	619		
NOV 17	1115	1.8	1.2	656	JUN 22	1457	3.1	17.3	620		
DEC 03	0745	1.6	2.8	655	JUL 13	1015	2.8	14.8	652		
JAN 14	0952	1.8	1	640	AUG 03	1230	3.0	16.5	645		
FEB 23	1405	1.6	6.8	632	SEP 29	1230	3.2	15.1	650		
23	1405	1.0	0.0	052	29	1250	3.2	13.1	050		
			0541	1260 North	Cedar Creek near Clayton, IA						
OCT 22	1530	1.7	6.7	625	MAY 18	1540	3.1	18.2	581		
DEC 02	1435	1.2	4.1	621	JUN 24	1145	7.2	17.8	450		
JAN 14	1230	.85	.5	653	JUL 14	0815	3.3	16.1	626		
FEB 23	1655	1.6	6.4	598	AUG 05	1030	5.0	15.7	560		
MAR 18	1235	3.3	. 2.7	577	SEP 29	1600	2.6	16.8	604		
APR 02	0955	16	6.0	522							
05411290 Sny Magill Tributary near Clayton, IA											
OCT 22	1345	.73	8.4	635	MAY 18	1350	1.8	17.2	605		
NOV 17	1315	.49	3.7	643	JUN 24	1240	3.1	19.0	555		
DEC 02	1515	.60	5.1	634	JUL 13	1200	1.9	16.5	632		
JAN 14	1130	.42	1.5	615	AUG 03	1420	1.3	16.6	613		
FEB 23	1505	. 67	6.9	625	SE P 29	1400	1.2	16.6	644		
MAR 18	1110	1.5	3.4	586							
			05411300	Snv Magill	Creek No. 2 Site near Clayton,	IA					
OCT					APR						
22 NOV	1430	10	7.6	637	02 MAY	0910	55	6.2	556		
17 DEC	1515	11	3.5	650	18 JUN	1450	18	17.2	606		
03 JAN	0910	8.4	4.5	632	27 JUL	1520	21	17.4	597		
14 FEB	1216	7.2	.5	644	13 AUG	1240	14	17.0	630		
23 MAR	1555	8.3	6.8	626	03 SEP	1520	16	17.1	625		
18	1030	14	3.4	604	29	1450	13	16.4	635		
			054	11400 Sny 1	agill Creek near Clayton, IA						
OCT 22	1440	12	6.8	622	MAY 20	1425	18	15.0	600		
DEC 03	1105	11	3.6	611	JUN 22	1435	29	16.9	622		
JAN 14	1415	8.7	.1		AUG 03	1310	16	16.8			
FEB 25	1300	11	6.3	598	SEP 29	1445	18	16.7	617		
MAR 31	0810	160	8.7	437							

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		
			0541	2060 Silve	Creek near Luana, IA (L-23S)						
OCT 21	1525	4.2	9.5	728	MAY 18	1517	2.7	20.2	537		
DEC 01	1340	1.3	4.8	735	JUN 24	1215	15	19.0	578		
JAN 12	1315	1.3	.1	715	AU G 03	1233	1.9	16.5	747		
FEB 25	0850	3.0	3.7	705	SEP 30	1700	1.2	15.5	726		
MAR 31	1320	99	7.5	350							
			0541210	0 Roberts	reek above Saint Olaf, IA (RC-2)						
OCT 22	0808	39	4.3	720	MAY 19	1545	23	25.8	675		
DEC 01	1145	11	1.0	633	JUN 24	1425	143	22.5	607		
JAN 12	1320	10	.0	509	AUG 04	1600	13	23.6	615		
FEB 25	1055	23	5.6	665	SEP 29	1202	3.7	20.0	680		
APR 01	1805	592	6.4	497							
	05412500 Turkey River at Garber, IA										
OCT 21	0910	1340	8.7	616	MAY 21	0900	1290	17.4	607		
DEC 03	1330	515	2.7	610	JUN 25	0900	6260	21.6	466		
FEB 26	0830	1290	6.8	561	AU G 05	1510	1880	20.1	427		
MAR 31	1440	14600	10.1	461	SEP 28	1345	562	20.2	613		
			0541	8500 Maquo	eta River near Maquoketa, IA						
OCT 09	0935	404	18.7	638	MAY 26	1630	1770	20.0	552		
FEB 26	1230	1000	7.8	588	JUN 30	1545	2960	23.5	522		
MAR 24	1520	2220	6.5	590	AUG 24	1340	1080	25.4	567		
APR 22	1430	42 30	10.0	518							
			054204	60 Beaver	lough at 3rd St at Clinton, IA						
MAR	4000	15100	2.5	44.4	JUN	1025	21.000	26.0	441		
24 APR 22	1030	15100 29800	3.5 11.5	411 465	30 AUG 24		21800 11400	26.0 27.4	441 404		
MAY 26		13800	20.1	465	SEP 22	0950	5510	20.8	431		
2000	2000	20000			ssippi River at Clinton, IA						
OCT					JUN						
14 15	1515 0930	43100 50500	15.3 	380 378	10 27	1230 1231	47500	18.5	478 464		
NOV 20	1315	36500	4.7	317	30 JUL	1240	94200	26.6	444		
21 JAN	0930	36000	1.0	349	01 09	0920 1230	97000 131000	25.7 26.8	440 363		
30 MAR 24	1030	39000	.5 6.7	4 26	27 28 A UG	1220 0930	45600 43500	26.3 25.5	419 425		
24 25 APR	1305 1030	61900 57500	4.5	435 387	24 25	1145 0925	47200 34700	27.4 25.7	405 409		
07 22 22	1230 1232 1300	139000 125000	7.5 12.8 16.4	316 471 469	SEP 22 23	1200 0930	22000 22500	21.4	421 442		
MAY 11 26 26 27	1145 1045 1208 0935	57700 57500 56500	19.0 20.4 21.8 20.5	450 466 477 461	-51.11						

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			0542	0680 Wapsi	pinicon River near Tripoli, IA				
OC T 09	1228	79	17.7	429	MAY 06	1249	207	16.7	437
NOV 06	1249	123	4.5	448	19 27	0940 1335	210 601	21.7 17.9	443 457
DEC 03	1249	81	1.8	430	JUN 03	1450	334	16.1	451
JAN 07	1247	85	.0	451	20 JUL	1030	1240	18.7	275
FEB 19	1351	717	. 2	278	08 AUG	1315	515	22.9	431
MAR 13	1223	275	.3	456	05 SEP	1231	80	21.7	406
APR 02	1443	1890	6.5	329	02 28	1308 1519	153	20.5	403 579
			054210	00 Wapsipi	nicon River at Independence, IA				
OCT					MAY			_	
20 DEC	0950	2460	9.3	443	18 29	0920 1115	756 	21.0 20.5	484 406
O1 JAN	0905	375	2.9	489	JUN 12	1320		19.0	272
12 MAR	0930	253	.4	547	22 AUG	1000	3640	20.5	408
30 APR	0910	1870	13.2	441	03	0850	179	23.8	386
02	1340	7350	7.3	383					
			0542	2000 Wapsi	pinicon River near De Witt, IA				
OCT 09	0907	458	20.0	365	APR 01	1220	8180	10.9	307
17 20	0915 0950	1960 2460	10.7 9.3	456 443	02 MAY	0900	9150	9.0	318
NOV 06	0915	1190	4.8	500	06 12	0925 1605	2760 2720	17.2 20.5	489 450
20 DEC	1530	864	2.1	528	JUN 03	0915	4440	20.0	440
01 04	0905 0900	375 1110	2.9 2.4	489 500	17 23	1300 1610	6470 8690	20.5 22.4	429 423
JAN 08	0843	1790	2.0	530	JUL 09	0855	6490	25.0	384
08 12	0930 0930	1820 260	2.0 .4	530 547	AUG 06	0900	762	24.7	372
FEB 19	0955	1460	4.4	523	11 SEP	1445	1060	27.4	318 379
20 MAR 12	0842 0850	1530 3200	4.8	509 268	02 17	0915 1425	2690 1230	22.5 22.4	418
12	0830	3200	. 2	200					
			0.	5422470 Cr	ow Creek at Bettendorf, IA				
OCT 16	1445	1.1	13.0	849	MAY 13	0800	19	14.6	726
NOV 26	1245	2.0	5.2	799	JUN 24	0750	35	18.2	682
JAN 07	1515	29	4.3	787	AUG 12	0825	4.9	21.1	646
FEB 18	1600	18	5.0	788	SEP 18	0750	8.0	18.9	768
APR 02	0735	63	6.6	645					
			0542256	0 Duck Cre	ek at 110th Ave at Davenport, IA				
OCT	0925	.51	1.5	707	MAY 12	0920	31	11.0	634
16 NOV 26	0925	1.0	3.5	651	JUN 23	0920	44	14.8	633
JAN 07	1010	33	4.8	639	23 AUG 11	0920	3.7	19.3	611
FEB 18	1040	17	4.9	680	SEP 17	0933	13	17.4	679
APR 01	1430	130	8.3	497	1/	0,20	13	41.12	015

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	
05422600 Duck Creek at DC Golf Course at Davemport, IA											
OCT 16	1130	2.0	11.1	515		MAY 12	1220	88	15.4	705	
NOV 26	1115	4.5	4.0	879		JUN 23	1215	117	18.8	661	
JAN 07	1240	89	4.4	761		AUG 11	1120	16	22.9	684	
FEB 18	1410	55	5.3	799		SEP 17	1120	32	20.2	710	
APR 01	1705	332	8.2	582					2012		
05449500 Iowa River near Rowan, IA											
OCT 08	0948	35	19.4	710		MAY 01	1140		12.3	662	
20 20	1134 1520	52 51	8.6 9.7	687 710		05 13	0922 1600	341 272	15.1 16.8	668 650	
NOV 05	0857	44	2.5	659		20 JUN	1223	226	18.9	681	
17	1134	58	.2	694		02	0904	272	15.1	683	
24 DEC	1520	38	.2	744		13 23	0928 0848	599 2440	16.6 21.1	688 412	
02 JAN	0908	45	1.6	638		25 JUL	0940	2570	22.3	488	
06 14	0919 1325	64 25	. 0 . 0	664 879		07 30	0900 0930	613 87	20.6 18.6	669 670	
28	1500		.0	727		AUG					
FEB 18	0924	892	.1	316		04 SEP	0903	118	20.8	616	
26 MAR	1150	373	5.4	618		01 10	0944 1030	88 54	18.6 16.5	708 661	
06 12	1130 0926	 135	5.6 .1	 747							
30 31	1520 0922	785 906	9.5 6.9	676 665							
oom.		0	5451210 S	outh Fork	Iowa River NE of Net		CA.				
OCT . 07	1054	2.8	21.0	562		MAY 04	1120	166	14.7	679	
NOV 04	1120	11	3.2	545		22 29	0656 1246	114 872	16.3 17.5	656 507	
DEC 01	1128	18	2.5	575		JUN 01	1318	510	16.1	704	
JAN 05	1154	31	. 0	591		12 JUL	1155	1140	15.9	615	
28 FEB	0830		1.0	659		06 AUG	1213	670	19.8	604	
17 MAR	1058	500	.3	374		03 31	1046 1102	34 37	20.4 22.0	622 677	
11 30	0936 1113	50 312	.1 11.5	691 661		SEP 14	1000		21.2	533	
APR 01	1033	549	5.9	682							
OCT			05	451500 Iow	a River at Marshall	MAY					
28	1300	177	3.9	617		26 JUN	1100	1590	16.8	643	
DEC 16	1035	216	.3	638		12	1510	7050	19.2	330	
JAN 27	0945	172	.3	681		22 JUL	1140	12300	21.2	328	
MAR 12	1105	300	.0	668		08 AUG	0755	3550	22.5	608	
APR 14	1045	2620	11.3	666		26 S E P	1545	425	25.2	635	
					am Guach many Manata	llrown T					
OCT			U545	1./UU TIMD	or Creek near Marsha	MAY					
28 DEC	1610	33	6.0	612		20 JUN	1410	196	15.0	495	
16	0855	30	.6	665		09 09	0912	666 597			
JAN 27	0800	34	.0	580		JUL	1200				
MAR 11	1150	96	.0	490		08 AUG	1040	178	20.3	555	
APR 14	0830	238	8.9	538		26 SEP	1 5 25	29	24.0	567	

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		
05451900 Richland Creek near Haven, IA											
OCT 14	1150	79	10.3	541	MAR 30	1335	199	11.1	386		
NOV 24	1140	33	.1	539	31 MAY	1020	509	8.0	391		
JAN 05	1135	38	2.8	506	14 JUN	1230	55	18.1	501		
FEB 17	1220	42	4.5	484	22 AUG	1400	254	15.5	486		
05452000 Salt Creek near Elberon, IA											
OCT					MAR						
14 NOV	1420	318	10.9	501	30 31	1145 1335	336 1820	12.5 11.4	538 314		
24 JAN	0950	36	.0	401	MAY 14	1420	158	19.4	558		
05 FEB	0940	103	1.6	582	JUN 25	0955	1030	20.3	468		
17	1035	132	4.4	554	AUG						
05452200 Walnut Creek near Hartwick, IA											
OCT 14	1025	32	8.5	509	MAY 14	1035	61	16.5	493		
NOV 24	1305	20	.1	511	JUN 22	1200	249	15.6	465		
JAN 05	1245	56	2.6	479	AUG 10	1105	23	24.4	509		
FEB 17	1350	56	4.8	480	SEP 15	1600	16	24.1	475		
APR 06	1220	151	9.8	474							
			0:	5453000 B	J Bear Creek at Ladora, IA						
OCT					MAY						
14 NOV	0850	173	10.1	434	14 JUN	0855	224	16.1	492		
24 JAN	1445	48	.4	545	22 AUG	0930	654	17.3	455		
05 FEB 17	1425	218	2.7	527	10 SEP 15	0830 1412	56 68	22.5 21.9	534 475		
APR 06	1540 1025	146 435	5.2 8.9	505 47 3	15	1412	00	21.9	4/3		
00	1025	400	6.5	473							
				05453100	Iowa River at Marengo, IA						
OCT 08 15	0937 1110	337 1470	21.0 11.4	455 455	APR 02 MAY	1355	9240	7.8	402		
NOV 05	0936	825	4.0	585	08 15	0843 1115	3500 2280	15.0 21.4	544 572		
25 DEC	1025	534	.9	608	JUN 05	0900	3150	15.8	598		
03 JAN	0930	654	2.8	551	13 25	0946 1345	6280 15300	18.3 25.9	3 8 9 393		
06 07	10 4 5 0 84 6	1210 1330	.7 1.7	567 513	26 JUL	0922	17500	25.0	382		
FEB 19	0916	2240	3.3	442	07 AUG	0920	14700	24.5	500		
20 MAR	1050	2620	3.3	497	07 13	0900 1120	1690 1 45 0	22.1 24.1	508 580		
11 31	0855 1720	1490 8720	2 12.3	270 369	SEP 04	0850	975	22.6	629		
		0	5453520 I	owa River	pelow Coralville Dam nr Coralvil	le,					
OCT	1.405	160	20.0	151	<i>ர</i> ட 15	1600	8190	14 7	406		
03 NOV 07	1425 1105	168 708	20.0 7.4	461	15 AUG 27	1330	1140	14.7 26.4	554		
MAR 11	1405	1650	1.5	466 574	27	1330	1140	20.4	774		
±±	1402	1000	ι,υ	J/4	•						

CCT	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
100				05	454000 Rar	id Creek near Iowa City, IA				
125	07	0955	.01	17.7	590	04	1455	22	16.0	556
MAR	17	1125	1.0	.4	639	24	1010	33	17.5	581
	06	1035	18	2.7	595	30	1430	2.9	22.2	601
Mary 1205 1.4 20.4 798 171 1200 59 12.0 576 171		1510	25	7.5	581		1405	3.8	16.8	637
126 1.4 20.4 798					05454220 C	lear Creek near Oxford, IA				
Not		1245	1 4	20.4	700		1200	50	12.0	574
135	NOV					JUN				
MAR	JAN					JUL				
CCT	MAR					SEP				
OCT OG. 1355 3.7 22.9 693 23. 1100 118 6.5 593 NOV NOV NOV NOV 1520 21 .3 659	23	1303	04	5.5	407	03	1113		10.5	030
Cor				05	454300 Cle	ar Creek near Coralville, IA				
17.		1355	3.7	22.9	693		1100	118	6.5	593
18 1005 19 7.0 661 22 1300 130 18.5 578 102 1440 23 .4 1050 30 1015 23 21.5 658 105 1050 42 .0 618 SEP 28 1150 42 .0 618 SEP 29 1150 42 .0 618 SEP 29 1150 42 .0 618 SEP 20 1155 140 22.6 459 03 1610 7900 9.3 485 NOV		1520	21	.3	659		0945	93	12.0	582
06 1440 23 .4 1050 30 1015 23 21.5 658 06 0910 132 3.8 614 SEP 28 1150 42 .0 618 09 0940 26 16.3 664 ***Property of the content of th	18	1005	19	* .0	661	22	1300	130	18.5	578
CT	02					30	1015	23	21.5	658
OCT							0940	26	16.3	664
OCT					05454500 T	oma River at Toma City. Ta				
06 1155	OCT				03434300 1					
18.	06	1155	140	22.6	459	03	1610	7900	9.3	485
06 1520 1750 2.8 608 24 1420 6130 24.0 432 FEE 18 1255 2280 1.8 534 31 0940 6770 26.9 482 MAR 26 1320 4820 8.0 548 10 1110 714 23.8 517	18	1145	609	3.8	544	05	1415	3350	16.5	604
18	06	1520	1750	2.8	608	24	1420	6130	24.0	432
Dec	18	1255	2280	1.8	534	31	0940	6770	26.9	482
OCT 1350 3.2 22.2 549 30 1050 211 10.4 493 NOV MAY 30 1050 211 10.4 493 NOV MAY 30 1343 200 16.3 486 14 1220 39 3.0 542 18 0825 142 17.6 792 DEC JUN JUN 30 1325 169 17.6 508 19 19 464 494 464 494 464 494 464 494 464 494 464 494 494 494 494 494 494 494 494 494 494 494 494 494 494		1320	4820	8.0	548	10	1110	714	23.8	517
NOV NOV 1350 3.2 22.2 549 MAY 04 1243 59 4.2 521 05 1343 200 16.3 486 14 1220 39 30. 542 18 0825 142 17.6 792 DEC JUN 02 1223 28 4.5 528 02 1325 169 17.6 508 18 1355 39 .2 542 10 0826 219 14.6 494 JAN 06 1240 263 4.0 485 30 1239 744 19.7 363 28 0955 64 .0 511 JUL FEB 18 1235 150 5.0 498 23 0915 66 22.0 529 MAR 10 1310 249 .5 468 05 0810 44 21.8 505 13 1110 212 .9 504 SEP 31 1110 212 .9 504 SEP 31 1110 212 .9 504 SEP 13 1110 1215 167 18 1355 176 .4 497 18 18 1355 176 .4 497 18 18 18 1355 176 .4 497 18 18 18 18 18 18 18 18.				054	55100 Old	Mans Creek near Iowa City, IA				
NOV 04 1243 59 4.2 521 05 1343 200 16.3 486 14 1220 39 3.0 542 18 0825 142 17.6 792 DEC 02 1223 28 4.5 528 02 1325 169 17.6 508 18 1535 39 .2 542 10 0826 219 14.6 494 JAN 06 1240 263 4.0 485 30 1239 744 19.7 363 28 0955 64 .0 511 JUL FEB 18 1235 150 5.0 498 23 0915 66 22.0 529 MAR 10 1310 249 .5 468 05 0915 66 22.0 529 MAR 10 1310 249 .5 468 05 0810 44 21.8 505 13 1110 212 .9 504 SEP 31 1245 1610 12.1 269 01 1300 104 20.9 503 NOV 14 0955 150 2.5 508 30 1335 589 11.2 437 DEC 18 1355 176 .4 497 18 1430 469 22.1 436 JAN 27 1555 178 .0 467 18 1430 469 22.1 436 JAN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR 12 0920 653 .0 445 23 1125 167 24.9 460		1350	3.2	22.2	549		1050	211	10.4	493
DEC 02 1223 28 4.5 528 02 1325 169 17.6 508 18 1535 39 .2 542 10 0826 219 14.6 494 JAN 06 1240 263 4.0 485 30 1239 744 19.7 363 28 0955 64 .0 511 JUL FEB 18 1235 150 5.0 498 23 0915 66 22.0 529 MAR 10 1310 249 .5 468 05 0810 44 21.8 505 13 1110 212 .9 504 SEP 31 1245 1610 12.1 269 01 1300 104 20.9 503 NOV 14 0955 150 2.5 508 30 1335 589 11.2 437 DEC 18 1355 176 .4 497 APR 18 1355 176 .4 497 JUN 27 1555 178 .0 467 JUL 13 0920 653 .0 445 23 1125 167 24.9 460		1243	59	4.2	521		1343	200	16.3	
18 1535 39 .2 542 10 0826 219 14.6 494 JAN 06 1240 263 4.0 485 30 1239 744 19.7 363 28 0955 64 .0 511 JUL FEB 10 0745 156 21.7 519 18 1235 150 5.0 498 23 0915 66 22.0 529 MAR 10 1310 249 .5 468 05 0810 44 21.8 505 13 1110 212 .9 504 SEP 31 1245 1610 12.1 269 01 1300 104 20.9 503 NOV 14 0955 150 2.5 508 30 1335 589 11.2 437 DEC 18 1355 176 .4 497 18 1430 469 22.1 436 JAN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR 13 0920 653 .0 445 23 1125 167 24.9 460		1220				JUN				
06 1240 263 4.0 485 30 1239 744 19.7 363 28 0955 64 .0 511 JUL FEB 10 0745 156 21.7 519 18 1235 150 5.0 498 23 0915 66 22.0 529 MAR 10 1310 249 .5 468 05 0810 44 21.8 505 13 1110 212 .9 504 SEP 31 1245 1610 12.1 269 01 1300 104 20.9 503 NOV 14 0955 150 2.5 508 30 1335 589 11.2 437 DEC 18 1355 176 .4 497 38 1430 469 22.1 436 JAN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR 13 0920 653 .0 445 23 1125 167 24.9 460						10	0826	219	14.6	494
FEB 18 1235 150 5.0 498 23 0745 156 21.7 519 18 1235 150 5.0 498 23 0915 66 22.0 529 MAR 10 1310 249 .5 468 05 0810 44 21.8 505 13 1110 212 .9 504 SEP 31 1245 1610 12.1 269 01 1300 104 20.9 503 **NOV*** **DOST SEP*** **OS455500 English River at Kalona, IA** **NOV*** 14 0955 150 2.5 508 30 1335 589 11.2 437 DEC*** 18 1355 176 .4 497 30 1335 589 11.2 437 DEC*** 18 1355 176 .4 497 18 1430 469 22.1 436 JAN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR 13 0920 653 .0 445 23 1125 167 24.9 460						30				
MAR 10 1310 249 .5 468 05 0810 44 21.8 505 13 1110 212 .9 504 SEP 31 1245 1610 12.1 269 01 1300 104 20.9 503 **NOV*** 14 0955 150 2.5 508 30 1335 589 11.2 437 DEC*** 18 1355 176 .4 497 38 18 1430 469 22.1 436 JAN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR 13 0920 653 .0 445 23 1125 167 24.9 460	FEB					10				
13 1110 212 .9 504 SEP 31 1245 1610 12.1 269 01 1300 104 20.9 503 **Total Control Co	MAR					AUG				
NOV APR 14 0955 150 2.5 508 30 1335 589 11.2 437 DEC MAY 18 1355 176 .4 497 18 1430 469 22.1 436 JAN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR 13 0920 653 .0 445 23 1125 167 24.9 460	13	1110	212	. 9	504	SEP				
NOV 14 0955 150 2.5 508 30 1335 589 11.2 437 DEC 18 1355 176 .4 497 18 1430 469 22.1 436 JAN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR 13 0920 653 .0 445 23 1125 167 24.9 460	31	1245	1610	12.1	269	01	1300	104	20.9	503
14 0955 150 2.5 508 30 1335 589 11.2 437 DEC 18 1355 176 .4 497 18 1430 469 22.1 436 JAN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR 13 0920 653 .0 445 23 1125 167 24.9 460	NOV				05455500 E					
18 1355 176 .4 497 18 1430 469 22.1 436 JAN JUN 27 1555 178 .0 467 11 1115 778 17.6 412 MAR JUL 13 0920 653 .0 445 23 1125 167 24.9 460	14	0955	150	2.5	508	30	1335	589	11.2	437
27 1555 178 .0 467 11 1115 778 17.6 412 MAR 13 0920 653 .0 445 23 1125 167 24.9 460	18	1355	176	. 4	497	18	1430	469	22.1	436
13 0920 653 .0 445 23 1125 167 24.9 460	27	1555	178	.0	467	11	1115	778	17.6	412
	13					23	1125	167	24.9	460

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE a River near Lone Tree, IA	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
OCT					MAY				
15	1510	1730	13.7	403	13	1510	4260	20.3	509
NOV 25	1445	732	5.0	548	JUN 24	150 5	7490	23.2	439
FEB 20	1445	3600	3.1	501	AUG 12	1515	5900	26.6	543
APR 02	1520	12800	10.0	406	SEP 18	1510	2240	24.1	491
	2020	22000	20.0		2000				
			054	58000 Litt:	e Cedar River near Ionia, IA				
OCT	0000	202	0.7	603	MAY	0940	255	14.0	E17
17 Nov	0820	383	8.7	623	13 JUN	0840	255	14.9	517
21 JAN	1130	65	.5	518	24 JUL	0830	1110	18.8	427
14 FEB	0840	39	.0	548	29 SEP	0915	92	19.5	434
25	0910	321	4.0	456	09	1430	71	20.6	479
MAR 31	1210	992	8.1	451					
				F4F0F00 G-					
			U	5458500 Ce	ar River at Janesville, IA				
OCT 16	1145	1680	10.9	524	MAY 12	1147	1420	19.1	482
NOV 20	1315	493	1.8	604	JUN 23*	1145	3940	21.3	499
JAN					JUL				
13 FEB	1030	256	.0	519	28 SEP	1220	951	23.7	431
24 APR	1150	1280	3.8	405	09	1155	715	18.7	567
01	1420	6110	6.2	522					
			054589	00 West Fo:	k Cedar River at Finchford, IA				
OCT					APR				
15 22	1415 1100	285 220	10.3 6.5	531	01 09	0820 10 4 5	1890 1520	7.4 8.0	550
NOV					MAY				
13 20	0920 15 3 0	190 1 47	2.0 3.5	587	11 JUN	1335	605	18.3	573
DEC 11	1120	250	1.5		09 22	0855 1618	1250 5010	15.0 21.0	313
JAN 13	1300	138	.0	758	JUL 09	0900	1350	23.5	
28	1125	285	.5		27	1630	312	26.5	553
FEB 17	0900	520	1.5		AUG 11	0850	860	22.5	
23 MAR	1445	880	4.8	524	SEP 08	1355	260	20.9	564
26	1220	1150	8.5		. 14	1050	230	20.5	
			054	59500 Winn	bago River at Mason City, IA				
OCT					MAY				
14 NOV	1340	325	10.5	702	12 JUN	1145	344	17.6	688
24	1100	44	.1	834	24 AUG	0 9 00	2370	20.1	454
JAN 07	1145	96	.0	721	03	1145	153	21.0	720
FEB 24	1315	761	4.0	598	SEP 15	1010	89	21.7	731
MAR 30	1110	868	9.9	702					

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			054	61390 Floo	d Creek near Powersville, IA				
OCT 09	0823	3.3	14.5	456	APR 02	0843	388	5.1	489
NOV 06	0855	4.7	4.6	491	MAY 06	0838	74	11.4	532
DEC 03	0852	2.0	2.5	452	18 JUN	1004	49	14.9	519
JAN 07 FEB	0902	.07	.0	443	03 JUL 08	0906 0848	116 108	11.7 15.1	551 540
19 MAR	0948	60	.1	320	AUG 05	0837	44	15.4	468
13	0850	8.1	.1	519	SEP	0037		23.2	100
			0546	2000 Shell	Rock River at Shell Rock, IA				
OCT	1630	0.01	11 0	623	MAY	1620	1210	10.4	E 67
16 NOV 21	1630 0830	881 4 21	.0	623 728	12 JUN 23	1620 1445	1210 6090	19.4 21.1	567 355
JAN 13	1500	288	.0	734	JUL 28	1545	844	25.2	408
FEB 24	1520	1850	4.5	526	SEP 08	1555	759	22.1	513
MAR 31	1625	3170	10.5	6 07					
NOV			054	63000 Beav	er Creek at New Hartford, IA				
NOV 19 JAN	1600	80	.0	694	MAY 11 JUN	1020	276	17.7	366
12 FEB	1305	62	.0	706	22 JUL	1315	6100	22.3	214
23 APR	1145	409	6.0	586	27 SEP	1355	131	24.5	587
01	1115	1190	6.7	558	08	1125	59	18.8	410
				05464000 0	edar River at Waterloo, IA				
OCT 16	0845	4230	10.8	529	MAY 12	0815	4820	17.6	524
NOV 20	0930	1260	.0	637	JUN 23	0810	23300	20.9	381
JAN 12	1530	1000	.0	644	 28	0840	2810	21.9	504
FEB 24	0810	5510	2.4	484	SEP 09	0820	1590	18.3	558
APR 02	0900	16000	7.3	535					
				05464220 W	olf Creek near Dysart, IA				
OCT				03404220 1	MAY				
10 21	0938 0854	152 150	13.4 7.7	517 597	07 18	0919 1327	349 237	13.0 21.3	549 569
NOV 07	0919	103	5.8	592	JUN 04	0933	372	12.8	566
18 DEC	0857	188	.0	585	10 12	1215 1238	1030 5790	15.6 19.1	458 145
04 JAN 08	0919 0910	141 159	2.1 1.1	585 567	22 JUL 09	1415 0924	3440 746	21.1 21.0	284 557
FEB 20	0941	299	3.8	557	AUG 06	0855	334	19.9	427
MAR 18	0918	261	.9	523	SEP 03	0956	88	19.7	599
APR 01	0945	2610	7.2	388	29	0845			402
			. -	164500 -	an Dinam at Galace Backler Ba				
NOV			05	404200 CGC	ar River at Cedar Rapids, IA JUN				
04 JAN	1115	2300	4.7	615	26 JUL	0835	28100	24.2	405
30 MAR	1040	1950	.2	680	15 AUG	0850	7580	18.9	501
11 APR	1035	3810	.5	593	27	1030	3430	25. 0	484
20	1110	153 00	11.3	519					

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			0	5464935 Ce	ar River near Nichols, IA				
OCT 09	1232	1700	20.6	523	APR 03	0851	25700	8.8	423
NOV 06	1302	3060	5.4	652	MAY 07	0827	8600	17.1	584
DEC 04	1230	2680	2.9	633	JUN 04	0900	8530	18.5	594
JAN 08	1233	4220	1.2	617	JUL 06	0847	26800	22.7	487
FEB 20	1156	5400	5.3	601	AUG 04	1300	3440	25.3	463
MAR 12	1200	5860	.1	603	SEP 03	0840	5440	23.3	5 57
			05	465000 Cedi	River near Conesville, IA				
OCT	1240	5240	12.0	F10	JUN	1055	20400	22.5	460
17 FEB	1340	5340	13.0	512	24 AUG	1255	20400	22.5	468
19 APR	1420	4520	5.7	645	12 SEP	1235	5600	26.0	503
02 MAY	1230	26500	10.0	394	18	1200	3280	21.2	542
13	1225	7820	20.4	523					
				05465500	owa River at Wapello, IA				
OCT 06	1050	2500	20.9	475	APR 03	1515	41900		
22 NOV	0951	5310	9.0	581	04 27	1020 1310	43100 23000	8.4 13.6	422 565
03 06	0953	5750 4900	5.9 5.6	595	27 MAY 04	0909	15400	14.5	583
19 DEC	1200 0935	3860	1.3	603 612	27	1148	13400	20.2	500
01	0928	3690	5.6	615	JUN 01	0913	16700	22.2 18.7	52 4 576
17 JAN	1035	4620	.9	607	08 19	1220 1002	11100 37 4 00	19.8	489
05 FEB	0938	6500	3.0	651	JUL 02 20	1049	48400	24.9 29.2	467 449
17 MAR 09	0936	6920	4.2	568	AUG	1245 0925	11100	25.2	470
10	1000 1435 0905	15800 14600 16000	2.3 1.8 14.6	537 526	03 31 31	0940 1215	12300 12300	25.0 21.6	51 5 507
30	0905	10000	14.0	565	31	1213	12300	21.0	307
			05	470000 Sout	Skunk River near Ames, IA				
OCT 27	1330	30	4.7	729	MAY 27	1245	353	17.9	749
DEC 15	0955	38	.6	770	JUL 07	1110	807	21.2	649
JAN 26	1110	32	.0	776	AUG 24	1050	244	25.4	482
MAR 12	1515	193	.5	775	SEP 21	1030	19	19.0	692
APR 13	1125	343	10.9	747			-	-	
				05470500	Equaw Creek at Ames, IA				
OCT 27	1620	24	4.4	751	MAY 27	1500	221	19.2	728
DEC 15	1220	36	. 4	753	JUL 07	1320	504	22.3	656
JAN 26	1240	30	.0	759	AUG 27	0925	26	22.7	740
MAR 12	1315	133	.0	760	SEP 21	1310	7.2	18.2	6 5 3
APR 13	1325	265	10.5	726					

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
		O	5471000 S	outh Skunk	River below Squaw Creek near Ame	98,			
OCT 28	1015	42	4.9	729	MAY 27	1640	596	19.9	734
DEC 15	1605	101	.7	752	JUN 12	1125	5010	17.4	458
JAN 26	1435	48	.0	803	JUL 07	1640	1570	32.1	633
MAR 12	0820	166	.2	770	AUG 26	1330	170	24.6	660
APR 13	1545	747	11.2	735	SEP 21	1550	23	19.0	605
				05471040 s	quaw Creek near Colfax, IA				
OCT 07	1115	. 63	19.5	597	MAY 19	1100	21	14.0	575
NOV 20	1500	7.5	7.0	596	JUL 01	1245	42	17.6	548
JAN					AUG				
06 FEB 20	1200 1015	16 25	4.5 4.0	586 571	11 SEP 22	1430 1215	9.5	22.0	463 589
APR 02	1305	25 57	6.5	554	22	1213	3.0	15.0	269
· · · · ·	2505	3.	0.5	33.					
			05	471050 Sou	h Skunk River at Colfax, IA				
OCT 29	1035	165	6.5	698	MAY 19	0810	438	21.6	700
DEC 16	1500	162	2.9	736	JUN 12	1225	5080	17.9	417
JAN 27	1500	142	.0	711	16 JUL	2030	7080	18.7	474
MAR 11	1215	234	.7	735	08 AUG	1620	2570	24.3	543
APR 14	1640	1060	13.7	720	25 SEP	1500	380	27.8	565
				05471200 I	dian Creek near Mingo, IA				
ост 29	0825	39	4.7	737	MAY 26	1645	371	18.7	674
DEC 16	1330	54	2.1	720	JUN 15	1120	4550	17.3	275
JAN 27	1325	44	.0	731	19 19 JUL	1325	4560	19.5	328
MAR 11	1030	135	.0	770	08 AUG	1350	657	22.8	631
APR 14	1430	293	13.1	709	25 SEP	1550	28	29.2	615
ОСТ			03471	SOU SOUCE	kunk River near Oskaloosa, IA MAY				
30 DEC	1005	956	8.1	580	21	1250	2530	20.5	455
08	1555	505	.6	668	JUN 15	1230	8900	19.3	470
JAN 23	0910	469	.0	635	26 JUL	1420	9500	26.0	441
MAR 05	1140	1500	3.1	639	09 AUG	1315	6140	19.6	452
APR 01	1635	7590	10.0	390	17 SEP	1510	780	26.8	580
			05472	500 North	kunk River near Sigourney, IA				
ОСТ 27	1125	447	3.7	409	JUN 10	0915	1690	15.2	405
DEC 08	1030	337	.2	484	15 JUL	1310	3670	18.1	331
JAN 23	1150	348	.0	502	06 AUG	1045	1320	21.5	438
MAR 02	1035	860	2.9	462	17 SEP	0910	168	24.9	527
MAY 18	0910	725	20.0	470	28	0905	116	20.7	508
21	1015	725	19.0	391					

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			0547	3400 Cedar	Creek near Oakland Mills, IA				
OCT 01 07 NOV	1205 1155	6.8 .57	18.7 23.0	483	APR 07 28 MAY	1100 1725	900 198	12.0 11.9	 524
06 12 DEC	1125 1225	115 90	6.0 2.7	 590	05 19 JUN	1300 1449	470 164	16.5 24.1	 514
01 18 JAN	1145 0850	35 91	6.5 2	617	02 09 JUL	1140 1455	270 636	21.0 16.8	 441
15 27 FEB	1155 1000	113	.5 .0	583	08 21 AUG	1210 1335	4 520 97	25.0 30.6	502
05 27	1140 1420	260 1810	.5 7.3	 307	04 SEP	1205	15	26.0	
MAR 03 12 31	1040 1355 1230	330 499 5710	3.0 .0 14.5	489 195	03	1040	180	22.5	358
				05474000 S	unk River at Augusta, IA				
OCT					APR				
07 NOV 04	0903 0822	194 403	21. 4 6.1	481 472	03 28 MAY	1215 1210	16400 4950	8.7 13.3	3 46 58 3
07 07	1440 1445	1710 1710	6.6	557	05 26	0830 1200	5180 15700	14.4 17.0	505 327
DEC 02 17	0835 1410	1490 1130	5.8 1.4	536 603	JUN 02 09	0820 1050	5720 4 220	21.1 16.6	498 561
JAN 06	0830	8100	3.3	402	18 JUL	1044	14000	20.4	385
FEB 18	0835	2930	4.6	508	08 21	0930 1030	15400 3660	25.2 28.7	375 558
MAR 10 11 31	0840 1200 0824	12200 6490 19600	1.2 1.2 14.0	322 427 297	AUG 04 SEP 01	0810 0815	1370 3960	24.9 22.8	597 250
32111	3021	25 400				-	5740		
			05	474500 Mis	issippi River at Keokuk, IA				
APR 05 JUN	1640	219000	11.4	421	SEP 09	1130	40400	25.0	486
29	1300	149000	27.8	413					
			054	76750 Des 1	oines River at Humboldt, IA				
OCT 06	1510	172	21.5	708	MAY 04	0940	1790	14.8	770
NOV 17	1550	152	1.7	774	JUN 25	1325	3650	22.9	492
DEC 29	1355	174	.0	911	JUL 27	1150	417	24.4	557
FEB 11	1306	141	.0	886	SEP 18	1322	214	23.0	711
APR 01	1435	3020	5.1	704					
			05479000	East Fork	es Moines River at Dakota City	, IA			
OCT 10	1150	46	14.4	752	MAY 04	1245	938	16.1	724
NOV 17	1120	87	.5	798	JUN 24	1525	2540	20.6	587
DEC 29	1230	82	.0	879	JUL 27	0920	214	23.5	606
FEB 11	1035	58	.0	806	SEP 18	1015	70	22.0	671
APR 02	1000	2290	5.0	728					

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			0548	0500 Des	Moines River at Fort Dodge, IA				
OCT 10 NOV	1350	211	16.4	699	MAY 07 16	0820 1330	2860 7410	16.0 17.0	483 437
20 25 JAN	1205 1105	321 264	. 8 .8	756 822	JUN 12 25	1400 1325	5230 8570	18.5	711
02 20	1100 1350	218 228	.3 .0	918 999	JUL 30	1600	658	26.0	493
FEB 11	1430	259	.0	952	SEP 17	1505	313	24.6	559
APR 03	1005	6330	4.4	711					
			054	81000 Boo	ne River near Webster City, IA				
OCT 07	1200	16	23.8	721	FEB 02	1120	81	.0	845
NOV 12	0940	36	.0	810	10	1610 1310	68 1150	.0	866 330
18 DEC	1110	45	3.0	764	20	1550	2020	1.1	391
05	0920	18	.0	918	MAR 13	1340	255	1.6	542
08 11	1040 1320	32 39	.0 .0	8 45 8 6 8	APR 01	1040	1960	4.6	751
15 18	1030 1440	25 41	.0 2.3	925 843	MAY 05	1020	638	17.3	691
22 24	1040 0930	43 41	.0	871 932	JUN 23	1000	4080		
29 JAN	0940	27	.0	979	JUL 30	1100	136	25.3	603
02	0850	29	.0	1030	SEP				
05 08 12 16 20 23 26 30	1240 1355 1010 1025 1023 1530 1240 0930	54 90 48 27 28 34 36 55	.0 1.2 .0 .0 .0 .0	863 577 1010 989 1020 1070 982 980	17	1050	37	24.0	573
			0548	1300 Deg	Moines River near Stratford, IA				
NOV			0340	1300 Des	JUN				
13 DEC	0935	393	.7	780	01 26	1000 09 4 5	7060 16300	18.9 26.4	683 541
15 JAN	1330	411	.1	850	JUL 14	0955	2950	26.5	660
22 28	1210 1525	241 283	. 8 . 0	691 922	AUG 24	09 5 5	1250	26.6	598
MAR 18	1010	1600	.7	748	SEP 30	1135	314	24.0	648
APR 20	1000	9870	9.9	719					
		•	05481	.650 Des M	oines River near Saylorville, IA				
OCT 31 31	1000 1100	546 546	9.4 9.4	638 	JUN 01 18	1425 1645	90 8 0 2130	22.0 19.5	656 583
DEC 17	1000	550	1.6	627	JUL 06	1215	11600	23.0	
17 JAN	1345	550	1.6		06 AUG	1330	11600	23.0	
28 28 MAR	1050 1200	319 319	2.3	802 	25 25 SEP	1140 1310	1700 1700	26.9 26.9	583
19 19	0800 0930	2310 2310	1.4 1.4	660 	29 29	1125 1215	155 155	21.5 21.5	614
APR 20 20	1405 1545	14200 14200	11.1 11.1	634 					

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			0	5481950 Be	ver Creek near Grimes, IA				
OCT 29 DEC	1315	21	9.4	714	MAY 27 JUN	0845	358	18.3	711
17 JAN	1505	30	1.0	850	10 16	1020 1830	1 4 90 3860	15.0 21.5	531 362
28 MAR	0745	26	.0	809	JUL 09	0740	3230	25.2	324
11 APR	1420	129	.4	742	AUG 24	1620	107	26.9	649
15	1150	448	11.9	684	SEP				
		0	5482000 D	es Moines	tiver at 2nd Avenue, Des Moines,	IA			
OCT 09	1220	364	19.0	602	MAY 18	1445	8220	22.5	662
NOV 18	1720	324	.5	616	JUN 30	1030	13000	23.7	572
JAN 07	1415	709	1.0	673	AUG 10	1400	5800	25.5	583
FEB 17	1300	2390	2.5	680	SEP 21	1345	430	22.0	602
MAR 30	1320	6430	9.5	644					
			05400	200 20					
OCT			05482	300 North	MAY				
30 DEC	1650	41	10.5	827	28 JUL	1050	513	21.0	740
11 JAN	1015	55	.0	946	10 AUG	1000	939	22.0	695
21 MAR	1000	27	1.0	1030	20 SEP	0930	178	27.5	744
04 APR	1050	271	2.0	757	30	1320	42	21.0	763
14	1350	1380	11.0	721					
			054825	00 North R	ccoon River near Jefferson, IA				
ОСТ 09	1443	65	18.2	610	MAY 05	1815	1740	19.4	601
NOV 19	1100	95	.9	781	JUN 12	1025	5390	17.4	582
21 DEC	1040	102	.7	809	23 JUL	1515	3050		
30 FEB	1055	109	.0	888	29 SEP	1400	675	26.7	640
10 MAR	1245	127	.0	781	14	1145	151	22.9	537
31	1455	2690	9.0	703					
			05483	450 Middle	Raccoon River near Bayard, IA				
OCT 09	1210	51	15.4	577	APR 16	1230	1640	6.6	535
NOV 19	1325	63	.9	784	MAY 06	1050	339	15.8	449
21 DEC 30	1355 1305	59 87	.5 .6	696 728	JUN 11 15	1730 1110	4230 6410	18.8 17.2	228 223
FEB 10	0930	193	.9	673	 JUL 29	1125	197	24.1	618
MAR 31	1145	509	7.6	667	SEP 14	1350	65	23.5	609
31	1113	303	7.0	007	2	1330	03	25.5	
o com			0548	3600 Middl	Raccoon River at Panora, IA				
OCT 08	1330	40	19.9	545	MAY 06	1235	286	17.3	632
NOV 19 DEC	1555	66	6.0	573	JUN 11	1835	445 0	16.7	457 258
31 FEB	1055	72	.0	651	15 JUL 29	0930 0910	7500 211	17.4 26.3	258 5 4 1
09 MAR	1625	125	2.5	638	25 SEP 15	0910	74	23.0	542
30	1525	798	9.3	565	15	0312	/ * <u>*</u>	23.0	J-16

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			0548	4000 South	Raccoon River at Redfield, IA				
OCT 09	1000	104	16.0	476	MAY 06	1635	582	17.7	578
NOV 20	0940	153	.6	522	JUN 15	1222	32000	17.3	185
DEC 30	1545	201	.0	581	24 JUL	0850	1690		
FEB					28	1345	552	29.8	471
09 MAR	1225	302	.8	412	SEP 15	1140	221	23.3	498
31	0740	2920	8.3	453					
			05	484500 Raco	oon River at Van Meter, IA				
NOV					JUN				
17 JAN	1250	246	.0	624	10 15	1 4 00 1600	8800 47600	16.0 19.6	522 446
08 FEB	1550	545	1.0	. 606	30 JUL	1100	10900	23.7	524
19 APR	1230	3300	3.0	512	14 AUG	1415	5120	26.6	586
01 MAY	1030	5970	5.9	542	24 SEP	1350	1360	27.0	519
17	0930	6690	20.5	598	30	0805	388	21.4	558
		•	E4046E0 D	agoom Bird	r at 63rd Street at Des Moines,	TA			
0.00		·	JEOEUJU A	ACCOON RIVE					
OCT 08	0945	227	21.5	515	MAY 20	1400	5370		
NOV 05	1725	2130	7.0	668	JUN 12	1330	18600	18.5	411
18 JAN	0930	267	. 0	635	16 16	1030 1120	41100 38600	18.5 18.5	280 280
07 FEB	1145	602	1.0	642	17 AUG	1015	26200	18.7	365
19 MAR	1600	3340	2.5	500	10 SEP	1415	3110	26.5	586
30	1830	5820	12.3	524	21	1645	602	20.0	520
			05	484800 Walr	ut Creek at Des Moines, IA				
OCT					MAY				
08 NOV	1140	.96	20.0	860	18 JUN	1530	34	25.4	670
18 JAN	1130	12	. 5	861	30 AUG	1405	244	21.7	577
06	1145	30	1.5	720	10 SEP	1515	71	26.0	588
FEB 18	1600	75	4.5	720	21	1305	16	18.0	344
MAR 30	1410	355	12.4	542					
			05484800	Dagger Dig	on at Mana Pulma Des Malacs 1				
o com			05484900	Raccoon RIV	er at Fleur Drive, Des Moines, 1	LA			
08	1630	142	21.0	609	JUN 12	1615	17800	18.5	421
NOV 18	1400	243	.5	632	16 16	0820 1405	42400 44900	17.9 19.1	272 296
JAN 07	0930	593	.5	642	17 19	1430 1015	27400 22600	19.6 19.9	400 388
FEB 20	1100	3360	2.6	483	AUG 12	0830	2970		
MAR 31	1815	8430	10.1	471	SEP 23	1100	548		
MAY 21	0730	4810							
	0.50	-520							
		0	5485500 D	es Moines R	iver blw Raccoon Riv at Des Moir	es,			
ОСТ 31	1310	1050	11.0	709	JUN 02	0850	15500	21.0	656
DEC 17	0805	978	.7	657	16 17	1130 0800	48900 38700	19.4 18.1	368 432
JAN 28	1415	753	1.7	808	ли. ли. 15	0835	15900	23.6	601
MAR					AUG				515
19 APR	1055	4800	1.8	678	25 SEP	0840	3580	26.5	
21	1335	20600	11.2	678	29	1640	616	24.8	525

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			054	85640 Four	mile Creek at Des Moines, IA				
OCT 09	0920	18	15.5	748	MAY 18	1640	54	25.0	735
NOV 18	1625	9.3	3.0	932	JUL 01	0850	303	18.7	664
JAN 07	1120	32	2.0	854	07 AUG	1045	3280		
FEB 17	1530	96	5.0	774	10 SEP	1630	50		500
MAR 30 30	1720 1721	938 850	11.0 11.0	450 450	04 21	1240 1500	15 8.1	24.0 18.0	605 77 4
			0	5486000 No	orth River near Norwalk, IA				
OCT			•		APR				
06 NOV	1245	1.8	19.5	496	01 MAY	1330	2050	8.0	304
17 DEC	1610	16	.5	528	19 JUN	1430	87	24.0	449
17 JAN	1115	78	.0	446	30 AUG	1430	244	25.8	420
08 20	1230 1025	78 56	1.0	431 502	11 SEP	1015	105	23.0	421
FEB 19	1505	300	4.0	414	22	0945	41	18.0	4 4 9
			05	106400 Wid	idle River near Indianola, IA				
OCT			03	WOOWSO MIC	MAY				
06 NOV	1440	7.3	26.0	550	19 JUL	0900	144	22.7	453
20 JAN	0950	24	4.0	525	01 AUG	0915	266	24.0	487
07 FEB	1615	138	1.0	437	12 SEP	1330	58	26.0	479
18 MAR	0850	379	3.5	378	22	1300	48	17.0	602
31	1000	5160	10.5	230					
			0	5487470 Sc	outh River near Ackworth, IA				
OCT 03	0920	8.2	9.0	477	MAR 31	1245	10300	10.5	168
06	1715	4.3	27.0	487	31 MAY	1305	9740	10.5	168
06 19	1330 0935	233 26	8.5 .0	336 486	19 JUL	1200	98	22.6	444
JAN 08	1000	228	.5	360	01 AUG	1115	91	25.2	449
FEB 18	1245	576	4.0	359	11 SEP	1445	25	30.0	409
					Moines River near Runnells, IA				
NOV			0540	7500 Des p	APR				
19 DEC	1240	846	2.5	711	21	0820	23400	10.6	646
18	1030	1660	1.5	690	JUN 02	1300	17100	21.6	648
JAN 28	1040	1290			JUL 15	1345	19000	30.0	387
MAR 18	1420	10200	1.2	515	AUG 26	1000	3530	25.9	576
			0548	7540 Walnu	nt Creek near Prairie City, IA				
OCT	1000	22	10 F	E06	MAR 31	1600	41	8.0	493
07 NOV	1020	.22	19.5	596	31 MAY				
08 20	1115 1350	.83 2.6	5.5 8.0	559 555	19 JUL	0845	7.4	12.5	559
JAN 07	0830	5.4	3.0	566	01 AUG	1130	18	18.0	540
FEB 18	1610	6.2	5.0	617	11 SEP	1010	4.1	19.0	476

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
			05	5487550 Wal	nut Creek near Vandalia, IA				
OCT 07	1300	.17	21.0	585	MAY 07	1120	135	12.5	382
NOV 19	14 25	5.8	2.5	511	19 JUN	1330	19	18.0	498
J AN 06	1415	16	4.0	509	11 JUL	2010	210	19.0	240
FEB 18	1330	15	4.0	498	01 AUG	0925	48	17.6	459
APR 03	0830	55	6.0	467	11 SEP	1615	9.0	25.0	434
			0548	37980 White	Breast Creek near Dallas, IA				
ОСТ 29	0845	2 4 1	3.5	352	APR 01	1245	5340	9.0	209
29 DEC	0930	241	3.5	352	MAY 19	1640	73	27.5	469
10 JAN	1320	57	.8	537	JUL 08	1235	3190	26.0	3190
22 MAR	0905	50	.0	614	AUG 19	1300	13	29.8	496
03	1605	143	2.8	462	SEP				
			05	5488110 Des	Moines River near Pella, IA				
OCT 29	1515	3480	10.7	580	JUL 09	0915	21700	18.2	282
DEC 11	1025	1870	1.7	582	AUG 18	0910	13700	25.7	510
MAR 04	1125	8190	2.3	496	SEP 29	0920	604	21.8	558
MAY 20	1300	18300	22.0	591					
			054	188200 Engl	ish Creek near Knoxville, IA				
ОСТ 30	0830	122	4.9	377	JUN 15	1620	1350	20.1	209
DEC 11	1505	16	1.3	587	JUL 08	1430	230	25.1	283
JAN 22	1435	13	.0	635	AUG 18	1600	4.4	27.1	587
MAR 04	0840	58	1.3	440	SEP 28	1615	4.5	22.2	790
MAY 20	0940	53	20.6	559	20	1015	4.5	22.2	750
	0,710	33							
			05	5488500 Des	Moines River near Tracy, IA				
OCT 29	1250	3470	10.8	575	MAY 20	1600	18900	22.6	592
DEC 11	1300	1870	2.2	588	AUG 18	1245	14000	26.8	530
MAR 04	1420	8260	3.1	533	SE P 29	1625	6 4 2	24.2	571
				05489000 C	edar Creek near Bussey, IA				
OCT 27	1530	657	1.8	453	MAY 21	0920	122	20.5	611
DEC 10	1530	92	.7	571	JUL 06	1500	5970	23.2	180
JAN 22	1120	72	.0	635	AUG 19	1355	50	27.7	583
MAR 05	0830	174	2.4	506	SE P 28	1355	29	21.9	647
					Moines River at Ottumwa, IA				
NOV	1240	1440			JUN	1005	14700	10.2	602
13 DEC	1340	1440	3.5	658	10 JUL 06		14700 46100	19.2 2 4 .5	271
22 MAR	1335	2260	.8	605	06 22	1600 1050		26.9	464
12 APR	1050	3760	.6	560	SEP 02	1530	3630	26.0	623
29	1035	26700	13.0	647					

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	DATE Pines River at Keosaugua, IA	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)
OCT					APR				
01	154 5	258	21.7	598	29	1600	26300	13.2	650
02	0930	446	17.5	600	JUN				
NOV					10	151 5	15100	19.0	593
12	1720	1340	5.0	677	lar				
DEC					22	1530	24400	27.0	466
19	1200	3210	2.7	615	SEP				
MAR					02	1030	2290	24.8	563
23	1248	17500	3.6	548					

The following surface water-quality data were measured at various locations in the Sny Magill Creek and Bloody Run Creek drainage basins during water year 1998.

05389200 Bloody Run Trib at Spook Cave near Froelich, IA

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)		SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT					
22 NOV	0920	6.1	3.1	735	27
17	1135				36
DEC 02	1020	6.1	2.3	731	40
JAN 13	1210	3.5	2.8	745	55
FEB	1210				
24 MAR	1305	10.1	2.8	707	54
18	1520	5.7	3.7	680	10
31 APR	1250				544
02	1025	7.1	15	595	
MAY 18	0950	14.0	5.1	720	18
JUN	0930	14.0	3.1	720	10
22 JUL	1048	14.6	8.0	663	39
14	0715	13.8	6.1	729	43
AUG 03	1050	15.1	6.0	737	59
SEP					
29	1000	12.7	5.5	735	18

05389250 Bloody Run Site No. 2 near Giard, IA

DIS-

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT					
22 NOV	1035	4.4	4.9	717	37
17 DEC	1225				35
02	1105	3.6	4.4	714	11
JAN 13	1325	.0	5.8	608	41
FEB 24	1240	7.3	5.7	683	29
MAR 18	1620	3.8	9.0	538	10
APR					10
02 MAY	0930	6.8	48	574	
18 JUN	1110	15.9	11	696	36
09	1200				128
22	1126	14.9	19	652	48
23	1125				42
30 JUL	1250				89
07	1220				69
14	0625	15.1	15	719	38
AUG	0023	13.1	13	113	30
03	1135	16.5	13	715	15
18 SEP	1140				61
22	1130				5
29	1130	13.9	12	715	14

05411200 Sny Magill Creek No. 3 Site near Clayton, IA

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	CIFIC CON- DUCT- ANCE (US/CM)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT					
22	1230	6.8	2.4	676	10
NOV 17	1135	1.1	2.4	678	60
DEC	1133	1.1	2.4	0/0	90
03	0825	2.7	2.2	652	89
JAN					
14 FEB	1055	.0	1.3	712	8
23	1305	6.2	1.6	655	20
MAR	-500			055	
18	1215	2.4	3.5	611	7
31 MAY	1430				909
18	1300	18.9	3.5	619	24
JUN	1500	10.5	3.3	013	44
09	1335				112
22	1400	18.1	5.1	622	24
23	1300 1 44 0				15 55
30 JUL	1440				55
13	1107	17.0	4.0	670	18
AUG					
03	1320	17.6	3.5	667	10
31	1530				544
SEP 29	1320	18.5	4.1	655	4

05411230 West Fork Sny Magill Creek near Clayton, IA

DIS-

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	CHARGE, INST. CUBIC FEET PER SECOND (00061)		SEDI- MENT, SUS- PENDED (MG/L) (80154)
OCT					
22 NOV	1145	5.9	1.8	664	36
17 DEC	1115	1.2	1.8	656	8
03	0745	2.8	1.6	655	66
JAN 14	0952	1	1.8	640	21
FEB 23 MAR	1405	6.8	1.6	632	41
18	1125	3.7	2.4	619	16
31	1435				551
31 MAY	1440				545
18	1215				25
22	1457	17.3	3.1	620	19
23	1310				43
30	1455				26
JUL					
07	1405				108
13	1015	14.8	2.8	652	19
AUG 03	1230	16.5	3.0	645	14
18	1320	10.5	3.0		27
SEP	1520				21
22	1330				34
29	1230	15.1	3.2	650	12

05411260 North Cedar Creek near Clayton, IA

PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	CUBIC	CIFIC CON- DUCT- ANCE (US/CM)	MENT, SUS- PENDED (MG/L)
oc	т					
	22	1510				23
	22	1530	6.7	1.7	625	
	V 17	1445		1.6		9
	17 C	1445		1.6		9
	02	1435	4.1	1.2	621	32
JA	N					
	14	1230	.5	. 85	653	27
	В 23	1655	6.4	1.6	598	38
	23 R	1033	0.4	1.0	330	50
	18	1235	2.7	3.3	577	16
	31	1410				1690
	R 02	0955	6.0	16	522	58
MA		0933	6.0	10	322	20
	- 18	1540	18.2	3.1	581	26
	N					
		1320				28
	23 2 4	1245 1145	17.8	7.2	450	102 758
	30	1415	17.0	7.2	430	28
	L L	1113				
		1330				
		0815	16.1	3.3	626	25
AU	д 05	1030	15.7	5.0	560	34
	18	1355	13.7	3.0	200	30
	P					
		1300				3
	29	1600	16.8	2.6	604	7

05411290 Sny Magill Tributary near Clayton, IA

			DIS- CHARGE,	SPE-	
			INST.	CIFIC	SEDI-
		TEMPER-	CUBIC	CON-	MENT,
		ATURE	FEET	DUCT-	SUS-
DATE	TIME	WATER	PER	ANCE	PENDED
		(DEG C)	SECOND	(US/CM)	(MG/L)
		(00010)	(00061)	(00095)	(80154)
OCT					
22	1345	8.4	. 73	635	49
NOV					
17	1315	3.7	.49	643	41
DEC	1515	5.1	.60	634	73
02 JAN	1515	5.1	.60	634	/3
14	1130	1.5	. 42	615	109
FEB					
23	1505	6.9	.67	625	28
MAR		- •			
18	1110	3.4	1.5	586	13
31	1630				401
APR 18	1350				14
MAY	1330				14
18	1350	17.2	1.8	605	
JUN	2230				
24	1240	19.0	3.1	555	185
JUL					
13	1200	16.5	1.9	632	29
AUG					
03	1420	16.6	1.3	613	55
SEP	1.400	16.6	1 2	644	15
29	1400	16.6	1.2	044	12

The following surface water-quality data were measured at various locations in the Fox River drainage basin during water year 1998.

05494200 Fox River near West Grove, IA

DATE	TIME	TEMPER- ATURE WATER (DEG C)	TEMPER- ATURE AIR (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	PH WATER WHOLE LAB (STAND- ARD UNITS)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3	BICAR- BONATE WATER DIS IT FIELD MG/L AS HC03
MAY 26	. 1745	(00010)	(00020)	737	36	(00095)	(00300)	(00301) 96	(00 4 00) 7.7	7.9	(00452)	(00453)
JUN 17	1550	20.8	27.0	747	9.6	428	8.5	97	7.7	8.1	0	167
JUL 14	1600	30.9	35.3	742	1.2	531	8.0	111	8.1	7.9	12	212
AUG 19	1005			745				58			0	257
SEP		24.8	26.9		.18	580	4.7		7.5	7.8		
14	1730	20.2	22.5	733	603	152	6.8	78	7.5	6.9	0	57
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)
MAY 26		.180	.050	1.4	1.64	. 250	.080	9.9	49	11	8.6	4.3
JUN 17	137	.500	<.010	1.6	1.20	.220	.120	9.4	57	13	12	6.1
JUL 14	193	1.40	.130	3.8	.900	.420	.290	11	60	14	15	12
AUG 19	211	2.57	. 750	3.9	1.20	.360	.250	9.4	64	15	16	17
SEP 14	46	.320	.010	3.3	.300		. 230	32	31	10	3.7	12
14	40	.320	.010	J. J	.300	1.52	.230	34	31	10	3.7	12
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE (MG/L AS SO4) (00946)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SILICA TOTAL (MG/L- SIO2) (00956)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	METOLA- CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 26	RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L AS SO4)	RIDE, TOTAL (MG/L AS F)	TOTAL (MG/L- SIO2)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ATE WATER WHLREC (UG/L)	FORM, TOTAL, IMMED. (COLS. PER 100 ML)	WATER WHOLE TOTAL UREASE (COL / 100 ML)	FLURA- LIN TOTAL RECOVER (UG/L)	CHLOR WATER UNFLTRD REC (UG/L)
MAY 26 JUN 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946)	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	FLURA- LIN TOTAL RECOVER (UG/L) (39030)	CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 26 JUN 17 JUL 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946)	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	FLURA- LIN TOTAL RECOVER (UG/L) (39030)	CHLOR WATER UNFLITED REC (UG/L) (39356)
MAY 26 JUN 17 JUL	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946) 37	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956) 17	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 4200	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236) <.100	FORM, TOTAL, IMMED (COLS. PER 100 ML) (31501)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K1000	FLURA- LIN TOTAL RECOVER (UG/L) (39030)	CHLOR WATER UNITITED REC (UG/L) (39356) <.10
MAY 26 JUN 17 JUL 14 AUG	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12	(MG/L AS SO4) (00946) 37 40	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L-SIO2) (00956) 17 14	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 4200 2000	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 100	ATE WATER WHLREC (UG/L) (30236) <.100 <.100	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 1200 K8100	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K1000 K270	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100	CHLOR WATER UNFLTRD REC (UG/L) (39356) <.10 <.10
MAY 26 JUN 17 JUL 14 AUG 19 SEP	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 16	(MG/L AS SO4) (00946) 37 40 65	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3	TOTAL (MG/L-S102) (00956) 17 14 10 12	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <10 <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 4200 2000 690	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 100 190 890	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 1200 K8100 1200	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K1000 K270 K360	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100	CHLOR WATER UNFITRD REC (UG/L) (39356) < .10 < .10
MAY 26 JUN 17 JUL 14 AUG 19 SEP 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 16 16 7.0 ATRA- ZINE WATER UNFLITRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 37 40 65 56 14 ACETO- CHLOR, WATER, UNFLITED REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 17 14 10 12 23 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <10	TOTAL RECOVERABLE (UG/L AS FE) (01045) 4200 2000 690 440 40000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 100 190 890 1300 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHIREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 1200 K8100 1200 2400 K110000 METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K1000 K270 K360 57000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE-CIFIC CON-DUCT-ANCE LAB (US/CM) (90095)	CHLOR WATER UNFLIRD REC (UG/L) (39356) <.10 <.10 <.10 ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY 26 JUN 17 JUL 14 AUG 19 SEP 14 DATE MAY 26 JUN	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 16 16 7.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 37 40 65 56 14 ACETO-CHLOR, WATER, UNFLIRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SI02) (00956) 17 14 10 12 23 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 4200 2000 690 440 40000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 100 190 890 1300 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHIREC (UG/L) (30236) <.100 <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 1200 K8100 1200 2400 K110000 METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K1000 K270 K360 57000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE-CIFIC CON-DUCT-ANCE LAB (US/CM) (90095)	CHLOR WATER UNFLIRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFLIRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY 26 JUN 17 JUL 14 AUG 19 SEP 14 DATE MAY 26 JUN 17 JUL 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 16 16 7.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 37 40 65 56 14 ACETO- CHLOR, WATER, UNFLITRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 17 14 10 12 23 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980) 190	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981) 720	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 4200 2000 690 440 40000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825) <.100	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 100 190 890 1300 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHIREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 12 1.2	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 1200 K8100 1200 2400 K110000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K1000 K270 K360 57000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE-CIFIC CON-DUCT-ANCE LAB (US/CM) (90095) 390 460	CHLOR WATER UNFLIRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 120 150
MAY 26 JUN 17 JUL 14 AUG 19 SEP 14 DATE MAY 26 JUN 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 16 16 7.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 37 40 65 56 14 ACETO-CHLOR, WATER, UNFLIRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SI02) (00956) 17 14 10 12 23 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 4200 2000 690 440 40000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 100 190 890 1300 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHIREC (UG/L) (30236) <.100 <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FORM, TOTAL, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 1200 K8100 1200 2400 K110000 METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K1000 K270 K360 57000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE-CIFIC CON-DUCT-ANCE LAB (US/CM) (90095)	CHLOR WATER UNFLIRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFLIRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY 26 JUN 17 AUG 19 SEP 14 DATE MAY 26 JUN 17 JUL 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 16 16 7.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 37 40 65 56 14 ACETO- CHLOR, WATER, UNFLITRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 17 14 10 12 23 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980) 190	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981) 720	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 4200 2000 690 440 40000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825) <.100	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 100 190 890 1300 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHIREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 12 1.2	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 1200 K8100 1200 2400 K110000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K1000 K270 K360 57000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE-CIFIC CON-DUCT-ANCE LAB (US/CM) (90095) 390 460	CHLOR WATER UNFLIRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 120 150

05494250 Fox River near Paris, IA

DATE MAY 26	TIME 1600	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
JUN	1000	20.0	27.0	130	34	344	0.4	33	7.7	8.0		
17 JUL	1345	18.5	27.5	740	19	402	8.4	92	7.6	8.1	0	174
14	1310	30.3	27.8	742	.99	490	9.8	134	8.2	8.2	11	194
AUG 19	1200	26.0	30.7	746	.74	483	7.6	96	7.7	8.1	0	213
SEP 14	1440	19.6	22.4	733	1340	151	6.3	72	7.1	7.2	0	52
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)
MAY 26		.180	.060	1.5	1.47	.250	. 090	11	47	11	8.6	4.7
JUN 17	143	.200	.020	1.4	1.30	.240	.120	8.9	52	12	11	6.1
JUL 14	177	<.020	.020	1.1	.400	. 150	.090	7.0	60	14	14	7.0
AUG 19	174	.120		.86				8.1	57	13	14	7.3
SEP			. 020		.100	.140	.050					
14	43	.230	.020	4.9	. 200	2.06	.190	30	28	11	3.0	12
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE (MG/L AS SO4) (00946)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SILICA TOTAL (MG/L- SIO2) (00956)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	METOLA- CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 26	RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L AS SO4)	RIDE, TOTAL (MG/L AS F)	TOTAL (MG/L- SIO2)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ATE WATER WHLREC (UG/L)	FORM, TOTAL, IMMED. (COLS. PER 100 ML)	WATER WHOLE TOTAL UREASE (COL / 100 ML)	FLURA- LIN TOTAL RECOVER (UG/L)	CHLOR WATER UNFLTRD REC (UG/L)
MAY 26 JUN 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946)	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	FLURA- LIN TOTAL RECOVER (UG/L) (39030)	CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 26 JUN 17 JUL 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946)	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236)	FORM, TOTAL, IMMED, (COLS. PER 100 ML) (31501)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	FLURA- LIN TOTAL RECOVER (UG/L) (39030)	CHLOR WATER UNFLITED REC (UG/L) (39356)
MAY 26 JUN 17 JUL 14 AUG 19	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946) 38	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956) 18	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5100 2400	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236) <.100	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 4900	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K4500	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100	CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 26 JUN 17 JUL 14 AUG	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12	(MG/L AS SO4) (00946) 38 45	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L-SIO2) (00956) 18 15	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5100 2400	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 90 240	ATE WATER WHLREC (UG/L) (30236) <.100 <.100	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 4900 10000 K680	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K4500 K67	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100	CHLOR WATER UNFLITRD REC (UG/L) (39356) <.10 <.10
MAY 26 JUN 17 JUL 14 AUG 19 SEP	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 14	(MG/L AS SO4) (00946) 38 45 61 51	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3	TOTAL (MG/L-SIO2) (00956) 18 15 10	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5100 2400 990 680	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 90 240 470	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 4900 10000 K680 2700	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K4500 K67 500	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100	CHLOR WATER UNFLITRD REC (UG/L) (39356) <.10 <.10
MAY 26 JUN 17 JUL 14 AUG 19 SEP 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 14 12 6.0 ATRA- ZINE WATER UNFLITED REC (UG/L) (39630)	(MG/L AS SO4) (00946) 38 45 61 51 11 ACETO- CHLOR, WATER, UNFLITED REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 18 15 10 14 25 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	TOTAL RECOVERENABLE (UG/L) AS FE) (01045) 5100 2400 990 680 58000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 90 240 470 1700 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 4900 10000 K680 2700 96000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K4500 K67 500 42000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	CHLOR WATER UNFITRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFITRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY 26 JUN 17 JUL 14 AUG 19 SEP 14 DATE MAY 26 JUN	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 14 12 6.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 38 45 61 51 11 ACETO-CHLOR, WATER, UNFLIRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 18 15 10 14 25 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 5100 2400 990 680 58000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 90 240 470 1700 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 4900 10000 K680 2700 96000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE WHOLE TOTAL UREASE (COL / 100 ML) (31633) K4500 K67 500 42000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	CHLOR WATER UNFLITRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFLITRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY 26 JUN 17 JUL 14 AUG 19 SEP 14 DATE MAY 26 JUN 17 JUL 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 14 12 6.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 38 45 61 51 11 ACETO- CHLOR, WATER, UNFLITRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 18 15 10 14 25 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980) 200	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981) 770	TOTAL RECOVER (UG/L) AS FE) (01045) 5100 2400 990 680 58000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825) <.100	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 90 240 470 1700 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 22 3.3	FORM, TOTAL, TOTAL, TOTAL, TIMMED. (COLS. PER 100 ML) (31501) 4900 10000 K680 2700 96000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408) <.10	WATER WHOLE WHOLE TOTAL UREASE (COL / 100 ML) (31633) K4500 K67 500 42000 CYAN- AZINE TOTAL (UG/L) (81757) 2.10	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 390 440	CHLOR WATER UNFITRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFITRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 130 140
MAY 26 JUN 17 JUL 14 AUG 19 SEP 14 DATE MAY 26 JUN 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 14 12 6.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 38 45 61 51 11 ACETO-CHLOR, WATER, UNFLIRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 18 15 10 14 25 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 5100 2400 990 680 58000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 90 240 470 1700 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 4900 10000 K680 2700 96000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE WHOLE TOTAL UREASE (COL / 100 ML) (31633) K4500 K67 500 42000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	CHLOR WATER UNFITRD REC (UG/L) (39356) < .10 < .10 < .10 < .10 ANC UNFITRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 130 140 180
MAY 26 JUN 17 AUG 19 SEP 14 DATE MAY 26 JUN 17 JUL 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 12 14 12 6.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 38 45 61 51 11 ACETO- CHLOR, WATER, UNFLITRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 18 15 10 14 25 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980) 200	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <50 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981) 770	TOTAL RECOVER (UG/L) AS FE) (01045) 5100 2400 990 680 58000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825) <.100	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 150 90 240 470 1700 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 22 3.3	FORM, TOTAL, TOTAL, TOTAL, TIMMED. (COLS. PER 100 ML) (31501) 4900 10000 K680 2700 96000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408) <.10	WATER WHOLE WHOLE TOTAL UREASE (COL / 100 ML) (31633) K4500 K67 500 42000 CYAN- AZINE TOTAL (UG/L) (81757) 2.10	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095) 390 440	CHLOR WATER UNFITRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFITRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 130 140

05494350 Fox River at County Road J40 near Bloomfield, IA

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)
MAY 26	1320	19.0	20.0	742	109	332	8.2	91	7.5	7.9		
JUN 17	1050	19.0	21.0	742	43	349	7.9	88	7.3	8.1	0	135
JUL 14	1030	25.3		742	5.8	522	8.4	106	7.6	8.1	0	229
AUG 19	1405	30.6	32.0	747	4.7	491	10.1	138	8.1	8.3	0	217
SEP 15	0815	20.1	23.0	742	262	179	7.0	79	7.0	7.4	0	71
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)
MAY 26		.120	. 050	1.6	1.34	. 450	.100	10	47	10	9.3	5.4
JUN 17	111	<.100	.020	1.6	1.60	.340	.190	13	44	9.8	11	6.8
JUL 14	188	<.020	<.020	. 61	.100	.150	.120	5.5	64	14	18	6.0
AUG 19	178	<.020	<.010	. 69	<.050	. 220	.150	7.2	58	12	17	6.6
SEP 15	58	.880	<.010	2.7	.300	.930	.200	18	26	7.9	4.9	9.9
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE (MG/L AS SO4) (00946)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SILICA TOTAL (MG/L- SIO2) (00956)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	METOLA- CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 26	RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L AS SO4)	RIDE, TOTAL (MG/L AS F)	TOTAL (MG/L- SIO2)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	ATE WATER WHLREC (UG/L)	FORM, TOTAL, IMMED. (COLS. PER 100 ML)	WATER WHOLE TOTAL UREASE (COL / 100 ML)	FLURA- LIN TOTAL RECOVER (UG/L)	CHLOR WATER UNFLTRD REC (UG/L)
MAY 26 JUN 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946)	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	FLURA- LIN TOTAL RECOVER (UG/L) (39030)	CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 26 JUN 17 JUL 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946)	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	FLURA- LIN TOTAL RECOVER (UG/L) (39030)	CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 26 JUN 17 JUL 14 AUG 19	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946) 34	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956) 16	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 6500 4300	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	ATE WATER WHLREC (UG/L) (30236) <.100	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 15000	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K6200	FLURA- LIN TOTAL RECOVER (UG/L) (39030)	CHLOR WATER UNFLITED REC (UG/L) (39356)
MAY 26 JUN 17 JUL 14 AUG	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11	(MG/L AS SO4) (00946) 34 38	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L-SIO2) (00956) 16 14	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 6500 4300	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 250 150 310	ATE WATER WHLREC (UG/L) (30236) <.100 <.100	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 15000 32000 K1100	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K6200 K59	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100	CHLOR WATER UNFLIRD REC (UG/L) (39356) <.10 <.10
MAY 26 JUN 17 JUL 14 AUG 19 SEP	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 11	(MG/L AS SO4) (00946) 34 38 63	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3	TOTAL (MG/L-S102) (00956) 16 14 12 14	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 <10	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 6500 4300 460	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 250 150 310 200	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 15000 32000 K1100	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K6200 K59 140	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100	CHLOR WATER UNFLIRD REC (UG/L) (39356) <.10 <.10 <.10
MAY 26 JUN 17 JUL 14 AUG 19 SEP 15	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 11 18 16 8.0 ATRA- ZINE WATER UNFLTRD REC (UG/L)	(MG/L AS SO4) (00946) 34 38 63 52 15 ACETO-CHLOR, WATER, UNFLTRD REC (UG/L)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	TOTAL (MG/L-SIO2) (00956) 16 14 12 14 19 DE-ISO PROPYL ATRAZ IN WATER, WHOLE, TOTAL (UG/L)	TOTAL RECOV- REABLE (UG/L AS CU) (01042) <10 <10 <10 20 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 6500 4300 460 330 26000 ALA- CHLOR TOTAL RECOVER (UG/L)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 250 150 310 200 770 SEDI- MENT, SUS- PENDED (MG/L)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 15000 32000 K1100 920 K124000 METRI-BUZIN IN WHOLE WATER (UG/L)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K6200 K59 140 45000 CYAN-AZINE TOTAL (UG/L)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	CHLOR WATER UNFLTRD REC (UG/L) (39356) <.10 <.10 <.10 ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3)
MAY 26 JUN 17 JUL 14 AUG 19 SEP 15	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 11 18 16 8.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 34 38 63 52 15 ACETO-CHLOR, WATER, UNFLITED REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 16 14 12 14 19 DE-ISO PROPYL ATRAZ IN WATER, WHOLE, TOTAL (UG/L) (75980)	TOTAL RECOV- RERABLE (UG/L AS CU) (01042) <10 <10 <10 20 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 6500 4300 460 330 26000 ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 250 150 310 200 770 SEDI- MENT, SUS- PENG/L) (80154)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 15000 32000 K1100 920 K124000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K6200 K59 140 45000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	CHLOR WATER UNFLTRD REC (UG/L) (39356) <.10 <.10 <.10 ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY 26 JUN 17 AUG 19 SEP 15 DATE MAY 26 JUN	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 11 18 16 8.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 34 38 63 52 15 ACETO-CHLOR, WATER, UNFLIRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 16 14 12 14 19 DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	TOTAL RECOV- REABLE (UG/L AS CU) (01042) <10 <10 <10 <20 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 6500 4300 460 330 26000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 250 150 310 200 770 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 <.100 SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 15000 32000 K1100 920 K124000 METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K6200 K59 140 45000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	CHLOR WATER UNFITRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFITRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY 26 JUN 17 JUL 14 AUG 19 SEP 15 DATE MAY 26 JUN 17 JUL 14	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 11 11 18 16 8.0 ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	(MG/L AS SO4) (00946) 34 38 63 52 15 ACETO- CHLOR, WATER, UNFLITRD REC (UG/L) (49259)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .3 .3 .2 SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	TOTAL (MG/L-SIO2) (00956) 16 14 12 14 19 DE-ISO PROPYL ATRAZ IN WATER, WHOLE, TOTAL (UG/L) (75980) 340	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 <10 20 DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981) 1.00	TOTAL RECOV-ERABLE (UG/L AS FE) (01045) 6500 4300 460 330 26000 ALA-CHLOR TOTAL RECOVER (UG/L) (77825)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 250 150 310 200 770 SEDI- MENT, SUS- PENDED (MG/L) (80154)	ATE WATER WHLREC (UG/L) (30236) <.100 <.100 <.100 SEDI- MENT, SUS- PENDED (T/DAY) (80155) 73 15	FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 15000 32000 K1100 920 K124000 METRI-BUZIN IN WHOLE WATER (UG/L) (81408) <.10	WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633) K6200 K59 140 45000 CYAN- AZINE TOTAL (UG/L) (81757)	FLURA- LIN TOTAL RECOVER (UG/L) (39030) <.100 <.100 <.100 <.100 SPE-CIFIC CON-DUCT-ANCE LAB (US/CM) (90095) 370 380	CHLOR WATER UNFITRD REC (UG/L) (39356) <.10 <.10 <.10 <.10 ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410) 110 110

05494450 Fox River at County Road V56 near Milton, IA

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HC03 (00453)
MAY 27 JUN	0910	18.5	18.5	744	93	347	8.6	94	7.6	7.9		
18	0845	21.5	24.0	739	50	371	7.7	90	7.5	8.0	0	155
JUL 15	0920	23.3	23.3	743	11	536	6.9	83	7.5	8.2	0	225
AUG 18	1615	29.6	33.3	746	9.4	480	7.5	101	8.1	8.3	0	198
SEP 15	1145	20.3		746	397	175	7.2	81	7.2	7.4	0	65
DATE	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)
MAY 27		.020	. 050	1.4	5.25	.380	.110	9.9	48	11	9.9	5.3
JUN 18	127	<.100	<.010	1.1	1.40	.280	.160	9.5	47	11	11	6.2
JUL 15	184	.030	<.020	.37	<.100	.110	.110	5.0	64	14	16	5.3
AUG 18	162	<.020	<.010		<.050	.180	.100	8.2	55	12	16	6.5
SEP				.50								
15	54	.100	<.010	2.9	.300	1.22	.180	27	25	8.8	4.6	11
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE (MG/L AS SO4) (00946)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SILICA TOTAL (MG/L- SIO2) (00956)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	METOLA- CHLOR WATER UNFLTRD REC (UG/L) (39356)
MAY 27	11	40	. 2	15	20	6800	250		K20200			
JUN 18	13	45		14	<10	3800	130	<.100	14400	11000	<.100	.15
JUL			. 2									
15 AUG	15	78	. 3	13	<10	390	100	<.100	1500	600	<.100	<.10
18 SEP	16	57	.3	14	<10	380	80	<.100	700	150	<.100	<.10
15	9.0	13	. 2	22	30	35000	1000	<.100	K127000	51000	<.100	<.10
DATE	ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	ACETO- CHLOR, WATER, UNFLTRD REC (UG/L) (49259)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	CYAN- AZINE TOTAL (UG/L) (81757)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY			245				224	EC			200	100
27 JUN			240				224	56			390	120
18 JUL	6.00	. 50	270	.280	. 950	<.100	100	14	<.10	3.60	410	120
15 AUG	1.30	<.10	330	<.100	. 270	<.100	9	.26	<.10	.270	550	190
18 SEP	. 620	<.10	310	<.100	.140	<.100	10	.25	<.10	.230	510	140
15	.440	<.10	190	<.100	.190	<.100	1120	1200	<.10	.110	180	54

05494570 Valley Branch near Mount Sterling, IA

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)
MAY 27	1400	18.0	22.5	745	1.1	417	8.7	94	7.6	7.9
JUN 18 19	1345 1030	21.0 19.3	22.0 27.2	739 7 41	1.5 5.9	345 288	7.5 7.6	87 85	7.3 7.3	7.8 7.7
JUL 15	1315	24.2	34.5	742	.04	438	5.7	70	7.3	7.6
DATE	CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
MAY 27				.030	<.010	1.4	.680	.090	.060	5.7
JUN 18 19	0	149 100	122 82	<.100 <.100	.060 <.010	1.5 1.8	2.80 4.60	.230 .290	.070 .070	36 17
JUL 15	0	179	147	.030	<.020	. 42	<.100	.070	.050	5.4
DATE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE (MG/L AS SO4) (00946)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SILICA TOTAL (MG/L- SIO2) (00956)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)
MAY 27	57	13	12	3.3	5.0	82	.2	16	<10	600
JUN 18 19	46 37	11 9.0	11 7.8	5.0 5.3	7.0 8.0	45 33	.2	12 14	<10 <10	5200 6800
JUL 15	52	12	12	3.5	5.0	72	.2	22	<10	620
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	PRO- PAZINE TOTAL (UG/L) (39024)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	METOLA- CHLOR WATER UNFLTRD REC (UG/L) (39356)	ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	ACETO- CHLOR, WATER, UNFLTRD REC (UG/L) (49259)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
MAY 27	170		8600							270
JUN 18 19	210 220	<.100 <.100	52000 41 000	40000 16000	.140 .210	<.100 <.100	1.60 2.20	12.0 17.0	.15 .20	250 250
JUL 15	700	<.100	3900	300		<.100	.13	1.40	<.10	280
DAT	DE-I PROF ATRA WATE WHOL FE TOTA (UG/ (759	YL ATRA ZIN ZIN R, WATE E, WHOL L TOT L) (UG/	E, ALE, CHL E, TOT AL RECOLU	OR MEN PAL SUS VER PEN (MG	T, CHAR - SU DED PEN :/L) (T/D	T, METR S- BUZ GE, IN S- WHO DED WAT AY) (UG/	IN CYAN LE AZIN ER TOTA L) (UG/	TE ANIC L LA L) (US/	TIC UNFL N- TIT T- LA E (MG B AS CM) CAC	TRD 4.5 B //L 03)
MAY 27 JUN				- 1	2 .	03 -		- 46	0 13	0
18 19		60 1.0 70 1.8					10 <.1 10 <.1			0 4
JUL 15	. <.1	00 .2	50 <.1	00 4	0 .	00 <.	10 <.1	00 45	0 15	0

05494600 Fox River at Mount Sterling, IA

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)
MAY 27	1550	20.5	26.0	743	116	336	8.2	94	7.7	7.9
JUN 18 19	1530 1400	23.2 20.8	28.0 26.5	738 740	73 1750	330 172	7.5 6.0	91 69	7.5 7.1	7.9 7.3
JUL 15	1510	29.7	31.4	745	13	524	7.0	95	7.8	8.3
AUG 18	1230	26.9	32.5	748	12	466	7.8	100	8.0	8.1
SEP 16	0900	20.9	20.1	748	152	194	7.3	83	7.0	7.6
DATE	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
MAY 27				.020	.020	1.3	1.34	.420	.110	9.6
JUN 18 19	0	131	107	<.100 <.100	.030 .010	1.3 5.9	1.60 1.10	.430 2.13	.110 .940	16 44
JUL 15	0	233	191	<.020	<.020	.41	<.100	.140	.110	6.2
AUG 18	0	200	164	<.020	<.010	.74	<.050	.190	.110	7.6
SEP 16	0	76	62	.050	<.010	1.9	.300	.790	.150	17
DATE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE (MG/L AS SO4) (00946)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SILICA TOTAL (MG/L- SIO2) (00956)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)
MAY 27	TOTAL RECOV- ERABLE (MG/L AS CA)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG)	TOTAL RECOV- ERABLE (MG/L AS NA)	SIUM, TOTAL RECOV- ERABLE (MG/L AS K)	RIDE, DIS- SOLVED (MG/L AS CL)	(MG/L AS SO4)	RIDE, TOTAL (MG/L AS F)	TOTAL (MG/L- SIO2)	TOTAL RECOV- ERABLE (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)
MAY 27 JUN 18 19	TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946)	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045)
MAY 27 JUN 18 19 JUL 15	TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) 5.5	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	(MG/L AS SO4) (00946) 45	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956) 15	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5500
MAY 27 JUN 18 19 JUL 15 AUG 18	TOTAL RECOV- ERABLE (MG/L AS CA) (00916) 46 39 35	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 10 9.1 4.2	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) 5.5 5.9 7.3	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12 14 7.0	(MG/L AS SO4) (00946) 45 39 11	RIDE, TOTAL (MG/L AS F) (00951)	TOTAL (MG/L- SIO2) (00956) 15	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 30	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5500 5600 20000
MAY 27 JUN 18 19 JUL 15 AUG	TOTAL RECOV- ERABLE (MG/L AS CA) (00916) 46 39 35	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 10 9.1 8.8	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 10 9.1 4.2	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) 5.5 5.9 7.3	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12 14 7.0	(MG/L AS SO4) (00946) 45 39 11	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .2	TOTAL (MG/L-S102) (00956) 15 12 18 13	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 30 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5500 5600 20000
MAY 27 JUN 18 19 JUL 15 AUG 18 SEP	TOTAL RECOV- ERABLE (MG/L AS CA) (00916) 46 39 35 67	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 10 9.1 8.8 15	TOTAL RECOV- ERABLE (MG/L AS NA) (00929) 10 9.1 4.2 16	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) 5.5 5.9 7.3 6.0 7.1	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12 14 7.0	(MG/L AS SO4) (00946) 45 39 11 70	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .2 .2 .3	TOTAL (MG/L-SIO2) (00956) 15 12 18 13	TOTAL RECOV-ERABLE (UG/L AS CU) (01042) <10 <10 30 <10 <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5500 20000 810 560
MAY 27 JUN 18 19 JUL 15 AUG 18 SEP 16	TOTAL RECOV-ERABLE (MG/L AS CA) (00916) 46 39 35 67 55 25 MANGA-NESE, TOTAL RECOV-ERABLE (MG/L AS MN)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 10 9.1 8.8 15 12 7.0 BUTYL- ATE WATER WHLREC (UG/L)	TOTAL RECOV- REABLE (MG/L AS NA) (00929) 10 9.1 4.2 16 14 5.4 COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) 5.5 5.9 7.3 6.0 7.1 9.1 E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12 14 7.0 15 14 8.0 PRO- PAZINE TOTAL (UG/L)	(MG/L AS SO4) (00946) 45 39 11 70 52 18 TRI- FLURA- LIN TOTAL RECOVER (UG/L)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .2 .3 .3 .2 SIMA- ZINE TOTAL (UG/L)	TOTAL (MG/L-SIO2) (00956) 15 12 18 13 14 19 METOLA-CHLOR WATER UNFLTRD REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 <10 30 <10 <20 ATRA- ZINE WATER UNFLITED REC (UG/L)	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5500 20000 810 560 19000 ACETO- CHLOR, WATER, UNFLTRD REC (UG/L)
MAY 27 JUN 18 19 JUL 15 AUG 18 SEP 16 DATE MAY 27 JUN 18 19	TOTAL RECOV- ERABLE (MG/L AS CA) (00916) 46 39 35 67 55 25 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 10 9.1 8.8 15 12 7.0 BUTYL- ATE WATER WHLREC (UG/L) (30236)	TOTAL RECOV- REABLE (MG/L AS NA) (00929) 10 9.1 4.2 16 14 5.4 COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) 5.5 5.9 7.3 6.0 7.1 9.1 E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12 14 7.0 15 14 8.0 PRO- PAZINE TOTAL (UG/L) (39024)	(MG/L AS SO4) (00946) 45 39 11 70 52 18 TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .2 .3 .3 .2 .2 .2 .3 .3 .2	TOTAL (MG/L-SIO2) (00956) 15 12 18 13 14 19 METOLA-CHLOR WATER UNFLITAD REC (UG/L) (39356)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10	TOTAL RECOV- ERABLE (UG/L AS FE) (01045) 5500 20000 810 560 19000 ACETO- CHLOR, WATER, UNFLTRD REC (UG/L) (49259)
MAY 27 JUN 18 19 JUL 15 AUG 18 SEP 16 DATE MAY 27 JUN 18 19 19 19 JUL 15	TOTAL RECOV- ERABLE (MG/L AS CA) (00916) 46 39 35 67 55 25 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 10 9.1 8.8 15 12 7.0 BUTYL- ATE WATER WHLREC (UG/L) (30236)	TOTAL RECOV- REABLE (MG/L AS NA) (00929) 10 9.1 4.2 16 14 5.4 COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501) 4700 16200	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) 5.5 5.9 7.3 6.0 7.1 9.1 E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12 14 7.0 15 14 8.0 PRO- PAZINE TOTAL (UG/L) (39024)	(MG/L AS SO4) (00946) 45 39 11 70 52 18 TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .2 .3 .3 .2 .2 .3 .3 .2	TOTAL (MG/L-SIO2) (00956) 15 12 18 13 14 19 METOLA-CHLOR WATER UNFLITED REC (UG/L) (39356)	TOTAL RECOV- ERABLE (UG/L AS CU) (01042) <10 30 <10 20 ATRA- ZINE WATER UNFLITED REC (UG/L) (39630) 5.80	TOTAL RECOV- RECOV- REABLE (UG/L AS FE) (01045) 5500 5600 20000 810 560 19000 ACETO- CHLOR, WATER, UNFLTRD REC (UG/L) (49259)
MAY 27 JUN 18 19 JUL 15 AUG 18 SEP 16 DATE MAY 27 JUN 18 19 JUL 19 JUL	TOTAL RECOV- ERABLE (MG/L AS CA) (00916) 46 39 35 67 55 25 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055) 280 200 1300	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927) 10 9.1 8.8 15 12 7.0 BUTYL- ATE WATER WHLREC (UG/L) (30236)	TOTAL RECOV-ERABLE (MG/L AS NA) (00929) 10 9.1 4.2 16 14 5.4 COLI-FORM, TOTAL, IMMED (COLS. PER 100 ML) (31501) 4700 16200	SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937) 5.5 5.9 7.3 6.0 7.1 9.1 E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 12 14 7.0 15 14 8.0 PRO- PAZINE TOTAL (UG/L) (39024)	(MG/L AS SO4) (00946) 45 39 11 70 52 18 TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	RIDE, TOTAL (MG/L AS F) (00951) .2 .2 .2 .3 .3 .2 .2 .3 .3 .2	TOTAL (MG/L-SIO2) (00956) 15 12 18 13 14 19 METOLA-CHLOR WATER UNFLIRD REC (UG/L) (39356) 59 .44	TOTAL RECOV-ERABLE (UG/L) AS CU) (01042) <10 <10 <10 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	TOTAL RECOV- REABLE (UG/L AS FE) (01045) 5500 5600 20000 810 560 19000 ACETO-CHLOR, WATER, UNFLIRD REC (UG/L) (49259) 47 1.2

05494600 Fox River at Mount Sterling, IA

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	CYAN- AZINE TOTAL (UG/L) (81757)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY 27	230				232	73			370	110
JUN 18	230	.350	1.10	<.100	269	53	<.10	4.00	360	110
19 JUL	220	.380	1.30	<.100	2510	11900	<.10	2.30	200	58
15 AUG	310	<.100	.240	<.100	21	.71	<.10	.230	540	190
18 SEP	290	<.100	.170	<.100	16	.53	<.10	.230	500	160
16	170				456	187			210	60
		0	5494690	Fox River	above Cl	nambersbur	g, MO			
DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)
JUN 19	1520	21.0	30.0	741	1930	165	6.0	69	7.2	7.3
JUL 16	1100	25.7	29.5	749	15	530	7.8	98	7.4	8.1
AUG 18	1025	25.4	30.4	748	13	443	7.6	94	7.7	8.1
SEP 16	1145	21.0	23.6	751	210	181	7.7	88	7.1	7.5
DATE	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL, (MG/L AS C) (00680)
JUN 19	0	69	57	<.100	. 010	7.1	.900	2.48	1.08	43
JUL 16	0	232	190	<.020	<.020	. 67	<.100	.160	.090	7.0
AUG 18	0	188	154	<.020	<.010	. 99	<.050	.210	.070	8.4
SEP 16	0	68	56	.120	<.010	2.3	.300	.830	.130	19
DATE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SULFATE (MG/L AS SO4) (00946)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SILICA TOTAL (MG/L- SIO2) (00956)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)
JUN	25	10	4.6	10		10	•	10	50	E0000
19 JUL 16	37 69	13	4.6	12	7.0	10	.2	18	50	59000
16 AUG 10	69 52	15	15	5.8	13	64	.3	14	10	1900
18 SEP	52	11	13	7.1	16	46	.3	15	<10	1400

9.4 8.0 16 .2 19 20

23000

25 7.5 4.7

05494690 Fox River above Chambersburg, MO--continued

	DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	PRO- PAZINE TOTAL (UG/L) (39024)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	SIMA- ZINE TOTAL (UG/L) (39055)	METOLA- CHLOR WATER UNFLTRD REC (UG/L) (39356)	ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	ACETO- CHLOR, WATER, UNFLTRD REC (UG/L) (49259)	
JUN 19		1800	<.100	20000	2500	.100	<.100	.150	. 46	6.60	1.2	
JUL		330	<.100	710	240		<.100		<.10	1.30	<.10	
AUG		210	<.100	320	К35		<.100		<.10	.730	<.10	
SEP												
16	• • •	830	<.100	36000	6100		<.100		<.10	.500	<.10	
	DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	CYAN- AZINE TOTAL (UG/L) (81757)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)	
JUN 19		190	.320	1.10	<.100	3720	19400	<.10	2.60	190	58	
JUL 16		320	<.100	.260	<.100	60	2.4	<.10	.230	540	190	
AUG 18		280	<.100	.160	<.100	53	1.8	<.10	.240	460	150	
SEP 16		170	<.100	.220	<.100	599	340	<.10	.120	200	60	
DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO-METRIC PRES-SURE (MM OF HG) (00025)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)
MAY 28	0945	20.0	26.0	746	126	335	8.2	92	7.7	7.9	.020	.040
DATE MAY 28	NIT GEN, MONI ORGA TOT (MG AS (006	AM- NIT A + GE NIC NO2+ AL TOT I/L (MC N) AS 25) (006	-NO3 PHO FAL TO G/L (M N) AS 530) (00	TAL SOLV G/L (MG/ P) AS E 665) (006	RUS THO, CARE THO, CARE TO TOT L (MG P) AS	ON, TO: NIC REG AL ER/ C/L (MC C) AS	CIUM SIU TAL TOT COV- REC ABLE ERA G/L (MG CA) AS 016) (009	AL TOT COV- REC BLE ERA L (MG MG) AS	CAL TOT COV- RECO BLE ERAB G/L (MG NA) AS (29) (009	UM, CHL PAL RID V- DIS ELE SOL E/L (MG K) AS 37) (009	E, - VED SULF :/L (MG CL) AS S	5/L 504)
	FLU RID		TO	PER, IRO TAL TOT COV- REO	N, NES	E, FOI	ral, at 1	DUE		TT, CIF	N- TIT	TRD 4.5
DATE	TOT (MG AS (009	AL TOTAL (MG/ F) SIC	FAL ER 'L- (U)2) AS	ABLE ERA	ABLE ERA G/L (UG FE) AS	BLE (CO) (L P) MN) 100	LS. DI ER SOL	S- SUS VED PEN (MC	S- SU IDED PEN S/L) (T/D	IS- ANO IDED LA DAY) (US/	E (MG LB AS CM) CAC	3/L 3 203)
MAY 28	. 2	15	5 <	10 70	000 30	00 90	600 23	0 22	26 77	36	11	.0

05494800 Little Fox River at Iowa-Missouri State Line

DATE	TIME	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)
MAY 27	1140	18.5	21.5	745	4.8	475	7.7	84	7.8	8.0
JUN 18 19	1115 1030	20.9 19.1	27.2 22.5	7 4 1 7 4 2	17 175	307 171	7.8 7.3	90 81	7.5 7.0	7.8 7.5
JUL 15	1130	25.5	32.8	743	1.1	491	8.5	107	7.8	8.2
AUG 18	1420	28.9	32.1	7 4 6	.34	340	8.1	107	7.9	8.1
SEP 15	1415	22.3	27.9	745	24	210	7.9	93	7.4	7.5
DATE	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
MAY 27				.120	.170	1.3	3.28	.210	.120	8.3
JUN 18 19	0	11 4 59	9 4 4 8	<.100 <.100	.020 <.010	1.3 5.1	6.60 2.70	.290 1.17	.150 . 4 20	12 4 2
JUL 15	0	204	167	<.020	<.020	.63	<.100	.100	.080	5.9
AUG 18	0	223	183	.040	.020	. 69	.080	.140	.080	8.6
SEP 15	0	81	67	.020	<.010	1.5	.500	.510	.260	16
DATE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SULFATE (MG/L AS SO4) (00946)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SILICA TOTAL (MG/L- SIO2) (00956)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)
MAY 27	59	15	17	6.0	19	54	.2	14	<10	1500
JUN 18 19	36 26	9.1 7.9	9.5 4.2	6.3 7.8	14 8.0	27 9.7	.2	13 16	<10 20	3500 21000
JUL 15	56	14	18	5.2	12	76	.3	11	<10	670
AUG 18	59	14	20	6.5	11	67	.3	10	<10	930
SEP 15	23	6.2	6.6	9.1	11	18	.2	11	10	6800
DATE	MANGA- NESE, TOTAL, RECOV- ERABLE (UG/L AS MN) (01055)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	COLI-FORM, TOTAL, IMMED. (COLS. PER 100 ML) (31501)	E. COLI WATER WHOLE TOTAL UREASE (COL / 100 ML) (31633)	PRO- PAZINE TOTAL (UG/L) (39024)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	SIMA- ZINE TOTAL (UG/L) (39055)	METOLA- CHLOR WATER UNFLITED REC (UG/L) (39356)	ATRA- ZINE WATER UNFLTRD REC (UG/L) (39630)	ACETO- CHLOR, WATER, UNFLTRD REC (UG/L) (49259)
MAY 27	90		7000		~~					
JUN 18 19	110 470	<.100 <.100	22000	8600	.230	<.100 <.100	.230	.75 .78	17.0 9.80	.73 .60
JUL 15	190	<.100	1500	4 60		<.100		<.10	1.20	<.10
AUG 18	410	<.100	4400	440		<.100		<.10	.370	<.10
SEP 15	230	<.100	81000	17000		<.100		<.10	.520	<.10

05494800 Little Fox River at Iowa-Missouri State Line

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)	DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	CYAN- AZINE TOTAL (UG/L) (81757)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	ANC UNFLTRE TIT 4.5 LAB (MG/L AS CACO3) (90410)
MAY										
27	310				44	.57			530	140
JUN:										
18	240	.860	3.00	<.100	106	5.0	<.10	5.30	340	82
19	200	1.10	2.80	<.100	1050	497	<.10	7.80	200	50
JUL										
15	300	.150	.370	<.100	20	.06	<.10	.450	510	160
AUG										
18	330	<.100	<.100	<.100	27	.02	<.10	.110	560	180
SEP										
15	180	.150	.390	<.100	157	10	<.10	.480	230	70

A	Clear Creek
Ackworth, South River near —290	near Coralville —146
Acre-foot, definition of —39	near Oxford —144
Ames,	Clear Creek tributary near Williamsburg —333
South Skunk River below Squaw Creek near —202	Clear Lake at Clear Lake —170
South Skunk River near —198	Clinton,
Squaw Creek at —200	Beaver Slough at Third Street —90
Annual 7-day minimum, definition of —40	Mississippi River at —92
Aquifer, definition of —39	Colfax,
Artesian, definition of —39	South Skunk River at —212
Augusta, Skunk River at —224	Squaw Creek near —204
n	Conesville, Cedar River near —188
B	Contents, definition of —39
Bacteria, definition of —39	Control structure, definition of —39
Bayard, Middle Raccoon River near —264	Control, definition of —39
Bear Creek at Ottumwa —338	Coralville Lake near Coralville —136
Beaver Creek at New Hartford —178	Coralville,
Beaver Creek near Grimes —252	Clear Creek near —146
Beaver Slough at Third Street Clinton —90	Coralville Lake near —136
Bed load discharge, definition of —42	Iowa River below Coralville Dam near —138
Bed load, definition of —42	Crest-stage stations, maximum stage and discharge, made at
Bed material, definition of —39	partial-record stations in —330
Bettendorf, Crow Creek at —108	Crow Creek at Bettendorf —108
Big Bear Creek at Ladora —132	Cubic feet per second per square mile, definition of —39
Big Creek near Mt. Pleasant —222	Cubic feet per second, definition of —39
Black Hawk Lake at Lake View —260	Cubic foot per second day, definition of —39
Bloody Run Creek near Marquette —54	D
Bloody Run tributary near Sherrill —331	Dakota City, East Fork Des Moines River at —236
Bloomfield, Fox River at —326, —328	Dallas, White Breast Creek near —310
Bluff Creek at Pilot Mound —337	Davenport,
Boone River near Webster City —240	Duck Creek at 110th Avenue —110
Bottom material, definition of —39	Duck Creek at 110th Avenue —110 Duck Creek at Duck Creek Golf Course —112
Brewers Creek tributary near Webster City —337	De Witt, Wapsipinicon River near —106
Brushy Creek near Templeton —338	Deep River at Deep River —333
Buck Creek near Oran —332 Bulger Run near Riverside —334	Deer Creek near Carpenter —334
	Definition of terms —39
Bush Branch Creek near Stanzel —338 Bussey, Cedar Creek near —320	Des Moines River
Bussey, Cedai Cleek lieai —320	below Raccoon River at Des Moines —282
C	at Second Avenue at Des Moines —254
Cedar Creek	at Fort Dodge —238
near Bussey —320	at Humboldt —234
near Oakland Mills —220	at Keosauqua —324
Cedar Creek tributary No. 2 near Winterset —338	at Ottumwa —322
Cedar Rapids, Cedar River at —186	near Pella —314
Cedar River	near Runnells —292
at Cedar Rapids —186	near Saylorville —246
at Charles City —160	near Stratford —242
near Conesville —188	near Tracy —318
at Janesville —164	Des Moines River basin, crest-stage partial-record stations in
at Waterloo —180	—337, —338
Charles City, Cedar River at —160	Des Moines,
Clayton,	Des Moines River at Second Avenue at —254
Mississippi River at —76	Des Moines River below Raccoon River at —282
Sny Magill Creek near —68	Fourmile Creek at —284

Raccoon River at 63rd Street —274	Hydrologic conditions, summary of —3
Raccoon River at Fleur Drive —278	Ground water —12
Walnut Creek at —276	Ground-water quality —18
Discharge, definition of —40	Surface water —3
Dissolved, definition of —40	Surface-water quality —16
Dissolved-solids concentration, definition of —40	Suspended sediment —9
Dorchester, Upper Iowa River near —52	Hydrologic unit, definition of —40
Downstream order system —23	1
Drainage area, definition of —40	104
Drainage basin, definition of —40	Independence, Wapsipinicon River at —104
Drainage Ditch 97 tributary near Britt —337	Indian Creek near Mingo —214
Dry Run Creek near Decorah —330	Indianola, Middle River near —288
Duck Creek	Instantaneous discharge, definition of —40
at 110th Avenue, Davenport —110	Ionia, Little Cedar River near —162
at Duck Creek Golf Course, Davenport —112	Iowa City,
Dysart, Wolf Creek near —182	Iowa River at —148
=	Old Mans Creek near —152
E	Rapid Creek near —142
East Branch Iowa River above Mayfield —332	South Branch Ralston Creek at —150
East Fork Des Moines River at Dakota City —236	Iowa River
Elberon, Salt Creek near —128	below Coralville Dam near Coralville —138
English Creek near Knoxville —316	at Iowa City —148
English River at Kalona —154	near Lone Tree —156
F	at Marengo —134
Fecal coliforn bacteria, definition of —39	at Marshalltown —122
Fecal streptococcal bacteria, definition of —39	near Rowan —116
Finchford, West Fork Cedar River at —166	at Wapello —190
Flood Creek near Powersville —172	Iowa River basin, crest-stage partial-record stations in —
Fort Dodge, Des Moines River at —238	332, —333, —334
Fourmile Creek at Des Moines —284	J
Fox River at Bloomfield —326, —328	-
French Hollow Creek near Elkader —320	Janesville, Cedar River at —164 Jefferson, North Raccoon River near —262
Trench Honow Creek hear Erkader — 330	Jenerson, North Raccoon River near —202
G	K
Gage height (G.H.), definition of —40	Kalona, English River at —154
Gaging station, definition of —40	Keigley Branch near Story City —336
Garber, Turkey River at —84	Keokuk, Mississippi River at —230
Gizzard Creek tributary near Bassett —334	Keosauqua, Des Moines River at —324
Grimes, Beaver Creek near —252	Knoxville, English Creek near —316
Ground-water levels, records of —35	
Data collection and computation —35	L
Data presentation —36	Ladora, Big Bear Creek at —132
Ground-water quality, records of —37	Lake Panorama at Panora —266
Data presentation —37	Lake Red Rock near Pella —312
	Lake View, Black Hawk Lake at —260
Н	Lamont Creek basin, crest-stage partial-record stations in —
Haight Creek at Kingston —335	331
Hardin Creek near Farlin —337	Lamont Creek tributary at Lamont —331
Hardness, definition of —40	Land-surface datum, definition of —40
Hartwick, Walnut Creek near —130	Little Cedar River near Ionia —162
Haven, Richland Creek near —126	Little Maquoketa River
Honey Creek tributary near Radcliffe —333	near Durango —331
Humboldt, Des Moines River at —234	at Graf —330
Hydrologic Benchmark Network, definition of —40	Little Maquoketa River tributary at Dubuque —331

Little Wapsipinicon River near Oran —332 Little Wapsipinicon River tributary near Riceville —332 Little White Breast Creek tributary near Chariton —338 Lone Tree, Iowa River near —156 Long Dick Creek near Ellsworth —336 Luana, Silver Creek near —80 M Maquoketa River basin, crest-stage partial-record stations in —330, —331 Maquoketa River near Maquoketa —86 Maquoketa, Maquoketa River near —86 Marengo, Iowa River at —134 Marquette, Bloody Run Creek near —54	North English River at Guernsey —333 near Montezuma —333 North Fork Little Maquoketa River near Rickardsville — 331 North Fork Long Creek at Ainsworth —335 North Fork tributary to Mill Creek near Solon —333 North Raccoon River near Jefferson —262 near Sac City —258 North River near Norwalk —286 North Skunk River near Sigourney —218 Norwalk, North River near —286 Numbering system for wells —24
Marshalltown, Iowa River at —122 Timber Creek near —124 Mason City, Winnebago River at —168 McGregor, Mississippi River at —62 Mean concentration, definition of —42 Mean discharge, definition of —40	Oakland Mills, Cedar Creek near —220 Old Mans Creek near Iowa City —152 Oskaloosa, South Skunk River near —216 Ottumwa, Des Moines River at —322 Oxford, Clear Creek near —144
Measuring point (MP), definition of —41 Micrograms per gram (mg/g), definition of —41 Micrograms per liter (mg/L), definition of —41 Middle Creek near Lacey —336 Middle Fork Little Maquoketa River near Rickardsville — 330 Middle Raccoon River near Bayard —264	Panora, Lake Panorama at —266 Middle Raccoon River at —268 Parameter code, definition of —41 Partial-record station, definition of —41 Partial-record stations and miscellaneous discharges at —
at Panora —268 Middle Raccoon River Tributary at Carroll —338 Middle River near Indianola —288 Miller Creek near Eagle Center —334 Milligrams per liter (mg/L), definition of —41 Mingo, Indian Creek near —214 Mississippi River at Clayton —76 at Clinton —92 at Keokuk —230	Particle-size classification, definition of —41 Particle-size, definition of —41 Peas Creek at Boone —337 Peas Creek tributary at Boone —337 Pella, Des Moines River near —314 Lake Red Rock near —312 Pesticides, definition of —42 Picocurie (PC, pCi), definition of —42 Pine Creek tributary near Winthrop —332
at McGregor —62 Mississippi River basin, crest-stage partial-record stations in —330 Mississippi River tributary at McGregor —330 Morse, Rapid Creek below —140 Mt. Pleasant, Big Creek near —222 Mud Lake drainage ditch 71 at Jewell —336	Pine Creek tributary No. 2 at Winthrop —332 Powersville, Flood Creek near —172 Prairie City, Walnut Creek near —294 Prairie Creek tributary near Van Horne —335 Price Creek at Amana —333
National Geodetic Vertical Datum (NGVD), definition of — 41 National Stream Quality Accounting Network (NASQAN), definition of —41 National Trends Network (NTN), definition of —41 New Hartford, Beaver Creek at —178 New Providence, South Fork Iowa River northeast of —118	Raccoon River at 63rd Street, Des Moines —274 at Fleur Drive, Des Moines —278 at Van Meter —272 Radiochemical program, definition of —42 Rapid Creek near Iowa City —142 below Morse —140

Records, explanation of —23	Data presentation —26
Recoverable from bottom material, definition of —42	Identifying estimated daily discharge —30
Redfield, South Raccoon River at —270	Other records available —30
Return period, definition of —42	Stage-discharge relation, definition of —43
Richland Creek near Haven —126	Station identification numbers —23
Roberts Creek above Saint Olaf —82	Downstream order system —23
Rowan, Iowa River near —116	Latitude-longitude system —23
Runnells, Des Moines River near —292	Stein Creek near Clutier —333
Runoff in inches, definition of —42	Stratford, Des Moines River near —242
	Streamflow, definition of —43
\$	Surface area, definition of —43
Sac City, North Raccoon River near —258	Surface-water quality, records of —31
Saint Olaf, Roberts Creek above —82	Arrangement of records —31
Salt Creek near Elberon —128	Classification of records —31
Sand Creek near Manchester —331	Data presentation —32
Saylorville Lake near Saylorville —244	Laboratory measurements —32
Saylorville,	On-site measurements and sample collection —31
Des Moines River near —246	Remark codes —33
Saylorville Lake near —244	Sediment —32
Sea level, definition of —42	Water temperature and specific conductance —32
Sediment, definition of —42	Surficial bed material, definition of —43
7-day 10-year low flow, definition of —43	Suspended sediment, definition of —42
Shell Rock River at Shell Rock —176	Suspended, definition of —43
Shell Rock, Shell Rock River at —176	Suspended, recoverable, definition of —43
Sigourney, North Skunk River near —218	Suspended, total, definition of —44
Silver Creek	Suspended-sediment concentration, definition of —42
near Luana —80	Suspended-sediment discharge, definition of —43
at Welton —332	Suspended-sediment load, definition of —43
Number River at Allouista//4	
Skunk River at Augusta —224	T
Skunk River basin, crest-stage partial-record stations in —	T
Skunk River basin, crest-stage partial-record stations in — 336, —337	Thermograph, definition of —44
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337	Thermograph, definition of —44 Thunder Creek at Blairstown —335
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216 Special networks and programs —22	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —330
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216 Special networks and programs —22 Specific conductance, definition of —43	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216 Special networks and programs —22 Specific conductance, definition of —43 Spring Creek near Mason City —334	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —330
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216 Special networks and programs —22 Specific conductance, definition of —43 Spring Creek near Mason City —334 Squaw Creek	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —330 U
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216 Special networks and programs —22 Specific conductance, definition of —43 Spring Creek near Mason City —334 Squaw Creek at Ames —200	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —330 U Upper Iowa River basin, crest-stage partial-record stations in
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216 Special networks and programs —22 Specific conductance, definition of —43 Spring Creek near Mason City —334 Squaw Creek at Ames —200 near Colfax —204	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —330 U Upper Iowa River basin, crest-stage partial-record stations in —330 Upper Iowa River near Dorchester —52
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216 Special networks and programs —22 Specific conductance, definition of —43 Spring Creek near Mason City —334 Squaw Creek at Ames —200 near Colfax —204 Stage and water discharge, records of —25	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —330 U Upper Iowa River basin, crest-stage partial-record stations in —330 Upper Iowa River near Dorchester —52 V
Skunk River basin, crest-stage partial-record stations in — 336, —337 Skunk River tributary near Richland —337 Snipe Creek tributary at Melbourne —336 Sny Magill Creek near Clayton —68 Sodium adsorption ratio (SAR), definition of —43 Solute, definition of —43 South Avery Creek near Blakesburg —338 South Branch Ralston Creek at Iowa City —150 South Fork Iowa River northeast of New Providence —118 South Raccoon River at Redfield —270 South River near Ackworth —290 South Skunk River near Ames —198 below Squaw Creek near Ames —202 at Colfax —212 near Oskaloosa —216 Special networks and programs —22 Specific conductance, definition of —43 Spring Creek near Mason City —334 Squaw Creek at Ames —200 near Colfax —204	Thermograph, definition of —44 Thunder Creek at Blairstown —335 Timber Creek near Marshalltown —124 Time-weighted average, definition of —44 Tons per acre-foot, definition of —44 Tons per day (T/DAY), definition of —44 Total discharge, definition of —44 Total recoverable, definition of —44 Total sediment discharge, definition of —43 Total, definition of —44 Total-sediment load, definition of —43 Tracy, Des Moines River near —318 Tripoli, Wapsipinicon River near —100 Tritium network, definition of —44 Turkey River at Garber —84 Turkey River basin, crest-stage partial-record stations in —330 U Upper Iowa River basin, crest-stage partial-record stations in —330 Upper Iowa River near Dorchester —52

Vandalia, Walnut Creek near —302

```
W
```

```
Walnut Creek
    at Des Moines —276
   near Hartwick —130
   near Prairie City —294
   near Vandalia —302
Wapello, Iowa River at —190
Wapsipinicon River
   near De Witt -106
   at Independence —104
   near Tripoli —100
Wapsipinicon River basin, crest-stage partial-record stations
 in —332
Water year, definition of —45
Waterloo Creek near Dorchester —330
Waterloo, Cedar River at —180
WATSTORE data, access to —38
WDR, definition of —45
Webster City, Boone River near —240
Weighted average, definition of —45
West Fork Cedar River at Finchford —166
Westmain drainage ditch 1 & 2 at Britt —332
White Breast Creek near Dallas —310
White Fox Creek at Clarion —337
Williams Creek near Charlotte —331
Willow Creek near Mason City —334
Winnebago River at Mason City —168
Wolf Creek near Dysart —182
WSP, definition of —45
```

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain
	length	
inch (m.)	2.54×10^{1}	millimeter
	2.54x10	meter
tomatti	13348 (11)	meter
mile (m)	;'90àz 10 _t .	kilometer
	Arca	
activ	4.047×10°	square meter
	-1,++47×1() ¹	square hectometer
	1,047×10	square kilometer
square nule (nu')	2,500×100	square kilometer
	Volume	
gation (gal)	3.785.100	liter
	1785×10 ¹¹	cubic decimeter
	3.785×10.5	cubic meter
nullion callons (Mgal)	5.785×101	cubic meter
•	3 185×10 1	cubic hectometer
cubic toot (tt ³)	3 8 (2×10)	cubic decimeter
	2.832×10 °	cubic meter
cable toot-per second day [(ft //s) d]	2.41°×10°	cubic meter
- '	2.447x10 \	cubic hectometer
acre foot (acre 1)	1.233×10	cubic meter
	1.243×10.3	cubic hectometer
	1.233×10 ⁶	cubic kilometer
	Flow	
cubic foot per second (fr ³ /s)	2.832×10 ³	liter per second
	2.832×10^{4}	cubic decimeter per second
	2.832519	cubic meter per second
gidlon per minine (gal/min)	6 309x (c)	liter per second
	0.3(10x1()=	cubic decimeter per second
	6.309×10 ⁻⁵	cubic meter per second
reathon gallons per day (Mgal/d)	4.381√101	cubic decimeter per second
, and the same of	4.381×(0)	cubic meter per second
	Mass	
tou (short)	9 (72x10)	megagram or metric ton

Succeeds In this report 'sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geometric datum derived from a general adjustment for the rest order level nets of both the United States and Canada, formerly called Sea Layel Datum of 1929.

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey P.O. Box 1230 Iowa City, IA 52244