

Water Resources Data New York Water Year 1998

Volume 2. Long Island

Water-Data Report NY-98-2

CALENDAR FOR WATER YEAR 1998

1997

		OC	ТОВ	ER					NC	VEM	BER					DE	CEM	IBEF	2	
S	M	T	W	T	F	S		S N	Л Т	W	T	F	S	S	M	T	W	T	F	S
			1	2	3	4							1		1	2	3	4	5	6
5	6	7	8	9	10	11		2 :	3 4	5	6	7	8	7	8	9	10	11	12	13
12	13	14	15	16	17	18		9 1	0 11	12	13	14	15	14	15	16	17	18	19	20
19	20	21	22	23	24	25	1	6 1	7 18	19	20	21	22	21	22	23	24	25	26	-27
26	27	28	29	30	31		2		4 25	26	27	28	29	28	29	30	31			
							3	0												
										199	8									
		JA	NUA	RY					FE	BRU	ARY					N	1ARC	CH		
S	M	T	W	T	F	S		S N	Л Т	W	T	F	S	S	M	T	W	T	F	S
				1	2	3		1 :	2 3	4	5	6	7	1	2	3	4	5	6	7
4	5	6	7	8	9	10		8	9 10	11	12	13	14	8	9	10	11	12	13	14
11	12	13	14	15	16	17	1.	5 10	5 17	18	19	20	21	15	16	17	18	19	20	21
18	19	20	21	22	23	24	2:	2 23	3 24	25	26	27	28	22	23	24	25	26	27	28
25	26	27	28	29	30	31								29	30	31				
		, A	APRI	L						MAY						J	UNE			
S	M	T	W	T	F	S	5	N	T	W	T	F	S	S	M	T	W	T	F	S
			1	2	3	4						1	2		1	2	3	4	5	6
5	6	7	8	9	10	11		3 4	5	6	7	8	9	7	8	9	10	11	12	13
12	13	14	15	16	17	18	10) 11	12	13	14	15	16	14	15	16	17	18	19	20
19	20	21	22	23	24	25	1'	7 18	3 19	20	21	22	23	21	22	23	24	25	26	27
26	27	28	29	30			24	1 25	26	27	28	29	30	28	29	30				
							3													
C			JULY		_	~			Al											
5	M	Т	W	T	F	S	S	N	T	W	Т	F	S	S	M	T	W	Т	F	S
_		_	1		3								1			1	2		4	
5		7			10									6				10	11	12
12	13	14		16	17		9					14			14					19
19	20	21	22		24		16							20	21		23	24	25	26
20	21	28	29	30	31			24	25	26	21	28	29	27	28	29	30			
							31	- 1												

Water Resources Data New York Water Year 1998

Volume 2. Long Island

By A.G. Spinello, R. Busciolano, G. Peña-Cruz, and R.B. Winowitch

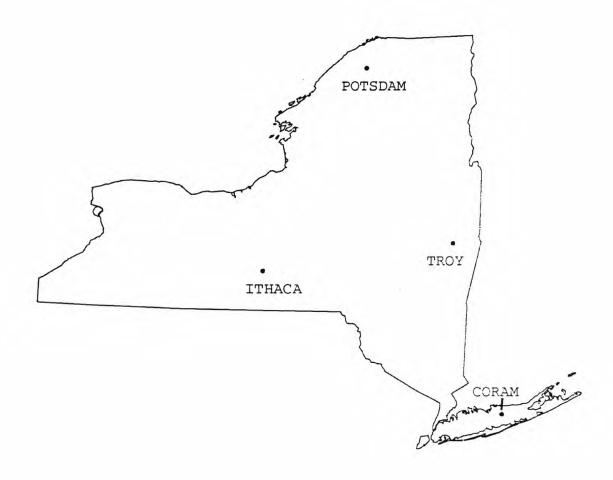
Water-Data Report NY-98-2

U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary

U.S. Geological Survey Charles G. Groat, Director

For information on the water program in New York write to
District Chief, Water Resources Division
U.S. Geological Survey
425 Jordan Road
Troy, New York 12180

or


For information on the water program in Long Island write to Subdistrict Chief, Water Resources Division
U.S. Geological Survey
2045 Route 112, Bldg. 4
Coram, New York 11727-3085

or access the USGS on the world wide web:

http://www.usgs.gov or http://www.dnyalb.er.usgs.gov or http://ny.usgs.gov

NEW YORK DISTRICT

OFFICE LOCATIONS AND ADDRESSES

District Office: U.S. Geological Survey Water Resources Division 425 Jordan Road Troy, NY 12180-8349 (518)285-5600 FAX (518)285-5601 Tthaca Subdistrict Office: U.S. Geological Survey Water Resources Division 903 Hanshaw Road Ithaca, NY 14850 (607)266-0217 FAX (607)266-0521 Coram Subdistrict Office:
U.S. Geological Survey
Water Resources Division
2045 Route 112, Bldg. 4
Coram, NY 11727
(516)736-0783
FAX (516)736-4283

Potsdam Field Office: U.S. Geological Survey Water Resources Division 22 Depot Street, Box U Potsdam, NY 13676 (315)265-4410 FAX (315)265-2166

PREFACE

This volume of the annual hydrologic data report of New York is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New York are contained in 3 volumes:

Volume 1. Eastern New York excluding Long Island

Volume 2. Long Island

Volume 3. Western New York.

The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. The following individuals contributed significantly to the collection, processing, and tabulation of the data:

J.L. Candela

V.K. Eagen

C.E. Schubert

S.A. Terracciano

S.L. Waunsch

Jo-Ann Pitt typed the text of the report.

This report was prepared in cooperation with local agencies under the general supervision of L.G. Moore, District Chief, New York.

iv

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE April 1999	3. REPORT TYPE AND DATE AnnualOctober 1, 19	s covered 197 to September 30, 1998		
4. TITLE AND SUBTITLE Water Resources Data - Ne Volume 2, Long Island	UNDING NUMBERS				
6. AUTHOR(S) A.G. Spinello, R. Busciolar	no, G.P. Peña-Cruz, and R.B.	. Winowitch			
7. PERFORMING ORGANIZATION NA U.S. Geological Survey Water Resources Division 2045 Route 112, Bldg. 4 Coram, New York 11727	REFORMING ORGANIZATION PORT NUMBER GGS-WDR-NY-98-2				
9. SPONSORING / MONITORING AGE U.S. Geological Survey Water Resources Division 425 Jordan Road Troy, New York 12180	NCY NAME(S) AND ADDRESS(ES)	A	PONSORING / MONITORING GENCY REPORT NUMBER		
11. SUPPLEMENTARY NOTES Prepared in cooperation wi	th local agencies.				
This report may be purchas National Technical Informal Springfield, VA 22161	sed from	12b.	DISTRIBUTION CODE		
quality of streams; stage, c ground-water wells. This v 1 gaging station; and water stations. Additional water d and are published as misce	or the 1998 water year for Nontents, and water quality of olume contains records for we levels at 662 observation water ware collected at various allaneous measurements and a the National Water Data system.	few York consist of records of lakes and reservoirs; and water discharge at 19 gaging stated list. Also included are data for sites not involved in the system analyses. These data, together water operated by the U.S. Geolo	r levels and water quality of tions; tide summaries at r 79 low-flow partial-record atic data collection program, with the data in Volume 1		
ing stations, Streamflow, F	low rates, Lakes, Reservoirs,	e waters, *Water quality, Gag- Chemical analysis, Sediments, wells, Data collections, Sites			
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED	19. SECURITY CLASSIFICATION OF ABSTRACT UNCLASSIFIED	20. LIMITATION OF ABSTRACT		

CONTENTS

Preface	
List of surface-water stations, in downstream order, for which records are published in this volume	
List of discontinued surface-water discharge stations	
Introduction	
Cooperation	
Summary of hydrologic conditions	
Special networks and programs	
Explanation of the records	
Station identification numbers	
Downstream order system	
Latitude-longitude system	
Records of stage and water discharge	
Data collection and computation	
Data presentation	
Station manuscript	
Data table of daily mean values	
Statistics of monthly mean data	
Summary statistics	
Identifying estimated daily discharge	
Accuracy of the records	
Other records available	
Records of surface-water quality	
Classification of records	
Arrangement of records	
On-site measurements and sample collection	
Water temperature	
Sediment	
Laboratory measurements	
Data presentation	
Remarks codes	
Dissolved trace-element concentrations	
Records of ground-water levels	
Data collection and computation	
Data presentation	
Records of ground-water quality	
Data collection and computation	
Data presentation	
Selected recent U.S. Geological Survey reports relevant to Long Island, New York	
Access to USGS water data	
Definition of terms	
Publications on Techniques of Water-Resources Investigations	
Station records, surface water	
Discharge at partial-record stations and miscellaneous sites	
Low-flow partial-record stations	
Station records, ground water	
Ground-water levels	
Quality of ground water	

FIGURES	
1. System for numbering wells	5
2. Discharge data, East Meadow Brook at Freeport	34
3. Discharge data, Nissequogue River near Smithtown	35
4. Hydrograph of water-table observation well S4271 at Riverhead	36
5. Hydrograph of water-table observation well N1259 at Plainedge	37
6A. Map showing location of surface-water data collection stations in Kings, Queens, and Nassau Counties	38
6B. Map showing location of surface-water data collection stations in west half of Suffolk County	39
6C. Map showing location of surface-water data collection stations in east half of Suffolk County	40
7A. Map showing location of water-level data collection stations in Kings, Queens, and Nassau Counties	41
7B. Map showing location of water-level data collection stations in west half of Suffolk County	42
7C. Map showing location of water-level data collection stations in east half of Suffolk County	43
8A. Map showing location of quality of ground-water data collection stations in Kings, Queens, and Nassau	
Counties	44
8B. Map showing location of quality of ground-water data collection stations in west half of Suffolk County	45
8C. Map showing location of quality of ground-water data collection stations in east half of Suffolk County	46
TABLE	
ins	side
of b	ack
1. Factors for converting inch-pound units to International System Units (SI)	ver

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

NOTE—Data for partial-record stations and miscellaneous sites for surface-water discharge are published in separate sections of the data report. See references at the end of this list for page numbers for these sections.

[Letter after station name designates type of data: (d) discharge, (e) contents and/or elevation, (c) chemical, (b) biological, (m) microbiological, (t) water temperature, (s) sediment]

Station	
SURFACE WATER SITES ON LONG ISLAND number	Page
Alley Creek near Oakland Gardens (d)	47
Glen Cove Creek at Glen Cove (d)	49
Mill Neck Creek at Mill Neck (d) 01303000	51
Cold Spring Brook at Cold Spring Harbor (d)	53
Nissequogue River near Smithtown (d)	55
Peconic River at Riverhead (d)	57
Carmans River at Yaphank (d)	59
Swan River at East Patchogue (d)	61
Connetquot Brook at Central Islip (d)	63
Connetquot Brook near Central Islip (d)	65
Connetquot River near Oakdale (d)	67
Sampawams Creek at Babylon (d)	69
Carlls River at Babylon (d)	71
Massapequa Creek at Massapequa (d)	73
Bellmore Creek at Bellmore (d)	75
East Meadow Brook at Freeport (d)	77
Reynolds Channel at Point Lookout (e)	79
Pines Brook at Malverne (d)	82
Valley Stream at Valley Stream (d)	84
Conselyeas Pond Tributary at Rosedale (d)	86
* * * * * * * * * * * *	
Discharge at partial-record stations and miscellaneous sites	88
Low-flow partial-record stations	88

DISCONTINUED SURFACE-WATER DISCHARGE STATIONS

The following continuous-record surface-water discharge stations on Long Island have been discontinued. Daily streamflow records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as partial-record stations. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)]

Station name	Station number	Drainage area (sq mi)	Period of record
Patchogue River at Patchogue (d)	01306000*	13.5	1948-69, 1974-76
Champlin Creek at Islip (d)	01307000*	6.5	1945-69
Penataquit Creek at Bay Shore (d)	01307500*	5	1945-76
Santapogue Creek at Lindenhurst (d)	01309000*	7	1947-69
Seaford Creek at Massapequa (d)	01309680	3.3	1992-95

The state of the s		

WATER RESOURCES DATA - NEW YORK, 1998 Volume 2.—Long Island

INTRODUCTION

Water-resources data for the 1998 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; water quality of precipitation; and water levels and water quality of ground-water wells. This volume contains records for water discharge at 19 gaging stations; tide summaries at 1 gaging station; and water levels at 662 observation wells. Also included are data for 79 low-flow partial record stations. Locations of these sites are shown on pages 38-46. Additional water data were collected at various sites not involved in the systematic data collection program, and are published as miscellaneous measurements and analyses. These data together with the data in Volumes 1 and 3 represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in New York.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65, and 1966-70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Branch of Information Services, Box 25286, Denver, Colorado 80225-0286.

Since the 1961 water year, streamflow data and since the 1964 water year, water-quality data have been released by the Geological Survey in annual reports on a State-boundary basis. These reports provided rapid release of water data in each state shortly after the end of the water year. Through 1970 the data were also released in the water-supply paper series mentioned above.

Streamflow and water-quality data beginning with the 1971 water year, and ground-water data beginning with the 1975 water year are published only in reports on a State-boundary basis. Beginning with the 1975 water year, these Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NY-98-2." Water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Beginning with the 1990 water year through the 1994 water year, all water-data reports will also be available on Compact Disc - Read Only Memory (CD-ROM).

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (518) 285-5600. A limited number of CD-ROM discs for water years 1990-94 will be available for sale by the U.S. Geological Survey, Branch of Information Services, Box 25286, Denver, Colorado 80225-0286.

COOPERATION

The U.S. Geological Survey and organizations of the State of New York and other agencies have had cooperative programs for the systematic collection of water records since 1900. Organizations that assisted in collecting the data included in Volume 2 through cooperative agreements with the U.S. Geological Survey are:

County of Nassau, Department of Public Works, John M. Waltz, Commissioner.

County of Suffolk, Department of Health Services, Clare B. Bradley, M.D., MPH, Acting Commissioner

New York City Department of Environmental Protection, Joel A. Miele, Commissioner

Suffolk County Water Authority, Michael A. LoGrande, Chairman.

Town of Hempstead, Department of Conservation & Waterways, Ronald W. Masters, Acting Commissioner.

The following organizations aided in collecting records:

Nassau County Department of Health, Nassau County Department of Public Works, Suffolk County Department of Health Services, and Suffolk County Water Authority.

SUMMARY OF HYDROLOGIC CONDITIONS

Streamflow and ground-water levels on Long Island were normal in October, at the beginning of the 1998 water year, and increased to above normal from April through June, then declined to normal by September 30, the end of water year (figs. 2-5).

Most maximum peak discharges for the 1998 water year occurred on June 13, although some occurred in Nassau and Queens Counties on January 24 and March 9. The June 13 storm caused Carlls River at Babylon, Sampawams Creek at Babylon (each 54 years of record), and Connetquot Brook near Central Islip (20 years of record) to reach new record peaks. Runoff was greater than in the previous water year at all stations, and runoff for the water year ranged from normal to above normal. The maximum monthly mean discharge for the 1998 water year at most stations occurred in May or June, and minimum monthly mean discharges occurred mostly in October. Precipitation for the 1998 water year at Brookhaven National Laboratory was 64.06 in. and was 15.53 in. above normal.

Water levels in most wells screened in the upper glacial aquifer were below average at the beginning of the water year but began a sharp rise that lasted until May or June when they reached above-normal levels, thereafter they began a decline that continued for the remainder of the water year. Water levels at some wells, mostly in southern and eastern Queens and most of Suffolk Counties, reached near-record highs during May or June.

Water levels in most wells screened in the Magothy and Lloyd aquifers were near normal at the beginning of the water year, rose sharply for the next 6 months, then began a normal decline during the last 6 months. Water levels at some wells showed greater than average variability as a result of changes in local pumping rates.

Record-high water levels were measured in 31 wells screened in the upper glacial, Magothy, and Lloyd aquifers in southern and eastern Queens, southern Nassau, and in most of Suffolk Counties. One record-low water level was measured at southern Queens County during the water year.

A ground-water synoptic study of 50 wells in the shallow surficial aquifer of Suffolk County was conducted under the New York state pesticide monitoring program. Wells with known pesticide contamination and in areas where contamination was probable were analyzed for 47 pesticides using detection limits ranging from 0.001 to $0.2 \,\mu g/L$.

SPECIAL NETWORKS AND PROGRAMS

<u>Hydrologic Bench-Mark Network</u> is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by the activities of man.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins—the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 39 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals.

The National Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to accomplish the following objectives: (1) Provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 191 precipitation chemistry monitoring sites. (2) Provide the mechanism to evaluate the effectiveness of the significant reduction in SO₂ emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) Provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO₂ and NOx scheduled to begin in 2000.

Data from the network, as well as information about individual sites, are available through the world wide web at:

http://nadp.nrel.colostate.edu/NADP

The National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources, provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends, and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 53 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies.

Additional information about the NAWQA Program is available through the world wide web at: http://wwwrvares.er.usgs.gov/nawqa/nawqa_home.html

<u>Radiochemical Programs</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 1998 water year that began October 1, 1997, and ended September 30, 1998. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface water, and ground-water level data. The locations of the stations and wells where the data were collected are shown in figures 6A, B, C, 7A, B, C, and 8A, B, C. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for well.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a "List of Stations" in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations, miscellaneous sites, and other stations; therefore, the station number for a partial-record station or a miscellaneous site indicates downstream-order position in a list made up of all types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8-digit number for each station such as 01300500 includes the 2-digit part number "01" plus the 6-digit downstream order number "300500". The part number designates the major river basin. (In a few instances where no gaps were left in the 8-digit numbering sequence, one or two digits were added (making a 9- or 10-digit station number) and (or) a latitude-longitude number was used for identification.)

Latitude-Longitude System

The identification numbers for wells are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first 6 digits denotes the degrees, minutes, and seconds of latitude, the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the wells within a 1-second grid. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, the true latitude and longitude will be listed in the LOCATION paragraph of the station description. See figure 1.

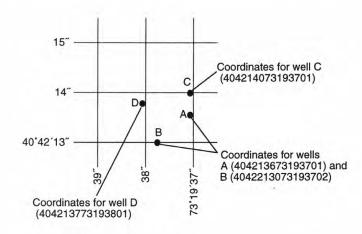


Figure 1. System for numbering wells (latitude and longitude).

A local well-numbering system is also used. It is a 2-part identifier, assigned by the New York State Department of Environmental Conservation, consisting of the abbreviation of county name and the serial number of the well within the county.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Locations of all gaging stations and observation wells in this report are shown in figures 6A, B, C, and 7A, B, C.

Data Collection and Computation

The base data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from either direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations or a tape punched at selected time intervals. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations, Book 3, Chapter A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. For stream-gaging stations, rating tables giving the discharge for any stage are prepared from stage-discharge relation curves. If extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stage-discharge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shifting-control method. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed on the basis of gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins.

For a lake or reservoir station, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge of contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.—Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for some stations, were determined and used by the U.S. Army Corps of Engineers or other agencies.

DRAINAGE AREA.—Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.—This indicates the period for which there are published records for the station or for and equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.—Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised, "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.—The type of gage in current use, the datum of the current gage referred to sea level (see Definition of Terms), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.—All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented at the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.—Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

AVERAGE DISCHARGE.—The discharge value given is the arithmetic mean of the water-year mean discharges. Only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless.

EXTREMES FOR PERIOD OF RECORD.—Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.—Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.—Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data.

REVISIONS.—If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possible, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by a revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Data Table of Daily Mean Values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month, the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second for square mile (line headed "CFSM"); or in inches (line headed "IN."); or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN) or monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______BY WATER YEAR (wy)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary Statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS ______," will consist of all the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (see line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistics, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.—The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- ANNUAL MEAN.—The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes. At least 5 complete years of record must be available before this statistic is published for the designated period.

HIGHEST ANNUAL MEAN.—The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.—The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.—The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.—The minimum daily mean discharge for the year or for the designated period.

- ANNUAL 7-DAY MINIMUM.—The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- INSTANTANEOUS PEAK FLOW.—The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)
- INSTANTANEOUS PEAK STAGE.—The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW.—The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF (AC-FT).—Indicates the depth, in acre-feet, to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it.
- ANNUAL RUNOFF (CFSM).—Indicates the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area for the year.
- ANNUAL RUNOFF (INCHES).—Indicates the depth to which the drainage area would be covered if all the runoff for the year were uniformly distributed on it.

- 10 PERCENT EXCEEDS.—The discharge that is exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.—The discharge that is exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.—The discharge that is exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

Accuracy of the Records

The accuracy of streamflow data depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good," within 10 percent, and "fair," within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft³/s, to tenths between 1.0 and 10 ft³/s, to whole numbers between 10 and 1,000 ft³/s, and to 3 significant figures above 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where large adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables is on file in the district office. also, most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A continuing record station is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, unless otherwise footnoted under "REMARKS." Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. Data for precipitation-quality stations appears next. The table of ground-water quality follows ground-water level records. Data for quality of ground water is listed alphabetically by county, and is identified by well number.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are detailed in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, and A4. These references are listed in the PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS section of this report. These methods are consistent with ASTM standards and generally follow ISO standards.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see definitions) are obtained from at least several

verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

Historical and current (1998) dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure.

For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon hourly punches beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the district office.

Water Temperatures

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures and (or) maximum and minimum temperatures for each day are published.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These methods are consistent with ASTM standards and generally follow ISO standards.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended sediment, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Laboratory Measurements

Samples for indicator bacteria and daily samples for specific conductance are analyzed locally. Sediment samples are analyzed in the Geological Survey laboratory in Arvada, Colo. Methods used to analyze sediment samples and to compute sediment records are described in the TWRI Book 5, Chapters C1. Methods used by the U.S. Geological Survey laboratories are given in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, A4, and A5. These methods are consistent with ASTM standards and generally follow ISO standards.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.—See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.—See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.—This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.—Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.—Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.—Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.—Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.—If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of the U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial record stations and miscellaneous sampling sites are published in a separate table following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remark Codes

The following remark codes may appear with the water-quality data in this report:

REMARK
Estimated value
Actual value is known to be greater than the value shown
Actual value is known to be less than the value shown
Results based on colony count outside the acceptance range (non-ideal colony count)

Dissolved Trace-Element Concentrations

Note.—Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Records of Ground-Water Levels

Although over 950 wells are measured at annual or more frequent intervals, only ground-water level data from a basic network of 662 observation wells are published herein. This basic network contains observation wells so located that the most significant data are obtained from the fewest wells in the most important aquifers.

Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. See figure 1.

Data Collection and Computation

Measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level measurements in this report are given in feet in reference to sea level. National Geodetic Vertical Datum of 1929 is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum in reference to National Geodetic Vertical Datum of 1929 is given in each well description. Water levels in wells equipped with recording gages are reported as mean daily values, and the extremes are instantaneous values selected from the digital record. Water levels in wells not equipped with recording gages are read periodically or measured periodically with a weighted tape by U.S. Geological Survey personnel and (or) an observer.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot.

Data Presentation

Most well records consist of three parts, the station description, the data table of water levels observed during the current water year, and a graph of the water levels for the current water year or other selected period. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings of the well description.

LOCATION.—This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds), a landline location designation, the hydrologic unit number, the distance and direction from a geographic point of reference, and the owner's name.

AQUIFER.—This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.—This entry describes the well in terms of depth, diameter, casing depth and (or) screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.—This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.—This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface

datum is described in feet above (or below) sea level, it is reported with a precision depending on the method of determination.

REMARKS.—This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-survey) observers.

PERIOD OF RECORD.—This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.—This entry contains the highest and lowest water levels of the period of record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet above (or below) sea level and all taped measurements of water level are listed. For wells equipped with recorders, only abbreviated tables are published, generally, only water-level means are listed for every fifth day and at the end of the month (eom). The highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. A hydrograph of water levels follows the data table for some wells. The current year and the previous 9 years of record are plotted in feet above (or below) sea level. If the period of record is less than 10 years, the water levels for the entire record are plotted.

A hydrograph of water levels follows the data table for some wells. The current year and the previous 9 years of record are plotted in feet above (or below) sea level. If the period of record is less than 10 years, the water levels for the entire record are plotted.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the change.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as part of a special study. As a result, the records for this year, by themselves, do not provide a balanced view of Long Island ground-water quality.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey TWRI publications referred to in the "On-site Measurements and Sample Collection" and the "Laboratory Measurements" sections in this data report. In addition, the TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. The values reported

in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

SELECTED RECENT U.S. GEOLOGICAL SURVEY PUBLICATIONS RELEVANT TO LONG ISLAND, NEW YORK

- Busciolano, Ronald, Monti, Jack, Jr., and Chu, Anthony, 1998, Water-table and potentiometric-surface altitudes of the upper glacial, Magothy, and Lloyd aquifers on Long Island, New York, in March-Apriol, 1997, with a summary of hydrogeolo9gic conditions:: U.S. Geological Survey Water-Resources Investigations Report WRI-98-4019, 17 p., 3 pls. (6 sheets)
- Cartwright, R.A., Chu, Anthony, Candela, J.L., Eagen, V.K., Monti, Jack, Jr., and Schubert, C.E., 1998), Ground-water quality in Kings, Queens, and western Nassau Counties, Long Island, New York, 1992-96, with geophysical logs from selected wells: U.S. Geological Survey Open-File Report 98-298, 118 p.
- Franke, O.L., Reilly, T.E., Pollock, D.W., and LaBaugh, J.W., 1998, Estimating areas contributing recharge to wells—lessons from previous studies: U.S. Geological Survey Circular 1174, 14 p.
- O'Brien, A.K., Reiser, R.G., and Gylling, Helle, 1998, Spatial varaiability of volatile organic compounds in streams on Long Island, N.Y., and in New Jersey: U.S. Geological Survey Fact Sheet 194-97, 6 p.
- Phillips, P.J., Wall, G.R., Eckhardt, D.A., Freehofer, D.A., and Rosenmann. Larry, 1998, Pesticide concentrations in surface waters of New York State in relation to land use—1997: U.S. Geological Survey Water-Resources Investigations Report 98-4104, 10 p.
- Poppe, L.J., Lewis, R.S., Denny, J.F., Parolski, K.F., and DiGiacomo-Cohen, M.L., 1998, Sidescan sonar image, surficial geologic interpretation, and bathymetry of the Fishers Island Sound sea floor, Connecticut, New York, and Rhode Island: U.S. Geological Survey Geologic Investigations Map I-2640, 2 sheets, scales 1:15,000 and 1:12,500.
- Poppe, L.J., Taylor, B.B., Blackwood, Dann, Lewis, R.S., and DiGiacomo-Cohen, M.L., 1998, The texture of surficial sediments in southeastern Long Island Sound off Roanoke Point, New York: U.S. Geological Survey Open-File Report 97-529, 18 p.
- Schubert, C.E., 1998, Areas contributing ground water to the Peconic Estuary, and ground-water budgets for the North and South Forks and Shelter Island, eastern Suffolk County, New York: U.S. Geological Survey Water-Resources Investigations Report 97-4136, 36 p., 1 pl.
- Williams, J.H., and Lane, J.W., 1998, Advances in borehole geophysics for ground-water investigations: U.S. Geological Survey Fact Sheet FS-002-98, 4 p.
- Winter, T.C., Harvey, J.W., Franke, O.L., and Alley, W.M., 1998, Ground water and surface water—a single resource: U.S. Geological Survey Circular 1139, 79 p.

ACCESS TO USGS WATER DATA

The U.S. Geological Survey provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at:

http://water/usgs.gov

Some water-quality and ground-water data are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources division District offices. (See address on the back of the title page.)

DEFINITION OF TERMS

Terms related to streamflow, water quality, and other hydrologic data, as used in this report, are defined below. See also the table for converting inch-pound units to the International System of units (SI) on the inside of the back cover.

Acre-foot (AC-FT, acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 325,000 gallons or 1,233 cubic meters.

Algae are mostly aquatic single-celled, colonial, or multi-celled plants, containing chlorophyll and lacking roots, stems, and leaves.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present as stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

<u>Aquifer</u> is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs.

<u>Bacteria</u> are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria which ferment lactose with gas formation within 48 hours at 35°C. In the laboratory these bacteria are defined as the organisms which produce colonies within 24 hours when incubated at 35°C ±1.0°C on M-endo median (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal coliform bacteria are bacteria that are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms which produce blue colonies within 24 hours when incubated at 44.5°C ±0.2°C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Fecal streptococcal bacteria are bacteria found also in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as gram-positive, cocci bacteria which are capable of growth in brain-heart infusion broth. In the laboratory they are defined as all the organisms which produce red or pink colonies within 48 hours at 35°C ±1.0°C on KF Streptococcus agar (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 ml of sample.

Bed material: See Bottom material.

<u>Biochemical oxygen demand</u> (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms. such as bacteria.

<u>Biomass</u> is the amount of living matter present at any given time, expressed as the mass per unit area or volume of habitat.

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500°C for 1 hour. The ash mass values of zooplankton and phytoplankton are expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²).

<u>Dry mass</u> refers to the mass of residue present after drying in an oven at 60°C for zooplankton and 105°C for periphyton, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry mass values are expressed in the same unites as ash mass.

Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass, and represents the actual mass of the living matter. The organic mass is expressed in the same unites as for ash mass and dry mass.

Wet mass is the mass of living matter plus contained water.

<u>Biomass pigment ratio</u> is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.

<u>Bottom material</u> is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.

Recoverable from bottom material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

<u>Total in bottom material</u> is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the

sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material".

<u>Cells/volume</u> refers to the number of cells of any organism which is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample, usually milliliters (mL) or liters (L).

<u>Cfs-day</u> is the volume of water represented by flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, approximately 1.9835 acre-feet, about 646,000 gallons or 2,447 cubic meters.

<u>Chemical oxygen demand</u> (COD) is a measure of the chemically oxidizable material in the water, and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with natural water color or with carbonaceous organic pollution from sewage or industrial wastes.

<u>Chlorophyll</u> refers to the green pigments of plants. Chlorophyll \underline{a} and \underline{b} are the two most common pigments in plants.

<u>Colloid</u> is any substance with particles in such a fine state of subdivision dispersed in a medium, for example water, that they do not settle out; but not in so fine a state of subdivision that they can be said to be truly dissolved.

<u>Color unit</u> is produced by one milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

<u>Confined aquifer</u> is the term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table (it can also be above ground level). Formerly called artesian aquifer.

<u>Contents</u> is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

<u>Control</u> designates a feature downstream from the gage that determines the stage-discharge relation at the gage. This feature may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel.

<u>Control structure</u> as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

<u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area.

<u>Cubic foot per second</u> (FT³/S, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point during 1 second and is equivalent to approximately 7.48 gallons per second or 448.8 gallons per minute or 0.02832 cubic meters per second.

<u>Discharge</u> is the volume of water (or more broadly, volume of fluid plus suspended sediment), that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

<u>Instantaneous discharge</u> is the discharge at a particular instant of time.

Annual 7-day minimum is the lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The data shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

<u>Dissolved</u> is that material in a representative water sample which passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" constituents are made on subsamples of the filtrate.

<u>Diversity index</u> is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\vec{a} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Diversity index values range from zero when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

<u>Drainage area</u> of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontribution areas, within the area unless otherwise noted.

<u>Drainage basin</u> is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic observations of hydrologic data are obtained.

<u>Hardness</u> of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earths (primarily calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide.

<u>Hydrologic unit</u> is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the Office of Water Data Coordination on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Low tide is the minimum height reached by each falling tide.

Mean high or low tide is the average of all high or low tides, respectively, over a specific period.

Mean water level is the average of all tides over a specified period.

Methylene blue active substance (MBAS) is a measure of apparent detergents. This determination depends on the formation of a blue color when methylene blue dye reacts with synthetic detergent compounds.

Micrograms per gram $(\mu g/g)$ is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in solution. Milligrams per liter represent the mass of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L, and is based on the mass of sediment per liter of water-sediment mixture.

National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent local mean sea level at any particular place.

Organic carbon (OC) is a measure of the organic matter present in aqueous solution and (or) suspension. May be reported in any of three categories (DOC, dissolved organic carbon; SOC, suspended organic carbon; TOC total organic carbon).

Organism is any living entity, such as an insect, phytoplankter, or zooplankter.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually millimeters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

<u>Total organism count</u> is the total number of organisms collected and enumerated in any particular sample.

<u>Parameter code</u> is a 5-digit number used in the U.S. Geological Survey's data system, National Water Information System (NWIS), to uniquely identify a specific constituent. The codes used in NWIS are the same as those used in the U.S. Environmental Protection Agency's data system, STORET. The Environmental Protection Agency assigns and approves all requests for new codes.

<u>Partial-record station</u> is a particular site where limited streamflow and (or) water-quality data are collected systematically over a period of years for use in hydrologic analyses.

<u>Particle-size</u> is the diameter, in millimeters (mm), or suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

<u>Particle-size classification</u> used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size (mm)	Method of analysis		
Clay	0.00024 - 0.004	Sedimentation.		
Silt	.004062	Sedimentation.		
Sand	.062 - 2.0	Sedimentation or sieve.		
Gravel	2.0 - 64.0	Sieve.		

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic material is removed and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

<u>Percent composition</u> is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, mass or volume.

<u>Periphyton</u> is the assemblage of algae, fungi, and bacteria which are attached to or live upon submerged objects in lakes or rivers.

<u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants respectively, are the two categories reported.

<u>Picocurie</u> (PC, pCi) is one trillionth (1 x 10^{12}) of the amount of radioactivity represented by a curie (Ci). A curie is the amount of radioactivity that yields 3.7×10^{10} radioactive disintegrations per second. A picocurie yields 2.22 dpm (disintegrations per minute).

<u>Plankton</u> is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers.

<u>Phytoplankton</u> is the plant part of the plankton. They are usually microscopic and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient

substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment, and are commonly known as algae.

<u>Blue-green algae</u> are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water.

<u>Diatoms</u> are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells/mL of sample.

<u>Euglenoids</u> (Euglenophyta) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark.

Fire algae (Pyrrhophyta) are free-swimming unicells characterized by a red spot.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algal mats or floating "moss" in lakes. Their concentrations are expressed as number of cells/mL of sample.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column, and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers.

<u>Polychlorinated biphenyls</u> (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Polychlorinated napthalenes</u> (PCNs) are industrial chemicals that are mixtures of chlorinated napthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

<u>Primary productivity</u> is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated by the plants (carbon method).

Milligrams of carbon per area or volume per unit time [mg C/(m².time) for periphyton and macrophytes and mgC/(m³.time) for phytoplankton] are units for expressing primary productivity. They define the amount of carbon dioxide consumed as measured by radioactive carbon (carbon 14). The carbon 14 method is of greater sensitivity than the oxygen light and dark bottle method, and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period.

<u>Milligrams of oxygen per area or volume per unit time</u> [mg $O_2/(m^2$.time) for periphyton and macrophytes and mg $O_2/(m^3$.time) for phytoplankton] are the units for expressing primary

productivity. They define production and respiration rates as estimated from changes in the measured dissolved oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period.

Runoff in inches (IN., in.) shows the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it.

<u>Sea level</u> refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) — a geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

<u>Sediment</u> is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental factors. Some major factors are degree of slope, length of slope, soil characteristics, land usage, and quantity and intensity of precipitation.

<u>Suspended-sediment</u> is the sediment that at any given time is maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid.

<u>Suspended-sediment concentration</u> is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L).

<u>Suspended-sediment discharge</u> (tons/day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight of volume, that passes a section in a given time. It is computed by multiplying discharge times mg/L times 0.0027.

<u>Total sediment discharge</u> (tons/day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

<u>Mean concentration</u> is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter at 25°C. Specific conductance is related to the type and concentrations of ions in solution and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

<u>Stage-discharge relation</u> is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

<u>Streamflow</u> is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

<u>Substrate</u> is the physical surface upon which an organism lived.

<u>Natural substrates</u> refers to any naturally occurring emersed or submersed solid surface, such as a rock or tree, upon which an organism lived.

Artificial substrate is a device which is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multi-plate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection.

<u>Surface area</u> of a lake is that area outlined on the latest U.S.G.S. topographic map as a boundary of the lake and measured by a planimeter in acres. In localities not covered by topographic maps, the areas are computed from the best maps available at the time planimetered. All areas shown are those for the stage when the planimetered map was made.

<u>Surficial bed material</u> is that part (0.1 to 0.2 ft) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

<u>Suspended</u> (as used in tables of chemical analyses) refers to the amount (concentration) of the total concentration in a water-sediment mixture. The water-sediment mixture is associated with (or sorbed on) that material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative water-suspension sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Determination of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent.

<u>Suspended, total</u> is the total amount of a given constituent in the part of a representative water-suspended sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 96 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total".

Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of (1) <u>dissolved</u> and (2) <u>total</u> concentrations of the constituent.

<u>Taxonomy</u> is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, <u>Hexagenia limbata</u>, is the following:

Kingdom	Animal
Phylum	Arthropoda
Class	Insect
Order	Ephemeroptera
Family	Ephemeridae
Genus	Hexageria
Species	Hexagenia limbata

<u>Time-weighted average</u> is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water that would be contained in a vessel or reservoir that had received equal quantities of water from the stream each day for the year.

<u>Tons per acre-foot</u> indicates the dry mass of dissolved solids in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

<u>Total</u> (as used in tables of chemical analyses):

Total is the total amount of a given constituent in a representative water-suspended sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total". (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determines all of the constituent in the sample.

Total, recoverable is the amount of a given constituent that is in solution after a representative water-suspended sediment sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

When virtually all of a constituent is present in the dissolved phase, the reported value for the dissolved constituent may appear slightly greater than that for the total determination. The difference is within the standard laboratory error for the analytical methods used.

Total load (tons) is the total quantity of any individual constituent, as measured by dry mass or volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed by multiplying the total discharge, times the mg/L of the constituent, times the factor 0.0027, times the number of days.

Total organic carbon (TOC) is a measure of all organic matter present in aqueous solution and suspension.

<u>Water table</u> is the surface of a ground-water body at which the water is at atmospheric pressure. It is defined by the levels at which water stands in wells that penetrate the water body just far enough to hold standing water.

Water-table aquifer is an unconfined aquifer whose upper boundary is the water table.

<u>WDR</u> is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to the state annual basic-data reports published beginning in 1975.

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

<u>WRD</u> is used as an abbreviation for "Water Resources Data" in the REVISED RECORDS paragraph to refer to State annual basic-data reports published before 1975.

WSP is used as an abbreviation for "Water-Supply Paper" in references to previously published reports.

PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS

The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S. Geological Survey, Branch of Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1-D1. Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J.F. Ficke, and G. F. Smoot: USGS-TWRI Book 1, Chapter D1. 1975. 65 pages.
- 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS-TWRI Book 1, Chapter D2. 1976. 24 pages.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2-D1. Application of surface geophysics to ground-water investigations, by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI Book 2, Chapter D1. 1974. 116 pages.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI Book 2, Chapter D2. 1988. 86 pages.

Section E. Subsurface Geophysical Methods

- 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI Book 2, Chapter E1. 1971. 126 pages.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS-TWRI Book 2, Chapter E2. 1990. 150 pages.

Section F. Drilling and Sampling Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS-TWRI Book 2, Chapter F1. 1989. 97 pages.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS-TWRI Book 3, Chapter A1. 1967. 30 pages.
- 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI Book 3, Chapter A2. 1967. 12 pages.
- 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI Book 3, Chapter A3. 1968. 60 pages.
- 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI Book 3, Chapter A4. 1967. 44 pages.

- 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI Book 3. Chapter A5. 1967. 29 pages.
- 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS-TWRI Book 3, Chapter A6. 1968. 13 pages.
- 3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A7. 1968. 28 pages.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI Book 3, Chapter A8. 1969. 65 pages.
- 3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS-TWRI Book 3, Chapter A9. 1989. 27 pages.
- 3-Alo. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A10. 1984. 59 pages.
- 3-A11. Measurement of discharge by the moving-boat method, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 3, Chapter A11. 1969. 22 pages.
- 3-A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS—TWRI Book 3, Chapter A12. 1986. 34 pages.
- 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A13. 1983. 53 pages.
- 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI Book 3, Chapter A14. 1983. 46 pages.
- 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI Book 3, Chapter A15. 1984. 48 pages.
- 3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI Book 3, Chapter A16. 1985. 52 pages.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI Book 3, Chapter A17. 1985. 38 pages.
- 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI Book 3, Chapter A18. 1989. 52 pages.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI Book 3, Chapter A19. 1990. 31 pages.
- 3-A20. Simulation of soluable waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS-TWRI Book 3, Chapter A20. 1993. 38 pages.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI Book 3, Chapter A21. 1995. 56 pages.

Section B. Ground-Water Techniques

- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI Book 3, Chapter B1. 1971. 26 pages.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS-TWRI Book 3, Chapter B2. 1976. 172 pages.
- 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages.
- 3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS-TWRI Book 3, Chapter B4. 1990. 232 pages.
- 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI Book 3, Chapter B4. 1993. 8 pages.

- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS-TWRI Book 3, Chapter B5. 1987. 15 pages.
- 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS-TWRI Book 3, Chapter B6. 1987. 28 pages.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI Book 3, Chapter B7. 1992. 190 pages.

Section C. Sedimentation and Erosion Techniques

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI Book 3, Chapter C1. 1970. 55 pages.
- 3-C2. Field methods for measurement of fluvial sediment, by H.P. Guy and V.W. Norman: USGS-TWRI Book 3, Chapter C2. 1970. 59 pages.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI Book 3, Chapter C3. 1972. 66 pages.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI Book 4, Chapter A1. 1968. 39 pages.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI Book 4, Chapter A2. 1968. 15 pages.

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI Book 4, Chapter B1. 1972. 18 pages.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI Book 4, Chapter B2. 1973. 20 pages.
- 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI Book 4, Chapter B3. 1973. 15 pages.

Section D. Interrelated Phases of the Hydrologic Cycle

4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI Book 4, Chapter D1. 1970. 17 pages.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-A1. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS-TWRI Book 5, Chapter A1. 1989. 545 pages.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS—TWRI Book 5, Chapter A2. 1971. 31 pages.
- 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS-TWRI Book 5, Chapter A3. 1987. 80 pages.
- 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS-TWRI Book 5, Chapter A4. 1989. 363 pages.
- 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI Book 5, Chapter A5. 1977. 95 pages.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS-TWRI Book 5, Chapter A6. 1982. 181 pages.

Section C. Sediment Analysis

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI Book 5, Chapter C1. 1969. 58 pages.

Book 6. Modeling Techniques

Section A. Ground Water

- 6-A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI Book 6, Chapter A1. 1988. 586 pages.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI Book 6, Chapter A2. 1991. 68 pages.
- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS-TWRI Book 6, Chapter A3. 1993. 136 pages.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS-TWRI Book 6, Chapter A4. 1992. 108 pages.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS-TWRI Book 6, Chapter A5, 1993. 243 pages.
- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler. 1996. 125 pages.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI Book 7, Chapter C1. 1976. 116 pages.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI Book 7, Chapter C2. 1978. 90 pages.
- 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS-TWRI Book 7, Chapter C3. 1981. 110 pages.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8-A1. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS-TWRI Book 8, Chapter A1. 1968. 23 pages.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages.

Section B. Instruments for Measurement of Discharge

8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI Book 8, Chapter B2. 1968. 15 pages.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI Book 9, Chapter A6. 1998. Variously paginated.
- 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, by D.N. Myers and F.D. Wilde: USGS-TWRI Book 9, Chapter A7. 1997. 49 pages.
- 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGS-TWRI Book 9, Chapter A8. 1998. 48 pages.
- 9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI Book 9, Chapter A9. 1998. 60 pages.

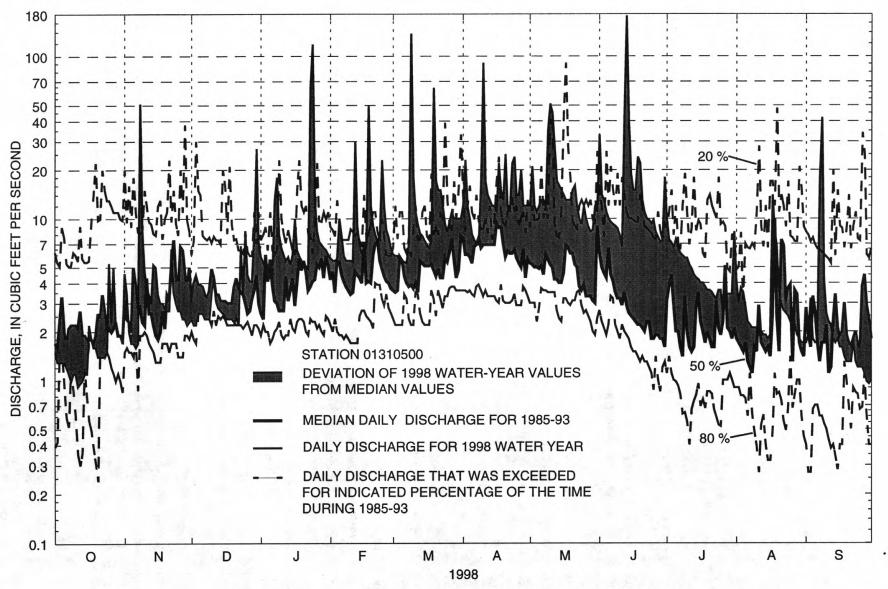


Figure 2.--Discharge data, East Meadow Brook at Freeport, Water year 1998

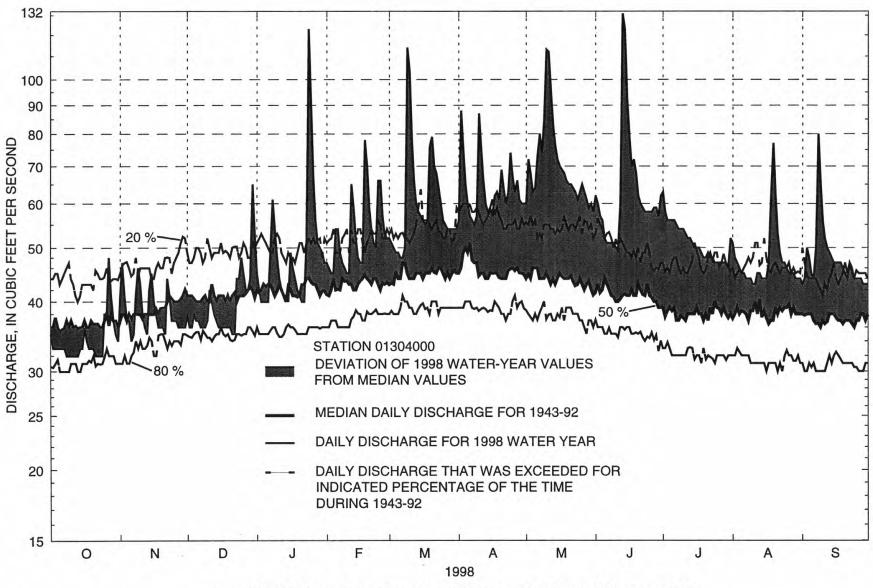


Figure 3.--Discharge data, Nissequogue River near Smithtown, Water year 1998

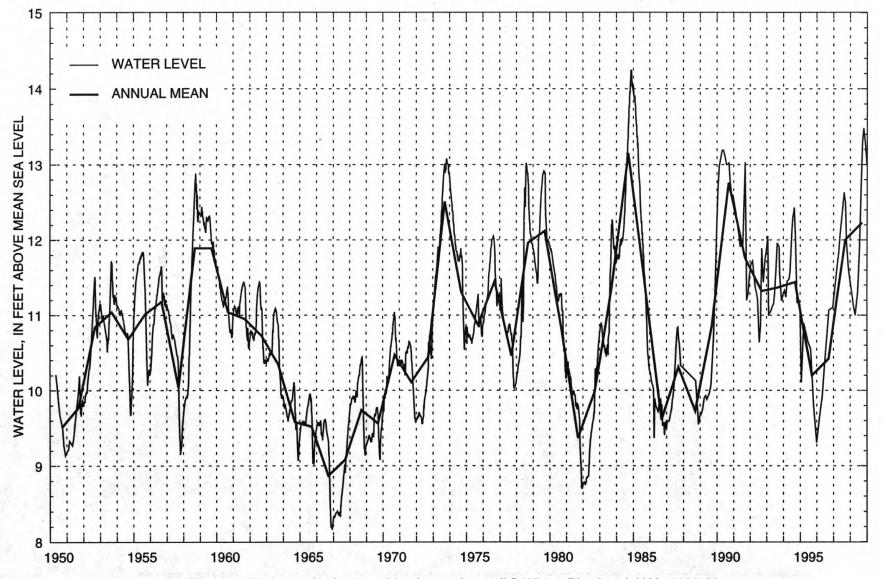


Figure 4.--Hydrograph of water-table observation well S4271 at Riverhead, N.Y., 1950-98



Figure 5.--Hydrograph of water-table observation well N1259 at Plainedge, N.Y., 1909-98

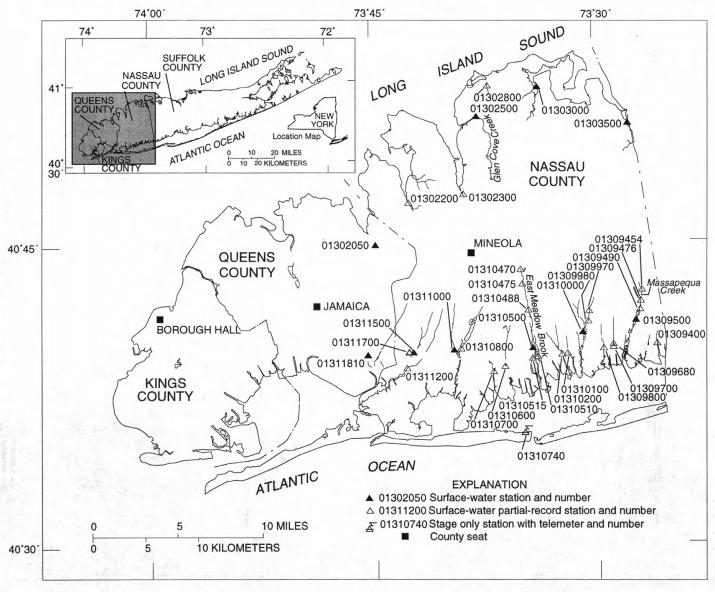


FIGURE 6A.--LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

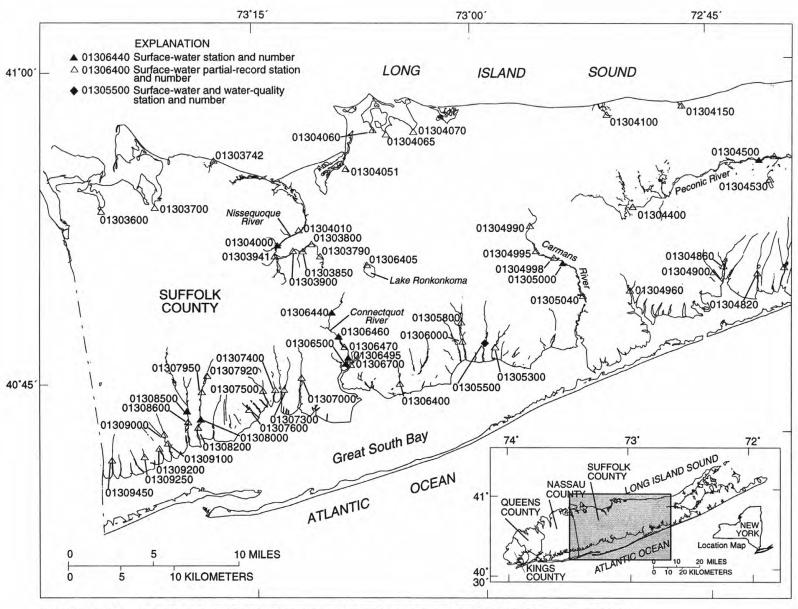


FIGURE 6B.--LOCATION OF SURFACE-WATER DATA COLLECTION STATIONS

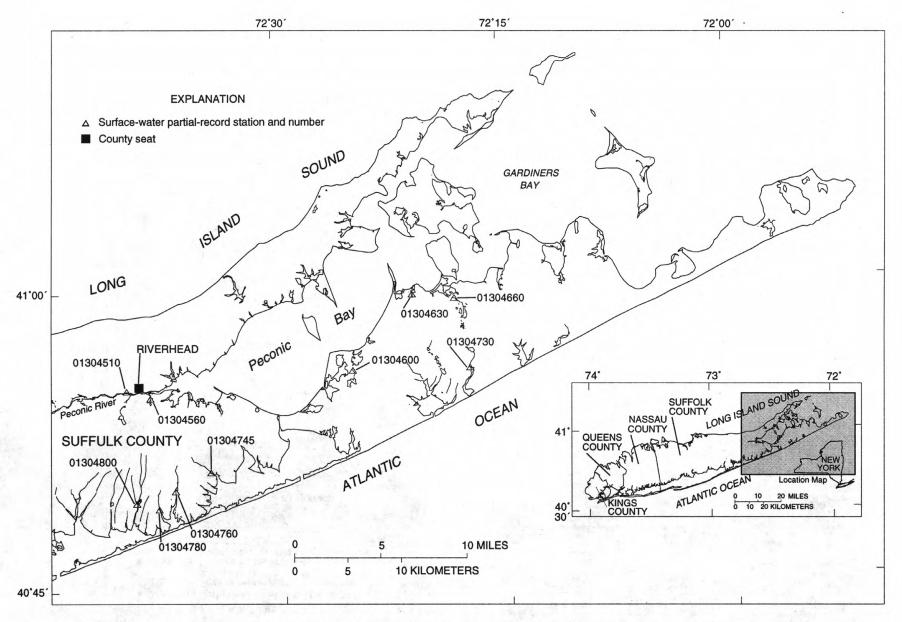


FIGURE 6C.--LOCATION OF SURFACE-WATER DATA COLLECTION SATATIONS

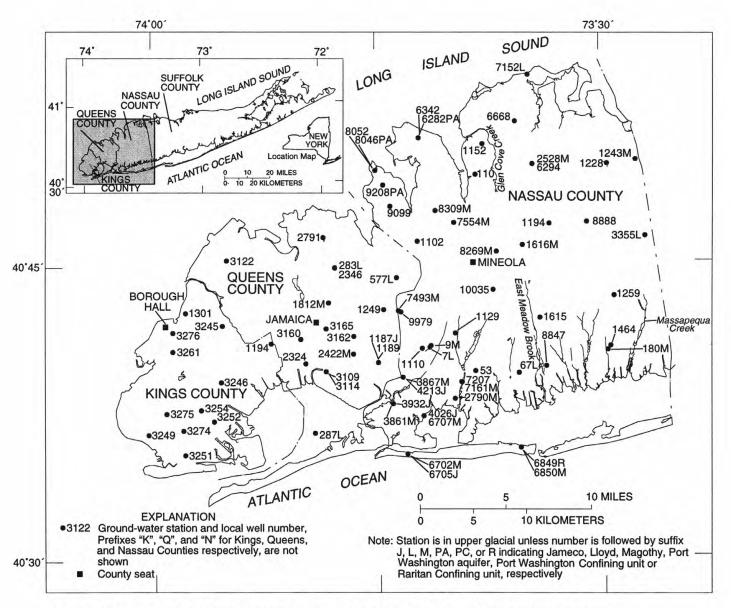


FIGURE 7A.--LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

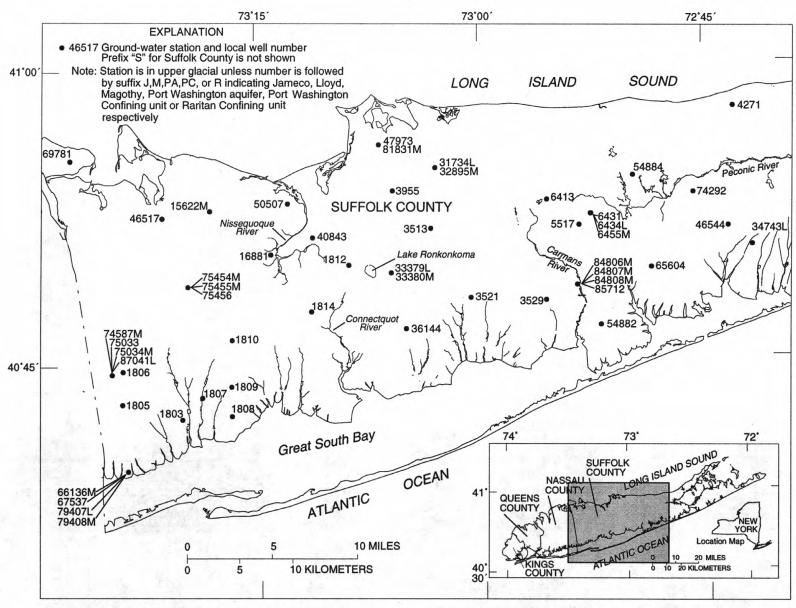


FIGURE 7B.--LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

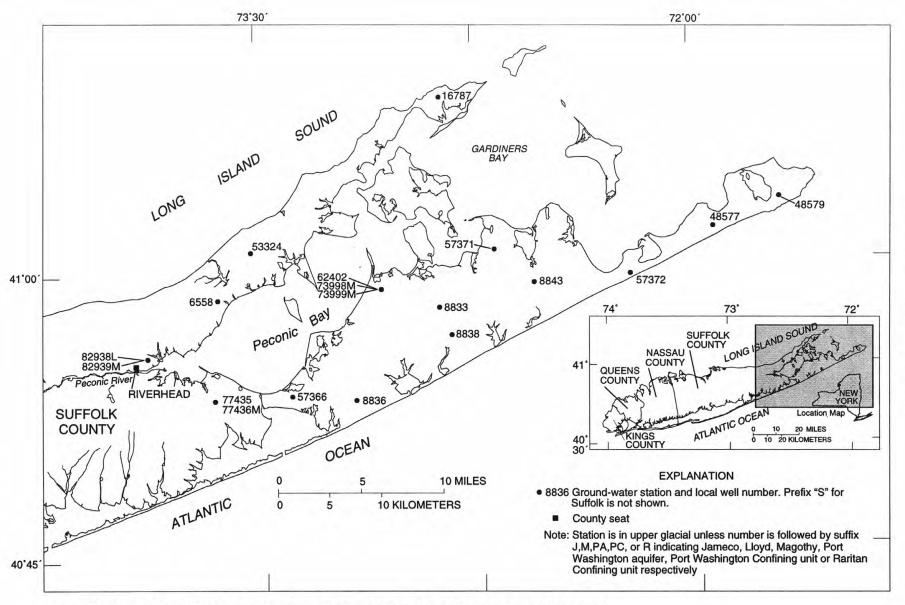


FIGURE 7C.--LOCATION OF WATER-LEVEL DATA COLLECTION STATIONS

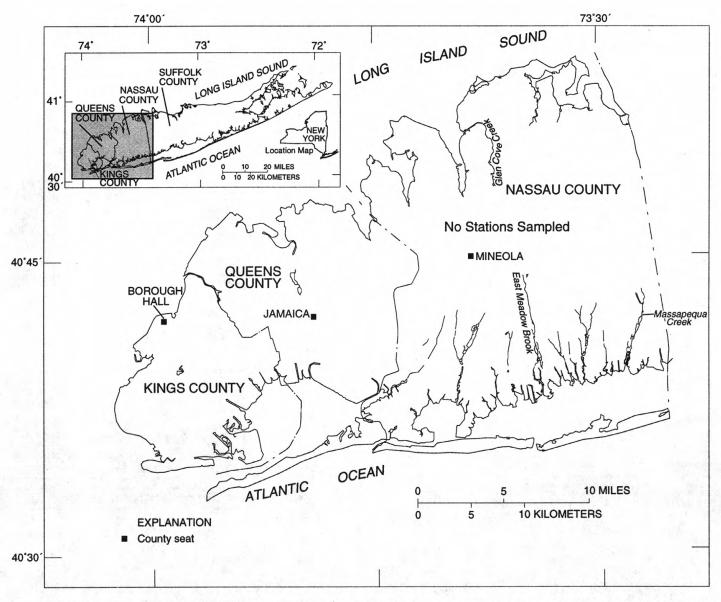


FIGURE 8A.--LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

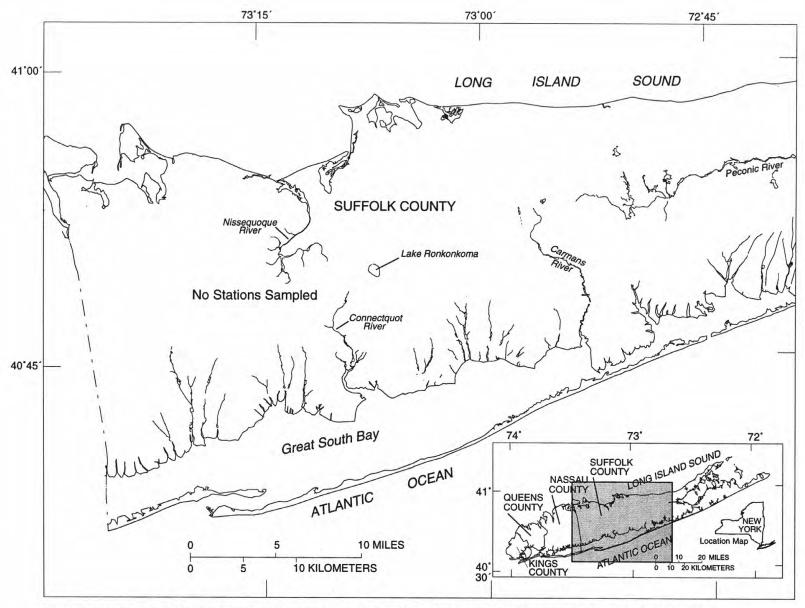


FIGURE 8B.--LOCATION OF QUALITY OF GROUND-WATER DATA COLLECTION STATIONS

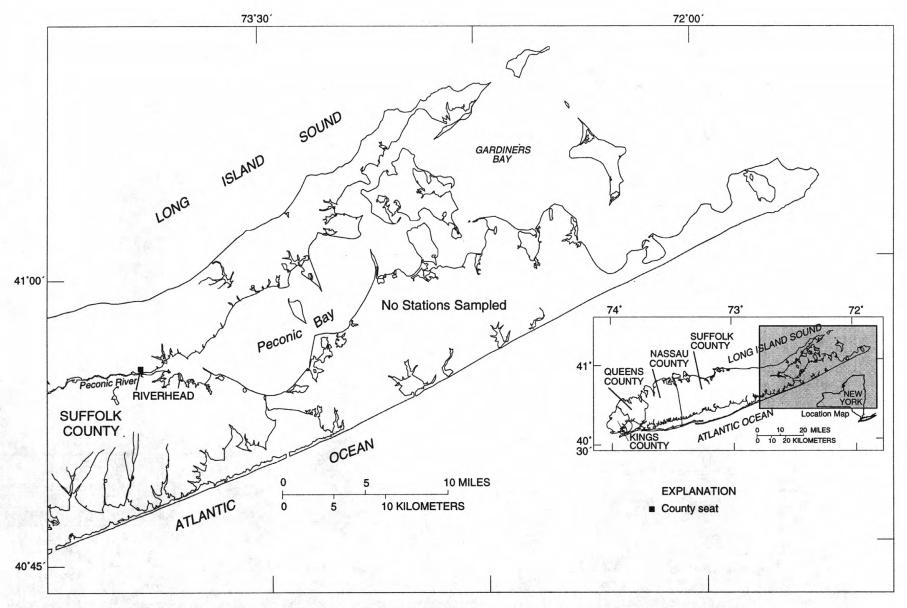


FIGURE 8C.--LOCATION OF QUALITY OF GROUND-WATER- DATA COLLECTION STATIONS

01302050 ALLEY CREEK NEAR OAKLAND GARDENS, NY

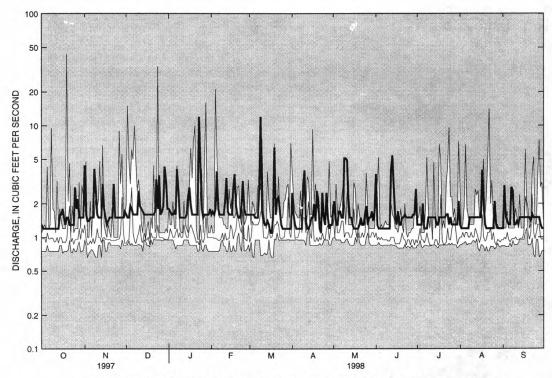
LOCATION.—Lat 40°45′21″, long 73°44′47″, Queens County, Hydrologic Unit 02030201, on right bank just upstream from Cross Island Parkway entrance ramp, at upstream side of 8- x 9-foot concrete culvert in Alley Pond Park, about 4.0 mi northeast of Oakland Gardens.

DRAINAGE AREA.—About 1.6 mi².

PERIOD OF RECORD.—June 1993 to current year.

GAGE.—Water-stage recorder. Datum of gage is 5.26 ft above sea level.

REMARKS.— No estimated daily discharges. Records fair.


EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 354 ft³/s, Oct. 19, 1996, gage height, 5.09 ft, from rating curve extended above 60 ft³/s; maximum gage height, 6.17 ft, Oct. 19, 1996, result of high tide; minimum discharge, 0.66 ft³/s, for part or all of many days 1995-97.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 96 ft³/s, Mar. 9, gage height, 2.68 ft; minimum, 0.95 ft³/s, Mar. 17, gage height, 0.25 ft; minimum gage height, 0.24 ft, Oct. 1-13, 18, Aug. 27, 28.

		DISC	CHARGE, CU	BIC FEET I		O, WATER	YEAR OCTOB	ER 1997	TO SEPTEM	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.3	4.4	1.6	1.8	1.6	1.6	2.5	1.9	3.7	1.3	1.3	1.2
2	1.2	1.6	1.5	1.7	1.7	1.6	1.6	2.1	1.3	1.3	1.2	2.9
3	1.2	1.4	1.5	1.6	1.6	1.6	1.3	1.3	1.2	1.3	1.2	1.5
4	1.2	1.4	1.9	1.6	1.8	1.6	1.2	1.3	1.2	1.3	1.2	1.4
5	1.2	1.5	1.8	1.7	3.9	1.5	1.2	1.7	1.2	2.0	1.2	1.3
6	1.2	1.5	1.6	1.6	1.8	1.5	1.2	1.7	1.2	1.2	1.2	1.3
7												2.8
	1.2	1.5	1.6	4.1	1.6	1.5	1.2	1.5	1.2	1.2	1.2	2.0
8	1.2	4.1	1.6	2.6	1.6	2.8	1.2	1.5	1.2	1.2	1.5	2.6
9	1.2	2.7	1.6	1.5	1.6	12	3.0	5.1	1.2	1.5	1.5	1.3
10	1.2	1.6	2.6	1.5	1.6	1.7	4.0	5.1	1.2	1.5	1.5	1.3
11	1.2	1.5	1.9	1.5	2.1	1.4	1.4	4.9	1.2	1.5	1.5	1.4
12	1.2	1.5	1.8	1.5	3.4	1.3	1.2	2.2	4.1	1.5	1.5	1.3
13	1.2	1.5	1.7	1.5	1.7	1.3	1.2	1.5	5.4	1.5	1.5	1.5
14	1.6	3.0	1.6	1.6	1.6	1.4	1.3	1.5	2.8	1.5	1.5	1.5
15	1.6	1.8	1.6	2.3	1.6	1.3	1.5	1.3	1.5	1.3	1.5	1.5
16	1.8	1.5	1.6	2.8	1.6	1.1	1.5	1.2	1.3	1.3	1.5	1.5
17	1.5	1.3	1.6	1.9	2.7	1.1	2.0	1.2	1.7	1.5	4.0	1.5
18	1.3	1.4	1.6	1.6	3.7	1.5	1.4	1.2	1.3	1.5	2.0	1.5
19	1.5	1.5			1.9			1.2	1.3	1.5	1.3	1.5
			1.6	1.6		6.4	2.6					1.5
20	1.5	1.5	1.6	1.6	1.6	1.6	2.2	1.3	1.5	1.5	1.2	1.5
21	1.3	1.5	1.6	1.6	1.5	2.2	1.2	1.5	1.5	1.5	1.2	1.4
22	1.3	3.0	1.7	1.6	1.5	2.3	1.1	1.3	1.6	1.6	1.2	1.6
23	1.3	1.5	3.3	12	1.9	1.7	2.5	1.3	1.5	1.6	1.2	1.5
24	1.3	1.5	1.8	4.9	3.2	1.3	1.5	1.6	1.5	1.3	1.2	1.5
25	2.8	1.5	3.6	1.8	1.8	1.2	1.3	1.9	1.5	1.5	1.2	1.5
26	1.8	1.5	1.6	1.5	1.6	1.2	2.5	1.3	1.5	1.3	2.1	1.5
27	2.2	1.5	1.7	1.6	1.6	1.2	1.5	1.5	1.5	1.3	1.3	1.5
28	1.5	1.5	1.9	1.6	1.6	1.2	1.2	1.5	1.6	1.3	1.2	1.3
29	1.5	1.5	4.3	1.6		1.2	1.3	1.7	1.6	1.3	1.2	1.2
30	1.5	1.7			222	1.2	1.3	1.4	2.7	1.3	1.2	1.2
31	1.5	1.7	3.2 1.8	1.6		1.2	1.3	1.7	2.7	2.1	1.2	
31	1.3		1.0	1.0		1.2		1.7		2.1	1.2	
TOTAL	44.5	54.9	60.4	69.2	55.4	61.7	50.1	57.4	53.2	44.5	44.7	46.5
MEAN	1.44	1.83	1.95	2.23	1.98	1.99	1.67	1.85	1.77	1.44	1.44	1.55
MAX	2.8	4.4	4.3	12	3.9	12	4.0	5.1	5.4	2.1	4.0	2.9
MIN	1.2	1.3	1.5	1.5	1.5	1.1	1.1	1.2	1.2	1.2	1.2	1.2
STATIST	rics of	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	993 - 199	98, BY WATE	R YEAR (WY)			
MEAN	1.53	1.39	1.77	1.63	1.51	1.56	1.48	1.39	1.19	1.32	1.34	1.36
MAX	2.91	1.83	2.30	2.23	1.98	1.99	1.87	1.85	1.77	1.62	1.73	1.55
(WY)	1997	1998	1997	1998	1998	1998	1997	1998	1998	1997	1997	1998
	.97	.98	1.02	1.18	.93	1.07	1.04	.98	.94	.93	.95	1.10
MIN												
(WY)	1995	1994	1996	1997	1996	1995	1995	1995	1995	1993	1995	1995

01302050 ALLEY CREEK NEAR OAKLAND GARDENS, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALENDA	AR YEAR	FOR 1998 WAT	PER YEAR	WATER YEARS	1993 - 1998
ANNUAL TOTAL	585.30		642.5	7./		
ANNUAL MEAN	1.60		1.76		1.47	
HIGHEST ANNUAL MEAN					1.76	1998
LOWEST ANNUAL MEAN					1.26	1996
HIGHEST DAILY MEAN	9.6	Jul 24	12	Jan 23	44	Oct 19 1996
LOWEST DAILY MEAN	.85	Jan 17	1.1	Mar 16	.66	Sep 24 1995
ANNUAL SEVEN-DAY MINIMUM	.86	Jan 17	1.2	Oct 2	.73	Sep 27 1995
10 PERCENT EXCEEDS	2.2		2.6		2.1	
50 PERCENT EXCEEDS	1.4		1.5		1.1	
90 PERCENT EXCEEDS	1.1		1.2		.85	

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01302500 GLEN COVE CREEK AT GLEN COVE, NY

LOCATION.—Lat 40°51′48″, long 73°38′05″, Nassau County, Hydrologic Unit 02030201, on right bank just downstream from Glen Cove Road, at 8- by 10-foot concrete culvert in Pratt Park, one block west of post office, in Glen Cove.

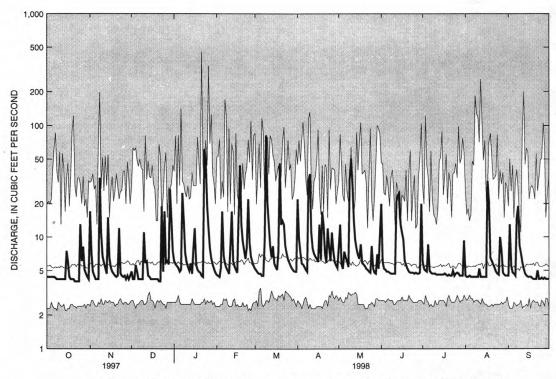
DRAINAGE AREA.—About 11 mi².

PERIOD OF RECORD.—October 1938 to current year. Prior to October 1967, published as Cedar Swamp Creek.

REVISED RECORDS (WATER YEARS).—WSP 971: 1939-42. WDR NY-86-2: 1960 (M).

GAGE.—Water-stage recorder and concrete control. Datum of gage is 15.68 ft above sea level. Prior to Oct. 31, 1977, at datum 0.15 ft higher. Prior to June 17, 1965, at datum 0.19 ft higher.

REMARKS.—No estimated daily discharges. Records good except those above 200 ft³/s, which are fair.


EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 728 ft³/s, Sept. 12, 1960, gage height, 7.12 ft, from rating curve extended above 110 ft³/s on basis of step backwater method; minimum, 2.1 ft³/s, Oct. 15, 1967; minimum gage height, 0.52 ft, Oct. 22, 1959, Oct. 15, 1967.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 498 ft3/s, Aug. 17, gage height, 5.50 ft, from rating curve extended above 110 ft³/s on basis of step-backwater method; minimum, 4.0 ft³/s, Oct. 21-24, Dec. 21, 22, gage height, 0.70 ft.

		DISC	CHARGE, CUI	BIC FEET		D, WATER LILY MEAN	YEAR OCTO VALUES	BER 1997	TO SEPTEM	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	4.4	17	4.9	6.1	4.6	5.2	22	7.9	20	6.0	4.5	4.5
2	4.4	7.1	4.2	5.7	4.5	5.0	9.8	13	6.0	5.2	4.4	13
3	4.4	4.9	4.2	5.5	4.4	4.8	7.2	5.7	5.2	5.0	4.4	5.5
4	4.4	4.5	5.6	5.3	5.3	4.7	5.8	5.2	5.1	4.9	4.5	4.8
5	4.4	4.2	4.9	4.9	17	4.7	5.7	7.4	4.9	8.6	4.4	4.7
6	4.4	4.2	4.2	5.1	6.8	4.5	5.4	6.6	4.9	5.0	4.4	4.5
7	4.3	4.2	4.2	25	5.8	4.5	5.1	6.1	4.8	4.8	4.4	15
8	4.2	34	4.2	14	5.3	9.2	4.9	5.4	4.7	4.7	4.4	19
9	4.2	11	4.2	7.2	5.0	82	32	34	4.7	4.7	4.4	8.4
10	4.2	6.7	11	6.0	4.7	20	37	51	4.7	4.7	4.4	7.2
11	4.2	5.9		5.4	7.9	13	11	29	4.7	4.6	5.2	5.9
12	4.2	5.3	6.1	5.0	17	8.4	7.9	14	21	4.6	4.4	5.2
13	4.2	4.7		5.8	6.1	6.6	7.1	9.4	24	4.6	4.4	4.7
14	4.2	15	4.4	4.7	5.5	8.3	6.7	7.8	25	4.6	4.4	4.5
15	7.5	6.5	4.2	7.8	5.1	5.8	6.4	6.9	13	4.6	4.4	4.4
16	6.0	5.3		12	4.8	5.4	6.0	6.4	11	4.6	4.4	4.4
17	4.4	4.9	4.2	5.6	15	5.1	13	8.6	9.6	4.7	32	4.4
18	4.2	4.7	4.2	5.1	44	7.4	6.3	5.9	6.1	4.6	21	4.3
19	4.2	4.5	4.2	4.9	13	46	17	5.7	5.6	4.5	6.5	4.2
20	4.2	4.4	4.2	4.8	9.2	13	13	5.5	5.2	4.6	6.1	4.2
21	4.0	4.5		4.5	7.6	14	7.0	5.2	4.9	4.5	5.7	4.2
22	4.0	12	4.0	4.4	6.4	13	5.9	5.1	4.8	4.5	5.3	5.0
23	4.0	4.7	19	62	8.1	8.4	12	4.9	4.8	5.0	4.9	4.2
24	4.0	4.5	4.9	48	22	7.2	8.1	4.8	4.8	4.5	4.7	4.2
25	13	4.4	17	19	8.9	6.3	6.1	8.3	4.7	4.7	4.6	4.3
26	6.1		5.9	12	6.7	5.9	11	5.2	4.8	4.8	10	4.2
27	8.2	4.2		8.0	6.0	5.5	7.6	4.8	4.7	4.7	7.7	4.3
28	5.1	4.5		6.4	5.5	5.2	6.0	4.7	4.7	4.5	4.8	4.2
29	4.7	4.2	27	5.7		5.0	5.6	7.0	4.8	4.5	4.6	4.2
30	4.4	4.5	14	5.2		4.9	5.3	5.2	20	4.5	4.5	4.2
31	4.2		7.4	4.8		4.9	===	10		9.3	4.5	4
TOTAL	152.3	211.0	212.8	325.9	262.2	343.9	303.9	306.7	253.2	155.1	198.3	175.8 5.86
MEAN	4.91	7.03	6.86	10.5	9.36	11.1	10.1	9.89	8.44	5.00	6.40	
MAX	13	34		62	44	82	37	51	25	9.3	32	19
MIN	4.0	4.2	4.0	4.4	4.4	4.5	4.9	4.7	4.7	4.5	4.4	4.2
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATE	ER YEARS 1	939 - 19	98, BY WAT	ER YEAR	(WY)			
MEAN	6.38	6.99	7.21	7.66	7.75	8.45	8.18	7.47	6.71	6.82	7.26	6.68
MAX	11.7	15.4	12.7	29.8	16.2	14.7	23.5	21.2	16.0	19.1	20.5	13.7
(WY)	1990	1978	1997	1979	1941	1980	1983	1989	1984	1984	1955	1975
MIN	3.18	3.23	3.48	3.27	3.48	4.32	3.90	3.87	3.07	3.14	3.25	2.84
(WY)	1966	1966	1966	1970	1967	1981	1966	1965	1971	1970	1965	1967

01302500 GLEN COVE CREEK AT GLEN COVE, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1939 - 1998
ANNUAL TOTAL	2293.0	2901.1	
ANNUAL MEAN	6.28	7.95	7.29
HIGHEST ANNUAL MEAN			12.8 1979
LOWEST ANNUAL MEAN			4.22 1966
HIGHEST DAILY MEAN	45 Mar 31	82 Mar 9	455 Jan 21 1979
LOWEST DAILY MEAN	3.6 Jan 8	4.0 Oct 21	2.2 Oct 8 1967
ANNUAL SEVEN-DAY MINIMUM	3.7 Jan 2	4.1 Oct 18	2.3 Oct 2 1967
10 PERCENT EXCEEDS	10	14	11
50 PERCENT EXCEEDS	4.7	5.1	5.8
90 PERCENT EXCEEDS	3.9	4.2	3.5

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01303000 MILL NECK CREEK AT MILL NECK, NY

LOCATION.—Lat 40°53′15″, long 73°33′15″, Nassau County, Hydrologic Unit 02030201, on right bank at Beaver Lake, 30 ft upstream from Feeks Lane (Cleft Road) bridge in Mill Neck, and 1.5 mi southwest of Bayville.

DRAINAGE AREA.—About 11.5 mi².

PERIOD OF RECORD.—January 1937 to current year.

REVISED RECORDS.—WSP 1141: Drainage area.

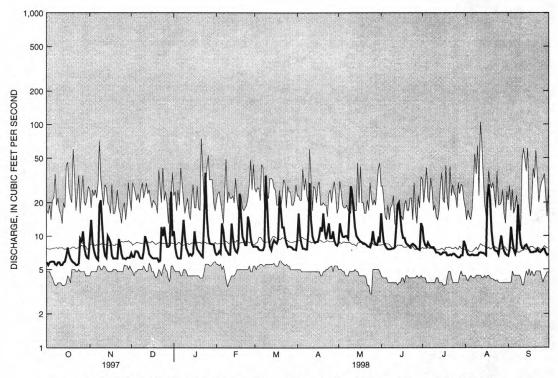
GAGE.—Water-stage recorder and steel sheet-piling control. Datum of gage is 6. 49 ft above sea level.

REMARKS.—No estimated daily discharges. Records good. Slight regulation by ponds above station.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 137 ft³/s, Sept. 12, 1960, gage height, 1.60 ft; maximum gage height, 4.85 ft, Sept. 21, 1938, result of hurricane wave; minimum discharge, 0.09 ft³/s, Dec. 11, 1941, result of freeze up; minimum gage height, 0.14 ft, Sept. 8, 1939, result of wind action.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 32 ft³/s and maximum (*):

Date	Time	Discharge (ft ³ /s)	Gage height (ft)	Date	Time	Discharge (ft ³ /s)	Gage height (ft)
Nov. 8	1800	35	0.70	Mar. 9	1000	56	0.92
Dec. 30	0130	38	.73	Apr. 10	0330	40	.76
Jan. 24	0100	*57	*.93	Aug. 17	1800	51	.87


Minimum discharge, 5.1 ft³/s, Oct. 1, 2, 22; gage height, 0.23 ft.

		DISCH	ARGE, CUE	SIC FEET		D, WATER		DBER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	5.8	9.4	7.0 6.5	11 7.8	6.8	8.1	9.3	8.7	16	12 9.1	8.3	6.6
3	5.5	14 8.8	6.5	6.7	6.9 7.3	8.0 8.0	16 10	13 11	11 8.8	8.3	7.3 6.8	12
4	5.9	7.4	7.3	6.3	7.0	7.6	8.5	9.9	8.2	8.0	6.7	9.1
5	5.9	6.7	7.3	6.3	13	7.5	7.7	9.8	7.8	8.7	6.7	7.5
6	5.9	6.3	7.1	6.3	11	7.5	7.7	10	7.6	8.2	6.8	6.9
7	5.6	6.1	6.5	9.2	8.3	7.5	,	10	7.6	7.9	6.7	7.6
8	5.5	19	6.3	14	7.5	8.1	7.6	9.5	7.6	7.9	6.7	19 11
9 10	5.8 5.8	21 12	6.3 7.3	9.8 7.8	7.2 6.8	35 19	11 30	17 28	7.7	7.9 7.5	6.7 6.7	8.5
11	5.5	8.0	10	7.2	6.8	10	14	23	7.9	7.1	7.0	7.7
12	5.5	6.7	9.0	6.7	13	8.0	10	17	12	7.1	7.1	7.6
13	5.8	6.4	8.0	6.9	9.6	7.5	9.1	12	19	7.0	7.0	8.1
14	5.9	10	6.9	6.7	7.9	8.6	8.7	10	20	6.8	7.0	8.3
15	6.7	9.5	6.6	7.0	7.3	9.2	8.9	9.6	15	6.9	6.9	7.8
16	7.9	8.7	6.4	11	7.1	8.8	8.9	9.2	11	7.1	6.7	7.5
17	6.9	6.7	6.3	8.6	7.9	8.6	10	8.9	9.6	7.1	22	7.1
18	6.3	6.3	6.3	7.6	24	9.5	12	8.8	9.6	7.1	29	7.1
19 20	6.0 5.8	6.3	6.3	7.3	15 10	23 17	11 16	8.5	8.7 8.4	6.7	21 11	7.1
				7.0	10	17	10	8.5				
21	5.7	6.3	5.9	6.7	9.1	12	11	8.4	8.2	6.8	8.4	7.2
22	5.5	9.4	6.0	6.5	8.3	12	9.4	8.1	7.9	6.7	7.5	7.6
23 24	5.5 5.7	8.3	12 10	14 37	8.3 15	9.9 8.7	11 13	8.0 7.9	8.3 8.5	6.9	7.3	7.2
25	9.5	6.3	12	15	13	8.7	9.6	8.6	8.3	6.7	6.8	7.1
26	9.0	6.3	9.6	10	9.6	8.1	9.6	11	8.1	6.5	8.4	7.6
27	11	6.2	8.0	8.6	8.4	8.0	11	9.0	7.7	6.4	10 8.0	7.6
28 29	7.9 6.8	6.4	8.0	8.5	8.0	7.9	9.1	8.4	7.6 7.5	6.7	7.3	6.7
30	6.4	6.4	25	8.4		7.6	8.2	9.4	13	6.7	6.9	6.9
31	6.3		10	7.2		7.5	0.2	8.8		9.0	6.7	
TOTAL	199.1	254.5	255.0	291.6	270.1	323.8	324.3	338.3	296.3	230.8	278.7	243.4
MEAN	6.42	8.48	8.23	9.41	9.65	10.4	10.8	10.9	9.88	7.45	8.99	8.11
MAX	11	21	25	37	24	35	30	28	20	12	29	19
MIN	5.5	6.1	5.9	6.3	6.8	7.5	7.6	7.9	7.5	6.4	6.7	6.6

01303000 MILL NECK CREEK AT MILL NECK, NY (continued)

STATISTICS OF	MONTHI Y	MEAN	DATA	FOR	WATER	YEARS	1937	-	1998	BY	WATER	YEAR	(WY)

DIMITOTICS OF HOME	and brille for within	ILIIII IJJ	, 1550	, DI WILL	it illint (W	- /			
MEAN 8.28 9.15	9.23 9.16	9.31	9.92	9.69	9.19	8.50	8.38	8.53	8.29
MAX 12.9 12.3	14.5 16.4	13.4	13.8	14.9	13.9	14.1	17.9	15.7	13.3
(WY) 1956 1978	1974 1979	1979	1953	1980	1984	1984	1984	1955	1960
MIN 5.22 5.48	5.20 5.36	5.66	6.59	5.19	5.45	4.53	4.10	4.54	4.64
(WY) 1966 1967	1967 1967	1968	1966	1966	1965	1966	1966	1966	1965
SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FC	R 1998 WA	TER YEAR		WATER YEAR	RS 1937	- 1998
ANNUAL TOTAL	2840.8			3305.9					
ANNUAL MEAN	7.78	3		9.06			8.97		
HIGHEST ANNUAL MEAN							12.1		1984
LOWEST ANNUAL MEAN							5.59		1966
HIGHEST DAILY MEAN	25	Dec 30		37	Jan 24		105		2 1955
LOWEST DAILY MEAN	5.4	Jul 14		5.5	Oct 2		3.0		4 1995
ANNUAL SEVEN-DAY MINIMUM	5.6	Jul 29		5.6	Oct 7		3.7	Oct	7 1966
10 PERCENT EXCEEDS	10			13			12		
50 PERCENT EXCEEDS	7.1			7.9			8.3		
90 PERCENT EXCEEDS	5.8			6.3			5.8		

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01303500 COLD SPRING BROOK AT COLD SPRING HARBOR, NY

LOCATION.—Lat 40°51′26″, long 73°27′15″, Nassau County, Hydrologic Unit 02030201, on left bank 270 ft upstream from State Highway 25A, at Cold Spring Harbor Fish Hatchery, and 1.0 mi southwest of village of Cold Spring Harbor.

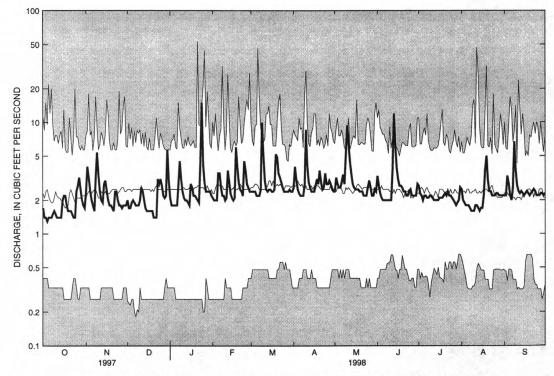
DRAINAGE AREA.—About 7.3 mi².

PERIOD OF RECORD.—July 1950 to current year.

REVISED RECORDS.—WDR NY-81-2: 1954 (M), 1962-63 (M), 1971 (M), 1978-79, 1980 (M).

GAGE.—Water-stage recorder and concrete control. Datum of gage is 5.38 ft above sea level.

REMARKS.—No estimated daily discharges. Records good except those above 100 ft³/s, which are poor. Flow occasionally regulated at outlet of pond 40 ft above station. Diversion from this pond by Cold Spring Harbor Fish Hatchery bypasses station, except during the 1979 water year.


EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 181 ft³/s, Jan. 21, 1979, gage height, 1.99 ft, result of regulation, from rating curve extended above 70 ft³/s; maximum gage height, 5.34 ft, Aug. 31, 1954, backwater from high tide, from high-water mark; minimum discharge, 0.20 ft³/s, part or all of each day Jan. 24-27, 1967, gage height, 0.07 ft.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 34 ft³/s, Jan. 24, gage height, 0.88 ft; maximum gage height, 2.46 ft, Nov. 14, backwater from high tide; minimum discharge, 1.3 ft³/s, Oct. 3-5, 24; minimum gage height, 0.18 ft, Oct. 24.

		DISC	CHARGE,	CUBIC	FEET PE			YEAR OCTOBER VALUES	1997	7 TO SEPTEMBER	1998		
DAY	OCT	NOA	DE	C	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.7	2.4	2.	0	2.1	2.1	2.4	2.6	2.4	3.3	2.7	2.5	2.2
2	1.4	4.0	1.	7	1.8	2.0	2.4	4.0	3.2	2.7	2.3	2.0	2.2
3	1.4	3.2	1.		1.8	2.0	2.4	3.0	2.8	2.3	2.2	1.9	3.3
4	1.3	2.4	1.		1.8	2.0	2.4	2.5	2.6	2.1	2.0	1.8	2.8
5	1.4	2.0	2.		1.8	3.5	2.2	2.3	2.6	2.0	2.2	1.8	2.2
6	1.4	1.8	1.	9	1.8	3.5	2.2	2.2	2.9	2.0	2.2	1.8	2.0
7	1.4	1.6	1.	8	2.7	2.6	2.2	2.2	3.4	2.0	2.1	1.7	2.6
8	1.5	3.2	1.	8	4.5	2.2	2.5	2.2	2.8	2.0	2.1	1.6	6.7
9	1.6	5.4			3.1	2.2	10	2.8	5.0	2.0	2.2	1.6	3.7
10	1.5	3.3			2.4	2.0	5.0	8.6	9.4	2.0	2.2	1.6	2.7
11	1.4	2.4	2.	6	2.1	2.1	3.0	4.1	6.4	2.0	2.1	1.8	2.4
12	1.4	2.0	2.	4	2.0	3.7	2.5	2.9	4.5	3.7	2.0	1.8	2.3
13	1.4	1.9	2.	0	2.0	2.9	2.4	2.6	3.5	12	2.0	1.7	2.4
14	1.4	2.8	1.	7	1.9	2.3	2.5	2.4	2.8	6.4	2.0	1.6	2.3
15	2.0	3.0	1.	6	1.8	2.1	2.5	2.4	2.6	3.9	2.0	1.7	2.2
16	2.2	2.4	1.	6	2.8	2.0	2.4	2.4	2.5	3.1	2.1	1.7	2.3
17	2.2	2.0	1.	6	2.6	2.1	2.4	2.7	2.5	2.7	2.1	2.2	2.4
18	1.8	1.8	1.	6	2.2	6.0	2.5	3.1	2.5	2.7	2.1	3.7	2.3
19	1.6	1.8	1.	6	2.2	4.0	5.2	2.8	2.4	2.6	2.2	5.0	2.2
20	1.6	1.7	1.	4	2.1	2.9	4.9	3,7	2.4	2.4	2.3	3.0	2.3
21	1.6	1.6	1.		2.0	2.5	3.5	2.9	2.4	2.4	2.2	2.4	2.4
22	1.5	2.4	1.	4	1.9	2.4	3.2	2.5	2.2	2.2	2.4	2.4	2.5
23	1.4	2.4	3.	1	4.3	2.2	2.9	2.6	2.2	2.2	2.2	2.2	2.4
24	1.4	2.0	2.	8	15	4.5	2.6	3.5	2.2	2.4	2.2	2.2	2.2
25	2.4	1.8	3.	1	4.2	3.7	2.4	2.8	2.6	2.5	2.1	2.2	2.2
26	2.7	1.8	2.		2.9	2.8	2.4	2.8	3.0	2.2	2.0	2.3	2.2
27	3.2	1.7	2.		2.4	2.6	2.4	3.0	2.6	2.2	1.9	2.3	2.3
28	2.5	1.8	2.	1	2.4	2.4	2.4	2.8	2.2	2.2	1.8	2.2	2.3
29	2.0	1.8	2.	2	2.4		2.5	2.5	2.2	2.2	1.9	2.2	2.2
30	1.8	1.8	5.	7	2.4		2.4	2.4	2.5	2.8	2.0	2.2	2.3
31	1.7	444	3.	0	2.2		2.4		2.4	12221	2.6	2.2	
TOTAL	53.8	70.2	66.	4	87.6	77.3	93.1	89.3	95.7		56.4	67.3	76.5
MEAN	1.74	2.34	2.1	4	2.83	2.76	3.00	2.98	3.09	2.91 2	2.14	2.17	2.55
MAX	3.2	5.4	5.	7	15	6.0	10	8.6	9.4	12	2.7	5.0	6.7
MIN	1.3	1.6	1.	4	1.8	2.0	2.2	2.2	2.2	2.0	1.8	1.6	2.0
STATIST	rics of	MONTHLY	MEAN DA	TA FOR	WATER Y	EARS 195	0 - 199	98, BY WATER	YEAR	(WY)			
MEAN	2.40	2.59	2.5	6	2.75	2.83	2.84	2.85	2.69	2.56 2	2.52	2.61	2.42
MAX	6.02	6.35	5.9		8.56	6.85	6.56		6.60		5.17	6.11	6.35
(WY)	1980	1980	198		1979	1979	1979		1979		1979	1979	1979
MIN	.38	.30	.2		.27	.29	.46	.45	.41	.67	. 63	.59	. 63
(WY)	1966	1967	196		1967	1967	1967		1967		968	1988	1965

01303500 COLD SPRING BROOK AT COLD SPRING HARBOR, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1950 - 1998
ANNUAL TOTAL	763.3	930.8	4.12
ANNUAL MEAN	2.09	2.55	2.64
HIGHEST ANNUAL MEAN			6.32 1979
LOWEST ANNUAL MEAN			.51 1967
HIGHEST DAILY MEAN	7.1 Jul 22	15 Jan 24	53 Jan 21 1979
LOWEST DAILY MEAN	1.3 Jan 1	1.3 Oct 4	.18 Dec 7 1983
ANNUAL SEVEN-DAY MINIMUM	1.4 Jan 3	1.4 Oct 2	.22 Dec 3 1983
10 PERCENT EXCEEDS	2.8	3.5	4.3
50 PERCENT EXCEEDS	2.0	2.3	2.5
90 PERCENT EXCEEDS	1.4	1.7	.86

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY

SURFACE-WATER SITES ON LONG ISLAND

LOCATION.—Lat 40°50′58″, long 73°13′29″, Suffolk County, Hydrologic Unit 02030201, on left bank 0.5 mi downstream from New Mill Pond, 1.0 mi southwest of Smithtown, and 1.5 mi southwest of Village of Smithtown Branch.

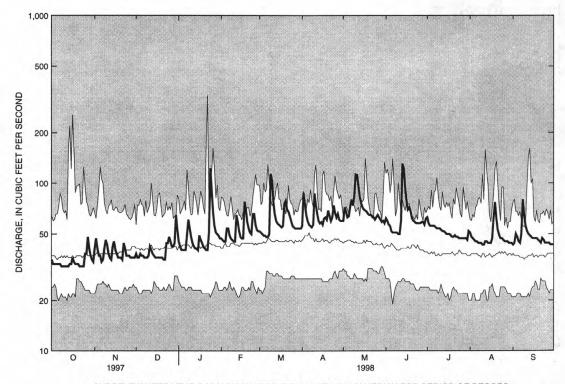
DRAINAGE AREA.—About 27 mi².

PERIOD OF RECORD.—October 1943 to current year.

REVISED RECORDS.—WSP1141: Drainage area.

GAGE.—Water-stage recorder and concrete control. Datum of gage is 9.59 ft above sea level.

REMARKS.—No estimated daily discharges. Records excellent. Occasional regulation caused by cleaning of fish screens and trash racks at outlet of New Mill Pond on main stream and ponds on tributaries above station.


EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 952 ft³/s, Jan. 22, 1979, gage height, 3.22 ft, result of dam failure; minimum, 16 ft³/s, June 5, 6, 1967; minimum gage height, 0.46 ft, Feb. 9, 1951.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 150 ft³/s, June 13, gage height, 1.27 ft; minimum, 31 ft³/s, Oct. 22, 23, gage height, 0.62 ft.

		DISCH	ARGE, CUB	IC FEET P), WATER	YEAR OCTO	BER 1997	TO SEPTEM	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	35	41	38	45	47	52	56	60	62	63	51	43
2	33	47	36	42	46	51	88	72	60	58	48	44
3	33	41	36	40	45	50	75	68	57	56	47	50
4	33	37	38	40	45	49	65	63	56	56	46	48
5	33	37	37	40	54	49	60	64	52	56	45	45
6	33	34	37	40	54	48	57	73	51	56	45	44
7	33	35	36	49	49	48	56	80	51	55	44	50
8	32	41	36	61	47	50	55	74	51	54	44	80
9	32	46	36	54	46	114	57	85	51	54	44	65
10	32	43	37	48	45	104	87	113	50	54	43	56
11	32	38	42	44	45	78	75	112	50	53	43	52
12	32	36	40	42	65	66	66	96	60	52	45	50
13	32	35	38	41	59	60	60	83	131	52	45	49
14	33	42	37	41	52	58	58	76	123	51	44	48
15	33	45	36	40	48	57	59	72	93	50	44	47
16	36	40	36	49	47	56	57	70	79	50	44	47
17	34	38	36	46	47	55	62	69	70	50	47	47
18	33	36	36	44	78	56	63	68	72	49	62	47
19	33	36	36	42	70	76	61	66	68	48	77	46
20	33	36	36	41	59	79	69	65	62	48	62	45
21	32	35	35	40	54	70	64	65	60	49	53	44
22	32	44	35	40	51	68	60	64	59	48	49	47
23	32	41	44	51	50	64	63	63	58	48	47	46
24	32	37	44	123	66	60	74	61	58	47	47	44
25	38	37	48	89	66	56	67	63	58	47	46	44
26	38	37	45	67	57	55	63	65	58	47	45	44
27	48	36	42	56	53	54	66	63	59	47	45	44
28	41	36	42	51	52	54	61	61	59	47	45	43
29	37	36	44	50		54	60	59	57	47	44	43
30	35	36	65	49	-4-	54	60	60	62	46	44	43
31	34	1575	53	47	775	54		58		52	44	
TOTAL	1059	1159	1237	1552	1497	1899	1924	2211	1937	1590	1479	1445
MEAN	34.2	38.6	39.9	50.1	53.5	61.3	64.1	71.3	64.6	51.3	47.7	48.2
MAX	48	47	65	123	78	114	88	113	131	63	77	80
MIN	32	34	35	40	45	48	55	58	50	46	43	43
STATIS	rics of i	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	44 - 199	8, BY WAT	ER YEAR (WY)			
MEAN	38.5	40.5	42.5	43.9	44.9	47.1	48.4	46.4	43.3	40.1	39.6	38.4
MAX	76.1	70.0	63.8	75.5	66.2	70.1	73.7	71.3	69.2	70.4	59.0	55.3
(WY)	1991	1956	1991	1979	1979	1979	1983	1998	1984	1984	1984	1984
MIN	23.5	24.3	24.0	23.3	23.4	29.2	27.3	30.8	25.6	22.4	22.1	24.2
(WY)	1967	1967	1967	1967	1967	1966	1966	1966	1966	1966	1966	1966

01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WA	TER YEAR	WATER YEAR	s 1944 - 1998
ANNUAL TOTAL	16091		18989			
ANNUAL MEAN	44.1		52.0		42.8	
HIGHEST ANNUAL MEAN					58.9	1991
LOWEST ANNUAL MEAN					27.0	1966
HIGHEST DAILY MEAN	79	Apr 1	131	Jun 13	334	Jan 22 1979
LOWEST DAILY MEAN	32	Oct 8	32	Oct 8	19	Jun 6 1967
ANNUAL SEVEN-DAY MINIMUM	32	Oct 7	32	Oct 7	21	Jul 31 1966
10 PERCENT EXCEEDS	54		69		56	
50 PERCENT EXCEEDS	45		49		41	
90 PERCENT EXCEEDS	34		36		31	

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01304500 PECONIC RIVER AT RIVERHEAD, NY

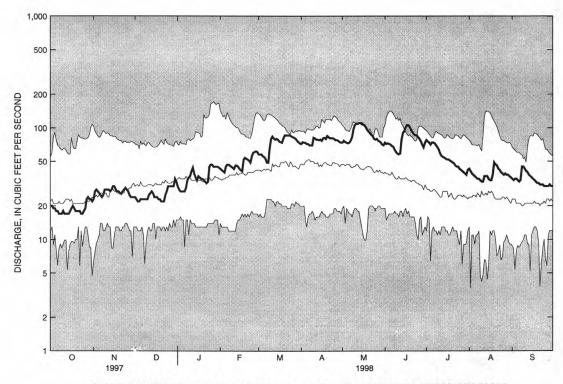
LOCATION.—Lat 40°54′49″, long 72°41′14″, Suffolk County, Hydrologic Unit 02030202, on right bank 200 ft downstream from Long Island Lighting Co. dam, 0.4 mi west of Riverhead, and 1.2 mi upstream from outlet of Sweezy Pond.

DRAINAGE AREA.—About 75 mi².

PERIOD OF RECORD.—June 1942 to current year.

GAGE.—Water-stage recorder and concrete control. Datum of gage is 6.54 ft above sea level.

REMARKS.—No estimated daily discharges. Records good. Flow regulated by ponds above station.


EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 225 ft³/s, Jan. 30, 1978, gage height, 1.20 ft, result of regulation; maximum gage height, 2.09 ft, Mar. 29, 1984, backwater from high tide; minimum discharge, 1.4 ft³/s, Jan. 9, 1966, Jan. 31, 1967, Dec. 6, 1969, Jan. 27, 1972, Dec. 10, 11, 1977; minimum gage height, 0.10 ft, Jan. 31, 1967, result of freezeup, Dec. 6, 1969, Jan. 27, 1972, result of freezeup.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 111 ft³/s, May 12-15, gage height, 0.86 ft; minimum, 17 ft³/s, Oct. 7-15, 22-25, gage height, 0.32 ft.

		DISCH	ARGE, CUB	IC FEET PE		O, WATER		DBER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN '	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20	23	24	30	43	58	72	74	74	78	43	35
2	20	27	23	28	42	58	75	77	72	76	41	34
3	19	28	22	27	41	58	74	75	73	74	39	35
4	19	27	22	27	40	56	74	74	72	71	38	35
5	18	26	23	27	45	55	72	73	71	74	37	34
6	18	25	23	27	47	53	72	74	69	74	36	33
7	17	24	23	29	47	49	70	77	68	73	35	34
8	17	25	23	34	46	49	70	83	64	70	35	45
9	17	28	23	36	45	66	70	97	61	67	34	45
10	18	28	23	37	44	80	82	106	59	64	33	43
11	17	28	25	41	43	84	81	109	58	59	33	41
12	17	28	26	44	46	81	79	109	59	56	37	40
13	17	27	27	39		79	79	111	78	55	37	38
					46						37	37
14	17	28	26	36	45	80	78	111	90	54		37
15	18	30	24	34	43	79	79	111	94	53	35	36
16	19	30	24	37	42	76	77	108	102	52	34	35
17	20	28	24	36	41	75	81	106	106	52	34	34
18	19	27	23	35	52	74	82	102	106	51	38	33
19	18	27	23	35	54	81	80	97	102	50	49	32
20	18	26	22	34	53	86	85	93	96	49	47	32
21	18	26	22	33	52	86	83	90	92	48	46	31
22	18	27	22	32	51	86	81	87	88	46	43	31
23	17	28	25	33	49	86	81	85	86	45	42	31
24	17	29	27	45	56	86	81	80	86	45	40	30
25	18	28	30	47	60	84	80	79	83	43	39	30
26	19	27	30	47	61	83	78	80	80	42	38	30
27	23	25	30	45	62	82	78	77	76	41	39	30
28	24	24	30	45	61	80	77	76	71	40	38	31
29	23	24	30	45	01	77	75	74	67	39	38	30
30		24					74		74	38	37	30
31	23 22		35 33	45 44		75 73		71 70		42	36	
moma r	FOF	000	707	1124	1257	2275	2220	2726	2277	1721	1188	1035
TOTAL	585	802	787	1134	1357	2275	2320	2736	2377	1721		
MEAN	18.9	26.7	25.4	36.6	48.5	73.4	77.3	88.3	79.2	55.5	38.3	34.5
MAX	24	30	35	47	62	86	85	111	106	78	49	45
MIN	17	23	22	27	40	49	70	70	58	38	33	30
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	942 - 199	98, BY WAT	ER YEAR	(WY)			
MEAN	26.3	30.6	34.8	39.0	42.5	48.2	51.4	46.7	40.4	30.5	28.6	25.5
MAX	69.6	80.6	63.8	106	105	109	96.4	96.3	104	84.7	83.4	62.6
(WY)	1990	1990	1984	1979	1979	1979	1984	1958	1984	1984	1989	1954
MIN	12.5	13.3	13.2	14.7	16.4	22.8	17.1	18.7	17.1	13.5	10.8	11.1
(WY)	1967	1967	1967	1966	1967	1966	1966	1966	1986	1966	1966	1966

01304500 PECONIC RIVER AT RIVERHEAD, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 WA	TER YEAR	WATER YEAR	RS 1942 - 1998
ANNUAL TOTAL	12880		18317			
ANNUAL MEAN	35.3		50.2		37.0	
HIGHEST ANNUAL MEAN					67.9	1984
LOWEST ANNUAL MEAN					16.1	1966
HIGHEST DAILY MEAN	64	Jan 29	111	May 13	173	Jan 27 1979
LOWEST DAILY MEAN	17	Sep 21	17	Oct 7	3.7	Aug 2 1944
ANNUAL SEVEN-DAY MINIMUM	17	Sep 21	17	Oct 7	5.8	Aug 9 1966
10 PERCENT EXCEEDS	56	2-2-	83		62	1105 001190
50 PERCENT EXCEEDS	30		43		32	
90 PERCENT EXCEEDS	19		23		17	

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01305000 CARMANS RIVER AT YAPHANK, NY

LOCATION.—Lat 40°49′'9″, long 72°54′'4″, Suffolk County, Hydrologic Unit 02030202, on left bank 50 ft upstream from Long Island Railroad Bridge, 0.6 mi northeast of Yaphank Station, and 0.7 mi southeast of Yaphank.

DRAINAGE AREA.—About 71 mi².

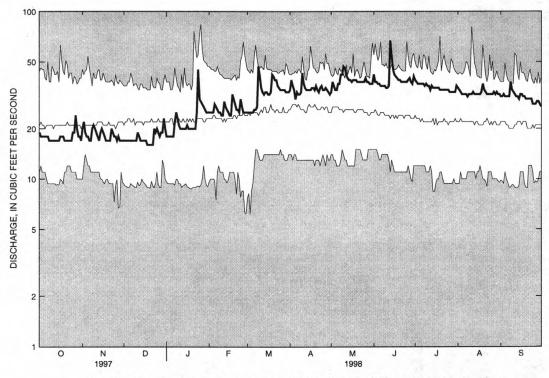
PERIOD OF RECORD.—June 1942 to current year.

REVISED RECORDS.—WSP 1141: Drainage area.

GAGE.—Water-stage recorder and concrete control. Datum of gage is 17.95 ft above sea level. Prior to Feb. 2, 1967, at datum 1.00 ft higher.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Some regulation by two lakes above station.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 143 ft³/s, Aug. 11, 1989, gage height, 2.09 ft; minimum, 2.8 ft³/s, Feb. 24, 1967, gage height, 0.73 ft.


EXTREMES FOR CURRENT YEAR.—Maximum discharge, 122 ft³/s, June 13, gage height, 1.99 ft; minimum, 16 ft³/s, part or all of each day Dec. 18-23; minimum gage height, 1.14 ft, Oct. 14, 22-25, Dec. 18-22.

		DISC	HARGE, CUE	BIC FEET F		, WATER Y		BER 1997	TO SEPTEM	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	20	17	18	e25	e25	34	33	42	39	35	31
2	18	22	17	18	e25	e25	39	38	38	38	34	31
3	18	19	17	18	e25	e25	36	36	38	37	33	32
4	18	18	17	18	e25	e25	34	34	37	37	32	31
5	18	18	17	18	e28	e25	30	34	37	37	32	31
6	18	17	17	18	e27	26	33	37	36	37	32	31
7	18	17	17	22	e26	26	32	37	36	37	32	31
8	17	20	17	25	e25	27	32	42	36	36	31	38
9	17	21	17	23	e25	47	33	42	36	37	32	34
10	17	20	17	e21	e24	41	43	47	35	36	32	33
10	17	20	17	621	624	41	43	47	33	.30	32	33
11	17	19	19	e20	e24	35	37	46	35	36	32	32
12	17	18	18	e20	29	33	35	42	36	34	33	31
13	17	17	17	e20	e27	32	34	40	67	36	32	31
14	17	19	17	e20	e26	33	34	39	55	35	32	30
15	17	20	17	e20	e25	33	34	39	45	35	32	32
16	18	19	17	e21	e24	32	34	38	42	35	32	32
17	18	18	17	e20	e24	32	35	39	41	35	32	31
18	18	17	16	e20	32	33	35	39	40	35	33	31
19	17	17	16	e20	30	42	34	39	39	34	37	30
20	17	17	16	e20	28	41	36	38	39	34	34	30
20	17	17	10	620	20	41	30	30	33	24	24	50
21	17	17	16	e20	26	39	34	38	38	34	33	30
22	17	20	16	e20	26	39	33	38	38	34	32	30
23	17	19	20	e25	e25	36	35	38	38	34	32	30
24	17	18	19	e45	e30	35	36	38	38	34	32	28
25	19	18	20	e30	e27	34	34	38	38	34	32	28
26	19	17	19	e29	e25	34	34	40	39	33	32	28
27	24	18	18	e28	e25	34	35	38	40	33	33	29
28	20	17	19	e27	e25	34	34	38	38	33	32	29
29	18	17	19	e26		33	33	37	37	33	33	28
30	18	17	23	e25		33	32	37	41	33	32	27
31	17		20	e25		33		37		36	32	
TOTAL	554	551	549	700	733	1022	1034	1196	1195	1091	1009	920
MEAN	17.9	18.4	17.7	22.6	26.2	33.0	34.5	38.6	39.8	35.2	32.5	30.7
	24	22	23	45	32	47	43	47	67	39	37	38
MAX		17							35	33	31	27
MIN	17	1/	16	18	24	25	30	33	33	23	21	21
STATIS	rics of	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	42 - 1998	B, BY WAT	ER YEAR (WY)			
MEAN	21.7	22.1	22.6	23.5	24.6	26.0	27.0	26.5	25.3	23.5	23.1	22.0
MAX	38.6	38.1	35.0	42.6	44.0	45.4	42.5	41.8	49.2	46.6	40.9	38.8
(WY)	1980	1956	1980	1979	1979	1979	1984	1984	1984	1984	1984	1984
MIN	10.9	10.6	9.48	9.35	9.74	13.7	13.1	14.1	12.8	10.5	10.5	10.6

01305000 CARMANS RIVER AT YAPHANK, NY (continued)

						the state of the s
SUMMARY STATISTICS	FOR 1997 CALEN	DAR YEAR	FOR 1998 W	ATER YEAR	WATER YEAD	RS 1942 - 1998
ANNUAL TOTAL	8447		10554			
ANNUAL MEAN	23.1		28.9		24.0	
HIGHEST ANNUAL MEAN	7717				37.7	1979
LOWEST ANNUAL MEAN					12.9	1967
HIGHEST DAILY MEAN	35	Apr 1	67	Jun 13	84	Jan 26 1978
LOWEST DAILY MEAN	16	Dec 18	16	Dec 18	6.2	Feb 28 1967
ANNUAL SEVEN-DAY MINIMUM	16	Dec 16	16	Dec 16	7.4	Feb 25 1967
10 PERCENT EXCEEDS	28		38		34	
50 PERCENT EXCEEDS	24		32		23	
90 PERCENT EXCEEDS	17		17		16	

e Estimated

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01305500 SWAN RIVER AT EAST PATCHOGUE, NY

LOCATION.—Lat 40°46′01″, long 72°59′39″, Suffolk County, Hydrologic Unit 02030202, on left bank 94 ft downstream from Montauk Highway in East Patchogue, 200 ft downstream from outlet of Swan Lake, and 1.2 mi upstream from mouth. DRAINAGE AREA.—About 8.6 mi².

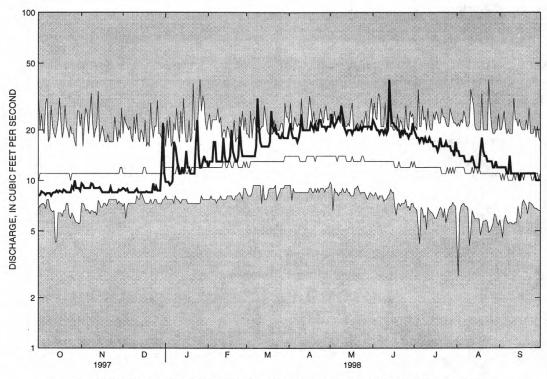
WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—October 1946 to current year.

REVISED RECORDS.—WSP 1622: Drainage area. WDR NY-81-2: 1952-77 (M), 1978 1979-80 (M).

GAGE.—Water-stage recorder and concrete control. Datum of gage is 2.84 ft above sea level.

REMARKS.—No estimated daily discharges. Records fair. Flow regulated at outlet of Swan Lake.


EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 77 ft³/s, Aug. 24, 1990, gage height, 2.71 ft; minimum, 0.06 ft³/s, Sept. 2, 1964, gage height, 0.02 ft, result of regulation.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 69 ft³/s, June 13, gage height, 2.39 ft, minimum, 8.1 ft³/s, Oct. 1-3, 5-11; minimum gage height, 0.56 ft, Oct. 1, 5, 10-11.

		DISCH	ARGE, CUB	IC FEET F		, WATER Y		BER 199	7 TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.1	9.6	9.0	9.8	12	14	20	21	23	20	15	12
2	8.2	9.4	8.9	9.8	13	14	22	25	22	19	15	12
3	8.6	9.0	8.7	9.8	13	14	19	22	21	18	14	12
4	8.5	9.0	8.9	9.4	13	14	18	21	20	18	14	12
5	8.4	9.0	8.5	9.6	17	14	18	22	20	17	14	12
6	8.2	9.0	8.5	9.9	17	14	18	23	19	18	14	11
7	8.4	9.0	8.5	17	13	14	17	24	20	18	13	11
8	8.4	9.6	8.5	16	13	16	18	23	20	17	13	14
9	8.4	9.5	8.5	14	13	31	20	28	19	18	13	11
10	8.1	9.0	8.7	12	13	21	25	25	20	17	13	11
11	8.4	9.0	8.9	11	13	17	20	21	19	17	13	11
12	8.5	9.0	8.5	11	18	16	20	20	20	18	14	11
13	8.5	9.0	8.5	12	14	16	20	19	40	17	13	11
14	8.7	9.1	8.5	11	13	16	20	20	27	17	12	11
15	8.5	8.8	8.5	12	13	16	20	20	22	16	12	10
16	8.7	8.5	8.5	15	13	16	20	20	22	16	12	11
17	8.6	8.5	8.5	12	14	16	22	19	21	16	12	11
18	8.5	8.5	8.6	12	20	17	21	20	21	15	15	11
19	8.8	8.5	8.5	11	15	26	20	20	20	16	18 15	11 11
20	8.7	8.5	8.5	11	14	21	22	21	20	18	13	11
21	8.5	8.5	8.5	11	13	20	20	20	18	16	14	11
22	8.5	9.1	8.5	11	13	21	20	20	20	16	14	11
23	8.5	8.5	9.6	17	14	19	23	21	19	16	13	11
24	8.5	8.5	8.7	23	21	19	23	20	20	17	13	11
25	9.2	8.5	9.2	14	16	18	21	21	19	16	13	11
26	8.9	8.5	8.7	12	14	18	21	21	19	16	13	11
27	10	8.5	8.7	12	14	19	21	21	18	16	12	10
28	9.0	8.8	8.7	13	14	18	20	21	19	15	12	10
29	9.0	8.7	12	14		18	21	21	19	15	13	10
30 31	9.0	8.8	22 11	13 13		18 18	21	21 20	22	14 17	12 12	10
	267.0	265.9	287.8	388.3	402		611	661	629	520	415	333
TOTAL MEAN	8.61	8.86	9.28	12.5	403 14.4	549 17.7	20.4	21.3	21.0	16.8	13.4	11.1
MAX	10	9.6	22	23	21	31	25	28	40	20	18	14
MIN	8.1	8.5	8.5	9.4	12	14	17	19	18	14	12	10
										7.4	12	10
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	47 - 1998	B, BY WAT	ER YEAR	(WY)			
MEAN	11.2	11.4	11.6	12.2	12.6	13.4	14.2	13.9	13.2	12.2	11.7	11.1
MAX	17.3	18.0	16.4	18.6	18.3	19.6	21.7	21.5	21.6	20.7	20.1	19.7
(WY)	1980	1956	1984	1979	1973	1984	1984	1984	1984	1979	1984	1984
MIN	7.26	7.67	7.64	7.64	8.03	9.49	8.85	9.19	8.01	7.25	6.16	7.30
(WY)	1989	1966	1967	1967	1967	1966	1966	1995	1981	1995	1995	1995

STREAMS ON LONG ISLAND

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1947 - 1998
ANNUAL TOTAL	4178.0	5330.0	
ANNUAL MEAN	11.4	14.6	12.4
HIGHEST ANNUAL MEAN			18.5 1984
LOWEST ANNUAL MEAN			8.59 1995
HIGHEST DAILY MEAN	23 Apr 28	40 Jun 13	40 Jan 26 1978
LOWEST DAILY MEAN	2.7 Aug 2	8.1 Oct 1	2.7 Aug 2 1997
ANNUAL SEVEN-DAY MINIMUM	7.0 Jul 28	8.3 Oct 5	5.5 Aug 18 1995
10 PERCENT EXCEEDS	15	21	16
50 PERCENT EXCEEDS	12	14	12
90 PERCENT EXCEEDS	8.1	8.5	8.9

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01306440 CONNETQUOT BROOK AT CENTRAL ISLIP, NY

LOCATION.—Lat 40°47′33″, long 73°09′58″, Suffolk County, Hydrologic Unit 02030202, 200 ft downstream from culvert on Veterans Memorial Highway, 2.0 mi northeast of Central Islip, and 3.8 mi upstream from gaging station 01306499.

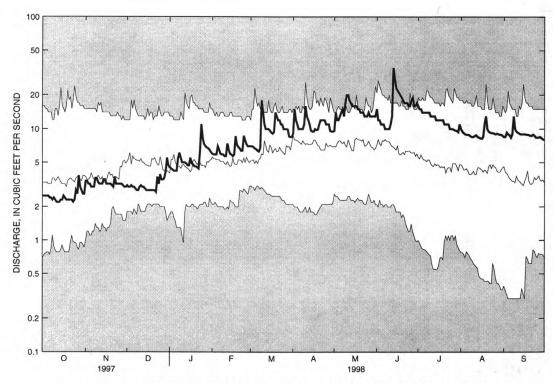
DRAINAGE AREA.—About 12 mi².

PERIOD OF RECORD.—Occasional low-flow measurements, water years 1968, 1971-78. May 1979 to current year.

GAGE.—Water-stage recorder and Parshall flume. Datum of gage is 29.93 ft above sea level.

REMARKS.—Records good except those for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 40 ft³/s, Aug. 4, 1979, gage height, 1.56 ft; minimum, 0.30 ft³/s, part or all of each day Sept. 3-17, 1995, gage height, 0.11 ft.


EXTREMES FOR CURRENT YEAR.—Maximum discharge, 39 ft³/s, June 13, gage height, 1.61 ft; minimum, 2.1 ft³/s, Oct. 10-14, 22-24, gage height, 0.26 ft.

		DISCH	ARGE, CUE	SIC FEET F		D, WATER		OBER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.5	3.4	3.1	4.5	6.0	7.0	9.2	9.6	e15	16	10	8.5
2	2.5	3.4	3.0	4.4	5.9	7.0	15	14	e12	15	9.5	8.5
3	2.5	3.2	3.0	4.3	5.9	6.9	12	12	e12	15	9.2	9.3
4	2.5	3.2	3.1	4.2	5.9	6.7	11	12	e11	14	9.0	9.0
5							10	13	e11	14	8.9	8.8
5	2.5	3.0	3.0	4.2	7.0	6.6	10	13	err	14	0.5	0.0
6	2.4	3.0	3.0	4.2	6.5	6.4	10	14	e11	14	8.9	8.4
7	2.4	3.0	2.9	5.4	6.0	6.3	10	15	e10	14	8.8	9.0
8	2.3	3.6	2.8	6.1	5.9	6.8	10	13	e10	14	8.6	13
9	2.4	3.6	2.8	5.5	5.9	18	11	17	e10	14	8.5	10
10	2.3	3.3	3.0	5.0	5.7	14	16	20	e10	13	8.5	9.5
11	2.2	3.2	3.1	5.0	5.7	11	13	20	e11	13	8.7	9.3
11						11					8.8	9.1
12	2.2	3.2	3.0	5.0	7.4	10	12	18	e13	13		9.1
13	2.2	3.2	3.0	4.9	6.5	10	11	17	e35	13	8.5	9.0
14	2.3	3.5	2.9	4.7	6.0	10	9.7	16	e28	12	8.4	9.0
15	2.3	3.5	2.8	4.7	5.9	9.7	9.5	16	e23	12	8.3	9.0
16	2.5	3.2	2.8	5.5	5.7	9.3	9.5	16	e22	12	8.2	9.0
17	2.4	3.2	2.8	4.9	5.9	9.1	10	16	e21	12	8.5	8.9
18	2.3	3.2	2.8	4.8	8.6	9.4	9.8	15	20	12	11	8.9
19	2.3	3.2	2.8	4.6	7.2	14	9.9	15	19	12	13	8.8
20	2.3	3.1	2.8	4.6	6.9	13	11	14	18	11	10	8.7
20	2.3	3.1	2.0	4.0	0.9	13	11	14	10	11	10	0.7
21	2.3	3.0	2.8	4.5	6.7	12	12	14	17	11	9.5	8.7
22	2.3	3.7	2.7	4.4	6.4	12	12	14	17	11	9.3	8.9
23	2.2	3.2	3.7	6.3	6.4	11	12	13	17	11	9.2	8.7
24	2.3	3.2	3.2	11	8.7	11	12	13	16	10	9.2	8.4
25	2.8	3.2			7.9	10	11	13	16	10	9.1	8.4
25	2.0	3.2	3.9	8.2	7.9	10	11	13	10	10	9.1	0.4
26	2.6	3.2	3.5	7.3	7.3	10	11	14	18	10	9.0	8.4
27	3.8	3.2	3.5	7.0	7.0	10	11	e13	19	9.8	9.1	8.5
28	3.0	3.1	3.6	6.8	7.0	9.9	9.6	e13	16	9.7	9.0	8.3
29	2.8	3.0	4.1	6.7		8.6	9.5	e13	16	9.6	8.9	8.1
30	2.6	3.0	5.5	6.5		8.5	9.5	e13	17	9.4	8.9	8.0
31	2.6		4.7	6.2	(8.5		e13		11	8.7	1277
TOTAL.	76.6	07.0	00.7	171 /	107.0	200 5	220.2	110 6	401	277 5	283.2	268.1
TOTAL	76.6	97.0	99.7	171.4	183.9	302.7	329.2	448.6	491	377.5		
MEAN	2.47	3.23	3.22	5.53	6.57	9.76	11.0	14.5	16.4	12.2	9.14	8.94
MAX	3.8	3.7	5.5	11	8.7	18	16	20	35	16	13	13
MIN	2.2	3.0	2.7	4.2	5.7	6.3	9.2	9.6	10	9.4	8.2	8.0
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	YEARS 1	978 - 199	98, BY WAT	TER YEAR ((WY)			
MEAN	5.05	5.35	6.04	5.81	6.08	7.04	8.29	8.08	7.95	6.12	5.71	5.16
MAX	14.3	14.0	13.4	14.7	13.1	15.0	14.9	14.7	17.8	18.8	15.6	16.0
(WY)	1991	1991	1991	1991	1991	1991	1984	1984	1984	1984	1984	1984
	.93		1.98	2.16	2.53	2.67	1.95	2.33	1.99	.94	.62	.55
MIN		1.69							1988	1988	1988	1995
(WY)	1989	1982	1996	1989	1989	1995	1995	1995	1988	1988	1988	1333

01306440 CONNETQUOT BROOK AT CENTRAL ISLIP, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALENDA	R YEAR	FOR 1998 WAS	TER YEAR	M	ATER YEAR	S 1978 - 1998
ANNUAL TOTAL ANNUAL MEAN	2145.9 5.88		3128.9 8.57			6.26	
HIGHEST ANNUAL MEAN	3.00		8.37			12.3	1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	13	Apr 28	35	Jun 13		2.17 35	1995 Jun 13 1998
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM		Oct 11 Oct 8	2.2	Oct 11 Oct 8		.30	Sep 4 1995 Sep 4 1995
10 PERCENT EXCEEDS	9.2	000	15	000		13	Sep 4 1995
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	5.8 2.7		8.7 2.8			5.3	

e Estimated

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01306460 CONNETQUOT BROOK NEAR CENTRAL ISLIP, NY

LOCATION.—Lat 40°46′19″, long 73°09′33″, Suffolk County, Hydrologic Unit 02030202, 200 ft upstream from bridge on dirt road in Connetquot River State Park Preserve, and 1.8 mi upstream from gaging station 01306499.

DRAINAGE AREA.—About 18 mi².

PERIOD OF RECORD.—Occasional low-flow measurements, water years 1968, 1973-77. November 1977 to current year.

GAGE.—Water-stage recorder and wooden stoplog control. Datum of gage is 15.10 ft above sea level.

REMARKS.—No estimated daily discharges. Records good except those for March to September, which are fair.


EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 155 ft³/s, June 13, 1998, gage height, 3.89 ft; minimum recorded, 11 ft³/s, part or all of each day Aug. 7-14, Sept. 29 to Oct. 2, 1988, Aug. 4-5, Aug. 21 to Sept. 17, 1995, but may have been less during period of estimated record, Aug. 15 to Sept. 29, 1988.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 155 ft³/s, June 13, gage height, 3.89 ft; minimum, 15 ft³/s, part or all of each day Oct. 1-8, gage height, 2.40 ft.

		DISCH	ARGE, CUE	IC FEET I		, WATER LY MEAN	YEAR OCTO	BER 1997	TO SEPTEM	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	15	24	20	31	32	30	32	32	41	37	28	22
2	15	29	20	27	32	30	46	44	39	35	26	22
3	15	25	20	27	32	30	40	40	36	34	24	23
4	15	21	20	26	31	30	37	39	35	34	23	23
5	15	20	20	24	35	30	34	40	34	33	23	22
6	15	20	20	24	34	29	33	43	33	33	21	22
7	15	20	20	30	31	29	33	45	33	32	22	22
8	16	21	20	42	30	29	33	41	33	31	21	36
9	16	23	19	36	30	69	33	51	33	31	21	29
												26
10	16	22	19	33	30	55	53	62	32	31	21	26
11	16	21	21	33	30	45	41	60	32	31	21	24
12	16	19	21	33	38	42	39	53	37	30	22	24
13	16	19	21	33	33	41	38	50	121	30	22	23
14	16	21	21	33	31	41	35	49	85	29	22	23
15	16	22	21	33	30	38	34	47	58	28	22	23
16	16	22	21	34	30	34	33	44	52	28	21	23
17	17	21	21	33	30	34	33	43	46	28	21	23
18	16	21	21	33	45	34	33	43	45	28	27	23
19	16	20	21	33	36	48	32	42	44	27	37	22
20	16	19	20	32	33	48	36	42	40	27	28	22
21	16	19	20	32	31	43	35	42	39	27	27	22
22	16	26	20	29	31	43	35	41	39	27	27	22
23	16	24	25	33	30	42	36	41	39	26	25	23
24	16	22	23	65	41	42	41	39	40	25	25	23
25	19							37	39	25	25	22
25	19	22	28	45	37	39	35	37	39	25	25	22
26	19	22	26	43	33	36	34	38	40	24	24	22
27	29	21	24	43	31	35	36	38	42	24	23	22
28	22	20	25	35	31	34	33	37	38	24	23	22
29	22	20	26	34		33	32	37	36	24	23	22
30	22	20	40	33		32	32	37	37	24	22	22
31	22		34	32		32		36		28	22	- nen
TOTAL	533	646	698	1054	918	1177	1077	1333	1298	895	739	699
MEAN	17.2	21.5	22.5	34.0	32.8	38.0	35.9	43.0	43.3	28.9	23.8	23.3
MAX	29	29	40	65	45	69	53	62	121	37	37	36
MIN	15	19	19	24	30	29	32	32	32	24	21	22
STATIST	rics of M	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	78 - 199	98, BY WATE	ER YEAR (WY)			
MEAN	22.8	24.5	27.5	28.2	28.4	30.8	32.8	30.9	30.0	24.9	24.2	22.2
MAX	43.0	38.8	37.0	45.4	49.4	52.0	48.6	44.1	46.2	47.8	43.5	37.2
(WY)	1991	1990	1990	1979	1979	1979	1983	1979	1984	1984	1979	1984
MIN	13.0	17.1	17.9	17.8	17.4	15.5	15.5	15.7	15.1	13.5	11.5	12.3
(WY)	1989	1988	1996	1995	1995	1995	1995	1995	1995	1988	1988	1988
(AA T)	1303	1300	1990	1333	1333	1333	1333	1333	1990	1300	1900	1900

01306460 CONNETQUOT BROOK NEAR CENTRAL ISLIP, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALENDAR Y	ZEAR	FOR 1998 WA	TER YEAR	WATER YEAR	s 1978 - 1998
ANNUAL TOTAL	8985		11067			
ANNUAL MEAN	24.6		30.3		27.0	
HIGHEST ANNUAL MEAN					39.8	1979
LOWEST ANNUAL MEAN					15.5	1995
HIGHEST DAILY MEAN	46 Apr	28	121	Jun 13	121	Jun 13 1998
LOWEST DAILY MEAN	15 Oct	1	15	Oct 1	11	Aug 7 1988
ANNUAL SEVEN-DAY MINIMUM	15 Oct	t 1	15	Oct 1	11	Aug 7 1988
10 PERCENT EXCEEDS	32		42		40	
50 PERCENT EXCEEDS	26		30		26	
90 PERCENT EXCEEDS	16		20		17	

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY

LOCATION.—Lat 40°44′51″, long 73°09′03″, Suffolk County, Hydrologic Unit 02030202, on left bank just downstream from bridge on State Highway 27, 1.0 mi west of Oakdale.

DRAINAGE AREA.—About 24 mi².

PERIOD OF RECORD.—October 1943 to current year (monthly means estimated October 1974 to September 1975).

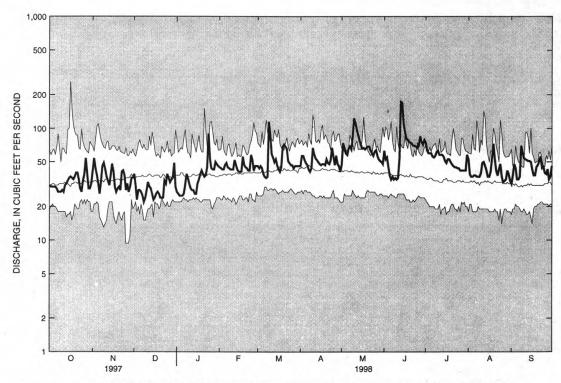
REVISED RECORDS.—WSP 1141: Drainage area.

GAGE.—Base gage (01306499): Water-stage recorder and wooden stoplog control. Datum is 1.56 ft above sea level.

Supplementary gage (01306495): Water-stage recorder with concrete control on left bank of secondary channel 0.25 mi northeast of base gage at datum of 4.74 ft above sea level. Prior to Aug. 10, 1965, at datum 1.0 ft higher.

REMARKS.—Records fair except those for estimated daily discharges, which are poor. Flow at both gages occasionally regulated by cleaning operations at outlets of ponds above stations. Discharge figures are those of combined flows in main and secondary channels.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily discharge, 263 ft³/s, Oct. 16, 1955; minimum daily, 9.3 ft³/s, Nov. 25, 27, 1982, result of regulation.


EXTREMES FOR CURRENT YEAR.—Maximum daily discharge, 174 ft³/s, June 13; minimum daily, 22 ft³/s, Dec. 8.

		DISCH	ARGE, CUB	IC FEET I		, WATER		BER 1997	TO SEPTEM	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	31	42	39	27	e45	46	e46	47	63	75	53	32
2	30	54	31	26	e44	44	57	74	53	64	39	38
3	30	44	23	25	e43	46	57	67	55	60	37	48
4	30	38	28	25	e43	44	52	60	45	60	37	44
5	30	32	28	25	e47	39	49	58	38	60	38	35
6	29	26	27	26	e49	37	47	66	35	56	38	e35
7	27	34	25	31	e45	36	43	69	37	55	37	e37
8	27	46	22	39	e44	37	41	65	35	57	37	e70
	27									62	37	e61
9		49	24	36	e43	115	44	85	36			
10	28	43	28	32	e43	87	67	123	35	63	40	e54
11	27	37	33	29	e43	59	59	112	36	58	49	e53
12	31	34	30	28	e52	55	54	97	53	58	50	e52
13	32	31	29	28	e47	50	52	88	174	58	46	e51
14	34	38	26	26	e43	53	50	78	171	56	42	51
15	36	48	23	26	e41	47	48	71	110	51	37	50
16	37	41	24	32	e41	43	47	66	94	49	37	43
17	36	30	26	35	e41	41	48	67	82	53	41	38
18	35	27	27	39		45	48	65	79	53	54	38
					e56				76			45
19	37	29	26	42	e47	68	47	67		50	73	
20	40	30	24	39	e45	72	53	69	75	48	53	47
21	40	28	24	37	e44	69	49	69	73	46	42	51
22	35	41	24	38	e42	66	48	64	70	45	38	56
23	29	42	34	45	e42	51	52	60	70	45	43	44
24	27	38	32	90	58	49	67	57	69	44	48	45
25	34	28	39	53	52	47	56	62	67	44	37	40
26	39	32	36	44	42	47	47	64	70	42	33	39
27	54	27	33	e43	46	44	57	57	85	42	34	43
28	40	30	35	e43	46	46	48	53	76	42	35	35
29	29	36	36	e50	40	46	46	51	72	42	42	37
30	29	36	49	e48		e46	41	50	79	42	39	46
31	32		30	e46		e46		48		58	34	
22222			04.5	4480			4500	04.00	0112	1.520	1200	1250
TOTAL	1022	1091	915	1153	1274	1621	1520	2129	2113	1638	1300	1358
MEAN	33.0	36.4	29.5	37.2	45.5	52.3	50.7	68.7	70.4	52.8	41.9	45.3
MAX	54	54	49	90	58	115	67	123	174	75	73	70
MIN	27	26	22	25	41	36	41	47	35	42	33	32
STATIST	rics of	MONTHLY M	EAN DATA	FOR WATER	R YEARS 19	44 - 199	8, BY WATI	ER YEAR (WY)			
MEAN	33.7	36.1	38.3	39.2	40.5	43.6	44.4	42.5	40.4	36.1	34.8	33.0
MAX	65.3	67.4	55.2	65.1	62.3	70.3	69.7	68.7	70.4	64.3	52.1	48.6
(WY)	1956	1956	1991	1979	1979	1979	1980	1998	1998	1984	1984	1984
MIN	22.0	17.3	21.8	24.0	23.8	29.4	25.8	28.2	25.6	20.0	19.5	21.2
(WY)	1967	1983	1967	1967	1967	1966	1966	1966	1988	1966	1966	1986
(AAT)	1307	1303	1307	130/	1907	1300	1900	1300	1300	1900	1300	1700

01306500 CONNETQUOT RIVER NEAR OAKDALE, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALENI	DAR YEAR	FOR 1998 W	ATER YEAR	WATER YEAR	RS 1944 - 1998
ANNUAL TOTAL	13719		17134			
ANNUAL MEAN	37.6		46.9		38.5	
HIGHEST ANNUAL MEAN					52.5	1984
LOWEST ANNUAL MEAN					24.9	1966
HIGHEST DAILY MEAN	67	Apr 1	174	Jun 13	263	Oct 16 1955
LOWEST DAILY MEAN	22	Jul 8	22	Dec 8	9.3	Nov 25 1982
ANNUAL SEVEN-DAY MINIMUM	25	Dec 15	25	Dec 15	13	Nov 22 1982
10 PERCENT EXCEEDS	48		68		52	
50 PERCENT EXCEEDS	37		44		37	
90 PERCENT EXCEEDS	27		28		27	

e Estimated

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01308000 SAMPAWAMS CREEK AT BABYLON, NY

LOCATION.—Lat 40°42′15″, long 73°18′52″, Suffolk County, Hydrologic Unit 02030202, on left bank at upstream side of John Street Bridge in Babylon, 180 ft downstream from Long Island Railroad, and 0.6 mi upstream from mouth.

DRAINAGE AREA.—About 23 mi².

PERIOD OF RECORD.—October 1944 to current year (monthly means estimated December 1966 to November 1967).

REVISED RECORDS.—WSP 1141: Drainage area. WSP 1702: 1955 (M), 1956 (M). WRD NY 1974: 1970 (P).

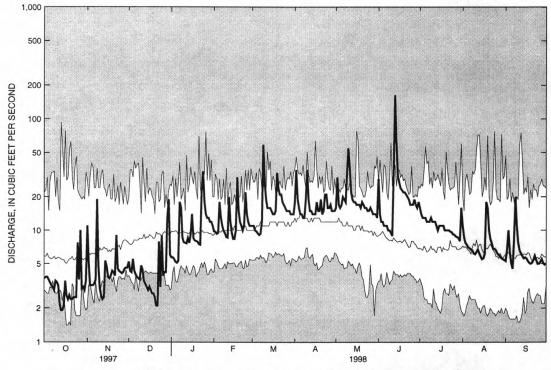
GAGE.—Water-stage recorder and concrete control. Datum of gage is 6.36 ft above sea level. October 1944 to December 1966, water-stage recorder at site 100 ft east at datum 0.34 ft higher.

REMARKS.— No estimated daily discharges. Records fair. Flow regulated slightly by pumping operations at railroad and occasionally by ponds above station. Indeterminate effect caused by ground-water pumpage for water-supply purposes at Smith Street substation 0.2 mi northwest of gage. Prior to November 1950, slight diurnal fluctuation caused by power operations.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 254 ft³/s, June 13, 1998, gage height, 3.73 ft, from rating curve extended above 110 ft³/s; minimum, 1.1 ft³/s, Sept. 10, 1995, gage height, 0.26 ft, result of regulation; minimum gage height, 0.13 ft, June 28, 1963, datum then in use.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 88 ft³/s and maximum (*):

		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft^3/s)	(ft)	Date	Time	(ft^3/s)	(ft)
Dec. 29	2330	103	1.82	May 10	0415	93	1.77
Mar. 9	0515	111	1.87	June 1	0415	101	1.86
Apr. 1	2345	97	1.76	June 13	1515	*254	*3.73


Minimum discharge, 1.7 ft³/s, Oct. 12-14, gage height, 0.49 ft; minimum gage height, 0.45 ft, Oct. 5.

		DISCH	ARGE, CUE	SIC FEET		, WATER LY MEAN	YEAR OCTOB	ER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3.7	11	5.2	5.7	9.8	11	18	16	29	16	11	5.3
2	3.8	5.0	4.3	5.7	9.7	11	35	30	14	14	8.7	6.6
3	3.8	3.2	4.2	5.5	9.3	10	19	17	12	13	7.7	10
4	3.6	3.2	5.5	5.2	9.5	9.8	16	16	12	13	7.4	6.4
5	3.4	3.2	4.3	5.1	18	9.4	14	17	11	13	7.0	5.1
6	3.2	3.3	4.0	5.3	13	9.1	14	20	11	12	6.9	4.5
7	3.1	3.6	3.8	18	11	9.3	13	19	11	12	6.7	8.1
8	2.9	19	3.7	16	9.9	12	13	18	10	12	6.6	20
9	3.5	4.8	3.6	8.6	9.4	59	19	32	10	13	6.2	11
10	3.4	3.0	4.8	7.8	8.7	27	35	55	9.5	12	6.1	7.7
11	3.2	2.6	4.4	7.7	8.6	19	19	36	8.9	12	6.4	6.6
12	2.2	2.4	3.5	7.6	20	16	15	22	35	12	6.7	6.2
13	1.9	2.5	3.3	8.5	12	16	15	19	164	11	6.2	5.9
14	1.9	5.3	3.1	7.7	9.6	16	14	18	62	10	5.8	5.6
15	2.1	4.7	2.9	9.2	8.4	15	14	18	31	11	5.5	5.7
16	3.5	3.8	3.1	14	8.4	14	14	17	27	11	5.6	5.6
17	2.6	3.7	2.9	8.5	10 .	14	18	17	24	11	6.2	5.3
18	2.4	3.9	2.7	8.1	30	15	15	17	23	11	18	5.1
19	2.6	4.3	2.7	8.0	15	33	15	16	22	10	16	5.0
20	2.4	4.2	2.5	7.9	12	24	19	18	22	10	10	5.1
21	2.4	3.9	2.1	7.5	11	21	14	17	21	10	8.4	5.4
22	2.5	9.0	2.1	7.4	10	21	15	16	20	10	7.6	5.9
23	2.5	4.5	7.9	23	11	18	21	16	19	9.7	6.8	5.4
24	2.5	4.3	3.1	34	22	17	21	15	17	9.6	6.8	5.0
25	7.7	4.2	9.0	18	14	16	16	15	17	9.2	6.6	5.0
26	3.6	4.1	3.9	14	12	15	16	16	17	9.1	6.2	5.2
27	10	4.2	4.2	13	11	15	17	15	19	8.8	6.0	5.5
28	3.0	4.5	4.2	13	11	15	15	14	17	8.7	5.8	5.1
29	3.1	4.6	13	12		14	15	14	16	8.5	5.6	4.9
30	2.9	4.6	19	12		14	15	14	18	8.0	5.5	5.0
31	3.5		6.0	11		14		13		16	5.4	
TOTAL	102.9	144.6	149.0	335.0	344.3	529.6	519	603	729.4	346.6	231.4	193.2
MEAN	3.32	4.82	4.81	10.8	12.3	17.1	17.3	19.5	24.3	11.2	7.46	6.44
MAX	10	19	19	34	30	59	35	55	164	16	18	20
MIN	1.9	2.4	2.1	5.1	8.4	9.1	13	13	8.9	8.0	5.4	4.5

01308000 SAMPAWAMS CREEK AT BABYLON, NY (continued)

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1945 - 1998, BY WATER YEAR (WY)

						,	(,			
MEAN 7.1	.7 8.08	9.33	10.1	10.8	12.4	13.3	11.7	10.1	8.59	7.94	7.19
MAX 22.	5 19.9	14.8	19.6	16.6	20.1	23.7	20.7	24.3	21.9	20.5	16.3
(WY) 199	1 1956	1997	1978	1979	1958	1983	1989	1998	1975	1989	1989
MIN 3.3	2 4.31	4.23	5.13	5.78	6.77	5.98	5.08	4.70	3.38	2.01	3.79
(WY) 199	8 1951	1966	1981	1947	1995	1966	1995	1986	1966	1995	1986
SUMMARY STAT	TISTICS	FOR 3	1997 CALEN	DAR YEAR	FC	OR 1998 WA	ATER YEAR		WATER Y	EARS 1945	- 1998
ANNUAL TOTAL	5		2531.6			4228.0					
ANNUAL MEAN			6.94			11.6			9.6	9	
HIGHEST ANNU	JAL MEAN								15.4		1984
LOWEST ANNUA	AL MEAN								5.1	4	1995
HIGHEST DAIL	LY MEAN		38	Apr 28		164	Jun 13		164		3 1998
LOWEST DAILY	MEAN		1.9	Oct 13		1.9	Oct 13		1.4	Oct 1	7 1995
ANNUAL SEVEN		M	2.4	Oct 12		2.4	Oct 12		1.6	Sep	5 1995
10 PERCENT I	EXCEEDS		11			19			16		
50 PERCENT I	EXCEEDS		5.9			9.8			8.6		
90 PERCENT I	EXCEEDS		2.9			3.3			4.6		

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

SURFACE-WATER SITES ON LONG ISLAND 01308500 CARLLS RIVER AT BABYLON, NY

LOCATION.—Lat 40°42′31″, long 73°19′44″, Suffolk County, Hydrologic Unit 02030202, on left bank 130 ft downstream from outlet of Southards Pond in Babylon, and 0.9 mi upstream from mouth.

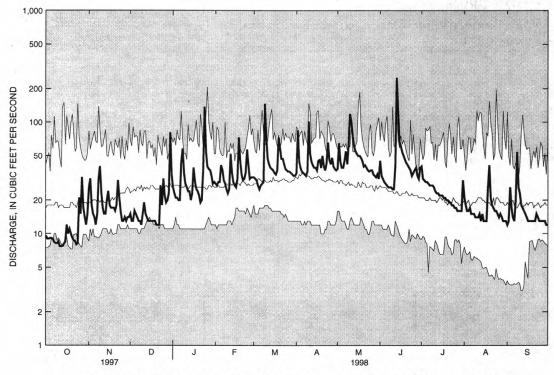
DRAINAGE AREA.—About 35 mi².

PERIOD OF RECORD.—October 1944 to current year.

REVISED RECORDS.—WSP 1141: Drainage area. WRD NY 1972: 1947 (m), 1952 (m), 1954 (m), 1958 (m) 1960-63 (m).

GAGE.—Water-stage recorder and concrete control. Datum of gage is 10.63 ft above sea level.

REMARKS.—No estimated daily discharges. Records good. Occasional regulation at outlet of Southards Pond.


EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 336 ft³/s, June 13, 1998, gage height, 2.46 ft; minimum, 0.05 ft³/s, Sept. 4, 1963, July 6, 1965, Aug. 29, 1972, result of regulation; minimum gage height, 0.03 ft, July 8, 1966, Aug. 28, 1972, result of regulation.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 336 ft3/s, June 13, gage height, 2.46 ft; minimum, 7.5 ft³/s, Oct. 11, 12, gage height, 0.39 ft.

		DISCH	ARGE, CUE	IC FEET P		, WATER LY MEAN	YEAR OCTOBI	ER 1997	TO SEPTEM	BER 1998		
DAY	OCT	NOA	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	9.6	26	15	26	28	32	35	38	45	40	21	12
2	9.0	31	13	23	27	31	85	65	33	31	18	13
3	9.0	18	13	21	29	30	44	44	31	30	16	26
4	9.1	15	16	21	29	27	39	39	29	29	16	17
5	9.1	14	15	20	41	25	36	39	28	29	17	14
6	9.0	12	14	20	37	27	35	45	27	28	15	13
7	8.4	15	13	43	30	28	34	55	26	27	15	20
8	8.2	31	13	58	28	29	33	42	26	27	15	54
9	8.2	40	12	35	25	147	36	64	26	27	14	26
10	8.5	23	15	28	23	72	102	119	25	26	14	23
11	7.7	17	19	26	25	47	52	100	25	24	14	18
12	7.7	15	15	24	52	42	44	75	41	23	15	17
13	7.8	15	14	24	35	39	41	61	251	23	13	16
14	8.1	20	13	20	29	38	39	55	128	22	15	15
15	8.5	24	13	23	27	37	39	52	67	22	13	14
16	12	18	13	39	26	35	37	50	61	22	13	13
17	10	17	13	29	31	34	45	50	54	21	13	13
18	11	17	13	25	73	37	46	48	50	21	25	13
19	10	17	13	24	45	73	39	45	46	20	41	13
20	9.2	16	12	22	34	59	50	40	43	20	21	13
21	8.7	18	12	19	30	47	40	41	41	19	18	13
22	8.6	30	12	20	31	47	37	39	39	19	17	15
23	8.0	21	27	38	35	42	43	37	37	18	16	14
24	8.2	16	18	137	57	38	66	36	33	18	16	13
25		13	31	54	41	37	46	37	35	17	15	13
23	21	13	21	34	41	37	40	37	33	17	13	
26	15	13	22	40	31	36	42	37	37	17	14	13
27	32	14	19	38	32	36	48	34	39	16	15	13
28	17	13	20	37	32	35	40	33	33	16	14	13
29	14	14	23	33		34	38	32	31	16	13	12
30	12	14	81	28		33	37	34	39	16	13	12
31	15		34	29		33		31		30	13	
TOTAL	339.6	567	576	1024	963	1307	1348	1517	1426	714	508	494
MEAN	11.0	18.9	18.6	33.0	34.4	42.2	44.9	48.9	47.5	23.0	16.4	16.5
MAX	32	40	81	137	73	147	102	119	251	40	41	54
MIN	7.7	12	12	19	23	25	33	31	25	16	13	12
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	45 - 199	98, BY WATER	R YEAR (WY)			
MEAN	20.4	23.8	26.8	28.2	29.6	32.6	33.9	30.1	26.0	21.8	21.2	19.6
MAX	52.0	50.4	48.8	55.8	49.3	54.5	64.3	53.8	50.7	49.6	40.7	36.4
(WY)	1991	1956	1978	1978	1979	1979	1983	1989	1989	1984	1990	1960
MIN	10.5	11.3	12.3	13.6	15.1	16.9	13.2	13.7	11.2	8.57	5.22	8.30
(WY)	1996	1966	1966	1966	1967	1995	1966	1995	1995	1966	1995	1995
1	2000	2,00	2300	2500	-20,	2000	-200					

01308500 CARLLS RIVER AT BABYLON, NY

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1945 - 1998
ANNUAL TOTAL	7783.7	10783.6	
ANNUAL MEAN	21.3	29.5	26.2
HIGHEST ANNUAL MEAN			39.9 1978
LOWEST ANNUAL MEAN			13.1 1995
HIGHEST DAILY MEAN	81 Dec 30	251 Jun 13	251 Jun 13 1998
LOWEST DAILY MEAN	7.7 Oct 11	7.7 Oct 11	3.1 Sep 11 1995
ANNUAL SEVEN-DAY MINIMUM	8.0 Oct 8	8.0 Oct 8	3.4 Sep 7 1995
10 PERCENT EXCEEDS	32	47	40
50 PERCENT EXCEEDS	21	26	24
90 PERCENT EXCEEDS	10	13	14

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY

LOCATION.—Lat 40°41′20″, long 73°27′19″, Nassau County, Hydrologic Unit 02030202, on left bank 3,000 ft upstream from Clark Boulevard Bridge in Massapequa, and 350 ft west of Lake Shore Drive at Garfield Street in Massapequa Park.

DRAINAGE AREA.—About 38 mi².

PERIOD OF RECORD.—June to October 1903, December 1936 to current year (monthly means estimated December 1959 to February 1961). Published as Massatayun Creek at Massapequa, December 1936 to September 1941.

REVISED RECORDS.—WSP 1141: Drainage area. WRD NY 1970: 1966-69 (M).

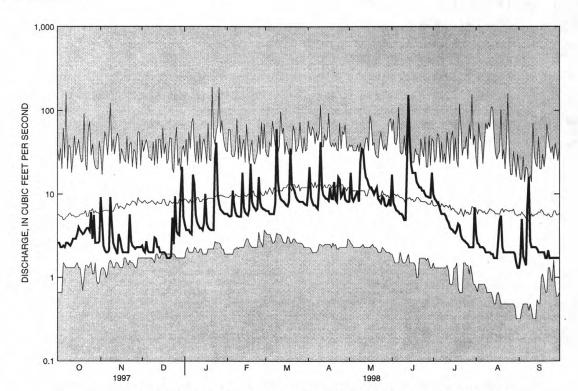
GAGE.—Water-stage recorder and concrete control. Datum of gage is 18.31 ft above sea level. Prior to October 1903, non-recording gage at different datum. December 1936 to March 1961, at datum 1.0 ft higher

REMARKS.— No estimated daily discharges. Records good.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 510 ft³/s, July 29, 1980, gage height, 2.40 ft, from rating curve extended above 200 ft³/s; minimum, 0.32 ft³/s, part or all of each day Aug. 29 to Sept. 3, 8, 10-14, 1995, gage height, 0.56 ft; minimum gage height, 0.32 ft, Aug. 1, 1954, datum then in use.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 110 ft³/s and maximum (*):

		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft^3/s)	(ft)	Date	Time	(ft^3/s)	(ft)
Jan. 23	2330	140	1.61	June 13	1630	*275	*1.97
Mar. 9	0700	146	1.63				


Minimum discharge, 1.3 ft³/s, part or all of each day Aug. 30 to Sept. 2, 6, 7; minimum gage height, 0.61 ft, Oct. 3-6, 9, 10.

		DISCH	ARGE, CUE	SIC FEET	PER SECON DA	D, WATER ILY MEAN		DBER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2.6	9.2	2.4	4.4	5.8	6.4	11	8.2	17	10	3.3	1.3
2	2.6	4.7	2.1	3.7	5.5	6.3	21	18	8.0	8.9	2.6	1.7
3	2.3	2.4	2.0	3.7	5.4	6.3	9.2	9.0	7.2	8.4	2.5	5.0
3	2.3	2.1	2.7	3.7	5.5	5.8	8.1	8.3	6.5	7.9	2.3	1.8
5	2.4	2.0	2.1	3.4	11	5.8	7.4	9.1	6.3	7.5	2.3	1.6
6	2.3	2.0	2.0	3.3	7.2	5.8	7.4	10	6.1	6.5	2.3	1.4
7	2.6	2.1	2.0	17	6.0	5.8	7.0	11	5.8	5.8	2.2	6.8
8	2.6	9.2	2.0	13	5.5	7.8	6.7	8.2	5.8	5.8	2.0	16
9	2.5	4.5	2.0	5.6	5.4	60	13	24	5.5	5.8	2.0	2.7
10	2.4	2.6	3.0	4.6	5.4	14	42	35	4.9	5.5	2.0	2.3
11	2.6	2.3	2.9	4.2	5.4	10	12	34	4.9	4.9	2.0	2.3
12	2.9	2.1	2.3	3.9	18	8.8	9.8	21	24	4.6	1.9	2.3
13	2.9	1.9	2.3	3.9	7.0	8.4	9.3	16	153	4.0	1.9	2.3
14	2.9	3.3	2.0	3.7	6.1	8.2	8.9	15	43	3.8	1.7	2.2
15	3.3	2.9	2.0	4.5	5.8	7.8	8.8	13	22	3.7	1.7	2.0
16	4.0	2.3	2.0	10	5.6	7.4	8.4	12	18	3.5	1.7	2.0
17	3.7	2.0	2.0	4.5	6.5	7.2	12	12	18	3.4	2.7	2.0
18	3.5	2.0	1.9	4.0	23	8.2	8.9	11	18	3.7	4.7	2.0
19	3.3	2.0	1.7	3.8	8.2	35	8.8	10	14	4.4	5.5	2.0
20	3.4	2.0	1.7	3.7	7.2	13	14	11	13	4.2	2.3	1.7
21	3.7	2.0	1.7	3.7	6.8	12	8.6	12	12	3.2	2.0	1.7
22	3.9	5.7	1.8	3.7	6.4	11	8.1	8.9	12	2.9	2.0	2.1
23	3.9	2.7	5.2	28	6.7	9.4	16	8.4	11	2.8	2.0	1.7
24	3.6	2.4	2.5	41	16	8.7	15	7.9	11	2.7	2.0	1.7
25	6.1	2.3	9.4	9.9	8.0	8.3	9.3	9.4	10	2.6	2.0	1.7
26	2.9	2.2	3.6	7.6	7.0	8.1	10	8.9	9.4	2.5	2.0	1.7
27	5.6	2.3	3.3	6.6	6.7	8.1	12	7.4	9.3	2.3	2.0	1.7
28	2.6	2.3	3.2	6.3	6.6	8.1	8.7	7.2	9.1	2.3	2.0	1.7
29	2.6	2.3	10	6.0		7.8	8.3	7.5	9.1	2.3	1.9	1.7
30	2.6	2.3	21	5.8		7.5	8.1	8.7	18	2.3	1.5	1.7
31	2.7		5.3	5.8		7.4		7.2		6.9	1.3	250
TOTAL	97.3	90.1	110.1	233.0	219.7	334.4	337.8	389.3	511.9	145.1	70.3	78.8
MEAN	3.14	3.00	3.55	7.52	7.85	10.8	11.3	12.6	17.1	4.68	2.27	2.63
MAX	6.1	9.2	21	41	23	60	42	35	153	10	5.5	16
MIN	2.3	1.9	1.7	3.3	5.4	5.8	6.7	7.2	4.9	2.3	1.3	1.3

01309500 MASSAPEQUA CREEK AT MASSAPEQUA, NY (continued)

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1937 - 1998, BY WATER YEAR (WY)

MEAN	7.06	8.39	9.18	10.4	11.2	13.3	14.5	12.6	10.5	8.32	8.00	6.74
MAX	18.6	24.7	18.8	33.2	25.7	28.7	33.5	32.5	28.8	25.7	23.0	18.4
(WY)	1956	1956	1973	1979	1973	1939	1953	1979	1952	1984	1955	1938
MIN	1.56	2.01	2.12	2.71	3.10	3.15	2.68	2.77	1.84	1.50	.59	1.09
(WY)	1996	1966	1966	1966	1995	1995	1995	1995	1995	1995	1995	1995
SUMMARY	STATIST	ICS	FOR 3	1997 CALEN	DAR YEAR	F	OR 1998 W	ATER YEAR		WATER YE	ARS 1937	- 1998
ANNUAL	TOTAL			1630.4			2617.8					
ANNUAL	MEAN			4.47			7.17			10.1		
HIGHEST	ANNUAL	MEAN								19.4		1973
LOWEST	ANNUAL M	EAN								2.27	1	1995
HIGHEST	DAILY M	EAN		34	Mar 31		153	Jun 13		191	Jan 2	21 1979
LOWEST	DAILY ME	AN		1.5	Aug 1		1.3	Aug 31		.32	Aug :	30 1995
ANNUAL	SEVEN-DA	Y MINIMUM		1.5	Jul 29		1.7	Aug 27		.37	Aug 3	28 1995
10 PERC	ENT EXCE	EDS		7.1			13			19		
50 PERC	ENT EXCE	EDS		3.7			5.4			8.1		
90 PERC	ENT EXCE	EDS		2.0			2.0			2.9		

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

01310000 BELLMORE CREEK AT BELLMORE, NY

LOCATION.—Lat 40°40′43″, long 73°30′58″, Nassau County, Hydrologic Unit 02030202, on right bank 40 ft east of intersection of Valentine Place and Mill Road, in Bellmore, 0.5 mi north of Sunrise Highway, and 0.5 mi northwest of Wantagh.

DRAINAGE AREA.—About 17 mi².

PERIOD OF RECORD.—June to October 1883 (fragmentary), July to October 1903, published in Professional Paper 44, September 1937 to current year. Prior to October 1957 published as Wantagh Stream at Wantagh. October 1967, published as Wantagh Stream at Bellmore.

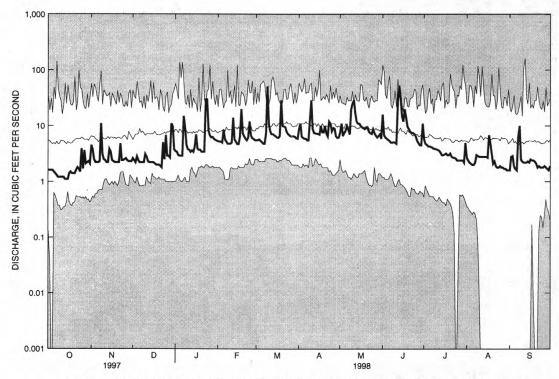
GAGE.—Base gage (01309950): Water-stage recorder. Concrete control since July 24, 1974. Datum of gage is 15.06 ft above sea level. June to October 1883, determination of flow by various methods at different site and datum. July to October 1903, nonrecording gages on two channels near present site at different datum. Sept. 23, 1937, to Aug. 1, 1958, water-stage recorder with concrete control on right bank of present secondary channel about 1,000 ft east at datum 1.88 ft higher (used as supplementary gage since Aug. 1, 1958).

Supplementary gage (01309990): Water-stage recorder with concrete control on right bank of secondary channel about 1,000 ft east of base gage at datum of 16.96 ft above sea level. Prior to July 28, 1965, at datum 2.00 ft higher. From July 28,

1965 to Oct. 6, 1965, at datum 1.00 ft higher.

REMARKS.—No estimated daily discharges. Records good. Prior to Nov. 4, 1955, flow at all stages regulated intermittently at outlet of Wantagh Reservoir, 1.0 mi above station, and prior to November 1953 by Browning Pond, 0.5 mi above station. Subsequent to Nov. 3, 1955, permanent diversion of a substantial portion of the flow through west branch of Bellmore Creek. Discharge figures given are those of combined flows to main and secondary channels.

EXTREMES FOR PERIOD OF RECORD (1903 and since 1937).—Maximum daily discharge, 162 ft³/s, Sept. 12, 1960; maximum discharge prior to beginning of diversion in November 1955, 340 ft³/s, June 1, 1952, adjusted to include flow bypassing station; maximum gage height, 2.57 ft, June 1, 1952, datum then in use; no flow July 24, 25, 1986, Aug. 11-Sept. 16, 19-21, 1995.


EXTREMES FOR CURRENT YEAR.—Maximum daily discharge, 53 ft³/s, June 13; minimum daily, 1.1 ft³/s, Oct. 13-15.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES OCT AUG SEP DAY NOV DEC JAN FEB MAR APR MAY JUN JUL 1.6 4.5 2.6 3.5 5.3 5.5 8.8 7.6 16 2.7 2 3.4 5.5 6.8 4.8 2.4 2.8 1.6 3.7 2.4 5.2 11 11 3 1.6 2.2 3.0 5.2 5.7 6.4 6.6 2.2 2.9 2.5 6.2 4.6 7.5 4 1.6 2.2 2.8 2.9 5.0 5.4 6.1 5.9 4.3 2.1 1.9 5 2.9 2.0 1.5 2.2 2.4 5.9 8.3 5.6 8.5 5.1 2.9 5.4 6 2.2 5.7 4.8 5.9 10 2.0 1.3 2.3 2.2 15 4.8 5.5 8.6 5.0 4.1 2.2 6.2 5.2 8 1.2 2.2 8.9 7.4 5.5 7.1 5.0 3.9 3.0 10 11 4.8 1.2 2.2 2.5 20 3.9 2.9 3.1 4.5 4.8 51 13 5.1 2.8 2.3 10 1.2 3.1 3.8 5.0 3.8 2.5 4.8 29 25 11 11 1.2 2.4 2.8 3.7 5.0 8.1 8.9 29 4.8 3.7 2.8 2.2 27 2.8 12 1.2 2.2 2.3 3.4 14 7.1 7.5 17 3.6 5.7 7.4 3.3 2.2 13 1.1 2.2 2.2 3.6 7.1 12 53 2.8 2.2 5.2 4.7 7.3 33 3.0 2.8 2.3 3.8 3.4 6.8 14 1.1 11 15 1.1 2.2 4.2 6.5 7.2 15 3.0 2.8 3.4 11 2.4 7.0 7.0 10 12 3.1 2.7 16 1.4 2.2 4.7 6.2 2.1 9.4 20 3.2 6.8 2.4 1.5 2.3 3.9 10 17 6.4 6.1 1.4 7.7 3.0 2.0 3.7 9.1 4.9 2.4 18 2.2 20 6.6 14 7.7 1.4 2.2 2.0 3.7 7.4 8.8 9.7 3.0 3.1 2.3 19 29 20 2.0 3.4 10 9.4 8.8 3.2 2.1 1.4 2.2 6.5 10 21 2.2 1.9 5.9 7.3 9.1 7.9 2.8 2.3 1.8 1.6 3.4 9.8 2.7 1.8 9.5 7.9 7.5 1.9 1.9 1.8 4.8 3.4 6.5 22 5.5 7.4 7.5 2.7 1.8 5.0 7.9 1.8 23 1.7 2.4 30 6.1 12 7.2 2.6 1.8 1.8 24 1.5 2.4 2.5 30 12 7.2 11 7.2 6.7 2.4 8.7 6.5 1.9 1.8 25 3.9 2.5 6.8 8.2 6.8 8.1 26 1.7 2.6 2.9 6.7 6.0 6.5 9.2 7.4 5.4 1.8 1.9 2.9 6.7 4.9 2.4 1.8 1.8 27 5.8 6.5 8.9 3.6 2.4 6.2 2.1 6.5 1.7 1.7 2.3 2.7 6.5 6.2 4.5 2.4 28 6.3 5.5 1.7 1.6 6.4 6.6 2.4 29 2.2 2.3 11 5.8 4.5 ---6.1 9.7 7.1 2.2 5.6 1.6 1.9 30 2.3 6.2 11 2.3 6.0 4.9 31 2.1 3.8 5.4 5.9 5.9 1.6 TOTAL 51.5 87.7 97.3 201.8 278.7 318.6 330.2 105.7 77.8 74.3 187.6 259.6 2.92 11.0 3.41 2.51 2.48 MEAN 1.66 8.99 8.65 10.3 3.14 6.51 6.70 3.9 5.8 6.8 10 29 30 20 51 29 53 MAX 11 11 5.9 2.2 1.6 2.9 4.5 1.6 2.2 4.7 MIN 1.1 1.8 4.8 5.5

01310000 BELLMORE CREEK AT BELLMORE, NY (continued)

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1937 - 1998, BY WATER YEAR (WY)

					*		
MEAN 6.64 7.94	8.64 9.39		11.7 12.0	10.3	8.90		7.28 6.36
MAX 19.0 24.5	20.8 21.8	19.9 2	24.4 26.4	23.3	26.7	19.5	21.2 23.0
(WY) 1959 1956	1978 1978	1956 1	1953 1953	1958	1952	1975	1961 1960
MIN .65 1.17	1.22 2.13	2.34 2	2.73 2.00	1.53	.96	.76	.079 .29
(WY) 1987 1988	1996 1996		1995 1995	1995	1995		1995 1986
SUMMARY STATISTICS	FOR 1997 CALEND	AR YEAR	FOR 1998 W	ATER YEAR	1	WATER YEAR	RS 1937 - 1998
ANNUAL TOTAL	1376.7		2070.8	3			
ANNUAL MEAN	3.77		5.6	57		8.88	
HIGHEST ANNUAL MEAN						19.7	1961
LOWEST ANNUAL MEAN						1.54	1995
HIGHEST DAILY MEAN	30	Aug 21	53	Jun 13		162	Sep 12 1960
LOWEST DAILY MEAN	1.1	Oct 13	1.1			.00	Jul 24 1986
ANNUAL SEVEN-DAY MINIMUM	1.2	Oct 9	1.2			.00	Aug 11 1995
10 PERCENT EXCEEDS	5.8		10			17	
50 PERCENT EXCEEDS	3.1		4.1			7.1	
90 PERCENT EXCEEDS	1.6		1.8			2.2	
	2.0		1.0			2.2	

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR. ZERO FLOWS ARE PLOTTED AS 0.001 DISCHARGE, WHICH MAY INCLUDE THE DAILY MINIMUM FOR PERIOD OF RECORD.

01310500 EAST MEADOW BROOK AT FREEPORT, NY

LOCATION.—Lat 40°39′56″, long 73°34′13″, Nassau County, Hydrologic Unit 02030202, on right bank 24 ft upstream from bridge on Hempstead-Babylon Turnpike and 400 ft west of Meadowbrook Parkway, in Freeport.

DRAINAGE AREA.—About 31 mi².

PERIOD OF RECORD.—October 1851 to December 1852, June to October 1883, September and October 1885 (fragmentary).

June to October 1903, published in Professional Paper 44, January 1937 to current year (monthly means estimated November 1962 to December 1963).

REVISED RECORDS.—WRD NY 1972: 1967-71 (P). WDR NY 1977: 1973-76 (P).

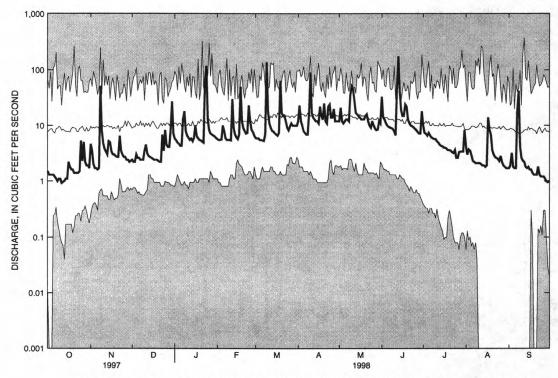
GAGE.—Water-stage recorder and concrete control. Datum of gage is 10.45 ft above sea level. Prior to October 1885, determinations of flow by various methods at different site and datum. June to October 1903, weir in swamp at head of Brooklyn waterworks supply pond. January 1937 to November 1962, water-stage recorder and concrete control at site 81 ft east at datum 0.47 ft higher.j

REMARKS.—No estimated daily discharges. Records good except those below 5 ft³/s, which are fair.

EXTREMES FOR PERIOD OF RECORD (1903 and since 1937).—Maximum discharge, 848 ft³/s, July 29, 1980, gage height, 3.57 ft; maximum gage height, 4.38 ft Sept. 12, 1960, datum then in use; no flow part or all of each day Aug. 26, 1971, Aug. 15-23, 1988, Aug. 9 to Sept. 22, Oct. 2-5, 1995.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 250 ft³/s and maximum (*):

		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft^3/s)	(ft)	Date	Time	(ft^3/s)	(ft)
Jan. 24	0130	*555	*2.77	Apr. 10	0200	251	1.72
Mar. 9	0830	398	2.27	June 13	1545	481	2.54


Minimum discharge, 0.85 ft³/s, Oct. 11, 12, 14, Sept. 28, 29; minimum gage height, 0.16 ft, Oct. 11, 12, 14.

		DISCH	ARGE, CUB	IC FEET	PER SECONI DAI	O, WATER		BER 1997	TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.5	4.6	2.4	5.8	5.7	6.0	12	12	33	10	4.2	1.7
2	1.3	3.5	2.2	5.4	5.5	5.9	23	21	14	7.4	3.0	1.9
3	1.3	2.0	2.2	4.9	5.5	5.9	12	12	13	7.1	3.7	3.2
4	1.3	1.7	3.0	4.7	5.6	5.5	10	11	11	6.6	3.5	1.8
5	1.3	1.7	2.6	4.3	10	5.5	8.0	12	10	7.4	2.9	1.7
6	1.2	1.6	2.6	4.3	7.9	5.4	7.4	13	9.5	6.6	2.3	1.7
7	1.1	1.7	2.4	13	5.9	5.3	6.9	13	9.2	6.1	2.2	18
8	.99	51	2.4	18	5.5	7.0	6.9	12	9.0	5.9	2.1	42
9	1.1	8.4	2.4	8.0	5.5	137	17	35	8.7	5.7	2.1	4.2
10	1.1	4.8	3.5	6.6	5.5	18	91	51	7.9	5.7	2.1	2.6
11	.92	3.8	4.5	6.0	5.4	11	17	45	6.7	5.2	2.1	2.3
12	.96	3.4	3.1	5.5	30	9.2	14	28	46	4.9	2.0	2.2
13	1.0	3.0	2.8	5.8	9.0	8.1	13	17	176	4.5	1.9	1.8
14	1.1	5.2	2.7	5.2	6.9	7.8	12	16	41	4.3	1.9	1.7
15	1.1	5.0	2.6	6.0	6.1	7.3	12	15	19	4.2	1.8	1.8
16	2.2	3.4	2.5	10	5.7	6.9	11	14	15	4.0	1.9	1.6
17	1.8	3.0	2.4	6.4	6.9	6.6	22	13	15	4.0	14	1.6
18	1.6	3.0	2.4	5.9	50	7.4	15	13	24	3.8	8.4	1.4
19	1.6	2.8	2.4	5.5	12	64	13	13	22	3.6	6.8	1.3
20	1.4	2.7	2.3	5.4	9.1	17	25	15	13	3.6	3.6	1.3
21	1.4	2.7	2.2	5.1	8.0	15	12	16	11	3.5	3.0	1.3
22	1.4	6.5	2.2	4.9	7.2	15	11	12	10	3.3	2.7	1.8
23	1.4	3.5	6.8	65	7.4	12	22	10	9.8	3.2	2.6	1.3
24	1.5	3.0	3.5	118	23	9.3	24	9.2	9.3	3.6	2.5	1.2
25	5.3	2.7	8.3	13	12	8.3	14	12	8.8	2.6	2.3	1.2
26	2.3	2.7	4.5	8.4		9.6	14	10	8.3	2.6	2.8	1.2
27	5.0	2.4	4.1	7.2	7.7	11	20	8.9	7.7	3.3	2.2	1.1
28	2.2	2.4	4.1	6.9	6.6	10	12	8.3	7.2	3.4	1.9	.98
29	1.9	2.2	8.2	6.6		10	12	8.5	7.2	3.4	1.8	.95
30	1.9	2.3	27	6.4		10	12	12	18	3.4	1.7	1.0
31	1.7		7.2	6.0		10		11		8.3	1.7	
TOTAL	51.87	146.7	131.5	384.2	284.1	467.0	501.2	498.9	600.3	151.2	97.7	107.83
MEAN	1.67	4.89	4.24	12.4	10.1	15.1	16.7	16.1	20.0	4.88	3.15	3.59
MAX	5.3	51	27	118	50	137	91	51	176	10	14	42
MIN	.92	1.6	2.2	4.3	5.4	5.3	6.9	8.3	6.7	2.6	1.7	.95

01310500 EAST MEADOW BROOK AT FREEPORT, NY (continued)

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1937 - 1998, BY WATER YEAR (WY)

						, 21 111112		- /			
MEAN 9.88	11.0	11.8	13.0	13.9	15.7	17.3	15.5	13.5	11.8	11.4	10.0
MAX 27.4	29.6	23.8	37.0	28.9	31.7	36.2	34.3	34.3	34.7	39.8	34.0
(WY) 1956	1956	1955	1978	1949	1953	1980	1958	1984	1984	1955	1960
MIN .57	.66	1.36	1.72	2.03	2.98	2.02	2.93	1.56	.21	.034	.28
(WY) 1996	1966	1966	1967	1967	1992	1966	1992	1988	1966	1995	1995
SÚMMARY STATI	STICS	FOR	1997 CALEN	DAR YEAR	FC	OR 1998 WA	TER YEAR		WATER YEA	ARS 1937	- 1998
ANNUAL TOTAL			2012.47			3422.50					
ANNUAL MEAN			5.51			9.38			12.8		
HIGHEST ANNUA	L MEAN								23.3		1961
LOWEST ANNUAL	MEAN								2.08		1995
HIGHEST DAILY			86	Aug 21		176	Jun 13		375		1960
LOWEST DAILY			.92	Oct 11		.92	Oct 11		.00		26 1971
ANNUAL SEVEN-		M	1.0	Oct 7		1.0	Oct 7		.00	Aug 1	15 1988
10 PERCENT EX			8.7			17			24		
50 PERCENT EX			4.3			5.7			11		
90 PERCENT EX	CEEDS		1.5			1.6			1.9		

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR. ZERO FLOWS ARE PLOTTED AS 0.001 DISCHARGE, WHICH MAY INCLUDE THE DAILY MINIMUM FOR PERIOD OF RECORD.

01310740 REYNOLDS CHANNEL AT POINT LOOKOUT, NY

- LOCATION.--Lat 40° 35′36″, long 73° 35′03″, Nassau County, Hydrologic Unit 2030202, at Town of Hempstead East Marina, 750 ft east of Loop Parkway Bridge, in Point Lookout.
- PERIOD OF RECORD.--December 1997 to September 1998. January 1974 to June 1994, in files of Town of Hempstead Department of Conservation & Waterways. Precipitation, wind speed and direction, air and water temperature, relative humidity, and barometric pressure records for March to September 1998 are unpublished and available in files of the Geological Survey.
- GAGE.--Water-stage recorder. Datum of gage is 0.00 ft above sea level.
- REMARKS.--Telephone elevation, precipitation, wind speed and direction, air and water temperature, relative humidity, and barometric pressure telemeter at station. Interruption of record on May 31 was due to malfunction of recording instrument. All data are collected, stored, and reported in Eastern Standard Time.
- EXTREMES OUTSIDE PERIOD OF RECORD.--Storm tide of Sep. 27, 1985, reached an elevation of 7.3 ft, from information provided by Town of Hempstead Department of Conservation & Waterways. Storm tide of Dec. 11, 1992, reached an elevation of 7.3 ft, from high-water mark at site 4.0 mi west. Minimum elevation recorded, -4.9 ft, Jan. 11, 1978, Mar. 16, 1980, from information provided by Town of Hempstead Department of Conservation & Waterways.
- EXTREMES FOR CURRENT YEAR.--December 1997 to September 1998: Maximum elevation recorded, 5.64 ft, Feb. 24; minimum recorded, -3.40 ft, Dec. 31.

			TIDE ELEV	ATION, IN		ATER YEAR MEAN VALUE		1997 TO S	SEPTEMBER	1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		222		01	1.22	1.59	.86	.97	1.15	1.13	1.02	1.46
2		222	222	35	1.11	1.50	1.24	1.50	1.28	1.02	.91	1.66
3			222	.22	.96	1.66	1.07	1.31	1.04	1.00	.97	1.57
4	2.54			.24	1.79	1.30	1.52	1.14	.81	1.22	1.07	1.64
5				.83	3.36	.97	1.49	1.14	.51	1.22	1.14	1.15
6				.80	2.70	1.06	1.38	1.15	.90	1.09	1.10	.95
7				1.10	1.88	1.05	1.07	1.14	.94	1.13	1.15	1.13
8				1.74	2.06	1.70	1.28	1.52	. 85	1.24	1.11	1.48
9				1.56	1.74	2.17	1.84	1.99	1.00	1.38	1.04	1.14
10				1.42	1.16	1.06	2.00	2.03	.91	1.37	1.07	.86
11		222		1.16	1.27	.23	1.23	2.39	.96	1.24	1.16	.95
12				1.00	1.42	.12	.99	2.54	1.29	1.30	1.10	1.13
13				.90	.57	.25	1.24	2.09	1.50	1.18	1.18	1.25
14	444			.26	. 85	.81	1.42	1.60	1.68	.99	.94	1.24
15			5	.88	.73	.24	1.29	1.27	1.53	.88	1.03	1.15
16				1.85	.76	.42	1.10	1.20	1.49	1.01	1.08	1.00
17				2.34	1.49	.50	1.00	1.21	1.21	1.19	1.20	1.23
18				2.01	2.09	.65	.35	1.00	1.17	1.18	1.22	1.32
19				1.68	1.79	1.03	.57	1.27	1.29	1.17	1.30	1.43
20				1.43	1.33	1.40	.64	1.42	1.34	1.20	1.19	1.30
21			444	1.64	.90	2.68	.67	1.37	1.34	1.14	.97	1.35
22				1.36	1.01	2.16	.78	1.20	1.26	1.20	1.23	1.38
23				2.00	1.75	.78	1.52	1.20	1.29	1.32	1.34	1.24
24				1.83	2.66	.66	1.22	1.10	1.21	1.24	1.15	1.08
25			1.68	.72	1.70	.56	.99	1.22	1.14	1.10	.95	.97
26	222		.94	.36	1.54	.49	1.05	1.21	1.12	.96	1.05	.97
27			1.04	.99	1.64	.34	.98	1.11	1.25	1.06	1.08	1.10
28			1.58	2.34	1.68	. 69	.66	.97	1.47	1.06	1.45	.89
29			1.99	2.38		.64	.53	.88	1.25	1.10	1.48	1.04
30			1.06	1.85		.78	.56	.79	1.34	1.09	1.46	1.09
31			62	1.25		.73		e1.15		1.36	1.37	
MEAN				1.22	1.54	.97	1.08	1.36	1.18	1.15	1.15	1.21
MAX				2.38	3.36	2.68	2.00	2.54	1.68	1.38	1.48	1.66
MIN				35	.57	.12	.35	.79	.51	.88	.91	.86

e Estimated

01310740 REYNOLDS CHANNEL AT POINT LOOKOUT, NY (continued)

TIDE ELEVATION, IN FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY-HIGH HIGH TIDES DAY OCT NOV DEC AUG SEP FEB JUN JUL JAN MAR APR MAY 2.98 2.46 3.02 2.57 3.30 2.80 4.04 3.39 3.04 3.06 2.97 3.02 2.86 2.98 2.83 2.85 3.16 3.90 4.52 3.88 123 3.56 3.59 4.43 3.35 3.42 ---------4.01 ------2.93 5 ---3.59 4.11 3.43 2.73 2.68 3.32 3.31 3.52 4.22 3.17 5.17 3.49 3.31 67 3.29 3.29 4.22 3.24 2.96 3.37 4.28 4.11 3.83 4.43 4.30 4.21 5.38 4.08 3.06 3.18 3.66 3.33 3.61 3.73 3.26 3.78 3.31 3.09 8 ---------4.28 3.66 3.38 3.98 ---------4.10 4.27 4.18 3.57 4.03 4.12 4.08 10 4.07 3.70 3.38 4.04 11 3.96 2.45 2.75 2.92 3.32 3.38 3.32 3.76 3.65 3.68 3.65 3.59 4.01 3.84 4.81 12 13 14 4.93 4.32 3.82 4.11 4.21 3.91 3.90 ---3.69 2.82 3.82 3.72 ---------3.85 2.84 3.40 15 3.32 2.89 2.52 3.26 3.52 3.48 3.53 3.35 3.31 2.75 1.82 2.46 16 17 3.98 2.86 2.74 3.54 3.99 3.43 3.57 3.22 4.50 3.77 3.71 2.76 4.12 3.72 2.55 2.78 2.36 2.88 3.46 3.33 3.50 3.55 3.91 3.66 3.75 3.83 3.53 3.75 3.67 ------------18 19 20 ------3.69 ___ ------3.44 3.22 3.23 3.08 3.63 4.07 3.90 3.83 3.61 4.05 3.56 3.78 3.79 3.27 3.00 3.01 2.77 4.18 22 23 24 3.11 4.35 4.01 4.21 4.33 4.22 3.67 3.55 3.25 ---------3.65 2.85 4.88 3.93 4.27 4.02 ---3.09 2.80 4.09 4.29 ---4.06 5.64 25 ------3.91 3.85 4.23 3.09 4.03 4.03 3.60 3.12 2.99 3.18 2.96 3.36 3.32 3.32 2.97 3.56 5.21 3.99 26 3.04 4.50 2.94 ---4.28 4.27 3.88 3.35 3.86 3.48 3.18 ---3.19 4.60 3.30 3.10 28 29 30 2.70 4.01 5.61 3.03 2.87 3.28 ------4.62 ---3.86 3.46 ---3.06 4.00 3.49 3.16 3.09 31 2.25 4.19 3.61 3.22 MEAN 3.71 3.61 4.33 2.68 3.58 3.84 3.46 4.35 3.53 3.53 3.41 3.74 5.61 2.46 5.64 4.88 2.36 4.93 4.09 4.03 4.43 MAX MIN ---___ 1.82 2.80 2.86 2.83 2.70 TIDE ELEVATION, IN FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY-LOW HIGH TIDES SEP DAY OCT NOV DEC FEB JUN AUG TAN. MAR APR MAY .TITT. 2.74 2.86 2.87 2.43 2.10 2.59 3.84 3.13 2.94 2.52 2.41 2.30 2.15 2.15 2.64 1 2 4.31 ---------3.20 4.05 3 ------3.19 2.80 3.28 2.85 5 ---------3.57 3.27 3.38 2.34 2.01 2.48 2.29 2.73 3.42 2.90 3.44 4.96 2.83 3.18 2.79 2.73 3.49 2.76 2.72 2.92 3.64 3.68 67 2.21 2.49 3.45 2.70 2.61 2.34 2.56 2.80 ---4.11 3.14 3.06 3.34 3.37 2.86 3.51 2.32 2.65 2.64 4.13 8 ---------3.84 3.17 3.13 2.88 ---___ ___ 3.40 3.46 3.34 3.08 3.86 10 2.39 3.53 3.26 2.80 2.43 11 3.11 3.45 3.30 4.00 3.29 3.07 2.44 2.40 2.17 2.33 2.61 3.05 2.58 2.87 3.69 12 ------2.99 4.30 3.51 3.27 13 14 15 3.80 3.44 3.02 3.06 3.05 3.36 3.43 ------------3.25 3.29 2.65 2.30 3.06 2.97 2.71 3.55 3.49 3.41 3.34 3.31 3.21 3.15 3.03 2.95 2.71 16 17 3.83 2.49 2.36 2.73 4.01 2.33 2.81 2.97 ---------2.28 2.77 ---18 19 ---3.38 ---2.24 3.07 1.76 3.24 20 ---------2.59 2.70 2.24 3.58 3.40 3.12 3.14 3.42 21 22 23 2.94 2.44 3.09 2.07 2.38 3.44 2.52 2.79 3.55 3.75 3.58 3.47 3.59 3.51 3.33 3.04 ___ ___ 3.87 3.01 3.05 3.33 2.14 2.72 3.36 3.17 3.43 3.31 ---------3.34 3.45 3.10 2.87 ---------24 25 2.63 .22 3.48 3.42 ------3.08 2.00 3.83 2.85 3.74 3.60 3.35 3.20 2.29 3.32 4.77 4.57 4.06 3.78 2.71 2.78 *---26 27 2.51 3.13 3.25 3.10 2.34 ___ ___ 4.30 3.09 ---3.15 3.55 3.63 3.25 2.98 2.80 3.46 3.23 3.02 2.74 ---4.60 28 3.46 4.55 3.41 2.34 3.52 3.57 3.29 29 30 ------4.14 3.10 2.66 3.21 2.07 2.51 2.53 2.42 ---------31 1.45 2.73 3.11 3.08 3.97 1.76 3.05 3.60 2.01 2.97 3.82 2.15 3.07 MEAN 3.43 2.95 3.00 3.31 4.30 3.51 2.34 4.13 MAX ---------4.96 4.31 2.00 2.07 MIN 2.14

^{*} Only a single high tide occurred

01310740 REYNOLDS CHANNEL AT POINT LOOKOUT, NY (continued)

TIDE ELEVATION, IN FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY-HIGH LOW TIDES

1 2 3 4 5 6 7 8	OCT	NOV	DEC	JAN -2.61 -2.70 -2.02 -1.9196	FEB -1.33 -1.0697	MAR -1.23 -1.17	APR -1.2862	MAY 89	JUN 45	JUL 50	AUG 57	SEP 11
2 3 4 5 6 7 8		===		-2.70 -2.02 -1.91	-1.06 97	-1.17					57	11
2 3 4 5 6 7 8		===		-2.70 -2.02 -1.91	-1.06 97	-1.17						
3 4 5 6 7 8		===		-2.02 -1.91	97		- 0/	16	. 05	33	64	09
4 5 6 7 8		222				65	53	29	50	35	79	43
5 6 7 8				- 96	.70	69	.06	32	96	45	78	*
7 8				50	1.71	91	25	48	-1.24	52	89	-1.20
8				-1.03	1.01	64	46	64	90	84	*	-1.85
				84	11	75	96	72	*	*	-1.27	-1.74
0				28	10	.21	69	25	-1.04	96	-1.46	-1.34
				65	*	.46	*	*	-1.08	92	-1.60	-1.55
10				93	90	*	.26	13	-1.26	91	-1.44	-1.53
				*	-1.02	-1.79	63	.29	-1.19	-1.02	-1.35	-1.17
				-1.47	35	-2.14	-1.18	.62	67	94	-1.20	78
				-1.30	-1.67	-2.07	80	.12	60	98	90	51
				-2.20	-1.31	-1.43	53	38	19	-1.06	99	70
15				-1.45	-1.30	-1.92	65	63	10	-1.02	89	76
10				03	93	-1.66	72	54	31	74	95	-1.10
				.49	.46	-1.38	66	41	61	66	99	89
				.55	. 85	-1.06	-1.05	69	89	93	*	*
4.7				.24	. 55	62	58	32	86	-1.13	90	68
20				.36	02	.04	97	48	-1.08	-1.25	-1.17	-1.03
				.41	57	1.68	-1.29	-1.12	-1.33	*	-1.43	84
				.34	72	.88	-1.20	-1.50	*	-1.46	-1.03	75
				.75	.84	-1.00	87	*	-1.45	-1.12	83	63
				.01	*	-1.49	*	-1.88	-1.53	-1.10	93	81
25			.18	-1.33	68	-2.13	-1.66	-1.71	-1.38	-1.19	83	71
			-1.05	-2.09	-1.19	*	-2.06	-1.74	-1.18	-1.11	61	66
			*	*	-1.36	-2.56	-1.98	-1.52	78	64	33	33
			75	12	-1.23	-2.50	-2.23	-1.49	40	49	.25	23
			81	.01		-2.39	-1.93	-1.02	32	30	.04	35
			.31	82		-2.15	-1.66	-1.03	.12	17	.11	40
31		222	-3.14	-1.25		-1.77		.00		.06	.05	
F 44-14 W 4				79	41	-1.13	97	67	79	79	84	83
				.75	1.71	1.68	.26	.62	.12	.06	.25	09
MIN -				-2.70	-1.67	-2.56	-2.23	-1.88	-1.53	-1.46	-1.60	-1.85

^{*} Only a single low tide occurred

TIDE ELEVATION, IN FEET, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY-LOW LOW TIDES

					2	2 2011 2011	11010					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1				-3.01	-1.40	-1.30	-1.72	-1.46	83	73	59	13
2				-3.05	-1.33	-1.19	80	44	67	82	78	37
3				-2.06	-1.21	66	83	51	95	83	86	84
4				-2.06	48	94	57	63	-1.09	51	88	72
5				-1.46	1.59	-1.00	29	81	-1.43	77	-1.27	-1.40
6				-1.33	.00	82	64	84	-1.22	92	-1.20	-2.00
7				-1.04	36	76	-1.08	90	-1.03	91	-1.43	-2.15
8				69	21	23	80	56	-1.38	-1.02	-1.62	-1.70
9				90	63	07	61	.06	-1.28	-1.12	-1.82	-1.70
10				-1.05	-1.15	-1.16	16	15	-1.48	-1.13	-1.90	-1.82
11				-1.40	-1.29	-2.04	-1.07	.11	-1.54	-1.36	-1.59	-1.54
12				-1.74	-1.03	-2.39	-1.29	.27	-1.39	-1.32	-1.65	-1.07
13				-1.67	-1.73	-2.40	-1.16	01	-1.05	-1.45	-1.25	91
14				-2.37	-1.34	-1.50	78	42	64	-1.46	-1.48	80
15				-1.51	-1.40	-2.06	77	88	89	-1.60	-1.24	-1.01
16	998	ree2	222	61	-1.23	-1.83	97	98	83	-1.48	-1.10	-1.22
17				.34	56	-1.45	82	90	-1.21	-1.23	-1.00	-1.08
18				.17	.44	-1.25	-1.59	-1.12	-1.26	-1.18	-1.04	92
19				.02	.25	66	-1.49	-1.01	-1.25	-1.27	-1.24	97
20				33	06	12	-1.18	93	-1.33	-1.39	-1.26	-1.12
21				.15	82	1.26	-1.38	-1.20	-1.42	-1.43	-1.46	-1.18
22				63	73	20	-1.69	-1.55	-1.53	-1.50	-1.40	-1.07
23				. 59	69	-1.51	-1.34	-1.72	-1.51	-1.41	-1.15	90
24				32	.46	-1.67	-2.01	-1.95	-1.60	-1.39	96	82
25	255	755	73	-2.04	-1.20	-2.16	-2.36	-1.98	-1.58	-1.44	-1.32	91
26	222		-1.13	-2.17	-1.44	-2.52	-2.30	-1.80	-1.53	-1.44	-1.09	68
27			-1.47	-1.59	-1.42	-2.97	-2.09	-1.78	-1.35	-1.28	84	41
28			-1.04	76	-1.25	-2.65	-2.28	-1.71	77	-1.06	45	67
29			-1.06	46		-2.55	-2.36	-1.63	97	88	03	43
30			-2.52	-1.11		-2.30	-2.05	-1.59	51	84	.05	66
31			-3.40	-1.64		-1.98		-1.20		57	17	
MEAN		4.44	222	-1.15	72	-1.39	-1.28	97	-1.18	-1.15	-1.10	-1.04
MAX				.59	1.59	1.26	16	.27	51	51	.05	13
MIN				-3.05	-1.73	-2.97	-2.36	-1.98	-1.60	-1.60	-1.90	-2.15

01311000 PINES BROOK AT MALVERNE, NY

LOCATION.—Lat 40°39′59″, long 73°39′35″, Nassau County, Hydrologic Unit 02030202, on left bank 300 ft downstream from Lakeview Avenue and southern boundary of Malverne.

DRAINAGE AREA.—About 10 mi².

PERIOD OF RECORD.—1951-52, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44); December 1938 to current year (monthly means estimated March to September 1970).

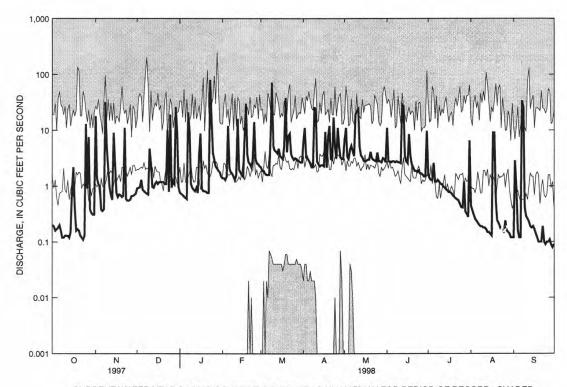
REVISED RECORDS.—WSP 1432: 1837, 1940.

GAGE.—Water-stage recorder with steel plate V-notch weir and concrete controls. Datum of gage is 7.11 ft above sea level (Nassau County bench mark). Prior to 1894, determinations of flow by various methods, at different sites and datums. December 1936 to Oct. 1, 1970, at site 200 ft upstream at datum 2.31 ft higher. Oct. 1, 1970 to May 31, 1972, supplementary gage on secondary channel 10 ft downstream at same datum.

REMARKS.—No estimated daily discharges. Records good. Prior to Feb. 20, 1956, flow occasionally regulated by Pines Pond. Indeterminate diversion from Pines Pond for emergency municipal water supply for City of New York, August 1953 to September 1954.

EXTREMES FOR PERIOD OF RECORD (since 1936).—Maximum discharge, 866 ft³/s, Jan. 28, 1994, gage height, 5.28 ft, from rating curve extended above 220 ft³/s; no flow part of Sept. 12, 1963, and many days 1964 to 1975, 1977, 1980-89, 1993-96.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 200 ft³/s and maximum (*):


		Discharge	Gage height			Discharge	Gage height
Date	Time	(ft^3/s)	(ft)	Date	Time	(ft^3/s)	(ft)
Nov. 8	1200	208	3.91	Mar. 9	0600	361	4.34
Jan. 23	2230	*380	*4.39	June 13	1245	248	4.45
Feb. 18	0315	205	3.90	Sept. 7	1600	338	4.28

Minimum discharge, 0.08 ft³/s, Sept. 28, 29, gage height, 2.08 ft.

		DISCHA	RGE, CUB	IC FEET P		, WATER Y		BER 1997 T	O SEPTEM	BER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.20 .19 .16 .17	18 1.4 1.1 1.0 .38	.91 .94 .95 1.3	.77 .73 .70 .65	1.4 1.4 1.3 1.5	2.2 1.9 1.9 1.7	6.3 11 3.3 3.2 2.9	6.8 11 3.4 3.1 4.5	11 2.8 2.8 2.7 2.8	1.7 1.4 1.3 1.3 2.6	.44 .37 .31 .26	.12 2.9 .93 .16
6 7 8 9 10	.20 .16 .12 .12 .13	.36 .39 32 5.3 2.2	.82 .77 .74 .71 4.7	.59 21 9.1 1.1 .94	2.1 1.8 1.7 1.5	1.6 1.6 8.4 72 5.3	2.6 2.2 2.2 26 23	5.3 4.3 3.5 19 22	2.8 2.7 2.8 2.7 2.7	1.2 1.2 1.3 1.2	.22 .20 .19 .19	.12 34 26 .41 .29
11 12 13 14 15	.13 .13 .12 .15	1.0 .71 .57 9.0 2.6	2.6 .97 .94 1.1	.87 .82 .94 .76	1.6 16 2.0 1.8 1.6	4.4 4.2 3.9 4.7 3.5	2.8 2.5 2.3 2.4 2.4	24 5.1 3.6 3.3 2.9	2.6 29 27 3.5 2.8	1.1 .98 .95 .88	.18 .17 .15 .15	.26 .23 .19 .18
16 17 18 19 20	2.2 .42 .16 .17 .16	.76 .64 .71 .69 .64	1.1 1.2 1.2 1.2 1.2	8.8 .91 .82 .82	1.5 6.9 30 3.7 2.7	3.3 3.1 5.3 38 4.1	2.3 9.3 2.2 7.6	2.8 2.9 3.0 3.0 4.1	2.6 8.5 3.5 2.5 2.2	.78 .78 .74 .68	.13 9.1 9.1 .59 .24	.17 .14 .12 .10
21 22 23 24 25	.13 .12 .11 .13	.67 11 .59 .55	1.1 1.1 10 .80	.76 .76 80 16 3.9	2.5 2.2 3.1 14 3.1	7.9 8.7 3.8 3.3 3.0	3.1 3.0 17 5.1 3.2	3.2 3.0 2.9 2.8 4.0	1.9 1.9 1.8 1.9	.60 .58 .55 .48	.22 .19 .16 .16	.10 .19 .10 .09
26 27 28 29 30 31	.91 7.6 .38 .33 .31	.57 .66 .67 .70 .73	.95 1.2 1.1 26 8.4 .97	3.0 2.3 2.1 1.9 1.8 1.5	2.6 2.5 2.3 	3.2 3.1 2.9 2.8 2.7 2.7	11 5.1 3.3 3.1 3.1	2.8 2.8 2.7 3.2 3.1 2.7	1.7 1.6 1.5 1.5 9.7	.41 1.2 .35 .32 .28 6.5	.24 .16 .15 .14 .12	.10 .11 .09 .08 .09
TOTAL MEAN MAX MIN	29.45 .95 13 .11	96.14 3.20 32 .36	96.04 3.10 26 .71	169.46 5.47 80 .59	126.1 4.50 30 1.3	216.8 6.99 72 1.6	185.5 6.18 26 2.2	170.8 5.51 24 2.7	145.2 4.84 29 1.5	34.36 1.11 6.5 .28	24.36 .79 9.1 .12	67.78 2.26 34 .08

01311000 PINES BROOK AT MALVERNE, NY (continued)

STATIS	TICS OF I	MONTHLY	MEAN DATA	FOR WATER	YEARS 193	37 - 1998	, BY WATE	R YEAR (V	VY)			
MEAN	2.62	3.01	3.36	3.58	3.62	4.30	4.64	4.17	3.54	3.17	3.01	2.65
MAX	9.50	7.53	16.1	11.8	10.9	12.5	14.1	10.3	11.8	11.0	11.7	11.2
(WY)	1939	1952	1997	1994	1949	1939	1939	1939	1984	1948	1955	1938
MIN	.000	.050	.019	.051	.099	.21	.31	.41	.027	.001	.002	.002
(WY)	1983	1966	1986	1967	1983	1981	1966	1987	1971	1966	1981	1965
SUMMAR	Y STATIST	rics	FOR	1997 CALEN	DAR YEAR	FC	OR 1998 WA	TER YEAR		WATER YE	ARS 1937	- 1998
ANNUAL	TOTAL			1030.83		-	1361.99	1				
ANNUAL	MEAN			2.82			3.73			3.41		
HIGHES'	T ANNUAL	MEAN								8.40		1939
LOWEST	ANNUAL 1	MEAN								.52		1966
HIGHES	T DAILY N	MEAN		60	Jul 24		80	Jan 23		247	Jan	28 1994
LOWEST	DAILY M	EAN		.11	Oct 23		.08	Sep 29		.00	Aug	21 1964
ANNUAL	SEVEN-DA	AY MINIM	MU	.13	Oct 8		.09	Sep 24		.00	Aug	23 1964
10 PER	CENT EXC	EEDS		6.4			9.0	LOSE . LA		7.9		
50 PER	CENT EXC	EEDS		1.1			1.5			1.7		
90 PER	CENT EXC	EEDS		.24			.16			.01		

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR. ZERO FLOWS ARE PLOTTED AS 0.001 DISCHARGE, WHICH MAY INCLUDE THE DAILY MINIMUM FOR PERIOD OF RECORD.

01311500 VALLEY STREAM AT VALLEY STREAM, NY

LOCATION.—Lat 40°39′49″, long 73°42′18″, Nassau County, Hydrologic Unit 02030202, on right bank 40 ft upstream from West Valley Stream Boulevard in Valley Stream.

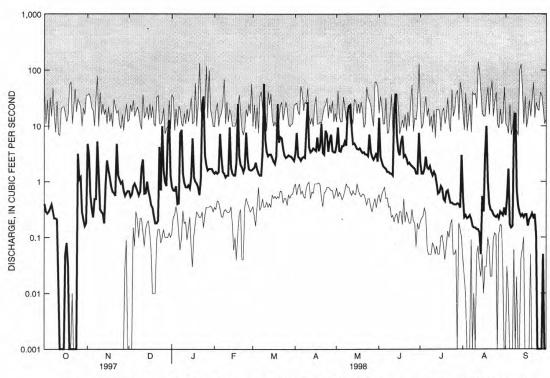
DRAINAGE AREA.—About 4.5 mi².

PERIOD OF RECORD.—1851-52, 1854, 1856-57, 1885, 1894 (fragmentary in Professional Paper 44), July 1954 to current year. Prior to October 1956, published at Watts Creek at Valley Stream.

GAGE.—Water-stage recorder and concrete control. Datum of gage is 7.49 ft above sea level. Prior to 1894, determinations of flow by various methods, at different sites and datums. July 1954 to July 16, 1964, at same site at datum 1.0 ft higher.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Flow regulated occasionally by cleaning operations at outlet of Valley Stream Pond above station.

EXTREMES FOR PERIOD OF RECORD (since 1954). —Maximum discharge, 294 ft³/s, June 30, 1984, gage height, 5.78 ft; no flow many days each year since 1963.


EXTREMES FOR CURRENT YEAR.—Maximum discharge, 176 ft³/s, Mar. 9, gage height, 3.20 ft; no flow for part or all of many days during October and September.

		DISC	HARGE, CU	BIC FEET I		D, WATER ILY MEAN		DBER 199	7 TO SEPTE	MBER 1998		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e.40	4.8	. 67	.81	1.4	1.7	3.2	4.6	14	2.2	.52	.25
2	.29	3.0	.54	.70	1.5	1.8	7.6	9.5	2.8	1.4	.23	.50
3	.27	.59	.59	.69	1.4	2.2	2.8	3.6	2.3	1.4	.25	1.7
4	.29	.33	.83	.83	1.5	1.7	2.7	3.5	1.9	1.7	.22	.17
5	.33	.23	.92	.40	7.3	1.4	2.4	4.4	1.8	2.8	.23	.15
6	.39	.49	.80	.41	2.7	1.3	2.7	4.4	1.7	1.8	.25	.16
7	.30	.49	.68	7.3	1.5	1.3	2.8	5.3	1.5	1.7	.21	13
8	.22	5.3	.57	8.6	1.4	3.5	2.7	4.5	1.5	1.9	.16	17
9	.22	1.4	.67	1.4	1.2	57	9.0	18	1.4	1.5	.15	. 69
10	.21	.32	1.8	.95	1.3	5.5	27	23	1.4	1.3	.15	.37
11	.02	.29	2.5	.80	1.3	3.4	4.2	24	1.3	1.5	.14	.28
12	.00	.27	.61	.79	9.5	2.9	3.4	9.2	21	1.3	.14	.24
13	.00	.18	. 62	.86	1.8	3.1	3.6	4.8	38	.91	.12	.26
14	.00	.93	1.0	.76	1.4	3.1	4.0	4.9	6.5	.61	.05	.23
15	.00	2.4	.67	1.2	1.3	2.7	3.8	4.4	3.6	. 65	.55	.26
16	. 05	1.6	.53	6.0	1.3	2.3	3.6	3.9	3.0	.83	.29	.26
17	.08	1.2	.38	1.2	2.3	2.1	6.3	3.8	5.1	.75	3.0	.16
18	.03	.82	.34	1.0	25	2.9	3.6	4.0	6.7	.49	10	.21
19	.00	.66	.24	.93	2.9	25	4.4	3.6	2.8	.45	1.0	.23
20	.00	. 63	.18	.79	2.0	5.1	11	3.3	3.0	.66	.41	.27
21	.00	.56	.18	.58	1.8	6.4	3.3	3.4	2.6	.70	.32	.23
22	.00	4.8	.20	1.1	1.5	6.1	3.1	3.1	2.1	. 53	.30	.26
23	.00	1.3	4.2	26	1.8	4.0	8.4	3.1	2.2	.42	.26	.11
24	.00	1.1	.70	34	7.7	3.0	7.1	2.9	2.0	.42	.24	.00
25	3.2	.93	10	3.0	2.7	2.7	3.5	7.1	1.9	.40	.23	.00
26	1.1	1.0	1.6	2.0	1.7	2.8	5.5	3.4	1.8	.39	.25	.00
27	1.2	. 69	.97	1.6	1.6	3.0	7.1	2.8	1.7	.39	.22	.00
28	.29	.56	.84	1.7	1.6	2.9	3.6	2.5	1.4	.41	.29	.05
29	.21	. 63	6.7	1.7		2.8	3.4	2.8	1.4	.40	.27	.00
30	.16	. 68	13	1.7		2.6	3.4	3.3	7.5	.34	.25	.00
31	.18		1.3	1.5		2.4		2.3	W. W	3.0	.34	
TOTAL	9.44	38.18	54.83	111.30	90.4	168.7	159.2	183.4	145.9	33.25	21.04	37.04
MEAN	.30	1.27	1.77	3.59	3.23	5.44	5.31	5.92	4.86	1.07	.68	1.23
MAX	3.2	5.3	13	34	25	57	27	24	38	3.0	10	17
MIN	.00	.18	.18	.40	1.2	1.3	2.4	2.3	1.3	.34	.05	.00
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	R YEARS 1	954 - 199	98, BY WAT	TER YEAR	(WY)			
MEAN	1.57	1.85	1.83	2.13	2.03	2.38	2.89	2.44	1.92	1.63	1.95	1.70
MAX	10.8	10.9	9.18	9.40	9.95	10.2	12.0	12.5	8.46	8.32	16.9	11.6
(WY)	1959	1955	1956	1956	1955	1956	1958	1958	1956	1956	1955	1954
MIN	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
(WY)	1966	1966	1966	1966	1980	1981	1981	1981	1966	1966	1965	1982

01311500 VALLEY STREAM AT VALLEY STREAM, NY (continued)

SUMMARY STATISTICS	FOR 1997 CALENDAR YEAR	FOR 1998 WATER YEAR	WATER YEARS 1954 - 1998
ANNUAL TOTAL	663.12	1052.68	
ANNUAL MEAN	1.82	2.88	1.99
HIGHEST ANNUAL MEAN			8.87 1956
LOWEST ANNUAL MEAN			.11 1986
HIGHEST DAILY MEAN	45 Jul 24	57 Mar 9	140 Aug 12 1955
LOWEST DAILY MEAN	.00 Oct 12	.00 Oct 12	.00 Jul 25 1963
ANNUAL SEVEN-DAY MINIMUM	.00 Oct 18	.00 Oct 18	.00 Aug 10 1963
10 PERCENT EXCEEDS	4.0	6.3	6.1
50 PERCENT EXCEEDS	.88	1.4	.23
90 PERCENT EXCEEDS	.21	.18	.00

e Estimated

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR. ZERO FLOWS ARE PLOTTED AS 0.001 DISCHARGE, WHICH MAY INCLUDE THE DAILY MINIMUM FOR PERIOD OF RECORD.

01311810 CONSELYEAS POND TRIBUTARY AT ROSEDALE, NY

LOCATION.—Lat 40°39′42″, long 73°45′22″, Queens County, Hydrologic Unit 02030202, on right end of upstream side of reinforced-concrete bridge in Brookville Park, opposite 144th Ave. and 1,300 ft southwest of South Conduit Ave., in Rosedale.

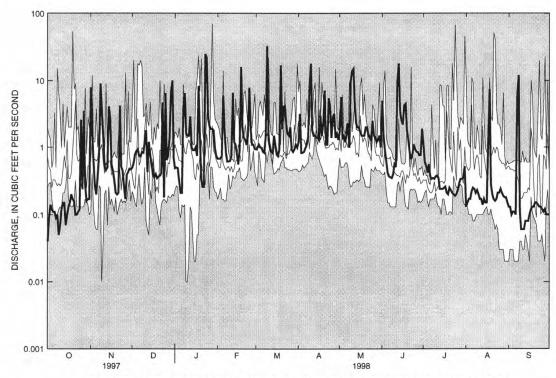
DRAINAGE AREA.—About 10 mi².

PERIOD OF RECORD.—August 1993 to current year.

GAGE.—Water-stage recorder. Elevation of gage is 7.0 ft above sea level, from topographic map.

REMARKS.—Records good except those for estimated daily discharges, which are poor.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 246 ft³/s, Oct. 19, 1986, gage height, 5.19 ft, from rating curve extended above 110 ft³/s; no flow part of each day Jan. 9, 10, 1996.


EXTREMES FOR CURRENT YEAR.—Maximum discharge, 154 ft³/s, Jan. 23, gage height, 3.65 ft; minimum, 0.01 ft³/s, Oct. 1, 14; minimum gage height, 0.23 ft, Sept. 11.

DAY OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL AUG SEP			DISC	HARGE, CUI	BIC FEET P		D, WATER ILY MEAN		DBER 1997	TO SEPTE	MBER 1998		
2	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3							.94						
4 12 26 88 32 75 1.0 83 1.5 62 42 1.7 1.1 5 11 20 .93 .21 6.0 .99 .86 1.2 .42 .56 .22 .11 6 .11 .37 .75 .21 1.7 .86 .98 1.6 .37 .37 .25 .10 7 .09 .78 .73 4.0 .84 .83 1.1 2.3 .36 .34 .24 5.8 8 .10 9.0 .85 6.5 .62 1.5 1.4 .99 .35 .35 .21 12 9 .05 3.5 .83 1.6 .62 33 8.9 10 .40 .34 .23 .11 10 .07 1.4 1.2 1.5 .63 1.3 18 14 .56 .37 .20 .06 11 .12 .52 1.8 1.5 .75 1.0 1.8 15 .51 .38 .17 .06 12 .15 .46 .43 2.9 6.6 .87 1.5 4.4 10 .35 .17 .06 13 .15 .50 1.2 1.0 1.2 .83 1.5 .22 .10 13 .15 .50 1.2 1.0 1.2 .83 1.5 .22 .3 18 .24 .14 .08 15 .10 2.7 .56 .91 .79 1.1 1.5 1.4 .20 3.5 .55 .24 .17 .08 15 .10 2.7 .56 .91 .79 1.1 1.4 .20 2.5 .24 .17 .08 16 .13 .55 .39 1.0 .56 .78 1.3 .8 1.7 .22 .25 .15 .08 16 .20 .33 .40 8.3 16 .92 1.5 .15 4.3 .20 2.5 .24 .17 .15 20 .16 .20 .37 .34 1.4 1.9 .71 .21 .35 1.6 .20 1.7 2.3 .25 .15 21 .10 .21 .38 .26 1.3 4.1 4.1 .9 .71 .21 .35 .20 .37 .34 1.4 1.9 .10 .10 .20 .37 .34 1.4 1.3 20 .16 .20 .37 .34 1.4 1.9 .71 .21 .35 1.6 .20 .17 .23 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 4.1 1.9 .71 .21 .35 .16 .20 .17 .23 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 1.1 .20 .85 .85 .23 .17 .15 22 .10 4.2 4.1 .26 1.1 4.2 1.1 .20 .85 .23 .11 .10 .20 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 1.1 .20 .85 .39 .20 .22 .10 .10 .20 .20 .37 .34 1.4 1.9 .71 .20 .13 .25 .20 .15 22 .10 4.2 4.1 .26 1.1 4.2 1.1 .20 .29 .85 .23 .17 .15 .20 .20 .25 .20 .15 24 .12 .45 .18 .22 .7 .8 1.6 4.0 .81 .10 .10 .17 .3 .25 .20 .15 25 .26 .26 6.5 2.7 1.9 1.1 .20 .29 .81 .5 .86 .23 .21 .7 .4 .13 .25 .20 .25 .20 .15 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20	2	.09	1.8	.58	.50	.68	1.0	3.2	5.7	e1.5		.15	
5 .11 .20 .93 .21 6.0 .99 .86 1.2 .42 .56 .22 .11 6 .11 .37 .75 .21 1.7 .86 .98 1.6 .37 .37 .37 .25 .10 7 .09 .78 .73 4.0 .84 .83 1.1 2.3 .36 .34 .24 5.8 8 .10 9.0 .85 6.5 .62 1.5 1.4 .99 .35 .35 .21 12 9 .05 3.5 .83 1.6 .62 33 8.9 10 .40 .34 .23 .11 10 .07 1.4 1.2 1.5 .63 1.3 18 14 .56 .37 .20 .06 11 .12 .52 1.8 1.5 .75 1.0 1.8 15 .51 .38 .17 .06 12 .15 .46 .43 2.9 6.6 .87 1.5 .44 10 .35 .17 .06 13 .15 .50 1.2 1.0 1.2 .83 1.5 .62 .3 18 .24 .14 .08 14 .07 4.1 .77 .91 1.1 1.5 1.4 .62.0 3.5 .24 .17 .08 15 .10 2.7 .56 .91 .79 1.1 1.4 .62.0 3.5 .24 .17 .08 16 .13 .55 .39 1.0 .56 .78 1.3 .47 .25 .24 .15 .08 16 .13 .55 .39 1.0 .56 .78 1.3 .47 .2 .2 .25 .15 .10 17 .15 .45 .36 .75 .90 .74 3.0 .41.5 .43 .26 1.2 .12 18 .20 .33 .40 8.3 16 .92 1.5 .45 .45 .45 .21 .74 .13 20 .16 .20 .37 .34 1.4 1.9 .71 .20 .13 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 1.9 .71 .20 .13 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 1.9 .71 .20 .13 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 1.9 .71 .20 .13 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 1.1 .10 .5 .60 .29 .15 .18 .20 .28 .13 24 .12 .45 .18 .22 .78 1.6 .20 .17 .23 .21 .10 .13 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 1.1 .10 .5 .60 .85 .23 .17 .15 22 .10 4.2 .41 .26 1.1 4.2 1.1 .10 .5 .60 .30 .25 .24 .17 .15 23 .11 .51 .47 .25 .15 .22 .55 .5 .61 .4 .78 .20 .17 .13 24 .12 .45 .18 .22 .78 1.6 .40 .01 .3 .25 .20 .15 26 .24 .17 .65 2.1 1.1 .20 .29 .61 .5 .86 .23 .24 .11 27 .35 .39 .75 1.9 1.1 .9 1.5 1.4 .25 .94 .20 .21 .12 28 .28 .43 1.4 1.9 .95 .86 .14 .41 .25 .11 .9 .35 .19 .10 .10 .9894 1.6 .61.3 .77 .34 .18 .10 .17 .47 .10 .9894 1.6 .61.3 .77 .34 .18 .10 .17 .47 .10 .9894 1.6 .61.3 .77 .34 .18 .10 .17 .47 .10 .9811 .10 .99 .29 .29 .35 .19 .13 .06 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1998, BY WATER YEAR (WY)	3	.14	.64	.77	.49	.68	1.1	.83	1.4	.92	.52	.17	
5 .11 .20 .93 .21 6.0 .99 .86 1.2 .42 .56 .22 .11 6 .11 .37 .75 .21 1.7 .86 .98 1.6 .37 .37 .37 .25 .10 7 .09 .78 .73 4.0 .84 .83 1.1 2.3 .36 .34 .24 5.8 8 .10 9.0 .85 6.5 .62 1.5 1.4 .99 .35 .35 .21 12 9 .05 3.5 .83 1.6 .62 33 8.9 10 .40 .34 .23 .11 10 .07 1.4 1.2 1.5 .63 1.3 18 14 .56 .37 .20 .06 11 .12 .52 1.8 1.5 .75 1.0 1.8 15 .51 .38 .17 .06 12 .15 .46 .43 2.9 6.6 .87 1.5 .64 .4 10 .35 .17 .06 13 .15 .50 1.2 1.0 1.2 .83 1.5 .62 .3 18 .24 .14 .08 14 .07 4.1 .77 .91 1.1 1.5 1.4 .62.0 3.5 .24 .17 .08 15 .10 2.7 .56 .91 .79 1.1 1.4 .62.0 2.5 .24 .17 .08 16 .13 .55 .39 1.0 .56 .78 1.3 .61.7 .22 .25 .15 .00 16 .13 .55 .39 1.0 .56 .78 1.3 .61.7 .22 .25 .15 .10 17 .15 .45 .36 .75 .90 .74 3.0 .61.5 4.3 .26 1.2 .12 18 .20 .33 .40 8.3 16 .92 1.5 .61.5 4.5 .21 7.4 .13 20 .16 .20 .37 .34 1.4 1.9 7.1 .20 .13 .25 .20 .15 21 .10 .21 .38 .26 1.3 4.1 1.9 .71 .23 .61.5 4.5 .21 .74 .13 22 .16 .22 .35 1.6 2.0 17 2.3 .61.5 1.8 20 .28 1.3 24 .12 .45 .18 .22 .78 .11 .42 .11 .61.5 .67 .21 .16 .14 23 .11 .51 .47 .25 .15 .22 .25 .55 .61.4 .79 .13 24 .12 .45 .18 .22 .78 1.6 .20 .17 .23 .61.5 1.8 .20 .28 1.3 24 .12 .45 .18 .22 .78 1.6 4.0 .61.3 1.1 1.9 .21 .13 25 .26 .26 .55 .27 1.9 1.5 1.4 .20 .9 .61.5 .86 .23 .24 .11 27 .35 .39 .75 1.9 1.1 1.4 .20 .29 .61.5 .86 .23 .24 .11 28 .28 .43 1.4 1.9 .95 .86 .14 .42 .11 .61.5 .67 .21 .16 .14 29 .16 .48 6.7 1.894 1.6 .40 .61.3 1.1 1.9 .21 .13 25 .26 .26 .56 .5 .77 1.9 1.5 1.4 .62.5 .94 .20 .21 .12 26 .24 .17 .65 .21 1.1 .93 .3.2 .61.5 1.8 .20 .35 .19 .10 31 .1769 .74 1.061.095 .35 .19 .13 .06 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1998, BY WATER YEAR (WY)	4	.12	.26	.88	.32	.75	1.0	.83	1.5	. 62	.42	.17	.11
7	5	.11	.20	.93			.99	.86	1.2	.42	.56	.22	.11
8	6	.11	.37	.75	.21	1.7	.86	.98	1.6	.37	.37		
9	7	.09	.78	.73	4.0	.84	.83	1.1	2.3	.36	.34	.24	5.8
9	8	.10	9.0	.85	6.5	.62	1.5	1.4	.99	.35	.35	.21	12
10	9	. 05							10			.23	.11
12													
12	11	.12	.52	1.8	1.5	.75	1.0	1.8	15	.51	.38	.17	.06
13												.17	.06
14													.08
15													
17													
17	16	.13	.55	.39	1.0	.56	.78	1.3	e1.7	2.2	.25	.15	.10
18													.12
19													
20											.20		.13
22													
22	21	.10	.21	.38	.26	1.3	4.1	1.1	e2.0	.85	.23	.17	.15
23													
24													
25													
27													
27	26	. 24	.17	. 65	2.1	1.1	2.0	2.9	e1.5	.86	.23	.24	.11
28												.21	.12
29													
30													
31 .1769 .74 1.0 e1.052 .15 TOTAL 9.87 43.44 47.01 94.67 61.25 89.59 83.60 90.89 68.58 10.71 14.07 20.84 MEAN .32 1.45 1.52 3.05 2.19 2.89 2.79 2.93 2.29 .35 .45 .69 MAX 3.5 9.0 10 25 16 33 18 15 18 1.1 7.4 12 MIN .04 .17 .18 .21 .56 .74 .83 .99 .35 .19 .13 .06 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1998, BY WATER YEAR (WY) MEAN 1.29 1.09 1.69 2.32 1.49 2.02 2.18 1.87 1.10 1.76 1.65 .99 MAX 3.40 1.45 3.97 4.67 2.19 2.89 3.14 2.93 2.29 4.61 3.64 1.94 (WY) 1997 1998 1997 1994 1998 1998 1997 1998 1998 1997 1997 1994 MIN .32 .55 .23 .75 .85 .91 .70 .87 .33 .35 .082 .28													
MEAN													
MEAN	TOTAL	9.87	43.44	47.01	94.67	61.25	89.59	83.60	90.89	68.58	10.71	14.07	
MAX 3.5 9.0 10 25 16 33 18 15 18 1.1 7.4 12 MIN .04 .17 .18 .21 .56 .74 .83 .99 .35 .19 .13 .06 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1998, BY WATER YEAR (WY) MEAN 1.29 1.09 1.69 2.32 1.49 2.02 2.18 1.87 1.10 1.76 1.65 .99 MAX 3.40 1.45 3.97 4.67 2.19 2.89 3.14 2.93 2.29 4.61 3.64 1.94 (WY) 1997 1998 1997 1994 1998 1998 1997 1998 1997 1997 1994 MIN .32 .55 .23 .75 .85 .91 .70 .87 .33 .35 .082 .28											.35	.45	.69
MIN .04 .17 .18 .21 .56 .74 .83 .99 .35 .19 .13 .06 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1993 - 1998, BY WATER YEAR (WY) MEAN 1.29 1.09 1.69 2.32 1.49 2.02 2.18 1.87 1.10 1.76 1.65 .99 MAX 3.40 1.45 3.97 4.67 2.19 2.89 3.14 2.93 2.29 4.61 3.64 1.94 (WY) 1997 1998 1997 1994 1998 1998 1997 1998 1998 1997 1997 1994 MIN .32 .55 .23 .75 .85 .91 .70 .87 .33 .35 .082 .28													
MEAN 1.29 1.09 1.69 2.32 1.49 2.02 2.18 1.87 1.10 1.76 1.65 .99 MAX 3.40 1.45 3.97 4.67 2.19 2.89 3.14 2.93 2.29 4.61 3.64 1.94 (WY) 1997 1998 1997 1994 1998 1998 1997 1998 1997 1997 1997 1999 MIN .32 .55 .23 .75 .85 .91 .70 .87 .33 .35 .082 .28													
MAX 3.40 1.45 3.97 4.67 2.19 2.89 3.14 2.93 2.29 4.61 3.64 1.94 (WY) 1997 1998 1997 1994 1998 1998 1997 1998 1997 1997 1994 MIN .32 .55 .23 .75 .85 .91 .70 .87 .33 .35 .082 .28	STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 1	993 - 19	98, BY WA	PER YEAR	(WY)			
MAX 3.40 1.45 3.97 4.67 2.19 2.89 3.14 2.93 2.29 4.61 3.64 1.94 (WY) 1997 1998 1997 1994 1998 1998 1997 1998 1997 1997 1994 MIN .32 .55 .23 .75 .85 .91 .70 .87 .33 .35 .082 .28	MEAN	1.29	1.09	1.69	2.32	1.49	2.02	2.18	1.87	1.10	1.76	1.65	.99
(WY) 1997 1998 1997 1994 1998 1998 1997 1998 1998 1997 1997 1994 MIN .32 .55 .23 .75 .85 .91 .70 .87 .33 .35 .082 .28													
MIN .32 .55 .23 .75 .85 .91 .70 .87 .33 .35 .082 .28													

01311810 CONSELYEAS POND TRIBUTARY AT ROSEDALE, NY

SUMMARY STATISTICS	FOR 1997 CALENDAR YEA	FOR 1998 WATE	R YEAR	WATER YEARS	1993 - 1998
ANNUAL TOTAL	719.70	634.52			
ANNUAL MEAN	1.97	1.74		1.62	
HIGHEST ANNUAL MEAN				2.42	1997
LOWEST ANNUAL MEAN				.80	1995
HIGHEST DAILY MEAN	68 Jul 2	4 33 1	Mar 9	70	Jan 28 1994
LOWEST DAILY MEAN	.02 Sep 2	7 .04 (Oct 1	.01	Nov 9 1995
ANNUAL SEVEN-DAY MINIMUM	.04 Sep 2		Sep 10	.02	Aug 26 1995
10 PERCENT EXCEEDS	4.1	4.1		2.9	
50 PERCENT EXCEEDS	.83	.75		. 62	
90 PERCENT EXCEEDS	.17	.13		.13	

e Estimated

CURRENT WATER YEAR DAILY DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW DAILY MAXIMUM AND MINIMUM FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Low-flow partial-record stations

Measurements of streamflow in the area covered by this report made at low-flow partial-record stations are given in the following table. Most of these measurements were made during periods of base flow when streamflow is primarily from ground-water storage. These measurements, when correlated with the simultaneous discharge of a nearby stream where continuous records are available, give a picture of the low-flow potentiality of the stream. The column headed "Period of record" shows the water years in which measurements were made at the same, or practically the same, site. Where "Drainage area" column is blank, drainage area was not available at time of publication.

Discharge measurements made at low-flow partial-record stations during water year 1998

			Drainage	Period	Measi	urements
Station number	Station name	Location	area (mi ²)	of record	Date	Discharge (ft ³ /s)
		Streams on Long Island				
01302200	Whitney Lake Outlet at Manhasset, N.Y.	Lat 40°47′39″, long 73°42′32″, Nassau County, at bridge on Creek Road, at Manhasset, 0.25 mi northwest of State Highway 25A		1953-98	9-11-98	0.47
01302300	Roslyn Brook at Roslyn, N.Y.	Lat 40°47′55″, long 73°38′51″, Nassau County, at Roslyn, 200 ft downstream from dam in Roslyn Park	-	1953-98	9-11-98	.31
01302800	Island Swamp Brook at Lattingtown, N.Y.	Lat 40°53′25″, long 73°37′10″, Nassau County, at bridge on Lattingtown Road, 0.3 mi southwest of Lattingtown, and 1.5 mi northwest of Locust Valley	22	1953-98	7-2-98	.81
01303600	Mill Creek near Huntington, N.Y.	Lat 40°52′56″, long 73°25′17″, Suffolk County, at culvert on Creek Road, 300 ft west of New York Ave., 1 mi northeast of Huntington	V	1953-98	8-13-98	2.3
01303700	Stony Hollow Run at Centerport, N.Y.	Lat 40°53′05″, long 73°21′41″, Suffolk County, at culvert on State Highway 25A, 0.25 mi east of Centerport, and 1.5 mi southwest of Northport		1953-98	9-21-98	.58
01303742	Fresh Pond Outlet at Fort Salonga, N.Y.	Lat 40°55′26″, long 73°17′43″, Suffolk County, 200 ft downstream from Fresh Pond Outlet, 0.75 mi north of Fort Salonga		1977-98	9-21-98	.74
01303790	Northeast Branch Nissequogue River near East Hauppauge, N.Y.	Lat 40°50′27″, long 73°10′41″, Suffolk County, at culvert on State Highway 347, 1.5 mi northwest of East Hauppauge, and 4.0 mi upstream from gaging station near Smithtown	+	1972-87 1989-98	9-22-98	.33

Discharge measurements made at low-flow partial-record stations during water year 1998

			Drainage	Period	Measurements	
Station number	Station name	Location	area (mi ²)	of record	Date	Discharge (ft ³ /s)
01303800	Northeast Branch Nissequogue River at Smithtown, N.Y.	Lat 40°51′05″, long 73°11′15″, Suffolk County, 300 ft upstream from culvert on State Highway 111, 0.75 mi southeast of Smithtown, and 3.0 mi upstream from gag- ing station near Smithtown	***	1948-49 1951-76 1979-98	9-22-98	0.92
01303850	Northeast Branch Nissequogue River near Hauppauge, N.Y.	Lat 40°50′43″, long 73°11′50″, Suffolk County, at culvert on Maple Avenue, 0.75 mi south of Smithtown, and 2.5 mi upstream from gaging station near Smith- town	+	1972-98	9-22-98	1.2
01303900	Northeast Branch Nissequogue River near Smithtown, N.Y.	Lat 40°50′45″, long 73°12′29″, Suffolk County, 10 ft upstream from culvert at Brooksite Drive, 0.75 mi southwest of Smithtown, and 2.0 mi upstream from gag- ing station near Smithtown	# :	1953-98	9-22-98	2.3
01303941	Nissequogue River near Hauppauge, N.Y.	Lat 40°50′30″, long 73°13′43″, Suffolk County, 30 ft downstream from dam at New Mill Road, 2 mi northwest of Hauppauge, and 0.5 mi upstream from gaging station near Smithtown	17	1972-98	9-22-98	19
01304010	Nissequogue River at Smithtown, N.Y.	Lat 40°51′48″, long 73°12′05″, Suffolk County, at culvert on Landing Ave., at Smithtown, and 1.5 mi downstream from gaging station near Smithtown	=	1974-98	9-22-98	51
01304051	Stony Brook at Stony Brook, N.Y.	Lat 40°54′53″, long 73°08′52″, Suffolk County, 100 ft downstream from Harbor Road, at Stony Brook		1977-98	9-23-98	1.6
01304060	Unnamed tributary to Conscience Bay at Setauket, N.Y.	Lat 40°56′49″, long 73°07′01″, Suffolk County, 30 ft downstream from pond below Old Field Road, at Setauket		1977-98	9-28-98	1.0
01304065	Unnamed tributary to Setauket Harbor at East Setauket, N.Y.	Lat 40°56′35″, long 73°06′08″, Suffolk County at culvert on State Highway 25A, at East Setauket	1-4	1977-98	9-28-98	.19
01304070	Unnamed tributary to Port Jefferson Harbor at Port Jefferson, N.Y.	Lat 40°56′41″, long 73°04′18″, Suffolk County, at culvert on Barnum Ave., at Port Jefferson		1977-98	9-28-98	.54
01304100	Wading River at Wading River, N.Y.	Lat 40°57′20″, long 72°51′19″, Suffolk County, at pond outlet, 0.25 mi west of Wading River	A 2) -	1953-62 1964-83 1985-86 1989-98	8-31-98	.18
01304150	Fresh Pond Outlet, at Baiting Hollow, N.Y.	Lat 40°57′43″, long 72°46′17″, Suffolk County, 25 ft downstream from dirt road at outlet of Fresh Pond, 0.7 mi northwest of Baiting Hollow	7	1977-98	8-31-98	.27
01304400	Peconic River at Manorville, N.Y.	Lat 40°52′38″, long 72°49′42″, Suffolk County, at bridge on Schultz Road, 1 mi northwest of Manorville, and 8.5 mi upstream from gaging station at Riverhead	7	1948-49 1951-98	9-18-98	1.3
01304510	Peconic River at Nugent Drive, at Riverhead, N.Y.	Lat 40°55′03″, long 72°40′11″, Suffolk County, at bridge on Nugent Drive, at Riverhead, and 1.4 mi downstream from gaging station at Riverhead		1976-98	9-18-98	32

Discharge measurements made at low-flow partial-record stations during water year 1998

			Drainage	Period	Meas	urements
Station number	Station name	Location	area (mi ²)	of record	Date	Discharge (ft ³ /s)
01304530	Little River near Riverhead, N.Y.	Lat 40°53′52″, long 72°40′30″, Suffolk County, at Wildwood Lake outlet, 500 ft east of Moriches-Riverhead Road, 1.5 mi southwest of Riverhead	· · ·	1952-98	9-18-98	3.3
01304560	White Brook at Riverhead, N.Y.	Lat 40°54′40″, long 72°38′37″, Suffolk County, at culvert on State Highway 24, 1 mi southeast of Riverhead	22	1953-69 1973-98	8-31-98	2.1
01304600	Big Fresh Pond Outlet at North Sea, N.Y.	Lat 40°55′49″, long 72°25′04″, Suffolk County, at culvert on Noyack Road, at North Sea, 3.5 mi northwest of Southamp- ton		1951-69 1971-98	9-24-98	.74
01304630	Mill Creek at Noyack, N.Y.	Lat 40°59′35″, long 72°21′00″, Suffolk County, 50 ft upstream from culvert on Noyack Road, 0.25 mi west of Noyack	-	1958-98	9-24-98	.24
01304660	Ligonee Brook at Sag Harbor, N.Y.	Lat 40°59′21″, long 72°18′12″, Suffolk County, at culvert on Brick Kiln Road, 0.75 mi southwest of Sag Harbor	-	1953-69 1973-98	9-24-98	.10 -
01304730	Poxabogue Pond Outlet at Sagaponack, N.Y.	Lat 40°55′48″, long 72°17′16″, Suffolk County, at culvert on Sagg St., at Sagaponack, and 1 mi southeast of Bridgehampton		1953-78 1980-86 1988-98	9-24-98	3.5
01304745	Weesuck Creek at East Quogue, N.Y.	Lat 40°50′52″, long 72°34′42″, Suffolk County, at culvert on State Highway 27A, 0.5 mi northeast of East Quogue		1974-98	9-23-98	1.3
01304760	Quantuck Creek at Quogue, N.Y.	Lat 40°49′57″, long 72°37′06″, Suffolk County, at culvert on Old Meeting House Road, 1 mi northwest of Quogue	<u></u>	1953-69 1974-98	9-23-98	2.8
01304780	Aspatuck Creek near Westhampton Beach, N.Y.	Lat 40°49′04″, long 72°38′13″, Suffolk County, at culvert on Brook Road, at Westhampton Beach		1959-88 1990-98	9-24-98	1.4
01304800	Beaverdam Creek at Westhampton Beach, N.Y.	Lat 40°49′23″, long 72°39′42″, Suffolk County, at culvert on Old Country Road, 100 ft northwest of State Highway 27A, and 1 mi northwest of Westhampton		1953-88 1990-98	9-23-98	1.8
01304820	Speonk River at Speonk, N.Y.	Lat 40°49′06″, long 72°41′29″, Suffolk County, at culvert on State Highway 27A, 0.75 mi east of Speonk		1974-98	9-23-98	.75
01304860	Seatuck Creek at Eastport, N.Y.	Lat 40°49′30″, long 72°43′43″, Suffolk County, 15 ft downstream from culvert on State Highway 27A, at Eastport	-	1953-98	9-23-98	6.3
01304900	Little Seatuck Creek at Eastport, N.Y.	Lat 40°49′12″, long 72°44′23″, Suffolk County, at culvert on Moriches Blvd., 0.75 mi southwest of Eastport	-	1955-69 1974-98	9-23-98	4.0
01304960	Forge River at Moriches, N.Y.	Lat 40°48′22″, long 72°50′00″, Suffolk County, at two culverts on State Highway 27A, at Moriches	7	1948-50 1952-98	9-24-98	7.2
01304990	Carmans River at Middle Island, N.Y.	Lat 40°51′47″, long 72°56′35″, Suffolk County, at culvert on East Bartlett Road, 0.75 mi south of Middle Island, and 3.0 mi upstream from gaging station at Yaphank	-	1957-98	9-24-98	1.7

Discharge measurements made at low-flow partial-record stations during water year 1998

			Drainage	Period	Meas	urements
Station number	Station name	Location	area (mi ²)	of record	Date	Discharge (ft ³ /s)
01304995	Carmans River near Yaphank, N.Y.	Lat 40°50′29″, long 72°56′13″, Suffolk County, 25 ft downstream from Mill Road, 1.2 mi northwest of Yaphank, and 1.9 mi upstream from gaging station at Yaphank	(1 16)	1973-98	9-24-98	8.9
01304998	Carmans River, below Lower Lake, at Yaphank, N.Y.	Lat 40°50′07″, long 72°55′01″, Suffolk County, at culvert on Yaphank Avenue, at Yaphank, and 0.7 mi upstream from gaging station at Yaphank	æ	1973-98	9-24-98	22
01305040	Carmans River at South Haven, N.Y.	Lat 40°48′09″, long 72°53′09″, Suffolk County, 75 ft upstream from culvert on State Highway 27A, at South Haven, and 2.6 mi downstream from gaging station at Yaphank		1973-98	9-24-98	60
01305300	Mud Creek at East Patchogue, N.Y.	Lat 40°45′47″, long 72°58′59″, Suffolk County, at culvert on South Country Road, at East Patchogue, 2 mi east of Patchogue	£	1957-69 1977-98	9-23-98	4.6
01305800	Patchogue River near Patchogue, N.Y.	Lat 40°46′55″, long 73°01′19″, Suffolk County, at bridge on discontinued road, 300 ft west of North Ocean Ave., and 1 mi north of State Highway 27A and gaging station at Patchogue	-	1945-50 1952-98	9-21-98	.26
01306000	Patchogue River at Patchogue, N.Y.	Lat 40°45′56″, long 73°01′16″, Suffolk County, at State Highway 27A, at Patchogue	13.5 ^b	1956-69* 1970-73 1974-76* 1977-98	9-21-98	8.3
01306400	Green Creek at West Sayville, N.Y.	Lat 40°43′51″, long 73°05′32″, Suffolk County, 30 ft upstream from State Highway 27A at West Sayville	=	1953-98	9-21-98	3.4
01306405	Lake Ronkonkoma Inlet at Lake Ronkonkoma, N.Y.	Lat 40°49′57″, long 73°07′34″, Suffolk County, 300 ft southeast of Smithtown Blvd., 0.2 mi west of Lake Ronkonkoma	=	1948-49 1953-54 1977-79 1981-86 1988-89 1991-98	9-18-98	.25
01306470	Connetquot Brook near Oakdale, N.Y.	Lat 40°45′47″, long 73°09′10″, Suffolk County, 100 ft downstream from fish hatchery, and 1.1 mi upstream from gaging station 01306499	-	1968 1973-98	9-18-98	30
01306700	Rattlesnake Brook near Oakdale, N.Y.	Lat 40°44′52″, long 73°08′45″, Suffolk County, 50 ft downstream from State Highway 27, 1.5 mi northwest of Oakdale	-	1954-69 1971-98	9-21-98	24
01307000	Champlin Creek at Islip, N.Y.	Lat 40°44′13″, long 73°12′08″, Suffolk County, at Long Island Railroad bridge, 220 ft downstream from Moffitt Boulevard, at Islip	6.5 ^b	1958-69* 1970-86 1991-98	9-18-98	2.2
01307300	Pardees Ponds Outlet at Islip, N.Y.	Lat 40°43′40″, long 73°13′16″, Suffolk County, at culvert on State Highway 27A, at Islip	=	1958-72 1974-97	9-21-98	3.3

^{*} Operated as a continuous-record gaging station. b About

Discharge measurements made at low-flow partial-record stations during water year 1998

	•		Drainage	Period	Measurements	
Station number	Station name	Location	area (mi ²)	of record	Date	Discharge (ft ³ /s)
01307400	Awixa Creek at Islip, N.Y.	Lat 40°43′39″, long 73°13′51″, Suffolk County, at culvert on State Highway 27A, 0.75 mi west of Islip		1958-98	9-18-98	0.30
01307500	Penataquit Creek at Bay Shore, N.Y.	Lat 40°43′37″, long 73°14′41″, Suffolk County, at Union Avenue, at Bayshore	5 ^b	1955-76* 1977-98	9-18-98	1.6
01307600	Cascade Lakes Outlet at Brightwaters, N.Y,	Lat 40°42′40″, long 73°15′38″, Suffolk County, at culvert on Montauk Highway, at Brightwaters	<u></u>	1958-98	9-18-98	.30
01307920	Sampawams Creek near Deer Park, N.Y.	Lat 40°44′27″, long 73°18′24″, Suffolk County, 30 ft downstream from Bay Shore Road, and 2.5 mi upstream from gaging station at Babylon	4	1965-66 1973-98	7-13-98	7.3
01307950	Sampawams Creek near North Babylon, N.Y.	Lat 40°43′37″, long 73°18′46″, Suffolk County, 120 ft downstream from Hunter Avenue and 1.6 mi upstream from gaging station at Babylon	2-	1967 1971-98	7-13-98	7.9
01308200	Sampawams Creek below Hawleys Lake, at Babylon, N.Y.	Lat 40°41′48″, long 73°19′04″, Suffolk County, at pond outlet, 200 ft upstream from State Highway 27A, at Babylon, and 0.5 mi downstream from gaging station at Babylon		1953-67 1969-98	7-13-98	14
01308600	Carlls River at Park Avenue, Babylon, N.Y.	Lat 40°42′06″, long 73°19′43″, Suffolk County, at culvert on Park Avenue, at Babylon, and 0.5 mi downstream from gaging station at Babylon		1968-85 1987-98	8-7-98	19
01309000	Santapogue Creek at Lindenhurst, N.Y.	Lat 40°41′30″, long 73°21′20″, Suffolk County, at culvert on East Hoffman Avenue, 1 mi east of Long Island Railroad station at Lindenhurst	7 ^b	1957-69* 1970-98	9-10-98	.60
01309100	Santapogue Creek at State Highway 27A, Lindenhurst, N.Y.	Lat 40°41′02″, long 73°21′06″, Suffolk County, at culvert on State Highway 27A, 0.5 mi downstream from discontinued gag- ing station at Lindenhurst		1953-69 1971-98	9-16-98	4.3
01309200	Neguntatogue Creek at Lindenhurst, N.Y.	Lat 40°40′47″, long 73°21′40″, Suffolk County, 20 ft upstream from State Highway 27A, in Lindenhurst		1948-50 1952-98	9-15-98	3.4
01309250	Strongs Creek at Lindenhurst, N.Y.	Lat 40°40′22″, long 73°22′40″, Suffolk County, 30 ft upstream from State highway 27A, at Lindenhurst	-	1953-69 1971-98	9-15-98	1.1
01309350	Amityville Creek at Amityville, N.Y.	Lat 40°40′13″, long 73°24′51″, Suffolk County, 100 ft upstream from State Highway 27A, at Amityville		1953-98	9-17-98	1.4
01309400	Carman Creek at Amityville, N.Y.	Lat 40°40′09″, long 73°26′02″, Nassau County, at bridge on State Highway 27A, 0.75 mi west of Amityville		1949 1953-69 1971-88 1990-98	9-14-98	4.3

^{*} Operated as a continuous-record gaging station. b About

Discharge measurements made at low-flow partial-record stations during water year 1998

			Drainage	Period	Measurements	
Station number	Station name	Location	area (mi ²)	of record	Date	Discharge (ft ³ /s)
01309454	Massapequa Creek at South Farmingdale, N.Y.	Lat 40°42′55″, long 73°27′00″, Nassau County, 75 ft upstream from Tomes Avenue, 0.2 mi south of South Farmingdale, and 1.9 mi upstream from gaging station at Massapequa	A 62 -	1962-65 1973-78 1980-98	7-10-98	0.12
01309476	Massapequa Creek at Southern State Parkway, at South Farmingdale, N.Y.	Lat 40°42′21″, long 73°27′05″, Nassau County, 30 ft upstream from culvert at Southern State Parkway, 0.8 mi south of South Farmingdale, and 1.2 mi upstream from gaging station at Massapequa		1962-65 1973-98	7-10-98	1.5
01309490	Massapequa Creek at North Massapequa, N.Y.	Lat 40°41′55″, long 73°27′08″, Nassau County, opposite Franklin Street, at North Massapequa, and 0.55 mi upstream from gaging station at Massapequa		1962 1964 1973-98	7-10-98	3.1
01309700	Seaford Creek at Seaford, N.Y.	Lat 40°40′00″, long 73°28′57″, Nassau County, at bridge on State highway 27A, in Seaford	· #	1953-98	7-10-98	2.5
01309800	Seamans Creek at Seaford, N.Y.	Lat 40°39′56″, long 73°29′37″, Nassau County, at culvert on State Highway 27A, 0.2 mi west of Seaford	9	1953-67 1971-81 1983-98	7-10-98	4.0
01309970	Bellmore Creek tributary near North Wantagh, N.Y.	Lat 40°41′52″, long 73°30′33″, Nassau County, at culvert on Duck Pond Drive North, 0.3 mi north of North Wantagh, and 1.2 mi upstream from gaging station 01309990		1973-98	8-10-98	0
01309980	Bellmore Creek tributary at North Wantagh, N.Y.	Lat 40°41′20″, long 73°30′37″, Nassau County, at culvert on Beltagh Avenue, at North Wantagh, and 0.6 mi upstream from gaging station 01309990		1973-98	8-10-98	0
01310100	Newbridge Creek at Merrick, N.Y.	Lat 40°39′42″, long 73°32′02″, Nassau County, downstream from bridge on Merrick Road in Merrick	4	1963-98	9-14-98	.35
01310200	Cedar Swamp Creek at Merrick, N.Y.	Lat 40°39′39″, long 73°32′24″, Nassau County, at bridge on State Highway 27A, in Merrick, 2.5 mi east of Freeport	-	1953-62 1965-98	9-14-98	3.5
01310470	East Meadow Brook near Westbury, N.Y.	Lat 40°44′01″, long 73°35′06″, Nassau County, 50 ft downstream from culvert on Meadowbrook State Parkway, 1.0 mi south of Westbury, and 4.8 mi upstream from gage at Freeport	-	1973-98	8-7-98	0
01310475	East Meadow Brook at Uniondale, N.Y.	Lat 40°43′17″, long 73°35′00″, Nassau County, at bridge on Hempstead Turnpike, 0.9 mi northeast of Uniondale, and 3.9 mi upstream from gage at Freeport		1973-98	8-7-98	.31
01310488	East Meadow Brook at East Meadow, N.Y.	Lat 40°41′56″, long 73°34′37″, Nassau County, 300 ft west of Luddington Road, 1.4 mi southwest of East Meadow, and 2.3 mi upstream from gage at Freeport	7	1973-98	8-7-98	0
01310510	East Meadow Pond Outlet at Freeport, N.Y.	Lat 40°39′32″, long 73°34′01″, Nassau County, 50 ft downstream from culvert at Sunrise Highway, and 0.5 mi downstream from gaging station 01310500	-	1975-80 1986 1990-98	8-7-98	1.0

Discharge measurements made at low-flow partial-record stations during water year 1998

			Drainage	Period	Measurements		
Station number	Station name	Location	area (mi ²)	of record	Date	Discharge (ft ³ /s)	
01310515	Freeport Creek at Freeport, N.Y.	Lat 40°39′28″, long 73°34′22″, Nassau County, 20 ft upstream from culvert at Sunrise Highway, and 0.5 mi downstream from gaging station 01310500		1975-80 1986 1990-98	8-6-98	1.6	
01310600	Milburn Creek at Baldwin, N.Y.	Lat 40°39′04″, long 73°36′13″, Nassau County, 50 ft downstream from bridge on State Highway 27A, 0.5 mi east of Baldwin		1953-98	8-6-98	1.9	
01310700	Parsonage Creek at Baldwin, N.Y.	Lat 40°38′48″, long 73°36′59″, Nassau County, 20 ft downstream from bridge on Foxhurst Road, at Baldwin) - 1	1953-69 1971-81 1983-84 1986-88 1991-98	9-26-98	.77	
01310800	South Pond Outlet at Rockville Centre, N.Y.	Lat 40°40′00″, long 73°39′08″, Nassau County, at bridge on Lakeview Ave., 0.75 mi north of Rockville Centre	1.	1953-93 1995-98	9-26-98	.10	
01311200	Motts Creek at Valley Stream, N.Y.	Lat 40°39′01″, long 73°42′45″, Nassau County, 50 ft downstream from bridge on Rosedale Road, 1 mi southwest of Valley Stream		1954-98	8-7-98	.20	
01311700	Valley Stream, below West Branch, at Valley Stream, N.Y.	Lat 40°39′47″, long 73°42′21″, Nassau County, 200 ft downstream from West Branch, 500 ft downstream from bridge on West Valley Stream Blvd., at village park in Valley Stream, and 500 ft downstream from gaging station		1953-98	6-24-98	.02	

GROUND-WATER LEVELS: NASSAU COUNTY

CONTINUOUS RECORDING STATIONS

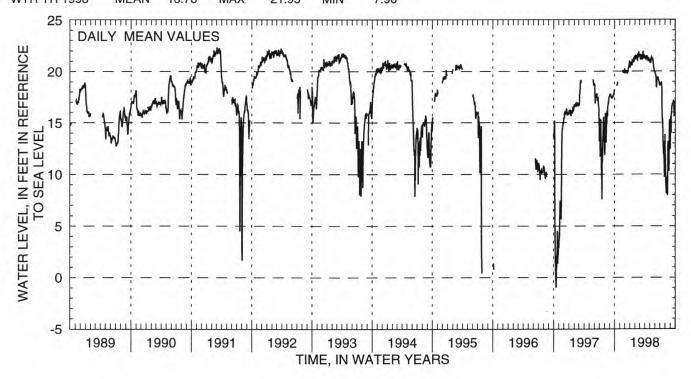
404931073382101. Local number, N110.1

LOCATION.—Lat 40°49′31″, long 73°38′21″, Hydrologic Unit 02030201, at Jericho Water District storage garage, 27 ft south of Scudders Lane, 32 ft west of Motts Cove Road, in recorder shelter, Glenwood Landing. Owner: Jericho Water District. AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 16 in., reported depth 519 ft, measured depth 324 ft, screened 445 to 515 ft.

INSTRUMENTATION.—Digital water-level recorder — 30-minute punch.

DATUM.—Land-surface datum is 56.2 ft above sea level. Measuring point: Top of 4-in steel nipple, 0.44 ft above land-surface datum.


REMARKS.—Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.—January 1946 to current year. Unpublished records for 1946-48, 1952, 1955, 1961, 1965, 1970-75, are available in files of the Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 27.99 ft above sea level, December 15, 1970; lowest measured, 9.05 ft below sea level, May 22, 1957.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5			20.13	20.55	21.58	21.37	21.31	20.84	19.63	18.79	9.92	15.58
10			19.97	20.78	21.25	21.57	21.55	21.20	18.42	18.92	8.62	16.15
15	18.66		19.88	20.73	21.14	21.25	21.44	21.21	19.27	15.72	8.69	16.78
20		19.93	20.07	21.01	21.51	21.63	21.18	21.08	19.44	13.35	11.59	17.00
25		19.83	20.53	21.16	21.72	21.24	21.19	20.31	19.07	12.02	10.31	15.60
EOM		20.14	20.50	21.29	21.53	21.43	21.00	19.94	18.83	13.07	14.04	17.06
MEAN		19.97	20.15	20.90	21.41	21.45	21.24	20.83	19.21	15.40	11.02	16.03
MAX		20.14	21.05	21.44	21.91	21.95	21.55	21.38	19.99	18.92	15.27	17.18
MIN		19.83	19.79	20.37	21.11	21.15	20.97	19.94	18.42	9.73	7.96	12.43
WTR YR	1998	MEAN	18 78	MAX	21 95	MIN	7 96					

CONTINUOUS RECORDING STATIONS

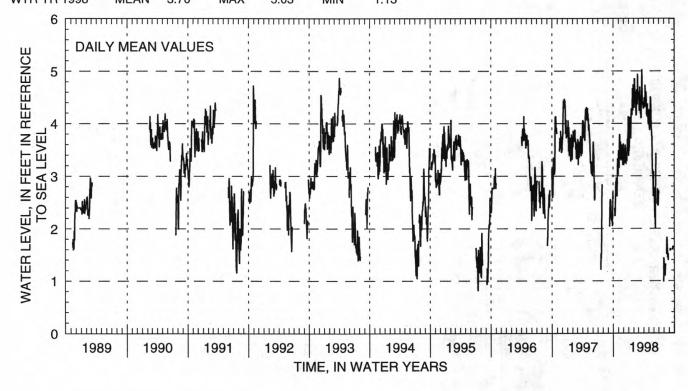
403805073395301. Local number, N2790.2

LOCATION.—Lat 40°38′05″, long 73°39′53″, Hydrologic Unit 02030202, at Bay Park Sewage Treatment Plant, in recorder shelter, Bay Park. Owner: Nassau County Department of Public Works.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 571 ft, screened 538 to 560 ft.

INSTRUMENTATION.—Digital water-level recorder — 30-minute punch.


DATUM.—Land-surface datum is 6.0 ft above sea level. Measuring point: Base of steel recorder shelf, 3.82 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.—February 1950 to current year. Unpublished records from February 1950 to September 1975 are available in files of the Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.50 ft above sea level, April 6, 1958; lowest measured, 0.36 ft below sea level, July 20, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
5		3.15	3.48	3.52	4.85	4.34	4.50	3.94	2.67				
10	2.40	3.60	3.47	4.03	4.42	4.70	4.73	4.07	2.14				
15	2.57	3.64	3.25	3.84	4.16	4.21	4.61	4.22					
20	2.97	3.45	3.37	4.21	4.57	4.61	4.28	3.77			1.83		
25	2.85	3.38	3.70	4.49	4.75	4.39	4.27	3.07	2.58				
EOM	3.06	3.57	3.57	4.50	4.60	4.32	3.98	2.89	2.64	1.13			
MEAN	2.77	3.45	3.48	4.07	4.51	4.42	4.35	3.72	2.56				
MAX	3.33	3.80	4.14	4.74	4.94	5.03	4.73	4.51	3.43				
MIN	2.24	3.15	3.20	3.38	4.15	4.10	3.98	2.61	2.01				
WTR YR	1998	MEAN	3.70	MAX	5.03	MIN	1.13						
	5 10 15 20 25 EOM MEAN MAX MIN	5 10 2.40 15 2.57 20 2.97 25 2.85 EOM 3.06 MEAN 2.77 MAX 3.33	5 3.15 10 2.40 3.60 15 2.57 3.64 20 2.97 3.45 25 2.85 3.38 EOM 3.06 3.57 MEAN 2.77 3.45 MAX 3.33 3.80 MIN 2.24 3.15	5 3.15 3.48 10 2.40 3.60 3.47 15 2.57 3.64 3.25 20 2.97 3.45 3.37 25 2.85 3.38 3.70 EOM 3.06 3.57 3.57 MEAN 2.77 3.45 3.48 MAX 3.33 3.80 4.14 MIN 2.24 3.15 3.20	5 3.15 3.48 3.52 10 2.40 3.60 3.47 4.03 15 2.57 3.64 3.25 3.84 20 2.97 3.45 3.37 4.21 25 2.85 3.38 3.70 4.49 EOM 3.06 3.57 3.57 4.50 MEAN 2.77 3.45 3.48 4.07 MAX 3.33 3.80 4.14 4.74 MIN 2.24 3.15 3.20 3.38	5 3.15 3.48 3.52 4.85 10 2.40 3.60 3.47 4.03 4.42 15 2.57 3.64 3.25 3.84 4.16 20 2.97 3.45 3.37 4.21 4.57 25 2.85 3.38 3.70 4.49 4.75 EOM 3.06 3.57 3.57 4.50 4.60 MEAN 2.77 3.45 3.48 4.07 4.51 MAX 3.33 3.80 4.14 4.74 4.94 MIN 2.24 3.15 3.20 3.38 4.15	5 3.15 3.48 3.52 4.85 4.34 10 2.40 3.60 3.47 4.03 4.42 4.70 15 2.57 3.64 3.25 3.84 4.16 4.21 20 2.97 3.45 3.37 4.21 4.57 4.61 25 2.85 3.38 3.70 4.49 4.75 4.39 EOM 3.06 3.57 3.57 4.50 4.60 4.32 MEAN 2.77 3.45 3.48 4.07 4.51 4.42 MAX 3.33 3.80 4.14 4.74 4.94 5.03 MIN 2.24 3.15 3.20 3.38 4.15 4.10	5 3.15 3.48 3.52 4.85 4.34 4.50 10 2.40 3.60 3.47 4.03 4.42 4.70 4.73 15 2.57 3.64 3.25 3.84 4.16 4.21 4.61 20 2.97 3.45 3.37 4.21 4.57 4.61 4.28 25 2.85 3.38 3.70 4.49 4.75 4.39 4.27 EOM 3.06 3.57 3.57 4.50 4.60 4.32 3.98 MEAN 2.77 3.45 3.48 4.07 4.51 4.42 4.35 MAX 3.33 3.80 4.14 4.74 4.94 5.03 4.73 MIN 2.24 3.15 3.20 3.38 4.15 4.10 3.98	5 3.15 3.48 3.52 4.85 4.34 4.50 3.94 10 2.40 3.60 3.47 4.03 4.42 4.70 4.73 4.07 15 2.57 3.64 3.25 3.84 4.16 4.21 4.61 4.22 20 2.97 3.45 3.37 4.21 4.57 4.61 4.28 3.77 25 2.85 3.38 3.70 4.49 4.75 4.39 4.27 3.07 EOM 3.06 3.57 3.57 4.50 4.60 4.32 3.98 2.89 MEAN 2.77 3.45 3.48 4.07 4.51 4.42 4.35 3.72 MAX 3.33 3.80 4.14 4.74 4.94 5.03 4.73 4.51 MIN 2.24 3.15 3.20 3.38 4.15 4.10 3.98 2.61	5 3.15 3.48 3.52 4.85 4.34 4.50 3.94 2.67 10 2.40 3.60 3.47 4.03 4.42 4.70 4.73 4.07 2.14 15 2.57 3.64 3.25 3.84 4.16 4.21 4.61 4.22 20 2.97 3.45 3.37 4.21 4.57 4.61 4.28 3.77 25 2.85 3.38 3.70 4.49 4.75 4.39 4.27 3.07 2.58 EOM 3.06 3.57 3.57 4.50 4.60 4.32 3.98 2.89 2.64 MEAN 2.77 3.45 3.48 4.07 4.51 4.42 4.35 3.72 2.56 MAX 3.33 3.80 4.14 4.74 4.94 5.03 4.73 4.51 3.43 MIN 2.24 3.15 3.20 3.38 4.15 4.10 3.98 2.61 2.01	5 3.15 3.48 3.52 4.85 4.34 4.50 3.94 2.67 10 2.40 3.60 3.47 4.03 4.42 4.70 4.73 4.07 2.14 15 2.57 3.64 3.25 3.84 4.16 4.21 4.61 4.22 20 2.97 3.45 3.37 4.21 4.57 4.61 4.28 3.77 25 2.85 3.38 3.70 4.49 4.75 4.39 4.27 3.07 2.58 EOM 3.06 3.57 3.57 4.50 4.60 4.32 3.98 2.89 2.64 1.13 MEAN 2.77 3.45 3.48 4.07 4.51 4.42 4.35 3.72 2.56 MAX 3.33 3.80 4.14 4.74 4.94 5.03 4.73 4.51 3.43 MIN 2.24 3.15 3.20 3.38 4.15 4.10 <td>5 3.15 3.48 3.52 4.85 4.34 4.50 3.94 2.67 10 2.40 3.60 3.47 4.03 4.42 4.70 4.73 4.07 2.14 15 2.57 3.64 3.25 3.84 4.16 4.21 4.61 4.22 20 2.97 3.45 3.37 4.21 4.57 4.61 4.28 3.77 1.83 25 2.85 3.38 3.70 4.49 4.75 4.39 4.27 3.07 2.58 EOM 3.06 3.57 3.57 4.50 4.60 4.32 3.98 2.89 2.64 1.13 MEAN 2.77 3.45 3.48 4.07 4.51 4.42 4.35 3.72 2.56 MAX 3.33 3.80 4.14 4.74 4.94 5.03 4.73 4.51 3.43 </td> <td>5 3.15 3.48 3.52 4.85 4.34 4.50 3.94 2.67 </td>	5 3.15 3.48 3.52 4.85 4.34 4.50 3.94 2.67 10 2.40 3.60 3.47 4.03 4.42 4.70 4.73 4.07 2.14 15 2.57 3.64 3.25 3.84 4.16 4.21 4.61 4.22 20 2.97 3.45 3.37 4.21 4.57 4.61 4.28 3.77 1.83 25 2.85 3.38 3.70 4.49 4.75 4.39 4.27 3.07 2.58 EOM 3.06 3.57 3.57 4.50 4.60 4.32 3.98 2.89 2.64 1.13 MEAN 2.77 3.45 3.48 4.07 4.51 4.42 4.35 3.72 2.56 MAX 3.33 3.80 4.14 4.74 4.94 5.03 4.73 4.51 3.43	5 3.15 3.48 3.52 4.85 4.34 4.50 3.94 2.67

GROUND-WATER LEVELS: QUEENS COUNTY

CONTINUOUS RECORDING STATIONS

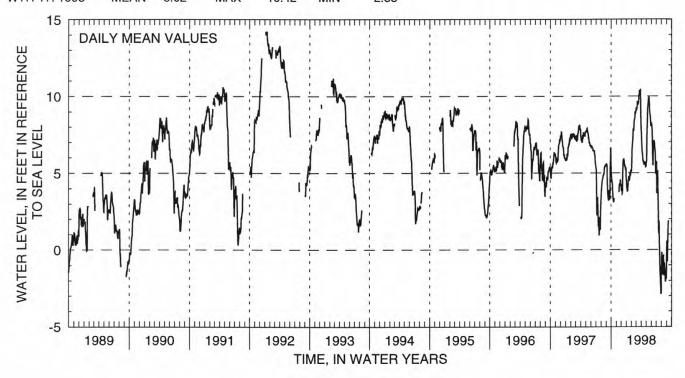
404418073434101. Local number, O577.1

LOCATION.—Lat 40°44′18″, long 73°43′41″, Hydrologic Unit 02030201, at Creedmoor State Hospital, near the intersection of Hillside Avenue and Cross Island Parkway, in recorder shelter, Bellerose. Owner: State of New York.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 12 in., depth 640 ft, screen assumed at bottom.

INSTRUMENTATION.—Digital water-level recorder — 60-minute punch.


DATUM.—Land-surface datum is 113.5 ft above sea level. Measuring point: Top of 12-in steel casing, 0.22 ft above land-surface datum. REMARKS.—Water level affected by nearby pumping.

PERIOD OF RECORD.—February 1946 to current year. Unpublished records from February 1946 to September 1975 are available in files of the Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 14.34 ft above sea level, January 14, 1992; lowest measured, 18.66 ft below sea level, July 30, 1954.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	4.61		4.04	4.00	6.40	9.20	6.93	6.51	8.07	3.66	-0.63	-0.06
10	4.00		4.56	3.87	7.19	9.67	6.22	8.76	6.02	5.15	-0.76	1.00
15	3.18		5.77	4.65	7.73	9.62	5.76	9.78	6.73	1.44	-0.79	
20	3.34	4.24	5.74	4.58	8.50	10.11	5.70	9.77	6.94	0.53	-0.88	
25		4.30	5.47	5.01	8.94	10.14	5.58	8.82	6.32	-1.62	-1.85	
EOM		4.14	4.94	5.14	8.96	8.35	5.43	8.10	5.38	-2.77	-1.88	***
MEAN	3.96	4.29	5.00	4.52	7.58	9.63	6.06	8.44	6.73	1.67	-1.19	
MAX	5.51	4.56	5.91	5.20	8.96	10.42	8.02	9.94	8.24	5.73	-0.15	
MIN	3.13	4.12	3.66	3.80	5.07	8.35	5.38	5.50	4.94	-2.88	-2.08	
WTR YR	1998	MEAN	5.02	MAX	10.42	MIN	-2.88					

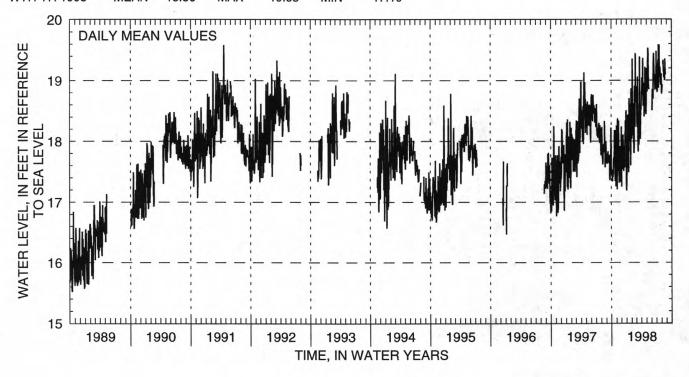
403727073154601. Local number, S21091.1

LOCATION.—Lat 40°37′27″, long 73°15′48″, Hydrologic Unit 02030202, at Robert Moses State Park, in water treatment building, Fire Island. Owner: Long Island State Park Commission.

AQUIFER.-Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 1,921 ft, screened 1,918 to 1,921 ft.

INSTRUMENTATION.—Digital water-level recorder — 15-minute punch.


DATUM.—Land-surface datum is 10.0 ft above sea level. Measuring point: Top of 6-in steel casing, 13.68 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—September 1962 to current year. Unpublished records from September 1962 to September 1975 are available in files of the Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 22.10 ft above sea level, March 16, 1976; lowest measured, 15.13 ft above sea level, June 2, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	17.53	17.21	18.10	17.65	19.35	18.38	19.05	18.81		19.01	18.91	
10	17.53	17.90	18.02	18.13	18.10	18.71	19.37	19.38	18.70			
15	17.72	18.13	17.51	17.78	17.82	18.07	18.96	18.88	19.30	18.88		
20	18.18	17.53	17.72	18.30	18.58	18.75	18.68		19.09	19.13		
25	17.68	17.40	18.34	18.08	19.00	18.04	18.94		18.88	18.98		
EOM	17.51	18.03	17.39	18.35	18.68	18.55	18.56		19.48	19.11		
MEAN	17.58	17.74	17.87	18.07	18.48	18.44	18.81	19.06	19.00	19.01		
MAX	18.19	18.37	18.51	18.86	19.44	19.38	19.37	19.53	19.48	19.22		
MIN	17.26	17.21	17.25	17.19	17.80	17.83	18.41	18.81	18.70	18.80		
WTR YR	1998	MEAN	18.36	MAX	19.53	MIN	17.19					

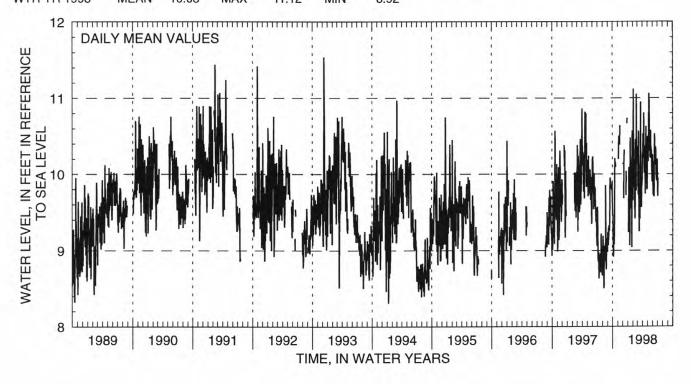
403727073154503. Local number, S21311.1

LOCATION.—Lat 40°37′28″, long 73°15′48″, Hydrologic Unit 02030202, at Robert Moses State Park, in water treatment building, Fire Island. Owner: Long Island State Park Commission.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 721 ft, screened 711 to 721 ft.

INSTRUMENTATION.—Digital water-level recorder — 15-minute punch.


DATUM.—Land-surface datum is 10.0 ft above sea level. Measuring point: Top of 6-in steel casing, 20.01 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—November 1962 to current year. Unpublished records from November 1962 to September 1975 are available in files of the Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 13.04 ft above sea level, January 25, 1979; lowest measured, 5.35 ft above sea level, February 23, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	9.21				11.12	9.84	10.53	10.20	9.73	1422		
10	9.10			9.78	9.83	10.19	10.81	10.80	9.74			
15				9.43	9.42	9.44	10.37	10.40	10.35			
20				9.95	10.08	10.27	9.98	10.48	10.22			
25				9.64	10.50	9.57	10.32	10.33	9.91			
EOM				10.01	10.27	9.92	9.82	10.13	10.20			
MEAN				9.86	10.10	9.92	10.21	10.38	10.07			
MAX				10.57	11.12	10.96	10.81	11.06	10.53			
MIN				9.05	9.42	9.25	9.74	9.90	9.70			
WTR YR	1998	MEAN	10.03	MAX	11.12	MIN	8.92					

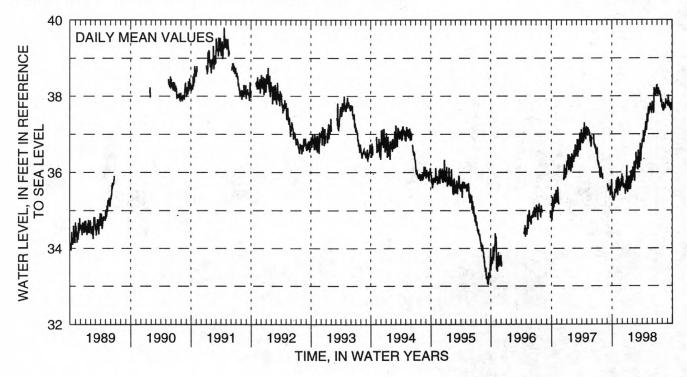
404935073055901. Local number, \$33379.1

LOCATION.—Lat 40°49′32″, long 73°05′59″, Hydrologic Unit 02030202, at Duncan Avenue and Portion Road, in pumping center, in recorder shelter, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

AQUIFER.-Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 1,305 ft, screened 1,290 to 1,300 ft.

INSTRUMENTATION.—Digital water-level recorder — 15-minute punch.


DATUM.—Land-surface datum is 134.0 ft above sea level. Measuring point: Top of 4-in steel casing, 2.34 ft above land-surface datum. REMARKS.—Water level affected by nearby pumping.

PERIOD OF RECORD.—October 1968 to current year. Unpublished records from October 1968 to September 1975 are available in files of the Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 40.92 ft above sea level, June 5, 1979; lowest measured, 33.04 ft above sea level, September 16, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5	35.43	35.41	35.89	35.48	36.14	36.21	36.88	37.31	37.81	38.15	37.72	37.74
10	35.35	35.79	35.67	35.72	35.86	36.58	37.09	37.67	37.56	38.22	37.74	37.82
15	35.31	35.78	35.58	35.61	35.82	36.32	37.04	37.60	38.18	38.06	37.71	37.73
20	35.56	35.62	35.64	35.76	36.25	36.56	37.16	37.75	38.17	38.06	37.67	37.75
25	35.52	35.61	35.78	35.99	36.45	36.29	37.27	37.67	38.05	37.86	37.91	37.65
EOM	35.48	35.80	35.82	35.97	36.22	36.66	37.22	37.71	38.29	37.85	37.81	37.75
MEAN	35.43	35.67	35.71	35.73	36.07	36.39	37.00	37.59	37.96	38.05	37.75	37.78
MAX	35.78	35.88	36.18	36.05	36.53	36.76	37.33	37.81	38.29	38.29	37.92	38.02
MIN	35.25	35.40	35.43	35.48	35.77	36.07	36.68	37.31	37.56	37.85	37.61	37.61
WTR YR	1998	MEAN	36.76	MAX	38.29	MIN	35.25					

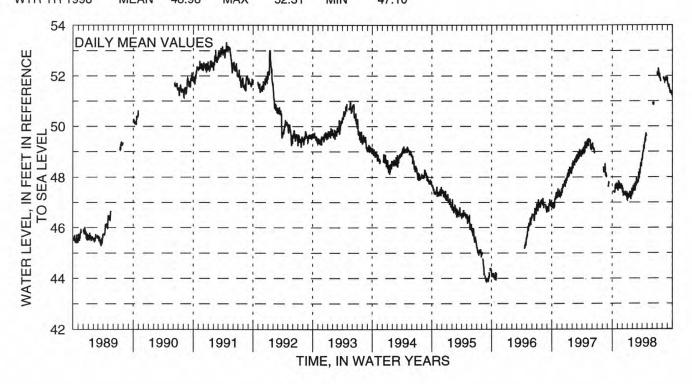
404932073055902. Local number, S33380.1

LOCATION.—Lat 40°49′32″, long 73°05′59″, Hydrologic Unit 02030202, at Duncan Avenue and Portion Road, in pumping center, in recorder shelter, Lake Ronkonkoma. Owner: Suffolk County Water Authority.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 855 ft, screened 840 to 850 ft.

INSTRUMENTATION.—Digital water-level recorder — 15-minute punch, changed to 30-minute on August 16, 1990.


DATUM.—Land-surface datum is 133.5 ft above sea level. Measuring point: Top of 4-in steel casing, 2.13 ft above land-surface datum. REMARKS.—Water level affected by nearby pumping.

PERIOD OF RECORD.—October 1968 to current year. Unpublished records from October 1968 to September 1975 are available in files of the Long Island Subdistrict office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 54.30 ft above sea level, April 27, 1979; lowest measured, 43.83 ft above sea level, September 1, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5		47.48	47.54	47.18	47.54	47.88	48.90		50.95	52.15		51.65
10		47.74	47.41	47.23	47.45	47.90	49.07		50.87	52.20	51.93	51.66
15	47.39	47.72	47.28	47.23	47.52	48.04	49.34			51.98	51.81	51.48
20	47.68	47.66	47.39	47.28	47.75	48.22	49.58			51.90	51.84	51.34
25	47.55	47.63	47.32	47.43	47.85	48.43	49.63				51.88	51.37
EOM	47.62	47.64	47.11	47.49	47.72	48.69					51.87	51.24
MEAN	47.58	47.63	47.36	47.28	47.59	48.17	49.24	1242	172	52.03	51.87	51.50
MAX	47.75	47.86	47.64	47.56	47.99	48.70	49.73			52.31	51.99	51.95
MIN	47.39	47.46	47.11	47.10	47.31	47.76	48.64			51.78	51.76	51.22
WTR YR	1998	MEAN	48 98	MAX	52.31	MIN	47 10					

404059073520702. Local number, K1194.4

LOCATION.—Lat 40°40′59″, long 73°52′07″, Hydrologic Unit 02030202, at east side of Nichols Avenue, 100 ft north of Atlantic Avenue, New Lots. Owner: City of New York.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 2 in., depth 55 ft, screened 52 to 55 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 32.1 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.34 ft below land-surface datum. REMARKS.—Replaced well K1194.3 in July 1970.

PERIOD OF RECORD.—November 1970 to current year. Records for November 1970 to September 1987 are unpublished and are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 14.92 ft above sea level, October 28, 1992; lowest measured, 0.83 ft below sea level, November 2, 1970.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 05	10.48	Dec 17	10.33	Mar 24	10.23	May 20	10.33	Jul 28	10.55	Sep 29	10.47
Nov 26	10.41	Jan 29	10.27	Apr 29	10.28	Jun 10	10.40	Sep 01	10.53		

404236073574601. Local number, K1301.1

LOCATION.—Lat 40°42′35″, long 73°57′48″, Hydrologic Unit 02030201, at Williamsburg Savings Bank, in basement, 84 ft north of Broadway and 178 ft west of Driggs Avenue, Williamsburg. Owner: Williamsburg Savings Bank.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled unused steel well, diameter 8 in, to 6 in., depth 92 ft, screened 72 to 92 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 52.5 ft above sea level. Measuring point: Hole in top of 4-in steel plug, 9.03 ft below land-surface datum. PERIOD OF RECORD.—January 1961 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.08 ft above sea level, October 2, 1978; lowest measured, 7.72 ft below sea level, January 19, 1961.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	Water		Water								
Date	level	Date	level								
Nov 05	4.32	Mar 31	4.47	Apr 29	4.48	Jun 10	4.25	Jul 28	4.15		

404155073552108. Local number, K3245.1

LOCATION.—Lat 40°41′55″, long 73°55′22″, Hydrologic Unit 02030201, at west side of Wilson Avenue, 54 ft north of Stanhope Street, Bushwick. Owner: United States Geological Survey.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Augered steel observation well, diameter 2 in., depth 24 ft, screened 21 to 24 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 24.5 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.05 ft below land-surface datum. PERIOD OF RECORD.—June 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.52 ft above sea level, September 23, 1980; lowest measured, 5.80 ft above sea level, June 1, 1988.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Nov 05	7.34	Dec 17	7.30	Apr 29	7.83	Jun 10	8.19	Sep 01	7.95	Sep 29	7.84
Nov 26	7.36	Jan 29	7.39	May 20	8.24	July 28	8.17				

GROUND-WATER LEVELS: KINGS COUNTY—Continued

PRIMARY WELLS

403623074002101. Local number, K3249.1

LOCATION.—Lat 40°36′23″, long 74°00′23″, Hydrologic Unit 02030202, at east side of Bay 16th Street, 42 ft north of Benson Avenue, Bath Beach. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 34 ft, screened 31 to 34 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 31.0 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.02 ft below land-surface datum. PERIOD OF RECORD.—April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 5.09 ft above sea level, January 24, 1991; lowest measured, 3.16 ft above sea level, May 21, 1985.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Nov 06	4.26	Dec 17	3.96	Mar 24	4.67	May 20	4.88	July 30	4.18	Sep 30	4.10
Nov 26	4.19	Jan 29	4.41	Apr 04	4.52	Jun 10	4.49	Sep 01	4.28		

403520073575501. Local number, K3251.1

LOCATION.—Lat 40°35′20″, long 73°57′55″, Hydrologic Unit 02030202, at north side of Avenue Y, 115 ft west of East 6th Street, Brighton Beach. Owner: United States Geological Survey.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 23 ft, screened 20 to 23 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 9.5 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.06 ft below land-surface datum. PERIOD OF RECORD.—April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 3.52 ft above sea level, September 19, 1996; lowest measured, 2.56 ft above sea level, March 25, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 06	3.15	Dec 17	3.04	Mar 24	3.48	May 20	3.48	Jul 30	2.94	Sep 30	2.82
Nov 26	3.18	Jan 29	3.52	Apr 29	3.36	Jun 10	3.26	Sep 01	2.86		

403702073555808. Local number, K3252.1

LOCATION.—Lat 40°37′04″, long 73°55′59″, Hydrologic Unit 02030202, at east side of Hendrickson Street, 46 ft north of Quentin Avenue, Flatlands. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 30 ft, screened 27 to 30 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 12.7 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.02 ft below land-surface datum. PERIOD OF RECORD.—June 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 2.68 ft above sea level, February 11, 1981; lowest measured, 0.68 ft above sea level, October 6, 1982.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Nov 06	1.40	Dec 17	1.33	Mar 24	2.03	May 20	2.14	Jul 28	1.43	Sep 29	1.10
Nov 26	1.52	Jan 29	1.82	Apr 29	1.88	Jun 10	1.74	Sep 01	1.22		

403737073564908. Local number, K3254.1

LOCATION.—Lat 40°37′36″, long 73°56′46″, Hydrologic Unit 02030202, at east side of East 31st Street, 46 ft south of Avenue J, Flatbush. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 29 ft, screened 26 to 29 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 26.9 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.09 ft below land-surface datum.

PERIOD OF RECORD.—April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.91 ft above sea level, June 27, 1984; lowest measured, 4.64 ft above sea level, July 15, 1992.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 06	5.01	Dec 17	4.99	Mar 24	5.76	May 20	6.09	Jul 28	5.53	Sep 29	5.07
Nov 26	5.08	Jan 29	5.31	Apr 29	5.80	Jun 10	5.89	Sep 01	5.26		

404036073584008. Local number, K3261.1

LOCATION.—Lat 40°40′37″, long 73°58′41″, Hydrologic Unit 02030201, at east side of Lincoln Place, 122 ft north of 6th Avenue, northernmost well, Park Slope. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 45 ft, screened 42 to 45 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 64.8 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.01 ft above land-surface datum. PERIOD OF RECORD.—April 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 31.86 ft above sea level, March 16, 1984; lowest measured, 24.03 ft above sea level, March 29, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level											
Nov 05	26.71	Dec 17	26.17	Mar 25	25.51	May 20	26.72	Jul 28	27.89	Sep 29	27.33	
Nov 26	26.39	Jan 29	25.48	Apr 29	26.16	Jun 10	27.28	Sep 01	27.73			

403635073580108. Local number, K3274.1

LOCATION.—Lat 40°36′35″, long 73°58′01″, Hydrologic Unit 02030202, at west side of East 7th Street, 49 ft north of Avenue P, Gravesend. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 34 ft, screened 31 to 34 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 27.0 ft above sea level. Measuring point: Top of 2-in steel casing, 0.28 ft above land-surface datum. PERIOD OF RECORD.—June 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 5.88 ft above sea level, October 3, 1984; lowest measured, 3.53 ft above sea level, October 6, 1982.

Date	Water level										
Nov 06	4.69	Dec 17	4.62	Mar 24	5.20	May 20	5.46	Jul 28	4.78	Sep 29	4.43
Nov 26	4.77	Jan 29	4.92	Apr 29	5.20	Jun 10	5.22	Sep 01	4.54		

403737074011701. Local number, K3275.1

LOCATION.—Lat 40°37′37″, long 74°01′15″, Hydrologic Unit 02030202, at east side of 6th Avenue, 19 ft south of 76th Street, Bay Ridge. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 76 ft, screened 73 to 76 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 67.2 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.05 ft below land-surface datum. PERIOD OF RECORD.—June 1981 to current year. Unpublished records from June 1981 to September 1982 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.65 ft above sea level, January 5, 1984; lowest measured, 3.20 ft above sea level, April 28, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 26	4.94	Jan 29	4.80	Apr 29	4.45	Jun 10	5.15	Sep 01	4.89	Sep 30	4.88
Dec 17	4.68	Mar 24	4.96	May 20	4.68	Jul 30	4.98				

404135073584001. Local number, K3276.1

LOCATION.—Lat 40°41′34″, long 73°58′41″, Hydrologic Unit 02030201, at east side of St. Edwards Street, 75 ft south of Myrtle Avenue, Fort Greene. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 54 ft, screened 51 to 54 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 38.0 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.02 ft below land-surface datum. PERIOD OF RECORD.—April 1981 to current year. Unpublished records from April 1981 to September 1982 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.71 ft above sea level, January 5, 1984; lowest measured, 4.30 ft above sea level, October 1, 1985.

Date	Water level										
Nov 05	5.39	Dec 17	5.48	Mar 25	5.93	May 20	6.27	Jul 28	5.89	Sep 29	5.48
Nov 26	5.57	Jan 29	5.84	Apr 29	6.01	Jun 10	6.09	Sep 01	5.63		

404043073413108. Local number, N7.1

LOCATION.—Lat 40°40′43″, long 73°41′31″, Hydrologic Unit 02030202, at Valley Stream State Park, 150 ft west of Corona Avenue, 130 ft north of Remsen Street, Valley Stream. Owner: Long Island State Park Commission.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled unused steel well, diameter 6 in., depth 911 ft, screened 851 to 911 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 20.9 ft above sea level. Measuring point: Top of 1/4-in hole drilled in 4-in steel plug, 2.17 ft above land-surface datum.

REMARKS.—Water level affected by nearby pumping.

PERIOD OF RECORD.—March 1941 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 12.75 ft above sea level, March 9, 1941; lowest measured, 6.84 ft below sea level, August 25, 1970.

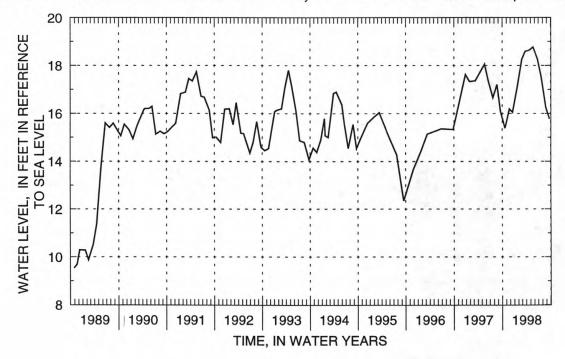
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 22	6.52	Dec 18	8.05	Feb 26	10.63	Apr 21	8.98	Jun 23	8.84	Aug 26	3.88
Nov 24	7.29	Jan 21	9.49	Mar 23	10.80	May 21	9.88	Jul 22	6.37	Sep 23	5.28

404048073412602. Local number, N9.1

LOCATION.—Lat 40°40′48″, long 73°41′26″, Hydrologic Unit 02030202, at Valley Stream State Park, 30 ft west of Corona Avenue, 650 ft north of Remsen Street, Valley Stream. Owner: Long Island State Park Commission.

AQUIFER.-Magothy (confined).


WELL CHARACTERISTICS.—Drilled unused steel well, diameter 4 in. to 6 in., depth 138 ft, screened 98 to 138 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 22.6 ft above sea level. Measuring point: Top of 6-in steel casing, 2.08 ft above land-surface datum. PERIOD OF RECORD.—July 1936 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 23.57 ft above sea level, September 23, 1938; lowest measured, 5.95 ft above sea level, March 22, 1983.

Date	Water level										
Oct 22	15.39	Dec 18	16.06	Feb 26	18.27	Apr 21	18.64	Jun 23	18.29	Aug 26	16.25
Nov 24	16.19	Jan 21	17.08	Mar 23	18.59	May 21	18.77	Jul 22	17.53	Sep 23	15.78

403929073382908. Local number, N53.1

LOCATION.—Lat 40°39′29″, long 73°38′29″, Hydrologic Unit 02030202, at Rockville Centre Municipal Power Plant, in battery room, Maple Avenue and Morris Avenue, Rockville Centre. Owner: Village of Rockville Center.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 8 in., depth 50 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 26.2 ft above sea level. Measuring point: Top of 2-in steel casing, 5.24 ft below land-surface datum. PERIOD OF RECORD.—August 1934 to current year. Unpublished records from August 1934 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 16.49 ft above sea level, April 15, 1939; lowest measured, 7.85 ft above sea level, August 30, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	Water		Water		Water		Water		Water		Water
Date	level	Date	level	Date	level	Date	level	Date	level	Date	level
Mar 23	12.81										

403922073353501. Local number, N67.1

LOCATION.—Lat 40°39′22″, long 73°35′35″, Hydrologic Unit 02030202, at Freeport Power Station, in battery room, 105 ft north of Sunrise Highway (State Route 27), west of Long Beach Avenue, Freeport. Owner: Village of Freeport. AOUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 12 in., depth 1052 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 22.0 ft above sea level. Measuring point: Top of 12-in steel casing, 1.0 ft below land-surface datum. PERIOD OF RECORD.—December 1946 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 15.95 ft above sea level, May 8, 1957; lowest measured, 3.76 ft below sea level, March 23, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 21	9.52	Jan 29	12.26	May 28	11.84	Jul 28	8.60	Aug 25	7.63	Sep 23	8.11
Dec 16	10.45	Mar 24	12.53	Jun 26	11.19			-			

404030073293703. Local number, N180.2

LOCATION.—Lat 40°40′30″, long 73°29′37″, Hydrologic Unit 02030202, at Long Island Railroad track embankment, 200 ft north of Sunrise Highway (State Route 27), west of Seaford-Oyster Bay Expressway (State Route 135), Seaford. Owner: Nassau County Department of Public Works.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled unused steel well, diameter 4 in. to 6 in., depth 723 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 16.0 ft above sea level. Measuring point: Top of 4-in steel coupling, 13.69 ft above land-surface datum. PERIOD OF RECORD.—October 1945 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 21.08 ft above sea level, June 6, 1952; lowest measured, 10.63 ft above sea level, July 1, 1986.

Date	Water level										
Oct 23	13.20	Dec 19	14.56	Feb 26	16.52	Apr 21	16.80	Jun 23	14.66	Aug 26	12.17
Nov 24	15.25	Jan 21	15.88	Mar 25	16.24	May 21	16.23	Jul 22	10.70	Sep 23	13.80

404609073421602. Local number, N1102.2

LOCATION.—Lat 40°46′09″, long 73°42′16″, Hydrologic Unit 02030201, at southwest corner of Community Drive and Long Island Expressway westbound service road, Lake Success. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 166 ft, screened 161 to 166 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 184.0 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.32 ft below land-surface datum. REMARKS.—Replaced well N1102.1 in March 1963 at same location, which has a period of record from October 1937 to March 1963. PERIOD OF RECORD.—April 1963 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 47.02 ft above sea level, April 24, 1963; lowest measured, 28.90 ft above sea level, January 19, 1983.

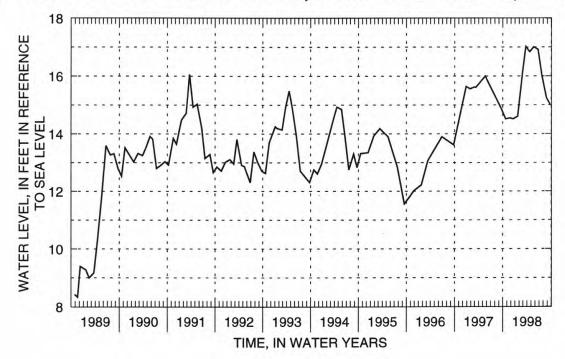
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 22	36.45	Dec 18	36.93	Feb 23	37.49	Apr 21	37.78	Jun 23	38.35	Aug 26	37.26
Nov 24	36.86	Jan 21	37.00	Mar 24	37.36	May 21	38.46	Jul 21	37.86	Sep 23	37.18

404039073420001. Local number, N1110.1

LOCATION.—Lat 40°40′40″, long 73°42′01″, Hydrologic Unit 02030202, at Valley Stream State Park, southeast corner of North Fletcher Avenue and park entrance, Valley Stream. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).


WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 27 ft, screened 24 to 27 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 31.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.80 ft below land-surface datum. PERIOD OF RECORD.—October 1936 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 21.81 ft above sea level, September 28, 1938; lowest measured, 5.78 ft above sea level, September 15, 1981.

Date	Water level										
Oct 22	14.52	Dec 18	14.52	Feb 26	16.11	Apr 21	16.84	Jun 23	16.92	Aug 26	15.24
Nov 24	14.55	Jan 21	14.61	Mar 23	17.02	May 21	17.01	Jul 22	16.02	Sep 23	15.01

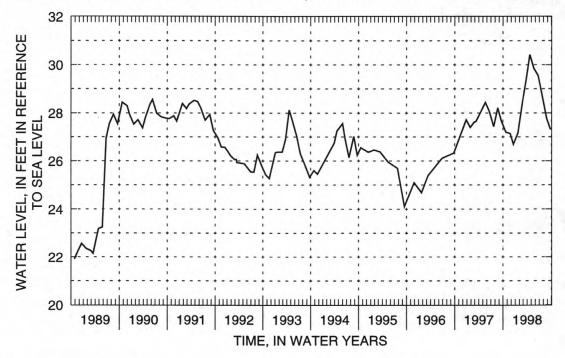
404125073394802. Local number, N1129.2

LOCATION.—Lat 40°41′25″, long 73°39′48″, Hydrologic Unit 02030202, at east side of Euclid Avenue, 30 ft south of Hawthorne Street, West Hempstead. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 44 ft, screened 41 to 44 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 51.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.46 ft below land-surface datum. REMARKS.—Replaced well N1129.1 in October 1966 at same location, unpublished record from August 1937 to October 1966 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—October 1966 to current year. Unpublished records from October 1966 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 30.42 ft above sea level, April 21, 1998; lowest measured, 21.49 ft above sea level, October 29, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 22	27.20	Dec 18	26.69	Feb 26	28.50	Apr 21	30.42	Jun 23	29.54	Aug 26	27.77
Nov 24	27.14	Jan 21	27.16	Mar 23	29.31	May 21	29.85	Jul 22	28.74	Sep 23	27.32

405104073375201. Local number, N1152.1

LOCATION.—Lat 40°51′04″, long 73°37′52″, Hydrologic Unit 02030201, at northwest corner of Sea Cliff Avenue and Center Street, Glen Cove. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 130 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 154.0 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.15 ft below land-surface datum. PERIOD OF RECORD.—August 1940 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 52.39 ft above sea level, July 13, 1961; lowest measured, 44.33 ft above sea level, April 12, 1983.

Date	Water level										
Oct 22	48.51	Dec 18	48.08	Feb 23	48.35	Apr 21	48.92	Jun 23	49.47	Aug 26	49.56
Nov 24	48.28	Jan 20	48.07	Mar 26	48.67	May 21	49.35	Jul 21	49.77	Sep 21	49.13

404659073332601. Local number, N1194.2

LOCATION.—Lat 40°46′59", long 73°33′26", Hydrologic Unit 02030202, at north side of Long Island Expressway westbound service road, just west of Jericho Turnpike (State Route 25), Jericho. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 100 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 168.0 ft above sea level. Measuring point: Top of 4-in steel casing, 0.02 ft below land-surface datum.

REMARKS.—Replaced well N1194.2 in December 1961.

PERIOD OF RECORD.—December 1961 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 92.18 ft above sea level, June 7, 1979; lowest measured, 74.59 ft above sea level, July 17, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 21	78.53	Dec 18	78.44	Feb 23	79.33	Apr 21	80.00	Jun 23	81.23	Aug 26	80.88
Nov 24	78.67	Jan 20	78.70	Mar 23	79.69	May 21	80.71	Jul 21	81.22	Sep 21	81.11

405000073293301. Local number, N1228.3

LOCATION.—Lat 40°50′00″, long 73°29′33″, Hydrologic Unit 02030201, at south side of Cold Spring Road, 332 ft west of Townsend Road, Syosset. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 176 ft, screened 173 to 176 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 227.0 ft above sea level. Measuring point: Top of 4-in steel casing, 0.12 ft above land-surface datum. REMARKS.—Replaced well N1228.2 in February 1962.

PERIOD OF RECORD.—February 1962 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 70.69 ft above sea level, May 29, 1980; lowest measured, 52.22 ft above sea level, July 18, 1967.

Date	Water level										
Oct 21	61.48	Dec 18	61.70	Feb 23	62.07	Apr 21	62.50	Jun 23	60.95	Aug 25	63.19
Nov 24	61.52	Jan 20	61.88	Mar 23	62.33	May 21	62.80	Jul 21	63.38	Sep 21	62.83

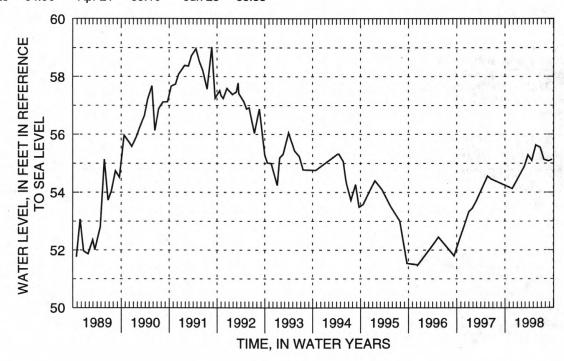
405027073272602. Local number, N1243.5

LOCATION.—Lat 40°50′26″, long 73°27′20″, Hydrologic Unit 02030201, at south side of Stillwell Road, 98 ft west of Harbor Road, Cold Spring Harbor. Owner: Nassau County Department of Public Works.

AQUIFER.—Magothy (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 28 ft, screened 25 to 28 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 64.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.92 ft below land-surface datum. REMARKS.—Replaced well N1243.4 in September 1975 at same location, unpublished records from November 1939 to September 1975 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—September 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 60.70 ft above sea level, March 21, 1978; lowest measured, 51.47 ft above sea level, December 8, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Nov 24						Jul 21	55.14	Aug 25	55.08	Sep 21	55.14
Feb 23	54.90	Apr 21	55.10	Jun 23	55.55						

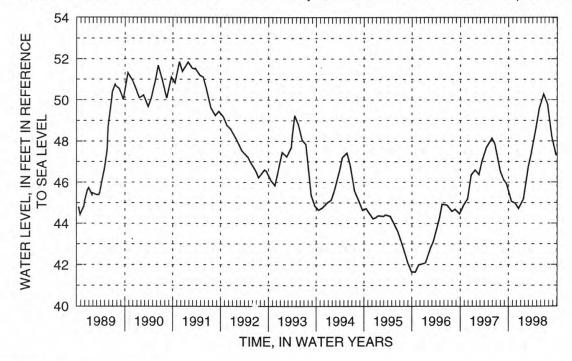
404317073291105. Local number, N1259.5

LOCATION.—Lat 40°43′16″, long 73°29′10″, Hydrologic Unit 02030202, at south side of Mary Lane, 79 ft east of Hicksville Road (State Route 107), Plainedge. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 41 ft, screened 38 to 41 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 78.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.08 ft above land-surface datum. REMARKS.—Replaced well N1259.4 in June 1961 at same location, unpublished records from January 1909 to June 1961 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—June 1961 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 57.60 ft above sea level, February 21, 1978; lowest measured, 41.64 ft above sea level, October 26, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 23	45.07	Dec 16	44.72	Feb 27	46.75	Apr 22	48.50	Jun 22	50.28	Aug 24	48.19
Nov 21	44.97	Jan 21	45.17	Mar 17	47.27	May 20	49.58	Jul 22	49.79	Sep 25	47.29

404042073292601. Local number, N1464.1

LOCATION.—Lat 40°40′42″, long 73°29′26″, Hydrologic Unit 02030202, at north side of Franklin Avenue, 102 ft east of Grant Avenue, in sidewalk, Seaford. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 1 1/4 in. to 6 in., depth 42 ft, screened 32 to 42 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 28.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing extension, 0.37 ft below land-surface datum.

PERIOD OF RECORD.—May 1943 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 20.43 ft above sea level, March 25, 1975; lowest measured, 12.22 ft above sea level, January 26, 1950.

Date	Water level										
Oct 23	14.64	Dec 19	15.24	Feb 26	16.81	Apr 21	17.07	Jun 23	16.84	Aug 26	15.27
Nov 24	15.65	Jan 21	16.45	Mar 25	17.03	May 21	17.30	Jul 22	15.94	Sep 23	15.04

404209073340601. Local number, N1615.3

LOCATION.—Lat 40°42′09″, long 73°34′06″, Hydrologic Unit 02030202, at east side of Merrick Avenue, 100 ft south of Van Buren Avenue, Freeport. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 1 1/4 in., depth 33 ft, screened 30 to 33 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 61.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.13 ft below land-surface datum. REMARKS.—Replaced well N1615.2 in August 1966 at same location, unpublished record from March 1913 to August 1966 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—August 1966 to current year. Unpublished records from August 1966 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 46.25 ft above sea level, January 25, 1991; lowest measured, 36.37 ft above sea level, October 26, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

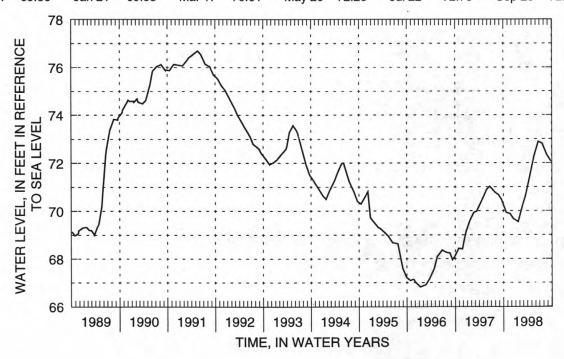
Date	Water level										
Oct 23	37.73	Dec 19	37.75	Feb 27	39.82	Apr 22	41.10	Jun 22	41.78	Aug 24	39.54
Nov 21	38.06	Jan 21	38.38	Mar 17	40.41	May 20	41.76	Jul 22	40.81	Sep 25	38.83

404554073351502. Local number, N1616.2

LOCATION.—Lat 40°45′54″, long 73°35′15″, Hydrologic Unit 02030202, at south side of Argyle Road, southern entrance, 40 ft west of Post Avenue, Old Westbury. Owner: Nassau County Department of Public Works.

AQUITER.—Magothy (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 2 in., depth 68 ft, screened 65 to 68 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 122.5 ft above sea level. Measuring point: Top of 2-in steel casing, 0.42 ft below land-surface datum. REMARKS.—Replaced well N1616.1 in October 1965 at same location, it was previously screened in upper glacial aquifer, which has a period of record from March 1913 to October 1965.

PERIOD OF RECORD.—October 1965 to current year. Unpublished record from October 1965 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 82.14 ft above sea level, June 20, 1980; lowest measured, 66.82 ft above sea level, January 11, 1996.

Date	Water level										
Oct 23	69.91	Dec 16	69.65	Feb 27	70.28	Apr 22	71.51	Jun 22	72.87	Aug 24	72.33
Nov 21	69.86	Jan 21	69.53	Mar 17	70.61	May 20	72.25	Jul 22	72.79	Sep 25	72.05

405101073343401. Local number, N2528.2

LOCATION.—Lat 40°50′01″, long 73°34′32″, Hydrologic Unit 02030201, at south side of Chicken Valley Road, 83 ft west of Wolver Hollow Road, easternmost well, Upper Brookville. Owner: Nassau County Department of Public Works.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in. to 4 in., depth 328 ft, screened 278 to 282 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 93.0 ft above sea level. Measuring point: Top of 4-in steel reducer, 0.86 ft above land-surface datum. REMARKS.—Replaced well N2528.1 in November 1947.

PERIOD OF RECORD.—December 1947 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 79.92 ft above sea level, July 25, 1957; lowest measured, 59.12 ft above sea level, February 24, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level								
Oct 22 Nov 24	65.09	Dec 18 Jan 20		Feb 23 Mar 23		Apr 21 May 21		Jun 23 Aug 26		Sep 21	66.79

404619073270601. Local number, N3355.2

LOCATION.—Lat 40°46′18″, long 73°27′04″, Hydrologic Unit 02030202, at former site of Nassau County Sanitarium, 336 ft west of Round Swamp Road, south of Locust Road, in wooden recorder shelter, Plainview. Owner: United States Geological Survey. AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in. to 8 in., depth 1,093 ft, screened 1,070 to 1,090 ft. INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 183.0 ft above sea level. Measuring point: Top of 8-in steel casing, 0.28 ft below land-surface datum. PERIOD OF RECORD.—January 1956 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 36.17 ft above sea level, April 10, 1957; lowest measured, 23.18 ft above sea level, April 11, 1972.

Date	Water level										
Oct 23	30.25	Dec 19	30.82	Feb 26	32.13	Apr 21	32.19	Jun 23	31.97	Aug 26	30.53
Nov 24	30.82	Jan 21	31.28	Mar 25	31.88	May 21	32.54	Jul 22	31.53	Sep 23	30.49

403751073440201. Local number, N3861.1

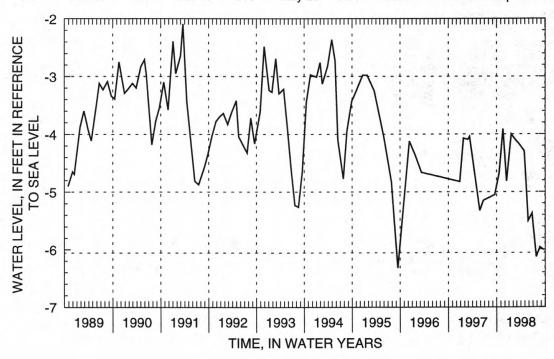
LOCATION.—Lat 40°37′51″, long 73°44′01″, Hydrologic Unit 02030202, at Cedarhurst Water Pollution Control Plant,

28 ft east of Arlington Place, north of Peninsula Boulevard, Cedarhurst. Owner: United States Geological Survey.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 530 ft, screened 519 to 530 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 7.0 ft above sea level. Measuring point: Top of 6-in steel casing, 2.37 ft above land-surface datum.

REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—April 1952 to current year. Unpublished records from April 1952 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 2.09 ft below sea level, March 20, 1991; lowest measured, 7.57 ft below sea level, August 7, 1955.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water	Date	Water level	
Oct 20	-4.67	Dec 15	-4.81	Feb 17	-4.09	Apr 28	-4.29	Jun 25	-5.37	Aug 24	-5.96	
Nov 19	-3.91	Jan 20	-4.00	Mar 16	-4.16	May 28	-5.50	Jul 27	-6.13	Sep 21	-6.01	

403911073432701. Local number, N3867.2

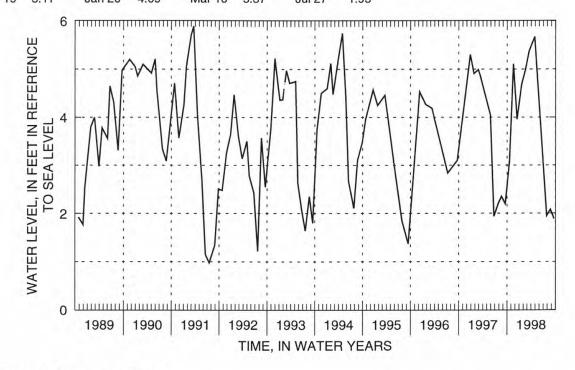
LOCATION.—Lat 40°39′12″, long 73°43′20″, Hydrologic Unit 02030202, at Brook Road Park, 35 ft south of Brook Road, 41 ft east of stream, easternmost well, Green Acres. Owner: United States Geological Survey.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 517 ft, screened 505 to 517 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 7.7 ft above sea level. Measuring point: Top of 6-in steel casing, 1.54 ft above land-surface datum.


REMARKS.—Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.—January 1953 to current year. Unpublished records from January 1953 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.99 ft above sea level, January 28, 1953; lowest measured, 2.61 ft below sea level, July 19, 1977.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water								
Oct 20	3.07	Dec 16	3.96	Feb 17	4.99	Apr 28	5.67	Aug 24	2.08	Sep 21	1.89
Nov 19	5 11	Jan 20	4 69	Mar 16	5 37	Jul 27	1 95				

403751073440202. Local number, N3932.1

LOCATION.—Lat 40°37′51″, long 73°44′01″, Hydrologic Unit 02030202, at Cedarhurst Water Pollution Control Plant, 37 ft east of Arlington Place, north of Peninsula Boulevard, Cedarhurst. Owner: Nassau County Department of Public Works. AOUIFER.—Jameco (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 178 ft, screened 172 to 176 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 7.0 ft above sea level. Measuring point: Top of 4-in steel nipple, 3.24 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—June 1952 to current year. Unpublished records from June 1952 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.13 ft above sea level, November 10, 1975; lowest measured, 0.30 ft above sea level, September 20, 1977.

Date	Water level										
Oct 20	3.59	Jan 20	4.18	Mar 16	4.21	May 28	2.84	Jul 27	2.04	Sep 21	2.13
Dec 16	3.62	Feb 17	4.22	Apr 28	3 84	Jun 25	2 94	Aug 24	2.13		

403713073415901. Local number, N4026.1

LOCATION.—Lat 40°37′12″, long 73°41′59″, Hydrologic Unit 02030202, at Woodsburgh Town Dock parking field, south end of Woodmere Boulevard, on west side of sewer treatment substation, Woodsburgh. Owner: Nassau County Department of Public Works. AQUIFER.—Jameco (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 153 ft, screened 149 to 153 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 6.0 ft above sea level. Measuring point: Top of 6-in steel casing at yellow arrow, 3.00 ft above land-surface datum.

REMARKS.—Water level affected by tidal fluctuations.

PERIOD OF RECORD.—February 1968 to current year. Unpublished records from February 1968 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 5.27 ft above sea level, March 21, 1984; lowest measured, 0.26 ft below sea level, September 30, 1985.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 20	3.69	Dec 15	4.38	Feb 17	4.54	Apr 28	4.50	Jun 25	3.49	Aug 24	2.48
Nov 19	4.78	Jan 20	4.39	Mar 20	4.74	May 28	3.45	Jul 27	2.25	Sep 21	2.21

403911073432001. Local number, N4213.1

LOCATION.—Lat 40°39′12″, long 73°43′20″, Hydrologic Unit 02030202, at Brook Road Park, 34 ft south of Brook Road, 32 ft east of stream, westernmost well, Green Acres. Owner: Nassau County Department of Public Works.

AQUIFER.—Jameco (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 134 ft, screened 130 to 134 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 5.0 ft above sea level. Measuring point: Top of 6-in steel casing, 3.42 ft above land-surface datum.

REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—February 1968 to current year. Unpublished records from February 1968 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.33 ft above sea level, June 30, 1975; lowest measured, 2.40 ft below sea level, March 22, 1972.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	
Oct 20 Nov 19	2.67	Dec 16 Jan 20	3.87 4.30	Feb 17	5.00	Mar 16	5.32	Jul 27	1.79	Aug 24	1.77	

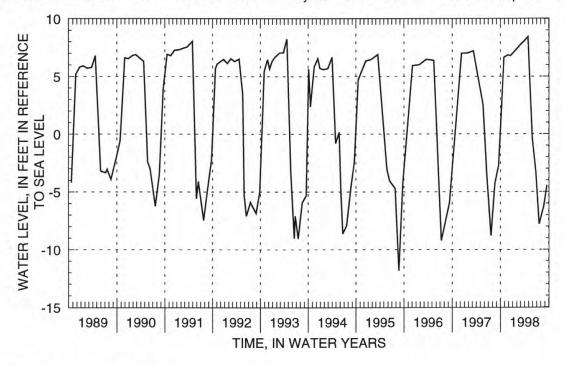
405125073420702. Local number, N6282.2

LOCATION.—Lat 40°51′25″, long 73°42′07″, Hydrologic Unit 02030201, at Helen Keller National Center for Deaf-Blind Youths and Adults, 300 ft north of Middle Neck Road, westernmost well, Sands Point. Owner: United States Geological Survey.

AQUIFER.—Port Washington (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 396 ft, screened 378 to 388 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 100.9 ft above sea level. Measuring point: Top of 6-in steel casing, 1.32 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.—August 1957 to current year. Unpublished records from August 1957 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.49 ft above sea level, May 31 and June 1, 1983; lowest measured, 28.36 ft below sea level, February 17, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water	Date	Water	Date	Water level	Date	Water	Date	Water	Date	Water level
Oct 28	6.67	Dec 15	6.80	Feb 26		Apr 27	8.45	Jun 25	-3.25	Aug 24	-6.21
Nov 26	6.87	Jan 15	7.17	Mar 27	8.05	May 29	-0.34	Jul 20	-7.77	Sep 17	-4.42

405001073343205. Local number, N6294.2

LOCATION.—Lat 40°50′01″, long 73°34′32″, Hydrologic Unit 02030201, at south side of Chicken Valley Road, 85 ft west of Wolver Hollow Road, westernmost well, Upper Brookville. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 37 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 93.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.30 ft above land-surface datum. PERIOD OF RECORD.—September 1982 to current year. Unpublished records from September 1982 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 73.07 ft above sea level, December 18, 1984; lowest measured, 62.40 ft above sea level, January 26, 1996.

Date	Water level										
Oct 22	65.03	Dec 18	64.75	Feb 23	65.44	Apr 21	66.45	Jun 23	67.64	Aug 26	67.17
Nov 24	64 92	Jan 20	64.85	Mar 23	66.09	May 21	67.23	Jul 21	67.62	Sep 21	66.99

405125073420705. Local number, N6342.1

LOCATION.—Lat 40°51′25″, long 73°42′07″, Hydrologic Unit 02030201, at Helen Keller National Center for Deaf-Blind Youths and Adults, 300 ft north of Middle Neck Road, easternmost well, Sands Point. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 1 1/4 in., depth 185 ft, screened 183 to 185 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 97.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 3.99 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—August 1957 to current year. Unpublished records from August 1957 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 24.99 ft above sea level, September 14, 1984; lowest measured, 14.06 ft above sea level, February 28, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water								
Oct 28	19.41	Dec 15	18.69	Feb 26	18.30	Apr 27	19.34	Jun 25	21.37	Aug 24	21.69
Nov 26	18.92	Jan 15	18.37	Mar 27	18.72	May 29	20.31	Jul 20	21.88	Sep 17	21.41

405212073354002. Local number, N6668.1

LOCATION.—Lat 40°52′12″, long 73°35′40″, Hydrologic Unit 02030201, at east side of Piping Rock Road, 58 ft south of Underhill Road, southern entrance, Matinecock. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 1 1/4 in., depth 43 ft, screened 41 to 43 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 103.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.35 ft above land-surface datum. PERIOD OF RECORD.—April 1968 to current year. Unpublished records from April 1968 to September 1982 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 74.80 ft above sea level, February 2, 1979; lowest measured, 63.30 ft above sea level, April 22, 1968.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 22	66.64	Dec 18	66.18	Feb 23	65.86	Apr 21	66.25	Jun 23	67.42	Aug 26	68.05
Nov 24	66.46	Jan 20	66.00	Mar 23	66.07	May 21	66.94	Jul 21	68.15	Sep 21	68.15

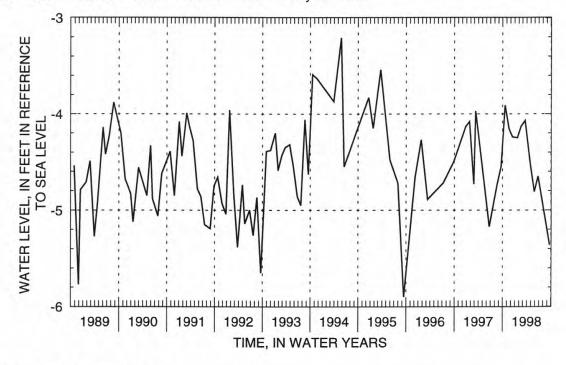
403517073430702. Local number, N6702.1

LOCATION.—Lat 40°35′17″, long 73°43′06″, Hydrologic Unit 02030202, at pumping center, 0.1 mi west of end of Park Street, 300 ft north of Beech Street, in easternmost recorder shelter, Atlantic Beach. Owner: United States Geological Survey.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 677 ft, screened 666 to 677 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 11.0 ft above sea level. Measuring point: Top of 4-in steel coupling, 1.04 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—September 1959 to current year. Unpublished records from September 1959 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 2.50 ft below sea level, April 13, 1961; lowest measured, 6.58 ft below sea level, November 30, 1972.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	Water										
Date	level										
Oct 20	-3.91	Dec 15	-4.24	Feb 17	-4.13	Apr 28	-4.52	Jun 26	4.65	Sep 21	-5.36
Nov 19	-4.16	Jan 20	-4.25	Mar 20	-4.04	May 28	-4.81			7.17	

03517073430705. Local number, N6705.1

LOCATION.—Lat 40°35′17″, long 73°43′06″, Hydrologic Unit 02030202, at pumping center, 0.1 mi west of end of Park Street, 300 ft north of Beech Street, in westernmost recorder shelter, Atlantic Beach. Owner: United States Geological Survey.

AOUIFER.—Jameco (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 157 ft, screened 147 to 157 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 10.0 ft above sea level. Measuring point: Top of 4-in steel coupling, 2.45 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—February 1968 to current year. Unpublished records from February 1968 to September 1968 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 3.12 ft above sea level, March 3, 1969; lowest measured, 2.77 ft below sea level, April 5, 1973.

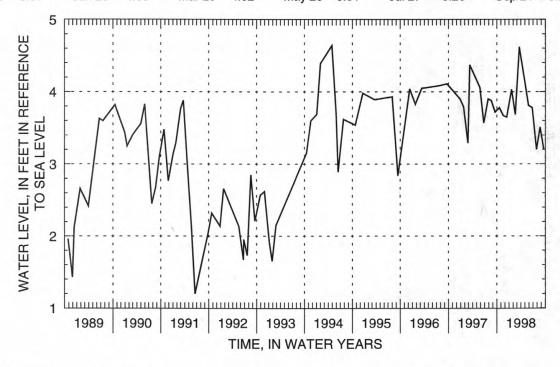
Date	Water level										
Oct 20	2.58	Dec 15	1.00	Feb 17	1.64	Apr 28	1.65	Jun 25	1.73	Sep 21	1.82
Nov 19	1.55	Jan 20	2.38	Mar 20	1.86	May 28	1.74				

403713073415902. Local number, N6707.1

LOCATION.—Lat 40°37′12″, long 73°41′59″, Hydrologic Unit 02030202, at Woodsburgh Town Dock parking field, south end of Woodmere Boulevard, on north side of sewage treatment substation, Woodsburgh. Owner: United States Geological Survey. AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 503 ft, screened 493 to 503 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 6.0 ft above sea level. Measuring point: Top of 4-in steel coupling, 1.08 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—October 1959 to current year. Unpublished records from October 1959 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.64 ft above sea level, April 29, 1994; lowest measured, 1.33 ft below sea level, July 19, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	
Oct 20	3.78	Dec 15	3.65	Feb 17	3.69	Apr 28	4.17	Jun 25	3.78	Aug 24	3.51	
Nov 19	3.67	Jan 20	4.03	Mar 20	4.62	May 28	3.81	Jul 27	3.20	Sep 21	3.20	

403533073353201. Local number, N6849.1

LOCATION.—Lat 40°35′33″, long 73°35′32″, Hydrologic Unit 02030202, at pumping center, north of Lido Boulevard, 0.3 mi west of Loop Parkway, in southernmost recorder shelter, Lido Beach. Owner: United States Geological Survey.

AQUIFER.—Raritan (confining unit).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 1,040 ft, screened 1,027 to 1,037 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 7.0 ft above sea level. Measuring point: Top of 6-in steel casing, 2.36 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—February 1968 to current year. Unpublished records from February 1968 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.08 ft above sea level, June 25, 1998; lowest measured, 3.88 ft above sea level, December 22, 1971.

Date	Water level										
Oct 20	6.80	Dec 15	6.09	Feb 17	6.42	Apr 28	6.87	Jun 25	7.08	Aug 24	6.41
Nov 19	6.15	Jan 20	6.53	Mar 17	6.37	May 28	7.02	Jul 27	6.63	Sep 21	6.36

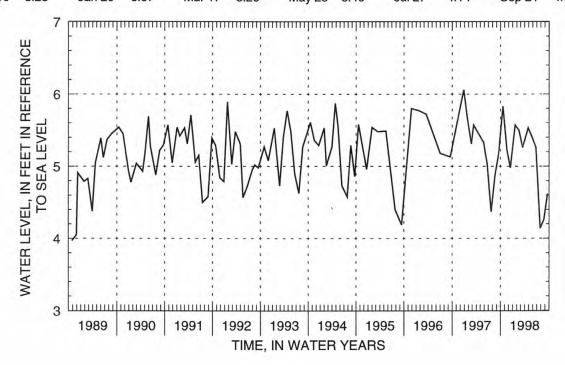
403533073353202. Local number, N6850.2

LOCATION.—Lat 40°35′33″, long 73°35′32″, Hydrologic Unit 02030202, at pumping center, north of Lido Boulevard, 0.3 mi west of Loop Parkway, in northernmost recorder shelter, Lido Beach. Owner: United States Geological Survey.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 913 ft, screened 898 to 909 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 6.6 ft above sea level. Measuring point: Top of 6-in steel coupling, 2.58 ft above land-surface datum.

REMARKS.—Water level affected by tidal fluctuation and nearby pumping. Replaced well N6850.1 in May 1960.

PERIOD OF RECORD.—June 1960 to current year. Unpublished records from June 1960 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 8.00 ft above sea level, April 13, 1961; lowest measured, 2.69 ft above sea level, October 27, 1980.

Date	Water level										
Oct 20	5.83	Dec 15	4.98	Feb 17	5.50	Apr 28	5.53	Jun 25	5.26	Aug 24	4.26
Nov 19	5.23	Jan 20	5.57	Mar 17	5.26	May 28	5 40	Jul 27	4.14	Sep 21	4.62

405432073345001. Local number, N7152.1

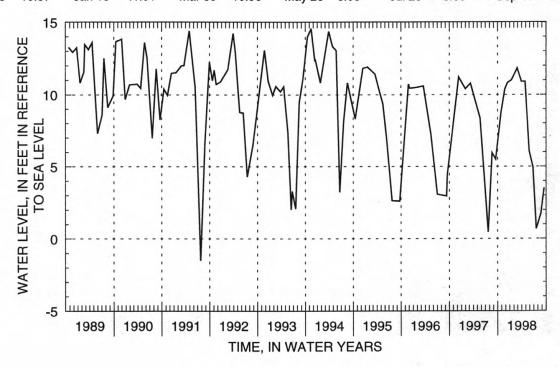
LOCATION.—Lat 40°54′33″, long 73°34′46″, Hydrologic Unit 02030201, at Oak Neck Beach, 35 ft north of Bayville Avenue, east of beach parking field, Bayville. Owner: United States Geological Survey.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in. to 2 in., depth 370 ft, screened 360 to 370 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 14.5 ft above sea level. Measuring point: Top of 6-in steel nipple, 3.63 ft above land-surface datum.


REMARKS.—Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.—September 1961 to current year. Unpublished records from September 1961 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 15.74 ft above sea level, February 5, 1962; lowest measured, 5.50 ft below sea level, June 27, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	
Oct 28	8.77	Dec 15	10.82	Feb 26	11.82	Apr 27	10.91	Jun 25	4.96	Aug 24	1.74	
Nov 25	10.37	Jan 15	11.01	Mar 30	10.90	May 28	6.08	Jul 20	0.69	Sep 17	3.50	

403856073392603. Local number, N7161.2

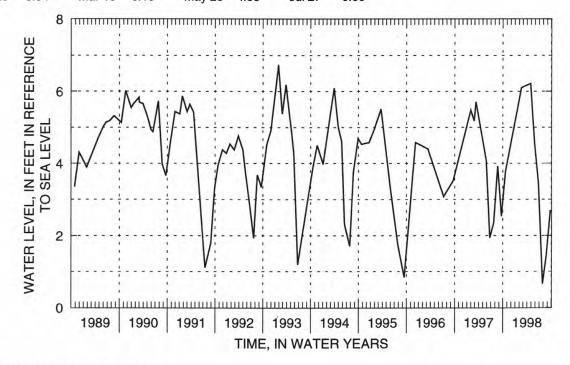
LOCATION.—Lat 40°38′56″, long 73°39′26″, Hydrologic Unit 02030202, at Rockville Centre Village Dump, south of the end of Riverside Road, 79 ft north of the end of Roxbury Road, northernmost well, Rockville Centre. Owner: Village of Rockville Centre.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 666 ft, screened 661 to 665 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 7.0 ft above sea level. Measuring point: Top of 6-in steel casing, 2.78 ft above land-surface datum.


REMARKS.—Water level affected by tidal fluctuation and nearby pumping. Replaced well N7161.1 in September 1961.

PERIOD OF RECORD.—October 1961 to current year. Unpublished records from October 1961 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 8.03 ft above sea level, March 13, 1962; lowest measured, 2.81 ft below sea level, July 13, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 21	3.78	Feb 17	6.10	Apr 28	6.21	Jun 25	3.47	Aug 24	1.44	Sep 23	2.69
Jan 20	5.54	Mar 18	6.15	May 28	4.53	Jul 27	0.66	100			

403855073392402. Local number, N7207.1

LOCATION.—Lat 40°38′55″, long 73°39′24″, Hydrologic Unit 02030202, at Rockville Centre Village Dump, south of the end of Riverside Road, 44 ft north of the end of Roxbury Road, southernmost well, Rockville Centre. Owner: Village of Rockville Centre. AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 98 ft, screened 95 to 98 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 8.0 ft above sea level. Measuring point: Top of 4-in to 2-in steel reducer, 2.39 ft above land-surface datum.

REMARKS.—Water level affected by tidal fluctuation and nearby pumping.

PERIOD OF RECORD.—January 1968 to current year. Unpublished records from January 1968 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.33 ft above sea level, June 30, 1975; lowest measured, 1.47 ft above sea level, January 30, 1970.

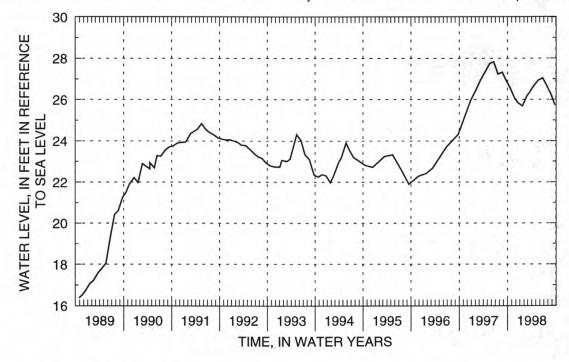
Date	Water level										
Oct 21	3.97	Jan 20	4.09	Mar 18	4.08	May 28	4.48	Jul 27	3.48	Sep 23	3.48
Nov 20	4.09	Feb 17	4.20	Apr 28	4.52	Jun 25	4.38	Aug 24	3.56		

404237073433701. Local number, N7493.1

LOCATION.—Lat 40°42′36″, long 73°43′35″, Hydrologic Unit 02030202, at west side of Cross Island Parkway exit ramp (Hempstead Turnpike eastbound), 21 ft south of Hempstead Turnpike, Elmont. Owner: Nassau County Department of Public Works.

AOUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 353 ft, screened 349 to 353 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 75.0 ft above sea level. Measuring point: Top of 4-in steel flange, 2.59 ft above land-surface datum. PERIOD OF RECORD.—April 1964 to current year. Unpublished records from April 1964 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 27.82 ft above sea level, June 19, 1997; lowest measured, 3.52 ft above sea level, August 8, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 22	26.55	Dec 18	25.85	Feb 23	26.16	Apr 21	26.70	Jun 23	27.04	Aug 26	26.24
Nov 24	26.06	Jan 21	25.69	Mar 23	26.42	May 21	26.93	Jul 22	26.69	Sep 23	25.74

404705073394902. Local number, N7554.2

LOCATION.—Lat 40°47′05″, long 73°39′49″, Hydrologic Unit 02030202, at Christopher Morley Park, 55 ft east of Searingtown Road, just north of main entrance to park, North Hills. Owner: Port Washington Water District.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 12 in. to 6 in., depth 464 ft, screened 454 to 464 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 190.0 ft above sea level. Measuring point: Top of 2-in steel coupling, 5.57 ft above land-surface datum. REMARKS.—Replaced well N7554.1 in May 1964.

PERIOD OF RECORD.—March 1964 to current year. Unpublished records from March 1964 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 50.62 ft above sea level, April 28, 1965; lowest measured, 21.52 ft above sea level, July 18, 1988.

Date	Water level										
Oct 22	31.53	Dec 18	31.81	Feb 23	37.94	Apr 21	32.57	Jun 23	26.20	Aug 26	28.24
Nov 24	35.15	Jan 21	31.11	Mar 24	37.97	May 21	30.22	Jul 21	29.15	Sep 21	28.26

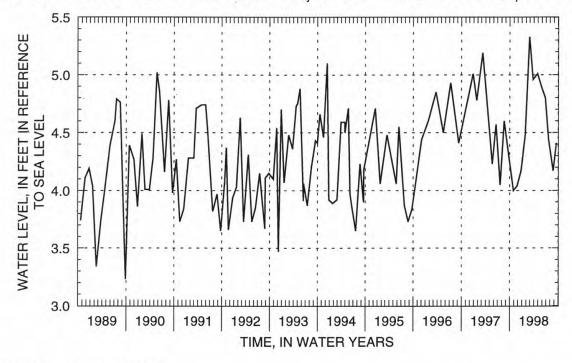
404947073450301. Local number, N8046.1

LOCATION.—Lat 40°49′47″, long 73°45′03″, Hydrologic Unit 02030201, at south side of Pond Road, 85 ft west of Hayworth Drive, easternmost well, Kings Point. Owner: Nassau County Department of Public Works.

AQUIFER.—Port Washington (confined). Previously reported as Jameco aquifer.

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 189 ft, screened 184 to 189 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 9.3 ft above sea level. Measuring point: Top of 4-in steel casing, 2.36 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—May 1966 to current year. Unpublished records from May 1966 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.60 ft above sea level, February 6, 1978; lowest measured, 1.20 ft below sea level, July 19, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 29	4.00	Dec 26	4.17	Feb 27	5.33	Apr 28	5.01	Jun 26	4.80	Aug 25	4.17
Nov 26	4.04	Jan 26	4.48	Mar 25	4.96	May 29	4.89	Jul 21	4.44	Sep 18	4.41

404947073450201. Local number, N8052.1

LOCATION.—Lat 40°49′47″, long 73°45′03″, Hydrologic Unit 02030201, at south side of Pond Road, 91 ft west of Hayworth Drive, westernmost well, Kings Point. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 94 ft, screened 90 to 94 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 12.0 ft above sea level. Measuring point: Top of 2-in steel casing, 0.65 ft above land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—May 1966 to current year. Unpublished records from May 1966 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 8.35 ft above sea level, June 20, 1974; lowest measured, 1.70 ft above sea level, January 22, 1981.

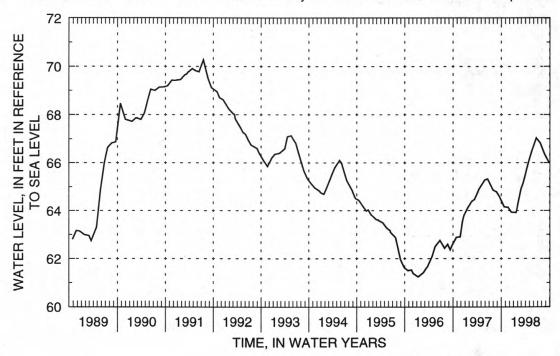
Date	Water level										
Oct 29	4.74	Dec 16	4.78	Feb 27	5.89	Apr 28	5.59	Jun 26	5.39	Aug 25	4.76
Nov 26	4.81	Jan 26	5.21	Mar 25	5.47	May 29	5.64	Jul 21	5.07	Sep 18	5.15

404535073370002. Local number, N8269.2

Location.—Lat 40°45′35″, long 73°37′00″, Hydrologic Unit 02030202, at east side of Bacon Road, 106 ft north of Hillside Avenue, south of school entrance, Old Westbury. Owner: Nassau County Department of Public Works.

AQUIFER.—Magothy (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 4 in., depth 86 ft, screened 81 to 86 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 111.7 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.15 ft below land-surface datum. REMARKS.—Prior to April 1967, well at site (N 1258.1) was screened in the upper glacial aquifer. Well N1258.1 was replaced by well N8269.1 in April 1967, which was replaced by well N8269.2 in June 1976.

PERIOD OF RECORD.—June 1976 to current year. Unpublished records from June 1936 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 74.18 ft above sea level, May 21, 1980; lowest measured, 61.24 ft above sea level, January 11, 1996.

Date	Water level										
Oct 23	64.11	Dec 16	63.88	Feb 27	64.85	Apr 20	65.94	Jun 22	66.98	Aug 24	66.30
Nov 21	64.09	Jan 21	63.87	Mar 17	65.14	May 20	66.46	Jul 22	66.77	Sep 25	65.97

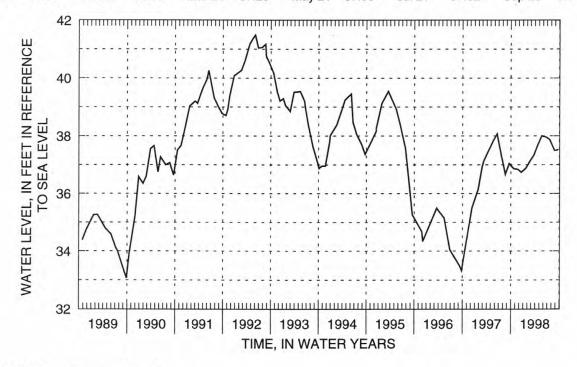
404742073410301. Local number, N8309.1

LOCATION.—Lat 40°47′42″, long 73°41′03″, Hydrologic Unit 02030201, at east side of Manhasset Woods Road, 73 ft north of Northern Boulevard, Munsey Park. Owner: Nassau County Department of Public Works.

AQUIFER.—Magothy (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 199 ft, screened 194 to 199 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 143.2 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.15 ft below land-surface datum. REMARKS.—Replaced well N1121.2 in March 1967 at same location, unpublished records from March 1940 to March 1967 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—March 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 42.81 ft above sea level, June 20, 1980; lowest measured, 33.07 ft above sea level, September 27, 1989.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 22	36.82	Dec 18	36.69	Feb 23	37.09	Apr 21	37.64	Jun 23	37.91	Aug 26	37.44
Nov 24	36.79	Jan 21	36.83	Mar 24	37.29	May 21	37.95	Jul 21	37.82	Sep 23	37.47

403942073334401. Local number, N8847.1

LOCATION.—Lat 40°39′42″, long 73°33′44″, Hydrologic Unit 02030202, at north side of Bedford Avenue, 38 ft east of Babylon Turnpike, Merrick. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 1 1/4 in., depth 26 ft, screened 21 to 26 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 16.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.37 ft below land-surface datum. REMARKS.—Replaced well N3943.2 in April 1972, which replaced well N1185.1 in June 1939.

PERIOD OF RECORD.—June 1972 to current year. Unpublished records from June 1972 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 9.62 ft above sea level, March 26, 1993; lowest measured, 1.04 ft below sea level, June 11, 1974.

Date	Water level										
Oct 23	7.84	Dec 18	8.36	Feb 26	9.25	Apr 21	9.11	Jun 23	9.01	Aug 26	7.85
Nov 24	8.66	Jan 21	8.88	Mar 24	9.38	May 21	9.10	Jul 23	8.11	Sep 23	7.78

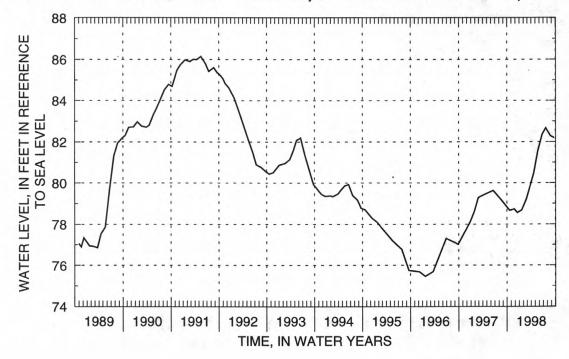
404702073305601. Local number, N8888.1

LOCATION.—Lat 40°47′03″, long 73°30′56″, Hydrologic Unit 02030202, at north side of Miller Place, 59 ft east of Vincent Road, Hicksville. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 111 ft, screened 106 to 111 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 174.0 ft above sea level. Measuring point: Top of 4-in steel casing, 0.49 ft above land-surface datum. REMARKS.—Replaced well N1213.1 in October 1972.

PERIOD OF RECORD.—October 1972 to current year. Unpublished records from October 1972 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 94.22 ft above sea level, September 14, 1979; lowest measured, 75.46 ft above sea level, January 22, 1996.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

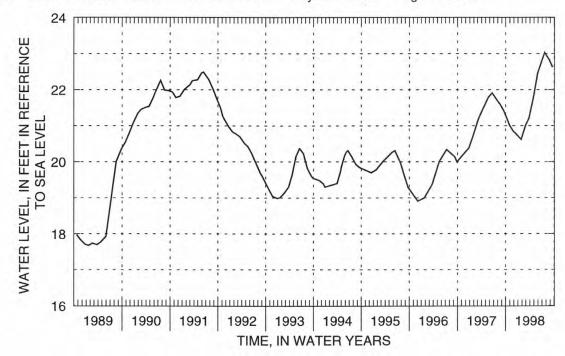
Date	Water level										
Oct 21	78.65	Dec 18	78.55	Feb 23	79.19	Apr 21	80.47	Jun 23	82.34	Aug 25	82.28
Nov 24	78.72	Jan 21	78.67	Mar 23	79.80	May 21	81.52	Jul 21	82.65	Sep 21	82.18

404757073440401. Local number, N9099.1

LOCATION.—Lat 40°47′57″, long 73°44′04″, Hydrologic Unit 02030201, at west side of Middle Neck Road, 33 ft north of Preston Road, Great Neck. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 71 ft, screened 66 to 71 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 60.0 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.37 ft below land-surface datum. REMARKS.—Replaced well N1479.1 in February 1976, which has a period of record from September 1944 to February 1976 unpublished and are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—February 1976 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 24.45 ft above sea level, June 7, 1976; lowest measured, 14.90 ft above sea level, November 26, 1982.

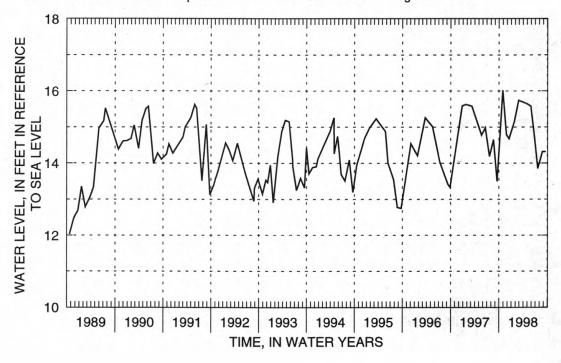
Date	Water level										
Dec 29	21.02	Dec 16	20.78	Feb 27	21.00	Apr 28	21.79	Jul 21	23.03	Sep 18	22.63
Nov 26	20.85	Jan 26	20.62	Mar 25	21.21	May 29	22.46	Aug 25	22.83		

404901073443004. Local number, N9208.2

LOCATION.—Lat 40°49′01″, long 73°44′30″, Hydrologic Unit 02030201, at pumping field, 174 ft south of Wildwood Road, east of Catalina Drive, Kings Point. Owner: Nassau County Department of Public Works.

AQUIFER.—Port Washington (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 96 ft, screened 91 to 96 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 18.0 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.82 ft below land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—June 1977 to current year. Unpublished records from June 1977 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 16.50 ft above sea level, May 23, 1983; lowest measured, 5.68 ft above sea level, April 21, 1981.

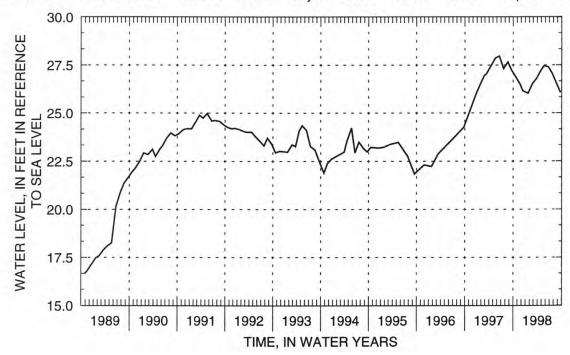
Date	Water level											
Oct 29	16.02	Dec 16	14.68	Feb 26	15.74	May 29	15.58	Jul 21	13.85	Sep 18	14.32	
Nov 26	14.79	Jan 26	15.16	Apr 28	15.65	Jun 26	14.72	Aug 25	14.32			

404232073432501. Local number, N9979.1

LOCATION.—Lat 40°42′32″, long 73°43′25″, Hydrologic Unit 02030202, at west side of Wellington Road, 279 ft south of Hempstead Turnpike, Elmont. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 95 ft, screened 87 to 92 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 71.0 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.36 ft below land-surface datum. REMARKS.—Replaced well N1622.4 in June 1982.

PERIOD OF RECORD.—December 1982 to current year. Unpublished records from December 1982 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 27.97 ft above sea level, June 19, 1997; lowest measured, 5.39 ft above sea level, April 8, 1983.

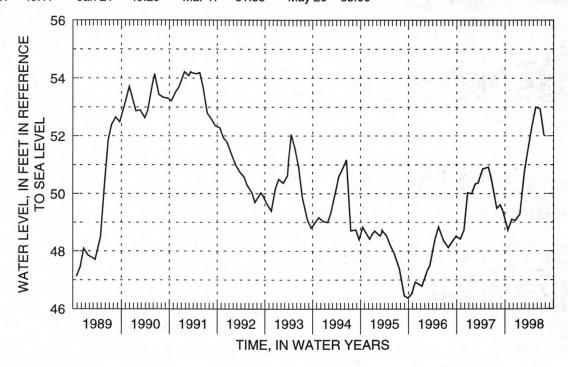
Date	Water level										
Oct 22	26.87	Dec 13	26.16	Feb 23	26.53	Apr 21	27.15	Jun 23	27.41	Aug 26	26.51
Nov 24	26.49	Jan 21	26.03	Mar 28	26.82	May 21	27.46	Jul 22	27.07	Sep 23	26.07

404338073371502. Local number, N10035.1

LOCATION.—Lat 40°43′38″, long 73°37′15″, Hydrologic Unit 02030202, at north side of Commercial Avenue, 60 ft east of Clinton Avenue, Garden City. Owner: Nassau County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 56 ft, screened 48 to 53 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 77.6 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.38 ft below land-surface datum. REMARKS.—Replaced well N1255.2 in October 1982, records from May 1913 to October 1982 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—October 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 57.04 ft above sea level, August 8, 1984; lowest measured, 46.37 ft above sea level, September 28, 1995.

Date	Water level										
Oct 23	48.73	Dec 16	49.06	Feb 27	50.82	Apr 22	52.34	Jun 22	52.94	Jul 22	52.02
Nov 21	49.11	Jan 21	49.29	Mar 17	51.35	May 20	53.00				

404451073475003. Local number, O283.2

LOCATION.—Lat 40°44′51″, long 73°47′50″, Hydrologic Unit 02030201, at City of New York storage facility, 50 ft south of Underhill Avenue, west of Fresh Meadow Lane, easternmost well, Flushing. Owner: City of New York.

AQUIFER.-Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel abandoned public supply well, diameter 26 in., depth 409 ft, screened 309 to 352 ft and 367 to 409 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 27.0 ft above sea level. Measuring point: Top of hole cut in welded steel plate, 0.37 ft above land-surface datum.

PERIOD OF RECORD.—June 1946 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 10.16 ft above sea level, March 31, 1998; lowest measured, 27.40 ft below sea level, September 14, 1976.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 11	6.79	Dec 30	8.17	Feb 26	9.98	Mar 31	10.16	Apr 29	8.09	Jun 09	8.54
Nov 28	6.95	Jan 27	8.35								

403624073491601. Local number, Q287.1

LOCATION.—Lat 40°36′24″, long 73°49′16″, Hydrologic Unit 02030202, at Broad Channel School, west side of Shad Creek Road, 131 ft south of 9th Road, Broad Channel. Owner: City of New York.

AQUIFER.-Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel abandoned public supply well, diameter 8 in., depth 725 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 8.5 ft above sea level. Measuring point: Top of 8-in to 4-in steel reducer bushing, 0.52 ft below land-surface datum.

REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—January 1944 to current year. Unpublished records from January 1944 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 10.79 ft above sea level, January 1, 1945; lowest measured, 0.96 ft below sea level, September 5, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	Water		Water		Water		Water		Water		Water
Date	level	Date	level	Date	level	Date	level	Date	level	Date	level
Dec 12	7.87	Jan 29	7.52	Jul 30	6.47						

4403958073445801. Local number, O1187.1

LOCATION.—Lat 40°39′58″, long 73°44′58″, Hydrologic Unit 02030202, at south side of North Conduit, 1,775 ft west of 225th Street, westernmost well, in ravine, Rosedale. Owner: City of New York.

AQUIFER.—Jameco (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 8 in., depth 130 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 10.0 ft above sea level. Measuring point: Top of small hole in 8-in steel cap, 4.71 ft above land-surface datum.

PERIOD OF RECORD.—November 1968 to current year. Unpublished records from November 1968 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 9.14 ft above sea level, May 22, 1997; lowest measured, 2.26 ft above sea level, June 22, 1981.

Date	Water level	Date	Water level	Date	Water	Date	Water level	Date	Water level	Date	Water level
Oct 31	7.10	Dec 29	7.53	Feb 26	8.14	Apr 29	8.34	Jun 09	8.35	Oct 22	7.03
Nov 26	7.27	Jan 27	8.10	Mar 25	8.56						

403958073445801. Local number, Q1189.1

LOCATION.—Lat 40°39′58″, long 73°44′58″, Hydrologic Unit 02030202, at south side of North Conduit, 1,790 ft west of 225th Street, easternmost well, in ravine, Rosedale. Owner: City of New York.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 50 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 13.0 ft above sea level. Measuring point: Top of small hole in 6-in steel cap, 1.76 ft above land-surface datum.

PERIOD OF RECORD.—November 1968 to current year. Unpublished records from November 1968 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.81 ft above sea level, June 21, 1989; lowest measured, 1.86 ft above sea level, December 15, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 31	5.68	Dec 29	5.99	Feb 26	6.97	Mar 25	7.13	Apr 29	6.99	Jun 09	6.83
Nov 26	6.10	Jan 27	6.85								

404240073443401. Local number, Q1249.1

LOCATION.—Lat 40°42′40″, long 73°44′34″, Hydrologic Unit 02030202, at west side of 216th Street, 42 ft north of 106th Avenue, Queens Village. Owner: City of New York.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 1 1/4 in., depth 88 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 72.0 ft above sea level. Measuring point: Top of 1 1/4-in steel coupling, 0.36 ft above land-surface datum. PERIOD OF RECORD.—October 1940 to current year. Unpublished records from October 1940 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 33.41 ft above sea level, September 26, 1946; lowest measured, 5.67 ft below sea level, March 8, 1982.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 31	24.42	Dec 29	23.43	Feb 26	23.45	Apr 29	23.93	Jul 28	23.87	Sep 24	22.81
Nov 26	24.02	Jan 27	23.60	Mar 31	23.57	Jun 09	24.16	Aug 31	23.30		

404302073481601. Local number, Q1812.1

LOCATION.—Lat 40°43′02″, long 73°48′16″, Hydrologic Unit 02030202, at west side of 164th Street, 670 ft south of Goethals Avenue, at Queens General Hospital, Jamaica. Owner: Queens General Hospital.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled unused steel diffusion well, diameter 12 in., depth 250 ft, screened 195 to 245 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 115.4 ft above sea level. Measuring point: Top of coupling at end of 2-in steel extension, 0.93 ft below land-surface datum.

PERIOD OF RECORD.—January 1982 to current year. Unpublished records from January 1982 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 19.66 ft above sea level, June 23, 1997; lowest measured, 12.80 ft below sea level, December 17, 1984.

	Water											
Date	level											
Oct 31	18.85	Nov 28	18.60	Dec 30	19.08	Jan 27	17.98	Feb 26	17.48	Mar 27	17.49	

403957073495001. Local number, O2324.1

LOCATION.—Lat 40°39′57″, long 73°49′50″, Hydrologic Unit 02030202, at north side of North Conduit Avenue, 66 ft east of entrance to Aqueduct Race Track, South Ozone Park. Owner: New York Racing Association.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 2 1/2 in., depth 91 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 22.0 ft above sea level. Measuring point: Top of 2 1/2-in steel coupling, 0.04 ft above land-surface datum. PERIOD OF RECORD.—March 1959 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 5.33 ft above sea level, June 6, 1997; lowest measured, 3.40 ft below sea level, May 25, 1959.

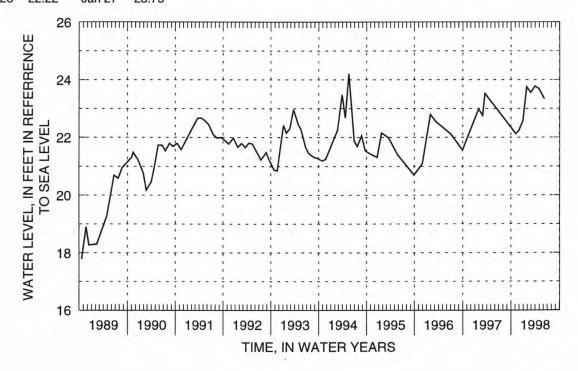
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 02	4.91	Dec 02	4.76	Jan 29	5.25	Apr 29	4.88	Jun 11	4.81	Jul 30	4.53
Nov 06	4.85	Dec 17	4.69	Mar 16	4.96	- N. 1 E. T.					

404451073475002. Local number, Q2346.1

LOCATION.—Lat 40°44′51″, long 73°47′50″, Hydrologic Unit 02030201, at City of New York storage facility, 55 ft south of Underhill Avenue, west of Fresh Meadow Lane, westernmost well, Flushing. Owner: City of New York.

AQUIFER.—Upper glacial (water table).


WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 17 ft, screened 12 to 17 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 29.0 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.98 ft above land-surface datum. PERIOD OF RECORD.—August 1960 to current year. Unpublished records from August 1960 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 24.21 ft above sea level, May 19, 1994; lowest measured, 13.18 ft above sea level, February 25, 1983.

Date	Water level										
Nov 06	22.12	Dec 30	22.57	Feb 26	23.56	Mar 31	23.78	Apr 29	23.69	Jun 09	23.34
Nov 28	22 22	Jan 27	23.75								

404624073483501. Local number, O2791.1

LOCATION.—Lat 40°46′24″, long 73°48′35″, Hydrologic Unit 02030201, at Saint Mel's Roman Catholic Church, north side of 27th Avenue, 173 ft east of 154th Street, under steel doors, Flushing. Owner: Saint Mel's Roman Catholic Church.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel public supply well, diameter 6 in., depth 76 ft, screened 68 to 76 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 90.9 ft above sea level. Measuring point: Edge of 1/4-in access hole in steel cap, 3.27 ft below land-surface datum.

PERIOD OF RECORD.—May 1981 to current year. Unpublished records from May 1981 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 58.23 ft above sea level, June 27, 1984; lowest measured, 50.17 ft above sea level, April 2, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 06	350			Feb 26				Jul 30	56.28	Aug 31	55.46
Nov 28	54.69	Jan 27	55.05	Mar 27	56.43	Jun 09	57.36				

403932073482901. Local number, Q3109.1

LOCATION.—Lat 40°39′32″, long 73°48′29″, Hydrologic Unit 02030202, at John F. Kennedy International Airport, in grassy area at Federal Circle, 160 ft west of Federal Circle Loop Road, near Bergan Road split, just east of Van Wyck Expressway, northernmost well, South Ozone Park. Owner: New York Port Authority.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 400 ft, screened 290 to 310 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 22.7 ft above sea level. Measuring point: Top of 4-in PVC coupling, 1.30 ft below land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—December 1981 to current year. Unpublished records from December 1981 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 3.83 ft above sea level, October 26, 1990; lowest measured, 1.32 ft below sea level, September 26, 1983.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 02	2.24	Dec 02	1.96	Jan 29	3.13	Mar 31	2.20	Apr 29	2.07	Jun 11	1.95
Nov 06	2.27	Dec 17	3.15								

403932073482902. Local number, Q3114.1

LOCATION.—Lat 40°39′32″, long 73°48′29″, Hydrologic Unit 02030202, at John F. Kennedy International Airport, in grassy area at Federal Circle, 160 ft west of Federal Circle Loop Road, near Bergan Road split, just east of Van Wyck Expressway, southernmost well, South Ozone Park. Owner: New York Port Authority.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 31 ft, screened 29 to 31 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 21.0 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.26 ft above land-surface datum.

REMARKS.—Water level affected by tidal fluctuation and local dewatering.

PERIOD OF RECORD.—December 1981 to current year. Unpublished records from December 1981 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.30 ft above sea level, April 30, 1984; lowest measured, 2.79 ft below sea level, April 29 and June 11, 1998.

Date	Water level										
Oct 02	3.41	Dec 02	3.23	Jan 29	-1.44	Mar 31	-1.76	Apr 29	-2.79	Jun 11	-2.79
Nov 06	3.28	Dec 17	-2.25								

404516073550201. Local number, Q3122.1

LOCATION.—Lat 40°45′16″, long 73°55′02″, Hydrologic Unit 02030201, at east side of 29th Street, 42 ft south of 38th Avenue, Long Island City. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 47 ft, screened 44 to 47 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 45.5 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.09 ft above land-surface datum. PERIOD OF RECORD.—September 1980 to current year. Unpublished records from September 1980 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 15.27 ft above sea level, December 22, 1980; lowest measured, 11.72 ft above sea level, September 22, 1981.

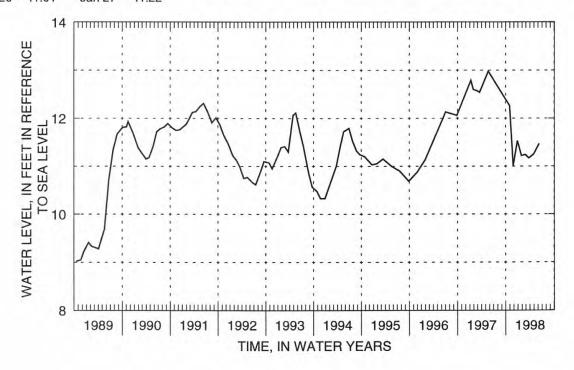
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 31	12.86	Dec 29	12.70	Feb 26	12.67	Apr 29	12.91	Jul 28	13.33	Sep 24	12.93
Nov 26	12.79	Jan 27	12.62	Mar 27	12.84	Jun 09	13.13	Aug 31	13.05		

404112073500901, Local number, O3160.1

LOCATION.—Lat 40°41′12″, long 73°50′09″, Hydrologic Unit 02030202, at west side of 108th Street, 196 ft south of 101st Avenue, Woodhaven. Owner: City of New York.

AQUIFER.—Upper glacial (water table).


WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 65 ft, screened 60 to 65 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 45.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.22 ft below land-surface datum. PERIOD OF RECORD.—March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 12.99 ft above sea level, June 23, 1997; lowest measured, 6.08 ft above sea level, March 2, 1984.

Date	Water level										
Oct 31	12.26	Dec 29	11.53	Feb 26	11.24	Mar 25	11.17	Apr 29	11.25	Jun 09	11.47
Nov 26	11 01	Jan 27	11 22								

404119073463601. Local number, Q3162.1

LOCATION.—Lat 40°41′19″, long 73°46′36″, Hydrologic Unit 02030202, at east side of 172nd Street, 66 ft north of 116th Avenue, Rochdale Village. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 44 ft, screened 39 to 44 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 27.2 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.32 ft below land-surface datum. PERIOD OF RECORD.—March 1984 to current year. Unpublished records from March 1984 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 15.53 ft above sea level, June 21, 1989; lowest measured, 9.62 ft above sea level, May 15, 1985.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 31	13.52	Dec 29	13.68	Feb 26	14.77	Apr 29	14.77	Jul 28	13.77	Sep 24	13.14
Nov 26	13.82	Jan 27	14.86	Mar 25	15.28	Jun 06	14.50	Aug 31	13.28		

404143073482701. Local number, Q3165.1

LOCATION.—Lat 40°41′43″, long 73°48′27″, Hydrologic Unit 02030202, at east side of Liverpool Street, 54 ft north of 101st Avenue, Jamaica. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 65 ft, screened 60 to 65 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 41.6 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.59 ft below land-surface datum. PERIOD OF RECORD.—March 1984 to current year. Unpublished records from March 1984 to September 1987 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 18.40 ft above sea level, May 22, 1997; lowest measured, 7.28 ft above sea level, March 2, 1984.

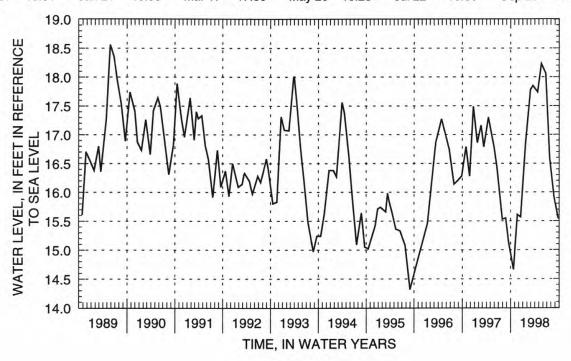
	Water											
Date	level											
Oct 03	18.21	Dec 29	16.96	Jan 29	16.84	Feb 25	16.75	Mar 25	16.60	Apr 29	16.60	

404213073201001. Local number, S1803.4

LOCATION.—Lat 40°42′13″, long 73°20′10″, Hydrologic Unit 02030202, at north side of State Route 109, west of Little East Neck Road, on grass median, Babylon. Owner: New York State Department of Transportation.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 19 ft, screened 16 to 19 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 23.7 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.08 ft above land-surface datum. REMARKS.—Replaced well \$1803.3 in November 1975 at same location. Unpublished records from October 1912 to November 1914, August and September 1932, and June 1936 to September 1975, for wells \$1803.1 to \$1803.3 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 19.87 ft above sea level, May 23, 1983; lowest measured, 13.06 ft above sea level, July 26, 1976.

Date	Water level										
Oct 23	14.66	Dec 16	15.57	Feb 27	17.78	Apr 22	17.74	Jun 22	18.06	Aug 24	15.92
Nov 21	15.61	Jan 21	16.85	Mar 17	17.85	May 20	18.23	Jul 22	16.60	Sep 25	15.54

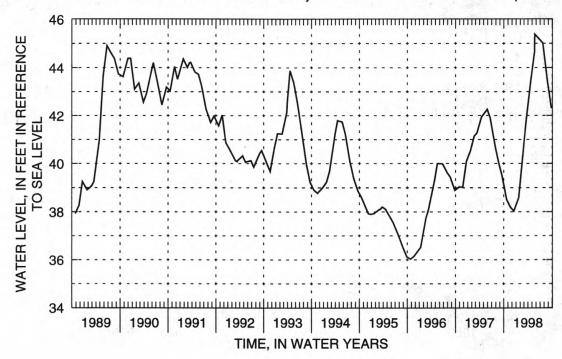
404301073240901. Local number, S1805.4

LOCATION.—Lat 40°43′01″, long 73°24′09″, Hydrologic Unit 02030202, at south side of State Route 109, west of Albany Avenue, Maywood. Owner: New York State Department of Transportation.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 2 in., depth 33 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 57.2 ft above sea level. Measuring point: Top of 2-in steel casing, 2.02 ft above land-surface datum. REMARKS.—Replaced well S1805.3 in October 1953 at same location. Unpublished records from October 1912 to September 1975 for wells S1805.1 to S1805.3 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—October 1953 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 46.47 ft above sea level, August 27, 1984; lowest measured, 35.79 ft above sea level, December 28, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

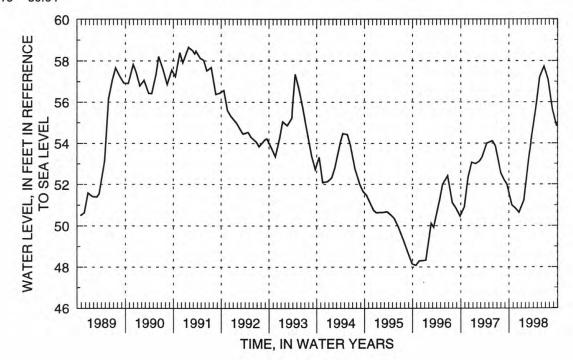
Date	Water level										
Oct 23	38.50	Dec 16	38.03	Feb 27	40.67	Apr 22	43.43	Jun 22	45.38	Aug 24	43.52
Nov 21	38.18	Jan 21	38.58	Mar 17	41.70	May 20	44.65	Jul 22	45.01	Sep 25	42.31

404442073240501. Local number, S1806.3

LOCATION.—Lat 40°44′42″, long 73°24′05″, Hydrologic Unit 02030202, at west side of Wellwood Avenue, north of Conklin Street, south of railroad tracks, Pinelawn. Owner: Suffolk County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Augered PVC observation well, diameter 1 1/4 in., depth 45 ft, screened 41 to 45 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 85.7 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.19 ft below land-surface datum. REMARKS.—Replaced well S1806.2 in August 1977 at same location. Unpublished records for October 1912 to November 1914, and May to September 1975, for wells S1806.1 to S1806.2 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—August 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 62.37 ft above sea level, June 20, 1984; lowest measured, 48.07 ft above sea level, October 26, 1995.

Date	Water level										
Oct 23	51.01	Jan 21	51.23	Mar 16	54.07	Apr 22	55.74	Jun 22	57.23	Aug 24	55.66
Nov 21	50.83	Feb 27	53.26	Mar 17	54.19	May 20	57.23	Jul 22	57.12	Sep 25	54.83
Dec 16	50.64										

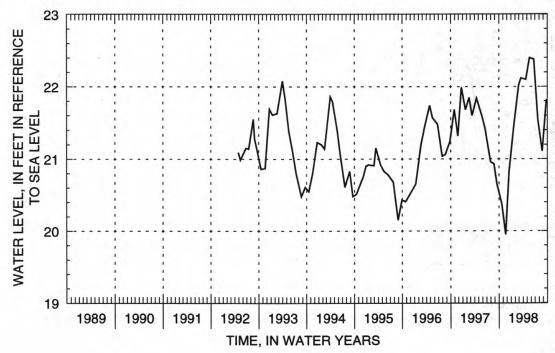
404319073184601. Local number, S1807.6

LOCATION.—Lat 40°43′19″, long 73°18′46″, Hydrologic Unit 02030202, at east side of Higbie Lane, north of Martin Drive, West Islip. Owner: Town of Islip.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 21 ft, screened 19 to 21 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 23.5 ft above sea level. Measuring point: Top of 2-in steel casing, 0.45 ft below land-surface datum. REMARKS.—Replaced well S1807.5 in April 1992 at same location. Unpublished records for October 1912 to November 1914, August 1932 to June 1933, and June 1936 to September 1975, for wells S1807.1 to S1807.5 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—April 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 22.40 ft above sea level, May 20, 1998; lowest measured, 19.95 ft above sea level, November 21, 1997.

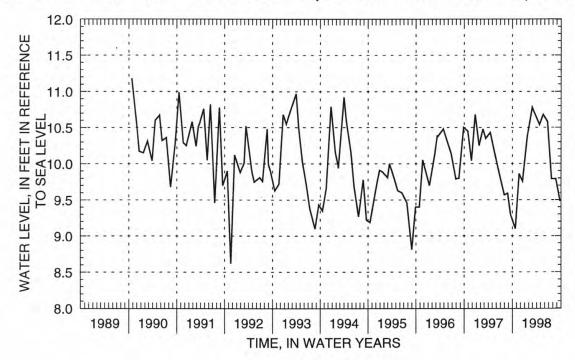
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 23	20.38	Dec 16	20.82	Feb 27	22.02	Apr 22	22.10	Jun 22	22.38	Aug 24	21.11
Nov 21	19.95	Jan 21	21.44	Mar 17	22.12	May 20	22.40	Jul 22	21.54	Sep 25	21.82

404221073164901. Local number, S1808.5

LOCATION.—Lat 40°42′21″, long 73°16′49″, Hydrologic Unit 02030202, at Manor and Bardolier Lanes, West Islip. Owner: Town of Islip. AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 11 ft, screened 10 to 11 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 13.5 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.22 ft below land-surface datum. REMARKS.—Replaced well S1808.4 in October 1989 at same location. Unpublished records from October 1912 to September 1975, for wells S1808.1 to S1808.4 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—October 1989 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.18 ft above sea level, November 23, 1989; lowest measured, 8.62 ft above sea level, November 18, 1991.

Date	Water level										
Oct 23	9.10	Dec 16	9.76	Feb 27	10.78	Apr 22	10.54	Jun 22	10.58	Aug 24	9.79
Nov 21	9.86	Jan 21	10.38	Mar 17	10.70	May 20	10.68	Jul 22	9.79	Sep 25	9.48

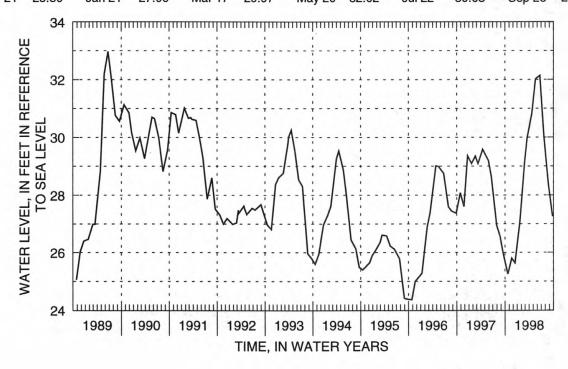
404351073164901. Local number, S1809.4

LOCATION.—Lat 40°43′51″, long 73°16′49″, Hydrologic Unit 02030202, at south east corner of Muncey Road and Manor Lane, in recharge basin, Bay Shore. Owner: Town of Islip.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Augered PVC observation well, diameter 2 in., depth 29 ft, screened 26 to 29 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 42.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.45 ft below land-surface datum. REMARKS.—Replaced well S1809.3 in March 1981 at same location. Unpublished records for October 1912 to November 1914, and

August 1932 to September 1975, for wells S1809.1 to S1809.3 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—March 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 32.97 ft above sea level, June 23, 1989; lowest measured, 24.37 ft above sea level, October 26, 1995.

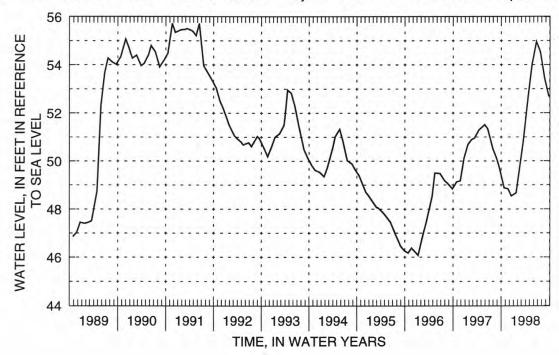
Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 23	25.25	Dec 16	25.64	Feb 27	29.16	Apr 22	30.82	Jun 22	32.14	Aug 24	28.40
Nov 21	25.80	Jan 21	27.06	Mar 17	29 97	May 20	32 02	Jul 22	30.03	Sep 25	27.26

404614073164401. Local number, S1810.4

LOCATION.—Lat 40°46′14″, long 73°16′44″, Hydrologic Unit 02030202, at west side of North Gardiner Drive, south of Pine Aire Drive, in front of house 1712, Pine Aire. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Augered PVC observation well, diameter 2 in., depth 55 ft, screened 52 to 55 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 90.8 ft above sea level. Measuring point: Top of 2-in PVC coupling, 1.00 ft below land-surface datum. REMARKS.—Replaced well S1810.3 in November 1975 at same location. Unpublished records from October 1912 to November 1914, and August 1932 to September 1975, for wells S1810.1 to S1810.3 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 56.28 ft above sea level, July 23, 1984; lowest measured, 46.17 ft above sea level, January 11, 1996.

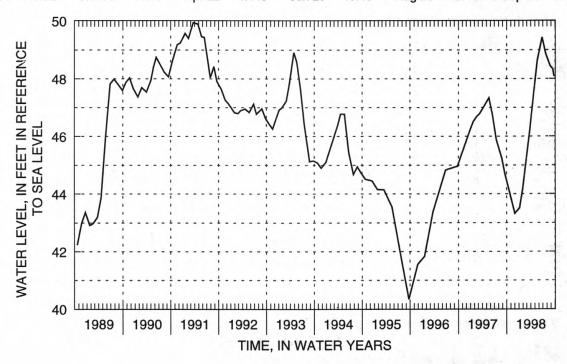
	Water										
Date	level										
Oct 23	48.88	Dec 17	48.55	Feb 27	50.13	Apr 22	52.70	Jun 22	54.96	Aug 24	53.43
Nov 21	48.84	Jan 21	48.67	Mar 17	50.87	May 20	54.02	Jul 22	54.53	Sep 25	52.68

404958073085001. Local number, S1812.3

LOCATION.—Lat 40°49′58″, long 73°08′50″, Hydrologic Unit 02030202, at southwest corner of Smithtown Boulevard and Nichols Road, Ronkonkoma. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 50 ft, screened 46 to 50 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 69.9 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.68 ft below land-surface datum. REMARKS.—Replaced well S1812.2 in May 1982 at same location. Unpublished records from April 1937 to September 1975 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 51.34 ft above sea level, July 23, 1984; lowest measured, 40.34 ft above sea level, September 21, 1995.

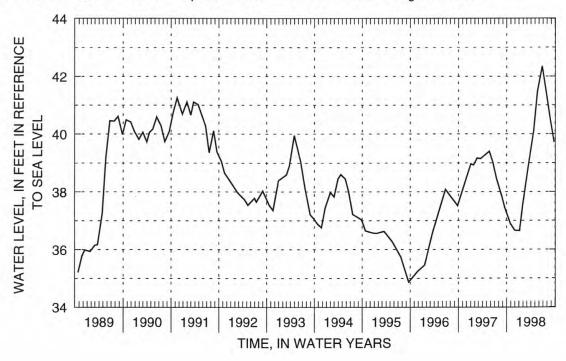
Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 29	43.39	Jan 06	43.51	Mar 24	46.16	May 20	48.64	Jul 23	48.86	Sep 14	48.34
Dec 01	43.32	Jan 30	44.18	Apr 22	47.46	Jun 25	49.43	Aug 26	48.43	Sep 24	48.09

404737073112303. Local number, S1814.3

LOCATION.—Lat 40°47′37″, long 73°11′23″, Hydrologic Unit 02030202, at northwest corner of Suffolk Avenue and Dovecott Lane, Central Islip. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 54 ft, screened 51 to 54 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 63.5 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.35 ft below land-surface datum. REMARKS.—Replaced well S1814.2 in May 1982 at same location, unpublished records from November 1939 to September 1975 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 42.35 ft above sea level, June 25, 1998; lowest measured, 34.87 ft above sea level, September 19, 1995.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 29	36.89	Jan 06	36.65	Mar 18	39.05	May 20	41.47	Jul 23	41.53	Sep 24	39.71
Dec 01	36.66	Jan 30	37.55	Apr 22	40.10	Jun 25	42.35	Aug 26	40.49		

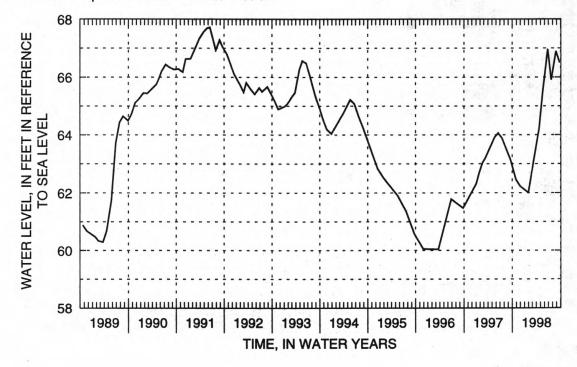
405146073031801. Local number, S3513.1

LOCATION.—Lat 40°51′46″, long 73°03′18″, Hydrologic Unit 02030202, at south side of State Route 25, 235 ft west of High View Drive, Selden. Owner: New York Department of Transportation.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled unused steel well, diameter 8 in. to 4 in., depth 65 ft, screened 63 to 65 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 101.0 ft above sea level. Measuring point: Top of 4-in to 1 1/4-in steel reducer, 1.31 ft above land-surface datum.

PERIOD OF RECORD.—April 1942 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 69.91 ft above sea level, May 29, 1979; lowest measured, 56.06 ft above sea level, March 1, 1967.

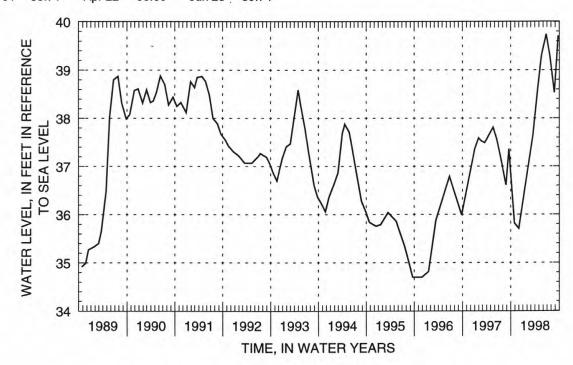
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 29	62.47	Jan 30	62.02	May 20	65.54	Jul 23	65.92	Aug 26	66.89	Sep 24	66.50
Dec 01	62.23	Apr 22	64.23	Jun 25	66.97						

404812073004101. Local number, S3521.1

LOCATION.—Lat 40°48′12″, long 73°00′41″, Hydrologic Unit 02030202, at west side of Old Medford Avenue, 237 ft north of Cedar Avenue, Medford. Owner: Town of Brookhaven.

AQUIFER.—Upper glacial (water table).


WELL CHARACTERISTICS.—Driven steel observation well, diameter 2 in., depth 50 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 71.8 ft above sea level. Measuring point: Top of 2-in steel casing, 0.77 ft above land-surface datum. PERIOD OF RECORD.—January 1907 to current year. Unpublished records from January 1907 to July 1909, April 1942 to September 1975, are available in files of the Long Island Subdistrict Office.

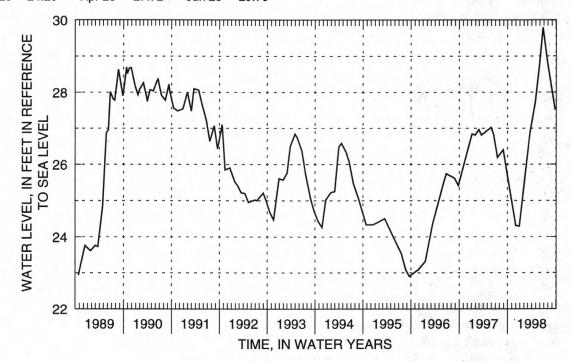
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 40.75 ft above sea level, March 27, 1979; lowest measured, 34.38 ft above sea level, October 26, 1966.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
1777	35.82 35.71	Mar 17 Apr 22		May 20 Jun 25		Jul 23	39.29	Aug 26	38.53	Sep 24	39.71

404806072553802. Local number, S3529.2

LOCATION.—Lat 40°48′01″, long 72°55′38″, Hydrologic Unit 02030202, at entrance to Brookhaven Landfill, south of Horseblock Road, South Yapank. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).


WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 45 ft, screened 41 to 45 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 34.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 3.11 ft above land-surface datum. PERIOD OF RECORD.—December 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 29.79 ft above sea level, June 25, 1998; lowest measured, 22.90 ft above sea level, September 19, 1995.

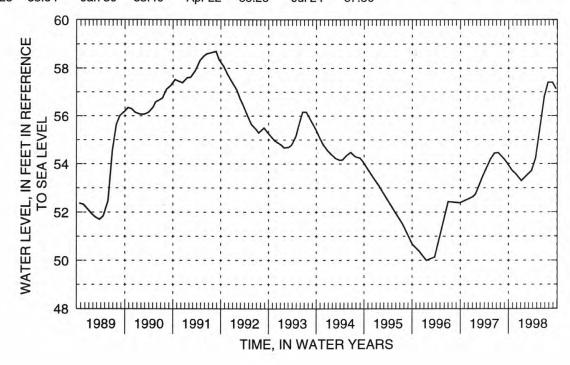
Date	Water level	Date	Water level	Date	Water	Date	Water level	Date	Water level	Date	Water level	
Dec 02	24.31	Mar 17	26.83	May 28	28.71	Jul 27	28.87	Aug 26	28.18	Sep 25	27.51	
Dec 29	24.29	Apr 28	27.72	Jun 25	29.79							

405343073055004. Local number, S3955.4

LOCATION.—Lat 40°53′43″, long 73°05′50″, Hydrologic Unit 02030201, at west side of Mark Tree Road, south of Pond Path, Setauket. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Augered PVC observation well, diameter 2 in., depth 80 ft, screened 76 to 80 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 123.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.24 ft below land-surface datum. REMARKS.—Replaced well S3955.3 in April 1975 at same location. Unpublished records from September 1944 to September 1975 are available in files of the Long Island Subdistrict Office.

PERIOD OF RECORD.—April 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 60.23 ft above sea level, June 21, 1979; lowest measured, 50.00 ft above sea level, January 18, 1996.

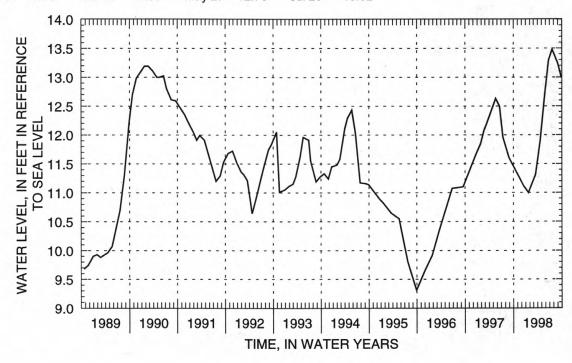
Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 28 Nov 25	53.69	Jan 06 Jan 30		Mar 23 Apr 22			56.77 57.36	Aug 27	57.36	Sep 24	57.09

405743072425701. Local number, S4271.1

LOCATION.—Lat 40°57′43″, long 72°42′57″, Hydrologic Unit 02030202, at Long Island Research Farm, east of Horton Avenue, south of Sound Avenue, Riverhead. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 105 ft, screened 100 to 105 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 100.3 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.04 ft above land-surface datum. PERIOD OF RECORD.—August 1945 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 14.25 ft above sea level, August 12, 1984; lowest measured, 8.16 ft above sea level, September 5, 1966.

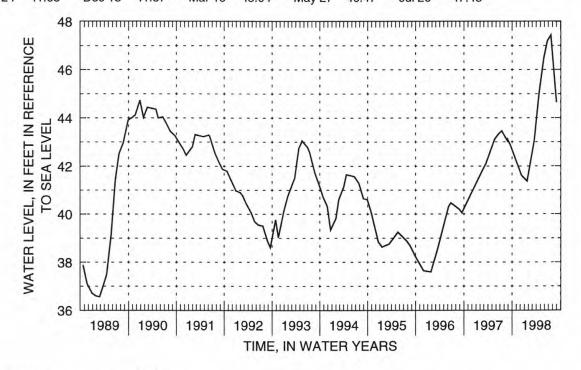
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 24	11.26	Jan 22	11.04	Apr 22	11.94	Jun 24	13.33	Aug 31	13.29	Sep 29	13.03
Dec 18	11.15	Mar 17	11.35	May 27	12.76	Jul 20	13.52				

405149072532201. Local number, S5517.1

LOCATION.—Lat 40°51′49″, long 72°53′22″, Hydrologic Unit 02030202, at Brookhaven National Laboratory, northwest corner of Princeton Avenue and Upton Road, 77 ft south of parking field. Owner: Brookhaven National Laboratory AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 91 ft, screened 85 to 91 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 115.0 ft above sea level. Measuring point: Top of 4-in steel casing, 0.04 ft above land-surface datum. PERIOD OF RECORD.—April 1948 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 47.43 ft above sea level, July 20, 1998; lowest measured, 33.34 ft above sea level, March 1, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 29	42.25	Dec 08	41.65	Jan 22	41.37	Apr 22	45.03	Jun 24	47.20	Aug 31	44.64
Nov 24	41 65	Dec 18	41.57	Mar 16	43 04	May 27	46 47	Jul 20	47 43		

405308072553101. Local number, S6413.1

LOCATION.—Lat 40°53′08″, long 72°55′31″, Hydrologic Unit 02030202, at south side of State Route 25, 70 ft east of Woodville Road, Middle Island. Owner: New York State Department of Transportation.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 108 ft, screened 103 to 108 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 93.8 ft above sea level. Measuring point: Top of steel meter box rim at yellow arrow, 0.13 ft above land-surface datum.

PERIOD OF RECORD.—January 1954 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 54.16 ft above sea level, April 12, 1979; lowest measured, 42.40 ft above sea level, March 1, 1967.

Date	Water level										
Nov 24	50.56	Dec 18	51.17	Mar 16	50.99	May 27	52.72	Jul 20	52.99	Sep 29	51.95
Dec 09	50.57	Jan 22	50.68	Apr 22	51.23	Jun 24	52.79	Aug 31	52.50		

405222072523301. Local number, S6431.1

LOCATION.—Lat 40°52′23″, long 72°52′36″, Hydrologic Unit 02030202, at Brookhaven National Laboratory, northwest corner of Thomson Road and Forth Avenue, Upton. Owner: Brookhaven National Laboratory.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 125 ft, screened 121 to 125 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 87.7 ft above sea level. Measuring point: Top of 4-in steel casing at yellow arrow, 1.48 ft below land-surface datum.

PERIOD OF RECORD.—January 1953 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 48.98 ft above sea level, April 12, 1979; lowest measured, 38.93 ft above sea level, January 25, 1996.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level											
Nov 24	44.08	Dec 18	42.93	Mar 16	45.10	May 27	47.86	Jul 20	48.33	Sep 29	47.11	
Dec 09	43.02	Jan 22	41.86	Apr 22	46.73	Jun 24	48.20	Aug 31	47.97			

405223072523401. Local number, S6434.1

LOCATION.—Lat 40°42′23″, long 72°52′34″, Hydrologic Unit 02030202, at Brookhaven National Laboratory, northeast corner of Thomson Road and Forth Avenue, in pump shed, Upton. Owner: Brookhaven National Laboratory.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel public supply well, diameter 10 in., depth 1,395 ft, screened 1,312 to 1,392 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 85.0 ft above sea level. Measuring point: Hole in flange at arrow, 2.07 ft above land-surface datum. PERIOD OF RECORD.—August 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 36.11 ft above sea level, July 12, 1979; lowest measured, 28.74 ft above sea level, March 1, 1967.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 24	31.67	Dec 18	31.38	Mar 16	31.80	May 27	33.41	Jul 20	34.01	Sep 29	33.74
Dec 09	31.45	Jan 22	31.23	Apr 22	32.78	Jun 24	33.11	Aug 31	34.21		

405223072523403. Local number, S6455.1

LOCATION.—Lat 40°52′23″, long 72°52′34″, Hydrologic Unit 02030202, at Brookhaven National Laboratory, northeast corner of Thomson Road and Forth Avenue, under manhole cover, Upton. Owner: Brookhaven National Laboratory.

AOUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 962 ft, screened 952 to 962 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 85.0 ft above sea level. Measuring point: Top of 4-in steel casing, 0.45 ft below land-surface datum. PERIOD OF RECORD.—July 1949 to June 1952, January 1954 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 42.50 ft above sea level, April 2, 1979; lowest measured, 33.82 ft above sea level, December 27, 1966 and March 1, 1967.

Date	Water level	Date	Water level								
Oct 29 Nov 24		Dec 09 Dec 18		Jan 22 Mar 16		Apr 22 May 27		Jun 24 Jul 20		Aug 31	40.99

405835072325601. Local number, S6558.1

LOCATION.—Lat 40°58′35″, long 72°32′56″, Hydrologic Unit 02030201, at State Route 25, 244 ft east of railroad tracks, Mattituck. Owner: Mattituck Fire Department.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel fire-protection well, diameter 6 in., depth 38 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 14.5 ft above sea level. Measuring point: Top edge of 6-in steel casing, inside elbow extension, 1.04 ft above land-surface datum.

PERIOD OF RECORD.—July 1949 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.45 ft above sea level, March 29, 1973; lowest measured, 1.06 ft above sea level, September 22, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	Water		Water		Water		Water		Water		Water
Date	level	Date	level	Date	level	Date	level	Date	level	Date	level
Nov 24	4.37	Dec 18	4.03								

405756072173501. Local number, S8833.1

LOCATION.—Lat 40°57′56″, long 72°17′35″, Hydrologic Unit 02030202, at west side of Toppings Path, near Crooked Pond, Bridgehampton. Owner: Town of Southampton.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 2 in., depth 13 ft, screened 10 to 13 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 20.0 ft above sea level. Measuring point: Top of 2-in steel casing, 1.63 ft above land-surface datum. PERIOD OF RECORD.—October 1950 to current year. Unpublished records from October 1950 to September 1977 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 20.36 ft above sea level, June 25, 1998; lowest measured, 12.84 ft above sea level, March 29, 1982.

Date	Water level										
Oct 30	17.15	Apr 28	19.43	Jun 25	20.36	Jul 27	19.69	Aug 26	19.34	Sep 25	19.06
Mar 20	18.47	May 28	20.24								

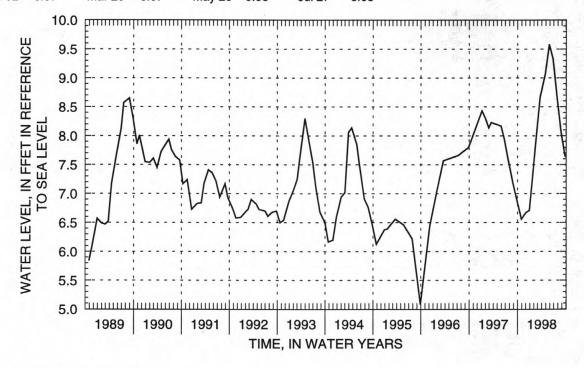
405309072233101. Local number, S8836.1

LOCATION.—Lat 40°53′09″, long 72°23′31″, Hydrologic Unit 02030202, at south side of Nugent Street, 399 ft east of Windmill Lane, Southampton. Owner: Southampton Fire Department.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel fire-protection well, diameter 8 in., depth 37 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.


DATUM.—Land-surface datum is 18.0 ft above sea level. Measuring point: Top edge of 8-in steel casing, inside elbow extension, 0.87 ft above land-surface datum.

PERIOD OF RECORD.—July 1950 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 9.58 ft above sea level, May 28, 1998; lowest measured, 4.93 ft above sea level, August 30, 1968.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 30	6.56	Dec 29	6.71	Apr 28	9.07	Jun 25	9.33	Aug 26	8.05	Sep 25	7.64
Dec 02	6.67	Mar 20	8.67	May 28	9.58	Jul 27	8.63				

405628072164701. Local number, S8838.1

LOCATION.—Lat 40°56′28″, long 72°16′47″, Hydrologic Unit 02030202, at west side of Sagg Road, 153 ft north of Montauk Highway (State Route 27), Bridgehampton. Owner: Bridgehampton Fire Department.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel fire-protection well, diameter 6 in., depth 46 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 28.0 ft above sea level. Measuring point: Top edge of 6-in steel casing, inside elbow extension, 0.40 ft above land-surface datum.

PERIOD OF RECORD.—July 1950 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 14.02 ft above sea level, June 25, 1998; lowest measured, 8.84 ft above sea level, August 8, 1966.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 30	10.85	Dec 29	11.03	Apr 28	13.53	Jun 25	14.02	Aug 26	12.51	Sep 25	12.21
Dec 02	10.80	Mar 20	12.68	May 28	13.83	Jul 27	13.18				

405908072110001. Local number, S8843.1

LOCATION.—Lat 40°59′08″, long 71°11′00″, Hydrologic Unit 02030202, at east side of Three Mile Harbor Road, 0.35 mi north of Morris Park Lane, behind house, East Hampton. Owner: Conklin.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Dug unused well, diameter 30 in., depth 25 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 32.5 ft above sea level. Measuring point: Top of steel grill, 3.12 ft above land-surface datum.

PERIOD OF RECORD.—July 1950 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 12.75 ft above sea level, June 25, 1998; lowest measured, 6.59 ft above sea level, December 17, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 30	10.02	Dec 29	F F F F F F F F F F F F F F F F F F F	Apr 28		Jun 25		Aug 26	11.95	Sep 25	11.59
Dec 02	9.74	Mar 18	10.68	May 28	12.37	Jul 27	12.38				

405250073180801. Local number, S15622.1

LOCATION.—Lat 40°52′50″, long 73°18′08″, Hydrologic Unit 02030201, at north side of Pulaski Road, 17 ft east of Rowena Lane, Northport. Owner: Rottkamp.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel unused domestic supply well, diameter 10 in., depth 458 ft, screened 437 to 457 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 205.0 ft above sea level. Measuring point: Top of hole in steel plate at yellow arrow, 0.19 ft below land-surface datum.

PERIOD OF RECORD.—January 1958 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 47.09 ft above sea level, January 7, 1980; lowest measured, 34.33 ft above sea level, April 14, 1969.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 28	40.78	Jan 06	41.34	Mar 17	41.10	May 19	41.75	Jul 24	42.51	Sep 24	43.17
Nov 25	40.59	Jan 30	41.02	Apr 22	41.36	Jun 26	42.20	Aug 27	42.78		

410858072171501. Local number, S16787.1

LOCATION.—Lat 41°08′58″, long 72°17′15″, Hydrologic Unit 02030201, at south side of State Route 25, east of Platt Road, Orient. Owner: Suffolk County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Driven steel observation well, diameter 1 1/4 in., depth 44 ft, screened 41 to 44 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 22.3 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.14 ft above land-surface datum. PERIOD OF RECORD.—August 1958 to current year. Unpublished records from August 1958 to September 1977 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 5.61 ft above sea level, May 27, 1998; lowest measured, 1.12 ft above sea level, August 8, 1966.

Date	Water level										
Nov 24	2.43	Jan 22	2.69	Apr 22	5.15	Jun 24	5.34	Aug 24	3.85	Sep 29	3.23
Dec 18	2.38	Mar 17	4.26	May 27	5.61	Jul 20	4.79				

405034073140401. Local number, S16881.1

LOCATION.—Lat 40°50′34″, long 73°14′04″, Hydrologic Unit 02030201, at east side of Old Willets Path, north of Bridge Branch Road, Commack. Owner: Town of Smithtown.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 47 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 58.0 ft above sea level. Measuring point: Top of 2-in steel casing, 0.34 ft below land-surface datum. PERIOD OF RECORD.—July 1958 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 33.05 ft above sea level, January 23, 1974; lowest measured, 29.07 ft above sea level, September 21, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 29	30.27	Jan 06	30.41	Mar 18	31.46	May 20	32.26	Jul 23	31.67	Sep 24	31.15
Dec 01	30.30	Jan 30	30.92	Apr 22	31.71	Jun 25	32.04	Aug 26	31.30		

405455073025802. Local number, S31734.1

LOCATION.—Lat 40°54′51″, long 73°02′57″, Hydrologic Unit 02030202, at west side of Jayne Boulevard, 0.7 mi south of Nesconset Road (State Route 347), easternmost well, Terryville. Owner: Suffolk County Water Authority.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 1,095 ft, screened 1,070 to 1,090 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 164.7 ft above sea level. Measuring point: Top of 2-in steel coupling welded to casing cap, 1.92 ft above land-surface datum.

PERIOD OF RECORD.—December 1970 to current year. Unpublished records from December 1970 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 44.52 ft above sea level, May 30, 1979; lowest measured, 36.58 ft above sea level, October 3, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 28	39.39	Jan 06	39.48	Mar 23	40.45	May 19	41.21	Jul 24	40.13	Aug 27	40.60
Nov 25	39.40	Jan 30	39.91	Apr 22	40.77	Jun 26	41.07				

405452073025701. Local number, S32895.1

LOCATION.—Lat 40°54′51″, long 73°02′57″, Hydrologic Unit 02030202, at west side of Jayne Boulevard, 0.7 mi south of Nesconset Road (State Route 347), westernmost well, Terryville. Owner: Suffolk County Water Authority.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 845 ft, screened 840 to 845 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 164.7 ft above sea level. Measuring point: Top of 4-in steel coupling, 2.49 ft above land-surface datum. PERIOD OF RECORD.—March 1970 to current year. Unpublished records from March 1970 to September 1975 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 46.54 ft above sea level, December 11, 1984; lowest measured, 37.73 ft above sea level, October 3, 1995.

Date	Water level	Date	Water level								
Oct 28 Nov 25		Jan 06 Jan 30		Mar 23 Apr 22	42.22 42.50	May 19 Jun 26		Jul 24 Aug 27	10.00	Sep 24	42.44

405040072414801. Local number, S34743.1

LOCATION.—Lat 40°50′40″, long 72°41′48″, Hydrologic Unit 02030202, at north side of dirt road, 120 ft east of Speonk Riverhead Road, 0.6 mi south of Sunrise Highway (State Route 27), northernmost well, Speonk. Owner: Suffolk County Water Authority.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, access pipe diameter 4 in., casing diameter 12 in., depth 1,226 ft, screened 1,077 to 1,117 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 64.0 ft above sea level. Measuring point: Top of 4-in steel coupling, 2.94 ft above land-surface datum. PERIOD OF RECORD.—March 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 22.24 ft above sea level, April 2, 1979; lowest measured, 16.18 ft above sea level, March 18, 1982.

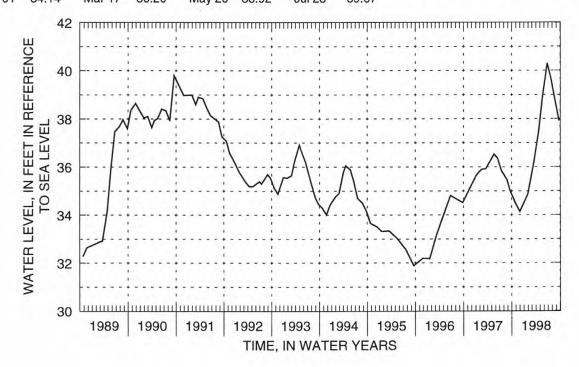
WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level											
Dec 02	19.10	Mar 16	18.84	May 28	20.51	Jul 27	21.58	Aug 26	21.56	Sep 25	21.26	
Dec 29	18.91	Apr 28	19.81	Jun 25	21.36							

404640073050201. Local number, S36144.1

LOCATION.—Lat 40°46′40″, long 73°05′02″, Hydrologic Unit 02030202, at east side of Lincoln Avenue, south of Veterans Memorial Highway (State Route 454), Bohemia. Owner: Town of Islip.

AQUIFER.—Upper glacial (water table).


WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 53 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 54.0 ft above sea level. Measuring point: Top of 2-in steel casing, 1.84 ft above land-surface datum. PERIOD OF RECORD.—October 1969 to current year. Unpublished records from October 1969 to September 1977 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 40.29 ft above sea level, June 25, 1998; lowest measured, 31.88 ft above sea level, December 15, 1981.

Date	Water level										
Oct 29	34.48	Jan 30	34.85	Apr 22	37.45	Jun 25	40.29	Aug 26	38.69	Sep 24	37.91
Dec 01	34 14	Mar 17	36.20	May 20	38 92	Jul 23	39.67				

405124073111501. Local number, S40843.1

LOCATION.—Lat 40°51′24″, long 73°11′15″, Hydrologic Unit 02030201, at intersection of Nissequogue River Road and North Country Road (State Route 25A), just north of Middle Country Road (State Route 25), on grass island, Smithtown. Owner: Town of Smithtown. AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Augered steel observation well, diameter 2 in., depth 44 ft, screened 41 to 44 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 66.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.01 ft below land-surface datum. PERIOD OF RECORD.—July 1971 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 37.93 ft above sea level, March 27, 1979; lowest measured, 33.84 ft above sea level, July 9, 1971.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level											
Oct 28	34.30	Jan 06	34.99	Mar 24	36.21	May 19	37.91	Jul 24	36.14	Sep 24	35.28	
Nov 25	34.80	Jan 30	35.92	Apr 22	37.02	Jun 26	37.31	Aug 27	35.48			

405230073212101. Local number, S46517.1

LOCATION.—Lat 40°52′30″, long 73°21′21″, Hydrologic Unit 02030201, at southeast corner of Stony Hollow Road and Maple Road, Huntington. Owner: Town of Huntington.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 66 ft, screened 63 to 66 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 123.5 ft above sea level. Measuring point: Top of 2-in steel casing, 0.03 ft above land-surface datum. PERIOD OF RECORD.—September 1979 to current year. Unpublished records from September 1979 to September 1982 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 69.61 ft above sea level, June 11, 1984; lowest measured, 66.87 ft above sea level, August 23, 1988.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level											
Oct 28	67.66	Jan 06	67.26	Mar 17	67.71	May 19	68.51	Jul 24	68.81	Sep 24	68.20	
Nov 25	67.39	Jan 30	67.43	Apr 22	68.24	Jun 26	68.89	Aug 27	68.49			

405139072432401. Local number, S46544.1

LOCATION.—Lat 40°51′39″, long 72°43′24″, Hydrologic Unit 02030202, at southwest corner of County Road 51 and service road entrance to recharge basin 33, Eastport. Owner: Suffolk County Department of Public Works.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 107 ft, screen assumed at bottom.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 102.9 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.19 ft below land-surface datum. PERIOD OF RECORD.—December 1972 to current year. Unpublished records from December 1972 to September 1976 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 31.28 ft above sea level, June 28, 1979; lowest measured, 23.59 ft above sea level, January 18, 1996.

Date	Water level										
Dec 02	26.75	Mar 17	26.78	May 28	27.88	Jul 27	29.76	Aug 26	30.05	Sep 25	30.07
Dec 29	27.48	Apr 28	27.29	Jun 25	28.86						

405604073064301. Local number, S47973.1

LOCATION.—Lat 40°56′04″, long 73°06′43″, Hydrologic Unit 02030201, at north side of State Route 25A, 189 ft west of Ridgeway Avenue, Setauket. Owner: Suffolk County Department of Health Services.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 90 ft, screened 78 to 88 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 94.0 ft above sea level. Measuring point: Top of 6-in steel flange, 2.43 ft below land-surface datum. PERIOD OF RECORD.—January 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 28.29 ft above sea level, June 26, 1998; lowest measured, 20.83 ft above sea level, March 5, 1980.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 28	24.27	Jan 06	24.13	Mar 23	25.57	Jun 26	28.29	Jul 24	27.95	Sep 24	26.81
Nov 25	24.23	Jan 30	24.45	Apr 22	26.38						

410149071583201. Local number, S48577.1

LOCATION.—Lat 41°01′49″, long 71°58′32″, Hydrologic Unit 02030202, at north side of Montauk Point State Parkway (State Route 27), 19 ft east of entrance to East Hampton Disposal and Recycling Center, Montauk. Owner: Suffolk County Department of Health Services.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 189 ft, screened 173 to 183 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 168.1 ft above sea level. Measuring point: Top of 6-in steel flange, 1.61 ft below land-surface datum. PERIOD OF RECORD.—January 1974 to current year. Unpublished records from January 1974 to September 1983 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.74 ft above sea level, June 25, 1998; lowest measured, 0.54 ft below sea level, May 5, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 30	3.88	Dec 29	4.14	Apr 28	4.24	Jun 25	4.74	Aug 26	4.35	Sep 25	4.57
Dec 02	3.73	Mar 17	4.09	May 28	4.49	Jul 27	4.57			A	

410316071535501. Local number, S48579.1

LOCATION.—Lat 41°03′16″, long 71°53′54″, Hydrologic Unit 02030202, at north side of Montauk Point State Parkway (State Route 27), adjacent to intersection with Old Montauk Highway, Montauk. Owner: Suffolk County Department of Health Services.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 66 ft, screened 53 to 56 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 38.6 ft above sea level. Measuring point: Top of 6-in steel flange, 1.55 ft below land-surface datum. PERIOD OF RECORD.—January 1974 to current year. Unpublished records from January 1974 to September 1983 are available in files of

the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.30 ft above sea level, May 28, 1998; lowest measured, 2.46 ft above sea level. December 22, 1976.

Date	Water level										
Oct 30		Dec 29	3.46	Apr 28	4.00	Jun 25	4.07	Aug 26	3.53	Sep 25	3.50
Dec 02	3.31	Mar 17	3.66	May 28	4 30	Jul 27	3 77				

405309073125401. Local number, S50507.1

LOCATION.—Lat 40°53′09″, long 73°12′54″, Hydrologic Unit 02030201, at east side of Landing Avenue, 1.5 mi north of Spruce Street, San Remo. Owner: United States Geological Survey.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 80 ft, screened 76 to 80 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 90.3 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.01 ft above land-surface datum. PERIOD OF RECORD.—December 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 46.23 ft above sea level, September 19, 1984; lowest measured, 41.51 ft above sea level, December 14, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 28	44.48	Jan 06	43.92	Mar 17	44.12	May 19	45.13	Aug 27	46.09	Sep 24	45.94
Nov 25	44.29	Jan 30	43.88	Apr 22	44.67	Jun 26	45.96				

410104072303301. Local number, S53324.1

LOCATION.—Lat 41°01′04″, long 72°30′33″, Hydrologic Unit 02030202, at east side of Alvahs Lane, 200 ft north of Middle Road (State Route 27), Southold. Owner: Suffolk County Department of Health Services.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 6 in., depth 62 ft, screened 49 to 59 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 42.0 ft above sea level. Measuring point: Top of 6-in steel flange, 0.51 ft above land-surface datum. PERIOD OF RECORD.—October 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 10.32 ft above sea level, September 28, 1989; lowest measured, 3.52 ft above sea level, November 20, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Nov 24	5.30	Jan 22	4.98	Apr 22	7.92	Jun 24	10.19	Aug 31	9.29	Sep 29	8.52
Dec 18	5.10	Mar 17	6.16	May 27	9.78	Jul 20	10.10				

404642072520001. Local number, S54882.1

LOCATION.—Lat 40°46′42″, long 72°52′00″, Hydrologic Unit 02030202, at grassy divide between Margin Drive West and William Floyd Parkway, 156 ft south of Ranch Avenue, Center Moriches. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 34 ft, screened 30 to 34 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 33.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.43 ft below land-surface datum. PERIOD OF RECORD.—July 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 13.80 ft above sea level, June 25, 1998; lowest measured, 6.48 ft above sea level, December 15, 1981.

Date	Water level											
Dec 02	7.90	Mar 17	10.28	May 28	12.91	Jul 27	13.04	Aug 26	12.21	Sep 25	11.41	
Dec 29	7.82	Apr 28	11.65	Jun 25	13.80							

405326072275601. Local number, S57366.1

LOCATION.—Lat 40°53′26″, long 72°27′56″, Hydrologic Unit 02030202, at west side of Hill Station Road, 172 ft south of railroad trestle, Southampton. Owner: Town of Southampton.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Augered PVC observation well, diameter 2 in., depth 64 ft, screened 60 to 64 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 55.4 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.04 ft below land-surface datum. PERIOD OF RECORD.—November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 5.84 ft above sea level, June 25, 1998; lowest measured, 3.19 ft above sea level, March 13, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 30	3.97	Dec 29	4.02	Apr 28	5.07	Jun 25	5.84	Aug 26	5.10	Sep 25	4.93
Dec 02	2.95	Mar 20	4.60	May 28	5.66	Jul 27	5.43				

410052072134001. Local number, S57371.1

LOCATION.—Lat 41°00′55″, long 72°13′42″, Hydrologic Unit 02030202, at west side of Old Northwest Road, 0.9 mi south of Alewive Brook Road, Grassy Hollow. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Augered PVC observation well, diameter 2 in., depth 62 ft, screened 58 to 62 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 24.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.30 ft below land-surface datum. PERIOD OF RECORD.—November 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 10.52 ft above sea level, May 28, 1998; lowest measured, 5.80 ft above sea level. December 17, 1981.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 30	7.16	Dec 29	6.99	Apr 28	9.66	Jun 25	10.33	Aug 26	9.05	Sep 25	8.58
Dec 02	7.05	Mar 18	8.67	May 28	10.52	Jul 27	9.69				

405927072041901. Local number, S57372.1

LOCATION.—Lat 40°59′27″, long 72°04′19″, Hydrologic Unit 02030202, at south side of Montauk Highway (State Route 27), 2.4 mi east of Bluff Road, Napeague State Park. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 12 ft, screened 8 to 12 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 8.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.03 ft above land-surface datum. PERIOD OF RECORD.—January 1976 to current year. Unpublished records from January 1976 to September 1983 are available in files of the Long Island Subdistrict Office.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.23 ft above sea level, July 18, 1989; lowest measured, 2.16 ft above sea level, July 22, 1988.

Date	Water level										
Oct 30	3.04	Dec 29	3.61	Apr 28	3.79	Jun 25	3.48	Aug 26	2.90	Sep 25	3.18
Dec 02	3.23	Mar 18	3.78	May 28	3 47	Jul 27	2.81				

415843072213401. Local number, S62402.1

LOCATION.—Lat 40°58′58″, long 72°21′36″, Hydrologic Unit 02030202, at south end of Club Lane, 587 ft east of Wildwood Road, Noyack. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 84 ft, screened 80 to 84 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 99.3 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.22 ft below land-surface datum. PERIOD OF RECORD.—May 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 39.43 ft above sea level, June 25, 1998; lowest measured, 32.58 ft above sea level, December 5, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

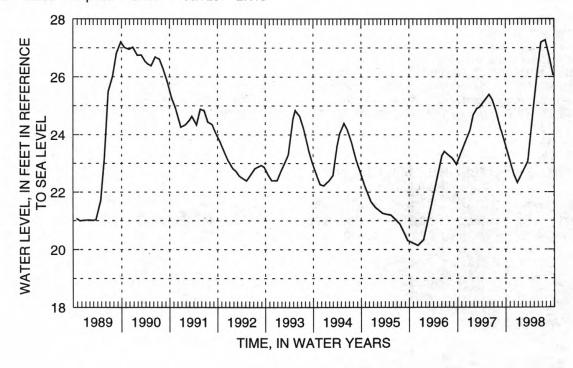
Date	Water level	Date	Water level	Date	Water level	Date	Water . level	Date	Water level	Date	Water level
Oct 30	35.54	Dec 29	34.93	Apr 28	37.30	Jun 25	39.43	Aug 26	38.82	Sep 25	38.39
Dec 02	35.17	Mar 20	36.18	May 28	38.89	Jul 27	39.25				

404936072483501. Local number, S65604.1

LOCATION.—Lat 40°49′36″, long 72°48′35″, Hydrologic Unit 02030202, at northwest corner of Sunrise Highway Service Road and Wading River Road, Manorville. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 56 ft, screened 51 to 56 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 64.5 ft above sea level. Measuring point: Top of 2-in PVC coupling, 0.32 ft below land-surface datum. REMARKS.—Replaces well S6439.1 in October 1978, which has a period of record from January 1949 to October 1978.

PERIOD OF RECORD.—October 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 28.14 ft above sea level, July 23, 1984; lowest measured, 20.14 ft above sea level, December 6, 1995.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	
Dec 02 Dec 29	22.62 22.33	Mar 18 Apr 28		May 28 Jun 25		Jul 27	27.27	Aug 26	26.71	Sep 25	26.05	

403935073235001. Local number, S66136.1

LOCATION.—Lat 40°39′37″, long 73°23′50″, Hydrologic Unit 02030202, at Tanner Park, south side of Kerrigan Road across from Harding Road, easternmost well, Copiague. Owner: Suffolk County Department of Health Services.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled PVC observation well, casing diameter 6 in., screen diameter 4 in., depth 134 ft, screened 124 to 134 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 5.0 ft above sea level. Measuring point: Top of 6-in PVC casing, 2.43 ft above land-surface datum.

REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—October 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.79 ft above sea level, March 4, 1991; lowest measured, 3.31 ft above sea level, July 31, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	Water	ater	Water		Water		Water		Water		Water
Date	level	Date	level	Date	level	Date	level	Date	level	Date	level
Dec 02	3.77	Mar 17	4.10								

403935073235002. Local number, S67537.1

LOCATION.—Lat 40°39′37″, long 73°23′50″, Hydrologic Unit 02030202, at Tanner Park, south side of Kerrigan Road, across from Harding Road, eastern middle well, Copiague. Owner: Suffolk County Department of Health Services.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 61 ft, screened 56 to 61 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 7.8 ft above sea level. Measuring point: Top of 2-in PVC casing, 0.28 ft below land-surface datum.

REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—December 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 2.48 ft above sea level, August 21, 1990; lowest measured, 1.14 ft above sea level, March 11, 1996.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	Water	Vater		Water		Water		Water		Water		
Date	level	Date	level	Date	level	Date	level	Date	level	Date	level	
Dec 02	1.66	Mar 17	1.62									

405529073272901. Local number, S69781.1

LOCATION.—Lat 40°55′29″, long 73°27′29″, Hydrologic Unit 02030201, at Caumsett State Park, 1.0 mi northeast of parking field, on park service road, Lloyd Neck. Owner: Suffolk County Department of Health Services.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 155 ft, screened 139 to 149 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 109.0 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.66 ft below land-surface datum. PERIOD OF RECORD.—April 1986 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 9.88 ft above sea level, June 26, 1998; lowest measured, 6.11 ft above sea level, January 18, 1996.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 29	7.87	Jan 6	7.40	Mar 17	7.75	May 19	9.13	Jul 24	9.75	Sep 24	9.04
Nov 25	7.27	Jan30	7.41	Apr 22	8.46	Jun 26	9.88	Aug 27	9.34		

405858072213501. Local number, S73998.1

LOCATION.—Lat 40°58′58″, long 72°21′35″, Hydrologic Unit 02030202, at south end of Club Lane, 624 ft west of Wildwood Road, near Highway Department entrance, southernmost well, Noyack. Owner: Suffolk County Department of Health Services.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 1 1/4 in., depth 803 ft, screened 795 to 800 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 99.7 ft above sea level. Measuring point: Top of 1 1/4-in steel casing, 0.20 ft below land-surface datum. PERIOD OF RECORD.—April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.73 ft above sea level, August 30, 1989; lowest measured, 4.00 ft above sea level, December 5, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 30	5.66	Dec 29	5.94	Apr 28	6.13	Jun 25	6.54	Aug 26	6.28	Sep 25	6.37
Dec 02	5.77	Mar 20	6.12	May 28	6.29	Jul 27	6.27				

405858072213602. Local number, S73999.1

LOCATION.—Lat 40°58′58″, long 72°21′35″, Hydrologic Unit 02030202, at south end of Club Lane, 624 ft west of Wildwood Road, near Highway Department entrance, northernmost well, Noyack. Owner: Suffolk County Department of Health Services.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 3 in., depth 597 ft, screened 584 to 594 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 99.7 ft above sea level. Measuring point: Top of 3-in steel casing, 0.35 ft below land-surface datum. PERIOD OF RECORD.—April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.66 ft above sea level, June 25, 1998; lowest measured, 8.73 ft above sea level, December 18, 1990.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 30 Dec 02		Dec 29 Mar 20		Apr 28 May 28			11.66 11.31	Aug 26	11.42	Sep 25	11.51

405322072454101. Local number, S74292.1

LOCATION.—Lat 40°53′23″, long 72°45′43″, Hydrologic Unit 02030202, at south side of Mill Road, opposite Primrose Path, Brookhaven. Owner: United States Geological Survey.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 2 in., depth 56 ft, screened 52 to 56 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 73.0 ft above sea level. Measuring point: Top of 2-in PVC coupling, 1.20 ft above land-surface datum. PERIOD OF RECORD.—May 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 42.22 ft above sea level, June 21, 1984; lowest measured, 33.59 ft above sea level, November 30, 1995.

Date	Water level										
Nov 24	36.57	Dec 18	36.18	Mar 17	36.87	Jun 24	40.40	Aug 31	40.26	Sep 29	38.89
Dec 08	36.32	Jan 22	35.75	Apr 22	38.35	Jul 20	40.76				

404433073244904. Local number, S74587.1

LOCATION.—Lat 40°44′43″, long 73°24′49″, Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, middle well, Pinelawn. Owner: Suffolk County Department of Health Services.

AQUIFER.-Magothy (confined).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 196 ft, screened 188 to 193 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 86.0 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.22 ft below land-surface datum. PERIOD OF RECORD.—April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 61.94 ft above sea level, June 5, 1984; lowest measured, 49.36 ft above sea level, September 19, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 29 Dec 02	52.14 52.05	Jan 06 Mar 16		Apr 22 May 19			58.58 57.74	Aug 27	56.50	Sep 24	55.94

404433073244905. Local number, S75033.1

LOCATION.—Lat 40°44′33″, long 73°24′49″, Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, easternmost well, Pinelawn. Owner: Suffolk County Department of Health Services. AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 62 ft, screened 47 to 52 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 86.5 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.51 ft below land-surface datum. PERIOD OF RECORD.—April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 62.19 ft above sea level, June 5, 1984; lowest measured, 49.46 ft above sea level, September 19, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 29	52.25	Jan 06	52.20	Apr 22	56.65	Jun 25	58.74	Aug 27	56.66	Sep 24	56.07
Dec 02	52.13	Mar 16	56.13	May 19	58.14	Jul 24	57.97				

404433073244902. Local number, S75034.2

LOCATION.—Lat 40°44′33″, long 73°24′49″, Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, northern middle well, Pinelawn. Owner: Suffolk County Department of Health Services. AOUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 698 ft, screened 688 to 693 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 86.5 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.26 ft below land-surface datum. PERIOD OF RECORD.—April 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 59.57 ft above sea level, June 9, 1984; lowest measured, 47.86 ft above sea level, September 19, 1995.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Oct 29 Dec 02	50.61 50.85	Jan 06 Mar 16		Apr 22 May 19			56.61 56.32	Aug 27	54.35	Sep 24	54.09

404859073194002. Local number, S75454.2

LOCATION.—Lat 40°48′59″, long 73°19′40″, Hydrologic Unit 02030202, at Dix Hills Park and Golf Course, 180 ft west of DeForest Road, 154 ft north of parking lot, northernmost well, Dix Hills. Owner: Suffolk County Department of Health Services.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 740 ft, screened 730 to 735 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 230.7 ft above sea level. Measuring point: Top of 4-in steel casing, 0.14 ft below land-surface datum. PERIOD OF RECORD.—March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 74.05 ft above sea level, March 21, 1991; lowest measured, 63.30 ft above sea level, June 27, 1996.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level											
Oct 29	66.00	Jan 06	66.50	Mar 17	66.94	May 19	67.84	Jul 24	67.95	Sep 24	68.42	
Dec 01	66.49	Jan 30	66.57	Apr 22	67.33	Jun 25	67.79	Aug 27	68.00			

404859073194003. Local number, S75455.1

LOCATION.—Lat 40°48′59″, long 73°19′40″, Hydrologic Unit 02030202, at Dix Hills Park and Golf Course, 180 ft west of DeForest Road, 144 ft north of parking lot, middle well, Dix Hills. Owner: Suffolk County Department of Health Services.

AOUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 508 ft, screened 500 to 505 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 230.2 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.32 ft below land-surface datum. PERIOD OF RECORD.—March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 74.45 ft above sea level, March 21, 1991; lowest measured, 63.62 ft above sea level, March 18 and June 27, 1996.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 29	66.33	Jan 06	66.82	Mar 17	67.24	May 19	68.10	Jul 24	68.39	Sep 24	68.83
Dec 01	66.79	Jan 30	66.90	Apr 22	67.64	Jun 25	68.14	Aug 27	68.43		

404859073194004. Local number, S75456.1

LOCATION.—Lat 40°48′59″, long 73°19′40″, Hydrologic Unit 02030202, at Dix Hills Park and Golf Course, 180 ft west of DeForest Road, 134 ft north of parking lot, southernmost well, Dix Hills. Owner: Suffolk County Department of Health Services.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 203 ft, screened 195 to 200 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 230.5 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.98 ft below land-surface datum. PERIOD OF RECORD.—March 1984 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 78.96 ft above sea level, November 20, 1991; lowest measured, 69.86 ft above sea level, March 18, 1996.

Date	Water level										
Oct 29								Jul 24		Sep 24	73.85
Dec 01	72.54	Jan 30	72.60	Apr 22	72.86	Jun 25	73.02	Aug 27	73.59		

405317072331902. Local number, S77435.1

LOCATION.—Lat 40°53′17″, long 72°33′18″, Hydrologic Unit 02030202, at south side of dirt road, 145 ft east of Riverhead-Hampton Bays Road (State Route 24), 195 ft south of Bellows Pond Road, easternmost well, Rampasture. Owner: Suffolk County Department of Health Services.

AQUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 27 ft, screened 25 to 27 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 18.8 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.36 ft below land-surface datum. PERIOD OF RECORD.—March 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 10.50 ft above sea level, June 25, 1998; lowest measured, 6.77 ft above sea level, October 28, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 30	7.90	Dec 29	8.38	Apr 28	9.89	Jun 25	10.50	Aug 26	9.31	Sep 25	8.97
Dec 02	8.22	Mar 16	9.80	May 28	10.40	Jul 27	9.70				

405317072331903. Local number, S77436.2

LOCATION.—Lat 40°53′17″, long 72°33′18″, Hydrologic Unit 02030202, at south side of dirt road, 138 ft east of Riverhead-Hampton Bays Road (State Route 24), 195 ft south of Bellows Pond Road, westernmost well, Rampasture. Owner: Suffolk County Department of Health Services.

AQUIFER.-Lloyd (confined).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 508 ft, screened 500 to 505 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 18.7 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.41 ft below land-surface datum. PERIOD OF RECORD.—March 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 10.76 ft above sea level, June 25, 1998; lowest measured, 6.94 ft above sea level, September 22, 1986.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level										
Oct 30	8.02	Dec 29	8.26	Apr 28	9.84	Jun 25	10.76	Aug 26	9.60	Sep 25	9.25
Dec 02	8.06	Mar 16	9.30	May 28	10.64	Jul 27	10.09	1.50			

403935073235003. Local number, S79407.1

LOCATION.—Lat 40°39′37″, long 73°23′50″, Hydrologic Unit 02030202, at Tanner Park, south side of Kerrigan Road, across from Harding Road, western middle well, Copiague. Owner: Suffolk County Department of Health Services.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 1,219 ft, screened 1,192 to 1,214 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 7.8 ft above sea level. Measuring point: Top of 4-in removable PVC extension, 10.39 ft above land-surface datum.

REMARKS.—Water level affected by tidal fluctuation. Flowing well, measurement taken from top of removable calibrated PVC extension. PERIOD OF RECORD.—December 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 18.29 ft above sea level, February 24, 1992, and April 7, 1992; lowest measured, 14.07 ft above sea level, September 30, 1988.

	Water		Water		Water		Water		Water		Water
Date	level	Date	level	Date	level	Date	level	Date	level	Date	level
Dec 02	17.36										

403935073235004. Local number, S79408.1

LOCATION.—Lat 40°39′37″, long 73°23′50″, Hydrologic Unit 02030202, at Tanner Park, south side of Kerrigan Road, across from Harding Road, westernmost well, Copiague. Owner: Suffolk County Department of Health Services.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 4 in., depth 680 ft, screened 670 to 675 ft.

INSTRUMENTATION.—Measurement with clear plastic tube extension and stadia rod by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 7.8 ft above sea level. Measuring point: Top of 4-in steel coupling, 0.58 ft below land-surface datum. REMARKS.—Water level affected by tidal fluctuation.

PERIOD OF RECORD.—December 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 7.22 ft above sea level, March 4, 1991; lowest measured, 5.12 ft above sea level, July 31, 1955.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

	Water		Water		Water		Water		Water		Water	
Date	level	Date	level	Date	level	Date	level	Date	level	Date	level	
Dec 02	6.13	Mar 17	6.87									

405604073064302. Local number, S81831.1

LOCATION.—Lat 40°56′04″, long 73°06′43″, Hydrologic Unit 02030201, at north side of North Country Road (State Route 25A), 199 ft west of Ridgeway Avenue, East Setauket. Owner: Suffolk County Department of Environmental Conservation.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 470 ft, screened 462 to 467 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 94.0 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.96 ft below land-surface datum. PERIOD OF RECORD.—March 1986 to current year.

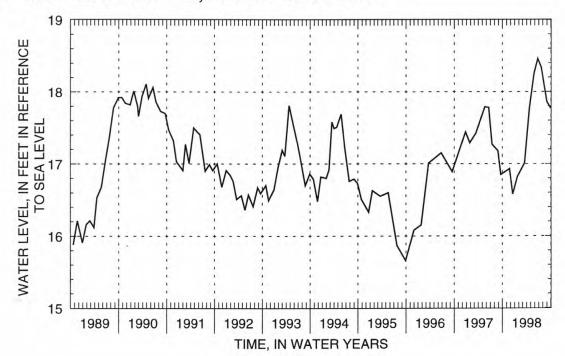
EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 24.03 ft above sea level, February 13, 1991; lowest measured, 18.73 ft above sea level, October 3, 1995.

Date	Water level										
Oct 28	20.44	Jan 06	20.58	Mar 23	21.72	Jun 26	21.68	Jul 24	21.51	Sep 24	22.26
Nov 25	20.79	Jan 30	21.18								

405536072375301. Local number, S82938.1

LOCATION.—Lat 40°55′36″, long 72°37′53″, Hydrologic Unit 02030202, at Indian Island County Park, north side of main entrance road, 107 ft east of rest room facilities, Riverhead. Owner: Suffolk County Department of Health Services.

AQUIFER.—Lloyd (confined).


WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 1,022 ft, screened 1,010 to 1,022 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 21.0 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.14 ft below land-surface datum. PERIOD OF RECORD.—June 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 18.46 ft above sea level, June 24, 1998; lowest measured, 15.55 ft above sea level, October 23, 1987.

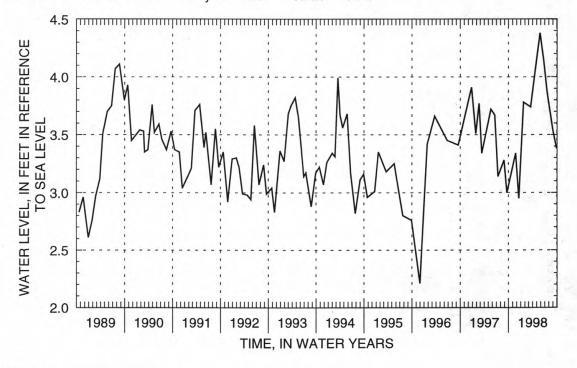
Date	Water level										
Nov 24	16.93	Jan 22	16.82	Apr 22	17.77	Jun 24	18.46	Aug 31	17.86	Sep 29	17.77
Dec 18	16.58	Mar 17	17.01	May 27	18.26	Jul 20	18.34				

405536072375302. Local number, S82939.1

LOCATION.—Lat 40°55′36″, long 72°37′53″, Hydrologic Unit 02030202, at Indian Island County Park, north side of main entrance road, 107 ft east of rest room facilities, Riverhead. Owner: Suffolk County Department of Health Services.

AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 162 ft, screened 155 to 162 ft.


INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 21.0 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.03 ft below land-surface datum. PERIOD OF RECORD.—June 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 4.38 ft above sea level, May 27, 1998; lowest measured, 2.21 ft above sea level, November 30, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level											
Nov 24	3.34	Jan 22	3.78	Apr 22	4.07	Jun 24	4.14	Aug 31	3.54	Sep 29	3.38	
Dec 18	2.95	Mar 17	3.74	May 27	4.38	Jul 20	3.86					

404846072533204. Local number, S84806.1

LOCATION.—Lat 40°48′46″, long 72°53′32″, Hydrologic Unit 02030202, at Southhaven County Park, north side of dirt road leading from picnic area to Carmans River, 227 ft west of river, easternmost well, Yaphank. Owner: Suffolk County Department of Health Services. AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled PVC to steel observation well, diameter 8 in. from surface to 75 ft, and 2 in. from 75 ft to bottom, depth 849 ft, screened 839 to 849 ft.

INSTRUMENTATION.—Measurement with clear plastic tube extension and stadia rod by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 17.6 ft above sea level. Measuring point: Top of steel meter box rim, 0.01 ft above land-surface datum. PERIOD OF RECORD.—March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 26.50 ft above sea level, June 25, 1998; lowest measured, 21.31 ft above sea level, September 19, 1995.

Date	Water level	Date	Water level	Date	Water	Date	Water level	Date	Water level	Date	Water level	
		Apr 28		Jun 25	26.50	Jul 27	25.87	Aug 27	25.47	Sep 25	25.51	
Dec 29	22.45	May 28	25.73									

404846072533201. Local number, S84807.1

LOCATION.—Lat 40°48′46″, long 72°53′32″, Hydrologic Unit 02030202, at Southhaven County Park, north side of dirt road leading from picnic area to Carmans River, 253 ft west of river, westernmost well, Yaphank. Owner: Suffolk County Department of Health Services. AQUIFER.—Magothy (confined).

WELL CHARACTERISTICS.—Drilled PVC to steel observation well, diameter 8 in. from surface to 94 ft, and 4 in. from 94 ft to bottom, depth 556 ft, screened 545 to 556 ft.

INSTRUMENTATION.—Measurement with clear plastic tube extension and stadia rod by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 17.7 ft above sea level. Measuring point: Top of steel meter box rim, 0.03 ft below land-surface datum. PERIOD OF RECORD.—March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 23.49 ft above sea level, June 25, 1998; lowest measured, 19.03 ft above sea level, September 19, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	
Dec 02 Dec 29		Apr 28 May 28		Jun 25	23.49	Jul 27	23.19	Aug 27	23.09	Sep 25	22.77	

404846072533203. Local number, S84808.1

LOCATION.—Lat 40°48′46″, long 72°53′32″, Hydrologic Unit 02030202, at Southhaven County Park, north side of dirt road leading from picnic area to Carmans River, 240 ft west of river, eastern middle well, Yaphank. Owner: Suffolk County Department of Health Services. AOUIFER.—Magothy (water table).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 109 ft, screened 101 to 106 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 17.5 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.21 ft above land-surface datum. PERIOD OF RECORD.—March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 11.94 ft above sea level, June 25, 1998; lowest measured, 10.26 ft above sea level, August 23, 1995.

WATER LEVEL, IN FEET IN REFERENCE TO SEA LEVEL, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	
Dec 02	10.55	Apr 28	11.58	Jun 25	11.94	Jul 27	11.43	Aug 27	11.23	Sep 25	11.05	
Dec 29	10.69	May 28	11.85					- C C - C				

404846072533202. Local number, S85712.1

LOCATION.—Lat 40°48′46″, long 72°53′32″, Hydrologic Unit 02030202, at Southhaven County Park, north side of dirt road leading from picnic area to Carmans River, 246 ft west of river, western middle well, Yaphank. Owner: Suffolk County Department of Health Services.

AOUIFER.—Upper glacial (water table).

WELL CHARACTERISTICS.—Drilled steel observation well, diameter 2 in., depth 22 ft, screened 21 to 22 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 17.5 ft above sea level. Measuring point: Top of 2-in steel coupling, 0.52 ft below land-surface datum. PERIOD OF RECORD.—March 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 12.19 ft above sea level, June 9, 1988; lowest measured, 10.15 ft above sea level, August 23, 1995.

Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level	Date	Water level
Dec 02 Dec 29		Apr 28 May 28		Jun 25	11.75	Jul 27	11.28	Aug 27	11.07	Sep 25	10.93

404433073244906. Local number, S87041.1

LOCATION.—Lat 40°44′33″, long 73°24′49″, Hydrologic Unit 02030202, at northwest corner of New Highway and Conklin Street, north of Long Island Railroad tracks, northernmost well, Pinelawn. Owner: Suffolk County Department of Health Services.

AQUIFER.—Lloyd (confined).

WELL CHARACTERISTICS.—Drilled PVC observation well, diameter 4 in., depth 983 ft, screened 968 to 978 ft.

INSTRUMENTATION.—Measurement with chalked tape by U.S. Geological Survey personnel.

DATUM.—Land-surface datum is 86.0 ft above sea level. Measuring point: Top of 4-in PVC coupling, 0.28 ft above land-surface datum. PERIOD OF RECORD.—June 1987 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 28.63 ft above sea level, March 20, 1991; lowest measured, 22.84 ft above sea level, August 22, 1988.

Date	Water level											
Oct 29	25.48	Jan 06	26.16	Apr 22	27.23	Jun 25	27.23	Aug 27	25.81	Sep 24	25.65	
Dec 02	26.01	Mar 16	26.97	May 19	27.49	Jul 24	26.82					

GROUND-WATER LEVELS: KINGS COUNTY SECONDARY WELLS

			3.	ECONDARI	WELLS					
Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	Altitude of land surface (ft, msl)	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
404057073583701	K19.1	404058		112JMCO	1954	46.9			10-29-1997	8.39
404007070000701	10.1	404000	0700040	112010100	1334	40.5			11-26-1997	8.48
									12-29-1997	8.33
									01-26-1998	8.27
									02-26-1998	8.49
									03-25-1998	8.49
									04-29-1998	8.67
									05-28-1998	8.88
403451073585601	K2859.1	403451	0735856	211LLVD	1981	8.0	474	500	03-24-1998	6.22
403612073573208	K3159.1	403612		112GLCLU	1970	20.0	32	35	10-29-1997	4.40
100012010010200	1.0100.1	100012	0100102	TIEGEOLO	1070	20.0	OL.	00	11-26-1997	4.42
									12-29-1997	4.36
									01-26-1998	4.49
									02-26-1998	4.68
									03-24-1998	5.36
									04-29-1998	5.02
									05-28-1998	5.13
									07-28-1998	4.84
									09-01-1998	4.46
									09-29-1998	4.28
403712074001608	K3248.1	403712	0740016	112GLCLU	1980	40.4	42	45	10-29-1997	5.18
									11-26-1997	5.25
									12-29-1997	5.11
									01-26-1998	5.25
									02-26-1998	5.51
									03-24-1998	5.68
									04-29-1998	5.62
decomposition and			12220122		12.2	11			05-28-1998	5.87
403442073575401	K3250.1	403443	0735755	112GLCLU	1980	9.2	21	24	10-29-1997	1.89
									11-26-1997	1.82
									12-29-1997	1.98
									01-26-1998 02-26-1998	2.39
									03-24-1998	2.15
									04-29-1998	2.03
									05-28-1998	2.03
									07-30-1998	1.67
									09-01-1998	1.69
									09-30-1998	1.59
403827073535201	K3255.1	403827	0735352	112GLCLU	1980	16.8	21	24	07-28-1998	4.43
			20.000000						09-01-1998	4.30
									09-29-1998	4.20
403949073532108	K3256.1	403949	0735321	112GLCLU	1980	27.0	26	29	07-28-1998	6.48
									09-01-1998	6.30
									09-29-1998	6.16
404017073544501	K3257.1	404017	0735445	112GLCLU	1980	49.0	47	50	07-28-1998	12.27
									09-01-1998	11.98
									09-29-1998	11.77
404325073563508	K3260.1	404325	0735635	112GLCLU	1980	28.7	20	23	10-29-1997	10.78
									11-26-1997	10.69
									12-29-1997	11.32
									01-26-1998	10.65
									02-26-1998	11.94
									03-24-1998	12.86
									04-29-1998	12.48
									05-28-1998	13.04
									07-28-1998 09-01-1998	12.61 12.13
									09-01-1998	11.65
									03-23-1330	11.00

GROUND-WATER LEVELS: KINGS COUNTY—Continued SECONDARY WELLS

			0.	LCONDAKI	WELLO	Altitudo	Screen	interval		
Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	of land surface (ft, msl)	(feet	below berrace) Bottom	Date	Water level (ft, msl)
404025073515101	K3271.1	404025		112GLCLU	1981	22.4	31	34	10-29-1997	6.24
101020070010101	11027 111	101020	0700101	HEGEOLO	1001	22.7	01	04	11-25-1997	6.20
									12-29-1997	6.02
									01-27-1998	6.13
									02-25-1998	6.20
									03-26-1998	6.08
									04-29-1998	6.39
									07-28-1998	6.23
									09-01-1998	6.02
									09-29-1998	5.94
403817073580101	K3273.1	403817	0735801	112GLCLU	1981	33.5	36	39	10-29-1997	7.63
			0.00001	···LGLGLG	1001	00.0			11-26-1997	7.57
									12-29-1997	7.38
									01-26-1998	7.55
									02-26-1998	7.79
									03-24-1998	8.11
									04-29-1998	8.33
									05-28-1998	8.69
									07-28-1998	8.34
									09-29-1998	7.86
404037073584001	K3301.1	404036	0735840	112GLCLU	1984	60.6	65	70	11-05-1997	16.21
									11-26-1997	16.74
									12-17-1997	16.36
									01-29-1998	16.33
									03-25-1998	15.66
									04-29-1998	16.42
									05-20-1998	17.34
									06-10-1998	17.38
									07-28-1998	17.91
									09-01-1998	17.65
									09-29-1998	17.31
403719073573301	K3405.1	403719	0735733	112GLCLU	1995	33.5	204	214	11-06-1997	5.14
									11-26-1997	5.23
									12-17-1997	5.11
									01-29-1998	5.40
									03-24-1998	5.82
									04-29-1998	5.85
									05-20-1998	6.08
									06-10-1998	5.93
									07-28-1998	5.51
									09-01-1998	5.18
									09-29-1998	5.06
403806074021901	K3406.1	403806	0740219	112JMCO	1995	14.4	135	145	11-06-1997	3.73
									11-26-1997	3.79
									12-17-1997	3.19
									01-29-1998	3.07
									03-26-1998	3.64
								1973	04-29-1998	3.96
									05-20-1998	3.88
									06-10-1998	3.54
									07-30-1998	3.81
									09-01-1998	3.59 3.58
									09-30-1998	3.30

SECONDARY WELLS

			S	ECONDARY	WELLS					
Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	of land	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
403520073575701	K3407.1	403520	0735757	112JMCO	1995	8.5	385	405	11-06-1997	3.10
		137777	4.44.45		,,,,,	0.0	000	100	11-26-1997	3.11
									12-17-1997	2.98
									01-29-1998	3.45
									03-26-1998	3.36
									04-29-1998	3.34
									05-20-1998	3.48
									06-10-1998	3.22
									07-30-1998	2.91
									09-01-1998	2.82
									09-30-1998	2.77
404039073555002	K3410.1	404039	0735550	211LLYD	1995	61.8	330	350	11-05-1997	6.39
		101000	0,00000	LITELID	1000	01.0	000	000	11-26-1997	6.46
									12-17-1997	6.60
									01-29-1998	6.47
									03-24-1998	6.58
									04-28-1998	6.39
									05-20-1998	6.66
									06-10-1998	6.32
									07-28-1998	6.32
									09-01-1998	5.86
									09-29-1998	5.86
403431073581101	K3414.1	403431	0735811	211MGTY	1995	7.1	390		10-29-1997	1.17
100 10 10 10 100 110 1	110 11111	100101	0700011	ZIIWaii	1000	7.1	000	410	11-26-1997	1.01
									12-29-1997	1.64
									01-26-1998	1.37
									02-26-1998	2.11
									03-24-1998	2.39
									04-29-1998	2.38
									05-28-1998	2.52
									07-30-1998	2.08
									09-01-1998	1.66
									09-30-1998	2.05
403840073592101	K3424.1	403840	0735921	112GLCLU	1995	75.4	70		10-29-1997	8.53
									11-26-1997	8.49
									12-29-1997	8.35
									01-26-1998	8.28
									02-26-1998	8.46
									03-24-1998	8.64
									04-29-1998	8.88
									05-28-1998	9.20
									07-28-1998	9.32
									09-01-1998	9.05
									09-29-1998	8.87
404039073555001	K3425.1	404039	0735550	112GLCLU	1993	61.9	70		11-05-1997	11.60
			Color Manager		200	The of St	9.3		11-26-1997	11.67
									12-17-1997	11.58
									01-29-1998	11.45
									03-24-1998	11.49
									04-29-1998	11.74
									05-20-1998	11.92
									06-10-1998	12.11
									07-28-1998	12.40
									09-01-1998	12.25
									09-29-1998	12.09

GROUND-WATER LEVELS: NASSAU COUNTY SECONDARY WELLS

Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	of land	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
403748073422603	N1115.3	403748		112GLCLU	1990	22.0			03-20-1998	13.02
405048073404303	N1118.21	405048		112GLCLU	1961	147.0	73	82	03-27-1998	78.88
404835073404004	N1120.4	404835		112GLCLU	1976	116.0	95	100	10-22-1997	45.77
10 100007 0 10 100 1	111120.1	10 1000	0701010	TIZGLOLO	1070	110.0	00	100	11-24-1997	45.60
									12-18-1997	45.48
									01-21-1998	45.38
									02-23-1998	45.67
									03-26-1998	45.76
									04-21-1998	45.99
									05-21-1998	46.43
									06-23-1998	46.74
									07-21-1998	47.04
									08-26-1998	46.97
									09-23-1998	47.75
403942073371301	N1147.2	403942	0733713	112GLCLU	1966	27.0	21	24	03-23-1998	15.86
405318073375501	N1149.1	405318	0733755	112PGFG	1941	89.0	77	82	10-28-1997	41.56
									11-25-1997	40.88
									12-15-1997	40.85
									01-15-1998	40.59
									02-26-1998	40.67
									03-26-1998	40.48
									04-27-1998	41.11
									05-28-1998	41.54
									06-25-1998	42.03
									07-20-1998	42.28
									08-24-1998	42.59
	210344.3								09-17-1998	42.39
405007073373101	N1153.1	405007		211MGTY	1940	122.0			03-26-1998	54.94
404800073371201	N1155.1	404800		211MGTY	1941	261.0			03-24-1998	63.83
404736073353101	N1176.1	404736		211MGTY	1940	195.0	193	198	03-24-1998	74.01
404037073335303	N1184.3	404036		112GLCLU	1969	32.0	26	31	03-24-1998	21.27
405246073343301	N1189.1	405246		112PGFG	1941	67.0		440	03-30-1998	62.07
404614073330504	N1195.5	404614		211MGTY	1976	148.0	111	116	03-23-1998	76.40
404453073323902	N1197.4	404453		112GLCLU	1975	117.0	64	69	03-24-1998	67.77
404202073315105	N1201.3	404202		112GLCLU	1961	56.0	26	30	03-24-1998	39.08
404015073312702 404447073282201	N1204.2 N1233.3	404015	0733127	112GLCLU	1975	21.0	37	40	03-25-1998 03-26-1998	12.62 62.84
404301073275104	N1233.3 N1236.3	404447		112GLCLU	1961	89.0	37	40 52	03-25-1998	43.74
404102073283401	N1260.1	404301 404102		112GLCLU 112GLCLU	1975 1936	70.0 33.0	47	52	03-25-1998	21.30
404024073272804		404102	0732728		1965	20.0	7		03-25-1998	11.37
403637073434502	N1422.2	403637		112GLCLU	1964	16.0		7	03-20-1998	8.65
404008073380501	N1438.2	404009		112GLCLU	1981	35.0			03-20-1998	18.89
404032073360603	N1442.3	404032		112GLCLU	1967	29.0	21	24	03-24-1998	21.61
404052073414201	N1613.1	404052		211MGTY	1968	25.0			03-23-1998	16.68
404446073392904	N1614.4	404446		112GLCLU	1966	101.0			11-21-1997	55.11
.5557.5502504		.51710	J. 55525		.000	. 51.0			12-16-1997	54.36
									01-21-1998	54.06
									02-27-1998	54.89
									03-17-1998	55.20
*									04-22-1998	55.95
									05-20-1998	56.66
									06-22-1998	57.44
									08-24-1998	57.25
									09-25-1998	56.77

SECONDARY WELLS

			S	ECONDARY	WELLS					
Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	of land	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
404210073340801	N1615.4	404210		112GLCLU	1989	61.0		2	10-23-1997	37.73
404210073340001	141015.4	404210	0733400	HZGLOLO	1909	01.0	-		11-21-1997	38.06
									12-19-1997	37.75
									01-21-1998	38.38
									02-27-1998	39.82
									03-17-1998	40.41
									04-22-1998	41.10
									05-20-1998	41.76
									06-22-1998	41.78
									07-22-1998	40.81
									08-24-1998	39.54
									09-25-1998	38.83
404359073283601	N3554.1	404359	0732836	211MGTY	1968	90.0	265	269	03-26-1998	54.56
403842073420201	N3707.3	403842		112GLCLU	1968	8.0	15	17	03-17-1998	2.07
403823073422301	N3710.1	403823		112GLCLU	1968	6.0	15	18	03-16-1998	1.74
403859073430501	N3711.3	403859	0734305	112GLCLU	1968	8.0	21	24	03-16-1998	2.70
403621073441801	N3862.2	403621		211MGTY	1968	8.0	295	306	03-20-1998	3.90
403621073441702	N4062.1	403621		112JMCO	1968	8.0	137	142	03-20-1998	3.74
404753073440303	N4266.2	404752		211LLYD	1954	57.0	377	393	03-25-1998	8.22
403547073300901	N4547.1	403547	0733009	211MGTY	1968	15.0	216	256	04-01-1998	5.88
404820073381401	N5883.1	404820	0733814	211MGTY	1956	208.0	210	215	03-24-1998	48.79
403601073390703	N6366.3	403601	0733907	112GLCLU	1966	7.0			03-17-1998	1.89
405242073352201	N6670.1	405242	0733522	112GLCLU	1968	81.0			03-24-1998	74.65
403517073430610	N6701.2	403517	0734306	211RCNF	1959	11.0	822	832	10-20-1997	9.42
									11-19-1997	8.73
									12-15-1997	8.67
									01-20-1998	8.90
									02-17-1998	8.86
									03-20-1998	9.12
									04-28-1998	9.08
									05-28-1998	9.21
									06-25-1998	9.24
									09-21-1998	8.81
403517073430703	N6703.1	403517		211MGTY	1968	10.0	468	478	03-20-1998	2.52
403517073430704	N6704.1	403517		211MGTY	1968	10.0	284	294	03-20-1998	5.66
403713073415903	N6706.1	403713		211MGTY	1991	6.0	625	630	03-20-1998	3.51
403713073415905	N6793.1	403712	0734159	112GLCLU	1992	6.0	9	11	10-20-1997	4.87
									11-19-1997	4.81
									12-15-1997	4.71
									01-20-1998	4.57
									02-17-1998	5.04
									03-20-1998	5.12
									04-28-1998 05-28-1998	5.05 5.00
									06-25-1998	4.95
									07-27-1998	4.95
									08-24-1998	4.74
									09-21-1998	4.63
403533073353203	N6851.1	403533	0733532	211MGTY	1968	7.0	551		03-17-1998	5.58
403533073353204	N6852.1	403533		211MGTY	1968	7.0	258		03-17-1998	1.17
.50000070000204	.10002.1	100000	3700002	Limoi	1000	7.0	200	200	55 17 1000	

GROUND-WATER LEVELS: NASSAU COUNTY—Continued SECONDARY WELLS

Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	Altitude of land surface (ft, msl)	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
403533073353205	N6853.1	403533	0/33532	211MGTY	1968	7.0	127	132	10-20-1997	5.17
									11-19-1997	4.40
									12-15-1997	3.97
									01-20-1998	4.56
									02-17-1998	4.37
									03-17-1998	4.11
									04-28-1998 05-28-1998	4.36 4.34
									06-25-1998	4.34
									07-27-1998	3.84
									08-24-1998	3.95
									09-21-1998	4.29
403805073395302	N6928.2	403805	0733953	211RCNF	1987	6.0	716	726	03-21-1998	4.79
405433073344602	N7190.1	405433		112PGQF	1961	14.0	237	240	03-30-1998	9.16
100100070011002	117 100.1	100100	0700440	TIZI GQI	1001	14.0	201	240	04-27-1998	9.10
									05-28-1998	6.20
									06-25-1998	5.08
									07-20-1998	1.50
									08-24-1998	-0.82
									09-17-1998	2.69
403838073405502	N7235.2	403838	0734055	112GLCLU	1968	25.0	43	45	03-17-1998	7.77
404544073265502	N7397.2	404544	0732655	112GLCLU	1984	154.0	96	101	03-25-1998	68.14
404855073360102	N7450.2	404855	0733601	211MGTY	1975	176.0			03-24-1998	70.72
403840073411601	N7472.1	403840	0734116	211MGTY	1968	22.0	134	138	03-17-1998	10.71
404751073321901	N7478.1	404751	0733219	211MGTY	1968	217.0	160	165	03-23-1998	80.32
403805073395303	N7675.1	403805	0733953	112GLCLU	1974	6.0	28	34	03-18-1998	1.82
403910073341701	N8203.1	403909	0733416	112GLCLU	1973	7.0	13	16	03-17-1998	3.18
403558073302704	N8414.2	403559	0733029	211LLYD	1969	7.5	1010	1080	04-01-1998	7.73
403724073362701	N8635.1	403724	0733728	112GLCLU	1970	7.0	26	29	03-17-1998	3.58
404144073285201	N8669.1	404143	0732850	112GLCLU	1970	42.0	30	35	03-25-1998	31.38
403631073391002	N8715.1	403631	0733910	112GLCLU	1971	7.0	16	18	03-17-1998	2.86
403936073303501	N8717.1	403936	0733035	112GLCLU	1974	9.0	11	15	10-20-1997	3.25
									11-19-1997	4.13
									12-16-1997	3.76
									01-29-1998	5.30
									03-17-1998	4.88
									04-28-1998	4.76
									06-26-1998	4.91
									07-28-1998	3.67
									08-25-1998	3.53
4000000000004404	N10070 4	400000	0700011	44001 0111	4070			0.5	09-29-1998	3.36
403925073261101	N8876.1	403923		112GLCLU	1972	5.0	30	35	03-17-1998	2.22
404730073423101	N8877.1	404730	0/34231	112GLCLU	1972	12.0	71	76	10-29-1997	8.14
									11-26-1997	10.50 10.58
									12-16-1997	
									01-26-1998 02-27-1998	10.90 11.06
									02-27-1998	11.06
									03-27-1998	11.23
									05-29-1998	11.26
									06-26-1998	11.24
									07-21-1998	9.70
									08-25-1998	9.10
									09-18-1998	10.38
										- 2777

SECONDARY WELLS

			S	ECONDARY	WELLS					
Chalian assembles	Local	1 - 12 - 1 -	1 2	Aquifer	Start of	of land surface	(feet land s	n interval below surface)	Date	Water
Station number	number	Latitude	Longitude	unit code	record	(ft, msl)	Top	Bottom	Date	(ft, msl)
405055073430701	N8891.1	405047		112GLCLU	1972	60.0	67	72	03-27-1998	9.71
404723073443501	N8933.1	404723		112PGQF	1973	32.0	143	148	03-25-1998	13.47
404313073352201	N8944.1	404313		112GLCLU	1974	80.0	50	55	03-24-1998	52.22
404606073434101	N8970.1	404606	0734341	112GLCLU	1973	154.0	188	193	03-24-1998	29.26
403822073363302	N9054.1	403822	0733633		1974	14.0	35	40	03-18-1998	6.40
404324073342201	N9078.1	404324	0733422	112GLCLU	1975	84.0	60	65	03-24-1998	54.01
404740073285701	N9089.1	404719		211MGTY	1975	173.0	173	178	03-23-1998	77.21
404828073444501	N9098.1	404828		112GLCLU	1976	59.0	67	72	03-25-1998	20.57
405113073361301	N9115.1	405113	0733613	211MGTY	1970	145.0	105	110	03-23-1998	56.63
405131073405802	N9116.1	405131		112GLCLU	1976	15.0	26	31	03-27-1998	9.53
405144073432902	N9118.1	405144		112GLCLU	1976	51.0	95	100	03-27-1998	5.44
405416073325701	N9127.1	405416		112GLCLU	1976	10.0	36	41	03-30-1998	3.02
405158073300101	N9154.1	405158		112PGFG	1976	34.0	61	66	03-30-1998	23.93
405148073320201	N9189.1	405148		112GLCLU	1981	59.0	37	42	03-30-1998	44.13
404703073370202	N9190.1	404703		211MGTY	1977	156.0	128	133	03-24-1998	66.06
404331073330801	N9225.1	404331		112GLCLU	1980	90.0	39	44	03-25-1998	55.11
404430073331001	N9234.1	404430		211MGTY	1980	107.0	200	205	03-24-1998	64.27
404430073331002	N9235.1	404430		211MGTY	1980	107.0	100	105	03-24-1998	64.27
404430073331003	N9236.1	404430		112GLCLU	1980	107.0	45	50	03-24-1998	64.39
404112073421003	N9309.1	404112		112GLCLU	1977	42.7	54	59	03-23-1998	21.88
404748073385705	N9313.1	404748		112GLCLU	1977	58.0			03-26-1998	47.03
405350073345401	N9314.1	405350		112GLCLU	1977	32.0	49	54	03-30-1998	23.35
405326073302102	N9316.1	405326	0733021	112GLCLU	1977	25.0	53	58	10-28-1997	3.78
									11-25-1997	3.66
									12-15-1997	3.48
									01-15-1998	3.65
									02-26-1998	4.68
									04-27-1998	4.80
									05-28-1998	4.81
									06-25-1998	4.63 4.23
									07-20-1998	
404934073334801	NOSES 1	404024	0722240	OHIMOTY	1070	142.0	06	101	09-17-1998	3.90 74.28
404125073325006	N9353.1 N9473.1	404934 404125	0733348	211MGTY	1978	143.0	96	101	03-23-1998 03-24-1998	31.66
403526073441301	N9473.1 N9474.1	404125		112GLCLU 112GLCLU	1990 1990	42.0	37 28	42 33	03-24-1998	3.74
404208073433401	N9474.1 N9476.1	404208		112GLCLU	1978	9.0 59.0	73	78	03-20-1998	24.94
405428073350302		405428		112GLCLU	1978	9.0	19	24	10-28-1997	5.08
40042007000002	143470.1	403420	0700000	TIZGLOLO	1370	3.0	13	24	11-25-1997	5.56
									12-15-1997	5.46
									01-15-1998	5.82
									02-26-1998	6.89
									03-30-1998	6.47
									04-27-1998	6.73
									05-28-1998	6.19
									06-25-1998	5.75
									07-20-1998	5.08
									08-24-1998	5.25
									09-17-1998	5.00
404154073374003	N9648.1	404154	0733740	112GLCLU	1979	53.0	46	51	03-23-1998	32.97
404219073293402	N9658.1	404219		112GLCLU	1988	56.0	47	52	03-25-1998	40.05
404347073260702		404347		112GLCLU	1981	68.8	52	57	03-25-1998	52.59
404136073303801	N9664.1	404136	0733038		1987	36.0	26	31	03-25-1998	26.86
404202073354306	N9666.1	404202		112GLCLU	1979	55.0	42	47	03-24-1998	39.26
404320073305602	N9667.1	404320		112GLCLU	1985	76.0	50	55	03-25-1998	51.35
404111073353303	N9668.1	404111		112GLCLU	1979	49.0	45	50	03-24-1998	30.31
405142073375603	N9670.1	405142		112GLCLU	1979	33.0	37	42	03-26-1998	24.17
404707073385003	N9711.1	404707		112GLCLU	1979	145.0			03-24-1998	57.18
404846073440901	N9776.1	404846	0734410		1982	30.5	268	279	03-25-1998	0.67
404253073395601	N9945.1	404253		112GLCLU	1982	76.0	59	64	03-23-1998	41.17

GROUND-WATER LEVELS: NASSAU COUNTY—Continued SECONDARY WELLS

			0.	LCONDARI	W LLLD					
	Local			Aquifer	Start of	Altitude of land surface	(feet	n interval below surface)		Water level
Station number	number	Latitude	Longitude	unit code	record	(ft, msl)	Top	Bottom	Date	(ft, msl)
404446073372401	N9962.1	404446	0733724	112GLCLU	1982	111.0	60	65	03-24-1998	61.85
404404073363101	N9967.1	404404	0733631	112GLCLU	1982	82.0	48	54	03-24-1998	58.39
404421073262301	N9980.1	404421		112GLCLU	1986	81.0	50	55	03-25-1998	56.29
404404073420201	N9983.1	404404		211MGTY	1982	108.0	91	96	03-23-1998	43.02
403959073434301	N10001.1	403959		112GLCLU	1990	16.0		4-5	03-23-1998	9.20
403810073381201	N10006.1	403810		112GLCLU	1990	11.0	21	26	03-17-1998	5.31
403926073333001	N10007.1	403926	0733330		1981	12.0			03-24-1998	8.61
403847073401101	N10010.1	403847		112GLCLU	1990	23.0	35	40	03-18-1998	9.47
403950073361403	N10011.1	403950		112GLCLU	1981	18.5	21	26	03-24-1998	12.93
403518073344401	N10134.1	403518		112GLCLU	1990	11.0			03-17-1998	4.47
404821073430501	N10192.1	404821		211LLYD	1985	24.0	343	348	03-25-1998	10.40
405320073370101	N10199.1	405320	0733630	112GLCLU	1990	70.0	46	56	03-26-1998	61.84
405001073372301	N10245.1	405001	0733723	-	1990	96.0		184	03-26-1998	45.32
404900073373301	N10246.1	404900	0733733		1990	159.0		10-	03-24-1998	56.68
404539073400407	N10291.1	404539		211MGTY	1991	124.8	700	707	03-23-1998	48.13
403738073375001	N10425.1	403738		211MGTY	1987	6.0	702	707	03-17-1998	4.77
404813073310301	N10605.1	404813	0733103	44001.01.11	1990	188.0			03-23-1998	80.35 64.90
405057073325102 404823073265901	N10606.1	405057	0733251	112GLCLU 211MGTY	1990	130.0			03-23-1998	74.94
404842073291401	N10607.1 N10609.1	404823 404842	0732659 0732914	211MG11	1990 1990	260.5			03-23-1998 03-23-1998	73.67
403511073450901	N10609.1	404642		211LLYD	1987	239.0 4.0	1140	1150	03-23-1998	8.09
403505073401301	N110020.1	403511		211LLYD	1987	11.0	1240	1250	03-20-1998	6.66
403503073401301	N11109.1	403505		211MGTY	1987	11.0	785	790	03-17-1998	-2.87
404031073382701	N11166.1	404031		211MGTY	1993	36.0	620	640	03-17-1998	17.68
404202073401801	N11168.1	404202		211MGTY	1992	49.5	500	520	03-23-1998	31.55
404355073401801	N11172.1	404355		211MGTY	1993	77.5	435	455	03-23-1998	47.04
405122073360601	N11279.1	405122		211LLYD	1991	131.0	475	495	03-23-1998	26.05
404327073341701	N11396.1	404327		211MGTY	1990	83.0	560	580	03-24-1998	52.37
404328073341601	N11397.1	404328		211MGTY	1990	83.0	260	280	03-24-1998	53.48
404818073293001	N11453.1	404818		112PGQF	1991	207.5	840	860	03-23-1998	43.57
404818073293101	N11454.1	404818	0732931	211MGTY	1991	207.5	570	590	03-23-1998	75.68
404636073270902	N11455.1	404636	0732709	211LLYD	1990	194.5	961	981	03-23-1998	33.04
404636073271001	N11456.1	404636	0732710	211MGTY	1990	194.5	815	835	03-23-1998	73.58
404622073330701	N11457.1	404622	0733307	211LLYD	1991	153.0	840	860	03-23-1998	27.98
404625073330701	N11458.1	404625	0733307	211MGTY	1994	153.5	600	620	03-23-1998	77.52
404326073341801	N11570.1	404326	0733418	211LLYD	1990	83.5	850	870	03-24-1998	18.66
404324073414401	N11577.1	404324	0734144	211LLYD	1991	45.5	700	720	03-23-1998	20.30
404323073414401		404323		211MGTY	1991	44.5	430	450	03-23-1998	10.09
403732073443403	N11634.1	403733	0734443	211MGTY	1991	8.5	535	555	03-16-1998	-2.55
404511073402501	N11659.1	404511		211MGTY	1992	104.0	399	419	03-23-1998	46.82
404233073325801	N11720.1	404233		211MGTY	1993	63.0	229	249	03-24-1998	44.65
404233073325901	N11721.1	404233		211MGTY	1993	63.0	600	624	03-24-1998	44.26
405030073282101	N12075.1	405030		211LLYD	1993	198.0	830	850	03-23-1998	36.91
404633073401801	N12163.1	404633		211MGTY	1993	168.0	210	230	03-23-1998	40.78
404303073295501	N12250.1	404303	0732955	112GLCLU	1994	71.0			11-21-1997	43.36
									12-16-1997	43.16
									01-21-1998	43.89
									02-27-1998	45.46
									03-17-1998	46.09
								800	03-26-1998	46.47
									04-22-1998	47.09 48.24
									05-20-1998 06-22-1998	48.24
									07-22-1998	47.44
									08-24-1998	45.95
									00-24-1990	46.00

09-25-1998

46.09

GROUND-WATER LEVELS: QUEENS COUNTY SECONDARY WELLS

Station number	Local	Latituda	Longitudo	Aquifer	Start of		(feet	n interval below surface)	Data	Water level
	number	Latitude	Longitude		record	(ft, msl)	Top	Bottom	Date	(ft, msl)
404550073500802	Q34.2	404553		211LLYD	1946	36.0		400	03-26-1998	9.02
404257073493701	Q273.1	404257	0/3493/	211LLYD	1952	26.0	308	438	10-29-1997	13.83
									11-25-1997	13.32
									12-29-1997	14.10
									01-27-1998	12.96
									02-25-1998	13.31
									03-27-1998	13.12
10.15.11070.150001	0.470.4	101511				40.0		075	04-29-1998	12.90
404541073452601	Q470.1	404541	0734526	211LLYD	1954	13.0	347	375	03-26-1998	12.23
403454073495602	Q1071.2	403453	0/34956	211LLYD	1976	9.0	771	836	12-02-1997	7.39
									12-17-1997	7.86
									03-16-1998	8.02 8.22
									04-29-1998 06-11-1998	7.96
403959073474401	Q1237.1	403959	0734744	112JMCO	1050	27.0	27	227	03-25-1998	2.39
			0734744		1950			65	03-25-1998	11.78
404113073501102 404116073505901	Q1254.1 Q1255.1	404113 404116	0735011	112GLCLU 112GLCLU	1940 1911	56.0	63		03-25-1998	32.26
404547073524401	Q1235.1 Q1326.1	404547		112GLCLU	1950	40.0 27.0			10-29-1997	16.84
404347073324401	Q1320.1	404047	0/33244	HZGLCLU	1930	27.0		77	11-26-1997	16.88
									12-29-1997	16.78
									01-26-1998	16.94
				1					02-26-1998	17.08
									03-27-1998	17.28
									04-29-1998	17.39
									05-28-1998	17.59
									07-28-1998	17.34
									08-31-1998	17.17
									09-24-1998	17.09
404656073503701	Q1373.1	404656	0735037	211LLYD	1962	50.5	194	206	03-26-1998	5.22
404503073501901	Q2419.1	404503	0735019		1972	7.0	221	271	10-29-1997	10.12
						36.352			11-25-1997	9.77
									12-29-1997	10.19
									01-27-1998	10.52
									02-25-1998	10.39
									03-26-1998	10.92
									04-29-1998	10.53
404025073463801	Q2422.1	404025	0734638	211MGTY	1969	21.0	342	362	10-03-1997	2.34
									12-29-1997	6.17
									01-29-1998	2.65
									02-25-1998	3.20
									03-25-1998	. 2.87
404511073485201	Q2814.1	404511	0734852	112GLCLU	1982	45.0	70	79	10-29-1997	14.12
									11-25-1997	14.10
									12-29-1997	14.08
									01-27-1998	14.11
									02-25-1998	14.22
									03-27-1998	14.56
									04-29-1998	13.75
									07-30-1998	14.97
							100	1.5.2	08-31-1998	14.86
403940073443601	Q2994.1	403940	0734436	112GLCLU	1968	10.0	10	66	03-31-1998	5.34
STATE OF THE PROPERTY.	Louis		2224.24	77225 213	1000		1.25	22	07-30-1998	4.53
403940073443501	Q2995.1	403940	0734435	112GLCLU	1968	10.0	10	83	03-31-1998	5.48
									07-30-1998	4.65

GROUND-WATER LEVELS: QUEENS COUNTY—Continued SECONDARY WELLS

0	Local	1 -0. 1		Aquifer		of land surface	(feet	below burface)		Water level
Station number	number	Latitude	Longitude	unit code	record	(ft, msl)	Top	Bottom	Date	(ft, msl)
403845073475701	Q3110.1	403845	0734757	112JMCO	1981	10.0	306	326	10-02-1997	4.07
									11-06-1997	4.18
									12-02-1997	3.98
									12-17-1997	4.94
									01-29-1998	4.97
									03-31-1998	4.38
									04-29-1998	4.17
	1223124	742222	120209200	A0813982	1,050		1999	12.25	06-11-1998	3.97
403939073472801	Q3112.1	403939	0734728	112JMCO	1981	11.3	290	300	11-06-1997	3.17
									12-02-1997	2.95
									12-17-1997	4.95
									01-29-1998	3.77
									03-31-1998	3.39
									04-29-1998	3.25 3.04
									06-11-1998 07-30-1998	2.81
403845073475702	Q3115.1	403845	0724757	110010111	1001	10.0	25	28	10-02-1997	3.74
403043073473702	Q3115.1	403043	0/34/5/	112GLCLU	1981	10.0	25	20	11-06-1997	3.58
									12-02-1997	3.44
									12-17-1997	3.05
									01-29-1998	4.07
									03-31-1998	3.61
									04-29-1998	3.36
									06-11-1998	3.26
									07-30-1998	3.04
403939073472802	Q3117.1	403939	0734728	112GLCLU	1981	11.0	. 11	23	11-06-1997	4.58
		1				1111111			12-02-1997	4.65
									12-17-1997	4.22
									01-29-1998	4.73
									03-31-1998	4.75
									04-29-1998	4.36
									06-11-1998	4.14
									07-30-1998	3.56
404654073465901	Q3119.1	404654	0734659	112GLCLU	1980	38.0	37	40	10-29-1997	19.30
									11-25-1997	19.27
									12-29-1997	19.23
									01-27-1998	19.59
									02-25-1998	19.80
									03-27-1998	20.29
4040007000004	001001	40.4000	0704500	44001.01.11	1001	50.0	04	00	04-29-1998	20.56
404226073303201	Q3163.1	404226	0734533	112GLCLU	1984	50.0	61	66	10-29-1997	20.10
									11-25-1997	19.34
									12-29-1997	18.68 18.38
									01-27-1998 02-26-1998	18.91
									02-26-1998	19.23
									04-29-1998	19.23
404138073535102	O3587 1	404138	0735351	112GLCLU	1995	88.1	160	170	11-26-1997	14.53
TOT 1000/ 0000 102	Q0001.1	TUT 100	0700001	TEGLOLO	1330	50.1	100	170	12-29-1997	14.51
									01-27-1998	14.24
									02-26-1998	14.16
									03-27-1998	14.43
									04-29-1998	14.44
									06-09-1998	14.55
									07-28-1998	14.87
									08-31-1998	14.74
									09-24-1998	14.67

GROUND-WATER LEVELS: QUEENS COUNTY—Continued SECONDARY WELLS

Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of	of land surface	(feet	interval below surface)	Data	Water level
					record	(ft, msl)	Тор	Bottom	Date	(ft, msl)
404026073472102	Q3589.1	404026	0/34/21	211MGTY	1995	23.0	310	320	11-26-1997	1.62
									12-29-1997	6.10
									01-27-1998	1.64 2.32
									02-26-1998 03-25-1998	2.12
									04-29-1998	1.97
									06-09-1998	1.68
									07-28-1998	1.61
									08-31-1998	1.28
									09-24-1998	2.29
404733073482901	Q3593.1	404733	0734829	211LLYD	1996	20.8	165	185	10-29-1997	4.46
									11-25-1997	4.47
									12-29-1997	5.42
									01-27-1998	5.81
									02-25-1998	6.04
		D.							03-27-1998	4.91
									04-29-1998	5.23
									07-30-1998	4.20
									08-31-1998	3.91
	125501.0	12.72.64	E34 1700						09-30-1998	3.56
404732073482901	Q3604.1	404732	0734829	112GLCLU	1997	20.7	48	58	10-03-1997	23.05
									10-29-1997	22.91
									11-25-1997	23.10
									12-29-1997	22.95
									01-27-1998	23.25
									02-25-1998	23.45
									03-27-1998	22.31 22.72
404437073535401	Q3648.1	404437	0725254	112GLCLU	1993	78.1	90	85	04-29-1998 10-31-1997	46.26
404437073333401	Q3040.1	404437	0733334	HZGLOLO	1993	70.1	80	65	11-26-1997	46.18
									12-29-1997	45.96
									01-27-1998	45.85
									02-26-1998	46.03
									03-27-1998	46.36
									04-29-1998	46.70
									06-09-1998	47.26
									07-28-1998	47.52
									08-31-1998	47.26
									09-24-1998	47.14
404138073535101	Q3649.1	404138	0735351	112GLCLU	1993	88.4	100	105	10-31-1997	13.73
									11-26-1997	14.07
									12-29-1997	13.94
									01-27-1998	13.77
									02-26-1998	13.68
									03-27-1998	13.97
									04-29-1998	13.96
									06-09-1998	14.06
									07-28-1998	14.40
									08-31-1998	14.31
404400072500004	02650 4	101100	0705000	110010111	1000	10.7	40		09-24-1998	14.23
404402073520901	Q3650.1	404402	0/35209	112GLCLU	1993	19.7	40	50	10-31-1997	9.77
									11-26-1997 12-29-1997	9.92 9.94
									01-27-1998	9.94
									02-26-1998	9.83
									03-27-1998	9.92
									04-29-1998	9.90
									06-09-1998	9.87
									07-30-1998	9.86
									08-31-1998	9.80
									09-24-1998	9.88
		14							ME THE WEST	17.5

GROUND-WATER LEVELS: QUEENS COUNTY—Continued SECONDARY WELLS

Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	Altitude of land surface (ft, msl)	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
404251073512601	Q3651.1						ТОР	Dottom		
404251073512601	Q3051.1	404251	0/35126	112GLCLU	1993	51.3			10-31-1997	18.34
									11-26-1997	18.42
									12-29-1997	18.23
									01-27-1998	17.98
									02-26-1998	18.02
									03-05-1998	18.05
									03-25-1998	18.04
404050070404504	00050.4	404050	0704045	44001.01.11	4000				04-29-1998	18.48
404350073494501	Q3652.1	404350	0/34945	112GLCLU	1993	73.0	80	85	10-31-1997	14.70
									11-28-1997	14.62
									12-29-1997	14.63
									01-27-1998	14.66
									02-26-1998	14.92
									03-27-1998	15.19
									04-29-1998	15.44
							4.0		06-09-1998	15.76
									07-28-1998	15.51
									08-31-1998	15.16
	4.000								09-24-1998	15.01
404027073464501	Q3658.1	404027	0734645	112GLCLU	1993	18.4	30	35	10-31-1997	5.10
									11-26-1997	5.45
								3 4 7 5	12-29-1997	5.45
									01-27-1998	6.40
									02-26-1998	6.35
									03-25-1998	6.54
									04-29-1998	6.20
									06-09-1998	6.06
									07-28-1998	5.21
									08-31-1998	4.47
									09-24-1998	4.60
404313073475201	Q3659.1	404313	0734752	112GLCLU	1993	91.4	115	120	10-31-1997	19.83
									11-28-1997	19.56
									12-30-1997	19.83
									01-27-1998	18.96
								2 2	02-26-1998	18.62
									03-27-1998	18.63
									04-29-1998	18.27
	200000								06-09-1998	18.03
404450073470301	Q3660.1	404450	0734703	112GLCLU	1993	66.0	80	85	11-06-1997	23.14
									11-28-1997	23.18
									12-30-1997	23.22
									01-27-1998	23.06
									02-26-1998	23.25
									03-31-1998	23.58
									04-29-1998	23.75
									06-09-1998	23.97
									07-28-1998	24.00
									08-31-1998	23.75
									09-24-1998	23.50

GROUND-WATER LEVELS: SUFFOLK COUNTY SECONDARY WELLS

			0.	LCONDAKI	WLLLS					
Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	Altitude of land surface (ft, msl)	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
404221073164904	S1808.4	404221	0731649	112GLCLU	1984	13.6	10	11	07-22-1998	9.80
10.121.0.0101001	0.000		0,0,0,0	HEGEGEG	1001	10.0			08-24-1998	9.79
									09-25-1998	9.50
404659073141801	S1815.3	404659	0721/119	112GLCLU	1984	72.5	50	54	03-23-1338	47.66
405109072513001	S2485.1	404039					65	75		33.45
403109072313001	32403.1	405109	0725130	112GLCLU	1948	69.0	05	75	12-09-1997	35.35
404500072150201	C2516 1	404509	0701500	112GLCLU	1040	60.0			03-16-1998 03-18-1998	38.24
404509073152301 405121072415601	S3516.1				1942	60.0				
	S3539.1 S3543.1	405121	0724156	112GLCLU	1942	79.0			03-16-1998	24.06
405037072390301		405037	0723903	112GLCLU	1907	64.1	56	58	03-16-1998	17.81
405145072592501	S3870.1	405145	0725925	112GLCLU	1954	87.0			03-23-1998	54.56
405607072393502	S4523.2	405607	0723935		1981	17.4		-	03-17-1998	10.36
405220072493101	S6441.2	405220	0724931		1991	49.5			12-09-1997	35.50
and reference and	220220		222 2 110		55-15	102.7			03-17-1998	38.42
405347072494001	S6443.1	405347	0724940	112GLCLU	1949	55.0		-	03-17-1998	41.67
410247072261101	S6524.1	410247	0722611	112GLCLU	1949	5.8			03-17-1998	2.69
405507072244402	S8831.2	405511	0722445		1976	20.0			03-20-1998	8.23
405307072323503	S8835.2	405307		112GLCLU	1981	30.5			03-16-1998	9.72
405840072082301	S8839.1	405840		112GLCLU	1950	39.0			03-18-1998	9.10
405948072172101	S8844.1	405907	0721512	112GLCLU	1950	19.4			03-18-1998	7.78
404915072531801	S9129.1	404914	0725317	112GLCLU	1982	34.0			03-17-1998	14.61
404831072530501	S9130.1	404829	0725305	112GLCLU	1952	26.0	25	28	12-09-1997	10.01
									03-17-1998	10.81
404446073191801	S9646.1	404446	0731918	112GLCLU	1958	51.0		"	03-16-1998	41.35
404049073241201	S10075.1	404049	0732412	112GLCLU	1958	25.0	33	43	03-16-1998	15.25
404225073234201	S10314.1	404225	0732342	112GLCLU	1958	48.0			03-20-1998	34.09
404347073195501	S10370.1	404347	0731955		1958	38.0			03-16-1998	26.97
410059072292701	S10390.1	410059		112GLCLU	1988	25.9	344		03-17-1998	19.33
404433073212701	S11204.1	404433	0732127	·	1958	53.0		-	03-16-1998	43.73
404540073211001	S11240.1	404540		112GLCLU	1958	61.0			03-16-1998	53.36
404527073220901	S12035.1	404527	0732209	112GLCLU	1958	70.0	22		03-16-1998	55.71
404423073222601	S12069.1	404423	0732226		1958	65.0			03-16-1998	46.32
404527073191501	S14119.1	404527		112GLCLU	1958	70.0			03-16-1998	55.58
404425073200701	S14471.1	404425	0732007	112GLCLU	1958	44.0			03-16-1998	38.14
410034072094701	S15048.1	410035		112GLCLU	1974	20.0	31	46	03-18-1998	8.09
405308073175101	S15514.1	405308		211MGTY	1984	200.0	533	593	04-14-1998	36.90
410008072015901	S16118.1	410008		112GLCLU	1974	4.8	31	46	03-18-1998	2.87
404200073252701	S16480.1	404200		112GLCLU	1958	39.0	35	45	03-20-1998	32.15
405336073073001		405336	0730730		1968	146.0			03-24-1998	39.73
	S16756.2	405843		112GLCLU	1975	61.0	59	62	03-17-1998	7.66
410356072260301		410356		112GLCLU	1958	43.0	47	50	03-17-1998	3.07
410634072223601		410634		112GLCLU	1982	16.0			11-24-1997	2.37
410034072223001	310703.2	410034	0722230	HZGLULU	1902	10.0	-	-	12-18-1997	2.01
									01-22-1998	2.94
									03-17-1998	4.11
									04-22-1998	3.61
									05-27-1998	3.96
									06-24-1998	3.07
									07-20-1998	2.59
									08-31-1998	2.24
105055555	010000	40-0			, ==4				09-29-1998	2.07
		405355		112GLCLU	1958	56.8		40	03-17-1998	30.03
405446073180701	S16884.1	405446		112GLCLU	1958	34.0	40	43	03-17-1998	19.88
404528073114802	S17987.2	404528		112GLCLU	1981	36.0	13	16	03-18-1998	26.34
404902073094001	S22577.1	404902		211MGTY	1964	60.0	724	734	03-24-1998	41.71
404902073094002	S22578.1	404902	0730940	211MGTY	1964	60.0	392	402	03-24-1998	41.99

GROUND-WATER LEVELS: SUFFOLK COUNTY—Continued SECONDARY WELLS

OL-II	Local	1 . 2 . 1		Aquifer	Start of	Altitude of land surface	(feet	n interval below surface)		Water level
Station number	number	Latitude	Longitude	unit code	record	(ft, msl)	Top	Bottom	Date	(ft, msl)
404902073094003	S22579.1	404902	0730940	112GLCLU	1964	60.0	200	210	03-24-1998	42.03
404828073114002	S22580.1	404828	0731140	211MGTY	1964	123.0	792	802	03-18-1998	39.14
404828073114003	S22581.1	404828	0731140	211MGTY	1964	123.2	440	450	03-18-1998	40.48
404828073114004	S22582.1	404828	0731140	112GLCLU	1964	123.7	105	115	03-18-1998	41.26
405047073120601	S23631.1	405047	0731207	211MGTY	1977	40.0	494	595	04-21-1998	31.73
404829073161502	S24770.1	404819	0731603	211MGTY	1965	139.0	424	434	01-06-1998	51.03
									01-30-1998	50.96
404820073160303	S24771.1	404820	0731603	112GLCLU	1965	139.0	117	127	01-06-1998	55.17
									01-30-1998	55.22
404818073135904	S24773.1	404813	0731356	211MGTY	1966	118.4	412	422	03-18-1998	45.88
405716072505701	S26780.1	405716	0725057	112GLCLU	1970	21.7			03-16-1998	19.33
405445073064801	S29411.1	405451		211MGTY	1977	125.0			04-30-1998	36.62
404120073221601	S29491.1	404121		211MGTY	1978	25.0	390	493	04-16-1998	19.82
404703073264201	S29776.1	404710		211MGTY	1967	193.0	710	720	03-17-1998	74.28
404703073264202	S29777.1	404710		211MGTY	1967	193.0	387	397	03-17-1998	74.59
404703073264205	S29778.1	404710		211MGTY	1967	193.0	158	168	03-17-1998	75.30
405124072353701	S30230.1	405124		211MGTY	1970	45.0	805	825	03-16-1998	12.09
405411072232901	S31037.1	405411		211MGTY	1980	36.0			04-23-1998	9.64
405838072114201	S31653.1	405837		211MGTY	1974	68.0	420	460	04-28-1998	12.07
404046073252101	S32501.1	404047	0732521	211MGTY	1972	26.0	560	630	04-26-1998	5.69
405132073155901	S33006.1	405143		211MGTY	1975	147.0	436	503	04-14-1998	46.89
405336073073601				211MGTY				548	04-30-1998	43.18
	S33500.1	405340			1970	148.0	485			19.35
405715072193701 405512073010502	S33921.1	405715		112GLCLU	1973	110.0	159	174	03-20-1998	47.03
	S34007.1	405512		211MGTY	1984	142.0	270	345	04-21-1998	
405246073142801	S34460.1	405250		211MGTY	1970	153.0	531	596	04-16-1998	37.61
405517072574902	S34892.1	405519		112GLCLU	1970	122.4	124	138	03-16-1998	45.92
405505072432201	S36013.1	405505		112GLCLU	1970	47.0			03-17-1998	22.66
404930073120002	S36142.2	404930		112GLCLU	1980	81.0			03-18-1998	44.39
404656073081401	S36143.1	404656		112GLCLU	1969	72.0	59	62	03-18-1998	33.09
404707073023401	S36145.1	404707		112GLCLU	1969	44.6	30	43	03-17-1998	32.13
405259072465601	S36147.1	405259	0724656	112GLCLU	1970	47.8			12-08-1997	33.93
105117070100001	000150.1	405447	0704000	44001.01.11	4054	50.0			03-17-1998	37.19
405117072490301	S36150.1	405117	0724903	112GLCLU	1951	50.0			12-08-1997	32.12
405040070440504	000450.0	405044	0704400		4075	05.0	00	00	03-17-1998	34.52
405010072443501	S36152.2	405014	0724438		1975	65.0	62	66	03-18-1998	21.04
405715072413201	S36153.1	405715		112GLCLU	1969	75.2			03-17-1998	14.10
404627073070901	S36460.1	404537		211MGTY	1976	76.0			04-14-1998	41.79
404717072595603	S37494.1	404717		211MGTY	1976	60.0			04-23-1998	27.06
404406073193401	S37861.1	404402		211MGTY	1978	41.8		-	04-16-1998	31.66
410400072195301	S38461.1	410400		112GLCLU	1970	12.0			03-18-1998	7.19
404921073122703	S38491.1	404920		211MGTY	1984	61.0	320	383	04-14-1998	39.60
405256073045602		405256		211MGTY	1984	100.9	528	600	04-16-1998	54.77
405418073064902		405418		211MGTY	1976	227.0			04-21-1998	38.51
405924072321501	S39269.1	405924		112GLCLU	1983	13.6		-	03-17-1998	4.36
405013073263601	S40840.1	405013		112GLCLU	1971	131.5	77	79	03-17-1998	58.61
405206073153002		405206	0731530		1975	91.6	60	63	03-18-1998	50.21
405510073063401	S40849.1	405510		112GLCLU	1971	80.5		-	03-23-1998	41.59
405744072571902		405744		112GLCLU	1976	32.0	47	50	03-16-1998	16.49
405646072564301	S40852.1	405656		112GLCLU	1971	114.6	95	97	03-16-1998	30.88
405610072562501	S40853.2	405610		112GLCLU	1985	100.2	74	78	03-16-1998	37.66
405223073021301	S41050.1	405222		112GLCLU	1972	89.4	67	69	03-24-1998	67.83
405119073123702		405119		211MGTY	1977	76.0	574	645	04-16-1998	30.21
405357073194802		405354		112GLCLU	1983	83.5	75	80	03-17-1998	32.67
405016073200101	S42682.1	405016		112GLCLU	1972	159.2			03-17-1998	72.06
405335073073201		405335		112GLCLU	1972	145.7		12.77	03-23-1998	55.35
404756073025501	S42761.1	404753	0730249	211MGTY	1984	75.0	166	333	04-28-1998	40.00

	Local			Aquifer	Start of	Altitude of land surface	(feet	n interval below surface)		Water
Station number	number	Latitude	Longitude	unit code	record	(ft, msl)	Top	Bottom	Date	(ft, msl)
404305073161401	S42762.1	404305	0731615	211MGTY	1976	26.0	650	710	04-14-1998	19.97
404511073112301	S42827.1	404513	0731124	211MGTY	1976	35.0	598	660	04-14-1998	24.54
404820073073402	S43641.1	404820	0730734	211MGTY	1984	99.9			04-16-1998	42.50
404124073241601	S43809.1	404124	0732416	112GLCLU	1974	34.0	24	34	03-20-1998	22.65
404124073241602	S43810.1	404124	0732416	112GLCLU	1974	33.8	61	71	03-20-1998	22.73
404503073010801	S44466.1	404503	0730108	112GLCLU	1974	4.3	15	20	03-17-1998	1.73
405132073181401	S45207.1	405132	0731814	112GLCLU	1974	165.0	134	144	03-17-1998	62.58
405005073233701	S45208.1	405005	0732337	112GLCLU	1974	185.3	123	133	03-17-1998	76.06
404945073174501	S45210.1	404945	0731745	112GLCLU	1974	130.2	97	107	03-17-1998	63.03
404305073085300	S45220.1	404308	0730852	211MGTY	1997	10.0			04-23-1998	6.78
404508073080902	S45636.1	404508	0730809	112GLCLU	1974	14.1	17	27	03-18-1998	9.53
404508073080901	S45637.1	404508	0730809	112GLCLU	1974	13.0	71	81	03-18-1998	9.53
404503073131201	S45839.1	404502	0731315	211MGTY	1976	40.0	650	722	04-16-1998	24.53
405231073250500	S46281.1	405231	0732505	112GLCLU	1974	34.0	38	50	03-17-1998	20.82
404823073211800	S46283.1	404823	0732118	112GLCLU	1974	275.0	225	235	03-17-1998	69.10
405915072121501	S46522.1	405915	0721215	112GLCLU	1972	91.2			03-18-1998	10.65
405828072115101	S46523.1	405828	0721150	112GLCLU	1972	64.5	94	97	03-18-1998	11.09
405906072153501	S46524.1	405907	0721534	112GLCLU	1972	15.7			03-18-1998	11.47
405746072175901	S46527.1	405747	0721800	112GLCLU	1972	75.0	-		03-20-1998	25.46
405842072211401	S46528.1	405843		112GLCLU	1972	125.5	99	102	03-20-1998	39.73
405602072221802	S46529.2	405602	0722248	112GLCLU	1983	70.0	77	81	03-20-1998	16.41
405418072233800	S46530.1	405418		112GLCLU	1972	36.8	38	42	03-20-1998	9.96
405332072262201	S46531.1	405332	0722622	112GLCLU	1972	36.4			03-20-1998	5.83
405147072305001	S46532.1	405147		112GLCLU	1972	24.0			03-16-1998	5.15
405302072313501	S46533.1	405302	0723135	112GLCLU	1972	84.7			03-16-1998	6.69
405230072341901	S46534.1	405230		112GLCLU	1973	82.0	81	84	03-16-1998	11.66
405144072333701	S46535.1	405144		112GLCLU	1972	44.5			03-16-1998	8.42
405324072352101	S46536.1	405324	0723521	112GLCLU	1976	24.7			03-16-1998	12.93
405130072353101	S46537.1	405130	0723531	112GLCLU	1972	56.2			03-16-1998	12.74
405348072370401	S46538.1	405340	0723709	112GLCLU	1972	61.3			03-16-1998	26.74
405222072370701	S46539.1	405222	0723707	112GLCLU	1972	100.0			03-16-1998	16.04
405020072355801	S46540.1	405020	0723558	112GLCLU	1972	37.8			03-16-1998	9.96
405353072403801	S46541.1	405342	0724057	112GLCLU	1972	27.3			03-16-1998	18.33
405301072415101	S46542.1	405301	0724151	112GLCLU	1972	163.0			03-16-1998	25.60
405131072455701	S46546.1	405131	0724557	112GLCLU	1972	127.0			03-18-1998	29.01
405620073022001	S46549.1	405624	0730221	112GLCLU	1972	97.0	97	101	03-23-1998	23.86
404804072484101	S46713.1	404804	0724841	211MGTY	1977	20.0	385	440	04-23-1998	14.01
404606073174601	S46830.1	404606	0731746	211MGTY	1976	76.0	550	651	04-16-1998	48.39
405230073164400	S46965.1	405230	0731644	112GLCLU	1974	166.0	138	148	03-18-1998	45.91
404759073251600	S47220.1	404759	0732516	112GLCLU	1974	172.3	79	89	03-17-1998	108.91
405417072402300	S47230.1	405417	0724023	112GLCLU	1974	22.0	20	32	03-16-1998	13.25
405536072375303	S47231.2	405536	0723753	112GLCLU	1995	21.0	39	41	03-17-1998	3.27
405407073001101	S47310.1	405407	0730011	211MGTY	1976	135.0	623	693	04-28-1998	51.74
405110072531503	S47438.1	405123	0725407	211MGTY	1983	105.0	214	265	04-30-1998	38.64
405111073065801	S47675.1	405111	0730658	112GLCLU	1974	119.5	78	88	03-24-1998	56.00
405004072515400	S47750.1	405004	0725154	112GLCLU	1974	95.0	83	93	12-09-1997	27.90
									03-17-1998	27.72
404607072594701	S47752.1	404607	0725947	112GLCLU	1974	24.0	88	98	03-17-1998	8.93
405412072441401	S47753.1	405405	0724427	112GLCLU	1974	45.0	90	100	03-17-1998	26.09
405412072441402	S47754.1	405405	0724427	112GLCLU	1974	45.0	29	39	03-17-1998	26.10
405844072191601	S48438.1	405844	0721916	112GLCLU	1974	113.6	69	79	03-20-1998	66.41
404941072414801	S48442.1	404941	0724148	112GLCLU	1974	44.0	42	52	03-16-1998	13.84
410243071560101	S48519.1	410242	0715605	112GLCLU	1974	63.5	68	78	03-17-1998	3.37
404423073084101	S49396.1	404423	0730841	112GLCLU	1973	6.3	8	13	03-18-1998	2.88
405335072562903	S49606.1	405337	0725629	211MGTY	1983	75.0	307	367	04-28-1998	50.54
405120073085101	S50500.1	405120	0730851	112GLCLU	1974	118.0	81	85	03-24-1998	70.20

GROUND-WATER LEVELS: SUFFOLK COUNTY—Continued SECONDARY WELLS

			S	ECONDARY	WELLS					
Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	Altitude of land surface (ft, msl)	(feet	interval below urface) Bottom	Date	Water level (ft, msl)
405059073085601	S50501.1	405059	0730757	112GLCLU	1974	73.6	60	64	03-24-1998	72.13
405010073103101	S50505.1	405010	0731031	112GLCLU	1973	50.0	6	10	03-24-1998	46.71
405146073141001	S50503.1	405146		112GLCLU					03-24-1998	38.89
					1973	84.5				
405100073152601	S50513.1	405100		112GLCLU	1974	93.0	57	61	03-18-1998	47.54
404432073151303	S50546.1	404432		211MGTY	1976	39.0	604	665	04-21-1998	28.44
410430072202301	S51176.1	410430		112GLCLU	1974	39.6	47	57	03-18-1998	4.72
410147072184101	S51184.1	410147	0721841	112GLCLU	1974	11.8	20	30	03-18-1998	2.93
410047072184701	S51186.1	410047	0721847		1974	24.1	30	40	03-18-1998	3.70
405808072385401	S51568.1	405808		112GLCLU	1974	56.0	58	68	03-17-1998	9.93
405805072403701	S51571.1	405805		112GLCLU	1974	88.0	95	105	03-17-1998	8.86
405512072395201	S51573.1	405512		112GLCLU	1974	25.0	78	88	03-16-1998	8.50
405544072411802	S51575.2	405544	0724118	112GLCLU	1994	33.0		-	03-17-1998	18.25
405630072442001	S51577.1	405630	0724420	112GLCLU	1974	80.0	83	93	03-17-1998	19.18
405542072463001	S51579.1	405542	0724630	112GLCLU	1974	78.0	75	85	03-17-1998	28.61
405722072342001	S51581.1	405722	0723420	112GLCLU	1974	32.0	32	42	03-17-1998	8.71
405853072353901	S51582.1	405853	0723539	112GLCLU	1974	62.0	72	82	03-17-1998	7.20
410516072200901	S52084.1	410516	0722009	112GLCLU	1974	28.4	62	72	03-18-1998	3.95
404357072515701	S52162.1	404357	0725157	211LLYD	1976	18.0	1670	1690	03-18-1998	22.08
404357072515702	S52163.1	404357	0725157	211MGTY	1974	17.0	1280	1300	03-18-1998	15.60
404357072515703	S52164.1	404357	0725157	211MGTY	1974	17.0	709	730	03-18-1998	14.45
405512072395202	S52449.1	405512	0723952	112GLCLU	1974	23.0	28	38	03-16-1998	8.38
405354073021202	S52490.1	405355	0730212	211MGTY	1978	137.0	480	554	04-23-1998	51.24
404944072380901	S52551.1	404944		112GLCLU	1974	27.8	20	25	03-16-1998	10.55
404948072372601	S52554.1	404948		112GLCLU	1974	18.4			03-16-1998	7.40
410753072205501	S53331.1	410747		112GLCLU	1975	47.0	58	68	03-17-1998	3.76
405924072342301	S53333.1	405924		112GLCLU	1975	51.0	62	72	03-17-1998	6.14
405032073162802	S53360.1	405034		211MGTY	1984	141.0	551	667	04-21-1998	48.85
404950073085002	S53498.1	404948		211MGTY	1977	90.0	663	718	04-14-1998	44.73
404759073122501	S54308.1	404759		211MGTY	1984	109.0	722	792	04-16-1998	40.50
405123072533701	S54883.1	405049		112GLCLU	1975	79.9			12-09-1997	33.80
100120012000101	00100011	100010	0.200.0		1070	7 0.0			03-17-1998	34.02
405418072494401	S54884.1	405418	0724944	112GLCLU	1975	63.0			03-17-1998	45.28
405706072345601	S54885.1	405706		112GLCLU	1975	11.1	16	20	03-17-1998	9.61
405242072381801	S54886.1	405241		112GLCLU	1975	59.4	51	55	03-16-1998	18.02
405120073231801	S55049.1	405120		112GLCLU	1975	207.0	175	179	03-17-1998	56.60
405900072192901	S57369.1	405855		112GLCLU	1975	76.0	93	97	03-20-1998	16.35
405852072192401	S57370.1	405854		112GLCLU	1976	88.0	96	100	03-20-1998	19.88
404722073093401	S57458.1	404722	0730934		1976	47.4			03-18-1998	32.79
404722073093402		404722	0730934		1976	47.2			03-18-1998	32.75
404651073095701		404651	0730957	_	1976	28.0		-	03-18-1998	25.05
404651073095701		404651	0730957	×-	1976	28.0			03-18-1998	25.05
405123073125101	S57484.1	405123		112GLCLU	1975	15.5	15	19	03-18-1998	11.40
405458073005301	S57486.1	405458		112GLCLU	1975	130.5			03-23-1998	51.60
405246072573601	S57487.1	405246		112GLCLU	1975	83.5	-	-	03-16-1998	67.84
405048073122801		405048		112GLCLU	1975	30.0			03-10-1998	28.56
405514073050103	S57488.1			211MGTY		187.0	630		04-21-1998	38.58
		405514			1977			700		3.24
410040072002501	S58921.1	410040		112GLCLU	1976	48.0	67	72 56	03-17-1998 03-17-1998	2.44
410356071544201	S58922.1	410355		112GLCLU	1976	47.8	51	70	03-17-1998	8.94
410404071565901	S58923.1	410401		112GLCLU	1976	57.3	65		03-17-1998	3.51
410401071570202		410401		112GLCLU	1976	57.6	87	92		9.20
405933072093401	S58924.1	405934		112GLCLU	1976	110.3	132	137	03-18-1998 03-18-1998	10.33
405950072124501	S58925.1	405952		112GLCLU	1976	72.0	85			
405607072225801	S58957.1	405606		112GLCLU	1976	188.8	196	201	03-20-1998 03-20-1998	13.16 28.15
405737072215801	S58958.1	405738		112GLCLU	1976	190.0	203	208		17.65
405816072162801	S58959.1	405808		112GLCLU	1976	187.5	195	200 155	03-20-1998 03-20-1998	24.35
405827072190501	S58960.1	405827	0/21905	112GLCLU	1976	134.2	150	100	03-20-1996	24.00

SECONDARY WELLS

			5.	ECONDAKI	WELLS					
Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	Altitude of land surface (ft, msl)	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
405842072164901	S58961.1	405831	0721639	112GLCLU	1976	126.5	125	130	03-20-1998	8.36
405615072182301	S59793.1	405616	0721823	211MGTY	1984	34.0	512	522	03-20-1998	12.46
405642072240001	S59992.1	405642		211MGTY	1977	24.2	268	278	03-20-1998	6.15
405559072145901	S60123.1	405600		211MGTY	1984	12.0	270	280	03-20-1998	8.60
404524073044801	S60812.1	404524		211MGTY	1984	38.0	404	484	04-21-1998	26.87
405616072182301	S62393.1	405616		112GLCLU	1984	34.0	30	34	03-20-1998	16.64
405600072152301	S62394.1	405600		112GLCLU	1984	12.0	70	74	03-20-1998	8.88
405600072150003	S62395.1	405600						14	03-20-1998	8.88
405740073064501	S62405.1	405740		112GLCLU	1984 1977	12.0	10	55	03-20-1998	4.63
405604073080001	S62407.1	405604				38.0	51	45		14.79
				112GLCLU	1977	40.0	41		03-23-1998	
404415073114001	S63618.1	404416		211MGTY	1984	20.0	490	550	04-21-1998	20.29
404426073181201	S63747.1	404426	0731812		1990	50.0			03-16-1998	37.71
404356073105501	S63830.1	404356	0731055		1978	17.7			03-18-1998	14.52
404303073112801	S63832.1	404303	0731128		1978	7.3			03-18-1998	5.69
404345073124001	S63835.1	404345	0731240	-	1978	13.5			03-18-1998	9.23
404331073141701	S63841.1	404331	0731417		1978	12.1			03-18-1998	6.61
404420073151401	S63851.1	404420	0731514	- 	1978	35.0			03-18-1998	26.96
404210073182501	S64192.1	404210	0731825		1978	17.6			03-16-1998	10.69
404116073204201	S64209.1	404116	0732042		1978	10.0			03-16-1998	5.99
404116073204301	S64210.1	404116	0732043	-	1978	10.0			03-16-1998	6.00
404659073202001	S64313.1	404659		112GLCLU	1979	89.4	25	30	03-16-1998	74.57
404746073221901	S64316.1	404746		112GLCLU	1979	160.1	58	63	03-17-1998	111.51
404900073242801	S64317.1	404900		112GLCLU	1978	149.6	78	83	03-17-1998	74.81
404737073251601	S64318.1	404737	0732516	112GLCLU	1990	142.0	55	60	03-17-1998	99.16
404436073135601	S64525.1	404436	0731356		1978	26.0			03-20-1998	22.70
404813073084102	S65601.1	404813	0730841	112GLCLU	1978	62.6	38	41	03-18-1998	39.80
405030073180601	S65602.1	405030	0731806	112GLCLU	1978	146.0	91	96	03-17-1998	71.93
404713072575701	S65603.1	404718	0725749	112GLCLU	1978	54.0	65	70	03-17-1998	26.69
410104072303001	S65605.1	410104	0723030		1978	41.0	41	44	03-17-1998	6.09
405003073155201	S65607.1	405003	0731552	112GLCLU	1978	138.0	97	102	03-18-1998	51.54
405200073082101	S65608.1	405200	0730821		1978	105.0	67	72	03-24-1998	66.13
404944073104001	S65609.1	404944	0731040		1978	52.7	10	15	03-24-1998	48.45
405351072535101	S65855.1	405351	0725351	112GLCLU	1978	77.6	28	32	03-16-1998	49.14
405548072593501	S65861.1	405549	0725936	112GLCLU	1978	143.9	106	110	03-16-1998	43.70
404430073123301	S66135.1	404124	0732415	211MGTY	1980	34.8	126	136	03-20-1998	22.54
404524073123401	S66149.1	404524	0731234	211MGTY	1980	40.0	157	167	03-18-1998	25.43
405245072573702	S66506.1	405245	0725737	112GLCLU	1979	83.0	55	60	03-16-1998	51.52
405014072564001	S66508.1	405013	0725640	112GLCLU	1979	66.0	55	60	12-09-1997	37.90
									03-16-1998	39.39
405002073043501	S66509.1	405002	0730435	112GLCLU	1979	139.7	109	114	03-24-1998	52.65
405441073043501	S66510.1	405350	0730316	112GLCLU	1979	137.8			03-23-1998	52.10
405644073051201	S66511.1	405644	0730512	112GLCLU	1979	105.0	-4-		03-23-1998	13.25
405504073011201	S66512.1	405504		112GLCLU	1979	120.6	99	104	03-23-1998	49.76
404949073215101	S66847.1	404949		112GLCLU	1978	170.8	97	102	03-17-1998	75.51
404922073071201	S66848.1	404922		112GLCLU	1979	98.0	67	72	03-24-1998	46.77
404632073070802	S67074.1	404632		211MGTY	1984	70.0	765	825	04-16-1998	40.11
404652073120301	S67197.1	404652		211MGTY	1984	65.0			04-14-1998	35.00
405255073044301	S67564.1	405255		112GLCLU	1980	103.0	80	85	03-23-1998	57.14
404612073055003	S68552.1	404612		211MGTY	1984	57.0			04-21-1998	31.67
405551072561601	S69364.1	404551		211MGTY	1983	32.8	-22		04-23-1998	19.92
405504073282501	S69780.1	405504		112GLCLU	1981	110.9	139	150	03-17-1998	5.76
405556073274201	S69934.1	405556	0732742		1981	18.1	44	46	03-17-1998	7.55
410137071590201	S70255.1	410137		112GLCLU	1980	169.6	315	320	03-17-1998	4.00
410108071590003	S70257.1	410108		112GLCLU	1981	50.1	104	109	03-17-1998	2.65
410233071553801	S70259.1	410233		112GLCLU	1981	38.7	92	97	03-17-1998	2.81
410213071572201	S70260.1	410213		112GLCLU	1981	27.8	94	99	03-17-1998	4.22
	3, 52,00.1	1.52.10	31 13122	LGLOLO	.001	27.0	0.1	55	23 11 1000	

GROUND-WATER LEVELS: SUFFOLK COUNTY—Continued SECONDARY WELLS

			Si	ECONDARY	WELLS					
	Local			Aquifer	Start of	of land	(feet	n interval below surface)		Water
Station number	number	Latitude	Longitude	unit code	record	(ft, msl)	Top	Bottom	Date	(ft, msl)
410343071533101	S70262.1	410343	0715331	112GLCLU	1981	50.5	158	163	03-17-1998	3.66
410213071572202	S70263.1	410213	0715722	112GLCLU	1981	27.8	40	45	03-17-1998	4.30
405155073045203	S70488.1	405158	0730448	211MGTY	1984	95.6	344	437	04-21-1998	56.51
410320071570601	S70617.1	410320	0715706	112GLCLU	1982	72.7	93	97	03-17-1998	7.20
410330071563901	S70618.1	410330	0715639	112GLCLU	1981	85.6	100	105	03-17-1998	4.66
410414071515901	S70627.1	410414	0715159	112GLCLU	1981	90.1	90	95	03-17-1998	15.16
405728072342402	S71570.1	405728	0723424	112GLCLU	1988	29.3	50	52	03-17-1998	8.73
405811072350402	S71572.1	405811	0723504	112GLCLU	1982	46.8	52	56	03-17-1998	8.72
405801072354401	S71576.1	405801	0723544	211MGTY	1982	53.0	443	448	03-17-1998	8.59
404807072590801	S71785.1	404807	0725908	211MGTY	1984	71.9			04-28-1998	36.36
410322071523901	S72283.1	410322	0715239	112GLCLU	1982	58.6	84	89	03-17-1998	4.16
410211071560001	S72416.1	410211	0715600	112GLCLU	1982	44.2	93	97	03-17-1998	1.80
410235071564301	S72417.1	410235	0715643	112GLCLU	1982	59.6	71	75	03-17-1998	4.07
410319071555901	S72418.1	410319	0715559	112GLCLU	1982	11.6	51	55	03-17-1998	2.97
404801072553801	S72812.1	404802	0725538	211MGTY	1982	36.0	189	194	03-17-1998	26.66
410420071551901	S72871.1	410420	0715519	112GLCLU	1982	5.4	33	38	03-17-1998	1.79
405616072182302	S73990.1	405616	0721823	211MGTY	1984	34.0	540	545	03-20-1998	10.50
405642072240003	S73993.1	405642	0722400	211MGTY	1984	24.2	230	235	03-20-1998	6.24
405600072150005	S73994.1	405600	0721500	211MGTY	1984	12.0	298	303	03-20-1998	6.52
404750073225302	S74284.2	404750	0732253	211MGTY	1984	154.0	699	704	03-17-1998	66.74
404750073225303	S74285.1	404750	0732253	211MGTY	1984	154.3	440	445	03-17-1998	68.27
404750073225304	S74286.1	404750	0732253	211MGTY	1984	154.6	107	112	03-17-1998	69.58
405201072544301	S74287.1	405200	0725434	112GLCLU	1983	58.7	31	35	12-08-1997	44.36
									03-16-1998	46.31
405418072511201	S74289.1	405417	0725116	112GLCLU	1983	76.8	40	44	03-16-1998	46.51
405421072474501	S74291.1	405421	0724745	112GLCLU	1983	44.4	15	19	12-08-1997	38.68
									03-17-1998	39.66
405017072495001	S74293.1	405017	0724950	112GLCLU	1983	83.6	67	71	12-08-1997	28.22
									03-17-1998	28.74
405213072481101	S74294.1	405213	0724808	112GLCLU	1983	56.5	32	36	12-08-1997	34.89
								(5)	03-17-1998	38.23
405347072385501	S74296.1	405347		112GLCLU	1983	23.5	20	24	03-16-1998	17.55
405348072370501	S74298.1	405340		112GLCLU	1983	61.3	74	78	03-16-1998	14.51
405340072340601	S74299.1	405334		112GLCLU	1983	22.6	20	24	03-16-1998	11.18
405115072370501	S74300.1	405127		112GLCLU	1983	75.0	68	72	03-16-1998	15.32
405434072421401	S74302.1	405422		112GLCLU	1983	36.5	40	44	03-16-1998	20.70
405435072421401		405431		112GLCLU	1983	19.2	20	24	03-16-1998	16.48
405419072381201		405417		112GLCLU	1983	25.3	25	29	03-16-1998	10.19
405256072392301	S74308.1	405255		112GLCLU	1983	98.5	100	104	03-16-1998	21.24
404849073261201		404849		211MGTY	1984	365.0	452	455	03-17-1998	68.35
404433073244903	\$74586.1	404433	0732449	211MGTY	1984	86.0	433	438	03-16-1998	52.70
440000070005004	0754004	440040	0700055	44001.01.11	4000	44.0	40	00	07-24-1998	54.74
410309072205601		410319		112GLCLU	1983	11.0	18	23	03-18-1998	2.49
410303072194401		410304		112GLCLU	1983	14.0	24	29	03-18-1998	4.42
404530073181102		404530		211MGTY	1984	63.5	752	757	03-16-1998	42.99
404530073181103		404530		211MGTY	1984	63.2	495	500	03-16-1998	42.65
404530073181104		404530		211MGTY	1984	63.0	186	191	03-16-1998	42.94
404530073181105		404530		112GLCLU	1984	63.0	57	62	03-16-1998	53.50
404852073024202		404852		112GLCLU	1984	104.8	70	75	03-17-1998	46.75
404942073175502		404942		211MGTY	1984	130.0	625	630	03-17-1998	61.40
404942073175503		404942		211MGTY	1984	130.0	455	460	03-17-1998	61.44
404942073175504		404942		211MGTY	1984	130.0	245	250	03-17-1998	62.58
405446072524801	S76834.1	405446	0/25248	112GLCLU	1984	87.9	44	48	12-08-1997	47.92 48.82
405004072515402	S78333 1	405004	0725154	211MGTY	1985	95.0	331	336	03-16-1998 12-09-1997	27.25
703004072313402	370323.1	400004	0120104	ZINGIT	1300	95.0	331	330	03-17-1998	27.43
									00-17-1990	27.40

GROUND-WATER LEVELS: SUFFOLK COUNTY—Continued SECONDARY WELLS

Station number	Local number	Latitude	Longitude	Aquifer unit code	Start of record	Altitude of land surface (ft, msl)	(feet	n interval below surface) Bottom	Date	Water level (ft, msl)
405641072341604	S83792.1	405641	0723416	112GLCLU	1988	6.0	16	18	03-17-1998	1.91
405405072442701	S89534.1	405405	0724427	211MGTY	1994	44.0	782	792	03-17-1998	25.05
405405072442702	S89535.1	405405	0724427	211MGTY	1990	44.0	510	520	03-17-1998	26.12
405405072442703	S89536.1	405405	0724427	211MGTY	1990	44.0	260	270	03-17-1998	26.31
403741073215202	S90161.1	403741	0732152	112GLCLU	1992	12.3	40	45	03-17-1998	1.37
403741073215203	S90162.1	403741	0732152	112GLCLU	1992	12.3	65	70	03-17-1998	1.28
403741073215204	S90163.1	403741	0732152	112GLCLU	1992	12.3	80	85	03-17-1998	1.26
405801072354405	S91812.1	405801	0723544	112GLCLU	1988	53.0	191	196	03-17-1998	9.40
405801072354404	S91813.1	405801	0723544	112GLCLU	1988	53.0	91	96	03-17-1998	8.92
410038072284202	S91814.1	405801	0723544	112GLCLU	1988	53.0	67	72	03-17-1998	9.41
405038072431104	S94489.1	405038	0724311	211MGTY	1990	46.0	824	834	03-16-1998	15.86
410801072205701	S95423.1	410748	0722054	112GLCLU	1989	47.9	103	108	03-17-1998	3.92
410753072205301	S95424.1	410800	0722059	112GLCLU	1989	47.9	68	70	03-17-1998	3.47
410759072205601	S95727.1	410757	0722057	112GLCLU	1990	50.0	136	138	03-17-1998	2.39
404759073251701	S95963.1	404759	0732517	112GLCLU	1994	170.0	180	190	03-17-1998	74.09
404759073251702	S95964.1	404759	0732517	211MGTY	1994	170.5	396	406	03-17-1998	73.47
405914072190803	S105710.1	405914	0721908	211MGTY	1995	44.1	437	447	03-20-1998	11.04
405844072191702	S105711.1	405844	0721917	211MGTY	1995	114.5	372	382	03-20-1998	12.68
405914072190801	S106181.1	405914	0721908		1994	43.9	145	155	03-20-1998	10.81
405914072190802	S106182.1	405914	0721908	112GLCLU	1994	43.8	45	55	03-20-1998	19.37
405844072191701	S106185.1	405844	0721917	112GLCLU	1994	114.2	115	125	03-20-1998	66.40
405741072161801	S106189.1	405741	0721618	112GLCLU	1994	70.3	77	87	03-20-1998	14.50

Aquifer unit code	Description
112GLCLU	Upper glacial aquifer, Pleistocene age.
112PLSC	Pleistocene deposit, undifferentiated
112PGFG	Port Washington confining unit, Pleistocene age.
112PGQF	Port Washington aquifer, Pleistocene age.
112GRDR	Gardiners Clay, Pleistocene age.
112JMCO	Jameco Gravel, Pleistocene age.
211MGTY	Magothy aquifer, Cretaceous age.
211RCNF	Raritan confining unit, Cretaceous age.
211LLYD	Lloyd aquifer, Cretaceous age.

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 NASSAU COUNTY

The following wells were sampled for water quality during the 1998 water year by the agency listed below. For further information, contact:

Nassau County Department of Health New Office Building 240 Old Country Road Mineola, NY 11501

| Local identifier |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| N17 | N2414 | N4265 | N5320 | N6915 | N7781 | N8475 | N9591 |
| N36 | N2578 | N4298 | N5322 | N6916 | N7785 | N8480 | N9613 |
| N37 | N2597 | N4327 | N5528 | N6945 | N7796 | N8497 | N9768 |
| N68 | N2602 | N4388 | N5596 | N6953 | N7797 | N8526 | N9792 |
| N69 | N2613 | N4389 | N5603 | N6956 | N7831 | N8557 | N9809 |
| N72 | N2748 | N4393 | N5653 | N7058 | N7852 | N8558 | N9846 |
| N79 | N2920 | N4400 | N5654 | N7076 | N7855 | N8576 | N9878 |
| N80 | N3185 | N4405 | N5656 | N7104 | N7857 | N8595 | N9910 |
| N81 | N3443 | N4411 | N5672 | N7117 | N7873 | N8603 | N9976 |
| N82 | N3456 | N4425 | N5695 | N7157 | N7892 | N8657 | N10033 |
| N83 | N3465 | N4448 | N5696 | N7298 | N7957 | N8658 | N10103 |
| N95 | N3474 | N4450 | N5703 | N7353 | N8004 | N8664 | N10144 |
| N97 | N3475 | N4602 | N5710 | N7377 | N8007 | N8665 | N10149 |
| N101 | N3498 | N4623 | N5762 | N7407 | N8010 | N8713 | N10195 |
| N104 | N3520 | N4756 | N5767 | N7414 | N8011 | N8767 | N10206 |
| N118 | N3523 | N4757 | N5792 | N7421 | N8031 | N8768 | N10207 |
| N119 | N3603 | N4758 | N5852 | N7445 | N8043 | N8776 | N10208 |
| N133 | N3604 | N4759 | N5876 | N7446 | N8054 | N8778 | N10286 |
| N134 | N3605 | N4860 | N5947 | N7482 | N8183 | N8779 | N10401 |
| N152 | N3668 | N5007 | N6042 | N7512 | N8195 | N8818 | N10408 |
| N198 | N3720 | N5099 | N6077 | N7513 | N8196 | N8837 | N10451 |
| N199 | N3732 | N5121 | N6087 | N7515 | N8214 | N8941 | N10555 |
| N570 | N3733 | N5129 | N6092 | N7516 | N8216 | N8956 | N10557 |
| N585 | N3745 | N5145 | N6093 | N7521 | N8217 | N8957 | N10612 |
| N687 | N3876 | N5147 | N6146 | N7522 | N8218 | N8976 | N10863 |
| N1298 | N3878 | N5148 | N6148 | N7523 | N8233 | N8979 | N10889 |
| N1328 | N3881 | N5152 | N6149 | N7526 | N8248 | N9068 | N11004 |
| N1346 | N3905 | N5153 | N6150 | N7548 | N8250 | N9076 | N11037 |
| N1601 | N3934 | N5155 | N6190 | N7549 | N8251 | N9151 | N11107 |
| N1602 | N3935 | N5156 | N6192 | N7551 | N8253 | N9173 | N11295 |
| N1603 | N3937 | N5163 | N6315 | N7552 | N8264 | N9180 | N11509 |
| N1651 | N3953 | N5187 | N6442 | N7561 | N8279 | N9210 | N11647 |
| N1697 | N4043 | N5193 | N6443 | N7562 | N8321 | N9211 | N11909 |
| N1715 | N4077 | N5194 | N6580 | N7593 | N8339 | N9212 | N12217 |
| N1716 | N4082 | N5195 | N6644 | N7620 | N8342 | N9308 | N12218 |
| N1870 | N4095 | N5201 | N6651 | N7649 | N8354 | N9334 | N12525 |
| N1958 | N4096 | N5209 | N6657 | N7650 | N8355 | N9338 | N12535 |
| N2028 | N4097 | N5260 | N6744 | N7665 | N8409 | N9452 | N12560 |
| N2030 | N4132 | N5302 | N6745 | N7720 | N8414 | N9463 | N12639 |
| N2052 | N4206 | N5303 | N6817 | N7747 | N8420 | N9488 | N12727 |
| N2214 | N4243 | N5304 | N6866 | N7772 | N8426 | N9514 | N12734 |
| N2400 | N4245 | N5308 | N6867 | N7773 | N8457 | N9520 | N12735 |
| | | N5318 | N6893 | N7776 | N8474 | N9521 | N12796 |

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 19978NASSAU COUNTY (Continued)

The following wells were sampled for water quality during the 1998 water year by the agency listed below. For further information, contact:

Nassau County Department of Public Works Water Supply Unit 170 Cantiague Rock Road Hicksville, NY 11801

| Local identifier |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| N9 | N4213 | N8832 | N9653 | N10425 | N11724 | N12151 | N12614 |
| N53 | N5129 | N8848 | N9659 | N10430 | N11726 | N12152 | N12618 |
| N67 | N6581 | N8849 | N9663 | N10605 | N11730 | N12153 | N12635 |
| N124 | N6657 | N8857 | N9664 | N10620 | N11731 | N12154 | N12636 |
| N129 | N6701 | N8863 | N9667 | N10667 | N11734 | N12156 | N12646 |
| N180 | N6702 | N8873 | N9669 | N10733 | N11735 | N12164 | N12667 |
| N1114 | N6703 | N8876 | N9703 | N10899 | N11738 | N12190 | N12697 |
| N1120 | N6704 | N8877 | N9709 | N10902 | N11739 | N12209 | N12733 |
| N1133 | N6849 | N8891 | N9711 | N10975 | N11779 | N12218 | N12747 |
| N1147 | N6850 | N8940 | N9712 | N10977 | N11782 | N12232 | N12754 |
| N1176 | N6851 | N9077 | N9713 | N10979 | N11785 | N12240 | N12755 |
| N1190 | N6853 | N9078 | N9751 | N11002 | N11795 | N12241 | N12768 |
| N1195 | N6928 | N9079 | N9776 | N11166 | N11822 | N12250 | N12774 |
| N1438 | N7019 | N9088 | N9804 | N11171 | N11829 | N12252 | N12790 |
| N1442 | N7161 | N9117 | N9820 | N11172 | N11834 | N12253 | N12853 |
| N1616 | N7207 | N9154 | N9892 | N11280 | N11837 | N12256 | N12856 |
| N1685 | N7858 | N9188 | N9893 | N11304 | N11956 | N12262 | N12870 |
| N2269 | N8414 | N9191 | N9895 | N11310 | N11961 | N12263 | N12871 |
| N2790 | N8550 | N9208 | N9898 | N11324 | N11962 | N12264 | N12880 |
| N3498 | N8599 | N9316 | N9917 | N11396 | N12004 | N12274 | N12894 |
| N3707 | N8635 | N9383 | N9924 | N11457 | N12039 | N12318 | N12895 |
| N3708 | N8636 | N9406 | N9936 | N11458 | N12050 | N12319 | N12921 |
| N3861 | N8646 | N9408 | N9941 | N11570 | N12075 | N12506 | N12929 |
| N3862 | N8647 | N9468 | N9942 | N11573 | N12076 | N12507 | N12945 |
| N3864 | N8652 | N9478 | N9999 | N11633 | N12079 | N12508 | N12946 |
| N3865 | N8653 | N9608 | N10000 | N11634 | N12082 | N12511 | Q 287 |
| N3867 | N8655 | N9609 | N10001 | N11673 | N12102 | N12522 | Q 1187 |
| N3932 | N8717 | N9647 | N10192 | N11676 | N12112 | N12570 | Q 1237 |
| N4026 | N8747 | N9649 | N10200 | N11720 | N12113 | N12609 | Q 3109 |
| N4062 | N8788 | N9650 | N10292 | N11722 | N12134 | | |

QUALITY OF GROUND WATER

WATER-QUALITY DATA, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997

SUFFOLK COUNTY

The following wells were sampled for water quality during the 1997 water year by the agency listed below. For further information, contact:

Suffolk County Water Authority Sunrise Highway Oakdale, NY 11769

| Local identifier |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| S75 | S20839 | S28503 | S35033 | S42227 | S51457 | S60812 | S71533 | S98523 |
| S703 | S21121 | S28819 | S35446 | S42270 | S51519 | S61910 | S71715 | S98721 |
| S1340 | S21244 | S28928 | S35494 | S42473 | S51609 | S61937 | S71785 | S99014 |
| S1341 | S21247 | S29411 | S36166 | S42504 | S51673 | S62022 | S71881 | S99130 |
| S2415 | S21375 | S29491 | S36459 | S42505 | S51953 | S62855 | S71882 | S99271 |
| S8439 | S21487 | S29492 | S36460 | S42760 | S52126 | S63205 | S71892 | S99928 |
| S11105 | S21632 | S29732 | S36714 | S42761 | S52451 | S63256 | S72245 | S99960 |
| S11165 | S22048 | S30088 | S36748 | S42762 | S52490 | S63618 | S72271 | S100204 |
| S11810 | S22351 | S30117 | S36791 | S42827 | S52943 | S63966 | S72300 | S100453 |
| S12130 | S22362 | S30118 | S36791B | S43001 | S52944 | S64023 | S72326 | S100608 |
| S14326 | S22389 | S30207 | S36869 | S43117 | S52945 | S64062 | S72917 | S100691 |
| S14710 | S22471 | S30208 | S36965 | S43641 | S53074 | S64609 | S73144 | S101321 |
| S14792 | S22547 | S30227 | S36976 | S44640 | S53291 | S64716 | S73332 | S101364 |
| S14828 | S22548 | S30228 | S37140 | S44774 | S53360 | S64847 | S73492 | S101579 |
| S14921 | S22640 | S30234 | S37141 | S44774B | S53361 | S65505 | S74505 | S101655 |
| S15501 | S22711 | S30326 | S37301 | S45610 | S53497 | S65766 | S74573 | S101755 |
| S15514 | S22880 | S30506 | S37351 | S45839 | S53522 | S65905 | S74865 | S102248 |
| S15746 | S23183 | S30762 | S37494 | S45840 | S53593 | S66183 | S76672 | S102721 |
| S15776 | S23184 | S31037 | S37681 | S46235 | S53747 | S66184 | S77010 | S103447 |
| S15898 | S23185 | S31038 | S37847 | S46400 | S53850 | S66366 | S78310 | S103519 |
| S15923 | S23186 | S31039 | S37861 | S46712 | S53851 | S66429 | S78612 | S103522 |
| S16129 | S23255 | S31104 | S38192 | S46713 | S54305 | S66496 | S79293 | S103523 |
| S16175 | S23371 | S31624 | S38194 | S46830 | S54308 | S66657 | S81473 | S105003 |
| S16309 | S23445 | S31913 | S38320 | S46928 | S54377 | S66733 | S82174 | S105300 |
| S16497 | S23524 | S32180 | S38321 | S47024 | S54473 | S66758 | S83096 | S105301 |
| S16892 | S23715 | S32287 | S38491 | S47035 | S54568 | S66881 | S83475 | S105524 |
| S17474 | S23827 | S32325 | S38701 | S47219 | S54730 | S67074 | S83707 | S105669 |
| S17689 | S23832 | S32359 | S38784 | S47310 | S54957 | S67197 | S84848 | S106416 |
| S18261 | S23838 | S32501 | S38785 | S47435 | S55028 | S67656 | S85660 | S106565 |
| S18729 | S24047 | S32551 | S38916 | S47436 | S55463 | S67819 | S88463 | S106977 |
| S18846 | S24484 | S32552 | S38917 | S47437 | S55502 | S67925 | S89754 | S106978 |
| S19048 | S24545 | S33005 | S39024 | S47438 | S55733 | S68161 | S89756 | S107792 |
| S19198 | S24552 | S33006 | S39347 | S47453 | S56038 | S68230 | S90674 | S107894 |
| S19317 | S24663 | S33308 | S39536 | S47673 | S56039 | S68552 | S93519 | S108161 |
| S19399 | S24850 | S33500 | S40330 | S47886 | S56133 | S68666 | S93701 | S108235 |
| S19465 | S25617 | S33775 | S40331 | S47887 | S56674 | S68690 | S93702 | S108335 |
| S19584 | S25674 | S33820 | S40383 | S48193 | S57008 | S68880 | S93794 | S108347 |
| S20057 | S25776 | S33922 | S40497 | S48718 | S57354 | S69024 | S94138 | S108991 |
| S20300 | S26681 | S33970 | S40498 | S49422 | S57357 | S69364 | S94274 | S109073 |
| S20369 | S27070 | S34007 | S40709 | S49606 | S57979 | S69511 | S94286 | S109249 |
| S20479 | S27192 | S34030 | S40710 | S50222 | S57980 | S70008 | S96232 | S109640 |
| S20530 | S27259 | S34031 | S40711 | S50546 | S58708 | S70155 | S96352 | S109647 |
| S20566 | S27440 | S34300 | S40837 | S51214 | S58761 | S70459 | S96673 | S109750 |
| S20635 | S27533 | S34301 | S40838 | S51266 | S59347 | S70488 | S97501 | S110018 |
| S20689 | S27784 | S34460 | S40980 | S51274 | S59744 | S70767 | S97502 | S110782 |
| S20705 | S28408 | S34894 | S42226 | S51275 | S60127 | S71038 | S98322 | S111969 |
| | | | | S51298 | S60486 | S71083 | S98350 | S112290 |
| B Borehole | | | | | | | | |

WATER-QUALITY DATA, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 SUFFOLK COUNTY (Continued)

The following wells were sampled for water quality during the 1998 water year by the agency listed below. For further information, contact:

Suffolk County Department of Health Services 225 Rabro Drive East Hauppauge, NY 11788

| Local identifier |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| S43808 | S43818 | S46287 | S53330 | S64184 | S71189 | S71283 |
| S32809 | S43819 | S47718 | S53335 | S64535 | S71274 | S71284 |
| S43810 | S44918 | S47223 | S53336 | S64556 | S71275 | S71285 |
| S43812 | S45717 | S51566 | S56356 | S67537 | S71276 | S71286 |
| S43813 | S45720 | S51568 | S60107 | S68831 | S71277 | S71287 |
| S43814 | S45721 | S51571 | S60108 | S68916 | S71278 | S71569[|
| S43815 | S45722 | S51582 | S62720 | S69761 | S71281 | S75033 |
| S43816 | S45446 | S53327 | S63825 | S71045 | S71282 | S75456 |

					ELEV.			
				DEPTH	OF LAND SURFACE	- LOW - CASE	ALA- CHLOR,	ATRA- ZINE,
	LOCAL			OF	DATUM	WATER	WATER,	WATER,
STATION NUMBER	IDENTIFIER	DATE	TIME	WELL, TOTAL	(FT. ABOVE	REC	DISS, REC,	DISS, REC
STATION NUMBER	IDENTIFIER	DATE	TIME	(FEET)	NGVD)	(UG/L)	(UG/L)	(UG/L)
				(72008)	(72000)	(49260)	(46342)	(39632)
				(72008)	(72000)	(49200)	(40342)	(33032)
404131073211301	S 64556. 1	06-11-98	1415			<.0020	<.002	.117
404158073225802	S 43813. 1	06-11-98	1330	78.00	35.0	<.0020	<.002	.019
404319073055101	S112740. 1	06-23-98	1330	15.00		<.0020	<.002	.004
404339073090601	S112739. 1	06-23-98	1425	15.00		<.0020	<.002	<.001
404418073095001	s 63825. 1	06-23-98	1030			<.0020	<.002	.012
404433073244905	s 75033. 1	06-11-98	1035	62.00	86.5	<.0020	<.002	.083
404555073240501	S112871. 1	07-06-98	1420	40.00		<0020	<.002	<.001
404707073234201	S112328. 1	05-19-98	1140	78.00		<.0020	<.002	<.001
404716073131602	S 45720. 1	06-16-98	1541	81.00	90.0	<.0020	<.002	<.001
404717073201301	S112248. 1	05-28-98	1215	58.00		<.0020	<.002	.015
404719073205701	S112870. 1	06-03-98	1400	61.00		<.0020	<.002	<.001
404900072451701	S112307. 1	06-29-98	1344	40.00		<.0020	.130	<.001
404922072550701	S112574. 1	06-29-98	1435	30.00		<.0020	<.002	.191
404936073032601	S109995. 1	06-30-98	1005	95.00	139	<.0020	<.002	<.001
404945073174501	S 45210. 1	06-03-98	1315	109.00	130	<.0020	<.002	<.001
404953073170501	S112499. 1	06-18-98	1055	140.00	-22	<.0020	<.002	.628
404953073170501	S112499. 1 S112498. 1	06-18-98	1015	118.00		<.0020	<.002	.411
404953073170502	S112498. 1 S112497. 1	06-18-98	1200			<.0020	<.002	.303
405005073233701	S 45208. 1	06-16-98	1307	137.00	185	<.0020	<.002	<.001
405030073233701	S 65602. 1	05-19-98	1405	96.00	146	<.0020	<.002	<.001
403030073100001	5 05002. 1	03 17 70	1405	50.00	110	1.0020	1.002	
405111072485401	S112252. 1	06-24-98	0955	29.00		<.0020	<.002	<.001
405111073065801	s 47675. 1	06-17-98	1130	90.00	120	<.0020	<.002	<.001
405243073102301	S112681. 1	06-25-98	1315	141.00		<.0020	<.002	<.001
405259073010301	S 48958. 1	06-17-98	1330	80.00	100	<.0020	<.002	<.001
405349072234801	S 48441. 1	06-04-98	1115	61.00	46.0	<.0020	<.002	<.001
		-12 21 22			12000			
405512072395202	S 52449. 1	06-24-98	0900	40.00	23.0	<.0020	<.002	<.001
405516072183401	S112741. 1	07-02-98	1300	26.00		<.0020	<.002	.005
405535072200002	S112329. 1	06-09-98	1045			<.0020	<.002	.005
405535072200003	S112329. 2	06-09-98	1240			<.0020	<.002	.025
405535072200004	S112329. 3	06-10-98	1050		4.5	<.0020	E.004	.012
405547072365001	S111891. 1	07-01-98	1045	100.00		<.0020	<.002	<.001
405554072352201	S112422. 1	07-01-98	1345	117.00		<.0020	<.002	<.001
405626072442701	S112679. 1	05-14-98	1250			<.0020	<.002	.006
405640072200501	S 97916. 1	08-24-98	1315			<.0020	<.002	.214
405655072334702	s 71569. 1	05-13-98	1445	32.00	22.0	<.0020	<.002	.008
405656072443201	S112678. 1	05-14-98	1425	92.00		<.0020	<.002	.006
405715072360201	S112255. 1	05-27-98	1310	40.00		<.0020	<.002	<.001
405716072413301	s 51566. 1	06-10-98	1500	89.00	74.0	<.0020	<.002	.010
405720072122704	S 83707. 1	07-02-98	1050	120.00		<.0020	<.002	.060
405730072364101	S112742. 1	06-25-98	1520	49.00		<.0020	<.002	E.002

	GIO	und-water	T esticide c	упорис-за	ampning Ste	ELEV. OF LAND	ACETO-	ALA-	ATRA-
	LOCAL				DEPTH OF WELL,	SURFACE DATUM (FT.	CHLOR, WATER FLTRD	CHLOR, WATER, DISS,	ZINE, WATER, DISS,
STATION NUMBER	DENTIFIER		DATE	TIME	TOTAL	ABOVE	REC	REC,	REC
					(FEET)	NGVD)	(UG/L)	(UG/L)	(UG/L)
					(72008)	(72000)	(49260)	(46342)	(39632)
405805072403701	5 51571. 1		06-10-98	1310	108.00	88.0	<.0020	<.002	.013
	3 48429. 1		06-04-98	1311	66.00	50.0	<.0020	<.002	<.001
	65092. 1		08-25-98	1651	55.00		<.0020	<.002	<.001
	106745. 1		08-13-98	1340			<.0020	.012	<.001
410106072293701 s	71280. 1		05-27-98	1120	45.00	30.0	<.0020	<.002	<.001
410222072310001	3112317. 1		08-25-98	1740		+-	<.0020	.010	<.001
	100380. 1		08-13-98	1306			<.0020	<.002	1.04
410337072264401 S	33775. 1		05-21-98	1225	360.00	25.0	<.0020	.174	<.001
410415072260701 S	24850. 1		05-21-98	1157	78.00	45.0	<.0020	<.002	.045
410918072143001 S	81306. 1		08-24-98	1245		==	<.0020	<.002	.072
	BEN-	2000	CAR-	CARBO-					DEETHYL
	FLUR-	BUTYL-		FURAN		CYANA-	DCPA		ATRA-
	ALIN	ATE,	WATER	WATER	CHLOR-	ZINE,	WATER	D D1	ZINE,
	WAT FLD 0.7 U	WATER,	FLTRD 0.7 U	FLTRD 0.7 U	PYRIFOS DIS-	WATER,	FLTRD 0.7 U	P,P' DDE	WATER, DISS,
STATION NUMBER DATE	GF, REC	DISS, REC	GF, REC	GF, REC		DISS, REC	GF, REC		
STATION NOMBER DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
	(82673)	(04028)	(82680)	(82674)	(38933)	(04041)	(82682)	(34653)	(04040)
404131073211301 06-11-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0139
404158073225802 06-11-98	<.0020	<.0020	E.0122	<.0030	<.0040	<.0040	<.0020	<.0060	E.0064
404319073055101 06-23-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	E.0022	<.0020
404339073090601 06-23-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	E.0024	<.0020
404418073095001 06-23-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0055
404433073244905 06-11-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0121
404555073240501 07-06-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
404707073234201 05-19-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	E.0005	<.0020
404716073131602 06-16-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
404717073201301 05-28-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0018
404719073205701 06-03-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
404900072451701 06-29-98	<.0020	<.0020	E.0086	<.0030	<.0040	< .0040	<.0020	E.0011	<.0020
404922072550701 06-29-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	E.0015	E.0358
404936073032601 06-30-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
404945073174501 06-03-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
404953073170501 06-18-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0188
404953073170502 06-18-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0116
404953073170503 06-18-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0158
405005073233701 06-16-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	E.0012	<.0020
405030073180601 05-19-98	<.0020	<.0020	E.0139	<.0030	<.0040	<.0040	<.0020	E.0023	<.0020
405111072485401 06-24-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405111073065801 06-17-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405243073102301 06-25-98		<.0020	E.0061	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405259073010301 06-17-98		<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405349072234801 06-04-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	E.0011	<.0020

	BEN-		CAR-	CARBO-					DEETHYL
	FLUR-	BUTYL-	BARYL	FURAN		CYANA-	DCPA		ATRA-
	ALIN	ATE,	WATER	WATER	CHLOR-	ZINE,	WATER		ZINE,
	WAT FLD	WATER,	FLTRD	FLTRD	PYRIFOS	WATER,	FLTRD	P,P'	WATER,
	0.7 U	DISS,	0.7 U	0.7 U	DIS-	DISS,	0.7 U	DDE	DISS,
STATION NUMBER DATE	GF, REC	REC	GF, REC	GF, REC	SOLVED	REC	GF, REC	DISSOLV	REC
	(UG/L)								
	(82673)	(04028)	(82680)	(82674)	(38933)	(04041)	(82682)	(34653)	(04040)
405512072395202 06-24-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405516072183401 07-02-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	E.0030	<.0020
405535072200002 06-09-98	<.0020	<.0020	<.0030	E.0514	<.0040	<.0040	<.0020	<.0060	<.0020
405535072200003 06-09-98	<.0020	<.0020	<.0030	E.405	<.0040	<.0040	<.0020	<.0060	E.0133
405535072200004 06-10-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	E.0092	E.0067
405547072365001 07-01-98	<.0020	<.0020	E.0094	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405554072352201 07-01-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405626072442701 05-14-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0036
405640072200501 08-24-98	<.0020	<.0020	E.0688	<.0030	<.0040	<.0040	<.0020	<.0060	E.0101
405655072334702 05-13-98	<.0020	<.0020	<.0030	E.157	<.0040	<.0040	<.0020	<.0060	E.0012
405656072443201 05-14-98	<.0020	<.0020	<.0030	E.183	<.0040	<.0040	<.0020	<.0060	<.0020
405715072360201 05-27-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405716072413301 06-10-98	<.0020	<.0020	<.0030	E.0806	<.0040	.0191	<.0020	.0061	<.0020
405720072122704 07-02-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0066
405730072364101 06-25-98	<.0020	<.0020	E.0138	E.0106	<.0040	<.0040	<.0020	E.0020	E.0047
405805072403701 06-10-98	<.0020	<.0020	<.0030	E.0342	<.0040	<.0040	<.0020	E.0053	E.0054
405807072121001 06-04-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405924072303401 08-25-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	<.0020
405935072305601 08-13-98	<.0020	<.0020	<.0030	E.220	<.0040	<.0040	<.0020	E.0019	E.0145
410106072293701 05-27-98	<.0020	<.0020	<.0030	E.0073	<.0040	<.0040	<.0020	E.0025	<.0020
410222072310001 08-25-98	<.0020	<.0020	<.0030	E.193	<.0040	<.0040	<.0020	<.0060	<.0020
410252072275001 08-13-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0172
410337072264401 05-21-98	<.0020	<.0020	<.0030	E.0215	<.0040	<.0040	<.0020	<.0060	<.0020
410415072260701 05-21-98		<.0020	<.0030	E.0604	<.0040	<.0040	<.0020	<.0060	<.0020
410918072143001 08-24-98	<.0020	<.0020	<.0030	<.0030	<.0040	<.0040	<.0020	<.0060	E.0214
			2,6-DI-	DISUL-		ETHAL-	ETHO-		
			ETHYL	FOTON	EPTC	FLUR-	PROP		
	DI-	DI-	ANILINE	WATER	WATER	ALIN	WATER	PARA-	FONOFOS
	AZINON,	ELDRIN	WAT FLT	FLTRD	FLTRD	WAT FLT	FLTRD	THION,	WATER
	DIS-	DIS-	0.7 U	DIS-	DISS				
STATION NUMBER DATE	SOLVED	SOLVED	GF, REC	SOLVED	REC				
	(UG/L)								
	(39572)	(39381)	(82660)	(82677)	(82668)	(82663)	(82672)	(39542)	(04095)
404131073211301 06-11-98		<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404158073225802 06-11-98	<.002	.028	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404319073055101 06-23-98		<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404339073090601 06-23-98		<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404418073095001 06-23-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404433073244905 06-11-98		<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404555073240501 07-06-98		<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404707073234201 05-19-98		<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404716073131602 06-16-98		<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404717073201301 05-28-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030

			2,6-DI-	DISUL-		ETHAL-	ETHO-		
			ETHYL	FOTON	EPTC	FLUR-	PROP		
	DI-	DI-	ANILINE	WATER	WATER	ALIN	WATER	PARA-	FONOFOS
	AZINON,	ELDRIN	WAT FLT	FLTRD	FLTRD	WAT FLT	FLTRD	THION,	WATER
	DIS-	DIS-	0.7 U	DIS-	DISS				
STATION NUMBER DATE	SOLVED	SOLVED	GF, REC	SOLVED	REC				
	(UG/L)								
	(39572)	(39381)	(82660)	(82677)	(82668)	(82663)	(82672)	(39542)	(04095)
404710072205701 06 02 00	. 000	001		04.50	0000	0040	2020		. 0020
404719073205701 06-03-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404900072451701 06-29-98	<.002	<.001	.0125	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404922072550701 06-29-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404936073032601 06-30-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404945073174501 06-03-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404953073170501 06-18-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
404953073170502 06-18-98	<.002	.022	<.0030	<.0170	<.0020	< .0040	<.0030	< .004	<.0030
404953073170503 06-18-98	<.002	.007	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405005073233701 06-16-98	<.002	.103	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405030073180601 05-19-98	<.002	.063	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405111072485401 06-24-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405111072485401 06-24-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405243073102301 06-25-98		<.001							
	<.002		<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405259073010301 06-17-98	<.002	<.001		<.0170	<.0020	<.0040	<.0030	<.004	
405349072234801 06-04-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405512072395202 06-24-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405516072183401 07-02-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405535072200002 06-09-98	<.002	<.001	<.0030	<.0170	.0078	<.0040	<.0030	<.004	<.0030
405535072200003 06-09-98	<.002	<.001	<.0030	<.0170	.0070	<.0040	<.0030	<.004	<.0030
405535072200004 06-10-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405547072365001 07-01-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405554072352201 07-01-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405626072442701 05-14-98	<.002	.007	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405640072200501 08-24-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405655072334702 05-13-98	<.002	.007	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405656050442201 05 14 00	. 000	001	0020	0150	0000	. 0040	. 0020	. 004	. 0030
405656072443201 05-14-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405715072360201 05-27-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405716072413301 06-10-98	<.002	E.004	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405720072122704 07-02-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405730072364101 06-25-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405805072403701 06-10-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405807072121001 06-04-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405924072303401 08-25-98	<.002	< .001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
405935072305601 08-13-98	<.002	.013	<.0030	<.0170	.142	<.0040	<.0030	<.004	<.0030
410106072293701 05-27-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
410222072310001 08-25-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
410252072310001 08-23-38	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
410337072264401 05-21-98	<.002	<.001	<.0030	<.0170	.0020	<.0040	<.0030	<.004	<.0030
410415072260701 05-21-98	<.002	<.001	<.0030	<.0170	<.0020	<.0040	<.0030	<.004	<.0030
410918072143001 08-24-98	<.002		<.0030		<.0020	<.0040	<.0030	<.004	<.0030
3T0010012T4000T 00-74-38	1.002	<.001	0030	<.0170	0020	0040	0030		

WATER RESOURCES DATA - NEW YORK, 1998

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY MISCELLANEOUS SITES

STATION NUMBER DATE	ALPHA BHC DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L)	MALA- THION, DIS- SOLVED (UG/L)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L)	METO- LACHLOR WATER DISSOLV (UG/L)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L)
	(34253)	(39341)	(82666)	(39532)	(82686)	(82667)	(39415)	(82630)	(82671)
404121072011201 06 11 00	. 0000		0000	0.05		0050	. 000	004	. 0040
404131073211301 06-11-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404158073225802 06-11-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404319073055101 06-23-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404339073090601 06-23-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404418073095001 06-23-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404433073244905 06-11-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.005	<.004	<.0040
404555073240501 07-06-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.010	<.004	<.0040
404707073234201 05-19-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.014	<.004	<.0040
404716073131602 06-16-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404717073201301 05-28-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404719073205701 06-03-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404900072451701 06-29-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404922072550701 06-29-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.010	<.004	<.0040
404936073032601 06-30-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404945073174501 06-03-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404953073170501 06-18-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404953073170502 06-18-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
404953073170503 06-18-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405005073233701 06-16-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405030073180601 05-19-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405111072485401 06-24-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405111073065801 06-17-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405243073102301 06-25-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405259073010301 06-17-98	<.0020	< .004	<.0020	<.005	<.0010	<.0060	<.002	< .004	<.0040
405349072234801 06-04-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405512072395202 06-24-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405516072183401 07-02-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.026	<.004	<.0040
405535072200002 06-09-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405535072200003 06-09-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	.093	<.0040
405535072200004 06-10-98		<.004	<.0020	<.005	<.0010	<.0060	.724	<.004	<.0040
405547072365001 07-01-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405554072352201 07-01-98		<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405626072442701 05-14-98		<.004	<.0020	<.005	<.0010	<.0060	.019	<.004	<.0040
405640072200501 08-24-98		<.004	<.0020	<.005	<.0010	<.0060	.023	<.004	<.0040
405655072334702 05-13-98		<.004	.0762	<.005	<.0010	<.0060	1.04	.501	<.0040
405656072443201 05-14-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.007	<.004	<.0040
405715072360201 05-27-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	< .004	<.0040
405716072413301 06-10-98	<.0020	.009	<.0020	<.005	<.0010	<.0060	.096	< .004	<.0040
405720072122704 07-02-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	< .004	<.0040
405730072364101 06-25-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.021	.016	<.0040

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY MISCELLANEOUS SITES

			LIN- URON		METHYL AZIN-	METHYL PARA-		METRI-	MOL- INATE
	ALPHA		WATER	MALA-	PHOS	THION	METO-	BUZIN	WATER
7	BHC	LINDANE	FLTRD	THION,	WAT FLT	WAT FLT	LACHLOR	SENCOR	FLTRD
	DIS-	DIS-	0.7 U	DIS-	0.7 U	0.7 U	WATER	WATER	0.7 U
STATION NUMBER DATE	SOLVED	SOLVED	GF, REC	SOLVED	GF, REC	GF, REC	DISSOLV	DISSOLV	GF, REC
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
	(34253)	(39341)	(82666)	(39532)	(82686)	(82667)	(39415)	(82630)	(82671)
405805072403701 06-10-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.150	.024	<.0040
405807072121001 06-04-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
405924072303401 08-25-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.292	<.004	<.0040
405935072305601 08-13-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	1.02	.010	<.0040
410106072293701 05-27-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	.116	.007	<.0040
410222072310001 08-25-98	<.0020	<.004	.0070	<.005	<.0010	<.0060	3.69	.233	<.0040
410252072275001 08-13-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040
410337072264401 05-21-98	<.0020	<.004	.0122	<.005	<.0010	<.0060	1.11	<.004	<.0040
410415072260701 05-21-98	<.0020	< .004	.0290	<.005	<.0010	<.0060	.513	.153	<.0040
410918072143001 08-24-98	<.0020	<.004	<.0020	<.005	<.0010	<.0060	<.002	<.004	<.0040

	NAPROP- AMIDE	PEB- ULATE	PENDI- METH-	PER- METHRIN	PHORATE	PRO-	PRON- AMIDE	PROP-	PRO- PANIL
	WATER	WATER	ALIN	CIS	WATER	METON,	WATER	CHLOR,	WATER
	FLTRD	FILTRD	WAT FLT	WAT FLT	FLTRD	WATER,	FLTRD	WATER,	FLTRD
	0.7 U	0.7 U	0.7 U	0.7 U	0.7 U	DISS,	0.7 U	DISS,	0.7 U
STATION NUMBER DATE	GF, REC		GF, REC	GF, REC	GF, REC	REC	GF, REC	REC	GF, REC
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
	(82684)	(82669)	(82683)	(82687)	(82664)	(04037)	(82676)	(04024)	(82679)
404131073211301 06-11-98	<.0030	<.0040	<.0040	<.0050	<.0020	.221	<.0030	<.0070	<.0040
404158073225802 06-11-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404319073055101 06-23-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404339073090601 06-23-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404418073095001 06-23-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404433073244905 06-11-98	<.0030	<.0040	<.0040	<.0050	<.0020	E.0042	<.0030	<.0070	<.0040
404555073240501 07-06-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404707073234201 05-19-98	<.0030	<.0040	<.0040	<.0050	<.0020	E.0046	<.0030	<.0070	<.0040
404716073131602 06-16-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404717073201301 05-28-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404719073205701 06-03-98	<.0030	<.0040	<.0040	<.0050	<.0020	.0339	<.0030	<.0070	<.0040
404900072451701 06-29-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404922072550701 06-29-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404936073032601 06-30-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404945073174501 06-03-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404953073170501 06-18-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404953073170502 06-18-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
404953073170503 06-18-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405005073233701 06-16-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405030073180601 05-19-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040

WATER RESOURCES DATA - NEW YORK, 1998

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY MISCELLANEOUS SITES

	NAPROP- AMIDE WATER FLTRD 0.7 U	PEB- ULATE WATER FILTRD 0.7 U	PENDI- METH- ALIN WAT FLT 0.7 U	PER- METHRIN CIS WAT FLT 0.7 U	PHORATE WATER FLTRD 0.7 U	PRO- METON, WATER, DISS,	PRON- AMIDE WATER FLTRD 0.7 U	PROP- CHLOR, WATER, DISS,	PRO- PANIL WATER FLTRD 0.7 U
STATION NUMBER DATE	GF, REC					REC	GF, REC		GF, REC
	(UG/L) (82684)	(UG/L) (82669)	(UG/L) (82683)	(UG/L) (82687)	(UG/L) (82664)	(UG/L) (04037)	(UG/L) (82676)	(UG/L) (04024)	(UG/L) (82679)
405111072485401 06-24-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405111073065801 06-17-98	<.0030	< .0040	<.0040	<.0050	<.0020	.0180	<.0030	<.0070	<.0040
405243073102301 06-25-98	<.0030	< .0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405259073010301 06-17-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405349072234801 06-04-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405512072395202 06-24-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405516072183401 07-02-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405535072200002 06-09-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405535072200003 06-09-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405535072200004 06-10-98	<.0030	<.0040	<.0040	<.0050	<.0020	.387	<.0030	<.0070	<.0040
405547072365001 07-01-98	<.0030	<.0040	<.0040	<.0050	<.0020	E.0065	<.0030	<.0070	<.0040
405554072352201 07-01-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405626072442701 05-14-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405640072200501 08-24-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405655072334702 05-13-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405656072443201 05-14-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405715072360201 05-27-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405716072413301 06-10-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405720072122704 07-02-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405730072364101 06-25-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405805072403701 06-10-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405807072121001 06-04-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405924072303401 08-25-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
405935072305601 08-13-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
410106072293701 05-27-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
410222072310001 08-25-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
410252072275001 08-13-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
410337072264401 05-21-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
410415072260701 05-21-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040
410918072143001 08-24-98	<.0030	<.0040	<.0040	<.0050	<.0020	<.0180	<.0030	<.0070	<.0040

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY MISCELLANEOUS SITES

			PRO-		TEBU-	TER-	TER-	THIO-	TRIAL-	TRI-
			PARGITE	SI-	THIURON	BACIL	BUFOS	BENCARB	LATE	FLUR-
			WATER	MAZINE,	WATER	WATER	WATER	WATER	WATER	ALIN
			FLTRD	WATER,	FLTRD	FLTRD	FLTRD	FLTRD	FLTRD	WAT FLT
			0.7 U		0.7 U					
CHARTON	NUMBER	DATE	GF, REC	DISS,						
STATION	NUMBER	DATE		REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC
			(UG/L)							
			(82685)	(04035)	(82670)	(82665)	(82675)	(82681)	(82678)	(82661)
40412107	2211201	06 11 00	. 0120	0050	. 0100	. 0070	. 0120	. 0000	. 0010	. 0000
		06-11-98	<.0130	.0252	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-11-98	<.0130	.0514	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-23-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-23-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40441807	3095001	06-23-98	<.0130	7.06	2.74	<.0070	<.0130	<.0020	<.0010	<.0020
40443307	2244005	06 11 00	- 0120	210	D 0000	- 0070	. 0120	. 0000	. 0010	. 0000
		06-11-98	<.0130	.219	E.0093	<.0070	<.0130	<.0020	<.0010	<.0020
		07-06-98	<.0130	.0438	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		05-19-98	<.0130	E.0045	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-16-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40471707	3201301	05-28-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40451005	2005501	06 02 00	0120	0645	0100	0.000	0120	0000	0010	0000
		06-03-98	<.0130	.0647	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-29-98	<.0130	.249	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-29-98	<.0130	.0208	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-30-98	<.0130	<.0050	E.0068	<.0070	<.0130	<.0020	<.0010	<.0020
40494507	3174501	06-03-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40405305	2170501	06 10 00	0120	0.40		0.000	0120	0000	0010	. 0000
		06-18-98	<.0130	9.49	11.4	<.0070	<.0130	<.0020	<.0010	<.0020
		06-18-98	<.0130	2.67	4.90	<.0070	<.0130	<.0020	<.0010	<.0020
		06-18-98	<.0130	2.26	.436	<.0070	<.0130	<.0020	<.0010	<.0020
		06-16-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40503007	3180601	05-19-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40511107	2405401	06 04 00	- 0120	0050	0100	2070	0120		0010	- 0000
		06-24-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-17-98	<.0130	.0071	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-25-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-17-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40534907	2234801	06-04-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40554007	0205000	06 04 00	0120	0050	0100	2070	0120	2000	- 0010	- 0000
		06-24-98	<.0130	.0062	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		07-02-98	<.0130	E.0049	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-09-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		06-09-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
40553507	2200004	06-10-98	<.0130	.0078	<.0100	E.0258	<.0130	<.0020	<.0010	<.0020
40554707	2265001	07 01 00	0120	0050	0100	0070	0120	. 0000	- 0010	- 0000
		07-01-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		07-01-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		05-14-98	<.0130	E.0049	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
		08-24-98	<.0130	<.0050	E.0072	<.0070	<.0130	<.0020	<.0010	<.0020
40565507	2334/02	05-13-98	<.0130	<.0050	E.0043	<.0070	<.0130	<.0020	<.0010	E.0036
10565607	2442201	05_14_00	- 0120	- 0050	- 0100	<.0070	- 0120	< 0020	- 0010	<.0020
		05-14-98	<.0130	<.0050	<.0100		<.0130	<.0020	<.0010	<.0020
		05-27-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	
		06-10-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020 <.0020
		07-02-98	<.0130	1.86	.637	<.0070	<.0130	<.0020	<.0010	<.0020
405/300/	2304101	06-25-98	<.0130	.0105	<.0100	<.0070	<.0130	<.0020	<.0010	0020

WATER RESOURCES DATA - NEW YORK, 1998

ANALYSES OF SAMPLES COLLECTED AT WATER-QUALITY MISCELLANEOUS SITES

			PRO-		TEBU-	TER-	TER-	THIO-	TRIAL-	TRI-
			PARGITE	SI-	THIURON	BACIL	BUFOS	BENCARB	LATE	FLUR-
			WATER	MAZINE,	WATER	WATER	WATER	WATER	WATER	ALIN
			FLTRD	WATER,	FLTRD	FLTRD	FLTRD	FLTRD	FLTRD	WAT FLT
			0.7 U	DISS,	0.7 U					
STATION	NUMBER	DATE	GF, REC	REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC	GF, REC
			(UG/L)							
			(82685)	(04035)	(82670)	(82665)	(82675)	(82681)	(82678)	(82661)
4058050	72403701	06-10-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
4058070	72121001	06-04-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	E.0021
4059240	72303401	08-25-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
4059350	72305601	08-13-98	<.0130	<.0050	<.0100		<.0130	<.0020	<.0010	<.0020
4101060	72293701	05-27-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
4102220	72310001	08-25-98	<.0130	<.0050	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
4102520	72275001	08-13-98	<.0130	<.0050	.0110	<.0070	<.0130	<.0020	<.0010	<.0020
4103370	72264401	05-21-98	<.0130	.145	<.0100	<.0070	<.0130	<.0020	<.0010	E.0038
4104150	72260701	05-21-98	<.0130	.0071	<.0100	<.0070	<.0130	<.0020	<.0010	<.0020
4109180	72143001	08-24-98	<.0130	.582	4.80	<.0070	<.0130	<.0020	<.0010	<.0020

	Page		Page
Access to USGS water data	19	Connetquot Brook, at Central Islip	63-64
Accuracy of the records (stage and water-discharge		near Central Islip	
records)	11	near Oakdale	
Acre-foot, definition of	19	Connetquot River, near Oakdale	
Algae, definition of	19	Conselyeas Pond Tributary, at Rosedale	
Algal growth potential, definition of	19	Contents, definition of	21
Alley Creek, near Oakland Gardens	47	Control, definition of	21
Amityville Creek, at Amityville	92	Control structure, definition of	21
Annual 7-day minimum, definition of	22	Cooperation	2
Aquifer, definition of	19	Cubic feet per second per square mile, definition of	21
Arrangement of records (water quality)	12	Cubic foot per second, definition of	21
Artificial substrate, definition of	27	B	
Ash mass, definition of	20	Data collection and computation	10
Aspatuck Creek, near Westhampton Beach	89	(ground-water levels)	17 19
Awixa Creek, at Islip	92	(ground-water quality)	
and the control of th		(stage and water discharge)	6-7
Babylon, Carlls River at	71-72	Data presentation	16 17
Sampawams Creek at		(ground-water levels)	
Bacteria, definition of	19	(ground-water quality)	
Bay Shore, Penataquit Creek at	92	(stage and water discharge) (surface-water quality)	
Beaverdam Creek, at Westhampton Beach	90	Definition of terms	
Bed material, definition of	20	Diatoms, definition of	25
Bellmore Creek, at Bellmore		Discharge, definition of	21
tributary, at North Wantagh	93	Discontinued surface-water discharge stations	ix
tributary, near North Wantagh	93	Dissolved, definition of	22
Big Fresh Pond Outlet, at North Sea	90	Disolved trace-element concentrations (water	
Biochemical oxygen demand, definition of	20	quality)	15
Biomass, definition of	20	Diversity index, definition of	22
Biomass pigment ratio, definition of	20	Downstream order and station numbers	4
Blue-green algae, definition of	25	Drainage area, definition of	22
Bottom material, definition of	20	Drainage basin, definition of	22
	20	Dry mass, definition of	20
Calendar (1998 water year)inside of fron	t cover		
Carlls River, at Babylon		East Meadow Brook, at East Meadow	93
at Park Avenue, Babylon	92	at Freeport	77-78
Carmen Creek, at Amityville	92	at Uniondale	93
Carmans River, at Middle Island	90	near Westbury	93
at South Haven	91	East Meadow Pond Outlet, at Freeport	93
at Yaphank		East Patchogue, Swan River at	61-62
below Lower Lake, at Yaphank	91	Euglenoids, definition of	25
near Yaphank	92		
Cascade Lakes Outlet, at Brightwaters	92	Fecal coliform bacteria, definition of	19
Cedar Swamp Creek, at Merrick	93	Fecal streptococcal bacteria, definition of	19
Cells/volume, definition of	21	Fire algae, definition of	25
Central Islip, Connetquot Brook at		Forge River, at Moriches	90
Connetquot Brook near		Freeport, East Meadow Brook at	
Cfs-day, definition of		Freeport Creek, at Freeport	94
Champlin Creek, at Islip	91	Fresh Pond Outlet, at Baiting Hollow	89
Chemical oxygen demand, definition of	22	at Fort Salonga	88
Chlorophyll, definition of	22		22
Classification of records (water quality)	12	Gage height, definition of	22
Cold Spring Brook, at Cold Spring Harbor		Gaging station, definition of	22
Colloid, definition of	21	Gaging station records	
Color unit, definition of	21	Gaging stations, List of, in downstream order	VIII
Confined aquifer, definition of		Glen Cove Creek, at Glen Cove	49-50
Commed aquiter, definition of	21	Green algae, definition of	25

	Page		Page
Green Creek, at West Sayville	88	Motts Creek, at Valley Stream	94
Ground water, level data	95-195	Mud Creek, at East Patchogue	91
quality of	196-208	A	
Ground-water levels, explanation of records		Nassau County, ground-water levels in	95-96,
Ground-water quality, explanation	17-18	106-134	, 180-184
		quality of ground water in	196-197
Hardness, definition of		National deposition program/national trends	
High tide, definition of	22	network, definition of	3
Hydrograph, East Meadow Brook at Freeport	34	National Geodetic Vertical Datum of 1929,	
Nissequogue River near Smithtown		definition of	23
Well N1259 at Plainedge	37	National stream-quality accounting network,	
Well S4271 at Riverhead		definition of	3
Hydrologic bench-mark network, definition of		National water-quality assessment program	
Hydrologic unit, definition of	23	(NAWQA), definition of	3
		Natural substrates, definition of	
Identifying estimated daily discharge	11	Neguntatogue Creek, at Lindenhurst	
Inch-pound units to		Newbridge Creek, at Merrick	
	nside of	Nissequogue River, near Hauppauge	
Factors for convertingbac		at Smithtown	
Instantaneous discharge, definition of		near Smithtown	
Introduction		Northeast branch, near East Hauppauge	
Island Swamp Brook, at Lattingtown		near Hauppauge	
Islip, Champlin Creek at	91	at Smithtown	
		near Smithtown	
Kings County, ground-water levels in 1	02-105,	Numbering system for wells	
	177-179		
Laboratory measurements (water quality)	14	Oakdale, Connetquot River near	67-68
Lake Ronkonkoma Inlet, at Lake Ronkonkoma	91	Oakland Gardens, Alley Creek near	
Latitude-longitude system, station identification		On-site measurements and sample collection	
numbers		(water quality	12
Ligonee Brook, at Sag Harbor		Organic carbon, definition of	
Lindenhurst, Santapogue Creek at		Organic mass, definition of	
Little River, near Riverhead		Organism, definition of	
Little Seatuck Creek, at Eastport		Organism count/area, definition of	
Location of data collection stations (maps)		Organism count/volume, definition of	
Low-flow partial-record stations, discharge at		Other records available (stage and water-	23
Low tide, definition of	23		11
		discharge records)	11
Malverne, Pines Brook at		Demonstrated and definition of	24
Massapequa Creek, at Massapequa		Parameter code, definition of	
at North Massapequa		Pardees Ponds Outlet, at Islip	
at South Farmingdale		Parsonage Creek, at Baldwin	
at Southern State Parkway, at South Farmingda		Partial-record station, definition of	24
Mean concentration (sediment), definition of		Partial-record stations and miscellaneous sites,	00.04
Mean discharge, definition of		Discharge at	
Mean high or low tide, definition of		Particle-size, definition of	
Mean water level, definition of		Particle-size classification, definition of	
Methylene blue active substance, definition of		Patchogue River, at Patchogue	
Micrograms per gram, definition of		near Patchogue	
Micrograms per liter, definition of		Peconic River, at Manorville	
Mill Creek, at Noyack		at Nugent Drive, at Riverhead	
near Huntington		at Riverhead	
Mill Neck Creek, at Mill Neck		Penataquit Creek, at Bay Shore	
Millburn Creek, at Babylon		Percent composition, definition of	
Milligrams per liter, definition of	. 23	Periphyton, definition of	24

INDEX 211

	Page		Page
Pesticides, definition of	24	Substrate, definition of	27
Phytoplankton, definition of	24	Suffolk County, ground-water levels in	
Picocurie, definition of		141-176, 1	
Pines Brook, at Malverne		quality of ground-water in	198-208
Plankton, definition of	24	Summary of hydrologic conditions	2
Point Lookout, Reynolds Channel at		Surface area, definition of	27
Polychlorinated biphenyls, definition of	25	Surface-water quality, explanation of records	
Polychlorinated napthalenes, definition of	25	Surficial bed material, definition of	
Poxabogue Pond Outlet, at Sagaponack	90	Suspended, definition of	
Preface	iv	Suspended, recoverable, definition of	
Primary productivity, definition of	25	Suspended sediment, definition of	26
Publications on techniques of water-resources		Suspended-sediment concentration, definition of	26
investigations	30-33	Suspended-sediment discharge, definition of	26
		Suspended, total, definition of	27
Quantuck Creek, at Quogue	90	Swan River, at East Patchogue	61-62
Queens County, ground-water levels in	97		
135-140, 1	85-188	Taxonomy, definition of	28
		Time-weighted average, definition of	28
Radiochemical programs, definition of	4	Tons per acre-foot, definition of	28
Rattlesnake Brook, near Oakdale	91	Tons per day, definition of	28
Records, Explanation of		Total (as used in tables of chemical analyses),	
(ground-water level)		definition of	28
(ground-water quality)		Total coliform bacteria, definition of	19
(stage and water discharge)	5-11	Total in bottom material, definition of	20
Recoverable from bottom material, definition of	20	Total load, definition of	29
Remark codes (water quality)	15	Total organic carbon, definition of	29
Revisions (water quality)	14	Total organism count, definition of	23
Reynolds Channel, at Point Lookout		Total, recoverable, definition of	28
Riverhead, Peconic River at	57-58	Total sediment discharge, definition of	26
Rosedale, Conselyeas Pond Tributary at	86-87	Tritium network, definition of	4
Roslyn Brook, at Roslyn	88		
Runoff in inches, definition of	26	Unnamed tributary, to Conscience Bay at Setauket	89
		to Port Jefferson Harbor at Port Jefferson	89
Sampawams Creek, at Babylon		to Setauket Harbor at East Setauket	89
below Hawleys Lake, at Babylon			
near Deer Park	92	Valley Stream, at Valley Stream	84-85
near North Babylon	92	below West Branch, at Valley Stream	94
Santapogue Creek, at Lindenhurst	92	below west Branen, at valley streamminm	
at State Highway 27A, Lindenhurst	92	Wading River, at Wading River	89
Sea level, definition of	26	Water analysis	11
Seaford Creek, at Seaford	93	Water-discharge records, explanation of (see Stage	
Seamans Creek, at Seaford	93	and water-discharge records, explanation of)	
Seatuck Creek, at Eastport	90	Water table, definition of	29
Sediment	13	Water-table aquifer, definition of	29
Sediment, definition of	26	Water temperatures	13
Selected recent U.S. Geological Survey publications	10	Water-quality records, explanation	11-15
relevant to Long Island, New York	18	WDR, definition of	29
Smithtown, Nissequogue River near	55-56	Weesuck Creek, at East Quogue	89
Solute, definition of	26	Weighted average, definition of	29
South Pond Outlet, at Rockville Centre	94	Wells, system for numbering	4-5
Special networks and programs	3	Wet mass, definition of	20
Specific conductance, definition of	26	White Brook, at Riverhead	90
Speonk River, at Speonk	90	Whitney Lake Outlet, at Manhasset	88
Stage and water-discharge records, explanation of	5-11	WRD, definition of	29
Stage-discharge relation, definition of	26 4	WSP, definition of	29
		TOI, UCHINION OI	49
Stony Brook, at Stony Brook	89 88	Yaphank, Carmans River at	50_60
Stony Hollow Run, at Centerport	27	Taphank, Carmans River at	55-00
Strongs Creek, at Lindenhurst	92	Zooplankton, definition of	25
onongo Cicca, at Ellidelliuist	94	Zoopiankion, deminden of	23

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain		
	Length			
inch (in.)	2.54×10^{1}	millimeter		
	2.54×10^{-2}	meter		
foot (ft)	3.048×10^{-1}	meter		
mile (mi)	1.609×10^{0}	kilometer		
	Area			
acre	4.047×10^3	square meter		
	4.047×10^{-1}	square hectometer		
	4.047×10^{-3}	square kilometer		
square mile (mi ²)	2.590×10^{0}	square kilometer		
	Volume			
gallon (gal)	3.785×10^{0}	liter		
guiton (gur)	3.785×10^{0}	cubic decimeter		
	3.785×10^{-3}	cubic meter		
million gallons (Mgal)	3.785×10^3	cubic meter		
	3.785×10^{-3}	cubic hectometer		
cubic foot (ft ³)	2.832×10^{1}	cubic decimeter		
	2.832x10 ⁻²	cubic meter		
cubic-foot-per-second day [(ft ³ /s) d]	2.447×10^3	cubic meter		
	2.447×10^{-3}	cubic hectometer		
acre-foot (acre-ft)	1.233×10^3	cubic meter		
	1.233×10^{-3}	cubic hectometer		
	1.233×10^{-6}	cubic kilometer		
	Flow			
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter per second		
(1.1.)	2.832×10^{1}	cubic decimeter per second		
	2.832x10 ⁻²	cubic meter per second		
gallon per minute (gal/min)	6.309×10^{-2}	liter per second		
8	6.309×10^{-2}	cubic decimeter per second		
	6.309×10^{-5}	cubic meter per second		
million gallons per day (Mgal/d)	4.381×10^{1}	cubic decimeter per second		
	4.381×10^{-2}	cubic meter per second		
	Mass			
ton (short)	9.072x10 ⁻¹	megagram or metric ton		

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey 2045 Rt 112, Bldg 4 Coram, NY 11727-3085