

Nater Resources Data owa Nater Year 2001

olume 2. Surface Water—Missouri River Basin, and Ground Water

later-Data Report IA-01-2

S. Department of the Interior S. Geological Survey

Prepared in cooperation with the lowa Department of Natural Resources (Geological Survey Bureau), lowa Department of Transportation, and with Federal agencies

CALENDAR FOR WATER YEAR 2001

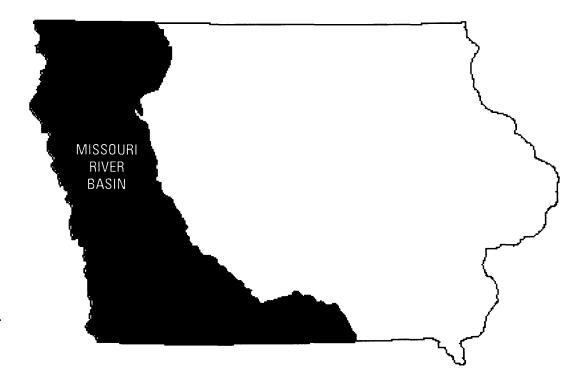
2000

											-									
		00	тов	ER					NO	VEMI	BER					DE	CEM	BER		
S	Μ	Т	W	T	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S
1	2	3	4	5	6	7				1	2	3	4						1	2
8	9	10	11	12	13	14	5	6	7	8	9	10	11	3	4	5	6	7	8	9
15	16	17	18	19	20	21	12	13	14	15	16	17	18	10	11	12	13	14	15	16
22	23	24	25	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23
29	30	31					26	27	28	29	30			24	25	26	27	28	29	30
														31						
										2001										
		JA	NUA	RY					FEI	BRUA	RY					N	ARC	H		
S	М	T	W	т	F	S	S	М	Т	W	T	F	S	S	М	T	W	Т	F	S
	1	2	3	4	5	6					1	2	3					1	2	3
7	8	9	10	11	12	13	4	5	6	7	8	9	10	4	5	6	7	8	9	10
14	15	16	17	18	19	20	11	12	13	14	15	16	17	11	12	13	14	15	16	17
21	22	23	24	25	26	27	18	19	20	21	22	23	24	18	19	20	21	22	23	24
28	29	30	31				25	26	27	28				25	26	27	28	29	30	31
		-	APRII							MAY						J	UNE			
S	М	Т	W	т	F	S	S	М	т	W	Т	F	S	S	М	Т	W	Т	F	S
							U							0						
1	2	3	4	5	6	7	0	-	1	2	3	4	5	0			0	7	1	2
8	9 16	10	11	12	13	14	6	7	8	9	10	11	12	3	4	5 12	6	7	8 15	9 16
15		17 24	18	19	20 27	21	13	14	15	16	17	18 25	19 26	10 17	11 18	12	13 20	14 21	22	23
22 29	23 30	24	25	26	21	28	20 27	21 28	22 29	23 30	31	25	20	24	25	26	20	28	29	30
			JULY						Al	JGUS	Т					SEPT	TEMB	ER		
S	М	T	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	Т	W	T	F	S
1	2	3	4	5	6	7				1	2	3	4							1
8	9	10	11	12	13	14	5	6	7	8	9	10	11	2	3	4	5	6	7	8
15	16	17	18	19	20	21	12	13	14	15	16	17	18	9	10	11	12	13	14	15
22	23	24	25	26	27	28	19	20	21	22	23	24	25	16	17	18	19	20	21	22

26 27 28 29 30 31

23 24 25 26 27 28 29

30


29 30 31

Water Resources Data Iowa Water Year 2001

Volume 2. Surface Water—Missouri River Basin, and Ground Water

By G.M. Nalley, J.G. Gorman, R.D. Goodrich, V.E. Miller, M.J. Turco, and S.M. Linhart

Water-Data Report IA-01-2

Prepared in cooperation with the Iowa Department of Natural Resources (Geological Survey Bureau), Iowa Department of Transportation, and with Federal agencies

UNITED STATES DEPARTMENT OF THE INTERIOR

Gale A. Norton, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For information on the water program in Iowa, write to:

District Chief, Water Resources Division U.S. Geological Survey P.O. Box 1230 Iowa City, Iowa 52244

2002

PREFACE

This volume of the annual hydrologic data report of Iowa is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by local, State, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

This report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines.

Personnel in charge of the field units are:

Joseph G. Gorman, Western Field Unit

Robert D. Goodrich, Eastern Field Unit

The data were collected, computed and processed by the following personnel:

K.D Becher	J.D. Eash	J.F. Nania
A.J.Berry	E.E. Fischer	J.A. Noe
J.F. Cerveny	J.A. Handel	M.J. Noon
D.E. Christiansen	J.W. Harms	D.J. Schnoebelen
D.T. Conell	R.L. Kopish	P.K. Smith
A.R. Conkling	B.D. Lanning	J.R. Sondag
A.L. Donnelly	S.M. Linhart	S.A. Thul
J.L. Dyke	J.C. McVay	M.J. Turco
D.A. Eash	V.E. Miller	N.J VanderZwan

This report was prepared in cooperation with the State of Iowa and with other agencies under the general supervision of Greg M. Nalley, Chief Hydrologic Surveillence Section, and Robin G. Middlemis-Brown, District Chief, Iowa.

REPORT D	OCUMENTATION	PAGE	Form Approved OMB No. 0704-0188
Public reporting burden for this collection of info gathering and maintaining the data needed, and collection of information, including suggestions f Davis Highway, Suite 1204, Arlington, VA 22202	mation is estimated to average 1 hour p completing and reviewing the collection or reducing this burden, to Washington k -4302, and to the Office of Managemer	per response, including the time for revier of information. Send comments regardin Headquarters Services, Directorate for In tt and Budget, Paperwork Reduction Pro	wing instructions, searching existing data sources, ng this burden estimate or any other aspect of this formation Operations and Reports, 1215 Jefferson ject (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 22 March 2002	3. REPORT TYPE AND Annual, 1 Oct. 20	
4. TITLE AND SUBTITLE	· · · · · · · · · · · · · · · · · · ·		5. FUNDING NUMBERS
Water Resources Data, Iowa, Surface Water - Missouri Rive			
6. AUTHOR(S) G.M. Nalley, J.G. Gorman, R. S.M. Linhart	D. Goodrich, V.E. Miller,	M.J. Turco, and	
7. PERFORMING ORGANIZATION NAME	6) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
U.S. Geological Survey, Wate	r Resources Division		REPORT NUMBER
P.O. Box 1230			USGS-WRD-IA-01-2
Iowa City, IA 52244			
9. SPONSORING / MONITORING AGENCY			10. SPONSORING / MONITORING AGENCY REPORT NUMBER
U.S. Geological Survey, Wate	r Resources Division		
P.O. Box 1230 Iowa City, IA 52244			USGS-WRD-IA-01-2
Prepared in cooperation with t Department of Transportation, 12a. DISTRIBUTION / AVAILABILITY STAT	and other Federal agencie	es.	221 Survey Bureau), Iowa 126. DISTRIBUTION CODE
No restrictions on distribution.	This report may be purc	hased from:	
National Technical Informatio Springfield, VA 22161	n Service		
streams; stage, and/or contents This report volume contains di	of lakes and reservoirs; gr scharge records for 31 gag diment records for 2 strear	ound water levels and wate ing stations; stage or conte n-gaging stations. Also inc	discharge, and water quality of r quality of ground-water wells. ents for 3 lakes; water quality for cluded are data for 34 crest-stage
14. SUBJECT TERMS			15. NUMBER OF PAGES
*Iowa, *Hydrological data, *S	urface water, *Water qua	lity, Flow rates, Gaging	225
stations, Lakes, Reservoirs, Ch Sampling sites, Water levels, V	nemical analyses, Sedimer	nt, Water temperatures,	16. PRICE CODE
OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATIO OF ABSTRACT Unclassified	N 20. LIMITATION OF ABSTRACT
NSN 7540-01-280-5500		<u> </u>	 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std 239-18

CONTENTS

Desfear	Page
Preface	
Ground-water wells, by county, for which records are published	
Discontinued surface-water discharge or stage-only stations	
Discontinued surface-water quality stations	
Summary of hydrologic conditions	
Summary of hydrologic conditions	
Surface water	
Ground-water-level observation network	
Surface-water quality	
Ground-water monitoring network	
Special networks and programs	
Explanation of the records.	
Station identification numbers	
Downstream order system	
Numbering system for wells.	
Records of stage and water discharge	
Data collection and computation	
Data presentation	
Identifying estimated daily discharge	
Accuracy of the records	
Other records available	
Records of surface-water quality.	
Classification of records	
Arrangement of records	
On-Site measurements and sample collection	
Water temperature and specific conductance	
Sediment	
Laboratory measurements	
Data presentation	
Remarks codes.	
Water quality-control data	
Dissolved trace-element concentrations	
Change in National Trends Network procedures.	
Records of ground-water levels	
Data collection and computation	
Data presentation	
Records of ground-water quality	
Data presentation	
Explanation of quality of ground-water data tables	
Access to USGS water data	
Definition of terms	
Publications on Techniques of Water-Resources Investigations of the U.S. Geological Survey	
Station records, surface water	
Crest-stage partial-record stations.	
Ground-water levels.	
Quality of ground-water.	
Quality of precipitation	
Index	. 222

.

vi

ILLUSTRATIONS

Figure 1. Precipitation record for the National Weather Service's designated Climatological Districts
for water year 2001
Figure 2. Annual runoff for period of record at index stations.
Figure 3. Location of active continuous-record gaging stations in Iowa, water year 2001
Figure 4. Location of active crest-stage gaging stations in Iowa, water year 2001
Figure 5. Location of active sediment and surface-water quality stations in Iowa, water year 2001
Figure 6. Comparison of annual sediment discharge for water year 2001 with mean, previous maximum,
and previous minimum annual sediment discharges for periods of record at four long-term
daily sediment stations in Iowa
Figure 7. Location of wells in the ground-water-level observation network in Iowa, water year 2001
Figure 8. Location of active ground-water-quality monitoring wells in Iowa
Figure 9. Latitude-longitude well number
Figure 10. Local well-numbering system for well 96-20-3 CDBD1

TABLES

Table 1. Monthly and annual precipitation during 2001 water year as a percentage of normal precipitation (1961-90).	5
Table 2. Historical high-water levels measured water year 2001 in wells completed in unconsolidated aquifers	10
Table 3. Historical low-water levels measured water year 2001 in wells completed in unconsolidated aquifers	10
Table 4. Historical high-water levels measured during water year 2001 in wells completed in bedrock aquifers	11
Table 5. Historical low-water levels measured during water year 2001 in wells completed in bedrock aquifers	12
Table 6. Summary of nitrogen species and herbicides detected in samples from the Ground-Water-Quality	
Monitoring project, water year 2001	14

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

{Letter after station name designates types of data: (d) discharge, (c) chemical, (p) precipitation, (s) sediment, (t) temperature, (e) elevations, gage heights, or contents}

	Station Number
	Number
MISSOURI RIVER BASIN	
Missouri River:	<i>с</i> 4
(Map of Big Sioux River basin gaging stations)	
BIG SIOUX RIVER BASIN	
Big Sioux River:	0(402200 5(
Rock River below Tom Creek at Rock Rapids (d)	
Rock River near Rock Valley (d)	
Big Sioux River at Akron (d)	
(Map of Missouri, Perry, and Floyd River, and Monona-Harrison Ditch basins ga	
Missouri River at Sioux City (d)	06486000 64
PERRY CREEK BASIN	
Perry Creek at 38th Street, Sioux City (d)	06600000 66
FLOYD RIVER BASIN	
Floyd River at Alton (d)	
Floyd River at James (d)	
Missouri River at Decatur, Nebraska (d)	06601200 72
MONONA-HARRISON DITCH BASIN	
West Fork Ditch (head of Monona-Harrison Ditch) at Hornick (d)	
Monona-Harrison Ditch near Turin (d)	
(Map of Little Sioux and Soldier River basins gaging stations)	
LITTLE SIOUX RIVER BASIN	
Little Sioux River:	
Milford Creek:	
Spirit Lake near Orleans (e)	06604000 80
West Okoboji Lake at Lakeside Laboratory near Milford (e)	06604200 82
Ocheyedan River near Spencer (d)	
Little Sioux River at Linn Grove (d)	
Little Sioux River at Correctionville (d)	
Maple River at Mapleton (d)	
Little Sioux River near Turin (d)	
SOLDIER RIVER BASIN	
Soldier River at Pisgah (d)	06608500 94
(Map of Boyer River basin and Missouri River main stem gaging static	
BOYER RIVER BASIN	
Boyer River at Logan (d)	06609500
Missouri River at Omaha, Nebraska (dcts)	
Missouri River at Nebraska City, Nebraska (dts)	
(Map of Nishnabotna and Nodaway River basins and Missouri River main stem g	
NISHNABOTNA RIVER BASIN	
West Nishnabotna River at Hancock (d)	06807410 118
West Nishnabotna River at Randolph (d)	
East Nishnabotna River near Atlantic (d)	
East Nishnabotna River at Red Oak (d) \cdots	
Nishnabotna River above Hamburg (d)	

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

Station Number MISSOURI RIVER BASIN--Continued 128 NODAWAY RIVER BASIN 130 (Map of Platte, Grand, and Chariton River basins gaging stations) 132 PLATTE RIVER BASIN (Iowa-Missouri) Platte River: One Hundred and Two River: 134 GRAND RIVER BASIN Grand River: 136 CHARITON RIVER BASIN 138 140 142 144 146

viii

ADAMS COUNTY
410247094324801 Local number, 72-32-09 CBCC
410248094324801 Local number, 72-32-09 CCBB
APPANOOSE COUNTY
404103092404001 Local number, 68-16-15 DDAD
AUDUBON COUNTY
413044094565601 Local number, 78-36-35 ADCC1
413958094544501 Local number, 79-35-10 CABB
415023094593801 Local number, 81-36-12 CBCA
BENTON COUNTY
420731092083801 Local number, 85-11-33 CCBC1
420731092083803 Local number, 85-11-33 CCBC3
420731092083802 Local number, 85-11-33 CCBC
BREMER COUNTY
424224092133901 Local number, 91-12-11 DBB
BUENA VISTA COUNTY
424023095571401 Local number, 91-35-26 BCCC
425233094545001 Local number, 93-35-13 ADAA
CALHOUN COUNTY
422812094383501 Local number, 88-33-01 BACD
422339094375101 Local number, 88-33-36 ADAA
CARROLL COUNTY
420230094455101 Local number, 84-34-35 DAAA
420233094475901 Local number, 83-35-34 BCDC
420643094403701 Local number, 84-33-03 CADA
420705094394501 Local number, 84-33-02 BDBA
421058094582701 Local number, 85-35-07 CCCC
CASS COUNTY
411900094530101 Local number, 75-35-07 BBAB
412832095033501 Local number, 77-37-13 BBBB
CERRO GORDO COUNTY
430757093131801 Local number, 96-20-17 DAAD
430806093164501 Local number, 96-21-13 BCCB
CHEROKEE COUNTY
423833095365701 Local number, 90-40-06 BDCD
424132095480211 Local number, 91-42-16 DDDD11
424348095231601 Local number, 91-39-01 ADAD1
424348095231602 Local number, 91-39-01 ADAD2
CLAYTON COUNTY
424023091291201 Local number, 91-05-30 BBBB
425433091285002 Local number, 94-05-31 DACC2
430156091182901 Local number, 95-04-22 BCBD
425736091260303 Local number, 94-05-03 A
CLINTON COUNTY
414921090450401 Local number, 81-2E-17 ACA
414806090212301 Local number, 81-5E-22 DDD
CRAWFORD COUNTY
415514095312001 Local number, 82-40-17 AABB
420608095111701 Local number, 84-37-08 BCCB
421005095342801 Local number, 85-41-13 CCCC

.

Pleistocene	
Cambrian/Ordovician	152
Cretaceous	153
Devonian (h) Devonian Silurian	154 154
Silurian	
Cretaceous (h).	
Pleistocene	
Quaternary Cretaceous Pleistocene Cretaceous (h). Cretaceous	156 157 157
Cretaceous Pennsylvanian	
Cambrian/Ordovician (h)	
Cretaceous Cretaceous Cambrian/Ordovician (h) Cretaceous	. 159 . 160
Pleistocene (h) Cambrian/Ordovician Cambrian/Ordovician Cambrian/Ordovician	. 161 . 161
Silurian	
Cretaceous Pleistocene Cretaceous	. 163

CRAWFORD COUNTY-Continued
421031095225601 Local number, 85-39-16 ADDD1
421031095225602 Local number, 85-39-16 ADDD2
421106095125501 Local number, 85-38-12 DCBA
DALLAS COUNTY
413613093530401 Local number, 79-26-33 CDBA
DECATUR COUNTY
404422093445602 Local number, 69-25-29 DDDD
DELAWARE COUNTY
422029091144302 Local number, 87-03-18 CBCD2
DUBUQUE COUNTY
422901090471901 Local number, 89-01-36 ABC
FLOYD COUNTY
430200092435301 Local number, 95-16-22 BCA1
430200092435303 Local number, 95-16-22 BCA3
430200092435304 Local number, 95-16-22 BCA4
430200092435305 Local number, 95-16-22 BCA5
430200092435306 Local number, 95-16-22 BCA6
430800092540301 Local number, 96-17-18 CDBA
GREENE COUNTY
420116094363001 Local number, 83-32-08 BBBC
420146094272301 Local number, 83-31-04 ADDB
415449094155601 Local number, 82-29-18 DBAA
420149094344701 Local number, 83-32-04 ACCC
420507094141901 Local number, 84-29-16 CBAB
GRUNDY COUNTY
422611092552501 Local number, 88-18-14 BCCB
GUTHRIE COUNTY
413223094150801 Local number, 78-29-24 CAAB
413248094314301 Local number, 78-32-21 AAAA
414728094385301 Local number, 81-33-26 DDDD
414821094271301 Local number, 81-31-22 CCCC
HARDIN COUNTY
423310093032802 Local number, 89-19-02 BDAC2
HARRISON COUNTY
413024095353901 Local number, 78-41-31 DDDD
413523095483101 Local number, 78-43-05 ACDD
413524095490601 Local number, 78-43-05 BCDD
413838095462001 Local number, 79-42-19 AADB
414700095373001 Local number, 81-41-33 CAAA
HENRY COUNTY
405010091424901 Local number, 70-07-30 BCDD
410852091394301 Local number, 73-07-09 AABD
HOWARD COUNTY
432158092065801 Local number, 99-11-26 BCA
HUMBOLDT COUNTY
424039094103601 Local number, 91-28-20 CAAA
IDA COUNTY
422215095390811 Local number, 87-41-05 CCCC11
423107095383201 Local number, 89-41-13 CCCC

Cretaceous Mississippian (h) Pleistocene	163 163 164
Cambrian/Ordovician	164
Cambrian/Ordovician	164
Silurian (h)	165
Cambrian/Ordovician	165
Devonian (h).	166
Devonian	166
Devonian	166
Devonian	167
Devonian	167
Devonian	167
Pleistocene	167
Cretaceous	168
Pleistocene	168
	168
Cretaceous	168
Pleistocene	100
Cambrian	160
	169
	169
Cretaceous	_
Cretaceous	169 169
Cretaceous Cretaceous Cretaceous	169
Cretaceous	169 169 169
Cretaceous Cretaceous Cretaceous	169 169 169
Cretaceous Cretaceous Cretaceous Cretaceous	169 169 169 170
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene	169 169 169 170
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene Cretaceous	169 169 169 170 170
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene Cretaceous Holocene.	169 169 169 170 170 171 171 171
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene Cretaceous Holocene Mississippian	169 169 169 170 170 171 171 171 171
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene Cretaceous Holocene.	169 169 169 170 170 171 171 171
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene Cretaceous Holocene Mississippian Cretaceous	169 169 169 170 170 171 171 171 171 171 172
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene Cretaceous Holocene Mississippian Cretaceous Mississippian	169 169 169 170 170 170 171 171 171 171 172
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene Cretaceous Holocene Mississippian Cretaceous	169 169 169 170 170 171 171 171 171 171 172
Cretaceous Cretaceous Cretaceous Cretaceous Mississippian (h) Pleistocene Cretaceous Holocene Mississippian Cretaceous Mississippian	169 169 169 170 170 170 171 171 171 171 172
Cretaceous . Cretaceous . Cretaceous . Cretaceous . Mississippian (h) . Pleistocene . Cretaceous . Holocene. Mississippian . Cretaceous . Mississippian . Pleistocene .	169 169 169 170 170 171 171 171 171 172 172 172
Cretaceous	169 169 169 170 170 170 171 171 171 171 172 172 172 172 173
Cretaceous	169 169 169 170 170 170 171 171 171 171 172 172 172

JACKSON COUNTY
420842090165701 Local number, 85-6E-29 ACAD1
420842090165702 Local number, 85-6E-29 ACAD2
420842090165703 Local number, 85-6E-29 ACAD3
420433090502401 Local number, 84-1E-22
420842090165704 Local number, 85-6E-29 ACAD4
JASPER COUNTY
414210092592001 Local number, 80-18-31 ABBB
413908093071100 Local number, 79-19-01 CCCB
JOHNSON COUNTY
413925091324001 Local number, 79-06-09 DDBC
414132091345502 Local number, 80-06-31 ADBC1
414107091322901 Local number, 79-06-04 AAAA
414132091345503 Local number, 80-06-31 ADBD1
414145091350101 Local number, 80-06-31 ADC
414315091252001 Local number, 80-05-22 CBCB1
414221091361101 Local number, 80-07-25 DBAC1
414221091361102 Local number, 80-07-25 DBAC2
413950091322402 Local number, 79-06-10 BCCD
413929091322401 Local number, 79-06-10 CCCB
414221091361103 Local number, 80-07-25 DBAD1
414315091252002 Local number, 80-05-22 CBCB2
JONES COUNTY
415808091160501 Local number, 83-04-25 CBBB
KEOKUK COUNTY
412030092121601 Local number, 76-12-35 DBDC
LEE
404306091270201 Local number, 68-05-05 DAAC
LINN COUNTY
415343091360101 Local number, 82-07-25 AAAB
415422091422601 Local number, 82-07-18 CDCD
415725091410101 Local number, 83-07-32 ACDC
415834091351601 Local number, 83-06-30 ABBA
420300091325801 Local number, 84-06-33 ABBB
420508091395811 Local Number, 84-07-16 DBBB
420526091370701 Local number, 84-07-13 BCBB
420730091490401 Local number, 85-08-31 DDCD1
420730091490402 Local number, 85-08-31 DDCD2
421149091403301 Local Number, 85-07-04 CCCC
421207091312201 Local number, 85-06-03 DABB
LYON COUNTY
431812096302701 Local number, 98-48-16 DDAD
431812090502701 Local number, 98-46-10 DDAD 432140095595301 Local number, 99-44-26 DDDD
432553096105701 Local number, 99-45-05 ABAC
432555090105701 Local number, 100-48-31 CCCC11
MADISON COUNTY
411727093483001 Local number, 75-26-23 AAAC
$\pm 11121073 \pm 03001$ LOCAL HUIHOCL, $13-20-23$ AAAC

Cambrian	174
Cambrian/Ordovician	174
	174
	174
	175
	175
Pleistocene	175
Cambrian/Ordovician	175
Silurian	176
Silurian	176
Silurian	176
Silurian	177
	177
Pleistocene	177
Silurian	178
	178
Devonian/	
Cambrian/Ordovician	178
Cambrian	179
Pleistocene (h)	179
Devonian (h)	180
Silurian	181
Mississippian	181
Cambrian	182
Silurian	182
Pleistocene	182
Silurian	183
Devonian/Silurian	183
Silurian	183
	183
Silurian	
Pleistocene	184
Silurian	184
201011111111111111111111111111111111111	184
Devonian/Silurian	185
Silurian	185
Cretaceous	185
	186
Cretaceous (h)	
Cretaceous	187
Mississippian	187

MAHASKA COUNTY 411912092273601 Local number, 75-14-10 BAAC 411914092274701 Local number, 75-14-10 BABC 412020092471002 Local number, 76-17-35 CADB MARION COUNTY 411323093142601 Local number, 74-21-11 DBCB1 411328093143503 Local number, 74-21-11 CAAD3 411329093142902 Local number, 74-21-11 DBBB2 MARSHALL COUNTY 420355092534701 Local number, 84-18-24 CDCA MILLS COUNTY 405641095365101 Local number, 71-42-24 AAAA 405813095433201 Local number, 71-42-07 BBCD MITCHELL COUNTY 432156092484101 Local number, 95-17-23 DAA1 432156092484102 Local number, 95-17-23 DAA2 432156092484103 Local number, 95-17-23 DAA3 432156092484104 Local number, 95-17-23 DAA4 432156092484105 Local number, 95-17-23 DAA5 MONONA COUNTY 415456095414101 Local number, 82-42-14 ADCA 420004095451501 Local number, 83-42-17 ACDD 420139095155701 Local number, 83-43-04 CBCB 421018095591301 Local number, 85-44-17 DCAA MONTGOMERY COUNTY 405841095012702 Local number, 71-36-06 DADA2 410057095075101 Local number, 72-37-29 BABA MUSCATINE COUNTY 412120091080401 Local number, 76-02-30 CBAA1 412120091080402 Local number, 76-02-30 CBAA 412120091080403 Local number, 76-02-30 CBAA O'BRIEN COUNTY 425610095250611 Local number, 94-39-26 BADB11 430930095350401 Local number, 96-40-05 DDDA1 OSCEOLA COUNTY 431613095251801 Local number, 98-39-26 CDCC 431620095250501 Local number, 98-39-26 CDAD1 431620095250511 Local number, 98-39-26 CDAD11 432828095283611 Local number, 100-39-17 DCCB11 PAGE COUNTY 404257095150801 Local number, 68-38-07 CCAA PLYMOUTH COUNTY 424833096324701 Local number, 92-48-06 DDDA 424850096074801 Local number, 92-45-02 CBCB 425249096125001 Local number, 93-46-12 DDDD POTTAWATTAMIE COUNTY 411359095171901 Local number, 74-39-01 CCCC

412407095391201 Local number, 76-42-10 ADBC

Mississippian	187
Mississippian	188
Cambrian/Ordovician	188
Pleistocene	188
Pleistocene	189
	189
Pleistocene	109
Pleistocene	189
Pleistocene	189
Pleistocene	190
Pleistocene	190
Devonian	190
	190
Devonian	
Devonian	191
Devonian	191
Cretaceous	191
Pleistocene	191
Cretaceous	192
	192
Dakota (h)	192
	100
Pleistocene	192
Pleistocene (h)	193
Holocene	194
Devonian/Silurian.	194
Quaternary	194
	174
Cretaceous	194
Cretaceous	195
Cretaceous	195
Cambrian/Ordovician	195
Cretaceous	195
Cretaceous	196
Pleistocene (h)	196
	190
	107
Cretaceous	196
Cambrian/Ordovician (h)	197
Cretaceous	197
Pleistocene	197
Cambrian	198
	170

÷

SCOTT COUNTY

.

413544090212901 Local number, 78-5E-03 AADA	Cambrian/Ordovician (h) 198
SHELBY COUNTY	
413255095070401 Local number, 78-37-17 DDDD	Cretaceous
413359095182701 Local number, 78-39-11 CCBC	Pleistocene
413953095302601 Local number, 79-40-09 DBCA	Pleistocene
414624095252301 Local number, 80-39-06 AADC	Cretaceous 199
414856095160101 Local number, 81-38-21 ADAD	Pleistocene
SIOUX COUNTY	
430140095573101 Local number, 95-43-07 AAAA	Cretaceous
430913096033201 Local number, 96-44-08 ADAA	Cretaceous
STORY COUNTY	
420129093273701 Local number, 83-22-06 CDBD	Cambrian/Ordovician
420137093361501 Local number, 83-24-02 DABC	Pleistocene
VAN BUREN COUNTY	
404150091483001 Local number, 68-08-08 CDD	Mississippian (h)
WASHINGTON COUNTY	
411300091320701 Local number, 74-06-15 BDAC	Mississippian
412750091495201 Local number, 77-09-24 AADA	Mississippian
421829091304701 Local number, 75-06-14 ABBB	Pleistocene
WEBSTER COUNTY	
421837094083601 Local number, 87-28-29 CCCD	Pleistocene (h) 202
423018094214701 Local number, 89-30-23 CCBB	Cretaceous
WOODBURY COUNTY	
422058095573701 Local number, 87-44-15 CBBB	Cretaceous
422830096000511 Local number, 88-44-16 BAAB11	Cretaceous

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in lowa have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Discontinued project stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[(d), discharge station; (e), elevation (stage only) station; *, currently operated as crest-stage partial-record station]

Station name	Station number	Drainage area (mi ²)	Period of record		
Upper Iowa River near Decorah, Ia. (d)	05388000	568	1913-14; 1919-27, 1933-5		
Paint Creek at Waterville, Ia. (d)	05388500	42.8	1952-7:		
Yellow River at Ion, Ia. (d)	05389000	221	1934-5		
Turkey River at Spillville, Ia. (d)	05411600	177	1957-73; 1978-9		
Big Springs near Elkader, Ia. (d)	05411950	103	1938; 1982-83; 1988-9		
Turkey River at Elkader, Ia. (d)	05412000	891	1932-42		
Unnamed Creek near Luana, Ia. (d)	05412056	1.15	1986-92		
Silver Creek near Luana, Ia (d)	05412060	4.39	1986-9		
Little Maquoketa River near Durango, Ia. (d)	05414500	130	1934-82		
Maquoketa River near Manchester, Ia. (d)	05417000	305	1933-7		
Maquoketa River near Delhi, Ia. (d)	05417500	347	1933-4		
Bear Creek near Monmouth, la. (d)	05417700	61.3	1957-70		
Maquoketa River above North Fork Maquoketa River near Maquoketa, la. (d)	05418000	938	1913-14		
North Fork Maquoketa River at Fulton, Ia. (d)	05418450	516	1977-9		
Elk River near Almont, Ia. (d)	05420300	55.9	1995-9		
Wapsipinicon River near Elma, Ia. (d)	05420560	95.2	1958-9		
Wapsipinicon River at Stone City, la. (d)	05421500	1,324	1903-1-		
Crow Creek at Eldridge, Ia. (d)	05422420	2.20	1977-8		
Crow Creek at Mt. Joy, Ia. (d)	05422450	6.90	1977-8		
Pine Creek near Muscatine, Ia. (d)	05448150	38.9	1975-8		
Eagle Lake Inlet near Britt, Ia. (e)	05448285	3.83	1975-8		
Eagle Lake Outlet near Britt, Ia. (e)	05448290	11.3	1975-8		
West Branch (West Fork) Iowa River near Klemme, Ia. (d)	05448500	112	1948-5		
East Branch (East Fork) Iowa River near Klemme, Ia. (d)	05449000	133	1948-76; 1977-9		
Iowa River near Iowa Falls, Ia. (d)	05450000	665	1911-1		
Upper Pine Lake at Eldora, Ia. (e)	05450500	14.9	1936-7		
Lower Pine Lake at Eldora, Ia. (e)	05451000	15.9	1936-7		
Iowa River near Belle Plaine, la. (d)	05452500	2,455	1939-5		
Lake Macbride near Solon, la. (e)	05453500	27.0	1937-7		
Ralston Creek at Iowa City, Ia. (d)	05455000	3.01	1924-8		
Cedar River at Mitchell, Ia. (d)	05457500	826	1933-4		
Shell Rock River near Northwood, Ia. (d)	05459000	300	1945-8		
Shell Rock River at Marble Rock, la. (d)	05460500	1,318	1933-5		
Shell Rock River at Greene, Ia. (d)	05461000	1,357	1933-4		
Flood Creek near Powersville, Ia (d)	05461390	127	1996-9		
Shell Rock River near Clarksville, Ia. (d)	05461500	1,626	1915-27; 1932-3		
Black Hawk Creek at Hudson, Ia. (d)	05463500	303	1952-9		
Fourmile Creek near Lincoln, Ia. (d)	05464130	13.8	1962-67; 1969-74; 1976-8		
Half Mile Creek near Gladbrook, Ia. (d)	05464133	1.33	1962-67; 1969-74; 1976-8		
Fourmile Creek near Traer, la. (d)	05464137	19.5	1962-74; 1975-8		
Wolf Creek near Dysart, Ia (d)	05464220	299	1996-9		
Prairie Creek at Fairfax, Ia. (d)	05464640	178	1966-8		
Lake Keomah near Oskaloosa, Ia. (e)	05472000	3.06	1936-7		
Skunk River at Coppock, Ia. (d)	05473000	2,916	1913-4		
Big Creek near Mount Pleasant, Ia. (d)	05473500	106	1955-7		

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS-Continued

Station name	Station name Station number			
Des Moines River at Estherville (d)	05476500*	1,372	1951-95	
East Fork Des Moines River near Burt, la. (d)	05478000	462	1951-74	
Des Moines River near Fort Dodge, Ia. (d)	05479500	3,753	1911-13	
Lizard Creek near Clare, Ia. (d)	05480000	257	1940-82	
Des Moines River near Boone, la. (d)	05481500	5,511	1920-68	
North Raccoon River near Newell, Ia. (d)	05482135*	233	1982-95	
Storm Lake at Storm Lake, Ia. (e)	05482140	28.3	1970-75	
Big Cedar Creek near Varina, Ia. (d)	05482170	80.0	1960-91	
East Fork Hardin Creek near Churdan, Ia. (d)	05483000	24.0	1953-91	
Hazelbrush Creek near Maple River, Ia. (d)	05483343	9.22	1990-94	
Springbrook Lake near Guthrie Center, Ia. (e)	05483460	5.18	1936-71	
Raccoon River at Des Moines, Ia. (e)	05485000	3,628	1902-03	
Lake Ahquabi near Indianola, Ia. (e)	05487000	4.93	1936-71	
White Breast Creek near Knoxville, Ia. (d)	05488000	380	1945-62	
South Coal Creek near Bussey, Ia. (d)	05489090	12.9	1977-81	
Muchakinock Creek near Eddyville, Ia (d)	05489190	70.2	1975-79	
Lake Wapello near Drakesville, Ia. (e)	05490000	7.75	1936-71	
Sugar Creek near Keokuk, la. (d)	05491000	105	1922-31; 1958-73	
Fox River at Cantril, Ia. (d)	05494500	161	1922 51, 1936 75	
Rock River at Rock Rapids, Ia. (d)	06483270	788	1940 31	
• • • •	06484000	48.4	1939-74	
Dry Creek at Hawarden, Ia. (d)	06600300*	108	1948-09	
West Branch Floyd River near Struble, Ia. (d)		4,440	1935-95	
Monona-Harrison Ditch near Blencoe, IA (d)	06602410	4,440 31.0	1939-42	
Loon Creek near Orleans, Ia. (d)	06603920		1971-74	
Spirit Lake Outlet at Orleans, Ia. (e)	06604100	75.6		
Milford Creek at Milford, Ia. (d)	06604400	146	1971-74	
Little Sioux River at Spencer, Ia. (d)	06605100	990	1936-42	
Little Sioux River at Gillett Grove, Ia. (d)	06605600	1,334	1958-73	
Little Sioux River near Kennebeck, Ia. (d)	06606700	2,738	1939-69	
Odebolt Creek near Arthur, Ia. (d)	06607000	39.3	1957-75	
Maple River at Turin, Ia. (d)	06607300	725	1939-41	
Little Sioux River near Blencoe, Ia. (d)	06607510	4,440	1939-42	
Steer Creek near Magnolia, la. (d)	06609200	9.26	1963-69	
Thompson Creek near Woodbine, Ia. (d)	06609590	6.97	1963-69	
Willow Creek near Logan, Ia. (d)	06609600	129	1972-75	
Indian Creek at Council Bluffs, Ia. (d)	06610500	6.92	1954-76	
Mosquito Creek near Earling, Ia. (d)	06610520	32.0	1965-79	
Waubonsie Creek near Bartlett, Ia. (d)	06806000	30.4	1946-69	
West Nishnabotna River at Harlan, Ia. (d)	06807320	316	1977-82	
West Nishnabotna River at (near) White Cloud, Ia. (d)	06807500	967	1918-24	
Mule Creek near Malvern, Ia. (d)	06808000	10.6	1954-69	
Spring Valley Creek near Tabor, Ia. (d)	06808200	7.6	1955-64	
Davids Creek near Hamlin, Ia. (d)	06809000	26.0	1952-73	
Tarkio River at Stanton, Ia. (d)	06811840*	49.3	1958-91	
Tarkio River at Blanchard, Ia. (d)	06812000	200	1934-40	
West Nodaway River at Villisca, Ia. (d)	06816500	342	1918-25	
Platte River near Diagonal, la. (d)	06818750*	217	1969-91	
East Fork One Hundred and Two River near Bedford, Ia. (d)	06819190	92.1	1959-83	
Elk River near Decatur City, Ia. (d)	06897950*	52.5	1968-94	
Weldon River near Leon, Ia. (d)	06898400	104	1959-91	
Honey Creek near Russell, Ia. (d)	06903500	13.2	1952-62	
Chariton River near Centerville, Ia. (d)	06904000	708	1938-59	

٠

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following water-quality stations have been discontinued in lowa. Continuous daily records of water temperature, specific conductance, or sediment and monthly or periodic samples of chemical quality or biological data were collected and published for the period of record shown for each station.

[Type of record: Chem.-chemical quality, Cond.-specific conductance, Temp.-water temperature, Sed.-sediment, Bio.-biological; *, periodic data available subsequent to period of daily record]

		Drainage area		
Station name	Station number	(mi ²)	Type of record	Period of record
Upper Iowa River at Decorah, la.	05387500	511	Sed. Temp.	1963-68 1963-83
Upper Iowa River near Dorchester, Ia.	05388250	770	Sed., Temp.*, Cond.*	1975-81
Paint Creek at Waterville, Ia.	05388500	42.8	Temp. Sed.	1952-56 1952-57
Unnamed Creek near Luana	05412056	1.15	Chem.	1986-92
Turkey River at Garber, Ia.	05412500	1,545	Temp.*, Sed.*	1957-62
Mississippi River at Dubuque, la.	05414700	81,600	Chem.	1969-73
Maquoketa River near Maquoketa, Ia	05418500	1,553	Sed., Temp., Cond.	1978-82; 1995-97
Elk River near Almont, la	05420300	55.9	Sed., Temp., Cond.	1995-97
Mississippi River at Clinton, Ia	05420500	85,600	Sed.	1995-97
Wapsipinicon River near Tripoli, la	05420860	343	Chem.	1996-98
Wapsipinicon River at Independence, Ia.	05421000	1,048	Cond.* Temp.*, Sed.*	1968-70 1967-70
Crow Creek at Bettendorf, 1a.	05422470	17.8	Cond.*, Temp.*, Sed.	1978-82
lowa River near Rowan, Ia.	05449500	429	Temp.*, Sed.* Chem.	1957-62 1996-98
Iowa River at Marshalltown, Ia	05451500	1,532	Temp., Sed.	1988-95
Iowa River at Iowa City, Ia.	05454500	3,271	Chem Temp.*, Sed. Cond.	1906-07; 1944-54 1944-87 1968-87
Ralston Creek at Iowa City, Ia.	05455000	3.01	Cond Sed. Temp.	1968-87 1952-87 1967-87
Flood Creek near Powersville, la	05461390	127	Chem.	1996-98
Shell Rock River at Shell Rock, Ia.	05462000	1,746	Temp.*	1953-68
Cedar River at Cedar Falls, Ia	05463050	4,734	Chem.	1975-79; 1984; 1986-1995
Cedar River near (at) Gilbertville, Ia.	05464020	5,234	Chem.	1971; 1975-81
Fourmile Creek near Lincoln, Ia.	05464130	13.78	Chem., Temp., Sed.	1969-74
Half Mile Creek near Gladbrook, Ia.	05464133	1.33	Chem., Temp., Sed.	1969-74
Fourmile Creek near Traer, Ia.	05464137	19.51	Chem., Temp., Sed.	1969-74
Wolf Creek near Dysart, Ia	05464220	299	Chem.	1996-98
Cedar River near Palo, Ia.	05464450	6,380	Chem.	1975-79
Cedar River at Cedar Rapids, la.	05464500	6,510	Chem.* Temp.* Sed.	1906-07; 1944-54 1944-54 1943-54
Cedar River near Bertram, Ia.	05464760	6,955	Chem,	1975-81
Iowa River at Wapello, Ia	05465500	12, 499	Chem.	1977-95
Mississippi River at Burlington, Ia.	05469720	114,000	Chem.	1969-73
South Skunk River at Colfax, Ia	05471050	803	Cond.*, Temp.*, Sed.	1989-93
Skunk River at Augusta, la	05474000	4,303	Chem.	1977-95
Mississippi River at Keokuk, Ia.	05474500	119,000	Chem.	1974-87
Des Moines River at Fort Dodge, Ia.	05480500	4,190	Chem.	1972-73
Des Moines River at 2nd Avenue at Des Moines, Ia.	05482000	6,245	Chem. Temp.*, Sed.	1954-55 1954-61
East Fork Hardin Creek near Churdan, la.	05483000	24.0	Temp.*, Sed.*	1952-57
Hazelbrush Creek near Maple River, la	05483343	9.22	Cond., Temp., Sed.	1991-94
Middle Raccoon River near Bayard, Ia.	05483450	375	Cond.*, Temp.*, Sed.	1979-85
Middle Raccoon River at Panora, Ia.	05483600	440	Cond.*, Temp.*, Sed.	1979-85

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record
Raccoon River at Van Meter, la	05484500	3,441	Chem. Bio.	1974-79; 1986-94 1974-79
Raccoon River at Des Moines, Ia.	05485000	3,590	Chem., Temp.	1945-47
Des Moines River below Raccoon River at Des Moines, Ia.	05485500	9,879	Chem.* Temp.*, Sed.	1944-45 1944-47
Des Moines River below Des Moines, la.	05485520	9,901	Chem.	1971; 1974-81
Aiddle River near Indianola, la.	05486490	503	Temp.*, Sed.	1962-67
White Breast Creek near Dallas, Ia.	05487980	342	Chem. Temp.*, Sed.	1969-73 1967-73
Big Sioux River at Sioux City, Ia.	06485950	9,410	Chem.	1969-73
Missouri River at Sioux City, Ia.	06486000	314,600	Chem.	1972-86
			Sed.	1972-76; 1977-81; 1991-00
Floyd River at James, Ia.	06600500	886	Temp.*, Sed., Cond.*	1968-73
loyd River at Sioux City, Ia.	06600520	921	Chem.	1969-73
Missouri River at Decatur, Neb.	06601200	316,160	Chem.	1974-81
Spirit Lake near Orleans, Ia.	06604000	75.6	Temp.	1968-75
Little Sioux River at Correctionville, Ia.	06606600	2,500	Chem.* Temp.*	1954-55
			Sed.	1951-62 1950-62
.ittle Sioux River near Kennebec, Ia.	06606700	2,738	Temp. Sed.	1951-55 1950-57
Little Sioux River at River Sioux, la.	06607513	3,600	Chem.	1969-73
Soldier River near Mondamin, Ia.	06608505	440	Chem.	1970-73
Steer Creek near Magnolia, Ia.	06609200	9.26	Temp., Sed., Cond.	1963-69
Thompson Creek near Woodbine, Ia.	06609590	6.97	Temp., Sed., Cond.	1963-69
Willow Creek near Logan, Ia.	06609600	129	Cond., Temp. Sed.	1972-75 1971-75
Missouri River at Omaha, Nebr.	06610000	322,800	Cond.*	1969-86
Mule Creek near Malvern, Ia.	06808000	10.6	Temp. Sed.	1958-69 1954-69
Davids Creek near Hamlin, la.	06809000	26.0	Temp.* Sed.	1952-53; 1965-68 1952-68
East Nishnabotna River at Red Oak, Ia.	06809500	894	Temp.*, Sed., Cond.*	1962-73
Nishnabotna River above Hamburg, Ia.	06810000	2,806	Chem.	1979-93
2			Temp.*, Cond. Bio.	1979-81
			D10.	1979-81
Nodaway River at Clarinda	06817000	762	Cond.*, Temp.*, Sed.	1976-92
Platte River near Diagonal, Ia.	06818750	217	Chem.	1969-73
Elk Creek near Decatur City, Ia.	06897950	52.5	Bio. Chem.	1970-72 1968-94
Thompson River at Davis City, Ia.	06898000	701	Chem. Temp.*, Sed., Cond.*	1967-73 1968-73
Weldon River near Leon, Ia.	06898400	104	Chem.	1968-73
Chariton River near Chariton, Ia.	06903400	182	Temp.*, Sed., Cond.*	1969-73
Honey Creek near Russell, Ia.	06903500	13.2	Sed.	1952-62
Chariton River near Rathbun, la.	06903900	549	Temp.*, Sed.*, Cond.*	1962-69

•

DISCONTINUED SURFACE-WATER-QUALITY STATIONS-Continued

WATER RESOURCES DATA FOR IOWA, 2001

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled "Water Resources Data - Iowa" as part of the National Water Data System.

Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.

Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they were published in 5year series. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground-Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States, or they may be purchased from Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a Stateboundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water is published in official U.S. Geological Survey reports on a State-boundary basis. These official reports carry an identification number consisting of the two-letter State postal abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report IA-01-1." These water-data reports are for sale by the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

Additional information for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone, (319) 337-4191.

COOPERATION

The U.S. Geological Survey and organizations in the State of Iowa have had cooperative agreements for the systematic collection of streamflow records since 1914, for ground-water levels since 1935, and for water-quality records since 1943. Organizations that assisted in collecting data through cooperative agreements with the U.S. Geological Survey in Iowa during water year 2001 are:

Iowa Department of Natural Resources (Geological Survey Bureau) Iowa Department of Transportation Iowa Highway Research Board

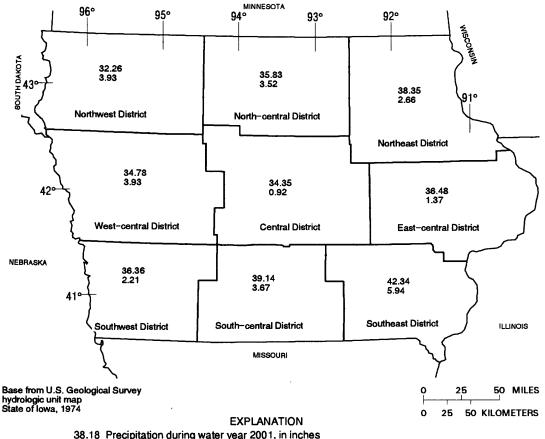
Iowa State University University of Iowa, Institute of Hydraulic Research University of Iowa, Hygienic Laboratory University of Iowa

Appanoose County Board of Supervisors Buchanan County emergency Management Davis County Board of Supervisors Freemont County Board of Supervisors Lake Delhi Recreation Association Lake Panorama Association Limestone Bluffs RC&D Van Buren County Board of Supervisors

- City of Ames City of Bloomfield City of Cedar Rapids City of Clear Lake City of Coralville City of Decorah Water Department City of Des Moines Water Works City of Des Moines Water Works City of Iowa City City of Milford City of Ottumwa Ottumwa Water and Hydro Plant City of Waterloo Water Pollution Control Plant City of Waterly
- City of Bettendorf City of Burlington City of Charles City City of Clinton City of Davenport City of Des Moines City of Fort Dodge City of Marshalltown City of Mt. Pleasant City of Cedar Falls City of Sioux City City of West Des Moines

Assistance in the form of funds or services was given by the U.S. Army Corps of Engineers in collecting streamflow records for 73 stream gaging stations. Assistance also was furnished by NOAA-National Weather Service, U.S. Department of Commerce, and Biological Resources Division (BRD) of U.S. Geological Survey.

The following organizations aided in collecting records: Milford Municipal Utilities, Central Iowa Energy Cooperative, and Ameren-Union Electric Company.


Organizations that supplied data are acknowledged in the station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

For water year 2001 (October 1, 2000 to September 30, 2001) climatological conditions were slightly above normal. Recorded precipitation for the year ranged from 5.94 inches greater than normal in the Southeast Iowa Climatological District to 0.92 inches greater than normal in the Central Iowa Climatological District (fig. 1). Precipitation recorded for the State averaged 38.18 inches, which was 3.07 inches below normal, or 109 percent of the normal 33.11 inches for 1961-90 (table 1). Overall, water year 2001 was the 28th wettest and 21st coldest for 128 years of record. [In this summary of hydrologic conditions, all data and statistics pertaining to precipitation and temperature in Iowa were provided by Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, (oral and written commun., 2001)]

Annual runoff for the period of record at index stations 05464500 Cedar River at Cedar Rapids, 05480500 Des Moines River at Fort Dodge, and 06810000 Nishnabotna River above Hamburg are shown in figure 2. The water-year 2001 runoff at Cedar Rapids was 4,384,000 acre-feet, which is 1,660,000 acre-feet greater than the mean annual runoff for the period of record, 2,724,000 acre-feet. The water-year 2001 runoff at Fort Dodge was 2,512,000 acre-feet, which is 1,240,000 acre-feet greater than the mean for the period of record, 1,272,000 acre-feet. The water-year 2001 runoff at Hamburg was 949,000 acre-feet, which is 29,200 acre-feet greater than the mean for the period of record, 919,800 acre-feet.

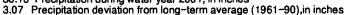


Figure 1. Precipitation record for the National Weather Service's designated Climatological Districts for water year 2001 (source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, written commun., 2001)

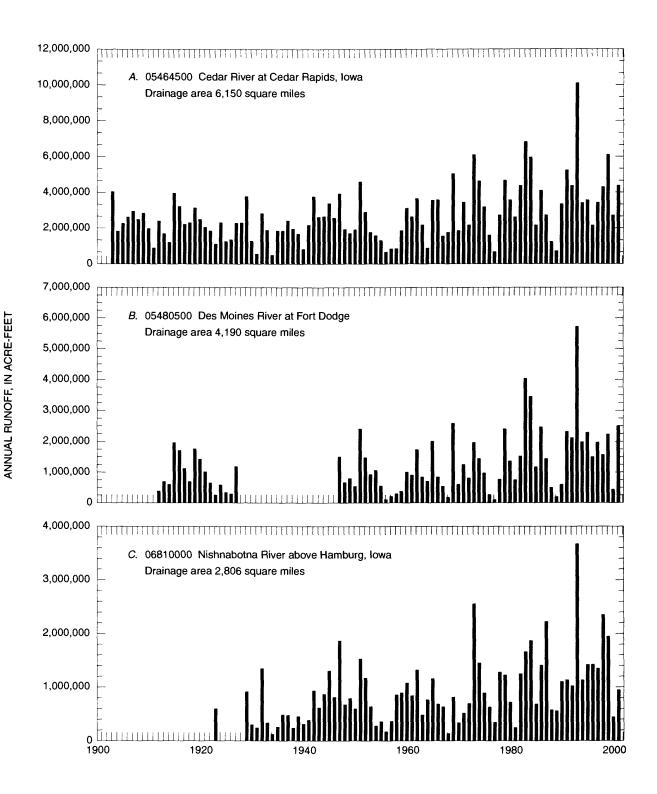


Figure 2. Annual runoff for period of record at index stations.

(1961-90). [Source: Harry Hillaker, State Climatologist, Iowa Department of Agriculture and Land Stewardship, writte commun., 2001]										, written			
National Weather Service Climatological		2000						2001					
District	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Annual
Northwest	130	210	133	235	137	31	211	145	85	113	66	68	114

North-central

West-central

East-central

Southwest

Southeast

Statewide

South-central

Northeast

Central

Table 1. Monthly and annual precipitation during the 2001 water year as a percentage of normal precipitation

The locations of the active continuous-record gaging stations in Iowa for water year 2001 are shown in figure 3. The locations of the active crest-stage gaging stations are shown in figure 4.

Suspended Sediment

Daily suspended-sediment discharge data (hereafter referred to as sediment discharge) were collected at 13 streamflowgaging stations in Iowa during the 2001 water year. Four stations have 23 years or more of record: 05389500 Mississippi River at McGregor, 05465500 Iowa River at Wapello, 05474000 Skunk River at Augusta, and 05481650 Des Moines River near Saylorville; two stations on the Missouri River have 15 years of record: 06610000 Missouri River at Omaha, Nebraska and 06807000 Missouri River at Nebraska City, Nebraska; two stations in northeast Iowa have 10 years of record: 05389400 Bloody Run Creek near Marquette and 05411400 Sny Magill Creek near Clayton; two new sediment stations were established in northeast/east-central Iowa to monitor sediment movement in the Maguoketa River Basin; 05416900 Maguoketa River at Manchester and 05418500 Maquoketa River near Maquoketa; three stations in central Iowa have 6 years of record: 05471040 Squaw Creek near Colfax, 05487540 Walnut Creek near Prairie City, and 05487550 Walnut Creek near Vandalia. The locations of active sediment and surface water-quality stations are shown in figure 5.

The peak daily sediment discharge on 7 of 13 stations occurred between March 12-23, after a significant rain event. Two others peaked August 2.

Mississippi River at McGregor, which has most of its drainage basin in Minnesota and Wisconsin, had an annual sediment discharge of 1,385,000 tons, which was the eleventh lowest sediment discharge in 26 years of record, and 82.9 percent of the average mean sediment discharge (fig. 6).

The sediment station on the Des Moines River near Saylorville in central Iowa is downstream from a major flood-control reservoir (Saylorville Reservoir). The annual sediment discharge at this station for water year 2001 was 133,782 tons. This

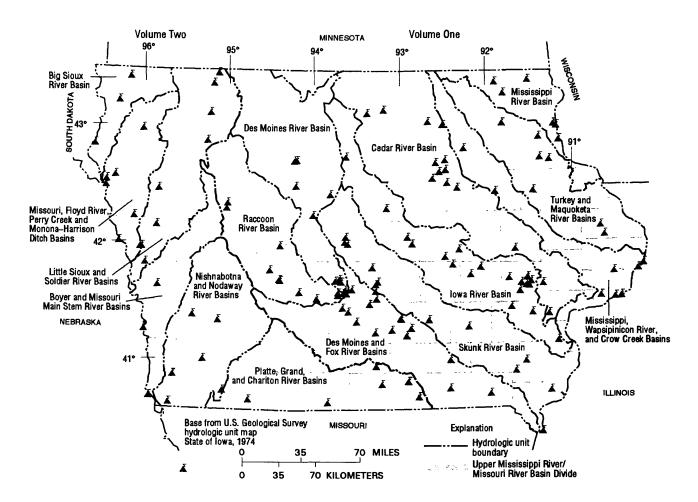
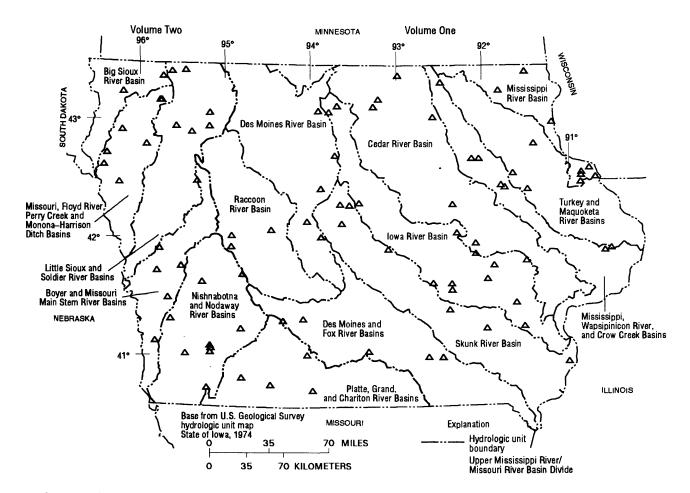



Figure 3. Location of active continuous-record gaging stations in Iowa, water year 2001. [See drainage basin maps in indicated volume for gaging-station identification.]

represents 55 percent of the 24-year mean sediment discharge. The mean annual sediment discharge since dam completion is 241,700 tons (fig. 6).

Sediment discharges for Iowa River at Wapello and Skunk River at Augusta in southeast Iowa were indicative of the nearnormal precipitation in central and eastern Iowa. The Iowa River basin drainage includes parts of the Southeast, East-central, Central, Northeast, and North-central Climatological Districts, and drains an area nearly three times as large as the Skunk Basin. These districts had about 108 percent of normal precipitation. Wapello had an annual sediment discharge of 2.22 million tons. This represents 82.6 percent of the 23-year mean sediment discharge of 2.69 million tons (fig. 6). The headwaters of the Skunk River basin are in central Iowa and flow is southeasterly to the confluence with the Mississippi River. A substantial part of the drainage basin is located in the Southeast Climatological District. The annual precipitation for this district was 116 percent of normal for water year 2001. The 2001 annual sediment discharge for Skunk River at Augusta was 3.27 million tons, which is 118 percent of the 26-year mean sediment discharge of 2.77 million tons (fig. 6).

The 2001 annual sediment discharge for the two small drainage area stations located in northeast Iowa reflect the effect of precipitation patterns on small drainage basins. The annual sediment discharge for Bloody Run Creek near Marquette (05489400) was 1,722 tons, of which approximately 24.6 percent was measured during the month of August. The annual runoff was 41.9 percent of the 10-year mean sediment discharge of 4,107 tons. The annual sediment discharge for Sny Magill

Figure 4. Location of active crest-stage gaging stations in Iowa, water year 2001. [See drainage basin maps in indicated volume for gaging-station identification.]

Creek near Clayton (05411400) was 3,161 tons. This runoff represents 68.6 percent of the 10-year mean sediment discharge of 4,610 tons. Fifty-four percent of Sny Magill's annual sediment discharge was measured in August, and approximately 39 percent of the yearly total was measured on August 2. These stations are paired in a study on sediment-reduction techniques, with the Sny Magill Basin having the techniques implemented and the Bloody Run Basin not implemented.

The annual sediment discharge for the new station in northeast Iowa, Maquoketa River at Manchester (05416900), was 33,680 tons; 45.9 percent of the yearly total was measured in March. The station in east-central Iowa, Maquoketa River near Maquoketa (05418500), had an annual sediment discharge of 334,400 tons. Thirty-six percent of the yearly total was measured in March.

The annual sediment discharge for the three stations located in central Iowa with less than approximately 20 square miles of drainage reflect precipitation patterns on small drainage basins. The annual sediment discharge for Squaw Creek near Colfax (05471040) was 5,942 tons. Sixty-eight percent of Squaw Creek's annual sediment discharge was measured in March. The annual sediment discharge for Walnut Creek near Prairie City (05487540) was 916 tons, while Walnut Creek near Vandalia (05487550) was 6,357 tons of annual sediment discharge. Vandalia has a drainage area approximately three times the size of Prairie City, but had about 6.9 times the amount of sediment discharge of Prairie City.

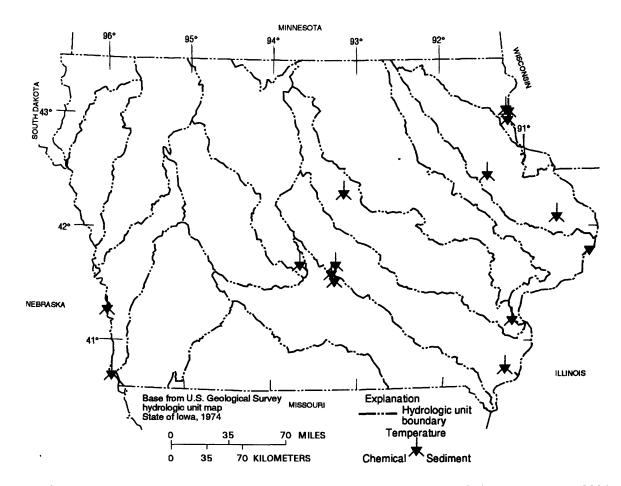


Figure 5. Location of active sediment and surface-water quality stations in Iowa, water year 2001.

The two Missouri River stations (fig. 5) have large drainage areas, which the sediment discharges reflect. The annual sediment discharge at Omaha was 15.9 million tons, which was 75 percent of the 15-year mean of 21.3 million tons. The annual sediment discharge at Nebraska City was 23.0 million tons, which was 70 percent of the 15-year mean of 32.9 million tons.

Ground-Water-Level Observation Network

The ground-water monitoring network in Iowa provides a historical record of the water-level changes in the Nation's most important aquifers. The locations of the 163 wells monitored on a quarterly, monthly, or intermittent basis in Iowa during water year 2001 are shown in figure 7.

In this report, records of water levels are presented for a network of observation wells. However, many other water levels are measured through Federal, State, and local agency cooperative projects and entered into computer storage. Information for specific projects may be obtained from the District Chief, Iowa District, or via the world wide web using the following universal resource locator address: ">http://iowa.usgs.gov/>.

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are presented by counties arranged in alphabetical order. The principal identification number for a given well is the 15-digit number that appears in the upper left corner of the table. The secondary identification number is the local well number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape or from an airline. The water-level measurements in this report are given in feet with reference to land-surface datum. Land-surface datum is a datum plane that is approximately at land surface at each well. The measuring point is the height above or below the land-surface datum and the point where the water level is measured. Both the measuring point and land-surface datum are provided for each well.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement to a depth of water of several hundred feet, the error of determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given to a tenth of a foot or a larger unit.

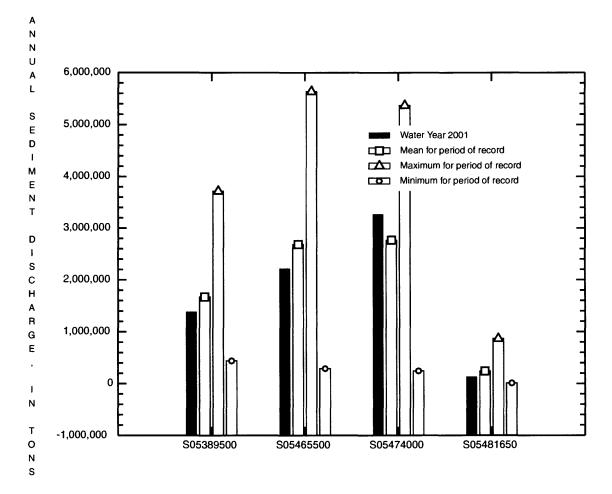


Figure 6. Comparison of annual sediment discharge for water year 2001 with mean, previous maximum, and previous minimum annual sediment discharges for periods of record at four long-term daily sediment stations in Iowa. Ground-water supplies in Iowa are withdrawn from unconsolidated and bedrock aquifers. There are three types of unconsolidated aquifers: (1) alluvial aquifers, which consist of sand-and-gravel deposits associated with present-day fluvial systems; (2) glacial-drift aquifers, which consist of shallow, discontinuous, permeable lenses of sand and gravel interbedded with less-permeable glacial drift; and (3) buried-channel aquifers. Buried-channel aquifers are formed in areas where coarse sand and gravel were deposited in bedrock valleys and overlain by a thick layer of glacial drift.

Four wells completed in an unconsolidated aquifer recorded a new historical water level during the 2001 water year. One well recorded a high historical water level (table 2). Three wells recorded low historical water levels (table 3).

 Table 2. Historical high water level measured during the 2001 water year in a well completed in an unconsolidated aquifer.

 [Water-level measurements are in feet below land surface]

County	Well number	Aquifer type	New historical high water level	Date measured	Previous historical high water level	Date measured
Adams	410247094324801	Glacial Drift	2.30	05/08/2001	1.38	05/09/1996

Table 3. Historical low water level measured during the 2001 water year in wells completed in unconsolidated aquifers

County	Well number	Aquifer type	New historical low water level	Date measured	Previous historical low water level	Date measured
Adams	410248094324801	Glacial Drift	5.45	11/30/2000	3.08	12/06/1996
Carroll	420643094403701	Alluvial	12.53	02/12/2001	11.99	05/07/1996
Mills	405641095365101	Buried Channel	170.00	07/30/2001	144.30	06/13/1990

Water-level measurements are in feet below land surface]

The five major bedrock-aquifer units in Iowa are the Cambrian-Ordovician, Silurian-Devonian, Mississippian, Pennsylvanian, and Dakota. The Cambrian-Ordovician aquifer system consists of aquifers in sandstone of Early Cambrian age and dolomite and sandstone of Late Cambrian to Early Ordovician age. The Dresbach is the basal aquifer of the Cambrian-Ordovician aquifer system and is present locally in northeastern and east-central Iowa. Overlying the Dresbach aquifer is the more aerially extensive Jordan-St. Peter aquifer. A confining shale unit separates the Jordan-St. Peter aquifer from the Galena aquifer, the uppermost aquifer in the Cambrian-Ordovician aquifer system. Overlying the Cambrian-Ordovician aquifer system is the Silurian-Devonian aquifer, which yields water from fractures in Silurian dolomite and Devonian limestone. Overlying the Silurian-Devonian aquifer is the Mississippian aquifer, which is composed of limestone and dolomite of Mississippian age and underlies about 60 percent of Iowa. Overlying the Mississippian aquifer are discontinuous lenses of sandstone in the Cherokee and Kansas City Groups of Pennsylvanian age, which form small, localized aquifers. The Dakota aquifer is the youngest bedrock-aquifer unit in the State and yields water from sandstone of Cretaceous age in northwest and western Iowa.

Eighteen wells completed in bedrock aquifers recorded new historical water levels during the 2001 water year. Four wells recorded historical high water levels (table 4), and 14 wells recorded historical low water levels (table 5).

Table 4. Historical high water level measured during the 2001 water year in wells completed in bedrock aquifers.

readings above land surface indicated by "+"]								
County	Well number	Aquifer type	New historical high water level	Date measured	Previous historical high water level	Date measured		
Jasper	413908093071100	Cambrian-Ordovician	182	12/18/2000		**		
Linn	421207091312201	Silurian	8.0	05/09/2001	10	08/09/1999		
Pottawat- tamie	412407095391201	Cambrian-Ordovician	72.17	05/09/2001	122.74	05/11/2000		
Washington	412750091495201	Mississippian	0.31	05/08/2001	0.59	11/04/1998		

[Water-level measurements are in feet below land surface

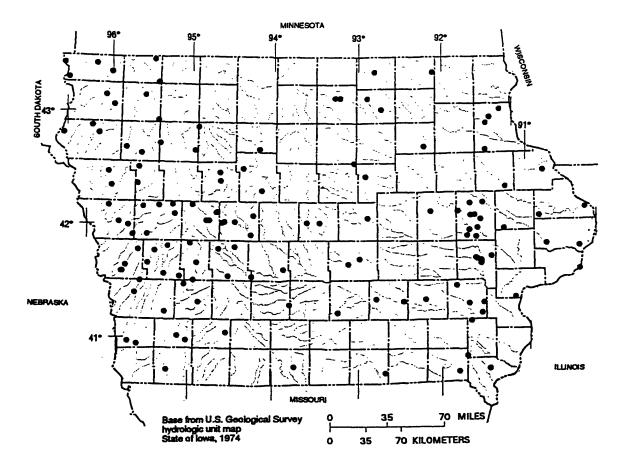


Table 5. Historical low water level measured during the 2001 water year in wells completed in bedrock aquifers.

[Water-level measurements are in feet below land surface]

County	Well number	Aquifer type	New historical low water level	Date measured	Previous historical low water level	Date measured
Carroll	420233094475901	Cretaceous	24.85	11/08/2000	23.72	11/07/1995
Clinton	414921090450401	Silurian	104	08/09/2001	97	05/15/2000 08/15/2000
Decatur	4044220934456002	Cambrian-Ordovician	445.22	07/26/2001	443.10	05/11/2000 08/09/2000
Floyd	430200092435303	Devonian	83.41	02/14/2001	82.06	02/06/1996
Floyd	430200092435304	Devonian	89.07	02/14/2001	88.43	02/06/1996
Ida	422215095390811	Cretaceous	208.27	11/20/2000	207.84	08/07/2000
Jasper	413908093071100	Cambrian-Ordovician	205	03/24/2001		
Johnson	413929091322401	Cambrian-Ordovician	222	06/21/2001	216	04/30/1998
Johnson	414132091345502	Silurian	252.77	07/31/2000	253.83	07/09/2001
Johnson	414132091345503	Silurian	314	08/13/2001 08/28/2001	310	07/27/2000
Johnson	414145091350101	Cambrian-Ordovician	419	08/13/2001 08/28/2001	419	12/19/2000
Lee	404306091270201	Cambrian-Ordovician	271.77	08/07/2001	269.12	08/14/2000
Madison	411727093483001	Mississippian	281.43	07/26/2001	281.01	08/09/2000
Shelby	413255095070401	Shelby	43.23	12/04/2000	43.03	02/24/2000

Surface-Water Quality

Surface-water-quality data was collected in Iowa during water year 2001 at two National Stream-Quality Accounting Network (NASQAN) stations. The NASQAN stations in Iowa are the Mississippi River at Clinton (station number 05420500) and Missouri River at Omaha(06610000). The combined drainage area of the two stations is approximately 408,000 square miles. Land use throughout the two drainage basins is primarily agricultural. Fifteen water samples were collected at Missouri River at Omaha, and fourteen water sample were collected at Mississippi River at Clinton during the 2001 water year.

Nearly all the samples collected at the two stations contained detectable concentrations of agricultural chemicals. Dissolved nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) were common during the 2001 water year, with all samples containing concentrations greater than the detection level of 0.05 mg/L (milligrams per liter).

Nitrate concentrations at Clinton ranged from 0.209 mg/L on August 15 to 2.95 mg/L, on April 24.

Nitrate concentrations at Omaha ranged from 0.084 mg/L on October 3 to 2.96 mg/L, on May 7. Nitrate concentrations in water samples did not exceed 10 mg/L, which is the U.S. Environmental Protection Agency (USEPA), Maximum Contaminate

Level (MCL) for public drinking water (USEPA), 1990 Maximum contaminant levels, subpart B of part 141, National primary drinking water regulations: U.S.Code of Federal Regulations, Title 40, Parts 100 to 149, revised as of July 1, 1990, p.553-677). Pesticide analysis were completed for 29 water samples collected at the two NASQAN stations. Atrazine and metolachlor, two of the most commonly used herbicides in Iowa, were detected throughout the year at both NASQAN stations. Some of the detections of herbicide concentrations were at very low detection limits and are marked with an "E" code for an estimated value. An "E" code means the compound was detected but that the value is approaching quantifiable limits. Acetochlor was detected 11 times at Omaha and ten times at Clinton. The largest herbicide concentration was 4.38 ug/L (micrograms per liter) of atrazine in the water sample collected from the Missouri River on June 15. The largest overall concentration of acetochlor, alachlor, atrazine, cyanazine, and metolachlor, 4.38 ug/L of atrazine, E0.014 ug/L of cyanazine, and 0.976 ug/L of metolachlor. The only herbicide that exceeded USEPA MCL's (USEPA,1992, Fact sheet: EPA 570/9-91-012FS, December 1992) was atrazine on June 15.

Herbicide concentrations were generally larger in samples collected during May, June, and July than in samples collected at other times during water year 2001. Water samples collected in October through February had the lowest overall concentrations of the five herbicides during the 2001 water year.

Ground-Water Quality

The Iowa ground-water-quality monitoring program has been operated since 1982 by the U.S. Geological Survey in cooperation with the Iowa Department of Natural Resources, Geological Survey Bureau. The purpose of the program is twofold: (1) provide consistent and representative data describing the chemical water quality of the principal aquifers of the State; and (2) determine possible trends in both water quality and spatial distribution of water quality.

The ground-water-quality monitoring program was initiated to continue a program begun in 1950 by the State Health Department that consisted of periodic, nonspecific sampling of untreated water from municipal supply wells. Each year, approximately 250 wells, primarily municipal supply, were randomly-selected for sampling between April and November. Between 1985 and 1989, the emphasis of the program was on the analysis of nitrate and herbicide concentrations in samples from wells less than 200 feet in depth. Because of the random pattern of sampling both spatially (different wells each year) and seasonally (different times during the year), trends in ground-water quality were difficult to determine from the data. Therefore, in 1990, to provide year-to-year continuity of data and a more statistically sound basis for the study of long-term water-quality trends, a sampling strategy based on a random selection of wells weighted by aquifer vulnerability was implemented. Aquifer vulnerability was determined by the frequency of atrazine detections in water samples collected from wells in the respective aquifers. In 1990 and 1991, a fixed network of 50 wells was selected to be sampled annually, and approximately 200 wells continued to be selected on a rotational basis.

In 1992, the investigation of water-quality trends became the primary focus of the program, and a 10-year work plan was designed to eliminate spatial and seasonal variance, yet allow flexibility within the schedule to address additional data needs. For sampling site selection in 1992, the well inventory was divided into categories based on aquifer type and again on well depth for surficial aquifers, and into categories designated "vulnerable to contamination" and "not vulnerable to contamination" based on the map *Groundwater Vulnerability Regions of Iowa* (Hoyer, B.E., and Hallberg, G.R., 1991, Special Map Series 11: Iowa Department of Natural Resources, scale 1:500,000) for bedrock aquifers. Vulnerability was determined by the combination and interpretation of factors including geologic and soil data, thickness of Quaternary cover, proximity to agricultural injection wells and sinkholes through which contaminants can be introduced to the aquifer, and evaluation of historical ground water and well contamination. A total of 90 sites were selected for sampling from a well inventory comprising approximately 1,640 public supply wells. From the 90 sites in the fixed network, 45 wells from two surficial aquifer types were selected to be sampled annually. The other 45 wells (from the bedrock aquifers) were selected to be sampled on a rotational schedule based on aquifer vulnerability to contamination. The wells determined to be vulnerable to contamination would be sampled every 2 years and those wells categorized as not vulnerable to contamination would be sampled every 4 years. All 90 wells were sampled in the first 2 years (1992 and 1993) and the sampling rotation began in

1994. The sampling effort during the 2001 water year is the tenth year of this program to determine possible ground-waterquality trends.

Ground-Water Monitoring Network

During the 2001 water year, a total of 86 ground-water samples were collected from municipal wells located throughout the State (fig. 8). These wells were sampled as part of the Iowa ground-water-quality monitoring (GWM) program to determine water-quality trends. Two types of surficial aquifers and four types vulnerable bedrock aquifers were sampled. The aquifer types include: (1) alluvial aquifers comprising sand and gravel associated with present-day fluvial systems and (2) glacial drift and buried-channel aquifers associated with previous glaciation (3) Cretaceous aquifers comprised of fine- to coarse-grained sandstones of the Dakota Group (4) Mississippian aquifers composed primarily of porous limestones and dolomites (5) Silurian-Devonian aquifers composed of porous and fractured limestones and dolomites; and (6) Cambrian-Ordovician aquifers comprised of sandstones and dolomitic sandstones of the Jordon Formation. Samples were collected during July, August, and September 2001. All samples were analyzed by the University of Iowa Hygienic Laboratory. All samples were analyzed for common ions, nutrients, and herbicides. In addition, most samples were sampled for volatile organic compounds (VOCs) and radio chemistry. However, in a few cases only wells less than 300 feet deep were analyzed for VOCs and only wells deeper than 300 feet were analyzed for radio chemistry. Results for all constituent analyses are published in this report. Discussion of analytical results will be limited to the nitrogen species nitrate and ammonia, and herbicides.

A summary of results for nutrient and herbicide analyses are listed by compound in table 6. Nitrate was detected in 37 of the 86 samples and ammonia was detected in 52 of the 86 samples analyzed for these compounds. One or more herbicides were detected in 24 of the 86 samples. The laboratory minimum reporting level (MRL) for ammonia and nitrate is 0.10 mg/L. The MRL's for the herbicides listed below are 0.05 μ g/L. The MRL is the lowest concentration reliably measured by the laboratory.

Compound	Number of samples analyzed	Number of samples in which compound was detected	Median value	Maximum concentration detected
Acetochlor	86	1	<0.05 μg/L	0.51 μg/L
Ammonia	86	52	.20 mg/L	6.5 mg/L
Alachlor	86	1	< 0.05 µg/L	0.22 μg/L
Atrazine	86	12	< 0.05 µg/L	0.19 µg/L
Butylate	86	0	< 0.05 µg/L	< 0.05 µg/L
Cyanazine	86	0	< 0.05 µg/L	< 0.05 µg/L
Deethylatrazine	86	10	< 0.05 µg/L	0.097 μg/L
Deisopropylatrazine	86	1	< 0.05 µg/L	0.12 μg/L
Metolachlor	86	6	< 0.05 µg/L	2.3 μg/L
Metribuzin	86	0	< 0.05 µg/L	< 0.05 µg/L
Nitrate	86	37	< 0.10 mg/L	18.0 mg/L
Prometone	86	2	< 0.05 µg/L	0.11 μg/L
Trifluralin	86	2	< 0.05 µg/L	0.05 μg/L

Table 6.	Summary of nitrogen species and herbicides detected in samples from the Ground-Water-Quality				
Monitoring project, water year 2001					
	fugli migrograma par literumgli willigrama par literu - lago than detection limiti				

Concentrations of nitrate greater than 3.0 mg/L generally can be attributed to human activities, whereas concentrations less than 3.0 mg/L may indicate ambient concentrations from naturally occurring soil nitrogen or geologic deposits (Madison, R.J., and Brunett, J.O., 1984, Overview of the occurrence of nitrate in ground water of the United States, *in* National Water Summary 1984 -- Water quality trends: U.S. Geological Survey Water-Supply Paper 2275, p. 93-105). Nitrate concentrations were greater than 3.0 mg/L in 24 of 86 samples. The median concentration for the 24 samples with detections above 3.0 mg/L was 3.7 mg/L. Concentrations in five samples exceeded 10 mg/L, which is the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) for public drinking water. The median nitrate concentration for all samples was <0.10 mg/L. The maximum nitrate concentration detected was 18 mg/L. Of the 37 samples with detectable nitrate concentrations, 49 percent were from the alluvial aquifers, 13 percent were from the glacial drift and buried channel aquifers, and 38 percent were from the bedrock aquifers.

Nine commonly used herbicides and two atrazine degradation products (deethylatrazine and deisopropylatrazine) were analyzed for during the 2001 water year. Atrazine was the most commonly detected herbicide (14 percent), followed by deethylatrazine (12 percent) and metolachlor (7 percent). No sample contained herbicide concentrations that exceeded the . MCL or proposed MCL of any of the analytes. The largest concentration of any herbicide compound detected was a metolachlor concentration of 2.3 μ g/L. No detectable amounts of butylate, cyanazine, or metribuzin were found in any of the samples.

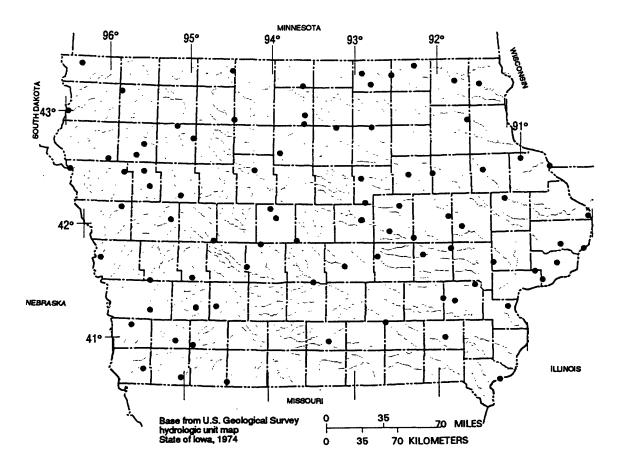


Figure 8. Location of active ground-water-quality monitoring wells in Iowa.

SPECIAL NETWORKS AND PROGRAMS

<u>Hydrologic Benchmark Network</u> is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the hydrology, including water quality, and related factors in representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within four of the Nation's largest river basins--the Mississippi, Columbia, Colorado, and Rio Grande. The network consists of 39 stations. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical climate of precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to accomplish the following objectives: (1) provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of approximately 200 precipitation chemistry monitoring sites. (2) provide the mechanism to evaluate the effectiveness of the significant reduction in SO2 emissions that began in 1995 as implementation of the Clean Air Act Amendments (CAAA) occurred. (3) provide the scientific basis and nationwide evaluation mechanism for implementation of the Phase II CAAA emission reductions for SO2 and NOx scheduled to begin in 2000.

Data from the network, as well as information about individual sites, are available through the World Wide Web at:

http://nadp.sws.uiuc.edu/

<u>The National Trends Network</u> (NTN) is a 200-station network for sampling atmospheric deposition in the United States. The purpose of the network is to determine the variability, both in location and in time, of the composition of wet atmospheric deposition, which includes snow, rain, sleet, and hail. The core from which the NTN was built was the already-existing deposition-monitoring network of the National Atmospheric Deposition Program (NADP).

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 53 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees

typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies.

Additional information about the NAWQA Program is available through the world wide web at:

http://wwwrvares.er.usgs.gov/nawqa/nawqa_home.html

<u>Radio chemical Programs</u> is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States.

<u>Tritium Network</u> is a network of stations which has been established to provide baseline information on the occurrence of tritium in the Nation's surface waters. In addition to the surface-water stations in the network, tritium data are also obtained at a number of precipitation stations. The purpose of the precipitation stations is to provide an estimate sufficient for hydrologic studies of the tritium input to the United States.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 2000 water year that began October 1, 1999 and ended September 30, 2000. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data was collected are shown in figures 3-5, 7, 9, 10. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report was collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations, and the "latitude-longitude" system is used for wells.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary, with respect to the stream to which it is immediately tributary, is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 05388250, which appears just to the left of the station name, includes the two-digit Part number "05" plus the six-digit downstream-order number "388250." The Part number designates the major river basin; for example, Part "05" is the Mississippi River Basin.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number and has no additional significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description (fig. 9).

Latitude and longitude coordinates for wells:

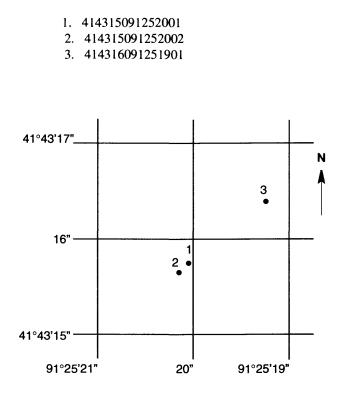


Figure 9. Latitude-longitude well number.

Numbering System For Wells

Each well is identified by means of (1) a 15-digit number that is based on the grid system of latitude and longitude, and (2) a local number that is provided for continuity with older reports and for other use as dictated by local needs. For maximum utility, latitude and longitude code numbers are determined to seconds in order that each well may have a unique number. The first six digits denote degrees, minutes, and seconds of north latitude; the next seven digits are degrees, minutes, and seconds of west longitude; and the last two numbers are a sequential number assigned in the order in which the wells are located in a 1-second quadrangle.

The local well numbers are in accordance with the Bureau of Land Management's system of land subdivision. Each well number is made up of three segments. The first segment indicates the township, the second the range, and the third the section

in which the well is located (fig. 10). The letters after the section number, which are assigned in a counter-clockwise direction (beginning with "A" in the northeast quarter), represent subdivisions of the section. The first letter denotes a 160-acre tract, the second a 40-acre tract, the third a 10-acre tract, and the fourth a 2.5 acre tract. Numbers are added as suffixes to distinguish wells in the same tract. Thus, the number 96-20-3CDBD1 designates the well in the SE 1/4 NW 1/4 SE 1/4 SW 1/4 sec.3, T.96 N., R.20 W.

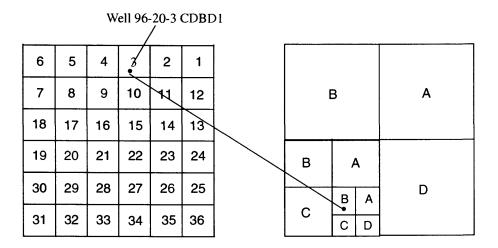


Figure 10. Local well-numbering system.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." Location of all complete-record surface water stations which are given in this report are shown in figure 3.

Partial records are obtained through discrete measurements without using a continuous stage-recording device, and generally pertain only to a characteristic of either high, medium or low flow. The location of all active, crest-stage gaging stations are shown in figure 4.

Data Collection and Computation

The data obtained at a complete-record gaging station on a stream or canal consists of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationships between stage and discharge. This data, together with supplemental information, such as weather records, are

used to compute daily discharges. The data obtained at a complete-record gaging station on a lake or reservoir consists of a record of stage and of notations regarding factors that may affect the relationship between stage and lake content. This data is used with stage-capacity curves or tables to compute lake storage.

Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage or with digital recorders that punch stage values on paper tapes at selected time intervals. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A6.

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow over dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relations that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations, the stage-discharge relation is affected by changing stage; at these stations, the rate of change in stage is used as a factor in computing discharge.

In computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relationship of stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in a lake or reservoir, periodic resurveys may be necessary to redefine the relation. Even when this is done, the contents computed may become increasingly in error as the lapsed time since the last survey increases. Discharges over lake or reservoir spillways are computed using stage-discharge relations.

For some gaging stations, there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For these periods, the daily discharges are estimated from the recorded range in stage, discharge computed before and after the missing record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table, and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preference.

The records published for each continuous-record surface-water discharge station (gaging station) consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station Manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given

GAGE.--The type of gage in current use, the datum of the current gage sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Extremes are published only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWEB [http://water.usgs.gov/nwis/nwis]. Because of the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWEB to ensure the most recent updates. Updates to NWISWEB are currently made on an annual basis.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current, and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted, and the information contained in these paragraphs is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. EXTREMES FOR PERIOD OF RECORD are now presented only for stations with significant flow regulation and where extremes occurred in pre-regulation periods. No changes have been made to the data presentations of lake contents or reservoir storage.

Data Table of Daily Mean Values

The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. In the yearly summary below the monthly summary, the figures shown are the appropriate discharges for the calendar and water years. At some stations, monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversions or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

Statistics of Monthly Mean Data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR PERIOD OF RECORD, BY WATER YEAR (WY)," for unregulated streams for the water years listed in the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams, the first and last water years of the range of years will be given for the post-regulation period.

Summary Statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year, but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "PERIOD OF RECORD," for unregulated streams, will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. For significantly regulated streams, the period selected will be designated as "WATER YEARS ______," for the post regulation period. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations, the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN .-- The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN .-- The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN .-- The minimum daily mean discharge for the year or for the designated period.

- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- INSTANTANEOUS PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by writing to the District Office. (See address on back of title page of this report.)
- INSTANTANEOUS PEAK STAGE.-- The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.
- INSTANTANEOUS LOW FLOW .-- The minimum instantaneous discharge occurring for the water year or for the designated period.
- ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:
- Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
- Cubic feet per second per square mile (CSFM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
- Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS .-- The discharge that is exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that is exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS .-- The discharge that is exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified by listing the dates of the estimated record in the REMARKS paragraph of the station description, and are flagged "e" in tables.

Accuracy of the Records

The accuracy of streamflow records depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft 3 /s the nearest tenth between 1.0 and 10 ft 3 /s; to whole numbers between 10 and 1,000 ft 3 /s; and to 3 significant figures for more than 1,000 ft 3 /s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published.

Other Records Available

Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables is on file in various field offices of the Iowa District. Also, most of the daily mean discharges are in computer-readable form and have been analyzed statistically. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the offices whose addresses are given on the back of the title page of this report.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near streamgaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data is collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data is collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data is obtained only monthly or less frequently. Locations of stations for which records on the quality of surface water appear in this report are shown in figure 5.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-

order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

In obtaining water-quality data, a major concern needs to be assuring that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, alkalinity and dissolved oxygen, are made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. A1, A3, and A4; Book 9, Chap.A1-A9.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain the representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals depends on flow conditions and other factors, which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis.

Water Temperature and Specific Conductance

Water temperatures are measured at most of the water-quality stations. The measurement of temperature and specific conductance is performed during each regular site visit (usually at a six week interval) to streamgaging stations. Records of stream temperature indicate significant thermal characteristics of the stream when analyzed over a long period of record. Large streams have small daily temperature variations, while shallow streams may have a daily range of several degrees and may closely follow the changes in air temperature. Furthermore, some streams may be affected by waste-heat discharge.

Specific conductance can be used as a general indicator of stream quality. This determination is easily made in the field with a portable meter, and the results are very useful as general indicators of dissolved-solids concentration or as a base for extrapolating other analytical data. Records for temperature and specific conductance appear in the section "Analyses of samples collected at miscellaneous sites".

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samples. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily, or in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis

of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of the quantities of suspended-sediment, records of the periodic measurements of the particlesize distribution of the suspended-sediment and bed material are included. Miscellaneous suspended-sediment samples were collected during flood events have been included with the station's water quality data or in the section "Analyses of samples at miscellaneous sites".

Laboratory Measurements

Sediment samples, samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratory in Arvada, Colorado and the University of Iowa Hygienic Laboratory. Methods used in analyzing sediment samples and computing sediment records are given in TWRI, Book 5, Chap. C1. Methods used by the U.S. Geological Survey laboratories are given in TWRI, Book 1, Chap. D2, Book 3, Chap. C2; Book 5, Chap. A1, A3, and A4.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuousrecord station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge;" same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor temperature record, sediment pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by monthly transfer of update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Remarks Codes

The following remarks codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK
E	Estimated value
>	Actual value is know to be greater than the value shown
<	Actual value is known to be less than the value shown
К	Results based on colony count outside the acceptance range (non-ideal colony count)
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted)
D	Biological organism count equal to or greater than 15 percent (dominant)
&	Biological organism estimated as dominant
V	Analyte was detected in both the environmental sample and the associated blank

Water Quality-Control Data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this District are:

Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample.

Reference Samples

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this District are:

Sequential samples - a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Dissolved Trace-Element Concentrations

NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (µg/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the µg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study is available from the NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, Il 61820-7495 (217-333-7873).

Records of Ground-Water Levels

Ground-water level data from a network of observation wells in Iowa is published in this report. This data provides a limited historical record of water-level changes in the State's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 6. Information about the availability of the data in the water-level files and reports of the U.S. Geological Survey may be obtained from the Iowa District Office (see address on back of title page).

Data Collection and Computation

Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensures that measurements at each well are of consistent accuracy and reliability.

Tables of water-level data are arranged alphabetically by counties. The site identification number, based on latitude and longitude, for a given well is the 15-digit numeric value that appears in the upper left corner of the station description. The secondary identification number is the local well number, an alphanumeric value, derived from the township, range, and section location of the well (fig. 7).

Water-level records are obtained from direct measurements with a chalked steel tape, electric line, airline, or from the graph of a water-level recorder. The water-level measurements in this report are in feet with reference to land-surface datum. Land-surface datum is a plane that is approximately at land surface at each well. The elevation of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported for every fifth day and the end of each month (EOM).

Water-level measurements are reported to the nearest hundredth of a foot. Estimates, indicated by an "e" may be reported in tenths of a foot. Adjustments to the water level recorder chart are indicated by an "a". The error of water-level measurements may be, at most, a few hundredths of a foot.

Data Presentation

Each well record consists of two parts: the station description, and the table of water levels observed during the water year. The description of the well is presented by headings preceding the tabular data. The following explains the information presented under each heading.

LOCATION.--This paragraph follows the well identification number and includes the latitude and longitude (given in degrees, minutes, and seconds), the hydrologic unit number, the distance and direction from a geographic point of reference, and the well owner's name.

AQUIFER.--This entry is the aquifer(s) name (if one exists) and geologic age of the strata open to the well.

WELL CHARACTERISTICS.--This entry describes the well depth, casing diameter, casing depth, opening or screened interval(s), method of construction, and use of water from the well.

INSTRUMENTATION .-- This paragraph provides information on the frequency of measurement and the collection method used.

DATUM.--This entry includes the land-surface elevation and the measuring point at the well. The elevation of the landsurface datum is described in feet above (or below) sea level; it is reported with a precision depending on the method of determination. The measuring point is described physically and in relation to land surface.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level, and any information not presented in the other parts of the station description but considered useful.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the beginning of publication of water-level records by the U.S. Geological Survey.

REVISED RECORDS.--If any revisions of previously published data were made for water-levels, the Water Data Report in which they appeared and year published would appear here.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels for the period of record, below land-surface datum, and the dates of their occurrence.

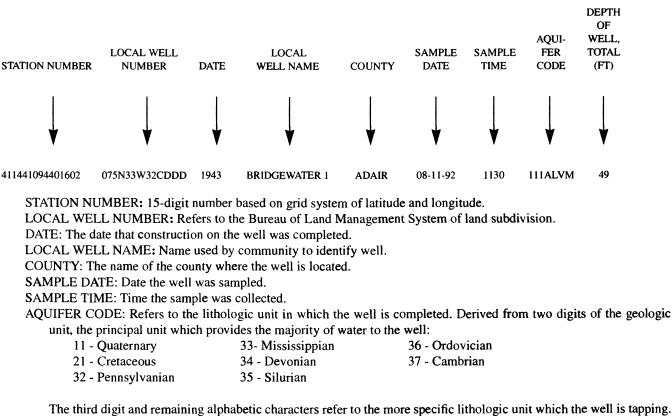
A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum. For wells equipped with recorders, only abbreviated tables are published. The highest and lowest water levels of the water year and the dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for wells with recorders, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level.

Hydrographs are included for 59 wells which are representative of hydrologic conditions in the important aquifers in Iowa.

Only water-level data from a national network of observation wells are given in this report. This data is intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Locations of the observation wells in this network in Iowa are shown in figure 7.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites, they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes only slowly; therefore, for most general purposes: one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.


The records of ground-water quality in this report were obtained as a part a statewide ground-water quality monitoring network operated by the Iowa District. All samples were obtained from municipal wells throughout Iowa. This program is conducted in cooperation with the University of Iowa Hygienic Laboratory (UHL) and the Iowa Department of Natural Resources (Geological Survey Bureau). All samples are collected by USGS personnel, field-preserved and submitted to UHL for analysis. Chemical analyses include common constituents (major ions), nutrients, organic compounds, radio nuclides and pesticides. Approximately 10 percent of the samples receive additional analyses for about 90 organic priority pollutants; however, these analyses are not presented in this report, but are on file in the Iowa District Office.

Most methods for collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed on a following page. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material comprising the casings. The samples collected represent raw water.

Data Presentation

The records of ground-water quality are published in a section titled GROUND-WATER QUALITY DATA immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by county, and are identified by station number. The prime identification number for wells sampled is the 15-digit station number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the station number, date and time of sampling, depth of well, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

Explanation of Quality of Ground-Water Data Tables -- Descriptive Headings

The third digit and remaining alphabetic characters refer to the more specific lithologic unit which the well is tapping The following examples are commonly used units:

Code	General	Specific
111ALVM	Quaternary	(alluvium)
217DKOT	Cretaceous	(Dakota sandstone)
344CDVL	Devonian	(Cedar Valley limestone)

DEPTH OF WELL, TOTAL (FT): Total depth of well in feet.

WATER RESOURCES DATA FOR IOWA, 2001

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). This data may be accessed at:

http://www.usgs.gov

Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.)

The Iowa District maintains a web site highlighting many of the District's activities. Many of the continuous stream gages presented in these reports have near-real-time data available, and all gages have historic data available. This data may be accessed at:

http://ia.water.usgs.gov

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units on the inside of the back cover.

- Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).
- Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")
- Adenosine triphosphate (ATP) is an organic, phosphate-rich, compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.
- Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.
- Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.
- Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.
- Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 to September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine.
- Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")
- Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass")
- **Bacteria** are microscopic unicellular organisims, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.
- **Base discharge (for peak discharge)** is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peaks per year will be published.

- **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.
- **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 ft) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler may also contain a component of the suspended load.
- **Bedload discharge** (tons per day) is rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload" and "Sediment")
- **Bed material** is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")
- Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.
- **Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.
- Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.
- **Biomass pigment ratio** is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.
- **Blue-green algae** (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")
- Bottom material (See "Bed material")
- **Cells/volume** refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm^3) is determined by obtaining critical cell measurements on cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^3 h$ cylinder $\pi r^3 h$.

pi is the ratio of the circumference to the diameter of a circle; pi = 3.14159...

From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes over all species.

Cfs-day (See "Cubic foot per second-day")

- **Chemical oxygen demand** (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]
- *Clostridium perfringens (C. perfringens)* is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

- **Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of waters and of the survival and transport of viruses in the environment.
- **Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.
- **Confined aquifer** is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. (See also "Aquifer")
- **Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.
- Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.
- **Control** designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.
- **Control structure** as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.
- **Cubic foot per second** (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-feet" sometimes is used synonymously with "cubic feet per second" but is now obsolete.
- **Cubic foot per second-day** (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily-mean discharges reported in the daily-value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.
- **Cubic foot per second per square mile** [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")
- **Daily mean suspended-sediment concentration** is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Daily mean suspended-sediment concentration," "Sediment," and "Suspended-sediment concentration")
- **Daily-record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.
- **Data Collection Platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.
- **Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.
- **Datum** is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")
- **Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

- **Discharge**, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediments or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents such as suspended sediment, bedload, and dissolved or suspended chemical constituents, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).
- **Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.
- **Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.
- **Dissolved-solids concentration** in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.
- **Diversity index** (H) (Shannon Index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

- **Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.
- **Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")
- Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")
- **Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")
- **Enterococcus bacteria** are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar and subsequent transfer to EIA medium. Entero-cocci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")
- **EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive, the index usually decreases with pollution.

- *Escherichia coli* (*E. coli*) are bacteria present in the intestine and feces of warm-blooded animals. *E. coli* are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium. Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")
- Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).
- Euglenoids (Euglenophyta) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")
- Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried streambed sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediments.
- Fecal coliform bacteria are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")
- Fecal streptococcal bacteria are present in the intestine of warm-blooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")
- Fire algae (Pyrrhophyta) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")
- Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.
- Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly larger than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any National geodetic datum. However, if the elevation of the gage datum relative to the National datum (North American Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the National datum by adding the elevation of the gage datum to the gage reading.
- Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.
- Gage values are values that are recorded, transmitted and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.
- Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed.
- Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

- Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")
- Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.
- **Hardness** of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).
- **High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html*
- Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution which uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum\frac{(n)(a)}{N}$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

- **Hydrologic benchmark station** is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin.
- Hydrologic index stations referred to in this report are four continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.
- **Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.
- Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")
- Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")
- Laboratory Reporting Level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a non-detection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually based on the most current quality-control data and may, therefore, change. [Note: In several previous NWQL documents (Connor and others, 1998; NWQL Technical Memorandum 98.07, 1998), the LRL was called the non-detection value or NDV—a term that is no longer used.)
- Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.
- Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation

$$I = I_{\rho}e^{-\lambda L},$$

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} \; .$$

- Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.
- Long-Term Method Detection Level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.
- Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html
- Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.
- Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspendedsediment concentration" and "Suspended-sediment concentration")
- Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")
- Mean high or low tide is the average of all high or low tides, respectively, over a specific period.
- Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")
- Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.
- Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.
- **Metamorphic stage** refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.
- Method Detection Limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.
- Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.
- **Micrograms per gram** (UG/G, $\mu g/g$) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

- **Micrograms per kilogram** (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.
- **Micrograms per liter** (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.
- **Microsiemens per centimeter** (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.
- Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.
- Minimum Reporting Level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method (Timme, 1995).
- **Miscellaneous site**, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or waterquality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.
- **Most probable number** (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.
- Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.
- Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.
- National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")
- Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate.")
- Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.
- **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.
- North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the U.S. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and U.S. first-order terrestrial leveling networks.
- **Open or screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.
- **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

- Organic mass or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")
- **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.
- Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.
- Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter Code is a 5-digit number used in the USGS

computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

- **Partial-record station** is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.
- **Particle size** is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottomwithdrawal tube, visual-accumulation tube, Sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).
- Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	0.004 - 0.062	Sedimentation
Sand	0.062 - 2.0	Sedimentation/sieve
Gravel	2.0 - 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

- Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation to the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.
- **Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.
- Percent shading is determined by using a clinometer to estimate left and right bank shading. The values are added together and divided by 180 to determine percent shading relative to a horizontal surface.
- **Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record.

.

- **Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.
- Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.
- **pH** of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water.
- Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae. (See also "Plankton")
- **Picocurie** (PC, pCi) is one trillionth (1 x 10^{-12}) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10^{10} radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).
- Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL of sample).
- **Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.
- **Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.
- **Primary productivity** is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.
- **Primary productivity (carbon method)** is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. Carbon method defines the amount of carbon dioxide consumed as measured by

radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

- **Primary productivity (oxygen method)** is expressed as milligrams of oxygen per area per unit time [mg O/(m^2 /time)] for periphyton and macrophytes or per volume [mg O/(m^3 /time)] for phytoplankton. Oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")
- **Radioisotopes** are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

- Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")
- **Recurrence interval**, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day 10-year low flow ($7Q_{10}$) is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years after the previous for the non-exceedances of the $7Q_{10}$ occur less than 10 years after the previous non-exceedance, half occur less than 20 years after the previous non-exceedance, half occur less than 7 years after the previous non-exceedance, half occur less than 7 years after the previous non-exceedance, half occur less than 7 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$.
- Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.
- Return period (See "Recurrence interval")
- **River mileage** is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council, and typically used to denote location along a river.
- **Runoff** is the quantity of water that is discharged ("runs off") from a drainage basin in a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")
- Sea level, as used in this report, refers to one of the two commonly used national vertical datums, (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. See conversion of units page (inside back cover) for identification of the datum used in this report.
- Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.
- Seven-day 10-year low flow (7Q10) is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-run average. The recurrence interval of the 7Q10 is 10 years; the chance that the annual 7-day minimum flow will be less than the 7Q10 is 10 percent in any given year. (See also "Recurrence interval" and "Annual 7-day minimum")
- Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.
- Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-

solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent

of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

- Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.
- **Streamflow** is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate Embeddedness Class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as percent covered by fine sediment:

- 0
 < no gravel or larger substrate</td>

 1
 > 75%

 2
 51-75%
 4
 5-25%

 3
 26-50%
 5
 < 5%</td>
- Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.
- Surficial bed material is the upper surface (0.1 to 0.2 ft) of the bed material such as that material which is sampled using U.S. Series Bed-Material Samplers.
- Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a watersediment mixture. It is operationally defined as the material retained on a 0.45-micrometer filter.
- **Suspended, recoverable** is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")
- Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")
- Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")
- Suspended-sediment discharge (tons/day) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

- Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")
- Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")
- Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.
- Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.
- Taxa richness is the total number of distinct species or groups and usually decreases with pollution. (See also "Percent Shading")
- **Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom:	Animal
Phylum:	Arthropoda
Class:	Insecta
Order:	Ephemeroptera
Family:	Ephemeridae
Genus:	Hexagenia
Species:	Hexagenia limbata

Temperature preferences:

- Cold preferred water temperature for the species is less than 20 °C or spawning temperature preference less than 16 °C and native distribution is considered to be predominantly north of 45° N. latitude.
- Warm preferred water temperatures for the species is greater than 20 °C or spawning temperature preference greater than 16 °C and native distribution is considered to be predominantly south of 45° N. latitude.
- Cool intermediate between cold and warm water temperature preferences.
- **Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder' is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.
- Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A timeweighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.
- Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

.

- **Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.
- **Total** is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)
- **Total coliform bacteria** are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")
- **Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.
- **Total in bottom material** is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."
- **Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.
- Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.
- **Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume.")
- **Total recoverable** is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspended-

- sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Sediment," "Suspended sediment," "Suspended-Sediment Concentration," "Bedload," and "Bedload discharge")
- **Total sediment load** or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-Sediment Load," and "Total load")

Trophic group:

Filter feeder - diet composed of suspended plant and/or animal material.

Herbivore - diet composed predominantly of plant material.

Invertivore - diet composed predominantly of invertebrates.

Omnivore - diet composed of at least 25-percent plant and 25-percent animal material.

Piscivore – diet composed predominantly of fish.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity by these different methods and different instruments are unlikely to yield equivalent values. Consequently, the method of measurement and type of instrument used to derive turbidity records should be included in the "REMARKS" column of the Annual Data Report.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorb-

ance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are humanmade chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

Water table is the level in the saturated zone at which the pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which is found the water table.

- Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2001, is called the "2001 water year."
- WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)
- Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in waterresources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S.G.S., Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1-D1. Water temperature—influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J.F. Ficke, and G. F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1-D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2-D1. Application of surface geophysics to ground-water investigations, by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI book 2, chap. D1. 1974. 116 p.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI book 2, chap. D2. 1988.
 86 p.

Section E. Subsurface Geophysical Methods

- 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI book 2, chap. E1. 1971. 126 p.
- 2-E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS-TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS-TWRI book 3, chap. A1. 1967. 30 p.
- 3-A2. *Measurement of peak discharge by the slope-area method,* by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- **3-A3.** *Measurement of peak discharge at culverts by indirect methods,* by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3-A4. *Measurement of peak discharge at width contractions by indirect methods,* by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- **3-A5.** *Measurement of peak discharge at dams by indirect methods,* by Harry Hulsing: USGS–TWRI book 3. chap. A5. 1967. 29 p.
- 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS-TWRI book 3, chap. A6. 1968. 13 p.
- 3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI book 3, chap. A8. 1969. 65 p.

3-A9.	<i>Measurement of time of travel in streams by dye tracing,</i> by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS—TWRI book 3, chap. A9. 1989. 27 p.
3-AI0.	Discharge ratings at gaging stations, by E.J. Kennedy: USGS–TWRI book 3, chap. A10. 1984. 59 p.
3-A11.	<i>Measurement of discharge by the moving-boat method,</i> by G.F. Smoot and C.E. Novak: USGS—TWRI book 3, chap. A11. 1969. 22 p.
3-A12.	<i>Fluorometric procedures for dye tracing</i> , Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
3-A13.	Computation of continuous records of streamflow, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
3-A14.	Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI book 3, chap. A14. 1983. 46 p.
3-A15.	Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
3-A16.	Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI book 3, chap. A16. 1985. 52 p.
3 -A17.	Acoustic velocity meter systems, by Antonius Laenen: USGS–TWRI book 3, chap. A17. 1985. 38 p.
3-A18.	Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
3-A19.	Levels at streamflow gaging stations, by E.J. Kennedy: USGS–TWRI book 3, chap. A19. 1990. 31 p.
3-A20.	Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI

- book 3, chap. A20. 1993. 38 p. 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 199 56 p.

Section B. Ground-Water Techniques

- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI book 3, chap. B1. 1971. 26 p.
- 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3-B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- **3-B6.** The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3-B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p.
- 3-C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p.

50

WATER RESOURCES DATA FOR IOWA, 2001

4-A2. Frequency curves, by H.C. Riggs: USGS–TWRI book 4, chap. A2. 1968. 15 p.

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4-B3. *Regional analyses of streamflow characteristics,* by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-A1. *Methods for determination of inorganic substances in water and fluvial sediments,* by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5-A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples,* by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5-A5. *Methods for determination of radioactive substances in water and fluvial sediments,* by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

- 6-A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5, 1993. 243 p.
- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A5,1996. 125 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI book 7, chap. C2. 1978. 90 p.

7-C3. *A model for simulation of flow in singular and interconnected channels,* by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8-A1. *Methods of measuring water levels in deep wells,* by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

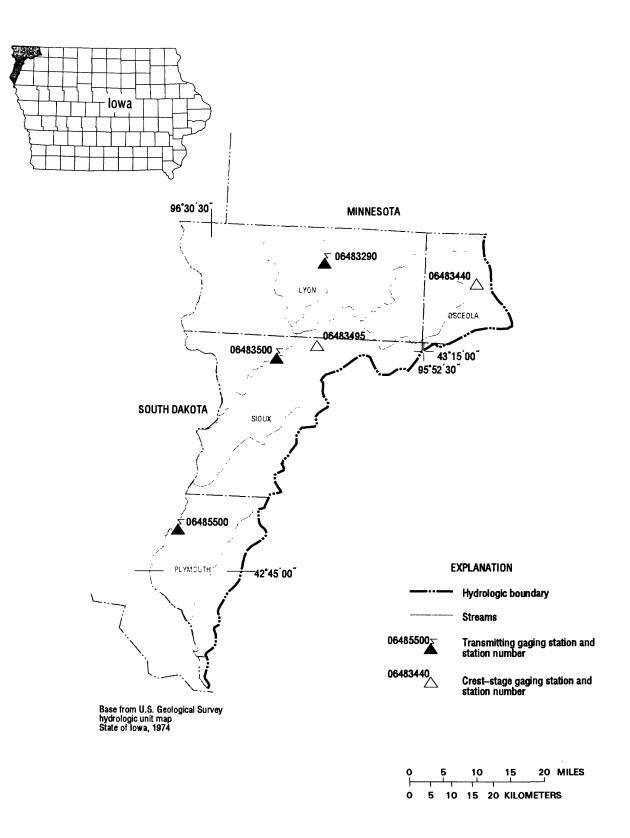
Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9-A1. National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9-A4. National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, edited by D.N. Myers and F.D. Wilde: USGS-TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI book 9, chap. A9. 1998. 60 p.

52

THIS PAGE IS INTENTIONALLY BLANK


•

•

.

•

,

Gaging Stations

06483290	Rock River below Tom Creek at Rock Rapids	5,	IA.	•	•	•	•	•	•	•	•	•	•	•	.56
06483500	Rock River near Rock Valley, IA			•	•	•		•		•	•	•		•	.58
06485500	Big Sioux River at Akron, IA			•	•	•	•	•	•	•	•	•	•	•	.60

Crest Stage Gaging Stations

06483440	Dawson Creek near Sibley, IA	148
06483495	Burr Oak Creek near Perkins, IA	148

.

06483290 ROCK RIVER BELOW TOM CREEK AT ROCK RAPIDS, IA

LOCATION.--Lat 43°25'23", long 96°09'52", in SW¹/4 NW¹/4 SE¹/4 sec. 4, T.99 N., R.45 W., Lyon County, Hydrologic Unit 10170204, on right bank 5 ft downstream from bridge on gravel road in Campbell Park, near waterworks lift station, 200 ft east of Tama St and 8th Ave, 1.1 mi downstream of mouth of Tom Creek, and at mile 41.4.

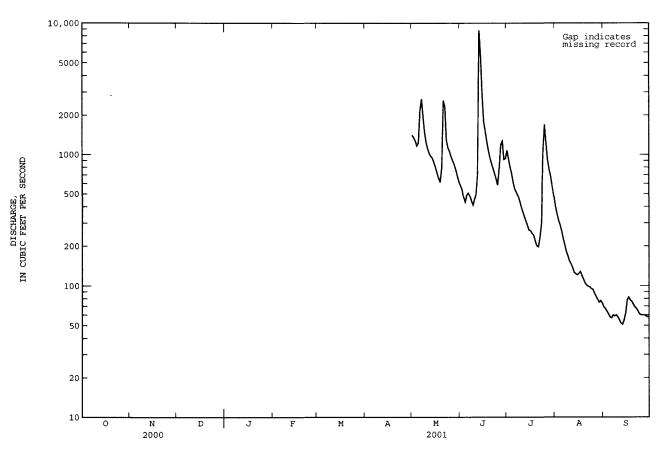
DRAINAGE AREA. -- 853 mi².

PERIOD OF RECORD. -- May 1, 2001 to September 30, 2001.

GAGE.--Water-stage recorder. Datum of gage is 1,308.57 ft above sea level.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 8, 1969 reached a stage of 10.23 ft, discharge 29,000 ft³/s, at discontinued gaging station 1.4 mile upstream and above Tom Creek.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e1410	581	1080	402	69
2								e1350	546	926	352	67
3								1280	e473	804	315	64
4								1170	e435	714	289	61
5								1230	487	611	260	58
5								1000	107			
6								2190	508	545	227	57
7								2660	485	515	203	60
8								1960	443	485	181	59
9								1480	411	443	168	60
10								1240	460	400	153	58
11								1110	493	367	146	55
12								1020	699	337	137	52
13								973	8870	311	126	51
14								940	5680	288	123	55
15								868	2920	265	121	62
16			+					799	1800	262	124	78
17								723	1520	250	128	82
18								662	1270	242	119	78
19								615	1090	218	112	76
20								805	953	201	105	72
~ 1										100	101	60
21								2600	862	198	101	69
22				~				2330	788	232	99	67
23								1290	718	298	98	64
24 25								1130 1060	652 585	1040 1700	95 94	61 60
25								1000	202	1700	24	00
26								968	784	1240	88	60
27								902	1200	913	83	60
28								840	1270	770	79	59
29								772	919	680	75	58
30								690	934	566	77	58
31								623		484	74	
TOTAL								37690	38836	17385	4754	1890
MEAN								1216	1295	561	153	63.0
MAX								2660	8870	1700	402	82
MIN								615	411	198	74	51
AC-FT								74760	77030	34480	9430	3750
CFSM								1.43	1.52	.66	.18	.07
IN.								1.64	1.69	.76	.21	.08
STATIST	ICS OF MO	NTHLY MEA	N DATA FO	R WATER Y	EARS 2001	- 2001,	BY WATER	YEAR (WY)			
MEAN								1216	1295	561	153	63.0
MAX								1216	1295	561	153	63.0
(WY)								2001	2001	2001	2001	2001
MIN								1216	1295	561	153	63.0
(WY)								2001	2001	2001	2001	2001

06483290 ROCK RIVER BELOW TOM CREEK AT ROCK RAPIDS, IA--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR
HIGHEST DAILY MEAN	8870 Jun 13
LOWEST DAILY MEAN	51 Sep 13
ANNUAL SEVEN-DAY MINIMUM	56 Sep 8
10 PERCENT EXCEEDS	1290
50 PERCENT EXCEEDS	435
90 PERCENT EXCEEDS	60

e Estimated

06483500 ROCK RIVER NEAR ROCK VALLEY, IA

LOCATION.--Lat 43°12'52", long 96°17'39", in SW1/4 SW1/4 sec.16, T.97 N., R.46 W., Sioux County, Hydrologic Unit 10170204, on left bank 15 ft upstream from bridge on county highway K30, 0.3 mi north of Rock Valley, and at mile 19.1.

DRAINAGE AREA.--1,592 mi².

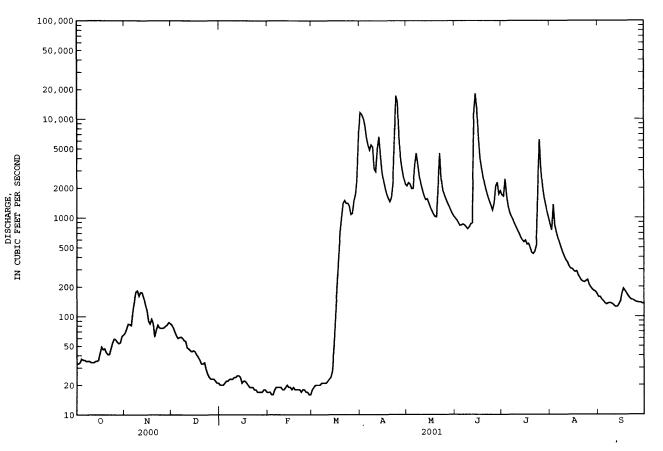
PERIOD OF RECORD. -- June 1948 to current year.

REVISED RECORDS.--WSP 1439: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,222.54 ft above sea level. Prior to Aug. 13, 1952, nonrecording gage with supplementary water-stage recorder operating above 6.2 ft gage height. June 4, 1949 to Aug. 12, 1952 and Aug. 13, 1952 to May 4, 1976, water-stage recorder, at site 3.2 mi downstream at datum 10.73 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1897 reached a stage of 17.0 ft, former site and datum, discharge not determined, from information by State Highway Commission.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e82 e20 e17 e18 e77 e20 e17 e19 e70 e20 e16 e20 e64 e21 e16 e20 e60 e22 e18 e20 7 e61 e22 e19 e20 e62 e23 e19 e21 e60 e23 e19 e21 e23 e57 e19 e21 e56 e24 e18 e21 e48 e24 e18 e22 e47 e25 e19 e23 e45 e25 e20 e24 e44 e24 e19 e28 e116 e45 e21 e19 e48 e90 e44 e22 e98 e18 e84 e41 e22 e200 e19 1570 e94 e39 e21 e18 e380 e85 e36 e20 e700 e18 e62 e33 e19 e18 e1000 e73 e33 e19 e18 e1400 e82 e34 e1500 e19 e17 e77 e29 e18 e1400 e18 e76 e26 e18 e18 e76 e24 e17 e17 2.6 e77 e23 e17 e17 e80 e23 e17 e16 e82 e23 e17 e16 e87 e22 e18 ---e21 --e85 e18 e21 ---e17 TOTAL MEAN 43.2 43.5 20.5 17.9 MAX MIN AC-FT CFSM .03 .07 .03 .01 .01 3.44 .25 . 09 .51 1.23 1.84 .80 IN. .07 .03 .03 .01 .01 .59 3.84 1.42 2.05 .92 .29 .10 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2001, BY WATER YEAR (WY) MEAN 80.3 MAX 2.39 (WY) 9.70 MIN 3.22 .037 .30 35.1 35.9 44.4 46.3 21.9 6.79 3.26 (WY)

06483500 ROCK RIVER NEAR ROCK VALLEY, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	AR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1949 - 2001
ANNUAL TOTAL	55503		401346			
ANNUAL MEAN	152		1100		511	
HIGHEST ANNUAL MEAN					2656	1993
LOWEST ANNUAL MEAN					31.0	1968
HIGHEST DAILY MEAN	2670	May 20	18200	Jun 14	35400	Apr 7 1969
LOWEST DAILY MEAN	21	Dec 30	16	Feb 3a	.00	Feb 20 1959b
ANNUAL SEVEN-DAY MINIMUM	22	Dec 25	17	Jan 29	.00	Feb 27 1959
MAXIMUM PEAK FLOW			21600	Apr 24	40400	Apr 7 1969
MAXIMUM PEAK STAGE			17.74	Apr 24	17.32	Apr 7 1969c
ANNUAL RUNOFF (AC-FT)	110100		796100		370000	
ANNUAL RUNOFF (CFSM)	.095	,	.69		.32	
ANNUAL RUNOFF (INCHES)	1.30		9.38		4.36	
10 PERCENT EXCEEDS	323		2590		1160	
50 PERCENT EXCEEDS	90		149		134	
90 PERCENT EXCEEDS	34		19		16	

Also Feb. 4, 27, 28. Many days during winter periods in 1959 and 1977. At location and datum then in use. Estimated. a b c e

06485500 BIG SIOUX RIVER AT AKRON, IA

LOCATION.--Lat 42⁻⁵0'14", long 96°33'41", in SW¹/₄ SE¹/₄ SW¹/₄ sec.30, T.93 N., R.48 W., Plymouth County, Hydrologic Unit 10170203, on left bank 15 ft downstream from Iowa Highway 403 bridge, 0.5 mi northwest of Akron, and 2.9 mi upstream from Union Creek.

DRAINAGE AREA.--8,424 mi², of which 1,487 mi² usually is noncontributing (213 mi² of the noncontributing area contributed runoff in the 1994-2001 water years).

PERIOD OF RECORD. -- October 1928 to current year.

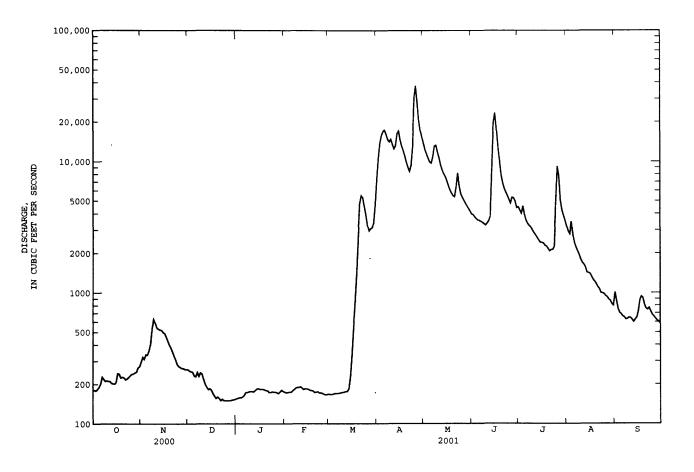
REVISED RECORDS.--WSP 1309: 1929(M), 1931-33(M), 1936(M), 1938(M), 1940(M). WSP 1389: Drainage area. WDR SD-84-1: Drainage area. WDR SD-94-1 only: Drainage area.

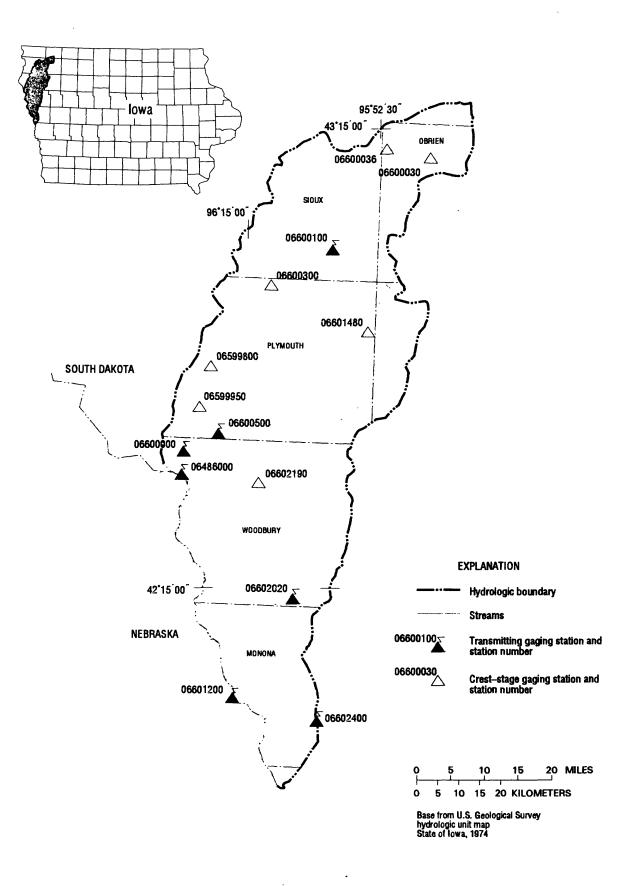
GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,118.90 ft above sea level. Prior to Dec. 3, 1934, nonrecording gage at bridge 0.5 mi downstream at same datum. From Dec. 3, 1934, to Oct. 31, 1985, water-stage recorder at site 0.6 mi downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite data-collection platform at station. Water temperature and specific conductance measured during the year are compiled in the Miscellaneous Temperature Measurements and Field Determinations section.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	179	295	e259	e155	e174	e168	7290	13800	3980	4510	3230	1010
2	180	323	e253	e156	e172	e167	10700	12300	3930	4250	2940	869
3	178	311	e250	e158	e173	e167	13900	11400	3790	4020	2800	753
4	183	338	e248	e158	e174	e168	15900	10600	3670	4570	3490	704
5	190	335	e232	e160	e174	e170	17000	9910	3580	3940	2750	688
6	201	362	e229	e165	e178	e170	17400	9710	3550	3570	2410	662
7	227	407	e247	e173	e182	e170	16100	10900	3490	3370	2220	652
8	219	542	e230	e173	e187	e171	14700	13100	3440	3250	2080	627
9	211	630	e245	e175	e189	e172	14100	13300	3350	3160	1960	632
10	213	589	e240	e176	e189	e173	14800	11800	3270	2990	1800	648
11	211	541	e218	e176	e191	e174	13500	10700	3390	2860	1700	644
12	211	530	e200	e175	e187	e176	12500	9410	3530	2750	1650	624
13	204	522	e190	e179	e182	e176	13200	8640	3820	2630	1570	600
14	202	e520	e182	e184	e185	e185	16400	8090	8830	2520	1430	625
15	201	e500	e185	e185	e184	e230	17100	7700	19500	2420	1420	647
16	207	e490	e180	e183	e183	e335	14600	7160	23500	2410	1400	723
17	242	e460	e170	e183	e180	e550	13100	6580	17800	2390	1330	881
18	240	e430	e162	e183	e179	e850	12100	6110	12900	2290	1260	938
19	224	e400	e156	e181	e178	e1400	11000	5750	10100	2260	1220	913
20	227	e380	e160	e179	e173	e2600	9860	5490	7910	2170	1170	810
21	225	e355	e156	e178	e174	e4800	9070	53 9 0	6890	2080	1110	758
22	217	e330	e150	e173	e175	e5500	8430	6380	6240	2130	1070	743
23	220	e310	e154	e173	e172	5310	9340	8190	5830	2130	1000	768
24	226	e285	e150	e175	e172	4560	12900	6530	5500	2250	996	720
25	233	e275	e150	e174	e170	3950	30400	5680	5140	4880	982	680
26	239	e270	e150	e174	e168	3280	37800	5340	4800	92 00	948	659
27	240	e265	e150	e172	e166	2970	28700	5060	5320	7740	930	637
28	245	e265	e150	e170	e167	3090	20700	4810	5270	5050	890	61 6
29	248	e260	e151	e175		3140	17200	4590	4970	4260	871	605
30	268	e260	e152	e180		3380	15300	4380	4440	3880	823	583
31	273		e153	e176		4690		4200		3570	801	
TOTAL	6784	11780	5902	5377	4978	53042	465090	253000	201730	10 950 0	50251	21419
MEAN	219	393	190	173	178	1711	15500	8161	6724	3532	1621	714
MAX	273	630	259	185	191	5500	37800	13800	23500	9200	3 49 0	1010
MIN	178	260	150	155	166	167	7290	4200	3270	2080	801	583
AC-FT	13460	23370	11710	10670	9870	105200	922500	501800	400100	217200	99670	42480
STATIS	FICS OF	MONTHLY N	TEAN DATA	FOR WATER	YEARS 192	29 - 2001,	BY WATE	RYEAR (WY	()			
MEAN	531	525	351	210	512	2385	3423	1879	2210	1509	771	674
MAX	4039	3022	1987	920	2399	8866	20690	9499	15820	21740	6200	7313
(WY)	1987	1980	1999	1996	1966	1983	1969	1993	1984	1993	1993	1986
MIN	32.9	47.9	32.1	6.68	12.1	124	139	73.3	100	50.7	45.2	36.4
(WY)	1959	1959	1977	1977	1936	1931	1931	1934	1933	1931	1976	1976
,,			2211	*211	1,20	1701	1731	2793	1000	1701	1270	2270


06485500 BIG SIOUX RIVER AT AKRON, IA--Continued


SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WF	ATER YEAR	WATER YEAR	S 1929 - 2001
ANNUAL TOTAL	228342		1188853			
ANNUAL MEAN	624		3257		1249a	
HIGHEST ANNUAL MEAN					6271	1993
LOWEST ANNUAL MEAN					120	1931
HIGHEST DAILY MEAN	5110	May 21	37800	Apr 26	77500	Apr 9 1969
LOWEST DAILY MEAN	150	Dec 22	150	Dec 22	4.0	Jan 17 1977
ANNUAL SEVEN-DAY MINIMUM	150	Dec 24	150	Dec 24	4.4	Jan 15 1977
MAXIMUM PEAK FLOW			40400	Apr 26	80800	Apr 9 1969b
MAXIMUM PEAK STAGE			23.38	3 Apr 26	23.38	Apr 26 2001c
ANNUAL RUNOFF (AC-FT)	452900		2358000		904800	
10 PERCENT EXCEEDS	1380		10700		2970	
50 PERCENT EXCEEDS	431		662		397	
90 PERCENT EXCEEDS	190		172		70	

Median of annual mean discharges, 820 ft³/s. Gage height, 22.99 ft. Discharge, 40,400 ft³/s. Estimated.

a b c e

•

Gaging Stations

•

06486000	Missouri River at Sioux City, IA
06600000	Perry Creek at 38th Street, Sioux City, IA
06600100	Floyd River at Alton, IA
06600500	Floyd River at James, IA
06601200	Missouri River at Decatur, NE
06602020	West Fork Ditch at Hornick, IA
06602400	Monona-Harrison Ditch near Turin, IA

Crest Stage Gaging Stations

06599800	Perry Creek near Merrill, IA
06599950	Perry Creek near Hinton, IA
06600030	Little Floyd River near Sanborn, IA
06600036	Sweeney Creek Tributary near Sheldon, IA
06600300	West Branch Floyd River near Struble, IA
06601480	Big Whiskey Slough near Remsen, IA
06602190	Elliott Creek at Lawton, IA

MISSOURI RIVER MAIN STEM

06486000 MISSOURI RIVER AT SIOUX CITY, IA

LOCATION.--Lat. 42°29'09", long 96'24'49", in NW¹/₄ SE¹/₄ sec.16, T.29 N., R.9 E., sixth prinicipal meridian, Dakota County, Nebraska, Hydrologic Unit 10230001, on right bank on upstream side of bridge on U.S. Highway 20 and 77 at South Sioux City, Nebraska, 1.9 mi downstream from Big Sioux River, and at mile 732.2.

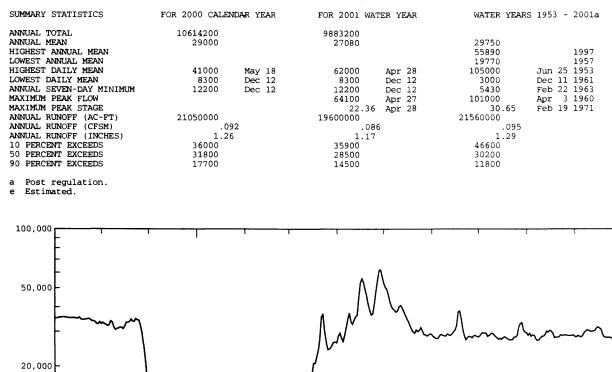
DRAINAGE.--314,600 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

PERIOD OF RECORD. -- October 1897 to current year in reports of the U.S. Geological Survey. Prior to October 1928 and October 1931 to September 1938, monthly discharges only, published in WSP 1310. January 1879 to December 1890, monthly discharges only, in House Document 238, 73rd Congress, 2d session, Missouri River. Gage height records collected in this vicinity September 1878 to December 1899 are contained in reports of Missouri River Commission and since July 1889 are contained in reports of U.S. Weather Bureau.

REVISED RECORDS. -- WSP 716: 1929-30. WSP 876: Drainage area.

- GAGE.--Water-stage recorder. Datum of gage is 1,056.98 ft above sea level. Sept. 2, 1878 to Dec. 31, 1905, nonrecording gages at various locations within 1.7 mi of present site and at various datums. Jan. 1, 1906 to Feb. 14, 1935, nonrecording gage, and Feb. 15, 1935 to Sept. 30, 1969, water-stage recorder at site 227 ft downstream at datum 19.98 ft higher, and Oct. 1, 1969 to Sept. 30, 1970 at datum 20.00 ft higher. Oct. 1, 1970 to Jan. 30, 1981, water-stage recorder at site 227 ft downstream at present datum.
- REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 441,000 ft³/s Apr. 14, 1952, gage height, 24.28 ft, datum then in use; minimum, 2,500 ft³/s Dec. 29, 1941; minimum gage height, 7.02 ft Jan. 19, 1996.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	35000	33400	17000	e17100	14500	14800	28500	50600	28300	28500	28700	28100
2	35200	32800	14900	e16800	14200	15200	29500	49300	27900	2 92 00	2940 0	28600
3	35200	32600	14100	e17000	13800	15200	27800	46200	27600	29600	28400	28400
4	35500	3 2 100	14200	e17300	16000	15200	26700	42600	27600	29400	2 880 0	28100
5	35400	3 25 00	13400	17000	16100	15400	28700	40300	28500	29400	28700	28500
6	35600	34000	13000	16700	15600	15200	31500	39100	29 000	28300	27500	2950 0
7	35600	33500	14900	16500	15400	14300	34800	38600	28700	28600	27000	30100
8	35500	31600	14800	16300	14900	14200	37300	37700	28500	29200	27200	30500
9	35400	30700	14400	15900	14800	14100	33800	38300	28400	29400	2790 0	30400
10	35300	31100	14900	15300	12900	13600	32700	40300	29 100	28900	28400	30100
11	35200	31200	11800	15500	14100	13 9 00	34300	40800	28800	28300	28400	30000
12	35300	31600	e8300	15500	16200	13800	35700	3950 0	28600	27 9 00	29000	30200
13	35300	31500	10600	15400	15900	13 9 00	36400	37900	29100	27400	30200	30300
14	35300	31000	14500	15500	15700	14800	45100	36300	2 9 900	27700	29800	31300
15	35100	32000	15600	15600	14500	18200	53500	3 49 00	30400	27400	30400	31600
16	35100	33500	14700	15800	15100	20700	55900	33700	32100	27900	30100	31200
17	35500	33400	11400	15300	16600	20700	53400	32100	37800	28200	29300	30800
18	34700	33700	10500	14900	16900	22300	49200	30800	38100	27800	27900	28900
19	34500	34700	13100	14600	16500	24200	45700	299 00	34800	27500	28100	28100
20	34600	33900	12800	12600	15200	27100	41400	294 00	30900	27200	28000	28000
21	34700	33700	14600	13300	15100	35600	38600	30600	28500	27200	28200	27900
22	34800	34900	14600	14200	14600	36700	36500	30000	27200	27300	28800	28000
23	35000	34400	15500	14000	14500	30700	36 9 00	30400	27 9 00	28100	28700	27900
24	34600	34300	16700	14100	14500	27200	41700	31500	28300	28100	28700	27700
25	34000	32300	16800	13900	14500	24300	48600	30200	28200	28700	28800	27300
26	33900	29600	16900	13000	14000	24400	55100	28900	27800	31800	28700	27600
27	33700	25900	16900	13700	14900	24900	61500	28900	28500	33000	28600	28300
28	32900	21900	17100	13500	14800	25700	62000	28500	28600	33300	28600	28200
29 30	32800 33600	18100	16800	15000 1 4 600		26500	57300	28800	28300	30600	28600 28800	28100 28000
30	32900	16900	16600 e16800	13700		26500	53000	29200 29000	28100	29800 29600	28800	28000
			610900	13700		26300		29000				
	1077200	932 8 00	448200	469600	421800	645600	1253100	1094300	885500	895300	888100	871700
MEAN	34750	31090	14460	15150	15060	20830	41770	35300	29520	28880	28650	29060
MAX	35600	34900	17100	17300	16900	36700	62000	50600	38100	33300	30400	31600
MIN	32800	16900	8300	12600	1 29 00	13600	26700	28500	27200	27200	27000	27300
	2137000	1850000	889000	931500	836600	1281000	2486000	2171000	1756000	1776000	17 6 2000	1729000
CFSM	.11	.10	.05	. 05	.05	.07	.13	.11	.0 9	.09	. 09	.09
IN.	.13	.11	.05	.06	.05	.08	.15	.13	.10	.11	.11	.10
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	53 - 2001	, BY WATE	R YEAR (W	Y)			
MEAN	36300	31390	18970	16160	17310	23370	3 3510	34070	35720	36290	36620	36830
MAX	69300	71600	39880	27720	31120	47020	88040	78720	66400	65550	65360	66400
(WY)	1998	1998	1998	1987	1997	1 9 97	1997	1997	1997	1997	1997	1997
MIN	14350	6951	8271	7316	6293	91 35	17450	23820	23270	26890	24270	25790
(WY)	1962	1962	1962	1964	1963	1957	1 9 57	1962	1960	1958	1993	1962

. •

64

06486000 MISSOURI RIVER AT SIOUX CITY, IA--Continued

PERRY CREEK BASIN

06600000 PERRY CREEK AT 38th STREET, SIOUX CITY, IA

LOCATION.--Lat 42°32'08", long 96°24'39", in SE¹/4 SE¹/4 Sec.8, T.89 N., R.47 W., Woodbury County, Hydrologic Unit 10230001, on left bank at downstream side of bridge on 38th Street in Sioux City, 1.9 mi downstream from West Branch, and 4.2 mi. upstream from mouth.

DRAINAGE AREA.--65.1 mi².

PERIOD OF RECORD. -- October 1945 to September 1969, June 1981 to current year.

REVISED RECORDS.--WSP 1440: Drainage area. WDR IA-95-1: River mile.

GAGE.--Water-stage recorder. Datum of gage is 1,112.04 ft above sea level (City of Sioux City benchmark). Prior to May 20, 1954, nonrecording gage with supplementary water-stage recorder in operation above 5.0 ft gage height and May 20, 1954 to Sept. 30, 1969, water-stage recorder at present site at datum 5.0 ft higher.

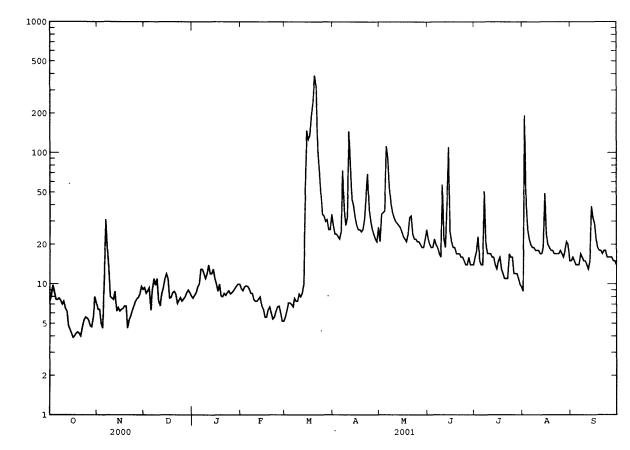
REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 7, 1944 reached a stage of about 30.5 ft from floodmarks, present datum, discharge, 9,600 ft³/s, on basis of contracted-opening measurement of peak flow by U.S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	7.3	e6.4	e9.4	e7.8	e9.2	e5.6	28	21	2 2	16	8.8	15
2	e8.2	e6.4	e8.5	e8.2	e8.9	e6.3	24	34	20	18	193	16
3	e9.8	e5.0	e8.9	e8.6	e9.5	e7.2	24	35	19	23	41	15
4	e8.7	e4.6	e9.4	e9.5	e9.7	e7.2	23	36	19	15	26	14
5	e7.6	e10	e6.3	e10	e9.6	e7.0	22	112	22	14	22	14
6	e7.6	e31	e 9 .1	e13	e 9 .2	e6.7	25	91	20	14	20	14
7	e7.8	e19	e11	e13	e8.5	e7.8	73	55	19	51	19	17
8	e7.5	e13	e9.8	e12	e8.5	e7.4	37	41	17	21	19	e16
9	e7.0	e8.0	e11	e11	e7.6	e7.4	28	35	16	17	18	e15
10	e7.4	e7.8	e7.5	e12	e7.4	e8.4	32	32	57	17	18	15
11	e6.5	e7.6	e6.8	e14	e7.4	e8.0	146	30	22	17	18	14
12 13	e6.2 e4.8	e8.8	e8.4	e12	e7.7	e8.5	79	29	19 42	16 16	17 17	13 15
14	e4.8 e4.5	e6.2 e6.6	e 9.4 e11	e12 e13	e8.0	e10	44 39	28 27	110	14	19	39
15	e4.3	e6.0 e6.2	e11 e12	e13 e11	e6.8	e50	39	27	25	13	49	32
	64.2	e0.2	e12	en	e6.4	148						
16	e3.9	e6.4	e11	e10	e5.6	126	28	23	21	15	24	29
17	e 4 .0	e6.5	e7.8	e8.8	e5.6	135	26	22	19	16	20	22
18	e4.2	e6.8	e7.9	e10	e6.4	191	26	21	19	13	19	19
19	e4.3	e6.8	e8.6	e8.1	e6.7	246	25	24	17	12	18	18
20	e4.2	e4.6	e8.8	e8.0	e6.0	390	26	32	17	11	18	18
21	e4.0	e5.3	e8.4	e8.5	e5.4	324	31	33	17	11	17	17
22	e4.7	e5.7	e7.1	e8.2	e5.6	105	47	24	16	11	17	18
23	e5.3	e6.3	e7.5	e8.6	e6.2	74	69	22	16	17	17	18
24	e5.6	e6.8	e7.9	e8.9	e6.7	49	37	22	15	16	17	16
25	e5.5	e7.3	e7.4	e8.4	e6.8	34	30	21	14	16	18	16
26	e5.3	e7.7	e7.7	e8.6	e6.0	33	26	21	14	12	17	16
27	e4.8	e7.9	e8.0	e8.9	e5.2	30	24	20	16	12	e16	16
28	e4.7	e8.4	e8.6	e9.3	e5.2	31	22	19	14	12	e18	e15
29	e5.6	e9.6	e9.0	e9.7		26	21	19	14	11	21	e15
30	e8.0	e9.1	e8.6	e10		26	27	22	14	9.9	20	e14
31	e7.2		e8.1	e10		34		26		9.5	15	
TOTAL	186.4	251.8	270.9	311.1	201.8	2149.5	1121	1002	692	486.4	796.8	531
MEAN	6.01	8.39	8.74	10.0	7.21	69.3	37.4	32.3	23.1	15.7	25.7	17.7
MAX	9.8	31	12	14	9.7	390	146	112	110	51	193	39
MIN	3.9	4.6	6.3	7.8	5.2	5.6	21	19	14	9.5	8.8	13
AC-FT	370	499	537	617	400	4260	2220	1990	1370	965	1580	1050
CFSM	.09	.13	.13	.15	.11	1.07	.57	.50	.35	.24	. 39	.27
IN.	.11	.14	.15	.18	.12	1.23	. 64	.57	.40	.28	.46	.30
STATIS	FICS OF M	ion/Thly ME	AN DATA H	FOR WATER	YEARS 194	16 - 2001,	BY WATER	YEAR (WY)				
MEAN	8.55	8.62	7.04	7.39	20.0	45.0	26.2	24.5	31.5	22.4	13.7	12.9
MAX	29.5	31.9	22.6	47.5	78.4	188	123	140	125	99.6	85.5	147
(WY)	1993	1997	1999	1952	1948	1962	1985	1990	1984	1952	1951	1949
MIN	.38	.81	.48	.33	1.31	2.62	2.30	2.91	.94	.35	.30	.083
(WY)	1959	1982	1959	1982	1959	1964	1959	1968	1956	1946	1965	1958

. .


06600000 PERRY CREEK AT 38th STREET, SIOUX CITY, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1946 - 2001
ANNUAL TOTAL	5288.4	8000.7	
ANNUAL MEAN	14.4	21.9	19.0
HIGHEST ANNUAL MEAN			38.6 1984
LOWEST ANNUAL MEAN			2.38 1968
HIGHEST DAILY MEAN	290 May 18	390 Mar 20	2260 May 19 1990
LOWEST DAILY MEAN	3.9 Oct 16	3.9 Oct 16	.00 Jul 14 1946a
ANNUAL SEVEN-DAY MINIMUM	4.1 Oct 15	4.1 Oct 15	.00 Sep 24 1958
MAXIMUM PEAK FLOW		1010 Aug 2	8670 May 19 1990b
MAXIMUM PEAK STAGE		11.79 Aug 2	28.54 May 19 1990
ANNUAL RUNOFF (AC-FT)	10490	15870	13790
ANNUAL RUNOFF (CFSM)	.22	.34	.29
ANNUAL RUNOFF (INCHES)	3.02	4.57	3.97
10 PERCENT EXCEEDS	26	34	32
50 PERCENT EXCEEDS	12	14	7.0
90 PERCENT EXCEEDS	5.7	6.3	.90

a Many days 1946, 1958-1960. b From rating curve extended above 1,700 ft³/s on basis of slope-area measurements of peak flow. e Estimated.

DISCHARGE, IN CUBIC FEET PER SECOND

•

06600100 FLOYD RIVER AT ALTON, IA

LOCATION.--Lat 42⁵58'55", long 96⁵00'03", in NE¹/4 NE¹/4 sec.11, T.94 N., R.44 W., Sioux County, Hydrologic Unit 10230002, on left bank 270 ft downstream from South County Road at east edge of Alton, 34.3 mi upstream from West Branch Floyd River, and at mile 58.1.

DRAINAGE AREA.--268 mi².

PERIOD OF RECORD.--October 1955 to current year. Prior to December 1955, monthly discharge only, published in WSP 1730.

REVISED RECORDS.--WDR IA-82-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,269.55 ft above sea level.

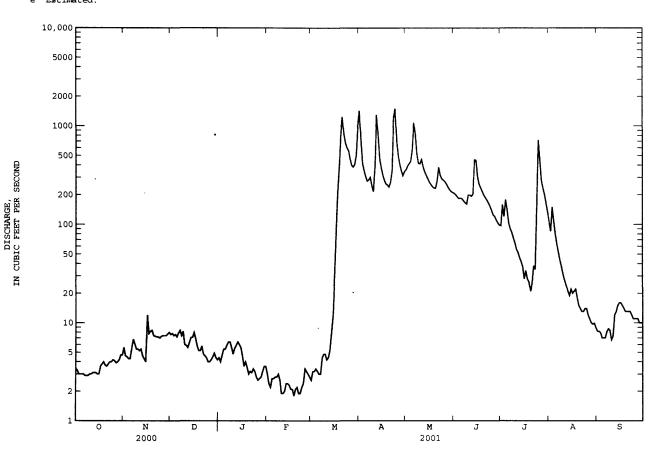
REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1953 reached a discharge of about 45,500 ft³/s, from information by U. S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	e3.4 e3.3	e5.6 e4.6	e7.6 e7.8	e4.4	e3.0	e2.6	1430	358 390	207 200	97 159	106 85	8.2 8.2
2	e3.0	e4.6 e4.5	e7.8 e7.4	e4.0 e4.7	e2.4 e2.2	e3.2 e3.2	716 418	390 414	190	120	85 150	8.2 7.9
4	e3.0	e4.3	e7.4 e7.6	e4.7 e5.4	e2.2 e2.7	e3.2 e3.4	352	414	183	178	107	7.0
5	e3.0	e4.3	e7.2	e5.4	e2.7	e3.4	307	577	185	142	80	7.0
-	0010	01.5	C/12	00.4	0217	05.2	507	5	105			,
6	e3.0	e5.5	e7.9	e5.9	e2.8	e3.0	276	1080	182	104	63	7.0
7	e2.9	e6.8	e8.4	e6.4	e2.8	e3.0	284	817	173	90	52	8.1
8	e2.9	e6.1	e7.4	e6.4	e3.0	e4.4	301	517	166	83	43	8.7
9	e2.9	e5.4	e8.2	e5.6	e2.6	e4 .8	245	417	161	73	37	8.4
10	e3.0	e5.4	e6.0	e4.8	e1.9	e4.8	216	413	199	65	31	6.7
11	e3.0	e5.2	e5.9	e5.5	e1.9	e4.2	392	458	199	56	27	7.3
12	e3.1	e5.4	e5.6	e5.9	e2.0	e4.4	1300	385	193	52	24	e12
13	e3.1	e4.6	s6.3	e6.4	e2.4	e5.3	823	343	203	46	21	e13
14	e3.1	e4.3	e7.1	e6.0	e2.4	e8.0	46 6	316	453	42	19	e15
15	e3.0	e4.0	e 7.1	e5.6	e2.3	e12	380	292	449	37	22	e16
16	e3.0	e12	e8.0	e4.6	e2.1	e 30	321	270	307	e28	20	e16
17	e3.6	e7.8	e6.9	e3.6	e2.1	e80	282	255	257	e34	21	e15
18	e3.8	e8.2	e5.8	e4.0	e1.8	e200	259	242	236	e28	22	e14
19	e4.0	e8.4	e5.2	e3.5	e2.1	363	252	235	217	e26	18	e13
20	e3.7	e7.4	e5.2	e3.0	e2.2	803	240	233	199	21	15	e13
21	e3.6	e7.3	e5.8	e3.2	e1.9	1240	266	276	187	25	14	e13
22	e3.8	e7.2	e4.8	e3.1	e1.9	836	348	381	177	38	13	e13
23	e4.0	e7.2	e4.6	e3.4	e2.2	676	1220	316	165	35	13	e12
24	e4.0	e7.0	e4.4	e3.2	e2.4	601	1510	291	153	151	14	e11
25	e4.2	e7.3	e4.0	e2.8	e3.4	565	689	282	139	722	14	e11
26	e4.1	e7.4	e4.0	e2.6	e3.2	464	496	272	125	458	12	e11
27	e3.9	e7.4	e4.2	e2.7	e3.0	400	407	257	121	280	11	e11
28	e4.0	e7.4	e4.5	e2.8	e2.8	384	351	239	111	234	10	e10
29	e4.2	e7.7	e4.9	e3.2		406	313	225	104	201	9.7	e10
30	e4.7	e8.0	e4.4	e3.6		504	343	216	99	164	9.9	e10
31	e4.7		e4.2	e3.6		987		211		134	8.9	
TOTAL	109.0	193.7	188.4	135.3	68.2	8608.5	15203	11415	5940	3923	1092.5	323.5
MEAN	3.52	6.46	6.08	4.36	2.44	278	507	368	198	127	35.2	10.8
MAX	4.7	12	8.4	6.4	3.4	1240	1510	1080	453	722	150	16
MIN	2.9	4.0	4.0	2.6	1.8	2.6	216	211	99	21	8.9	6.7
AC-FT	216	384	374	268	135	17070	30160	22640	11780	7780	2170	642
CFSM	.01	. 02	.02	.02	.01	1.04	1.89	1.37	.74	.47	.13	.04
IN.	.02	.03	.03	.02	.01	1.19	2.11	1.58	.82	.54	.15	.04
STATIS	FICS OF M	IONTHLY ME	AN DATA F	OR WATER	YEARS 195	56 - 2001,	BY WATER	YEAR (WY)			
MEAN	42.0	41.7	27.3	18.1	44.5	171	186	122	183	91.0	44.6	30.1
MAX	234	287	128	109	252	605	906	454	973	878	3 69	175
(WY)	19 9 3	1980	1983	1973	1971	1979	1969	1995	1984	1993	19 9 5	1993
MIN	.058	.30	.074	.048	.15	1.77	3.67	2.92	2.36	3.29	.37	.080
(WY)	1957	1959	195 9	1959	1977	1959	1959	1968	1968	1958	1968	1958

•


06600100 FLOYD RIVER AT ALTON, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	AR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1956 - 2001
ANNUAL TOTAL	4209.0		47200.1			
ANNUAL MEAN	11.5		129		83.4	
HIGHEST ANNUAL MEAN					323	1993
LOWEST ANNUAL MEAN					2.66	1968
HIGHEST DAILY MEAN	192	Jun 15	1510	Apr 24	7160	Apr 4 1969
LOWEST DAILY MEAN	2.9	Oct 7	1.8	Feb 18	.00	Oct 14 1956a
ANNUAL SEVEN-DAY MINIMUM	3.0	Oct 3	2.0	Feb 16	.00	Oct 27 1956
MAXIMUM PEAK FLOW			1850	Apr 23	16300	Jun 20 1983b
MAXIMUM PEAK STAGE			12.84	Apr 23	18.54	Jun 20 1983c
ANNUAL RUNOFF (AC-FT)	8350		93620	-	60440	
ANNUAL RUNOFF (CFSM)	.043		.48		.31	
ANNUAL RUNOFF (INCHES)	.58		6.55		4.23	
10 PERCENT EXCEEDS	20		391		193	
50 PERCENT EXCEEDS	7.8		11		21	
90 PERCENT EXCEEDS	3.9		3.0		1.4	

No flow at times in 1956, 1958-59, 1965, 1968, 1977. From rating curve extended above 8,500 ft³/s. From floodmark. Estimated.

a b c e

.

06600500 FLOYD RIVER AT JAMES, IA

LOCATION.--Lat 42[:]34'36", long 96[:]18'43", in SE[:]/4 SE[:]/4 sec.30, T.90 N., R.46 W., Plymouth County, Hydrologic Unit 10230002, on left bank at upstream side of bridge on county highway C70, 0.2 mi east of James, 14.3 mi downstream from West Branch Floyd River, and at mile 7.5.

DRAINAGE AREA. -- 886 mi².

PERIOD OF RECORD.--December 1934 to current year.

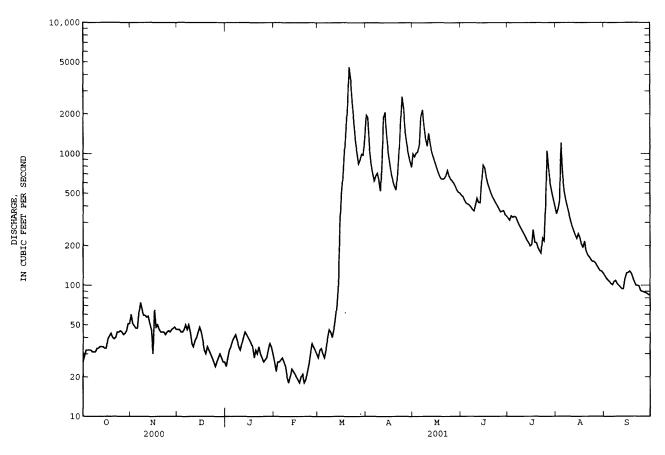
REVISED RECORDS.--WSP 1240: 1935 (M), 1936, 1937-38 (M), 1942, 1945. WSP 1440: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,092.59 ft above sea level. Prior to Sept. 11, 1938, June 9 to Nov. 5, 1953, and Oct. 1, 1955, to May 22, 1957, nonrecording gage and May 23, 1957, to Sept. 30, 1970, water-stage recorder at same site at datum 10.0 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage and discharge since 1892, that of June 8, 1953, from information by U. S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26	60	e46	e2 4	e26	e28	1960	1000	483	325	349	118
2	29	51	e46	e28	e22	e32	1880	948	473	313	381	113
3	32	49	e44	e32	e26	e33	1100	1010	443	339	437	110
4	32	47	e44	e34	e26	e30	838	1030	421	329	1210	107
5	32	47	e46	e38	e27	e28	704	1180	415	335	686	103
6	32	62	e50	e40	e28	e32	622	1930	407	330	519	101
7	31	74	e46	e42	e26	e40	677	2160	393	308	443	107
8	31	65	e50	e38	e24	e46	709	1650	377	289	393	109
9	31	59	e44	e34	e20	e44	628	1290	367	274	351	103
10	3 3	59	e36	e32	e18	e40	522	1140	407	260	313	100
11	33	57	e34	e36	e20	e46	822	1430	461	247	282	97
12	34	58	e38	e40	e23	e56	1890	1170	426	234	261	94
13	34	51	e40	e44	e22	e70	2070	1030	424	220	242	94
14	34	46	e44	e42	e21	e100	1370	938	623	211	227	113
15	3 3	e30	e48	e40	e20	e300	1030	860	820	199	247	124
16	33	e65	e44	e38	e19	e500	842	786	779	204	230	125
17	39	e48	e38	e36	e18	683	699	723	651	265	204	128
18	41	e50	e32	e34	e20	1050	621	671	592	212	195	123
19	43	e46	e30	e28	e21	1550	568	641	544	211	216	114
20	40	e44	e34	e32	e18	2380	531	639	502	195	184	107
21	39	e44	e32	e30	e19	4590	706	650	469	184	171	100
22	40	e44	e30	e34	e22	3650	1040	680	445	176	165	100
23	44	e42	e28	e30	e25	2410	1720	745	422	229	158	99
24	44	e44	e26	e28	e30	1760	2720	675	403	218	152	91
25	45	e45	e24	e26	e36	1240	2200	640	382	412	152	90
26	44	e44	e26	e27	e34	1020	1440	621	361	1050	148	89
27	42	e46	e28	e28	e32	836	1170	601	365	764	141	88
28	43	e47	e30	e32	e30	894	995	570	369	596	134	87
29	45	e48	e28	e36		991	874	533	345	515	129	85
30	51	e46	e26	e34		974	790	510	336	451	128	84
31	51		e26	e30		1340		504		398	123	
TOTAL	1161	1518	1138	1047	673	26793	33738	2 895 5	13905	10293	8971	3103
MEAN	37.5	50.6	36.7	33.8	24.0	864	1125	934	464	332	289	103
MAX	51	74	50	44	36	4590	2720	2160	820	1050	1210	128
MIN	26	30	24	24	18	28	52 2	504	336	176	123	84
MED	34	48	36	34	22	500	858	786	423	274	227	102
AC-FT	2300	3010	2260	2080	1330	53140	66920	57430	27580	20420	17790	6150
CFSM	.04	.06	.04	.04	.03	.98	1.27	1.05	. 52	.37	.33	.12
IN.	. 05	.06	. 05	.04	.03	1.12	1.42	1.22	. 58	. 43	.38	.13
STATIST	TICS OF	MONTHLY ME	an data i	FOR WATER	YEARS 193	6 - 2001,	BY WATER	YEAR (WY)			
MEAN	112	110	81.9	59.2	169	539	452	337	529	307	165	136
MAX	617	804	366	359	970	2080	2715	1393	2897	2196	1151	1353
(WY)	1993	1980	1980	1973	1952	1979	1969	1984	1984	1993	1951	1951
MIN	4.55	4.54	3.05	1.13	1.62	21.5	18.7	15.1	14.4	7.32	6.12	3.40
(WY)	1959	1959	1959	197 7	1959	1964	1959	1968	1968	1936	1958	1958

. ·

06600500 FLOYD RIVER AT JAMES, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	IDAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	: 1936 - 2001
ANNUAL TOTAL	28567		131295			
ANNUAL MEAN	78.1		360		250	
HIGHEST ANNUAL MEAN					958	1983
LOWEST ANNUAL MEAN					19.9	1956
HIGHEST DAILY MEAN	868	May 18	4590	Mar 21	32400	Jun 8 1953
LOWEST DAILY MEAN	24	Dec 25	18	Feb 10a	.90	Jan 10 1977b
ANNUAL SEVEN-DAY MINIMUM	27	Dec 24	19	Feb 15	.90	Jan 10 1977
MAXIMUM PEAK FLOW			4910	Mar 21	71500	Jun 8 1953c
MAXIMUM PEAK STAGE			17.64	Mar 21	35.30	Jun 8 1953d
ANNUAL RUNOFF (AC-FT)	56660		260400		180900	
ANNUAL RUNOFF (CFSM)	.08	38	.41		.28	
ANNUAL RUNOFF (INCHES)	1.20)	5.51		3.83	
10 PERCENT EXCEEDS	121		1000		552	
50 PERCENT EXCEEDS	70		107		83	
90 PERCENT EXCEEDS	33		28		13	

Also Feb. 17, 20. Also Jan. 11-22, 1977. From rating curve extended above 16,000 ft³/s on basis of contracted opening and flow-over-embankment measurement of peak flow. From floodmarks, current datum. Estimated. a b c d e

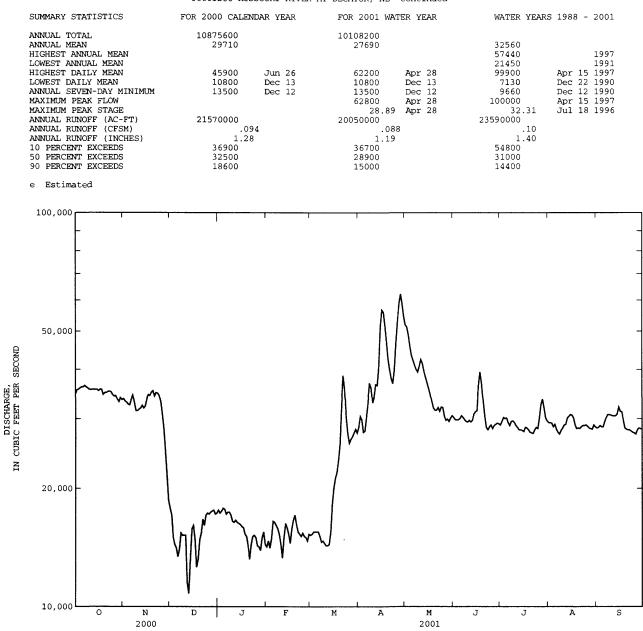
MISSOURI RIVER MAIN STEM

06601200 MISSOURI RIVER AT DECATUR, NE

LOCATION.--Lat 42°00'26°, long 96°14'29°, in NE¹/4 SW¹/4 S

DRAINAGE AREA.--316,200 mi^2 , approximately. The 3,959 mi^2 in Great Divide basin are not included.

PERIOD OF RECORD. -- October 1987 to current year.


GAGE.--Water-stage recorder. Datum of gage is 1,010.00 ft above sea level, supplementary adjustment of 1954.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	34600	33700	17800	17600	14200	15200	28500	51900	30200	28900	29300	28400
2	35500	33200	17100	17300	e14700	15300	30400	51300	29800	29500	29300	28500
3	35600	33000	15000	17500	e14100	15500	29800	49000	29800	30200	29200	28800
4	359 0 0	32600	14400	17800	14900	15500	27 700	45800	29800	30000	28600	28600
5	361 0 0	325 00	14100	17700	16500	1550 0	27 90 0	43 4 00	30000	30100	29000	28600
6	36100	33600	13400	17200	16400	15500	30300	42200	30500	2 9 300	28200	29500
7	36400	34400	14000	17400	16100	1510 0	33000	41000	30200	28800	27700	30200
8	36100	32900	15400	17400	15800	14600	36900	40000	29800	29500	27400	30700
9	35900	31400	15200	17100	15300	14700	35900	39400	29500	29600	28000	30700
10	35600	31400	15200	16500	14400	14500	32 9 00	40700	29400	29300	28400	30600
11	35500	31700	15200	16400	13300	14300	34100	42400	29700	28800	28900	30500
12	35600	31900	11500	16600	15000	14300	36600	41400	29400	28500	29000	30500
13	35600	32400	10800	16400	16300	14400	36400	39600	29700	28100	30100	30500
14	35600	31900	13200	16300	15 90 0	15500	40700	38200	30800	28100	30400	30800
15	35600	32300	15800	16200	15300	18200	51400	37000	31200	28100	30700	32100
16	35300	33700	16100	16000	14500	20000	56600	35800	31400	27800	30600	31300
17	35600	34500	14800	15900	15800	21200	55800	34500	36300	28500	30100	31200
18	35600	34300	12600	15300	16600	21900	51500	33100	39400	28400	28900	29700
19 20	34500 34900	35000 35300	13200 14800	15100 14300	17100 16200	23500 25800	46900 42400	31900 31500	36900 33200	28400 28100 27700	28900 28300 28400	28400 28200
21	3 4900	3 4200	15 4 00	13200	15500	32100	3 99 00	31500	30400	27600	28300	28 100
	35100	34 9 00	16700	14400	15300	38600	37 900	32000	28500	27500	28600	28100
22 23 24 25	35200 35100	34800 34300	16100 17100	15100 15200	15100 15400	35900 30100	36800 3 990 0	31300 32100	28100 28600	28100 28500	28800 28800	27900 27700
25	34500	33000	17300	15000	15100	27400	46800	32000	28900	28300	28900	27600
26	34200	30600	17200	14300	150 00	26000	5 2900	30400	28300	30100	28700	27400
27	34300	28100	17 400	14200	14700	26600	58600	29700	28800	32600	28400	28100
28	33600	24700	175 0 0	13900	15300	27000	62200	29900	29000	33600	28300	28400
29 30 31	33100 33900 33500	21500 18600	17600 17200 17300	15000 15500 14400		27600 28200 27600	58800 54600	29500 30100 30500	29200 29100	31900 30100 29600	28200 28900 28600	28300 28200
TOTAL	1089000	9 56400	476400	492200	429800	667600	1254100	11 49 100	915900	905100	895000	877600
MEAN	35130	31880	15370	15880	15350	21540	41800	37070	30530	29200	28870	29250
MAX	36400	35300	17800	17800	17100	38600	62200	51900	39400	33600	30700	32100
MIN	33100	18600	10800	13200	13300	14300	27700	29500	28100	27500	27400	27400
AC-FT	216 00 00	18 9 7000	944900	976300	852500	1324000	2488000	227 9000	1817000	1795000	1775000	1741000
CFSM	.11	.10	.05	.05	.05	.07		.12	.10	.09	.09	.09
IN. STATIS	.13 STICS OF	.11 MONTHLY M	.06 EAN DATA	.06 FOR WATER	.05 YEARS 19	.08 88 - 2001	.15 , BY WATE	.14 R YEAR (W	.11 Y)	.11	.11	.10
MEAN	38570	33440	22330	19240	20570	25780	37200	38550	39200	39 350	37250	38740
MAX	70150	72350	41350	26850	32380	49450	90050	80690	67970	66520	66170	67290
(WY)	1 99 8	1 99 8	1 99 8	1 99 8	1997	1997	1997	1997	1997	1997	1997	1997
MIN	2 4 250	10 4 70	12070	12360	12210	11580	24410	26130	28240	27680	25700	26750
(WY)	1993	1991	1991	1990	1991	1991	1991	1991	1991	1991	1993	1993

06601200 MISSOURI RIVER AT DECATUR, NE--Continued

MONONA-HARRISON DITCH BASIN

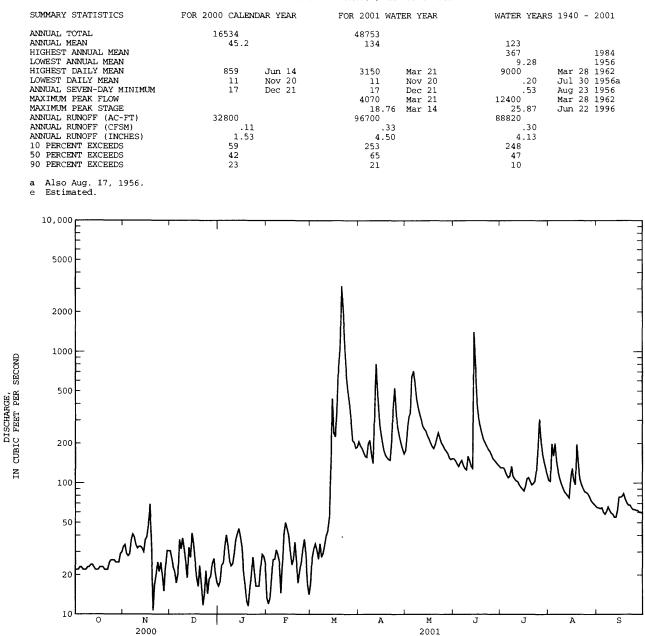
06602020 WEST FORK DITCH AT HORNICK, IA

LOCATION.--Lat 42°13'37", long 96°04'40", in SW¹/4 SW¹/4 sec.27, T.86 N., R.45 W., Woodbury County, Hydrologic Unit 10230004, on left bank at upstream side of State Highway 141 bridge, 1.0 mi east of Hornick, 9.2 mi upstream from Wolf Creek, and 13.5 mi north of Onawa.

DRAINAGE AREA.--403 mi².

PERIOD OF RECORD. -- April 1939 to September 1969 (published as "Holly Springs"), July 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,045.82 ft above sea level.


REMARKS.--Records good except those for estimated daily discharges, which are poor. West Fork ditch is a dredged channel which diverts flow of West Fork Little Sioux River at Hornick 5.5 mi south, then southeast 6.5 mi to a point 1.2 mi west of Kennebec, where Wolf Creek enters from left. From this point, ditch roughly parallels the Little Sioux River and is known as Monona-Harrison ditch. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

•

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	33	e31	e16	e13	e17	207	177	153	131	105	65
2	22	34	e27	e18	e12	e27	192	235	148	131	103	65
3	22	29	e23	e24	e13	e32	184	317	140	130	199	64
4	23	28	e21	e25	e19	e35	171	342	134	123	161	65
5	23	29	e17	e33	e26	e31	160	638	143	115	200	60
6	22	37	e2 0	e 4 0	e26	e26	157	712	149	110	144	58
7	22	41	e37	e33	e31	e35	199	597	136	113	122	61
8	22	39	e32	e25	e29	e27	212	443	129	134	108	66
9	23	34	e38	e23	e25	e29	166	378	126	113	99	62
10	23	32	e32	e24	e14	e34	141	336	160	108	92	59
11	24	33	e25	e 2 9	e25	e40	308	304	148	104	86	58
12	24	33	e19	e37	e41	e43	809	273	134	103	83	55
13	23	32	e32	e41	e50	e53	492	258	129	97	80	55
14	22	30	e27	e45	e45	e126	311	250	1410	93	77	62
15	22	37	e42	e39	e40	441	249	230	744	90	106	78
16	22	39	e34	e32	e30	240	207	217	391	87	129	78
17	23	47	e25	e21	e24	225	177	202	304	95	106	79
18	23	69	e19	e16	e26	388	163	190	269	108	97	83
19	23	35	e16	e13	e36	786	156	183	239	110	197	76
20	22	e11	e23	e12	e25	1110	151	196	215	103	135	71
21	22	e17	e17	e15	e17	3150	149	218	203	97	107	68
22	22	e20	e12	e19	e21	2040	209	241	192	99	97	68
23	25	e25	e14	e27	e25	1060	378	220	182	103	91	65
24	26	e21	e22	e22	e32	657	529	202	175	124	86	63
25	26	e25	e14	e16	e37	e500	328	193	165	182	85	63
26	26	e20	e18	e16	e29	e400	265	182	154	305	83	62
27	25	e15	e19	e16	e17	e300	229	175	149	208	79	62
28	25	e23	e25	e23	e14	e210	201	168	144	164	74	60
29	25	e31	e27	e29		205	182	156	139	143	71	60
30	29	e31	e21	e28		185	167	151	135	127	6 9	59
31	30		e17	e25		188		154		116	67	
TOTAL	733	930	746	782	742	12640	7449	8538	7039	3866	3338	1950
MEAN	23.6	31.0	24.1	25.2	26.5	408	248	275	235	125	108	65.0
MAX	30	69	42	45	50	3150	809	712	1410	305	200	83
MIN	22	11	12	12	12	17	1 41	151	126	87	67	55
AC-FT	1450	1840	1480	1550	1470	25070	14780	16940	13960	7670	6620	3870
CFSM	.06	.08	.06	.06	.07	1.01	. 62	. 68	.58	.31	.27	.16
IN.	.07	.09	.07	.07	.07	1.17	.69	.79	.65	.36	.31	.18
STATISI	CICS OF MC	NTHLY ME	AN DATA FO	OR WATER	YEARS 194	0 - 2001,	BY WATER	YEAR (WY)			
MEAN	61.2	55.3	45.0	36.4	107	226	179	157	278	150	104	70.3
MAX	369	281	199	127	522	813	837	585	2131	561	605	422
(WY)	1993	1980	1985	1952	1994	1962	1969	1983	1984	1993	1951	1951
MIN	2.08	4.06	2.60	2.26	2.41	8.41	9.80	11.5	7.71	11.5	2.92	2.23
(WY)	1957	1959	1959	1959	1940	1957	1957	1943	1956	1956	1956	1956

06602020 WEST FORK DITCH AT HORNICK, IA--Continued

06602400 MONONA-HARRISON DITCH NEAR TURIN, IA

LOCATION.--Lat 41 57'52", long 95'59'30", in NW¹/4 NE¹/4 sec.32, T.83 N., R.44 W., Monona County, Hydrologic Unit 10230004, on left bank at upstream side of bridge on county highway E54, 1.0 mi west of gaging station on Little Sioux River near Turin, 4 mi southwest of Turin, 5.2 mi northeast of Blencoe, and 12.5 mi upstream from mouth.

DRAINAGE AREA.--900 mi².

PERIOD OF RECORD.--May 1942 to current year. Records for May 1942 to January 1958 not equivalent owing to diversion from Little Sioux River through equalizer ditch 1.5 mi upstream. Records prior to 1950 not equivalent owing to diversion to Little Sioux River through diversion ditch 10.2 mi upstream.

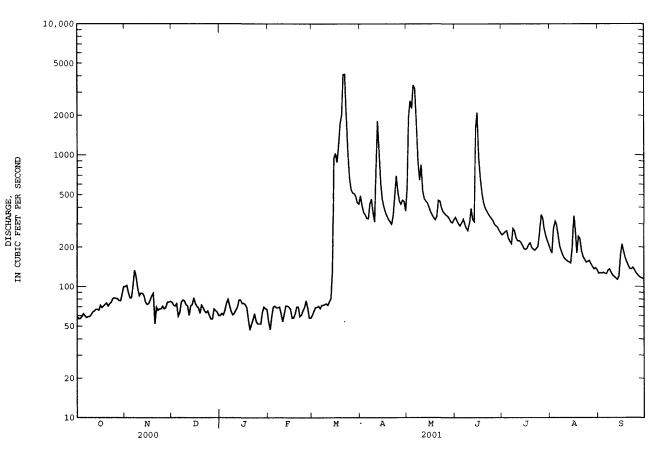
REVISED RECORDS: WSP 1440: Drainage area. WSP 1560: Drainage area. WDR IA-95-1: Period of record.

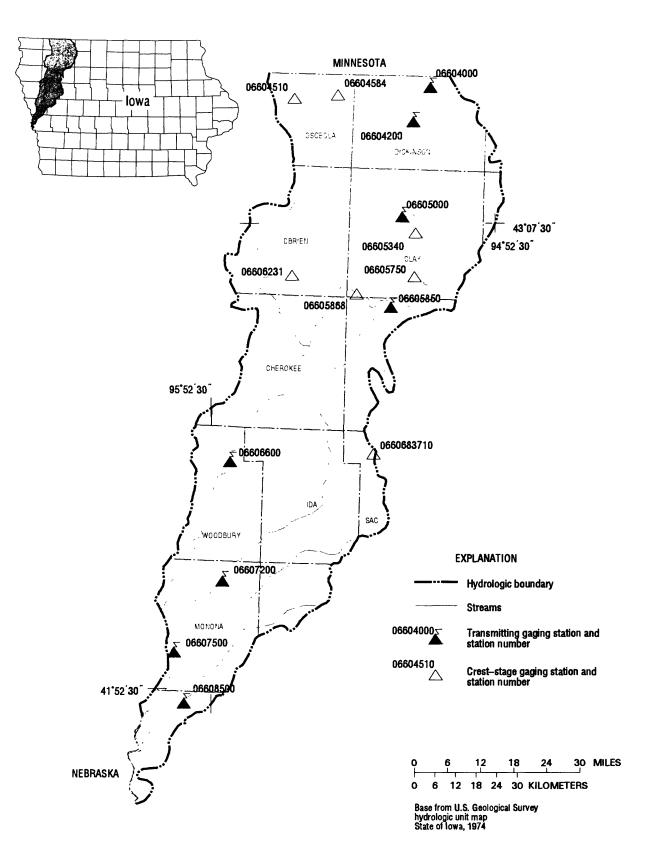
GAGE.--Water-stage recorder. Datum of gage is 1,015.00 ft above sea level (U.S. Army Corps of Engineers bench mark). May 7, 1942 to Oct. 13, 1953, nonrecording gage and Oct. 14, 1953 to Sept. 30, 1975, recording gage at same site at datum 5.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Monona-Harrison ditch is a dug channel and is a continuation of West Fork ditch, paralleling the Little Sioux River, and discharging into the Missouri River 1.5 mi upstream from the mouth of the Little Sioux River. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59	100	76	e60	e54	e61	49 2	562	337	248	191	126
2	57	102	72	e62	e47	e65	412	1940	315	254	180	127
3	57	90	71	e61	e59	e69	367	2590	301	261	273	126
4	59	82	74	e66	70	e69	352	2260	290	266	314	128
5	62	82	e59	e75	71	e71	331	3410	306	235	295	126
6	60	102	e63	80	69	e68	329	3200	326	222	246	125
7	58	133	76	e71	69	72	426	1760	300	212	203	133
8	59	119	79	e64	70	72	463	896	279	277	186	136
9	59	97	78	e61	e62	73	366	645	267	266	173	128
10	61	85	e73	e63	e54	74	311	843	304	235	164	122
11	64	89	e71	e66	e62	72	793	535	393	223	160	119
12	65	8 9	e60	e70	e71	77	1810	465	324	224	156	116
13	67	85	e71	79	71	81	1070	447	312	218	154	113
14	67	76	e73	79	e70	132	609	433	1590	207	151	120
15	66	73	e82	e74	e67	947	460	402	2110	195	198	173
16	72	74	e74	e75	e58	1030	405	372	958	192	346	211
17	69	79	e71	e73	e58	880	367	351	677	196	275	186
18	71	85	e69	e69	e62	1170	343	335	521	209	180	167
19	73	89	e62	e56	70	1720	324	323	440	215	241	155
20	75	e52	e72	e47	70	2010	311	344	399	198	233	145
21	71	e70	e69	e51	e59	4100	299	453	378	193	187	137
2 2	74	e66	e65	e56	e61	4140	352	447	359	189	169	136
23	76	e68	e63	e62	e65	1960	496	398	343	195	161	140
24	81	e68	e65	e55	e69	1050	695	372	331	203	153	134
25	82	e71	e60	e52	e78	670	523	360	319	254	155	127
26	81	e68	e57	e52	e69	546	445	349	300	353	158	12 3
27	81	e69	e57	e52	e58	516	423	343	291	329	149	119
28	78	76	e68	e63	e58	510	454	. 329	285	276	142	117
29	78	76	e66	70		485	445	311	269	244	136	116
30	88	77	e64	e68		433	376	306	257	224	139	114
31	100		e60	67		425		325		207	134	
TOTAL	2170	2492	2120	1999	1801	23648	14849	26106	13881	7220	6002	4045
MEAN	70.0	83.1	68.4	64.5	64.3	763	495	842	463	233	194	135
MAX	100	133	82	80	78	4140	1810	3410	2110	353	346	211
MIN	57	52	57	47	47	61	299	306	257	189	134	113
AC-FT	4300	4940	4210	3970	3570	46910	29450	51780	27530	14320	11900	8020
CFSM	.08	.09	.08	.07	.07	.85	.55	.94	.51	.26	.22	.15
IN.	.09	.10	.09	.08	.07	.98	.61	1.08	.57	.30	.25	.17
STATIST	CICS OF MO	ONTHLY ME	an data fo	OR WATER	YEARS 195	9 - 2001,	BY WATEF	RYEAR (WY)			
MEAN	152	137	114	95.1	225	488	445	394	593	351	191	145
MAX	831	415	421	398	1963	1707	1588	1157	3833	2107	883	576
(WY)	1993	1980	1985	1973	1971	1962	1965	1995	1984	1993	1996	1993
MIN	16.0	18.0	11.4	10.5	13.9	46.9	41.1	43.7	71.8	46.1	30.6	30.8
(WY)	1959	1959	1959	1959	1959	1968	1968	1968	1989	1976	1976	1981


06602400 MONONA-HARRISON DITCH NEAR TURIN, IA--Continued


SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1959 - 2001a
ANNUAL TOTAL	44328		106333			
ANNUAL MEAN	121		291		277	
HIGHEST ANNUAL MEAN					798	1993
LOWEST ANNUAL MEAN					55.5	1968
HIGHEST DAILY MEAN	1750	Jun 26	4140	Mar 22	18000	Feb 19 1971
LOWEST DAILY MEAN	52	Nov 20	47	Jan 20	8.5	Jan 3 1959b
ANNUAL SEVEN-DAY MINIMUM	59	Oct 1	54	Jan 20	8.5	Jan 3 1959
MAXIMUM PEAK FLOW			5070	Mar 21	19900	Feb 19 1971
MAXIMUM PEAK STAGE			16.39	Mar 21	28.03	Feb 19 1971
INSTANTANEOUS LOW FLOW			30	Dec 5		
ANNUAL RUNOFF (AC-FT)	87920		210900		200900	
ANNUAL RUNOFF (CFSM)	.13		.32		.31	
ANNUAL RUNOFF (INCHES)	1.83		4.40		4.19	
10 PERCENT EXCEEDS	159		502		515	
50 PERCENT EXCEEDS	110		133		129	
90 PERCENT EXCEEDS	69		61		39	

Post closure of diversion from Little Sioux River. Also Jan. 4-11, 1959. Estimated.

a b e

•

78

Gaging Stations

06604000	Spirit Lake near Orleans, IA
06604200	West Okoboji Lake at Lakeside Lab near Milford, IA
06605000	Ocheyedan River near Spencer, IA
06605850	Little Sioux River at Linn Grove, IA
06606600	Little Sioux River at Correctionville, IA
06607200	Maple River at Mapleton, IA
06607500	Little Sioux River near Turin, IA
06608500	Soldier River at Pisgah, IA

Crest Stage Gaging Stations

06604510	Ocheyedan River near Ocheyedan, IA
06604584	Dry Run Creek near Harris, IA
06605340	Prairie Creek near Spencer, IA
06605750	Willow Creek near Cornell, IA
06605868	Little Sioux River Tributary near Peterson, IA
06606231	Willow Creek near Calumet, IA
0660683710	Halfway Creek at Schaller, IA

.

•

06604000 SPIRIT LAKE NEAR ORLEANS, IA

LOCATION.--Lat 43 28'11", long 95'07'25", in NE¹/4 NW²/4 sec.20, T.100N., R.36W., Dickinson County, Hydrologic Unit 10230003, 2.3 mi upstream from lake outlet, and 2.3 mi northwest of Orleans.

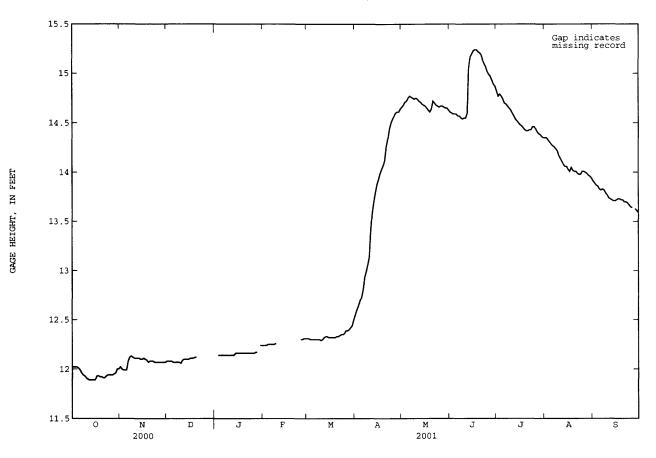
DRAINAGE AREA.--75.6 mi².

PERIOD OF RECORD.--May 1933 to September 1975 (fragmentary prior to 1951), April 1990 to current year. Prior to October 1949, published as "at Orleans".

GAGE.--Water-stage recorder. Datum of gage is 1,387.25 ft above sea level, 90.0 ft above Iowa Lake Survey datum, and 14.2 ft below crest of spillway. Prior to July 6, 1950, non-recording gage or water-stage recorder at various sites near outlet, all at present datum.

REMARKS.--A reliable record of stage was obtained for the year, except Dec. 21 to Jan. 2, Jan. 29, Feb. 10-24, and Sept. 27. Lake formed by concrete dam with ungated spillway at elevation 1,401.4 ft. above sea level. Dam constructed in 1969. A previous outlet works had been constructed in 1944. Lake is used for conservation and recreation. U.S. Geological Survey satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 18.79 ft. July 17-20, 1993; minimum observed, 6.75 ft. Oct. 20, 1935.


EXTREMES FOR CURRENT YEAR.--Maximum gage height, 15.25 ft. June 17, 18; minimum, 11.87 ft. Oct. 16.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	12.0212.0212.0212.0212.0212.01	12.02 12.00 11.99 11.99 11.99	12.08 12.08 12.08 12.08 12.08 12.07	12.14 12.14 12.14	12.24 12.24 12.24 12.25 12.25	12.31 12.31 12.30 12.30 12.30	12.55 12.60 12.64 12.69 12.73	14.66 14.68 14.71 14.72 14.75	14.61 14.60 14.59 14.59 14.59	14.82 14.77 14.79 14.77 14.74	14.35 14.35 14.33 14.31 14.29	13.91 13.89 13.87 13.86 13.83
6 7 8 9 10	11.99 11.96 11.94 11.93 11.91	12.08 12.12 12.13 12.12 12.11	12.07 12.07 12.07 12.07 12.06	12.14 12.14 12.14 12.14 12.14 12.14	12.25 12.25 12.25 12.26	12.30 12.30 12.30 12.30 12.29	12.81 12.93 12.99 13.06 13.14	14.77 14.76 14.75 14.74 14.75	14.57 14.57 14.55 14.54 14.55	14.70 14.69 14.67 14.65 14.63	14.27 14.26 14.24 14.22 14.17	13.82 13.83 13.82 13.79 13.77
11 12 13 14 15	11.90 11.89 11.89 11.89 11.89 11.89	12.11 12.11 12.11 12.10 12.10	12.09 12.10 12.10 12.10 12.10 12.10	$12.14 \\ 12.14 \\ 12.14 \\ 12.16 \\ 12.16 \\ 12.16 $	 	12.30 12.32 12.33 12.33 12.32	13.42 13.60 13.71 13.80 13.88	14.74 14.72 14.71 14.69 14.68	14.55 14.60 15.05 15.17 15.20	14.60 14.57 14.54 14.52 14.50	14.14 14.11 14.08 14.06 14.06	13.74 13.73 13.72 13.71 13.71
16 17 18 19 20	11.89 11.93 11.93 11.92 11.92	12.11 12.10 12.09 12.07 12.08	$12.11 \\ 12.11 \\ 12.11 \\ 12.12 \\ 12.1$	12.16 12.16 12.16 12.16 12.16 12.16	 	12.32 12.32 12.32 12.32 12.33	13.93 13.99 14.03 14.07 14.12	14.67 14.65 14.63 14.61 14.64	15.23 15.24 15.24 15.22 15.21	14.48 14.47 14.45 14.43 14.42	14.03 14.01 14.05 14.02 14.01	13.72 13.73 13.73 13.72 13.72
21 22 23 24 25	11.91 11.91 11.93 11.94 11.94	12.08 12.08 12.07 12.07 12.07		12.16 12.16 12.16 12.16 12.16 12.16	 12.30	12.33 12.34 12.35 12.35 12.35 12.36	14.26 14.34 14.44 14.50 14.54	14.72 14.70 14.68 14.67 14.66	15.19 15.14 15.10 15.07 15.02	14.42 14.43 14.43 14.46 14.46	14.01 13.99 13.98 13.98 14.01	13.70 13.70 13.69 13.67 13.65
26 27 28 29 30 31	11.94 11.94 11.95 11.96 12.00 12.00	12.07 12.07 12.07 12.07 12.07	 	12.16 12.17 12.17 12.24 12.24	12.30 12.31 12.31 	12.39 12.39 12.40 12.42 12.44 12.50	14.57 14.60 14.61 14.61 14.64	14.67 14.67 14.66 14.65 14.65 14.65 14.63	14.99 14.97 14.93 14.89 14.87	14.44 14.41 14.39 14.38 14.36 14.35	14.01 14.00 13.99 13.97 13.96 13.94	13.64 13.63 13.61 13.59
MEAN MAX MIN	11.94 12.02 11.89	12.07 12.13 11.99	12.09 12.12 12.06	12.16 12.24 12.14	12.27 12.31 12.24	12.3 4 12.50 12.29	13.73 14.64 12.55	14.69 14.77 14.61	14.89 15.24 14.54	14.54 14.82 14.35	14.10 14.35 13.94	13.7 4 13.91 13.59

LITTLE SIOUX RIVER BASIN

06604000 SPIRIT LAKE NEAR ORLEANS, IA--Continued

LITTLE SIOUX RIVER BASIN

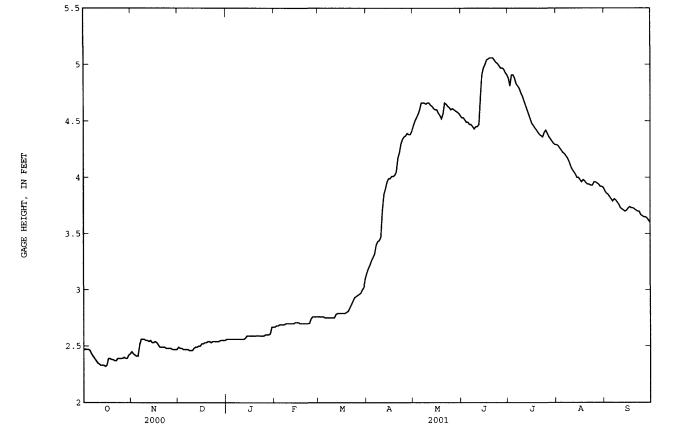
06604200 WEST OKOBOJI LAKE AT LAKESIDE LABORATORY NEAR MILFORD, IA

LOCATION.--Lat 43-22'43", long 95°10'52", in NE¹/4 SW¹/4 sec.23, T.99 N., R.37 W., Dickinson County, Hydrologic Unit 10230003, at pumping station of Lakeside Laboratory on west shore, 2.3 mi upstream from lake outlet, and 3.8 mi northwest of Milford.

DRAINAGE AREA. -- 125 mi².

PERIOD OF RECORD.--May 1933 to current year. Published as "Okoboji Lake at Arnold's Park" 1933-37 and as "Okoboji Lake at Lakeside Laboratory near Milford" 1937-66.

GAGE.--Water-stage recorder. Datum of gage is 1,391.76 ft above sea level, 94.51 ft above Iowa Lake Survey datum. Prior to June 17, 1938, nonrecording gage at State Pier at Arnolds Park at same datum.


REMARKS.--A reliable record of stage was obtained for the year. Lake formed by concrete dam with ungated spillway at elevation 1,395.8 ft above sea level. Lake is used for conservation and recreation. Area of lake is approximately 3,900 acres. U.S. Geological Survey satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD. -- Maximum gage height, 8.70 ft July 17, 1993; minimum observed, 0.20 ft Sept. 20, 1959.

EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 5.07 ft June 18, 19, 21; minimum, 2.30 ft Oct. 16.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.47 2.47 2.47 2.47 2.47 2.46	2.45 2.43 2.42 2.41 2.41	2.49 2.48 2.48 2.47 2.47	2.56 2.56 2.56 2.56 2.56	2.67 2.68 2.68 2.69 2.69	2.76 2.76 2.76 2.76 2.76 2.75	3.15 3.19 3.22 3.26 3.29	4.46 4.50 4.53 4.56 4.60	4.53 4.53 4.51 4.49 4.49	4.88 4.81 4.91 4.91 4.88	4.29 4.28 4.26 4.24 4.22	3.88 3.86 3.85 3.83 3.81
6 7 8 9 10	2.43 2.41 2.39 2.37 2.35	2.51 2.56 2.56 2.56 2.55	2.47 2.47 2.46 2.46 2.46 2.46	2.56 2.56 2.56 2.56 2.56	2.69 2.69 2.70 2.70 2.70	2.75 2.75 2.75 2.75 2.75 2.75	3.32 3.40 3.43 3.44 3.47	4.66 4.66 4.66 4.65 4.66	4.47 4.47 4.45 4.43 4.43	4.83 4.81 4.79 4.75 4.72	4.21 4.19 4.17 4.14 4.10	3.79 3.81 3.80 3.78 3.76
11 12 13 14 15	2.34 2.33 2.33 2.33 2.33 2.32	2.55 2.54 2.55 2.53 2.53	2.48 2.49 2.49 2.50 2.50	2.56 2.56 2.57 2.59 2.59	2.70 2.70 2.70 2.71 2.71	2.75 2.78 2.79 2.79 2.79 2.79	3.71 3.85 3.90 3.96 3.99	4.66 4.64 4.63 4.61 4.60	4.45 4.47 4.72 4.91 4.97	4.68 4.64 4.60 4.56 4.52	4.07 4.05 4.03 4.00 4.00	3.73 3.72 3.71 3.70 3.71
16 17 18 19 20	2.33 2.39 2.39 2.38 2.38	2.54 2.53 2.51 2.49 2.49	2.52 2.52 2.53 2.53 2.54	2.59 2.59 2.59 2.59 2.59 2.59	2.71 2.70 2.70 2.70 2.70	2.79 2.79 2.79 2.80 2.81	3.99 4.01 4.01 4.02 4.05	4.60 4.57 4.55 4.52 4.56	5.00 5.04 5.05 5.06 5.06	4.48 4.46 4.44 4.42 4.40	3.98 3.96 3.98 3.97 3.95	3.73 3.74 3.73 3.73 3.73 3.72
21 22 23 24 25	2.37 2.37 2.39 2.39 2.39 2.39	2.49 2.49 2.48 2.48 2.48 2.48	2.54 2.53 2.54 2.54 2.54	2.59 2.59 2.59 2.59 2.59 2.59	2.70 2.70 2.70 2.74 2.76	2.84 2.87 2.90 2.93 2.94	4.17 4.22 4.30 4.34 4.36	4.66 4.65 4.63 4.62 4.60	5.06 5.04 5.02 5.01 4.99	4.38 4.37 4.36 4.40 4.42	3.94 3.94 3.93 3.93 3.93 3.96	3.71 3.70 3.70 3.67 3.66
26 27 28 29 30 31	2.39 2.40 2.39 2.39 2.42 2.43	2.48 2.47 2.47 2.47 2.47 2.47	2.54 2.55 2.55 2.55 2.55 2.55	2.60 2.60 2.61 2.67 2.67	2.76 2.76 2.76 	2.95 2.96 2.97 3.00 3.02 3.10	4.37 4.39 4.38 4.38 4.41	4.61 4.60 4.59 4.58 4.57 4.55	4.97 4.97 4.96 4.93 4.91	4.39 4.36 4.34 4.32 4.30 4.29	3.96 3.95 3.94 3.92 3.92 3.91	3.65 3.65 3.64 3.62 3.60
MEAN MAX MIN	2.39 2.47 2.32	2.50 2.56 2.41	2.51 2.55 2.46	2.58 2.67 2.56	2.71 2.76 2.67	2.84 3.10 2.75	3.87 4.41 3.15	4.60 4.66 4.46	4.78 5.06 4.43	4.56 4.91 4.29	4.04 4.29 3.91	3.73 3.88 3.60

F

•

06604200 WEST OKOBOJI LAKE AT LAKESIDE LABORATORY NEAR MILFORD, IA--Continued

LITTLE SIOUX RIVER BASIN

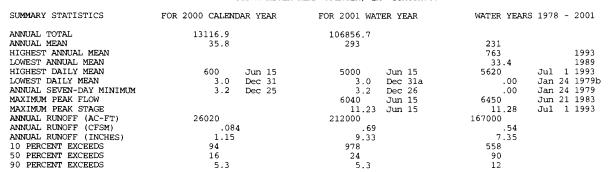
06605000 OCHEYEDAN RIVER NEAR SPENCER, IA

LOCATION.--Lat 43°07'44", long 95'12'37", in SW¹/4 SW⁻/4 SW⁻/4 sec.15, T.96N., R.37W., Clay County, Hydrologic Unit 10230003, on left bank 3 ft upstream from bridge on county highway M38, 3.4 mi west by southwest of Spencer, and at mile 4.1.

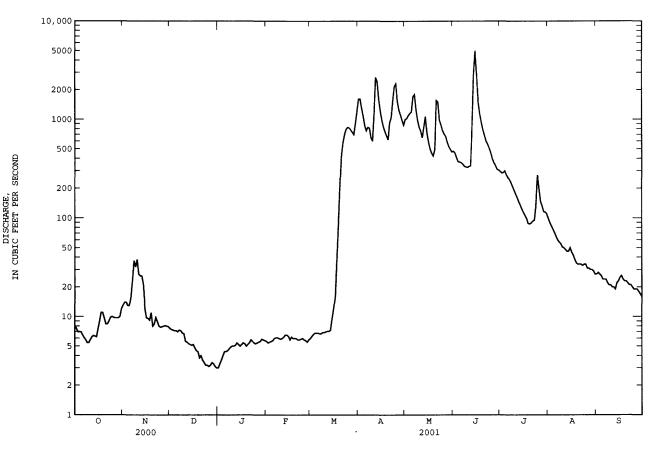
DRAINAGE AREA.--426 mi².

PERIOD OF RECORD.--October 1977 to current year. Occasional low-flow measurements, water years 1957-61, 1964, 1966-68, 1970, 1971, 1974-77.

GAGE.--Water-stage recorder. Datum of gage is 1,311.66 ft above sea level.


REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 8, 1953 reached a stage of 12.89 ft, discharge, 26,000 ft³/s on basis of contracted-opening measurement of peak flow.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e8.2	e 13	e7.6	e3.0	e5.6	e6.0	1610	996	473	296	99	27
2	e7.6	e14	e7.4	e3.3	e5.4	e6.3	1620	1020	453	285	90	28
3	e7.0	e14	e7.3	e3.6	e5.5	e6.6	1300	1090	406	287	83	27
4	e7.0	e13	e7.2	e4.0	e5.6	e6.8	1080	1150	372	298	77	26
5	e7.0	e13	e7.2	e4.4	e5.7	e6.8	866	1190	368	273	71	24
6	e6.5	e16	e7.0	e4.4	e6.0	e6.8	766	1700	362	256	65	24
7	e6.1	e24	e7.3	e4.5	e6.1	e6.7	830	1790	350	246	60	24
8	e5.8	37	e7.2	e4.7	e6.1	e6.7	816	1250	333	229	57	22
9	e5.4	32	e6.8	e4.9	e6.0	e6.9	647	977	328	209	55	21
10	e5.4	38	e6.7	e5.0	e5.9	e6.9	601	832	324	192	51	21
11	e5.8	27	e5.6	e5.0	e6.0	e7.0	1160	756	332	175	50	20
12	e6.2	26	e5.5	e5.1	e6.2	e7.1	2680	648	336	161	48	20
13	e6.4	26	e5.3	e5.4	e6.5	e7.1	2420	832	848	146	46	19
14	e6.3	e21	e5.2	e5.2	e6.5	e7.3	1600	1070	2840	135	46	22
15	e6.2	e12	e5.1	e5.0	e6.3	e9.5	1220	728	5000	123	50	23
16	e7.5	e9.7	e5.2	e5.2	e5.8	e12	983	588	2890	114	45	25
17	e9.0	e9.6	e4.8	e5.4	e6.2	e16	839	499	1480	106	42	26
18	e11	e9.2	e4.5	e5.3	e6.0	e36	751	452	1130	99	38	24
19	e11	e11	e4.4	e5.0	e6.0	e80	681	423	923	88	35	23
20	e9.7	e8.0		e5.0			621	423	523 777	87	34	23
20	e9./	eo.u	e3.8	es.z	e6.0	e200	021	491		67	24	
21	e8.4	e8.4	e4.0	e5.4	e5.8	e420	929	1560	684	89	34	22
22	e8.4	e9.8	e3.6	e5.8	e5.8	e580	1040	1510	598	93	34	21
23	e9.0	e8.9	e3.4	e5.6	e5.9	e700	1550	980	558	95	33	21
24	e9.8	e8.0	e3.2	e5.4	e6.0	e790	2160	876	507	133	34	20
25	e10	e7.8	e3.2	e5.3	e5.8	e830	2320	766	457	271	34	19
26	e9.8	e7.9	e3.1	e5.4	e5.7	e820	1530	710	397	200	31	19
27	e9.7	e8.0	e3.2	e5.5	e5.5	e780	1250	670	361	147	31	19
28	e9.7	e8.1	e3.4	e5.6	e5.8	e740	1110	587	339	132	30	e18
29	e9.7	e8.0	e3.3	e5.9		e700	982	527	311	116	30	e17
30	e10	e7.9	e3.1	e5.8		e900	873	496	305	115	29	e16
31	e12		e3.0	e5.7		e1200		465		110	27	
TOTAL	251.6	456.3	157.6	155.0	165.7	8908.5	36835	2762 9	24842	5306	1489	661
MEAN	8.12	15.2	5.08	5.00	5.92	287	1228	891	828	171	48.0	22.0
MAX	12	38	7.6	5.9	6.5	1200	2680	1790	5000	298	99	28
MIN	5.4	7.8	3.0	3.0	5.4	6.0	601	423	305	87	27	16
AC-FT	499	905	313	307	329	17670	73060	54800	49270	10520	2950	1310
CFSM	.02	.04	.01	.01	.01	. 67	2.88	2.09	1.94	.40	.11	.05
IN.	.02	.04	.01	.01	.01	.78	3.22	2.41	2.17	.46	.13	.06
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1978 - 2001, BY WATER YEAR (WY)												
MEAN	121	137	76.4	42.6	81.0	337	503	389	497	316	138	126
MAX	492	796	305	180	402	1019	1462	912	1973	2243	706	597
(WY)	1983	1980	1983	1983	1983	1983	1983	1993	1993	1993	1993	1979
MIN	8.12	8.11	1.91	.51	.000	14.0	19.7	54.9	33.8	33.4	15.3	9.85
(WY)	2001	1990	1990	1979	1979	1990	2000	1981	1989	1989	1989	2000
(**** /	2001	1750	1,00	1717	17/9	1970	2000	1,01	1,00	1,00	1000	2000

06605000 OCHEYEDAN RIVER NEAR SPENCER, IA--Continued

a Also Jan. 1. b Also Jan. 25 to Mar. 9, 1979, Dec. 22, 1989 to Jan. 5, 1990. e Estimated.

LITTLE SIOUX RIVER BASIN

06605850 LITTLE SIOUX RIVER AT LINN GROVE, IA

LOCATION.--Lat 42'53'45", long 95[:]14'35", in SW¹/₄ SE¹/₄ SW¹/₄ sec.5, T.93 N., R.37 W., Buena Vista County, Hydrologic Unit 10230003, on right bank 500 ft upstream of concrete dam, 1300 ft upstream of bridge on County Highway M36, in Linn Grove, and at mile 122.5.

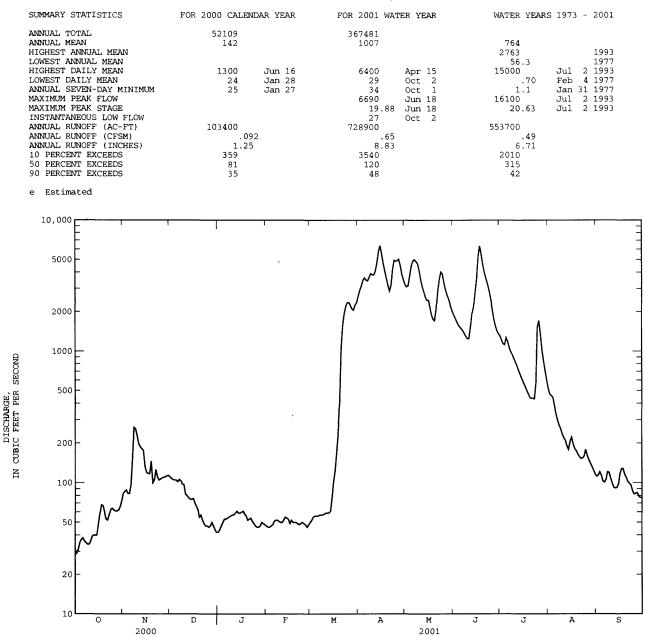
DRAINAGE AREA.--1,548 mi².

PERIOD OF RECORD. -- October 1972 to current year.

REVISED RECORDS.--WDR IA-80-1: 1978-79.

GAGE.--Water-stage recorder. Datum of gage is 1,223.60 ft above sea level. Oct. 1, 1972 to Nov. 17, 1999, water-stage recorder, 0.25 mi downstream at current datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 10, 1953, gage height 20.96 ft; discharge, 22,500 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES	
-------------------	--

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	31	83	111	e42	e47	e50	2660	3220	1930	1310	518	112
2	29	86	108	e44	e46	e52	2930	3100	1820	1220	470	114
3	31	88	106	e 4 7	e46	55	3150	3160	1710	1140	459	121
4	35	83	105	e50	e47	. 56	3480	3740	1610	1120	441	114
5	37	83	105	53	e48	56	3630	44 50	1540	1270	382	103
6 7	38	97	102	53	e51	56	3490	4880	1490	1180	335	101
	36	153	106	54	e52	57	3440	5000	1440	1060	299	106
8 9	35	264 258	104	55	e52	57	3680	4860	1370	987	274	121
10	34		98	56	e51	57	3910	4690	1300	936	257	120
10	34	229	97	57	e50	58	3830	4210	1250	877	234	108
11	36	198	82	57	e50	59	3830	3570	1250	821	219	99 92
12	39	188	80	59	e52	59	4110	3140	1520	766	210	
13	40	182	e77	61	e55	59	4750	2860	1920	709	190	91
14	40	176	e75	59	e54	61	5760	2600	2140	660	179	92
15	40	133	75	59	e53	77	6400	2450	2800	617	207	9 8
16	48	e120	76	60	e49	101	5570	2450	3520	577	222	118
17	58	118	e70	61	e52	123	4700	2200	5270	543	197	128
18	68	117	e66	e58	e50	165	4110	1910	6360	507	182	128
19	67	146	62	e56	e50	232	3630	1760	5500	477	175	116
20	60	100	55	e52	e50	424	3200	1710	4560	447	165	110
21	53	105		50				2000	2000	125	158	100
21		105	57	e53	e49	1050	2880	2080	3990	437		102 99
22	52	126	e52	e54	e48	1560	3170	2870	3590	439	153	
23	57	111	49	e51	e49	1920	4160	3520	3260	433	154	96
24	63	105	47	e49	e50	2180	4950	4020	2910	570	159	87
25	64	107	47	e47	e49	2360	4880	3880	2540	1530	179	82
26	62	109	46	e46	e48	2350	4910	3320	2140	1710	162	83
27	61	110	47	e46	e46	2250	5040	2930	1790	1350	150	84
28	61	111	50	e47	e48	2110	4520	2680	1580	1010	141	79
29	62	113	47	e50		2060	3860	2490	1440	837	133	77
30	66	114	e44	e49		2240	3500	2280	1360	701	125	77
31	73		e42	e48		2370		2080		596	117	
TOTAL	1510	4013	2288	1633	1392	24364	122130	98110	74900	26837	7246	3058
MEAN	48.7	134	73.8	52.7	49.7	786	4071	3165	2497	866	234	102
MAX	73	264	111	61	55	2370	6400	50 0 0	6360	1710	518	128
MIN	29	83	42	42	46	50	2660	1710	1250	433	117	77
AC-FT	3000	7960	4540	3240	2760	48330	242200	194600	148600	53230	14370	6070
CFSM	.03	.09	.05	.03	.03	.51	2.63	2.04	1.61	.56	.15	.07
IN.	.04	.10	.05	. 04	.03	. 59	2.93	2.36	1.80	.64	.17	.07
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1973 - 2001, BY WATER YEAR (WY)												
MEAN	401	439	270	176	287	1093	1689	1330	1551	1059	474	393
MAX	2070	2050	1122	859	1161	3894	4952	3233	6898	7905	2906	2171
(WY)	1983	1980	1983	1983	1983	1983	1983	1993	1993	1993	1993	1993
MIN	21.3	22.0	6.08	3.12	5.92	75.9	74.9	69.4	60.3	36.3	26.4	22.7
(WY)	1977	1977	1990	1977	1977	1990	2000	1977	1977	1977	1976	1976

06605850 LITTLE SIOUX RIVER AT LINN GROVE, IA--Continued

06606600 LITTLE SIOUX RIVER AT CORRECTIONVILLE, IA

LOCATION.--Lat 42 28'20", long 95'47'49", in NE¹/4 NW¹/4 sec.1, T.88 N., R.43 W., Woodbury County, Hydrologic Unit 10230003 on right bank 50 ft upstream from bridge on State Highway 31, 0.3 mi upstream from Bacon Creek, 0.5 mi west of Correctionville, 0.8 mi downstream from Pierson Creek, and at mile 56.0.

DRAINAGE AREA.--2,500 mi².

PERIOD OF RECORD.--May 1918 to July 1925, October 1928 to July 1932, June 1936 to current year. Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS.--WSP 856: 1919. WSP 1240: 1924-25, 1931, 1932 (M), 1937, 1945 (M), 1947 (M), 1949 (M). WSP 1440: Drainage area.

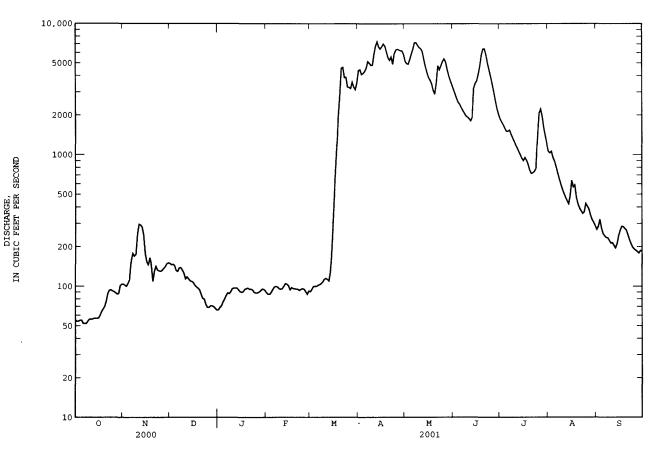
GAGE.--Water-stage recorder. Datum of gage is 1,096.49 ft above sea level. May 28, 1918, to July 1, 1925 and Oct. 29, 1928 to July 15, 1929, nonrecording gage 0.2 mi downstream at datum 1.25 ft lower. July 16, 1929, to July 2, 1932, and June 15, 1936, to Nov. 7, 1938, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23 or 24, 1891, reached a stage of 29.34 ft, present datum, from levels to floodmark by U.S. Soil Conservation Service (discharge not determined).

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	55	104	149	e66	e89	e91	4370	51 9 0	3150	1870	1060	270
2	54	102	146	e69	e87	e95	4460	4960	2 9 10	1770	1030	285
3	54	100	147	e71	e87	e100	4090	4910	2690	1690	1060	323
3 4	55	105	144	e76	e90	e100	4170	5320	2510	1590	952	278
5	55	112	132	e80	e 9 5	e100	4320	5870	2420	1510	892	252
					630							
6	52	156	130	e85	e99	e102	4580	6400	2290	1510	810	242
7	52	178	138	89	e100	e103	5140	7170	2170	1540	726	235
8	52	170	139	88	e99	e105	5000	7190	2070	1430	655	234
9	54	175	133	91	e96	e108	4810	6870	1970	1340	596	224
10	56	249	126	96	e95	113	4830	6590	1930	1260	545	213
11	56	296	114	97	e 9 6	115	5880	6460	1880	1190	507	215
12	56	293	118	97	e100	113	6770	6140	1810	1130	474	205
13	57	282	114	97	e105	110	7300	5370	1920	1060	446	196
14	57	246	110	94	e104	e130	6650	4720	3210	1000	423	211
15	57	177	109	91	e101	e210	6410	4250	3490	938	494	243
16	57	153	107	90	e94	e360	6680	3890	3650	901	638	266
17	60	146	102	91	e98	654	7010	3710	4110	952	568	285
18	64	165	99	9 5	e96	1080	6760	3480	4750	907	588	284
19	67	e145	97	96	e96	1940	6110	3100	5750	845	472	275
20	70	e109	94	97	e95	2870	5510	2890	6420	763	422	267
20	70	6109	24	37	630	2070	3310	2090	0420	/03	422	
21	77	e130	87	e 9 5	e 9 5	4560	5250	3510	6440	720	393	246
22	88	e142	81	e95	e93	4650	5580	4780	5780	728	374	226
23	93	e133	80	e94	e95	3880	4900	4450	4970	747	357	211
24	94	e131	73	e90	e96	3900	5910	4780	4410	786	367	198
25	92	e130	69	e89	e95	3290	6310	5160	3920	1410	425	192
26	91	e132	69	e89	e91	3260	6390	5390	3440	2080	406	188
27	89	e137	71	e90	e87	3200	6320	5100	2990	2230	386	184
28	87	e1 4 1	71	e92	e92	3580	6230	4460	2570	1940	347	179
29	88	e149	70	e95		3280	6210	3990	2240	1590	321	187
30	101	151	e68	e95		3130	5860	3670	2020	1370	306	185
31	104		e66	e93		3540		3410		1200	288	
71	104		600	633		5340		2410		1200	200	
TOTAL	2144	4839	3253	2773	2666	48869	169810	153180	99880	39997	17328	6999
MEAN	69.2	161	105	89.5	95.2	1576	5660	4941	3329	1290	559	233
MAX	104	296	149	97	105	4650	7300	7190	6440	2230	1060	323
MIN	52	100	66	66	87	91	4090	2890	1810	720	288	179
AC-FT	4250	9600	6450	5500	5290	96930	336800	303800	198100	79330	34370	13880
	.03									.52	.22	.09
CFSM		.06	.04	.04	.04	.63	2.26	1.98	1.33			
IN.	.03	.07	.05	.04	.04	.73	2.53	2.28	1.49	.60	.26	.10
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 2001, BY WATER YEAR (WY)												
MEAN	430	430	296	215	461	1464	1931	1433	1810	1231	603	501
MAX	2994	3079	1698	1323	2708	7328	8677	5002	10110	11600	4469	3671
(WY)	1983	1980	1983	1983	1971	1983	1983	1993	1993	1993	1993	1938
MIN	8.33	25.3	15.1	8.31	7.08	53.5		57.3		43.4	15.0	14.4
							61.9	5/.5	58.1			
(WY)	1957	1959	1959	1959	1959	1931	1931	1931	1956	1956	1931	1958


88

06606600 LITTLE SIOUX RIVER AT CORRECTIONVILLE, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALENE	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1919 - 2001
ANNUAL TOTAL	73538		551738			
ANNUAL MEAN	201		1512		913	
HIGHEST ANNUAL MEAN					4304	1993
LOWEST ANNUAL MEAN					53.7	1931
HIGHEST DAILY MEAN	1210	Jun 18	7300	Apr 13	27900	Apr 7 1965
LOWEST DAILY MEAN	38	Sep 18	52	Oct 6a	2.6	Jul 17 1936b
ANNUAL SEVEN-DAY MINIMUM	51	Sep 14	53	Oct 2	4.6	Oct 4 1956
MAXIMUM PEAK FLOW			7370	Apr 13	29800	Apr 7 1965
MAXIMUM PEAK STAGE			14.29	Apr 13	25.86	Apr 7 1965
INSTANTANEOUS LOW FLOW			49	Oct 3		
ANNUAL RUNOFF (AC-FT)	145900		1094000		661200	
ANNUAL RUNOFF (CFSM)	.080)	.60		.37	
ANNUAL RUNOFF (INCHES)	1.09		8.21		4.96	
10 PERCENT EXCEEDS	453		5150		2240	
50 PERCENT EXCEEDS	141		249		370	
90 PERCENT EXCEEDS	71		83		55	

a b e

Also Oct. 7, 8. Also July 25, 1956, caused by construction of dam upstream. Estimated.

06607200 MAPLE RIVER AT MAPLETON, IA

LOCATION.--Lat 42[°]09'25", long 95[°]48'35", in SE¹/4 SE¹/4 SE¹/4 sec.23, T.85 N., R.43 W., Monona County, Hydrologic Unit 10230005, on right bank at downstream side of bridge on State Highway 175, 1.0 mi downstream from Simmons Creek, 1.1 mi southwest of intersection of State Highways 175 and 141 in Mapleton, 2.1 mi upstream from McCleery Creek, and 16.0 mi upstream from mouth.

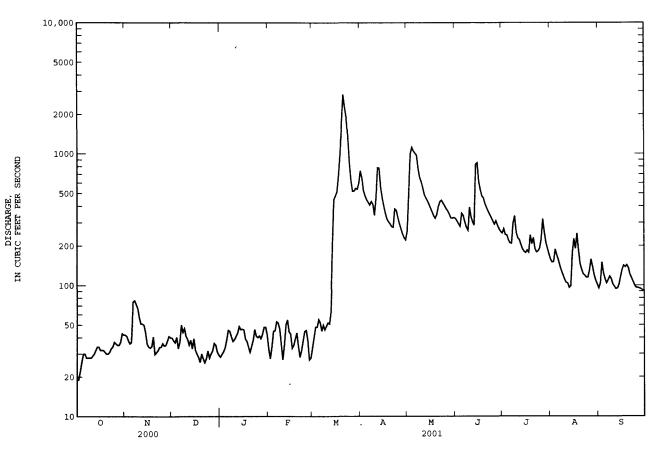
DRAINAGE AREA.--669 mi².

PERIOD OF RECORD. -- October 1941 to current year.

REVISED RECORDS. --WSP 1310: 1942 (M), 1946 (M), 1948 (M). WSP 1440: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,080.86 ft above sea level. See WSP 1730 for history of changes prior to Sept. 20, 1956; Prior to Apr. 27, 2000, at datum 5.0 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	19	42	e40	e28	e33	e33	744	259	323	249	158	95
2	19	41	e38	e30	e28	e40	654	494	309	269	150	104
ŝ	22	38	e37	e30	e34	e40	524	993	294	243	151	150
4	26	36	e40	e34	e45	e48	480	1120	281	241	188	124
5	30	37	e33	e39	e45	55	448	1050	353	221	170	112
6	30	75	e37	e46	53	52	428	1010	340	210	157	104
7	28	77	50	e45	52	45	408	976	304	208	141	110
8	28	72	44	e41	e47	50	434	782	277	297	129	117
9	28	67	47	e37	e36	46	414	662	262	337	120	112
10	28	57	41	e39	e27	49	341	616	392	252	111	102
11	29	51	e39	e 4 1	e35	52	461	553	332	229	105	98
12	30	51	e35	e43	e50	51	784	490	303	222	104	94
13	32	50	e38	e49		64	780	462	287	204	96	95
					e55							
14	34	44	e33	e46	e44	202	554	440	834	189	99	102
15	34	36	e39	e46	e43	449	463	413	854	181	175	117
16	32	34	e32	e46	e33	479	402	387	616	177	226	132
17	32	e33	e30	e39	e35	515	354	362	532	185	190	142
18	32	e34	e28	e37	e39	687	321	338	477	178	248	138
19	31	e41	e26	e34	e44	1010	305	324	462	241	185	143
20	30	e30	e30	e31				345	417	207	146	136
20	30	e30	e30	est	e34	1670	295	345	41/	207	140	130
21	30	e31	e28	e34	e28	2840	280	397	390	230	132	121
22	31	e32	e26	e38	e32	2290	277	432	366	190	12 2	114
23	33	e34	e28	e46	e38	1910	381	444	346	179	119	107
24	34	e34	e32	e41	e45	1340	372	422	328	182	115	100
25	37	e36	e28	e40	e46	846	330	403	309	192	115	96
				040	C40	040						
26	36	e35	e30	e41	e38	623	2 9 6	383	292	224	130	96
27	35	e35	e32	e39	e27	519	270	368	310	320	158	95
28	35	e38	e36	e43	e28	521	247	349	287	254	139	94
29	37	e41	e35	e48		546	231	326	269	212	120	92
30	43	e40	e31	e48		538	222	324	256	191	109	91
31	43		e29	e48 e42				324	250	173	103	
71	42		e29	642		5 9 6		520		173	102	
TOTAL	967	1302	1072	1242	1094	18214	12500	16252	11402	6887	4410	3333
MEAN	31.2	43.4	34.6	40.1	39.1	588	417	524	380	222	142	111
MAX	43	77	50	49	55	2840	784	1120	854	337	248	150
MIN	19	30	26	28	27	33	222	259	256	173	96	91
AC-FT	1920	2580	2130	2460	2170	36130	24790	32240	22620	13660	8750	6610
CFSM	.05	.06	.05	.06	.06	.88	.62	.78	.57	.33	.21	.17
IN.	.05	.07	.06	.07	.06	1.01	.70	.90	.63	.38	.25	.19
STATIST	TICS OF M	ONTHLY MEA	an data f	OR WATER	YEARS 1943	2 - 2001,	BY WATER	YEAR (WY)			
MEAN	158	145	116	96.5	225	488	413	399	636	366	254	179
MAX	634	506	548	330	1016	1588	1889	1345	2856	1588	1230	1034
(WY)	1983	1 9 93	1985	1983	1971	1983	1983	1984	1984	1993	1951	1951
MIN	9.36	14.6	5.74	3.25	3.64	25.6	19.9	35.9	48.5	33.3	12.6	5.48
(WY)	1957	1959	1959	1959				1968	1955	1956	12.6	1956
(** 1)	1901	1909	1222	1203	1959	1957	1957	1200	1300	1930	1900	1900

06607200 MAPLE RIVER AT MAPLETON, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	'ER YEAR	WATER YEAR	S 1942 - 2001
ANNUAL TOTAL	23117		78675			
ANNUAL MEAN	63.2		216		290	
HIGHEST ANNUAL MEAN					983	1983
LOWEST ANNUAL MEAN					24.5	1956
HIGHEST DAILY MEAN	282	Feb 25	2840	Mar 21	14400	Jun 21 1983
LOWEST DAILY MEAN	19	Oct 1	19	Oct la	.00	Sep 21 1945b
ANNUAL SEVEN-DAY MINIMUM	23	Sep 28	25	Oct 1	2.6	Feb 14 1959
MAXIMUM PEAK FLOW		-	3160	Mar 21	20800	Sep 12 1978
MAXIMUM PEAK STAGE			11.33	Mar 21	22.10	Jun 12 1950
INSTANTANEOUS LOW FLOW			18	Oct 3		
ANNUAL RUNOFF (AC-FT)	45850		156100		209800	
ANNUAL RUNOFF (CFSM)	.09	4	.32		. 43	
ANNUAL RUNOFF (INCHES)	1.29		4.37		5.88	
10 PERCENT EXCEEDS	95		484		614	
50 PERCENT EXCEEDS	58		104		140	
90 PERCENT EXCEEDS	30		31		30	

Also Oct. 2. Also Sept. 22, 1945, caused by temporary dam upstream. Estimated. a b e

06607500 LITTLE SIOUX RIVER NEAR TURIN, IA

LOCATION.--Lat 41°57′52″, long 95′58′21″, in NW¹′4 NE¹′4 sec.33, T.83 N., R.44 W., Monona County, Hydrologic Unit 10230003, on left bank on downstream side of bridge on county highway E54, 1.0 mi east of gaging station on Monona-Harrison Ditch near Turin, 2.5 mi downstream from Maple River, 3.8 mi south of Turin, 6.2 mi northeast of Blencoe, and at mile 13.5.

DRAINAGE AREA.--3,526 mi².

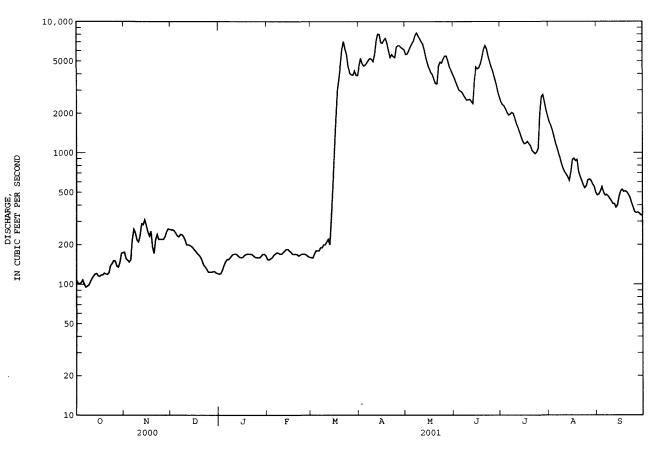
PERIOD OF RECORD.--May 1942 to September 1957, January 1958 to current year. June 1942 to January 1958 at site 1,200 ft east on old river channel; records not equivalent owing to diversion into Monona-Harrison Ditch through equalizer ditch 1.5 mi upstream 1923 to 1958, and diversion with Monona-Harrison Ditch through diversion ditch 8.3 miles upstream since 1958.

REVISED RECORDS: WSP 1440: Drainage area. WSP 1560: Drainage area. WDR IA-95-1: Period of record.

GAGE.--Water-stage recorder. Datum of gage is 1,019.85 ft above sea level (U.S. Army Corps of Engineers bench mark). Prior to July 15, 1958, nonrecording gages near present site at different datums. July 15 to Sept. 3, 1958, nonrecording gage at present site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES


DAY OCT NOV AUG SEP DEC JAN FEB MAR APR MAY JUN JUL e260 e120 e155 e160 e260 e121 e154 e159 e170 e255 e129 e157 e1500 e1350 e245 e140 e160 e180 e1200 e234 e180 e149 e167 e230 e155 e1100 e171 e180 e240 e155 e174 e1000 e190 e239 e160 e173 e190 e200 e166 e231 e170 e219 e170 e170 e200 e170 12 e175 e200 e210 e200 e170 e180 e220 e198 e200 e165 e185 e195 e161 e185 e320 e190 e160 e180 e550 e183 e161 e176 e1000 e1800 e178 e166 e170 e171 e169 e170 e3000 e192 e167 e170 e170 e3700 e172 e161 e170 e169 e220 e151 e170 e165 e140 e240 e169 e168 e220 e136 e165 e170 e220 e130 e161 e170 e220 e124 e160 e170 e220 e124 e160 e167 e230 e124 e160 e163 e250 e125 e165 e161 e264 e125 e170 ------e262 e122 e170 e121 ~~-e165 TOTAL MEAN MAX MIN AC-FT .49 CFSM .03 .06 .05 .05 .05 1.69 1.55 1.08 .24 .13 .65 IN. .04 .07 1.79 .14 .06 .05 .05 .75 1.89 1.21 .56 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1959 - 2001, BY WATER YEAR (WY) MEAN MAX 1992 (WY) 25.1 MIN 37.5 48.0 31.2 18.5 90.2 (WY)

06607500 LITTLE SIOUX RIVER NEAR TURIN, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YE	LAR	FOR 2001 WA	ATER Y	EAR	WATER YEAD	RS 1959	-	2001a
ANNUAL TOTAL	115792		652512						
ANNUAL MEAN	316		1788			1544			
HIGHEST ANNUAL MEAN						5261			1993
LOWEST ANNUAL MEAN						167			1968
HIGHEST DAILY MEAN	1760 Jun	28	8200	May	8	28700	Jun	22	1996
LOWEST DAILY MEAN	95 Oct	7	95	Oct	7	17	Jan	18	1977b
ANNUAL SEVEN-DAY MINIMUM	100 Oct	3	100	Oct	3	17	Jan	27	1977
MAXIMUM PEAK FLOW			8310	Apr	13	32000	Jun	22	1996
MAXIMUM PEAK STAGE			16.62	2 May	8	27.44	Feb	19	1971c
INSTANTANEOUS LOW FLOW			89	Oct	7d				
ANNUAL RUNOFF (AC-FT)	229700		1294000			1119000			
ANNUAL RUNOFF (CFSM)	.090		.51	1		.44			
ANNUAL RUNOFF (INCHES)	1.22		6.88	8		5.95			
10 PERCENT EXCEEDS	592		5590			3740			
50 PERCENT EXCEEDS	262		474			775			
90 PERCENT EXCEEDS	122		139			150			

Post closure of diversion to Monona-Harrison Ditch. Also Jan. 19, 20, Jan. 28 to Feb. 1, 1977. Ice affected. Also Oct. 8. Estimated.

a b c d e

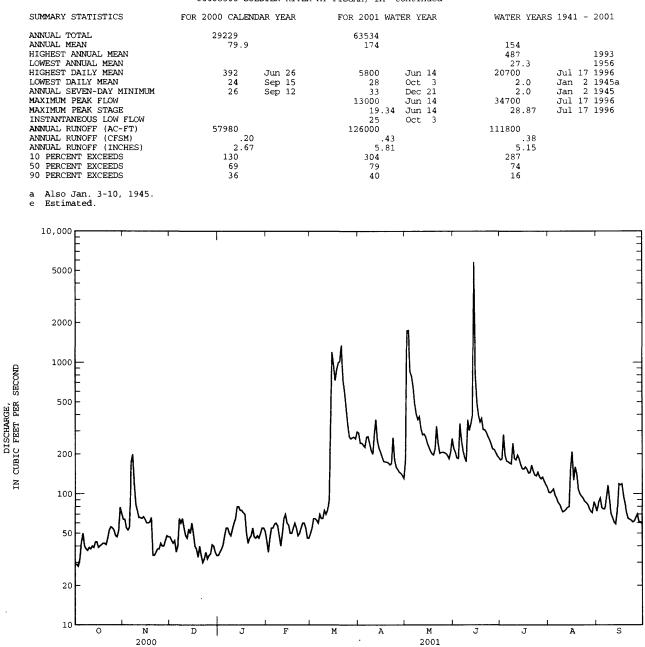
06608500 SOLDIER RIVER AT PISGAH, IA

LOCATION.--Lat 41'49'50", long 95'55'52", in NW¹/4 NE¹/4 sec.14, T.81 N., R.44 W., Harrison County, Hydrologic Unit 10230001, on right bank at upstream side of bridge on county highway F20, at west edge of Pisgah, 0.4 mi downstream from Cobb Creek, 0.5 mi upstream from Mogger Ditch, and 13.1 mi upstream from mouth.

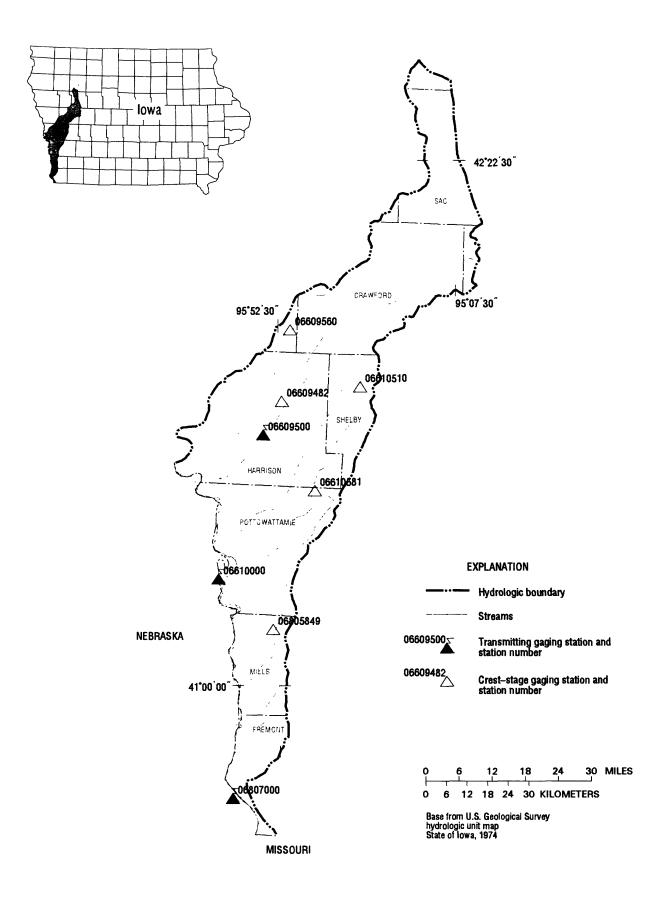
DRAINAGE AREA.--407 mi².

PERIOD OF RECORD. -- March 1940 to current year.

REVISED RECORDS.--WSP 956: 1940 (M). WSP 1240: 1940, 1941 (M), 1947. WSP 1440: Drainage area.


GAGE.--Water-stage recorder. Datum of gage is 1,036.53 ft above sea level. Prior to Oct. 11, 1954, nonrecording gage at same site and datum with supplementary water-stage recorder operating above 8.2 ft gage height Mar. 2, 1946 to Sept. 24, 1953. Prior to Feb. 1954, on left bank at downstream side of bridge. Prior to June 21, 1989, at site 100 ft downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					0.110	I IMPAN VI						
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29	64	e47	e34	e44	e50	291	182	222	181	103	74
2	29	64	e44	e36	e36	e55	243	1740	207	184	102	87
3	28	55	e42	e38	e46	e65	243	1750	187	282	105	93
4	32	53	e44	e41	e55		234	852	185	195	109	79
5	43					e65	226	786	342	177	98	77
5	43	56	e36	e 4 8	e55	e63	220	/80	342	1//	90	
6	50	174	e40	e55	e59	e60	269	651	254	175	93	77
7	40	199	e65	e55	e60	e70	273	481	211	171	86	94
8	38	117	e60	e50	e57	e65	243	403	189	169	83	116
9	37	82	e65	e48	e48	e65	213	367	175	242	78	90
10	39	75	e55	e54	e40	e75	200	386	365	185	73	71
11	38	66	e48	e60	e50	e70	282	313	302	181	74	66
12	40	66	e46	e65	e65	e75	368	281	340	197	76	61
13	39	e65	e54	e80	e70	e90	252	285	395	184	79	59
14	43	67	e50	e80	e60	e340	222	271	5800	167	80	74
15	43	64	e60	e75	e58	1200	207	244	797	155	157	119
		04	200	615	600	1200	207			155		
16	39	e60	e50	e75	e50	964	190	227	493	154	209	117
17	40	e60	e40	e72	e50	727	176	212	393	160	127	119
18	41	61	e38	e70	e55	879	175	201	351	154	160	97
19	42	66	e33	e50	e60	992	174	197	374	144	142	84
20	42	e34	e40	e42	e55	1020	172	219	307	145	108	72
	12	624	640	642	611	1020			507	145	100	
21	41	e34	e34	e46	e48	1350	166	326	307	165	100	65
22	46	e36	e30	e48	e50	734	170	242	293	149	96	64
23	53	e38	e32	e55	e55	597	267	203	273	139	93	63
24	56	e38	e36	e47	e60	450	181	206	258	137	88	61
25	55	e42	e32	e46	e60	337	159	207	240	146	86	62
26	53	e40	e34	e48	e55	272	153	205	219	135	83	66
27	48	e40	e35	e46	e46	262	146	202	217	130	78	70
28	47	e44	e41	e50	e46	267	143	195	206	134	74	61
29	52	e48	e40	e55		270	138	184	194	125	72	61
30	79	e47	e36	e55		262	131	207	188	118	87	59
31	71		e34	e52		296		263		112	81	
TOTAL	1373	1955	1341	1676	1493	12087	6307	12488	14284	5092	3080	2358
MEAN	44.3	65.2	43.3	54.1	53.3	390	210	403	476	164	99.4	78.6
MAX	79	199	43.5			1350	368	1750	5800	282	209	119
				80	70							59
MIN	28	34	30	34	36	50	131	182	175	112	72	
AC-FT	2720	3880	2660	3320	2960	23970	12510	24770	28330	10100	6110	4680
CFSM	.11	.16	.11	.13	.13	.96	.52	.99	1.17	.40	.24	.19
IN.	.13	.18	.12	.15	.14	1.10	.58	1.14	1.31	.47	.28	.22
STATIST	ICS OF M	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 194	1 - 2001,	BY WATER	YEAR (WY)			
MEAN	81.6	75.9	67.3	66.8	155	267	169	201	313	202	144	111
MAX	330	274	281	431	653	897	623	555	1233	1607	632	482
(WY)	1994	1994	1985	1952	1971	1993	1983	1984	1991	1993	1993	1978
MIN	9.61	12.8	6.05	3.29	9.43	27.8	12.5	13.6	22.1	22.8	14.4	6.70
(WY)	1957	1959	1959	1959	1956	1957	1957	1957	1956	1970	1971	1956
(***)	1001	1000	1/2/	200	1000	1221	100	2221	1000	10.0		1000

06608500 SOLDIER RIVER AT PISGAH, IA--Continued

.

Gaging Stations

06609500	Boyer River at	Logan, IA		 	 	 	.98
06610000	Missouri River	at Omaha, NE		 	 	 	100
06807000	Missouri River	at Nebraska City,	NE	 	 	 	110

Crest Stage Gaging Stations

06609482	Boyer River Tributary at Woodbine, IA
06609560	Willow Creek near Soldier, IA
06610510	Moser Creek near Earling, IA
06610581	Mosquito Creek Tributary near Neola, IA
06805849	Keg Creek Tributary near Mineola, IA

.

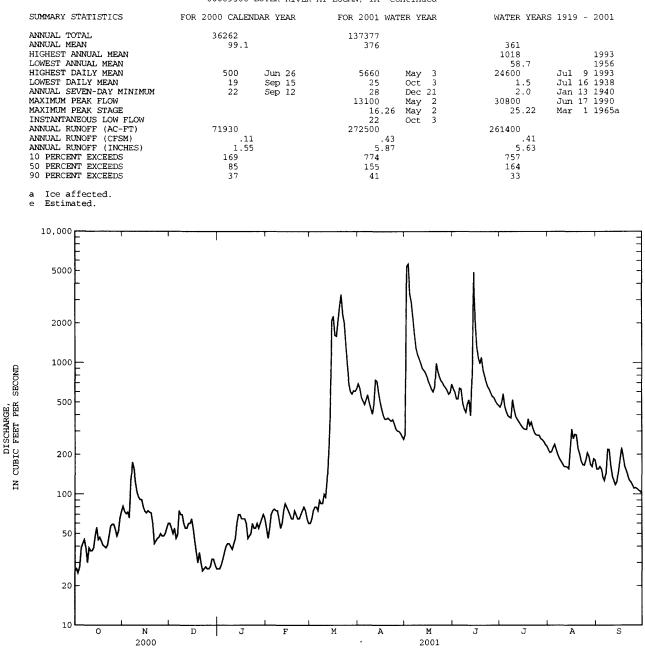
06609500 BOYER RIVER AT LOGAN, IA

LOCATION.--Lat 41 38'30", long 95 46'57", in SE²/4 NW²/4 sec.19, T.79 N., R.42 W., Harrison County, Hydrologic Unit 10230007, on left bank downstream side of county bridge on Eight Street in Logan, 0.5 mi downstream from Elk Grove Creek, 10.4 mi upstream from Willow Creek, and 15.7 mi upstream from mouth.

DRAINAGE AREA.--871 mi².

PERIOD OF RECORD.--May 1918 to November 1924, February 1925 to July 1925, November 1937 to current year. Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS.--WSP 956: 1938-39. WSP 1240: 1918-19, 1920 (M), 1921, 1922 (M), 1924-25, 1938 (M), 1945. WSP 1440: Drainage area.


GAGE.--Water-stage recorder. Datum of gage is 1,009.38 ft above sea level (Chicago and Northwestern Railway Company bench mark). See WSP 1918 for history of changes prior to Oct. 18, 1960.

REMARKS.--Records are good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	26	81	e60	e27	e55	e60	690	284	632	459	217	155
2	27	74	e55	e27	e46	e65	639	5430	598	492	207	155
3	25	71	e50	e29	e55	e75	545	5660	530	581	210	162
4	28	73	e55	e32	e70	e80	510	3350	529	467	226	155
5	39	66	e46	e36	e75	e80	480	2910	639	424	239	135
6	42	124	e49	e40	e77	e75	522	2200	629	395	218	127
7	45	175	e75	e42	e75	e90	570	1650	491	385	200	145
8	39	156	e70	e42	e75	e85	497	1290	443	379	187	219
9	30	123	e70	e40	e65	e85	447	1150	418	522	178	218
10	39	103	e60	e38	e55	e100	405	1070	485	443	170	164
11	37	95	e55	e42	e60	e95	485	990	521	e390	162	139
12	37	91	e55	e46	e75	e130	737	902	395	e370	162	128
13	39	91	e60	e60	e85	e210	721	872	775	e355	161	118
14	48	80	e60	e70	e80	e400	590	837	4920	340	156	124
15	56	74	e65	e70	e75	e2100	502	778	2150	326	220	151
16	45	72	e55	e65	e70	2260	441	721	1330	315	312	185
17	47	e75	e44	e65	e65	1620	395	674	1090	311	264	225
18	44	73	e36	e65	e65	1590	371	626	983	310	285	193
19	41	72	e30	e60	e75	2090	372	599	1100	373	282	163
20	40	60	e36	e46	e70	2700	379	650	878	332	223	151
21	39	e42	e30	e48	e65	3320	368	989	792	352	203	139
22	41	e44	e26	e50	e65	2330	358	856	721	317	179	128
23	48	e46	e27	e60	e70	2020	368	774	661	293	168	124
24	57	e47	e28	e55	e75	1360	342	731	631	282	166	118
25	59	e50	e27	e55	e80	935	313	703	591	280	181	111
26	59	e48	e27	e60	e75	690	302	666	555	280	206	112
27	54	e48	e28	e55	e65	601	e300	644	544	264	194	110
28	48	e50	e32	e60	e60	577	e290	613	512	259	168	107
29	52	e55	e32	e65		611	e275	574	487	251	162	105
30	66	e60	e29	e70		605	e261	593	474	238	186	102
31	74		e27	e65		632		687		231	181	
TOTAL	1371	2319	1399	1585	1923	27671	13475	40473	25504	11016	6273	4368
MEAN	44.2	77.3	45.1	51.1	68.7	893	449	1306	850	355	202	146
MAX	74	175	75	70	85	3320	737	5660	4920	581	312	225
MIN	25	42	26	27	46	60	261	284	395	231	156	102
AC-FT	2720	4600	2770	3140	3810	54890	26730	80280	5059 0	21850	12440	8660
CFSM	.05	.09	.05	.06	.08	1.02	. 52	1.50	. 9 8	.41	.23	.17
IN.	.06	.10	.06	.07	.08	1.18	.58	1.73	1.09	.47	.27	.19
STATIST	TICS OF MO	ONTHLY ME	AN DATA F	OR WATER	YEARS 191	9 - 2001,	BY WATER	RYEAR (WY)			
MEAN	185	169	137	128	315	599	449	515	762	467	307	255
MAX	796	558	565	692	1209	2619	1988	1698	2541	3022	1636	1288
(WY)	1974	1974	1973	1973	1971	1979	1983	1984	1990	1993	1951	1978
MIN	11.1	8.33	6.68	3.06	3.55	40.4	23.3	39.9	33.3	51.0	34.5	11.6
(WY)	1957	1940	1938	1940	1940	1981	1957	1968	1956	1 97 7	1976	1939

06609500 BOYER RIVER AT LOGAN, IA--Continued

06610000 MISSOURI RIVER AT OMAHA, NE (National stream-quality accounting network station)

LOCATION.--Lat 41°15'32", long 95°55'20", in SE¹/4 NW¹/4 sec.23, T.15 N., R.13 E., Douglas County, Hydrologic Unit 10230006, on right bank on left side of concrete floodwall, at foot of Douglas Street, 275 ft downstream from Interstate 480 Highway bridge in Omaha, and at mile 615.9.

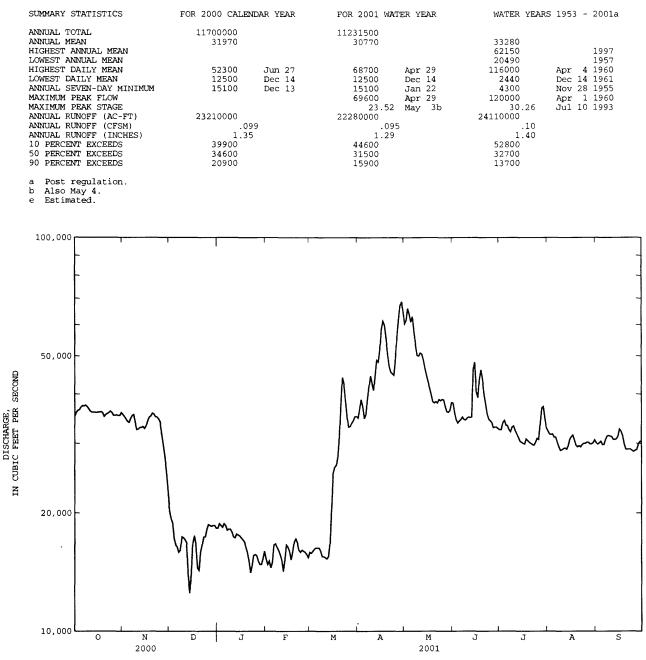
DRAINAGE AREA.--322,800 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1928 to current year. April 1872 to December 1899 (gage heights only) in reports of the Missouri River Commission and since January 1875, (gage heights only) in reports of the U.S. Weather Bureau.

REVISED RECORDS. -- WSP 761: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 948.24 ft above sea level. See WSP 1730 for history of changes prior to Sept. 30, 1936. Oct. 1, 1936 to Sept. 30, 1982 at datum 10.00 ft higher.


REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 396,000 ft³/s Apr. 18, 1952, gage height, 40.20 ft, present datum; minimum, about 2,200 ft³/s Jan. 6, 1937; minimum gage height, 6.85 ft, present datum, Feb. 5, 1989, result of freezeup.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	35100	35500	20300	e18300	15300	15900	34800	60400	38000	32500	32300	30100
2	35900	35100	19400	18800	14800	15800	36700	61600	35900	32500	31700	29900
3	36400	34600	18900	18600	15100	16000	38800	66000	34400	33900	31600	30100
4	36500	34100	17200	18400	14500	16200	37200	63800	33800	34300	31700	30400
5	37100	33900	16600	18800	15000	16300	34700	61000	34200	33400	31100	29800
6	37400	34700	16400	18600	16600	16300	35500	62900	34500	33300	31100	29800
7	37300	35300		18100	16700	16300	38700	57400	35000	32500	30200	30700
8	37500	35500	16100	18200	16400	16000	41700	53300	34500	32100	29400	31300
9	37200	33800	17400	18200	16100	15500	44500	50200	34400	33000	28800	31400
10	36700	32500	17300	17900	15700	15500	42500	50000	34800	33200	28900	31300
11	36200	32600	17100	17400	15200	15400	40900	50900	35000	32300	29100	31200
12	36000	32900	16800	17300	14200	15300	44900	50600	34900	31700	29200	30700
13	36000	32900	13900	17700	15200	15500	48800	48900	35000	31100	29000	30700
14	36000	33100	12500	17600	16600	16800	48300	46500	46300	30400	29600	30800
15	35900	32700	14100	17500	16400	20400	51800	44600	48200	30200	30700	31300
16	36000	33200	16800	17300	16000	25200	58500	43000	40500	30000	31200	32600
17	36000	34300	17500	17100	15200	26100	61300	41500	39200	29900	31500	32200
18	36100	35000	16600	16900	15900	26400	59900	39900	43800	30800	30600	31400
19	35900	35200	14500	16400	16900	27800	55500	38300	46100	30500	29700	29900
20	35100	35800	14300	15900	17200	31200	50600	38000	43500	30200	2 94 00	2 9 000
21	35500	35600	15900	15100	16800	37700	47100	38300	39900	30000	29600	29000
22	35700	35000	16600	14100	16100	44100	45500	38000	37700	29800	29400	29000
23	35900	35000	17400	14700	15900	42400	45100	38800	35500	29700	29800	29000
24	36200	34600		15600	16100	38300	44700	38500	34500	30200	30000	28800
25	35900	34000	18200	15700	16000	34700	49000	38800	34200	30900	30000	28600
26	35300	31700	18700	15600	15900	33000	56000	38700	33800	30700	30200	28800
27	35300	29800	18600	15100	15700	33100	61500	37200	32900	33700	30200	28900
28	35400	27800	18500	14800	15400	33800	66900	36100	33000	36900	29900	29800
29	35300	25600		14800		34300	68700	36000	33000	37200	29900	30300
30	35300	22900	18600	15300		35100	65100	36400	32700	34600	30100	30400
31	35900		e18300	16000		35100		38100		32900	30600	
TOTAL	1118000	9 94 700	526400	521800	442900	781500	1455200	1443700	1109200	994400	936500	907200
MEAN	36060	33160		16830	15820	25210	48510	46570	36970	32080	30210	30240
MAX	37500	35800	20300	18800	17200	44100	68700	66000	48200	37200	32300	32600
MIN	35100	22900	12500	14100	14200	15300	34700	36000	32700	29700	28800	28600
	2218000	1973000	1044000	1035000	878500	1550000	2886000	2864000	2200000	1972000	1858000	1799000
CFSM	.11	.10	.05	.05	.05	.08	.15	.14	.11	.10	.09	.09
IN.	.13	.11	.06	.06	.05	. 09	.17	.17	.13	.11	.11	.10
STATI	STICS OF	MONTHLY	MEAN DATA	FOR WATER	YEARS 19	53 - 2001	, BY WATE	R YEAR (W	Y)			
MEAN	38670	34280	21140	17790	19910	28160	39060	38840	42090	40670	39150	39110
MAX	74070	75040	44260	33250	40410	54660	93840	87620	76120	78560	68890	69770
(WY)	1998	1998	1998	1987	1997	1997	1997	1997	1997	1993	1997	1997
MIN	16920	8324	8296	8425	8162	10170	16480	26450	26890	27150	27280	28290
(WY)	1962	1962	1962	1964	1963	1957	1957	1961	1961	1958	1958	1958

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

٠

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

WATER-QUALITY RECORDS

LOCATION. -- Water quality samples were collected from Interstate 80 highway bridge 2.0 mi downstream from gaging station.

PERIOD OF RECORD.--July 1969 to 1976, 1978 to current year. Daily sediment loads for April 1939 to September 1971 are in reports of U.S. Army Corps of Engineers.

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1972 to September 1976, January 1978 to September 1981, October 1991 to current year. WATER TEMPERATURES: October 1971 to September 1976, January 1978 to September 1981, October 1991 to current year. SUSPENDED-SEDIMENT DISCHARGE: October 1971 to September 1976, October 1991 to current year.

REMARKS .-- Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

EXTREMES FOR PERIOD OF DAILY RECORD. --

SECIFIC CONDUCTANCE: Maximum daily, 950 microsiemens Dec. 4, 5, 1980; minimum daily, 335 microsiemens Mar. 22, 1978. WATER TEMPERATURES: Maximum daily, 32.0°C July 24, 1972; minimum daily, 0.0°C on many days during winter period. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,180 mg/L May 19, 1974; minimum daily mean, 71 mg/L Jan. 3, 1993. SEDIMENT LOADS: Maximum daily, 1,470,000 tons Aug. 6, 1996; minimum daily, 2,560 tons Jan. 3, 1993.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONCENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 855 microsiemens May 25; minimum daily, 537 microsiemens Apr. 10. WATER TEMPERATURES: Maximum daily, 30.0°C Aug. 7; minimum daily, 0.5°C Jan. 6 and Mar. 1. SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,800 mg/L June 15; minimum daily mean, 98 mg/L Mar. 7. SEDIMENT LOADS: Maximum daily, 498,000 tons June 15; minimum daily, 4,270 tons Mar. 9.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	TUR- BID- ITY (NTU) (00076)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
OCT							_						<u> </u>
03 NOV	1030	36100	815	8.5	17.5	14.5	22	9.1	99	735	250	59.2	25.3
28	1030	27500	863	8.4	1.5	3.5	8.5	13.5	100	735	280	67.0	26.2
JAN 06	1200	18700	899	8.4	.5	1.0	6.6	13.7	100	730	290	69.9	27.2
MAR						1.0						-	
01 16	1130 1030	16000 25600	847 672	8.2 8.2	.5 2.5	-0.5 1.0	5.1 200	$12.4 \\ 10.4$	90 7 9	728 739	260 220	65.9 56.4	23.5 19. 4
APR	1030	25600	0/2	8.2	2.5	1.0	200	10.4	79	139	220	50.4	19.4
10	1100	42700	53 9	8.1	8.5	12.5	180	10.5	94	730	210	54.1	18.3
24 MAY	1030	44500	642	8.2	11.0	9.0	130	8.8	82	743	260	63.8	23.9
07	1100	57700	677	8.2	15.5	16.0	92	7.7	80	740	270	67.4	25.3
22 JUN	1100	37900	829	8.4	18.0	13.0	45	8.2	91	730	320	77.0	31.5
05	1100	34200	857	8.3	17.0	15.5		8.7	94	733	320	78.3	30.8
15	1030	48400	663	8.0	21.5	26.0		5.8	68	734	240	60.0	21.1
JUL 10	1030	33300	837	8.3	27.0	24.0		6.5	85	735	300	72.8	28.9
AUG													
07 21	$1100 \\ 1030$	30300 29600	856 866	8.5 8.6	30.0 2 4 .0	27.5 23.5		6.8 8.0	93 100	7 4 1 730	300 260	73.5 63.9	28.4 24.7
SEP	1020	29000	000	0.0	2 4 .0	23.0		0.0	100	100	200	0.5.7	
05	1030	28800	859	8.6	25.0	23.5		8.1	102	739	270	65.2	25.8

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, DIS- SOLVED (TONS PER AC-FT) (70303)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)
ОСТ 03	79.1	2	5.54	140	2	167	229	11.8	.5	6.4	531	.72	.084
NOV 28	76.7	2	5.05	150	.0	183	233	14.8	. 4	6.8	561	.76	.381
JAN 06	81.3	2	5.89	198	.0	242	233	15.8	. 5	9.9	592	.81	.453
MAR 01 16 APR	63.2 44.1	2 1	5.66 7.39	19 6 167	.0 .0	239 204	211 1 4 1	17.4 13.3	.5 .4	10.6 9.8	570 440	.78 .60	.684 1.07
10 24 MAY	21.2 29.7	.6 .8	7.48 8.75	131 137	.0 .0	160 168	107 145	10.8 14.0	.3 .3	12.0 14.4	357 437	.49 .59	2.56 2.70
07 22 JUN	26.7 44.4	.7 1	8.51 8.64	156 188	.0 0	191 228	152 202	14.9 18.7	.3 .4	13.7 13.5	455 573	.62 .78	2.96 2.23
05 15 JUL	55.4 40.0	1 1	7.01 7.11	188 143	.0 .0	229 175	214 153	18.3 12.7	. 4 . 4	10.7 8.6	573 433	.78 .59	2.19 1.78
10 AUG	59.2	1	6.95	177	.0	215	211	14.2	.4	12.4	564	.77	1.70
07 21 SEP	66.4 70.9	2 2	7.05 7.01	178 166	3 6	211 191	233 250	15.1 15.2	.4 .4	12.2 8.7	594 585	.81 .80	1.46 .370
05	77.9	2	6.74	159	4	187	250	14.7	. 4	9.1	579	.79	E.206
DATE	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)
OCT	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS TOTAL (MG/L AS P) (00665)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	DIS- SOLVED (UG/L AS AS) (01000)	INUM, DIS- SOLVED (UG/L AS AL) (01106)	DIS- SOLVED (UG/L AS BA) (01005)	LIUM, DIS- SOLVED (UG/L AS BE) (01010)
OCT 03 NOV	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHORUS DIS- SOLVED (MG/L AS P) (00666) .007	PHORUS TOTAL (MG/L AS P) (00665) .155	MENT, SUS- PENDED (MG/L) (80154) 247	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 24100	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 19	DIS- SOLVED (UG/L AS AS) (01000) 2.5	INUM, DIS- SOLVED (UG/L AS AL)	DIS- SOLVED (UG/L AS BA)	LIUM, DIS- SOLVED (UG/L AS BE)
ост 03	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS TOTAL (MG/L AS P) (00665)	MENT, SUS- PENDED (MG/L) (80154)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	DIS- SOLVED (UG/L AS AS) (01000)	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3	DIS- SOLVED (UG/L AS BA) (01005) 43.0	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06
OCT 03 NOV 28 JAN 06 MAR 01 16	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 E.005	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .55 .50	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .007 .014	PHORUS DIS- SOLVED (MG/L AS P) (00666) .007 .017	PHORUS TOTAL (MG/L AS P) (00665) .155 .139	MENT, SUS- PENDED (MG/L) (80154) 247 218	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 24100 16200	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 19 14	DIS- SOLVED (UG/L AS AS) (01000) 2.5 E1.2	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3	DIS- SOLVED (UG/L AS BA) (01005) 43.0	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 E.005 .010 .009	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .195 .245	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .55 .50 .60 .73	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .007 .014 .027 .037	PHORUS DIS- SOLVED (MG/L AS P) (00666) .007 .017 .030 .043	PHORUS TOTAL (MG/L AS P) (00665) .155 .139 .094 .093	MENT, SUS- PENDED (MG/L) (80154) 247 218 143 96 1260	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 24100 16200 7220 4150	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 19 14 18 33	DIS- SOLVED (UG/L AS AS) (01000) 2.5 E1.2 2.0 2.0	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 	DIS- SOLVED (UG/L AS BA) (01005) 43.0 	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24 MAY 07 22	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 E.005 .010 .009 .027 .050	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .195 .245 .836 .446	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .55 .50 .60 .73 3.7 2.7	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .007 .014 .027 .037 .074 .123	PHORUS DIS- SOLVED (MG/L AS P) (00666) .007 .017 .030 .043 .103 .145	PHORUS TOTAL (MG/L AS P) (00665) .155 .139 .094 .093 1.46 .928	MENT, SUS- PENDED (MG/L) (80154) 247 218 143 96 1260 896	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 24100 16200 7220 4150 87100 103000	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 19 14 18 33 94 70	DIS- SOLVED (UG/L AS AS) (01000) 2.5 E1.2 2.0 2.0 2.3 2.5	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 	DIS- SOLVED (UG/L AS BA) (01005) 43.0 	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24 MAY 07 22 JUN 05 15	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 E.005 .010 .009 .027 .050 .042 .041	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .195 .245 .836 .446 .073 .084	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .55 .50 .60 .73 3.7 2.7 2.0 1.8	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .007 .014 .027 .037 .074 .123 .183 .151	PHORUS DIS- SOLVED (MG/L AS P) (00666) .007 .017 .030 .043 .103 .145 .204 .175	PHORUS TOTAL (MG/L AS P) (00665) .155 .139 .094 .093 1.46 .928 .769 .643	MENT, SUS- PENDED (MG/L) (80154) 247 218 143 96 1260 896 675 598 328 275	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 24100 16200 7220 4150 87100 103000 81100 93200	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 19 14 18 33 94 70 64 70	DIS- SOLVED (UG/L AS AS) (01000) 2.5 E1.2 2.0 2.0 2.3 2.5 3.3 3.3	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 	DIS- SOLVED (UG/L AS BA) (01005) 43.0 	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24 MAY 07 22 JUN 05	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 E.005 .010 .009 .027 .050 .042 .041 .021 .017	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .195 .245 .836 .446 .073 .084 .044 E.034	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .55 .50 .60 .73 3.7 2.7 2.0 1.8 1.2 .90	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .007 .014 .027 .037 .074 .123 .183 .151 .120 .088	PHORUS DIS- SOLVED (MG/L AS P) (00666) .007 .017 .030 .043 .103 .145 .204 .175 .137 .103	PHORUS TOTAL (MG/L AS P) (00665) .155 .139 .094 .093 1.46 .928 .769 .643 .389 .294	MENT, SUS- PENDED (MG/L) (80154) 247 218 143 96 1260 896 675 598 328 275	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 24100 16200 7220 4150 87100 103000 81100 93200 33600 25400	SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331) 19 14 18 33 94 70 64 70 74 55	DIS- SOLVED (UG/L AS AS) (01000) 2.5 E1.2 2.0 2.0 2.3 2.5 3.3 3.3 4.1 3.1	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 	DIS- SOLVED (UG/L AS BA) (01005) 43.0 	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24 MAY 07 22 JUN 05 15 JUL 10	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.010 E.005 .010 .027 .050 .042 .041 .021 .017 .059	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.020 .078 .195 .245 .836 .446 .073 .084 .044 E.034 .105	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) .55 .50 .60 .73 3.7 2.7 2.0 1.8 1.2 .90 7.7	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .007 .014 .027 .037 .074 .123 .183 .151 .120 .088 .100	PHORUS DIS- SOLVED (MG/L AS P) (00666) .007 .017 .030 .043 .103 .145 .204 .175 .137 .103 .112	PHORUS TOTAL (MG/L AS P) (00665) .155 .139 .094 .093 1.46 .928 .769 .643 .389 .294 3.44	MENT, SUS- PENDED (MG/L) (80154) 247 218 143 96 1260 896 675 598 328 275 3850	MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155) 24100 16200 7220 4150 87100 103000 81100 93200 33600 25400 503000	SUSP. SIEVE DIAM. & FINER THAN (70331) 19 14 18 33 94 70 64 70 74 55 96	DIS- SOLVED (UG/L AS AS) (01000) 2.5 E1.2 2.0 2.0 2.3 2.5 3.3 3.3 4.1 3.1 3.2	INUM, DIS- SOLVED (UG/L AS AL) (01106) 3 -	DIS- SOLVED (UG/L AS BA) (01005) 43.0 	LIUM, DIS- SOLVED (UG/L AS BE) (01010) <.06

٠

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)
OCT													
03	E.04	<.8	.19	2.0	<10	<.08	57.0	<1.0	3.7	2.12	3.0	<1.0	585
NOV				2.0	-10		5710	-210	517			-210	
28					<10		54.9				E1.4		600
JAN													
06					<10		52.2				2.3		616
MAR													
01					<10		53.4				2.6		616
16 APR					м		36.8				2.6		432
10					м		20.7				3.5		307
24					M		24.2				3.0		332
MAY							24.2				5.0		352
07					м		25.1				3.6		357
22					<10		39.9				3.3		439
JUN													
05					<10		35.4				2.9		509
15					<10		31.2				3.3		355
JUL 10					<10		50.6				3.6		519
AUG					<10		50.0				5.0		519
07					<10		47.1				4.6		556
21					<10		52.2				4.8		579
SEP													
05			~ -		<10		53.2				4.2		571
	VANA- DIUM, DIS- SOLVED	ZINC, DIS- SOLVED	URANIUM NATURAL DIS- SOLVED	DEETHYL ATRA- ZINE, WATER, DISS,	PH WATER WHOLE LAB (STAND-	NITRO- GEN, AM- MONIA + ORGANIC DIS.	CARBON, ORGANIC DIS- SOLVED	CARBON, ORGANIC PARTIC- ULATE TOTAL	ANTI- MONY, DIS- SOLVED	PROPA- CHLOR, WATER, DISS,	BUTYL- ATE, WATER, DISS,	SI- MAZINE, WATER, DISS,	PRO- METON, WATER, DISS,

DATE	DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS ZN) (01090)	DIS- SOLVED (UG/L AS U) (22703)	WATER, DISS, REC (UG/L) (04040)	LAB (STAND- ARD UNITS) (00403)	ORGANIC DIS. (MG/L AS N) (00623)	DIS- SOLVED (MG/L AS C) (00681)	ULATE TOTAL (MG/L AS C) (00689)	DIS- SOLVED (UG/L AS SB) (01095)	WATER, DISS, REC (UG/L) (04024)	WATER, DISS, REC (UG/L) (04028)	WATER, DISS, REC (UG/L) (04035)	WATER, DISS, REC (UG/L) (04037)
OCT													
03 NOV	<10.0	<1	3.96	E.007	8.3	.20	3.1	1.6	.43	<.010	<.002	<.011	E.003
28	<8.0			E.007	8.0	.32	3.3	1.7		<.010	<.002	<.011	E.004
JAN 06	3.0			E.005	8.1	.45	3.6	1.0		<.010	<.002	<.011	E.002
MAR													
01	3.5			E.007	8.1	.53	3.4	.4		<.010	<.002	<.011	E.004
16 APR	3.4			E.012	7.6	1.4	8.3	23		<.010	<.002	<.011	<.015
10	3.0			E.025	7.7	1.3	6.0	17		<.010	<.002	E.003	<.015
24	3.3			E.024	7.7	.78	6.2	14		<.010	<.002	<.011	E.002
MAY													
07	3.6			E.039	8.0	.70	6.3	E10		<.010	<.002	<.011	E.008
22	5.9			E.026	8.1	.58				<.010	<.002	E.004	E.008
JUN													
05	3.2			E.025	8.2	.38				<.010	<.002	E.003	E.006
15	4.3			E.059	7.9	.56				<.010	<.002	.014	E.006
JUL													
10	4.0			<.006	8.2	.40	4.4	6.0		<.010	<.002	E.003	E.005
AUG													
07	4.7			E.021	8.3	.38	4.1	5.0		<.010	<.002	<.011	E.004
21	4.0			E.011	8.5	.30	4.4	4.5		<.010	<.002	<.011	E.005
SEP													
05	3.5			E.015	8.4	E.29	<.30	3.5		<.010	<.002	<.011	E.005

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	FONOFOS WATER DISS REC (UG/L) (04095)	ALKA- LINITY WAT.DIS FET LAB CACO3 (MG/L) (29801)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	P,P' DDE DISSOLV (UG/L) (34653)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	LINDANE DIS- SOLVED (UG/L) (39341)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)	MALA- THION, DIS- SOLVED (UG/L) (39532)	PARA- THION, DIS- SOLVED (UG/L) (39542)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)
ост 03	<.018	<.003	167	<.005	<.003	<.005	<.004	<.005	E.006	<.027	<.007	<.005	.022
NOV 28	<.018	<.003	184	<.005	<.003	<.005	<.004	<.005	E.002	<.027	<.007	<.005	.014
J AN 06	<.018	<.003	209	<.005	<.003	<.005	<.004	<.005	E.003	<.027	<.007	<.005	.015
MAR 01 16	E.005 <.018	<.003 <.003	210 177	<.005 <.005	<.003 <.003	<.005 <.005	<.00 4 <.004	<.005 <.005	E.005 .052	<.027 <.027	<.007 <.007	<.005 <.005	.016 .033
APR 10 24 MAY	E.013 E.009	<.003 <.003	1 4 1 150	<.005 <.005	<.003 <.022	<.005 <.005	<.004 <.00 4	<.005 <.005	.470 .351	<.027 <.027	<.007 <.007	<.005 <.005	.059 .118
07 22	E.011 E.008	<.003 <.003	166 202	<.005 <.005	<.003 <.003	<.005 <.005	<.004 <.004	<.005 <.005	.597 .160	<.027 <.027	<.007 <.007	<.005 <.005	1.44 .344
JUN 05 15	E.007 E.014	<.003 <.003	20 4 153	<.005 <.005	<.003 <.003	<.005 .007	<.004 <.004	<.005 <.005	.100 .976	<.027 <.027	<.007 <.007	E.001 <.005	.258 4.3 8
JUL 10	E.009	<.003	189	<.005	<.003	<.005	<.004	<.005	.054	<.027	<.007	E.001	. 395
AUG 07 21 SEP	<.018 <.018	<.003 <.003	183 174	<.005 <.005	<.003 <.003	<.005 <.005	<.004 <.004	<.005 <.005	.027 .021	<.027 <.027	<.007 <.007	<.005 <.005	.125 .076
05	<.018	<.003	168	<.005	<.003	<.005	<.004	<.005	.016	<.027	<.007	<.005	.092
DATE	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	TRI- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	PHORATE WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)
ост 03	CHLOR, WATER, DISS, REC, (UG/L)	CHLOR, WATER FLTRD REC (UG/L)	BUZIN SENCOR WATER DISSOLV (UG/L)	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L)	URON WATER FLTRD 0.7 U GF, REC (UG/L)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L)	WATER FLTRD 0.7 U GF, REC (UG/L)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L)
OCT 03 NOV 28	CHLOR, WATER, DISS, REC, (UG/L) (46342)	CHLOR, WATER FLTRD REC (UG/L) (49260)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661)	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	WATER FLTRD 0.7 U GF, REC (UG/L) (82664)	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)
OCT 03 NOV 28 JAN 06	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002	CHLOR, WATER FLITRD REC (UG/L) (49260)	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.009	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.011	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.034	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) E.003	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016
OCT 03 28 JAN 06 MAR 01 16	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002	CHLOR, WATER FLTRD REC (UG/L) (49260) .005 <.004	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.009 <.009	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035	PARA- THLON WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) E.003 <.002	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002	CHLOR, WATER FLTRD REC (UG/L) (49260) .005 <.004 .011 .008	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.009 <.009 <.009	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011	BACIL WATER FITRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034 <.034 <.034	URON WATER FLTRD 0.7 U (JGF, REC (UG/L) (82666) <.035 <.035 <.035	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) E.003 <.002 E.002 E.002	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016 <.016 E.001
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24 MAY 07 22	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002	CHLOR, WATER FLTRD REC (UG/L) (49260) .005 <.004 .011 .008 <.004 .050	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.009 <.009 <.009 <.009 <.009 <.009	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011	BACIL WATER FITRD 0.7 U (UG/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034 <.034	URON WATER FLTRD 0.7 U (JGF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006	WATER FLIRD 0.7 U GF, REC (UG/L) (82668) E.003 <.002 E.002 E.004 <.002 <.002	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016 E.001 <.016 <.016
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24 MAY 07 22 JUN 05 15	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	CHLOR, WATER FLTRD REC (UG/L) (49260) .005 <.004 .011 .008 <.004 .565 1.23	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 E.002 E.005	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	BACIL WATER FITRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034	URON WATER FLTRD 0.7 U (JGF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) E.003 <.002 E.002 E.002 E.004 <.002 C.002 E.002 E.002 C.002 E.002	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24 MAY 07 22 JUN 05	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.	CHLOR, WATER FLTRD REC (UG/L) (49260) .005 <.004 .011 .008 <.004 .565 1.23 E.176 .244	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.007 <.006	ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 E.002 E.005 <.009 E.003	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009	WATER FLIRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	BACIL WATER FITRD 0.7 U (UG/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034	URON WATER FLTRD 0.7 U (JGF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) E.003 <.002 E.002 E.002 E.002 <.002 E.002 C.002 E.002 C.002 E.002 C.002 E.002 C.002 E.002 C	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016 <.016 E.001 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016
OCT 03 NOV 28 JAN 06 MAR 01 16 APR 10 24 MAY 07 22 JUN 05 15 JUL 10	CHLOR, WATER, DISS, REC, (UG/L) (46342) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	CHLOR, WATER FLTRD REC (UG/L) (49260) .005 <.004 .011 .008 <.004 .565 1.23 E.176 .244 .420	BUZIN SENCOR WATER DISSOLV (UG/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.007 <.007 <.006 .021	ETHYL ANILLNE WAT FLT 0.7 U GF, REC (UG/L) (82660) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82661) <.009 <.009 <.009 <.009 <.009 <.009 E.002 E.005 <.009 E.003 .018	FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009	WATER FLTRD 0.7 U GF, REC (UG/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011 <.011	BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034	URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035	PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	WATER FLTRD 0.7 U GF, REC (UG/L) (82668) E.003 <.002 E.002 E.002 E.002 E.002 C.002 E.002 C	ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670) <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016 <.016

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	MOL- INATE WATER FLITRD 0.7 U GF, REC (UG/L) (82671)	ETHO- PROP WATER FLIRD 0.7 U GF, REC (UG/L) (82672)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG L) (82674)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	PRO- PANIL WATER FLTRD 0.7 U GF, REC (UG/L) (82679)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)
OCT													
03	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.003	<.010
NOV 28	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.003	<.010
JAN	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.005	<.010
06	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.003	<.010
MAR									011	0.41	<.005		<.010
01 16	<.002 <.002	<.005 <.005	<.010 <.010	<.020 <.020	<.017 <.017	<.004 <.004	<.021 <.021	<.002 <.002	<.011 <.011	<.041 <.041	<.005	<.003 <.003	<.010
APR	1.002	005		1.020	<.01/	<.004	1.021	<.002					
10	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	E.010	<.041	<.005	<.003	<.010
24 MAY	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	E.003	<.003	E.011
07	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.003	<.010
22	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.003	<.010
JUN 05	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.003	<.010
15	<.002	<.005	<.010	<.020 E.024	<.017	<.004 <.004	<.021	<.002	<.011	<.041	<.005	<.003	.051
JUL													
10	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.003	<.010
AUG 07	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	<.041	<.005	<.003	<.010
21	<.002	<.005	<.010	<.020	<.017	<.004	<.021	<.002	<.011	E.015	<.005	<.003	<.010
SEP													
05	<.002	<.005	<.010	<.020	<.017	E.003	<.021	<.002	<.011	<.041	<.005	<.003	<.010

DATE	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM) (90095)	DIAZ- INON D10 SRG WAT FLT 0.7 U GF, REC PERCENT (91063)	HCH ALPHA D6 SRG WAT FLT 0.7 U GF, REC PERCENT (91065)	BORON, DIS- SOLVED (UG/L AS B) (01020)
OCT								
03	<.007	<.023	<.050	<.006	806	112	106	125
NOV								
28	<.007	<.023	<.050	<.006	852	122	90	127
JAN								
06	<.007	<.023	<.050	<.006	886	91	78	134
MAR						100		101
01 16	<.007 <.007	<.023	<.050	<.006	857	120 122	111 97	121 96
APR	<.007	<.023	<.050	<.006	656	122	97	96
10	<.007	<.023	<.050	<.006	538	100	82	58
24	<.007	<.023	<.050	<.006	649	99	97	63
MAY				1.000	019			
07	<.007	<.023	<.050	<.006	669	111	89	67
22	<.007	<.023	<.050	<.006	831	89	73	105
JUN								
05	<.007	<.023	<.050	<.006	862	111	86	98
15	<.007	<.023	<.050	<.006	654	115	94	86
JUL								100
10 AUG	<.007	<.023	<.050	<.006	870	89	88	109
07	<.007	<.023	<.050	<.006	828	104	94	122
21	<.007	<.023	<.050	<.000	844	110	88	124
SEP				~.000	0.11	110	50	
05	<.007	<.023	<.050	<.006	851	101	92	123

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)
OCT										
03	1030	3		.0	25	95	99	100		
NOV										
07	1420	3		.0	25	94	98	99	99	100
28	1030	3		.0	16	82	97	99	99	100
JAN										
06	1200	3		.0	28	96	99	100		
MAR										
01	1140	3		.0	23	90	99	99	100	
APR										
10	1100	3	.0	1	35	92	99	100		
MAY										
04	1030	3	.0	1	26	90	99	100		
JUN										
01	1105	3		.0	19	79	91	96	99	100
JUL										
10	1030	3	.0	1	33	96	99	100		
AUG										
07	1100	3	.0	1	31	85	98	99	100	
SEP										
07	1015	3	.0	1	33	97	100			

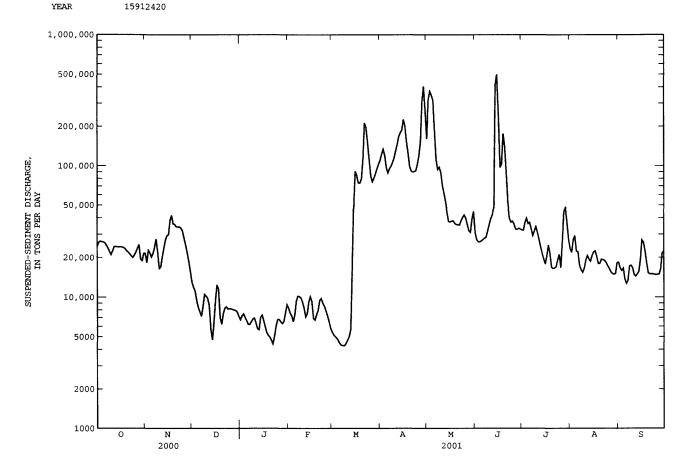
SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1						810		655	838		771	
2		808								816		
3	806				+							
4								622				789
5			846						848	821		799
6	801			850								
7		797				822		678			804	798
8									848			
9		799										
10	816			814			537			823		799
11								762				
12	809								838			
13							565			834		
14		814				771						
15								810	644		803	
16		807				667				793		
17	804						607				779	
18				816			~	836	681			788
19												
20	809				677		618			783		794
21		825				621					810	
22				826				835	752			
23										790	772	
24	810						638					
25								855	798			778
26						568				770		
27	800						651				798	
28		821										778
29								846	802	708		
30											805	
31	819											
MAX	819	825	846	850	677	822	651	855	848	834	810	799
MIN	800	797	846	814	677	568	537	622	644	708	771	778

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1						.5		17.5	17.0		28.5	
2		15.0								26.0		
3	17.5											
4												25.0
5	·		2.0						17.0	26.0		25.0
6	16.0			.5								
7		10.0				2.0		15.5			30.0	25.0
8									19.3			
9		7.0										
10	12.0			1.5			8.5			27.0		25.0
11								18.0				
12	12.5								24.0			
13							11.0			26.0		
14		4.0				5.0						
15							*	22.2	21.5		24.4	
16		2.0				2.5				26.0		
17	14.0						10.0				23.5	
18				1.0				22.0	22.5			18.5
19												
20	15.5				2.0		11.0			28.0		20.0
21		1.0				2.5					24.0	
22				1.0				18.0	23.0			
23										29.0	27.0	
24	15.5						11.0					
25								15.0	25.0			17.5
26						2.0				27.0		
27	17.0						13.0				26.5	
28		1.5										18.0
29								17.0	25.0	26.5		
30											26.5	
31	14.5											
MAX	17.5	15.0	2.0	1.5	2.0	5.0	13.0	22.2	25.0	29.0	30.0	25.0
MIN	12.0	1.0	2.0	.5	2.0	. 5	8.5	15.0	17.0	26.0	23.5	17.5


SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)										
	(110/12)	DAT ((1107 1)	DAI)	(110) []	DAI)	(110/11)	DAT /	(113/11)	DAI)	(1107 11)	DAT
	OCTO	BER	NOVEMB	ER	DECEMB	ER	JANUA	RY	FEBRUA	RY	MARC	H
1	255	24200	224	21500	238	13000	136	6720	201	8290	127	5460
2	269	26000	193	18300	228	11900	142	7190	189	7580	121	5180
3	270	26600	242	22700	218	11100	148	7450	177	7210	116	5010
4	266	26300	235	21700	202	9380	141	6990	166	6510	111	4880
5	262	26200	221	20200	186	8330	131	6610	181	7350	106	4670
6	256	25800	228	21400	175	7710	123	6190	209	9370	102	4470
7	245	24700	251	23900	166	7140	127	6200	227	10200	98	4310
8	233	23600	289	27600	194	8450	133	6510	227	10100	100	4290
9	221	22200	240	22000	223	10500	138	6820	227	9880	102	4270
10	212	21000	188	16500	219	10200	143	6930	216	9160	106	4430
11	229	22400	194	17000	213	9790	135	6360	200	8220	114	4730
12	247	24100	229	20300	190	8640	123	5750	185	7080	122	5040
13	249	24200	264	23500	150	5640	118	5650	182	7480	136	5720
14	248	24100	305	27200	141	4740	147	7010	204	9160	349	15900
15	248	24000	330	29200	167	6400	155	7300	227	10100	840	47200
16	247	24100	332	29800	206	9350	141	6610	215	9260	1330	90900
17	247	24000	412	38200	263	12400	128	5910	168	6870	1200	84300
18	244	23800	442	41800	258	11600	117	5340	155	6690	1040	73800
19	241	23400	380	36000	177	6960	115	5100	162	7360	982	73800
20	237	22500	368	35600	161	6210	115	4940	170	7920	944	79600
21	230	22000	356	34200	174	7470	115	4680	208	9430	1090	113000
22	221	21300	361	34100	184	8230	116	4400	225	9790	1790	213000
23	212	20600	362	34100	179	8420	129	5130	211	9030	1710	196000
24	205	20000	357	33400	172	8110	144	6070	197	8550	1450	150000
25	215	20900	347	31900	166	8160	159	6750	183	7900	1190	111000
26	231	22000	329	28200	162	8130	161	6760	168	7240	937	83500
27	247	23500	310	24900	160	8050	159	6490	154	6540	844	75400
28	262	25000	291	21800	159	7960	158	6300	140	5830	880	80400
29	204	19400	273	18800	158	7910	164	6560			936	86700
30 31	198	18900	255	15800	153	7670	184	7600			1000	95200
15	221	21500			144	7120	202	8770			1090	103000
TOTAL	L	718300		791600		266670		197090		230100		1835160

06610000 MISSOURI RIVER AT OMAHA, NE--Continued (National stream-quality accounting network station)

SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MEAN CONC TRAT (MG/	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)
	1	APRIL	MZ	ΑY	π	JNE	π	JLY	AUG	GUST	SEPTI	EMBER
1	1170	110000	987	161000	300	30800	367	32300	267	23300	227	18400
2	12 4 0	123000	1900	319000	281	27200	367	32200	255	21800	206	16600
3	1280	134000	2080	371000	284	26300	402	36800	320	27300	196	15900
4	1200	120000	2020	347000	286	26200	431	39800	342	29300	202	16600
5	1030	96600	1940	318000	289	26700	401	36100	265	22300	170	13700
6	920	88200	1090	186000	292	27300	410	36900	262	22100	158	12700
7	909	95000	720	112000	296	28000	376	33000	213	17400	161	13400
8	883	99300	653	93800	304	28300	338	29300	203	16100	204	17200
9	883	106000	721	97700	338	31400	355	31700	198	15400	205	17400
10	1010	115000	660	89000	376	35300	383	34300	212	16500	198	16700
11	1170	130000	513	70500	413	39100	354	31000	242	19000	176	14800
12	1190	145000	451	61600	444	41900	320	27400	263	20700	173	14400
13	1270	167000	401	53000	511	48300	287	24100	250	19500	181	15000
14	1370	179000	352	44100	3080	415000	262	21500	233	18700	188	15600
15	1330	187000	311	37500	3800	498000	239	19400	249	20600	228	19300
16	1430	226000	320	37200	2300	253000	220	17800	261	22000	308	27100
17	1230	203000	337	37800	921	97200	255	20600	264	22400	299	26000
18	960	155000	352	37900	867	103000	298	24800	247	20400	264	22400
19	838	126000	350	36200	1410	176000	260	21400	224	18000	227	18300
20	727	99400	346	35500	1200	141000	206	16800	227	18000	195	15300
21	717	91200	342	35500	817	88200	203	16500	243	19400	1 91	15000
22	732	89800	343	35200	510	52100	206	16600	242	19200	1 91	15000
23	7 4 6	90800	364	38100	415	39800	212	17000	237	19000	192	15000
24	761	91800	387	40300	399	37100	235	19200	226	18300	192	14900
25	776	103000	402	42100	410	37800	253	21100	214	17300	192	14800
26 27 28 29 30 31	791 914 1720 2180 1500	120000 152000 311000 404000 265000	380 353 326 319 398 435	39700 35500 31800 31000 39200 44800	3 94 370 366 37 4 371	35900 32800 32700 33300 32800	201 284 443 483 398 310	16700 26100 44200 48500 37300 27500	202 191 187 185 185 220	16500 15600 15100 14900 15100 18200	192 191 204 264 272	14900 14900 16400 21600 22300
TOTAL		4423100 15912420		2959000		2522500		857900		599400		511600

MISSOURI RIVER MAIN STEM

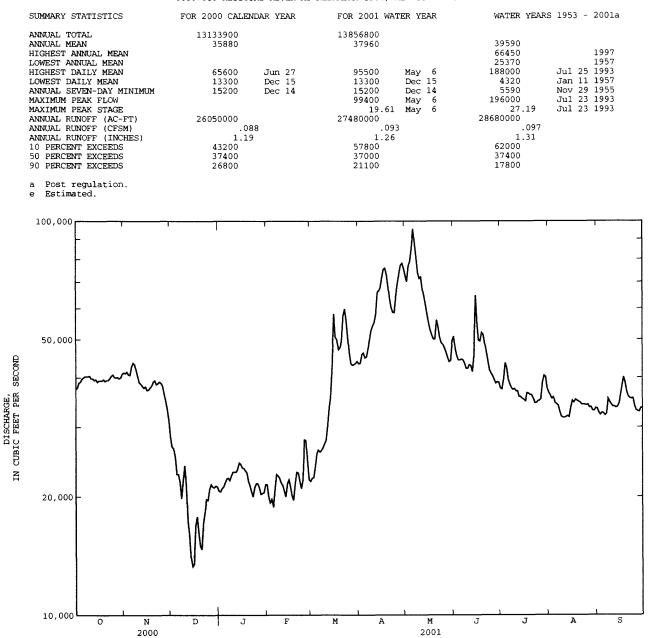
06807000 MISSOURI RIVER AT NEBRASKA CITY, NE

LOCATION.--Lat 40.40'55", long 95.50'48", in NW²/4 NE²/4 sec.9, T.8 N., R.14 E., Otoe County, Hydrologic Unit 10240001, on right bank 1.0 mi upstream from Highway 2 Bridge at Nebraska City, and at mile 562.6.

DRAINAGE AREA.--410,000 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1929 to current year. Gage-height records collected in this vicinity from August 1878 to December 1899 are contained in reports of Missouri River Commission.


REVISED RECORDS. -- WSP .761: Drainage area.

- GAGE.--Water-stage recorder. Datum of gage is 905.36 ft above sea level, supplementary adjustment of 1954. See WSP 1918 or 1919 for history of changes prior to Apr. 1, 1963.
- REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.
- EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 414,000 ft³/s Apr. 19, 1952; maximum gage height, 27.66 ft Apr. 18, 1952; minimum discharge, 1,600 ft³/s Dec. 31, 1946 (discharge measurement); minimum gage height observed, -0.28 ft Dec. 24, 1960, result of freezeup.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	37400 37700 38800 39000 39700	41200 41000 41400 40700 40600	28400 26800 26500 25100 22800	20700 20600 21000 21200 21700	21500 20000 19300 19700 18800	21900 22300 22400 23900 25800	43400 43500 45800 46200 44900	72800 70100 76800 79100 85500	50900 47300 45400 44300 44300	37600 37400 39600 43600 42300	36700 36100 35400 35700 34500	33400 32600 32200 32600 32500
6 7 8 9 10	40000 40300 40300 40300 40400	42600 43600 43200 41800 40300	22800 21800 19800 21900 24000	22200 22300 22000 22600 23100	20800 22800 22600 22300 21700	26300 26000 26200 26600 27200	45100 47300 49600 52600 54100	95500 87700 81000 74000 71500	44500 44300 43500 42200 42200	39600 38500 37700 37300 37500	34300 34000 32800 31900 31700	32100 32400 35400 34700 34200
11 12 13 14 15	39800 39800 39400 39600 39000	38900 38600 38100 37700 38000	21500 17400 e16000 e14000 e13300	23100 23100 23500 24400 24200	21400 20700 20000 21600 22100	27800 30300 33800 36100 43200	55200 57800 66000 66400 67500	72100 67100 64300 61200 57800	43100 42900 41400 45700 64700	37000 37000 35800 35800 35800 35400	31700 31800 32000 31800 33600	33800 33800 33600 33700 34400
16 17 18 19 20	39300 39300 39300 39600 39600 39200	37200 37300 37800 38200 39100	13500 16900 17800 16200 e15000	23700 23600 23300 23000 21900	21200 20100 19600 21600 23100	58100 50700 50000 47100 47700	71600 75300 75900 73200 68500	55000 52800 51300 50100 50100	55200 49700 49500 52000 51400	35200 34900 36600 36500 36200	35000 34600 35200 35000 34800	36000 38100 40100 38900 36900
21 22 23 2 4 25	39400 39400 39800 40400 40700	39400 38500 38700 39100 38800	14700 17200 18300 19700 19600	21300 20600 20000 21100 21600	23000 21900 21000 22100 27900	49400 57400 59800 56000 50700	63500 60300 58600 58500 64900	56100 53900 50700 49100 48600	48700 46400 43900 41800 41000	36200 35500 34500 34500 34900	34600 34200 34200 34200 34200 34100	35900 35500 35400 35500 33900
26 27 28 29 30 31	40100 40000 39800 40000 40900	38200 36500 34800 33200 31200	20900 21500 21200 21100 21300 21200	21600 21100 20300 20400 20500 21500	27800 24500 22100 	46200 43400 43000 43200 43500 44000	69100 73200 77200 78100 75800	47600 46400 45000 43900 44200 49600	40400 39500 38700 39000 38900	35000 35400 38900 40500 40200 37600	34200 33600 33700 33000 33000 33500	33100 32900 32800 33500 33400
TOTAL MEAN MAX MIN AC-FT CFSM	1228800 39640 40900 37400 2437000 .10	1165700 38860 43600 31200 2312000 .09	618200 19940 28400 13300 1226000 .05	681200 21970 24400 20000 1351000 .05	611200 21830 27900 18800 1212000 .05	1210000 39030 59800 21900 2400000 .10	1829100 60970 78100 43400 3628000 .15	1910900 61640 95500 43900 3790000 .15	1362800 45430 64700 38700 2703000 .11	1154700 37250 43600 34500 2290000 .09	1050900 33900 36700 31700 2084000 .08	1033300 34440 40100 32100 2050000 .08
IN. STATIS	.11 STICS OF	.11 MONTHLY N	.06 MEAN DATA	.06 FOR WATER	.06 YEARS 19	.11 53 - 2001	.17 , BY WATE	.17 R YEAR (W	.12 TY)	.10	.10	.09
MEAN MAX (WY) MIN (WY)	42980 76760 1998 22420 1962	39090 79410 1998 14380 1962	25640 52410 1987 10510 1956	21520 39970 1987 10160 1957	26640 48630 1983 12780 1957	38130 66730 1983 15310 1957	48110 98960 1997 21850 1957	47950 90280 1997 32470 1955	52530 117500 1984 33530 1958	46600 116700 1993 32760 1961	42840 71540 1996 29870 1955	42710 73410 1997 32560 1958

06807000 MISSOURI RIVER AT NEBRASKA CITY, NE--Continued

06807000 MISSOURT RIVER AT NEBRASKA CITY, NE.--Continued

WATER-QUALITY RECORDS

LOCATION. -- Water quality samples were collected from Highway 2 bridge, 2.0 miles downstream of gage.

PERIOD OF RECORD. -- May 1951 to current year. Daily sediment loads August 1957 to September 1971 in reports of U.S. Army Corps of Engineers.

PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: May 1951 to December 1977, October 1991 to current year. WATER TEMPERATURES: May 1951 to December 1977, October 1991 to current year.

SUSPENDED SEDIMENT DISCHARGE: October 1971 to September 1976, October 1991 to current year.

REMARKS .-- Records of specific conductance are obtained from suspended-sediment samples at time of analysis.

.

EXTREMES FOR PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: Maximum daily, 994 microsiemens Dec. 17, 1962; minimum daily, 273 microsiemens June 17, 1964. WATER TEMPERATURES: Maximum daily, 31.0°C July 26, 1977, and July 25, 1997; minimum daily, 0.0°C on many days during winter periods. SEDIMENT CONCENTRATIONS: Maximum daily mean, 8,420 mg/L Aug. 7, 1996; minimum daily mean, 115 mg/L Jan. 3, 1993. SEDIMENT LOADS: Maximum daily, 3,120,000 tons June 24, 1996; minimum daily, 4,050 tons Jan. 17, 1972.

EXTREMES FOR CURRENT YEAR.--SPECIFIC CONDUCTANCE: Maximum daily, 858 microsiemens Jan. 10; minimum daily, 570 microsiemens Apr. 13. WATER TEMPERATURES: Maximum daily, 30.0°C July 23; minimum daily, 1.0°C Dec. 7. SEDIMENT CONCENTRATIONS: Maximum daily mean, 2,190 mg/L Apr. 18 and May 6; minimum daily, 124 mg/L Feb. 17. SEDIMENT LOADS: Maximum daily, 566,000 tons May 6; minimum daily, 6,320 tons Dec. 15.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	NUMBER OF SAM- PLING POINTS (COUNT) (00063)	BED MAT. SIEVE DIAM. % FINER THAN .062 MM (80164)	BED MAT. SIEVE DIAM. % FINER THAN .125 MM (80165)	BED MAT. SIEVE DIAM. % FINER THAN .250 MM (80166)	BED MAT. SIEVE DIAM. % FINER THAN .500 MM (80167)	BED MAT. SIEVE DIAM. % FINER THAN 1.00 MM (80168)	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM (80169)	BED MAT. SIEVE DIAM. % FINER THAN 4.00 MM (80170)	BED MAT. SIEVE DIAM. % FINER THAN 8.00 MM (80171)	BED MAT. SIEVE DIAM. % FINER THAN 16.0 MM (80172)
OCT											
02 Nov	1135	3	.0	1	30	62	84	95	99	100	
07	1100	3		.0	14	39	66	90	98	100	
DEC 07	1430	3		.0	13	47	76	91	97	99	100
JAN	1400	2		.0	13	4)	70	71	57	,,,	100
16	1510	3		.0	17	62	77	89	96	100	
MAR 06	1535	3		.0	12	37	64	81	96	100	
APR	00.45					<u></u>		0.2	00	100	
13 MAY	0945	3		.0	24	67	82	93	99	100	
04	0900	3	.0	1	17	64	73	89	98	100	
JUN 01	0935	3		.0	17	52	68	81	95	100	
JUL	0,10	5		.0	17	52	00	01	25	100	
13	0955	3		.0	17	52	64	86	98	100	
AUG 08	1505	3		.0	12	58	72	81	94	99	100
SEP 05	1500	3		.0	18	57	82	93	98	100	

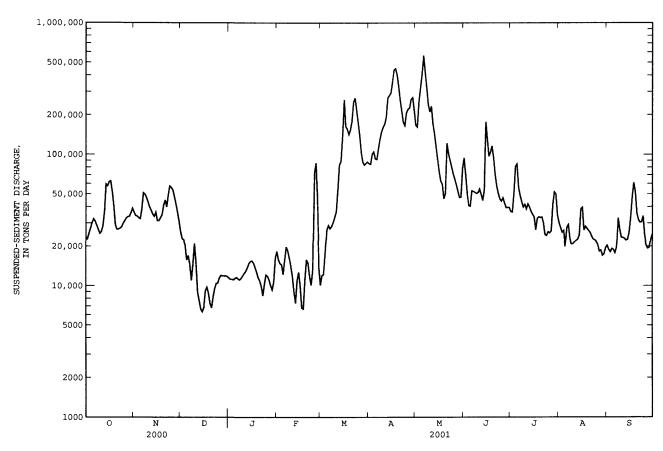
06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued

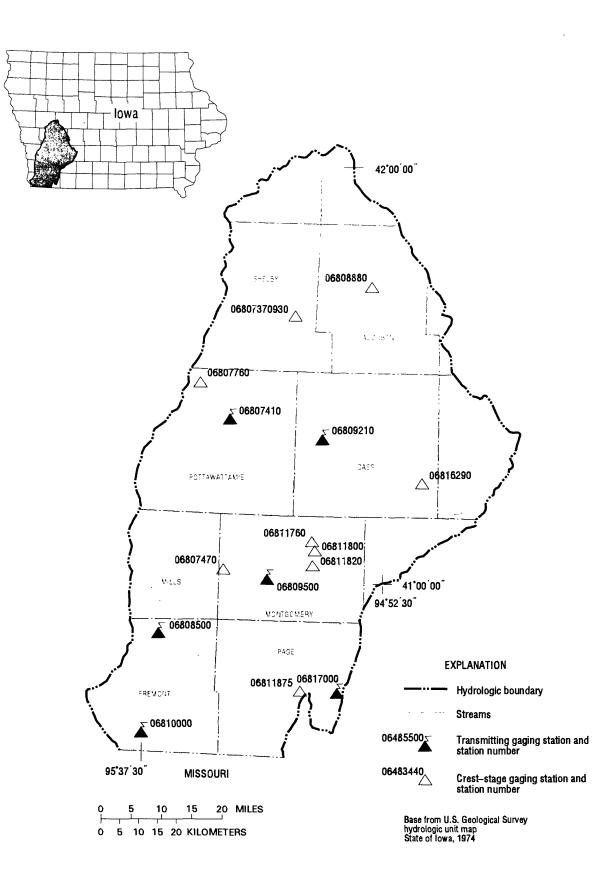
SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY INSTANTANEOUS VALUES

				_								
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								625	745			
2	821	773					632				769	
3										811		
4								639				
5										771		788
6	819				835	713		574	811			
7		761	833									798
8									816		797	
9		774										
10	813			858						844		789
11								674				
12	822								797			
13						672	570			835		
14		820									802	
15								767				
16		814		810								
17	817						619				788	
18								801	693	778		717
19												
20	812		~			578	620			770		711
21					803						722	
22									742			
23				827				778		784		
24	816											
25							631	807			735	
26					717	572			795	776		744
27	807						639					
28												774
29		823						812	800	747	762	
30											804	
31	822											

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY INSTANTANEOUS VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								17.5	17.0			
2	17.5	15.0					6.5				29.0	
3										26.0		
4								17.0				
5										26.5		
6	16.0				3.0	2.5		17.5	18.0			
7		10.0	1.0									25.0
8									20.0		27.5	
9		7.0										
10	12.0			1.5						28.0		23.0
11								19.0				
12	13.0								25.5			
13						2.5	12.0			26.5		
14		4.0									26.2	
15								24.9				
16		2.5		2.0								
17	14.0						10.0					
18								23.0	23.0	27.0		18.5
19												
20	15.5					3.5	12.0			27.0		20.0
21					2.0							
22									22.5			
23				1.5				18.0		30.0		
24	16.0											
25							12.0	15.0				
26					1.5	2.5			25.0	27.0		18.5
27	17.0						13.0					
28												18.0
29		2.0						18.0	26.0	27.5	26.0	
30											26.5	
31	14.5											


06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued


SUSPENDED-SEDIMENT,	WATER	YEAR	OCTOBER	2000	то	SEPTEMBER	2001

DAY	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN- TRATION (MG/L)	LOAD (TONS/ DAY)
	OCTO	BER	NOVEMB	ER	DECEMBE	R	JANUAF	RY	FEBRUAF	RΥ	MARC	н
1 2 3 4 5	232 223 239 261 283	23400 22700 25100 27500 30300	326 309 304 300 297	36300 34300 34000 33000 32500	334 316 313 298 254	25700 22800 22400 20300 15700	205 201 197 194 194	11500 11200 11200 11100 11400	316 292 283 272 240	18300 15800 14800 14500 12200	171 199 201 270 385	10100 12000 12200 17500 26800
6 7 8 9 10	299 285 266 247 230	32300 31000 28900 26900 25000	332 434 428 417 399	38300 51100 49900 47100 43400	276 247 205 244 323	17000 14600 11000 14500 21000	193 187 186 187 190	11600 11300 11100 11400 11900	27 9 322 301 271 241	15700 19800 18400 16300 14100	408 390 400 421 452	28900 27300 28300 30300 33200
11 12 13 14 15	240 265 343 556 549	25800 28500 36500 59500 57700	380 360 341 332 355	39900 37600 35100 33800 36400	254 190 178 175 176	14900 8920 7690 6620 6320	198 207 217 226 235	12400 12900 13700 14800 15300	203 160 136 188 212	11700 8920 7380 11000 12700	489 656 910 911 1130	36700 53900 83400 88800 136000
16 17 18 19 20	584 592 492 379 274	62000 62900 52100 40500 29100	312 312 323 338 389	31300 31400 33000 34800 41100	186 200 203 200 181	6800 9160 9750 8770 7330	242 233 219 205 193	15500 14900 13800 12700 11500	172 124 126 190 253	9880 6780 6660 11100 15800	1160 1120	260000 163000 156000 142000 154000
21 22 23 24 25	253 254 255 258 272	26900 27000 27400 28100 29900	423 383 470 546 535	45000 39800 49200 57600 56100	171 177 192 196 198	6780 8210 9510 10400 10500	189 178 156 180 207	10900 9880 8390 10300 12100	240 198 177 214 955	14900 11800 10100 13000 72300		179000 250000 268000 216000 174000
26 27 28 29 30 31	289 305 311 314 333 353	31300 32900 33600 33800 36000 38900	521 486 445 405 369	53700 47800 41900 36300 31100	204 207 209 208 207 207	11500 12000 11900 11900 11900 11900 11800	202 195 183 169 1 94 279	11800 11100 10000 9290 10700 16200	1150 660 230 	86300 44000 13800 	1110 887 756 715 730 740	138000 104000 87700 83400 85700 87900
TOTAL		1073500		1212800		387660		371860		528020		3174100
DAY	MEAN CONC TRAT (MG/	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS/ DAY)	MEAN CONCEN TRATIO (MG/L)	LOAD (TONS, DAY)		LOAD (TONS) DAY)	MEAN CONCE / TRATI (MG/L	LOAD (TONS/ DAY)	MEAN CONCE TRATI (MG/L	LOAD (TONS/ DAY)
	AP	RIL	М	AY		JUNE	Ċ	JULY	AU	JGUST		EMBER
1 2 3 4 5	728 719 817 840 766	85400 84500 101000 105000 92800	848 857 1210 1500 1750	167000 162000 251000 320000 408000	552 412 342 337	4090 4040	0 3 61 0 4 6 8 0 68 6	36800 36500 50500 80900 84700	285 266 274	30200 27800 25500 26400 19900	215 208 219	20300 18900 18100 19200 18900
6 7 8 9 10	754 871 976 1050 1110	91900 111000 131000 149000 161000	2190 1780 1470 1200 1090	566000 423000 323000 239000 211000	438 440 443	5300 5240 5160 5060 5130	0 468 0 430 0 395	5630(4870) 4380(3980) 4180(318 258 242	27700 29200 22800 20800 20900	224 343 288	17800 19600 32800 27000 23300
11 12 13 14 15	1140 1230 1510 1570 1610	170000 193000 270000 281000 294000	1190 946 830 698 589	232000 171000 144000 115000 92000	429 398 427	5470 4970 4470 5360 17700	0 422 0 411 0 382	38500 42100 39800 36900 35000) 257) 261) 283	21600 22100 22600 24300 38600	251 245 248	23300 22900 22200 22500 25400
16 17 18 19 20	1850 2160 2190 2030 1770	359000 439000 449000 402000 328000	501 441 430 341 371	74400 62900 59500 46100 50600	723 775 824	13100 9710 10400 11600 9490	0 283 0 330 0 3 39	33500 26700 32600 33500 33100) 28 4) 297) 289	39600 26500 28300 27300 26300	459 564 494	33300 47300 61100 51900 35700
21 22 23 24 25	1510 1310 1120 1050 1180	260000 213000 176000 166000 207000	803 703 660 606 546	122000 102000 90400 80400 71600	460 427 407	7050 5760 5060 4590 4420	0 313 0 263 0 258	33400 30000 24500 24100 25800	256 245 242	25400 23700 22600 22300 21700	317 320 354	31800 30400 30600 34000 24 4 00
						4680	0 267	2520	223	20600	220	20400
26 27 28 29 30 31	1180 1140 1260 1280 1050	221000 226000 263000 271000 215000	507 471 434 397 397 582	65300 59000 52800 47100 47400 78200	400 377 376 37 6	4080 4270 3940 3950 3950	0 273 0 394 0 474 0 461	26200 26200 41500 51900 50000 34700	0 202 0 205 0 191 0 197	18300 18700 17000 17500 19500	217 221 250 275	20400 19300 19500 22600 24800
27 28 29 30	1140 1260 1280 1050	226000 263000 271000 215000	471 434 397 397	59000 52800 47100 47400	400 377 376 376	4270 3940 3950 3950	0 273 0 394 0 474 0 461 - 342	26200 41500 51900 50000	202 205 191 197 215	18300 18700 17000 17500	217 221 250 275	19300 19500 22600 24800

•

06807000 MISSOURI RIVER AT NEBRASKA CITY, NE.--Continued

Gaging Stations

06807410	West Nishnabotna River at Hancock, IA
06808500	West Nishnabotna River at Randolph, IA
06809210	East Nishnabotna River near Atlantic, IA
06809500	East Nishnabotna River at Red Oak, IA
06810000	Nishnabotna River above Hamburg, IA
06813500	Missouri River at Rulo, NE (not plotted on map)
06817000	Nodaway River at Clarinda, IA

Crest Stage Gaging Stations

0680737930	Elm Creek near Jacksonville, IA	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	150
06807470	Indian Creek near Emerson, IA			•	•	•		•	•	•	•	•	•	•	•	•	•	150
06807760	Middle Silver Creek near Oakland, IA			•			•	•	•	•	•	•		•	•	•	•	150
06808880	Bluegrass Creek at Audubon, IA			•		•	•	•	•	•	•	•		•	•	•	•	150
06811760	Tarkio River near Elliott, IA				•	•	•	•	•	•	•	•	•	•	•	•	•	150
06811800	East Tarkio Creek near Stanton, IA .			•	•	•	•	•	•	•	•	•	•	•	•	•	•	150
06811820	Tarkio River Tributary near Stanton,	IA			•		•	•	•	•	•	•	•	•	•	•	•	151
06811875	Snake Creek near Yorktown, IA				•		•	•	•	•	•	•	•	•	•	•	•	151
06816290	West Nodaway River at Massena, IA		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	151

118

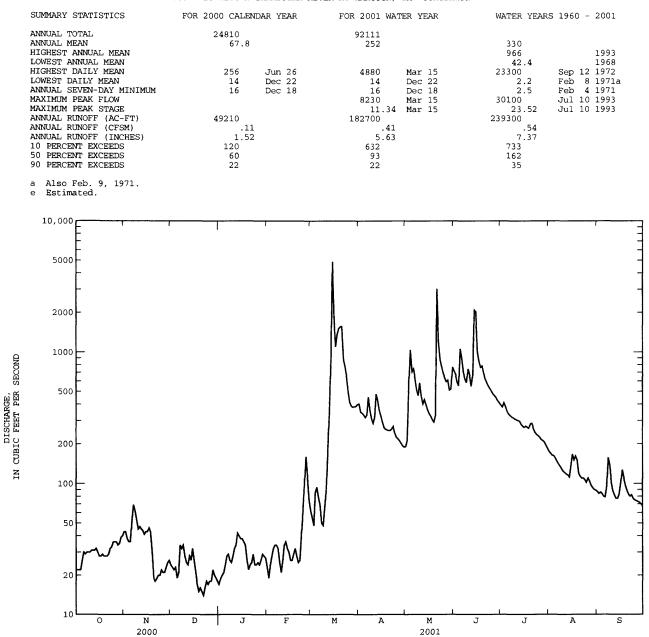
NISHNABOTNA RIVER BASIN

06807410 WEST NISHNABOTNA RIVER AT HANCOCK, IA

LOCATION.--Lat 41²3²4",long 95°22¹7",in NW¹/₄ NE¹/₄ sec.18, T.76 N., R.39 W., Pottawattamie County, Hydrologic Unit 10240002, on right bank at upstream side of bridge on county highway G30, 0.6 mi west of Hancock school, 3.0 mi downstream from Jim Creek, 59.6 mi upstream from confluence with East Nishnabotna River, and at mile 75.1 mi upstream from mouth of Nishnabotna River.

DRAINAGE AREA.--609 mi².

PERIOD OF RECORD. -- October 1959 to current year.


GAGE.--Water-stage recorder. Datum of gage is 1,085.83 ft above sea level. Prior to Sept. 15, 1980, on downstream end of right pier at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	22	43	e24	e17	e23	e62	403	191	716	394	176	87
2	22	43	e23	e19	e19	e55	349	212	677	381	170	84
3	22	38	e22	e20	e24	e48	342	583	591	411	164	86
4	22	36	e23	e21	e28	e86	331	1040	553	384	163	84
5	26	36	e19	e24	e32	e94	317	708	1060	353	156	80
6	30	53	e21	e28	e34	e79	332	747	892	337	148	79
7	29	69	e34	e29	e34	e69	454	629	697	328	141	94
8	30	62	e32	e26	e32	e50	358	517	626	319	136	157
9	30	53	e34	e25	e25	e48	310	466	584	315	130	138
10	30	45	e28	e28	e21	e66	286	582	743	308	124	102
11	31	47	e25	e32	e26	e89	319	461	669	304	121	88
12	31	45	e24	e34	e34	e180	479	402	547	300	118	82
13	31	44	e28	e42	e36	e360	426	435	660	297	116	77
14	32	41	e26	e40	e32	e900	360	397	2090	280	112	77
15	30	43	e32	e38	e30	4880	328	364	2020	272	137	83
16	28	43	e26	e38	e26	1800	294	340	1000	266	167	100
17	28	46	e21	e36	e26	1100	268	325	847	272	151	127
18	29	43	e17	e34	e29	1360	259	305	763	267	162	111
19	28	e30	e15	e26	e32	1510	255	292	783	262	151	97
20	28	e19	e16	e22	e28	1560	253	328	687	283	119	89
21	28	e18	e15	e24	e25	1570	252	3040	626	286	113	83
22	29	e19	e14	e25	e26	875	258	1190	586	262	110	80
23	32	e20	e16	e29	e40	773	271	876	552	245	110	82
24	33	e20	e18	e24	e63	646	242	770	527	236	107	77
25	36	e22	e17	e24	e100	502	225	691	504	231	102	75
26	36	e21	e18	e25	e160	414	219	637	478	225	110	74
27	36	e21	e18	e24	e110	388	212	594	465	216	105	73
28	34	e23	e22	e26	e75	379	203	611	448	212	97	72
29	35	e25	e20	e29		383	194	512	425	207	93	70
30	39	e26	e19	e28		386	189	523	412	196	90	68
31	40		e18	e27		399		767		186	89	
TOTAL	937	1094	685	864	1170	21111	8988	19535	22228	8835	3988	2676
MEAN	30.2	36.5	22.1	27.9	41.8	681	300	630	741	285	129	89.2
MAX	40	69	34	42	160	4880	479	3040	2090	411	176	157
MIN	22	18	14	17	19	48	189	191	412	186	89	68
AC-FT	1860	2170	1360	1710	2320	41870	17830	38750	44090	17520	7910	5310
CFSM	.05	.06	.04	.05	.07	1.12	.49	1.03	1.22	.47	.21	.15
IN.	.06	.07	.04	.05	.07	1.29	.55	1.19	1.36	.54	.24	.16
STATIST	TICS OF MO	ONTHLY MEA	AN DATA FO	OR WATER	YEARS 196	0 - 2001,	BY WATER	YEAR (WY	.)			
MEAN	193	182	156	123	276	526	432	508	607	425	245	293
MAX	998	910	628	625	993	1946	1295	1586	2228	2925	1073	2412
(WY)	1987	1973	1973	1973	1983	1979	1983	1973	1998	1993	1996	1972
MIN	30.2	32.1	17.9	4.58	27.2	40.3	45.6	30.1	26.7	38.4	26.4	14.7
(WY)	2001	1971	1971	1971	1967	1968	1968	1967	1977	1970	1968	1971

06807410 WEST NISHNABOTNA RIVER AT HANCOCK, IA--Continued

NISHNABOTNA RIVER BASIN

06808500 WEST NISHNABOTNA RIVER AT RANDOLPH, IA

LOCATION.--Lat 40 52'23", long 95"34'48", in NE¹/4 NE¹/4 sec.17, T.70 N., R.41 W., Fremont County, Hydrologic Unit 10240002, on right bank at upstream side of bridge on State Highway 184, 0.3 mi downstream from Deer Creek, 0.5 mi west of Randolph, and 16.0 mi upstream from confluence with East Nishnabotna River, and at mile 31.5 upstream from mouth of Nishnabotna River.

DRAINAGE AREA.--1,326 mi².

PERIOD OF RECORD. -- June 1948 to current year.

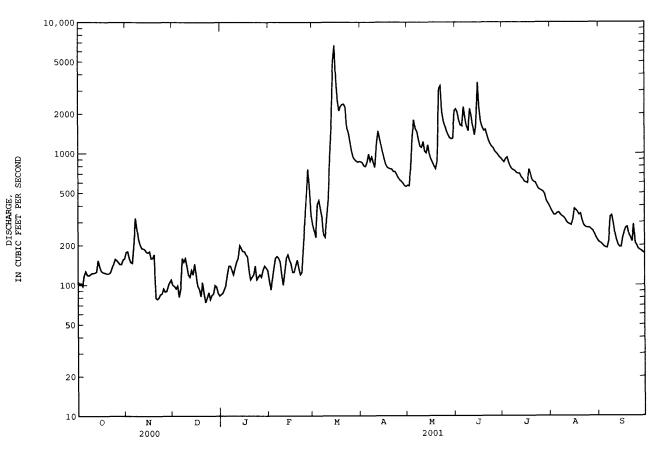
REVISED RECORDS.--WSP 1440: Drainage area. WDR IA-74-1: 1973 (M). WDR IA-76-1: 1975 (P).

GAGE.--Water-stage recorder. Datum of gage is 932.99 ft above sea level, unadjusted. Prior to Aug. 26, 1955, nonrecording gage with supplementary water-stage recorder operating above 8.4 ft. June 30, 1949 to Aug. 25, 1955 at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite data collection platform and rain gage at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of about 24 ft, discharge not determined, from information by local residents.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	106	178	e100	e85	e110	e290	865	574	2180	883	375	210
2								567	2050	858	357	207
	102	180	e98	e87	e92	e260	848					
3	103	160	e94	e93	e110	e230	803	762	1790	911	341	201
4	98	149	e99	e100	e135	e410	794	1350	1640	934	341	195
5	118	147	e81	e120	e160	e440	856	1800	1610	849	352	192
6	127	205	e95	e140	e165	e380	990	1540	2260	795	356	191
7	119	323	e160	e140	e160	e330	871	1460	1860	760	343	216
8	118	266	e150	e130	e150	e240	939	1270	1600	747	333	329
9	120	222	e160	e120	e120	e230	852	1130	1480	735	328	338
10	123	202	e140	e135	e100	e320	783	1110	2190	712	318	295
11	123	190	e120	e150	e125	e440	1190	1230	1930	704	302	246
12	124	189	e115	e160	e160	e950	1480	1040	1590	704	293	218
13	124	186	e110	e200	e170	e1700	1290	1040	1380	663	289	201
											285	194
14	154	178	e120	e190	e155	4950	1150	1160	1680	640		
15	138	176	e145	e180	e145	6680	1020	984	3480	609	311	194
16	128	e180	e120	e180	e125	3720	914	905	2230	605	380	230
17	125	159	e98	e170	e125	2550	827	854	1760	595	371	251
18	124	160	e93	e165	e140	2110	786	800	1580	759	359	271
19	123	171	e82	e130	e155	2290	772	763	1490	699	342	276
20	122	e80	e105	e110	e135	2360	763	878	1520	628	349	241
20	122	690	6100	erro	6122	2360	705	870	1320	020	747	241
21	122	e78	e86	e115	e120	2380	760	3110	1380	609	311	228
22	125	e80	e74	e120	e125	2250	727	3270	1260	602	286	213
23	136	e85	e80	e140	e200	1560	729	2080	1180	568	277	289
24	145	e86	e88	e110	e310	1440	694	1770	1130	538	273	208
25	158	e94	e78	e115	e500	1230	657	1610	1100	529	273	199
26	154	e89	e84	e120	e760	1050	627	1470	1040	521	270	188
27	149	e90	e86	e115	e520	941	613	1380	1010	512	263	184
28	149	e99	e100	e115 e130	e340	898	594	1310	977	489	203	181
28		e105	e100 e97	e130 e140				1290	939	438	240	176
	144					877	568					
30	156	e110	e87	e135		859	561	1300	917	418	227	173
31	159		e83	e130		868		2110		399	216	
TOTAL	4013	4617	3248	4155	5612	45233	25323	41887	48233	20413	9618	6735
MEAN	129	154	105	134	200	1459	844	1351	1608	658	310	224
MAX	159	323	160	200	760	6680	1480	3270	3480	934	380	338
MIN	98	78	74	85	92	230	561	567	917	399	216	173
AC-FT	7960	9160	6440	8240	11130	89720	50230	83080	95670	40490	19080	13360
CFSM	.10	.12	.08	.10	.15	1.10	.64	1.02	1.21	.50	.23	.17
												.17
IN.	.11	.13	.09	.12	.16	1.27	.71	1.18	1.35	.57	.27	. 19
STATIST	ICS OF M	NONTHLY ME	AN DATA F	OR WATER	YEARS 194	9 - 2001,	BY WATER	YEAR (WY)			
MEAN	383	354	304	270	544	964	816	1058	1269	892	597	530
MAX	2002	1277	1140	1201	1777	3877	2867	3227	5031	6357	2610	2531
(WY)	1987	1973	1973	1973	1973	1979	1973	1973	1998	1993	1993	1972
MIN	27.1	33.6	20.6	17.4	19.4	67.8	42.7	97.3	65.6	71.2	30.1	41.0
(WY)	1956	1956	1956	1956	19.4	1956	1956	1967	1956	1954	1955	1955
(** 1)	1910	1270	1900	1200	1200	1200	1200	1201	1270	1274	1977	1277

06808500 WEST NISHNABOTNA RIVER AT RANDOLPH, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEARS	1949 - 2001
ANNUAL TOTAL	98714		219087			
ANNUAL MEAN	270		600		665	
HIGHEST ANNUAL MEAN					1985	1993
LOWEST ANNUAL MEAN					111	1968
HIGHEST DAILY MEAN	3120	Jun 14	6680	Mar 15	25800	Jun 15 1998
LOWEST DAILY MEAN	74	Dec 22	74	Dec 22	10	Dec 17 1955a
ANNUAL SEVEN-DAY MINIMUM	82	Dec 21	82	Dec 21	11	Dec 16 1955
MAXIMUM PEAK FLOW			7430	Mar 15	40800	May 26 1987
MAXIMUM PEAK STAGE			16.81	Mar 15	24.80	Mar 5 1949b
INSTANTANEOUS LOW FLOW			68	Nov 20		
ANNUAL RUNOFF (AC-FT)	195800		434600		481900	
ANNUAL RUNOFF (CFSM)	.20		.45		.50	
ANNUAL RUNOFF (INCHES)	2.77		6.15		6.82	
10 PERCENT EXCEEDS	400		1500		1440	
50 PERCENT EXCEEDS	252		276		349	
90 PERCENT EXCEEDS	110		101		91	

a b e

Also Dec. 18-21, 1955. From graph based on gage readings, backwater from ice. Estimated.

NISHNABOTNA RIVER BASIN

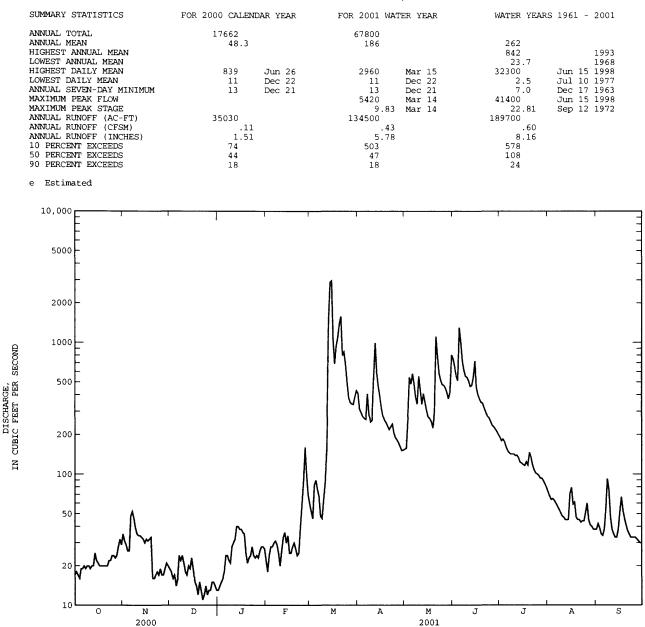
06809210 EAST NISHNABOTNA RIVER NEAR ATLANTIC, IA

LOCATION.--Lat 41 20'46", long 95'04'36", in NW¹/4 NW¹/4 sec.35, T.76 N., R.37 W., Cass County, Hydrologic Unit 10240003, on left bank at downstream side of bridge on county highway, 1.6 mi upstream from Turkey Creek, 5.2 mi southwest of junction of U.S. Highway 6 and State Highway 83 in Atlantic, 69.1 mi upstream from confluence with West Nishnabotna River, and at mile 84.6 upstream from mouth of Nishnabotna River.

DRAINAGE AREA.--436 mi².

PERIOD OF RECORD. -- October 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,105.83 ft above sea level. Prior to Oct. 1, 1970, at site 2.2 mi upstream at datum 5.00 ft higher.


REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 2, 1958 reached a stage of 22.49 ft, from floodmark, discharge, 34,200 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					2		2020					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	17	35	e19	e13	e22	e60	410	155	750	191	73	38
2	18	31	e18	e14	e18	e52	312	157	653	179	68	42
3	17	29	e16	e14 e15	e24	e32 e46	293	273	556	184	64	39
4	16	26	e17	e16	e28	e83	274	543	512	176	65	35
5	19	26	e14	e18	e28	e90	265	483	1300	161	63	34
6	19	48	e16	e24	e30	e77	260	578	999	151	60	38
7	20	52	e24	e24	e31	e68	407	483	719	145	57	54
8	19	46	e22	e22	e29	e48	286	382	614	142	54	92
9	20	e39	e24	e21	e25	e46	249	340	553	142	51	76
10	20	e35	e21	e28	e20	e64	257	552	542	142	48	47
					020							
11	19	34	e18	e30	e26	e87	545	435	511	138	47	38
12	20	34	e17	e32	e33	e160	994	339	462	139	45	35
13	20	33	e20	e40	e36	e1400	588	408	470	133	45	33
14	25	32	e19	e40	e30	2880	464	353	541	123	45	33
15	22	30	e23	e38	e34	2960	389	305	724	121	71	38
16	21	32	e19	e38	e25	1050	320	272	453	118	79	52
17	20	31	e15	e36	e25	687	277	264	400	116	59	67
18	20	32	e14	e35	e28	941	257	249	373	124	61	53
19	20	33	e12	e25	e30	1100	246	224	351	117	47	46
20	20	e16	e15	e21	e27	1400	231	295	345	146	45	41
21	20	e16	e13	e23	e24	1580	218	1110	318	135	45	37
22	20	e17	e11	e24	e25	797	229	782	296	118	43	35
23	22	e18	e12	e28	e39	846	240	582	277	108	44	33
24	22	e17	e14	e24	e58	677	206	518	267	102	44	33
25	24							478	252	102	51	33
23	24	e19	e12	e23	e88	497	189	4/0	232	100	51	55
26	24	e17	e13	e24	e160	381	182	472	235	98	60	33
27	23	e17	e13	e23	e100	350	173	451	229	93	45	32
28	24	e19	e15	e26	e70	341	162	417	220	93	41	31
29	28	e21	e15	e28		338	151	373	211	89	40	30
30	32	e20	e14	e28		386	152	417	200	84	38	30
31	29		e13	e27		430		804		79	38	
TOTAL	660	855	508	808	1113	19922	9226	13494	14333	3987	1636	1258
MEAN	21.3	28.5	16.4	26.1	39.8	643	308	435	478	129	52.8	41.9
MAX	32	52	24	40	160	2960	994	1110	1300	191	79	92
MIN	16	16	11	13	18	46	151	155	200	79	38	30
AC-FT	1310	1700	1010	1600	2210	39520	18300	26770	28430	7910	3250	2500
CFSM	.05	.07	.04	.06	.09	1.47	.71	1.00	1.10	.29	.12	.10
IN.	.06	.07	.04	.07	.09	1.70	.79	1.15	1.22	.34	.14	.11
					,	1.70	.,,,	2.20	1100			
STATIST	ICS OF M	ONTHLY MEA	N DATA F	OR WATER	YEARS 196	1 - 2001,	BY WATER	YEAR (WY)			
MEAN	141	135	110	90.9	203	411	375	422	518	351	177	210
MAX	1069	757	529	529	812	1378	1138	1208	3125	2747	1394	1855
(WY)	1987	1973	1993	1973	1971	1965	1973	1986	1998	1993	1993	1972
MIN	21.0	20.3	10.6	7.68	18.7	28.4	27.9	15.0	23.5	15.6	13.4	14.8
(WY)	1967	1969	1964	1971	1968	1968	1981	1967	1 9 77	1968	1968	1971

06809210 EAST NISHNABOTNA RIVER NEAR ATLANTIC, IA--Continued

NISHNABOTNA RIVER BASIN

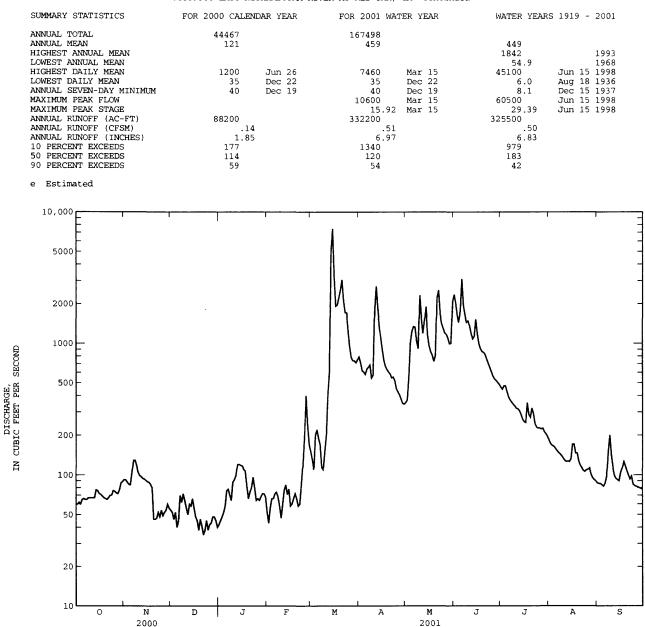
06809500 EAST NISHNABOTNA RIVER AT RED OAK, IA

LOCATION.--Lat 41 00'31", long 95⁻14'29", in NW¹/₄ SE¹/₄ sec.29, T.72 N., R.38 W., Montgomery County, Hydrologic Unit 10240003, on upstream side of Coolbaugh Street and 200 ft left of left end of Coolbaugh Street bridge in Red Oak, 0.2 mi upstream from Red Oak Creek, 38.0 mi upstream from confluence with West Nishnabotna River, and at mile 53.6 upstream from mouth of Nishnabotna River.

DRAINAGE AREA.--894 mi².

PERIOD OF RECORD.--May 1918 to November 1924, February 1925 to July 1925, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1310.

REVISED RECORDS.--WSP 1240: 1921, 1922-23 (M), 1924, 1942 (M), 1944 (M), 1946. WSP 1440: Drainage area. WSP 1710: 1957.


GAGE.--Water-stage recorder. Datum of gage is 1,005.45 ft above sea level. Prior to July 5, 1925, nonrecording gage at present site at datum 4.60 ft higher. May 29, 1936 to Nov. 13, 1952, nonrecording gage with supplementary water-stage recorder in operation above 3.2 ft gage height. July 30, 1939 to Nov. 13, 1952, and Nov. 14, 1952 to June 13, 1966, water-stage recorder, all at site 0.5 mi upstream at datum 5.00 ft higher. June 14, 1966 to Sept. 30, 1969, at present site at datum 5.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	59	92	e54	e42	e52	e150	789	355	2350	465	183	87
2	60	92	e52	e45	e43	e130	711	370	2030	447	172	86
3	62	88	e46	e48	e56	e110	618	558	1630	474	167	86
4	60	85	e52	e52	e66	e200	605	1010	1440	474	165	84
5	65	84	e40	e58	e66	e220	580	1230	1800	429	159	82
6	66	103	e 4 5	e76	e72	e190	637	1340	3090	390	153	86
7	65	129	e70	e78	e74	e170	657	1330	1940	370	148	97
8	65	129	e62	e70	e68	e115	685	1040	1640	356	144	e150
9	67	117	e72	e64	e58	e110	544	909	1440	343	140	e200
10	67	105	e64	e88	e47	e150	570	2320	1480	333	134	141
11	67	99	e56	e92	e60	e200	1780	1580	1360	320	129	114
12	67	97	e50	e99	e77	e400	2720	1190	1190	317	126	99
13	67	94	e60	e120	e84	e600	1850	1480	1080	306	127	94
14	77	93	e58	e120	e71	5020	1340	1900	1130	287	126	92
15	76	91	e66	e118	e78	7460	1110	1160	1520	264	132	90
16	72	89	e56	e117	e58	3240	899	959	1190	253	171	104
17	71	88	e48	e110	e60	1920	744	861	991	249	171	113
18	69	85	e45	e107	e66	1960	667	813	911	353	146	126
19	67	e80	e38	e82	e72	2220	631	727	865	286	146	116
20	66	e46	e46	e66	e66	2550	604	805	854	273	127	108
21	65	e46	e41	e74	e58	3050	585	2230	823	321	e118	100
22	67	e47	e35	e80	e60	2110	545	2540	756	291	e113	93
23	70	e52	e38	e96	e84	1710	553	1660	703	244	e108	98
24	70	e48	e45	e80	e120	1710	521	1410	653	230	106	85
25	e76	e54	e38	e64	e200	1240	453	1300	606	226	109	83
26	e75	e49	e42	e66	e400	940	427	1200	560	227	110	82
27	73	e52	e43	e64	e240	782	406	1170	535	223	113	81
28	72	e54	e48	e68	e170	737	377	1100	521	226	101	80
29	77	e60	e48	e72		736	349	992	504	212	95	79
30	87	e56	e45	e72		711	344	1000	487	205	92	78
31	89		e40	e68		749		2080		195	90	
TOTAL	2156	2404	1543	2456	2626	41590	23301	38619	36079	9589	4121	3014
MEAN	69.5	80.1	49.8	79.2	93.8	1342	777	1246	1203	309	133	100
MAX	89	129	72	120	400	7460	2720	2540	3090	474	183	200
MIN	59	46	35	42	43	110	344	355	487	195	90	78
AC-FT	4280	4770	3060	4870	5210	82490	46220	76600	71560	19020	8170	5980
CFSM	.08	.09	.06	.09	.10	1.50	.87	1.39	1.35	.35	.15	.11
IN.	.09	.10	.06	.10	.11	1.73	.97	1.61	1.50	.40	.17	.13
STATIST	FICS OF M	ONTHLY MEA	AN DATA F	OR WATER	YEARS 191	9 - 2001,	BY WATER	YEAR (WY)			
MEAN	227	215	170	158	366	685	587	727	919	572	359	358
MAX	1816	1335	1038	1078	1438	2596	2194	2538	5330	6971	2821	3074
(WY)	1987	1973	1993	1973	1973	1965	1973	1999	1998	1993	1993	1972
MIN	16.5	19.9	14.6	12.3	17.2	32.3	30.4	35.2	40.5	24.5	17.0	14.9
(WY)	1938	1940	1938	1940	1940	1938	1956	1939	1968	1936	1936	1937

06809500 EAST NISHNABOTNA RIVER AT RED OAK, IA--Continued

NISHNABOTNA RIVER BASIN

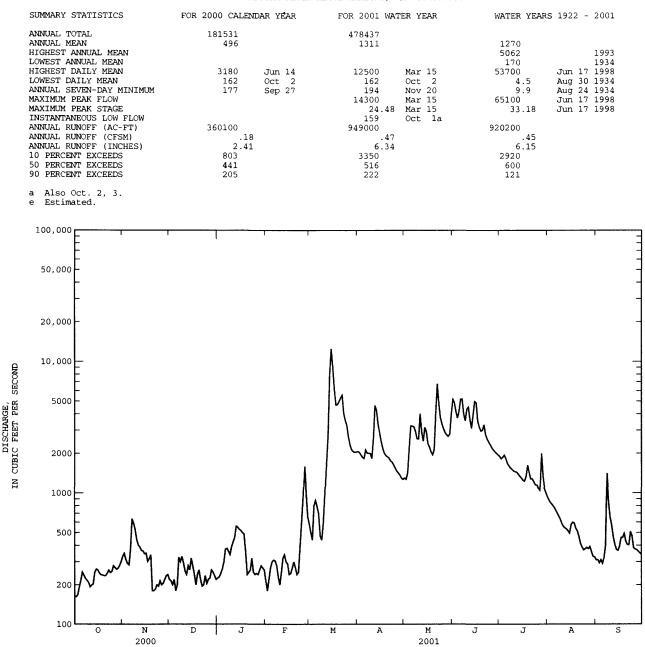
06810000 NISHNABOTNA RIVER ABOVE HAMBURG, IA

LOCATION.--Lat 40°37'57", long 95'37'32", in SW¹/4 SE¹/4 sec.11, T.67 N., R.42 W., Fremont County, Hydrologic Unit 10240004, on left bank 1.7 mi downstream from confluence of East Nishnabotna and West Nishnabotna Rivers, 2 mi northeast of Hamburg, and at mile 13.8.

DRAINAGE AREA.--2,806 mi².

PERIOD OF RECORD.--March 1922 to September 1923, October 1928 to current year. Monthly discharge only for some periods published in WSP 1310.

REVISED RECORDS.--WSP 1240: 1923, 1929-37, 1938-40 (M), 1943 (M). WSP 1440: Drainage area. WDR IA-74-1: 1973.


GAGE.--Water-stage recorder. Datum of gage is 894.17 ft above sea level. See WSP 1730 for history of changes prior to Nov. 16, 1950.

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	164	331	e220	e225	e215	e580	2070	1300	5150	1900	926	310
2	162	348	e215	e230	e180	e500	2040	1270	4870	1820	878	312
3	168	312	e200	e245	e220	e440	1950	1430	4180	1820	841	294
4	192	291	e200	e265	e220	e800	1870	2220	3720	1940	813	311
5	216	284	e180	e300	e300	e800	1830	3240	4170	1830	785	291
	210	204	6100	6300	6300	6000	1000	5240	41/0	1000	705	271
6	250	371	e200	e375	e310	e790	2130	3230	5170	1680	748	320
7	237	638	e325	e380	e305	e700	2010	3190	5190	1610	709	395
8	224	589	e300	e360	e280	e 4 70	2010	2950	4000	1550	671	1410
9	217	529	e330	e340	e230	e440	2000	2590	3540	1510	637	852
10	209	443	e295	e390	e200	e590	1830	2580	4350	1470	588	651
11	193	403	e255	e425	e250	e1000	2600	4010	4500	1450	558	567
12	199	388	e240	e460	e320	e1700	4640	2900	3620	1440	543	464
13	203	366	e280	e560	e340	e2800	4280	2480	3110	1390	534	407
14	250	363	e260	e550	e300	e8000	3350	3160	3910	1340	516	372
15	264	345	e320	e530	e290	12500	2890	2930	4970	1300	495	365
16	260	349	e280	e520	e240	9050	2490	2370	4860	1250	575	392
17	246	302	e240	e500	e240	6160	2200	2230	3510	1230	599	459
18	239	317	e240	e490	e245	4670	2020	2050	3180	1340	591	458
18	239	339	e200 e240	e360		4670		1950	2960	1630	538	493
20	238	e180			e300		1930		3000		515	493
20	235	e180	e260	e240	e270	4970	1890	2140	3000	1430	212	450
21	235	e180	e220	e250	e240	5300	1850	4050	3310	1280	466	405
22	245	e185	e195	e260	e250	5560	1760	6780	2790	1280	414	403
23	259	e200	e200	e320	e390	4050	1720	4750	2580	1220	388	509
24	248	e195	e235	e250	e600	3570	1640	3740	2440	1150	369	473
25	253	e215	e205	e240	e940	3270	1550	3350	2330	1150	377	383
26	280	e200	e220	e2 4 5	e1600	2670	1470	3090	2210	1090	386	374
27	271	e205	e225	e240	e1000	2330	1420	2880	2130	1050	377	371
28	263	e220	e260	e260	e660	2140	1370	2770	2060	2000	392	360
29	268	e235	e250	e280		2070	1300	2700	2000	1320	357	350
30	282	e240	e235	e270		2040	1270	2810	1950	1070	329	342
31	302		e220	e260		2050		4000		997	327	
TOTAL	7272	9563	7525	10620	11015	96810	63380	91140	105760	44587	17242	13523
MEAN	235	319	243	343	393	3123	2113	2940	3525	1438	556	451
MAX	302	638	330	560	1600	12500	4640	6780	5190	2000	926	1410
MIN	162	180	180	225	1800	440	1270	1270	1950	2000 997	327	291
MED	239	314	235	300	285	2140	1270	2880	3520	1390	538	394
AC-FT	14420	18970	14930	21060	285	192000	125700	180800	209800	88440	34200	26820
CFSM												
	.08	.11	.09	.12	.14	1.11	.75	1.05	1.26	.51	.20	.16
IN.	.10	.13	.10	.14	.15	1.28	.84	1.21	1.40	. 59	.23	.18
STATIS	FICS OF M	ONTHLY ME	an data i	FOR WATER	YEARS 19	22 - 2001,	BY WATER	RYEAR (W	Z)			
MEAN	674	674	562	562	1041	1840	1528	1919	2599	1701	1105	1002
MAX	5004	3083	2557	3585	4720	7229	5866	6621	16430	17780	6266	7385
(WY)	1987	1973	1973	1973	1973	1979	1973	1995	1947	1993	1993	1993
MIN	39.5	42.9	27.1	21.3	30.3	115	89.7	68.2	151	52.8	16.8	44.1
(WY)	1938	1938	1938	1940	1940	1931	1956	1934	1956	1936	1934	1937

06810000 NISHNABOTNA RIVER ABOVE HAMBURG, IA--Continued

MISSOURI RIVER MAIN STEM

06813500 MISSOURI RIVER AT RULO, NE

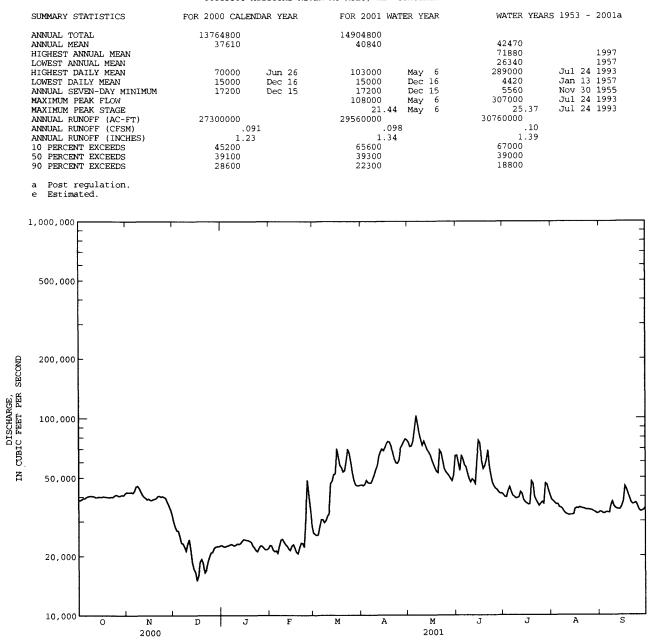
LOCATION.--Lat 40'03'13", long 95°25'19", in NW¹/4 NW¹/4 sec.17, T.1 N., R.18 E., Richardson County, Hydrologic Unit 10240005, on right bank at downstream side of bridge on U.S. Highway 159 at Rulo, 3.2 mi upstream from Big Nemaha River, and at mile 498.0.

DRAINAGE AREA.--414,900 mi², approximately. The 3,959 mi² in Great Divide basin are not included.

PERIOD OF RECORD.--October 1949 to current year in reports of U.S. Geological Survey. Gage- height record collected at site 80 ft upstream January 1886 to December 1899 published in reports of Missouri River Commission; September 1929 to September 1950 in files of Kansas City office of U.S. Army Corps of Engineers.

GAGE.--Water-stage recorder. Datum of gage is 837.23 ft above sea level. Oct. 1949 to Sept. 12, 1950, nonrecording gage at site 80 ft upstream and Sept. 13, 1950 to Apr. 19, 1983, recording gage on downstream end of middle pier, all at same datum.

REMARKS.--Records good, except those for estimated daily discharges, which are poor. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. U.S. Army Corps of Engineers satellite data collection platform at station.


EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 358,000 ft³/s Apr. 22, 1952, gage height, 25.60 ft; minimum daily discharge, 4,420 ft³/s Jan. 13, 1957; minimum gage height, -0.19 ft Dec. 25, 1990, result of freezeup.

EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in 1881 reached a stage of 22.9 ft, from floodmark, discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	38400	42200	e30000	22700	22 700	26200	46000	75800	64900	40900	38600	33500
2	38400	42100	28200	22400	22600	25800	45500	71800	5 9 500	39900	38000	33300
3 4	38800	42100	27000	22300	21500	25500	46300	72300	5 42 00	39800	37300	32800 32900
4	39300 39300	42200 41900	26800 25200	22500 22600	21100 21 3 00	25600 28200	48500 47200	76400 88300	65000 62000	42800 44800	36600 36600	32900
J	0000	41900	2 3 2 0 0	22000	21300	28200	4/200	88300	02000	44800	30000	33300
6	39900	43000	23300	22800	20700	30700	46900	103000	58000	42400	35300	33200
7	40200	45300	2 3 200	23000	22500	30700	47000	93100	56600	40500	35100	33100
8	40400	45400	2 2 300	22800	24200	29600	49200	8 39 00	52700	40000	34500	36100
9	40500	44300	21300	22600	24400	30300	51700	77800	49300	39200	33300	37700
10	40300	42600	23100	22800	23600	31900	55000	72 9 00	47400	39400	32700	35700
11	40300	41100	24300	23100	22900	32900	57600	76600	49100	39700	32400	35000
12	39800	40100	21600	23000	22500	46900	64500	73100	48200	42300	32200	34600
13	39800	39600	18600	23200	21800	48000	67900	69500	46500	41400	32300	34400
14	40100	38800	e17200	23800	21400	51900	69900	67300	61800	38500	32300	34500
15	40000	39200	e16500	24300	22500	52400	68500	65100	77 2 00	37500	32500	35800
16	40000	38600	e15000	2 42 00	22900	70300	71000	61500	74800	37000	34600	37800
17	40200	38500	16000	24100	22000	63300	74500	58600	60500	36500	35000	45100
18	40100	38900	18700	24000	20900	57800	76300	56000	55400	36600	34800	43500
19	40000	39100	19300	23800	20600	56300	75700	5 3 800	572 00	47900	35300	41300
20	39 9 00	39500	e18400	23500	22100	5 3 500	7 2 300	52 800	61400	46500	35000	39200
21	39800	40400	e16500	22500	23300	54400	66600	68900	68900	39900	34800	37200
22	40000	40500	17000	22100	23200	61000	62000	66700	57100	38300	34700	36600
23	39900	40000	18600	21400	22200	69900	59400	60800	51200	37100	34300	36800
24	40500	40300	19800	21100	31200	66300	59100	55400	47000	35900	34400	37200
25	41000	39900	20800	22000	48700	59700	61300	53400	45100	36800	34300	36000
26	40800	39500	20900	22600	41300	53000	70600	52300	44000	37600	34200	34300
27	40400	37800	21900	22500	35300	48500	73100	51000	43300	36800	34000	33600
28	40600	36300	22300	22000	28600	46100	76100	49500	42100	46800	33600	33800
29	409 00	34700	22400	21600		45500	78600	48100	41500	46100	33300	34100
30	40700	e32500	22400	21600		45500	77700	51400	41600	43000	32800	34900
31	41700		22600	21900		45800		64600		40700	33000	
TOTAL	1242000	1 2 06400	661200	704800	698000	1413500	1866000	2071700	1643500	1252600	1067800	1077300
MEAN	40060	40210	21330	22740	24930	45600	62200	66830	54780	40410	34450	35910
MAX	41700	45400	30000	24300	48700	70 3 00	78600	103000	77200	47900	38600	45100
MIN	38400	32500	15000	21100	20600	2 5500	45500	48100	41500	35900	32200	32800
	2464000	2393000	1311000	1398000	1384000	2804000	3701000	4109000	3260000	2485000	2118000	2137000
CFSM	.10	.10	.05	.05	.06	.11	.15	.16	.13	.10	.08	.09
IN.	.11	.11	.06	.06	.06	.13	.17	.19	.15	.11	.10	.10
STATI	STICS OF	MONTHLY N	TEAN DATA	FOR WATER	YEARS 19	53 - 2001	, BY WATE	R YEAR (W	Y)			
MEAN	44970	41190	27380	22850	28680	41470	51710	52220	57140	51160	45120	45290
MAX	80050	83880	57380	42280	53140	79590	106100	97280	130600	164800	78730	76410
(WY)	1998	1998	1998	1973	1997	1979	1997	1997	1984	1993	1996	1997
MIN	25580	17000	9953	10800	13220	15380	21820	33790	33710	33860	29820	34140
(WY)	1962	1962	1956	1957	1957	1957	1957	1956	1956	1963	1955	1991

06813500 MISSOURI RIVER AT RULO, NE--Continued

.

06817000 NODAWAY RIVER AT CLARINDA, IA

LOCATION.--Lat 40°44'19", long 95°00'47", in SW¹/4 NE¹/4 sec.32, T.69 N., R.36 W., Page County, Hydrologic Unit 10240009, near left abutment on downstream side of bridge on State Highway 2 (city route), 0.5 mi downstream from North Branch, 1.2 mi east of city square of Clarinda, and 7.5 mi upstream from East Nodaway River.

DRAINAGE AREA.--762 mi².

PERIOD OF RECORD.--May 1918 to July 1925, May 1936 to current year. Monthly discharge only for some periods, published in WSP 1310. No winter records 1918-1925.

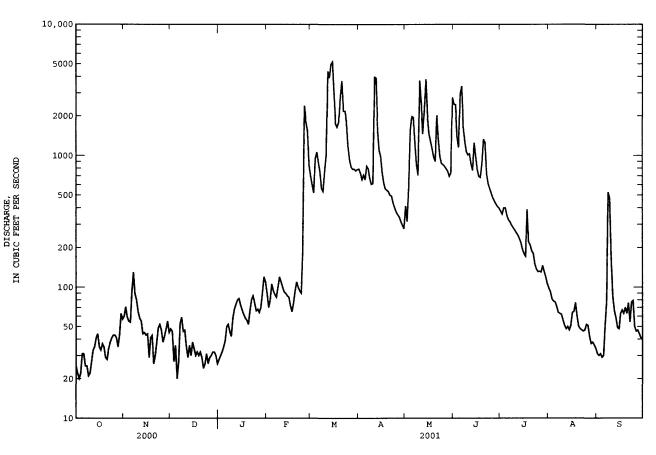
REVISED RECORDS.--WSP 1240: 1918-20 (M), 1921, 1922-25 (M), 1936-38, 1942, 1943-45 (M), 1948. WSP 1440: Drainage area. WSP 1710: 1958, 1959 (P).

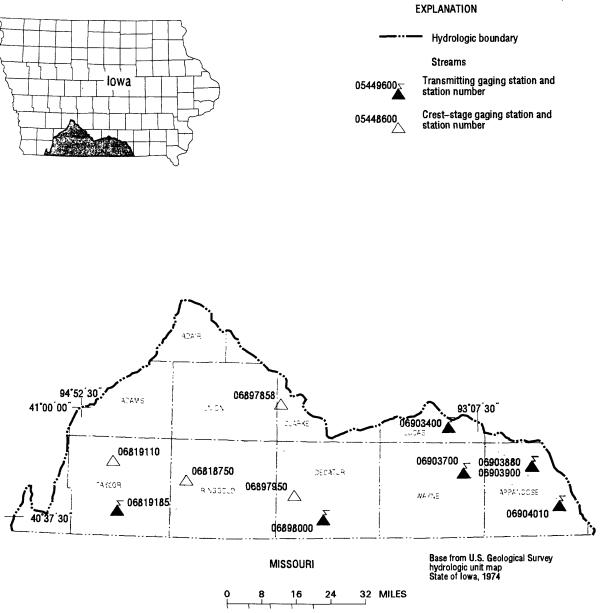
GAGE.--Water-stage recorder. Datum of gage is 955.36 ft above sea level. Prior to July 5, 1925, and May 28, 1936 to Mar. 26, 1957, nonrecording gage at same site, and prior to Oct. 1, 1987, at datum 5.00 ft. higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Clarinda municipal water supply is taken from Nodaway River, 500 ft upstream from station. Average daily pumpage was 1.47 ft³/s. U.S. Geological Survey and satellite data collection platform at station.

COOPERATION.--Average pumpage provided by City of Clarinda water works.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in August 1903 reached a stage of 25.4 ft, from floodmarks, discharge not determined.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES


DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	25	60	48	e28	e90	e700	791	414	2450	378	98	31
2	22	71	46	e30	e70	e600	734	316	2440	358	92	30
3	20	59	27	e32	e80	521	655	568	1400	401	81	31
4	22	55	36	e35	e106	950	711	1540	1150	401	78	29
5	31	54	e20	e39	e94	1060	654	1980	2960	352	77	30
6	31	92	27	e50	e88	889	831	1940	3380	325	71	50
7	25	130	53	e52	e84	755	792	1240	1670	314	64	78
8	25	89	59	e46	e100	562	668	843	1290	297	63	524
9	21	80	46	e42	e120	534	604	708	1070	284	62	473
10	22	65	47	e58	e110	757	613	3730	1010	273	56	164
11	27	58	35	e68	e100	1010	3960	2500	1030	260	51	85
12	33	55	29	e74	e92	4400	3900	1460	859	250	48	66
13	35	44	e36	e80	e90	3920	1600	2300	769	235	50	58
14	41	45	e30	e82	e86	4970	1100	3810	1250	219	47	49
15	44	43	e38	e73	e84	5190	987	2000	990	194	51	48
16	35	44	e34	e67	e72	2920	744	1460	783	180	64	63
17	33	29	e30	e62	e65	1740	620	1280	692	172	65	67
18	37	41	e32	e58	e76	1640	558	1120	680	391	76	63
19	35	43	e30	e56	e94	1790	546	967	867	221	60	70
20	29	e26	e32	e52	e110	2820	531	901	1330	210	50	63
21	28	e30	e29	e66	e100	3710	500	2020	1250	189	48	76
22	34	e38	e24	e80	e94	2180	493	1320	724	180	47	54
23	38	49	e26	e86	e90	2180	436	979	610	150	46	77
24	41	52	e31	e76	e200	1820	402	868	560	137	47	79
25	43	47	e26	e66	e2400	1180	372	854	515	131	52	50
26	43	38	e29	e68	e1800	931	356	825	476	132	51	46
27	41	e42	e30	e64	1550	819	341	795	452	130	42	47
28	35	48	e32	e70	841	787	315	758	428	146	37	44
29	43	55	e32	e90		789	295	695	410	131	38	41
30	63	45	e30	e120		765	279	739	398	119	36	40
31	57		e26	e110		784		2770		106	34	
TOTAL	1059	1627	1050	1980	8886	53673	25388	43700	33893	7266	1782	2626
MEAN	34.2	54.2	33.9	63.9	317	1731	846	1410	1130	234	57.5	87.5
MAX	63	130	59	120	2400	5190	3960	3810	3380	401	98	524
MIN	20	26	20	28	65	521	279	316	398	106	34	29
AC-FT	2100	3230	2080	3930	17630	106500	50360	86680	67230	14410	3530	5210
CFSM	.04	.07	.04	.08	.42	2.27	1.11	1.85	1.48	.31	.08	.11
IN.	.05	.08	.05	.10	.43	2.62	1.24	2.13	1.65	.35	.09	.13
STATIST	TCS OF M	NTHLY MEZ		OR WATTER			BY WATER					
MEAN	173	173	137	130	315	579	571	706	773	439	233	315
MAX	1658	1602	1090	853	1857	2456	2450	2489	4779	6778	1953	3019
(WY)	1974	1973	1993	1974	1973	1979	1973	19 96	1947	1993	1987	1972
MIN	7.52	8.27	2.10	6.00	11.3	14.0	14.4	10.3	20.0	17.3	9.81	6.83
(WY)	1938	1938	1924	1924	1940	1938	1956	1939	1968	1954	1936	1937

06817000 NODAWAY RIVER AT CLARINDA, IA--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	. 1	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1919 - 2001
ANNUAL TOTAL	34836			182930			
ANNUAL MEAN	95.2			501		385	
HIGHEST ANNUAL MEAN						1577	1993
LOWEST ANNUAL MEAN						36.8	1968
HIGHEST DAILY MEAN	2080	Jun 26		5190	Mar 15	25500	Sep 13 1972
LOWEST DAILY MEAN	20	Oct 3		20	Oct 3	1.0	Dec 9 1923a
ANNUAL SEVEN-DAY MINIMUM	25	Oct 3		25	Oct 3	1.3	Dec 25 1923
MAXIMUM PEAK FLOW				9120	May 10	31100	Jun 13 1947b
MAXIMUM PEAK STAGE				14.16	May 10	25.30	Jun 13 1947c
INSTANTANEOUS LOW FLOW				6.4	Dec 11		
ANNUAL RUNOFF (AC-FT)	69100			362800		278600	
ANNUAL RUNOFF (CFSM)	.12			.66		.50	
ANNUAL RUNOFF (INCHES)	1.70			8.93		6.86	
10 PERCENT EXCEEDS	159			1420		848	
50 PERCENT EXCEEDS	52			89		103	
90 PERCENT EXCEEDS	29			31		20	

Also Dec. 27-31, 1923. From rating curve extended above 15,000 ft³/s on basis of an overflow profile and extended channel rating. From floodmark. Estimated. a b c e

0 8 16 24 32 KILOMETERS

132

Gaging Stations

06819185	East Fork 102 River at Bedford, IA
06898000	Thompson River at Davis City, IA
06903400	Chariton River near Chariton, IA
06903700	South Fork Chariton River near Promise City, IA
06903880	Rathbun Lake near Rathbun, IA
06903900	Chariton River near Rathbun, IA
06904010	Chariton River near Moulton, IA

Crest Stage Gaging Stations

06818750	Platte River near Diagonal, IA
06819110	Middle Branch 102 River near Gravity, IA
06897858	Sevenmile Creek near Thayer, IA
06897950	Elk Creek near Decatur City, IA

PLATTE RIVER BASIN

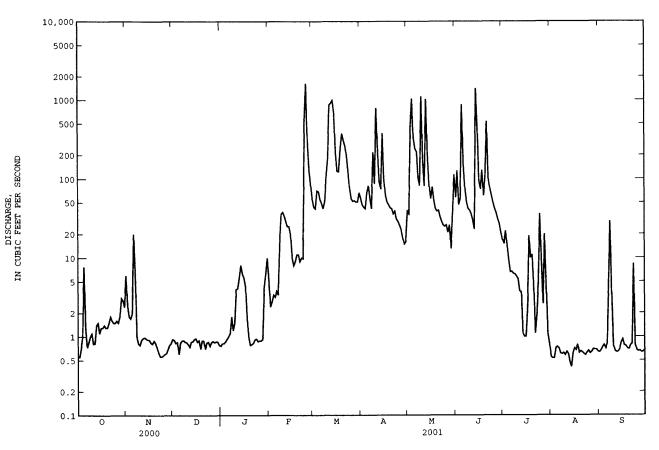
06819185 EAST FORK ONE HUNDRED AND TWO RIVER AT BEDFORD, IA

LOCATION.--Lat 40^{-39'38"}, long 94^{-42'59"}, in NE^{1/4} sec.35, T.68 N., R.34 W., Taylor County, Hydrologic Unit 10240013, on left bank at downstream side of bridge of county highway N44, 0.1 mi south of Bedford, 0.4 mi upstream from concrete stablization dam, and 3.0 mi upstream from Daugherty creek.

DRAINAGE AREA.--85.4 mi².

PERIOD OF RECORD.--October 1983 to current year. September 1959 to September 1983, at site 2 mi downstream published as "near Bedford" (station 06819190) not equivalent because of difference in drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,069.16 ft above sea level.


REMARKS.--Records are fair, except those for estimated daily discharges, which are poor. Slight regulation at low flow by low dam used for water supply in Bedford. U.S. Geolocial Survey satellite data collection platform and a U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	.55	6.0	.93	e.76	e5.4	55	57	39	58	17	.55	.63
2	.55	2.5	.91	.82	e2.4	44	47	36	127	15	.53	.67
3	.72	1.8	.83	.82	e2.8	42	44	406	47	22	.53	.73
4	1.0	1.7	.85	.86	3.4	71	42	1040	56	14	.71	.78
5	7.7	2.0	e.60	.93	3.2	69	68	325	875	9.3	.74	.70
6 7 8 9 10	1.3 .73 .84 1.0 1.1	20 6.5 1.0 .82 .78	.83 .89 .90 .86 .85	1.0 1.1 1.8 1.2 1.5	3.8 3.4 15 36 38	55 49 42 52 108	82 56 42 218 87	239 220 103 82 1110	156 77 51 42 40	6.6 6.7 6.3 5.8	.71 .61 .60 .62 .58	.81 4.6 29 3.4 .76
11	.81	.91	e.80	4.0	34	185	795	165	36	5.4	.64	.65
12	.82	.96	e.74	4.1	29	866	222	81	30	3.8	.60	.63
13	1.4	.98	.86	5.6	25	916	93	1030	23	3.7	.47	.64
14	1.5	.94	.87	8.1	25	994	74	202	1410	1.1	.41	.69
15	1.1	.92	.93	6.3	e20	700	381	85	488	1.0	.62	.84
16	1.3	.91	.95	5.6	e10	217	101	56	97	1.0	.71	.92
17	1.3	.84	.86	4.4	e8.0	125	62	79	74	2.4	.67	.77
18	1.4	.81	.90	1.7	e9.0	123	51	53	129	19	.79	.76
19	1.3	.89	e.70	e1.0	11	234	47	42	61	10	.62	.70
20	1.3	.83	.89	e.78	11	377	43	39	105	11	.65	.69
21	1.5	.71	.89	e.80	e9.0	309	42	40	536	4.5	.63	.77
22	1.8	.62	e.70	.83	10	261	36	33	104	1.1	.60	.81
23	1.6	.56	.84	.92	9.8	199	39	29	76	1.9	.58	8.4
24	1.5	.56	.86	.94	528	125	31	26	61	4.9	.63	.78
25	1.5	.58	e.76	.87	1630	75	29	25	50	36	.66	.67
26 27 28 29 30 31	1.6 1.5 1.8 3.1 2.9 2.4	.60 .62 .70 .78 .82	.85 .88 .85 .87 .86 e.78	.89 .89 .93 4.2 6.3 10	300 132 85 	56 52 53 51 51 67	26 23 18 15 16	26 21 26 13 38 113	42 37 31 27 21	9.3 2.6 20 4.5 1.1 .82	.61 .64 .69 .68 .68 .64	.65 .66 .63 .64 .67
TOTAL	48 .92	58.64	26.09	79.94	2999.2	6623	2887	5822	4967	254.02	19.40	64.05
MEAN	1.58	1.95	.84	2.58	107	214	96.2	188	166	8.19	.63	2.13
MAX	7.7	20	.95	10	1630	994	795	1110	1410	36	.79	29
MIN	.55	.56	.60	.76	2.4	42	15	13	21	.82	.41	.63
AC-FT	97	116	52	159	5950	13140	5730	11550	9850	504	.88	127
CFSM	.02	.02	.01	.03	1.25	2.50	1.13	2.20	1.94	.10	.01	.03
IN.	.02	.03	.01	.03	1.31	2.88	1.26	2.54	2.16	.11	.01	.03
STATIST	FICS OF M	IONTHLY ME	AN DATA P	OR WATER	YEARS 1984	i - 2001,	BY WATER	YEAR (WY)				
MEAN	23.4	29.3	26.5	11.1	44.6	81.0	101	150	112	114	22.2	49.2
MAX	159	202	181	50.2	149	276	289	488	255	889	173	260
(WY)	1987	1993	1993	1998	1997	1998	1984	1995	1995	1993	1987	1993
MIN	.26	.78	.47	.50	.17	2.13	.82	.67	1.90	1.97	.63	.31
(WY)	1992	1991	1989	1991	1989	1989	1989	1989	1988	1988	2001	1991

SUMMARY STATISTICS	FOR 2000 CALENDA	AR YEAR	FOR 2001 WAT	ER YEAR	WATER YEARS	1984 - 2001
ANNUAL TOTAL	3626.85		23849.26			
ANNUAL MEAN	9.91		65.3		63.8	
HIGHEST ANNUAL MEAN					200	1993
LOWEST ANNUAL MEAN					9.92	2000
HIGHEST DAILY MEAN	765	Jun 26	1630	Feb 25	7600	Jul 5 1993
LOWEST DAILY MEAN	.19	Sep 13	.41	Aug 14	.00	Jul 6 1989a
ANNUAL SEVEN-DAY MINIMUM	.27	Sep 11	.56	Aug 8	.00	Aug 3 1989
MAXIMUM PEAK FLOW		-	4390	May 10	9570	Jul 14 1986
MAXIMUM PEAK STAGE			20.23	May 10	23.85	Jul 5 1993
INSTANTANEOUS LOW FLOW			.38	Aug 14		
ANNUAL RUNOFF (AC-FT)	7190		47310		46210	
ANNUAL RUNOFF (CFSM)	.12		.77		.75	
ANNUAL RUNOFF (INCHES)	1.58		10.39		10.15	
10 PERCENT EXCEEDS	14		125		104	
50 PERCENT EXCEEDS	1.8		3.8		8.0	
90 PERCENT EXCEEDS	.70		.65		.70	

a Many days July to December 1989. e Estimated.

06898000 THOMPSON RIVER AT DAVIS CITY, IA

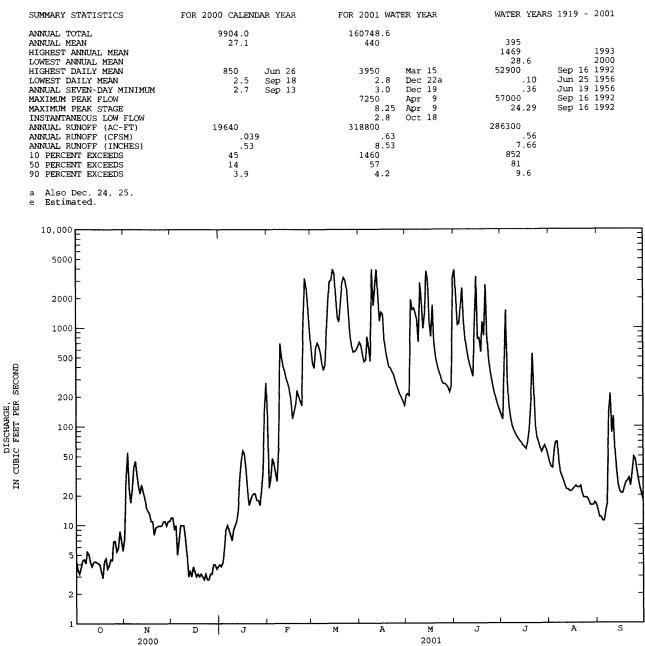
LOCATION.--Lat 40°38'25", long 93'48'29", in SE¹/4 SE¹/4 SE.35, T.68 N., R.26 W., Decatur County, Hydrologic Unit 10280102, on right bank 15 ft downstream from bridge on U.S. Highway 69 at Davis City, 3.1 mi. upstream from Dickersons Branch, and 5.8 mi. upstream from Iowa-Missouri State line.

DRAINAGE AREA. -- 701 mi².

PERIOD OF RECORD.--May 1918 to July 1925, July 1941 to current year. Monthly discharge only for some periods, published in WSP 1310. No winter records 1921-25. Prior to October 1918, published as "Grand River".

REVISED RECORDS.--WSP 1240: 1918, 1920-21 (M), 1922-24, 1925 (M), 1946-47 (M). WSP 1440: Drainage area. WSP 1710: 1957.

GAGE.--Water-stage recorder. Datum of gage is 874.04 ft above sea level. May 14, 1918 to July 2, 1925, July 14, 1941 to Feb. 24, 1942, nonrecording gage, and Feb. 25, 1942 to Feb. 8, 1967, water-stage recorder at same site at datum 2.00 ft higher.


REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Geological Survey satellite data collection platform and U.S. National Weather Service Limited Automatic Remote Collector (LARC) at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 8, 1885, reached a stage of 22.8 ft, datum in use prior to Feb. 9, 1967, from floodmark, discharge, 30,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY OCT NOV DEC TT IN .ππ. AUG SEP **JAN** FEB MAR APR MAY 7.3 4.3 e4.0 e120 3.5 3.2 e3.8 e4.2 e24 9.2 e30 3.7 e5.6 e48 4.4 e5.0 e9.0 e42 4.5 e7.0 e10 e34 e9.0 4.1 e28 5.4 e8.0 e60 5.1 e7.0 4.2 e7.5 e9.0 e1680 3.8 e10 e2580 e5.0 4.2 e3.0 e11 4.3 e3.4 4.2 e3.0 e1170 e3780 4.1 e3.8 e1440 e3070 e240 4.0 e3.4 e180 e1370 3.4 e3.0 e120 e736 2.9 e3.2 e570 e140 e476 4.3 e3.0 e24 e8.0 4.6 e3.2 e16 3.6 9.5 e3.0 e18 e200 3.9 9.7 e2 8 e20 e180 4.5 9.9 e3.2 9.8 4.4 e2.8 6.9 e2.8 e18 e3200 6.9 e3.2 e18 5.4 5.8 e3.2 e16 195 9.9 e4.0 e22 8.7 e4.0 ----e3.6 7.0 -----5.5 ___ ~ ~ ~ e3.8 ------_ _ _ 561.1 TOTAL 144.8 163.1 988.6 18.7 MEAN 4.67 5.26 31.9 28.7 41.1 MAX 8.7 7.3 2.9 2.8 3.8 MIN AC-FT .01 .04 CFSM .01 .06 .03 .05 .72 2.07 1.32 1.56 .24 1.46 IN. .01 .03 .01 .05 2.39 1.47 1.80 1.63 .28 .05 .07 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1919 - 2001, BY WATER YEAR (WY) MEAN MAX (WY) .94 4.13 MIN 1.41 2.07 . 62 1.14 10.7 2.55 1.19 3.08 1.98 9 35 (WY)

06898000 THOMPSON RIVER AT DAVIS CITY, IA--Continued

CHARITON RIVER BASIN

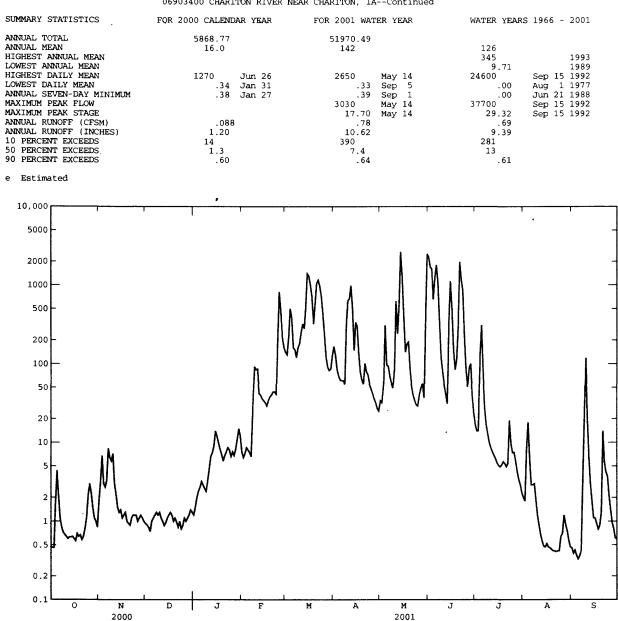
06903400 CHARITON RIVER NEAR CHARITON, IA

LOCATION.--Lat 40⁵⁷'12", long 93⁶15'37", in SW¹/4 NE¹/4 sec.15, T.71 N., R.21 W., Lucas County, Hydrologic Unit 10280201, on right bank 15 ft downstream from bridge on County Highway S43, 0.1 mi downstream from Wolf Creek, and 5.0 mi southeast of Chariton.

DRAINAGE AREA, -- 182 mi².

PERIOD OF RECORD. -- October 1965 to current year. Occasional low-flow measurements, water years 1958-60, 1962, 1964.

GAGE .-- Water stage recorder. Datum of gage is 917.90 ft above sea level (U.S. Army Corps of Engineers bench mark).


REMARKS.--Records poor. Beaver activity in October and November. U.S. Army Corps of Engineers rain gage and satellite data collection platform at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1960 reached a stage of about 23 ft, discharge, about 15,000 ft³/s and flood of June 5, 1947 reached a stage of 21.65 ft, from floodmark, discharge, 11,000 ft³/s. A discharge of 0.08 ft³/s was measured on Oct. 30, 1963.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e.48	e1.8	e.94	e1.2	e7.6	e140	166	34	2280	17	e2.0	.46
2	e.46	e3.2	e.90	e1.5	e6.4	e130	129	32	1700	14	1.8	.39
3	e.46	e6.8	e.84	e2.0	e7.2	e220	85	52	1600	14	8.1	.43
4	e1.8	e3.0	e.74	e2.4	e8.6	e500	70	309	656	129	18	.37
5	e4.4	e2.7	e1.0	e2.7	e8.0	e380	62	96	1210	308	6.2	.33
6	e2.1	e3.3	e1.1	e3.2	e7.4	e160	61	93	1800	78	2.9	.36
7	e1.1	e8.4	e1.2	e2.9	e6.6	e150	61	69	1090	28	2.9	.42
8	e.84	e6.4	e1.3	e2.6	e28	e120	55	57	348	17	3.0	2.8
9	e.72	e5.8	e1.2	e2.4	e92	e160	301	49	119	13	1.9	19
10	e.68	e7.2	e1.3	e3.2	e84	e180	630	88	78	10	1.2	118
11	e.64	e3.0	e1.1	e4.6	e86	e250	670	625	54	8.6	.90	21
12	e.60	e2.2	e1.0	e6.6	e42	e320	983	241	41	7.6	.68	6.6
13	e.63	e1.5	e.88	e7.4	e40	e280	521	551	31	6.9	.56	3.0
14	e.63	e1.3	e.96	e9.0	e36	e520	148	2650	346	6.2	.48	1.8
15	e.64	e1.4	e1.1	e14	e34	e1400	336	1290	1120	5.5	.47	1.1
16	e.60	e1.1	e1.2	e12	e32	e1300	302	405	499	5.1	.52	1.1
17	e.56	e1.2	e1.3	e9.8	e29	e1000	137	140	148	4.9	.47	.93
18	e.70	e1.3	e1.2	e8.2	e34	e710	78	179	84	5.2	.46	.79
19	e.64	e1.0	e1.0	e7.0	e38	e320	62	189	113	5.7	.44	.89
20	e.67	e.94	e1.1	e5.8	e40	575	55	83	284	5.4	.42	1.3
21	e.58	e.89	e.98	e6.8	e44	1050	101	52	1970	4.9	.42	14
22	e.64	e1.1	e.84	e7.6	e44	1160	79	40	1180	5.4	.41	5.6
23	e.81	e1.2	e1.0	e8.6	e41	970	72	34	841	19	.42	4.2
24	e1.1	e1.2	e.80	e8.0	e220	714	55	30	219	9.8	.42	3.7
25	e2.1	e1.2	e.88	e6.6	e820	e420	48	29	82	7.4	.64	2.1
26 27 28 29 30 31	e3.0 e2.3 e1.5 e1.1 e1.0 e.84	e1.0 e1.1 e1.2 e1.1 e1.0	e1.1 e1.0 e1.1 e1.2 e1.4 e1.3	e7.6 e6.8 e8.2 e11 e15 e12	e460 e210 e160 	e230 e120 e90 82 86 127	42 36 32 27 25	40 49 56 37 340 2490	51 89 100 40 24	7.5 5.8 4.3 3.4 2.9 2.3	.70 e1.2 e.92 e.76 e.58 .47	1.4 .96 .80 .61 .60
TOTAL	34.32	74.53	32.96	206.7	2665.8	138644471400822.462.83	5429	10429	18197	761.8	60.34	215.04
MEAN	1.11	2.48	1.06	6.67	95.2		181	336	607	24.6	1.95	7.17
MAX	4.4	8.4	1.4	15	820		983	2650	2280	308	18	118
MIN	.46	.89	.74	1.2	6.4		25	29	24	2.3	.41	.33
CFSM	.01	.01	.01	.04	.52		.99	1.85	3.33	.14	.01	.04
IN.	.01	.02	.01	.04	.54		1.11	2.13	3.72	.16	.01	.04
STATIS'	TICS OF M	IONTHLY ME	AN DATA	FOR WATER	YEARS 196	6 - 2001,	BY WATER	YEAR (WY)			
MEAN	78.8	58.2	59.9	35.6	87.1	186	246	236	170	160	68.5	123
MAX	568	294	408	340	403	761	1093	1097	856	1711	618	1704
(WY)	1974	1993	1983	1974	1997	1979	1991	1995	1967	1993	1987	1992
MIN	.005	.003	.000	.23	.22	1.22	.068	2.12	.38	.000	.10	.086
(WY)	1990	1990	1990	1977	1989	2000	1989	2000	1988	1988	1989	1991

06903400 CHARITON RIVER NEAR CHARITON, IA--Continued

SECOND

DISCHARGE, CUBIC FEET PER

N

CHARITON RIVER BASIN

06903700 SOUTH FORK CHARITON RIVER NEAR PROMISE CITY, IA

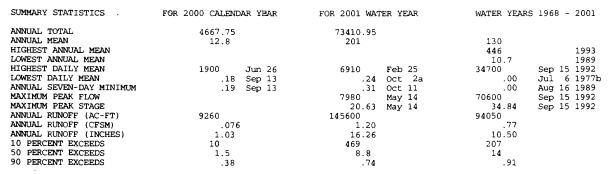
LOCATION.--Lat 40 48'02", long 93°11'32", in SW²/4 SW¹/4 sec.5, T.69 N., R.20 W., Wayne County, Hydrologic Unit 10280201, on right bank 20 ft downstream from bridge on County Highway S50, 1.3 mi downstream from Jordan Creek, and 4.3 mi northwest of Promise City.

DRAINAGE AREA.--168 mi².

PERIOD OF RECORD.--October 1967 to current year. Occasional low-flow measurements, water years 1958-66, published as "near Bethlehem". Monthly discharge measurements for March 1965 to September 1967 available in files of Iowa City District Office.

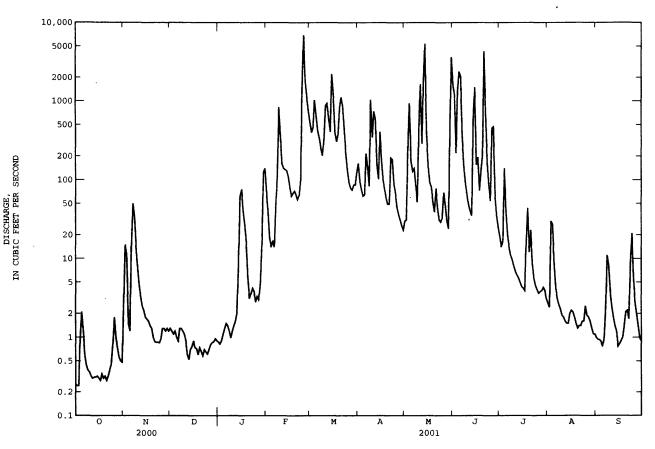
GAGE.--Water-stage recorder. Datum of gage is 913.70 ft above sea level (U.S. Army Corps of Engineers bench mark).

REMARKS.--Records good except those for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite data collection platform at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Sept. 21, 1965, reached a stage of 25.5 ft, from floodmarks, discharge, about 18,000 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

9e.38141.2e.98e840203104052899.72.310e.367.6el.1el.2e340340344435648.11.911e.324.5e.90el.4el608747411640496.91.813e.312.5e.50el.6el409355921551600355.71.514e.312.2e.70e9.0el3040610253705895.01.515e.321.8e.76e64el10221040938615004.42.016e.74e40e62393100921933.92.11.818e.341.4e.72e27e68304748173171.820e.321.0e.74e60ef6e723825953127441.520e.321.0e.74e5.8e648134939204121.321e.32.86e.6583.6e64872190447158.81.423e.38.87e.67e3.815802168829844.51.6226e.80.96e.61e2.869101306733544.02.52.5<													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
5 e2.1 e1.2 1.0 e1.3 e17 646 65 173 2370 42 8.6 6 e1.2 1.6 .90 e1.5 e14 414 216 128 2040 20 4.2 7 e.60 50 1.3 e1.4 e46 335 145 139 341 14 2.6 1 9 e.38 14 1.2 e.90 834 44 435 64 8.1 1.9 11 e.32 4.5 e.90 e1.4 e160 874 741 1640 49 6.9 1.8 12 e.30 3.3 e.60 e1.6 e100 935 552 287 40 6.2 1.6 13 e.31 2.2 e.70 e9.0 e130 406 102 537 15 15 e.32 1.8 e.74 e60 e62 210 409 355 4.2 2.2 2.2 16 e.30 1.7 e.90 <t< td=""><td>2 3</td><td>e.24 e.24</td><td>e15 e11</td><td>1.2 1.1</td><td>e.82 e.92</td><td>e40 e18</td><td>398 466</td><td>95 74</td><td>31 287</td><td>1180 219</td><td>14 17</td><td>2.4 30</td><td>.99 .94 .93 .88</td></t<>	2 3	e.24 e.24	e15 e11	1.2 1.1	e.82 e.92	e40 e18	398 466	95 74	31 287	1180 219	14 17	2.4 30	.99 .94 .93 .88
7 e.60 50 1.3 e1.4 e46 535 1.45 139 341 14 3.1 9 e.38 14 1.2 e.98 e840 203 1040 52 89 9.7 2.3 10 10 e.36 7.6 e1.1 e1.2 e340 340 344 435 64 8.1 1.9 11 e.32 4.5 e.90 e1.4 e160 874 741 1640 49 6.2 1.6 12 e.30 3.3 e.60 e1.6 e140 935 552 287 40 6.2 1.6 13 e.31 2.2 e.70 e9.0 e130 406 102 5370 589 5.0 1.5 14 e.31 1.6 e.76 e80 1220 180 149 155 4.2 2.2 17 e.28 1.6 e.74 e40 e62 393 100 92 193 3.9 2.1 18 e.34													.76
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 9	e.60 e.44 e.38	50 34 14	1.3 1.3 1.2	e1.4 e1.2 e.98	e46 e125 e840	335 250 203	145 83 1040	139 85 52	3 41 148 89	14 11 9.7	3.1 2.6 2.3	.98 2.2 11 8.3 3.7
17 e.28 1.6 e.74 e40 e62 303 100 92 193 3.9 2.1 18 e.34 1.4 e.72 e27 e68 304 74 81 73 17 1.8 19 e.30 1.3 e.60 e16 e72 382 59 53 127 44 1.5 20 e.32 1.0 e.74 e5.8 e64 813 49 39 204 12 1.3 21 e.28 .88 e.66 e3.1 e56 1120 49 78 4310 23 1.4 22 e.32 .86 e.58 e3.6 e64 872 190 44 715 8.8 1.4 23 e.38 .87 e.70 e4.2 e100 427 181 31 166 5.6 1.6 24 e.46 .85 e.65 e3.8 1580 216 88 29 84 4.5 1.6 2.5 26 e1.8	12 13 14	e.30 e.31 e.31	3.3 2.5 2.2	e.60 e.52 e.70	e1.6 e2.0 e9.0	e140 e135 e130	935 592 406	592 155 102	287 1800 5370	40 35 589	6.2 5.7 5.0	1.6 1.5 1.5	2.5 1.8 1.4 1.2 .76
22 e.32 .86 e.58 e3.6 e64 872 190 44 715 8.8 1.4 23 e.38 .87 e.70 e4.2 e100 427 181 31 166 5.6 1.6 1.6 24 e.46 .85 e.56 e3.8 1580 216 88 29 84 4.5 1.6 2.5 25 e.80 .96 e.61 e2.8 6910 130 67 33 54 4.0 2.5 26 e1.8 1.3 e.70 e3.3 1810 92 45 69 453 3.6 1.9 27 e.98 1.3 e.80 e3.0 1140 78 36 49 473 3.8 1.8 28 e.74 1.2 e.86 e4.8 750 74 31 30 65 3.9 1.6 30 e.50 1.2 e.96 e125 86 23 489 25 3.9 1.1	17 18 19	e.28 e.34 e.30	1.6 1.4 1.3	e.74 e.72 e.60	e40 e27 e16	e62 e68 e72	393 304 382	100 74 59	92 81 5 3	193 73 127	3.9 17 44	2.1 1.8 1.5	.82 .91 1.0 1.4 2.1
27 e.98 1.3 e.80 e3.0 1140 78 36 49 473 3.8 1.8 28 e.74 1.2 e.86 e4.8 750 74 31 30 65 3.9 1.6 29 e.56 1.3 e.88 e13 86 26 24 35 4.3 1.3 30 e.50 1.2 e.96 e125 86 23 489 25 3.9 1.1 31 e.48 e.90 e140 124 3640 3.1 1.1 TOTAL 17.21 185.12 27.08 560.69 14955 16054 5482 16710 18736 472.6 119.4 9 MEAN .56 6.17 .87 18.1 534 518 183 539 625 15.2 3.85 MAX 2.1 50 1.3 140 6910 2210 1040 5370 4310 140 30	22 23 24	e.32 e.38 e.46	.86 .87 .85	e.58 e.70 e.65	e3.6 e4.2 e3.8	e64 e100 1580	872 427 216	190 181 88	4 4 31 29	715 166 84	8.8 5.6 4.5	1.4 1.6 1.6	2.2 1.7 8.7 21 5.6
MEAN .56 6.17 .87 18.1 534 518 183 539 625 15.2 3.85 MAX 2.1 50 1.3 140 6910 2210 1040 5370 4310 140 30 MIN .24 .85 .52 .82 14 74 23 24 25 3.1 1.1 AC-FT 34 367 54 1110 29660 31840 10870 33140 37160 937 237 CFSM .00 .04 .01 .11 3.18 3.08 1.09 3.21 3.72 .09 .02 IN. .00 .04 .01 .12 3.31 3.55 1.21 3.70 4.15 .10 .03 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1968 - 2001, BY WATER YEAR (WY) MEAN 97.1 58.2 62.0 36.6 103 189 240 237 168 182 47.0 MAX 498 357 440 335 534 853 730 10433 <td>27 28 29 30</td> <td>e.98 e.74 e.56 e.50</td> <td>1.3 1.2 1.3 1.2</td> <td>e.80 e.86 e.88 e.96</td> <td>e3.0 e4.8 e13 e125</td> <td>1140 750 </td> <td>78 74 86 86</td> <td>36 31 26 23</td> <td>49 30 24 489</td> <td>473 65 35 25</td> <td>3.8 3.9 4.3 3.9</td> <td>1.8 1.6 1.3 1.1</td> <td>2.8 2.0 1.4 .98 .90</td>	27 28 29 30	e.98 e.74 e.56 e.50	1.3 1.2 1.3 1.2	e.80 e.86 e.88 e.96	e3.0 e4.8 e13 e125	1140 750 	78 74 86 86	36 31 26 23	49 30 24 489	473 65 35 25	3.8 3.9 4.3 3.9	1.8 1.6 1.3 1.1	2.8 2.0 1.4 .98 .90
MEAN 97.1 58.2 62.0 36.6 103 189 240 237 168 182 47.0 MAX 498 357 440 335 534 853 730 1043 625 2351 300 (WY) 1978 1993 1983 1974 2001 1979 1991 1995 2001 1993 1993 MIN .15 .39 .40 .19 .88 2.74 1.21 1.89 1.18 .24 .76	MEAN MAX MIN AC-FT CFSM	.56 2.1 .24 34 .00	6.17 50 .85 367 .04	.87 1.3 .52 54 .01	18.1 140 .82 1110 .11	534 6910 1 4 29660 3.18	518 2210 74 31 84 0 3.08	183 1040 23 10870 1.09	539 5370 24 33140 3.21	625 4310 25 37160 3.72	15.2 140 3.1 937 .09	3.85 30 1.1 237 .02	91.85 3.06 21 .76 182 .02 .02
MAX49835744033553485373010436252351300(WY)19781993198319742001197919911995200119931993MIN.15.39.40.19.882.741.211.891.18.24.76	STATIST	FICS OF	MONTHLY ME	an data	FOR WATER	YEARS 1968	3 - 2001,	BY WATER	YEAR (WY)			
(M1) 1909 1990 1977 1977 1969 2000 1969 2000 1968 1977 1984	MAX (WY)	49 8 197 8	357 1993	440 1983	335 1974	534 2001	853 1979	730 1991	1043 1995	625 2001	2351 19 93	300 1993	138 2227 1992 .45 2000


.

06903700 SOUTH FORK CHARITON RIVER NEAR PROMISE CITY, IA--Continued

a Also Oct. 3. b Also July 7, 21-24, 28 to Aug. 1, 1977, July 9, 10, and Aug. 14, 18-22, 1989. b

е Estimated.

CHARITON RIVER BASIN

06903880 RATHBUN LAKE NEAR RATHBUN, IA

LOCATION.--Lat 40 49'30", long 92'53'33", in NW¹'₄ NE¹'₄ sec.35, T.70 N., R.18 W., Appanoose County, Hydrologic Unit 10280201, at control tower of Rathbun Dam, 1.8 mi north of Rathbun, 3.9 mi upstream from Walnut Creek, and at mile 142.3.

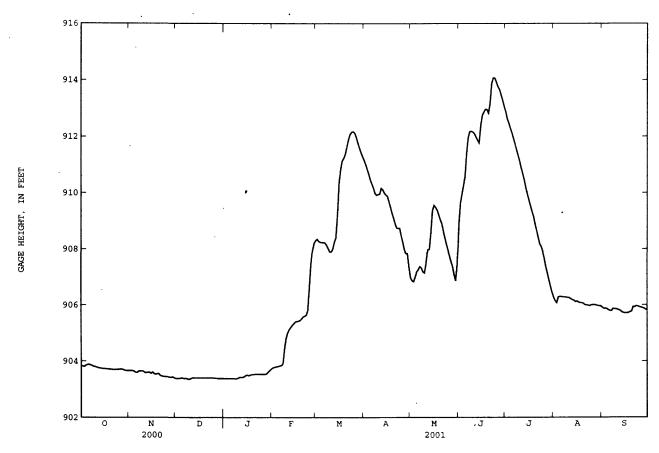
DRAINAGE AREA.--549 mi².

PERIOD OF RECORD. -- October 1969 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level.

REMARKS.--Reservoir is formed by earthfill dam completed in 1969. Storage began in November 1969. Release is controlled by two hydraulically controlled slide gages, 6 ft wide and 12 ft high, into forechamber of an 11-ft diameter horseshoe conduit through the dam. No dead storage. Maximum design discharge through gates is 5,000 ft².s. Uncontrolled notch spillway is concrete overflow section 500 ft in length, located about 3,000 ft west of the right abutment of the dam and provides emergency discharge into the adjacent drainage area of Little Walnut Creek. Uncontrolled notch spillway is a elevation 926 ft, contents 545,621 acre-ft, surface area, 20,974 acres. Conservation pool level is at elevation 904. Oft, contents 199,830 acre-ft, surface area, 10,989 acres. Reservoir is used for flood control, low-flow augumentation, conservation and recreation. Prior to October 1, 2000 published as mean daily contents in acre feet, and as mean daily elevation in feet NGVD thereafter.

COOPERATION .-- Records provided by U.S. Army Corps of Engineers.


EXTREMES FOR PERIOD OF RECORD. -- Maximum elevation, 927.16 ft July 28, 1993; minimum elevation, 855.40 ft Oct. 6-10, 1969.

EXTREMES FOR CURRENT YEAR. -- Maximum elevation 914.07 ft June 23; minimum elevation, 903.35 ft Dec. 9.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	903.83	903.66	903.38	903.38	903.74	908.30	911.16	906.97	908.86	912.89	906.27	905.91
2	903.82	903.66	903.38	903.38	903.77	908.35	911.01	906.86	909.65	912.64	906.14	905.87
3	903.80	903.66	903.38	903.38	903.78	908.27	910.84	906.83	909.96	912.48	906.07	905.87
4	903.85	903.64	903.39	903.38	903.80	908.24	910.66	906.99	910.25	912.29	906.28	905.86
5	903.87	903.60	903.40	903.38	903.81	908.23	910.46	907.18	910.59	912.13	906.29	905.81
6	903.88	903.59	903.38	903.38	903.83	908.23	910.31	907.26	911.40	911. 94	906.29	905.79
7	903.86	903.64	903.38	903.38	903.84	908.22	910.17	907.37	911.96	911.74	906.28	905.78
8	903.84	903.64	903.38	903.37	903.91	908.14	909.98	907.32	912.17	911.53	906.28	905.86
9	903.81	903.65	903.35	903.37	904.43	908.02	909.91	907.18	912.18	911.33	906.27	905.85
10	903.80	903.64	903.36	903.39	904.79	907.90	909.94	907.14	912.15	911.13	906.26	905.85
11	903.78	903.59	903.39	903.42	905.00	907.89	909.95	907.47	912.09	910.89	906.25	905.83
12	903.76	903.59	903.41	903.42	905.11	908.00	910.16	907.97	911.97	910.68	906.21	905.81
13	903.75	903.60	903.40	903.42	905.19	908.24	910.11	907.98	911.86	910.46	906.18	905.78
14	903.74	903.60	903.40	903.44	905.27	908.40	909.99	908.56	911.76	910.19	906.16	905.73
15	903.73	903.56	903.40	903.49	905.33	909.21	909.92	909.36	9 12.38	909.96	906.11	905.71
16	903.73	903.61	903.40	903.50	905.39	910.33	909.88	909.55	912.74	909.74	906.13	905.71
17	903.72	903.55	903.40	903.48	905.41	910.82	909.69	909.48	912.86	909.54	906.09	905.71
18	903.72	903.53	903.40	903.50	905.42	911.12	909.49	909.38	912.96	909.33	906.07	905.71
19	903.71	903.55	903.40	903.52	905.44	911.22	909.28	909.22	912.95	909.15	906.07	905.75
20	903.71	903.55	903.40	903.52	905.50	911.36	909.10	909.04	912.82	908.87	906.05	905.76
21	903.70	903.48	903.40	903.53	9 05 .57	911.62	908.90	908.90	913.16	908.65	906.00	905.93
22	903.69	903.47	903.40	903.53	90 5 .60	911.88	908.75	908.63	913.88	908.42	905.99	905.92
23	903.70	903.45	903.40	903.53	90 5 .63	912.07	908.73	908.38	914.07	908.18	905.98	905.96
24	903.70	903.45	903.40	903.53	905.79	912.15	908.73	908.16	914.06	908.08	905.96	905.95
25	903.70	903.45	903.40	903.53	906.57	912.17	908.45	907.95	913.92	907.90	905.99	905.92
26 27 28 29 30 31	903.71 903.71 903.70 903.67 903.66 903.66	903.44 903.43 903.42 903.44 903.41	903.39 903.39 903.38 903.38 903.38 903.38	903.53 903.53 903.53 903.58 903.64 903.69	907.42 907.94 908.20	912.12 911.97 911.77 911.60 911.43 911.29	908.23 907.96 907.84 907.84 907.36	907.76 907.55 907.38 907.08 906.86 907.46	913.76 913.66 913.48 913.29 913.08	907.67 907.37 907.14 906.89 906.66 906.44	906.00 906.00 905.99 905.97 905.96 905.96	905.91 905.89 905.87 905.83 905.83
MEAN	903.75	903.55	903.39	903.47	905.20	909.95	909. 49	907.91	912.33	909.75	906.11	905.83
MAX	903.88	903.66	903.41	903.69	908.20	912.17	911.16	909.55	914.07	912.89	906.29	905.96
MIN	903.66	903.41	903.35	903.37	903.74	907.89	907.36	906.83	908.86	906.44	905.96	905.71

06903880 RATHBUN LAKE NEAR RATHBUN, IA--Continued

.

CHARITON RIVER BASIN

06903900 CHARITON RIVER NEAR RATHBUN, IA

LOCATION.--Lat 40 49'22", long 92 53'22", in SE¹/4 NE¹/4 Sec.35, T.70 N., R.18 W., Appanoose County, Hydrologic Unit 10280201, on left bank 600 ft downstream from outlet of Rathbun Dam, 1.8 mi north of Rathbun, 3.7 mi upstream from Walnut Creek, and at mile 142.1.

DRAINAGE AREA.--549 mi².

PERIOD OF RECORD. --October 1956 to current year. Monthly discharge only for some periods, published in WSP 1730.

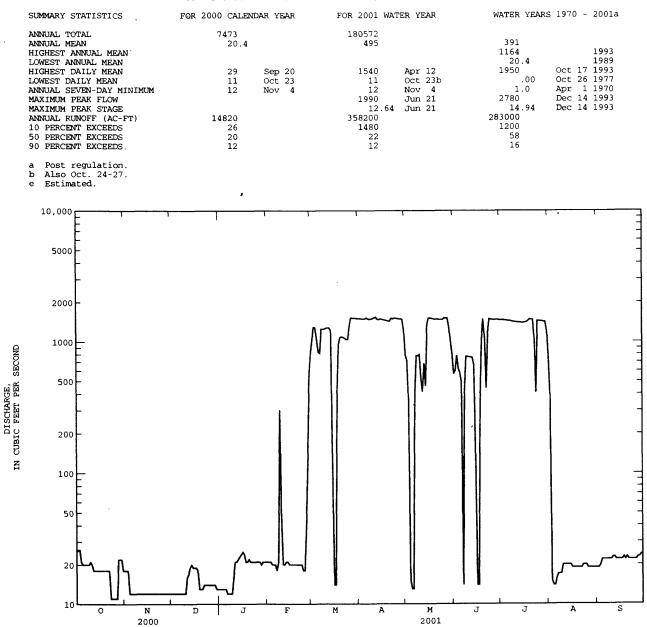
REVISED RECORDS.--WSP 1560: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 847.92 ft above sea level. Prior to Nov. 16, 1960, nonrecording gage and Nov. 17, 1960 to Sept. 30, 1969, recording gage, at site 3.1 mi downstream at datum 4.65 ft lower.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 21,800 ft³/s Mar. 31, 1960, gage height, 25.3 ft from floodmark, site and datum then in use.

REMARKS.--Records good except for those periods of estimated daily discharge, which are poor. U.S. Army Corps of Engineers data collection platform with telephone modem at station. Flow regulated by Rathbun Lake (station 06903880) since Nov. 21, 1969. Records of discharge include diversion of:

	_		Diversions		_
Oct. 1-3	13 ft³/s	Oct. 23-30	11 ft ³ /s	Aug. 10 to Sept. 30 10	$0 \text{ ft}^3/\text{s}$
Oct. 4-22	7 ft^3/s	Oct. 31 to Aug. 9	7 ft ³ /s		


The diversion goes from the reservoir through fish ponds on left bank downstream from dam. Diverted flow returns to stream 0.1 mi downstream from gage. Rathbun Regional Water Association permit No. 0400900 allows withdrawal from Rathbun Dam discharge immediately downstream from gage for maximum rate of 4,200 gpm (9.36 ft³·s). In the 1999 water year 1.66 billion gallons were withdrawn from the river.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					2							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	25	e18	12	13	21	812	1500	785	565	1460	754	19
2	26	e18	12	13	21	1040	1500	714	600	1460	386	19
3	26	e18	12	13	21	1290	1490	343	783	1460	15	20
4	21	12	12	13	20	1290	1490	15	624	1450	14	22
5	20	12	12	13	20	1030	1490	13	577	1450	14	22
-					20	2000	1150		••••			
6	20	12	12	12	20	834	1520	13	495	1440	16	22
7	20	12	12	12	e18	815	1490	354	14	1440	17	22
8	20	12	12	12	21	1250	1480	781	417	1430	17	22
9	20	12	12	12	303	1250	1490	776	768	1420	17	22
10	21	12	12	16	45	1250	1500	795	765	1410	20	22
11	20	12	16	21	20	1270	1520	525	763	1410	20	23
12	e18	12	17	21	20	1280	1540	414	758	1400	20	23
13	e18	12	19	22	21	1280	1480	681	756	1400	20	22
14	e18	12	20	23	21	1220	1470	459	664	1400	20	22
15	e18	12	19	24	20	e100	1 49 0	1340	130	1390	20	22
16	e18	12	19	25	20	e14	1480	1510	14	1390	19	22
17	e18	12	19	24	20	14	1470	1510	14	1400	19	22
18	e18	12	e18	24	20	405	1460	1500	333	1410	19	23
19	e18	12	13	21	20	959	1450	1490	1030	1410	19	22
20	e18	12	13	21	20	1080	1450	1490	1490	1440	19	23
20	610	12	10	22	20	1080	1440	1480	1490	1400	19	23
21	e18	12	13	21	20	1090	1430	1480	1060	1470	19	22
22	e18	12	14	21	20	1080	e1510	1480	442	1470	19	22
2 3	e11	12	14	21	20	1060	1490	1470	1140	1010	20	22
24	e11	12	14	21	e18	1040	1510	1470	1490	e407	20	22
25	e11	12	14	21	e18	1040	1510	1470	1480	1440	20	22
26	e11	12	14	21	39	1290	1500	e1510	1470	1440	19	22
27	e11	12	14	21	119	1520	1490	e1510	1470	1430	19	23
28	e22	12	14	20	546	1510	1490	e1510	1470	1430	19	23
29	e22	12	14	21		1510	1480	1300	1470	1420	19	24
30	e22	12	13	21		1510	1240	e1010	1460	1420	19	24
31	e18		13	21		1500		e800		1210	19	
TOTAL	576	378	444	583	1512	32633	44400	30508	24512	42687	1677	662
MEAN	18.6	12.6	14.3	18.8	54.0	1053	1480	984	817	1377	54.1	22.1
MAX	26	18	20	25	546	1520	1540	1510	1490	1480	754	24
MIN	11	12	12	12	18	14	1240	13	14	407	14	19
AC-FT	1140	750	881	1160	3000	64730	88070	60510	48620	84670	3330	1310
	1140	/50	001	1100	3000	04/30	00070	00510	40020	04070	5550	1510
STATIST	TICS OF MO	ONTHLY MEA	AN DATA F	OR WATER	YEARS 197	0 - 2001,	BY WATER	RYEAR (WY)			
MEAN	271	283	411	243	321	462	377	440	480	591	488	312
MAX	1790	1828	1364	1546	1550	1271	1480	1281	1573	1377	1826	1707
(WY)	1994	1994	1993	1993	1993	1993	2001	1973	1973	2001	1993	1993
MIN	11.5	9.97	5.54	8.98	5.60	9.40	6.74	19.3	16.6	6.53	9.10	11.0
(WY)	1975	1975	1970	1970	1970	1970	1970	1977	1988	1970	1 9 70	1974
• · · - •												

144

06903900 CHARITON RIVER NEAR RATHBUN, IA--Continued

,

CHARITON RIVER BASIN

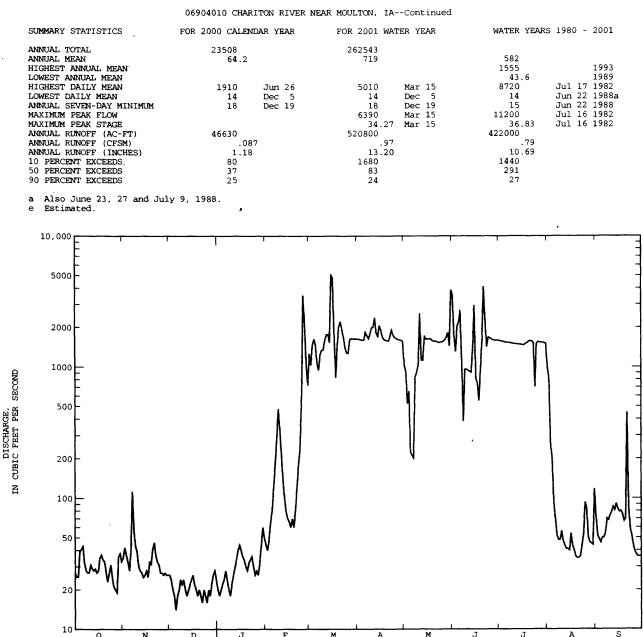
06904010 CHARITON RIVER NEAR MOULTON, IA

LOCATION.--Lat 40 41'30", long 92'46'15", in SE¹/4 NE¹/4 sec.14, T.68 N., R.17 W., Appanoose County, Hydrologic Unit 10280201, on right bank 6 ft downstream from bridge on County Highway J45 (543rd St.), 0.7 mi downstream from Hickory Creek, 5.0 mi west of Moulton, 8.0 mi upstream from Iowa-Missouri border, 20.8 mi downstream from Rathbun Dam, and at mile 121.5.

DRAINAGE AREA.--740 mi².

PERIOD OF RECORD--August 1979 to current year.

GAGE--Water stage recorder. Datum of gage is 800.00 ft above sea level (U.S. Army Corps of Engineers bench mark).


REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Rathbun Reservoir (station 06903880) 20.8 mi upstream. U.S. Geological Survey satellite and telephone modem data collection platform and U.S. Army Corps of Engineers rain gage at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in June 1947 reached a stage of about 45 ft, discharge unknown, from information by U.S. Army Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	27	35	26	e20	e44	1260	1630	1030	e3500	1580	992	72
2	25	42	24	e18	e40	1030	1620	925	e1700	1570	828	52
3	25	37	e20	e20	e48	1460	1610	526	e1310	1560	265	49
4	39	33	e18	e22	e66	1630	1590	653	e2050	1550	200	46
5	41	28	e14	e24	e80	1470	1600	225	2200	1540	94	50
~		2.0	1.0									- 0
6	43	39	e18	e28	e120	1060	1840	212	2700	1530	70	50
7	32	113	e20	e24	e180	946	1730	202	1080	1530	52	54
8	28	58	e24	e20	e280	1240	1640	839	385	1520	48	70
9	27	43	e22	e18	e480	1340	1780	910	958	1510	48	68
10	27	39	e24	e22	e340	1350	1980	1040	958	1500	56	74
11	31	30	e20	e26	e220	1610	2000	2550	937	1500	47	78
12	29	28	e18	e30	e140	1760	2370	1120	923	1490	43	86
13	28	27	e20	e34	e100	1760	1830	1120	906	1490	41	81
14	29	25	e22	e40	e80	1530	1680	1700	1360	1480	41	91
15	27	26	e24	e44	e70	5010	2070	1620	2950	1480	40	83
10	0.0			4.0					00.0	1 4 7 0		=0
16	28	28	e26	e40	e66	4800	1910	1630	826	1470	54	e79
17	35	25	e22	e36	e60	1730	1680	1630	741	1470	43	e80
18	37	33	e20	e34	e70	829	1610	1630	551	1510	40	e76
19	34	31	e18	e30	e60	1470	1590	1580	958	1520	36	e67
20	33	41	e20	e28	e80	2030	1580	1560	1580	1570	35	70
21	27	46	e18	e32	e120	2210	1570	1570	4110	1580	35	451
22	23	37	e16	e34	e180	1940	1730	1550	2360	1560	36	86
23	27	33	e20	e36	e240	1660	1910	1530	1420	1520	44	58
24	31	31	e18	e30	e600	1400	1730	1540	1680	702	52	52
25	25	27	e16	e26	3510	1280	1660	1540	1660	1500	93	43
26	0.1			~ ~				2550			~ ~	20
26	21	27	e20	e28	2200	1270	1630	1560	1620	1550	84	39
27	20	26	e18	e26	1030	1620	1610	1600	1600	1540	51	37
28	19	27	e22	e32	722	1640	1600	1680	1590	1530	46	36
29	36	26	e26	e44		1630	1590	1820	e1590	1530	45	36
30	38	26	e28	e60		1630	1560	1440	e1590	1520	44	36
31	33		e24	e50		1630		3870		1500	118	
TOTAL	925	1067	646	956	11226	53225	51930	42402	47793	46402	3721	2250
MEAN	29.8	35.6	20.8	30.8	401	1717	1731	1368	1593	1497	120	75.0
MAX	43	113	28	60	3510	5010	2370	3870	4110	1580	992	451
MIN	19	25	14	18	40	829	1560	202	385	702	35	36
AC-FT	1830	2120	1280	1900	22270	105600	103000	84100	94800	92040	7380	4460
CFSM	.04	.05	.03	.04	.54	2.32	2.34	1.85	2.15	2.02	.16	.10
IN.	.05	.05	.03	. 05	.56	2.68	2.61	2.13	2.40	2.33	.19	.11
STATIST	TICS OF MO	ONTHLY MEA	AN DATA F	OR WATER	YEARS 198	30 - 2001,	BY WATER	YEAR (WY)			
MEAN	404	399	516	318	456	724	672	721	700	942	659	466
MAX	1874	1931	1557	1696	1772	1831	1731	1421	1593	2849	2004	1976
(WY)	1994	1994	1983	1993	1983	1993	2001	1995	2001	1982	1993	1993
MIN	24.2	23.0	20.1	22.2	20.6	24.3	22.7	32.2	20.3	17.9	21.0	26.6
(WY)	1989	1989	1990	1989	1989	1989	1989	2000	1988	1988	1988	1988

.

N

2000

D

J

F

м

А

М

2001

J

J

147

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuousrecord stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years up to the current year for which the annual maximum has been determined.

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS

[+--Not determined, a--peak stage did not reach bottom of gage, b--ice affected, c--old gage datum, d--estimate, e--peak affected by backwater]

			Water y	ear 2001	maximum	Period of record maximum			
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)	
	BIG	SIOUX RI	VER BASIN			•			
Dawson Creek near Sibley, IA (06483440)	Lat 43°23′23″, long 95°42′53″, near NW corner sec.20, T.99 N., R.41 W., Osceola County, Hydrologic Unit 10170204, at culvert on County Highway A30, 2 mi southeast of Sibley. Drainage area 4.35 mi ² .	1952-	06-13-01	9.78	(+)	06-13-01	9.78	(+)	
Burr Oak Creek near Perkins, IA (06483495)	Lat 43 ^c 14'43", long 96 ^c 10'38", in SE1'4, sec.5, T.97 N., R.45 W., Sioux County, Hydrologic Unit 10170204, at bridge on U.S. Highway 75, 4 mi north of Perkins. Drainage area 30.9 mi ² .	1966-	04-24-01	86.42	750	06-20-83	88.37	(+)	
	PE	RRY CREE	K BASIN						
Perry Creek near Merrill, IA (06599800)	Lat 42°43'15", long 96°20'33", in NW1'4, sec.12, T.91, N., R.47 W., Plymouth County, Hydrologic Unit 10230001, at bridge on County Highway C44, 5 mi west of Merrill. Drainage area 8.17 mi ² .	1953- 1995 1996-	03-11-01	9.98	(+)	03-27-62	12.22	(+)	
Perry Creek near Hinton, IA (06599950)	<pre>Lat 42°37'11", long 96°22'20", in NE1/4, sec.15, T.90 N., R.47 W., Plymouth County, Hydrologic Unit 10230001, at bridge on county highway, 4 mi west of Hinton. Drainage area 33.1 mi².</pre>	1953-	03-20-01	23.52	38	06-14-81	38.68	^d 5,500	
	FL	OYD RIVE	R BASIN						
Little Floyd River near Sanborn, IA (06600030)	Lat 43°11'10", long 95°43'30", in NE1/4, sec.31, T.97 N., R.41 W., O'Brien County, Hydrologic Unit 10230002, at bridge on U.S. Highway 18, 3.5 mi west of Sanborn. Drainage area 8.44 mi ² .	1966-	2001	(a)	<104	03-02-70	89.04	(+)	
Sweeney Creek tributary near Sheldon, IA (0660036)	Lat 43°11'10", long 95°44'38", in SW1/4, sec.25, T.97 N., R.42 W., O'Brien County, Hydrologic Unit 10230002, at culvert on U.S. Highway 18, 4.8 mi east of Sheldon. Drainage area 0.62 mi ² .	1991-	07-25-01	97.65	(+)	07-14-93	99 .27	(+)	
West Branch Floyd River near Struble, IA (06600300)	Lat 42°55′26", long 96°10′36", in SE1/4, sec.29, T.94 N., R.45 W., Sioux County, Hydrologic Unit 10230002, at bridge on county highway B62, 0.1 mi west of U.S. Highway 75, 2.2 mi northeast of Struble. Drainage area 180 mi ²	1996-	08-04-01	11.10	1,450	03-04-94	15.86	8,920	
	MONONA-	HARRISON	DITCH BA	SIN					
Big Whiskey Slough near Remsen, IA (06601480)	Lat 42°48′28″, long 95°53′21″, in NW1/4, sec.11, T.92 N., R.43 W., Plymouth County, Hydrologic Unit 10230004, at bridge on State Highway 3, 4.2 mi east of Remsen. Drainage area 12.9 mi ² .	1966-	03-21-01	93.22	(+)	03-22-7 9	94.87	(+)	

			Water	year 2001	maximum	Period	maximum	
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	MONONA-HARRIS	ON DITC	H BASIN	continue	d	·		
Elliott Creek at Lawton, IA (06602190)	Lat 42°28'30", long 96°11'22", in NW1/4, sec.3, T.88 N., R.46 W. Woodbury County, Hydrologic Unit 10230004, at bridge on U.S. Highway 20, at west edge of Lawton. Drainage area 34.8 mi.	1966-	2001	(a)	<356	06-12-84	86.14	3,150
	LITTLE	SIOUX I	RIVER BAS	IN				
Ocheyedan River near Ocheyedan, IA (06604510)	Lat 43°25'58", long 95°36'41", in NE1/4, sec.6, T.99 N., R.40 W., Osceola County, Hydrologic Unit 10230003, at bridge on State Highway 9, 4 mi northwest of Ocheyedan. Drainage area 73.5 mi ² .	1966-	04-25-01	84.88	1,500	06-29-93	86.79	2,200
Dry Run Creek near Harris, IA	Lat 43 ⁰ 26'42", long 95 ⁰ 27'21", in NE1/4, sec.33, T.100 N.,	1990-	04-12-01	12.13	60	06-29-93	16.44	419
(06604584)	R.39 W., Osceola County, Hydrologic Unit 10230003, at culvert on county highway M12, 1 mi west of Harris. Drainage area 4.30 mi ² .		Revised 06-16-90 1994 03-12-95 03-20-97 1998 02-15-99 2000	Record: 11.66 (a) 12.94 15.18 (a) 13.71 (a)	^d 48 ^d <12 ^d 110 ^d 280 ^d <20 ^d 160 ^d <17			
Prairie Creek near Spencer, IA (06605340)	Lat 43 ⁰ 05'16", long 95 ⁰ 09'40", in SE1/4, sec.36, T.96 N., R.37 W., Clay County, Hydrologic Unit 10230003, at bridge on U.S. Highway 71, 4 mi south of Spencer. Drainage area 22.3 mi ² .	1966-	05-07-01	89.86	1,070	07-04-71	90.77	2,200
Willow Creek near Cornell, IA (06605750)	Lat 42 ^o 58'21", long 95 ^o 09'40", in SE1/4, sec.12, T.94 N., R.37 W., Clay County, Hydrologic Unit 10230003, at bridge on U.S. Highway 71, 2 mi northwest of Cornell. Drainage area 78.6 mi ² .	1966-	05-07-01	88.28	1,100	03-22-79	91.49	4,200
Little Sioux River tributary near Peterson, IA (06605868)	Lat 42°55'25", long 95°21'55", in NW1/4, sec.32, T.94 N., R.38 W., Clay County, Hydrologic Unit, 10230003, at culvert on State Highway 10, 1.2 mi northwest of Peterson. Drainage area 0.29 mi ² .	1991-	04-27-01	85.49	(+)	05-31-93	91.81	(+)
Willow Creek near Calumet, IA (06606231)	Lat $42^{\circ}58'05"$, long $95^{\circ}32'56"$ in NE1/4, sec. 15, T.94 N., R.40 W., O'Brian County, Hydrologic Unit 10230003, at culvert on State Highway 10, 1.2 mi north of Calumet. Drainage area 4.13 mi ² .	1991-	06-18-01	97.52	(+)	07-14-93	100.92	(+)
Halfway Creek at Schaller, IA (0660683710)	Lat 42 ⁰ 30'18", long 95 ⁰ 17'19", in SW1/4, sec.24, T.89 N., R.38 W., Sac County, Hydrologic Unit 10230005, at culvert on State Highway 110, 0.1 mi north of Schaller. Drainage area 1.74 mi ² .	1990-	2001	(a)	(+)	07-14-92	94.11	(+)
	BO	YER RIVE	R BASIN					
Boyer River tributary at Woodbine, IA (06609482)	Lat 41 [°] 43'58", long 95 [°] 43'19", in SE1/4, sec.15, T.80 N., R.42 W., Harrison County, Hydrologic Unit 10230007, at culvert on county highway F32, 0.5 mi west of Woodbine. Drainage area 0.67 mi [°] .	1990-	05-02-01	84.85	(+)	05-18-91	90.84	(+)
Willow Creek near Soldier, IA (06609560)	Lat 41°55'17", long 95°42'05", near S1/4 corner sec.11, T.82 N., R.42 W., Monona County, Hydrologic Unit 10230001, at bridge on State Highway 37, 6 mi southeast of Soldier. Drainage area 29.1 mi ² .	1966-	06-14-01	78.01	2,770	07-09-93	84.66	6,840

			Water y	vear 2001	maximum	Period of record		maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
	MOSQ	UITO CR	EEK BASIN					
Moser Creek near Earling, IA (06610510)	Lat 41°46'35", long 95°26'55", in NE1/4, sec.1, T.80 N., R.40 W., Shelby County, Hydrologic Unit 10230006, at bridge on State Highway 37, 1.5 mi west of Earling. Drainage area 21.6 mi ² .	1966-	06-14-01	76.21	1,820	06-15-84	87.89	(+)
Mosquito Creek tributary near	Lat 41°30'06", long 95°35'44", in NE1/4, sec.6, T.77 N., R.41	1991-	03-21-01	78.64	56	08-07-99	^d 82.7	^d 770
Neola, IA (06610581)	W., Pottawattamie County, Hydrologic Unit 10230006, at culvert on State Highway 191, 3.8 mi north of Neola, Drainage area 3.22 mi ² .		Revised 06-14-91 09-09-92 07-09-93 07-01-94 05-28-95 07-17-96 02-19-97 06-14-98 08-07-99 2000	Record: 80.98 79.96 81.06 80.20 e79.22 82.03 79.05 d82.7 82.44 (a)	^d 420 ^d 240 ^d 280 ^d 120 ^d 630 ^d 100 ^d 770 ^d 710 ^d <4			
Keg Creek tributary near Mineola, IA	Lat $41^{\circ}07'53''$, long $95^{\circ}43'31''$,	1991-	04-12-01	76.26	^d 25	07-10-99	82.97	^d 600
(06805849)	in SW1/4, sec.7, T.73 N., R.42 W., Mills County, Hydrologic Unit 10240001, at culvert on county highway H12, 2.4 mi southwest of Mineola. Drainage area 2.01 mi ² .		Revised 1995	Record: (a)	^d <1			
	NISHN	ABOTNA R	IVER BASI	IN				
Elm Creek near	Lat $41^{\circ}38'44''$, long $95^{\circ}12'18''$,	1990-	03-14-01	90.63	^a 350	05-15-98	93.73	^d 1,220
Jacksonville, IA (0680737930)	in SW1/4, sec.18, T.79 N., R.37 W., Shelby County, Hydrologic Unit 10240002, at culvert on State Highway 44, 2.8 mi west of Jacksonville. Drainage area 9.43 mi ² .		Revised 06-14-91 1992 07-09-93 1994 03-12-95 07-17-96 05-01-97 05-15-98 07-09-99 2000	Record: 91.12 (a) 90.93 (a) 89.91 93.44 89.98 93.73 90.80 (a)	^d 460 ^d <100 ^d 210 ^d 1,130 ^d 220 ^d 1,220 ^d 380 ^d <130			
Indian Creek near Emerson, IA (06807470)	Lat 41°01'50", long 95°22'51", in NW1/4, sec.19, T.72 N., R.39 W., Montgomery County, Hydrologic Unit 10240002, at bridge on U.S. State Highway 34, 1 mi east of Emerson. Drainage area 37.3 mi ² .	1966-	2001	(a)	<766	06-15-82 08-07-99	92.63 94.32	15,800 13,600
Middle Silver Creek near Oakland, Ia (06807760)	Lat 41°19'28", long 95°33'19", in E1/4 corner, sec.4, T.75 N., R.41 W., Pottawattamie County, Hydrologic Unit 10240002, at bridge on county highway, 8.5 mi northwest of Oakland. Drainage area 25.7 mi ² .	1953- 2001	03-15-01	8.69	342	07-14-98	15.63	2,540
Bluegrass Creek at Audubon, IA (06808880)	Lat 41 [°] 42'46", long 94 [°] 44'46", in NW1/4, sec.28, T.80 N., R.35 W., Audubon County, Hydrologic Unit 10240003, at bridge on U.S. Highway 71, near south edge of Audubon. Drainage area 15.4 mi ² .	1966-	03-13-01	74.31	206	07-09-93	88.55	(+)
	TAI	RKIO RIV	ER BASIN					
Tarkio River near Elliott, IA (06811760)	Lat 41°06'06", long, 95°06'09", near NE corner sec.28, T.73 N., R.37 W., Montgomery County, Hydrologic Unit 10240005, at bridge on county highway, 4.5 mi southeast of Elliott. Drainage area 10.7 mi ² .	1952-	03-15-01	7.12	605	08-29-93	12.98	4,640
East Tarkio Creek near Stanton, IA (06811800)	Lat 41 ⁰ 04'48", long 95 ⁰ 05'34", in W1/2 sec.34, T.73 N., R.37 W., Montgomery County, Hydrologic Unit 10240005, at bridge on county highway H24, 7 mi north of Stanton. Drainage area 4.66 mi ² .	1952-	2001	(a)	<471	06-09-67	13.74	4,790

MAXIMUM DISCHARGE AT CREST-STAGE PARTIAL-RECORD STATIONS-continued

			Water y	vear 2001	maximum	Period o	of record	maximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Dis- charge (ft ³ /s)	Date	Gage height (ft)	Dis- charge (ft ³ /s)
			INconti		(10 / 0)		(20)	(10 + 0)
Tarkio River tributary near Stanton, IA (06811820)	Lat 41 ⁰ 02'38", long 95 ⁰ 05'55", in NE1/4 sec.16, T.72 N., R.37 W., Montgomery County, Hydrologic Unit 10240005, at box culvert on county highway H63, 4 mi north of Stanton. Drainage area 0.67 mi ² .	1952-	2001	(a)	(+)	06-23-99	5.56	1,070
Snake Creek near Yorktown, IA (06811875)	Lat 40 [°] 44'33", long 95 [°] 07'46", in NW1/4, sec.32, T.69 N., R.37 W., Page County, Hydrologic Unit 10240005, at bridge on State Highway 2, 1.5 mi northeast of Yorktown. Drainage area 9.10 mi ² .	1966- 1991 1997-	2001	(a)	<343	07-09-87	95.24	3,080
	NOD	AWAY RIV	ER BASIN					
West Nodaway River at Massena, IA (06816290)	Lat 41 ^o 14'44", long 94 ^o 45'27", in SE1/4, sec.33, T.75 N., R.34 W., Cass County, Hydrologic Unit 10240009, at bridge on State Highway 148, at southeast corner of Massena. Drainage area 23.4 mi ² .	1966-	02-25-01	72.42	262	02-01-73	82.39	(+)
	PLA	TTE RIVI	ER BASIN					
Platte River near Diagonal, IA (06818750)	Lat 40°46'02", long 94°24'46", in NW1/4, sec. 22, T.69 N., R.31 W., Ringgold County, Hydrologic Unit 10240012, at bridge on county highway, 2.2 mi upstream from Turkey Creek, 4.6 mi. southwest of Diagonal, and 4.9 mi downstream from Gard Creek. Drainage area 217 mi ² .	1968- 1991 1997-	06-01-01	18.53	4,180	09-09-89	23.60	8,630
Middle Branch 102 River near Gravity, IA (06819110)	Lat $40^{\circ}49'40''$, long $94^{\circ}44'18''$, in SE1/4, sec.27, T.70 N., R.34 W., Taylor County, Hydrologic Unit 10240013, at bridge on State Highway 148, 4.8 mi north of Gravity. Drainage area 34.5 mi ² .	1966-	06-05-01	63.26	787	02-01-73 07-05-93	c83.65 76.83	(+) ^d 4,790
	GR	AND RIVE	R BASIN					
Sevenmile Creek, near Thayer, IA (06897858)	Lat 41^{9} 01'37", long 94^{9} 00'03", in SE1/4, sec.18, T.72 N., R.27 W., Clarke County, Hydrologic Unit 10280102, at culvert on U.S. Highway 34, 2.6 mi east of Thayer, Drainage area 6.61 mi ² .	1991-	2001	(a)	(+)	09-15-92	2 4 .92	^d 1,330
Elk Creek near Decatur City, IA (06897950)	Lat 40 ^o 43'18", long 93 ^o 56'12", in SE1/4, sec. 34, T.69 N., R.27 W., Decatur County, Hydrologic Unit 10280102, at bridge on county Highway, 1,000 ft. downstream from West Elk Creek, 5.8 mi. upstream from mouth, and 5.5 mi. (Revised) west of Decatur City. Drainage area 52.5 mi ² .	1968-	04-09-01	23.82	8,630	07-05-93	29.93	32,800

•

410247094324801. Local number, 72-32-09 CBCC.

410247094324801. Local number, 72-32-09 CBCC. LoCATION.--Lat 41°02'48", long 94°32'48", Hydrologic Unit 10240010, on the east side of county road, approximately.4 mi northeast of the City of Prescott. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age (might be in Albany buried-channel). WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 276 ft, screened 266-276 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,220 ft above sea level, from topographic map. Measuring point: Top of casing, 1.40 ft above land-surface datum ft above land-surface datum.

Et aDOVE fand-sufface datum. REMARKS.--Well SW-78. PERIOD OF RECORD.--October 1987 to November 1987, June 1990, and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.30 feet below land-surface datum, May 08, 2001; lowest measured, 3.08 ft below land-surface datum, December 06, 1996.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
FEB 06	2.34	MAY 08	2.30	JUL 30	2.59				
WATER YI	EAR 2001	HIGHEST	2.30	MAY 08, 2	2001	LOWEST	2.59	JUL 30,	2001

410248094324801. Local number, 72-32-09 CCBB. LOCATION.--Lat 41°02'48", long 94°32'48", Hydrologic Unit 10240010, on the east side of county road, approximately 4 mi northeast of the City of Prescott. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 136 ft, screened 130-136 ft, gravel packed.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,220 ft above sea level, from topographic map. Measuring point: Top of casing, 2.65 ft above land-surface datum.

rt above land-surface datum. REMARKS.--Well SW-83. PERIOD OF RECORD.--August 1988, June 1990, and November 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.72 feet below land-surface datum, February 3, 1994; lowest measured, 5.45 ft below land-surface datum, November 30, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 30	5.45	NOV 30	2.61	FEB 06	5.18	MAY 08	5.15	JUL 30	5.39
WATER YE	AR 2001	HIGHEST	2.61	NOV 30, 2	2000	LOWEST 5	5.45 NOV	30, 2000	

APPANOOSE COUNTY

404103092404001. Local number, 68-16-15 DDAD.

LOCATION.--Lat 40°41'03", long 92°40'29", Hydrologic Unit 10280201, located approximately 4 mi south of State Highway 2 on State Highway 202 beneath water tower in the Town of Moulton. Owner: Town of Moulton. AQUIFER. -- Cambrian/Ordovician.

MUTTER. --Cambrian Ordevician. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 and 12.75 in., depth 2377 ft, screened 1713-1736 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 992.00 ft above sea level, by unknown method. Measuring point: Top of well cover, 1.07 ft above land-surface datum.

REMARKS. -- Moulton Town Well.

PERIOD OF RECORD.--October 1961 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 355.00 feet below land surface datum, March 10, 1961; lowest measured, 389.00 feet below land-surface datum February 08, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV		
NOV 06	386.23	FEB 12 3	87.31	MAY 07	387.63	AUG	07 388.	13	
WATER Y	EAR 2001	HIGHEST	386.23	NOV 06,	2000	LOWEST	388.13	AUG 07,	2001

AUDUBON COUNTY

413044094565601. Local number, 78-36-35 ADCC1. LOCATION.--Lat 41°30'44", long 94°56'56", Hydrologic Unit 10240003, 2.5 mi south of the Town of Brayton on Highway 71, and 0.3 mi west on the north side of County Road F-67. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 115 ft, screened 94-101 ft, open hole 101-115 ft., gravel-packed.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,230 ft above sea level, from topographic map. Measuring point: Top of casing, 2.37 ft above land-surface datum.

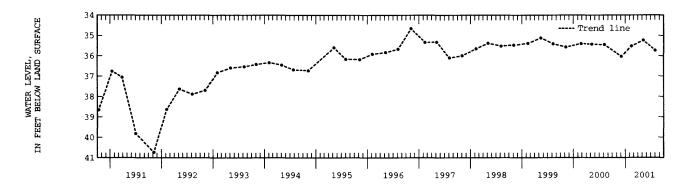
REMARKS.-- Well WC-69.

PERIOD OF RECORD.--June 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.43 ft below land-surface datum, August 11, 1993; lowest measured, 53.55 ft below land-surface datum, April 12, 1990.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
DEC 04	51.60	MAY 09	50.97	JUL 31	51.24				
WATER YE	AR 2001	HIGHEST	50.97	MAY 09, 2	001	LOWEST	51.60	DEC 04, 20	000

413958094544501. Local number, 79-35-10 CABB. LOCATION.--Lat 41°39'59", long 94°54'45", Hydrologic Unit 10240003, approximately 0.3 mi west of the Town of Hamlin, on the south side of Highway 44. Owner: Geological Survey Bureau/DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 221 ft, screened 168-188 ft, open hole 210-221 ft, gravel-packed.


INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,280 ft above sea level, from topographic map. Measuring point: Top of casing, 5.37 ft above land-surface datum.

EMARKS.-- Well WC-17. PERIOD OF RECORD.--August 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.66 ft below land-surface datum, November 6, 1997 and May 09, 1995; lowest measured, 40.73 ft below land-surface datum, November 8, 1991.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		WATI LEVI		
DEC 04	36.03	FEB 13	35.53	MAY 09	35.24	AUG 0	1	35.7	73	
WATER YE	AR 2001	HIGHEST	35.24	MAY 09, 2	2001	LOWEST	36.	03	DEC 04,	2000

415023094593801. Local number, 81-36-12 CBCA LOCATION.--Lat 41°50'23*, long 94°59'38*, Hydrologic Unit 10240002, approximately 0.5 mi west of the Town of Gray on the east side of County Road N-14, south of the Gray Cemetery. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 315 ft, screened 279-295 ft, gravelpacked.

DATUM.--Elevation of land-surface datum is 1,393 ft above sea level, from topographic map. Measuring point: Top of casing, 1.40 ft above land-surface datum. REMARKS.-- Well WC-18. PERIOD OF RECORD.--August 1981 to current year.

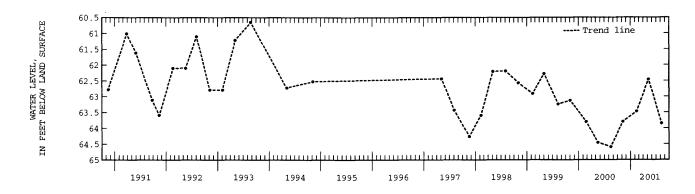
REVISION.--Measuring point revised February 13, 1990 to August 4, 1992. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 159 ft below land-surface datum, August 05, 1998; lowest measured, 168.52 ft below land-surface datum, October 6, 1987.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
FEB 13	162.05	MAY 09 1	61.98	AUG 01	162.60				
WATER Y	EAR 2001	HIGHEST	161.98	MAY 09,	2001	LOWEST	162.60	AUG 01,	2001

BENTON COUNTY

420731092083801. Local number, 85-11-33 CCBC1.

LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.


AQUIFER.--Devonian: Cedar Valley limestone of Middle Devonian age. WELL CHARACTERISTICS. -- Drilled observation artesian water well, diameter 0.75 in., depth 237 ft, cement plug 97-100 ft, screened below cement plug, open hole 170-237 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 905 ft above sea level, from topographic map. Measuring point: Top of 6 in. casing, 2.20 ft above land-surface datum.

REMARKS.-- Garrison 170 well; Garrison wells 109 and 340 also in this hole. PERIOD OF RECORD.--June 1977 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 60.18 ft below land-surface datum, April 19, 1983; lowest measured, 64.96 ft below land-surface datum, August 2, 1994.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	WATE DATE LEVE		WATER LEVEL	DATE		FER VEL	
NOV 09	63.79	FEB 14 63.4	7 MAY 09	62.45	AUG 09	63	.85	
WATER YE	CAR 2001	HIGHEST 62	.45 MAY 09,	2001	LOWEST	63.85	AUG 09,	2001

420731092083803. Local number, 85-11-33 CCBC3. LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: Cedar Valley limestone of Middle Devonian age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 6 in., depth 97 ft, open hole 90-97 ft, cement plug

97-100 ft

UNSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 905 ft above sea level, from topographic map. Measuring point: Top of 6 in. casing, 2.20 ft above land-surface datum. REMARKS.-- Garrison 109 well; Garrison wells 170 and 340 also in this hole. PERIOD OF RECORD.--June 1977 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 60.63 ft below land-surface datum, March 23, 1979; lowest measured, 66.87 ft below land-surface datum, August 4, 1997.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 09	63.82	FEB 14	63.48	MAY 09	62.47	AUG 09	63.90	
WATER YE	AR 2001	HIGHEST	62.47	MAY 09. 3	2001	LOWEST 63	.90 AUG 09, 200	1

420731092083802. Local number, 85-11-33 CCBC. LOCATION.--Lat 42°07'31", long 92°08'38", Hydrologic Unit 07080205, approximately 1 mi south of the Town of Garrison, just east of County Road V-56. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AOUIFER.--Silurian

WELL CHARACTERISTCS.--Drilled observation artesian water well, diameter 6in., depth 538 ft, casing information unknown INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 905 ft above sea level, from topographic map. Measuring point: Top of 6 in. casing,

2.20 ft above land-surface datum.

REMARKS .-- Garrison 340 well; Garrison wells 170 and 109 also in this hole

PERIOD OF RECORD.--October 1975 to March 1981; November 1982 to November 1990; November 1993 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 67.50 ft below land-surface datum, August 4 1997; lowest measured, 104.94 ft below land-surface datum, August 21, 1985.

DATE	WATER LEVEL	WATEF DATE LEVEI		WATER LEVEL	DATE	WATER LEVEL	
NOV 09	84.41	FEB 14 84.85	5 MAY 09	83.51	AUG 09	78.01	
WATER YE	AR 2001	HIGHEST 78.	01 AUG 09,	2001	LOWEST	84.85 FEB 14,	2001

BREMER COUNTY

424224092133901. Local number, 91-12-11 DBB. LOCATION.--Lat 42°42'15", long 92°13'29", Hydrologic Unit 07080102, located in the town of Readlyn, approximately 0.5 mi south of State Highway 3, in the northwest corner of town limits. Owner: Town of Readlyn.

AQUIFER.--Silurian, Alexanderian Series dolomite.

WELL CHARACTERISTICS.--Drilled public-use well, diameter 16 in, depth 154 ft, casing open from 99-154 ft. INSTRUMENTATION.--Quarterly measurement with airline by USGS personnel DATUM.--Elevation of land-surface is 1038 feet above sea level, by topographic map.

REMARKS.-- Readlyn No. 2 PERIOD OF RECORD.--August 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 86 feet below land-surface datum, November 05, 1998, lowest measured, 92 feet below land-surface datum, May 05, 1998.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	91	FEB 14	88	MAY 08	87.0	AUG 03	89.0	
WATER Y	EAR 2001	HIGHEST	87.0	MAY 08.	2001	LOWEST	91 NOV 07	. 2000

BUENA VISTA COUNTY

424023095571401. Local number, 91-35-26 BCCC LOCATION.--Lat 42°40'09", long 94°57'15", Hydrologic Unit 07100006, approximately 2.7 mi west and 0.5 mi north of the village of Varina. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: in sandstone of Cretaceous age.

AQUITER.--DARGTA: in sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 357 ft, cased tp 357 ft. screened interval 338-347 ft. Paleozoic rock present at 347 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by U.S.G.S. personnel. DATUM.--Elevation of land-surface datum is 1,291 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum. ft above land-surface datum. REMARKS.-- Well D-24.

PERIOD OF RECORD. -- December 1978 to August 1994, November 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 18.04 ft below land-surface datum, January 7,1980; lowest measured, 96.16 ft below land-surface datum, August 04, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WA1 LEV	
NOV 06	96.94	FEB 13	97.04	MAY 07	96.29	AUG 00	697.	40
WATER YE	AR 2001	HIGHEST	96.29	MAY 07, 2	2001	LOWEST	97.40	AUG 06,

425233094545001. Local number, 93-35-13 ADAA.

LOCATION.--Lat 42°52'33", long 94°54'49", Hydrologic Unit 07100006, south of the Chicago, Rock Island and Pacific Railroad track, approximately 3.5 mi east and 0.75 mi north of the Town of Marathon. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 1.50 in., depth 381 ft, screened 350-360 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,330 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum.

REMARKS. -- Well D-36.

PERIOD OF RECORD. -- February 1980 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 115.06 ft below land-surface datum, January 31, 1994; lowest measured, 137.37 ft below land-surface datum, August 10, 1995.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL		
		NOV 06 134.86	MAY 07 134.85	AUG 06 135.36		
		WATER YEAR 2001	HIGHEST 134.85	MAY 07, 2001	LOWEST 135.36 AUG 06, 2001	
B	115 mm				Trend	
LEVEL, LAND SURFACE	120-		A			-
LEVEL W LAND	125 -					-
WATER L FEET BELOW	130-					-
LEET	135 -	- 9 9 9 9 9		\sim	**************************************	
NI		1991 1992	1993 1994	1995 1996	11/11/11/11/11/11/11/11/11/11/11/11/11/	2001

2001

422812094383501. Local number, 88-32-01 BACD. LOCATION.--Lat 42°28'12", long 94°38'35", Hydrologic Unit 07100006, located approximately 4.5 mi north of Rockwell City, in a trailer park at the south end of North Twin Lake in Twin Lakes State Park. Owner: Pauline Goins. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Dug unused water-table well, diameter 24 in., depth 35 ft, casing interval unknown. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,222 ft above sea level, from topographic map. Measuring point: Top of casing, 1.12 ft above land-surface datum. REMARKS.-- Twin Lakes (33F2) well.

PERIOD OF RECORD.--May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.86 ft below land-surface datum, April 19, 1991; lowest measured, 16.96 ft below land-surface datum, February 28, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL					
NOV 08	9.82	MAY 07	2.96					
WATER YI	EAR 2001	HIGHEST	2,96	MAY 07, 2001	LOWEST	9.82	NOV 08, 20	00

422339094375101. Local number, 88-33-36 ADAA.

LOCATION.--Lat 42°23'46", long 94°37'56", Hydrologic Unit 07100006, located at the corner of main and 3rd street, three blocks south of U.S. Highway 20. Owner: City of Rockwell. AQUIFER.--Cambrian/Ordovician: Prairie du Chen Formation dolomite

WELL CHARACTERISTICS.--Drilled public supply well, diameter 16 in., depth 1970 ft., casing interval 1592-1970? ft, gravel packed.

INSTRUMENTATION. -- Quarterly measurements with airline by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,227 ft above sea level, from topographic map. REMARKS.-- Rockwell City Well No. 4

PERIOD OF RECORD. -- February 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 199 ft below land-surface datum, Oct. 07, 1997 and Feb. 10, 1998; lowest measured, 296 ft below land-surface datum, August 09, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 08	289	FEB 13	293	MAY 10	280	AUG 06	282	
WATER YE	EAR 2001	HIGHEST	280	MAY 10,	2001	LOWEST	293 FEB 1	L3, 2001

CARROLL COUNTY

420230094455101. Local number, 84-34-35 DAAA.
LOCATION.--Lat 42°02'31", long 94°45'51", Hydrologic Unit 07100007, on the south side of county road, approximately 1 mi east of Arthur N. Neu County Airport. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
AQUIFER.--Alluvial and glacial drift: Middle Raccoon River sand and gravel and glacial drift of Quaternary age.
WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 40 ft, screened 28-40 ft, gravel packed. Glacial till 31-36 ft and 37-40 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 1,185 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above land-surface datum.

ft above land-surface datum.

REMARKS.--Well WC-146. PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.50 feet below land-surface datum, May 10, 1995; lowest measured, 8.27 ft below land-surface datum, November 07, 1995.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL			
NOV 08	8.02	MAY 10	2.86	AUG 06	5.28			
WATER YI	EAR 2001	HIGHEST	2.86	MAY 10,	2001	LOWEST	8.02	NOV 08,

2000

420233094475901. Local number, 83-35-34 BCDC.

LOCATION.--Lat 42°02'33", long 94°47'59", Hydrologic Unit 07100007, approximately 3.5 mi west and 1.5 mi south of the Town of Glidden near the airport, west of County Road N-38. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 2 in., depth 100 ft, screened 72-76 ft; gravel packed, open hole 99-100 ft. Pennsylvanian rock 80-100 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 2.85

ft above land-surface datum. REMARKS.-- Well WC-148.

PERIOD OF RECORD.--October 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.56 ft below land-surface datum, May 4, 1983; lowest measured, 24.85 ft below land-surface datum, November 08, 2000.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 08	24.85	MAY 10	21.46	AUG 06	21.25				
WATER YE	EAR 2001	HIGHEST	21.25	AUG 06, 2	2001	LOWEST	24.85	NOV 08, 2000	

420643094403701. Local number, 84-33-03 CADA. LOCATION.--Lat 42°06'43", long 94°40'37", Hydrologic Unit 07100006, 3.5 mi north and 2.5 mi east of the Town of Glidden, on the west side of County Road N-50. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial: North Raccoon River sand and gravel of Pleistocene age.

WELL CHARACTERISTICS.--Dualterly measurement with chalked tape or electric line by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1,090 ft above sea level, from topographic map. Measuring point: Top of casing, 2.31 ft above land-surface datum.

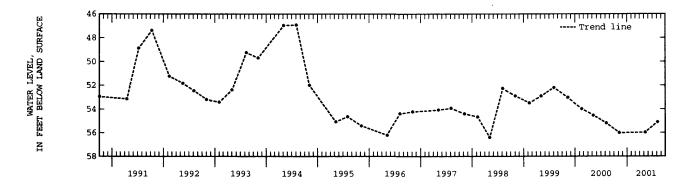
FIT ADOVE TARG-SUITACE GALUM. REMARKS,--Well WC-131. PERIOD OF RECORD.--September 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.06 ft below land-surface datum, July 10, 1990; lowest measured, 12.53 ft below land-surface datum, February 12, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 08	11.94	FEB 12	12.53	MAY 10	9.96	AUG 06	12.29	
WATER YE	AR 2001	HIGHEST	9.96	MAY 10,	2001	LOWEST 12	2.53 FEB 12, 2003	

420705094394501. Local number, 84-33-02 BDBA. LOCATION.--Lat 42°07'05", long 94°39'45", Hydrologic Unit 07100006, 3.75 mi north and 3.25 mi east of the Town of Glidden, east of County Road N-50 and the Kendal Bridge. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Durilled observation artesian water well, diameter 2 in., depth 76 ft., screened 73-76 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,110 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.


REMARKS. -- Well WC-132.

PERIOD OF RECORD. -- September 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 46.93 ft below land-surface datum, August 3, 1994; lowest measured, 57.30 ft below land-surface datum, February 13, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 08	56.01	MAY 10	55.99	AUG 06	55.10				
WATER YE	AR 2001	HIGHEST	55.10	AUG 06, 3	2001	LOWEST	56.01	NOV 08,	2000

421058094582701. Local number, 85-35-07 CCCC. LOCATION.--Lat 42°10'58', long 94°58'29", Hydrologic Unit 07100006, approximately 1 block north of Iowa Highway 217, next to the town maintenance building, Breda. Owner: Town of Breda. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS .-- Drilled municipal artesian water well, diameter 10 in., depth 340 ft, screened 320-340 ft. Original depth 349 ft.

INSTRUMENTATION.--Quarterly measurement with chalked taped by USGS personnel. DATUM.--Elevation of land-surface datum is 1,362 ft above sea level, from topographic map. Measuring point: Vent pipe, 1.60 ft

above land-surface datum.
 REMARKS.--City of Breda Well No. 3, previously referred to as Town Well No. 2.
 PERIOD OF RECORD.--March 1942 to August 1966, March 1968 to November 1971, June 1975 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 179.65 ft below land-surface datum, August 08, 2000; lowest measured, 250.40 ft below land-surface datum, May 24, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL			
FEB 13	207	MAY 10	205	AUG 23	247			
WATER YI	EAR 2001	HIGHEST	205	MAY 10,	2001	LOWEST	247	AUG 23, 2001

CASS COUNTY

411900094530101. Local number, 75-35-07 BBAB. LOCATION.--Lat 41'19'00", long 94°55'30", Hydrologic Unit 10240003, approximately 3 mi north and 2.9 mi west of the Town of Cumberland, 2 mi south of County Road G-35 and 2.9 mi west of County Road N-28. Owner: Geological Survey Bureau/ DNR and U.S. Geological Survey.

AQUIFER. -- Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 218 ft, screened 189-209 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,295 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35 ft above land-surface datum.

EMARKS.--Well SW-17. PERIOD OF RECORD.--July 1986 to October 1987, February 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 111.65 ft below land-surface datum, August 5, 1993; lowest measured, 125.75 ft below land-surface datum, March 14, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		TER VEL DATE	WATER LEVEL	DATE	WATER LEVEL	
DEC 04	120.72	FEB 06 120	.89 MAY 08	118.20	JUL 30	117.42	
WATER Y	EAR 2001	HIGHEST 1	17.42 JUL 30,	2001	LOWEST 12	20.89 FEB 06,	2001

412832095033501. Local number, 77-37-13 BBBB. LOCATION.--Lat 41 28'32", long 95-03'35", Hydrologic Unit 10240003, approximately 1 mi south of U.S. Interstate 80, and east of Highway 173. Approximately 2 mi north and 3 mi east of the Town of Marne. Owner: Geological Survey Bureau/DNR and U.S. Geological Survey. AQUIFER.--Pennsylvanian: limestone of Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 2 in., depth 201 ft, screened 196-201 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,298 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum.

REMARKS.--Well SW-18.

PERIOD OF RECORD.--July 1986 to October 1987, February 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 113.50 ft below land-surface datum, November 4, 1993; lowest measured, 128.40 ft below land-surface datum, March 14, 1990.

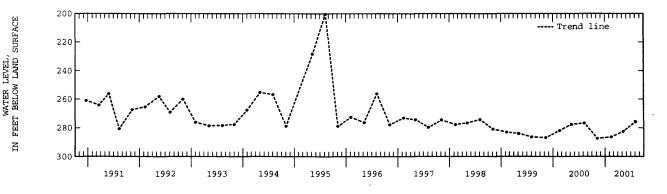
WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV		
DEC 04	121.37	FEB 13	123.00	MAY 09	121.53	JUL	31 121.	96	
WATER YI	EAR 2001	HIGHEST	121.37	DEC 04,	2000	LOWEST	123.00	FEB 13,	2001
CERRO GORDO COUNTY									

430757093131801. Local number,96-20-17 DAAD.

LOCATION.--Lat 43°07'57", long 93°13'18", Hydrologic Unit 07080203, in southwest Mason City, 1 mi west of Highway 65 and south of the Iowa Terminal Rail-yard. Owner: AMPI Creamery (formerly State Brand Creameries). AQUIFER.--Cambrian-Ordovician: sandstone of Late Cambrian age and sandy dolomite of Early Ordovician age.

WELL CHARACTERISTICS.--Unused drilled industrial artesian water well, diameter 10 to 6 in. from 0-1080 ft, depth 1,336 ft, open hole from 1,080-1,336 ft.


INSTRUMENTATION .-- Quarterly measurement with electric line by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,162 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum.

REMARKS.-- State Brand Creameries Well #1. Records for 1968-1971 and 1973-1989 are unpublished and available in the files of the Iowa District Office. PERIOD OF RECORD.--October 1968 to March 1971, and March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 170.80 ft below land-surface datum, August 4, 1977; lowest

measured, 298.80 ft below land-surface datum, October 22, 1968.

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
NOV 07 287.33	FEB 14 286.38	MAY 08 282.5	AUG 03	275.85
WATER YEAR 2001	HIGHEST 275.85	AUG 03, 2001	LOWEST 28	7.33 NOV 07, 2000

430806093164501. Local number, 96-21-13 BCCB. LOCATION.--Lat 43°08'04", long 93°16'46", Hydrologic Unit 07080203, south of the County Home, just north of Iowa Highway 106, east of the City of Clear Lake. Owner: Mason City and Clear Lake Railroad. AQUIFER.--Devonian: Cedar Valley limestone of Middle Devonian age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 198 ft. Casing information is not available. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of well curb, 1.30 ft above land-surface datum.

PERIOD OF RECORD. -- November 1940 to August 1971, March 1973 to current year. REMARKS: -- Mason City and Clear Lake Railroad well. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.44 ft below land-surface datum, February 12, 1982; lowest measured, 17.26 ft below land-surface datum, November 18, 1955.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
N OV 07	6.95	FEB 14	7.76	MAY 08	3.65	AUG 03	5.96	
WATER Y	EAR 2001	HIGHEST	3.65	MAY 08,	2001	LOWEST	7.76 FEB 1	4, 2001

CHEROKEE COUNTY

423833095365701. Local number, 90-40-06 BDCD. LOCATION.--Lat 42°38'33", long 95°36'57", Hydrologic Unit 10230003, approximately 3.1 mi west of U.S. Highway 59 and 0.55 mi north of Iowa Highway 31 along the Illinois Central Railroad track. Owner: Geological Survey Bureau, DNR and U.S. Geological north Survey.

AQUIFER. -- Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 1.25 in., depth 253 ft, sandpoint 252-253 ft. INSTRUMENTATION.--Quarterly measurements with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,182 ft above sea level, from topographic map. Measuring point: Top of casing, 3.93 ft above land-surface datum.

REMARKS.--Well D-6.

PERIOD OF RECORD. -- December 1978 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.38 ft below land-surface datum, August 27, 1983; lowest measured, 40.85 ft below land-surface datum, January 15, 1991.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 20	35.93	MAY 09	32.28	AUG 06	32.26				
WATER YE	AR 2001	HIGHEST	32.26	AUG 06,	2001	LOWEST	, 35.93	NOV 20,	2000

424132095480211. Local number, 91-42-16 DDDD11.

LOCATION.--Lat 42°41'32", long 95°48'02", Hydrologic Unit 10230004, approximately 2 mi north of the Village of Fielding at the junction of County Roads L-36 and C-44. Owner: Geological Survey Eureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 390 ft, screened 386-390 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,320 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum.

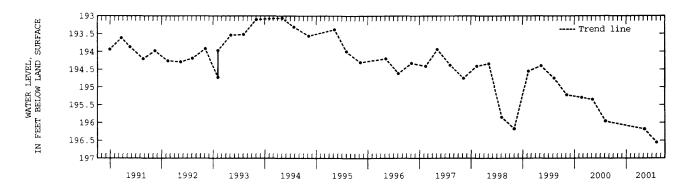
REMARKS.--Well D-11. PERIOD OF RECORD.--March 1980 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 141.67 ft below land-surface datum, May 5, 1993; lowest measured, 156.77 ft below land-surface datum, August 07, 2000.

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
NOV 20 157.29	FEB 13 157.15	MAY 09 156.21	AUG 06	156.28
WATER YEAR 2001	HIGHEST 156.21	MAY 09, 2001	LOWEST 15	7.29 NOV 20, 2000

424348095231601. Local number, 91-39-01 ADAD1. LOCATION.--Lat 42°43'48", long 95°23'15", Hydrologic Unit 10230005, approximately 2 mi east and 0.5 mi north of the Town of Aurelia at the Larson Lake County Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: sandstone of Cambrian age and dolomite of Ordovician age. WELL CHARACTERISITICS.--Drilled observation artesian water well, diameter 6 in. to 236 ft, 5 in. to 486 ft, 2 in. to 1,126 ft, Aurelia 1 ft, ft, and the servation of the servation of the term of the term of the servation of the servation artesian water well, diameter 6 in. to 236 ft, 5 in. to 486 ft, 2 in. to 1,126 ft,

depth 1,545 ft, open hole 1,126 to 1,545 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 1.55 ft above land-surface datum.


REMARKS.--Well D-28. PERIOD OF RECORD.--September 1979 to current year.

EXTREMES FOR PERIOD OF RECORD.---September 1977 to current year. EXTREMES FOR PERIOD OF RECORD.---Highest water level measured, 189.65 ft below land-surface datum, December 19, 1984; lowest measured, 196.17 ft below land-surface datum, November 02, 1998.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL		
MAY 09	196.18	AUG 02	196.55		
WATER Y	EAR 2001	HIGHES	т 196.18		

HIGHEST 196.18 MAY 09, 2001 LOWEST 196.55 AUG 02, 2001

424348095231602. Local number, 91-39-01 ADAD2. LOCATION.--Lat 42°43'48", long 95°23'15", Hydrologic Unit 10230005, approximately 2 mi east and 0.5 mi north of the Town of Aurelia at the Larson Lake County Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

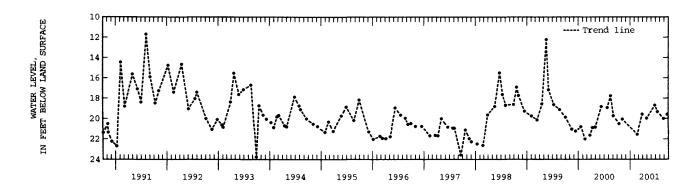
AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 4 in., depth 340 ft, screened 235-240 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 1.75 ft above land-surface datum.

ft above fand-surface datum. REMARKS.--Well D-29. PERIOD OF RECORD.--September 1979 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 188.65 ft below land-surface datum, April 20, 1988; lowest measured, 194.15 ft below land-surface datum, August 24, 1982.

DATE	WATER LEVEL		WATER LEVEL						
MA Y 09	193.61	AUG 02 1	93.92						
WATER Y	EAR 2001	HIGHEST	193.61	MAY 09,	2001	LOWEST	193.92	AUG 02,	2001

CLAYTON COUNTY

424023091291201. Local number, 91-05-30 BBBB. LOCATION.--Lat 42°40'23", long 91°29'12", Hydrologic Unit 07060006, 5 mi northwest of the City of Edgewood, or 2 mi northwest of the junction of Iowa Highways 3 and 13, east of Strawberry Point. Owner: Harold Knight. AQUIFER. -- Glacial drift of Pleistocene age.


WELL CHARACTERISTICS.--Dug unused water-table well, diameter 36 in., depth 36 ft. Casing information not available. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,233 ft above sea level, from topographic map. Measuring point: Hole in pump base at

land-surface datum.

PERIOD OF RECORD.--June 1957 to current year. REMARKS:-- Harold Knight well.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.68 ft below land-surface datum, August 7, 1991; lowest measured, 30.68 ft below land-surface datum, January 12, 1959.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT. 16 NOV 08	20.50 20.06	FEB 20 MAR 28	21.55 19.58	APR 30 JUN 26	19.99 18.69	JUL 16 AUG 28	19.34 20.00	SEP 24	19.59		
WATER YI	EAR 2001	HIGHEST	18.69	JUN 26,	2001	LOWEST 21	55 FEB	20, 2001			

425736091260303. Local number, 94-05-31 A. LOCATION.--Lat 42°57'36", long 91°26'03", Hydrologic Unit 07060004, approximately 100 feet south of Robert's Creek on County Highway X16.

AQUIFER. -- Cambrian-Ordovician: St. Peter Sandstone

MULTER. --Clauditan-Orderitan, St. Feter Sandstone. WELL CHARACTERISTICS.--Drilled observation well, diameter 4 in. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1030 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum. REMARKS.--Well BS2-G.

PERIOD OF RECORD.--January 1989 to April 1989, May 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 182.82 ft above land-surface datum, August 25, 1999, lowest water level recorded 185.60 ft below land-surface datum, February 20, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 08	185.03	FEB 20	185.60	AUG 29	185.14				
WATER Y	EAR 2001	HIGHEST	185.03	NOV 08,	2000	LOWEST	185.60	FEB 20,	2001

425433091285002. Local number, 94-05-31 DACC2. LOCATION.--Lat 42°54'38", long 91°28'25", Hydrologic Unit 07060004, located at entrance to Big Spring Fish Hatchery 4.5 mi west and 1.25 mi south of the Town of St. Olaf. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Cambrian-Ordovician: Galena dolomite of Middle Ordovician age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 85 ft, open hole 61-85 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 855 ft above sea level, from topographic map. Measuring point: Top of recorder

platform, 2.23 ft above land-surface datum. REMARKS.--Well BS1-B. Historical water-level data published in OFR 91-63 and OFR 92-67. PERIOD OF RECORD. -- December 1988 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 0.62 ft above land-surface datum, August 20, 1993 (revised); lowest water level recorded 13.37 ft below land-surface datum, February 15, 2000.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL			
NOV 08	13.03	FEB 20	13.32	AUG 27	6.21			
WATER YE	AR 2001	HIGHEST	6.21	AUG 27,	2001	LOWEST	13.32	FEB 20, 2001

GROUND-WATER LEVELS

430156091182901. Local number, 95-04-22 BCBD. LOCATION.--Lat 43°01'56", long 91°18'29", Hydrologic Unit 07060001, approximately 2 mi north of the junction of U.S. Highway 18 and U.S. Highway 52-Iowa Highway 13, near Spook Cave. Owner: Gerald Mielke. AQUIFER.--Cambrian-Ordovician: St. Peter sandstone of Middle Ordovician age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 49 ft. Casing information not available. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above sea level, from topographic map. Measuring point: Top of casing, 1.00 ft above land-surface datum.

PERIOD OF RECORD. -- October 1957 to current year. REMARKS. -- USGS 22E1

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 13.98 ft below land-surface datum, December 7, 1983; lowest measured, 27.88 ft below land-surface datum, March 4, 1968.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 08	22.94	FEB 21	23.64	AUG 29	22.74				
WATER YE	EAR 2001	HIGHEST	22.74	AUG 29, 3	2001	LOWEST	23.64	FEB 21,	2001

CLINTON COUNTY

414921090450401. Local number, 81-62E-17 ACA. LOCATION.--Lat 41°49'32", long 90°45'08", Hydrologic Unit 07080103, located below water tower near sub-station in the Town of Calamus. Owner: Town of Calamus. AQUIFER.--Silurian

WELL CHARACTERISTICS.--Drilled pumping well, diameter 12 in. to 90 ft, 10 in. to 190 ft, depth 278 ft. INSTRUMENTATION.--Quarterly measurements with airline by USGS personnel.

DATUM.--Elevation of land-surface datum is 712 feet above sea level, by topographic map.

PERIOD OF RECORD. -- August 1997 to current year.

REMARKS. -- Calamus No.1

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 43 feet below land-surface datum, August 06, 1997; lowest measured, 104 ft below land-surface datum, August 09, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 08	97	FEB 15	96	MAY 08	97	MAY 09	102	AUG 09	104
WATER YE	AR 2001	HIGHEST	96	FEB 15,	2001	LOWEST	104 AUG	09, 2001	

414806090212301. Local number, 81-05E-22 DDD.

LOCATION.-Lat 41°48'03", long 90°21'26", Hydrologic Unit 07080101, approximately 1 mile south of the intersection of U.S. Interstate 30 and county road 36, on the northwest corner of intersection. Owner: Town of Low Moor. AQUIFER.--Silurian, Alexanderian Series WELL CHARACTERISTICS.--Drilled public-use well, diameter 12 in. to 62 ft, 8 in. to 62 ft, depth 322 ft, open hole from 85- 322

ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 651 feet above sea level, by topographic map.

PERIOD OF RECORD.--August 1997 to current year REMARKS.-- Low Moor No.2 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.99 feet below land-surface datum, February 09, 1999; lowest measured, 30.50 ft below land-surface datum, May 03, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL						
MAY 08	20.19	AUG 08	22.46						
WATER YE	AR 2001	HIGHEST	20.19	MAY 08,	2001	LOWEST	22.46	AUG 08,	2001

CRAWFORD COUNTY

415514095312001, Local number, 82-40-17 AABB.

LOCATION.--Lat 41°55'14", long 95°31'20", Hydrologic Unit 10230007, approximately 1.5 mi west of the Town of Dow City on the south side of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 141 ft, screened 123-141 ft, gravel-

packed.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,150 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50 ft above land-surface datum.

REMARKS.--Well WC-9. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.15 ft below land-surface datum, May 3, 1983; lowest measured, 43.86 ft below land-surface datum, June 11, 1981.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV	
NOV 21	43.46	FEB 15	42.74	MAY 10	40.46	AUG 01	42.	27
WATER YE	AR 2001	HIGHEST	40.46	MAY 10, 2	2001	LOWEST	43.46	NOV 21, 2000

420608095111701. Local number, 84-37-08 BCCB.

LOCATION.--Lat 42°06'08', long 95°11'14", Hydrologic Unit 10230007, approximately 3 mi north of the Town of Vail on the east side of County Road E-25. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 541 ft, screened 527-541 ft, gravel-

packed

INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,380 ft above sea level, from topographic map. Measuring point: Top of casing, 1.65 ft above land-surface datum.

REMARKS.--Well WC-226.

PERIOD OF RECORD. -- August 1983 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 208.35 ft below land-surface datum, July 17, 1988; lowest measured, 217.70 ft below land-surface datum, February 11, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV		
NOV 20	214.46	FEB 13	214.41	MAY 09	214.05	AUG 0	2 214.	72	
WATER Y	EAR 2001	HIGHEST	214.05	MAY 09,	2001	LOWEST	214.72	AUG 02,	2001

421005095342801. Local number, 85-41-13 CCCC. LOCATION.--Lat 42°10'05*, long 95°34'28*, Hydrologic Unit 10230001, approximately 7 mi west of the Town of Schleswig, northeast of the junction of County Roads L-51 and E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota and glacial drift: sandstone of Cretaceous age and sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 361 ft, screened 307-322 ft, article.paged Open to Dakota 200 261 ft

gravel-packed. Open to Dakota 320-361 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,375 ft above sea level, from topographic map. Measuring point: Top of casing, 3.49 ft above land-surface datum.

REMARKS. -- Well WC-6.

EXTREMES FOR PERIOD OF RECORD.--May 1981 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 244.23 ft below land-surface datum, July 28, 1981; lowest measured, 249.05 ft below land-surface datum, February 5, 1982.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL
NOV 20 248.52	FEB 13 248.33	MAY 09 247.78	AUG 02 248.61
WATER YEAR 2001	HIGHEST 247.78	MAY 09, 2001	LOWEST 248.61 AUG 02, 2001

421031095225601. Local number, 85-39-16 ADDD1.

LOCATION.--Lat 42°10'31", long 95°22'56", Hydrologic Unit 10230007, approximately 2.5 mi east and 0.5 mi north of the Town of Schleswig on the west side of County Road M-27. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in., depth 351 ft, screened 315-330 ft,

gravel-packed. Open to Pennsylvanian rock 344-351 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 3.14 ft above land-surface datum.

PEMARKS.--Well WC-7A. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 232.61 ft below land-surface datum, October 7, 1986; lowest measured, 239.65 ft below land-surface datum, August 2, 1995.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
FEB 13	236.12	MAY 09 3	236.13	AUG 02	236.14				
WATER Y	EAR 2001	HIGHEST	236.12	FEB 13,	2001	LOWEST	236.14	AUG 02,	2001

421031095225602. Local number, 85-39-16 ADDD2. LOCATION.--Lat 42°10'31", long 95°22'56", Hydrologic Unit 10230007, approximately 2.5 mi east and 0.5 mi north of the Town of Schleswig on the west side of County Road M-27. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Mississippian: limestone of Mississippian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 561 ft, screened 543-561 ft,

gravel-packed.

INSTRUMENTATION .-- Quarterly measurement with chalked tape or electric line by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 3.14 ft above land-surface datum.

REMARKS.--Well WC-TB. FEMRICS.--Well WC-TB. PERIOD OF RECORD.--June 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 296.63 ft below land-surface datum, May 07, 1996, lowest measured, 307.64 ft below land-surface datum, October 4, 1983.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL				
FEB 13	304.43	MAY 09 3	04.15	AUG 08	304.56				
WATER Y	EAR 2001	HIGHEST	304.15	MAY 09,	2001	LOWEST	304.56	AUG 08,	2001

•

421106095125501. Local number, 85-38-12 DCBA. LOCATION.--Lat 42°11'06", long 95°12'55", Hydrologic Unit 10230007, approximately 5.5 mi east of the Town of Kiron'on the south side of County Road E-16 near the Town of Boyer. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 341 ft, screened 300-310 ft, open hole

from 315-341 ft., gravel packed. Open to Pennsylvanian limestone and shale 331-341 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,225 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70

ft above land-surface datum.

REMARKS.--Well WC-14. PERIOD OF RECORD.--July 1981 to current year. EXTREMES FOR PERIOD OF RECORD.---Highest water level measured, 62.76 ft below land-surface datum, April 16, 1987; lowest measured, 67.29 ft below land-surface datum, August 07, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 20	67.69	FEB 13	67.46	MAY 09	67.25	AUG 02	67.85
WATER YE	AR 2001	HIGHEST	67.25	MAY 09, 2	2001	LOWEST 67	7.85 AUG 02, 2001

DALLAS COUNTY

413613093530401. Local number, 79-26-33 CDBA. LOCATION.--Lat 40 36 13", long 93 53 05", Hydrologic Unit 07100006, approximately 0.5 miles south of the Town of Waukee on county road R-22, 100 ft east of roadway, well located inside 48 in concrete culvert. Owner: Town of Waukee.

AQUIFER.--Cambrian Ordovician, Jordan sandstone. WEL CHARACTERISTICS.--Drilled public use well, diameter 16 in., depth 2730 ft, casing interval unknown, gravel packed. INSTRUMENTATION.--Quarterly measurement with airline by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1012 ft above sea level, from topographic map. REMARKS. -- Waukee Well No. 2

PERIOD OF RECORD.--May 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 389 ft below land-surface datum, May 9, 1997; lowest measured 428 ft below land-surface datum, February 09,1998.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 08	408	FEB 12	402	MAY 09	398	AUG 02	405	
WATER	YEAR 2001	HIGHEST	398	MAY 09,	2001	LOWEST	408 NOV 08, 2	000

DECATUR COUNTY

404422093445602. Local number, 69-25-29 DDDD

LOCATION.--Lat 40°44'24", long 93°44'58", Hydrologic Unit 10280102, approximately 7 mi east of Interstate 35 in the City of Leon, within open field between Iowa Highway 2 and NW 2nd Ave. on NW School St. Owner: City of Leon. AQUIFER.--Cambrian/Ordovician: Jordan sandstone.

WELL CHARCTREISTICS.--Drilled public use well, diameter 8 in, depth 2853 ft, screened 2740-2790 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1105.60 ft above sea level, from levels. MEasuring point: Top of casing, 3.70 ft above land-surface datum.

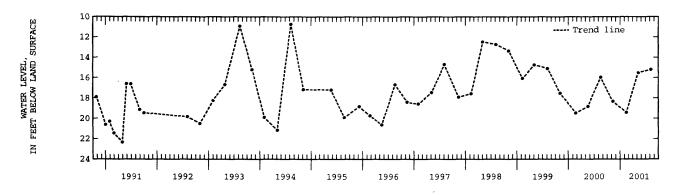
REMARKS.-- Leon City Well No. 4 PERIOD OF RECORD.--May 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 439.80 ft below land-surface datum, May 30, 1996; lowest measured, 445.22 ft below land-surface datum, July 26, 2001.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV		
NOV 30	444.43	FEB 07 4	44.61	MAY 02	444.40	JUL	26 445	22	
WATER Y	EAR 2001	HIGHEST	444.40	MAY 02,	2001	LOWEST	445.22	JUL 26,	2001

DELAWARE COUNTY

422029091144302. Local number, 87-03-18 CBCD2. LOCATION.--Lat 42°20'37*, long 91°14'47*, Hydrologic Unit 07060006, behind the municipal utilities building in downtown Hopkinton. Owner: Town of Hopkinton. AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS .-- Drilled unused artesian water well, diameter 8 in., depth 86 ft. Casing information not available.


INSTRUMENTATION.--Quarterly measurement with chalked tape by observer. DATUM.--Elevation of land-surface datum is 863 ft above sea level, from topographic map. Measuring point: Nipple welded to plate

on top of casing, 2.46 ft above land- surface datum. PERIOD OF RECORD.--December 1984 to current year.

EXTREMES FOR PERIOD OF RECORD. -Highest water level measured, 10.74 ft below land-surface datum, August 10, 1994; lowest measured, 27.19 ft below land-surface datum, December 30, 1989.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV			
NOV 09	18.32	FEB 14	19.42	MAY 09	15.52	AUG 09	9 15.	2		
WATER YE	AR 2001	HIGHEST	15.2	AUG 09,	2001	LOWEST	19.42	FEB 1	14,	2001

DUBUOUE COUNTY

,

422901090471901. Local number, 89-01-36 ABC. LOCATION.--Lat 42°28'55', long 90°47'18', Hydrologic Unit 07060005, located within white shed northeast of Amoco plant main office on Old Fairground Road, 4 mi east of Centralia on County Highway 966. Owner: Julien Standard Oil. AQUIFER. -- Cambrian/Ordovician.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 13 in., depth 1230 ft, casing open 499-1230 ft, gravel packed.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 899.00 ft above sea level, from levels. Measuring point: Top of vent cap, 2.90 above land-surface datum.

REMARKS. -- Standard Oil No.2

EXTREMES FOR PERIOD OF RECORD.--January 1997 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 240.38 ft below land-surface datum, January 31, 1997; lowest measured, 248.02 ft below land-surface datum, May 04, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
NOV 08	241.39	FEB 14 242.08	MAY 08 242.33	AUG 08	246.58
WATER Y	EAR 2001	HIGHEST 241.39	NOV 08, 2000	LOWEST 246	5.58 AUG 08, 2001

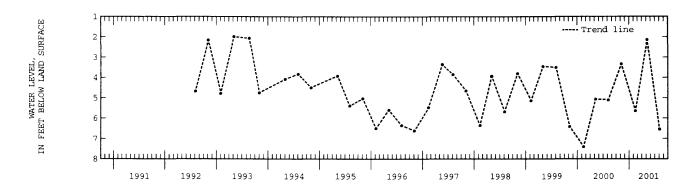
165

GROUND-WATER LEVELS

FLOYD COUNTY

430200092435301. Local number, 95-16-22 BCA1. LOCATION.--Lat 43'02'02", long 92°43'55", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 29 ft, screened 10-29 ft.


INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 1.92 ft above land-surface datum.

EMARKS.-- Well FM-3 (T). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.98 ft above land-surface datum, May 6, 1993; lowest measured, 7.40 ft below land-surface datum, February 14, 2000

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	3.33	FEB 14	5.64	MAY 08	2.14	AUG 03	6.55	
WATER YE	EAR 2001	HIGHEST	2.14	MAY 08,	2001	LOWEST	6.55 AUG	3 03, 2001

430200092435303. Local number, 95-16-22 BCA3. LOCATION.--Lat 43°02'02", long 92'43'55", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Devonian: dolomite of Devonian age.

AUDITER. -Devolution to contain age. WELL CHARACTERISTICS. -Drilled observation well, diameter 1 in., depth 103 ft, screened 91-103 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.94 ft above land-surface datum.

REMARKS.-- Well FM-3 (1).

PERIOD OF RECORD. -- August 1992 to current year.
EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 36.01 ft above land-surface datum, November 01, 1994; lowest measured, 83.41 ft below land-surface datum, February 14, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV		
NOV 07	80.50	FEB 14	83.41	MAY 08	68.78	AUG 0	3 74.	15	
WATER YE	EAR 2001	HIGHEST	68.78	MAY 08, 2	2001	LOWEST	83.41	FEB 14,	2001

430200092435304. Local number, 95-16-22 BCA4.

LOCATION .-- Lat 43°02'02", long 92°43'55", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south DCLATION.--Lat 43'02'02", Iong 92'43'55", Hydrologic Unit 0/080201, approximately 2 ml southwest of Ch of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 207 ft, screened 167-207 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.77 ft above land-surface datum.

REMARKS.-- Well FM-3 (2).

PERIOD OF RECORD. --August 1992 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.05 ft above land-surface datum, August 23, 1993; lowest measured, 89.07 ft below land-surface datum, February 14, 2001.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV			
NOV 07	85.89	FEB 14	8 9 .07	MAY 08	71.33	AUG 0	3 7 9 .	13		
WATER YE	AR 2001	HIGHEST	71.33	MAY 08.	2001	LOWEST	89.07	FEB 3	14.	2001

430200092435305. Local number, 95-16-22 BCA5.

LOCATION .-- Lat 43°02'02", long 92°43'55", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 297 ft, screened 257-297 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.73 ft above land-surface datum.

REMARKS.-- Well FM-3 (3).
PERIOD OF RECORD.--August 1992 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 55.21 ft above land-surface datum, August 23, 1993; lowest measured, 83.13 ft below land-surface datum, February 14, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	80.53	FEB 14	83.13	MAY 08	69.04	AUG 03	74.37	
WATER YE	CAR 2001	HIGHEST	69.04	MAY 08. 2	2001	LOWEST 83	.13 FEB 14, 2001	

430200092435306. Local number, 95-16-22 BCA6. LOCATION.--Lat 43°02'02", long 92°43'55", Hydrologic Unit 07080201, approximately 2 mi southwest of Charles City, 1.7 mi south of Highway 14 on County Road T47. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER. -- Devonian: dolomite of Devonian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 360 ft, screened 340-360 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,105 ft above sea level, from topographic map. Measuring point: Top of casing, 2.53 ft above land-surface datum.

REMARKS.-- Well FM-3 (4). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 56.23 ft above land-surface datum, August 23, 1993; lowest measured, 88.44 ft below land-surface datum, February 6, 1996.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 07	85.79	FEB 14	83.49	MAY 08	71.36	AUG 03	79.12
WATER YE	EAR 2001	HIGHEST	71.36	MAY 08,	2001	LOWEST 85	5.79 NOV 07, 2000

430800092540301. Local number, 96-17-18 CDBA. LOCATION.--Lat 43°07'47", long 92°54'06", Hydrologic Unit 07080202, on the north side of city street approximately 0.5 miles east of county road T-26 in the Town of Rude. Owner: Town of Rude

AQUIFER.--Cambrian/Ordovician: Jordan sandstone and Prairie du Chien Formation dolomite. WELL CHARACTERISTICS.--Drilled public well, diameter 8 in., depth 1290 ft, screened 846-855 ft, gravel-packed. INSTRUMENTATION.--Quarterly measurement by airline by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,123 ft above sea level, by altimeter. REMARKS.-- Rudd Town Well No.2 PERIOD OF RECORD.--February 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 161 ft below land surface datum, August 5, 1997; lowest measured 198 ft below land-surface datum, August 03, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 07	1 9 6	FEB 14	1 9 6	MAY 08	1 9 6	AUG 03	1 9 6
WATER YEAR	2001	WATER YEA	R 2001	HIGHEST	196	LOWEST	1 9 6

GREENE COUNTY

420116094363001. Local number, 83-32-08 BBBC. LOCATION.--Lat 42°01'16*, long 94°36'33*, Hydrologic Unit 07100006, approximately 3 mi west of the Town of Scranton, south of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Hardin Creek buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, screened 161-171 ft, gravel-packed. Open to Pennsylvanian shale and siltstone 171-181 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,135 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum.

REMARKS.-- Well WC-229. PERIOD OF RECORD.--September 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.44 ft below land-surface datum, August 19, 1993; lowest measured, 51.03 ft below land-surface datum, July 8, 1985.

DATE	WATER LEVEL		ATER EVEL	DATE	WATER LEVEL			
NOV 08	42.90	MAY 09 43	3.0 9	A UG 06	47.57			
WATER YE	AR 2001	HIGHEST	42.90	NOV 08,	2000	LOWEST	47.57	AUG 06, 2001

420146094272301. Local number, 83-31-04 ADDB. LOCATION.--Lat 42°01'47*, long 94°27'23*, Hydrologic Unit 07100006, approximately 4 mi west of the City of Jefferson and 0.5 mi south of U.S. Highway 30, on the west side of County Road P-14. Owner: Geological Survey Bureau, DNR and U.S. Geological JIFER.--Dakota: sandstone of Cretaceous age.

AOUIFER.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 54 ft, screened 40-51 ft, gravel- packed. Open to Pennsylvanian shale 51-54 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,000 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. REMARKS.-- Well WC-120.

PERIOD OF RECORD. -- August 1982 to July 1987, February 1990 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 6.39 ft below land-surface datum, July 5, 1983; lowest measured, 19.57 ft below land-surface datum, November 06, 1997.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 08	19.41	FEB 12	18.89	MAY 09	10.37	AUG 06	16.20
WATER YEA	AR 2001	HIGHEST	10.37	MAY 09, 2	2001	LOWEST 1	9.41 NOV 08, 2000

415449094155601. Local number, 82-29-18 DBAA. LOCATION.--Lat 41'54'49*, long 94°15'56*, Hydrologic Unit 07100006, approximately 3.25 mi west and 1.5 mi south of the Town of Rippey, south of County Road E-57. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 90 ft, screened 65-75 ft, gravel- packed; open hole from 75-90 ft. Pleistocene glacial till 75-86 ft, and Pennsylvanian shale and siltstone 86-90 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,005 ft above sea level, from topographic map. Measuring point: Top of casing, 1.85 ft above land-surface datum.

rt above land-surface datum. REMARKS.-- Well WC-117. PERIOD OF RECORD.--August 1982 to November 1995. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.20 ft below land-surface datum, August 17, 1993; lowest measured, 40.13 ft below land-surface datum, February 13, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 08	37.65	FEB 12	37.97	MAY 09	34.56	AUG 02	35.25	
WATER YE	AR 2001	HIGHEST	34.56	MAY 09. 2	2001	LOWEST 3	7.97 FEB 12, 2001	L

420149094344701. Local number, 83-32-04 ACCC. LOCATION.--Lat 42°01'49", long 94°34'47", Hydrologic Unit 07100006, 1.5 mi west of the Town of Scranton south of U.S. Highway 30, adjacent to the Scranton Cemetery. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 240 ft, screened 220-240 ft, gravel-packed. Open to Pennsylvanian shale 234-240 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,202 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum.

REMARKS.-- Well WC-228.

REMARKS.-- Well WC-220. PERIOD OF RECORD.--July 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 151.44 ft below land-surface datum, February 8, 1996; lowest measured, 155.48 ft below land-surface datum, April 17, 1991.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV		
NOV 08	152.45	FEB 12	152.88	MAY 09	152.42	AUG	06 152.	80	
WATER Y	EAR 2001	HIGHES	r 152.42	MAY 09,	2001	LOWEST	152.88	FEB 12	, 20

001

420507094141901. Local number, 84-29-16 CBAB.

LOCATION.--Lat 42°05'07", long 94°14'19", Hydrologic Unit 07100006, approximately 1.5 mi south of the Town of Dana, east of Iowa Highway 144 near the Chicago and Northwestern Railroad. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Beaver buried channel: sand and gravel of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, screened 161-176 ft,

gravel-packed. Open to Pennsylvanian shale 177-181 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,075 ft above sea level, from topographic map. Measuring point: Top of casing, 1.80 ft above land-surface datum. REMARKS.-- Well WC-233.

PERIOD OF RECORD.--August 1983 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 38.63 ft below land-surface datum, April 2, 1985; lowest measured, 43.28 ft below land-surface datum, October 2, 1989.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 08	41.85	FEB 12	41.26	MA Y 09	41.10	AUG 02	41.15
WATER YE	AR 2001	HIGHEST	41.10	MAY 09,	2001	LOWEST 41	.85 NOV 08, 2000

GRUNDY COUNTY

422611092552501. Local number, 88-18-14 BCCB.

LOCATION.--Lat 42°26'07", long 92°55'27", Hydrologic Unit 07080205, located on county road T-19 0.5 miles north of county road D-25 in the City of Wellsburg. Owner: City of Wellsburg AQUIFER.--Cambrian: Jordan Formation sandstone

WELL CHARACTERISTICS.--Drilled public artesian water well, diameter 12 in., depth 2050 ft, casing open 1536-2050 ft

INSTRUMENTATION.--Quarterly measurement with airline by USGS personnel. DATUM.--Elevation of land-surface datum is 1,094 ft above sea level, from topographic map.

REMARKS.-- Wellsburg Well No. 1 PERIOD OF RECORD. -- November 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 275 ft below land-surface datum, February 11, 1997; lowest measured, 296 ft below land-surface datum, August 02, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 07	284	MAY 09	292	AUG 02	289.				
WATER YI	EAR 2001	HIGHEST	284	NOV 07, 2	2000	LOWEST	292	MAY 09,	2001

GUTHRIE COUNTY

413223094150801. Local number, 78-29-24 CAAB

LOCATION.--Lat 41'32'22'3', long 94°15'08', Hydrologic Unit 07100007, approximately 0.5 mi west and 1.5 north of the Town of Dexter. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drill observation artesian water well, diameter 2 in., depth 72 ft, screened 60-68 ft, gravel- packed.

Open to Pennsylvanian shale 65-72 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,020 ft above sea level, from topographic map. Measuring point: Top of casing, 2.10 ft above land-surface datum. REMARKS.-- Well WC-238. PERIOD OF RECORD.--August 1983 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 38.20 ft below land-surface datum, May 10, 1995; lowest measured, 48.82 ft below land-surface datum, April 10, 1986.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		rer Vel	
NOV 08	40.83	FEB 12	40.41	MAY 09	39.70	AUG 02	41	.26	
WATER YE	AR 2001	HIGHEST	39.70	MAY 09,	2001	LOWEST	41.26	AUG 02,	2001

413248094314301. Local number, 78-32-21 AAAA.

LOCATION.--Lat 41°32'48", long 94°31'43", Hydrologic Unit 07100008, approximately 2.25 mi north of the Town of Casey. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 161 ft, cased to 135 ft, slotted 125-135 ft, gravel-packed. Open to Pennsylvanian shale and siltstone 158-161 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,250 ft above sea level, from topographic map. Measuring point: Top of casing, 1.90

ft above land-surface datum. REMARKS.-- Well WC-239.

PERIOD OF RECORD. -- August 1983 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 70.50 ft below land-surface datum, January 12, 1988; lowest measured, 74.38 ft below land-surface datum, January 9, 1985.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 08	73.06	FEB 12	73.28	MAY 09	72.97	AUG 02	73.30	
WATER YE	AR 2001	HIGHEST	72.97	MAY 09, 3	2001	LOWEST 7	3.30 AUG 02,	2001

414728094385301. Local number, 81-33-26 DDDD. LOCATION.--Lat 41°47'29", long 94°38'54", Hydrologic Unit 07100007, approximately 5 mi south and 1.25 mi east of the Town of Coon Rapids on the north side of County Road F-24. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 80 ft, screened 60-65 ft, gravel- packed, open hole 67-80 ft. Open to Pennsylvanian shale 67-80 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,205 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20 ft above land-surface datum. REMARKS.-- Well WC-93.

PERIOD OF RECORD. -- July 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 36.76 ft below land-surface datum, May 4, 1994; lowest measured, 40.98 ft below land-surface datum. January 3, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WA7 LEV			
NOV 08	39.87	FEB 12	40.00	MAY 09	39.37	AUG 02	39.	.56		
WATER YE	AR 2001	HIGHEST	39.37	MAY 09,	2001	LOWEST	40.00	FEB 2	12,	2001

414821094271301. Local number, 81-31-22 CCCC.

LOCATION.--Lat 41°48'21", long 94°27'12", Hydrologic Unit 07100007, approximately 2.5 mi south and 1 mi west of the Town of Bagley, north of Spring Brook State Park. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER. -- Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 153 ft, screened 143-153 ft, gravel-packed. Open to Pennsylvanian shale 149-153 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,190 ft above sea level, from topographic map. Measuring point: Top of casing, 1.45 ft above land-surface datum. REMARKS.-- Well WC-105.

PERIOD OF RECORD .-- August 1982 to current year.

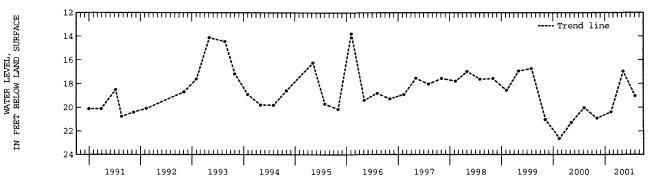
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.84 ft below land-surface datum, August 3, 1994; lowest measured, 69.88 ft below land-surface datum, December 9, 1982.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		WAT LEV			
NOV 08	60.55	FEB 12	61.42	MAY 09	61.64	AUG 0	2	61.	51		
WATER YE	AR 2001	HIGHEST	60.55	NOV 08, 2	2000	LOWEST	61	. 64	MAY	09,	2001

HARDIN COUNTY

423310093032802. Local number, 89-19-02 BDAC2. LOCATION.--Lat 42°33'08", long 93°03'31", Hydrologic Unit 07080205, 0.35 south and 0.10 mi west of the intersection of U.S. Highway 20 and County Road S-56. Well is in a shed at the west end of 2nd Avenue adjacent to railroad tracks. Owner: City of


Ackley. Ackley. AQUIFER.--Mississippian: limestone and dolomite of Mississippian age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 10 in., depth 134 ft, screened 57-60 ft, open hole

68-134 ft. Open to Devonian rock 131-134 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder, 60 minute punch, to october, 1992. DATUM.--Elevation of land-surface datum is 1,085 ft above sea level, from topographic map. Measuring point: Top of recorder

barbar - Dievation of fand-surface datum is 1,003 ft above sea fevel, from topographic map. Measuring point: top of fecord base, 0.8 ft above land-surface datum. REMARKS.-- Ackley No. 5 well. PERIOD OF RECORD.--September 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 13,79 ft below land-surface datum, February 5, 1996; lowest

measured, 27.20 ft below land-surface datum, February 25, 1990.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	20.92	FEB 14	20.37	MAY 09	16.96	AUG 02	19.02	
WATER YE	EAR 2001	HIGHEST	16.96	MAY 09,	2001	LOWEST 2	0.92 NOV 07, 200	0

GROUND-WATER LEVELS

HARRISON COUNTY

413024095353901. Local number, 78-41-31 DDDD.

LOCATION.--Lat 41°30'24*, long 95°35'39*, Hydrologic Unit 10230006, approximately 4.5 mi south of the Town of Persia and west of Iowa Highway 191 to the north of the Tri-County High School. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 129 ft, screened 109-119 ft,

gravel-packed. Open to Pennsylvanian shale and limestone 118-129 ft.

DISTRUMENTATION.-Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,158 ft above sea level, from topographic map. Measuring point: Top of casing, 2.05 ft above land-surface datum.

REMARKS.-- Well WC-27. PERIOD OF RECORD.--January 1982 to current year.

EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 55.26 ft below land-surface datum, July 7, 1982; lowest measured, 60.54, July 5, 1989.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV		
DEC 04	58.33	FEB 1/3	58.30	MAY 08	57.57	JUL 3	1 57.	14	
WATER YE	AR 2001	HIGHEST	57.14	JUL 31, 3	2001	LOWEST	58.33	DEC 04,	2000

413523095483101. Local number, 78-43-05 ACDD. LOCATION.--Lat 41°35'23", long 95°48'30", Hydrologic Unit 10230007, approximately 3.25 mi south of the Town of Logan and 1.5 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 179 ft, screened 168-175 ft, gravel-packed. Open to Pennsylvanian shale 175-179 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,080 ft above sea level, from topographic map. Measuring point: Top of casing, 2.35

ft above land-surface datum.

REMARKS.-- Well WC-33. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 66.20 ft below land-surface datum, March 21, 1990; lowest measured, 74.90 ft below land-surface datum, February 16, 1988.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATE LEVE	
NOV 20	71.81	FEB 15	72.92	MAY 10	71.0 4	AUG 01	71.1	0
WATER YE	AR 2001	HIGHEST	71.04	MAY 10,	2001	LOWEST 7	2.92	FEB 15,

413524095490601. Local number, 78-43-05 BCDD.

41524095490601. Local number, 78-43-05 BCDD. LoCATION.--Lat 41°35'24*, long 95°49'06*, Hydrologic Unit 10230007, approximately 2 mi north and 3.5 mi east of the Town of Missouri Valley and 1 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Alluvial: Boyer River sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 51 ft, screened 48-51 ft, gravel- packed.

INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,010 ft above sea level, from topographic map. Measuring point: Top of casing, 3.40

ft above land-surface datum.

PERIOD OF RECORD.--May 1982 to current year.

EXISION OF ABCORD.--May 1962 to current year. REVISION.--Measuring point revised September 4, 1990 to September 29, 1992. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.68 ft below land-surface datum, July 07, 1998; lowest measured, 7.00 ft below land-surface datum, September 9, 1988, October 18, 1990 and December 5, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 20 J AN 31	4.71 5.23	FEB 15 MAR 26	4.6 8 3.60	APR 30 MAY 10	4.19 2.61	MAY 31 JUN 28	2.65 3.5 4	AUG 01 SEP 29	3.57 5.96		
WATER Y	EAR 2001	HIGHEST	2.61	MAY 10.	2001	LOWEST	5.96 SEF	29, 2001			

413838095462001. Local number, 79-42-19 AADB. LOCATION.--Lat 41°38'38*, long 95°46'20*, Hydrologic Unit 10230007, approximately 0.5 mi east of the Town of Logan, north of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Mississippian: dolomite of Mississippian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 628 ft, screened 588-628 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1,045 ft above sea level, from topographic map. Measuring point: Top of casing, 4.40 ft above land-surface datum.

.

REMARKS.-- Well WC-22. PERIOD OF RECORD.--November 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.33 ft above land-surface datum, June 19, 1987; lowest measured, 16.37 ft below land-surface datum, June 3, 1982.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATE: LEVEI		
NOV 20	5.12	FEB 15	4.71	MAY 10	4.50	AUG 01	4.52	2	
WATER YE	AR 2001	HIGHEST	4.50	MAY 10,	2001	LOWEST	5.12 I	NOV 20,	2000

2001

414700095373001. Local number, 81-41-33 CAAA.

LOCATION.--Lat 41°47'00", long 95°37'30", Hydrologic Unit 10230007, approximately 4.5 mi south of the Town of Dunlap, and 2 mi east of U.S. Highway 30. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 169 ft, screened 145-154 ft,

gravel-packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,182 ft above sea level, from topographic map. Measuring point: Top of casing, 2.90 ft above land-surface datum. REMARKS.-- Well WC-52.

PERIOD OF RECORD .-- June 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.50 ft below land-surface datum, August 12, 1993; lowest measured, 85.03 ft below land-surface datum, June 4, 1982.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 21	76.75	FEB 15	77.38	MAY 10	74.53	AUG 01	74.08

WATER YEAR 2001 HIGHEST 74.08 AUG 01, 2001 LOWEST 77.38 FEB 15, 2001

HENRY COUNTY

405010091424901. Local number, 70-07-30 BCDD. LOCATION.--Lat 40°50'10", long 91°42'49", Hydrologic Unit 07080107, in the Hillsboro City Park adjacent to water tower. Owner: City of Hillsboro.

AQUIFER.--Mississippian: limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled unused test hole, diameter 6 in., depth 365 ft, cased to 74.8 ft, open hole 74.8-365 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 733 ft above sea level, from topographic map. Measuring point: Hole in top of casing, 1.15 ft above land-surface datum.

REMARKS.-- Hillsboro Test 1

REMARKS.-- HIIISDOTO TEST I. PERIOD OF RECORD.--August 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 70.12 ft below land-surface datum, February 23, 1996, May 6, 1994; lowest measured, 78.03 ft below land-surface datum, February 22, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		ATER IVEL	
NOV 06	71.60	FEB 12	72.05	MAY 07	71.59	AUG 07	71	L.86	
WATER YE	AR 2001	HIGHEST	71.59	MAY 07, 2	2001	LOWEST	72.05	5 FEB 12,	2001

410852091394301. Local number, 73-07-09 AABD. LOCATION.--Lat 41°08'51", long 91°39'43", Hydrologic Unit 07080107, north of Main Street near the water tower, Wayland. Owner: Town of Wayland.

AOUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS .-- Dug unused water-table well, diameter 4 ft, depth 52 ft. Casing information not available.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

INVIRUMENTATION.--Quarterry measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 735 ft above sea level, from topographic map. Measuring point: Hole in top of casing, 0.21 ft above land-surface datum. REMARKS.-- Wayland Town Well PERIOD OF RECORD.--August 1960 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.30 ft below land-surface datum, September 1, 1965; lowest measured, 14.69 ft below land-surface datum, February 15, 1977.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV		
NOV 06	11.06	FEB 12	9.60	MAY 07	9.14	AUG 07	9.	92	
WATER YE	AR 2001	HIGHEST	9.14	MAY 07,	2001	LOWEST	11.06	NOV 06	, :

HOWARD COUNTY

2000

432158092065801. Local number, 99-11-26 BCA. LOCATION.--Lat 43°21'58", long 92°06'58", Hydrologic Unit 07060004, located approximately 1 mi west of the town of Cresco, 0.5 mi south from state highway 9 on county road V-58. Owner: Town of Cresco.

AQUIFER.--Cambrian/Ordovician. WELL CHARACTERISTICS.--Drilled public use artesian well, diameter 16 in, depth 1120 ft., Casing information not available. INSTRUMENTATION.--Quarterly measurement using an airline by USGS personnel.

DATUM.--Elevation of land-surface datum is 1288 ft above sea level, from topographic map. REMARKS.-- Cresco Well No. 4. PERIOD OF RECORD.--February 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 318 ft below land surface datum, May 20, 1997; lowest measured, 355 ft below land-surface datum, May 09, 2000.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 07	352	FEB 14	353	MAY 08	338	AUG 03	355
WATER YE	EAR 2001	HIGHEST	338	MAY 08,	2001	LOWEST	355 AUG 03, 2001

HUMBOLDT COUNTY

424039094103601. Local number, 91-28-20 CAAA. LOCATION.--Lat 42°40'29", long 94°10'47", Hydrologic Unit 07100004, approximately 3 mi south of the Town of Dakota City, on the west side of County Road P-56. Owner: Elmer Gravdlund. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS .-- Unused water-table well, diameter 3 ft, cribbed with field stone, depth 24.5 ft, casing information unavailable.

INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,135 ft above sea level, from topographic map. Measuring point: Top of casing, 0.30 ft above land-surface datum. REMARKS: Gravdlund/G-1 well.

PERIOD OF RECORD.--July 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.40 ft below land-surface datum, April 26, 1991; lowest measured, 19.29 ft below land-surface datum, March 12, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 17 NOV 06	12.68 13.03	DEC 28 JAN 24	13.68 13.97	FEB 13 MAR 19	14.02 12.88	APR 19 MAY 07	6.29 5. 4 0	JUN 18 JUL 12	5.98 6.90	AUG 21 SEP 25	7.82 8.84
WATER Y	EAR 2001	HIGHEST	5.40	MAY 07,	2001	LOWEST 14	1.02 FEB	13, 2001			

IDA COUNTY

422215095390811. Local number, 87-41-05 CCCC11. LOCATION.--Lat 42°22'15", long 95°39'08", Hydrologic Unit 10230005, approximately 0.75 mi east and 6.5 mi south of the Village of Cushing. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 490 ft, screened 301-305 ft. Original depth 510 ft. cemented back to 490 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,344 ft above sea level, from topographic map. Measuring point: Top of casing, 2.18 ft above land-surface datum. REMARKS.-- Well D-10.

ERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 202.55 ft below land-surface datum, June 4, 1980; lowest measured, 208.27 ft below land-surface datum, November 20, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		ATER IVEL DATE	WATER LEVEL	DATI	WAT LEV		
NOV 20	208.27	FEB 13 208	8.03 MAY 09	207.56	AUG (06 207.	25	
WATER Y	EAR 2001	HIGHEST 2	07.25 AUG 06,	2001	LOWEST	208.27	NOV 20,	2000

423107095383201. Local number, 89-41-13 CCCC. LOCATION.--Lat 42°31'07", long 95°38'28", Hydrologic Unit 10230003, at a roadside park on County Road D-15, approximately 1.5 mi east and 3.5 mi north of the Village of Cushing. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Mississippian: limestone of Mississippian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 469 ft, sand point 465-468 ft, open hole 468-469 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,320 ft above sea level, from topographic map. Measuring point: Top of casing, 2.11 ft above land-surface datum.

REMARKS.-- Well D-9.

PERIOD OF RECORD. -- December 1978 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 177.06 ft below land-surface datum, August 06, 2001; lowest measured, 244.55 ft below land-surface datum, July 9, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	WA1 E LEV		
NOV 20	182.01	FEB 13 1	.82.98	MAY 09	178.99	AUG	06 177.	06	
WATER Y	EAR 2001	HIGHEST	177.06	AUG 06,	2001	LOWEST	182.98	FEB 13,	2001

JACKSON COUNTY

420842090165701. Local number, 85-6E-29 ACAD1. LOCATION.--Lat 42°08'41", long 90°16'56", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.--Dresbach: Mt. Simon sandstone of Early Cambrian age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 1,804 ft, screened 1,705-1,725 ft, open hole 1,725-1,804 ft.

INSTRUMENTATION .-- Quarterly measurement with engineers rule by USGS personnel.

DATUM. .-- Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Mark on angle iron attached to well house, 6.05 ft above land- surface datum.

REMARKS.--Flowing well. Green Island #1. PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.81 ft above land-surface datum, May 16, 1988; lowest measured, 9.23 ft above land-surface datum, September 02, 1998.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL			
NOV 08	9.34	FEB 13	9.35	AUG 08	9.6			
WATER Y	EAR 2001	HIGHEST	9.34	NOV 08, 2	2000	LOWEST	9.6	AUG 08, 2001

420842090165702. Local number, 85-06E-29 ACAD2. LOCATION.--Lat 42°08'41", long 90°16'56", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife

and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician, Wonewoc sandstone of Late Cambrian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 1,275 ft, screened 1,204.4-1,224.4 ft, open hole 1,224.4-1,275 ft.

DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, 2.0 ft above land-surface datum

REMARKS.-- Green Island No. 2 well. Well pumped during winter to supply water to goose pond. Water levels for water years 1986 to 1989 affected by oil in the well.

PERIOD OF RECORD.--July 1982 to November 1983, September 1986 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, +1.84 ft above land-surface datum, May 21, 1987; lowest measured, 3.88 below land-surface datum, November 4, 1982.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 08	.38	FEB 13	.00	AUG 08	1.1				
WATER YE	EAR 2001	HIGHEST	.00	FEB 13,	2001	LOWEST	1.1	AUG 08,	2001

420842090165703. Local number, 85-6E-29 ACAD3

LOCATION.--Lat 42°08'41", long 90°16'56", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Railroad tracks in the Upper Mississippi River Wildlife

and Fish Refuge. Owner: U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: Prairie du Chien dolomite of Early Ordovician age and St. Peter sandstone of Middle Ordovician age

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 910 ft, screened 604.2-624.2 ft, open hole 624.2-910 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

EMARKS.-- Green Island No. 3. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.19 ft below land-surface datum, January 8, 1986; lowest measured 9.90 ft below land-surface datum, August 31, 1983.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL			
NOV 08	6.64	FEB 13	6.15	AUG 08	5.19			
WATER YE	EAR 2001	HIGHEST	5.19	AUG 08, 2	2001	LOWEST	6.64	NOV 08, 2000

420433090502401. Local number, 84-01E 22 LOCATION.--Lat 42°04'34", long 90°50'23", Hydrologic Unit 07060006, located just east of the water-tower in the Town of Baldwin. Owner: Town of Baldwin.

AOUIFER. -- Devonian/Silurian

MULL CHARACTERISTICS.--Drilled public-use well, diameter 14 in., depth 190 ft, open hole from 80-190 ft. INSTRUMENTATION.--Quarterly measurement using airline by USGS personnel. DATUM.--Elevation of land-surface is 760 feet above sea level, by topographic map.

REMARKS. -- Baldwin No. 2

PERIOD OF RECORD.--August 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 59.74 feet below land-surface datum, May 03, 1999; lowest measured, 64.22 feet below land-surface datum, February 09, 1999.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WA1 LEV		
NOV 08	63.53	FEB 14	62.54	MAY 08	62.13	AUG 0	8 62.	98	
WATER YE	EAR 2001	HIGHEST	62.13	MAY 08, 2	2001	LOWEST	63.53	NOV 08	, 2000

420842090165704. Local number, 85-6E-29 ACAD4. LOCATION.--Lat 42°08'41", long 90°16'56", Hydrologic Unit 07060005, 1 mi east of U.S. Highway 52, 2 mi southeast of the Village of Green Island beside the Chicago, Milwaukee, St. Paul and Pacific Rail- road tracks in the Upper Mississippi River Wildlife and Fish Refuge. Owner: U.S. Geological Survey.

AQUIFER.--Cambrian-Ordovician: Galena dolomite of Middle Ordovician age. WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 2 in., depth 400 ft, screened 300-320 ft, open hole 320-400 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 610 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

EMARKS -- Green Island No. 4. PERIOD OF RECORD.--May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.39 ft below land-surface datum April 27, 1993; lowest measured, 19.46 ft below land-surface datum, September 20, 1988.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 08	16.27	FEB 13	15.85	AUG 08	16.9

LOWEST 16.9 AUG 08, 2001 WATER YEAR 2001 HIGHEST 15.85 FEB 13, 2001

JASPER COUNTY

414210092592001. Local number, 80-18-31 ABBB.

LOCATION.--Lat 41°42'10", long 92°59'20", Hydrologic Unit 07080105, approximately 3 mi east of the City of Newton just south of U.S. Highway 6. Owner: P.W. Beukema. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Dug stock water-table well, diameter 36 in., depth 37 ft, cribbed with brick. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 940 ft above sea level, from topographic map. Measuring point: Top of cement platform, 0.70 ft above land-surface datum.

REMARKS.-- Beukema well PERIOD OF RECORD.--February 1940 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.67 ft below land-surface datum, June 10, 1947; lowest measured, 27.15 ft below land-surface datum, December 18, 1948.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	-	
NOV 07	8.41	FEB 12	8.47	MAY 07	4.40	AUG 07	5.34	i	
WATER YE	EAR 2001	HIGHEST	4.40	MAY 07,	2001	LOWEST	8.47 F	EB 12,	2001

413908093071100. Local number, 79-19-01 CCCB.

LOCATION .-- Lat 41°39'08", long 93°07'11", Hydrologic Unit 07080105, located approximately 5 miles east of Newton airport on county road. Owner: Newton Waterworks. AQUIFER.--Cambrian/Ordovician.

MULL CHARACTERISTICS.--Drilled public-supply well, diameter 24 in. and 16 in., depth 2256.00 ft, open hole 1705-2256 ft. INSTRUMENTATION.--Intermitent measurement by Newton Waterworks personnel by airline. DATUM.--Elevation of land-surface datum is 775.00 ft above sea level, by levels.

REMARKS .-- Newton No. 24.

PERIOD OF RECORD. --October 2000 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 182 feet below land surface datum, Decemeber 18, 2000; lowest measured, 205 feet below land-surface datum March 24, 2001.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 20 NOV 21	192 197	DEC 18 JAN 16	182 200	FEB 16 23	197 197	MAR 24 APR 17	205 200	AUG 23 SEP 13	200 201		
WATER YEA	AR 2001	HIGHEST	182	DEC 18, 2	2000	LOWEST	205 MAR	24, 2001			

GROUND-WATER LEVELS

JOHNSON COUNTY

413925091324001. Local number, 79-06-09 DDBC.

LOCATION.--Lat 41°39'34", long 91°32'42", Hydrologic Unit 07080209, at the Quadrangle Dormitory, University of Iowa, Iowa City. Owner: University of Iowa. AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 12 in., depth 430.5 ft, cased to 225 ft, open hole 225-430.5

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel, measured twice per month as part of project 461908100.

DATUM. -- Elevation of land-surface datum is 714 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 1.81 ft above land- surface datum. REMARKS.-- University of Iowa Quadrangle Dormitory. Water levels affected by nearby wells pumping in late spring, summer, and early fall.

PERIOD OF RECORD. -- April 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--HUR TA-84-1, WDR TA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 74.63 ft below land-surface datum, March 21, 1979; lowest measured, 174.62 ft below land-surface datum, September 5, 1995.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	WATER DATE LEVEL	WATE DATE LEVE		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 20 NOV 14 DEC 19		JAN 23 116.22 FEB 21 114.36 MAR 20 118.89	APR 10 121.0 30 120.4 MAY 15 145.0	8 21	150.44 153.60 163.24	JUL 26 AUG 13 28		SEP 14	137.31
WATER Y	EAR 2001	HIGHEST 114.3	6 FEB 21, 2001	LOWEST 16	53.24 JUL	09, 2001			

414132091345502. Local number, 80-06-31 ADBC1. LOCATION.--Lat 41'41'45", long 91°35'00", Hydrologic Unit 07080209, located in the City of Coralville, north of U.S. Interstate 80. Owner: City of Coralville.

AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 130 ft, 2 in. to 300 ft, depth 500 ft, open hole 300-500 ft.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to September 1997.

DATUM. -- Elevation of land-surface datum is 795 ft above sea level, from topographic map. Measuring point: top of casing, 1.03 ft above land-surface datum.

REMARKS.-- Coralville Observation No. 3, North.

PERIOD OF RECORD.--June 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest level measured, 169.04 ft below land-surface datum, June 21, 1988; lowest water level

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18 NOV 14 DEC 19	246.35 240.15 238.11	JAN 23 26 FEB 21	231.91	MAR 20 APR 10 30			2 44 .79 245.44 253.83	AUG 13 28 SEP 14	252.77 253.70 251.96		

LOWEST 253.83 JUL 09, 2001 WATER YEAR 2001 HIGHEST 231.91 JAN 26, 2001

414107091322901. Local number, 79-06-04 AAAA. LOCATION.--Lat 41°41'07", long 91°32'29", Hydrologic Unit 07080209, at Forest View Trailer Court, northern edge of Iowa City. Owner: Forest View Trailer Court.

AQUIFER.--Silurian: limestone of Silurian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 280 ft, cased to 96 ft, open hole 96-280 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to October 1995. Graphic water-level recorder May 1971 to October 1986. DATUM.--Elevation of land-surface datum is 735 ft above sea level, from topographic map. Measuring point: Nipple on plate welded

to top of casing, 1.62 ft above land- surface datum.

REMARKS.--Forest View Trailer Court. Water levels affected by wells in the area pumping in late spring, summer, and early fall. The large number of water-level measurements in June 1996 are a result of the well being used as an observation well for a

nearby pump test. PERIOD OF RECORD.--May 1971 to current year. REVISED RECORDS.--WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 96.93 ft below land-surface datum, March 23, 1979; lowest measured, 153.24 ft below land-surface datum, July 30, 1998.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 20 NOV 14 DEC 19	138.01 135.44 133.79	JAN 23 FEB 21 MAR 20		APR 10 30 MAY 15	141.57	JUN 04 21 JUL 09	140.58 141.52 147.74	JUL 26 AUG 13 28	149.40 144.58 140.68	SEP 14	141.46

HIGHEST 131.96 FEB 21, 2001 LOWEST 149.40 JUL 26. 2001 WATER YEAR 2001

414132091345503. Local number, 80-06-31 ADBD1. LOCATION.--Lat 41°41'44", long 91°34'35", Hydrologic Unit 07080209, located in the City of Coralville, north of U.S. Interstate 80. Owner: City of Coralville.

AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled public-supply water well, 12 in. diameter, depth 500 ft, cased 0-200 ft, open hole 200-500 ft. INSTRUMENTATION.--Monthly airline measurement by USGS personnel, measured twice per month March 1995 to October 1995. DATUM.--Elevation of land-surface datum is 795 ft above sea level, from topographic map. Measuring point: airline gauge, 2.88 ft above land-surface datum. REMARKS.-- Coralville Production No. 9.

EXTREMES FOR PERIOD OF RECORD.--June 1988 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 204 ft below land-surface datum, July 25, 1988; lowest water level measured, 314 ft below land-surface datum, August 13, 2001 and August 28, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18 NOV 14	301 294	JAN 23 FEB 21	293 293	APR 10 30	296 296	JUN 04 21	299 298	JUL 26 AUG 13	256 314	SEP 14	312
DEC 19 WATER YE	292 EAR 2001	MAR 20 HIGHEST	293 256	MAY 15 JUL 26, 1	296 2001	JUL 09 LOWEST	310 314 AUG	28 13, 2001	314 AUG 28,	2001	

414145091350101. Local number, 80-06-31 ADC. LOCATION.--Lat 41°41'45", long 91°35'01". Hydrologic unit 07080209, located in the city of Coralville., north of U.S. Interstate 80. Owner: City of Coralville. AQUIFER.--Cambrian- Jordan sandstone. WELL CHARACTERISTICS.--Drilled public-supply water well, diameter 16 in, depth 1710 ft., casing information not available. INSTRUMENTATION.--Bi-monthly measurements using airline by USGS personnel.

DATUM.--Elevation of land-surface datum is 740 ft above sea level, from unknown method.

REMARKS.-- Coralville No. 10. PERIOD OF RECORD.--June 1996 to current year.

EXTREMES FOR PERIOD OF RECORD.--highest water level measured, 318 ft below land-surface datum, May 07, 1997; lowest water level measured, 419 ft. below land surface datum, August 13, 2001 and August 28, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18 NOV 14 DEC 19	408 401 398	JAN 23 FEB 21 MAR 20	402 404 393	APR 10 30 MAY 15	400 404 405	JUN 04 21 JUL 09	405 409 415	JUL 26 AUG 13 28	368 419 419	SEP 14	416
WATER YE	EAR 2001	HIGHEST	368	JUL 26, 3	2001	LOWEST	419 AUG	13, 2001	AUG 28,	2001	

414315091252001. Local number, 80-05-22 CBCB1. LOCATION.--Lat 41°43'15", long 91°25'18", Hydrologic Unit 07080209, along the abandoned Chicago, Rock Island, and Pacific Railroad track, 500 ft southeast of Rapid Creek Road, approximately 5.5 mi northeast of the junction of Interstate 80 and Iowa Highway 1. Owner: Chicago, Rock Island and Pacific Railroad Co. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 2.25 in., depth 18.43 ft, screened 16.43-18.43 ft. Depth

originally 20 ft, depth of 18.43 ft measured June 23, 1989. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. Graphic water-level recorder February 1942 to October 1965, measured twice per month March 1995 to October 1995. DATUM.--Elevation of land-surface datum is 753 ft above sea level, from topographic map. Measuring point: Nipple welded to

casing, 4.47 ft above land-surface datum. REMARKS.-- At the site of the former Elmira depot.

PERIOD OF RECORD. -- May 1941 to September 1956, January 1958 to current year. REVISED RECORDS.--WDR IA-88-1.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 4.84 ft below land-surface datum, April 29, 1947 (revised); lowest Member 21, November 23, and December 17, 1976, and January 20 and February 18, 1977.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 15 DEC 20	14.92 15.12 15.48	JAN 24 FEB 22 MAR 21	15.60 16.42 14.37	APR 10 MAY 01 16	13.79 13.43 13.22	JUN 06 22 JUL 10	12.59 12.31 12.28	JUL 27 AUG 10 29	12.41 12.55 12.77	SEP 13	12.97

HIGHEST 12.28 JUL 10, 2001 LOWEST 16.42 FEB 22, 2001 WATER YEAR 2001

JOHNSON COUNTY--Continued

414221091361101. Local number, 80-07-25 DBAC1. LOCATION.--Lat 41°42'24", long 91°36'16", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/ Geological Survey Bureaús Oakdale core repository. Owner: Geological Survey Bureau/DNR AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 164 ft, 5 in. to 319 ft, 4 in. 319- 361.5 ft, liner set 310-361.5 ft, depth 532 ft, open hole 361.5-532 ft.

INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to October 1995.

DATUM. -- Elevation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder platform, 2.65 ft above land-surface datum.

REMARKS.-- Oakdale No. 1 (ODW-1). PERIOD OF RECORD.--April 1990 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 126.23 ft below land-surface datum, July, 31 1997; lowest water level measured, 245.93 ft below land-surface datum, July 26, 1991.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 14	231.33 222.51 226.47	FEB 21	217.75 223.77 225.78	30	225.34 226.61 227.12	21	227.58 227.32 236.63	JUL 26 AUG 13 28		SEP 14	235.60

HIGHEST 217.75 JAN 23, 2001 LOWEST 242.61 JUL 26. 2001 WATER YEAR 2001

414221091361102. Local number, 80-07-25 DBAC2.

LOCATION.--Lat 41°42'24", long 91°36'16", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/ Geological Survey Bureaus Oakdale core repository. Owner: Geological Survey Bureau/DNR.

AQUIFER.--Devonian: limestone and dolomite of Devonian age.

WELL CHARACTERISTICS .-- Drilled observation artesian water well, diameter 5 in., depth 301 ft, cased 0-175 ft, open hole 175-301

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to October 1995.

DATUM. -- Elevation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder

DATOM.--Elevation of land-surface datum is 750 it above sea level, from topographic map. Incouring period of platform, 2.55 ft above land-surface datum. REMARKS.-- Oakdale No. 2, (ODW-2). PERIOD OF RECORD.--April 1990 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 198.65 ft below land-surface datum, June 2 and 7, 1996; lowest water level measured, 227.09 ft below land-surface datum, August 28, 1991.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL	WATER DATE LEVEL
OCT 18 214.43 NOV 14 211.28 DEC 19 208.40	JAN 23 208.13 FEB 21 207.90 MAR 20 208.14	APR 10 208.25 30 209.49 MAY 15 209.82	JUN 04 209.77 21 210.06 JUL 09 217.12	AUG 13	222.09 218.54 209.90	SEP 14 217.21
WATER YEAR 2001	HIGHEST 207.90	FEB 21, 2001	LOWEST 222.09 JUL	26, 2001		

413950091322402. Local number, 79-06-10 BCCD. LOCATION.--Lat 41°39'57", long 91°32'14", Hydrologic Unit 07080209, located on the northeast corner of the terminal end of North Madison Street just north of the Iowa City water treatment plant, approximately 0.5 miles north of Burlington St. Owner: The AQUIFER.--Cambrian/Ordovician. Dolomite from the Prairie Du Chien Formation WELL CHARACTERISTICS.--Drilled public use well, diameter 26 in, depth 1570 ft, open interval from 1000-1570 ft. INSTRUMENTATION.--Bi-weekly measurements using an airline by USGS personnel. DATUM.--Elevation of land-surface datum is 650 ft above sea level, from topographic map.

DATUM.--Elevation of Tand-Surface datum is 0.50 fe ducite sea force, from treasure REMARKS,-- Iowa City Well No. 1 PERIOD OF RECORD.--April 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 154 ft below land-surface datum, September 25, 1996, May 07, 1997, June 18, 1997, July 02,1997; lowest water level measured, 360 ft below land-surface datum, May 12, 1999.

WATER	WATER	WATER	WATER		WATER	WATER
DATE LEVEL	DATE LEVEL	DATE LEVEL	DATE LEVEL		LEVEL	DATE LEVEL
OCT 20 267	JAN 23 277	APR 10 200	JUN 04 271	JUL 26	292	SEP 14 168.17
NOV 14 279	FEB 21 277	30 264	21 286	AUG 13	268	
DEC 19 278	MAR 20 276	MAY 15 286	JUL 09 287	28	197	
WATER YEAR 2001	HIGHEST 168.17	SEP 14, 2001	LOWEST 292 JU	UL 26, 2001		

413929091322401. Local number, 79-06-10 CCCB. LOCATION.--Lat 41°39'30", long 91°32'25". Hydrologic Unit 07080209, located at University of Iowa water treatment plant. Owner: University of Iowa.

AQUIFER. -- Cambrian-Jordan sandstone.

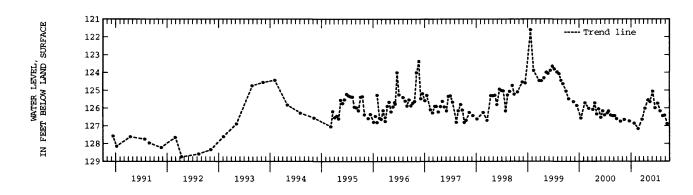
WELL CHARACTERISTICS.--Drilled artesian well used for withdrawal and testing, diameter 20 in, depth 1550 ft, casing open from 1063-1550 ft.

INSTRUMENTATION.--Bi-weekly measurements using airline by USGS personnel DATUM.--Elevation of land-surface datum is 654.51 ft. above sea level, by levels run to accuracy of 0.01 ft. Measuring point is airline connection 0.85 ft. above land surface datum. REMARKS.-- SUI water treatment plant PERIOD OF RECORD.--May 17, 1995 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 160 ft below land-surface datum, June 04, 1997; lowest water level

measured, 222 ft. below land-surface datum, June 21, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 20 NOV 14 DEC 19	144 144 143	JAN 23 FEB 21 MAR 20	160 140 168	APR 10 30 MAY 15	185 175 189	JUN 04 21 JUL 09	205 222 215	JUL 26 AUG 13 28	189 184 180	SEP 14	172


WATER YEAR 2001 HIGHEST 140 FEB 21, 2001 LOWEST 222 JUN 21, 2001

414221091361103. Local number, 80-07-25 DBAD1. LOCATION.--Lat 41°42'24", long 91°36'16", Hydrologic Unit 07080209, located at the Iowa Department of Natural Resources/ Geological Survey Bureaús Oakdale core repository. Owner: Geological Survey Bureau/DNR.

AQUIFER --Buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 4 in., depth 171 ft, screened 153-171. ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel, measured twice per month March 1995 to October

INSTRUMENTATION.--Quarterly measurement with charked tape by 0505 personner, measured care per menor factor for an end of the formation of land-surface datum is 790 ft above sea level, from topographic map. Measuring point: top of recorder platform, 2.55 ft above land-surface datum.
REMARKS.-- Oakdale No. 3 (ODW-3).
PERIOD OF RECORD.--April 1990 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 121.61 ft below land-surface datum, January 20, 1999; lowest water level measured, 122.74 ft below land-surface datum, April 12, 1992.

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 18 126.75 NOV 14 126.64	JAN 23 126.86 FEB 21 127.16	APR 10 126.01 30 125.56	JUN 04 125.06 21 126.00	AUG 13		SEP 14	126.89
DEC 19 126.73 WATER YEAR 2001	MAR 20 126.64 HIGHEST 125.06	MAY 15 125.66 JUN 04, 2001	JUL 09 125.73		126.42		

414315091252002. Local number, 80-05-22 CBCB2.

LICATION --Lat 41°43'15"; long 91°25'18", Hydrologic Unit 07080209, along the abandoned Chicago, Rock Island, and Pacific Railroad track, 500 ft southeast of Rapid Creek Road, approximately 5.5 mi northeast of the junction of Interstate 80 and Iowa Highway 1. Owner: Chicago, Rock Island and Pacific Railroad Co.

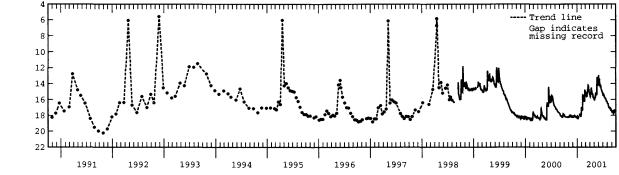
AQUIFER.--Devonian: Cedar Valley limestone of Middle Devonian age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 82.5 ft. Casing information not available. INSTRUMENTATION.--Intermittant measurement with chalked tape by USGS personnel. Shaft encoder and data collection platform (dcp) installed July, 1998.

DATUM.--Elevation of land-surface datum is 753 ft above sea level, from topographic map. Measuring point: Nipple welded to plate on top of casing, 4.01 ft above land- surface datum. REMARKS.-- At the site of the former Elmira depot.

PERIOD OF RECORD. -- December 1941 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.58 ft below land-surface datum, November 27, 1992; lowest measured, 21.65 ft below land-surface datum, August 21, 1989.


WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 15 DEC 20	18.21 18.08 18.14	JAN 24 FEB 22 MAR 21	18.11 16.26 14.25	APR 10 MAY 01 16	14.65 15.89 15.34	JUN 06 22 JUL 10	13.29 14.82 15.57	JUL 27 AUG 10 29	16.31 16.93 17.40	SEP 13	17.76

WATER YEAR 2001 HIGHEST 13.29 JUN 06, 2001 LOWEST 18.21 OCT 19, 2000

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY OCT NOV DEC JAN. FEB MAR APR MAY JUN .ππ. AUG SEP 17.92 18.22 18.28 18.25 17.20 15.05 15.41 15.88 13.14 15.30 16.45 17.52 2 3 17.92 18.20 18.32 18.24 18.32 17.28 15.21 15.28 15.95 12.94 15.44 16.45 17.54 17.54 18.01 18.24 18.22 16.06 13.46 15.59 16.49 4 18.05 18.25 18.12 18.10 17.24 15.28 15.66 16.07 13.90 15.42 16.50 17.63 18.06 16.01 13.97 5 18.24 18.19 17.30 15.39 15.48 16.51 17.71 18.12 15.60 6 18.15 18.10 18.12 18.14 17.39 15.42 15.80 15.52 16.51 17.64 15.51 13.45 7 18.18 18.06 18.23 17.44 15.54 16.59 17.49 18.04 15.06 15.76 13.38 15.54 18.29 15.59 15.71 16.74 16.75 17.47 8 18.21 18.11 18.20 15.18 15.76 13.67 15.53 9 18.21 15.76 18.08 18.15 18.34 15.09 15.46 15.44 13.91 10 15.34 18.18 18.18 18.15 18.29 15.64 14.93 15.74 13.98 15.51 16.91 17.48 18.25 18.19 18.11 15.68 11 18.17 15.42 15.22 15.63 16.94 17.61 14.52 14.17 12 18.19 18.04 18.26 18.27 15.50 14.59 15.65 16.95 17.61 15.35 15.15 14.35 ----13 18.19 18.03 18.20 15.63 15.27 14.88 15.22 14.37 15.76 17.04 17.60 14 18.20 18.08 18.18 15.68 15.34 14.91 15.22 14.47 15.78 17.04 17.80 15 18.20 17.95 15.22 15.78 17.02 17.77 18.04 18.11 15.78 15.11 14.95 14.23 16 18.20 18 02 18 00 17.96 15.99 14 73 15.15 15 32 14 16 15 78 17.02 17.76 18.20 17 $18.10 \\ 18.12$ 14.83 14.72 15.32 15.36 15.86 15.92 17.74 18.16 17.96 16.14 15.32 14.37 17.08 18 18.21 17.91 16.12 15.34 17.06 17.70 18.16 14.40 15.30 19 18.21 18.09 18.13 17.95 16.03 14.37 15.46 15.92 17.07 17.38 14.63 20 18.21 18.20 18.11 18.01 16.17 14.18 15.29 15.39 14 70 15.92 17.14 17.36 21 22 18.21 18.23 18.12 18.06 16.28 14.20 15.41 13.72 14.73 15.92 17.18 17.38 18.25 18.21 18.20 18.09 16.22 14.38 15.57 13.17 14.77 15.92 17.18 17.40 23 18.22 16.27 17.23 17.40 18.25 18.17 18.07 15.54 13.40 16.05 14.56 14.83 18.25 13.84 24 18.27 15.70 15.73 17.15 17.40 18.13 18.10 14.63 14.92 16.14 25 18.22 18.06 18.29 18.11 14.77 14.76 15.76 14.17 14.98 16.12 17.19 17.30 26 18.20 18.06 18.26 18.00 14.90 14.87 15.76 14.05 15.08 16.14 17.23 17.40 18.22 $17.24 \\ 17.24$ 27 18.20 18.10 18.12 14.94 15.00 15.76 13.27 15.10 16.22 17.40 17.40 17.40 17.40 28 18.25 16.23 18.14 18.12 15.00 15.03 15.85 13.44 15.11 29 18.26 18.18 18.22 17.74 13.84 15.11 16.23 17.33 15.08 15.92 ----30 18 25 18.24 18.22 18.23 16.98 _ _ _ _ 15.33 15.92 14.19 15.21 16.27 17.38 17.40 18.25 16.33 31 17.06 ____ 15.3714.27 17.45 MEAN 18.18 18.14 18.18 18.04 16.13 15.06 15.36 14.94 14.32 15.81 16.97 17.52 18.32 18.00 $17.44 \\ 14.77$ $15.71 \\ 14.18$ MAX 18.26 18 25 18.34 15.92 16.07 15.21 16.33 17.45 17.80 17.92 13.17 15.30 17.30 MIN 18.02 16.98 12.94 16.45 14.52

LEVEL, N LAND SURFACE

WATER L BELOW

FEET

Н

JONES COUNTY

415808091160501. Local number, 83-04-25 CBBB. LOCATION.--Lat 41°58'08", long 91°16'05", Hydrologic Unit 07080103, 4 mi north of the Town of Mechanicsville and 1 mi west of County Road X-40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.-Silurian: dolomite of Silurian age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 41 ft, 5 in. 41-517 ft, depth 517 ft, open hole 41-517 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
DATUM.--Elevation of land-surface datum is 811 ft above sea level, from topographic map. Measuring point: Nipple welded to plate
 on top of casing, 2.16 ft above land- surface datum.

EXARKS, -- White Oak Creek well. PERIOD OF RECORD.--July 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.78 ft below land-surface datum, May 3, 1993; lowest measured, 6.21 ft below land-surface datum, September 11, 1989.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 08	3.96	FEB 15	2.74	MAY 09	2.05	AUG 08	3.92	
WATER YE	LAR 2001	HIGHEST	2.05	MAY 09, 3	2001	LOWEST	3.96 NOV	08, 2000

KEOKUK COUNTY

412030092121601. Local number, 76-12-35 DBDC LOCATION.--Lat 41°20'27", long 92°12'22", Hydrologic Unit 07080106, approximately 0.25 mi north of the town of Sigourney, 0.25 mi north of Highway 92. Owner: City of Sigourney. AQUIFER.--Mississippian: limestone and dolomite of Mississippian age.

WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 14 in., depth 300 ft, cased to 128 ft, open hole

128-300 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder January 1989 to September 1992.

DBTUM.--Elevation of land-surface datum is 769 ft above sea level, from topographic map. Measuring point: Top of recorder base, 1.56 ft above land-surface datum. REMARKS.-- Sigourney South Rock Island No. 1 well. Water levels affected by nearby pumping.

EXTREMES FOR PERIOD OF RECORD.--July 1988 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 80.99 ft below land-surface datum, May 17, 1995; lowest measured, 118.29 ft below land-surface datum, August 31, 1991.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		WATH LEVI			
NOV 07	85.37	FEB 13	83.39	MAY 08	85.33	AUG 0	8	92.5	56		
WATER YE	AR 2001	HIGHEST	83.39	FEB 13,	2001	LOWEST	92.	56	AUG	08,	2001

LEE COUNTY

404306091270201. Local number, 68-05-05 DAAC. LOCATION.--Lat 40°43'06", long 91°27'01", Hydrologic Unit 07080104, located on the south side of State Highway 2 approximately 7 mi east of Donnellson and 6 mi south of West Point. AQUIFER.--Cambrian-Jordan sandstone

WELL CHARACTERISTICS.--Drilled public-use well, diameter 20 to 10 in., depth 1910 ft, open hole from 1290-1910 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 763 ft., from topographic map. Measuring point: Top of casing 3.00 ft above

land-surface datum. REMARKS .-- West Point No. 3

PERIOD OF RECORD.--November 15, 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 262.04 ft below land-surface datum, January 28, 1997; lowest measured, 271.77 ft. below land-surface datum, August 07, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		ATER IVEL DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 06	269.28	FEB 12 269	0.30 MAY 07	270.34	AUG 07	271.77
WATER Y	EAR 2001	HIGHEST 2		2000	LOWEST 271	L.77 AUG 07, 2001

LINN COUNTY

415343091360101. Local number, 82-07-25 AAAB. LOCATION.--Lat 41°53'43", long 91°36'01", Hydrologic Unit 07080208, 0.5 mi northwest of the Town of Ely at the southwest corner of the junction of County Roads E-70 and W-6E. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian: limestone and dolomite of Silurian age.

WELL CHARACTERISTICS. -- Drilled observation artesian water well, diameter 6 in., depth 401 ft, cased to 121.5 ft, open hole

121.5-401 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder April 1978 to October 1979. Intermittent measurement with chalked tape by USGS personnel May 1976 to April 1978. DATUM.--Elevation of land-surface datum is 772 ft above sea level, from topographic map. Measuring point: Top of casing, 1.76 ft

above land-surface datum. REMARKS.-- Ely (Northwest) Railroad well. Records for May 1976 to September 1988 are unpublished and available in the files of

the Iowa District Office.

PERIOD OF RECORD.--May 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.03 ft below land-surface datum, August 26, 1993; lowest measured, 19.96 ft below land-surface datum, June 14, 1977.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	WATER DATE LEVEL		ATER EVEL DATE	WATER E LEVEL
NOV 09	14.95	FEB 15 14.12	MAY 09 10	.69 AUG (08 10.59
WATER YE	EAR 2001	HIGHEST 10.59	AUG 08, 2001	LOWEST	14.95 NOV 09, 2000

415422091422601. Local number, 82-07-18 CDCD. LOCATION.--Lat 41°54'22", long 91°42'29", Hydrologic Unit 07080205, on 76th Avenue SW, approximately 1.5 mi west of U.S. Highway 218, Cedar Rapids. Owner: Edwin J. Hynek.

AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Dug unused water-table well, diameter 4 ft, depth 13.5 ft, cribbed with brick. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder July 1959 to September 1987. DATUM.--Elevation of land-surface datum is 835 ft above sea level, from topographic map. Measuring point: Base of recorder shelter, 0.37 ft above land-surface datum.
 REMARKS.-- Well previously owned by Lester Petrak.
 PERIOD OF RECORDS.--July 1959 to current year.
 REVISED RECORDS.--WDR IA-84-1.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level recorded, 1.09 ft below land-surface datum, August 4, 1968; lowest recorded, 11.75 ft below land-surface datum, February 8, 1977.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 09	8.46	FEB 15	4.88	MAY 09	4.90	AUG 09	7.30	
WATER YE	EAR 2001	HIGHEST	4.88	FEB 15,	2001	LOWEST	8.46 NOV	09, 2000

415725091410101. Local number, 83-07-32 ACDC. LOCATION.--Lat 41°57'25", long 91°41'01", Hydrologic Unit 07080205, northwest corner of 22nd Avenue SW and 11th Street SW, Cedar Rapids. Owner: Floyd Fetter.

AQUIFER.--Silurian: limestone of Silurian age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 5 in., depth 282 ft. Casing information not available. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 805 ft above sea level, from topographic map. Measuring point: Plug in well cover at land-surface datum. REMARKS.-- Water levels may be affected by pumping of near by wells.

PERIOD OF RECORDS.--July 1940 to current year. REVISED RECORDS.--WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 75.88 ft below land-surface datum, January 26, 1942; lowest measured, 107.00 ft below land-surface datum, September 16, 1976.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 09	89.72	MAY 09	87.06	AUG 09	90.89				
WATER YE	AR 2001	HIGHEST	87.06	MAY 09, 3	2001	LOWEST	90.89	AUG 09, 2	001

415834091351601. Local number, 83-06-30 ABBA. LOCATION.--Lat 41°58'34", long 91°35'14", Hydrologic Unit 07080206, approximately 200 ft west of 5201 Mount Vernon Road SE, Cedar Rapids. Owner: Vulcan Auto Yard. Formerly owned by B.L. Anderson. AQUIFER.--Silurian-Devonian: dolomite of Silurian and limestone and dolomite of Devonian age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 76.5 ft. Casing information not available. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 755 ft above sea level, from topographic map. Measuring point: Hole in pump base, 0.50 ft above land-surface datum. REMARKS.-- Katz well. PERIOD OF RECORD.--May 1940 to current year.

EXTREMES OF PERIOD OF RECORD.--Highest water level measured, 37.68 ft below land-surface datum, August 24, 1993; lowest measured, 53.90 ft below land-surface datum, December 21, 1970.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 09	50.8	FEB 15	50.59	MAY 09	47.96	AUG 09	49.21	
WATER YE	AR 2001	HIGHEST	47.96	MAY 09, 2	2001	LOWEST 50	.8 NOV 09, 2000	,

420300091325801. Local number, 84-06-33 ABBB. LOCATION.--Lat 42°03'00", long 91°32'58", Hydrologic Unit 07080206, near the City of Marion on the east side of Iowa Highway 13, approximately 1 mi north of U.S. Highway 151. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in. to 142 ft, 5 in. 142-161 ft, depth 481 ft, open hole 161-481 ft.

INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 838 ft above sea level, from topographic map. Measuring point: Top of casing, 0.90 ft above land-surface datum. REMARKS.-- Marion well. PERIOD OF RECORD.--June 1976 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 42.15 ft below land-surface datum, June 18, 1986; lowest measured, 50.26 ft below land-surface datum, December 1, 1989.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV		
NOV 09	48.39	FEB 14	48.59	MAY 09	45.89	AUG 09	48.	7	
WATER YE	AR 2001	HIGHEST	45.89	MAY 09,	2001	LOWEST	48.7	AUG 09,	3

420508091395811. Local number, 84-07-16 DBBB. LOCATION.--Lat 42°05'15", long 91°40'04", Hydrologic Unit 07080205, approximately 0.5 mi south of County Road E-34, north of the Town of Robins. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER. -- Silurian: dolomite of Silurian age.

2001

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 60.6 ft, 5 in. to 173 ft, depth 520 ft, open hole 173-520 ft. Open to Devonian rock 173-197, Silurian 196.5-510 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder November 1975 to September 1979. Intermittent measurement with chalked tape by USGS personnel April 1975 to November 1975.

DATUM. -- Elevation of land-surface datum is 873 ft above sea level, from topographic map. Measuring point: Top of casing, 1.20 ft above land-surface datum.

REMARKS .-- Robins well. Records for April 1975 to September 1988 are unpublished and available in the files of the Iowa District Office.

PERIOD OF RECORD. -- April 1975 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.33 ft below land-surface datum, August 24, 1993; lowest measured, 57.50 ft below land-surface datum, December 1, 1989.

DATE	WATER LEVEL	WAT DATE LEV		WATER LEVEL	DATE	WATER LEVEL
NOV 09	48.95	FEB 14 46.	84 MAY 09	43.41	AUG 09	47.86
WATER YEA	AR 2001	HIGHEST 4	3.41 MAY 09,	2001	LOWEST 48	.95 NOV 09, 2000

420526091370701. Local number, 84-07-13 BCBB. LOCATION.--Lat 42°05'26", long 91°37'07", Hydrologic Unit 07080206, approximately 0.25 mi south of the junction of County Roads W-58 and E-34, on the east side of the road, or approximately 3.75 mi north of the City of Marion. Owner: U.S. Geological Survey. JIFER.--Glacial drift of Pleistocene age.

AQUIFER.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 1.25 in., depth 17 ft, screened 15-17 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 882 ft above sea level, from topographic map. Measuring point: Nipple welded to casing, 1.24 ft above land-surface datum. REMARKS.-- USGS13E2 well.

PERIOD OF RECORD. -- September 1948 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 0.93 ft below land-surface datum, May 18, 1982; lowest measured, 15.19 ft below land-surface datum, January 20, 1977.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 19 NOV 30	7.53 6.05	DEC 21 J AN 11	6.42 3.49	FEB 16 MAR 12	4.14 2.61	APR 26 JUN 29	3.32 4.41	JUL 16 SEP 24	5.96 5.35		
WATER YE	EAR 2001	HIGHEST	2.61	MAR 12,	2001	LOWEST	7.53 OC	r 19, 2000			

420730091490401. Local number, 85-08-31 DDCD1. LOCATION.--Lat 42°07'29", long 91°49'01", Hydrologic Unit 07080205, at the fenced north end of Pleasant Creek Reservoir near the beach house in the beach area. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Silurian: dolomite of Silurian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 6 in. to 53.5 ft, 5 in. to 214 ft, depth 481 ft, open hole 214-481 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1975 to December

1979. DATUM.--Elevation of land-surface datum is 833 ft above sea level, from topographic map. Measuring point: Top of casing, 1.17 ft

above land-surface datum. REMARKS. -- Pleasant Creek Reservoir/Silurian well. Records for May 1975 to September 1988 are unpublished and available in the files of the Iowa District Office.

PERIOD OF RECORD.--May 1975 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.73 ft below land-surface datum, May 03, 1999; lowest measured, 108.49 ft below land-surface datum, August 4, 1997.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 09	39.49	FEB 14	41.49	MAY 09	45.98	AUG 09	32.68	
WATER YE	AR 2001	HIGHEST	32.68	AUG 09, 2	2001	LOWEST 4	5.98 MAY	09, 2001

420730091490402. Local number, 85-08-31 DDCD2.

LOCATION.--Lat 42°07'29", long 91°49'01", Hydrologic Unit 07080205, at the fenced north end of Pleasant Creek Reservoir near the beach house in the beach area. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: limestone and dolomite of Devonian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 5 in., depth 205 ft, cased to 52 ft, open hole 52-205 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1975 to December 1979.

DATUM. -- Elevation of land-surface datum is 841 ft above sea level, from topographic map. Measuring point: Top of casing, 2.38 ft

above land-surface datum. REMARKS.-- Pleasant Creek Reservoir/Devonian well. Records for May 1975 to September 1989 are unpublished and available in the Iowa District Office.

PERIOD OF RECORD.--May 1975 to May 1980, April 1984 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 14.60 ft below land-surface datum, May 31, 1991; lowest measured, 48.55 ft below land-surface datum, November 12, 1976.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 09	20.52	FEB 14	19.87	MAY 09	19.56	AUG 09	21.15
WATER YE	AR 2001	HIGHEST	19.56	MAY 09. 2	2001	LOWEST 23	1.15 AUG 09, 2001

421149091403301. Local number, 85-07-04 CCCC. LOCATION.--Lat 42°11'51", long 91°40'33", Hydrologic Unit 07080205, approximately 5 mi east of the Town of Center Point, north side of County Road E-16. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Silurian-Devonian: dolomite of Silurian age and limestone and dolomite of Devonian age.

WELL CHARACTERISTICS. - Drilled observation artesian water well, diameter 6 in. to 41 ft, 5 in 129-147 ft, depth 435 ft, open hole 41-129 ft and 147-435 ft. Devonian rock 23-139 ft, Silurian rock 139-431 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder March 1974 to December 1979. Intermittent measurement with chalked tape by USGS personnel July 1973 to March 1974.
DATUM.--Elevation of land-surface datum is 912 ft above sea level, from topographic map. Measuring point: Nipple welded to plate

on top of casing, 1.21 ft above land- surface datum. REMARKS.-- Alice well. PERIOD OF RECORD.--July 1973 to current year. REVISED RECORDS.--WDR IA-84-1.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 17.06 ft below land-surface datum, June 10, 1974; lowest measured, 34.27 ft below land-surface datum, December 1, 1989.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		WATI LEVI			
NOV 09	2 9 .38	FEB 14	28.84	MAY 09	24.85	AUG 09)	27.7	72		
WATER YE	AR 2001	HIGHEST	24.85	MAY 09,	2001	LOWEST	29.	38	NOV	09,	2000

421207091312201. Local number, 85-06-03 DABB.

LOCATION.--Lat 42°12'07", long 91°31'24", Hydrologic Unit 07080102, located east of State Highway 13 in the Town of Central City. Owner: Town of Central City.

AQUIFER.--Silurian

WELL CHARCTERISTICS .-- Drilled pumping well, diameter 6 in., depth 106 ft., casing information not available.

INSTRUMENTATION.--Quarterly measurements with airline by USGS personnel. DATUM.--Elevation of land-surface datum is 825 ft, by topographic map.

PERIOD OF RECORD.--August 1997 to current year. EXTREMERS FOR PERIOD OF RECORD.--August 1997 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.0 feet below land-surface datum, May 09, 2001; lowest measured, 22 ft below land-surface datum, February 23, 1998.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL		
NOV 09	15	FEB 14	15	MAY 09	8.0	AUG 09	14.0		
WATER YE	CAR 2001	HIGHEST	8.0	MAY 09, 2	2001	LOWEST	15 NOV 0	9, 2000	FEB 14,

LYON COUNTY

431812096302701. Local number, 98-48-16 DDAD. LOCATION.--Lat 43°18'21", long 96°30'29", Hydrologic Unit 10170203, approximately 3.5 mi east of the City of Canton, S.D., south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 358 ft, screened 335-355 ft. Open to Late

Precambrian Sioux quartzite 353-358 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,268 ft above sea level, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

REMARKS.-- Well D-20.

PERIOD OF RECORD. -- December 1978 to December 1980, May 1982 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 91.89 ft below land-surface datum, July 8, 1986; lowest measured, 107.60 ft below land-surface datum, November 7, 1991.

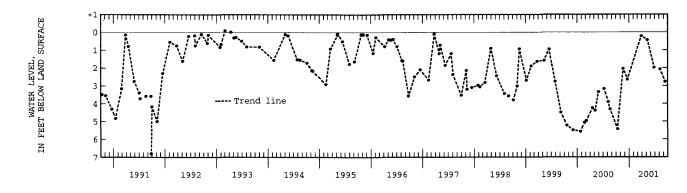
WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV		
NOV 21	105.34	FEB 14 1	105.41	MAY 10	104.69	AUG	07 105.	1	
WATER Y	EAR 2001	HIGHEST	104.69	MAY 10,	2001	LOWEST	105.41	FEB 14,	2001

2001

LYON COUNTY -- Continued

432140095595301. Local number, 99-44-26 DDDD. LOCATION.--Lat 43°21'40", long 95°59'53", Hydrologic Unit 10170204, 1 mi north of the City of George, west of Iowa.Highway 339. Owner: State of Iowa. AQUIFER. -- Glacial drift of Pleistocene age.


WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 20 in., depth 38 ft, lined with tile. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,400 ft above sea level, from topographic map. Measuring point: Plug in well cover, 2.01 ft above land-surface datum. REMARKS.- -Well No. 26R1. PERIOD OF RECORD.--October 1940 to June 1943, May 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, -0.41 ft above land-surface datum, May 10, 1995; lowest measured,

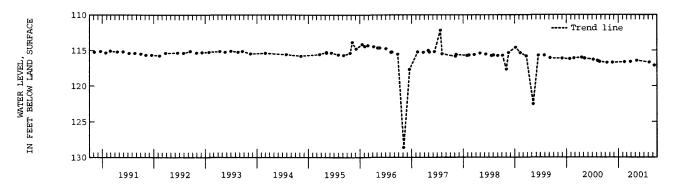
9.74 ft below land-surface datum, October 24, 1940.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 12 NOV 21	5.41 2.03	DEC 21 MAR 28	2.64	MAY 10 JUN 27	.44 1.97	AUG 07 SEP 13	2.07 2.77				

WATER YEAR 2001 HIGHEST .21 MAR 28, 2001 LOWEST 5.41 OCT 12, 2000

432553096105701. Local number, 99-45-05 ABAC. LOCATION.--Lat 43°25'53*, long 96°10'57*, Hydrologic Unit 10170204, 0.05 mi south of Iowa Highway 9 on 2nd Street, Rock Rapids. Owner: City of Rock Rapids.


AQUIFER. -- Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 10 in., depth 375 ft, cased to 296 ft, open hole 296- 375 ft. INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1,368 ft above sea level, from topographic map. Measuring point: Plug in cover over casing, 1.00 ft above land-surface datum is 1,366 ft above sea level, from topographic map. Measuring point: Flug in cover casing, 1.00 ft above land-surface datum. REMARKS.-- City test well No. 3. PERIOD OF RECORD.--August 1960 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.08 ft below land-surface datum, July 27, 1964; lowest

measured, 128.62 ft below land-surface datum, November 5, 1996.

DATE	WATER LEVEL		ATER EVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 12 NOV 21		FEB 14 116 MAR 28 116		AY 10 UG 06		SEP 1	3 117.12				
WATER YI	EAR 2001	HIGHEST :	116.44 MA	Y 10, 2	001	LOWEST	117.12 SEI	P 13, 2001			

432601096335511. Local number, 100-48-31 CCCC11. LOCATION.--Lat 43°26'01", long 96°33'55", Hydrologic Unit 10170203, 0.5 mi west and 2.5 mi south of the Village of Granite. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 657 ft, screened 450-455 ft and 630-650 ft. Dakota 437-653 ft, Sioux Quartzite 653-657 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,417 ft above sea level, from topographic map. Measuring point: Top of casing at land-surface datum.

REMARKS.-- Well D-19.

PERIOD OF RECORD.--December 1978 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 151.57 ft below land-surface datum, February 11, 1994; lowest measured, 158.25 ft below land-surface datum, April 11, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
FEB 14	156.18	MAY 10	153.24	AUG 07	153.70				
WATER Y	EAR 2001	HIGHEST	153.24	MAY 10,	2001	LOWEST	156.18	FEB 14,	2001

MADISON COUNTY

411727093483001. Local number, 75-26-23 AAAC. LOCATION.--Lat 41°17'26", long 93°48'36", Hydrologic Unit 07100008, near the shelter house in the city park, St. Charles. Owner: City of St. Charles.

AQUIFER.--Missisppian: limestone of Mississippian age. WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 867 ft, cased to 657 ft, open hole 657-867 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,067 ft above sea level, from topographic map. Measuring point: Plug in well cover,

1.20 ft above land-surface datum.

REMARKS.-- City well No. 1. PERIOD OF RECORD.--November 1962 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 261.76 ft below land-surface datum, November 20, 1962; lowest measured, 281.43 ft below land-surface datum, July 26, 2001.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT		TER VEL	
NOV 30 2	81.25 F	EB 06 2	281.20	MAY 02	280.90	JUL	26 281	. 43	
WATER YEAD	R 2001	HIGHEST	280. 9 0	MAY 02,	2001	LOWEST	281.43	JUL 26,	2001

MAHASKA COUNTY

411912092273601. Local number, 75-14-10 BAAC.

LOCATION.--Lat 41°19'13", long 92°27'36", Hydrologic Unit 07080106, approximately 0.5 mi south of Iowa Highway 92 in the town of Rose Hill. Owner: City of Rose Hill. AQUIFER.--Mississippian: limestone and dolomite of Mississippian age.

WELL CHARACTERISTICS .-- Drilled unused public-supply artesian well, diameter 6 in., depth 370 ft, casing information not

available.

INSTRUMENTATION. -- Quarterly measurement with chalked tape by USGS personnel. Analog digital water-level recorder July 1990 to

INSTROMENTATION. --Quarterly measurement with chalked tape by USCS personnel May 1989 to June 1989. October 1992. Intermittent measurement with chalked tape by USCS personnel May 1989 to June 1989. DATUM.--Elevation of land-surface datum is 815 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 1.63 ft above land-surface datum. REMARKS.-- Rose Hill No. 2 well. PERIOD OF RECORD.--May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 100.69 ft below land-surface datum, July 30, 1992; lowest measured 107.51 ft below land-surface datum. Rebruary 08, 1999

measured, 107.51 ft below land-surface datum, February 08, 1999.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATE LEVE		
NOV 07	100.80	FEB 13	101.26	MAY 08	101.03	AUG 08	100.7	79	
WATER Y	EAR 2001	HIGHES'	r 100.79	AUG 08,	2001	LOWEST 1	01.26	FEB 13,	2001

411914092274701. Local number, 75-14-10 BABC. LOCATION.--Lat 41°19'14", long 92°27'47", Hydrologic Unit 07080106, approximately 0.45 mi south of Iowa Highway 92, behind City Hall in the Town of Rose Hill. Owner: City of Rose Hill. AQUIFER.--Mississippian: limestone and dolomite of Mississippian age.

WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 5 in., depth 273 ft, cased to 106 ft, open hole 106-273 ft.

DATUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 817 ft above sea level, from topographic map. Measuring point: Top of casing, 1.56 ft above land-surface datum. REMARKS.-- Rose Hill No. 4 well.

PERIOD OF RECORD. -- September 1988 to current year.

EXISION.--Site identification number. Previously published as 411914092273001. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 99.56 ft below land-surface datum, May 17, 1995; lowest measured, 106.03 ft below land-surface datum, May 05, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
NOV 07 100.38	FEB 13 100.82	MAY 08 100.53	AUG 08	100.29
WATER YEAR 2001	HIGHEST 100.29	AUG 08, 2001	LOWEST 10	0.82 FEB 13, 2001

412020092471002. Local number, 76-17-35 CADB. LOCATION.--Lat 41°20'26", long 92°47'09", Hydrologic Unit 07100009, 150 ft east of the old treatment plant near a retirement village on the north end of the Town of Leighton. Owner: Town of Leighton. AQUIFER.--Cambrian-Ordovician: sandstone of Late Cambrian and sandstone and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused public-supply artesian well, diameter 8 in. to 383 ft, 5 in. 383-1778 ft, depth 2200 ft, Content of the terror of terror of the terror of t

open 1778-2200 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 820 ft above sea level, from topographic map. Measuring point: Top of casing, 5.43 ft above land-surface datum.

EXARKS.-- Leighton No. 4 well. PERIOD OF RECORD.--May 1989 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 99.67 ft below land-surface datum, May 16, 2000; lowest measured, 282.96 ft below land-surface datum, August 20, 1996.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV		
NOV 07	178.85	FEB 12 1	57.96	MAY 07	146.07	AUG	07 153.	91	
WATER Y	EAR 2001	HIGHEST	146.07	MAY 07.	2001	LOWEST	178.85	NOV 07,	2000

MARTON COUNTY

411323093142601. Local number, 74-21-11 DBCB1. LOCATION.--Lat 41°13'25", long 93°14'27", Hydrologic Unit 07100008, north of the water tower in the town square. Owner: Town of Melcher.

AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 18 in., depth 9.7 ft, lined with tile. Depth originally 25 ft, depth measured in 1981 and 1991 at 12.2 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 948 ft above sea level, from topographic map. Measuring point: Top of tile casing at land-surface datum. REMARKS.-- Town well No. 2

PERIOD OF RECORD.--March 1950 to current year. REVISION.--Highest water level measured, 0.20 ft below land-surface datum, October 10, 1973; lowest measured, 15.27 ft below land-surface datum, October 22, 1953.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.20 ft below land-surface datum, October 10, 1973; lowest measured, 15.27 ft below land-surface datum, October 22, 1953.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 25 NOV 06	6.33 5.53	DEC 04 FEB 12	6.39 4.41	APR 10 MAY 07	2.90 4.35	JUL 21 AUG 07	5.36 6.01				
WATER YE	EAR 2001	HIGHEST	2.90	APR 10, 1	2001	LOWEST	6.39 DEC	04, 2000			

411328093143503. Local number, 74-21-11 CAAD3. LOCATION.--Lat 41°13'30", long 93°14'33", Hydrologic Unit 07100008, northeast corner of the junction of West 1st Street and North A Street, Melcher. Owner: Town of Melcher. AQUIFER.--Glacial drift of Pleistocene age. HTLL GUIPACETRICITOR Deviation of the second strength disector 1 of in ... durth 06 5 ft. second 70 00 ft. second help.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 1.25 in., depth 96.5 ft, screened 78-80 ft, open hole 80-96.5 ft

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 944 ft above sea level, from topographic map. Measuring point: Nipple welded to casing, 0.51 ft above land-surface datum. REMARKS.--Town well No. 5, well 11L1. PERIOD OF RECORD.--August 1953 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.29 ft below land-surface datum, May 7, 1996; lowest measured (nearby well pumping), 55.16 ft, revised, below land-surface datum, March 4, 1954.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 06	12.82	FEB 12	12.34	MAY 07	11.64	AU G 07	12.54	
WATER YE	AR 2001	HIGHEST	11.64	MAY 07, 2	2001	LOWEST 1	2.82 NOV 06,	2000

411329093142902. Local number, 74-21-11 DBBB2. LOCATION.--Lat 41°13'33", long 93°14'29", Hydrologic Unit 07100008, southeast corner of the T junction of North B Street and Main Street, Melcher. Owner: Town of Melcher.

AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 6 in., depth 119 ft, cased to 76 ft, open hole 76-119 ft. INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 943 ft above sea level, from topographic map. Measuring point: Nipple welded to plate

on top of casing, 1.82 ft above land- surface datum. REMARKS.-- Town well No. 3, well 11K1. PERIOD OF RECORD.--July 1945 to December 1955, October 1976 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.16 ft below land-surface datum, May 07, 1996; lowest measured (nearby well pumping), 108.85 ft below land-surface datum, December 4, 6-7, 1949.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		TER VEL	DATE	WATER LEVEL	DATE		ATER EVEL	
NOV 06	21.41	FEB 12 20	.80	MAY 07	20.75	AUG 07	2	1.25	
WATER YE	AR 2001	HIGHEST	20.75	MAY 07, 2	2001	LOWEST	21.4	1 NOV 06,	2000

MARSHALL COUNTY

420355092534701. Local number, 84-18-24 CDCA. LOCATION.--Lat 42°03'55", long 92°53'47", Hydrologic Unit 07080208, east of Riverview Park and south of the sewage treatment plant, Marshalltown. Owner: City of Marshalltown.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 8 in., depth 200 ft, screened 190-200 ft. INSTRUMENTATION.--Quarterly measurement with electric line or chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 871 ft above sea level, from topographic map. Measuring point: Top of casing, 0.22 ft

above land-surface datum. REMARKS.-- Marshalltown city well. PERIOD OF RECORD.--May 1949 to August 1971, March 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.92 ft below land-surface datum, July 13, 1951; lowest measured, 61.04 ft below land-surface datum, November 2, 1995.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		rer Vel	
NOV 07	52.30	FEB 14	51.91	MAY 09	51.34	AUG 0	3 57	.51	
WATER YE	AR 2001	HIGHEST	51.34	MAY 09, 2	2001	LOWEST	57.51	AUG 03,	2001

MILLS COUNTY

405641095365101. Local number, 71-42-24 AAAA. LOCATION.--Lat 40°56'41", long 95°36'51", Hydrologic Unit 10240002, at the intersection of County Roads M-16 and H-46, approximately 5 mi southeast of the City of Malvern. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER. -- Buried channel of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 255 ft, screened 240-250 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,102 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20

ft above land-surface datum. REMARKS.-- Well SW-41. PERIOD OF RECORD.--June 1990 and August 1992 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 135.50 feet below land-surface datum, August 5, 1993; lowest measured, 170.00 ft below land-surface datum, July 30, 2001.

DATE	WATER LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
NOV 30	140.90	FEB 12 140.87	MAY 08 138.58	JUL 30 139.22	JUL 30	170.00
WATER Y	EAR 2001	HIGHEST 138.58	MAY 08, 2001	LOWEST 170.00 JUL	30, 2001	

405813095433201. Local number, 71-42-07 BBCD.

LOCATION .-- Lat 40°58'13", long 95°43'32", Hydrologic Unit 10240001, on the west side of the T-intersection of county roads,

approximately 5.5 mi south of the City of Glenwood. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 351 ft, screened 332-342 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM. -- Elevation of land-surface datum is 1,122 ft above sea level, from topographic map. Measuring point: Top of casing, 1.80

ft above land-surface datum. REMARKS.-- Well SW-40.

PERIOD OF RECORD. -- August 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 165.70 feet below land-surface datum, August 5, 1993; lowest measured, 171.94 ft below land-surface datum, November 10, 1994.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	
NOV 30 170.87	FEB 12 171.53	MAY 08 168.31	
	UTCHECT 160 31	MAX 08 2001	TOMESCE 171

LOWEST 171.53 FEB 12, 2001 WATER YEAR 2001 HIGHEST 168.31 MAY 08, 2001

MITCHELL COUNTY

432156092484101. Local number, 95-17-23 DAA1. LOCATION.--Lat 43°22'42", long 92'48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS. -- Drilled observation well, diameter 2 in., depth 27 ft, screened 10-27 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.41 ft above land-surface datum.

PENARKS.-- Well FM-2T. PERIOD OF RECORD.--August 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.46 ft above land-surface datum, May 6, 1993; lowest measured, 6.46 ft below land-surface datum, February 14, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATE LEVE		
NOV 07	2.34	FEB 14	3.31	MAY 08	2.17	AUG 03	3.3	32	
WATER YE	EAR 2001	HIGHEST	2.17	MAY 08,	2001	LOWEST	3.32	AUG 03,	2001

432156092484102. Local number, 95-17-23 DAA2.

433150092464102. Local number, 95-17-23 DAA2. LoCATION.-Lat 43'22'42", long 92'48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: dolomite of Devonian age. WELL CHARACTERISTICS.--Drilled observation well, diameter 1 in., depth 70 ft, screened 55-70 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.58 ft above land surface datum

ft above land-surface datum.

FIT above faile-surface datum. REMARKS.-- Well FM-2 (1). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.89 ft above land-surface datum, August 23, 1993; lowest measured, 12.44 ft below land-surface datum, February 14, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	10.47	FEB 14	11.21	MAY 08	7.08	AUG 03	9.95	

WATER YEAR 2001 HIGHEST 7.08 MAY 08, 2001 LOWEST 11.21 FEB 14, 2001

432156092484103. Local number, 95-17-23 DAA3. LOCATION.--Lat 43°22'42", long 92°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: dolomite of Devonian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 150 ft, screened 110-150 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.55 ft above land-surface datum.

REMARKS.-- Well FM-2 (2). PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.78 ft above land-surface datum, August 23, 1993; lowest measured, 13.32 ft below land-surface datum, February 14, 2000.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 07	11.40	FEB 14	12.17	MAY 08	7.55	AUG 03	10.18
WATER YE	AR 2001	HIGHEST	7.55	MAY 08, 2	2001	LOWEST 12	.17 FEB 14, 2001

MITCHELL COUNTY--Continued

432156092484104. Local number, 95-17-23 DAA4. LOCATION.--Lat 43°22'42", long 92°48'41", Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Devonian: dolomite of Devonian age.

WELL CHARACTERISTICS .-- Drilled observation well, diameter 1.5 in., depth 250 ft, screened 188-250 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.44 ft above land-surface datum.

PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--August 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.54 ft above land-surface datum, May 6, 1993; lowest measured, 16.52 ft below land-surface datum, May 9, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV		
NOV 07	14.46	FEB 14	16.41	MAY 08	8.74	AUG 03	3 11.	62	
WATER YE	AR 2001	HIGHEST	8.74	MAY 08.	2001	LOWEST	16.41	FEB 14,	2001

432156092484105. Local number, 95-17-23 DAA5.
LOCATION.--Lat 43°22'42*, long 92°48'41*, Hydrologic Unit 07080201, approximately 4 mi southwest of Staceyville, at the intersection of Highway 218 and County Road T40. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
AQUIFER.-Devonian: dolomite of Devonian age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 1.5 in., depth 348 ft, screened 278-348 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.
NATIM - Pleurein of Landspurface datum is 1.210 ft above casa lowed. from topographic map. Measuring point. Top of casi

DATUM.--Elevation of land-surface datum is 1,210 ft above sea level, from topographic map. Measuring point: Top of casing, 2.37 ft above land-surface datum. Et above faile-surface and an environment with the surface and the surface and

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.04 ft above land-surface datum, August 23, 1993; lowest measured, 22.16 ft below land-surface datum, May 09, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		WATER LEVEL	
NOV 07	1 9 .67	FEB 14	22.06	MAY 08	13.12	AUG 03	-	15.29	
WATER YE	AR 2001	HIGHEST	13.12	MAY 08,	2001	LOWEST	22.0	06 FEB 14,	2001

MONONA COUNTY

415456095414101. Local number, 82-42-14 ADCA.

LOCATION.--Lat 41°54'56", long 95°41'41", Hydrologic Unit 10230007, approximately 6 mi southeast of the Town of Soldier, on the north side of Iowa Highway 37. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 341 ft, slotted 311-336 ft, gravelpacked, open 336-341 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,340 ft above sea level, from topographic map. Measuring point: Top of casing, 2.02 ft above land-surface datum. REMARKS.-- Well WC-4.

EXTREMES FOR PERIOD OF RECORD.--May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 240.25 ft below land-surface datum, January 10, 1984; lowest measured, 246.69 ft below land-surface datum, July 28, 1981.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	WATER DATE LEVEL	WATI DATE LEVI		WATER LEVEL
NOV 21	245.34	FEB 14 245.29	MAY 10 244.0	60 AUG 01	244.58
WATER Y	EAR 2001	HIGHEST 244.58	AUG 01, 2001	LOWEST 24	45.34 NOV 21, 2000

420004095451501. Local number, 83-42-17 ACDD. LOCATION.--Lat 41°00'04", long 95°45'15", Hydrologic Unit 10230001, approximately 1.75 mi northeast of the Town of Soldier, 0.25 mi west of Iowa Highway 183. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 161 ft, screened 149-154 ft. Open to Pennsylvanian shale and limestone 153-161 ft.

DATUM.--Elevation of land-surface datum is 1,160 ft above sea level, from topographic map. Measuring point: Top of casing, 2.20

ft above land-surface datum. REMARKS.-- Well WC-176.

PERIOD OF RECORD.--May 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 54.50 ft below land-surface datum, November 6, 1991; lowest measured, 64.09 ft below land-surface datum, September 7, 1983.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 21	59.78	FEB 15	5 9 .86	MAY 10	59.37	AUG 01	60.41	
WATER YE	AR 2001	HIGHEST	59.37	MAY 10,	2001	LOWEST 6	0.41 AUG 01	, 2001

420139095155701. Local number, 83-43-04 CBCB. LOCATION.--Lat 41°01'39", long 95°51'57", Hydrologic Unit 10230005, approximately 5.5 mi northwest of the Town of Soldier and 1.5 mi north of Iowa Highway 37. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 321 ft, screened 297-315 ft,

gravel-packed, open hole 315-321 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,235 ft above sea level, from topographic map. Measuring point: Top of casing, 2.53 ft above land-surface datum.

EMARKS.-- Well WC-5. PERIOD OF RECORD.--May 1981 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 183.60 ft below land-surface datum, November 3, 1993; lowest measured, 189.96 ft below land-surface datum, February 2, 1982.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 21	186.17	FEB 14	186.10	MAY 10	184.95	AUG 02	185.02	

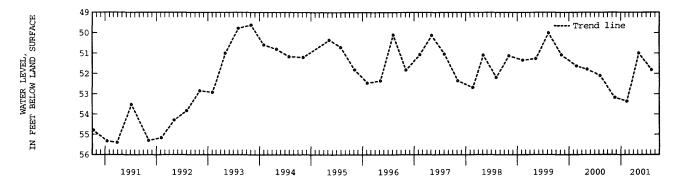
WATER YEAR 2001 HIGHEST 184.95 MAY 10, 2001 LOWEST 186.17 NOV 21, 2000

421018095591301. Local number, 85-44-17 DCAA. LOCATION.--Lat 41°10'18", long 95°59'13", Hydrologic Unit 10230003, approximately 2.5 mi southwest of the Town of Rodney on the north side of County Road L-12. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 135 ft, screened 115-125 ft, gravel-packed.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,110 ft above sea level, from topographic map. Measuring point: Top of casing, 2.70 ft above land-surface datum.


Well WC-158. REMARKS. --

PERIOD OF RECORD. --October 1982 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.62 ft below land-surface datum, November 3, 1993; lowest measured, 55.99 ft below land-surface datum, January 11, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WAT DATE LEV		WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL		
NOV 21 53.	18 FEB 14	53.35	MAY 09	51.00	AUG 06	51.82		
WATER VEAR 2	001 HIGHEST	51 00	MAY 09	2001	LOWEST F	53 35 F	FB 14	20

FEB 14, 2001 53.35 HIGHEST 51.00 MAY 09, 2001

MONTGOMERY COUNTY

405841095012702. Local number, 71-36-06 DADA2.

LOCATION.--Lat 40⁵8'41", long 95°01'27", Hydrologic Unit 10240009, located east of dam at Viking Lake State Park, approximately 0.3 mi south of Iowa Highway 34 on the west side of road. Owner: Geological Survey Bureau, DNR, and U.S. Geological Survey. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.-Drilled observation water-table well, diameter 2 in., depth 36 ft, screened 33-36 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by observer and U.S.G.S. personnel. DATUM.--Elevation of land-surface datum is 1,080 ft above sea level, from topographic map. Measuring point: Top of casing, 2.28 ft above land-surface datum.

REMARKS.-- Viking Lake No. 2 (6J2) well. PERIOD OF RECORD.--June 1989 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.51 ft below land-surface datum, September 9, 1989; lowest measured, 17.15 ft below land-surface datum, August 15, 1989.

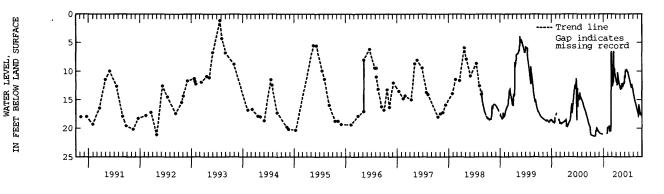
DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 30	15.24	FEB 12	14.98	MAY 08	12.39	JUL 30	16.42	
WATER YE	AR 2001	HIGHEST	12.39	MAY 08, 2	2001	LOWEST 1	6.42 JUL 30,	2001

MONTGOMERY COUNTY--Continued

410057095075101. Local number, 72-37-29 BABA. LOCATION.--Lat 41°00'57*, long 95°07'50*, Hydrologic Unit 10240005, approximately 4.35 mi east of the City of Red Oak, just south of County Road H-34. Owner: John Ogden. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Bored observation water-table well, diameter 3 in., depth 40 ft, screened interval unavailable. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. Submersible pressure transducer and transmitting

INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. Submersible pressure transducer and transmitting data collection platform (dcp) installed July, 1998.
DATUM.--Elevation of land-surface datum is 1,275 ft above sea level, from topographic map. Measuring point: Top of casing, 1.20 ft above land-surface datum.
PERIOD OF RECORD.--June 1937 to current year.
REVISION.--Measuring point revised May 10, 1990 to September 10, 1992.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.14 ft below land-surface datum, July 22, 1993; lowest measured, dry, July 8, 1963 and February 3, 1964.


WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL										
OCT 12	20.77	JAN 18	24.10	FEB 12	20.35	APR 30	13.07	JUN 21	10.06	JUL 25	12.91
NOV 07	20.27	31	19.88	MAR 13	14.14	MAY 31	10.86	28	10.81	SEP 05	17.72

WATER YEAR 2001 HIGHEST 10.06 JUN 21, 2001 LOWEST 24.10 JAN 18, 2001

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	20.09	20.91	20.71		19.78	10.90	11.36	13.14	10.95	11.15	13.72	17.31
2	20.17	20.91	20.75		19.76	11.47	11.50	13.23	11.02	11.24	13.88	17.40
3	20.26	20.90	20.78		19.61	11.89	11.62	13.23	11.08	11.31	14.03	17.49
4	20.34	20.87	20.80		19.49	11.99	11.67	13.09	11.08	11.40	14.15	17.61
5	20.42	20.84	20.83		19.40	12.08	11.71	12.69	10.36	11.52	14.28	17.71
6	20.49	20.72	20.85		19.31	12.09	11.71	12.59	10.01	11.64	14.43	17.77
7	20.55	20.24	20.86		19.17	11.97	11.91	12.85	10.05	11.77	14.57	17.72
8	20.61	20.02	20.88			11.85	12.15	12.95	10.06	11.91	14.70	15.96
9	20.65	19.92	20.90		18.79	11.72	12.14	12.98	10.05	12.03	14.82	15.80
10	20.68	19.89	20.91		18.74	11.31	12.03	12.17	9.99	12.16	14.96	15.92
11	20.71	19.89	20.92		18.65	10.21	10.19	12.44	9.93	12.28	15.09	16.12
12	20.75	19.89	20.93		19.34	6.39	10.05	12.57	9.94	12.36	15.22	16.32
13	20.76	19.91	20.94		20.29	11.39	10.48	12.56	9.96	12.48	15.36	16.53
14	20.77	19.95	20.96		20.25	6.21	10.69	12.52	9.87	12.59	15.47	16.73
15	20.79	19.98	20.96		20.27	4.54	10.89	12.51	9.83	12.70	15.54	16.90
16	20.80	20.01	20.97		20.33	9.62	11.17	12.53	9.93	12.82	15.60	17.04
17	20.81	20.08	20.98		20.44	10.26	11.38	12.58	10.01	12.92	15.69	17.16
18	20.82	20.13	20.99		20.38	10.01	11.50	12.63	10.01	12.69	15.79	17.27
19	20.82	20.17	21.00		20.18	9.26	11.56	12.68	10.10	12.35	15.90	17.38
20	20.83	20.24	21.00		20.18	8.98	11.67	12.59	10.14	12.25	16.01	17.48
21	20.84	20.30	21.02		20.28	9.16	11.88	12.06	10.09	12.35	16.10	17.60
22	20.85	20.34	21.03		20.28	9.64	12.09	12.17	10.12	12.53	16.22	17.71
23	20.86	20.38	21.04		20.26	9.90	12.20	12.17	10.20	12.70	16.36	17.54
24	20.87	20.42	21.06		17.47	10.09	12.41	12.15	10.30	12.86	16.47	17.46
25	20.87	20.46	21.06		5.43	10.27	12.51	12.14	10.42	12.94	16.56	17.47
26	20.87	20.49	21.07	21.00	7.55	10.47	12.60	12.10	10.56	13.00	16.66	17.50
27	20.88	20.54	21.08	21.00	9.00	10.65	12.70	12.08	10.70	13.11	16.75	17.57
28	20.89	20.58		20.94	10.16	10.78	12.83	12.11	10.81	13.17	16.87	17.66
29	20.89	20.63		20.80		10.93	12.96	12.14	10.92	13.28	16.97	17.77
30	20.90	20.67		20.18		11.07	13.07	11.66	11.03	13.40	17.08	17.87
31	20.91			19.86		11.22		10.84		13.55	17.20	
MEAN	20.70	20.34	20.94	20.63	17.96	10.27	11.75	12.46	10.32	12.40	15.56	17.19
MAX	20.91	20.91	21.08	21.00	20.44	12.09	13.07	13.23	11.08	13.55	17.20	17.87
MIN	20.09	19.89	20.71	19.86	5.43	4.54	10.05	10.84	9.83	11.15	13.72	15.80

MUSCATINE COUNTY

412120091080401. Local number, 76-02-30 CBAA1. LOCATION.--Lat 41°21'20", long 91°08'01", Hydrologic Unit 07080101, west of the Town of Fruitland on an Iowa State University Agricultural Experiment Farm. Owner: U.S. Geological Survey. AQUIFER.--Alluvial: Mississippi River sand and gravel of Holocene age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 6 in., depth 27 ft, screened 24-27 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. Graphic water-level recorder May 1966 to October 1007 1987

DATUM.--Elevation of land-surface datum is 546 ft above sea level, from topographic map. Measuring point: Top of casing, 3.40 ft above land-surface datum.

REMARKS.--Fruitland/30M4 well.

PERIOD OF RECORD.--May 1966 to current year. REVISED RECORDS.-- WDR IA-84-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 7.15 ft below land-surface datum, September 7, 1993; lowest measured, 17.86 ft below land-surface datum, August 2, 1989.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	16.40	FEB 13 16.72	MAY 08	15.30	AUG 08	15.2	
WATER YI	EAR 2001	HIGHEST 15.2	AUG 08, 2	001	LOWEST 1	6.72 FEB 13, 2	2001

412120091080402. Local number, 76-02-30 CBAA. LOCATION.--Lat 41°21'20", long 91°08'04", Hydrologic Unit 07080101, west of the Town of Fruitland on an Iowa State University Agricultural Experiment Farm. Owner: U.S. Geological Survey.

AQUIFER.--Silurian-Devonian: limestone of Silurian and Devonian age.

WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 189 ft, screened 169-189 ft.

DATUMENTATION.--Intermittent measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 546 ft above sea level, from topographic map. Measuring point: Top of casing, 3.01 ft

DATUM.--Elevation of land-surface datum is 546 ft above sea level, from topographic map. Measuring point: Top of casing, above land-surface datum.
 REMARKS.-- Fruitland 13B well.
 PERIOD OF RECORD.--October 1992 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 7.12 ft below land-surface datum, August 24, 1993; lowest measured, 16.73 ft below land-surface datum, February 22, 1996.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV		
NOV 07	16.33	FEB 13	16.79	MAY 08	15.24	AUG 08	15.	11	
WATER YE	EAR 2001	HIGHEST	15.11	AUG 08, 2	2001	LOWEST	16.79	FEB 13,	2001

412120091080403. Local number, 76-02-30 CBAA. LOCATION.--Lat 41°21'20", long 91°08'04", Hydrologic Unit 07080101, west of the Town of Fruitland on an Iowa State University Agricultural Experiment Farm. Owner: U.S. Geological Survey. AQUIFER.--Alluvial: Mississippi River sand and gravel of Quarternary age. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 2 in., depth 100 ft, screened 90-100 ft. INSTRUMENTATION.--Intermittent measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 546 ft above sea level, from topographic map. Measuring point: Top of casing, 3.13 ft

above land-surface datum. REMARKS.-- Fruitland 13C well. PERIOD OF RECORD.-October 1992 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 7.20 ft below land-surface datum, September 10, 1993; lowest measured, 16.84 ft below land-surface datum, February 22, 1996.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM. WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	16.49	FEB 13	16.79	MAY 08	15.39	AUG 08	15.31	
WATER YE	AR 2001	HIGHEST	15.31	AUG 08,	2001	LOWEST 16	.79 FEB	3 13,

O'BRIEN COUNTY

2001

425610095250611. Local number, 94-39-26 BADB11. LOCATION.--Lat 41°56'10", long 95°25'06", Hydrologic Unit 10230003, near a dead-end road just south of the Little Sioux River, 0.9 mi north of Iowa Highway 10, approximately 5 mi southeast of the Town of Sutherland. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.5 in, depth 352 ft, screened 291-295 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,212 ft above sea level, from topographic map. Measuring point: Top of casing, 2.30 ft above land-surface datum.

REMARKS.-- Well D-3.

PERIOD OF RECORD.--April 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 34.94 ft below land-surface datum, May 09, 1995; lowest measured, 37.26 ft below land-surface datum, August 08, 2000.

DATE	WATER LEVEL	WATER DATE LEVEL		ATER EVEL DAT	WATER TE LEVEL	
NOV 06	37.30	FEB 13 37.50	MAY 07 3	6.88 AUG	10 37.49	
WATER YE	AR 2001	HIGHEST 36.8	38 MAY 07, 200	1 LOWEST	37.50 FEB 13, 2001	L

O'BRIEN COUNTY--Continued

430930095350401. Local number, 96-40-05 DDDA1. LOCATION.--Lat 43°09'28", long 95°35'06", Hydrologic Unit 10230003, approximately 3 mi east of the Town of Sanborn and 2 mi south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Ordovician and Dakota: sandy shale of Ordovician age and sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 701 ft, screened 661-701 ft. Dakota

487-688 ft, Ordovician 688-701 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1,560 ft above sea level, from topographic map. Measuring point: Top of casing, 4.00 ft above land-surface datum.

REMARKS.-- Well D-41. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 358.39 ft below land-surface datum, July 8, 1986; lowest measured, 364.74 ft below land-surface datum, November 7, 1991.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL	
NOV 21 362.24	FEB 13 361.94	MAY 10 361.90	AUG 07	362.07	
WATER YEAR 2001	HIGHEST 361.90	MAY 10, 2001	LOWEST 36	2.24 NOV 21	,

OSCEOLA COUNTY

431613095251801. Local number, 98-39-26 CDCC. LOCATION.--Lat 43°16'13", long 95°25'18", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 500 ft, screened 490-500 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,398 ft above sea level, from topographic map. Measuring point: Top of casing, 2.70 ft above land-surface datum.

EMARKS. -- Well D-39.
PERIOD OF RECORD.--June 1980 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 189.99 ft below land-surface datum, June 17, 1980; lowest measured, 196.85 ft (nearby well pumping) below land-surface datum, September 6, 1984.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
NOV 06 192.85	FEB 13 193.14	MAY 07 192.86	AUG 07	194.00
WATER YEAR 2001	HIGHEST 192.85	NOV 06, 2000	LOWEST 19	4.00 AUG 07,

431620095250501. Local number, 98-39-26 CDAD1. LOCATION.--Lat 43°16'18", long 95°25'01", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: St. Peter sandstone of Middle Ordovician age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 662 ft, screened 622-662 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,402 ft above sea level, from topographic map. Measuring point: Top of low pipe,

1.47 ft above land-surface datum.

REMARKS.-- Well D-38, Deep Hibbing; in same borehole as well D-38 Shallow Hibbing. PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 192.96 ft below land-surface datum, November 20, 1989; lowest measured, 202.43 ft below land-surface datum, February 07, 1996.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	WATE DATE LEVEI		WATER LEVEL				
NOV 06	198.92	MAY 07 199.14	4 AUG 07	199.67				
WATER Y	EAR 2001	HIGHEST 198	.92 NOV 06,	2000	LOWEST	199.67	AUG 07,	2001

431620095250511. Local number, 98-39-26 CDAD11. LOCATION.--Lat 43°16'18", long 95°25'01", Hydrologic Unit 10230003, 3.5 mi south and 2.5 mi east of the Village of May City. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

MULL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 345 ft, screened 335-345 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 1,402 ft above sea level, from topographic map. Measuring point: Top of high pipe, 2.60 ft above land-surface datum.

REMARKS.-- Well D-38, Shallow Hibbing; in same borehole as well D-38 Deep Hibbing.

PERIOD OF RECORD.--June 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 192.20 ft below land-surface datum, September 10, 1981; lowest

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL				
NOV 06	194.73	MAY 07 1	95.37	AUG 07	195.53				
WATER Y	EAR 2001	HIGHEST	194.73	NOV 06,	2000	LOWEST	195.53	AUG 07,	2001

2000

2001

OSCEOLA COUNTY--Continued

432828095283611. Local number, 100-39-17 DCCB11. LOCATION.--Lat 43°28'33", long 95°28'35", Hydrologic Unit 10230003, approximately 2 mi west and 2 mi north of the Town of Harris, east of County Road M-12. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Dakota: sandstone of Cretaceous age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 5 in. to 461 ft, 4 in. 440-760 ft, depth 760 ft, screened 680-700 ft.

INSTRUMENTATION .-- Quarterly measurement with electric line or chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,560 ft above sea level, from topographic map. Measuring point: Top of casing, 3.00 ft above land-surface datum.

REMARKS.-- Well D-13.

REMARKS.-- Weil D-13. PERIOD OF RECORD.--July 1980 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 341.80 ft below land-surface datum, August 5, 1980; lowest measured, 350.68 ft below land-surface datum, November 05, 1997.

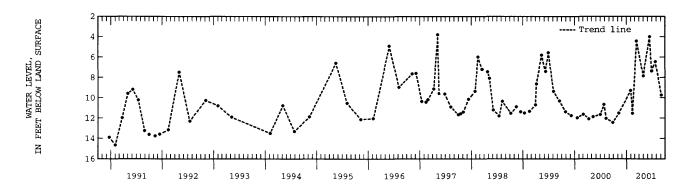
WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT E LEV		
NOV 06	345.10	FEB 16	345.35	MAY 07	345.33	AUG ()7 345.	57	
WATER Y	EAR 2001	HIGHEST	345.10	NOV 06,	2000	LOWEST	345.57	AUG 07,	2001

PAGE COUNTY

404257095150801. Local number, 68-38-07 CCAA. LOCATION.--Lat 40°42'57*, long 95°15'08*, Hydrologic Unit 10240005, approximately 2 mi south of the Village of Norwich and 1.5 mi west of County Road M-48. Owner: William Brayman. AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 12 in., depth 44 ft, lined with tile. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.


DATUM.--Elevation of land-surface datum is 1,087 ft above sea level, from topographic map. Measuring point: Top of well, 1.20 ft below original land-surface datum.

REMARKS .-- Braymen Farm Well. Terracing of the farm land surrounding well has lowered the land surface below the original measuring point. PERIOD OF RECORD. -- January 1938 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 2.09 ft below land-surface datum, March 26, 1946; lowest measured, 22.76 ft below land-surface datum, June 23, 1947.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL
NOV 08 JAN 31	11.53 9.29	FEB 12 MAR 14	11.53 4.4 3	APR 30 JUN 14	7.84 4.02	JUN 28 JUL 25	7.37 6.47	SEP 04	9.75		
WATER YE	EAR 2001	HIGHEST	4.02	JUN 14,	2001	LOWEST 1	1.53 NOV	08, 2000	FEB 12,	2001	

PLYMOUTH COUNTY

424833096324701. Local number, 92-48-06 DDDA. LOCATION.--Lat 42°48'35", long 96°32'49", Hydrologic Unit 10170203, just south of the curve on Iowa Highway 3, 1 mi south of the Town of Akron. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

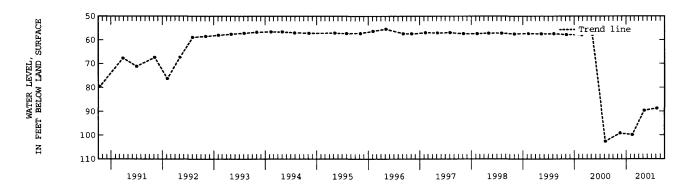
AQUIFER.--Dakota: in sandstone of Cretaceous age.

WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 4 in. to 184 ft, 2 in. to 581 ft, depth 581 ft, screened 430-434 ft and 510-515 ft. Paleozoic rock 576-581 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.. DATUM.--Elevation of land-surface datum is 1,282 ft above sea level, from topographic map. Measuring point: Top of casing, 4.50 ft above land-surface datum.

REMARKS.-- Well D-35. PERIOD OF RECORD.--December 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 135.73 ft below land-surface datum, February 10, 1999; lowest

WATER DATE LEVEL	WATER DATE L EVE L	WATER DATE LEVEL	DATE	WATER LEVEL
NOV 21 137.28	FEB 14 137.27	MAY 10 136.85	AUG 06	137.18
WATER YEAR 2001	HIGHEST 136.85	MAY 10, 2001	LOWEST 13	7.28 NOV 21, 2000

424850096074801. Local number, 92-45-02 CBCB. LOCATION.--Lat 42°48'50", long 96°08'02", Hydrologic Unit 10230002, approximately 3.8 mi west and 0.6 mi south of the Village of Oyens. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Cambrian-Ordovician: dolomite of Cambrian and Ordovician age.


WELL CHARACTERISTICS.-Drilled observation artesian water well, diameter 5 in. to 161 ft, 4 in. to 598 ft, 2 in. to 1,340 ft, depth 1,340 ft, cased to 598 ft, open hole 598-1,340 ft. Well deepened from 1,089 ft to 1,340 ft in May, 1984. Ordovician rock 568-782 ft, Cambrian rock 782-1062 ft, Precambrian 1062-1340 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,245 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum.

EMARKS, -- Well D-21.
PERIOD OF RECORD.--May 1979 to January 1981, May 1982 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 55.40 ft below land-surface datum, May 06, 1996; Lowest measured, 102.64 ft below land-surface datum, August 07, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		WAT: LEVI			
N OV 20	99.20	FEB 14	99.87	MAY 10	89.68	AUG 0	6	88.	79		
WATER YE	AR 2001	HIGHEST	88.79	AUG 06, 2	2001	LOWEST	99.	.87	FEB	14,	2001

425249096125001. Local number, 93-46-12 DDDD. LOCATION.--Lat 42°52'49", long 96°12'50", Hydrologic Unit 10230002, 1 mi west and 1 mi south of the Village of Struble. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2.5 in., depth 570 ft, screened 356-360 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,280 ft above sea level, from topographic map. Measuring point: Top of coupling, 2.25 ft above land-surface datum. REMARKS.-- Well D-2.

EXTREMES FOR PERIOD OF RECORD.--March 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 117.78 ft below land-surface datum, April 9, 1980; lowest measured, 125.45 ft below land-surface datum, August 08, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL						
MAY 10	125.11	AUG 06	125.31						
WATER Y	EAR 2001	HIGHEST	125.11	MAY 10,	2001	LOWEST	125.31	AUG 06,	2001

POTTAWATTAMIE COUNTY

411359095171901. Local number, 74-39-01 CCCC. LOCATION.--Lat 41°13'59", long 95°17'19", Hydrologic Unit 10240002, approximately 6.5 mi east of the Town of Carson, on the northeast corner of the junction of Iowa Highway 92 and County Road M-41. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Buried channel: sand and gravel of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 in., depth 216 ft, screened 189-206 ft, gravel-packed, open to Pennsylvanian shale 207-216 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,245 ft above sea level, from topographic map. Measuring point: Top of casing, 2.50

ft above land-surface datum. REMARKS.-- Well SW-21.

REMARKS.-- Well SW-21. PERIOD OF RECORD.--July 1986 to current year. REVISION.--Lowest water level measured, 129.38 ft below land-surface datum, August 20, 1986. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 122.74 ft below land-surface datum, May 11, 2000; lowest measured, 129.38 ft below land-surface datum, August 20, 1986.

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL		WATER LEVEL
DEC 04 124.42	FEB 06 124.55	MAY 08 124.65	JUL 30 1	.24.21
WATER YEAR 2001	HIGHEST 124.21	JUL 30, 2001	LOWEST 124.	65 MAY 08, 2001

GROUND-WATER LEVELS

POTTAWATTAMIE COUNTY--Continued

412407095391201. Local number, 76-42-10 ADBC. LOCATION.--Lat 41°24'01", long 95°39'17", Hydrologic Unit 10230006, approximately 1 mi east of the Town of Underwood, behind

AQUIFER.--Cambrian: sandstone and dolomite. from the Jordan and Prairie du Chen formations. WELL CHARACTERISTICS.--Drilled public use well, diameter 16 in., depth 2520 ft, screened 2420-2460 ft, gravel packed. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,093 ft above sea level, from topographic map. Measuring point: Top of casing, 1.72 ft above larged curface datum. ft above land-surface datum.

EMARKS.--Underwood Well PERIOD OF RECORD.--October 1996 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 72.17 ft below land surface datum, May 09, 2001; lowest measured, 74.18 ft below land surface datum, October 28, 1996.

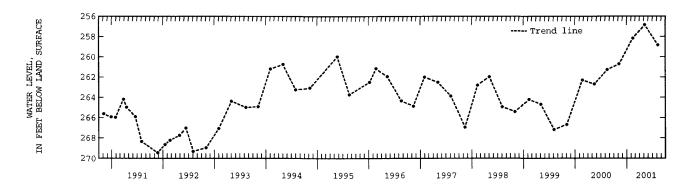
WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
DEC 04	72.72	FEB 15	72.35	MAY 09	72.17				
WATER YE	AR 2001	HIGHEST	72.17	MAY 09,	2001	LOWEST	72.72	DEC 04,	2000
	SCOTT COUNTY								

413544090212901. Local number, 78-5E-03 AADA.

415344090218901. Local number, 78-5E-03 AADA. LoCATION.--Lat 41°35'44", long 91°21'29", Hydrologic Unit 07080101, at the Bridgeview Elementary School corner of 12th and Davemport Streets, Le Claire. AQUIFER.--Cambrian-Ordovician: sandstone of Late Cambrian and sandstone and sandy dolomite of Early Ordovician age. WELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 16 to 10 in., depth 1,607 ft, cased to 1,300 ft,

open hole 1,300-1,607 ft. INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel. Graphic water-level recorder July 1975 to December


1984.

DATUM.--Elevation of land-surface datum is 703 ft above sea level, from topographic map. Measuring point: Nipple on plate welded

Define and surface datum is 705 ft above sea fevel, from topographic map. Measuring point: Nipple on plate werded to casing, 2.11 ft above land-surface datum.
 REMARKS.-- Le Claire Well No. 3.
 PERIOD OF RECORD.--July 1975 to current year.
 REVISED RECORDS.--WRD IA-84-1, WDR IA-88-1.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level recorded, 247.46 ft below land-surface datum, July 8, 1975; lowest recorded, 276.86 ft below land-surface datum, September 1, 1978.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

. DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WAT LEV		
NOV 08	260.70	FEB 13	258.15	MAY 08	256.84	AUG ()8 258.	83	
WATER Y	EAR 2001	HIGHEST	256.84	MAY 08.	2001	LOWEST	260.70	NOV 08.	2000

SHELBY COUNTY

413255095070401. Local number, 78-37-17 DDDD. LOCATION.--Lat 41°32'55*, long 95°07'04*, Hydrologic Unit 10240003, 3 mi south and 3 mi west of the Town of Elkhorn on the east side of County Road M-56 near Elkhorn Creek. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota and Pennsylvanian: sandstone of Cretaceous age and shale and limestone of Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 181 ft, screened 121-179 ft, gravel-packed, open to Dakota 121-140 ft, Pennsylvanian 140-181 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1,208 ft above sea level, from topographic map. Measuring point: Top of casing, 2.80 ft above land-surface datum. REMARKS.-- Well WC-16.

PERIOD OF RECORD. --August 1981 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 36.60 ft below land-surface datum, August 11, 1993; lowest measured, 43.23 ft below land-surface datum, December 04, 2000.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		TER VEL	
DEC 04	43.23	FEB 13	42.66	MAY 09	41.82	JUL 3	1 42	.24	
WATER YE	AR 2001	HIGHEST	41.82	MAY 09, 3	2001	LOWEST	43.23	DEC 04,	2000

413359095182701. Local number, 78-39-11 CCBC. LOCATION.--Lat 41°33'59", long 95°18'27", Hydrologic Unit 10240002, approximately 5.5 mi south of the City of Harlan, 0.75 mi south of County Road F-58, and 1.5 mi east of U.S. Highway 59. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Fremont buried channel: sand and gravel of Pleistocene age. WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 541 ft, screened 520-535 ft,

gravel-packed. Pennsylvanian shale 537-541 ft.

INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,310 ft above sea level, from topographic map. Measuring point: Top of casing, 1.65 ft above land-surface datum.

tt above Iand-surrace Gatum. REMARKS.-- Well WC-227. PERIOD OF RECORD.--July 1983 to current year. REVISION.--Lowest water level measured, 153.32 below land-surface datum, April 12, 1990. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 146.61 ft below land-surface datum, September 6, 1983; lowest measured, 153.32 ft below land-surface datum, April 12, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	DATE	WATER LEVEL
DEC 04 152.41	FEB 13 152.30	MAY 09 152.12	JUL 31	152.51
WATER YEAR 2001	HIGHEST 152.12	MAY 09, 2001	LOWEST 152	.51 JUL 31, 2001

413953095302601. Local number, 79-40-09 DBCA.

LIOCATION.-Lat 41'39'53', long 95°30'26', Hydrologic Unit 10230006, east of State Highway 191, approximately 1 mi northeast of the Town of Portsmouth. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.--Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 210 ft, screened 160-175 ft, gravel packed, open hole 200-210 ft.

DATUM.--Elevation of land-surface datum is 1,205 ft above sea level, from topographic map. Measuring point: Top of casing, 4.10 ft above land-surface datum. REMARKS.-- Well WC-15.

PERIOD OF RECORD. -- August 1992 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.29 feet below land-surface datum, May 9, 1995; lowest measured, 19.93 ft below land-surface datum, August 07, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		rer /el	
NOV 20	19.73	FEB 14	19.71	MAY 09	19.55	JUL 31	1 19	. 89	
WATER YE	AR 2001	HIGHEST	19.55	MAY 09,	2001	LOWEST	19.89	JUL 31,	2001

414624095252301. Local number, 80-39-06 AADC. LOCATION.--Lat 41°46'24", long 95°25'22", Hydrologic Unit 10230006, west of the Town of Earling on the north side of Iowa Highway 37 near the junction of Iowa Highways 37 and 191. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 370 ft, screened 332-347 ft, open to Pennsylvanian sandstone, shale, and limestone 347-370 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,305 ft above sea level, from topographic map. Measuring point: Top of casing, 2.60

ft above land-surface datum. REMARKS.-- Well WC-10.

PERIOD OF RECORD. -- June 1981 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 89.91 ft below land-surface datum, April 10, 1984; lowest measured, 131.70 ft below land-surface datum, April 12, 1990.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV	
NOV 20	107.76	FEB 14	113.75	MAY 09	112.37	AUG (01 114.	93
WATER Y	EAR 2001	HIGHEST	107.76	NOV 20,	2000	LOWEST	114.93	AUG 01, 2001

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 535 ft, screened 525-535 ft, gravel-packed. Open to Pennsylvanian shale 530-535 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,370 ft above sea level, from topographic map. Measuring point: Top of casing, 2.90 ft above land-surface datum. REMARKS.-- Well WC-222. PERIOD OF RECORD.--August 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 208.09 ft below land-surface datum, April 15, 1987; lowest

measured, 212.97 ft below land-surface datum, October 11, 1990.

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL					
NOV 20	211.64	MAY 09 2	11.28	AUG 01	211.82					
WATER Y	EAR 2001	HIGHEST	211.28	MAY 09,	2001	LOWEST	211.82	AUG 01,	2001	

430140095573101. Local number, 95-43-07 AAAA. LOCATION.--Lat 43°04'10", long 95°57'32", Hydrologic Unit 10230002, just south of County Road B-40, 1 mi east of the Village of Newkirk. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey. AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 681 ft, screened 641-681 ft. Open to

Paleozoic rock from 674-681 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 1,390 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum.

REMARKS.-- Well D-43.

REMARKS.-- Weil D-43. PERIOD OF RECORD.--July 1980 to December 1980, May 1982 to current year. REVISED RECORDS.--WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 213.66 ft below land-surface datum, March 13, 1984; lowest measured, 219.57 ft below land-surface datum, February 5, 1996.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV		
NOV 21	219.59	FEB 14 2	19.45	MAY 10	219.32	AUG	06 219.	68	
WATER Y	EAR 2001	HIGHEST	219.32	MAY 10,	2001	LOWEST	219.68	AUG 06,	2001

430913096033201. Local number, 96-44-08 ADAA. LOCATION.--Lat 43°09'13", long 96°03'32", Hydrologic Unit 10230002, west side of County Road K-64, approximately 2.5 mi west of the Town of Boyden and approximately 2.2 mi south of U.S. Highway 18. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.

AQUIFER.-Dakota: sandstone of Cretaceous age.
 WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 682 ft, screened 647-667 ft. Open to Paleozoic rock 681-682 ft.
 INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,373 ft above sea level, from topographic map. Measuring point: Top of casing, 3.70 ft above land-surface datum.

REMARKS.-- Well D-44.
 PERIOD OF RECORD.--August 1980 to December 1980, May 1982 to current year.
 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 187.85 ft below land-surface datum, October 16, 1984; lowest measured, 196.72 ft below land-surface datum, August 08, 2000.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL		WATER LEVEL	DATE	WATER LEVEL	DAT	WAT E LEV		
NOV 21	195.17	FEB 14 1	96.77	MAY 10	196.65	AUG	06 196.	90	
WATER Y	EAR 2001	HIGHEST	195.17	NOV 21,	2000	LOWEST	196.90	AUG 06,	2001

STORY COUNTY

420129093273701. Local number, 83-22-06 CDBD. LOCATION.--Lat 42°01'30", long 93°27'33", Hydrologic Unit 07080105, approximately one mile north of Highway 30 near 1st and N ave. Owner: City of Nevada.

AQUIFER.--Cambrian-Ordovician aquifer.

WELL CHARACTERISTICS.--Drilled public supply well, diameter 16 in., depth 2630 ft, open hole 2015-2630 ft INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 991 ft above sea level, from topographic map.

REMARKS.-- Nevada well no. 4
PERIOD OF RECORD.--February 1997 to current year.
EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 295 ft below land-surface datum, February 08, 1999; lowest measured, 373 ft below land-surface datum, February 11, 1997.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 08	380	FEB 14	365	MAY 09	310	AUG 02	350	
WATER Y	EAR 2001	HIGHEST	310	MAY 09,	2001	LOWEST	380 NOV 08,	2000

420137093361501. Local number, 83-24-02 DABC. LOCATION.--Lat 42°01'32", long 93°36'21", Hydrologic Unit 07080105, in Ames, north of the Chicago and Northwestern Railroad and County Road E-41, approximately 0.75 mi east of U.S. Highway 69. Owner: City of Ames. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Drilled municipal well, depth 124 ft, casing information unavailable. INSTRUMENTATION.--Quarterly measurement with chalked tape or electric line by USGS personnel. DATUM.--Elevation of land-surface datum is 926 ft above sea level, from topographic map. Measuring point: Top of casing, 0.82 ft above land.curface.

above land-surface datum.

above land-surface datum. REMARKS.-- Ames city well No. 4. PERIOD OF RECORD.--September 1987 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.98 ft below land-surface datum, March 14, 1991; lowest measured, 76.06 ft below land-surface datum, August 08, 2000.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 08	65.62	FEB 14	70.73	AUG 02	60.02				
WATER YE	AR 2001	HIGHEST	60.02	AUG 02, 2	001	LOWEST	70.73	FEB 14, 2001	L

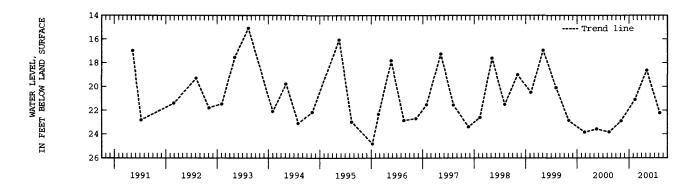
VAN BUREN COUNTY

404150091483001. Local number, 68-08-08 CDD.

LOCATION.--Lat 40°41'53", long 91°48'20", Hydrologic Unit 07100009, located at the west end of the park in the City of Bonaparte, south of County Road J-40. Owner: City of Bonaparte.

AQUIFER. -- Mississippian: limestone and dolomite of Mississippian age

WELL CHARACTERISTICS .-- Drilled unused semi-confined public-supply well, diameter 6 in., depth 205 ft, cased to 18 ft, open hole 18-205 ft.


INSTRUMENTATION .-- Intermittent measurement with chalked tape by USGS personnel. Graphic water-level recorder December 1988 to

July 1990. Intermittent measurement with chalked tape by USGS personnel August 1988 to December 1988. DATUM.--Elevation of land-surface datum is 552 ft above sea level, from topographic map. Measuring point: Top of recorder platform, 0.65 ft above land-surface datum.

EMARKS.-- Bonaparte No. 1 well. Recorder removed July 17, 1990. PERIOD OF RECORD.--August 1988 to present. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.08 ft below land-surface datum, August 10, 1993; lowest measured, 32.13 ft below land-surface datum, August 16, 1989.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE		WATER LEVEL		
NOV 06	22.90	FEB 12	21.11	MAY 07	18.63	AUG 07	2	22.21		
WATER YE	AR 2001	HIGHEST	18.63	MAY 07, 2	2001	LOWEST	22.9	90 NOV	06,	2000

WASHINGTON COUNTY

411300091320701. Local number, 74-06-15 BDAC. LOCATION.--Lat 41°12'59", long 91°32'07", Hydrologic Unit 07080107, in the water treatment plant, beneath the water tower in Crawfordsville. Owner: Town of Crawfordsville. AQUIFER.--Mississippian: dolomite of Mississippian age.

WELL CHARACTERISTICS.--Drilled unused municipal artesian water well, diameter 6.5 in., depth 215 ft, cased to 132 ft, open hole 132-215 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM. .- Elevation of land-surface datum is 725 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to casing, 1.10 ft above land-surface datum. PERIOD OF RECORD.--September 1983, March 1987 to current year. REMARKS: Crawfordsville North.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 69.23 ft below land-surface datum, March 25, 1987; lowest measured, 78.09 ft below land-surface datum, August 05, 1999.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	72.67	FEB 12	72.12	MAY 07	71.53	AUG 07	72.61	
WATER YE	EAR 2001	HIGHEST	71.53	MAY 07, 2	2001	LOWEST 7	2.67 NOV 07,	2000

412750091495201. Local number, 77-09-24 AADA. LOCATION.--Lat 41°27'53", long 91°49'47", Hydrologic Unit 07080209, north of the city sewage treatment plant and west of First Avenue SE, Wellman. Owner: City of Wellman.

AQUIFER.--Mississippian: dolomite of Mississippian age.

WELL CHARACTERISTICS .-- Drilled unused artesian water well, diameter 10 in. to 27 ft, 8 in. to 47 ft, depth 110 ft, cased to 47 ft. open hole 47 to 110 ft.

INSTRUMENTATION .-- Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 695 ft above sea level, from topographic map. Measuring point: Nipple on plate welded to casing, 1.87 ft above land-surface datum. REMARKS.-- City test well No. 1.

PERIOD OF RECORD.--May 1963 to October 1971, May 1973 to current year. REVISED RECORDS.--WDR IA-84-1, WDR IA-88-1. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.31 ft above land-surface datum, May 08, 2001; lowest measured, 6.80 ft below land-surface datum, October 20, 1964.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL	
NOV 07	1.28	FEB 13	.86	MAY 08	.31	AUG 08	2.23	
WATER YE	AR 2001	HIGHEST	.31	MAY 08, 2	2001	LOWEST	2.23 AU	G 08, 2001

WASHINGTON COUNTY--Continued

421829091304701. Local number, 75-06-14 ABBB.

421029091304701. Local Humber, 75-06-14 ABB. LOCATION.--Lat 41°18'28", long 91°30'47", Hydrologic Unit 07080209, 1 mi north and 1.5 mi east of the junction of U.S. Highway 218 and Iowa Highway 92. Owner: Mrs. David Armstrong. AQUIFER.--Glacial drift of Pleistocene age. WELL CHARACTERISTICS.--Bored unused water-table well, diameter 12 in., depth 45 ft, lined with tile.

INSTRUMENTATION.--Monthly measurement with chalked tape by USGS personnel. DATUM.--Elevation of land-surface datum is 745 ft above sea level, from topographic map. Measuring point: Nipple welded to barrel, 4.08 ft above land-surface datum.

PERIOD OF RECORD.--November 1983 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.29 ft below land-surface datum, April 16, 1999; lowest measured, 12.65 ft below land-surface datum, November 1, 1988.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL								
ОСТ 19 NOV 30	7.00 7.11	DEC 21 JAN 11	7.27 5.10	FEB 16 MAR 12	2.48 1.79	APR 26 JUN 29	3.33 4.17	JUL 31 SEP 24	5.34 5.86		
	D 2001	utoupon	1 20	NAD 10	0001	1.01.77.07		21 2000			

WATER YEAR 2001 HIGHEST 1.79 MAR 12, 2001 LOWEST 7.27 DEC 21, 2000

WEBSTER COUNTY

421837094083601. Local number, 87-28-29 CCCD.

LOCATION.--Lat 41°18'38", long 94°08'36", Hydrologic Unit 07100006, 3 mi north and 2 mi east of the Town of Harcourt. Owner: Grace Helms

AQUIFER. -- Glacial drift of Pleistocene age.

WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 12 in., depth 42 ft, lined with tile.

INSTRUMENTATION .-- Monthly measurement with chalked tape by USGS personnel. Graphic water-level recorder October 1942 to December 1976.

DATUM.--Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of casing, 1.29 ft above land-surface datum. PERIOD OF RECORD.--October 1942 to June 1956, March 1958 to current year. REMARKS.--Sometimes called Harcourt well.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.05 ft below land-surface datum, August 1, 1972; lowest measured, 13.62 ft below land-surface datum, March 12, 1956.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL										
OCT 17 NOV 08	10.66 10.80	DEC 28 JAN 24	9.40 9.74	FEB 15 MAR 19	9.00 1.90	APR 19 MAY 10	3.25 2.41	JUN 18 JUL 12	3.11 5.56	AUG 21 SEP 25	6.70 6.57
WATER YI	EAR 2001	HIGHEST	1.90	MAR 19,	2001	LOWEST 10	.80 NOV	08, 2000			

SURFACE ---- Trend line WATER LEVEL, BELOW LAND 8 FEET 10 R 1..... 12 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

423018094214701. Local number, 89-30-23 CCBB. LOCATION.--Lat 42°30'18", long 94°21'47", Hydrologic Unit 07100004, 75 ft west of the new school addition, Barnum. Owner: Johnson Township Consolidated School.

AQUIFER.--Dakota: sandstone of Cretaceous age.

WELL CHARACTERISTICS.--Drilled unused artesian water well, diameter 4 in., depth 208 ft, screened 203-208 ft. INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,174 ft above sea level, from topographic map. Measuring point: Top of casing at

land-surface datum. PERIOD OF RECORD.--October 1942 to September 1945, May 1947 to current year. REVISED RECORDS.--WDR IA-88-1.

EXTREMES FOR PERIOD OF RECORD. -- Highest water level measured, 30.36 ft below land-surface datum, October 21, 1942; lowest measured, 45.85 ft below land-surface datum, July 28, 1980.

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL			
NOV 08	45.03	MAY 07	37.88	AUG 10	43.35			
WATER YE	EAR 2001	HIGHEST	37.88	MAY 07. 2	2001	LOWEST	45.03	NOV 08, 2000

WOODBURY COUNTY

422058095573701. Local number, 87-44-15 CBBB.
 LOCATION.--Lat 42°20'58", long 95°57'37", Hydrologic Unit 10230003, approximately 3.5 mi west and 5.5 mi north of the Village of Oto. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
 AQUIFER.--Dakota: sandstone of Cretaceous age.
 WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 2 in., depth 197 ft, screened 185-189 ft.
 INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM. -- Elevation of land-surface datum is 1,165 ft above sea level, from topographic map. Measuring point: Top of casing, 1.50 ft above land-surface datum.

REMARKS.-- Well D-34.

ERIOD OF RECORD.--April 1980 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured,51.54 ft below land-surface datum, August 7, 1996; lowest measured, 63.56 ft below land-surface datum, November 02, 1982.

WATER LEVELS IN FEET BELOW LAND SURFACE DATUM, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL	DATE	WATER LEVEL				
NOV 21	56.02	FEB 14	55.17	MAY 09	54.24				
WATER YE	AR 2001	HIGHEST	54.24	MAY 09,	2001	LOWEST	56.02	NOV 21,	2000

422830096000511. Local number, 88-44-16 BAAB11.
LOCATION.--Lat 42°28'30", long 96°00'31", Hydrologic Unit 10230004, approximately 3 mi east and 0.5 mi south of the Town of Moville. Owner: Geological Survey Bureau, DNR and U.S. Geological Survey.
AQUIFER.--Dakota: sandstone of Cretaceous age.
WELL CHARACTERISTICS.--Drilled observation artesian water well, diameter 4 in. to 235 ft, 2 in. to 337 ft, depth 337 ft, screened 332-337 ft.
INSTRUMENTATION.--Quarterly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,340 ft above sea level, from topographic map. Measuring point: Top of casing, 3.50 ft above land-surface datum. MARKS.-- Well D-33. Damaged March 1998

REMARKS.--

PERIOD OF RECORD.--October 1979 to December 1980, May 1982 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 198.60 ft below land-surface datum, November 09, 1999; lowest measured, 202.90 ft below land-surface datum, October 17, 1979.

WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL	WATER DATE LEVEL
NOV 20 199.72	FEB 14 199.58	MAY 09 199.18	AUG 06 199.32
WATER YEAR 2001	HIGHEST 199.18	MAY 09, 2001	LOWEST 199.72 NOV 20, 2000

GROUND WATER QUALITY MONITORING PROGRAM

[Geologic unit abbreviations used in this table: 110QRCU, Quarternary-Cretaceous Undifferentiated; 110QRNR, Quarternary System; 111ALVM, Holocene Alluvium; 111ENRV, East Nishnabotna River Allvuial; 111SDRV, Soldier River Alluvial; 112AFNN, Aftonian Interglacial Deposits; 112PLSC, Pleistocene Series]

		VVAIC	QUALITI DATA, WATER TEAR OC	10BER 2000 10 3	SFIEDER 200	1			
STATION NUMBER	STATION	NAME		COUNTY	DATE	TIME	GEO- LOGIC UNIT	DEPTH OF WELL, TOTAL (FEET) (72008)	FLOW RATE (G/M) (00058)
411727094374001 405632094534401 413234094552401 420535091524002 422819092212701	071N35W20A 078N35W19B 084N09W15A	ACB CDB CC	1976Fontanelle 5 1990Nodaway 4 1976Brayton 1 1932Shellsburg 2 1960Waterloo 17	Adair Adams Audubon Benton Black Hawk	08-14-01 08-13-01 08-17-01 08-02-01 08-29-01	1500 1645 1100 1130 0945	111 ALVM 111ALVM 111 ENR V 340DVSL 344DVNNM	39.00 35.00 41.00 335.00 215.00	60 55 75 100 2400
420451093561301 420959094001901 422852092040101 424708094570801 425344095090401	085N27W16C 089N10W31A 092N35W14B	CDC AB 09382 CCC 04044	1940Boone 20 1967Pilot Mound 3 1957Jesup 2 1949Albert City 1 1977Sioux Rapids 2	Boone Boone Buchanan Buena Vista Buena Vista	07-26-01 07-26-01 08-29-01 07-23-01 07-23-01	1030 0845 1130 1200 1400	111ALVM 112PLSC 358KNKK 112PLSC 111ALVM	64.00 30.00 380.00 190.00 54.00	200 32 275 170 185
425355092475801 415233094403201 411639094521101 411622094520901 414032091210001	082N33W34A 075N35W22C 075N35W27B	BBD BDC BAB	1948Greene 1 1938Coon Rapids 1, North 1978Cumberland (5) 4 1921Cumberland 1 1979West Branch 4	Butler Carroll Cass Cass Cedar	09-14-01 08-02-01 08-14-01 08-14-01 09-19-01	1230 1345 1200 1200 0930	111ALVM 217DKOT 217DKOT 112PLSC 358ALXD	115 191.00 213.00 155.00 450	100 40 30 230
423744095383301 424341095331301 414652090153201 414930090321601 420336095115601	091N40W03A 081N06E33A 081N04E18A	CCC 18613 DA CBB 00183	1956Camanche 2	Cherokee Cherokee Clinton Clinton Crawford	08-01-01 08-01-01 08-06-01 08-06-01 08-02-01	1115 1545 1115 1315 1600	217DKOT 217DKOT 111ALVM 371JRDN 111ALVM	218.00 255.00 61.2 1646 28.00	100 600 150
415057094065301 413836094161701 423020091273701 423135090383201 423602090595201	079N29W19B 089N05W20D 089N03E18A	AAC 19060 BBB ADD	1987Perry 9R 1966Linden 3 1981Manchester 7 1969Dubuque 9 1987Holy Cross 1	Dallas Dallas Delaware Dubuque Dubuque	07-26-01 08-15-01 08-29-01 09-11-01 09-11-01	1500 0815 1400 1215 1530	111ALVM 330MSSP 350SLRN 111ALVM 111ALVM	45.00 940.00 270.00 125 665	310 60
432349094285201 425717091382602 425341093132501 404327095284801 421322092522001	094N07W14C 093N20W05D 068N40W07B	BAD DAB CAA	1995Armstrong 7 1954Elgin 2 1956Sheffield 2 1980Farragut 79-2 (North) 1962Conrad 3	Emmet Fayette Franklin Fremont Grundy	07-24-01 09-12-01 07-25-01 08-13-01 09-05-01	0815 0930 0815 1140 0900	112PLSC 111ALVM 110QRNR 111ALVM 339HMPN	136.00 220 27.00 65 120.00	280 110 150
422611092552501 430015093360501 430015093360502 414236096012501 432650092170401	095N23W31A 095N23W31A 080N45W25D	CA 11168 BDD 00265 ABD		Grundy Hancock Hancock Harrison Howard	09-18-01 07-24-01 08-27-01 08-27-01 09-13-01	0945 1415 1425 1130 0930	371JRDN 341LMCK 371JRDN 111ALVM 111ALVM	2050 185.00 1512.00 90.00 380	350 50 125 150
422106095280201 422915095323504 414825091511201 414520092112001 420414090113201	089N39W33C 081N09W23D 080N12W12A	DDD ADA 21060 DDC 05509	1965Ida Grove 3 1985Holstein 3 1968East Amana 2 1952Ladora 1 1895Sabula 1	Ida Ida Iowa Iowa Jackson	12-13-00 08-02-01 08-30-01 09-20-01 08-06-01	1130 0830 1145 0915 0930	112PLSC 111ALVM 340DVSL 112PLSC 3600VCB	65 54.00 550.00 72.5 973	110 50
413913093070001 410046091555701 421442091120001 412138091571501 403745091174701	Fairfield 086N03W21C 076N10W25A	Municipal AAA CCA 01794	Well nr Walton Lake 1977Monticello 4	Jasper Jefferson Jones Keokuk Lee	09-05-01 09-06-01 09-19-01 08-08-01 09-06-01	1230 1000 1300 0915 1300	111ALVM 371JRDN 350SLRN 339WSVL 111ALVM	45.00 2200.00 320 153 147.00	1500 500 600
420005091431201 411644091110703 405858093175701 432608096201503 420352092552401	075N03W22D 071N20W06A 100N47W36D	CBD BDA 07948 CBD	1970Cedar Rapids S6 1975Grandview 3 1956Russell 1 1988Lester (4) 2 1981Marshalltown 14	Linn Louisa Lucas Lyon Marshall	08-02-01 08-08-01 08-15-01 07-31-01 09-04-01	0930 1345 1215 1930 1330	111ALVM 112AFNN 3600VCB 111ALVM 330MSSP	65.00 174 2520.00 32.00 160.00	800 200 45 450
420405092545601 410656095380201 432150092332401 431654092484501 432241092550802	073N42W23A 099N15W25D 098N17W26A	AAC ABA DBC 16641	1977Marshalltown 8 1978Silver City 3 1917Riceville 1 1964Osage 5 1960Saint Ansgar 2	Marshall Mills Mitchell Mitchell Mitchell	09-04-01 08-27-01 09-13-01 09-13-01 09-14-01	1430 0830 1215 1515 0915	112PLSC 111ALVM 111ALVM 111ALVM 111ALVM	223.00 60.00 515 650 240	775 120
420955095475601 405850095061701 413521090511001 431157095502901 403906095015001	071N37W04A 078N01E04C 097N42W29B	CD 06207 AA 03238 BBC	1973Mapleton 5 1953Stanton 1 1948Stockton 1 1949Sheldon 5 1985Shambaugh 3	Monona Montgomery Muscatine O'Brien Page	08-02-01 08-13-01 08-07-01 07-31-01 08-14-01	1015 1430 0915 1615 0715	111ALVM 217DKOT 355HPKN 111ALVM 111ALVM	64.00 158.00 247 24.00 30.00	350 120 60 30
425731094270801 423537095583901 411501095251301 414430092433001 421617095051001	090N43W19C 075N40W35C 080N16W16B	CBB BCA CCB 06931	1949West Bend 2 1956Kingsley 1 1975Carson (5) 3 1955Grinnell 7 1971Wall Lake (3),2	Palo Alto Plymouth Pottawattamie Poweshiek Sac	07-23-01 07-31-01 08-13-01 09-18-01 07-23-01	1615 1215 0830 1230 0900	217DKOT 110QRNR 111ALVM 371JRDN 112PLSC	$115.00 \\ 37.00 \\ 30.00 \\ 2550 \\ 43.00$	40 155 50 1000 325
413923090350901 413040090455001 413049095254501 430017096285301 415252093411401	078N02E32C 078N39W34A 095N48W35E	C 22757 CCD DDC	1929Eldridge 2 1971Blue Grass (2),1 1968Shelby 5 1931Hawarden 2 1945Slater 1	Scott Scott Shelby Sioux Sto ry	08-06-01 08-07-01 08-17-01 07-31-01 07-26-01	1500 1130 1345 1415 1300	350SLRN 364PLVL 111ALVM 110QRCU 112PLSC	515 640 48.00 36.00 180.00	 15 120 70

GROUND WATER QUALITY MONITORING PROGRAM--Continued

			WALL	at QOADIII	DAIA, WA		OCTOBER 2	000 10 51	I I LAIDLIN Z	001			
STATION	NUMBER	DATE	PUMP OR FLOW PERIOD PRIOR TO SAM- PLING (MIN) (72004)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
4056320 4132340 4205350	94374001 94534401 94552401 91524002 92212701	08-14-01 08-13-01 08-17-01 08-02-01 08-29-01	30 30 20 30 >30	.1 .6 .2 .5	7.0 6.7 6.7 6.7 6.8	505 490 871 691 664	13.0 12.5 12.0 11.3 11.3	220 230 410 270 350	64.0 60.0 110 71.0 93.0	13.0 19.0 32.0 21.0 25.0	2.00 <1.00 1.00 2.30 2.30	11.0 11.0 26.0 11.0 24.0	190 140 300 210 220
4209590 4228520 4247080	93561301 94001901 92040101 94570801 95090401	07-26-01 07-26-01 08-29-01 07-23-01 07-23-01	45 30 >30 30 30	3.9 .3 .9 5.3	7.4 7.1 6.9 7.2 7.0	673 722 540 1400 1140	11.0 11.5 13.4 10.5 10.5	280 380 280 700 480	78.0 98.0 71.0 170 130	30.0 32.0 25.0 53.0 37.0	2.70 2.60 1.90 7.60 3.20	16.0 7.3 7.5 65.0 30.0	230 300 250 390 270
4152330 4116390 4116220	92475801 94403201 94521101 94520901 91210001	09-14-01 08-02-01 08-14-01 08-14-01 09-19-01	30 30 30 <30	.3 2.7 .2 2.5	7.1 6.9 7.0 7.0 6.6	399 417 386 343 883	10.1 12.5 12.5 13.5 12.2	230 210 200 270 450	68.0 54.0 51.0 46.0 120	15.0 16.0 13.0 12.0 36.0	1.00 <1.00 1.30 1.40 1.50	2.8 6.0 9.2 7.6 21.0	210 160 190 160 380
4243410 4146520 4149300	95383301 95331301 90153201 90321601 95115601	08-01-01 08-01-01 08-06-01 08-06-01 08-02-01	30 30 30	.6 .3 1.3	7.2 7.1 7.0	743 1240 847	12.0 11.5 14.0	360 590 190 230 390	99.0 160 44.0 46.0 110	26.0 45.0 16.0 24.0 26.0	4.60 5.20 1.20 8.30 1.20	21.0 46.0 11.0 49.0 24.0	280 280 120 260 280
4138360 4230200 4231350	94065301 94161701 91273701 90383201 90595201	07-26-01 08-15-01 08-29-01 09-11-01 09-11-01	30 30 30 	.2 .3 4.5 .3 .4	7.2 7.5 7.2 7.3 6.9	683 72000 502 421 582	10.5 16.0 11.0 12.7 14.2	360 840 270 190 340	97.0 190 69.0 46.1 79.0	27.0 63.0 18.0 18.6 34.0	1.70 7.70 1.40 2.57 1.80	6.5 300 11.0 10.7 2.2	280 190 190 310
4257170 4253410 4043270	94285201 91382602 93132501 95284801 92522001	07-24-01 09-12-01 07-25-01 08-13-01 09-05-01	30 30 >30	.2 .6 5.4 2.2	7.0 7.0 7.4 7.0	1140 640 589 714	10.5 10.2 12.0 11.4	540 340 290 320 360	140 100 77.0 78.0 90.0	43.0 27.0 25.0 24.0 36.0	4.00 2.30 .83 2.70 2.30	54.0 5.1 4.3 17.0 12.0	440 260 200 240 290
4300150 4300150 4142360	92552501 93360501 93360502 96012501 92170401	09-18-01 07-24-01 08-27-01 08-27-01 09-13-01	30 30 20 30	.3 .5 .3 .3	7.0 7.0 7.2 7.0 7.2	932 832 724 1250 428	12.9 11.0 12.0 12.5 8.8	370 420 550 580 220	80.0 95.0 110 140 63.0	32.0 40.0 47.0 19.0	18.0 6.30 16.0 1.40	70.0 19.0 46.0 4.1	310 370 330 520 210
4229150 4148250 4145200	95280201 95323504 91511201 92112001 90113201	12-13-00 08-02-01 08-30-01 09-20-01 08-06-01	30 30 30	1.6 5.3 .6 	7.2 7.2 6.8 7.6	1160 801 755 1020	12.8 12.0 15.0 12.2	400 320 330 280	110 74.0 82.0 48.0	28.0 30.0 30.0 33.0	1.20 1.30 2.50 4.00	13.0 5.0 96.0 2.0	280 290 400 250
4100460 4214420 4121380	93070001 91555701 91120001 91571501 91174701	09-05-01 09-06-01 09-19-01 08-08-01 09-06-01	>30 30 <30 >30	7.7 .3 3.2 .9	7.0 7.2 7.0 6.9	664 1770 582 480	11.5 23.7 16.2 13.6	360 310 310 460 220	90.0 74.0 74.0 110 55.0	33.0 30.0 31.0 40.0 19.0	<1.00 17.0 <1.00 2.40 2.60	7.4 270 5.1 32.0 10.0	270 240 270 430 220
4116440 4058580 4326080	91431201 91110703 93175701 96201503 92552401	08-02-01 08-08-01 08-15-01 07-31-01 09-04-01	>30 30 40 >30	.6 10.1 .4 1.0	6.9 7.7 7.2 6.9	530 1310 1130 681	13.3 21.0 10.0 10.7	340 290 240 580 370	110 63.0 57.0 150 90.0	15.0 17.0 22.0 46.0 30.0	5.10 1.00 16.0 2.60 2.00	17.0 7.5 180 20.0 10.0	270 240 260 320 270
4106560 4321500 4316540	92545601 95380201 92332401 92484501 92550802	09-04-01 08-27-01 09-13-01 09-13-01 09-14-01	>30 30 	.4 .3 .8 .4 4.1	7.2 6.9 7.2 7.2 6.3	709 996 622 560 815	10.8 12.0 10.1 12.8 9.8	410 470 310 280 350	90.0 120 76.0 80.0 89.0	34.0 36.0 29.0 23.0 30.0	2.50 6.10 3.40 1.60 1.80	17.0 44.0 18.0 8.9 110	290 340 300 250 240
4058500 4135210 4311570	95475601 95061701 90511001 95502901 95015001	08-02-01 08-13-01 08-07-01 07-31-01 08-14-01	30 30 30 30	5.4 .6 .6 .3	7.2 7.1 7.2 6.4	860 504 833 451	12.0 12.5 10.5 12.0	420 270 320 450 200	110 66.0 78.0 110 52.0	33.0 16.0 28.0 36.0 11.0	2.90 1.30 <1.00 1.40 <1.00	17.0 9.8 10.0 12.0 19.0	310 210 320 300 140
4235370 4115010 4144300	94270801 95583901 95251301 92433001 95051001	07-23-01 07-31-01 08-13-01 09-18-01 07-23-01	30 30 30 >30 30	.2 6.5 .3 .5 .3	7.0 7.1 6.7 7.1 7.1	773 907 718 1100 978	11.0 14.5 11.5 24.1 11.0	390 440 380 380 460	100 120 100 80.0 120	32.0 32.0 28.0 38.0 34.0	4.30 2.50 1.00 16.0 3.40	16.0 19.0 8.4 99.0 31.0	380 340 290 300 300
4130400 4130490 4300170	90350901 90455001 95254501 96285301 93411401	08-06-01 08-07-01 08-17-01 07-31-01 07-26-01	 30 30 30	6.0 7.7 .2	6.9 7.3 7.7	 522 892 789	15.0 11.0 12.0	230 330 220 450 280	47.0 78.0 66.0 120 63.0	24.0 33.0 20.0 35.0 23.0	<1.00 1.30 <1.00 4.20 6.10	12.0 15.0 8.3 16.0 67.0	140 350 150 310 420

GROUND WATER QUALITY MONITORING PROGRAM--Continued

			,								
STATION NUMBER DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
411727094374001 08-14-01 405632094534401 08-13-01 413234094552401 08-17-01 420535091524002 08-02-01 422819092212701 08-29-01	13.0	.2	20.0	30.0	300	.300	.70	<.100	.41	<.020	2.2
	3.7	.1	20.0	100	320	<.100	.03	1.40	.26	.030	<1.0
	57.0	.3	19.0	67.0	500	.090	.40	.100	.24	<.020	1.2
	20.0	.4	12.0	34.0	350	.300	.40	6.20	<.10	.070	3.8
	20.0	.6	15.0	110	430	.220	.37	.800	.15	<.020	<1.0
420451093561301 07-26-01 420959094001901 07-26-01 422852092040101 08-29-01 424708094570801 07-23-01 425344095090401 07-23-01	23.0 11.0 6.4 1.1 160	.6 .5 .7 .6 .4	22.0 34.0 12.0 32.0 28.0	65.0 78.0 23.0 400 25.0	410 450 320 1000 680	<.100 <.200 .020 1.70 <.100	.20 .60 .11 1.9 <.10	5.90 <.100 3.60 <.100 3.50	.20 .40 .09 .20 <.10	<.020 <.020 <.020	2.1 1.3 <1.0 2.5 <1.0
425355092475801 09-14-01 415233094403201 08-02-01 411639094521101 08-14-01 411622094520901 08-14-01 414032091210001 09-19-01	<1.0	.3	13.0	14.0	240	<.050	.14	.100	.14	<.020	<1.0
	5.1	.3	21.0	35.0	240	<.100	.40	2.20	.40	<.020	<1.0
	<1.0	.3	23.0	15.0	230	<.100	.10	<.100	.10	<.020	<1.0
	<1.0	.3	23.0	11.0	200	<.100	.15	<.100	.15	<.020	<1.0
	53.0	.3	19.0	53.0	560	.710	.82	<.100	.10	.020	1.3
423744095383301 08-01-01 424341095331301 08-01-01 414652090153201 08-06-01 414930090321601 08-06-01 420336095115601 08-02-01	1.2	.9	26.0	110	470	.500	.80	<.100	.40	<.020	<1.0
	1.1	.9	28.0	410	910	.400	.70	<.100	.30	<.020	<1.0
	22.0	<.1	23.0	30.0	260	<.100	.20	5.60	.20	.060	<1.0
	22.0	.8	9.2	34.0	360	.700	1.0	<.100	.30	.890	3.9
	38.0	.2	25.0	87.0	5160	<.100	.30	5.10	.30	.130	<1.0
415057094065301 07-26-01 413836094161701 08-15-01 423020091273701 08-29-01 42315090383201 09-11-01 423602090595201 09-11-01	10.0	.5	24.0	65.0	420	<.100	.30	<.100	.30	<.020	1.3
	42.0	2.8	7.9	1200	2030	1.10	1.7	<.100	.62	<.020	<1.0
	14.0	.1	14.0	26.0	300	.020	<.05	7.90	<.05	<.020	<1.0
	15.5	E.1	13.8	15.2	250	.503	.84	E.125	.34	.335	5.0
	1.0	.3	9.3	23.0	340	<.050	.16	<.100	.12	<.020	<1.0
432349094285201 07-24-01 425717091382602 09-12-01 425341093132501 07-25-01 404327095284801 08-13-01 421322092522001 09-05-01	1.3 14.0 8.7 12.0 22.0	.4 .4 .3 .3 .3	32.0 12.0 24.0 23.0 16.0	190 55.0 17.0 73.0 47.0	750 400 330 390 410	.900 <.050 <.100 <.100 .240	2.1 .13 <.10 .30 .49	<.100 6.30 18.0 .800 5.30	1.1 .13 <.10 .32 .25	4.00 <.020 .110 <.020	2.2 <1.0 <1.0 <1.0 <1.0
422611092552501 09-18-01 430015093360501 07-24-01 430015093360502 08-27-01 414236096012501 08-27-01 432650092170401 09-13-01	9.6	1.4	7.9	190	600	1.40	1.4	<.100	<.05	.020	<1.0
	10.0	.9	15.0	55.0	460	.400	.70	<.100	.30	<.020	2.2
	8.1	.9		220	650	.970	1.3	<.100	.33	<.020	<1.0
	30.0	.3	33.0	120	790	1.40	1.7	<.100	.26	<.020	2.8
	1.9	.6	11.0	23.0	240	.300	.39	<.100	<.05	<.020	<1.0
422106095280201 12-13-00 422915095323504 08-02-01 414825091511201 08-30-01 414520092112001 09-20-01 420414090113201 08-06-01	25.0	.5	21.0	58.0	470	<.100	.30	11.0	.30	.030	<1.0
	1.5	.5	10.0	140	480	1.60	1.6	2.40	<.05	<.020	<1.0
	<5.0	.7	13.0	180	670	4.00	5.5	<.100	1.5	.100	6.8
	1.8	.2	9.2	16.0	270	<.100	.20	.200	.20	<.020	<1.0
413913093070001 09-05-01 410046091555701 09-06-01 421442091120001 09-19-01 412138091571501 08-08-01 403745091174701 09-06-01	16.0 140 8.7 4.0 17.0	.3 1.9 .3 .2	23.0 11.0 <.1 10.0 24.0	43.0 490 27.0 72.0 8.3	400 1160 340 540 280	<.010 1.40 <.050 .700 4.50	.08 1.4 <.05 1.2 4.6	7.60 <.100 3.20 <.100 <.100	.08 <.05 <.05 .50 .10	.090 <.020 .100 <.020 .990	<1.0 <1.0 <1.0 <1.0 <1.0 4.5
420005091431201 08-02-01 411644091110703 08-08-01 405858093175701 08-15-01 432608096201503 07-31-01 420352092552401 09-04-01	19.0	.3	13.0	50.0	450	.100	.10	3.10	<.10	.020	1.5
	<1.0	.2	24.0	<1.0	260	.600	2.3	<.100	1.7	.180	1.0
	90.0	2.9	11.0	280	850	.900	1.4	<.100	.51	<.020	<1.0
	13.0	.4	19.0	290	800	.100	.60	<.100	.50	.020	2.1
	20.0	.3	15.0	48.0	400	.040	.25	3.70	.21	.040	1.4
420405092545601 09-04-01 410656095380201 08-27-01 432150092332401 09-13-01 431654092484501 09-13-01 432241092550802 09-14-01	19.0	.5	17.0	76.0	440	1.20	1.3	<.100	.15	.030	1.3
	68.0	.3	24.0	81.0	590	.280	.43	<.100	.15	.040	1.4
	2.0	.8	11.0	53.0	370	2.80	2.5	<.100	<.05	.020	1.1
	10.0	.4	13.0	48.0	350	.440	.45	<.100	<.05	<.020	<1.0
	27.0	.3	11.0	56.0	780	<.050	.13	7.50	.12	.350	<1.0
420955095475601 08-02-01 405850095061701 08-13-01 413521090511001 08-07-01 431157095502901 07-31-01 403906095015001 08-14-01	27.0	.3	27.0	58.0	520	<.100	.20	12.0	.20	.080	<1.0
	15.0	.2	24.0	23.0	290	.500	.95	<.100	.46	<.020	<1.0
	5.1	.2	15.0	8.7	330	<.100	.20	<.100	.20	.180	<1.0
	21.0	.5	22.0	120	540	.200	.60	<.100	.40	.040	2.0
	23.0	<.1	28.0	50.0	280	<.100	.30	<.100	.29	.250	4.2
425731094270801 07-23-01 422537095583901 07-31-01 411501095251301 08-13-01 414430092433001 09-18-01 421617095051001 07-23-01	2.9	.6	24.0	38.0	450	.800	.70	<.100	<.10	<.020	1.2
	32.0	.5	28.0	69.0	550	<.100	.30	8.30	.30	.140	<1.0
	16.0	.3	9.6	60.0	420	<.100	.30	1.30	.32	<.020	<1.0
	17.0	1.5	11.0	290	730	1.20	1.1	<.100	<.05	<.020	<1.0
	66.0	.6	25.0	100	580	<.100	.50	2.20	.50	.020	1.3
413923090350901 08-06-01 413040090455001 08-07-01 413049095254501 08-17-01 430017096285301 07-31-01 415252093411401 07-26-01	<1.0 1.1 16.0 16.0 2.1	.5 .2 .3 .3 .6	16.0 17.0 21.0 27.0 10.0	<1.0 13.0 22.0 100 <1.0	240 360 310 590 460	2.10 <.100 .020 <.100 6.50	2.7 .30 .20 .30 13	<.100 15.0 12.0 <.100	.60 .30 .17 .30 6.0	.200 <.020 .020 .060 <.020	2.4 <1.0 <1.0 <1.0 19

GROUND WATER QUALITY MONITORING PROGRAM--Continued

STATION NUMBER I	DATE	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)
405632094534401 08- 413234094552401 08- 420535091524002 08-	-14-01 -13-01 -17-01 -02-01 -29-01	<5.00 <5.00 <5.00 <5.00 <5.00	21.0 5.0 3.0 1.0 <1.0	<2.00 <2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01 <.01	12000 480 6200 90 <90	<1.00 <1.00 <1.00 <1.00 <1.00	610 70.0 1100 480 80.0	<50.0 <50.0 <50.0 <50.0 <50.0
420959094001901 07- 422852092040101 08- 424708094570801 07-	-26-01 -26-01 -29-01 -23-01 -23-01	<5.00 <5.00 <5.00 <5.00 <5.00	1.0 9.0 <1.0 21.0 <1.0	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.02 <.01 <.01 <.01	30 2700 <20 4300 <20	2.00 <1.00 <1.00 <1.00 <1.00	120 220 <20.0 120 20.0	<50.0 <50.0 <50.0 <50.0 <50.0
415233094403201 08- 411639094521101 08- 411622094520901 08-	-14-01 -02-01 -14-01 -14-01 -19-01	<5.00 <5.00 <5.00 <5.00 <5.00	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01 <.01	280 250 30 <20 920	<1.00 <1.00 <1.00 <1.00 <1.00	<20.0 60.0 30.0 <20.0 170	<50.0 <50.0 <50.0 <50.0 <50.0
424341095331301 08- 414652090153201 08- 414930090321601 08-	-01-01 -01-01 -06-01 -06-01 -02-01	<5.00 <5.00 <5.00 <5.00 <5.00	<1.0 5.0 <1.0 <1.0 <1.0	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01 <.01	1200 1100 <20 600 <20	<1.00 <1.00 <1.00 <1.00 <1.00	90.0 350 <20.0 <20.0 <20.0	<50.0 <50.0 <50.0 <50.0 <50.0
413836094161701 08- 423020091273701 08- 423135090383201 09-	-26-01 -15-01 -29-01 -11-01 -11-01	<5.00 <5.00 <5.00 <5.00	3.0 <1.0 <1.0 <1.0	<2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01	1900 490 <20 1970 150	<1.00 <1.00 <1.00 <1.00	360 <20.0 <20.0 2570 <20.0	<50.0 <50.0 <50.0 <50.0
425717091382602 09- 425341093132501 07- 404327095284801 08-	-24-01 -12-01 -25-01 -13-01 -05-01	<5.00 <5.00 <5.00 <5.00 5.00	14.0 <1.0 <1.0 <1.0 1.0	<2.00 <2.00 <2.00 <2.00 2.00	<1.00 <1.00 <1.00 <1.00 1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.02 <.01 <.02 <.01 <.01	2200 <20 <20 840 <20	<1.00 <1.00 <1.00 <1.00 1.00	490 <20.0 <20.0 120 40.0	<50.0 <50.0 <50.0 <50.0 <50.0
430015093360501 07- 430015093360502 08- 414236096012501 08-	-18-01 -24-01 -27-01 -27-01 -13-01	<5.00 <5.00 <5.00 <5.00 <5.00	<1.0 1.0 <1.0 2.0 <1.0	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01 <.01	1100 870 9700 600	<1.00 <1.00 <1.00 <1.00	<20.0 60.0 420 <20.0	<50.0 <50.0 <50.0 <50.0
422915095323504 08- 414825091511201 08- 414520092112001 09-	-13-00 -02-01 -30-01 -20-01	<5.00 <5.00 <5.00 <5.00	<1.0 <1.0 5.0 <1.0	<2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01	<50 200 1300 60	<1.00 4.00 <1.00 <1.00	<20.0 <20.0 <20.0 <20.0	<50.0 <50.0 <50.0 <50.0
410046091555701 09- 421442091120001 09- 412138091571501 08-	-05-01 -06-01 -19-01 -08-01 -06-01	<5.00 <5.00 <5.00 <5.00 <5.00	<1.0 <1.0 <1.0 2.0 100	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 50.0 <10.0 <10.0	<.01 <.01 <.01 <.01 <.01	<20 200 <20 830 6300	<1.00 <1.00 5.00 <1.00 <1.00	<20.0 <20.0 <20.0 30.0 2500	<50.0 <50.0 <50.0 50.0 <50.0
411644091110703 08- 405858093175701 08-	-31-01	<5.00 <5.00 <5.00 <5.00 <5.00	<1.0 1.0 <1.0 5.0 <1.0	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01 <.01	60 1400 450 3300 <20	1.00 <1.00 <1.00 <1.00 <1.00	<20.0 70.0 30.0 1200 280	<50.0 <50.0 <50.0 <50.0 <50.0
432150092332401 09- 431654092484501 09-	-27-01 -13-01	<5.00 <5.00 <5.00 <5.00 <5.00	3.0 <1.0 <1.0 <1.0 <1.0	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 20.0 <10.0	<.01 <.01 <.01 <.01 <.01	2200 4000 530 260 550	<1.00 <1.00 <1.00 <1.00 <1.00	50.0 570 <20.0 <20.0 <20.0	<50.0 <50.0 <50.0 <50.0 <50.0
420955095475601 08 405850095061701 08 413521090511001 08 431157095502901 07 403906095015001 08	8-13-01 8-07-01 7-31-01	<5.00 <5.00 <5.00 <5.00 <5.00	<1.0 10.0 <1.0 <1.0 <1.0	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01 <.01	<20 2 4 00 270 870 2900	<1.00 <1.00 <1.00 <1.00 <1.00	<20.0 160 <20.0 900 400	<50.0 <50.0 <50.0 <50.0 <50.0
411501095251301 08 414430092433001 09	-31-01 8-13-01	<5.00 <5.00 <5.00 <5.00 <5.00	22.0 1.0 <1.0 <1.0 3.0	<2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.01 <10.0 <.01 <.01	2600 <20 930 420 650	<1.00 <1.00 <1.00 <1.00 <1.00	170 20.0 1400 <20.0 590	<50.0 <50.0 <50.0 <50.0 <50.0
413923090350901 08 413040090455001 08 413049095254501 08 430017096285301 07 415252093411401 07	8-07-01 8-17-01 7-31-01	<5.00 <5.00 <5.00 <5.00 <5.00	21.0 <1.0 2.0 <1.0 5.0	<2.00 <2.00 <2.00 <2.00 <2.00 <2.00	<1.00 <1.00 <1.00 <1.00 <1.00	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<.01 <.01 <.01 <.01 <.01	160 <20 90 20 6900	<1.00 <1.00 1.00 <1.00 <1.00	<20.0 <20.0 <20.0 <20.0 <20.0 110	<50.0 <50.0 <50.0 <50.0 <50.0

GROUND WATER QUALITY MONITORING PROGRAM--Continued

STATION NUMBER	DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	1,1,2,2 -TETRA- CHLORO- ETHANE DISSOLV (UG/L) (34517)	1,2,4- TRI- CHLORO- BENZENE DISSOLV (UG/L) (34552)	1,2-DI- CHLORO- BENZENE DISSOLV (UG/L) (34537)	1,3-DI- CHLORO- BENZENE DISSOLV (UG/L) (34567)	1,4-DI- CHLORO- BENZENE DISSOLV (UG/L) (34572)	ACETO- CHLOR, WATER, UNFLITRD REC (UG/L) (49259)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)
405632094534401 413234094552401 420535091524002	08-14-01 08-13-01 08-17-01 08-02-01 08-29-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	30 <20 20 <20 <20	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
420959094001901 422852092040101 424708094570801	07-26-01 07-26-01 08-29-01 07-23-01 07-23-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	<20 <20 <20 <20 <20	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.500 <.050	<.1 <.1 <.5 <.1
415233094403201 411639094521101 411622094520901	09-14-01 08-02-01 08-14-01 08-14-01 09-19-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	<20 50 <20 20 30	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
424341095331301 414652090153201 414930090321601	08-01-01 08-01-01 08-06-01 08-06-01 08-02-01	<10.0 <10.0 <10.0 <10.0 10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	<20 <20 <20 <20 60	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
413836094161701 423020091273701 423135090383201	07-26-01 08-15-01 08-29-01 09-11-01 09-11-01	<10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00	<20 30 <20 <20	<.50 <.50 <.50 <.50	<.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50	<.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
425717091382602 425341093132501 404327095284801	07-24-01 09-12-01 07-25-01 08-13-01 09-05-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 1.00	<20 <20 <20 50 20	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 、<.50 <.50	<.50 <.50 <.50 <.50 <.50	<.500 <.050 <.050 <.050 <.050	<.5 <.1 <.1 <.1 <.1
430015093360501 430015093360502 414236096012501	09-18-01 07-24-01 08-27-01 08-27-01 09-13-01	<10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00	<20 20 <20 <20	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1
422915095323504 414825091511201 414520092112001	12-13-00 08-02-01 08-30-01 09-20-01 08-06-01	20.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00	<20 <20 <20 <20	<.50 <.50	<.50 <.50	<.50 <.50	<.50 <.50	<.50 <.50 <.50	.510 <.050 <.050 <.050	<.1 <.1 <.1 <.1
	09-05-01 09-06-01 09-19-01 08-08-01 09-06-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	<20 <20 40 <20 <20	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
411644091110703 405858093175701 432608096201503	08-02-01 08-08-01 08-15-01 07-31-01 09-04-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	40 <20 <20 <20 <20	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
	09-04-01 08-27-01 09-13-01 09-13-01 09-14-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	<20 <20 <20 <20 610	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
405850095061701 413521090511001 431157095502901	08-02-01 08-13-01 08-07-01 07-31-01 08-14-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	<20 <20 250 <20 <20	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
423537095583901 411501095251301 414430092433001	07-23-01 07-31-01 08-13-01 09-18-01 07-23-01	<10.0 20.0 <10.0 <10.0 20.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	<20 80 <20 <20 <20	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1
	08-06-01 08-07-01 08-17-01 07-31-01 07-26-01	<10.0 <10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00 <1.00	<20 <20 <20 <20 <20	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1

GROUND WATER QUALITY MONITORING PROGRAM--Continued

			-									
STATION NUMBER	DATE	AME- TRYNE TOTAL (UG/L) (82184)	BROM- ACIL WATER WHLREC (UG/L) (30234)	BROMO- METHANE WATER WHOLE RECOVER (UG/L) (30202)	BUTA- CHLOR WATER WHLREC (UG/L) (30235)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	CARB- ARYL UNFILT RECOVER (UG/L) (39750)	CHLORO- METHANE WATER WHOLE RECOVER (UG/L) (30201)	CLO- MAZONE WATER FLTRD REC (UG/L) (50344)	CYAN- AZINE TOTAL (UG/L) (81757)	DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)
411727094374001 405632094534401 413234094552401 420535091524002 422819092212701	08-14-01 08-13-01 08-17-01 08-02-01 08-29-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 .1 <.1	<.1 <.1 <.1 <.1 <.1
420451093561301 420959094001901 422852092040101 424708094570801 425344095090401	07-26-01 07-26-01 08-29-01 07-23-01 07-23-01	<.1 <.1 <.5 <.1	<.1 <.1 <.5 <.1	<.50 <.50 <.50 <.50 <.50	<.1 <.1 <.5 <.1	<.1 <.1 <.5 <.1	<.05 <.05 <.05 <.50 <.05	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.500 <.050	<.1 <.1 <.5 <.1	.1 <.1 <.5 .1	<.1 <.1 <.5 <.1
425355092475801 415233094403201 411639094521101 411622094520901 414032091210001	09-14-01 08-02-01 08-14-01 08-14-01 09-19-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1
423744095383301 424341095331301 414652090153201 414930090321601 420336095115601	08-01-01 08-01-01 08-06-01 08-06-01 08-02-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1
415057094065301 413836094161701 423020091273701 423135090383201 423602090595201	07-26-01 08-15-01 08-29-01 09-11-01 09-11-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.2 <.1	<.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050	<.1 <.1 <.2 <.1	<.1 <.1 .2 <.2 <.1	<.1 <.1 <.2 <.1
432349094285201 425717091382602 425341093132501 404327095284801 421322092522001	07-24-01 09-12-01 07-25-01 08-13-01 09-05-01	<.5 <.1 <.1 <.1	<.5 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50	<.5 <.1 <.1 <.1 <.1	<.5 <.1 <.1 <.1 <.1	<.50 <.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50 <.50	<.500 <.050 <.050 <.050 <.050	<.5 <.1 <.1 <.1	<.5 <.1 <.1 <.1	<.5 <.1 <.1 <.1
422611092552501 430015093360501 430015093360502 414236096012501 432650092170401	09-18-01 07-24-01 08-27-01 08-27-01 09-13-01	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1
422106095280201 422915095323504 414825091511201 414520092112001 420414090113201	12-13-00 08-02-01 08-30-01 09-20-01 08-06-01	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	<.50 <.50	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05	<.50 <.50 	<.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1	.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1
413913093070001 410046091555701 421442091120001 412138091571501 403745091174701	09-05-01 09-06-01 09-19-01 08-08-01 09-06-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1
420005091431201 411644091110703 405858093175701 432608096201503 420352092552401	08-02-01 08-08-01 08-15-01 07-31-01 09-04-01	<.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	.1 <.1 <.1 <.1 .1	<.1 <.1 <.1 <.1 <.1
420405092545601 410656095380201 432150092332401 431654092484501 432241092550802	09-04-01 08-27-01 09-13-01 09-13-01 09-14-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 .1	<.1 <.1 <.1 <.1 <.1
420955095475601 405850095061701 413521090511001 431157095502901 403906095015001	08-02-01 08-13-01 08-07-01 07-31-01 08-14-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1
425731094270801 423537095583901 411501095251301 414430092433001 421617095051001	07-23-01 07-31-01 08-13-01 09-18-01 07-23-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.01	<.50 <.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1
413923090350901 413040090455001 413049095254501 430017096285301 415252093411401	08-06-01 08-07-01 08-17-01 07-31-01 07-26-01	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1	<.50 <.50 <.50	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.1 <.1 <.1 .1 <.1	<.1 <.1 <.1 <.1 <.1

GROUND WATER QUALITY MONITORING PROGRAM--Continued

		DI-	-							TRIAL-		
STATION NUMBER	DATE	METHEN- AMID WATER FLTRD REC (UG/L) (61588)	EPTC WATER WHOLE REC (UG/L) (81894)	METOLA- CHLOR WATER UNFLTRD REC (UG/L) (39356)	METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	PENDI- METH- ALIN TOTAL (UG/L) (79190)	PROME- TONE TOTAL (UG/L) (39056)	PROPA- CHLOR IN WHOLE WATER (UG/L) (77729)	PRO- PAZINE TOTAL (UG/L) (39024)	LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) (34506)
411727094374001	08-14-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
405632094534401	08-13-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
413234094552401	08-17-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
420535091524002	08-02-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	
422819092212701	08-29-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
420451093561301 420959094001901 422852092040101 424708094570801 425344095090401	07-26-01 07-26-01 08-29-01 07-23-01 07-23-01	<.0500 <.0500 <.0500 <.5000 <.0500	<.05 <.05 <.05 .50 <.05	.17 <.05 <.05 <.50 1.90	<.05 <.05 <.05 <.50 <.05	<.05 <.05 <.05 <.50 <.05	<.1 <.1 <.5 .1	<.05 <.05 <.05 <.50 <.05	<.1 <.1 <.5 <.1	<.050 <.050 <.050 <.500 <.050	<.1 <.1 <.5 <.1	<.50 <.50 <.50 <.50 <.50
425355092475801	09-14-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
415233094403201	08-02-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
411639094521101	08-14-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
411622094520901	08-14-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
414032091210001	09-19-01	<.0500	<.05	2.30	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
423744095383301	$\begin{array}{c} 08-01-01\\ 08-01-01\\ 08-06-01\\ 08-06-01\\ 08-02-01 \end{array}$	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
424341095331301		<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
414652090153201		<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
414930090321601		<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	
420336095115601		<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
415057094065301 413836094161701 423020091273701 423135090383201 423602090595201	07-26-01 08-15-01 08-29-01 09-11-01 09-11-01	<.0500 <.0500 <.0500 <.0500	<.05 <.05 <.05 <.05	<.05 <.05 .13 <.05	<.05 <.05 <.01 <.05	<.05 <.05 <.05 <.05	<.1 <.1 <.2 <.1	<.05 <.05 <.05 <.05	<.1 <.1 <.1 <.1 <.1	<.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.03 <.50
432349094285201 425717091382602 425341093132501 404327095284801 421322092522001	07-24-01 09-12-01 07-25-01 08-13-01 09-05-01	<.5000 <.0500 <.0500 <.0500 <.0500	<.50 <.05 <.05 <.05 <.05	<.50 <.05 <.05 <.05 .13	<.50 <.05 <.05 <.05 <.05 <.05	<.50 <.05 <.05 <.05 <.05	<.5 <.1 <.1 <.1 <.1	<.50 <.05 <.05 <.05 <.05	<.5 <.1 <.1 <.1 <.1	<.500 <.050 <.050 <.050 <.050	<.5 <.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50
422611092552501 430015093360501 430015093360502 414236096012501 432650092170401	09-18-01 07-24-01 08-27-01 08-27-01 09-13-01	<.0500 .0900 <.0500 <.0500	<.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05	<.1 <.1 <.1 <.1	<.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50 <.50
422106095280201 422915095323504 414825091511201 414520092112001 420414090113201	12-13-00 08-02-01 08-30-01 09-20-01 08-06-01	.6300 <.0500 <.0500 <.0500	<.05 <.05 <.05 <.05 <.05	1.60 <.05 <.05 <.05	<.05 <.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05 <.05	.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.1 <.1 <.1 <.1	<.050 <.050 <.050 <.050	.1 <.1 <.1 <.1	<.50 <.50
413913093070001	09-05-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
410046091555701	09-06-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	
421442091120001	09-19-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
412138091571501	08-08-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
403745091174701	09-06-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
420005091431201	08-02-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
411644091110703	08-08-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
405858093175701	08-15-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
432608096201503	07-31-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
420352092552401	09-04-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
420405092545601	09-04-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
410656095380201	08-27-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
432150092332401	09-13-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
431654092484501	09-13-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
432241092550802	09-14-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
420955095475601	08-02-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
405850095061701	08-13-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
413521090511001	08-07-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
431157095502901	07-31-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
403906095015001	08-14-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
425731094270801	07-23-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
423537095583901	07-31-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
411501095251301	08-13-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
414430092433001	09-18-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
421617095051001	07-23-01	<.0500	<.05	.36	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
413923090350901 413040090455001 413049095254501 430017096285301 415252093411401	08-06-01 08-07-01 08-17-01 07-31-01 07-26-01	<.0500 <.0500 <.0500 <.0500 <.0500	<.05 <.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05 <.05	<.1 <.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05 <.05	<.1 <.1 <.1 <.1 <.1	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1 <.1	<.50 <.50 <.50

GROUND WATER QUALITY MONITORING PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

STATION NUMBER [1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L) (34511)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L) (34496)	1,1-DI CHLORO- PRO- PENE, WAT, WH TOTAL (UG/L) (77168)	123-TRI CHLORO- PROPANE WATER WHOLE TOTAL (UG/L) (77443)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L) (32103)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L) (34541)	TRANS- 1,2-DI- CHLORO- ETHENE TOTAL (UG/L) (34546)	2,2-DI CHLORO- PRO- PANE WAT, WH TOTAL (UG/L) (77170)	BENZENE TOTAL (UG/L) (34030)	BROMO- BENZENE WATER, WHOLE, TOTAL (UG/L) (81555)	BROMO- FORM TOTAL (UG/L) (32104)
405632094534401 08- 413234094552401 08- 420535091524002 08-	-14-01 -13-01 -17-01 -02-01 -29-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.1 <.5	<.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50
420959094001901 07- 422852092040101 08- 424708094570801 07-	-26-01 -26-01 -29-01 -23-01 -23-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
415233094403201 08- 411639094521101 08- 411622094520901 08-	-14-01 -02-01 -14-01 -14-01 -19-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
424341095331301 08- 414652090153201 08- 414930090321601 08-	-01-01 -01-01 -06-01 -06-01 -02-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50
413836094161701 08- 423020091273701 08- 423135090383201 09-	-26-01 -15-01 -29-01 -11-01 -11-01	<.50 <.50 <.06 <.50	<.50 <.50 <.04 <.50	<.50 <.50 <.03 <.50	<.5 <.5 <.2 <.5	<.5 <.5 <.1 <.5	<.50 <.50 <.03 <.50	<.50 <.50 <.03 <.50	<.50 <.50 <.05 <.50	<.50 <.50 <.04 <.50	<.50 <.50 <.04 <.50	<.50 <.50 -+ <.06 <.50
425717091382602 09- 425341093132501 07- 404327095284801 08-	-24-01 -12-01 -25-01 -13-01 -05-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
430015093360501 07- 430015093360502 08- 414236096012501 08-	-18-01 -24-01 -27-01 -27-01 -13-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
422915095323504 08- 414825091511201 08- 414520092112001 09-	-13-00 -02-01 -30-01 -20-01 -06-01	<.50 <.50 <.50	<.50 <.50 	<.50 <.50	<.5 <.5 	<.5 <.5	<.50 <.50 <.50	<.50 <.50 	<.50 <.50 	<.50 <.50 	<.50 <.50 	<.50 .50 .50
410046091555701 09- 421442091120001 09- 412138091571501 08-	-05-01 -06-01 -19-01 -08-01 -06-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50
411644091110703 08- 405858093175701 08- 432608096201503 07-	-02-01 -08-01 -15-01 -31-01 -04-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
410656095380201 08- 432150092332401 09- 431654092484501 09-	-04-01 -27-01 -13-01 -13-01 -14-01	<.50 <.50 <.50 <.50 <.50	<.50 1.00 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.60 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
405850095061701 08- 413521090511001 08- 431157095502901 07-	-02-01 -13-01 -07-01 -31-01 - 14 -01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
423537095583901 07- 411501095251301 08- 414430092433001 09-	-23-01 -31-01 -13-01 -18-01 -23-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
413040090455001 08- 413049095254501 08- 430017096285301 07-	-06-01 -07-01 -17-01 -31-01 -26-01	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.5 <.5 <.5	 <.5 <.5 <.5	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.50 < <i>.</i> 50 <.50

-

GROUND WATER QUALITY MONITORING PROGRAM--Continued

STATION NUMBER	DATE	CARBON TETRA- CHLO- RIDE TOTAL (UG/L) (32102)	CHLORO- BENZENE TOTAL (UG/L) (34301)	CHLORO- ETHANE TOTAL (UG/L) (34311)	CHLORO- FORM TOTAL (UG/L) (32106)	CIS-1,2 -DI- CHLORO- ETHENE WATER TOTAL (UG/L) (77093)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704)	DI- BROMO- METHANE WATER WHOLE RECOVER (UG/L) (30217)	ETHYL- BENZENE TOTAL (UG/L) (34371)	METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032)	META/ PARA- XYLENE WATER UNFLIRD REC (UG/L) (85795)	O- XYLENE WATER WHOLE TOTAL (UG/L) (77135)
411727094374001 405632094534401 413234094552401 420535091524002 422819092212701	08-14-01 08-13-01 08-17-01 08-02-01 08-29-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5	<.50 <.50 <.50	<.50 <.50 <.50	<.50 <.50 <.50	<.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50
420451093561301	07-26-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
420959094001901	07-26-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
422852092040101	08-29-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
424708094570801	07-23-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
425344095090401	07-23-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
425355092475801	09-14-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
415233094403201	08-02-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
411639094521101	08-14-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
411622094520901	08-14-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
414032091210001	09-19-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
423744095383301 424341095331301 414652090153201 414930090321601 420336095115601	08-01-01 08-01-01 08-06-01 08-06-01 08-02-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50
415057094065301	07-26-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
413836094161701	08-15-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
423020091273701	08-29-01											
423135090383201	09-11-01	<.06	<.03	<.1	<.02	<.04	<.09	<.05	<.03	<.2	E.02	<.04
423602090595201	09-11-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
432349094285201	07-24-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
425717091382602	09-12-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
425341093132501	07-25-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
404327095284801	08-13-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
421322092522001	09-05-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
422611092552501	09-18-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
430015093360501	07-24-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	.50	<.5	<.50	<.50
430015093360502	08-27-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
414236096012501	08-27-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
432650092170401	09-13-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
422106095280201 422915095323504 414825091511201 414520092112001 420414090113201	12-13-00 08-02-01 08-30-01 09-20-01 08-06-01	<.50 <.50	<.50 <.50 	<.5 <.5 	<.50 <.50	<.50 <.50 	<.50 <.50 	<.50 <.50 	<.50 <.50	<.5 <.5 	<.50 <.50 	<.50 <.50
413913093070001 410046091555701 421442091120001 412138091571501 403745091174701	09-05-01 09-06-01 09-19-01 08-08-01 09-06-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50
420005091431201	08-02-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
411644091110703	08-08-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
405858093175701	08-15-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
432608096201503	07-31-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
420352092552401	09-04-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
420405092545601	09-04-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
410656095380201	08-27-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
432150092332401	09-13-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
431654092484501	09-13-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
432241092550802	09-14-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
420955095475601	08-02-01	<.50	<.50	<.5	6.60	<.50	<.50	<.50	<.50	<.5	<.50	<.50
405850095061701	08-13-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
413521090511001	08-07-01	<.50	<.50	<.5	.60	<.50	<.50	<.50	<.50	<.5	<.50	<.50
431157095502901	07-31-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
403906095015001	08-14-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
425731094270801 423537095583901 411501095251301 414430092433001 421617095051001	07-31-01 08-13-01 09-18-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50
413923090350901 413040090455001 413049095254501 430017096285301 415252093411401	08-06-01 08-07-01 08-17-01 07-31-01 07-26-01	 <.50 <.50 <.50	<.50<.50<.50	 <.5 <.5 <.5	 <.50 <.50 <.50	 <.50 <.50 <.50	<.50<.50<.50	 <.50 <.50 <.50	 <.50 <.50 <.50	 <.5 <.5 <.5	 <.50 <.50 <.50	 <.50 <.50 <.50

GROUND WATER QUALITY MONITORING PROGRAM--Continued

STATION NUMBER	DATE	STYRENE TOTAL (UG/L) (77128)	TOLUENE TOTAL (UG/L) (34010)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699)	VINYL CHLO- RIDE TOTAL (UG/L) (39175)	SIMA- ZINE TOTAL (UG/L) (39055)	TRITIUM TOTAL (PCI/L) (07000)
411727094374001 405632094534401 413234094552401 420535091524002 422819092212701	08-14-01 08-13-01 08-17-01 08-02-01 08-29-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	 24.1
420451093561301 420959094001901 422852092040101 424708094570801 425344095090401	07-26-01 07-26-01 08-29-01 07-23-01 07-23-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.1 <.1 <.5 <.1	 15.0
425355092475801 415233094403201 411639094521101 411622094520901 414032091210001	09-14-01 08-02-01 08-14-01 08-14-01 09-19-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	.6 19.6
423744095383301 424341095331301 414652090153201 414930090321601 420336095115601	08-01-01 08-01-01 08-06-01 08-06-01 08-02-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	23.8
415057094065301 413836094161701 423020091273701 423135090383201 423602090595201	07-26-01 08-15-01 08-29-01 09-11-01 09-11-01	<.50 <.50 <.04 <.50	<.50 <.50 E.07 <.50	<.50 <.50 <.09 <.50	<.5 <.5 <.1 <.5	<.1 <.1 <.1 <.1 <.1	 25.3 46.7 .4
432349094285201 425717091382602 425341093132501 404327095284801 421322092522001	07-24-01 09-12-01 07-25-01 08-13-01 09-05-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.5 <.1 <.1 <.1 <.1	26.2 25.6
422611092552501 430015093360501 430015093360502 414236096012501 432650092170401	09-18-01 07-24-01 08-27-01 08-27-01 09-13-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1	.3 .4 9.2
422106095280201 422915095323504 414825091511201 414520092112001 420414090113201	12-13-00 08-02-01 08-30-01 09-20-01 08-06-01	<.50 <.50 	<.50 <.50 <.50	<.50 <.50 	<.5 <.5 	<.1 <.1 <.1 <.1	 . 4 . 4
413913093070001 410046091555701 421442091120001 412138091571501 403745091174701	09-05-01 09-06-01 09-19-01 08-08-01 09-06-01	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	27.1 27.1 50.2
420005091431201 411644091110703 405858093175701 432608096201503 420352092552401	08-02-01 08-08-01 08-15-01 07-31-01 09-04-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	26.2 24.1
420405092545601 410656095380201 432150092332401 431654092484501 432241092550802	09-04-01 08-27-01 09-13-01 09-13-01 09-14-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	33.0 .1 18.3 31.4
420955095475601 405850095061701 413521090511001 431157095502901 403906095015001	08-02-01 08-13-01 08-07-01 07-31-01 08-14-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	
425731094270801 423537095583901 411501095251301 414430092433001 421617095051001	07-23-01 07-31-01 08-13-01 09-18-01 07-23-01	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50 <.50	<.5 <.5 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	-0.1
413923090350901 413040090455001 413049095254501 430017096285301 415252093411401	08-06-01 08-07-01 08-17-01 07-31-01 07-26-01	<.50 <.50 <.50	<.50 <.50 <.50	 <.50 <.50 <.50	 <.5 <.5 <.5	<.1 <.1 <.1 <.1 <.1	M

GROUND WATER QUALITY MONITORING PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

STATION NUMBER STAT	CON NAME		COUNTY	DATE	TIME	GEO- LOGIC UNIT	DEPTH OF WELL, TOTAL (FEET) (72008)	FLOW RATE (G/M) (00058)
415417092180101 082N13 421135092275002 085N14 415753092350201 083N15 403659094285301 067N32 410907092375301 073N15	V10ABCD 1894Trac V27CDD 18841 1966Tama V12CAAD 1960Bloc	er 2 a 5 ckton 1	Tama Tama Tama Taylor Wapello	08-30-01 09-04-01 09-04-01 08-14-01 09-05-01	0900 08 4 5 1115 0915 1515	111ALVM 344CDVL 111ALVM 112PLSC 111ALVM	42.00 240.00 43.00 271.00 35.00	196 440 80
413040093290501 078N23 412850091342901 077N06 412013091485701 076N08 423028094115101 089N28 431556093375401 098N24	V17BBA 14835 1961Rive V31DDCC 08701 1957West V19CAA 1931Fort	erside 5 t Chester 1 t Dodge 12	Warren Washington Washington Webster Winnebago	07-27-01 08-02-01 08-08-01 07-25-01 07-24-01	0915 1510 1230 1130 1045	111ALVM 112PLSC 339WSVL 339KDRK 344CDVL	30.00 250.00 243 541.00 129.00	250 750 1000
431828091473201 098N08 422929096254501 089N47 422831095465102 089N42 423954093535801 091N26	V29CCCA 1971Sion V34DDDD 1927Cor:	orah 6 x City River 4 rectionville 1 W le Grove 3	Wi nn eshiek Woodbury Woodbury Wright	09-12-01 07-31-01 08-01-01 08-27-01	1530 0930 0900 1030	111ALVM 217DKOT 111ALVM 112PLSC	82 2 97 .00 26.00 70.00	1000 20 285
STATION NUMBER DAT	PUMP OR FLOW PERIOD PRIOR OXYGEN, TO SAM- DIS- PLING SOLVED (MIN) (MG/L) (72004) (00300)	PH WATER SPE- WHOLE CIFIC FIELD CON- (STAND- DUCT- ARD ANCE UNITS) (US/CM) (00400) (00095)	HARD- NESS TEMPER- TOTAL ATURE (MG/L WATER AS (DEG C) CACO3) (00010) (00900)		MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC UNFLTRD TIT 4.5 LAB (MG/L AS CACO3) (90410)
415417092180101 08-30 421135092275002 09-04 415753092350201 09-04 403659094285301 08-14 410907092375301 09-05	-01 30 .4 -01 >30 2.5 -01 30 .1	10.9 779 7.2 1590 7.1 643 7.8 1760 7.0 738	18.2 260 11.6 760 11.8 370 13.5 150 12.6 380	100 190 92.0 36.0 110	<.100 73.0 25.0 11.0 28.0	3.00 3.90 1.30 2.10 1.50	15.0 81.0 13.0 340 13.0	110 210 240 420 250
413040093290501 07-27 412850091342901 08-02 412013091485701 08-08 423028094115101 07-25 431556093375401 07-24	-01 30 .4 -01 -01 30 .2	7.3 599 7.5 674 7.0 928 7.0 753	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76.0 58.0 70.0 110 98.0	24.0 20.0 39.0 41.0 33.0	1.60 2.50 2.30 5.10 2.40	12.0 57.0 52.0 31.0 18.0	230 370 390 380 370
431828091473201 09-12 422929096254501 07-31 422831095465102 08-01 423954093535801 08-27	-01 15 -01 30 .4	6.9 647 8.1 767 7.3 1830 6.9 717	12.837020.529012.576012.5430	100 58.0 200 97.0	20.0 24.0 54.0 35.0	2.50 5.50 10.0 3.40	12.0 62.0 130 17.0	280 170 300 390
STATION NUMBER DAT	CHLO- FLUO- RIDE, RIDE, DIS- DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS CL) AS F) (00940) (00950)	SILICA, DIS- SULFATE SOLVED DIS- (MG/L SOLVED AS (MG/L SIO2) AS SO4) (00955) (00945)	SOLIDS, NITRO- RESIDUE GEN, AT 180 AMMONIA DEG. C DIS- DIS- SOLVEI SOLVED (MG/L (MG/L) AS N) (70300) (00608)	GEN, AM- A MONIA + ORGANIC D DIS. (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N) (00607)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)
415417092180101 08-30 421135092275002 09-04 415753092350201 09-04 403659094285301 08-14 410907092375301 09-05	-01 1.7 .8 -01 23.0 .3 -01 98.0 .9	32.0 94.0 14.0 760 25.0 67.0 13.0 330 16.0 120	$\begin{array}{rrrr} 470 & .370 \\ 1280 & 5.10 \\ 400 & <.010 \\ 1130 & 2.50 \\ 470 & <.100 \end{array}$.51 4.9 .34 4.1 .12	5.50 <.100 4.40 <.100 3.40	.14 <.05 .25 1.6 .12	<.020 .050 .080 .340 .080	<1.0 2.0 <1.0 14 <1.0
413040093290501 07-27 412850091342901 08-02 412013091485701 08-08 423028094115101 07-25 431556093375401 07-24	-01 2.2 .2 -01 2.2 .2 -01 2.8 .9	25.046.014.014.013.071.016.013023.041.0	350 <.100	.30 3.3 2.9 .80 1.4	.800 <.100 <.100 <.100 <.100	.30 <.10 1.0 .10 .70	.030 .240 .050 <.020 <.020	<1.0 2.1 1.1 1.4 1.6

28.0

200 770 25.0

380

460

480 1440

<.050 <.100 1.60

.960

3.10 <.100 <.100

<.100

.19

.30 1.9 1.4

<1.0 2.1 <1.0 1.4

4.60 .020 .040

<.020

.19

.30

1.4

.2

.4 1.2 .4

25.0

14.0 2.5 3.0

 431828091473201
 09-12-01

 422929096254501
 07-31-01

 422831095465102
 08-01-01

423954093535801 08-27-01

14.0

<.1 21.0

32.0

GROUND WATER QUALITY MONITORING PROGRAM--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

STATION NUMBER	DATE	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)
415417092180101	08-30-01	<5.00	2.0	<2.00	<1.00	<10.0	<10.0	<.01	<20	<1.00	<20.0	<50.0
421135092275002	09-04-01	<5.00	<1.0	<2.00	<1.00	<10.0	<10.0	<.01	2300	<1.00	90.0	<50.0
415753092350201	09-04-01	<5.00	<1.0	<2.00	<1.00	<10.0	<10.0	<.01	<20	<1.00	50.0	<50.0
403659094285301	08-14-01	<5.00	8.0	<2.00	<1.00	<10.0	<10.0	<.01	560	<1.00	30.0	<50.0
410907092375301	09-05-01	<5.00	<1.0	<2.00	<1.00	<10.0	<10.0	<.01	<40	<1.00	100	<50.0
413040093290501	07-27-01	<5.00	<1.0	<2.00	<1.00	<10.0	<10.0	<.01	530	<1.00	330	<50.0
412850091342901	08-02-01	<5.00	<1.0	<2.00	<1.00	<10.0	<10.0	<.01	880	<1.00	50.0	<50.0
412013091485701	08-08-01	<5.00	2.0	<2.00	<1.00	<10.0	<10.0	<10.0	1100	<1.00	<20.0	<50.0
423028094115101	07-25-01	<5.00	1.0	<2.00	<1.00	<10.0	<10.0	<.02	760	<1.00	50.0	<50.0
431556093375401	07-24-01	<5.00	2.0	<2.00	<1.00	<10.0	<10.0	<.02	1400	<1.00	50.0	<50.0
431828091473201	09-12-01	<5.00	<1.0	<2.00	<1.00	<10.0	<10.0	<.01	20	1.00	<20.0	<50.0
422929096254501	07-31-01	<5.00	1.0	<2.00	<1.00	<10.0	<10.0	<.01	40	<1.00	150	<50.0
422831095465102	08-01-01	<5.00	<1.0	<2.00	<1.00	<10.0	<10.0	<.01	1400	<1.00	150	<50.0
423954093535801	08-27-01	<5.00	12.0	<2.00	<1.00	<10.0	<10.0	<.01	2800	<1.00	200	<50.0
STATION NUMBER	DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	THAL- LIUM, DIS- SOLVED (UG/L AS TL) (01057)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	1,1,2,2 -TETRA- CHLORO- ETHANE DISSOLV (UG/L) (34517)	1,2,4- TRI- CHLORO- BENZENE DISSOLV (UG/L) (34552)	1,2-DI- CHLORO- BENZENE DISSOLV (UG/L) (34537)	1,3-DI- CHLORO- BENZENE DISSOLV (UG/L) (34567)	1,4-DI- CHLORO- BENZENE DISSOLV (UG/L) (34572)	ACETO- CHLOR, WATER, UNFLTRD REC (UG/L) (49259)	ALA- CHLOR TOTAL RECOVER (UG/L) (77825)
415417092180101	08-30-01	<10.0	<10.0	<1.00	<20	<.50	<.50	<.50	<.50	<.50	<.050	<.1
421135092275002	09-04-01	<10.0	<10.0	<1.00	<20	<.50	<.50	<.50	<.50	<.50	<.050	<.1
415753092350201	09-04-01	<10.0	<10.0	<1.00	<20	<.50	<.50	<.50	<.50	<.50	<.050	<.1
403659094285301	08-14-01	<10.0	<10.0	<1.00	<20	<.50	<.50	<.50	<.50	<.50	<.050	<.1
410907092375301	09-05-01	<10.0	<10.0	<1.00	<20	<.50	<.50	<.50	<.50	<.50	<.050	<.1
413040093290501	07-27-01	<10.0	<10.0	<1.00	<20	<.50	<.50	<.50	<.50	<.50	<.050	<.1
412850091342901	08-02-01	<10.0	<10.0	<1.00	30	<.50	<.50	<.50	<.50	<.50	<.050	<.1
412013091485701	08-08-01	<10.0	<10.0	<1.00	<20	<.50	<.50	<.50	<.50	<.50	<.050	<.1
423028094115101	07-25-01	<10.0	<10.0	<1.00	40	<.50	<.50	<.50	<.50	<.50	<.050	<.1
431556093375401	07-24-01	<10.0	<10.0	<1.00	<20	<.50	<.50	<.50	<.50	<.50	<.050	<.1
431828091473201 422929096254501 422831095465102 423954093535801	09-12-01 07-31-01 08-01-01 08-27-01	<10.0 <10.0 <10.0 <10.0	<10.0 <10.0 <10.0 <10.0	<1.00 <1.00 <1.00 <1.00	<20 <20 <20 <20	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.50 <.50 <.50 <.50	<.050 <.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1
STATION NUMBER	DATE	AME- TRYNE TOTAL (UG/L) (82184)	BROM- ACIL WATER WHLREC (UG/L) (30234)	BROMO- METHANE WATER WHOLE RECOVER (UG/L) (30202)	BUTA- CHLOR WATER WHLREC (UG/L) (30235)	BUTYL- ATE WATER WHLREC (UG/L) (30236)	CARB- ARYL UNFILT RECOVER (UG/L) (39750)	CHLORO- METHANE WATER WHOLE RECOVER (UG/L) (30201)	CLO- MAZONE WATER FLTRD REC (UG/L) (50344)	CYAN- AZINE TOTAL (UG/L) (81757)	DEETHYL ATRA- ZINE, WATER, WHOLE, TOTAL (UG/L) (75981)	DE-ISO PROPYL ATRAZIN WATER, WHOLE, TOTAL (UG/L) (75980)
415417092180101	08-30-01	<.1	<.1	<.50	<.1	<.1	<.05	<.50	<.050	<.1	<.1	<.1
421135092275002	09-04-01	<.1	<.1	<.50	<.1	<.1	<.05	<.50	<.050	<.1	<.1	<.1
415753092350201	09-04-01	<.1	<.1	<.50	<.1	<.1	<.05	<.50	<.050	<.1	<.1	<.1
403659094285301	08-14-01	<.1	<.1	<.50	<.1	<.1	<.05	<.50	<.050	<.1	<.1	<.1
410907092375301	09-05-01	<.1	<.1	<.50	<.1	<.1	<.05	<.50	<.050	<.1	<.1	<.1

422831095465102 08-01-01 423954093535801 08-27-01

07-27-01

08-02-01

08-08-01 07-25-01

07-24-01

09-12-01

07-31-01

413040093290501

412850091342901

412013091485701

423028094115101 431556093375401

431828091473201

422929096254501

<.1

<.1

<.1 <.1

<.1

<.1

<.1

<.1

<.1

<.1

<.1

<.1 <.1

<.1

<.1

<.1

<.1

<.1

<.50

<.50 <.50 <.50

<.50

<.50

<.50

<.50

<.50

<.1

<.1 <.1 <.1

<.1

<.1

<.1 <.1 <.1

<.1

<.1

<.1 <.1

<.1

<.1

<.1

<.1 <.1

<.05

<.05

<.05 <.05 <.05

<.05

<.05

<.05

<.05

<.50

<.50 <.50 <.50

<.50

<.50

<.50 <.50 <.50 <.50

<.050

<.050 <.050 <.050

<.050

<.050

.050 <.050 <.050 <.050

<.1

<.1 <.1 <.1

<.1

<.1

<.1 <.1

<.1

<.1

<.1 <.1 <.1

<.1

<.1

<.1

<.1

<.1

<.1

<.1 <.1 <.1

<.1

<.1

<.1

<.1 <.1

GROUND WATER QUALITY MONITORING PROGRAM--Continued

STATION NUMBER	DATE	DI- METHEN- AMID WATER FLTRD REC (UG/L) (61588)	EPTC WATER WHOLE REC (UG/L) (81894)	METOLA- CHLOR WATER UNFLTRD REC (UG/L) (39356)	METRI- BUZIN IN WHOLE WATER (UG/L) (81408)	PENDI- METH- ALIN TOTAL (UG/L) (79190)	PROME- TONE TOTAL (UG/L) (39056)	PROPA- CHLOR IN WHOLE WATER (UG/L) (77729)	PRO- PAZINE TOTAL (UG/L) (39024)	TRIAL- LATE WATER FLTRD 0.7 U GF, REC (UG/L) (82678)	TRI- FLURA- LIN TOTAL RECOVER (UG/L) (39030)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) (34506)
415417092180101	08-30-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
421135092275002	09-04-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
415753092350201	09-04-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
403659094285301	08-14-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
410907092375301	09-05-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
413040093290501	07-27-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
412850091342901	08-02-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
412013091485701	08-08-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
423028094115101	07-25-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
431556093375401	07-24-01	<.0500	<.05	<.05	<.05	<.05	<.1	<.05	<.1	<.050	<.1	<.50
431828091473201 422929096254501 422831095465102 423954093535801	09-12-01 07-31-01 08-01-01 08-27-01	<.0500 <.0500 <.0500 <.0500	<.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05 <.05	<.05 <.05 <.05 <.05	<.1 <.1 <.1 <.1	<.05 <.05 <.05 <.05	<.1 <.1 <.1 <.1	<.050 <.050 <.050 <.050	<.1 <.1 <.1 <.1	<.50 <.50 <.50 <.50

STATION NUMBER	DATE	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L) (34511)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L) (34496)	1,1-DI CHLORO- PRO- PENE, WAT, WH TOTAL (UG/L) (77168)	123-TRI CHLORO- PROPANE WATER WHOLE TOTAL (UG/L) (77443)	1,2-DI- CHLORO- ETHANE TOTAL (UG/L) (32103)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L) (34541)	TRANS- 1,2-DI- CHLORO- ETHENE TOTAL (UG/L) (34546)	2,2-DI CHLORO- PRO- PANE WAT, WH TOTAL (UG/L) (77170)	BENZENE TOTAL (UG/L) (34030)	BROMO- BENZENE WATER, WHOLE, TOTAL (UG/L) (81555)	BROMO- FORM TOTAL (UG/L) (32104)
415417092180101	08-30-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
421135092275002	09-04-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
415753092350201	09-04-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
403659094285301	08-14-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
410907092375301	09-05-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
413040093290501	07-27-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
412850091342901	08-02-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
412013091485701	08-08-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
423028094115101	07-25-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
431556093375401	07-24-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
431828091473201	09-12-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
422929096254501	07-31-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
422831095465102	08-01-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50
423954093535801	08-27-01	<.50	<.50	<.50	<.5	<.5	<.50	<.50	<.50	<.50	<.50	<.50

STATION NUMBER	DATE	CARBON TETRA- CHLO- RIDE TOTAL (UG/L) (32102)	CHLORO- BENZENE TOTAL (UG/L) (34301)	CHLORO- ETHANE TOTAL (UG/L) (34311)	CHLORO- FORM TOTAL (UG/L) (32106)	CIS-1,2 -DI- CHLORO- ETHENE WATER TOTAL (UG/L) (77093)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34704)	DI- BROMO- METHANE WATER WHOLE RECOVER (UG/L) (30217)	ETHYL- BENZENE TOTAL (UG/L) (34371)	METHYL TERT- BUTYL ETHER WAT UNF REC (UG/L) (78032)	META/ PARA- XYLENE WATER UNFLTRD REC (UG/L) (85795)	O- XYLENE WATER WHOLE TOTAL (UG/L) (77135)
415417092180101	08-30-01	<.50	<.50	<.5	4.40	<.50	<.50	<.50	<.50	<.5	<.50	<.50
421135092275002	09-04-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
415753092350201	09-04-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
403659094285301	08-14-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
410907092375301	09-05-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
413040093290501	07-27-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
412850091342901	08-02-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
412013091485701	08-08-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
423028094115101	07-25-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
431556093375401	07-24-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
431828091473201	09-12-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
422929096254501	07-31-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
422831095465102	08-01-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50
423954093535801	08-27-01	<.50	<.50	<.5	<.50	<.50	<.50	<.50	<.50	<.5	<.50	<.50

GROUND WATER QUALITY MONITORING PROGRAM--Continued

STATION NUMBER	DATE	STYRENE TOTAL (UG/L) (77128)	TOLUENE TOTAL (UG/L) (34010)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) (34699)	VINYL CHLO- RIDE TOTAL (UG/L) (39175)	SIMA- ZINE TOTAL (UG/L) (39055)	TRITIUM TOTAL (PCI/L) (07000)
415417092180101	08-30-01	<.50	<.50	<.50	<.5	<.1	26.4
421135092275002	09-04-01	<.50	<.50	<.50	<.5	<.1	-0.3
415753092350201	09-04-01	<.50	<.50	<.50	<.5	<.1	44.5
403659094285301	08-14-01	<.50	<.50	<.50	<.5	<.1	
410907092375301	09-05-01	<.50	<.50	<.50	<.5	<.1	23.8
413040093290501	07-27-01	<.50	<.50	<.50	<.5	<.1	
4 12850091342901	08-02-01	<.50	<.50	<.50	<.5	<.1	.00
412013091485701	08-08-01	<.50	<.50	<.50	<.5	<.1	.5
423028094115101	07-25-01	<.50	<.50	<.50	<.5	<.1	÷
431556093375401	07-24-01	<.50	<.50	<.50	<.5	<.1	
431828091473201	09-12-01	<.50	<.50	<.50	<.5	<.1	20.5
422929096254501	07-31-01	<.50	<.50	<.50	<.5	<.1	
422831095465102	08-01-01	<.50	<.50	<.50	<.5	<.1	
423954093535801	08-27-01	<.50	<.50	<.50	<.5	<.1	.5

405747093233201 MCNAY RESEARCH STATION NEAR CHARITON, IOWA

LOCATION.--Lat 40°57'47", long 93°23'34", in SW¹/₄ NE¹/₄ sec. 9, T.71 N., R.23 W., Lucas County, Hydrologic Unit 10280201, 3.1 mi east and 2.0 mi north of Derby, Iowa, 3.4 mi west and 2.8 mi south of Chariton, Iowa.

OWNER.--U.S. Geological Survey.

PERIOD OF RECORD.--September 1984 to current year.

INSTRUMENTATION.--Wet/dry precipitation collector, weighing-bucket type recording rain gage with alter wind shield and event recorder. National Weather Service standard 8-inch rain and snow gage (back-up only).

REMARKS.--Samples collected by Jim Secor and Steve Goben.

EXTREMES FOR PERIOD OF RECORD.--Maximum field pH, 7.1, April 19-26, 1988; minimum field pH, 3.8, February 12-19, 1985.

EXTREMES FOR CURRENT YEAR.--Maximum field pH, 6.6, Dec. 5-12; minimum field pH, 4.3, Dec.12-19.

DATE	PH FIELD ATM DEP WET T (UNITS) (83106)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SODIUM ATM DEP WET DIS (MG/L) (83138)	NI- TROGEN AMMON. ATM DEP WET DIS AS N (MG/L) (83044)	NI- TROGEN NITRATE ATM DEP WET DIS AS N (MG/L) (83068)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS P (MG/L) (83108)
ост 03-10	6.40	22.7	1,82	.125	.059	.127	.730	.73	.14	2.89	<.001
OCT 10-17	5.59	7.8	.308	.019	.010	.029	.350	.27	.08	1.08	<.001
ОСТ 17-24			.125	.016	.023	.079	.610	.35	.18	2.50	<.001
OCT 24-31	4.68	21.0	.367	.047	.038	.228	.660	. 56	.28	2.78	<.001
OCT 31- NOV 07	6.07	4.8	.130	.012	.011	.045	.230	.10	.07	.83	<.001
NOV 07-14			.263	.023	.026	.033	1.37	1.12	.10	3.10	<.001
NOV 14-21											
NOV 21-28											
NOV 28- DEC 05	5.81	14.6	1.19	.041	.017	.044	.550	.65	.09	1.28	<.001
DEC 05-12	6.56	10.3	.767	.057	.007	.021	.290	.33	.05	.23	<.001
DEC 12-19	4.30	30.8	.622	.030	.031	.049	.250	1.25	.06	.79	<.001
DEC 19-26			.186	.009	.008	.035	.050	.49	.07	.23	<.001
DEC 26 2000- JAN 03 2001											
JAN 03-09											
JAN 09-16	5.06	10.0	.078	.005	.007	.010	.320	.27	.04	.90	<.001
JAN 16-23											
JAN 23-30	4.62	7.3	.046	<.003	<.003	.006	.070	.12	<.03	.70	<.001
JAN 30- FEB 06											
FEB 06-13	4.88	11.9	.123	.011	.009	.035	.220	.22	.05	1.04	<.001
FEB 13-20			.245	.017	.020	.040	.750	. 93	.17	2.62	<.003
FEB 20-27	4.86	8.8	.080	.006	.015	.017	.090	.15	<.03	.57	<.001
FEB 27- MAR 06											
MAR 06-13	5.02	17.1	.511	.056	.032	.056	1.03	.53	.11	2.75	<.001
MAR 13-20	4.71	12.3	.071	.006	.011	.006	.440	.32	.04	1.32	<.001
MAR 20-27	5.23	21.3	.397	.024	.012	.024	1.36	.79	.07	2.33	<.001
MAR 27- APR 03	5.82	17.2	.416	.025	.018	.029	1.40	.63	.05	2.33	<.001
APR 03-10	6.31	18.8	1.29	.086	.098	.403	.820	.38	.43	2.25	<.001
APR 10-17	5.77	13.4	1.06	.065	.074	.134	.400	.32	.16	1.36	<.001
APR 17-24	5.62	8.0	.318	.030	.025	.125	.470	.18	.19	.96	<.001
APR 24- MAY 01	5.35	18.8	1.63	.064	.044	.125	.730	. 42	.20	1.99	<.001
MAY 01-08	5.34	10.5	.412	.071	.182	.159	.430	.32	.25	1.21	<.001
MAY 08-15	5.53	11.3	.435	.036	.020	.059	.630	.37	.07	1.24	<.003
MAY 15-22	5.94	19.4	.837	.055	.060	.056	1.10	.72	.10	1.41	<.003
MAY 22-29	6.42	16.8	.884	.102	.298	.130	.900	.25	.17	1.12	.174
MAY 29- JUN 05	5.06	9.6	.179	.018	.014	.061	.200	.22	.09	.97	<.003

405747093233201 MCNAY RESEARCH STATION NEAR CHARITON, IOWA--Continued

DATE	PH FIELD ATM DEP WET T (UNITS) (83106)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SODIUM ATM DEP WET DIS (MG/L) (83138)	NI- TROGEN AMMON. ATM DEP WET DIS AS N (MG/L) (83044)	NI- TROGEN NITRATE ATM DEP WET DIS AS N (MG/L) (83068)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS P (MG/L) (83108)
JUN	5.05	0.1	200					0.6	1.4	1 10	
05-12 JUN	5.25	8.1	.392	.034	.042	.112	.280	.26	.14	1.17	<.003
12-19 JUN	5.57	8.9	.597	.041	.041	.145	.340	.27	.17	1.41	<.003
19-26 JUN 26-	5.33	5.5	.153	.015	.014	.017	.220	.16	.04	.64	<.003
JUL 03 JUL			.863	.044	.159	.049	.820	.59	.18	1.05	<.003
03-10 JUL	5.55	8.7	.536	.029	.030	.025	.470	.32	.07	.63	<.003
10-17 JUL	6.14	46.3	3.98	.282	.174	.294	1.29	1.81	.49	4.27	<.003
17-24 JUL	5.68	21.6	1.20	.072	.052	.189	.950	1.01	.26	2.43	<.003
24-31 JUL 31-	5.41	12.4	.635	.033	.025	.076	.610	. 52	.12	1.38	<.003
AUG 07 AUG	4.99	9.6	.344	.021	.013	.073	.230	.31	.10	.96	<.003
07-14 AUG											
14-21 AUG	5.40	21.3	.953	.074	.030	.035	1.09	.86	.12	3.09	<.003
21-28 AUG 28-	5.02	12.0	.447	.029	.028	.049	.440	.49	.08	1.30	<.003
SEP 04 SEP											
04-11 SEP	5.32	6.1	.223	.026	.011	.035	.240	.16	.05	.82	<.003
11-18 SEP	4.77	14.8	.402	.043	.011	.007	.360	.29	.04	2.08	<.003
18-25 SEP 25-	5.27	7.2	.161	.011	.010	.003	.330	.25	.03	.61	<.003
OCT 02											

425435091281101 BIG SPRING FISH HATCHERY NEAR ELKADER, IOWA

LOCATION.--Lat 42°54'35", long 91°28'11", in $SE^{1}/_{4}$ NE $^{1}/_{4}$ Sec. 31, T.94 N., R.5 W., Clayton County, Hydrologic Unit 07060004, 3.0 mi north and 2.8 mi west of Elkader, Iowa.

OWNER.--U.S. Geological Survey.

PERIOD OF RECORD.--August 1984 to current year.

INSTRUMENTATION.--Wet/dry precipitation collector, weighing-bucket type recording rain gage with alter wind shield and event recorder and National Weather Service standard 8-inch rain and snow gage (back-up only).

REMARKS.--Samples Collected by Robert Zach.

EXTREMES FOR PERIOD OF RECORD.--Maximum field pH, 6.9, April 2-9 1996; minimum field pH, 3.7, August 31 to September 7, 1999.

EXTREMES FOR CURRENT YEAR.--Maximum field pH, 6.8, July 31 to Aug. 7; minimum field pH, 4.3, Jan. 9-16.

DATE	PH FIELD ATM DEP WET T (UNITS) (83106)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SODIUM ATM DEP WET DIS (MG/L) (83138)	NI- TROGEN AMMON. ATM DEP WET DIS AS N (MG/L) (83044)	NI- TROGEN NITRATE ATM DEP WET DIS AS N (MG/L) (83068)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS P (MG/L) (83108)
OCT 03-10	5.19	9.3	.314	.046	.035	.022	.260	.22	.07	.96	<.001
OCT 10-17	5.88	11.7	1.15	.110	.080	.022	.410	.25	.12	.71	<.001
OCT 17-24	4.87	13.3	.216	.069	.027	.018	.340	.19	.05	1.81	<.001
OCT 24-31	4.46	33.0	.275	.044	.040	.090	.840	.54	.22	4.04	<.001
OCT 31- NOV 07	5.71	11.7	.560	.183	.180	.051	.480	.23	.12	2.01	.031
NOV 07-14	4.55	24.2	.175	.029	.015	.015	.740	.84	.12	1.72	<.001
NOV 14-21	5.35	17.4	.896	.058	.032	.044	.820	.96	.06	1.44	<.001
NOV 21-28						•					
NOV 28- DEC 05	5.39	14.6	.493	.032	.027	.043	.620	.65	. 09	1.00	<.001
DEC 05-12	5.50	6.4	.196	.021	.008	.017	.180	.24	.04	.33	<.001
DEC 12-19	4.90	9.2	.155	.013	.009	.023	.110	.29	.06	.38	<.001
DEC 19-26	4.66	12.2	.181	.013	.010	.021	.100	. 49	.05	.17	<.001
DEC 26 2000- JAN 02 2001	5.40	8.4	.058	.007	.003	.012	.040	.22	. 05	.27	<.001
JAN 02-09											
JAN 09-16	4.30	36.2	.108	.013	.016	.018	.380	.58	.11	2.74	<.001
JAN 16-23											
JAN 23-30	5.23	12.9	.040	.007	.252	.112	.070	.22	.32	1.12	.016
JAN 30- FEB 06	5.34	9.9	.239	.023	.006	.044	.270	.28	.06	1.06	<.001
FEB 06-13	4.43	27.9	.152	.019	.016	.053	.420	.59	.09	1.90	<.001
FEB 13-20			.260	.035	<.011	.074	.130	.37	.11	.64	<.004
FEB 20-27	4.66	18.1	.100	.024	.029	.023	.350	.40	.06	1.44	<.001
FEB 27- MAR 06											
MAR 06-13	5.34	19.2	.315	.030	.013	.027	.940	. 64	.06	2.13	<.001
MAR 13-20			.174	.022	.014	.047	1.24	.37	.08	1.80	<.001
MAR 20-27						~~					
MAR 27- APR 03	4.82	26.0	.253	.038	.021	.020	1.30	.87	.06	2.78	<.001
APR 03-10	5.82	23.0	1.12	.126	.129	.201	1.06	.50	.20	2.66	<.001
APR 10-17	5.52	16.8	.557	.064	.145	.263	.700	.52	.32	2.17	<.001
APR 17-24	6.02	24.2	1.20	.168	.690	.332	.890	.48	.51	2.47	.053
APR 24- MAY 01	6.00	13.3	.873	.066	.077	.050	.680	.27	.09	1.34	<.001
MAY 01-08	5.26	15.0	.680	.070	.058	.187	.760	.40	.21	1.75	<.001
MAY 08-15	6.51	12.4	.551	.083	.340	.023	.150	.31	.07	.75	<.003
MAY 15-22	6.08	14.5	.366	.079	2.52	.012	.280	.18	.04	1.01	.041
MAY 22-29	6.28	8.8	.230	.056	.117	.007	.490	.31	.04	.76	<.003
MAY 29- JUN 05	5.16	8.6	.201	.042	.023	.039	.230	.20	.06	.86	<.003
										-	

425435091281101 BIG SPRING FISH HATCHERY NEAR ELKADER, IOWA--Continued

DATE	PH FIELD ATM DEP WET T (UNITS) (83106)	SPEC. CONDUC- TANCE FIELD ATM DEP WET TOT (US/CM) (83154)	CALCIUM ATM DEP WET DIS (MG/L) (82932)	MAG- NESIUM ATM DEP WET DIS (MG/L) (83002)	POTAS- SIUM ATM DEP WET DIS (MG/L) (83120)	SODIUM ATM DEP WET DIS (MG/L) (83138)	NI- TROGEN AMMON. ATM DEP WET DIS AS N (MG/L) (83044)	NI- TROGEN NITRATE ATM DEP WET DIS AS N (MG/L) (83068)	CHLO- RIDE ATM DEP WET DIS (MG/L) (82944)	SULFATE ATM DEP WET DIS AS SO4 (MG/L) (83160)	PHOS- PHORUS ORTHO ATM DEP WET DIS AS P (MG/L) (83108)
JUN 05-12	5.50	17.9	.695	.068	.070	.042	.610	.45	.09	1.53	<.003
JUN 12-19 JUN	5.71	14.3	.514	.060	.109	.127	.480	.33	.15	1.25	<.003
19-26 JUN 26-					•						
JUL 03 JUL	6.37	33.5	3.25	.360	.230	.061	.630	.87	.15	2.04	<.003
03-10 JUL											
10~17 JUL										'	
17~24 JUL	5.78	14.0	.801	.142	.071	.069	.570	.58	.13	1.20	<.003
24-31 JUL 31-	6.41	13.8	.558	.140	.145	.022	.620	. 33	.07	1.02	<.003
AUG 07 AUG	6.82	11.4	1.00	.136	.077	.074	.320	.25	.08	.81	<.003
07-14 AUG											
14-21 AUG	5.74	4.8	.135	.018	.026	<.003	.210	.13	.02	. 52	<.003
21-28 AUG 28-	5.04	12.5	.313	.026	.037	.026	.510	.38	.06	1.62	<.003
SEP 04 SEP						~ -					
04-11 SEP	5.80	7.3	.327	.106	.176	.019	.250	.17	.08	1.03	.033
11-18 SEP	4.70	14.6	.266	.065	.007	.003	.220	.25	.04	1.43	<.003
18-25 SEP 25-		10.3	.493	.081	.226	.011	.520	.33	.04	1.28	<.003
OCT 02											

•

Acid neutralizing capacity, definition of	
Acre-foot, definition of	. 34
Adenosine triphosphate, definition of	. 34
Algae	
Blue-green, definition of	
Fire, definition of.	
Green, definition of	
Algal growth potential, definition of.	
Alkalinity, definition of.	
Alton, Floyd River at	
Annual 7-day minimum, definition of.	
Annual runoff, definition of.	
Aquifer, water table, definition of	
Aroclor, definition of	
Artificial substrate, definition of	
Ash mass, definition of	
Atlantic, East Nishnabotna River nearBacteria	122
Fecal coliform, definition of	20
Fecal streptococcal, definition of.	
Total coliform, definition of	
Base discharge (for peak discharge), definition of	
Base flow, definition of	
Base now, definition of	
Bedford, East Fork One Hundred and Two River at	
Bedload discharge, definition of.	
Bedload, definition of	
Benthic organisms, definition of	
Big Sioux River at Akron, IA	
Big Sioux River basin, crest-stage partial-record stations in	
Big Whiskey Slough near Remsen	
Biochemical oxygen demand, definition of	
Biomass nigment ratio definition of	
Biomass pigment ratio, definition of.	. 35
Biomass, definition of	. 35 . 35
Biomass, definition of	. 35 . 35 150
Biomass, definition of Bluegrass Creek at Audubon Blue-green algae, definition of	. 35 . 35 150 . 35
Biomass, definition of Bluegrass Creek at Audubon Blue-green algae, definition of Bottom material (see "Bed material")	. 35 . 35 150 . 35 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan	. 35 . 35 150 . 35 . 35 . 98
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in	. 35 . 35 150 . 35 . 35 . 98 149
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine	. 35 . 35 150 . 35 . 35 . 98 149 149
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins	. 35 . 35 150 . 35 . 35 . 98 149 149 148
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins. Cells volume	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins. Cells volume	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35 . 35 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day")	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35 . 35 . 35 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine Burr Oak Creek near Perkins Cells volume Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Moulton	. 35 . 35 150 . 35 . 35 . 98 149 149 149 148 . 35 . 35 . 35 . 35 . 138 146
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35 . 35 . 35 . 35 . 138 146 144
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35 . 35 . 35 . 35 . 138 146 144 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35 . 35 . 35 . 35 . 35 . 138 146 144 . 35 130
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine Burr Oak Creek near Perkins Cells volume Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of	. 35 . 35 150 . 35 . 35 . 98 149 149 148 . 35 . 35 . 35 . 35 . 35 . 138 146 144 . 35 130 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of Clarinda, Nodaway River at. Clostridium perfringens	. 35 . 35 150 . 35 . 35 . 98 149 149 149 148 . 35 . 35 . 35 . 35 . 35 . 35 . 35 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of Clarinda, Nodaway River at. Clostridium perfringens Coliphages, definition of	. 35 . 35 150 . 35 . 35 . 98 149 149 149 148 . 35 . 35 . 35 . 35 . 35 . 35 . 35 . 35
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of Clastridium perfringens Coliphages, definition of.	$\begin{array}{c} . 35 \\ . 35 \\ 150 \\ . 35 \\ . 35 \\ . 98 \\ 149 \\ 149 \\ 148 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ 138 \\ 146 \\ 144 \\ . 35 \\ 130 \\ . 35 \\ . 36 \\ . 36 \\ . 36 \\ . 36 \end{array}$
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of Clarinda, Nodaway River at Color unit, definition of Color unit, definition of	$\begin{array}{c} . \ 35 \\ . \ 35 \\ 150 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \end{array}$
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of Clastridium perfringens Coliphages, definition of. Color unit, definition of. Confined aquifer, definition of	$\begin{array}{c} . \ 35 \\ . \ 35 \\ 150 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 35 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \\ . \ 36 \end{array}$
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of Clostridium perfringens Coliphages, definition of. Color unit, definition of Confined aquifer, definition of. Contents, definition of Control structure, definition of. Control, definition of	$\begin{array}{c} . 35 \\ . 35 \\ 150 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 36 \\ . 3$
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of Clostridium perfringens Coliphages, definition of. Color unit, definition of. Confined aquifer, definition of. Contents, definition of Control structure, definition of.	$\begin{array}{c} . 35 \\ . 35 \\ 150 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 36 \\ . 3$
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Moulton near Rathbun Chemical oxygen demand, definition of Coliphages, definition of. Color unit, definition of. Continuous-record station, definition of. Control, definition of Control, definition of	$\begin{array}{c} . 35 \\ . 35 \\ 150 \\ . 35 \\ . 35 \\ . 98 \\ 149 \\ 148 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 36 $
Biomass, definition of. Bluegrass Creek at Audubon Blue-green algae, definition of. Bottom material (see "Bed material") Boyer River at Logan Boyer River at Logan Boyer River basin, crest-stage partial-record stations in Boyer River tributary at Woodbine. Burr Oak Creek near Perkins Cells volume Cells/volume, definition of Cfs-day (see "Cubic foot per second-day") Chariton River near Chariton near Rathbun Chemical oxygen demand, definition of Clarinda, Nodaway River at. Clostridium perfringens Coliphages, definition of. Confined aquifer, definition of. Contents, definition of Control, definition of Control, definition of Control, definition of Control, definition of	$\begin{array}{c} . 35 \\ . 35 \\ 150 \\ . 35 \\ . 35 \\ . 98 \\ 149 \\ 148 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 35 \\ . 36 $

Daily mean averaged and ment concentration definition of	26
Daily mean suspended-sediment concentration, definition of	30
Daily-record station, definition of	
Data Collection Platform, definition of	
Data logger, definition of	36
Datum, definition of	36
Davis City, Thompson River at	
Dawson Creek near Sibley	
Decatur, Missouri River at	
Diatom, definition of	
Diel, definition of	
Discharge, definition of	
Dissolved oxygen, definition of	. 37
Dissolved, definition of.	37
Dissolved-solids concentration, definition of	
Diversity index, definition of.	
Downstream order system.	
Drainage area, definition of	. 37
Drainage basin, definition of	. 37
Dry mass, definition of	
Dry Run Creek near Harris	149
Dry weight, definition of.	. 37
East Fork One Hundred and Two River at Bedford	
East Nishnabotna River	
near Atlantic	122
	124
at Red Oak	
East Tarkio Creek near Stanton	150
Elk Creek near Decatur City	151
Elliot Creek at Lawson	149
Elm Creek near Jacksonville	150
Enterococcus bacteria, definition of	. 37
EPT Index, definition of	
Escherichia coli (E. coli), definition of	
Estimated (E) value, definition of	
Euglenoids, definition of.	
Extractable organic halides, definition of	
Fecal coliform bacteria, definition of	
Fecal streptococcal bacteria, definition of	. 38
Fire algae, definition of	. 38
Flow-duration percentiles, definition of	. 38
Floyd River	
at Alton	68
at James	
Floyd River basin, crest-stage partial-record stations in	
Gage datum, definition of	
Gage height, definition of	
Gage values, definition of	
Gaging station, definition of	. 38
Gas chromatography/flame ionization detector, definition of .	
Grand River basin, crest-stage partial-record stations in	151
Green algae, definition of	
Ground-water levels, records of	
Data collection and computation	
Data presentation	
Ground-water quality, records of	
Data presentation	
Habitat quality index, definition of	. 39
Halfway Creek at Schaller.	149
Hamburg, Nishnabotna River above.	126
Hancock, West Nishnabotna River at	118
Hardness, definition of	
High tide, definition of	
Hilsenhoff's Biotic Index, definition of	. 39

Horizontal datum (See "Datum")	. 39
Hornick, West Fork Ditch at	. 74
Hydrologic benchmark station, definition of	. 39
Hydrologic conditions, summary of	
Ground water	
Ground-water quality	
Surface water	
Surface-water quality	
Suspended sediment.	
Hydrologic index station, definition of	
Hydrologic unit, definition of	
Inch, definition of	
Indian Creek near Emerson	
Instantaneous discharge, definition of.	
James, Floyd River at	
Keg Creek tributary near Mineola	
Laboratory Reporting Level, definition of	
Land-surface datum, definition of	
Light-attenuation coefficient, definition of	
Linn Grove, Little Sioux River at	
Lipid, definition of	
Little Floyd River near Sanborn.	148
Little Sioux River	
at Correctionville	
at Linn Grove	
near Turin	
Little Sioux River basin, crest-stage partial-record stations in .	
Little Sioux River tributary near Peterson	149
Logan, Boyer River at	. 98
Long-Term Method Detection Level, definition of.	. 40
Low flow, 7-day 10-year, definition of	. 44
Low tide, definition of	
Macrophytes, definition of	
Maple River at Mapleton.	
Mapleton, Maple River at	
Mean concentration of suspended sediment, definition of	
Mean discharge, definition of	
Mean high tide, definition of	
Mean low tide, definition of	
Mean sea level, definition of	
Measuring point, definition of	
Membrane filter, definition of	
Metamorphic stage, definition of	
Method Detection Limit, definition of	
Methylene blue active substances, definition of	
Micrograms per gram, definition of	
Micrograms per kilogram, definition of	
Micrograms per liter, definition of	
Microsiemens per centimeter, definition of	
Middle Branch 102 River near Gravity	
Middle Silver Creek near Oakland	
Milford, West Okoboji Lake at Lakeside Laboratory near	
Milligrams per liter, definition of	
Minimum Reporting Level, definition of	
Miscellaneous site, definition of	. 41
Missouri River	
at Decatur	
at Nebraska City	110
at Omaha	100
at Rulo	128
at Sioux City	. 64

Monona-Harrison Ditch basin, crest-stage partial-record station 148	
Monona-Harrison Ditch near Turin	
Broot of the second sec	150
Mosquito Creek basin, crest-stage partial-record stations in	150
Mosquito Creek tributary near Neola Most probable number (MPN), definition of	
Moulton, Chariton River near	
Multiple-plate samplers, definition of.	
Nanograms per liter, definition of	
National Geodetic Vertical Datum of 1929, definition of	
Natural substrate, definition of	
Nebraska City, Missouri River at.	
Nekton, definition of	
Nephelometric turbidity unit, definition of	
NGVD of 1929 (see "National Geodetic Vertical Datum of 192	9").
41	
Nishnabotna River above Hamburg	
	150
	130
Nodaway River basin, crest-stage partial-record stations in	
North American Vertical Datum of 1988 (NAVD 1988), definit	
of	
Numbering system for wells	10
Ocheyedan River near Ocheyedan	1/0
Ocheyedan River near Spencer	
Omaha, Missouri River at	
Open or screened interval, definition of	
Organic carbon, definition of.	
Organic mass, definition of	
Organism count, definition of	
Area, definition of	42
Total, definition	47
Volume, definition of	
Organochlorine compounds, definition of	
Orleans, Spirit Lake near	
Parameter Code, definition of	
Partial-record station, definition of	
Particle size, definition of	
Particle-size classification, definition of	
Peak flow (peak stage), definition of	
Percent composition (percent of total), definition of Percent shading, definition of	
Periodic-record station, definition of	
Periphyton, definition of	
Perry Creek	
2	148
near Merrill	148
at 38th Street Sioux City	66
Perry Creek basin, crest-stage partial-record stations in	
Pesticides, definition of	43
pH, definition of	
Phytoplankton, definition of	
Picocurie, definition of	
Pisgah, Soldier River at	
Plankton, definition of	
Platte River basin, crest-stage partial-record stations in	
Polychlorinated biphenyls (PCB' s), definition of	
Prolychlorinated naphthalenes, definition of	
Primary productivity, definition of	

INDEX

Carbon method, definition of	. 43
Oxygen method, definition of	
Promise City, South Fork Chariton River near	
Radioisotopes, definition of	
Randolph, West Nishnabotna River at	120
Rathbun	
Chariton River near	
Rathbun Lake near.	
Rathbun Lake near Rathbun	
Records, explanation of.	
Recoverable, bed (bottom) material, definition of	
Recurrence interval, definition of	
Red Oak, East Nishnabotna River at.	
Replicate samples, definition of	
Return period (see "Recurrence interval")	
River mileage, definition of	
Rock Rapids, Rock River below Tom Creek at	
Rock River below Tom Creek at Rock Rapids.	
Rock River near Rock Valley	
Rock Valley, Rock River near	
Runoff, definition of	
Sea level, definition of	
Sediment, definition of	
Total load, definition of	
Seven-day 10-year low flow, definition of	
Sevenmile Creek near Thayer	
Sioux City	131
Missouri River at	64
Perry Creek at 38th Street.	
Sodium adsorption ratio, definition of	
Soldier River at Pisgah	. 94
Soldier River at Pisgah South Fork Chariton River near Promise City	. 94 140
Soldier River at Pisgah South Fork Chariton River near Promise City Special networks and programs	.94 140 .16
Soldier River at Pisgah South Fork Chariton River near Promise City Special networks and programs Specific electrical conductance (conductivity), definition of	. 94 140 . 16 . 44
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River near	. 94 140 . 16 . 44 . 84
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near Orleans	. 94 140 . 16 . 44 . 84 . 80
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .	. 94 140 . 16 . 44 . 84 . 80 . 45
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near Orleans	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 19
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 19 . 24
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the records	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 45 . 19 . 24 . 19
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition ofSpencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition ofStage (see Gage height)Stage and water discharge, records ofAccuracy of the recordsData collection and computation	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 45 . 19 . 24 . 19 . 21
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the records .Data collection and computationData presentation.Identifying estimated daily discharge.Other records available	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 45 . 19 . 24 . 19 . 21 . 24 . 25
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the recordsData collection and computationData presentationIdentifying estimated daily discharge.Other records availableStage-discharge relation, definition of	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 45 . 45 . 24 . 21 . 24 . 25 . 45
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the recordsData collection and computationData presentation.Identifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStage-discharge relation, numbers	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 45 . 45 . 24 . 29 . 21 . 22 . 45 . 45 . 17
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the recordsData collection and computationData presentation.Identifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStage-discharge relation numbersDownstream order system	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 45 . 24 . 21 . 24 . 25 . 45 . 17 . 17
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the recordsData collection and computationData presentation.Identifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude system	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 45 . 19 . 21 . 24 . 25 . 45 . 17 . 17 . 18
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the recordsData collection and computationData presentation.Identifying estimated daily discharge.Other records availableStage-discharge relation, definition of .Station identification numbersDownstream order systemLatitude-longitude systemStreamflow, definition of .	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 19 . 24 . 21 . 24 . 25 . 45 . 17 . 17 . 18 . 45
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the recordsData collection and computationData presentation.Identifying estimated daily discharge.Other records availableStage-discharge relation, definition of .Station identification numbersDownstream order systemLatitude-longitude systemStreamflow, definition of .	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 19 . 24 . 21 . 24 . 25 . 45 . 17 . 17 . 18 . 45 . 34
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the recordsData collection and computationData presentation.Identifying estimated daily discharge.Other records availableStage-discharge relation, definition of .Station identification numbersDownstream order systemLatitude-longitude systemStreamflow, definition of .Substrate, artificial, definition of .Substrate, definition of .	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 19 . 24 . 25 . 45 . 17 . 17 . 18 . 45 . 34 . 45
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition ofSpencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition ofStage (see Gage height)Stage and water discharge, records ofAccuracy of the recordsData collection and computationData presentationIdentifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude systemStreamflow, definition ofSubstrate, artificial, definition ofArtificial, definition of	. 94 140 . 16 . 44 . 84 . 80 . 45 . 45 . 45 . 24 . 25 . 45 . 17 . 18 . 45 . 34 . 34 . 34
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition of .Spencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition of .Stage (see Gage height).Stage and water discharge, records of .Accuracy of the recordsData collection and computationData presentationIdentifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude systemStreamflow, definition of .Substrate, artificial, definition of .Substrate, definition of .Embeddedness Class, definition of .	$\begin{array}{c} . \ 94 \\ 140 \\ . \ 16 \\ . \ 44 \\ . \ 80 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 19 \\ . \ 24 \\ . \ 25 \\ . \ 17 \\ . \ 26 \\ . \ 45 \\ . \ 45 \\ . \ 34 \\ . \ 45 \\ . \ 34 \\ . \ 45 \\ . \ 34 \\ . \ 45 \end{array}$
Soldier River at Pisgah South Fork Chariton River near Promise City Special networks and programs Specific electrical conductance (conductivity), definition of . Spencer, Ocheyedan River near Spirit Lake near Orleans Stable isotope ratio, definition of . Stage (see Gage height). Stage and water discharge, records of . Accuracy of the records Data collection and computation Data presentation. Identifying estimated daily discharge. Other records available Stage-discharge relation, definition of Station identification numbers Downstream order system Latitude-longitude system Stubstrate, artificial, definition of Substrate, definition of Substrate, definition of Artificial, definition of Artificial, definition of Artificial, definition of Natural, definition of	. 94 140 . 16 . 44 . 80 . 45 . 45 . 45 . 45 . 19 . 24 . 29 . 21 . 24 . 25 . 17 . 17 . 18 . 45 . 34 . 45 . 34 . 45 . 34 . 45 . 45 . 17 . 18 . 45 . 45 . 45 . 45 . 45 . 45 . 45 . 45
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition ofSpencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition ofStage (see Gage height)Stage and water discharge, records ofAccuracy of the recordsData collection and computationData presentationIdentifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude systemSubstrate, artificial, definition ofSubstrate, definition ofSustrate, definition ofSustrate area of a lake, definition of	$\begin{array}{r} . \ 94 \\ 140 \\ . \ 16 \\ . \ 44 \\ . \ 80 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 19 \\ . \ 24 \\ . \ 27 \\ . \ 19 \\ . \ 24 \\ . \ 25 \\ . \ 45 \\ . \ 45 \\ . \ 34 \\ . \ 45 \\ . \ 34 \\ . \ 45 \\ . \ 41 \\ . \ 45 \end{array}$
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition ofSpencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition ofStage (see Gage height)Stage and water discharge, records ofAccuracy of the recordsData collection and computationData presentationIdentifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude systemSubstrate, artificial, definition ofSubstrate, definition ofSubstrate, definition ofSubstrate, definition ofSubstrate, definition ofSubstrate, definition ofSubstrate, definition ofSutial, definition ofSustrate, definition ofSubstrate, definition ofSustrate, definition ofSustrate, definition ofSustrate, definition ofSurface area of a lake, definition ofSurface-water quality, records of	$\begin{array}{r} . \ 94 \\ 140 \\ . \ 16 \\ . \ 44 \\ . \ 80 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 19 \\ . \ 24 \\ . \ 27 \\ . \ 27 \\ . \ 27 \\ . \ 27 \\ . \ 17 \\ . \ 18 \\ . \ 45 \\ . \ 34 \\ . \ 45 \\ . \ 41 \\ . \ 45 \\ . \ 25 \end{array}$
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition ofSpencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition ofStage (see Gage height)Stage and water discharge, records ofAccuracy of the recordsData collection and computationData presentationIdentifying estimated daily dischargeOther records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude systemSubstrate, artificial, definition ofSubstrate, definition ofSubstrate, definition ofSubstrate, definition ofSustrate, definition ofSustrate, definition ofSurface area of a lake, definition ofSurface-water quality, records ofArrangement of records	$\begin{array}{r} . \ 94 \\ 140 \\ . \ 16 \\ . \ 44 \\ . \ 80 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 21 \\ . \ 24 \\ . \ 25 \\ . \ 45 \\ . \ 45 \\ . \ 34 \\ . \ 45 \\ . \ 34 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 25 \\ . \ 25 \end{array}$
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition ofSpencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition ofStage (see Gage height)Stage and water discharge, records ofAccuracy of the recordsData collection and computationData presentationIdentifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude systemSubstrate, artificial, definition ofSubstrate, artificial, definition ofSubstrate, artificial, definition ofSubstrate, artificial, definition ofSurface area of a lake, definition ofSurface-water quality, records ofArrangement of recordsClassification of records	$\begin{array}{r} . \ 94 \\ 140 \\ . \ 16 \\ . \ 44 \\ . \ 80 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 19 \\ . \ 24 \\ . \ 25 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 34 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 25 \\ . \ 25 \\ . \ 25 \end{array}$
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition ofSpencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition ofStage (see Gage height)Stage and water discharge, records ofAccuracy of the recordsData collection and computationData presentationIdentifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude systemSubstrate, artificial, definition ofSubstrate, definition ofSubstrate, definition ofSurface area of a lake, definition ofSurface-water quality, records ofArrangement of recordsData presentation	$\begin{array}{c} . \ 94 \\ 140 \\ . \ 16 \\ . \ 44 \\ . \ 80 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 24 \\ . \ 27 \\ . \ 24 \\ . \ 25 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 345 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 25 \\ . \ 25 \\ . \ 27 \\ \end{array}$
Soldier River at PisgahSouth Fork Chariton River near Promise CitySpecial networks and programsSpecific electrical conductance (conductivity), definition ofSpencer, Ocheyedan River nearSpirit Lake near OrleansStable isotope ratio, definition ofStage (see Gage height)Stage and water discharge, records ofAccuracy of the recordsData collection and computationData presentationIdentifying estimated daily discharge.Other records availableStage-discharge relation, definition ofStation identification numbersDownstream order systemLatitude-longitude systemSubstrate, artificial, definition ofSubstrate, artificial, definition ofSubstrate, artificial, definition ofSubstrate, artificial, definition ofSurface area of a lake, definition ofSurface-water quality, records ofArrangement of recordsClassification of records	$\begin{array}{c} . \ 94 \\ 140 \\ . \ 16 \\ . \ 44 \\ . \ 80 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 21 \\ . \ 24 \\ . \ 25 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 45 \\ . \ 345 \\ . \ 45 \\ . \ 45 \\ . \ 25 \\ . \ 25 \\ . \ 25 \\ . \ 27 \\ . \ 27 \\ \end{array}$

Remark codes	
Sediment	
Water temperature and specific conductance	
Surficial bed material, definition of	
Suspended sediment, definition of	
Mean concentration of, definition of	
Suspended solids, total residue, defnition of	
Suspended, definition of	
Recoverable, definition of	
Total, definition of	. 46
Suspended-sediment, definition of	
Concentration	
Concentration, definition of	
Discharge, definition of	
Load, definition of	. 46
Sweeney Creek tributary near Sheldon	
Synoptic studies, definition of	
Tarkio River basin, crest-stage partial-record stations in	
Tarkio River near Elliott	150
Tarkio River tributary near Stanton	
Taxa richness, definition of	
Taxonomy, definition of	. 46
Temperature preferences	
Cold, definition of	. 46
Cool, definition of	. 46
Warm, definition of	. 46
Thermograph, definition of	. 46
Thompson River at Davis City	136
Time-weighted average, definition of	
Tons per acre-foot, definition of	. 46
Tons per day, definition of	. 47
Total coliform bacteria, definition of	. 47
Total discharge, definition of	. 47
Total in bottom material, definition of	. 47
Total length, definition of	. 47
Total load, definition of	. 47
Total organism count, definition of	
Total recoverable, definition of	. 47
Total sediment discharge, definition of	
Total sediment load, definition of	
Total, definition of	. 47
Bottom material	. 47
Coliform bacteria	. 47
Trophic group, definition of	
Filter feeder	. 47
Herbivore	. 47
Invertivore	. 47
Omnivore	. 48
Piscivore	
Turbidity, definition of	. 48
Turin	
Little Sioux River near	. 92
Monona-Harrison Ditch near	
Ultraviolet (UV) absorbance (absorption), definition of	
Vertical datum (see "Datum")	
Volatile organic compounds, definition of	
Water table, definition of	
Water year, definition of	
Water-table aquifer, definition of	
WATSTORE data, access to	
WDR, definition of.	
Weighted average, definition of	. 48

West Floyd Branch near Struble
West Fork Ditch at Hornick
West Nishnabotna River
at Hancock
at Randolph
West Nodaway River at Massena 151
West Okoboji Lake at Lakeside Laboratory near Milford 82
Wet mass, definition of

et weight, definition of
/illow Creek
near Calumet
near Cornell
near Soldier
SP, definition of
poplankton, definition of 48

225

CONVERSION FACTORS AND VERTICAL DATUM

Multiply

By

To obtain

	Length			
inch (in.)	2.54x10 ¹	millimeter		
	2.54×10 ⁻²	meter		
foot (ft)	3.048x10 ⁻¹	meter		
mile (mi)	1.609x10 ⁰	kilometer		
Area				
acre	4.047×10 ³	square meter		
	4.047×10 ⁻¹	square hectometer		
	4.047x10 ⁻³	square kilometer		
square mile (mi ²)	2.590x10 ⁰	square kilometer		
Volume				
gallon (gal)	3.785x10 ⁰	liter		
	3.785x10 ⁰	cubic decimeter		
	3.785x10 ⁻³	cubic meter		
million gallons (Mgal)	3.785x10 ³	cubic meter		
_	3.785x10 ⁻³	cubic hectometer		
cubic foot (ft ³)	2.832×10 ¹	cubic decimeter		
	2.832×10 ⁻²	cubic meter		
cubic-foot-per-second day [(ft ³ /s) d]	2.447×10 ³	cubic meter		
	2.447x10 ⁻³	cubic hectometer		
acre-foot (acre-ft)	1.233x10 ³	cubic meter		
	1.233×10 ⁻³	cubic hectometer		
	1.233×10 ⁻⁶	cubic kilometer		
	Flow			
cubic foot per second (ft ³ /s)	2.832x10 ¹	liter per second		
	2.832×10 ¹	cubic decimeter per second		
	2.832×10 ⁻²	cubic meter per second		
gallon per minute (gal/min)	6.309×10 ⁻²	liter per second		
	6.309×10 ⁻²	cubic decimeter per second		
	6.309×10 ⁻⁵	cubic meter per second		
million gallons per day (Mgal/d)	4.381×10 ¹	cubic decimeter per second		
	4.381×10 ⁻²	cubic meter per second		
Mass				
ton (short)	9.072×10 ⁻¹	megagram or metric ton		

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.

U.S. DEPARTMENT OF THE INTERIOR U.S. Geological Survey P.O. Box 1230 Iowa City, IA 52244

