Good Hope Mill Dam was removed over a 3-day period beginning November 2, 2001 to eliminate safety concerns, provide for resident and migratory fish passage, and improve habitat for native fish. The deteriorated, obsolete, condition of the dam made removal a more cost effective option to mitigate safety and ecological concerns than rebuilding or retrofitting the structure to meet current safety and environmental regulations.

The dam was located on the Conodoguinet Creek at the former Good Hope Mill, approximately 13.5 miles upstream of the confluence of Conodoguinet Creek and the Susquehanna River. It was a run of the river, 6-foot high, 220-foot wide concrete and log crib structure constructed on bedrock over 100 years ago to provide waterpower to the former mill. Drainage area at the dam site is 492 square miles and the mean annual flow is 619 cubic feet per second based on 72 years of daily streamflow recorded at Hogestown gage (USGS station number 01570000). Under normal flow conditions the dam impounded a 1-mile reach and held approximately 52 acre-feet of water, all of which was contained within the channel.

The implications of small dam removal on channel characteristics, water quality, macroinvertebrates, and fish are not well understood because of the small number of dam removals that have been studied. Comprehensive studies that document the effects of dam removal are just beginning to be published and most past research has focused on larger dams or on the response of a single variable (such as macroinvertebrates). This limited knowledge base underscores the need for additional study to develop understanding of response to removal in order to better predict the outcome.

To address this need the U.S. Geological Survey (USGS) has partnered with the Conodoguinet Creek Watershed Association (CCWA), The Pennsylvania Fish and Boat Commission (PFBC), and The Pennsylvania State University to study the short-term effects of removing Good Hope Mill Dam on channel characteristics, water quality, macroinvertebrates, and fish.

USGS collected data to characterize geomorphologic, water quality, and macroinvertebrate community conditions before, during, and shortly after removal. USGS also sampled bed sediment upstream of the dam prior to removal to address concerns over metals and other potentially harmful constituents sometimes associated with accumulated sediment. The Pennsylvania State University collected fish community data before and after removal. Data presented in this report include bed sediment, water quality, and macroinvertebrate data collected by USGS.

Bed sediments behind the dam were minimal. As a result, isolated depositional features with fine sediment were selected for sampling (Figure 10). Coring tubes were inserted into the bed sediment to the point of refusal and composited at each site. Multiple cores were collected at each site to provide enough sediment to analyze for Metals, PCBs, Semi-Volatile Organic Compounds, and Pesticides. Only Metals, PCBs, and Pesticide data are included in this report due to extended holding times at the lab which likely compromised the quality of results for Semi-Volatile Organic Compounds.

Water-quality constituents including specific conductance (μ S/cm), pH, turbidity (NTU), dissolved oxygen (mg/L), and temperature (°C) were measured at Stations 01570064, 01570076, and 01570078 on a continuous basis (15-minute intervals). In addition to continuous monitoring, discrete samples for nutrients and suspended sediment were collected at Stations 01570064, 01570076, 01570078, and 01570150. Cross-sectional sampling of field parameters was conducted on various occasions.

Benthic macroinvertebrates were sampled at 01570064, 01570076, 01570078, and 01570150. Stations 01570064, 01570078, and 01570150 are at freeflowing natural riffles conducive to kick sampling before and after removal. Because Station 01570076 was impounded prior to dam removal, mid-channel locations were inaccessible by wading and there was insufficient sediment to warrant capture of benthic organisms via bed sediment. Instead habitat such as downed trees and rocks near the dam and periphery of the channel was selectively jab sampled. Following dam removal, Station 01570076 converted to a freeflowing riffle and was kick sampled in the same manner as the other free-flowing sites. Macroinvertebrates were identified to the lowest possible taxa at the USGS biology lab in New Cumberland, Pennsylvania.

For additional information, contact Jeff Chaplin at the U.S. Geological Survey, 215 Limekiln Road, New Cumberland, PA 17070; 717-730-6957 (email: jchaplin@usgs.gov).

Location of Conodoguinet Creek Watershed

Base features from Pennsylvania Department of Transportation 1:24,000-scale digital data

Figure 10.--Locations of sites sampled for the Good Hope Mill Dam project.

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA

LOCATION .-- Lat 40°15'11", long 77°00'15", Cumberland County, Hydrologic unit 02050305, 16 mi upstream of confluence with Susquehanna River.

DRAINAGE AREA.--486 mi².

PERIOD OF RECORD.--October 2001 to current year (discontinued).

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: September 1, 2001 to current year (discontinued). pH: August 30, 2001 to current year (discontinued). WATER TEMPERATURE: August 31, 2001 to current year (discontinued). DISSOLVED OXYGEN: August 31, 2001 to current year (discontinued). TURBIDITY: August 30, 2001 to current year (discontinued).

INSTRUMENTATION .-- Yellow Springs Instruments 6600 multi-parameter sonde (in-situ system).

REMARKS.--Daily specific conductance records rated fair except for periods Aug. 30 to Oct. 15 and Nov. 8, 9, which are poor. Daily pH records rated good. Daily water temperature record rated fair. Daily dissolved oxygen record rated poor. Daily turbidity records rated good except for period Oct. 30 to Nov. 8, which is fair.

All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U.S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than; c - Sample Holding Time Exceeded. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

					DIS-	TUR-		OXYGEN,	PH			NITRO-	NITRO-
		AGENCY	AGENCY		CHARGE ,	BID-		DIS-	WATER	SPE-		GEN,	GEN,AM-
		COL-	ANA-		IN	ITY		SOLVED	WHOLE	CIFIC		AMMONIA	MONIA +
		LECTING	LYZING		CUBIC	FIELD	OXYGEN,	(PER-	FIELD	CON-	TEMPER-	DIS-	ORGANIC
		SAMPLE	SAMPLE	Sample	FEET	WATER	DIS-	CENT	(STAND-	DUCT-	ATURE	SOLVED	DIS.
Date	Time	(CODE	(CODE	type	PER	UNFLTRD	SOLVED	SATUR-	ARD	ANCE	WATER	(MG/L	(MG/L
		NUMBER)	NUMBER)		SECOND	(NTU)	(MG/L)	ATION)	UNITS)	(µS/CM)	(DEG C)	AS N)	AS N)
		(00027)	(00028)		(00060)	(61028)	(00300)	(00301)	(00400)	(00095)	(00010)	(00608)	(00623)
OCT 2001													
25	1430	1028	80020	9	E63	1.9	19.5	203	8.4	570	17.4	<.04	.30
25	1431	1028	80020	5	E63	1.9	19.5	203	8.4	570	17.4	<.04	.28

	NITRO-	NITRO-	NITRO-		ORTHO-	
	GEN,AM-	GEN,	GEN,	PHOS-	PHOS-	
	MONIA +	NO2+NO3	NITRITE	PHORUS	PHATE,	PHOS-
	ORGANIC	DIS-	DIS-	DIS-	DIS-	PHORUS
	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL
Date	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
	AS N)	AS N)	AS N)	AS P)	AS P)	AS P)
	(00625)	(00631)	(00613)	(00666)	(00671)	(00665)
OCT 2001						
25	.27	3.78	.008	.020	<.02	.031
25	.28	3.88	.009	.021	<.02	.034

CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

		TUR-		OXYGEN,	PH			SAMPLE
		BID-		DIS-	WATER	SPE-		LOC-
		ITY		SOLVED	WHOLE	CIFIC		ATION,
		FIELD	OXYGEN,	(PER-	FIELD	CON-	TEMPER-	CROSS
		WATER	DIS-	CENT	(STAND-	DUCT-	ATURE	SECTION
Date	Time	UNFLTRD	SOLVED	SATUR-	ARD	ANCE	WATER	(FT FM
		(NTU)	(MG/L)	ATION)	UNITS)	(µS/CM)	(DEG C)	L BANK)
		(61028)	(00300)	(00301)	(00400)	(00095)	(00010)	(00009)
OCT 2001								
25	1432	5.9	19.9	195	8.1	639	14.3	20
25	1433	2.8	18.1	177	8.0	642	14.4	30
25	1434	2.9	17.3	174	8.1	618	15.7	40
25	1435	1.7	18.3	194	8.4	565	18.1	50
25	1436	1.2	19.2	205	8.4	534	18.6	60
25	1437	.8	20.1	218	8.5	528	19.1	70
25	1438	.0	20.9	226	8.5	522	19.2	80
25	1439	.0	21.8	238	8.6	516	19.5	90

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

REMARKS.--Definition of terms used: <u>Total Number</u> - the total number of aquatic invertebrates collected at a site; <u>Total EPT Taxa</u> - total number of distinct taxa within the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). These orders of insects are generally considered to be pollution sensitive; <u>% Contribution of Dominant Taxa</u> - total number of organisms is an indication of community balance at the lowest taxonomic level possible (usually genus or species). A community that proves dominant dominant taxa would include environmental stress. This metric can include the single most dominant taxa, three most dominant, or five most dominant taxa "dominants in common" (DIC). Other definitions can be found on pages 22-33.

	Sept. 18, 2001	Nov. 20, 2001	Nov. 25, 2002
PLATYHELMINTHES			
TURBELLARIA			
TRICLADIDA			
Planariidae			12
ANNELIDA			
OLIGOCHAETA (aquatic earthworms)			
TUBIFICIDA			
Enchytraeidae			
Tubificidae			
Aulodrilus pleuriseta			2
Spirosperma nikolskvi			
Tubificidae w/o capilliform setae			15
LUMBRICINA			
MOLLUSCA			
GASTROPODA (snails)			
MESOGASTROPODA			
Hydrobiidae			2
Amnicola			
Dleuroceridae			
Coriobasis			
Lontovis carinata			
			2
BASOMMATOPHORA			
Ancylidae (limpets)			
Ferrissia	2		/
Planorbidae			
Gyraulus			I
Planorbella			
Lymnaeidae			
Fossaria			
Physidae			
Physella			
BIVALVIA (clams and mussels)			
VENEROIDA			
Corbiculidae			
Corbicula fluminea	1	1	2
Sphaeriidae (fingernail clams)			1
Pisidium			2
CHELICERATA			
ARACHNIDA			
HYDRACHNIDIA (water mites)			2
ARTHROPODA			
CRUSTACEA			
OSTRACODA			
MALACOSTRACA			
ISOPODA (sow bugs)			
Asellidae			
Lirceus			105
AMPHIPODA (scuds)			
Crangonyctidae			
Crangonyx			
Gammaridae			
Gammarus		5	34
Hyalellidae			
Hyalella azteca			
11 ушени иднеси	1		

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

	Sept. 18, 2001	Nov. 20, 2001	Nov. 25, 2002
INSECTA			
EPHEMEROPTERA (mayflies)			
PISCIFORMA			
Baetidae			
Acentrella	5	1	
Acerpenna	5		
Baetis	14	20	1
Baetis (2-tailed)			
SETISURA			
Heptageniidae	2		1
Heptagenia	1		
Leucrocuta			
Stenacron	1		
Stenonema	6	14	2
Isonychiidae			
Isonychia	7	12	1
FUCATERGALIA			
Leptophlebiidae			
Leptophlebia			
Paraleptophlebia			
Ephemeridae			
Hexagenia			
Potamanthidae			
Anthopotamus	1	8	
Caenidae			
Caenis	1		
Ephemerellidae			
Ephemerella		6	
Serratella		6	
Leptohyphidae			
Tricorythodes			
ODONATA (dragonflies and damselflies)			
ZYGOPTERA			
Coenagrionidae			
Argia	2	3	1
Enallagma			
HEMIPTERA (true bugs)			
Corixidae			
PLECOPTERA (stoneflies)			
EUHOLOGNATHA			
Taeniopterygidae			
Taeniopteryx		4	1
SYSTELLAGNATHA			
Perlidae			
Agnetina		1	
Paragnetina	1		
COLEOPTERA (beetles)			

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

	Sept. 18, 2001	Nov. 20, 2001	Nov. 25, 2002
POLYPHAGA			
Hydrophilidae (water scavenger beetles)			
Berosus			
Psephenidae (water pennies)			
Psephenus	1		
Elmidae (riffle beetles)			
Dubiraphia		1	
Macronychus			
Optioservus	9	17	2
Promoresia			
Stenelmis	19	9	
Scirtidae		1	
MEGALOPTERA (dobsonflies and fishflies)			
Corydalidae			
Corvdalus			
Sialidae			
Sialis			
TRICHOPTERA (caddisflies)			
SPICIPALPIA			
Hydroptilidae			
Hvdroptila			
Leucotrichia			
Glossosomatidae	2		
Glossosoma		1	
ANNULIPALPIA			
Philopotamidae			
Chimarra	22	2	
Hydropsychidae			
Cheumatopsyche	35	41	1
Hydropsyche	51	42	4
Hydropsyche bifida gr.	12	4	
INTEGRIPALPIA			
Leptoceridae			
Oecetis			
Helicopsychidae			
Helicopsyche			1
LEPIDOPTERA (aquatic moths)			
Pyralidae			
Petrophila	6		
DIPTERA (true flies)			
Ceratopogonidae (biting midges)			
Probezzia			
Chironomidae (non-biting midges)			
Tanypodinae	1		
Pentaneurini			
Ablabesmvia			
Ablabesmvia mallochi			
Conchapelopia			1
Pentaneura		1	
Thiennemannimyia gr.			
	1	1	

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

	Sept. 18, 2001	Nov. 20, 2001	Nov. 25, 2002
Procladini			
Procladius			
Tanypodini			
Tanypus			
Orthocladiinae			
Corynoneurini			
Corynoneura			
Orthocladiini			
Cricotopus/Orthocladius			
Cricotopus			
Cricotopus bicinctus		2	
Cricotopus trifascia			1
Cricotopus vierrensis			
Eukiefferiella		1	3
Eukiefferiella brevicalcar gr.			
Nanocladius			
Orthocladius			3
Thiennemaniella		1	
Tvetenia			
Tvetenia bavarica gr.			
Tvetenia vitracies gr.		1	
Chironominae			
Chironomini			
Chironomus			
Cryptochironomus			
Dicrotendipes			1
Microtendipes pedellus gr.			
Paratendipes			
Phaenopsectra			1
Polypedilum	1		
Polypedilum flavum		3	
Polypedilum scalaenum gr.			
Pseudochironomini			
Pseudochironomus			
Tanytarsini			
Cladotanytarsus			
Rheotanytarsus		2	
Tanytarsus	1	1	
Simuliidae (black flies)			
Simulium		1	
		20	
TOTAL TAXA	26	30	29
TOTAL NUMBER	209	212	212
TOTAL EPT TAXA	16	14	8
PERCENT EPT TAXA	61	47	27
HBI	4.49	4.29	7.18
PERCENT DOMINANT TAXA (single)	24	20	49

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		5	SEPTEMBE	R
1										431		
2												
3												
4												
5										439		
6										436		
7												
8										468		
9												
10										487		
11										489		
12										506		
13												
14										483		
15										505		
16										487		
17												
18										489		
19												
20												
21												
22												
22												
23												
25										449		
26										447		
20										490		
27										489		
∠ 8										497		
29												
30												
31												
MONTH										506		

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	OVEMBER	2	I	ECEMBER			JANUARY	
1				551	513	533	527	512	518	597	561	573
2	471			540	513	530	528	505	515	610	596	602
3				540	515	532	525	507	516	597	561	579
4				541	515	532	523	452	498	590	575	582
5	483			545	520	535	527	440	492	586	577	581
6	503			546	515	534	517	495	511	583	575	580
7	506			542	523	536	525	504	515	611	560	572
, 0	517			550	525	550	523	505	516	501	556	572
0	522			530			525	505	510	590	510	564
10	525			530	F11	E 4 0	D14	402	509	209	549	204
10	537			208	511	540	525	483	503			
11	526			558	522	546	519	486	500			
12				560	509	542	514	497	507			
12	506			550	190	521	500	500	506			
14	191			539	409	531	512	100	500			
15	-10-1 - 1-1			535	407	522	513	499 F01	504			
15	511			538	48/	519	517	501	512			
16	521	496	506	535	423	491	511	487	497			
17	528	499	514	523	432	483	516	483	501			
18	542	516	530	532	490	513	493	479	486			
19	525	492	510	550	466	513	492	465	479			
20	523	101	510	520	100	522	195	179	100			
20	771	491	512	220	490	525	495	470	400			
21	522	484	510	542	506	529	503	492	499			
22	526	490	513	548	509	533	510	488	499			
23	529	493	518	542	504	529	505	483	496			
24	528	475	511	537	517	527	497	483	494			
25	533	498	519	519	480	508	505	495	502			
26	544	527	527	507	102	500	507	196	502			
20	544	527	537	507	495	102	507	407	502			
27	557	542	549	502	401	483	515	497	506			
28	559	534	552	518	498	509	520	506	515			
29	561	532	550	516	504	513	549	521	531			
30	553	510	536	521	512	517	576	538	555			
31	550	527	538				581	531	558			
MONTH	561	475	525	568	423	522	581	440	507	611	549	578

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN
		JUNE			JULY			AUGUST		:	SEPTEMB	ER
1										8.7	7.6	8.0
2										8.7	7.7	8.0
3										8.7	7.8	8.1
4										8.7	7.7	8.1
5										8.7	7.7	8.0
б										8.8	7.7	8.0
7										8.8	7.7	8.0
8										8.8	7.7	8.0
9										8.8	7.7	8.0
10										8.6	7.7	8.0
11										8.7	7.8	8.0
12										8.7	7.8	8.0
13										8.7	7.8	8.0
14										8.7	7.8	8.0
15										8.7	7.9	8.1
1.0										0 7		0 1
10										8.7	7.9	8.1
17										8.7	7.9	8.0
18										8.7	7.8	8.0
19										8.6	7.8	8.1
20										8.2	7.7	7.8
21										8.6	7.8	7.9
22										8.6	7.8	7.9
23										8.6	7.7	8.0
24										8.2	7.7	7.9
25										8.3	7.7	7.9
26										8 7	78	8 1
20										0.7	7.0	0.1
27										0.5	7.9	0.1
28										8.0	8.0	8.2
29										8.5	8.U	8.1
30										8.6	7.9	8.1
31							8.6	7.7	8.0			
MAX										8.8	8.0	8.2
MIN										8.2	7.6	7.8

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN
		OCTOBE	R	N	OVEMBE	R		DECEMBE	R		JANUAR	Y
1 2 3 4 5	8.6 8.6 8.6 8.6 8.6	7.9 7.9 7.8 7.8 7.8	8.0 8.0 8.0 8.0 8.0 8.0	8.6 8.5 8.5 8.4 8.4	8.1 8.0 7.8 7.9 7.9	8.2 8.2 8.0 8.0 8.1	8.3 8.4 8.3 8.4 8.4	7.8 7.9 8.0 8.0 8.0	8.1 8.2 8.2 8.2 8.2 8.2	8.0 7.9 7.9 7.9 7.9	7.9 7.8 7.8 7.8 7.8 7.8	7.9 7.9 7.9 7.9 7.9
6 7 8 9 10	8.6 8.6 8.5 8.5 8.5	7.8 7.9 8.0 8.0 8.0	8.0 8.1 8.1 8.1 8.1 8.1	8.5 8.5 8.4 8.4 8.4	8.0 8.0 7.9 7.9 8.0	8.2 8.2 8.1 8.1 8.1	8.3 8.3 8.1 8.3 8.3	7.9 7.8 7.9 7.9 8.0	8.1 8.1 8.0 8.2 8.2	7.9 7.8 7.9 7.9	7.8 7.8 7.8 7.8	7.8 7.8 7.8 7.8
11 12 13 14 15	8.5 8.5 8.3 8.5	7.9 7.9 7.9 7.8 7.8	8.0 8.0 7.9 7.9 8.0	8.4 8.4 8.4 8.4 8.4	8.0 8.0 8.1 8.0	8.2 8.2 8.2 8.2 8.2	8.3 8.3 8.2 8.0 8.3	8.0 8.0 7.9 7.9 7.9	8.2 8.2 8.1 7.9 8.2	 	 	
16 17 18 19 20	 8.4 8.4 8.5 8.5	7.9 8.0 8.0 8.0	8.1 8.1 8.1 8.1 8.1	8.4 8.4 8.4 8.5 8.4	8.0 7.9 8.0 8.0 8.0	8.1 8.1 8.2 8.2	8.3 8.2 8.3 8.3 8.2	7.9 8.0 7.9 7.9 7.9	8.2 8.1 8.2 8.2 8.1	 	 	
21 22 23 24 25	8.5 8.5 8.5 8.5 8.5	8.0 7.9 7.9 7.9 7.8	8.0 8.0 8.0 8.0 8.0 8.0	8.4 8.4 8.5 8.3 8.1	8.0 8.1 8.1 8.0 7.8	8.2 8.2 8.1 7.9	8.2 8.2 8.2 8.2 8.1	7.9 7.9 7.9 7.9 7.9	8.1 8.1 8.1 8.1 8.1	 	 	
26 27 28 29 30 31	8.5 8.5 8.5 8.5 8.6 8.5	7.9 8.0 8.1 8.1 8.1 8.1	8.1 8.2 8.2 8.2 8.2 8.2 8.2	8.3 8.2 8.2 8.0 8.0	7.8 7.9 7.8 7.8 7.8	8.0 8.0 7.9 7.9	8.1 8.1 8.0 8.0 8.0	7.9 8.0 7.9 7.9 7.8 7.8	8.1 8.0 8.0 7.9 7.9	 	 	
MAX MIN	8.6 8.3	8.1 7.8	8.2 7.9	8.6 8.0	8.1 7.8	8.2 7.9	8.4 8.0	8.0 7.8	8.2 7.9	8.0 7.8	7.9 7.8	7.9 7.8

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1										29.0	23.5	25.5
2										27.0	20.5	23.0
3										25.5	19.5	22.5
4										27.0	22.0	24.0
5										27.5	21.0	23.5
6										27.0	19.0	22.5
7										27.5	19.5	23.0
8										28.0	21.5	24.0
9										27.0	22.0	24.5
10										26.0	22.5	24.5
11										26.5	20.0	23.0
12										26.5	19.5	22.5
13										27.0	19.5	22.5
14										23.0	18.5	21.0
15										22.0	16.0	18.5
16										22.5	15.5	18.5
17										23.5	16.0	19.0
18										23.0	17.5	20.0
19										22.5	18.0	20.0
20										20.0	19.5	20.0
21										24.0	19.0	21.0
22										24 5	19 5	21 5
23										25 0	19 0	21 5
24										21 0	20.0	20 5
25										20.0	16.5	19.0
26										19.5	14.5	16.5
27										17 5	15 0	16 0
28										17 0	13.0	15 0
29										19.0	14.0	16.0
30										17 5	13 5	15 5
31							28.5	23.0	25.5			
MONTH										29.0	13.0	20.8

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	2		NOVEMBER	2		DECEMBER	1		JANUARY	
1 2 3 4 5	19.5 21.0 22.0 22.5 22.0	13.5 14.5 16.0 16.5 16.5	16.0 17.0 18.5 19.5 19.0	13.0 15.0 17.0 15.5 13.0	8.5 10.5 12.5 10.5 8.0	10.5 13.0 14.5 12.5 10.5	14.5 11.0 10.0 10.0 12.0	10.5 8.0 6.0 6.0 8.5	12.0 9.5 7.5 8.0 10.0	0.5 0.5 0.5 0.5 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
6 7 8 9 10	19.5 16.0 15.5 15.0 16.0	15.0 12.0 10.0 8.5 9.5	18.0 14.0 12.0 11.5 12.5	11.5 12.5 14.0 13.0 11.5	6.5 7.5 8.5 8.0 6.5	8.5 9.5 10.5 10.0 9.0	11.0 12.0 9.0 8.5 7.0	9.0 9.0 7.0 5.5 4.0	10.0 10.5 7.5 7.0 5.5	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
11 12 13 14 15	18.5 17.5 21.0 18.5 19.5	11.5 13.5 15.0 17.5 15.0	14.5 15.5 18.0 18.0 17.0	11.5 10.0 9.5 9.5 11.0	6.5 5.0 4.5 4.5 6.5	8.5 7.0 6.5 8.5	8.5 6.5 7.5 9.0 8.5	5.5 4.5 6.5 7.5 5.5	6.5 5.5 7.0 8.0 7.0	 	 	
16 17 18 19 20	15.5 14.0 14.5 14.5 17.0	13.0 10.5 9.0 9.0 11.0	14.5 12.5 11.5 11.5 13.0	12.5 12.5 9.5 10.0 8.5	7.0 8.0 7.0 6.5 5.5	9.5 10.0 8.0 8.0 7.5	6.0 6.5 8.0 8.0 6.0	4.5 5.5 6.0 5.0 3.0	5.0 6.0 7.0 6.0 4.5	 	 	
21 22 23 24 25	17.5 18.0 17.5 20.5 19.5	11.0 12.5 13.5 15.0 14.0	14.0 15.0 15.5 17.5 17.0	8.0 7.5 8.5 8.5 11.0	4.0 3.5 3.5 5.5 8.5	5.5 5.0 5.5 7.0 10.0	4.5 4.5 4.0 4.5 3.5	2.5 1.5 1.5 2.0 0.5	3.0 3.0 3.0 3.0 1.5	 	 	
26 27 28 29 30 31	14.0 10.5 12.0 12.0 13.5 11.5	9.0 8.5 6.5 6.0 8.5 9.0	11.5 9.0 8.5 8.5 10.5 10.0	13.0 10.0 11.0 11.5 13.0	9.5 9.0 10.0 10.5 11.5	11.0 9.5 10.5 11.0 12.5	3.0 0.5 0.5 1.0 0.5 0.5	0.0 0.0 0.0 0.0 0.0 0.0	1.0 0.0 0.0 0.0 0.0 0.0 0.0	 	 	
MONTH	22.5	6.0	14.2	17.0	3.5	9.2	14.5	0.0	5.3	0.5	0.0	0.0

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1										14.8	4.2	8.6
2										16.0	5.4	9.5
3										16.0	5.9	10.0
4										15.7	5.4	9.5
5										15.8	5.2	9.3
6										15.5	5.8	9.5
7										15.9	5.7	9.6
8										15.6	5.2	9.3
9										15.3	5.1	9.0
10										13.2	4.6	8.2
11										15.5	5.6	9.4
12										15 9	6 0	9 7
13										16 0	5 8	9.8
14										15 7	5.8	9.7
15										16.8	7.6	11.1
16										16 3	78	11 0
17										16 3	7 4	10.8
18										16 6	7 1	10.8
19										15 9	6 8	10.7
20										9.6	6.1	7.5
21										15 3	62	95
22										15 4	5.6	9.4
23										15 5	5 4	9 1
24										95	4 9	6 5
25										10.1	5.2	7.0
26										13 2	6 6	9 0
27										13 9	6 5	9.3
28										14 7	6.8	10 3
29										15 2	8 0	10.5
30										15 4	7 9	10.7
31							15.2	5.1	8.6			
MONTH										16.8	4 2	95

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	:		NOVEMBER	2	:	DECEMBER	2		JANUARY	
1	15.3	8.0	10.7	16.0	10.3	12.4	13.8	9.7	11.4			
2	15.0	7.4	10.3	15.0	9.0	11.4	14.2	10.8	12.5			
3	14.8	6.8	9.8	14.8	8.1	10.0	17.9	14 2	14.5			
5	14.6	6.4	9.4	15.0	9.4	11.8	16.6	13.1	14.6			
6	14 0	6 0	0 1	15 4	10.0	10 7	15 5	10.0	10 0			
6	14.0	6.0	9.1	15.4	10.9	12.7	15./	12.3	13.6			
/	14.8	7.6	10.5	13.2	10.9	11 0	14.0	10.0	13.3			
8	15.3	9.2	11 0	13.0	8.8	10.0	14.2	11 0	13.0			
10	15.4	9.8	11.0	13.6	0.0 9.6	11.3	14.1	10.7	12.0			
11	14 0	0 0	10 0	12.0	0 6	11 5	14.4	10.0	12 4			
10	14.9	8.2	10.9	14.0	9.6	11.5	14.4	12.3	13.4			
12	14.2	7.8	10.1	14.2	11.0	12.2	14.2	12.1	13.3			
14	14.0	6.8	9.6	14.0	11.2	12.5	12.1 12.2	12.3	13.1			
15	14.0	6.7	9.4	14.0	10.6	11.9	14.4	12.0	13.1			
16				14.2	10.1	11.7	13.9	11.9	13.0			
17	13.5	8.2	10.5	14.2	9.4	11.5	13.6	12.1	12.8			
18	14.5	9.9	11.5	13.9	9.7	11.6	14.1	12.2	13.0			
19	14.9	9.9	11.7	14.7	10.7	12.2	14.2	12.0	13.0			
20	14.8	9.3	11.3	14.0	9.9	12.0	13.1	11.9	12.4			
21	14.9	8.8	10.9	14.8	11.2	12.9	13.7	11.6	12.6			
22	14.6	8.2	10.4	14.9	11.9	13.3	14.0	11.6	12.9			
23	14.5	7.8	10.1	15.1	12.1	13.4						
24	14.0	7.0	9.6	13.6	11.0	12.3						
25	13.6	6.3	9.0	11.3	9.4	10.4						
26	14 0	76	10 4	13 4	9 1	11 0						
27	14 4	9 9	11 7	12.9	9 9	11 2						
28	15 3	10.9	12 5	13 4	10 2	11 5						
29	15.5	11.2	12.9	11.7	10.1	10.6						
30	15.7	10.7	12.5	11.5	9.8	10.4						
31	15.3	10.4	12.2									
MONTH	15.7	6.0	10.6	16.0	8.1	11.7	17.9	9.7	13.2			
			=:	= 5 . 0		==• /	= / • >	- • •	==••			

01570064 -- Conodoguinet Cr US of Lambs Gap Rd Brg nr Hogestown, PA--Continued

TURBIDITY, FIELD, WATER, UNFILTERED, NEPHELOMETRIC TURBIDITY UNITS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		1	SEPTEMBE	IR
1										7.9	1.7	3.8
2										4.7	1.5	2.3
3										6.8	1.5	2.3
4										4.6	1.5	2.0
5										3.7	1.5	2.0
6										4.1	1.2	2.0
7										3.6	1.2	1.7
8										2.9	1.2	1.6
9										3.4	1.1	1.6
10										2.5	1.2	1.5
11										4.0	1.2	1.6
12										2.8	1.1	1.6
13										3.3	1.0	1.6
14										2.3	1.2	1.6
15										2.0	1.0	1.5
16										4.3	1.0	1.4
17										2.4	0.9	1.4
18										2.3	0.9	1.4
19										3.1	0.9	1.3
20										3.0	1.1	1.5
21										3.6	1.0	1.8
22										6.7	0.9	1.5
23										4 4	0 9	1 4
24										10 4	0.9	2 7
25										21.9	5.4	11.5
26										7.4	2.3	3.7
27										3 3	13	2 0
28										3.2	1.0	1.7
29										2 5	1 0	1 4
30										3.2	0.9	1 3
31							12 2	1 6	3 0	5.2	0.2	1.5
7							12.2	1.0	5.0			
MONTH										21.9	0.9	2.2

TURBIDITY, FIELD, WATER, UNFILTERED, NEPHELOMETRIC TURBIDITY UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	OVEMBER		1	DECEMBER			JANUARY	
1 2 3 4 5	2.3 5.0 5.3 4.1 6.8	0.8 0.7 0.7 0.7 0.7	1.2 1.1 1.3 1.1 1.3	2.2 2.9 2.1 12.7 2.5	0.7 0.5 0.6 0.6 0.8	1.0 1.0 1.4 1.5	9.6 12.0 6.7 3.4 3.0	1.2 1.1 0.9 0.9 0.9	2.8 2.1 1.8 1.4 1.1	36.9 7.7 2.8 8.4 2.8	1.2 1.5 1.3 1.3 1.2	2.6 2.5 1.8 2.0 1.6
6 7 8 9 10	2.1 2.8 3.6 3.6 6.3	0.9 0.9 0.7 0.7 0.7	1.2 1.2 1.1 1.2 1.3	2.8 5.7 	0.7 0.6 	1.7 1.5 	5.3 13.9 4.4 3.1 3.6	0.9 0.9 0.9 1.2 1.3	1.5 1.5 1.3 1.9 1.7	5.1 4.1 8.2 5.9	1.2 1.2 1.5 1.4	1.9 2.0 3.2 2.2
11 12 13 14 15	2.1 2.4 2.6 2.3 5.3	0.6 0.7 0.8 0.9 0.8	1.1 1.2 1.2 1.2 1.5	 	 	 	2.9 4.7 2.0 5.4 13.1	1.2 1.1 1.0 1.2 1.5	1.5 1.6 1.3 1.9 2.9	 	 	
16 17 18 19 20	 7.8 5.4 5.8 4.0	1.0 0.9 0.8 0.7	2.1 1.9 1.3 1.2	1.7 7.0 6.2 4.5	 0.7 0.8 0.8 0.7	1.0 1.3 1.2 1.0	4.0 8.3 4.2 11.5 6.0	1.5 1.4 1.7 1.6 1.6	2.1 1.9 2.1 2.3 2.3	 	 	
21 22 23 24 25	2.2 5.8 3.2 25.5 10.0	0.7 0.6 0.7 0.7 0.9	1.2 1.2 1.3 1.8 2.1	3.6 9.6 4.3 3.4 17.9	0.8 0.8 0.8 0.7 1.0	1.2 1.1 1.1 1.1 3.5	5.7 2.9 3.7 2.5 2.9	1.6 1.4 1.2 1.2 1.2	2.1 1.7 1.6 1.5 1.5	 	 	
26 27 28 29 30 31	9.1 16.1 15.3 5.6 2.6 2.3	0.9 1.2 0.9 0.9 0.7 0.8	2.1 3.9 2.2 1.6 1.1 1.1	11.5 7.4 19.2 11.0 15.5	2.3 2.0 1.5 1.1 1.1	4.5 3.1 2.9 2.1 2.8	2.5 3.6 10.8 10.3 28.3 7.1	1.2 1.2 1.0 1.1 1.0 1.2	1.5 1.7 2.6 2.9 3.8 2.0	 	 	
MONTH	25.5	0.6	1.5	19.2	0.5	1.8	28.3	0.9	1.9	36.9	1.2	2.2

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA

LOCATION .-- Lat 40°15'46", long 76°58'46", Cumberland County, Hydrologic unit 02050305, 13.6 mi upstream of confluence with Susquehanna River.

DRAINAGE AREA.--488 mi².

PERIOD OF RECORD.--October 2001 to current year (discontinued).

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: September 7, 2001 to current year (discontinued). pH: September 7, 2001 to current year (discontinued). WATER TEMPERATURE: September 7, 2001 to current year (discontinued). DISSOLVED OXYGEN: September 7, 2001 to current year (discontinued). TURBIDITY: September 20, 2001 to current year (discontinued).

INSTRUMENTATION .-- Yellow Springs Instruments 6600 multi-parameter sonde (in-situ system).

REMARKS.-Daily specific conductance records rated good except for periods Nov. 16-21 and Dec. 3-8, which are poor. Daily pH records rated good. Daily water temperature record rated good except for periods Nov. 16-21 and Dec. 3-8, which are poor. Daily dissolved oxygen record rated fair. Daily turbidity records rated good.

All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U.S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than; c - Sample Holding Time Exceeded. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	Sample type	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 2001													
⊥ 25	1330	1028	80020	9	E63	83	11 2	117	78	563	17 5	< 04	31
NOV				-									
02	0800	1028	80020	9	E70	5.8	12.0	111	8.2	553	11.7	<.04	.27
02	1230	1028	80020	9	E160	7.6	9.9	93	8.0	557	12.5	E.04	.28
05	1100	1028	80020	9	E71	3.9	11.8	93	8.0	557	12.5	<.04	.28

	NITRO-	NITRO-	NITRO-		ORTHO-		
	GEN, AM-	GEN,	GEN,	PHOS-	PHOS-		
	MONIA +	NO2+NO3	NITRITE	PHORUS	PHATE,	PHOS-	SEDI-
	ORGANIC	DIS-	DIS-	DIS-	DIS-	PHORUS	MENT,
	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	SUS-
Date	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	PENDED
	AS N)	AS N)	AS N)	AS P)	AS P)	AS P)	(MG/L)
	(00625)	(00631)	(00613)	(00666)	(00671)	(00665)	(80154)
OCT							
25	.35	3.62	.013	.018	<.02	.117	
NOV							
02	.38	3.67	E.006	.016	<.02	.022	4.1
02	.43	3.75	.009	.018	<.02	.035	10
05	.31	3.71	.008	.016	<.02	.022	1.9

EFFECTS OF REMOVING GOOD HOPE MILL DAM PROJECT--Continued

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
OCT 2001 19 25 25 25 25 25 25 25 25 25	1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1331 1332 1333 1334 1335 1336 1337 1338	$\begin{array}{c} 16\\ 12\\ 10\\ 8.1\\ 6.2\\ 4.5\\ 5.3\\ 4.1\\ 4.5\\ 6.0\\ 7.9\\ 5.6\\ 6.3\\ 4.0\\ 5.7\\ 4.7\\ 5.6\\ 6.3\\ 4.0\\ 5.7\\ 4.6\\ 10\\ 8.9\\ 6.7\\ 7.6\\ 6.7\\ 9.6 \end{array}$	$\begin{array}{c} 10.4\\ 10.6\\ 10.5\\ 10.1\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2$	96 97 96 92 89 84 86 84 84 84 83 83 83 82 82 82 82 82 82 82 82 82 82 82 82 82	7.9 7.9 8.0 8.0 7.9 7.8 8.00 8.00 7.9 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	5665 5665 5666 5666 5666 55668 55668 55668 5555 5555 5555 5555 5555 5555 5555 5555	$\begin{array}{c} 11.2\\ 11.2\\ 11.3\\ 11.2\\ 11.0\\ 11.0\\ 11.0\\ 11.0\\ 11.0\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.9\\ 10.8\\ 10.8\\ 10.7\\ 10.7\\ 10.7\\ 10.7\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.7\\ 10.8\\ 10.7\\ 10.8\\ 10.7\\ 10.8\\ 10.7\\ 10.8\\ 10.7\\ 10.8\\ 10.7\\ 10.8\\ 10.7\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\ 10.8\\ 10.8\\ 10.7\\ 10.8\\$	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 200 210 220 230 238 50 75 100 125 150 175 200 225
NOV 02 05	0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1101 1102 1103 1104 1105 1106 1107 1108	5.7 6.0 6.6 5.1 4.9 6.0 5.0 6.3 6.3 6.3 7.2 5.0 7.2 5.0 5.5 5.0 12 11 7.3 13 2.5 1.5 1.5 1.5 1.2 2.6 3.2 5.7 5.2	$13.1 \\ 13.4 \\ 12.7 \\ 12.3 \\ 11.9 \\ 11.5 \\ 11.1 \\ 11.1 \\ 11.1 \\ 12.0 \\ 10.0 \\ 10.2 \\ 10.2 \\ 10.2 \\ 10.2 \\ 10.2 \\ 10.2 \\ 10.2 \\ 10.1 \\ 10.0 \\ 9.8 \\ 9.7 \\ 9.5 \\ 9.0 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.8 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.9 \\ 11.8 \\ 11.9$	120 124 117 114 110 106 102 102 102 102 102 102 96 96 96 95 94 92 91 88 85 106 107 107 106 106 107 112	8.2 8.3 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1	$\begin{array}{c} 541\\ 533\\ 544\\ 547\\ 547\\ 555\\ 569\\ 555\\ 545\\ 547\\ 547\\ 555\\ 556\\ 545\\ 545\\ 545\\ 556\\ 558\\ 556\\ 558\\ 556\\ 558\\ 556\\ 558\\ 556\\ 558\\ 556\\ 558\\ 556\\ 558\\ 556\\ 558\\ 556\\ 558\\ 556\\ 558\\ 558$	$\begin{array}{c} 11.7\\ 11.8\\ 11.8\\ 11.7\\ 11.7\\ 11.6\\ 11.6\\ 11.6\\ 11.6\\ 12.3\\ 11.4\\ 11.7\\ 12.0\\ 12.3\\$	25 50 75 100 125 150 200 225 250 50 70 90 110 130 150 170 190 210 230 20 40 60 80 100 120 140 160 180

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

REMARKS.--Definition of terms used: <u>Total Number</u> - the total number of aquatic invertebrates collected at a site; <u>Total EPT Taxa</u> - total number of distinct taxa within the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). These orders of insects are generally considered to be pollution sensitive; <u>% Contribution of Dominant Taxa</u> - total number of organisms is an indication of community balance at the lowest taxonomic level possible (usually genus or species). A community that proves dominant dominant taxa would include environmental stress. This metric can include the single most dominant taxa, three most dominant, or five most dominant taxa "dominants in common" (DIC). Other definitions can be found on pages 22-33.

	Sept. 19, 2001	Nov. 19, 2001	Nov. 25, 2002
PLATYHELMINTHES			
TURBELLARIA			
TRICLADIDA			
Planariidae			3
ANNELIDA			
OLIGOCHAETA (aquatic earthworms)			
TUBIFICIDA			
Enchytraeidae		2	
Tubificidae			
Aulodrilus pleuriseta			7
Spirosperma nikolskyi		2	
Tubificidae w/o capilliform setae			10
LUMBRICINA			
MOLLUSCA			
GASTROPODA (snails)			
MESOGASTROPODA			
Hydrobiidae			
Amnicola			2
Pleuroceridae			
Conjobasis			
Loptoris agrinata			
		1	
An and the (line ats)			
Ancylidae (limpets)			
<i>Ferrissia</i>		1	8
Planorbidae			
Gyraulus		1	
Planorbella			I
Lymnaeidae			
Fossaria			2
Physidae			
Physella			
BIVALVIA (clams and mussels)			
VENEROIDA			
Corbiculidae			
Corbicula fluminea		6	14
Sphaeriidae (fingernail clams)			
Pisidium		1	1
CHELICERATA			
ARACHNIDA			
HYDRACHNIDIA (water mites)			3
ARTHROPODA			
CRUSTACEA			
OSTRACODA			1
MALACOSTRACA			
ISOPODA (sow bugs)			
Asellidae			
Lirceus			
AMPHIPODA (scuds)			
Crangonyctidae			
Crangonyr	2		
Gammaridae	2		
Cammanua			50
Uvalallidaa	34	7	50
Hyalella azteca	0		

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

Sept. 19, 2001	Nov. 19, 2001	Nov. 25, 2002
1		
1		
		1
		9
	2	
		3
1	146	36
		1
1		1
7		
1		
	Sept. 19, 2001 1 1 <td>Sept. 19, 2001 Nov. 19, 2001 1 </td>	Sept. 19, 2001 Nov. 19, 2001 1

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

	Sept. 19, 2001	Nov. 19, 2001	Nov. 25, 2002
POLYPHAGA			
Hydrophilidae (water scavenger beetles)			
Berosus	1		1
Psephenidae (water pennies)			
Psephenus			
Elmidae (riffle beetles)			
Dubiraphia	5	30	27
Macronychus	2	1	
Optioservus		2	2
Promoresia	4		2
Stenelmis	1	1	8
Scirtidae			
MEGALOPTERA (dobsonflies and fishflies)			
Corydalidae			
Corydalus		1	
Sialidae			
Sialis			
TRICHOPTERA (caddisflies)			
SPICIPALPIA			
Hydroptilidae			
Hydroptila			
Leucotrichia			
Glossosomatidae			
Glossosoma			
ANNULIPALPIA			
Philopotamidae			
Chimarra			
Hydropsychidae			
Cheumatopsyche			5
Hydropsyche	3		14
Hydropsyche bifida gr.			1
INTEGRIPALPIA			
Leptoceridae			
Oecetis			2
Helicopsychidae			
Helicopsyche			1
LEPIDOPTERA (aquatic moths)			
Pyralidae			
Petrophila			3
DIPTERA (true flies)			
Ceratopogonidae (biting midges)	1		
Probezzia			
Chironomidae (non-biting midges)			
Tanypodinae			
Pentaneurini			
Ablabesmyia	1		
Ablabesmyia mallochi	7		
Conchapelopia			
Pentaneura			
Thiennemannimyia gr.			

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

	Sept. 19, 2001	Nov. 19, 2001	Nov. 25, 2002
Procladini			
Procladius	4	1	
Tanypodini			
Tanypus	1		
Orthocladiinae			
Corynoneurini			
Corynoneura	2		
Orthocladiini			
Cricotopus/Orthocladius	1		1
Cricotopus			
Cricotopus bicinctus	2		
Cricotopus trifascia			
Cricotopus vierrensis			
Eukiefferiella			
Eukiefferiella brevicalcar gr.			
Nanocladius	1		
Orthocladius			6
Thiennemaniella			
Tvetenia			
Tvetenia bavarica gr.			
Tvetenia vitracies gr.			
Chironominae			
Chironomini			
Chironomus	1	1	
Cryptochironomus			
Dicrotendipes	9	5	1
Microtendipes pedellus gr.			1
Paratendipes			1
Phaenopsectra			
Polypedilum	9		
Polypedilum flavum			
Polypedilum scalaenum gr.			2
Pseudochironomini			
Pseudochironomus			
Tanytarsini			
Cladotanytarsus		6	2
Rheotanytarsus	1		
Tanytarsus	22	2	
Simuliidae (black flies)			
Simulium			
TOTAL TAXA	29	20	36
TOTAL NUMBER	132	221	241
TOTAL EPT TAXA	4	2	10
PERCENT EPT TAXA	14	10	28
HBI	6.37	6.10	5.82
PERCENT DOMINANT TAXA (single)	26	66	24

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		5	SEPTEMBE	R
1												
2												
3												
4												
5												
6												
7										502	457	479
8										507	454	482
9										521	464	492
10										529	468	502
11										525	475	501
12										522	470	496
13										537	475	508
14										524	485	508
15										525	480	505
16										519	481	499
17										532	485	509
18										526	482	505
19										522	465	497
20										516	466	490
0.1										F 0 0	100	407
21										509	486	497
22										520	4/6	503
23										513	457	487
24										510	440	4/9
25										475	387	439
26										477	391	443
27										484	394	446
28										508	480	497
29										507	487	498
30										513	480	501
31												
MONTH										537	387	490

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	OVEMBER	:	I	DECEMBER			JANUARY	
1 2 3 4 5	519 517 516 507 508	486 481 480 465 467	504 502 496 488 490	606 610 612 615 617	561 573 562 559 570	583 591 595 594 596	589 591 585 597 582	543 540 540 513 471	565 571 563 560 532	600 622 625 621	566 596 588 583	586 610 605 603
6 7 8 9 10	522 528 534 537 544	468 482 483 500 503	498 505 508 520 524	622 609 608 	573 568 531 	598 590 575 	549 563 584 577 577	506 507 528 539 546	527 539 556 559 561	607 	573 	592
11 12 13 14 15	540 534 537 543 543	508 510 506 506 514	524 522 522 527 535	 	 	 	553 558 555 561 563	525 524 529 514 541	542 544 544 543 553	 	 	
16 17 18 19 20	554 565 573 567 569	526 523 525 542 540	540 544 554 560 554	 530 545 575 555	 438 480 474 511	485 515 529 531	565 549 541 546 542	527 525 525 526 530	547 540 532 536 536	 	 	
21 22 23 24 25	570 566 574 572 569	546 540 545 552 547	558 555 561 561 557	595 604 589 585 567	542 530 502 546 460	569 571 556 567 533	555 560 554 560 565	528 531 527 529 533	542 549 543 543 551	 	 	
26 27 28 29 30 31	574 593 611 609 606 590	544 553 574 571 572 552	559 572 590 588 589 569	559 551 544 555 571 	533 506 515 541 532	548 530 534 547 550	573 571 566 572 596 614	537 544 529 534 555 565	554 558 549 553 570 580	 	 	

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN
		JUNE			JULY			AUGUST		5	EPTEMB	ER
1												
2												
3												
4												
5												
б												
7										8.6	7.7	8.2
8										8.6	7.7	8.2
9										8.5	7.6	8.1
10										8.4	7.6	8.0
11										8.4	7.7	8.0
12										8.5	7.7	8.1
13										8.6	7.7	8.2
14										8.5	7.7	8.1
15										8.6	7.9	8.2
16										8.5	7.9	8.3
17										8.5	7.8	8.2
18										8.5	7.8	8.2
19										8.6	7.8	8.3
20										8.5	7.6	7.8
21										8.3	7.6	7.8
22										8.3	7.7	8.1
23										8.4	7.7	8.1
24										8.4	7.6	7.8
25										8.0	7.6	7.7
26										8.4	7.8	7.9
27										8.4	7.8	8.0
28										8 4	7 9	8 1
29										8.4	7.9	8.1
30										8 4	7 9	8 1
31												
мах										8 6	79	83
MIN										8.0	7.6	7.7

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN
		OCTOBE	R	1	IOVEMBE	R	1	DECEMBE	R		JANUAR	Y
1 2 3 4 5	8.5 8.4 8.4 8.4 8.4	7.9 7.9 7.8 7.8 7.8	8.2 8.1 8.1 8.0 8.0	8.4 8.4 8.5 8.6 8.6	8.0 7.8 7.9 7.9	8.1 8.1 8.0 8.1 8.2	8.3 8.5 8.5 8.6 8.5	7.7 7.9 8.0 8.0 7.9	7.9 8.1 8.2 8.2 8.0	8.2 8.2 8.2 8.2 8.2 8.2	8.0 8.0 8.0 8.0 8.0	8.0 8.0 8.0 8.0 8.0
6 7 8 9 10	8.4 8.4 8.5 8.5 8.5	7.8 7.9 8.0 8.0 8.0	7.9 8.1 8.2 8.2 8.1	8.6 8.6 8.5 	8.0 8.0 7.9 	8.2 8.2 8.1	8.3 8.5 8.4 8.4 8.4	7.8 7.8 7.8 7.8 7.9	7.9 8.0 8.0 8.0 8.1	8.2 	8.0	8.0
11 12 13 14 15	8.5 8.4 8.4 8.4 8.2	7.9 7.9 7.9 7.8 7.8	8.1 8.1 8.1 7.9 7.9	 	 	 	8.4 8.4 8.3 7.9 8.3	7.9 7.9 7.8 7.7 7.7	8.0 8.0 7.9 7.8 8.1	 	 	
16 17 18 19 20	8.3 8.4 8.5 8.4 8.5	7.9 7.9 8.1 8.1 8.0	8.0 8.1 8.2 8.2 8.2 8.2	 	 	 	8.4 8.3 8.3 8.3 8.5	8.0 7.9 7.9 8.0 8.0	8.1 8.1 8.0 8.1 8.3	 	 	
21 22 23 24 25	8.4 8.4 8.3 8.3	8.0 8.0 7.9 7.9 7.9	8.2 8.2 8.0 8.1 8.0	8.5 8.4 8.2 7.8	8.1 8.0 7.7 7.5	8.2 8.2 7.9 7.7	8.4 8.4 8.3 8.3 8.3	8.0 8.0 8.0 7.9 8.0	8.3 8.1 8.0 8.0 8.1	 	 	
26 27 28 29 30 31	8.4 8.5 8.6 8.5 8.5 8.5	8.0 8.1 8.2 8.0 8.0	8.1 8.2 8.2 8.3 8.2 8.2 8.2	8.0 8.2 8.2 8.0 8.0	7.5 7.7 7.8 7.8 7.7	7.7 7.8 7.8 7.8 7.8 7.8	8.3 8.4 8.3 8.3 8.3 8.3 8.2	8.0 7.9 8.0 8.0 8.0 8.0 8.0	8.1 8.0 8.1 8.1 8.1 8.1 8.1	 	 	
MAX MIN	8.6 8.2	8.2 7.8	8.3 7.9	8.6 7.8	8.1 7.5	8.2 7.7	8.6 7.9	8.0 7.7	8.3 7.8	8.2 8.2	8.0 8.0	8.0 8.0

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1												
2												
3												
4												
5												
6												
7										24.0	20.5	22.5
8										25.0	22.0	23.5
9										25.0	22.0	24.0
10										25.0	23.0	24.0
11										23.5	21.0	22.0
12										23.0	20.5	22.0
13										23.5	20.5	22.0
14										23.5	20.0	21.0
15										20.0	17.5	18.5
16										19.5	17.0	18.0
17										20.0	17.0	18.5
18										20.5	18.0	19.5
19										21.0	19.0	20.0
20										20.5	19.0	19.5
21										21.0	19.0	20.0
22										21 5	20 0	21 0
23										21 5	20 0	21 0
24										21 5	20.0	20 5
25										20.0	17.5	18.5
26										17.5	15.0	16.0
27										17 0	15 5	16 0
2.8										16 0	14 0	15 0
29										16.0	14.5	15.0
30										16 0	14 5	15 0
31												
51												
MONTH										25.0	14.0	19.7

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	2		NOVEMBER	2		DECEMBER	1		JANUARY	<u>r</u>
1 2 3 4 5	16.5 18.0 19.0 19.5 19.5	14.5 15.5 17.0 18.0 18.0	15.5 16.5 18.0 19.0 18.5	11.5 15.0 16.5 14.5 12.0	10.0 11.5 12.0 10.0 8.0	10.5 13.0 14.0 12.0 10.0	14.0 11.0 9.5 10.5 12.5	10.0 8.0 6.5 6.5 9.0	12.0 10.0 8.0 8.5 10.5	0.5 1.0 3.0 3.0 2.5	0.0 0.0 0.0 0.0 1.0	0.0 0.5 1.0 1.0 1.5
6 7 8 9 10	19.5 17.0 13.5 12.5 13.5	17.0 13.5 11.5 10.5 11.0	18.0 14.5 12.0 11.5 12.0	11.0 12.5 13.0 12.0	7.0 7.5 8.0 8.5	8.5 9.5 10.5 10.0	11.5 12.0 9.0 9.0 7.5	9.5 9.0 7.5 6.0 4.5	10.5 11.0 8.0 7.5 6.0	2.0	0.0	1.0
11 12 13 14 15	15.0 16.0 18.5 19.0 17.5	12.5 15.0 16.0 17.5 16.0	13.5 15.5 17.0 18.0 16.5	 	 	 	9.5 7.5 9.0 10.0 9.5	6.5 5.0 7.5 9.0 6.0	7.5 6.5 8.5 9.5 8.0	 	 	
16 17 18 19 20	16.5 14.0 12.5 12.0 13.5	14.0 12.5 10.0 10.5 11.5	14.5 13.0 11.0 11.0 12.5	12.0 10.0 10.5 9.0	8.0 7.5 6.5 5.5	10.0 8.5 8.5 8.0	7.0 8.0 9.0 9.0 6.5	5.0 6.5 6.5 6.0 4.0	6.0 7.0 8.0 7.0 5.5	 	 	
21 22 23 24 25	14.0 15.0 16.0 17.5 18.0	13.0 14.0 14.5 15.5 16.0	13.5 14.5 15.0 16.5 17.5	8.0 8.0 8.5 9.5 12.5	4.5 4.0 4.0 6.5 9.5	6.0 5.5 6.0 8.0 11.0	5.5 5.5 5.5 5.5 4.0	3.0 2.5 3.0 3.0 1.5	4.0 3.5 4.0 4.5 2.5	 	 	
26 27 28 29 30 31	16.0 10.5 9.0 9.5 11.0 11.0	10.5 9.0 8.5 8.0 9.5 10.0	13.0 9.5 8.5 8.5 10.0 10.5	13.0 11.0 12.0 12.0 14.0	9.5 9.5 10.5 11.0 11.5	11.5 10.0 11.0 11.5 13.0	4.0 2.0 3.0 3.5 0.5 0.0	1.0 0.0 0.0 0.0 0.0 0.0	2.5 1.0 1.0 0.0 0.0	 	 	
MONTH	19.5	8.0	14.0	16.5	4.0	9.8	14.0	0.0	6.1	3.0	0.0	0.8

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		:	SEPTEMBE	R
1												
2												
3												
4												
5												
б												
7										15.8	6.0	10.9
8										15.6	5.7	10.7
9										14.8	5.2	10.2
10										13.3	4.5	8.8
11										14.8	5.9	9.8
12										15.2	6.0	10.4
13										15.8	6.3	11.4
14										14.9	5.9	10.1
15										16.3	7.7	11.9
16										16 5	83	12 4
17										16.8	7.6	12 0
18										16 4	6.8	11 9
19										16 1	7 1	11 4
20										13.8	4.9	7.4
21										14 1	5 1	84
22										14.6	5.1	10.5
22										15 1	6.6	10.5
23										14 9	5.0	2 1
25										10.4	5.6	7.5
26										1/ 0	7 2	10 1
20										15 2	7.2	11 0
20										17 1	/.0	12 2
20										16 0	0.8	12.2
22										17.0	9.0	12.0
30										1/.8	9.1	13.1
31												
MONTH										17.8	4.5	10.6

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	1		NOVEMBER	2		DECEMBER	2		JANUARY	Z
1 2 3 4 5	19.2 18.9 18.5 17.9 17.6	9.9 9.4 8.7 8.1 7.9	14.1 13.5 13.1 12.3 12.1	15.2 14.5 15.9 14.9	7.2 6.4 7.2 7.6	11.2 9.6 10.4 10.7	15.5 17.4 17.1 19.6 19.8	7.7 8.8 9.9 10.6 9.8	10.7 12.0 12.8 13.9 13.2	15.8 14.8 15.9 15.6 15.2	12.8 12.2 12.6 12.5 11.9	14.0 13.2 13.8 13.9 13.0
6 7 8 9 10	17.4 	7.7 	11.1 	16.1 15.9 16.0 	8.6 8.9 8.6 	11.7 11.5 11.6 	16.6 18.8 15.1 17.9 17.8	9.0 8.3 9.3 9.7 11.0	11.9 12.3 11.5 12.8 13.4	14.2 	11.8 	12.7
11 12 13 14 15	19.0 17.3 14.5 13.2 11.8	10.8 8.5 8.0 6.0 5.7	14.2 12.1 10.9 8.6 7.8	 	 	 	18.1 18.0 16.1 12.5 16.4	10.7 10.9 10.0 9.6 9.7	13.3 13.2 12.1 10.5 12.5	 	 	
16 17 18 19 20	 	 	 	19.1 18.8 20.9 18.7	8.7 9.2 9.8 9.1	12.6 12.9 13.8 13.1	17.0 15.6 15.4 16.6 15.4	11.2 10.7 10.2 10.9 11.1	13.2 12.5 12.1 12.9 12.9	 	 	
21 22 23 24 25	 	 	 	19.2 20.1 19.8 14.6 11.0	10.7 10.9 10.9 9.1 7.8	13.9 14.2 14.1 11.5 9.0	17.0 17.0 17.5	12.2 11.6 12.5	13.8 13.6 14.3	 	 	
26 27 28 29 30 31	 15.2	 9.2	 11.3	14.7 14.2 14.2 10.9 11.1	7.7 8.6 8.6 8.3 7.8	10.3 10.4 10.4 9.2 9.0	17.4 17.5 17.5 	13.0 13.3 13.6 	14.6 14.8 14.9 	 	 	
MONTH	19.2	5.7	11.8	20.9	6.4	11.5	19.8	7.7	12.9	15.9	11.8	13.4

01570076 -- Conodoguinet Cr 115 ft US of Good Hope Dam, PA--Continued

TURBIDITY, FIELD, WATER, UNFILTERED, NEPHELOMETRIC TURBIDITY UNITS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		i	SEPTEMBE	R
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20										50	4.1	9.3
21										21	2.3	6.2
22										14	2.5	5.1
23										45	3.0	8.8
24										26	3.6	9.8
25										39	12	19
26										16	3.3	7.1
27										23	3 9	7 8
28										12	3.2	5.8
29										15	3 2	6 1
30										18	3 2	6 1
31												
момтн										50	23	83

TURBIDITY, FIELD, WATER, UNFILTERED, NEPHELOMETRIC TURBIDITY UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	NOVEMBER		I	DECEMBER			JANUARY	
1 2 3	18 28 24	2.6 4.4 3.2	7.7 10 9.0	24 60 16	0.7 3.9 1.6	5.0 9.9 5.2	28 64 35	1.8 1.7 1.7	7.4 6.2 4.8	 	 	
4 5	38 27	3.3	7.3	8.6	1.4	4.0 2.9	54	1.7	4.8			
6 7 8 9 10	46 34 18 13 13	4.2 2.6 1.7 1.5 2.8	8.7 9.7 3.8 3.3 5.1	22 26 41 	1.6 1.7 2.1 	8.3 9.1 8.3 	15 16 29 25 47	1.8 2.1 1.6 2.4 1.9	5.7 6.9 7.5 6.7 5.4	 	 	
11 12 13 14 15	56 28 11 14 30	4.7 2.9 1.5 1.9 3.3	8.2 8.4 3.8 6.8 7.9	 	 	 	18 53 22 20 25	2.1 2.0 2.1 3.6 2.1	5.2 5.7 6.3 9.6 6.6	 	 	
16 17 18 19 20	26 39 20 15 22	3.4 3.6 1.8 2.9 3.7	6.5 7.8 3.8 5.1 5.7	12 20 19 26	 1.3 1.2 1.8 1.6	4.3 3.8 5.4 4.8	47 24 63 31 22	2.4 2.1 5.3 2.3 2.5	5.1 5.8 14 6.1 7.1	 	 	
21 22 23 24 25	18 19 34 30 33	2.6 2.6 3.1 3.1 3.1	5.3 4.8 7.1 7.9 7.9	46 26 38 22 93	0.5 2.1 2.1 1.7 2.8	6.4 5.2 7.2 6.6 19	 	 	 	 	 	
26 27 28 29 30 31	38 8.8 9.0 5.1 60	3.1 2.0 2.0 1.9 3.4	9.1 3.2 2.6 2.7 6.0	46 40 42 56 26	4.3 2.8 2.6 2.2 2.5	20 14 17 12 10	 	 	 	 	 	
MONTH	60	1.5	6.4	93	0.5	8.6	64	1.6	6.6			

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA

LOCATION .-- Lat 40°15'45", long 76°58'44", Cumberland County, Hydrologic unit 02050305, 13.4 mi upstream of confluence with Susquehanna River.

DRAINAGE AREA.--488 mi².

PERIOD OF RECORD.--October 2001 to current year (discontinued).

PERIOD OF DAILY RECORD.--

SPECIFIC CONDUCTANCE: August 31, 2001 to current year (discontinued). pH: August 31, 2001 to current year (discontinued). WATER TEMPERATURE: August 31, 2001 to current year (discontinued). DISSOLVED OXYGEN: August 31, 2001 to current year (discontinued). TURBIDITY: August 31, 2001 to current year (discontinued).

Dat

OCT

INSTRUMENTATION .-- Yellow Springs Instruments 6600 multi-parameter sonde (in-situ system).

REMARKS.--Daily specific conductance records rated poor. Daily pH records rated good. Daily water temperature record rated good. Daily dissolved oxygen record rated fair. Daily turbidity records rated good.

All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U.S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than; c - Sample Holding Time Exceeded. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	Sample type	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 2001 25	1200	1028	80020	9	E63	5.9	12.5	131	7.9	559	17.5	E.03	.30

	NITRO-	NITRO-	NITRO-		ORTHO-	
	GEN,AM-	GEN,	GEN,	PHOS-	PHOS-	
	MONIA +	NO2+NO3	NITRITE	PHORUS	PHATE,	PHOS-
	ORGANIC	DIS-	DIS-	DIS-	DIS-	PHORUS
	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL
Date	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
	AS N)	AS N)	AS N)	AS P)	AS P)	AS P)
	(00625)	(00631)	(00613)	(00666)	(00671)	(00665)
CT 2001						
25	.34	3.58	.016	.021	<.02	.026

				DIS-	TUR-		OXYGEN,	PH			NITRO-	NITRO-
	AGENCY	AGENCY		CHARGE ,	BID-		DIS-	WATER	SPE-		GEN,	GEN,AM-
	COL-	ANA-		IN	ITY		SOLVED	WHOLE	CIFIC		AMMONIA	MONIA +
	LECTING	LYZING		CUBIC	FIELD	OXYGEN,	(PER-	FIELD	CON-	TEMPER-	DIS-	ORGANIC
	SAMPLE	SAMPLE	Sample	FEET	WATER	DIS-	CENT	(STAND-	DUCT-	ATURE	SOLVED	DIS.
Time	(CODE	(CODE	type	PER	UNFLTRD	SOLVED	SATUR-	ARD	ANCE	WATER	(MG/L	(MG/L
	NUMBER)	NUMBER)		SECOND	(NTU)	(MG/L)	ATION)	UNITS)	$(\mu S/CM)$	(DEG C)	AS N)	AS N)
	(00027)	(00028)		(00060)	(61028)	(00300)	(00301)	(00400)	(00095)	(00010)	(00608)	(00623)
1100	1028	80020	9	E66	3.1	11.0	98	8.1	568	10.2	<.04	.31
0900	1028	80020	9	E70	4.5	11.7	108	8.2	550	11.8	<.04	.29
1000	1028	80020	9	E70	140	10.4	96	8.0	559	11.8	<.04	.27
1100	1028	80020	9	E194	43	9.3	86	8.0	565	11.6	<.04	.24
1315	1028	80020	9	E150	50	10.6	100	8.1	556	13.0	E.03	.27
0945	1028	80020	9	E71	9.2	10.0	89	8.0	553	9.7	<.04	.32
	Time 1100 0900 1000 1100 1315 0945	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027) 1100 1028 1000 1028 1100 1028 1100 1028 1315 1028	AGENCY COL- LECTING AGENCY ANA- LECTING AGENCY ANA- LECTING Time SAMPLE SAMPLE CODE (CODE (CODE NUMBER) NUMBER) NUMBER) (00027) (00028) 1100 1028 80020 0900 1028 80020 1000 1028 80020 1100 1028 80020 1100 1028 80020 1100 1028 80020 1415 1028 80020	AGENCY COL- ILECTING AGENCY ANA- LECTING ANA- LYZING SAMPLE Sample Time (CODE (CODE (CODE (CODE) type NUMBER) NUMBER) (00027) (00028) 1100 1028 80020 9 0900 1028 80020 9 1100 1028 80020 9 1100 1028 80020 9 1100 1028 80020 9 1100 1028 80020 9 125 1028 80020 9	DIS- COL- ENCOL ENCOL- ENCOL	AGENCY AGENCY AGENCY CHARGE, BLD- COL- ANA- IN ITY LECTING LYZING CUBIC FIELD SAMPLE SAMPLE Sample FET WATER Time (CODE (CODE type PER UNFLTRD NUMBER) NUMBER) (00028) (00060) (61028) 1100 1028 80020 9 E70 4.5 1000 1028 80020 9 E70 4.5 1100 1028 80020 9 E194 43 1315 1028 80020 9 E194 43 1315 1028 80020 9 E71 9.2	DIS- TUR- AGENCY AGENCY CHARGE, BID- COL- ANA- IN ITY LECTING LYZING CUBIC FIELD SAMPLE SAMPLE Sample FEET WATER DIS- Time (CODE (CODE type PER UNFLTRD SOLVED NUMBER) NUMBER) NUMBER) (00060) (61028) (00300) 1100 1028 80020 9 E70 4.5 11.7 1000 1028 80020 9 E70 4.5 11.7 1000 1028 80020 9 E10 10.4 10.4 1100 1028 80020 9 E194 43 9.3 1315 1028 80020 9 E150 50 10.6 0945 1028 80020 9 E71 9.2 10.0	DIS- TUR- OXYGEN, AGENCY AGENCY CHARGE, BID- DIS- COL- ANA- IN ITY SOLVED LECTING LYZING CUBIC FIELD OXYGEN, (PER- SAMPLE SAMPLE Sample FEET WATER DIS- CENT Time (CODE (CODE type PER UNFLTRD SOLVED SATUR- NUMBER) NUMBER) SECOND (NTU) (MG/L) ATION) (00027) (00028) (00060) (61028) (00300) (00301) 1100 1028 80020 9 E70 4.5 11.7 108 1000 1028 80020 9 E70 4.5 10.4 96 1100 1028 80020 9 E134 43 9.3 86 1315 1028 80020 9 E150 50 10.6 100 0945 1028	DIS- TUR- OXYGEN, PH AGENCY AGENCY CHARGE, BLD- DIS- WATER COL- ANA- IN ITY SOLVED WHOLE LECTING LYZING CUBIC FIELD OXYGEN, (PER- FIELD SAMPLE SAmple Sample Sample FEET WATER DIS- CENT (STAND- Time (CODE (CODE type PER UNFLTRD SOLVED SATUR- ARD NUMBER) NUMBER) (00060) (61028) (00300) (00310) (00400) 1100 1028 80020 9 E70 4.5 11.7 108 8.2 1000 1028 80020 9 E70 4.3 9.3 86 8.0 1100 1028 80020 9 E194 43 9.3 86 8.0 1110 1028 80020 9 E171 9.2 10.0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DIS- TUR- OXYGEN, PH AGENCY AGENCY AGENCY CHARGE, BID- DIS- WATER SPE- COL- ANA- IN ITY SOLVED WHOLE CIFIC LECTING LYZING CUBIC FIELD OXYGEN, (PER- FIELD CON- TEMPER- SAMPLE SAmple Sample FET WATER DIS- CENT (STAND- DUCT- ATURE NUMBER) NUMBER) SECOND (NTU) (MG/L) ATION UNITS) (µS/CM) (DEG C) (00027) (00028) (00060) (61028) (00300) (00400) (00095) (00010) 1100 1028 80020 9 E70 4.5 11.7 108 8.2 550 11.8 1000 1028 80020 9 E70 4.5 11.7 108 8.2 550 11.8 1100 1028 80020 9 E70<	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Date	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	SEDI- MENT, SUS- PENDE (MG/L (80154
NOV 2001		,		,	,		
01	.35	3.84	<.008	.016	<.02	.021	2.8
02	.37	3.69	.009	.017	<.02	.023	3.0
02	.92	3.74	E.007	.018	<.02	.116	98
02	.58	3.77	E.007	.017	E.01	.039	22
02	.58	3.71	E.007	.017	<.02	.049	33
05	.46	3.67	.008	.017	<.02	.023	4.1

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
OCT 2001								
19	1301		7.0	69	7.3	727	14.3	2
19	1302		9.3	88	7.8	569	13.9	12
19	1303		10.1	98	7.9	572	13.9	22
19	1304		10.7	104	8.0	569	14.3	30
19	1305	2.7	10.3	96	8.0	563	12.3	52
19	1306	5.0	9.8	90	8.0	567	11.4	62
19	1307	5.4	9.9	90	8.0	566	11.2	72
19	1308	6.8	9.9	90	8.0	564	11.2	82
19	1309	3.6	9.9	90	8.0	565	11.1	92
19	1310	4.6	9.8	90	8.0	565	11.1	102
19	1311	5.8	9.8	90	8.0	564	11.1	112
19	1312	2.4	9.8	89	8.0	563	11.1	122
19	1313	4.1	9.8	89	8.0	563	11.2	132
19	1314	4.2	9.7	89	8.0	563	11.1	142
19	1315	5.0	9.7	88	8.0	563	11.1	162
19	1217	4.5	9.7	00	0.0	502	11 1	172
19	1210	4.0	9.7	00	8.0	562	11 1	192
19	1310	5.0	9.0	85	8.0	558	11 1	192
19	1320	4 8	93	85	8 0	556	11 1	202
19	1321	4 7	93	85	8 0	555	11 1	212
19	1322	7.8	9.4	86	8.0	555	11.2	222
19	1323	3.7	9.5	87	8.0	554	11.3	232
19	1324	9.7	9.2	84	7.9	556	11.1	237
25	1201	5.5	13.7	144	8.0	557	17.7	60
25	1202	7.7	13.2	138	7.9	559	17.6	80
25	1203	8.0	13.0	136	7.9	558	17.6	100
25	1204	5.0	12.7	133	7.9	560	17.5	120
25	1205	5.0	12.4	130	7.9	560	17.5	140
25	1206	5.7	12.3	129	7.9	560	17.5	160
25	1207	5.4	12.2	128	7.9	560	17.5	180
25	1208	5.7	11.7	122	7.9	560	17.5	200
25	1209	4.8	11.7	123	7.9	558	17.5	220

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
NOV 2001 01 01 01 01 01 01 01 01 01 02 05	1131 1132 1133 1134 1135 1136 1137 1138 1139 0901 0902 0903 0904 0905 0906 0907 0908 1001 1002 1003 1004 1005 1006 1007 1008 1009 1000 1011 1101 1102 1103 1104 1105 1106 1107 1108 1109 1100 1101 1111 1316 1317 1320 1321 1322 1323 1324 1325 1326 0946 0947	4.9 2.9 2.8 3.0 2.9 3.1 2.3 4.7 1.7 4.2 5.1 2.6 4.0 5.1 2.6 4.0 5.1 2.6 4.0 5.0 300 140 120 86 300 24 20 20 20 20 20 20 20 20 34 200 10 14 11 250 42 11 10 24 25 64 95 51 4.3	11.6 11.4 11.3 10.6 10.7 10.6 11.9 11.8 11.5 11.3 11.6 11.3 10.6 10.7 10.8 10.7 10.8 10.7 10.8 10.7 9.8 10.1 10.3 9.7 9.8 10.1 10.3 9.7 9.8 10.1 10.3 9.7 9.8 10.1 10.3 9.7 9.8 10.1 10.3 9.5 9.4 9.2 9.0 8.6 10.0 10.1 11.1 10.7 9.8 9.4 9.8 9.4 9.8 </td <td>104 102 100 99 97 96 95 94 95 110 110 109 107 106 104 100 100 107 106 104 100 100 97 92 91 90 91 93 97 90 89 87 87 86 85 82 80 80 80 80 80 80 102 103 104 105 105 102 94 90 80 80 80 80 80 80 80 80 80 80 80 80 80</td> <td>8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.0 8.0 8.0 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2</td> <td>553 553 557 563 557 566 570 573 585 553 545 545 555</td> <td>10.3 10.2 10.1 10.2 10.1 10.2 10.1 10.2 10.1 10.2 10.1 10.2 10.1 10.2 10.1 10.2 11.10 10.2 11.10 11.2 11.8 11.7 12.2 11.8 11.7 12.2 11.8 11.7 12.2 11.8 11.7 11.6 11.5 11.5 11.5 11.6 11.7 13.4 13.1 2.9 12.9 12.9 12.9 12.9 13.1 9.6 9.5</td> <td>10 30 50 70 90 110 150 170 10 50 70 90 110 130 150 170 0 20 40 60 80 100 120 140 160 180 200 0 200 40 60 80 100 120 140 160 180 200 100 120 140 160 180 200 100 120 140 160 180 200 100 120 140 160 180 200 0 200 40 60 80 100 120 140 160 180 200 0 200 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 0 200 30 50 50 50 50 50 50 50 50 50 5</td>	104 102 100 99 97 96 95 94 95 110 110 109 107 106 104 100 100 107 106 104 100 100 97 92 91 90 91 93 97 90 89 87 87 86 85 82 80 80 80 80 80 80 102 103 104 105 105 102 94 90 80 80 80 80 80 80 80 80 80 80 80 80 80	8.1 8.1 8.1 8.1 8.1 8.1 8.0 8.0 8.0 8.0 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	553 553 557 563 557 566 570 573 585 553 545 545 555	10.3 10.2 10.1 10.2 10.1 10.2 10.1 10.2 10.1 10.2 10.1 10.2 10.1 10.2 10.1 10.2 11.10 10.2 11.10 11.2 11.8 11.7 12.2 11.8 11.7 12.2 11.8 11.7 12.2 11.8 11.7 11.6 11.5 11.5 11.5 11.6 11.7 13.4 13.1 2.9 12.9 12.9 12.9 12.9 13.1 9.6 9.5	10 30 50 70 90 110 150 170 10 50 70 90 110 130 150 170 0 20 40 60 80 100 120 140 160 180 200 0 200 40 60 80 100 120 140 160 180 200 100 120 140 160 180 200 100 120 140 160 180 200 100 120 140 160 180 200 0 200 40 60 80 100 120 140 160 180 200 0 200 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 0 200 30 50 50 50 50 50 50 50 50 50 5
05 05 05 05 05 05	0948 0949 0950 0951 0952 0953 0954	7.0 3.0 4.7 2.0 2.7 4.2 4.3	10.3 10.3 10.2 10.0 9.9 9.9 9.9 9.8	91 91 90 89 88 87 86	8.0 8.0 8.0 8.0 8.0 8.0 7.9	548 548 550 552 556 568 582	9.7 9.8 9.8 9.8 9.8 9.8 9.6 9.4	70 90 110 130 150 170 190

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

REMARKS.--Definition of terms used: <u>Total Number</u> - the total number of aquatic invertebrates collected at a site; <u>Total EPT Taxa</u> - total number of distinct taxa within the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). These orders of insects are generally considered to be pollution sensitive; <u>% Contribution of Dominant Taxa</u> - total number of organisms is an indication of community balance at the lowest taxonomic level possible (usually genus or species). A community that proves dominant dominant taxa would include environmental stress. This metric can include the single most dominant taxa, three most dominant, or five most dominant taxa "dominants in common" (DIC). Other definitions can be found on pages 22-33.

	Sept. 18, 2001	Nov. 19, 2001	Nov. 25, 2002
PLATYHELMINTHES			
TURBELLARIA			
TRICLADIDA			
Planariidae			18
ANNELIDA			
OLIGOCHAETA (aquatic earthworms)			
TUBIFICIDA			
Enchytraeidae			
Tubificidae			
Aulodrilus pleuriseta			
Spirosperma nikolskyi			2
Tubificidae w/o capilliform setae			
LUMBRICINA			
MOLLUSCA			
GASTROPODA (snails)			
MESOGASTROPODA			
Hydrobiidae			
Amnicola			
Pleuroceridae			
Conjobasis			2
Loptoris agrinata			2
An and the (line ats)			
Ancylidae (Impets)			
<i>Ferrissia</i>			/
Planorbidae			
Gyraulus			
Planorbella			1
Lymnaeidae			
Fossaria			
Physidae			
Physella			1
BIVALVIA (clams and mussels)			
VENEROIDA			
Corbiculidae			
Corbicula fluminea	2		39
Sphaeriidae (fingernail clams)			1
Pisidium			
CHELICERATA			
ARACHNIDA			
HYDRACHNIDIA (water mites)		1	1
ARTHROPODA			
CRUSTACEA			
OSTRACODA			2
MALACOSTRACA			
ISOPODA (sow bugs)			
Asellidae			
Lirceus			1
AMPHIPODA (scuds)			
Crangonyctidae			
Crangonyr			
Gammaridae			
Gammarus		6	28
Uuulullidee		0	20
пушена аглеса			

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

	Sept. 18, 2001	Nov. 19, 2001	Nov. 25, 2002
INSECTA			
EPHEMEROPTERA (mayflies)			
PISCIFORMA			
Baetidae	3	4	
Acentrella	4		
Acerpenna	15	15	
Baetis	6		1
Baetis (2-tailed)			
SETISURA			
Heptageniidae	4		
Heptagenia	1		
Leucrocuta	3		
Stenacron	4		1
Stenonema	14	16	7
Isonychiidae			
Isonychia	9	5	
FUCATERGALIA			
Leptophlebiidae			
Leptophlebia		1	
Paraleptophlebia		1	
Ephemeridae			
Hexagenia			
Potamanthidae			
Anthopotamus	6	5	4
Caenidae			
Caenis	1	1	10
Ephemerellidae			
Ephemerella		1	
Serratella	1	1	
Leptohyphidae			
Tricorythodes			
ODONATA (dragonflies and damselflies)			
ZYGOPTERA			
Coenagrionidae			
Argia	3	2	5
Enallagma			
HEMIPTERA (true bugs)			
Corixidae			
PLECOPTERA (stoneflies)			
EUHOLOGNATHA			
Taeniopterygidae			
Taeniopteryx		5	3
SYSTELLAGNATHA			
Perlidae			
Agnetina	1		
Paragnetina			
COLEOPTERA (beetles)			

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

	Sept. 18, 2001	Nov. 19, 2001	Nov. 25, 2002
POLYPHAGA			
Hydrophilidae (water scavenger beetles)			
Berosus			1
Psephenidae (water pennies)			
Psephenus	4	1	13
Elmidae (riffle beetles)			
Dubiraphia			3
Macronychus			
Optioservus	30	47	32
Promoresia		1	
Stenelmis	42	11	26
Scirtidae			
MEGALOPTERA (dobsonflies and fishflies)			
Corydalidae			
Corydalus	2		
Sialidae			
Sialis	1		
TRICHOPTERA (caddisflies)			
SPICIPALPIA			
Hydroptilidae			
Hydroptila	1	2	
Leucotrichia	3		
Glossosomatidae			
Glossosoma	1		
ANNULIPALPIA			
Philopotamidae			
Chimarra	5	3	
Hydropsychidae	1	1	
Cheumatopsyche	35	32	3
Hydropsyche	11	7	7
Hydropsyche bifida gr.	1	9	
INTEGRIPALPIA			
Leptoceridae			
Oecetis			
Helicopsychidae			
Helicopsyche	1		2
LEPIDOPTERA (aquatic moths)			
Pyralidae			
Petrophila	4	1	1
DIPTERA (true flies)			
Ceratopogonidae (biting midges)		1	
Probezzia			1
Chironomidae (non-biting midges)			
Tanypodinae			
Pentaneurini			
Ablabesmyia			
Ablabesmyia mallochi			
Conchapelopia	1	6	
Pentaneura	1	1	
Thiennemannimyia gr.	1		
L			

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

	Sept. 18, 2001	Nov. 19, 2001	Nov. 25, 2002
Procladini			
Procladius			
Tanypodini			
Tanypus			
Orthocladiinae			
Corynoneurini			
Corynoneura			
Orthocladiini			
Cricotopus/Orthocladius		3	2
Cricotopus			
Cricotopus bicinctus	3	6	
Cricotopus trifascia		1	
Cricotopus vierrensis			
Eukiefferiella			
Eukiefferiella brevicalcar gr.			5
Nanocladius			
Orthocladius		3	2
Thiennemaniella	3		
Tvetenia			
Tvetenia bavarica gr.	1		
Tvetenia vitracies gr.			
Chironominae	1		
Chironomini			
Chironomus			
Cryptochironomus			
Dicrotendipes		2	
Microtendipes pedellus gr.		4	
Paratendipes			
Phaenopsectra			
Polypedilum			
Polypedilum flavum	6	1	1
Polypedilum scalaenum gr.			
Pseudochironomini			
Pseudochironomus			
Tanytarsini			
Cladotanytarsus		3	
Rheotanytarsus	6	12	1
Tanytarsus	6	7	
Simuliidae (black flies)			
Simulium			1
TOTAL TAXA	41	38	35
TOTAL NUMBER	248	229	235
TOTAL EPT TAXA	22	17	9
PERCENT EPT TAXA	54	45	26
HBI	4.56	4.69	5.26
PERCENT DOMINANT TAXA (single)	17	21	17

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		1	SEPTEMBE	R
1										497	425	467
2										539	430	494
3										522	411	478
4										497	405	456
5												
6												
7												
8												
9												
10												
11										522	441	482
12										530	445	488
13												
14												
15												
16												
17												
18										521		
19										530		
20												
21												
22												
23												
24												
25										484	389	446
26										492	386	455
27										492	387	454
28												
29												
30												
31							535	429	485			
MONTH										539	386	469

SPECIFIC CONDUCTANCE, MICROSIEMENS PER CENTIMETER AT 25° CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	NOVEMBER	:	DECEMBER				JANUARY	
1				599	562	577	584	551	566			
2							584	545	564			
3							571	535	556			
4							574	496	541			
5							554	473	518			
6				602	553	577	534	504	520			
7	548	502	527	591	553	572	546	510	530			
8	556	506	533	594	483		591	542	565			
9	543	498	522	578	485		590	548	570			
10				582	527	554						
11				580	526	557						
12				593	549	571						
13				595	540	567						
14												
15	555											
16	561	530	546									
17	563	523	544									
18	567	524	550	534	440	500						
19	563	535	554	559	481	524						
20				555	514	531						
21	564	533	550	592	521	558						
22	575	528	553	591	507	553						
23	578	542	562	567	479	528						
24	572	544	559	543	507	526						
25	573	532	553	530	477	511						
26	583	550	567	545	519	531						
27	596	562	578	539	501	522						
28	604	578	592	545	512	536						
29	606	579	591	554	531	545						
30	598	569	587	573	551	559						
31	584	537	564									
MONTH	606	498	557	602	440	545	591	473	548			

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN
		JUNE			JULY			AUGUST		i	SEPTEMB	ER
1										8.5	7.6	8.0
2										8.5	7.7	8.1
3										8.6	7.7	8.2
4										8.5	7.7	8.2
5										8.5	7.7	8.2
б										8.6	7.7	8.2
7										8.6	7.8	8.2
8										8.6	7.7	8.2
9										8.6	7.7	8.2
10										8.5	7.7	8.1
11										8.6	7.8	8.2
12										8.6	7.8	8.2
13										8.5	7.8	8.2
14										8.5	7.7	8.1
15										8.6	7.9	8.2
16										0 6	7 0	0 2
17										0.0	7.9	0.3
10										8.5	7.8	8.2
18										8.5	/.8	8.2
19										8.6	/.8	8.3
20										8.6	7.7	7.9
21										8.4	7.7	7.9
22										8.4	7.8	8.2
23										8.5	7.8	8.1
24										8.5	7.7	7.9
25										8.1	7.6	7.8
26										85	78	8 0
27										8 4	7 9	8 1
28										8 5	8 0	8 2
20										8 5	8 0	8 2
30										8 5	8 0	g 2
31							8.4	7.7	8.1			0.2
MAX										8.6	8.0	8.3
MIN										8.1	7.6	7.8

PH, WATER, WHOLE, FIELD, STANDARD UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN	MAX	MIN	MEDIAN
		OCTOBE	R	ľ	OVEMBE	/EMBER		DECEMBER			JANUAR	Y
1 2 3 4 5	8.5 8.5 8.5 8.5 8.5	8.0 7.9 7.8 7.8 7.8	8.2 8.2 8.1 8.1 8.0	8.4 8.5 8.5 8.5 8.6	8.0 7.9 7.9 7.9 8.0	8.2 8.3 8.0 8.1 8.2	8.4 8.5 8.5 8.6 8.6	7.8 7.9 8.0 8.0 8.0	8.0 8.1 8.1 8.1 8.1	8.3 8.2 8.2 8.3	8.1 8.0 8.1 8.1	8.2 8.1 8.1 8.2
6 7 8 9 10	8.5 8.5 8.6 8.5 8.5	7.9 8.0 8.0 8.0 8.0	8.0 8.2 8.2 8.2 8.2 8.2	8.5 8.5 8.6 8.6 8.6	8.0 8.0 8.0 8.0 8.0	8.2 8.2 8.2 8.2 8.2	8.5 8.6 8.4 8.6	7.9 7.9 7.9 7.9	8.0 8.1 8.0 8.1	8.3 8.3 8.2 	8.1 8.1 8.1 8.1	8.2 8.2 8.2 8.2
11 12 13 14 15	8.5 8.4 8.4 8.4 8.3	8.0 7.9 7.9 7.8 7.8	8.1 8.1 8.1 7.9 7.9	8.6 8.6 8.6 	8.0 8.1 8.1 	8.2 8.2 8.2 	 	 	 	 	 	
16 17 18 19 20	8.3 8.4 8.4 8.4 8.4 8.4	7.9 7.9 8.0 8.0 8.0	8.0 8.1 8.2 8.1 8.1	 8.5 8.5 8.6 8.5	 7.9 7.9 7.9 7.9	8.1 8.1 8.1 8.1	 	 	 	 	 	
21 22 23 24 25	8.4 8.3 8.4 8.3 8.3	8.0 7.9 7.9 7.9 7.9	8.1 8.1 8.0 8.1 8.0	8.6 8.7 8.7 8.3 8.1	8.0 8.0 8.0 7.9 7.7	8.2 8.2 8.2 8.0 7.9	8.5 8.5 8.4 8.5	8.2 8.0 8.0 8.2	8.3 8.3 8.2 8.3	 	 	
26 27 28 29 30 31	8.2 8.4 8.5 8.4 8.5	8.0 8.1 8.1 8.1 8.1 8.1 8.0	8.1 8.2 8.2 8.2 8.2 8.2 8.2	8.3 8.2 8.2 8.0 8.1	7.7 7.8 7.8 7.8 7.8 7.8	7.9 7.8 7.9 7.9 7.9 7.9	8.5 8.5 8.4 8.4 8.4 8.4 8.4	8.2 8.3 8.2 8.2 8.2 8.1	8.3 8.4 8.3 8.2 8.2 8.2	 	 	
MAX MIN	8.6 8.2	8.1 7.8	8.2 7.9	8.7 8.0	8.1 7.7	8.3 7.8	8.6 8.4	8.3 7.8	8.4 8.0	8.3 8.2	8.1 8.0	8.2 8.1

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1										25.5	24.0	25.0
2										25.0	21.5	23.0
3										23.5	20.5	22.0
4										25.0	22.0	23.5
5										24.5	22.0	23.5
б										23.5	20.5	22.0
7										24.0	20.5	22.5
8										25.0	22.0	23.5
9										25.5	22.0	24.0
10										25.0	23.5	24.0
11										23.5	21.0	22.5
12										23.0	20.5	22.0
13										23.5	20.5	22.0
14										23.5	20.0	21.0
15										20.0	17.5	18.5
16										19.5	17.0	18.5
17										20.5	17.0	19.0
18										20.5	18.5	19.5
19										21.0	19.0	20.0
20										21.0	19.0	19.5
21										21.0	19.0	20.0
22										22.0	20.0	21.0
23										22.0	20.0	21.0
24										22.0	20.0	20.5
25										20.0	17.5	18.5
26										17.5	15.0	16.5
27										17.0	15.5	16.0
28										16.0	14.0	15.0
29										16.0	14.5	15.0
30										16.0	15.0	15.5
31							26.0	23.5	24.5			
MONTH										25.5	14.0	20.5

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER	2		DECEMBER	1		JANUARY	<u>r</u>
1 2 3 4 5	16.5 18.0 19.5 19.5 19.5	14.5 15.5 17.0 18.0 18.0	15.5 16.5 18.0 19.0 19.0	11.5 15.0 16.0 14.5 12.0	10.0 11.5 12.5 10.5 8.5	10.5 13.0 14.0 12.5 10.0	13.5 11.0 9.5 10.0 12.0	10.5 8.0 6.5 7.0 9.0	12.0 10.0 8.0 8.5 10.5	0.5 1.5 3.0 2.5 2.0	0.0 0.0 0.0 0.0 0.5	0.0 0.5 1.0 1.0 1.5
6 7 8 9 10	19.5 17.0 13.5 12.5 13.5	17.0 13.5 11.5 10.5 11.0	18.5 14.5 12.5 11.5 12.0	11.0 12.0 13.0 12.0 11.0	7.0 7.5 8.5 8.5 7.0	9.0 9.5 10.5 10.0 9.0	11.0 12.0 9.5 9.0	9.5 9.5 7.5 6.0	10.5 11.0 8.0 7.5	2.0 3.0 3.0 4.0	0.0 0.0 0.0 0.0	0.5 1.0 1.0 2.0
11 12 13 14 15	15.0 16.0 18.5 19.0 17.5	13.0 15.0 16.0 17.5 16.5	14.0 15.5 17.0 18.0 16.5	10.5 9.5 9.0 9.0	7.0 5.5 5.0 5.0	8.5 7.0 7.0 7.5	 	 	 	 	 	
16 17 18 19 20	16.5 14.0 12.5 12.0 13.5	14.0 12.5 10.0 10.5 12.0	15.0 13.0 11.0 11.5 12.5	12.0 10.0 10.0 8.5	8.5 7.5 7.0 6.0	10.0 8.5 8.5 8.0	 	 	 	 	 	
21 22 23 24 25	14.5 15.0 16.0 17.5 18.0	13.0 14.0 14.5 15.5 16.0	13.5 14.5 15.0 16.5 17.5	8.0 7.5 8.0 9.5 11.5	4.5 4.0 4.0 6.0 9.5	6.0 5.5 6.0 7.5 11.0	5.0 5.0 5.0 3.5	2.5 3.0 3.0 1.5	3.5 4.0 4.5 2.5	 	 	
26 27 28 29 30 31	16.0 10.5 9.5 9.5 11.0 11.0	10.5 9.0 8.5 8.0 9.5 10.0	13.0 9.5 9.0 8.5 10.0 10.5	12.5 10.5 11.5 11.5 13.5	10.0 9.5 10.5 11.0 11.5	11.0 10.0 11.0 11.5 12.5	3.5 2.0 3.0 3.5 0.5 0.0	1.0 0.0 0.0 0.0 0.0 0.0	2.0 0.5 1.0 1.0 0.0 0.0	 	 	
MONTH	19.5	8.0	14.1	16.0	4.0	9.5	13.5	0.0	5.5	4.0	0.0	0.9

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		TIME			TITTY			AUGUCT			GEDWENDE	-
		DONE			0011			A06051			SEP LEMBE	arc -
1										13.4	4.9	8.6
2										14.9	5.9	10.1
3										15.5	6.6	10.9
4										14.8	6.5	10.7
5										14.8	6.2	10.5
б										14.7	6.5	10.6
7										14.5	6.1	10.3
8										14.4	5.8	10.2
9										13.7	5.3	9.6
10										12.3	4.7	8.4
11										14.2	5.9	9.7
12										14.5	6.3	10.3
13										14.7	6.4	10.6
14										14.0	6.2	9.9
15										15.8	7.9	11.7
16										16.0	8.3	12.2
17										16.3	7.8	11.9
18										16.1	7.5	11.7
19										15.8	7.6	11.1
20										13.4	5.3	7.6
21										13.5	5.6	8.5
22										14.0	6.8	10.3
23										14.4	6.8	10.4
24										14.2	5.6	8.3
25										10.2	6.2	7.9
26										14.2	7.5	10.0
27										14.7	7.8	10.8
28										15.6	8.8	11.5
29										15.6	9.0	11.8
30										16.3	9.0	11.9
31							11.8	5.6	9.0			
MONTH							11.8	5.6	9.0	16.3	4.7	10.3

OXYGEN, DISSOLVED (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER	Ł	N	IOVEMBER		D	ECEMBER			JANUAR	Ľ
1 2 3 4 5	16.5 16.7 16.4 15.8 15.3	9.2 8.6 7.9 7.3 7.2	12.5 11.9 11.5 10.9 10.6	14.7 15.3 14.6 16.0 15.4	9.7 7.9 7.0 7.8 8.3	11.9 12.1 9.9 10.9 11.3	14.2 15.8 16.4 17.3 17.5	7.0 8.2 9.3 9.7 9.0	9.7 10.9 11.9 12.4 11.9	15.6 15.4 15.8 15.7 15.4	12.6 12.6 12.5 12.3	13.9 13.8 13.8 13.7 13.5
6 7 8 9 10	15.4 15.6 17.1 17.5 17.4	7.3 8.7 10.0 10.5 10.4	10.0 11.2 13.0 13.4 13.4	16.7 16.6 17.8 18.1 18.5	9.8 10.0 9.8 9.4 10.3	12.5 12.4 13.0 12.8 13.3	14.5 17.0 13.6 16.4	8.4 8.0 8.8 9.2	10.6 11.2 10.6 11.8	14.6 14.6 14.5 14.5	12.3 11.3 11.8 11.9	13.1 12.7 12.9 12.9
11 12 13 14 15	17.6 15.9 14.3 13.0 12.3	9.4 7.9 7.4 5.8 5.8	12.8 11.2 10.2 8.4 7.7	18.2 19.1 19.5 	10.3 11.2 11.6 	13.5 14.2 14.6 	 	 	 	 	 	
16 17 18 19 20	12.7 13.3 14.3 14.5 15.2	7.2 7.8 9.2 9.5 9.0	9.5 10.1 11.0 11.5 11.4	17.0 16.8 18.6 17.1	8.3 8.9 9.4 8.8	11.6 11.9 12.7 12.1	 	 	 	 	 	
21 22 23 24 25	14.1 13.5 13.8 13.1 12.2	8.2 7.9 7.4 7.1 6.5	10.7 10.5 9.7 9.7 8.9	18.4 19.5 19.6 13.8 10.5	10.0 10.4 10.5 8.8 7.6	13.3 13.8 13.9 11.1 8.8	16.8 16.8 16.4 16.7	12.8 12.4 11.9 12.5	14.2 14.1 13.6 14.1	 	 	
26 27 28 29 30 31	11.1 13.0 14.8 15.4 15.4 15.3	7.2 9.6 9.8 10.5 10.4 9.7	9.1 11.0 11.8 12.5 12.3 11.7	14.1 10.0 10.1 	7.4 7.6 7.1 	9.8 8.5 8.3 	16.6 16.4 16.4 16.0 15.6 15.4	12.9 13.1 12.8 12.7 12.9 12.8	14.3 14.3 14.2 13.9 13.9 13.9	 	 	
MONTH	17.6	5.8	11.0	19.6	7.0	11.9	17.5	7.0	12.7	15.8	11.3	13.4

01570078 -- Conodoguinet Cr 126 ft DS of Good Hope Dam at Good Hope, PA--Continued

TURBIDITY, FIELD, WATER, UNFILTERED, NEPHELOMETRIC TURBIDITY UNITS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST		:	SEPTEMBE	R
1										56	4.8	15
2										14	4.5	8.8
3										19	3.7	10
4										14	3.2	8.9
5										16	4.0	9.4
6										18	4.0	10
7										14	2.8	7.7
8										12	2.0	6.5
9										20	2.3	6.4
10										18	2.7	6.6
11										11	3.0	6.6
12										16	3.1	6.9
13										12	2.7	6.3
14										9.3	3.2	6.6
15										11	2.6	6.1
16										9.6	2.1	5.3
17										12	2.6	5.6
18										29	2.8	6.2
19										9.6	3.1	5.5
20										11	4.3	6.2
21										8.3	2.5	5.3
22										8 4	2 9	4 8
23										9.8	3.2	5 2
24										20	3 5	7 8
25										40	9.8	17
26										11	3.4	6.2
27										83	4 2	5 9
28										10	3 1	5.6
29										17	3.5	5.0
30										 8 7	3.0	5.0
21							120	4 1	12	0.7	5.0	5.1
21							120	4. ⊥	13			
MONTH										56	2.0	7.3

TURBIDITY, FIELD, WATER, UNFILTERED, NEPHELOMETRIC TURBIDITY UNITS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		1	OVEMBER	:	I	DECEMBER			JANUARY	
1 2 3 4 5	7.7 9.5 15 7.6 20	2.5 3.4 2.8 3.6 3.7	4.7 5.8 5.6 5.1 6.1	30 54 11 11 20	3.3 3.6 1.5 1.6 2.1	5.0 7.4 4.7 5.3 5.5	26 15 17 8.7 16	1.8 1.5 1.0 0.7 1.1	8.9 5.2 5.4 3.0 4.8	20 14 8.8 7.2	1.8 2.0 2.1 1.6	4.8 4.0 3.1 2.8
6 7 8 9 10	8.6 9.0 12 7.0 14	3.9 2.9 1.7 1.7 3.2	6.4 5.7 3.3 3.6 4.8	90 140 36 22 22	2.8 2.8 2.5 3.4 3.9	16 14 9.0 9.1 8.9	16 19 17 16	0.8 1.7 0.9 1.5	6.0 7.1 5.1 6.3	8.8 9.8 7.7 9.6	1.8 2.6 1.9 0.3	3.7 4.5 4.5 4.1
11 12 13 14 15	14 8.6 6.3 9.3 13	4.4 4.6 2.7 3.4 6.6	6.0 6.4 4.6 6.2 9.5	30 11 19 	2.0 3.1 2.0 	6.8 6.2 5.4 	 	 	 	 	 	
16 17 18 19 20	13 8.6 5.3 11 7.3	3.5 4.2 2.3 3.1 3.9	6.7 5.4 3.3 4.3 5.0	16 8.7 20 8.6	1.0 1.1 1.5 1.3	4.9 4.0 4.3 3.3	 	 	 	 	 	
21 22 23 24 25	7.0 7.6 10 11 10	3.3 2.5 3.2 3.4 3.4	5.0 3.8 4.6 5.4 5.8	15 11 14 11 47	1.3 1.4 1.3 1.5 2.8	3.2 3.4 3.6 4.4 15	5.7 6.5 8.2 5.6	 2.0 1.8 1.7 1.7	3.0 3.4 2.7 2.4	 	 	
26 27 28 29 30 31	38 7.7 36 7.0 10 9.0	3.4 2.1 2.0 1.7 3.0 4.0	7.1 3.5 3.2 2.7 4.6 5.2	77 52 35 34 31	4.7 2.6 2.5 1.9 1.8	21 14 16 11 10	6.9 14 14 9.8 17 21	1.7 2.1 1.8 1.7 1.7 1.9	2.4 4.2 3.9 3.6 4.7 4.4	 	 	
MONTH	38	1.7	5.1	140	1.0	8.2	26	0.7	4.6	20	0.3	3.9

01570080 -- Conodoguinet Creek 600 ft DS of Good Hope Dam, PA

CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
MAY 2001							
10	1141	9.2	99	7.8	357	18.8	0
10	1142	8.6	94	7.9	382	19.2	10
10	1143	8.6	93	7.9	432	19.2	20
10	1144	8.6	94	7.9	450	19.4	30
10	1145	9.1	98	8.0	342	19.2	40
10	1146	9.2	100	8.0	448	19.1	50
10	1147	9.2	99	8.0	447	19.1	60
10	1148	9.2	100	8.1	448	19.1	70
10	1149	9.2	100	8.1 9 1	448	19.1	80
10	1151	9.3	100	8 1	449	19.1	100
10	1152	9.3	100	8 1	449	18 9	110
10	1153	9 2	100	8 1	452	18 9	120
10	1154	9.2	99	8.1	452	18.8	130
10	1155	9.2	99	8.0	454	18.8	140
10	1156	9.4	100	8.1	454	18.8	150
10	1157	9.4	100	8.1	456	18.7	160
10	1158	9.3	100	8.0	458	18.6	170
10	1159	9.3	99	8.0	461	18.6	180
10	1200	9.2	98	8.0	464	18.5	190
10	1201	9.1	98	8.0	466	18.5	200
10	1202	9.1	97	8.0	470	18.5	210
10	1203	8.9	96	8.0	472	18.5	220
10	1204	8.9	95	8.0	473	18.6	230
10	1205	9.0	96	8.0	473	18.7	240
10	1206	9.3	100	8.0	474	18.8	250
⊥0	1207	9.6	104	8.0	471	19.6	255

01570150 -- Conodoguinet Cr DS of Orrs Bridge Rd at Camp Hill, PA

REMARKS -- All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U. S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	Sample type	DIS- CHARGE, IN CUBIC FEET PER SECOND (00060)	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 2001													
25	1100	1028	80020	9	E64	7.3	11.9	123	7.8	567	16.7	<.04	.32
25	1101	1028	80020	5	E64	7.3	11.9	123	7.8	567	16.7	E.02	.30
NOV													
02	1415	1028	80020	9	E71	17	13.7	134	8.3	562	14.4		

	NITRO-	NITRO-	NITRO-		ORTHO-		
	GEN, AM-	GEN,	GEN,	PHOS-	PHOS-		
	MONIA +	NO2+NO3	NITRITE	PHORUS	PHATE,	PHOS-	SEDI-
	ORGANIC	DIS-	DIS-	DIS-	DIS-	PHORUS	MENT,
	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	SUS-
Date	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	PENDED
	AS N)	AS N)	AS N)	AS P)	AS P)	AS P)	(MG/L)
	(00625)	(00631)	(00613)	(00666)	(00671)	(00665)	(80154)
OCT 2001							
25	.35	3.17	.024	.027	E.01	.044	
25	.38	3.18	.025	.027	E.01	.041	
NOV							
02	.46					.047	16

CROSS-SECTION ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	TUR- BID- ITY FIELD WATER UNFLTRD (NTU) (61028)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (μS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
OCT 2001								
25	1102	8.6	11.2	116	7.8	581	16.8	13
25	1103	6.5	11.6	120	7.8	581	16.9	38
25	1104	7.5	11.4	118	7.8	579	16.8	53
25	1105	8.5	11.9	123	7.8	576	16.7	.78
25	1106	7.3	12.9	132	7.9	565	16.5	103
25	1107	7.3	13.5	139	8.0	562	16.5	128
25	1108	3.6	12.7	131	7.9	559	16.6	153
25	1109	10	11.4	112	7.9	554	16./	1/8
25 NOV	1110	0.0	10.9	113	/.8	549	10.8	203
02	1416	34	12.8	126	8 2	590	14 8	23
02	1417	16	12.8	127	8.2	583	14.8	48
02	1418	21	13.9	137	8.3	570	14.8	73
02	1419	9.3	13.8	136	8.4	555	14.6	98
02	1420	6.6	14.5	140	8.4	544	14.2	123
02	1421	9.7	15.1	146	8.5	546	14.2	148
02	1422	9.6	14.8	144	8.4	554	14.2	173
02	1423	23	14.3	140	8.4	555	14.3	198
02	1424	19	13.2	129	8.2	557	14.3	223
02	1425	21	12.2	120	8.1	567	14.1	248

01570150 -- Conodoguinet Cr DS of Orrs Bridge Rd at Camp Hill, PA--Continued

REMARKS.--Definition of terms used: <u>Total Number</u> - the total number of aquatic invertebrates collected at a site; <u>Total EPT Taxa</u> - total number of distinct taxa within the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). These orders of insects are generally considered to be pollution sensitive; <u>% Contribution of Dominant Taxa</u> - total number of organisms is an indication of community balance at the lowest taxonomic level possible (usually genus or species). A community that proves dominant dominant taxa would include environmental stress. This metric can include the single most dominant taxa, three most dominant, or five most dominant taxa "dominants in common" (DIC). Other definitions can be found on pages 22-33.

	Sept. 18, 2001	Nov. 19, 2001	Nov. 25, 2002
PLATYHELMINTHES			
TURBELLARIA			
TRICLADIDA			
Planariidae			4
ANNELIDA			
OLIGOCHAETA (aquatic earthworms)			
TUBIFICIDA			
Enchytraeidae			
Tubificidae			
Aulodrilus pleuriseta			2
Spirosperma nikolskvi			
Tubificidae w/o capilliform setae			28
LUMBRICINA			1
MOLLUSCA			
GASTROPODA (spails)			
MESOGASTROPODA			
Hudrobiidae			
Ampiaola			2
Amnicola			5
Conjohasia			
Goniobasis			
Leptoxis carinata		1	1
BASOMMATOPHORA			
Ancylidae (limpets)			
Ferrissia			3
Planorbidae			
Gyraulus			
Planorbella			10
Lymnaeidae			
Fossaria			
Physidae			
Physella			4
BIVALVIA (clams and mussels)			
VENEROIDA			
Corbiculidae			
Corbicula fluminea			23
Sphaeriidae (fingernail clams)			
Pisidium			
CHELICERATA			
ARACHNIDA			
HYDRACHNIDIA (water mites)		1	1
ARTHROPODA			
CRUSTACEA			
OSTRACODA		1	
MALACOSTRACA			
ISOPODA (sow bugs)			
A sellidae			
Licous			
AMPHIPODA (soude)			
Awir nirODA (scuus)			
Cranconyc			
Crangonyx			
Gammaridae			
Gammarus	91	54	21
Hyalellidae			
Hyalella azteca			

01570150 -- Conodoguinet Cr DS of Orrs Bridge Rd at Camp Hill, PA--Continued

	Sept. 18, 2001	Nov. 19, 2001	Nov. 25, 2002
INSECTA			
EPHEMEROPTERA (mayflies)			
PISCIFORMA			
Baetidae			
Acentrella			
Acerpenna			
Baetis	29	2	
Baetis (2-tailed)	1		
SETISURA			
Heptageniidae			
Heptagenia			
Leucrocuta	1		
Stenacron	2	1	
Stenonema	6	15	6
Isonychiidae			
Isonychia		2	1
FUCATERGALIA			
Leptophlebiidae			
Leptophlebia			
Paraleptophlebia			
Ephemeridae			
Hexagenia			
Potamanthidae			
Anthopotamus	2	11	1
Caenidae			
Caenis	14	3	77
Ephemerellidae			
Ephemerella			
Serratella		2	
Leptohyphidae			
Tricorythodes	3		
ODONATA (dragonflies and damselflies)			
ZYGOPTERA			
Coenagrionidae			
Argia	1	2	2
Enallagma			
HEMIPTERA (true bugs)			
Corixidae			
PLECOPTERA (stoneflies)			
EUHOLOGNATHA			
Taeniopterygidae			
Taeniopteryx		3	
SYSTELLAGNATHA			
Perlidae			
Agnetina			
Paragnetina			
COLEOPTERA (beetles)			

01570150 -- Conodoguinet Cr DS of Orrs Bridge Rd at Camp Hill, PA--Continued

	Sept. 18, 2001	Nov. 19, 2001	Nov. 25, 2002
POLYPHAGA			
Hydrophilidae (water scavenger beetles)			
Berosus			1
Psephenidae (water pennies)			
Psephenus	5	2	20
Elmidae (riffle beetles)			
Dubiraphia		2	4
Macronychus			
Optioservus	13	37	11
Promoresia			
Stenelmis	49	10	27
Scirtidae			
MEGALOPTERA (dobsonflies and fishflies)			
Corvdalidae			
Corvdalus			
Sialidae			
Sialis			
TRICHOPTERA (caddisflies)			
SPICIPALPIA			
Hydrontilidae			
Hydroptila	1	1	1
Leucotrichia			
Glossosomatidae			
Glossosoma			
ANNIII IPAI PIA			
Philopotamidae			
Chimarra			
Hydronsychidae	2		
Chaumatonsycha	2	8	
Hydronsyche	6	12	
Hydropsyche hifida ar			
L'entoceridae			
Helicopsychidee			
Helicopsychidae			
I EPIDOPTEPA (aquatic moths)			5
Duralidae			
Patrophila			
DIDTEDA (true flies)			
Caratopogonidae (hiting midges)			
Brohozzia			
Chironomidae (non hiting midgas)			
Tanunodinga			
1 anypounae Dontonourini			
Ablab samuia malles hi			
Ablabesmyla mallochi			
Conchapelopia		8	1
Pentaneura	1		
Thiennemannimyia gr.		1	

01570150 -- Conodoguinet Cr DS of Orrs Bridge Rd at Camp Hill, PA--Continued

	Sept. 18, 2001	Nov. 19, 2001	Nov. 25, 2002
Procladini			
Procladius			
Tanypodini			
Tanypus			
Orthocladiinae			
Corynoneurini			
Corynoneura			
Orthocladiini			
Cricotopus/Orthocladius			
Cricotopus	2		
Cricotopus bicinctus	1	3	
Cricotopus trifascia			
Cricotopus vierrensis			
Eukiefferiella		1	4
Eukiefferiella brevicalcar gr.			
Nanocladius	1		
Orthocladius		1	9
Thiennemaniella	1		
Tvetenia			
Tvetenia bavarica gr.			
Tvetenia vitracies gr.		1	
Chironominae	1	1	
Chironomini			
Chironomus			
Cryptochironomus		1	
Dicrotendipes		3	
Microtendipes pedellus gr.	4	8	1
Paratendipes			
Phaenopsectra			
Polypedilum		2	
Polypedilum flavum		3	
Polypedilum scalaenum gr.			13
Pseudochironomini			
Pseudochironomus		2	
Tanytarsini			
Cladotanytarsus		7	
Rheotanytarsus	2	30	1
Tanytarsus	12	14	
Simuliidae (black flies)			
Simulium			
TOTAL TAXA	26	37	30
TOTAL NUMBER	253	257	290
TOTAL EPT TAXA	12	11	6
PERCENT EPT TAXA	46	30	20
HBI	5.49	5.17	5.96
PERCENT DOMINANT TAXA (single)	36	21	27

401432076581301 -- Conodoguinet Cr 1.52 mi DS of Good Hope Dam, PA

REMARKS --All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U. S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than; c - Sample Holding Time Exceeded. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	Sample type	MAGNE- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00924)	POTAS- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00938)	SODIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG AS NA) (00934)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01108)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (µG/G AS AS) (01003)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (µG/G AS CD) (01028)	CALCIUM SEDIMT, BED MATERL (µG/G) (62456)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01029)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS CU) (01043)
APR 2001 06	1245	1028	9813	9	4300	3800	150	22000	<6	<1.4	27000	32	32
Date	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS PB) (01052)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01053)	MERCURY SEDI- MENT BEDMAT (µG/G) (30280)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS NI) (01068)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (µG/G) (01148)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (μG/KG) (39333)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39076)	AROCLOR 1242 PCB BOT.MAT (μG/KG) (39499)	AROCLOR 1248 PCB BOT.MAT (μG/KG) (39503)	AROCLOR 1254 PCB BOT.MAT (μG/KG) (39507)	AROCLOR 1260 PCB BOT.MAT (μG/KG) (39511)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (μG/KG) (34257)
APR 2001 06	26000	37	850	<.14	36	<10	c<200	c<200	c<.25	c<.25	c<.25	c<.25	c<200
Date	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39351)	CHLOR- NEB, BED MAT DRY WT, REC (µG/KG) (62903)	CHLORO- BENZIL- ATE, BED MAT DRY WT, REC (µG/KG) (39461)	CHLORO- THAL- ONIL, BED MAT DRY WT, REC (µG/KG) (62904)	CHLOR- PYRIFOS IN BOT. MAT. (µG/KG) (81404)	CIS- CHLOR- DANE, BED MAT DRY WT, REC (µG/KG) (62802)	CIS- PER- METHRIN BED MAT DRY WT, REC (µG/KG) (62908)	DCPA, BED MAT DRY WT, REC (µG/KG) (62905)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (µG/KG) (34262)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39383)	ENDO- SULFAN BETA BOT.MAT (µG/KG) (34359)	ENDO- SULFAN SULFATE BOT.MAT (µG/KG) (34354)	ENDO- SULFAN I TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39389)
APR 2001 06	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200
Date	ENDRIN ALDE- HYDE BOT.MAT (μG/KG) (34369)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39393)	ENDRIN KETONE, BED MAT DRY WT, REC (µG/KG) (62906)	ETRIDI- AZOLE, BED MAT DRY WT, REC (μG/KG) (62907)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (µG/KG) (39423)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39413)	HEXA- CHLORO- BENZENE TOT. IN BOTTOM MATL. (µG/KG) (39701)	HEXA- CHLORO- CYCLO- PENT- ADIENE BOT.MAT (µG/KG) (34389)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39343)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39321)	P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (μG/KG) (39301)	P,P'- DDD, RECOVER IN BOT- TOM MA- TERIAL (µG/KG) (39363)	PROPA- CHLOR, BED MAT DRY WT, REC (µG/KG) (62909)
APR 2001 06	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200	c<200

TI	<1 –
FLU	JR –
AL	EN,
BED	MAT
DRY	WT,
RI	SC
(μG)	/KG)
(629	902)

APR 2001 06...

Date

. c<200

401547076584501 -- Conodoguinet Cr 20 ft US of Good Hope Dam, PA

REMARKS --All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U. S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than; c - Sample Holding Time Exceeded. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	Sample type	MAGNE- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00924)	POTAS- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00938)	SODIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG AS NA) (00934)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01108)	$\begin{array}{c} \text{ARSENIC} \\ \text{TOTAL} \\ \text{IN BOT-} \\ \text{TOM MA-} \\ \text{TERIAL} \\ (\mu G/G \\ \text{AS AS}) \\ (01003) \end{array}$	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (µG/G AS CD) (01028)	CALCIUM SEDIMT, BED MATERL (µG/G) (62456)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01029)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS CU) (01043)
APR 2001 06 06	1044 1045	9813 9813	1028 1028	9 5	15000 5700	3400 3500	<130 340	29000 23000	16 <10	<1.3 <2.4	61000 52000	43 34	58 41
Date	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS PB) (01052)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01053)	MERCURY SEDI- MENT BEDMAT (µG/G) (30280)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS NI) (01068)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (µG/G) (01148)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (μG/KG) (39333)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39076)	AROCLOR 1242 PCB BOT.MAT (μG/KG) (39499)	AROCLOR 1248 PCB BOT.MAT (µG/KG) (39503)	AROCLOR 1254 PCB BOT.MAT (μG/KG) (39507)	AROCLOR 1260 PCB BOT.MAT (μG/KG) (39511)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (µG/KG) (34257)
APR 2001 06 06	88000 37000	38 46	1100 910	<.13 <.24	56 41	<9 <17	c<100 c<200	c<100 c<200	c<.25 c<.25	c<.25 c<.25	c<.25 c<.25	c<.25 c<.25	c<100 c<200
Date	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39351)	CHLOR- NEB, BED MAT DRY WT, REC (µG/KG) (62903)	CHLORO- BENZIL- ATE, BED MAT DRY WT, REC (µG/KG) (39461)	CHLORO- THAL- ONIL, BED MAT DRY WT, REC (µG/KG) (62904)	CHLOR- PYRIFOS IN BOT. MAT. (µG/KG) (81404)	CIS- CHLOR- DANE, BED MAT DRY WT, REC (µG/KG) (62802)	CIS- PER- METHRIN BED MAT DRY WT, REC (µG/KG) (62908)	DCPA, BED MAT DRY WT, REC (µG/KG) (62905)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (µG/KG) (34262)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39383)	ENDO- SULFAN BETA BOT.MAT (µG/KG) (34359)	ENDO- SULFAN SULFATE BOT.MAT (µG/KG) (34354)	ENDO- SULFAN I TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39389)
APR 2001 06 06	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<50 c<100	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200
Date	ENDRIN ALDE- HYDE BOT.MAT (µG/KG) (34369)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39393)	ENDRIN KETONE, BED MAT DRY WT, REC (µG/KG) (62906)	ETRIDI- AZOLE, BED MAT DRY WT, REC (µG/KG) (62907)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (µG/KG) (39423)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39413)	HEXA- CHLORO- BENZENE TOT. IN BOTTOM MATL. (µG/KG) (39701)	HEXA- CHLORO- CYCLO- PENT- ADIENE BOT.MAT (µG/KG) (34389)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39343)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39321)	P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39301)	P,P'- DDD, RECOVER IN BOT- TOM MA- TERIAL (µG/KG) (39363)	PROPA- CHLOR, BED MAT DRY WT, REC (µG/KG) (62909)
APR 2001 06 06	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200	c<100 c<200

	TRI-
	FLUR-
	ALIN,
	BED MAT
	DRY WT,
Date	REC
	(µG/KG)
	(62902)
APR 2001	
06	c<100
06	c<200

401547076584502 -- Conodoguinet Cr 40 ft US of Good Hope Dam, PA

REMARKS --All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U. S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than; c - Sample Holding Time Exceeded. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	Sample type	MAGNE- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00924)	POTAS- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00938)	SODIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG AS NA) (00934)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01108)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (µG/G AS AS) (01003)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (µG/G AS CD) (01028)	CALCIUM SEDIMT, BED MATERL (µG/G) (62456)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01029)	$\begin{array}{c} \text{COPPER,} \\ \text{RECOV.} \\ \text{FM BOT-} \\ \text{TOM MA-} \\ \text{TERIAL} \\ (\mu\text{G/G} \\ \text{AS CU}) \\ (01043) \end{array}$
APR 2001 06	0955	1028	9813	9	5100	2600	<170	20000	<7	<1.7	49000	31	37
Date	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS PB) (01052)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01053)	MERCURY SEDI- MENT BEDMAT (µG/G) (30280)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS NI) (01068)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (µG/G) (01148)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39333)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39076)	AROCLOR 1242 PCB BOT.MAT (µG/KG) (39499)	AROCLOR 1248 PCB BOT.MAT (µG/KG) (39503)	AROCLOR 1254 PCB BOT.MAT (µG/KG) (39507)	AROCLOR 1260 PCB BOT.MAT (µG/KG) (39511)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (µG/KG) (34257)
APR 2001 06	29000	44	740	<.17	33	<12	c<200	c<200	c<.25	c<.25	c<.25	c<.25	c<200
Date	CHLOR- DANE, TOTAL IN BOT- TOM MA-	CHLOR- NEB, BED MAT DRY WT,	CHLORO- BENZIL- ATE, BED MAT DRY WT.	CHLORO- THAL- ONIL, BED MAT DRY WT,	CHLOR- PYRIFOS IN BOT	CIS- CHLOR- DANE, BED MAT	CIS- PER- METHRIN BED MAT	DCPA, BED MAT	DELTA BENZENE HEXA- CHLOR-	DI- ELDRIN, TOTAL IN BOT-	ENDO- SULFAN	ENDO- SULFAN	ENDO- SULFAN I TOTAL IN BOT-
	TERIAL (µG/KG) (39351)	REC (µG/KG) (62903)	REC (µG/KG) (39461)	REC (µG/KG) (62904)	MAT. (μG/KG) (81404)	REC (µG/KG) (62802)	DRY WT, REC (µG/KG) (62908)	DRY WT, REC (µG/KG) (62905)	IDE BOT.MAT (µG/KG) (34262)	TOM MA- TERIAL (µG/KG) (39383)	BETA BOT.MAT (μG/KG) (34359)	SULFATE BOT.MAT (µG/KG) (34354)	TOM MA- TERIAL (µG/KG) (39389)
APR 2001 06	TERIAL (µG/KG) (39351) c<200	REC (µG/KG) (62903) c<200	REC (µG/KG) (39461) c<200	REC (µG/KG) (62904) c<200	MAT. (μG/KG) (81404) c<200	REC (μG/KG) (62802) c<200	C<200	DRY WT, REC (µG/KG) (62905) c<200	IDE BOT.MAT (μG/KG) (34262) c<200	TOM MA- TERIAL (μG/KG) (39383) c<200	BETA BOT.MAT (μG/KG) (34359) c<200	SULFATE BOT.MAT (μG/KG) (34354) c<200	TOM MA- TERIAL (μG/KG) (39389) c<200
APR 2001 06 Date	TERIAL (μG/KG) (39351) c<200 ENDRIN ALDE- HYDE BOT.MAT (μG/KG) (34369)	REC (μG/KG) (62903) c<200 ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (μG/KG) (39393)	REC (µG/KG) (39461) c<200 ENDRIN KETONE, BED MAT DRY WT, REC (µG/KG) (62906)	REC (µG/KG) (62904) c<200 ETRIDI- AZOLE, BED MAT DRY WT, REC (µG/KG) (62907)	MAT. (µG/KG) (81404) c<200 HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (µG/KG) (39423)	μC/ WL, REC (μG/KG) (62802) c<200	DRY WT, REC (μG/KG) (62908) c<200 HEXA- CHLORO- BENZENE TOT. IN BOTTOM MATL. (μG/KG) (39701)	DRY WT, REC (μG/KG) (62905) c<200 HEXA- CHLORO- CYCLO- PENT- ADIENE BOT.MAT (μG/KG) (34389)	LIDE BOT.MAT (μG/KG) (34262) c<200 LINDANE TOTAL IN BOT- TOTAL IN BOT- TERIAL (μG/KG) (39343)	TOM MA- TERIAL (μG/KG) (39383) c<200 P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (μG/KG) (39321)	BETA BOT.MAT (μG/KG) (34359) c<200 P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (μG/KG) (39301)	SULFATE BOT.MAT (µG/KG) (34354) c<200 P,P'- DDD, RECOVER IN BOT- TOM MA- TERIAL (µG/KG) (39363)	TOR MA- TERIAL (μG/KG) (39389) c<200 C<200 PROPA- CHLOR, BED MAT DRY WT, REC (μG/KG) (62909)

	TRI-
	FLUR-
	ALIN,
	BED MAT
	DRY WT,
Date	REC
	(µG/KG)
	(62902)
APR 2001	
06	c<200

401547076584503 -- Conodoguinet Cr 120 ft US of Good Hope Dam, PA

REMARKS --All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U. S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than; c - Sample Holding Time Exceeded. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	Sample type	MAGNE- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00924)	POTAS- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00938)	SODIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG AS NA) (00934)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01108)	$\begin{array}{c} \text{ARSENIC} \\ \text{TOTAL} \\ \text{IN BOT-} \\ \text{TOM MA-} \\ \text{TERIAL} \\ (\mu G/G \\ \text{AS AS}) \\ (01003) \end{array}$	$\begin{array}{c} \text{CADMIUM} \\ \text{RECOV.} \\ \text{FM BOT-} \\ \text{TOM MA-} \\ \text{TERIAL} \\ (\mu\text{G/G} \\ \text{AS CD}) \\ (01028) \end{array}$	CALCIUM SEDIMT, BED MATERL (µG/G) (62456)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01029)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS CU) (01043)
APR 2001 06	1105	1028	9813	9	7000	4300	180	32000	6	<1.4	29000	47	38
Date	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS PB) (01052)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01053)	MERCURY SEDI- MENT BEDMAT (µG/G) (30280)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS NI) (01068)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (µG/G) (01148)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39333)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39076)	AROCLOR 1242 PCB BOT.MAT (µG/KG) (39499)	AROCLOR 1248 PCB BOT.MAT (µG/KG) (39503)	AROCLOR 1254 PCB BOT.MAT (µG/KG) (39507)	AROCLOR 1260 PCB BOT.MAT (µG/KG) (39511)	$\begin{array}{c} \text{BETA} \\ \text{BENZENE} \\ \text{HEXA-} \\ \text{CHLOR-} \\ \text{IDE} \\ \text{BOT.MAT} \\ (\mu\text{G/KG}) \\ (34257) \end{array}$
APR 2001 06	33000	39	490	<.14	45	<10	c<100	c<100	c<.25	c<.25	c<.25	c<.25	c<100
Date	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39351)	CHLOR- NEB, BED MAT DRY WT, REC (µG/KG) (62903)	CHLORO- BENZIL- ATE, BED MAT DRY WT, REC (µG/KG) (39461)	CHLORO- THAL- ONIL, BED MAT DRY WT, REC (µG/KG) (62904)	CHLOR- PYRIFOS IN BOT. MAT. (µG/KG) (81404)	CIS- CHLOR- DANE, BED MAT DRY WT, REC (µG/KG) (62802)	CIS- PER- METHRIN BED MAT DRY WT, REC (µG/KG) (62908)	DCPA, BED MAT DRY WT, REC (µG/KG) (62905)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (µG/KG) (34262)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39383)	ENDO- SULFAN BETA BOT.MAT (µG/KG) (34359)	ENDO- SULFAN SULFATE BOT.MAT (µG/KG) (34354)	ENDO- SULFAN I TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39389)
APR 2001 06	c<100	c<100	c<100	c<100	c<100	c<100	c<50	c<100	c<100	c<100	c<100	c<100	c<100
Date	ENDRIN ALDE- HYDE BOT.MAT (µG/KG) (34369)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39393)	ENDRIN KETONE, BED MAT DRY WT, REC (µG/KG) (62906)	ETRIDI- AZOLE, BED MAT DRY WT, REC (µG/KG) (62907)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (µG/KG) (39423)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39413)	HEXA- CHLORO- BENZENE TOT. IN BOTTOM MATL. (µG/KG) (39701)	HEXA- CHLORO- CYCLO- PENT- ADIENE BOT.MAT (µG/KG) (34389)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39343)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39321)	P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39301)	P,P'- DDD, RECOVER IN BOT- TOM MA- TERIAL (µG/KG) (39363)	PROPA- CHLOR, BED MAT DRY WT, REC (µG/KG) (62909)
APR 2001 06	c<100	c<100	c<100	c<100	c<100	c<100	c<100	c<100	c<100	c<100	c<100	c<100	c<100

c<100

((APR 2001

06...

Date

401554076590101 -- Conodoguinet Cr 1500 ft US of Good Hope Dam, PA

REMARKS --All samples collected by U.S. Geological Survey for the Good Hope Mill Dam Project. Explanation of column headings -- AGENCY COLLECTION CODE: 1028 - U. S. Geological Survey; AGENCY ANALYZING CODE: 80020 - U.S. Geological Survey, 9813 - Pennsylvania Department of Environmental Protection; SAMPLE TYPE: 9 - Routine Sample, 5 - Duplicate Sample. Explanation of remark codes -- E - Estimated Value; < - Less Than; c - Sample Holding Time Exceeded. For explanation of units of measurement please refer to pages 42-43.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

Date	Time	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	Sample type	MAGNE- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00924)	POTAS- SIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG) (00938)	SODIUM, RECOV. FM BOT- TOM MA- TERIAL (MG/KG AS NA) (00934)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01108)	$\begin{array}{c} \text{ARSENIC} \\ \text{TOTAL} \\ \text{IN BOT-} \\ \text{TOM MA-} \\ \text{TERIAL} \\ (\mu G/G \\ \text{AS AS}) \\ (01003) \end{array}$	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (µG/G AS CD) (01028)	CALCIUM SEDIMT, BED MATERL (µG/G) (62456)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01029)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS CU) (01043)
APR 2001 06	1200	1028	9813	9	7800	2500	<100	25000	13	<1.0	9600	38	34
Date	IRON, SEDIMT, BED MA- TERIAL AS FE) (01170)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS PB) (01052)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (µG/G) (01053)	MERCURY SEDI- MENT BEDMAT (µG/G) (30280)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (µG/G AS NI) (01068)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (µG/G) (01148)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39333)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39076)	AROCLOR 1242 PCB BOT.MAT (μG/KG) (39499)	AROCLOR 1248 PCB BOT.MAT (µG/KG) (39503)	AROCLOR 1254 PCB BOT.MAT (μG/KG) (39507)	AROCLOR 1260 PCB BOT.MAT (μG/KG) (39511)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (µG/KG) (34257)
APR 2001 06	74000	46	1100	<.10	50	<7	c<10	c<10	c<.25	c<.25	c<.25	c<.25	c<10
Date	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39351)	CHLOR- NEB, BED MAT DRY WT, REC (µG/KG) (62903)	CHLORO- BENZIL- ATE, BED MAT DRY WT, REC (µG/KG) (39461)	CHLORO- THAL- ONIL, BED MAT DRY WT, REC (µG/KG) (62904)	CHLOR- PYRIFOS IN BOT. MAT. (µG/KG) (81404)	CIS- CHLOR- DANE, BED MAT DRY WT, REC (µG/KG) (62802)	CIS- PER- METHRIN BED MAT DRY WT, REC (µG/KG) (62908)	DCPA, BED MAT DRY WT, REC (µG/KG) (62905)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (µG/KG) (34262)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39383)	ENDO- SULFAN BETA BOT.MAT (µG/KG) (34359)	ENDO- SULFAN SULFATE BOT.MAT (µG/KG) (34354)	ENDO- SULFAN I TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39389)
APR 2001 06	c<10	c<10	c<10	c<10	c<10	c<10	c<5.0	c<10	c<10	c<10	c<10.0	c<10.0	c<10
Date	ENDRIN ALDE- HYDE BOT.MAT (μG/KG) (34369)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39393)	ENDRIN KETONE, BED MAT DRY WT, REC (µG/KG) (62906)	ETRIDI- AZOLE, BED MAT DRY WT, REC (µG/KG) (62907)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (µG/KG) (39423)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39413)	HEXA- CHLORO- BENZENE TOT. IN BOTTOM MATL. (µG/KG) (39701)	HEXA- CHLORO- CYCLO- PENT- ADIENE BOT.MAT (µG/KG) (34389)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39343)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39321)	P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (µG/KG) (39301)	P,P'- DDD, RECOVER IN BOT- TOM MA- TERIAL (µG/KG) (39363)	PROPA- CHLOR, BED MAT DRY WT, REC (µG/KG) (62909)
APR 2001 06	c<10.0	c<10	c<10	c<10	c<10	c<10	c<1() c<1	0 c<2	10 c<	10 c<	:10 c	<10
					Date	TF FLU ALJ BED DRY RF	RI- JR- IN, MAT WT, EC						

Date

(µG/KG) (62902)

APR 2001 06...

c<10