
Water Resources Data Pennsylvania Water Year 2002

Volume 3. Ohio and St. Lawrence River Basins

By Raymond W. Siwicki

Water-Data Report PA-02-3

U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For additional information write to:
District Chief, Water Resources Division
U.S. Geological Survey
215 Limekiln Road
New Cumberland, Pennsylvania 17070

PREFACE

This volume of the annual hydrologic data report of Pennsylvania is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for Pennsylvania are contained in 3 volumes.

Volume 1. Delaware River Basin

Volume 2. Susquehanna and Potomac River Basins

Volume 3. Ohio and St. Lawrence River Basins

Volume 3 was prepared in cooperation with the Commonwealth of Pennsylvania and other agencies under the general supervision of William H. Werkheiser, District Chief, Pennsylvania District; Robert A. Hainly, Assistant District Chief for Hydrologic Surveillance and Data Management; Raymond W. Siwicki, Chief of the Hydrologic Surveillance Program, Pittsburgh, and Steven McAuley, Chief, Pittsburgh Project Office. It is the product of a team effort by dedicated personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. In addition to the author, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

T. Buckwalter M. Janiszewski M. Schuster
L. Fekula J. McCoy G. Wehner
M. Henneberg T. Noonan D. Williams
J. Irvin W. Schachner

CONTENTS

	Page
Preface	iii
List of surface-water stations, in downstream order, for which records are published in this volume	vii
List of ground-water wells, by county, for which records are published in this volume	
List of discontinued continuous-record surface-water discharge stations	
List of discontinued continuous-record surface-water-quality stations	
Pennsylvania District office locations and addresses	
Introduction	
Cooperation	
Summary of hydrologic conditions	
Surface water	
Ground water	
Special networks and programs	
Explanation of the records	
Station identification numbers	
Downstream-order system	
Latitude-longitude system	
Records of stage and water discharge	
Data collection and computation	
Data presentation	
Station manuscript	
Data table of daily mean values	
Statistics of monthly mean data	
Summary statistics	
Identifying estimated daily discharge	
Accuracy of the records	
Other records available	
Records of surface-water quality	
Classification of records	
Arrangement of records	
On-site measurements and sample collection	
Water temperature	
Sediment	
Laboratory measurements	
Data presentation	
Accuracy of the records	
Remark codes	
Water quality-control data	
Records of ground-water levels	17
Data collection and computation	17
Data presentation	
Data table of water levels	18
Records of ground-water quality	18
Data collection and computation	18
Data presentation	
Access to USGS Water Data	19
Definition of terms	
Techniques of Water-Resources Investigations of the U.S. Geological Survey	
Special Notes Remark Codes and Selected Constituent Definitions	40

CONTENTS--Continued

	Page
Station records, surface water	
Continuous water-discharge and water-quality station records	42
Discharge at partial-record stations and miscellaneous sites	
Crest-stage partial-record stations	206
Miscellaneous sites	208
Analyses of streamflow samples collected at special-study sites	
Pennsylvania water-quality network	210
Fecal-indicator bacteria project	234
Special Notes, Remark Codes, and Selected Constituent Definitions	248
Station records, ground water	
Water-level station records	250
Ground-water data collected at special-study sites	
Statewide assessment of Methyl-Tert-Butyl-Ether (MTBE) in ground water	276
Index	281
ILLLUSTRATIONS	
Figure 1. Comparison of monthly and annual mean streamflow during water year 2002 with the medians of monthly an annual mean streamflow for the period 1961 through 1990	
2. Relation between 2002 seasonal mean ground-water levels and long-term mean ground-water levels	
System for numbering wells and miscellaneous sites	
4-5. Maps showing:	,
4. Location of continuous-record data-collection stations and network observation wells	37
5. Location of partial-record data-collection stations	
6. Location of sites sampled for the fecal-indicator bacteria project	
7. Location of wells sampled as part of the MTBE in ground water project	
77 200 and 61 World Samples as part of the 171122 in ground White projection	2.0
<u>TABLES</u>	
Table 1. Maximum allowable limits for continuous water-quality monitoring sensors	15
2. Rating continuous water-quality records	
3. Pennsylvania water-quality network station list	211

$SURFACE\text{-}WATER\ STATIONS,\ IN\ DOWNSTREAM\ ORDER,\ FOR\ WHICH\ RECORDS\ ARE\ PUBLISHED\ IN\ THIS\ VOLUME$

[Letters after station name designate type of data: (d) discharge, (c) chemical, (e) elevation, gage heights, or contents.]

OHIO RIVER BASIN

MICHAEL BARRE	Station	D
OHIO RIVER BASIN	number	Page
Allegheny River at Port Allegany (d)	03007800	42
Allegheny River at Eldred (d,c)	03010500	44
OSWAYO CREEK BASIN		
Oswayo Creek at Shinglehouse (d)	03010655	47
Allegheny River at Salamanca, NY (d)	03011020	49
KINZUA CREEK BASIN		
Kinzua Creek near Guffey (d)	03011800	51
CONEWANGO CREEK BASIN		
Conewango Creek at Russell (d,c)	03015000	53
BROKENSTRAW CREEK BASIN		
Brokenstraw Creek at Youngsville (d,c)	03015500	56
Allegheny River at West Hickory (d,c)	03016000	59
Lakes and Reservoirs in Allegheny River Basin (e)		63
OIL CREEK BASIN		
Oil Creek at Rouseville (d,c)	03020500	64
FRENCH CREEK BASIN		
French Creek near Wattsburg (d)	03021350	67
French Creek at Meadville (d,c)	03023100	69
French Creek at Utica (d)	03024000	72
Lakes and Reservoirs in French Creek Basin (e)		75
Allegheny River at Franklin (d)	03025500	76
CLARION RIVER BASIN		
East Branch Clarion River:		
Sevenmile Run near Rasselas (d)	03026500	78
East Branch Clarion River Lake (e)	03027000	81
West Branch Clarion River at Wilcox (d)	03028000	82
Clarion River at Cooksburg (d,c)	03029500	84
Clarion River near Piney (d)	03030500	87
Allegheny River at Parker (d,c)	03031500	89
REDBANK CREEK BASIN		
Redbank Creek at St. Charles (d,c)	03032500	92
MAHONING CREEK BASIN		
Mahoning Creek at Punxsutawney (d,c)	03034000	95
Little Mahoning Creek at McCormick (d)	03034500	98
Allegheny River at Kittanning (d,c)	03036500	100
CROOKED CREEK BASIN		
Crooked Creek at Idaho (d)	03038000	103
KISKIMINETAS RIVER BASIN		
Stonycreek River:		
Stonycreek River at Ferndale (d)	03040000	105
Conemaugh River at Minersville (d)	03041029	107
Conemaugh River at Seward (d)	03041500	109
Blacklick Creek at Josephine (d)	03042000	111
Yellow Creek Lake (e)	03042260	113

$SURFACE\text{-}WATER\ STATIONS,\ IN\ DOWNSTREAM\ ORDER,\ FOR\ WHICH\ RECORDS\ ARE\ PUBLISHED\ IN\ THIS\ VOLUME$

OHIO RIVER BASIN -- Continued

OHIO RIVER DASINContinued	G	
	Station number	Page
KISKIMINETAS RIVER BASINContinued	111111111111111111111111111111111111111	
Two Lick Creek:		
Yellow Creek near Homer City (d)	03042280	114
Two Lick Creek at Graceton (d)	03042500	116
Loyalhanna Creek at Kingston (d)	03045000	118
Kiskiminetas River at Vandergrift (d)	03048500	120
BUFFALO CREEK BASIN		
Buffalo Creek near Freeport (d)	03049000	122
Allegheny River at Natrona (d,c)	03049500	124
PINE CREEK BASIN		
Pine Creek:		
Little Pine Creek near Etna (d)	03049800	127
MONONGAHELA RIVER BASIN		
Dunkard Creek at Shannopin (d,c)	03072000	129
Monongahela River near Masontown (d)	03072655	132
Redstone Creek at Waltersburg (d)	03074500	134
Monongahela River at Elizabeth (d,c)	03075070	136
YOUGHIOGHENY RIVER BASIN	03073070	150
Youghiogheny River at Friendsville, MD (d)	03076500	139
Casselman River at Grantsville, MD (d)	03078000	141
Casselman River at Grantsvine, WD (d)	03079000	143
Laurel Hill Creek at Ursina (d)	03080000	145
Youghiogheny River below Confluence (d)	03080000	147
	03081000	149
Youghiogheny River at Connellsville (d)		
Youghiogheny River at Sutersville (d,c)	03083500	151
Monongahela River at Braddock (d,c)	03085000	154
Lakes and Reservoirs in Monongahela River Basin (e)		158
Ohio River:		
CHARTIERS CREEK BASIN	02005500	1.60
Chartiers Creek at Carnegie (d)	03085500	160
MONTOUR RUN BASIN	02005056	1.60
Montour Run at Scott Station near Imperial (d)	03085956	162
Ohio River at Sewickley (d,c)	03086000	164
BEAVER RIVER BASIN		
Mahoning River:	00101700	
Shenango River at Pymatuning Dam (d,c)	03101500	174
Little Shenango River at Greenville (d,c)	03102500	177
Shenango River near Transfer (d)	03102850	180
Beaver River at Wampum (d,c)	03105500	182
Connoquenessing Creek near Zelienople (d,c)	03106000	185
Slippery Rock Creek:		
Muddy Creek near Portersville (d)	03106300	188
Slippery Rock Creek at Wurtemburg (d,c)	03106500	190
Beaver River at Beaver Falls (d,c)	03107500	193
Lakes and Reservoirs in Beaver River Basin (e)		197
RACCOON CREEK BASIN		
Raccoon Creek at Moffatts Mill (d,c)	03108000	198

$SURFACE\text{-}WATER\ STATIONS,\ IN\ DOWNSTREAM\ ORDER,\ FOR\ WHICH\ RECORDS\ ARE\ PUBLISHED\ IN\ THIS\ VOLUME$

OHIO RIVER BASIN -- Continued

STREAMS TRIBUTARY TO LAKE ERIE	Station number	Page
Conneaut Creek at Conneaut, Ohio (d)	04213000	201
Elk Creek:		
Brandy Run near Girard (d)	04213075	203
Discharge at partial-record stations and miscellaneous sites Crest-stage partial-record stations		206
Discharge at partial-record stations and miscellaneous sites Crest-stage partial-record stations		206 208
Crest-stage partial-record stations		_00

GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

(Letters after local well number designate type of data: (l) water level)

GROUND-WATER RECORDS

		Pag
ALLEGHENY COUNTY	I 1 1 A G 700 (1)	251
	Local number AG 700 (l)	25
ARMSTRONG COUNTY	I I AD 100 (I)	25
	Local number AR 109 (I)	25
BEAVER COUNTY	Local number BV 156 (l)	25
	Local number BV 130 (1)	23
BUTLER COUNTY	Local number DT 211 (I)	25
	Local number BT 311 (l)	23
CLARION COUNTY	Local number CR 3 (l)	25
	Local number CR 3 (1)	23
CRAWFORD COUNTY	I I CW 412 (I)	25
	Local number CW 413 (l)	25
ELK COUNTY	Local number EK 108 (l)	25
	Local number EK 108 (I)	25
CRIE COUNTY	I I I ED 02 (I)	25
	Local number ER 82 (I)	25
AYETTE COUNTY	I I I DA 17 (I)	2.5
	Local number FA 17 (l)	25
OREST COUNTY	I I PO 11 (I)	2.
	Local number FO 11 (l)	26
REENE COUNTY	T. 1. (D. 110.4)	
	Local number GR 118 (l)	26
NDIANA COUNTY	T 1 DIOLOGO	
	Local number IN 919 (l)	26
EFFERSON COUNTY	T 1 1 TD (07 (1)	
	Local number JE 425 (1)	26
AWRENCE COUNTY	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Local number LA 1201 (l)	26
ACKEAN COUNTY	T 1 1 NG (07 (1)	
	Local number MC 125 (1)	26
MERCER COUNTY	T 1 1 ND 1061 (I)	
	Local number MR 1364 (1)	26
	Local number MR 3306 (l)	26
OMERSET COUNTY		
	Local number SO 2 (l)	26
	Local number SO 854 (l)	26
ENANGO COUNTY		
	Local number VE 57 (l)	27
WARREN COUNTY		
	Local number WR 50 (l)	27
WASHINGTON COUNTY		
Wall 400233080261301	Local number WS 155 (I)	27
WESTMORELAND COUNTY	Local number WE 300 (I)	27

The following continuous-record surface-water discharge stations (listed by downstream order) have been discontinued. Daily streamflow records were collected and published for the period of record shown for each station. Discontinued stations with less than 3 years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back of the title page of this report.

DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER DISCHARGE STATIONS

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
OHIO AND ST. LAV	WRENCE RIVER BA	ASINS	
Newell Creek near Port Allegany	03008000	7.79	1966-78
Potato Creek at Smethport	03009680	160	1975-95
Allegheny River at Larabee	03010000	530	1921 1926-39
Kinzua Creek at Dewdrop	03012000	171	1909-16
Allegheny River at Kinzua Dam	03012550	2,180	1936-91
Jackson Run near North Warren	03015280	12.8	1963-78
Allegheny River at Warren	03015310*	3,131	1989-94
Tionesta Creek at Sheffield	03016500	128	1942-46
South Branch Tionesta Creek at Barnes	03017000	85.3	1942-46
Tionesta Creek at Lynch	03017500*	233	1938-79
Tionesta Creek at Mayburg	03018000	307	1942-46
Tionesta Creek at Butler Bridge (near Nebraska)	03018500	420	1919-23
Tionesta Creek at Nebraska	03019000	469	1910-11 1924-40
Tionesta Creek at Tionesta Dam	03020000	479	1941-91
Oil Creek near Rouseville	03021000	315	1910-32
West Branch French Creek near Lowville	03021410	52.3	1975-93
French Creek at Carters Corners	03021500	208	1910-71
French Creek near Union City	03021520	221	1972-91
Little Conneauttee Creek near McKean	03021700	3.60	1961-78
French Creek at Venango	03022000*	597	1939-46
French Creek at Saegerstown	03022500	629	1921-39
Woodcock Creek at Blooming Valley	03022540*	31.1	1975-95
Woodcock Creek at Woodcock Creek Dam	03022554	45.6	1975-91
Cussewago Creek near Meadville	03023000	90.2	1911-38
French Creek at Carlton	03023500	998	1908-25

DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER DISCHARGE STATIONS—Continued

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
Sugar Creek at Wyattville	03024500	153	1910-16
Sugar Creek at Sugarcreek	03025000*	166	1933-79
Patchel Run near Franklin	03025200	5.69	1965-78
E. Branch Clarion River at E. Branch Clarion River Dam	03027500	73.2	1949-91
Clarion River at Johnsonburg	03028500*	204	1946-95
Clarion River at Ridgway	03029000*	303	1941-53
Toms Run at Cooksburg	03029400	12.6	1960-78
Clarion River near Clarion	03030000	930	1919-23
Clarion River at Callensburg	03030852*	1,163	1979-85
Clarion River at St. Petersburg	03031000	1,246	1942-53,1974-75
Big Run near Sprankle Mills	03031950	7.38	1964-81
Allegheny River near Rimer	03033000	8,389	1939-45
Stump Creek at Cramer	03033500	22.1	1942-46
Mahoning Creek at Dayton	03035000	321	1921-40
Mahoning Creek at Mahoning Creek Dam	03036000	344	1939-91
Crooked Creek at Creekside	03037000	67.6	1942-46
South Branch Plum Creek at Five Points	03037350	33.3	1996-98
South Branch Plum Creek at Willet	03037500	30.0	1942-46
Crooked Creek at Crooked Creek Dam	03039000	278	1910-91
Clear Run near Buckstown	03039200	3.68	1965-78
Stony Creek at Hollsopple	03039500	244	1937-40
North Fork Bens Creek at North Fork Reservoir	03039925	3.45	1985,1988-98
Little Conemaugh River at East Conemaugh	03041000*	183	1939-95
Little Yellow Creek near Strongstown	03042200	7.36	1961-78,1987-88
Yellow Creek near Penn Run	03042250	50.4	1964-67
Blacklick Creek at Blacklick	03043000	390	1908-51
Conemaugh River at Tunnelton	03044000	1,358	1940-91
Loyalhanna Creek at New Alexandria	03045500	265	1920-23,1926-40
Loyalhanna Creek at Loyalhanna Dam	03047000	292	1940-91
Kiskiminetas River at Avonmore	03047500	1,723	1908-37

DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER DISCHARGE STATIONS—Continued

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
Deer Creek near Dorseyville	03049646	27.0	1996-98
Monongahela River at Point Marion	03063000	2,720	1937-55
Stony Fork Tributary near Gibbon Glade	03070420	0.93	1977-95
Stony Fork near Elliottsville	03070455	7.44	1977-85
Monongahela River at Greensboro	03072500	^a 4,367	1939-95
Georges Creek at Smithfield	03072590	16.3	1964-78
Tenmile Creek near Clarksville	03072840	133	1969-79
South Fork Tenmile Creek at Jefferson	03073000	180	1932-95
Dunlap Creek at Allison	03074000	33.1	1943-51
Lick Run at Hopwood	03074300	3.80	1967-78
Youghiogheny River at Youghiogheny River Dam	03077500	436	1940-91
Big Piney Run near Salisbury	03078500	24.5	1932-70
Youghiogheny River at Ohiopyle	03081500	1,062	1928-50
Poplar Run near Normalville	03082200	9.27	1962-78
Green Lick Run at Green Lick Reservoir	03083000	3.07	1942-79
Abers Creek near Murrysville	03084000	4.39	1949-93
Turtle Creek at Trafford	03084500	55.9	1921-52
Chartiers Creek at Crafton	03085500	270	1972-75
Big Sewickley Creek near Ambridge	03086100	15.6	1968-78
Shenango River near Turnersville	03100000	152	1912-22
Sugar Run at Pymatuning Dam	03101000	8.59	1934-55
Shenango River near Jamestown	03102000	181	1920-34
Pymatuning Creek near Orangeville	03103000	169	1914-23,1926-63
Shenango River at Sharpsville	03103500	584	1938-91
Shenango River at Sharon	03104000	608	1910-38
Shenango River at New Castle	03104500*	792	1910-11,1913-34
Cool Spring Creek near Jackson Center	03104580	13.0	1962-68
Harthegig Run near Greenfield	03104760	2.26	1969-81
Neshannock Creek at Eastbrook	03105000	228	1918-23
Wolf Creek near Slippery Rock	03106140	86.6	1977-82

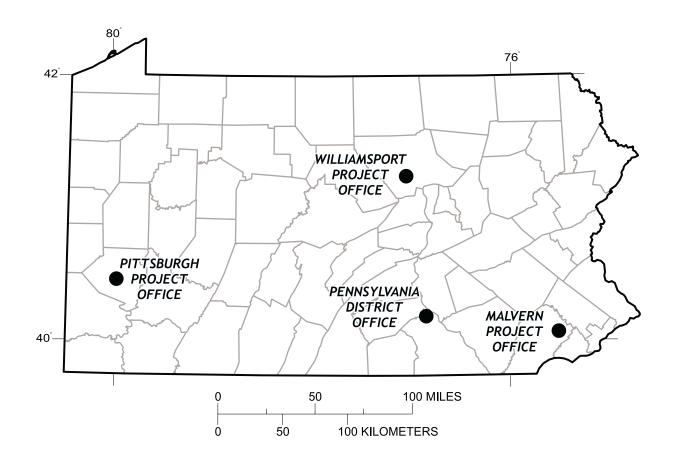
DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER DISCHARGE STATIONS—Continued

Station name	Station number	Drainage area (mi ²)	Period of record (water years)
Ohio River at Montgomery Island Dam	03108500	b 22,960	1941-51
Brush Run near Buffalo	03111150	10.3	1961-78,1983-85
Enlow Fork near West Finley	03111585	38.1	1979-85
Raccoon Creek near West Springfield	04213040	2.53	1969-94

^{*} Currently operated as a partial-record station.

^a Formerly published as 4,407.

^b About.


The following continuous-record water-quality stations (listed by downstream order) have been discontinued. Daily records were collected and published for the period shown for each constituent. Discontinued stations with less than 3 years of record, or stations with data collection less than daily, have not been included. If a station had one constituent with 3 or more years of record, all constituents having daily values will be listed for that station regardless of the length of record. Information regarding these stations may be obtained from the District Office at the address given on the back of the title page of this report.

The following are used to identify the record type: SC (specific conductance); pH; Temp (water temperature); Sed (sediment concentration and discharge).

DISCONTINUED CONTINUOUS-RECORD SURFACE-WATER-QUALITY STATIONS

Station name	Station number	Drainage area (mi ²)	Type of Record	Period of record (water years)
OHIO A	ND ST. LAWREN	ICE RIVER BA	SINS	
Brokenstraw Creek at Youngsville	03015500	321	Sed	1969-70
Oil Creek at Rouseville	03020500	300	Sed	1971-72
Clarion River at Cooksburg	03029500	807	Sed	1971-73
Redbank Creek at St. Charles	03032500	528	Sed	1969-70,1977-79
Beaver Run near Troutville	03033222	2.21	Sed	1980-81
East Branch Mahoning Creek near Big Run	03033225	29.6	Sed	1979-81
Stonycreek River at Ferndale	03040000	451	Sed Temp SC,pH	1978-79 1978-79,1997-98 1997-98
Loyalhanna Creek at Kingston	03045000	172	Sed	1970-77
Allegheny River at New Kensington	03049625	11,500	SC Temp Sed	1975-81 1975-81,1997-98 1977-79
Stony Fork Tributary near Gibbon Glade	03070420	0.93	Sed,Temp,SC,pH	1978-88
Stony Fork near Elliotsville	03070455	7.44	Sed,Temp,SC,pH	1978-85
Whiteley Creek near Kirby	03072670	5.95	Sed	1979-82
Castile Run at Clarksville	03073030	6.21	Sed	1980-81
Champion Run at Melcroft	03082120	13.8	Sed	1986-87
Poplar Run near Normalville	03082190	8.83	Sed,Temp,SC,pH	1986-88
Indian Creek at White Bridge	03082237	91.2	Temp,SC,pH	1986-87
Monongahela River at Braddock	03085000	7,337	Temp SC Sed	1973-79,1997-98 1973-75 1973-79
Enlow Fork near West Finley	03111585	38.1	Sed	1980-85

PENNSYLVANIA DISTRICT OFFICE LOCATIONS AND ADDRESSES

Pennsylvania District Office: U.S. Geological Survey Water Resources Division Yellow Breeches Office Center 215 Limekiln Road New Cumberland, PA 17070 (717) 730-6900 FAX (717) 730-6997 Williamsport Project Office: U.S. Geological Survey Water Resources Division 439 Hepburn Street Williamsport, PA 17701 (570) 323-7127 FAX (570) 323-2137 Pittsburgh Project Office: U.S. Geological Survey Water Resources Division 1000 Church Hill Road Pittsburgh, PA 15205 (412) 490-3800 FAX (412) 490-3828 Malvern Project Office: U.S. Geological Survey Water Resources Division Great Valley Corporate Center 111 Great Valley Parkway Malvern, PA 19355 (610) 647-9008 FAX (610) 647-4594

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.

This report, Volume 3, contains: (1) discharge records for 60 continuous-record streamflow-gaging stations, 5 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 11 lakes and reservoirs; (3) water-quality records for 23 streamflow gaging stations and 33 ungaged streamsites; (4) water-level records for 23 ground-water network observation wells; and, (5) water-quality analyses at 28 special study ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.

Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-02-3." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.

Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published annually under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.

Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address on the back of the title page or by phoning the Scientific and Technical Products Section at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.

COOPERATION

The U.S. Geological Survey (USGS) and organizations of the Commonwealth of Pennsylvania have had cooperative agreements for the systematic collection of surface-water records during the periods 1919-21 and 1931 to date, water-quality records from 1944 to date, and ground-water records from 1925 to date. Organizations that supplied data are acknowledged in station manuscripts. Organizations that assisted in collecting data for this report through cooperative agreements with the USGS are listed below.

The Commonwealth of Pennsylvania, Department of Environmental Protection, David E. Hess, Secretary, through the following: Office of Water Management, Christine Martin, Deputy Secretary;

Bureau of Water Supply and Wastewater Management, Frederick Marrocco, Director;

Bureau of Watershed Management, Stuart I. Gansell, Director;

Bureau of Waterways Engineering, Michael Conway, Director.

Allegheny County Airport Authority, Richard C. Belotti, Director of Planning. Harmony Water Authority, David Szakelyhidi, Chairman.

Indiana County Municipal Services Authority, Michael Duffalo, Executive Director.

New York State Department of Environmental Conservation, Erin M. Crotty, Commissioner.

Federal Energy Regulatory Commission Licensee: Reliant Energy, Mid-Atlantic Power

COOPERATION--Continued

The following Federal agency assisted in the data-collection program by providing funds or services: Corps of Engineers, U.S. Army, Pittsburgh District.

The following organizations aided in collecting records: Allegheny Power Service Corp. and Latrobe Municipal Authority.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

Streamflows in the Upper Ohio and St. Lawrence River Basins during water year 2002 were below normal. The annual measured streamflow was 77 percent of the median of the 1961-90 annual mean streamflow at the Ohio River index gaging station, Oil Creek at Rouseville, Pa. (station 03020500).

The monthly mean streamflow (fig. 1) was above normal for May, normal for the months of October, December, January, February, April, June, July, and below normal for all the other months of the year. Several of the months defined as normal had mean streamflow that were near the long-term 25-percentile flow. For the purposes of this analysis, an above normal streamflow is defined as flow greater than the long-term 75 percent flow, and below normal streamflow is flow less than the long-term 25 percent flow.

For the last several years, a period of severe drought, followed by short-term partial recovery has occurred throughout the state, and this year is no exception. Although there were several months in the year where a recovery in streamflow began to occur, the streamflow at the Ohio River Basin index station indicates that the major trend for this year was one of partial recovery followed by short periods of drought. Most of the recovery of streamflows occurred in the winter and spring of 2001-2002, and then, with the exception of July, the remaining period of the year showed streamflow below normal. The index station streamflow for the months of August and September was below normal indicating a trend seen in previous years.

A comparison of the monthly and yearly mean streamflow during the 2002 water year with that of the 1961-90 reference period for Oil Creek at Rouseville, Pa., is shown in figure 1.

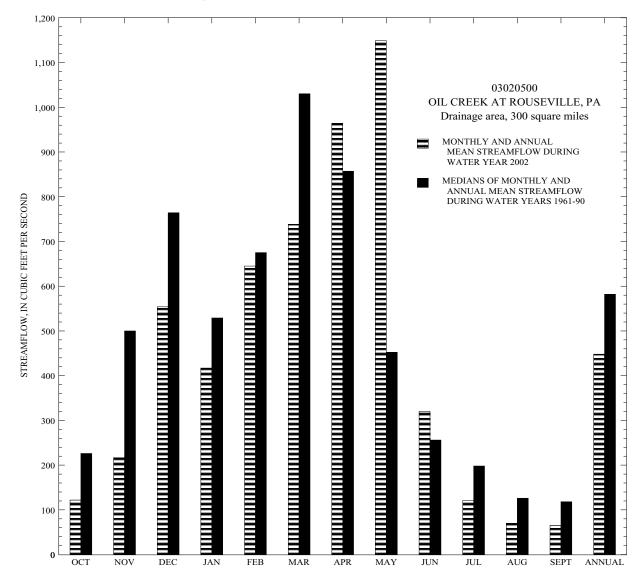
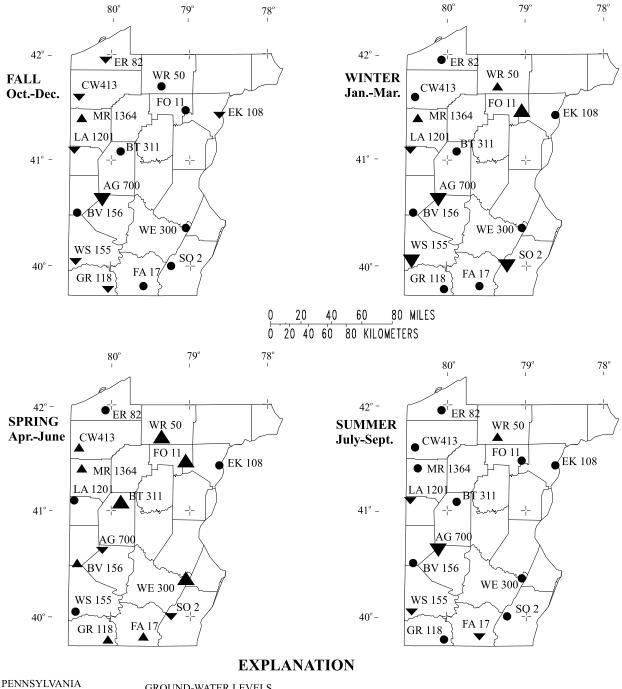


Figure 1.--Comparison of monthly and annual mean streamflow during water year 2002 with the medians of monthly and annual mean streamflow during water years 1961-90.

SUMMARY OF HYDROLOGIC CONDITIONS


Ground Water

During the 2002 water year, ground-water levels reached annual highs in most observation wells during the late winter or spring and reached annual lows during October and November of 2001 and September 2002. Water levels during the 2002 water year for 15 network wells were averaged by season and compared to the long-term water level for these seasons (fig. 2). Long-term water levels were calculated from records ranging from 20 to 65 years in length.

In the fall of 2002 water year, seasonal water levels were above normal in one well, normal in seven wells, below normal in six wells, and much-below normal in one well (fig. 2). During the winter, water levels were normal or higher in 11 wells and below-normal in 1 well and much-below normal in 3 wells.

Period of record high water levels were observed in May at BV 156, BT 311, FO 11, WR 50, and WE 300. Precipitation records in these counties indicated 1 to 3 inches of precipitation above normal for May. In March and April, precipitation in these five counties was also about 0.5 inch above normal for each of the 2 months. This wet period of 3 months resulted in above normal recharge to the groundwater system causing the period of record high water levels at the five wells. In the spring, water levels were much-above normal in four wells, above normal in five wells, normal in four wells, and below normal in two wells.

The wet spring of 2002 was followed by a dry summer with precipitation deficits reported for July, August, and September at almost all counties in western Pennsylvania. The highest precipitation deficit for Pennsylvania for the month of August was a negative 2.9 inches in Crawford County. Because of the deficit precipitation during the summer and subsequent below normal ground-water recharge, most of the wells dropped to a lower category of water-level status during the summer when compared to the spring water levels. During the summer, water levels were above normal in 1 well, normal in 10 wells, and below normal in 3 wells and much-below normal in 1 well.

BASIN LOCATION

GROUND-WATER LEVELS

- MUCH ABOVE NORMAL--Water level is higher than the 10th percentile for this season for all years of record. ABOVE NORMAL--Water level is between the 10th and 25th percentile for this season for all years of record.
- NORMAL--Water level is between the 25th and 75th percentile for this season for all years of record.
- BELOW NORMAL--Water level is between the 75th and 90th percentile for this season for all years of record.
- MUCH BELOW NORMAL--Water level is lower than the 90th percentile for this season for all years of record.

Figure 2.--Relation between 2002 seasonal mean ground-water levels and long-term mean ground-water levels [Seasonal percentile values were determined by ranking the average monthly water levels for each month in the season from highest to lowest for all years of record and averaging the ranks for the three months. A water level that is higher than the seasonal 10th percentile value would be expected to occur only once in a ten-year period. Conversely, a water level that is lower than the seasonal 90th percentile value also would be expected to occur only once during a ten-year period.]

SPECIAL NETWORKS AND PROGRAMS

The <u>Hydrologic Bench-Mark Network</u> is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/.

The National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at [http://water.usgs.gov/nasqan/].

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at [http://bas.usgs.gov/acidrain/].

The <u>National Water-Quality Assessment</u> (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water-resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at [http://water.usgs.gov/nawqa/].

EXPLANATION OF THE RECORDS

The surface-water and ground-water records in this report are for the 2002 water year that began October 1, 2001, and ended September 30, 2002. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for streamflow stations, and ground-water-level data. The location of these stations and wells are shown in figures throughout the report. The following sections of the introductory text are presented to provide users with a more detailed explanation of how these hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station in this report, whether a streamsite or a well, is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells and, in Pennsylvania, for some miscellaneous surface-water sites where only random water-quality samples or discharge measurements are made.

Downstream-Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream-order system of indention shows which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned in downstream order. In assigning station numbers, no distinction is made between partial-record stations and continuous-record stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. A station number can be from 8 to 15 digits in length and normally appears to the left of the station name. For example, an 8-digit number for a station such as 03020500, includes a 2-digit part number "03" plus a 6-digit downstream-order number "020500." The part number designates major river basins; for example, part "03" is the Ohio and St. Lawrence River Basins.

Latitude-Longitude System

The identification numbers for wells and miscellaneous surface-water sites are assigned based on the grid system of latitude and longitude. The system provides the geographic location of the well or miscellaneous site and a unique number for each site. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote the degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid (fig. 3).

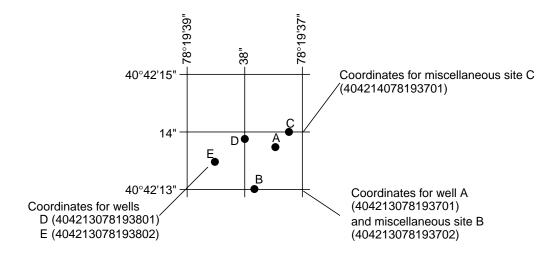


Figure 3.--System for numbering wells and miscellaneous sites (latitude and longitude).

A local well number is also assigned to the wells and consists of a 2-letter abbreviation of the county in which the well is located and a sequential number assigned at the time the well was scheduled.

Records of Stage and Water Discharge

Records of stage and water discharge may be continuous or partial. Continuous records of discharge are those obtained using a continuous stage-recording device through which either instantaneous water discharges may be computed for any time, or mean discharges may be computed for any period of time, during the period of record. Because daily mean discharges or end-of-day contents for reservoirs commonly are published for such stations, they are referred to as "daily stations" or "continuous-record stations."

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial-record stations," or "Low-flow partial-record stations." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Location of all continuous-record and partial-record stations for which data are given in this report are shown in figures 4 and 5.

Data Collection and Computation

Those data obtained at a continuous-record gaging station on a stream consist of a continuous record of stage, individual measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relation between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. Continuous records of stage are obtained with analog recorders that trace continuous graphs of stage, with solid-state electronic data loggers, or with data collection platforms (DCPs) that electronically record and transmit the data via satellite to ground receiving stations. Measurements of discharge are made with current meters using methods adopted by the Geological Survey as a result of experience accumulated since 1880. These methods are described in standard textbooks, in Water-Supply Paper 2175, and the U.S. Geological Survey Techniques of Water-Resources Investigations (TWRIs), Book 3, Chapter A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) velocity-area studies; (3) results of indirect measurements of peak discharge, such as slope-area or contracted-opening measurements, and computations of flow-over-dams or weirs; or (4) step-backwater techniques.

Daily mean discharges are computed by applying each recorded stage value (gage height) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is determined by the shifting-control method, in which correction factors based on the individual discharge measurements and notes of the personnel making the measurements are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control. For some stations, formation of ice in the winter may so obscure the stage-discharge relation that daily mean discharges must be estimated from other information such as temperature and precipitation records, notes of observations, and records for other stations in the same or nearby basins for comparable periods.

At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations, the stage-discharge relation is affected by changing stage; at these stations, the rate of change in stage is used as a factor to compute discharge.

When computing records of lake or reservoir contents, it is necessary to have available from surveys, curves or tables defining the relation between stage and content. The application of stage to the stage-content curves or tables gives the contents from which daily, monthly, or yearly changes then are determined. If the stage-content relation changes because of deposition of sediment in the lake or reservoir, periodic surveys may be necessary to redefine the relation. Even when this is done, the contents computed may increase in error as the time elapsed since the last survey increases. Discharges over lake or reservoir spillways are computed from stage-discharge relation much as other stream discharges are computed.

For some gaging stations, there are periods when no gage-height data are collected or when the recorded gage height is so imprecise or incorrect that it cannot be used to compute daily mean discharge or end-of-day contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated from the recorded range in stage, previous or following record, discharge measurements, weather records, and comparison with other station records from the same or nearby basins. Likewise, daily contents may be estimated from operator's logs, previous or following record, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

The records published for each continuous-record surface-water discharge station (gaging station) consist of four parts; (1) the manuscript or station description; (2) the data table of daily mean discharge values for the current water year with summary data; (3) a tabular statistical summary of monthly mean flow data for a designated period; and (4) a summary statistics table for a designated period that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

Station manuscript

For each continuous-record station, the manuscript provides, under various headings, descriptive information such as station location, period of record, historical extremes outside the period of record, record accuracy, and other remarks pertinent to station operation and regulation. The following comments, as appropriate, clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, listed for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that its streamflow can reasonably be considered equivalent to the streamflow at the present station.

REVISED RECORDS.--Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows; "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see Definition of Terms), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--This paragraph is used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

PEAK DISCHARGES FOR CURRENT YEAR.--Peaks given here are similar to those found in the summary statistics table, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge (see Definition of Terms) are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for streams for which the peaks are subject to substantial control by man. The time of occurrence for peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030, and 1:30 p.m. is 1330.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if those data for a discontinued station were obtained by computer retrieval, these data would be current and accurate because published revisions of data are always accompanied by revisions of those data in computer storage.

Beginning with the 1991 annual State Data report, headings for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the PEAK DISCHARGES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN."). Figures for cubic feet per second per square mile and runoff in inches may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations streamflow is affected by regulation or diversion. The monthly adjusting figure for known regulation or diversion may be shown at the bottom of the daily values table or in the appropriate lake or reservoir table.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the daily values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "WATER YEARS ______," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period for the statistics may not be the same as the period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes may not be within the designated period. Selected streamflow duration statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The summary statistics data, as appropriate, are provided with each continuous record of discharge. The following comments clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge may be affected by reservoir storage or diversion. The monthly adjusting figures for known regulation or diversions may be shown 1) at the bottom of the daily values table, or 2) in the appropriate lake or reservoir table.
- ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations the annual total discharge may be affected by reservoir storage or diversion. The monthly adjusting figures for known regulation or diversions may be shown 1) at the bottom of the daily values table, or 2) in the appropriate lake or reservoir table.

HIGHEST ANNUAL MEAN .-- The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN .-- The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN .-- The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN .-- The minimum daily mean discharge for the year or for the designated period.

- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year, low-flow statistic.)
- MAXIMUM PEAK FLOW.--The maximum instantaneous peak discharge occurring for the water year or designated period.

 Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript.
- MAXIMUM PEAK STAGE.--The maximum instantaneous peak stage occurring for the water year or designated period.

 Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in the REMARKS paragraph in the manuscript or in a footnote. If the dates of occurrence of the maximum peak stage and maximum peak flow are different, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information.

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

- ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Runoff figures may be omitted if there is extensive regulation or diversion. Data reports may use any of the following units of measurements in presenting annual runoff data:
 - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
 - Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
 - Inches (IN.,in.) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partial-record stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Identifying Estimated Daily Discharge

Beginning with the 1987 annual State data report, estimated daily discharge values published in the water-discharge tables are identified by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated".

Accuracy of the Records

The accuracy of streamflow records depends primarily on (1) The stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of their true values; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned are rated "poor." Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 ft³/s (cubic foot per second); to the nearest tenth from 1.0 to 10 ft³/s; to whole numbers from 10 to 1,000 ft³/s; and to 3 significant figures when greater than 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

Other Records Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperature, discharge measurements, gage-height records, and rating tables is on file in the District's offices. Most gaging-station records are available in computer-usable form and many statistical analyses have been made.

Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist (telephone (717) 730-6916).

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Specifically, a continuing record station is a site which meets one or all of the following conditions: (1) When chemical samples are collected daily or monthly for 10 or more months during the water year. (2) When water temperature records include observations taken one or more times daily. (3) When sediment discharge records include periods for which sediment loads are computed and are considered to be representative of the runoff for the water year. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Location of stations for which records on the quality of surface water appear in this report are shown in figures 4 and 5.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-site Measurements and Sample Collection

During the collection of water-quality data, assurance that the data obtained represent the in-situ quality of the water is a major concern. Certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are collected. To assure that measurements made in the laboratory also represent the in-situ water quality, carefully prescribed procedures need to be followed when collecting the samples, when treating the samples to prevent changes in quality pending analysis, and when shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations," Book 1, Chap. D2; Book 3, Chap. A1, A3, and A4; Book 9, Chap. A1-A9. These references are listed in the PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS section of this report. These methods are consistent with ASTM standards and generally follow ISO standards. Also, detailed information on collecting, treating, and shipping samples may be obtained from the U.S. Geological Survey District Office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples collected for the National Water Quality Assessment Program (see Definition of Terms) are obtained from several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors that must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

For chemical-quality stations equipped with digital monitors, the published records consist of daily maximum, minimum, and mean values for each constituent measured and are determined from data that are recorded at 15-, 30-, or 60-minute intervals by solid-state electronic data loggers, or with Data Collection Platforms (DCPs). More detailed records (measured values at a frequency greater than daily) may be obtained from the U.S. Geological Survey District Office at the address given on the back of the title page of this report or from [http://waterdata.usgs.gov/pa/nwis/].

Water Temperature

Water temperatures are measured at most of the water-quality stations. At stations where recording instruments are used, maximum, minimum, and mean temperatures for each day are published and recorded data are available from the District Office or from [http://waterdata.usgs.gov/pa/nwis//]. In addition, water temperatures are measured at the time of discharge measurements for most water-discharge stations and are on file in the District's offices. For stations where water temperature is measured manually once or twice daily, it is usually measured at about the same time each day. Large streams have a small diurnal temperature change; temperatures in shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by heated waste-water discharges.

Sediment

Suspended-sediment concentrations are determined from samples collected by hand or by pump samplers. Hand samples utilize the appropriate sampler (dependent on stream depth and velocity) and are collected using the depth-integrating method at single or multiple verticals in the cross section. Samples collected by pump samplers use an intake set to a fixed location in the cross section. The intake is located at a site that best represents the entire cross section on the basis of simultaneous samples collected at various stages by the pumping sampler and by hand. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, every 15 minutes). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge, mean concentration, and the constant 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided-day method. For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These methods are consistent with ASTM standards and generally follow ISO standards.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of suspended-sediment discharge, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations.

Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. The remaining samples are analyzed in the Geological Survey laboratory in Denver, Colorado. If other laboratories are used, they are identified in the "*Remarks*" or "*Cooperation*" paragraph of each water-quality station manuscript. Methods used to analyze sediment samples and to compute sediment records are described in TWRI Book 5, Chapter C1. Methods used by the Geological Survey laboratories are given in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, A4 and A5. These methods are consistent with ASTM standards and generally follow ISO standards. Methods used by other laboratories are approved by the U.S. Geological Survey, Water Resources Division.

Data Presentation

For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for constituents currently measured daily. Tables of chemical, physical, biological, radiochemical, and other data, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then follow in sequence.

In the descriptive headings, if the location is identical to that of the streamflow-gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description.

LOCATION.--See Data Presentation under "Records of Stage and Water Discharge"; same comments apply.

DRAINAGE AREA.--See Data Presentation under "Records of Stage and Water Discharge"; same comments apply.

PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of constituents measured daily or continuously and those measured less often than daily. For those measured daily or continuously, periods of record are given for the constituents individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, pumping sampler, or other sampling device is in operation at a station.

REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for constituents measured daily or more frequently. None are given for constituents measured less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWeb [http://waterdata.usgs.gov/nwis/]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to insure the most recent updates. Updates to NWISWeb are currently made on an annual basis.

The surface-water-quality records for partial-record stations and miscellaneous sampling sites are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

Accuracy of the Records

The accuracy of water-quality records at continuous-record water-quality stations depends primarily on (1) hydrologic environment; (2) seasonal conditions; (3) operating accuracy of the equipment; (4) fouling of the probes; (5) calibration drift in the equipment; and (6) maintenance frequency.

Beginning with the 2000 water year, an additional statement describing the accuracy attributed to the records is included under the "REMARKS" heading. After the record has been evaluated for reporting continuous data (table 1), one of the four accuracy classifications is applied to each measured physical property on a scale ranging from poor to excellent. Table 2 shows the criteria used in rating continuous water-quality records.

In addition, beginning with the 2000 water year, the presentation of daily mean pH values has been discontinued and replaced by median pH values. (Wagner, R.J., Mattraw, H.C., Ritz, G.F., and Smith, B.A., 2000, Guidelines and standard procedures for continuous water-quality monitors—site selection, field operation, calibration, record computation, and reporting: U.S. Geological Survey Water-Resources Investigations Report 00-4252, 53 p.).

Table 1.--Maximum allowable limits for continuous water-quality monitoring sensors.

Measured physical property	Maximum allowable limits for water-quality sensor values
Temperature	± 2.0°C
Specific conductance	± 30 percent
Dissolved oxygen	The greater of \pm 2.0 mg/L or 20 percent
рН	± 2 pH units
Turbidity	± 30 percent

Table 2.--Rating continuous water-quality records.

	Ratings			
Measured physical property	Excellent	Good	Fair	Poor
Water temperature	≤ ± 0.2°C	>± 0.2 to 0.5°C	>± 0.5 to 0.8°C	>± 0.8°C
Specific conductance	≤±3%	>± 3 to 10%	>± 10 to 15%	>± 15%
Dissolved oxygen	\leq \pm 0.3 mg/L	>± 0.3 to 0.5 mg/L	>± 0.5 to 0.8 mg/L	>± 0.8 mg/L
рН	≤ ± 0.2 unit	>± 0.2 to 0.5 unit	>± 0.5 to 0.8 unit	>± 0.8 unit
Turbidity	≤±5%	>± 5 to 10%	>± 10 to 15%	>± 15%

Remark Codes

The following remark codes may appear with the water-quality data in this report:

PRINTED OUTPUT	REMARK	
E,e	Estimated value.	
>	Actual value is known to be greater than the value shown.	
<	Actual value is known to be less than the value shown.	
M	Presence of material verified, but not quantified.	
N	Presumptive evidence of presence of material.	
U	Material specifically analyzed for, but not detected.	
A	Value is an average.	
V	Analyte was detected in both the environmental sample and the associated blanks.	
S	Most probable value.	

Dissolved Trace-Element Concentrations

NOTE.--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ g/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the μ g/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994.

Change in National Trends Network Procedures

NOTE.--Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP Program Office, Illinois State Water Survey, 2204 Griffith Drive, Champaign, IL 61820-7459 (217-333-7873).

Water Quality-Control Data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

BLANK SAMPLES.--Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

Ambient blank--a blank solution that is put in the same type of sample container used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions.

Field blank--a blank solution that is subjected to all aspects of sample collection, field processing, preservation, transportation, and laboratory handling as an environmental sample.

Trip blank--a blank solution that is put in the same type of sample container used for an environmental sample and kept with the set of samples bottles before and after sample collection.

Equipment blank--a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank--a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Filter blank--a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank--a blank solution that is mixed and separated using a field sample splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank--a blank solution that is treated with the same preservatives used for an environmental sample.

Canister blank--a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field sample.

REFERENCE SAMPLES.--Reference material samples are solutions or materials having a known composition that is certified by a laboratory. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

REPLICATE SAMPLES.--Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Sequential samples--a type of replicate sample in which environmental samples are collected one after the other, typically within a short time.

Split sample--a type of replicate sample in which an environmental sample is split into subsamples contemporaneous in time and space.

SPIKE SAMPLES.--Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Records of Ground-Water Levels

Ground-water level data from an observation well network and from ground-water projects are published herein. Locations of observation wells in the basic network are shown in figure 4. Ground-water data are grouped by counties, arranged in alphabetical order, and are listed on page x. Miscellaneous or short-term ground-water data collection projects are published following the basic network data.

Data Collection and Computation

Water levels are measured in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are of consistent accuracy and reliability.

The prime identification number for a given well is the 15-digit number that appears above the station description. The secondary identification number is the local well number, an alphanumeric number, derived from the county location of the well.

Water-level records are obtained from direct measurements with a steel tape, from the graph of a water-level recorder, with solid-state electronic data loggers, or with Data Collection Platforms (DCPs). The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the elevation of the land-surface datum is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels for most wells, especially historical network wells, are reported in feet above or below land surface datum. For some short term project wells the water levels may be reported as elevation (feet above sea level) for convenience of the project work. Water levels are reported daily for all wells equipped with recording gages.

Water levels are reported to as many significant figures as can be justified by the local conditions. Accordingly, most measurements are reported to a hundredth of a foot, but some may be given to a tenth of a foot.

Data Presentation

Each well record consists of three parts; (1) the station description, (2) the data table of water levels observed during the current water year, and (3) a graph of the water levels for the last 3 years. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments that follow clarify information presented under the various headings of the station description.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds), the hydrologic-unit number, the distance and direction from a geographic point of reference, and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth or screened interval, method of construction, use, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method, allowing the user to better evaluate the reported water-levels by knowing whether they are based on hourly, daily, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) sea level; it is reported with a precision relative to the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest values of one daily water-level statistic (maximum, mean, or instantaneous) reported in the data tables for the period of published record with respect to land-surface datum, (or occasionally sea level), and the dates of their occurrence. For example, if the daily maximum depth below land surface is reported in the table of water levels, this paragraph would reflect the highest and lowest of these daily maximum values for the period of record. Depending on the statistic reported in the table of water levels, extremes would be determined from daily maximum, mean, or instantaneous values.

Data table of water levels

A table of water levels follows the station description for each well. These tables usually report water-level data as maximum depth (in feet) above or below land-surface datum, but may report daily mean or instantaneous values depending upon the method used to obtain the record and how the record was published in the past. If water-level record is obtained from electronic data loggers or DCPs, in addition to data published in the table of water levels, the daily maximum, minimum, and mean water-levels are stored in computer files and available from the District Office as noted in the REMARKS paragraph for that well. Recorded data are available at the District Office or from [http://waterdata.usgs.gov/pa/nwis//]. The extremes of the water-levels reported in the table for the water year and their dates of occurrence are shown on a line below the table. Missing records are indicated by dashes in place of the water level. A hydrograph showing the last three years of water levels follows each water-level table.

Records of Ground-Water Quality

Records of ground-water quality are obtained at wells and springs included in ground-water projects. Records of ground-water quality in this report may involve a variety of types of data and measurement frequencies. Those wells with a (c) following the well number in the list of ground-water wells on page x, have water-quality data published in the report. Miscellaneous or short-term ground-water data collection projects are published following the basic network data.

Data Collection and Computation

The records of ground-water quality in this report are usually obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses may be presented for some counties but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for a particular year in context with similar records obtained in previous years.

Most methods for collecting and analyzing water samples are described in the U.S. Geological Survey TWRI publications referred to in the "On-site Measurements and Sample Collection" and the "Laboratory Measurements" sections in this data report. In addition, the TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. All samples were obtained by trained personnel. Any wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

Data Presentation

Ground-water-quality data, if collected, are published with ground-water-level data at stations where level data are collected. Any data collected at partial-record stations and miscellaneous sites follow the information for continuous ground-water record stations. Data for each section are listed alphabetically by county, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARK codes listed for surface-water-quality records are also applicable to ground-water-quality records.

ACCESS TO USGS WATER DATA

The U.S. Geological Survey is the principal Federal water-data agency and, as such, collects and disseminates about 70 percent of the water data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. The Geological Survey provides near real-time stream stage, discharge, ground water well, and stream water-quality data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the World Wide Web (WWW). These data may be accessed at [http://waterdata.usgs.gov/pa/nwis//].

Water-quality and ground-water data also are available through the WWW at [http://waterdata.usgs.gov/pa/nwis//]. In addition, data can be provided in various machine-readable formats on compact disc or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.)

For most streamgages, "real-time" streamflow conditions are available on the World Wide Web (WWW) Pennsylvania District Home Page at [http://pa.water.usgs.gov/]. Daily streamflow values for the period of record, annual peak stream discharges, and streamflow conditions for surrounding states may be obtained through the WWW at [http://waterdata.usgs.gov/nwis/].

A wide variety of additional information, such as ordering U.S. Geological Survey maps and publications is available at the U.S. Geological Survey Home Page at [http://www.usgs.gov/].

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover.

- Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).
- **Acre-foot** (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")
- Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.
- Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")
- **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.
- Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.
- Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)
- Aroclor is the registered trademark for a group of poly-chlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.
- **Artificial substrate** is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate sim-

- plifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")
- **Ash mass** is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m^3) , and periphyton and benthic organisms in grams per square meter (g/m^2) . (See also "Biomass" and "Dry mass")
- **Aspect** is the direction toward which a slope faces with respect to the compass.
- **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.
- **Bankfull stage,** as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.
- Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")
- **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.
- **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.
- Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")
- **Bed material** is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")
- **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material (See "Bed material")

Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (μm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$.

pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume $(\mu m^3/mL)$ is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cfs-day (See "Cubic foot per second-day")

Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The

determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable bound-aries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acrefeet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the timeweighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration")

Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

Data collection platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/ or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Embeddedness is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or red-dish-brown precipitate after incubation at 41 °C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis*, *Streptococcus feacium*, *Streptococcus avium*, and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5°C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from airdried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution.

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N}$$
,

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic index stations referred to in this report are continuousrecord gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.]

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_{o}e^{-\lambda L} ,$$

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or low tide is the average of all high or low tides, respectively, over a specific period.

- Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")
- **Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.
- **Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.
- **Metamorphic stage** refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.
- Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.
- **Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.
- **Micrograms per gram** (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.
- **Micrograms per kilogram** (UG/KG, µg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.
- **Micrograms per liter** (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.
- Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.
- Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.

- **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.
- **Miscellaneous site,** miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.
- Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.
- **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.
- Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.
- National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")
- **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")
- **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.
- **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.
- North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.
- **Open or screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.
- **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).

Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.

Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.

Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.

Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.

Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottomwithdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay	>0.00024 - 0.004	Sedimentation
Silt	>0.00024 - 0.004	Sedimentation
Sand	>0.062 - 2.0	Sedimentation/sieve
Gravel	>2.0 - 64.0	Sieve
Cobble	>64 - 256	Manual measurement
Boulder	>256	Manual measurement

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or percent of total is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photo-synthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m³/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Reach, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological con-

ditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost twothirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-daymean flow will be less than the 7Q₁₀.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be

presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of pre-cipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel.

Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended watersediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended mate-rial collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C **concentration** is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa (Species) richness is the number of species (taxa) present in a defined area or sampling unit.

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta
Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia
Species: Hexagenia limbata

Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a goldengreen metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term

needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be

defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

Ultraviolet (UV) absorbance (absorption) at 254 or

280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Watertable aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human health concern because many are toxic and are known or suspected human carcinogens.

Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate dischargeweighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplank-

ton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required.

Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2–D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2–E1. *Application of borehole geophysics to water-resources investigations*, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3–A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3–A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3–A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3–A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p.
- 3–A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.

- 3–A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A10. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. *Regression modeling of ground-water flow*, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3–B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p.

- 3–C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4–A1. Some statistical tools in hydrology, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. *Statistical methods in water resources*, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

Section B. Surface Water

- 4–B1. Low-flow investigations, by H.C. Riggs: USGS–TWRI book 4, chap. B1. 1972. 18 p.
- 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5–A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5–C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

- 6–A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p.
- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002.

 77 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

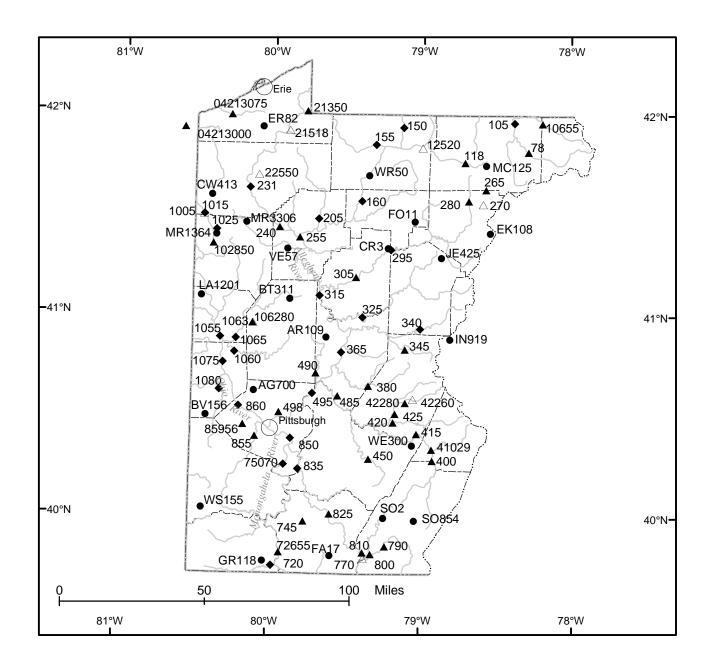
- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8–A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge


8–B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9–A1. *National field manual for the collection of water-quality data: Preparations for water sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. *National field manual for the collection of water-quality data: Selection of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. *National field manual for the collection of water-quality data: Cleaning of equipment for water sampling*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. *National field manual for the collection of water-quality data: Collection of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.

- 9–A5. *National field manual for the collection of water-quality data: Processing of water samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9–A6. *National field manual for the collection of water-quality data: Field measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.
- 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. *National field manual for the collection of water-quality data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. *National field manual for the collection of water-quality data: Safety in field activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

EXPLANATION

TYPE

- Streamflow station
- △ Lake
- Streamflow and water-quality station
- Observation well

NOTE: Downstream station numbers are abbreviated; the first two digits (part number) and the last two digits (if zeros) are omitted (for example, station number 03072000 is shown as 720, and station number 03042280 is shown as 42280).

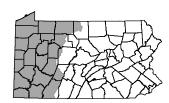
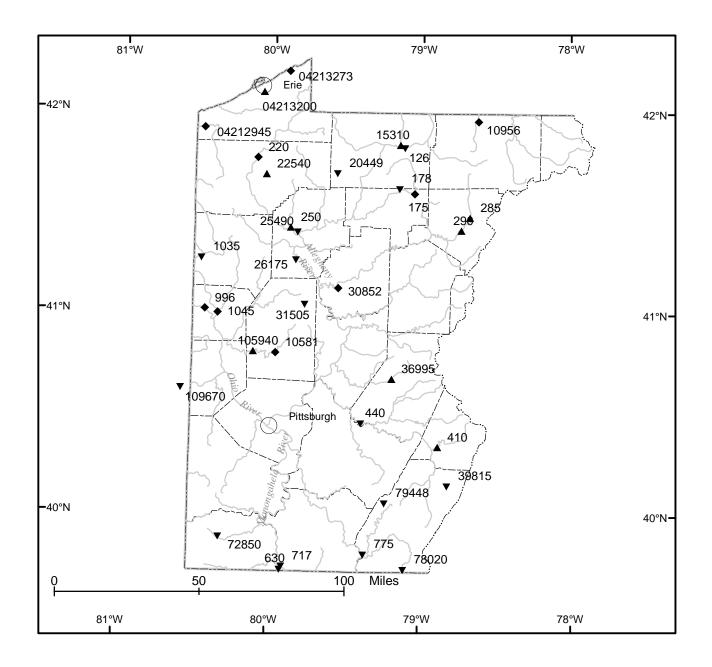
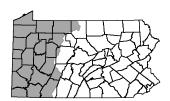




Figure 4.--Location of continuous-record data-collection stations and network observation wells.

EXPLANATION

- Streamflow station
- ◆ Streamflow and water-quality station
- ▼ Water-quality station

NOTE: Downstream station numbers are abbreviated; the first two digits (part number) and the last two digits (if zeros) are omitted (for example, station number 03041000 is shown as 410, and station number 03105940 is shown as 105940).

Figure 5.--Location of partial-record data-collection stations.

SPECIAL NOTES, REMARK CODES, AND SELECTED CONSTITUENT DEFINITIONS

NOTES--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter(μ G/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the μ G/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year.

- --Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).
- --In March 1989 a bias was discovered in the turbidimetric method for sulfate analysis for those samples analyzed by the U.S. Geological Survey National Water-Quality Laboratory indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989.
- --Methylene blue active substance (MBAS) determinations made from January 1, 1970, through August 29, 1993, at the National Water Quality Laboratory in Denver (Analyzing Agency Code 80020) are positively biased. These data can be corrected on the basis of the following equation, if concentrations of dissolved nitrate plus nitrite, as nitrogen, and dissolved chloride, determined concurrently with the MBAS data are applied:

MBASCOR = M - 0.0088N - 0.00019C

where:

MBASCOR = corrected MBAS concentration, in mg/L;

M = reported MBAS concentration, in mg/L; N = dissolved nitrate plus nitrite, as nitrogen, in mg/L; and C = dissolved chloride concentration, in mg/L.

The detection limit of the new method is 0.02 mg/L, whereas the detection limit for the old method was 0.01 mg/L. A detection limit of 0.02 mg/L should be used with corrected MBAS data from January 1, 1970, through August 29, 1993.

Remark Codes.--The following remark codes may appear with the data tables in this report:

PRINTED OUTPUT

REMARK

E,e	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
M	Presence of material verified but not quantified.
K	Results based on colony count outside the acceptance range (non-ideal colony count).
L	Biological organism count less than 0.5 percent (organism may be observed rather than counted).
D	Biological organism count equal to or greater than 15 percent (dominant).
ND V	Material specifically analyzed for but not detected. Analyte was detected in both the environmental sample and the associated blanks.

EXPLANATION OF CODES USED TO DEFINE SAMPLE COLLECTION PROCEDURES (partial listing)

(71999) SAMPLE PURPOSE CODES:

(84164) SAMPLER TYPE: (partial list)

10--Routine 15--NAWQA 20--NASQAN 30--Benchmark

3011--US D-77

3035--DH-76 Trace metal sampler with teflon gasket and nozzle

(82398) SAMPLE METHOD CODES:

10--Equal width increment

10--Equal width increment 20--Equal discharge increment 30--Single vertical 40--Multiple verticals 50--Point sample

70--Grab sample 120--Velocity integrated

8010--Other

110--Sewage sampler

3039--D-77 Trace metal

3040--D-77 Trace metal modified teflon bag sampler

3045--DH-81 with Teflon cap and nozzle

8010--Other (other than a defined sampler type)

SPECIAL NOTES, REMARK CODES AND SELECTED CONSTITUENT DEFINITIONS--Continued

Explanation of selected abbreviations used in constituent definitions in water-quality tables:

AC-FT acre-feet

bottom material (Unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.) **BOT MAT**

COLS/100 ML colonies per 100 milliliters

DIS dissolved

FET fixed end-point titration

FLD field (Measurement determined at field site.)

F/S feet per second G/M gallons per minute

G/SQM; MG/M2 grams or milligrams per square meter

incremental titration

KF AGAR nutrient medium for growth of fecal streptococcal bacteria

μG/L micrograms per liter

uS/CM microsiemens per centimeter

MG/L milligrams per liter

MG/M2 milligrams per square meter MM OF HG millimeters of mercury

NONCARB noncarbonate

NTU nephelometric turbidity unit

PCI/L picocuries per liter

REC recoverable

TOT total

T/DAY tons per day

WH IT whole water, incremental titration (Alkalinity, bicarbonate, and

carbonate as determined by incremental titration of unfiltered water

at the field site.)

2 SIGMA Counting statistic that represents error in the reported radon, uranium,

or tritium value caused by variations in sample counting, background radiation, volume of sample, and decay since sample was collected.

0.7u GF 0.7 micron glass-fiber filter (Water filtered through a glass-fiber

membrane filter with openings that are 0.7 microns in size.)

(00027) AGENCY COLLECTING SAMPLE CODES:(partial listing)

1028 -- U.S. Geological Survey

(00028) AGENCY ANALYZING SAMPLE CODES:(partial listing)

1028 --U.S. Geological Survey 80020 --U.S. Geological Survey, National Water-Quality Laboratory, Denver, Colorado 9813 --Pennsylvania Department of Environmental Protection 83613 --District Water-Quality Laboratory, Troy, New York

MEDIUM CODES: (partial listing)

9-- Surface water. R-- Quality-control sample. Surface water. Q-- Quality-control sample. Artificial

SURFACE-WATER STATION RECORDS

OHIO RIVER MAIN STEM

03007800 ALLEGHENY RIVER AT PORT ALLEGANY, PA

LOCATION.--Lat 41°49'07", long 78°17'35", McKean County, Hydrologic Unit 05010001, on right bank 40 ft upstream from bridge on U.S. Highway 6 at Port Allegany, 1.1 mi upstream from Twomile Creek, 1.4 mi downstream from Allegheny Portage Creek, at mile 285.5.

DRAINAGE AREA.--248 mi².

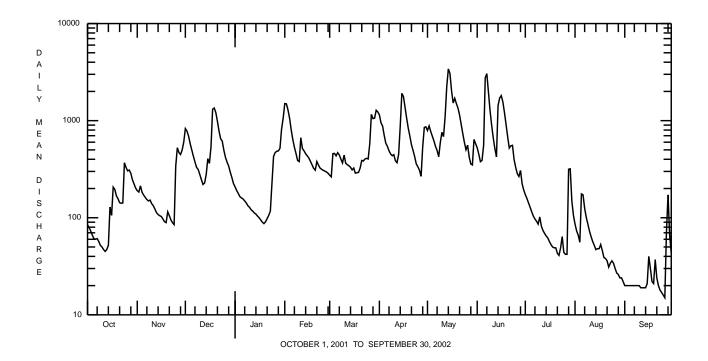
PERIOD OF RECORD. --October 1974 to current year. Discharge measurements obtained by U.S. Army Corps of Engineers March 1971 to October 1974.

GAGE.--Water-stage recorder. Datum of gage is 1,454.88 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of June 23, 1972 reached a stage of at least 17.5 ft, discharge, 21,700 ft³/s, from U.S. Army Corps of Engineers discharge measurement. Actual peak discharge may have been greater.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 2,500 ft³/s and maximum (*):


Date	Т	ime	Discharg ft ³ /s	e	Gage Heigh (ft)	ht		Date		Time	Discl ft	harge ³ /s	Gage Height (ft)	
May 14	2	300	*3,760)	*9.56			June	6	2300	3,4	410	9.22	
			DIS	CHA	ARGE, CUBIC	FEET PER		TER YEAR OO EAN VALUES		2001 TO	SEPTE	MBER 20	02	
DAY	OCT	NO	DV I	DEC	JAN	FEB	MAR	APR	MAY	J	JN	JUL	AUG	SEP
1	85			329	e208	1500	e274	1150	791		26	173	86	20
2 3	79 73			781 594	e191 e178	1490 1290	264 457	950 880	884 775	4.	50 78	158 142	73 66	20 20
4	66	18		581	e165	1060	460	706	692		76 89	128	56	20
5	61			199	e160	806	434	585	619		56	115	176	20
6	60			130	e156	640	468	543	542			104	172	20
7 8	61 57		54 : 19 :	375 330	e149 e142	533 459	443 401	489 454	492 425			97 92	125 101	20 20
9	52	15		314	e142 e133	389	367	435	597			86	86	20
10	50	1		279	e133	379	442	446	758		00	102	73	20
11	47			247	e121	666	364	386	685		53	82	64	19
12	45			220	e117	516	352	369	1110		17	74	57	19
13 14	47 52	11		228 278	e112 e109	e489 e456	343 331	451 880	2240 3410		24	69 65	52 47	19 19
15	129	10		106	e104	e435	311	1910	3060			62	48	21
16	106			363	e100	e412	325	1770	2030			57	48	40
17	207			539	e95	e381	288	1370	1520			53	53	30
18	196			310	e90	e351	291	1060	1700		10 09	50	46	22
19 20	168 157			350 210	e87 e91	e323 309	293 325	837 694	1500 1350		39 30	49 49	39 38	21 37
21 22	143 141			983 780	e98 e106	379 e349	389 384	564 493	1140 918		22 51	43 41	36 31	24 20
23	141			552	117	e349	403	426	737	5	57	41	34	18
24	368			516	225	e315	409	358	598		97	64	36	17
25	330			197	428	e308	403	335	502		30	44	34	16
26	304			120	469	e302	580	308	559		84	42	30	15
27 28	310 287			374 341	484 488	e296 e287	1160 1050	267 534	423 358	2	66 07	42 316	27 26	71 172
29	246			295	519		1060	851	350		24	319	24	66
30	223			260	821		1280	864	640		93	150	24	43
31	202			225	1060		1230		579			106	22	
TOTAL	4494	603			7451	15445	15581	21365	31984			3023	1830	909
MEAN MAX	145 368			539 350	240 1060	552 1500	503 1280	712 1910	1032 3410		93	97.5 319	59.0 176	30.3 172
MIN	45			220	87	287	264	267	350		93	41	22	15
CFSM	0.58	0.8		.17	0.97	2.22	2.03	2.87	4.16			0.39	0.24	0.12
IN.	0.67	0.9		.51	1.12	2.32	2.34	3.20	4.80			0.45	0.27	0.14
STATISTIC	S OF 1	MONTHL	MEAN D	ATA	FOR WATER	YEARS 19	75 - 2002,	BY WATER	YEAR (WY)				
MEAN	275			513	443	560	812	905	502		73	184	151	204
MAX	964	10		082	1119	1572	1730	2006	1127			598	1175	1226
(WY)	1991	199		78	1998	1976	1979	1993	1996			1977	1994	1977
MIN	31.2	39	. 7	L50	78.2	98.0	326	359	142	48	. 5	28.5	15.0	20.7
(WY)	1983	199	99 19	999	1981	1980	1993	1976	1985	19	91	1991	1999	1991

e Estimated.

03007800 ALLEGHENY RIVER AT PORT ALLEGANY, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1975 - 2002
ANNUAL TOTAL	107772		151612			
ANNUAL MEAN	295		415		446	
HIGHEST ANNUAL MEAN					670	1994
LOWEST ANNUAL MEAN					275	2001
HIGHEST DAILY MEAN	4280	Apr 10	3410	May 14	8860	Jan 20 1996
LOWEST DAILY MEAN	19	Aug 15,16	15	Sep 26	5.4	Sep 5 1999
ANNUAL SEVEN-DAY MINIMUM	23	Aug 12	19	Sep 8	6.4	Aug 31 1999
MAXIMUM PEAK FLOW			3760	May 14,15	a 12600	Jan 19 1996
MAXIMUM PEAK STAGE			9.56	May 14,15	b 15.37	Jan 19 1996
INSTANTANEOUS LOW FLOW			15	Sep 25,26	5.1	Sep 6 1999
ANNUAL RUNOFF (CFSM)	1.19		1.67		1.80	
ANNUAL RUNOFF (INCHES)	16.17		22.74		24.45	
10 PERCENT EXCEEDS	705		1050		1000	
50 PERCENT EXCEEDS	150		293		247	
90 PERCENT EXCEEDS	38		38		47	

<sup>a From rating curve extended above 6,700 ft³/s.
b From peak-stage indicator.</sup>

03010500 ALLEGHENY RIVER AT ELDRED, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 41°57′48″, long 78°23′11″, McKean County, Hydrologic Unit 05010001, on right bank at site of former highway bridge, 600 ft upstream from bridge on State Highway 346, 1,000 ft upstream from Knapp Creek, 0.5 mi north of Eldred, at mile 267.8.

DRAINAGE AREA.--550 mi².

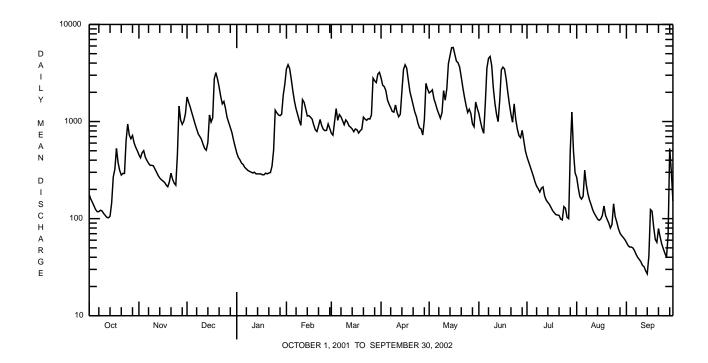
WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1939 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,416.53 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 5,000 ft³/s and maximum (*):


Date May 15		me ft	charge t ³ /s	Gage Heigh (ft) *13.91	nt		Date No other		Гіте	Discharge ft ³ /s than base	Gage Height (ft) discharge.	
			DISCHA	RGE, CUBIC	FEET PER S		ΓER YEAR OC EAN VALUES	CTOBER	2001 TO SE	PTEMBER 20	002	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	177 159 147 135 124	455 423 477 501 429	1790 1580 1410 1230 1080	e476 e427 e403 e373 e361	3480 3850 3510 2740 2060	759 724 994 1360 1030	2820 2370 2290 2080 1670	1970 2030 2120 1710 1520	1210 1000 849 756 1530	385 344 306	266 206 168 159 170	57 53 51 51 50
6 7 8 9 10	118 118 122 120 113	397 372 354 354 350	945 839 745 701 655	e337 e325 e313 e307 e301	1620 1350 1180 1020 914	1180 1120 1020 927 1040	1510 1390 1270 1250 1480	1330 1200 1080 1230 2080	3530 4470 4680 3770 2230	216 203 188	315 223 180 155 139	47 43 40 38 36
11 12 13 14 15	108 103 102 106 145	324 301 278 262 252	584 528 507 608 1170	e295 e301 e289 e289 e289	1680 1580 1350 1140 1150	988 902 874 838 786	1240 1120 1190 2050 3440	1660 2180 3950 4780 5760	1540 1190 998 1650 3400	171 155 147	123 113 106 99 96	33 32 29 27 41
16 17 18 19 20	268 323 529 378 314	244 236 222 213 240	987 1090 2760 3190 2740	e289 e283 e283 e294 e289	1110 1060 923 822 789	838 823 761 804 834	3840 3540 2670 2030 1740	5790 4920 4190 4030 3640	3630 3480 2770 2020 1520	121 115 110	99 108 135 108 98	124 119 82 61 57
21 22 23 24 25	281 292 292 632 944	294 254 232 221 456	2270 1820 1520 1610 1360	e295 e298 347 508 1310	902 1050 908 830 806	1110 1060 1030 1070 1060	1480 1260 1130 960 859	2880 2240 1790 1470 1240	1190 985 1520 1050 835	99 97 133	90 80 87 142 105	79 65 55 49 44
26 27 28 29 30 31	726 665 718 603 543 501	1440 1040 935 1010 1200	1100 977 e868 e769 e646 e552	1230 1170 1150 1190 1870 2440	811 945 849 	1170 2800 2630 2520 3080 3210	838 726 1040 2470 2160	1340 1210 946 883 1590 1370	715 682 812 636 500	100 506 1250 492	92 79 71 67 64 61	40 67 528 307 152
MEAN MAX MIN CFSM	9906 320 944 102 0.58 0.67	13766 459 1440 213 0.83 0.93	38631 1246 3190 507 2.27 2.61	18332 591 2440 283 1.08 1.24	40429 1444 3850 789 2.63 2.73	39342 1269 3210 724 2.31 2.66	53913 1797 3840 726 3.27 3.65	74129 2391 5790 883 4.35 5.01	55148 1838 4680 500 3.34 3.73	242 1250 97 0.44	4004 129 315 61 0.23 0.27	2457 81.9 528 27 0.15 0.17
STATISTIC	s of M	ONTHLY MEA	N DATA	FOR WATER	YEARS 194	0 - 2002,	BY WATER	YEAR (WY)			
(WY) MIN	448 1894 1991 41.6 1965	814 3175 1951 62.0 1965	1067 2390 1973 55.1 1961	1036 3359 1952 87.3 1961	1112 3250 1976 213 1980	1856 4697 1945 728 1993	2053 5314 1940 385 1946	1189 3273 1943 292 1985	788 6490 1972 109 1991	3893 1942 57.8	246 1699 1994 43.4 1957	310 2340 1977 34.6 1959

e Estimated.

03010500 ALLEGHENY RIVER AT ELDRED, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WA	TER YEAR	WATER YEARS	1940 - 2002
ANNUAL TOTAL	249465		357571			
ANNUAL MEAN	683		980		942	
HIGHEST ANNUAL MEAN					1475	1972
LOWEST ANNUAL MEAN					631	1962
HIGHEST DAILY MEAN	5580	Apr 11	5790	May 16	55700	Jun 23 1972
LOWEST DAILY MEAN	39	Aug 16	27	Sep 14	16	Sep 6 1999
ANNUAL SEVEN-DAY MINIMUM	49	Aug 13	34	Sep 8	20	Sep 1 1999
MAXIMUM PEAK FLOW			6030	May 15	a 65400	Jun 23 1972
MAXIMUM PEAK STAGE			13.91	May 15	b 29.05	Jun 23 1972
INSTANTANEOUS LOW FLOW			26	Sep 14	15	Sep 6 1999
ANNUAL RUNOFF (CFSM)	1.24		1.78		1.71	
ANNUAL RUNOFF (INCHES)	16.87		24.18		23.28	
10 PERCENT EXCEEDS	1800		2400		2260	
50 PERCENT EXCEEDS	354		726		520	
90 PERCENT EXCEEDS	83		98		84	

 $[\]begin{array}{ll} \textbf{a} & \text{From rating curve extended above } 21,\!000 \text{ ft}^3\!/\!\text{s on basis of slope-area measurement at gage height } 27.6 \text{ ft.} \\ \textbf{b} & \text{From floodmark.} \end{array}$

03010500 ALLEGHENY RIVER AT ELDRED, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
APR 2002													
18 JUN	0815	9813	2790	40	8.7	7.0	58	15.1	21	5.8	1.6	12	9.2
26	0815	9813	715	40	8.7	7.2	74	20.4	28	7.6	2.1	19	8.7
AUG 15	0900	9813	96	40	6.5	7.4	129	23.7	43	11.8	3.2	36	8.5
15	0900	9013	90	40	0.5	7.4	129	23.7	43	11.0	3.2	30	0.5
		RESIDUE											MANGA-
	RESIDUE AT 105	TOTAL	NITRO-	NITRO-	NITRO-		PHOS-			COPPER,	IRON,	LEAD,	NESE, TOTAL
		አጥ 10ፎ	CENT	CEN		MTTTD .		DHUG-	CADDOM				
	DEG. C,	AT 105 DEG. C,	GEN, AMMONIA	GEN, NITRATE	GEN, NITRITE	NITRO- GEN,	PHORUS ORTHO	PHOS- PHORUS	CARBON, ORGANIC	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	RECOV-
5.1.	DEG. C, DIS-	DEG. C, SUS-	AMMONIA TOTAL	NITRATE TOTAL	NITRITE TOTAL	GEN, TOTAL	ORTHO TOTAL	PHORUS TOTAL	ORGANIC TOTAL	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE
Date	DEG. C, DIS- SOLVED	DEG. C, SUS- PENDED	AMMONIA TOTAL (MG/L	NITRATE TOTAL (MG/L	NITRITE TOTAL (MG/L	GEN, TOTAL (MG/L	ORTHO TOTAL (MG/L	PHORUS TOTAL (MG/L	ORGANIC TOTAL (MG/L	RECOV- ERABLE (µG/L	RECOV- ERABLE (µG/L	RECOV- ERABLE (µG/L	RECOV- ERABLE (µG/L
Date	DEG. C, DIS-	DEG. C, SUS-	AMMONIA TOTAL	NITRATE TOTAL	NITRITE TOTAL	GEN, TOTAL	ORTHO TOTAL	PHORUS TOTAL	ORGANIC TOTAL	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE	RECOV- ERABLE
	DEG. C, DIS- SOLVED (MG/L)	DEG. C, SUS- PENDED (MG/L)	AMMONIA TOTAL (MG/L AS N)	NITRATE TOTAL (MG/L AS N)	NITRITE TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	ORTHO TOTAL (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	RECOV- ERABLE (µG/L AS CU)	RECOV- ERABLE (µG/L AS FE)	RECOV- ERABLE (µG/L AS PB)	RECOV- ERABLE (µG/L AS MN)
APR 2002 18	DEG. C, DIS- SOLVED (MG/L)	DEG. C, SUS- PENDED (MG/L)	AMMONIA TOTAL (MG/L AS N)	NITRATE TOTAL (MG/L AS N)	NITRITE TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	ORTHO TOTAL (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	RECOV- ERABLE (µG/L AS CU)	RECOV- ERABLE (µG/L AS FE)	RECOV- ERABLE (µG/L AS PB)	RECOV- ERABLE (µG/L AS MN)
APR 2002	DEG. C, DIS- SOLVED (MG/L) (00515)	DEG. C, SUS- PENDED (MG/L) (00530)	AMMONIA TOTAL (MG/L AS N) (00610)	NITRATE TOTAL (MG/L AS N) (00620)	NITRITE TOTAL (MG/L AS N) (00615)	GEN, TOTAL (MG/L AS N) (00600)	ORTHO TOTAL (MG/L AS P) (70507)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC TOTAL (MG/L AS C) (00680)	RECOV- ERABLE (µG/L AS CU) (01042)	RECOV- ERABLE (µG/L AS FE) (01045)	RECOV- ERABLE (µG/L AS PB) (01051)	RECOV- ERABLE (µG/L AS MN) (01055)

	NICKEL,	ZINC,
	TOTAL	TOTAL
	RECOV-	RECOV-
	ERABLE	ERABLE
Date	(µG/L	(µG/L
	AS NI)	AS ZN)
	(01067)	(01092)
APR 2002		
18	< 50	<10
JUN		
26	<50	<10
AUG		
15	< 50	<10

OSWAYO CREEK BASIN

03010655 OSWAYO CREEK AT SHINGLEHOUSE, PA

LOCATION.--Lat 41°57'42", long 78°11'54", Potter County, Hydrologic Unit 05010001, on right bank 200 ft upstream from bridge on State Highway 44 at Shinglehouse and 0.7 mi upstream from Honeoye Creek.

DRAINAGE AREA.--98.7 mi².

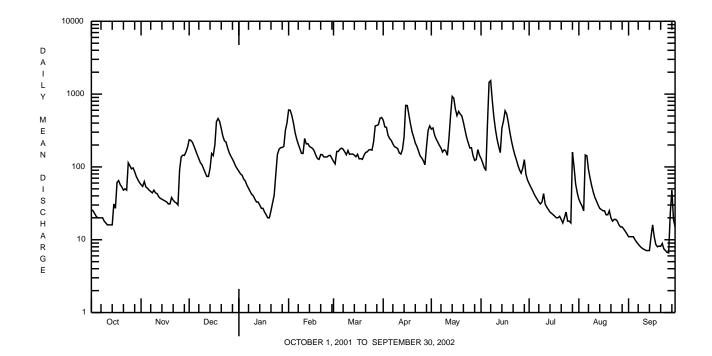
PERIOD OF RECORD.--October 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,460.34 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers benchmark).

REMARKS.—Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,000 ft³/s and maximum (*):

Date May 14	Time	f	charge t ³ /s 020	Gage Height (ft) 7.76			Date June 6	Time 2300	1	charge ft ³ /s	Gage Height (ft) *9.36	
			DISCHA	RGE, CUBIC F	EET PER SE		TER YEAR OC EAN VALUES	CTOBER 2001	TO SEPT	EMBER 20	02	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	26 25 23 21 20	57 54 63 53 51	236 232 218 193 169	e87 e80 e77 e68 e64	605 601 508 403 299	119 110 163 163 175	439 355 350 272 245	331 343 275 242 220	131 114 98 89 391	59 53 48 43 39	36 32 29 25 e146	11 11 11 11 10
6 7 8 9 10	20 20 20 18 17	48 46 44 48 44	147 130 114 107 94	e56 e51 e46 e42 e40	243 206 179 154 153	181 175 161 147 168	232 207 190 185 178	198 182 160 172 166	1450 1530 822 481 326	36 33 31 33 43	e142 92 70 55 45	9.3 8.7 8.2 7.8 7.5
11 12 13 14 15	16 16 16 16 31	43 39 37 36 35	83 74 74 95 153	e36 e33 e33 e30 e27	246 207 209 191 185	149 150 150 145 138	156 150 173 257 700	144 249 508 930 878	240 191 157 340 428	31 28 26 24 23	38 34 30 27 26	7.3 7.1 7.1 7.1
16 17 18 19 20	27 61 65 57 53	34 33 31 31 38	143 200 418 462 421	e27 e24 e22 e20 e20	179 165 144 130 127	149 129 130 127 144	697 520 389 302 256	623 506 579 532 501	590 534 409 298 226	22 21 20 20 21	25 25 22 22 25	16 11 8.6 8.0 8.2
21 22 23 24 25	48 50 48 114 104	35 33 32 30 90	336 264 228 219 181	e25 e32 41 79 147	148 147 137 137 137	158 161 171 173 170	213 191 165 142 133	411 321 255 215 182	180 148 126 105 91	19 17 20 24 18	20 18 19 19	8.1 8.9 7.5 7.1 6.7
26 27 28 29 30 31	94 97 86 74 67	137 145 144 161 187	156 140 128 115 e102 e94	174 184 185 191 319 404	143 144 131 	222 365 371 381 465 477	122 107 190 319 366	184 143 123 126 173 145	82 96 126 79 66	18 17 159 100 58 44	16 15 15 14 13	6.6 23 48 19 15
TOTAL MEAN MAX MIN CFSM IN.	1411 45.5 114 16 0.46 0.53	1859 62.0 187 30 0.63 0.70	5726 185 462 74 1.87 2.16	2664 85.9 404 20 0.87 1.00	6258 224 605 127 2.26 2.36	6087 196 477 110 1.99 2.29	8201 273 700 107 2.77 3.09	10017 323 930 123 3.27 3.78	9944 331 1530 66 3.36 3.75	1148 37.0 159 17 0.38 0.43	1125 36.3 146 12 0.37 0.42	336.8 11.2 48 6.6 0.11 0.13
				FOR WATER Y								
MEAN MAX (WY) MIN (WY)	91.6 331 1991 8.35 1992	151 371 1997 9.35 1999	181 318 1978 28.7 1999	162 388 1979 27.0 2001	201 561 1976 41.2 1987	275 517 1979 120 1981	312 755 1993 131 1976	173 489 1996 50.8 1993	126 612 1989 6.28 1993	65.4 238 1977 7.69 1993	51.8 396 1994 7.12 1991	60.7 452 1977 6.08 1991


e Estimated.

OSWAYO CREEK BASIN

03010655 OSWAYO CREEK AT SHINGLEHOUSE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1975 - 2002
ANNUAL TOTAL	34493.5	54776.8	
ANNUAL MEAN	94.5	150	154
HIGHEST ANNUAL MEAN			222 1994
LOWEST ANNUAL MEAN			85.0 2001
HIGHEST DAILY MEAN	1210 Apr 8,9	1530 Jun 7	3270 Jun 21 1989
LOWEST DAILY MEAN	7.2 Aug 15	6.6 Sep 26	3.2 Sep 13 1989
ANNUAL SEVEN-DAY MINIMUM	7.8 Aug 12	7.4 Sep 8	4.1 Aug 31 1999
MAXIMUM PEAK FLOW		1830 Jun 6	a 4660 Jan 19 1996
MAXIMUM PEAK STAGE		9.36 Jun 6	b 12.74 Jan 19 1996
INSTANTANEOUS LOW FLOW		6.4 Sep 25-27	3.5 Sep 6 1999
ANNUAL RUNOFF (CFSM)	0.96	1.52	1.56
ANNUAL RUNOFF (INCHES)	13.00	20.65	21.17
10 PERCENT EXCEEDS	236	365	351
50 PERCENT EXCEEDS	44	105	85
90 PERCENT EXCEEDS	15	16	14

<sup>a From rating curve extended above 2,600 ft³/s.
b From peak-stage indicator.</sup>

03011020 ALLEGHENY RIVER AT SALAMANCA, NY

LOCATION.--Lat 42°09'23", long 78°42'56", Cattaraugus County, Hydrologic Unit 05010001, on left bank 230 ft upstream from Main Street bridge in Salamanca, 1.3 mi downstream from Great Valley Creek, and 1.6 mi upstream from Little Valley Creek.

DRAINAGE AREA.--1.608 mi².

Date

Feb. 1

Time

1700

PERIOD OF RECORD.—September 1903 to current year. Monthly discharge only for some periods, published in WSP 1305. Prior to October 1964, published as "at Red House."

REVISED RECORDS.--WSP 1385: 1907, 1909-12, 1913(M), 1914-15, 1916-17(M), 1925, 1927. WSP 1907: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,358.00 ft above National Geodetic Vertical Datum of 1929 (Corps of Engineers bench mark). Prior to Sept. 3, 1917, nonrecording gage and Sept. 4, 1917 to Sept. 30, 1964, water-stage recorder at site 7.5 mi downstream at different datum. Oct. 1, 1964 to Sept. 30, 1967, at present site at datum 0.04 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair. U.S. Army Corps of Engineers telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station. Several measurements of water temperature were made during the year.

Discharge

ft³/s

No other peak greater than base discharge.

Time

Date

Gage Height

(ft)

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 73,000 ft³/s, June 23, 1972, gage height, 24.01 ft, from floodmarks; minimum instantaneous discharge not determined.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 17,000 ft³/s and maximum (*):

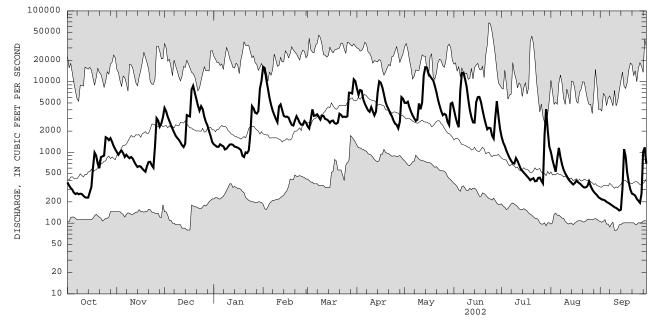
Gage Height

(ft)

*10.34

Discharge

ft³/s


*18,200

Minimum	discharg	e 151 ft ³	³ /s, Sept	. 12, 13,	14, gage	height, 2	2.58 ft.					
			DISCHA	RGE, CUBIC	FEET PER S		TER YEAR EAN VALUI		2001 TO SEPT	EMBER 200	2	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	376	1010	4250	e1300	16200	2330	8000	5020	4040	1660	1010	224
2	339	927	3820	e1250	15600	2180	6510	5000	3190	1380	783	216
3	314	1010	3200	e1200	10800	2960	7620	5200	2610	1230	641	214
4	297	1060	2800	e1200	8020	4060	7460	4340	2270	1060	533	209
5	269	975	2450	e1300	5920	3290	5610	3770	7410	936	813	200
6	258	863	2160	e1250	4700	3330	4860	3350	13200	834	1160	194
7	265	926	1920	1220	3900	3460	4360	3040	13400	760	856	188
8	256	869	1720	e1100	3390	3160	3930	2790	10900	704	675	181
9	261	828	1600	1130	2980	2910	3750	2900	8490	696	567	175
10	258	861	1510	1210	2670	3330	4360	4920	5690	831	506	168
11	244	817	1390	1290	4460	3270	3800	4070	3990	758	462	164
12	232	734	1260	1300	4770	2980	3340	5040	3150	668	419	158
13	229	669	1190	1280	3960	2920	3780	12200	2660	588	391	151
14	230	622	1330	1210	3280	2810	6990	16000	2640	548	371	155
15	274	640	3370	1190	3190	2620	10100	15800	5120	516	352	309
16	324	631	3290	1170	3200	2790	9650	13000	6040	488	368	1110
17	607	590	3220	1130	3110	2820	8290	12000	6090	459	397	878
18	994	558	7720	1080	2720	2580	6600	11100	5170	433	379	512
19	900	533	8740	897	2450	2540	5160	10400	3990	404	365	372
20	689	643	7040	860	2400	2640	4480	8710	3120	421	349	297
21	597	733	5700	e1000	2820	3520	4020	7110	2530	431	330	261
22	857	735	4600	e980	3250	3390	3530	5570	2120	391	319	255
23	880	657	3890	1070	2960	3160	3250	4560	2230	394	321	245
24	903	609	4500	1860	2620	3210	2820	3840	2200	436	336	221
25	1640	1210	4090	4520	2460	3160	2550	3360	1730	440	389	207
26 27 28 29 30 31	1590 1490 1590 1410 1230 1110	3040 2820 2320 2570 3150	e3200 e2700 e2400 e2000 e1700 e1400	4200 3650 3540 3830 7970 10300	2460 2780 2630 	3240 6990 6950 6800 10800 10200	2450 2190 2720 6050 5740	3510 3380 2700 2440 4890 5040	1570 3100 5290 3260 2150	398 365 1750 4100 2050 1200	334 300 277 262 248 232	194 262 1020 1180 693
TOTAL	20913	33610	100160	66487	129700	120400	153970	195050	139350	27329	14745	10613
MEAN	674.6	1120	3231	2145	4632	3884	5132	6292	4645	881.6	475.6	353.8
MAX	1640	3150	8740	10300	16200	10800	10100	16000	13400	4100	1160	1180
MIN	229	533	1190	860	2400	2180	2190	2440	1570	365	232	151
CFSM	0.42	0.70	2.01	1.33	2.88	2.42	3.19	3.91	2.89	0.55	0.30	0.22
IN.	0.48	0.78	2.32	1.54	3.00	2.79	3.56	4.51	3.22	0.63	0.34	0.25
STATIS:	rics of M	ONTHLY MI	EAN DATA	FOR WATER	YEARS 19	04 - 2002	, BY WATER	R YEAR (W	Y)			
MEAN	1330	2508	3072	3324	3197	5898	5827	3469	2025	1082	712.9	820.8
MAX	5801	8605	9147	10200	9683	14850	15540	9574	11520	6074	3882	7477
(WY)	1991	1928	1928	1913	1976	1936	1940	1943	1972	1942	1977	1977
MIN	124	146	189	255	550	1983	970	796	299	150	119	118
(WY)	1931	1931	1961	1961	1905	1937	1946	1985	1934	1934	1930	1932

e Estimated.

03011020 ALLEGHENY RIVER AT SALAMANCA, NY--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1904 - 2002
ANNUAL TOTAL	670660	1012327	
ANNUAL MEAN	1837	2773	2769
HIGHEST ANNUAL MEAN			4174 1916
LOWEST ANNUAL MEAN			1777 1999
HIGHEST DAILY MEAN	14400 Apr 10	16200 Feb 1	67900 Jun 23 1972
LOWEST DAILY MEAN	138 Aug 17	151 Sep 13	79 Sep 10 1971
ANNUAL SEVEN-DAY MINIMUM	144 Aug 14	165 Sep 8	84 Dec 11 1908
ANNUAL RUNOFF (CFSM)	1.14	1.72	1.72
ANNUAL RUNOFF (INCHES)	15.52	23.42	23.39
10 PERCENT EXCEEDS	4720	6550	6700
50 PERCENT EXCEEDS	958	2000	1500
90 PERCENT EXCEEDS	227	289	287

2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

KINZUA CREEK BASIN

03011800 KINZUA CREEK NEAR GUFFEY, PA

LOCATION.—Lat 41°45′59", long 78°43′08", McKean County, Hydrologic Unit 05010001, in Allegheny National Forest, on right bank 130 ft upstream from bridge on U.S. Highway 219, 0.2 mi upstream from Wintergreen Run, 1.0 mi downstream from Pine Run, and 1.5 mi west of Guffey.

DRAINAGE AREA.--38.8 mi².

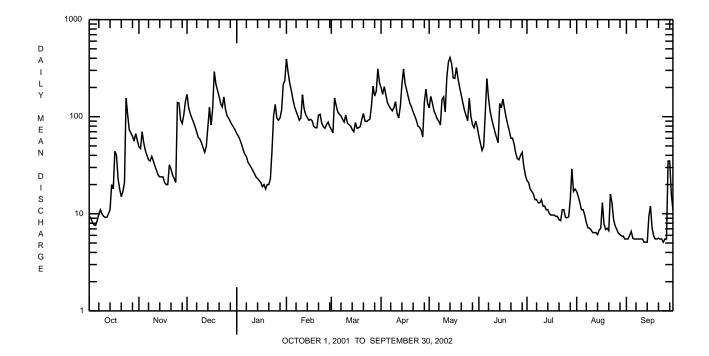
PERIOD OF RECORD.--Occasional low-flow measurements, published as "at Tallyho," water years 1959-65. October 1965 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,540 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 500 ft³/s and maximum (*):

Date May 1		Time 2100	Discha ft ³ /2 *48	s	Gage Heig (ft) *4.54	ht		Date (No		Dis me above ba	scharge ft ³ /s se disch	Gage Height (ft) narge.)	
			Γ	ISCHA	RGE, CUBIC	FEET PER S		TER YEAR C EAN VALUES		001 TO SEPT	TEMBER 200)2	
DAY	OCT	' NO	OV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.4 9.1 8.1 7.7 7.6		19 17 70 54 15	170 124 108 97 88	e67 e63 e58 e52 e46	393 289 224 188 152	74 68 156 131 112	200 170 204 168 139	123 162 139 115 105	63 53 45 50 110	22 21 18 17 16	17 15 13 11 11	5.5 5.5 6.0 6.6 5.6
6 7 8 9 10	8.5 9.9 11 10 9.4		10 36 35 39 35	79 70 61 59 54	e41 e39 e34 e32 e30	128 114 103 92 97	106 102 94 88 104	129 121 115 124 143	95 90 82 150 160	247 156 114 95 81	14 14 13 13	9.7 8.1 7.2 7.1 6.8	5.5 5.5 5.5 5.5
11 12 13 14 15	9.2 9.2 10 11 20		31 28 25 24 24	48 43 49 78 125	e28 e26 e24 e23 e22	169 121 105 98 92	86 83 80 74 70	108 97 127 213 310	112 253 365 407 353	70 61 54 137 123	12 12 11 11	6.4 6.4 6.1 6.8	5.5 5.1 5.1 5.1 9.4
16 17 18 19 20	18 44 40 23 18		24 21 20 20 32	82 121 292 217 187	e21 e19 e20 e18 e20	94 91 80 77 77	87 76 77 79 94	219 187 159 137 126	251 248 321 247 200	152 121 98 83 71	9.7 9.7 9.7 9.4 9.4	7.1 13 7.9 6.9 7.1	12 7.2 5.9 5.5 5.5
21 22 23 24 25	15 17 21 155 104		29 25 23 21	162 136 126 160 119	e20 e23 45 103 134	104 106 86 79 76	108 90 89 92 94	112 102 92 80 78	168 139 117 103 91	60 60 52 42 37	8.7 8.5 11 11 9.2	6.7 16 13 8.7 7.5	5.6 5.5 5.5 5.1 5.5
26 27 28 29 30 31	73 68 63 56 67 57	10 14	38 93 35 05 13	102 96 89 e83 e78 e73	97 92 97 118 215 236	83 88 79 	128 207 163 183 311 225	73 62 142 192 138	156 102 83 77 90 78	36 40 43 31 25	9.1 9.3 14 29 17 18	6.9 6.3 6.1 5.9 5.9	5.5 35 35 16 11
TOTAL MEAN MAX MIN CFSM IN.	989.1 31.9 155 7.6 0.82 0.95	50 14 1.:	. 0 13 20 29	3376 109 292 43 2.81 3.24	1863 60.1 236 18 1.55 1.79	3485 124 393 76 3.21 3.34	3531 114 311 68 2.94 3.39	4267 142 310 62 3.67 4.09	5182 167 407 77 4.31 4.97	2410 80.3 247 25 2.07 2.31	410.7 13.2 29 8.5 0.34 0.39	268.5 8.66 17 5.5 0.22 0.26	252.7 8.42 35 5.1 0.22 0.24
							-	BY WATER	-	-	20.5	00.1	26.5
MEAN MAX (WY) MIN (WY)	47.5 137 1991 6.69 1992	19' 19'	56 71 . 3	104 281 1984 32.6 1990	79.8 166 1998 19.8 1981	90.8 251 1976 18.4 1987	133 269 1979 61.6 1970	138 289 1994 67.9 1976	85.7 182 1989 23.8 1985	69.7 272 1989 9.49 1991	32.3 99.0 1992 6.29 1991	28.1 126 1980 4.96 1991	36.2 154 1977 5.16 1991


e Estimated.

KINZUA CREEK BASIN

03011800 KINZUA CREEK NEAR GUFFEY, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1966 - 2002
ANNUAL TOTAL	19166.4	27536.0	
ANNUAL MEAN	52.5	75.4	77.1
HIGHEST ANNUAL MEAN			113 1984
LOWEST ANNUAL MEAN			49.2 2001
HIGHEST DAILY MEAN	297 Feb 10	407 May 14	2120 Jun 23 1972
LOWEST DAILY MEAN	5.2 Aug 15,16	5.1 Sep 12-14,24	2.2 Sep 30 1995
ANNUAL SEVEN-DAY MINIMUM	5.5 Aug 12	5.3 Sep 8	3.3 Sep 10 1991
MAXIMUM PEAK FLOW		483 May 14	a 5220 Jun 22 1972
MAXIMUM PEAK STAGE		4.54 May 14	b 8.99 Jun 22 1972
INSTANTANEOUS LOW FLOW		4.8 Sep 24	2.0 Jul 29 1978
ANNUAL RUNOFF (CFSM)	1.35	1.94	1.99
ANNUAL RUNOFF (INCHES)	18.38	26.40	27.01
10 PERCENT EXCEEDS	136	162	168
50 PERCENT EXCEEDS	28	62	50
90 PERCENT EXCEEDS	7.4	6.9	11

 $[\]begin{array}{l} \textbf{a} \ \ \text{From rating curve extended above 1,300 ft}^3\hspace{-0.5mm}/\text{s on basis of slope-area measurement at gage height 8.33 ft.} \\ \textbf{b} \ \ \text{From peak-stage indicator.} \end{array}$

CONEWANGO CREEK BASIN

03015000 CONEWANGO CREEK AT RUSSELL, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 41°56'17", long 79°08'00", Warren County, Hydrologic Unit 05010002, on left bank of highway bridge on SR 957 at Russell, 0.5 mi upstream from Akeley Run, and 8.0 mi upstream from mouth.

DRAINAGE AREA.--816 mi².

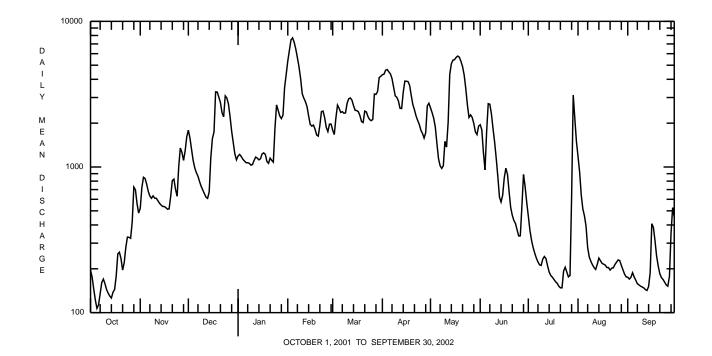
WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1939 to current year. Monthly discharge only for October, November 1939, published in WSP 1305.

REVISED RECORD.--WSP 1083: 1936 (M).

GAGE.--Water-stage recorder. Datum of gage is 1,221.77 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 10, 1941, nonrecording gage at same site and datum.

REMARKS.—No estimated daily discharges. Records good. Flow regulated since November 1949 by Chautauqua Lake (station 03013946). Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.


EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of March 1936 reached a stage of 10.9 ft from floodmark, discharge, 14,600 ft³/s.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	196	520	1790	1190	5330	1790	4300	2550	1950	460	1180	175
2	175	721	1580	1220	6320	1670	4340	2360	1800	368	921	170
3	145	850	1320	1180	7460	2170	4620	2160	1260	314	644	175
4	122	834	1110	1130	7700	2660	4670	1880	956	280	515	188
5	107	763	984	1100	7180	2530	4500	1450	1750	256	462	176
6	113	680	914	1070	6450	2370	4360	1140	2720	237	392	167
7	135	632	864	1070	5630	2400	4050	1020	2700	223	280	158
8	161	610	793	1060	4870	2340	3530	978	2310	213	241	155
9	170	634	736	1030	4050	2350	3080	1020	1830	211	225	152
10	158	611	695	1040	3190	2740	3010	1500	1480	233	213	150
11	144	610	656	1110	2970	2940	2840	1370	1140	243	204	148
12	136	587	621	1170	2810	2980	2530	2020	856	235	198	144
13	130	564	609	1150	2600	2880	2520	4320	622	210	215	142
14	126	548	674	1120	2240	2640	3260	5110	575	190	237	151
15	138	536	1160	1140	1960	2450	3890	5420	640	180	227	189
16	144	535	1570	1230	1910	2440	3880	5460	844	175	218	408
17	178	526	1740	1250	1940	2400	3860	5660	981	169	215	385
18	253	513	3280	1220	1820	2250	3630	5780	891	163	212	312
19	260	516	3270	1090	1660	2050	3100	5670	680	159	204	244
20	235	630	3020	1060	1630	2020	2680	5310	528	152	204	209
21	196	807	2770	1150	1930	2420	2470	4890	466	148	196	185
22	220	826	2360	1110	2400	2390	2240	4280	429	148	202	174
23	280	701	2210	1080	2420	2220	2090	3460	409	193	203	169
24	330	630	3080	1840	2180	2120	1960	2670	370	205	214	162
25	329	1010	2980	2670	1870	2080	1790	2190	336	190	222	155
26 27 28 29 30 31	324 420 728 697 560 483	1350 1260 1110 1290 1610	2710 2220 1760 1470 1230 1120	2450 2240 2150 2270 3500 4310	1750 1970 1970 	2120 3170 3150 3300 4110 4200	1700 1580 1720 2630 2740	2280 2190 1990 1740 1670 1910	337 538 889 734 572	176 180 626 3110 2150 1500	230 228 211 197 184 176	152 177 352 526 451
TOTAL MEAN MAX MIN CFSM IN.	7793	23014	51296	47400	96210	79350	93570	91448	31593	13297	9470	6501
	251	767	1655	1529	3436	2560	3119	2950	1053	429	305	217
	728	1610	3280	4310	7700	4200	4670	5780	2720	3110	1180	526
	107	513	609	1030	1630	1670	1580	978	336	148	176	142
	0.31	0.94	2.03	1.87	4.21	3.14	3.82	3.62	1.29	0.53	0.37	0.27
	0.36	1.05	2.34	2.16	4.39	3.62	4.27	4.17	1.44	0.61	0.43	0.30
STATIST	CICS OF M	ONTHLY ME	AN DATA F	OR WATER	YEARS 194	0 - 2002,	BY WATER	YEAR (WY)			
MEAN	849	1588	2101	2019	2123	3126	2814	1384	882	469	414	581
MAX	3276	4070	4261	4986	5320	6715	6503	4016	2926	2142	2391	3891
(WY)	1991	1986	1978	1998	1976	1945	1947	1943	1986	1986	1977	1977
MIN	66.1	119	111	215	533	1344	353	296	177	108	82.4	79.9
(WY)	1964	1961	1961	1961	1963	1960	1946	1985	1949	1963	1954	1941

CONEWANGO CREEK BASIN

03015000 CONEWANGO CREEK AT RUSSELL, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YE	AR	WATER YEARS	1940 - 2002
ANNUAL TOTAL	384301		550942				
ANNUAL MEAN	1053		1509			1525	
HIGHEST ANNUAL MEAN						2057	1943
LOWEST ANNUAL MEAN						915	1999
HIGHEST DAILY MEAN	4820	Feb 15	7700	Feb	4	14700	Jan 10 1998
LOWEST DAILY MEAN	78	Aug 15 a	107	Oct	5	57	Oct 17 1960
ANNUAL SEVEN-DAY MINIMUM	83	Sep 15	136	Oct	3	59	Oct 12 1960
MAXIMUM PEAK FLOW			7780	Feb	4	b 14900	Jan 10 1998
MAXIMUM PEAK STAGE			8.49	Feb	4	c 10.88	Jan 10 1998
ANNUAL RUNOFF (CFSM)	1.29		1.85			1.87	
ANNUAL RUNOFF (INCHES)	17.52		25.12			25.40	
10 PERCENT EXCEEDS	2710		3360			3780	
50 PERCENT EXCEEDS	674		1070			1000	
90 PERCENT EXCEEDS	108		175			160	

<sup>a Also Aug. 16, Sept. 19.
b From rating curve extended above 13,000 ft³/s.
c From peak-stage indicator.</sup>

CONEWANGO CREEK BASIN

03015000 CONEWANGO CREEK AT RUSSELL, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	PLING METHOD, CODES	OXYGEN, DIS- SOLVED (MG/L)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
APR 2002	1000	0.01.0	2014	4.0			1.50			0.4.0	2.0		
15 JUN	1230	9813	3914	40	9.8	7.3	178	11.1	77	24.3	3.9	50	11.5
26 AUG	1300	9813	333	40	7.7	7.7	304	23.5	140	41.7	7.4	106	14.9
20	1400	9813	205	40	8.6	7.9	344	24.2	130	41.1	7.2	106	17.3
Date	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN,	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITROGEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N)	ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS TOTAL (MG/L AS P)	ORGANI TOTAL (MG/L AS C)	C RECOV ERABI (µG/I AS CU	TOTA I TOTA I RECO LE ERAE L (µG/ J) AS F	TOTA TOTA V- RECO BLE ERA L (µG/ PE) AS N	E, AL OV- BLE /L MN)
APR 2002 15 JUN	144	62	.040	.46	<.040	.99	.07	.090	5.2	<10	1850) 9(0
26 AUG	206	6	<.020	.94	.040	1.4	.02	.070	4.0	<10	620	120	0
20	244	<2	<.020	.73	<.040	1.4	.06	.140	4.9	<10	560	130	0

	NICKEL,	ZINC,
	TOTAL	TOTAL
	RECOV-	RECOV-
	ERABLE	ERABLE
Date	(µG/L	(µG/L
	AS NI)	AS ZN)
	(01067)	(01092)
APR 2002		
15	<50	<10
JUN		
26	<50	<10
AUG		
20	<50	<10

BROKENSTRAW CREEK BASIN

03015500 BROKENSTRAW CREEK AT YOUNGSVILLE, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 41°51'09", long 79°19'03", Warren County, Hydrologic Unit 05010001, on right bank 150 ft downstream from bridge on Main Street at Youngsville, 500 ft upstream from Matthews Run, and 3.7 mi upstream from mouth. Records include flow of Matthews Run.

DRAINAGE AREA.--321 mi², including that of Matthews Run.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1909 to current year. Monthly discharge only for some periods, published in WSP 1305. Flow of Matthews Run included in records since October 1938.

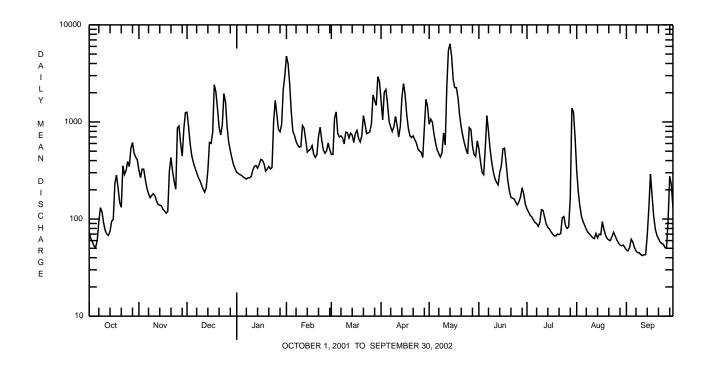
REVISED RECORDS.--WSP 743: Drainage area. WSP 1083: 1913 (M). WSP 1275: 1920, 1932, 1936. WSP 1305: 1910-15, 1928-29.

GAGE.--Water-stage recorder. Datum of gage is 1,186.92 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1933, nonrecording gage at site 150 ft upstream at datum 2.00 ft higher. Oct. 1, 1933 to June 15, 1939, nonrecording gage at site 150 ft upstream, and June 16, 1939 to Sept. 30, 1961, water-stage recorder at present site, both at datum 1.00 ft higher.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 4,500 ft³/s and maximum (*):

Date Feb. 1	Ti 12	me	ischarge ft ³ /s 5,260	Gage Heigh (ft) 7.90	t		Date May 14	Tim 4 003	e	scharge ft ³ /s 6,670	Gage Height (ft) *8.88	
			DISCHA	ARGE, CUBIC I	FEET PER SI		TER YEAR OC EAN VALUES	TOBER 200	1 TO SEP	TEMBER 20	02	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	73	320	1260	e303	4760	462	1670	948	530	127	318	48
2	63	267	882	e295	4000	463	1050	1070	391	118	190	47
3	58	327	586	e286	2490	1100	2020	996	303	109	135	51
4	53	326	445	e282	1280	1270	2160	750	287	105	106	62
5	51	255	381	e271	804	757	1550	605	543	98	94	58
6	60	208	336	e265	726	701	1020	516	1160	92	86	51
7	94	182	301	e258	632	718	886	473	795	90	78	47
8	131	166	269	266	577	685	798	435	523	84	73	45
9	118	175	250	266	550	593	893	481	386	92	70	45
10	91	183	226	274	557	785	1140	771	306	125	67	43
11	76	173	204	318	919	777	918	580	261	123	64	42
12	70	153	189	349	862	684	703	2310	239	104	63	43
13	68	141	212	356	656	766	897	5470	225	89	71	43
14	75	139	316	334	489	731	1770	6380	300	82	64	68
15	95	137	614	364	511	614	2480	4750	352	79	70	131
16	99	126	602	411	524	761	1920	2710	529	74	69	290
17	232	121	772	404	571	818	1200	2260	537	70	94	175
18	283	115	2420	371	465	674	862	2250	378	67	78	108
19	210	120	2040	311	432	622	721	1760	252	67	68	79
20	149	313	1370	327	462	722	692	1170	197	70	63	68
21	132	430	885	348	710	1160	719	877	167	69	61	63
22	353	310	734	328	881	956	658	718	164	71	60	58
23	288	244	935	340	655	758	610	604	161	103	66	56
24	317	203	1960	995	514	770	528	520	149	106	73	55
25	391	868	1610	1670	476	792	501	469	140	86	67	51
26 27 28 29 30 31	347 533 614 477 433 407	908 601 445 841 1250	891 618 505 424 362 e329	1200 840 793 943 2150 3020	503 607 519 	961 1900 1660 1480 2930 2610	488 430 878 1710 1440	876 840 566 462 440 639	151 170 211 179 142	80 83 168 1390 1260 689	61 57 54 53 54 51	50 98 276 227 132
TOTAL	6441	10047	22928	18938	27132	30680	33312	43696	10128	5970	2578	2610
MEAN	208	335	740	611	969	990	1110	1410	338	193	83.2	87.0
MAX	614	1250	2420	3020	4760	2930	2480	6380	1160	1390	318	290
MIN	51	115	189	258	432	462	430	435	140	67	51	42
CFSM	0.65	1.04	2.30	1.90	3.02	3.08	3.46	4.39	1.05	0.60	0.26	0.27
IN.	0.75	1.16	2.66	2.19	3.14	3.56	3.86	5.06	1.17	0.69	0.30	0.30
MEAN	314	619	750	788	775	1235	1021	603	377	225	177	222
MAX	1413	1817	1724	2459	2248	2851	2715	1528	1535	1039	994	1428
(WY)	1991	1986	1978	1913	1976	1936	1947	1943	1928	1986	1956	1977
MIN	31.7	57.3	85.9	124	161	297	251	135	62.0	37.8	32.3	31.6
(WY)	1932	1931	1961	1918	1987	1915	1946	1934	1934	1934	1934	1936


e Estimated.

BROKENSTRAW CREEK BASIN

03015500 BROKENSTRAW CREEK AT YOUNGSVILLE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1910 - 2002
ANNUAL TOTAL	154616		214460			
ANNUAL MEAN	424		588		591	
HIGHEST ANNUAL MEAN					864	1956
LOWEST ANNUAL MEAN					307	1931
HIGHEST DAILY MEAN	4100	Feb 10	6380	May 14	14000	Mar 25 1913
LOWEST DAILY MEAN	44	Sep 18,19	42	Sep 11	19	Oct 14 1934
ANNUAL SEVEN-DAY MINIMUM	47	Sep 13	44	Sep 7	24	Oct 11 1934
MAXIMUM PEAK FLOW			6670	May 14	ab 18000	Mar 25 1913
MAXIMUM PEAK STAGE			8.88	May 14	14.20	Mar 25 1913
INSTANTANEOUS LOW FLOW			41	Sep 12-14	c 19	Oct 14 1934
ANNUAL RUNOFF (CFSM)	1.32		1.83		1.84	
ANNUAL RUNOFF (INCHES)	17.92		24.85		25.02	
10 PERCENT EXCEEDS	1040		1260		1420	
50 PERCENT EXCEEDS	226		349		303	
90 PERCENT EXCEEDS	59		65		67	

 $[\]begin{array}{l} \textbf{a} \ \ \text{From rating curve extended above 9,400 ft}^{3}\!/s. \\ \textbf{b} \ \ \text{About.} \\ \textbf{c} \ \ \text{Minimum observed.} \end{array}$

BROKENSTRAW CREEK BASIN

03015500 BROKENSTRAW CREEK AT YOUNGSVILLE, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
APR 2002													
16 JUN	0630	9813	2100	40	9.6	7.3	103	12.0	43	13.0	2.6	30	8.9
27	1045	9813	148	40	9.0	8.1	227	21.6	110	33.3	6.5	92	11.5
AUG 21	0800	9813	63	40	8.1	8.1	253	18.1	130	39.0	7.5	106	13.3
21	0800	9013	03	40	0.1	0.1	255	10.1	130	39.0	7.5	100	13.3
	RESIDUE	RESIDUE TOTAL	NITRO-	NITRO-	NITRO-		PHOS-			COPPER,	IRON,	LEAD,	MANGA- NESE,
	ልጥ 1በ5	ΔT 105	GEN	GEN	GEN	NTTRO-	PHORIIS	DHOS-	CARRON	ΤΟΤΔΙ.	ΤΟΤΔΙ.	ΤΟΤΔΙ.	ΤΟΤΔΤ.
Data	AT 105 DEG. C, DIS-	AT 105 DEG. C, SUS-	GEN, AMMONIA TOTAL	GEN, NITRATE TOTAL	GEN, NITRITE TOTAL	NITRO- GEN, TOTAL	PHORUS ORTHO TOTAL	PHOS- PHORUS TOTAL	CARBON, ORGANIC TOTAL	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE
Date	DEG. C,	DEG. C,	AMMONIA	NITRATE	NITRITE	GEN,	ORTHO	PHORUS	ORGANIC	RECOV-	RECOV-	RECOV-	RECOV-
	DEG. C, DIS- SOLVED (MG/L)	DEG. C, SUS- PENDED (MG/L)	AMMONIA TOTAL (MG/L AS N)	NITRATE TOTAL (MG/L AS N)	NITRITE TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	ORTHO TOTAL (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	RECOV- ERABLE (µG/L AS CU)	RECOV- ERABLE (µG/L AS FE)	RECOV- ERABLE (µG/L AS PB)	RECOV- ERABLE (µG/L AS MN)
APR 2002 16	DEG. C, DIS- SOLVED (MG/L)	DEG. C, SUS- PENDED (MG/L)	AMMONIA TOTAL (MG/L AS N)	NITRATE TOTAL (MG/L AS N)	NITRITE TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	ORTHO TOTAL (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	RECOV- ERABLE (µG/L AS CU)	RECOV- ERABLE (µG/L AS FE)	RECOV- ERABLE (µG/L AS PB)	RECOV- ERABLE (µG/L AS MN)
APR 2002	DEG. C, DIS- SOLVED (MG/L) (00515)	DEG. C, SUS- PENDED (MG/L) (00530)	AMMONIA TOTAL (MG/L AS N) (00610)	NITRATE TOTAL (MG/L AS N) (00620)	NITRITE TOTAL (MG/L AS N) (00615)	GEN, TOTAL (MG/L AS N) (00600)	ORTHO TOTAL (MG/L AS P) (70507)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC TOTAL (MG/L AS C) (00680)	RECOV- ERABLE (µG/L AS CU) (01042)	RECOV- ERABLE (µG/L AS FE) (01045)	RECOV- ERABLE (µG/L AS PB) (01051)	RECOV- ERABLE (µG/L AS MN) (01055)

	NICKEL,	ZINC,
	TOTAL	TOTAL
	RECOV-	RECOV-
	ERABLE	ERABLE
Date	(µG/L	(µG/L
	AS NI)	AS ZN)
	(01067)	(01092)
APR 2002		
16	<50	<10
JUN		
27	< 50	<10
AUG		
21	< 50	<10

03016000 ALLEGHENY RIVER AT WEST HICKORY, PA (Pennsylvania Water-Quality Network Station)

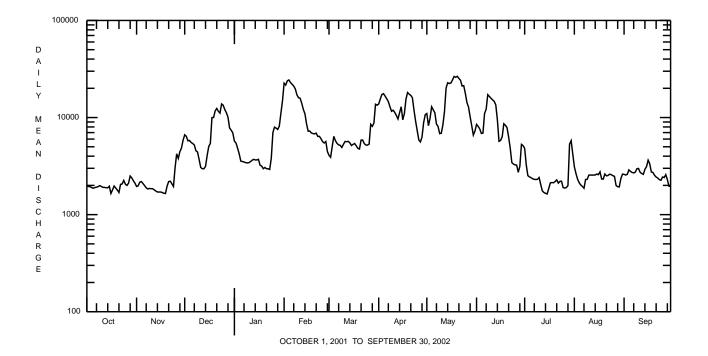
LOCATION.—Lat 41°34'15", long 79°24'29", Forest County, Hydrologic Unit 05010003, on right bank at downstream side of bridge on State Highway 127 at West Hickory, 0.6 mi upstream from Siggins Run, 0.8 mi downstream from East Hickory Creek, at mile 158.9.

DRAINAGE AREA.--3,660 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1941 to current year.

REVISED RECORDS.--WDR PA-96-3: 1995(M).


GAGE.--Water-stage recorder. Datum of gage is 1,059.90 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 12, 1941, nonrecording gage at same site and datum.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since November 1949 by Chautauqua Lake (station 03013946), since October 1965 by Allegheny Reservoir (station 03012520) 39 mi upstream. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1970	1950	6640	5720	22600	4080	13800	11000	8500	4820	3110	2600
2	1950	1980	6410	5460	21600	3900	15600	8250	8110	3260	2650	2560
3	1940	2160	5760	4830	23900	5040	17300	9830	7630	2520	2320	2600
4	1900	2190	5810	4220	24400	6400	17600	12900	6850	2450	2130	2890
5	1870	2090	5540	3560	22900	5780	16600	12000	6910	2400	2020	2790
6	1900	1990	5400	3520	22000	5420	15600	11200	11000	2340	1950	2720
7	1920	1890	5220	3490	21100	5230	14600	8580	12200	2310	1870	2690
8	1940	1840	4550	3430	19700	5170	12900	8100	17200	2300	2300	2740
9	1990	1860	4420	3410	17100	4920	11600	6830	16500	2310	2310	2970
10	1950	1850	3700	3430	16000	5300	11900	6890	15800	2410	2550	2990
11	1910	1850	3060	3510	15800	5670	11300	8370	15200	2050	2560	2730
12	1910	1800	2970	3630	14000	5640	10500	11500	14700	1760	2550	2650
13	1890	1750	2970	3710	12100	5680	9670	20100	13500	1690	2560	2600
14	1890	1710	3140	3660	10900	5490	11200	22800	9460	1660	2560	2930
15	1960	1710	4060	3660	8600	5150	12900	22400	5690	1630	2620	3120
16	1650	1710	5040	3710	7230	5290	9480	22700	5810	1850	2580	3640
17	1800	1690	5410	3230	7260	5400	11000	24400	6350	2120	2760	3340
18	1970	1660	9990	3160	6930	5110	15500	26500	8630	2140	2330	2750
19	1880	1650	10000	2970	6840	4810	18100	26000	8320	2130	2320	2720
20	1790	1960	11700	3060	6790	4740	17400	26600	7870	2190	2620	2540
21	1690	2190	12400	2970	6910	5860	16900	25300	6320	2280	2510	2440
22	2050	2210	11600	2970	6390	5860	16000	24200	4840	2110	2530	2380
23	2070	2080	11100	2920	6400	5390	11900	21100	3440	2200	2610	2290
24	2250	1950	13800	3800	6050	5210	9170	21300	3320	2210	2580	2260
25	2060	3040	13400	7000	5650	5200	7320	17800	3250	1900	2520	2440
26 27 28 29 30 31	2000 2110 2500 2390 2230 2110	4230 3790 4450 4860 5840	12100 11200 10100 7800 7420 6940	7960 7780 7540 8160 11100 14900	5470 5660 4460 	5320 8520 8120 8770 13700 13400	5880 5610 6310 8860 10700	14300 12800 10200 8230 6590 7250	3240 2730 3140 5290 5140	1880 1900 1990 5330 5780 4220	2480 2000 1940 1930 2350 2610	2410 2580 2290 1960 1960
TOTAL	61440	71930	229650	152470	354740	189570	373200	476020	246940	78140	74730	79580
MEAN	1982	2398	7408	4918	12670	6115	12440	15360	8231	2521	2411	2653
MAX	2500	5840	13800	14900	24400	13700	18100	26600	17200	5780	3110	3640
MIN	1650	1650	2970	2920	4460	3900	5610	6590	2730	1630	1870	1960
CFSM	0.54	0.66	2.02	1.34	3.46	1.67	3.40	4.20	2.25	0.69	0.66	0.72
IN.	0.62	0.73	2.33	1.55	3.61	1.93	3.79	4.84	2.51	0.79	0.76	0.81
STATIS	TICS OF M	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	42 - 2002	, BY WATER	R YEAR (W	Y)			
MEAN	4062	6442	8541	8482	8215	11870	11760	7581	4794	3017	2281	2692
MAX	15890	17070	17950	21260	18970	29740	25970	20020	14730	15430	10160	12160
(WY)	1991	1993	1978	1952	1990	1945	1947	1943	1989	1972	1977	1977
MIN	324	659	581	844	1725	3378	2255	1333	1430	597	490	449
(WY)	1964	1961	1961	1961	1963	1969	1946	1985	1949	1955	1954	1955

03016000 ALLEGHENY RIVER AT WEST HICKORY, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEND	AR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1942 - 2002
ANNUAL TOTAL	1577260		2388410			
ANNUAL MEAN	4321		6544		6635	
HIGHEST ANNUAL MEAN					9547	1956
LOWEST ANNUAL MEAN					3963	1999
HIGHEST DAILY MEAN	20900	Feb 15	26600	May 20	90800	Mar 8 1956
LOWEST DAILY MEAN	1360	Jun 15	1630	Jul 15	272	Oct 15 1963
ANNUAL SEVEN-DAY MINIMUM	1510	Jun 10	1700	Nov 13	276	Oct 14 1963
MAXIMUM PEAK FLOW			27300	May 19,20	a 101000	Mar 8 1956
MAXIMUM PEAK STAGE			9.09	May 19,20	b 17.20	Mar 8 1956
ANNUAL RUNOFF (CFSM)	1.18		1.79		1.81	
ANNUAL RUNOFF (INCHES)	16.03		24.28		24.63	
10 PERCENT EXCEEDS	9990		15500		15300	
50 PERCENT EXCEEDS	2500		4420		4280	
90 PERCENT EXCEEDS	1870		1940		1100	

<sup>a From rating curve extended above 99,300 ft³/s.
b Maximum gage height, 17.83 ft., Jan. 25, 1964 (backwater from ice).</sup>

03016000 ALLEGHENY RIVER AT WEST HICKORY, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
APR 2002	1120	0013	0700	4.0	10 5	6.0	1.45	11 0	F.0	15.0	2 1	2.6	11 0
16 JUN	1130	9813	9790	40	10.5	6.9	145	11.8	52	15.9	3.1	36	11.0
27 AUG	1230	9813	2720	40	9.0	8.5	134	22.9	49	14.8	3.0	40	10.1
21	1330	9813	2510	40	9.7	8.7	142	23.8	55	16.7	3.3	40	10.3
Date	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS-PHORUS ORTHOTOTAL (MG/LAS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN)
		(,	(00010)	(00020)	(00013)	(00000)	(,	(,	, ,	,			
APR 2002 16	138	28	.030	.42	<.040	.86	.04	.050	3.7	<10	610	1.3	50
	138 90	, ,				, ,		, ,			610 250	1.3	50

	NICKEL,	ZINC,
	TOTAL	TOTAL
	RECOV-	RECOV-
	ERABLE	ERABLE
Date	(μG/L	(µG/L
	AS NI)	AS ZN)
	(01067)	(01092)
APR 2002		
16	<50	10
JUN		
27	<50	<10
AUG		
21	<50	<10

ALLEGHENY RIVER BASIN

LAKES AND RESERVOIRS IN ALLEGHENY RIVER BASIN

03012520 ALLEGHENY RESERVOIR.--Lat 41°50'17", long 79°00'15", Warren County, Hydrologic Unit 05010001, in Allegheny National Forest, at control house at Kinzua Dam on Allegheny River, 3 mi upstream from Hemlock Run, and 7 mi east of Warren. DRAINAGE AREA, 2,180 mi². PERIOD OF RECORD, October 1965 to current year. Prior to October 1966 published as Allegheny River Reservoir. GAGE, water-stage recorder. Datum of gage is sea level. Reservoir is formed by a concrete gravity dam with a gated spillway and with an earthfill section, rockfaced, at right side. Storage began during construction and reservoir acted as retention basin from October 1965 to December 1966. Dam became operational in January 1967. Reservoir first reached minimum pool elevation during period of construction. Capacity, 1,180,000 acre-ft between elevations 1,205.0 ft (invert of low level sluices) and 1,365.0 ft (full pool). Dead storage is 128 acre-ft. Minimum pool elevation, 1,240 ft (capacity, 24,240 acre-ft). Winter low-water pool elevation, 1,292 ft (capacity, 239,780 acre-ft). Summer low-water pool elevation, 1,328 ft (capacity, 572,610 acre-ft). Storage to summer pool normally occurs during period April to May. Depletion of low-water storage for augmenting flow in Allegheny River normally occurs during period July to December. Figures given herein represent total contents. Reservoir is used for flood control, low-flow augmentation and water-quality control of Allegheny River and downstream rivers, power generation, and recreation. Records furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,121,120 acre-ft June 27,1972, elevation, 1,362.20 ft; minimum (after first filling), 113,310 acre-ft Jun. 26, 1968, elevation 1,268.68 ft.

EXTREMES FOR CURRENT YEAR.--Records not furnished to determine extremes for current year.

03013946 CHAUTAUQUA LAKE.--Lat 42°09'23", long 79°23'39", Chautauqua County, N.Y., Hydrologic Unit 05010002, 6 ft east of lake shore, 30 ft south of the intersection of Pauline Ave. and Lakeside Ave., 950 ft southeast of the ferry landing, at Bemus Point, N.Y. DRAINAGE AREA, 189 mi². PERIOD OF RECORD, November 1949 to current year. GAGE, water-stage recorder. Datum of gage is sea level. Prior to Dec. 21, 1956, non-recording gage at site near mouth of Big Inlet at datum 1,300.00 ft above National Geodetic Vertical Datum of 1929. Dec. 21, 1956 to Sept. 30, 1975, water-stage recorder at site at outlet of Muddy Creek at datum 1,300.00 ft above National Geodetic Vertical Datum of 1929. Lake is regulated at outlet by Warner Dam. Capacity of lake not determined; area of water surface, 20.98 mi². Figures of change in contents computed from surface area multiplied by change in stage.

multiplied by change in stage.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 1,311.23 ft, Mar. 5, 1976; minimum, 1,306.20 ft, Dec. 16, 1998.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,309.62 ft, May 18; minimum, 1,306.63 ft, Dec. 13.

MONTHEND ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS AT 2400 HRS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

		_	Change in		_	Changein
		Contents		T	Contents	contents
_	Elevation	(acre-	(equivalent	Elevation	(acre-	(equivalent
Date	(feet)	feet)	in ft ³ /s)	(feet)	feet)	in ft ³ /s)
	03012520) Allegheny R	eservoir	03013	3946 Chautauqu	ıa Lake
Sept. 30	1,304.99	337,800		1,307.49.		
Oct. 31	1,301.79	311,230	-432	1,307.76		+59
Nov. 30	1,304.66	335,010	+400	1,307.00		-171
Dec. 31	1,304.88	336,870	+30	1,307.32		+70
CAL YR 2001			+33			-2.8
Jan. 31	1,308.38	367,560	+499	1,308.17		+185
Feb. 28	1,305.85	345,210	-402	1,307.77		-96
Mar. 31	1,327.89	571,290	+3,680	1,308.59		+178
Apr. 30	1,330.63	605,070	+568	1,308.38		-47
May 31	1,330.07	598,030	-114	1,308.53		+33
June 30	1,329.58	591,960	-102	1,308.30		-52
July 31	1,326.77	567,910	-391	1,308.26		-8.7
Aug. 31	1,320.01	481,930	-1,400	1,307.62		-139
Sept. 30	1,311.83	399,420	+1,390	1,307.52		-22
WTR YR 2002			+85			+.55

OIL CREEK BASIN

03020500 OIL CREEK AT ROUSEVILLE, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 41°28'54", long 79°41'44", Venango County, Hydrologic Unit 05010003, on right bank 100 ft downstream from bridge on State Highway 8, about 300 ft upstream from Cherrytree Run, and 1 mi north of Rouseville. Records include flow of Cherrytree Run.

DRAINAGE AREA.--300 mi², including that of Cherrytree Run.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1932 to current year.

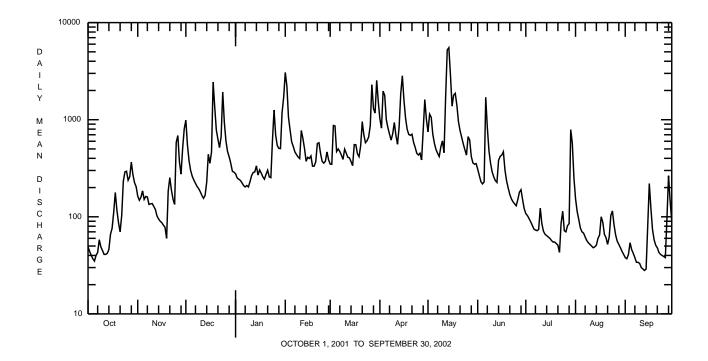
REVISED RECORDS.--WSP 743: Drainage area. WSP 1053: 1936-37(M), 1943(M).

GAGE.--Water-stage recorder. Datum of gage is 1,028.32 ft above National Geodetic Vertical Datum of 1929. Prior to June 9, 1941, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 5,000 ft³/s and maximum (*):

Date May 13	Tim 190	e ft	harge 3/s	Gage Heigh (ft) *7.72	t		Date No othe		ne	rischarge ft ³ /s	Gage Height (ft) discharge.	
-			DISCHA	RGE, CUBIC I	FEET PER SI		ΓER YEAR O EAN VALUES		01 TO SEI	PTEMBER 20	02	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	49 44 40 37 35	163 148 159 185 151	989 548 376 299 261	e278 e251 e244 e237 e224	3070 2220 1060 782 589	349 347 872 862 470	1020 819 1970 1780 1000	749 1140 1060 707 571	309 266 230 218 229	108 103 96 89 82	154 114 94 77 70	38 37 41 54 46
6 7 8 9 10	40 43 58 49 45	162 160 134 136 137	239 221 205 195 181	e210 e203 e210 e203 e230	529 466 437 413 398	500 471 432 390 497	828 709 616 718 937	492 450 418 524 605	1700 831 483 356 290	75 73 72 74 123	68 62 57 54 52	42 38 34 34 33
11 12 13 14 15	41 41 42 46 66	128 119 102 95 90	166 155 166 228 440	266 286 290 335 269	775 640 504 373 410	452 410 405 370 336	687 559 843 1850 2830	457 1730 5230 5520 2890	258 236 226 381 419	85 71 66 64 62	50 48 49 51 60	30 29 28 29 79
16 17 18 19 20	76 111 178 117 87	87 82 78 60 185	356 465 2440 1350 784	304 282 258 244 274	399 424 332 332 369	554 552 446 416 537	1590 1040 798 705 690	1380 1790 1870 1410 954	432 468 302 235 198	60 57 55 55 53	65 100 88 66 61	220 122 74 58 51
21 22 23 24 25	70 103 232 290 295	253 188 152 134 584	628 516 669 1930 937	302 258 253 610 1260	568 579 448 372 357	954 696 580 608 664	709 585 519 451 433	772 659 563 491 432	170 153 143 136 130	51 43 86 114 72	52 62 103 115 83	48 43 41 40 39
26 27 28 29 30 31	238 259 365 271 225 204	687 367 275 509 808	604 470 415 356 295 e288	695 542 506 504 1180 1710	373 466 387 	870 2290 1300 1170 2540 1530	452 385 774 1610 1010	669 616 418 359 348 353	150 179 190 150 121	70 81 85 789 570 252	65 56 52 48 44 41	38 95 265 145 90
MEAN MAX MIN CFSM	3797 122 365 35 0.41 0.47	6518 217 808 60 0.72 0.81	17172 554 2440 155 1.85 2.13	12918 417 1710 203 1.39 1.60	18072 645 3070 332 2.15 2.24	22870 738 2540 336 2.46 2.84	28917 964 2830 385 3.21 3.59	35627 1149 5520 348 3.83 4.42	9589 320 1700 121 1.07 1.19	3736 121 789 43 0.40 0.46	2161 69.7 154 41 0.23 0.27	1961 65.4 265 28 0.22 0.24
				FOR WATER		-						
(WY) MIN	253 1260 1991 34.5 1964	504 1560 1986 65.0 1992	677 1784 1978 80.9 1961	679 2385 1937 108 1984	737 2124 1976 158 1987	1084 2574 1936 400 2000	931 1958 1940 266 1935	592 1706 1953 129 1934	383 1491 1989 75.2 1934	221 896 1987 38.3 1934	170 786 1980 38.8 1934	196 1304 1990 34.5 1934


e Estimated.

OIL CREEK BASIN

03020500 OIL CREEK AT ROUSEVILLE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1933 - 2002
ANNUAL TOTAL	122194		163338			
ANNUAL MEAN	335		448		535	
HIGHEST ANNUAL MEAN					746	1956
LOWEST ANNUAL MEAN					303	1962
HIGHEST DAILY MEAN	4260 F	eb 10	5520	May 14	16300	Jan 22 1959
LOWEST DAILY MEAN	26 S	ep 12	28	Sep 13	23	Jul 26 1934
ANNUAL SEVEN-DAY MINIMUM	30 S	ep 7	31	Sep 8	24	Sep 2 1934
MAXIMUM PEAK FLOW			6080	May 13	a 21000	Jan 22 1959
MAXIMUM PEAK STAGE			7.72	May 13	11.97	Jan 22 1959
INSTANTANEOUS LOW FLOW			b 17	Jul 22	b 16	Oct 12 1993
ANNUAL RUNOFF (CFSM)	1.12		1.49		1.78	
ANNUAL RUNOFF (INCHES)	15.15		20.25		24.21	
10 PERCENT EXCEEDS	773		968		1210	
50 PERCENT EXCEEDS	219		266		290	
90 PERCENT EXCEEDS	41		49		61	

<sup>a From rating curve extended above 15,000 ft³/s.
b Result of abnormal diversion.</sup>

OIL CREEK BASIN

03020500 OIL CREEK AT ROUSEVILLE, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

				•	,								
Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
APR 2002													
24 JUN	0945	9813	456	40	8.8	7.2	149	6.9	54	15.9	3.6	40	<.2
12 AUG	0830	9813	237	40	6.8	7.4	215	21.3	69	20.2	4.4	56	<.2
14	0900	9813	52	40	8.2	7.8	269	23.6	110	34.1	6.6	94	<.2
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	SUS-	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	CYANIDE AMEN- ABLE TO CHLOR- INATION UNFLTRD (MG/L) (00722)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)
APR 2002													
24 JUN	11.5	124	<2	<.020	.31	<.040	.50	.01	.020	2.5	<10	<1.00	350
12	10.8	102	6	<.020	< .04	< .040	.54	.01	.020	3.2	<10	<1.00	310
AUG 14	12.7	164	8	<.020	<.04	<.040	.24	.02	.040	2.8	<10	<1.00	240
			2	Date PR 2002	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (μG/L AS MN)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)	PHENOLS TOTAL (µG/L) (32730)				
				24 UN	<1.0	20	<50	<10	<5				
			7/1	12 UG	<1.0	30	<50	<10	<5				
			A	14	<1.0	30	<50	<10	<5				

03021350 FRENCH CREEK NEAR WATTSBURG, PA

LOCATION.--Lat 42°00'55", long 79°46'58", Erie County, Hydrologic Unit 05010004, on right bank at downstream side of bridge on Tanner Road, 1,200 ft east of State Highway 74, 1.1 mi west of Pennsylvania-New York border, 1.5 mi northeast of Wattsburg, and 2.4 mi above confluence with West Branch French Creek.

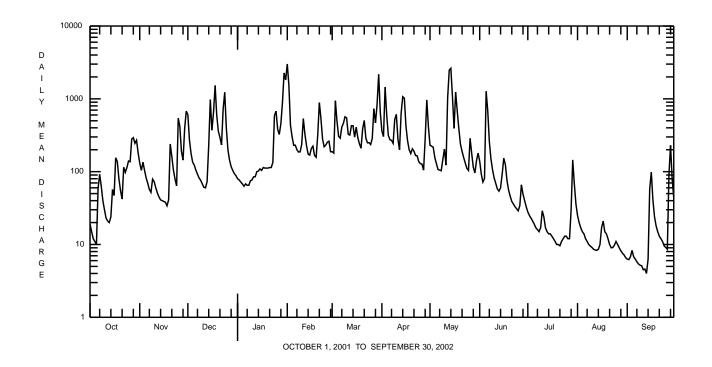
DRAINAGE AREA.--92.0 mi².

PERIOD OF RECORD.--October 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,304.84 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers benchmark).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 2,500 ft³/s and maximum (*):


Date Jan. Feb.	30 1	Time 1900 1600	2	scharge ft ³ /s 2,520 3,320	Gage Height (ft) 7.92 *8.76	t		Date May 14	Time 1 0200		scharge ft ³ /s , 950	Gage Height (ft) 8.37	
				DISCHA	RGE, CUBIC F	EET PER SI		TER YEAR OC EAN VALUES	TOBER 2001	TO SEPT	TEMBER 20	02	
DAY	OC'	Г	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1 1 1 1	5 2 1	131 104 135 104 82	604 272 177 135 123	e80 e77 e72 e68 e63	3010 1540 432 302 230	188 180 941 493 305	361 303 1450 602 316	231 224 217 156 129	139 92 72 81 1270	28 25 23 21 19	25 20 17 15 14	6.3 6.2 6.8 8.3 6.8
6 7 8 9 10	5 9 6 4 3	2 3 0	69 57 52 79 73	105 92 82 76 68	e68 e65 e65 e75 e77	231 200 186 187 237	288 410 461 567 548	275 269 245 519 613	107 105 103 147 204	689 260 150 106 82	17 16 15 17 29	12 11 10 9.5 9.1	6.3 5.8 5.4 5.2 5.1
11 12 13 14 15	2 2 2 2 5	1 0 4	60 51 45 41 40	61 60 73 228 976	e85 e85 e100 e102 e109	537 326 228 174 169	327 318 427 428 298	280 200 635 1070 1020	123 1030 2480 2630 1080	69 58 54 60 92	24 17 15 14 14	8.6 8.4 8.3 8.6	4.5 4.6 4.0 6.3
16 17 18 19 20	4 15 13 8 5	5 8 0	39 38 34 41 240	371 649 1530 600 360	e104 e114 e112 e112 e112	208 224 167 158 320	409 292 241 210 387	423 267 200 177 206	393 1240 672 385 238	153 125 76 56 46	13 12 11 10 10	17 21 15 14 12	99 41 24 18 15
21 22 23 24 25	4 11 9 11 14	5 8 4	161 105 79 64 542	295 233 718 1230 395	e114 e114 134 590 678	891 533 281 220 232	506 289 249 250 236	191 167 165 137 129	190 156 131 111 104	39 36 33 31 29	9.6 11 12 13 13	10 9.0 9.1 9.8	13 12 11 9.6 9.1
26 27 28 29 30 31	13 28 29 24 27 18	0 3 5 0	418 190 144 390 678	198 144 e117 e104 e94 e88	383 324 454 890 2270 1820	254 262 188 	287 731 468 840 2170 651	127 105 287 967 416	287 178 115 96 142 180	34 66 49 40 33	12 12 30 145 68 36	10 9.0 8.2 7.6 7.2 6.6	8.6 90 230 79 44
TOTAL MEAN MAX MIN CFSM IN.	288 93. 29 1 1.0	1 3 0 1 7	4286 143 678 34 1.55 1.73	10258 331 1530 60 3.60 4.15	9516 307 2270 63 3.34 3.85	11927 426 3010 158 4.63 4.82	14395 464 2170 180 5.05 5.82	12122 404 1450 105 4.39 4.90	13584 438 2630 96 4.76 5.49	4120 137 1270 29 1.49 1.67	711.6 23.0 145 9.6 0.25 0.29	363.0 11.7 25 6.6 0.13 0.15	841.9 28.1 230 4.0 0.31 0.34
MEAN MAX (WY) MIN (WY)	15 37 198 13. 199	7 5 2	302 669 1986 31.0 1992	304 547 1978 81.2 1990	256 624 1998 79.3 1977	322 792 1976 75.9 1987	423 779 1979 139 2000	333 627 1994 157 1976	156 438 2002 38.2 1985	121 477 1986 14.6 1991	64.1 334 1986 6.58 1999	76.7 272 1977 5.93 1991	111 563 1977 4.84 1995

e Estimated.

03021350 FRENCH CREEK NEAR WATTSBURG, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1975 - 2002
ANNUAL TOTAL	63694.0	85009.5	
ANNUAL MEAN	175	233	218
HIGHEST ANNUAL MEAN			289 199 <u>6</u>
LOWEST ANNUAL MEAN			136 1999
HIGHEST DAILY MEAN	2890 Feb 10	3010 Feb 1	e 4900 Jan 19 1996
LOWEST DAILY MEAN	6.1 Aug 15,16	4.0 Sep 13	1.7 Aug 18 1999
ANNUAL SEVEN-DAY MINIMUM	6.4 Aug 13	4.9 Sep 7	2.4 Aug 14 1999
MAXIMUM PEAK FLOW		3320 Feb 1	a 6350 Sep 14 1979
MAXIMUM PEAK STAGE		8.76 Feb 1	11.95 Sep 14 1979
INSTANTANEOUS LOW FLOW		3.7 Sep 13	1.5 Jul 31 1999 b
ANNUAL RUNOFF (CFSM)	1.90	2.53	2.37
ANNUAL RUNOFF (INCHES)	25.75	34.37	32.22
10 PERCENT EXCEEDS	419	576	522
50 PERCENT EXCEEDS	79	105	101
90 PERCENT EXCEEDS	9.5	10	17

<sup>a From rating curve extended above 4,400 ft³/s.
b Also Aug. 18, 19, 1999.
e Estimated.</sup>

03023100 FRENCH CREEK AT MEADVILLE, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 41°37'57", long 80°09'35", Crawford County, Hydrologic Unit 05010004, on left bank 30 ft upstream from bridge on Mercer Street at Meadville, 300 ft downstream from Mill Run, 2,600 ft downstream from Cussewago Creek, at mile 30.5.

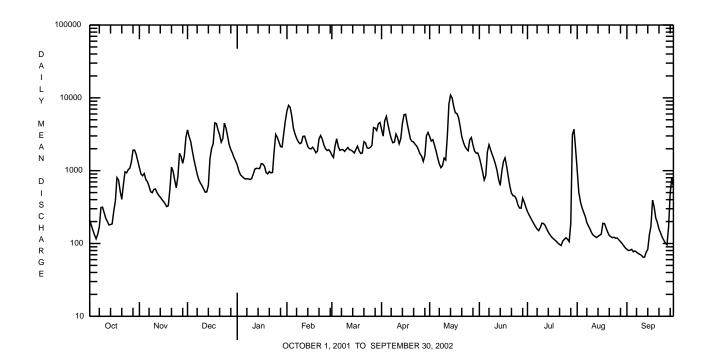
DRAINAGE AREA.--788 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1988 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,058.83 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers benchmark). Prior to October 27, 1989, water-stage recorder at site 2,300 ft upstream at different datum.

REMARKS.—No estimated daily discharges. Records good. Flow regulated since October 1971 by Union City Reservoir 43 mi upstream, serving as a retarding basin, and since January 1974 by Woodcock Creek Lake (station 03022550) 9.0 mi upstream. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.


EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum discharge 25,800 ft³/s April 1947, gage height, 17.05 ft; maximum gage height 17.60 ft, January 1959 (backwater from ice), site and datum then in use.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY ОСТ NOV DEC TAN FEB MAR APR MAY TIIN TITT. ATIG SEP 2790 2270 7 ___ ---TOTAL 4590 2270 3700 788 MEAN MAX MIN 2.68 CFSM 0.77 1.06 1.83 3.87 2.97 3.99 4.34 5.01 1.20 0.54 0.25 0.22 0.89 3.09 2.11 4.03 3.42 4.46 1.34 0.62 0.29 0.25 IN. 1.18 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1989 - 2002, BY WATER YEAR (WY) MEAN MAX (WY) MTN 81.3 52.6 (WY)

03023100 FRENCH CREEK AT MEADVILLE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1989 - 2002
ANNUAL TOTAL	396767		565128			
ANNUAL MEAN	1087		1548		1493	
HIGHEST ANNUAL MEAN					1982	1996
LOWEST ANNUAL MEAN					824	1999
HIGHEST DAILY MEAN	7960	Feb 11	10900	May 14	14300	Jan 20 1996
LOWEST DAILY MEAN	84	Sep 18,19	65	Sep 11,12	37	Sep 22 1991
ANNUAL SEVEN-DAY MINIMUM	88	Sep 15	71	Sep 7	42	Sep 19 1991
MAXIMUM PEAK FLOW			11000	May 14	a 14800	Jan 20 1996
MAXIMUM PEAK STAGE			13.27	May 14	15.52	Jan 20 1996
INSTANTANEOUS LOW FLOW			63	Sep 12	37	Sep 22 1991
ANNUAL RUNOFF (CFSM)	1.38		1.96		1.89	
ANNUAL RUNOFF (INCHES)	18.73		26.68		25.75	
10 PERCENT EXCEEDS	2480		3370		3450	
50 PERCENT EXCEEDS	740		1080		980	
90 PERCENT EXCEEDS	117		120		124	

a From rating curve extended above 10,300 ft³/s.

03023100 FRENCH CREEK AT MEADVILLE, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
APR 2002													
23 JUN	0900	9813	2200	40	7.8	7.6	209	10.4	78	23.5	4.7	64	11.7
11	1400	9813	1200	40	10.5	7.6	227	21.5	88	27.1	4.8	70	9.4
AUG 13	1400	9813	120	40	9.3	8.2	351	25.0	140	41.4	8.1	110	18.9
Date	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)
APR 2002 23	178	22	.050	.51	<.040	1.0	.02	.050	3.9	<10	980	1.1	80
JUN 11	132	18	<.020	.36	<.040	1.0	.03	.040	5.4	<10	760	<1.0	60
AUG													

	NICKEL,	ZINC,
	TOTAL	TOTAL
	RECOV-	RECOV-
	ERABLE	ERABLE
Date	(μG/L	(µG/L
	AS NI)	AS ZN)
	(01067)	(01092)
APR 2002		
23	<50	<10
JUN		
11	<50	10
AUG		
13	<50	<10

03024000 FRENCH CREEK AT UTICA, PA

LOCATION.--Lat 41°26'15", long 79°57'22", Venango County, Hydrologic Unit 05010004, on right bank at downstream side of bridge on SR 3017 at Utica and 2,000 ft upstream from Mill Creek.

DRAINAGE AREA.--1,028 mi².

PERIOD OF RECORD.--August 1932 to current year.

REVISED RECORDS.--WSP 743: Drainage area. WSP 823: 1936 (M). WSP 1275: 1933, 1936.

GAGE.--Water-stage recorder. Datum of gage is 1,019.44 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 27, 1933, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated since July 1970 by Union City Reservoir (station 03021518) 50 mi upstream, serving as a retarding basin, and since January 1974 by Woodcock Creek Lake (station 03022550), 25 mi upstream. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

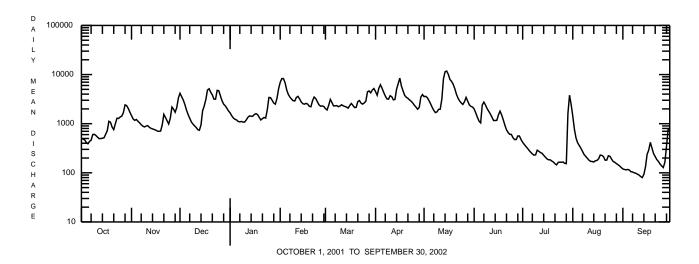
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1912, 15.7 ft in March 1913, discharge about 36,000 ft³/s.

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e504	e1460	4160	1660	6950	2020	4480	3550	1990	418	1430	120
2	e487	e1250	3570	1450	8290	1900	3790	3610	1650	378	776	117
3	e469	e1170	3040	1310	8290	2380	5240	3390	1350	344	512	115
4	e417	e1220	2470	1230	6820	3120	6200	2970	1130	315	409	117
5	e391	e1120	1900	1190	4900	2700	5270	2550	1040	285	360	114
6	e435	e1040	1540	1110	3950	2300	4360	2160	2390	262	318	105
7	e461	e955	1290	1090	3480	2310	3660	1870	2750	242	274	104
8	e600	e891	1090	1110	3170	2330	3200	1680	2400	229	236	100
9	e608	e859	982	1080	2940	2220	3150	1740	2030	232	216	98
10	e574	e891	903	1080	2900	2290	3710	1960	1790	289	198	94
11	e530	e912	838	1190	3420	2430	3550	1970	1580	274	181	90
12	e496	e848	756	1350	3600	2310	3060	3170	1360	259	171	84
13	e498	e805	735	1440	3190	2240	3120	8240	1160	249	170	80
14	e507	e783	e948	1420	2770	2180	5060	11400	1160	228	166	93
15	e517	e762	e1840	1420	2550	2070	6530	11800	1170	209	176	133
16	e609	e740	e2300	1540	2500	2340	8470	10100	1500	193	179	238
17	e720	e708	e3120	1600	2590	2580	5800	7950	1800	184	193	290
18	e1120	e698	4850	1530	2500	2350	4660	7270	1510	184	230	417
19	e1070	e708	5140	1350	2260	2130	3780	6360	1200	174	226	319
20	e850	e945	4360	1190	2210	2150	3450	5190	930	166	214	246
21	e757	e1550	3860	1270	2940	2820	3280	4000	753	153	181	214
22	e998	e1340	3160	1340	3490	2960	3050	3310	661	145	181	186
23	e1290	e1150	3150	1300	3240	2620	2870	2900	607	163	222	170
24	e1280	e984	4780	1920	2790	2500	2640	2640	605	165	217	151
25	e1370	e1290	4680	3420	2420	2640	2370	2460	519	164	190	138
26	e1430	e2180	3700	3390	2270	2890	2180	2810	475	166	170	128
27	e1690	e1980	2930	3000	2300	4460	1970	3430	476	156	164	164
28	e2420	e1710	2500	2630	2240	4640	2140	2880	563	154	154	352
29	e2330	e2130	2310	2500		4240	3480	2420	562	1610	146	750
30	e2040	e3330	2060	3280		4860	3920	2250	475	3780	138	747
31	e1710		1820	5150		5200		2180		2470	128	
TOTAL	29178	36409	80782	55540	100970	86180	118440	130210	37586	14240	8526	6074
MEAN	941	1214	2606	1792	3606	2780	3948	4200	1253	459	275	202
MAX	2420	3330	5140	5150	8290	5200	8470	11800	2750	3780	1430	750
MIN	391	698	735	1080	2210	1900	1970	1680	475	145	128	80
CFSM	0.92	1.18	2.53	1.74	3.51	2.70	3.84	4.09	1.22	0.45	0.27	0.20
IN.	1.06	1.32	2.92	2.01	3.65	3.12	4.29	4.71	1.36	0.52	0.31	0.22

e Estimated.

03024000 FRENCH CREEK AT UTICA, PA--Continued


STAT	ISTICS OF	MONTHLY MEA	N DATA	FOR WATER	YEARS 1974	- 2002,	BY WATER	YEAR (WY)	(SINCE	REGULATI	<u>ON</u>)	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX (WY) MIN (WY)	1261 3954 1991 121 1992	2255 6309 1986 176 1992	2744 6029 1978 583 1999	2520 5426 1993 869 1977	2945 6394 1976 629 1987	3542 5778 1977 1622 2000	3085 5101 1994 1655 1976	1758 4200 2002 452 1985	1240 4659 1986 209 1991	778 2629 1987 192 1995	695 3297 1980 112 1991	877 3408 1990 71.7 1995

SUMMARY STATISTICS	FOR 2001 CALENI	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1974 - 2002
ANNUAL TOTAL	490796		704135			
ANNUAL MEAN	1345		1929		1969	
HIGHEST ANNUAL MEAN					2459	1997
LOWEST ANNUAL MEAN					1044	1999
HIGHEST DAILY MEAN	8870	Feb 11	11800	May 15	18100	Feb 21 1981
LOWEST DAILY MEAN	e 105	Sep 18,19	80	Sep 13	60	Sep 15 1991
ANNUAL SEVEN-DAY MINIMUM	a 109	Sep 15	91	Sep 8	67	Sep 7 1995
MAXIMUM PEAK FLOW			12200	May 15	18400	Feb 21 1981
MAXIMUM PEAK STAGE			9.42	May 15	11.64	Feb 21 1981
ANNUAL RUNOFF (CFSM)	1.31		1.88		1.92	
ANNUAL RUNOFF (INCHES)	17.76		25.48		26.02	
10 PERCENT EXCEEDS	3120		3970		4470	
50 PERCENT EXCEEDS	920		1440		1310	
90 PERCENT EXCEEDS	140		170		231	

STATISTICS	OF	MONTHLY ME	N DATA	FOR WATER	YEARS 1933	- 1973,	BY WATER	YEAR (WY)	(PRIOR	TO REGUL	ATION)	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX 3	695 8744	1506 3983	2238 4471	2590 7284	2713 5894	3915 7359	3147 6688	1684 4160	953 3717	555 2015	408 1907	440 2148
(WY) 1	946	1971	1951	1937	1938	1964	1947	1956	1947	1967	1956	1958
	9.5	183	227	403	523	1768	575	349	124	77.1	77.8	80.4
(WY) 1	964	1954	1961	1961	1934	1937	1946	1934	1934	1934	1954	1954

SUMMARY STATISTICS	WATER YEARS	1933 - 1973
ANNUAL MEAN	1751	
HIGHEST ANNUAL MEAN	2539	1956
LOWEST ANNUAL MEAN	1146	1934
HIGHEST DAILY MEAN	23000	Mar 6 1964
LOWEST DAILY MEAN	45	Sep 1 1933
ANNUAL SEVEN-DAY MINIMUM	48	Aug 27 1933
MAXIMUM PEAK FLOW	b 23800	Mar 7 1964
MAXIMUM PEAK STAGE	c 13.2	Mar 7 1964
INSTANTANEOUS LOW FLOW	43	Jul 30 1934
ANNUAL RUNOFF (CFSM)	1.70	
ANNUAL RUNOFF (INCHES)	23.15	
10 PERCENT EXCEEDS	4370	
50 PERCENT EXCEEDS	940	
90 PERCENT EXCEEDS	147	
JO I LICOLITI LICOLODO	/	

- a Computed using estimated daily discharges.
 b From rating curve extended above 20,700 ft³/s.
 c From floodmark in gage well.
 e Estimated.

LAKES AND RESERVOIRS IN FRENCH CREEK BASIN

03021518 UNION CITY RESERVOIR.--Lat 41°55'13", long 79°53'59", Erie County, Hydrologic Unit 05010004, in tower at left center of Union City Dam on French Creek, 1.4 mi upstream from South Branch French Creek, and 3.2 mi northwest of Union City. DRAINAGE AREA, 220 mi². PERIOD OF RECORD, July 1970 to current year. GAGE, water-stage recorder. Datum of gage is sea level (U.S. Army Corps of Engineers bench mark). Reservoir is formed by earthfill dam with sidehill, concrete-lined spillway completed September 1971. Dam became operational in July 1970. Usable capacity 47,650 acre-ft between elevation 1,210.00 ft (invert of inlet of conduit) and 1,278.00 ft (crest of spillway). No dead storage. Figures given herein represent usable contents. Reservoir is used for flood control only. Records furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 34,840 acre-ft, Feb. 21, 1981, elevation, 1,271.80 ft; minimum, 0.0 acre-ft, Aug. 31, 1995, elevation, 1,211.08 ft, (period of record available, July 1970 through Dec. 1999).

EXTREMES FOR CURRENT YEAR.--Records not furnished to determine extremes for current year.

03022550 WOODCOCK CREEK LAKE.--Lat 41°41′50″, long 80°06′06″,Crawford County, Hydrologic Unit 05010004 in tower on right center and 200 ft upstream from center line of Woodcock Creek Dam on Woodcock Creek, 2.8 mi southeast of Saegerstown and 3.5 mi upstream from mouth. DRAINAGE AREA, 45.6 mi². PERIOD OF RECORD, January 1974 to current year. GAGE, water-stage recorder. Datum of gage is sea level (U.S. Army Corps of Engineers benchmark). Lake is formed by a rolled earth embankment with an impervious core. Storage began in January 1974. Total storage 20,000 acre-ft between elevation 1,138 ft inlet invert and 1,209 ft crest of spillway. Figures given herein represent usable contents. Lake is used for flood control and recreation. Records furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 12,690 acre-ft, June 13, 1986, elevation, 1,198.18 ft; minimum (after first filling) 676 acre-ft, Nov. 1, 1984, elevation, 1,159.82 ft, (period of record available, Jan. 1974 through Dec. 1999).

EXTREMES FOR CURRENT YEAR .-- Records not furnished to determine extremes for current year.

MONTHEND ELEVATION, IN FE	ET ABOVE SEA	LEVEL, AN	ID CONTENTS	S AT 2400 HRS, WATER YEAR	OCTOBER 200)1 TO SEPTE	MBER 2002
			Change in				Change in
		Contents	contents			Contents	contents
	Elevation	(acre-	(equivalent		Elevation	(acre-	(equivalent
Date	(feet)	feet)	in ft ³ /s)		(feet)	feet)	in ft ³ /s)
	03021518	Union City R	eservoir		03022550 V	Voodcock Cre	ek Lake
Sept. 30	1,212.52	4			1,177.18	3,760	
Oct. 31	1,223.39	466	+7.5		1,178.62	4,180	+6.8
Nov. 30	1,227.30	923	+7.7		1,170.44	2,180	-34
Dec. 31	1,227.05	888	-0.57		1,164.15	1,170	-16
CAL YR 2001			+1.0				-0.17
Jan. 31	1,244.38	5,570	+76		1,167.20	1,610	+7.2
Feb. 28	1,231.88	1,680	-70		1,166.78	1,550	-1.1
Mar. 31	1,255.30	11,980	+168		1,181.77	5,190	+59
Apr. 30	1,238.78	3,540	-142		1,183.63	5,860	+11
May 31	1,231.93	1,690	-30		1,181.74	5,180	-11
June 30	1,213.91	14	-28		1,181.44	5,080	-1.7
July 31	1,215.42	34	+0.33		1,183.15	5,680	+9.8
Aug. 31	1,211.91	1	-0.54		1,181.08	4,960	-12
Sept. 30	1,217.61	88	+1.5		1,180.03	4,620	-5.7
WTR YR 2002			+0.12				+1.2

03025500 ALLEGHENY RIVER AT FRANKLIN, PA

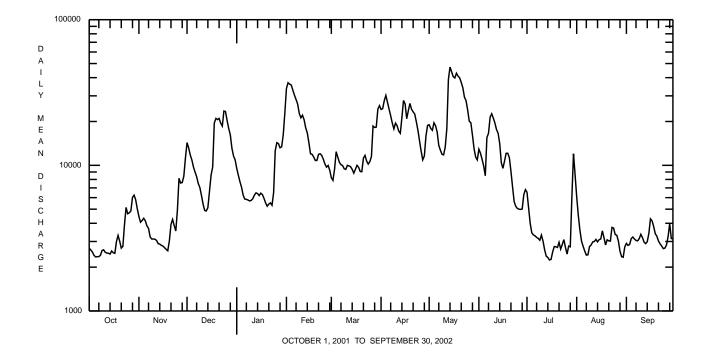
LOCATION.--Lat 41°23'22", long 79°49'14", Venango County, Hydrologic Unit 05010003, on right bank at upstream side of Eighth Street bridge on U.S. Highway 322 at Franklin, 1,000 ft downstream from French Creek, at mile 124.4.

DRAINAGE AREA.--5,982 mi².

PERIOD OF RECORD.—October 1914 to current year. Monthly discharge only for some periods, published in WSP 1305. Gage-height records collected at same site since April 1905 are contained in reports of U.S. Weather Bureau.

REVISED RECORDS.--WSP 743: Drainage area. WSP 783: 1913 (M). WSP 1003: 1920 (M). WSP 1305: 1926 (M), 1928-29 (M). WSP 1385: 1920, 1932.

GAGE.--Water-stage recorder. Datum of gage is 955.84 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 16, 1932, nonrecording gage, and Sept. 16-30, 1932, water-stage recorder, at present site at datum 2.00 ft higher.


REMARKS.--No estimated daily discharges. Records good. Flow regulated since December 1940 by Tionesta Lake, since November 1949 by Chautauqua Lake (station 03013946), since October 1965 by Allegheny Reservoir (station 03012520), since July 1970 by Union City Reservoir (station 03021518), and since January 1974 by Woodcock Creek Lake (station 03022550). Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 17, 1865 reached a stage of 25.0 ft, and that of Mar. 26, 1913 a stage of 24.6 ft, from graph based on gage readings, discharges about, 200,000 ft³/s and 190,000 ft³/s, respectively, from rating curve extended above 111,000 ft³/s. Maximum discharge since at least 1864 is that of Mar. 17, 1865.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2700	4450	14300	9540	33700	8220	24200	19000	12900	6540	6080	2910
2	2620	4070	13200	8550	36900	7880	24500	17900	12100	5120	4530	2820
3	2540	4180	11800	7720	36100	9390	27800	17400	11000	3990	3590	2860
4	2410	4330	10900	7070	35600	12400	30200	19600	9880	3440	3020	3140
5	2350	4160	9750	6250	32800	11400	27100	18700	8490	3330	2780	3220
6	2360	3840	8990	5870	30300	10500	24300	16900	15500	3280	2580	3120
7	2360	3690	8360	5840	28300	10100	21900	13700	16600	3200	2420	3050
8	2410	3220	7510	5780	26300	9970	19500	12700	21400	3150	2430	3030
9	2600	3120	7040	5700	22700	9480	17800	11900	22600	3060	2770	3140
10	2630	3120	6220	5740	21200	9380	19500	11800	21100	3320	2840	3360
11	2530	3110	5420	5900	22100	10000	18700	13300	19500	3020	2980	3190
12	2500	3050	4900	6240	20600	9910	17200	17800	17600	2630	3000	2970
13	2490	2900	4860	6470	18100	9790	16600	38900	16600	2380	3100	2900
14	2460	2880	5120	6400	16700	9380	21300	47300	14100	2330	2980	2990
15	2580	2820	6610	6200	14300	8840	27900	43900	10400	2240	3090	3410
16	2510	2790	8570	6440	12000	9390	26400	40600	9540	2260	3120	4290
17	2490	2720	9740	6300	11900	10000	20900	39800	10700	2540	3550	4160
18	3000	2650	19500	5930	11400	9690	23700	42900	12100	2770	3190	3800
19	3300	2590	21000	5520	10800	9070	26600	41000	12100	2760	2840	3390
20	3020	3040	20600	5240	10800	9040	24300	39900	11300	2730	3080	3260
21	2700	3930	21000	5420	11900	11200	23300	37100	9110	2960	3030	3020
22	2780	4250	19500	5520	12000	11700	22500	34100	7110	2660	3020	2890
23	3910	3860	18600	5320	11700	10700	19900	29400	5630	2860	3750	2790
24	5140	3540	23600	6480	11000	10200	17400	27800	5230	3090	3710	2680
25	4650	4920	23400	12600	10200	10600	14700	24000	5060	2730	3350	2700
26 27 28 29 30 31	4720 4870 6030 6240 5790 5020	8140 7560 7620 8410 11200	20300 17900 16200 13100 11600 10900	14300 14100 13200 13400 16200 22900	9720 9980 9250 	11500 18600 18200 18300 24300 25700	12500 10900 11600 15900 18800	20100 19600 16100 13000 11400 10900	5000 4980 5010 6290 6810	2460 2790 2760 6100 12000 8610	3310 3020 2570 2360 2340 2760	2840 3250 3980 3140 3140
TOTAL	103710	130160	400490	258140	538350	364830	627900	768500	345740	113110	97190	95440
MEAN	3345	4339	12920	8327	19230	11770	20930	24790	11520	3649	3135	3181
MAX	6240	11200	23600	22900	36900	25700	30200	47300	22600	12000	6080	4290
MIN	2350	2590	4860	5240	9250	7880	10900	10900	4980	2240	2340	2680
CFSM	0.56	0.73	2.16	1.39	3.21	1.97	3.50	4.14	1.93	0.61	0.52	0.53
IN.	0.64	0.81	2.49	1.61	3.35	2.27	3.90	4.78	2.15	0.70	0.60	0.59
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	15 - 2002,	, BY WATER	YEAR (W	<i>(</i>)			
MEAN	5541	9921	13300	13790	13710	20750	19320	12160	7412	4408	3213	3530
MAX	22900	26030	33270	41420	32340	49850	49920	30070	24820	21440	13830	17730
(WY)	1991	1986	1928	1937	1976	1936	1940	1943	1989	1972	1977	1977
MIN	515	771	1125	1732	2929	6383	4203	2554	1106	555	414	435
(WY)	1931	1931	1961	1961	1963	1969	1946	1985	1934	1934	1930	1930

03025500 ALLEGHENY RIVER AT FRANKLIN, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1915 - 2002
ANNUAL TOTAL	2678090	3843560	
ANNUAL MEAN	7337	10530	10570
HIGHEST ANNUAL MEAN			15560 1956
LOWEST ANNUAL MEAN			6482 1931
HIGHEST DAILY MEAN	34000 Feb 16	47300 May 14	130000 Mar 13 1920
LOWEST DAILY MEAN	2350 Oct 5	2240 Jul 15	335 Aug 21 1930
ANNUAL SEVEN-DAY MINIMUM	2430 Oct 3	2430 Oct 3	351 Aug 17 1930
MAXIMUM PEAK FLOW		48800 May 14	a 138000 Mar 13 1920
MAXIMUM PEAK STAGE		11.95 May 14	b 20.65 Mar 13 1920
ANNUAL RUNOFF (CFSM)	1.23	1.76	1.77
ANNUAL RUNOFF (INCHES)	16.65	23.90	24.01
10 PERCENT EXCEEDS	17600	23300	25100
50 PERCENT EXCEEDS	4300	7110	6610
90 PERCENT EXCEEDS	2590	2710	1420

<sup>a From rating curve extended above 111,000 ft³/s.
b Maximum gage height observed, 26.0 ft, Feb. 27, 1917 (backwater from ice), also Feb. 26, 1926 (backwater from ice).</sup>

03026500 SEVENMILE RUN NEAR RASSELAS, PA

LOCATION.--Lat 41°37′52″, long 78°34′37″, McKean County, Hydrologic Unit 05010005, on right bank 300 ft upstream from highway bridge, 600 ft upstream from Fivemile Run, and 3.2 mi northeast of Rasselas.

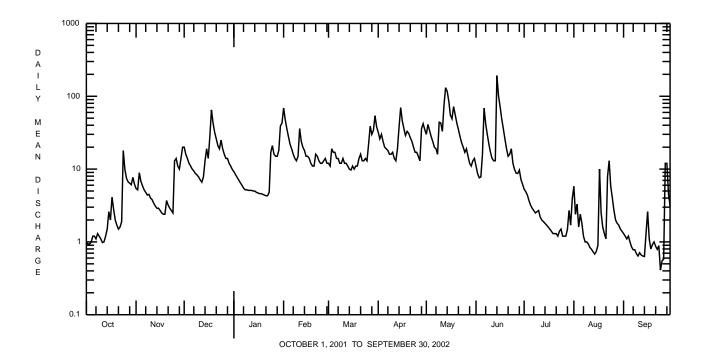
DRAINAGE AREA.--7.84 mi².

PERIOD OF RECORD.--October 1951 to current year.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,690.73 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 200 ft³/s and maximum (*):


Dat June		Time 1200	ft	harge 3/s 559	Gage Heig (ft) *4.65	ht		Date No othe		me	ischarge ft ³ /s than base	Gage Heigh (ft) discharge	
				DISCHA	RGE, CUBIC	FEET PER S		TER YEAR OO EAN VALUES		001 TO SEF	TEMBER 20	002	
DAY	OCT		VOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.0 0.93 0.94 0.99	: 8	5.4 5.2 3.9 5.8 5.9	20 16 14 12 11	e9.2 e8.4 e7.7 e7.1 e6.5	69 48 36 28 22	12 11 19 17 17	32 26 30 24 20	30 41 34 28 24	11 8.6 7.6 7.8 16	5.3 4.9 4.4 3.7 3.2	5.8 2.4 3.3 1.6 2.4	1.3 1.2 1.1 1.2 1.0
6 7 8 9 10	1.2 1.1 1.3 1.2	4	5.2 4.8 4.4 4.5 4.0	10 9.4 8.7 8.3 7.8	e6.0 e5.5 e5.2 e5.2 e5.1	19 16 14 13 15	14 14 12 12	19 18 16 16	20 19 16 44 43	69 42 30 22 17	2.9 2.7 2.5 2.6 2.7	1.8 1.2 1.0 1.00 0.94	0.85 0.78 0.78 0.69 0.64
11 12 13 14 15	0.98 1.0 1.2 1.5 2.6	-	3.8 3.4 3.1 2.9 2.9	7.1 6.6 7.8 13 19	e5.1 e5.1 e5.0 e5.0 e4.8	36 24 20 18 15	12 12 11 10 9.7	14 13 19 38 70	33 75 131 117 86	14 13 13 193 102	2.2 2.0 1.9 1.8 1.7	0.84 0.79 0.73 0.68 0.74	0.71 0.66 0.64 0.63 1.3
16 17 18 19 20	2.0 4.1 2.8 2.0 1.7	:	2.7 2.5 2.4 2.4 3.7	14 28 65 43 32	e4.7 e4.6 e4.6 e4.5 e4.4	15 14 12 11	11 10 11 11	46 36 29 33 31	55 49 72 56 43	72 49 36 26 19	1.6 1.5 1.4 1.3	0.90 10 2.5 1.6 1.3	2.6 1.1 0.80 0.92 1.0
21 22 23 24 25	1.5 1.6 1.9 18 10	2	3.2 2.9 2.7 2.5	26 21 19 25 19	e4.3 e4.3 4.8 17 21	16 15 13 12	16 13 13 14 13	27 24 20 17 17	35 28 23 20 17	15 16 19 12 9.9	1.3 1.2 1.4 1.5	1.1 7.9 13 5.8 4.0	0.87 0.79 0.89 0.41 0.55
26 27 28 29 30 31	7.5 6.7 6.4 6.1 7.7 6.2	14 11 10 14 20	L O 4	16 14 14 12 e11 e9.9	16 15 15 18 39 43	13 14 12 	22 39 30 34 54 38	15 13 36 42 35	19 15 12 11 13 14	8.8 8.7 9.7 7.2 6.2	1.2 1.5 2.7 1.7 3.9	2.7 2.0 1.8 1.7 1.5	0.58 12 12 4.6 3.1
TOTAL MEAN MAX MIN CFSM IN.	104.44 3.37 18 0.93 0.43 0.50	5 0 0	.94 20 2.4 .76 .85	539.6 17.4 65 6.6 2.22 2.56	311.1 10.0 43 4.3 1.28 1.48	563 20.1 69 11 2.56 2.67	539.7 17.4 54 9.7 2.22 2.56	793 26.4 70 13 3.37 3.76	1223 39.5 131 11 5.03 5.80	880.5 29.4 193 6.2 3.74 4.18	70.4 2.27 5.3 1.2 0.29 0.33	84.42 2.72 13 0.68 0.35 0.40	55.69 1.86 12 0.41 0.24 0.26
STATIS MEAN	TICS OF 7.96		LY MEA 4.2	N DATA 17.2	FOR WATER	YEARS 195	5 2 - 2002, 27.9	29.0	YEAR (WY 17.5	11.9	5.27	5.15	5.97
MEAN MAX (WY) MIN (WY)	7.96 29.7 1971 0.32 1965	19	9.5 986 .66	17.2 35.9 1978 0.94 1961	14.8 56.4 1952 1.55 1961	17.0 49.9 1976 2.22 1987	70.8 1964 9.85 1993	70.6 1970 11.2 1976	47.8 1953 4.05 1985	74.0 1989 1.14 1991	26.0 1992 0.50 1991	32.8 1956 0.52 1966	39.7 1987 0.28 1964

e Estimated.

03026500 SEVENMILE RUN NEAR RASSELAS, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1952 - 2002
ANNUAL TOTAL	3192.50	5343.05	
ANNUAL MEAN	8.75	14.6	14.4
HIGHEST ANNUAL MEAN			21.1 1984
LOWEST ANNUAL MEAN			8.92 2001
HIGHEST DAILY MEAN	65 Dec 18	193 Jun 14	465 Jun 20 1989
LOWEST DAILY MEAN	0.29 Aug 15	0.41 Sep 24	0.07 Sep 21 1955
ANNUAL SEVEN-DAY MINIMUM	0.40 Aug 12	0.68 Sep 8	0.14 Sep 16 1955
MAXIMUM PEAK FLOW		559 Jun 14	a 2300 Sep 13 1987
MAXIMUM PEAK STAGE		4.65 Jun 14	5.30 Sep 13 1987
INSTANTANEOUS LOW FLOW		0.17 Sep 24	0.07 Sep 21 1955
ANNUAL RUNOFF (CFSM)	1.12	1.87	1.84
ANNUAL RUNOFF (INCHES)	15.15	25.35	24.95
10 PERCENT EXCEEDS	23	35	32
50 PERCENT EXCEEDS	4.6	10	8.0
90 PERCENT EXCEEDS	0.79	1.1	1.0

 $[\]textbf{a} \ \ \text{From rating curve extended above } 600 \ \text{ft}^3\text{/s on basis of slope-area measurement at gage height } 4.60 \ \text{ft and contracted-opening measurement at gage height } 5.02 \ \text{ft.}$

03027000 EAST BRANCH CLARION RIVER LAKE

LOCATION.--Lat 41°33'35", long 78°35'40", Elk County, Hydrologic Unit 05010005, at control tower at East Branch Clarion River Dam on East Branch Clarion River, 1.7 mi northeast of Glen Hazel, and 7.5 mi upstream from confluence with West Branch Clarion River.

DRAINAGE AREA.--72.4 mi² (figure from U.S. Army Corps of Engineers).

PERIOD OF RECORD.--June 1952 to current year. Prior to October 1970 published as "East Branch Clarion River Reservoir".

GAGE.--Water-stage recorder. Datum of gage is sea level (U.S. Army Corps of Engineers bench mark).

REMARKS.--Lake is formed by an earthfill dam rock-faced. Dam completed in 1952. Controlled storage began in June 1952. Capacity, 83,300 acre-ft between elevations 1,555 ft (sill of outlet gates) and 1,685 ft (full pool). Minimum pool elevation, 1,555 ft (capacity, 1,000 acre-ft). Winter low-water pool elevation, 1,651 ft (capacity, 45,600 acre-ft). Summer low-water pool elevation, 1,670 ft (capacity, 65,300 acre-ft). Storage to summer pool normally occurs during period Mar. 1 to Apr. 30. Depletion of low-water storage for augmenting flow in Clarion River occurs normally during period June to October. Figures given herein represent total contents. Lake is used for flood control, for low-flow augmentation of Clarion River and downstream rivers, and for recreation.

COOPERATION .-- Records furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 85,010 acre-ft, June 24, 1972, elevation, 1,685.55 ft; minimum, 850 acre-ft, Nov. 9, 1957, elevation, 1,553.00 ft. (Period of record available June 1952 through Dec. 1999.)

EXTREMES FOR CURRENT YEAR.--Records not furnished to determine extremes for current year.

MONTHEND ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS AT 2400 HRS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Elevation (feet)	Contents (acre- feet)	Change in contents (equivalent in ft ³ /s)
Sept. 30	1,640.95	36,890	
Oct. 31	1,634.87	32,200	-76
Nov. 30	1,634.62	32,010	-3.2
Dec. 31	1,645.71	40,850	+143
CAL YR 2001			-5.9
Jan. 31	1,650.04	44,680	+62
Feb. 28	1,655.99	50,310	+101
Mar. 31	1,664.25	58,850	+139
Apr. 30	1,671.70	67,300	+142
May 31	1,670.66	66,080	-20
June 30	1,670.00	65,310	-13
July 31	1,663.94	58,520	-110
Aug. 31	1,655.71	50,040	-138
Sept. 30	1,644.50	39,820	-172
WTR YR 2002			+4.1

03028000 WEST BRANCH CLARION RIVER AT WILCOX, PA

LOCATION.--Lat 41°34'31", long 78°41'33", Elk County, Hydrologic Unit 05010005, on right bank 20 ft downstream from bridge on Township Route 359 at Wilcox, 100 ft downstream from Wilson Run, and 0.1 mi upstream from Penn Central Railroad bridge.

DRAINAGE AREA.--63.0 mi².

PERIOD OF RECORD.--October 1953 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,502.02 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 18, 1953, nonrecording gage at site 20 ft upstream at same datum. Nov. 18 to Dec. 8, 1953, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,000 ft³/s and maximum (*):

Date May 1		Time 2100		scharge ft ³ /s	Gage Heigh (ft) 5.07	t		Date June 1	Tim	e i	charge ft ³ /s , 810	Gage Height (ft) *6.74	
				DISCHA	RGE, CUBIC F	FEET PER SE		TER YEAR OC EAN VALUES	CTOBER 200	1 TO SEPT	EMBER 20	002	
DAY	OC'	Г	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	9.4 8.7 8.4 8.2	7 7 1	32 34 60 42 37	201 166 146 125 111	e89 e78 e74 e66 e64	562 448 359 292 229	107 101 205 172 172	333 274 291 233 205	275 353 284 251 221	95 82 74 72 128	46 43 39 34 33	33 18 22 13 16	8.5 8.7 8.7 10 8.4
6 7 8 9 10	8.9 9.4 10 8.9	1	34 32 30 31 28	99 88 79 74 66	e60 e57 e53 e50 e48	192 167 145 125 140	171 154 139 129 150	191 172 158 158 156	194 174 150 311 293	556 355 278 222 180	29 27 26 25 27	13 10 9.8 9.3 9.3	7.4 6.9 6.9 6.9
11 12 13 14 15	13 8.9 11 12 27)	26 23 21 21 20	59 54 64 106 155	e46 e43 e43 e43 e41	272 200 190 169 160	119 116 111 105 99	129 121 168 298 505	252 598 1070 1230 1020	147 127 111 1400 848	21 21 19 19 18	8.8 8.7 9.2 8.6	6.9 6.9 6.9 15
16 17 18 19 20	19 35 25 18 16		20 19 16 17 32	115 243 536 388 319	e40 e39 e39 e38 e42	152 140 118 107 111	117 100 102 101 132	388 317 258 264 238	643 506 677 525 421	609 436 325 248 197	17 15 15 15 15	13 62 19 13 12	32 12 9.4 9.5 9.5
21 22 23 24 25	14 16 21 179 79		24 21 20 19 137	256 209 191 230 179	e41 e43 43 114 160	144 133 118 111 111	146 134 136 138 140	211 194 172 147 142	338 275 229 200 169	159 137 125 100 87	14 13 18 19 14	9.8 30 72 29 20	8.7 8.7 7.7 6.9 6.8
26 27 28 29 30 31	53 51 49 41 40 36		114 87 82 113 178	160 147 e126 e113 e102 e95	140 139 139 159 293 349	127 129 112 	238 362 305 314 478 380	126 111 331 355 318	177 140 118 112 123 113	74 82 79 59 51	15 14 15 28 17	15 12 12 11 9.3 9.3	6.3 94 80 25 18
TOTAL MEAN MAX MIN CFSM IN.	856.1 27.6 179 8.2 0.44	5 9 2 1 L	1370 45.7 178 16 0.72 0.81	5002 161 536 54 2.56 2.95	2673 86.2 349 38 1.37 1.58	5263 188 562 107 2.98 3.11	5373 173 478 99 2.75 3.17	6964 232 505 111 3.68 4.11	11442 369 1230 112 5.86 6.76	7443 248 1400 51 3.94 4.39	688 22.2 46 13 0.35 0.41	547.1 17.6 72 8.6 0.28 0.32	456.4 15.2 94 6.3 0.24 0.27
MEAN MAX (WY) MIN (WY)	70.2 236 1982 7.66	2 5 2	124 390 1986 12.9 1965	152 311 1978 12.4 1961	127 319 1998 18.5 1961	146 448 1976 27.6 1987	238 494 1964 96.4 1969	249 483 1970 109 1976	146 369 2002 40.9 1985	96.4 417 1972 20.4 1991	55.8 252 1992 12.3 1955	48.5 249 1956 8.30 1991	53.8 231 1987 7.68 1955

e Estimated.

03028000 WEST BRANCH CLARION RIVER AT WILCOX, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1954 - 2002
ANNUAL TOTAL	29486.2	48077.6	
ANNUAL MEAN	80.8	132	125
HIGHEST ANNUAL MEAN			184 1956
LOWEST ANNUAL MEAN			80.4 2001
HIGHEST DAILY MEAN	536 Dec 18	1400 Jun 14	2870 Jun 23 1972
LOWEST DAILY MEAN	5.8 Aug 16	6.3 Sep 26	4.5 Sep 21 1955
ANNUAL SEVEN-DAY MINIMUM	6.1 Aug 12	6.9 Sep 7	5.2 Sep 16 1955
MAXIMUM PEAK FLOW		2810 Jun 14	a 5590 Jan 19 1996
MAXIMUM PEAK STAGE		6.74 Jun 14	b 10.23 Jan 19 1996
INSTANTANEOUS LOW FLOW		6.3 Sep 25,26	4.2 Sep 21 1955
ANNUAL RUNOFF (CFSM)	1.28	2.09	1.99
ANNUAL RUNOFF (INCHES)	17.41	28.39	<u>27.01</u>
10 PERCENT EXCEEDS	226	312	286
50 PERCENT EXCEEDS	37	87	73
90 PERCENT EXCEEDS	8.9	9.4	15

 $[\]begin{array}{ll} \boldsymbol{a} & \text{From rating curve extended above 3,000 ft}^3/s. \\ \boldsymbol{b} & \text{From peak-stage indicator.} \end{array}$

03029500 CLARION RIVER AT COOKSBURG, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 41°19′50", long 79°12′33", Clarion County, Hydrologic Unit 05010005, on right bank at downstream side of bridge on State Highway 36 at Cooksburg, 300 ft downstream from Toms Run, and 2.7 mi upstream from Cathers Run.

DRAINAGE AREA.--807 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1938 to current year. Monthly discharge only for October, November 1938, published in WSP 1305.

REVISED RECORDS.--WSP 1305: 1939 (M). WDR PA-85-3: 1979 (M).

Discharge

Gage Height

GAGE.--Water-stage recorder. Datum of gage is 1,147.00 ft above National Geodetic Vertical Datum of 1929. Prior to May 17, 1939, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated since June 1952 by East Branch Clarion River Lake (station 03027000) and at low flow by industrial plants above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1935, 19 ft, Mar. 17, 1936, from floodmarks, discharge, about 56,000 ft³/s.

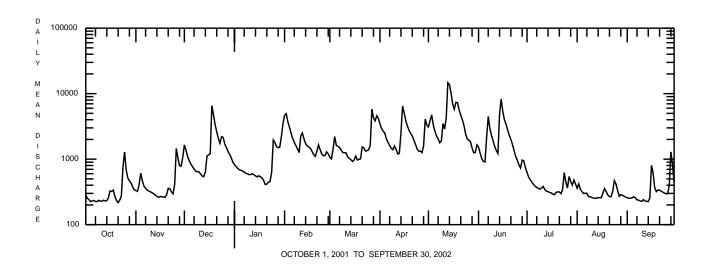
Discharge

Gage Height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 10,000 ft³/s and maximum (*):

Date		Time		ft ³ /s	(ft)			Dat	e	Time	Dis	ft ³ /s	(ft)	
May		0100		6,100	*11.60			June		0100		,800	10.16	
Мау	14	0100	T	0,100	11.00			o une	: 13	0100	11	.,000	10.10	
				DISCHA	RGE, CUBIC F	EET PER SI				R 2001 T	O SEPT	EMBER 20	02	
							DAILY MI	EAN VALUE	£S					
DAY	OCT	i	NOV	DEC	JAN	FEB	MAR	APR	MA	Z.	JUN	JUL	AUG	SEP
1	286		331	1650	e821	4680	1060	3470	3110		.530	628	359	257
2	252		322	1370	e772	4950	1010	2940	3870		230	531	418	252
3	240		410	1100	e724	3740	1430	2660	4750		.020	486	346	254
4	225		611	946	e686	3080	2210	2510	3330		921	444	319	256
5	230		468	843	e676	2500	1620	2030	2670)	906	413	298	266
6	234		386	769	e657	2070	1570	1800	2270		170	386	302	258
7	226		359	707	e638	1800	1510	1620	2030) 4	500	370	302	239
8	225		338	656	e609	1610	1380	1460	1780		940	357	269	237
9	235		325	643	596	1430	1260	1390	1900		310	349	266	230
10	228		317	638	580	1260	1250	1590	3490) 1	.910	363	261	227
11	229		308	595	582	2260	1250	1410	2880) 1	570	383	255	241
12	236		295	552	598	2510	1090	1200	4190		350	343	253	229
13	230		283	539	579	2040	1030	1230	14700		220	325	252	227
14	233		270	643	556	1730	981	2510	13700		900	319	259	225
15	256		262	1110	535	1600	925	6470	10200) 8	280	310	258	257
16	327		269	1170	558	1530	969	5060	6940) [350	304	258	801
17	321		266	1210	539	1460	1110	3840	5800		010	292	306	611
18	337		264	6540	518	1310	972	3200	7400) 3	430	287	357	366
19	271		262	4800	475	1170	995	2760	7250		0.08	310	319	319
20	234		287	3370	409	1100	1010	2460	5640) 2	330	317	283	338
21	217		357	2620	e416	1330	1530	2250	4670) 2	2000	315	269	337
22	237		355	2090	e445	1650	1490	1960	3990		670	298	267	324
23	274		317	1750	e455	1390	1330	1680	3250		340	342	323	313
24	752		296	2200	630	1200	1350	1430	2420		100	621	469	304
25	1280		412	2150	1960	1130	1390	1320	2050)	962	449	420	296
26	688		1460	1700	1800	1130	1640	1330	1940)	815	361	336	296
27	516		1040	1500	1560	1290	5780	1260	1850		733	542	271	399
28	464		795	e1310	1500	1210	4250	1590	1480		968	457	287	1290
29	433		780	e1180	1520		3850	4080	1250		941	400	280	826
30	377		1070	e1050	2190		4590	3310	1270		736	479	272	447
31	341			e898	3500		4200		1650)		419	264	
TOTAL	10634	1	3515	48299	28084	54160	56032	71820	133720		942	12200	9398	10922
MEAN	343		450	1558	906	1934	1807	2394	4314		198	394	303	364
MAX	1280		1460	6540	3500	4950	5780	6470	14700		280	628	469	1290
MIN	217		262	539	409	1100	925	1200	1250		733	287	252	225
CFSM	0.43		0.56	1.93	1.12	2.40	2.24	2.97	5.39		.72	0.49	0.38	0.45
IN.	0.49		0.62	2.23	1.29	2.50	2.58	3.31	6.1) 3	.04	0.56	0.43	0.50

e Estimated.


03029500 CLARION RIVER AT COOKSBURG, PA--Continued

N DATA FOR WATER	YEARS 1952	- 2002, E	BY WATER	YEAR (WY)	(SINC	E REGULATION	<u>N</u>)	
DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1770 1586 3821 5654 1978 1952 150 211 1961 1961	1771 4138 1976 369 1987	2711 6185 1979 764 1969	2587 4721 1994 1217 1976	1878 4314 2002 566 1985	1204 5307 1972 325 1999	764 2565 1992 139 1952	615 2732 1994 117 1952	621 1995 1992 109 1952
FOR 2001 CALE	NDAR YEAR	FOR	2002 WA	TER YEAR		WATER YEARS	1952 -	2002
335270 919		Ę	514726 1410			1463 2066		1994
6810 217	Mar 22 Oct 21		14700 217	May 13 Oct 21		912 43200 59	Sep 14	1952
229	Oct 4		16100 11.60	May 14 May 14		a 53300 b 18.84	Jun 23 Jun 23	1972 1972
15.4 2200 512			1.75 23.73 3390 821			1.81 24.64 3200 898	P	
	DEC JAN 1770 1586 3821 5654 1978 1952 150 211 1961 1961 FOR 2001 CALE 335270 919 6810 217 229	DEC JAN FEB 1770 1586 1771 3821 5654 4138 1978 1952 1976 150 211 369 1961 1961 1987 FOR 2001 CALENDAR YEAR 335270 919 6810 Mar 22 217 Oct 21 229 Oct 4 1.14 15.45 2200 512	DEC JAN FEB MAR 1770 1586 1771 2711 3821 5654 4138 6185 1978 1952 1976 1979 150 211 369 764 1961 1961 1987 1969 FOR 2001 CALENDAR YEAR FOR 335270 919 6810 Mar 22 217 Oct 21 229 Oct 4	DEC JAN FEB MAR APR 1770 1586 1771 2711 2587 3821 5654 4138 6185 4721 1978 1952 1976 1979 1994 150 211 369 764 1217 1961 1961 1987 1969 1976 FOR 2001 CALENDAR YEAR FOR 2002 WA 335270 514726 919 514726 217 Oct 21 217 229 Oct 4 229 16100 11.60 209 1.14 1.75 15.45 23.73 2200 3390 512 821	DEC JAN FEB MAR APR MAY 1770 1586 1771 2711 2587 1878 3821 5654 4138 6185 4721 4314 1978 1952 1976 1979 1994 2002 150 211 369 764 1217 566 1961 1961 1987 1969 1976 1985 FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR 335270 514726 919 514726 1410 6810 Mar 22 14700 May 13 217 Oct 21 217 Oct 21 229 Oct 4 229 Oct 4 16100 May 14 11.60 May 14 11.60 May 14 11.60 May 14 209 Oct 21 1.14 1.75 15.45 23.73 2200 3390 512 821	DEC JAN FEB MAR APR MAY JUN 1770 1586 1771 2711 2587 1878 1204 3821 5654 4138 6185 4721 4314 5307 1978 1952 1976 1979 1994 2002 150 211 369 764 1217 566 325 1961 1961 1987 1969 1976 1985 1999 FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR 335270 514726 919 51470 May 13 217 Oct 21 217 Oct 21 229 Oct 4 229 Oct 4 16100 May 14 11.60 May 14 11.60 May 14 209 Oct 21 1.14 1.75 15.45 23.73 2200 3390 512	DEC JAN FEB MAR APR MAY JUN JUL 1770 1586 1771 2711 2587 1878 1204 764 3821 5654 4138 6185 4721 4314 5307 2565 1978 1952 1976 1979 1994 2002 1972 1992 150 211 369 764 1217 566 325 139 1961 1961 1987 1969 1976 1985 1999 1952 FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 335270 514726	DEC JAN FEB MAR APR MAY JUN JUL AUG 1770 1586 1771 2711 2587 1878 1204 764 615 3821 5654 4138 6185 4721 4314 5307 2565 2732 1978 1952 1976 1979 1994 2002 1972 1992 1994 150 211 369 764 1217 566 325 139 117 1961 1961 1987 1969 1976 1985 1999 1952 1952 FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1952 - 335270 514726 919 1410 1463 2066

STAT	ristics of	MONTHLY	MEAN DATA	FOR WATER	R YEARS 19	939 - 1951,	BY WATE	R YEAR (W	Y) (PRIC	R TO REGU	LATION)	
	OC'	r nc	DEC DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	vi 590	108	5 1475	1891	1961	3055	2969	1971	1154	579	288	348
MAX	2134	424	1 3050	3962	3881	6815	6288	3965	2789	1765	580	1078
(WY)	1946	195	1941	1950	1951	1945	1940	1943	1946	1942	1950	1945
MIN	113	3 17	'0 337	417	764	1610	725	606	261	158	94.2	82.8
(WY)) 1950	195	0 1944	1944	1941	1949	1946	1941	1939	1949	1944	1943

SUMMARY STATISTICS	WATER YEARS	1939 - 1951
ANNUAL MEAN	1444	
HIGHEST ANNUAL MEAN	2023	1951
LOWEST ANNUAL MEAN	953	1944
HIGHEST DAILY MEAN	24600	Dec 30 1942
LOWEST DAILY MEAN	43	Aug 30 1939
ANNUAL SEVEN-DAY MINIMUM	50	Aug 29 1939
MAXIMUM PEAK FLOW	32700	Jul 19 1942
MAXIMUM PEAK STAGE	14.96	Jul 19 1942
INSTANTANEOUS LOW FLOW	41	Aug 30 1939
ANNUAL RUNOFF (CFSM)	1.79	
ANNUAL RUNOFF (INCHES)	24.31	
10 PERCENT EXCEEDS	3350	
50 PERCENT EXCEEDS	793	
90 PERCENT EXCEEDS	140	

- $\begin{array}{ll} \textbf{a} & \text{From rating curve extended above 40,000 ft}^3/s. \\ \textbf{b} & \text{From peak-stage indicator.} \end{array}$

03029500 CLARION RIVER AT COOKSBURG, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
APR 2002													
16 JUN	1300	9813	4910	40	10.7	6.2	87	12.1	27	7.0	2.3	7	21.2
25	0930	9813	1000	40	9.1	7.7	161	21.4	51	13.3	4.2	18	45.8
AUG 22	1500	9813	260	40	8.8	8.2	344	26.1	69	19.1	5.2	42	87.1
Date	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN)
	(00515)	(00530)	(00610)	(00620)	(00615)	(00600)	(70507)	(00665)	(00680)	(01042)	(01045)	(01051)	(01055)
APR 2002 16 JUN	90	6	<.020	. 24	<.040	. 47	.02	.020	1.7	<10	550	<1.0	220
25 AUG	<2	<2	<.020	.06	<.040	.11	.01	.020	2.3	<10	220	<1.0	90
22	218	4	<.020	.17	<.040	.48	.02	.035	5.4	<10	330	<1.0	220

	NICKEL,	ZINC,
	TOTAL	TOTAL
	RECOV-	RECOV
	ERABLE	ERABL
Date	(µG/L	(µG/L
	AS NI)	AS ZN
	(01067)	(01092
APR 2002		
16	< 50	30
JUN	130	30
25	<50	20
AUG		
22	< 50	<10

03030500 CLARION RIVER NEAR PINEY, PA

LOCATION.--Lat 41°11'33", long 79°26'25", Clarion County, Hydrologic Unit 05010005, on left bank 0.2 mi downstream from hydroelectric plant of Reliant Energy, 2.3 mi northeast of Piney, 2.4 mi upstream from Piney Creek, and 3 mi southwest of Clarion.

DRAINAGE AREA.--951 mi²

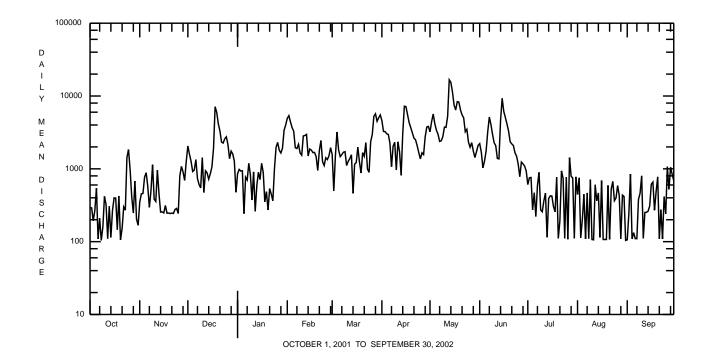
PERIOD OF RECORD.--October 1944 to current year (monthly discharge only October 1944 to September 1947).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,002.06 ft above National Geodetic Vertical Datum of 1929 (Reliant Energy bench mark). Prior to Dec. 23, 1947, records from hydroelectric plant 0.2 mi upstream.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Flow regulated since 1924 by hydroelectric plant at Piney Dam 0.2 mi upstream, and since June 1952 by East Branch Clarion River Lake (station 03027000), combined capacity of reservoirs, 113,200 acre-ft. Several measurements of water temperature were made during the year. Satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—The flood of Mar. 18, 1936 reached a discharge of 50,000 ft³/s, as determined by Reliant Energy, elevation, 1,028.5 ft, at lower pool of dam.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	293	349	2060	854	4930	1570	4590	3220	2220	608	444	106
2	291	453	1590	982	5380	496	3260	4430	1690	755	753	243
3	193	459	1270	933	4410	1500	3250	5670	1030	761	113	848
4	268	768	920	940	3680	3210	3030	4170	1280	273	203	109
5	541	884	962	242	3290	1820	2970	3390	1770	469	448	133
6	109	576	1340	768	1950	1470	2260	2990	3240	221	109	110
7	210	295	734	703	1900	1570	1070	2380	5150	587	467	110
8	104	500	608	1190	2170	1690	2050	2430	4050	895	110	379
9	159	1140	547	823	1650	1720	2320	2770	2970	273	711	462
10	419	383	1420	373	1540	1110	965	3740	2280	257	107	801
11	322	357	472	908	2830	1270	2350	3710	2080	363	106	111
12	110	956	940	261	2870	1380	1720	5270	1390	464	604	252
13	306	455	881	588	2970	1560	814	16700	1370	115	364	253
14	114	255	721	896	1500	460	3040	15400	4620	390	467	262
15	269	256	853	713	1870	1160	7240	11400	9300	426	114	309
16	399	248	1060	1190	1810	1220	7160	7560	6140	423	693	614
17	397	314	1900	893	1670	1990	5540	6420	5060	303	107	658
18	146	246	7120	352	1680	1250	4310	8370	4130	257	107	270
19	424	247	5970	486	1470	875	3680	8260	3290	767	107	485
20	106	243	4150	272	947	1670	3120	6440	2350	111	593	776
21	151	247	3310	537	1780	1490	2640	5520	2200	194	107	109
22	300	244	2330	452	2450	2290	2500	5010	2090	938	527	276
23	271	277	2260	363	1250	994	2080	3230	1660	740	673	109
24	1430	286	2580	1000	1110	895	1670	3490	1490	111	365	416
25	1840	243	2750	1970	1420	2360	1370	2320	1160	770	398	241
26 27 28 29 30 31	974 413 247 680 203 168	805 1080 908 692 1270	2150 1380 1750 1600 1270 477	2310 1800 1650 1910 3380 4010	1340 1510 1950 	2960 5270 5700 4500 5030 5500	1660 1570 2760 3750 3830	1980 2290 1760 1430 1720 2100	780 e1240 e1170 1090 934	108 1430 791 747 111 776	588 432 109 436 417 104	1070 523 1050 845 688
TOTAL	11857	15436	57375	33749	63327	65980	88569	155570	79224	15434	10883	12618
MEAN	382	515	1851	1089	2262	2128	2952	5018	2641	498	351	421
MAX	1840	1270	7120	4010	5380	5700	7240	16700	9300	1430	753	1070
MIN	104	243	472	242	947	460	814	1430	780	108	104	106
(†)	-75	-5.2	+143	+59	+102	+142	+140	-20	-12	-110	-138	-173
STATIST	rics of M	MONTHLY ME	AN DATA	FOR WATER	YEARS 194	8 - 2002,	BY WATER	YEAR (WY)			
MEAN	883	1555	2140	2048	2323	3257	3128	2232	1452	909	701	707
MAX	2743	5013	4611	6884	5775	6703	5186	5018	6354	3220	3096	2469
(WY)	1991	1986	1978	1952	1976	1964	1970	2002	1972	1992	1994	1992
MIN	40.2	82.5	184	244	527	881	1517	700	345	167	135	120
(WY)	1950	1950	1961	1961	1987	1969	1968	1985	1991	1952	1952	1951


[†] Change in contents, equivalent in cubic feet per second, in East Branch Clarion River Lake and Piney Reservoir. Records of contents in Piney Reservoir furnished by Reliant Energy. Records of contents in East Branch Clarion River Lake furnished by U.S. Army Corps of Engineers.

e Estimated.

03030500 CLARION RIVER NEAR PINEY, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1948 - 2002
ANNUAL TOTAL	397937		610022			
ANNUAL MEAN	1090 †	-5.5	1671 †	+4.0	1774	
HIGHEST ANNUAL MEAN					2443	1994
LOWEST ANNUAL MEAN					1092	2001
HIGHEST DAILY MEAN	7230	Mar 22	16700	May 13	51600	Jun 23 1972
LOWEST DAILY MEAN	104	Jul 25 a	104	Oct 8 b	11	Oct 1 1966
ANNUAL SEVEN-DAY MINIMUM	135	Jul 25	205	Oct 6	26	Oct 16 1949
MAXIMUM PEAK FLOW			21100	May 13	c 74500	Jun 23 1972
MAXIMUM PEAK STAGE			14.04	May 13	d 28.24	Jun 23 1972
10 PERCENT EXCEEDS	2810		4080		4030	
50 PERCENT EXCEEDS	625		962		1120	
90 PERCENT EXCEEDS	167		199		130	

[†] Change in contents, equivalent in cubic feet per second, in East Branch Clarion River Lake and Piney Reservoir. Records of contents in Piney Reservoir furnished by Reliant Energy. Records of contents in East Branch Clarion River Lake furnished by U.S. Army Corps of Engineers.

a Also Sept. 1, Oct. 8.

b Also Aug. 31.

c From rating curve extended above 59,000 ft³/s. **d** From floodmark.

03031500 ALLEGHENY RIVER AT PARKER, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 41°06′02", long 79°40′53", Armstrong County, Hydrologic Unit 05010006, on right bank 500 ft downstream from bridge on State Highway 368 at Parker, 1.1 mi downstream from Clarion River, at mile 83.4.

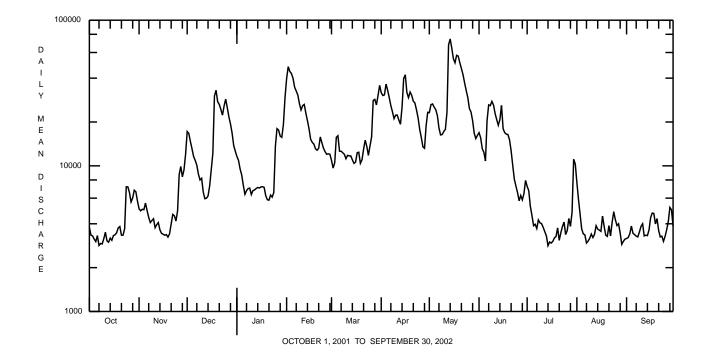
DRAINAGE AREA.--7,671 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—October 1932 to current year. Prior to October 1963, published as "at Parkers Landing." Gage height records collected at same site since 1885 are contained in reports of U.S. Weather Bureau.

GAGE.--Water-stage recorder. Datum of gage is 845.14 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1932, U.S. Weather Bureau gages at different datums. Oct. 1-28, 1932, nonrecording gage at datum 27.00 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated since 1924 by Piney Reservoir, since December 1940 by Tionesta Lake, since November 1949 by Chautauqua Lake (station 03013946), since June 1952 by East Branch Clarion River Lake (station 03027000), since October 1965 by Allegheny Reservoir (station 03012520), since July 1970 by Union City Reservoir (station 03021518), and since January 1974 by Woodcock Creek Lake (station 03022550). Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.


EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Mar. 17, 1865 reached a stage of 29.4 ft, present datum, discharge, about 250,000 ft³/s, from rating curve extended above 137,000 ft³/s.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3780	5070	17200	11600	39700	10900	31800	23200	16900	7230	7710	3170
2	3340	4910	16700	10900	48000	9650	30400	26300	15600	6750	5910	3220
3	3300	5030	14700	9520	44500	10500	30700	26600	13100	5260	4680	3410
4	3140	5000	13100	8660	43000	15700	36400	25300	12400	4560	3690	3860
5	3020	5540	11600	7340	39900	16100	33100	24300	10800	3880	3410	3440
6	3320	4930	10900	6380	34700	12600	29400	22200	20500	3970	3360	3370
7	2840	4420	10100	6750	32600	12600	25900	18200	26200	3710	2950	3290
8	2930	4080	8770	6980	30600	12300	23500	16300	25900	4250	3040	3250
9	2910	4210	8000	7030	26700	12000	21100	16400	27700	4060	3180	3510
10	3160	4330	8220	6350	24200	11200	22300	17200	26200	4010	3400	3840
11	3500	3760	6620	6760	25900	11800	22300	17800	22900	3780	3220	4000
12	3050	3940	5950	6830	26400	11700	20600	23300	20800	3530	3380	3300
13	2990	4080	5990	6990	23000	11700	19300	67700	19000	3300	3880	3340
14	3190	3630	6210	e7100	20400	11000	25400	74400	20800	2830	3680	3320
15	3080	3440	7260	7050	17900	10400	39800	64200	26000	3000	3620	3630
16	3320	3390	9390	e7160	15200	10600	42200	54400	18000	2950	3550	4410
17	3360	3340	12200	e7190	14500	12300	31900	51000	16900	3030	4510	4740
18	3470	3370	30200	7110	14100	12400	29400	57400	16500	3200	3850	4710
19	3750	3240	33000	6230	13100	10400	32100	56700	16400	3270	3340	3990
20	3830	3410	27600	5850	12800	11000	30500	51100	15100	3750	3280	4340
21	3340	3990	26400	5810	13200	13000	27800	46600	12700	3080	3880	3600
22	3340	4640	24400	6300	15800	15000	27000	42300	10100	3470	3310	3250
23	3700	4540	22300	6100	14400	13600	24200	37100	8110	3830	4100	3290
24	7180	4180	25700	6560	13200	11800	21300	32900	7260	4110	4840	3030
25	7170	4900	28700	13600	12500	13700	17800	29400	6560	3370	4270	3270
26 27 28 29 30 31	6560 5650 6020 6800 6630 5720	8710 9910 8410 9380 12000	25100 21700 19400 16800 13800 12600	18000 17600 16000 15700 19200 29400	12000 12100 12000 	15800 28100 28600 26200 30300 35700	15600 13500 13200 18900 23300	24700 23400 20400 16700 15400 16200	5750 6260 5840 6450 7940	3600 4350 3840 4800 11100 10300	3890 4000 3460 2890 3030 3140	3640 4130 5180 4990 3840
TOTAL	127390	153780	500610	304050	652400	468650	780700	1039100	464670	136170	118450	112360
MEAN	4109	5126	16150	9808	23300	15120	26020	33520	15490	4393	3821	3745
MAX	7180	12000	33000	29400	48000	35700	42200	74400	27700	11100	7710	5180
MIN	2840	3240	5950	5810	12000	9650	13200	15400	5750	2830	2890	3030
CFSM	0.54	0.67	2.11	1.28	3.04	1.97	3.39	4.37	2.02	0.57	0.50	0.49
IN.	0.62	0.75	2.43	1.47	3.16	2.27	3.79	5.04	2.25	0.66	0.57	0.54
STATIS	TICS OF 1	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	33 - 2002,	BY WATE	R YEAR (W	<i>(</i>)			
MEAN	6962	12250	17010	17510	17940	26260	24850	15610	9909	6018	4493	4927
MAX	28650	33760	38040	53560	40460	63020	58110	36220	35340	26090	16890	21370
(WY)	1991	1986	1978	1937	1976	1936	1940	1943	1989	1972	1994	1977
MIN	802	1655	1332	2111	3788	7746	5651	3610	1508	1069	1034	950
(WY)	1964	1961	1961	1961	1934	1969	1946	1934	1934	1934	1934	1936

e Estimated.

03031500 ALLEGHENY RIVER AT PARKER, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1933 - 2002
ANNUAL TOTAL	3343030	4858330	
ANNUAL MEAN	9159	13310	13620
HIGHEST ANNUAL MEAN			19640 1956
LOWEST ANNUAL MEAN			8175 1934
HIGHEST DAILY MEAN	43900 Feb 16	74400 May 14	160000 Jan 22 1959
LOWEST DAILY MEAN	2840 Oct 7	2830 Jul 14	454 Jul 28 1934
ANNUAL SEVEN-DAY MINIMUM	3050 Oct 4	3050 Oct 4	508 Jul 25 1934
MAXIMUM PEAK FLOW		77200 May 14	ab 175000 Jan 22 1959
MAXIMUM PEAK STAGE		14.02 May 14	c 29.60 Jan 21 1959
INSTANTANEOUS LOW FLOW			409 Jul 30 1934
ANNUAL RUNOFF (CFSM)	1.19	1.74	1.78
ANNUAL RUNOFF (INCHES)	16.21	23.56	24.12
10 PERCENT EXCEEDS	22500	29400	31600
50 PERCENT EXCEEDS	5280	8660	8800
90 PERCENT EXCEEDS	3270	3300	2190

<sup>a About.
b From rating curve extended above 137,000 ft³/s.
c Backwater from ice.</sup>

03031500 ALLEGHENY RIVER AT PARKER, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
MAY 2002													
01 21	1130 0845	9813 9813	21050 47070	40 40	13.0 11.1	7.7 7.5	154 132	9.8 10.4	55 41	16.4 11.1	3.5 3.1	30 22	13.1 8.7
JUN			47070							11.1	3.1		
13 JUL	0930	9813	18020	40	8.7	7.4	335	18.9	45	13.0	3.1	28	9.9
24 AUG	0930	9813	3850	40	8.4	7.5	217	26.0	74	20.9	5.4	38	15.8
15 SEP	0900	9813	3550	40	7.0	7.6	145	25.7	68	19.9	4.5	44	16.6
25	0930	9813	3340	40	9.5	8.2	200	19.4	70	20.6	4.6	48	18.5
Date	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)
MAY 2002	<.2	16.4	<2	<2	<.020	.38	<.040	.72	.03	<.010	1.6	260	
01 21 JUN	<.2	16.4	48	8	<.020	.34	<.040	.59	.03	.029	2.0	100	<4.0
13	<.2	14.0	100	4	<.020	.28	<.040	.66	.02	.027	2.0	100	<4.0
JUL 24 AUG	<.2	36.2	96	8	<.020	.04	<.040	.51	.04	.033	1.4	1300	<4.0
15 SEP	<.2	25.6	62	4	.030	.06	<.040	.29	.01	.015	1.0	280	<4.0
25	<.2	21.5	158	6	<.020	.10	<.040	.30	<.01	.011	2.1	40	<4.0
Date	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	MANGA- NESE, DIS- SOLVED (µG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, DIS- SOLVED (µG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, DIS- SOLVED (µG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)
MAY 2002			_										
01 21 JUN		<4 <4	<4 <4	70 40	930 720	<1.0 <1.0	<1.0 <1.0	40 80	90 150	<4.0 <4.0	<4.0 5.2	6.8 10	8.9 10
JUN 13 JUL	<.20	<4	<4	40	530	<1.0	<1.0	40	100	<4.0	5.0	10	20
24	<.20	<4	<4	50	170	<1.0	<1.0	200	320	4.1	4.9	9.6	9.0
AUG 15 SEP	<.20	<4	<4	20	140	<1.0	<1.0	90	130	<4.0	<4.0	5.5	10
25	<.20	<4	<4	<20	80	<1.0	<1.0	30	60	<4.0	<4.0	10	10

Date	PHENOLS TOTAL (µG/L) (32730)
MAY 2002 01	<5
21	<5
JUN 13	<5
JUL	
24 AUG	<5
15	<5
SEP	_
25	<5

REDBANK CREEK BASIN

03032500 REDBANK CREEK AT ST. CHARLES, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°59'40", long 79°23'40", Armstrong County, Hydrologic Unit 05010006, on left bank 400 ft downstream from highway bridge on SR 1005 at St. Charles, 0.3 mi downstream from Leatherwood Creek, and 3 mi west of New Bethlehem.

DRAINAGE AREA.--528 mi².

Discharge

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Annual maximums, water years 1910-18. October 1918 to current year. Monthly discharge only for some periods, published in WSP 1305. Figures of daily discharge for November 1920 to June 1921, published in WSP 523, are unreliable and should not be used.

REVISED RECORDS.--WSP 743: Drainage area. WSP 1385: 1919, 1936-39. WDR PA-72-1: 1923 (M), 1926 (M), 1928 (M), 1936, 1937 (M), 1938 (M), 1943, 1945 (P), 1952 (M), 1953 (M), 1955 (M), 1956 (P), 1958 (M), 1959 (M), 1964, 1966 (M). See also PERIOD OF RECORD.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 973.14 ft above National Geodetic Vertical Datum of 1929. Prior to July 10, 1940, nonrecording gage at site 500 ft upstream at datum 3.10 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

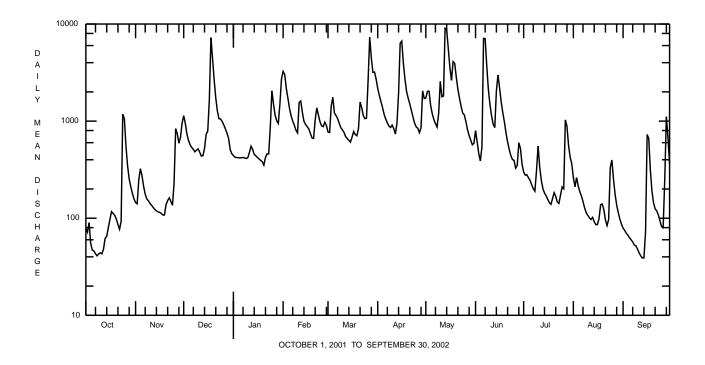
Discharge

Gage Height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 7,000 ft³/s and maximum (*):

Gage Height

ъ.		m.	Discl	harge ³ /s	Gage Heig	ght		ъ.		æ.	D:	ischarge ft ³ /s	Gage Height	
Date		Time			(ft)			Date		Time			(ft)	
Dec.		1615		920	10.25			Apr.		0630		9,080	10.33	
Mar.		0345		300	10.66			May	14	0330		10,600	11.02	
Apr.	15	0930	8,1	150	9.88			June	6	2400	* _	11,400	*11.35	
	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES													
DAY	OCT		NOV	DEC	JAN	FEB	MAR	APR	MA	Y	JUN	JUL	AUG	SEP
1	79		145	1140	e442	3250	772	2170	e173	0	796	299	263	79
2	72		141	950	e424	3020	764	1840	e203		615	278	211	75
3	90		249	738	e422	2170	1430	1590	203		463	280	262	70
4	55		323	634	e420	1720	1760	1380	145		389	261	216	67
5	47		274	570	e418	1350	1210	1170	119	Ú	545	246	188	63
6	46		213	536	e420	1130	1140	1050	104		7120	221	170	60
7	43		177	512	e422	1000	1060	958	94		7070	202	149	57
8	41		158	483	e418	907	952	889	86		3670	190	128	53
9	43		151	502	412	808	855	859	120		2110	306	114	52
10	44		142	518	e420	757	813	910	257	J	1480	554	107	48
11	43		136	479	e478	1560	763	838	178	0	1130	338	101	44
12	48		129	437	552	1610	692	736	181		931	247	97	41
13	62		123	441	e510	1230	661	952	903		857	202	102	39
14	65		119	524	e454	995	636	1940	872		2050	182	92	39
15	80		116	730	e439	924	607	6350	561	U	2990	170	86	71
16	97		115	789	e422	878	685	6670	355		2190	157	86	728
17	117		112	1670	e408	833	781	3930	263		1580	145	99	664
18	112		108	7260	e394	747	726	2690	410		1220	139	138	317
19 20	107 98		108 138	4390 2660	382 352	671 664	707 838	2020 1720	394 283		978 754	159 183	140 123	190 144
20			130				030	1/20	203	U				144
21	86		152	1740	423	1030	1570	1500	212		609	168	96	125
22	77		162	1270	461	1370	1380	1290	172		512	147	84	119
23 24	93 1180		149 136	1060 e1050	459 859	1160 984	1140 1060	1100 953	142 121		441 403	142 173	97 331	108 94
25	1060		228	e992	2050	895	1070	873	116		394	210	398	82
26	553		838	e914	1500	877	2640	842	98		328	201	255	80
27	348		743	e831	1150 1010	975 903	7310	761	81 70		350	1030	178	256
28 29	254 211		592 681	e751 e667	946	903	4500 3180	854 2050	63		598 522	886 563	137 114	1110 673
30	181		950	e511	1500		3200	1710	57		360	425	98	361
31	158			e462	2740		2710		59			364	87	
TOTAL	5590	7	808	36211	21707	34418	47612	52595	7099	7 4	13455	9068	4747	5909
MEAN	180		260	1168	700	1229	1536	1753	229		1448	293	153	197
MAX	1180		950	7260	2740	3250	7310	6670	903		7120	1030	398	1110
MIN	41		108	437	352	664	607	736	57		328	139	84	39
CFSM	0.34		.49	2.21	1.33	2.33	2.91	3.32	4.3		2.74	0.55	0.29	0.37
IN.	0.39	0	.55	2.55	1.53	2.42	3.35	3.71	5.0	0	3.06	0.64	0.33	0.42
										 \				
STATIST	rics of	MONTH	LY MEAN	N DATA	FOR WATER	YEARS 191	.9 - 2002,	BY WATER	YEAR	(WY)				
MEAN	376		740	1072	1125	1216	1797	1505	107		685	412	278	283
MAX	1385		806	3151	4616	2707	5016	3337	260		3887	2238	1498	2091
(WY)	1927		922	1928	1937	1990	1936	1940	191		1972	1996	1956	1996
MIN (WY)	40.3 1931		0.9 931	75.9 1961	96.8 1931	179 1934	358 1969	367 1925	18 192		123 1936	61.1 1966	33.5 1930	29.2 1939
(W ± /	1/31		<i></i>	T) (T	1731	1754	1707	1/2/	1,72		1730	1000	1,00	1739


e Estimated.

REDBANK CREEK BASIN

03032500 REDBANK CREEK AT ST. CHARLES, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YE	AR FOR 2002 WA	TER YEAR	WATER YEARS	1919 - 2002
ANNUAL TOTAL	225108	340117			
ANNUAL MEAN	617	932		878	
HIGHEST ANNUAL MEAN				1333	1996
LOWEST ANNUAL MEAN				430	1934
HIGHEST DAILY MEAN	7260 Dec	18 9030	May 13	28100	Jul 19 1996
LOWEST DAILY MEAN	37 Aug	9 39	Sep 13,14	20	Sep 28 1922
ANNUAL SEVEN-DAY MINIMUM	42 Jul	29 44	Oct 5	24	Aug 30 1939
MAXIMUM PEAK FLOW		11400	Jun 6	a 66300	Jul 19 1996
MAXIMUM PEAK STAGE		11.35	Jun 6	b 23.90	Jul 19 1996
INSTANTANEOUS LOW FLOW		38	Sep 13,14	c 19	Oct 1 1918
ANNUAL RUNOFF (CFSM)	1.17	1.76		1.66	
ANNUAL RUNOFF (INCHES)	15.86	23.96		22.58	
10 PERCENT EXCEEDS	1660	2050		2110	
50 PERCENT EXCEEDS	280	553		464	
90 PERCENT EXCEEDS	55	87		83	

- $\begin{array}{ll} \textbf{a} & \text{From rating curve extended above 35,000 ft}^3 / s \text{ on basis of slope-area measurement of peak flow.} \\ \textbf{b} & \text{From floodmarks.} \\ \textbf{c} & \text{Minimum observed.} \end{array}$

REDBANK CREEK BASIN

03032500 REDBANK CREEK AT ST. CHARLES, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			DIS-			PH		SPE-				MAGNE-	ANC
		AGENCY	CHARGE,			WATER	SPE-	CIFIC		HARD-	CALCIUM	SIUM,	WATER
		ANA-	INST.			WHOLE	CIFIC	CON-		NESS	TOTAL	TOTAL	UNFLTRD
		LYZING	CUBIC	SAM-	OXYGEN,	FIELD	CON-	DUCT-	TEMPER-	TOTAL	RECOV-	RECOV-	FET
		SAMPLE	FEET	PLING	DIS-	(STAND-	DUCT-	ANCE	ATURE	(MG/L	ERABLE	ERABLE	LAB
Date	Time	(CODE	PER	METHOD,	SOLVED	ARD	ANCE	LAB	WATER	AS	(MG/L	(MG/L	(MG/L AS
		NUMBER)	SECOND	CODES	(MG/L)	UNITS)	(µS/CM)	(µS/CM)	(DEG C)	CACO3)	AS CA)	AS MG)	CACO3)
		(00028)	(00061)	(82398)	(00300)	(00400)	(00095)	(90095)	(00010)	(00900)	(00916)	(00927)	(00417)
JUN 2002													
19	1330	9813	956	40	10.9	7.5	313	272	19.0	99	23.4	9.9	16
AUG													
28	1350	9813	134	40	9.1	8.1	446	419	24.3	160	39.0	15.5	36
			RESIDUE										
		RESIDUE	TOTAL	NITRO-	NITRO-	NITRO-		PHOS-			COPPER,	IRON,	LEAD,
	SULFATE	AT 105	AT 105	GEN,	GEN,	GEN,	NITRO-	PHORUS	PHOS-	CARBON,	TOTAL	TOTAL	TOTAL
	DIS-	DEG. C,	DEG. C,	AMMONIA	NITRATE	NITRITE	GEN,	ORTHO	PHORUS	ORGANIC	RECOV-	RECOV-	RECOV-
	SOLVED	DIS-	SUS-	TOTAL	ERABLE	ERABLE	ERABLE						
Date	(MG/L	SOLVED	PENDED	(MG/L	(µG/L	(µG/L	(µG/L						
	AS SO4)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS P)	AS P)	AS C)	AS CU)	AS FE)	AS PB)
	(00945)	(00515)	(00530)	(00610)	(00620)	(00615)	(00600)	(70507)	(00665)	(00680)	(01042)	(01045)	(01051)
JUN 2002													
19	89.9	226	8	<.020	.41	< .040	.56	.01	.020	1.7	<10	380	<1.0
AUG	00.0	220	Ü	020	•		.50	.01	.020	±•,	-10	550	-1.0
28	116	358	<2	.180	.48	<.200	.94	.01	.010	2.4	<10	200	<1.0

MANGA-		
NESE,	NICKEL,	ZINC,
TOTAL	TOTAL	TOTAL
RECOV-	RECOV-	RECOV
ERABLE	ERABLE	ERABL
(µG/L	(µG/L	(μG/L
AS MN)	AS NI)	AS ZN
(01055)	(01067)	(01092
250	<50	<10
50	< 50	10
	NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NESE, NICKEL, TOTAL TOTAL RECOV- RECOV- ERABLE ERABLE (μG/L (μG/L AS MN) AS NI) (01055) (01067)

03034000 MAHONING CREEK AT PUNXSUTAWNEY, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°56′21", long 79°00′31", Jefferson County, Hydrologic Unit 05010006, on right bank 75 ft downstream from Williams Run, 1.8 mi upstream from bridge on Diamond Road at Sportsburg, 1.9 mi downstream from Sawmill Run, and 2 mi west of Punxsutawney.

DRAINAGE AREA.--158 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1938 to current year.

REVISED RECORDS.--WDR PA-87-3: 1977-86 (P).

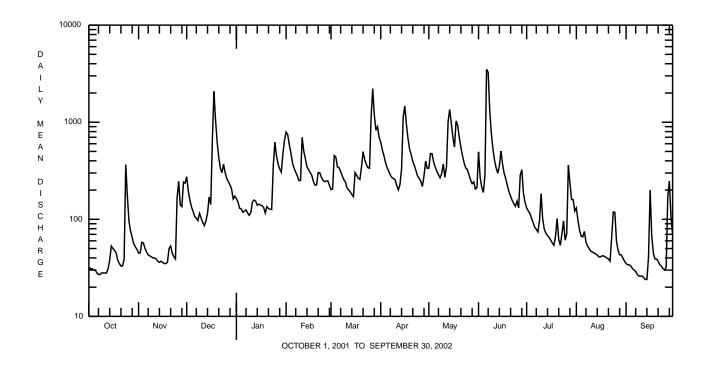
Di--h---- C--- II-i-h-

GAGE.--Water-stage recorder. Datum of gage is 1,206.14 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers benchmark). Prior to Oct. 1, 1946, at site 2.9 mi upstream at datum 13.30 ft higher.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Diurnal fluctuations at low flow by mine pumpage into stream above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 18, 1936 reached a stage of 15.6 ft, from floodmark at former site and datum, discharge, 12,500 ft³/s, from rating curve extended above 4,300 ft³/s.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 2,500 ft³/s and maximum (*):


Date		Time	D	ischarge ft ³ /s	Gage Heig (ft)	ht		Date	г	Гіте	oischarge ft ³ /s	Gage Height (ft)	
Mar.	26	2300	:	3,340	6.82			June	6 2	200 *	6,040	*9.37	
				DISCHA	ARGE, CUBIC	FEET PER S		TER YEAR C EAN VALUES		2001 TO SEI	PTEMBER 20	02	
DAY	OCT		NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	32		45	274	163	791	202	624	336	495	131	131	35
2	31		45	195	151	741	205	517	476	270	122	97	34
3	31		58	158	e130	586	454	452	474	213	115	77	34
4	30		57	134	128	480	439	384	389	189	103	67	33
5	30		50	120	e118	380	346	339	345	287	93	66	31
6	28		46	107	121	335	341	313	311	3510	83	75	30
7	27		43	103	125	305	311	285	289	3260	79	58	29
8	27		42	97	116	280	280	269	267	1300	74	53	27
9	28		41	115	110	250	256	263	295	761	96	50	26
10	28		40	103	118	252	242	255	371	528	183	47	26
11	28		40	93	151	698	210	222	271	401	101	46	26
12	28		39	86	158	504	201	201	348	337	79	45	25
13	31		37	96	154	422	191	228	1010	298	72	44	24
14	38		36	115	140	347	180	331	1350	357	68	43	24
15	53		37	170	143	324	171	1120	981	504	65	41	41
16	50		36	142	140	303	302	1470	696	366	61	41	199
17	48		35	647	138	284	284	956	556	296	57	42	68
18	45		35	2080	132	246	264	680	1030	260	54	42	45
19	38		36	1040	116	225	257	527	920	221	67	41	39
20	35		50	626	135	226	343	464	696	192	102	40	39
21	33		53	435	129	303	497	394	551	173	62	39	37
22	33		45	338	127	301	411	357	451	156	54	37	34
23	39		41	302	126	271	369	317	381	145	71	64	33
24	367		39	369	356	252	340	278	338	136	96	119	31
25	174		164	301	623	244	336	264	326	154	61	118	30
26 27 28 29 30 31	96 76 65 56 52 49		246 141 135 242 236	263 244 226 205 e162 173	449 370 330 306 475 654	247 249 224 	1120 2210 1190 827 901 698	246 218 281 398 335	289 255 233 243 205 212	131 284 324 186 149	71 361 237 160 159 122	60 48 43 43 40 37	32 171 247 105 70
TOTAL	1726		2190	9519	6632	10070	14378	12988	14895	15883	3259	1794	1625
MEAN	55.7		73.0	307	214	360	464	433	480	529	105	57.9	54.2
MAX	367		246	2080	654	791	2210	1470	1350	3510	361	131	247
MIN	27		35	86	110	224	171	201	205	131	54	37	24
CFSM	0.35		0.46	1.94	1.35	2.28	2.94	2.74	3.04	3.35	0.67	0.37	0.34
IN.	0.41		0.52	2.24	1.56	2.37	3.39	3.06	3.51	3.74	0.77	0.42	0.38
STATIST	CICS OF	MONTE	HLY M		FOR WATER	YEARS 193	39 - 2002,	BY WATER	YEAR (V	VY)			
MEAN	117	2	218	323	334	410	558	468	331	212	151	105	92.7
MAX	394		715	769	1025	1013	1249	909	722	1210	855	670	572
(WY)	1987		1986	1973	1952	1975	1964	1994	1953	1972	1977	1956	1996
MIN	18.1		23.0	27.2	61.0	96.6	132	112	79.9	48.9	26.4	23.0	16.9
(WY)	1965		1999	1961	1961	1993	1969	1946	1941	1991	1988	1949	1964

e Estimated.

03034000 MAHONING CREEK AT PUNXSUTAWNEY, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS 1939 - 2002			
ANNUAL TOTAL	65016		94959					
ANNUAL MEAN	178		260		276			
HIGHEST ANNUAL MEAN					433	1956		
LOWEST ANNUAL MEAN					177	1963		
HIGHEST DAILY MEAN	2080	Dec 18	3510	Jun 6	13200	Jun 23 1972		
LOWEST DAILY MEAN	24	Sep 13	24	Sep 13,14	12	Oct 19 1939		
ANNUAL SEVEN-DAY MINIMUM	25	Sep 7	25	Sep 8	13	Oct 14 1939		
MAXIMUM PEAK FLOW			6040	Jun 6	a 20400	Jul 19 1996		
MAXIMUM PEAK STAGE			9.37	Jun 6	b 18.38	Jul 19 1996		
INSTANTANEOUS LOW FLOW			24	Sep 13-15	2.6	Sep 26 1939		
ANNUAL RUNOFF (CFSM)	1.13		1.65		1.75			
ANNUAL RUNOFF (INCHES)	15.31		22.36		23.72			
10 PERCENT EXCEEDS	455		521		620			
50 PERCENT EXCEEDS	91		162		152			
90 PERCENT EXCEEDS	32		35		34			

a From rating curve extended above 4,300 ft³/s on basis of slope-area measurement at gage height 13.01 ft.
 b From floodmark in gage well.

03034000 MAHONING CREEK AT PUNXSUTAWNEY, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)
JUN 2002													
19	1130	9813	222	40	11.8	7.4	426	410	15.3	140	39.2	11.5	46
AUG 28	1230	9813	44	40	9.3	7.7	502	487	21.1	190	51.8	15.3	68
20	1230	9013	11	40	9.3	/./	302	407	21.1	190	31.0	13.3	00
Date	SULFATE DIS- SOLVED (MG/L AS SO4)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P)	PHOS- PHORUS TOTAL (MG/L AS P)	CARBON, ORGANIC TOTAL (MG/L AS C)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB)
	(00945)	(00515)	(00530)	(00610)	(00620)	(00615)	(00600)	(70507)	(00665)	(00680)	(01042)	(01045)	(01051)
JUN 2002 19 AUG	109	266	10	<.020	.59	<.040	.73	.01	.020	1.4	<10	660	<1.0
28													

	MANGA-		
	NESE,	NICKEL,	ZINC,
	TOTAL	TOTAL	TOTAL
	RECOV-	RECOV-	RECOV-
	ERABLE	ERABLE	ERABLE
Date	(µG/L	(µG/L	(µG/L
	AS MN)	AS NI)	AS ZN)
	(01055)	(01067)	(01092)
JUN 2002			
19	220	<50	<10
AUG			
28	120	< 50	10

03034500 LITTLE MAHONING CREEK AT McCORMICK, PA

LOCATION.--Lat 40°50'10", long 79°06'37", Indiana County, Hydrologic Unit 05010006, on left bank 200 ft upstream from bridge on SR 4018 at McCormick, 1 mi west of Georgeville, 1.7 mi upstream from Ross Run, and 4 mi southeast of Smicksburg.

DRAINAGE AREA.--87.4 mi².

Time

Date

PERIOD OF RECORD.--October 1939 to current year.

Discharge

ft³/s

GAGE.--Water-stage recorder. Datum of gage is 1,164.88 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers benchmark). Prior to May 10, 1940, nonrecording gage at site 200 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

Date

Time

Discharge

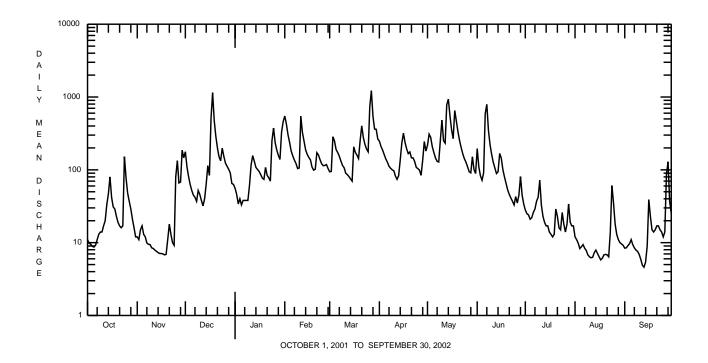
ft³/s

Gage Height

(ft)

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 2,000 ft³/s and maximum (*):

Gage Height


(ft)

Mar.			,250	*8.56			No othe	er peak gi		an base d	ischarge.	
	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11 9.8 9.5 8.9 8.7	12 11 15 17 13	177 110 81 63 52	e56 e46 e34 e40 e33	549 426 304 238 181	94 95 285 249 190	248 209 187 162 141	217 309 279 207 172	196 110 83 72 91	28 25 24 21 22	12 11 9.8 8.3 8.8	8.4 8.5 9.1 9.7
6 7 8 9 10	9.2 11 13 14 14	9.9 9.5 9.4 8.5	45 42 37 52 46	e38 e38 e38 e38	155 136 122 104 106	173 154 132 115 107	127 112 105 100 97	145 131 128 253 481	591 793 349 222 163	26 29 37 42 72	9.4 8.4 7.8 6.8 6.4	9.4 8.5 7.9 7.6 6.9
11 12 13 14 15	17 20 33 47 80	8.3 7.9 7.6 7.3 7.1	38 32 40 64 114	117 157 131 108 101	545 327 248 188 163	90 86 81 75 70	82 74 83 137 234	251 233 782 935 555	127 106 89 94 168	33 23 19 17 17	6.2 6.3 7.3 7.9 7.1	5.9 4.9 4.6 5.4 9.0
16 17 18 19 20	42 31 29 23 19	7.1 7.0 6.8 6.9	84 505 1150 476 289	95 86 77 74 108	148 137 109 99 102	207 174 159 143 253	318 237 194 167 176	357 268 654 466 333	145 101 80 65 53	14 13 12 13 29	6.4 5.8 6.1 6.8 6.9	39 23 15 14 15
21 22 23 24 25	17 16 17 152 78	18 13 10 9.2 80	200 151 133 199 153	84 78 70 251 375	172 160 138 121 114	402 276 223 193 177	146 146 130 108 104	252 202 166 142 127	46 41 37 33 43	23 16 15 26 18	6.8 6.4 14 61 35	17 17 15 14
26 27 28 29 30 31	48 37 29 21 16 12	134 66 68 186 146	124 112 102 91 e65 e63	236 187 158 139 330 458	115 118 104 	736 1220 542 363 361 265	99 84 136 245 181	110 94 91 151 101 89	35 45 81 45 34	14 18 34 19 17	18 13 11 10 9.6 9.2	14 86 129 37 25
TOTAL MEAN MAX MIN CFSM IN.	893.1 28.8 152 8.7 0.33 0.38	924.5 30.8 186 6.8 0.35 0.39	4890 158 1150 32 1.80 2.08	3842 124 458 33 1.42 1.64	5429 194 549 99 2.22 2.31	7690 248 1220 70 2.84 3.27	4569 152 318 74 1.74 1.94	8681 280 935 89 3.20 3.69	4138 138 793 33 1.58 1.76	733 23.6 72 12 0.27 0.31	349.5 11.3 61 5.8 0.13 0.15	588.8 19.6 129 4.6 0.22 0.25
STATIS	TICS OF M	ONTHLY ME	N DATA FO	OR WATER	ZEARS 1940	- 2002,	BY WATER	YEAR (WY))			
MEAN MAX (WY) MIN (WY)	65.5 251 1955 3.39 1964	131 378 1986 9.36 1999	193 436 1991 21.8 1961	201 569 1952 26.2 1940	238 715 1975 42.7 1993	303 756 1963 59.0 1969	237 525 1948 48.7 1946	167 358 1956 20.5 1941	94.9 458 1972 9.10 1949	71.6 445 1977 4.71 1966	53.3 294 1958 3.85 1957	47.2 296 1996 2.33 1952
e E	stimated.											

03034500 LITTLE MAHONING CREEK AT McCORMICK, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1940 - 2002
ANNUAL TOTAL	32631.0	42727.9	
ANNUAL MEAN	89.4	117	150
HIGHEST ANNUAL MEAN			240 1956
LOWEST ANNUAL MEAN			92.2 1999
HIGHEST DAILY MEAN	1150 Dec 18	1220 Mar 27	4620 Jun 23 1972
LOWEST DAILY MEAN	4.3 Aug 9	4.6 Sep 13	0.40 Sep 28 1959
ANNUAL SEVEN-DAY MINIMUM	7.1 Nov 13	6.2 Sep 8	0.69 Sep 23 1959
MAXIMUM PEAK FLOW		2250 Mar 27	a 10600 Jul 19 1996
MAXIMUM PEAK STAGE		8.56 Mar 27	b 14.46 Jul 19 1996
INSTANTANEOUS LOW FLOW		4.2 Sep 13	0.30 Sep 28 1959
ANNUAL RUNOFF (CFSM)	1.02	1.34	1.71
ANNUAL RUNOFF (INCHES)	13.89	18.19	23.29
10 PERCENT EXCEEDS	236	258	355
50 PERCENT EXCEEDS	35	74	73
90 PERCENT EXCEEDS	8.7	8.5	9.1

<sup>a From rating curve extended above 8,500 ft³/s.
b From peak-stage indicator.</sup>

03036500 ALLEGHENY RIVER AT KITTANNING, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°49'13", long 79°31'54", Armstrong County, Hydrologic Unit 05010006, on right bank 600 ft upstream from dam at lock 7, 3,000 ft upstream from bridge on SR 1038 at Kittanning, 5.7 mi upstream from Crooked Creek, and 9.7 mi downstream from Mahoning Creek, at mile 45.8.

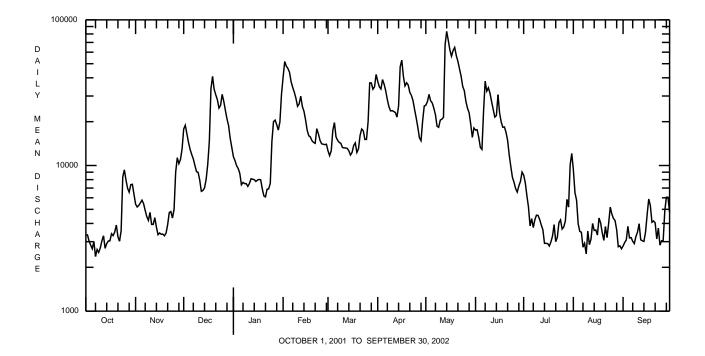
DRAINAGE AREA.--8,973 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1904 to September 1928, October 1934 to current year. Monthly discharge only for some periods, published in WSP 1305.

REVISED RECORDS.--WSP 873: Drainage area. WSP 1305: 1906 (M), 1914, 1925. WSP 1435: 1936-37, 1939.

GAGE.--Water-stage recorder and concrete dam control. Datum of gage is 773.40 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). Prior to Sept. 30, 1928, nonrecording gage at site 4,000 ft downstream at different datum. Oct. 1, 1934 to Apr. 19, 1939, nonrecording gage, Apr. 20, 1939 to Sept. 27, 1990, water-stage recorder at present site at different datum.


REMARKS.--Records good except those for estimated daily discharges and those below 2,000 ft³/s, which are poor. Sharp rises and drops in discharge during periods of low flow may be caused by hydroelectric power production. Flow regulated since 1924 by Piney Reservoir, since December 1940 by Tionesta Lake, since June 1941 by Mahoning Creek Lake, since November 1949 by Chautauqua Lake (station 03013946), since June 1952 by East Branch Clarion River Lake (station 03027000), since October 1965 by Allegheny Reservoir (station 03012520), since July 1970 by Union City Reservoir (station 03021518), and since January 1974 by Woodcock Creek Lake (station 03022550). Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

						DAILY M	EAN VALU	ES				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3320	5430	17800	11500	40400	12600	37900	25900	17500	8600	9350	2800
2	3340	5190	18900	10800	51800	11700	34700	27500	17600	7640	6500	2960
3	3020	5320	16500	9960	48100	12600	33500	30800	15600	6220	5780	3080
4	2840	5540	14400	9530	46400	17400	38900	27800	13300	5190	3970	3820
5	2680	5780	12900	8820	43600	19700	36100	26900	12900	3850	3530	3180
6	3010	5470	11900	7380	37500	15700	32500	24700	23600	4320	3480	3200
7	2370	4910	11100	7650	34300	14900	28300	22300	37900	3750	2750	3020
8	2650	4450	10000	7510	31800	14400	25300	18600	32400	4250	2920	2910
9	2530	4200	9070	7510	28900	14200	23700	18300	34200	4560	2470	3250
10	2720	4760	8970	7190	25500	13300	23800	20500	31400	4540	3540	3490
11	3040	3940	7950	7530	26500	13200	23500	20800	27500	4250	2860	3980
12	3290	3940	6650	8110	29900	13200	23100	21400	24300	3900	3120	3090
13	2700	4380	6740	8050	25400	13100	21500	67200	21500	3620	4000	3040
14	2910	3770	7010	e8000	23600	12600	25600	83400	22000	2920	3580	3010
15	3030	3350	8040	e7770	20600	11800	47600	72300	30600	2920	3610	3490
16	3040	3440	10200	e7940	17500	12300	52900	62100	22900	2910	3330	4590
17	3400	3370	14700	e8020	16000	13700	41000	56300	19900	2800	4360	5890
18	3300	3380	33600	7980	15700	14300	35200	61600	18300	2990	4030	5320
19	3500	3290	40900	6920	14800	12300	37000	64700	18400	3280	3460	4080
20	3900	3430	33300	6180	14400	13000	35700	56800	16900	3920	3060	4160
21	3240	3920	30600	6090	14200	16100	31800	51900	14900	3000	3810	4040
22	3020	4750	28300	6870	17900	17800	30300	46100	11800	3220	3200	3130
23	3570	4830	24800	6910	16500	17300	27900	41000	9820	4050	4000	3710
24	8330	4360	25900	7550	14900	15100	24200	34900	8290	4230	5180	2840
25	9340	5000	30800	14600	14100	15100	21200	32600	7660	3660	4640	3040
26 27 28 29 30 31	7970 6980 6560 7380 7430 6350	9010 11300 10300 11000 13000	27600 23900 20900 18800 15400 13300	20000 20500 19100 17500 19900 30900	14000 13900 14000 	20000 36900 36900 33400 34700 42200	18300 15500 14800 20200 25600	27500 24700 23000 19200 15600 18100	6940 6570 7240 7770 9010	3780 4160 5850 5180 10100 12100	4330 4190 3620 2770 2810 2680	3040 4850 6060 6050 4770
TOTAL	130760	164810	560930	334270	712200	561500	887600	1144500	548700	145760	120930	113890
MEAN	4218	5494	18090	10780	25440	18110	29590	36920	18290	4702	3901	3796
MAX	9340	13000	40900	30900	51800	42200	52900	83400	37900	12100	9350	6060
MIN	2370	3290	6650	6090	13900	11700	14800	15600	6570	2800	2470	2800
CFSM	0.47	0.61	2.02	1.20	2.83	2.02	3.30	4.11	2.04	0.52	0.43	0.42
IN.	0.54	0.68	2.33	1.39	2.95	2.33	3.68	4.74	2.27	0.60	0.50	0.47
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	04 - 2002	, BY WATE	R YEAR (W	Y)			
MEAN	8321	14010	18900	20850	21040	31840	27740	18450	11340	6920	5080	5499
MAX	31750	37830	55850	62840	45020	74110	66140	43650	40230	28200	19250	23500
(WY)	1991	1986	1928	1937	1990	1936	1940	1919	1989	1972	1977	1926
MIN	848	1155	1636	2752	4688	8342	6585	4860	2893	1511	1274	930
(WY)	1924	1909	1961	1961	1963	1969	1946	1941	1936	1966	1910	1909

03036500 ALLEGHENY RIVER AT KITTANNING, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1904 - 2002
ANNUAL TOTAL	3815460	5425850	
ANNUAL MEAN	10450	14870	15810
HIGHEST ANNUAL MEAN			22400 1928
LOWEST ANNUAL MEAN			10080 1999
HIGHEST DAILY MEAN	48600 Feb 16	83400 May 14	253000 Mar 26 1913
LOWEST DAILY MEAN	2080 Sep 10	2370 Oct 7	570 Sep 15 1913 a
ANNUAL SEVEN-DAY MINIMUM	2540 Sep 7	2690 Oct 4	610 Sep 11 1913
MAXIMUM PEAK FLOW		85800 May 14	269000 Mar 26 1913
MAXIMUM PEAK STAGE		17.11 May 14	b 30.70 Mar 26 1913
ANNUAL RUNOFF (CFSM)	1.16	1.66	1.76
ANNUAL RUNOFF (INCHES)	15.82	22.49	23.94
10 PERCENT EXCEEDS	25900	33800	36900
50 PERCENT EXCEEDS	6510	9820	10000
90 PERCENT EXCEEDS	2930	3050	2260

a Also Sept. 16, 17, 1913.b From Floodmark, site and datum then in use.

03036500 ALLEGHENY RIVER AT KITTANNING, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)
JUN 2002 19 AUG	1500	9813	17580	40	10.0	7.5	143	164	20.0	57	14.3	5.1	28
28	1530	9813	3650	40	7.8	8.0	301	257	25.0	94	25.3	7.4	42
Date	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	CYANIDE AMEN - ABLE TO CHLOR - INATION UNFLTRD (MG/L) (00722)
JUN 2002 19	<.2	33.2	102	22	<.020	.34	<.040	.60	.03	.030	3.0	<10	<1.00
AUG					1.020					.030	3.0		
28	<.2	51.3	208	12		.14	<.040	.56	.02			<10	<1.00
				Date	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, TOTAL RECOV-	TOTAL RECOV- ERABLE (µG/L AS ZN)				
				JUN 2002 19	810	<1.0	250	<50	10	<5			
				28	240	<1.0	90	<50	<10	<5			

CROOKED CREEK BASIN

03038000 CROOKED CREEK AT IDAHO, PA

LOCATION.--Lat 40°39'17", long 79°20'56", Armstrong County, Hydrologic Unit 05010006, on right bank at downstream end of old bridge abutment at Idaho, 0.4 mi downstream from Keystone Generation Station, 1.5 mi downstream from Plum Creek, 1.8 mi upstream of bridge on SR 210, and 2.4 mi west of Shelocta.

DRAINAGE AREA.--191 mi².

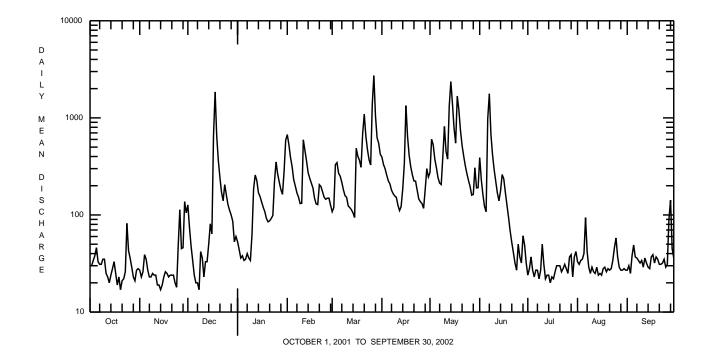
PERIOD OF RECORD.--October 1937 to current year. Monthly discharge only for some periods published in WSP 1305.

REVISED RECORDS.--WSP 1385: 1938, 1945.

GAGE.--Water-stage recorder and concrete weir control. Datum of gage is 961.04 ft above National Geodetic Vertical Datum of 1929 (Baltimore and Ohio Railroad bench mark).

REMARKS.--No estimated daily discharges. Records good. Flow regulated to some extent since March 1968 by Keystone Lake 7 mi upstream, usable capacity, 22,010 acre-ft. Evaporation from operation of steam-electric plant 0.4 mi upstream, which began during July 1967, can amount to as much as 30 ft³/s. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of March 1936 reached a stage of 18.6 ft, from floodmark, discharge, about 19,000 ft³/s.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 2,500 ft³/s and maximum (*):

Date Mar. May		Time 0330 0230	ft [*]	harge ³ /s 640 700	Gage Height (ft) *7.85 6.68	nt		Date June 6	Time 2330		scharge ft ³ /s	Gage Height (ft) 6.63	
				DISCHA	RGE, CUBIC	FEET PER SE		TER YEAR OC EAN VALUES	CTOBER 2001	TO SEP	ΓEMBER 20	02	
DAY	OC	Т	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3 3 3 4	0 4 8	27 23 26 39 35	127 75 48 34 24	53 44 36 38 34	673 531 393 316 231	108 119 330 346 269	395 331 299 257 225	274 602 527 376 306	390 230 162 122 108	24 28 37 27 23	33 31 34 35 40	27 30 25 38 49
6 7 8 9 10		1 1 5	27 23 23 25 24	20 20 17 42 36	35 40 36 34 63	199 169 153 131 132	251 217 182 158 152	209 180 166 157 152	242 213 206 398 817	979 1770 675 416 293	27 27 22 27 50	94 42 29 25 29	37 36 34 32 34
11 12 13 14 15	2 2 2 2 2	3 0 4	24 19 19 17 19	23 33 33 50 81	186 258 227 170 155	594 463 361 273 239	124 119 113 105 94	126 111 122 185 339	450 376 1320 2360 1400	222 169 140 177 261	31 22 24 24 20	26 25 29 24 25	29 36 32 29 28
16 17 18 19 20	3 2 1 2	5 9 3	23 26 25 23 24	64 663 1850 648 365	136 120 108 92 85	213 190 149 130 128	486 402 366 310 686	1340 644 411 313 259	784 549 1680 1210 744	235 170 126 94 68	23 22 26 30 30	24 28 29 26 28	37 39 32 37 35
21 22 23 24 25	2	2 6	24 24 20 18 49	242 171 140 205 161	87 92 99 218 352	205 196 173 152 145	1090 650 470 370 327	224 223 180 146 137	522 405 322 267 227	52 41 32 27 50	30 26 28 31 28	27 28 34 46 58	31 31 32 35 29
26 27 28 29 30 31	2	3 1 7	113 45 46 137 105	128 112 100 86 53 60	265 218 183 163 277 589	149 149 126 	1370 2730 1050 624 548 422	131 117 182 300 246	196 160 163 306 190	37 32 61 49 32	25 37 39 23 37 42	37 29 27 27 28 27	31 90 142 45 36
TOTAL MEAN MAX MIN CFSM IN.	93 30. 8 1 0.1	3 2 7 6	1072 35.7 137 17 0.19	5711 184 1850 17 0.96 1.11	4493 145 589 34 0.76 0.88	6963 249 673 126 1.30	14588 471 2730 94 2.46 2.84	8107 270 1340 111 1.41 1.58	17783 574 2360 160 3.00 3.46	7220 241 1770 27 1.26 1.41	890 28.7 50 20 0.15 0.17	1024 33.0 94 24 0.17 0.20	1178 39.3 142 25 0.21 0.23
STATIST	rics o	F MONT	HLY MEAI	N DATA	FOR WATER	YEARS 193	8 - 2002,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	12 83 195 7.1 195	9 5 5	219 820 1986 23.8 1954	352 827 1991 33.5 1961	376 1000 1952 59.7 1977	488 1260 1956 120 1980	586 1340 1994 83.9 1969	467 1052 1940 85.1 1946	306 746 1989 38.0 1941	196 1072 1972 25.3 1949	130 987 1956 13.9 1962	95.1 549 1984 11.3 1942	88.1 497 1945 6.07 1952

CROOKED CREEK BASIN

03038000 CROOKED CREEK AT IDAHO, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1938 - 2002
ANNUAL TOTAL	57118		69967			
ANNUAL MEAN	156		192		284	
HIGHEST ANNUAL MEAN					511	1956
LOWEST ANNUAL MEAN					148	1992
HIGHEST DAILY MEAN	2320 Ја	n 31	2730	Mar 27	9800	Jun 23 1972
LOWEST DAILY MEAN	17 Oc	t 20 a	17	Oct 20 a	b 1.0	Oct 22 1966
ANNUAL SEVEN-DAY MINIMUM	21 No	v 10	21	Nov 10	4.1	Sep 19 1939
MAXIMUM PEAK FLOW			3640	Mar 27	c 13200	Jun 23 1972
MAXIMUM PEAK STAGE			7.85	Mar 27	15.93	Jun 23 1972
INSTANTANEOUS LOW FLOW			11	Oct 20	4.6	Nov 1 1968
ANNUAL RUNOFF (CFSM)	0.82		1.00		1.49	
ANNUAL RUNOFF (INCHES)	11.12		13.63		20.23	
10 PERCENT EXCEEDS	401		433		684	
50 PERCENT EXCEEDS	50		75		125	
90 PERCENT EXCEEDS	26		24		24	

<sup>a Also Nov. 14, Dec. 8.
b Result of upstream pumping.
c From rating curve extended above 12,800 ft³/s.</sup>

03040000 STONYCREEK RIVER AT FERNDALE, PA

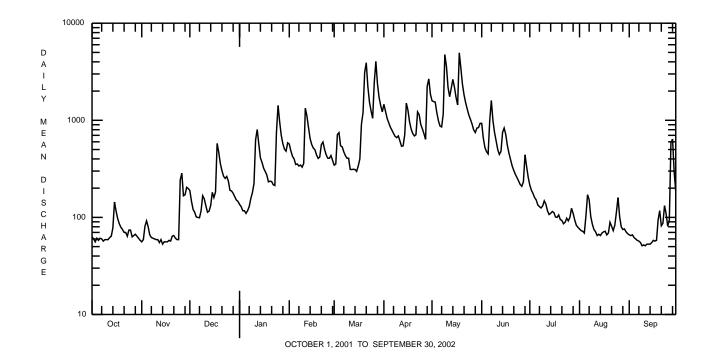
LOCATION.--Lat 40°17'08", long 78°55'15", Cambria County, Hydrologic unit 05010007, on right bank 50 ft upstream from highway bridge at Ferndale, 0.4 mi downstream from Bens Creek, 1.2 mi upstream from Johnstown city limits, and 5.2 mi upstream from confluence with Little Conemaugh River.

DRAINAGE AREA.--451 mi².

PERIOD OF RECORD.—October 1913 to March 1936, October 1938 to current year. Monthly discharge only for some periods, published in WSP 1305. Monthly figures adjusted for storage and diversion for October 1918 to September 1921, published in WSP 503, 523, have been found in error and should not be used. Published as "at Johnstown" 1914-36, and as "Stony Creek at Ferndale" 1938-79. Gage-height records collected in this vicinity since 1885 are contained in reports of U.S. Weather Bureau.

REVISED RECORDS.--WSP 743: Drainage area. WSP 1305: 1915, 1918, 1923-26. WSP 1435: 1920-21, 1932, 1941 (M), 1943 (M), 1945-46 (M). WDR PA-78-3: 1977 (M). See also PERIOD OF RECORD.

GAGE.--Water-stage recorder. Datum of gage is 1,184.06 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 19, 1936, nonrecording gage at site 3.5 mi downstream at different datum. Dec. 8, 1938 to Jan. 30, 1940, nonrecording gage at site 50 ft downstream at present datum.


REMARKS.--Records good except those for estimated daily discharges, which are poor. Regulation by mine pumpage and reservoirs and diversion above station; the four largest reservoirs have a combined capacity of 42,360 acre-ft. Figures of daily discharge do not include diversion from Stonycreek River and Quemahoning Creek Reservoir to plants of Bethlehem Steel Co., and from Mill Creek, Dalton Run, and North Fork Bens Creek Reservoirs for water supply of city of Johnstown. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

			DISCHAR	GE, CUBIC	FEET PER SI		EAN VALUE		JUI 10 SEP11	EMBER 2002	•	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	63	56	189	e136	569	345	1460	1590	930	215	76	66
2	60	59	147	e129	483	355	1240	1560	655	190	73	65
3	56	81	121	e117	426	713	1050	1540	524	176	72	66
4	61	92	113	e117	400	746	945	1200	475	160	69	62
5	58	80	101	e110	351	546	852	990	451	151	104	60
6	61	66	100	e117	355	533	792	872	996	134	171	58
7	60	62	99	e129	338	473	733	854	1600	129	152	57
8	57	61	117	e156	346	432	682	1160	997	125	102	55
9	59	60	167	180	329	407	663	4750	748	131	85	51
10	59	59	155	223	360	407	690	3590	612	148	75	52
11	59	59	131	629	1330	312	612	2180	499	137	71	51
12	62	55	113	804	1110	311	540	1750	445	117	65	53
13	64	59	116	569	840	313	546	2140	477	107	67	53
14	78	53	133	410	646	311	712	2640	749	110	65	53
15	144	56	181	369	562	298	1500	2190	832	115	69	55
16	116	56	160	321	517	338	1270	1720	713	112	71	58
17	97	56	183	297	497	399	964	1440	550	101	72	57
18	86	58	578	273	440	911	813	4950	457	100	66	58
19	79	57	470	232	405	1200	730	3440	393	106	69	94
20	75	64	360	236	419	3100	690	2340	338	95	89	117
21	70	65	303	234	561	3910	710	1820	304	93	81	82
22	70	61	266	217	597	2230	1220	1510	277	86	73	87
23	64	59	252	213	502	1540	1140	1300	257	89	83	132
24	74	59	264	752	442	1250	905	1130	237	98	113	109
25	74	244	237	1420	407	1050	817	1020	218	92	160	81
26 27 28 29 30 31	63 65 67 64 61 58	285 167 171 204 198	190 e187 e177 e163 e151 e146	967 698 573 504 481 586	406 434 386 	2450 4040 2370 1720 1420 1220	724 636 2240 2670 1860	912 795 748 831 842 930	209 232 441 334 258	100 124 110 94 83 79	102 80 75 76 71 68	94 584 641 297 184
TOTAL	2184	2762	6070	12199	14458	35650	30406	54734	16208	3707	2665	3532
MEAN	70.5	92.1	196	394	516	1150	1014	1766	540	120	86.0	118
MAX	144	285	578	1420	1330	4040	2670	4950	1600	215	171	641
MIN	56	53	99	110	329	298	540	748	209	79	65	51
CFSM	0.16	0.20	0.43	0.87	1.14	2.55	2.25	3.91	1.20	0.27	0.19	0.26
IN.	0.18	0.23	0.50	1.01	1.19	2.94	2.51	4.51	1.34	0.31	0.22	0.29
STATIST	CS OF MO	NTHLY MEA	AN DATA F	OR WATER	YEARS 193	9 - 2002,	BY WATER	YEAR (WY	")			
MEAN	240	411	665	752	1033	1591	1357	835	502	258	178	186
MAX	1514	2099	2162	1929	2575	3581	3426	1792	1773	874	1098	1449
(WY)	1977	1986	1973	1952	1986	1994	1993	1978	1972	1977	1979	1996
MIN	13.6	20.4	48.4	137	262	367	336	186	77.4	28.4	26.3	18.9
(WY)	1964	1954	1954	1977	1963	1990	1946	1941	1965	1965	1957	1943

03040000 STONYCREEK RIVER AT FERNDALE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1939 - 2002
ANNUAL TOTAL	188147		184575			
ANNUAL MEAN	515		506		667	
HIGHEST ANNUAL MEAN					1044	1996
LOWEST ANNUAL MEAN					280	1954
HIGHEST DAILY MEAN	5050 Ap	or 16	4950	May 18	15900	Jun 23 1972
LOWEST DAILY MEAN	53 No	ov 14	51	Sep 9,11	11	Sep 26 1959
ANNUAL SEVEN-DAY MINIMUM	56 No	ov 12	53	Sep 8	12	Oct 5 1963
MAXIMUM PEAK FLOW			6750	May 18	ab 59000	Mar 18 1936
MAXIMUM PEAK STAGE			8.28	May 18	c 30.26	Mar 18 1936
INSTANTANEOUS LOW FLOW			49	Sep 9-11	d 5.0	Sep 8 1929
ANNUAL RUNOFF (CFSM)	1.14		1.12		1.48	
ANNUAL RUNOFF (INCHES)	15.52		15.22		20.10	
10 PERCENT EXCEEDS	1410		1260		1590	
50 PERCENT EXCEEDS	235		217		327	
90 PERCENT EXCEEDS	61		60		60	

 $[\]begin{array}{l} \textbf{a} \ \ \text{About.} \\ \textbf{b} \ \ \text{From rating curve extended above } 13{,}000 \ ft^3/s \ on \ the \ basis \ of \ slope-area \ and \ contracted-opening \ measurement \ of \ peak \ flow. \end{array}$

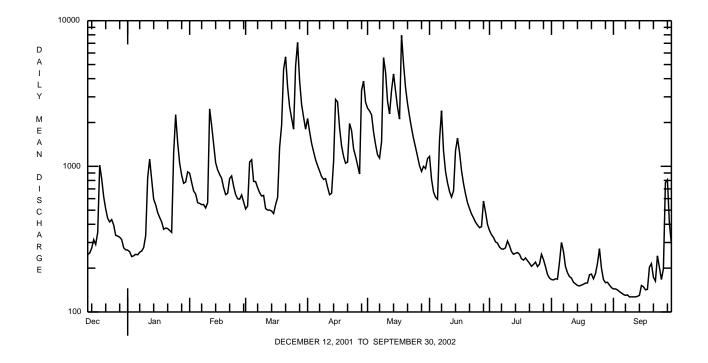
c From highwater mark, site and datum then in use. d Minimum observed.

03041029 CONEMAUGH RIVER AT MINERSVILLE, PA

LOCATION.--Lat 40°20'29", long 78°55'34", Cambria County, Hydrologic Unit 05010007, on right bank at upstream side of Fourth Avenue bridge at Johnstown, 4,000 ft downstream from confluence of Little Conemaugh River and Stonycreek River.

DRAINAGE AREA.--678 mi².

PERIOD OF RECORD.--December 2001 to current year.


GAGE.--Water-stage recorder. Datum of gage is 1,140 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by steel mills and reservoirs above station; the eight most effective reservoirs have a combined capacity of 51,850 acre-ft. Several measurements of water temperature were made during the year. Satellite telemetry at station.

			DISCHAF	RGE, CUBIC	FEET PER SI		TER YEAR (EAN VALUE		001 TO SEPTI	EMBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1				266	897	510	2130	2510	1170	363	167	144
2				259	775	534	1730	2400	816	339	166	144
3				240	676	1070	1440	2260	667	325	169	142
4				243	646	1110	1260	1720	614	303	168	138
5				249	563	789	1110	1410	594	297	219	135
6				247	556	785	1010	1200	1520	279	300	132
7				257	546	714	929	1140	2410	271	261	130
8				262	547	660	851	1470	1280	270	205	131
9				277	518	625	813	5570	924	276	186	127
10				334	562	632	824	4430	770	307	175	127
11				835	2480	513	719	2790	672	285	171	127
12			e248	1120	1910	501	639	2290	615	260	160	127
13			254	812	1420	501	653	3330	677	249	156	128
14			274	595	1060	493	1080	4310	1280	253	152	130
15			314	545	946	474	2880	3300	1560	256	151	152
16			291	482	879	546	2770	2540	1250	249	153	149
17			351	446	828	612	1840	2110	936	232	155	142
18			1020	415	713	1350	1380	7940	761	227	158	143
19			820	370	640	1910	1170	5050	646	235	158	203
20			617	377	653	4630	1050	3470	563	225	180	215
21			510	374	824	5650	1070	2690	512	216	182	173
22			439	363	859	3510	1970	2200	471	206	169	163
23			415	352	730	2560	1760	1830	443	212	183	243
24			431	1230	640	2140	1320	1550	414	220	215	202
25			395	2260	599	1800	1170	1350	395	205	272	167
26			336	1460	595	4870	1020	1170	379	213	200	198
27			332	1050	636	7100	886	1010	385	249	167	772
28			326	869	570	3880	3320	923	578	229	159	809
29			314	765		2660	3850	1000	486	205	160	403
30			276	780		2170	2760	965	399	181	153	292
31			267	916		1800		1130		171	147	
TOTAL				19050	23268	57099	45404	77058	24187	7808	5617	6288
MEAN				615	831	1842	1513	2486	806	252	181	210
MAX				2260	2480	7100	3850	7940	2410	363	300	809
MIN				240	518	474	639	923	379	171	147	127
STATIST	ICS OF MO	NTHLY MEA	N DATA E	OR WATER	YEARS 200	1 - 2002,	BY WATER	YEAR (WY)			
MEAN				615	831	1842	1513	2486	806	252	181	210
MAX				615	831	1842	1513	2486	806	252	181	210
(WY)				2002	2002	2002	2002	2002	2002	2002	2002	2002
MIN				615	831	1842	1513	2486	806	252	181	210
(WY)				2002	2002	2002	2002	2002	2002	2002	2002	2002

e Estimated.

03041029 CONEMAUGH RIVER AT MINERSVILLE, PA--Continued

03041500 CONEMAUGH RIVER AT SEWARD, PA

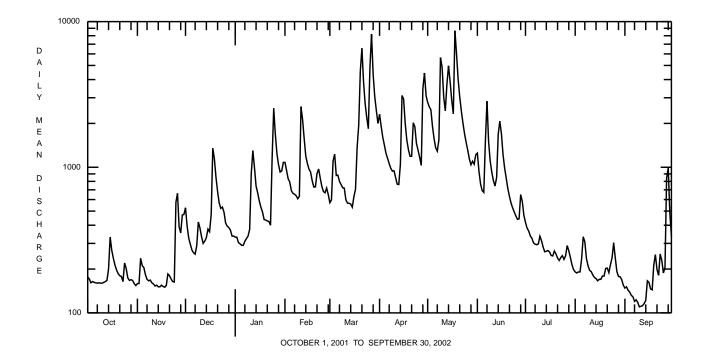
LOCATION.--Lat 40°25'09", long 79°01'35", Westmoreland County, Hydrologic Unit 05010007, on left bank at upstream side of bridge on State Highway 56 at Seward, 2.0 mi downstream from Findley Run, and 9 mi northwest of Johnstown.

DRAINAGE AREA.--715 mi².

PERIOD OF RECORD.--May 1938 to current year.

REVISED RECORDS.--WDR PA-78-3: 1936 (M), 1977 (M).

GAGE.--Water-stage recorder. Datum of gage is 1,076.01 ft above National Geodetic Vertical Datum of 1929.


REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by steel mills and reservoirs above station; the eight most effective reservoirs have a combined capacity of 51,850 acre-ft. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 18, 1936 reached a stage of 26.4 ft, from floodmarks, discharge, about 75,000 ft³/s, by contracted-opening measurement at site 6.7 mi downstream, adjusted for inflow.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	176	159	527	e331	1080	571	2310	2790	1250	418	191	148
2	171	159	394	e331	953	596	1910	2600	935	382	188	151
3	161	237	326	e304	834	1100	1610	2480	765	365	191	143
4	164	211	296	e298	791	1230	1420	1910	692	338	191	139
5	162	205	270	e291	690	878	1250	1570	672	325	235	132
6	161	183	259	e291	662	883	1150	1360	1520	303	333	129
7	160	170	253	e310	652	801	1060	1290	2840	296	308	120
8	161	166	290	e324	638	761	983	1540	1500	294	236	123
9	160	168	421	e337	608	723	941	5670	1100	297	211	118
10	160	161	382	375	631	719	945	4870	923	336	196	110
11	162	158	333	905	2610	598	851	3040	809	313	192	111
12	164	153	300	1300	2120	567	765	2440	743	283	182	112
13	167	155	311	994	1570	566	761	3710	851	263	175	116
14	200	151	329	742	1190	559	1050	4970	1690	265	172	122
15	332	151	376	667	1060	532	3110	3870	2070	268	166	166
16	269	155	361	587	970	628	2940	2880	1690	262	170	162
17	237	152	473	532	926	707	2000	2330	1220	248	170	146
18	213	150	1350	493	808	1360	1540	8670	985	246	179	144
19	197	154	1140	438	731	1940	1320	5980	840	266	179	213
20	186	185	853	434	733	4570	1190	4030	712	254	202	251
21	180	180	680	428	906	6560	1190	3040	631	238	203	199
22	178	171	568	424	973	3880	2020	2430	567	229	189	181
23	164	164	522	400	844	2740	1900	2010	526	240	215	254
24	220	163	533	1150	739	2200	1460	1700	493	247	239	229
25	202	574	491	2540	681	1840	1310	1480	463	233	303	188
26 27 28 29 30 31	174 167 169 167 159	662 390 354 470 474	414 394 385 370 337 e337	1690 1240 1040 927 945 1080	668 720 650 	4840 8200 4350 3050 2450 2000	1170 1030 3440 4440 3100	1310 1140 1040 1100 1050 1220	439 442 650 582 468	246 290 267 240 214 198	238 192 178 177 169 155	205 841 986 490 336
TOTAL	5697	6985	14275	22148	26438	62399	50166	85520	29068	8664	6325	6765
MEAN	184	233	460	714	944	2013	1672	2759	969	279	204	226
MAX	332	662	1350	2540	2610	8200	4440	8670	2840	418	333	986
MIN	154	150	253	291	608	532	761	1040	439	198	155	110
CFSM	0.26	0.33	0.64	1.00	1.32	2.82	2.34	3.86	1.36	0.39	0.29	0.32
IN.	0.30	0.36	0.74	1.15	1.38	3.25	2.61	4.45	1.51	0.45	0.33	0.35
STATIST	CICS OF MO	ONTHLY ME	AN DATA F	OR WATER	YEARS 193	9 - 2002,	BY WATER	YEAR (WY)			
MEAN	560	857	1286	1424	1860	2767	2395	1551	1026	657	480	482
MAX	2746	3076	3620	3625	3816	5524	5288	2871	3594	2527	1690	2475
(WY)	1977	1986	1973	1952	1971	1994	1993	1960	1972	1977	1979	1996
MIN	169	189	212	389	493	779	739	512	325	242	204	169
(WY)	1964	1939	1999	2000	1993	1990	1946	1941	1999	1965	2002	1959

03041500 CONEMAUGH RIVER AT SEWARD, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEA	AR FOR 2002 WATE	ER YEAR	WATER YEARS	5 1939 - 2	002
ANNUAL TOTAL	327233	324450				
ANNUAL MEAN	897	889		1275		
HIGHEST ANNUAL MEAN				1814	1	<u>996</u>
LOWEST ANNUAL MEAN				687	1	954
HIGHEST DAILY MEAN	8830 Apr 1	.6 8670	May 18	40900	Jul 20 1	977
LOWEST DAILY MEAN	140 Sep 1	.3 110	Sep 10	105	Dec 28 1	938 a
ANNUAL SEVEN-DAY MINIMUM	150 Sep 1	.2 116	Sep 7	111	Dec 26 1	
MAXIMUM PEAK FLOW		12500	May 18 b	115000	Jul 20 1	977
MAXIMUM PEAK STAGE		8.86	May 18	c 27.06	Jul 20 1	977
INSTANTANEOUS LOW FLOW		104	Sep 10-13	104 Se	ep 10-13 2	002
ANNUAL RUNOFF (CFSM)	1.25	1.24		1.78		
ANNUAL RUNOFF (INCHES)	17.03	16.88		24.24		
10 PERCENT EXCEEDS	2480	2150		2840		
50 PERCENT EXCEEDS	410	439		724		
90 PERCENT EXCEEDS	162	161		255		

 $[\]begin{array}{l} \textbf{a} \ \ Also \ Dec. \ 29, \ 31, \ 1938. \\ \textbf{b} \ \ From \ rating \ curve \ extended \ above \ 23,000 \ ft^3/s \ on \ basis \ of \ slope-area \ measurement \ of \ peak \ flow. \\ \textbf{c} \ \ From \ highwater \ mark. \end{array}$

03042000 BLACKLICK CREEK AT JOSEPHINE, PA

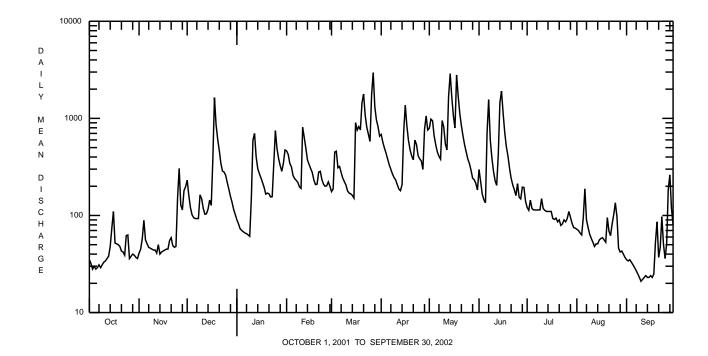
LOCATION.--Lat 40°28'24", long 79°11'01", Indiana County, Hydrologic Unit 05010007, on right bank on upstream side of old concrete dam at Josephine, 0.9 mi upstream from Two Lick Creek, and 5 mi northeast of Blairsville.

DRAINAGE AREA.--192 mi².

PERIOD OF RECORD.--January 1952 to current year.

REVISED RECORDS.--WSP 1385: 1952-54 (M). WDR PA-78-3: 1977 (M).

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 975.82 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 25, 1953, nonrecording gage at same site and datum.


REMARKS.—Records good except those for estimated daily discharges, which are poor. Some regulation at low flow by mine pumpage above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 2,700 ft³/s and maximum (*):

Date Mar. Mar. May		Time 2200 2300 0100	2	scharge ft ³ /s 2,720 5,040 3,900 DISCHA	Gage Height (ft) 5.74 *7.02 6.40 RGE, CUBIC FI	EET PER SE		June June TER YEAR	18 12 6 24 14 20 OCTOBER 2	ime f 200 4, 400 2, 000 3,	charge t ³ /s 130 810 510 EMBER 20	Gage Height (ft) 6.52 5.80 6.20	
							DAILY ME	AN VALUE	ES				
DAY	OCT	ſ	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e35 e32 e28 e30 e28	2 3)	e41 e45 58 e89 e56	231 162 121 102 95	e90 e82 e73 e70 e68	462 425 344 317 258	176 187 450 459 310	683 568 495 439 381	792 982 945 659 535	297 223 166 145 135	121 113 144 118 114	e72 e70 e66 e63 e95	e35 e34 e35 e33 e31
6 7 8 9	e29 e31 e29 e33 e33	L) L	e51 e47 e46 e45 e44	93 93 93 163 149	e66 e65 e63 e61 e149	240 230 219 197 190	320 277 243 223 206	333 298 268 246 232	450 408 380 950 810	710 1560 601 393 286	114 114 114 114 149	188 e90 e75 e64 e58	e29 e27 e25 e23 e21
11 12 13 14 15	e34 e36 e38 e48 e74	5 3 3	e44 e41 e50 e40 e42	119 103 104 116 144	597 700 402 304 270	810 637 493 373 336	179 170 167 161 151	208 187 180 208 722	545 473 1670 2890 1660	229 204 426 1450 1910	118 113 110 110 110	e53 e48 e51 e51 e56	e22 e23 e24 e23 e23
16 17 18 19 20	e110 e52 e51 e50 e48	2 L)	e43 e44 e45 e45 e55	127 381 1640 868 613	244 218 194 166 170	304 277 232 208 210	903 757 822 760 1450	1370 836 591 473 410	1060 795 2800 1690 1120	1140 721 514 412 308	110 e93 e91 e94 e86	e58 e59 e56 e53 e95	e24 e23 e25 53 e86
21 22 23 24 25	e43 e42 e39 e63 e63	2 9 2	e59 e49 e47 48 152	469 345 e287 e280 e259	167 155 156 342 748	280 285 234 210 200	1780 1080 809 685 579	374 597 537 413 383	839 658 533 450 382	242 207 184 160 213	e90 e79 e82 e90 e86	e69 e62 82 102 135	e37 e47 e97 51 e36
26 27 28 29 30 31	e36 e38 e40 e39 e36	3) 9 7	305 128 114 180 198	e218 e186 e157 e136 e115 e102	489 386 326 285 345 473	202 222 200 	1740 2960 1320 965 823 656	364 298 764 1060 759	342 292 242 233 214 183	154 148 196 194 140	e93 110 e96 e83 e75 e74	e97 e46 e42 e43 e40 e37	51 187 262 118 e80
TOTAL MEAN MAX MIN CFSM IN.	1322 42.6 110 28 0.22 0.26	5 7) 3	2251 75.0 305 40 0.39 0.44	8071 260 1640 93 1.36 1.56	7924 256 748 61 1.33 1.54	8595 307 810 190 1.60 1.67	21768 702 2960 151 3.66 4.22	14677 489 1370 180 2.55 2.84	25982 838 2890 183 4.37 5.03	13668 456 1910 135 2.37 2.65	3208 103 149 74 0.54 0.62	2176 70.2 188 37 0.37 0.42	1585 52.8 262 21 0.28 0.31
STATIST	rics of	MONT!	HLY ME	AN DATA	FOR WATER Y	EARS 195	3 - 2002,	BY WATER	YEAR (W	Y)			
MEAN MAX (WY) MIN (WY)	170 812 1977 30.8 1953	2 1 7 1 3 3	296 1113 1998 33.5 1954	420 1025 1973 68.4 1961	421 905 1975 135 1956	553 1202 1956 124 1987	755 1615 1967 219 1969	602 1086 1993 236 1997	421 1009 1978 84.8 1986	253 1376 1972 65.6 1965	199 1114 1977 43.5 1965	146 581 1958 37.1 1962	139 595 1996 28.7 1998

03042000 BLACKLICK CREEK AT JOSEPHINE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1953 - 2002
ANNUAL TOTAL	87734	111227	
ANNUAL MEAN	240	305	364
HIGHEST ANNUAL MEAN			523 1972
LOWEST ANNUAL MEAN			242 1954
HIGHEST DAILY MEAN	2190 Feb 15	2960 Mar 27	22800 Jul 20 1977
LOWEST DAILY MEAN	e 28 Oct 3,5	e 21 Sep 10	15 Oct 13 1995
ANNUAL SEVEN-DAY MINIMUM	a 29 Oct 3	a 23 Sep 9	23 Sep 9 2002
MAXIMUM PEAK FLOW		5040 Mar 26	b 45700 Jul 20 1977
MAXIMUM PEAK STAGE		7.02 Mar 26	c 19.89 Jul 20 1977
INSTANTANEOUS LOW FLOW			19 Sep 14 1952 d
ANNUAL RUNOFF (CFSM)	1.25	1.59	1.89
ANNUAL RUNOFF (INCHES)	17.00	21.55	25.73
10 PERCENT EXCEEDS	645	762	795
50 PERCENT EXCEEDS	105	160	207
90 PERCENT EXCEEDS	43	38	52

a Computed using estimated daily discharges.
 b From rating curve extended above 16,000 ft³/s on basis of contracted-opening measurement at gage height 11.35 ft in gage well, 12.67 ft from outside floodmark and slope-area measurement at gage height 10.93 ft.
 c From floodmark in gage well.
 d Also Nov. 4, 1953

d Also Nov. 4, 1953. e Estimated.

03042260 YELLOW CREEK LAKE

LOCATION.--Lat 40°35'27", long 79°03'11", Indiana County, Hydrologic Unit 05010007, in gatehouse at right end of dam on Yellow Creek, at Yellow Creek State Park, and 3 mi southwest of Penn Run.

DRAINAGE AREA.--52.5 mi².

PERIOD OF RECORD.--July 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is sea level (Pennsylvania Department of Environmental Protection bench mark).

REMARKS.—Lake is formed by an earthfill dam with concrete spillway. Storage began July 11, 1971. Usable capacity, 13,800 acre-ft between elevation 1,245.5 ft, sill of 4-foot and 1.5 foot outlet gates, and 1,280.00 ft (spillway crest). No dead storage. Figures given herein represent usable contents. Lake is used for recreation.

COOPERATION.--Dam built by Pennsylvania Department of Forests and Waters and now maintained by Pennsylvania Department of Conservation and Natural Resources.

EXTREMES FOR PERIOD OF RECORD.—Maximum contents, 24,100 acre-ft, July 20, 1977, elevation, 1,290.29 ft; minimum (after first filling), 2,810 acre-ft, Apr. 14, 1975, elevation, 1,261.47 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 15,960 acre-ft, June 14, elevation, 1,282.40 ft; minimum, 11,760 acre-ft, Nov. 19 elevation, 1,277.54 ft.

MONTHEND ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS AT 2400 HRS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Elevation (feet)	Contents (acrefeet)	Change in contents (equivalent in ft ³ /s)
Sept. 30	1,278.21	12.270	
Oct. 31	1,277.84	11,980	-4.7
Nov. 30	1,278.53	12,520	+9.1
Dec. 31	1,279.56	13,400	+14
CAL YR 2001			-0.07
Jan. 31	1,280.03	13,830	+7
Feb. 28	1,279.69	13,520	-5.6
Mar. 31	1,280.44	14,200	+11
Apr. 30	1,280.37	14,130	-1.2
May 31	1,279.73	13,560	-9.3
June 30	1,279.51	13,360	-3.4
July 31	1,278.96	12,890	-7.6
Aug. 31	1,279.05	12,950	+0.98
Sept. 30	1,278.98	12,880	-1.2
WTR YR 2002			+0.84

03042280 YELLOW CREEK NEAR HOMER CITY, PA

LOCATION.--Lat 40°34'21", long 79°06'13", Indiana County, Hydrologic Unit 05010007, on left bank 0.3 mi upstream from Central Indiana County Water Authority dam, 0.4 mi upstream from Ferrier Run, which has been diverted, and 3.5 mi northeast of Homer City.

DRAINAGE AREA.--57.4 mi², excludes that of Ferrier Run.

PERIOD OF RECORD.--October 1967 to current year.

REVISED RECORDS.--WDR PA-76-3: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 1,140 ft above National Geodetic Vertical Datum of 1929, from topographic map.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Flow regulated since July 1971 by Yellow Creek Lake (station 03042260) 4.2 mi upstream. Several measurements of water temperature were made during the year. Satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC FEB AUG SEP JAN MAR APR MAY 9.2 e30 9.9 8.0 9.3 e27 9.9 8.0 e24 e24 266 52 9.9 8.0 9.9 e22 8.0 9.9 9.9 8.0 9.9 9.9 e19 8.0 9 13 9.9 13 e18 79 79 342 8.0 9.9 e18 9.9 e17 8.0 9.9 8.0 9.9 9.9 8.0 9.2 25 133 9.9 9.2 8.0 9.9 9.7 9 9 9.2 8.2 9.4 9.2 7.6 9.9 9.7 9.2 9.2 7.4 7.4 8.3 9.9 77 9.2 9.7 9.4 9.2 9.6 7.4 9.9 9.2 7.4 7.4 6.9 8.8 9.6 9.5 8.8 9.2 9.2 9.4 6.9 9.2 7.3 9.2 9.2 9 9 9.9 9.6 7.9 9.2 9.9 9 2 ___ 9 9 8 6 7 4 9.2 9.9 8.0 e41 324.5 2285.8 327.5 TOTAL 317.8 609.5 240.5 756 57 10.5 19.7 MEAN 10.6 73.7 68.7 98.1 10.6 8.02 9.9 1.28 17 6.9 MAX 9.9 8.8 9.2 8.0 MIN 3.86 0.34 0.14 CFSM 0.18 0.18 1.20 3.83 2.49 4.52 0.18

4.41

2.78

5.21

4.31

0.40

0.21

0.16

0.21

0.21

1.48

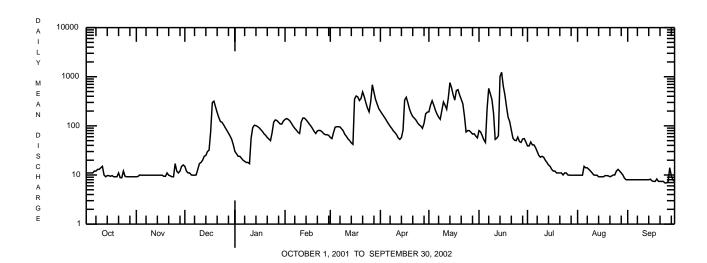
1.38

1.78

IN.

e Estimated.

03042280 YELLOW CREEK NEAR HOMER CITY, PA--Continued


STATISTICS	OF MONTHLY	MEAN DATA	FOR WATER	YEARS 19	71 - 2002,	BY WATER	R YEAR (WY) (SINC	E REGULATI	ON)	
0	CT NO	DV DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 53 MAX 1 (WY) 19 MIN 6. (WY) 19	86 30 78 199 10 6.8	254 98 1973 35 21.1	314 1996 32.1	162 374 1981 44.4 1993	202 447 1994 70.8 1990	158 246 1987 68.8 1997	119 358 1978 28.5 2001	77.0 324 1972 12.2 1999	59.4 443 1977 5.95 1971	28.6 90.3 1980 5.46 1971	36.2 163 1996 8.02 2002

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1971 - 2002
ANNUAL TOTAL	21621.9	34777.6	
ANNUAL MEAN	59.2	95.3	103
HIGHEST ANNUAL MEAN			<u>145 1978</u>
LOWEST ANNUAL MEAN			64.2 1999
HIGHEST DAILY MEAN	402 Apr 17	1230 Jun 15	7630 Jul 20 1977
LOWEST DAILY MEAN	8.0 Jul 27 a	6.9 Sep 24,25	3.4 Jul 8 1971
ANNUAL SEVEN-DAY MINIMUM	8.0 Jul 27	7.2 Sep 20	3.6 Jul 22 1971
MAXIMUM PEAK FLOW		2010 Jun 14	b 15000 Jul 20 1977
MAXIMUM PEAK STAGE		5.80 Jun 14	12.60 Jul 20 1977
ANNUAL RUNOFF (CFSM)	1.03	1.66	1.80
ANNUAL RUNOFF (INCHES)	14.01	22.54	24.47
10 PERCENT EXCEEDS	193	279	234
50 PERCENT EXCEEDS	20	46	58
90 PERCENT EXCEEDS	8.6	9.2	11

SI	PATISTICS	OF.	MONTHLY MEAN	DATA F	OR WATER	YEARS 1968	- 1970,	BY WATER	YEAR (WY)	(PRIOR	TO REGULA	ATION)	
		OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
ME	EAN 2	4.6	72.0	119	113	146	136	160	148	51.0	39.6	39.9	26.9
MZ	AX 5	1.8	105	142	148	210	199	243	212	74.7	75.4	63.0	66.6
(V	VY) 1	968	1968	1969	1969	1970	1970	1970	1968	1970	1969	1969	1970
MΙ	IN 7	.87	43.9	102	90.8	112	46.4	62.7	103	25.5	7.11	13.0	5.34
(V	VY) 1	969	1970	1968	1970	1969	1969	1968	1969	1969	1968	1968	1969

SUMMARY STATISTICS	WATER TEARS	1968 - 1970
ANNUAL MEAN	89.4	
HIGHEST ANNUAL MEAN	104	1970
LOWEST ANNUAL MEAN	80.7	1969
HIGHEST DAILY MEAN	1100	Jan 31 1968
LOWEST DAILY MEAN	3.0	Jul 31 1968
ANNUAL SEVEN-DAY MINIMUM	3.3	Sep 18 1969
MAXIMUM PEAK FLOW	c 1300	Jan 30 1968
MAXIMUM PEAK STAGE	d 7.83	Jan 29 1970
INSTANTANEOUS LOW FLOW	1.4	Jul 19 1969
ANNUAL RUNOFF (CFSM)	1.56	
ANNUAL RUNOFF (INCHES)	21.16	
10 PERCENT EXCEEDS	213	
50 PERCENT EXCEEDS	50	
90 PERCENT EXCEEDS	8.0	

- a Also July 28 to Aug. 3, 8, 9, Sept. 4-13, 15-19, 23.
 b From rating curve extended above 4,100 ft³/s on basis of computation of peak flow over dam, gage height 7.46 ft.
- c About.
 d Backwater from ice.

03042500 TWO LICK CREEK AT GRACETON, PA

LOCATION.--Lat 40°31'02", long 79°10'19", Indiana County, Hydrologic Unit 05010007, on right bank 0.8 mi upstream from highway bridge on road leading west from Graceton, 1.1 mi downstream from Tearing Run, 1.5 mi upstream from Cherry Run, and 8 mi northeast of Blairsville.

DRAINAGE AREA.--171 mi².

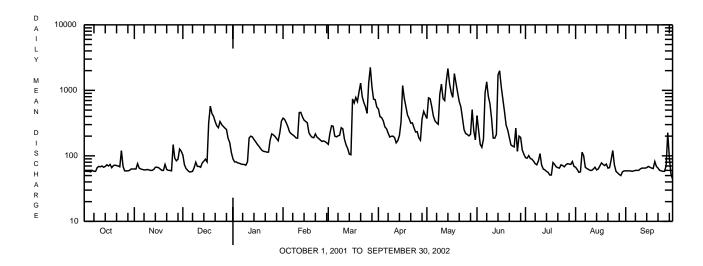
PERIOD OF RECORD.--September 1951 to current year.

GAGE.--Water-stage recorder. Datum of gage is 981.63 ft above National Geodetic Vertical Datum of 1929.

REVISED RECORDS.--WDR PA-78-3: 1977 (M).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Diurnal fluctuation caused by mine pumpage and by sewage-disposal plant above station. Flow regulated since December 1968 by Two Lick Creek Reservoir 10 mi upstream, capacity, 16,240 acre-ft and since July 1971 by Yellow Creek Lake (station 03042260) 11 mi upstream. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	59 58 58 58 57	63 63 76 65 63	103 73 64 60 57	e90 e81 e81 e78 e77	377 359 319 278 233	150 221 288 283 200	519 396 383 343 277	371 768 744 566 406	412 244 150 135 180	94 92 101 91 89	67 62 56 57 114	59 59 59 59
6 7 8 9 10	60 58 58 66 69	62 61 61 62 61	57 58 66 80 69	e75 e74 e74 e72 e81	218 209 200 188 186	195 202 206 269 258	260 223 194 199 200	342 320 304 876 1240	918 1350 814 627 374	83 76 73 84 108	100 67 64 62 60	59 60 60 60 63
11 12 13 14 15	68 70 67 69 73	60 60 62 67	69 67 78 83 89	187 200 195 178 165	458 461 394 351 335	179 147 129 106 104	190 158 171 205 329	747 699 1370 2150 1280	187 186 213 1720 1990	72 63 61 58 56	60 63 67 61 63	65 65 66 69
16 17 18 19 20	70 74 66 71 72	66 63 60 60 74	81 321 574 443 402	151 141 130 121 117	320 226 204 192 189	739 641 779 674 943	1180 759 564 420 371	937 780 1800 1290 924	1130 734 476 296 248	51 51 79 74 68	70 78 74 71 75	67 65 64 82 69
21 22 23 24 25	71 70 68 120 69	62 60 60 59 148	334 288 269 334 301	116 114 114 174 216	216 193 184 175 166	1290 796 650 559 445	316 319 269 231 234	675 561 378 250 219	191 147 141 137 265	66 65 73 71 68	65 66 87 121 73	65 60 59 58
26 27 28 29 30 31	59 59 60 63 63	92 84 89 127 118	282 266 252 185 160 e113	209 198 184 170 225 339	169 165 158 	1310 2240 1130 733 723 557	189 173 367 478 419	212 202 213 506 243 176	117 200 191 123 106	73 76 75 74 82 69	58 55 52 50 57 59	70 225 94 53 44
TOTAL MEAN MAX MIN (†)	2062 66.5 120 57 0	2175 72.5 148 59 -18	5678 183 574 57 +55	4427 143 339 72 +65	7123 254 461 158 -2.0	17146 553 2240 104 +27	10336 345 1180 158 0	21549 695 2150 176 -9.0	14002 467 1990 106 -2.0	2316 74.7 108 51 -21	2134 68.8 121 50 -22	2059 68.6 225 44 -27


[†] Change in contents, equivalent in cubic feet per second, in Yellow Creek Lake and Two Lick Creek Reservoir. Records of contents in Two Lick Creek Reservoir furnished by Midwest Generation.

e Estimated.

03042500 TWO LICK CREEK AT GRACETON, PA--Continued

	CS OF MC	ONTHLY MEAN	DATA F	OR WATER	YEARS 1969	- 2002,	BY WATER	YEAR (WY)	(SINC	E REGULATIO	<u>)N</u>)	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN MAX (WY) MIN (WY)	147 466 1977 21.0 1969	255 689 1998 53.2 1992	358 722 1973 87.0 1999	345 745 1996 106 1983	434 925 1986 116 1993	524 1230 1994 93.9 1969	429 832 1984 179 1997	314 695 2002 86.2 1986	226 1091 1972 53.6 1992	179 1161 1977 52.1 1993	110 310 1977 48.9 1988	132 475 1996 41.9 1995
SUMMARY	STATIST	rcs	FOR	2001 CAL	ENDAR YEAR	F	OR 2002 W	ATER YEAR		WATER YEAR	RS 1969 -	2002
LOWEST A HIGHEST LOWEST D	MEAN ANNUAL MANNUAL MA	EAN AN MINIMUM DW AGE DW FLOW EDS EDS		1320 42 43 457 94 54	+ -5.2 Apr 16 Aug 7a Jul 28		91007 249 2240 44 56 3350 7.4 41 645 118 59	# +.50 Mar 27 Sep 30 Aug 26 Jun 14 2 Jun 14 Sep 30		287 375 178 21900 12 15 b 32000 c 18.65 12 599 176 58	Jul 20 Oct 1 Oct 12 Jul 20 Oct 1,2	1968 1968 1977 1977
STATISTI					YEARS 1952	-		-	-		·	
MEAN MAX (WY) MIN (WY)	OCT 101 628 1955 14.2 1964	NOV 139 305 1960 23.6 1954	DEC 256 635 1955 50.1 1961	JAN	YEARS 1952 FEB 444 1093 1956 176 1963	- 1968, MAR 604 1097 1963 234 1957		YEAR (WY) MAY 346 634 1966 99.7 1955	JUN 130 271 1960 42.3 1965	JUL 100 644 1956 25.2 1962	ATION) AUG 90.6 377 1956 16.9 1957	SEP 61.1 199 1962 15.9 1952
MEAN MAX (WY) MIN (WY)	OCT 101 628 1955 14.2 1964	NOV 139 305 1960 23.6 1954	DEC 256 635 1955 50.1 1961	JAN 367 811 1952 118 1956	FEB 444 1093 1956 176	MAR 604 1097 1963 234 1957	APR 472 786 1957 167	MAY 346 634 1966 99.7	JUN 130 271 1960 42.3	JUL 100 644 1956 25.2	AUG 90.6 377 1956 16.9	61.1 199 1962 15.9

- † Change in contents, equivalent in cubic feet per second, in Yellow Creek Lake and Two Lick Creek Reservoir. Records of contents in Two Lick Creek Reservoir furnished by Midwest Generation.
- a Also Aug. 8, Sept. 16.
 b From rating curve extended above 4,500 ft³/s on basis of slope-area measurement of peak flow and contracted-opening measurement at gage height 12.71 ft at site 1.6 mi upstream from gage, adjusted to gage site.
- c Backwater, from highwater mark.
 d From rating curve extended above 4,500 ft³/s on basis of contracted-opening measurement of peak flow at site 1.6 mi upstream from gage, adjusted to gage site.

03045000 LOYALHANNA CREEK AT KINGSTON, PA

LOCATION.--Lat 40°17'33", long 79°20'27", Westmoreland County, Hydrologic Unit 05010008, on right bank 60 ft downstream from bridge on State Highway 217 at Kingston, 100 ft downstream from Miller Run, 1.9 mi upstream from Ninemile Run, and 3 mi southeast of Latrobe.

DRAINAGE AREA.--172 mi².

PERIOD OF RECORD.--October 1939 to current year. Monthly discharge only October to December 1939, published in WSP 1305.

REVISED RECORDS.--WSP 1335: Drainage area.

Discharge

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,013.16 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). Prior to Oct. 1, 1969, at datum 1.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated by Latrobe Reservoir, capacity, 3,670 acre-ft, and diversion works at Kingston. Figures of daily discharge do not include diversion from reservoir and at Kingston intake to borough of Latrobe. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

Discharge

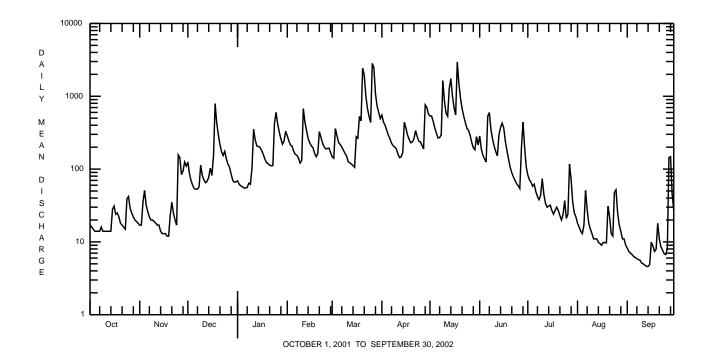
Gage Height

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage since at least 1918, 15.8 ft, present datum, Oct. 15, 1954. Flood of Mar. 17 or 18, 1936 reached a stage of about 15.5 ft, present datum, from information by local residents, discharge, about 21,000 ft³/s, from rating curve extended above 8,700 ft³/s.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 3,500 ft³/s and maximum (*):

Gage Height

Date		Гіте		ft ³ /s	(ft)			Date	Tin		ft ³ /s	(ft)	
Mar.		.900		5,080	8.29			May 1	8 090	00	4,860	8.16	
Mar.	26 2	2100	*	7,420	*9.53								
				DISCHA	RGE, CUBIC	FEET PER S		TER YEAR OO EAN VALUES	CTOBER 20	01 TO SE	PTEMBER 200)2	
DAY	OCT	1	10V	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	17 16		17 17	125 87	e69 e62	287 244	147 141	552 441	534 535	285 188		18 16	8.2 7.4
3	15		35	69	59	214	360	400	450	154		14	7.4
4	14		51	60	e57	206	286	342	366	138		13	6.7
5	14		32	54	e55	175	232	293	311	125	62	17	6.3
6 7	14		26	53	e55	160	217	262	267	530		51	6.1
8	14 16		22 20	53 57	e56 e64	154 141	201 182	227 210	271 294	599 351		28 18	5.9 5.7
9	14		20	113	e62	121	164	200	1640	258		15	5.6
10	14		19	82	e103	132	151	190	855	207		13	5.1
11	14		18	71	e352	678	126	161	586	174		11	5.0
12	14		17	65	e253	442	122	144	532	152		11	4.8
13 14	14 14		17 14	68 77	e208 e204	339 263	117 112	147 169	1280 1740	296 372		11 9.9	4.6 4.6
15	28		13	103	e199	230	106	442	1010	427		9.5	4.9
16	31		13	82	180	208	279	364	697	366		9.0	9.9
17	24		13	151	160	197	266	294	555	239		9.8	8.8
18 19	25 22		12 12	792 432	138 123	166 148	529 460	256 230	2960 1510	179 136		9.8 9.7	7.4 7.9
20	18		23	296	119	162	2440	236	950	106		31	18
21	17		35	218	113	326	1950	260	679	89	23	22	11
22	16		25	173	111	273	1010	338	537	78		13	8.6
23 24	15 39		20 17	154 175	112 421	227 202	679 530	280 242	439 364	70 63		12 48	7.7 6.9
25	42	1	L57	138	601	189	436	237	341	59		52	6.7
26	29	1	L44	117	420	192	2830	212	292	54		25	8.0
27	25		84	106	323	194	2470	189	234	190		17	144
28 29	22 20	-	94 L25	e85 e70	261 220	169 	1080 736	762 706	196 184	441 201		14 11	148 45
30	19		L10	66	243		601	572	279	108		11	27
31	18			e67	331		494		214		22	9.1	
TOTAL	614		222	4259	5734	6439	19454	9358	21102	6635		558.8	552.8
MEAN MAX	19.8 42).7 L57	137 792	185 601	230 678	628 2830	312 762	681 2960	221 599		18.0 52	18.4 148
MIN	14	-	12	53	55	121	106	144	184	54		9.0	4.6
(†)	+.02	+ 4	1.0	+8.0	+8.0	+20	+3.4	+4.0	+5.4	+10		+.40	-1.2
STATIST	TTCS OF	момтні	.v me	באת המדם	FOR WATER	VEARS 194	10 - 2002	BY WATER	VEAR (WY)			
MEAN	105		208	346	373	469	608	526	371	226		97.6	86.4
MAX (WY)	689 1955		785 986	834 1973	850 1952	1210 1986	1305 1963	1007 1940	779 1952	997 1972		667 1979	635 1971
MIN	2.76		.09	29.4	79.0	137	175	178	83.4	38.3		7.04	4.20
(WY)	1954	19	954	1999	1940	1978	1969	1997	2001	1999	1966	1957	1957


[†] Diversion from and change in contents in Latrobe Reservoir and diversion from Kingston intake, equivalent in cubic feet per second, furnished by Latrobe Municipal Authority.

e Estimated.

03045000 LOYALHANNA CREEK AT KINGSTON, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALE	NDAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1940 - 2002
ANNUAL TOTAL	69533		77242.6			
ANNUAL MEAN	191 †	† +7.6	212 †	+5.5	293	
HIGHEST ANNUAL MEAN					447	1971
LOWEST ANNUAL MEAN					160	1954
HIGHEST DAILY MEAN	2020	Apr 16	2960	May 18	14200	Jun 23 1972
LOWEST DAILY MEAN	10	Sep 12 a	4.6	Sep 13,14	0.20	Oct 23 1953
ANNUAL SEVEN-DAY MINIMUM	11	Sep 12	4.9	Sep 9	0.63	Oct 19 1953
MAXIMUM PEAK FLOW			7420	Mar 26	b 29700	Oct 15 1954
MAXIMUM PEAK STAGE			9.53	Mar 26	c 15.80	Oct 15 1954
INSTANTANEOUS LOW FLOW			4.6	Sep 12-15	0.10	Sep 4 1953
10 PERCENT EXCEEDS	518		508		691	
50 PERCENT EXCEEDS	82		106		155	
90 PERCENT EXCEEDS	15		11		20	

 [†] Diversion from and change in contents in Latrobe Reservoir and diversion from Kingston intake, equivalent in cubic feet per second, furnished by Latrobe Municipal Authority.
 a Also Sept. 13, 18, 19.
 b From rating curve extended above 8,700 ft³/s on basis of slope-area measurement at gage height 13.37 ft.
 c Present datum, from floodmarks.

03048500 KISKIMINETAS RIVER AT VANDERGRIFT, PA

LOCATION.--Lat 40°36'16", long 79°33'08", Westmoreland County, Hydrologic Unit 05010008, on left bank 0.5 mi upstream from bridge on State Highway Alternate 66 at Vandergrift, and 2.2 mi upstream from Pine Run.

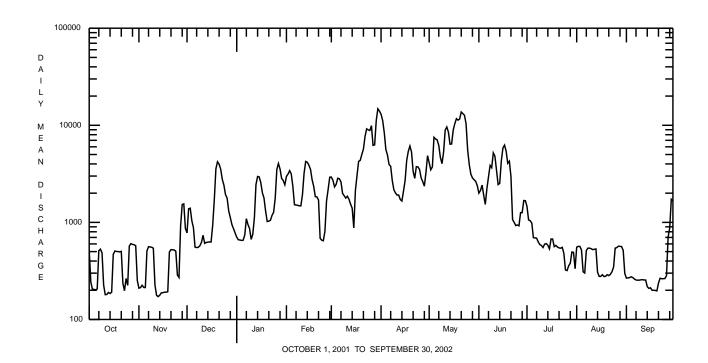
DRAINAGE AREA.--1,825 mi².

PERIOD OF RECORD.—August 1937 to current year. Monthly discharge only for some periods, published in WSP 1305. October 1920 to September 1932 (gage heights and discharge measurements only) in reports of Pennsylvania Department of Forests and Waters.

GAGE.--Water-stage recorder. Datum of gage is 769.40 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers benchmark). Oct. 1, 1920 to Sept. 30, 1930, nonrecording gage, Oct. 1, 1930 to Sept. 30, 1932, water-stage recorder, at site 0.6 mi downstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated since November 1951 by Conemaugh River Lake, 23 mi upstream, since June 1942 by Loyalhanna Lake, 20 mi upstream, since July 1971 by Yellow Creek Lake (station 03042260), and by other reservoirs above station; the 11 most effective of which have a combined capacity of 105,700 acre-ft. Figures of daily discharge do not include diversion from Beaver Run Reservoir to plants and communities downstream, nor into the Monongahela River Basin. Evaporation from operation of Homer City and Conemaugh generating stations, which began during 1969 and 1970, respectively, can amount to as much as 45 ft³/s. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of March 18, 1936 reached a stage of 41.64 ft, from floodmark at present site, discharge, about 185,000 ft³/s.

						DAILY MI	EAN VALUE	S				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	518	210	780	e704	2970	2930	13000	4120	2000	1460	555	267
2	244	213	1380	e662	3150	2710	11200	3480	2130	1060	567	268
3	205	225	1400	e659	3410	2320	8400	3730	2420	1040	565	270
4	204	214	1040	e651	3160	2470	5640	7530	1910	984	518	275
5	202	213	879	e655	2350	2850	4930	7230	1530	697	310	270
6	206	508	556	e739	1520	2810	3940	7070	2220	692	301	261
7	511	562	550	1090	1510	2610	3780	6190	2950	688	513	255
8	530	558	554	950	1500	1990	2690	4660	3860	629	543	254
9	486	555	574	865	1480	1880	2160	4030	3660	591	543	254
10	226	541	622	668	1480	1780	2010	5320	5200	578	536	256
11	180	227	736	754	1940	1860	1910	8920	4800	551	524	257
12	181	177	608	1110	3210	1730	1910	9610	3440	597	528	255
13	190	172	622	2450	4240	1540	1720	8510	2450	604	533	255
14	185	178	625	2970	4160	1400	1660	6390	2520	582	307	218
15	191	188	629	2940	3880	879	2100	6410	4310	534	278	209
16	468	189	628	2570	3520	2130	2700	8940	5840	674	278	212
17	507	191	932	2020	2750	3030	4360	10400	6250	674	289	200
18	502	191	1690	1780	2350	4250	5410	11700	5420	563	277	200
19	500	193	3560	1310	1840	4350	6120	11300	4060	579	278	199
20	497	495	4210	1020	1830	5000	5310	11600	4270	557	289	197
21	503	524	3980	1030	1700	5680	3350	13700	2980	546	283	237
22	236	522	3530	1050	686	7660	2840	13200	1070	542	292	266
23	198	520	2770	1180	655	9190	3750	12700	1000	553	310	263
24	264	504	2420	1270	647	8970	3730	10400	928	480	347	263
25	225	287	1930	1780	811	8840	3510	5580	940	323	543	264
26 27 28 29 30 31	571 604 593 588 575 252	271 922 1530 1550 863	1780 1310 e1120 e949 e861 e777	3510 4040 3550 2830 2700 2440	1660 2190 2920 	9910 6210 6280 11200 14800 14000	2870 2630 2360 3270 4860	3940 3140 2870 2750 2650 2390	922 1260 1260 1680 1670	319 357 380 495 492 334	550 568 567 563 515 297	282 706 874 1730 1660
TOTAL	11342	13493	44002	51947	63519	153259	124120	220460	84950	19155	13367	11377
MEAN	366	450	1419	1676	2269	4944	4137	7112	2832	618	431	379
MAX	604	1550	4210	4040	4240	14800	13000	13700	6250	1460	568	1730
MIN	180	172	550	651	647	879	1660	2390	922	319	277	197
CFSM	0.20	0.25	0.78	0.92	1.24	2.71	2.27	3.90	1.55	0.34	0.24	0.21
IN.	0.23	0.28	0.90	1.06	1.29	3.12	2.53	4.49	1.73	0.39	0.27	0.23
STATIS	rics of M	ONTHLY ME	AN DATA	FOR WATER	YEARS 193	88 - 2002,	BY WATER	YEAR (WY)				
MEAN	1290	1951	3332	3668	4691	6413	5663	3727	2448	1496	1129	1007
MAX	6429	7570	9057	8454	10140	12400	12550	7245	8262	5469	4138	4629
(WY)	1955	1998	1973	1991	1956	1945	1993	1978	1972	1977	1958	1996
MIN	255	307	426	847	1724	1802	1727	1127	568	378	363	297
(WY)	1964	1954	1999	1956	1958	1969	1946	1941	1999	1965	1939	1939

03048500 KISKIMINETAS RIVER AT VANDERGRIFT, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YE	AR FOR 2002 WATE	R YEAR WATE	R YEARS 1938 - 2002
ANNUAL TOTAL	752985	810991		
ANNUAL MEAN	2063	2222	3	059
HIGHEST ANNUAL MEAN			4	518 1951
LOWEST ANNUAL MEAN			1	777 1954
HIGHEST DAILY MEAN	15500 Apr	18,19 14800	Mar 30 60	400 Mar 31 1940
LOWEST DAILY MEAN	172 Nov	13 172	Nov 13	60 Oct 15 1952
ANNUAL SEVEN-DAY MINIMUM	184 Nov	12 184	Nov 12	145 Nov 1 1952
MAXIMUM PEAK FLOW		15000	Mar 29 a 71	900 Mar 31 1940
MAXIMUM PEAK STAGE		11.82	Mar 29	25.70 Mar 31 1940
INSTANTANEOUS LOW FLOW				60 Oct 15 1952
ANNUAL RUNOFF (CFSM)	1.13	1.22		1.68
ANNUAL RUNOFF (INCHES)	15.35	16.53		22.77
10 PERCENT EXCEEDS	6430	5600	7.	100
50 PERCENT EXCEEDS	950	1020	1	800
90 PERCENT EXCEEDS	212	249		485

a From rating curve extended above 61,000 ft³/s.

BUFFALO CREEK BASIN

03049000 BUFFALO CREEK NEAR FREEPORT, PA

LOCATION.--Lat 40°42'57", long 79°41'59", Butler County, Hydrologic Unit 05010009, on right bank 0.6 mi upstream from Little Buffalo Creek, 1.6 mi downstream of bridge on SR 3023, and 3 mi north of Freeport.

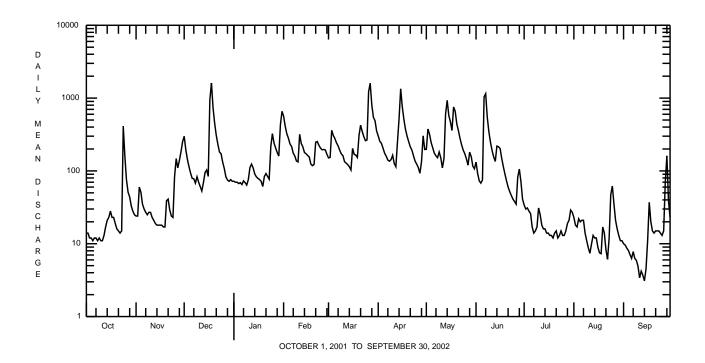
DRAINAGE AREA.--137 mi².

PERIOD OF RECORD.--October 1940 to current year. Monthly discharge only for October 1940, published in WSP 1305.

GAGE.--Water-stage recorder. Elevation of gage is 792 ft above National Geodetic Vertical Datum of 1929, by barometer. Prior to July 19, 1962, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 2,000 ft³/s and maximum (*):


Date		Time	Discharge ft ³ /s	Gage Heig (ft)	ght		D	Date	Time	Discharge ft ³ /s	Gage Hei	ight
Dec. Mar.	17	2000 2130	2,170 *3,020	4.96 *5.91			Jui	ne 6	1830	2,130	4.91	
			•	GE, CUBIC FE	ET PER SI		ΓER YEAR C AN VALUES		001 TO SEP	TEMBER 2002		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	14 14 12 12 11	24 24 60 51 35	299 197 144 114 93	e72 e70 70 67 69	564 411 324 281 234	151 153 361 307 277	302 255 239 205 175	198 376 319 245 207	132 92 73 68 75	34 30 e31 e28 e26	23 18 17 22 20	10 9.6 8.7 8.1 7.1
6 7 8 9 10	12 12 11 12 11	30 27 25 27 27	79 78 68 83 70	65 73 69 64 76	216 175 160 137 133	242 220 192 171 162	159 141 136 143 164	175 161 152 182 152	1040 1150 546 345 247	e17 e14 e15 17 31	21 21 14 11 8.8	6.3 7.8 6.3 5.9 4.9
11 12 13 14 15	11 13 17 21 23	23 21 19 18 18	61 53 69 95 103	111 124 110 91 83	318 238 214 179 172	134 128 122 114 103	126 114 249 523 1340	e110 e147 e605 e931 579	191 156 135 219 215	25 18 16 16 14	7.4 9.9 13 12 12	3.4 4.2 3.7 3.1 4.5
16 17 18 19 20	28 23 23 19 16	18 18 17 17 39	84 949 1610 735 451	79 76 72 61 84	163 155 124 118 123	204 169 165 153 304	759 511 373 300 252	e473 e360 e756 e658 e442	203 149 115 91 73	14 13 13 12 14	8.9 7.5 7.3 17 14	11 37 20 15 14
21 22 23 24 25	15 14 15 411 160	41 29 24 23 83	308 232 e182 e172 e132	92 84 77 215 324	248 253 225 206 195	425 349 296 260 266	214 193 161 136 124	358 280 228 193 172	60 52 46 41 38	15 12 13 15	8.3 6.1 12 47 62	15 15 15 14 13
26 27 28 29 30 31	76 51 44 33 28 25	147 110 139 183 251	e108 e83 e75 e72 e76 e72	243 207 179 160 429 658	197 194 169 	1220 1600 803 546 489 353	111 93 134 303 197	146 120 181 157 116 107	35 82 106 71 41	13 15 19 21 29 27	35 21 16 13 11	15 69 161 39 23
TOTAL MEAN MAX MIN CFSM IN.	1187 38.3 411 11 0.28 0.32	1568 52.3 251 17 0.38 0.43	6947 224 1610 53 1.64 1.89	4254 137 658 61 1.00 1.16	6126 219 564 118 1.60 1.66	10439 337 1600 103 2.46 2.83	8132 271 1340 93 1.98 2.21	9286 300 931 107 2.19 2.52	5887 196 1150 35 1.43 1.60	590 19.0 34 12 0.14 0.16	527.2 17.0 62 6.1 0.12 0.14	569.6 19.0 161 3.1 0.14 0.15
STATIST	CICS OF	MONTHLY M	EAN DATA F	OR WATER YE	EARS 194	1 - 2002,	BY WATER	YEAR (WY	?)			
MEAN MAX (WY) MIN (WY)	69.1 571 1955 3.63 1961	134 720 1986 5.61 1961	240 625 1991 7.15 1961	254 821 1952 29.3 1977	315 861 1956 70.7 1993	398 964 1945 49.2 1969	317 704 1957 84.9 1946	219 525 1952 44.7 1941	133 732 1972 20.8 1991	80.5 522 1990 7.75 1966	63.0 511 1984 4.92 1957	53.8 287 1975 5.82 1946

BUFFALO CREEK BASIN

03049000 BUFFALO CREEK NEAR FREEPORT, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1941 - 2002
ANNUAL TOTAL	51232.6	55512.8	
ANNUAL MEAN	140	152	189
HIGHEST ANNUAL MEAN			312 1956
LOWEST ANNUAL MEAN			122 1999
HIGHEST DAILY MEAN	1650 Mar 22	1610 Dec 18	7710 Jun 23 1972
LOWEST DAILY MEAN	8.6 Sep 12	3.1 Sep 14	1.3 Oct 16 1960
ANNUAL SEVEN-DAY MINIMUM	9.7 Sep 7	4.2 Sep 9	1.7 Oct 13 1960
MAXIMUM PEAK FLOW		3020 Mar 26	a 14000 Oct 15 1954
MAXIMUM PEAK STAGE		5.91 Mar 26	b 13.60 Oct 15 1954
INSTANTANEOUS LOW FLOW		1.3 Sep 15	1.3 Oct 16 1960 c
ANNUAL RUNOFF (CFSM)	1.02	1.11	1.38
ANNUAL RUNOFF (INCHES)	13.91	15.07	18.74
10 PERCENT EXCEEDS	377	347	452
50 PERCENT EXCEEDS	63	82	92
90 PERCENT EXCEEDS	13	12	12

<sup>a From rating curve extended above 4,300 ft³/s on basis of slope-area measurement of peak flow.
b From floodmarks.
c Also Sept. 15, 2002, minimum observed.</sup>

03049500 ALLEGHENY RIVER AT NATRONA, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°36'55", long 79°43'07", Allegheny County, Hydrologic Unit 05010009, on right bank 520 ft upstream from dam at lock 4 at Natrona, 5.8 mi downstream from Kiskiminetas River, at mile 24.3.

DRAINAGE AREA.--11,410 mi², approximately.

WATER-DISCHARGE RECORDS

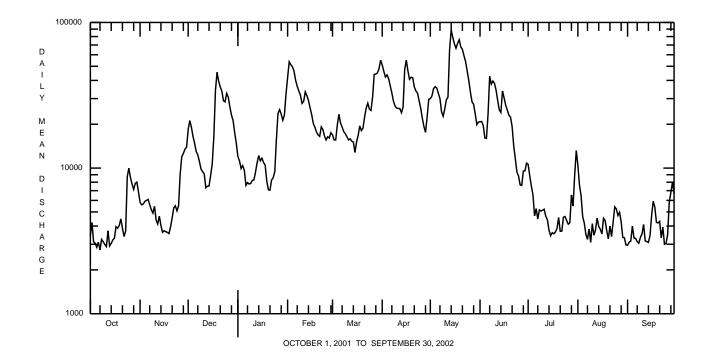
PERIOD OF RECORD.--October 1938 to current year.

REVISED RECORDS.--WSP 1435: 1939.

GAGE.--Water-stage recorder and concrete dam control. Datum of gage is 736.36 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). Prior to Apr. 14, 1940, nonrecording gage and Apr. 15, 1940 to Oct. 22, 1990, water-stage recorder at same site at datum 0.75 ft higher.

REMARKS.—Records good except those for estimated daily discharges and those below 2,000 ft³/s, which are poor. Sharp rises and drops in discharge during periods of low flow may be caused by hydroelectric power production. Flow regulated since 1924 by Piney Reservoir, since May 1940 by Crooked Creek Lake, since December 1940 by Tionesta Lake, since June 1941 by Mahoning Creek Lake, since June 1942 by Loyalhanna Lake, since November 1949 by Chautauqua Lake (station 03013946), since November 1951 by Conemaugh River Lake, since June 1952 by East Branch Clarion River Lake (station 03027000), since October 1965 by Allegheny Reservoir (station 03012520), since July 1970 by Union City Reservoir (station 03021518), since January 1974 by Woodcock Creek Lake (station 03022550). Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 18, 1936 reached a stage of 32.06 ft, discharge, 365,000 ft³/s, determined by U.S. Army Corps of Engineers.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

						DAILY M	IEAN VALU	ES				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3430	5820	18400	12000	41900	16900	51100	e30000	20800	10600	10500	2950
2	4230	5590	21200	11200	53700	15600	46200	31300	20900	8840	7660	3100
3	3120	5670	19100	9920	51300	15600	42200	35100	19600	7510	6480	3150
4	3050	5910	16500	10400	49600	19800	43600	36200	16100	6550	4650	4000
5	2860	6000	14800	9670	46300	23400	41100	35500	16000	4700	4190	3310
6	3100	6090	13000	7610	40100	20400	36700	32600	23500	5270	3510	3290
7	2740	5610	12300	7950	36400	19100	32800	30000	42800	4470	3240	3130
8	3240	5180	11100	7770	33800	17800	28800	24300	37700	5160	3820	3050
9	3120	4910	9850	7850	31700	17200	26700	22700	39600	5070	3090	3340
10	2990	5460	9440	8220	27800	16400	25800	25500	38200	5140	4150	3530
11	2890	4400	9130	8300	28700	15600	25700	29500	34300	5220	3460	4100
12	3710	4130	7330	9400	33400	15900	25600	30700	29100	4660	3760	3160
13	2920	4680	7510	10900	31500	15300	24000	64800	25100	4420	4540	3130
14	3040	4040	7530	12200	29100	15100	26200	88600	24100	3740	3980	3090
15	3210	3620	8890	e11200	26000	12800	47300	79100	33800	3430	3800	3450
16	3310	3710	10700	11700	23300	15100	55200	71400	30300	3600	3530	4740
17	3960	3660	16500	e10900	20300	16800	46600	66500	27000	3540	4530	5930
18	3870	3620	34100	10500	19100	19500	40700	71800	25000	3640	4370	5380
19	4030	3550	45500	8180	17700	18100	42000	76100	23100	3850	3710	4240
20	4480	3940	39500	7090	16900	18800	41800	68000	22400	4580	3270	4200
21	3870	4540	36100	7060	16500	22400	36100	65300	19300	3680	4000	4310
22	3390	5330	33700	8280	19200	25800	33800	59000	14200	3690	3390	3320
23	3690	5510	29000	8580	18400	27900	32800	53800	11600	4600	4260	3940
24	8710	5090	28500	9450	16600	25400	29000	46200	9370	4650	5420	3000
25	10000	5500	32600	15700	15600	24900	25800	39900	8830	4370	5240	3040
26 27 28 29 30 31	8610 7760 7140 7850 8010 6860	9100 12000 12600 13500 13900	30700 26300 23100 21200 17500 14800	23700 25200 23500 21300 23100 32300	16400 16100 17500 	30800 44000 44200 45000 48100 55000	22000 19300 17600 22400 29600	33200 28500 27400 23500 19900 20700	7670 7610 9530 9570 10800	4120 4220 6540 5480 8890 13200	4720 4970 4270 3350 3320 2970	3510 5840 6810 8010 6700
TOTAL	143190	182660	625880	391130	794900	738700	1018500	1367100	657880	167430	136150	122750
MEAN	4619	6089	20190	12620	28390	23830	33950	44100	21930	5401	4392	4092
MAX	10000	13900	45500	32300	53700	55000	55200	88600	42800	13200	10500	8010
MIN	2740	3550	7330	7060	15600	12800	17600	19900	7610	3430	2970	2950
CFSM	0.40	0.53	1.77	1.11	2.49	2.09	2.98	3.87	1.92	0.47	0.38	0.36
IN.	0.47	0.60	2.04	1.28	2.59	2.41	3.32	4.46	2.14	0.55	0.44	0.40
STATIS	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	39 - 2002	, BY WATE	R YEAR (W	Y)			
MEAN	9626	16250	23760	24340	27380	37990	35530	22920	14660	8901	6577	6770
MAX	34470	45220	48690	68600	53390	87030	83780	48400	45820	34630	23020	22690
(WY)	1991	1986	1978	1952	1976	1945	1940	1943	1989	1972	1956	1990
MIN	1227	2686	2316	4520	7167	10410	9000	6129	3759	1944	1786	1444
(WY)	1964	1954	1961	1961	1963	1969	1946	1941	1991	1966	1962	1939

03049500 ALLEGHENY RIVER AT NATRONA, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1939 - 2002
ANNUAL TOTAL	4734010	6346270	
ANNUAL MEAN	12970	17390	19510
HIGHEST ANNUAL MEAN			27810 1956
LOWEST ANNUAL MEAN			12680 1999
HIGHEST DAILY MEAN	55200 Apr 17	88600 May 14	206000 Dec 31 1942
LOWEST DAILY MEAN	2140 Sep 10	2740 Oct 7	949 Oct 26 1963
ANNUAL SEVEN-DAY MINIMUM	2620 Sep 7	2990 Oct 5	1030 Oct 25 1963
MAXIMUM PEAK FLOW		90500 May 14	a 238000 Dec 30 1942
MAXIMUM PEAK STAGE		17.68 May 14	b 27.46 Dec 30 1942
INSTANTANEOUS LOW FLOW		2740 Oct 7	985 Oct 22 1963
ANNUAL RUNOFF (CFSM)	1.14	1.52	1.71
ANNUAL RUNOFF (INCHES)	15.43	20.69	23.24
10 PERCENT EXCEEDS	32800	40000	44800
50 PERCENT EXCEEDS	7900	11100	13000
90 PERCENT EXCEEDS	3270	3430	3170

<sup>a From rating curve extended above 172,000 ft³/s.
b Datum then in use.</sup>

03049500 ALLEGHENY RIVER AT NATRONA, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
APR 2002	1100	0010	05440	4.0				10.0	100			2.5	
10 JUN	1130	9813	26440	40	7.0	7.5	191	10.0	100	28.2	7.2	36	<.2
05 AUG	1030	9813	17250	40	9.8	7.7	258	22.6	87	23.9	6.5	32	<.2
01	0945	9813	10280	40	7.5	7.6	284	25.0	110	29.7	8.8	42	<.2
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	CYANIDE AMEN- ABLE TO CHLOR- INATION UNFLTRD (MG/L) (00722)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)
APR 2002 10	79.9	210	12	.100	.81	<.040	1.1	.04	.040	2.1	<10	<1.00	960
JUN 05 AUG	54.0	174	4	<.020	.39	<.040	.66	<.01	.020	2.6	<10	<1.00	500
01	71.8	198	6	<.020	.32	<.040	.55	.01	.020	2.4	<10	1.48	190
					LEAD, TOTAL RECOV	- RECOV	NICKEI TOTAI - RECOV	TOTAL TOTAL	L V-				

			MANGA-			
		LEAD,	NESE,	NICKEL,	ZINC,	
		TOTAL	TOTAL	TOTAL	TOTAL	
		RECOV-	RECOV-	RECOV-	RECOV-	
		ERABLE	ERABLE	ERABLE	ERABLE	PHENOLS
	Date	(µG/L	(µG/L	(µG/L	(µG/L	TOTAL
	AS PB)		AS MN)	AS NI)	AS ZN)	(µG/L)
		(01051)	(01055)	(01067)	(01092)	(32730)
	APR 2002					
	10	1.5	170	<50	20	<5
	JUN					_
	05	<1.0	220	<50	<10	<5
	AUG					
	01	<1.0	100	<50	10	<5

PINE CREEK BASIN

03049800 LITTLE PINE CREEK NEAR ETNA, PA

LOCATION.--Lat 40°31'13", long 79°56'18", Allegheny County, Hydrologic Unit 05010009, on right bank at downstream side of highway bridge on Saxonburg Boulevard, 0.7 mi upstream from mouth, and 1.5 mi northeast of Etna.

DRAINAGE AREA.--5.78 mi².

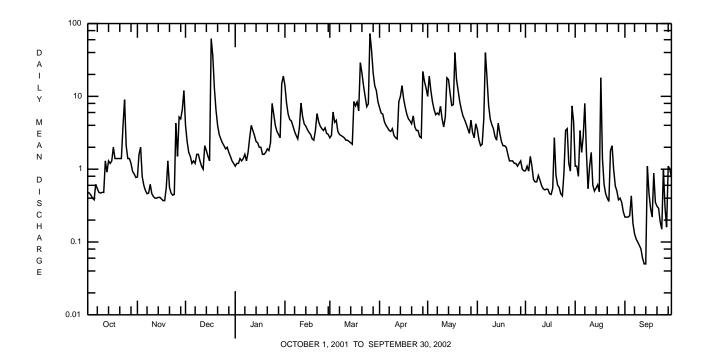
PERIOD OF RECORD.--October 1962 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 774.26 ft above National Geodetic Vertical Datum of 1929. Prior ot Oct. 1, 1986 at datum 3.00 ft higher. Sept. 30, 1987 datum lowered 1.00 ft.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 150 ft³/s and maximum (*):

Date Mar.		Time 1130	Discharge ft ³ /s *164	Gage Height (ft) *3.63			Date No other		ime	Discharge ft ³ /s than base	Gage Height (ft) discharge.	
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OC'	r no	V DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	0.4 0.4 0.4 0.4	7 1.6 4 2.0 0 0.7	2.4 1.7 9 1.5	e1.1 e1.2 e1.2 1.4 1.3	14 8.1 5.7 4.8 4.6	2.7 2.9 6.1 4.4 4.7	7.0 5.9 5.7 4.5 4.0	10 19 12 8.4 6.6	3.5 2.5 2.1 2.2 4.9	0.95 1.1 0.94 1.5 1.1	e1.1 e1.1 e0.80 e3.4 e1.7	0.22 0.22 0.22 0.23 0.43
6 7 8 9 10	0.6: 0.5: 0.4: 0.4:	4 0.4 8 0.4 7 0.6	6 1.2 7 1.6 2 1.6	1.4 1.6 1.3 1.7 2.7	3.9 3.3 2.9 2.6 3.7	3.3 3.0 2.9 2.8 2.7	3.7 3.4 3.3 3.6 2.9	5.6 5.9 5.6 7.3 4.9	40 18 7.6 4.9 4.1	0.72 0.67 0.67 0.82 0.71	e2.8 e8.0 e1.7 e0.54 e1.1	0.18 0.13 0.11 0.10 0.09
11 12 13 14 15	0.49 1.3 0.99 1.3	0.4	0 1.0 0 2.1 1 1.8	4.0 3.4 2.9 2.4 2.3	8.1 5.3 4.2 3.9 3.5	2.5 2.5 2.4 2.3 2.2	2.7 2.6 8.4 10	3.8 5.2 18 17 11	3.6 2.8 2.5 4.3 3.1	0.60 0.54 0.52 0.53 0.53	e1.7 e0.60 e0.50 e0.55 0.61	0.08 0.06 0.05 0.05
16 17 18 19 20	1.3 2.0 1.4 1.4	0.3 0.3 0.3 0.5 1.3	7 62 7 36	2.0 2.0 1.6 1.6	3.2 3.0 2.6 2.5 3.4	8.5 7.4 8.4 6.3	9.3 7.1 5.7 4.9 4.6	7.5 7.7 40 17 12	2.4 2.1 2.1 2.0 1.6	0.46 0.45 0.55 2.7 0.83	0.49 18 1.4 0.62 0.46	0.47 0.29 0.22 0.88 0.35
21 22 23 24 25	1.4 1.4 3.9 9.0 2.1	0.5 0.4 0.4 0.4	7 3.0 4 e2.6	1.9 1.8 2.3 8.0 5.7	5.8 4.5 3.9 3.6 3.4	21 14 10 7.2 7.9	4.2 5.4 3.8 3.4 3.4	8.5 6.6 5.4 4.8 4.2	1.3 1.3 1.3 1.2	0.61 0.56 0.46 0.43 0.90	0.40 0.36 1.8 2.1 0.98	0.31 0.29 0.19 0.15 1.0
26 27 28 29 30 31	1.4 1.4 1.2 0.9 0.8 0.7	6 12	e1.3	4.0 3.3 3.0 2.7 15	3.7 3.1 3.0 	73 43 21 14 12 8.4	2.8 2.7 22 16 13	3.6 3.1 4.7 3.2 2.7 4.2	1.1 1.2 1.3 1.0 0.95	3.4 3.6 1.2 0.94 e7.4 e4.5	0.59 0.50 0.38 0.40 0.35 0.26	0.30 0.16 1.1 1.0 0.77
TOTAL MEAN MAX MIN CFSM IN.	41.8 1.3 9.0 0.3 0.2 0.2	5 1.6 0 1 8 0.3 3 0.2	6 5.41 2 62 7 1.0 9 0.94	105.5 3.40 19 1.1 0.59 0.68	124.3 4.44 14 2.5 0.77 0.80	338.5 10.9 73 2.2 1.89 2.18	190.0 6.33 22 2.6 1.10 1.22	275.5 8.89 40 2.7 1.54 1.77	128.15 4.27 40 0.95 0.74 0.82	1.32 7.4 0.43 0.23	55.29 1.78 18 0.26 0.31 0.36	10.75 0.36 1.1 0.05 0.06 0.07
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1963 - 2002, BY WATER YEAR (WY)												
MEAN MAX (WY) MIN (WY)	1.93 8.53 198 0.01 196	5 25. 0 198 0 0.5	4 26.4 6 1987 1 0.69	7.32 22.4 1965 0.82 1977	9.47 21.0 1966 2.17 1980	13.1 32.4 1994 1.30 1969	10.4 23.8 1987 2.33 1971	8.13 26.1 1968 1.74 1965	4.14 17.8 1972 0.42 1965	26.4 1990 0.016	1.61 6.92 1980 0.10 1965	1.50 10.4 1990 0.040 1963


e Estimated.

PINE CREEK BASIN

03049800 LITTLE PINE CREEK NEAR ETNA, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1963 - 2002
ANNUAL TOTAL	1439.76	1528.13	
ANNUAL MEAN	3.94	4.19	6.07
HIGHEST ANNUAL MEAN			10.8 1987
LOWEST ANNUAL MEAN			2.68 1969
HIGHEST DAILY MEAN	65 Jan 31	73 Mar 26	525 May 30 1986
LOWEST DAILY MEAN	0.17 Aug 7	0.05 Sep 13,14	0.00 Jul 13 1963
ANNUAL SEVEN-DAY MINIMUM	0.30 Jul 18	0.08 Sep 8	0.00 Aug 26 1963
MAXIMUM PEAK FLOW		164 Mar 26	a 7190 May 30 1986
MAXIMUM PEAK STAGE		3.63 Mar 26	b 10.28 May 30 1986
INSTANTANEOUS LOW FLOW		0.04 Sep 15	0.00 Aug 30 1991
ANNUAL RUNOFF (CFSM)	0.68	0.72	1.05
ANNUAL RUNOFF (INCHES)	9.27	9.84	14.28
10 PERCENT EXCEEDS	9.8	8.5	15
50 PERCENT EXCEEDS	1.4	2.1	2.6
90 PERCENT EXCEEDS	0.37	0.41	0.31

 $[\]begin{array}{l} \textbf{a} \ \ \text{From rating curve extended above 2,000 ft}^3/s \ \text{on basis of slope-area measurement of peak flow at site 0.6 mi downstream.} \\ \textbf{b} \ \ \text{Gage height 10.41 ft, from outside floodmark, datum then in use.} \end{array}$

MONONGAHELA RIVER BASIN

03072000 DUNKARD CREEK AT SHANNOPIN, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 39°45'33", long 79°58'15", Greene County, Hydrologic Unit 05020005, on left bank 1,300 ft upstream from highway bridge at mine buildings at Shannopin, 1.2 mi north of Dunkard, 3.5 mi upstream from mouth, and 4 mi southwest of Greensboro.

DRAINAGE AREA.--229 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1940 to current year. Prior to December 1940 monthly discharge only, published in WSP 1305.

REVISED RECORDS.--WSP 1505: 1955.

Discharge

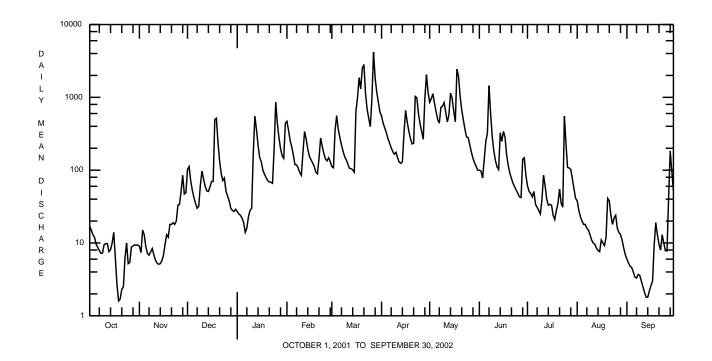
GAGE.--Water-stage recorder. Datum of gage is 806.25 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation at low flow by mine pumpage above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

Discharge

Gage Height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 4,000 ft³/s and maximum (*):


Gage Height

Date	. Т	Di Γime	ischarge ft ³ /s	Gage Height (ft)			Date	Time	Dis	charge ft ³ /s	Gage Height (ft)	
Mar.			5,070	9.10			May 1			,160	8.54	
Mar.	27 0	400 *	6,720	*9.96			_					
DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	17 15 13 12 9.7	9.0 7.4 15 13 8.9	102 112 71 53 42	e27 e25 24 22 e19	469 351 255 208 161	112 108 349 560 363	556 441 379 327 270	856 957 1120 833 638	100 97 78 137 248	61 51 48 43 51	38 28 23 20 18	6.0 5.3 4.8 4.6 4.0
6 7 8 9 10	8.7 7.9 7.2 7.3 9.5	7.2 6.8 7.5 8.4 6.9	35 30 32 62 97	e14 e16 e23 28 30	119 118 107 93 85	281 222 182 153 139	237 202 180 166 176	496 442 727 755 847	321 1450 602 291 184	34 31 28 25 39	18 16 15 13 11	3.4 3.3 3.7 3.6 3.0
11 12 13 14 15	9.8 9.8 7.6 8.1	5.8 5.3 5.1 5.2 5.7	76 60 52 51 59	170 550 360 220 150	178 340 267 194 155	121 106 105 101 94	148 129 124 131 325	627 459 572 1140 976	136 111 102 326 249	85 61 40 33 34	10 9.6 8.5 7.9 7.6	2.5 2.1 1.8 1.8 2.2
16 17 18 19 20	14 6.2 2.7 1.6 1.7	6.8 9.6 13 12 18	70 70 494 516 240	130 100 88 79 72	139 126 113 94 89	642 988 1860 1310 2500	662 461 343 273 230	646 463 2440 1940 1030	341 284 161 116 91	33 24 21 28 35	11 10 9.2 12 41	2.6 3.0 9.4 19
21 22 23 24 25	2.3 2.5 6.2 10 5.2	18 19 18 20 33	134 90 72 78 e51	69 68 66 194 863	144 277 213 170 143	2830 1130 688 513 396	233 1030 988 600 438	670 491 363 287 280	77 66 59 53 48	55 35 31 554 232	38 24 18 22 24	9.6 8.0 13 10 7.8
26 27 28 29 30 31	5.4 8.8 9.1 9.4 9.3	34 51 85 47 49	e44 e38 e30 e28 e27 e29	446 281 199 157 145 441	134 148 131 	968 4170 1840 1180 857 628	340 266 971 2050 1170	224 177 146 126 112 100	43 42 141 148 85	109 107 102 76 55 41	16 14 13 11 8.5 6.9	7.8 41 184 96 52
TOTAL MEAN MAX MIN CFSM IN.	256.4 8.27 17 1.6 0.04 0.04	550.6 18.4 85 5.1 0.08 0.09	2945 95.0 516 27 0.41 0.48	5076 164 863 14 0.72 0.82	5021 179 469 85 0.78 0.82	25496 822 4170 94 3.59 4.14	13846 462 2050 124 2.02 2.25	20940 675 2440 100 2.95 3.40	6187 206 1450 42 0.90 1.01	2202 71.0 554 21 0.31 0.36	522.2 16.8 41 6.9 0.07 0.08	528.3 17.6 184 1.8 0.08 0.09
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1941 - 2002, BY WATER YEAR (WY)												
MEAN MAX (WY) MIN (WY)	68.1 381 1955 1.73 1952	156 1149 1986 2.44 1954	323 1071 1991 7.46 1954	419 1050 1994 26.5 1967	505 1100 1956 63.5 1954	625 1475 1994 112 1987	467 1033 1948 80.9 1971	327 903 1968 57.4 1986	178 877 1981 10.2 1966	89.2 461 1996 4.62 1962	76.5 890 1980 2.45 1962	70.8 573 1975 2.38 1999

03072000 DUNKARD CREEK AT SHANNOPIN, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1941 - 2002
ANNUAL TOTAL	67906.9	83570.5	
ANNUAL MEAN	186	229	275
HIGHEST ANNUAL MEAN			462 1994
LOWEST ANNUAL MEAN			104 1954
HIGHEST DAILY MEAN	2500 Jan 31	4170 Mar 27	11200 Mar 5 1963
LOWEST DAILY MEAN	1.6 Oct 19	1.6 Oct 19	0.50 Aug 27 1944
ANNUAL SEVEN-DAY MINIMUM	3.3 Oct 17	2.3 Sep 10	0.73 Aug 25 1944
MAXIMUM PEAK FLOW		6720 Mar 27	a 17600 Aug 18 1980
MAXIMUM PEAK STAGE		9.96 Mar 27	14.27 Aug 18 1980
INSTANTANEOUS LOW FLOW		1.6 Sep 14	0.40 Aug 28 1944
ANNUAL RUNOFF (CFSM)	0.81	1.000	1.20
ANNUAL RUNOFF (INCHES)	11.03	13.58	16.31
10 PERCENT EXCEEDS	498	632	678
50 PERCENT EXCEEDS	76	72	96
90 PERCENT EXCEEDS	9.7	7.2	7.9

a From rating curve extended above $16,000 \text{ ft}^3/\text{s}$.

03072000 DUNKARD CREEK AT SHANNOPIN, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)
APR 2002													
15 JUN	0900	9813	181	40	6.7	7.4	560	551	15.7	200	54.5	14.3	88
17	0915	9813	302	40	9.2	7.4	610	548	18.0	160	43.9	11.8	88
AUG 08	0900	9813	15	40	7.5	7.0	884	898	20.2	280	78.2	20.5	70
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
APR 2002 15	149	434	14	<.020	<.04	<.040	.20	.01	.020	2.4	<10	1550	<1.0
JUN													
17 AUG	144	398	20	<.020	.39	<.040	.65	.07	.040	3.0	<10	1370	<1.0
08	352	662	10	<.020	.06	< .040	.34	<.01	<.010	2.5	<10	610	<1.0

Date	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)
APR 2002 15 JUN	180	<50	<10
17 AUG	110	<50	20
08	360	< 50	20

03072655 MONONGAHELA RIVER NEAR MASONTOWN, PA

LOCATION.--Lat 39°49'30", long 79°55'23", Greene County, Hydrologic Unit 05020005, on left bank, 84 ft upstream from Lock and Dam at Grays Landing, 0.9 mi upstream from Masontown, 1.2 mi upstream from Whitley Creek, 5.3 mi downstream from Dunkard Creek, 7.6 mi downstream from Cheat River, at mile 81.9.

DRAINAGE AREA.--4,440 mi².

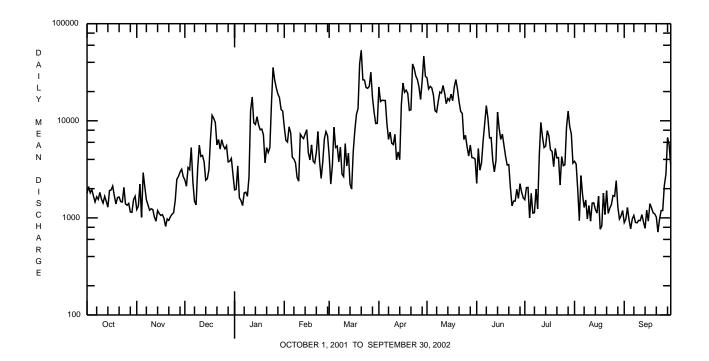
PERIOD OF RECORD.—October 1938 to current year. Published as "at Greensboro" (Station 03072500) October 1938 to September 1995. Prior to January 1939 monthly discharge only, published in WSP 1305.

REVISED RECORDS.--WSP 1113: 1939 (M), 1941 (M), WSP 1435: 1939. WSP 1907: 1936 (M), 1955 (M).

GAGE.--Water-stage recorder and concrete dam control. Datum of gage is 769.00 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). Prior to Nov. 9, 1990, at datum 1.45 ft lower.

REMARKS.--No estimated daily discharges. Records good above 5,000 ft³/s, fair below, except those below 1,000 ft³/s, which are poor. Flow regulated since 1926 by Lake Lynn 11 mi upstream, since May 1938 by Tygart Lake (station 03055500) 69 mi upstream, and since April 1989 by Stonewall Jackson Lake 120.6 mi upstream, combined capacity, 432,000 acre-ft. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 1888 reached a stage of about 36 ft, from high-water profile by U.S. Army Corps of Engineers. Flood of Mar. 18, 1936, reached a stage of 28.4 ft, discharge, 130,000 ft³/s.


	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1790	1220	2460	1940	8640	4350	22300	27700	2260	1540	3830	894
2	2100	1320	2120	1970	6300	2230	15800	21300	5190	2050	3590	974
3	1810	2230	3300	3430	6040	3510	16300	22600	3100	2060	1960	1280
4	1950	1010	3140	1610	8670	8590	16200	21800	3690	998	936	953
5	1680	2920	5310	1510	7490	5310	16200	18400	6230	1790	2730	771
6	1460	2110	2360	1340	4220	5480	9400	12700	9470	1120	1740	974
7	1650	1540	1490	1810	4030	3780	6440	12300	14300	1130	1280	1060
8	1550	1360	1360	1840	3690	5340	7640	15800	10600	1980	1530	897
9	1830	1200	3250	1670	2600	2820	5870	19800	6650	1240	978	890
10	1560	1240	5610	2640	2390	2660	5690	19300	6700	4330	1340	943
11	1420	1220	4290	12800	7280	5820	7250	23100	3930	9620	925	937
12	1670	1020	4390	17600	6830	3430	3970	19300	2980	6860	1420	1080
13	1480	924	3790	9520	6550	4630	4780	15000	3890	5300	1430	908
14	1290	1190	2440	9170	7320	2220	3980	17000	12300	5490	1220	781
15	1910	1110	2530	11000	8100	1980	14600	16100	8360	7930	1120	1200
16	1940	1060	3110	9050	4690	4820	24500	18800	6430	6990	1670	926
17	2130	1080	6620	8090	3950	7960	19700	16100	7280	5020	764	1400
18	1700	986	11400	8210	5650	11600	20700	22200	5580	4840	824	1270
19	1390	816	10600	7150	3840	13400	19200	26600	4300	3370	1800	1130
20	1620	976	9590	3700	3670	38800	12800	21200	3500	5200	1080	1100
21	1640	942	5650	5300	4730	53200	13000	15700	3540	4140	1910	1020
22	1470	1030	6410	4710	7760	26400	38500	12500	2070	4170	1110	714
23	1460	1090	5110	5290	3840	26300	34600	11900	1330	2180	1260	963
24	2060	1130	6390	15000	2550	22000	29000	6420	1490	4290	1370	1190
25	1390	1510	5530	35400	3770	21600	26600	7090	1490	3450	1700	1190
26 27 28 29 30 31	1350 1410 1150 1140 1540 1670	2500 2670 2960 3170 2660	5140 5530 3770 3830 4100 2810	26400 21900 18900 17300 13100 12600	6530 7740 7010 	22600 31600 17400 12300 9380 9410	22300 16600 25800 46500 28700	5400 4330 5630 4180 4150 4040	1970 1590 2250 1840 1610	3520 8550 12600 8730 7330 3660	1670 2420 1300 974 1050 1190	2160 2820 6740 5620 3450
TOTAL	50210	46194	143430	291950	155880	390920	534920	468440	145920	141478	48121	46235
MEAN	1620	1540	4627	9418	5567	12610	17830	15110	4864	4564	1552	1541
MAX	2130	3170	11400	35400	8670	53200	46500	27700	14300	12600	3830	6740
MIN	1140	816	1360	1340	2390	1980	3970	4040	1330	998	764	714
(†)	-700	-384	-210	+41	+55	+1420	+1280	-1020	-40	+49	-434	-462
STATIS	TICS OF N	MONTHLY ME	EAN DATA	FOR WATER	YEARS 193	39 - 2002,	BY WATER	YEAR (W	7)			
MEAN	3362	6481	10850	11830	14170	15980	11940	9111	5809	4081	3811	2731
MAX	15260	29580	26520	24690	30880	37830	23180	29230	22100	13240	15120	12470
(WY)	1980	1986	1973	1952	1994	1963	1940	1996	1981	1958	1956	1971
MIN	439	369	1648	1840	3781	6192	3781	1836	926	676	592	482
(WY)	1954	1954	1966	1977	1941	1987	1946	1982	1965	1966	1965	1946

[†] Change in contents, equivalent in cubic feet per second, in Tygart Lake, Stonewall Jackson Lake and Lake Lynn. Records of contents in Lake Lynn furnished by Allegheny Energy Supply. Records of contents in Tygart Lake and Stonewall Jackson Lake furnished by U.S. Army Corps of Engineers.

03072655 MONONGAHELA RIVER NEAR MASONTOWN, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1939 - 2002
ANNUAL TOTAL	2485024		2463698			
ANNUAL MEAN	6808 †	-9	6750 †	-414	8310	
HIGHEST ANNUAL MEAN					13010	1994
LOWEST ANNUAL MEAN					4995	1966
HIGHEST DAILY MEAN	42600	Jan 31	53200	Mar 21	154000	Nov 5 1985
LOWEST DAILY MEAN	816	Nov 19	714	Sep 22	177	Sep 11 1988
ANNUAL SEVEN-DAY MINIMUM	984	Nov 16	919	Sep 8	267	Nov 4 1953
MAXIMUM PEAK FLOW			83400	Mar 20	a 220000	Nov 5 1985
MAXIMUM PEAK STAGE			20.65	Mar 20	b 39.39	Nov 5 1985
10 PERCENT EXCEEDS	17400		18800		20800	
50 PERCENT EXCEEDS	4000		3700		4720	
90 PERCENT EXCEEDS	1320		1090		1040	

[†] Change in contents, equivalent in cubic feet per second, in Tygart Lake, Stonewall Jackson Lake and Lake Lynn. Records of contents in Lake Lynn furnished by Allegheny Energy Supply. Records of contents in Tygart Lake and Stonewall Jackson Lake furnished by U.S. Army Corps

a From rating curve extended above 131,000 ft³/s.
 b From outside floodmarks, datum then in use.

03074500 REDSTONE CREEK AT WALTERSBURG, PA

LOCATION.--Lat 39°58'48", long 79°45'52", Fayette County, Hydrologic Unit 05020005, on right bank, 15 ft upstream from highway bridge at Waltersburg, 400 ft upstream from Bolden Run, and 0.9 mi upstream from Allen Run.

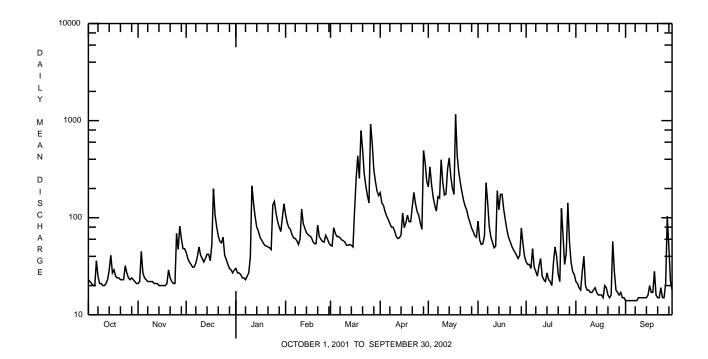
DRAINAGE AREA.--73.7 mi².

PERIOD OF RECORD.--October 1942 to current year. Monthly discharge only for October 1942, published in WSP 1305.

REVISED RECORDS.--WSP 1435: 1943-45 (M), 1946, 1947 (M), 1948 (P), 1949-50 (M), 1951 (P), 1952 (M).

GAGE.--Water-stage recorder. Datum of gage is 882.28 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 15, 1973, nonrecording gage 15 ft downstream and Nov. 15, 1973 to Sept. 30, 1997, at present site at datum 1.00 ft. higher.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Some regulation at low flow by mine pumpage into stream above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.


PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,000 ft³/s and maximum (*):

Date Mar. Mar.	20	Time 1600 1830	Discl ft ² 1, *2,	3/s 310 470	Gage Heigh (ft) 5.73 *8.05	ht FEET PER SE	COND WA	Date Apr. May TER YEAR (28 18	Time 1130 0600	1 2	scharge ft ³ /s , 010 , 140	Gage Height (ft) 4.98 7.39	
				Discini	код, совіс	TEETTERSE		EAN VALUE		2001 10	JULI	LIVIDER 20	02	
DAY	oc	Т	NOV	DEC	JAN	FEB	MAR	APR	MAY		JUN	JUL	AUG	SEP
1 2 3 4 5	2	2 1 0	21 22 45 27 24	44 38 35 33 31	e30 e27 e27 e26 e24	107 89 79 76 67	52 51 79 69 64	181 142 134 116 104	208 334 221 163 135		92 59 53 54 65	35 33 33 30 48	22 21 19 18 28	14 14 14 14
6 7 8 9 10	2		23 22 22 22 22 22	31 34 40 50 41	e24 e23 e25 e27 e39	62 61 58 53 60	64 62 59 58 56	96 87 80 80 73	117 165 159 395 233		229 143 81 63 56	31 28 25 32 38	40 20 18 18 17	14 14 14 15
11 12 13 14 15	2	1	21 21 21 20 20	38 35 38 42 42	213 141 102 80 73	123 87 78 70 67	52 52 53 52 50	64 61 62 67 112	171 175 317 413 267		49 51 190 121 174	25 23 22 27 23	17 18 19 17 16	15 15 15 15
16 17 18 19 20	2	7 9 5 4 4	20 20 20 21 29	36 53 199 107 81	63 59 55 52 51	65 63 57 54 54	118 255 434 254 791	79 89 106 91 91	202 174 1160 437 295		174 122 95 75 63	22 20 34 50 40	16 16 15 20 19	20 17 17 28 16
21 22 23 24 25	2	3 3 3 2 7	24 22 21 21 69	65 57 55 63 e41	50 49 47 135 147	84 64 60 57 56	506 287 213 169 142	130 182 139 116 106	227 182 150 131 119		57 51 47 44 41	26 22 125 65 33	16 15 16 57 28	15 15 19 15 15
26 27 28 29 30 31	2 2 2 2	4 3 4 3 2 1	47 82 61 48 48	e37 e33 e30 e29 e27 e29	112 92 80 72 101 139	66 61 55 	924 589 313 237 189 169	88 76 491 369 238	100 89 78 72 65 63		38 41 78 54 40	43 142 57 35 28 26	18 17 16 17 15	21 104 49 22 18
TOTAL MEAN MAX MIN CFSM IN.		4 1 0 3	906 30.2 82 20 0.41 0.46	1514 48.8 199 27 0.66 0.76	2185 70.5 213 23 0.96 1.10	1933 69.0 123 53 0.94 0.98	6463 208 924 50 2.83 3.26	3850 128 491 61 1.74 1.94	7017 226 1160 63 3.07 3.54	1	3.3 229 38 .13 .26	1221 39.4 142 20 0.53 0.62	624 20.1 57 15 0.27 0.31	609 20.3 104 14 0.28 0.31
MEAN MAX (WY) MIN	48. 22 198 11.	7 5 0	HLY MEAN 68.3 459 1986 19.0	111 308 1973 14.2	131 284 1994 23.1	158 376 1986 33.0	192 470 1994 45.5	161 310 1948 49.2	125 274 1996 27.3	8	0.1 413 972 5.4	55.0 187 1990 9.59	48.7 172 1980 12.4	47.1 161 1987 8.92
(WY)	196		1967	1961	1967	1954	1969	1971	1963		962	1962	1962	1991

e Estimated.

03074500 REDSTONE CREEK AT WALTERSBURG, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1943 - 2002
ANNUAL TOTAL	23833	29579	
ANNUAL MEAN	65.3	81.0	102
HIGHEST ANNUAL MEAN			166 1994
LOWEST ANNUAL MEAN			44.2 1954
HIGHEST DAILY MEAN	529 Jan 30	1160 May 18	6620 Jun 23 1972
LOWEST DAILY MEAN	18 Aug 7 a	14 Sep 1-8	4.8 Sep 22 1991
ANNUAL SEVEN-DAY MINIMUM	19 Aug 16	14 Sep 1	5.3 Sep 28 1991
MAXIMUM PEAK FLOW		2470 Mar 26	b 8660 Jun 23 1972
MAXIMUM PEAK STAGE		8.05 Mar 26	c 14.83 Jun 23 1972
INSTANTANEOUS LOW FLOW		12 Sep 4,8	4.2 Aug 2 1962
ANNUAL RUNOFF (CFSM)	0.89	1.10	1.38
ANNUAL RUNOFF (INCHES)	12.03	14.93	18.78
10 PERCENT EXCEEDS	132	174	209
50 PERCENT EXCEEDS	40	49	61
90 PERCENT EXCEEDS	20	17	21

<sup>a Also Aug. 8, 9, 22, Sept. 18, 19, 23.
b From rating curve extended above 8,200 ft³/s.
c From peak-stage indicator.</sup>

03075070 MONONGAHELA RIVER AT ELIZABETH, PA (Pennsylvania Water-Quality Network Station)

LOCATION,--Lat 40°15'44", long 79°54'05", Allegheny County, Hydrologic Unit 05020005, on right bank 30 ft landward from upstream end of guide wall, 1,050 ft upstream from dam at lock 3 at Elizabeth, 0.4 mi downstream from Lobbs Creek, at mile 24.0.

DRAINAGE AREA.--5,340 mi².

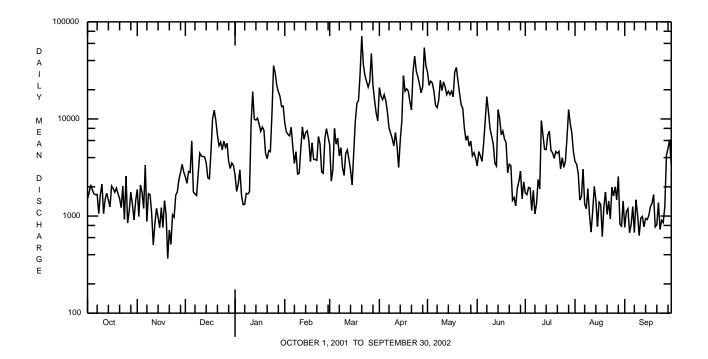
WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—October 1933 to current year. Published as "at Charleroi" (station 03075000) October 1933 to September 1976. Monthly discharge prior to 1940, adjusted for reservoir contents, published in WSP 1305. Records for March 1886 to March 1905 (high-water periods, only), published in WSP 169, are unreliable and should not be used (peak discharge of July 11, 1888, as published in WSP 183, is still considered reliable).

REVISED RECORDS.--WSP 758: Drainage area. WSP 783: 1888 (M). WSP 1435: 1934, 1936. See also "PERIOD OF RECORD."

GAGE.--Water-stage recorder and concrete dam control. Datum of gage is 717.90 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). From Oct. 1, 1967 to Sept. 30, 1976, at site 17.5 mi upstream at datum 15.70 ft higher. Prior to Oct. 1, 1967, water-stage recorder at site 17.9 mi upstream at datum 17.43 ft higher. Oct. 1, 1965 to Sept. 30, 1967, auxiliary staff gage, Apr. 14, 1966 to Sept. 30, 1967, auxiliary water-stage recorder and Oct. 1, 1967 to Nov. 4, 1990, water-stage recorder at present site at datum 7.60 ft higher.

REMARKS.--No estimated daily discharges. Records good, except those below 2,500 ft³/s, which are poor. Flow regulated by locks above station, since 1938 by Tygart Lake (station 03055500), since May 1926 by Lake Lynn, and since April 1989 by Stonewall Jackson Lake, combined capacity, 432,000 acre-ft. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.


	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1510	1880	2530	2630	9130	5420	21000	30400	3280	1730	3640	766
2	1740	988	2170	1790	7370	2290	17200	22200	4620	1660	3420	1110
3	2100	2090	2880	2150	6940	3010	15800	24500	4170	1970	2740	1190
4	1860	1750	2810	2990	6700	8000	17800	23500	3660	1940	1460	674
5	1700	1200	5950	1650	8210	5500	15400	19300	5580	1140	1590	818
6	1660	3350	1770	1310	5170	6350	11800	13900	9620	1840	3040	1250
7	1670	883	1690	1320	3480	4150	8110	13100	17000	1050	1330	676
8	1060	1700	1630	1710	4600	5060	7140	15600	11900	1350	1190	1470
9	1670	1660	2710	1690	2700	3150	6270	25000	7950	2380	1910	1030
10	2130	1050	4440	1780	2760	2620	5280	19600	6660	1900	1030	629
11	1060	503	4150	8980	4960	4420	7240	24100	5510	9620	683	954
12	1500	838	4100	19100	8270	4800	5300	21300	3500	6820	1110	991
13	1720	1200	4070	9920	6180	3850	3160	17800	3270	4870	2020	774
14	1460	969	3540	9740	7230	2980	5950	19300	12500	4840	1460	943
15	1240	760	2480	10200	7540	2090	9620	17800	10100	6830	779	921
16	2040	1220	2420	8830	5990	4510	27900	19300	6850	7500	1390	1010
17	1920	762	4710	7450	3640	9540	19300	16900	7510	4750	1320	1250
18	1760	1440	10100	8260	5680	14500	20400	30600	6230	4470	614	1350
19	1940	1030	12300	7660	3830	15600	19400	33900	5700	3920	1260	1660
20	1700	365	9660	4440	3820	29900	15100	24700	2780	4620	1770	773
21	1510	716	6810	3890	3750	71400	12400	18300	3420	4430	1040	814
22	1220	511	5300	4710	6590	36000	30900	14000	3290	4630	1430	1370
23	2030	1030	5780	4610	5500	28000	44400	12800	1450	3070	932	728
24	925	972	4810	11200	2840	24300	31100	8010	1550	4000	1980	903
25	2580	1640	5920	35400	2760	21300	27100	6030	1270	3170	1610	855
26 27 28 29 30 31	847 1130 1760 1300 913 1430	1780 2390 2810 3410 2840	5100 5610 3670 3090 3520 3310	29800 22200 19100 17100 13400 13600	6310 7940 6540 	24300 47200 22200 15500 11500 9550	22800 18600 21500 54300 35400	6710 5240 5930 4180 4500 3950	1930 2280 2900 1500 2250	3680 6410 12500 9000 7160 4570	2000 1470 2560 822 787 1430	1250 4200 5010 6130 3330
TOTAL	49085	43737	139030	288610	156430	448990	557670	522450	160230	137820	49817	44829
MEAN	1583	1458	4485	9310	5587	14480	18590	16850	5341	4446	1607	1494
MAX	2580	3410	12300	35400	9130	71400	54300	33900	17000	12500	3640	6130
MIN	847	365	1630	1310	2700	2090	3160	3950	1270	1050	614	629
(†)	-700	-384	-210	+41	+55	+1420	+1280	-1020	-40	+49	-434	-462
STATIST	rics of i	MONTHLY ME	EAN DATA	FOR WATER	YEARS 19	34 - 2002,	BY WATER	YEAR (W	7)			
MEAN	3559	6604	11470	13490	15440	18030	13510	10240	6337	4381	4118	2933
MAX	16770	33750	29760	37480	33170	41930	26500	33610	24840	13570	17890	13300
(WY)	1980	1986	1973	1937	1994	1963	1940	1996	1981	1958	1956	1945
MIN	475	400	1991	2249	3210	6636	4478	2128	1009	915	812	581
(WY)	1954	1954	1966	1977	1934	1987	1971	1982	1936	1966	1957	1936

[†] Change in contents, equivalent in cubic feet per second, in Tygart Lake, Stonewall Jackson Lake and Lake Lynn. Records of contents in Lake Lynn furnished by Allegheny Energy Supply. Records of contents in Tygart Lake and Stonewall Jackson Lake furnished by U.S. Army Corps of Engineers.

03075070 MONONGAHELA RIVER AT ELIZABETH, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	IDAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1934 - 2002
ANNUAL TOTAL	2580053		2598698			
ANNUAL MEAN	7069 †	9	7120 †	-414	9149	
HIGHEST ANNUAL MEAN					14400	1996
LOWEST ANNUAL MEAN					5282	1954
HIGHEST DAILY MEAN	51500	Jan 31	71400	Mar 21	158000	Jan 20 1996
LOWEST DAILY MEAN	365	Nov 20	365	Nov 20	206	Jun 29 1936
ANNUAL SEVEN-DAY MINIMUM	836	Nov 17	836	Nov 17	301	Oct 1 1936
MAXIMUM PEAK FLOW			81800	Mar 21	a 178000	Nov 6 1985
MAXIMUM PEAK STAGE			20.18	Mar 21	b 30.39	Jan 20 1996
10 PERCENT EXCEEDS	17900		19300		22200	
50 PERCENT EXCEEDS	3890		3660		5120	
90 PERCENT EXCEEDS	1360		1020		1140	

[†] Change in contents, equivalent in cubic feet per second, in Tygart Lake, Stonewall Jackson Lake and Lake Lynn. Records of contents in Lake Lynn furnished by Allegheny Energy Supply. Records of contents in Tygart Lake and Stonewall Jackson Lake furnished by U.S. Army Corps of Engineers.

<sup>a From rating curve extended above 110,000 ft³/s.
b Gage height 23.60 ft, datum then in use.</sup>

03075070 MONONGAHELA RIVER AT ELIZABETH, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
APR 2002		0010	4050	4.0	0.5	- 4	055		0.0	05.0		2.0	
11 JUN	1400	9813	4350	40	8.5	7.4	255	12.9	88	25.0	6.1	32	<.2
06 AUG	1315	9813	7220	40	9.4	7.2	330	20.4	110	29.9	8.7	34	<.2
07	0930	9813	1450	40	6.7	7.6	239	25.0	72	20.5	5.2	26	<.2
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	CYANIDE AMEN- ABLE TO CHLOR- INATION UNFLTRD (MG/L) (00722)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)
APR 2002 11 JUN	66.0	174	24	.050	.69	<.040	.90	.03	.020	1.8	<10	<1.00	640
06	96.1	218	18	.050	.48	< .040	.71	.02	.020	1.7	<10	<1.00	680
AUG													

		MANGA-			
	LEAD,	NESE,	NICKEL,	ZINC,	
	TOTAL	TOTAL	TOTAL	TOTAL	
	RECOV-	RECOV-	RECOV-	RECOV-	
	ERABLE	ERABLE	ERABLE	ERABLE	PHENOLS
Date	(µG/L	(µG/L	(µG/L	(µG/L	TOTAL
	AS PB)	AS MN)	AS NI)	AS ZN)	(µG/L)
	(01051)	(01055)	(01067)	(01092)	(32730)
3DD 0000					
APR 2002	1 5	120	. = 0	0.0	. =
11	1.7	130	<50	20	<5
JUN 06	<1.0	200	<50	20	<5
AUG	<1.0	200	<50	20	< 5
07	<1.0	80	<50	<10	<5
07	<1.0	80	<50	<10	< 5

03076500 YOUGHIOGHENY RIVER AT FRIENDSVILLE, MD

LOCATION.--Lat 39°39'13", long 79°24'31", Garrett County, Hydrologic Unit 05020006, on left bank 0.7 mi upstream from bridge on State Highway 42 at Friendsville, and 1.5 mi upstream from Bear Creek.

DRAINAGE AREA.--295 mi².

PERIOD OF RECORD.—August 1898 to December 1904 and October 1940 to current year. Annual maximum, water years 1905, 1923-31, 1940, published in WSP 1675. October, November 1940 monthly discharge only, published in WSP 1305. September 1922 to September 1926 (gage heights only) in reports of Pennsylvania Department of Forests and Waters.

REVISED RECORDS.--WSP 1385: Drainage area at former site, 1898-1905, 1941(M), 1942, 1944-45, 1948-49, 1951(M).

GAGE.--Water-stage recorder. Datum of gage is 1,487.33 ft above National Geodetic Vertical Datum of 1929. Aug. 17, 1898, to Dec. 31, 1904, and Sept. 1, 1922, to Sept. 30, 1926, nonrecording gages at bridge 0.7 mi downstream at datum 16.24 ft and 16.29 ft lower, respectively.

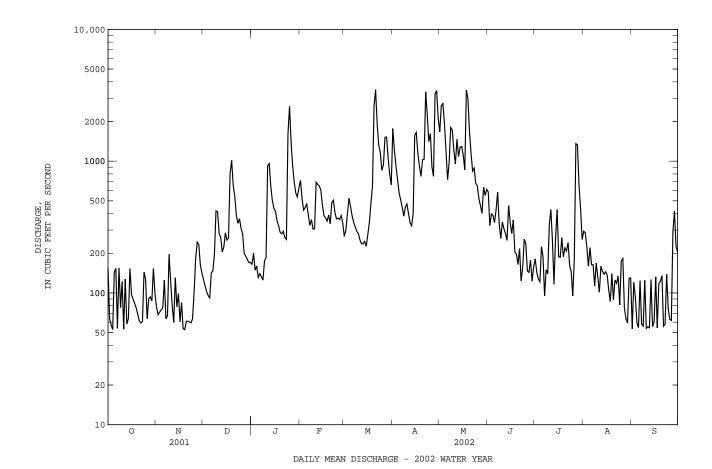
REMARKS.--Records good except those for estimated daily discharges (ice effect), which are fair. Low and medium flow regulated since July 1925 by Deep Creek Reservoir, 12 mi upstream from station (see station 03076000). U.S. Army Corps of Engineers satellite data collection platform at station. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,690 ft³/s, July 27, gage height, 5.56 ft; minimum discharge, 51 ft³/s, Sept. 17-19.

		L	JISCHARGE	, COBIC PE			EAN VALUE		JOI TO SEF	LEWIDER 20	102	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	154	78	126	e165	715	269	1770	1670	583	181	294	53
2	64	68	113	e200	517	299	1210	2650	324	143	286	120
3	57	72	102	149	425	402	921	2740	397	128	223	93
4	53	74	95	e160	446	524	729	1920	388	122	160	59
5	144	77	92	131	472	452	575	1190	342	225	221	54
6	154	125	142	e140	389	384	510	724	428	188	164	124
7	54	63	147	133	326	343	446	977	580	95	164	58
8	155	67	197	125	360	316	383	1800	335	150	113	56
9	77	197	420	174	305	294	448	1720	260	140	169	125
10	122	123	413	186	307	281	473	1200	345	328	132	54
11	53	81	282	922	691	252	401	953	307	429	101	55
12	127	60	263	959	666	236	341	1470	282	250	160	54
13	58	130	205	648	651	236	323	1080	251	116	146	127
14	64	79	224	503	603	246	400	1280	460	260	139	55
15	153	99	286	440	465	226	1580	1290	343	430	145	60
16	97	60	252	418	385	276	1650	1120	283	189	136	132
17	90	85	262	351	371	342	1140	856	358	186	104	54
18	83	53	801	324	351	477	920	3450	205	262	86	118
19	77	53	1010	288	390	647	767	2980	197	188	140	122
20	69	61	655	281	335	2610	1020	1660	164	219	89	136
21	61	61	541	294	485	3480	1030	1140	217	208	125	56
22	59	60	387	263	506	1920	3360	840	123	241	118	58
23	61	59	337	255	408	1320	2270	885	157	161	134	138
24	144	64	367	1610	365	1170	1410	679	255	145	81	76
25	127	101	e310	2610	370	850	1610	651	236	95	175	63
26 27 28 29 30 31	64 90 93 87 153 99	182 243 233 163 141	e280 e200 e190 e180 e170 e170	1370 917 691 572 536 628	360 387 340 	942 1520 1520 1060 796 662	906 769 3230 3440 2120	522 459 402 634 549 611	147 143 177 123 157	182 1360 1330 648 434 254	182 77 64 59 129 130	62 292 417 224 204
TOTAL MEAN MAX MIN (†) MEAN‡ CFSM‡ IN‡	2943	3012	9219	16443	12391	24352	36152	40102	8567	9287	4446	3299
	94.9	100	297	530	443	786	1205	1294	286	300	143	110
	155	243	1010	2610	715	3480	3440	3450	583	1360	294	417
	53	53	92	125	305	226	323	402	123	95	59	53
	-63.4	-28.6	-0	102	12.6	101	106	-17.9	-50.4	-47.2	-66.7	-47.1
	31.5	71.4	297	632	456	887	1311	1276	236	253	76.3	62.9
	0.11	0.24	1.01	2.14	1.55	3.01	4.44	4.33	0.80	0.86	0.26	0.21
	0.13	0.27	1.16	2.47	1.61	3.47	4.95	4.99	0.89	0.99	0.30	0.23
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WAT	ER YEARS	1898 -	1905, 194	1 - 2002,	BY WATE	R YEAR (V	VY)	
MEAN	275	489	832	867	992	1210	942	694	479	370	295	235
MAX	1103	2190	2147	1886	2277	2644	2231	1888	1823	1335	1319	1059
(WY)	1955	1986	1903	1996	1903	1963	1901	1996	1903	1990	1956	1996
MIN	50.2	55.7	145	140	337	285	327	176	84.2	64.6	51.0	49.8
(WY)	1992	1905	1944	1981	1954	1990	1995	1982	1969	1991	1991	1991

[†] Change in contents in Deep Creek Reservoir, equivalent in cubic feet per second, provided by Pennsylvania Electric Company.


[‡] Adjusted for change in reservoir contents.

e Estimated.

03076500 YOUGHIOGHENY RIVER AT FRIENDSVILLE, MD--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1898 - 1905 1941 - 2002
ANNUAL TOTAL	181667	170213	
ANNUAL MEAN	498	466	636
ANNUAL MEAN‡	498	466	640
HIGHEST ANNUAL MEAN			1052 1903
LOWEST ANNUAL MEAN			375 1954
HIGHEST DAILY MEAN	3550 Feb 15	3480 Mar 21	11200 Jan 19 1996
LOWEST DAILY MEAN	53 (a)	53 (b)	8.2 Sep 11 1966
ANNUAL SEVEN-DAY MINIMUM	59 Nov 18	59 Nov 18	29 Sep 21 1972
MAXIMUM PEAK FLOW		5270 Apr 28	(c)16100 Jan 19 1996
MAXIMUM PEAK STAGE		5.83 Apr 28	(d)14.20 Mar 29 1924
INSTANTANEOUS LOW FLOW		36 Oct 5	UNKNOWN
ANNUAL RUNOFF (CFSM)	1.69	1.58	2.16
ANNUAL RUNOFF (CFSM) ‡	1.69	1.58	2.17
ANNUAL RUNOFF (INCHES)	22.91	21.46	29.31
ANNUAL RUNOFF (INCHES) #	22.94	21.47	29.46
10 PERCENT EXCEEDS	1030	1180	1410
50 PERCENT EXCEEDS	290	252	403
90 PERCENT EXCEEDS	77	64	104

- † Adjusted for change in reservoir contents since October 1940.
 a Oct. 4, 11, Nov. 18, 19.
 b Oct. 4, 11, Nov. 18, 19, Sept. 1.
 c From rating curve extended above 5,800 ft³/s on basis of slope-area measurement of peak flow.
 d From floodmarks.

03078000 CASSELMAN RIVER AT GRANTSVILLE, MD

LOCATION.--Lat 39°42'08", long 79°08'12", Garrett County, Hydrologic Unit 05020006, on left bank at downstream side of highway bridge, 0.3 mi upstream from Slaubaugh Run, 0.7 mi downstream from U.S. Highway 40, and 1.0 mi northeast of Grantsville.

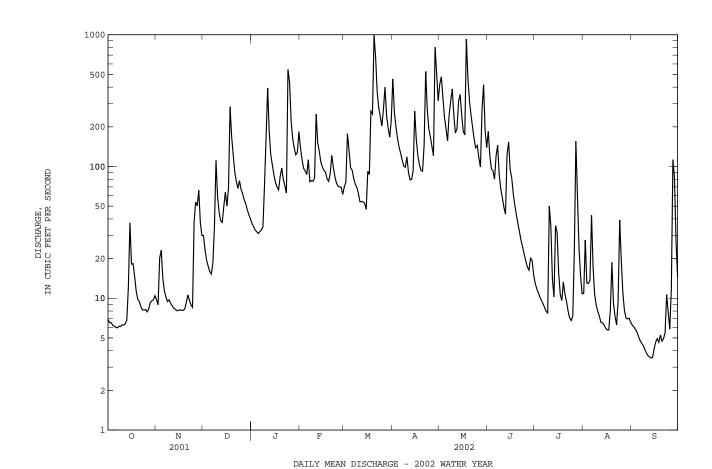
DRAINAGE AREA.--62.5 mi².

PERIOD OF RECORD.--July 1947 to current year.

REVISED RECORDS.--WSP 1143: 1948.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 2,088.97 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges (ice effect), which are fair. U.S. Army Corps of Engineers satellite data collection platform at station. Several measurements of water temperature were made during the year. Water-quality records for some prior periods have been collected at this location.


	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 6.5 6.5 6.2 6.1	9.8 8.9 20 23 14	30 23 19 18 16	e37 e35 e33 e32 e31	138 113 97 93 87	70 76 178 134 98	462 257 200 164 140	422 478 336 237 193	185 120 96 93 80	13 12 11 10 9.6	11 28 13 13	6.3 6.1 5.8 5.6 5.1
6 7 8 9 10	6.0 6.1 6.1 6.3	11 10 9.4 9.7 9.2	15 18 35 111 59	e32 e33 e35 72 163	112 77 78 77 82	94 81 73 69 63	126 112 100 99 118	157 247 314 388 244	121 145 86 68 58	9.1 8.5 7.9 7.7 50	43 17 11 8.8 7.9	4.8 4.6 4.4 4.1 3.9
11 12 13 14 15	6.3 6.4 6.8 12 37	8.8 8.4 8.3 8.0 8.1	45 39 38 e50 e64	395 185 123 103 86	250 152 130 108 99	54 54 54 52 47	90 79 80 93 263	179 194 310 353 248	49 44 123 153 95	35 14 10 36 31	7.3 6.6 6.5 6.3 5.9	3.7 3.6 3.5 3.6 4.1
16 17 18 19 20	18 18 15 11 9.8	8.2 8.1 8.1 8.3 9.2	e50 69 285 168 122	76 70 66 84 97	93 90 81 77 89	92 87 263 251 992	161 121 103 94 92	185 174 928 463 313	82 62 51 43 37	16 11 9.6 13	5.8 5.7 8.1 19 9.2	4.7 4.9 4.6 5.2 4.7
21 22 23 24 25	9.4 8.6 8.2 8.1 8.2	11 9.6 8.9 8.5 38	91 77 68 78 67	81 71 63 546 438	121 98 83 75 71	679 368 279 239 203	145 526 274 194 168	245 197 160 139 144	32 27 24 21 19	9.4 8.0 7.1 6.8 7.3	7.3 6.3 9.6 39	4.9 5.5 11 7.9 5.8
26 27 28 29 30 31	7.9 8.3 9.3 9.6 9.7	54 50 66 37 30	e62 e56 e52 e47 e43 e40	223 164 138 123 128 184	70 69 61 	271 400 244 196 167 223	142 121 807 512 316	116 99 268 418 188 139	17 16 20 19 15	22 156 59 24 15	11 8.1 7.1 7.0 7.1 6.6	12 113 82 27 14
TOTAL MEAN MAX MIN CFSM IN.	300.3 9.69 37 6.0 0.15 0.18	521.5 17.4 66 8.0 0.28 0.31	1955 63.1 285 15 1.01 1.16	3947 127 546 31 2.04 2.35	2771 99.0 250 61 1.58 1.65	6151 198 992 47 3.17 3.66	6159 205 807 79 3.28 3.67	8476 273 928 99 4.37 5.04	2001 66.7 185 15 1.07 1.19	651.0 21.0 156 6.8 0.34 0.39	376.2 12.1 43 5.7 0.19 0.22	376.4 12.5 113 3.5 0.20 0.22
STATIS	TICS OF	MONTHLY	MEAN DATA	FOR WATE	R YEARS	1947 -	2002, BY	WATER YEAR	(WY)			
MEAN MAX (WY) MIN (WY)	44.7 288 1955 1.65 1954	85.9 449 1986 3.38 1954	144 341 1973 13.8 1999	160 376 1996 26.4 1977	197 414 1956 60.3 1964	261 582 1963 57.0 1990	211 468 1970 77.1 1968	137 312 1996 40.1 1976	74.9 200 1951 10.0 1965	48.6 175 1996 4.30 1965	38.2 202 1956 2.87 1991	33.5 290 1996 1.58 1991

e Estimated.

03078000 CASSELMAN RIVER AT GRANTSVILLE, MD--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1947 - 2002		
ANNUAL TOTAL	37299.9	33685.4			
ANNUAL MEAN	102	92.3	119		
HIGHEST ANNUAL MEAN			203 1996		
LOWEST ANNUAL MEAN			64.2 1954		
HIGHEST DAILY MEAN	1340 Jun 7	992 Mar 20	(e)3600 Jan 19 1996		
LOWEST DAILY MEAN	6.0 Oct 6	3.5 Sep 13	(a)0.00 Aug 31 1962		
ANNUAL SEVEN-DAY MINIMUM	6.1 Oct 4	3.8 Sep 9	0.89 Aug 27 1962		
MAXIMUM PEAK FLOW		1400 Mar 20	(b)8400 Oct 15 1954		
MAXIMUM PEAK STAGE		3.89 Mar 20	10.70 Oct 15 1954		
INSTANTANEOUS LOW FLOW		3.4 (c)	(a)0.00 (d)		
ANNUAL RUNOFF (CFSM)	1.64	1.48	1.91		
ANNUAL RUNOFF (INCHES)	22.20	20.05	<u> 25.94</u>		
10 PERCENT EXCEEDS	264	244	279		
50 PERCENT EXCEEDS	45	50	66		
90 PERCENT EXCEEDS	8.3	6.4	8.1		

- a Result of regulation from unknown source.
 b From rating curve extended above 1,600 ft³/s on basis of contracted-opening measurement at gage height of 8.13 ft.
 c Sept. 13, 14.
 d Aug. 31, Sept. 1, 1962.
 e Estimated.

03079000 CASSELMAN RIVER AT MARKLETON, PA

LOCATION.--Lat 39°51'35", long 79°13'40", Somerset County, Hydrologic Unit 05020006, on right bank at downstream side of highway bridge at Markleton, 2 mi southwest of Casselman, and 7 mi downstream from Coxes Creek.

DRAINAGE AREA -- 382 mi².

Discharge

PERIOD OF RECORD.--August to September 1913 (gage heights and discharge measurements only), October 1920 to current year. Monthly discharge only for some periods, published in WSP 1305. October 1913 to September 1920 (gage heights and discharge measurements only) in reports of Water Supply Commission of Pennsylvania.

REVISED RECORDS.--WSP 743: Drainage area. WSP 1305: 1923-31. WSP 1435: 1932-34, 1935 (M), 1936-38. WSP 1625: 1924 (M).

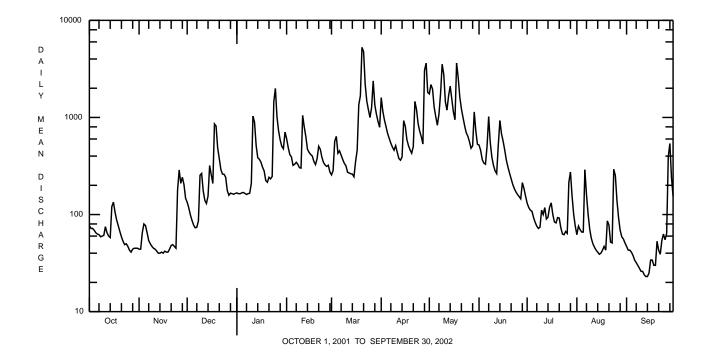
GAGE.--Water-stage recorder. Datum of gage is 1,655.29 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 19, 1940, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Slight diversion above station to city of Frostburg, MD, in the Potomac River Basin. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station

Discharge

Gage Height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 8,000 ft³/s and maximum (*):


Gage Height

Date	Ti	me ft	³ /s	(ft)			Date	Tir		ft ³ /s	(ft)	
Mar.			,750	*6.92							discharge.	
			DISCHA	ARGE, CUBIC	FEET PER SE		TER YEAR C		001 TO SE	PTEMBER 20	002	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	77 72 72 69 65	44 44 65 80 77	134 117 99 87 78	e167 e164 e164 e167 e169	605 490 415 392 321	256 284 569 639 428	1600 1160 942 804 682	1750 2180 1960 1280 1020	520 457 368 339 330	108	62 76 70 66 66	47 43 43 41 38
6 7 8 9 10	63 62 59 60 61	65 54 50 47 45	73 74 86 254 265	165 e161 e164 e166 e210	329 345 329 304 301	453 409 369 336 318	607 543 494 460 512	832 1080 1760 3530 2780	507 1020 552 389 321	76 72 74	289 161 101 71 57	34 32 30 28 26
11 12 13 14 15	75 65 60 58 121	44 42 40 40	175 140 130 155 320	1030 894 e515 e385 e371	1050 799 634 470 437	273 268 263 261 245	437 378 363 392 928	1450 1190 1670 2100 1550	282 264 520 930 679	118 90	50 46 43 41 39	26 24 23 23 25
16 17 18 19 20	134 106 88 77 67	40 42 41 41 44	258 209 858 817 487	346 307 281 224 215	416 401 353 327 375	351 458 1350 1670 5270	812 592 512 463 428	1140 949 3630 2580 1620	571 463 365 309 268	100	40 43 47 43 86	34 34 30 30 53
21 22 23 24 25	59 53 49 50 47	48 49 47 45 179	378 291 261 260 242	242 233 247 1450 1990	505 470 389 344 324	4770 2190 1470 1200 999	503 1460 1210 865 721	1230 1000 823 697 642	234 205 185 171 161	73 63 62	78 52 51 293 252	43 39 54 63 55
26 27 28 29 30 31	43 41 44 45 45	288 210 242 203 147	177 158 166 e164 162 165	1010 726 585 503 476 706	313 322 274 	1270 2380 1350 1080 909 793	633 532 3060 3620 1810	565 482 511 1140 724 529	153 145 213 186 155	215 274 156	139 93 69 59 56 51	64 394 539 241 154
TOTAL MEAN MAX MIN CFSM IN.	2032 65.5 134 41 0.17 0.20	2444 81.5 288 40 0.21 0.24	7240 234 858 73 0.61 0.71	14433 466 1990 161 1.22 1.41	12034 430 1050 274 1.13 1.17	32881 1061 5270 245 2.78 3.20	27523 917 3620 363 2.40 2.68	44394 1432 3630 482 3.75 4.32	11262 375 1020 145 0.98 1.10	104 274 62 0.27	2690 86.8 293 39 0.23 0.26	2310 77.0 539 23 0.20 0.22
STATIST	CS OF M	ONTHLY MEA	N DATA	FOR WATER	YEARS 192	1 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	272 1769 1955 14.9 1954	461 2975 1986 22.6 1954	752 2217 1973 55.3 1999	853 2709 1937 133 1925	1047 2324 1956 153 1934	1473 3860 1936 307 1990	1160 2437 1970 316 1921	792 2147 1924 126 1926	443 1499 1941 60.6 1965	920 1924 35.6	220 842 1956 24.5 1957	194 1756 1996 19.9 1943

e Estimated.

03079000 CASSELMAN RIVER AT MARKLETON, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEND	AR YEAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1921 - 2002
ANNUAL TOTAL	174448		162475			
ANNUAL MEAN	478		445		659	
HIGHEST ANNUAL MEAN					1151	1996
LOWEST ANNUAL MEAN					336	1954
HIGHEST DAILY MEAN	4290	Feb 10	5270	Mar 20	e 25000	Jan 19 1996
LOWEST DAILY MEAN	40	Nov 13	23	Sep 13,14	11	Jul 23 1936 a
ANNUAL SEVEN-DAY MINIMUM	41	Nov 13	25	Sep 9	12	Sep 4 1957
MAXIMUM PEAK FLOW			8750	Mar 20	b 50000	Oct 15 1954
MAXIMUM PEAK STAGE			6.92	Mar 20	14.06	Oct 15 1954
INSTANTANEOUS LOW FLOW			22	Sep 13,14	10	Sep 9 1957
ANNUAL RUNOFF (CFSM)	1.25		1.17		1.72	
ANNUAL RUNOFF (INCHES)	16.99		15.82		23.43	
10 PERCENT EXCEEDS	1210		1140		1530	
50 PERCENT EXCEEDS	204		215		339	
90 PERCENT EXCEEDS	57		44		55	

a Also Sept. 7-9, 1957.b Estimated on basis of summation of peak flows at nearby stations.

03080000 LAUREL HILL CREEK AT URSINA, PA

LOCATION.--Lat 39°49'13", long 79°19'18", Somerset County, Hydrologic Unit 05020006, on right bank 500 ft downstream from bridge on State Highway 281 at Ursina, and 2.7 mi upstream from mouth.

DRAINAGE AREA.--121 mi².

Discharge

PERIOD OF RECORD.--August to September 1913 (gage heights and discharge measurements only), October 1918 to current year. Monthly discharge only for some periods, published in WSP 1305. October 1913 to September 1918 (gage heights and discharge measurements only) in reports of Water Supply Commission of Pennsylvania.

REVISED RECORDS.--WSP 743: Drainage area. WSP 893: 1919-21, 1932-34. WSP 1305: 1922-31. WSP 1435: 1919-20. WSP 1625: 1932 (M).

GAGE.--Water-stage recorder and masonry control. Datum of gage is 1,335.26 ft above National Geodetic Vertical Datum of 1929. Prior to July 18, 1939, nonrecording gage at bridge 0.5 mi downstream at datum 6.20 ft lower.

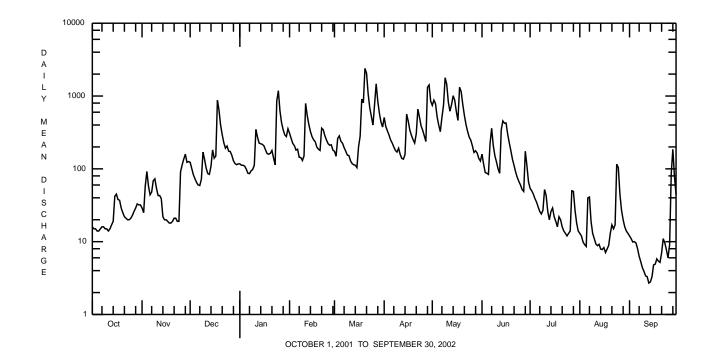
REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

Discharge

Gage Height

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 3,000 ft³/s and maximum (*):

Gage Height


Date	,	Time	Di	scnarge ft ³ /s	Gage Heig (ft)	nt		Date	7	ι Γime	ft ³ /s	Gage Heigi (ft)	nt
Mar.		1800	*	11 /s 3 , 5 7 0	*4.98							discharge	
Mar.	20 -	1000		3,570	"4.90			NO Othe	ı pean	greater	than base	discharge	•
				DISCHA	ARGE, CUBIC	FEET PER S		TER YEAR OO EAN VALUES	TOBER	2001 TO SE	PTEMBER 20	002	
DAY	OCT	1	VOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	16		29	123	e117	307	174	508	744	159		13	12
2	15 15		25 58	101 83	e112 e112	261 223	149 262	382 332	877 785	116 89		12 9.9	11 9.9
4	14		92	73	e109	208	284	292	520	87	39	9.1	10
5	14		58	65	e99	181	239	250	398	84	35	8.6	9.6
6	15		44	60	87	186	225	226	324	221		40	8.0
7 8	16 16		48 69	59 72	e86 e94	144 143	196 175	200 179	509 747	360 211		41 19	6.3 5.3
9	15		73	170	98	130	155	179	1780	152		13	4.4
10	15		54	134	e112	150	152	192	1450	125		11	3.9
11	14		43	102	e348	791	129	157	824	100	43	9.3	3.4
12	15		43	86	e272	541	118	139	619	87		8.8	3.3
13 14	17 19		39 22	84 109	e226 e221	408 326	114 112	136 158	761 1010	344 455		9.2 7.9	2.7 2.8
15	42		20	182	e217	277	104	564	874	423		7.8	3.3
16	45		20	140	207	250	200	451	607	427	22	8.3	4.8
17	38		19	150	182	236	280	339	463	300	19	7.1	4.9
18 19	37 29		18 18	873 635	162 159	199	907 807	288 252	1320 1150	228 177		7.9 8.9	5.8
20	29 25		18	396	163	186 179	2390	252 226	767	135		8.9 13	5.4 5.2
21	22		21	294	179	362	2060	303	544	111	. 16	17	7.0
22	21		21	228	141	344	1070	659	407	90		15	11
23	20		19	192	113	285	690	513	328	76	13	17	9.6
24	20		19	206	855	249	524	389	273	67		116	7.7
25	21		91	175	1180	222	399	339	248	60		104	6.0
26	23		113	173	627	211	765	284	207	52		45	9.1
27 28	26 29		136 159	153 e129	429 344	214 181	1470 853	237 1320	168 177	49 174		27 20	86 185
29	33		123	118	293		582	1420	164	111		16	80
30	32		126	e114	277		439	850	139	66		14	44
31	32			e117	355		375		128		14	13	
TOTAL	711		639	5596	7976	7394	16399	11755	19312	5136		668.8	567.4
MEAN	22.9		4.6	181	257	264	529	392	623	171		21.6	18.9
MAX MIN	45 14		159 18	873 59	1180 86	791 130	2390 104	1420 136	1780 128	455 49		116 7.1	185 2.7
CFSM	0.19	0	.45	1.49	2.13	2.18	4.37	3.24	5.15	1.41		0.18	0.16
IN.	0.22	0	.50	1.72	2.45	2.27	5.04	3.61	5.94	1.58	0.27	0.21	0.17
STATIST	ICS OF	MONTH	LY MI	EAN DATA	FOR WATER	YEARS 19	19 - 2002,	BY WATER	YEAR (V	VY)			
MEAN	115		218	327	350	405	553	444	315	184	103	97.6	80.4
MAX	564		011	815	1141	1000	1331	879	689	700		416	608
(WY)	1955	1	986	1973	1937	1956	1936	1970	1924	1941	1985	1935	1971
MIN	6.15		.91	25.8	57.0	89.3	155	114	52.0	21.2		8.90	5.73
(WY)	1931	1	931	1999	1925	1934	1990	1921	1926	1999	1966	1983	1959

e Estimated.

03080000 LAUREL HILL CREEK AT URSINA, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1919 - 2002
ANNUAL TOTAL	70022.7	78019.2	
ANNUAL MEAN	192	214	265
HIGHEST ANNUAL MEAN			<u>395</u> 1996
LOWEST ANNUAL MEAN			164 1931
HIGHEST DAILY MEAN	1770 Feb 16	2390 Mar 20	6980 Mar 17 1936
LOWEST DAILY MEAN	7.9 Sep 19	2.7 Sep 13	2.3 Sep 3 1999
ANNUAL SEVEN-DAY MINIMUM	9.6 Sep 7	3.4 Sep 9	3.4 Sep 5 1957
MAXIMUM PEAK FLOW		3570 Mar 20	a 10900 Oct 15 1954
MAXIMUM PEAK STAGE		4.98 Mar 20	10.63 Oct 15 1954
INSTANTANEOUS LOW FLOW		2.5 Sep 13	2.2 Sep 26 1932 b
ANNUAL RUNOFF (CFSM)	1.59	1.77	2.19
ANNUAL RUNOFF (INCHES)	21.53	23.99	29.78
10 PERCENT EXCEEDS	504	552	634
50 PERCENT EXCEEDS	86	113	146
90 PERCENT EXCEEDS	16	11	20

a From rating curve extended above 6,100 ft³/s on basis of slope-area measurement of peak flow.
 b Also Sept. 4, 1999.

03081000 YOUGHIOGHENY RIVER BELOW CONFLUENCE, PA

LOCATION.--Lat 39°49'39", long 79°22'22", Fayette County, Hydrologic Unit 05020006, on left bank 1.0 mi downstream from Casselman River, 1.5 mi northwest of Confluence, at mile 72.0.

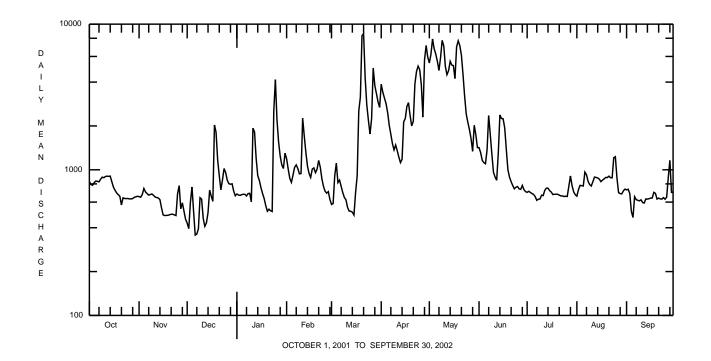
DRAINAGE AREA.--1,029 mi².

PERIOD OF RECORD.--June 1940 to current year. Monthly discharge only for June 1940, published in WSP 1305.

GAGE.--Water-stage recorder. Datum of gage is 1,302.77 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since January 1925 by Deep Creek Reservoir (station 03076000) and since December 1942 by Youghiogheny River Lake (03077000) 1.7 mi upstream. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.-Flood of Mar. 17, or 18, 1936 reached a stage of 21.6 ft, from floodmarks, discharge, 85,000 ft³/s.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	829	654	430	682	1190	578	3870	5410	1420	700	659	728
2	793	648	394	671	1010	586	3410	6210	1310	712	731	735
3 4	783	677	599	667	872	908	3110	7910	1160	699	782	687
4 5	816	744	762	675	820	1110	2850	6780	1120	687	777	516
	837	705	516	679	922	817	2470	6240	1100	677	774	471
6	833	686	356	678	1040	849	2020	5560	1370	655	964	653
7	826	670	362	661	1080	771	1750	4810	2360	617	925	624
8	862	676	393	687	1020	699	1510	5900	1750	628	832	617
9	890	682	643	689	937	646	1370	7740	1280	630	791	612
10	882	668	629	603	943	622	1480	7080	960	669	774	622
11	899	650	463	1930	2260	552	1350	5110	891	665	829	596
12	904	645	409	1820	1710	521	1220	4500	847	723	891	591
13	901	640	432	1200	1320	519	1120	4790	1300	748	886	631
14	905	623	509	912	1060	511	1180	5560	2380	748	879	629
15	828	547	726	845	943	489	2130	5240	2250	720	862	633
16	760	490	659	754	886	696	2250	5190	2240	703	829	639
17	724	485	608	687	1010	908	2720	4230	1940	677	849	640
18	694	486	2030	635	1030	2530	2890	6980	1380	678	866	700
19	675	487	1810	567	956	3160	2360	7680	1000	680	886	689
20	658	491	1170	519	1010	8320	2000	7130	890	679	884	629
21	574	495	911	536	1160	8620	2150	6130	828	670	904	639
22	642	495	729	523	1040	4250	3890	4510	780	661	882	631
23	635	490	851	517	867	2780	4730	3210	740	662	881	629
24	634	485	1020	2540	769	2190	5150	2420	759	655	1210	644
25	635	685	956	4160	712	1760	4870	2120	767	658	1230	628
26	631	778	847	2200	691	2240	3840	1890	739	656	878	649
27	631	539	802	1550	708	5000	2300	1640	734	772	697	882
28	634	593	796	1240	626	3790	5680	1340	781	907	686	1160
29	647	519	801	1080		3340	7140	2020	730	778	683	699
30	652	457	713	1020		2930	5940	1740	708	706	716	699
31	658		663	1300		2680		1420		674	737	
TOTAL	23272	17890	22989	33227	28592	65372	88750	148490	36514	21494	26174	19902
MEAN	751	596	742	1072	1021	2109	2958	4790	1217	693	844	663
MAX	905	778	2030	4160	2260	8620	7140	7910	2380	907	1230	1160
MIN	574	457	356	517	626	489	1120	1340	708	617	659	471
(†)	-630	-346	+188	+686	+476	+1096	+417	-296	-190	-272	-633	-489

[†] Change in contents, equivalent in cubic feet per second, in Deep Creek Reservoir and Youghiogheny River Lake. Records of contents in Deep Creek Reservoir furnished by Reliant Energy. Records of contents in Youghiogheny River Lake furnished by U.S. Army Corps of Engineers.

03081000 YOUGHIOGHENY RIVER BELOW CONFLUENCE, PA--Continued

STATISTICS OF MONTHLY MEA	AN DATA FOR WATER	YEARS 1941	- 2002,	BY WATER	R YEAR (WY)	(SINC	E REGULATION)	
OCT NOV	DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 1172 1511 MAX 4699 5065 (WY) 1980 1986 MIN 287 433 (WY) 1948 1954	2297 2445 6171 5441 1973 1974 246 496 1999 1981	2853 5204 1956 903 1954	3592 7868 1963 778 1990	3068 6984 1993 1157 1963	2349 5052 1996 602 1982	1508 4137 1941 491 1965	1102 2950 1985 384 1942	1075 3565 1956 290 1944	1080 3882 1971 214 1946
SUMMARY STATISTICS	FOR 2001 CAL	ENDAR YEAR	FC	OR 2002 V	WATER YEAR		WATER YEARS	1941 -	- 2002
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	564558 1547	+ +68		532666 1459	† -2		2000 2910		1996
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN	7290 356	Mar 14 Dec 6		8620 356	Mar 21 Dec 6		1074 34600 121	Oct 16	1954 5 1954
ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW	465	Dec 6		465 13500	Dec 6 Mar 20		175 a 69500	Sep 16	5 1946 5 1954
MAXIMUM PEAK STAGE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	3660 969 634			8.8 3810 796 576	83 Mar 20		19.92 4440 1260 609	Oct 15	<u> 1954</u>

 [†] Change in contents, equivalent in cubic feet per second, in Deep Creek Reservoir and Youghiogheny River Lake. Records of contents in Deep Creek Reservoir furnished by Reliant Energy. Records of contents in Youghiogheny River Lake furnished by U.S. Army Corps of Engineers.
 a From rating curve extended above 25,000 ft³/s on basis of slope-area measurement of peak flow.

03082500 YOUGHIOGHENY RIVER AT CONNELLSVILLE, PA

LOCATION.--Lat 40°01'03", long 79°35'38", Fayette County, Hydrologic Unit 05020006, on left bank at downstream side of Crawford Avenue bridge at Connellsville, 1.2 mi upstream from Mounts Creek, at mile 44.0.

DRAINAGE AREA.--1,326 mi².

PERIOD OF RECORD.--July 1908 to current year. Monthly discharge only for some periods, published in WSP 1305.

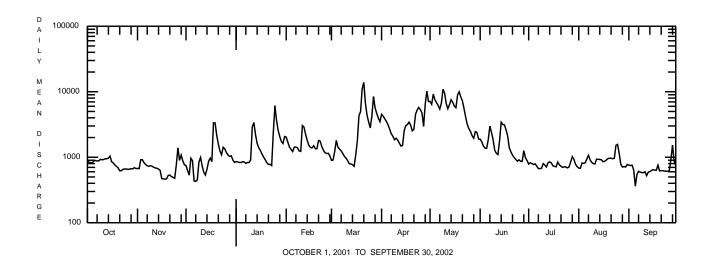
REVISED RECORDS.—WSP 743: Drainage area. WSP 1305: 1912 (M), 1914 (M), 1916-17 (M), 1918, 1922-25. WSP 1435: 1919-20. WSP 1725: 1916, 1932 (monthly, yearly summaries).

GAGE.--Water-stage recorder. Datum of gage is 860.13 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 15, 1928, nonrecording gage, and Aug. 15, 1928 to July 7, 1958, water-stage recorder at same site and datum. July 8, 1958 to Sept. 8, 1959, nonrecording gage at site 0.4 mi downstream at different datum.

REMARKS.—No estimated daily discharges. Records good. Flow regulated since January 1925 by Deep Creek Reservoir (station 03076000), since December 1942 by Youghiogheny River Lake (station 03077000) 29.4 mi upstream, and by several smaller reservoirs above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	884	675	745	858	2030	899	4520	7120	1890	788	683	756
2	839	670	626	848	1700	906	4240	6420	1720	823	678	748
3	826	916	533	832	1430	1230	3860	9230	1480	800	817	756
3 4	820	918	963	830	1320	1810	3510	7540	1380	774	805	632
5	881	825	890	856	1220	1420	3130	6800	1370	792	824	362
6	888	778	435	845	1430	1330	2690	6180	1850	733	943	546
7	879	741	428	806	1430	1250	2280	5430	2990	670	1070	610
8	877	729	451	833	1390	1140	2090	6710	2390	670	911	593
9	929	742	845	828	1250	1030	1850	10900	1860	682	837	584
10	916	730	992	911	1230	969	1950	9490	1280	799	800	581
11	921	701	739	2890	3050	888	1820	6590	1150	761	791	599
12	948	687	589	3390	2880	797	1640	5510	1100	710	934	524
13	950	678	536	2220	2230	788	1480	6350	1790	822	929	592
14	969	659	662	1630	1810	768	1520	7560	3430	851	925	604
15	1040	630	868	1400	1520	728	2550	6900	3160	819	915	629
16	854	473	970	1270	1410	1080	3040	6040	3120	740	856	646
17	818	468	856	1120	1390	1770	3160	5710	2630	726	866	636
18	762	461	3350	1010	1500	4280	3440	8900	2110	714	906	635
19	723	470	3340	919	1350	4980	3080	9980	1400	846	951	756
20	688	528	2160	827	1350	11100	2530	8340	1210	765	967	619
21	622	534	1590	777	1800	13900	2680	7280	1080	730	965	625
22	622	506	1240	781	1760	6670	4520	5540	991	700	949	623
23	654	493	1090	747	1460	4400	5250	4130	929	714	962	615
24	661	477	1420	2350	1280	3450	5760	3180	870	710	1520	611
25	663	763	1340	6130	1170	2800	5330	2730	913	688	1570	610
26	652	1390	1180	3660	1140	4260	4740	2480	873	711	1150	626
27	656	895	1080	2580	1150	8440	2970	2130	863	849	780	914
28	671	1080	1030	2070	1050	5670	6410	1950	1260	1020	709	1530
29	663	885	1050	1740		4660	10200	2460	982	928	719	877
30	693	769	907	1620		3970	7090	2390	892	781	710	740
31	672		836	2070		3490		1900		719	775	
TOTAL	24641	21271	33741	49648	43730	100873	109330	183870	48963	23835	28217	20179
MEAN	795	709	1088	1602	1562	3254	3644	5931	1632	769	910	673
MAX	1040	1390	3350	6130	3050	13900	10200	10900	3430	1020	1570	1530
MIN	622	461	428	747	1050	728	1480	1900	863	670	678	362

[†] Change in contents, equivalent in cubic feet per second, in Deep Creek Reservoir and Youghiogheny River Lake. Records of contents in Deep Creek Reservoir furnished by Reliant Energy. Records of contents in Youghiogheny River Lake furnished by U.S. Army Corps of Engineers.


+417

+1096

03082500 YOUGHIOGHENY RIVER AT CONNELLSVILLE, PA--Continued

	CS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 1925	- 2002	, BY WATER	YEAR (WY)	(SINC	E REGULATION	<u>1</u>)	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	1413	1906	2928	3259	3819	4860	4153	3097	1887	1322 4143 1985 279 1930	1272	1190
MAX	5938	7518	2928 8050 1973	9737 1937 465 1925	3819 7916 1939 630 1934	11370	8463	7142	5805	4143	4772	5400
(WY)	1955	1986	1973	1937	1939	1936	1993	1996	1941	1985	1956	1971 146
MIN (WY)	139 1931	1986 84.5 1931	295 1999	1925	1934	1189 1990	1925	662 1926	1925	1930	155 1930	1925
(11)	1751	1751	1000	1,25	1751	1000	1723	1,20	1,25	1930	1750	1,25
SUMMARY	STATIS	STICS					FOR 2002 W	WATER YEAR		WATER YEA	ARS 1925	- 2002
ANNUAL T	TOTAL.			693779	+68		688298					
ANNUAL M				1901	+ +68		1886	† -2		2586		
HIGHEST										3944		1996
LOWEST A				0010	34 14		12000	M 01		1223	** . 10	1925
HIGHEST LOWEST D		MEAN		9210 428	Mar 14 Dec 7		13900 362			58100 39	Mar 18 Nov 16	
		AY MINIMU			Nov 16		491	Nov 16		62	Nov 14	1930
MAXIMUM			-				21000	Mar 20		62 a 103000 21.96	Oct 16	1954
MAXIMUM	PEAK S	TAGE					10.4	18 Mar 20		21.96	Oct 16	1954
10 PERCE	ENT EXC	EEDS EEDS EEDS		4670 1190			4690 950			5790 1600		
90 PERCE	INI EXC	EEDS		688			630			600		
STATISTI	CS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 1909	- 1924	, BY WATER	R YEAR (WY)	(PRIO	R TO REGULAT	TION)	
STATISTI	OCT			FOR WATER JAN	YEARS 1909				-	R TO REGULAT	•	SEP
STATISTI MEAN	OCT 1126	NOV	DEC 2574	JAN 4697	FEB 4098	MAR 5490	APR 3830	MAY 2696	JUN 2379	JUL	AUG	1100
MEAN MAX	OCT 1126 5117	NOV 1653 4937	DEC 2574 5795	JAN 4697	FEB 4098 9354	MAR 5490 9777	APR 3830 6572	MAY 2696	JUN 2379	JUL	AUG	1100 5158
MEAN MAX (WY)	OCT 1126 5117 1912	NOV 1653 4937 1914	DEC 2574 5795 1922	JAN 4697	FEB 4098 9354 1918	MAR 5490 9777 1912	APR 3830 6572 1914	MAY 2696 6675 1924	JUN 2379 5224	JUL 1110 5102 1912	AUG 764 1904 1912	1100 5158 1911
MEAN MAX	OCT 1126 5117	NOV 1653 4937 1914	DEC 2574 5795	JAN 4697	FEB 4098 9354	MAR 5490 9777	APR 3830 6572	MAY 2696 6675 1924	JUN 2379 5224	JUL 1110 5102 1912	AUG 764 1904 1912	1100 5158
MEAN MAX (WY) MIN (WY)	OCT 1126 5117 1912 36.4 1909	NOV 1653 4937 1914 68.4 1909	DEC 2574 5795 1922 342 1909	JAN 4697 8679 1913 503 1918	FEB 4098 9354 1918 1589	MAR 5490 9777 1912 1913 1915	APR 3830 6572 1914	MAY 2696 6675 1924	JUN 2379 5224	JUL	AUG 764 1904 1912	1100 5158 1911 132

- † Change in contents, equivalent in cubic feet per second, in Deep Creek Reservoir and Youghiogheny River Lake. Records of contents in Deep Creek Reservoir furnished by Reliant Energy. Records of contents in Youghiogheny River Lake furnished by U.S. Army Corps of Engineers. **a** From rating curve extended above 55,000 ft³/s. **b** Estimated from hydrograph. **c** From graph based on gage readings. **d** Also Sept. 26, 27, 1908 and Oct. 18, 1910.

03083500 YOUGHIOGHENY RIVER AT SUTERSVILLE, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°14'24", long 79°48'24", Allegheny County, Hydrologic Unit 05020006, on left bank 500 ft upstream from highway bridge at Sutersville, 2.1 mi downstream from Sewickley Creek, at mile 15.2.

DRAINAGE AREA.--1,715 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1920 to current year. Monthly discharge for 1926, 1930, part of 1931, 1937, 1938, and part of 1939, published in WSP 1305.

REVISED RECORDS.--WSP 743: Drainage area. WSP 1305: 1924, 1926 (M), 1931 (M). WSP 1435: 1935-36.

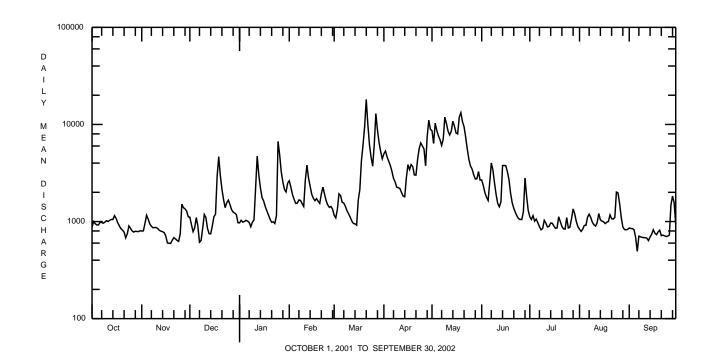
GAGE.--Water-stage recorder. Datum of gage is 733.36 ft above National Geodetic Vertical Datum of 1929. Prior to June 1, 1939, nonrecording gage at site 500 ft downstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated since January 1925 by Deep Creek Reservoir (station 03076000), since December 1942 by Youghiogheny River Lake (station 03077000) 58 mi upstream, and by several smaller reservoirs above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	878	798	1110	969	2630	1160	4990	8620	2680	1120	834	859
2	1000	801	929	1030	2260	1090	5320	6380	e2340	1050	792	847
3 4	949	954	788	986	1900	1340	4630	10300	e1980	1150	835	846
4	922	1160	860	1000	1690	1930	4190	8670	e1780	1010	914	823
5	923	1060	1100	1030	1540	1850	3780	7630	1650	1060	914	683
6	982	947	896	1010	1550	1580	3300	6970	2540	972	1110	493
7	979	895	613	979	1670	1550	2780	6090	4010	886	1190	707
8	961	863	637	883	1650	1430	2560	7050	3380	822	1100	697
9	987	868	854	985	1530	1290	2260	e11900	2480	847	982	687
10	1020	867	1180	1040	1430	1200	2230	e10200	1890	1030	926	683
11	1000	847	1100	2220	2670	1110	2190	8560	1530	964	898	682
12	1030	811	850	4710	3800	1010	1990	e7800	1420	880	977	674
13	1050	796	750	3030	2810	955	1830	e8480	1600	891	1210	637
14	1050	787	747	2220	2310	948	1800	10800	3780	965	1040	694
15	1150	768	901	1770	1910	918	2810	9550	3780	961	1010	741
16	1080	709	1120	1630	1740	1660	3850	e8160	3760	900	993	824
17	973	602	1190	1430	1640	2140	3430	e8000	3260	851	953	758
18	905	598	2910	1290	1720	4250	3860	11900	2710	860	985	733
19	845	595	4650	1170	1620	6170	3680	13200	1960	1120	1000	782
20	814	641	2990	1060	1540	9550	3020	10700	1560	998	1170	815
21	779	682	2160	982	1930	18100	3010	9460	1370	891	1070	716
22	680	664	1690	994	2260	9980	4350	7400	1240	841	1060	724
23	749	640	1390	955	1910	6180	5650	5580	1140	836	1100	714
24	901	625	1560	1150	1640	4610	6450	4370	1070	1100	2010	700
25	850	749	1660	6680	1480	3720	6000	3740	1050	859	1970	708
26	801	1510	1500	4870	1400	6210	5600	3470	1050	875	1530	724
27	779	1390	1330	3240	1430	12900	3760	3040	1260	1070	1110	1480
28	794	1350	1250	2550	1340	8740	e7500	2740	2790	1350	880	1830
29	791	1280	1220	2140		6500	e11100	2760	1830	1200	828	1560
30	788	1120	1180	2020		5260	e8910	3270	1300	1000	822	937
31	804		973	2490		4430		2670		884	831	
TOTAL	28214	26377	42088	58513	53000	129761	126830	229460	64190	30243	33044	24758
MEAN	910	879	1358	1888	1893	4186	4228	7402	2140	976	1066	825
MAX	1150	1510	4650	6680	3800	18100	11100	13200	4010	1350	2010	1830
MIN	680	595	613	883	1340	918	1800	2670	1050	822	792	493
(†)	-630	-346	+188	+686	+476	+1096	+417	-296	-190	-272	-633	-489


[†] Change in contents, equivalent in cubic feet per second, in Deep Creek Reservoir and Youghiogheny River Lake. Records of contents in Deep Creek Reservoir furnished by Reliant Energy. Records of contents in Youghiogheny River Lake furnished by U.S. Army Corps of Engineers. e Estimated.

03083500 YOUGHIOGHENY RIVER AT SUTERSVILLE, PA--Continued

STATISTIC	CS OF	MONTHLY	MEAN	DATA	FOR	WATER	YEAR	s 1	L921	- 2002	BY WA	TER	YEAR (WY)	(SINC	E REGULATION)		
	OCT	NOV	,	DEC		JAN		FEE	3	MAR	AP	R	MAY		JUN	JUL	AUG	3	SEP
MEAN MAX (WY) MIN (WY)	1505 7006 1955 107 1924	2098 5818 1922 209 1923		3550 9373 1973 412 1999		3936 8488 1974 611 1925	9 1	570 630 939 716 934)) 5	5887 13720 1936 1539 1990	493 1023 194 163 192	0 0 7	3671 8012 1996 1012 1982		2270 7318 1941 585 1925	1558 4853 1985 614 1942	1458 5703 1956 309 1922	7 5	1354 6382 1971 185 1922
SUMMARY S	STATI	STICS		FOI	R 200	1 CAL	ENDAR	YE	EAR	I	OR 200	2 W.	ATER YE	AR		WATER YEARS	192	L -	2002
ANNUAL ME	EAN	L MEAN				3901 2339	† +	68			84647 231		† -2			3061 4537			1996
LOWEST AN	NUAL DAILY	MEAN MEAN			1	2400		an			1810		Mar			1496 79000			1925 1936
LOWEST DA ANNUAL SE MAXIMUM E	EVEN-	DAY MINIM	IUM			595 632		ov ov			49 63 2170	2	Nov	<u>6</u> 17 21		57 64 a 108000	Sep	24	1922 1922 1954
MAXIMUM E	VEOUS	LOW FLOW	1									4.1	3 Mar	21		b 32.50 c 57			1954 1922
10 PERCEN 50 PERCEN 90 PERCEN	T EX	CEEDS CEEDS CEEDS				5680 1460 858					604 118 77	0				6800 1910 698			

[†] Change in contents, equivalent in cubic feet per second, in Deep Creek Reservoir and Youghiogheny River Lake. Records of contents in Deep Creek Reservoir furnished by Reliant Energy. Records of contents in Youghiogheny River Lake furnished by U.S. Army Corps of Engineers.

a From floodwark.

b From floodmark.

c Minimum observed.

03083500 YOUGHIOGHENY RIVER AT SUTERSVILLE, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.—Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	AGENCY	DIS- CHARGE,			PH					MAGNE-	ANC	
Time	ANA- LYZING SAMPLE (CODE NUMBER) (00028)	INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
1200	9813	2200	40	8 1	7 4	257	11 8	80	21 7	6.2	28	<.2
1200	9813	2050	40	7.9	7.2	295	21.2	110	30.6	8.7	34	<.2
1130	9813	1290	40	8.0	7.5	270	23.0	88	24.5	6.4	30	<.2
SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	DEG. C, DIS-	SUS-	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	CYANIDE AMEN- ABLE TO CHLOR- INATION UNFLTRD (MG/L) (00722)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)
68.6	162	56	<.020	.92	<.040	1.2	.01	.020	1.6	<10	<1.00	420
86.1	222	14	<.020	.74	< .040	.94	.02	.030	2.5	<10	<1.00	850
71.2	194	6	<.020	.78	<.040	.94	.02	.020	2.4	<10	<1.00	810
			Date APR 2002 11 JUN 06 AUG	ERABLI (µG/L AS PB	NESE, TOTAL - RECOV E ERABL (μG/L) AS MN	NICKEL TOTAL RECOV E ERABL (µG/L) AS NI	TOTAL FECOV FE ERABL (µG/I) AS ZI	L V- LE PHENO: L TOTAI N) (µG/L	L)			
	1200 1200 1130 SULFATE DIS- SOLVED (MG/L AS SO4) (00945) 68.6 86.1	Time (CODE NUMBER) (00028) 1200 9813 1200 9813 1130 9813 1130 9813 RESIDUE AT 105 DIS-DEG. C, SOLVED DIS-(MG/L AS SO4) (MG/L) (00945) (00515) 68.6 162 86.1 222	Time (CODE PER NUMBER) SECOND (00028) (00061) 1200 9813 2200 1200 9813 2050 1130 9813 1290 RESIDUE TOTAL TOTAL SULFATE AT 105 DEG. C, DEG. C, SOLVED DIS-SOLVED DIS-SOLVED PENDED AS SO4) (MG/L) (MG/L) (00945) (00515) (00530) 68.6 162 56 86.1 222 14	Time (CODE NUMBER) SECOND (CODES (82398) 1200 9813 2200 40 1200 9813 2050 40 1130 9813 1290 40 RESIDUE RESIDUE TOTAL AT 105 DEG. C, DEG. C, DEG. C, SOLVED DIS- (MG/L) (MG/L) (AS N) (00945) (00515) (00530) (00610) 68.6 162 56 <.020 86.1 222 14 <.020 71.2 194 6 <.020 Date APR 2002 11 JUN	Time (CODE NUMBER) SECOND CODES (MG/L) (00028) (00061) (82398) (00300) 1200 9813 2200 40 8.1 1200 9813 2050 40 7.9 1130 9813 1290 40 8.0 RESIDUE TOTAL NITRO- SOLVED DEG. C, DEG. C, SOLVED DIS- SUS- (MG/L) (MG/L) AS N) AS N) (00945) (00515) (00530) (00610) (00620) 68.6 162 56 <.020 .74 71.2 194 6 <.020 .78 APR 2002 11 <1.0 JUN	Time (CODE NUMBER) SECOND CODES (MG/L) UNITS) (00028) (00061) (82398) (00300) (00400) 1200 9813 2200 40 8.1 7.4 1200 9813 2050 40 7.9 7.2 1130 9813 1290 40 8.0 7.5 RESIDUE TOTAL SULFATE AT 105 AT 105 DIS-DEG. C, DEG. C, SOLVED DIS-SUS-(MG/L) TOTAL (MG/L) AS SO4) (MG/L) (MG/L) AS N) AS N) AS N) (00945) (00515) (00530) (00610) (00620) (00615) 68.6 162 56 <.020 .92 <.040 86.1 222 14 <.020 .78 <.040 71.2 194 6 <.020 .78 <.040 MANGAL RECOVER RESIDUE (MG/L) AS PB) AS MN (01051) (01055) APR 2002 11 <1.0 90 APR 2002 11 <1.0 90	Time (CODE PER NUMBER) SECOND (CODES (MG/L) UNITS) (LIS/CM) (00028) (00061) (82398) (00300) (00400) (00095) 1200 9813 2200 40 8.1 7.4 257 1200 9813 2050 40 7.9 7.2 295 1130 9813 1290 40 8.0 7.5 270 RESIDUE RESIDUE RESIDUE RESIDUE DIS- DEG. C, DEG. C, AMMONIA NITRO- NITRO- SOLVED DIS- SUS- TOTAL TOTAL TOTAL TOTAL (MG/L SOLVED PENDED (MG/L (MG/	Time (CODE NUMBER) SECOND (CODES (MG/L) UNITS) (μS/CM) (DEG C) (MG/L) (UNITS) (μS/CM) (DEG C) (MG/L) (UNITS) (μS/CM) (DEG C) (00000) (00000) (00000) (00000) (00010)	Time (CODE PER NUMBER) SECOND (CODES (MG/L) UNITS) (µS/CM) (DEG C) CACO3) (00028) (00061) (82398) (00300) (00400) (00095) (00010) (00990) (00990) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00090) (00095) (00010) (00990) (00990) (00090) (00095) (00010) (00990) (00990) (00095) (00010) (00990) (00095) (00010) (00990) (00095) (00095) (00010) (00990) (00090) (00095) (00095) (000990) (000990) (000990) (000990) (000990) (000990) (000990) (000990) (000990) (000990) (000990) (000990) (000990) (000990) (00990	Time (CODE NUMBER) SECOND CODES (MG/L) UNITS) (MS/CM) (DEC) CACO3) AS CA (MG/L) (00028) (00061) (00061) (00300) (00400) (00400) (00095) (00010) (00900) (00916) 1200 9813 2200 40 8.1 7.4 257 11.8 80 21.7 1200 9813 2050 40 7.9 7.2 295 21.2 110 30.6 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 40 8.0 7.5 270 23.0 88 24.5 1130 9813 1290 120 120 120 120 120 120 120 120 120 12	Time (CODE NUMBER) SECOND CODES (MG/L) (MISS) (µS/M) (DEG C) CACO33 AS CA) AS MG (MG/L) (MG/L	Time (CODE PER METHOD, SOLVED (ARD) ANCE (MACK) UNITS) (MACK) (MA

03085000 MONONGAHELA RIVER AT BRADDOCK, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°23'28", long 79°51'30", Allegheny County, Hydrologic Unit 05020005, near right bank on river guide wall 300 ft upstream from dam at lock 2 at Braddock, 1,700 ft downstream from Turtle Creek, and 11.2 mi upstream of confluence with Allegheny River.

DRAINAGE AREA.--7,337 mi².

WATER-DISCHARGE RECORDS

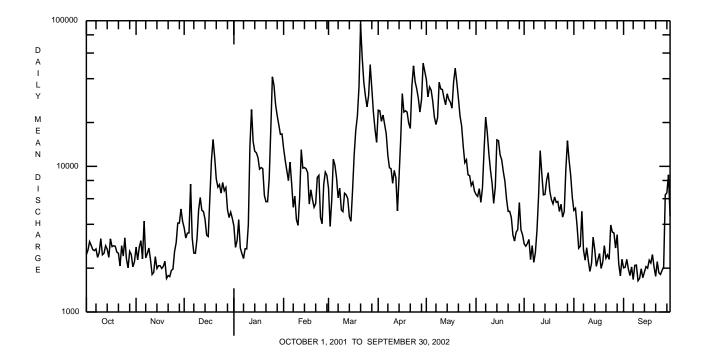
PERIOD OF RECORD.--October 1938 to current year. Monthly discharge only for some periods, published in WSP 1305.

GAGE.--Water-stage recorder and fixed-crest concrete dam control with streamward lock chamber usable as floodway during high flow since 1951. Datum of gage is 709.66 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers benchmark). Prior to Aug. 13, 1951, at site 700 ft upstream, and Aug. 13, 1951 to Nov. 8, 1990 at present site at datum 2.50 ft lower.

REMARKS.--Records fair. Many estimated daily discharges due to construction of new lock and dam. Flow regulated by locks and hydroelectric plants, since January 1925 by Deep Creek Reservoir (station 03076000), since 1926 by Lake Lynn, since May 1938 by Tygart Lake (station 0305500), since December 1942 by Youghiogheny River Lake (station 03077000), and since April 1989 by Stonewall Jackson Lake, combined capacity, 779,000 acreft. Figures of daily discharge include slight diversion from Beaver Run Reservoir in the Kiskiminetas River Basin to the borough of Jeannette in the Monongahela River Basin. U.S. Army Corps of Engineers satellite telemetry at station. Other data for this station can be found on pages 189-190.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Mar. 18, 1936 reached a stage of 38.8 ft from floodmarks, discharge, 210,000 ft³/s.


						DAILY M	EAN VALUI	ES				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	2480	2790	3780	e3890	13300	7070	24300	39600	6410	2940	e4990	2010
2	2660	2280	3220	2780	11000	3870	24100	30000	6220	2830	e5150	2030
3	3040	2790	3480	e3090	9360	e5820	20400	35100	7020	2950	e3910	2300
4	2870	3090	3490	e4300	7980	e11200	22500	33400	e5670	3150	e2740	1970
5	2680	2320	7560	2750	10700	e10200	19400	28000	7120	2290	e2830	1780
6	2640	4210	3220	2520	7660	e8350	16700	21900	12900	2860	e4910	2040
7	2710	2350	2540	2330	5240	6080	11900	19400	21800	2190	2670	1670
8	2370	2520	2530	2720	6240	e7090	9780	21500	17100	e2560	2270	2090
9 10	2560 3190	2750 2280	3190 5020	2710 e3960	4300 3940	5020 e4890	9630 7660	37800 34000	12200 9410	e3640 e6270	2760 2260	2100 1640
		2200		63900	3940	E4090						
11	2470	1810	6120	e13800	6110	e6540	9390	33700	7660	e12800	1900	1700
12	2530	1870	4990	24600	13000	6380	8340	29500	5580	8940	2150	1980
13	2850	2400 1990	e4900	14800	9730 9810	e6000	4950	26500	e7200	6370	3260	1720
14 15	2700 2370	2080	e4330 e3370	12700 12400	9630	4510 e4200	8520 e15200	31500 28800	15200 15000	e6420 e8020	2700 2060	1880 2050
15	2370	2000	e3370	12400	9030	E4200	E13200	20000	13000	60020	2000	
16	3180	2080	3300	11500	9060	6870	31600	27500	12000	9040	2290	2000
17	2810	1990	e6100	9580	5510	12000	23600	25100	e11100	e6750	2520	2270
18	2850	2060	11000	9810	6900	17700	24100	37900	e9200	e5910	1990	2170
19 20	2830 2580	2230 1700	15300 11600	9640 6310	5920 5240	22100 e35000	23600 19800	47200 38000	e7900 e5980	e5530 e6160	2200 2850	2480 2040
20	2500	1700	11000	0310	5240	633000	19000		63300	60100		
21	2530	1780	8210	e5720	5560	e94600	e18200	29300	e4910	e5660	2340	1760
22	2070	1750	e7200	e5720	8390	e56100	e35700	22200	e4910	e5740	2470	2220
23	2850	1930	e7500	e8190	8680	e37900	e49000	19000	e4450	e4900	2300	1860
24 25	2420 3230	1970 2600	e6550 e7750	e17800 e41200	4450 4040	30500 25600	38200 34100	13800 10600	e3380 e3070	e5490 e4480	3960 3540	1810 1930
	3230	2000	E1130	C41200		23000	34100	10000	63070	64400	3340	
26	2310	2990	e6800	e36000	7500	30500	29400	11100	e3530	e4900	3490	2040
27	2010	4080	e7150	26500	9140	49900	23600	8750	e3680	e9540	2750	6370
28 29	2610 2480	4080 5100	e5050	22300	8670	34300 23500	e28700 51200	8640 7380	5650 3670	e15000 11100	3390 2130	6590 8750
30	2040	4200	e4450 e4850	19300 16600		18000	45000	7380	3390	8730	1770	4550
31	2220		e4400	16700		14600	43000	6780	3390	6160	2300	4330
TOTAL	81140	78070	178950	372220	217060	606390	688570	771740	243310	189320	88850	77800
MEAN	2617 3230	2602	5773 15300	12010	7752 13300	19560	22950	24890	8110	6107	2866	2593
MAX MIN	2010	5100 1700	2530	41200 2330	3940	94600 3870	51200 4950	47200 6780	21800 3070	15000 2190	5150 1770	8750 1640
CFSM	0.36	0.35	0.79	1.64	1.06	2.67	3.13	3.39	1.11	0.83	0.39	0.35
IN.	0.41	0.40	0.91	1.89	1.10	3.07	3.49	3.91	1.23	0.96	0.45	0.39
STATIS	TICS OF M	MONTHLY MI	EAN DATA	FOR WATER	YEARS 193	39 - 2002	, BY WATE	R YEAR (W	()			
MEAN	5295	9185	15310	17080	20700	23890	18860	14230	9197	6321	5807	4619
MAX	23130	42130	37600	36150	43120	54500	39180	40310	30240	15620	23720	18290
(WY)	1980	1986	1973	1952	1956	1963	1940	1996	1981	1958	1956	1971
MIN	1200	971	2748	3389	6387	8042	6473	3352	2107	1765	1531	1005
(WY)	1954	1954	1954	1977	1954	1969	1971	1982	1965	1966	1957	1946

e Estimated.

03085000 MONONGAHELA RIVER AT BRADDOCK, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR	YEAR	FOR 2002 WA	IER YEAR	WATER YEARS	1939 -	- 2002
ANNUAL TOTAL	3608380		3593420				
ANNUAL MEAN	9886		9845		12490		
HIGHEST ANNUAL MEAN					18440		1996
LOWEST ANNUAL MEAN					6946		1954
HIGHEST DAILY MEAN	64600 Ја	ın 31	a 94600	Mar 21	188000	Jan 20	1996
LOWEST DAILY MEAN	1700 No	v 20	1640	Sep 10	703	Sep 3	3 1946 b
ANNUAL SEVEN-DAY MINIMUM	1920 No	v 18	1840	Sep 7	839	Nov 17	7 1953
MAXIMUM PEAK FLOW			a 105000	Mar 21	c 210000	Jan 20	1996
MAXIMUM PEAK STAGE			a 20.10	Mar 21	d 29.07	Jan 20	1996
ANNUAL RUNOFF (CFSM)	1.35		1.34		1.70		
ANNUAL RUNOFF (INCHES)	18.30		18.22		23.13		
10 PERCENT EXCEEDS	23400		26500		29100		
50 PERCENT EXCEEDS	5980		5530		7640		
90 PERCENT EXCEEDS	2480		2080		2250		

- a Based on river summation.
 b Also Sept. 4, 22, 1946.
 c From rating curve extended above 183,000 ft³/s.
 d Maximum gage height, 31.39 ft, June 24, 1972 (backwater from Allegheny River). Datum then in use.

03085000 MONONGAHELA RIVER AT BRADDOCK, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

JUN 05...

AUG 01... <1.0

<1.0

140

110

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

					,								
Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
APR 2002 10	0930	9813	8040	40	7.0	7.5	172	11.8	170	45.0	13.6	10	
JUN 05	0845	9813	6880	40	8.5	7.7	347	23.0	120	34.6	9.4	42	<.2
AUG 01	0815	9813	4280	40	7.3	7.5	181	23.0	110	29.5	8.3	30	<.2
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	CYANIDE AMEN- ABLE TO CHLOR- INATION UNFLTRD (MG/L) (00722)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)
APR 2002 10	146	398	6	.210	.98	<.040	1.4	<.01	<.010	1.3	<10		480
JUN 05	95.8	194	12	.060	.73	<.040	.95	.02	.020	2.0	<10	1.65	510
AUG 01	104	278	4	.030	.78	<.040	1.0	.01	.030	2.4	<10	1.42	420
				Date APR 2002	LEAD, TOTAL RECOV ERABL (µG/L AS PB (01051	- RECOV E ERABL: (μG/L) AS MN	NICKEI TOTAI - RECOV E ERABI (µG/I) AS NI	TOTAL I RECOV LE ERABL (µG/I L) AS ZI	L V- LE PHENO L TOTA N) (µG/L	L)			

100

10

<5

<5

< 50

< 50

LAKES AND RESERVOIRS IN MONONGAHELA RIVER BASIN

03055500 TYGART LAKE.--Lat 39°18'50", long 80°02'00", Taylor County, W. Va., Hydrologic Unit 05020001, at dam on Tygart Valley River, 2.2 mi upstream from Threefork Creek, and 2.4 mi upstream from Grafton, W. Va. DRAINAGE AREA, 1,184 mi². PERIOD OF RECORD, April 1938 to current year. Prior to October 1960 published as "Tygart Reservoir". GAGE, water-stage recorder. Datum of gage is at sea level.

REMARKS.--Lake is formed by concrete gravity dam completed and accepted February 1938, storage began May 15, 1938. Capacity, 285,000

REMARKS.--Lake is formed by concrete gravity dam completed and accepted February 1938, storage began May 15, 1938. Capacity, 285,000 acre-ft (from sedimentation resurvey made in 1959) between elevations 991.5 ft (sill of valves) and 1,167.0 ft (crest of spillway) above sea level. Dead storage, 2,700 acre-ft. Figures given herein represent total contents. Conservation pool elevation is 1,010.0 ft and water below elevation 991.5 ft cannot be withdrawn. Lake is used for flood control, for supplementary supply for navigation on Monongahela River during periods of low flow, and for recreation

COOPERATION .-- Records furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 255,680 acre-ft, Nov. 7, 1985, elevation, 1,156.69 ft; minimum since October 1939, 8,330 acre-ft, Jan. 25, 1940, elevation, 1,005.15 ft. (Period of record available Oct. 1939 through Dec. 1999.) EXTREMES FOR CURRENT YEAR.--Records not furnished to determine extremes for current year.

03076000 DEEP CREEK RESERVOIR.--Lat 39°30'34", long 79°23'28", Garrett County, Md., Hydrologic Unit 05020006, on Deep Creek at dam, 1.8 mi upstream from mouth, and 7 mi north of Oakland, Md. DRAINAGE AREA, 64.7 mi². PERIOD OF RECORD, July 1925 to current year. Prior to October 1950, monthend contents published in WSP 1305, and October 1950 to September 1955, monthend contents published in WSP 1385. GAGE, water-stage recorder at right end of spillway. Datum of gage is at sea level (unadjusted).

REMARKS.—Reservoir is formed by an earthfill dam completed January 1925, with storage beginning at that time. Usable capacity, 92,975 acre-ft between elevations 2,425 ft (top of intake to outlet tunnel) and 2,462 ft (crest of spillway). Dead storage, 13,085 acre-ft. Figures given herein represent usable contents. Reservoir is used for hydroelectric power.

COOPERATION.--Records furnished by Pennsylvania Electric Co.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 93,800 acre-ft, July 14, 1990, elevation, 2,462.25 ft; minimum observed, 11,760 acre-ft, Sept. 30, 1925, elevation, 2,433.45 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 90,000 acre-ft, Apr. 29, elevation, 2,461.20 ft; minimum 70,500 acre-ft, Nov. 19, elevation, 2,455.80 ft.

03077000 YOUGHIOGHENY RIVER LAKE.--Lat 39°47'56", long 79°22'06", Somerset County, Hydrologic Unit 05020006, remote control recorder at control house at dam, 1.2 mi upstream from Confluence, Pa., since June 1951. Water- stage recorder and transmitter at lat 39°45'21", long 79°24'00", at bridge on U.S. Highway 40, 500 ft upstream from Stuck Hollow Run, 0.6 mi upstream from Tub Run, on Youghiogheny River, 7.5 mi upstream from Youghiogheny River Dam, Pa. DRAINAGE AREA, 434 mi². PERIOD OF RECORD, October 1943 to current year. Prior to October 1970 published as "Youghiogheny River Reservoir." GAGE, water-stage recorder. Datum of gage is at sea level. Prior to Mar. 9, 1948, non-recording gage at dam at same datum. Mar. 9, 1948 to present, water-stage recorder also at transmitter site at datum.

REMARKS.--Lake is formed by a rock-faced earthfill dam with uncontrolled side channel spillway. Storage began during construction and lake acted as a retention basin from December 1942 to December 1947. Dam became fully operational in January 1948. Lake first reached minimum pool elevation, 1,344.0 ft (capacity, 5,230 acre-ft) in December 1942. Capacity 254,000 acre-ft between elevations 1,319.50 ft (invert at intake to outlet tunnel) and 1,470.00 ft (full pool). Winter low-water pool elevation is 1,419.0 ft, capacity, 103,000 acre-ft. Summer pool normally occurs during period Mar. 15 to Apr. 15. Depletion of low-water storage for Youghiogheny River flow augmentation occurs normally during the period July through November. Figures given herein represent total contents. Lake is used for flood control, for low-flow augmentation of Youghiogheny River and downstream rivers, and for recreation.

COOPERATION .-- Records furnished by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 222,610 acre-ft, May 16, 1967, elevation, 1,460.95; minimum (after dam became fully operational), 3,700 acre-ft, Oct. 31, 1946, elevation 1,340.30 ft. (Period of record available Oct. 1946 through Dec. 1999.) EXTREMES FOR CURRENT YEAR.--Records not furnished to determine extremes for current year.

Lakes and Reservoirs in Monongahela River Basin--Continued

			Change in			Change in
		Contents			Contents	contents
	Elevation	(acre-	(equivalent	Elevation	(acre-	(equivalen
Date	(feet)	feet)	in ft ³ /s)	(feet)	feet)	in ft ³ /s)
	0305	5500 Tygart l	Lake	<u>03076000 I</u>	Deep Creek Res	servoir
Sept. 30	1,083.06	93,140		2,457.40	76,100	
Oct. 31	1,056.47	55,470	-612	2,456.30	72,200	-3,900
Nov. 30	1,038.44	35,098	-342	2,455.80	70,500	-1,700
Dec. 31	1,037.29	33,940	-19	2,455.80	70,500	0
CAL YR 2001			-6.8			+400
an. 31	1,036.96	33,610	-5.4	2,457.60	76,800	+6,300
Feb. 28	1,037.98	34,630	+18	2,457.80	77,500	+700
Mar. 31	1,087.78	100,780	+1,080	2,459.50	83,700	+6,200
Apr. 30	1,121.60	165,110	+1,080	2,461.20	90,000	+6,300
May 31	1,096.38	115,450	-808	2,460.90	88,900	-1,100
une 30	1,094.26	111,710	-63	2,460.10	85,900	-3,000
uly 31	1,096.75	116,110	+72	2,459.30	83,000	-2,900
Aug. 31	1,084.20	94,960	-344	2,458.20	78,900	-4,100
Sept. 30	1,069.76	73,170	-366	2,457.40	76,100	-2,800
-r						
•			-28			0
WTR YR 2002		oughiogheny				0
VTR YR 2002		oughiogheny 74,840		-		0
Sept. 30	03077000 Yo 1,406.97 1,385.35	74,840 39,770	River Lake -570			0
Sept. 30	03077000 Yo 1,406.97 1,385.35 1,368.14	74,840 39,770 20,930	River Lake570 -317			0
Sept. 30	03077000 Yo 1,406.97 1,385.35	74,840 39,770	River Lake -570			0
Sept. 30	03077000 Yo 1,406.97 1,385.35 1,368.14	74,840 39,770 20,930	River Lake570 -317		-	0
VTR YR 2002	03077000 Ye 1,406.97 1,385.35 1,368.14 1,379.42	74,840 39,770 20,930 32,510	River Lake570 -317 +188			0
ept. 30	03077000 Yo 1,406.97 1,385.35 1,368.14 1,379.42	74,840 39,770 20,930 32,510	River Lake570 -317 +188			0
ept. 30	03077000 Yo 1,406.97 1,385.35 1,368.14 1,379.42	74,840 39,770 20,930 32,510 68,420	River Lake570 -317 +188 -29			0
VTR YR 2002	03077000 Yo 1,406.97 1,385.35 1,368.14 1,379.42 1,403.58 1,416.25	74,840 39,770 20,930 32,510 68,420 94,110	River Lake570 -317 +188 -29 +584 +463			0
VTR YR 2002	03077000 Yo 1,406.97 1,385.35 1,368.14 1,379.42 1,403.58 1,416.25 1,440.23	74,840 39,770 20,930 32,510 68,420 94,110 155,290	River Lake570 -317 +188 -29 +584 +463 +995	-7		0
ept. 30	03077000 Yo 1,406.97 1,385.35 1,368.14 1,379.42 1,403.58 1,416.25 1,440.23 1,446.55	74,840 39,770 20,930 32,510 68,420 94,110 155,290 173,800	River Lake570 -317 +188 -29 +584 +463 +995 +311			0
CAL YR 2001 an. 31 reb. 28 Mar. 31 Apr. 30 May 31 une 30	03077000 Yo 1,406.97 1,385.35 1,368.14 1,379.42 1,403.58 1,416.25 1,440.23 1,446.55 1,440.73	74,840 39,770 20,930 32,510 68,420 94,110 155,290 173,800 156,720	River Lake570 -317 +188 -29 +584 +463 +995 +311 -278			0
Sept. 30	03077000 Yo 1,406.97 1,385.35 1,368.14 1,379.42 1,403.58 1,416.25 1,440.23 1,446.55 1,440.73 1,437.78	74,840 39,770 20,930 32,510 68,420 94,110 155,290 173,800 156,720 148,360	River Lake570 -317 +188 -29 +584 +463 +995 +311 -278 -140			0
PORT YR 2002	03077000 Yo 1,406.97 1,385.35 1,368.14 1,379.42 1,403.58 1,416.25 1,440.23 1,446.55 1,440.73 1,432.72	74,840 39,770 20,930 32,510 68,420 94,110 155,290 173,800 156,720 148,360 134,500	River Lake570 -317 +188 -29 +584 +463 +995 +311 -278 -140 -225			0

CHARTIERS CREEK BASIN

03085500 CHARTIERS CREEK AT CARNEGIE, PA

LOCATION.--Lat 40°24'02", long 80°05'48", Allegheny County, Hydrologic Unit 05030101, on left bank 100 ft downstream from Hammond Street bridge, 0.3 mi downstream from Robinson Run, 0.8 mi upstream from Campbells Run, and 8.9 mi upstream from mouth.

DRAINAGE AREA.--257 mi².

Discharge

Gaga Haight

PERIOD OF RECORD.—October 1919 to September 1933, October 1940 to current year. Published as "at Crafton" October 1971 to September 1975. Monthly discharge only for some periods, published in WSP 1305. June 1915 to September 1919 (gage heights and discharge measurements only) in reports of Water Supply Commission of Pennsylvania.

GAGE.--Water-stage recorder and concrete weir control. Datum of gage is 755.45 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 15, 1931, nonrecording gage at site 0.5 mi downstream at different datum. Jan. 8, 1932 to Sept. 30, 1933, nonrecording gage at site 1.0 mi downstream at different datum. Nov. 20, 1940 to Aug. 18, 1967, water-stage recorder at site 400 ft upstream at datum 1.00 ft higher. Oct. 1, 1971 to Sept. 30, 1975, nonrecording gage at site 4.6 mi downstream, at datum 725.99 ft above National Geodetic Vertical Datum of 1929.

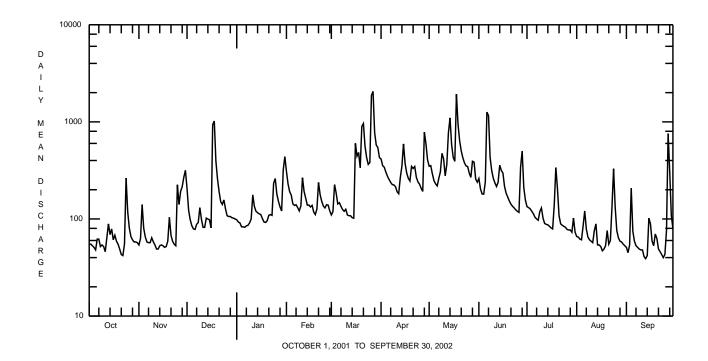
REMARKS.—Records good except those for estimated daily discharges, which are poor. Some regulations at low flow by mine drainage, reservoirs, and industrial usage above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

Discharge Gage Height

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Sept. 2, 1912 reached a discharge of 20,000 ft³/s, from U.S. Army Corps of Engineers.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 2,500 ft³/s and maximum (*):

Б.		æ.		scharge ft ³ /s	Gage Heig	ht		Б.,		æ.	Di	ischarge ft ³ /s	Gage Heigh	t
Date Mar.		Time 2100		π ⁻ /s 4,410	(ft) *7.40			Date May 1		Time 1200		11°/s 2,700	(ft) 5.31	
Mar.	20	2100		4,410	" / . 40			мау 1	LO	1200	2	2,700	5.31	
				DISCHA	ARGE, CUBIC	FEET PER		TER YEAR O		R 2001 T	O SEP	TEMBER 20	002	
							DAILY M	EAN VALUES	S					
DAY	OCT		NOV	DEC	JAN	FEB	MAR	APR	MAY		JUN	JUL	AUG	SEP
1	55		54	207	e98	309	110	415	349		261	134	66	51
2	55		63	123	e93	229	119	354	354		204	131	65	45
3	53		141	98	91	191	226	341	291		181	127	62	54 208
4 5	51 48		80 65	85 79	83 83	176 143	185 143	304 275	248 230		180 239	120 113	61 85	208 75
5	40		65	19	0.3	143	143	275	230		239	113	65	75
6	62		58	78	e82	138	147	255	219		1260	104	121	59
7	62		57	88	e85	140	135	238	261		1160	100	79	53
8	52		57	92	e86	131	125	226	306		430	97	65	51
9 10	54 52		64 58	131 99	91 e100	121 136	120 126	224 215	474 417		315 262	119	61 59	49 48
10	52		58	99	e100	130	120	215	41/		202	130	59	48
11	46		54	82	177	266	110	191	278		235	102	57	48
12	64		49	82	e135	192	108	182	365		216	90	76	41
13	89		49	102	e120	164	108	267	771		239	88	89	39
14	69		53	100	e116	139	103	350	1100		358	87	54	42
15	79		54	98	e113	139	102	593	584		315	84	54	102
16	61		53	81	111	133	602	373	430		297	81	52	89
17	68		51	936	101	138	443	297	392		216	79	47	59
18	59		52	1020	93	118	484	262	1930		184	140	49	53
19	55		59	395	92	111	336	246	947		168	339	53	70
20	49		104	259	96	127	898	348	638		153	205	76	63
21	43		68	191	109	238	962	331	503		142	108	55	49
22	42		59	151	111	178	561	347	427		135	89	60	46
23	55		55	141	109	152	429	269	379		130	86	133	43
24	264		53	157	233	136	365	241	352		124	84	329	40
25	119		225	127	261	130	381	228	346		120	82	132	43
26	81		141	108	181	140	1870	207	297		117	78	76	76
27	66		192	e106	152	139	2060	192	268		341	77	64	758
28	61		215	e106	133	121	775	784	393		501	77	59	310
29	58		269	103	121		577	593	385		210	73	58	109
30	58 57		317	102	320		543	406	258		157	102	55	79
31	5 /			e100	439		428		239			73	53	
TOTAL	2087		2869	5627	4215	4475	13681	9554	14431		8850	3399	2405	2852
MEAN	67.3		95.6	182	136	160	441	318	466		295	110	77.6	95.1
MAX	264		317	1020	439	309	2060	784	1930		1260	339	329	758
MIN	42		49	78	82	111	102	182	219		117	73	47	39
CFSM	0.26		0.37	0.71	0.53	0.62	1.72	1.24	1.81		1.15	0.43	0.30	0.37
IN.	0.30		0.42	0.81	0.61	0.65	1.98	1.38	2.09		1.28	0.49	0.35	0.41
QTATTCT	ידמפ חיי	MONT	UT.V MT	גייברו ואבי	EUD MYLED	VEADC 10	20 - 2002	, BY WATER	VEND (WV)				
PIMITEL	LCD OF	MONT	ME	WIN DUIN	FOR WAIER	TEMES IS	20 - 2002	, DI WAIER	TEAR (n1)				
MEAN	114		195	283	349	453	578	469	349		236	175	142	127
MAX	393		1400	1003	986	1255	1361	999	887		694	951	960	757
(WY)	1980		1986	1951	1924	1926	1945	1961	1924		1980	1928	1980	1926
MIN	31.3		35.5	36.5	37.8	80.9	101	154	92.7		46.5	30.0	28.4	24.1
(WY)	1933		1931	1931	1931	1964	1969	1925	1926		1926	1926	1930	1927


e Estimated.

CHARTIERS CREEK BASIN

03085500 CHARTIERS CREEK AT CARNEGIE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAT	ER YEAR	WATER YEARS	1920 - 2002	
ANNUAL TOTAL	78191		74445				
ANNUAL MEAN	214		204		288		
HIGHEST ANNUAL MEAN					527	1928	
LOWEST ANNUAL MEAN					132	1954	
HIGHEST DAILY MEAN	2190	Jan 31	2060	Mar 27	11100	Aug 6 1956	
LOWEST DAILY MEAN	42	Oct 22	39	Sep 13	16	Aug 9 1926	
ANNUAL SEVEN-DAY MINIMUM	52	Nov 12	45	Sep 8	19	Sep 26 1927	
MAXIMUM PEAK FLOW			4410	Mar 26	a 13500	Aug 6 1956	
MAXIMUM PEAK STAGE			7.40	Mar 26	b 16.37	Aug 6 1956	
INSTANTANEOUS LOW FLOW			38	Sep 12-14,24	c 16	Aug 9 1926	d
ANNUAL RUNOFF (CFSM)	0.83		0.79		1.12		
ANNUAL RUNOFF (INCHES)	11.32		10.78		15.24		
10 PERCENT EXCEEDS	452		410		614		
50 PERCENT EXCEEDS	138		120		160		
90 PERCENT EXCEEDS	57		53		56		

- a From rating curve extended above 13,100 ft³/s.
 b Site and datum then in use.
 c Minimum observed.
 d Also at times in September 1932.

MONTOUR RUN BASIN

03085956 MONTOUR RUN AT SCOTT STATION NEAR IMPERIAL, PA

LOCATION.--Lat 40°27'23", long 80°10'34", Allegheny County, Hydrologic Unit 05030101, on left bank at upstream side of privately owned single span bridge on south side of Montour Run Road, SR3072, 0.3 mi downstream from McCalrens Run, and 0.9 mi upstream from Trout Run.

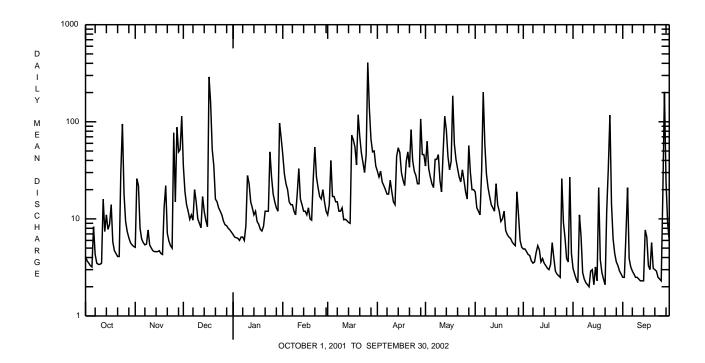
DRAINAGE AREA.--25.4 mi².

PERIOD OF RECORD.--August 2000 to current year.

GAGE.--Water-stage recorder. Datum of gage is 850.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1 2 3 4 5	4.1 3.7 3.5 3.3 3.2	5.1 26 22 8.0 6.2	35 19 14 12 9.9	6.9 e6.5 e6.4 e6.3 6.0	46 29 23 20 15	11 14 40 17	31 27 31 24 22	35 63 33 27 23	19 13 12 11 31	4.9 4.9 4.6 4.3 4.2	3.1 2.7 2.4 2.2	2.5 2.5 6.9 21 3.9	
6 7 8 9 10	8.3 4.3 3.5 3.4 3.4	5.7 5.4 5.5 7.7 5.4	11 9.7 20 15 10	6.5 e6.5 e6.0 8.5 28	14 14 12 11	15 15 12 12 13	20 18 18 25 19	21 41 41 46 25	202 59 29 21 17	3.7 3.5 3.6 4.5 5.3	6.6 2.8 2.4 2.2 2.1	3.2 2.9 2.7 2.5 2.5	
11 12 13 14 15	3.5 16 7.4 11 7.8	5.0 4.7 4.6 4.6 4.6	9.0 8.1 17 12 9.7	23 15 13 11 12	33 16 14 12 12	9.8 9.9 9.6 9.2 9.0	15 14 44 54 48	19 49 114 82 44	14 13 12 23 14	4.8 3.6 3.9 3.5 3.3	2.0 2.9 3.0 2.1 3.2	2.4 2.3 2.3 2.3 7.7	
16 17 18 19 20	8.8 14 5.8 4.7 4.4	4.7 4.4 4.3 13 22	8.3 290 158 52 35	9.4 8.8 7.8 7.5 8.4	11 13 10 9.7 26	73 65 55 36 118	30 25 22 39 49	32 39 185 59 41	12 9.4 10 12 7.6	3.1 3.0 3.4 5.7 4.0	2.3 21 3.8 2.8 2.4	6.5 3.3 3.0 5.7 3.1	
21 22 23 24 25	4.1 4.1 30 95 18	7.1 5.9 5.3 5.0 77	e16 e15 e13 e12 e11	12 12 12 49 27	55 27 21 17 16	71 48 38 30 46	34 83 40 31 28	33 27 24 32 25	6.9 6.5 6.3 5.8 5.5	2.9 2.7 2.6 2.5 26	2.1 12 33 117 14	3.0 2.9 2.5 2.4 2.3	
26 27 28 29 30 31	9.4 7.4 6.4 5.7 5.4 5.2	15 88 49 52 114	e9.5 e8.7 e8.5 e8.0 e7.7 e7.3	18 15 13 12 97 68	20 15 12 	406 136 66 49 50 35	23 23 107 46 46	19 16 57 30 20	5.3 19 11 6.0 5.1	9.2 6.4 3.9 3.6 27 4.4	6.2 4.4 3.6 3.3 2.9 2.7	18 203 24 9.1 5.9	
TOTAL MEAN MAX MIN	314.8 10.2 95 3.2	587.2 19.6 114 4.3	871.4 28.1 290 7.3	538.5 17.4 97 6.0	541.7 19.3 55 9.7	1535.5 49.5 406 9.0	1036 34.5 107 14	1322 42.6 185 16	618.4 20.6 202 5.1	173.0 5.58 27 2.5	284.2 9.17 117 2.0	362.3 12.1 203 2.3	
STATIS	rics of M	ONTHLY ME	AN DATA F	OR WATER	YEARS 200	00 - 2002,	BY WATER	YEAR (WY)				
MEAN MAX (WY) MIN (WY)	12.9 15.7 2001 10.2 2002	13.3 19.6 2002 7.01 2001	32.5 36.9 2001 28.1 2002	22.7 28.0 2001 17.4 2002	23.4 27.5 2001 19.3 2002	48.5 49.5 2002 47.5 2001	42.7 50.9 2001 34.5 2002	28.3 42.6 2002 13.9 2001	18.1 20.6 2002 15.6 2001	8.66 11.7 2001 5.58 2002	15.8 22.4 2001 9.17 2002	10.6 12.1 2002 9.21 2001	


e Estimated.

OHIO RIVER MAIN STEM

03085956 MONTOUR RUN AT SCOTT STATION NEAR IMPERIAL, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 2000 - 2002
ANNUAL TOTAL	8648.6	8185.0	
ANNUAL MEAN	23.7	22.4	23.2
HIGHEST ANNUAL MEAN			23.9 2001
LOWEST ANNUAL MEAN			22.4 2002
HIGHEST DAILY MEAN	373 Mar 21	406 Mar 26	406 Mar 26 2002
LOWEST DAILY MEAN	2.4 Aug 7	2.0 Aug 11	2.0 Aug 11 2002
ANNUAL SEVEN-DAY MINIMUM	3.5 Sep 7	2.4 Aug 8	2.4 Aug 8 2002
MAXIMUM PEAK FLOW		1090 Mar 26	a 2080 Aug 28 2001
MAXIMUM PEAK STAGE		6.35 Mar 26	8.31 Aug 28 2001
INSTANTANEOUS LOW FLOW		1.8 Aug 12	1.8 Aug 12 2002
10 PERCENT EXCEEDS	52	49	49
50 PERCENT EXCEEDS	11	12	11
90 PERCENT EXCEEDS	3.8	3.0	3.5

a From rating curve extended above $550 \ ft^3/s$.

OHIO RIVER MAIN STEM

03086000 OHIO RIVER AT SEWICKLEY, PA (Pennsylvania Water-Quality Network Station) (National Stream-Quality Accounting Network Station)

LOCATION.--Lat 40°32'57", long 80°12'21", Allegheny County, Hydrologic Unit 05030101, near left bank 50 ft upstream from Dashields Dam, 1.0 mi downstream from Narrows Run, 1.0 mi northwest of Sewickley, and 13.3 mi downstream from confluence of Allegheny and Monongahela Rivers.

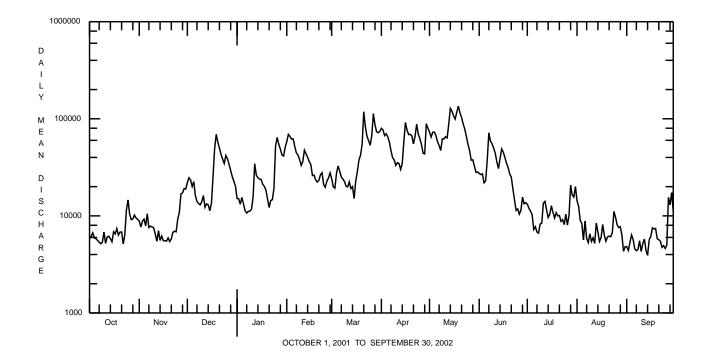
DRAINAGE AREA.--19,500 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1933 to current year.

REVISED RECORDS.--WSP 1305: 1938-40 (adjusted monthly runoff). WSP 1435: 1934.

GAGE.--Water-stage recorder and fixed-crest concrete dam control. Datum of gage is 680.00 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). Prior to Nov. 22, 1933, nonrecording gage, Nov. 22, 1933 to May 4, 1981, water-stage recorder at site 1.5 mi upstream, Nov. 14, 1988 to July 12, 1990, nonrecording gage, and July 13, 1990 to June 13, 1991, water-stage recorder at present site at datum 10.41 ft higher.


REMARKS.—No estimated daily discharges. Records good. Some regulation by locks, and by many reservoirs above station. Combined capacity of reservoirs and lakes, excluding that of Chautauqua Lake (station 03013946), but including Lake Lynn, Deep Creek Reservoir (station 03076000), and 15 smaller reservoirs, 2,773,000 acre-ft. Several measurements of water temperature were made during the year. Satellite telemetry at station.

			DISCHA	RGE, CUBIC	FEET PER		ATER YEAR IEAN VALU	OCTOBER 2 ES	001 TO SEPT	TEMBER 200	2	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5810	8860	22000	15100	58100	24100	79800	73100	27400	13200	14300	4820
2	6140	7670	24700	15000	69100	19900	76800	64800	26600	12000	12500	4400
3	6690	8830	23500	13200	65800	19300	67100	72600	27100	11200	8970	5330
4	5940	9250	20100	15500	61700	27400	70000	73000	21900	10300	8360	6360
5	5820	7890	22600	13300	62100	32700	65000	67300	22900	7250	5650	5680
6	5590	10500	16100	11300	51600	28800	57400	58100	37300	7740	8860	4580
7	5370	7590	14100	10700	44400	25200	46700	52900	71700	6820	5870	4380
8	5170	7830	13400	11100	42300	23900	39700	47200	58900	6640	5310	4520
9	5340	7710	13000	11200	38000	22600	37700	62100	55200	8240	6530	5540
10	6810	7520	14000	11700	33100	20200	33100	62000	49900	8420	5460	4290
11	5220	6470	16200	15600	36300	19900	35300	65300	44200	13500	5950	5190
12	6060	5480	12300	34400	47500	22400	34600	63600	36000	14100	5210	5770
13	6170	7040	13300	26300	43600	19100	30100	88200	30700	11600	8440	4420
14	5820	5590	13000	24700	40100	20000	34600	128000	38900	9620	6830	3920
15	5420	6200	11300	24000	36200	15100	58300	120000	48800	10400	5450	5680
16	6870	5550	13400	23700	33800	22900	91400	107000	45400	12700	5970	6150
17	6520	5560	25200	21200	26000	28600	76400	99300	40100	10900	8160	7520
18	7400	5490	48900	20100	26300	37600	68800	117000	35000	9520	6340	7330
19	6340	5930	69200	18400	23500	42300	69100	135000	31600	10800	5490	7420
20	6800	5440	57400	15000	22300	54700	66800	115000	27100	10000	6060	5820
21	6830	5810	50200	12200	23200	118000	55200	103000	25100	10100	6180	5680
22	5130	6780	43000	14400	26500	82900	66200	88500	19000	8780	6100	5480
23	6390	6950	38400	14700	27800	66300	88100	78300	14600	9150	6690	4740
24	11500	6860	34600	19100	21000	59700	69200	65700	11400	8130	11100	4940
25	14600	9240	41900	52400	19700	53400	62500	54600	11800	10400	9690	4610
26 27 28 29 30 31	10400 9160 9310 10200 9530 9210	10900 16800 17300 19100 18900	38900 33900 29400 25400 22700 20200	64300 54800 48700 42400 41300 50800	22800 24600 27700 	67200 113000 86900 73600 71900 74000	54200 44200 43500 88900 80100	47000 37500 37800 32600 28000 28300	10400 11400 15600 13300 13700	8040 10100 20700 16400 15600 20000	8100 7590 7720 6280 4310 4820	5010 15500 13000 17400 11100
TOTAL	223560	261040	842300	766600	1055100	1393600	1790800	2272800	923000	342350	224290	196580
MEAN	7212	8701	27170	24730	37680	44950	59690	73320	30770	11040	7235	6553
MAX	14600	19100	69200	64300	69100	118000	91400	135000	71700	20700	14300	17400
MIN	5130	5440	11300	10700	19700	15100	30100	28000	10400	6640	4310	3920
CFSM	0.37	0.45	1.39	1.27	1.93	2.31	3.06	3.76	1.58	0.57	0.37	0.34
IN.	0.43	0.50	1.61	1.46	2.01	2.66	3.42	4.34	1.76	0.65	0.43	0.38
STATIS	TICS OF 1	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	34 - 2002	, BY WATE	R YEAR (W	Y)			
MEAN	15040	25550	39800	44520	49680	64970	56490	38310	24370	15760	13060	11620
MAX	51010	83490	88890	132000	91820	147900	124500	90380	70490	50770	48180	39450
(WY)	1955	1986	1973	1937	1939	1936	1940	1996	1989	1972	1956	1996
MIN	3073	3991	6705	10470	11610	18670	16790	9593	5001	3892	3565	3081
(WY)	1964	1954	1961	1977	1934	1969	1946	1934	1934	1966	1957	1946

OHIO RIVER MAIN STEM

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YE	AR FOR 2002 WAT	TER YEAR	WATER YEARS	1934 - 2002
ANNUAL TOTAL	8596580	10292020			
ANNUAL MEAN	23550	28200		33180	
HIGHEST ANNUAL MEAN				46520	1994
LOWEST ANNUAL MEAN				21110	1934
HIGHEST DAILY MEAN	105000 Feb	17 135000	May 19	465000	Mar 18 1936
LOWEST DAILY MEAN	4190 Sep	10 3920	Sep 14	2100	Sep 4 1957
ANNUAL SEVEN-DAY MINIMUM	5240 Sep	7 4810	Sep 8	2330	Sep 1 1957
MAXIMUM PEAK FLOW		142000	May 19	a 574000	Mar 18 1936
MAXIMUM PEAK STAGE		19.74	May 19	b 34.75	Mar 18 1936
INSTANTANEOUS LOW FLOW				1800	Sep 4 1957
ANNUAL RUNOFF (CFSM)	1.21	1.45		1.70	
ANNUAL RUNOFF (INCHES)	16.40	19.63		23.12	
10 PERCENT EXCEEDS	57700	67200		73700	
50 PERCENT EXCEEDS	14300	17300		22700	
90 PERCENT EXCEEDS	6130	5630		5960	

<sup>a From rating curve extended above 535,000 ft³/s.
b From floodmarks in gage house, site and datum then in use.</sup>

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 2000 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
APR 2002 09	0830	9813	37200	40	6.7	7.2	255	7.0	81	22.8	5.8	28	<.2
JUN 04	0800	9813	22100	40	9.3	7.6	305	20.1	96	26.8	7.0	36	<.2
AUG 01	1145	9813	14300	40	8.0	7.7	324	28.0	120	31.4	9.0	40	<.2
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	CYANIDE AMEN- ABLE TO CHLOR- INATION UNFLTRD (MG/L) (00722)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)
APR 2002 09 JUN	54.0	176	18	.060	.72	<.040	1.0	.03	.040	2.3	<10	<1.00	620
04	59.5	206	14	<.020	.57	<.040	.86	.03	.030	2.8	<10	<1.00	560
AUG 01	89.4	270	4	.030	.53	<.040	.86	.01	.030	2.5	<10	1.24	270
					LEAD,	MANGA NESE,		L, ZINC	,				

		MANGA-				
	LEAD,	NESE,	NICKEL,	ZINC,		
	TOTAL	TOTAL	TOTAL	TOTAL		GROSS
	RECOV-	RECOV-	RECOV-	RECOV-		BETA,
	ERABLE	ERABLE	ERABLE	ERABLE	PHENOLS	WATER,
Date	(µG/L	(µG/L	(µG/L	(µG/L	TOTAL	UNFLT,
	AS PB)	AS MN)	AS NI)	AS ZN)	(µG/L)	(PCI/L)
	(01051)	(01055)	(01067)	(01092)	(32730)	(85817)
APR 2002						
09	<1.0	150	< 50	<10	<5	
JUN	-1.0	100	-50	-20	-5	
04	1.2	160	<50	10	<5	2
AUG						
01	<1.0	90	< 50	20	<5	

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued (National Stream-Quality Accounting Network Station)

REMARKS.--All water-quality samples were collected and analyzed by the U.S. Geological Survey. An explanation of selected abbreviations used in the water-quality tables is given on pages 40-41. Some values for 'dissolved' parameters exceed values for the corresponding 'total' parameter. These results are within the limits of analytical precision and methods.

Date	Time	Medium code	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	UV ABSORB- ANCE 254 NM, WTR FLT (UNITS /CM) (50624)	UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	TEMPER- ATURE WATER (DEG C) (00010)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)
NOV 2001 14 15 DEC	1100 1045	Q 9	 6440	 8.0	<.004	<.004 .054	 744	 15.6	7.7	 439	 11.0	<.01 37.6	.028 9.90
05 05	1030 1040	9 R	25500 25500	12 14	.075 .076	.056 .057	747 747	16.3 16.3	7.6 7.6	346 346	10.0 10.0	30.1 30.2	8.07 8.06
JAN 2002 23 31	1030 1000	9 9	15700 48700	5.0 32	.038	.027	 740	13.9 13.1	7.3 7.4	332 293	3.0 4.0	30.5 23.1	7.88 5.78
FEB 26	0930	9	25100	6.5	.043	.031	730	13.5	6.9	270	4.5	22.3	5.87
MAR 26 APR	0900	9	53900	48	.061	.046	738	12.6	7.6	276	5.5	23.4	5.99
23 29 MAY	0930 0930	9 9	96800 87500	46 54	.046	.034	747 739	10.7 10.4	7.5 7.5	210 214	13.5 13.0	19.1 19.0	4.95 4.85
29 29 JUN	1030 1040	9 R	33800 33800	11 10	.052 .051	.038	744 744	9.6 9.6	7.6 7.6	231 231	16.0 16.0	22.6 22.7	6.25 6.32
07 07	1715 1720	9 R	72200 72200	37	.064	.048	746 746	9.4 9.4	7.6 7.6	290 290	21.0 21.0	27.2	7.26
24 JUL	1115	9	9940	6.8	.060	.044	747	9.1	7.4	281	23.0	27.1	7.54
16 SEP	1030	9	14300	8.8	.054	.039	748	7.5	7.5	431	27.0	35.9	10.3
04	1100 1108	9 Q	6350 	7.2	.059 <.004	.042 <.004	744	7.2	7.1	413	26.0	34.0 E.01	9.48
Date	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
NOV 2001 14 15	SIUM, DIS- SOLVED (MG/L AS K)	DIS- SOLVED (MG/L AS NA)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DIS- SOLVED (MG/L AS SO4)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	GEN, AMMONIA DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS N)
NOV 2001 14 15 DEC 05	SIUM, DIS- SOLVED (MG/L AS K) (00935)	DIS- SOLVED (MG/L AS NA) (00930)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
NOV 2001 14 15 DEC 05 05 JAN 2002 23 31	SIUM, DIS- SOLVED (MG/L AS K) (00935)	DIS- SOLVED (MG/L AS NA) (00930) <.09 33.4 22.8	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) <.13 3.18	DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 .08	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.013 1.01	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.002 .042
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26	SIUM, DIS- SOLVED (MG/L AS K) (00935)	DIS- SOLVED (MG/L AS NA) (00930) <.09 33.4 22.8 22.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 58 44 44	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 39.9 29.0 28.3 57.9	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) <.13 3.18 4.13 4.04 4.91	DIS- SOLVED (MG/L AS SO4) (00945) 95.0 75.4 75.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 .08 .09 .10 .11	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 47 .39 .37	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.013 1.01 .76 .76	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.002 .042 .026 .026
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.08 2.38 2.47 2.04 1.83	DIS- SOLVED (MG/L AS NA) (00930) <.09 33.4 22.8 22.6 36.8 19.7	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 58 44 44 37 34	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 39.9 29.0 28.3 57.9 29.9	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) <.13 3.18 4.13 4.04 4.91 4.67	DIS- SOLVED (MG/L AS SO4) (00945) 95.0 75.4 75.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 .08 .09 .10	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)47 .39 .37 .33 .43	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.013 1.01 .76 .76 1.05 .98	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.002 .042 .026 .026
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.08 2.38 2.47 2.04 1.83	DIS- SOLVED (MG/L AS NA) (00930) <.09 33.4 22.8 22.6 36.8 19.7 18.0	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 58 44 44 37 34 31	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 39.9 29.0 28.3 57.9 29.9	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) <.13 3.18 4.13 4.04 4.91 4.67	DIS- SOLVED (MG/L AS SO4) (00945) 95.0 75.4 75.6 73.0 50.2	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 260 214 210 254 164	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 .08 .09 .10 .11 .11	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) 34 .32 .32 .27 .30 .21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)47 .39 .37 .33 .43	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.013 1.01 .76 .76 1.05 .98	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.002 .042 .026 .026 .026 .024 .011 .014
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.08 2.38 2.47 2.04 1.83 1.50 1.62	DIS- SOLVED (MG/L AS NA) (00930) <.09 33.4 22.8 22.6 36.8 19.7 18.0 15.6	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 58 44 44 37 34 31 29	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 39.9 29.0 28.3 57.9 29.9 26.0 23.7	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) <.13 3.18 4.13 4.04 4.91 4.67 4.59 5.08 4.47	DIS- SOLVED (MG/L AS SO4) (00945) 95.0 75.4 75.6 73.0 50.2 46.9 50.6	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 260 214 210 254 164 150 160	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 .08 .09 .10 .11 .11 .09 .06	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) 34 .32 .32 .27 .30 .21 .23	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)47 .39 .37 .33 .43 .25 .39	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.013 1.01 .76 .76 1.05 .98 .86 .94 .59	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.002 .042 .026 .026 .024 .011 .014 .008 E.007
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 29 49 UND 07	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.08 2.38 2.47 2.04 1.83 1.50 1.62 1.48 1.38	DIS- SOLVED (MG/L AS NA) (00930) <.09 33.4 22.8 22.6 36.8 19.7 18.0 15.6 11.1 11.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 58 44 44 37 34 31 29 26 26 29 29 36	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 39.9 29.0 28.3 57.9 29.9 26.0 23.7 11.6 12.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .1 .1 .1 E.1 E.1 <.1 <.1	DIS- SOLVED (MG/L AS SIO2) (00955) <.13 3.18 4.13 4.04 4.91 4.67 4.59 5.08 4.47 4.49 4.68	DIS- SOLVED (MG/L AS SO4) (00945) 95.0 75.4 75.6 73.0 50.2 46.9 50.6 47.6 45.3	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 260 214 210 254 164 150 160 124 122 148	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 .08 .09 .10 .11 .11 .09 .06 E.04 .04 E.02	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) 34 .32 .32 .27 .30 .21 .23 .15 .20 .18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 47 .39 .37 .33 .43 .25 .39 .40 .49	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.013 1.01 .76 .76 1.05 .98 .86 .94 .59 .59 .58	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.002 .042 .026 .026 .024 .011 .014 .008 E.007 .012
NOV 2001 14 15 DEC 05 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29 29 JUN 07 07	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.08 2.38 2.47 2.04 1.83 1.50 1.62 1.48 1.38 1.25 1.28	DIS- SOLVED (MG/L AS NA) (00930) <.09 33.4 22.8 22.6 36.8 19.7 18.0 15.6 11.1 11.5	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 58 44 44 37 34 31 29 26 26 29 29	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 39.9 29.0 28.3 57.9 29.9 26.0 23.7 11.6 12.6	RIDE, DIS- SOLVED (MG/L AS F) (00950) .2 .1 .1 .1 E.1 E.1 <.1 <.1 <.1	DIS- SOLVED (MG/L AS SIO2) (00955) <.13 3.18 4.13 4.04 4.91 4.67 4.59 5.08 4.47 4.49 4.68 4.76 4.46	DIS- SOLVED (MG/L AS SO4) (00945) 95.0 75.4 75.6 73.0 50.2 46.9 50.6 47.6 45.3 54.5 54.4	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 260 214 210 254 164 150 160 124 122 148 147 186	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 .08 .09 .10 .11 .11 .09 .06 E.04 .04 E.02 E.03	GEN, AM-MONIA + MONIA + ORGANIC DIS. (MG/L AS N) (00623) 34 .32 .32 .27 .30 .21 .23 .15 .20 .18 .18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 47 .39 .37 .33 .43 .25 .39 .40 .49 .30 .29	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.013 1.01 .76 .76 1.05 .98 .86 .94 .59 .59 .58 .60 .62	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.002 .042 .026 .026 .024 .011 .014 .008 E.007 .012 .010 .008
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29 JUN 07 07	SIUM, DIS- SOLVED (MG/L AS K) (00935) 3.08 2.38 2.47 2.04 1.83 1.50 1.62 1.48 1.38 1.25 1.28	DIS- SOLVED (MG/L AS NA) (00930) <.09 33.4 22.8 22.6 36.8 19.7 18.0 15.6 11.1 11.5 12.0 12.2	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 58 44 44 37 34 31 29 26 26 29 29 36 36	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 39.9 29.0 28.3 57.9 29.9 26.0 23.7 11.6 12.6 15.8 15.7	RIDE, DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) <.13 3.18 4.13 4.04 4.91 4.67 4.59 5.08 4.47 4.468 4.76 4.468	DIS- SOLVED (MG/L AS SO4) (00945) 95.0 75.4 75.6 73.0 50.2 46.9 50.6 47.6 45.3 54.5 54.4	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 260 214 210 254 164 150 160 124 122 148 147	GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) <.015 .08 .09 .10 .11 .11 .09 .06 E.04 .04 E.02 E.03 .04	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623) 34 .32 .32 .27 .30 .21 .23 .15 .20 .18 .18 .23	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625) 47 .39 .37 .33 .43 .25 .39 .40 .49 .30 .29	GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) <.013 1.01 .76 .76 1.05 .98 .86 .94 .59 .59 .60 .62	GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613) <.002 .042 .026 .026 .024 .011 .014 .008 E.007 .012 .010 .008

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued

Date	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	ORTHO- PHOS- PHATE, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	ALUM- INUM, DIS- SOLVED (µG/L AS AL) (01106)	ANTI- MONY, DIS- SOLVED (µG/L AS SB) (01095)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)	BARIUM, DIS- SOLVED (µG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (µG/L AS BE) (01010)
NOV 2001 14	<.02		<.007		<.1	<.1	<.3	<.1	<1	<.05	<.2	<1	<.06
15 DEC	.13	.021	.013	.053	.8	<.1	2.9	.8	10	.12	.5	43	<.06
05 05 JAN 2002	.09	.018 .018	.010 .011	.053	.8 1.0	<.1 <.1	2.8 2.8	.8 1.0	10 10	.08	. 4	42 42	<.06 <.06
23 31 FEB	.06 .19	.021 .012	.011	.038 .076	.4 1.5	<.1 <.1	3.4 2.2	.4 1.5	16 17	.07 .05	.2	42 33	<.06 <.06
26 MAR	.05	.008	E.005	.029	.4	<.1	1.6	.3	13	<.05	E.1	30	<.06
26 APR	.17	.007	<.007	.078	2.1	<.1	2.3	2.1	22	.11	E.2	37	<.06
23 29	1.37	.007	<.007 <.007	.108 .120	18.8 9.6	<.1 .2	1.8 2.3	18.7 9.4	18 24	.12 .10	.3	32 32	<.06 <.06
29 29	.11	.008	<.007 <.007	.045	1.0 1.0	<.1 <.1	1.9	1.0	26 25	.09	.3	40 40	<.06 <.06
07	.22	.011	<.007	.112	2.7	<.1	2.1	2.7	30	.16	. 4	41	<.06
07 24 JUL	.09	.007	<.007	.029	.7	<.1	2.4	.7	27	.11	.3	44	<.06
16 SEP	.16	.005	<.007	.038	.8	<.1	2.2	.8	22	.12	. 4	50	<.06
04 04	.13 <.02	.012	E.004 <.007	.057	.8 <.1	<.1 <.1	2.9 E.2	.8 <.1	20	.16	.6 <.2	45 	<.06
Date	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (µG/L AS CR) (01030)	COBALT, DIS- SOLVED (µG/L AS CO) (01035)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LITHIUM DIS- SOLVED (µG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (µG/L AS MN) (01056)	MOLYB- DENUM, DIS- SOLVED (µG/L AS MO) (01060)	NICKEL, DIS- SOLVED (µG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (µG/L AS SE) (01145)	SILVER, DIS- SOLVED (µG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (µG/L AS SR) (01080)
NOV 2001 14 15	DIS- SOLVED (µG/L AS CD)	MIUM, DIS- SOLVED (µG/L AS CR)	DIS- SOLVED (µG/L AS CO)	DIS- SOLVED (µG/L AS CU)	DIS- SOLVED (µG/L AS FE)	DIS- SOLVED (µG/L AS PB)	DIS- SOLVED (µG/L AS LI)	NESE, DIS- SOLVED (μG/L AS MN)	DENUM, DIS- SOLVED (µG/L AS MO)	DIS- SOLVED (µG/L AS NI)	NIUM, DIS- SOLVED (µG/L AS SE)	DIS- SOLVED (µG/L AS AG)	TIUM, DIS- SOLVED (µG/L AS SR)
NOV 2001 14 15 DEC 05	DIS- SOLVED (µG/L AS CD) (01025)	MIUM, DIS- SOLVED (µG/L AS CR) (01030)	DIS- SOLVED (µG/L AS CO) (01035)	DIS- SOLVED (µG/L AS CU) (01040)	DIS- SOLVED (µG/L AS FE) (01046)	DIS- SOLVED (µG/L AS PB) (01049)	DIS- SOLVED (µG/L AS LI) (01130)	NESE, DIS- SOLVED (µG/L AS MN) (01056)	DENUM, DIS- SOLVED (µG/L AS MO) (01060)	DIS- SOLVED (µG/L AS NI) (01065)	NIUM, DIS- SOLVED (µG/L AS SE) (01145)	DIS- SOLVED (µG/L AS AG) (01075)	TIUM, DIS- SOLVED (µG/L AS SR) (01080)
NOV 2001 14 15 DEC 05 JAN 2002 23 31	DIS- SOLVED (µG/L AS CD) (01025) <.04 .04	MIUM, DIS- SOLVED (µG/L AS CR) (01030) <.8 <.8	DIS- SOLVED (µG/L AS CO) (01035) <.02 .22	DIS- SOLVED (µG/L AS CU) (01040)	DIS- SOLVED (µG/L AS FE) (01046) <10 13	DIS- SOLVED (µG/L AS PB) (01049) <.08 E.08	DIS- SOLVED (µG/L AS LI) (01130) <.3 9.2	NESE, DIS- SOLVED (µG/L AS MN) (01056) <.1 21.0	DENUM, DIS- SOLVED (µG/L AS MO) (01060)	DIS- SOLVED (µG/L AS NI) (01065) <.06 2.89	NIUM, DIS- SOLVED (µG/L AS SE) (01145)	DIS- SOLVED (µG/L AS AG) (01075)	TIUM, DIS- SOLVED (µG/L AS SR) (01080) E.06 234
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26	DIS- SOLVED (µG/L AS CD) (01025) <.04 .04 E.03 <.04	MIUM, DIS- SOLVED (µG/L AS CR) (01030) <.8 <.8 <.8 <.8	DIS- SOLVED (µG/L AS CO) (01035) <.02 .22 .23 .23	DIS- SOLVED (µG/L AS CU) (01040) <.2 3.1 1.9 2.0	DIS- SOLVED (µG/L AS FE) (01046) <10 13 39 34	DIS- SOLVED (µG/L AS PB) (01049) <.08 E.08 .13 .12	DIS- SOLVED (µG/L AS LI) (01130) <.3 9.2 19.7 20.3	NESE, DIS- SOLVED (μG/L AS MN) (01056) <.1 21.0 53.0 53.4	DENUM, DIS- SOLVED (μG/L AS MO) (01060) <.2 2.8 .9 .9	DIS- SOLVED (µG/L AS NI) (01065) <.06 2.89 2.83 2.77 4.62	NIUM, DIS- SOLVED (μG/L AS SE) (01145) <.3 .5 E.3 E.2	DIS- SOLVED (µG/L AS AG) (01075)	TIUM, DIS- SOLVED (µG/L AS SR) (01080) E.06 234 205 210
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26	DIS- SOLVED (µG/L AS CD) (01025) <.04 .04 E.03 <.04 .04 E.03	MIUM, DIS- SOLVED (µG/L AS CR) (01030) <.8 <.8 <.8 <.8	DIS- SOLVED (µG/L AS CO) (01035) <.02 .22 .23 .23 .75	DIS- SOLVED (µG/L AS CU) (01040) <.2 3.1 1.9 2.0 1.6 1.5	DIS- SOLVED (µG/L AS FE) (01046) <10 13 39 34 44 42	DIS- SOLVED (µG/L AS PB) (01049) <.08 E.08 .13 .12 .08 E.06	DIS- SOLVED (µG/L AS LI) (01130) <.3 9.2 19.7 20.3 5.8 4.3	NESE, DIS- SOLVED (μG/L AS MN) (01056) <.1 21.0 53.0 53.4	DENUM, DIS- SOLVED (μG/L AS MO) (01060) <.2 2.8 .9 .9	DIS- SOLVED (µG/L AS NI) (01065) <.06 2.89 2.83 2.77 4.62 2.85	NIUM, DIS- SOLVED (µG/L AS SE) (01145) <.3 .5 E.3 E.3 E.2	DIS- SOLVED (µG/L AS AG) (01075)	TIUM, DIS- SOLVED (µG/L AS SR) (01080) E.06 234 205 210 205
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29	DIS- SOLVED (µG/L AS CD) (01025) <.04 .04 E.03 <.04 .04	MIUM, DIS- SOLVED (µG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8	DIS- SOLVED (μG/L AS CO) (01035) <.02 .22 .23 .23 .23 .75 .61	DIS- SOLVED (μG/L AS CU) (01040) <.2 3.1 1.9 2.0 1.6 1.5	DIS- SOLVED (µG/L AS FE) (01046) <10 13 39 34 44 42	DIS- SOLVED (µG/L AS PB) (01049) <.08 E.08 .13 .12 .08 E.06	DIS- SOLVED (μG/L AS LI) (01130) <.3 9.2 19.7 20.3 5.8 4.3	NESE, DIS- SOLVED (μG/L AS MN) (01056) <.1 21.0 53.0 53.4 152 130 85.9	DENUM, DIS- SOLVED (μG/L AS MO) (01060) <.2 2.8 .9 .9	DIS- SOLVED (μG/L AS NI) (01065) <.06 2.89 2.83 2.77 4.62 2.85 3.10	NIUM, DIS- SOLVED (μG/L AS SE) (01145) <.3 .5 E.3 E.2 .4 E.3	DIS- SOLVED (µG/L AS AG) (01075) <1 <1 <1 <1 <1 <1	TIUM, DIS- SOLVED (µG/L AS SR) (01080) E.06 234 205 210 205 124
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29	DIS- SOLVED (µG/L AS CD) (01025) <.04 .04 E.03 .04 E.03 .04	MIUM, DIS- SOLVED (µG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (μG/L AS CO) (01035) <.02 .22 .23 .23 .23 .75 .61 .84	DIS- SOLVED (µG/L AS CU) (01040) <.2 3.1 1.9 2.0 1.6 1.5 1.5	DIS- SOLVED (µG/L AS FE) (01046) <10 13 39 34 44 42 40 39	DIS- SOLVED (µG/L AS PB) (01049) <.08 E.08 .13 .12 .08 E.06 E.06	DIS- SOLVED (μG/L AS LI) (01130) <.3 9.2 19.7 20.3 5.8 4.3 4.1 3.3	NESE, DIS- SOLVED (μG/L AS MN) (01056) <.1 21.0 53.0 53.4 152 130 85.9 128 46.1	DENUM, DIS- SOLVED (μG/L AS MO) (01060) <.2 2.8 .9 .9 1.0 .7 .5 .6	DIS- SOLVED (μG/L AS NI) (01065) <.06 2.89 2.83 2.77 4.62 2.85 3.10 3.21 2.02	NIUM, DIS- SOLVED (μG/L AS SE) (01145) <.3 .5 E.3 E.2 .4 E.3 E.2 E.3	DIS- SOLVED (µG/L AS AG) (01075) <1 <1 <1 <1 <1 <1 <1	TIUM, DIS- SOLVED (µG/L AS SR) (01080) E.06 234 205 210 205 124 113 122 104
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 29 MAY 29 JUN 07	DIS- SOLVED (µG/L AS CD) (01025) <.04 .04 E.03 .04 E.03 .04 E.02	MIUM, DIS- SOLVED (µG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (μG/L AS CO) (01035) <.02 .22 .23 .23 .23 .75 .61 .84 .22 .27	DIS- SOLVED (μG/L AS CU) (01040) <.2 3.1 1.9 2.0 1.6 1.5 1.5 1.5	DIS- SOLVED (µG/L AS FE) (01046) <10 13 39 34 44 42 40 39 25 29	DIS- SOLVED (µG/L AS PB) (01049) <.08 E.08 .13 .12 .08 E.06 E.06 .09	DIS- SOLVED (μG/L AS LI) (01130) <.3 9.2 19.7 20.3 5.8 4.3 4.1 3.3 3.3 5.5	NESE, DIS- SOLVED (μG/L AS MN) (01056) <.1 21.0 53.0 53.4 152 130 85.9 128 46.1 53.3 151	DENUM, DIS- SOLVED (μG/L AS MO) (01060) <.2 2.8 .9 .9 1.0 .7 .5 .6 .4 .7	DIS- SOLVED (μG/L AS NI) (01065) <.06 2.89 2.83 2.77 4.62 2.85 3.10 3.21 2.02 1.80 3.67	NIUM, DIS- SOLVED (µG/L AS SE) (01145) <.3 .5 E.3 E.2 .4 E.3 E.2 E.3	DIS- SOLVED (µG/L AS AG) (01075) <1 <1 <1 <1 <1 <1 <1 <1 <1	TIUM, DIS- SOLVED (µG/L AS SR) (01080) E.06 234 205 210 205 124 113 122 104 101 119
NOV 2001 14 15 DEC 05 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29 JUN 07 07 24	DIS- SOLVED (µG/L AS CD) (01025) <.04 .04 E.03 .04 E.02 E.03 <.04	MIUM, DIS- SOLVED (µG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (μG/L AS CO) (01035) <.02 .22 .23 .23 .23 .25 .75 .61 .84 .22 .27 .70 .19	DIS- SOLVED (µG/L AS CU) (01040) <.2 3.1 1.9 2.0 1.6 1.5 1.5 1.5 1.1	DIS- SOLVED (µG/L AS FE) (01046) <10 13 39 34 44 42 40 39 25 29 28 24	DIS- SOLVED (µG/L AS PB) (01049) <.08 E.08 .13 .12 .08 E.06 E.06 .09 E.06 E.06	DIS- SOLIVED (μG/L AS LI) (01130) <.3 9.2 19.7 20.3 5.8 4.3 4.1 3.3 3.3 5.5 5.6 5.6	NESE, DIS- SOLVED (μG/L AS MN) (01056) <.1 21.0 53.0 53.4 152 130 85.9 128 46.1 53.3	DENUM, DIS- SOLVED (μG/L AS MO) (01060) <.2 2.8 .9 .9 1.0 .7 .5 .6	DIS- SOLVED (μG/L AS NI) (01065) <.06 2.89 2.83 2.77 4.62 2.85 3.10 3.21 2.02 1.80 3.67 3.72 2.40	NIUM, DIS- SOLVED (µG/L AS SE) (01145) <.3 .5 E.3 E.2 .4 E.3 C.2 E.3 .3 E.2 E.3 .3 E.2	DIS- SOLVED (µG/L AS AG) (01075) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	TIUM, DIS- SOLVED (µG/L AS SR) (01080) E.06 234 205 210 205 124 113 122 104 101 119 119
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29 JUN 07	DIS- SOLVED (µG/L AS CD) (01025) <.04 .04 E.03 .04 E.03 .04 E.02 E.03 <.04	MIUM, DIS- SOLVED (µG/L AS CR) (01030) <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.8 <.	DIS- SOLVED (μG/L AS CO) (01035) <.02 .22 .23 .23 .23 .75 .61 .84 .22 .27 .72 .70 .19	DIS- SOLVED (µG/L AS CU) (01040) <.2 3.1 1.9 2.0 1.6 1.5 1.5 1.1 1.1 1.1	DIS- SOLVED (µG/L AS FE) (01046) <10 13 39 34 44 42 40 39 25 29 28 24	DIS- SOLVED (µG/L AS PB) (01049) <.08 E.08 .13 .12 .08 E.06 E.06 E.06 E.06	DIS- SOLVED (µG/L AS LI) (01130) <.3 9.2 19.7 20.3 5.8 4.3 4.1 3.3 3.3 5.6 5.6	NESE, DIS- SOLVED (μG/L AS MN) (01056) <.1 21.0 53.0 53.4 152 130 85.9 128 46.1 53.3 151 151	DENUM, DIS- SOLVED (μG/L AS MO) (01060) <.2 2.8 .9 .9 .7 .5 .6 .4 .7 .7 .6 1.3	DIS- SOLVED (μG/L AS NI) (01065) <.06 (2.89) 2.83 (2.77) 4.62 (2.85) 3.10 3.21 2.02 (1.80) 3.67 (3.72) 2.40	NIUM, DIS- SOLVED (μG/L AS SE) (01145) <.3 .5 E.3 E.2 .4 E.3 E.2 E.3 .3 .3 E.3 .3	DIS- SOLVED (µG/L AS AG) (01075) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	TIUM, DIS- SOLVED (µG/L AS SR) (01080) E.06 234 205 210 205 124 113 122 104 101 119 119

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued

Date	THAL- LIUM, DIS- SOLVED (µG/L AS TL) (01057)	VANA- DIUM, DIS- SOLVED (µG/L AS V) (01085)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	SEDI- MENT, SUS- PENDED (MG/L) (80154)
NOV 2001				
14	< .04	< . 2		
15		E.2	100	8.0
DEC				
05		E.1	86	19
05		E.1	90	18
JAN 2002				
23		. 9	67	9.0
31		.6	97	33
FEB				
26		<.2	89	7.0
MAR				
26		< . 2	99	46
APR				
23		. 2	92	87
29		. 4	94	73
MAY				
29		E.1	99	15
29		E.2	96	16
JUN				
07		. 4	97	60
07				
24		. 5	97	8.0
JUL				
16		.5	97	7.0
SEP				
04		. 4	97	8.0
04		<.2		

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued

REMARKS.--The following data are for trace elements and other constituents that were part of the suspended sediment fraction of the water sample. Suspended sediments were dewatered using a continuous flow centrifuge, dried, and analyzed directly for total metals using a nitric, hydrofluoric, perchloric acid digestion. Whole water contributions by the suspended sediment were then calculated using the suspended-sediment concentration in kilograms per liter (kg/L) and the analyte concentration in milligrams per kilogram (mg/kg) from the direct analysis of the suspended sediments, resulting in micrograms per gram $(\mu G/G)$ concentrations. Values reported in percent are the percent of that constituent in the suspended sediment. When no trace element was detected in the sample, the default reporting value is the method detection limit preceded by a less-than sign (<).

Date	Time	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	NITRO- GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT) (62845)	PHOS- PHORUS SEDI- MENT SUSP. PERCENT (30292)	CARBON SED. SUSP. PERCENT (30244)	CARBON, ORGANIC SUS- PENDED, TOTAL PERCENT (50465)	ALUM- INUM SED,SUS PERCENT (30221)	AN- TIMONY SED. SUSP. (µG/G) (29816)	ARSENIC SED. SUSP. (µG/G) (29818)	BARIUM SED. SUSP. (µG/G) (29820)	BERYL- LIUM SED. SUSP. (µG/G) (29822)	CADMIUM SED. SUSP. (µG/G) (29826)	CHRO- MIUM SED. SUSP. (µG/G) (29829)
NOV 2001 15 DEC	1045	6440	.61	.260	5.5	5.6	7.8	2.1	24	660	4	2.1	130
05	1030	25500	.47	.230	5.2	5.2	8.3	1.7	27	720	4	2.6	120
JAN 2002 23 31	1030 1000	15700 48700		.460 .180	4.4	4.2	7.2 9.3	2.9 1.6	29 20	690 660	6 4	4.6 1.9	150 100
FEB 26	0930	25100		.260			8.2	1.8	27	680	5	2.2	110
MAR 26	0900	53900		.130	3.8	3.6	10	1.3	19	630	4	1.5	97
APR 23 29	0930 0930	96800 87500	.38	.130 .140	5.9 5.5	5.6 5.3	7.8 8.1	2.1	20 18	560 560	4	1.6 1.4	110 100
MAY 29	1030	33800	.49	.180	5.5	5.3	8.0	1.6	23	670	4	2.6	120
JUN 07	1715	72200	.42	.150	4.9	4.6	7.8	1.4	19	580	4	1.6	130
24 JUL	1115	9940	.75	.240	6.3	6.0	7.1	1.5	20	610	4	2.2	130
16 SEP	1030	14300	.67	.220	6.3		7.6	2.0	19	590	4	1.8	110
04	1100	6350	.75	.240	6.1		7.0	2.9	14	580	3	1.5	120
Date	COBALT SEDI- MENT SUSP. (µG/G) (35031)	COPPER SED. SUSP. (µG/G) (29832)	IRON SEDI- MENT SUSP. PERCENT (30269)	LEAD SED. SUSP. (μG/G) (29836)	LITHIUM SEDI- MENT SUSP. (µG/G) (35050)	MAN- GANESE SED. SUSP. (μG/G) (29839)	MERCURY SED. SUSP. (μG/G) (29841)	MOLYB- DENUM SED. SUSP. (µG/G) (29843)	NICKEL SED. SUSP. (µG/G) (29845)	SELE- NIUM SED. SUSP. (µG/G) (29847)	SILVER SED. SUSP. (µG/G) (29850)	STRON- TIUM SEDI- MENT SUSP. (µG/G) (35040)	THAL- LIUM SUS SED (µG/G) (49955)
NOV 2001	SEDI- MENT SUSP. (µG/G) (35031)	SED. SUSP. (µG/G) (29832)	SEDI- MENT SUSP. PERCENT (30269)	SED. SUSP. (µG/G) (29836)	SEDI- MENT SUSP. (µG/G) (35050)	GANESE SED. SUSP. (µG/G) (29839)	SED. SUSP. (µG/G) (29841)	DENUM SED. SUSP. (µG/G) (29843)	SED. SUSP. (µG/G) (29845)	NIUM SED. SUSP. (µG/G) (29847)	SED. SUSP. (μG/G) (29850)	TIUM SEDI- MENT SUSP. (µG/G) (35040)	LIUM SUS SED (µG/G) (49955)
NOV 2001 15 DEC	SEDI- MENT SUSP. (μG/G) (35031)	SED. SUSP. (µG/G) (29832)	SEDI- MENT SUSP. PERCENT (30269)	SED. SUSP. (µG/G) (29836)	SEDI- MENT SUSP. (μG/G) (35050)	GANESE SED. SUSP. (μG/G) (29839)	SED. SUSP. (µG/G) (29841)	DENUM SED. SUSP. (µG/G) (29843)	SED. SUSP. (μG/G) (29845)	NIUM SED. SUSP. (μG/G) (29847)	SED. SUSP. (µG/G) (29850)	TIUM SEDI- MENT SUSP. (µG/G) (35040)	LIUM SUS SED (µG/G) (49955)
NOV 2001 15 DEC 05 JAN 2002	SEDI- MENT SUSP. (μG/G) (35031)	SED. SUSP. (μG/G) (29832) 140 110	SEDI- MENT SUSP. PERCENT (30269) 5.8 6.5	SED. SUSP. (µG/G) (29836) 120	SEDI- MENT SUSP. (μG/G) (35050) 75	GANESE SED. SUSP. (μG/G) (29839) 9600	SED. SUSP. (µG/G) (29841)	DENUM SED. SUSP. (μG/G) (29843)	SED. SUSP. (µG/G) (29845) 200 230	NIUM SED. SUSP. (μG/G) (29847)	SED. SUSP. (µG/G) (29850)	TIUM SEDI- MENT SUSP. (µG/G) (35040) 140	LIUM SUS SED (µG/G) (49955) <50
NOV 2001 15 DEC 05 JAN 2002 23	SEDI- MENT SUSP. (μG/G) (35031)	SED. SUSP. (µG/G) (29832)	SEDI- MENT SUSP. PERCENT (30269)	SED. SUSP. (µG/G) (29836)	SEDI- MENT SUSP. (μG/G) (35050)	GANESE SED. SUSP. (μG/G) (29839)	SED. SUSP. (µG/G) (29841)	DENUM SED. SUSP. (µG/G) (29843)	SED. SUSP. (μG/G) (29845)	NIUM SED. SUSP. (μG/G) (29847)	SED. SUSP. (µG/G) (29850)	TIUM SEDI- MENT SUSP. (µG/G) (35040)	LIUM SUS SED (µG/G) (49955)
NOV 2001 15 DEC 05 JAN 2002 23 31 FEB 26	SEDI- MENT SUSP. (µG/G) (35031) 63 71 270	SED. SUSP. (μG/G) (29832) 140 110	SEDI- MENT SUSP. PERCENT (30269) 5.8 6.5	SED. SUSP. (μG/G) (29836) 120 90	SEDI- MENT SUSP. (µG/G) (35050) 75 91 67	GANESE SED. SUSP. (μG/G) (29839) 9600 9300 24000	SED. SUSP. (µG/G) (29841) .35	DENUM SED. SUSP. (μG/G) (29843) 7 6	SED. SUSP. (μG/G) (29845) 200 230 270	NIUM SED. SUSP. (µG/G) (29847)	SED. SUSP. (µG/G) (29850)	TIUM SEDI- MENT SUSP. (µG/G) (35040) 140 130	LIUM SUS SED (µG/G) (49955) <50 <50
NOV 2001 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26	SEDI- MENT SUSP. (µG/G) (35031) 63 71 270 79	SED. SUSP. (μG/G) (29832) 140 110 130 62	SEDI- MENT SUSP. PERCENT (30269) 5.8 6.5 8.0 5.9	SED. SUSP. (µG/G) (29836) 120 90 100 67	SEDI- MENT SUSP. (µG/G) (35050) 75 91 67 76	GANESE SED. SUSP. (µG/G) (29839) 9600 9300 24000 6400	SED. SUSP. (μG/G) (29841) .35 .21 .15	DENUM SED. SUSP. (µG/G) (29843) 7 6 14 4	SED. SUSP. (µG/G) (29845) 200 230 270 120	NIUM SED. SUSP. (µG/G) (29847) 3 2 4 2	SED. SUSP. (µG/G) (29850) 2 2 2 3 <.5	TIUM SEDI- MENT SUSP. (µG/G) (35040) 140 130 180 160	LIUM SUS SED (µG/G) (49955) <50 <50 <120 <50
NOV 2001 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29	SEDI- MENT SUSP. (μG/G) (35031) 63 71 270 79	SED. SUSP. (µG/G) (29832) 140 110 130 62 92	SEDI- MENT SUSP. PERCENT (30269) 5.8 6.5 8.0 5.9 6.5	SED. SUSP. (µG/G) (29836) 120 90 100 67 79	SEDI- MENT SUSP. (μG/G) (35050) 75 91 67 76	GANESE SED. SUSP. (μG/G) (29839) 9600 9300 24000 6400	SED. SUSP. (µG/G) (29841) .35 .21 .15	DENUM SED. SUSP. (μG/G) (29843) 7 6 14 4	SED. SUSP. (µG/G) (29845) 200 230 270 120	NIUM SED. SUSP. (µG/G) (29847) 3 2 4 2	SED. SUSP. (μG/G) (29850) 2 2 2 3 <.5	TIUM SEDI- MENT SUSP. (µG/G) (35040) 140 130 180 160	LIUM SUS SED (µG/G) (49955) <50 <50 <120 <50 <50
NOV 2001 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY	SEDI- MENT SUSP. (μG/G) (35031) 63 71 270 79 130 57	SED. SUSP. (µG/G) (29832) 140 110 130 62 92 53 69	SEDI- MENT SUSP. PERCENT (30269) 5.8 6.5 8.0 5.9 6.5 5.9	SED. SUSP. (µG/G) (29836) 120 90 100 67 79 54 63	SEDI- MENT SUSP. (μG/G) (35050) 75 91 67 76 75 87	GANESE SED. SUSP. (μG/G) (29839) 9600 9300 24000 6400 10000 4000 3500	SED. SUSP. (µG/G) (29841) .35 .21 .15 .22 .15	DENUM SED. SUSP. (μG/G) (29843) 7 6 14 4 5 3	SED. SUSP. (µG/G) (29845) 200 230 270 120 150 88 110	NIUM SED. SUSP. (μG/G) (29847) 3 2 4 2 3 2	SED. SUSP. (μG/G) (29850) 2 2 2 3 <.5 <.5 M	TIUM SEDI- MENT SUSP. (µG/G) (35040) 140 130 180 160 130	LIUM SUS SED (µG/G) (49955) <50 <120 <50 <50 <50 <50
NOV 2001 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29 JUN 07 24	SEDI- MENT SUSP. (μG/G) (35031) 63 71 270 79 130 57 60 52	SED. SUSP. (µG/G) (29832) 140 110 130 62 92 53 69 65	SEDI- MENT SUSP. PERCENT (30269) 5.8 6.5 8.0 5.9 6.5 5.9 5.2	SED. SUSP. (µG/G) (29836) 120 90 100 67 79 54 63 62	SEDI- MENT: SUSP. (μG/G) (35050) 75 91 67 76 75 87 74	GANESE SED. SUSP. (μG/G) (29839) 9600 9300 24000 6400 10000 4000 3500 3200	SED. SUSP. (µG/G) (29841) .35 .21 .15 .22 .15	DENUM SED. SUSP. (μG/G) (29843) 7 6 14 4 5 3	SED. SUSP. (µG/G) (29845) 200 230 270 120 150 88 110 100	NIUM SED. SUSP. (μG/G) (29847) 3 2 4 2 3 2	SED. SUSP. (µG/G) (29850) 2 2 3 <.5 <.5 M M	TIUM SEDI- MENT SUSP. (µG/G) (35040) 140 130 180 160 130 150	LIUM SUS SED (µG/G) (49955) <50 <50 <50 <50 <50 <50 <50
NOV 2001 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 29 MAY 29	SEDI- MENT SUSP. (μG/G) (35031) 63 71 270 79 130 57 60 52 100	SED. SUSP. (µG/G) (29832) 140 110 130 62 92 53 69 65 120 72	SEDI- MENT SUSP. PERCENT (30269) 5.8 6.5 8.0 5.9 6.5 5.9 5.2 5.2 5.6	SED. SUSP. (µG/G) (29836) 120 90 100 67 79 54 63 62 110 76	SEDI- MENT: SUSP. (μG/G) (35050) 75 91 67 76 75 87 74 76 85	GANESE SED. SUSP. (μG/G) (29839) 9600 9300 24000 6400 10000 4000 3500 3200 11000 4500	SED. SUSP. (µG/G) (29841) .35 .2115 .22 .15 .13 .09 .21 .13	DENUM SED. SUSP. (μG/G) (29843) 7 6 14 4 5 3 5 4 5	SED. SUSP. (µG/G) (29845) 200 230 270 120 150 88 110 100 240	NIUM SED. SUSP. (μG/G) (29847) 3 2 4 2 3 2 1 1	SED. SUSP. (µG/G) (29850) 2 2 2 3 <.5 <.5 M M	TIUM SEDI- MENT SUSP. (µG/G) (35040) 140 130 180 160 130 150 120 120 120	LIUM SUS SED (µG/G) (49955) <50 <50 <50 <50 <50 <50 <50 <50

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued

Date	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)		(µG/G)	(µG/G)	(MG/L)
NOV 2001					
15 DEC	.410	110	640	<50	10
05 JAN 2002	.440	120	530	<50	15
23	.330	110	1400	<120	3
31 FEB	.490	130	650	<50	33
26 MAR	.420	120	790	<50	6
26 APR	.480	130	510	<50	49
23	.470	100	520	<50	93
29	.460	110	500	<50	82
MAY					
29 JUN	.430	110	660	<50	16
07	.460	110	430	<50	64
24	.390	100	540	<50	9
JUL					_
16 SEP	.410	100	530	<50	8
04	.380	100	430	<50	8

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued

REMARKS.—The following data are for analytes from the National Water Quality Laboratory (NWQL) schedule 2001-pesticides in filtered water. Samples are filtered through a glass-fiber membrane filter with openings that are 0.7 microns in size to remove sediment and microorganisms. The filtered samples are then sent to the NWQL where they are analyzed by gas chromatography/mass spectrometric detector.

A field-matrix spike containing the series of organic compounds used in the analytical schedule was added to the replicate sample collected on June 7 at 1720. Data from the spiked sample can be used to determine extraction and elution recoveries from the filtered water and to evaluate the accuracy and precision of the results.

The method detection limit (MDL) provides an index to indicate where measurement uncertainty is increased. When an analyte is detected and all criteria for a positive result are met, the concentration is reported. If the concentration is less than the MDL, an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the NWQL will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less-than sign (<). The abbreviations SRG, SURROGT, or SURROG indicate surrogate and recovery is reported in percent.

Date	Time		2,6-DI- ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µG/L) (82660)	ACETO- CHLOR, WATER FLTRD REC (µG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (µG/L) (46342)	ALPHA BHC DIS- SOLVED (µG/L) (34253)	ATRA- ZINE, WATER, DISS, REC (µG/L) (39632)	BEN- FLUR- ALIN WAT FLD 0.7 µ GF, REC (µG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (µG/L) (04028)	CAR- BARYL WATER FLTRD 0.7 µ GF, REC (µG/L) (82680)	0.7 μ	CHLOR- PYRIFOS DIS- SOLVED (µG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (µG/L) (04041)
NOV 2001 14	1100	Q											
15 DEC	1045	9	<.002	<.004	.009	<.005	.010	<.010	<.002	<.041	<.020	<.005	<.018
05 05 JAN 2002	1030 1040	9 R	<.002	<.004	<.002	<.005	.008	<.010	<.002	<.041	<.020	<.005	<.018
23 31	1030 1000	9 9	<.006 <.006	<.006 <.006	<.004 <.004	<.005 <.005	.008	<.010 <.010	<.002 <.002	<.041 <.041	<.020 <.020	<.005 <.005	<.018 <.018
FEB 26	0930	9	<.006	<.006	<.004	<.005	.008	<.010	<.002	<.041	<.020	<.005	<.018
MAR 26	0900	9	<.006	<.006	<.004	<.005	.008	<.010	<.002	<.041	<.020	<.005	<.018
APR 23 29	0930 0930	9 9	<.006 <.006	<.006 <.006	<.004 <.004	<.005 <.005	.008	<.010 <.010	<.002 <.002	E.007	<.020 <.020	<.005 <.005	<.018 <.018
MAY 29 29	1030 1040	9 R	<.006 <.006	<.006 <.006	<.004 <.004	<.005 <.005	.025	<.010 <.010	<.002 <.002	<.041 <.041	<.020 <.020	<.005 E.004	<.018 <.018
JUN 07 07 24	1715 1720 1115	9 R 9	<.006 .113 <.006	<.009 .126 .010	<.004 .105 <.004	<.005 .130 <.005	.137 .257 .153	<.010 .096 <.010	<.002 .119 <.002	E.009 E.171 <.041	<.020 E.144 <.020	<.005 .129 <.005	<.018 .148 <.018
JUL 16	1030	9	<.006	E.005	<.004	<.005	.066	<.010	<.002	<.041	<.020	<.005	<.018
SEP 04 04	1100 1108	9 Q	<.006 <.006	<.006 <.006	<.004 <.004	<.005 <.005	.052 <.007	<.010 <.010	<.002 <.002	<.041 <.041	<.020 <.020	<.005 <.005	<.018 <.018
Date	DCPA WATER FLTRD 0.7 µ GF, REC (µG/L) (82682)	DEETHYL ATRA- ZINE, WATER, DISS, REC (µG/L) (04040)	DIAZ- INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063)	DI- AZINON, DIS- SOLVED (µG/L) (39572)	DI- ELDRIN DIS- SOLVED (µG/L) (39381)	0.7 μ GF, REC (μ G/L)	$(\mu G/L)$	ETHAL- FLUR- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663)	$(\mu G/L)$	DISS REC (µG/L)	WAT FLT 0.7 µ GF, REC PERCENT	DIS- SOLVED (µG/L)	
NOV 2001	WATER FLTRD 0.7 µ GF, REC (µG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040)	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063)	AZINON, DIS- SOLVED (µG/L) (39572)	ELDRIN DIS- SOLVED (µG/L) (39381)	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L) (82677)	WATER FLTRD 0.7 µ GF, REC (µG/L) (82668)	FLUR- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663)	PROP WATER FLTRD 0.7 µ GF, REC (µG/L) (82672)	WATER DISS REC (µG/L) (04095)	ALPHA D6 SRG WAT FLT 0.7 µ GF, REC PERCENT (91065)	DIS- SOLVED (µG/L) (39341)	URON WATER FLTRD 0.7 µ GF,REC (µG/L) (82666)
NOV 2001 14 15	WATER FLTRD 0.7 µ GF, REC (µG/L)	ATRA- ZINE, WATER, DISS, REC (µG/L)	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT	AZINON, DIS- SOLVED (µG/L)	ELDRIN DIS- SOLVED (µG/L)	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L)	WATER FLTRD 0.7 µ GF, REC (µG/L)	FLUR- ALIN WAT FLT 0.7 μ GF, REC (μ G/L)	PROP WATER FLTRD 0.7 μ GF, REC (μ G/L)	WATER DISS REC (µG/L)	ALPHA D6 SRG WAT FLT 0.7 μ GF, REC PERCENT	DIS- SOLVED (µG/L)	URON WATER FLTRD 0.7 µ GF,REC (µG/L)
NOV 2001 14 15 DEC 05	WATER FLTRD 0.7 µ GF, REC (µG/L) (82682)	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040)	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063)	AZINON, DIS- SOLVED (µG/L) (39572)	ELDRIN DIS- SOLVED (µG/L) (39381)	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L) (82677)	WATER FLTRD 0.7 μ GF, REC (μG/L) (82668)	FLUR- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663)	PROP WATER FLTRD 0.7 µ GF, REC (µG/L) (82672)	WATER DISS REC (µG/L) (04095)	ALPHA D6 SRG WAT FLT 0.7 µ GF, REC PERCENT (91065)	DIS- SOLVED (µG/L) (39341)	URON WATER FLTRD 0.7 µ GF,REC (µG/L) (82666)
NOV 2001 14 15 DEC 05 05 JAN 2002 23	WATER FLTRD 0.7 μ GF, REC (μG/L) (82682) <.003	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040)	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063) 107	AZINON, DIS- SOLVED (µG/L) (39572) <.005	ELDRIN DIS- SOLVED (µG/L) (39381) <.005	FOTON WATER FLIRD 0.7 µ GF, REC (µG/L) (82677)	WATER FLTRD 0.7 µ GF, REC (µG/L) (82668) <.002	FLUR- ALIN WAT FLT 0.7 μ GF, REC (μG/L) (82663)	PROP WATER FLIRD 0.7 μ GF, REC (μG/L) (82672) <.005	WATER DISS REC (µG/L) (04095) <.003	ALPHA D6 SRG WAT FLT 0.7 μ GF, REC PERCENT (91065)	DIS- SOLVED (µG/L) (39341) <.004	URON WATER FLTRD 0.7
NOV 2001 14 15 DEC 05 05 JAN 2002 23 31 FEB 26	WATER FLTRD 0.7 µ GF, REC (µG/L) (82682) <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040) E.004 E.003 	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063) 107 106 99.0	AZINON, DIS- SOLVED (µG/L) (39572) <.005 <.005	ELDRIN DIS- SOLVED (µG/L) (39381) <.005 <.005	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L) (82677)	WATER FLTRD 0.7 µ GF, REC (µG/L) (82668) <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663) <.009 <.009	PROP WATER FLTRD 0.7 µ GF, REC (µG/L) (82672)	WATER DISS REC (μG/L) (04095) <.003 <.003	ALPHA D6 SRG WAT FLT 0.7 µ GF, REC PERCENT (91065) 86.6 92.8 95.8	DIS- SOLVED (µG/L) (39341) <.004 <.004	URON WATER FLTRD 0.7 µ GF,REC (µG/L) (82666) <.035 <.035 <.035
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26	WATER FLTRD 0.7 µ GF, REC (µG/L) (82682) <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040) E.004 E.003 E.005 <.006	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063) 107 106 99.0 121	AZINON, DIS- SOLVED (μG/L) (39572) <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (µG/L) (39381) <.005 <.005 <.005 <.005	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L) (82677) <.02 <.02 <.02 <.02 <.02	WATER FLTRD 0.7 µ GF, REC (µG/L) (82668) <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663) <.009 <.009 <.009	PROP WATER FLTRD 0.7 μ GF, REC (μG/L) (82672) <.005 <.005 <.005 <.005	WATER DISS REC (µG/L) (04095) <.003 <.003 <.003 <.003	ALPHA D6 SRG WAT FLT 0.7 µ GF, REC PERCENT (91065) 86.6 92.8 95.8 108	DIS- SOLVED (µG/L) (39341) <.004 <.004 <.004	URON WATER FLTRD 0.7 µ GF,REC (µG/L) (82666) <.035 <.035 <.035 <.035
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23	WATER FLTRD 0.7 µ GF, REC (µG/L) (82682) <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040) E.004 E.003 E.005 <.006	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063) 107 106 99.0 121 108	AZINON, DIS- SOLVED (μG/L) (39572) <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (µG/L) (39381) <.005 <.005 <.005 <.005 <.005	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L) (82677)	WATER FLTRD 0.7 µ GF, REC (µG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663) <.009 <.009 <.009 <.009	PROP WATER FLTRD 0.7 µ GF, REC (µG/L) (82672) <.005 <.005 <.005 <.005 <.005	WATER DISS REC (µG/L) (04095) <.003 <.003 <.003 <.003 <.003	ALPHA D6 SRG WAT FLT 0.7 μ GF, REC PERCENT (91065) 86.6 92.8 95.8 108	DIS- SOLVED (µG/L) (39341) <.004 <.004 <.004 <.004 <.004	URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29	WATER FLIRD 0.7 µ GF, REC (µG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 0	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040) E.004 E.003 E.005 <.006 E.004 E.003	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063)	AZINON, DIS- SOLVED (μG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (µG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	WATER FLIRD 0.7 µ GF, REC (µG/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002	FLUR- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663) <.009 <.009 <.009 <.009 <.009	PROP WATER FLTRD 0.7 µ GF, REC (µG/L) (82672) < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005	WATER DISS REC (µG/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003	ALPHA D6 SRG WAT FLT 0.7 µ GF, REC PERCENT (91065) 86.6 92.8 95.8 108 99.0 90.4 88.4	DIS- SOLVED (µG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004	URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29 JUN 07	WATER FLIRD 0.7 µ GF, REC (µG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040) E.004 E.005 <.006 E.004 <.006 E.004 E.005 E.004 E.005	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063) 107 106 99.0 121 108 113 105 149 112 114 114 113	AZINON, DIS- SOLVED (μG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.006 E.003 <.006 E.004 <.009	ELDRIN DIS- SOLVED (µG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.105	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	WATER FLITRD 0.7 µ GF, REC (µG/L) (82668)	FLUR-ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009	PROP WATER FLTRD 0.7 µ GF, REC (µG/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.1012	WATER DISS REC (µG/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.106	ALPHA D6 SRG WAT FLT 0.7 μ GF, REC PERCENT (91065) 86.6 92.8 95.8 108 99.0 90.4 88.4 112 107 102 103 101	DIS- SOLVED (µG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035
NOV 2001 14 15 DEC 05 JAN 2002 23 31 FEB 26 MAR 26 APR 23 29 MAY 29 JUN 07	WATER FLIRD 0.7 µ GF, REC (µG/L) (82682) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ATRA- ZINE, WATER, DISS, REC (µG/L) (04040) E.004 E.005 <.006 E.004 E.003 E.005 <.006	INON D10 SRG WAT FLT 0.7 µ GF, REC PERCENT (91063) 107 106 99.0 121 108 113 105 149 112 114	AZINON, DIS- SOLVED (μG/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	ELDRIN DIS- SOLVED (µG/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	FOTON WATER FLTRD 0.7 µ GF, REC (µG/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02	WATER FLITRD 0.7 µ GF, REC (µG/L) (82668)	FLUR- ALIN WAT FLT 0.7 µ GF, REC (µG/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009	PROP WATER FLTRD 0.7 µ GF, REC (µG/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005	WATER DISS REC (µG/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003	ALPHA D6 SRG WAT FLT 0.7 µ GF, REC PERCENT (91065) 86.6 92.8 95.8 108 99.0 90.4 88.4 112 107 102 103	DIS- SOLVED (µG/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004	URON WATER FLTRD 0.7 μ GF, REC (μG/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued

Date	MALA- THION, DIS- SOLVED (μG/L) (39532)	0.7 μ	0.7 μ GF, REC (μG/L)	$(\mu G/L)$	WATER	WATER FLTRD 0.7 µ LV GF, RE (µG/L)	$(\mu G/L)$	P,P' DDE	PARA- THION, DIS- V SOLVEI (µG/L) (39542)	0.7 μ GF, RE (μG/L)	$(\mu G/L)$	METHRIN CIS WAT FLT 0.7 μ	WATER FLTRD 0.7 µ C GF,REC (µG/L)
NOV 2001 14													
15 DEC	<.027	<.050	<.006	E.006	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011
05 05	<.027	<.050	<.006	E.010	<.006	<.002	<.007	<.003	<.007	<.002	<.010	<.006	<.011
JAN 2002 23 31	<.027 <.027	<.050 <.050	<.006 <.006	E.003 E.008	<.006 <.006		<.007 <.007	<.003 <.003	<.010 <.010	<.004 <.004	<.022 <.022	<.006 <.006	<.011 <.011
FEB 26	<.027	<.050	<.006	E.007	<.006	<.002	<.007	<.003	<.010	<.004	<.022	<.006	<.011
MAR 26 APR	<.027	<.050	<.006	E.004	<.006	<.002	<.007	<.003	<.010	<.004	<.022	<.006	<.011
23 29 MAY	<.027 <.027	<.050 <.050	<.006 <.006	E.009 <.013	<.006 <.006		<.007 <.007	<.003 <.003	<.010 <.010	<.004 <.004	<.022 <.022	<.006 <.006	<.011 <.011
29 29 JUN	<.027 <.027	<.050 <.050	<.006 <.006	E.008 E.008	<.006 <.006		<.007 <.007	<.003 <.003	<.010 <.010	<.004 <.004	<.022 <.022	<.006 <.006	<.011 <.011
07 07	<.027 .161	<.050 E.199	<.006 .134	.047 .164	<.006 .110		<.007 .136	<.003	<.010 .139	<.004 .115	<.022 .137	<.006 .050	<.011
24 JUL	<.027	<.050	<.006	.040	<.006		<.007	<.003	<.010	<.004	<.022	<.006	<.011
16 SEP	<.027	<.050	<.006	.014	<.006		<.007	<.003	<.010	<.004	<.022	<.006	<.011
	<.027 <.027	<.050 <.050	<.006 <.006	E.011 <.013	<.006 <.006		<.007 <.007	<.003 <.003	<.010 <.010	<.007 <.004	<.022 <.022	<.006 <.006	<.011 <.011
Date	MI WA DI RI (µC	RO- F ETON, W ATER, F ESS, C EC GF G/L) (µ	MMIDE JATER LTRD 1.7 μ 1.7 , REC LG/L) (PROPA- CHLOR, WATER, DISS, REC G µG/L) (PANIL WATER FLTRD 0.7 μ F, REC μG/L)	WATER FLTRD 0.7 µ GF, REC (µG/L)	SI- MAZINE, WATER, DISS, REC (µG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 µ GF, REC (µG/L) (82670)	BACIL WATER FLTRD 0.7 µ GF, REC (µG/L)	TER- BUFOS WATER FLTRD 0.7 µ GF, REC (µG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 µ GF, REC (µG/L) (82681)	ALIN WAT FLT 0.7 µ GF, REC (µG/L)	
NOV 2003													
15 DEC				<.010	<.011	<.02	<.011	<.02	<.034	<.02	<.005	<.009	
05 05			.004	<.010	<.011	<.02	<.011	<.02	<.034	<.02	<.005	<.009	
JAN 2002 23 31	2				<.011 <.011	<.02 <.02	<.005 <.005	<.02 <.02	<.034 <.034	<.02 <.02	<.005 <.005	<.009 <.009	
FEB 26 MAR	•	<.01 <	.004	<.010	<.011	<.02	<.005	<.02	<.034	<.02	<.005	<.009	
26 APR	•	<.01 <	.004	<.010	<.011	<.02	<.005	<.02	<.034	<.02	<.005	<.009	
23 29 MAY				<.010 <.010	<.011 <.011	<.02 <.02	.008	<.02 <.02	<.034 <.034	<.02 <.02	<.005 <.005	<.009 <.009	
29 29 JUN				<.010 <.010	<.011 <.011	<.02 <.02	.008	<.02 <.02	<.034 <.034	<.02 <.02	<.005 <.005	<.009 <.009	
07 07 24		.15	.121	.120	<.011 .135 <.011	<.02 .12 <.02	.026 .097 .014	<.02 .16 <.02	<.034 E.137 <.034	<.02 .11 <.02	<.005 .122 <.005	<.009 .096 <.009	
JUL 16	I			<.010	<.011	<.02	.007	<.02	<.034	<.02	<.005	<.009	
SEP 04 04				<.010 <.010	<.011 <.011	<.02 <.02	.008	<.02 <.02	<.034 <.034	<.02 <.02	<.005 <.005	<.009 <.009	

03101500 SHENANGO RIVER AT PYMATUNING DAM, PA (Pennsylvania Water-Ouality Network Station)

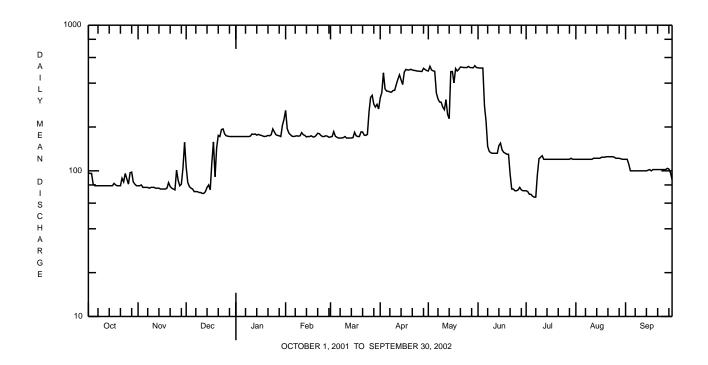
LOCATION.--Lat 41°29'53", long 80°27'37", Crawford County, Hydrologic Unit 05030102, on left bank 500 ft downstream from Sugar Run, 900 ft downstream from Pymatuning Dam, 1.5 mi northwest of Jamestown, at mile 84.9.

DRAINAGE AREA.--167 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--June 1934 to current year.

REVISED RECORDS.--WSP 823: 1934-36. WSP 1083: 1936 (M), 1937, 1940 (M), 1941-45. WSP 1335: 1940.


GAGE.--Water-stage recorder and concrete dam control. Datum of gage is 970.00 ft above National Geodetic Vertical Datum of 1929.

REMARKS.—No estimated daily discharges. Records good. Flow regulated since December 1933 by Pymatuning Reservoir (station 03100500). Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV OCT DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 79 72 78 111 5 77 75 172 79 79 72 72 7 77 79 77 71 70 72 76 15 79 75 178 480 122 17 82 75 175 174 174 497 402 100 79 83 173 175 185 497 125 22 172 174 489 75 179 73 27 97 173 79 173 77 172 73 ___ TOTAL 81.7 157 510 127 MEAN 83.7 MAX MIN CFSM 0.50 0 49 0.71 1.07 1.07 1.19 2.60 2.62 1.04 0.65 0.73 0.61 IN. 0.58 0.55 0.82 1.23 1.11 1.38 2.90 3.02 1.16 0.75 0.84 0.68 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1935 - 2002, BY WATER YEAR (WY) MEAN MAX (WY) 6 27 MTN 17.3 3.79 10 4 13 2 17 0 5 78 5 37 20 0 31 6 40 2 (WY)

03101500 SHENANGO RIVER AT PYMATUNING DAM, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1935 - 2002
ANNUAL TOTAL	48282	67380	
ANNUAL MEAN	132	185	205
HIGHEST ANNUAL MEAN			330 1956
LOWEST ANNUAL MEAN			16.6 1935
HIGHEST DAILY MEAN	398 Mar 13	527 May 30	1240 Jan 28 1937
LOWEST DAILY MEAN	35 Jun 26	66 Jul 6,7	0.40 Aug 25 1935
ANNUAL SEVEN-DAY MINIMUM	36 Jun 21	69 Jul 1	0.73 Jun 6 1935
MAXIMUM PEAK FLOW		616 Apr 3	1540 Sep 4 1937
MAXIMUM PEAK STAGE		6.09 Apr 3	9.20 Sep 4 1937
ANNUAL RUNOFF (CFSM)	0.79	1.11	1.23
ANNUAL RUNOFF (INCHES)	10.76	15.01	16.68
10 PERCENT EXCEEDS	249	481	548
50 PERCENT EXCEEDS	100	132	134
90 PERCENT EXCEEDS	54	76	26

03101500 SHENANGO RIVER AT PYMATUNING DAM, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
APR 2002 23 JUN	1030	9813	488	40	8.2	7.7	181	12.7	68	19.7	4.7	48	
11	0830	9813	132	40	8.9	7.7	190	18.8	70	20.5	4.6	48	<.2
AUG 13	0830	9813	122	40	7.6	7.5	219	24.4	79	23.3	5.0	54	<.2
	SULFATE	RESIDUE	RESIDUE TOTAL AT 105	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NIEDO	PHOS- PHORUS	PHOS-	CARBON,	COPPER,	CYANIDE AMEN- ABLE TO	IRON, TOTAL
Date	DIS- SOLVED (MG/L AS SO4) (00945)	DEG. C, DIS- SOLVED (MG/L) (00515)	DEG. C, SUS- PENDED (MG/L) (00530)	AMMONIA TOTAL (MG/L AS N) (00610)	NITRATE TOTAL (MG/L AS N) (00620)	NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	ORTHO TOTAL (MG/L AS P) (70507)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC TOTAL (MG/L AS C) (00680)	RECOV- ERABLE (µG/L AS CU) (01042)	CHLOR- INATION UNFLTRD (MG/L) (00722)	RECOV- ERABLE (µG/L AS FE) (01045)
APR 2002 23	DIS- SOLVED (MG/L AS SO4)	DEG. C, DIS- SOLVED (MG/L)	DEG. C, SUS- PENDED (MG/L)	AMMONIA TOTAL (MG/L AS N)	NITRATE TOTAL (MG/L AS N)	NITRITE TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	ORTHO TOTAL (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	RECOV- ERABLE (µG/L AS CU)	CHLOR- INATION UNFLTRD (MG/L)	RECOV- ERABLE (µG/L AS FE)
APR 2002	DIS- SOLVED (MG/L AS SO4) (00945)	DEG. C, DIS- SOLVED (MG/L) (00515)	DEG. C, SUS- PENDED (MG/L) (00530)	AMMONIA TOTAL (MG/L AS N) (00610)	NITRATE TOTAL (MG/L AS N) (00620)	NITRITE TOTAL (MG/L AS N) (00615)	GEN, TOTAL (MG/L AS N) (00600)	ORTHO TOTAL (MG/L AS P) (70507)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC TOTAL (MG/L AS C) (00680)	RECOV- ERABLE (µG/L AS CU) (01042)	CHLOR- INATION UNFLTRD (MG/L) (00722)	RECOV- ERABLE (µG/L AS FE) (01045)

Date	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)	PHENOLS TOTAL (μG/L) (32730)
APR 2002 23 JUN	<1.0	80	<50	<10	
11	<1.0	180	<50	10	<5
AUG 13	1.8	190	<50	<10	<5

03102500 LITTLE SHENANGO RIVER AT GREENVILLE, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 41°25'19", long 80°22'35", Mercer County, Hydrologic Unit 05030102, on left bank 1,700 ft downstream from Williamson Crossing bridge, 1 mi northeast of Greenville, and 2.0 mi upstream from mouth.

DRAINAGE AREA.--104 mi².

WATER-DISCHARGE RECORDS

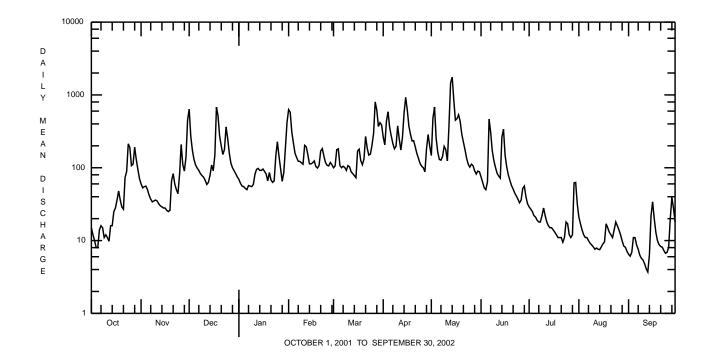
PERIOD OF RECORD.--October 1913 to current year. Monthly discharge only for some periods, published in WSP 1305.

REVISED RECORDS.--WSP 743: Drainage area. WSP 1305: 1914, 1922-23, 1926-29. WSP 1335: 1923 (m).

GAGE.--Water-stage recorder. Datum of gage is 953.46 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 4, 1915, nonrecording gage; Nov. 4, 1915, to Sept. 30, 1918, water-stage recorder; Nov. 7, 1919, to Aug. 31, 1923, and Nov. 19, 1925, to June 20, 1934, nonrecording gage at site 1 mi downstream at datum 8.96 ft lower.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,500 ft³/s and maximum (*):


Date May	-	Time 0400		scharge ft ³ /s 2,020	Gage Height (ft) *7.04	ht		Date No other		ime	Discharge ft ³ /s than base	Gage Height (ft) discharge.	
				DISCHA	RGE, CUBIC	FEET PER SI		TER YEAR OC EAN VALUES	TOBER	2001 TO SE	PTEMBER 2	002	
DAY	OCT	-	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	15 12 10 8.0 8.0		60 53 55 56 50	636 270 173 130 109	e69 e61 e56 e55 e52	628 578 309 218 158	100 106 177 182 107	264 206 433 587 358	147 480 682 254 164	75 63 53 50 64	27 25 22	21 17 14 12 11	6.5 6.1 6.9 11 11
6 7 8 9 10	14 16 15 11		42 37 34 35 36	99 92 83 78 74	e50 57 56 55 59	138 123 122 117 112	100 105 101 92 107	274 215 182 198 376	130 127 143 197 178	465 307 171 125 101	18 18 22	11 10 9.2 8.7 8.2	8.7 7.6 6.3 5.7 5.4
11 12 13 14 15	11 9.8 16 16 25	3	35 32 30 29 28	67 59 63 79 109	81 95 98 92 92	203 194 151 113 113	103 88 83 78 73	247 175 261 566 927	124 376 1450 1760 859	84 77 72 263 339	18 16 15	7.6 7.9 7.6 7.5 8.2	4.8 4.1 3.7 6.4 22
16 17 18 19 20	28 36 48 36 29		28 26 25 26 66	91 149 679 511 270	96 89 82 66 86	117 124 104 99 108	170 180 125 110 132	620 374 288 233 235	450 472 534 432 289	148 103 80 67 57	13 12 11	9.0 9.6 17 15	34 20 13 10 8.8
21 22 23 24 25	27 73 89 213 190		83 60 50 44 81	199 152 179 364 252	68 63 66 144 227	170 183 145 118 108	269 187 149 154 204	192 156 134 114 105	225 177 135 112 102	51 45 41 37 33	9.5 11 18	12 11 14 18 16	8.3 8.1 7.3 6.7 6.9
26 27 28 29 30 31	107 112 192 130 95 71		209 111 90 140 453	160 e116 e100 e91 e83 e75	e144 e97 e65 86 186 420	106 118 110 	298 802 616 369 416 386	100 88 182 286 198	112 107 91 82 90 88	36 52 56 40 32	11 12 62 63	14 12 9.9 8.4 8.1 7.1	8.1 20 39 28 18
TOTAL MEAN MAX MIN CFSM IN.	1674.8 54.0 213 8.0 0.52 0.60) 3) 2	2104 70.1 453 25 0.67 0.75	5592 180 679 59 1.73 2.00	3013 97.2 420 50 0.93 1.08	4887 175 628 99 1.68 1.75	6169 199 802 73 1.91 2.21	8574 286 927 88 2.75 3.07	10569 341 1760 82 3.28 3.78	3187 106 465 32 1.02 1.14	20.5 63 9.5 0.20	11.5 21 7.1 0.11	352.4 11.7 39 3.7 0.11 0.13
STATIS	TICS OF	MONT	HLY ME	AN DATA	FOR WATER	YEARS 191	4 - 2002,	BY WATER	YEAR (W	-			
MEAN MAX (WY) MIN (WY)	59.3 343 1925 5.19	3 7 9	122 639 1986 6.31 1931	176 521 1928 16.8 1961	205 773 1937 21.3 1977	223 553 1976 36.0 1963	294 659 1963 66.5 1915	233 506 1957 16.7 1915	156 511 1929 21.8 1934	92.6 395 1989 11.9 1934	457 1958 5.91	284 1980 5.33	40.5 316 1926 5.90 1930

e Estimated.

03102500 LITTLE SHENANGO RIVER AT GREENVILLE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1914 - 2002
ANNUAL TOTAL	32475.7	47111.7	
ANNUAL MEAN	89.0	129	141
HIGHEST ANNUAL MEAN			218 1956
LOWEST ANNUAL MEAN			65.6 1931
HIGHEST DAILY MEAN	679 Dec 18	1760 May 14	5980 Jan 22 1959
LOWEST DAILY MEAN	2.8 Aug 16	3.7 Sep 13	2.8 Aug 16 2001
ANNUAL SEVEN-DAY MINIMUM	3.3 Sep 7	5.2 Sep 8	3.3 Sep 7 2001
MAXIMUM PEAK FLOW		2020 May 14	a 8540 Jan 22 1959
MAXIMUM PEAK STAGE		7.04 May 14	14.30 Jan 22 1959
INSTANTANEOUS LOW FLOW		3.5 Sep 13,14	2.4 Aug 16 2001 b
ANNUAL RUNOFF (CFSM)	0.86	1.24	1.36
ANNUAL RUNOFF (INCHES)	11.62	16.85	18.48
10 PERCENT EXCEEDS	199	293	326
50 PERCENT EXCEEDS	61	81	66
90 PERCENT EXCEEDS	6.5	9.9	12

 $[\]begin{array}{ll} \textbf{a} & \text{From rating curve extended above 3,200 ft}^3\hspace{-0.5mm}/\text{s on basis of slope-area measurement at gage height 12.26 ft.} \\ \textbf{b} & \text{Also Sept. 13.} \end{array}$

03102500 LITTLE SHENANGO RIVER AT GREENVILLE, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

			DIS-			PH					MAGNE-	ANC	
		AGENCY	CHARGE,			WATER	SPE-		HARD-	CALCIUM	SIUM,	WATER	
		ANA- LYZING	INST. CUBIC	SAM-	OXYGEN,	WHOLE FIELD	CIFIC CON-	TEMPER-	NESS TOTAL	TOTAL RECOV-	TOTAL RECOV-	UNFLTRD FET	SULFATE DIS-
		SAMPLE	FEET	PLING	DIS-	(STAND-	DUCT-	ATURE	(MG/L	ERABLE	ERABLE	LAB	SOLVED
Date	Time	(CODE	PER	METHOD,	SOLVED	ARD	ANCE	WATER	AS	(MG/L	(MG/L	(MG/L AS	(MG/L
		NUMBER)	SECOND	CODES	(MG/L)	UNITS)	(µS/CM)	(DEG C)	CACO3)	AS CA)	AS MG)	CACO3)	AS SO4)
		(00028)	(00061)	(82398)	(00300)	(00400)	(00095)	(00010)	(00900)	(00916)	(00927)	(00417)	(00945)
APR 2002													
23	1130	9813	134	40	8.8	7.6	214	8.4	81	24.1	5.1	60	18.6
JUN	1000	0010	0.4.0	4.0			000	0.1 6		0.5			
11 AUG	1000	9813	84.8	40	7.9	7.6	233	21.6	90	26.9	5.5	68	14.9
13	1000	9813	7.4	40	7.9	7.8	345	22.0	160	49.5	10.0	126	25.9
		RESIDUE											MANGA-
	RESIDUE	TOTAL	NITRO-	NITRO-	NITRO-		PHOS-			COPPER,	IRON,	LEAD,	NESE,
	AT 105	TOTAL AT 105	GEN,	GEN,	GEN,	NITRO-	PHORUS	PHOS-	CARBON,	TOTAL	TOTAL	TOTAL	NESE, TOTAL
	AT 105 DEG. C,	TOTAL AT 105 DEG. C,	GEN, AMMONIA	GEN, NITRATE	GEN, NITRITE	GEN,	PHORUS ORTHO	PHORUS	ORGANIC	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	NESE, TOTAL RECOV-
Date	AT 105	TOTAL AT 105	GEN, AMMONIA TOTAL	GEN,	GEN,	GEN, TOTAL	PHORUS ORTHO TOTAL	PHORUS TOTAL	ORGANIC TOTAL	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	NESE, TOTAL RECOV- ERABLE
Date	AT 105 DEG. C, DIS-	TOTAL AT 105 DEG. C, SUS-	GEN, AMMONIA	GEN, NITRATE TOTAL	GEN, NITRITE TOTAL	GEN,	PHORUS ORTHO	PHORUS	ORGANIC	TOTAL RECOV-	TOTAL RECOV-	TOTAL RECOV-	NESE, TOTAL RECOV-
Date	AT 105 DEG. C, DIS- SOLVED	TOTAL AT 105 DEG. C, SUS- PENDED	GEN, AMMONIA TOTAL (MG/L	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS ORTHO TOTAL (MG/L	PHORUS TOTAL (MG/L	ORGANIC TOTAL (MG/L	TOTAL RECOV- ERABLE (µG/L	TOTAL RECOV- ERABLE (µG/L	TOTAL RECOV- ERABLE (µG/L	NESE, TOTAL RECOV- ERABLE (μG/L
	AT 105 DEG. C, DIS- SOLVED (MG/L)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	TOTAL RECOV- ERABLE (µG/L AS CU)	TOTAL RECOV- ERABLE (µG/L AS FE)	TOTAL RECOV- ERABLE (µG/L AS PB)	NESE, TOTAL RECOV- ERABLE (μG/L AS MN)
Date APR 2002 23	AT 105 DEG. C, DIS- SOLVED (MG/L)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	TOTAL RECOV- ERABLE (µG/L AS CU)	TOTAL RECOV- ERABLE (µG/L AS FE)	TOTAL RECOV- ERABLE (µG/L AS PB)	NESE, TOTAL RECOV- ERABLE (μG/L AS MN)
APR 2002 23 JUN	AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NITRATE TOTAL (MG/L AS N) (00620)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	GEN, TOTAL (MG/L AS N) (00600)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)
APR 2002 23 JUN 11	AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NITRATE TOTAL (MG/L AS N) (00620)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	GEN, TOTAL (MG/L AS N) (00600)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)
APR 2002 23 JUN	AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NITRATE TOTAL (MG/L AS N) (00620)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	GEN, TOTAL (MG/L AS N) (00600)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)

	NICKEL,	ZINC,
	TOTAL	TOTAL
	RECOV-	RECOV-
	ERABLE	ERABLE
Date	(µG/L	(µG/L
	AS NI)	AS ZN)
	(01067)	(01092)
APR 2002		
23	<50	<10
11	<50	10
AUG 13	<50	<10

03102850 SHENANGO RIVER NEAR TRANSFER, PA

LOCATION.--Lat 41°21'13", long 80°23'53", Mercer County, Hydrologic Unit 05030102, on left bank at downstream side of covered wooden bridge, 200 ft downstream from highway bridge, 0.6 mi downstream from Big Run, 2.5 mi northeast of Transfer, at mile 71.8.

DRAINAGE AREA.--337 mi².

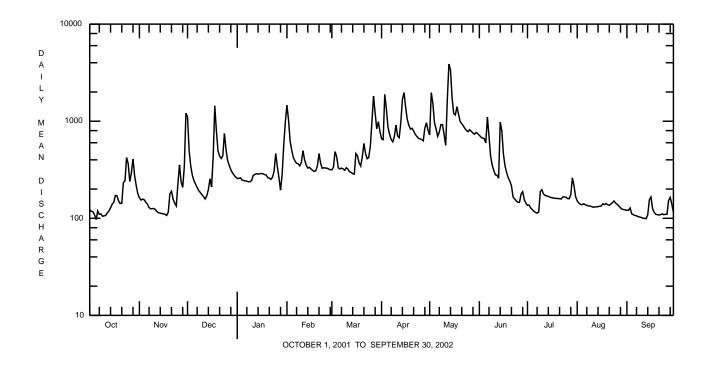
PERIOD OF RECORD.--October 1965 to current year.

REVISED RECORDS.--WDR PA-71-3: 1966, 1967.

GAGE.--Water-stage recorder. Datum of gage is 913.94 ft above National Geodetic Vertical Datum of 1929 (Pennsylvania Department of Transportation benchmark).

REMARKS.--Records good except those for estimated daily discharges, which are poor. Flow regulated since December 1933 by Pymatuning Reservoir (station 03100500) 13 mi upstream and by mills above station. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


			DISCH	AKOL, COBIC	TEET FER 5.		EAN VALUE		OI TO SEFT.	EMBER 2002	,	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	123	163	1110	e257	1460	e316	658	722	716	136	151	121
2	118	154	498	e258	1030	336	646	1970	686	137	144	121
3	117	158	347	e261	620	486	1890	1520	669	128	139	128
4	109	155	277	248	501	433	1340	965	664	123	138	111
5	97	146	245	245	422	331	866	832	597	118	141	109
6	119	140	225	243	390	322	733	698	1100	115	138	107
7	110	129	207	e241	369	329	649	771	701	113	136	106
8	111	125	193	e238	e364	323	613	922	435	116	134	104
9	105	126	184	e238	e347	312	699	923	353	189	134	103
10	106	126	175	e246	e376	332	911	727	310	197	132	102
11	107	123	167	e277	e497	322	706	565	280	178	130	100
12	114	117	158	e283	e401	302	677	1660	278	172	131	100
13	119	114	170	e288	e353	297	967	3880	259	170	131	99
14	128	113	198	e285	e329	288	1670	3350	982	168	132	109
15	140	112	255	e288	e335	285	1970	1720	796	165	133	155
16	146	111	210	e289	e322	464	1400	1200	454	163	134	166
17	172	110	429	e288	e311	439	1050	1160	346	162	141	126
18	171	107	1440	e282	e304	372	911	1410	295	161	138	115
19	151	116	795	e280	e309	345	829	1180	262	160	142	110
20	142	179	497	263	347	432	846	993	241	160	138	109
21	143	190	e438	259	464	590	794	943	216	159	136	108
22	234	158	e413	252	e368	466	733	894	166	158	140	109
23	243	143	e441	265	e327	411	698	840	159	166	145	111
24	423	134	747	e308	e332	423	667	801	151	166	151	109
25	365	227	513	e466	e329	554	657	780	146	165	143	110
26 27 28 29 30 31	239 296 407 276 218 179	355 238 208 341 1210	395 351 e317 e294 e279 e266	e195	e328 e322 e316 	984 1810 1210 833 990 782	647 627 850 963 805	816 786 753 735 766 743	146 177 188 156 143	160 159 175 261 217 167	139 134 128 124 123 122	110 153 164 140 115
TOTAL	5528	5828	12234	9480	12173	16119	27472	36025	12072	4984	4222	3530
MEAN	178	194	395	306	435	520	916	1162	402	161	136	118
MAX	423	1210	1440	984	1460	1810	1970	3880	1100	261	151	166
MIN	97	107	158	195	304	285	613	565	143	113	122	99
CFSM	0.53	0.58	1.17	0.91	1.29	1.54	2.72	3.45	1.19	0.48	0.40	0.35
IN.	0.61	0.64	1.35	1.05	1.34	1.78	3.03	3.98	1.33	0.55	0.47	0.39
STATIST	CICS OF	MONTHLY 1	MEAN DATA	FOR WATER	YEARS 196	6 - 2002,	BY WATER	YEAR (WY)			
MEAN	284	519	797		661	658	562	435	328	242	196	244
MAX	1034	1627	1343		1319	1212	1273	1162	1080	873	1005	717
(WY)	1991	1986	1991		1990	1985	1994	2002	1989	1972	1980	1987
MIN	57.9	88.4	128		121	172	207	82.9	86.2	46.5	81.6	101
(WY)	1983	1999	1999		1987	1969	1968	1987	1967	1968	1982	1999

e Estimated.

03102850 SHENANGO RIVER NEAR TRANSFER, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1966 - 2002
ANNUAL TOTAL	101468	149667	
ANNUAL MEAN	278	410	464
HIGHEST ANNUAL MEAN			663 1997
LOWEST ANNUAL MEAN			265 1999
HIGHEST DAILY MEAN	1440 Dec 18	3880 May 13	5120 Nov 5 1985
LOWEST DAILY MEAN	68 Jun 27	97 Oct 5	33 Jul 21 1968
ANNUAL SEVEN-DAY MINIMUM	87 Jun 14	102 Sep 7	39 Jul 17 1968
MAXIMUM PEAK FLOW		4350 May 14	a 5390 Nov 5 1985
MAXIMUM PEAK STAGE		8.14 May 14	10.47 Nov 5 1985
INSTANTANEOUS LOW FLOW			33 Jul 20 1968
ANNUAL RUNOFF (CFSM)	0.82	1.22	1.38
ANNUAL RUNOFF (INCHES)	11.20	16.52	18.71
10 PERCENT EXCEEDS	539	911	992
50 PERCENT EXCEEDS	179	262	283
90 PERCENT EXCEEDS	109	115	100

a From rating curve extended above 4,800 ft³/s.

03105500 BEAVER RIVER AT WAMPUM, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°53'19", long 80°20'14", Lawrence County, Hydrologic Unit 05030104, on right bank at downstream side of bridge on State Highway 288 at Wampum, 2.9 mi upstream from Connoquenessing Creek, at mile 15.4.

DRAINAGE AREA.--2,235 mi².

WATER-DISCHARGE RECORDS

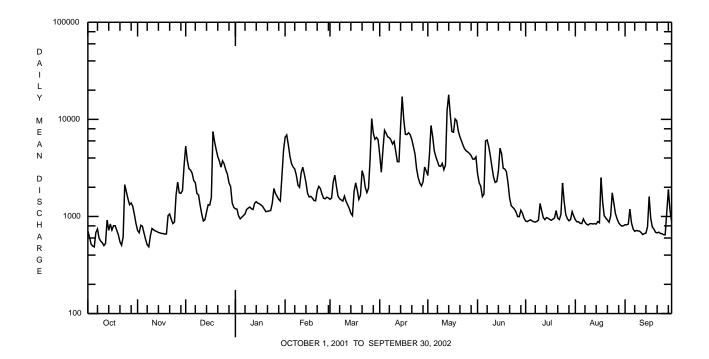
PERIOD OF RECORD.—July 1914 to September 1918, August 1932 to current year. Monthly discharge only for some periods, published in WSP 1305. Published as "at Newport" 1914-18.

REVISED RECORDS.--WSP 728: Drainage area. WSP 1385: 1933-40, 1946, 1951-52. WSP 1725: 1960 (adjusted runoff). WDR PA 853: 1984 (M).

GAGE.--Water-stage recorder. Datum of gage is 736.24 ft above National Geodetic Vertical Datum of 1929 (Penn Central Railroad bench mark). Prior to Sept. 20, 1914, nonrecording gage at site 500 ft downstream at datum 0.76 ft lower. Oct. 1, 1914 to Sept. 30, 1918, nonrecording gage at site 1 mi upstream at datum 0.84 ft higher. Aug. 26, 1932 to Nov. 16, 1938, nonrecording gage at present site and datum. Since 1932 an auxiliary gage 10 mi downstream at Beaver Falls (station 03107500) is used during periods of backwater from Connoquenessing Creek.

REMARKS.--No estimated daily discharges. Records good. Flow regulated since 1916 by Milton Reservoir, since November 1929 by Meander Creek Reservoir, since December 1933 by Pymatuning Reservoir (station 03100500), since December 1942 by Berlin Lake, since October 1943 by Mosquito Creek Lake, since December 1966 by Michael J. Kirwan Reservoir, and since January 1967 by Shenango River Lake 40 mi upstream. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1912, 29.9 ft, Mar. 26, 1913, from floodmark, discharge, about 87,000 ft³/s.

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN JUL AUG SEP 5 743 13 2720 2.2 25 27 1750 2730 1100 30 1050 6510 796 ---TOTAL MEAN 486 1450 1020 958 876 796 647 MAX MIN 0.38 0.45 1.22 0.64 1.18 2.50 2.71 1.16 0.45 0.38 CFSM 0.46 IN. 0.43 0.50 1.41 0.74 1.23 1.40 2.79 3.13 1.29 0.53 0.51 0.42 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1915 - 2002, BY WATER YEAR (WY) MEAN 1937 MAX (WY) MIN (WY)

03105500 BEAVER RIVER AT WAMPUM, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR Y	EAR	FOR 2002 WAT	TER YEAR	WATER YEARS	1915 - 2002
ANNUAL TOTAL	615550		864111			
ANNUAL MEAN	1686		2367		2537	
HIGHEST ANNUAL MEAN					3995	1956
LOWEST ANNUAL MEAN					834	1934
HIGHEST DAILY MEAN	8300 Apr	7	17900	May 14	47500	Jan 22 1959
LOWEST DAILY MEAN	486 Oct	5	486	Oct 5	88	Oct 5 1914
ANNUAL SEVEN-DAY MINIMUM	583 Oct	3	583	Oct 3	94	Oct 3 1914
MAXIMUM PEAK FLOW			18700	Apr 15	a 50100	May 28 1946
MAXIMUM PEAK STAGE			b 11.68	Apr 15	c 21.53	May 28 1946
INSTANTANEOUS LOW FLOW					d 74	Jul 30 1933
ANNUAL RUNOFF (CFSM)	0.75		1.06		1.14	
ANNUAL RUNOFF (INCHES)	10.25		14.38		15.42	
10 PERCENT EXCEEDS	3820		5910		5800	
50 PERCENT EXCEEDS	1130		1420		1420	
90 PERCENT EXCEEDS	697		688		575	

- a From slope-rating curve extended above 28,000 ft³/s on basis of contracted-opening measurement at gage height 21.44 ft.
 b Maximum gage height 11.70 ft, discharge 18,700 ft³/s, May 14.
 c Maximum gage height, 24.86 ft, Jan. 22, 1959 (backwater from Connoquenessing Creek).
 d Minimum discharge observed.

03105500 BEAVER RIVER AT WAMPUM, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
APR 2002													
18 JUN	1400	9813	7070	40	7.1	7.7	363	16.7	120	34.6	8.0	64	<.2
20 AUG	1100	9813	2190	40	7.6	7.5	452	21.8	120	35.6	8.2	76	<.2
06	1100	9813	969	40	5.5	7.4	539	29.0	150	42.9	11.4	88	.3
			RESIDUE									CYANIDE	
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	AMEN- ABLE TO CHLOR- INATION UNFLTRD (MG/L) (00722)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)
APR 2002 18	DIS- SOLVED (MG/L AS SO4)	AT 105 DEG. C, DIS- SOLVED (MG/L)	AT 105 DEG. C, SUS- PENDED (MG/L)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	PHORUS ORTHO TOTAL (MG/L AS P)	PHORUS TOTAL (MG/L AS P)	ORGANIC TOTAL (MG/L AS C)	TOTAL RECOV- ERABLE (µG/L AS CU)	ABLE TO CHLOR- INATION UNFLTRD (MG/L)	TOTAL RECOV- ERABLE (µG/L AS FE)
APR 2002	DIS- SOLVED (MG/L AS SO4) (00945)	AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	GEN, AMMONIA TOTAL (MG/L AS N) (00610)	GEN, NITRATE TOTAL (MG/L AS N) (00620)	GEN, NITRITE TOTAL (MG/L AS N) (00615)	GEN, TOTAL (MG/L AS N) (00600)	PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHORUS TOTAL (MG/L AS P) (00665)	ORGANIC TOTAL (MG/L AS C) (00680)	TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	ABLE TO CHLOR- INATION UNFLTRD (MG/L) (00722)	TOTAL RECOV- ERABLE (µG/L AS FE) (01045)

	MANGA-			
	NESE,	NICKEL,	ZINC,	
	TOTAL	TOTAL	TOTAL	
	RECOV-	RECOV-	RECOV-	
	ERABLE	ERABLE	ERABLE	PHENOLS
Date	(µG/L	(µG/L	(µG/L	TOTAL
	AS MN)	AS NI)		
	(01055)	(01067)	(01092)	(32730)
APR 2002				_
18	140	< 50	<10	<5
JUN				
20	130	< 50	30	<5
AUG				
06	120	< 50	<10	<5

03106000 CONNOQUENESSING CREEK NEAR ZELIENOPLE, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°49'01", long 80°14'33", Beaver County, Hydrologic Unit 05030105, on right bank at downstream side of highway bridge at Hazen, 0.3 mi upstream from Brush Creek, 4 mi southeast of Ellwood City, and 6.0 mi west of Zelienople.

DRAINAGE AREA.--356 mi².

Date

Time

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1919 to current year. Monthly discharge only for some periods, published in WSP 1305. June 1915 to September 1919 (gage heights and discharge measurements only) in reports of Water Supply Commission of Pennsylvania. Published as "at Hazen" 1915-16, 1929-63, and as "near Hazen" 1917-28.

REVISED RECORDS.--WSP 743: Drainage area. WSP 893: 1937-38, 1939 (M). WSP 1305: 1922-26, 1928. WSP 1335: 1920-21, 1924 (M). WSP 1385: 1952

GAGE.--Water-stage recorder. Datum of gage is 852.31 ft above National Geodetic Vertical Datum of 1929. Prior to June 23, 1941, nonrecording gage at same site and datum.

REMARKS.—Records good except those for estimated daily discharges, which are poor. Some regulation by mills above station. Several measurements of water temperature were made during the year. Satellite telemetry at station.

Date

Time

Discharge

 ft^3/s

Gage Height

(ft)

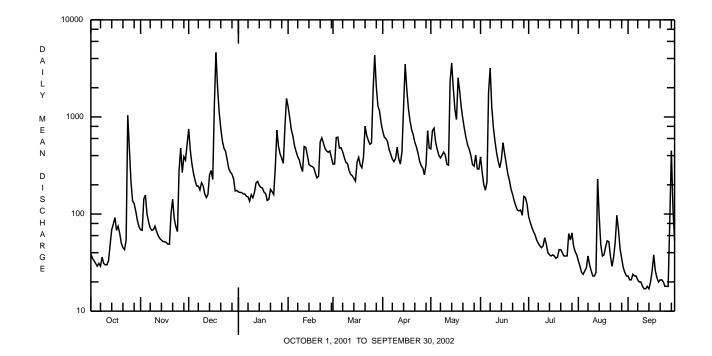
PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 5,000 ft³/s and maximum (*):

Gage Height

(ft)

Discharge

ft³/s


Date		illie	11 /8	(11)			Date		iiiie	11 /8	(11)	
Dec.	18 0	600	5,550	8.28			Jun	e 623	315	5,070	7.86	
Mar.	27 0	230 *	5,630	*8.37								
			•									
			DISCHA	ARGE, CUBIC	FEET PER S	SECOND, WA	TER YEAR (OCTOBER 2	2001 TO SEF	TEMBER 200)2	
						DAILY M	EAN VALUE	S				
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	39	69	753	e169	1280	326	717	468	388	94	33	23
2	35	68	455	e167	978	328	620	722	271	82	29	21
3	33	143	330	e167	739	613	597	767	202	73	25	21
4	31	157	263	e161	635	620	556	548	176	66	24	24
5	29	100	221	e161	505	477	459	463	212	61	26	2.3
6	31	83	195	-152	420	482	413	402	1700	54	28	23
7	29	72	195	e153 e150	439 390	482	367	379	1790 3180	54 50	28 37	23
8	36	68	177	e136	360	384	347	404	1260	47	30	20
9	31	69	210	e158	307	342	347	434	781	47	26	20
10	30	75	196	e147	274	332	488	407	563	47	23	18
10	30	73	190	CITI	2/4	332	400	407	303	47	23	10
11	30	66	162	e167	496	282	370	325	429	57	23	17
12	33	60	148	e209	486	256	327	319	349	49	25	17
13	48	56	159	e217	404	248	440	2300	300	40	229	18
14	69	54	252	e197	324	234	1260	3600	365	38	93	17
15	79	52	281	188	314	218	3510	2000	542	37	48	20
1.0	0.0	F.0	0.07	105	200	2.42	1050	1000	401	2.0	2.77	26
16	92	52	227	185 168	309 300	343	1950	1200	421	38	37	26
17	68 75	51 49	1310 4620	168	263	384	1230	941 2530	330 260	37 35	38	38 26
18 19	63	49	2020	138	236	320 300	914 742	1830	222	36	46 53	20
20	50	101	1130	142	245	385	658	1250	181	43	52	20
20	50	101	1130	112	243	303	050	1230	101	43	32	20
21	45	142	766	180	554	804	549	947	159	43	37	21
22	43	90	568	170	609	646	491	743	136	40	29	21
23	54	74	476	159 300	540	575	424	603	121	37	36	20
24	1040	66	442	300	475	523	350	511	110	37	52	18
25	472	280	363	731	446	540	315	462	108	37	97	18
26	216	477	293	497	433	1870	297	399	110	63	69	18
26 27	137	267	293	416	433	4340	253	323	97	54	44	84
28	128	390	2/1	376	382	2050	323	311	152	64	35	449
29	107	360	257 230	332		1300	721	406	148	47	28	112
30	86	520	173	786		1150	478	292	126	41	25	53
31	74		e175	1550		866		291		38	23	
31			01/3	1330		000		271		50	23	
TOTAL	3333	4160	17317	8839	13170	21978	20539	26577	13489	1530	1400	1249
MEAN	108	139	559 4620	285 1550	470 1280	709	685	857	450	49.4	45.2	41.6
MAX	1040	520	4620	1550	1280	4340	3510	3600	3180	94	229	449
MIN	29	49	148	136	236	218	253	291	97	35	23	17
CFSM	0.30	0.39	1.57	0.80	1.32	1.99	1.92	2.41	1.26	0.14	0.13	0.12
IN.	0.35	0.43	1.81	0.92	1.38	2.30	2.15	2.78	1.41	0.16	0.15	0.13
STATIST	TICS OF	MONTHLY M	EAN DATA	FOR WATER	YEARS 19	20 - 2002,	BY WATER	YEAR (W	Y)			
MEAN	160	330	556	650	750	971	774	515	325	199	147	130
MAX	1290	332 1648	556 1778	2607	2048	2324	2054	1283	1518	1373	775	1743
(WY)	1955	1986	1928	1937	1956	1945	1940	1983	1989	1928	1980	1926
MIN	11.3	12.3	22.3	16.4	97.7	154	182	62.3	24.4	20.5	11.2	11.4
(WY)	1931	1931	1961	1931	1934	1969	1946	1934	1934	1936	1930	1930
· · · - /							* - *					

e Estimated.

03106000 CONNOQUENESSING CREEK NEAR ZELIENOPLE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALEN	DAR YEAR	FOR 2002 WAI	ER YEAR	WATER YEARS	1920 - 2002
ANNUAL TOTAL	117493		133729			
ANNUAL MEAN	322		366		458	
HIGHEST ANNUAL MEAN					816	1928
LOWEST ANNUAL MEAN					221	1931
HIGHEST DAILY MEAN	4620	Dec 18	4620	Dec 18	16000	Jun 29 1924
LOWEST DAILY MEAN	22	Sep 13	17	Sep 11,12,14	6.5	Jul 21 1936
ANNUAL SEVEN-DAY MINIMUM	25	Sep 7	18	Sep 8	8.7	Oct 13 1939
MAXIMUM PEAK FLOW			5630	Mar 27	a 23000	Jun 29 1924
MAXIMUM PEAK STAGE			8.37	Mar 27	16.66	Jun 29 1924
INSTANTANEOUS LOW FLOW			16	Sep 10,11,18,2	4 6.0	Jul 21 1936
ANNUAL RUNOFF (CFSM)	0.90		1.03		1.29	
ANNUAL RUNOFF (INCHES)	12.28		13.97		17.47	
10 PERCENT EXCEEDS	866		758		1090	
50 PERCENT EXCEEDS	172		196		210	
90 PERCENT EXCEEDS	32		30		32	

a About.

03106000 CONNOQUENESSING CREEK NEAR ZELIENOPLE, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)
APR 2002 17 JUN	1245	9813	1210	40	6.3	7.7	311	299	16.0	97	27.7	6.7	36
18 AUG	1100	9813	262	40	9.7	7.6	505	437	18.2	140	39.9	9.7	56
05	1215	9813	25.5	40	7.2	7.6	845	974	27.0	300	92.2	15.6	92
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
APR 2002 17	47.1	234	18	<.020	1.50	<.040	1.9	.03	.040	2.4	<10	910	1.3
JUN 18 AUG	65.3	322	4	<.020	1.40	<.040	1.6	.03	.040	2.7	<10	540	<1.0
05	151	696	20	<.020	.68	<.200	1.2	.03	.050	4.8	<10	410	<1.0

Date	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)
APR 2002 17 JUN	90	<50	<10
18 AUG	80	<50	<10
05	200	< 50	<10

03106300 MUDDY CREEK NEAR PORTERSVILLE, PA

LOCATION.--Lat 40°57'47", long 80°07'31", Butler County, Hydrologic Unit 05030105, on left bank 1,000 ft downstream of Lake Arthur Dam, 0.2 mi north of U.S. Highway 422, and 3 mi north of Portersville.

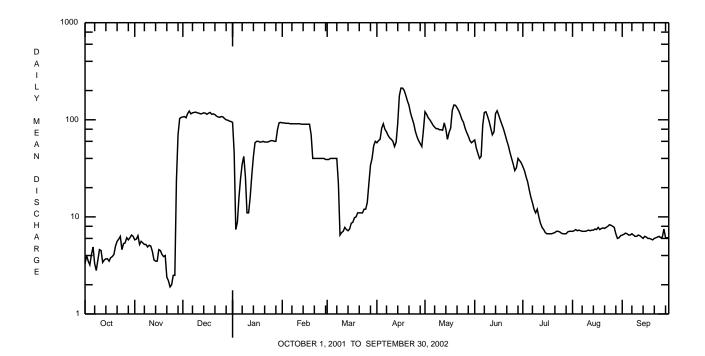
DRAINAGE AREA.--51.2 mi².

PERIOD OF RECORD.--March 1963 to September 1993, July 1994 to current year.

REVISED RECORDS.--WDR PA-79-3: 1978.

GAGE.--Water-stage recorder. Datum of gage is 1,160.91 ft above National Geodetic Vertical Datum of 1929 (Pennsylvania Department of Environmental Protection bench mark). Prior to Apr. 8, 1963 nonrecording gage at site 2,000 ft downstream at different datum. Apr. 8 to May 1, 1963, nonrecording gage and May 2, 1963 to Sept. 30, 1980, water-stage recorder at site 1,000 ft downstream at datum 5.71 ft lower.

REMARKS.--No estimated daily discharges. Records fair. Some regulation from October 1966 to May 1969 and completely regulated thereafter by Lake Arthur (station 03106280) 1,000 ft upstream. Several measurements of water temperature were made during the year. Satellite telemetry at station.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	3.3 4.0 3.5 3.2 4.1	5.8 5.9 6.4 5.2 5.6	107 108 105 116 123	94 46 7.4 8.8 16	93 93 92 92 92	39 39 40 40 40	58 61 63 82 91	121 114 105 100 94	62 51 45 40 42	33 30 26 23 19	7.1 7.2 7.4 7.2 7.3	6.5 6.6 6.8 6.7 6.5
6 7 8 9 10	4.9 3.3 2.8 3.6 4.6	5.4 5.2 5.2 4.9 5.1	115 118 119 120 118	25 35 42 26 11	91 91 91 91 91	40 40 22 6.5 6.9	80 75 69 65 63	88 84 81 81 79	88 119 121 109 96	16 14 12 11 12	7.2 7.1 7.1 7.1 7.2	6.5 6.7 6.5 6.3
11 12 13 14 15	4.5 3.4 3.6 3.7 3.7	5.0 4.4 3.6 3.5 3.5	117 115 116 118 117	11 16 27 42 58	91 91 90 90	7.1 7.8 7.4 7.2 7.5	60 53 59 92 177	79 78 93 80 63	82 70 75 116 124	10 8.6 7.8 7.4 6.9	7.3 7.2 7.3 7.3 7.5	6.5 6.4 6.2 6.0 6.3
16 17 18 19 20	3.5 3.8 3.9 4.1 5.0	4.6 4.5 4.1 3.9 4.0	114 117 119 114 115	60 60 59 59 60	90 90 90 70 40	8.6 8.8 9.8 10	212 212 201 179 157	74 82 125 142 141	111 99 89 80 70	6.7 6.7 6.7 6.8	7.4 7.8 7.4 7.6 7.7	6.2 6.0 6.0 5.9 5.8
21 22 23 24 25	5.6 5.9 6.3 4.6 5.3	2.4 2.2 1.9 2.0 2.5	113 109 107 106 108	59 59 59 60 61	40 40 40 40	11 11 11 12 12	141 117 103 91 76	133 124 113 101 94	61 54 46 40 35	6.9 7.1 7.1 7.0 6.8	7.6 7.8 8.0 8.3 8.2	6.0 6.1 6.2 6.3 6.1
26 27 28 29 30 31	5.4 6.1 5.8 6.1 6.5 6.3	2.5 24 70 103 106	107 103 100 99 97 96	61 60 60 79 93	40 40 39 	14 22 34 40 54 60	67 61 57 53 78	82 74 68 61 58	30 32 40 38 36	6.7 6.7 6.7 7.0 7.1 7.1	8.0 7.8 6.7 6.0 6.1 6.4	6.2 7.5 6.1 6.1 6.1
TOTAL MEAN MAX MIN	140.4 4.53 6.5 2.8	412.3 13.7 106 1.9	3456 111 123 96	1508.2 48.7 94 7.4	2068 73.9 93 39	679.6 21.9 60 6.5	2953 98.4 212 53	2872 92.6 142 58	2101 70.0 124 30	346.5 11.2 33 6.7	227.3 7.33 8.3 6.0	189.4 6.31 7.5 5.8
STATIST	rics of M	ONTHLY MEA	N DATA I	OR WATER	YEARS 196	3 - 2002,	BY WATER	YEAR (WY)	1			
MEAN MAX (WY) MIN (WY)	27.8 268 1976 1.11 1964	58.9 248 1973 1.50 1970	102 268 1973 2.41 1970	93.5 212 1965 2.40 1970	105 220 1990 31.0 1980	107 298 1964 4.31 1999	109 200 1972 2.78 1986	74.3 187 1983 2.97 1986	53.9 332 1989 1.53 1969	31.1 155 1990 3.01 1965	20.2 127 1980 1.98 1966	21.2 227 1975 0.61 1969

03106300 MUDDY CREEK NEAR PORTERSVILLE, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1963 - 2002
ANNUAL TOTAL	14916.9	16953.7	
ANNUAL MEAN	40.9	46.4	67.2
HIGHEST ANNUAL MEAN			98.9 1973
LOWEST ANNUAL MEAN			24.1 1970
HIGHEST DAILY MEAN	177 Apr 21	212 Apr 16	1450 Mar 10 1964
LOWEST DAILY MEAN	1.9 Nov 23	1.9 Nov 23	0.50 Sep 1 1969
ANNUAL SEVEN-DAY MINIMUM	2.5 Nov 20	2.5 Nov 20	0.54 Aug 29 1969
MAXIMUM PEAK FLOW		217 Apr 16,17	a 1640 Mar 10 1964
MAXIMUM PEAK STAGE		b 4.50 Apr 16,17	8.18 Mar 10 1964
INSTANTANEOUS LOW FLOW			0.40 Sep 17 1966
10 PERCENT EXCEEDS	117	113	176
50 PERCENT EXCEEDS	17	35	37
90 PERCENT EXCEEDS	4.0	5.0	3.9

 $[\]begin{array}{l} \textbf{a} \ \ \text{From rating curve extended above } 820 \ \text{ft}^3\!/\!\text{s} \ \text{on basis of slope-area measurement of peak flow.} \\ \textbf{b} \ \ \text{Maximum gage height, } 4.67 \ \text{ft., Nov. } 8, 11, 25 \ \text{(backwater from beaver dam).} \end{array}$

03106500 SLIPPERY ROCK CREEK AT WURTEMBURG, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°53'02", long 80°14'02", Lawrence County, Hydrologic Unit 05030105, on left bank at downstream side of highway bridge at Camp Allegheny, 2 mi north of Wurtemburg, and 2.8 mi upstream from mouth.

DRAINAGE AREA.--398 mi².

Date

Time

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1911 to current year. Monthly discharge only for some periods, published in WSP 1305.

REVISED RECORDS.--WSP 743: Drainage area. WSP 1305: 1914-18, 1920-22, 1923-24 (M), 1925-28, 1930. WSP 1385: 1932, 1935, 1936 (M), 1937-39. WSP 1625: 1955.

GAGE.--Water-stage recorder. Datum of gage is 832.06 ft above National Geodetic Vertical Datum of 1929. Jan. 1, 1912 to Sept. 30, 1922, nonrecording gage at site 1.5 mi downstream at datum 13.77 ft lower and Oct. 1, 1922 to Sept. 30, 1940, nonrecording gage at site 2 mi downstream at datum 18.92 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Some regulation since May 1969 by Lake Arthur (station 03106280) 13 mi upstream. Several measurements of water temperature were made during the year. U.S. Army Corps of Engineers satellite telemetry at station

Date

Time

Gage Height

(ft)

Discharge

 ft^3/s

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 3,500 ft³/s and maximum (*):

Gage Height

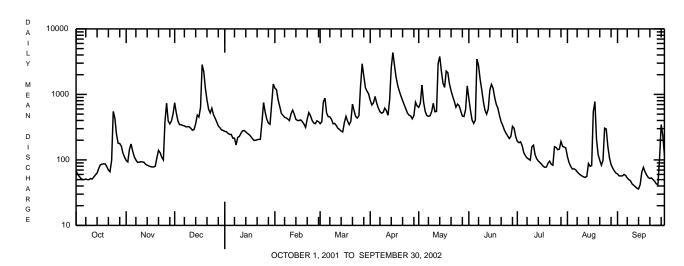
(ft)

Discharge

ft³/s

Duic	,	111110		t / 5	(11)			Dun		iiiic	10 / 5	(11)	
Apr.	15	0100	*5	,030	*5.85			June	6 20	000 4	.,040	5.14	
May					5.42						•		
May	14	0300	4	,430	5.42								
				DISCHAR	GE, CUBIC I	FEET PER SI	ECOND, WA	TER YEAR	OCTOBER 2	2001 TO SEP	TEMBER 200	2	
								EAN VALUE					
							D/ML1 WI	LIN VILCE	.5				
DAY	OCT	N	OV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	68		98	745	e273	1250	358	810	635	868	192	112	61
2	60		93	523	e269	1180	381	690	736	573	183	91	57
3	56	1	44	394	e255	826	771	744	1390	407	189	80	57
3 4	52		75	346	e245	657	877	931	763	361	165	73	57
5	50		37	345	e245	514	521	735	552	405	129	73	60
3	50	_	57	343	C243	314	321	755	332	403	127	75	00
6	50	1	12	336	e215	479	458	618	476	3470	116	71	58
0								010					
7	51	1	00	331	e215	448	453	547	464	2760	107	66	53
8	50		92	320	e169	438	417	516	472	1700	103	62	50
9	50		92	321	e221	420	356	532	547	1170	99	59	48
10	52		94	321	228	398	361	618	732	773	159	57	43
11	51		93	304	255	506	335	565	544	572	168	55	41
12	55		92	284	e278	575	303	481	550	499	120	54	39
13	55 59		86	291	e281	498	292	827	2970	598	104	56	37
14	63						275	2550					
			83	358	e268	416			3800	1170	96	88	36
15	74		81	483	e254	400	268	4360	2270	1420	91	80	42
16	84		79	451	e244	399	374	2770	1490	1240	86	82	65
17	86		78	634	e230	408	462	1820	1280	895	80	546	77
18	87		78	2850	e213	383	389	1370	2270	703	77	773	66
19	87		80	2220	e199	352	346	1120	2150	613	78	204	59
20	79		08	1240	e199	314	389	945	1450	472	89	120	54
20	,,,	_	00	1210	CIJJ	311	303	713	1150	1,2	0,5	120	31
21	70	1	40	821	e203	420	709	808	1140	381	96	99	52
22	66		29	594	e205		563	697	934	335	86	83	53
22		1	29		e206	528	503	697					
23	99		10	521	e206	474	460	603	787	285	83	98	50
24	550		00	615	375	403	436	522	637	255	159	305	47
25	434	3	84	e491	749	367	473	482	712	233	155	296	43
26	247	7	32	e435	536	357	1330	470	672	212	143	161	42
27	180	3	94	e381	418	395	2930	424	557	229	146	108	106
28	178	3	54	e331	418 365	384	1920	475	468	326	191	85	345
29	162	3	93	e309	350		1270	761	459	304	161	75	237
30	127		02	e287	709		1120	666	588	226	157	68	117
31	110	-		e282	1440		1020		1350		152	63	
	246-		2.2	10164	10010	1 41 00	00615	00455	2204-	00455	2066	40.45	01.50
TOTAL	3487	52		18164	10313	14189	20617	29457	33845	23455	3960	4243	2152
MEAN	112	1	74	586	333	507	665	982	1092	782	128	137	71.7
MAX	550		32	2850	1440	1250	2930	4360	3800	3470	192	773	345
MIN	50		78	282	169	314	268	424	459	212	77	54	36
CFSM	0.28	0.	44	1.47	0.84	314 1.27	1.67	2.47	2.74	1.96	0.32	0.34	0.18
IN.	0.33	0.		1.70	0.96	1.33	1.93	2.75	3.16	2.19	0.37	0.40	0.20
-14·	0.55	٥.		1.70	0.50	1.55	1.75	2.75	3.10	2.17	0.57	0.10	0.20

e Estimated.


03106500 SLIPPERY ROCK CREEK AT WURTEMBURG, PA--Continued

STATISTICS OF MONTHLY MEAN	DATA FOR WATER	YEARS 1969	- 2002,	BY WATER Y	EAR (WY)	(SINCE	E REGULATI	ON)	
OCT NOV	DEC JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN 263 531 MAX 741 1822 (WY) 1976 1986 MIN 56.5 82.2 (WY) 1992 1992	782 678 1576 1369 1978 1999 178 153 1990 1977	866 1949 1981 289 1987	1026 1972 1972 243 1969	965 1608 1987 345 1971	634 1400 1983 215 1976	522 2075 1989 112 1992	324 1109 1990 84.8 1998	256 1323 1980 51.1 2001	234 992 1975 53.0 1999
SUMMARY STATISTICS	FOR 2001 CALE	NDAR YEAR	FC	OR 2002 WAT	ER YEAR		WATER YE	ARS 1969 -	2002
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN	119901 328			169115 463			588 813		1984
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM	2850 38 39	Dec 18 Aug 16 Aug 13		4360 36 41	Apr 15 Sep 14 Sep 9		317 8620 36 39	Jun 24 Sep 14 Aug 13	2001 1972 2002
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW				5030 5.85 36	Apr 15 Apr 15 Sep 13-1	5	9090 8.09 36	Jun 24 Jun 24 Sep 13-15	1972 1972
ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	0.8 11.2 750 230 51			1.16 15.81 975 314 59			1.48 20.08 1340 358 91		

STATIS'	TICS OF M	ONTHLY MEA	I DATA E	OR WATER	YEARS 1912	- 1968,	BY WATER	YEAR (WY)	(PRIOR	TO REGUL	ATION)	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	237	379	589	839	856	1203	911	653	386	237	191	160
MAX	1391	1329	2088	3161	2089	2728	1974	1472	1559	1307	905	1675
(WY)	1912	1922	1928	1937	1956	1913	1940	1924	1956	1958	1956	1926
MIN	37.7	43.0	58.5	56.3	94.7	291	238	94.3	79.3	54.8	35.3	38.2
(WY)	1964	1931	1931	1931	1934	1931	1925	1934	1936	1944	1930	1944

SUMMARY STATISTICS	WATER YEARS	1912 - 1968
ANNUAL MEAN	552	
HIGHEST ANNUAL MEAN	917	1956
LOWEST ANNUAL MEAN	216	1931
HIGHEST DAILY MEAN	16700	Mar 26 1913
LOWEST DAILY MEAN	20	Sep 11 1938
ANNUAL SEVEN-DAY MINIMUM	24	Sep 6 1938
MAXIMUM PEAK FLOW	a 19000	Jan 25 1937
MAXIMUM PEAK STAGE	b 12.05	Jan 25 1937
INSTANTANEOUS LOW FLOW	c 16	Sep 13 1932
ANNUAL RUNOFF (CFSM)	1.39	
ANNUAL RUNOFF (INCHES)	18.85	
10 PERCENT EXCEEDS	1390	
50 PERCENT EXCEEDS	248	
90 PERCENT EXCEEDS	58	

- a From rating curve extended above 14,000 ft³/s.
 b From floodmark, site and datum then in use.
 c Minimum observed.

03106500 SLIPPERY ROCK CREEK AT WURTEMBURG, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)
APR 2002													
17 JUN	1430	9813	1750	40	6.3	7.8	278	259	17.2	110	33.2	7.2	34
18	1215	9813	712	40	10.3	7.8	391	307	18.4	130	35.5	9.7	56
AUG 06	0930	9813	71.6	40	7.7	7.6	499	495	22.0	210	59.3	15.6	94
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
APR 2002 17	63.1	244	12	<.020	.40	<.040	.88	.03	.040	4.2	<10	960	1.1
JUN													
18 AUG	76.9	262	22	<.020	.54	<.040	.89	.04	.050	4.7	<10	1510	1.1
06	114	342	10	<.020	.67	<.040	.95	.03	.050	3.4	<10	340	<1.0

Date	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)
APR 2002 17	290	<50	<10
JUN 18	340	<50	10
AUG 06	150	<50	<10

03107500 BEAVER RIVER AT BEAVER FALLS, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°45'48", long 80°18'55", Beaver County, Hydrologic Unit 05030104, on left bank at Beaver Falls, 200 ft upstream from pumping plant of Beaver Falls Municipal Authority, 7.0 mi downstream from Connoquenessing Creek, at mile 5.5.

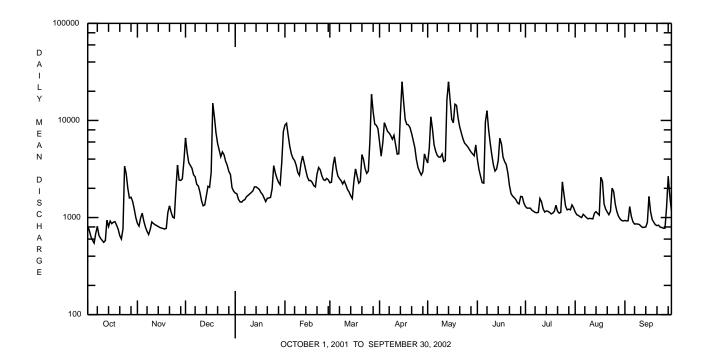
DRAINAGE AREA.--3,106 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—October 1935 to current year (fragmentary records only prior to October 1956). Gage-height records collected at same site since 1908 are contained in reports of U.S. Weather Bureau.

REVISED RECORDS.--WSP 1725: 1960 (adjusted runoff); Instantaneous low flow for water years 1997, 1998 were published in error.

GAGE.--Water-stage recorder and concrete dam control. Datum of gage is 727.48 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers bench mark). Prior to Dec. 3, 1941, nonrecording gage at site 200 ft downstream at same datum.


REMARKS.--No estimated daily discharges. Records good above 2,000 ft³/s, and fair below, except those below 1,200 ft³/s, which are poor. Pumpage from gage pool, averaging 3.4 ft³/s in 1935 and 6.0 ft³/s at present, for local water supply, returns to river 2 mi downstream; information furnished by Beaver Falls Municipal Authority. Flow regulated since 1916 by Milton Reservoir, since November 1929 by Meander Creek Reservoir, since December 1933 by Pymatuning Reservoir (station 03100500), since December 1942 by Berlin Lake, since October 1943 by Mosquito Creek Lake, since December 1966 by Michael J. Kirwan Reservoir, since January 1967 by Shenango River Lake, all over 50 mi upstream, and since May 1969 by Lake Arthur (station 03106280) 29 mi upstream. U.S. Army Corps of Engineers satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 27, 1913 reached a stage of 17.4 ft, discharge, 103,000 ft³/s, from rating curve extended above 60,000 ft³/s.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	816	871	6610	1790	8960	2280	5990	3650	3970	1300	1140	933
2	737	816	4700	1760	9350	2310	4290	5170	3120	1250	1070	923
3	635	992	3680	1540	7070	3420	5840	10900	2660	1250	1050	927
4	584	1110	3440	1450	5420	4220	9490	8140	2290	1250	1020	1300
5	546	918	3220	1440	4520	3180	8580	5600	2260	1190	1000	1030
6	683	798	2760	1500	4080	2680	7710	4820	9700	1160	1080	905
7	813	721	2630	1530	3870	2520	7420	4360	12600	1130	1040	857
8	656	669	2200	1640	3460	2400	6970	4190	8080	1120	999	860
9	611	755	2110	1690	2910	2220	6400	4200	5840	1130	971	857
10	582	901	1820	1750	2720	2380	7030	4520	4420	1570	981	848
11	555	868	1490	1810	3610	2170	5640	3770	3480	1450	975	816
12	580	844	1320	1880	4300	1950	4500	3860	3010	1230	969	790
13	939	827	1350	2070	3650	1830	4540	16300	3170	1140	1110	795
14	807	808	1680	2070	3060	1680	11500	25000	3870	1170	1150	800
15	921	790	2100	2010	2610	1570	25000	16200	6560	1160	1100	890
16	865	780	2050	1950	2400	2370	15600	10300	5750	1130	1060	1650
17	896	771	2920	1810	2410	3170	10200	9450	4190	1090	2600	1150
18	907	761	15100	1730	2300	2680	9110	14700	3770	1110	2360	956
19	835	775	10900	1590	2130	2260	8990	14300	3510	1160	1380	895
20	759	1130	7460	1460	2070	2360	8420	10500	2880	1340	1220	844
21	651	1320	5800	1580	2800	4450	7340	8570	2140	1160	1140	826
22	601	1140	4950	1590	3280	3960	6210	7420	1760	1110	1070	834
23	766	1010	4230	1610	3110	3180	5250	6480	1660	1130	1160	797
24	3380	989	4740	1980	2700	2850	3940	5850	1600	2330	2010	790
25	2840	1960	4430	3430	2460	3010	3270	5610	1530	1730	1850	776
26 27 28 29 30 31	2010 1590 1620 1470 1230 1000	3470 2430 2410 2500 3810	3800 3460 2990 2780 2030 1870	2890 2540 2310 2180 3670 7670	2410 2530 2450 	6230 18600 12300 9180 8910 8220	2970 2740 2960 4520 4000	5360 5030 4740 4530 4330 5600	1420 1380 1650 1640 1410	1310 1200 1220 1200 1350 1260	1370 1150 1030 968 931 924	777 1290 2660 1670 1170
TOTAL	31885	37944	120620	65920	102640	130540	216420	243450	111320	39330	37878	30616
MEAN	1029	1265	3891	2126	3666	4211	7214	7853	3711	1269	1222	1021
MAX	3380	3810	15100	7670	9350	18600	25000	25000	12600	2330	2600	2660
MIN	546	669	1320	1440	2070	1570	2740	3650	1380	1090	924	776
CFSM	0.33	0.41	1.25	0.68	1.18	1.36	2.32	2.53	1.19	0.41	0.39	0.33
IN.	0.38	0.45	1.44	0.79	1.23	1.56	2.59	2.92	1.33	0.47	0.45	0.37
STATIST	rics of M	MONTHLY MI	EAN DATA	FOR WATER	YEARS 19	57 - 2002	, BY WATER	YEAR (W	Y)			
MEAN	1811	3014	4738	4805	5507	6690	5889	4027	2921	2256	1685	1743
MAX	6760	11520	11880	11620	12360	13040	13620	10880	11090	7925	6505	5804
(WY)	1991	1986	1991	1993	1990	1993	1957	1996	1989	1958	1980	1975
MIN	531	439	540	714	887	1606	1861	1271	966	916	777	739
(WY)	1992	1992	1961	1961	1963	1969	1971	1962	1992	1965	1991	1999

03107500 BEAVER RIVER AT BEAVER FALLS, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1957 - 2002
ANNUAL TOTAL	855755	1168563	
ANNUAL MEAN	2345	3202	3748
HIGHEST ANNUAL MEAN			5146 1997
LOWEST ANNUAL MEAN			1938 1963
HIGHEST DAILY MEAN	15100 Dec 18	25000 Apr 15 a	65400 Jan 22 1959
LOWEST DAILY MEAN	546 Oct 5	546 Oct 5	320 Nov 5 1991
ANNUAL SEVEN-DAY MINIMUM	635 Oct 5	635 Oct 5	333 Nov 1 1991
MAXIMUM PEAK FLOW		27100 Apr 15	b 69900 Jan 22 1959
MAXIMUM PEAK STAGE		9.53 Apr 15	14.42 Jan 22 1959
ANNUAL RUNOFF (CFSM)	0.75	1.03	1.21
ANNUAL RUNOFF (INCHES)	10.25	14.00	16.39
10 PERCENT EXCEEDS	5390	7420	8260
50 PERCENT EXCEEDS	1620	2010	2320
90 PERCENT EXCEEDS	791	822	900

<sup>a Also May 14.
b From rating curve extended above 57,000 ft³/s.</sup>

BEAVER RIVER BASIN

03107500 BEAVER RIVER AT BEAVER FALLS, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date		AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	SECOND	PLING METHOD, CODES	SOLVED (MG/L)		DUCT- ANCE (µS/CM)	TEMPER- ATURE WATER (DEG C) (00010)	NESS TOTAL (MG/L AS CACO3)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) 00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)
APR 2002 17 JUN	1100	9813	10260	40	5.3	7.6	347	16.3	120	35.5	7.6	54	<.2
04	1315	9813	2200	40	7.8	7.6	435	20.2	140	41.1	9.2	72	<.2
AUG 06	0800	9813	1100	40	5.1	7.6	544	28.0	170	48.7	12.5	86	.3
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	ORTHO TOTAL (MG/L AS P)	AS P)	CARBON ORGANIO TOTAL (MG/L AS C)) (00680	RECO ERAI (μG/ AS (AL TOTA DV- RECO BLE ERAB /L (µG/ CU) AS B	AL DV- BLE L TE)
APR 2002 17 JUN	48.8	290	84	.070	.91	<.040	1.7	.07	.210	6.2	10		
04 AUG	57.8	318	<2	.070	1.04	.050	1.5	.05	.070	5.8	<10) 610)
06	71.4	364	22	.090	1.56	<.040	2.1	.14	.170	5.6	<10	750)
				Date	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN)	PHENOL TOTAL (µG/L)					
				APR 2002 17 JUN	350	<50	50	<5					
			;	04 AUG	120	< 50	20	<5					
			-	06	170	< 50	<10	<5					

LAKES AND RESERVOIRS IN BEAVER RIVER BASIN

03100500 PYMATUNING RESERVOIR.--Lat 41°29′54", long 80°27′47", Crawford County, Hydrologic Unit 05030102, in gatehouse at Pymatuning Dam on Shenango River, 1.8 mi northwest of Jamestown, Pa., and at mile 85.1. DRAINAGE AREA, 158 mi². PERIOD OF RECORD, October 1932 to current year. Contents prior to October 1938 published in WSP 1305. GAGE, water-stage recorder. Datum of gage is sea level. Prior to Nov. 20, 1934, nonrecording gage at same site and datum.

REMARKS.--Reservoir is formed in two parts. The main dam is earthfill with stone facing, provided with regulating gates (outlet gate sill elevation at 975.3 ft), and a spillway with crest elevation at 1,008.0 ft. An auxiliary dam 15 mi upstream from the main dam with spillway elevation at 1,010 ft has a fixed crest weir section in the earthfill causeway. Controlled storage began Dec. 1933. Capacity, 188,040 acre-ft between elevations, 975.3 ft and 1,008.0 ft was reached in March 1936. Dead storage 10,150 acre-ft (93 acre-ft behind main dam below elevation 975.3 ft and 10,060 acreft behind upstream dam below elevation 1,010 ft). Upstream pool was filled (all dead storage accumulated) on March 5, 1934. Figures given herein represent usable contents. Reservoir is used for flood control, and for recreation. Dam built by Pennsylvania Department of Forests and Waters and now maintained by Pennsylvania Department of Environmental Protection.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 210,680 acre-ft, June 26, 1972 (elevation, 1,009.53 ft); minimum (after first filling), 110,570 acre-ft, Dec. 4, 1953 (elevation, 1,002.17 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 208,000 acre-ft, May 17, elevation, 1,009.38 ft; minimum, 154,570 acre-ft, Oct. 16,

elevation, 1,005.58 ft.

03106280 LAKE ARTHUR.--Lat 40°57'45", long 80°07'17", Butler County, Hydrologic Unit 05030105, in gatehouse at left end of spillway of Lake Arthur Dam on Muddy Creek, at Moraine State Park, 3 mi northeast of Portersville, Pa. DRAINAGE AREA, 50.8 mi². PERIOD OF RECORD, May 1969 to current year. GAGE, water-stage recorder. Datum of gage is sea level (Pennsylvania Department of Environmental Protection bench mark). Prior to Aug. 23, 1969, nonrecording gage at same site and datum.

REMARKS.--Lake is formed by an earthfill dam with concrete spillway. Storage began May 15, 1969. Usable capacity, 37,000 acre-ft between elevations 1,160 ft, sill of 6 ft outlet gate and 1,189.8 ft (spillway crest). No dead storage. Figures given herein represent usable contents. Lake is used for recreation. Dam built by Pennsylvania Department of Forests and Waters and now maintained by Pennsylvania Department of Environmental

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 44,240 acre-ft, June 16, 1989 (elevation, 1,192.01 ft); minimum (after first filling), 21,320 acre-ft, Nov. 30, 1975 (elevation, 1,183.88 ft).

EXTREMES FOR CURRENT YEAR.--Maximum contents, 40,450 acre-ft, Apr. 16, 17, elevation, 1,190.89 ft; minimum, 33,820 acre-ft, Feb. 20, elevation, 1,188.72 ft..

MONTHEND ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS AT 2400 HRS, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

_	Elevation	Contents (acre-	Change in contents (equivalent	Elevation	Contents (acre-	Change in contents (equivalent
Date	(feet)	feet)	in ft ³ /s)	(feet)	feet)	in ft ³ /s)
	031005001	Pymatuning R	eservoir	031	06280 Lake Ar	thur
Sept. 30	1,006.00	159,870		1,189.24	35,350	
Oct. 31	1,006.14	161,790	+31	1,189.62	36,460	+18
Nov. 30	1,006.50	166,750	+83	1,189.89	37,270	+14
Dec. 31	1,007.18	176,290	+155	1,189.06	34,780	-41
CAL YR 2001			0			+0.75
Jan. 31	1,007.40	179,410	+51	1,189.22	35,260	+7.8
Feb. 28	1,007.74	184,290	+88	1,188.89	34,290	-17
Mar. 31	1,008.33	192,850	+139	1,190.50	39,200	+80
Apr. 30	1,008.45	194,600	+29	1,190.32	38,620	-9.8
May 31	1,008.50	195,340	+12	1,190.49	39,170	+8.9
June 30	1,007.93	187,020	-140	1,190.27	38,460	-12
July 31	1,007.27	177,560	-154	1,189.75	36,850	-26
Aug. 31	1,006.38	165,090	-203	1,189.40	35,800	-17
Sept. 30	1,005.92	158,780	-106	1,189.21	35,230	-9.6
WTR YR 2002			-1.5			-0.17

RACCOON CREEK BASIN

03108000 RACCOON CREEK AT MOFFATTS MILL, PA (Pennsylvania Water-Quality Network Station)

LOCATION.--Lat 40°37'40", long 80°20'16", Beaver County, Hydrologic Unit 05030101, on left bank at downstream side of highway bridge at Moffatts Mill, 1.4 mi downstream from Gums Run, 4 mi south of Vanport, and 4.2 mi upstream from mouth.

DRAINAGE AREA.--178 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.—September 1941 to current year. May 1915 to July 1932 (gage heights and discharge measurements only) in reports of Water Supply Commission of Pennsylvania or Pennsylvania Department of Forests and Waters.

REVISED RECORDS.--WSP 1385: 1941-43.

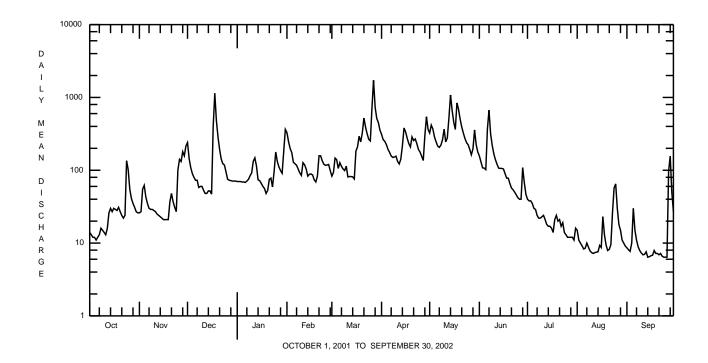
GAGE.--Water-stage recorder. Datum of gage is 719.16 ft above National Geodetic Vertical Datum of 1929 (U.S. Army Corps of Engineers benchmark). May 27, 1915 to July 31, 1932, and Sept. 2 to Dec. 3, 1941, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Normally, no regulation from Raccoon Creek Lake. Diversion out of the basin from Cherry Valley and Service Creek Reservoirs upstream increased from an average of 4.0 ft³/s at the close of 1957 to 6.8 ft³/s for the present year; diversion began with 2.0 ft³/s for September 1957. Published records do not include diversion. Records of diversion furnished by Western Pennsylvania Water Company and Ambridge Water Authority. Several measurements of water temperature were made during the year. Satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Apr. 15, 1922, reached a stage of 9.80 ft, discharge, 10,000 ft³/s. Flood of Mar. 5, 1920, also reached a stage of 9.80 ft, backwater from ice.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 1,800 ft³/s and maximum (*):

Date Mar.		Time 0545		scharge ft ³ /s 2,450	Gage Heigh (ft) *5.08	nt		Date No othe		Гіте	ischarge ft ³ /s han base	Gage Height (ft) discharge.	t
				DISCHA	RGE, CUBIC	FEET PER S	ECOND, WAT DAILY ME	ER YEAR OO AN VALUES	CTOBER	2001 TO SEP	TEMBER 20	002	
DAY	00	Т	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1 1 1	4 3 2 2 1	26 27 55 62 43	240 145 109 90 80	e70 e70 e70 e69 e69	328 247 199 175 129	83 93 147 140 106	312 263 250 225 194	325 417 368 287 246	157 130 108 107 102	40 38 38 35 30	15 11 10 9.2 8.3	8.6 8.1 7.7 10 30
6 7 8 9 10	1 1 1	2 3 6 5 4	35 30 29 29 28	73 73 58 60 60	e68 e71 e75 84 92	123 117 104 92 85	127 113 104 99 114	176 157 150 152 156	215 206 221 261 366	367 668 317 220 168	29 24 22 22 23	8.5 10 8.8 7.8 7.4	15 11 8.9 7.9 7.3
11 12 13 14 15	1 2 3	3 6 6 0 7	27 25 24 23 22	53 48 48 52 52	133 148 114 74 72	127 119 104 83 88	81 82 82 81 76	132 122 142 216 381	245 277 518 1080 667	140 121 107 106 106	24 21 18 17	7.2 7.4 7.5 7.6 9.3	6.9 7.0 7.6 6.4 6.5
16 17 18 19 20	2 2 3	0 9 8 1 7	21 21 21 21 37	47 398 1140 482 288	66 60 56 48 53	89 86 74 69 83	183 209 293 245 327	336 275 232 209 287	459 363 841 688 503	104 90 78 78 66	16 14 21 24 20	8.7 23 13 9.4 7.9	6.7 6.8 7.9 7.2 7.2
21 22 23 24 25	2		48 37 31 27 101	193 143 123 118 95	75 78 59 96 178	158 158 135 121 117	521 393 317 266 253	256 269 232 193 178	394 324 273 240 224	57 54 50 46 42	21 17 19 14 13	8.2 9.5 26 57 65	6.9 7.2 6.6 6.4 6.4
26 27 28 29 30 31	4 3 3 2	5 1 5 1 7 6	141 132 180 158 215	75 e73 e72 71 71 e71	132 111 99 91 182 364	118 120 99 	704 1720 732 515 452 355	156 136 298 543 364	193 163 197 358 224 178	40 40 109 68 47	12 12 12 12 11 16	30 18 15 11 10 9.1	6.4 96 157 50 27
TOTAL MEAN MAX MIN CFSM IN.	91 29. 13 1 0.1 0.1	4 5 1 7	1676 55.9 215 21 0.31 0.35	4701 152 1140 47 0.85 0.98	3027 97.6 364 48 0.55 0.63	3547 127 328 69 0.71 0.74	9013 291 1720 76 1.63 1.88	6992 233 543 122 1.31 1.46	11321 365 1080 163 2.05 2.37	3893 130 668 40 0.73 0.81	652 21.0 40 11 0.12 0.14	455.8 14.7 65 7.2 0.08 0.10	554.6 18.5 157 6.4 0.10 0.12
							2 - 2002,		-				
MEAN MAX (WY) MIN (WY)	61. 35 195 7.9 196	9 5 8	109 764 1986 14.8 1964	191 717 1991 15.1 1964	247 737 1952 34.5 1967	316 788 1956 47.7 1964	401 1010 1945 56.3 1969	341 757 1957 94.7 1946	262 618 1983 65.6 1986	142 632 1989 26.3 1988	84.9 389 1990 15.6 1965	69.4 651 1980 10.2 1965	53.6 453 1975 9.73 1964


e Estimated.

RACCOON CREEK BASIN

03108000 RACCOON CREEK AT MOFFATTS MILL, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1942 - 2002
ANNUAL TOTAL	46187	46743.4	
ANNUAL MEAN	127	128	189
HIGHEST ANNUAL MEAN			314 1951
LOWEST ANNUAL MEAN			90.9 1954
HIGHEST DAILY MEAN	1820 Jan 31	1720 Mar 27	6120 Jan 27 1952
LOWEST DAILY MEAN	10 Aug 18	,19 6.4 Sep 14,24-26	4.8 Sep 8 1945
ANNUAL SEVEN-DAY MINIMUM	12 Aug 14	6.7 Sep 20	5.6 Aug 20 1965
MAXIMUM PEAK FLOW		2450 Mar 27	a 8590 Jan 27 1952
MAXIMUM PEAK STAGE		5.08 Mar 27	9.71 Jan 27 1952
INSTANTANEOUS LOW FLOW		6.0 Sep 14,15,26	4.5 Aug 24 1965
ANNUAL RUNOFF (CFSM)	0.71	0.72	1.06
ANNUAL RUNOFF (INCHES)	9.65	9.77	14.44
10 PERCENT EXCEEDS	313	317	442
50 PERCENT EXCEEDS	68	73	96
90 PERCENT EXCEEDS	16	9.3	20

a From rating curve extended above 3,600 ft³/s.

RACCOON CREEK BASIN

03108000 RACCOON CREEK AT MOFFATTS MILL, PA--Continued (Pennsylvania Water-Quality Network Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2002 to current year.

REMARKS.--Other data for the Water-Quality Network can be found on pages 210-233.

COOPERATION.--Samples were collected as part of the Pennsylvania Department of Environmental Protection Water-Quality Network (WQN) with cooperation from the Pennsylvania Department of Environmental Protection.

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)
APR 2002													
09 JUN	1045	9813	143	40	7.9	7.6	707	663	11.5	310	80.8	25.5	78
04 AUG	0945	9813	114	40	10.4	7.7	857	793	18.5	390	103	32.6	86
05	0800	9813	8.58	40	6.5	7.3	1360	1500	24.0	810	208	69.8	68
Date	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
APR 2002 09 JUN	228	550	<2	<.020	.86	<.040	1.0	.01	.020	1.8	<10	190	<1.0
04	301	646	12	<.020	.65	<.040	.84	.02	.020	2.2	<10	320	<1.0
AUG 05	674	1420	14	.060	1.91	<.200	2.2	.02	.050	3.0	<10	290	<10.0

Date	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN)	GROSS BETA, WATER, UNFLT, (PCI/L)
	(01055)	(01067)	(01092)	(85817)
APR 2002 09	170	<50	20	2
04	80	<50	<10	
AUG 05	90	<50	<10	

STREAMS TRIBUTARY TO LAKE ERIE

04213000 CONNEAUT CREEK AT CONNEAUT, OHIO

LOCATION.--Latitude 41°55'37", longitude 80°36'15", Ashtabula County, Hydrologic Unit 04120101, on right bank at downstream side of Keefus Road bridge at Conneaut, Ohio, and 6.4 mi upstream from mouth.

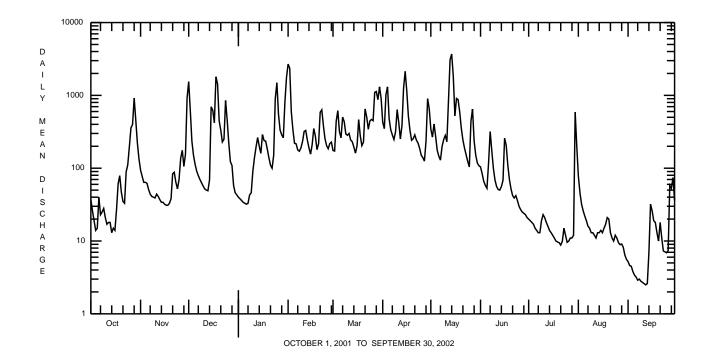
DRAINAGE AREA.--175 mi².

PERIOD OF RECORD.--July 1922 to December 1935, March 1950 to September 1961 (published as "at Amboy"), October 1961 to current year.

REVISED RECORDS.--WSP 714: 1926. WSP 784: 1933. WSP 1437: 1923-25(M), 1926-30, 1931-32(M), 1933, 1935(M). WSP 1912: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 610.30 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 17, 1924, nonrecording gage at same site and datum.

REMARKS .-- Records good except for estimated daily discharges, which are poor. Water-quality and sediment data formerly collected at this site.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	37 26 19 14 15	94 77 64 64 62	1540 621 235 150 113	e40 e38 e36 e34 e33	2690 2360 592 337 220	175 172 444 618 318	430 349 1020 1310 476	345 267 405 273 175	104 84 66 58 53	20 19 18 17 15	78 46 32 26 22	5.2 4.6 4.5 3.8 3.4
6 7 8 9 10	40 23 25 28 21	51 44 41 40 39	91 79 70 63 57	e32 e33 e43 e46 e90	216 178 171 190 233	262 504 434 295 283	337 286 248 317 637	146 129 198 247 282	117 319 175 100 69	14 13 13 19 23	19 16 15 13	3.2 e2.9 e3.0 e2.8 e2.7
11 12 13 14 15	17 18 18 13 15	44 41 37 34 34	52 50 49 69	139 195 264 e200 e160	320 330 243 190 156	300 244 231 195 161	424 252 384 1260 2140	231 855 3080 3700 1840	56 51 50 56 68	21 18 16 14 13	12 11 13 13	e2.6 e2.5 e2.6 e7.0
16 17 18 19 20	14 27 61 79 47	32 31 31 33 38	627 421 1800 1430 448	e290 e240 235 184 e140	210 351 276 180 217	204 465 278 204 229	1150 517 330 242 254	525 907 874 596 354	258 207 110 70 52	12 11 10 9.7 9.5	13 15 17 21 20	26 19 18 13
21 22 23 24 25	35 33 89 111 197	84 88 64 52 70	334 229 250 853 459	e110 e100 e150 906 1490	586 633 386 254 204	652 508 343 446 467	287 243 222 188 151	244 189 153 124 104	42 39 42 36 30	8.8 9.9 15 12 9.6	13 11 10 12 11	18 11 7.3 7.1 6.9
26 27 28 29 30 31	358 399 920 458 222 134	137 176 106 156 923	222 123 109 58 e46 e43	549 333 288 261 807 1770	185 218 228 	449 1100 1130 874 1310 911	140 125 236 902 656	436 649 236 151 118 108	27 25 24 23 21	10 11 11 12 591 202	9.5 8.9 9.1 8.2 6.4 5.6	7.4 58 53 74 36
TOTAL MEAN MAX MIN CFSM IN.	3513 113.3 920 13 0.65 0.75	2787 92.90 923 31 0.53 0.59	11388 367.4 1800 43 2.10 2.42	9236 297.9 1770 32 1.70 1.96	12354 441.2 2690 156 2.52 2.63	14206 458.3 1310 161 2.62 3.02	15513 517.1 2140 125 2.95 3.30	17941 578.7 3700 104 3.31 3.81	2432 81.07 319 21 0.46 0.52	1197.5 38.63 591 8.8 0.22 0.25	533.7 17.22 78 5.6 0.10 0.11	447.5 14.92 74 2.5 0.09 0.10
STATIST	rics of M	ONTHLY ME	AN DATA E	FOR WATER	YEARS 192	2 - 2002,	BY WATER	YEAR (WY)			
MEAN MAX (WY) MIN (WY)	133.9 804 1927 4.95 1924	315.4 1373 1986 17.1 1954	414.2 1049 1928 35.1 1961	420.0 929 1990 81.0 1977	458.0 1115 1981 39.6 1934	525.3 987 1972 147 2000	393.2 839 1957 69.9 1935	237.3 670 1953 20.2 1934	133.5 1013 1986 5.46 1934	74.32 415 1969 2.79 1934	68.57 493 1980 3.19 1923	99.98 709 1990 3.56 1932

e Estimated.

STREAMS TRIBUTARY TO LAKE ERIE

04213000 CONNEAUT CREEK AT CONNEAUT, OHIO

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1922 - 2002
ANNUAL TOTAL	63770.1	91548.7	
ANNUAL MEAN	174.7	250.8	272.3
HIGHEST ANNUAL MEAN			401 1986
LOWEST ANNUAL MEAN			140 1931
HIGHEST DAILY MEAN	3410 Feb 10	3700 May 14	11000 Jan 31 1968
LOWEST DAILY MEAN	3.0 Aug 16	2.5 Sep 12	0.30 Jul 30 1933
ANNUAL SEVEN-DAY MINIMUM	3.7 Aug 12	2.7 Sep 7	0.64 Aug 27 1933
MAXIMUM PEAK FLOW		4700 May 13	17000 Jan 22 1959
MAXIMUM PEAK STAGE		7.28 May 13	12.94 Mar 4 1934
INSTANTANEOUS LOW FLOW			0.20 Jul 31 1933
ANNUAL RUNOFF (CFSM)	1.00	1.43	1.56
ANNUAL RUNOFF (INCHES)	13.56	19.46	21.14
10 PERCENT EXCEEDS	399	623	680
50 PERCENT EXCEEDS	79	100	97
90 PERCENT EXCEEDS	8.0	11	10

Gaga Haight

STREAMS TRIBUTARY TO LAKE ERIE

04213075 BRANDY RUN NEAR GIRARD, PA

LOCATION.--Lat 41°59'31", long 80°17'29", Erie County, Hydrologic Unit 04120101, on left bank 100 ft upstream from highway bridge on Tannery Road, 0.5 mi upstream from mouth, and 1.8 mi southeast of Girard.

DRAINAGE AREA.--4.45 mi².

PERIOD OF RECORD.--May 1986 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 800 ft above National Geodetic Vertical Datum of 1929, from topographic map.

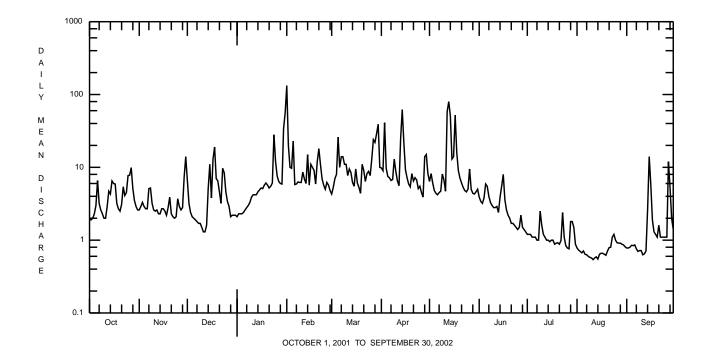
REVISED RECORDS.--WDR PA-94-3: 1987-89 (M).

Discharge

Gaga Haight

REMARKS.--Records good except those for estimated daily discharges, which are poor. Several measurements of water temperature were made during the year. Satellite telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR.--Peak discharges greater than a base discharge of 200 ft³/s and maximum (*):


Date Feb. 1	Time 0445	e f	charge t ³ /s 423	Gage Height (ft) *2.51			Date Apr.		Time 1430	Discharge ft ³ /s 262	Gage Height (ft) 2.05	
			DISCHA	RGE, CUBIC F	EET PER SI		ΓER YEAR (AN VALUE		2001 TO SI	EPTEMBER 20	002	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUI	N JUL	AUG	SEP
1 2 3 4 5	1.9 1.9 2.0 2.3	2.6 2.9 3.3 2.9 2.7	6.6 3.2 2.4 2.1 2.0	e2.1 e2.3 e2.3 e2.3 e2.4	132 20 10 9.7 23	4.3 5.3 7.0 8.0 26	9.8 9.0 41 9.7 7.5	6.4 8.2 6.1 4.8 4.4	3. 3. 3.	1.2 2 1.2 3 1.1	0.78 0.73 0.70 0.67 0.71	0.78 0.78 0.80 0.85 0.84
6 7 8 9 10	6.6 3.2 2.6 2.3 2.0	2.7 5.1 5.2 3.2 2.6	1.9 1.8 1.7 1.7	e2.6 e2.8 e3.0 e3.3 e3.9	5.8 5.9 6.3 6.2 6.2	10 14 14 11 11	7.2 6.6 6.8 13 8.8	4.2 4.5 4.7 8.1 6.7	4.0 3.3 3.0	1.0 3 1.0 0 2.5	0.64 0.63 0.60 0.58 0.57	0.86 0.76 0.70 0.72 0.72
11 12 13 14 15	2.0 2.9 4.7 4.3 6.5	2.5 2.6 2.3 2.3	1.3 1.3 1.6 5.1	e4.2 e4.2 e4.2 e4.6 e4.9	8.6 6.9 6.0 15 5.7	7.7 9.5 8.5 6.2 5.5	6.5 5.6 25 62 22	4.7 58 80 51 13	2.1 2.2 2.4 3.1 5.1	9 1.1 4 1.0 9 1.0	0.54 0.57 0.59 0.55 0.64	0.63 0.65 0.71 2.6
16 17 18 19 20	6.0 5.9 3.2 2.7 2.5	2.7 2.5 2.2 2.8 3.9	3.8 13 19 7.0 6.5	e5.2 e5.1 5.7 e6.1 e5.7	11 10 9.1 5.9	9.5 6.1 5.3 4.4 11	9.3 7.2 5.9 5.4 8.2	14 52 16 9.0 7.1		5 1.0 5 0.88 2 0.91	0.66 0.66 0.64 0.62 0.71	5.8 1.9 1.3 1.2
21 22 23 24 25	3.1 5.4 4.1 4.5 7.7	2.3 2.1 2.0 2.1 3.7	4.6 3.2 9.7 8.4 4.6	5.2 5.5 e6.1 28 12	18 11 7.0 5.7 5.0	9.1 6.4 8.2 8.8 7.7	6.5 7.2 6.7 5.1 5.5	6.1 5.3 4.8 4.6 5.0	1.1 1.1 1.1	7 0.99 5 2.4 5 1.1	0.79 0.80 1.1 1.2	1.6 1.1 1.1 1.1
26 27 28 29 30 31	7.8 9.9 5.1 3.5 2.9 2.6	2.9 2.6 2.8 7.3 14	e3.4 e2.9 2.1 e2.2 e2.2 e2.2	7.6 6.4 6.0 5.9 34 56	6.2 5.7 4.8 	13 24 22 29 39 10	4.5 3.9 14 15 8.2	9.5 5.0 4.4 4.3 4.6	2.: 1.: 1.:	0.76 1.8 1.8 1.5	0.92 0.91 0.91 0.88 0.86 0.81	1.1 12 5.3 2.0 1.4
MEAN MAX MIN CFSM	25.1 4.04 9.9 1.9 0.91	101.5 3.38 14 2.0 0.76 0.85	140.0 4.52 19 1.3 1.01 1.17	249.6 8.05 56 2.1 1.81 2.09	378.7 13.5 132 4.8 3.04 3.17	361.5 11.7 39 4.3 2.62 3.02	353.1 11.8 62 3.9 2.64 2.95	421.5 13.6 80 4.2 3.06 3.52	3.03 8.0 1.3 0.6	2 1.18 0 2.5 3 0.76 8 0.27	22.97 0.74 1.2 0.54 0.17 0.19	65.50 2.18 14 0.63 0.49 0.55
STATISTIC	s of mon	THLY MEA	AN DATA	FOR WATER Y	EARS 198	6 - 2002,	BY WATER	YEAR (WY)			
MAX (WY) MIN	4.93 12.1 1988 1.24 1999	7.30 17.2 1993 0.89 1999	8.51 17.0 1998 1.49 1999	8.86 19.2 1998 3.13 1987	9.24 28.7 1990 2.21 1987	10.1 17.6 1989 3.71 1999	11.8 22.8 1996 6.24 1999	6.63 14.4 1989 1.56 1991	10.9 199	9 6.13 4 1992 5 0.71	3.29 19.1 1987 0.49 1991	3.39 11.1 1992 0.75 1995

e Estimated.

STREAMS TRIBUTARY TO LAKE ERIE

04213075 BRANDY RUN NEAR GIRARD, PA--Continued

SUMMARY STATISTICS	FOR 2001 CALENDAR YEAR	FOR 2002 WATER YEAR	WATER YEARS 1986 - 2002
ANNUAL TOTAL	1798.60	2346.66	
ANNUAL MEAN	4.93	6.43	6.67
HIGHEST ANNUAL MEAN			9.84 1996
LOWEST ANNUAL MEAN			2.82 1999
HIGHEST DAILY MEAN	55 Feb 9	132 Feb 1	405 Aug 2 1987
LOWEST DAILY MEAN	0.42 Sep 19	0.54 Aug 11	0.14 Aug 3 1991
ANNUAL SEVEN-DAY MINIMUM	0.49 Sep 17	0.57 Aug 8	0.16 Aug 1 1991
MAXIMUM PEAK FLOW		423 Feb 1	a 708 Jun 13 1994
MAXIMUM PEAK STAGE		2.51 Feb 1	b 3.36 Jun 13 1994
INSTANTANEOUS LOW FLOW		0.40 Aug 11	0.19 Jul 11 1986
ANNUAL RUNOFF (CFSM)	1.11	1.44	1.50
ANNUAL RUNOFF (INCHES)	15.04	19.62	20.36
10 PERCENT EXCEEDS	11	12	13
50 PERCENT EXCEEDS	3.2	3.8	3.3
90 PERCENT EXCEEDS	0.77	0.84	0.90

<sup>a From rating curve extended above 140 ft³/s.
b Maximum gage height, 4.55 ft., Dec. 19, 1989 (backwater from ice).</sup>

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at low-flow partial-record sites and at miscellaneous sites and for special studies are given in separate tables.

Crest-Stage Partial-Record Stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

Annual maximum discharge at crest-stage partial-record stations during water year 2002

			Water y	ear 2002 m	aximum	Period of record maximum		
Station name and number	Location and drainage area	Period of Record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		оню в	RIVER BASI	N				
		ALLEGHEN	NY RIVER B	ASIN				
Allegheny River at Warren, Pa. (03015310)	Lat 41°50'38", long 79°09'00", Warren County, Hydrologic Unit 05010002, on right bank at downstream end of municipal parking lot at Warren, Pa., 1,400 ft downstream from confluence of Conewango Creek, and at mile 188.7. Drainage area is 3,131 mi ² .	1988-94≠ 1995-2002	5-19-02	9.92	25,100	1-03-91	10.19	31,700
		FRENCH	CREEK BAS	SIN				
Woodcock Creek at Blooming Valley, Pa. (03022540)	Lat 41°41'26", long 80°02'54", Crawford County, Hydrologic Unit 05010004, on left bank at upstream side of bridge, 0.7 mi northeast of Blooming Valley, Pa., and 3.4 mi upstream from Woodcock Creek Dam. Drain- age area is 31.1 mi ² .	1974-95≠ 1996-2002	5-12-02 5-14-02	8.02	711	2-17-76	11.48	2,980
		CLARION	N RIVER BAS	SIN				
Clarion River at Johnsonburg, Pa. (03028500)	Lat 41°29'10", long 78°40'43", Elk County, Hydrologic Unit 05010005, on left bank at upstream side of highway bridge at Johnsonburg, Pa., 0.1 mi downstream from conflu- ence of East and West Branches. Drainage area is 204 mi ² .	1945-95≠ 1996-2002	5-14-02	6.16	3,570	1-19-96	10.14	12,800

 $\textbf{Annual maximum discharge at crest-stage partial-record stations during water year 2002} \\ - \textbf{Continued}$

	Water year 2002 maximum Period of reco										
Station name and number	Location and drainage area	Period of Record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)			
		OHIO RIVER	R BASINCo	ontinued							
		KISKIMINET	TAS RIVER I	BASIN							
Little Conemaugh River at East Conemaugh, Pa. (03041000)	Lat 40°20'45", long 78°52'58", Cambria County, Hydrologic Unit 05010007, upstream from bridge on State Highway 271 at East Conemaugh, Pa., 300 ft downstream from Clapboard Run, and 2.7 mi upstream from confluence with Stonycreek River. Drainage area is 183 mi².	1939-95≠ 1996-2002	3-27-02	13.32	4,930	7-20-77	18.85	40,000			
		LAKE !	ERIE BASIN	<u>N</u>							
Mill Creek at Erie, Pa. (04213200)	Lat 42°05'54", long 80°04'35", Erie County, Hydrologic Unit 04120101, at bridge on West 38th Street, 100 ft west of State Highway 505, at Erie, Pa, Drainage area is 9.16 mi ² .	1964-2002	3-30-02	11.45	830	9-17-96	15.06	3,310			

[≠] Operated as a continuous-record gaging station.

 ${\bf Miscellaneous\ sites}$ Discharge measurements made at miscellaneous sites during water year 2002

					<u>Measu</u>	<u>rements</u>
Stream	Tributary to	Location	Drainage area (mi ²)	Measured previously (water years)	Date	Discharge (ft ³ /s)
		OHIO RIVER BASIN				
		ALLEGHENY RIVER BASII	N			
03010956 Tunungwant Creek	Allegheny River	Lat 41°57'44", long 78°37'30", McKean County, Hydrologic Unit 05010001, at bridge on State Highway 346 at Brad- ford, Pa., and 1.5 mi downstream from confluence of East and West Branch Tunungwant Creek.	138	1989-2001	10-30-01 12-11-01 1-30-02 3-11-02 4-30-02 6-18-02 8-07-02 9-24-02	119 76 1,180 238 353 158 33.1 17.1
03017500 Tionesta Creek	Allegheny River	Lat 41°36'07", long 79°03'01", Forest County, Hydrologic Unit 05010003, in Allegheny National Forest, on left bank at downstream side of highway bridge at Lynch, Pa., 500 ft upstream from Bluejay Creek and 7 mi south of Sheffield, Pa.	233	1939-79≠ 1981 1988-2001	10-03-01 11-15-01 1-15-02 2-27-02 4-18-02 6-11-02 7-16-02 9-11-02	26.5 59.1 186 446 877 460 51.2 15.8
03022000 French Creek	Allegheny River	Lat 41°46'19", long 80°06'29", Crawford County, Hydrologic Unit 05010004, at downstream side of bridge at Venango, Pa., 1.2 mi upstream from Gravel Run and 2.2 mi downstream from Boles Run.	597	1938-46≠ 1994-2001	11-06-01 12-11-01 1-30-02 3-19-02 5-07-02 6-24-02 8-22-02	561 431 2,790 1,470 1,010 304 96.6
03025000 Sugar Creek	Allegheny River	Lat 41°25'43", long 79°52'48", Venango County, Hydrologic Unit 05010004, at bridge 0.8 mi north of Sugarcreek, Pa., 0.9 mi upstream from mouth, and 3 mi northeast of Franklin, Pa.	166	1932-79≠ 1989-2001	10-01-01 11-08-01 1-08-02 2-25-02 4-15-02 6-03-02 7-17-02 9-09-02	23.8 61.5 105 197 1,300 153 36.3 24.9
03029000 Clarion River	Allegheny River	Lat 41°25'15", long 78°44'10", Elk County, Hydrologic Unit 05010005, at bridge on State Highway 948 in Ridg- way, Pa., 50 ft downstream from Elk Creek.	303	1940-53≠ 1954-2001	10-29-01 12-10-01 1-28-02 3-13-02 4-29-02 6-17-02 8-08-02 9-26-02	149 230 505 357 1,400 1,580 186 246
03030852 Clarion River	Allegheny River	Lat 41°07'47", long 79°33'18", Clarion County, Hydrologic Unit 05010005, at bridge on State Highway 58 at Callens- burg, Pa., and 0.3 mi upstream from Licking Creek.	1,163	1979-2001	10-23-01 1-17-02 3-04-02 4-19-02 6-12-02 7-15-02 9-12-02	204 694 4,880 4,220 494 139 131
03036995 Crooked Creek	Allegheny River	Lat 40°40'54", long 79°11'27", Indiana County, at bridge on State Highway 110 at Creekside, Pa.,and 150 ft upstream from McKee Run.	53.4	1996	10-29-01 12-12-01 1-22-02 3-04-02 4-22-02 6-05-02 7-30-02 9-09-02	5.14 12.6 31.0 102 93.1 48.0 12.1 4.30

Discharge measurements made at miscellaneous sites during water year 2002—Continued

					Measu	rements
Stream	Tributary to	Location	Drainage area (mi ²)	Measured previously (water years)	Date	Discharge (ft ³ /s)
		OHIO RIVER BASINContin	ued			
		BEAVER RIVER BASIN				
03099600 Mahoning River	Beaver River	Lat 41°01'06", long 80°26'27", Lawrence County, Hydrologic Unit 05030103, at bridge on State Highway 224 and 0.4 mi northwest of North Edinburg, Pa.	1,099	1989-2001	11-07-01 12-13-01 1-31-02 3-20-02 5-10-02 6-26-02 8-29-02	286 385 2,240 855 1,040 511 388
03104500 Shenango River	Beaver River	Lat 41°00'00", long 80°21'21", Lawrence County, Hydrologic Unit 05030102, at bridge on Grant Street in New Castle, Pa., and 0.6 mi above confluence with Neshannock Creek.	792	1910-34≠ 1989-2001	11-08-01 12-13-01 2-01-02 3-20-02 5-09-02 6-26-02 9-30-02	115 352 2,450 499 1,850 287 247
03105810 Connoquenessing Creek	Beaver River	Lat 40°48'21", long 79°57'55", Butler County, Hydrologic Unit 05030105, at bridge on SR 3006 at Renfrew, Pa., and 0.8 mi upstream from Thorn Creek.	137	1989-2001	10-11-01 11-08-01 1-18-02 3-05-02 4-22-02 6-13-02 7-18-02 9-13-02	13.2 35.4 62.4 190 178 128 16.8 11.5
03105940 Little Connoque- nessing Creek	Beaver River	Lat 40°48'36", long 80°06'54", Butler County, Hydrologic Unit 05030105, on right bank at pumping station for Har- mony Borough Water Authority, .85 mi northeast of Harmony Borough and 1.3 mi above mouth.	63.8	1996-2001	11-09-01 12-17-01 2-05-02 3-14-02 5-22-02 6-27-02 9-04-02 9-04-02	14.2 62.2 110 39.0 114 13.6 2.48 2.20
		LAKE ERIE BASIN				
04212945 Conneaut Creek	Lake Erie	Lat 41°55'04", long 80°28'09", Erie County, Hydrologic Unit 04120101, at bridge on Griffey Road and 1.2 mi north- west of Cherry Hill, Pa., and 1.9 mi south of West Springfield, Pa.	149	1989-2001	11-05-01 12-10-01 1-28-02 3-20-02 5-06-02 6-24-02 8-20-02	63.4 55.8 275 136 100 24.0 8.56
04213273 Twelvemile Creek	Lake Erie	Lat 42°12'15", long 79°54'16", Erie County, Hydrologic Unit 04120101, at bridge on Malbert Place near Mooreheadville, Pa., and 0.5 mi upstream from mouth.	12.5	1989-2001	12-11-01 1-29-02 3-19-02 5-07-02 6-25-02 8-21-02	2.97 83.7 13.2 11.2 4.09 1.10

[≠] Operated as a continuous-record gaging station.

The Pennsylvania Water-Quality Network (WQN) is a statewide, fixed station water-quality sampling system currently operated by the Department of Environmental Protection (PaDEP), Bureau of Water Supply and Wastewater Management in cooperation with the United States Geological Survey (USGS). It is designed to assess both the quality of Pennsylvania's surface waters and the effectiveness of the water quality management program by accomplishing two basic objectives:

- * Monitor temporal water quality trends in major surface streams throughout the Commonwealth of Pennsylvania
- * Monitor temporal water-quality trends in selected reference waters

Major streams are defined as interstate waters and intrastate streams with drainage areas of roughly 200 mi² or greater. These waters are sampled at or near their mouths to measure overall quality before flows enter the next higher order stream or before exiting the Commonwealth. In this way, trends can be established and the effectiveness of water-quality management programs can be assessed by watershed. Samples are collected on fixed time intervals resulting in coverage of a range of flow regimes. All samples collected from April 1, 2002 through September 30, 2002 were collected by the USGS and analyzed by the PaDEP laboratory in Harrisburg.

Most of the current WQN standard sites are co-located with USGS gage stations and others are equipped with a wire weight gage. Currently the network consists of 123 standard stream sites, and 27 reference stream sites distributed across the Commonwealth.

Standard stations are sampled bimonthly (6 times per year) for physical and chemical parameters and stream discharge or a stage reading. Reference stations sampled monthly at 25-30 day intervals for physical and chemical parameters and stream discharge or a stage reading.

TABLE 3.--Pennsylvania Water-Quality Network (WQN) station list.

Station number	Location	Latitude	Longitude	Drainage area (mi ²)
a03010500	Allegheny River at Eldred, PA	41°57'48"	78°23'11"	550
03010956	Tunungwant Creek at Bradford, PA	41°57'44"	78°37'30"	138
03012600	Allegheny River at Warren, PA	41°49'28"	79°07'09"	2,223
a03015000	Conewango Creek at Russell, PA	41°56'17"	79°08'00"	816
a03015500	Brokenstraw Creek at Youngsville, PA	41°51'09"	79°19'03"	321
a03016000	Allegheny River at West Hickory, PA	41°34'15"	79°24'29"	3,660
03017500	Tionesta Creek at Lynch, PA	41°36'07"	79°03'01"	233
03017800	Minister Creek at Truemans, PA	41°37'16"	79°09'11"	10.2
03020449	West Branch Caldwell Creek near Grand Valley, PA	41°41'40"	79°34'16"	18.1
a03020500	Oil Creek at Rouseville, PA	41°28'54"	79°41'44"	300
03022000	French Creek at Venango, PA	41°46'19"	80°06'29"	597
a03023100	French Creek at Meadville, PA	41°37'57"	80°09'35"	788
03025490	French Creek at Franklin, PA	41°24'06"	79°49'54"	1,237
03026175	Allegheny River at Kennerdell, PA	41°15'51"	79°50'29"	6,266
a03029500	Clarion River at Cooksburg, PA	41°19'50"	79°12'33"	807
03030852	Clarion River at Callensburg, PA	41°07'47"	79°33'18"	1,163
a03031500	Allegheny River at Parker, PA	41°06'02"	79°40'53"	7,671
03031505	Silver Creek at Walley Mill near North Washington, PA	41°02'39"	79°46'36"	5.5
a03032500	Redbank Creek at St. Charles, PA	40°59'40"	79°23'40"	528
a03034000	Mahoning Creek at Punxsutawney, PA	40°56'21"	79°00'31"	158
a03036500	Allegheny River at Kittanning, PA	40°49'13"	79°31'54"	8,973
03039815	Clear Shade Creek above Confluence near Cairnbrook, PA	40°08'54"	78°49'03"	32.1
03044000	Conemaugh River at Tunnelton, PA	40°27'16"	79°23'28"	1,358
a03049500	Allegheny River at Natrona, PA	40°36'55"	79°43'07"	11,410
03063000	Monongahela River at Lock and Dam 8 at Point Marion, PA	39°43'37"	79°54'42"	2,720
03071700	Cheat River at Point Marion, PA	39°44'31"	79°53'59"	1,422
a03072000	Dunkard Creek at Shannopin, PA	39°45'33"	79°58'15"	229
03072850	South Fork Ten Mile Creek near Rogersville, PA	39°53'00"	80°18'59"	18.7
a03075070	Monongahela River at Elizabeth, PA	40°15'44"	79°54'05"	5,340
03077500	Youghiogheny River at Youghiogheny River Dam, PA	39°48'19"	79°21'52"	436
03078020	Casselman River near Salisbury, PA	39°43'56"	79°06'03"	70.8
03079448	Kooser Run at Kooser State Park near Bakersville, PA	40°03'37"	79°13'41"	2.6
a03083500	Youghiogheny River at Sutersville, PA	40°14'24"	79°48'24"	1,715
a03085000	Monongahela River at Braddock, PA	40°23'28"	79°51'30"	7,337
a03086000	Ohio River at Sewickley, PA	40°32'57"	80°12'21"	19,500
03099600	Mahoning River at North Edinburg, PA	41°01'06"	80°26'27"	1,099
a03101500	Shenango River at Pymatuning Dam, PA	41°29'53"	80°27'37"	167
a03102500	Little Shenango River at Greenville, PA	41°25'19"	80°22'35"	104
03103500	Shenango River at Sharpsville, PA	41°15'58"	80°28'22"	584

 TABLE 3.--Pennsylvania Water-Quality Network (WQN) station list--continued.

Station number	Location	Latitude	Longitude	Drainage area (mi ²)
03104500	Shenango River at New Castle, PA	41°00'00"	80°21'21"	792
a03105500	Beaver River at Wampum, PA	40°53'19"	80°20'14"	2,235
03105810	Connoquenessing Creek at Renfrew, PA	40°48'21"	79°57'55"	137
a03106000	Connoquenessing Creek near Zelienople, PA	40°49'01"	80°14'33"	356
a03106500	Slippery Rock Creek at Wurtemburg, PA	40°53'02"	80°14'02"	398
a03107500	Beaver River at Beaver Falls, PA	40°45'48"	80°18'55"	3,106
a03108000	Raccoon Creek at Moffatts Mill, PA	40°37'40"	80°20'16"	178
03109670	Ohio River at mile 44.5 at Newell, WV	40°37'10"	80°35'24"	22,784
04212945	Conneaut Creek near Cherry Hill, PA	41°55'04"	80°28'09"	149
04213273	Twelvemile Creek near Moorheadville, PA	42°12'15"	79°54'46"	12.5
04221000	Genesee River at Wellsville, NY	42°07'20"	77°57'27"	288

^aOther data for this station can be found in the continuous station records section of this report.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	PRESS- URE OSMOTIC WATER UNFLTRD MOSM/KG (82550)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)
		03010	1956 Tunur	ngwant Cre	eek at Br	adford, PA	A (LAT 41	57 44N L	ONG 078 3	7 30W)			
APR 2002 17	0730	9813	528		40	10.3	7.4	120	125	10.7	34		9.8
JUN 26	0930	9813	74		40	10.1	7.8	228	243	19.9	64		18.6
AUG 22	0830	9813	22		40	8.9	7.5	536	601	18.9	130		39.6
		030	12600 All	legheny Ri	ver at W	arren, PA	(LAT 41	49 28N LO	NG 079 07	09W)			
APR 2002 15	0945	9813	20200		40	13.2	7.9	116	118	5.7	33		9.7
JUN 26	1100	9813	18900		40	11.2	8.4	90	93	19.0	34		9.8
AUG 20	1130	9813	4070		40	9.3	7.8	124	122	22.6	41		12.2
		03	017500 Ti	lonesta Cr	reek at L	ynch, PA	(LAT 41 3	6 07N LON	G 079 03	01W)			
APR 2002 17	1200	9813	1060		40	10.7	6.5	49	51	12.5	17	4.18	4.1
JUN 25	1300	9813	261		40	11.2	8.7	55	58	21.4	19		4.9
AUG 22	1045	9813	22		40	8.3	7.6	101	111	21.2	34	9.20	9.1
		030178	300 Minis	ter Creek	at True	nans, PA	(LAT 41 3	7 16N LON	G 079 09	11W)			
APR 2002													
17 MAY	0945	9813	7.2	4.0	30	11.0	6.8	27	32	9.8	10	2.08	2.2
22 JUN	1130	9813	37	39	30	12.8	6.1	30	30	7.4	9	2.14	1.9
25 JUL	1115	9813	7.8	4.0	30	10.1	7.1	30	33	16.0	11	2.52	2.5
18 AUG	1400	9813	3.5	<1.0	30	9.6	7.1	32	35	18.7	11		2.5
22 SEP	1200	9813	1.6	3.0	30	9.2	7.2	34	38	17.2	12	2.67	2.7
12	1315	9813	.67	3.0	30	10.1	8.1	40	39	13.6	11	2.57	2.6
	030	20449 Wes	st Branch (Caldwell (Creek nea	r Grand Va	alley, PA	(LAT 41	41 40N LO	NG 079 34	16W)		
APR 2002 16 MAY	0845	9813	84	3.0	30	10.9	7.1	58	62	9.3	18		4.8
23 JUN	0830	9813	38	39	30	12.4	7.2	63	62	6.8	21		5.5
27	0815	9813	8.1	4.0	30	8.9	7.7	96	96	18.6	35		9.7
JUL 18	1100	9813	2.5	<1.0	30	8.5	6.4	105	114	18.9	42		11.7
AUG 21	1015	9813	2.5	3.0	30	9.1	7.6	110	125	16.0	45		12.6
SEP 12	1030	9813	.83	3.0	30	9.7	8.2	137	134	13.1	49		13.5

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ACIDITY TOTAL HEATED (MG/L AS CAC03)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)
		03010	956 Tunu	ngwant Cre	eek at Bra	adford, P	A (LAT 41	. 57 44N L	ONG 078 3	7 30W)			
APR 2002 17		2.4		22		<.2	9.4	80	38	<.020	.27	<.040	.54
JUN 26 AUG		4.3		48		<.2	8.6	138	<2	<.020	.09	<.040	.16
22		7.8		62		<.2	10.1	374	<2	<.020	< .04	<.040	.20
	03012600 Allegheny River at Warren, PA (LAT 41 49 28N LONG 079 07 09W)												
APR 2002 15		2.2		22			9.8	100	<2	<.020	.42	<.040	.61
JUN 26		2.2		24			8.8	60	<2	<.020	.19	<.040	.42
AUG 20		2.5		32			9.0	90	<2	<.020	.16	<.040	.44
		03	017500 т	ionesta Cr	eek at Ly	nch, PA	(LAT 41 3	6 07N LON	G 079 03	01W)			
APR 2002 17	1.45	1.5	23	7			8.8	70	18	<.020	.29	<.040	.51
JUN 25		1.6		16			8.1	38	2	<.020	.13	<.040	.20
AUG 22	2.77	2.8	.0	32		==	7.5	48	4	<.020	.04	<.040	.34
		030178	300 Minis	ster Creek	at Truem	ans, PA	(LAT 41 3	7 16N LON	IG 079 09	11W)			
APR 2002 17 MAY	.94	1.0	12	3	1.1	<.2	7.8	36	40	<.020	.22	<.040	.33
22 JUN	1.01	.9	12	3	1.1	<.2	7.8	46	<2	<.020	.22	<.040	.28
25 JUL	1.09	1.1	.0	5	1.2	<.2	7.3	26	2	<.020	.21	<.040	.22
18 AUG		1.1		7	1.2	<.2	6.9	28	<2	<.020	.21	<.040	.19
22 SEP	1.13	1.1	.0	8	1.3	<.2	6.4	34	4	<.020	.20	<.040	.26
12	1.12	1.1	.0	11	1.4	<.2	6.5	38	6	.100	.16	<.040	.20
	0302	0449 Wes	t Branch	Caldwell (Creek near	r Grand V	alley, PA	(LAT 41	41 40N LO	NG 079 34	16W)		
APR 2002 16		1.4		10	3.7	<.2	9.2	56	18		.38	<.040	.53
MAY 23 JUN	==	1.8		13	3.8	<.2	9.0	28	10	<.020	.40	<.040	.48
27 JUL		2.6		28	7.3	<.2	7.4	74	6	<.020	.31	<.040	.44
18 AUG		3.1		38	6.6	<.2	7.5	114	4	<.020	.23	<.040	.40
21 SEP		3.2		38	8.8	<.2	7.0	108	6	.020	.18	<.040	.29
12		3.7		48	7.9	<.2	7.2	112	8	.120	.10	<.040	.22

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	PHOS-PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
		03010	1956 Tunur	ngwant Cr	eek at Bra	adford, PA	(LAT 41	57 44N L	ONG 078 37	7 30W)			
APR 2002 17 JUN	.02	.020	1.9						<10		700		<1.0
26 AUG	.01	.020	2.0						<10		630		<1.0
22	.01	.010	2.7						<10		380		<1.0
		030	12600 All	Legheny R	iver at Wa	arren, PA	(LAT 41	49 28N LO	NG 079 07	09W)			
APR 2002													
15 JUN	.01	.010	1.6					==	<10		160		<1.0
26 AUG	.01	.020	2.4						<10		220		<1.0
20	.01	.020	2.7						<10		70		1.4
		03	017500 Ti	lonesta C	reek at Ly	ynch, PA	(LAT 41 3	6 07N LON	g 079 03 0	1W)			
APR 2002 17 JUN	.02	.020		.7	==		==	<4	<4	40	810	<1.0	6.7
25	.01	.010	2.1						<10		400		<1.0
AUG 22	.02	.019		.8				<4	<4	140	570	<1.0	<1.0
		030178	300 Minis	ter Creek	at Truem	nans, PA	(LAT 41 3	7 16N LON	G 079 09	11W)			
APR 2002													
17 MAY	.01	<.010		.3	20			<4	<4	<20	150	<1.0	<1.0
22 JUN	<.01	<.010		1.4	<20			<4	<4	<20	70	<1.0	<1.0
25 JUL	.01	.010		.6	20	<4.0	<.20	<4	<4	40	140	<1.0	<1.0
18	.01	<.010		.3	<20	<4.0	<.20	<4	<4	40	140	<1.0	<1.0
22 SEP	<.01	<.010		. 4	40	<4.0	<.20	<4	<4	50	150	<1.0	<1.0
12	.01	<.010		1.1	60	<4.0	<.20	<4	<4	30	110	<1.0	<1.0
	030	20449 Wes	st Branch (Caldwell	Creek nea	r Grand Va	lley, PA	(LAT 41	41 40N LON	IG 079 34	16W)		
APR 2002	0.1				0.0			. 4			250		1.0
16 MAY	.01			. 6	20			<4	<4	70	350	<1.0	<1.0
23 JUN	.02	.011		<.2	20	<4.0	<.20	<4	<4	60	250	<1.0	<1.0
27 JUL	.02	.019		1.2	550	<4.0	<.20	<4	<4	180	790	<1.0	<1.0
18 AUG	.02	.015	==	.5	70	<4.0	<.20	<4	<4	60	540	<1.0	<1.0
21 SEP	.03	.019		1.0	40	<4.0	<.20	<4	<4	100	690	<1.0	<1.0
12	.01	.014	==	1.2	20	<4.0	<.20	<4	<4	40	500	<1.0	<1.0

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MANGA- NESE, DIS- SOLVED (µG/L AS MN)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, DIS- SOLVED (µG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, DIS- SOLVED (µG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)	PHENOLS TOTAL (µG/L) (32730)		
03010956	Tunungwan	t Creek at	Bradfor	d, PA (LA	AT 41 57	44N LONG	078 37 30W)		
APR 2002 17		80		<50		<10	<5		
JUN 26		100		<50		<10	<5		
AUG 22		100		<50		<10	<5		
03012600	Allegheny	River at	Warren,	PA (LAT	41 49 28N	LONG 079	07 09W)		
APR 2002		30	==	<50		<10			
15 JUN 26		30		<50		<10			
AUG 20		30		<50		10			
03017500	Tionesta (Lynch, PA		36 07N L	ONG 079 0	3 01W)		
APR 2002									
17 JUN	30	60	<4.0	<4.0	10	10	==		
25 AUG		30		<50		10			
22 03017800	60 Minister (80 Trook at 7	<4.0	<4.0	10	10 N IONG 07	 о оо 11ы)		
APR 2002	MINISCEL	creek at 1	ii uemans,	PA (LAI	41 37 10	N LONG 07	9 09 11W)		
17 MAY	40	50	<4.0	<4.0	20	20	<5		
22 JUN	40	40	<4.0	<4.0	20	20	<5		
25 JUL	10	20	<4.0	<4.0	6.3	6.1	<5		
18 AUG	9.6	20	<4.0	<4.0	<5.0	<5.0	8		
22 SEP	9.7	20	<4.0	<4.0	<5.0	<5.0	<5		
12	10	20	<4.0	<4.0	<5.0	<5.0	<5		
03020449	West Bran	ch Caldwel	ll Creek	near Grand	d Valley,	PA (LAT	41 41 40N	LONG 079	34 16W)
APR 2002 16	10	20	<4.0	<4.0	<5.0	<5.0	<5		
MAY 23	20	20	<4.0	<4.0	<5.0	<5.0	<5		
JUN 27	10	20	<4.0	<4.0	<5.0	<5.0			
JUL 18	20	30	<4.0	<4.0			7		
AUG 21 SEP	30	30	<4.0	<4.0	<5.0	<5.0	<5		
12	30	40	<4.0	<4.0	<5.0	<5.0	<5		

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	PRESS- URE OSMOTIC WATER UNFLTRD MOSM/KG (82550)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)
		03	022000 F	rench Cree	ek at Ven	ango, PA	(LAT 41 4	6 35N LON	G 080 06	30W)			
APR 2002 23	0730	9813	1720	8.0	40	7.7	7.6	210	193	10.8	82		24.8
MAY 20	1025	9813	2740	1.0	40	10.2	7.8	161		11.4	63		19.4
JUN 10	1030	9813	1280	3.0	40	8.8	7.8	202	179	20.8	78		24.1
JUL 23	1030	9813	90	6.0	40	6.2	7.7	367		25.0	150		45.5
AUG 12	1000	9813	100	5.0	40	8.0	7.7	390	322	22.0	140		43.9
SEP 23	1030	9813	100	6.0	40	8.7	7.8	301	320	18.0	140		43.3
		03	025490 F1	ench Cree	k at Fra	nklin, PA	(LAT 41 2	4 06N LON	G 079 49	54W)			
APR 2002	0815	9813	3040	==	40	7.9	7.8	209	196	9.9	76		22.7
24 JUN 12	1030	9813	1500		40	8.1	7.8	251	199	22.0	85		25.5
AUG 14	1030	9813	387		40	8.6	8.2	223	300	24.8	120		36.7
11	1030		507 5175 Alle								120		30.7
APR 2002		03020	7175 AITE	anemy Kive	si ac ken	nerderr, r	r iAu, A	1 15 51N .	LONG 075	30 ZJW)			
24 JUN	1230	9813	17800		40	7.7	7.6	134	132	10.8	45		13.3
12 AUG	1230	9813	18700		40	9.5	7.5	158	116	18.3	43		12.6
14	1230	9813	3130		40	8.1	7.9	184	181	25.0	61		18.4
		03030	852 Clar	ion River	at Calle	nsburg, PA	A (LAT 41	07 47N L	ONG 079 3	3 16W)			
APR 2002 24	1430	9813	3600		40	7.2	7.0	151	150	12.7	49		11.8
JUN 12	1430	9813	4200		40	9.3	6.0	284	184	20.0	63		14.5
AUG 14	1430	9813	145		40	9.4	7.4	232	393	28.0	110		26.0
	03031	1505 Silv	er Creek a	t Walley	Mill near	North Was	shington P	A (LAT 4	1 02 39N	LONG 079 4	16 36W)		
MAY 2002													
01 21	1000 1215	9813 9813	6.7 18	6.0 <1.0	30 30	14.0 12.4	7.6 7.6	193 145	134	6.8 7.6	68 44	 	18.2 10.9
JUN 13	1230	9813	6.8	3.0	30	10.2	7.4	213	151	16.1	52		13.5
JUL 24	1130	9813	1.4	1.0	30	9.2	7.4	283		18.4	75		20.7
AUG 15	1030	9813	.75	4.0	30	10.1	7.6	225		20.0	84		23.5
SEP 25	1130	9813	.09	1.0	30	10.3	7.6	249		12.7	86		24.2

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ACIDITY TOTAL HEATED (MG/L AS CAC03)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)
		03	022000 F	rench Cree	ek at Vena	ingo, PA	(LAT 41 4	6 35N LON	G 080 06	30W)			
APR 2002 23 MAY		4.9		68	13.6	<.2	10.8	158	10	<.020	.54	<.040	.98
20 JUN		3.6		48	8.5	<.2	8.6	122	32	<.020	.45	<.040	
10 JUL		4.3		66	9.9	<.2	8.2	124	28	<.020	.41	<.040	1.2
23 AUG		8.4		118	22.3	<.2	15.0	216	22	.080	.47	<.040	.91
12 SEP		8.2		114	18.4	<.2	16.8	176	22	<.020	.41	<.040	.72
23		8.0		106	22.5	<.2	21.3	226	4	<.020	.45	<.040	.89
		03	025490 F	rench Cree	k at Fran	klin, PA	(LAT 41 2	24 06N LON	IG 079 49	54W)			
APR 2002 24		4.6		58			12.1	156	14	<.020	.52	<.040	.83
JUN 12	==	5.2		70			9.8	134	8	<.020	.33	<.040	.86
AUG	==	7.2		98			17.5		2	<.020	<.04	<.040	.28
14	==							180			<.04	<.040	. 28
APR 2002		03026	1/5 Alle	gheny Rive	er at kenn	ierdell, i	PA (LAT 4	NTG GT T:	LONG 079	50 29W)			
24 JUN	==	2.8		30		==	11.0	158	8	<.020	.41	<.040	.57
12	==	2.7		30		==	9.6	74	12	.080	.28	<.040	.86
AUG 14		3.5		44			11.5	112	2	<.020	.08	<.040	.28
		03030	852 Clar	ion River	at Caller	nsburg, P	A (LAT 41	07 47N L	ONG 079 3	3 16W)			
APR 2002 24	==	4.6		7		==	46.3	116	<2	.040	. 28	<.040	.41
JUN 12		6.5		5			63.9	132	10	<.020	.24	<.040	.69
AUG													
14		11.4		16			125	268	4	.040	. 22	<.040	.41
MATZ 2002	03031	505 5110	er Creek a	at Walley M	will near	North was	snington E	PA (LAT 4	1 UZ 39N .	LONG 079 4	±6 36W)		
MAY 2002 01 21	 	5.5 4.1		20 12	15.1 11.2	<.2 <.2	38.9 23.5	6 24	6 2	<.020 <.020	.76 1.62	<.040 <.040	.94 1.7
JUN 13		4.5		18	12.5	<.2	26.4	130	20	<.020	1.67	<.040	1.8
JUL 24		5.7		40	19.7	<.2	28.3	168	12	.020	.64	<.040	.90
AUG 15		6.1		44	22.7	<.2	31.1	64	16	.060	.36	<.040	.53
SEP 25		6.3		50	27.8	<.2	27.3	192	6	.030	<.04	<.040	.22

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

				OXYGEN	FECAL								
Date	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
		03	022000 F1	rench Cre	ek at Vena	ango, PA	(LAT 41 46	5 35N LON	G 080 06 3	30W)			
APR 2002 23	.02	.035		1.3	60			<4	<4	110	620	<1.0	<1.0
MAY 20	.05	.048		15.0	220			<4	<4	120	1300	<1.0	1.2
JUN 10	.02	.045		1.0	80	<4.0	<.20	<4	<4	100	840	<1.0	1.0
JUL 23	.03	.032		1.4	5900	<4.0	<.20	<4	<4	40	950	<1.0	1.2
AUG 12	.03	.031		2.6	60	<4.0	<.20	<4	<4	30	510	<1.0	<1.0
SEP 23	.01	.032		. 2	160	<4.0	<.20	<4	<4	40	270	<1.0	<1.0
		03	025490 Fr	ench Cree	ek at Fran	nklin, PA	(LAT 41 2	4 06N LON	IG 079 49	54W)			
APR 2002													
24 JUN	.02	.030	3.9						<10		1080		<1.0
12 AUG	.02	.040	5.4						<10		540		<1.0
14	.01	.020	3.3						<10		100		<1.0
		03026	175 Alle	gheny Riv	er at Keni	nerdell, E	PA (LAT 41	l 15 51N	LONG 079 S	50 29W)			
APR 2002 24	.01	.020	2.4				==	==	<10		410		<1.0
JUN 12	.02	.030	3.0				==	==	<10		520		<1.0
AUG 14	.01	.020	2.7				==	==	<10		130		<1.0
		03030	852 Clar	ion River	at Calle	nsburg, PA	A (LAT 41	07 47N L	ONG 079 33	3 16W)			
APR 2002													
24 JUN	.02	.010	1.7						<10		660		<1.0
12 AUG	.01	.020	2.4						<10		1130		1.1
14	<.01	<.010	2.5						<10		120		<1.0
	03031	505 Silve	er Creek a	t Walley	Mill near	North Was	shington P	A (LAT 4	1 02 39N I	ONG 079 4	6 36W)		
MAY 2002 01	.01	<.010		1.4	100			<4	<4	50	160	<1.0	<1.0
21 JUN	.01	.012		1.3	150			<4	<4	20	280	<1.0	<1.0
13 JUL	.01	<.010		1.7	600	<4.0	<.20	<4	5.9	30	510	<1.0	<1.0
24 AUG	.03	.028		1.0	3600	<4.0	<.20	<4	<4	20	700	<1.0	<1.0
15 SEP	.01	.016		1.0	560	<4.0	<.20	<4	<4	<20	420	<1.0	<1.0
25	<.01	.017		2.3	60	<4.0	<.20	<4	<4	30	600	<1.0	<1.0

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MANGA- NESE, DIS- SOLVED (µG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, DIS- SOLVED (µG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, DIS- SOLVED (µG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)	PHENOLS TOTAL (µG/L) (32730)			
03022000	French C	reek at V	enango, P	A (LAT 41	46 35N	LONG 080	06 30W)			
APR 2002 23 MAY	30	70	<4.0	<4.0	6.4	6.6	<5			
20	30	70	<4.0	4.2	7.8	9.7	<5			
JUN 10	20	80	<4.0	<4.0	<5.0	5.0	<5			
JUL 23	50	130	8.0	6.0	8.8	70	<5			
AUG 12	20	110	<4.0	<4.0	10	10	<5			
SEP 23	20	80	<4.0	<4.0	10	10	<5			
0302549	0 French	Creek at	Franklin,	PA (LAT	41 24 06	N LONG 0'	79 49 54W)			
APR 2002										
24 JUN		50		<50		70				
12 AUG		50		<50		<10				
14		20		<50		<10				
03026175	Allegheny	River at	Kennerde	11, PA (I	LAT 41 15	51N LONG	3 079 50 29	W)		
APR 2002 24		50		<50		<10				
JUN 12		60		<50		20				
AUG 14		30		<50		10				
03030852	Clarion R	iver at C	allensbur	g, PA (LA	AT 41 07	47N LONG	079 33 16W	1)		
APR 2002 24 JUN		640	==	<50	==	20	==			
12 AUG		880		<50		80				
14		1080		<50		10				
03031505	Silver Cr	eek at Wa	lley Mill	near Nort	h Washin	gton PA	(LAT 41 02	39N LO	NG 079	46 36W)
MAY 2002 01 21	90 50	100 40	<4.0 <4.0	<4.0 <4.0	 10	 10	<5 <5			
JUN 13	30	50	<4.0	4.5	10	20	<5			
JUL 24	50	100	<4.0	<4.0	20		<5			
AUG 15	70	110	<4.0	<4.0			<5			
SEP 25	130	230	<4.0	<4.0	20	30	<5			
							-			

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	PRESS- URE OSMOTIC WATER UNFLTRD MOSM/KG (82550)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)
	03039	815 Clear	Shade Cre	eek above	Confluen	ce near Ca	irnbrook,	PA (LAT	40 08 54N	LONG 078	49 03W)		
APR 2002 30	0900	9813		5.0	40	11.8	6.5	42	47	7.0	12	2.98	3.6
MAY 29	1150	9813	61	1.0	40	10.1	7.5	44		14.2	12	3.26	3.4
JUN 24	1345	9813	27	3.0	40	8.5	7.3	91	==	21.8	16	4.53	4.7
JUL 17	1245	9813	9.2	<1.0	40	7.8	7.5	135	58	22.0	20	5.83	6.2
AUG 22	1100	9813	4.5	3.0	40	8.4	7.2	67		20.9	23	6.80	7.2
SEP 25	1530	9813	2.6	<1.0	40	10.3	7.3	66	69	14.4	23	6.27	7.1
		03044	000 Coner	maugh Rive	er at Tun	nelton, PA	(LAT 40	27 16N L	ONG 079 2	3 28W)			
APR 2002	1000	0012	1.600		40				100	10.0	63		18.1
10 JUN	1200	9813	1680	==	40	7.5	7.0		192	12.0	61	==	17.1
06 AUG	0915 0945	9813 9813	1210		40 40	7.7	6.9	688	574	22.7	220		57.8 125
28			492			7.1	6.7	1340	1220	24.3	470		125
APR 2002	030	63000 Mon	onganeia i	kiver at i	Jock & Dai	11 8, at PO	int Mario	n, PA (L	AT 39 43 3	3/N LONG U	79 54 42W)	
15 JUN	1130	9813	4810	==	40	7.1	7.2	314	308	13.8	130	==	37.3
17	1145	9813	3000	==	40	9.8	7.4	412	362	22.0	170	==	48.2
AUG 08	1130	9813	1120		40	7.5	7.1	361	328	27.0	120		32.2
		0307	1700 Chea	at River a	at Point 1	Marion, PA	(LAT 39	44 31N L	ONG 079 5	3 59W)			
APR 2002 15	1015	9813	8000		40	6.3	6.8	131	125	13.0	51		14.9
JUN 17	1045	9813	1400		40	7.8	7.0	168	119	22.5	49		14.3
AUG 08	1015	9813	1500		40	7.0	7.1	258	236	25.0	84		23.8
		0307285	0 South F	ork Tenmi	le Creek	near Roge	rsville,	PA (LAT	39 53 00N	LONG 080	18 59W)		
APR 2002													
15 MAY	1300	9813	23	7.0	40	6.1	7.6	249	236	14.3	120		38.8
22 JUN	0915	9813	35	41	40	12.3	7.8	266	247	7.7	110		36.4
JUL	1330	9813	8.5	7.0	40	9.8	7.8	362	293	18.5	140		43.2
16 AUG	0930	9813		4.0	40	5.3	7.3	438	402	21.3	140		42.9
08 SEP	1300	9813		5.0	40	3.5	7.5	189		18.8	140		44.8
30	1000	9813		3.0	40	7.3	7.5	346		16.0	140		42.7

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ACIDITY TOTAL HEATED (MG/L AS CAC03)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)
	0303	9815 Cle	ar Shade	Creek abov	re Conflue	ence near	Cairnbroo	ok, PA (L	AT 40 08	54n LONG ()78 49 03W	1)	
APR 2002 30 MAY	.62	.8	16	3	2.7	<.2	8.8	36	<2	<.020	.28	<.040	.36
29 JUN	.75	.8	23	3	2.7	<.2	8.7	22	8	<.020	.23	<.040	.28
24 JUL	.96	1.0	27	3	3.9	<.2	8.9	46	10	<.020	.26	<.040	.29
17 AUG	1.05	1.2	23	10	3.1	<.2	10.4		14	.120	.25	<.040	.31
22 SEP	1.20	1.3	.0	13	3.1	<.2	9.2			<.020	.22	<.040	.14
25	1.10	1.3	.0	14	3.7	<.2	9.8	64	<2	.020	.17	<.040	.24
		03044	000 Cone	maugh Rive	er at Tunr	nelton, PA	A (LAT 40) 27 16N L	ONG 079 2	3 28W)			
APR 2002 10	==	4.4		28		<.2	34.0	122	28	.030	.63	<.040	.92
JUN 06		17.7		10			193	398	8	.190	.71	<.040	1.0
AUG 28	==	37.6		5		==	459	1070	4	.210	1.32	<.200	1.9
20				River at I									1.7
APR 2002	0300	JOOO MOII	onganera	KIVEL AC I	ock & Dan	io, ac ro	JIIIC MAIIC	,, FA (11.	AI JJ 43 .	J/N LONG C	175 54 42W	,	
15 JUN		8.2		38			96.0	260	24	.120	.65	<.040	1.0
17 AUG		12.4		58			113	302	8	.080	.65	<.040	1.1
08		8.4		38			103	232	4	<.020	.67	<.040	.92
		0307	1700 Che	at River a	t Point M	Marion, PA	A (LAT 39	9 44 31N L	ONG 079 5	3 59W)			
APR 2002 15		3.3		5			41.1	148	2	.090	.46	<.040	.67
JUN 17		3.1		13			34.2	112	2	.170	.36	<.040	.64
AUG 08		5.9		28			73.1	168	<2	.050	.56	<.040	.82
		0307285	0 South	Fork Tenmi	le Creek	near Roge	ersville,	PA (LAT	39 53 00N	LONG 080	18 59W)		
APR 2002				80	0.0	. 0	25.2	222	1.4.4	020	47	- 040	1 4
15 MAY		5.5			8.8	<.2	25.3	222	144	.030	. 47	<.040	1.4
22 JUN	==	5.0	==	84	4.5	<.2	29.6	148	<2	<.020	. 29	<.040	. 49
JUL	==	6.7	==	114	8.2	<.2	28.2	218	<2	<.020	.24	<.040	.46
16 AUG		7.2		146	21.3	<.2	33.2	412	34	.030	.08	<.040	.45
08 SEP		7.1			23.2	<.2	27.3	286	2	<.020	< .04	<.040	.56
30		6.8		92	20.2	<.2	48.9			.040	2.07	.050	2.8

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
	0303	39815 Cle	ar Shade (Creek abo	ve Conflue	ence near	Cairnbroc	k, PA (L	AT 40 08 5	4N LONG C	78 49 03W)	
APR 2002 30	.01	<.010		.6	20			<4	<4	50	210	<1.0	<1.0
MAY 29 JUN	.01	<.010		.8	<20	<4.0	<.20	<4	<4	40	180	<1.0	<1.0
24 JUL	<.01	.010	==	1.6	<20	<4.0	<.20	<4	<4	60	250	<1.0	<1.0
17 AUG	.01	<.010		.3	<20	<4.0	<.20	<4	<4	40	220	<1.0	<1.0
22 SEP	<.01	<.010		.8	10	<4.0	<.20	<4	<4	60	230	<1.0	<1.0
25	<.01	<.010		2.0	<20	<4.0	<.20	<4	<4	40	230	<1.0	<1.0
		03044	000 Coner	maugh Riv	er at Tun	nelton, PA	A (LAT 40	27 16N L	ONG 079 2	3 28W)			
APR 2002 10	.02	.020	2.4						<10		560		1.4
JUN 06	<.01	<.010	1.6						<10		730		<1.0
AUG 28	<.01	<.010	1.4						<10		180		1.9
	0306	53000 Mon	ongahela 1	River at	Lock & Dar	m 8, at Po	int Mario	n, PA (Li	AT 39 43 3	7N LONG 0	79 54 42W)	
APR 2002 15	.03	.030	1.8						<10		690		<1.0
JUN 17	.06	.030	3.6						<10		1010		2.2
AUG 08	.01	.020	2.9						<10		280		<1.0
00	.01		2.5 1700 Chea		at Doint 1	Marion DA	. /т.лт 30	44 21N T	ONG 079 53		200		VI.0
APR 2002		0307	1700 Cilea	ic Kivei	at Poliit i	mailon, PA	(LAI 35	44 3TN F	ONG 079 5.	5 59W)			
15 JUN	<.01	<.010	1.2						<10		600		<1.0
17 AUG	.02	.010	1.9						<10		360		<1.0
08	<.01	<.010	3.2						<10		220		<1.0
		0307285	0 South F	ork Tenm	ile Creek	near Roge	rsville,	PA (LAT	39 53 00N	LONG 080	18 59W)		
APR 2002 15	.27	.194		2.6	29000			<4		30	5380	<1.0	3.6
MAY 22	.03	.024		2.0	1300			<4	<4	<20	300	<1.0	<1.0
JUN 17	.05	.033		1.0	1600	<4.0	<.20	<4	<4	<20	450	<1.0	<1.0
JUL 16	.04	.049		1.7	250	<4.0	<.20	<4	<4	40	530	<1.0	<1.0
AUG 08	.05	.045		2.3	160	<4.0	<.20	<4	<4	<20	450	<1.0	<1.0
SEP 30	.03	.084		1.1	7200	<4.0	<.20		<4	30	1330	<1.0	1.1

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MANGA- NESE, DIS- SOLVED (µG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, DIS- SOLVED (µG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, DIS- SOLVED (µG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)	PHENOLS TOTAL (μG/L) (32730)		
03039815 Cl	ear Shade	Creek abov	ve Conflue	nce near (airnbrool	k, PA (LA	AT 40 08 54N	I LONG 078 49	03W)
APR 2002 30 MAY	60	100	<4.0	8.3	20	20	<5		
29 JUN	70	80	<4.0	<4.0	10	10			
24 JUL	20	30	<4.0	<4.0	9.8	10	<5		
17	10	30	<4.0	<4.0	8.1	50	<5		
AUG 22	10	20	<4.0	<4.0	<5.0	<5.0	<5		
SEP 25	7.3	20	<4.0	<4.0	30	20	<5		
03044000	Conemaugh	River at	Tunnelton	, PA (LAT	40 27 10	6N LONG 0	79 23 28W)		
APR 2002 10		150	==	<50		20	<5		
JUN 06		1040		<50		30			
AUG			==			70	==		
28		890		<50				ONG 070 F	4057)
		kiver at .	ьоск & рат	8, at Poi	nt Marion	1, PA (LF	AT 39 43 37N	I LONG 079 54	42W)
APR 2002 15		200		<50		1.0			
JUN		200		~50		<10			
17		90		<50		90			
17 AUG 08		90 70		<50 <50		90 <10			
17 AUG 08 03071700 APR 2002	 Cheat Riv	90 70 er at Poi		<50 <50 PA (LAT		90 <10			
17 AUG 08 03071700 APR 2002 15 JUN	 Cheat Riv	90 70 Per at Poi 190	 nt Marion, 	<50 <50 PA (LAT	 39 44 31	90 <10 .N LONG 07			
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG	 Cheat Riv 	90 70 Per at Poi 190 170	 nt Marion, 	<50 <50 PA (LAT <50 <50	 39 44 31 	90 <10 .N LONG 07 10 20	 79 53 59W) 		
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG 08	 Cheat Riv 	90 70 Yer at Poi 190 170 50	 nt Marion, 	<50 <50 PA (LAT <50 <50 <50	 39 44 31 	90 <10 .N LONG 07 10 20 10	 79 53 59W) 	10 10 FON)	
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG 08	Cheat Riv	90 70 Yer at Poi 190 170 50	 nt Marion, 	<50 <50 PA (LAT <50 <50 <50	 39 44 31 	90 <10 .N LONG 07 10 20 10	 79 53 59W) 	80 18 59W)	
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG 08 03072850 APR 2002 15	Cheat Riv	90 70 Yer at Poi 190 170 50	 nt Marion, 	<50 <50 PA (LAT <50 <50 <50	 39 44 31 	90 <10 .N LONG 07 10 20 10	 79 53 59W) 	180 18 59W)	
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG 08 03072850 APR 2002 15 MAY 22	 Cheat Riv South Fork	90 70 Per at Poi 190 170 50 Tenmile C	nt Marion, 'reek near	<50 <50 PA (LAT <50 <50 <50 Rogersvil	 39 44 31 le, PA (90 <10 .N LONG 07 10 20 10 LAT 39 53	 79 53 59W) 5 00N LONG 0	180 18 59W)	
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG 08 03072850 APR 2002 15 MAY 22 JUN 17	 Cheat Riv South Fork	90 70 Ter at Poi 190 170 50 Tenmile C	nt Marion,	<50 <50 PA (LAT <50 <50 <50 Rogersvil	 39 44 31 le, PA (90 <10 .N LONG 07 10 20 10 LAT 39 53	 79 53 59W) : 00N LONG 0	180 18 59W)	
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG 08 03072850 APR 2002 15 MAY 22 JUN	 Cheat Riv South Fork 30 30	90 70 Ter at Poi 190 170 50 Tenmile C	nt Marion, treek near <4.0 <4.0	<50 <50 PA (LAT <50 <50 <50 Rogersvil 5.5 <4.0	 39 44 31 le, PA (90 <10 IN LONG 07 10 20 10 LAT 39 53 20 <5.0	 79 53 59W) 00N LONG 0	180 18 59W)	
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG 08 03072850 APR 2002 15 MAY 22 JUN 17 JUN 17 AUG APR 2002 15 MAY APR 2002	 Cheat Riv South Fork 30 30 40	90 70 rer at Poi 190 170 50 Tenmile C	nt Marion,	<50 <50 PA (LAT <50 <50 <50 Rogersvil 5.5 <4.0 <4.0	 39 44 31 le, PA (7.7 <5.0 <5.0	90 <10 .N LONG 07 10 20 10 LAT 39 53 20 <5.0 <5.0	79 53 59W) * 00N LONG 0	180 18 59W)	
17 AUG 08 03071700 APR 2002 15 JUN 17 AUG 08 03072850 APR 2002 15 MAY 22 JUN 17 JUN 17 JUN 17 JUN 17 JUL 16	Cheat Riv South Fork 30 40 80	90 70 Per at Poi 190 170 50 Tenmile C	nt Marion,	<50 <50 PA (LAT <50 <50 <50 Rogersvil 5.5 <4.0 <4.0	 39 44 31 le, PA (7.7 <5.0 <5.0	90 <10 .N LONG 07 10 20 10 LAT 39 53 20 <5.0 <5.0	79 53 59W)	180 18 59W)	

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	PRESS- URE OSMOTIC WATER UNFLTRD MOSM/KG (82550)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)
	030	77500 You	ghiogheny	River at	Youghiog	heny River	Dam, PA	(LAT 39	48 19N LO	NG 079 21	52W)		
APR 2002 29 JUN	0930	9813			40	11.5	7.5	114	114	7.0	33		9.5
25	1015	9813	4.4		40	9.1	7.3	99	96	12.7	28		8.1
AUG 26	1515	9813			40	8.1	6.4	95	98	16.7	33		9.7
		030780	20 Casse	lman River	near Sa	lisbury, P	PA (LAT 3	9 43 56N	LONG 079	06 03W)			
APR 2002 29	1230	9813	579		40	10.4	7.6	119	115	8.9	37	9.04	10.7
JUN 25	0900	9813	18		40	8.2	7.3	217	247	20.3	81	21.9	23.3
	0307	9448 Koos	er Run at	Kooser St	ate Park	near Bake	rsville,	PA (LAT	40 03 37N	LONG 079	13 41W)		
APR 2002 30	1200	9813	11	120	30	12.5	7.2	228	226	9.2	61	19.1	21.4
MAY 29	0910	9813	3.9	4.0	30	10.4	7.6	244	224	12.6	75	22.6	26.7
JUN 24	1050	9813	2.7	5.0	30	11.0	7.4	252	238	15.4	72	25.1	25.4
JUL 17	1030	9813	1.8	1.0	30	8.5	7.6	278	245	14.8	77	26.4	27.5
AUG 22	0830	9813	1.5	6.0	30	9.1	7.7	319		15.9	100	33.3	35.5
SEP 25	1430	9813	1.0	3.0	30	10.7	7.8	329	329	11.0	110	37.1	39.7
		0309960				Edinburg,							
APR 2002													
18 JUN	1215	9813	3280		40	7.4	7.7	495	483	12.8	160		44.5
20 AUG	0830	9813	736		40	8.8	7.7	330	516	19.0	150		42.2
06	1330	9813	528		40	7.1	7.6	612	567	27.0	170		46.6
		03103	500 Shena	ango River	at Shar	psville, P	A (LAT 4	1 15 58N	LONG 080	28 22W)			
APR 2002 23 JUN	1430	9813	854		40	8.2	7.7	197	182	13.7	70		20.0
11 AUG	1145	9813	510		40	9.9	7.7	210	190	20.6	76		22.2
13	1145	9813	251		40	7.6	7.7	227	229	26.0	97	==	28.8

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	ACIDITY TOTAL HEATED (MG/L AS CAC03)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)
	0307	7500 You	ghiogheny	River at	Youghiogl	heny Rive	r Dam, PA	(LAT 39	48 19N LO	NG 079 21	52W)		
APR 2002 29		2.1		12			13.7	78	<2	<.020	.91	<.040	1.0
JUN 25	==	1.9		13		==	12.9	72	<2	<.020	.66	<.040	.75
AUG 26	==	2.1		16		==	13.5	254	4	<.020	.61	<.040	.75
		030780	20 Casse	lman Rive	near Sal	lisbury, 1	PA (LAT 3	9 43 56N	LONG 079	06 03W)			
APR 2002 29 JUN	2.01	2.5	.0	12			17.1	106	26	<.020	.91	<.040	1.1
25	5.21	5.4	.0	34			43.4	76	4	.030	.75	<.040	.91
	03079	448 Koos	er Run at	Kooser St	ate Park	near Bake	ersville,	PA (LAT	40 03 37N	LONG 079	13 41W)		
APR 2002 30 MAY	1.56	1.8	.0	34	32.4	<.2	13.7	148	<2	<.020	2.47	<.040	2.5
29 JUN	1.64	1.9	.0	40	29.9	<.2	14.2	160	2	<.020	2.47	<.040	2.5
24 JUL	2.12	2.1	.0	42	33.2	<.2	13.0	206	12	<.020	2.06	<.040	2.1
17 AUG	1.97	2.0	.0	48	34.3	<.2	12.9	106	10	.100	1.83	<.040	1.9
22 SEP	2.99	3.1	.0	52	36.9	<.2	19.7			<.020	4.08	<.040	4.4
25	2.96	3.1	.0	50	40.4	<.2	20.0	282	<2	.050	6.53	<.040	6.9
		0309960	0 Mahoni	ng River a	at North E	Edinburg,	PA (LAT	41 01 06N	LONG 080	26 27W)			
APR 2002 18 JUN		12.0		78		<.2	65.4	866	50	.080	1.04	.040	2.0
20 AUG		10.7		88		.3	65.6	462	22	.100	1.64	.070	2.2
06	==	13.0		90	==	. 4	68.6	364	4	.090	2.03	.140	2.6
		03103	500 Shen	ango River	at Sharp	sville, D	PA (LAT 4	1 15 58N	LONG 080	28 22W)			
APR 2002 23 JUN		4.8		48		<.2	18.1	184	14	.060	.56	<.040	1.3
11 AUG	==	5.0		56		<.2	15.6	156	<2	.190	.37	<.040	1.4
13		6.1		70		<.2	15.8	150	12	.070	.08	<.040	.87

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
	0307	77500 You	ıghiogheny	River at	Youghiog	heny Rive	Dam, PA	(LAT 39	48 19N LO	NG 079 21	52W)		
APR 2002 29	.01	.010	1.8						<10		140		<1.0
JUN 25	.01	.010	2.0	==	==		==	==	<10	==	90	==	<1.0
AUG 26	<.01	.020	1.8		==	==		==	<10		80		<1.0
		030780	20 Casse	lman Rive	r near Sa	lisbury, E	PA (LAT 3	9 43 56N	LONG 079	06 03W)			
APR 2002 29 JUN	.03	.035		1.6				<4	<4	80	1240	<1.0	<1.0
25	.01	.021		1.7				<4	<4	70	320	<1.0	<1.0
	03079	9448 Koos	ser Run at	Kooser St	ate Park	near Bake	ersville,	PA (LAT	40 03 37N	LONG 079	13 41W)		
APR 2002 30 MAY	<.01	.010		. 8	<20			<4	<4	<20	130	<1.0	<1.0
29 JUN	<.01	<.010		1.2	20	<4.0	<.20	<4	<4	20	100	<1.0	<1.0
24	<.01	.010		1.5	80	<4.0	<.20	<4	<4	50	220	<1.0	<1.0
17 AUG	.01	.010		. 4	60	<4.0	<.20	<4	<4	<20	110	<1.0	<1.0
22 SEP	.01	.010		1.0	160	<4.0	<.20	<4	<4	20	100	<1.0	<1.0
25	<.01	<.010		1.8	<20	<4.0	<.20	<4	<4	<20	40	<1.0	<1.0
		0309960	00 Mahoni	ng River a	at North	Edinburg,	PA (LAT	41 01 06N	LONG 080	26 27W)			
APR 2002 18 JUN	.06	.140	7.9						<10		2330		5.6
20 AUG	.11	.190	7.4						<10		1180		3.5
06	.18	.227	6.4	==	==	==	==	==	<10	==	370		2.0
		03103	500 Shena	ango Rive	r at Shar	psville, E	PA (LAT 4	1 15 58N	LONG 080	28 22W)			
APR 2002 23 JUN	.03	.050	5.8						<10		690		<1.0
11 AUG	.04	.040	6.6						<10		710		<1.0
13	.04	.050	6.0						<10		580		1.5

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MANGA- NESE, DIS- SOLVED (µG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, DIS- SOLVED (µG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, DIS- SOLVED (µG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)	PHENOLS TOTAL (µG/L) (32730)
03077500	Youghiogh	eny River	at Yough	iogheny R	iver Dam,	PA (LAT	39 48 19N LONG 079 21 52W)
APR 2002 29 JUN		40		<50		<10	
25 AUG		50		<50		<10	
26		240		<50		10	
03078020	Casselman	River ne	ar Salisb	ury, PA	(LAT 39 4	3 56N LON	G 079 06 03W)
APR 2002 29 JUN	60	130	<4.0		<5.0	9.5	
25	100	120	5.0		6.4	10	
03079448	Kooser Ru	n at Koos	er State	Park nr B	akersvill	e, PA (L	AT 40 03 37N LONG 079 13 41W)
APR 2002 30 MAY	10	20	<4.0	<4.0	5.6	5.5	<5
29	6.6	10	<4.0	<4.0	<5.0	<5.0	<5
JUN 24	5.8	20	<4.0	<4.0	<5.0	<5.0	<5
JUL 17	4.5	10	<4.0	<4.0		<5.0	<5
AUG 22	8.0	20	<4.0	<4.0	8.2	10	<5
SEP 25	3.8	<10	<4.0	<4.0	==		<5
03099600	Mahoning	River at	North Edi	nburg, PA	(LAT 41	01 06N L	ONG 080 26 27W)
APR 2002 18		180		<50		20	<5
JUN 20		130		<50		30	<5
AUG 06		60		<50		10	<5
03103500	Shenango	River at	Sharpsvil	le, PA (LAT 41 15	58N LONG	080 28 22W)
APR 2002 23		50		<50		<10	<5
JUN 11		240		<50		<10	<5
AUG 13		230		<50		<10	<5

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	PRESS- URE OSMOTIC WATER UNFLTRD MOSM/KG (82550)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	SPE- CIFIC CON- DUCT- ANCE LAB (µS/CM) (90095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)
APR 2002		03104	1500 Shena	ango River	at New	Castle, PA	(LAT 41	00 00N L	ONG 080 2	1 21W)			
18 JUN	1030	9813	3340		40	16.7		241	231	13.6	82		24.1
20 AUG	0930	9813	1130		40	6.4	7.5	303	240	21.4	87		25.6
06	1230	9813	289		40	6.3	7.5	325	296	25.3	110		30.7
		0310581	0 Connoq	uenessing	Creek at	Renfrew,	PA (LAT	40 48 21N	LONG 079	57 55W)			
APR 2002 18	0815	9813	363		40	16.7	7.8	377	357	14.8	110		33.9
JUN 18	0830	9813	91		40	9.2	7.6	658	584	16.7	180		55.8
AUG 05	1350	9813	44		40	9.1	7.8	1150	1980	27.0	760		268
		0310967	70 Ohio R	iver at Mi	le 44.5	at Newell,	WV (LAT	40 37 10	N LONG 08	0 35 24W)			
APR 2002 17	0830	9813	90900		40	6.4	7.8	578	265	15.0	94		26.7
JUN 04	1130	9813	25100	==	40	9.8	7.8	305	278	22.0	100		28.5
AUG 05	0945	9813	6950	==	40	7.9	7.6	845	380	29.0	120		32.3
		04212	945 Conn	eaut Creek	at Cher	ry Hill, P.	A (LAT 4	1 55 04N	LONG 080	28 09W)			
APR 2002 22 JUN	1045	9813	157		40	7.3	7.7	195	191	10.7	78		22.7
10 AUG	1230	9813	49		40	13.3	7.7	228	208	22.5	94		28.2
12	1215	9813	7.4		40	12.6	8.0	381	320	25.0	140		41.4
		04213273	3 Twelvem:	ile Creek	near Moo	rheadville	, PA (LA	т 42 12 1	5N LONG 0	79 54 46W)		
APR 2002 22	1245	9813	14	13	30	8.0	7.6	365		7.6	110		34.3
MAY 20	1300	9813	21	3.0	30	11.8	7.4	321		10.1	100		32.1
JUN 10	1430	9813	6.0	5.0	30	9.4	7.5	384	343	20.7	130		39.5
JUL 23 AUG	1230	9813	28	6.0	30	8.5	7.7	568		22.5	170		53.6
12	1400	9813	73	6.0	30	9.8	8.7	546	==	23.0	180		55.6
SEP 23	1300	9813	78	10	30	10.4	8.2	486		16.7	180		57.7

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)		ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)
0000		03104	500 Shen	ango River	at New C	Castle, PA	A (LAT 41	. 00 00N L	ONG 080 2	1 21W)			
APR 2002 18	==	5.3		48	==	<.2	23.5	168	<2	.070	.84	<.040	1.6
JUN 20 AUG	==	5.7	==	62	==	<.2	23.2	196	36	.060	.67	.050	1.3
06	==	7.3	==	74	==	<.2	26.5	209	<2	.030	1.04	<.040	1.6
		0310581	.0 Connoq	uenessing	Creek at	Renfrew,	PA (LAT	40 48 218	LONG 079	57 55W)			
APR 2002 18		7.0		34		==	48.1	246	16	<.020	1.56	<.040	2.0
JUN 18	==	9.9		52	==	==	80.3	474	10	.030	2.30	<.040	2.6
AUG													
05	==	21.2		. 78			356	1550	14	.040	6.05	<.200	6.8
		0310967	'0 Ohio R	iver at Mi	.le 44.5 a	it Newell,	, WV (LAT	40 37 10	N LONG 08	0 35 24W)			
APR 2002 17		6.7		36			54.6	208	78	.050	.70	<.040	1.1
JUN 04		7.0		38			60.0	690	6	.030	<.04	<.040	.99
AUG 05		10.0		40			94.4	282	<2	.040	.64	<.040	.91
		04212	945 Conn	eaut Creek	at Cherr	ry Hill, E	PA (LAT 4	1 55 04N	LONG 080	28 09W)			
APR 2002								=-				0.4.0	
JUN		5.1		58		==	17.1	72	<2	.020	.33	<.040	.81
10 AUG		5.7		68			16.5	202	4	<.020	.76	<.040	1.3
12		8.8		100			35.5	250	6	<.020	.24	<.040	.60
		04213273	Twelvem	ile Creek	near Moor	rheadville	e, PA (LA	AT 42 12 1	5N LONG 0	79 54 46W)		
APR 2002 22		6.5		58	44.7	<.2	33.4		<2	<.020	2.34	<.040	
MAY 20		5.7		58	31.6	<.2	31.1	202	<2	<.020	1.92	<.040	
JUN 10		6.7		68	38.3	<.2	36.5	280	6	<.020	2.58	<.040	3.0
JUL 23		9.7		84	49.4	<.2	52.3	364	4	<.020	5.19	<.040	
AUG 12		10.1		82	49.7	<.2	53.5	110	4	<.020	4.61	<.040	4.7
SEP 23		9.8			51.3	<.2	66.2	346	2	<.020	2.50	<.040	2.5

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)
		03104	500 Shena	ango Rive	r at New (Castle, PA	A (LAT 41	. 00 00N L	ONG 080 21	L 21W)			
APR 2002 18 JUN	.03	.080	5.6						<10		960		2.1
20	.04	.110	6.4						<10		1440		3.9
AUG 06	.09	.135	5.8						<10		930		3.0
		0310581	.0 Connoq	uenessing	Creek at	Renfrew,	PA (LAT	40 48 21N	LONG 079	57 55W)			
APR 2002													
18 JUN	.02	.040	2.3						<10		800		1.9
18 AUG	.06	.090	2.8						<10		740		<1.0
05	.18	.320	4.8						<10		510		1.7
		0310967	0 Ohio R	iver at M	ile 44.5 a	at Newell,	WV (LAT	40 37 10	N LONG 080	35 24W)			
APR 2002 17	.07	.110	3.0						10		3900		5.3
JUN 04	.03	.040	2.7						10		450		1.1
AUG 05	.02	.030	2.6						<10		240		<1.0
		04212	945 Conne	eaut Cree	k at Cheri	ry Hill, F	PA (LAT 4	1 55 04N	LONG 080 2	28 09W)			
APR 2002													
22 JUN	.03	.030	6.9						<10		1170		1.6
10 AUG	.03	.044	7.4						<10		770		1.2
12	.02	.020	4.8					==	<10	==	230		5.2
		04213273	Twelvem	ile Creek	near Moon	rheadville	e, PA (LA	AT 42 12 1	5N LONG 0'	79 54 46W)		
APR 2002 22 MAY	<.01	.021		.9	150				<4	20	80	<1.0	<1.0
20	.01	<.010		2.0	100			<4	<4	40	100	<1.0	<1.0
JUN 10	.01	.012		.6	160	<4.0	<.20	<4	<4	<20	120	<1.0	<1.0
JUL 23	<.01	.011		1.2	1500	<4.0	<.20	<4	<4	<20	2610	<1.0	<1.0
AUG 12	<.01	<.010	==	1.9	40	<4.0	<.20	<4	<4	<20	70	<1.0	<1.0
SEP 23	<.01	<.010		<.2	40	<4.0	<.20	<4	<4	20	120	<1.0	<1.0
	-			•	•					-	-		

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	MANGA- NESE, DIS- SOLVED (µG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)	NICKEL, DIS- SOLVED (µG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (µG/L AS NI) (01067)	ZINC, DIS- SOLVED (µG/L AS ZN) (01090)	ZINC, TOTAL RECOV- ERABLE (µG/L AS ZN) (01092)	PHENOLS TOTAL (µG/L) (32730)	
03104500	Shenango R	liver at	New Castl	e, PA (L	AT 41 00	00N LONG	080 21 21W)	
APR 2002 18 JUN 2002		80		<50		<10	<5	
20 AUG		150		<50		40	<5	
06	==	140		<50		<10	<5	
03105810	Connoquene	ssing Cr	eek at Re	nfrew, PA	(LAT 40	48 21N L	ONG 079 57 5	55W)
APR 2002 18		90		<50		<10		
JUN 18		100		<50		10		
AUG 05		230		<50		<10		
03109670	Ohio River	at Mile	44.5 at 1	Newell, W	V (LAT 4	0 37 10N	LONG 080 35	24W)
APR 2002								
17 JUN		360		<50		30		
04 AUG		130		<50		80		
05		70		<50		<10		
04212945	Conneaut C	reek at	Cherry Hi	11, PA (LAT 41 55	04N LONG	080 28 09W)
APR 2002 22		40		<50	==	20		
JUN 10		30		<50		10		
AUG 12		30		<50		20		
04213273	Twelvemile	creek r	ear Moorh	eadville,	PA (LAT	42 12 15	N LONG 079	54 46W)
APR 2002 22	7.6	10	<4.0	<4.0	<5.0	<5.0	<5	
MAY 20	10	<10	<4.0	<4.0	<5.0	<5.0	<5	
JUN 10	5.4	<10	<4.0	<4.0	<5.0	<5.0	<5	
JUL 23	3.0	<10	<4.0	<4.0	7.7	7.8	<5	
AUG 12	<2.0	<10	<4.0	<4.0	10	7.0	<5	
SEP 23	2.6	<10	<4.0	10			<5	

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

MISCELLANEOUS STATION ANALYSES

Date	Time	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)
		042210	000 Genes	se River	at Wellsv	rille, NY	(LAT 42	07 20N LC	NG 077 57	27W)			
APR 2002 18 JUN	1100	9813	760	30	10.3	7.2	93	12.9	34		9.0		2.8
24 AUG	1415	9813	271	30	10.5	8.2	102	19.2	43		11.5		3.5
15	1130	9813	41	30	9.0	7.7	137	20.0	52		13.6		4.3
Date	ACIDITY TOTAL HEATED (MG/L AS CAC03)	ANC WATER UNFLTRD FET LAB (MG/L AS CACO3) (00417)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, TOTAL (MG/L AS F) (00951)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	RESIDUE AT 105 DEG. C, DIS- SOLVED (MG/L) (00515)	RESIDUE TOTAL AT 105 DEG. C, SUS- PENDED (MG/L) (00530)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN, NITRATE TOTAL (MG/L AS N) (00620)	NITRO- GEN, NITRITE TOTAL (MG/L AS N) (00615)	NITRO- GEN, TOTAL (MG/L AS N) (00600)	PHOS- PHORUS ORTHO TOTAL (MG/L AS P) (70507)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)
		042210	000 Genes	se River	at Wellsv	ille, NY	(LAT 42	07 20N LC	NG 077 57	27W)			
APR 2002 18		19			10.0	42	<2	<.020	1.20	<.040	1.5	.02	.030
24		28			9.7	96	8	<.020	1.50	<.040	1.6	.01	.020
15		40		==	8.8	94	2	.030	.85	<.040	1.1	.02	.020
Date	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	OXYGEN DEMAND, BIO- CHEM- ICAL, 5 DAY (MG/L) (00310)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	ARSENIC DIS- SOLVED (µG/L AS AS) (01000)	CADMIUM DIS- SOLVED (µG/L AS CD) (01025)	COPPER, DIS- SOLVED (µG/L AS CU) (01040)	COPPER, TOTAL RECOV- ERABLE (µG/L AS CU) (01042)	IRON, DIS- SOLVED (µG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (µG/L AS FE) (01045)	LEAD, DIS- SOLVED (µG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (µG/L AS PB) (01051)	MANGA- NESE, DIS- SOLVED (μG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (µG/L AS MN) (01055)
		042210	000 Genes	ee River	at Wellsv	ille, NY	(LAT 42	07 20N LC	NG 077 57	27W)			
APR 2002 18 JUN	2.2						<10		280		<1.0		40
24 AUG	2.2					==	<10		211		<1.0		30
15	2.7						<10		252		<1.0		40
								a					

		NICKEL,		ZINC,	
	NICKEL,	TOTAL	ZINC,	TOTAL	
	DIS-	RECOV-	DIS-	RECOV-	
	SOLVED	ERABLE	SOLVED	ERABLE	PHENOLS
Date	(µG/L	(µG/L	(µG/L	(µG/L	TOTAL
	AS NI)	AS NI)	AS ZN)	AS ZN)	(µG/L)
	(01065)	(01067)	(01090)	(01092)	(32730)

04221000 Genesee River at Wellsville, NY (LAT 42 07 20N LONG 077 57 27W)

APR 2002			
18	 <50	 <10	
JUN			
24	 <50	 <10	
AUG			
15	 <50	 <10	

ANALYSIS OF SAMPLES COLLECTED AT SPECIAL-STUDY SITES FECAL-INDICATOR BACTERIA PROJECT

The Allegheny County Health Department, Allegheny County Sanitary Authority, Three Rivers Wet Weather Demonstration Project, and the U.S. Geological Survey continued a water-quality monitoring program in the summer of 2002 to assess the impact of fecal-indicator bacteria on the water resources of the Allegheny, Monongahela, and Ohio Rivers (Three Rivers) in Allegheny County, Pittsburgh, Pennsylvania. Water-quality sampling and river discharge measurements were conducted during dry and wet weather conditions at seven sampling sites (fig. 6) on the Three Rivers in Allegheny County. Samples to evaluate dry hydrologic conditions were collected after a period of at least 72 hours that lacked precipitation. Samples to evaluate wet hydrologic conditions were collected for several successive days after four wet weather events. Dry weather samples were collected on the following dates: July 17, August 29, and September 7, 10, and 26. The samples after wet weather events were collected on the following dates: August 6, 8, and 10, August 13 and 15, September 16 and 18, and September 28, 30, and October 2 (not included in water year 2002 data).

Three fecal-indicator bacteria types were collected by the U.S. Geological Survey and analyzed by the Allegheny County Health Department Laboratory including fecal coliform, *E. coli*, and enterococci bacteria. In addition, field measurements were made of pH, specific conductance, dissolved oxygen, and water temperature. Fecal indicator bacteria may occur in higher concentrations along river banks where tributary streams and combined sewer overflows discharge than in the middle sections of the large rivers. Because the Three Rivers are wide and stream velocities are low in the summer, high bacteria concentrations may occur for long distances along the banks downstream of discharge points due to incomplete mixing with the more dilute sections of the river.

Two methods of field collection of fecal-indicator bacteria samples were used to quantify the occurrence and distribution of bacteria concentrations in the river cross sections at 5 of the 7 river sampling sites (USGS station numbers 03049652, 03049832, 03085000, 03085150, and 03086000). The first method relied on grab samples collected from 10 to 200 feet from the banks at a depth of 18 inches to assist in the determination of bacteria contamination along the banks. Bank samples assess the safety of the water-based recreation including bank fishing, dock and marina use, and water skiing or jetskiing near the river banks. The second method relied on the collection of one representative sample from the river cross section weighted with respect to the river discharge. This sampling method utilizes the division of the river cross section into four equal discharge increments and sampling the entire vertical depth of each of the four increments at the centroid of each increment. The composite sample of the four vertical samples results in a single sample representative of the water across the entire width of the river.

Two new sampling sites (03085120, 03085150) were added during the summer of 2002. The sites were added to provide fecal-indicator bacteria data between nearby sites where sampling was begun in 2001. At these two sites, a depth integrated sample was collected and analyzed for fecal-indicator bacteria and field parameters. Water discharge data were not collected at these two sites.

The bacteria sampling sites located on the Ohio River at Sewickley and the Monongahela River at Braddock were located at active USGS stream gages. Daily mean discharge data, hydrographs, and information concerning these gages are listed in this report on pages 154-156 and 164-173, respectively. Discharge measurements at the time of bacteria sampling at the data collection sites at the Allegheny River at Ninth Street and Monongahela River at Pittsburgh (Smithfield Street Bridge) were made using acoustic Doppler current profiling (ADCP) techniques. Discharge data were obtained for the time of sampling at the site on the Allegheny River at Oakmont by estimates determined from a USGS stream gage 11 miles upstream on the Allegheny River at Natrona, Pa. (03049500).

For additional information, contact Ted Buckwalter at the U.S. Geological Survey, 1000 Church Hill Road, Pittsburgh, Pennsylvania 15205; phone - (412) 490-3811 (email - tfbuckwa@usgs.gov).

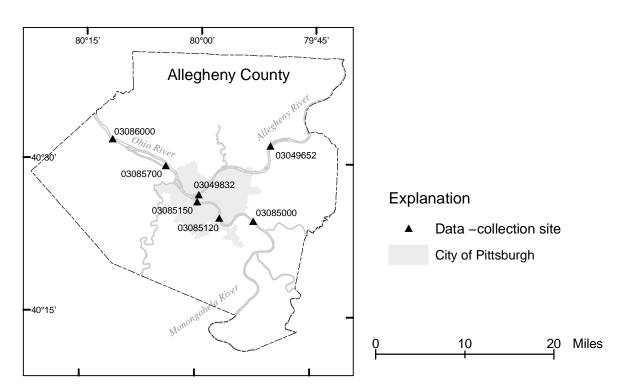


Figure 6.--Location of sites sampled for the fecal-indicator bacteria project.

ANALYSIS OF SAMPLES COLLECTED AT SPECIAL-STUDY SITES FECAL-INDICATOR BACTERIA PROJECT--Continued

$03049652\ ALLEGHENY\ RIVER\ AT\ HULTON\ BRIDGE\ AT\ OAKMONT, PA$

LOCATION.--Lat 40°31'39", long 79°50'51", Allegheny County, Hydrologic Unit 05010009, at Hulton bridge at Oakmont, 0.7 mi downstream from Deer Creek, at river mile 12.7.

 $\textbf{DRAINAGE AREA}.\text{--}11,577 \text{ mi}^2.$

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	Medium code	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	ATION, CROSS SECTION (FT FM R BK)	OXYGEN, DIS- SOLVED (MG/L) (00300)	ARD UNITS)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SECTION (FT FM L BANK)
JUL 2002									
17	1310	9	3800	60.0	7.6			30.5	
17	1320	9	3800			7.2	390		
17	1340	9	3800						75.0
AUG									
06	1210	9		60.0		7.3	363	29.0	
06	1237	9	3190			7.4	417		30.0
06	1240	9	3190			7.2	371		
08	1230	9	3750	20.0	8.8	7.0	400	28.0	
08	1250	9	3750			7.3	390		
08	1300	9	3750			7.1	351		35.0
10	1020	9	4990				314		35.0
10	1040	9	4990				350		
10	1055	9	4990	60.0	7.0	6.8	401	28.0	
13	1057	9	5540			7.0	356		35.0
13	1110	9	5540			7.3	384		
13	1125	9	5540	40.0	7.2	6.8	363	28.0	
15	1135	9	4270	40.0	7.8	6.9	408	29.0	
15	1145	9	4270			7.2	431		
15	1200	9	4270			7.0	376		35.0
29	1210	9	3410	40.0	8.6	6.6	381	29.0	
29	1230	9	3410			7.0	374		
29	1240	9	3410			6.8	350		35.0
SEP									
07	0950	9	3410	40.0		6.7	432	27.0	
07	1000	9	3410			7.1	382		
07	1015	9	3410			6.9	352		35.0
10	1155	9	4100	60.0	8.6	6.8	394	28.0	
10	1215	9	4100			7.1	200		
10	1230	9	4100			6.9	349		25.0
16	1250	9	4930	40.0	7.8	6.7	384	25.5	
16	1310	9	4930			6.9	366		
16	1320	9	4930			6.8	324		35.0
18	1115	9	4340	40.0	8.1	6.6	362	24.0	
18	1140	9	4280			6.9	360		
18	1145	9	4280			6.8	341		35.0
26	1030	9	3080	20.0	7.2	6.3	342	24.0	
26	1050	9	3080			6.8	334		
26	1100	9	3350			6.7	309		35.0
28	1025	9	7100	40.0	8.6	6.7	344	23.5	
28	1040	9	7100			6.9	349		
28	1050	9	7100			6.8	328		35.0
30	1230	9	6300	40.0	9.0	7.2	443	23.0	
30	1245	9	6300			7.0	451		
30	1255	9	6300			7.2	443		30.0

ANALYSIS OF SAMPLES COLLECTED AT SPECIAL-STUDY SITES FECAL-INDICATOR BACTERIA PROJECT--Continued

03049652 ALLEGHENY RIVER AT HULTON BRIDGE AT OAKMONT, PA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Date	Time	Medium code	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	TUR- BID- ITY (NTU) (00076)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002								
17	1310	9	60.0	1.1	<5	< 5	10	
17	1320	9		5.9	40	< 5	60	
17	1340	9		8.5	15	<5	25	75.0
AUG	1010				7.40	4.0	105	
06	1210	9	60.0	6.6	140	40	185	
06	1237	9		4.8	30	25	75	30.0
06	1240	9		2.3	15	10	50	
08	1230	9	20.0	1.4	80	5	115	
08	1250	9		2.5	15	< 5	75	
08	1300	9		1.9	5	10	30	35.0
10	1020	9		4.1	30	25	165	35.0
10	1040	9		4.3	20	<5	30	
10	1055	9	60.0	3.4	50	10	30	
13	1057	9		8.5	290	255	610	35.0
13	1110	9		14	210	205	375	
13	1125	9	40.0	5.0	250	325	400	
15	1135	9	40.0	3.7	35	<5	100	
15	1145	9		3.7	20	<5	50	
15	1200	9		3.3	60	20	60	35.0
29	1210	9	40.0	1.0	15	15	50	
29	1230	9		3.5	35	< 5	80	
29	1240	9		2.4	40	<5	25	35.0
SEP								
07	0950	9	40.0	3.6	120	10	115	
07	1000	9		3.5	90	<5	95	
07	1015	9		3.2	35	<5	50	35.0
10	1155	9	60.0	2.0	5	<5	<5	
10	1215	9		3.7	15	<5	25	
10	1230	9		4.3	5	<5	15	25.0
16	1250	9	40.0	6.4	100	70	170	
16	1310	9		5.5	35	15	1500	
16	1320	9		3.6	30	40	65	35.0
18	1115	9	40.0	6.2	85	30	90	
18	1140	9		7.8	110	10	165	
18	1145	9		5.5	120	5	105	35.0
26	1030	9	20.0	4.1	40	15	30	
26	1050	9		3.8	30	5	40	
26	1100	9		4.3	20	5	40	35.0
28	1025	9	40.0	3.5	8	330	4800	
28	1040	9		3.5	5	190	5750	
28	1050	9		2.4	3	80	400	35.0
30	1230	9	40.0	4.0	190	15	245	
30	1245	9		5.8	230	30	200	
30	1255	9		2.6	140	10	250	30.0
50	1233	_		2.0	110		250	50.0

$03049832\ ALLEGHENY\ RIVER\ AT\ 9TH\ STREET\ BRIDGE\ AT\ PITTSBURGH,\ PA$

LOCATION.--Lat 40°26'47", long 79°59'58", Allegheny County, Hydrologic Unit 05010009, at 9th Street bridge in Pittsburgh, at river mile 0.7. **DRAINAGE AREA**.--11,710 mi².

Date	Time	Medium code	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	OXYGEN, DIS- SOLVED (MG/L) (00300)		SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002									
17	1310	9	4000		9.9	7.8	314	28.4	30.0
17	1330	9	4000			7.9	318		
17 AUG	1335	9	4000	30.0	9.9	8.0	319	28.8	
06	1550	9	3570		7.9	7.5	345	29.0	20.0
06	1600	9	3570	20.0	7.3	7.5	349	29.0	20.0
06	1610	9	3570	20.0	7.7	7.6	323	29.0	
08	0936	9	4790		7.8	8.1	325	27.5	60.0
08	0955	9	4790	147.0	7.8	8.3	326	27.5	
08	1000	9	4790		8.2	8.6	317	26.8	
10	0708	9	3220		8.6	8.0	322	26.9	39.0
10	0728	9	3220	200.0	8.1	8.0	330	26.8	
10	0742	9	3220		8.4	8.1	312	25.6	
13	1325	9	5500		8.0	8.2	322	28.0	51.0
13	1340	9	5500	60.0	7.7	7.7	333	28.6	
13	1400	9	5500			7.6	320	28.7	
15	1142	9	3600		8.1	8.1	347	27.9	48.0
15	1203	9	3600			8.1	345	28.0	
15	1209	9	3600	170.0	7.9	8.1	347	27.9	
29	1315	9	3440		8.7	8.1	380	26.7	40.0
29	1320	9	3440		8.5	8.1	383	26.6	
29 SEP	1335	9	3440	20.0	9.2	8.3	395	27.0	
07	1250	9	3360		8.4	7.8	499	26.9	36.0
07	1305	9	3360	21.0	8.7	8.0	505	27.1	30.0
07	1315	9	3360			7.8	497	28.0	
10	1210	9	3180		8.8	7.6	425	26.8	40.0
10	1220	9	3180	35.0	8.9	8.0	433	27.4	
10	1240	9	3180		8.5	7.7	427	27.0	
16	1340	9	4430		11.4	7.5	379	25.3	20.0
16	1350	9	4430	20.0	8.7	7.5	384	25.1	
16	1415	9	4430			7.6	381	25.2	
18	1250	9	5730		9.4	7.6	354	24.6	51.0
18	1300	9	5730	72.0	9.5	7.6	359	24.7	
18	1307	9	5730		9.7	7.7	356	24.7	
26	1320	9	2950		8.6	7.6	308	23.5	20.0
26	1340	9	2950	20.0	8.5	7.6	321	23.5	
26	1345	9	2950 7030		9.1	7.6	314	23.0	30.0
28 28	1230 1245	9	7030	75.0	8.4 8.3	7.6 7.6	347 352	22.5 22.6	30.0
28	1300	9	7030	75.0	8.3	7.8	352	22.6	
30	1345	9	6760		9.9	7.6	377	22.2	30.0
30	1400	9	6760	75.0	9.6	7.6	383	22.2	
30	1415	9	6760	75.0	9.6	7.8	385	22.9	
	-	-							

03049832 ALLEGHENY RIVER AT 9TH STREET BRIDGE AT PITTSBURGH, PA--Continued

Date	Time	Medium code	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	TUR- BID- ITY (NTU) (00076)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002								
17	1310	9		2.6	85	< 5	235	30.0
17	1330	9		3.4	30	< 5	110	
17	1335	9	30.0	2.3	55	5	110	
AUG 06	1550	9		3.3	1000	60	1600	20.0
06	1600	9	20.0	3.3	1100	55	2300	20.0
06	1610	9	20.0	3.4	970	60	2500	
08	0936	9		4.3	100	15	80	60.0
08	0955	9	147.0	4.4	100	5	90	
08	1000	9		4.1	100	20	115	
10	0708	9		3.5	15	10	20	39.0
10	0728	9	200.0	3.4	25	10	35	
10	0742	9		5.1	35	15	40	
13	1325	9		2.1	1200	25	3000	51.0
13	1340	9	60.0	3.2	1300	995	2400	
13	1400	9		6.0	3200	230	3800	
15	1142	9		3.2	35	5	125	48.0
15	1203	9		4.0	120	10	105	
15	1209	9	170.0	4.5	65	5	80	
29	1315	9		2.0	50	20	80	40.0
29	1320	9	20.0	6.7 4.7	100	5 10	135 70	
29 SEP	1335	9	20.0	4./	100	10	70	
07	1250	9		2.5	40	<5	70	36.0
07	1305	9	21.0	2.9	65	15	245	
07	1315	9		5.4	40	<5	170	
10	1210	9		4.3	5	<5	45	40.0
10	1220	9	35.0	4.0	20	10	85	
10	1240	9		3.9	15	5	30	
16	1340	9		2.4	4700	270	8500	20.0
16	1350	9	20.0	1.7	3100	140	4300	
16	1415	9		5.9	600	80	1900	
18	1250	9		6.3	70	15	145	51.0
18	1300	9	72.0	5.0	120	15	150	
18	1307	9		7.5	55	10	85	
26 26	1320	9 9	20.0	6.3 7.6	30 70	<5 5	75 110	20.0
26	1340 1345	9	20.0	7.6	65	< 5	70	
28	1230	9		6.6	6400	395	710	30.0
28	1245	9	75.0	9.3	2600	405	7400	
28	1300	9		9.7	2400	370	400	
30	1345	9		2.2	150	20	335	30.0
30	1400	9	75.0	2.2	140	30	255	
30	1415	9		4.1	220	45	175	

03085000 MONONGAHELA RIVER AT BRADDOCK, PA

LOCATION.--Lat 40°23'28", long 79°51'30", Allegheny County, Hydrologic Unit 05020005, 300 ft upstream from dam at lock 2 at Braddock, 1,700 ft downstream from Turtle Creek, and 11.2 mi upstream of confluence with Allegheny River.

DRAINAGE AREA.--7,337 mi².

REMARKS.--Other data for this station can be found on pages 154-156.

Date	Time	Medium code	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	OXYGEN, DIS- SOLVED (MG/L) (00300)	ARD UNITS)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002									
17	1510	9	5860		8.7	7.2	434	28.5	12.0
17	1525	9	5860			7.4	432		
17	1535	9	5860	60.0	8.3	7.4	441	28.9	
AUG									
06	1010		5000		6.4		340	29.0	60.0
06	1030	9	5000	60.0	6.4	7.1	351	29.0	
06	1110	9	5000		6.4	7.1	322	28.5	
08	1134	9	1530		7.3	7.7	290	28.5	60.0
08	1150	9	1530	110.0	7.3	8.4	290	28.4	
08	1202	9	1530		7.3	8.6	235	27.5	
10	1146	9	2200		8.2	8.0	283	27.2	75.0
10	1202	9	2200	130.0	8.5	7.9	283	27.3	
10	1217	9	2200		8.0	8.0	264	27.3	
13	0955	9	4200		7.5	7.4	361	25.9	39.0
13	1005		4200	39.0	7.1	7.4	364	26.1	
13	1020	9	4200		7.1	7.2	366	26.2	
15	0825	9	1300		6.6	7.6	352	28.1	42.0
15	0855	9	1300	146.0	7.2	7.7	355	28.1	
15	0922	9	1300			7.7	342	28.1	
29	0841	9	3030		7.0	7.5	443	27.3	65.0
29	0900	9	3030	66.0	7.0	7.5	441	27.2	
29	0910	9	3030		7.6	7.5	454	26.7	
SEP									
07	0815		1580		7.2	7.6	547	26.9	39.0
07	0830	9	1580	66.0	7.2	7.7	552	26.8	
07	0900	9	1580			7.7	544	25.5	
10	0835	9	1420		7.3	7.6	595	26.8	72.0
10	0845	9	1420	80.0	7.4	7.6	602	26.9	
10	0905	9	1420		7.8	7.7	600	26.7	
16	1005	9	1570		7.9	7.5	567	25.4	30.0
16	1020	9	1680	60.0	7.6	7.4	569	25.4	
16	1034	9	1680			7.6	570	25.0	
18	0920	9	1680		8.3	7.5	520	24.5	54.0
18	0938	9	1740	60.0	8.3	7.5	525	24.5	
18	0945	9	1740		9.2	7.6	522	23.9	
26	0900	9	532		7.7	7.6	523	24.5	60.0
26	0920	9	532	60.0	7.6	7.7	522	24.5	
26	0930	9	532		8.5	7.7	521	23.5	
28	0800	9	5830		7.7	7.6	544	23.1	30.0
28	0815	9	5830	90.0	7.3	7.5	552	23.3	
28	0830	9	5830			7.7	538	22.6	
30	0950		4380		8.4	7.6	518	21.9	60.0
30	1010		4380	60.0	8.2	7.6	533	22.2	
30	1030	9	4380		8.8	7.7	525	22.0	

03085000 MONONGAHELA RIVER AT BRADDOCK, PA--Continued

Date	Time	Medium code	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	TUR- BID- ITY (NTU) (00076)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002								
17	1510	9		6.6	40	<5	55	12.0
17	1525	9		13	65	<5	75	
17	1535	9	60.0	9.5	25	<5	25	
AUG								
06	1010	9		8.7	350	60	305	60.0
06	1030	9	60.0	5.2	980	90	935	
06	1110	9		7.2	740	95	835	
08	1134	9		4.8	65	<5	120	60.0
08	1150	9	110.0	6.2	160	5	120	
08	1202	9		4.2	70	10	145	
10	1146	9		5.2	60	5	215	75.0
10	1202	9	130.0	5.0	140	5	225	
10	1217	9		5.3	140	5	310	
13	0955	9		45	2300	1300	2400	39.0
13	1005	9	39.0	60	2000	1230	4500	
13	1020	9		50	1600	920	1900	
15	0825	9		10	300	25	310	42.0
15	0855	9	146.0	8.7	280	30	440	
15	0922	9		20	320	45	450	
29	0841	9		5.1	500	5	360	65.0
29	0900	9	66.0	12	700	20	515	
29	0910	9		11	500	<5	470	
SEP		_						
07	0815	9		5.0	100	15	155	39.0
07	0830	9	66.0	5.5	240	20	225	
07	0900	9		5.7	160	20	160	
10	0835	9		7.6	90	<5	110	72.0
10	0845	9	80.0	5.3	120	10	115	
10	0905	9		7.8	130	<5	125	
16	1005	9 9	60.0	2.5	3000	120	2600	30.0
16	1020		60.0	3.5	6400	170	9200	
16	1034	9 9		8.0	2000	105	3200	
18	0920	9		8.1	240	10	190	54.0
18	0938	9	60.0	6.5	220	25	285	
18 26	0945	9		8.8 9.3	220	25 <5	225	60.0
	0900	9	60.0	9.3 8.5	140	<5 <5	155 120	60.0
26 26	0920 0930	9		8.0	120 120	<5 <5	165	
28		9		13		<5 675	4600	30.0
28	0800 0815	9	90.0	6.7	4000 8600	700	9400	30.0
28	0815	9	90.0	19	4800	780	5000	
28 30	0830	9		8.1	4800 500	780 35	380	60.0
		9	60.0			35 65		60.0
30	1010	9	60.0	8.6	480		365	
30	1030	9		2.1	340	50	420	

03085120 MONONGAHELA RIVER AT SOUTH PITTSBURGH, PA

LOCATION.--Lat 40°24'34", long 79°57'14", Allegheny County, Hydrologic Unit 05020005, 500 ft upstream of Becks Run, at river mile 4.5. **DRAINAGE AREA**.--7,360 mi².

Date	Time	Medium code	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002									
17	1420	9			8.6	7.3	444	28.4	
AUG									
06	1150	9			6.8	7.1	349	29.5	
08	1236	9			9.0	8.3	294	28.3	
10	1042	9			8.9	8.3	297	27.9	
13	0905	9			8.2	6.7	328	27.3	
15	0955	9			7.4	7.8	330	27.3	
29	1000	9			7.8	7.8	418	26.5	
SEP									
07	0930	9			7.9	7.7	568	26.4	
10	0935	9			8.6	8.0	547	26.8	
16	1100	9			8.8	7.7	522	25.1	
18	1018	9			8.4	7.5	566	24.8	
26	1000	9			8.8	7.9	495	23.0	
28	0915	9			7.2	7.5	552	22.8	
30	1045	9			8.0	7.5	551	22.5	

Date	Time	Medium code	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	TUR- BID- ITY (NTU) (00076)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002								
17	1420	9		7.1	40	<5	60	
AUG								
06	1150	9		6.5	500	55	515	
08	1236	9		4.0	100	5	175	
10	1042	9		5.8	110	15	275	
13	0905	9		24	2900	635	3100	
15	0955	9		6.1	180	15	260	
29	1000	9		5.7	140	5	140	
SEP								
07	0930	9		8.0	35	35	55	
10	0935	9		5.6	20	20	15	
16	1100	9		6.5	400	40	710	
18	1018	9		9.6	220	10	165	
26	1000	9		4.5	15	5	25	
28	0915	9		13	8900	685	1700	
30	1045	9		8.5	250	70	250	

03085150 MONONGAHELA RIVER AT PITTSBURGH, PA

LOCATION.--Lat 40°26′06″, long 80°00′08″, Allegheny County, Hydrologic Unit 05020005, at Smithfield Street bridge in Pittsburgh, at river mile 0.8. **DRAINAGE AREA**.--7,367 mi².

Date	Time	Medium code	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	OXYGEN, DIS- SOLVED (MG/L) (00300)	ARD UNITS)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002									
17	1105	9	6240		8.5	7.2	475	27.9	30.0
17	1140	9	6240			7.3	477	28.6	
17	1142	9	6240	27.0	8.3	7.1	475	28.1	
AUG									
06	1320	9	5000	60.0	7.4	7.4	353	29.5	
06	1340	9	5000		7.2	7.4	332	28.5	
06	1350	9	5000		7.8	7.3	358	29.5	60.0
08	1308	9	1390		9.0	8.3	330	28.0	51.0
08	1325	9	1390	185.0	8.4	8.1	324	28.0	
08	1333	9	1390		7.8	8.7	325	27.3	
10	0924	9	1930		9.2	8.3	295	27.7	57.0
10	0945	9	1930	175.0	8.7	8.4	296	27.8	
10	0953	9	1930		8.5	8.5	296	27.5	
13	1055	9	3220		9.4	8.0	316	27.4	51.0
13	1105	9	3220	51.0	9.4	8.0	315	27.3	
13	1125	9	3220			8.2	316	27.5	
15	1020	9	1630		7.3	7.9	374	27.6	72.0
15	1035	9	1630	145.0	7.2	8.0	373	27.6	72.0
15	1042	9	1630	143.0	7.2	8.0	348	27.5	
29	1042	9	1680		7.9	7.5	391	25.9	45.0
29	1050	9	1680		7.9	7.5	391	25.9	45.0
		9	1680		7.2	7.5		25.7	
29 SEP	1105	9	1080		7.8	7.0	392	25.7	
07	1005	9	2370		8.4	8.0	557	26 1	60.0
07	1005	9	2370	45.0	7.9	7.8		26.1 26.1	
		9		45.0	8.1		557		
07	1045	9	2370		9.2	7.9	556	26.3	
10	0955	9	1530			8.4	565	26.6	45.0
10	1020	9	1530	60.0	9.0	8.2	565	26.6	
10	1030	9	1530		8.6	8.2	562	26.8	
16	1200		1500		8.7	7.7	565	24.8	60.0
16	1225	9	1500	60.0	8.6	7.6	564	24.8	
16	1230		1500			7.7	568		
18	1040	9	1980		9.2	7.8	529	24.7	60.0
18	1050	9	1980	30.0	9.3	7.8	529	24.7	
18	1058	9	1980		9.5	7.8	529	24.4	
26	1045	9	2420		8.5	7.8	563	24.0	60.0
26	1100	9	2420	60.0	8.6	7.8	559	24.0	
26	1115	9	2420		8.9	7.8	562	23.0	
28	0945	9	5880		7.3	7.5	486	21.5	75.0
28	0955	9	5880	54.0	7.3	7.5	484	21.6	
28	1005	9	5880			7.7	481	22.2	
30	1110	9	3950		7.9	7.9	566	23.1	60.0
30	1125	9	3950	48.0	7.7	7.5	563	23.1	
30	1145	9	3950			7.6	565	23.9	

03085150 MONONGAHELA RIVER AT PITTSBURGH, PA--Continued

Date	Time	Medium code	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	TUR- BID- ITY (NTU) (00076)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002	1105	9		7.8	40	<5	55	30.0
17 17	1140	9		8.1	25	<5 <5	40	30.0
17	1142	9	27.0	3.9	20	<5	40	
AUG								
06 06	1320	9 9	60.0	5.3 5.5	45 230	15 20	470 595	
06	1340 1350	9		1.6	110	10	410	60.0
08	1308	9		4.7	40	15	55	51.0
08	1325	9	185.0	4.3	220	10	245	
08	1333	9		3.9	290	15	360	
10	0924	9		3.2	280	50	340	57.0
10 10	0945 0953	9 9	175.0	3.6 5.3	200 170	30 25	325 255	
13	1055	9		2.7	680	30	1460	51.0
13	1105	9	51.0	3.7	740	20	1000	
13	1125	9		5.1	700	50	690	
15	1020	9		3.8	95	< 5	150	72.0
15 15	1035 1042	9 9	145.0	2.6 6.0	100 90	<5 <5	60 200	
29	1042	9		6.7	180	5	210	45.0
29	1050	9		5.5	140	10	230	
29	1105	9		7.5	400	<5	220	
SEP						_		
07 07	1005 1025	9 9	45.0	2.5 4.8	80 120	5 5	70 130	60.0
07	1045	9	45.0	6.1	100	5 5	85	
10	0955	9		7.0	20	<5	25	45.0
10	1020	9	60.0	8.2	35	<5	45	
10	1030	9		13	30	5	90	
16	1200	9 9	60.0	2.5 4.2	5000	755 75	9700	60.0
16 16	1225 1230	9	60.0	4.2	400 700	130	1400 1800	
18	1040	9		5.4	210	10	210	60.0
18	1050	9	30.0	4.5	240	5	230	
18	1058	9		12	280	15	375	
26	1045	9		5.5	210	30	240	60.0
26 26	1100 1115	9 9	60.0	3.0 6.2	230 95	20 <5	230 240	
28	0945	9		13	6800	760	7700	75.0
28	0955	9	54.0	20	7000	775	7800	75.0
28	1005	9		21	6400	710	7600	
30	1110	9			300	75	255	60.0
30	1125	9 9	48.0	23	500	65	450	
30	1145	9		10	490	60	390	

03085700 OHIO RIVER ABOVE NEVILLE ISLAND AT AVALON, PA

LOCATION.--Lat 40°29'30", long 80°04'19", Allegheny County, Hydrologic Unit 05030101, 225 ft upstream from Neville Island, at river mile 4.85. DRAINAGE AREA.--19,400 mi².

Date	Time	Medium code	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002									
17	1015	9			9.1	7.3	419	27.5	
AUG									
06	1515	9			7.6	7.4	364	29.0	
08	0845	9			7.7	8.1	356	27.5	
10	0857	9			8.5	8.0	356	27.2	
13	1300	9				8.2	384		
15	1245	9			6.2	8.2	334	27.8	
29	1245	9			8.0	7.7	430	26.2	
SEP									
07	1215	9			8.5	7.7	528	26.8	
10	1140	9			8.1	7.6	559	26.8	
16	1310	9				7.7	471	24.9	
18	1230	9			9.3	7.7	434	24.3	
26	1240	9			8.9	7.7	425	22.5	
28	1200	9			7.8	7.6	429	22.3	
30	1315	9			9.4	7.7	448	23.5	

Date	Time	Medium code	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	TUR- BID- ITY (NTU) (00076)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002								
17	1015	9		7.5	40	5	90	
AUG								
06	1515	9		9.2	240	205	3300	
08	0845	9		5.5	75	5	160	
10	0857	9		3.4	30	20	45	
13	1300	9		6.3	120	10	205	
15	1245	9		2.5	80	<5	55	
29	1245	9		5.7	80	5	95	
SEP								
07	1215	9		7.5	30	<5	45	
10	1140	9		6.0	15	<5	20	
16	1310	9		9.1	1000	95	2600	
18	1230	9		7.7	75	<5	140	
26	1240	9		6.7	20	<5	20	
28	1200	9		14	6800	540	6700	
30	1315	9		10	180	10	155	

03086000 OHIO RIVER AT SEWICKLEY, PA

LOCATION.--Lat 40°32'57", long 80°12'21", Allegheny County, Hydrologic Unit 05030101, 50 ft upstream from Dashields Dam, 1.0 mi downstream from Narrows Run, 1.0 mi northwest of Sewickley, and 13.3 mi downstream from confluence of Allegheny and Monongahela Rivers.

DRAINAGE AREA.--19,500 mi², approximately.

REMARKS.--Other data for this station can be found on pages 164-173.

Date	Time	Medium code	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	OXYGEN, DIS- SOLVED (MG/L) (00300)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)		SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL_2002		_							
17	0950	9	12600						50.0
17	1030	9	12600			7.1	450		
17	1040	9	12600	20.0	7.9			27.0	
AUG	0000	9	0060			6.9	202		CO 0
06	0920	9	9060			6.9 7.1	383		60.0
06 06	0946	9	9060	20.0	7.8	7.1	379	28.5	
	0955	9	9060	20.0	7.8	7.2	365	28.5	50.0
08	0850	9	5280			7.3	378		50.0
08 08	0910	9	5620	20.0	7.0	7.1	388	27.0	
	0920	9	5190	20.0	7.0		383	27.0	
10	0725	9	5360			7.2	403		50.0
10 10	0745	9	5190	20.0	7.5	7.5 7.4	405	26.0	
	0800	9	5280	20.0	7.5	7.4	404	26.0	55.0
13	0840	9	8620			7.1	391		55.0
13	0857	9	8520	20.0	6.8	7.2	400	27.0	
13	0905	9	8620	20.0	0.8	7.1	395	27.0	50.0
15 15	0845 0900	9	5100 4930			7.0	392 391		50.0
15	0910	9	4680	20.0	7.3	7.2	391	27.5	
29	0925	9	6440	20.0	7.3	6.8	411	27.5	60.0
		9				6.8			
29	0940	9	7500	20.0	6.6		411 401	26.0	
29 SEP	0950	9	6630	20.0	0.0	6.9	401	20.0	
07	0745	9	4370			6.9	460		50.0
07	0800	9	4370			7.0	464		50.0
07	0810	9	4450	20.0	7.3	7.0	466	25.5	
10	0830	9	4070	20.0	7.3	6.6	469	11.3	40.0
10	0840	9	4220			6.8	478	24.9	40.0
10	0855	9	4450	20.0	6.8	6.7	453	16.3	
16	1000	9	6160	20.0		6.6	455		60.0
16	1020	9	6350			6.8	461		
16	1030	9	6440	20.0	6.8	6.8	458	24.5	
18	0850	9	8410			6.7	459	21.5	60.0
18	0910	9	8200			6.9	468		
18	0920	9	8100	20.0	7.1	6.8	461	24.0	
26	0815	9	4930			6.7	429	15.0	50.0
26	0830	9	4520			6.8	447	19.5	
26	0845	9	4680	20.0	7.5	6.7	448	18.5	
28	0805	9	12700			6.7	442		60.0
28	0820	9	12100			7.0	443		
28	0830	9	12100	20.0	7.5	6.9	428	22.0	
30	0920	9	11800			7.0	501		50.0
30	0945	9	11700			7.1	468		
30	0950	9	11600	20.0	7.8	7.1	466	22.0	

03086000 OHIO RIVER AT SEWICKLEY, PA--Continued

Date	Time	Medium code	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	TUR- BID- ITY (NTU) (00076)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	FECAL COLI- FORM, MFC MF, WATER (COL/ 100 ML) (31616)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)
JUL 2002								
17	0950	9			300	95	335	50.0
17	1030	9		10	35	5	40	
17	1040	9	20.0	7.0	5	<5	10	
AUG								
06	0920	9		3.9	140	40	105	60.0
06	0946	9		4.6	65	10	110	
06	0955	9	20.0	3.2	20	<5	15	
08	0850	9		5.2	65	15	100	50.0
08	0910	9		2.9	70	10	55	
08	0920	9	20.0	3.2	65	<5	20	
10	0725	9		7.1	100	35	130	50.0
10	0745	9		7.0	10	<5	10	
10	0800	9	20.0	4.9	<5	<5	5	
13	0840	9		4.5	30	5	20	55.0
13	0857	9		5.9	10	<5	5	
13	0905	9	20.0	2.0	20	10	100	
15	0845	9	20.0	3.6	30	5	60	50.0
15	0900	9		4.6	35	<5	50	
15	0910	9	20.0	5.2	90	40	156	
		9	20.0					
29	0925			3.2	50	10	45	60.0
29	0940	9		5.9	50	10	45	
29	0950	9	20.0	5.7	10	<5	65	
SEP								
07	0745	9		4.6	40	15	25	50.0
07	0800	9		5.4	20	5	25	
07	0810	9	20.0	4.4	10	<5	40	
10	0830	9		8.7	60	<5	35	40.0
10	0840	9		9.7	20	<5	20	
10	0855	9	20.0	5.6	5	<5	<5	
16	1000	9		4.6	30	5	35	60.0
16	1020	9		9.1	10	<5	30	
16	1030	9	20.0	4.3	10	10	20	
18	0850	9		7.5	130	40	165	60.0
18	0910	9		6.1	95	15	100	
18	0920	9	20.0	5.5	110	15	85	
26	0815	9		6.5	5	<5	<5	50.0
26	0830	9		6.3	5	<5	15	
26	0845	9	20.0	5.6	<5	<5	<5	
28	0805	9		12	3800	400	3700	60.0
28	0820	9		13	5100	330	5600	
28	0830	9	20.0	9.3	4300	435	4800	
30	0920	9		9.0	460	60	330	50.0
30	0945	9		5.2	580	45	375	
30	0950	9	20.0	5.5	360	40	295	
50	0,00	_	20.0	5.5	500	10	200	

SPECIAL NOTES, REMARK CODES, AND SELECTED CONSTITUENT DEFINITIONS

NOTES--Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter (μ G/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the μ G/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year.

- --Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).
- --In March 1989 a bias was discovered in the turbidimetric method for sulfate analysis for those samples analyzed by the U.S. Geological Survey National Water-Quality Laboratory indicating that values below 75 mg/L have a median positive bias of 2 mg/L above the true value for the period between 1982 and 1989.
- -Methylene blue active substance (MBAS) determinations made from January 1, 1970, through August 29, 1993, at the National Water Quality Laboratory in Denver (Analyzing Agency Code 80020) are positively biased. These data can be corrected on the basis of the following equation, if concentrations of dissolved nitrate plus nitrite, as nitrogen, and dissolved chloride, determined concurrently with the MBAS data are applied:

MBASCOR = M - 0.0088N - 0.00019C

where:

 $\begin{array}{l} MBASCOR = corrected\ MBAS\ concentration,\ in\ mg/L;\\ M = reported\ MBAS\ concentration,\ in\ mg/L;\\ N = dissolved\ nitrate\ plus\ nitrite,\ as\ nitrogen,\ in\ mg/L;\ and \end{array}$

C = dissolved chloride concentration, in mg/L.

The detection limit of the new method is 0.02 mg/L, whereas the detection limit for the old method was 0.01 mg/L. A detection limit of 0.02 mg/L should be used with corrected MBAS data from January 1, 1970, through August 29, 1993.

Remark Codes.--The following remark codes may appear with the data tables in this report:

PRINTED OUTPUT REMARK

E,e	Estimated value.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
M	Presence of material verified but not quantified.
M	Presence of material verified, but not quantified.
N	Presumptive evidence of presence of material.
U	Material specifically analyzed for, but not detected.
A	Value is an average.
V	Analyte was detected in both the environmental sample and the associated blanks.
S	Most probable value.

EXPLANATION OF CODES USED TO DEFINE SAMPLE COLLECTION PROCEDURES (partial listing)

(71999) SAMPLE PURPOSE CODES:

(84164) SAMPLER TYPE: (partial list)

10--Routine 110--Sewage sampler 15--NAWQA 20--NASQAN 3011--US D-77 30--Benchmark

3035--DH-76 Trace metal sampler with teflon gasket and nozzle

(82398) SAMPLE METHOD CODES: 3039--D-77 Trace metal

10--Equal width increment 20--Equal discharge increment 30--Single vertical 3040--D-77 Trace metal modified teflon bag sampler

40--Multiple verticals 50--Point sample 70--Grab sample 3045--DH-81 with Teflon cap and nozzle

120--Velocity integrated 8010--Other 8010--Other (other than a defined sampler type)

SPECIAL NOTES, REMARK CODES AND SELECTED CONSTITUENT DEFINITIONS--Continued

Explanation of selected abbreviations used in constituent definitions in water-quality tables:

AC-FT acre-feet

bottom material (Unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed.) **BOT MAT**

COLS/100 ML colonies per 100 milliliters

DIS dissolved

FET fixed end-point titration

FLD field (Measurement determined at field site.)

F/S feet per second G/M gallons per minute

G/SQM; MG/M2 grams or milligrams per square meter

incremental titration

KF AGAR nutrient medium for growth of fecal streptococcal bacteria

μG/L micrograms per liter

uS/CM microsiemens per centimeter

MG/L milligrams per liter

MG/M2 milligrams per square meter MM OF HG millimeters of mercury

NONCARB noncarbonate

NTU nephelometric turbidity unit

PCI/L picocuries per liter

REC recoverable

TOT total

T/DAY tons per day

WH IT whole water, incremental titration (Alkalinity, bicarbonate, and

carbonate as determined by incremental titration of unfiltered water

at the field site.)

2 SIGMA Counting statistic that represents error in the reported radon, uranium,

or tritium value caused by variations in sample counting, background radiation, volume of sample, and decay since sample was collected.

0.7u GF 0.7 micron glass-fiber filter (Water filtered through a glass-fiber membrane filter with openings that are 0.7 microns in size.)

(00027) AGENCY COLLECTING SAMPLE CODES: (partial listing)

1028 -- U.S. Geological Survey

(00028) AGENCY ANALYZING SAMPLE CODES: (partial listing)

1028 --U.S. Geological Survey 80020 --U.S. Geological Survey, National Water-Quality Laboratory, Denver, Colorado 9813 --Pennsylvania Department of Environmental Protection 83613 --District Water-Quality Laboratory, Troy, New York

MEDIUM CODES: (partial listing)

9-- Surface water. R-- Quality-control sample. Surface water. Q-- Quality-control sample. Artificial.

GROUND-WATER-LEVEL STATION RECORDS

ALLEGHENY COUNTY

403734080063001. Local number, AG 700.

LOCATION.--Lat 40°37'34", long 80°06'30", Hydrologic Unit 05030101, at State Game Land Number 203, Bradford Woods.

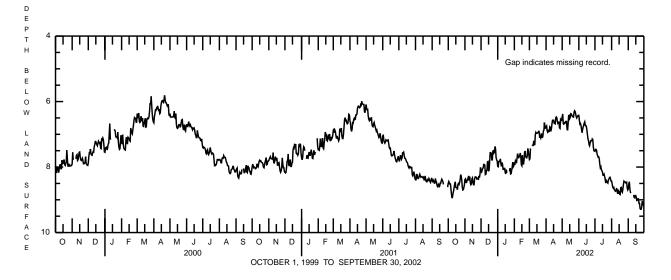
Owner: U.S. Geological Survey. **AQUIFER.**--Sandstone and shale of Glenshaw Formation of Late Pennsylvanian age. **WELL CHARACTERISTICS.**--Drilled observation artesian well, diameter 6 in., depth 100 ft, cased to 24 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,035 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.40 ft above land-surface datum.

REMARKS.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1987, are available from the District Office.

PERIOD OF RECORD.--November 1967 to current year.


EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum.

Highest water level, 4.67 ft below land-surface datum, Mar. 21, 1997, also May 2, 1998; lowest, 9.29 ft below land-surface datum, Sept. 25, 2002.

EXTREMES FOR CURRENT YEAR.--Highest water level, 6.07 ft below land-surface datum, May 2; lowest, 9.29 ft below land-surface datum, Sept. 25.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.49 8.44 8.48 8.52 8.52	8.38 8.36 8.47 8.47 8.40	8.12 8.15 8.10 8.05 8.02	7.98 7.99 7.83 7.83 7.81	7.86 7.93 7.81 7.85 7.86	7.77 7.75 7.43 	6.76 6.74 6.89 6.93 6.89	6.46 6.38 6.67 6.69 6.67	6.42 6.58 6.69 6.67 6.73	7.52 7.46 7.46 7.49 7.61	8.43 8.51 8.61 8.64 8.62	8.67 8.52 8.45 8.67 8.77
6 7 8 9 10	8.67 8.84 8.95 8.90 8.79	8.40 8.32 8.27 8.41 8.29	7.92 7.92 7.94 8.23 8.22	7.75 7.91 7.98 7.86 7.92	7.73 7.59 7.65 7.73 7.67	7.32 7.34 7.34 7.20 7.29	6.92 6.91 6.77 6.79 6.91	6.64 6.62 6.65 6.59 6.82	6.84 6.95 6.85 6.78 6.72	7.65 7.70 7.69 7.74 7.91	8.69 8.71 8.74 8.73 8.66	8.79
11 12 13 14 15	8.72 8.61 8.51 8.45 8.62	8.48 8.54 8.52 8.36 8.33	8.11 8.10 7.84 7.83 8.11	8.07 8.07 8.04 8.04 8.17	7.65 7.57 7.69 7.93 7.96	7.33 7.01 6.94 6.97 6.97	6.82 6.68 6.57 6.57	6.88 6.69 6.43 6.42 6.52	6.66 6.62 6.73 6.73	8.02 7.99 8.08 8.11 8.16	8.67 8.80 8.80 8.73 8.77	8.85 8.93 8.94 8.87 8.87
16 17 18 19 20	8.62 8.63 8.69 8.53 8.50	8.46 8.54 8.54 8.36 8.30	8.10 7.82 7.56 7.56 7.58	8.21 8.08 8.18 	7.64 7.86 7.92 7.79 7.55	6.96 6.95 6.91 6.91 7.08	6.66 6.67 6.68 6.50 6.47	6.48 6.37 6.38 6.42 6.45	6.87 7.01 7.14 7.19 7.31	8.25 8.25 8.22 8.29 8.36	8.83 8.84 8.63 8.62 8.74	8.93 9.04 8.98 8.97 8.97
21 22 23 24 25	8.53 8.48 8.40 8.23 8.27	8.30 8.31 8.36 8.35 8.34	7.78 7.78 7.51 7.50 7.57	8.13 8.03 8.21	7.51 7.67 7.71 7.72 7.66	7.07 7.11 6.99 7.00 7.11	6.49 6.61 6.67 6.65 6.61	6.45 6.49 6.34 6.28 6.30	7.35 7.27 7.20 7.20 7.20	8.49 8.41 8.44 8.47 8.49	8.77 8.67 8.53 8.43 8.45	9.11 9.11 9.27 9.29 9.29
26 27 28 29 30 31	8.38 8.60 8.70 8.69 8.63 8.54	8.39 8.27 8.32 8.22 8.01	7.54 7.37 7.45 7.71 7.78 7.81	8.20 8.10 8.00 7.85 7.99 7.96	7.43 7.51 7.64 	7.06 6.90 6.87 6.64 6.81 6.81	6.80 6.82 6.55 6.58 6.57	6.37 6.45 6.50 6.47 6.44 6.42	7.14 7.16 7.39 7.50 7.51	8.39 8.37 8.32 8.31 8.36 8.43	8.45 8.48 8.49 8.47 8.63 8.70	9.22 9.04 9.15 9.16 9.09
MEAN MAX MIN	8.58 8.95 8.23	8.37 8.54 8.01	7.84 8.23 7.37	8.01 8.21 7.75	7.72 7.96 7.43	7.10 7.77 6.64	6.70 6.93 6.47	6.51 6.88 6.28	6.97 7.51 6.42	8.08 8.49 7.46	8.64 8.84 8.43	8.96 9.29 8.45

ARMSTRONG COUNTY

405344079380201. Local number, AR 109.

LOCATION.--Lat 40°53'44", long 79°38'02", Hydrologic Unit 05010009, at State Game Lands No. 259.

Owner: U.S. Geological Survey.

MEAN

MAX

MIN

29.62

33 87

25.95

25.36

25.81

24.05

22.89

23.98

21.28

22.88

23.26

21.75

21.40

21.84

20.86

AQUIFER.--Allegheny Formation, Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 152.5 ft, cased to 19 ft.

INSTRUMENTATION.-Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,400 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of instrument shelf, 2.00 ft above land-surface datum.

REMARKS.--In addition to the daily mean water level table shown below, daily maximum and minimum water levels are available from the District Office. PERIOD OF RECORD.--October 2001 to current year.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

EXTREMES FOR PERIOD OF RECORD.—The extremes shown are extremes of the instantaneous depth below land surface for the period of record indicated above.

Highest water level, 17.46 ft below land-surface datum, May 20, 2002; lowest, 34.64 ft below land-surface datum, Oct. 4, 2001. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 17.46 ft below land-surface datum, May 20; lowest, 34.64 ft below land-surface datum, Oct. 4.

					VALUES	MEAN						
SEP	AUG	JUL	JUN	MAY	APR	MAR	FEB	JAN	DEC	NOV	OCT	DAY
22.92 22.79 22.73 22.82 22.90	22.36 22.38 22.49 22.51 22.43	21.66 21.66 21.66 21.67 21.72	19.97 20.21 20.44 20.54 20.65	18.90 18.50 18.45 18.46 18.49	18.30 18.38 18.60 18.98 19.09	21.49 21.43 20.93 20.88 20.83	21.19 21.27 20.97 20.86 21.17	22.97 23.17 23.09 23.16 23.17	23.95 23.95 23.86 23.89 23.93	25.81 25.72 25.67 25.55 25.55	 33.87	1 2 3 4 5
22.93 22.97 23.00 22.94 22.79	22.48 22.55 22.58 22.60 22.56	21.73 21.76 21.78 21.80 21.83	20.49 19.60 19.05 18.89 18.95	18.54 18.60 18.85 18.88 19.29	19.26 19.46 19.53 19.66 20.09	20.75 20.79 20.89 20.82 21.00	21.18 21.11 21.34 21.63 21.61	23.03 23.05 23.25 23.13 23.22	23.88 23.88 23.88 23.95 23.97	25.55 25.53 25.46 25.59 25.41	33.63 33.61 33.75 33.38 32.68	6 7 8 9 10
22.75 22.94 22.97 22.97 22.96	22.55 22.56 22.57 22.53 22.58	21.86 21.88 21.91 21.93 21.96	19.06 19.18 19.43 19.57 19.79	19.63 19.58 19.25 18.67 18.37	20.19 20.21 20.17 19.76 18.90	21.23 21.17 	21.59 21.38 21.51 21.57 21.37	23.26 23.18 22.98 23.02 22.98	23.98 23.95 23.69 23.51 23.72	25.57 25.75 25.70 25.59 25.53	32.36 31.81 31.26 30.50 30.10	11 12 13 14 15
22.96 23.01 22.98 22.96 22.95	22.62 22.60 22.53 22.55 22.64	21.98 22.01 22.02 22.01 22.10	20.07 20.37 20.68 20.85 21.07	18.17 18.13 17.97 17.63 17.47	18.25 17.92 17.88 17.89 18.06	21.49 21.49 21.28 21.28 20.94	21.29 21.46 21.83 21.84 21.67	23.13 22.96 23.04 22.96 22.99	23.68 23.09 22.20 21.62 21.38	25.55 25.66 25.61 25.39 25.37	29.77 29.57 29.24 28.83 28.57	16 17 18 19 20
22.98 23.03 23.14 23.19 23.21	22.75 22.67 22.60 22.54 22.62	22.18 22.18 22.20 22.31 22.29	21.25 21.27 21.26 21.27 21.32	17.57 17.76 17.84 17.98 18.32	18.29 18.42 18.90 19.14 19.23		21.57 21.51 21.39 21.29	22.89 23.17 23.06 22.77 22.60	21.45 21.51 21.28 21.29 21.53	25.33 25.30 25.29 25.25 25.07	28.42 28.22 27.85 27.38 26.79	21 22 23 24 25
23.08 22.77 22.95 23.06 23.05	22.68 22.75 22.85 22.83 22.87	22.24 22.22 22.22 22.23 22.28 22.33	21.30 21.25 21.37 21.59 21.65	19.58	19.63 19.94 19.72 19.48 19.12	18.74 18.32 18.27	 	22.45 22.34 22.23 22.20 22.21 21.75	21.59 21.64 21.82 22.13 22.51	24.96 24.77 24.68 24.41 24.05	26.62 26.53 26.56 26.45 26.14	26 27 28 29 30

20.49

21.49

18.27

19.08

20.21

17.88

18.60

19.72 17.47

20.41

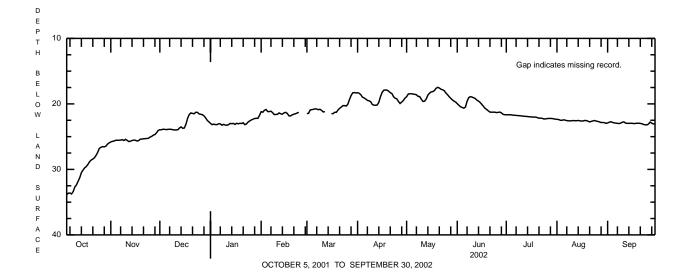
21.65

18.89

21.99

22.33

21.66


22.96

22.36

22.96

23.21

22.73

BEAVER COUNTY

403006080252301. Local number, BV 156.

LOCATION.--Lat 40°30'06", long 80°25'23", Hydrologic Unit 05030101, at Raccoon State Park.

Owner: U.S. Geological Survey.

AQUIFER.--Shale of Glenshaw Formation of Late Pennsylvanian age.

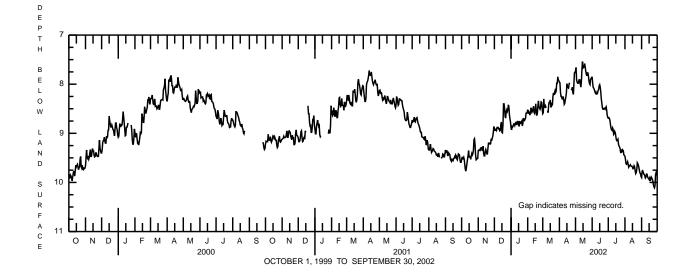
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 101 ft, cased to 25 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval since Aug. 23, 2001. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 930 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

REMARKS.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1991, are available from the District Office.

PERIOD OF RECORD.--November 1967 to current year.


EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum.

Highest water level, 7.46 ft below land-surface datum, May 14, 2002: lowest, 13.72 ft below land-surface datum, June 5, 1968.

EXTREMES FOR CURRENT YEAR.--Highest water level, 7.46 ft below land-surface datum, May 14; lowest, 10.11 ft below land-surface datum,

Sept. 25.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP															
DAY	1 9.54 9.35 8.90 8.89 8.52 8.60 7.96 7.73 7.86 8.69 9.47 9.90														
				8.89 8.93 8.86 8.87 8.85		8.60 8.58 8.30 8.46 8.47			7.86 7.99 8.07 8.08 8.11	8.69 8.68 8.70 8.73 8.82		9.90 9.77 9.76 9.79 9.83			
6 7 8 9 10	9.54 9.65 9.74 9.77 9.69	9.33 9.31 9.28 9.36 9.26	8.88 8.88 8.88 8.91	8.81 8.81 8.84 8.79 8.78	8.59 8.48 8.51 8.57 8.55	8.44 8.47 8.47 8.54	8.30 8.30 8.25 8.31 8.41	7.98 7.94 7.98 7.90 8.00	8.15 8.18 8.16 8.20 8.20	8.89 8.93 8.94 8.89 8.92	9.58 9.63 9.69 9.67 9.66	9.84 9.87 9.91 9.89 9.83			
11 12 13 14 15	9.61 9.53 9.46 9.35 9.48	9.41 9.46 9.46 9.37 9.33	8.95 8.94 8.82 8.77 8.98	8.82 8.82 8.76 8.76 8.82	8.49 8.45 8.58 8.60 8.54	8.58 8.43 8.36 8.39 8.32	8.39 8.32 8.26 8.18 7.99	8.06 7.94 7.69 7.54 7.67	8.18 8.13 8.11 8.03 8.01	9.02 9.00 8.96 8.99 9.06	9.64 9.66 9.67 9.67 9.69	9.83 9.88 9.91 9.92 9.94			
16 17 18 19 20	9.48 9.48 9.53 9.46 9.41	9.37 9.42 9.42 9.30 9.20	8.99 8.82 8.40 8.40 8.50	8.86 8.75 8.80 8.80 8.77	8.40 8.56 8.64 8.59 8.44	8.46 8.46 8.40 8.41 8.25	8.06 8.07 8.08 8.00 7.97	7.66 7.65 7.58 7.65 7.73	8.06 8.16 8.30 8.39 8.48	9.13 9.15 9.14 9.12 9.22	9.72 9.71 9.66 9.68 9.76	9.91 9.97 9.93 9.89 9.91			
21 22 23 24 25	9.44 9.41 9.34 9.13 9.11	9.20 9.20 9.22 9.21 9.11	8.66 8.69 8.55 8.52 8.56	8.75 8.85 8.80 8.69 8.73	8.34 8.46 8.49 8.51 8.46	8.18 8.22 8.17 8.13 8.17	8.10 8.11 8.06	7.79 7.83 7.77 7.77 7.83	8.51 8.51 8.49 8.49 8.51	9.26 9.28 9.31 9.39 9.39	9.82 9.80 9.74 9.60 9.62	9.94 9.97 10.05 10.09			
26 27 28 29 30 31	9.23 9.44 9.54 9.53 9.51 9.51	9.15 9.10 9.06 8.98 8.86	8.53 8.42 8.46 8.62 8.71 8.77	8.74 8.72 8.69 8.59 8.59 8.58	8.36 8.37 8.51 	8.14 7.98 7.98 7.85 7.91 7.93	8.17 8.21 8.00 7.77 7.76	7.93 7.99 8.01 7.90 7.89 7.86	8.48 8.46 8.53 8.63 8.68	9.34 9.33 9.37 9.36 9.44 9.45	9.65 9.70 9.76 9.81 9.82 9.88	10.06 9.84 9.80 9.84 9.84			
MEAN MAX MIN	9.48 9.77 9.11	9.27 9.46 8.86	8.75 8.99 8.40	8.78 8.93 8.58	8.51 8.64 8.34	8.30 8.60 7.85	8.13 8.41 7.76	7.83 8.06 7.54	8.27 8.68 7.86	9.09 9.45 8.68	9.68 9.88 9.47	9.90 10.11 9.76			

BUTLER COUNTY

410501079524401. Local number, BT 311.

LOCATION.--Lat 41°05'01", long 79°52'44", Hydrologic Unit 05030105, at State Game Land Number 95.

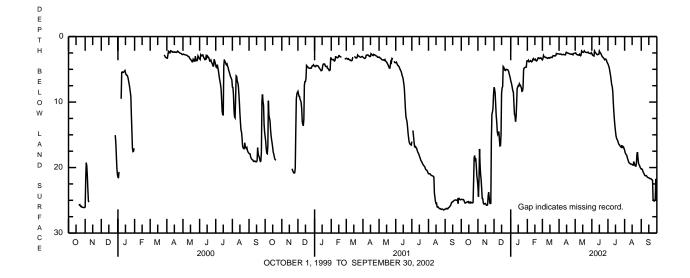
Owner: U.S. Geological Survey.

AQUIFER .-- Kittanning Formation of Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 89 ft, cased to 12 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval since March 15, 2001. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,465 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.14 ft above land-surface datum. Prior to Mar. 15, 2001, top of casing, 2.30 ft.


REMARKS.—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since March 2001, are available from the District Office.

PERIOD OF RECORD.--November 1970 to current year.

EXTREMES FOR PERIOD OF RECORD.-Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum.

Highest water level, 1.98 ft below land-surface datum, May 18, 2002; lowest, 31.06 ft below land-surface datum, Oct. 16, 17, 18, 1983. **EXTREMES FOR CURRENT YEAR**.—Highest water level, 1.98 ft below land-surface datum, May 18; lowest, 25.76 ft below land-surface datum, Nov. 17, 18.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 24.86 22.96 7.74 6.71 3.71 3.56 2.67 2.55 2.56 4.18 17.34 20.23 3.74 2.80 2 24.85 24.45 21.73 8.02 7.01 7.38 3.37 2.68 2.49 4.40 17.71 17.90 20.20 2.89 2.65 2.68 24.89 8.60 20.32 4 24.90 17.16 10.30 7.84 3.85 3.06 2.68 2.73 2.92 5.04 18.03 20.56 2.97 5 24.88 19.58 12.05 8.32 3.85 3.12 2.69 2.79 5.53 18.13 20.77 6 25.00 21.08 13 05 8.47 3.76 3.12 2.76 2 79 2.21 6.04 18.48 20.90 25.28 25.42 21.92 23.26 14.54 14.94 3.68 3.80 2.76 2.74 2.83 2.38 6.71 7.37 18.73 19.01 21.11 21.23 10.25 3.20 11.87 3.22 2.84 2.48 8 9 25.41 24.72 14 73 12.08 3.86 3 21 2.72 2 70 2.59 7.64 19.23 21.26 24.75 3.31 2.76 2.87 2.70 1.0 25.35 14.50 12.99 3.77 8.41 19.31 21.22 2.77 11 25.29 25.42 15.78 12.29 3.52 3.34 2.76 2.93 10.17 19.39 21.29 3.37 3.55 2.74 2.74 2.74 2.69 25.24 25.57 25.57 16.70 3.24 2.78 2.79 2.80 11.57 12.70 19.47 19.46 21.43 12 10.36 7.94 13 25.26 16.65 3.21 2.19 21.51 14 25 20 25.48 14 97 3 57 3 30 2 42 2 29 13 69 19 50 21 54 15 25.39 25.49 8.67 7.50 3.45 3.26 2.40 2.39 2.21 14.46 19.55 21.58 7 55 25.39 7 83 3 22 2.41 2.40 15.16 19.62 21.61 16 25.66 3.43 2.47 3.67 3.73 2.34 2.50 25.28 25.76 25.76 2.52 7.65 7.22 3.14 15.51 15.73 19.63 21.69 17 7.42 18 25.39 4.56 3.19 2.55 2.18 2.63 19.08 21.69 2 82 19 25 28 25 66 4 66 3 63 3 20 2 56 2 30 15 85 19 31 21 74 20 25.35 4.89 7.65 3.51 3.07 2.63 2.38 3.00 24.36 16.15 19.64 21.76 21 25.41 23.76 5.12 7.88 3.24 2.91 2.63 2.42 3.13 16.38 19.78 21.88 22 25.38 5.18 3.24 2.94 2.45 19.78 24.54 8.36 2.66 3.18 16.53 21.93 2.92 2.69 2.43 23 25.32 25.42 5.03 8.30 3.29 3.29 16.58 19.33 24.93 24 17.91 25.07 21.85 25.49 5.00 7.75 3.36 3.42 16.79 25 18.48 25.46 5.07 5.07 3.31 2.96 2.65 2.37 3.55 17.64 25.12 16.86 26 18.16 15.91 5.05 4.80 3.24 2.90 2.76 2.48 3.49 16.91 18.70 25.05 2.58 27 19.04 11.84 5.12 4.76 3.35 2.79 2.55 3.44 16.58 19.39 24.89 28 29 18.58 19.78 11.54 2.62 2.59 2.58 3.57 19.60 19.71 21.73 24.69 5.28 4.70 3.47 16.91 5.64 4.67 16.96 21.28 2.65 30 8.85 5.95 4.67 2.54 2.61 4.04 16.86 20.00 24.83 31 21 94 6 25 3.73 2 65 2 45 17 11 20 11 MEAN 23.84 22.00 9.02 7.76 3.56 3.06 2.65 2.54 2.93 12.43 19.05 22.13 MAX 25.42 18.16 25.76 8.85 16.70 12.99 3.86 3.56 2.58 2.79 2.93 4.04 17.11 4.18 20.11 25.12 20.20 MTN 4.56

CLARION COUNTY

412020079133901. Local number, CR 3.

LOCATION.--Lat 41°20'20", long 79°13'39", Hydrologic Unit 05010005, at Cooks Forest State Park. Owner: Commonwealth of Pennsylvania.

Owner: Commonwealth of Pennsylvania.

AQUIFER.--Pottsville Formation, Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 130 ft, cased to 12 ft.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,545 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of a place of the plant of

casing, 0.80 ft above land-surface datum.

REMARKS.—In addition to the daily mean water level table shown below, daily maximum and minimum water levels are available from the District Office.

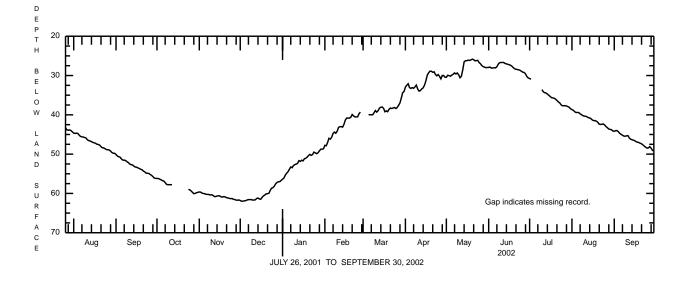
PERIOD OF RECORD.—Jan. 1970 to Dec. 1974; July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—The extremes shown are extremes of the instantaneous depth below land surface for the period of record

indicated above.

Highest water level, 25.82 ft below land-surface datum, May 20, 2002; lowest, 75.90 ft below land-surface datum, Dec. 1, 1971.

EXTREMES FOR CURRENT YEAR.--Highest water level, 25.82 ft below land-surface datum, May 20; lowest, 62.00 ft below land-surface datum, Dec. 2, 3.


	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP														
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP			
1											44.65	50.08			
2											44.73	50.50			
3											44.67	50.66			
4											44.72	50.79			
5											45.17	51.23			
6											45.49	51.52			
7											45.60	51.53			
8											45.66	51.62			
9											45.76	51.92			
10											45.90	52.14			
11											46.34	52.51			
12											46.56	52.67			
13											46.66	52.74			
14											46.82	53.03			
15											47.01	53.27			
16											47.12	53.32			
17											47.24	53.49			
18											47.48	53.65			
19											47.54	53.83			
20											47.71	53.97			
21											48.11	54.29			
22											48.39	54.50			
23											48.41	54.84			
24											48.63	54.86			
25											48.85	54.92			
26										43.29	48.87	55.16			
27										43.82	48.96	55.39			
28										43.93	49.22	55.71			
29										43.84	49.60	56.09			
30										44.00	49.78	56.18			
31										44.33	49.79				
MEAN										43.87	47.14	53.21			
MAX										44.33	49.79	56.18			
MIN										43.29	44.65	50.08			

CLARION COUNTY

412020079133901. Local number, CR 3--Continued.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	56.19 56.20 56.36 56.54 56.75	59.63 59.67 59.92 60.02 60.08	61.80 61.99 61.96 61.90 61.84	56.37 56.10 55.34 54.85 54.48	47.76 47.87 47.04 45.97 46.18	 39.94	32.93 32.48 32.09 33.06 33.28	30.45 29.93 30.03 30.17 29.89	27.94 27.84 28.12 28.09 28.01	30.76 30.95 	38.67 38.85 39.20 39.42 39.38	44.18 44.04 44.01 44.30 44.71
6 7 8 9 10	56.85 57.24 57.70 57.79 57.76	60.22 60.25 60.27 60.40 60.33	61.67 61.57 61.58 61.56 61.69	53.85 53.27 53.45 52.91 52.66	45.69 44.74 44.39 44.68 44.18	39.97 40.00 39.99 39.49 38.92	33.07 33.24 32.89 32.43 33.43	29.67 29.34 29.60 29.35 29.82	28.06 27.77 27.11 26.73 26.68	 33.57	39.44 39.76 39.96 40.21 40.32	44.96 45.19 45.40 45.45 45.34
11 12 13 14 15	57.78 57.79 	60.48 60.79 60.80 60.66 60.61	61.68 61.63 61.29 61.18 61.40	52.54 52.34 51.66 51.85 51.54	43.22 43.02 42.99 43.13 42.41	39.31 38.95 38.28 38.06 38.02	33.97 33.82 33.39 33.14 32.43	30.56 30.18 28.59 26.53 26.24	26.68 26.68 26.94 27.04 27.14	34.13 34.38 34.44 34.71 35.02	40.36 40.50 40.73 40.78 41.01	45.29 45.88 46.20 46.34 46.44
16 17 18 19 20	58.11 	60.63 60.89 60.92 60.80 60.90	61.50 60.99 60.64 60.41 60.09	51.72 51.19 51.05 50.76 50.38	41.31 40.81 40.83 40.84 40.60	38.34 39.22 39.00 39.20 38.60	31.37 29.90 29.30 28.89 28.91	26.21 26.09 26.15 26.02 25.83	27.25 27.38 27.62 27.99 28.27	35.30 35.62 35.70 35.79 36.01	41.32 41.48 41.46 41.64 41.92	46.58 46.84 46.95 47.06 47.22
21 22 23 24 25	 58.97 59.07	61.08 61.16 61.25 61.33 61.29	60.07 59.96 59.21 58.64 58.53	50.06 50.31 50.11 49.49 49.68	39.92 40.28 40.53 40.53 40.50	38.28 38.40 38.25 38.13 38.40	29.18 29.05 29.74 30.07 29.75	25.97 26.26 26.20 26.14 26.70	28.41 28.47 28.54 28.68 28.91	36.33 36.70 36.94 37.43 37.68	42.39 42.45 42.39 42.32 42.60	47.38 47.65 47.96 48.24 48.46
26 27 28 29 30 31	59.36 59.72 60.07 59.98 59.82 59.71	61.51 61.55 61.70 61.73 61.66	58.12 57.54 57.19 57.04 57.00 56.69	49.89 49.64 49.17 48.75 48.74 48.63	39.74 39.31 	38.12 37.59 36.98 35.72 34.37 34.05	30.23 30.86 29.99 29.99 30.43	27.01 27.48 27.73 27.88 28.01 27.95	29.15 29.22 29.59 30.27 30.62	37.69 37.68 37.75 37.90 38.09 38.45	43.00 43.29 43.62 43.71 43.79 44.11	48.42 48.08 48.49 49.05 49.17
MEAN MAX MIN	58.08 60.07 56.19	60.75 61.73 59.63	60.27 61.99 56.69	51.70 56.37 48.63	42.91 47.87 39.31	38.28 40.00 34.05	31.44 33.97 28.89	28.00 30.56 25.83	28.04 30.62 26.68	35.79 38.45 30.76	41.29 44.11 38.67	46.51 49.17 44.01

MIN

54 39

50.99

50.82

49 10

CRAWFORD COUNTY

413542080245002, Local number, CW 413,

LOCATION.--Lat 41°35'42", long 80°24'50", Hydrologic Unit 05030102, at State Game Land Number 214 near Hartstown. Owner: U.S. Geological Survey.

AQUIFER.--Sandstone of Cussewago Formation of Early Mississippian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 100 ft, cased to 19 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval since May 4, 2001. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,110 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.43 ft above land-surface datum. Prior to May 2, 2001, measuring point, top of casing, 2.70 ft above land surface datum.

REMARKS.—Since the June 9, 1981 well pumping and clean out, the monthly mean water levels have generally been from 12 to 24 feet lower. Water levels were also affected by intermittent pumping. In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since May 2001, are available from the District Office.

PERIOD OF RECORD.--July 1967 to current year. Prior to June 1981, water-level data stored with well identification number 413542080245001. EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 20.02 ft below land-surface datum, Feb. 23, 1975; lowest, 56.60 ft below land-surface datum, Dec. 23, 24, 1998, and Jan. 18, 19. 1999

EXTREMES FOR CURRENT YEAR.--Highest water level, 45.92 ft below land-surface datum, Apr. 17; lowest, 55.70 ft below land-surface datum, Oct. 25, 26.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 50.69 48.02 54.69 54.89 54.98 51.06 49.59 47.73 47.58 50.77 52.20 53.62 49.72 50.79 54.65 54.93 54.73 50.62 47.62 48.09 48.00 53.60 49 79 47.63 47.49 53.64 53.75 3 54.57 54.94 54 22 50.90 50.16 48.27 48.11 50.73 52.34 50.92 54.58 50.04 48.31 48.15 52.29 4 54.90 54.03 49.81 50.85 5 55.39 53.79 50.89 49.95 49.72 47.22 48.37 50.94 52.37 53.83 53.70 50.83 49.63 49.59 47.06 48.59 52.62 54.03 6 49.62 55.64 54.90 53.39 50.82 49.46 46.95 48.30 48.72 51.04 52.63 53.97 55.62 55.59 53.25 53.14 49.77 49.73 46.87 47.06 48.75 8 55.08 50 82 50.17 48.63 51 01 52.81 54.06 55.36 50.97 50.17 48.70 48.82 51.02 52.80 53.97 10 55.57 54.98 52.94 51.24 49.94 49.76 47.11 48.76 48.88 51.35 53.01 53.82 47.01 55.02 51.25 49.71 48.88 48.52 12 55.23 52.86 51.24 49.76 49.52 49.13 51.27 53.09 54.01 54.87 46.88 13 55.15 54.81 53.12 51.06 49.99 49.45 46.86 48.20 49.17 51.26 53.27 54.03 55.11 49.87 47.82 49.22 51.40 15 51.29 55.32 54.61 53.38 49.60 49.72 46.40 47.58 49.36 51.43 53.63 54.02 53.01 49.49 53.61 16 55.33 54.84 51.32 50.06 46.28 47.13 49.54 54.03 55.56 55.57 17 54.80 52.46 51.01 49.90 50.00 46.15 46.91 49.69 51.51 53.55 54.14 18 54.61 52.58 50.92 49.90 49.74 46.28 46.77 49.81 51.46 53.48 54.14 46.75 19 55.35 54.39 52.21 50.84 49.82 49.61 49.90 54.13 20 55.42 54.45 52.18 50.86 49.61 49.48 46.40 46.67 49.96 51.69 53.92 54.31 21 55.38 54.48 52.01 51.04 49.65 49.45 46.43 46.66 49.88 53.84 54.65 51.69 2.2 55.20 55.27 54.53 52.02 51.70 52.09 51.08 50.83 49.79 49.34 47.47 47.53 46.67 50.03 51.70 53.59 54.64 54.63 49.77 23 49.22 54.89 46.56 50.07 51.80 53.51 24 55.25 54.83 51.48 49.59 49.19 47.50 46.81 50.20 51.74 53.49 54.66 25 55.70 54.68 51.97 51.44 49.32 49.20 47.66 46.83 50.21 51.74 53.51 55.12 26 55.70 54 66 51 55 50 97 49 10 48 95 47 82 47 05 50.30 51 97 53 81 55.05 55.66 55.59 47.89 47.59 47.12 47.26 2.7 54.47 51.15 50.96 49.26 48.83 50.28 52.08 53.67 55.01 28 54.48 51.01 52.10 53.67 55.08 51.31 49.32 48.61 50.56 29 55.17 54.97 51.06 51.29 48.10 47.81 47.49 50.62 51.96 53.79 55.02 30 55.18 55.17 50.99 51.23 ---48.01 47.97 47.50 50.71 52.03 53.81 55.12 54.93 51.02 51.12 47.85 47.56 52.20 53.75 55.29 55.70 54.57 49.81 47.13 47.97 MEAN 54.83 52.67 51.07 49.38 47.63 49.38 53.24 54.27 51.45 51.48 50.71 MAX 55.36 54.98 50.69 50.06 48.83 52.20 55.12

47 85

46.15

46.56

50 73

53.60

ELK COUNTY

412458078324601. Local number, EK 108.

LOCATION.--Lat 41°24'58", long 78°32'46", Hydrologic Unit 05010005, at St. Marys.

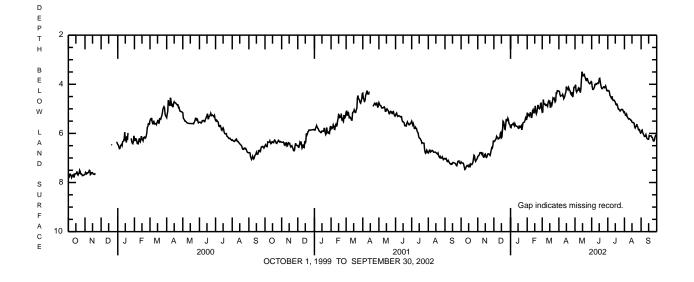
Owner: St. Marys Municipal Joint Water Authority.

AQUIFER.--Pottsville Group of Middle Pennsylvanian age.
WELL CHARACTERISTICS.--Drilled artesian well, diameter 12 in., depth 340 ft, cased to 40 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval since July 25, 2001. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,740 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood instrument shelf, 2.65 ft above land-surface datum. Prior to July 25, 2001, top of casing, 2.30 ft above land-surface datum. **REMARKS**.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since May 2001, are available from

the District Office.


PERIOD OF RECORD.--October 1974 to current year.

EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 1.95 ft below land-surface datum, Mar. 4, 1991; lowest, 9.24 ft below land-surface datum, Jan. 21, 1996.

EXTREMES FOR CURRENT YEAR.--Highest water level, 3.36 ft below land-surface datum, May 14; lowest, 7.47 ft below land-surface datum, Oct. 8.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

MAXIMUM VALUES DAY JUL OCT NOV DEC TAN FEB MAR APR MAY JUN AUG SEP 7.16 6.94 6.32 5.76 5.16 5.14 4.28 4.13 3.92 4.25 5.13 5.97 7.19 7.20 5.77 5.65 5.28 5.22 5.19 5.26 5.88 5.86 2 6.92 6.33 5.13 4 29 4.02 4.11 4 26 6.90 6.30 4.62 4.42 4.26 4.21 4.26 7.21 6.25 5.65 4.32 5.97 6.86 5.25 4.79 4.48 4.32 4.21 5.27 5 6 79 6 23 5.63 5 29 4 81 4 46 4 27 4 17 4 45 5 22 6.02 6 7.28 6.80 6.12 5.59 5.22 4.80 4.46 4.25 4.13 4.49 5.32 6.06 7.38 6.78 6.16 5.64 5.14 4.86 4.47 4.18 4.01 4.54 5.35 6.12 8 7.47 6.78 5.69 5.27 4.41 4.26 4.02 4.57 5.39 6.13 6.16 4.47 q 7.45 6.89 6.23 5.60 5.37 4.83 4.14 3.98 4.49 5.42 6.11 10 7.38 4.27 6.78 6.22 5.66 5.30 4.84 4.59 4.00 4.61 5.40 6.05 11 12 6.94 5.70 4.89 4.73 4.34 4.17 7.34 6.19 5.07 4.55 3.97 4.66 5.41 6.14 6.18 5.03 3.95 5.44 7.31 5.71 4.49 6.21 4.65 13 7.33 6.96 6.00 5.71 5.16 4.68 4.38 3.79 3.97 4.65 5.47 6.23 14 15 7.30 7.36 4.69 4.73 6.86 5.96 5.74 5.16 4.73 4.32 3.49 3.95 5.47 6.24 5.75 3.78 6.84 6.18 5.05 4.66 4.09 3.66 5.54 6.24 3.76 16 17 7.36 6.94 6.15 5.82 4.88 4.93 4.18 3.66 4.82 5.56 6.09 7.29 6.98 5.88 5.68 5.13 4.93 4.17 3.64 3.89 5.56 4.84 6.11 18 7.33 6.96 5.50 5.76 5.21 4.80 4.22 3.57 4.03 4.81 5.56 6.10 7.24 19 6.87 5.53 5.76 5.14 4.84 4.13 3.67 4.13 4.86 5.59 6.10 7.26 3.73 5.73 20 6.83 5.62 5.71 4.99 4.72 4.19 4.18 4.97 6.10 21 4.56 7.27 6.83 5.82 5.68 4.24 3.80 5.02 5.78 4.84 4.18 6.16 22 7.24 4.95 5.73 6.84 5.84 5.86 4.59 4.28 3.87 4.14 5.02 6.17 23 7.17 6.88 5.64 5.76 4.98 4.56 4.39 3.77 4.11 5.05 5.71 6.26 7.03 24 5.09 6.90 5.41 5.58 5.00 4.63 4.42 4.10 5.62 6.31 25 6.89 6.80 5.49 5.56 4.95 4.72 4.32 3.85 4.14 5.07 5.71 6.31 26 6.92 6.68 5.55 4.68 5.75 6.25 5.48 4.78 4.47 3.92 4.12 5.03 27 7.09 7.14 6.58 4.77 4.36 3.94 4.07 5.02 5.85 5.38 5.53 4.52 6.14 28 6.60 5.44 5.46 5.02 4.37 4.33 3.98 4.16 5.02 5.87 6.08 3.97 29 7.09 5.59 5.37 4.26 4.25 5.05 5.85 6.08 6.51 ---4.12 7.06 7.02 5.63 4.12 4.27 30 6.31 31 5.66 5.43 4.28 3.89 5.15 5.99 MEAN 7.22 5.90 4.71 4.06 6.82 5.09 3.95 6.12 4.27 3.76 MAX 6.98 6.33 5.86 5.37 5 14 4.59 4.34 5.15 5.99 6.31 4.77 MIN 6.89 4.26 4.09 3.49 4.25 6.31 5.38 5.37 5.13 5.86

ERIE COUNTY

415607080044601. Local number, ER 82.

LOCATION.--Lat 41°56'07", long 80°04'46", Hydrologic Unit 05010004, near McLane.

Owner: U.S. Geological Survey.

AQUIFER.--Shale of Riceville Formation of Late Devonian age.

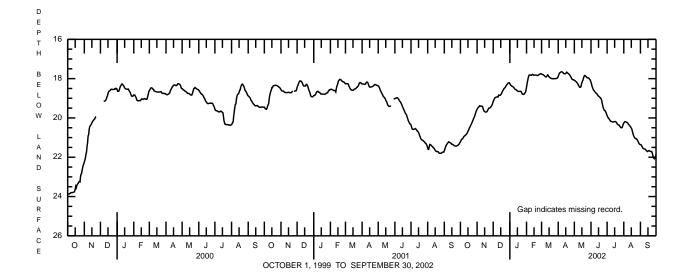
WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 82 ft, cased to 56 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval since May 17, 2001. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,419 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of metal table, 3.44 ft above land-surface datum. Prior to May 17, 2001, top of plywood cover, 3.50 ft above land-surface datum.

REMARKS.—In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since May 2001, are available from

the District Office.


PERIOD OF RECORD.--July 1966 to current year.

EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 10.00 ft below land-surface datum, Mar. 17, 1973; lowest, 24.89 ft below land-surface datum, Oct. 21-23, 1998. **EXTREMES FOR CURRENT YEAR.**--Highest water level, 17.65 ft below land-surface datum, Apr. 6-8; lowest, 22.08 ft below land-surface datum,

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Sept. 27.

	MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1 2 3 4 5	21.21 21.15 21.10 21.07 21.06	19.56 19.51 19.47 19.45 19.41	19.16 19.10 19.04 18.98 18.96	18.26 18.31 18.35 18.36 18.39	18.43 18.26 18.12 17.98 17.87	17.77 17.78 17.79 17.80 17.82	17.88 17.80 17.74 17.70 17.68	18.09 18.10 18.12 18.15 18.18	18.18 18.28 18.39 18.47 18.54	19.88 19.95 19.99 20.03 20.06	20.26 20.22 20.19 20.19 20.20	21.36 21.36 21.40 21.45 21.51		
6 7 8 9 10	21.02 20.96 20.93 20.91 20.88	19.38 19.40 19.40 19.40 19.40	18.95 18.94 18.93 18.92 18.93	18.40 18.42 18.44 18.48	17.82 17.81 17.81 17.83 17.83	17.85 17.87 17.90 17.91 17.91	17.66 17.65 17.66 17.67 17.70	18.21 18.24 18.30 18.35 18.40	18.59 18.62 18.66 18.70 18.73	20.11 20.15 20.18 20.18 20.19	20.22 20.23 20.25 20.29 20.33	21.55 21.57 21.58 21.58 21.59		
11 12 13 14 15	20.86 20.84 20.79 20.74 20.68	19.42 19.50 19.59 19.65 19.68	18.84 18.85 18.85 18.85 18.81	18.55 18.56 18.57 18.60 18.62	17.81 17.78 17.79 17.82 17.82	17.87 17.81 17.82 17.87 17.91	17.73 17.75 17.75 17.75 17.75	18.44 18.44 18.42 18.31 18.21	18.75 18.77 18.83 18.86 18.89	20.20 20.20 20.20 20.20 20.19	20.36 20.40 20.43 20.47 20.52	21.63 21.66 21.69 21.71 21.69		
16 17 18 19 20	20.63 20.56 20.49 20.44 20.38	19.69 19.70 19.70 19.69 19.65	18.78 18.73 18.66 18.60 18.57	18.64 18.65 18.65 18.65 18.65	17.82 17.82 17.82 17.82 17.83	17.94 17.95 17.97 17.99 18.00	17.70 17.67 17.70 17.73 17.75	18.14 18.07 17.97 17.89 17.84	18.91 18.94 18.96 19.00	20.18 20.19 20.22 20.26 20.31	20.57 20.68 20.79 20.88 20.94	21.67 21.66 21.68 21.70 21.70		
21 22 23 24 25	20.33 20.27 20.20 20.13 20.07	19.59 19.54 19.50 19.50 19.49	18.51 18.48 18.46 18.41 18.36	18.64 18.66 18.72 18.78 18.79	17.84 17.84 17.82 17.80 17.78	18.00 18.00 18.01 18.00 18.00	17.77 17.80 17.84 17.89 17.93	17.85 17.87 17.90 17.93 17.96	19.12 19.28 19.40 19.50 19.57	20.34 20.35 20.36 20.39 20.44	21.00 21.03 21.05 21.05 21.08	21.71 21.71 21.78 21.89 22.00		
26 27 28 29 30 31	20.00 19.94 19.86 19.77 19.68 19.61	19.45 19.43 19.38 19.33 19.25	18.32 18.29 18.25 18.22 18.21 18.21	18.80 18.80 18.77 18.73 18.69 18.60	17.77 17.75 17.75 	18.00 18.00 17.99 17.99 17.97	17.99 18.04 18.05 18.06 18.06	17.96 17.96 17.98 18.02 18.05 18.10	19.62 19.63 19.67 19.73 19.81	20.47 20.50 20.50 20.48 20.40 20.32	21.11 21.16 21.22 21.28 21.32 21.35	22.06 22.08 22.05 21.96 21.87		
MEAN MAX MIN	20.53 21.21 19.61	19.50 19.70 19.25	18.68 19.16 18.21	18.58 18.80 18.26	17.87 18.43 17.75	17.92 18.01 17.77	17.79 18.06 17.65	18.11 18.44 17.84	18.98 19.81 18.18	20.24 20.50 19.88	20.68 21.35 20.19	21.70 22.08 21.36		

FAYETTE COUNTY

394843079351401. Local number, FA 17.

LOCATION.--Lat 39°48'43", long 79°35'14", Hydrologic unit 05020006, at Fort Necessity National Battlefield.

Owner: U.S. Geological Survey.

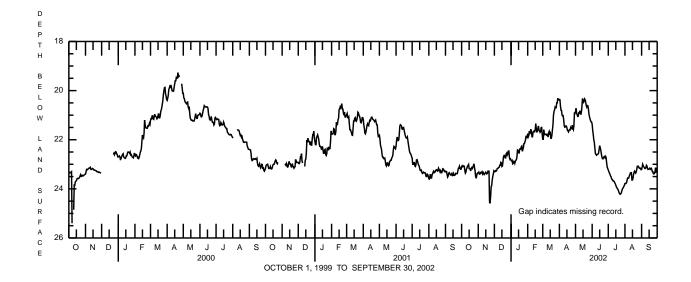
AQUIFER.--Shale and sandstone of Glenshaw Formation of Late Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 100 ft, cased to 19 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval since Dec. 12, 2000. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,910 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

REMARKS.--Water levels affected by intermittent pumping. In addition to the daily maximum water level table shown below, daily minimum and mean


water levels, since December 2000, are available from the District Office.

PERIOD OF RECORD.--November 1967 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 18.56 ft below land-surface datum, Apr. 1, 1992; lowest, 40.00 ft below land-surface datum, Nov. 8, 1967. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 20.06 ft below land-surface datum, Mar. 29; lowest, 24.59 ft below land-surface datum,

Nov. 23.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
1	23.10	23.35	23.30	22.84	21.75	21.98	20.36	20.85	21.38	23.23	23.78	23.21	
2	23.06	23.32	23.30	22.86	21.89	21.98	20.37	20.72	21.62	23.30	23.78	23.12	
3	23.10	23.40	23.26	22.84	21.84	21.59	20.63	20.91	21.79	23.35	23.78	23.00	
4	23.08	23.40	23.28	22.98	21.65	21.73	20.80	20.98	22.00	23.40	23.75	23.06	
5	23.06	23.34	23.27	22.96	21.77	21.79	20.81	21.05	22.10	23.47	23.64	23.10	
6	23.09	23.36	23.19	22.88	21.69	21.78	21.00	21.05	22.34	23.50	23.56	23.13	
7	23.25	23.33	23.16	22.89	21.57	21.78	21.03	20.91	22.56	23.58	23.57	23.17	
8	23.36	23.30	23.16	22.96	21.68	21.81	21.02	20.92	22.60	23.62	23.56	23.17	
9	23.32	23.38	23.13	22.87	21.88	21.78	21.19	20.82	22.63	23.63	23.48	23.13	
10	23.20	23.30	23.12	22.84	21.88	21.81	21.43	20.90	22.60	23.68	23.43	23.04	
11	23.14	23.39	23.04	22.81	21.69	21.89	21.49	20.98	22.60	23.68	23.36	23.07	
12	23.07	23.42	23.04	22.69	21.66	21.72	21.48	20.86	22.58	23.70	23.34	23.18	
13	23.05	23.40	22.92	22.42	21.64	21.66	21.44	20.63	22.54	23.75	23.34	23.21	
14	23.01	23.35	22.94	22.44	21.67	21.75	21.44	20.32	22.38	23.80	23.64	23.20	
15	23.18	23.32	23.09	22.50	21.60	21.72	21.52	20.39	22.24	23.85	23.64	23.19	
16 17 18 19 20	23.18 23.19 23.27 23.16 23.13	23.36 23.39 23.37 23.28 23.28	23.07 22.89 22.68 22.64 22.64	22.56 22.38 22.38 22.38 22.38 22.29	21.34 21.54 21.68 21.67 21.54	21.94 21.94 21.82 21.60 21.40	21.62 21.64 21.68 21.61 21.59	20.47 20.43 20.34 20.38 20.48	22.32 22.42 22.56 22.69 22.76	23.92 23.95 24.00 24.02 24.08	23.56 23.42 23.32 23.28 23.33	23.16 23.20 23.17 23.16 23.22	
21	23.17	23.28	22.74	22.26	21.44	21.00	21.60	20.61	22.78	24.15	23.36	23.30	
22	23.12	24.54	22.74	22.47	21.60	20.85	21.50	20.67	22.75	24.20	23.31	23.30	
23	23.05	24.59	22.58	22.40	21.64	20.78	21.54	20.61	22.69	24.22	23.20	23.39	
24	22.98	24.31	22.54	22.32	21.70	20.67	21.55	20.62	22.68	24.20	23.08	23.39	
25	23.14	23.91	22.62	22.16	21.67	20.70	21.41	20.75	22.73	24.18	23.08	23.37	
26 27 28 29 30 31	23.25 23.48 23.57 23.48 23.37 23.35	23.87 23.64 23.50 23.40 23.27	22.57 22.46 22.46 22.73 22.80 22.78	22.15 22.08 21.99 21.84 21.91 21.91	21.51 21.50 21.78 	20.70 20.50 20.50 20.31 20.36 20.38	21.54 21.59 21.42 20.92 20.93	20.95 21.06 21.15 21.22 21.27 21.28	22.68 22.74 22.96 23.11 23.18	24.10 24.02 23.98 23.94 23.90 23.85	23.08 23.14 23.16 23.15 23.18 23.22	23.30 23.14 23.32 23.32 23.28	
MEAN	23.19	23.51	22.91	22.49	21.66	21.36	21.27	20.79	22.50	23.81	23.40	23.20	
MAX	23.57	24.59	23.30	22.98	21.89	21.98	21.68	21.28	23.18	24.22	23.78	23.39	
MIN	22.98	23.27	22.46	21.84	21.34	20.31	20.36	20.32	21.38	23.23	23.08	23.00	

FOREST COUNTY

412823079030601. Local number, FO 11.

LOCATION.--Lat 41°28'23", long 79°03'06", Hydrologic Unit 05010005, in Allegheny National Forest.

Owner: U.S. Geological Survey.

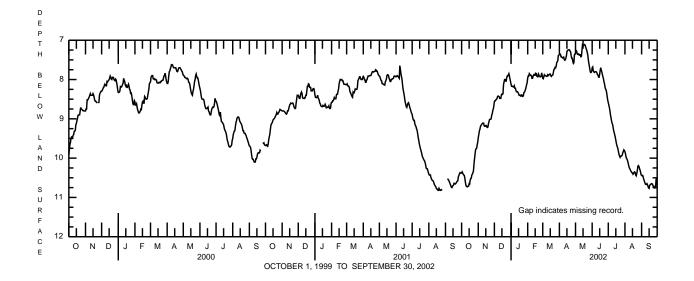
AQUIFER .-- Clarion Formation of Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 110 ft, cased to 23 ft, open hole.

INSTRUMENTATION. -- Data collection platform with 60-minute recording interval since June 7, 2001. Satellite telemetry at station

DATUM.--Elevation of land-surface datum is 1,780 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood table, 1.47 ft above land-surface datum. Prior to June 7, 2001, top of casing, 1.40 ft above land-surface datum.

REMARKS.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since June 2001, are available from the District Office.


PERIOD OF RECORD.--August 1973 to current year.

EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 7.06 ft below land-surface datum, May 14, 15, 2002; lowest, 12.07 ft below land-surface datum, Sept. 18, 19, 1982. **EXTREMES FOR CURRENT YEAR.**--Highest water level, 7.06 ft below land-surface datum, May 14, 15; lowest, 10.77 ft below land-surface datum,

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Sept. 15.

		DEITI	I BELOW LA	IND SURPA	CE (WATER		M VALUES	LAKOCI	OBER 2001 1	O SEI TEM	DER 2002	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	10.38	9.48	8.56	8.12	7.96	7.97	7.36	7.32	7.70	8.59	9.84	10.44
2	10.35	9.40	8.54	8.17	7.91	7.98	7.35	7.30	7.68	8.65	9.89	10.45
3	10.38	9.31	8.54	8.17	7.91	7.93	7.36	7.28	7.77	8.71	9.97	10.44
4	10.41	9.27	8.51	8.17	7.85	7.88	7.42	7.33	7.80	8.79	10.01	10.48
5	10.43	9.20	8.50	8.19	7.87	7.90	7.42	7.36	7.82	8.89	10.03	10.54
6	10.44	9.17	8.48	8.19	7.89	7.90	7.44	7.36	7.81	8.97	10.07	10.58
7	10.51	9.15	8.43	8.16	7.89	7.91	7.45	7.35	7.80	9.05	10.13	10.62
8	10.61	9.13	8.42	8.22	7.91	7.92	7.44	7.38	7.80	9.11	10.19	10.66
9	10.69	9.11	8.43	8.22	7.97	7.92	7.43	7.37	7.81	9.14	10.24	10.67
10	10.72	9.11	8.44	8.27	7.97	7.88	7.49	7.37	7.84	9.22	10.27	10.67
11	10.73	9.11	8.48	8.31	7.91	7.90	7.51	7.42	7.88	9.30	10.30	10.65
12	10.73	9.18	8.48	8.31	7.89	7.90	7.50	7.41	7.89	9.35	10.33	10.68
13	10.71	9.19	8.48	8.31	7.87	7.87	7.46	7.26	7.94	9.41	10.35	10.72
14	10.71	9.19	8.39	8.33	7.89	7.86	7.40	7.11	7.94	9.47	10.37	10.76
15	10.65	9.17	8.37	8.36	7.89	7.86	7.29	7.12	7.86	9.54	10.38	10.77
16 17 18 19 20	10.66 10.56 10.52 10.51 10.43	9.17 9.21 9.22 9.21 9.12	8.38 8.36 8.13 8.06 8.00	8.40 8.40 8.41 8.42 8.39	7.84 7.85 7.91 7.93 7.93	7.90 7.92 7.90 7.89 7.88	7.26 7.25 7.25 7.25 7.24 7.25	7.13 7.12 7.11 7.13 7.18	7.76 7.70 7.76 7.81 7.87	9.62 9.68 9.72 9.77 9.84	10.41 10.39 10.36 10.35 10.37	10.69 10.68 10.67 10.65 10.65
21	10.41	9.07	8.00	8.39	7.86	7.80	7.28	7.22	7.93	9.91	10.43	10.66
22	10.37	9.02	8.04	8.43	7.89	7.74	7.30	7.26	7.98	9.95	10.45	10.69
23	10.33	9.01	8.04	8.43	7.92	7.73	7.40	7.32	8.06	9.98	10.39	10.73
24	10.16	9.01	7.95	8.41	7.93	7.69	7.46	7.39	8.11	9.95	10.32	10.72
25	10.02	9.00	7.91	8.33	7.93	7.70	7.46	7.52	8.20	9.95	10.21	10.76
26 27 28 29 30 31	9.90 9.79 9.76 9.75 9.66 9.59	8.91 8.87 8.79 8.75 8.67	7.91 7.88 7.85 7.91 7.98 8.05	8.32 8.29 8.25 8.19 8.13 8.08	7.91 7.83 7.90 	7.66 7.57 7.55 7.52 7.39 7.38	7.54 7.59 7.57 7.37 7.36	7.60 7.68 7.77 7.82 7.82 7.80	8.24 8.27 8.34 8.44 8.53	9.94 9.92 9.86 9.83 9.79 9.81	10.19 10.21 10.26 10.30 10.35	10.76 10.74 10.54 10.53 10.50
MEAN	10.35	9.11	8.24	8.28	7.90	7.80	7.40	7.37	7.94	9.47	10.25	10.64
MAX	10.73	9.48	8.56	8.43	7.97	7.98	7.59	7.82	8.53	9.98	10.45	10.77
MIN	9.59	8.67	7.85	8.08	7.83	7.38	7.24	7.11	7.68	8.59	9.84	10.44

GREENE COUNTY

394655080014301. Local number, GR 118.

LOCATION.--Lat 39°46'55", long 80°01'43", Hydrologic Unit 05020005, at State Game Land Number 223.

27.32

30.99

33.51 27.32

28.32

27 42

32.68

33.00

30.71

Owner: U.S. Geological Survey.

AQUIFER.--Shale and sandstone of lower member of Waynesburg Formation of Late Pennsylvanian and Early Permian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 104 ft, cased to 22 ft, open hole.

INSTRUMENTATION.--Pressure transducer and digital data logger with 60-minute recording interval. Data collection platform with 60-minute recording interval since Sept. 7, 2001. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,000 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.40 ft above land-surface datum.

REMARS.—Water levels affected by water cascading into the well. In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1987, are available from the District Office.

PERIOD OF RECORD.--June 1973 to current year.

31

MEAN

MAX

MIN

38.38

37.18

35.85

39.09

40.64

35.45

EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 22.10 ft below land-surface datum, Mar. 18, 1999; lowest, 52.38 ft below land-surface datum, Nov. 25, 26, 1999.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

EXTREMES FOR CURRENT YEAR.--Highest water level, 24.42 ft below land-surface datum, May 17; lowest, 40.64 ft below land-surface datum, Nov. 24.

	MAXIMUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP													
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	35.85	38.49	34.71	33.05	27.42	28.89	26.13	25.80	26.68	28.02	31.30	34.46		
2	36.00	38.64	34.58	33.32	27.43	28.89	26.26	25.80	26.78	28.26	31.52	34.62		
3	36.16	38.64	34.64	33.44	27.57	27.99	26.30	25.93	26.80	28.54	31.78	34.79		
4	36.30	38.68	34.76	33.50	27.86	27.25	26.32	26.08	26.82	28.76	32.00	34.89		
5	36.45	38.75	34.89	33.51	28.15	27.30	26.40	26.12	26.86	29.00	32.07	35.03		
6	36.52	38.84	34.90	33.42	28.32	27.38	26.41	26.16	26.72	29.24	32.24	35.19		
7	36.69	38.93	34.80	33.44	28.68	27.50	26.44	26.13	26.35	29.41	32.50	35.37		
8	36.84	39.04	34.80	33.44	29.04	27.58	26.49	25.85	26.49	29.56	32.71	35.52		
9	36.98	39.12	33.95	33.43	29.25	27.69	26.60	25.78	26.62	29.57	32.89	35.67		
10	37.10	39.21	33.75	33.35	29.25	27.95	26.60	25.93	26.70	29.49	33.07	35.82		
11	37.23	39.32	33.69	32.41	28.42	28.07	26.63	25.98	26.79	29.64	33.26	36.00		
12	37.27	39.43	33.69	30.97	27.49	28.16	26.63	26.00	26.84	29.81	33.43	36.17		
13	37.28	39.54	33.58	29.84	27.57	28.31	26.65	25.95	26.82	29.90	33.58	36.34		
14	37.30	39.64	33.55	29.70	27.58	28.46	26.63	25.87	26.42	30.03	33.76	36.52		
15	36.95	39.75	33.35	29.95	27.73	28.53	26.46	25.94	26.26	30.20	33.94	36.63		
16	37.00	39.86	33.27	30.13	27.94	27.68	26.44	26.06	26.26	30.35	34.10	36.80		
17	36.97	39.98	33.22	30.45	28.30	26.80	26.49	26.06	26.44	30.50	34.23	36.95		
18	37.07	40.08	31.79	30.64	28.45	26.11	26.51	25.44	26.54	30.65	34.39	37.06		
19	37.18	40.17	30.71	30.97	28.61	26.15	26.53	25.73	26.68	30.65	34.50	37.20		
20	37.30	40.26	30.71	31.03	28.66	25.56	26.55	25.89	26.78	29.95	34.60	37.33		
21	37.40	40.35	31.03	31.28	28.57	25.97	26.53	26.00	26.89	30.20	34.71	37.47		
22	37.50	40.45	31.24	31.28	28.57	26.13	25.95	26.07	26.94	30.42	34.80	37.61		
23	37.58	40.56	31.30	31.25	28.59	26.26	26.06	26.15	27.03	30.45	34.82	37.75		
24	37.62	40.64	31.54	30.16	28.61	26.33	26.20	26.20	27.14	30.42	33.87	37.90		
25	37.65	40.60	31.66	27.79	28.62	26.38	26.27	26.27	27.31	30.52	33.32	38.04		
26 27 28 29 30	37.77 37.90 38.02 38.15 38.26	38.26 38.26 36.00 35.62 35.45	31.73 31.86 32.01 32.19 32.56	27.86 28.07 28.39 28.70 28.70	28.63 28.77 28.87 	26.31 25.79 25.95 26.13 26.19	26.34 26.33 25.47 25.74 25.82	26.33 26.40 26.43 26.50 26.54	27.46 27.48 27.33 27.62 27.84	30.57 30.57 30.69 30.86 31.00	33.52 33.78 33.88 34.03 34.19	38.10 37.89 34.99 35.30 35.65		

26.19

27.09

28.89

25.56

26.34

26.65

25.47

26.57

26.06

26.57

25.44

26.86

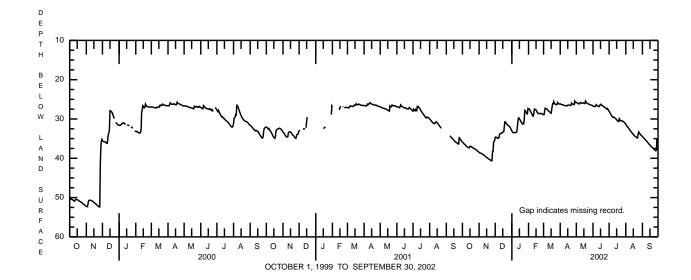
27.84

26.26

31.12

29.95

28.02


34.33

33.46

31.30

36.30

34.46

INDIANA COUNTY

405320078483901. Local number, IN 919.

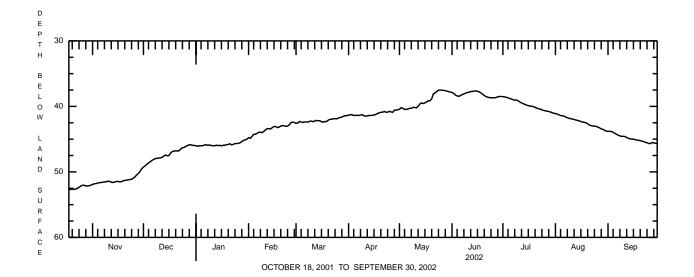
LOCATION.--Lat 40°53'20", long 78°48'39", Hydrologic Unit 02050201, at State Game Lands 174. Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Pottsville Formation, Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 140 ft, cased to 18 ft.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.


DATUM.--Elevation of land-surface datum is 1,620 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of instrument shelf, 3.00 ft above land-surface datum.

REMARKS.--In addition to the daily mean water level table shown below, daily maximum and minimum water levels are available from the District Office.

PERIOD OF RECORD.—October 2001 to current year.

EXTREMES FOR CURRENT YEAR.—Highest water level, 37.45 ft below land-surface datum, May 25, 26; lowest, 52.76 ft below land-surface datum, Oct. 18.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUIN JUIL AUG SEP														
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP			
1		51.91	49.27	46.01	44.79	42.59	41.33	40.44	37.88	38.51	41.09	43.81			
2		51.81	49.08	46.08	44.87	42.54	41.27	40.20	38.02	38.55	41.16	43.81			
3		51.79	48.85	46.00	44.59	42.30	41.26	40.30	38.27	38.61	41.29	43.83			
4		51.71	48.64	46.01	44.26	42.39	41.40	40.45	38.40	38.69	41.40	43.95			
5		51.64	48.46	46.00	44.25	42.45	41.37	40.45	38.46	38.78	41.42	44.11			
6		51.63	48.25	45.89	44.13	42.38	41.36	40.40	38.35	38.88	41.49	44.25			
7		51.58	48.10	45.84	43.95	42.38	41.38	40.29	38.19	38.97	41.61	44.40			
8		51.52	47.98	45.96	43.95	42.40	41.32	40.29	38.10	39.05	41.72	44.51			
9		51.53	47.92	45.88	44.00	42.27	41.26	40.14	37.97	39.03	41.82	44.57			
10		51.41	47.90	45.98	43.82	42.25	41.44	40.17	37.89	39.14	41.88	44.57			
11		51.45	47.84	46.01	43.58	42.33	41.49	40.22	37.83	39.32	41.93	44.60			
12		51.58	47.78	46.00	43.40	42.24	41.45	39.98	37.73	39.47	41.99	44.76			
13		51.62	47.58	45.93	43.41	42.14	41.39	39.64	37.72	39.59	42.08	44.87			
14		51.54	47.43	45.98	43.43	42.19	41.39	39.47	37.66	39.70	42.13	44.95			
15		51.47	47.53	45.94	43.24	42.20	41.36	39.56	37.64	39.81	42.22	44.98			
16		51.45	47.51	46.03	43.08	42.32	41.31	39.46	37.68	39.88	42.31	45.00			
17		51.52	47.13	45.93	43.07	42.41	41.23	39.32	37.78	39.95	42.38	45.07			
18	52.74	51.51	46.89	45.93	43.23	42.31	41.10	39.15	37.93	39.98	42.43	45.13			
19	52.66	51.37	46.84	45.84	43.17	42.32	40.98	39.13	38.14	40.03	42.51	45.18			
20	52.64	51.29	46.77	45.81	43.01	42.10	40.91	38.85	38.33	40.15	42.66	45.23			
21	52.67	51.27	46.81	45.71	42.94	41.98	40.89	38.10	38.49	40.27	42.85	45.30			
22	52.62	51.21	46.77	45.87	42.98	41.96	40.77	37.93	38.60	40.35	42.94	45.37			
23	52.51	51.16	46.50	45.80	43.03	41.88	40.88	37.73	38.65	40.41	43.00	45.48			
24	52.36	51.13	46.30	45.66	43.02	41.89	40.89	37.53	38.68	40.53	43.00	45.55			
25	52.17	50.96	46.26	45.68	42.81	41.90	40.76	37.51	38.68	40.61	43.06	45.66			
26	52.05	50.76	46.11	45.64	42.49	41.76	40.84	37.52	38.69	40.68	43.15	45.68			
27	52.04	50.46	45.96	45.55	42.39	41.69	40.90	37.56	38.64	40.72	43.28	45.51			
28	52.14	50.25	45.87	45.38	42.46	41.64	40.58	37.59	38.53	40.78	43.43	45.57			
29	52.14	49.93	45.86	45.19		41.49	40.56	37.68	38.49	40.85	43.51	45.63			
30	52.11	49.52	45.94	45.11		41.42	40.52	37.75	38.49	40.95	43.63	45.67			
31	52.03		45.97	45.01		41.42		37.81		41.06	43.79				
MEAN	52.35	51.27	47.29	45.80	43.48	42.11	41.12	39.12	38.20	39.78	42.36	44.90			
MAX	52.74	51.91	49.27	46.08	44.87	42.59	41.49	40.45	38.69	41.06	43.79	45.68			
MIN	52.03	49.52	45.86	45.01	42.39	41.42	40.52	37.51	37.64	38.51	41.09	43.81			

JEFFERSON COUNTY

411734078522101. Local number, JE 425.

LOCATION.--Lat 41°17'34", long 78°52'21", Hydrologic Unit 05010006, at State Game Lands 54.

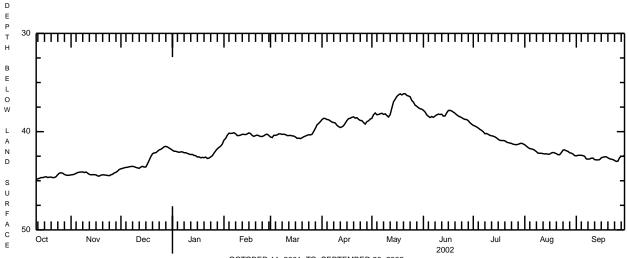
Owner: U.S. Geological Survey.

AQUIFER.--Pottsville Formation, Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 152 ft, cased to 20 ft.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 2,030 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.30 ft above land-surface datum.


REMARKS.--In addition to the daily mean water level table shown below, daily maximum and minimum water levels are available from the District Office.

PERIOD OF RECORD.—October 2001 to current year.

EXTREMES FOR CURRENT YEAR.—Highest water level, 36.10 ft below land-surface datum, May 21; lowest, 44.90 ft below land-surface datum,

Oct. 11.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1		44.40	43.78	41.89	40.86	40.55	38.77	38.64	37.83	39.36	41.34	42.46
2		44.38	43.74	42.00	40.69	40.60	38.64	38.27	38.00	39.43	41.48	42.41
3 4		44.33	43.68	42.00	40.36	40.37	38.67	38.10	38.29	39.52	41.62	42.40
4		44.25	43.64	42.06	40.16	40.38	38.76	38.28	38.44	39.63	41.73	42.41
5		44.16	43.63	42.10	40.18	40.33	38.80	38.25	38.56	39.77	41.75	42.44
6		44.13	43.57	42.06	40.17	40.22	38.91	38.18	38.46	39.87	41.81	42.51
7		44.11	43.55	42.06	40.11	40.23	39.03	38.13	38.54	40.01	41.90	42.77
8		44.10	43.53	42.15	40.22	40.28	39.07	38.24	38.41	40.21	42.04	42.80
9		44.16	43.57	42.14	40.40	40.26	39.13	38.19	38.29	40.19	42.19	42.78
10		44.11	43.64	42.22	40.40	40.30	39.36	38.36	38.22	40.27	42.20	42.70
11	44.86	44.23	43.69	42.28	40.35	40.40	39.49	38.51	38.25	40.38	42.20	42.69
12	44.80	44.35	43.73	42.33	40.27	40.40	39.58	38.26	38.23	40.42	42.24	42.85
13	44.75	44.39	43.60	42.32	40.28	40.38	39.51	37.60	38.42	40.46	42.27	42.87
14	44.67	44.38	43.53	42.42	40.30	40.43	39.39	36.97	38.40	40.53	42.26	42.88
15	44.68	44.38	43.61	42.45	40.23	40.45	39.13	36.70	38.09	40.64	42.30	42.85
16	44.62	44.40	43.59	42.58	40.13	40.54	38.86	36.42	37.85	40.78	42.28	42.67
17	44.59	44.51	43.27	42.57	40.20	40.68	38.67	36.26	37.83	40.88	42.17	42.60
18	44.67	44.52	42.91	42.66	40.39	40.66	38.64	36.15	37.90	40.91	42.12	42.57
19	44.63	44.43	42.54	42.62	40.48	40.71	38.53	36.26	38.01	40.90	42.17	42.56
20	44.63	44.39	42.25	42.65	40.40	40.62	38.50	36.15	38.13	40.93	42.24	42.66
21	44.68	44.41	42.16	42.59	40.35	40.52	38.63	36.14	38.28	41.06	42.35	42.76
22	44.67	44.43	42.15	42.73	40.42	40.45	38.58	36.31	38.41	41.12	42.34	42.80
23	44.58	44.46	42.00	42.69	40.49	40.37	38.75	36.37	38.49	41.16	42.13	42.84
24	44.37	44.48	41.86	42.57	40.49	40.32	38.86	36.45	38.57	41.20	41.88	42.93
25	44.22	44.39	41.80	42.45	40.42	40.33	38.88	36.82	38.68	41.28	41.86	43.03
26	44.19	44.34	41.68	42.19	40.30	40.27	39.08	37.00	38.75	41.31	41.95	43.01
27	44.23	44.20	41.54	41.95	40.26	39.97	39.23	37.31	38.77	41.33	42.01	42.66
28	44.36	44.14	41.50	41.75	40.39	39.66	38.98	37.42	38.89	41.29	42.15	42.50
29	44.42	44.01	41.56	41.60		39.30	38.90	37.56	39.09	41.22	42.19	42.52
30	44.45	43.85	41.67	41.48		39.16	38.72	37.67	39.24	41.18	42.28	42.42
31	44.43		41.77	41.26		38.98		37.71		41.25	42.44	
MEAN	44.55	44.29	42.86	42.22	40.35	40.26	38.94	37.38	38.38	40.60	42.06	42.68
MAX	44.86	44.52	43.78	42.73	40.86	40.71	39.58	38.64	39.24	41.33	42.44	43.03
MIN	44.19	43.85	41.50	41.26	40.11	38.98	38.50	36.14	37.83	39.36	41.34	42.40

OCTOBER 11, 2001 TO SEPTEMBER 30, 2002

LAWRENCE COUNTY

410538080280801. Local number, LA 1201.

LOCATION.--Lat 41°05'38", long 80°28'08", Hydrologic Unit 05030102, at State Game Land 150, near Pulaski.

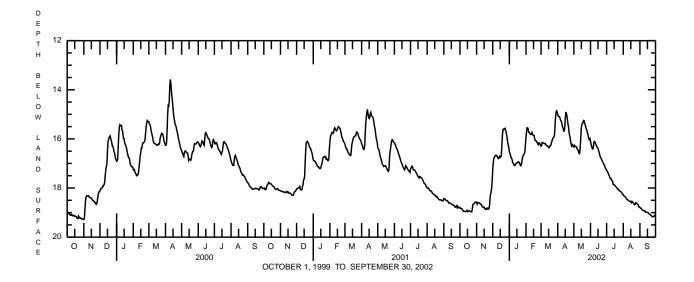
Owner: U.S. Geological Survey.

AQUIFER.--Shale and sandstone of Connoquenessing Formation of Early Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 150 ft, cased to 30 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,040 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 3.40 ft above land-surface datum.


REMARKS.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1987, are available from the District Office.

PERIOD OF RECORD.--November 1967 to current year.

EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 12.25 ft below land-surface datum, May 19, 1978; lowest, 22.94 ft below land-surface datum, Apr. 15, 1986. **EXTREMES FOR CURRENT YEAR.**--Highest water level, 14.83 ft below land-surface datum, Mar. 29, 30; lowest, 19.17 ft below land-surface datum,

Sept. 24-26.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 1 18.79 18.58 17.25 16.52 15.91 16.30 15.01 16.33 16.09 17.29 18.27 18.79 2 18.82 18.66 16.97 16.59 15.72 16.28 15.07 16.26 16.21 17.31 18.31 18.82 3 18.84 18.61 16.80 16.66 15.55 16.14 15.09 16.30 16.29 17.35 18.33 18.82 4 18.85 18.59 16.75 16.75 15.55 16.14 15.09 16.30 16.38 17.40 18.35 18.85 5 18.85 18.60 16.70 16.79 15.58 16.17 15.14 16.32 16.41 17.46 18.35 18.88 6 18.89 18.61 16.67 16.83 15.73 16.18 15.22 16.23 16.41 17.46 18.36 18.89 7 18.94 18.62 16.67 16.95 15.73 16.19 15.27 16.40 16.19 17.57 18.44 18.92 10 18.95 18.66 16.71 17.03 15.82 16.19 15.30 16.43 16.10 17.62 18.47 18.93 11 18.95 18.68 16.73 17.08 15.82 16.25 16.55 16.55 16.15 17.70 18.48 18.92 11 18.96 18.77 16.80 17.07 15.74 16.27 15.68 16.55 16.71 17.05 18.49 18.92 12 18.95 18.77 16.80 17.07 15.74 16.27 15.55 16.55 16.15 15.55 16.15 18.95 18.95 18.67 18.89 18.95 18.68 16.75 16.98 15.73 16.27 15.55 16.55 16.40 17.72 18.53 18.99 14 18.95 18.67 16.80 17.07 15.74 16.27 15.55 16.55 16.15 17.70 18.44 18.92 15 18.96 18.77 16.80 17.07 15.74 16.27 15.55 16.55 16.77 17.55 18.49 18.92 16 18.95 18.67 16.80 17.07 15.74 16.27 15.55 15.51 16.55 16.27 17.72 18.53 18.99 17 18.96 18.78 16.75 16.98 15.85 16.32 15.55 15.51 16.55 16.37 17.05 18.49 18.92 18 18.95 18.66 16.76 17.00 15.82 16.29 15.55 15.55 16.27 17.72 18.53 18.99 18 18.95 18.67 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 18 18.95 18.85 18.75 16.80 17.07 15.74 16.27 15.55 15.55 16.55 16.17 17.75 18.49 18.95 18 18.95 18.86 16.56 16.96 17.00 15.82 16.28 15.50 15.55 16.20 17.97 18.59 18.54 18.99 19 18.93 18.85 18.75 16.80 17.07 15.74 16.27 15.68 16.50 16.27 17.72 18.53 18.99 10 18.95 18.66 16.73 16.98 16.85 16.32 15.54 16.50 16.30 16.32 17.85 18.54 18.99 10 18.95 18.86 16.66 16.91 17.09 15.80 16.27 15.55 16.50 17.70 18.60 18.54 18.99 10 18.95 18.66 16.75 16.98 15.85 16.32 15.55 16.50 17.97 18.59 19.05 20 18.95 18.85 18.55 16.68 16.73 16.98 15.85 16.32 15.55 16.50 17.97 18.85 18.95 18.95 18.95 18.95 18.95 18.95 18.			DEPT	H BELOW L	AND SURFA	CE (WATER		EET), WATEI JM VALUES		OBER 2001	TO SEPTEM	BER 2002	
1 18.79 18.58 17.25 16.52 15.91 16.30 15.01 16.33 16.09 17.29 18.27 18.79 2 18.82 18.66 16.97 16.59 15.72 16.28 15.07 16.26 16.21 17.31 18.31 18.82 4 18.85 18.86 16.80 16.66 15.55 16.14 15.09 16.30 16.29 17.35 18.33 18.82 4 18.85 18.59 16.75 16.75 15.55 16.15 15.09 16.30 16.38 17.40 18.35 18.86 15.18.60 16.70 16.79 15.58 16.15 15.09 16.30 16.38 17.40 18.35 18.86 18.86 18.88 18.85 18.60 16.70 16.79 15.58 16.17 15.14 16.32 16.41 17.46 18.36 18.88 18.86 18.89 18.61 16.67 16.83 15.73 16.18 15.22 16.33 16.40 17.51 18.40 18.90 17.18 18.94 18.95 18.66 16.77 16.99 15.73 16.19 15.27 16.40 16.19 17.57 18.44 18.92 18.95 18.66 16.71 17.03 15.82 16.29 15.51 16.45 16.41 17.65 18.49 18.90 10.18.95 18.68 16.73 17.08 15.82 16.25 15.51 16.55 16.11 17.65 18.49 18.90 11.18 18.95 18.68 16.73 17.08 15.82 16.25 15.51 16.55 16.17 17.65 18.49 18.90 11.18 18.95 18.69 18.77 16.19 15.30 16.30 16.30 17.08 18.95 18.69 18.77 16.19 15.30 16.30 16.30 17.08 18.95 18.69 16.73 17.08 15.82 16.25 15.51 16.55 16.17 17.65 18.49 18.92 11.89 18.95 18.68 16.73 17.08 15.82 16.25 15.51 16.55 16.17 17.65 18.49 18.92 11.89 18.95 18.68 16.73 17.08 15.82 16.25 15.51 16.55 16.17 17.65 18.49 18.99 18.95 18.69 18.77 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 18.94 18.79 16.76 17.00 15.82 16.28 15.65 16.30 16.32 17.85 18.54 18.99 14.89 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.30 16.32 17.85 18.54 18.99 14.89 18.77 16.71 16.98 15.85 16.30 15.32 17.85 18.54 18.99 14.89 18.97 16.71 16.98 15.85 16.30 15.32 17.55 18.54 16.40 17.86 18.57 18.99 18.93 18.83 15.87 16.98 16.98 15.85 16.30 15.32 17.54 16.40 17.86 18.57 18.99 19.00 18.95 18.80 16.26 16.70 17.00 15.82 16.28 15.60 15.19 15.54 16.40 17.86 18.57 18.99 19.00 18.95 18.80 16.60 16.93 16.00 16.32 14.94 15.38 16.54 17.91 18.50 19.00 17.00 18.80 19.00 17.00 18.80 18.80 19.00 18.80 18.80 18.80 18.80 18.80 18.80 18.80 19.10 18.90 18.80 18.80 18.80 18.80 18.80 18.80 18.80 19.10 18.90 18.80 18.80 18.80 18.80 18.80 19.10 18.80 19.10 18.80 19.10 18.80 19.10 18.80 19.10 18.80 18.80 19.10 18.80 19.10 18.8							MAXIMO	JWI VALUES					
18.82 18.66 16.97 16.59 15.72 16.28 15.07 16.26 16.21 17.31 18.31 18.82	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
18.84 18.61 16.80 16.66 15.55 16.14 15.09 16.30 16.29 17.35 18.33 18.82		18.79	18.58	17.25	16.52	15.91	16.30	15.01	16.33	16.09	17.29	18.27	18.79
\$ 18.85	2	18.82	18.66	16.97	16.59	15.72	16.28	15.07	16.26	16.21	17.31	18.31	18.82
\$ 18.85	3	18.84	18.61	16.80	16.66	15.55	16.14	15.09	16.30	16.29	17.35	18.33	18.82
\$ 18.85	4	18.85	18.59	16.75	16.75	15.55	16.15	15.09	16.30	16.38	17.40	18.35	18.86
The color of the	5	18.85	18.60	16.70	16.79	15.58	16.17	15.14	16.32	16.41	17.46	18.36	18.88
The color of the	6	18.89	18.61	16.67	16.83	15.73	16.18	15.22	16.33	16.40	17.51	18.40	18.90
8 18.95 18.66 16.67 16.98 15.77 16.19 15.30 16.43 16.10 17.62 18.47 18.93 18.95 18.66 16.71 17.03 15.82 16.19 15.42 16.46 16.11 17.61 18.48 18.92 10 18.95 18.68 16.73 17.08 15.82 16.25 15.51 16.55 16.17 17.65 18.49 18.92 11 18.96 18.74 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 13 18.94 18.77 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 14 18.91 18.77 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 14 18.91 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.54 18.99 15.89 18.78 16.75 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.57 18.99 18.96 18.78 16.75 16.98 15.85 16.36 15.19 15.54 16.40 17.86 18.57 18.99 18.95 18.86 16.69 16.93 16.00 16.32 14.94 15.38 16.54 17.90 18.60 19.00 18.81 18.95 18.86 16.26 16.94 16.05 16.27 15.50 15.33 16.63 17.93 18.55 19.05 18.95 18.86 16.26 16.94 16.05 16.27 15.20 15.25 16.72 17.97 18.59 19.06 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.80 18.03 18.65 19.11 12.2 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.07 18.60 19.17 18.60 19			18.62	16.67									
9 18.95 18.66 16.71 17.03 15.82 16.19 15.42 16.46 16.11 17.61 18.48 18.92 18.95 18.66 16.73 17.08 15.82 16.25 15.51 16.55 16.17 17.65 18.49 18.92 11 18.96 18.74 16.80 17.09 15.80 16.27 15.57 16.60 16.24 17.71 18.51 18.96 18.95 18.77 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 13 18.94 18.78 16.76 17.00 15.82 16.28 15.68 16.30 16.32 17.85 18.54 18.99 14 18.91 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.54 18.99 15.89 18.96 18.78 16.75 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.57 18.99 15 18.96 18.78 16.75 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.57 18.99 16 18.93 18.85 16.73 16.98 15.85 16.36 15.19 15.54 16.40 17.86 18.57 18.99 18.95 18.86 16.69 16.93 16.00 16.32 14.94 15.38 16.54 17.91 18.54 19.03 18.95 18.86 16.26 16.94 16.05 16.27 15.05 15.33 16.63 17.93 18.55 19.05 18.93 18.83 15.87 16.95 16.08 16.27 15.05 15.25 16.72 17.97 18.59 19.06 18.95 18.86 16.69 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.97 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 12.20 18.25 18.97 18.82 15.61 17.09 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 12.20 18.85 18.85 15.57 16.97 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 12.20 18.85 18.85 15.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 12.20 18.85 18.85 15.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 18.15 18.66 18.67 19.15 18.66 18.67 19.15 18.66 18.67 19.15 1			18.66	16.67									
10 18.95 18.68 16.73 17.08 15.82 16.25 15.51 16.55 16.17 17.65 18.49 18.92 11 18.96 18.74 16.80 17.09 15.80 16.27 15.57 16.60 16.24 17.71 18.51 18.96 18.95 18.77 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 14 18.91 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.36 17.85 18.54 18.99 14 18.91 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.54 18.99 18.96 18.78 16.75 16.98 15.85 16.36 15.19 15.54 16.40 17.86 18.57 18.99 16.18 18.95 18.86 16.69 16.93 16.00 16.32 17.85 18.54 18.99 16.28 18.95 18.86 16.69 16.93 16.00 16.32 14.94 15.38 16.54 17.91 18.55 19.03 18.95 18.86 16.26 16.94 16.05 16.27 15.05 15.33 16.54 17.93 18.55 19.05 19.95 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.72 17.97 18.59 19.06 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.97 18.85 15.59 17.07 16.21 15.95 15.85 15.50 16.90 18.06 18.67 19.15 15.40 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 18.95 18.87 15.60 17.06 16.11 16.11 15.49 15.35 16.80 18.03 18.65 19.11 12.18 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 18.16 18.60 19.17 18.65 18.43 15.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 18.65 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 18.65 18.67 18.73 15.65 16.81 16.16 15.92 16.00 15.50 18.13 18.22 18.77 19.15 18.16 18.67 19.15 18.15 18.67 19.15 18.1		18.95	18.66	16.71		15.82					17.61		
12 18.95 18.77 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 13 18.94 18.78 16.76 17.00 15.82 16.28 15.68 16.30 16.32 17.85 18.54 18.99 14 18.91 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.54 18.99 15 18.96 18.78 16.75 16.98 15.85 16.36 15.19 15.54 16.40 17.86 18.57 18.99 16 18.93 18.85 16.73 16.98 15.86 16.36 15.19 15.54 16.40 17.86 18.57 18.99 17 18.95 18.86 16.69 16.93 16.00 16.32 14.94 15.38 16.54 17.91 18.54 19.03 18 18.95 18.86 16.26 16.94 16.05 16.27 15.05 15.33 16.63 17.93 18.55 19.05 19 18.93 18.83 15.87 16.95 16.08 16.27 15.20 15.25 16.72 17.97 18.59 19.06 20 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 21 18.96 18.85 15.60 17.06 16.11 16.11 15.49 15.35 16.80 18.03 18.65 19.11 22 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 24 18.85 18.85 15.57 16.97 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 25 18.67 18.73 15.65 16.81 16.16 15.83 16.23 15.72 17.05 18.13 18.60 19.17 26 18.65 18.43 15.73 16.71 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 27 18.64 18.24 15.85 16.68 16.21 15.40 15.29 16.09 15.63 17.00 18.14 18.60 19.17 28 18.65 18.43 15.73 16.67 16.64 15.83 16.23 15.72 17.05 18.13 18.67 19.15 29 18.59 18.00 16.16 16.59 14.90 16.29 15.00 18.04 18.14 18.65 19.16 29 18.59 18.00 16.16 16.59 14.90 16.29 16.00 15.99 18.20 18.18 18.77 19.17 MEAN 18.85 18.63 16.36 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MEAN 18.85 18.63 16.36 16.85 15.99 16.00 15.52 15.94 16.58 17.84 18.57 19.17		18.95	18.68	16.73				15.51	16.55	16.17	17.65		
12 18.95 18.77 16.80 17.07 15.74 16.27 15.68 16.57 16.27 17.72 18.53 18.99 13 18.94 18.78 16.76 17.00 15.82 16.28 15.68 16.30 16.32 17.85 18.54 18.99 14 18.91 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.54 18.99 15 18.96 18.78 16.75 16.98 15.85 16.36 15.19 15.54 16.40 17.86 18.57 18.99 16 18.93 18.85 16.73 16.98 15.86 16.36 15.19 15.54 16.40 17.86 18.57 18.99 17 18.95 18.86 16.69 16.93 16.00 16.32 14.94 15.38 16.54 17.91 18.54 19.03 18 18.95 18.86 16.26 16.94 16.05 16.27 15.05 15.33 16.63 17.93 18.55 19.05 19 18.93 18.83 15.87 16.95 16.08 16.27 15.20 15.25 16.72 17.97 18.59 19.06 20 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 21 18.96 18.85 15.60 17.06 16.11 16.11 15.49 15.35 16.80 18.03 18.65 19.11 22 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 24 18.85 18.85 15.57 16.97 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 25 18.67 18.73 15.65 16.81 16.16 15.83 16.23 15.72 17.05 18.13 18.60 19.17 26 18.65 18.43 15.73 16.71 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 27 18.64 18.24 15.85 16.68 16.21 15.40 15.29 16.09 15.63 17.00 18.14 18.60 19.17 28 18.65 18.43 15.73 16.67 16.64 15.83 16.23 15.72 17.05 18.13 18.67 19.15 29 18.59 18.00 16.16 16.59 14.90 16.29 15.00 18.04 18.14 18.65 19.16 29 18.59 18.00 16.16 16.59 14.90 16.29 16.00 15.99 18.20 18.18 18.77 19.17 MEAN 18.85 18.63 16.36 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MEAN 18.85 18.63 16.36 16.85 15.99 16.00 15.52 15.94 16.58 17.84 18.57 19.17	11	18.96	18.74	16.80	17.09	15.80	16.27	15.57	16.60	16.24	17.71	18.51	18.96
13 18,94 18.78 16.76 17.00 15.82 16.28 15.68 16.30 16.32 17.85 18.54 18.99 14 18.91 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.54 18.99 15 18.96 18.78 16.75 16.98 15.85 16.36 15.19 15.54 16.40 17.86 18.57 18.99 16 18.93 18.85 16.73 16.98 15.86 16.36 14.93 15.40 16.47 17.90 18.60 19.00 17 18.95 18.86 16.69 16.93 16.00 16.32 14.94 15.38 16.54 17.91 18.54 19.03 18 18.95 18.86 16.29 16.05 16.27 15.05 15.33 16.63 17.93 18.55 19.05 19 18.93 18.85 15.63 16.98 16.08 16.27 15.05 15.33 16.63 17.97 18.59 19.05 20													
14 18.91 18.77 16.71 16.98 15.85 16.32 15.54 15.88 16.36 17.86 18.54 18.99 15.89 18.78 16.75 16.98 15.85 16.36 15.19 15.54 16.40 17.86 18.57 18.99 16.81 18.96 18.93 18.85 16.73 16.98 15.86 16.36 14.93 15.40 16.47 17.90 18.60 19.00 17.86 18.95 18.86 16.69 16.93 16.00 16.32 14.94 15.38 16.54 17.91 18.54 19.03 18.89 18.89 18.86 16.26 16.94 16.05 16.27 15.05 15.33 16.63 17.93 18.55 19.05 19.05 18.87 15.63 16.98 16.08 16.27 15.00 15.25 16.72 17.97 18.59 19.06 20 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 16.89 18.89 18.89 18.80 15.61 17.09 16.17 16.03 15.71 15.42 16.85 18.04 18.68 19.12 23 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 24 18.85 18.85 15.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 25 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 26 18.65 18.43 15.85 16.68 16.21 15.46 16.29 15.81 17.00 18.61 15.49 15.81 17.00 18.61 18.60 19.17 18.61 18.65 19.16 18.67 19.15 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 18.81 18.63 18.65 19.16 18.67 19.15 18.65 18.43 15.73 16.61 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 17.06 18.45 18.67 19.17 18.85 18.65 18.17 15.98 16.63 16.26 15.11 16.24 15.94 15.95 17.05 18.13 18.65 19.16 18.67 19.17 18.89 18.89 18.60 16.60 16.50 14.90 16.29 16.00 17.23 18.22 18.77 19.15 18.66 18.77 16.36 16.20 14.90 16.29 16.00 17.23 18.22 18.77 19.15 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.00 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17													
15													
17		18.96	18.78	16.75			16.36			16.40	17.86		
17	16	18.93	18.85	16.73	16.98	15.86	16.36	14.93	15.40	16.47	17.90	18.60	19.00
18 18.95 18.86 16.26 16.94 16.05 16.27 15.05 15.33 16.63 17.93 18.55 19.05 19 18.93 18.83 15.87 16.95 16.08 16.27 15.20 15.25 16.72 17.97 18.59 19.06 20 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 21 18.96 18.85 15.60 17.06 16.11 16.11 15.49 15.35 16.80 18.03 18.65 19.11 22 18.97 18.82 15.61 17.09 16.17 16.03 15.71 15.42 16.85 18.04 18.68 19.12 23 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 24 18.85 18.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 26	17	18.95	18.86	16.69	16.93	16.00	16.32			16.54	17.91	18.54	19.03
19 18.93 18.83 15.87 16.95 16.08 16.27 15.20 15.25 16.72 17.97 18.59 19.06 20 18.95 18.87 15.63 16.98 16.08 16.18 15.39 15.26 16.76 18.00 18.62 19.08 21 18.96 18.85 15.60 17.06 16.11 16.11 15.49 15.35 16.80 18.03 18.65 19.11 22 18.97 18.82 15.61 17.09 16.17 16.03 15.71 15.42 16.85 18.04 18.68 19.12 23 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 18.85 15.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 15.15 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 16.24 18.65 18.04 18.68 19.12 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 18.64 18.24 15.85 16.68 16.21 15.46 16.29 15.81 17.06 18.14 18.65 19.16 16.28 18.62 18.17 15.98 16.63 16.26 15.11 16.24 15.92 17.15 18.16 18.67 19.11 18.91 18.90 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 18.57 17.72 16.26 16.51 14.86 16.29 15.92 17.25 18.26 18.77 19.15 18.15 18.57 17.72 16.36 16.20 14.90 16.29 16.04 17.23 18.22 18.77 19.15 18.16 18.67 19.11 18.57 16.36 16.20 14.90 16.29 16.04 17.23 18.22 18.77 19.15 18.16 18.67 19.11 18.57 16.36 16.20 14.91 15.99 18.26 18.77 18.27 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.													
21 18.96 18.85 15.60 17.06 16.11 16.11 15.49 15.35 16.80 18.03 18.65 19.11 22 18.97 18.82 15.61 17.09 16.17 16.03 15.71 15.42 16.85 18.04 18.68 19.12 23 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 24 18.85 18.85 15.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 25 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 26 18.65 18.43 15.73 16.71 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 27 18.64 18.24 15.85 16.68 16.21 15.46 16.29 15.81 17.06 18.14 18.65 19.16 28 18.62 18.17 15.98 16.63 16.26 15.11 16.24 15.92 17.15 18.16 18.67 19.11 29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.04 17.23 18.22 18.77 19.15 18.15 18.57 16.36 16.20 14.91 15.99 18.26 18.77 18.26 18.77 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.15 MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17													
22 18.97 18.82 15.61 17.09 16.17 16.03 15.71 15.42 16.85 18.04 18.68 19.12 23 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 24 18.85 18.85 15.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 25 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 26 18.65 18.43 15.73 16.71 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 27 18.64 18.24 15.85 16.68 16.21 15.46 16.29 15.81 17.06 18.14 18.65 19.16 28 18.62 18.17 15.98 16.63 16.26 15.11 16.24 15.92 17.15 18.16 18.67 19.11 29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.02 17.20 18.18 18.70 19.12 31 18.57 16.36 16.20 14.90 16.29 16.04 17.23 18.22 18.77 19.15 18.16 18.67 14.90 16.29 16.04 17.23 18.22 18.77 18.26 18.77 16.36 16.20 14.91 15.99 18.26 18.77 18.26 18.77 18.27 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80	20	18.95	18.87	15.63	16.98	16.08	16.18	15.39	15.26	16.76	18.00	18.62	19.08
22 18.97 18.82 15.61 17.09 16.17 16.03 15.71 15.42 16.85 18.04 18.68 19.12 23 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 24 18.85 18.85 15.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 25 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 26 18.65 18.43 15.73 16.71 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 27 18.64 18.24 15.85 16.68 16.21 15.46 16.29 15.81 17.06 18.14 18.65 19.16 28 18.62 18.17 15.98 16.63 16.26 15.11 16.24 15.92 17.15 18.16 18.67 19.11 29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.02 17.20 18.18 18.70 19.12 31 18.57 16.36 16.20 14.90 16.29 16.04 17.23 18.22 18.77 19.15 18.16 18.67 14.90 16.29 16.04 17.23 18.22 18.77 18.26 18.77 16.36 16.20 14.91 15.99 18.26 18.77 18.26 18.77 18.27 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.80	21	18.96	18.85	15.60	17.06	16.11	16.11	15.49	15.35	16.80	18.03	18.65	19.11
23 18.97 18.85 15.59 17.07 16.21 15.97 15.85 15.50 16.90 18.06 18.67 19.15 24 18.85 18.85 15.57 16.97 16.24 15.94 15.93 15.59 16.95 18.10 18.60 19.17 25 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 26 18.65 18.43 15.73 16.71 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 27 18.64 18.24 15.85 16.68 16.21 15.46 16.29 15.81 17.06 18.14 18.65 19.16 28 18.62 18.17 15.98 16.63 16.26 15.11 16.24 15.92 17.15 18.16 18.67 19.11 29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.04 17.23 18.22 18.77 19.15 31 18.57 16.36 16.20 14.91 15.99 18.26 18.77 MEAN 18.85 18.63 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.06 17.23 18.26 18.77													
25 18.67 18.73 15.65 16.81 16.16 15.92 16.09 15.63 17.01 18.11 18.60 19.17 26 18.65 18.43 15.73 16.71 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 27 18.64 18.24 15.85 16.68 16.21 15.46 16.29 15.81 17.06 18.14 18.65 19.16 28 18.62 18.17 15.98 16.63 16.26 15.11 16.24 15.92 17.15 18.16 18.67 19.11 29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.04 17.23 18.22 18.77 19.15 31 18.57 16.36 16.20 14.91 15.99 18.26 18.77 MEAN 18.85 18.63 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17	23	18.97	18.85	15.59	17.07	16.21	15.97	15.85	15.50	16.90	18.06	18.67	19.15
26 18.65 18.43 15.73 16.71 16.16 15.83 16.23 15.72 17.05 18.13 18.63 19.17 27 18.64 18.24 15.85 16.68 16.21 15.46 16.29 15.81 17.06 18.14 18.65 19.16 28 18.62 18.17 15.98 16.63 16.26 15.11 16.24 15.92 17.15 18.16 18.67 19.11 29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.04 17.23 18.22 18.77 19.15 18.15 18.57 16.36 16.20 14.91 15.99 18.26 18.77 18.26 18.77 19.15 18.88 18.90 18.87 17.25 17.09 16.26 16.36 16.29 16.00 17.23 18.25 18.77 19.17 18.27 18.28 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.28 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17 18.28 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17	24	18.85	18.85	15.57	16.97	16.24	15.94	15.93	15.59	16.95	18.10	18.60	19.17
27 18.64 18.24 15.85 16.68 16.21 15.46 16.29 15.81 17.06 18.14 18.65 19.16 28 18.62 18.17 15.98 16.63 16.26 15.11 16.24 15.92 17.15 18.16 18.67 19.11 29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.04 17.23 18.22 18.77 19.15 31 18.57 16.36 16.20 14.91 15.99 18.26 18.77 MEAN 18.85 18.63 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17	25	18.67	18.73	15.65	16.81	16.16	15.92	16.09	15.63	17.01	18.11	18.60	19.17
27	26	18.65	18.43	15.73	16.71	16.16	15.83	16.23	15.72	17.05	18.13	18.63	19.17
29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.04 17.23 18.22 18.77 19.15 31 18.57 16.36 16.20 14.91 15.99 18.26 18.77 MEAN 18.85 18.63 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17	27	18.64	18.24	15.85	16.68	16.21	15.46	16.29	15.81	17.06	18.14		19.16
29 18.59 18.00 16.16 16.59 14.90 16.29 16.02 17.20 18.18 18.70 19.12 30 18.57 17.72 16.26 16.51 14.86 16.29 16.04 17.23 18.22 18.77 19.15 31 18.57 16.36 16.20 14.91 15.99 18.26 18.77 MEAN 18.85 18.63 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17	28	18.62	18.17	15.98	16.63	16.26	15.11	16.24	15.92	17.15	18.16	18.67	19.11
30 18.57 17.72 16.26 16.51 14.86 16.29 16.04 17.23 18.22 18.77 19.15 18.57 16.36 16.20 14.91 15.99 18.26 18.77 MEAN 18.85 18.63 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17			18.00										
31 18.57 16.36 16.20 14.91 15.99 18.26 18.77 MEAN 18.85 18.63 16.36 16.85 15.92 16.00 15.52 15.94 16.58 17.84 18.54 19.01 MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17		18.57	17.72	16.26			14.86	16.29	16.04	17.23	18.22	18.77	
MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17		18.57		16.36	16.20		14.91		15.99		18.26	18.77	
MAX 18.97 18.87 17.25 17.09 16.26 16.36 16.29 16.60 17.23 18.26 18.77 19.17	MEAN	18.85	18.63	16.36	16.85	15.92	16.00	15.52	15.94	16.58	17.84	18.54	19.01

McKEAN COUNTY

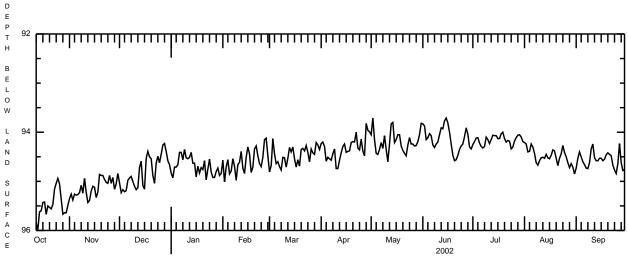
414509078343401, Local number, MC 125,

LOCATION.--Lat 41°45'09", long 78°34'34", Hydrologic Unit 05010001, at State Game Lands 62.

Owner: U.S. Geological Survey.

AQUIFER.--Pottsville Formation, Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 173.5 ft, cased to 17 ft.


INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 2,169 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.00 ft above land-surface datum.

REMARKS.--In addition to the daily mean water level table shown below, daily maximum and minimum water levels are available from the District Office. **PERIOD OF RECORD**.--October 2001 to current year.

EXTREMES FOR CURRENT YEAR.--Highest water level, 93.56 ft below land-surface datum, May 2; lowest, 96.03 ft below land-surface datum, Oct. 13.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 95.35 95.03 94.83 94.57 94.81 94.23 94.05 93.83 94.25 94.21 94.73 2 ___ 95.26 95.38 95.23 95.17 94.93 94.71 95.01 94.71 94.68 94.13 94.20 94.29 93.71 94.15 93.87 94.15 94.19 94.12 94.24 94.40 94.53 94.40 95.26 5 ___ 95.28 95.19 94.66 94.85 94.64 94.51 94.45 94.03 94.22 94.24 94.60 95.27 94.98 94.41 94.79 94.54 94.35 94.07 94.29 94.30 94.60 94.66 94.41 94.56 94.70 94.77 94.57 94.44 94.26 94.31 94.32 94.29 94.73 94.74 ___ 95.23 94.93 94.54 94.21 94.43 8 95.08 94.90 94.69 94.62 94.33 10 ___ 94 94 95.10 94.52 94.66 94.52 94.74 94.35 94.20 94.15 94.58 94.34 95.22 95.17 94.54 94.61 94.71 94.74 94.60 94.05 94.23 94.52 94.24 95.85 95.43 95.39 95.13 94.72 94.51 94.41 94.39 94.73 94.57 94.42 93.91 93.93 12 94.53 94 24 94.15 94.51 94 52 93.83 13 95.98 94.31 94.06 94.53 94.58 95.20 94.84 94.29 93.80 93.77 94.45 94.07 15 95 60 95 10 95 08 94 63 94 51 94 30 94 24 94 21 93 71 94 07 94 52 94.53 16 95.43 95.12 95.16 94.91 94.30 94.54 94.41 94.15 93.81 94.13 94.54 94.53 17 95.42 95.33 95.22 94.53 94.69 94.44 94.71 94.39 94.05 94.00 94.13 94.47 94.58 95.67 94.83 94.82 94.56 94.38 94.24 94.03 19 95.50 94.86 94.50 94.71 94.69 94.21 94.28 94.47 94.00 94.38 20 94.76 95.53 94.88 94.54 94.34 94.35 94.19 94.37 94.58 94.13 94.53 94.42 21 22 95.56 94.88 94.88 94.58 94.28 94.33 94.20 94.43 94.56 94.20 94.68 94.45 95.47 94.96 95.04 94.97 94.48 94.38 94.00 94.48 94.47 94.17 94.53 94.48 23 95.16 95.02 94.63 94.75 94.64 94.27 94.32 94.26 94.35 94.18 94.44 94.67 24 25 95.04 95 04 94.49 94.55 94.70 94.41 94.36 94.11 94.28 94.34 94.27 94.77 94.41 94.81 94.24 94.94 94.88 94.51 94.60 94.14 94.24 94.30 94.84 94.62 26 95.05 95.04 94.45 94.92 94.15 94.34 94.38 94.24 94.09 94.18 94.50 94.64 27 95.36 94.92 94.26 94.92 94.12 94.42 94.48 94.28 93.91 94.11 94.62 94.23 28 95.67 95.16 94.23 94.80 94.48 94.45 93.82 94.27 94.04 94.06 94.72 94.62 94.64 94.71 29 95.64 95.05 94.39 94.73 94.21 93.96 94.19 94.30 94.05 94.78 95.64 94.84 94.58 94.88 94.26 93.99 94.05 94.34 94.10 94.76 30 31 95.49 94.66 94.84 94.35 93.82 94.19 94.85 MEAN 95.13 94.80 94.59 94.20 94.57 95.48 94.69 94.48 94.33 94.14 94.16 94.49 MAX 95.98 95.43 95.23 94.97 95.01 94.81 94.74 94.60 94.58 94.34 94.85 94.84 MTN 94.94 94.84 94.23 94.35 94.12 94.13 93.82 93.71 93.71 94.00 94.21 94.23

OCTOBER 12, 2001 TO SEPTEMBER 30, 2002

MERCER COUNTY

412350080223701. Local number, MR 1364.

LOCATION.--Lat 41°23'50", long 80°22'37", Hydrologic Unit 05030102, at Greenville.

Owner: Borough of Greenville.

AQUIFER.--Sandstone of Cussewago Formation of Early Mississippian age.

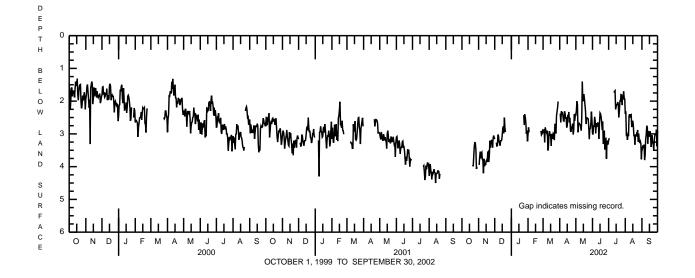
WELL CHARACTERISTICS.--Drilled artesian well, diameter 6 in., depth 235 ft, cased to 41 ft, open hole.

INSTRUMENTATION .-- Continuous strip-chart recorder.

DATUM.--Elevation of land-surface datum is 965 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of plywood cover, 2.26 ft above land-surface datum.

REMARKS.--Water levels after Sept. 25, 1998 affected by Pymatuning earthquake (magnitude 5.2). Water levels affected by intermittent pumping.

PERIOD OF RECORD.--March 1964 to current year.


EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum.

Highest water level, 0.25 ft below land-surface datum, Apr. 17, 1998; lowest, 8.31 ft below land-surface datum, Feb. 12, 1967.

EXTREMES FOR CURRENT YEAR.--Highest water level, 1.02 ft below land-surface datum, May 13; lowest, 4.24 ft below land-surface datum, Nov. 10.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
DAI	001	140 4	DEC	OAN	FED	PIPALC	Aric	LIMI	OON	ООП	AUG	DEF
1			3.16		3.02	2.93		2.42	2.98	3.21	2.39	3.40
2		3.95			2.80	2.98	2.38	2.29	3.02	3.13	2.31	3.44
3		3.71			2.95	2.85	2.65	2.00	2.76		3.02	3.35
4		3.54	3.27			3.26	2.31	2.11	2.76		3.00	3.42
5		3.75	3.37			2.80	2.35	2.95	2.48		3.18	3.33
6		3.59	3.36			2.88	2.35	2.67	2.60		3.01	3.80
7		3.56	3.02			2.95	2.46	2.67	2.98		3.07	3.64
8		3.78	3.06			2.99	2.60	2.71	2.67		2.45	3.15
9		3.81	3.22			2.90	2.61	2.72	2.77		2.40	3.02
10		4.20	3.29			3.51	2.31	2.81	2.76		2.50	2.75
11		3.76	3.36			3.37	2.38	2.90	2.65	1.74	2.42	2.80
12		3.76	3.36			3.03	2.54	2.50	2.70	1.74	2.42	3.30
13		3.99	3.21			2.92	2.49	1.40	3.15	1.68	2.79	2.91
14		3.95	3.19			3.06	2.49	2.00	2.68	2.25	2.73	3.09
15		3.83	3.19			3.00	2.75	1.96	2.36	2.25	2.73	3.03
15		3.83	3.03			3.00	2.75	1.96	2.30	2.1/	2.60	3.03
16		3.80	2.83			3.37	2.45	1.79	2.39	2.11	2.75	2.92
17		3.86	2.77			3.04	2.46	1.93	2.48	2.10	3.05	3.00
18		3.56	2.98			3.00	2.33	2.12	2.63	2.03	3.05	3.40
19		3.54	2.50			3.15	2.65	2.30	2.88	2.10	3.33	3.08
20		3.86	2.82			2.98	2.51	2.70	2.62	2.50	3.02	3.04
21	3.95	3.67	2.94			2 00	0.00	0 51	2 21	0.20	2 00	2 07
22	3.95	3.07	2.94			3.00 3.19	2.90	2.51 2.51	3.31	2.30	3.08	3.27
	3.99	3.42				2.71	2.79	2.51	3.04 2.90	2.00	3.00	3.32
23	3.67	3.42					2.79			2.00		
24				2.43		2.71		2.54	3.48	1.80	2.88	3.20
25	3.25	3.20		2.73	2.91	2.99	2.69	2.79	3.15	1.81	3.24	3.04
26	3.29	3.21		2.40	3.03	2.45	3.02	3.16	3.14	2.12	2.99	3.02
27	3.49	3.42		2.51	3.00	2.32	2.90	2.85	3.76	1.87	3.20	3.02
28	4.07	3.14		2.68	2.90	2.20	2.40	2.83	3.20	1.90	3.28	2.87
29	4.00	3.05		3.00		2.01	2.60	2.65	3.31	1.70	3.23	3.38
30		3.11		2.90			2.41	2.32	3.31	1.91	3.30	2.90
31				3.23				2.60		1.93	3.78	
	2.60	2 61	2 00	0 72	0.04	0.00	0. 50	0.46	0.00	0.00	0.00	2 10
MEAN	3.68	3.61 4.20	3.08	2.73	2.94	2.92	2.58	2.46	2.90	2.09	2.92	3.18
MAX	4.07		3.37	3.23	3.03	3.51	3.02	3.16	3.76	3.21	3.78	3.80
MIN	3.25	3.05	2.50	2.40	2.80	2.01	2.31	1.40	2.36	1.68	2.31	2.75

MERCER COUNTY

412739080104201. Local number, MR 3306.

LOCATION.--Lat 41°27'39", long 80°10'42", Hydrologic Unit 05010003, at State Game Lands 270.

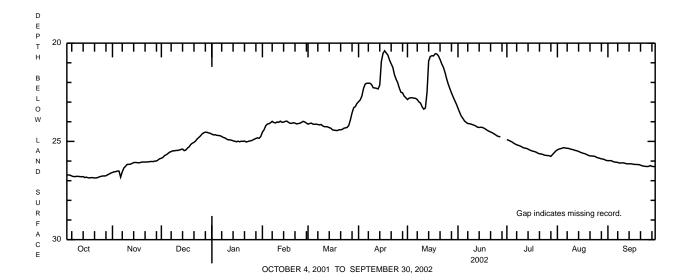
Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

AQUIFER.--Cuyahoga Group, Mississippian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 120 ft, cased to 30 ft.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.


DATUM.--Elevation of land-surface datum is 1,310 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of casing, 3.50 ft above land-surface datum.

REMARKS.--In addition to the daily mean water level table shown below, daily maximum and minimum water levels are available from the District Office. PERIOD OF RECORD.--October 2001 to current year.

EXTREMES FOR CURRENT YEAR.--Highest water level, 20.37 ft below land-surface datum, Apr. 17; lowest, 27.64 ft below land-surface datum,

Nov. 6.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	 26.70 26.71	26.58 26.55 26.54 26.51 26.51	25.86 25.81 25.72 25.68 25.62	24.63 24.67 24.66 24.69 24.70	24.53 24.41 24.21 24.12 24.10	24.12 24.09 24.07 24.12 24.13	22.98 22.89 22.70 22.32 22.09	22.87 22.80 22.78 22.78 22.80	23.31 23.52 23.71 23.83 23.96	24.91 24.94 24.98 25.02 25.08	25.43 25.39 25.37 25.34 25.32	25.98 25.98 25.98 26.02 26.05
6	26.72	26.82	25.55	24.71	24.05	24.12	22.04	22.81	24.03	25.13	25.34	26.06
7	26.76	26.55	25.52	24.75	23.98	24.14	22.04	22.87	24.09	25.17	25.35	26.07
8	26.79	26.35	25.48	24.80	24.04	24.16	22.04	22.99	24.10	25.20	25.36	26.10
9	26.79	26.27	25.48	24.82	24.06	24.14	22.11	23.05	24.12	25.23	25.39	26.10
10	26.78	26.17	25.46	24.88	24.01	24.21	22.27	23.24	24.15	25.27	25.41	26.09
11	26.78	26.17	25.46	24.92	24.03	24.25	22.28	23.36	24.18	25.32	25.43	26.10
12	26.79	26.16	25.44	24.92	23.97	24.25	22.30	23.30	24.22	25.34	25.46	26.13
13	26.80	26.12	25.41	24.94	24.03	24.26	22.33	22.51	24.28	25.36	25.48	26.14
14	26.79	26.08	25.39	24.97	24.02	24.30	22.13	20.91	24.29	25.39	25.51	26.14
15	26.84	26.07	25.47	24.99	23.98	24.33	20.93	20.68	24.28	25.44	25.55	26.14
16	26.82	26.08	25.44	25.02	23.97	24.41	20.52	20.64	24.29	25.47	25.58	26.15
17	26.85	26.09	25.34	24.99	24.03	24.43	20.39	20.65	24.33	25.50	25.61	26.17
18	26.86	26.08	25.28	25.02	24.08	24.44	20.50	20.54	24.38	25.52	25.63	26.17
19	26.84	26.05	25.16	24.99	24.08	24.45	20.61	20.55	24.44	25.55	25.67	26.18
20	26.85	26.05	25.09	25.00	24.05	24.41	20.86	20.65	24.48	25.60	25.71	26.18
21	26.86	26.05	25.05	24.98	24.07	24.41	21.05	20.83	24.52	25.63	25.74	26.21
22	26.86	26.05	24.98	25.03	24.11	24.39	21.23	21.05	24.56	25.64	25.74	26.24
23	26.84	26.04	24.87	25.01	24.09	24.33	21.60	21.22	24.61	25.66	25.75	26.26
24	26.80	26.03	24.80	24.98	24.08	24.31	21.83	21.48	24.66	25.70	25.76	26.27
25	26.78	26.02	24.72	24.97	24.03	24.29	22.01	21.80	24.72	25.71	25.81	26.28
26 27 28 29 30 31	26.76 26.76 26.75 26.70 26.66 26.61	26.03 26.00 26.00 25.94 25.88	24.62 24.56 24.53 24.54 24.57 24.59	24.93 24.89 24.85 24.82 24.84 24.75	23.98 24.01 24.07 	24.18 23.90 23.55 23.29 23.23 23.07	22.29 22.50 22.53 22.70 22.78	22.08 22.31 22.53 22.73 22.92 23.10	24.75 24.77 	25.72 25.73 25.76 25.67 25.58 25.49	25.84 25.86 25.89 25.90 25.93 25.97	26.27 26.23 26.27 26.28 26.28
MEAN	26.78	26.19	25.21	24.87	24.08	24.12	21.89	22.09	24.24	25.41	25.60	26.15
MAX	26.86	26.82	25.86	25.03	24.53	24.45	22.98	23.36	24.77	25.76	25.97	26.28
MIN	26.61	25.88	24.53	24.63	23.97	23.07	20.39	20.54	23.31	24.91	25.32	25.98

27

28

29

30

31

MEAN

MAX

MIN

35.09

35.16 35.17

35.21

35.21

34.94

35.21 34.61

35.00

35.02

35.02

35.01

35.36

35.72 35.00

34.98

35.07 34.76

34.78

35.11

34.35

39.75

39.83

39.56

39.83

39.18

SOMERSET COUNTY

400008079142801. Local number, SO 2.

LOCATION.--Lat 40°00'04", long 79°14'22", Hydrologic Unit 05020006, at Laurel Hill State Park.

Owner: Commonwealth of Pennsylvania.

AQUIFER.--Shale and sandstone of Allegheny Group of Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled artesian well, diameter 6 in. to 4 in., depth 450 ft, cased to 311 ft, open hole.

INSTRUMENTATION.--Continuous strip-chart recorder.

DATUM.--Elevation of land-surface datum is 2,040 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 1.43 ft above land-surface datum. **REMARKS.**--Water levels affected by intermittent pumping.

PERIOD OF RECORD.--April 1937 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, 27.42 ft below land-surface datum, Apr. 9, 1980; lowest, 50.33 ft below land-surface datum, May 31, 1987 (affected by pumping of nearby well).

> DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES

EXTREMES FOR CURRENT YEAR.—Highest water level, 33.07 ft below land-surface datum, May 15; lowest, 40.85 ft below land-surface datum, Mar. 19.

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 34.61 35.21 35.04 39.93 39.46 34.85 33.11 33.32 34.24 35.08 1 ------33.10 34.62 35.21 35.04 40.03 39.24 34.65 33.33 34.28 35.08 3 34.63 35.17 35.07 40.00 38.97 34.63 33.13 33.36 34.30 35.11 34.63 4 34.64 35.18 35.07 40.11 38.83 33.13 33.40 34.39 35.15 5 ------34.57 34.72 35.18 35.07 40.18 38.62 33.14 33.44 34.41 35.15 34.72 34.74 35.22 35.23 6 7 35.23 35.07 40.24 38.42 34.54 33.10 33.47 34.37 ---35.03 ___ 33.09 35.33 40.35 38.21 34.46 33.55 34.44 34.80 35.03 40.40 38.00 34.32 33.14 33.56 34.46 35.23 8 35.56 9 34 89 35.56 35.01 ___ ___ 40 41 37.80 34 12 33.15 33.57 33.56 34.48 34.54 35 23 10 40.53 33.18 35.23 35.69 37.64 34.11 34.90 35.02 37.50 37.35 34.57 34.61 11 34.92 35.72 35.04 ___ 40.56 34.12 33.19 33.64 35.27 12 33.65 35.31 34.92 35.70 35.03 ---40.60 34.07 33.16 33.67 13 34.93 35.63 34.96 ------33.98 33.15 34.62 35.33 40.64 14 34 94 35 63 34 93 ___ ___ 40 67 36.95 33 81 33 11 33.68 34.63 35.38 36.72 33.72 34.65 15 34.95 34.96 33.77 33.09 35.58 40.68 35.32 40.73 16 17 33.10 33.14 33.78 33.76 35.39 35.45 34.95 34.96 36.61 33.76 34.69 34.96 ---34.90 ---40.81 36.49 33.67 34.76 18 34.98 34.76 ------40.80 36.36 33.53 33.18 33.81 34.76 35.49 19 34.98 35.52 34.76 34.77 ___ 40 85 36.20 33.48 33.26 33 82 34 79 35.49 20 35.07 35.47 40.79 36.08 33.47 33.27 33.82 34.80 35.50 39.18 35.07 35.07 33.27 33.26 21 40.76 35.94 35.75 33.93 33.98 35.52 35.53 35 47 39.26 33.47 34 85 22 35.42 ---39.41 40.79 33.45 34.85 34.35 23 35.07 35.42 ---34.88 39.53 40.76 35.67 33.40 33.26 33.98 34.87 35.58 ___ 24 35.03 35.41 35.11 39.68 40.81 35.61 33.35 33.29 34.07 34.87 35.61 25 35.01 39.67 35.50 33.31 33.29 34.83 35.40 40.81 35.64 35.03 40.78 35.41 26 35.08 39.69 33.29 33.29 34.09 34.84 35.65

40.48

40.38

40.21

39.88

39.75

40.47

40.85

35.34

35.28 34.97

34.96

36.90

39.46

34.96

33.27

33.26

33.21

33.18

33.15

33.83

34.85 33.15

33.29

33.13

33.28

33.30

33.19

33.30 33.09

34.06

34.08

34.11

34.18

34.21

33.75

34.21 33.32

34.87

34.88

34.92

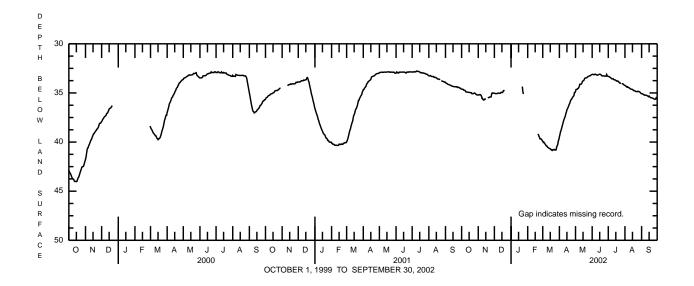
34.99

35.05

34.66

35.05 34.24

35.61


35.51

35.59

35.61

35.38

35.65 35.08

SOMERSET COUNTY

395920079021501. Local number, SO 854.

LOCATION.--Lat 39°59'20", long 79°02'15", Hydrologic Unit 05020006, at Somerset County Conservancy.

Owner: U.S. Geological Survey.

MAX MIN

AQUIFER.--Allegheny Formation, Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 121 ft, cased to 42 ft.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 2,280 ft above National Geodetic Vertical Datum of 1929. Measuring point: Top of instrument shelf, 1.50 ft above land-surface datum.

REMARKS.--In addition to the daily mean water level table shown below, daily maximum and minimum water levels are available from the District Office. PERIOD OF RECORD.—July 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—The extremes shown are extremes of the instantaneous depth below land surface for the period of record

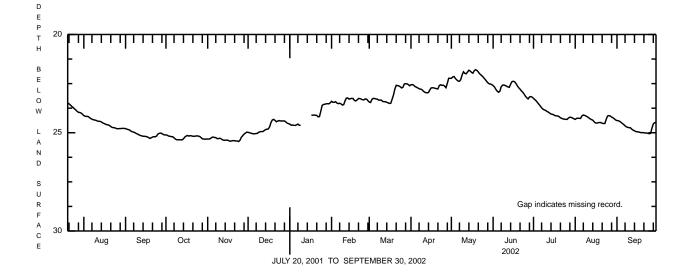
indicated above.

Highest water level, 21.77 ft below land-surface datum, May 19, 2002; lowest, 25.45 ft below land-surface datum, Nov. 18, 24, 25, 2001. **EXTREMES FOR CURRENT YEAR.**--Highest water level, 21.77 ft below land-surface datum, May 19; lowest, 25.45 ft below land-surface datum, Nov. 18, 24, 25.

No	v. 18, 24, 25.											
		DEPTH I	BELOW LAN	D SURFACE	E (WATER L		T), WATER ' VALUES	YEAR OCTO	OBER 2000	TO SEPTEN	MBER 2001	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1											24.13	24.79
2											24.16	24.82
3											24.17	24.84
4											24.17	24.86
5											24.22	24.92
6											24.27	24.95
7											24.31	24.97
8											24.34	25.00
9											24.35	25.04
10											24.37	25.07
11											24.40	25.11
12											24.42	25.14
13											24.42	25.16
14											24.45	25.18
15											24.50	25.18
16											24.53	25.19
17											24.56	25.21
18											24.59	25.24
19											24.60	25.29
20										23.48	24.63	25.26
21										23.53	24.68	25.22
22										23.59	24.73	25.20
23										23.66	24.74	25.21
24										23.71	24.75	25.17
25										23.78	24.78	25.07
26										23.84	24.80	25.03
27										23.91	24.79	25.02
28										23.96	24.79	25.02
29										23.97	24.78	25.09
30										24.00	24.78	25.11
31										24.00	24.78	25.11
31										21.00	21.70	
MEAN										23.79	24.52	25.08
MAX										24.06	24.80	25.29
MINI										22.00	24.00	23.23

23.48

24.79


24.13

SOMERSET COUNTY

395920079021501. Local number, SO 854--Continued.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	25.11 25.13 25.17 25.18 25.20	25.32 25.32 25.30 25.24 25.22	24.98 25.00 25.02 25.04 25.06	24.56 24.62 24.61 24.62 24.63	23.40 23.45 23.45 23.42 23.49	23.44 23.46 23.30 23.25 23.26	22.56 22.55 22.58 22.65 22.68	22.23 22.16 22.14 22.24 22.31	22.60 22.67 22.79 22.88 22.94	23.25 23.32 23.38 23.47 23.55	24.32 24.27 24.26 24.27 24.27	24.38 24.39 24.42 24.47 24.53
6 7 8 9 10	25.20 25.26 25.32 25.36 25.36	25.24 25.25 25.30 25.30 25.28	25.05 25.04 25.03 24.97 24.95	24.60 24.56 24.62 24.62	23.52 23.50 23.53 23.59 23.57	23.28 23.29 23.34 23.34 23.34	22.72 22.76 22.78 22.80 22.87	22.37 22.38 22.29 22.05 21.90	22.89 22.66 22.58 22.57 22.60	23.64 23.73 23.80 23.84 23.86	24.14 24.10 24.12 24.15 24.19	24.58 24.65 24.70 24.73 24.74
11 12 13 14 15	25.36 25.36 25.36 25.31 25.22	25.31 25.36 25.38 25.38 25.38	24.94 24.94 24.89 24.84 24.82		23.38 23.24 23.23 23.29 23.27	23.41 23.42 23.42 23.45 23.48	22.93 22.96 22.97 22.95 22.82	21.98 22.00 21.91 21.82 21.86	22.63 22.67 22.69 22.53 22.40	23.92 23.95 24.00 24.05 24.06	24.24 24.29 24.33 24.36 24.44	24.75 24.82 24.87 24.90 24.94
16 17 18 19 20	25.17 25.14 25.17 25.15 25.16	25.38 25.42 25.43 25.41 25.40	24.81 24.70 24.48 24.35 24.32	24.10 24.11 24.10 24.11	23.25 23.26 23.36 23.38 23.33	23.51 23.50 23.29 23.08 22.78	22.72 22.71 22.72 22.74 22.76	21.93 21.97 21.84 21.79 21.83	22.38 22.41 22.50 22.61 22.71	24.09 24.13 24.14 24.15 24.18	24.50 24.51 24.49 24.48 24.48	24.95 24.96 24.98 25.00 24.99
21 22 23 24 25	25.18 25.18 25.17 25.16 25.17	25.41 25.42 25.42 25.45 25.38	24.37 24.44 24.41 24.38 24.40	24.12 24.19 24.18 23.91 23.61	23.26 23.26 23.29 23.32 23.33	22.59 22.60 22.62 22.66 22.72	22.77 22.60 22.56 22.59 22.58	21.91 22.00 22.06 22.12 22.20	22.78 22.87 22.94 23.03 23.14	24.24 24.27 24.30 24.31 24.32	24.52 24.53 24.53 24.32 24.32	25.00 25.02 25.01 25.03 25.05
26 27 28 29 30 31	25.19 25.24 25.31 25.32 25.33 25.33	25.23 25.15 25.07 25.02 24.97	24.40 24.40 24.40 24.45 24.51 24.54	23.56 23.55 23.53 23.52 23.53 23.48	23.28 23.29 23.37 	22.69 22.52 22.51 22.51 22.55 22.61	22.63 22.71 22.48 22.23 22.23	22.28 22.37 22.45 22.51 22.52 22.55	23.22 23.28 23.18 23.16 23.19	24.32 24.25 24.21 24.22 24.25 24.25	24.13 24.15 24.20 24.24 24.29 24.35	25.03 24.76 24.55 24.49 24.47
MEAN MAX MIN	25.23 25.36 25.11	25.30 25.45 24.97	24.71 25.06 24.32	24.13 24.63 23.48	23.37 23.59 23.23	23.07 23.51 22.51	22.69 22.97 22.23	22.13 22.55 21.79	22.78 23.28 22.38	23.98 24.32 23.25	24.31 24.53 24.10	24.77 25.05 24.38

VENANGO COUNTY

411958079540202. Local number, VE 57.

LOCATION.--Lat 41°19'58", long 79°54'02", Hydrologic Unit 05010003, at State Game Lands 39.

Owner: U.S. Geological Survey.

AQUIFER.--Shale of Venango Formation of Late Devonian age.

MEAN

MAX MIN

WELL CHARACTERISTICS.--Drilled observation well, diameter 6 in., depth 215 ft, cased to 9 ft.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,518 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of pipe on instrument shelf, 2.52 ft above land-surface datum.

REMARKS. - In addition to the daily mean water level table shown below, daily maximum and minimum water levels are available from the District Office. PERIOD OF RECORD.—Aug. 1974 to Aug. 1977; June 2001 to current year.

EXTREMES FOR PERIOD OF RECORD.—The extremes shown are extremes of the instantaneous depth below land surface for the period of record

indicated above.

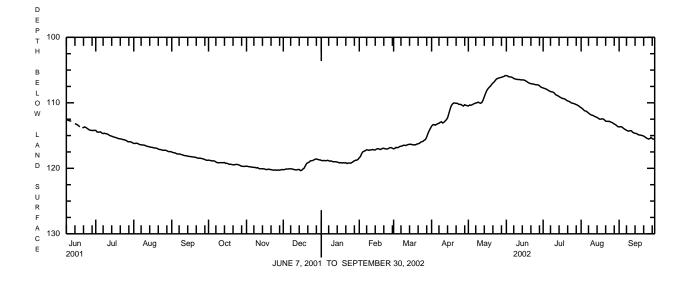
Highest water level, 102.62 ft below land-surface datum, May 2, 1976; lowest, 120.40 ft below land-surface datum, Dec. 15, 16, 2001.

EXTREMES FOR CURRENT YEAR.-Highest water level, 105.80 ft below land-surface datum, June 2; lowest, 120.40 ft below land-surface datum, Dec. 15, 16.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN VALUES DAY OCT NOV DEC FEB MAR MAY JUN JUL AUG SEP JAN APR 114.21 114.44 114.49 114.45 114.45 116.19 116.21 116.17 116.19 116.30 117.51 117.60 117.62 117.67 117.78 1 2 3 4 5 --114.62 114.70 114.64 114.71 114.74 116.38 116.41 116.43 116.45 116.48 6 7 112.55 112.64 112.70 112.77 ------------------------8 9 10 ------------------------114.81 114.95 115.04 115.09 115.17 116.59 116.64 116.68 116.73 116.78 ------------------------118.04 118.07 118.09 11 12 13 14 15 112.80 ---------------------113.17 113.27 118.14 118.18 115.24 115.29 115.34 115.43 115.48 116.80 116.85 116.91 116.90 116.96 113.36 113.50 113.67 118.20 118.23 118.26 118.28 ------------16 17 18 19 20 ---------------------------------------113.78 118.30 113.78 113.68 113.78 113.91 114.04 115.51 115.54 115.60 115.64 115.69 21 22 23 24 25 117.06 118.36 117.13 117.14 117.21 117.25 118.43 118.47 118.44 118.49 --114.15 114.21 114.22 114.22 114.21 115.77 115.92 115.95 115.94 116.00 116.10 117.24 117.24 117.32 117.43 117.46 117.44 26 27 28 29 30 31 118.58 118.66 118.75 118.78 --

113.54 114.22 112.55

116.10 114.21


116.81 117.46 116.17

VENANGO COUNTY

411958079540202. Local number, VE 57--Continued.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	118.75	119.68	120.22	118.79	118.39	117.02	113.56	110.48	105.84	107.73	110.75	113.68
2	118.78	119.70	120.19	118.84	118.18	116.96	113.36	110.34	105.89	107.80	110.88	113.65
3	118.83	119.76	120.12	118.80	117.73	116.80	113.32	110.38	106.03	107.87	111.08	113.67
4	118.87	119.76	120.11	118.83	117.46	116.86	113.41	110.30	106.04	107.95	111.23	113.81
5	118.86	119.81	120.10	118.84	117.40	116.79	113.29	110.20	106.07	108.08	111.26	113.96
6	118.90	119.84	120.07	118.78	117.29	116.67	113.19	110.11	106.14	108.18	111.40	114.08
7	119.03	119.86	120.09	118.83	117.17	116.62	113.12	110.03	106.28	108.28	111.56	114.19
8	119.13	119.86	120.08	118.91	117.20	116.59	112.98	110.00	106.35	108.33	111.71	114.29
9	119.15	119.95	120.16	118.87	117.26	116.48	112.90	109.90	106.39	108.36	111.84	114.32
10	119.14	119.89	120.19	118.96	117.18	116.49	113.08	110.00	106.44	108.48	111.88	114.25
11 12 13 14 15	119.14 119.13 119.15 119.12 119.25	120.02 120.08 120.07 120.06 120.08	120.24 120.24 120.18 120.18 120.35	119.00 119.00 119.00 119.06 119.10	117.19 117.12 117.20 117.19 117.07	116.52 116.43 116.35 116.35	112.98 112.79 112.59 112.31 111.67	110.07 109.95 109.58 109.07 108.58	106.45 106.45 106.51 106.49 106.51	108.72 108.84 108.92 109.04 109.16	111.97 112.07 112.16 112.23 112.36	114.27 114.49 114.60 114.65 114.69
16	119.23	120.12	120.31	119.18	117.00	116.39	111.02	108.13	106.57	109.26	112.49	114.79
17	119.30	120.19	120.11	119.13	117.04	116.43	110.47	107.85	106.67	109.34	112.50	114.90
18	119.40	120.18	119.98	119.19	117.13	116.40	110.19	107.63	106.80	109.38	112.45	114.92
19	119.37	120.12	119.61	119.15	117.07	116.42	110.03	107.45	106.93	109.45	112.47	114.96
20	119.42	120.18	119.28	119.18	116.95	116.29	110.04	107.19	107.02	109.61	112.61	115.01
21	119.46	120.20	119.15	119.14	116.95	116.26	110.07	106.98	107.08	109.71	112.80	115.08
22	119.47	120.24	119.06	119.27	117.01	116.19	110.08	106.82	107.11	109.78	112.82	115.19
23	119.42	120.27	118.88	119.21	117.05	116.02	110.21	106.57	107.14	109.87	112.84	115.35
24	119.40	120.28	118.83	119.18	117.04	115.94	110.25	106.35	107.19	110.01	112.82	115.44
25	119.43	120.25	118.82	119.22	116.96	115.88	110.25	106.28	107.24	110.07	112.93	115.53
26 27 28 29 30 31	119.50 119.59 119.69 119.69 119.72 119.68	120.30 120.24 120.29 120.23 120.18	118.71 118.61 118.58 118.63 118.70 118.72	119.11 118.98 118.85 118.77 118.75 118.63	116.84 116.84 116.94	115.71 115.60 115.22 114.68 114.27 113.91	110.39 110.49 110.29 110.38 110.44	106.20 106.15 106.10 106.04 105.97 105.85	107.25 107.27 107.40 107.57 107.67	110.11 110.19 110.27 110.36 110.47 110.62	112.99 113.10 113.24 113.33 113.48 113.64	115.48 115.28 115.47 115.55 115.56
MEAN	119.26	120.06	119.63	118.99	117.21	116.16	111.64	108.28	106.69	109.17	112.29	114.70
MAX	119.72	120.30	120.35	119.27	118.39	117.02	113.56	110.48	107.67	110.62	113.64	115.56
MIN	118.75	119.68	118.58	118.63	116.84	113.91	110.03	105.85	105.84	107.73	110.75	113.65

WARREN COUNTY

414159079213601. Local number, WR 50.

LOCATION.--Lat 41°41'59", long 79°21'36", Hydrologic Unit 05010003, at State Game Land Number 86.

Owner: U.S. Geological Survey.

Owner: U.S. Geological Survey.

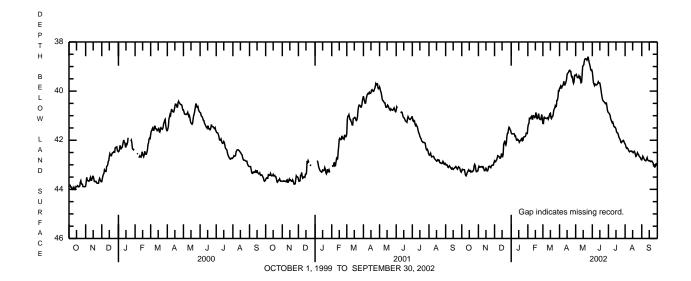
AQUIFER.--Shale of Venango Formation of Late Devonian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 105 ft, cased to 46 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,170 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

REMARKS.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1987, are available


from the District Office.

PERIOD OF RECORD.--August 1972 to current year.

EXTREMES FOR PERIOD OF RECORD.--Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 38.56 ft below land-surface datum, May 24, 2002; lowest, 45.42 ft below land-surface datum, Nov. 2, 1983. **EXTREMES FOR CURRENT YEAR.**--Highest water level, 38.56 ft below land-surface datum, May 24; lowest, 43.45 ft below land-surface datum,

Oct. 9.

	DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	43.25	43.13	42.84	41.70	41.47	41.32	39.89	39.36	39.22	40.87	42.15	42.80
2	43.18	43.06	42.88	41.74	41.35	41.32	39.86	39.32	39.43	40.90	42.21	42.74
3	43.19	43.10	42.88	41.74	41.32	41.07	39.80	39.37	39.65	40.93	42.30	42.65
3 4	43.20	43.10	42.82	41.74	41.08	41.06	39.88	39.45	39.71	40.98	42.33	42.69
5	43.20	43.08	42.80	41.74	41.13	41.11	39.87	39.45	39.77	41.11	42.31	42.75
6	43.20	43.09	42.72	41.73	41.11	41.10	39.78	39.45	39.71	41.18	42.34	42.79
7	43.32	43.07	42.63	41.75	41.05	41.11	39.78	39.38	39.73	41.24	42.39	42.82
8	43.42	43.07	42.64	41.84	41.02	41.12	39.71	39.44	39.76	41.29	42.43	42.84
9	43.45	43.11	42.67	41.83	41.14	41.10	39.60	39.38	39.74	41.26	42.47	42.83
10	43.40	43.09	42.68	41.92	41.14	41.08	39.74	39.55	39.73	41.33	42.45	42.77
11	43.33	43.16	42.73	42.00	41.00	41.14	39.75	39.66	39.68	41.43	42.44	42.71
12	43.28	43.24	42.73	42.00	41.00	41.08	39.70	39.64	39.62	41.46	42.44	42.80
13	43.23	43.24	42.66	41.96	41.05	40.99	39.62	39.34	39.67	41.46	42.46	42.82
14	43.20	43.20	42.54	41.98	41.08	40.92	39.53	39.00	39.66	41.49	42.45	42.84
15	43.26	43.14	42.66	42.01	41.05	40.90	39.32	38.96	39.67	41.54	42.48	42.84
16	43.26	43.18	42.67	42.08	40.87	41.09	39.28	38.94	39.79	41.65	42.51	42.83
17	43.24	43.25	42.58	42.04	40.99	41.12	39.25	38.79	39.93	41.69	42.48	42.87
18	43.30	43.25	42.16	42.01	41.12	41.04	39.22	38.70	40.09	41.70	42.45	42.87
19	43.28	43.19	42.10	42.01	41.12	41.04	39.16	38.68	40.24	41.74	42.48	42.85
20	43.26	43.07	42.02	41.94	41.04	40.98	39.15	38.68	40.34	41.84	42.58	42.85
21	43.28	43.07	42.16	41.92	40.92	40.81	39.20	38.70	40.39	41.90	42.66	42.89
22	43.25	43.06	42.20	42.02	41.07	40.73	39.20	38.74	40.42	41.94	42.64	42.92
23	43.22	43.10	42.11	42.00	41.14	40.69	39.38	38.69	40.44	41.98	42.58	43.01
24	43.05	43.12	41.85	41.88	41.16	40.60	39.44	38.60	40.46	42.08	42.51	43.07
25	42.98	43.06	41.72	41.86	41.16	40.64	39.42	38.71	40.51	42.10	42.56	43.09
26	43.02	43.02	41.71	41.86	41.04	40.62	39.60	38.82	40.52	42.07	42.58	43.08
27	43.18	43.01	41.55	41.85	40.95	40.38	39.68	38.91	40.46	42.03	42.64	42.97
28	43.28	43.02	41.47	41.81	41.16	40.37	39.61	39.00	40.60	42.03	42.68	42.96
29	43.28	43.01	41.50	41.71		40.26	39.36	39.13	40.76	42.01	42.69	43.02
30	43.26	42.90	41.57	41.71		39.99	39.37	39.16	40.85	42.06	42.73	43.03
31	43.25		41.60	41.72		40.00		39.14		42.12	42.79	
MEAN	43.24	43.11	42.32	41.87	41.10	40.86	39.54	39.10	40.02	41.59	42.49	42.87
MAX	43.45	43.25	42.88	42.08	41.47	41.32	39.89	39.66	40.85	42.12	42.79	43.09
MIN	42.98	42.90	41.47	41.70	40.87	39.99	39.15	38.60	39.22	40.87	42.15	42.65

WASHINGTON COUNTY

400233080261301. Local number, WS 155.

LOCATION.--Lat 40°02'33", long 80°26'13", Hydrologic Unit 05030106, at State Game Land Number 245, near Good Intent.

Owner: U.S. Geological Survey.

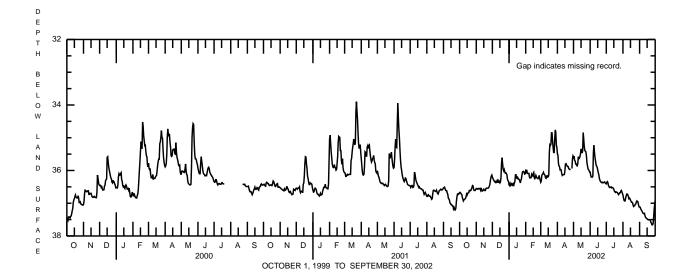
AQUIFER.--Washington Formation of Early Permian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 160 ft, cased to 19 ft, open hole.

INSTRUMENTATION.--Data collection platform with 60-minute recording interval since Aug. 23, 2001. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,110 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of casing, 2.00 ft above land-surface datum.

REMARKS.--In addition to the daily maximum water level table shown below, daily minimum and mean water levels, since October 1987, are available from the District Office.


PERIOD OF RECORD.--July 1971 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 32.25 ft below land-surface datum, Jan. 14, 1974; lowest, 39.01 ft below land-surface datum, July 11, 1971. **EXTREMES FOR CURRENT YEAR**.--Highest water level, 34.56 ft below land-surface datum, Mar. 21; lowest, 37.66 ft below land-surface datum,

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Sept. 24, 25.

		DEI 1	II BEEG W E	in vib bold / i	CE (WITTEN		JM VALUES		OBER 2001	TO BEI TEM	DER 2002	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	36.67	36.55	36.21	36.44	36.01	36.36	35.49	35.60	36.05	36.41	36.75	37.12
2	36.67	36.55	36.24	36.46	36.04	36.32	35.53	35.56	36.15	36.36	36.84	37.12
3	36.69	36.57	36.28	36.40	35.98	36.15	35.79	35.69	36.20	36.34	36.91	37.17
4	36.72	36.57	36.31	36.46	36.09	36.12	35.86	35.71	36.19	36.37	36.93	37.20
5	36.73	36.55	36.34	36.44	36.09	36.10	35.89	35.80	36.20	36.46	36.93	37.23
6	36.82	36.56	36.33	36.38	36.09	36.06	35.98	35.80	36.17	36.49	36.84	37.26
7	36.87	36.55	36.37	36.45	36.09	36.11	35.97	35.85	35.44	36.52	36.78	37.30
8	36.93	36.55	36.37	36.46	36.20	36.12	35.98	35.86	35.23	36.52	36.72	37.31
9	36.90	36.60	36.33	36.41	36.23	36.15	36.09	35.78	35.44	36.51	36.72	37.32
10	36.88	36.53	36.30	36.44	36.22	36.23	36.15	35.58	35.60	36.50	36.74	37.31
11	36.87	36.62	36.36	36.38	36.22	36.24	36.13	35.64	35.72	36.53	36.79	37.38
12	36.85	36.63	36.36	36.32	36.12	36.17	36.13	35.63	35.83	36.52	36.86	37.43
13	36.80	36.62	36.31	36.13	36.16	36.16	36.13	35.57	35.87	36.53	36.84	37.45
14	36.72	36.58	36.34	36.13	36.17	36.20	36.12	35.49	35.90	36.54	36.86	37.46
15	36.75	36.57	36.38	36.23	36.09	36.19	36.01	35.34	35.98	36.57	36.90	37.48
16	36.70	36.61	36.35	36.24	36.06	36.13	35.80	35.40	36.06	36.63	36.94	37.49
17	36.68	36.61	36.22	36.21	36.22	35.45	35.79	35.47	36.12	36.65	36.97	37.51
18	36.68	36.61	35.79	36.26	36.25	35.21	35.83	35.40	36.23	36.67	36.97	37.50
19	36.61	36.55	35.61	36.26	36.22	35.23	35.86	34.84	36.29	36.65	36.99	37.50
20	36.61	36.54	35.79	36.28	36.15	35.20	35.88	35.04	36.33	36.66	37.07	37.50
21	36.62	36.54	35.96	36.32	36.19	34.85	35.88	35.27	36.35	36.67	37.10	37.53
22	36.61	36.54	36.01	36.38	36.23	34.85	35.94	35.39	36.37	36.68	37.08	37.58
23	36.56	36.54	35.97	36.30	36.24	35.10	35.96	35.41	36.36	36.72	37.07	37.61
24	36.52	36.53	36.04	36.26	36.25	35.29	35.96	35.43	36.36	36.74	37.03	37.66
25	36.46	36.49	36.08	36.15	36.22	35.45	35.99	35.55	36.38	36.71	37.02	37.66
26 27 28 29 30 31	36.47 36.57 36.61 36.61 36.61 36.58	36.45 36.34 36.24 36.17 36.14	36.07 36.09 36.13 36.26 36.31 36.34	36.03 36.05	36.15 36.23 36.30 	35.45 35.05 34.76 34.83 35.21 35.30	 35.94 35.65 35.56	35.76 35.86 35.95 35.98 36.00 36.05	36.37 36.36 36.35 36.38 36.40	36.68 36.63 36.61 36.65 36.70	36.96 36.93 36.95 36.96 37.05 37.11	37.63 37.47 37.21 37.03 36.92
MEAN	36.69	36.52	36.19	36.28	36.16	35.68	35.90	35.60	36.09	36.58	36.92	37.38
MAX	36.93	36.63	36.38	36.46	36.30	36.36	36.15	36.05	36.40	36.74	37.11	37.66
MIN	36.46	36.14	35.61	36.03	35.98	34.76	35.49	34.84	35.23	36.34	36.72	36.92

WESTMORELAND COUNTY

402138079031802. Local number, WE 300.

LOCATION.--Lat 40°21'38", long 79°03'18", Hydrologic Unit 05010007, at State Game Land Number 42.

16.52

15.40

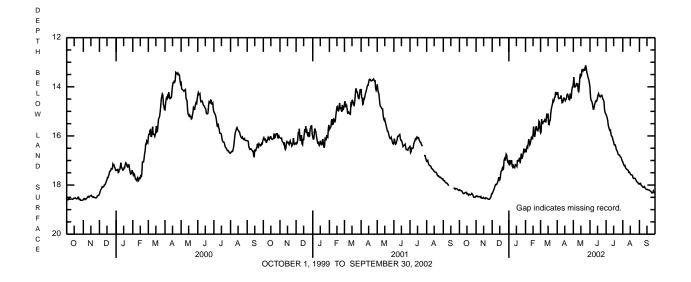
Owner: U.S. Geological Survey.

18.19

MTN

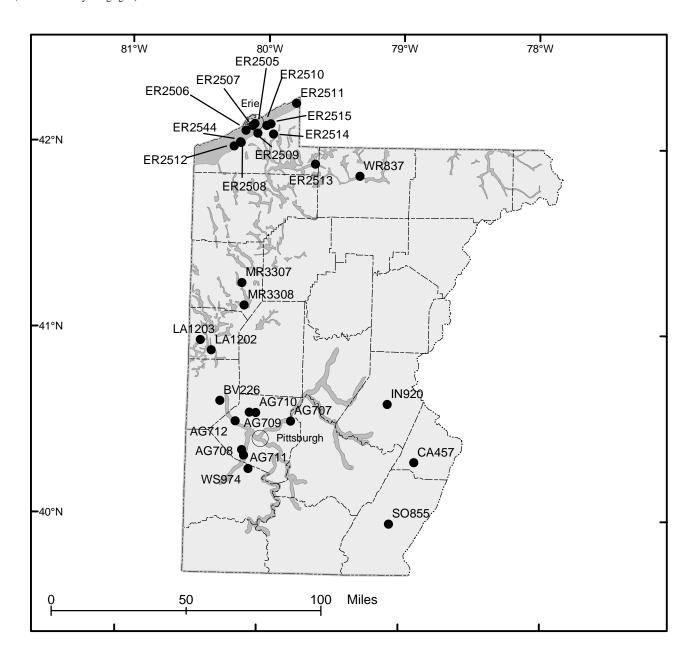
AQUIFER.--Shale of Clarion Formation of Middle Pennsylvanian age.

WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 6 in., depth 110 ft, cased to 22 ft, open hole.


INSTRUMENTATION.--Data collection platform with 60-minute recording interval since Sept. 19, 2001. Satellite telemetry at station.

DATUM.--Elevation of land-surface datum is 1,270 ft above National Geodetic Vertical Datum of 1929, from topographic map. Measuring point: Top of metal cover, 3.02 ft above land-surface datum. Prior to Sept. 19, 2001, top of plywood cover, 3.05 ft above land-surface datum. PERIOD OF RECORD.--February 1968 to current year.

EXTREMES FOR PERIOD OF RECORD. -- Prior to October 2000, the extremes shown were based on extremes of the daily maximum depth below landsurface datum. Since that date, the extremes are based on the instantaneous depth below land-surface datum. Highest water level, 13.00 ft below land-surface datum, May 23, 24, 2002; lowest, 29.22 ft below land-surface datum, July 3, 1968.


EXTREMES FOR CURRENT YEAR.--Highest water level, 13.00 ft below land-surface datum, May 23, 24; lowest, 18.58 ft below land-surface datum, Nov. 24-26.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MAXIMUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 17.15 18.19 18.45 18.35 16.53 15.88 14.24 13.85 14.04 15.13 17.06 17.96 1 18.44 17.17 18.20 18.30 16.67 15.84 14.24 13.61 14.42 15.19 17.12 17.93 3 18.22 18.47 18.24 16.98 16.52 15.32 14.43 13.97 14.55 15.27 17.19 17.93 18.23 18.47 18 19 17.11 16.43 15.50 14.48 14.01 14.58 15.38 17.21 18.00 17.07 18.23 17.20 5 18.46 18.13 16.47 15.50 14.46 13.98 14.64 15.57 18.02 17.29 17.32 6 7 18.26 18.48 18.05 16.99 16.31 15.43 14.46 13.94 14.76 15.65 18.05 17.21 17.26 18.31 18.47 17.99 16.13 15.40 14.46 13.84 14.91 15.74 18.08 18.34 18.47 17.97 16.24 15.41 14.35 14.91 15.78 17.36 13.92 18.09 18.35 18 50 17.98 17.95 17.16 16.36 15.34 14 49 13 86 14.79 15.76 17.37 17.38 18 09 14.69 10 18.47 17.26 15.38 18.34 16.30 14.65 14.15 15.93 18.06 14.61 14.57 11 18.32 18.52 17.88 17.30 16.16 15.45 14.64 14.23 16.00 17.40 18.09 17.30 18.54 12 18.30 17.83 16.07 15.21 14.58 13.97 16.02 17.48 18.14 18.31 18.54 17.68 17.17 16.12 15.09 14.46 13.66 14.59 16.09 17.47 18.16 14 18.30 18 51 17.74 17.19 16 12 15 20 14 46 13 47 14.54 16 19 17.49 18 17 18.36 17.79 14.50 14.44 15 18.50 17.20 15.91 16.24 17.55 15.16 13.58 18.18 16 17 15.62 15.93 15.53 15.54 14.33 14.28 18.18 18.20 18.35 18.54 17.71 17.24 14.57 13.54 16 36 17.58 18.39 18.55 17.49 16.98 14.53 13.31 17.58 16.38 18.41 18.56 17.42 17.03 17.02 16.04 15.37 14.49 13.30 14.36 16.37 17.59 18.20 19 18.37 18 52 17.40 15 92 15 36 14 33 13 35 14.38 16 45 17.61 17.70 18 21 20 18.39 18.53 17.31 14.30 13.29 14.41 18.21 16.95 15.68 15.08 16.55 18.53 18.55 21 17.37 17.34 16.89 17.11 15.60 15.74 14.38 14.35 17.73 17.73 18 40 14 90 14.33 13 29 16 60 18.24 18.39 14.43 13.35 18.26 14.80 16.63 23 18.38 18.57 17.00 16.92 15.77 14.71 14.52 13.20 14.34 16.73 17.72 18.28 24 18.34 18.58 16.93 16.72 15.79 14.56 14.53 13.13 14.42 16.76 17.73 18.32 25 18.37 17.00 16.91 15.67 14.28 13.24 14.50 17.78 18.58 14.61 16.78 18.32 16.78 26 18.40 18.58 16.88 16.90 15.40 14.56 14.42 13.41 14.53 17.81 18.31 27 18.47 18.54 16.74 16.79 15.44 14.43 14.48 13.48 14.61 16.84 17.86 18.24 14.42 14.21 17.88 17.89 28 18.50 18.51 16.78 16.67 15.72 14.17 13.59 14.91 16.86 18.30 29 18.50 18.44 17.00 14.02 15.04 16.52 13.66 16.88 18.32 30 17.06 16.65 14.27 14.02 13.74 15.09 17.94 18.35 18.32 31 18.47 17.03 16.62 ---14.30 13.87 17.02 17.96 MEAN 18.35 18.51 17.57 17.01 16.02 15.09 14.41 13.64 14.57 17.55 16.22 18.16 MAX 18.50 18.58 18.35 18.35 16.74 17.30 16.67 15.88 14.21 14.65 14.02 14.23 13.13 15.09 14.04 17.02 15.13 17.96 17.06 18.32 17.93

GROUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES STATEWIDE ASSESSMENT OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUND WATER

The following table contains water-quality data from wells sampled as part of a study of MTBE in ground water in Pennsylvania. The U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, conducted the study. The wells were sampled for MTBE, a gasoline additive, BTEX compounds (benzene, toluene, ethyl benzene, and xylene), pH, specific conductance, and temperature. Samples were collected from 86 wells in four geologic settings, and in various land use settings, across the state. Other data for the project can be found in the annual Water Data Reports PA-02-1, and PA-02-2. For additional information, contact Steve McAuley at the U.S. Geological Survey, 1000 Church Hill Road, Pittsburgh, PA 15025; 412-490-3801 (email: smcauley@usgs.gov).



Figure 7.--Location of wells sampled as part of the MTBE in ground water project.

GROUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES STATEWIDE ASSESSMENT OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUND WATER PROJECT--Continued

REMARKS.--Explanation of column headings--SITE IDENTIFIER: 15-digit unique identifier based on site latitude (first six digits), longitude (digits seven through thirteen), and a 2-digit sequence number suffix; ELEVATION OF LAND SURFACE: land-surface at well site in feet above sea level; All samples taken while pumping the well; µS/CM: microsiemens per centimeter at 25 degrees Celsius; DEG C: degrees Celsius; µG/L: micrograms per liter; "<" = less than; "E" = estimated. Quality-control data for a replicate sample are shown for Local Well Number AG 710 on August 20, 2001 at 1220.

WATER-QUALITY DATA, WATER YEARS OCTOBER 2000 TO SEPTEMBER 2002

SITE IDENTIFIER	LOCAL WELL NUMBER	DATE	TIME	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	DEPTH BELOW LAND SURFACE (WATER LEVEL (FEET) (72019)	DEPTH OF WELL, TOTAL (FEET) (72008)	ELEV. OF LAND SURFACE DATUM (FT. ABOVE NGVD) (72000)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (µS/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	XYLENE WATER UNFLTRD REC (µG/L) (81551)
					ALLEGHE	ENY COUNT	ď					
402056080064301 402240080073001 403154080103401 403212079465801 403441080015401 403441080015401 403447080044101	AG 711 AG 708 AG 712 AG 707 AG 710 AG 710 AG 709	08-23-01 08-06-01 02-14-02 07-23-01 08-20-01 08-20-01 08-17-01	1025 1530 1030 1100 1215 1220 1140	1028 1028 1028 1028 1028 1028 1028	80020 80020 80020 80020 80020 80020 80020	9.33 45.00 12.90	108 80 60 60 131 131 185	850 860 730 755 1200 1200 1250	7.4 7.2 7.5 7.1 8.2 	2250 3090 642 491 1200 1280	14.5 15.0 14.0 15.0 13.0 14.0	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2
					BEAVER	R COUNTY						
403816080172401	BV 226	08-16-01	1045	1028	80020		100	1010	8.7	535	14.0	<.2
					CAMBRIA	A COUNTY						
401929078540901	CA 457	10-25-01	0830	1028	80020		225	1750	7.2	580	12.0	<.2
	ERIE COUNTY											
415441079383101 415958080140701 420106080110401 420123080112201 420405079570501	ER 2513 ER 2512 ER 2508 ER 8544 ER 2514	10-30-01 08-27-01 11-07-01 08-27-01 11-07-01	0940 1340 1030 1130 1730	1028 1028 1028 1028 1028	80020 80020 80020 80020 80020	 33.25 63.78 4.60	80 45 43 83.1 20	1680 935 990 975 1345	7.6 7.1 7.7 7.7 7.4	272 413 426 567 1390	13.0 15.0 12.0 13.5 13.0	<.2 <.2 <.2 <.2 <.2
420417080034901 420504080090301 420640080061101 42064608000501 420717080051301 420720079581501 421402079471401	ER 2509 ER 2505 ER 2507 ER 2510 ER 2506 ER 2515 ER 2511	11-07-01 08-28-01 10-09-01 11-07-01 10-09-01 11-02-01 11-08-01	1345 0820 1630 1610 1115 1100 0920	1028 1028 1028 1028 1028 1028 1028	80020 80020 80020 80020 80020 80020 80020	21.00 11.71 5.88 62.85 17.80	100 24 24.1 25 19.3 90 88	1045 740 710 970 4 670 1140 495	7.7 7.6 7.0 7.4 9.1 8.1 7.5	482 1360 768 763 2610 813 1330	13.0 12.5 16.5 12.0 13.0 13.0	<.2 <.2 <.2 <.2 E.3 <.2 <.2
					INDIANA	COUNTY						
403802079054701	IN 920	10-30-01	1610	1028	80020		60	1350	8.4	369	13.0	<.2
					LAWRENCE	E COUNTY						
405423080213701 405739080263001	LA 1202 LA 1203	11-15-01 11-15-01	1600 1725	1028 1028	80020 80020	29.44	79 100	830 1020	6.8 8.8	570 883	13.0 11.5	<.2 <.2
					MERCER (COUNTY						
410905080080101 411612080091501	MR 3308 MR 3307	11-15-01 11-15-01	1225 1000	1028 1028	80020 80020	31.30	64.2 65	1280 1250	6.9 7.4	626 1390	11.5 11.0	<.2 <.2
					SOMERSET	r county						
395946079043401	SO 855	10-18-01	1345	1028	80020		47	2110	4.8	87	12.5	<.2
					WARREN	COUNTY						
415101079190301	WR 837	10-30-01	1150	1028	80020		51	1205	7.4	303	11.0	<.2
					WASHINGT	TON COUNTY	ď					
401644080043701	WS 974	07-16-01	0850	1028	80020		55	990	7.3	1150	15.5	<.2

GROUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES STATEWIDE ASSESSMENT OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUND WATER PROJECT--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2002

DATE	BENZENE 14BRFL- SURROG VOC UNFLTRD REC PERCENT (99834)	BENZENE TOTAL (µG/L)	ETHANE 12DICL SURROG VOC UNFLTRD REC PERCENT (99832)	TOTAL (µG/L)	REC (µG/L)	XYLENE WATER UNFLTRD REC (µG/L)	WATER WHOLE TOTAL (µG/L)	VOC UNFLTRD	TOTAL (µG/L)	ALYSIS (NO.
			1	ALLEGHENY	COUNTY					
08-23-01 08-06-01 02-14-02 07-23-01 08-20-01 08-20-01 08-17-01	111 79.6 97.3 95.5 110 108 114	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	103 115 103 103 99.2 94.9	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	97.1 98.6 100 101 96.9 102	.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	2.01 7.01 6.02 7.01 2.01 2.01 2.01
				BEAVER C						
08-16-01	111	<.2	99.2	<.2	<.2	<.2	<.2	97.1	<.2	2.01
				CAMBRIA	COUNTY					
10-25-01	97.0	<.2	117	<.2	<.2	<.2	<.2	105	<.2	6.01
				ERIE CO	UNTY					
10-30-01 08-27-01 11-07-01 08-27-01 11-07-01	84.2 106 84.4 103 84.7	<.2 <.2 <.2 <.2 <.2	118 102 120 95.4 118	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2	< 2	102 95.8 103 96.2 102	<.2 <.2 <.2 <.2 <.2	6.01 2.01 6.01 2.01 6.01
11-07-01 08-28-01 10-09-01 11-07-01 10-09-01 11-02-01 11-08-01	86.5 106 99.7 84.4 96.5 82.8 86.7	<.2 <.2 <.2 <.2 <.2 1.0 <.2 <.2 <.2	121 96.1 99.0 119 107 118 119			<.2 <.2 <.2 <.2 E.2 <.2 <.2	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	102 96.1 83.5 103 98.5 100	<.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	6.01 2.01 2.01 6.01 6.01 6.01 6.01
				INDIANA	COUNTY					
10-30-01	83.6	<.2	112	<.2	<.2	<.2	<.2	101	<.2	6.01
				LAWRENCE	COUNTY					
11-15-01 11-15-01	96.3 93.2	<.2 <.2	102 105	<.2 <.2	<.2 <.2	<.2 <.2	<.2 <.2	98.8 101	<.2 <.2	7.01 7.01
				MERCER C	OUNTY					
11-15-01 11-15-01		<.2 <.2		<.2 <.2	<.2 <.2	<.2 <.2	<.2 <.2	99.6 99.2	<.2 <.2	7.01 7.01
				SOMERSET	COUNTY					
10-18-01	93.0	<.2	112	<.2	<.2	<.2	<.2	104	<.2	6.01
				WARREN C	YTNUC					
10-30-01	95.6	<.2	123	<.2	<.2	<.2	<.2	106	<.2	6.01
			Ţ	WASHINGTO	N COUNTY					
07-16-01	90.3	<.2	91.0	<.2	<.2	<.2	<.2	101	<.2	5.01

GROUND-WATER DATA COLLECTED AT SPECIAL-STUDY SITES STATEWIDE ASSESSMENT OF METHYL-TERT-BUTYL-ETHER (MTBE) IN GROUND WATER PROJECT--Continued

REMARKS.--The following are quality control samples (blanks) processed during 2001 water year and are defined in the explanation of records section entitled, "Water Quality-Control Data"; "<" = less than.

QUALITY-CONTROL DATA, WATER YEARS OCTOBER 2000 TO SEPTEMBER 2001

SITE IDENTIFIE	LOCAL WELL R NUMBER	DATE	TIME	AGENCY COL- LECTING SAMPLE (CODE NUMBER) (00027)	AGENCY ANA- LYZING SAMPLE (CODE NUMBER) (00028)	XYLENE WATER UNFLTRD REC (µG/L) (81551)	BENZENE 14BRFL- SURROG VOC UNFLTRD REC PERCENT (99834)	BENZENE TOTAL (µG/L) (34030)	ETHANE 12DICL SURROG VOC UNFLTRD REC PERCENT (99832)	ETHYL- BENZENE TOTAL (µG/L) (34371)	METHYL TERT- BUTYL ETHER WAT UNF REC (µG/L) (78032)	META/ PARA- XYLENE WATER UNFLTRD REC (µG/L) (85795)
402617080084200	PITTSBURGH OFFICE	07-17-01	1500	1028	80020	<.2	92.6	<.2	89.8	<.2	<.2	<.2
402617080084200	PITTSBURGH OFFICE	08-29-01	1400	1028	80020	<.2	110	<.2	98.5	<.2	<.2	<.2
		DATE 07-17-01 08-29-01	O- XYLENE WATER WHOLE TOTAL (µG/L) (77135)	TOLUENE D8 SURROG VOC UNFLTRD REC PERCENT (99833) 101 94.6	TOTAL	BLANK, TYPE OF SAMPLE (CODE) (99102) 80 30	SET NUMBER VOC AN ALYSIS (NO.) (99931 5.01 2.01					

INDEX

	Page		Page
Abbreviations, Explanation of parameter code		Butler County, Ground-water records in	253
Access to USGS water data			
Accuracy of records, Explanation of		Cairnbrook, Clear Shade Creek above confluence near	
Acid neutralizing capacity (ANC), Definition of		Caldwell Creek, West Branch, near Grand Valley	
Advancing trials and the (ATR) Definition of		Callensburg, Clarion River at	
Adenosine triphosphate (ATP), Definition of		Cambria County, Ground-water-quality records in Carnegie, Chartiers Creek at	
Agency codes, Explanation of		Casselman River, at Grantsville, MD	
Algal growth potential (AGP), Definition of		at Markleton	
Alkalinity, Definition of		near Salisbury	
Allegheny County, Ground-water records in		Cells/volume, Definition of	
Ground-water-quality records in		Cfs-day, Definition of	
Allegheny Reservoir		Channel bars, Definition of	
Allegheny River,		Chartiers Creek at Carnegie	
at Eldred	44-46	Chautauqua Lake	
at Franklin		Cheat River at Point Marion	
at Kennerdell	211-233	Chemical oxygen demand (COD), Definition of	
at Kittanning	100-102	Cherry Hill, Conneaut Creek near	209,211-233
at Natrona		Clarion County, Ground-water records in	
at Oakmont, at Hulton bridge	235-236	Clarion River, at Callensburg	208,211-233
at Parker	89-91	at Cooksburg	84-86
at Pittsburgh, at 9th Street bridge	237-238	at Johnsonburg	
at Port Allegany	42-43	at Ridgway	
at Salamanca, NY	49-50	near Piney	
at Warren		West Branch, at Wilcox	
at West Hickory		Clarion River Basin, Lake in	
Allegheny River Basin, Lakes and reservoirs in		Clear Shade Creek above confluence near Cairnbrook	
Analysis of samples collected at special-study sites		Clostridium perfringens, Definition of	
Annual runoff, Definition of		Codes, remark, Explanation of	
Annual 7-day minimum, Definition of		Agency, Explanation of	
Aroclor, Definition of		Coliphages, Definition of	
Armstrong County, Ground-water records in		Color unit, Definition of	
Artificial substrate, Definition of		Conemaugh River, at Minersville	
Ash mass, Definition of		at Seward	
Aspect, Definition of		at Tunnelton	
Avaion, Omo River above Newen Island at	244	Conewango Creek at Russell	
Bacteria, Definition of	20	Confluence, Youghiogheny River below	
Bakersville, Kooser Run at Kooser State Park near		Conneaut Creek, at Conneaut, OH	
Bankfull stage, Definition of		near Cherry Hill	
Base discharge, Definition of		Connellsville, Youghiogheny River at	
Base flow, Definition of		Connoquenessing Creek, at Renfrew	
Beaver County, Ground-water records in		near Zelienople	
Ground-water-quality records in		Constituent Definitions	
Beaver Falls, Beaver River at		Contents, Definition of	21
Beaver River, at Beaver Falls		Continuous-record station, Definition of	21
at Wampum	182-184	Control, Definition of	21
Beaver River Basin, Lakes and reservoirs in		Control structure, Definition of	21
Bedload, Definition of	20	Cooksburg, Clarion River at	
Bedload discharge (tons per day), Definition of		Cooperation	1-2
Bed material, Definition of	20	Crawford County, Ground-water records in	256
Benthic organisms, Definition of		Creekside, Crooked Creek above McKee Run at	208
Biochemical oxygen demand (BOD), Definition of		Crest-stage partial-record stations,	
Biomass, Definition of		Annual maximum discharge at	206-207
Biomass pigment ratio, Definition of		Crooked Creek,	
Blacklick Creek at Josephine		above McKee Run at Creekside	
Blooming Valley, Woodcock Creek at		at Idaho	
Blue-green algae, Definition of	21	Cubic foot per second (cfs), (ft ³ /s), Definition of	
Bottom material: See bed material.	F4 1F2 000 5 10	Cubic foot per second-day, Definition of	21
Braddock, Monongahela River at		Cubic foot per second per square mile (cfsm),	~ -
Bradford, Tunungwant Creek at		[(ft ³ /s)/mi ²], Definition of	21
Brandy Run near Girard		Defference and details and a Rock	:
Brokenstraw Creek at Youngsville		Daily mean suspended-sediment concentration, Definit	
Buffalo Creek near FreeportBulk electrical conductivity, Definition of		Daily-record station, Definition of	
bulk electrical conductivity, Denninon of		Data conection platform, Definition of	22

	Page		Page
Data logger, Definition of	22	Friendsville, MD, Youghiogheny River at	139-140
Datum, Definition of	22		
Deep Creek Reservoir		Gage datum, Definition of	
Definition of terms		Gage height (GH), Definition of	
Diatoms, Definition of		Gage values, Definition of	
Diel, Definition of	22	Gaging station, Definition of	
Discharge,	200 200	Gaging stations, discontinued, List of	
at miscellaneous sites		List of, in downstream order	vii-ix
at partial-record stations Definition of		Gas chromatography flame ionization detector, Definition of	23
Discontinued surface-water discharge stations, List of		Genesee River at Wellsville, NY	
Discontinued surface-water-quality stations, List of		Geomorphic channel units, Definition of	
Dissolved, Definition of		Girard, Brandy Run near	
Dissolved oxygen, Definition of		Graceton, Two Lick Creek at	
Dissolved-solids concentration, Definition of		Grand Valley, West Branch Caldwell Creek near	
Diversity index, Definition of	22	Grantsville, MD,	
Downstream order system, Explanation of	7	Casselman River at	141-142
Drainage area, Definition of	22	Green algae, Definition of	23
Drainage basin, Definition of	22	Greene County,	
Dry mass, Definition of	22	Ground-water records in	261
Dry weight, Definition of		Greenville, Little Shenango River at	
Dunkard Creek at Shannopin	129-131	Ground-water-level records, Explanation of	
		Ground-water-quality records, Explanation of	
East Branch Clarion River Lake		Ground-water records, List of, by county	
East Conemaugh, Little Conemaugh River at		Guffey, Kinzua Creek near	51-52
Eldred, Allegheny River at			
Elizabeth, Monongahela River at		Habitat, Definition of	
Elk County, Ground-water records in		Habitat quality index, Definition of	
Embeddedness, Definition of		Hardness, Definition of	
Enterococcus bacteria, Definition of		Harmony, Little Connoquenessing Creek at	
EPT index, Definition ofErie County, Ground-water records in		High tide, Definition of	
Ground-water-quality records in		Homer City, Yellow Creek near	
Erie, Mill Creek at		Horizontal datum: See datum	114-113
Escherichia coli, Definition of		Hydrologic Bench-Mark Network, Explanation of	6
Estimated (E) concentration value, Definition of		Hydrologic conditions, Summary of	
Etna, Little Pine Creek near		Hydrologic index stations, Definition of	
Euglenoids, Definition of		Hydrologic unit, Definition of	
Explanation of:			
Ground-water-level records	17-18	Idaho, Crooked Creek at	103-104
Ground-water-quality records	18	Imperial, Montour Run at Scott Station near	162-163
Records		Inch (in), Definition of	24
Stage and water-discharge records		Index	
Surface-water-quality-records	12-16	Indiana County, Ground-water records in	262
Water-quality-control records		Ground-water-quality records in	
Extractable organic halides (EOX), Definition of	23	Instantaneous discharge, Definition of	
		Introduction	
Fayette County, Ground-water records in		Island, Definition of	24
Fecal coliform bacteria, Definition of			2.52
Fecal-indicator bacterial project		Jefferson County, Ground-water records in	
Fecal streptococcal bacteria, Definition of		Johnsonburg, Clarion River at	
Ferndale, Stoneycreek River at		Josephine, Blacklick Creek at	111-112
Fire algae, Definition of		V	211 222
Flow duration percentiles, Definition of		Kennerdell, Allegheny River at Kingston, Loyalhanna Creek at	
Forest County, Ground-water records in		Kingston, Loyalnanna Creek at	
Franklin, Allegheny River at		Kiskiminetas River at Vandergrift	
French Creek at		Kiskiminetas River Basin, Lake in	
Freeport, Buffalo Creek near		Kittanning, Allegheny River at	
French Creek, at Franklin		Kooser Run at Kooser State Park	
at Meadville		near Bakersville	211-233
at Utica			
at Venango		Laboratory measurements, Explanation of	14
near Wattsburg		Laboratory reporting level, Definition of	
French Creek Basin, Lakes and reservoirs in		Lake Arthur	

	Page		Page
Lakes and reservoirs:		Monongahela River, at Braddock	154-156,239-240
Allegheny Reservoir	63	at Elizabeth	136-138
Chautauqua Lake		at Pittsburgh	
Deep Creek Reservoir		at Point Marion, at Lock and Dam 8	
East Branch Clarion River Lake		at South Pittsburgh	
Lake Arthur		near Masontown	
Pymatuning Reservoir		Monongahela River Basin, Lakes and reservoirs in	
Tygart Lake		Montour Run at Scott Station near Imperial	
Union City Reservoir		Mooreheadville, Twelvemile Creek near	*
Woodcock Creek Lake		Most probable number (MPN), Definition of	
Yellow Creek Lake		Muddy Creek near Portersville	
Youghiogheny River Lake		Multiple-plate samplers, Definition of	23
Land-surface datum (lsd), Definition of Latent heat flux, Definition of		Nanograms per liter (NG/L), Definition of	25
Latitude-longitude system, Explanation of		National Atmospheric Deposition Program	
Laurel Hill Creek at Ursina		National Geodetic Vertical Datum of 1929	
Lawrence County,	143-140	(NGVD), Definition of	25
Ground-water records in	264	National Stream Quality Accounting	23
Ground-water-quality records in		Network (NASQAN), Definition of	6
Light-attenuation coefficient, Definition of		National Trends Network, Definition of	
Lipid, Definition of		National Water-quality Assessment	
Little Conemaugh River at East Conemaugh		Program (NAWQA), Definition of	6
Little Connoquenessing Creek at Harmony		Natrona, Allegheny River at	
Little Mahoning Creek at McCormick		Natural substrate, Definition of	
Little Pine Creek near Etna		Nekton, Definition of	
Little Shenango River at Greenville		Nephelometric turbidity unit (NTU), Definition of	
Long-term method detection level (LT-MDL),		New Castle, Shenango River at	
Definition of	24	Newell, Ohior River at mile 44.5 at	
Low tide, Definition of	24	North American Vertical Datum of 1988	
Loyalhanna Creek at Kingston		(NAVD 1988), Definition of	25
Lynch, Tionesta Creek at		North Edinburg, Mahoning River at	
		North Washington, Silver Creek at Wally Mill near .	211-233
McCormick, Little Mahoning Creek at	98-99	Numbering system for wells and miscellaneous sites	7
McKean County, Ground-water records in			
Macrophytes, Definition of		Oakmont, Allegheny River at Hulton bridge at	235-236
Mahoning Creek at Punxsutawney		Office addresses	xvi
Mahoning River at North Edinburg		Ohio River,	
Markleton, Casselman River at		above Newell Island at Avalon	
Masontown, Monongahela River near		at Newell, at mile 44.5	
Meadville, French Creek at	69-71	at Sewickley	
Mean concentration of suspended	2.4	Oil Creek at Rouseville	
sediment, Definition of		On site measurements and sample collection	
Mean discharge (mean), Definition of		Open or screened interval, Definition of	
Mean high or low tide, Definition of		Organic carbon (OC), Definition of	
Mean sea level, Definition of		Organic mass or volatile mass, Definition of Organism count/area, Definition of	
Membrane filter, Definition of		Organism count/volume, Definition of	
Mercer County,	23	Organochlorine compound, Definition of	
Ground-water records in	266-267	Oswayo Creek at Shinglehouse	
Ground-water-quality records in		Other records available	
Metamorphic stage, Definition of		Other records available	
Method detection level (MDL), Definition of		Parameter code, Definition of	26
Methylene blue active substance (MBAS), Definition		Abbreviations, Explanation of	
Micrograms per gram (μg/g), Definition of		Parker, Allegheny River at	
Micrograms per kilogram (µg/kg), Definition of		Partial-record station, Definition of	
Micrograms per liter (μg/L), Definition of		Discharge at	206-207
Microsiemens per centimeter (μS/cm), Definition of .		Particle size, Definition of	
Mill Creek at Erie		Particle-size classification, Definition of	
Milligrams per liter (MG/L,mg/L), Definition of	25	Peak flow (peak stage), Definition of	
Minersville, Conemaugh River at		Pennsylvania Water-Quality Network	
Minimum report level (MRL), Definition of		Percent composition or percent of total, Definition of	
Minister Creek at Truemans		Percent shading, Definition of	26
Miscellaneous site, Definition of		Periodic-record station, Definition of	
Discharge at		Periphyton, Definition of	
Moffatts Mill, Raccoon Creek at	198-200	Pesticides, Definition of	26

	Page		Page
pH, Definition of	26	Shinglehouse, Oswayo Creek at	47-48
Phytoplankton, Definition of	26	Silver Creek at Wally Mill near North Washington	211-233
Picocurie, Definition of	26	Slippery Rock Creek at Wurtemburg	190-192
Piney, Clarion River near		Sodium-adsorption-ratio (SAR), Definition of	28
Pittsburgh, Allegheny River at 9th Street at		Soil heat flux, Definition of	
Monongahela River at		Soil-water content, Definition of	28
Plankton, Definition of		Somerset County,	
Point Marion, Cheat River at		Ground-water records in	
Monongahela River at Lock and Dam 8 at		Ground-water-quality records in	
Polychlorinated biphenyls (PCBs), Definition of		South Fork Ten Mile Creek near Rogersville	
Polychlorinated naphthalenes (PCNs), Definition of		South Pittsburgh, Monongahela River at	
Pool, Definition of		Special networks and programs	
Port Allegany, Allegheny River at		Special notes, remark codes	
Portersville, Muddy Creek near Primary productivity, Definition of		Specific electrical conductance (conductivity), Definit Stable isotope ratio, Definition of	
Publications on Techniques of Water-Resources Inve		Stage: See gage height	20
Punxsutawney, Mahoning Creek at	•	Stage-discharge relation, Definition of	28
Pymatuning Dam, Shenango River at		Stage and water-discharge records, Explanation of	
Pymatuning Reservoir		Station identification numbers, Explanation of	
1 ymacuming reservoir		Stonycreek River at Ferndale	
Raccoon Creek at Moffatts Mill	198-200	Streamflow, Definition of	
Radioisotopes, Definition of		Substrate, Definition of	
Rasselas, Sevenmile Run near		Substrate embeddedness class, Definition of	
Reach, Definition of		Sugar Creek, at Sugarcreek	
Records of, ground-water levels, Explanation of		Sugarcreek, Sugar Creek at	
ground-water quality, Explanation of		Summary of hydrologic conditions	3-5
stage and water discharge, Explanation of	8-12	Surface area of a lake, Definition of	
surface-water quality, Explanation of	12-16	Surface-water-quality records, Explanation of	
water-quality-control, Explanation of	16-17	Surface-water stations, List of	vii-ix
Recoverable from bed material, Definition of	27	Surficial bed material, Definition of	28
Recurrence interval, Definition of		Suspended, Definition of	28
Redbank Creek at St. Charles	92-94	Suspended, recoverable, Definition of	28
Redstone Creek at Waltersburg		Suspended sediment, Definition of	
Remark codes, Explanation of		Suspended-sediment concentration, Definition of	
Renfrew, Connoquenessing Creek at		Suspended-sediment discharge (tons/day), Definition	
Replicate samples, Definition of	27	Suspended-sediment load, Definition of	
Reservoirs, See lakes and reservoirs.		Suspended solids, Definition of	
Return period: See recurrence interval	200	Suspended, total, Definition of	
Ridgway, Clarion River at		Sutersville, Youghiogheny River at	
Riffle, Definition of		Synoptic studies, Definition of	29
Rogersville, South Fork Ten Mile Creek near		Taxa, Definition of	20
Rouseville, Oil Creek at		Taxonomy, Definition of	
Run, Definition of		Techniques of Water-Resources	29
Runoff, Definition of		Investigations, Publications on	
Russell, Conewango Creek at		Ten Mile Creek, South Fork, near Rogersville	
russen, cone vango creek at		Thalweg, Definition of	
St. Charles, Redbank Creek at	92-94	Thermograph, Definition of	
Salamanca, NY., Allegheny River at		Time-weighted average, Definition of	
Salisbury, Casselman River near		Tionesta Creek at Lynch	
Sea level, Definition of		Tons per acre-foot, Definition of	
Sediment, Definition of		Tons per day (T/day), Definition of	
Sensible heat flux, Definition of		Total, Definition of	
7-day 10-year low flow (Q7,10), Definition of		Total coliform bacteria, Definition of	29
Sevenmile Run at Rasselas	78-79	Total discharge, Definition of	29
Seward, Conemaugh River at	109-110	Total in bottom material, Definition of	
Sewickley, Ohio River at	164-173,245-246	Total length, Definition of	30
Shannopin, Dunkard Creek at		Total load, Definition of	
Sharpsville, Shenango River at	211-233	Total organism count, Definition of	30
Shelves, Definition of	28	Total recoverable, Definition of	30
Shenango River, at New Castle		Total sediment discharge (tons/day), Definition of	
at Pymatuning Dam		Total sediment load, Definition of	30
at Sharpsville		Transect, Definition of	
near Transfer	180-181	Transfer, Shenango River near	180-181

Page		Page
Truemans, Minister Creek at211-233	Water-quality control data, Explanation of	16-17
Tunnelton, Conemaugh River at211-233	Water-quality records, Explanation of	12-16
Tunungwant Creek at Bradford208,211-233	Water-quality stations, discontinued, List of	
Turbidity, Definition of30	Wattsburg, French Creek near	67-68
Twelvemile Creek near Moorheadville209,211-233	WDR (Water-Data Report), Definition of	30
Two Lick Creek at Graceton116-117	Weighted average, Definition of	30
Tygart Lake158-159	Wellsville, NY, Genesee River at	
	West Branch,	
Ultraviolet (UV) absorbance (absorption),	Caldwell Creek near Grand Valley	211-233
Definition of30	Clarion River at Wilcox	82-83
Unconfined aquifer, Definition of30	West Hickory, Allegheny River at	59-61
Union City Reservoir75	Westmoreland County, Ground-water records in	275
Ursina, Laurel Hill Creek at145-146	Wet mass, Definition of	
Utica, French Creek at72-73	Wet weight, Definition of	30
	Wilcox, West Branch Clarion River at	82-83
Vandergrift, Kiskiminetas River at120-121	Woodcock Creek at Blooming Valley	206
Venango County,	Woodcock Creek Lake	75
Ground-water records in	WSP (Water-Supply Paper), Definition of	31
Venango, French Creek at208,211-233	Wurtemburg, Slippery Rock Creek at	190-192
Vertical datum: See datum		
Volatile Organic Compounds (VOCs), Definition of30	Yellow Creek near Homer City	114-115
	Yellow Creek Lake	113
Waltersburg, Redstone Creek at134-135	Youghiogheny River,	
Wampum, Beaver River at182-184	at Connellsville	149-150
Warren, Allegheny River at206,211-233	at Friendsville, MD	139-140
Warren County,	at Sutersville	151-153
Ground-water records in	at Youghiogheny River Dam	211-233
Ground-water-quality records in277-278	below Confluence	147-148
Washington County, Ground-water records in274	Youghiogheny River Lake	158-159
Ground-water-quality records in277-278	Youngsville, Brokenstraw Creek at	56-58
Water table, Definition of30		
Water-table aquifer, Definition of30	Zelienople, Connoquenessing Creek near	185-187
Water year, Definition of30	Zooplankton, Definition of	31