15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET $\texttt{LOCATION.--Lat~63°56'06'',~long~160°18'18'',~in~NW}^{1}/_{4}~\text{NE}^{1}/_{4}~\text{sec.~18,~T.18~S.,~R.8~W.}} \text{ (Unalakleet~D-3~quad),~Hydrologic~locally approximate the property of prop$ Unit 19050102, on the right bank, 3.5 mi upstream from mouth of the Chiroskey River, 28 mi upstream from mouth, 15 mi east of Unalakleet. DRAINAGE AREA.--1,048 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1997 to September 1999 (no winter record), October 1999 to current year. REVISED RECORDS.--WRD-AK-99-1: 1998. GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level from topographic map. REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station. | | | DISCH | ARGE, CUBI | C FEET P | | WATER
Y MEAN | | BER 2003 | TO SEPTEM | BER 2004 | | | |----------------------------------|--|--------------------------------------|--|--|----------------------------------|--|---|---|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1530 | 1760 | e390 | e180 | e130 | e120 | e120 | e10000 | e5800 | 1610 | 1100 | 1690 | | 2 | 2110 | 1830 | e370 | e170 | e130 | e120 | e120 | e11000 | e5600 | 1580 | 1070 | 1640 | | 3 | 2790 | 1860 | e360 | e170 | e130 | e120 | e120 | e10600 | e5400 | 1550 | 1070 | 1580 | | 4 | 3620 | 1870 | e340 | e170 | e130 | e120 | e120 | e10200 | e5100 | 1520 | 1070 | 1530 | | 5 | 3760 | 1960 | e330 | e170 | e130 | e120 | e120 | e10000 | e4800 | 1490 | 1060 | 1540 | | 6 | 3490 | 2100 | e320 | e160 | e130 | e120 | e130 | e9600 | 4310 | 1450 | 1040 | 1530 | | 7 | 3200 | 2340 | e310 | e160 | e130 | e120 | e140 | e9400 | 3920 | 1400 | 1020 | 1480 | | 8 | 2950 | 2380 | e300 | e160 | e130 | e120 | e150 | e9200 | 3570 | 1370 | 1030 | 1430 | | 9 | 2790 | e2200 | e290 | e160 | e130 | e120 | e160 | e9000 | 3320 | 1370 | 1390 | 1390 | | 10 | 2650 | e1900 | e280 | e150 | e130 | e120 | e170 | e8800 | 3080 | 1340 | 1580 | 1350 | | 11 | 2640 | e1600 | e280 | e150 | e120 | e120 | e190 | e8600 | 2880 | 1290 | 1490 | 1320 | | 12 | 2560 | e1300 | e270 | e150 | e120 | e120 | e210 | e8400 | 2720 | 1240 | 1790 | 1290 | | 13 | 2350 | e1200 | e260 | e150 | e120 | e120 | e230 | e8200 | 2590 | 1200 | 6220 | 1270 | | 14 | 2190 | e1100 | e250 | e150 | e120 | e120 | e250 | e7800 | 2490 | 1170 | 14100 | 1290 | | 15 | 2110 | e1000 | e250 | e150 | e120 | e120 | e270 | e7400 | 2430 | 1150 | 15500 | 1290 | | 16 | 2130 | e900 | e240 | e150 | e120 | e120 | e300 | e7000 | 2340 | 1140 | 10600 | 1270 | | 17 | 2040 | e840 | e240 | e140 | e120 | e120 | e330 | e6600 | 2310 | 1150 | 6470 | 1230 | | 18 | 1880 | e760 | e230 | e140 | e120 | e120 | e360 | e6200 | 2340 | 1130 | 4890 | 1190 | | 19 | e1750 | e700 | e230 | e140 | e120 | e120 | e400 | e5800 | 2290 | 1130 | 3990 | 1160 | | 20 | e1700 | e700 | e220 | e140 | e120 | e120 | e450 | e5600 | 2200 | 1140 | 3400 | 1160 | | 21 | e1650 | e700 | e220 | e140 | e120 | e120 | e500 | e5600 | 2120 | 1130 | 3000 | 1160 | | 22 | e1650 | e600 | e210 | e140 | e120 | e120 | e600 | e6200 | 2070 | 1090 | 2730 | 1260 | | 23 | e1600 | e580 | e210 | e140 | e120 | e120 | e650 | e7200 | 2040 | 1080 | 2500 | 1430 | | 24 | e1600 | e540 | e200 | e140 | e120 | e120 | e800 | e8000 | 2020 | 1060 | 2330 | 1430 | | 25 | 1580 | e500 | e200 | e140 | e120 | e120 | e1000 | e7600 | 2000 | 1050 | 2170 | 1350 | | 26
27
28
29
30
31 | 1460
1430
1370
1350
1310
1460 | e480
e460
e440
e420
e400 | e190
e190
e190
e180
e180
e180 | e130
e130
e130
e130
e130
e130 | e120
e120
e120
e120
 | e120
e120
e120
e120
e120
e120 | e1300
e1800
e2500
e4000
e6000 | e7000
e6400
e6000
e5400
e5000 | 1930
1840
1770
1700
1650 | 1050
1050
1080
1110
1120
1140 | 2050
1960
1880
1810
1760
1730 | 1280
1220
1170
1120
1110 | | TOTAL | 66700 | 35420 | 7910 | 4590 | 3580 | 3720 | 23490 | 239000 | 88630 | 38380 | 103800 | 40160 | | MEAN | 2152 | 1181 | 255 | 148 | 123 | 120 | 783 | 7710 | 2954 | 1238 | 3348 | 1339 | | MAX | 3760 | 2380 | 390 | 180 | 130 | 120 | 6000 | 11000 | 5800 | 1610 | 15500 | 1690 | | MIN | 1310 | 400 | 180 | 130 | 120 | 120 | 120 | 5000 | 1650 | 1050 | 1020 | 1110 | | AC-FT | 132300 | 70260 | 15690 | 9100 | 7100 | 7380 | 46590 | 474100 | 175800 | 76130 | 205900 | 79660 | | CFSM | 2.05 | 1.13 | 0.24 | 0.14 | 0.12 | 0.11 | 0.75 | 7.36 | 2.82 | 1.18 | 3.20 | 1.28 | | IN. | 2.37 | 1.26 | 0.28 | 0.16 | 0.13 | 0.13 | 0.83 | 8.48 | 3.15 | 1.36 | 3.68 | 1.43 | | STATIS | TICS OF | MONTHLY ME | EAN DATA FO | R WATER | YEARS 1997 | - 2004 | 1, BY WATER | R YEAR (W | Y)# | | | | | MEAN | 1602 | 709 | 265 | 161 | 127 | 114 | 270 | 3702 | 3548 | 1672 | 2940 | 2512 | | MAX | 2190 | 1181 | 342 | 200 | 145 | 123 | 783 | 7710 | 8788 | 2571 | 5690 | 3890 | | (WY) | 2003 | 2004 | 2003 | 2003 | 2003 | 2003 | 2004 | 2004 | 2001 | 2003 | 1998 | 1998 | | MIN | 1037 | 394 | 198 | 147 | 116 | 98.2 | 105 | 1182 | 1216 | 562 | 809 | 1339 | | (WY) | 2002 | 2002 | 2002 | 2002 | 2001 | 2001 | 2001 | 2001 | 1997 | 1997 | 2002 | 2004 | See Period of Record Estimated # 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued | SUMMARY STATISTICS | FOR 2003 CALENI | DAR YEAR | FOR 2004 WAT | ER YEAR | WATER YEARS | 1997 - 2 | 2004# | |--------------------------|-----------------|----------|--------------|---------|-------------|----------|-------| | ANNUAL TOTAL | 592330 | | 655380 | | | | | | ANNUAL MEAN | 1623 | | 1791 | | 1470 | | | | HIGHEST ANNUAL MEAN | | | | | 1791 | 2 | 2004 | | LOWEST ANNUAL MEAN | | | | | 1005 | 2 | 2002 | | HIGHEST DAILY MEAN | 7590 | May 10 | 15500 | Aug 15 | 19600 | Jun 8 2 | 2001 | | LOWEST DAILY MEAN | a120 | Mar 11 | b120 | Feb 11 | c95 | Mar 21 2 | 2001 | | ANNUAL SEVEN-DAY MINIMUM | 120 | Mar 11 | 120 | Feb 11 | 95 | Mar 21 2 | 2001 | | MAXIMUM PEAK FLOW | | | 15900 | Aug 15 | d19700 | Jun 8 2 | 2001 | | MAXIMUM PEAK STAGE | | | 96.94 | Aug 15 | 98.41 | Jun 8 2 | 2001 | | MAXIMUM PEAK STAGE | | | | | f99.58 | May 23 2 | 2002 | | ANNUAL RUNOFF (AC-FT) | 1175000 | | 1300000 | | 1065000 | | | | ANNUAL RUNOFF (CFSM) | 1.55 | | 1.71 | | 1.40 | | | | ANNUAL RUNOFF (INCHES) | 21.03 | | 23.26 | | 19.05 | | | | 10 PERCENT EXCEEDS | 3980 | | 5460 | | 3610 | | | | 50 PERCENT EXCEEDS | 1420 | | 1120 | | 750 | | | | 90 PERCENT EXCEEDS | 120 | | 120 | | 120 | | | [#] See Period of Record a From Mar. 11 to Apr. 16 b From Feb. 11 to Apr. 5 c From Mar. 21 to Apr. 10 d From rating curve extended above 8800 ft³/s f Backwater from ice ## 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- Water years 1982-83, 1998 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1998 to current year. INSTRUMENTATION.--Electronic water-temperature recorder set for one-hour recording interval. REMARKS.-- Records represent water temperature at the sensor within 0.5°C. Temperature was compared with the stream average by cross section on June 5. No variation was found within the cross sections. The variation found between mean stream temperature and sensor temperature was less than 0.5°C . EXTREMES FOR PERIOD OF RECORD.-WATER TEMPERATURE: Maximum, 15.5°C, July 14, 2004; minimum, 0.0°C, many days during winter and spring breakup EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum, 15.5°C, July 14.; minimum, 0.0°C, many days during fall, winter and spring breakup periods. WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 | | | | SAMPLE | | DIS- | | | |------|------|---------|---------|---------|---------|---------|---------| | | | | LOC- | | CHARGE, | | | | | | | ATION, | | INST. | | | | | | | CROSS | | CUBIC | TEMPER- | TEMPER- | | | | STREAM | SECTION | GAGE | FEET | ATURE | ATURE | | Date | Time | WIDTH | (FT FM | HEIGHT | PER | WATER | AIR | | | | (FT) | R BK) | (FEET) | SECOND | (DEG C) | (DEG C) | | | | (00004) | (72103) | (00065) | (00061) | (00010) | (00020) | | JUN | | | | | | | | | 05 | 1321 | 255 | 20.0 | 90.94 | 4860 | 8.0 | 20.0 | | 05 | 1322 | 255 | 50.0 | 90.94 | 4860 | 8.0 | 20.0 | | 05 | 1323 | 255 | 90.0 | 90.94 | 4860 | 8.0 | 20.0 | | 05 | 1324 | 255 | 160.0 | 90.94 | 4860 | 8.0 | 20.0 | | 05 | 1325 | 255 | 240.0 | 90.94 | 4860 | 8.0 | 20.0 | | DAY | MAX | MIN | MEAN | |----------------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | OCTOBER | | NC | VEMBER | | DE | CEMBER | | | JANUARY | | | 1
2
3
4
5 | 6.0
6.0
5.5
4.5 | 4.0
5.5
4.5
4.5
3.5 | 5.0
6.0
5.0
4.5
4.0 | 1.5
1.5
1.5
2.0
2.0 | 1.0
1.5
1.0
1.5
2.0 | 1.0
1.5
1.5
1.5
2.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 6
7
8
9
10 | 4.0
4.0
4.0
4.0
3.5 | 3.5
3.5
3.5
3.5
3.5 | 4.0
4.0
4.0
4.0
3.5 | 2.0
1.5
1.0
1.0 | 1.5
1.0
1.0
0.0 | 2.0
1.0
1.0
0.5
0.0 |
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 11
12
13
14
15 | 3.5
3.0
2.5
1.0 | 3.0
2.5
1.0
1.0 | 3.0
2.5
2.0
1.0 |

 |

 |

 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 16
17
18
19
20 | 2.0
2.0
0.5
0.0 | 1.5
0.5
0.0
0.0 | 2.0
1.0
0.0
0.0 |

 |

 |

 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 |

 |

 |

 | 0.0
0.0
0.0
 | 0.0
0.0
0.0

0.0 | 0.0
0.0
0.0

0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | | 26
27
28
29
30
31 | 0.5

1.0
1.0
1.5
2.0 | 0.0

0.5
0.5
0.5 | 0.0
0.5
0.5
0.5
1.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | MONTH | | | 2.0 | | | | | | | | | | # 15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued | | | TEMPER | ATURE, | WATER (DEG | REES CELS | SIUS), W. | ATER YEAR | OCTOBER | 2003 TO | SEPTEMBER | 2004 | | |----------------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|--|---------------------------------| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 0.0
0.0
0.0
0.0 2.5
2.0
2.0
2.5
2.5 | 1.5
1.0
1.0
1.0 | 2.0
1.5
1.5
1.5 | | 6
7
8
9
10 | 0.0
0.0
0.0
0.0 1.0
1.5
2.0
2.0
2.5 | 1.0
1.0
1.5
1.5 | 1.0
1.0
2.0
1.5 | | 11
12
13
14
15 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 |

 |

 |

 | 2.5
2.5
3.0
3.0 | 2.0
2.0
2.5
2.5
3.0 | 2.5
2.0
3.0
3.0
3.5 | | 16
17
18
19
20 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 |

 |

 |

 | 4.0
4.0
3.0
4.0 | 3.5
2.5
2.5
3.0
4.0 | 4.0
3.0
2.5
3.5
4.5 | | 21
22
23
24
25 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 1.5
1.5 |

0.5
0.5 |

1.0
1.0 | 5.5
5.0
5.5
5.0
6.0 | 4.5
4.0
5.0
5.0 | 5.0
4.5
5.5
5.0
5.5 | | 26
27
28
29
30
31 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 0.0
0.0
0.0
0.0
0.0 | 1.5
1.0
2.0
2.0
3.0 | 0.5
0.5
0.5
1.5 | 1.0
0.5
1.0
1.5
2.0 | 6.5
6.0
5.5
6.0
6.5 | 6.0
5.5
5.5
5.0
5.5
6.0 | 6.5
5.5
5.5
6.5
6.5 | | MONTH | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | 6.5 | 1.0 | 3.5 | | | | TEMPER | ATURE, | WATER (DEG | REES CELS | SIUS), W. | ATER YEAR | OCTOBER | 2003 TO | SEPTEMBER | 2004 | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|---------------------------------|--------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 6.0
6.5
7.0
7.0
8.5 | 5.0
5.0
6.5
6.5 | 5.5
6.0
7.0
6.5
8.0 | 12.0
12.0
11.0
10.5
12.0 | 11.0
11.0
10.0
9.5
10.0 | 11.5
11.0
10.5
10.0
10.5 | 12.0
11.5
11.0
11.0 | 11.0
10.5
10.0
10.0 | 11.5
11.0
10.5
10.5 | 8.5
8.5
7.5
7.0
7.5 | 8.0
7.5
6.5
6.5 | 8.5
8.0
7.0
6.5
7.0 | | 6
7
8
9
10 | 10.0
10.5
10.5
8.5
9.5 | 8.5
9.5
8.5
7.0
7.0 | 9.0
10.0
10.0
7.5
8.0 | 11.5
11.5
10.5
11.0
12.5 | 11.0
10.5
9.5
9.0
10.5 | 11.0
11.0
10.0
10.0 | 12.5
12.0
11.5
11.0
12.0 | 10.5
11.5
10.5
10.0
11.0 | 11.5
11.5
10.5
10.5
11.0 | 8.0
7.5
7.5
7.0
7.0 | 7.0
6.5
6.5
6.0 | 7.5
7.0
7.0
6.5
6.5 | | 11
12
13
14
15 | 10.0
10.5
10.5
10.0
10.5 | 9.0
9.5
9.5
9.5
9.0 | 9.5
10.0
10.0
9.5
9.5 | 14.0
14.5
15.0
15.5
15.0 | 12.0
12.0
12.5
13.5
13.5 | 13.0
13.5
14.0
14.5
14.0 | 12.5
12.0
11.5
11.0 | 11.0
11.5
11.0
10.5
10.5 | 11.5
11.5
11.0
10.5
10.5 | 7.0
7.0
6.5
6.0 | 6.0
6.0
5.5
5.0 | 6.5
6.0
5.5
5.5 | | 16
17
18
19
20 | 10.5
10.0
9.5
10.5
11.0 | 10.0
9.5
9.0
8.5
9.5 | 10.0
9.5
9.0
9.0
10.5 | 14.0
13.5
13.0
14.0
14.5 | 13.0
12.5
12.0
12.0
12.0 | 13.5
13.0
12.5
13.0
13.5 | 11.5
11.5
12.0
12.0
11.5 | 11.0
11.5
11.5
11.0
11.0 | 11.5
11.5
11.5
11.5
11.5 | 6.0
5.5

4.5 | 5.0
4.0
 | 5.5
4.5
3.5
3.5
4.0 | | 21
22
23
24
25 | 11.5
11.0
10.5
10.0
10.5 | 10.5
10.5
10.0
9.5
9.0 | 11.0
11.0
10.5
9.5
9.5 | 15.0
15.0
14.0
14.0
14.5 | 13.5
13.0
13.0
12.0
13.0 | 14.0
14.0
13.5
13.0
13.5 | 11.0
11.0
11.0
11.0
10.5 | 10.5
10.0
10.0
10.0 | 10.5
10.5
10.5
10.5 | 4.0

3.5
 | 3.5
3.5
3.5
2.5 | 4.0
4.0
4.0
3.0 | | 26
27
28
29
30
31 | 12.0
13.5
14.0
14.0
13.5 | 10.0
11.0
12.0
12.5
12.0 | 10.5
12.0
13.0
13.5
12.5 | 13.5
12.0
12.0
13.5
14.5 | 12.0
11.5
11.0
11.5
12.0 | 12.5
11.5
11.5
12.5
13.0 | 10.0
8.5
8.0
8.5
8.5
8.5 | 8.0
7.5
7.0
7.0
8.0 | 9.0
8.0
7.5
7.5
8.0 | 2.5
2.0
2.0
1.5 | 2.0
1.5
1.0 | 3.0
2.5
2.0
1.5
1.5 | | MONTH | 14.0 | 5.0 | 9.6 | 15.5 | 9.0 | 12.4 | 12.5 | 7.0 | 10.4 | | | 5.0 | ## 15583500 ETTA CREEK NEAR COUNCIL LOCATION.--Lat $64^{\circ}41'56''$, long $164^{\circ}09'57''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 24, T.9 S., R.28 W. (Solomon C-5 quad), Seward Peninsula, Hydrologic Unit 19050104, on the left bank, .2 mi upstream from mouth at the East Fork of Solomon River, 25 miles southwest of Council, Alaska. DRAINAGE AREA. -- 1.33 mi². PERIOD OF RECORD. -- July 2001 to current year (no winter record). GAGE.--Water-stage recorder. Elevation of gage is 330 ft above sea level from topographic map. REMARKS.--Records fair, except for estimated daily discharges, which are poor. GOES satellite telemetry at station. EXTREMES FOR CURRENT PERIOD.-- July to September 2001: Maximum discharge during period, $9.3~{\rm ft}^3/{\rm s}$, August 13, gage height $50.22~{\rm ft}$. Minimum discharge not determined, occurs during winter. October 2001 to September 2002: Maximum discharge observed during period, $9.3~{\rm ft}^3/{\rm s}$, September 28, gage height $50.22~{\rm ft}$. Minimum discharge not determined, occurs during winter. October 2002 to September 2003: Maximum daily discharge during period, $15~{\rm ft}^3/{\rm s}$ (estimated), June 1. Minimum discharge not determined, occurs during winter. October 2003 to September 2004: Maximum daily discharge during period, 15 ft³/s (estimated), June 4. Minimum discharge not determined, occurs during winter. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 | | | | | | DAII | Y MEAN V | ALUES | | | | | | |-------|-----|-----|-----|-----|------|----------|-------|-----|-----|------------|-------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | | e5.8 | 3.4 | 2.8 | | 2 | | | | | | | | | | e5.4 | 3.2 | 2.7 | | 3 | | | | | | | | | | e5.0 | 3.0 | 2.7 | | 4 | | | | | | | | | | e5.1 | 2.9 | 3.3 | | 5 | | | | | | | | | | e5.2 | 2.8 | 2.8 | | 3 | | | | | | | | | | 03.2 | 2.0 | 2.0 | | 6 | | | | | | | | | | e4.8 | 2.7 | 2.8 | | 7 | | | | | | | | | | e4.6 | 2.7 | 2.8 | | 8 | | | | | | | | | | e4.5 | 3.3 | 2.8 | | 9 | | | | | | | | | | e4.5 | 3.2 | 2.9 | | 10 | | | | | | | | | | e4.6 | 2.9 | 2.8 | | | | | | | | | | | | | | | | 11 | | | | | | | | | | e4.7 | 3.0 | 2.8 | | 12 | | | | | | | | | | e4.8 | 3.4 | 2.7 | | 13 | | | | | | | | | | e5.0 | 5.1 | 2.6 | | 14 | | | | | | | | | | e4.9 | 7.2 | 2.5 | | 15 | | | | | | | | | | e5.2 | 7.0 | 2.4 | | 4.5 | | | | | | | | | | | | 0 0 | | 16 | | | | | | | | | | e5.5 | 6.5 | 2.3 | | 17 | | | | | | | | | | 5.7 | 6.2 | 2.2 | | 18 | | | | | | | | | | 5.2 | 5.9 | 2.2 | | 19 | | | | | | | | | | 6.1 | 5.7 | 2.1 | | 20 | | | | | | | | | | 5.7 | 5.4 | 2.1 | | 21 | | | | | | | | | | 5.5 | 5.0 | 2.1 | |
22 | | | | | | | | | | 5.3 | 4.8 | 2.0 | | 23 | | | | | | | | | | | | | | 23 | | | | | | | | | | 5.1
4.7 | 4.6 | 2.0 | | 25 | | | | | | | | | | | 4.4 | 1.9 | | 25 | | | | | | | | | | 4.5 | 4.1 | 1.9 | | 26 | | | | | | | | | | 4.3 | 4.0 | 1.8 | | 27 | | | | | | | | | | 4.2 | 3.8 | 1.8 | | 28 | | | | | | | | | | 4.0 | 3.7 | 1.7 | | 29 | | | | | | | | | | 3.9 | 3.3 | 1.6 | | 30 | | | | | | | | | | 3.7 | 3.2 | e1.5 | | 31 | | | | | | | | | | 3.6 | 3.1 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | 151.1 | 129.5 | 70.6 | | MEAN | | | | | | | | | | 4.87 | 4.18 | 2.35 | | MAX | | | | | | | | | | 6.1 | 7.2 | 3.3 | | MIN | | | | | | | | | | 3.6 | 2.7 | 1.5 | | MED | | | | | | | | | | 4.9 | 3.7 | 2.4 | | AC-FT | | | | | | | | | | 300 | 257 | 140 | | CFSM | | | | | | | | | | 3.66 | 3.14 | 1.77 | | IN. | | | | | | | | | | 4.23 | 3.62 | 1.97 | e Estimated # 15583500 ETTA CREEK NEAR COUNCIL—Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----------|-----|-----|-----|-----|-----|-----|-----|-------|-----------|-------|-------| | 1 | 1.6 | | | | | | | | e5.4 | e0.54 | e0.68 | 0.36 | | 2 | 1.5 | | | | | | | | e4.2 | e0.54 | e0.66 | 0.36 | | 3 | 1.7 | | | | | | | | e3.6 | e0.57 | e0.63 | 0.38 | | 4 | 2.0 | | | | | | | | e3.7 | e0.60 | e0.60 | 0.59 | | 5 | 1.7 | | | | | | | | e3.8 | e0.65 | e0.58 | 1.3 | | 3 | ±•/ | | | | | | | | 65.0 | 00.05 | 60.50 | 1.5 | | 6 | 1.6 | | | | | | | | e3.5 | e0.69 | e0.54 | 2.1 | | 7 | 1.5 | | | | | | | | e3.0 | e0.69 | e0.50 | 1.9 | | 8 | e1.4 | | | | | | | | e2.8 | e0.66 | e0.48 | 1.7 | | 9 | e1.4 | | | | | | | | e2.6 | e0.63 | e0.47 | 1.6 | | 10 | e1.3 | | | | | | | | e2.2 | e0.62 | e0.44 | 1.4 | | | | | | | | | | | | | | | | 11 | e1.3 | | | | | | | | e2.0 | e0.62 | e0.42 | 1.3 | | 12 | e1.2 | | | | | | | | e1.9 | e0.61 | e0.40 | 1.5 | | 13 | e1.2 | | | | | | | | e1.8 | e0.60 | e0.39 | 1.5 | | 14 | e1.1 | | | | | | | | e1.7 | e0.60 | e0.38 | 1.3 | | 15 | e1.1 | | | | | | | | e1.6 | e0.60 | e0.37 | 1.2 | | | | | | | | | | | | | | | | 16 | e1.0 | | | | | | | | e1.5 | e0.59 | e0.36 | 1.2 | | 17 | e1.0 | | | | | | | | e1.4 | e0.59 | e0.36 | 1.2 | | 18 | e0.90 | | | | | | | | e1.3 | e0.58 | e0.35 | 1.4 | | 19 | e0.90 | | | | | | | | e1.2 | e0.57 | e0.35 | 1.4 | | 20 | e0.80 | | | | | | | | e1.1 | e0.55 | e0.35 | 1.3 | | 0.1 | . 0 . 0 0 | | | | | | | | . 1 0 | . 0 . 5 4 | 0.26 | 1 2 | | 21 | e0.80 | | | | | | | | e1.0 | e0.54 | e0.36 | 1.3 | | 22 | e0.80 | | | | | | | | e0.90 | e0.53 | 0.36 | 1.2 | | 23 | e0.80 | | | | | | | | e0.85 | e0.53 | 0.36 | 1.2 | | 24 | e0.7 | | | | | | | | e0.80 | e0.55 | 0.36 | 1.6 | | 25 | e0.70 | | | | | | | | e0.75 | e0.57 | 0.36 | 1.4 | | 26 | e0.70 | | | | | | | | e0.72 | e0.59 | 0.36 | 2.5 | | 27 | e0.70 | | | | | | | | e0.72 | e0.59 | 0.40 | 5.5 | | 28 | e0.70 | | | | | | | | e0.63 | e0.66 | 0.43 | 7.1 | | 29 | e0.60 | | | | | | | | e0.59 | e0.00 | 0.43 | 5.7 | | 30 | e0.60 | | | | | | | | e0.56 | e0.70 | 0.36 | 5.3 | | 31 | e0.60 | | | | | | | | | e0.70 | 0.36 | | | 31 | e0.00 | | | | | | | | | e0.03 | 0.30 | | | TOTAL | 33.80 | | | | | | | | 57.78 | 18.76 | 13.40 | 57.79 | | MEAN | 1.09 | | | | | | | | 1.93 | 0.61 | 0.43 | 1.93 | | MAX | 2.0 | | | | | | | | 5.4 | 0.70 | 0.68 | 7.1 | | MIN | 0.60 | | | | | | | | 0.56 | 0.53 | 0.35 | 0.36 | | MED | 1.0 | | | | | | | | 1.6 | 0.60 | 0.38 | 1.4 | | AC-FT | 67 | | | | | | | | 115 | 37 | 27 | 115 | | CFSM | 0.82 | | | | | | | | 1.45 | 0.46 | 0.33 | 1.45 | | IN. | 0.95 | | | | | | | | 1.62 | 0.52 | 0.37 | 1.62 | | | | | | | | | | | | | | | e Estimated # 15583500 ETTA CREEK NEAR COUNCIL—Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 DAILY MEAN VALUES | | | | | | DAIL | Y MEAN VA | ALUES | | | | | | |-------|-------|-----|-----|-----|------|-----------|-------|-----|-------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5.2 | | | | | | | | e15 | 3.7 | 2.1 | 3.5 | | 2 | 5.0 | | | | | | | | e14 | 3.2 | 2.1 | 3.4 | | 3 | 4.3 | | | | | | | | e13 | 2.8 | 2.1 | 3.4 | | 4 | 4.2 | | | | | | | | e12 | 2.9 | 2.0 | 3.1 | | 5 | 4.1 | | | | | | | | e11 | 2.7 | 1.9 | 3.0 | | | | | | | | | | | | | | | | 6 | 4.1 | | | | | | | | 10 | 2.7 | 1.9 | 3.1 | | 7 | 3.8 | | | | | | | | 8.4 | 2.6 | 1.9 | 3.0 | | 8 | e3.5 | | | | | | | | 8.1 | 2.4 | 1.9 | 2.9 | | 9 | e3.2 | | | | | | | | 7.6 | 2.3 | 1.8 | 2.8 | | 10 | 3.3 | | | | | | | | 6.7 | 2.4 | 1.8 | 2.8 | | 11 | 3.7 | | | | | | | | 7.1 | 2.1 | 2.5 | 2.7 | | 12 | 3.5 | | | | | | | | 7.2 | 2.1 | 2.1 | 2.6 | | 13 | 3.4 | | | | | | | | 6.1 | 2.1 | 2.4 | 2.5 | | 14 | 3.5 | | | | | | | | 4.5 | 2.0 | 2.4 | 2.5 | | 15 | 3.5 | | | | | | | | 3.6 | 1.9 | 2.4 | 2.4 | | | | | | | | | | | | | | | | 16 | e3.2 | | | | | | | | 3.1 | 1.8 | 2.3 | 2.3 | | 17 | e3.1 | | | | | | | | 3.2 | 1.7 | 2.3 | 2.3 | | 18 | e3.0 | | | | | | | | 3.1 | 1.6 | 2.3 | 2.3 | | 19 | e3.0 | | | | | | | | 2.9 | 1.5 | 2.3 | 2.3 | | 20 | e2.9 | | | | | | | | 2.8 | 1.5 | 2.2 | 2.1 | | 21 | e2.8 | | | | | | | | 2.7 | 1.5 | 2.1 | 2.1 | | 22 | e2.8 | | | | | | | | 2.6 | 1.7 | 2.2 | 2.1 | | 23 | e2.7 | | | | | | | | 2.3 | 2.1 | 2.4 | 2.0 | | 24 | e2.6 | | | | | | | | 2.9 | 1.8 | 2.3 | 2.0 | | 25 | 2.7 | | | | | | | | 2.3 | 2.0 | 3.1 | 1.9 | | | | | | | | | | | | | | | | 26 | 2.5 | | | | | | | | 2.1 | 2.1 | 3.3 | e1.8 | | 27 | 2.4 | | | | | | | | 1.8 | 2.1 | 3.6 | 1.8 | | 28 | 2.4 | | | | | | | | 1.8 | 2.2 | 3.7 | 1.8 | | 29 | 2.5 | | | | | | | | 3.8 | 2.3 | 3.7 | 2.0 | | 30 | e2.6 | | | | | | | | 2.5 | 2.3 | 3.7 | 1.9 | | 31 | 2.7 | | | | | | | | | 2.1 | 3.7 | | | TOTAL | 102.2 | | | | | | | | 174.2 | 68.2 | 76.5 | 74.4 | | MEAN | 3.30 | | | | | | | | 5.81 | 2.20 | 2.47 | 2.48 | | MAX | 5.2 | | | | | | | | 15 | 3.7 | 3.7 | 3.5 | | MIN | 2.4 | | | | | | | | 1.8 | 1.5 | 1.8 | 1.8 | | MED | 3.2 | | | | | | | | 3.7 | 2.1 | 2.3 | 2.4 | | AC-FT | 203 | | | | | | | | 346 | 135 | 152 | 148 | | CFSM | 2.48 | | | | | | | | 4.37 | 1.65 | 1.86 | 1.86 | | IN. | 2.86 | | | | | | | | 4.87 | 1.91 | 2.14 | 2.08 | | | 2.00 | | | | | | | | 2.07 | 1.71 | 2.14 | 2.00 | e Estimated # 15583500 ETTA CREEK NEAR COUNCIL—Continued DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 DAILY MEAN VALUES | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|--|--|--|------|------|------|-------|--|--|---
---| | e2 0 | | | | | | | e5 0 | 5 5 | 1 9 | 0 91 | 2.8 | | | | | | | | | | | | | 2.7 | | | | | | | | | | | | | 2.6 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.6 | | 2.5 | | | | | | | 014 | 3.7 | ±•/ | 0.55 | 2.0 | | 2.3 | | | | | | | e14 | 5.7 | 1.6 | 0.99 | 2.6 | | | | | | | | | | | | | 2.5 | | | | | | | | | | | | | 2.4 | | | | | | | | | | | | | 2.2 | | 2.1 | | | | | | | e12 | 4.0 | 1.4 | 3.2 | 2.2 | | 2.1 | | | | | | | e11 | 4.0 | 1.3 | 3.0 | 2.2 | | 2.0 | | | | | | | e10 | 4.1 | 1.3 | 3.8 | 2.2 | | 2.0 | | | | | | | e10 | 3.9 | 1.2 | 6.1 | 2.1 | | 1.9 | | | | | | | e9.5 | 3.4 | 1.2 | 5.7 | 2.0 | | 1.9 | | | | | | | e9.0 | 3.3 | 1.2 | 5.5 | 2.0 | | -1 0 | | | | | | | -0.0 | 2 1 | 1 0 | F 0 | 2.0 | | | | | | | | | | | | | 1.9 | | | | | | | | | | | | | 1.9 | | | | | | | | | | | | | 1.9 | | | | | | | | | | | | | 1.8 | | e1./ | | | | | | | e5.0 | 2.0 | 1.2 | 4.2 | 1.0 | | e1.7 | | | | | | | e6.0 | 2.6 | 1.2 | 4.1 | 1.8 | | e1.7 | | | | | | | e6.4 | 2.7 | 1.1 | 3.9 | 1.8 | | e1.6 | | | | | | | e6.2 | 3.2 | 1.0 | 3.5 | 1.8 | | e1.6 | | | | | | | e6.0 | 2.5 | 1.0 | 3.5 | 1.7 | | e1.5 | | | | | | | 5.5 | 2.4 | 1.0 | 3.4 | 1.7 | | e1 5 | | | | | | | 5 3 | 2 3 | 1 0 | 3 4 | 1.5 | | | | | | | | | | | | | e1.5 | | | | | | | | | | | | | e1.4 | | | | | | | | | | | | | 1.4 | | | | | | | | | | | | | 1.4 | 57.3 | | | | | | | 259.0 | 108.5 | 40.02 | 102.34 | 61.1 | | | | | | | | | | | | | 2.04 | | | | | | | | | | | | | 2.8 | | | | | | | | | | | | | 1.4 | | 1.9 | | | | | | | 7.0 | | | 3.4 | 2.0 | | | | | | | | | | | | | 121 | | | | | | | | | | | | | 1.53 | | 1.60 | | | | | | | 7.24 | 3.03 | 1.12 | 2.86 | 1.71 | | | e2.0 2.1 2.2 2.3 2.3 2.3 2.3 2.1 2.1 2.1 2.1 2.0 2.0 1.9 1.9 e1.8 e1.8 e1.7 e1.7 e1.6 e1.5 e1.6 e1.5 e1.4 e1.4 e1.3 e1.4 e1.3 e1.4 | e2.0 2.1 2.2 2.3 2.3 2.3 2.3 2.1 2.1 2.1 2.1 2.0 1.9 1.8 1.8 1.8 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.8 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.3 1.3 1.4 1.5 - | e2.0 2.1 2.2 2.3 2.3 2.3 2.1 2.1 2.1 2.1 2.0 1.9 1.9 1.9 1.9 1.9 1.9 2.0 2.1 | e2.0 | e2.0 | e2.0 | e2.0 | e2.0 e10 2.1 e10 2.2 e12 2.3 e14 2.3 e14 2.3 e14 2.3 e14 2.3 e14 2.3 e14 2.3 e12 2.1 e10 2.0 e10 1. | e2.0 e10 5.7 2.1 e12 5.0 2.2 e15 4.7 2.3 e14 5.7 2.3 e14 5.7 2.3 e13 5.6 2.3 e12 4.7 2.1 e12 4.7 2.1 e12 4.0 2.0 | e2.0 e1.0 5.5 1.9 2.1 e12 5.0 1.8 2.2 e15 4.7 1.7 2.3 e15 4.7 1.7 2.3 e14 5.7 1.6 2.3 e13 5.6 1.5 2.3 e13 5.6 1.5 2.3 e12 4.7 1.5 2.1 e12 4.7 1.5 2.1 e12 4.0 1.4 2.1 e12 4.0 1.4 2.1 e10 4.1 1.3 2.0 e10 4.1 1.3 2.0 e10 4.1 | e2.0 e10 5.7 1.8 0.95 2.1 e10 5.7 1.8 0.95 2.2 e15 4.7 1.7 1.1 2.3 e15 4.7 1.7 0.99 2.3 e14 5.7 1.7 0.99 2.3 e13 5.6 1.5 1.3 2.3 e12 4.7 1.5 2.9 2.1 e12 4.7 1.5 2 | e Estimated ## 15625850 STEWART RIVER 0.1 MILE BELOW BOULDER CREEK MOUTH NEAR NOME LOCATION.--Lat $64^{\circ}48'28"$, long $165^{\circ}25'46"$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 7, T. 8 S., R. 33 W. (Nome D-1 quad), Hydrologic Unit 19050104, on the right bank, 0.1 mi downstream from Boulder Creek, 8.8 mi upstream from mouth, and 21 mi north of Nome. DRAINAGE AREA.-- 22.28 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 2004 to September 2004 (discontinued). GAGE.--Water-stage recorder. Elevation of gage is 475 ft above sea level, from topographic map. EXTREMES FOR CURRENT PERIOD.--Maximum discharge during period May to September 2004, 463 ${\rm ft}^3/{\rm s}$, Aug 12 and 13, gage height, 38.81 ft. minimum daily discharge 14 ${\rm ft}^3/{\rm s}$, July 25 and 26. REMARKS. -- Records are poor. Rain gage at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------|-----|-----|-----|-----|-----|-----|-----|------|------|--------|------|-----| | 1 | | | | | | | | | 272 | e40 | e22 | e52 | | 2 | | | | | | | | | 254 | e34 | e20 | | | 3 | | | | | | | | | 178 | e32 | 33 | | | 4 | | | | | | | | | 149 | e30 | 25 | | | 5 | | | | | | | | | 234 | e29 | 23 | | | 6 | | | | | | | | | 222 | . 0.77 | 22 | | | 6 | | | | | | | | | 229 | e27 | 22 | | | 7 | | | | | | | | | 199 | e26 | 41 | | | 8 | | | | | | | | | 124 | e26 | 139 | | | 9 | | | | | | | | | 81 | e25 | e90 | | | 10 | | | | | | | | | 70 | e24 | e60 | | | 11 | | | | | | | | | 83 | e22 | e50 | | | 12 | | | | | | | | | 80 | e20 | 219 | | | 13 | | | | | | | | | 67 | e20 | 237 | | | 14 | | | | | | | | | 56 | e20 | 172 | | | 15 | | | | | | | | | 50 | e19 | 132 | | | 13 | | | | | | | | | 50 | 613 | 132 | | | 16 | | | | | | | | | 61 | e19 | 90 | | | 17 | | | | | | | | | 76 | e22 | 76 | | | 18 | | | | | | | | | 56 | e23 | 66 | | | 19 | | | | | | | | | 73 | e19 | 61 | | | 20 | | | | | | | | | 60 | e17 | 60 | | | 20 | | | | | | | | | 00 | 617 | 00 | | | 21 | | | | | | | | | 57 | e16 | 60 | | | 22 | | | | | | | | | 76 | e16 | e60 | | | 23 | | | | | | | | | 108 | e15 | e60 | | | 24 | | | | | | | | | 84 | e15 | e60 | | | 25 | | | | | | | | | e78 | e14 | e60 | | | 23 | | | | | | | | | 676 | CIT | 200 | | | 26 | | | | | | | | | e72 | e14 | e60 | | | 27 | | | | | | | | e220 | e65 | e23 | 59 | | | 28 | | | | | | | | 177 | e60 | 43 | 58 | | | 29 | | | | | | | | 177 | e53 | e30 | 57 | | | 30 | | | | | | | | 215 | e47 | e30 | 57 | | | 31 | | | | | | | | 318 | | e24 | 56 | | | 31 | | | | | | | | 310 | | CZI | 30 | | | TOTAL | | | | | | | | | 3152 | 734 | 2285 | | | MEAN | | | | | | | | | 105 | 23.7 | 73.7 | | | MAX | | | | | | | | | 272 | 43 | 237 | | | MIN | | | | | | | | | 47 | 14 | 20 | | | AC-FT | | | | | | | | | 6250 | 1460 | 4530 | | | 110 11 | | | | | | | | | 0230 | T-400 | -200 | | e Estimated ## 15625850 STEWART RIVER 0.1 MILE BELOW BOULDER CREEK MOUTH NEAR NOME—Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- May to September 2004 (discontinued). PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: May to September2004 (discontinued). INSTRUMENTATION. -- Water-temperature recorder. Electronic water temperature recorder set for 15-minute recording REMARKS.-- Water temperature sensor installed May 27, 2004. Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the average for the river by cross section on May 27, July 28, and September 1. No variation was found within the cross section. A 0.5°C variation was found between mean stream temperature and sensor temperature on May 27. Beaver dam construction isolated the sensor from the main channel June 7 to September 1, 2004. Recorded stream temperatures at the sensor are not representative of mean stream temperatures during periods affected by the beaver dam and were not reported. EXTREMES FOR CURRENT YEAR . -- WATER TEMPERATURE: Maximum recorded, 10.0°C, June 6; minimum recorded, 0.5°C, May 28. EXTREMES OUTSIDE PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: Maximum recorded, 10.5°C, June 21. WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 | Date | | Time | looking
dwnstrm
ft from | conduc-
tance, | pH,
water,
unfltrd
field,
std
units
(00400) | Temper-
ature,
water,
deg C
(00010) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | Dis-
solved
oxygen,
percent
of sat-
uration
(00301) | | | | | |--|--|--|---|----------------------------------|---|---|--|--|--|---|---
---|---| | MAY
27.
27.
27.
27.
27.
27.
27. | | 1334
1335
1336
1337
1338
1339
1340 | 7.0
22.0
39.0
54.0
69.0
84.0
99.0 | 89
89
89
89
88
88 | 7.5
7.5
7.4
7.4
7.4
7.4
7.4 | 1.5
1.5
1.5
1.5
1.5
1.5 | 735
735
735
735
735
735
735
735 | 12.7
12.6
12.6
12.5
12.5
12.5 | 94
93
93
92
92
92
92 | | | | | | 28.
28.
28.
28.
28.
SEP | | 1304
1305
1306
1307
1308 | 3.0
5.0
7.0
9.00
11.0 | 216
216
216
217
221 | 7.4
7.4
7.4
7.5
7.4 | 11.5
11.5
11.5
11.5
11.5 | 743
743
743
743
743 | 10.4
10.3
10.3
10.3 | 98
97
97
97
96 | | | | | | 01.
01.
01.
01. | | 1137
1139
1140
1141
1142 | 2.0
10.0
18.0
26.0
34.0 | 224
224
223
223
223 | 7.9
7.9
7.9
7.9
7.9 | 7.5
7.5
7.5
7.5
7.5 | 744
744
744
744
744 | 11.9
11.9
11.8
11.8 | 102
102
101
101
101 | | | | | | Date | Time | Medium
code | Sample
type | | Gage
height,
feet
(00065) | Instan-
taneous
dis-
charge,
cfs
(00061) | Sam-
pling
method,
code
(82398) | Sampler
type,
code
(84164) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | pH,
water,
unfltrd
field,
std
units
(00400) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Turbid-
ity,
wat unf
lab,
Hach
2100AN
NTU
(99872) | | MAY 27 | . 1430 | 9 | 9 | 104 | 38.06 | 218 | 10 | 3044 | 90 | 7.6 | 9.8 | 1.5 | <2.0 | | JUN | . 1520 | Н | 9 | | 37.66 | 98 | | | | | 8.9 | | | | | . 1240 | 9 | 7 | 12.0 | 37.83 | 34 | 10 | 3044 | 216 | 7.4 | 15.8 | 11.5 | <2.0 | | SEP
01 | . 1120 | 9 | 9 | 40.0 | 37.62 | 55 | 10 | 3044 | 223 | 7.9 | 8.2 | 7.5 | <2.0 | | Date | Baro- metric pres- sure, mm Hg (00025) | Dis-
solved
oxygen,
mg/L
(00300) | Dis-
solved
oxygen,
percent
of sat-
uration
(00301) | MF,
water,
col/
100 mL | Hard-
ness,
water,
mg/L as
CaCO3
(00900) | Calcium
water,
fltrd,
mg/L
(00915) | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Sodium,
water,
fltrd,
mg/L
(00930) | Potas-
sium,
water,
fltrd,
mg/L
(00935) | Bicar-
bonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | ate,
wat flt
incrm.
titr., | inc tit | Alka-
linity,
wat flt
fxd end
field,
mg/L as
CaCO3
(39036) | | MAY | . 735 | 12.5 | 92 | E1 | 44 | 14.5 | 1.92 | 1.08 | .49 | 35 | .0 | 28 | 30 | | JUN 23 | | | | | | | | | | | | | | | JUL
28 | | | | | | | | | | | | | | | 40 | | 10.3 | 97 | 64 | 110 | 36.2 | 5.24 | 2.21 | .95 | 97 | .0 | 80 | 82 | # 15625850 STEWART RIVER 0.1 MILE BELOW BOULDER CREEK MOUTH NEAR NOME—Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 | | | | | | | Residue | | | | | | | | |---|--|--|--|--|---|---|--|---|--|--|---|--|---| | Date | Sulfate
water,
fltrd,
mg/L
(00945) | Chlor-
ide,
water,
fltrd,
mg/L
(00940) | Fluor-
ide,
water,
fltrd,
mg/L
(00950) | Silica,
water,
fltrd,
mg/L | on
evap.
at
180degC
wat flt
mg/L
(70300) | | Alum-
inum,
water,
fltrd,
ug/L
(01106) | Anti-
mony,
water,
fltrd,
ug/L
(01095) | | Barium,
water,
fltrd,
ug/L
(01005) | Beryll-
ium,
water,
fltrd,
ug/L
(01010) | Cadmium
water,
fltrd,
ug/L
(01025) | Chrom-
ium,
water,
fltrd,
ug/L
(01030) | | MAY
27 | 8.0 | 1.46 | <.2 | 2.86 | 57 | 48 | 7 | 1.09 | 2.0 | 5 | <.06 | < .04 | <.8 | | JUN
23 | | | | | | | | | | | | | | | JUL
28 | 29.1 | 1.51 | <.2 | 7.49 | 149 | 130 | 2 | 1.20 | 3.1 | 14 | <.06 | <.04 | <.8 | | SEP | | | | | | | | | | | | | | | 01 | 27.8 | 1.53 | <.2 | 6.93 | 136 | 129 | 2 | 1.32 | 2.9 | 12 | <.06 | <.04 | <.8 | | Date | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | | water,
fltrd,
ug/L | Nickel,
water,
fltrd,
ug/L
(01065) | Silver,
water,
fltrd,
ug/L
(01075) | Zinc,
water,
fltrd,
ug/L
(01090) | Uranium
natural
water,
fltrd,
ug/L
(22703) | Cyanide
water,
fltrd,
mg/L
(00723) | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | | MAY
27
JUN | .077 | .5 | 60 | <.08 | 9.2 | <.02 | <.4 | .47 | <.2 | 1.2 | .09 | <.01 | 3 | | 23
JUL | | | | | | | | | | | | | | | 28 | .111 | .5 | <6 | <.08 | 1.5 | <.02 | E.3 | .70 | <.2 | E.4 | .38 | <.01 | 5 | | SEP
01 | .114 | .5 | E5 | <.08 | 2.3 | <.02 | E.2 | 1.17 | <.2 | .9 | .43 | <.01 | . 4 | | Date | sedi-
ment
dis-
charge,
tons/d | percent | bed sed
<62.5um
wet svd
fld,tot
percent | mony,
bed sed
<62.5um
wet svd
fld,tot
ug/g | bed sed
<62.5um
wet svd
field,
total,
ug/g | total, | ium,
bed sed
<62.5um
wet svd
fld,tot
ug/g | bed sed
<177um
wet svd
field, | bed sed
<62.5um
wet svd
field, | ium,
bed sed | <62.5um
wet svd
field,
total,
ug/g | bed sed
<62.5um
wet svd
field,
total, | Cobalt,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34845) | | | | | | | | | | | | | | | | | MAY
27 | 1.8 | 74 | | | | | | | | | | | | | | 1.8 | 74 |
8.1 |
22 |
300 |
1100 |
3.2 |
<1 |
1.6 |
120 |
49 | 1.0 |
26 | | 27
JUN
23
JUL | | 74
 | 8.1 |
22
 | 300 | 1100 | 3.2 |
<1
 | 1.6 |
120
 |
49
 | 1.0 | | | 27 JUN 23 JUL 28 SEP |
.45 | 74

 | 8.1 |
22
 | 300 | 1100 | 3.2 |
<1
 | 1.6 |
120
 |
49
 | 1.0 | | | 27
JUN
23
JUL
28 | | 74

 | 8.1
 |
22
 | 300 |
1100
 | 3.2
 | <1
 | 1.6
 |
120
 |
49
 | 1.0
 | | | 27 JUN 23 JUL 28 SEP | .45
.06
Cerium,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Europ-
ium,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Gold,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Gallium bed sed <62.5um wet svd field, total, ug/g | Holmium
bed sed
<62.5um
wet svd
field,
total,
ug/g | Iron,
bed sed
<62.5um
wet svd
field, | Lantha-
num,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Lead,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Lithium bed sed <62.5um wet svd field, total, ug/g | Magnes-
ium,
bed sed
<62.5um
wet svd
fld,tot
percent | Mangan-
ese,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Mercury
bed sed
<62.5um
wet svd
field, | 26

Molyb-
denum,
bed sed
<62.5um | | 27 JUN 23 JUL 28 SEP 01 | .45
.06
Cerium,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Europ-
ium,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Gold,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Gallium bed sed <62.5um wet svd field, total, ug/g | Holmium
bed sed
<62.5um
wet svd
field,
total,
ug/g | Iron,
bed sed
<62.5um
wet svd
field,
total,
percent | Lantha-
num,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Lead,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Lithium bed sed <62.5um wet svd field, total, ug/g | Magnes-
ium,
bed sed
<62.5um
wet svd
fld,tot
percent | Mangan-
ese,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Mercury
bed sed
<62.5um
wet svd
field,
total,
ug/g | 26 Molyb- denum, bed sed <62.5um wet svd fld,tot ug/g | | 27 JUN 23 JUL 28 SEP 01 Date MAY 27 JUN | .45
.06
Cerium,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34835) | Europ- ium, bed sed
<62.5um wet svd fld,tot ug/g (34855) | Gold,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34870) | Gallium
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34860) | Holmium
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34875) | Iron,
bed sed
<62.5um
wet svd
field,
total,
percent
(34880) | Lantha-
num,
bed sed
<62.5um
wet svd
fld,tot
ug/g
(34885) | Lead,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34890) | Lithium
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34895) | Magnes-
ium,
bed sed
<62.5um
wet svd
fld,tot
percent
(34900) | Mangan-
ese,
bed sed
<62.5um
wet svd
fld,tot
ug/g
(34905) | Mercury
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34910) | 26 Molybdenum, bed sed <62.5um wet svd fld,tot ug/g (34915) | | 27 JUN 23 JUL 28 SEP 01 Date MAY 27 JUN 23 JUL 28 | .45
.06
Cerium,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Europ-
ium,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Gold,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Gallium bed sed <62.5um wet svd field, total, ug/g | Holmium
bed sed
<62.5um
wet svd
field,
total,
ug/g | Iron,
bed sed
<62.5um
wet svd
field,
total,
percent | Lantha-
num,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Lead,
bed sed
<62.5um
wet svd
field,
total,
ug/g | Lithium bed sed <62.5um wet svd field, total, ug/g | Magnes-
ium,
bed sed
<62.5um
wet svd
fld,tot
percent | Mangan-
ese,
bed sed
<62.5um
wet svd
fld,tot
ug/g | Mercury
bed sed
<62.5um
wet svd
field,
total,
ug/g | 26 Molyb- denum, bed sed <62.5um wet svd fld,tot ug/g | | 27 JUN 23 JUL 28 SEP 01 Date MAY 27 JUN 23 JUL 28 SEP | .45
.06
Cerium,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34835) | Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855) | Gold,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34870) | Gallium bed sed <62.5um wet svd field, total, ug/g (34860) | Holmium
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34875) | Iron,
bed sed
<62.5um
wet svd
field,
total,
percent
(34880) | Lantha-
num,
bed sed
<62.5um
wet svd
fld,tot
ug/g
(34885) | Lead,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34890) | Lithium
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34895) | Magnes-
ium,
bed sed
<62.5um
wet svd
fld,tot
percent
(34900) | Mangan-
ese,
bed sed
<62.5um
wet svd
fld,tot
ug/g
(34905) | Mercury
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34910) | 26 Molybdenum, bed sed <62.5um wet svd fld,tot ug/g (34915) | | 27 JUN 23 JUL 28 SEP 01 Date MAY 27 JUN 23 JUN 23 JUL 28 | .45
.06
Cerium,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34835) | Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855) | Gold,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34870) | Gallium bed sed <62.5um wet svd field, total, ug/g (34860) | Holmium
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34875) | Iron,
bed sed
<62.5um
wet svd
field,
total,
percent
(34880) | Lantha-
num,
bed sed
<62.5um
wet svd
fld,tot
ug/g
(34885) | Lead,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34890) | Lithium
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34895) | Magnes-
ium,
bed sed
<62.5um
wet svd
fld,tot
percent
(34900) | Mangan-
ese,
bed sed
<62.5um
wet svd
fld,tot
ug/g
(34905) | Mercury
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34910) | 26 Molybdenum, bed sed <62.5um wet svd fld,tot ug/g (34915) | | 27 JUN 23 JUL 28 SEP 01 Date MAY 27 JUN 23 JUL 28 SEP | .45 .06 Cerium, bed sed <62.5um wet svd field, total, ug/g (34835) 93 Neodym- ium, bed sed <62.5um wet svd fild,total | Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855) 2 Nickel, bed sed <62.5um wet svd field, total, | Gold, bed sed <62.5um wet svd field, ug/g (34870) Niobium bed sed <62.5um wet svd field, total, ug/g (34870) | Gallium bed sed <62.5um wet svd field, total, ug/g (34860) Phosphorus, bed sed <62.5um wet svd fld, tot percent | Holmium bed sed <62.5um wet svd field, total, ug/g (34875) 1 Scandium, bed sed <62.5um wet svd fid, total | Iron,
bed sed
<62.5um
wet svd
field,
total,
percent
(34880) | Lantha- num, bed sed <62.5um wet svd fld,tot ug/g (34885) 49 Silver, bed sed <62.5um wet svd field, total, ug/g | Lead, bed sed <62.5um wet svd field, total, ug/g (34890) 25 Sodium, bed sed <62.5um wet svd field, total, total, bed sed total, total, bed sed sed total, total, percent | Lithium bed sed <62.5um wet svd field, total, ug/g (34895) 46 Stront-ium, bed sed <62.5um wet svd fild, total | Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900) 1.7 Sulfur, bed sed <62.5um wet svd field, total, percent | Mangan- ese, bed sed <62.5um wet svd fld,tot ug/g (34905) Tant- alum, bed sed <62.5um wet svd fld,tot | Mercury bed sed <62.5um wet svd field, total, ug/g (34910) | 26 Molyb- denum, bed sed <62.5um wet svd fld,tot ug/g (34915) 3.0 Tin, bed sed <62.5um | | 27 JUN 23 SEP 01 Date MAY 27 JUN 23 JUL 28 SEP 01 | .45 .06 Cerium, bed sed <62.5um wet svd field, total, ug/g (34835) 93 Neodym- ium, bed sed <62.5um wet svd fild,total | Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855) 2 Nickel, bed sed <62.5um wet svd field, total, | Gold, bed sed <62.5um wet svd field, ug/g (34870) Niobium bed sed <62.5um wet svd field, total, ug/g (34870) | Gallium bed sed <62.5um wet svd field, total, ug/g (34860) Phosphorus, bed sed <62.5um wet svd fld, tot percent | Holmium bed sed <62.5um wet svd field, total, ug/g (34875) 1 Scandium, bed sed <62.5um wet svd fid, total | Iron, bed sed <62.5um wet svd field, total, percent (34880) 6.0 Selen- ium, bed sed <62.5um wet svd fild, total | Lantha- num, bed sed <62.5um wet svd fld,tot ug/g (34885) 49 Silver, bed sed <62.5um wet svd field, total, ug/g | Lead, bed sed <62.5um wet svd field, total, ug/g (34890) 25 Sodium, bed sed <62.5um wet svd field, total, total, bed sed total, total, bed sed sed total, total, percent | Lithium bed sed <62.5um wet svd field, total, ug/g (34895) 46 Stront- ium, bed sed <62.5um wet svd fld,tot ug/g | Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900) 1.7 Sulfur, bed sed <62.5um wet svd field, total, percent | Mangan- ese, bed sed <62.5um wet svd fld,tot ug/g (34905) Tant- alum, bed sed <62.5um wet svd fld,tot | Mercury bed sed c62.5um wet svd field, total, ug/g (34910) Thorium bed sed c62.5um wet svd field, total, ug/g total, ug/g | Molybdenum, bed sed <62.5um wet svd fld, tot ug/g (34915) Tin, bed sed < Tin, bed sed wet svd field, totucal, total, ug/g | | 27 JUN 23 JUL 28 SEP 01 Date MAY 27 JUN 23 JUN 23 JUL 28 SEP 01 Date | .45 .06 Cerium, bed sed <62.5um wet svd field, total, ug/g (34835) 93 Neodym- ium, bed sed <62.5um wet svd fild,total | Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855) 2 Nickel, bed sed <62.5um wet svd field, total, | Gold, bed sed <62.5um wet svd field, ug/g (34870) Niobium bed sed <62.5um wet svd field, total, ug/g (34870) | Gallium bed sed <62.5um wet svd field, total, ug/g (34860) Phosphorus, bed sed <62.5um wet svd fld, tot percent | Holmium bed sed <62.5um wet svd field, total, ug/g (34875) 1 Scandium, bed sed <62.5um wet svd fid, total | Iron, bed sed <62.5um wet svd field, total, percent (34880) 6.0 Selen- ium, bed sed <62.5um wet svd fild, total | Lantha- num, bed sed <62.5um wet svd fld,tot ug/g (34885) 49 Silver, bed sed <62.5um wet svd field, total, ug/g | Lead, bed sed <62.5um wet svd field, total, ug/g (34890) 25 Sodium, bed sed <62.5um wet svd field, total, total, bed sed total, total, bed sed sed total, total, percent | Lithium bed sed <62.5um wet svd field, total, ug/g (34895) 46 Stront- ium, bed sed <62.5um wet svd fld,tot ug/g | Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900) 1.7 Sulfur, bed sed <62.5um wet svd field, total, percent | Mangan- ese, bed sed <62.5um wet svd fld,tot ug/g (34905) Tant- alum, bed sed <62.5um wet svd fld,tot | Mercury bed sed c62.5um wet svd field, total, ug/g (34910) Thorium bed sed c62.5um wet svd field, total, ug/g total, ug/g | Molybdenum, bed sed <62.5um wet svd fld, tot ug/g (34915) Tin, bed sed < Tin, bed sed wet svd field, totucal, total, ug/g | | 27 JUN 23 JUL 28 SEP 01 Date MAY 27 JUL 28 SEP 01 Date | .45 .06 Cerium, bed sed <62.5um wet svd field, total, ug/g (34835) 93 Neodym-ium, bed sed <62.5um wet svd fid,total, total, ug/g (34920) | Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855) 2 Nickel, bed sed <62.5um wet svd field, ug/g (34925) | Gold, bed sed <62.5um wet svd field, ug/g (34870) Niobium bed sed <62.5um wet svd field, ug/g (34930) | Gallium bed sed <62.5um wet svd field, total, ug/g (34860) Phos-phorus, bed sed <62.5um wet svd fld,tot percent (34935) | Holmium bed sed <62.5um wet svd field, total, ug/g (34875) 1 Scand-ium, bed sed <62.5um wet svd fid, total ug/g (34945) | Iron, bed sed <62.5um wet svd field, total, percent (34880) Selen-ium, bed sed <62.5um wet svd fid, total (34950) | Lantha- num, bed sed <62.5um wet svd fld,tot ug/g (34885) 49 Silver, bed sed <62.5um wet svd field, total, ug/g (34955) | Lead, bed sed <62.5um wet svd field, total, ug/g (34890) 25 Sodium, bed sed <62.5um wet svd field, total, percent (34960) | Lithium bed sed <62.5um wet svd field, total, ug/g (34895) 46 Stront-ium, bed sed <62.5um wet svd fild, total, ug/g (34965) | Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900) 1.7 Sulfur, bed sed <62.5um wet svd field, total, percent (34970) | Mangan- ese, bed sed <62.5um wet
svd fld,tot ug/g (34905) 1800 Tant- alum, bed sed <62.5um wet svd fld,tot ug/g (34975) | Mercury bed sed <62.5um wet svd field, total, ug/g (34910) | 26 Molyb- denum, bed sed <62.5um wet svd fld,tot ug/g (34915) 3.0 Tin, bed sed <62.5um wet svd field, total, ug/g (34985) | | 27 JUN 23 Date MAY 27 JUN 28 SEP 01 Date | .45 .06 Cerium, bed sed <62.5um wet svd field, total, ug/g (34835) 93 Neodym-ium, bed sed <62.5um wet svd fid,total, total, ug/g (34920) | Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855) 2 Nickel, bed sed <62.5um wet svd field, ug/g (34925) | Gold, bed sed <62.5um wet svd field, ug/g (34870) Niobium bed sed <62.5um wet svd field, ug/g (34930) | Gallium bed sed <62.5um wet svd field, total, ug/g (34860) Phosphorus, bed sed <62.5um wet svd fid, total, ug/g (34860) | Holmium bed sed <62.5um wet svd field, total, ug/g (34875) 1 Scand-ium, bed sed <62.5um wet svd fild, tot ug/g (34945) | Iron, bed sed <62.5um wet svd field, total, percent (34880) Selenium, bed sed <62.5um wet svd fid, total, 104 sed sed <62.5um set svd fid, totug/g (34950) | Lantha- num, bed sed <62.5um wet svd fld,tot ug/g (34885) 49 Silver, bed sed <62.5um wet svd field, total, ug/g (34955) | Lead, bed sed <62.5um wet svd field, total, ug/g (34890) Sodium, bed sed <62.5um wet svd field, total, percent (34960) | Lithium bed sed <62.5um wet svd field, total, ug/g (34895) 46 Stront-ium, bed sed <62.5um wet svd fild, total, ug/g (34965) | Magnes- ium, bed sed <62.5um wet svd fld,tot percent (34900) 1.7 Sulfur, bed sed <62.5um wet svd field, total, percent (34970) | Mangan- ese, bed sed <62.5um wet svd fld,tot ug/g (34905) 1800 Tant- alum, bed sed <62.5um wet svd fld,tot ug/g (34975) | Mercury bed sed <62.5um wet svd field, total, ug/g (34910) | 26 Molyb- denum, bed sed <62.5um wet svd fld,tot ug/g (34915) 3.0 Tin, bed sed <62.5um wet svd field, total, ug/g (34985) | # 15625850 STEWART RIVER 0.1 MILE BELOW BOULDER CREEK MOUTH NEAR NOME—Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 | | Titan- | Uranium | Vanad- | Yttrium | Ytterb- | Zinc, | Organic | Inorg. | Total | Total | Inorg. | Organic | | |------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--| | | ium, | bed sed | ium, | bed sed | ium, | bed sed | carbon, | carbon, | carbon, | carbon, | carbon, | carbon, | | | | bed sed | <62.5um | bed sed | <62.5um | bed sed | <62.5um | bed sed | bed sed | sedimnt | bed sed | bed sed | bed sed | | | | <62.5um | wet svd | <62.5um | wet svd | <62.5um | wet svd | <62.5um | <62.5um | <62.5um | <2 mm, | <2 mm, | <2 mm, | | | | wsv nat | field, | wet svd | field, | wet svd | field, | wsv nat | | | Date | rec, | total, | fld,tot | total, | fld,tot | total, | field | field | field | field | field | field | | | | percent | ug/g | ug/g | ug/g | ug/g | ug/g | percent | percent | percent | g/kg | g/kg | g/kg | | | | (49274) | (35000) | (35005) | (35010) | (35015) | (35020) | (49266) | (49269) | (49267) | (49272) | (49270) | (49271) | | | | | | | | | | | | | | | | | | MAY | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | JUN | | | | | | | | | | | | | | | 23 | .380 | 6.0 | 170 | 30 | 3 | 200 | 2.9 | .05 | 2.9 | 6.6 | <.2 | 6.6 | | | JUL | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 0.1 | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | |----------|-----|-------|------|-----|-----|------|-----|-----|------|------|------|------| | | I | MARCH | | AF | RIL | | | MAY | | | JUNE | | | 1 | | | | | | | | | | 6.5 | 1.0 | 3.5 | | 2 | | | | | | | | | | 6.0 | 1.5 | 3.5 | | 3 | | | | | | | | | | 7.5 | 2.0 | 4.0 | | 4 | | | | | | | | | | 6.5 | 2.0 | 4.0 | | 5 | | | | | | | | | | 9.0 | 2.5 | 5.0 | | 6 | | | | | | | | | | 10.0 | 3.0 | 6.0 | | 7 | | | | | | | | | | | | | | 8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 1.0 | | | | | | | | | | | | | | 16
17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27 | | | | | | | 4.0 | | | | | | | 28 | | | | | | | 5.5 | 0.5 | 2.5 | | | | | 20
29 | | | | | | | 4.0 | 1.5 | 2.5 | | | | | 30 | | | | | | | 5.5 | 1.0 | 3.0 | | | | | 31 | | | | | | | 4.0 | 1.5 | 2.5 | | | | | 31 | | | | | | | 4.0 | 1.5 | 2.5 | | | | | MONTELL | | | | | | | | | | | | | ## 15625900 STEWART RIVER 0.2 MILE BELOW DURRANT CREEK MOUTH NEAR NOME LOCATION.--Lat $64^{\circ}47'18''$, long $165^{\circ}37'54''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 8 S., R. 34 W. (Nome D-2 quad), Hydrologic Unit 19050104, on the left bank, 0.2 mi downstream from Durrant Creek, 2.6 mi upstream from mouth, and 22 mi northwest of Nome. DRAINAGE AREA.-- 53.18 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 2004 to September 2004 (discontinued). GAGE.--Water-stage recorder. Elevation of gage is 375 ft above sea level, from topographic map. EXTREMES FOR CURRENT PERIOD.--Maximum discharge during period May to September 2004, 760 ${\rm ft}^3/{\rm s}$, May 26 and 27, gage height, 15.73 ft. minimum discharge 35 ${\rm ft}^3/{\rm s}$, July 25 and 26. REMARKS.--Records are fair, except for estimated discharges, which are poor. Rain gage at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-----|-----|-----|-----|-----|------|-------|------|-------|-----| | 1 | | | | | | | | | 494 | 89 | 56 | 110 | | 2 | | | | | | | | | 445 | 86 | 51 | | | 3 | | | | | | | | | 383 | 81 | 80 | | | 4 | | | | | | | | | 338 | 76 | 90 | | | 5 | | | | | | | | | 410 | 73 | 71 | | | _ | | | | | | | | | | | | | | 6 | | | | | | | | | 399 | 67 | 63 | | | 7 | | | | | | | | | 418 | 65 | 70 | | | 8 | | | | | | | | | 310 | 66 | 232 | | | 9 | | | | | | | | | 268 | 63 | 231 | | | 10 | | | | | | | | | 241 | 59 | 156 | | | 11 | | | | | | | | | 235 | 54 | 130 | | | 12 | | | | | | | | | 230 | 51 | 387 | | | 13 | | | | | | | | | 203 | 50 | 537 | | | 14 | | | | | | | | | 180 | 50 | 446 | | | | | | | | | | | | | | | | | 15 | | | | | | | | | 157 | 48 | 397 | | | 16 | | | | | | | | | 156 | 48 | 313 | | | 17 | | | | | | | | | 193 | 54 | 270 | | | 18 | | | | | | | | | 149 | 58 | 235 | | | 19 | | | | | | | | | 169 | 47 | 214 | | | 20 | | | | | | | | | 142 | 43 | 195 | | | | | | | | | | | | | | | | | 21 | | | | | | | | | 130 | 41 | 179 | | | 22 | | | | | | | | | 160 | 40 | 171 | | | 23 | | | | | | | | | 224 | 38 | 160 | | | 24 | | | | | | | | | 174 | 37 | 149 | | | 25 | | | | | | | | | 165 | 36 | 137 | | | | | | | | | | | | | | | | | 26 | | | | | | | | e660 | 149 | 36 | 126 | | | 27 | | | | | | | | 626 | 131 | 58 | 123 | | | 28 | | | | | | | | 434 | 116 | 109 | 117 | | | 29 | | | | | | | | 469 | 103 | 76 | 112 | | | 30 | | | | | | | | 462 | 94 | 75 | 113 | | | 31 | | | | | | | | e640 | | 61 | 110 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | | | 6966 | 1835 | 5721 | | | MEAN | | | | | | | | | 232 | 59.2 | 185 | | | MAX | | | | | | | | | 494 | 109 | 537 | | | MIN | | | | | | | | | 94 | 36 | 51 | | | AC-FT | | | | | | | | | 13820 | 3640 | 11350 | | | | | | | | | | | | | | | | e Estimated # 15625900 STEWART RIVER 0.2 MILE BELOW DURRANT CREEK MOUTH NEAR NOME—Continued WATER-QUALITY RECORDS PERIOD OF RECORD. -- May to September 2004 (discontinued). PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: May to September 2004 (discontinued). INSTRUMENTATION.--Water-temperature recorder. Electronic water temperature recorder set for 15-minute recording interval. REMARKS.--Probe installed on May 26. Recorder malfunctioned from May 28 to June 9, and 11. Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the average for the river by cross section on May 26, and July 28, and September 1. A 0.5°C variation was found May 26 and July 28. No variation was found September 1. No variation was found between mean stream temperature and sensor temperature. EXTREMES FOR CURRENT PERIOD. -- WATER TEMPERATURE: Maximum, 18.5°C, July 22 and 24; minimum recorded, 0.5°C, May 27. WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 | Date | | Time | Loca-
tion in
X-sect.
looking
dwnstrm
ft from
1 bank
(00009) | Specif.
conduc-
tance,
wat unf
uS/cm
25 degC
(00095) | pH,
water,
unfltrd
field,
std
units
(00400) | Temper-
ature,
water,
deg C
(00010) | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | Dis-
solved
oxygen,
percent
of sat-
uration
(00301) | | | | | |-----------------------------------|---|--|---|--|---|---|--|--|---|---|---|---
---| | MAY
26
26
26
26
26 | | 1831
1833
1834
1835
1836
1837 | 16.0
36.0
76.0
96.0
116 | 83
83
83
83
84 | 7.2
7.2
7.2
7.2
7.2
7.2 | 4.5
4.5
4.5
4.5
4.5 | 751
751
751
751
751
751 | 11.9
11.8
11.8
11.8
11.7 | 93
93
93
93
92
93 | | | | | | 28
28
28
28
28
SEP | | 1505
1506
1507
1508
1509 | 64.0
49.0
34.0
19.0
4.00 | 201
202
203
203
204 | 7.6
7.6
7.6
7.5
7.5 | 13.5
13.0
13.0
13.0 | 743
743
743
743
743 | 10.3
9.9
9.8
9.8
9.8 | 101
96
95
95
95 | | | | | | 01
01
01
01 | | 1330
1331
1332
1333
1334 | 8.00
24.0
40.0
56.0
72.0 | 221
219
218
216
215 | 7.7
7.7
7.7
7.7
7.7 | 8.5
8.5
8.5
9.0
9.0 |

 | 11.0
11.0
11.0
11.0
11.0 |

 | | | | | | SEP
01
01 | | 1330
1331 | 8.00
24.0 | 221
219 | 7.7
7.7 | 8.5
8.5 | | 11.0
11.0 |
 | | | | | | Date | Time | Medium
code | n Sample
type | e Stream
width,
feet
(00004) | height,
feet | cfs | Sam-
pling
method,
code
(82398) | Sampler
type,
code
(84164) | uS/cm
25 degC | pH,
water,
unfltrd
field,
std
units
(00400) | Temper-
ature,
air,
deg C
(00020) | Temper-
ature,
water,
deg C
(00010) | Turbid-
ity,
wat unf
lab,
Hach
2100AN
NTU
(99872) | | MAY 26 | 1810 | 9 | 9 | 146 | 15.55 | 680 | 10 | 3044 | 83 | 7.2 | 10.5 | 4.5 | 3.3 | | JUN
23 | 1410 | Н | 9 | | 14.88 | 265 | 70 | | | | | | | | JUL
28 | 1440 | 9 | 9 | 74.0 | 14.50 | 89 | 20 | 3044 | 203 | 7.5 | 18.1 | 13.0 | <2.0 | | SEP
01 | 1310 | 9 | 9 | 97.0 | 14.62 | 109 | 10 | 3044 | 220 | 7.8 | 13.5 | 8.8 | <2.0 | | Date | Baro-
metric
pres-
sure,
mm Hg
(00025) | Dis-
solved
oxygen,
mg/L
(00300) | of sat-
uration | MF,
water,
col/
100 mI | | fltrd,
mg/L | Magnes-
ium,
water,
fltrd,
mg/L
(00925) | Sodium,
water,
fltrd,
mg/L | water,
fltrd,
mg/L | Bicar-
bonate,
wat flt
incrm.
titr.,
field,
mg/L
(00453) | Carbon-
ate,
wat flt
incrm.
titr.,
field,
mg/L
(00452) | Alka-
linity,
wat flt
inc tit
field,
mg/L as
CaCO3
(39086) | Alka-
linity,
wat flt
fxd end
field,
mg/L as
CaCO3
(39036) | | MAY 26 | 741 | 11.8 | 94 | E4 | 38 | 12.3 | 1.88 | 1.03 | .38 | 31 | .0 | 25 | 26 | | JUN
23 | | | | | | | | | | | | | | | JUL
28 | 743 | 9.8 | 95 | 40 | 100 | 33.1 | 5.14 | 2.29 | .71 | 95 | .0 | 77 | 78 | | SEP
01 | 744 | 11.0 | 97 | E8 | 120 | 37.3 | 5.68 | 2.20 | .62 | 101 | .0 | 83 | 83 | # 15625900 STEWART RIVER 0.2 MILE BELOW DURRANT CREEK MOUTH NEAR NOME—Continued | | 13023700 | SIL WILL | CI ICI V LI | 0.2 1111 | LL DLL | ow Don | 11/11/1 | JILLIE IV | 1001111 | ILI III III | MIL CO | minucu | | |------------------------|---|--|--|---|---|--|--|--|--|--|---|---|--| | Date | Sulfate
water,
fltrd,
mg/L | Chlor-
ide,
water,
fltrd,
mg/L | Fluor-
ide,
water,
fltrd,
mg/L | | Residue
on
evap.
at
180degC
wat flt
mg/L | Residue
water,
fltrd,
sum of
consti-
tuents
mg/L | | | Arsenic
water, | Barium,
water,
fltrd,
ug/L | Beryll-
ium,
water,
fltrd,
ug/L | Cadmium
water,
fltrd,
ug/L | Chrom-
ium,
water,
fltrd,
ug/L | | MAY | (00945) | (00940) | | (00955) | (70300) | (70301) | (01106) | (01095) | | (01005) | (01010) | (01025) | (01030) | | 26
JUN | 7.7 | 1.52 | <.2 | 2.66 | 53 | 43 | 8 | .52 | 1.6 | 5 | <.06 | < .04 | <.8 | | 23
JUL | | | | | | | | | | | | | | | 28
SEP | 26.4 | 2.12 | <.2 | 6.73 | 149 | 123 | 3 | .90 | 2.7 | 13 | <.06 | < .04 | <.8 | | 01 | 26.5 | 1.88 | <.2 | 6.96 | 130 | 131 | 3 | .94 | 2.3 | 12 | <.06 | <.04 | E.5 | | Date
MAY | Cobalt
water,
fltrd,
ug/L
(01035) | Copper,
water,
fltrd,
ug/L
(01040) | Iron,
water,
fltrd,
ug/L
(01046) | Lead,
water,
fltrd,
ug/L
(01049) | Mangan-
ese,
water,
fltrd,
ug/L
(01056) | Mercury
water,
fltrd,
ug/L
(71890) | Molyb
denum,
water,
fltrd
ug/L
(01060) | Nickel,
water,
fltrd,
ug/L | water,
fltrd,
ug/L | Zinc,
water,
fltrd,
ug/L
(01090) | Uranium
natural
water,
fltrd,
ug/L
(22703) | Cyanide
water, | Sus-
pended
sedi-
ment
concen-
tration
mg/L
(80154) | | 26
JUN | .082 | .7 | 137 | <.08 | 13.5 | <.02 | <.4 | .49 | <.2 | 2.1 | .11 | <.01 | 13 | | 23
JUL
28
SEP | .114 | .5 | 12 | <.08 | 3.5 | <.02 | E.2 | .73 | <.2 | <.6 | .31 | <.01 | 1 | | 01 | .136 | . 4 | 13 | <.08 | 6.8 | <.02 | E.2 | 1.25 | <.2 | E.4 | .39 | <.01 | .3 | | Date | tons/d | sieve
diametr
percent
<.063mm | wet svd
fld,tot | mony,
bed sed
<62.5um
wet svd
fld,tot
ug/g | | bed sed <62.5um | bed sed | bed sed
<177um
wet svd
field, | total, | ium,
bed sed
<62.5um
wet svd | <62.5um
wet svd
field, | | bed sed <62.5um | | MAY
26
JUN | 24 | 87 | | | | | | | | | | | | | 23
JUL | | | 8.4 | 11 | 220 | 1100 | 3.2 | <1 | .9 | 120 | 53 | .780 | 25 | | 28
SEP | .24 | | | | | | | | | | | | | | 01 | .09 | | | | | | | | | | | | | | Date | Cerium,
bed sed
<62.5um
wet svd
field,
total,
ug/g
(34835) | | bed sed
<62.5um
wet svd
field,
total,
ug/g | bed sed <62.5um | <62.5um | <62.5um
wet svd
field, | bed sec | bed sed
1 <62.5um
wet svd
1 field, | d bed sed
1 <62.5um
wet svd
field,
total,
ug/g | ium,
bed sed
<62.5um
wet svd | <62.5um
wet svd
fld,tot | bed sed
<62.5um
wet svd
field, | | | MAY
26
JUN | | | | | | | | | | | | | | | 23
JUL | 97 | 2 | <1 | 20 | 1 | 5.9 | 51 | 29 | 48 | 1.4 | 1200 | .04 | 3.2 | | 28
SEP | | | | | | | | | | | | | | | 01 | | | | | | | | | | | | | | | Date
MAY | ium,
bed sed | bed sed <62.5um | total,
ug/g | phorus,
bed sed
<62.5um
wet svd | bed sed
<62.5um
wet svd | ium,
bed sed | bed sed
<62.5um
wet svo
field, | bed sed
<62.5um
wet svd
field,
total,
percent | bed sed
<62.5um
wet svd
fld,tot
ug/g | bed sed
<62.5um
wet svd
field, | alum,
bed sed
<62.5um
wet svd
fld,tot
ug/g | <62.5um
wet svd
field, | bed sed <62.5um | | 26
JUN | | | | | | | | | | | | | | | 23
JUL | 50 | 62 | 10 | .120 | 22 | 1.0 | .5 | .730 | 120 | .07 | 1 | 20 | 5 | | 28
SEP | | | | | | | | | | | | | | | 01 | | | | | | | | | | | | | | | Date
MAY | Titan
ium,
bed se
<62.5u
wsv na
rec,
percen
(49274 | bed sed <62.5um wet svt field total | d ium,
m bed se
d <62.5u
, wet sv
, fld,to
ug/g | bed s d <62.5 m wet s d fiel t tota ug/ | ed ium
um bed s
vd <62.5
d, wet s
1, fld,t
g ug, | m, bed sed <62. Sum wet svd fie tot tot/g ug | sed car
5um bed
svd <62
ld, wsv
al, fi
/g per | bon, car
sed bed
.5um <62
nat wsv
eld fi | rbon, car
d sed sed
2.5um <62
7 nat wsw
leld fi
rcent per | rbon, car
dimnt bed
2.5um <2
7 nat ws
ield fr
ccent 9 | rbon, ca d sed be 2 mm, < v nat ws ield f g/kg | rbon, ca
d sed be
2 mm, <
v nat ws
ield f
g/kg | 2 mm, | | 26
JUN | | | | | | | - | | | | | | | | 23
JUL | .310 | | 160 | 29 | 3 | 17 | | .1 | | | 8.9 | <.2 | 8.8 | | 28
SEP | | | | | | | _ | | | | | | | | 01 | | | | | | | _ | | | | | | | # 15625900 STEWART RIVER 0.2 MILE BELOW DURRANT CREEK MOUTH NEAR NOME—Continued | DAY | MAX | MIN | MEAN | |---|---|---|--|--|--|--
--|---|--|--------------|--|------| | | | FEBRUARY | 7 | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7
8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | 13
14 | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | 1.0 | | | | | | | | | | | | | | 16
17 | | | | | | | | | | | | | | 18 | | | | | | | | | | | | | | 19
20 | 21
22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | 26 | | | | | | | | | | | | | | 27
28 | | | | | | | | | | 5.0
6.5 | 0.5 | 2.0 | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | 7.0 | | | | 31 | | | | | | | | | | | | | | MONTH | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | | | MEAN | | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | 1 | 9.0 | | MEAN | 13.5 | JULY
9.5 | 11.5 | 13.5 | AUGUST | 12.5 | | | | | 1
2
3 | 9.0
7.5
9.5 | JUNE

 | | 13.5
12.5
16.0 | JULY
9.5
9.0
9.0 | 11.5
10.5
12.0 | 13.5
12.5
13.0 | AUGUST
11.5
11.0
11.0 | 12.5
12.0
12.0 | | SEPTEMBE
8.0
 | ER | | 1
2
3
4 | 9.0
7.5
9.5
9.0 | JUNE

 |

 | 13.5
12.5
16.0
14.0 | JULY
9.5
9.0
9.0
10.0 | 11.5
10.5
12.0
11.5 | 13.5
12.5
13.0
12.5 | AUGUST
11.5
11.0
11.0 | 12.5
12.0
12.0
11.5 |

 | 8.0

 | ER | | 1
2
3
4
5 | 9.0
7.5
9.5
9.0
10.5 | JUNE

 | | 13.5
12.5
16.0
14.0
16.0 | JULY 9.5 9.0 9.0 10.0 9.0 | 11.5
10.5
12.0 | 13.5
12.5
13.0
12.5
13.5 | 11.5
11.0
11.0
11.0 | 12.5
12.0
12.0 | | SEPTEMBE
8.0
 | ER | | 1
2
3
4
5 | 9.0
7.5
9.5
9.0
10.5 | JUNE | | 13.5
12.5
16.0
14.0
16.0 | JULY
9.5
9.0
9.0
10.0
9.0 | 11.5
10.5
12.0
11.5
12.5 | 13.5
12.5
13.0
12.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 | 12.5
12.0
12.0
11.5
12.0 |

 | 8.0

 | ER | | 1
2
3
4
5 | 9.0
7.5
9.5
9.0
10.5 | JUNE |

 | 13.5
12.5
16.0
14.0
16.0 | JULY 9.5 9.0 9.0 10.0 9.0 | 11.5
10.5
12.0
11.5
12.5 | 13.5
12.5
13.0
12.5
13.5 | 11.5
11.0
11.0
11.0 | 12.5
12.0
12.0
11.5
12.0 |

 | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
10.5 | JUNE | | 13.5
12.5
16.0
14.0
16.0 | JULY 9.5 9.0 9.0 10.0 9.0 10.0 9.5 9.5 9.5 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5 | AUGUST 11.5 11.0 11.0 11.0 11.0 10.0 9.0 11.0 11.0 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5 |

 | 8.0

 | ER | | 1
2
3
4
5 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5 | JUNE | | 13.5
12.5
16.0
14.0
16.0 | JULY 9.5 9.0 9.0 10.0 9.0 10.0 9.5 9.5 | 11.5
10.5
12.0
11.5
12.5
12.5 | 13.5
12.5
13.0
12.5
13.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 11.0 11.0 10.0 | 12.5
12.0
12.0
11.5
12.0 |

 | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
10.5
13.5 | JUNE 5.0 |

8.5 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
16.0 | JULY 9.5 9.0 9.0 10.0 9.0 10.0 9.5 9.5 9.5 9.5 | 11.5
10.5
12.0
11.5
12.5
11.0
10.5
12.0
12.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 11.0 10.0 9.5 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5 |

 | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
10.5
13.5 | JUNE 5.0 |

8.5 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5 | JULY 9.5 9.0 9.0 10.0 9.0 10.0 9.5 9.5 9.5 9.5 9.5 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 11.0 10.0 9.5 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5 | | 8.0

 | CR | | 1
2
3
4
5
6
7
8
9
10 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
10.5
13.5 | JUNE 5.0 |

8.5 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
16.0 | JULY 9.5 9.0 9.0 10.0 9.0 10.0 9.5 9.5 9.5 9.5 | 11.5
10.5
12.0
11.5
12.5
11.0
10.5
12.0
12.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 11.0 10.0 9.5 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5 | | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 9.0
7.5
9.5
9.0
10.5
11.5
13.5
13.5
13.5
14.0 | JUNE 5.0 |

8.5 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5 | JULY 9.5 9.0 9.0 10.0 9.0 10.0 9.5 9.5 9.5 9.5 11.5 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
12.0
12.5 | 13.5
12.5
13.0
12.5
13.5
13.5
13.5
12.0
12.5
11.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 11.0 10.0 9.0 11.0 10.0 9.5 10.0 11.0 10.5 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5 | | 8.0

 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.0
7.5
9.5
9.0
10.5
11.5
13.5
13.5
14.0
15.0 | JUNE 5.0 6.5 6.5 7.0 7.5 |

8.5

10.5
10.0
10.5
11.0 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.1 1.5 10.5 | 11.5
10.5
12.0
11.5
12.5
12.5
12.0
12.5
12.0
12.5
13.0
12.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 11.0 10.0 9.5 10.0 11.0 10.5 11.0 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5 | | 8.0

 | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
10.5
13.5
14.0
14.5
14.0
15.0 | JUNE 5.0 6.5 6.5 7.0 7.5 |

8.5

10.5
10.0
10.5
11.0 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 11.5 10.5 11.5 12.0 | 11.5
10.5
12.0
11.5
12.5
11.0
10.5
12.0
12.5
12.0
12.5
13.0
12.5
13.0 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
13.5
13.0
12.0
12.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 10.0 10.0 10.0 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.0
7.5
9.5
9.0
10.5
11.5
13.5
10.5
13.5
14.0
15.0
12.5 | JUNE 5.0 6.5 6.5 7.0 7.5 7.5 7.0 6.5 |

8.5

10.5
10.0
10.5
11.0
9.5
8.0
9.0 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 10.5 11.5 11.5 12.0 11.5 | 11.5
10.5
12.0
11.5
12.5
12.5
12.0
12.5
12.0
12.5
13.0
12.5
13.0
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
13.0
12.0
12.5
12.0
12.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 10.0 9.5 10.0 10.5 10.5 10.5 9.5 10.9 9.0 | 12.5
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
10.5
13.5
14.0
14.5
14.0
15.0 | JUNE 5.0 6.5 6.5 7.0 7.5 |

8.5

10.5
10.0
10.5
11.0 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 11.5 10.5 11.5 12.0 | 11.5
10.5
12.0
11.5
12.5
11.0
10.5
12.0
12.5
12.0
12.5
13.0
12.5
13.0 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
13.5
13.0
12.0
12.5
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 10.0 10.0 10.0 |
12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 9.0
7.5
9.5
9.0
10.5
11.5
13.5
14.0
15.0
12.5
9.5
11.5 | JUNE 5.0 6.5 6.5 7.0 7.5 7.5 7.0 6.5 8.0 7.0 | 8.5
 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 10.5 11.5 11.5 12.0 11.5 11.0 | 11.5
10.5
12.0
11.5
12.5
12.5
12.0
12.5
12.0
12.5
13.0
12.5
13.0
13.5
13.5
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
13.0
12.0
12.5
12.0
13.5 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 10.0 9.5 10.0 10.5 10.5 11.0 10.5 11.0 10.5 | 12.5
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
13.5
14.0
14.5
14.0
15.0 | JUNE 5.0 6.5 6.5 7.0 7.5 7.5 7.8 |

8.5

10.5
10.0
10.5
11.0
9.5
8.0
9.0 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
16.0 | JULY 9.5 9.0 9.0 10.0 9.0 10.0 9.5 9.5 9.5 10.5 10.5 11.5 12.0 11.5 10.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
12.0
12.5
13.0
12.5
13.0 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
12.0
12.5
13.5
13.0
12.0
12.5
12.0
14.0
16.0
16.0 | AUGUST 11.5 11.0 11.0 11.0 11.0 10.0 9.0 11.0 11.0 | 12.5
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
13.5
14.0
14.5
14.0
15.0
12.5
9.5
11.5 | JUNE 5.0 6.5 6.5 7.0 7.5 7.5 7.0 6.5 8.0 7.0 | 8.5
 | 13.5
12.5
16.0
14.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
16.0
17.0
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 11.5 11.5 11.0 11.0 10.5 11.1 11.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
13.0
12.5
13.0
13.5
13.5
13.5
13.5
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
13.5
13.5
13.0
12.0
12.5
12.0
13.5 | AUGUST 11.5 11.0 11.0 11.0 11.0 11.0 10.0 9.0 11.0 11 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
12.0
11.5
12.0
12.5
13.0 | | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 9.0
7.5
9.5
9.0
10.5
13.5
13.5
13.5
14.0
14.5
14.0
15.0
12.5
9.0
11.5
11.5 | JUNE 5.0 6.5 6.5 7.0 7.5 7.5 7.5 7.0 8.0 8.0 8.0 8.0 8.0 8.0 |

8.5

10.5
11.0
9.5
8.0
9.0
9.0
9.0
9.0
9.0
8.5
8.5 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
17.0
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 10.5 11.5 11.5 11.0 11.0 10.5 11.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
12.0
12.5
13.0
12.5
13.0
13.5
13.5
13.5
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
12.0
12.5
12.5
12.0
12.5
12.5
12.5
12.6
12.5
12.5
12.6
12.5
12.5
12.5
12.5
12.5
12.5
12.6
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5 | AUGUST 11.5 11.0 11.0 11.0 11.0 10.0 9.0 11.0 11.0 | 12.5
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
13.5
14.0
14.0
15.0
12.5
9.0
11.5
11.5 | JUNE 5.0 5.0 6.5 6.5 7.0 7.5 7.5 7.0 8.0 8.0 8.0 8.0 6.5 6.5 |

8.5

10.5
10.0
10.5
11.0
9.5
8.0
9.0
9.0
9.0
9.0
9.0
9.0
8.5
8.5 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
17.0
16.0
17.0
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 10.5 11.5 12.0 11.0 10.5 11.0 10.5 11.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
12.0
12.5
13.0
12.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
13.5
13.0
12.0
12.5
13.5
13.0
12.0
12.5
12.0
14.0
16.0
16.0
16.5
16.5 | AUGUST 11.5 11.0 11.0 11.0 11.0 11.0 10.0 9.0 11.0 11 | 12.5
12.0
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

- | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
26
27
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 9.0
7.5
9.5
9.0
10.5
13.5
13.5
13.5
14.0
14.5
14.0
15.0
12.5
9.0
11.5
11.5
12.0
10.0
9.5
11.5 | JUNE 5.0 6.5 6.5 7.0 6.5 7.0 6.5 8.0 7.0 8.0 8.0 8.0 8.0 6.5 6.5 |

8.5

10.5
10.0
10.5
11.0
9.5
8.0
9.0
9.0
9.0
9.0
9.0
8.5
8.0
8.0 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
17.5
16.0
17.0
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 10.5 11.5 10.5 11.5 12.0 11.0 11.0 11.5 12.0 12.0 12.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
13.0
12.5
13.0
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
13.0
12.0
12.5
14.0
16.0
15.5
16.5
14.5
14.5
14.5
14.5 | AUGUST 11.5 11.0 11.0 11.0 11.0 10.0 9.0 11.0 11.0 | 12.5
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

- | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
13.5
14.0
14.5
14.0
15.0
12.5
9.0
11.5
11.5
12.0
10.0
9.5
11.5 | JUNE 5.0 5.0 6.5 6.5 7.0 7.5 7.5 7.0 8.0 8.0 8.0 8.0 6.5 6.5 |

8.5

10.5
10.0
10.5
11.0
9.5
8.0
9.0
9.0
9.0
9.0
9.0
9.0
8.5
8.5 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
17.0
16.0
17.0
16.0 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 10.5 11.5 12.0 11.0 10.5 11.0 10.5 11.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
12.0
12.5
13.0
12.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
13.5
13.0
12.0
12.5
13.5
13.0
12.0
12.5
12.0
14.0
16.0
16.0
16.5
16.5 | AUGUST 11.5 11.0 11.0 11.0 11.0 11.0 10.0 9.0 11.0 11 | 12.5
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

- | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
10.5
14.0
14.5
14.0
15.0
11.5
9.0
11.5
11.5
11.5
11.5
11.5 | JUNE 5.0 6.5 6.5 7.0 6.5 7.0 6.5 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8 |

8.5

10.5
10.0
10.5
11.0
9.0
9.0
9.0
9.0
9.0
9.0
8.5
8.0
8.0
8.0
8.0
10.0
12.0
12.0 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
17.5
16.0
17.5
18.5
17.0
18.5
17.0
18.5 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 11.5 10.5 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.5 12.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
13.0
12.5
13.0
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
13.0
12.0
12.5
14.0
16.0
15.5
14.0
14.0
16.0
16.0
17.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 11.0 10.0 10 | 12.5
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

- | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
13.5
14.0
14.5
14.0
15.0
12.5
9.0
11.5
11.5
12.0
10.0
9.5
11.5 | JUNE 5.0 5.0 5.0 7.5 7.5 7.5 7.0 6.5 8.0 7.0 8.0 8.0 8.0 6.5 6.5 6.0 8.0 8.0 |

8.5

10.5
10.0
10.5
11.0
9.5
8.0
9.0
9.0
9.0
9.0
9.0
8.5
8.0
8.0
8.0 | 13.5
12.5
16.0
14.0
15.0
12.5
13.0
16.0
14.5
16.0
16.0
14.5
16.0
17.0
16.0
17.5
18.5
17.0
18.5
17.0
18.5
17.0
18.5 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 11.5 11.5 11.0 11.0 11.5 12.0 12.0 11.5 12.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
13.0
12.5
13.0
14.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13 | 13.5
12.5
13.0
12.5
13.5
12.0
12.5
11.5
13.5
13.0
12.0
12.5
12.0
13.5
12.0
14.0
14.0
14.0
14.5
14.0
14.5
14.0
14.5
14.0 | AUGUST 11.5 11.0 11.0 11.0 11.0 11.0 11.0 11. | 12.5
12.0
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0
 | ER | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 9.0
7.5
9.5
9.0
10.5
11.5
13.0
9.5
14.0
14.5
14.0
15.0
12.5
9.0
11.5
9.5
11.5
9.5
11.5 | JUNE 5.0 6.5 6.5 7.0 7.5 7.5 7.0 6.5 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 9.0 10.5 |

8.5
10.0
10.5
11.0
9.5
8.0
9.0
9.0
9.0
9.0
9.0
9.0
8.5
8.0
8.0 | 13.5
12.5
16.0
14.0
16.0
15.0
12.5
13.0
16.0
14.5
16.0
14.5
16.0
17.5
16.0
17.5
18.5
17.0
18.5
17.0
18.5 | JULY 9.5 9.0 10.0 9.0 10.0 9.5 9.5 9.5 11.5 10.5 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.0 11.5 12.5 12.0 | 11.5
10.5
12.0
11.5
12.5
12.5
11.0
10.5
12.0
12.5
13.0
12.5
13.0
13.5
13.5
13.5
13.5
13.5
13.5
13.5
13.5 | 13.5
12.5
13.0
12.5
13.5
13.5
12.0
12.5
11.5
13.5
13.0
12.0
12.5
14.0
16.0
15.5
14.0
14.0
16.0
16.0
17.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18 | AUGUST 11.5 11.0 11.0 11.0 10.0 9.0 11.0 11.0 10.0 10 | 12.5
12.0
11.5
12.0
11.5
11.5
11.5
11.5
11.5
11.5
11.5
11 | | 8.0

- | ER | ## 15743850 DAHL CREEK NEAR KOBUK LOCATION.--Lat $66^{\circ}56'46''$, long $156^{\circ}54'32''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 21, T. 18 N., R.9 E. (Shungnak D-2 quad), Hydrologic Unit 19050302, on right bank 25 ft downstream from bridge on road to Bornite at west end of Dahl Creek landing strip, 3.5 mi upstream from mouth, 3 mi north of Kobuk, and 7.3 miles northeast of Shungnak. DRAINAGE AREA. -- 11.0 mi2. PERIOD OF RECORD.--Annual maximum, water years 1986-87, April 1988 to current year. (No winter record in water years 1989, 1991-92, 1994, and 1996.) REVISED RECORDS. -- WDR AK-88-1: 1986 (M). GAGE.--Water-stage recorder. Elevation of gage is 225 ft above sea level, from topographic map. July 16, 1986, to April 28, 1988, the water-stage recorder was operated to obtain annual maximums. Prior to August 17, 1994 at site 50 ft upstream at same datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. | | | DISCHA | ARGE, CUBI | IC FEET PE | | WATER Y
Y MEAN V | EAR OCTOB | ER 2003 T | O SEPTEMB | SER 2004 | | | |-----------------------------------|--|---|---|---|--|--|--|---|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 47
47
45
43
43 | 28
27
27
26
26 | e14
e14
e13
e13
e13 | e5.0
e4.8
e4.6
e4.4
e4.2 | e1.8
e1.7
e1.7
e1.7 | e1.4
e1.4
e1.4
e1.4 | e1.4
e1.4
e1.4
e1.4 | 13
14
15
17
18 | 58
56
50
47
46 | 20
20
19
20
20 | 29
24
23
23
22 | 33
30
29
27
26 | | 6
7
8
9
10 | 44
44
43
43 | e25
e25
e25
e24
e24 | e12
e12
e12
e11
e11 | e3.8
e3.6
e3.6
e3.4
e3.2 | e1.7
e1.6
e1.6
e1.6
e1.6 | e1.4
e1.4
e1.4
e1.4 | e1.4
e1.5
e1.6
e1.6
e1.6 | 107
59
28
21
24 | 44
42
39
38
36 | 20
20
19
19 | 22
22
24
33
32 | 26
25
24
24
23 | | 11
12
13
14
15 | 42
41
40
39
38 | e23
e23
e22
e22
e21 | e11
e10
e10
e10
e9.2 | e3.0
e3.0
e2.8
e2.8
e2.6 | e1.6
e1.5
e1.5
e1.5 | e1.4
e1.4
e1.4
e1.4 | e1.7
e1.8
e1.9
e1.9 | 27
27
29
52
64 | 34
33
32
31
29 | 18
18
18
17
17 | 30
32
335
159
128 | 23
25
24
23
22 | | 16
17
18
19
20 | 38
37
36
e35
34 | e21
e20
e20
e19
e19 | e9.0
e8.8
e8.6
e8.2
e8.0 | e2.6
e2.4
e2.4
e2.4
e2.2 | e1.5
e1.5
e1.5
e1.5
e1.5 | e1.4
e1.4
e1.4
e1.4 | e1.8
e1.8
e1.8
e1.9 | 85
97
113
85
78 | 28
28
26
25
24 | 17
17
17
17
16 | 112
98
86
76
68 | 21
21
21
20
20 | | 21
22
23
24
25 | 33
e33
e32
e31
31 | e18
e18
e17
e17
e17 | e7.8
e7.6
e7.2
e7.0
e6.8 | e2.2
e2.2
e2.0
e2.0
e2.0 | e1.5
e1.5
e1.5
e1.5 | e1.4
e1.4
e1.4
e1.4 | e2.0
e2.2
e2.4
e2.8
e3.4 | 76
80
104
155
103 | 23
23
23
25
24 | 16
16
15
15
15 | 62
56
51
46
43 | 20
20
20
20
20
19 | | 26
27
28
29
30
31 | e30
e29
e29
28
28
29 | e16
e15
e15
e14 | e6.6
e6.4
e6.0
e5.8
e5.6
e5.4 | e1.9
e1.9
e1.9
e1.9
e1.8
e1.8 | e1.5
e1.4
e1.4
e1.4 | e1.4
e1.4
e1.4
e1.4
e1.4 | e4.0
e5.0
e7.6
e9.0
e11 | 76
63
59
59
60
58 | 22
22
21
21
20 | 15
15
15
17
16
30 | 40
38
35
34
33
33 | 19
18
18
e19
19 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 1156
37.3
47
28
2290
3.39
3.91 | 630
21.0
28
14
1250
1.91
2.13 | 290.0
9.35
14
5.4
575
0.85
0.98 | 88.4
2.85
5.0
1.8
175
0.26
0.30 | 45.1
1.56
1.8
1.4
89
0.14 | 43.4
1.40
1.4
1.4
86
0.13
0.15 | 82.5
2.75
11
1.4
164
0.25
0.28 | 1866
60.2
155
13
3700
5.47
6.31 | 970
32.3
58
20
1920
2.94
3.28 | 553
17.8
30
15
1100
1.62
1.87 | 1849
59.6
335
22
3670
5.42
6.25 | 679
22.6
33
18
1350
2.06
2.30 | | STATIST MEAN MAX (WY) MIN (WY) | 29.5
67.2
1994
9.65
1993 | 11.1
21.0
2004
3.70
1993 | 6.52
9.46
2003
2.55
1993 | 4.64
6.88
1998
2.00
1993 | 3.97
6.15
1998
1.56
2004 | 3.62
5.63
1998
1.40
2004 | 4.07
7.39
1997
1.50
1993 | YEAR (WY)
51.7
93.1
1996
6.21
2001 | 62.5
116
1992
13.1
1997 | 36.5
73.2
1989
10.6
1997 | 69.0
223
1994
17.3
1990 | 48.6
104
1993
19.8
1991 | [#] See Period of Record; partial years used in monthly statistics e Estimated # 15743850 DAHL CREEK NEAR KOBUK—Continued | SUMMARY STATISTICS | FOR 2003 CALENDAR YEAR | FOR 2004 WATER YEAR | WATER YEARS 1986 - 2004# | |--------------------------|------------------------|---------------------|--------------------------| | ANNUAL TOTAL | 13479.6 | 8252.4 | | | ANNUAL MEAN | 36.9 | 22.5 | 25.6 | | HIGHEST ANNUAL MEAN | | | 36.7 1993 | | LOWEST ANNUAL MEAN | | | 18.8 1999 | | HIGHEST DAILY MEAN | 186 Aug 16 | 335 Aug 13 | 1400 Aug 17 1994 | | LOWEST DAILY MEAN | a4.2 Mar 25 | b1.4 Feb 27 | b1.4 Feb 27 2004 | | ANNUAL SEVEN-DAY MINIMUM | 4.2 Mar 25 | 1.4 Feb 27 | 1.4 Feb 27 2004 | | MAXIMUM PEAK FLOW | | 791 Aug 13 | d1840 Aug 17 1994 | | MAXIMUM PEAK STAGE | | 6.18 Aug 13 | 6.73 Aug 17 1994 | | MAXIMUM PEAK STAGE | | | f7.03 May 10 2002 | | ANNUAL RUNOFF (AC-FT) | 26740 | 16370 | 18550 | | ANNUAL RUNOFF (CFSM) | 3.36 | 2.05 | 2.33 | | ANNUAL RUNOFF (INCHES) | 45.59 | 27.91 | 31.63 | | 10 PERCENT EXCEEDS | 92 | 47 | 65 | | 50 PERCENT EXCEEDS | 19 | 18 | 11 | | 90 PERCENT EXCEEDS | 4.4 | 1.4 | 3.0 | See Period of Record; partial years used in monthly statistics From Mar. 25 to Apr. 15 From Feb. 27 to Apr. 6 From rating curve extended above 170 $\rm ft^3/s$ on basis of slope-area measurement of peak flow Backwater from ice ## 15746991 IKALUKROK CREEK BELOW RED DOG CREEK NEAR KIVALINA LOCATION.--Lat $68^{\circ}02'51''$, long $163^{\circ}01'34''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec.33, T.31 N., R.19 W.(Delong Mountains A-2 quad) Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank about 3.5 mi downstream from the mouth of Red Dog Creek, 2.5 mi upstream from the mouth of Dudd Creek, and 45 mi northeast of Kivalina. DRAINAGE AREA. -- 98.6 mi². PERIOD OF RECORD. -- June 1995 to current year (no winter record). GAGE.--Water-stage recorder. Elevation of gage is 650 ft above sea level, from topographic map. Prior to June 1, 1998 at site 1 mi upstream at different datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Runoff from
$3.6~\text{mi}^2$ is impounded in tailings ponds and released intermittently at a maximum rate of $25~\text{ft}^3/\text{s}$. Meteor-burst telemetry at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, undetermined, July 25, 1996; gage height, 12.22 ft, at site and datum then in use. EXTREMES FOR CURRENT PERIOD.—Maximum discharge, $4950~{\rm ft}^3/{\rm s}$, August 9, gage height, $12.18~{\rm ft}$; minimum not determined, occurs during the winter. | | | DISCHA | RGE, CUBIO | C FEET PE | | WATER YE
Y MEAN V | | ER 2003 T | O SEPTEME | BER 2004 | | | |----------|------------|------------|------------|-----------|-----------|----------------------|----------|-----------|------------|------------|-------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 278 | | | | | | | | e520 | 211 | 231 | 230 | | 2 | 532 | | | | | | | | e560 | 199 | 208 | 214 | | 3 | 419 | | | | | | | | 518 | 189 | 197 | 190 | | 4 | e310 | | | | | | | | 426 | 174 | 196 | 177 | | 5 | | | | | | | | | 483 | 213 | 187 | 169 | | | | | | | | | | | | | | 4=0 | | 6
7 | | | | | | | | | 429
400 | 308 | 187 | 158 | | 8 | | | | | | | | | 362 | 266
259 | 192
1140 | 147
140 | | | | | | | | | | | | | | | | 9 | | | | | | | | | 336 | 243 | 2460 | 139 | | 10 | | | | | | | | | 321 | 226 | 1140 | e130 | | 11 | | | | | | | | | 281 | 209 | 704 | e120 | | 12 | | | | | | | | | 260 | 194 | 654 | e110 | | 13 | | | | | | | | | 247 | 188 | 1130 | e105 | | 14 | | | | | | | | | 289 | 180 | 763 | e100 | | 15 | | | | | | | | | 252 | 172 | 630 | e95 | | | | | | | | | | | | | | | | 16 | | | | | | | | | 237 | 162 | 523 | e85 | | 17 | | | | | | | | | 394 | 167 | 425 | e80 | | 18 | | | | | | | | | 333 | 188 | 363 | e75 | | 19 | | | | | | | | | 392 | 175 | 303 | e70 | | 20 | | | | | | | | | 459 | 167 | 263 | e65 | | 21 | | | | | | | | | 322 | 160 | 244 | e63 | | 22 | | | | | | | | | 296 | 153 | 216 | | | 23 | | | | | | | | | | 149 | | e61 | | | | | | | | | | | 351 | | 208 | e60 | | 24 | | | | | | | | | 446 | 143 | 201 | e58 | | 25 | | | | | | | | | 399 | 136 | 180 | e54 | | 26 | | | | | | | | | 373 | 136 | 174 | e50 | | 27 | | | | | | | | | 316 | 139 | 167 | e50 | | 28 | | | | | | | | | 270 | 137 | 161 | e50 | | 29 | | | | | | | | | 246 | 137 | 153 | e50 | | 30 | | | | | | | | | 227 | 137 | 147 | e50 | | 31 | | | | | | | | | | 237 | 175 | | | 31 | | | | | | | | | | 237 | 1/3 | | | TOTAL | | | | | | | | | 10745 | 5754 | 13922 | 3145 | | MEAN | | | | | | | | | 358 | 186 | 449 | 105 | | MAX | | | | | | | | | 560 | 308 | 2460 | 230 | | MIN | | | | | | | | | 227 | 136 | 147 | 50 | | AC-FT | | | | | | | | | 21310 | 11410 | 27610 | 6240 | | CFSM | | | | | | | | | 3.75 | 1.95 | 4.71 | 1.10 | | TN. | | | | | | | | | 4.19 | 2.24 | 5.43 | 1.23 | | TIM. | | | | | | | | | 4.19 | 2.24 | 3.43 | 1.23 | | STATIST | CICS OF MC | ONTHLY MEA | N DATA FO | R WATER Y | EARS 1995 | - 2004, | BY WATER | YEAR (WY |) | | | | | MEAN | 59.9 | 12.5 | | | | | | 112 | 451 | 210 | 403 | 252 | | MAX | 88.0 | 21.5 | | | | | | 200 | 872 | 328 | 687 | 515 | | (WY) | 2003 | 1999 | | | | | | 1999 | 2003 | 2003 | 1998 | 2002 | | MTN | 39.8 | 2.56 | | | | | | 23.7 | 259 | 91.6 | 125 | 84.7 | | (WY) | 2001 | 2000 | | | | | | 2001 | 1999 | 1999 | 1995 | 1996 | | (** ± / | 2001 | 2000 | | | | | | 2001 | 1000 | 1000 | 1000 | 1000 | e Estimated ## 15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA $\label{eq:location.-Lat 67°52'34'', long 163°40'28'', in NW} 1/4 \quad \text{sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.1 mi downstream from Tutak Creek and 25 mi$ northeast of Kivalina. DRAINAGE AREA.--705 mi². PERIOD OF RECORD. -- September 1984 to current year. GAGE.--Water-stage recorder. Elevation of gage is 175 ft above sea level, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. Flow from 2.8 square miles of the drainage basin is regulated by a tailings dam at the Red Dog Mine site. Up to 25 ${\rm ft}^3/{\rm s}$ of the flow at the gage may be discharge from Red Dog Mine during the summer | | | DISCHAF | RGE, CUB | IC FEET | PER SECOND, | | YEAR OCTO | OBER 2003 | TO SEPTE | MBER 2004 | | | |---|--|---|---|--|---|---|---|--|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 777
3850
3220
2330
1830 | e210
e210
e220
e220
e220 | e110
e110
e110
e110
e100 | e64
e62
e62
e60
e59 | e38
e38
e37
e36
e36 | e27
e27
e27
e27
e26 | e23
e23
e22
e22
e22 | e290
e360
e540
e700
e900 | 5670
6200
4260
3280
3490 | 1010
893
809
753
803 | 1570
1320
1130
1060
995 | 1140
1400
1320
1230
1150 | | 6
7
8
9
10 | 1490
1250
1170
1100 | e210
e210
e200 | e100
e100
e98
e96
e94 | e58
e57
e56
e55
e54 | e35
e35
e34
e34
e33 | e26
e26
e26
e26
e26 | e22
e22
e22
e22
e22 | e650
e550
e650
e800
e900 | 3570
3050
2910
2530
2430 | 1590
1580
1450
1250
1050 | 917
879
1640
13600
11100 | 1060
993
916
862
818 | | 11
12
13
14
15 | 1200
1290
1070
736
e560 | e200
e190
e180
e180
e170 | e92
e90
e88
e86
e86 | e53
e52
e51
e50
e50 | e33
e32
e32
e32
e31 | e25
e25
e25
e25
e25 | e22
e22
e22
e22
e22 | e2700 | 1990
1850
1720
1690
1500 | 908
794
718
671
626 | 6330
4310
8450
6650
4880 | 769
733
705
665
628 | | 16
17
18
19
20 | e500
e420
e360
e320
e290 | e170
e160
e160
e150
e150 | e84
e82
e80
e80
e78 | e49
e48
e47
e46
e46 | e31
e31
e30
e30
e30 | e25
e24
e24
e24
e24 | e22
e22
e22
e22
e22 | e6500
e9500
6790
4370
3390 | 1630
2030
3100
2480
4370 | 579
650
936
995
871 | 3950
3250
2730
2300
1970 | 589
567
550
535
514 | | 21
22
23
24
25 | e230
e215
e200 | e140
e140
e140
e130
e130 | e76
e76
e74
e74
e72 | e45
e44
e44
e43
e42 | e29
e29
e29
e29
e28 | e24
e24
e24
e24
e23 | e22
e22
e22
e22
e22 | 2690
3410
7560
12300
12500 | 2480
1870
1900
3250
2860 | 752
671
612
565
533 | 1740
1570
1430
1290
1170 | 492
457
435
e400
e370 | | 26
27
28
29
30
31 | e190
e180
e180
e180
e190
e200 | e130
e120
e120
e120
e120 | e72
e70
e68
e68
e66
e64 | e42
e41
e41
e40
e39
e39 | e28
e28
e28
e27
 | e23
e23
e23
e23
e23
e23 | e32
e50
e70
e100
e190 | 7930
4940
2750
3960
5640
5690 | 2660
2150
1690
1360
1160 | 511
528
536
530
522
891 | 1070
1010
951
910
865
897 | e350
e330
e300
e280
e260 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 27128
875
3850
180
53810
1.24
1.43 | 5130
171
220
120
10180
0.24
0.27 | 2654
85.6
110
64
5260
0.12
0.14 | 1539
49.6
64
39
3050
0.07
0.08 | 923
31.8
38
27
1830
0.05
0.05 | 767
24.7
27
23
1520
0.04
0.04 | 994
33.1
190
22
1970
0.05
0.05 | 120760
3895
12500
290
239500
5.53
6.37 | 81130
2704
6200
1160
160900
3.84
4.28 | 25587
825
1590
511
50750
1.17
1.35 | 91934
2966
13600
865
182400
4.21
4.85 | 20818
694
1400
260
41290
0.98
1.10 | | STATIST | TICS OF M | ONTHLY MEA | N DATA F | OR WATER | YEARS 1985 | - 2004 | , BY WATE | ER YEAR (W | 7)# | | | | | MEAN
MAX
(WY)
MIN
(WY) | 552
1542
1994
207
1997 | 138
290
1994
63.1
2002 | 65.7
111
1986
34.2
1988 | 37.7
70.0
1986
21.5
1992 | 25.3
49.3
1986
12.0
1992 | 19.5
39.5
1991
9.10
1992 | 17.5
38.8
1991
9.00
1992 | 1888
4856
1993
20.6
1989 | 3225
6669
1989
1372
1988 | 1644
6144
1989
424
1999 | 2793
8458
1994
496
1991 | 1648
3076
2002
386
1991 | | SUMMARY | STATIST | ICS | FOR | 2003 CAL | ENDAR YEAR | | FOR 2004 | WATER YEAR | ર | WATER YEAR | RS 1985 - | 2004# | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM | MEAN ANNUAL ANNUAL DAILY ME SEVEN-DA PEAK FL | EAN EAN AN Y MINIMUM OW AGE GE AC-FT) CFSM) INCHES) EDS EDS | | | Jun 6
Apr 17
Apr 17
24 | | 379364
1037
13600
b22
22
18100
9.
752500
1.
20.
3060
210
24 | . 47 | 9
3
3
3
9 | 1009
1843
530
29400
c9.0
38500
12.22
d13.5
731100
1.43
19.45
2830
130 | 3 | 1985
1985
1994
1994 | See Period of Record From Apr. 17-29 From Apr. 3-25 From Apr. 30 to May 10, 1985, and Mar. 4 to May 17, 1992
From floodmarks, backwater from snow and ice Estimated