LOCATION.--Lat $63^{\circ} 56^{\prime} 06^{\prime \prime}$, long $160^{\circ} 18^{\prime} 18^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec}$. 18 , T. $18 \mathrm{~S} ., \mathrm{R} .8 \mathrm{~W}$. (Unalakleet D-3 quad), Hydrologic Unit 19050102, on the right bank, 3.5 mi upstream from mouth of the Chiroskey River, 28 mi upstream from mouth, 15 mi east of Unalakleet.

DRAINAGE AREA. $--1,048 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1997 to September 1999 (no winter record), October 1999 to current year.
REVISED RECORDS.--WRD-AK-99-1: 1998.
GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level from topographic map.
REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1530	1760	e390	e180	e130	e120	e120	e10000	e5800	1610	1100	1690
2	2110	1830	e370	e170	e130	e120	e120	e11000	e5600	1580	1070	1640
3	2790	1860	e360	e170	e130	e120	e120	e10600	e5400	1550	1070	1580
4	3620	1870	e340	e170	e130	e120	e120	e10200	e5100	1520	1070	1530
5	3760	1960	e330	e170	e130	e120	e120	e10000	e4800	1490	1060	1540
6	3490	2100	e320	e160	e130	e120	e130	e9600	4310	1450	1040	1530
7	3200	2340	e310	e160	e130	e120	e140	e9400	3920	1400	1020	1480
8	2950	2380	e300	e160	e130	e120	e150	e9200	3570	1370	1030	1430
9	2790	e2200	e290	e160	e130	e120	e160	e9000	3320	1370	1390	1390
10	2650	e1900	e280	e150	e130	e120	e170	e8800	3080	1340	1580	1350
11	2640	e1600	e280	e150	e120	e120	e190	e8600	2880	1290	1490	1320
12	2560	e1300	e270	e150	e120	e120	e210	e8400	2720	1240	1790	1290
13	2350	e1200	e260	e150	e120	e120	e230	e8200	2590	1200	6220	1270
14	2190	e1100	e250	e150	e120	e120	e250	e7800	2490	1170	14100	1290
15	2110	e1000	e250	e150	e120	e120	e270	e7400	2430	1150	15500	1290
16	2130	e900	e240	e150	e120	e120	e300	e7000	2340	1140	10600	1270
17	2040	e840	e240	e140	e120	e120	e330	e6600	2310	1150	6470	1230
18	1880	e760	e230	e140	e120	e120	e360	e6200	2340	1130	4890	1190
19	e1750	e700	e230	e140	e120	e120	e400	e5800	2290	1130	3990	1160
20	e1700	e700	e220	e140	e120	e120	e450	e5600	2200	1140	3400	1160
21	e1650	e700	e220	e140	e120	e120	e500	e5600	2120	1130	3000	1160
22	e1650	e600	e210	e140	e120	e120	e600	e6200	2070	1090	2730	1260
23	e1600	e580	e210	e140	e120	e120	e650	e7200	2040	1080	2500	1430
24	e1600	e540	e200	e140	e120	e120	e800	e8000	2020	1060	2330	1430
25	1580	e500	e200	e140	e120	e120	e1000	e7600	2000	1050	2170	1350
26	1460	e480	e190	e130	e120	e120	e1300	e7000	1930	1050	2050	1280
27	1430	e460	e190	e130	e120	e120	e1800	e6400	1840	1050	1960	1220
28	1370	e440	e190	e130	e120	e120	e2500	e6000	1770	1080	1880	1170
29	1350	e420	e180	e130	e120	e120	e4000	e5400	1700	1110	1810	1120
30	1310	e400	e180	e130	---	e120	e6000	e5000	1650	1120	1760	1110
31	1460	---	e180	e130	---	e120	---	e5200	---	1140	1730	---
TOTAL	66700	35420	7910	4590	3580	3720	23490	239000	88630	38380	103800	40160
MEAN	2152	1181	255	148	123	120	783	7710	2954	1238	3348	1339
MAX	3760	2380	390	180	130	120	6000	11000	5800	1610	15500	1690
MIN	1310	400	180	130	120	120	120	5000	1650	1050	1020	1110
AC-FT	132300	70260	15690	9100	7100	7380	46590	474100	175800	76130	205900	79660
CFSM	2.05	1.13	0.24	0.14	0.12	0.11	0.75	7.36	2.82	1.18	3.20	1.28
IN.	2.37	1.26	0.28	0.16	0.13	0.13	0.83	8.48	3.15	1.36	3.68	1.43
STATIS	ICS OF	JTHLY M	DATA	WATER	RS 19	- 2004	BY WAT	YEAR (W				
MEAN	1602	709	265	161	127	114	270	3702	3548	1672	2940	2512
MAX	2190	1181	342	200	145	123	783	7710	8788	2571	5690	3890
(WY)	2003	2004	2003	2003	2003	2003	2004	2004	2001	2003	1998	1998
MIN	1037	394	198	147	116	98.2	105	1182	1216	562	809	1339
(WY)	2002	2002	2002	2002	2001	2001	2001	2001	1997	1997	2002	2004

\# See Period of Record
e Estimated

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1982-83, 1998 to current year.
PERIOD OF DAILY RECORD.--
WATER TEMPERATURE: June 1998 to current year.
INSTRUMENTATION.--Electronic water-temperature recorder set for one-hour recording interval.
REMARKS.-- Records represent water temperature at the sensor within $0.5^{\circ} \mathrm{C}$. Temperature was compared with the stream average by cross section on June 5. No variation was found within the cross sections. The variation found between mean stream temperature and sensor temperature was less than $0.5^{\circ} \mathrm{C}$.

EXTREMES FOR PERIOD OF RECORD.--
WATER TEMPERATURE: Maximum, $15.5^{\circ} \mathrm{C}$, July 14,2004 ; minimum, $0.0^{\circ} \mathrm{C}$, many days during winter and spring breakup periods.

EXTREMES FOR CURRENT YEAR.--
WATER TEMPERATURE: Maximum, $15.5^{\circ} \mathrm{C}$, July $14 . ;$ minimum, $0.0^{\circ} \mathrm{C}$, many days during fall, winter and spring breakup periods.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

DAY	MAX	MIN	MEAN									
		TOBE			MBER			MMBER			NUAR	
1	6.0	4.0	5.0	1.5	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
2	6.0	5.5	6.0	1.5	1.5	1.5	0.0	0.0	0.0	0.0	0.0	0.0
3	5.5	4.5	5.0	1.5	1.0	1.5	0.0	0.0	0.0	0.0	0.0	0.0
4	4.5	4.5	4.5	2.0	1.5	1.5	0.0	0.0	0.0	0.0	0.0	0.0
5	4.5	3.5	4.0	2.0	2.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0
6	4.0	3.5	4.0	2.0	1.5	2.0	0.0	0.0	0.0	---	---	---
7	4.0	3.5	4.0	1.5	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
8	4.0	3.5	4.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0
9	4.0	3.5	4.0	1.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0
10	3.5	3.5	3.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
11	3.5	3.0	3.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
12	3.0	2.5	2.5	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
13	2.5	1.0	2.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
14	1.0	1.0	1.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
15	1.5	1.0	1.5	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
16	2.0	1.5	2.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
17	2.0	0.5	1.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
18	0.5	0.0	0.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
21	0.0	0.0	0.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
23	0.0	0.0	0.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
24	0.0	0.0	0.0	---	---	---	---	---	---	0.0	0.0	0.0
25	0.0	0.0	0.0	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
26	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	---	---	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28	1.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29	1.0	0.5	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30	1.5	0.5	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31	2.0	1.5	1.5	---	---	---	0.0	0.0	0.0	0.0	0.0	0.0
MONT	---	---	2.0	---	---	---	---	---	---	---	---	---

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

DAY	MAX	MIN	MEAN									
	FEBRUARY			MARCH			APRIL			MAY		
1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	1.5	2.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	1.5
3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.0	1.5
4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	1.0	1.5
5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	1.0	1.5
6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	1.0
7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.5	1.0	1.0
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.5	2.0
9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.5	1.5
10	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	1.5	1.5
11	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	2.5	2.0	2.5
12	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	2.5	2.0	2.0
13	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	3.0	2.5	3.0
14	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	3.0	2.5	3.0
15	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	3.5	3.0	3.5
16	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	4.0	3.5	4.0
17	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	4.0	2.5	3.0
18	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	3.0	2.5	2.5
19	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	4.0	3.0	3.5
20	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	4.5	4.0	4.5
21	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	5.5	4.5	5.0
22	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	5.0	4.0	4.5
23	0.0	0.0	0.0	0.0	0.0	0.0	1.5	-	---	5.5	5.0	5.5
24	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.5	1.0	5.0	5.0	5.0
25	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.5	1.0	6.0	5.0	5.5
26	0.0	0.0	0.0	0.0	0.0	0.0	1.5	0.5	1.0	6.5	6.0	6.5
27	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.5	0.5	6.0	5.5	5.5
28	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.5	1.0	5.5	5.5	5.5
29	0.0	0.0	0.0	0.0	0.0	0.0	2.0	1.5	1.5	6.0	5.0	5.5
30	---	---	---	0.0	0.0	0.0	3.0	1.5	2.0	6.5	5.5	6.5
31	---	---	---	0.0	0.0	0.0	---	---	---	6.5	6.0	6.5
MONTH	0.0	0.0	0.0	0.0	0.0	0.0	---	---	---	6.5	1.0	3.5

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

DAY	MAX	MIN	MEAN									
		JUNE			JULY			JGUST			PTEMB	
1	6.0	5.0	5.5	12.0	11.0	11.5	12.0	11.0	11.5	8.5	8.0	8.5
2	6.5	5.0	6.0	12.0	11.0	11.0	11.5	10.5	11.0	8.5	7.5	8.0
3	7.0	6.5	7.0	11.0	10.0	10.5	11.0	10.0	10.5	7.5	6.5	7.0
4	7.0	6.5	6.5	10.5	9.5	10.0	11.0	10.0	10.5	7.0	6.5	6.5
5	8.5	7.0	8.0	12.0	10.0	10.5	11.5	10.0	10.5	7.5	6.5	7.0
6	10.0	8.5	9.0	11.5	11.0	11.0	12.5	10.5	11.5	8.0	7.0	7.5
7	10.5	9.5	10.0	11.5	10.5	11.0	12.0	11.5	11.5	7.5	6.5	7.0
8	10.5	8.5	10.0	10.5	9.5	10.0	11.5	10.5	10.5	7.5	6.5	7.0
9	8.5	7.0	7.5	11.0	9.0	10.0	11.0	10.0	10.5	7.0	6.0	6.5
10	9.5	7.0	8.0	12.5	10.5	11.0	12.0	11.0	11.0	7.0	6.0	6.5
11	10.0	9.0	9.5	14.0	12.0	13.0	12.5	11.0	11.5	7.0	6.0	6.5
12	10.5	9.5	10.0	14.5	12.0	13.5	12.0	11.5	11.5	7.0	6.0	6.5
13	10.5	9.5	10.0	15.0	12.5	14.0	11.5	11.0	11.0	6.5	5.5	6.0
14	10.0	9.5	9.5	15.5	13.5	14.5	11.0	10.5	10.5	6.0	5.0	5.5
15	10.5	9.0	9.5	15.0	13.5	14.0	11.0	10.5	10.5	6.0	5.0	5.5
16	10.5	10.0	10.0	14.0	13.0	13.5	11.5	11.0	11.5	6.0	5.0	5.5
17	10.0	9.5	9.5	13.5	12.5	13.0	11.5	11.5	11.5	5.5	4.0	4.5
18	9.5	9.0	9.0	13.0	12.0	12.5	12.0	11.5	11.5	---	---	3.5
19	10.5	8.5	9.0	14.0	12.0	13.0	12.0	11.0	11.5	--	---	3.5
20	11.0	9.5	10.5	14.5	12.0	13.5	11.5	11.0	11.5	4.5	---	4.0
21	11.5	10.5	11.0	15.0	13.5	14.0	11.0	10.5	10.5	4.0	3.5	4.0
22	11.0	10.5	11.0	15.0	13.0	14.0	11.0	10.0	10.5	---	3.5	4.0
23	10.5	10.0	10.5	14.0	13.0	13.5	11.0	10.0	10.5	---	3.5	4.0
24	10.0	9.5	9.5	14.0	12.0	13.0	11.0	10.0	10.5	3.5	2.5	3.0
25	10.5	9.0	9.5	14.5	13.0	13.5	10.5	10.0	10.0	---	---	3.0
26	12.0	10.0	10.5	13.5	12.0	12.5	10.0	8.0	9.0	---	--	3.0
27	13.5	11.0	12.0	12.0	11.5	11.5	8.5	7.5	8.0	2.5	2.0	2.5
28	14.0	12.0	13.0	12.0	11.0	11.5	8.0	7.0	7.5	2.0	1.5	2.0
29	14.0	12.5	13.5	13.5	11.5	12.5	8.5	7.0	7.5	2.0	1.0	1.5
30	13.5	12.0	12.5	14.5	12.0	13.0	8.5	8.0	8.0	1.5	1.0	1.5
31	-	---	---	13.5	12.0	13.0	8.5	8.0	8.0	---	---	---
MONTH	14.0	5.0	9.6	15.5	9.0	12.4	12.5	7.0	10.4	---	---	5.0

15583500 ETTA CREEK NEAR COUNCIL

LOCATION.--Lat $64^{\circ} 41^{\prime} 56^{\prime \prime}$, long $164^{\circ} 09^{\prime} 57^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{NE}^{1} / 4 \mathrm{sec} .24, \mathrm{~T} .9 \mathrm{~S} ., \mathrm{R} .28 \mathrm{~W}$. (Solomon C-5 quad), Seward Peninsula, Hydrologic Unit 19050104, on the left bank, 2 mi upstream from mouth at the East Fork of Solomon River, 25 miles southwest of Council, Alaska.

DRAINAGE AREA. $--1.33 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--July 2001 to current year (no winter record).
GAGE.--Water-stage recorder. Elevation of gage is 330 ft above sea level from topographic map.
REMARKS.--Records fair, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.
EXTREMES FOR CURRENT PERIOD.-- July to September 2001: Maximum discharge during period, $9.3 \mathrm{ft}^{3} / \mathrm{s}$, August 13 , gage height 50.22 ft . Minimum discharge not determined, occurs during winter.

October 2001 to September 2002: Maximum discharge observed during period, $9.3 \mathrm{ft}^{3} / \mathrm{s}$, September 28 , gage height 50.22 ft. Minimum discharge not determined, occurs during winter.

October 2002 to September 2003: Maximum daily discharge during period, $15 \mathrm{ft}^{3} / \mathrm{s}$ (estimated), June 1. Minimum discharge not determined, occurs during winter.

October 2003 to September 2004: Maximum daily discharge during period, $15 \mathrm{ft}^{3} / \mathrm{s}$ (estimated), June 4. Minimum discharge not determined, occurs during winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	ОСт	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	---	e5.8	3.4	2.8
2	--	--	---	---	---	---	---	---	---	e5.4	3.2	2.7
3	--	-	---	---	-	---	---	---	---	e5.0	3.0	2.7
4	--	-	---	---	---	---	---	---	---	e5.1	2.9	3.3
5	-	-	---	---	---	---	---	---	---	e5.2	2.8	2.8
6	---	---	---	---	-	---	---	---	-	e4.8	2.7	2.8
7	---	---	---	---	---	---	---	---	---	e4. 6	2.7	2.8
8	---	---	---	---	-	---	-	---	---	e4.5	3.3	2.8
9	---	---	---	---	---	---	---	---	---	e4.5	3.2	2.9
10	---	---	---	---	---	---	---	---	---	e4.6	2.9	2.8
11	-	---	---	---	---	---	---	---	---	e4.7	3.0	2.8
12	-	--	---	---	---	---	---	---	---	e4.8	3.4	2.7
13	---	-	---	---	---	---	---	---	---	e5.0	5.1	2.6
14	---	---	---	---	---	---	---	---	---	e4.9	7.2	2.5
15	---	---	---	---	---	---	---	---	---	e5.2	7.0	2.4
16	---	---	---	---	---	---	---	---	---	e5.5	6.5	2.3
17	--	---	--	---	---	---	---	---	---	5.7	6.2	2.2
18	---	---	-	---	---	---	--	---	---	5.2	5.9	2.2
19	---	---	---	---	-	---	---	---	--	6.1	5.7	2.1
20	---	-	---	---	---	---	---	---	---	5.7	5.4	2.1
21	---	---	---	---	---	---	---	---	---	5.5	5.0	2.1
22	---	---	---	---	---	---	---	---	---	5.3	4.8	2.0
23	---	---	---	---	---	---	---	---	---	5.1	4.6	2.0
24	---	---	---	---	---	---	---	---	---	4.7	4.4	1.9
25	---	---	---	---	---	---	---	---	---	4.5	4.1	1.9
26	---	---	---	---	---	---	---	---	---	4.3	4.0	1.8
27	---	-	---	---	---	---	---	---	---	4.2	3.8	1.8
28	-	--	---	---	---	---	---	---	---	4.0	3.7	1.7
29	-	-	---	---	---	---	---	---	---	3.9	3.3	1.6
30	---	---	---	---	---	---	---	---	---	3.7	3.2	e1.5
31	--	-	---	---	---	---	---	---	---	3.6	3.1	,
TOTAL	---	---	---	-	-	---	---	---	-	151.1	129.5	70.6
MEAN	---	---	-	---	--	---	---	---	-	4.87	4.18	2.35
MAX	---	---	---	---	---	--	---	--	--	6.1	7.2	3.3
MIN	---	---	---	---	---	---	---	---	---	3.6	2.7	1.5
MED	-	-	---	---	---	---	---	---	---	4.9	3.7	2.4
AC-FT	---	---	---	---	---	---	---	---	---	300	257	140
CFSM	---	---	---	---	---	---	---	---	---	3.66	3.14	1.77
IN.	---	---	---	---	---	---	---	---	---	4.23	3.62	1.97

e Estimated

15583500 ETTA CREEK NEAR COUNCIL—Continued

		DISC	, CU	EET	$\begin{array}{r} \text { SECON } \\ \text { DA } \end{array}$		$\begin{aligned} & \mathrm{OCT} \\ & \mathrm{ESS} \end{aligned}$		SEPTE			
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1.6	---	---	---	---	---	---	--	e5.4	e0. 54	e0. 68	0.36
2	1.5	---	---	---	-	---	-	---	e4.2	e0. 54	e0. 66	0.36
3	1.7	---	-	---	---	---	---	---	e3. 6	e0. 57	e0. 63	0.38
4	2.0	---	---	---	---	---	---	-	e3.7	e0.60	e0. 60	0.59
5	1.7	---	---	---	---	---	---	-	e3.8	e0. 65	e0. 58	1.3
6	1.6	---	---	---	---	---	---	---	e3.5	e0. 69	e0.54	2.1
7	1.5	---	---	---	---	---	---	---	e3.0	e0. 69	e0. 50	1.9
8	e1.4	---	---	---	---	---	---	---	e2. 8	e0. 66	e0. 48	1.7
9	e1.4	---	---	---	---	---	---	---	e2. 6	e0. 63	e0.47	1.6
10	e1.3	---	---	---	---	---	---	---	e2.2	e0. 62	e0. 44	1.4
11	e1.3	---	---	--	---	-	---	---	e2.0	e0. 62	e0. 42	1.3
12	e1.2	---	-	---	---	---	---	--	e1.9	e0.61	e0.40	1.5
13	e1.2	---	---	---	---	---	---	---	e1.8	e0. 60	e0. 39	1.5
14	e1.1	---	---	---	---	---	---	--	e1.7	e0. 60	e0.38	1.3
15	e1.1	---	---	---	---	---	---	-	e1.6	e0.60	e0.37	1.2
16	e1.0	---	---	---	---	---	---	---	e1. 5	e0. 59	e0.36	1.2
17	e1.0	---	---	---	---	---	---	---	e1.4	e0. 59	e0. 36	1.2
18	e0. 90	---	---	---	---	---	---	---	e1.3	e0. 58	e0. 35	1.4
19	e0. 90	---	---	---	---	---	---	---	e1.2	e0. 57	e0.35	1.4
20	e0. 80	---	---	---	---	---	---	--	e1.1	e0. 55	e0. 35	1.3
21	e0. 80	-	---	---	---	---	---	---	e1.0	e0. 54	e0.36	1.3
22	e0. 80	---	---	---	---	-	---	---	e0.90	e0. 53	0.36	1.2
23	e0. 80	---	---	---	---	---	---	---	e0. 85	e0. 53	0.36	1.2
24	e0.7	---	---	---	---	---	---	---	e0. 80	e0. 55	0.36	1.6
25	e0. 70	---	---	---	---	---	---	---	e0.75	e0. 57	0.36	1.4
26	e0. 70	-	---	---	---	---	---	---	e0. 72	e0. 59	0.36	2.5
27	e0.70	---	---	---	---	---	---	---	e0.68	e0. 60	0.40	5.5
28	e0. 60	---	---	---	---	---	---	---	e0. 63	e0. 66	0.43	7.1
29	e0.60	---	---	---	---	---	---	---	e0. 59	e0. 70	0.38	5.7
30	e0.60	---	---	---	---	---	---	---	e0. 56	e0.70	0.36	5.3
31	e0. 60	---	---	---	---	---	---	---	---	e0. 69	0.36	---
total	33.80	-	---	---	---	-	---	---	57.78	18.76	13.40	57.79
MEAN	1.09	---	-	---	---	---	-	--	1.93	0.61	0.43	1.93
MAX	2.0	---	---	--	---	---	--	--	5.4	0.70	0.68	7.1
MIN	0.60	-	---	---	---	-	-	--	0.56	0.53	0.35	0.36
MED	1.0	---	---	---	---	---	---	---	1.6	0.60	0.38	1.4
AC-FT	67	---	---	---	---	---	---	---	115	37	27	115
CFSM	0.82	---	---	---	---	---	---	---	1.45	0.46	0.33	1.45
IN.	0.95	---	---	---	---	---	---	---	1.62	0.52	0.37	1.62

e Estimated

15583500 ETTA CREEK NEAR COUNCIL—Continued

e Estimated

15583500 ETTA CREEK NEAR COUNCIL—Continued

e Estimated

15625850 STEWART RIVER 0.1 MILE BELOW BOULDER CREEK MOUTH NEAR NOME

LOCATION.--Lat $64^{\circ} 48^{\prime} 28^{\prime \prime}$, long $165^{\circ} 25^{\prime} 46^{\prime \prime}$, in $\mathrm{SE}^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{SE} / \mathrm{S}^{1} \mathrm{sec} .7, \mathrm{~T} .8 \mathrm{~S} ., \mathrm{R} .33 \mathrm{~W} .(\mathrm{Nome} \mathrm{D}-1 \mathrm{quad}$, Hydrologic Unit 19050104, on the right bank, 0.1 mi downstream from Boulder Creek, 8.8 mi upstream from mouth, and 21 mi north of Nome.

DRAINAGE AREA. -- $22.28 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.-- May 2004 to September 2004 (discontinued).
GAGE.--Water-stage recorder. Elevation of gage is 475 ft above sea level, from topographic map.
EXTREMES FOR CURRENT PERIOD.--Maximum discharge during period May to September 2004 , $463 \mathrm{ft} 3 / \mathrm{s}, \mathrm{Aug} 12$ and 13 , gage height, 38.81 ft . minimum daily discharge $14 \mathrm{ft}^{3} / \mathrm{s}$, July 25 and 26 .

REMARKS.--Records are poor. Rain gage at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	--	-	-	--	272	e40	e22	e52
2	---	---	---	---	---	---	---	---	254	e34	e20	---
3	---	---	---	---	---	---	---	---	178	e32	33	---
4	---	---	---	---	---	---	---	---	149	e30	25	---
5	---	--	---	---	---	---	---	---	234	e29	23	--
6	---	---	---	---	---	---	---	--	229	e27	22	---
7	---	---	---	---	---	---	---	---	199	e26	41	---
8	---	---	---	---	---	---	---	---	124	e26	139	---
9	---	---	---	---	---	---	---	---	81	e25	e90	---
10	--	---	---	---	---	-	---	---	70	e24	e60	---
11	---	---	---	---	---	---	---	--	83	e22	e50	---
12	--	-	---	---	---	---	---	---	80	e20	219	---
13	---	---	---	---	---	---	---	---	67	e20	237	---
14	---	---	---	---	---	---	---	-	56	e20	172	---
15	---	---	---	---	---	---	---	---	50	e19	132	-
16	---	---	---	---	---	---	---	--	61	e19	90	---
17	---	---	---	---	---	---	---	---	76	e22	76	---
18	---	---	---	---	--	---	---	--	56	e23	66	---
19	---	---	---	---	---	---	---	---	73	e19	61	---
20	-	---	---	---	---	---	---	---	60	e17	60	---
21	---	---	---	---	---	---	---	---	57	e16	60	---
22	---	---	---	---	---	---	---	---	76	e16	e60	---
23	---	---	---	---	---	---	---	---	108	e15	e60	---
24	---	---	---	---	---	---	---	---	84	e15	e60	---
25	--	-	---	---	-	---	---	-	e78	e14	e60	--
26	---	---	---	---	---	---	---	--	e72	e14	e60	---
27	-	-	---	---	-	---	---	e220	e65	e23	59	---
28	---	---	---	---	---	---	---	177	e60	43	58	---
29	---	---	---	---	---	---	---	177	e53	e30	57	---
30	-	-	---	---	-	---	---	215	e47	e30	57	---
31	--	-	---	---	--	---	---	318	---	e24	56	---
TOTAL	---	---	---	---	--	---	---	-	3152	734	2285	---
MEAN	---	---	---	---	---	---	---	---	105	23.7	73.7	---
MAX	-	-	---	---	---	---	---		272	43	237	
MIN	---	---	---	---	---	---	---		47	14	20	
AC-FT	---	---	--	---	---	--	--	---	6250	1460	4530	-

[^0]
15625850 STEWART RIVER 0.1 MILE BELOW BOULDER CREEK MOUTH NEAR NOME—Continued

WATER-QUALITY RECORDS
PERIOD OF RECORD.--May to September 2004 (discontinued).
PERIOD OF DAILY RECORD.--
WATER TEMPERATURE: May to September2004 (discontinued).
INSTRUMENTATION.--Water-temperature recorder. Electronic water temperature recorder set for $15-m i n u t e ~ r e c o r d i n g ~$ interval.

REMARKS. -- Water temperature sensor installed May 27, 2004. Records represent water temperature at sensor within $0.5^{\circ} \mathrm{C}$. Temperature at the sensor was compared with the average for the river by cross section on May 27 , July 28, and September 1. No variation was found within the cross section. A $0.5^{\circ} \mathrm{C}$ variation was found between mean stream temperature and sensor temperature on May 27. Beaver dam construction isolated the sensor from the main channel June 7 to September 1, 2004. Recorded stream temperatures at the sensor are not representative of mean stream temperatures during periods affected by the beaver dam and were not reported.

EXTREMES FOR CURRENT YEAR.--
WATER TEMPERATURE: Maximum recorded, $10.0^{\circ} \mathrm{C}$, June 6 ; minimum recorded, $0.5^{\circ} \mathrm{C}$, May 28.
EXTREMES OUTSIDE PERIOD OF DAILY RECORD.--
WATER TEMPERATURE: Maximum recorded, $10.5^{\circ} \mathrm{C}$, June 21.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

Date	Time	Location in X-sect. looking dwnstrm ft from 1 bank (00009)	Specif. conductance, wat unf uS/cm 25 degC (00095)	$\begin{gathered} \mathrm{pH}, \\ \text { water, } \\ \text { unfltrd } \\ \text { field, } \\ \text { std } \\ \text { units } \\ (00400) \end{gathered}$	$\begin{aligned} & \text { Temper- } \\ & \text { ature, } \\ & \text { water, } \\ & \text { deg C } \\ & (00010) \end{aligned}$	Barometric pressure, mm Hg (00025)	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { oxygen, } \\ \mathrm{mg} / \mathrm{L} \\ (00300) \end{gathered}$	Dissolved oxygen, percent of saturation (00301)
MAY								
27	1334	7.0	89	7.5	1.5	735	12.7	94
27.	1335	22.0	89	7.5	1.5	735	12.6	93
27.	1336	39.0	89	7.4	1.5	735	12.6	93
27.	1337	54.0	89	7.4	1.5	735	12.5	92
27.	1338	69.0	88	7.4	1.5	735	12.5	92
27.	1339	84.0	88	7.4	1.5	735	12.5	92
27.	1340	99.0	100	7.4	1.5	735	12.5	92
JUL								
28.	1304	3.0	216	7.4	11.5	743	10.4	98
28.	1305	5.0	216	7.4	11.5	743	10.3	97
28.	1306	7.0	216	7.4	11.5	743	10.3	97
28	1307	9.00	217	7.5	11.5	743	10.3	97
28.	1308	11.0	221	7.4	11.5	743	10.2	96
SEP								
01.	1137	2.0	224	7.9	7.5	744	11.9	102
01.	1139	10.0	224	7.9	7.5	744	11.9	102
01.	1140	18.0	223	7.9	7.5	744	11.8	101
01.	1141	26.0	223	7.9	7.5	744	11.8	101
01.	1142	34.0	223	7.9	7.5	744	11.8	101

Date	Time	Medium code	Sample type	$\begin{gathered} \text { Stream } \\ \text { width, } \\ \text { feet } \\ (00004) \end{gathered}$	```Gage height, feet (00065)```	Instantaneous discharge, cfs (00061)	Sampling method, code (82398)	```Sampler type, code (84164)```	Specif. conductance, wat unf uS/cm 25 degC (00095)	$p H$, water, unfltrd field, std units (00400)	```Temper- ature, air, deg C (00020)```	$\begin{aligned} & \text { Temper- } \\ & \text { ature, } \\ & \text { water, } \\ & \text { deg C } \\ & (00010) \end{aligned}$	```Turbid- ity, wat unf lab, Hach 2100AN NTU (99872)```
MAY 27.	1430	9	9	104	38.06	218	10	3044	90	7.6	9.8	1.5	<2.0
JUN 23	1520	H	9	- -	37.66	98	--	- -	- -	--	8.9	--	-_
JUL 28	1240	9	7	12.0	37.83	34	10	3044	216	7.4	15.8	11.5	<2.0
SEP $01 .$	1120	9	9	40.0	37.62	55	10	3044	223	7.9	8.2	7.5	<2.0
Date	$\begin{aligned} & \text { Baro- } \\ & \text { metric } \\ & \text { pres- } \\ & \text { sure, } \\ & \text { mm Hg } \\ & (00025) \end{aligned}$	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { oxygen, } \\ \mathrm{mg} / \mathrm{L} \\ (00300) \end{gathered}$	Dissolved oxygen, percent of saturation (00301)	$\begin{gathered} \text { E coli, } \\ \text { m-TEC } \\ \text { MF, } \\ \text { water, } \\ \text { col/ } \\ 100 \mathrm{~mL} \\ (31633) \end{gathered}$	Hardness, water, mg/L as CaCO3 (00900)	$\begin{gathered} \text { Calcium } \\ \text { water, } \\ \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00915) \end{gathered}$	$\begin{gathered} \text { Magnes- } \\ \text { ium, } \\ \text { water, } \\ \text { fltrd, } \\ \text { mg/L } \\ (00925) \end{gathered}$	Sodium, water, fltrd, mg/L (00930)	$\begin{aligned} & \text { Potas- } \\ & \text { sium, } \\ & \text { water, } \\ & \text { fltrd, } \\ & \text { mg/L } \\ & (00935) \end{aligned}$	Bicarbonate, wat flt incrm. titr., field, mg/L (00453)	$\begin{gathered} \text { Carbon- } \\ \text { ate, } \\ \text { wat flt } \\ \text { incrm. } \\ \text { titr. } \\ \text { field, } \\ \mathrm{mg} / \mathrm{L} \\ (00452) \end{gathered}$	```Alka- linity, wat flt inc tit field, mg/L as CaCO3 (39086)```	Alkalinity, wat flt fxd end field, mg/L as CaCO3 (39036)
MAY 27.	735	12.5	92	E1	44	14.5	1.92	1.08	. 49	35	. 0	28	30
JUN 23.	-	--	--	--	--	--	- -	--	--	--	--	--	--
JUL $28 .$	743	10.3	97	64	110	36.2	5.24	2.21	. 95	97	. 0	80	82
SEP $01 .$	744	11.8	101	E5	110	34.1	5.48	2.02	. 84	103	. 0	84	85

WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

Date	```Sulfate water, fltrd, mg/L (00945)```	$\begin{gathered} \text { Chlor- } \\ \text { ide, } \\ \text { water, } \\ \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00940) \end{gathered}$	```Fluor- ide, water, fltrd, mg/L (00950)```	Silica, water, fltrd, mg/L (00955)	```Residue on evap. at 180degC wat flt mg/L (70300)```	Residue water, fltrd, sum of constituents mg / L (70301)	Aluminum, water, fltrd, ug/L (01106)	$\begin{gathered} \text { Anti- } \\ \text { mony, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ \text { (01095) } \end{gathered}$	Arsenic water, fltrd, ug/L (01000)	```Barium, water, fltrd, ug/L (01005)```	```Beryll- ium, water, fltrd, ug/L (01010)```	Cadmium water, fltrd, ug/L (01025)	```Chrom- ium, water, fltrd, ug/L (01030)```
$\begin{gathered} \text { MAY } \\ 27 . \end{gathered}$	8.0	1.46	<. 2	2.86	57	48	7	1.09	2.0	5	<. 06	<. 04	<. 8
JUN 23.	--	--	--	--	--	--	--	--	--	--	--	--	
$\begin{aligned} & \text { JUL } \\ & 28 \text {. . } \end{aligned}$	29.1	1.51	<. 2	7.49	149	130	2	1.20	3.1	14	<. 06	<. 04	<. 8
SEP ${ }_{\text {S }} \times 1$.	27.8	1.53	<. 2	6.93	136	129	2	1.32	2.9	12	<. 06	<. 04	$<.8$
Date	Cobalt water, fltrd, ug/L (01035)	```Copper, water, fltrd, ug/L (01040)```	Iron, water, fltrd, ug/L (01046)	$\begin{gathered} \text { Lead, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ \text { (01049) } \end{gathered}$	$\begin{gathered} \text { Mangan- } \\ \text { ese, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01056) \end{gathered}$	$\begin{gathered} \text { Mercury } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ \text { (71890) } \end{gathered}$	$\begin{gathered} \text { Molyb- } \\ \text { denum, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01060) \end{gathered}$	Nickel, water, fltrd, ug/L (01065)	$\begin{gathered} \text { Silver, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01075) \end{gathered}$	$\begin{gathered} \text { Zinc, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01090) \end{gathered}$	Uranium natural water, fltrd, ug/L (22703)	Cyanide water, fltrd, mg/L (00723)	Suspended sediment concentration mg/L (80154)
$\begin{aligned} & \text { MAY } \\ & 27 . \end{aligned}$. 077	. 5	60	<. 08	9.2	<. 02	<. 4	. 47	$<.2$	1.2	. 09	<. 01	3
JUN $23 .$		--	--	--	-_	-_	-_	--	--	- -	--	-_	--
$\begin{gathered} \text { JUL } \\ 28 . \end{gathered}$. 111	. 5	<6	<. 08	1.5	<. 02	E. 3	. 70	<. 2	E. 4	. 38	<. 01	5
	. 114	. 5	E5	<. 08	2.3	<. 02	E. 2	1.17	<. 2	. 9	. 43	<. 01	. 4
Date	Suspended sediment discharge, tons/d (80155)	Suspnd. sediment, sieve diametr percent <.063mm (70331)	Aluminum, bed sed <62.5um wet svd fld, tot percent (34790)	```Anti- mony, bed sed <62.5um wet svd fld,tot ug/g (34795)```	Arsenic bed sed <62. 5um wet svd field, total, ug/g (34800)	```Barium, bed sed <62.5um wet svd field, total, ug/g (34805)```	```Beryll- ium, bed sed <62.5um wet svd fld,tot ug/g (34810)```	```Bismuth bed sed <177um wet svd field, total, ug/g (34816)```	Cadmium bed sed <62. 5um wet svd field, total, ug/g (34825)	```Chrom- ium, bed sed <62. 5um wet svd fld, tot ug/g (34840)```	Copper, bed sed <62. 5um wet svd field, total, ug/g (34850)	Calcium bed sed <62. 5um wet svd field, total, percent (34830)	$\begin{gathered} \text { Cobalt, } \\ \text { bed sed } \\ <62.5 u m \\ \text { wet svd } \\ \text { field, } \\ \text { total, } \\ \text { ug/g } \\ (34845) \end{gathered}$
$\begin{aligned} & \text { MAY } \\ & 27 \ldots \end{aligned}$	1.8	74	--	--	--	--	--	--	--	--	--	--	--
$\begin{aligned} & \text { JUN } \\ & 23 \ldots \end{aligned}$	--	--	8.1	22	300	1100	3.2	<1	1.6	120	49	1.0	26
$\begin{gathered} \text { JUL } \\ 28 . \end{gathered}$. 45	--	-_	--	--	-_	- -	--	--	--	--	--	--
$\begin{aligned} & \text { SEP } \\ & 01 \ldots \end{aligned}$. 06	--	--	--	--	--	--	--	--	--	--	--	--
Date	```Cerium, bed sed <62.5um wet svd field, total, ug/g (34835)```	```Europ- ium, bed sed <62.5um wet svd fld,tot ug/g (34855)```	Gold, bed sed <62. 5um wet svd field, total, ug/g (34870)	```Gallium bed sed <62. 5um wet svd field, total, ug/g (34860)```	Holmium bed sed <62. 5um wet svd field, total, ug/g (34875)	Iron, bed sed <62. 5um wet svd field, total, percent (34880)	```Lantha- num, bed sed <62.5um wet svd fld,tot ug/g (34885)```	Lead, bed sed <62. 5um wet svd field, total, ug/g (34890)	```Lithium bed sed <62.5um wet svd field, total, ug/g (34895)```	Magnesium, bed sed <62. 5um wet svd fld, tot percent (34900)	```Mangan- ese, bed sed <62.5um wet svd fld,tot ug/g (34905)```	Mercury bed sed <62. 5um wet svd field, total, ug/g (34910)	Molybdenum, bed sed <62. 5um wet svd fld, tot ug/g (34915)
$\begin{aligned} & \text { MAY } \\ & 27 \ldots \end{aligned}$	--	--	--	--	--	--	--	--	--	--	--	--	--
JUN $23 .$	93	2	<1	20	1	6.0	49	25	46	1.7	1800	. 04	3.0
$\begin{aligned} & \text { JUL } \\ & 28 . . \end{aligned}$	9	2	<1	20	1	6.0	4	25	46	1.7	180	. 04	3.0
$\begin{aligned} & \mathrm{SEP} \\ & 01 \ldots \end{aligned}$	--	--	--	--	-	--	--	--	--	--	--	--	--
Date	```Neodym- ium, bed sed <62.5um wet svd fld,tot ug/g (34920)```	```Nickel, bed sed <62.5um wet svd field, total, ug/g (34925)```	Niobium bed sed <62.5um wet svd field, total, ug/g (34930)	Phosphorus, bed sed <62. 5um wet svd fld, tot percent (34935)	```Scand- ium, bed sed <62. 5um wet svd fld,tot ug/g (34945)```	```Selen- ium, bed sed <62.5um wet svd fld,tot ug/g (34950)```	Silver, bed sed <62. 5um wet svd field, total, ug/g (34955)	Sodium, bed sed <62. 5um wet svd field, total, percent (34960)	```Stront- ium, bed sed <62. 5um wet svd fld,tot ug/g (34965)```	Sulfur, bed sed <62. 5um wet svd field, total, percent (34970)	Tantalum, bed sed <62. 5um wet svd fld, tot ug/g (34975)	Thorium bed sed <62.5um wet svd field, total, ug/g (34980)	```Tin, bed sed <62.5um wet svd field, total, ug/g (34985)```
$\begin{aligned} & \text { MAY } \\ & 27 \ldots . \end{aligned}$	--	--	--	--	--	--	--	--	--	-	--	-	--
$\begin{aligned} & \text { JUN } \\ & 23 \ldots \end{aligned}$	48	62	10	. 120	22	1.0	. 5	. 730	120	. 07	<1	17	5
$\begin{aligned} & \text { JUL } \\ & 28 . \ldots \end{aligned}$	--	--	--	--	--	--	--	--	--	--	--	--	-
$\begin{aligned} & \text { SEP } \\ & 01 \ldots \end{aligned}$	--	--	--	--	--	--	--	--	--	--	--	--	--

15625850 STEWART RIVER 0.1 MILE BELOW BOULDER CREEK MOUTH NEAR NOME—Continued
WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

	Titanium,	Uranium bed sed	Vanadium,	Yttrium bed sed	$\begin{gathered} \text { Ytterb- } \\ \text { ium, } \end{gathered}$	$\begin{aligned} & \text { Zinc, } \\ & \text { bed sed } \end{aligned}$	Organic carbon,	Inorg. carbon,	Total carbon,	Total carbon,	Inorg. carbon,	Organic carbon,
	bed sed	<62.5um	bed sed	<62.5um	bed sed	<62.5um	bed sed	bed sed	sedimnt	bed sed	bed sed	bed sed
	<62.5um	wet svd	<62.5um	wet svd	<62.5um	wet svd	<62.5um	<62.5um	<62.5um	$<2 \mathrm{~mm}$,	$<2 \mathrm{~mm}$,	<2 mm,
	wsv nat	field,	wet svd	field,	wet svd	field,	wsv nat					
Date	rec,	total,	fld, tot	total,	fld, tot	total,	field	field	field	field	field	field
	$\begin{aligned} & \text { percent } \\ & (49274) \end{aligned}$	$\begin{gathered} \mathrm{ug} / \mathrm{g} \\ (35000) \end{gathered}$	$\begin{gathered} \mathrm{ug} / \mathrm{g} \\ (35005) \end{gathered}$	$\begin{gathered} \mathrm{ug} / \mathrm{g} \\ (35010) \end{gathered}$	$\begin{gathered} \mathrm{ug} / \mathrm{g} \\ (35015) \end{gathered}$	$\begin{gathered} \mathrm{ug} / \mathrm{g} \\ (35020) \end{gathered}$	$\begin{aligned} & \text { percent } \\ & (49266) \end{aligned}$	$\begin{aligned} & \text { percent } \\ & (49269) \end{aligned}$	$\begin{aligned} & \text { percent } \\ & (49267) \end{aligned}$	$\begin{gathered} \mathrm{g} / \mathrm{kg} \\ (49272) \end{gathered}$	$\begin{gathered} \mathrm{g} / \mathrm{kg} \\ (49270) \end{gathered}$	$\begin{gathered} \mathrm{g} / \mathrm{kg} \\ (49271) \end{gathered}$

MAY
$27 \ldots$
JUN
$23 \ldots$
JUL
$28 \ldots$
SEP
$01 \ldots$

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

DAY	MAX	MIN	MEAN									
		MARCH			APRIL			MAY			JUNE	
1	-	---	--	---	---	-	---	--	---	6.5	1.0	3.5
2	---	---	---	---	-	---	-	---	--	6.0	1.5	3.5
3	---	---	---	---	---	---	---	---	---	7.5	2.0	4.0
4	-	---	---	---	---	---	---	---	---	6.5	2.0	4.0
5	---	---	---	---	---	---	---	---	--	9.0	2.5	5.0
6	--	---	---	---	---	-	--	-	--	10.0	3.0	6.0
7	-	---	---	---	---	---	---	---	---	---	,	,
8	--	---	---	---	-	---	---	---	---	---	--	---
9	---	---	---	---	---	---	---	---	---	---	---	---
10	---	---	---	---	---	---	--	--	---	--	---	---
11	---	-	-	---	---	-	---	--	---	---	---	---
12	-	---	---	---	---	---	---	---	---	---	--	---
13	---	--	--	--	---	--	--	-	--	-	---	---
14	-	---	---	---	---	---	---	---	---	---	---	---
15	---	-	-	---	-	---	---	---	---	---	---	--
16	-	---	---	---	---	---	---	---	---	---	---	---
17	---	---	---	---	---	---	--	-	--	---	---	--
18	-	---	---	---	---	---	---	---	---	---	---	-
19	---	---	-	---	---	---	--	-	-	---	---	---
20	---	---	---	-	---	---	--	-	-	---	---	--
21	---	---	---	---	---	---	---	---	-	---	--	---
22	---	-	-	---	-	---	-	-	-	-	--	-
23	---	-	---	---	---	---	--	---	--	--	--	---
24	--	---	---	-	---	---	---	-	--	---	--	-
25	---	---	---	-	---	-	---	---	-	---	--	-
26	---	---	---	---	---	---	--	---	---	---	---	---
27	---	---	---	---	-	---	4.0	---	---	---	---	-
28	---	---	---	---	---	---	5.5	0.5	2.5	---	---	---
29	---	---	---	---	---	---	4.0	1.5	2.5	---	---	---
30	---	--	---	-	-	---	5.5	1.0	3.0	---	---	---
31	---	---	---	---	---	---	4.0	1.5	2.5	---	---	---
MONTH	---	---	-	---	---	---	---	---	---	---	---	---

15625900 STEWART RIVER 0.2 MILE BELOW DURRANT CREEK MOUTH NEAR NOME

LOCATION.--Lat $64^{\circ} 47^{\prime} 18^{\prime \prime}$, long $165^{\circ} 37^{\prime} 54^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{NW}^{1} / 4 \mathrm{NE} \mathrm{N}^{1} / 4 \mathrm{sec} .19, \mathrm{~T} .8 \mathrm{~S} ., \mathrm{R} .34 \mathrm{~W} .(\mathrm{Nome} \mathrm{D}-2$ quad), Hydrologic Unit 19050104, on the left bank, 0.2 mi downstream from Durrant Creek, 2.6 mi upstream from mouth, and 22 mi northwest of Nome.

DRAINAGE AREA.-- $53.18 \mathrm{mi}^{2}$.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.-- May 2004 to September 2004 (discontinued).
GAGE.--Water-stage recorder. Elevation of gage is 375 ft above sea level, from topographic map.
EXTREMES FOR CURRENT PERIOD.--Maximum discharge during period May to September 2004 , $760 \mathrm{ft} / \mathrm{s}$, May 26 and 27 , gage height, 15.73 ft . minimum discharge $35 \mathrm{ft}^{3} / \mathrm{s}$, July 25 and 26.

REMARKS.--Records are fair, except for estimated discharges, which are poor. Rain gage at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	---	---	---	---	---	---	---	---	494	89	56	110
2	---	---	---	---	---	---	---	---	445	86	51	---
3	---	---	---	---	---	---	---	--	383	81	80	---
4	---	---	---	---	---	---	---	---	338	76	90	---
5	---	---	-	---	---	-	---	---	410	73	71	---
6	---	---	---	---	---	---	---	---	399	67	63	-
7	---	---	---	---	---	---	---	---	418	65	70	-
8	---	---	-	---	---	-	---	---	310	66	232	---
9	---	---	---	---	---	---	---	---	268	63	231	-
10	---	---	---	---	---	-	---	---	241	59	156	--
11	---	---	---	---	---	---	---	---	235	54	130	--
12	---	---	---	-	---	---	---	---	230	51	387	---
13	---	---	---	---	---	--	---	---	203	50	537	
14	---	---	-	---	---	---	---	---	180	50	446	--
15	---	---	---	---	---	---	---	---	157	48	397	---
16	---	--	---	---	---	---	--	---	156	48	313	---
17	---	---	---	---	---	---	---	---	193	54	270	---
18	---	---	---	---	---	---	---	---	149	58	235	---
19	---	---	---	---	---	---	---	---	169	47	214	---
20	---	---	---	---	---	---	---	---	142	43	195	-
	---	---	---	---	---	-	---	---	130	41	179	-
22	---	---	---	---	---	---	---	---	160	40	171	---
23	---	---	---	---	---	---	---	-	224	38	160	---
24	---	---	---	---	---	---	---	---	174	37	149	---
25	---	---	---	---	---	---	---	---	165	36	137	--
26	---	---	--	---	---	---	---	e660	149	36	126	---
27	---	---	---	---	---	---	---	626	131	58	123	---
28	---	---	---	---	---	---	---	434	116	109	117	--
29	---	---	---	---	---	---	---	469	103	76	112	-
30	---	---	---	---	---	---	---	462	94	75	113	---
31	---	---	---	---	---	---	---	e640	---	61	110	---
TOTAL	---	---	---	---	---	-	---	---	6966	1835	5721	---
MEAN	---	---	---	---	---	---	---	---	232	59.2	185	---
MAX	---	---	---	---	---	---	---		494	109	537	
MIN	---	---	---	--	-	---	---		94	36	51	
AC-FT	---	---	---	---	---	---	---	---	13820	3640	11350	-

PERIOD OF RECORD.--May to September 2004 (discontinued).
PERIOD OF DAILY RECORD.--
WATER TEMPERATURE: May to September 2004 (discontinued).
INSTRUMENTATION.--Water-temperature recorder. Electronic water temperature recorder set for $15-m i n u t e$ recording interval.

REMARKS.--Probe installed on May 26. Recorder malfunctioned from May 28 to June 9, and 11 . Records represent water temperature at sensor within $0.5^{\circ} \mathrm{C}$. Temperature at the sensor was compared with the average for the river by cross section on May 26, and July 28 , and September 1. A $0.5^{\circ} \mathrm{C}$ variation was found May 26 and July 28 . No variation was found September 1. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR CURRENT PERIOD.--
WATER TEMPERATURE: Maximum, $18.5^{\circ} \mathrm{C}$, July 22 and 24 ; minimum recorded, $0.5^{\circ} \mathrm{C}, \mathrm{May} 27$.
WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

Date	Time	Location in X-sect. looking dwnstrm ft from 1 bank (00009)	Specif. conductance, wat unf uS/cm 25 degC (00095)	$\begin{gathered} \text { pH, } \\ \text { water, } \\ \text { unfltrd } \\ \text { field, } \\ \text { std } \\ \text { units } \\ (00400) \end{gathered}$	$\begin{aligned} & \text { Temper- } \\ & \text { ature, } \\ & \text { water, } \\ & \text { deg C } \\ & (00010) \end{aligned}$	Baro- metric pres- sure, mm Hg (00025)	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { oxygen, } \\ \text { mg/L } \\ (00300) \end{gathered}$	Dissolved oxygen, percent of saturation (00301)
MAY								
26.	1831	16.0	83	7.2	4.5	751	11.9	93
26.	1833	36.0	83	7.2	4.5	751	11.8	93
26.	1834	76.0	83	7.2	4.5	751	11.8	93
26.	1835	96.0	83	7.2	4.5	751	11.8	93
26.	1836	116	84	7.2	4.5	751	11.7	92
26.	1837	136	84	7.2	5.0	751	11.7	93
JUL								
28.	1505	64.0	201	7.6	13.5	743	10.3	101
28.	1506	49.0	202	7.6	13.0	743	9.9	96
28.	1507	34.0	203	7.6	13.0	743	9.8	95
28.	1508	19.0	203	7.5	13.0	743	9.8	95
28.	1509	4.00	204	7.5	13.0	743	9.8	95
SEP								
01.	1330	8.00	221	7.7	8.5	--	11.0	--
01.	1331	24.0	219	7.7	8.5	--	11.0	--
01.	1332	40.0	218	7.7	8.5	--	11.0	--
01.	1333	56.0	216	7.7	9.0	--	11.0	--
01.	1334	72.0	215	7.7	9.0	--	11.0	--
SEP								
01.	1330	8.00	221	7.7	8.5	--	11.0	--
01..	1331	24.0	219	7.7	8.5	--	11.0	--

Date	Time	Medium code	Sample type	$\begin{gathered} \text { Stream } \\ \text { width, } \\ \text { feet } \\ (00004) \end{gathered}$	Gage height, feet (00065)	Instantaneous discharge, cfs (00061)	$\begin{gathered} \text { Sam- } \\ \text { pling } \\ \text { method, } \\ \text { code } \\ (82398) \end{gathered}$	```Sampler type, code (84164)```	Specif. conductance, wat unf uS/cm 25 degC (00095)		```Temper- ature, air, deg C (00020)```	```Temper- ature, water, deg C (00010)```	```Turbid- ity, wat unf lab, Hach 2100AN NTU (99872)```
MAY 26.	1810	9	9	146	15.55	680	10	3044	83	7.2	10.5	4.5	3.3
JUN 23.	1410	H	9	--	14.88	265	70	--	--	--	--	--	--
JUL 28.	1440	9	9	74.0	14.50	89	20	3044	203	7.5	18.1	13.0	<2.0
$\begin{aligned} & \text { SEP } \\ & 01 . \end{aligned}$	1310	9	9	97.0	14.62	109	10	3044	220	7.8	13.5	8.8	<2.0
Date	Barometric pressure, mm Hg (00025)	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { oxygen, } \\ \mathrm{mg} / \mathrm{L} \\ (00300) \end{gathered}$	Dissolved oxygen, percent of saturation (00301)	$\begin{gathered} \text { E coli, } \\ \text { m-TEC } \\ \text { MF, } \\ \text { water, } \\ \text { col/ } \\ 100 \mathrm{~mL} \\ (31633) \end{gathered}$	Hardness, water, mg/L as CaCO3 (00900)	$\begin{gathered} \text { Calcium } \\ \text { water, } \\ \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00915) \end{gathered}$	$\begin{gathered} \text { Magnes- } \\ \text { ium, } \\ \text { water, } \\ \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00925) \end{gathered}$	$\begin{gathered} \text { Sodium, } \\ \text { water, } \\ \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00930) \end{gathered}$	Potassium, water, fltrd, mg/L (00935)	```Bicar- bonate, wat flt incrm. titr., field, mg/L (00453)```	```Carbon- ate, wat flt incrm. titr., field, mg/L (00452)```	Alkalinity, wat flt inc tit field, mg / L as CaCO3 (39086)	Alkalinity, wat flt fxd end field, mg / L as CaCO3 (39036)
$\begin{aligned} & \text { MAY } \\ & 26 . \end{aligned}$	741	11.8	94	E4	38	12.3	1.88	1.03	. 38	31	. 0	25	26
JUN 23.	--	--	--	--	--	--	--	--	--	--	-	--	--
JUL 28.	743	9.8	95	40	100	33.1	5.14	2.29	. 71	95	. 0	77	78
$\begin{gathered} \text { SEP } \\ 01 . \end{gathered}$	744	11.0	97	E8	120	37.3	5.68	2.20	. 62	101	. 0	83	83

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

15743850 DAHL CREEK NEAR KOBUK

LOCATION.--Lat $66^{\circ} 56^{\prime} 46^{\prime \prime}$, long $156^{\circ} 54^{\prime} 32^{\prime \prime}$, in $\mathrm{NW}^{1} / 4 \mathrm{SE}^{1} / 4$ sec. $21, \mathrm{~T} .18 \mathrm{~N} ., \mathrm{R} .9$ E. (Shungnak D-2 quad), Hydrologic Unit 19050302, on right bank 25 ft downstream from bridge on road to Bornite at west end of Dahl Creek landing strip, 3.5 mi upstream from mouth, 3 mi north of Kobuk, and 7.3 miles northeast of Shungnak.

DRAINAGE AREA. --11.0 mi2.
PERIOD OF RECORD.--Annual maximum, water years 1986-87, April 1988 to current year. (No winter record in water years 1989, 1991-92, 1994, and 1996.)

REVISED RECORDS.--WDR AK-88-1: 1986 (M).
GAGE.--Water-stage recorder. Elevation of gage is 225 ft above sea level, from topographic map. July 16 , 1986 , to April 28, 1988, the water-stage recorder was operated to obtain annual maximums. Prior to August 17 , 1994 at site 50 ft upstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	47	28	e14	e5.0	e1. 8	e1.4	e1.4	13	58	20	29	33
2	47	27	e14	e4.8	e1. 7	e1.4	e1.4	14	56	20	24	30
3	45	27	e13	e4.6	e1.7	e1.4	e1.4	15	50	19	23	29
4	43	26	e13	e4.4	e1.7	e1.4	e1.4	17	47	20	23	27
5	43	26	e13	e4.2	e1.7	e1.4	e1.4	18	46	20	22	26
6	44	e25	e12	e3. 8	e1.7	e1.4	e1.4	107	44	20	22	26
7	44	e25	e12	e3. 6	e1.6	e1.4	e1.5	59	42	20	22	25
8	44	e25	e12	e3. 6	e1.6	e1.4	e1.6	28	39	19	24	24
9	43	e24	e11	e3.4	e1. 6	e1.4	e1. 6	21	38	19	33	24
10	43	e24	e11	e3. 2	e1.6	e1.4	e1.6	24	36	19	32	23
11	42	e23	e11	e3. 0	e1. 6	e1.4	e1.7	27	34	18	30	23
12	41	e23	e10	e3.0	e1.6	e1.4	e1.8	27	33	18	32	25
13	40	e22	e10	e2. 8	e1. 5	e1.4	e1.9	29	32	18	335	24
14	39	e22	e10	e2. 8	e1.5	e1.4	e1.9	52	31	17	159	23
15	38	e21	e9.2	e2. 6	e1.5	e1.4	e1.9	64	29	17	128	22
16	38	e21	e9.0	e2. 6	e1. 5	e1.4	e1. 8	85	28	17	112	21
17	37	e20	e8. 8	e2.4	e1. 5	e1.4	e1.8	97	28	17	98	21
18	36	e20	e8. 6	e2. 4	e1. 5	e1.4	e1.8	113	26	17	86	21
19	e35	e19	e8.2	e2.4	e1. 5	e1.4	e1.9	85	25	17	76	20
20	34	e19	e8.0	e2. 2	e1. 5	e1.4	e1.9	78	24	16	68	20
21	33	e18	e7. 8	e2. 2	e1. 5	e1.4	e2.0	76	23	16	62	20
22	e33	e18	e7. 6	e2. 2	e1. 5	e1.4	e2. 2	80	23	16	56	20
23	e32	e17	e7. 2	e2.0	e1. 5	e1.4	e2.4	104	23	15	51	20
24	e31	e17	e7.0	e2.0	e1. 5	e1.4	e2. 8	155	25	15	46	20
25	31	e17	e6. 8	e2.0	e1. 5	e1.4	e3. 4	103	24	15	43	19
26	e30	e16	e6. 6	e1.9	e1. 5	e1.4	e4.0	76	22	15	40	19
27	e29	e16	e6. 4	e1.9	e1.4	e1.4	e5.0	63	22	15	38	18
28	e29	e15	e6.0	e1.9	e1.4	e1.4	e7. 6	59	21	15	35	18
29	28	e15	e5. 8	e1.9	e1.4	e1.4	e9.0	59	21	17	34	e19
30	28	e14	e5.6	e1. 8	---	e1.4	e11	60	20	16	33	19
31	29	---	e5.4	e1. 8	---	e1.4	---	58	---	30	33	---
TOTAL	1156	630	290.0	88.4	45.1	43.4	82.5	1866	970	553	1849	679
MEAN	37.3	21.0	9.35	2.85	1.56	1.40	2.75	60.2	32.3	17.8	59.6	22.6
MAX	47	28	14	5.0	1.8	1.4	11	155	58	30	335	33
MIN	28	14	5.4	1.8	1.4	1.4	1.4	13	20	15	22	18
AC-FT	2290	1250	575	175	89	86	164	3700	1920	1100	3670	1350
CFSM	3.39	1.91	0.85	0.26	0.14	0.13	0.25	5.47	2.94	1.62	5.42	2.06
IN.	3.91	2.13	0.98	0.30	0.15	0.15	0.28	6.31	3.28	1.87	6.25	2.30
STATISTICS OF		HLY M	DATA	WATER YEARS 1986-2004, BY WATER YEAR (WY)\#								
MEAN	29.5	11.1	6.52	4.64	3.97	3.62	4.07	51.7	62.5	36.5	69.0	48.6
MAX	67.2	21.0	9.46	6.88	6.15	5.63	7.39	93.1	116	73.2	223	104
(WY)	1994	2004	2003	1998	1998	1998	1997	1996	1992	1989	1994	1993
MIN	9.65	3.70	2.55	2.00	1.56	1.40	1.50	6.21	13.1	10.6	17.3	19.8
(WY)	1993	1993	1993	1993	2004	2004	1993	2001	1997	1997	1990	1991

\# See Period of Record; partial years used in monthly statistics e Estimated

15743850 DAHL CREEK NEAR KOBUK-Continued

SUMMARY STATISTICS	FOR 2003 CALENDAR YEAR	FOR 2004 WATER YEAR	WATER YEARS	1986 -	2004\#
ANNUAL TOTAL	13479.6	8252.4			
ANNUAL MEAN	36.9	22.5	25.6		
HIGHEST ANNUAL MEAN			36.7		1993
LOWEST ANNUAL MEAN			18.8		1999
HIGHEST DAILY MEAN	186 Aug 16	335 Aug 13	1400	Aug 17	1994
LOWEST DAILY MEAN	a4.2 Mar 25	b1.4 Feb 27	b1. 4	Feb 27	2004
ANNUAL SEVEN-DAY MINIMUM	4.2 Mar 25	1.4 Feb 27	1.4	Feb 27	2004
MAXIMUM PEAK FLOW		791 Aug 13	d1840	Aug 17	1994
MAXIMUM PEAK STAGE		6.18 Aug 13	6.73	Aug 17	1994
MAXIMUM PEAK STAGE			f7. 03	May 10	2002
ANNUAL RUNOFF (AC-FT)	26740	16370	18550		
ANNUAL RUNOFF (CFSM)	3.36	2.05	2.33		
ANNUAL RUNOFF (INCHES)	45.59	27.91	31.63		
10 PERCENT EXCEEDS	92	47	65		
50 PERCENT EXCEEDS	19	18	11		
90 PERCENT EXCEEDS	4.4	1.4	3.0		

[^1]
15746991 IKALUKROK CREEK BELOW RED DOG CREEK NEAR KIVALINA

LOCATION.--Lat $68^{\circ} 02^{\prime} 51^{\prime \prime}$, long $163^{\circ} 01^{\prime} 34^{\prime \prime}$, in $\mathrm{NE}^{1 / 4} \mathrm{NW}^{1} / 4$ sec. 33 , T. $31 \mathrm{~N} ., \mathrm{R} .19$ W. (Delong Mountains A-2 quad) Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank about 3.5 mi downstream from the mouth of Red Dog Creek, 2.5 mi upstream from the mouth of Dudd Creek, and 45 mi northeast of Kivalina.

DRAINAGE AREA. $--98.6 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--June 1995 to current year (no winter record).
GAGE.--Water-stage recorder. Elevation of gage is 650 ft above sea level, from topographic map. Prior to June 1, 1998 at site 1 mi upstream at different datum

REMARKS.--Records fair except for estimated daily discharges, which are poor. Runoff from 3.6 mi ${ }^{2}$ is impounded in tailings ponds and released intermittently at a maximum rate of $25 \mathrm{ft}^{3} / \mathrm{s}$. Meteor-burst telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, undetermined, July 25, 1996; gage height, 12.22 ft, at site and datum then in use.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge, $4950 \mathrm{ft}^{3} / \mathrm{s}$, August 9 , gage height, 12.18 ft ; minimum not determined, occurs during the winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	278	---	---	-	--	--	---	--	e520	211	231	230
2	532	---	---	---	-	---	--	-	e560	199	208	214
3	419	---	---	---	---	---	--	---	518	189	197	190
4	e310	---	---	---	---	---	---	---	426	174	196	177
5	---	---	---	---	---	---	-	---	483	213	187	169
6	---	---	---	-	--	---	--	--	429	308	187	158
7	---	---	---	---	---	---	-	---	400	266	192	147
8	-	---	---	---	---	---	---	---	362	259	1140	140
9	---	---	---	---	---	---	---	---	336	243	2460	139
10	-	---	---	---	-	---	--	---	321	226	1140	e130
11	-	---	---	---	---	---	-	---	281	209	704	e120
12	--	---	---	---	---	---	--	---	260	194	654	e110
13	--	---	---	---	---	---	---	---	247	188	1130	e105
14	-	---	---	-	---	---	--	---	289	180	763	e100
15	--	---	---	---	---	---	---	---	252	172	630	e95
16	--	---	---	-	---	---	--	---	237	162	523	e85
17	-	---	---	---	---	---	---	---	394	167	425	e80
18	---	---	---	---	---	---	--	---	333	188	363	e75
19	---	---	---	---	---	---	---	---	392	175	303	e70
20	---	---	---	---	---	---	---	---	459	167	263	e65
21	--	---	---	---	---	---	-	---	322	160	244	e63
22	---	---	---	--	---	---	--	---	296	153	216	e61
23	---	---	--	--	---	--	--	---	351	149	208	e60
24	---	---	---	---	---	---	---	---	446	143	201	e58
25	---	---	---	--	---	---	-	---	399	136	180	e54
26	-	---	-	---	---	-	-	---	373	136	174	e50
27	---	-	--	-	-	--	--	---	316	139	167	e50
28	-	---	-	---	---	---	-	---	270	137	161	e50
29	---	---	---	---	---	---	---	---	246	137	153	e50
30	--	---	---	---	---	---	---	---	227	137	147	e50
31	---	---	--	---	---	---	---	-	---	237	175	---
TOTAL	---	---	---	---	---	--	--	---	10745	5754	13922	3145
MEAN	---	---	---	---	---	---	---	---	358	186	449	105
MAX		---	---	--	-	---	--	-	560	308	2460	230
MIN		-	--	--	---	--	--	---	227	136	147	50
AC-FT	---	---	---	---	---	---	---	---	21310	11410	27610	6240
CFSM	--	---	---	---	---	---	---	-	3.75	1.95	4.71	1.10
IN.	-	---	---	---	---	---	---	---	4.19	2.24	5.43	1.23

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1995 - 2004, BY WATER YEAR (WY)

MEAN	59.9	12.5	---	-	-	-	-	112	451	210	403	252
MAX	88.0	21.5	---	---	---	---	---	200	872	328	687	515
(WY)	2003	1999	---	---	---	---	---	1999	2003	2003	1998	2002
MIN	39.8	2.56	---	---	---	---	---	23.7	259	91.6	125	84.7
(WY)	2001	2000	--	---	---	---	---	2001	1999	1999	1995	1996

[^2]
15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA

LOCATION.--Lat $67^{\circ} 52^{\prime} 34^{\prime \prime}$, long $163^{\circ} 40^{\prime} 28^{\prime \prime}$, in $\mathrm{NW}^{1} / 4$ sec. $34, \mathrm{~T} .29 \mathrm{~N} ., \mathrm{R} .22 \mathrm{~W}$. (Noatak D-4 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.1 mi downstream from Tutak Creek and 25 mi northeast of Kivalina.

DRAINAGE AREA. - $-705 \mathrm{mi}^{2}$.
PERIOD OF RECORD.--September 1984 to current year.
GAGE.--Water-stage recorder. Elevation of gage is 175 ft above sea level, from topographic map.
REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station. Flow from 2.8 square miles of the drainage basin is regulated by a tailings dam at the Red Dog Mine site. Up to $25 \mathrm{ft}^{3} / \mathrm{s}$ of the flow at the gage may be discharge from Red Dog Mine during the summer period.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	777	e210	e110	e64	e38	e27	e23	e290	5670	1010	1570	1140
2	3850	e210	e110	e62	e38	e27	e23	e360	6200	893	1320	1400
3	3220	e220	e110	e62	e37	e27	e22	e540	4260	809	1130	1320
4	2330	e220	e110	e60	e36	e27	e22	e700	3280	753	1060	1230
5	1830	e220	e100	e59	e36	e26	e22	e900	3490	803	995	1150
6	1490	e220	e100	e58	e35	e26	e22	e650	3570	1590	917	1060
7	1250	e210	e100	e57	e35	e26	e22	e550	3050	1580	879	993
8	1170	e210	e98	e56	e34	e26	e22	e650	2910	1450	1640	916
9	1100	e210	e96	e55	e34	e26	e22	e800	2530	1250	13600	862
10	1100	e200	e94	e54	e33	e26	e22	e900	2430	1050	11100	818
11	1200	e200	e92	e53	e33	e25	e22	e1300	1990	908	6330	769
12	1290	e190	e90	e52	e32	e25	e22	e1900	1850	794	4310	733
13	1070	e180	e88	e51	e32	e25	e22	e2700	1720	718	8450	705
14	736	e180	e86	e50	e32	e25	e22	e3600	1690	671	6650	665
15	e560	e170	e86	e50	e31	e25	e22	e5000	1500	626	4880	628
16	e500	e170	e84	e49	e31	e25	e22	e6500	1630	579	3950	589
17	e420	e160	e82	e48	e31	e24	e22	e9500	2030	650	3250	567
18	e360	e160	e80	e47	e30	e24	e22	6790	3100	936	2730	550
19	e320	e150	e80	e46	e30	e24	e22	4370	2480	995	2300	535
20	e290	e150	e78	e46	e30	e24	e22	3390	4370	871	1970	514
21	e260	e140	e76	e45	e29	e24	e22	2690	2480	752	1740	492
22	e240	e140	e76	e44	e29	e24	e22	3410	1870	671	1570	457
23	e230	e140	e74	e44	e29	e24	e22	7560	1900	612	1430	435
24	e215	e130	e74	e43	e29	e24	e22	12300	3250	565	1290	e400
25	e200	e130	e72	e42	e28	e23	e22	12500	2860	533	1170	e370
26	e190	e130	e72	e42	e28	e23	e32	7930	2660	511	1070	e350
27	e180	e120	e70	e41	e28	e23	e50	4940	2150	528	1010	e330
28	e180	e120	e68	e41	e28	e23	e70	2750	1690	536	951	e300
29	e180	e120	e68	e40	e27	e23	e100	3960	1360	530	910	e280
30	e190	e120	e66	e39	---	e23	e190	5640	1160	522	865	e260
31	e200		e64	e39	---	e23	---	5690		891	897	---
TOTAL	27128	5130	2654	1539	923	767	994	120760	81130	25587	91934	20818
MEAN	875	171	85.6	49.6	31.8	24.7	33.1	3895	2704	825	2966	694
MAX	3850	220	110	64	38	27	190	12500	6200	1590	13600	1400
MIN	180	120	64	39	27	23	22	290	1160	511	865	260
AC-FT	53810	10180	5260	3050	1830	1520	1970	239500	160900	50750	182400	41290
CFSM	1.24	0.24	0.12	0.07	0.05	0.04	0.05	5.53	3.84	1.17	4.21	0.98
IN.	1.43	0.27	0.14	0.08	0.05	0.04	0.05	6.37	4.28	1.35	4.85	1.10
STATISTICS OF MONTHLY MEAN			DATA	WATER YEARS 1985-2004, BY WATER YEAR (WY) \#								
MEAN	552	138	65.7	37.7	25.3	19.5	17.5	1888	3225	1644	2793	1648
MAX	1542	290	111	70.0	49.3	39.5	38.8	4856	6669	6144	8458	3076
(WY)	1994	1994	1986	1986	1986	1991	1991	1993	1989	1989	1994	2002
MIN	207	63.1	34.2	21.5	12.0	9.10	9.00	20.6	1372	424	496	386
(WY)	1997	2002	1988	1992	1992	1992	1992	1989	1988	1999	1991	1991

SUMMARY STATISTICS
FOR 2003 CALENDAR YEAR
FOR 2004 WATER YEAR
WATER YEARS 1985 - 2004\#

ANNUAL TOTAL	320195		
ANNUAL MEAN	877		
HIGHEST ANNUAL MEAN			
LOWEST ANNUAL MEAN			
HIGHEST DAILY MEAN	12600	Jun	
LOWEST DAILY MEAN	a24	Apr	
ANNUAL SEVEN-DAY MINIMUM	24	Apr	
MAXIMUM PEAK FLOW			
MAXIMUM PEAK STAGE			
ANNUAL PEAK STAGE			
ANNUAL RUNOFF (AC-FT)	635100		
ANNUAL RUNOFF (CFSM)	1.24		
ANNUAL RUNOFF (INCHES)	16.90		
10 PERCENT EXCEEDS	2140		
50 PERCENT EXCEEDS	140		
90 PERCENT EXCEEDS	26		
\# See Period of Record			
From Apr. 17-29			
From Apr. 3-25			
From Apr. 30 to May 10, 1985, and Mar. 4 to May 17, 1992			
From floodmarks, backwater from snow and ice			
e Estimated			

379364					
1037	1009				
	18431994				
			530		1987
13600	Aug	9	29400	Aug 17	1994
b22	Apr	3	c9.0	Apr 30	1985
22	Apr	3	9.0	Apr 30	1985
18100	Aug	9	38500	Aug 17	1994
9.80	Aug	9	12.21	Aug 17	1994
			d13.5	May 16	1999
752500			731100		
1.47			1.43		
20.02			19.45		
3060			2830		
210			130		
24			15		

[^0]: e Estimated

[^1]: \# See Period of Record; partial years used in monthly statistics
 a From Mar. 25 to Apr. 15
 b From Feb. 27 to Apr. 6
 d From rating curve extended above $170 \mathrm{ft}^{3} / \mathrm{s}$ on basis of slope-area measurement of peak flow
 f Backwater from ice

[^2]: e Estimated

