15015595 UNUK RIVER BELOW BLUE RIVER NEAR WRANGELL

WATER-QUALITY RECORDS

PERIOD OF RECORD.--April 2003 to current year.
PERIOD OF DAILY RECORD.--
WATER TEMPERATURE: April 2003 to current year.
INSTRUMENTATION.--Digital water-temperature recorder with 15-minute recording interval.
 within $0.5^{\circ} \mathrm{C}$. Temperature at the sensor was compared with the stream average by cross section on March 31 and July 14 . No variation was found in the temperature cross sections. No variation was found between mean stream temperature and sensor temperature. Records good while probe was submerged.

EXTREMES FOR PERIOD OF DAILY RECORD.--
WATER TEMPERATURE: Maximum, $11.0^{\circ} \mathrm{C}$, July 9, 23-24, 2004; minimum recorded, $0.5^{\circ} \mathrm{C}$ December 22 , January $14-15,2004 ; 0.0^{\circ} \mathrm{C}$ likely during period of missing record in winter.
EXTREMES FOR CURRENT YEAR.--
WATER TEMPERATURE: Maximum, $11.0^{\circ} \mathrm{C}$, July 9, $23-24$; minimum recorded, $0.5^{\circ} \mathrm{C}$ December 22 , January $14-15$, $0.0^{\circ} \mathrm{C}$ likely during period of missing record in winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

Date	Time	$\begin{aligned} & \text { Loca- } \\ & \text { tion in } \\ & \text { X-sect. } \\ & \text { looking } \\ & \text { dwnstrm } \\ & \text { ft from } \\ & \text { l bank } \\ & (00009) \end{aligned}$	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	pH, water, unfltrd field, std units (00400)	```Temper- ature, water, deg C (00010)```	$\begin{aligned} & \text { Baro- } \\ & \text { metric } \\ & \text { pres- } \\ & \text { sure, } \\ & \text { mm Hg } \\ & (00025) \end{aligned}$	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { oxygen, } \\ \text { mg/L } \\ (00300) \end{gathered}$	Dissolved oxygen, percent of saturation (00301)
MAR								
31.	1800	38.0	150	7.7	4.0	763	12.9	98
31	1801	113	150	7.7	4.0	763	12.9	98
31	1802	188	150	7.7	4.0	763	12.9	98
31	1803	263	151	7.7	4.0	763	12.9	98
JUL								
14.	1817	25.0	72	7.9	9.0	755	11.3	99
14.	1818	85.0	72	7.8	9.0	755	11.1	97
14.	1819	145	71	7.7	9.0	755	11.1	97
14.	1820	205	72	7.7	9.0	755	11.1	97
14.	1821	270	72	7.7	9.0	755	11.1	97

Date	Time	Medium code	Sample type	Gage height, feet (00065)	Instantaneous discharge, cfs (00061)	Sampling method, code (82398)	$\begin{gathered} \text { Stream } \\ \text { width, } \\ \text { feet } \\ (00004) \end{gathered}$	Barometric pressure, mm Hg (00025)	$\begin{gathered} \text { Dis- } \\ \text { solved } \\ \text { oxygen, } \\ \text { mg/L } \\ (00300) \end{gathered}$	Dissolved oxygen, percent of saturation (00301)	$\begin{gathered} \text { pH, } \\ \text { water, } \\ \text { unfltrd } \\ \text { field, } \\ \text { std } \\ \text { units } \\ (00400) \end{gathered}$	```Specif. conduc- tance, wat unf uS/cm 25 degC (00095)```	```Temper- ature, air, deg C (00020)```
OCT ${ }^{\text {O }}$													
09.	1600	9	9	23.76	5720	10	275	745	11.8	98	7.9	95	--
MAR													
31	1730	9	9	21.64	1740	10	300	763	12.9	98	7.7	150	3.5
JUL													
14	1800	9	9	25.65	11100	10	285	755	11.1	97	7.7	72	18.5
SEP													
23	1330	9	9	26.14	11500	10	255	755	--	--	7.8	74	8.5
				Calcium		Magnesium,			Alkalinity,	Bicarbonate,			
	Temper-	Hardness,	Calcium	water unfltrd	Magnesium,	water, unfltrd	Potassium,	Sodium,	wat flt inc tit	wat flt incrm.	Chloride,	$\begin{aligned} & \text { Fluor- } \\ & \text { ide, } \end{aligned}$	Silica,
	ature,	water,	water,	recover	water,	recover	water,	water,	field,	titr.,	water,	water,	water,
Date	$\begin{aligned} & \text { water, } \\ & \text { deg C } \\ & (00010) \end{aligned}$	$\begin{gathered} \mathrm{mg} / \mathrm{L} \text { as } \\ \mathrm{CaCO} \\ (00900) \end{gathered}$	$\begin{gathered} \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00915) \end{gathered}$	$\begin{gathered} \text {-able, } \\ \mathrm{mg} / \mathrm{L} \\ (00916) \end{gathered}$	$\begin{gathered} \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00925) \end{gathered}$	$\begin{gathered} \text {-able, } \\ \mathrm{mg} / \mathrm{L} \\ (00927) \end{gathered}$	$\begin{gathered} \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00935) \end{gathered}$	$\begin{gathered} \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00930) \end{gathered}$	$\begin{gathered} \mathrm{mg} / \mathrm{L} \text { as } \\ \mathrm{CaCO} \\ (39086) \end{gathered}$	$\begin{gathered} \text { field, } \\ \mathrm{mg} / \mathrm{L} \\ (00453) \end{gathered}$	$\begin{gathered} \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00940) \end{gathered}$	$\begin{gathered} \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00950) \end{gathered}$	$\begin{gathered} \text { fltrd, } \\ \mathrm{mg} / \mathrm{L} \\ (00955) \end{gathered}$
OCT													
09.	6.5	42	14.5	--	1.33	--	. 78	1.47	30	36	. 28	$<.2$	3.98
MAR													
31	4.0	71	24.5	23.3	2.33	2.22	1.18	2.87	48	59	. 78	$<.2$	5.94
JUL													
14.	9.0	32	11.4	13.4	. 802	2.59	. 72	. 90	23	28	E. 18	$<.2$	2.60
SEP													
23.	6.5	34	11.8	--	1.01	--	. 79	1.01	26	32	. 21	$<.2$	3.37

15015595 UNUK RIVER BELOW BLUE RIVER NEAR WRANGELL—Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

Date	```Sulfate water, fltrd, mg/L (00945)```	Residue water, fltrd, sum of constituents mg/L (70301)	```Residue on evap. at 180degC wat flt mg/L (70300)```	$\begin{gathered} \text { Ammonia } \\ + \\ \text { org-N, } \\ \text { water, } \\ \text { fltrd, } \\ \text { mg/L } \\ \text { as N } \\ (00623) \end{gathered}$	$\begin{gathered} \text { Ammonia } \\ + \\ \text { org-N, } \\ \text { water, } \\ \text { unfltrd } \\ \text { mg/L } \\ \text { as } \mathrm{N} \\ (00625) \end{gathered}$	Ammonia water, fltrd, mg/L as N (00608)	```Nitrite + nitrate water fltrd, mg/L as N (00631)```	Nitrite water, fltrd, mg/L as N (00613)	```Partic- ulate nitro- gen, susp, water, mg/L (49570)```	$\begin{aligned} & \text { Ortho- } \\ & \text { phos- } \\ & \text { phate, } \\ & \text { water, } \\ & \text { fltrd, } \\ & \text { mg/L } \\ & \text { as P } \\ & (00671) \end{aligned}$	Phosphorus, water, fltrd, mg/L (00666)	Phosphorus, water, unfltrd mg/L (00665)	Total carbon, suspnd sedimnt total, mg/L (00694)
OCT 09	14.6	55	50	$<.10$	E. 06	$<.010$. 051	E. 001	--	$<.006$	E. 003	. 024	- -
$\begin{gathered} \text { MAR } \\ 31 . . \end{gathered}$	22.8	90	106	$<.10$	$<.10$	$<.010$. 157	$<.002$	$<.02$	$<.006$	E. 003	$<.004$. 2
JUL $14 \text {. . }$	9.9	--	52	$<.10$	E. 05	$<.010$. 018	$<.002$. 02	$<.006$	$<.004$. 32	. 3
SEP $23 .$	10.2	44	53	$<.10$	E. 07	$<.010$. 059	$<.002$	--	$<.006$	E. 002	. 140	--
Date	Organic carbon, water, fltrd, mg / L (00681)	Aluminum, water, fltrd, ug/L (01106)	Aluminum, water, unfltrd recover -able, ug/L (01105)	$\begin{gathered} \text { Anti- } \\ \text { mony, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01095) \end{gathered}$	Antimony, water, unfltrd ug/L (01097)	Arsenic water, fltrd, ug/L (01000)	Barium, water, fltrd, ug/L (01005)	```Barium, water, unfltrd recover -able, ug/L (01007)```	$\begin{gathered} \text { Beryll- } \\ \text { ium, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01010) \end{gathered}$	```Beryll- ium, water, unfltrd recover -able, ug/L (01012)```	$\begin{gathered} \text { Boron, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01020) \end{gathered}$	```Boron, water, unfltrd recover -able, ug/L (01022)```	```Cadmium water, fltrd, ug/L (01025)```
OCT $09 .$		--	--	--	--	--	--	--	--	--	--	--	--
$\begin{aligned} & \text { MAR } \\ & 31 . . \end{aligned}$	1.1	18	61	. 54	. 5	. 3	29	29	<. 06	<. 06	E4	E6	. 04
JUL 14..	$.3$	48	3260	. 31	. 3	E. 1	18	76	<. 06	. 09	<8	<8	. 04
$\begin{aligned} & \text { SEP } \\ & 23 \ldots \end{aligned}$	1.0	--	--	--	--	--	--	--	--	--	--	--	--
Date	$\begin{gathered} \text { Cadmium } \\ \text { water, } \\ \text { unfltrd } \\ \text { ug/L } \\ (01027) \end{gathered}$	$\begin{gathered} \text { Chrom- } \\ \text { ium, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01030) \end{gathered}$	```Chrom- ium, water, unfltrd recover -able, ug/L (01034)```	```Cobalt water, fltrd, ug/L (01035)```	Cobalt water, unfltrd recover -able, ug/L (01037)	```Copper, water, fltrd, ug/L (01040)```	```Copper, water, unfltrd recover -able, ug/L (01042)```	$\begin{gathered} \text { Iron, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01046) \end{gathered}$	```Iron, water, unfltrd recover -able, ug/L (01045)```	```Lead, water, fltrd, ug/L (01049)```	```Lead, water, unfltrd recover -able, ug/L (01051)```	Lithium water, fltrd, ug/L (01130)	```Lithium water unfltrd recover -able, ug/L (01132)```
$\begin{gathered} \text { OCT } \\ 09 . \end{gathered}$	- -	--	--	--	--	--	--	9	--	--	--	--	--
MAR $31 . \text {. }$	E. 04	$<.8$	<. 8	. 115	. 130	2.2	2.7	41	170	. 12	. 09	. 8	1.0
JUL 14..	$.21$	<. 8	4.3	. 110	3.04	2.2 .7	26.0	13	5170	$<.08$	3.58	M	2.6
$\begin{aligned} & \text { SEP } \\ & 23 \ldots \end{aligned}$	--	--	--	--	--	--	--	19	--	--	--	--	--
Date	$\begin{gathered} \text { Mangan- } \\ \text { ese, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01056) \end{gathered}$	```Mangan- ese, water, unfltrd recover -able, ug/L (01055)```	```Mercury water, fltrd, ug/L (71890)```	```Mercury water, unfltrd recover -able, ug/L (71900)```	$\begin{gathered} \text { Molyb- } \\ \text { denum, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01060) \end{gathered}$	Molybdenum, water, unfltrd recover -able, ug/L (01062)	$\begin{gathered} \text { Nickel, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01065) \end{gathered}$	```Nickel, water, unfltrd recover -able, ug/L (01067)```	$\begin{gathered} \text { Selen- } \\ \text { ium, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01145) \end{gathered}$	```Selen- ium, water, unfltrd ug/L (01147)```	$\begin{aligned} & \text { Silver, } \\ & \text { water, } \\ & \text { fltrd, } \\ & \text { ug/L } \\ & (01075) \end{aligned}$	```Silver, water, unfltrd recover -able, ug/L (01077)```	$\begin{gathered} \text { Stront- } \\ \text { ium, } \\ \text { water, } \\ \text { fltrd, } \\ \text { ug/L } \\ (01080) \end{gathered}$
$\begin{gathered} \text { OCT } \\ 09 \ldots \end{gathered}$	14.0	--	--	--	--	--	--	--	--	--	--	--	--
$\begin{aligned} & \text { MAR } \\ & 31 . . \end{aligned}$	13.7	15	$<.02$	<. 02	1.8	1.8	. 79	. 48	. 5	. 5	$<.2$	<. 16	127
JUL 14..	18.2	153	<. 02	E. 01	1.1	. 7	. 47	4.93	$<.4$	E. 2	<. 2	<. 16	60
$\begin{aligned} & \text { SEP } \\ & 23 \ldots \end{aligned}$. 12.5	--	--	--	--	--	--	--	--	--	--	--	--

15015595 UNUK RIVER BELOW BLUE RIVER NEAR WRANGELL—Continued

15015595 UNUK RIVER BELOW BLUE RIVER NEAR WRANGELL—Continued

TEMPERATURE WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

DAY	MAX	MIN	MEAN									
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1	7.0	5.5	6.5	3.0	2.0	2.5	--	---	---	---	---	---
2	7.0	5.5	6.5	3.0	2.5	2.5	---	---	---	---	---	---
3	7.0	5.5	6.0	2.5	2.0	2.0	---	---	---	---	---	-
4	7.0	5.5	6.0	2.0	1.5	1.5	---	---	---	---	---	---
5	6.5	5.5	6.0	---	---	---	---	--	---	---	--	---
6	6.5	6.0	6.0	---	---	---	--	---	--	--	--	---
7	6.5	5.5	6.0	---	---	---	---	--	--	-	---	--
8	6.5	5.5	6.0	---	---	---	---	---	---	---	-	-
9	6.5	6.0	6.0	---	---	---	---	---	---	---	---	---
10	6.5	5.5	6.0	---	---	-	---	---	---	---	---	-
11	6.0	5.0	5.5	-	---	--	-	---	-	-	-	-
12	6.5	5.0	5.5	---	---	---	---	---	---	---	---	---
13	6.0	5.0	5.5	---	---	-	---	---	---	---	---	---
14	6.5	5.5	6.0	---	-	-	---	-	-	---	-	---
15	5.5	4.5	5.0	--	---	--	---	---	---	---	---	--
16	5.5	5.0	5.0	---	---	---	---	---	--	--	---	---
17	6.0	5.5	5.5	---	---	---	--	---	--	--	---	---
18	6.0	5.5	6.0	--	---	--	---	---	---	---	---	---
19	6.0	5.5	6.0	---	---	---	---	--	--	---	-	-
20	6.0	5.0	5.5	-	---	-	---	--	---	---	--	---
21	6.0	5.0	5.5	---	---	-	---	--	-	---	---	-
22	6.0	5.5	5.5	--	---	--	---	---	--	---	--	---
23	6.0	5.0	5.5	---	---	-	---	-	---	---	-	---
24	5.5	5.0	5.0	---	---	---	---	---	---	--	---	---
25	5.5	5.0	5.0	---	---	---	---	---	---	--	---	---
26	5.5	5.0	5.5	---	-	---	---	-	---	---	---	-
27	5.0	4.5	5.0	---	---	--	---	---	--	---	--	--
28	5.0	4.0	4.5	--	---	--	---	---	---	---	---	---
29	4.0	2.5	3.5	--	---	---	---	-	---	---	---	---
30	3.0	2.0	2.5	---	---	-	---	---	---	---	---	---
31	3.0	2.0	2.5	---	---	--	-	---	--	---	-	-
MONTH	7.0	2.0	5.4	---	---	---	-	--	---	---	---	-
DAY	MAX	MIN	MEAN									
		FEBRUARY			MARCH			APRIL			MAY	
1	---	---	---	---	---	-	4.5	2.5	3.5	5.5	3.5	4.5
2	---	---	---	---	-	---	3.5	3.0	3.0	6.0	3.5	4.5
3	---	---	---	---	---	--	4.0	2.5	3.5	6.0	3.5	5.0
4	---	-	--	---	---	--	5.0	3.0	4.0	7.0	3.5	5.0
5	--	---	---	-	--	---	5.0	2.5	3.5	6.5	3.0	5.0
6	--	-	-	---	---	---	5.5	2.5	4.0	7.0	3.0	5.0
7	---	---	---	---	---	---	5.0	3.5	4.5	7.5	4.0	5.5
8	---	---	---	---	---	---	6.5	3.5	4.5	7.0	4.5	6.0
9	-	---	---	--	---	--	5.0	3.0	4.0	6.0	4.5	5.0
10	---	---	---	--	---	---	4.5	3.5	4.0	7.5	4.5	6.0
11	-	---	---	---	---	---	5.5	3.0	4.0	8.0	4.0	6.0
12	--	-	--	-	---	-	4.0	2.5	3.0	8.0	4.0	6.0
13	---	---	---	---	---	---	5.0	3.0	3.5	8.5	4.0	6.5
14	---	---	---	-	-	---	6.0	2.5	4.0	7.5	4.0	6.0
15	---	---	---	---	---	---	5.0	2.0	3.5	8.5	4.0	6.0
16	-	---	-	---	-	---	5.0	2.0	3.5	7.5	4.5	6.0
17	---	---	---	---	---	---	5.0	3.5	4.5	8.5	4.0	6.5
18	---	---	---	---	---	--	6.0	3.5	4.5	9.0	4.5	6.5
19	---	---	---	---	---	---	6.5	3.0	4.5	9.0	4.5	6.5
20	---	---	---	---	---	---	7.0	3.0	5.0	8.5	4.5	6.5
21	---	---	---	---	---	---	7.0	3.5	5.0	8.0	4.0	6.0
22	---	-	-	-	---	---	5.5	3.5	4.0	8.5	4.0	6.0
23	---	---	---	---	---	---	5.5	3.5	4.5	9.0	5.0	7.0
24	---	---	---	---	---	---	4.5	3.5	4.0	7.5	5.0	6.0
25	---	---	---	--	---	---	4.0	3.5	4.0	7.5	5.5	6.5
26	---	---	---	---	---	---	5.0	3.0	4.0	7.0	5.0	6.0
27	--	-	---	---	---	---	7.0	3.5	5.0	8.0	4.5	6.0
28	-	---	---	---	---	---	7.0	3.5	5.5	8.5	5.0	6.5
29	---	---	---	---	---	---	7.5	3.5	5.5	7.5	5.0	6.5
30	---	---	---	---	---	---	7.5	3.5	5.5	8.0	5.5	6.5
31	---	---	---	---	---	-	---	---	---	7.5	5.0	6.5
MONTH	---	---	---	---	---	---	7.5	2.0	4.2	9.0	3.0	5.9

SOUTHEAST ALASKA

15015595 UNUK RIVER BELOW BLUE RIVER NEAR WRANGELL—Continued
TEMPERATURE WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2003 TO SEPTEMBER 2004

DAY	MAX	MIN	MEAN									
	JUNE			JULY			AUGUST			SEPTEMBER		
1	8.0	5.5	6.5	9.0	6.5	7.5	8.5	6.0	7.5	8.0	7.0	7.5
2	8.5	5.5	7.0	8.0	6.5	7.0	8.0	6.5	7.0	8.0	6.5	7.0
3	9.5	5.0	7.5	10.0	6.0	8.0	8.5	6.5	7.5	7.5	7.0	7.0
4	8.0	5.5	7.0	8.5	6.0	7.5	9.0	7.0	7.5	7.5	6.0	7.0
5	8.0	6.0	7.0	7.5	6.5	7.0	8.5	7.0	7.5	8.0	6.5	7.0
6	8.5	5.5	6.5	7.5	6.5	7.0	9.0	7.0	7.5	8.5	6.5	7.5
7	10.0	5.5	7.5	6.5	5.5	6.0	9.0	7.0	7.5	7.5	6.5	7.0
8	9.5	5.5	7.5	9.0	6.0	7.5	9.0	6.5	8.0	8.0	6.0	7.0
9	7.5	5.5	6.5	11.0	6.5	8.5	9.0	7.0	8.0	7.5	6.0	6.5
10	7.5	5.0	6.5	9.0	7.0	8.0	9.0	7.0	8.0	7.5	6.5	7.0
11	8.0	5.5	7.0	9.5	6.5	7.5	8.5	7.0	7.5	7.5	7.0	7.0
12	7.5	5.5	6.5	9.0	6.5	7.5	8.5	7.0	7.5	7.0	6.5	7.0
13	7.0	6.0	6.5	10.5	6.5	8.5	8.5	7.5	7.5	7.0	6.5	7.0
14	8.0	5.5	6.5	9.5	6.5	8.0	8.5	7.5	8.0	7.0	6.5	7.0
15	7.5	6.0	6.5	10.5	6.5	8.5	9.5	7.0	8.0	7.5	6.5	7.0
16	10.5	5.5	8.0	9.0	7.0	8.0	9.0	6.5	8.0	7.5	6.5	7.0
17	10.5	6.0	8.5	9.5	7.0	8.0	10.0	6.5	8.0	7.5	6.5	7.0
18	10.5	6.5	8.5	10.5	6.5	8.5	10.0	6.5	8.0	7.5	7.0	7.0
19	10.5	6.0	8.0	9.0	7.0	7.5	8.5	6.5	7.5	7.5	6.5	7.0
20	10.0	6.0	8.0	8.5	7.0	7.5	8.5	6.5	7.5	7.5	6.5	7.0
21	10.0	6.0	8.0	10.0	7.0	8.0	9.0	6.5	7.5	7.0	6.5	6.5
22	10.0	6.0	8.0	10.5	6.0	8.0	9.5	6.5	7.5	6.5	6.0	6.0
23	10.0	6.0	8.0	11.0	6.5	8.5	9.0	5.5	7.0	6.5	6.0	6.0
24	10.5	6.0	8.0	11.0	6.5	8.5	9.0	6.0	7.5	6.5	6.5	6.5
25	10.0	6.0	8.0	9.0	7.0	8.0	9.0	6.0	7.5	7.0	6.0	6.5
26	10.5	6.5	8.5	9.5	6.5	8.0	8.5	6.5	7.0	7.0	5.5	6.5
27	8.5	6.5	7.5	10.5	6.5	8.5	7.5	6.5	7.0	7.5	6.5	7.0
28	9.5	6.0	7.5	9.0	7.5	7.5	8.0	6.0	7.0	7.0	5.5	6.5
29	9.5	6.5	7.5	9.0	7.0	8.0	8.0	6.5	7.0	7.0	5.5	6.5
30	7.5	6.5	7.0	9.0	6.5	7.5	8.0	6.5	7.0	8.0	6.5	7.0
31	---	---	---	9.0	6.0	7.5	8.0	6.5	7.0	---	---	---
MONTH	10.5	5.0	7.4	11.0	5.5	7.8	10.0	5.5	7.5	8.5	5.5	6.8

